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Abstract. We show how one can associate to a given class of finite type G-
structures a classifying Lie algebroid. The corresponding Lie groupoid gives

models for the different geometries that one can find in the class, and encodes

also the different types of symmetry groups.
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1. Introduction

The main purpose of this paper is to describe how one can associated to certain
classes of geometric structures a classifying Lie algebroid A → X, which has the
following properties:

(i) to each point on the base X there corresponds a geometric structure of the
class;

(ii) two structures in the class are isomorphic if and only if they correspond to
points on the same orbit of A;

(iii) the isotropy Lie algebra at a point is the symmetry Lie algebra of the corre-
sponding geometric structure.
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We will also be interested in the associated Lie groupoid which allows one to con-
struct different models for the distinct geometries that one can find in the class.

The geometric structures that will be considered here are G-structures. The
notion of G-structure is quite general and includes most of the classical geometric
structures. Since we want to avoid technical difficulties with infinite dimensional
spaces, we restrict ourselves to G-structures of finite type, which means that G
is a Lie group of finite type (see Definition 2.9). For finite type G-structures the
classification problem can be reduced to a classification problem of {e}-structures
(i.e., coframes) through the method of prolongation.

The method then goes as follows. Suppose that through prolongation we have
reduced our classification problem to a problem for a class of coframes. Under
suitable regularity assumptions, any coframe is determined by a finite set of func-
tionally independent structure invariants (this is the generic case). It will then
follow that a regular coframe determines a transitive Lie algebroid. By a class of
coframes, we mean a family of coframes in which all members are determined by
the same (not necessarily independent) structure invariants. In order to obtain a
classifying Lie algebroid over a finite dimensional base X, we must restrict ourselves
to classes of coframes determined by a finite set of structure invariants.

Finally, we will be interested in finding explicit models for the different geometric
structures belonging to the classes being studied. The problem of finding a coframe
with given structure invariants is known as Cartan’s realization problem ([1, 2]).
We will prove the following result:

Theorem 1.1. Given the initial data of a Cartan’s realization problem, one has
that:

(i) a realization exists if and only if the initial data form the structure functions
of a Lie algebroid;

(ii) any realization is locally equivalent to a neighborhood of the identity of an
s-fiber of a (local) Lie groupoid G integrating A, equipped with the Maurer-
Cartan form;

(iii) any two such realizations are equivalent if and only if they correspond to points
on the same orbit of A.

We call the Lie algebroid in the theorem the classifying Lie algebroid of the class
of coframes. The theorem then shows that, when this Lie algebroid is integrable (see
[3]), each s-fiber of its groupoid, equipped with its Maurer-Cartan form furnishes
an explicit universal model of the coframe.

This paper is a preliminary announcement of the results obtained by the second
author in his thesis. In particular, we will be ignoring here most global aspects,
and will mostly consider the local classification. Also, a detailed analysis of specific
examples is beyond the scope of this paper.

This paper is organized as follows. In Section 2, we recall some classical results
concerning finite type G-structures that we will need, including the method of
prolongation of G-structures. In Section 3, which contains the main results, we
start by constructing the classifying Lie algebroid for {e}-structures. Then we
explain Cartan’s realization problem for these structures, and answer the two basic
questions: (i) existence and (ii) classification of realizations. Along the way, we give
a brief study of Maurer-Cartan forms on Lie groupoids, since these play a crucial
role in the classification. We end this section explaining how to extend these results
for any finite type G-structures. In Section 4, we illustrate briefly our approach
with two examples: constant curvature Riemannian metrics and Bochner-Kähler
metrics.
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2. Finite Type G-Structures

In this section we recall the basic facts from the theory of G-structures that we
will use. We refer to [4, 6, 7] for details.

2.1. G-Structures. Denote by

B(M)

π

��

GLn
||

M

the bundle of frames on M . This principal bundle carries a canonical 1-form with
values in Rn, denoted by ω ∈ Ω1(B(M); Rn), and which is defined by

ωp(X) := p−1(π∗X), (X ∈ TpB(M)).

This form is called the tautological form (or soldering form) of B(M). It is
a tensorial form, i.e, it is horizontal and GL(n)-equivariant (with respect to the
defining action on Rn). Note that a subspace Hp ⊂ TpBG(M) is horizontal iff the
restriction ω : Hp → Rn is an isomorphism.

Every diffeomorphism ϕ between two manifoldsM and N lifts to an isomorphism
of the associated frame bundles:

B(ϕ) : B(M) → B(N).

The correspondence which associates to each manifold its frame bundle and to each
diffeomorphism its lift is functorial.

Now let G be a Lie subgroup of GL(n). Recall that a G-structure is a reduction
of the frame bundle B(M) to a principal G-bundle. This means that BG(M) ⊂
B(M) is a sub-bundle such that for any p ∈ BG(M) and a ∈ GL(n) we have
pa ∈ BG(M) if and only if a ∈ G. Given a G-structure BG(M), we will still denote
by ω the restriction of the tautological form to BG(M).

Definition 2.1. Two G-structures BG(M) and BG(N) are said to be equivalent
if there exists an diffeomorphism ϕ : M → N such that

B(ϕ)(BG(M)) = BG(N)

2.2. Equivalence of G-Structures. One of the basic problems we will be inter-
ested is deciding if two G-structures are equivalent. The tautological form is the
clue to the solution of this equivalence problem. The reason is the following result:

Proposition 2.2. Two G-structures over M and N are equivalent if and only if
there exists a principal G-bundle isomorphism ψ : BG(M) → BG(N) such that
ψ∗ωN = ωM .

In order to obtain an invariant of equivalence of G-structures, let us choose some
horizontal space Hp at p ∈ BG(M). Given v ∈ Rn there exists a unique ṽ ∈ Hp

such that ω(ṽ) = v, so one defines:

cHp
: ∧2Rn → Rn,(2.1)

cHp
(v, w) := dω(ṽ, w̃).
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This depends on the choice of horizontal space, so it does not define an invariant
yet. If Hp and H ′

p are two distinct horizontal spaces at p ∈ BG(M), then one checks
that:

cHp
− cH′

p
∈ A(hom(Rn, g)),

where g ⊂ gl(n) is the Lie algebra of G and A denotes the anti-symmetrization
operator:

A : hom(Rn, g) → hom(∧2Rn,Rn),

A(T )(u, v) := T (u)v − T (v)u.

Hence, we can set:

Definition 2.3. Given a G-structure BG(M) one defines its first order structure
function:

c : BG(M) → hom(∧2Rn,Rn)
A(hom(Rn, g))

, c(p) := [cHp
].

Since an isomorphism ψ : BG(M) → BG(N) maps horizontal spaces to horizontal
spaces and it is an equivalence if and only if ψ∗ωN = ωM , we see that

Proposition 2.4. Let BG(M) and BG(N) be G-structures. If φ : M → N is an
equivalence then

cN ◦ B(φ) = cM .

2.3. Prolongation. In order to obtain more refined invariants of equivalence of
G-structures one needs to look at higher order terms. This process is known as
prolongation and takes place on the jet bundles JkBG(M).

Let π : E → M be a fiber bundle. We denote by π1 : J1E → M its first jet
bundle, which has fiber over x ∈M :

(J1E)x =
{
j1xs| s a section of E

}
.

This bundle can also be described geometrically as:

J1E = {Hp : p ∈ E and Hp ⊂ TpE horizontal} .

If one defines the projection π1
0 : J1E → E by π1

0(Hp) = p, then J1E is an affine
bundle over E.

Example 2.5. For a G-structure BG(M) the first structure function can also be
described as a function c : J1BG(M) → hom(∧2Rn,Rn) by formula (2.1).

It is easy to see that in the case of the frame bundle π : B(M) →M its first jet
bundle π1

0 : J1B(M) → B(M) can be identified with a sub bundle of B(B(M)): to
a horizontal space Hp ⊂ TpB(M) we associate a frame in B(M) (which we view as
an isomorphism φ : Rn × gl(n) → TpB(M)):

Rn × gl(n) 3 (v, ξ)
φ7−→ (π|Hp

◦ p)−1(v) + ξ · p ∈ TpB(M).

Note that if Hp and H ′
p are two horizontal spaces at p ∈ B(M), the corresponding

frames φ, φ′ : Rn × gl(n) → TpB(M) are related by:

φ′(v, ξ) = φ(v, ξ) + T (v) · p,
for some T ∈ hom(Rn, gl(n)). Conversely, given a frame φ associated with some
horizontal space Hp and T ∈ hom(Rn, gl(n)), this formula determines a frame φ′

which is associated with another horizontal space H ′
p. It follows that J1B(M) is a

hom(Rn, gl(n))-structure, where we view hom(Rn, gl(n)) ⊂ GL(Rn ⊕ gl(n)) as the
subgroup formed by those transformations:

(v, ξ) 7→ (v, ξ + T (v)), with T ∈ hom(Rn, gl(n)).
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Assume now that BG(M) is a G-structure so that J1BG(M) ⊂ J1B(M) is a
sub-bundle. An argument entirely similar to one just sketched gives:

Proposition 2.6. If BG(M) is a G-structure then J1BG(M) → BG(M) is a
hom(Rn, g)-structure.

In order to motivate our next definition we look at a simple example.

Example 2.7. Let us consider the flat G-structure on Rn:

BG(Rn) := Rn ×G ⊂ B(Rn) = Rn ×GL(n).

Given a vector field X denote by φt
X : Rn → Rn its flow. Observe that X is an

infinitesimal automorphism of the G-structure BG(Rn) iff φt
X lifts to an automor-

phism B(φt
X) : BG(Rn) → BG(Rn). The lifted flow B(φt

X) is the flow of a lifted
vector field on BG(Rn): in coordinates (x1, . . . , xn), so that X = Xi ∂

∂xi , the lifted
vector field is given by:(1)

X̃ =
∂Xi

∂xj

∂

∂pi
j

,

where (pi
j) are the associated coordinates in B(Rn) so that a frame p ∈ B(Rn) is

written as:
p = (pi

1

∂

∂xi
, . . . , pi

n

∂

∂xi
).

It follows that X is an infinitesimal automorphism iff:[
∂Xi

∂xj

]
i,j=1,...,n

∈ g ⊂ gl(n).

Let us assume now that the lifted flow fixes (0, I) ∈ Rn ×GL(n). The lifted vector
field X̃ vanishes at this point. If we now prolong to the jet bundle J1BG(Rn), we
obtain a flow which is generated by a vector field:

j1X̃ =
∂Xi

∂xj1∂xj2

∂

∂pi
j1,j2

,

where (xi, pi
j , p

i
j1,j2

) are the induced coordinates on the jet bundle. Note that the

coefficients ai
j1,j2

= ∂Xi

∂xj1∂xj2 of j1X̃ satisfy:[
ai

j1,j2

]
i,j1=1,...,n

∈ g ⊂ gl(n),

and are symmetric in the indices j1 and j2. Hence, we conclude that:

Lemma 2.8. The lifts of the symmetries of the flat G-structure BG(Rn) = Rn×G
to the jet space J1BG(Rn) generate a Lie subgroup G(1) ⊂ hom(Rn, g) with Lie
algebra:

g(1) := {T ∈ hom(Rn, g) : T (u)v = T (v)u, ∀u, v ∈ Rn} .

This motivates the following definition:

Definition 2.9. Let g ⊂ gl(V ) be a Lie algebra. The first prolongation of g is
the subspace g(1) ⊂ hom(V, g) consisting of those T : V → g such that

T (v1)v2 = T (v1)v2, ∀v1, v2 ∈ V.
The k-th prolongation of g is the subspace g ⊂ hom(V, g(k−1)) defined inductively
by

g(k) = (g(k−1))(1).
A Lie algebra g is said to be of finite type k if there exists k ∈ N such that g(k−1) 6= 0
and g(k) = 0.

1We use the convention of summing over repeated indices.
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Similarly, at the group level, one introduces:

Definition 2.10. Let G be a subgroup of GL(V ). The first prolongation of G
is the subgroup G(1) of GL(V ⊕ g) consisting of those transformations of the form:

(v, ξ) 7→ (v, ξ + T (v)), with T ∈ g(1).

Similarly, the k-th prolongation of G is the subgroup G(k) of GL(V ⊕ g⊕ g(1) ⊕
· · · ⊕ g(k)) defined inductively by

G(k) := (G(k−1))(1).

Note that the prolongations G(k) are all Abelian groups. Now, to each G-
structure BG(M) we can always reduce the structure group of J1BG(M) to G(1),
obtaining a G(1)-structure:

Proposition 2.11. Let BG(M) be a G-structure over M with first structure func-
tion c : J1BG(M) → hom(∧2Rn,Rn). Each choice of a complement C to A(hom(Rn, g))
in hom(∧2Rn,Rn) determines a sub-bundle:

BG(M)(1) =
{
Hp ∈ J1BG(M) : cHp

∈ C
}
,

which is a reduction of J1BG(M) with structure group G(1). Different choices of
complements determine sub-bundles which are related through right translation by
an element in hom(Rn, g).

The G(1)-structure BG(M)(1) → BG(M) is called the first prolongation of
BG(M). Similarly, working inductively, one defines the k-th prolongation of
BG(M):

BG(M)(k) = (BG(M)(k−1))(1),

which is G(k)-structure over BG(M)(k−1).
The relevance of prolongation for the problem of equivalence is justified by the

following basic result:

Theorem 2.12. Let BG(M) and BG(N) be G-structures. Then BG(M) and BG(N)
are equivalent if and only if their first prolongations BG(M)(1) and BG(N)(1) are
equivalent G(1)-structures.

One can now obtain new necessary conditions for equivalence by looking at the
structure function of the prolongation BG(M)(1) which is a a function

c(1) : BG(M)(1) → hom(∧2(Rn ⊕ g),Rn ⊕ g)
A(hom(Rn ⊕ g, g(1)))

called the second order structure function of BG(M). Then one can continue
this process by constructing the second prolongation and analyzing it’s structure
function and so on.

Thus, the importance of structures of finite type is that we can reduce the
set of necessary conditions for checking that two G-structures are equivalent to
a finite amount. In fact, by the method of prolongation, the equivalence problem
for finite type G-structures reduces to an equivalence problem for {e}-structures
(coframes). Moreover, one can show that G-structures of finite type always have
finite dimensional symmetry groups.
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2.4. Second Order Structure Functions. By working inductively, all we really
must understand are the second order structure functions which we now describe.

Let z = Hp ∈ B(1)
G = BG(M)(1) and let Hz be a horizontal subspace of TzB(1)

G .
Then c(1)Hz

∈ hom(∧2(Rn ⊕ g),Rn ⊕ g) and we decompose it into three components:

hom(∧2(Rn ⊕ g),Rn ⊕ g) = hom(∧2R,Rn ⊕ g)⊕ hom(Rn ⊗ g,Rn ⊕ g)⊕
⊕ hom(∧2g,Rn ⊕ g)

Let us describe each of the components of the (representative of the) second order
structure function. We denote by u, v elements of Rn and by A,B elements of g:

• The first component of c(1)Hz
includes the structure function of BG(M):

c
(1)
Hz

(u, v) = cHp(u, v) + bHz (u, v),

for some bHz
∈ hom(∧2Rn, g).

• The second component of c(1)Hz
has the form:

c
(1)
Hz

(A, u) = −Au+ SHz (A, u)

for some SHz
∈ hom(Rn ⊗ g,Rn).

• The last component of c(1)Hz
is given by

c
(1)
Hz

(A,B) = −[A,B]g.

An important special case occurs when G(1) = {e}. In this case, a G(1)-structure
amounts to choosing a horizontal space at each p ∈ BG(M), which in turn is the
same as picking a g-valued (not necessarily equivariant) form φ on BG. The pair
(ω, φ) is a coframe on BG. Now, in this case, the projection from BG(1) onto BG is a
diffeomorphism, so we may view the second order structure functions as functions
on BG. If we do this, we obtain the structure equations of the pair (ω, φ):

(2.2)

 dω = c ◦ ω ∧ ω − φ ∧ ω

dφ = b ◦ ω ∧ ω + S ◦ φ ∧ ω − φ ∧ φ

where φ∧ω is the Rn-valued 2-form obtained from the g-action on Rn and φ∧φ is
the g-valued 2-form obtained from the Lie bracket on g.

If, additionally, the horizontal spaces can be chosen right invariant (so that
Ra∗Hp = Hpa for all a ∈ G), we obtain a principal bundle connection on BG with
connection form φ. In this case, we find that:

• S vanishes identically;
• b is the curvature of the connection;

so we see that, in this case, equations (2.2) reduce to the usual structure equations
for a connection.

3. Cartan’s Realization Problem

Given a reasonable class of G-structures we now explain how one can associate
to it a classifying Lie algebroid.

3.1. Equivalence of Coframes. Assume that we have prolonged our finite type
G-structure as much as necessary so we arrive at an {e}-structure. Since an {e}-
structure is just the specification of a frame (or a coframe), we must then solve a
problem of equivalence of coframes. We recall here how this can be dealt with. For
details we refer to [5] and [7].
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Let θ = {θ1, ..., θn} be a coframe (i.e., a spanning set of everywhere linearly inde-
pendent 1-forms) on an n-dimensional manifold M . If M̄ is another n-dimensional
manifold and θ̄ = {θ̄i} a coframe on M̄ , the equivalence problem asks:(2)

Problem 3.1 (Equivalence Problem). Does there exist a (locally defined) diffeo-
morphism φ : M → M̄ satisfying

φ∗θ̄i = θi?

Exterior differentiation of the 1-forms θk give the structure equations:

(3.1) dθk =
∑
i<j

Ck
ij(x)θ

i ∧ θj ,

for some functions Ck
ij ∈ C∞(M) called the structure functions of the coframe.

These functions play a crucial role in the study of the equivalence problem. For
example, since for any coframe θ̄ equivalent to θ one must have

C̄k
ij(φ(x)) = Ck

ij(x),

the structure functions furnish a a set of invariants of the equivalence problem.

Definition 3.2. A function I ∈ C∞(M) is called an invariant function of a coframe
{θi} if for any locally defined self equivalence (symmetry) φ : M →M one has

I ◦ φ = I.

Now, for any function f ∈ C∞(M) one defines its coframe derivatives ∂f
∂θk as the

coefficients of the differential of f when expressed in terms of the coframe {θi},

df =
∑

k

∂f

∂θk
θk.

Using the fact that dφ∗ = φ∗d, it follows that if I ∈ C∞(M) is an invariant function,
then so are its coframe derivatives ∂I

∂θk , for all 1 ≤ k ≤ n. It is then natural to
consider the sets of structure invariants,

Fs =

{
Ck

ij ,
∂Ck

ij

∂θl
, . . . ,

∂sCk
ij

∂θl1 · · · ∂θls

}
which give us an infinite number of necessary conditions to solve the equivalence
problem. Schematically, we may write

(3.2) φ∗F̄s = Fs

for all s ≥ 0.
In order to be able to proceed, we must first reduce these necessary conditions

to a finite number.

Definition 3.3. A coframe θ = {θi} is called fully regular if for each integer
s = 0, 1, 2, . . . the sth order structure map C(s) : M → RNs , whose components are
the structure invariants in Fs, is regular (i.e., has constant rank).

Note that, in the fully regular case, locally we can always find a finite set of
functionally independent structure invariants {h1, . . . , hd} which generate the full
set of structure invariants. This means that for every s ≥ 0, any element in f ∈ Fs

can be written as:
f = H(h1, ..., hd),

2We will use unbarred letters to denote objects on M and barred letters to denote objects on
M̄ .
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for some function H : Rd → R. Finally, observe that in order to verify (3.2), it
suffices to verify that

φ∗h̄i = hi

for 1 ≤ i ≤ d. The integer d is called the rank of the coframe.
We can now summarize all essential data obtained from a regular coframe of

rank d in the following convenient manner. First of all, we have a set of invariant
functions which determine a map

h : M → Rd, h(x) := (h1(x), ..., hd(x)).

Next, since {hi} are independent and generate Ft for all t ≥ 0 (in particular F0),
we can think of h1, ..., hd as coordinates on an open subset X of Rd. Then the
structure functions may be seen as functions Ck

ij ∈ C∞(X). Finally, differentiating
ha we obtain

dha =
∑

i

F a
i θ

i,

where, for the same reason, F a
i are invariant functions and hence can be seen as

elements of C∞(X). In other words, our final structure equations are:

dθk =
∑
i<j

Ck
ij(h)θ

i ∧ θj ,

dha =
∑

i

F a
i (h)θi.

As we will see next, the functions F a
i , C

k
ij ∈ C∞(X) form the initial data of a

Cartan’s realization problem. It will then be clear that to any fully regular coframe
we can associate a transitive, flat Lie algebroid.

3.2. Cartan’s Realization Problem. Not every set of functions F a
i , C

k
ij ∈ C∞(X)

determines a class of coframes. Determining when this is true is the content of:

Problem 3.4 (Cartan’s Realization Problem). One is given:
• an integer n ∈ N,
• an open set X ⊂ Rd,
• a set of functions Ck

ij ∈ C∞(X) with indexes 1 ≤ i, j, k ≤ n,
• and a set of functions F a

i ∈ C∞(X) with 1 ≤ a ≤ d

and asks for the existence of
(1) an n-dimensional manifold M
(2) a coframe {θi} on M
(3) a function h : M → X

satisfying the structure equations

dθk =
∑
i<j

Ck
ij(h)θ

i ∧ θj ,(3.3)

dha =
∑

i

F a
i (h)θi.(3.4)

A solution (M, θi, h) to Cartan’s problem is called realization. If for each
h0 ∈ X there exists a realization

(
M, θi, h

)
and x0 ∈M such that h (x0) = h0, the

initial set of data is said to specify a class of coframes. The classification problem
can now be stated as:

Problem 3.5 (Classification Problem). What are the possible solutions to a Car-
tan’s realization problem? When are two solutions to a Cartan’s realization problem
equivalent?
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3.3. Existence of Solutions. Let us consider the question of existence of solutions
to a Cartan’s realization problem. One obtains some obvious necessary conditions
for existence by differentiating the structure equations above and using d2 = 0.
The resulting equations is a complicated set of non-linear pde’s, but which have a
very simple geometric interpretation: they are the differential equations that define
a Lie algebroid. In fact, denoting by A = X × Rn → X the trivial vector bundle
over X of rank n, with basis of sections {e1, . . . , en}, we define a bracket

(3.5) [ei, ej ]A := Ck
ijek,

and an anchor map # : A→ TX by:

(3.6) #(ei) = F a
i

∂

∂xa
.

Then one checks that:

d2θk = 0 ⇐⇒ Jacobi identity for [ , ]A

d2ha = 0 ⇐⇒ # : Γ(A) → X(M) is a morphism.

Thus, we have obtained:

Proposition 3.6. For a Cartan’s realization problem to have solutions for every
h0 ∈ X it is necessary that Ck

ij , F
a
i ∈ C∞(X) be the structure functions of a flat

Lie algebroid A over X.

It turns out that the above necessary condition is also sufficient, as we shall show
in the sequel.

3.4. The Maurer-Cartan form on a Lie groupoid. We will need a generaliza-
tion of the usual Maurer-Cartan form on a Lie group to a Lie groupoid.

By a differential 1-form on a manifold M with values in a Lie algebroid A→ X
we mean a bundle map

TM

��

η // A

��
M

h
// X

which is compatible with the anchors, i.e, such that

TM
η //

h∗ ##FFFFFFFF A

#

��
TX

Since there is no canonical way of differentiating forms with values in a vector
bundle, we introduce an arbitrary connection ∇ on A→ X, and for ξ1, ξ2 ∈ X(M)
we define

d∇η(ξ1, ξ2) = ∇ξ1η(ξ2)−∇ξ2η(ξ1)− η([ξ1, ξ2]).
It is important to note that, in general, d2

∇ 6= 0 so that d∇ is not a differential. If
φ : TM → A is another A-valued 1-form, we define

[η, φ]∇(ξ1, ξ2) = T∇(η(ξ1), φ(ξ2)) + T∇(φ(ξ1), η(ξ2))

where T∇ is the torsion of ∇,

T∇(α, β) = ∇#αβ −∇#βα− [α, β]A, (α, β ∈ Γ(A)).

We have the following crucial result which follows from a more or less straight-
forward computation:
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Lemma 3.7. An A-valued 1-form η satisfies the generalized Maurer-Cartan
equation:

(3.7) d∇η +
1
2
[η, η]∇ = 0

if and only if η : TM → A is a Lie algebroid morphism.

Now, let G be a Lie groupoid with Lie algebroid A. Right translation by an
element g ∈ G is a diffeomorphism between s-fibers: Rg : s−1(t(g)) → s−1(s(g)).
Hence, by a right invariant 1-form on G we mean a s-foliated 1-form ω on G
such that for all g ∈ G:

ω(ξ) = ω(dhRg(ξ)), ∀h ∈ s−1(t(g)), ξ ∈ T s
hG.

For short, we write this condition as (Rg)∗ω = ω.
A Lie groupoid carries a natural canonical s-foliated right invariant differential

1-form with values in its Lie algebroid:

Definition 3.8. The Maurer-Cartan form on a Lie groupoid G is the A-
valued s-foliated right invariant 1-form defined by

ωMC(ξ) = (dRg−1)g(ξ)

for ξ ∈ T s
gG.

Note that the Maurer-Cartan 1-form ωMC : T sG → A covers the target map
t : G → M . As one could expect, this 1-form is a solution of the generalized
Maurer-Cartan equation. Moreover, it satisfies a universal property analogous to
the case of Lie groups:

Proposition 3.9. Let G be a Lie groupoid with Lie algebroid A and let ωMC be
its right invariant Maurer-Cartan form. If η : TM → A is a solution of the
Maurer-Cartan equation covering a map h : M → X, then for each x ∈ M and
g ∈ G such that h(x) = s(g) there exists a unique locally defined diffeomorphism
φ : M → s−1(h(x)) satisfying:

φ(x) = g and φ∗ωMC = η.

Let us sketch a proof of this proposition. Since it is a local result we may assume
that M is simply connected. The source 1-connected Lie groupoid integrating TM
is then the pair groupoid M×M ⇒ M . Since a Maurer-Cartan form is nothing but
a Lie algebroid morphism, we can integrate η : TM → A to a unique Lie groupoid
morphism (see [3]):

M ×M

����

H // G

����
M

h
// X.

If we fix a point x0 in M we may always write

H(x, y) = φ(x)φ(y)−1

where φ : M → s−1(h(x0)) ⊂ G is defined by φ(x) := H(x, x0). But then φ satisfies

φ(x0) = 1h(x0), φ∗ωMC = η.

So φ is the desired local diffeomorphism.

As a corollary of Proposition 3.9 we obtain:

Corollary 3.10. Let G ⇒ X be a Lie groupoid with Maurer-Cartan form ωMC.
If φ : s−1(x) → s−1(y) is a symmetry of ωMC (i.e., φ∗ωMC = ωMC) then x and y
belong to the same orbit of G and φ is locally of the form φ = Rg for some g ∈ G.
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The proof sketched above also shows that if we impose a topological condition
we obtain the following global version of the universal property of Maurer-Cartan
forms:

Theorem 3.11. Let G ⇒ X be a source 1-connected Lie groupoid with Lie algebroid
A and let η ∈ Ω1(M,A) be an A-valued differential 1-form covering h : M → X.
Then, there exists an embedding φ : M → s−1(h(x0)) satisfying

φ(x0) = 1h(x0) and φ∗ωMC = η.

if and only if
(i) (local obstruction) η satisfies the generalized Maurer-Cartan equation and
(ii) (global obstruction) the Lie groupoid morphism H integrating η is trivial when

restricted to the fundamental group π1(M,x0).

3.5. The Classification Theorem. We can now give a complete solution to the
classification problem 3.5:

Theorem 3.12. Let (n,X,Ck
ij , F

a
i ) be the initial data of a Cartan’s realization

problem. Then:
(i) a realization exists if and only if Ck

ij and F a
i are the structure functions of a

Lie algebroid;
(ii) any realization is locally equivalent to a neighborhood of the identity of an

s-fiber of a groupoid G equipped with the Maurer-Cartan form;
(iii) two such realizations are equivalent if and only if they correspond to points on

the same orbit of A.

Proof. We already know that for Cartan’s problem to have a solution the Ck
ij and

F a
i form the structure functions of the flat Lie algebroid A = X ×Rn, with bracket

and anchor given by (3.5) and (3.6). Assume, for simplicity, that A is integrable and
that G is a Lie groupoid integrating A. Denote by ωMC the Maurer-Cartan form
of G and by {ω1

MC, . . . , ω
n
MC} its components with respect to the basis {e1, . . . , en}.

Then it is clear that, for each x0 ∈ X, (s−1(x0), {ωi
MC}, t) is a realization of the

Cartan problem with initial data (n,X,Ck
ij , F

a
i ). This proves (i).

Next we observe that, if (M, {θi}, h) is another realization of (n,X,Ck
ij , F

a
i ), the

A-valued 1-form

θ =
n∑

i=1

θiei ∈ Ω1(M,A)

satisfies the generalized Maurer-Cartan equation. In fact, equation (3.4) is equiv-
alent to (θ, h) being an A-valued differential form and equation (3.3) is equivalent
to the Maurer-Cartan equation. Hence, if p0 ∈ M is such that h(p0) = x0 then
by the universal property of Maurer-Cartan forms (Theorem 3.9) we can find a
neighborhood V of p0 in M and a diffeomorphism

φ : V → φ(V ) ⊂ s−1(x0)

such that φ(p0) = 1x0 and φ∗ωMC = θ. This shows that any realization of Cartan’s
problem is locally equivalent to a neighborhood of the identity of an s-fiber of G
equipped with the Maurer-Cartan form, so (ii) follows.

Finally, it follows from Corollary 3.10 that two realizations are equivalent if and
only if they correspond to points on the same orbit of A, so (iii) also follows. �

The Classification Theorem 3.12 shows that there is a one to one correspon-
dence between flat Lie algebroids of rank n and classes of locally defined coframes
on n-dimensional manifolds. We call the Lie algebroid associated with a class the
classifying Lie algebroid of the class of coframes. Its integration furnishes ex-
plicit models to the realization problem.
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Remark 3.13. Even when A is not integrable, the proof above shows that all we
need is a local groupoid integrating it, and this always exists (see [3]).

3.6. Realizations of Finite Type G-Structures. We now briefly describe the
realization problem for G-structures of finite type. We focus on the case where
G(1) = {e}. There are two reasons for this: (i) this is the case that appears in most
geometric applications, and (ii) more general finite type G-structures can then be
handle by induction once this case is understood.

Suppose that we would like to determine all G-structures belonging to a certain
class, where G is a fixed Lie group satisfying G(1) = {e}. The considerations of
Section 2.4 show that we must solve the following realization problem:

Problem 3.14 (Realization Problem for G-Structures with G(1) = {e}). Given
the data:

• An open set X ⊂ Rd,
• an integer n ∈ N,
• a Lie subalgebra g ⊂ gln satisfying g(1) = 0,
• a Lie group G ⊂ GL(n) with Lie algebra g, and
• maps c : X → hom(Rn ∧ Rn,Rn), b : X → hom(Rn ∧ Rn, g), S : X →

hom(Rn ⊗ g, g), Θ : X → hom(Rn,Rd), and Φ : X → hom(g,Rd)
one asks for the existence of
(1) a manifold Mn,
(2) a G-structure BG(M) on M with tautological form ω ∈ Ω1(BG,Rn)
(3) a maximal rank one form φ ∈ Ω1(BG, g) transversal to ω, and
(4) a map h : BG → X

such that:

dω = c(h) ◦ ω ∧ ω − φ ∧ ω(3.8)

dφ = b(h) ◦ ω ∧ ω + S(h) ◦ ω ∧ φ− φ ∧ φ(3.9)

dh = Θ(h) ◦ ω + Φ(h) ◦ φ(3.10)

Just like in the case of G = {e}, one checks that a necessary condition for
solving this problem is that the structure functions c, b, S,Θ,Φ determine a flat Lie
algebroid A→ X with fiber Rn ⊕ g. The Lie bracket on constant sections, is given
by

[(u, α), (v, β)]A(x) = (w, γ),
where,

w := c(x)(u ∧ v)− α · v + β · u,
γ := b(x)(u ∧ v) + S(x)(u⊗ β − v ⊗ α)− [α, β]g.

The anchor map # : A→ TX is determined by:

#(u, α) := Θ(x)u+ Φ(x)α.

Observe that the natural inclusion g ↪→ Γ(A), α 7→ (0, α), is a Lie algebra
homomorphism, since we have:

[(0, α), (0, β)]A = (0, [α, β]g).

Therefore, we obtain an inner action of g on A by setting

ρ : g → Der(A), ρ(α)(σ) := [(0, α), σ]A (σ ∈ Γ(A)).

Conversely, if the initial data of the realization problem determines a flat Lie alge-
broid A = X × (Rn ⊕ g) → X such that the natural inclusion g ↪→ Γ(A) defines an
infinitesimal inner g-action, then for each h0 ∈ X we can find a G-structure whose
structure functions assume the values c(h0), b(h0), S(h0),Θ(h0) and Φ(h0).
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Note that now, in order to exhibit explicit universal models, we must integrate
not only the Lie algebroid but also the infinitesimal inner g-action. Therefore,
assume that A is integrable and that we can integrate the g-action to a proper
and free action of G on some groupoid G integrating A. Each s-fibers of G will
be the total space of a G-structure determined by its tautological form; the Rn

component of the Maurer-Cartan form. The isotropy group of G at a point will be
the symmetry group of the corresponding G-structure. Moreover, for any frame p
in another realization BG(M), there will exist a neighborhood which is isomorphic
to a neighborhood of the identity in an s-fiber of G. Details on these constructions
will appear elsewhere.

4. Examples

In order to illustrate our method, we will present two concrete examples. The
first one is a toy example: metrics of constant curvature in R2. The second example
is a more serious application to Bochner-Kähler metrics and is based on the work
of Bryant [1].

4.1. Metrics of Constant Curvature in R2. Suppose we would like to classify
all Riemann metrics of constant curvature in a neighborhood of the origin in R2.
The G-structure to be considered is BO2(R2), the orthogonal frame bundle of R2.
In this case, the first order structure function vanishes identically and O

(1)
2 = {e}.

The structure equation has the following simple form:{
dω = −φ ∧ ω
dφ = kω ∧ ω,

where φ is the connection 1-form on BO2(R2) corresponding to the Levi-Civita
connection and k is the Gaussian curvature of φ. If the curvature k is constant,
then dk = 0. In terms of the canonical base of R2 the structure equation becomes

dω1 = −φ ∧ ω2,

dω2 = φ ∧ ω1,

dφ = kω1 ∧ ω2,

dk = 0.

The Gaussian curvature is the only invariant function. It follows that the classifying
Lie algebroid for this class is the flat bundle A = R×R3 → R, with a basis of sections
{e1, e2, e3} and structure given by:

[e1, e2] (k) = ke3,

[e1, e3] (k) = −e2,
[e2, e3] (k) = e1,

#ei = 0.

Note that this Lie algebroid is just a bundle of Lie algebras with fibers isomorphic
to:

sl2 if k < 0 Hyperbolic Geometry

se2 if k = 0 Euclidean Geometry

so3 if k > 0 Spherical Geometry

The inner action of o2 on A is the fiberwise action obtained from the adjoint rep-
resentation. It follows that to each value of k ∈ R there corresponds the germ at
0 of a constant curvature metric on R2. Moreover, two constant curvature metrics
on R2 are locally equivalent if and only if they have the same curvature.



LIE ALGEBROIDS AND CLASSIFICATION PROBLEMS IN GEOMETRY 15

4.2. Bochner-Kähler Structures. Let (M,σ,Ω) be a Kähler manifold. Its cur-
vature tensor can be decomposed into three irreducible components: the scalar
curvature, the traceless Ricci curvature and the Bochner curvature. We say that
(M,σ,Ω) is Bochner-Kähler if its Bochner curvature vanishes identically.

Bryant in [1] performs a differential analysis which shows that the local classifica-
tion of Bochner-Kähler metrics can be reduced to the following structure equations

dω = −φ ∧ ω,
dφ = −φ ∧ φ+ Sω∗ ∧ ω − Sω ∧ ω∗ − ω ∧ ω∗S + (ω∗ ∧ Sω)In,

dS = −φS + Sφ+ Tω∗ + ωT ∗ +
1
2
(T ∗ω + ω∗T )In,

dT = −φT + (UIn + S2)ω,

dU = T ∗Sω + ω∗ST.

where ω is the Cn-valued tautological form on the unitary coframe bundle of M ,
φ is the u(n)-valued connection form associated to the Levi-Civita connection on
M , S,T , and U are functions with values, respectively, in iu(n), Cn and R and
In ∈ GLn(C) is the identity.

The corresponding classifying Lie algebroid can be described as follows: as a
vector bundle, it is the trivial bundle over X = iu(n) ⊕ Cn ⊕ R with fiber type
Cn ⊕ u(n). The Lie bracket is defined on constant sections by

[(z1, α1), (z2, α2)]A(s, t, u) := (α2z1 − α1z2,−[α1, α2]u(n) + (z∗1z2 − z∗2z1)s+

− s(z1z∗2 − z2z
∗
1)− (z1(z∗2s)− z2(z∗1s)) + (z∗1(sz2)− z∗2(sz1))In),

while the anchor is given by:

#(z, α)(s, t, u) := (−αs+ sα+ tz∗ + zt∗ +
1
2
(t∗z + z∗t)In,

− αt+ (uIn + s2)z, t∗sz + z∗st).

Finally, the inner action of u(n) on A = X × (Cn ⊕ u(n)) is composed of the
defining action of u(n) on Cn and the adjoint action on u(n). This action covers
an infinitesimal u(n)-action on X = iu(n) ⊕ Cn ⊕ R, which on the first factor
corresponds to the adjoint action, on the second factor is just the defining action
of u(n) and is trivial on the last factor.

In order to understand the local classification of Bochner-Kähler metrics and
find local models for such metrics one must integrate this classifying Lie algebroid.
The orbit space will correspond to the different classes of Bochner-Kähler metrics,
while the different isotropy types will correspond to their symmetry groups. We
leave this analysis for a future work.
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153–206. (Reprinted in Cartan’s Collected Works, Part II.)

3. M. Crainic and R.L. Fernandes, Integrability of Lie brackets, Ann. of Math. (2) 157 (2003),
575–620.

4. S. Kobayashi, Transformation Groups in Differential Geometry, Reprint of the 1972 edition.
Classics in Mathematics. Springer-Verlag, Berlin, 1995.

5. P. Olver, Equivalence, Invariants and Symmetry, Cambridge University Press, New York,
USA, 1995.

6. I.M. Singer and S. Sternberg, The infinite groups of Lie and Cartan, Part I (the transitive
groups), J. Analyse Math.15 (1965), 1–114.

7. S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, New Jersey, USA, 1964.



16 RUI LOJA FERNANDES AND IVAN STRUCHINER
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