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1. Introduction

Why groupoids?
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Usual credo. . .

Basic Remark:

Many objects which we recognize as symmetric admit
few or no non-trivial symmetries.
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Basic Remark:

Many objects which we recognize as symmetric admit
few or no non-trivial symmetries.

Groupotids allow one to fix this.

Usual credo. . .
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2. Usual credo...

symmetries = groups
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A group is a set G together with a multiplication

GxG—G
(91792) — §192

satisfying:
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A group is a set G together with a multiplication

GxG—G
(91792> = 192

satisfying:
e Associativity. For all g1, g2, g3 € G:

(9192)93 = 91(9293)-

Usual credo. . .
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A group is a set G together with a multiplication

GxG—G
(91792> = 192

satisfying:
e Associativity. For all g1, g2, g3 € G:
(9192)93 = 91(9293)-
e Identity. There exists an element e € G:

ge = eg = €.
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A group is a set G together with a multiplication

GxG—d
(91792) = 192

satisfying:
e Associativity. For all g1, g2, g3 € G:
(9192)95 = 91(9293)-
e Identity. There exists an element e € G:

ge =eqg = e.

e Inverse. For all g € G there exists g~* € G:
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Other groupoids
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Main example: group of isometries of R”
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Usual credo. . .

Main example: group of isometries of R”

Ifox=(xy,....,x,) and y = (y1,. .., Yp):

n

d(z,y) = [|lz —yl| = Z(l’z — i)

i=1
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Main example: group of isometries of R”

Ifox=(xy,....,x,) and y = (y1,. .., Yp):

n

d(z,y) = [|lz —yl| = Z(l’z — i)

i=1
The Euclidean group is:
E(n) ={¢:R" = R": d(¢(z), d(y)) = d(z,y), Vz,y € R"}
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Usual credo. . .

Main example: group of isometries of R” Necd for 5 new credo
Symmetry groupoids
Ifox=(xy,....,x,) and y = (y1,. .., Yp): S —

n

d(z,y) = ||z —y|| = Z(iﬁz — i)

i=1

The Euclidean group is:
B(n) = {¢: R" = R : d(¢(x), $(y)) = d(x, ), Ya,y € R"}
with multiplication composition of isometries:

E(n)xE(n) — E(n)
(61, 02) — d10 Pa.
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Group of isometries of R" (cont.)

Every isometry ¢ : R" — R" is of the form:
o(x) = Ax + b,

where b € R" and A is an orthogonal matrix:

AAT=ATA=1.

Usual credo. . .
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Group of isometries of R" (cont.)

Every isometry ¢ : R" — R" is of the form:
o(r) = Az + b,
where b € R" and A is an orthogonal matrix:
AAT = ATA=T.

ISOMETRY = ORTHOGONAL TRANSFORMATION -+
TRANSLATION

Usual credo. . .
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Group of isometries of R" (cont.)
Every isometry ¢ : R" — R" is of the form:
o(r) = Az + b,
where b € R" and A is an orthogonal matrix:
AAT = ATA=1T.

ISOMETRY = ORTHOGONAL TRANSFORMATION -+
TRANSLATION

Remark:
A proper isometry is an isometry which preserves
orientation < ¢(x) = Ax + b with det A = 1.
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The Euclidean group has some familiar subgroups:
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The Euclidean group has some familiar subgroups: Usual credo. .
e The group of translations:

R" = {¢ € E(n) : ¢ is a translation} ,
~ {be R"}.
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The Euclidean group has some familiar subgroups:
e The group of translations:

R" = {¢ € E(n) : ¢ is a translation} ,
~ {be R"}.

e The orthogonal group:

O(n) ={¢ € E(n) : ¢ is a orth. transf.},
~ (A AAT = ATA=T)}
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Introduction

The Euclidean group has some familiar subgroups: Usual credo...

Need for a new credo

e The group of translations: Symmetry groupoids

Other groupoids

R" ={¢ € E(n) : ¢ is a translation} ,
~ {be R"}.

e The orthogonal group:
O(n) ={¢ € E(n) : ¢ is a orth. transf.}
~ {A: AA" = A"A=1T}.
e The special orthogonal group (“rotations”):

SO(n) ={¢ € O(n) : ¢ is proper}
~ {A:AAT:ATA:], detAzl}.
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Symmetries
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Symmetries

If O C R”, the group of symmetries of () is
Go={p € E(n): o(Q2) =Q}.
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Symmetries R s ek

If O C R”, the group of symmetries of () is
Go={p € En): o) =Q}.

Often, one describes only the group of proper sym-
metries

Go={¢pc En): Q) =Q, ¢is proper} .
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Symmetries

If O C R”, the group of symmetries of () is
Go={p € En): o) =Q}.

Often, one describes only the group of proper sym-
metries

Go={¢pc En): Q) =Q, ¢is proper} .

Philosophic principle:
An object is symmetric if it has many symmetries.
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Example: Tiling by rectangles of R?
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Usual credo. . .

Example: Tiling by rectangles of R?
Take € C R? the tiling of R? by 2 : 1 rectangles:

What is the group of symmetries Gq?
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Example: Tiling by rectangles of R* (cont.)

The group Gg consists of:



http://www.math.ist.utl.pt/~rfern

Example: Tiling by rectangles of R* (cont.)
The group Gq consists of:
e Translations by elements of the lattice A = 27 x Z:

(z,y) — (z,y) + (2n, m), n,m € Z.
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Example: Tiling by rectangles of R* (cont.)
The group Gq consists of:

e Translations by elements of the lattice A = 27 x Z:

(z,y) — (z,y) + (2n, m), n,m € Z.
e Reflections through points in ;A = Z X 1Z:

(x,y)l—>(n—a:,m/2—y), n7m€Z'
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Example: Tiling by rectangles of R* (cont.)
The group Gq consists of:

e Translations by elements of the lattice A = 27 x Z:

(z,y) — (z,y) + (2n,m), n,m € 7.
e Reflections through points in ;A = Z X 1Z:
(z,y) — (n—x,m/2 —vy), n,m € 7.
e Reflections through horizontal and vertical lines:

(z,y) — (z,m/2 —y)

(z,5) — (n — z, ) n,m & 2.

Introduction

Need for a new credo

Symmetry groupoids
Other groupoids
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Example: Tiling by rectangles of R* (cont.)
The group Gq consists of:

e Translations by elements of the lattice A = 27 x Z:

(z,y) — (z,y) + (2n,m), n,m € 7.
e Reflections through points in ;A = Z X 1Z:
(z,y) — (n—x,m/2 —vy), n,m € 7.
e Reflections through horizontal and vertical lines:

(z,y) — (z,m/2 —y)

(z,5) — (n — z, ) n,m & 2.

The tiling has a lot of symmetry!

Introduction

Need for a new credo

Symmetry groupoids
Other groupoids
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Need for a new credo

This gives a very successful theory:
e symmetry groups of tilings;
e symmetry groups of crystals;
e symmetry groups of differential equations;

e symmetry groups of geometric structures;
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Need for a new credo

This gives a very successful theory:
e symmetry groups of tilings;
e symmetry groups of crystals;
e symmetry groups of differential equations;

e symmetry groups of geometric structures;

Buf...
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3. Need for a new credo
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Instead of tiling, take B a real bathroom floor:
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Instead of tiling, take B a real bathroom floor:

Need for a new credo

The group of symmetries shrinks drastically:
GB = ZQ X ZQ.

It contains only 4 elements!
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Instead of tiling, take B a real bathroom floor:

The group of symmetries shrinks drastically:
GB = ZQ X ZQ.

It contains only 4 elements!

However, we can still recognize a repetitive pattern. . .

Need for a new credo
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Not surprising! There are very few symmetry groups:

Need for a new credo
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Not surprising! There are very few symmetry groups:

Theorem 3.1. The possible finite proper symmetry
groups of a bounded region Q) C R? are:

Need for a new credo
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Not surprising! There are very few symmetry groups:

Theorem 3.1. The possible finite proper symmetry
groups of a bounded region Q) C R? are:

Need for a new credo

2
n

e The group C,, of rotations by <= around an axis:
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Not surprising! There are very few symmetry groups:

Theorem 3.1. The possible finite proper symmetry
groups of a bounded region Q) C R? are:

o The group C,, of rotations by 27“ around an aris:

e The group D, of symmetries of a reqular n-side
polyhedron:

Introduction

Usual credo. . .

Need for a new credo
Symmetry groupoids
Other groupoids
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Not surprising! There are very few symmetry groups:

Theorem 3.1. The possible finite proper symmetry
groups of a bounded region Q) C R? are:

2
n

e The group C,, of rotations by <= around an axis:

e The group D, of symmetries of a reqular n-side
polyhedron:

e The 3 groups of symmetries of the platonic
solids.

Introduction

Usual credo. . .

Need for a new credo
Symmetry groupoids
Other groupoids
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For example, the molecule of the fullerene Cly:

Introduction
Usual credo. . .

Need for a new credo

Symmetry groupoids

Other groupoids

has the same symmetry group as the icosahedron:
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For example, the molecule of the fullerene Cly:
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has the same symmetry group as the icosahedron:

(just truncate the vertexes of the icosahedron).
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Symmetry groupoids

4. Symmetry groupoids

To distinguish the soccer ball from the icosahedron, to
describe the symmetry of a bathroom floor, and in many
other problems, we need groupoids.
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Look again at the tiling €.

Symmetry groupoids
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Look again at the tiling 2. Define:
Go={(z,0,y) : 7,y €R* ¢ € Go and = = ¢(y)}
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Look again at the tiling €2. Define:

Go={(x,0,9) : 7,y € R*, ¢ € Gg and = = ¢(y)}
with the partially defined multiplication:

(z, &, y)(y, ¥, 2) = (z, 909, 2).
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Look again at the tiling €2. Define:

Go={(x,0,9) : 7,y € R*, ¢ € Gg and = = ¢(y)}
with the partially defined multiplication:

(z, ¢, y)(y, ¥, 2) = (z,0 09, 2).
We can view each g = (x,¢,y) € G as an arrow:

g

P N

[} [ ]
z Y

Introduction
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Look again at the tiling €2. Define:

Go={(x,0,9) : 7,y € R*, ¢ € Gg and = = ¢(y)}
with the partially defined multiplication:

(z, ¢, y)(y, ¥, 2) = (z,0 09, 2).
We can view each g = (x,¢,y) € G as an arrow:

g

P N

[} [ ]
z y
Now, we have:

e source and target maps s,t : G — R

EEN N, t(z,0,y) ==
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Look again at the tiling €2. Define:

Go={(x,0,9) : 7,y € R*, ¢ € Gg and = = ¢(y)}
with the partially defined multiplication:

(z, ¢, y)(y, ¥, 2) = (z,0 09, 2).
We can view each g = (x,¢,y) € G as an arrow:

g

P N

[} [ ]
z y
Now, we have:

e source and target maps s,t : G — R

EEN N, t(z,0,y) ==

e identity arrows 1, = (z,1,x):

o
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Look again at the tiling €2. Define:
Go = {(2,¢,y) 2,y €R? ¢ € Gg and z = ¢(y) }

Introduction

with the partially defined multiplication: Usual credo: ..
Need for a new credo
—
(2,6,9)(1, 0, 2) = (@, 60, 2). ST
ther groupoids
We can view each g = (x,¢,y) € G as an arrow:
/(g\
o [ ]
z y

Now, we have:

e source and target maps s,t : G — R

EEN N, t(z,0,y) ==

e identity arrows 1, = (z,1,x):

o

BN Ol — (1,07 T) se ey
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Symmetry groupoids

They satisfy group like properties:
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Symmetry groupoids

They satisfy group like properties:
1. Multipl: (g, h) — gh, defined iff s(g) = t(h);
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They satisfy group like properties:
1. Multipl: (g, h) — gh, defined iff s(g) = t(h);
2. Associativity: (gh)k = g(hk) whenever defined;
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They satisfy group like properties: Other groupoids
1. Multipl: (g, h) — gh, defined iff s(g) = t(h);
2. Associativity: (gh)k = g(hk) whenever defined;

3. Identities: 1,9 = g = g1,, if t(g9) =z, s(g9) = y;
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Symmetry groupoids

They satisfy group like properties: Other groupoids
1. Multipl: (g, h) — gh, defined iff s(g) = t(h);
2. Associativity: (gh)k = g(hk) whenever defined;

3. Identities: 1,9 = g = g1,, if t(g9) =z, s(g9) = y;
4. Inverse: g g' =1, and g7 'g = 1,


http://www.math.ist.utl.pt/~rfern

Introduction
Usual credo. . .

Need for a new credo

Symmetry groupoids

They satisty group like properties: Gt ompaits
1. Multipl: (g, h) — gh, defined iff s(g) = t(h); o Gz
2. Associativity: (gh)k = g(hk) whenever defined; Title Page
3. Identities: 1,9 = g = g1,, if t(g9) =z, s(g9) = y; [« |» ]
4. Inverse: g g' =1, and g7 'g =1, |

Definition 4.1. A groupoid with base B is a set G -
with maps s,t : G — B and operation satisfying 1-4. Go Back
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We can restrict the symmetry groupoid Gg, of the tiling,
to the real bathroom floor B C R?:

Gg={(z,0,y):z,y € B,¢p € Ggand . = ¢(y) } .
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We can restrict the symmetry groupoid Gg, of the tiling,

to the real bathroom floor B C R*: Introdction
Usual credo. . .
Need for a new credo
gB A\ {(x’ ¢’ y) : x, y E B, ¢ E GQ and = ¢(y)} § Symmetrygroupoids
Other groupoids

The groupoid Gp captures the symmetry of the real
bathroom floor.
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We can restrict the symmetry groupoid Gg, of the tiling,
to the real bathroom floor B C R?:

gB:{($7¢7y):x7y€B7¢EGQ andx:¢(y)}

The groupoid Gp captures the symmetry of the real
bathroom floor.

We need two elementary concepts from groupoid theory:
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We can restrict the symmetry groupoid G of the tiling,
to the real bathroom floor B C R?:

G ={(z,0,y):x,y € B,p € Ggand z = ¢(y)} .

The groupoid Gp captures the symmetry of the real
bathroom floor.

We need two elementary concepts from groupoid theory:

e T'wo elements x,y € B belong to the same orbit
of G if they can be connected by an arrow:

9

P S
[

°
T Y
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We can restrict the symmetry groupoid G of the tiling,
to the real bathroom floor B C R?:

G ={(z,0,y):x,y € B,p € Ggand z = ¢(y)} .

The groupoid Gp captures the symmetry of the real
bathroom floor.

We need two elementary concepts from groupoid theory:

e T'wo elements x,y € B belong to the same orbit
of G if they can be connected by an arrow:

9

P S
[

°
T Y

e The isotropy group of x € B is the set of arrows
g € G from x to z:

-
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For the symmetry groupoid Gp of the real bathroom

floor:

e The orbits consist of points similarly placed within
their tiles, or within the grout:
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For the symmetry groupoid Gp of the real bathroom
floor:

e The orbits consist of points similarly placed within
their tiles, or within the grout:

e The only points with non-trivial isotropy are those
in (Z X %Z) N B. For these, the isotropy group is:

G:ZQXZQ.
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5. Other groupoids

Groupoids play an important role in many other con-
texts, not related with symmetry.
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The fundamental groupoid of X is:

IX) ={hl [ v :[0,1] — X}.
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e source and target give initial and final points:
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For the fundamental groupoid

X)) =10 |v:[0,1] = X}

the structure maps are:

e source and target give initial and final points:

s(W]) =~(0),  t([v]) =~(1);

e product is concatenation of curves:
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For the fundamental groupoid

IX) ={l][~:00,1] — X}
one has:

e One orbit for each connected component of X:;

e [sotropy group of x € X is the fundamental group:

m(X,z) ={[7] | 7 is a loop based at =} .
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For the fundamental groupoid

IX) ={l][~:00,1] — X}
one has:

e One orbit for each connected component of X:;

e [sotropy group of x € X is the fundamental group:

m(X,z) ={[7] | 7 is a loop based at =} .

This is by no means trivial!
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For the fundamental groupoid

IX) ={l][~:00,1] — X}
one has:

e One orbit for each connected component of X:;

e [sotropy group of x € X is the fundamental group:

m(X,z) ={[7] | 7 is a loop based at =} .
This is by no means trivial!

Examples:

o If X = SO(2) one has n(X, z) = Z.

e If X =50(n) one has (X, x) =Zy = {+1,—1}.
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Groupoids and control theory

X a foliated space:

Now, we can only deform curves lying on leaves of the
foliation F. We obtain the monodromy groupoid of the
foliation:

I(F)=A{[7]|~v:[0,1] = L, Lisaleaf of F}.
e Orbits are the leaves of F;

e [sotropy groups are the fundamental groups of the
leaves.
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