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Motivation
Global problems in Poisson geometry

Ordinary Geometry

Points are all equal;
Basic invariant: fundamental
group π1(M, p);
f : (M, p) → (N, q) ⇒
f∗ : π1(M, p) → π1(N, q);
To get rid of base points, use
fundamental groupoid;

Poisson Geometry

Points are not all equal;
Basic invariant: Weinstein
groupoid Σ(M);
f : M → N Poisson map ⇒
Σ(f ) ⊂ Σ(M)× Σ(N)

canonical relation
(A. Cattaneo, 2004);
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Smooth quotients
Integrability
Symplectization vs Reduction

Smooth Poisson quotients

(M, π) is a Poisson manifold;
Lie group G acts on M by Poisson diffeomorphisms;
Action is proper and free;

Fact

M/G carries a unique Poisson structure πred such that
p : M → M/G is a Poisson map.

Proof.

C∞(M/G) ' C∞(M)G.
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Smooth quotients
Integrability
Symplectization vs Reduction

Integration of smooth quotients

Theorem

If (M, π) is an integrable Poisson manifold, then (M/G, πred) is
also an integrable Poisson manifold.

This theorem is essentially due to K. Mikami and
A. Weinstein;
There are different proofs. We will give a constructive
proof, describing the integration of M/G;
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Smooth quotients
Integrability
Symplectization vs Reduction

The symplectic groupoid of M/G

Σ(M) :=
{cotangent paths}

{cotangent homotopies}

Σ(M)

����
G

""M

=⇒ G
"" Σ(M)

����

J // g∗

MG 77

〈J([a]), ξ〉 =
∫

a Xξ

=⇒ Σ(M)//G

����
M/G
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Smooth quotients
Integrability
Symplectization vs Reduction

Symplectization vs Reduction

For general Poisson actions: Σ(M)//G 6= Σ(M/G).

Theorem

Symplectization and reduction commute if and only if the
following groups

Kp :=
{a : I → j−1(0) | a is a cotangent loop such that a ∼ 0p}

{cotangent homotopies with values in j−1(0)}

are trivial, for all p ∈ M.
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Smooth quotients
Integrability
Symplectization vs Reduction

At the Lie groupoid level, J : Σ(M) → g∗ gives:

Σ(M)

����

J−1(0)0? _oo Φ //

����

J−1(0)0/G

����
M M // M/G

At the Lie algebroid level, j : T ∗M → g∗ gives:

T ∗M

��

j−1(0)? _oo
φ //

��

T ∗(M/G)

��
M M // M/G.

φ integrates to a Lie groupoid morphism Φ̂ : G(j−1(0)) → Σ(M).
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Smooth quotients
Integrability
Symplectization vs Reduction

Putting it all together:

KM

Φ̂
��

� � // G(j−1(0))

Φ̂
��

p̂ // J−1(0)0

Φ
��

KM/G � � // Σ(M/G)
p // J−1(0)0/G Σ(M)//G
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Smooth quotients
Integrability
Symplectization vs Reduction

Hamiltonian actions

Corollary

For G ×M → M a Hamiltonian action on a symplectic manifold
(M, ω) with momentum map µ : M → g∗:

Kp := Ker i∗ ⊂ π1(µ
−1(c), p)

where c = µ(p) and i : µ−1(c) ↪→ M is the inclusion.

Homotopy long exact sequence of the pair (M, µ−1(c)) gives:

π2(M, µ−1(c), m)
∂ // π1(µ

−1(c), m)
i∗ // π1(M, m)

j∗ // π1(M, µ−1(c), m) .

So groups vanish if the fibers of the momentum map are simply connected,
or if its second relative homotopy groups vanish.
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Smooth quotients
Integrability
Symplectization vs Reduction

Example

For the anti-diagonal action of G = S1 on M = C2 − {0}, which
has momentum map µ(z, w) = ||z||2 − ||w ||2:

µ−1(c) '

{
C× S1, if c 6= 0,

(C \ {0})× S1, if c = 0.

so that:

Kp ' π1(µ
−1(c)) =

{
Z, if c 6= 0,

Z× Z, if c = 0,

and we see that:

Σ(M)//G 6= Σ(M/G).
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Proper actions
Poisson stratifications
Proper Poisson actions

Singular quotients
Orbit type stratification

For a proper action G ×M → M and H ⊂ G:
MH := {m ∈ M : gm = m,∀g ∈ H} (H-fixed point set);
MH := {m ∈ M : Gm = H} (H-isotropy type);
M(H) := {m ∈ M : Gm ∈ (H)} (H-orbit type);

Theorem

The (connected components of the) orbit types determine a
smooth stratification of the orbit space:

M/G =
⋃
(H)

M(H)/G.
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Proper actions
Poisson stratifications
Proper Poisson actions

Poisson stratifications

What happens if in addition one has Poisson geometry?

Definition

A Poisson stratified space is a smooth stratified space
X =

⋃
α∈A Xα such that:

(i) (C∞(X ), { , }) is a Poisson algebra;
(ii) Each stratum is a Poisson manifold (Xα, { , }α);
(iii) The inclusion i : Xα ↪→ X is a Poisson map.
If every strata is symplectic, then X is called a symplectic
stratified space.
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Poisson stratifications
Example

M = sl∗(2) ' R3: {x , z} = y ; {x , y} = z; {z, y} = x .
Symplectic foliation: {(x , y , z)|x2 + y2 − z2 = c}.

⇒ Cone x2 + y2 = z2 is a Poisson stratified space.
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Proper actions
Poisson stratifications
Proper Poisson actions

Poisson stratification theorem

Theorem

If G ×M → M is a proper Poisson action then the orbit type
stratification is a Poisson stratification.

Remarks:
Symplectic leaves of the strata are the orbit reduced
spaces obtained from the optimal momentum map.
G-invariant hamiltonians H : M → R give rise to reduced
hamiltonian dynamics.
There is an alternative approach due to J. Śniatycki (2003)
using differential spaces (in the sense of Sikorski).
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Poisson stratification theorem
Example

CP(n) =
(
Cn+1 \ {0}

)
/C∗, {zi , zj} = aijzizj .

(for a fixed skew-symmetric matrix (aij))
Tn × CP(n) → CP(n),
(θ1, . . . , θn) · [z0 : z1 : · · · : zn] = [z0, eiθ1z1, · · · , eiθnzn]

is a proper Poisson action.

Conclusion

CP(n)/Tn is a Poisson stratified space.
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Poisson stratification theorem
Example

The map µ : CP(n) → ∆n,

µ([z0 : · · · : zn]) =

(
|z0|2

|z0|2 + · · ·+ |zn|2
, · · · ,

|zn|2

|z0|2 + · · ·+ |zn|2

)
gives identification:

CP(n)/Tn = ∆n :=

{
(µ0, . . . , µn) ∈ Rn+1

∣∣∣ n∑
i=0

µi = 1, µi ≥ 0

}
.

Poisson bracket on ∆n:

{µi , µj}∆ =

(
aij −

n∑
l=0

(ail + alj)µl

)
µiµj .
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Proper actions
Poisson stratifications
Proper Poisson actions

Poisson stratification theorem
Example

The stratification is formed by the open faces (of every
dimension) of the simplex:
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Proper actions
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Proper Poisson actions

Poisson stratification theorem
The proof

Proposition (Vanhaecke, RLF)

If G ×M → M is a Poisson action of a compact Lie group G,
then MG is a Poisson-Dirac submnifold of M:

{f , h}MG = {f̃ , h̃}
∣∣∣
MG

,

where f̃ , h̃ ∈ C∞(M) are G-invariant extensions of f and h.

Remarks:
MG ↪→ M is a backward Dirac map.
MG is not a Poisson submanifold.
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Poisson stratification theorem
The proof

Poisson structure on orbit type M(H)/G:
Fix isotropy type H ⊂ G;
MH is an open subset of MH ;

Proposition

Each MH carries a Poisson structure such that:

{f , h}MH = {f̃ , h̃}
∣∣∣
MH

,

so MH ⊂ M is a Poisson-Dirac submanifold.

Rui L Fernandes Singular reduction and integrability



Motivation
Regular Reduction
Singular reduction

Integration of Singular quotients
Summary and Outlook

References
Appendix

Proper actions
Poisson stratifications
Proper Poisson actions

Poisson stratification theorem
The proof

Poisson structure on orbit type M(H)/G:
Fix isotropy type H ⊂ G;
MH is an open subset of MH ;

Proposition

Each MH carries a Poisson structure such that:

{f , h}MH = {f̃ , h̃}
∣∣∣
MH

,

so MH ⊂ M is a Poisson-Dirac submanifold.

Rui L Fernandes Singular reduction and integrability



Motivation
Regular Reduction
Singular reduction

Integration of Singular quotients
Summary and Outlook

References
Appendix

Proper actions
Poisson stratifications
Proper Poisson actions

Poisson stratification theorem
The proof

Poisson structure on orbit type M(H)/G:
Fix isotropy type H ⊂ G;
MH is an open subset of MH ;

Proposition

Each MH carries a Poisson structure such that:

{f , h}MH = {f̃ , h̃}
∣∣∣
MH

,

so MH ⊂ M is a Poisson-Dirac submanifold.

Rui L Fernandes Singular reduction and integrability



Motivation
Regular Reduction
Singular reduction

Integration of Singular quotients
Summary and Outlook

References
Appendix

Proper actions
Poisson stratifications
Proper Poisson actions

Poisson stratification theorem
The proof

Poisson structure on orbit type M(H)/G:
Fix isotropy type H ⊂ G;
MH is an open subset of MH ;

Proposition

Each MH carries a Poisson structure such that:

{f , h}MH = {f̃ , h̃}
∣∣∣
MH

,

so MH ⊂ M is a Poisson-Dirac submanifold.

Rui L Fernandes Singular reduction and integrability



Motivation
Regular Reduction
Singular reduction

Integration of Singular quotients
Summary and Outlook

References
Appendix

Proper actions
Poisson stratifications
Proper Poisson actions

Poisson stratification theorem
The proof

Set L(H) := N(H)/H;
L(H)×MH → MH is proper, free and Poisson;

Given conjugate isotropy types (H) = (H ′):

M

MH

66llllllllllllllll

((QQQQQQQQQQQQQQ MH′

hhRRRRRRRRRRRRRRRR

vvmmmmmmmmmmmmmm

MH/L(H) ' MH′/L(H ′)

inclusions/projections are backward/forward Dirac maps;Rui L Fernandes Singular reduction and integrability
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Proper actions
Poisson stratifications
Proper Poisson actions

Poisson stratification theorem
The proof

M(H)/G ' MH/L(H) carries natural Poisson structure;
Inclusion M(H)/G ↪→ M/G is a Poisson map;

Conclusion

M/G =
⋃
(H)

M(H)/G is a Poisson stratification.
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Main Result
Basic idea of Proof

Integrability of M/G
Non-free case

Theorem

If G ×M → M is a proper Poisson action, and M is an
integrable Poisson manifold, then M/G is an integrable Poisson
stratified space.

Remarks:
There exists a stratified Lie (algebroid/groupoid) theory;
M/G integrates to a stratified Lie groupoid;
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Main Result
Basic idea of Proof

The stratified groupoid of M/G

Commutative diagram of Dirac structures:

M

MH

66nnnnnnnnnnnnnnn

''OOOOOOOOOOOOO M(H)

hhQQQQQQQQQQQQQQQ

wwnnnnnnnnnnnnn

MH/L(H) ' M(H)/G

M =
⋃

(H) M(H) is a Dirac stratified space;
G(M, L) ⇒ M is a stratified pre-symplectic groupoid;
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Main Result
Basic idea of Proof

The stratified groupoid of M/G

G(M, L)

����
MG 77

=⇒ G(M)

����

G &&
J // g∗

MG 77

〈J([a]), ξ〉 =
∫

a Xξ

=⇒ G(M)//G

����
M/G

Conclusion

G(M)//G ⇒ M/G is a stratified symplectic groupoid integrating
the Poisson stratified space M/G.
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Summary and Outlook

Summary
Proper Poisson actions yield Poisson stratified spaces.
Singular quotients integrate to stratified Lie groupoids.

Outlook
The stratified approach is not that good...
One should look into Poisson orbispaces;
(This should be Morita equivalence classes of proper Lie
groupoids with an invariant Poisson structure on the units.)
One should look at more general Poisson actions
(Poisson-Lie groups,. . . );
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The fundamental groupoid of a manifold
The Weinstein groupoid

The fundamental groupoid of a manifold

M a manifold. Take continuous curves γ : [0, 1] → M

M

γ0

γ1

η

Rui L Fernandes Singular reduction and integrability



Motivation
Regular Reduction
Singular reduction

Integration of Singular quotients
Summary and Outlook

References
Appendix

The fundamental groupoid of a manifold
The Weinstein groupoid

The fundamental groupoid of a manifold

M a manifold. Take continuous curves γ : [0, 1] → M

M

γ0

γ1

η

Rui L Fernandes Singular reduction and integrability



Motivation
Regular Reduction
Singular reduction

Integration of Singular quotients
Summary and Outlook

References
Appendix

The fundamental groupoid of a manifold
The Weinstein groupoid

The fundamental groupoid of a manifold

M a manifold. Take continuous curves γ : [0, 1] → M

M

γ0
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η

[γ0] ≡ homotopy class of γ0

Rui L Fernandes Singular reduction and integrability



Motivation
Regular Reduction
Singular reduction

Integration of Singular quotients
Summary and Outlook

References
Appendix

The fundamental groupoid of a manifold
The Weinstein groupoid

The fundamental groupoid of a manifold

M a manifold. Take continuous curves γ : [0, 1] → M

M

γ0

γ1

η

[γ0] ≡ homotopy class of γ0

Rui L Fernandes Singular reduction and integrability



Motivation
Regular Reduction
Singular reduction

Integration of Singular quotients
Summary and Outlook

References
Appendix
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The Weinstein groupoid

The fundamental groupoid of a manifold

M a manifold. Take continuous curves γ : [0, 1] → M

M

γ0

γ1

η

[γ0] ≡ homotopy class of γ0 ([γ0] = [γ1]
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The fundamental groupoid of a manifold
The Weinstein groupoid

The fundamental groupoid of a manifold

M a manifold. Take continuous curves γ : [0, 1] → M

M

γ0

γ1

η

[γ0] ≡ homotopy class of γ0 ([γ0] = [γ1]6= [η]).
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The fundamental groupoid of a manifold
The Weinstein groupoid

The fundamental groupoid of a manifold

M a manifold. Take continuous curves γ : [0, 1] → M

M

γ0

γ1

η

The fundamental groupoid of M is:

Π1(M) := {paths γ}/{homotopies} = {[γ] | γ : [0, 1] → M} .
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The fundamental groupoid of a manifold
The Weinstein groupoid

The fundamental groupoid of a manifold

The fundamental groupoid

Π1(M) = {[γ] | γ : [0, 1] → M}

has the following structure:
source and target: s([γ]) = γ(0), t([γ]) = γ(1);

product: [γ] · [η] = [γ · η];

units: 1x = [γ], where γ(t) = x ;

inverses: [γ]−1 = [γ], where γ(t) = γ(1− t).
Return
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The fundamental groupoid of a manifold
The Weinstein groupoid

The Weinstein groupoid

Take any Poisson manifold (M, π) :

Σ(M) :=
{cotangent paths}

{cotangent homotopies}
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The fundamental groupoid of a manifold
The Weinstein groupoid

The Weinstein groupoid

A cotagent path is a path a(t) ∈ Tγ(t)M such that:

d
dt

γ(t) = π](a(t));

A cotangent homotopy is a family of cotangent paths aε(t),
such that the solution b = b(ε, t) of:(*)

∂tb − ∂εa = T∇(a, b), b(ε, 0) = 0,

satisfies b(ε, 1) = 0.

(*) After some choice of ∇; T denotes the torsion.
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The fundamental groupoid of a manifold
The Weinstein groupoid

The Weinstein groupoid

Σ(M) ⇒ M is a topological groupoid.

Definition

A Poisson manifold (M, π) is called integrable if Σ(M) is
smooth, i.e., it is a Lie groupoid.

In this case, Σ(M) carries a natural symplectic structure Ω
which is compatible with multiplication:

m∗Ω = π∗1Ω + π∗2Ω,

where m, π1, π2 : Σ(M)× Σ(M) → Σ(M). Return
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