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INTRODUCTION

Methods of differential geometry are now very popular in mathematical physics.

In particular, the Hamiltonian formalism has long been recognized as playing a basic

role in both classical and quantum mechanics. In the last few decades, following the

intensive study of integrable systems derived from the original works of Kruskal,

Gardner, Miura and Greene, there has been a revival of the Hamiltonian formalism,

for this is generally accepted as the key to explain the integrability properties.

To motivate the introduction of the Hamiltonian formalism consider a particle

of mass m moving in a harmonic potential V (q) =
∑3

i=1 qi
2 so that

mq̈ = −grad V (q).

Introducing the momentum pi = mqi and the energy h1 = p2/2m+V (q), Newton’s

equations of the motion are equivalent to Hamilton’s equations

ẋi = {xi, h1}0,

where x = (q, p), and { , }0 is the Poisson bracket

{f1, f2}0 =

3∑

i=1

(
∂f1
∂qi

∂f2
∂pi

− ∂f2
∂qi

∂f1
∂pi

)
.

Now, the Poisson bracket can be used to express remarkable properties of the

system. For example, the condition that f is a first integral (a constant of the

motion) can be expressed by the commutativity relation

{f, h1}0 = 0.
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The general Hamiltonian formalism is based on the recognition that the Poisson

bracket is the fundamental structure underlying the system, which in turn can be

thought of as being “defined” by the Hamiltonian function. Therefore, one proceeds

to define a Poisson bracket as a bilinear operation on a set of functions satisfying

three basic properties: (i) skew-symmetry, (ii) Jacobi identity and (iii) Leibnitz

rule. The Hamiltonian system is then specified by fixing a specific function, the

Hamiltonian.

In the example above, at least from the physical point of view, there is no reason

why the bracket was so chosen (except, perhaps, from the fact that in this case the

hamiltonian is what one usually calls the “energy”). As a matter of fact, we could

have taken, for example, the bracket

{f1, f2}1 =
3∑

i=1

e−(qi
2+pi

2)

(
∂f1
∂qi

∂f2
∂pi

− ∂f2
∂qi

∂f1
∂pi

)
.

Although this requires a new choice of hamiltonian, namely h0 =
∑3

i=1
1
2e

qi
2+pi

2

,

we still have that Newton’s equations are equivalent to

ẋi = {xi, h1}0 = {xi, h0}1.

Hence, we have two distinct Hamiltonian formulations for the same system. Less

trivial examples of systems admitting a bi-Hamiltonian formulation will be given

throughout the text.

The two Poisson brackets above are compatible in the following sense: the sum

{ , }0 + { , }1 is also a Poisson bracket. Because a Poisson bracket has to satisfy

the Jacobi identity, a non-linear equation on the coefficients Jij = {xi, xj}, this

compatibility property is far from being a trivial requirement. In fact, it is the clue

to a fundamental result due to Magri relating the existence of a bi-Hamiltonian

formulation for a system with its integrability. A (finite dimensional) Hamiltonian

system is said to be completely integrable if it has enough first integrals in involution

(i.e. whose pairwise Poisson brackets vanish). Magri’s theorem gives a method
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to produce first integrals of a non-degenerate, bi-Hamiltonian system. The non-

degeneracy hypothesis means that at least one of the Poisson brackets has maximal

rank, i.e., the matrix J = (Jij) is invertible (in this case the Poisson bracket

is derived from a symplectic form). Then one can define a 1-1 tensor N , called

the recursion operator of the system, which gives the sequence of first integrals

{h0, h1, h2, . . .} through the formula:

dhi+1 = N∗dhi, i = 0, 1, . . . .

The compatibility condition is reflected on the vanishing of a torsion associated

with N , which in turn implies that the right-hand side is actually a closed 1-form.

We can now explain the organization of this thesis.

We review all the basic facts concerning Poisson manifolds and bi-Hamiltonian

systems in the first two sections of chapter I. Besides laying down the foundations

of the theory, we are interested in explaining how some of the techniques can be

extended to the degenerate bi-Hamiltonian systems, through the use of a reduc-

tion. For this, it is convenient to combine the master-symmetries introduced by

Fuchssteiner together with a result due to Oevel relating conformal symmetries

and bi-Hamiltonian structure, as presented in section 3. Then we show by an ex-

ample, that it can happen that the master-symmetries survive reduction while the

recursion operator does not. For the example studied, the non-periodic Toda lat-

tice, we deduce exact deformation relations previously known to hold only up to

some equivalence relation. As a byproduct, we obtain a new set of time-dependent

symmetries for the Toda lattice, which can be used to integrate the system explic-

itly. At present we don’t know of any general methods to deal with the degenerate

case.

The next question we address (chapter II) is the following: does every com-

pletely integrable system possess a bi-Hamiltonian formulation ? We generalize, to

any number of dimensions, a result due to Brouzet for dimension 4. It gives a nec-

essary and sufficient condition for a completely integrable Hamiltonian system to

3



have a bi-Hamiltonian formulation in a neighborhood of an invariant torus (mod-

ulo some natural hypothesis). This condition is expressed in terms of the affine

structure defined by the action-angle variables, as a restriction on the graph of the

Hamiltonian function. We then interpret it geometrically in terms of Darboux’s

hypersurfaces of translation, and give examples and counter-examples generalizing

Brouzet’s original example.

The third and final chapter is dedicated to the investigation of certain non-

linear Poisson brackets that appear as second Poisson brackets in some integrable

systems. In virtually all examples with physical meaning, the first Poisson bracket

of a Poisson pair arises either from a symplectic form or by reduction from one

(including, for example, the Lie Poisson brackets). One would like to have similar

geometric interpretations for the second Poisson bracket. Also, there is a very close

connection between integrable systems and Lie algebraic properties. Examples

include Lax pairs, Lie-Poisson brackets, cotangent spaces of Lie groups, etc. We

consider here the Poisson Lie groups of Drinfel’d.

A Poisson Lie group is a Lie group G equipped with a Poisson bracket, such that

group multiplication G × G → G is a Poisson map. The associated infinitesimal

objects are the Lie bialgebras (g, g∗). We propose a corresponding notion for sym-

metric spaces. A Poisson symmetric Lie group is a pair (G, S), where G is a Poisson

Lie group and S : G → G is an involutive Poisson Lie group anti-morphism. The

associated infinitesimal objects are the symmetric Lie bialgebras: a triple (g, g∗, s)

where (g, g∗) is a Lie bialgebra, and s : g → g is an involutive Lie bialgebra anti-

morphism. Using the structure theory of real semi-simple Lie algebras we obtain

examples of symmetric Lie bialgebras. This is essentially equivalent to solving the

Yang-Baxter equation under an additional constraint.

Given a Poisson symmetric Lie group, the associated symmetric space G/H,

where H denotes the fixed point set of S, is a Poisson manifold. The Poisson

brackets arising in this manner seem to be relevant to the theory of integrable
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systems. In fact we show that several examples of Poisson brackets that have

appeared before in the literature, can be obtain in this way. Also, some of the usual

techniques for symmetric spaces can be extended to the Poisson case. Closing the

chapter we return to the Toda lattice and show how the second Poisson structure

arises in this geometric setting.

The original results contained in chapters I and II were announced in [Fe1,Fe2].
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CHAPTER I

POISSON PAIRS

In this chapter, we start by recalling some basic facts of Poisson Geometry

(section 1), and the theory of Poisson pairs (section 2). The main result here is

Magri’s theorem, relating bi-Hamiltonian structure and first integrals of the system,

through some remarkable relations known as Lenard’s recursion relations. In section

3, the notion of symmetry of a differential equation is extended to include the so-

called mastersymmetries. For a bi-Hamiltonian system, a result due to Oevel relates

mastersymmetries to a conformal symmetry of the system, and yields deformation

relations complementing the Lenard’s recursion relations. In the final section of the

chapter, we illustrate all these constructions with the example of the non-periodic,

finite, Toda lattice. Our approach consists in working in the physical variables, and

then reducing to Flaschka’s variables. Although the recursion operator itself cannot

be reduced, deformation relations and mastersymmetries do reduce. In this way,

one obtains new time-dependent symmetries of the Toda lattice. Also, we believe

that this approach is more natural. For example, deformation relations, previously

known to hold up to a certain equivalence relation, are shown to be exact.

1. Poisson geometry

As usual, all objects are assumed to be C∞.

Recall that a Poisson bracket [Li,Li-Ma,We1] on a manifold M is a bilinear

skew-symmetric map { , } : C∞(M) × C∞(M) → C∞(M), satisfying the Jacobi
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identity1

(1.1)
⊙

f,g,h

{f, {g, h}} = 0, f, g, h ∈ C∞(M),

and Leibnitz rule

(1.2) {f, g · h} = {f, g}h+ g{f, h}, f, g, h ∈ C∞(M).

Sometimes it is more convenient to work with bivectors. One defines the Poisson

bivector Λ by setting

(1.3) {f, g} =< Λ, df ∧ dg >, f, g ∈ C∞(M).

The Jacobi identity (1.1) is then equivalent to the vanishing of the Schouten bracket

(1.4) [Λ,Λ] = 0.

Associated with a Poisson bracket (or bivector) we have a bundle map J : T ∗(M) →
T (M), so that to each smooth function h ∈ C∞(M) there is associated a vector

field Xh = J · dh. One calls h the Hamiltonian function, Xh the Hamiltonian

vector field, and the equation for the integral curves of Xh

(1.5) ẋ = J · dh,

Hamilton’s equations of motion. The rank of the Poisson bracket at a point

m ∈M , is the rank of the linear transformation J(m).

Example 1.1. Let (M,ω) be a symplectic manifold. For each h ∈ C∞(M)

there is defined a vector field Xh on M , by requiring that

(1.6) Xh y ω = dh.

Xh is also called the Hamiltonian vector field associated with h. If we set

(1.7) {f, g} =< ω,Xf ∧Xg >, f, g ∈ C∞(M)

1The symbol
J

denotes a cyclic sum over the indexes
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then { , } is a Poisson bracket, and Hamiltonian vector fields in the new and old

senses coincide. The rank of { , } is everywhere equal to the dimension of M .

Conversely, if M is a Poisson manifold whose bracket has rank everywhere equal to

the dimension of M , then (1.7) defines a symplectic form on M.

For an arbitrary Poisson manifold M , the distribution Im J is integrable. The

associated foliation is called the Kirillov foliation [We1]. It is, generally speaking,

a singular foliation. The restriction of the Poisson bracket to each leaf defines

a symplectic form, so the Kirillov foliation is made of symplectic manifolds. A

function constant on the leaves of the Kirillov foliation is called a Casimir. It

Poisson commutes with every other function.

Example 1.2. Let g be a finite dimensional Lie algebra, and let g∗ be the space

of linear functionals on g. Then g∗ becomes a Poisson manifold if we introduce the

bracket

(1.8) {f, g}(ξ) =< ξ, [dξf, dξg] >, ξ ∈ g∗, f, g ∈ C∞(g∗).

This bracket is known as the Lie-Poisson bracket.

The symplectic leaves of the Kirillov foliation of g∗ coincide with the orbits of

the co-adjoint action, so the Casimirs are just the invariants of this action.

A morphism in the Poisson category is a map Φ : M → N , between Poisson

manifolds, preserving the Poisson brackets:

{f, g}N ◦ Φ = {f ◦ Φ, g ◦ Φ}M .

Direct products exist in the Poisson category.

A Poisson Lie group [Dr] is a Lie group G equipped with a Poisson bracket,

such that the group operation G×G→ G is a Poisson map. A Poisson action of

a Poisson Lie group G on a Poisson manifold M is a group action Ψ : G×M →M

which is also a Poisson map.
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Example 1.3 [Lu]. LetG be a Lie group equipped with the zero Poisson bracket.

It is a Poisson Lie group. If M is a Poisson manifold, and if Ψ : G ×M → M

is a group action, then Ψ is a Poisson action iff for each fixed g ∈ G the map

Ψ(g, ·) : M → M is Poisson. Most symmetries of Hamiltonian systems are of

this nature, and the associated theory is the well known Meyer-Marsden-Weinstein

reduction ( [Me,Ma-We,Ma-Ra]).

Example 1.4. Consider the realization of SL(n,R) as the group of n× n ma-

trices (sij) with determinant 1. The bracket

(1.9) {sij, skl} = (sgn(i− k) − sgn(l − j))silskj

makes SL(n,R) into a Poisson Lie group.

Let P (n,R) be the set of positive-definite, symmetric, n× n matrices (pij) with

determinant 1. The Poisson bracket

(1.10) {pij , pkl} = (sgn(i− k) − sgn(l − j))pilpkj + (sgn(j − k) − sgn(l − i))pjlpik

makes P (n,R) into a Poisson manifold

Define a group action Ψ of SL(n,R) on P (n,R) as follows. If g ∈ SL(n,R) and

p ∈ P (n,R), we set Ψ(g, p) = g ·p · gT , where the superscript denotes transposition.

This defines a Poisson action.

In chapter 3, we shall return to the geometry of Poisson actions, where we will

explain how the brackets (1.9) and (1.10) were obtained.

2. Poisson pairs

Most of the results in this section can be found in the unpublished notes of Magri

and Morosi [Ma-Mo]. However, we simplify some of the proofs.

Definition 2.1. A Poisson pair on a manifold M is a compatible pair (Λ0,Λ1)

of Poisson bivectors on M, i.e., Λ0 and Λ1 are bivectors on M such that

[
Λ0,Λ0

]
=

[
Λ1,Λ1

]
= 0(2.1)

[
Λ0,Λ1

]
= 0.(2.2)
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A bi-Hamiltonian system is prescribed by specifying two Hamiltonian functions

h0, h1 ∈ C∞(M) satisfying

(2.3) X = J1dh0 = J0dh1,

where Ji, i=0,1, are the bundle maps determined by Λi. The vector field X is said

to be a bi-Hamiltonian vector field.

One of the basic problems we shall address is the relationship between the com-

patibility condition (2.2) and the integrability of the bi-Hamiltonian system. First

we look at an example:

Example 2.2. Periodic Toda Lattice [Ar-Gi]. This system can be de-

scribed as a 1-dimensional infinite lattice, where each spring has a potential φ(r) =

er − r, and where one identifies the particles i and i+N. The equations of motion

are:
d2yi

dt2
= φ′(yi − yi+1) − φ′(yi−1 − yi) (yi+N = yi).

Define the new variables:

qi = yi − yi+1 , pi = ẏi.

The equations of motion become




q̇i = pi − pi+1

i = 1, . . . , N
ṗi = eqi−1 − eqi

One checks that the system is bi-Hamiltonian with respect to the Poisson structures

Λ0 =
N∑

i=1

(
∂

∂qi−1
− ∂

∂qi

)
∧ ∂

∂pi

Λ1 =

N∑

i=1

(
∂

∂qi
∧ ∂

∂qi+1
+ pi

(
∂

∂qi−1
− ∂

∂qi

)
∧ ∂

∂pi

+ eqi
∂

∂pi+1
∧ ∂

∂pi

)

and Hamiltonian functions

h0 =
N∑

i=1

pi h1 =
N∑

i=1

1

2
p2

i + qi.
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In this example, the Poisson pair is non-degenerate since the Poisson structure

Λ0 is symplectic. We shall consider degenerate cases later on in this chapter. If we

assume a non-degenerate pair we can make the following definition.

Definition 2.3. The recursion operator associated with a non-degenerate

pair (Λ0,Λ1) is the (1,1)-tensor N defined by

N = J1J
−1
0

A first consequence of the compatibility condition is the following result.

Proposition 2.4. The Nijenhuis torsion of the recursion operator N associated

with a Poisson pair (Λ0,Λ1) vanishes.

Proof. We recall the following expressions for the Nijenhuis torsion and the

Schouten bracket, resp.2:

TN (X, Y ) = LNX(NY )−NLNX(Y ) −NLX(NY ) +N2LX(Y ),(2.4)

∀X, Y ∈ X(M)

2
[
Λ0,Λ1

]
(α, β) = LJ0β(J1)α+ J1LJ0α(β) + J1d 〈α, J0β〉(2.5)

+ LJ1β(J0)α+ J0LJ1α(β) + J0d 〈α, J1β〉 , ∀α, β ∈ Ω1(M)

where L denotes the Lie derivative. Now given X, Y ∈ X(M) let α, β ∈ Ω1(M) be

such that X = J0α, Y = J0β (α and β exist since Λ0 is symplectic). Using (2.4)

and (2.5) we find

TN (X, Y ) = −N2
[
Λ0,Λ0

]
(α, β) + 2N

[
Λ0,Λ1

]
(α, β) −

[
Λ1,Λ1

]
(α, β),

and the result follows. �

2The symbols X(M) and Ω1(M) denote, resp., the spaces of vector fields and differential 1-

forms on M.
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As in the Hamiltonian case, we define a locally bi-Hamiltonian vector field

to be a vector field X for which there exists closed 1-forms α and β satisfying

X = J1α = J0β.

In the case where both Poisson structures are symplectic, a vector field X is locally

bi-Hamiltonian iff it is an infinitesimal automorphism of the Poisson bi-structure,

i.e. if it satisfies

(2.6) LXΛ0 = LXΛ1 = 0.

Henceforth we denote by XBH the vector space of locally bi-Hamiltonian vector

fields.

A second consequence of the compatibility condition is the following result.

Proposition 2.5. The space of locally bi-Hamiltonian vector fields is a Lie

algebra (with the usual bracket) which is invariant under the action of the recursion

operator N. If X, Y ∈ XBH then

(2.7) N [X, Y ] = [NX, Y ] = [X,NY ] .

In particular, given X1 ∈ XBH the sequence Xr = Nr−1X1, r = 1, 2, ... forms a set

of mutually commuting vector fields.

Proof. The first statement follows easily from the formula

[X, Y ] = Ji (d < β,X >) , where Y ≡ Jiβ.

Now suppose X ∈ XBH . We claim that then NX ∈ XBH . In fact, if X = J1α =

J0β for some closed 1-forms α and β, we have

NX = J0N
∗β = J1β,
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so all we have to show is that N∗β is closed (here N∗ denotes the adjoint of N

relative to the natural pairing between vectors and forms). Now, from proposition

2.4 and (2.4) we obtain

(2.8) LNX(N) −NLX(N) = 0, ∀X ∈ X(M),

and dualizing we find

(2.9) LNX(N∗) − LX(N∗)N∗ = 0, ∀X ∈ X(M),

We can use (2.9) and the closure of α and β to get

< dN∗β,X > = LX(N∗β) − d < N∗β,X >

= LX(N∗β) − d < β,NX >

= LX(N∗β) − LNX(β)

= N∗ (LX(N∗α) − LNX(α)) + (LX(N∗)N∗ − LNX(N∗)) (α)

= N∗ < d(N∗α), X >

= N∗ < dβ,X >= 0.

Finally, to prove (2.7) we observe that by (2.6), we have for every X, Y ∈ XBH

LX(N) = LY (N) = 0,

and, in particular, it follows that

LX(N)(Y ) = LY (N)(X) = 0,

which gives

[NX, Y ] = N [X, Y ] = [X,NY ] ,

as desired. �

An important corollary is the following integrability result due to Magri [Ma]:
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Theorem 2.6. Consider a bi-Hamiltonian system

ẋ = J1dh0 = J0dh1,

on a manifold M, whose first cohomology group is trivial. Then there exists a hier-

archy of mutually commuting bi-Hamiltonian functions h0, h1, h2, ..., all in involu-

tion to each other, with respect to both Poisson brackets. They generate mutually

commuting bi-Hamiltonian flows Xi, i = 1, 2, . . . , satisfying the Lenard recursion

relations

(2.10) Xi+j = Jidhj ,

where Ji ≡ N iJ0, i = 1, 2, . . . are the higher order Poisson tensors.

If enough of the integrals given by Magri’s Theorem are functionally independent

then the system is completely integrable (in Arnold’s sense, [Ar, chapt.10]). This

happens in the case of the periodic Toda lattice where one obtains a complete set

of highly non-trivial first integrals.

3. Mastersymmetries and bi-Hamiltonian systems

We recall some basic facts of the theory of mastersymmetries for differential

equations. More details can be found in Fuchssteiner [Fu].

Consider a differential equation on a manifold M :

(3.1) ẋ = X(x).

As usual, a vector field Y is a symmetry of (3.1) if

(3.2) [Y,X ] = 0.

More generally, a family Y = Y (x, t) of vector fields depending smoothly on t is a

time-dependent symmetry of (3.1) if

(3.3)
∂Y

∂t
+ [Y,X ] = 0.

14



We view Y as a time-dependent vector field.

We can generalize (3.2) as follows. A vector field Z is called a generator of

degree n if

[[. . . [Z,X ], . . . ], X ], X ]] = 0.

If Z is a generator of degree n then the time-dependent vector field

(3.4) YZ = exp(ad X) · Z =

n∑

k=0

tk

k!
[[. . . [Z,X ], . . . ], X ], X ]]

satisfies (3.3), and so is a time-dependent symmetry of (3.1). Thus, t-time depen-

dent symmetries which are polynomial in t are in 1-1 correspondence with genera-

tors of degree n.

Generators satisfy the following properties:

(i) If Z is a generator of degree n, then [Z,X ] is a generator of degree n-1;

(ii) If Z1 and Z2 are generators of degree n1 and n2, then [Z1, Z2] is a generator

of degree n1 + n2;

(iii) A symmetry is a generator of degree 0;

In particular we see that the set of all generators form a Lie subalgebra of

the algebra of all vector fields X(M). We shall call a generator of degree 1 a

mastersymmetry. Thus the condition for Z to be a mastersymmetry is:

[[Z,X ], X ] = 0, and [Z,X ] 6= 0.

Proposition 3.1. Let Z be a mastersymmetry. Then:

(i) [Z,X ] is an ordinary symmetry;

(ii) [Z, [Z,X ]] is an ordinary symmetry;

Proof. It is obvious from the definitions and the Jacobi identity. �

In general, given a mastersymmetry all we get is the two symmetries given in

the proposition. However, under an additional assumption, we can generate further

symmetries as follows.
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Proposition 3.2. Suppose Y is a symmetry of (3.1) which commutes with every

other symmetry, and let Z be a mastersymmetry. Then [Z, Y ] is also a symmetry.

Proof. Use Jacobi identity again. �

On a manifoldM , whose first cohomology vanishes, we consider a bi-Hamiltonian

system

(3.5) X1 = J1dh0 = J0dh1,

where Ji are compatible Poisson tensors, and hi are the Hamiltonian functions. As

before, we assume that J0 is symplectic, so we can introduce the recursion operator

N = J1J
−1
0 ,

the higher order flows

Xi = N i−1X1, (i = 1, 2, . . . ),

and the higher order Poisson tensors

Ji = N iJ0, (i = 1, 2, . . . ).

The Hamiltonians {hi} satisfy

dhi = (N∗)i
dh0, (i = 1, 2, . . . ),

where N∗ denotes the adjoint of N . These relations are equivalent to the Lenard

recursion relations:

Xi+j = Jidhj .

For a bi-Hamiltonian system mastersymmetries can be obtained from the follow-

ing result due to Oevel [Oe]:
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Theorem 3.3. Suppose that Z0 is a conformal symmetry for both J0, J1 and

h0, i.e. for some scalars λ, µ, and ν we have

LZ0
J0 = λJ0, LZ0

J1 = µJ1, LZ0
h0 = νh0.

Then the vector fields

Zi = N iZ0

satisfy

(a) [Zi, Xj] =
(
µ+ ν + (j − 1)(µ− λ)

)
Xi+j;

(b) [Zi, Zj ] = (µ− λ)(j − i)Zi+j;

(c) LZi
Jj =

(
µ+ (j − i− 1)(µ− λ)

)
Ji+j;

The set of first integrals {hi} can be obtained from the formula

(d) Zi y dhj =
(
ν + (i+ j)(µ− λ)

)
hi+j .

Proof. (a) We compute

[Zi, Xj] = −LXj
(N iZ0)

= −N iLXj
(Z0)

= N i[Z0, Xj],

because any bi-Hamiltonian vector field X satisfies LX(N) = 0. Therefore

[Zi, Xj] = N iLZ0
(Xj)

= N iLZ0
(N j−1)X1 +N i+j−1LZ0

(X1).

But:

LZ0
N = LZ0

(J1)J
−1
0 − J1J

−1
0 LZ0

(J0)J
−1
0

= µJ1J
−1
0 − λJ1J

−1
0

= (µ− λ)N,
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LZ0
X1 = LZ0

(J1dH0)

= LZ0
(J1)dH0 + J1d(LZ0

H0)

= (µ+ ν)J1dH0

= (µ+ ν)X1,

so we conclude that

[Zi, Xj] = (µ− λ)(j − 1)N i+j−1X1 + (µ+ ν)N i+j−1X1

=
(
µ+ ν + (j − 1)(µ− λ)

)
Xi+j .

(b) From (2.8) we compute

[Zi, Zj] = [N iZ0, N
jZ0]

= LNiZ0
(N j)Z0 +N jLNiZ0

(Z0)

= N iLZ0
(N j)Z0 −N jLZ0

(N iZ0)

= N ij(µ− λ)N jZ0 −N ji(µ− λ)N iZ0

= (µ− λ)(j − i)N i+jZ0

= (µ− λ)(j − i)Zi+j .

(c) From (2.5), we see that [Λ1,Λ0] = 0 is equivalent to:

LJ0β(J1)α+ J1 < dβ, J0α > +LJ1β(J0)α+ J0 < dβ, J1α >= 0, α, β ∈ Ω(M).

Similarly, [Λ0,Λ0] = 0 is equivalent to:

LJ0β(J0)α+ J0 < dβ, J0α >= 0, α, β ∈ Ω(M),

which gives

< dβ, J0α > = −J−1
0 LJ0β(J0)α,

< dβ, J1α > = −J−1
0 LJ0β(J0)J

−1
0 J1α.
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Putting all this together, replacing β = J−1
0 Z, and using N = J1J

−1
0 , we find

LNZ(J0)α = NLZ(J0)α+ LZ(J0)N
∗α− LZ(J1)α.

This last formula gives a special case of (c):

LZ1
J0 = LNZ0

J0

= λNJ0 + λJ0N
∗ − µJ1

= (2λ− µ)J1.

Using induction, one can show that

LZi
J0 = LNiZ0

J0

=
(
λ− i(µ− λ)

)
N iJ0

=
(
λ− i(µ− λ)

)
Ji.

Finally the general case follows:

LZi
Jj = LZi

(N jJ0)

= LNiZ0
(N j)J0 +N jΛZi

J0

= jN i+j−1LZ0
(N)J0 +

(
λ− i(µ− λ)

)
N i+jJ0

=
(
λ+ (j − i)(µ− λ)

)
N i+jJ0

=
(
λ+ (j − i)(µ− λ)

)
Ji+j .

(d) It is enough to prove the differential version of (d), which can be done as

follows:

d〈dhj , Zi〉 = d〈(N∗)j
dh0, N

iZ0〉

= LZ0

(
(N∗)i+j

dh0

)

= LZ0

(
(N∗)i+j)

dh0 + (N∗)i+j
LZ0

dh0

= (i+ j)(N∗)i+j−1
LZ0

(N∗)dh0 + ν(N∗)i+j
dh0

= (i+ j)(µ− λ)(N∗)i+j
dh0 + ν(N∗)i+j

dh0

=
(
ν + (i+ j)(µ− λ)

)
dhi+j . �
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¿From the observations on mastersymmetries made above, we obtain:

Corollary 3.4. Under the hypothesis of the theorem, for each integer i =

1, 2, . . . , the vector fields

YZj
= Zj + t

(
µ+ ν + (i− 1)(µ− λ)

)
Xi+j , j = 1, 2, . . .

are time-dependent symmetries of the ith-order flow.

Proof. Each Zj , j = 1, 2, . . . , is a mastersymmetry. Using (3.4) and relation

(a) of the the theorem we compute:

YZj
= Zj + t[Zj, Xi]

= Zj + t
(
µ+ ν + (i− 1)(µ− λ)

)
Xi+j . �

4. Example: The Toda Lattice

In example 2.2 we considered briefly the periodic Toda lattice. In this section we

illustrate all the concepts introduced above for the finite, non-periodic, Toda lattice,

which leads to a degenerate Poisson pair in the so-called Flaschka’s variables.

In the letter [Da1], a construction of mastersymmetries and deformation rela-

tions for the Toda lattice was given, as well as its connection with the R-matrix

approach, in terms of the Flaschka’s variables. On the other hand, theorem 3.3

above relates mastersymmetries to a conformal symmetry of the system, when a

recursion operator is available. We shall relate these two constructions using a

reduction.

Our approach consists in working in the physical variables, and then reducing to

Flaschka’s variables. Although the recursion operator itself cannot be reduced (this

is also observed in [Mo-To]), the deformation relations and mastersymmetries do

reduce. One advantage of this approach is that it yields immediately a hierarchy of

time-dependent symmetries for the Toda lattice. Also, we believe that this approach
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is more natural. For example, the deformation relations, previously known to hold

up to a certain equivalence relation [Da1], are shown to be exact.

The finite, non-periodic, Toda lattice, is a system of particles on the line under

exponential interaction with nearby particles. It has the following bi-Hamiltonian

formulation:

J0 =
n∑

i=1

∂

∂qi
∧ ∂

∂pi

J1 =

n−1∑

i=1

2e2(q
i−qi+1) ∂

∂pi+1
∧ ∂

∂pi

+

n∑

i=1

pi

∂

∂qi
∧ ∂

∂pi

(4.1)

+
1

2

∑

i<j

∂

∂qj
∧ ∂

∂qi

h0 =
n∑

i=1

pi h1 =
n∑

i=1

pi
2

2
+

n−1∑

i=1

e2(q
i−qi+1)

Note that J0 is symplectic. The recursion operator is then

N =
n∑

i=1

pi

∂

∂qi
⊗ dqi

+
n−1∑

i=1

2e2(q
i−qi+1)

( ∂

∂pi+1
⊗ dqi − ∂

∂pi

⊗ dqi+1
)

(4.2)

+
1

2

∑

i<j

( ∂

∂qi
⊗ dpj −

∂

∂qj
⊗ dpi

)
+

n∑

i=1

pi

∂

∂pi

⊗ dpi.

We will now show that the vector field

(4.3) Z0 =
n∑

i=1

n+ 1 − 2i

2

∂

∂qi
+

n∑

i=1

pi

∂

∂pi

is a conformal symmetry for both J0, J1 and h0, so we will be able to apply theorem

3.3 and its corollary.

In fact, we compute:

LZ0
J0 =

n∑

i,j=1

[n+ 1 − 2j

2

∂

∂qj
,
∂

∂qi
∧ ∂

∂pi

]
+

n∑

i,j=1

[
pj

∂

∂pj

,
∂

∂qi
∧ ∂

∂pi

]

= 0 −
n∑

i=1

∂

∂qi
∧ ∂

∂pi

= −J0.
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Next observe that Z0 is a Hamiltonian vector field with respect to J1 for the Hamil-

tonian f =
∑

i q
i, so we have

LZ0
J1 = 0.

Finally, a simple computation shows that LZ0
h0 = h0.

Therefore theorem 3.3 holds with λ = −1, µ = 0, ν = 1. It follows that the

higher order Poisson tensors for the Toda lattice satisfy the deformation relations:

(4.4) LZi
Jj = (j − i− 1)Ji+j ,

(4.5) LZi
hj = (i+ j + 1)hi+j ,

where Zi ≡ N iZ0 satisfy

(4.6) [Zi, Zj] = (j − i)Zi+j .

If we denote by Xi the Hamiltonian vector field generated by hi, with respect to

J0, we also have

(4.7) [Zi, Xj] = jXi+j ,

and from the corollary we obtain the time-dependent symmetries

(4.8) YZj
≡ Zj + itXi+j , j = 1, 2, . . . .

Another multi-Hamiltonian formulation is known for Toda lattice in terms of the

Flaschka’s variables. Recall that the Flaschka transformation is the map π : R2n →
R2n−1 defined by

(q1, . . . , qn, p1, . . . , pn) 7→ (a1, . . . , an−1, b1, . . . , bn),
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where ai = e(q
i−qi+1), bi = pi. The Poisson tensors J0 and J1 reduce to R2n−1.

This can be checked directly by setting

J̃0 =

n−1∑

i=1

ai

( ∂

∂ai

∧ ∂

∂bi
− ∂

∂ai

∧ ∂

∂bi+1

)

J̃1 =

n−1∑

i=1

(
aibi

∂

∂ai

∧ ∂

∂bi
− aibi+1

∂

∂ai

∧ ∂

∂bi+1

)
(4.9)

+
n−1∑

i=1

2ai
2 ∂

∂bi+1
∧ ∂

∂bi
+

n−2∑

i=1

1

2
aiai+1

∂

∂ai+1
∧ ∂

∂ai

and observing that the projection π : (R2n, Ji) → (R2n−1, J̃i) is a Poisson mor-

phism.

The bi-Hamiltonian formulation for the Toda lattice in the Flaschka’s variables, is

exactly the one defined by the Poisson tensors (4.9), and the reduced Hamiltonians

h̃0 =
n∑

i=1

bi h̃1 =
n∑

i=1

bi
2

2
+

n−1∑

i=1

ai
2.

There is however a big difference between the original bi-Hamiltonian formulation

and the reduced bi-Hamiltonian formulation. The Poisson structures J̃0 and J̃1 are

not symplectic, and so there is no obvious recursion operator. In fact, the recursion

operator N given by (4.2) cannot be reduced. This is most easily seen using the

notion of projectable vector field. Recall that a vector field Z is projectable if

for every vector field Y tangent to the fibers π−1(x), the vector field LY Z is also

tangent to the fibers. If that is the case, the vector field Z can be reduced to a

vector field Z̃ given by Z̃(π(x)) = dπ(x) · Z(x). Conversely, any vector field on the

reduced space is the image by π of a projectable vector field.

Now we claim that N does not map projectable vector fields to projectable vector

fields, as it is required for reduction to work. To prove this we note that the fibers

are the lines in R2n parallel to the vector (1, . . . , 1, 0, . . . , 0), so a vector field Z is

projectable iff for every function f ∈ C∞(M) there exists a function g ∈ C∞(M)

such that [
Z, f

∑

i

∂

∂qi

]
= g

∑

i

∂

∂qi
.
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For example, the vector field ∂
∂qi is projectable but

N
∂

∂qi
= pi

∂

∂qi
− 2e2(q

i−1−qi) ∂

∂pi−1
+ 2e2(q

i−qi+1) ∂

∂pi+1
,

is not projectable. We conclude that no recursion operator exists relating the two

reduced Poisson tensors.

In spite of the fact that there is no recursion operator for the reduced Toda lattice,

higher order Poisson structures are known, and they satisfy certain deformation

relations [Da1]. This can be explained by the following result.

Theorem 4.1. The vector fields Zi = N iZ0, i = 0, 1, 2, . . . , are projectable.

The corresponding reduced vector fields satisfy

(4.10) [Z̃i, Z̃j] = (j − i)Z̃i+j .

In particular, the higher order Poisson tensors can be reduced to Poisson tensors

J̃i, satisfying the deformation relations

(4.11) LZi
J̃j = (j − i− 1)J̃i+j .

There are also reduced Hamiltonians {h̃i} and reduced higher order flows X̃i satis-

fying:

(4.12) LZ̃i
h̃j = (i+ j + 1)h̃i+j ,

(4.13) [Z̃i, X̃j] = jX̃i+j .

Proof. All we have to prove is that the vector fields Z̃i are projectable, so the

all hierarchy can be reduced. The rest of the proposition follows from relations

(4.4)-(4.7).

We compute:

[
N,

n∑

i=1

∂

∂qi

]
=

n−1∑

i=1

2e2(q
i−qi+1)

( ∂

∂pi

⊗ dqi+1 − ∂

∂pi+1
⊗ dqi

)

−
n∑

i=2

2e2(q
i−1−qi)

( ∂

∂pi−1
⊗ dqi − ∂

∂pi

⊗ dqi−1
)

= 0.
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Therefore, for any f ∈ C∞(M) we find

[
N iZ0, f

∑

i

∂

∂qi

]
= (N iZ0)(f)

∑

i

∂

∂qi
− f

[
N iZ0,

∑

i

∂

∂qi

]

= g
∑

i

∂

∂qi
− fN i

[
Z0,

∑

i

∂

∂qi

]

= g
∑

i

∂

∂qi

so the Zi = N iZ0, i = 0, 1, 2, . . . , are projectable. �

The deformation relations (3.11) where known to hold up to a certain equivalence

relation [Da1]. Our proof shows that they are actually exact. We note that the

mastersymmetries {Z̃i}, for i ≥ 2, are different from the mastersymmetries given

in [Da1]. However, for i = 1 they differ by a multiple of the Hamiltonian vector

field X1, and so the higher order reduced Poisson tensors (4.11), coincide with the

ones given in [Da1].

It follows, exactly as in corollary 3.4, the existence of a hierarchy of reduced

time-dependent symmetries:

Corollary 4.2. For each integer i = 1, 2, . . . , the vector fields

YZ̃j
≡ Z̃j + itX̃i+j , j = 1, 2, . . .

are time-dependent symmetries of the ith-order Toda flow.

We have learned during our research, that corollary 4.2 has also been obtained

in [Da2], although through different methods.
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CHAPTER II

COMPLETE INTEGRABILITY ⇒
BI-HAMILTONIAN STRUCTURE ?

The main purpose of this chapter is to answer the question: does every com-

pletely integrable system have a bi-Hamiltonian formulation ?

The study of completely integrable Hamiltonian systems, i.e., systems admitting

a complete sequence of first integrals, started with the pioneering work of Liouville

[Lio] on finding local solutions by quadrature. We have now a complete picture of

the semi-local geometry of such systems, which in its modern presentation is due

to Arnol’d [Ar]. A major flaw in the Arnol’d-Liouville theory is that it provides

no indication on how to obtain first integrals, and this is one of the reasons for the

growing interest on bi-Hamiltonian systems.

We saw in the previous chapter, that for a given bi-Hamiltonian system, Magri’s

theorem yields a whole hierarchy of first integrals. Under additional assumptions

on the algebraic structure of the pair, one obtains a complete sequence of first

integrals. Moreover, this assumption may be formulated in a way that still makes

sense in the setting of infinite dimensional systems. Therefore, if one wants to

extend the notion of complete integrability, the following natural question arises:

Given a completely integrable Hamiltonian system, does the complete sequence of

first integrals arise from a second Hamiltonian structure via Magri’s theorem?

This problem was first studied by Magri and Morosi in their unpublished notes

[Ma-Mo], which seems to contain an incorrect answer. More recently, R. Brouzet in

his “thése de doctorat”, studied the same question when the dimension equals four,

and showed that the answer in general is negative [Br]. Theorem 3.1 below shows

that a second Hamiltonian structure exists if and only if the Hamiltonian function
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satisfies a certain geometric condition. This condition may be expressed in an

invariant way, using the action-angle variables, as a restriction on the Hamiltonian.

A related problem was considered by De Filippo et al. [Fi]. They showed that

a completely integrable system always has a bi-Hamiltonian formulation, but we

remark that, in general, neither of the Poisson structures coincides with the given

one. The situation we are considering here is more restrictive. We fix the original

Hamiltonian structure, and ask under what conditions there exists a second Hamil-

tonian structure such that the sequence of first integrals is obtained via Magri’s

result.

This chapter is organized as follows. In section 1, we review the Arnol’d-Liouville

theory of completely integrable systems, with an emphasis on action-angle variables.

In section 2, starting with a bi-Hamiltonian system for which Magri’s theorem

gives a complete sequence of first integrals, we construct a set of coordinates which

have the property of splitting both the Hamiltonian and the action variables. The

construction is based on the systems of first order p.d.e.’s

∇F = B∇G,

first studied by Olver [Ol], who used it to give a local classification of bi-Hamiltonian

systems. In section 3, we interpret this property as a geometric condition on the

graph of the Hamiltonian, and show how it can be used to rule out the existence of a

second Hamiltonian structure. Conversely, we show that any completely integrable

system whose Hamiltonian satisfies this condition has a bi-Hamiltonian formulation.

In section 4, we give several examples illustrating these results. In particular, we

give an example of a completely integrable Hamiltonian system, which is not bi-

Hamiltonian in the sense just described, but admits a degenerate bi-Hamiltonian

structure. This explains why a bi-Hamiltonian formulation is not known for many

of the classical examples of completely integrable systems: in general, degenerate

Poisson pairs will be required.
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1. Arnol’d-Liouville theory revisited

Given a Hamiltonian system (M2n, ω, h) on a symplectic manifold, we say that

the system is completely integrable if there exists n independent functions f1 =

h, f2, . . . , fn, with pairwise vanishing Poisson brackets

{fi, fj} = 0.

The geometry of completely integrable systems is described by the so-called

Arnol’d-Liouville theorem.

Theorem 1.1 [Ar]. Let π : M → Rn be the fibration x → (f1(x), . . . , fn(x)).

Then:

(i) π is a Lagrangian fibration and each connected component of π−1(c) is a

cylinder. There exists affine coordinates (θ1, . . . , θn) on π−1(c) which straightens

out the Hamiltonian flow, i.e., θ̇i = const;

(ii) If π−1(c) is connected and compact then it is a topological torus Tn. There

exists a neighborhood U of π−1(c) and a trivialization (s1, . . . , sn, θ1, . . . , θn) : U →
Rn × Tn such that ω =

∑
i ds

i ∧ dθi;

For the remaining of the chapter we restrict ourselves to the compact case. For

this, it is enough to guarantee that at least one non-degenerate surface level fi = c

is compact (this is often the case with the energy surface h=c).

Suppose that we started with a different complete sequence of commuting first

integrals f̃1 = h, f̃2, . . . , f̃n, and assume that

(1.1) det (∂2h/∂si∂sj) 6= 0.

This is a non-degeneracy condition which is most often used in the following

form: any first integral depends only on the action variables. In fact, (1.1) implies

that the non-resonant tori are dense, but any first integral is constant on any

such torus. Then by standard arguments in Poisson geometry, one has necessarily
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f̃i = f̃i(f1, . . . , fn), i = 1, . . . , n. Therefore, the Lagrangian foliation is uniquely

determined, i.e., it does not depend on the particular choice of complete sequence

of first integrals.

The variables (si, θi) referred to in the theorem, are the so-called action-angle

variables. Explicit formulas for the action variables can be obtained as follows.

Since each torus π−1(c) is a Lagrangian submanifold, on some neighborhood U

of this level set the symplectic form is exact: ω = dα. The action variables are

obtain by integration along a basis (γ1, . . . , γn) of 1-cycles of the integral homology

H1(T
n,Z) of each torus:

si =
1

2π

∮

γi

α.

If we change the basis of the homology group H1(T
n,Z), the new action variables

will be related with the old variables by an invertible, integral, linear transforma-

tion. Also, since we can choose any torus as the origin of our system of coordinates,

the addition of a constant vector is also possible. We see that the action variables

define a canonical integral affine structure on the open subset U ⊂ Rn, i.e., they

are unique up to translations and invertible, integral, linear transformations of Rn

(for more details see [Ar-Gi]).

Note that the Arnol’d-Liouville theory tells nothing about how to find a complete

set of first integrals. It is therefore interesting to study its relation with the theory

of bi-Hamiltonian systems.

A first, rather trivial remark, is the following: any completely integrable Hamil-

tonian system Xh is bi-Hamiltonian in a neighborhood of an invariant torus [Fi].

An outline of the proof is as follows. There is a neighborhood where one can find

coordinates, say (x1, . . . , x2n), such that Xh = ∂
∂x1 , so it is easy to construct some

bi-Hamiltonian formulation for Xh. However, in general this coordinates will not be

canonical, and this artificially constructed Poisson pair has no direct relationship

with the original Poisson structure. In practice, some natural Poisson structure is

known and one seeks a second one that might give the integrability of the system.
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This is the problem we will consider for the remainder of this chapter.

2. Splitting variables for CIS

In this section we look at a completely integrable Hamiltonian system (CIS)

(M2n, ω, h) and ask if the complete sequence of integrals arises from a second Pois-

son structure via Magri’s theorem.

The local problem is more or less trivial and is not so interesting from the point

of view of the theory of integrability. We shall look rather at a neighborhood of a

fixed invariant torus. By the Arnold-Liouville theorem a tubular neighborhood of

the torus can be described by choosing action-angle variables (si, θi), so without

loss of generality we can assume that M2n is a product Rn ×Tn, where the original

torus is identified with {0} × Tn and h = h(s1, . . . , sn) , ω =
∑

i ds
i ∧ dθi. The

canonical projection π : M → Rn is a Lagrangian fibration, so each torus π−1(x)

is a Lagrangian submanifold and Ker dmπ = (Ker dmπ)⊥. We make the following

assumption.

(ND). det (∂2h/∂si∂sj) 6= 0 in a dense set.

This non degeneracy condition was explained in the previous section.

We want to investigate the existence of a second Poisson structure, possibly

degenerate, giving the complete integrability of the system. Thus we consider an

additional assumption:

(BH). The system is bi-Hamiltonian with diagonalizable recursion operator N ,

having functionally independent real eigenvalues λ1, . . . , λn
3

¿From the Lenard’s recursion relations (I.2.10) in Magri’s theorem, it follows

that the sequence λ1, . . . , λn, is a complete sequence of first integrals of the system.

Given a point m ∈M we denote by Eλ(m) the (real) eigenspace of the recursion

operator N belonging to a eigenvalue λ in the spectrum σ(N) = {λ1, . . . , λn}. For

3It seems possible to relax this condition by assuming only distinct eigenvalues. All the re-
sults that follow still hold in this more general setting. Here we consider only the functionally

independent case in view of Magri’s theorem and in order to keep technical details to a minimum.
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diagonalizable (1,1)-tensors with vanishing Nijenhuis torsion we have the following

classical result [Ni]:

Proposition 2.1. For any subset S ⊂ σ(N) the distribution m→ ⊕λ∈SEλ(m)

is integrable. If µ ∈ σ(N)\S, then µ is an integral of the distribution.

Proof. Let Xλ and Yµ be eigenvectors of N corresponding to eigenvalues λ and

µ. From expression (I.2.4) for the Nijenhuis torsion of N we find:

(2.1) 0 = TN (Xλ, Yµ) = (N−λI)(N−µI)[Xλ, Yµ]+(λ−µ)
{
(Xλ·µ)Yµ−(Yµ·λ)Xλ

}

If one applies (N − λI)(N − µI) to both sides of this equation one gets:

[Xλ, Yµ] ∈ Ker (N − λI)2(N − µI)2.

But N is diagonalizable, so we have

Ker (N − λI)2(N − µI)2 = Ker (N − λI)2 ⊕Ker (N − µI)2

= Ker (N − λI) ⊕Ker (N − µI),

and the first part of the proposition follows. If λ 6= µ, (2.1) now gives:

Xλ · µ = Yµ · λ = 0,

so the second part also follows. �

For i = 1, . . . , n, we denote the foliations associated with the integrable distribu-

tions m→ Eλi
(m) and m→ Eλ1

(m)⊕ · · ·⊕ Êλi
(m)⊕ · · ·⊕Eλn

(m) by Φi and ∆i,

respectively (here Ê means omit the factor E). It is obvious from these definitions

that Φi and ∆i are transversal. In fact, we have the following stronger result:

Proposition 2.2. If i 6= j the foliations Φi and Φj are ω-orthogonal. In par-

ticular, one has Φ⊥
i = ∆i.
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Proof. If Xλ and Xµ are eigenvectors of N corresponding to distinct eigenval-

ues λ and µ we find:

λω(Xλ, Xµ) = ω(λXλ, Xµ)

= ω(NXλ, Xµ)

= ω(Xλ, NXµ)

= ω(Xλ, µXµ) = µω(Xλ, Xµ).

Thus ω(Xλ, Xµ) = 0, so Eλ and Eµ are ω-orthogonal. �

The foliations Φi are invariant under the Hamiltonian flow:

Lemma 2.3. Suppose λi ∈ σ(N) and X is a vector field tangent to Φi. Then

[Xh, X ] is also tangent to Φi.

Proof. Because of (BH) the Lie derivative LXh
N vanishes. Therefore, if X ∈

Eλi
one finds:

N [Xh, X ] = NLXh
X

= LXh
(NX)

= LXh
(λiX) = (Xh · λi)X + λi[Xh, X ].

But λi is a constant of the motion, so [Xh, X ] ∈ Eλi
. �

¿From proposition 2.1 we know that each λi is an integral of ∆i. On the other

hand, (BH) implies that each λi is a constant of the motion, and so by (ND) depends

only on the action variables. Since the λi’s are functionally independent we can use

them as new “action” variables (y1, . . . , yn) on Rn to obtain:

Proposition 2.4. The foliations ∆i on M project to (n − 1)-dimensional fo-

liations on Rn which are pairwise transversal. In particular, there are coordinate

functions (yi) on Rn, such that each yi ◦ π is constant on the leaves of ∆i.

In the sequel we will not distinguish between yi and yi ◦ π. Our interest in the

new coordinates (yi) lies in the following splitting result.
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Theorem 2.5. In the new coordinates (yi) one has the following splittings:

h(y1, . . . , yn) = h1(y
1) + · · · + hn(yn) si(y1, . . . , yn) = si

1(y
1) + · · ·+ si

n(yn).

Proof. Denote by ϕi, i = 1 . . . , n, conjugate coordinates in M to the coordi-

nates yi, so we have the Poisson bracket relations

{
yi, yj

}
= 0 ,

{
yi, ϕj

}
= δij ,

{
ϕi, ϕj

}
= 0 i, j = 1, . . . , n.

Explicitly, one finds

(2.2) θi =

n∑

j=1

∂yj

∂si
ϕj .

We claim that in the new coordinates one has

(2.3) TΦi = span
{
Xyi , Xϕi +

n∑

j=1

aijXyj

}
(aii = 0).

To prove this assertion, observe that by proposition 2.4 each yi is constant on

the leaves of Φj (i 6= j), while by proposition 2.2 (TΦi)
⊥ = T∆i = TΦ1 + · · · +

T̂Φi + · · ·+ TΦn, so we have Xyi ∈ TΦi. This shows that

TΦi = span
{
Xyi , bXϕi +

n∑

j=1

aijXyj +
n∑

j=1

cijXϕj

}
.

where we can assume aii = cii = 0. Since Xyi ∈ TΦi, each Xyj is orthogonal to

TΦi for i 6= j, so it follows that:

0 = ω(Xyj , bXϕi +

n∑

k=1

aikXyk +

n∑

k=1

cikXϕk) = cij (i 6= j).

We conclude that

TΦi = span
{
Xyi , bXϕi +

n∑

j=1

aijXyj

}
.
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Finally, if the coefficient b vanishes at some m ∈ M , then TmΦi ⊂ Ker dmπ, and

from proposition (2.2) we get that

TmΦi ⊂ Ker dmπ = (Ker dmπ)⊥ ⊂ (TmΦi)
⊥ = Tm∆i,

which contradicts the transversality of Φi and ∆i. Thus we can assume b = 1 and

(2.3) follows.

Using (2.3), we can determine the expression for N in the coordinates (yi, ϕi).

The final result is:

(2.3a) N =

(
Λ 0
B Λ

)
where Λ = diag (λ1, . . . , λn) , Bij = (λj − λi)aji

Recall now that (BH) assures the existence of a second Hamiltonian h̃ such that

N∗dh̃ = dh,

and by (ND) we must have h̃ = h̃(y1, . . . , yn). Thus the first n equations of this

system reduce to

(2.4) yi ∂h̃

∂yi
=

∂h

∂yi
, i = 1, . . . , n.

By crossing differentiating (2.4) we see that ∂2h/∂yj∂yi = 0 (i 6= j), which proves

the splitting for h.

The analogous splitting for si is proved by showing that Xsi is a bi-Hamiltonian

vector field in the set of points where all λj ’s are nonzero. Then we can repeat the

argument of the last paragraph to show that the splitting holds on this set. But, by

(ND), it must hold everywhere. Now, if all the λi’s are nonzero the second Poisson

structure is symplectic, and Xsi is bi-Hamiltonian provided LX
si
N = 0. In the

original variables (si, θi) one has Xsi = ∂/∂θi so the Lie derivative of N vanishes

if one can show that its entries do not depend on the θi’s. This is proved in two

steps:
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(i) In the variables (yi, ϕi) the entries of N do not depend on the ϕi’s;

Since λi = yi, we see from (2.3a) that the assertion will follow provided that

aij = aij(y
1, . . . , yn). By lemma 2.3 and (2.3) we have

[
Xh, Xϕi +

n∑

j=1

aijXyj

]
= −X{h,ϕi} +

n∑

j=1

(
Xh(aij)Xyj − aijX{h,yj}

)
∈ TΦi

Since {h, ϕi} = ∂h
∂yi , {h, yj} = 0, we conclude that

n∑

j=1

(
− ∂2h

∂yi∂yj
+Xh(aij)

)
Xyj ∈ TΦi.

But we have shown already that ∂2h/∂yi∂yj = 0 (i 6= j), so by (2.3) we also have

Xh(aij) = 0 (i 6= j). Finally from (ND) we conclude that aij = aij(y
1, . . . , yn).

(ii) In the variables (si, θi) the entries of N do not depend on the θi’s.

Because of the form of the transformation (si, θi) → (yi, ϕi) (cf. (2.2)), we see

from (i) that the entries of N when written in the variables (si, θi) are at most

linear in the θi’s. But those entries are well defined functions on the tori, so in fact

they do not depend on the θi’s at all. �

Remark 2.6. In Morandi et al. [Mo], a partial version of theorem 2.5 was ob-

tained (cf. prop. 3.22). They use the Lagrangian approach, and prove separability

of the Hamiltonian with respect to both Hamiltonian structures. However, they

fail to recognize the importance of the action-angle variables, which as we will see

in the next sections play a central role.

3. Geometric interpretation

Let (x1, . . . , xn+1) be affine coordinates in a (n+1)-dimensional affine space

An+1. A hypersurface in An+1 is called a hypersurface of translation if it

admits a parameterization of the form:

(3.1) (y1, . . . , yn) → xl(y1, . . . , yn) = al
1(y

1) + · · · + al
n(yn) (l = 1, . . . , n+ 1)
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This generalizes Darboux’s definition [Dar] for n=2: a surface of translation is a

surface obtained by parallel translating a curve along another curve.

The results of the previous section lead to the following geometric picture:

Theorem 3.1. A completely integrable Hamiltonian system is bi-Hamiltonian if

and only if the graph of the Hamiltonian function is a hypersurface of translation,

relative to the affine structure determined by the action variables.

Proof. The ‘only if’ part was the subject of the previous section. Now assume

that (M2n, ω, h) is a completely integrable system and that graph h is a hypersur-

face of translation relative to the action variables (si), so it has a parameterization

of the form (3.1), with xi = si, i = 1, . . . , n and xn+1 = h. We can choose the

parameters (yi) so that the Hamiltonian takes the simple form

h(y1, . . . , yn) = y1 + · · ·+ yn.

If (ϕ1, . . . , ϕn) are coordinates conjugate to the (y1, . . . , yn), we define a second

Poisson structure by the formula

Λ1 =
n∑

i=1

yi ∂

∂yi
∧ ∂

∂ϕi
.

One checks easily that the two Poisson structures are compatible, and that the

recursion operator is given by

N =
n∑

i=1

yi
( ∂

∂yi
⊗ dyi +

∂

∂ϕi
⊗ dϕi

)

It is now clear from the expression of the Hamiltonian function in the y-coordinates

that LXh
N = 0, so the vector field Xh is bi-Hamiltonian. �

Remark 3.2. Note that the notion of the graph of the Hamiltonian being a

hypersurface of translation is associated with the system in an invariant way, being

defined relative to the affine structure determined by the action variables (see the

remarks on unicity of the action variables following theorem 1.1). It should not be
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confused with separability of the Hamiltonian system, or of the Hamilton-Jacobi

equation, which are coordinate dependent. For example, consider a system with

Hamiltonian h(s1, s2) = s1(1 + (s2)2) expressed in action-angle variables. It will

be shown below that graph h is not an hypersurface of translation. But if we

introduce new canonical coordinates (y1, y2, ϕ1, ϕ2) with y1 = h(s1, s2), the Hamil-

tonian system splits in the new coordinates into two independent, two-dimensional,

Hamiltonian systems.

It arises the problem of recognizing when is graph h a hypersurface of translation.

For this purpose, we introduce the Hessian metric g on Rn, which is defined with

respect to the affine coordinates (si) by the formula:

(3.2) g =
∑

i,j

∂2h

∂si∂sj
dsidsj

In the (non-affine) coordinates (yα) the metric g is given by:

g =
∑

α,β

( ∂2h

∂yα∂yβ
− ∂h

∂sk

∂2sk

∂yα∂yβ

)
dyαdyβ,

and so, by (3.1), diagonalizes:

(3.3)
∂2h

∂yα∂yβ
= 0 ,

∂2sk

∂yα∂yβ
= 0 (α 6= β).

Defining the coordinate vector fields Yα = ∂/∂yα, these conditions on the metric

can be written in the form

(3.4) g(Yα, Yβ) = 0 (α 6= β),

(3.5) Yα(Yβ(sk)) = 0 (α 6= β).

We conclude that the existence of vector fields Yα, α = 1, . . . , n, satisfying (3.4)

and (3.5) is a necessary and sufficient condition for graph h to be an hypersur-

face of translation. Note that we can find the n-tuples of vector fields satisfying
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(3.4) by solving an eigenvalue problem. This will define the (Yα)’s up to multi-

plicative factors Cα, and equations (3.5) then form a system of first order linear

p.d.e’s for each of these factors. Our recognition problem is then reduced to the

investigation of the local solvability of these equations. Suppose for example that

Yα = Cα

∑
iAαi∂/∂s

i. Then (3.5) gives:

(3.6) Yα(Cβ)Aβk + CβYα(Aβk) = 0 (α 6= β).

Since we are interested in non-zero, local, solutions of this equation, we obtain the

following integrability conditions

(3.7) Yα(Aβk)Aβl −AβkYα(Aβl) = 0 (α 6= β, k 6= l).

A more invariant way of describing the above conditions can be given as follows.

Denote by ∇ the law of covariant differentiation associated with the connection

defined by the affine structure on Rn. Then the Hessian metric defined by h is

given invariantly by the expression g(X, Y ) = ∇X∇Y h. To solve our recognition

problem we seek an orthonormal basis (Y1, . . . , Yn) for the tangent bundle T (M),

satisfying

∇Yβ
Yα = 0 (α 6= β),

i.e., such that each vector field Yα can be obtained by parallel transport along the

integral curves of any other vector field Yβ , (α 6= β).

4. Examples and counter-examples

Counter-examples. A possible way to construct CIS with no bi-Hamiltonian

formulation is to consider the standard model M ≃ Rn × Tn with ω =
∑n

i=1 ds
i ∧

dθi, and choose any Hamiltonian function h = h(s1, . . . , sn) whose graph is not a

hypersurface of translation. For example, take

h(s1, . . . , sn) = s1 + s1(s2)2 + (s3)2 + · · · + (sn)2.
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The Hessian matrix has eigenvectors

Y1,2 = C1,2

(
2s2

∂

∂s1
+

(
s1 ±

√
(s1)2 + 4(s2)2

) ∂

∂s2

)
,

Yj = Cj

∂

∂sj
, j = 3, . . . , n.

It is easy to check that conditions (3.7) are not satisfied. For example, if we let

α = 1, β = 2, k = 1, l = 2 we obtain

Y1(A21)A22 − A21Y1(A22) = −4(s2)2 + 12s1(s2)2
√

(s1)2 + 4(s2)2 6= 0.

We conclude that graph h is not a hypersurface of translation. Brouzet’s original

counter-example corresponds to the case n=2 (see Brouzet, 1990).

A counter-example with some physical meaning is obtained by considering the

perturbed Kepler problem. In spherical coordinates (r, θ, φ), where θ denotes the

co-latitude and φ the azimuth, the Hamiltonian takes the form

h =
1

2

(
pr

2 +
pθ

2

r2
+

pφ
2

r2 sin2 θ

)
− 1

r
+

ε

2r2
.

Two additional integrals, Poisson commuting with H, are the total angular mo-

mentum

l2 ≡ pθ
2 +

pφ
2

sin2 θ
,

and the component of the angular momentum along the polar axis

m ≡ pφ.

For E < 0, each common level set {h = E, l = L,m = M} is an embedded 3-torus

on the phase space. The action variables are obtained by integration along a basis

(γ1, γ2, γ3) of 1-cycles for this torus:

si =
1

2π

∮

γi

prdr + pθdθ + pφdφ
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We obtain

sφ =
1

2π

∮
pφdφ = M

sθ =
1

2π

∮
pθdθ =

1

2π

∮ √
L2 − M2

sin2 θ
dθ = L−M

sr =
1

2π

∮
prdr =

1

2π

∮ √
2E +

2

r
− L2 + ε

r2
dr =

1√
−2E

−
√
L2 + ε

We conclude that the Hamiltonian, when written in action variables, takes the form

h = − 1

2
(
sr +

√
(sφ + sθ)2 + ε

)2 .

A more or less tedious computation, similar to the one in the previous example,

shows that conditions (3.7) once again are not satisfied. Also we note that for the

unperturbed Kepler problem (ε = 0) the graph of the Hamiltonian is a surface of

translation, and so it has a bi-Hamiltonian formulation (on the other hand, one

can show that the relativistic Kepler problem also does not have a bi-Hamiltonian

formulation).

These counter-examples help one understand why a bi-Hamiltonian formulation

is not known for many of the classical integrable systems. In general, one will re-

quire some degenerate Poisson pair in a higher dimension manifold. This is the

situation, for example, in the R-matrix approach (see next chapter). In the case of

the perturbed Kepler problem, the Hamilton-Jacobi equation can be solved by sep-

aration of variables, and it follows from the work of Rauch-Wojciechowski [Ra] that

this system admits a degenerate bi-Hamiltonian formulation in a higher dimensional

manifold.

An example. Consider a symmetric top rotating freely about a fixed point. As

in the general theory of tops (see for example [Bo] and references therein), it can

be realized as an Hamiltonian system for the Lie-Poisson structure on e(3), the Lie

algebra of the group of motions of three dimensional Euclidean space. For the usual
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coordinates (m1, m2, m3, p1, p2, p3) on e(3), the Poisson bracket is defined by the

relations

{mi, mj} = εijkmk, {mi, pj} = εijkpk, {pi, pj} = 0,

and the Hamiltonian is given by

h =
1

2I1
(m1

2 +m2
2) +

1

2I3
m3

2.

Note that this bracket is degenerate, the algebra of Casimirs being generated by

C1 =
∑

i pi
2 and C2 =

∑
i pimi. Since m3 provides an additional first integral com-

muting with h, it follows that the system is completely integrable when restricted

to any symplectic leaf of the Kirillov foliation. Let us consider the symplectic leaf

C1 = 1, C2 = 0. It can be identified with the tangent bundle TS2 of the unit sphere

on R3, and this suggests introducing new variables (θ, ϕ, pθ, pϕ) given by

p1 = cos θ cosϕ p2 = cos θ sinϕ p3 = sin θ
m1 = pϕ tan θ cosϕ− pθ sinϕ m1 = pϕ tan θ sinϕ+ pθ cosϕ m3 = pϕ

This coordinates are canonical and the Hamiltonian function takes the form

h = pϕ
2
( 1

2I1
tan2 θ +

1

2I3

)
+

1

2I1
pθ

2.

For E/m2 > 1/2I3, the level surfaces {h = E,m3 = L} are embedded 2-tori in the

fixed symplectic leaf. The action variables are computed in the usual way:

s1 =
1

2π

∮

γ1

pφdφ =
1

2π

∮
L dφ = L

s2 =
1

2π

∮

γ2

pθdθ =
1

2π

∮ √
2EI1 − L2

I1
I3

− L2 tan2 θ dθ

=

√
2EI1 − L2

I1 − I3
I3

− L

The expression for the Hamiltonian in the action variables is

h =
I1 − I3
2I1I3

s1
2 +

1

2I1
(s1 + s2)

2,
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so according to theorem 3.1 the system possesses a bi-Hamiltonian formulation. It

is easy to see that the second Poisson structure (cf. proof of theorem 3.1) is given

by:

Λ0 =
I1 − I3
2I1I3

s1
2 ∂

∂s1
∧ ∂

∂θ1
+

(I1 − I3
2I1I3

s1
2 − 1

2I1
(s1 + s2)

2
) ∂

∂θ1
∧ ∂

∂s2

+
1

2I1
(s1 + s2)

2 ∂

∂s2
∧ ∂

∂θ2
.

which can, in principle, be written in terms of the original variables.
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CHAPTER III

POISSON SYMMETRIC SPACES

We have seen in the previous two chapters several examples of Poisson pairs.

In most instances, the first Poisson structure of the pair arises from a symplectic

form or by reduction from it, while the second Poisson structure is given a priori.

Although no general method to construct Poisson pairs is known, it is often the case

that the second Poisson bracket also has some geometric structure underlying it.

This chapter is devoted to the study of certain geometric objects yielding non-linear

Poisson brackets.

We have mentioned in chapter I the notions of Poisson Lie group and Poisson

action, first introduced by Drinfel’d in [Dr]. We shall now proceed along these

lines to develop several new concepts in Poisson geometry. For example, a Poisson

homogeneous space is a homogeneous space M = G/H where G is a Poisson Lie

group, M a Poisson manifold, and π:G → M a Poisson map. These objects have

been study in [K-R-R,L-Q,Lu-We,STS]. We go a step further: we call a pair (G, S)

a Poisson symmetric Lie group if G is a Poisson Lie group and S:G → G is an

involutive Poisson Lie group anti-morphism. If H is the fixed point set of S, then

M = G/H is a Poisson homogeneous space, and we call M a Poisson symmetric

space. For example, every Poisson Lie group is a Poisson symmetric, for the usual

construction G ≃ G×G/H, where H is the diagonal and S(g1, g2) = (g2, g1), goes

through (see example 4.9 below). As this example shows, the requirement “anti-

morphism” rather than simply “morphism” is essential. Another nice feature of

the theory is that the usual duality for symmetric spaces extends to the Poisson

case. The compact Poisson Lie groups of Majid [M] and Lu and Weinstein [Lu-We]
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are examples of compact Poisson symmetric spaces, and the results of Deift and Li

[D-L] on solutions of the Yang-Baxter equation, have here a natural interpretation.

As several examples will show, Poisson brackets arising in this way are related with

Poisson pairs for integrable systems.

The organization of this chapter is as follows. In sections 1 and 2 we review

some basic results on Poisson Lie groups and Poisson actions. In section 3 we in-

troduce Poisson homogeneous spaces. In section 4 we define Poisson symmetric Lie

groups and the corresponding infinitesimal objects, the symmetric Lie bialgebras.

Associated with them are the Poisson symmetric spaces. We then show that the

duality for symmetric spaces extends to the Poisson case. In section 5 we recall

some facts concerning r-matrices, which we view as an algebraic tool underlying this

Poisson geometry in the semisimple case. We use them in section 6, together with

some structure theory of real Lie algebras, to give several examples of orthogonal

symmetric Lie algebras. Section 7 contains a study of the Poisson properties of the

Cartan immersion, and in the final section we present several examples related to

Poisson pairs and integrable systems.

In this chapter we assume that all Lie groups are connected.

1. Poisson Lie groups and Lie bialgebras

Let G be a Poisson Lie group (sec. I.1.1). Denoting by Lg (resp. Rg) left transla-

tion (resp. right translation) on G, the requirement that multiplication G×G → G

be a Poisson map can be written in the form

(1.1) ΛG
g·h = (Lg)∗Λ

G
h + (Rh)∗Λ

G
g , g, h ∈ G,

where ΛG denotes the Poisson bivector on G.

It follows from (1.1) that the rank of the Poisson Lie bracket at the identity

e ∈ G is zero, so linearization at e [We1] furnishes the Lie algebra g = Lie(G)

with a linear Poisson structure. Equivalently, the dual space g∗ has a Lie algebra
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structure. The map ϕ: g → g
∧

g dual to the Lie bracket on g∗ is a 1-cocycle for

the adjoint action.

Definition 1.1 [Dr]. Let g be a Lie algebra with dual space g∗. The pair (g, g∗)

is called a Lie bialgebra if there exists a Lie algebra structure on g∗ such that the

map ϕ: g → g
∧

g dual to the Lie bracket on g∗ is a 1-cocycle.

Therefore, to every Poisson Lie group corresponds a tangent Lie bialgebra. Con-

versely, we have the following result [KS].

Theorem 1.2. To each Poisson Lie group G corresponds a tangent Lie bialgebra

(g, g∗). Conversely, if G is connected and simply connected, each Lie bialgebra

structure on g defines a Poisson Lie structure on G whose tangent Lie bialgebra is

the given one. Moreover, homomorphisms of connected, simply connected, Poisson

Lie groups are in one-to-one correspondence with homomorphisms of Lie bialgebras.

Let G be a Poisson Lie group, with Lie bialgebra (g, g∗). The connected, simply

connected, Poisson Lie group G∗ whose Lie bialgebra is (g∗, g) is called the dual

Poisson Lie group of G.

Example 1.3. Suppose that G is equipped with the zero Poisson bracket. The

tangent Lie bialgebra is (g, g∗) where g is the Lie algebra of G and g∗ is abelian. The

dual Poisson Lie group is the vector space g∗ with the usual Lie-Poisson bracket4.

Example 1.4. In example I.1.4, we have made SL(n,R) into a Poisson Lie

group. If we equip the corresponding Lie algebra sl(n,R) with the non-degenerate,

bilinear form

(x, y) ≡ tr (xy), x, y ∈ sl(n,R),

then the corresponding Lie bialgebra sl(n,R)∗ is identified with the vector space

sl(n,R) with a new Lie bracket

(1.2) [x, y]∗ = [Ax, y] + [x,Ay],

4Caution!! In our non-commutative world “Poisson Lie bracket” and “Lie-Poisson bracket”

have completely different meanings.
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where A: g → g is the linear map defined by

Ax =





−x if x ∈ n+

0 if x ∈ h

x if x ∈ n−

and n+ (resp. n−, h), denotes the set of upper triangular (resp. lower triangular,

diagonal) n× n matrices of trace zero.

The bracket (1.2) has the following explicit form

[x1 + h1 + y1, x2 + h2 + y2]∗ = −2[x1, x2] + ad h1 · (−x2 + y2)

− ad h2 · (−x1 + y1) + 2[y1, y2], xi ∈ n+, hi ∈ h, yi ∈ n−.

so g∗ is isomorphic to the semi-direct product h ⋉ (n+ ⊕ n−) relative to the ho-

momorphism φ: h → Der(n+ ⊕ n−) defined by h 7→ (ad(−h), ad h). Thus the dual

Poisson Lie group is isomorphic to the Lie group H ⋉ (N+ × N−), where H, N+

and N− are respectively the diagonal matrices of determinant 1, upper triangular

and lower triangular matrices with 1’s in the diagonal, and whose product is given

by

(D1, U1, L1) · (D2, U2, L2) = (D1D2, D
−1
1 U2D1U1, L1D1L2D

−1
1 ).

where Di ∈ H, Ui ∈ N+, and Li ∈ N−.

Let G be a Poisson Lie subgroup. If H ⊂ G is a closed Lie subgroup with Lie

subalgebra h ∈ g, then H is a Poisson submanifold of G iff the annihilator h⊥ of h

is an ideal in g∗. In this case H is called a Poisson Lie subgroup. It is a Poisson

Lie group with tangent Lie bialgebra (h, g∗/h⊥).

Example 1.5. The group U(n,R) of upper triangular matrices of determinant

1 is a Poisson Lie subgroup of SL(n,R). In fact, its Lie algebra u = h + n+ has

annihilator u⊥ = n+ which is an ideal in g∗. The corresponding Lie bialgebra is

(u, u∗) where u∗ is isomorphic to the semi-direct product h ⊲ n−.

On any Poisson manifold (M,Λ) the vector space Ω1(M) of differential 1-forms

on M carries a Lie algebra structure defined by [We2]

[ω1, ω2] = d[Λ(ω1, ω2)]+ < dω1, Jω2 > − < dω2, Jω1 >, ω1, ω2 ∈ Ω1(M).
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The bundle map J : Ω1(M) → X(M) is a Lie algebra anti-homomorphism:

[Jω1, Jω2] = −J [ω1, ω2] ω1, ω2 ∈ Ω1(M).

If now G is a Poisson Lie group, the left-invariant 1-forms on G form a Lie

subalgebra of Ω1(G) isomorphic to g∗ [We2], and any ξ ∈ g∗ can be identified with

the corresponding left-invariant 1-form ξL on G. Define ψ: g∗ → X(G) by setting

(1.3) ψ(ξ) ≡ JξL, ξ ∈ g∗.

Then ψ is a Lie algebra homomorphism, and integrating it we obtain a (local)

action Ψ:G∗ ×G→ G, called the left dressing action of G∗ on G.

Theorem 1.6 [STS2]. The symplectic leaves of the Kirillov foliation of a Pois-

son Lie group G are the orbits of the dressing action of G∗ on G.

We shall see in the next section that the dressing action is an example of a

Poisson action.

Example 1.7. From example 1.3 we know that g∗, with the Lie-Poisson bracket,

is a Poisson Lie group whose dual group is G. The left dressing action of G on g∗

coincides with the co-adjoint action. Theorem 1.5 reduces to a well known result

about the Lie-Poisson bracket: the leaves of the Kirillov foliation of g∗ are the orbits

of the co-adjoint action.

Remark 1.8. One can also define the right dressing action of G∗ on G. If

one identifies ξ ∈ g∗ with a right-invariant 1-form ξR on G, then the right dressing

action is obtained by integrating the infinitesimal action ψ: g∗ → X(G) defined by

(1.3.a) ψ(ξ) ≡ −JξR, ξ ∈ g∗.

Theorem 1.6 holds also for the right dressing action.
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2. Poisson actions

Let Ψ:G ×M → M be an action of a Poisson Lie group (G,ΛG) on a Poisson

manifold (M,ΛM ). For each g ∈ G, and each m ∈ M , we define Ψg:M → M and

Ψm:G→M by the formulas

Ψg:m 7→ Ψ(g,m) = g ·m, Ψm: g 7→ Ψ(g,m) = g ·m.

If x ∈ g, which we view as a left-invariant vector field on G, we denote the cor-

responding infinitesimal generator on M by Xx, so X : g → X(M) is a Lie algebra

anti-morphism. Finally, if f ∈ C∞(M) we set ∇f(m) = de(f ◦ Ψm) ∈ g∗.5

Proposition 2.1. The following conditions are equivalent:

(a) Ψ is a Poisson action;

(b) For all m ∈M and g ∈ G

(2.1) ΛM
m·g = (Ψm)∗Λ

G
g + (Ψg)∗Λ

M
m ;

(c) For all f1, f2 ∈ C∞(M) and x ∈ g

(2.2) Xx · {f1, f2} = {Xx · f1, f2} + {f1, Xx · f2}+ < [∇f1,∇f2]∗, x >;

Proof. The proof follows immediately from the definitions. �

Remark. As we have noted before (example I.1.3), Hamiltonian actions corre-

spond to the case where G has the trivial Poisson bracket, so the Lie algebra g∗

is commutative. In this case, the last term on the r.h.s. of (2.2) vanishes, and we

obtain a well known formula for Hamiltonian actions.

The proof of the following corollary can be found in [Lu-We].

5Unless otherwise stated, we will assume left group actions. Occasionally, we will need right
actions. Virtually all results to be stated below hold for both type of actions, with obvious

modifications.

48



Corollary 2.2. The dressing action of the dual Poisson Lie group G∗ on G is

a Poisson action.

Recall from the previous section that Poisson Lie subgroups correspond to ideals

h⊥ in g∗. Under the weaker assumption that the annihilator h⊥ is a subalgebra

of g∗, we have the following result which will be applied later in the study of

homogeneous spaces.

Proposition 2.3 [STS2]. Let Ψ:G×M →M be a Poisson action. Let H ⊂ G

be a Lie subgroup with Lie algebra h, and let h⊥ ⊂ g∗ be the annihilator of h. If

the orbit space M/H is a smooth manifold, there exists a Poisson bracket on M/H

such that the projection π:M → M/H is a Poisson map iff h⊥ is a subalgebra of

g∗. Such a Poisson structure is unique.

Proof. Identify C∞(M/H) with the space of H-invariant elements of C∞(M).

A function f ∈ C∞(M) is H-invariant iff Xx · f = 0, for all x ∈ h. In this case

∇f ∈ h⊥. Therefore, if f1, f2 ∈ C∞(M) are H-invariant, it follows from (2.2) that

Xx · {f1, f2} =< [∇f1,∇f2]∗, x >, x ∈ h.

This shows that {f1, f2} is H-invariant iff h⊥ ⊂ g∗ is a Lie subalgebra. �

In order to determine the Kirillov foliation of the quotient Poisson manifoldM/G

one needs to introduce, just as in the symplectic case, the notion of a momentum

map. The correct definition in this context is due to Lu.

Definition 2.4 [Lu]. A smooth map P :M → G∗ is called a momentum map

for the Poisson action Ψ:G×M →M if

Xx(m) = J(m) · T ∗
mP · xL, ∀x ∈ g, ∀m ∈M,

where xL ∈ Ω(G∗) denotes the left invariant 1-form whose value at e is x.
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Examples 2.5.

(a) If G has the zero Poisson bracket and M is a symplectic manifold then G∗ =

g∗ (cf. example 1.3) and the definition above coincides with the usual definition of

a momentum map P :M → g∗.

(b) The identity map is a momentum map for the dressing action G×G∗ → G.

The usual results for Hamiltonian systems with symmetry still hold in this more

general context [Lu]. Noether’s theorem can be stated as follows.

Theorem 2.6. Let H ∈ C∞(M) be an Hamiltonian, invariant for a Poisson

action of G on M with momentum map P :M → G∗. Then P is a constant of the

motion.

We have introduced in the previous section the dressing action of G∗ on G. Since

the notion of duality is reflexive, we also have a dressing action of G on G∗. When

we say that a momentum map P :M → G∗ for some Poisson action is G-equivariant,

we mean for the given action of G on M and for the dressing action of G on G∗.

The main result of Poisson reduction has now the following formulation.

Theorem 2.7. Let Ψ:G × M → M be a Poisson action with G-equivariant

momentum map P :M → G∗. Assume that µ ∈ G∗ is a regular value of P , and that

the residual symmetry group Gµ acts regularly on the submanifold P−1(µ). Then

there is a natural immersion φ making P−1(µ)/Gµ into a Poisson submanifold of

M/G in such a way that the following diagram commutes:

M

&&

π

LLLLLLLLLLL

P−1(µ)

88
i

ppppppppppp

&&
πµ MMMMMMMMMM

M/G

P−1(µ)/Gµ

99

φ

ssssssssss

If M is symplectic, P−1(µ)/Gµ is a leaf of the symplectic foliation of M/G.
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Any Hamiltonian system on M having G as a symmetry group, reduces to Hamil-

tonian systems in the other spaces of the diagram.

3. Poisson homogeneous spaces

Recall that M = G/H is a homogeneous space if G is a Lie group and H ⊂ G is

a closed subgroup. We denote by π:G→M the canonical projection g 7→ gH.

Definition 3.1. A Poisson homogeneous space is a homogeneous space

M = G/H such that G is a Poisson Lie group, M is a Poisson manifold and

π:G→M is a Poisson morphism.

If M = G/H is a Poisson homogeneous space the natural left action of G on M

is a Poisson action.

¿From proposition 2.3 we obtain an infinitesimal criteria for a homogeneous space

to be Poisson.

Proposition 3.2. Let M = G/H be a homogeneous space and let h ⊂ g be

the Lie algebra of H. Then M is a Poisson homogeneous space iff (g, g∗) is a Lie

bialgebra and h⊥ ⊂ g∗ is a Lie subalgebra.

Example 3.3. A Lie group G is trivially a homogeneous space for we have

G ≃ G ×G/H where H ⊂ G ×G is the diagonal. Similarly, this makes a Poisson

Lie group G into a Poisson homogeneous space, when we consider on G × G the

Poisson bivector ΛG⊕(−ΛG). Then G×G is a Poisson Lie group with Lie bialgebra

(g ⊕ g, g∗ ⊕ g∗opp). If h = {(x, x) : x ∈ g} is the Lie algebra of the diagonal H, then

h⊥ = {(ξ,−ξ) : ξ ∈ g∗} is a Lie subalgebra of g∗ ⊕ g∗opp. From proposition 3.2

we conclude that G × G/H is Poisson homogeneous. The map (g1, g2) 7→ g1g
−1
2

induces a Poisson isomorphism from G×G/H onto G.
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Example 3.4. Let G be a Poisson Lie group with Lie bialgebra (g, g∗). We

define a new Lie algebra d with underlying vector space g⊕g∗ and with Lie bracket:

[x1 + ξ1, x2 + ξ2] = [x1, x2] − ad∗ξ2 · x1 + ad∗ξ1 · x2(3.1)

+ [ξ1, ξ2]∗ + ad∗x1 · ξ2 − ad∗x2 · ξ2

There is an analogous bracket on d∗. The pair (g, g∗) being a Lie bialgebra, implies

that (d, d∗) is also a Lie bialgebra, called the double of (g, g∗). The corresponding

Poisson Lie group D is called the double of G. From proposition 3.2 one concludes

that D/G∗ ≃ G and D/G ≃ G∗ are Poisson homogeneous spaces.

Example 3.5. In example I.1.4 we have introduced a Poisson bracket on the

homogeneous space P (n,R) = SL(n,R)/SO(n,R). This space is Poisson homoge-

neous, since the annihilator so(n,R)⊥ is the space p of symmetric matrices of trace

zero, and an elementary computation using (2.1) shows that p ⊂ g∗ is a subalgebra.

The Kirillov foliation of a Poisson homogeneous space is obtained as follows.

Proposition 3.6. Let M = G/H be a Poisson homogeneous space and let

H⊥ be the Lie subgroup of G∗ whose Lie algebra is h⊥. Then the dressing action

G∗ × G → G induces an action of H⊥ on M whose orbits are the leaves of the

Kirillov foliation of M .

Proof. We have the infinitesimal action ψ: h⊥ ×G→ X(G) given by

(3.2) ψ(ξ, g) = J(g) · ξL, g ∈ G, ξ ∈ h⊥,

induced from the left dressing action (1.3). This action factors through to an

infinitesimal action of h⊥ on M = G/H iff

(3.3) dgπ · ψ(ξ, g) = dg·hπ · ψ(ξ, g · h), ∀h ∈ H.

We prove (3.3) as follows. The map (dgπ)∗:T ∗
g·H(G/H) → T ∗

g (G) is a bijection

onto {ξL(g) : ξ ∈ h⊥}, and we have

(dg·hπ)∗(dgπ)∗−1 · ξL(g) = ξL(g · h), ∀h ∈ H.
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Therefore, from relation (3.2) it follows that for every h ∈ H:

dg·hπ · ψ(ξ, g · h) = dg·hπ · J(g · h) · ξL(g · h)

= dg·hπ · J(g · h) · (dg·hπ)∗ · (dgπ)∗−1 · ξL(g)

= dgπ · J(g) · ξL(g) = dgπ · ψ(ξ, g),

where the last equality holds since the Poisson tensor J projects down to G/H. �

4. Poisson symmetric spaces

By a symmetric Lie group we mean a pair (G, S) where G is a Lie group

and S:G → G is an involutive automorphism. Denote by HS the subgroup of

elements of G fixed under S. It is a closed subgroup, so the connected component

of the identity is a Lie subgroup H ⊂ G. The homogeneous space M = G/H is a

symmetric space.

The infinitesimal version of a symmetric space is a symmetric Lie algebra,

i.e. a pair (g, s) where g is a Lie algebra and s: g → g is an involutive Lie algebra

automorphism. Let h and p denote the +1 and −1 eigenspaces of s. Then the

vector space decomposition g = h⊕ p holds, and since s: g → g is a homomorphism

we have the relations

(4.1) [h, h] ⊂ h, [h, p] ⊂ p, [p, p] ⊂ h.

In the Poisson category we propose the following definition.

Definition 4.1.

(i) A Poisson symmetric Lie group is a pair (G, S) where G is a Poisson Lie

group and S:G→ G is an involutive Poisson Lie group anti-morphism.

(ii) A symmetric Lie bialgebra is a triple (g, g∗, s) where (g, g∗) is a Lie

bialgebra and s: g → g is an involutive Lie bialgebra anti-morphism.

Let G be a Poisson Lie group, and S:G → G a group homomorphism. The

requirements for (G, S) to be Poisson symmetric are

(4.2) S2 = id, {f ◦ S, g ◦ S} = −{f, g} ◦ S, f, g ∈ C∞(G).
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Similarly, let (g, g∗) be a Lie bialgebra, with associated 1-cocycle ϕ: g → g
∧

g. If

s: g → g is a Lie algebra homomorphism, then (g, g∗, s) is a symmetric Lie bialgebra

iff the relations

(4.3) s2 = id, ϕ ◦ s = −s ◦ ϕ,

hold. Here we have denoted by the same letter the endomorphism of
∧∗

g extending

the map s: g → g.

If (G, S) is a Poisson symmetric Lie group, let (g, g∗) be its tangent Lie bialgebra

and set s = Lie(S): g → g. Then (g, g∗, s) is a symmetric Lie bialgebra, for con-

ditions (4.1) imply (4.2). Conversely, a slight modification of the proof of theorem

1.2 gives the following correspondence.

Theorem 4.2. There is a one-to-one correspondence between simply connected

Poisson symmetric Lie groups (G, S) and symmetric Lie bialgebras (g, g∗, s).

The results of the previous section on Poisson homogeneous spaces imply the

following proposition.

Proposition 4.3. Let M = G/H be the symmetric space associated with a

Poisson symmetric Lie group (G, S). Then there is a unique Poisson structure on

M such that π:G → M is a Poisson map. The leaves of the Kirillov foliation of

M are the orbits of the action of H⊥ on M induced from the dressing action of G∗

on G. The symmetry S0:M →M : gH 7→ S(g)H is a Poisson anti-morphism.

Proof. Let (g, g∗) be the Lie bialgebra of G, and s = Lie(S): g → g. Then the

dual map s∗: g∗ → g∗ is a Lie algebra anti-morphism.

The decomposition g = h⊕ p, gives the dual space decomposition g∗ = p⊥ ⊕ h⊥,

and we have s∗|p⊥ = id, s∗|h⊥ = −id. Since s∗: g∗ → g∗ is an anti-morphism we

obtain the relations

(4.4) [p⊥, p⊥]∗ ⊂ h⊥, [h⊥, p⊥]∗ ⊂ p⊥, [h⊥, h⊥]∗ ⊂ h⊥.

54



In particular, h⊥ ⊂ g∗ is a Lie subalgebra, so the result follows from propositions

3.2 and 3.6. �

Henceforth, we shall call a symmetric space M = G/H as in the proposition, a

Poisson symmetric space.

Example 4.4. Any Poisson Lie group is a Poisson symmetric space. In example

3.3 we have madeG×G into a Poisson Lie group. The map S:G×G → G×G defined

by S(g1, g2) = (g2, g1) is an involutive Poisson Lie group anti-morphism. The fixed

point set of S is the diagonal H ⊂ G×G, so G×G/H is Poisson symmetric. As was

observed in example 3.3, this space is Poisson isomorphic to G. The corresponding

symmetric Lie bialgebra is (g⊕g, g∗⊕g∗opp, s) where s: g⊕g → g⊕g is the involution

s(x1, x2) = (x2, x1).

Example 4.5. The Poisson homogeneous space P (n,R) = SL(n,R)/SO(n,R)

of example 3.5 is a Poisson symmetric space: the map S:SL(n,R) → SL(n,R)

defined by6 g 7→ (gT )−1 is an involutive Poisson Lie group anti-morphism, whose

fixed point set is SO(n,R).

Let g be a real Lie algebra. Recall that if (g, s) is a symmetric Lie algebra with

decomposition g = h⊕p, then the dual symmetric Lie algebra is the pair (g̃, s̃),

where g̃ is the subalgebra h ⊕ ip of the complexification gC of g and s̃: g̃ → g̃ is the

involution x+ iy 7→ x− iy. Duality works in the Poisson category. If (g, g∗, s) is a

symmetric Lie bialgebra then its dual is the symmetric Lie bialgebra (g̃, g̃∗, s̃), where

(g̃, s̃) is the dual symmetric Lie algebra to (g, s) and g̃∗ is the subalgebra p⊥ ⊕ ih⊥

of g∗
C

with Lie product i[ , ]∗. Thanks to relations (4.4), g̃∗ is well defined. The

extensions to gC of the 1-cocycles ϕ̃ and ϕ associated with the Lie bialgebras (g̃, g̃∗)

and (g, g∗) are related by

(4.5) ϕ̃ = iϕ.

6The superscript T denotes matrix transposition.
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It follows from (4.2) that s̃2 = id and ϕ̃ ◦ s̃ = −s̃ ◦ ϕ̃, so (g̃, g̃∗, s̃) is a symmetric

Lie bialgebra.

We finish this section by recalling some facts from the theory of symmetric spaces

(for details see [He,Ko-No]).

Let M be a manifold with an affine connection. A symmetry Sm at a point

m ∈M is a diffeomorphism of a neighborhood U of m into itself sending exp(X) 7→
exp(−X). If (x1, . . . , xn) are normal coordinates then Sm sends (x1, . . . , xn) 7→
(−x1, . . . ,−xn). In particular, S2

m = id and TmSm = −id. The manifold M is said

to be affine symmetric if for each m ∈M the symmetry Sm is a globally defined

affine transformation of M .

Fix a point m0 ∈M on an affine symmetric manifold, and denote by A(M) the

group of affine transformations of M . Then if G = A0(M) is the connected compo-

nent of the identity of A(M) and H ⊂ G is the subgroup of affine transformations

fixing m0, a standard argument shows that M = G/H. Moreover, if we define

S:G→ G by

S(g) = Sm0
◦ g ◦ S−1

m0
,

the pair (G, S) is a symmetric Lie group, and HS
0 ⊂ H ⊂ HS . The connection on

M coincides with the unique G-invariant, torsion free, affine connection on G/H

[Ko-No, Ch.XI].

A Riemannian manifold M is said to be Riemannian symmetric if it is affine

symmetric with respect to the Levi-Civita connection. In this case we can take G

and K to be, respectively, the connected component of the identity of the group of

isometries and the isotropy subgroup of G at a point m0 ∈M . The corresponding

symmetric space M = G/K satisfies

Adg(K) is compact.

When we express this condition in terms of the associated symmetric Lie algebra

(g, s), we see that k, the set of fixed points of s, is a compactly embedded subalgebra

of g, i.e. (g, s) is an orthogonal symmetric Lie algebra [He, Ch.IV].
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A symmetric Lie algebra (g, s), with decomposition g = k⊕p, is said to be effec-

tive if k∩Center(g) = {0}. The symmetric Lie algebras associated with Riemannian

symmetric spaces M = G/K are effective because K has no normal subgroups of

G distinct from {e}. Conversely, every effective, orthogonal, symmetric Lie alge-

bra is associated with a Riemannian symmetric space. For effective, orthogonal,

symmetric Lie algebras there is the following classical decomposition [He, Ch.V].

Proposition 4.6. Let (g, s) be an effective, orthogonal, symmetric Lie algebra.

Then there are ideals g+, g0, and g−, such that:

g = g+ ⊕ g0 ⊕ g−.

Denote by s+, s0, and s−, resp., the restrictions of s to each of this factors. Then

(g+, s+), (g0, s0) and (g−, s−) are effective, orthogonal, symmetric Lie algebras

satisfying:

(i) (g+, s+) is of compact type, i.e., g+ is compact and semisimple;

(ii) (g0, s0) is of euclidean type, i.e., k0 is compact and p0 is an abelian ideal;

(iii) (g−, s−) is of noncompact type, i.e., g− is semisimple and k− ⊕ p− is a

Cartan decomposition;

If (g, s) is an orthogonal symmetric Lie algebra of compact type then its dual

symmetric Lie algebra (g̃, s̃) is an orthogonal symmetric Lie algebra of noncompact

type, and vice-versa.

The classification into compact, euclidean and noncompact type is justified be-

cause the associated Riemannian spaces have, respectively, non-negative, zero and

non-positive sectional curvature.

5. R-matrices

Let (g, g∗) be a Lie bialgebra, so the map ϕ: g → g
∧

g dual to the Lie bracket

on g∗ is a 1-cocycle. We shall assume the cohomology H1(g, V ), where V is the

g-module g ∧ g, vanishes. In particular, ϕ is exact: ϕ = δr
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A 0-cochain r is just an element of g
∧

g, which can also be viewed as a skew-

symmetric linear transformation r: g∗ → g. The dual of the coboundary ϕ = δr is

then given by:

ϕ∗(ξ1 ∧ ξ2) = ad∗(rξ1) · ξ2 − ad∗(rξ2) · ξ1 ≡ [ξ1, ξ2]∗.

Define the element [r, r] ∈ g ∧ g ∧ g by7:

< [r, r], ξ1 ∧ ξ2 ∧ ξ3 >=
⊙

ξ1,ξ2,ξ3

〈ξ1, [r(ξ2), r(ξ3)].

Then it is easy to show that [ , ]∗ defines a Lie bracket on g∗ iff r satisfies the

Yang-Baxter equation:

(YB1) [r, r] is adg-invariant;

We conclude that:

Proposition 5.1. Let g be a Lie algebra such that H1(g, V ) = 0. The Lie

bialgebras (g, g∗) are in one-to-one correspondence with skew-symmetric solutions

of the Yang-Baxter equation.

For a skew-symmetric solution r of (YB1) the corresponding Poisson Lie bivector

on G is given by:

(5.1) Λg = (Lg)∗r − (Rg)∗r,

The case

(YB1(0)) [r, r] = 0,

is known as the classical Yang-Baxter equation. In this case, ΛL
g ≡ (Lg)∗r and

ΛR
g ≡ (Rg)∗r are, respectively, left and right invariant Poisson bivectors on G [Dr].

7The bracket defined here is an algebraic analog of the Schouten bracket.
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Conversely, every (left or right) invariant Poisson bivector on G takes this form, for

some solution r of YB1(0).

Suppose now that we can identify g with g∗ via an invariant, non-degenerate,

symmetric form ( , ) (for a classification of Lie algebras admitting such a bilin-

ear form see [Me-Re]). Under the identification g∗ ≃ g, the 0-cochain r: g∗ → g

corresponds to a skew-symmetric linear map A: g → g, and the Lie bracket [ , ]∗

corresponds to the Lie bracket [ , ]A on g defined by:

[x, y]A = [Ax, y] + [x,Ay].

This leads to the following definition [STS1]:

Definition 5.2. An r-matrix is a linear transformation R: g → g of a Lie

algebra g with the property that the modified bracket [x, y]R ≡ [Rx, y] + [x,Ry]

defines a second Lie algebra structure. The pair (g, R) is called a double Lie

algebra.

Henceforth, we shall write gR to denote the Lie algebra with underlying vector

space g and Lie bracket [ , ]R.

The non-trivial condition to be verified in definition 5.2 above is the Jacobi

identity for [ , ]R. This identity can be written in the form:

⊙
x,y,z

[
[Rx,Ry]−R[x, y]R, z

]
= 0.

We conclude:

Proposition 5.3. Let g be a Lie algebra such that H1(g, V ) = 0, and suppose

that there exists an invariant, non-degenerate, symmetric form on g. The Lie

bialgebras (g, g∗) are in one-to-one correspondence with skew-symmetric solutions

A: g → g of

(YB2)
⊙

x,y,z

[
[Ax,Ay]− A[x, y]A, z

]
= 0.
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In this case the bracket (5.1) is known as the Sklyanin bracket, and it takes

the form

(5.2) {f1, f2}(g) = (A(∇̃f1(g)), ∇̃f2(g)) − (A(∇f1(g)),∇f2(g)),

where we have denoted by ∇̃ and ∇, resp., the left and right differentials on G:

(∇̃f(g), x) =
d

dt
f(g exp(tx))|t=0 (∇f(g), x) =

d

dt
f(exp(tx)g)|t=0,

for all g ∈ G, x ∈ g. In this case, the dressing action is obtained as follows. By the

duality, we can identify an element x ∈ gA with a right invariant differential form

αx ∈ g∗. The infinitesimal dressing action G× gA → X(G) : (g, x) → ψx(g) is the

image of −αx under the Poisson tensor on G (cf. (1.3)), and a small computation

using (5.2) shows that

(5.3) ψx(g) = TeLg(Ad g
−1 ◦A · x−A ◦Ad g−1 · x).

Integrating we obtain the (global) dressing action.

If g is a semisimple Lie algebra the hypothesis made above are satisfied: the

Killing form provides an invariant bilinear form ( , ), and Whitehead’s lemma gives

H1(g, V ) = 0. In this case the Yang-Baxter equation takes a very special form.

Proposition 5.4. Let g be a real semisimple Lie algebra with canonical decom-

position

(5.4) g = g1 ⊕ · · · ⊕ gp ⊕ gp+1 ⊕ · · · ⊕ gp+q ,

where each gi is simple, and in the first p factors (gi)C is simple and in the last q

factors each (gi)C is a sum of two simple ideals. Then (Y B1) is equivalent to

(YB) [Ax,Ay]− A[x, y]A = Q[x, y],

where Q: g → g is a linear map such that

Q|gi
= αiIi, 1 ≤ i ≤ p, αi ∈ R

Q|gj
= αjIj + βjJj , p+ 1 ≤ j ≤ p+ q, αi, βj ∈ R
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with Ii denoting the identity map on gi, and Jj the complex structure on gj.

Proof. Denote by q the element corresponding to [r, r] under the identification

of g with g∗ provided by the Killing form ( , ):

q(x, y, z) =
⊙

x,y,z

([Ax,Ay], z)(5.5)

= ([Ax,Ay]−A[x, y]A, z), x, y, z ∈ g.

Then q ∈
∧3

g∗ and (YB1) gives

q([w, x], y, z) + q(x, [w, y], z) + q(x, y, [w, z]) = 0, ∀x, y, z, w ∈ g,

i.e., q is an invariant 3-cocycle. A result of Koszul [Ko, sec.11] shows that if

H1(g, V ) = H2(g, V ) = 0 the invariant 3-cocycles are in 1-1 correspondence with

invariant symmetric bilinear forms, the correspondence being given by

(5.6) q(x, y, z) = B([x, y], z).

If g is simple, then two things can happen:

(i) gC is simple, and there is a scalar α ∈ R such that

B(x, y) = α(x, y), ∀x, y ∈ g;

(ii) gC = g1 ⊕ g2 where each gi is a simple ideal in gC isomorphic, as a real Lie

algebra, to g. The complex structure on g1 (or g2) induces a complex structure J

in g, and there are scalars α, β ∈ R such that

B(x, y) = α(x, y) + β(Jx, y), ∀x, y ∈ g;

Returning now to the general case where g is semisimple, we have the decomposition

(5.4), and there must exist Q as in the statement of the proposition, such that

q(x, y, z) = B([x, y], z)

= (Q[x, y], z), x, y ∈ g
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which together with expression (5.5) for q leads to

[Ax,Ay]− A[x, y]A = Q[x, y],

as desired. �

Let us consider in more detail the case where A is a solution of

(YB(α)) [Ax,Ay]− A[x, y]A = −α[x, y],

for some scalar parameter α. The transformation A→ (1/
√
α)A maps solutions of

YB(α) to solutions of YB(1). Therefore, over the complex field, YB(α) is equivalent

to either YB(0) or YB(1), while over the real field there is the third possibility

YB(−1).

In the case where A solves YB(1) the factorization results of [STS1] allow one

to give an explicit description of the dressing action.

Proposition 5.5. Set g± ≡ Im(A± I), k± ≡ Ker(A∓ I). Then:

(a) A± I: gA → g are Lie algebras homomorphisms;

(b) g± are subalgebras of g;

(c) k± are ideals in g±;

Moreover, let θ: g+/k+ → g−/k− : (A+ I)x+ k+ 7−→ (A− I)x+ k− be the Cayley

transform of A. Then:

(d) Every x ∈ g has a unique factorization

x = x+ − x−, x± ∈ g±, θ(x̄+) = x̄−,

and gA can be identified with the subalgebra

(5.7) g̃A = {(x+, x−) ∈ g+ ⊕ g− : θ(x̄+) = x̄−}.

This result has a (local) Lie group counterpart. Let G± ⊂ G be (local) Lie

subgroups corresponding to the subalgebras g± ⊂ g. Then each g ∈ G has a unique

factorization:

(5.8) g = g+g
−1
− , g± ∈ G±, Θ(ḡ+) = ḡ−,
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where Θ denotes the lift of θ. This furnishes a concrete realization for GA: it is the

(local) Lie group with base manifold G and group operation defined by

(5.9) g ∧ h = g+hg
−1
− .

Proposition 5.6. Using the model GA ≃ G the dressing action G ×GA → G

is given by the formula

(5.10) (h, g) 7→ g−1
+ h(h−1gh)+.

The usefulness of this proposition is limited by ones ability to solve the factor-

ization problem (5.8). For evolution equations, where the groups in question are

loop groups, this is a Riemann-Hilbert type factorization problem, while for the

finite dimensional problems we are considering this is an algebraic factorization.

6. Orthogonal symmetric Lie bialgebras

In this section we consider an orthogonal symmetric Lie bialgebra (g, g∗, s) with g

semisimple. It follows from the results of the previous section that the Lie bialgebra

(g, g∗) is defined by a skew-symmetric r-matrix A: g → g, and that g∗ ≃ gA under

the identification provided by the Killing form ( , ). It is easy to see that condition

(4.3) relating s and the 1-cocycle ϕ is now equivalent to the anti-commutation

relation

(6.1) sA = −As.

Lemma 6.1. Let g = k⊕ p be the canonical decomposition into eigenspaces of s.

Then

(6.2) A(k) ⊂ p, A(p) ⊂ k.

Proof. Use (6.1). �
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If (g̃, g̃∗, s̃) is the orthogonal symmetric Lie bialgebra dual to (g, g∗, s), then the

Lie bialgebra (g̃, g̃∗) is also defined by an r-matrix Ã: g̃ → g̃. In fact, it follows from

(4.5) that the extensions of A and Ã to gC are related by

(6.3) Ã = iA.

Note that relations (6.2) imply that Ã(k) ⊂ ip and Ã(ip) ⊂ k, so Ã maps g̃ = k⊕ ip

into itself. Also, if A solves (YB) with coefficient Q, as in proposition 5.4, then Ã

solves (YB) with coefficient −Q.

Our objective, for the remainder of this section, is to explore the structure theory

of real semisimple Lie algebras to obtain solutions of (YB) satisfying (6.1), and

hence examples of symmetric Lie bialgebras.

The semisimple orthogonal symmetric Lie algebras decompose into irreducible

factors [He, Ch.VIII]. The irreducible orthogonal symmetric Lie algebras of the

compact type are:

(I) Pairs (u, θ)) where u is a compact simple Lie algebra and θ is an involutive

automorphism of u;

(II) Pairs (u ⊕ u, θ) where u is a compact simple Lie algebra and θ(x1, x2) =

(x2, x1);

The irreducible orthogonal symmetric Lie algebras of the noncompact type are:

(III) Pairs (g, θ) where g is a noncompact simple Lie algebra, gC is a simple Lie

algebra, and θ is a Cartan involution;

(IV) Pairs (gR, θ) where gR is a complex simple Lie algebra g, viewed as a real

Lie algebra, and θ is conjugation with respect to a maximal compactly embedded

subalgebra;

Types I and III, as well as types II and IV, are dual to each other. For each of

this types we would like to find a skew-symmetric solution A of (YB), satisfying

(6.1), so they become symmetric Lie bialgebras.

Let g be a simple complex Lie algebra. Solutions of the Yang-Baxter equation

were classified in [Be-Dr]. Let h ⊂ g be a Cartan subalgebra, with associated root
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system ∆ = ∆(g, h), and root space decomposition

g = h +
∑

α∈∆

gα.

Also, let {(hα, xα) : α ∈ ∆} be a Weyl basis, so hα ∈ h, xα ∈ gα, and they satisfy

[xα, x−α] = hα, [h, xα] = α(h)xα, h ∈ h,

[xα, xβ] = 0, α+ β 6∈ ∆, α+ β 6= 0,(6.4)

[xα, xβ] = Nα,βxα+β α+ β ∈ ∆,

where Nα,β = −N−α,−β . The simplest solutions of Y B(1), in the Belavin-Drinfel’d

classification, take the form

(6.5) Ax =





x if x ∈
⊕

α>0 gα

0 if x ∈ h

x if x ∈
⊕

α<0 gα

This solution is skew-symmetric relative to the Killing form on g since gα ⊥ gβ if

α+ β 6= 0.

Type IV. Let g be a simple complex Lie algebra as above. Relations (6.4) show

that

(6.6) u ≡
∑

α∈∆

iRhα +
∑

α∈∆

R(xα − x−α) +
∑

α∈∆

iR(xα + x−α),

is a compact real form of g. Let gR denote the real Lie algebra obtained from g by

restricting the scalars to R, and let θ: gR → gR be conjugation with respect to u.

Then (gR, θ) is a symmetric Lie algebra of type IV . The Killing forms on gR and

g are related by

(6.7) (x, y)gR = 2Re(x, y)g,

so (6.5) defines a skew-symmetric solution of YB on gR. Moreover, we have

Aθ = −θA.
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In fact, if we set p = iu, so gR = u ⊕ p, a small computation shows that

A(u) ⊂ p, A(p) ⊂ u,

which is equivalent to (6.7). Therefore, A makes (gR, θ) into a symmetric Lie

bialgebra.

Type II. The symmetric Lie algebras of type II, being dual to type IV, are also

transformed into symmetric Lie bialgebras. If (gR, θ) is of type IV, as above, its

dual is the symmetric Lie algebra (g̃, θ̃) where g̃ = u⊕ Jp (J denoting the complex

structure on (gR)C) and θ̃: g̃ → g̃ is the involution

θ̃(x+ Jy) = x− Jy, x ∈ u, y ∈ p.

The dual r-matrix Ã, as obtained from (6.3), is given by

(6.8) Ã(x+ Jy) = −Ay + JAx, x ∈ u, y ∈ p.

If we set u1 ≡ {x + Jix : x ∈ u} and u2 ≡ {x − Jix : x ∈ u}, then u1 and u2 are

ideals in g̃ isomorphic to u, so we have g̃ ≃ u ⊕ u. Under this isomorphism, we see

that

(6.9) θ̃(x1, x2) = (x2, x1), Ã(x1, x2) = (−iAx2, iAx1), x1, x2 ∈ u.

This gives an explicit form for the r-matrix on any symmetric Lie algebra of type

II which makes it into a symmetric Lie bialgebra.

Type III. Let (g, θ) be an orthogonal symmetric Lie algebra of type III. Our

plan is to use the root space decomposition of gC relative to a carefully chosen

Cartan subalgebra h, so solution (6.5) of YB in gC can be reduced to g.

Since θ: g → g is a Cartan involution, we have g = k ⊕ p where k and p are the

+1 and −1 eigenspaces of θ. The Killing form is negative definite on k and positive
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definite on p, so u = k ⊕ ip is a compact form of gC. We denote by σ and τ the

conjugations of gC relative to g and u. Then

(6.10) θ = στ = τσ.

Let a be a Cartan subalgebra of g which is θ-invariant, so that:

a = ak ⊕ ap, where ak ≡ a ∩ k, ap ≡ a ∩ p.

Then h = aC is a Cartan subalgebra of gC and we have the root space decomposition

gC = h +
∑

α∈∆

gα
C,

where ∆ = ∆(gC, h) is the root system of gC relative to h. We can choose a Weyl

basis {(hα, xα) : α ∈ ∆} such that τ(xα) = −xα. Then there are constants kα ∈ C

such that

(6.11) σ(xα) = kαxασ ,

where α 7→ ασ is the involution of ∆ defined by

(6.12) ασ(h) = α(σ(h)), ∀h ∈ h.

Proposition 6.2. Suppose that we can choose a Cartan subalgebra a ⊂ g and

an ordering of ∆ such that α 7→ ασ is an order preserving map. Then solution

(6.5) of YB on gC restricts to a solution on g satisfying:

Aθ = −θA.

Proof. Since α 7→ ασ is order preserving we have:

σAxα = σ(±xα)

= ±kαxασ

= A(kαxασ) = Aσxα, ±α > 0.

67



Then Aσ = σA, so A restricts to g. On the other hand, we compute

τAxα = τ(±xα)

= ∓xα

= Ax−α = −Aτxα, ±α > 0.

so we also have τA = Aτ . From (6.10) we conclude that Aθ = −θA. �

Remark 6.3. In contrast with the complex case, the Cartan subalgebras of a

real Lie algebra g in general are not conjugate under Int(g). The equivalent classes

of Cartan subalgebras vary between two extreme cases. The case where the vector

part ap is maximal abelian in p and the case where the toral part ak is maximal

abelian in k. In Araki’s method ([A],[Wa,Ch.I]) of classification of real simple Lie

algebras, Cartan subalgebras with maximal vector part are used, and to each pair

(g, θ) is associated the Satake diagram. It is easy to see that the hypothesis of the

proposition holds iff the Satake diagram of (g, θ) has no black holes.

Example 6.4. Let g be a normal real form of gC, so a Weyl basis can be chosen

such that

g =
∑

α∈∆

Rhα +
∑

α∈∆

Rxα.

In this case we have

k =
∑

α>0

R(xα − x−α), p =
∑

α∈∆

Rhα +
∑

α>0

R(xα + x−α),

so the Cartan subalgebra a =
∑

α∈∆ Rhα = ap is maximal abelian in p. The map

α 7→ ασ is the identity map and hence proposition 6.2 holds. This agrees with the

(obvious) fact that A restricts to g. This type of solutions of YB were considered

in [D-L].

Example 6.5. Let su(p, p) be the real form of sl(2p,C) consisting of all complex

matrices of the form
(
A B
B̄T C

)
A,C ∈ u(p), tr A+ tr C = 0.
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It is defined by the conjugation σ(X) = −JX̄TJ , where J =

(
I 0
0 −I

)
. The map

θ(X) = X̄T is a Cartan involution of su(p, p) with eigenspaces

k =

{(
A 0
0 C

)}
≃ su(p) × su(p) × u(1), p =

{(
0 B
B̄T 0

)}
.

The subalgebra a of matrices of the form

(
iD1 D2

D2 iD1

)
D1, D2 real diagonal matrices,

is a θ-invariant Cartan subalgebra. It’s complexification h = aC consists of those

matrices h(X, Y ) =

(
X Y
Y X

)
in sl(2p,C) with X and Y diagonal. Conjugation

by the matrix 1√
2

(
I I
−I I

)
transforms h into the standard Cartan subalgebra of

sl(2p,C). Hence, if we let ξi and ηi be the linear forms on h defined by

ξi (h(X, Y )) = Xii + Yii, ηi (h(X, Y )) = Xii − Yii,

the roots of ∆(gC, h) are the differences between the elements

(6.13) ξ1, . . . , ξp, ηp, . . . , η1.

Let us take as a basis {α1, . . . , α2p−1} for ∆ the difference between consecutive

elements of the sequence (6.13). Then we check using definition (6.12) that

ασ
i = α2p−i, i = 1, . . . , p, ασ

p = αp.

Therefore, for the order determined by this basis, the map α 7→ ασ is order pre-

serving, and proposition 6.2 gives a solution of YB in su(p, p) making it into a Lie

bialgebra.
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Type I. By taking the dual to Lie bialgebras of type III we obtain Lie bialgebras

of type I.

Example 6.6. Let us consider the dual Lie bialgebra (u, θ̃) to the symmetric

Lie bialgebra (g, θ) introduced in example 6.4. Then u is the compact real form

(6.6) of gC, θ̃: u → u is the automorphism

θ̃(xα − x−α) = xα − x−α, θ̃(ihα) = −ihα, θ̃(i(xα + x−α)) = −i(xα + x−α),

and Ã is the r-matrix defined by relations

Ã(xα − x−α) = i(xα + x−α), Ã(ihα) = 0, Ã(i(xα + x−α)) = −(xα − x−α).

Remark 6.7. Other types of solutions of the Yang-Baxter equation for real

Lie algebras were found in [L-Q,K-R-R]. However, this solutions do not satisfy the

anti-commutation relation (6.1), and hence do not make them into symmetric Lie

bialgebras. In [K-R-R] a Poisson structure is given on any hermitian symmetric

space G/K, such that it makes it into a Poisson homogeneous space. However, this

does not make it into a Poisson symmetric space.

7. The Cartan immersion

In this section we consider a Poisson symmetric space M = G/K associated

with an orthogonal symmetric Lie bialgebra (g, g∗, θ), so we have for some skew-

symmetric r-matrix A: g → g, anti-commuting with θ, the isomorphism g∗ ≃ gA.

The Poisson-Lie bracket on G, here denoted by { , }G, takes the form (5.2), and

according to proposition 4.3 reduces to a Poisson bracket { , }M on G/K, such that

the projection π:G→ G/K is a Poisson morphism.

Now consider the map ι:M → G defined by

ι(gK) = gθ(g−1).

This map is well defined and we have the following well known proposition.
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Proposition 7.1. The map ι:M → G is a totally geodesic immersion. If P

denotes its image, then P = exp(p) and coincides with the connected component of

{gθ(g−1) : g ∈ G} containing the identity. Moreover, If M is of non-compact type,

ι is an embedding and exp: p → P is a diffeomorphism.

We shall now study the Poisson properties of the Cartan immersion ι and the

exponential map.

First note that P , being the connected component of the identity of the fixed

point set of the diffeomorphism g 7→ θ(g−1), is a regular submanifold of G. We

then have the following proposition.

Proposition 7.2. The bilinear map { , }:C∞(G)×C∞(G) → C∞(G) defined

by

{f1, f2} =(A(∇̃f1), ∇̃f2) − (A(∇f1),∇f2)(7.2)

+ (θA(∇f1), ∇̃f2) − (θA(∇̃f1),∇f2)

can be reduced to C∞(P ), and makes P into a Poisson manifold.

Proof. The proof is divided into two parts.

(i) { , } restricts to P .

We have to show that if f1, f2 ∈ C∞(P ) and f̃1, f̃2 ∈ C∞(P ) are extensions of

these functions to G, then the restriction of {f̃1, f̃2} to P does not depend on the

particular extensions that were choosen.

Since the map (f̃1, f̃2) 7→ {f̃1, f̃2} is bilinear, skew-symmetric, and satisfies the

Leibnitz identity, we have a well defined bi-vector Λ ∈
∧2

T (G) by setting

{f̃1, f̃2} =< Λ, df̃1 ∧ df̃2 > .

Let J :T ∗(G) → T (G) be the corresponding bundle map. All we have to show is

that Im J(g) ∈ TgP whenever g = exp(p) ∈ P . From (7.2) we compute

(7.3) J(g) ·df(g) = (TeLg ·A ·Ad g−1−TeRg ·A+TeLg ·θA−TeRg ·θA ·Ad g−1) ·x,
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where x ≡ ∇f(g). Now if g = exp(p) ∈ P , a more or less tedious computation

using

(7.4) θ ·Ad g = Ad g−1 · θ,

shows that

(7.5) J(g) · df(g) = (TeLg − TeRg) · y + (TeLg + TeRg) · z,

where

y =
1

2
(θ + I)(A+ I)(I +Ad g−1)x ∈ h,

z =
1

2
(θ − I)(A+ I)(I −Ad g−1)x ∈ p.

The first term on the right hand side of (7.5) can be written in the form

d

dt
exp(−ty) exp(p) exp(ty) |

t=0
=

d

dt
exp(Ad(exp(−ty)) · p) |

t=0

=
d

dt
exp(

∞∑

i=o

1

i!
adi(−ty) · p) |

t=0

∈ Texp(p)P,

since [h, p] ⊂ p. On the other hand, the second term on the right-hand side of (7.5),

can be written as

d

dt
exp(tz) exp(p) exp(tz) |

t=0
=

d

dt
a(t)θ(a(t)−1) |

t=0

=
d

dt
ι(a(t)) |

t=0
∈ Texp(p)P,

where a(t) ≡ exp(tz) exp(p/2). Therefore, J(g) · df(g) ∈ TgP as required.

(ii) The restriction of { , } to P is a Poisson bracket

We have to verify the Jacobi identity, or equivalently, the vanishing of the

Schouten bracket

[Λ,Λ]g = 0,

whenever g = exp(p) ∈ P .
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Using expression (I.2.5) for the Schouten bracket, we compute

(7.6) [Λ,Λ](α, β, γ) =
⊙

α,β,γ

< β, [Jα, Jγ] > −LJα < β, Jγ >,

We can identify right-invariant forms on G with elements of g∗ ≃ gA. Then if x, y

and z correspond to right-invariant forms α, β and γ, we see that

(7.7) [Λ,Λ]g(α, β, γ) =
⊙

x,y,z

(y, [J(g) · x, J(g) · y]) − LJα(y, J(g) · z),

where now J denotes the Poisson tensor in the right-invariant frame:

(7.8) J(g) = Ad g ·A ·Ad g−1 −A+ Ad g · θ ·A− θ ·A ·Ad g−1.

It is shown in the appendix to this chapter, that using (7.8) in (7.7) one obtains

[Λ,Λ]g(α,β, γ) =
⊙

x,y,z

(Ad g−1 · x, [A ·Ad g−1 · y, A ·Ad g−1 · z]) − (x, [Ax,Ay])

+
⊙

x,y,z

(θx, A[Ad g−1 · y, Ad g−1 · z]A − [A ·Ad g−1 · y, A ·Ad g−1 · z])(7.9)

+
⊙

x,y,z

(θ ·Ad g−1 · x,A[y, z]A − [Ay,Az]).

Since A solves (YB), the first factor on the right-hand side of (7.9) vanishes. There-

fore, if we let Q: g × g → g be as in proposition 5.3 we see that (7.9) reduces to

[Λ,Λ]g(α, β, γ) =
⊙

x,y,z

(θx,Q(Ad g−1 · y, Ad g−1 · z)) − (θ ·Ad g−1 · x,Q(y, z).)

The proof of proposition 5.3 shows that

Q(Ad g · y, Ad g · z) = Ad g ·Q(y, z),

so we have

[Λ,Λ]g(α, β, γ) =
⊙

x,y,z

((Ad g · θ − θ ·Ad g−1)x,Q(y, z)) = 0,

where we used (7.4). �

Remark 7.3. Poisson brackets on Lie groups similar to (7.2) were studied in

[Li-Par], but the results there don’t apply directly in our scenario, since it can be

shown that the Poisson bracket (7.2), in general, is not defined on the Lie group G.
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Our next result shows that P , equipped with the Poisson bracket of proposition

7.2, is a “model” for the Poisson manifold G/K.

Theorem 7.4. The immersion ι:G/K → P is a Poisson map.

Proof. Let ι̂:G→ P be the map g 7→ gθ(g−1). Since π:G→ G/K is a Poisson

map and the diagram

G

��
π

//ι̂
P

G/K

==

ι

zzz
zzzz

z

commutes, all we have to show is that ι̂:G→ P is a Poisson map. Let f ∈ C∞(P )

and extend it to a smooth function on G. Then we compute

(∇̃(f ◦ ι̂)(g), x) = dg(f ◦ ι̂) · TeLg · x,

= de(f ◦Rθ(g−1) ◦ Lg) · (I − θ) · x, ∀x ∈ g, g ∈ G.(7.10)

(∇(f ◦ ι̂)(g), x) = dg(f ◦ ι̂) · TeRg · x

= dι̂(g)f · Te(ι̂ ◦ Lg) · x(7.11)

= (∇f(ι̂(g))− θ∇̃f(ι̂(g)), x) ∀x ∈ g, g ∈ G.

It follows from (7.10) that if x ∈ h the scalar product (∇̃(f ◦ ι̂)(g), x) vanishes, and

so ∇̃(f ◦ ι̂)(g) ∈ h⊥ = p. But then lemma 6.1 and (7.11) gives:

{f1 ◦ ι̂, f2 ◦ ι̂}G(g) = −(A(∇(f1 ◦ ι̂)(g)),∇(f2 ◦ ι̂)(g))

= −(A(∇f1(ι̂(g)) − θ(∇̃f1(ι̂(g)))),∇f2(ι̂(g))− θ(∇̃f2(ι̂(g)))).

Now set x = ∇f1(ι̂(g)), y = ∇f2(ι̂(g)), x̃ = ∇̃f1(ι̂(g)) and ỹ = ∇̃f2(ι̂(g)). Then

{f1 ◦ ι̂, f2 ◦ ι̂}G(g) = −(Ax, y) − (Aθx̃, θỹ) + (Ax, θỹ) + (Aθx̃, y)

= (θAx̃, ỹ) − (Ax, y) + (θAx, ỹ) − (θAx̃, y)

= {f1, f2}(ι̂(g)),

so ι̂:G→ P is a Poisson map. �
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Remarks 7.5.

(i) The results in [D-L] resemble (a special case of) theorem 7.4, but the authors

don’t seem to have in mind the complete geometric picture we are aiming to present

here.

(ii) The proof above shows that the Poisson bracket on P can also be written in

the form

(7.12) {f1, f2}P = (A(∇̃f1 − θ∇f1), ∇̃f2 − θ∇f2)

In [Gu], the bracket (7.12) is studied for the case θ = id. It is shown there that,

in this case, the map g 7→ gn perserves the bracket for any fixed integer n. The

infinitesimal version of this bracket is also given.

In our approach the case θ = id is trivial. Nevertheless we shall prove the

following result:

Proposition 7.6. The bracket on G defined by

(7.13) {f1, f2} = (A(∇̃f1 −∇f1), ∇̃f2 −∇f2),

is quadratic in exponential coordinates. In particular, it is invariant under scalings

exp(x) 7→ exp(αx) for any scalar α ∈ R.

Proof. Consider the bracket on g defined by

(7.14) {f1, f2}(x) = (A[∇f1(x), x], [∇f2(x), x]).

This bracket is homogeneous of degree 2 and is invariant under scalings x 7→ αx.

We claim that (7.13) and (7.14) are exp-related. In fact, we have the following

formula for the differential of the exponetial map:

Tx exp = TeLexp(x)
I − exp(−ad x)

ad x
≡

∞∑

n=0

(−1)n

(n+ 1)!
(ad x)n, x ∈ g.

It follows that if f : G→ R is smooth, we have

[∇(f ◦ exp)(x), x] = (I −Ad(exp(x)))∇̃f(exp(x))

= ∇̃f(exp(x)) −∇f(exp(x)),

so the claim follows. �

75



8. Hamiltonian systems on symmetric spaces

We shall now consider Hamiltonian systems on a Poisson symmetric space, de-

fined by certain special functions. For computational purposes it is easier to work

on the image P of the Cartan embedding, rather than on the symmetric space G/K

itself, and use the formulas for the brackets deduced in the previous section.

The basic result here is the following.

Theorem 8.1. Let h:P → R be a function for which there exists a central

extension h̃:G→ R. Then Hamilton’s equations on P take the “Lax pair form”

(8.1) ṗ = TeLp · (R∇h̃) − TeRp · (R∇h̃),

where R = A(I − θ). Moreover, if f :P → R also has a central extension to G then

(8.2) {h, f}P = 0,

so any such function is a first integral of the system.

Proof. If h̃ is central, ∇̃h̃ = ∇h̃, so (8.1) follows from (7.3) and (8.2) follows

from (7.12). �

The term “Lax Pair” is justified because if G is a matrix group then the equation

of the motion (8.1) takes the form

L̇ = [L,R(∇h̃)], L ∈ G.

The previous proposition can be interpreted as a non-linear version of the Adler-

Kostant-Symes scheme [Ad,K,Sy].

We now consider the class of examples furnish by the r-matrices on normal real

forms g given in example 6.4. We let G be a connected Lie group with Lie algebra

g, and we use the Iwasawa decomposition of G ([He, ch.VI]), i.e. we decompose G

as NAK where K, A, and N are the analytic subgroups of G with Lie algebras k, a,

and n ≡ ∑
α>0 R · xα (some notation as in example 6.4). Then the factorization

results of Semenov-Tyan-Shansky, mention at the end of section 5 can be used, in

the manner explained in [STS1] (see thm. 14), to prove the following result.
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Proposition 8.2. For the r-matrix naturally associated with a real normal form

g, the solutions of Hamilton’s equations (8.1), determined by an Hamiltonian h :

P → R admitting a central extension to G, take the form

(8.3) p(t) = b(t) · p0,

where b(t) is obtained by solving the factorization problem

exp(2t∇h(po)) = b(t)k(t), b(t) ∈ B ≡ NA, k(t) ∈ K.

In formula (8.3) the dot represents the action of G on P induced from the left

action of G on G/K, i.e,

(g, p) 7→ g · p ≡ gpθ(g−1), g ∈ G, p ∈ P.

The Poisson symmetric spaces associated with the r-matrices of the proposition

above are of non-compact type (see section 6). It should be clear that one can use

the duality for Poisson symmetric spaces to study the solutions of dual systems on

spaces of compact type.

Example 8.3. Toda lattice revisited. Let us consider the case of the

Poisson bracket on SL(n,R)/SO(n,R) studied in examples 1.4 (ch. I), and 1.3,

3.5, 4.5 (ch. III). It follows from the results of section 6 that it is associated with

the r-matrix on the normal real form of sl(n,R). The Poisson bracket is given by

formula (I.1.10), and coincides with the Poisson bracket obtained from the r-matrix

using the formalism of the previous section (theorem 7.3).

Now the explicit form (I.1.10) for the bracket, shows that it can be reduced to

the set of positive definite tridiagonal matrices of the form

L =




b1 a1

a1

0
. . .

. . .
. . .

0
an−1

an−1 bn



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so this set is a Poisson submanifold. The reduced bracket is given by the relations:

{ai, ai+1} = −aiai+1 {ai, bi} = 2aibi

{ai, bi+1} = −2aibi+1 {bi, bi+1} = −4ai
2

so we see that it coincides, up to a factor, with the quadratic Poisson bracket for

the Toda lattice in Flaschka’s variables (cf. I.4.9).

The powers of the traces, hk(L) = tr Lk+1 furnish n-1 functionally indepen-

dent functions on P (n,R) which extend to central functions on SL(n,R). The

Hamiltonian system defined by h0 is precisely the Toda lattice, and it follows from

theorem 8.1, that this is a completely integrable system, a well known result due

independently to Flaschka, Hénon and Manakov[Fl,H].

In this example, the factorization of proposition 8.2 is as follows. Any element

L ∈ SL(n,R) factors as L = RQ where Q ∈ SO(n,R) and R ∈ B(n), the group

of upper triangular matrices with determinant 1. The solution of the Toda flow is

then obtained from

L(t) = R(t)L0R(t)T ,

where R(t) is the solution of the factorization problem

exp(2tL0) = R(t)Q(t), R(t) ∈ B(n), Q(t) ∈ SO(n,R).

This method of integration of the Toda flow was known to several authors (see

e.g. [Pe]), and it was generalized to the “Fat Toda lattice” by Deift and co-workers.

They also gave a dynamical interpretation of the QR-algorithm to compute eigen-

values of a symmetric matrix, as a time 1 flow of the Fat Toda lattice [D].
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Appendix

In this appendix we furnish some details omitted in the proof of proposition 7.2,

namely, we will show how (7.9) follows from (7.8) and (7.7).

We rewrite (7.7) in the form

(A.1) [Λ,Λ]g(α, β, γ) =
⊙

x,y,z

(y, [J(g) · x, J(g) · z]) − (y, LJα(J(g)) · z),

and we compute the Lie derivative in the second term as follows. Let γ(t) be the

integral curve of the vector field Jα through the point g ∈ G. Then a simple

computation gives

d

dt
Ad(γ(t))|

t=0
= Ad g · ad(Ad g−1 · J(g)x)

d

dt
Ad(γ−1(t))|

t=0
= −ad(Ad g−1 · J(g)x) ·Ad g−1,

so we have

LJα(J(g)) = Ad g · ad(w) ·A ·Ad g−1 − Ad g ·A · ad(w) ·Ad g−1

+ Ad g · ad(w) · θA+ θA · ad(w) ·Ad g−1(A.2)

where we have set

w = Ad g−1 · J(g)x.

Replacing (A.2) in (A.1) we find

[Λ,Λ]g(α, β, γ) =
⊙

x,y,z

(Ad g−1 · J(g)x, [Ad g−1 · y, Ad g−1 · z]A)

− (x, [J(g) · y, J(g) · z]) + (Ad g · θA · z, [J(g) · x, y] + [x, J(g) · y])(A.3)

The first term on the right hand sides gives:

(A.4)
⊙

x,y,z

(Ad g−1 · x, [A ·Ad g−1 · y, A ·Ad g−1 · z]) + Rem 1,
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where

Rem 1 =
⊙

x,y,z

((θA− Ad g−1 · θA ·Ad g−1) · x, [Ad g−1 · y, Ad g−1 · z]A).

The second term gives

(A.5)
⊙

x,y,z

(x, [Ay,Az]) + Rem 2,

where

Rem 2 =
⊙

x,y,z

(x, [Jθ(g) · y, Jθ(g) · z] − [J(g) · y, Jθ(g) · z] − [Jθ(g) · y, J(g) · z]),

and we have denoted by Jθ(g) the terms in J(g) that contain θ. There is a remark-

able cancelation of terms when we add Rem 1, Rem2 and the third term on the

right hand side of (A.3). In fact, the sum Rem 1 + Rem 2 + 3rd term gives

⊙

x,y,z

(x, θA[Ad g−1 · y, Ad g−1 · z]A − Ad g · θA[y, z]A)

+ (x, [θA ·Ad g−1 · y, θA ·Ad g−1 · z]) + (x, [Ad g · θA · y, Ad g · θA · z]).
(A.6)

Finally, using (A.4), (A.5) and (A.6) we conclude that

[Λ,Λ]g(α, β, γ) =
⊙

x,y,z

(Ad g−1 · x, [A ·Ad g−1 · y, A ·Ad g−1 · z]) − (x, [Ax,Ay])

+
⊙

x,y,z

(x,Ad g · θA[y, z]A − [Ad g · θAy,Ad g · θAz])
(A.7)

+
⊙

x,y,z

(x, θA[Ad g−1 · y, Ad g−1 · z]A − [θA ·Ad g−1 · y, θA ·Ad g−1 · z]).

which gives immediately (7.9).
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[H] M. Hénon, Integrals of the Toda lattice, Phys. Rev. B9 (1974), 1921-1923.

[He] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic

Press, Boston, 1979.

[K] B. Kostant, The solution to a generalized Toda lattice and representation theory,

Adv. in Math. 34 (1979), 195-305.

[Ko] J.-L. Koszul, Homologie et cohomologie des algèbres de Lie, Bull. Soc. Mat. France
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[Sy] W. W. Symes, Systems of Toda type, inverse spectral problems, and representation

theory, Invent. Math. 59 (1980), 13-51.

[STS1] M. Semenov-Tyan-Shansky, What is a classical R-matrix, Funct. Anal. Appl. 17

(1983), 259-272.

[STS2] , Dressing transformations and Poisson group actions, Publ. RIMS, Kyoto

Univ. 21 (1985), 1237-1260.
[Wa] G. Warner, Harmonic Analysis on Semisimple Lie Groups, vol. 1, Springer-Verlag,

New York, 1972.

[We1] A. Weinstein, The local structure of Poisson manifolds, J. Diff. Geometry 18 (1983),
523-557.

[We2] , Some remarks on dressing transformations, J. Fac. Sci. Univ. Tokyo, Sect.
1A Math, 36 (1988), 163-167.

83


