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Preface

On a dit, écrivais je (ou à peu près)
dans une préface, que la géometrie est
l’art de bien raisonner sur des figures
mal faites.

HENRI POINCARÉ [28]

In 1954, One hundred years after Henri Poincaré’s birth, there was a special session
during the International Congress of Mathematics, in the Netherlands, in honor of
this great mathematician. The Russian mathematician, Pavel S. Aleksandrov, cho-
sen to bring this about, started his speech by saying: �To the question of what is
Poincaré’s relationship to topology, one can reply in a single sentence: he created
it; but it is also possible to reply with a course of lectures in which Poincaré’s fun-
damental topological results would be discussed in greater or lesser detail� (see
[3]). This is in part what we set out to do in this book.

Topology is a branch of mathematics that deals with the study of the qualitative
properties of figures. Johann Benedikt Listing was among the first mathematicians
who dedicated themselves to studying geometry in this sense and in 1847, he pub-
lished a paper [23] in which he coined the term Topology. Bernhard Riemann’s
contribution to the birth of topology was also remarkable; after Riemann, Enrico
Betti [5] studied manifolds through an invariant that generalizes Euler’s for convex
polyhedra. Betti’s work provided Poincaré with the basis for his work in topology
(called Analysis Sitûs by Poincaré).

Poincaré realized the importance of his new theory and wrote some twelve pa-
pers on Analysis Sitûs; indeed, here is what he stated in the paper he wrote at the
request of the Swedish mathematician Gösta Mittag-Leffler [28]: �Quant à moi,
toutes les voies diverses où je m’étais engagé successivement me conduisaient à
l’Analysis Sitûs. J’avais besoin des données de cette science pour poursuivre mes
études sur les courbes définies par les équations différentielles et pour les étendre
aux équations différentielles d’ordre supérieur et en particulier à celles du problème
des trois corps. J’en avais besoin pour l’étude des périodes des intégrales multiples
et pour l’application de cette étude au développement de la fonction pérturbatrice.
Enfin j’entrevoyais dans l’Analysis Sitûs un moyen d’aborder un problème impor-
tante de la théorie des groupes, la recherche des groupes discrets ou des groupes
finis contenus dans un groupe continu donné.�

In his first paper on Analysis Sitûs, published in 1895 [27], Poincaré defined
manifolds in spaces with dimension greater than three and introduced the basic con-
cept of homeomorphism defined as the relation between two manifolds with the
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x Preface

same qualitative properties (see [28]). From a more up-to-date point of view, we
may say that topology is the branch of mathematics concerning spaces with a cer-
tain structure (topological spaces), which are invariant under homeomorphisms; in
other words, functions that are injective, surjective, and bicontinuous. The concept
of homeomorphism allows us to group topological spaces into equivalence classes
and consequently, to know in practical terms whether two of them are equal. This is
the main purpose of topology.

This book consists of six chapters. In the first one, we present the basic con-
cepts in Topology, Group Actions and Category Theory needed for developing the
remainder of the book. The part concerning Category Theory is especially impor-
tant since this book has been set in categorial terminology. This chapter could also
serve as a basic text for a mini-course on General Topology.

In the second chapter, we study the category of simplicial complexes Csim, and
two important covariant functors: the geometric realization functor from Csim to
the category of topological spaces, and the homology functor from Csim to the cat-
egory of graded Abelian groups. The geometric realization – |K| – of a simplicial
complex K is a polyhedron, assumed to be compact throughout this book. This is
the chapter closest to Poincaré’s initial paper. The Swiss mathematician Leonhard
Euler was among the first ones to study one- and two-dimensional simplicial com-
plexes; indeed, he used one-dimensional simplicial complexes and their geometric
realization (graphs) in the famous problem about the seven bridges of Königsberg;
later on, he also used two-dimensional simplicial complexes when he noticed that
the relation

v− e + f = 2,

– where v is the number of vertices, e is the number of edges, and f is the number of
faces – holds for every convex polyhedron in the elementary sense (namely, every
edge is common to two faces and every face leaves the entire polyhedron to one of
its sides).

By defining the so-called Betti Numbers for polyhedra of any dimension, Enrico
Betti gave an initial generalization to the relation above; these are invariant under
homeomorphims and, therefore, useful for classifying polyhedra. Based on these
numbers, Poincaré developed a more complete characterization of polyhedra; in
fact, in his 1895 [27] paper, Poincaré linked the Betti numbers to certain finitely
generated Abelian groups associated with a polyhedron (integral homology groups
of the polyhedron) and pointed out that the Betti numbers are ranks of homology
groups. However, since homology groups are finitely generated Abelian groups,
besides its free part (the one which gives its rank) they also have a torsion part; this
too is an invariant by homeomorphisms. The combination of Betti numbers and
torsion coefficients allows for a more complete analysis of polyhedra.

In Chap. II, homology groups are considered strictly from the simplicial point of
view; in other words, the geometric structure of polyhedra is overlooked. In order
to develop the theory (which is, at this point, of algebraic nature), one needs to
define concepts in Homological Algebra (a branch of Algebra that sprang partly
from Algebraic Topology): among other things, we prove the important Long Exact
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Sequence Theorem in Sect. II.3, and in Sect. II.5 we define homology groups with
coefficients in an arbritary group. The Long Exact Sequence Theorem appears in
simplicial homology in the case of a pair (K,L) of (oriented) simplicial complexes
where L is a subcomplex of K; in fact, we may define an exact sequence of Abelian
groups

. . .→ Hn(L)
Hn(i)−→ Hn(K)

q∗(n)−→ Hn(K,L) λn−→ Hn−1(L)→ . . .

where Hn(K,L) are the relative homology groups.
The homology of polyhedra is defined in Chap. III which is, therefore, more

geometric in nature than the previous one. The Simplicial Approximation The-
orem (first proved by the American mathematician James Wadell Alexander [1])
provides the means by which one can pass from a simplicial approach to a geomet-
ric one. In practice, this theorem states that every map between two polyhedra may
be “approached” by the geometric realization of a simplicial function between two
triangulations of the polyhedra (reminding that any continuous curve on a plane can
be approached by a polygonal line). The Long Exact Sequence Theorem appears
also in this chapter, but here, the relative homology groups have a clearer meaning,
since pairs of polyhedra (|K|, |L|) have the Homotopy Extension Property, which al-
lows us to prove that the group Hn(|K|, |L|) is the homology group of the “quotient”
polyhedron |K|/|L|. Samuel Eilenberg and Norman Steenrod [13] provided the for-
mal method needed for constructing the long exact sequence of a pair of simplicial
complexes or of polyhedra.

This chapter also contains an important application of the homology of polyhe-
dra to the Theory of Fixed Points, namely, the Lefschetz Fixed Point Theorem, as
well as several corollaries such as the Brouwer Fixed Point Theorem and the Fun-
damental Theorem of Algebra.

Computing homology groups of a polyhedron may pose serious difficulties, as
in the case of the projective real spaces RPn. This is why we define block ho-
mology, based on ideas found in two classical books: Seifert–Threlfall [30] and
Hilton–Wylie [17]. In closing this chapter, we dedicated Sect. III.6 to the proof of
Eilenberg–MacLane’s Acyclic Models Theorem [12], which allows us to compute
the homology groups of the product of two polyhedra in terms of the homology
groups of its factors. Somehow, this problem was already solved by H. Künneth
[21] in 1924, when he established a relation between the Betti numbers and torsion
coefficients of the product with the ones of each factor; the main difficulty resided
precisely in strengthening Künneth’s result by describing it in terms of homology
groups. The paper [12] is one of the first written in terms of category theory, created
in 1945 by Samuel Eilenberg and Saunders MacLane [11].

In Chap. IV we study cohomology: the homology groups

Hn(K;Q)

of an oriented complex K with rational coefficients have the structure of vector
spaces on the rational field and may, therefore, be dualized. The possibility of
dualizing such vector spaces led several mathematicians to consider “dualizing”
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homology groups, also when the coefficients are in an arbitrary Abelian group G.
One of the first to study this possibility was James W. Alexander [2]; Solomon
Lefschetz [22] wrote a detailed account of this paper. The new homology theory
was soon called cohomology (it seems that it was Hassler Whitney [35] who coined
this new term). As we might expect, the cohomology groups Hn(|K|;Z) of a poly-
hedron |K| are contravariant functors. The cohomology groups of a polyhedron
are related to its homology groups by the Universal Coefficient Theorem; its proof
(in terms of homologycal algebra) is given in this chapter. The cohomology of a
polyhedron is an invariant stronger than the homology, since the cohomology with
coefficients in a commutative ring with identity element (for instance, the ring of
integers Z) is also a ring. The product in such a ring is called cup product. In this
way, we may obtain more precise information on the nature of the polyhedron. This
chapter also introduces the cap product which is a bilinear relation of the type

∩ : H p(|K|;Z)×Hp+q(|K|;Z) −→ Hq(|K|;Z) ;

the cap product will be used in Chap. V for proving Poincaré’s Duality Theorem.
Chapter V is divided into three sections: Manifolds, Closed Surfaces, and

Poincaré Duality. In the first one, we introduce n-dimensional manifolds (without
boundary) and triangulable n-manifolds. Then, we study closed surfaces, namely,
path-connected, compact 2-manifolds: by a theorem due to Tibor Radó [29], these
surfaces are triangulable. We prove that these manifolds can be classified into three
types: the sphere S2, the connected sums of two-dimensional tori (the torus T 2 and
spheres with g handles), and the connected sums of real projective planes. Subse-
quently, by using block homology with coefficients in Z, we prove that these three
kinds of spaces are not homeomorphic. Finally, we prove Poincaré’s Duality The-
orem for connected, triangulable, and orientable n-manifolds V , that is to say, for
triangulable n-manifods V such that Hn(V ;Z) ∼= Z. This very important theorem
states that for every 0≤ p≤ n, Hn−p(V ;Z)∼= Hp(V ;Z) holds true.

In the last chapter (Chap. VI), we introduce another very important functor, from
the category of polyhedra to that of groups (not necessarily Abelian), namely, the
fundamental group, defined by Poincaré (see [27]). Next, we study a family of
functors from the category of polyhedra to that of Abelian groups; we are talking
about the (higher) homotopy groups πn(|K|,x0) with n ≥ 2. Only after Heinz Hopf
wrote his 1931 paper [18], did mathematicians show interest in higher homotopy
groups. In this paper, Hopf proved the existence of infinitely many different homo-
topy classes of maps from S3 to S2 (Satz 1); indeed, the isomorphism π3(S2,e0)∼=Z

(see [26]) is deduced from the exact sequence of homotopy groups associated to the
fibration S3 → S2 with fiber S1.

It is interesting to note that higher homotopy groups had already been introduced
by Eduard Čech [6] during the Zürich International Mathematics Congress, in 1932;
after that, Witold Hurewicz [19] studied these groups in depth. We approach homo-
topy groups by considering the set [Sn, |K|]∗ of all based homotopy classes of all
maps Sn → |K| of a polyhedron |K| and providing this set with a group operation,
by means of a natural comultiplication of Sn (this is a map from Sn to the wedge
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product Sn ∨ Sn). In this way, we bring about two endofunctors Σ and Ω of the
category Top∗ of based spaces, namely, the suspension functor and the loop space
functor; this idea is based on the work of Beno Eckmann and Peter Hilton ([9], for
instance). We close this chapter (and the book) with a small section on Obstruc-
tion Theory which combines cohomology and homotopy groups; Samuel Eilenberg
[10] created this theory when researching the possibility of extending maps from a
subpolyhedron of a polyhedron to the polyhedron itself.

Sections II.3, II.5, III.6, and IV.1 could be the basis for a course on Homological
Algebra, a theory developed from the study of the homology of polyhedra; for fur-
ther reading on this subject, we suggest either the book by Karl Gruenberg [15] or
the book by Peter J. Hilton and Urs Stammbach [16].

In its first century of existence, Algebraic Topology has made remarkable pro-
gress, giving rise to new theories in mathematics, forging its way into various other
mathematical branches, and solving seemingly unrelated yet important problems.
The reader could, therefore, wish to go farther into this subject and so we give here
some suggestions for further reading: we recommend the books by Peter Hilton and
Shaun Wylie [17] (the reader may, at first, have some difficulty with its notation),
Albrecht Dold [7] (a classic), and Edwin Spanier [32].

For the readers who wish to learn Homotopy Theory in more depth, we suggest
the book by George Whitehead [33]. Finally, for reading on topological spaces and
cellular structures in topology (CW-complexes), we recommend the book by Rudolf
Fritsch and Renzo Piccinini [14].

The chapters of this book were developed from the material taught in the under-
gradute courses on higher geometry given by the authors at the University of Milano
and the University of Milano–Bicocca. A first version was prepared by R. Piccinini
some years ago, when he was a professor at the University of Milano–Bicocca. This
volume is essentially the revision and completion of that material. Our many thanks
to several colleagues and friends who have read the rough copy and made worth-
while suggestions: Keith Johnson, Sandro Levi, Augusto Minatta, Claudio Pacati,
Robert Paré, Petar Pavešić, Nair Piccinini, Dorette Pronk, Alessandro Russo, Mauro
Spreafico, and Richard Wood. Our colleague Delfina Roux must be thanked for hav-
ing read with great attention the first draft of this volume, correcting the errors of
language in the first Italian draft.

We conclude with our sincere thanks to the referees for their excellent work and
remarkable patience in pointing out the many flaws in the manuscript; their sugges-
tions have greatly improved the final text.

Milano 2008 Davide L. Ferrario, Renzo A. Piccinini

Knowledge is of two kinds. We know a subject ourselves,
or we know where we can find information upon it.

SAMUEL JOHNSON

(Letter to Lord Chesterton, February 1755)
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Chapter I
Fundamental Concepts

I.1 Topology

I.1.1 Topological Spaces

Let X be a given set. A topology on X is a set U of subsets of X satisfying the
following properties:

A1 /0,X ∈ U;
A2 if {Uα |α ∈ J} is a set of elements of U, then

⋃

α∈J

Uα ∈ U;

A3 if {Uα |α = 1, . . . ,n} is a finite set of elements of U, then

n⋂

α=1

Uα ∈ U.

A topological space or, simply, a space is a set X with a topology. The elements of
U are the open sets of X ; axioms A1, A2, and A3 above state that /0, X are open sets,
that the union of any number of open sets is open, and that the intersection of any
finite number of open sets is open.

The complement of an open set is a closed set and, therefore, /0 and X are both
open and closed sets. A topology U may also be studied (and characterized) through
the set of all closed subsets of the topological space. Let C be such a set; by defini-
tion, a set C is closed in X if and only if its complement X �C is open in X , and we
write

C ∈ C ⇐⇒ X �C ∈ U.

Moreover, the set C of all closed subsets satisfies the following properties which
characterize any set of closed sets of X :

D.L. Ferrario and R.A. Piccinini, Simplicial Structures in Topology, 1
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2 I Fundamental Concepts

C1 /0,X ∈ C;
C2 if {Uα |α = 1, . . . ,n} is any finite set of elements of C, then

n⋃

α=1

Uα ∈ C

(in other words, any finite union of closed sets is a closed set);
C3 if {Uα |α ∈ J} is any set of elements of C, then

⋂

α∈J

Uα ∈ C

(in other words, any intersection of closed sets is a closed set).

For any space X , the closure Y of a subset Y ⊂ X is the intersection of all closed
subsets of X which contain Y ; it is, obviously, the smallest closed subset containing
Y , and Y ∈ C. The interior Y̊ of Y is the union of all open subsets of X contained
in Y ; it is the largest open set contained in Y , and Y̊ ∈ U. The following lemma is a
useful characterization of the closure of a set.

(I.1.1) Lemma. Let Y ⊂ X; then y ∈Y if and only if every open set U containing y
intersects Y .

Proof. In fact, if U ∩Y = /0, then X �U is a closed subset of X which contains Y ;
since y belongs to the closure of Y , it follows that y ∈ X �U , a contradiction.

Conversely, suppose that there exists a closed set C ⊂ X containing Y and which
does not contain y. Then X �C is an open set, y ∈ X �C, and (X �C)∩Y = /0, a
contradiction. �

For any set X , there are two topologies that come immediately to mind:

1. The discrete topology whose open sets are all the subsets of X , that is to say,
Ud = P(X) = 2X .

2. The trivial topology with Ub = { /0,X}.

Clearly, Ud ⊃ Ub and this fact brings to mind the idea of comparing two topolo-
gies on the same set: we shall say that topology U′ is finer than topology U if U′ ⊃U;
hence, the discrete topology of X is finer than the trivial one.

A set B of subsets of X is a basis for a topology on X or a basis of open sets for
X if:

B1 For each x∈X , there is a B∈B such that x∈B (that is to say, X =
⋃

B∈B B).
B2 If B1,B2 ∈B and B1∩B2 	= /0, then for each x ∈ B1∩B2 there exists B3 ∈B
such that x ∈ B3 ⊂ B1 ∩B2.

A basis B generates a topology U on X automatically, by requiring that U ⊂ X
be open in the topology U if, and only if, for each x ∈U , there exists B ∈ U such that
x ∈ B ⊂U ; formally,

U ∈ U ⇐⇒ (∀x ∈U)(∃B ∈ B) x ∈ B ⊂U.
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We need to show that, with this definition, the set U of open sets satisfies properties
A1, A2, and A3 for open sets. Property A1 is easily verified. Let us prove now
that A2 is true: let {Uα |α ∈ J} be a set of elements of U; we want to show that
U =

⋃
α∈J Uα ∈ U. In fact, for each x ∈ U there is α ∈ J such that x ∈ Uα ; hence,

there is a B ∈ B such that x ∈ B ⊂ Uα ⊂ U . We prove A3 by induction. Let us
consider two elements U1,U2 ∈ U. If U1 ∩U2 = /0, then U1 ∩U2 ∈ U. Otherwise,
for each x ∈ U1 ∩U2, we may find two sets B1,B2 ∈ B such that x ∈ B1 ⊂ U1 and
x ∈ B2 ⊂U2; since B is a basis, there exists an element B3 ∈ B such that x ∈ B3 ⊂
B1 ∩B2. We conclude that x ∈ B3 ⊂U1 ∩U2 and so, U1 ∩U2 ∈ U. Suppose now that
A3 holds for any intersection of n−1 elements of U. Let U1,U2, . . . ,Un be elements
of U; we write

n⋂

i=1

Ui =

(
n−1⋂

i=1

Ui

)
∩Un

and note that
⋂n−1

i=1 Ui ∈ U by the induction hypothesis; hence, the intersection of
all the given elements Ui belongs to U. We also note that all elements of a basis
are elements of the topology it generates (that is to say, all elements of a basis are
automatically open).

We give now an important example of a topological space which illustrates well
the concepts given so far. Let Rn be the Euclidean n-dimensional space, namely,
the set of all n-tuples x = (x1, . . . ,xn) of real numbers xi. Let d : Rn ×Rn → Rn

be the function defined in the following manner: for each x = (x1, . . . ,xn) and y =
(y1, . . . ,yn) in Rn,

d(x,y) =

√
n

∑
i=1

(xi − yi)2.

This function, called Euclidean distance (or metric) has the following properties:

(∀x,y ∈Rn) d(x,y) = d(y,x),
d(x,y) = 0 ⇐⇒ x = y,
(∀x,y,z ∈Rn) d(x,z) ≤ d(x,y)+ d(y,z).

For every x ∈ Rn and every real number ε > 0, we define the n-dimensional open
disk (or open n-disk) with centre x and radius ε as the set

D̊n
ε (x) = {y ∈Rn |d(x,y) < ε} .

The set
B = {D̊n

ε (x) | x ∈Rn , ε > 0}
is a basis for the Euclidean topology of Rn. In fact, it is evident that condition
B1 above holds; let us prove condition B2: let D̊n

ε (x) and D̊n
δ (y) be two elements

of B with non-empty intersection; for each z in this intersection, consider the real
numbers γ1 = ε − d(x,z) and γ2 = δ − d(y,z); let μ be the minimum of γ1 and γ2.
Then, as we can see from Fig. I.1,

z ∈ D̊n
μ(z) ⊂ D̊n

ε(x)∩ D̊n
δ (y).
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x
y

z

Fig. I.1

The topology U generated by a basis B may be described in another way:

(I.1.2) Lemma. Let X be a set, let B be a basis of open sets of X, and let U be the
topology generated by B. Then, U coincides with the set of all unions of elements
of B.

Proof. Given any set {Uα |α ∈ J, Uα ∈ B} of open sets of the basis B, since all
elements B in are open sets and U is a topology, the union

⋃
α∈J Uα is also open.

Conversely, given U ∈ U, for each x ∈U , there exists Bx ∈ B such that x ∈ Bx ⊂U .
Therefore, U =

⋃
x∈U Bx, that is to say, U is a union of elements of B. �

We now look into the concept of sub-basis. A set of subsets S of X is a sub-
basis for X if the union of all elements of S coincides with X (in other words, if
property B1, given above, holds). The next result provides a good reason to work
with sub-bases.

(I.1.3) Theorem. Let S be a sub-basis of a set X. Then, the set U of all unions of
finite intersections of elements of S is a topology.

Proof. It is enough to prove that the set B of all finite intersections of elements of
S is a basis and then apply Lemma (I.1.2).

B1: For each x ∈ X there exists B ∈ S such that x ∈ B; however, B ∈ B, since all
elements of S are elements of B.

B2: Given B1 =
⋂n

i=1 C1
i and B2 =

⋂m
j=1 C2

j in B, the property holds because

B1 ∩B2 =

(
n⋂

i=1

C1
i

)
∩
(

m⋂

j=1

C2
j

)
∈ B. �

Clearly, any basis is a sub-basis. For instance, the set {{x} | x ∈ X} is a sub-
basis for the discrete topology on X as well as a basis for that same topology. On
the contrary, the family of all open intervals of R with length 1 is an example of a
sub-basis that is not a basis. Property B1 holds but not property B2. The basis it
generates consists of all open intervals of R and we have, therefore, the Euclidean
topology.

Let X and Y be two topological spaces with respective topologies U and V. The
product topology of the set X ×Y is generated by the basis

B = {U ×V |U ∈ U , V ∈ U}.
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Let X be a topological space with topology U. A subset A ⊂ X canonically inher-
its a topology from A, namely, the induced topology in A whose open sets are the
intersections of the open sets of X with A:

B = {U ∩A |U ∈ A}.

(I.1.4) Lemma. Let X be a topological space with topology U, Y be a set, and
q : X → Y be a function. The set of subsets with anti-images open in X

V = {U ⊂ Y |q−1(U) ∈ U}

is a topology on Y .

Proof. We need to verify axioms A1, A2, and A3.
A1: q−1( /0) = /0 ∈ U, q−1(Y ) = X ∈ U.
A2: It holds because

q−1

(
⋃

α∈J

Uα

)
=
⋃

α∈J

q−1(Uα).

A3: Likewise,

q−1

(
n⋂

i=1

Ui

)
=

n⋂

i=1

q−1(Ui). �

When the function q is a surjection, the topology V of Y , defined above, is called
the quotient topology on Y induced by q. We note that the set Y could be given by a
partition of X in disjoint classes whose union is precisely X . To make this fact clear,
we now give three examples.

(I.1.5) Example. Let D2 = {(x,y) ∈R2 | x2 + y2 ≤ 1} be the two-dimensional unit
disk with boundary S1 = {(x,y) ∈R2 | x2 + y2 = 1} (one-dimensional sphere). Let
D2≡ be the set whose elements are

1. {(x,y)} for the points (x,y) ∈ D2 such that x2 + y2 < 1
2. {(x,y),(−x,−y)} for the boundary points (x,y) ∈ S1

in this case, we say that the boundary points (x,y) and (−x,−y) are being identified,
as in Fig. I.2. In this way, we obtain the topological space D2≡, with the quotient
topology induced by the epimorphism (that is to say, by the surjective function)
q : D2 → D2≡; this is the real projective plane RP2. We shall return to this mean-
ingful example in Sect. I.3.

(I.1.6) Example. Consider I2 = I × I (I is the unit interval [0,1]) with the product
topology. Let us now take the set I2≡ whose elements are the following sets (see also
Fig. I.3):

1. {(x,y)}, if 0 < x < 1, 0 < y < 1
2. {(x,0),(x,1)}, if 0 < x < 1
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(x, y)

(−x, −y)
Fig. I.2

(0;1) (1;1)

(1;0)(0;0) Fig. I.3

3. {(0,y),(1,y)}, if 0 < y < 1
4. {(0,0),(1,0),(1,1),(0,1)}

The set I2≡ is a partition of I2; let I2≡ be the space with the quotient topology given
by the surjection q : I2 → I2≡ which takes every (x,y) ∈ I2 in its own class. Later on
in this section, we shall prove that I2≡ may be viewed as the two-dimensional torus
T 2 = S1 ×S1.

(I.1.7) Example. Let us take the unit disk D2 once more and let D2≡ be the set with
the following elements:

1. {(x,y)} for the points (x,y) ∈ D2 such that x2 + y2 < 1
2. {(x,y),(x,−y)}, for the points (x,y) ∈ D2 such that x2 + y2 = 1

(see also Fig. I.4). We shall prove later on that the space D2≡ with the quotient topol-
ogy induced by the surjection q : D2 → D2≡ may be viewed as the two-dimensional
sphere S2 = {(x,y,z) ∈R3 | x2 + y2 + z2 = 1}.

The reader must have realized that we may describe the previous situation by
means of an equivalence relation: let ≡ be an equivalence relation in a space X ; this
relation defines a surjection

q : X → X/≡
on the set of equivalence classes (a partition of X ) which determines the quotient
topology on X/≡.
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(x, y)

(x, −y)
Fig. I.4

Between topological spaces, it is natural to consider the functions which are con-
tinuous. Let X , Y be topological spaces with the topologies U and V, respectively.
A function f : X → Y is said to be continuous (or a map) if for every open set V of
Y , f −1(V ) is an open set of X ; formally, we write

f continuous ⇐⇒ (∀V ∈ V) f−1(V ) ∈ U.

It is easily proved that the constant function f : X →Y at a point y0 ∈Y (in other
words, f (x) = y0 for all x ∈ X ) is continuous: In fact, for each open set V of Y ,
f−1(V ) is either X or /0, which are open. It is also easy to see that the identity
function 1X : X → X (namely, 1X (x) = x for each x ∈ X ) and the inclusion function
iA : A → X of a subspace A of X are continuous.

We add another example to this list: let q : X →Y be a surjection from a topolog-
ical space X on a set Y ; let us now give Y the quotient topology; by the definition of
quotient topology and Lemma (I.1.4), we conclude that the function q is continuous.
We may also describe the concept of continuity locally; in a more precise manner,
we say that f : X → Y is continuous at the point x ∈ X if for each open set V of
Y containing f (x) (in other words, such that f (x) ∈ V ) there is an open set U of X
containing x such that f (U) ⊂V .1

(I.1.8) Theorem. A function f : X → Y is continuous if and only if it is continuous
at every point x ∈ X.

Proof. Suppose that f is continuous. Let U and V be the topologies of X and Y ,
respectively; let x ∈ X and let V be a neighbourhood of f (x). Then,

x ∈U = f−1(V ) ∈ U, f (U) = f ( f−1(V )) ⊂V

and, therefore, f is continuous at x.
Conversely, suppose that f is continuous at every x ∈ X , and let V be any open

set of Y ; we want to prove that U = f−1(V ) is an open set of X . Indeed, for every

1 Open sets containing a point x are called neighbourhoods of x.
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x ∈ U , f (x) ∈ V and, since f is continuous at x, there is an open set Ux of X such
that x ∈Ux and f (Ux) ⊂V . Consequently, for each x ∈ X , x ∈Ux ⊂U and so

U ⊂
⋃

x∈X

Ux ⊂U,

that is to say, U =
⋃

x∈X Ux; this leads to the conclusion that U is open, as a union of
open sets of X . �

The continuity of a function between two topological spaces may be character-
ized in two other ways, as follows.

(I.1.9) Theorem. Let X and Y be topological spaces and f : X → Y be a function.
The following conditions are equivalent:

1. The function f is continuous.
2. For every subset U ⊂ X, f (U) ⊂ f (U).
3. For every closed subset C of Y , f−1(C) is closed in X.

Proof. 1 ⇒ 2. Assume that f is continuous; we want to prove that f (x) ∈ f (U) for
every x ∈U . Let V be a neighbourhood of f (x); since f is continuous, f−1(V ) is an
open set of X which contains x ∈U and thus, f−1(V )∩U 	= /0 (see Lemma (I.1.1)).
2 ⇒ 3. Assuming C ⊂ Y to be closed, we want to prove that the anti-image F =
f−1(C) is closed in X . Since F ⊂ F , we have to prove that, for every x ∈ F , x ∈ F .
In fact,

f (x) ∈ f (F) ⊂ f (F) ⊂C = C

(the last inclusion is due to the fact that f (F) ⊂C) and so,

x ∈ f−1(C) = F.

3 ⇒ 1. Let V be any open set of Y . It follows from condition 3 that f−1(Y �V ) is
closed in X . We now note that

f−1(V ) = f−1(Y � (Y �V)) = f−1(Y )� f−1(Y �V) = X � f−1(Y �V)

and this last set is open in X . �

(I.1.10) Corollary. Given two topological spaces X and Y , where X = C1 ∪C2 is
the union of two subspaces C1 and C2 closed in X, let f : X →Y be a function whose
restrictions to the closed sets C1 and C2 are continuous. Then, f is continuous.

Proof. Let us write f1 = f |C1 and f2 = f |C2. For each closed set V ⊂ Y ,

f−1(V ) = f−1
1 (V )∪ f−1

2 (V ).

By the previous theorem, f−1
1 (V ) and f−1

2 (V ) are closed in X ; therefore, f−1(V ) is
closed in X and, consequently, f is continuous. �

If the function f : X → Y is bijective (injective and surjective), then there ex-
ists an inverse function f−1 : Y → X such that f−1 f = 1X (the identity function
from X onto itself) and f f−1 = 1Y ; in this case, if also f−1 is continuous, we say
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that f is a homeomorphism between X and Y . A homeomorphism is really a 1-1
correspondence between points of X and Y which induces an 1-1 correspondence
between their respective topologies (that is to say, between the open sets of X and
the open sets of Y ). In practice we make no distinction between two homeomor-
phic spaces. Let q : X → Y be a surjection from a space X onto a space Y with the
quotient topology induced by q. Then the function q is continuous; the function
q : X → Y is called quotient map.

The next result provides a link between homeomorphisms and quotient spaces.

(I.1.11) Lemma. Let f : X → Y be a homeomorphism and let ≡X , ≡Y be equiva-
lence relations in X and Y , respectively. Then X/≡X and Y/≡Y are homeomorphic,
provided that

x ≡X x′ ⇐⇒ f (x) ≡Y f (x′).

Proof. Consider the following commutative diagram (that is to say, such that
FqX = qY f )

X
f

��

qX

��

Y

qY

��

X/≡X F
�� Y/≡Y

where F is defined as follows: for each [x] ∈ X/≡X
, F([x]) := [ f (x)]. F is a function:

if x ≡X x′, then f (x) ≡Y f (x′) and therefore the entire class [x] is transformed univo-
cally into class [ f (x)]. Since the composite function qY f is continuous, so is FqX ;
but the space X/≡X has the quotient topology and therefore (see and do Exercise 7
on p. 27) F is continuous.

At this point, let us consider the inverse function f−1 : Y → X and, as in the case
of f , let us construct the function

F ′ : Y/≡Y
→ X/≡X

, F ′([y]) := [ f−1(y)]

for [y] ∈ Y/ ≡Y . Also F ′ is a function, for the same reason given for F .
The function F ′ defined above is also continuous and

F ′F = 1Y/≡Y
, FF ′ = 1X/≡X

in other words, F is a homeomorphism. �

I.1.2 Connectedness

(I.1.12) Theorem. Let X be a topological space. The following statements are
equivalent:

(i) The empty set /0 and the set X itself are the only two subsets of X that are both
open and closed.
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(ii) X is not the union of two non-empty subsets U and V , which are open and
disjoint.

(iii) Let {0,1} be the discrete topological space with exactly two points; then
any continuous function f : X −→ {0,1} (also called a two-valued map) is
constant.

Proof. (i) ⇒ (ii): Suppose that X = U ∪V with

U 	= /0, V 	= /0 and U ∩V = /0.

Then, the subset V = X �U is not empty and is both open and closed, in contradic-
tion to (i).
(ii) ⇒ (iii): Let f : X −→ {0,1} be a continuous function that we assume not to be
constant. Since {0} and {1} are open in {0,1} and f is continuous, U = f−1({0})
and V = f−1({1}) are open in X ; moreover, U ∩V = /0 and U ∪V = X , which
contradicts (ii).
(iii) ⇒ (i): Let U be a non-empty, proper subset of X , both open and closed. Then

X = U ∪ (X �U)

with X �U 	= /0 and U ∩ (X �U) = /0. We now define the function f : X −→ {0,1}
by f (U) = 0 and f (X �U) = 1. This function is continuous but not constant, con-
trary to (iii). �

A topological space that satisfies one of the equivalent conditions of Theo-
rem (I.1.12) is said to be connected. Condition (iii) is probably the most useful;
here are some of its applications, joined in a single theorem.

(I.1.13) Theorem. The following results are true:

1. Let f : X → Y be a continuous function, where X is connected; then the image
f (X) is a connected space.

2. Let {Xj | j ∈ J} be a set of connected subspaces of a space X with
⋂

j Xj 	= /0;
then X =

⋃
j Xj is a connected space.

3. If X and Y are connected, then X ×Y is connected.

Proof. 1. Let g : f (X)→{0,1} be any two-valued map; the map g f : X →{0,1} is
two-valued and, because X is connected, g f is constant; it follows that g is constant.

This result shows in particular that if X is connected and Y is homeomorphic to
X , also Y is connected.
2. Let f be a two-valued map of X , and let x j ∈ Xj and x j′ ∈ Xj′ be given arbitrarily;
furthermore, let us choose any point y ∈ Xj ∩Xj′ . Since Xj and Xj′ are connected,
f (x j) = f (y) and f (x j′) = f (y); therefore, f (x j) = f (x j′) and we conclude that the
map f is constant.
3. Let f : X ×Y → {0,1} be a map; in order to prove that f is constant, we choose
(x,y),(x′,y′) ∈ X ×Y arbitrarily; the space {x}×Y is homeomorphic to Y and is,
therefore, connected; it follows that f (x,y) = f (x,y′). Similarly, we prove that
f (x,y′) = f (x′,y′). Then, f (x,y) = f (x′,y′). �
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We recall that an interval of R (or more generally, of an ordered set) is a subset
A ⊂ R such that, for each a,b,x ∈ R with a < x < b, if a,b ∈ A, we have x ∈ A.
Real line intervals are important examples of connected spaces, as shown by the
next theorem. It is not difficult to prove that every (non-empty) interval of R must
be of one of the following types.2 The set

[a,b] = {x ∈R |a ≤ x ≤ b}

is the closed interval with end-points a,b; the set

(a,b) = {x ∈R |a < x < b}
is the open interval with end-points a,b; the sets

(a,b] = {x ∈R |a < x ≤ b} and [a,b) = {x ∈R |a ≤ x < b}

are semi-open intervals. The sets

(a,+∞) = {x ∈R |a < x}, [a,+∞) = {x ∈R |a ≤ x},
(−∞,b) = {x ∈R | x < b} e (−∞,b] = {x ∈R | x ≤ b}

are infinite intervals (and naturally R = (−∞,∞) is the maximal interval).

(I.1.14) Theorem. Any interval of R is a connected space.

Proof. Let X ⊂ R be a closed interval, say X = [a,b]. Let U 	= /0 be a subset of X ,
both open and closed; we wish to prove that U = X . Since U is open in X , we may
choose u ∈U such that u ∈ X̊ . Let

s = sup{x ∈ X | [u,x) ⊂U};

clearly, u < s. We prove that [u,s)⊂U . Indeed, for each v ∈ [u,s), there exists x ∈ X
such that v < x and [u,x) ⊂ U ; hence, v ∈ U . We now prove that s = b. In fact, if
s 	= b, then s < b; since U is closed in X , we conclude that s ∈U and so, [u,s] ⊂U .
However, U is also open and consequently there is ε > 0 such that [u,s + ε) ⊂ U ;
but this contradicts the definition of least upper bound. It follows that s = b and
[u,b) ⊂ U . Similarly, (a,u] ⊂ U which implies that X = (a,b) ⊂ U ⊂ X , and we
conclude that U = X .

The reader may verify that this proof applies to the other types of interval (open,
semi-open or infinite); alternatively, once every finite or infinite, open or closed
interval is the telescopic union of a sequence of closed intervals, for instance,

(0,1) =
⋃

n≥2

[
1
n
,1− 1

n

]
,

the remainder of the proof follows from part 2 of Theorem (I.1.13). �

2 It is enough to consider the extrema of the interval a = infA and b = supA, if they exist. If infA
does not exist, set a = −∞; if supA does not exist, set b = +∞.
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In particular, the real line R is connected.
The previous theorem has a converse:

(I.1.15) Theorem. Any connected subspace of R is an interval.

Proof. If X ⊂R is not an interval, we can find real numbers a,b ∈ X and c 	∈ X such
that a < c < b. In this case,

U = (−∞,c)∩X and V = X ∩ (c,+∞)

are non-empty (a ∈ U and b ∈ V ), open in X , disjoint, and such that X = U ∪V .
Then X is not connected, contradicting the hypothesis. �

The last two theorems have an immediate and interesting consequence:

(I.1.16) Corollary. Let X be a connected space and f : X → R be a map. Then
f (X) is an interval.

(I.1.17) Remark. The concept of connectedness provides a simple method for es-
tablishing when two spaces are homeomorphic. The criterion goes as follows: sup-
pose that f : X → Y is a homeomorphism; then, for every x ∈ X , the restriction of f
to X �{x} is a homeomorphism from X �{x} onto Y �{ f (x)}; therefore, X �{x}
is connected if and only if Y �{ f (x)} is connected.

So, how does this method work? We wish to prove, for instance, that a semi-open
interval (a,b] cannot be homeomorphic to an open interval (c,d). Suppose that a
homeomorphism f : (a,b] → (c,d) could exist; then, we would have a homeomor-
phism

(a,b) = (a,b]�{b}∼= (c,d)�{ f (b)}
which is impossible, for the first space is connected (it is an interval), but the second
is not!

Here is an useful result.

(I.1.18) Theorem. Let X be a topological space and A one of its subspaces such
that its closure in X coincides with X. Then, if A is connected, so is X.

Proof. Let f : X → {0,1} be a two-valued map of X . Its restriction f |A is a two-
valued map of A and, since A is connected, f |A is constant; we may suppose that
f |A = 0 with no loss in generality. On the other hand, since A = X and f is contin-
uous, we have

f (A) ⊂ f (A) = {0} = {0}

and so f is constant in X . Therefore, X is connected. �

(I.1.19) Remark. Let X be a topological space and x be one of its points; let
{Xj, j ∈ J} be the set of all connected subspaces of X which contain x; then, by
Theorem (I.1.13) (part 2), the union
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Cx =
⋃

j∈J

Xj

is a connected space that contains x, known as a connected component of x. The
space Cx is maximal in the sense that if a subset M ⊂X is connected and contains Cx,
then Cx = M (in other words, the connected component Cx is the largest connected
subspace that contains x). Moreover, Cx is a closed subspace of X ; in fact, by
Theorem (I.1.18), Cx is connected and since Cx ⊂Cx, then Cx = Cx. The connected
components of two points x,y ∈ X are either disjoint or coincide: in fact, if z ∈
Cx ∩Cy, the subspace Cx∪Cy is a connected subspace of X that contains both spaces
Cx and Cy; but the connected components are maximal and so Cx = Cx ∪Cy = Cy.
From this fact, we conclude that the relation “x,y ∈ X are in the same connected
component” is an equivalence relation. Therefore, a topological space X is a disjoint
union of maximal, closed, connected subspaces. A space is connected if and only if
it has only one connected component.

Finally, we note that two topological spaces with different numbers of con-
nected components cannot be homeomorphic. This is another criterion for verifying
whether two spaces are homeomorphic.

There is another type of connectedness, called path-connectedness. A path in a
topological space X is a map f : [0,1] −→ X ; two points x0,x1 ∈ X are joined by a
path if there is path f of X such that f (0) = x0 and f (1) = x1. We say that a space
X is path-connected if and only if any two points x0,x1 ∈ X may be joined by a path
in X .

The results of Theorem (I.1.13) hold true for path-connectedness; as a matter of
completion (and to follow the preceding model), we present these results as a single
theorem.

(I.1.20) Theorem. The following statements are true:

1. Let f : X → Y be a continuous function, where X is path-connected; then the
space f (X) is path-connected.

2. Let {Xj | j ∈ J} be a set of path-connected subspaces of a space Y , with⋂
j Xj 	= /0; then X =

⋃
j Xj is a path-connected space.

3. If X and Y are path-connected, then X ×Y is path-connected.

Proof. 1. Given any two points y0,y1 of f (X), we choose x0,x1 ∈ X such that y0 =
f (x0) and y1 = f (x1). Because X is path-connected, there is a path g : [0,1] → X
such that g(0) = x0 and g(1) = x1. So, the path f g : [0,1]→ f (X) links y0 to y1 and
f (X) is, therefore, path-connected.

In particular, if a space X is path-connected, any space Y homeomorphic to X is
path-connected.
2. Given any two points x0,x1 ∈ X , suppose that x0 ∈ Xi0 and x1 ∈ Xi1 ; let a ∈
Xi0 ∩Xi1 . By the hypothesis, there are two continuous functions

f0 : [0,1] → Xi0 , f0(0) = x0 , f0(1) = a,

f1 : [0,1] → Xi1 , f1(0) = x1 , f1(1) = a.
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We now define the function f : [0,1] → X

(∀t ∈ [0,1]) f (t) =
{

f0(2t) if 0 ≤ t ≤ 1
2

f1(2−2t) if 1
2 ≤ t ≤ 1 .

Since f ( 1
2 ) = f0(1) = f1(0) = a, it follows from Corollary (I.1.10) that the function

f is continuous. However, f (0) = x0, f (1) = x1 and so f is a path that links x0 to x1.
3. Given (x1,y1),(x2,y2) ∈ X ×Y , choose two paths

fX : [0,1]→ X such that fX (0) = x1 , fX (1) = x2

fY : [0,1] → Y such that fY (0) = y1 , fY (1) = y2.

The path ( fX , fY ) : [0,1] → X ×Y t �→ ( fX (t), fY (t)) links (x1,y1) to (x2,y2) and
X ×Y is, therefore, path-connected. �

The Euclidean space Rn is path-connected for every n > 0. Indeed, given
x0,x1 ∈Rn, we define

f : [0,1] →Rn , (∀t ∈ [0,1]) f (t) = tx1 +(1− t)x0.

In particular, every interval of R is path-connected (as well as any convex subspace
of Rn).

(I.1.21) Theorem. Any path-connected space is connected.

Proof. Suppose X to be the union of two non-empty, disjoint subspaces U , V which
are simultaneously open and closed. Take two points x0,x1 ∈ X where x0 ∈ U and
x1 ∈V . Since X is path-connected, there exists a map

f : [0,1] → X , f (0) = x0 , f (1) = x1.

Then,
(U ∩ f ([0,1]))∩ (V ∩ f ([0,1])) 	= /0 ,

contradicting the fact that f ([0,1]) is connected (see Theorem (I.1.13)). �

In general, it is not true that a connected space is path-connected; here is an
example.

Consider the following sets of points from the Euclidean plane:

A =
{(

0,
1
2

)}
,

B =
{(

1
n
,t

)
|n ∈N and t ∈ [0,1]

}
,

C = {(t,0) | t ∈ (0,1]} = (0,1]×{0}

and endow X = A∪B∪C with the topology induced by the Euclidean topology of
R2, as shown in Fig. I.5. It is immediate to verify that B∪C is a path-connected
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A

Fig. I.5 Example of a space
that is connected but not
path-connected

space, which implies that B∪C is connected; moreover, the closure of B∪C in X
coincides with X and therefore, by Theorem (I.1.18), X is a connected space.

We now prove that X is not path-connected. In order to come to this conclusion,
we shall prove that if f : [0,1] → X is a path such that f (0) = (0, 1

2 ), then f is the
constant path at the point (0, 1

2 ). Because X ⊂R2, we may write f (t) = (x(t),y(t))
for every t ∈ [0,1]; it is not difficult to prove that x and y are continuous functions
(see Exercise 5 on p. 27). We first prove that x is the constant function at 0, that is
to say, x(t) = 0 for every t ∈ [0,1]. Indeed, suppose there exists t ′ ∈ [0,1] such that
x(t ′) > 0 and let t0 = sup{t ∈ [0,1] |x(t) = 0}. Since the function x is continuous, we
must have x(t0) = 0 and t0 < 1 so that we do not contradict the fact that there exists
a t ′ with x(t ′) > 0. Since (0, 1

2 ) is the only point with zero for its first coordinate,
we have y(t0) = 1

2 . Since y is continuous, there exists an ε > 0 with t0 + ε < 1 and
such that, for every s ∈ [t0,t0 +ε), y(s) ≥ 1

4 . Since t0 is an upper bound, we can find
t1 ∈ (t0,t0 + ε) such that x(t1) > 0; by Corollary (I.1.16) and because x(t0) = 0, we
have x([t0,t1]) ⊇ [0,x(t1)]. Consequently, we are able to find s ∈ (t0,t1) such that
x(s) 	= 1

n for every integer n > 0 (and y(s) ≥ 1
4 ). Finally, as f (s) = (x(s),y(s)) ∈ X ,

it follows that y(s) = 0 because the only points of X for which x > 0 and x 	= 1
n are

of the type (x,0), in contradiction to the fact that y(s) ≥ 1
4 .

We conclude that for every t ∈ [0,1], we have x(t) = 0 and so f (t) = {(0, 1
2 )}; in

other words, f is constant.

(I.1.22) Example. For every n ≥ 1 the unit sphere

Sn = {(x0, . . . ,xn) ∈Rn+1 |Σ n
i=0x2

i = 1}

is path connected and consequently, connected. Let a = (x0, . . . ,xn) and b =
(y0, . . . ,yn) be any two points of Sn; we say that b is antipodal to a if yi = −xi

for every i = 0, . . . ,n. If b is antipodal to a, the interval Rn+1 with end points a and
b goes through the centre (0, . . . ,0). Suppose that b is not antipodal to a; then, for
every t ∈ [0,1], we have (1− t)a + tb 	= 0. It follows that

f : [0,1] → Sn , t �→ (1− t)a + tb
|(1− t)a + tb|
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is a path on Sn joining a and b. In the event that b is antipodal to a, we choose any
other point c of Sn; this point can be antipodal neither to a, nor to b. Therefore, with
the preceding method, we construct a path r1 on Sn which links a to c and then a
path r2 which links c to b; the function r : [0,1] → Sn, defined by

r(t) =
{

r1(2t) 0 ≤ t ≤ 1
2

r2(2−2t) 1
2 ≤ t ≤ 1

for every t ∈ [0,1], is a path from a to b (see Corollary (I.1.10)). Hence, Sn is
path-connected (see also Fig. I.6).

a

b

Fig. I.6

I.1.3 Compactness

Let Y be a topological space. A covering of Y is a family U = {Uj | j ∈ J} of subsets
of Y such that Y =

⋃
j∈J Uj . If Y is a subspace of X , a covering of Y by subsets of

X is a family U of subsets of X whose union contains Y . A covering U is finite if
the set J of the indexes is finite; U is an open covering if all its elements are open
in Y (or, for subsets of X , if they are open in X ). A subcovering of U is a subset
U′ = {Uj′ | j′ ∈ J′} of U where J′ ⊂ J. A covering U of Y is a refinement of a covering
V of Y if for every V ∈ V there exists U ∈ U such that U ⊂V .

A topological space X is said to be compact if every open covering of X has a
finite subcovering; in other words, given any set U = {Uj | j ∈ J} with Uj ⊂ X open
in X , for every j ∈ J such that

⋃
j Uj = X , there is a finite number of open sets Uj,

for instance, U1,U2, . . . ,Un such that X = U1 ∪U2 ∪ ·· · ∪Un. A subspace Y ⊂ X is
compact in the induced topology on Y if and only if every covering of Y by open sets
of X has a finite subcovering (because any open set U of Y is of the type U = V ∩Y ,
with V open in X ).

The reader may easily prove that the space

X = {0}∪{1/n |n∈N} ,
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with the topology induced by the Euclidean topology of R, is compact; on the other
hand, the space R is not compact: indeed, the open covering

U = {(n,n + 2) |n∈Z}

of R has no finite subcovering.

(I.1.23) Theorem. Any closed subspace of a compact space is compact.

Proof. Let Y be a closed subspace of a compact space X . Let C = {Uj | j ∈ J}
be a covering of Y such that, for every j ∈ J, Uj is an open set of X ; then the set
C∪{X �Y} is an open covering of X . Since X is compact, it has a finite subcovering

U1 ∪ . . .∪Un ∪ (X �Y ) = X .

As no x ∈ Y is in X �Y , {U1, . . . ,Un} is a covering of Y , and so, Y is compact. �

We now introduce a special type of topological space which is needed for the
next result. We say that a topological space X is Hausdorff, if for every two distinct
points x,y of X , we can find two disjoint open sets Ux and Uy of X such that x ∈Ux,
y ∈Uy.

It is easily proved that a subspace of a Hausdorff space is also Hausdorff; and
it is easily seen that the Euclidean space Rn is Hausdorff. Here is an example of a
space which is not Hausdorff.

(I.1.24) Example. Let Y = R∪{∗} be the set given by the union of the real line R
and an external point ∗; for the set of open subsets of Y , we choose the set consisting
of the empty set and all subsets of Y which are the union of an open set of R and
the point ∗ (it is left to the reader to verify that these sets define a topology on Y ).
The space Y here defined is not Hausdorff because the intersection of any two non-
empty, open sets of Y is not empty!

It follows from the definition that in any Hausdorff space every point is closed.
More generally, all compact subspaces of a Hausdorff space are closed, as stated in
the next theorem.

(I.1.25) Theorem. Any compact subspace of a Hausdorff space is closed.

Proof. Let Y be a compact subspace of a Hausdorff space X . We must prove that
X �Y is open. Let us take any x ∈ X �Y ; since X is Hausdorff, for every y ∈ Y , let
us take two open sets Uy,Vy of X such that

y ∈Uy , x ∈Vy , Uy ∩Vy = /0.

The set U = {Uy | y ∈ Y} is a covering of Y by open sets of X . Since Y is compact,
Y is covered by a finite number of these open sets, for instance, Y ⊂⋃n

i=1 Ui. Let us
take the set of open sets {V1, . . . ,Vn} corresponding to this finite covering of Y and
consider the open set V =

⋂n
j=1 Vj . It is not difficult to prove that V is an open set

such that x ∈V ⊂ X �Y . �
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We now prove the following:

(I.1.26) Theorem. Let f : X → Y be a continuous function; if X is compact, f (X)
is compact.

Proof. Let {Uj | j ∈ J} be a covering of f (X) by open sets of Y . The set { f−1(Uj) |
j ∈ J} is an open covering of X and so it has a finite subcovering, for instance,
{ f−1(U1), . . . , f−1(Un)}. Then {U1, . . . ,Un} is a covering of f (X). �

In particular, if X is compact, every space Y homeomorphic to X is compact.

(I.1.27) Theorem. Let f be a continuous bijection from a compact space X to the
Hausdorff space Y . Then, f is a homeomorphism.

Proof. We wish to prove that the inverse function f−1 : Y → X is contin-
uous, in other words, that for every open U ⊂ X , f (U) is open in Y . In
fact, by Theorem (I.1.23), X � U is a compact subspace of X ; it follows that
f (X �U) is a compact subspace of Y (see Theorem (I.1.26)) and so, accord-
ingly to Theorem (I.1.25), f (X �U) is closed in Y ; from this we conclude that
f (U) = Y � f (X �U) is open in Y . �

We note that continuous functions preserve the compactness property of a space
but, generally, not its Hausdorffness; here is an example. Let X be a Hausdorff
topological space and Y be a space with at least two points and the trivial topology:
then every function f : X → Y is continuous, but f (X) will never be Hausdorff. Let
us look into another example.

(I.1.28) Example. Let Y = R ∪ {∗} be the non-Hausdorff space from Exam-
ple (I.1.24). Consider the space X = {(x,y)∈R2 |y≥ 0}, with the topology induced
by the Euclidean topology of R2, and the function f : X → Y defined as follows:

f (x,y) =
{

x ∈R if y = 0
∗ if y > 0

Since every non-empty open set of Y is the union of an open set of R and the point ∗,
the counter image of any open set U∪{∗} of Y is exactly the union f−1(U)∪ f−1(∗),
namely, the set {(x,0) | x ∈ U}∪ {(x,y) | y > 0} which is the complement of the
closed set {(x,0) | x 	∈ U} of X . The function f is, therefore, continuous; X is
Hausdorff but f (X) = Y is not.

In the next theorem there is an instance in which the image of a Hausdorff space
is Hausdorff. Before stating it, we need a definition: a map f : X → Y is closed if,
for every closed set C ⊂ X , f (C) is closed in Y .

(I.1.29) Theorem. Let f : X → Y be a surjection where X is compact and Haus-
dorff, and suppose that f is a closed map. Then the space Y is Hausdorff.

Proof. Let y1 and y2 be two distinct points of Y . Since f is surjective, there are
two distinct points x1,x2 ∈ X such that f (x1) = y1 and f (x2) = y2; since X is Haus-
dorff, {x1} and {x2} are closed in X , and because f is closed, then {y1} and {y2}
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are closed in Y . Therefore, f−1(y1) and f−1(y2) are two disjoint closed subsets
of X (see Theorem (I.1.9)). For every element (x,a) ∈ f−1(y1)× f−1(y2) choose
two disjoint open sets Ux,a and Vx,a in X such that x ∈ Ux,a and a ∈ Vx,a. The set
{Vx,a |a ∈ f−1(y2)} is an open covering of f−1(y2); since this space is compact (see
Theorem (I.1.23)), there exists a finite subcovering {Vx,a1, . . . ,Vx,an} of f−1(y2).
And so we have two disjoint open sets

Ux =
n⋂

j=1

Ux,a j and Vx =
n⋃

j=1

Vx,a j

containing x and f−1(y2), respectively. But {Ux | x ∈ f−1(y1)} is an open covering
of f−1(y1) and, since this is a compact space, there is a subcovering {Ux1 , . . . ,Uxm}
of f−1(y1). We now note that the sets

U =
m⋃

k=1

Uxk and V =
m⋂

k=1

Vxk

are disjoint open sets of X which contain f−1(y1) and f−1(y2), respectively.
The sets W1 = Y � f (X �U) and W2 = Y � f (X �V) are open sets of Y ( f is a

closed map) containing y1 and y2, respectively. We wish to prove that W1 ∩W2 = /0.
Suppose there exists a point y ∈W1 ∩W2. Then, y 	∈ f (X �U) and y 	∈ f (X �V ),

in other words,

f−1(y)∩ (X �U) = /0 and f−1(y)∩ (X �V) = /0 ;

hence, f−1(y) ⊂U ∩V = /0, which is not possible. �

A first concrete example of a compact space is given by the next theorem.

(I.1.30) Theorem. The unit interval I = [0,1] is compact.

Proof. Let U be a covering of I by open sets of R. The properties of the Eu-
clidean topology of R ensure that for every x ∈ I we can find a δ (x) > 0 and an
element U(x) ∈ U such that the open interval (x− δ (x),x + δ (x)) is contained in
U(x). The set

I = {I(x) = (x− δ (x),x + δ (x)) | x ∈ I}
is an open covering of I and every interval of I is contained in an open set of U. If
there exists a finite subcovering in I, there is a corresponding finite subcovering in
U; we may, therefore, assume that each open set of U is an open interval of R.

We now consider the set {0,1} with the discrete topology and the function

f : I →{0,1}

defined by the following conditions:

1. f (x) = 0 if the closed interval [0,x] is covered by a finite number of elements
of U.

2. Otherwise, f (x) = 1.
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We wish to prove that f is constant on every open set of U. Indeed, let U ∈ U and
x ∈ U be given and suppose that f (x) = 0; then [0,x] is covered by a finite subcov-
ering V ⊂ U. But for every y ∈ U , the interval [0,y] is covered by a finite family
of open intervals of U (that is to say, by V∪{U}) meaning thereby that f (y) = 0.
This shows that f equals either 0 or 1 on the entire open interval U . It follows that
f is continuous; moreover, since I = [0,1] is connected, by Theorem (I.1.12), f is
constant; since f (0) = 0, we have f (1) = 0, in other words, I is covered by a finite
subcovering of U. �

We note that, since every closed interval [a,b] where a < b (bounded) is home-
omorphic to the unit interval [0,1], every bounded and closed interval of R is com-
pact. We wish to prove that a finite product of compact spaces is a compact space;
this result is an immediate consequence of the following theorem:

(I.1.31) Theorem. Let B and C be compact subspaces of the topological spaces X
and Y , respectively, and let U = {A j | j ∈ J} be an open covering of B×C. Then
there are two open sets U ⊂ X and V ⊂ Y such that

B×C ⊂U ×V ⊂ X ×Y

and U ×V is covered by a finite number of elements of U.

Proof. The method for proving this theorem is the one used in Theorem (I.1.29) to
show the existence of two open sets U and V which contain f−1(y1) and f−1(y2),
respectively. We leave to the reader the task of supplying the details needed for this
proof. �

(I.1.32) Corollary. Let X1, . . . ,Xn be compact spaces; then X1× . . .×Xn is compact.

Proof. If n = 2 we have the previous theorem where B = X = X1 and C = Y = X2;
thereafter, we proceed by induction. �

(I.1.33) Corollary. Let B and C be compact subspaces of the topological spaces X
and Y respectively. Let W be open in X ×Y such that B×C ⊂ W . Then there are
open sets U ⊂ X and V ⊂ Y such that

B×C ⊂U ×V ⊂W.

Proof. It is enough to set U = {W} in Theorem (I.1.31). �

(I.1.34) Corollary. Let X be a Hausdorff space and let B and C be disjoint compact
subspaces of X. Then there are two disjoint open sets U and V of X with B ⊂U and
C ⊂V.

Proof. We begin by noting that if

ΔX = {(x,x) ∈ X ×X}
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is the diagonal of X ×X , then X is Hausdorff if and only if the diagonal ΔX is closed
in X ×X . We now apply the previous corollary with X = Y and W = (X ×X)�ΔX .
It follows from the hypothesis B∩C = /0 that B×C ⊂W . �

(I.1.35) Corollary. Let U be an open set of a compact Hausdorff space X. For
every x ∈U there is an open set V ⊂ X such that

x ∈V ⊂V ⊂U

where V is compact.

Proof. The spaces {x} and X � U are disjoint and closed in X ; hence by
Theorem (I.1.23), they are compact. By the previous corollary we can find two
disjoint open sets V and W of X where x ∈ V , X �U ⊂ W . And so, we may con-
clude that V ⊂ U . On the other hand, X �W is a closed set that contains V and is
contained in U ; then, as we wished to prove, V ⊂U . The compactness of V follows
from Theorem (I.1.23). �

The compact spaces of Rn are special. Before the next theorem, we give this
definition: X ⊂ Rn is bounded if there is an R > 0 and an n-disk Dn

R such that
Dn

R ⊃ X .

(I.1.36) Theorem. A subset X ⊂ Rn is compact if and only if X is closed and
bounded.

Proof. ⇒: By Theorem (I.1.25), X is closed. In order to prove that X is bounded,
let us take a real number ε > 0 and the covering

A = {Dn
ε(x) | x ∈ X}

of X . Since X is compact, there exists a finite subcovering of A that contains X ;
suppose, for instance, that

X ⊂ Dn
ε(x1)∪·· ·∪Dn

ε(xr).

Then given any x0 ∈ X , the disk Dn
2rε(x0) contains X .

⇐: The space X is contained in an n-disk Dn
R of Rn; but Dn

R is contained in a
hypercube Cn of Rn whose edges are homeomorphic to I and so Cn is compact (see
Theorems (I.1.30) and (I.1.31)). Therefore X is a closed subspace of a compact
space and, by Theorem (I.1.25), it is compact. �

We now are able to identify the quotient spaces defined in Examples (I.1.6)
and (I.1.7) with more familiar topological spaces. Remember that the torus T2 is
the space S1 × S1 with the product topology. Let f : I2≡ → T 2 be the function that
takes each equivalence class [s,t] ∈ I2≡ to (e2π is,e2π it) ∈ T 2. This is a bijective, con-
tinuous function. On the other hand, I2≡ is compact (it is the image of the compact
space I2 by the quotient map) and T 2 is Hausdorff; therefore, by Theorem (I.1.27),
f is a homeomorphism.
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As for the Example (I.1.7), we define the function f : D2≡ → S2 such that

F([x,y]) =

⎛

⎝x,2

(
|y|− 1

2

√
1− x2

)
,s(y)

√√√√1−
(

x2 + 4

(
|y|− 1

2

√
1− x2

)2
)⎞

⎠

for every equivalence class [x,y] ∈ D2≡, where s(y) equals +1 if y > 0 and −1 if
y < 0. Once more, f is a bijective map from a compact space to a Hausdorff space
and is, therefore, a homeomorphism.

I.1.4 Function Spaces

Let X and Y be two topological spaces and let M(X ,Y ) be the set of all maps from
X to Y . For every compact space K ⊂ X and every open set U ⊂ Y , we define the
set WK,U of all maps f ∈ M(X ,Y ) for which f (K) ⊂U . The set

C = {WK,U |K ⊂ X compact and U ⊂ Y open}

is a sub-basis for a topology of M(X ,Y ) known as compact-open topology.
Let the topological spaces X , Y , Z and a map f : X ×Z → Y be given. For every

z0 ∈ Z, the function f (−,z0) : X →Y is continuous (in fact, it is the composite of the
map f and the inclusion X ×{z0} → X ×Z). Therefore, we may define a function
f̂ : Z → M(X ,Y ) by requiring that f̂ (z)(x) = f (x,z) for every (z,x) ∈ Z ×X . The
function f̂ is the adjoint of f .

(I.1.37) Theorem. Let M(X ,Y ) be the function space of all maps from X to Y with
the compact-open topology. For every map f : X × Z → Y, its adjoint function
f̂ : Z → M(X ,Y ) is continuous.

Proof. Let z0 ∈ Z and let WK,U be an element of the sub-basis for the compact-open
topology on M(X ,Y ) such that f̂ (z0) ∈ WK,U , that is to say, f (x,z0) ∈ U , for every
x ∈ K. Then

K ×{z0} ⊂ f−1(U) ⊂ X ×Z

where f−1(U) is open; hence, f−1(U)∩ (K × Z) is open and contains K ×{z0}.
Since K is compact, there exists an open set W ⊂ Z such that z0 ∈W and K ×W ⊂
f−1(U). Therefore,

f̂ (W ) ⊂WK,U

and so f̂ is continuous. �

Conversely, given a function f̂ : Z → M(X ,Y ), we define a function f : X×
Z → Y by the following condition: f (x,z) = f̂ (z)(x) for every (x,z) ∈ X × Z; in
this case too, we say that f is adjoint of f̂ . The fact that f̂ : Z → M(M,Y ) is con-
tinuous does not necessarily imply that f : X ×Z →Y is continuous; for that effect,
another condition on the space X is required. But first, let us prove the following:
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(I.1.38) Lemma. Let X and Y be topological spaces where X is compact3

Hausdorff. Then the function

ε : X ×M(X ,Y ) → Y

(evaluation function), defined by ε(x, f ) = f (x) for every x ∈ X and every f ∈
M(X ,Y ), is continuous.

Proof. Take arbitrarily (x, f ) ∈ X ×M(X ,Y ) and an open set U ⊂ Y with f (x) ∈U .
Since X is compact Hausdorff and f −1(U) is open in X , there exists an open set V
of X such that

x ∈V ⊂V ⊂ f−1(U)

where V is compact (see Corollary (I.1.35)). We end the proof by noting that (x, f )∈
V ×WV ,U and ε(V ×WV ,U ) ⊂U . �

(I.1.39) Theorem. Let X be a compact Hausdorff space; then, if f̂ : Z → M(X ,Y )
is continuous, so is f : X ×Z → Y.

Proof. It is enough to note that f is the composite of

1X × f̂ : X ×Z → X ×M(X ,Y ) and ε : X ×M(X ,Y ) → Y

and apply Lemma (I.1.38). �

(I.1.40) Corollary. Let q : X −→ Y be a quotient map. If Z is a compact Hausdorff
space, then also

q×1Z : X ×Z −→ Y ×Z

is a quotient map.

Proof. The quotient map q : X → Y has the following property which character-
izes the quotient topology on Y : a function g : Y → W is continuous if and only
if gq : X → W is continuous (see Exercise 7 at the end of this section). We must
therefore prove that, for every topological space W and every g : Y × Z → W , g
is continuous if and only if h = g(q× 1Z) is continuous: If g is continuous, h is
undoubtedly continuous. Now, the following commutative diagram

X ×Z
h ��

q×1Z

��

W

Y ×Z

g

��������������

3 Actually it is not necessary to ask that X be compact; in fact, it is sufficient to request that X be
locally compact, that is to say, that every point of X has a compact neighbourhood.
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induces the commutative diagram

X
ĥ ��

q

��

M(Z,W )

Y

ĝ

��������������

Suppose that h is continuous; then, by Theorem (I.1.37), ĥ is continuous. Since
q is a quotient map, ĝ is continuous. Hence, by Theorem (I.1.39), the map g is
continuous. �

I.1.5 Lebesgue Number

We begin this section by describing an important class of topological spaces, the
class of metric spaces. Let X be a given set; a metric on X is a function d defined
from X ×X to the set of the non-negative real numbers R≥0, with the following
properties:

(∀x,y ∈ X) d(x,y) = d(y,x)
d(x,y) = 0 ⇐⇒ x = y
(∀x,y,z ∈ X) d(x,z) ≤ d(x,y)+ d(y,z).

A first example is the Euclidean metric on Rn; it may be generalized as follows:
Let V be a vector space with a norm || || and let X be a subset of V ; the function
d : X ×X →R≥0 defined by

(∀x,y ∈ X) d(x,y) = ||x− y||

is a metric on X . In Sect. II.2 we shall give an important example of metric.
We already have seen that the Euclidean metric defines a topology on Rn.

A metric d on a set X defines a topology on X in a similar way to the one de-
scribed for Rn. In fact, for every x ∈ X and for every real number ε > 0, let
D̊ε(x) = {y ∈ X | d(x,y) < ε} be the open disk of centre x and radius ε; the set
B = {D̊ε(x) |x ∈ X , ε > 0} is a basis of open sets for X (this proof is similar to the
one for Rn); let U be the set of open sets defined by B. The set X with the topology
U is a topological space called metric space.

We now look into the following question: given a metric space X and a covering
A, is there a positive real number r so that the covering B = {D̊r(x) |x∈ X} of X is a
refinement of A ? Obviously, if r has this property, so does any positive real number
s < r. Hence, the set L of positive real numbers r such that B is a refinement of A
is either the empty set or an open interval (0,t) (including the case t = ∞). If L 	= /0,
the real number � = supL is the Lebesgue number of the covering A.
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Here is an example. Consider the space X = R with the Euclidean topology and
the open covering of R

A = {(n,n + 2) |n∈Z}.
We ask reader to prove that its Lebesgue number is � = 1

2 .
The next result is of fundamental importance for proving one of the key theorems

needed to define the homology of polyhedra, namely, the Simplicial Approximation
Theorem (Theorem (III.2.4)).

(I.1.41) Theorem. Any open covering of a compact metric space has a Lebesgue
number.

The proof of this theorem is not difficult but requires several preliminary consid-
erations. We start by defining the distance d(x,A) of a point x of a metric space X
to a non-empty subspace A ⊂ X as

d(x,A) = inf{d(x,a) |a ∈ A}.

(I.1.42) Lemma. The function

d(−,A) : X →R≥0 , x �→ d(x,A)

is continuous.

Proof. We wish to prove that for every given x and for every ε > 0 there exists a
δ > 0 such that, if d(x,y) < δ , then |d(x,A)− d(y,A)| ≤ ε. Indeed, for any a ∈ A
the inequalities:

d(x,a) ≤ d(x,y)+ d(y,a) and d(y,a) ≤ d(y,x)+ d(x,a)

hold true and then, by applying infa to them, we obtain

d(x,A) ≤ d(x,y)+ d(y,A) and d(y,A) ≤ d(x,y)+ d(x,A).

It follows that
|d(x,A)−d(y,A)| ≤ d(x,y)

and the proof is completed by setting δ = ε. �

(I.1.43) Corollary. x ∈ A ⇐⇒ d(x,A) = 0.

Proof. ⇒: d(−,A)−1(0) is an open set of X that contains A and so it contains A;
then, if x ∈ A, it is obvious that d(x,A) = 0.
⇐: If x 	∈A, there exists an ε > 0 such that D̊ε(x)

⋂
A = /0 and so d(x,A)≥ ε > 0. �

Proof of Theorem (I.1.41). Let A be an open covering of a compact metric space
X . Since X is compact, it is possible to obtain a finite subcovering of A. Besides,
every refinement of this subcovering is also a refinement of A; this allows us al-
ways to assume A to be finite. Let A = {A1,A2, . . . ,An}. By Lemma (I.1.42), for
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every i = 1, . . . ,n, the metric d(−,X � Ai) : X → R≥0 is continuous. Hence, the
function

f : X →R≥0 , f = max{d(−,X � Ai) | i = 1, . . . ,n}
is continuous. By Theorem (I.1.26), f (X) is a compact subspace of R and then, by
Theorem (I.1.25), f (X) is closed in R. On the other hand, we note that for any x∈ X
there exists a certain Ai such that x ∈ Ai and, since X �Ai is closed, d(x,X �Ai) > 0
(see Corollary (I.1.43)); and so, for every x ∈ X , f (x) > 0. Therefore, � = inf{ f (x) |
x ∈ X} > 0. It follows that for every x ∈ X , f (x) ≥ � and then d(x,Ai) ≥ � for some
Ai ∈ A; we conclude that D̊�(x) ⊂ Ai. �

Exercises

1. Let X be a given set; prove that

B = {{x} | x ∈ X}
is a basis for the discrete topology on X .

2. Let B and B′ be bases for the topologies A and A′ on the set X . Prove that

A′ ⊃ A ⇐⇒ (∀x ∈ X)(∀B ∈ B)x ∈ B,(∃B′ ∈ B′) x ∈ B′ ⊂ B ,

that is to say, prove that A′ is finer than A if and only if, for every x ∈ X and every
B ∈ B containing x, there exists B′ ∈ B′ containing x and contained in B.

3. Take the following segments of the real line R

(a,b) = {x ∈R |a < x < b},
[a,b) = {x ∈R |a ≤ x < b},
(a,b] = {x ∈R |a < x ≤ b}.
Now take the following sets of subsets of R:
B1 = {(a,b) |a < b},
B2 = {[a,b) |a < b},
B3 = {(a,b] |a < b},
B4 = B1 ∪{B � K |B ∈ B1}, with K = {1/n |n ∈N}.
Prove that Bi, i = 1,2,3,4, are bases for topologies on R and compare these

topologies.

4. Let X and Y be topological spaces with topologies A and AY , respectively. Let

π1 : X ×Y → X

π2 : X ×Y → Y
be the X and Y projection.

Prove that the set

S = {π−1
1 (U) |U ∈ A}∪{π−1

2 (V ) |V ∈ AY}

is a sub-basis for the product topology on X ×Y .
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5. Prove that a function f : Z → X ×Y is continuous if and only if its components
f1 = π1 f and f2 = π2 f are continuous.

6. A map f : X → Y is open if and only if, for every U ∈ A), f (U) is open in Y .
Show that the projection maps

π1 : X ×Y → X

π2 : X ×Y → Y

are open.

7. Let X and Y be topological spaces and let q : X → Y be a surjection; give Y the
quotient topology relative to q. Prove that, for any topological space Z, any function
g : Y → Z is continuous if and only if gq : X → Z is continuous.

8. Endow R with the Euclidean topology and let f : R → R be a given function.
Prove that the following statements are equivalent.

(∀U ⊂R |U open )( f−1(U) open);
(∀x ∈R)(∀ε > 0)(∃δ > 0)|x− y|< δ ⇒ | f (x)− f (y)| < ε.

9. Prove that if A is closed in Y and Y is closed in X , then A is closed in X .

10. Prove that if U is open in X and A is closed in X , then U � A is open in X and
A �U is closed in X .

11. Show that a discrete space is compact if and only if it is finite.

12. Let A and B be two non-empty subsets of Rn. The distance between A and B is
defined by

d(A,B) = inf {d(a,b) |a ∈ A,b ∈ B}.
Prove that if A

⋂
B = /0, A and B are closed, and A is bounded, then there exists a ∈ A

such that
d(A,B) = d(a,B) > 0.

I.2 Categories

I.2.1 General Ideas on Categories

A category C is a class of objects together with two functions, Hom and Composi-
tion, satisfying the conditions:

Hom: it assigns to each pair of objects (A,B) of C a set C(A,B); an element
f ∈ C(A,B) is a morphism with domain A and codomain B;
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Composition: it assigns to each triple (A,B,C) of objects of C an operation

C(A,B)×C(B,C)→ C(A,C),

which is the composition law for morphisms; this law is indicated by

( f ,g) �→ g f

for f ∈ C(A,B) and g ∈ C(B,C).

Besides, the following axioms must hold true:

Associativity: If f ∈ C(A,B), g ∈ C(B,C), and h ∈ C(C,D)), then

h(g f ) = (hg) f ;

Identity: for every object A ∈ C there is a morphism 1A ∈ C(A,A) such that

f 1A = f , 1Ag = g

for every morphism f with domain A and every morphism g with codomain A.

Here are some examples of categories.

1. Set : sets and functions between sets.
2. Set∗: based sets and based functions (namely, base preserving functions).
3. Top: topological spaces and maps, namely, continuous functions.
4. Top∗: based topological spaces and based maps (namely, base preserving con-

tinuous functions). We sometimes denote a based space X with base point x0

with (X ,x0).
5. CTop: pair of spaces (X ,A) where A ⊆ X is closed in X and morphisms f ∈

Top(X ,Y ), f |A ∈ Top(A,B).
6. Gr: groups and group homomorphisms.
7. Ab: Abelian groups and Abelian group homomorphisms.
8. AbZ: graded Abelian groups and related morphisms. We recall that a graded

Abelian group is a succession of Abelian groups {Cn | n ∈ Z}; we say that
an element x ∈ Cn has degree n. A morphism (homomorphism) of degree d
between two graded Abelian groups {Cn} and {C′

n} is a set of homomorphisms
{ fn : Cn →C′

n+d | n ∈Z}.
9. Given two categories C and D, the product category of C and D is indicated

with C×D; its objects are pairs (C,D), where C ∈ C and D ∈ D. A morphism
from (C,D) to (C′,D′) is a pair of morphisms

( f ,g) : (C,D) → (C′,D′) , f ∈ C(C,C′) and g ∈ D(D,D′).

A category C′ is a subcategory of a category C if:

1. C′ is a subclass of C.
2. For every pair of objects (X ′,Y ′) of C′, the set C′(X ′,Y ′) is a subset of
C(X ′,Y ′).
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3. For every pair of morphisms ( f ,g) with f ∈ C′(X ′,Y ′) and g ∈ C′(Y ′,Z′),
the morphism obtained through composition in C′, namely, g f ∈ C′(X ′,Z′),
coincides with the morphism g f ∈C(X ′,Z′) obtained through composition in C.

A subcategory C′ of C is called full if, for every pair of objects (X ′,Y ′) of C′,
the sets C′(X ′,Y ′) and C(X ′,Y ′) coincide. The category CTop is a subcategory of
Top×Top.

The set Top(X ,Y ) of all maps from X to Y has a very important relation called
homotopy. Let I be the closed interval [0,1]. Two maps f ,g : X → Y are homotopic
when there is a map

H : X × I → Y

such that H(−,0) = f and H(−,1) = g. If f is homotopic to g, we write f ∼ g.
For instance, the maps f ,g : I → I given by f = 1I (that is to say, ∀x, f (x) = x)

and the constant map g from I to the point 0 ∈ I (in other words, ∀x, f (x) = 0) are
homotopic; in fact, by constructing the map

H : I× I → I , (∀s,t ∈ I) H(s,t) = (1− t)s,

it is clear that H(−,0) = f and H(−,1) = g. A homotopy may be indicated also by
the notation ft : X →Y , where t is the parameter t ∈ I and, if H(x,t) is the homotopy
function, then ft(x) := H(x,t). Consequently, f0 ∼ f1.

By Theorem (I.1.37), a homotopy H : X × I → Y from f to g determines a map
Ĥ : I → M(X ,Y ), that is to say, a path in M(X ,Y ) that links f to g. Conversely, if
X is compact Hausdorff, a path Ĥ : I → M(X ,Y ) determines a map H : X × I → Y ,
with H(−,0) = f and H(−,1) = g (Theorem (I.1.39)), in other words, a homotopy
from f to g.

(I.2.1) Lemma. The homotopy relation is an equivalence relation.

Proof. Clearly, any map f is homotopic to itself. Suppose now that f ∼ g; this
means that there is a map

H : X × I → Y , H(−,0) = f , H(−,1) = g;

consider the map

H ′ : X × I → Y , (∀x ∈ X)(∀t ∈ I) H ′(x,t) = H(x,1− t).

It is immediate to show that H ′(−,0) = g and H ′(−,1) = f and so, g ∼ f .
We finally prove that, if f ∼ g and g ∼ h, then f ∼ h. Consider the functions

H : X × I → Y , H(−,0) = f , H(−,1) = g,

G : X × I → Y , G(−,0) = g , G(−,1) = h.

Let us define a map K : X × I → Y by the conditions

(∀x ∈ x)(∀t ∈ I) K(x,t) =
{

H(x,2t) , 0 ≤ t ≤ 1
2

G(x,2t −1) , 1
2 ≤ t ≤ 1.

This map K has the required properties. �
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The quotient set obtained from Top(X ,Y ) and the relation ∼ is denoted by [X ,Y ];
its elements are equivalence classes for homotopy of maps, or homotopy classes of
maps from X to Y .

The category HTop, the homotopy category associated with Top, has topological
spaces for objects and its morphisms are homotopy classes of maps: the set of
morphisms is, therefore,

HTop(X ,Y ) = [X ,Y ].

When dealing with based maps f ,g ∈ Top∗((X ,x0),(Y,y0)), we say that f ∼ g if
there is a map H : X × I → Y such that

(∀t ∈ I) H(x0,t) = y0 , H(−,0) = f , and H(−,1) = g.

In this case, we use the notation [X ,Y ]∗ = Top∗(X ,Y )/∼.
Relative homotopy in CTop is a useful concept: two maps of pairs f ,g : (X ,A)→

(Y,B) are homotopic relative to X ′ ⊂ X if f |X ′ = g|X ′ and there exists a map

H : (X × I,A× I)−→ (Y,B)

such that

(∀x ∈ X) H(x,0) = f (x) H(x,1) = g(x)
(∀x ∈ X ′ , ∀t ∈ I) H(x,t) = f (x) = g(x).

This being the case, we denote the relative homotopy from f to g with

f ∼ relX ′ g

and we say that f is homotopic to g rel X ′. If X ′ = /0, we have a free homotopy
in CTop. In the category Top∗ the based homotopy coincides with the homotopy
relative to the base point.

We say that two spaces X ,Y ∈ Top are of the same homotopy type (or simply,
type) if there are maps f : X → Y and g : Y → X such that g f ∼ 1X and f g ∼ 1Y ;
the map f is called a homotopy equivalence.

The “functions” between categories are called functors, which take objects to
objects and morphisms to morphisms. Specifically, a covariant functor or simply
functor

F : C → C′

is a relation between these two categories such that

1. (∀X ∈ C) F(X) ∈ C′
2. (∀ f ∈ C(A,B)) F( f ) ∈ C′(F(A),F(B))
3. (∀ f ∈ C(A,B))(∀g ∈ C(B,C)) F(g f ) = F(g)F( f )
4. (∀A ∈ C) F(1A) = 1FA
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If conditions 2. and 3. are replaced by

2’. (∀ f ∈ C(A,B)) F( f ) ∈ C′(F(B),F(A))
3’. (∀ f ∈ C(A,B))(∀g ∈ C(B,C)) F(g f ) = F( f )F(g)

we have a contravariant functor.
A very simple example of a (covariant) functor is the forgetful functor D : Top→

Set that merely “forgets” the topological space structure. Here is another example:
Let (X ,x0) ∈ Top∗ be a based space and let F : Top∗ → Set∗ be the function that
takes each based space (Y,y0) into the set [X ,Y ]∗ of all homotopy classes of based
maps g : X → Y ; for each morphism f : Y → Z, we define F( f ) : [X ,Y ]∗ → [X ,Z]∗
as the function that takes any homotopy class [g] ∈ [X ,Y ]∗ into [ f g].

We now give an example of contravariant functor. Given a based space (Y,y0),
we define F : Top∗ → Set∗ with the condition F(X ,x0) = [X ,Y ]∗ for every (X ,x0);
here, for every f ∈ Top∗((X ,x0),(Z,z0)), the function F( f ) may only be de-
fined as F( f )([g]) = [g f ] for every based map g : X → Z; notice that, if f ∈
Top∗((X ,x0),(Z,z0)), the arrow F( f ) has the opposite direction to that of f .

We now look into some less simple examples.
The suspension functor

Σ : Top∗ → Top∗
is defined on based spaces (X ,x0) as the quotient

ΣX =
I×X

I×{x0}∪∂ I×X

where ∂ I is the set {0,1}. We shall write either [t,x] or t ∧ x when indicating a
generic element of ΣX ; then,

(∀ f ∈ Top∗(X ,Y ))(∀t ∧ x ∈ ΣX) Σ( f )(t ∧ x) = t ∧ f (x).

The base point of ΣX is t ∧ x0 = 0∧ x = 1∧ x.
The behavior of the suspension functor is particularly interesting on spheres; in

fact, the suspension of an n-dimensional sphere is an (n + 1)-dimensional sphere.
This fact will be better understood after studying some maps, which will be useful
also later on. For every n ≥ 0, let Sn be the unit n-sphere (it is the boundary ∂Dn+1

of the unit (n+1)-disk Dn+1 ⊂Rn+1). Let us take the point e0 = (1,0, . . . ,0) as the
base point for both Sn and Dn+1. Let us now define the maps

cn : I ×Sn → Dn+1 , (t,x) �→ (1− t)e0 + tx,

i+ : Dn+1 → Sn+1 , x �→
(

x,
√

1−‖x‖2

)
,

i− : Dn+1 → Sn+1 , x �→
(

x,−
√

1−‖x‖2

)
and

k̇n+1 : I×Sn → Sn+1

k̇n+1(t,x) =
{

i+cn(2t,x) , 0 ≤ t ≤ 1
2

i−cn(2−2t,x) , 1
2 ≤ t ≤ 1.
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The map k̇n+1 has the property

k̇n+1(0,x) = k̇n+1(1,x) = k̇n+1(t,e0) = e0

for every t ∈ I and every x ∈ Sn; therefore, it gives rise to a homeomorphism

k̂n+1 : ΣSn ∼= Sn+1,

as can be seen in Fig. I.7. We may then say that for every y ∈ Sn+1
�{e0} there are

t∧e0

k̇n+1

I × e0

Fig. I.7

a unique element x ∈ Sn and a unique t ∈ I � ∂ I such that y = t ∧ x.
The functor

Ω : Top∗ → Top∗
is defined, on a given object (X ,x0) ∈ Top∗, as the space

ΩX = { f ∈ M(I,X) | f (0) = f (1) = x0}

with the topology induced by the compact-open topology of M(I,X). The morphism

Ω( f ) : ΩX → ΩY

corresponding to the morphism f ∈ Top∗(X ,Y ) is defined through composition of
maps:

(∀g ∈ ΩX)Ω( f )(g) = f g : I → Y.

The space ΩX is called loop space (with base at x0). The base point of ΩX is
the constant path on x0.

There is a special relation between the functors Ω and Σ as follows. Let f : I ×
X → Y be a map such that f (I ×{x0}∪∂ I ×X) = y0; its adjoint f̂ : X → M(I,Y ),
being continuous (see Theorem (I.1.37)), is such that

(∀x ∈ X) f̂ (x)(∂ I) = y0

and so we are able to construct a function

Φ : M∗(ΣX ,Y ) → M∗(X ,ΩY ).
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Conversely, given f̂ ∈ M∗(X ,ΩY ), its adjoint f : I ×X → Y is continuous because
I is compact Hausdorff (see Lemma (I.1.39)) and f ∈ M∗(ΣX ,Y ); this allows us to
construct a function

Φ ′ : M∗(X ,ΩY ) → M∗(ΣX ,Y )

such that ΦΦ ′ and Φ ′Φ be equal to the respective identity functions. In other words,

Φ : M∗(ΣX ,Y ) → M∗(X ,ΩY )

is a bijection (injective and surjective). For this reason, we say that Σ is left adjoint
to Ω .

Given two functors F,G : C → C′, a natural transformation

η : F → G

is a correspondence that takes each object A ∈ C to a morphism

η(A) : FA → GA

and such that, for every f ∈ C(A,B),

G( f )η(A) = η(B)F( f ),

in other words, such that the following diagram is commutative:

FA
η(A)

��

F( f )

��

GA

G( f )

��

FB
η(B)

�� GB

Two functors F,G : C → C′ are equivalent (and we write F
.= G) if there are two

natural transformations η : F → G and τ : G → F such that

τη = 1F and ητ = 1G

where 1F and 1G equal the natural transformations given by the identity.

I.2.2 Pushouts

Given two morphisms f : A → B and g : A →C of a category C, a pushout of ( f ,g)
is a pair of morphisms f ∈C(C,D) and g∈C(B,D) such that g f = g f and satisfying
the following
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universal property: given h ∈ C(B,X) and k ∈ C(C,X) such that h f = kg, there
exists a unique morphism � ∈ C(D,X) such that � f = k and �g = h.

We depict this situation with the commutative diagram

A
f

��

g

��

B

ḡ

�� h

��

C
f̄

��

k
��

D

�

��

X

The symbol at the right lower angle of the commutative square indicates that we
have a pushout diagram.

As a consequence of the universal property of pushouts, a pushout of ( f ,g) is
unique up to isomorphism. In fact, suppose that ( f ′,g′) with f ′ : C → D′ and
g′ : B→D′ is a pushout; then by the universal property, there is a unique �′ : D′ →D
such that �′g′ = g and �′ f ′ = f ; hence, �′�= 1D. Similarly, we conclude that ��′ = 1C.
The morphism � is an isomorphism and its inverse is �′.

We say that a category C is closed by pushouts or closed regarding pushouts if
every pair of morphisms f : A → B and g : A → C of C has a pushout. Not every
category is closed by pushouts; we now prove that the category Top of topological
spaces and the category Gr of groups are closed by pushouts.

Let us start with Top. We define the disjoint union of two topological spaces B
and C by taking a set of two points, say, {i, j} and constructing the spaces B×{i}
and C ×{ j}, homeomorphic to B and C, respectively. We then define the union
B�C = B×{i}∪C×{ j} with the inclusions

ιB : B → B�C , b �→ (b, i) ,

ιC : C → B�C , c �→ (c, j)

and give B�C the topology defined by the open sets

ιB(U)∪ ιC(V ) = (U ×{i})∪ (V ×{ j})
with U open in B and V open in C; in this way, we obtain the topological space
called disjoint union of B and C. By constructing a quotient of the disjoint union, it
is possible to prove that Top is closed regarding pushouts.

(I.2.2) Theorem. The category Top is closed by pushouts.

Proof. Let f : A → B and g : A → C be any two maps in Top. In the disjoint
union B�C, identify f (a) with g(a) for every a ∈ A; take the quotient set B� f ,g

C obtained by the identifications f (a) = g(a) and then the canonic surjection
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q : B�C → B� f ,g C; finally, give B� f ,g C the quotient topology relative to the sur-
jection q and define the maps

f = qιC : C → B� f ,g C

g = qιB : B → B� f ,g C.

The diagram

A
f

��

g

��

B

g

��

C
f

�� B� f ,g C

is commutative. Let h : B→ X and k : C → X be two continuous functions such that
h f = kg. We define the function � : B� f ,gC →X , by requiring that �(x)= h(x) if x∈
B� f (A), �(x) = k(x) if x ∈C �g(A), and �(x) = h f (a) = kg(a) for every x ∈ f (A)
or x ∈ g(A). Since the restrictions of �q to B and C are continuous, the composite
function �q is continuous; by the definition of quotient topology, we conclude that �
is continuous. It is easily proved that the map � is unique. �

By the universal property, the space B� f ,g C obtained in the pushout of ( f ,g) is
unique up to homeomorphism.

We have an important case when A is closed in C and g is the inclusion ι : A→C.
We call the space B� f ,ι C in the pushout of ( f , ι) the adjunction space of C to B
via f .

Let us now consider the category of groups. We first focus on some fundamental
results in group theory. Let S be a given set. A word defined by the elements of S is
a symbol

ω = sε1
1 sε2

2 . . . sεn
n ,

where si ∈ S and εi = ±1; without excluding the case where two consecutive ele-
ments si are equal, we also request that the length n be finite; if n = 0, we say that ω
is the empty word. Let WS be the set of all words defined by the elements of S. More
specifically, given a set S, consider the set S�S−1 whose elements are all elements
of S and all elements of a copy of S, denoted S−1. The words of WS of length n are
precisely all n-tuples of elements of S�S−1.

We now define an equivalence relation E in WS: w1Ew2 if w2 is obtained from
w1 through a finite sequence of operations as follows:

1. Replacing the word sε1
1 sε2

2 . . .sεn
n by the word sε1

1 . . . sεk
k aa−1 . . .sεn

n , or the word
sε1

1 . . .sεk
k a−1a . . .sεn

n ;
2. Replacing the words sε1

1 . . . sεk
k aa−1 . . . sεn

n or sε1
1 . . . sεk

k a−1a . . .sεn
n by the word

sε1
1 sε2

2 . . . sεn
n ,
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where 0 ≤ k ≤ n and a stands for any element of S. Let F(S) = WS/E be the set of
equivalence classes defined by E in WS; we denote the equivalence class of a word
w with [w]. We give here the definition of a product in F(S) by juxtaposition:

[sε1
1 . . .sεn

n ][sεn+1
n+1 . . . sεn+m

n+m ] = [sε1
1 . . . sεn+m

n+m ].

(I.2.3) Lemma. The set F(S) with the operation juxtaposition is a group.

Proof. Clearly, the juxtaposition is associative; the identity is the class of the empty
word and is denoted with 1; finally, the inverse of [ω ] = [sε1

1 sε2
2 . . . sεn

n ] is [ω ]−1 =
[s−ε1

n s−εn−1
n−1 . . . s−ε1

1 ]. �

The group F(S) is the free group generated by S; the elements of S are the
generators of F(S). When S has a finite number of elements, we may also write
F({s1,s2, . . . ,sl}) = 〈s1,s2, . . . ,sl〉.

It is useful to write the elements of F(S) without the square brackets. In practice,
it is usual to simplify the notation by means of integral exponents, not necessarily
±1, such as in s1

1s1
1s1

1s1
1 = s4

1 or s−1
2 s−1

2 = s−2
2 . It is also customary to write s instead

of the word s1 defined by s∈ S; all this allows us to write equalities such as s2s−1 = s,
ss−1 = 1, and so on.

(I.2.4) Remark. A word ω = sε1
1 sε2

2 . . .sεn
n is reduced if, for every element a of S, the

“subword” aε a−ε does not appear in ω (that is to say, if it is not possible to do any
“cancellation”). In each class [ω] = [sε1

1 sε2
2 . . . sεn

n ], there is one and only one reduced
word. We may therefore define F(S) by considering only the reduced words defined
by S.

Given a nonempty subset R ⊂ F(S), let R be the intersection of all normal sub-
groups of F(S) that contain R; the quotient group

F(S)/R = F(S;R)

is the group generated by the set S with the relations R in F(S). The elements of
F(S;R) are the lateral classes (modulo R) of elements of F(S); for each element ω ∈
F(S), ωR denotes its class modulo R. In practice, to construct F(S;R) we only take
reduced words of S and free them from all the subwords of R. If S = {s1,s2, . . . ,sl}
and R = {w1,w2, . . . ,wr}, we normally write

〈s1,s2, . . . ,sl |w1 = w2 = · · · = wr = 1〉 = F(S;R).

Examples: 1. S = {s}, F(S) = 〈s〉 � Z; this group could also be described as
S = {s,t}, R = {t}, 〈s,t | t = 1〉 = F(S;R) �Z.
2. S = {s}, R = {s2}, 〈s | s2 = 1〉 �Z2.
3. S = {s,t}, R = {sts−1t−1}, 〈s,t | sts−1t−1 = 1〉 � Z×Z, the free Abelian group
generated by the elements s and t.
4. Any group G may be viewed as a group generated by elements and relations: take
S = G and RG = {(st)1t−1s−1 | s,t ∈ G}; then, G � F(G;RG).
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(I.2.5) Lemma. Given a group G with unity 1G, a group F(S;R), and a function of
sets θ : S → G such that, for every ω ∈ R, θ(ω) = 1G, there exists a unique group
homomorphism

θ : F(S;R) → G

such that θ(s) = θ (s) for every s ∈ S.4

Proof. Given any word sε1
1 . . . sεn

n ∈WS, define

θ([sε1
1 . . . sεn

n ]) := θ (s1)ε1 . . .θ (sn)εn . �

(I.2.6) Theorem. The category Gr is closed by pushouts.

Proof. Given any pair of homomorphisms f : G → G1 and g : G → G2, we view
the groups G1 and G2 as

Gi = F(Gi;RGi) , RGi = {(xy)1y−1x−1 | x,y ∈ Gi} , i = 1,2

and consider the set
R f ,g = { f (x)g(x)−1 | x ∈ G}.

We now define the group

G := F(G1 ∪G2;RG1 ∪RG2 ∪Rf ,g)

and the canonic homomorphisms

f : G2 → G , g : G1 → G.

Since f (x)g(x)−1 is a relation in F(G1 ∪G2) for every x ∈ G, the following diagram
commutes:

G
f

��

g

��

G1

g

��

G2
f

�� G

Let us prove the universal property. Given two group homomorphisms

hi : Gi → H , i = 1,2

such that h1 f = h2g, the function

θ : G1 ∪G2 → H , (∀x ∈ Gi) θ (x) = hi(x) , i = 1,2

4 Warning: Here s has two meanings. As an element of the domain of θ , it is the class [s], but as
an element of the domain of θ , it is just the element s.
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satisfies the equality
(∀x ∈ G) θ ( f (x)g(x)−1) = 1H ;

by Lemma (I.2.5), there is a unique homomorphism

θ : G → H

that extends the function θ and such that

θ f = h2 , θg = h1. �

The group G, also denoted with G1 ∗ f ,g G2, is the amalgamated product of the
groups G1 and G2 with respect to the homomorphisms f and g.

Exercises

1. Prove that the relation of based homotopy in Top∗(X ,Y ) is an equivalence
relation.

2. Let A be a subspace of X and i : A −→ X be the inclusion map; then A is a
deformation retract of X if there exists a continuous function r : X → A such that
ri = 1A : A → A and ir ∼ 1X . In particular, if A ⊂ X is a deformation retract and
A = {x0}, we say that X is contractible to x0. In this case, the identity 1X : X →
X is homotopic to the constant map c : X → {x0}. The space A is called strong
deformation retract of X if ri = 1A and ir ∼A 1X . Intuitively, a subspace A of X
is a strong deformation retract of X if X can be deformed over A with continuity,
keeping A fixed during the deformation. Clearly, a strong deformation retract is a
deformation retract. It follows from the definitions that, if A is a (strong or not)
deformation retract of X , then A and X are of the same homotopy type.

(i) Prove that the circle

S1 = {(x,y) ∈R2 | x2 + y2 = 1}
is a strong deformation retract of the cylinder

C = {(x,y,z) ∈R3 | x2 + y2 = 1 , 0 ≤ z ≤ 1}.

(ii) Prove that the disk

D2 = {(x,y) ∈R2 | x2 + y2 ≤ 1}

is contractible to (0,0).

3. Prove that for every X ,Y ∈ Top∗, the function

[Φ] : [ΣX ,Y ]∗ ∼= [X ,ΩY ]∗ , [ f ] �→ [Φ( f )]

is a natural bijection.
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I.3 Group Actions

A topological group is a group together with a topology such that the functions
defined by the multiplication and by inverting the elements of the group are contin-
uous; in more precise terms, let G be a group with the multiplication

× : G×G → G , (∀(g,g′) ∈ G×G) (g,g′) �→ gg′ ;

let us consider G×G with the product topology; we then request that the two maps
(g,g′) �→ gg′ and g �→ g−1 be continuous functions.

Here are some examples of topological groups; the details of the proofs are left
to the reader.

1. All groups with discrete topology.
2. The additive group R with the Euclidean topology (given by the distance

(∀x,y ∈R) d(x,y) = |x− y|).
3. The multiplicative group R∗ = R�{0} with the topology given in the previous

example.
4. The additive group C of the complex numbers with the topology given by the

distance
(∀x,y ∈ C) d(x,y) = |x− y| .

5. Let GL(n,R) be the multiplicative group of all real, invertible square matrices
of rank n (the general linear group). We define a topology on GL(n,R) as
follows: we note that the function

(ai j)i, j=1,...,n ∈ M(n,R) �→ (a11,a12, . . . ,a21,a22, . . . ,ann) ∈Rn2

from the set M(n,R) of all real matrices n× n to the set Rn2
is a bijection.

This function defines a topology on M(n,R), which derives from the Euclidean
topology on Rn2

and induces a topology on GL(n,R). With this topology, the
group GL(n,R) becomes a topological group.

6. Let SO(n) be the subgroup of GL(n,R) of the matrices M ∈ GL(n,R) such that
M−1 is the transpose of M and detM = 1; the previously defined topology on
GL(n,R) induces a topological group structure on SO(n).

Let G be a topological group with neutral element 1G and X be a topological
space. An action (on the right) of G on X is a continuous function

φ : X ×G → X

such that

(a) (∀x ∈ X) φ(x,1G) = x
(b) (∀x ∈ X)(∀g,g′ ∈ G) φ(φ(x,g),g′) = φ(x,gg′).

We say that G acts on the right of X (through the action φ ). To make it simple,
we write φ(x,g) = xg. Similarly, it is possible to define an action on the left.
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(I.3.1) Lemma. Let φ : G×X → X be an action of a topological group G on a
topological space X. For every g ∈ G, the function

φ(g) : X → X , x �→ xg

is a homeomorphism.

Proof. The function φ(g−1) is the inverse of φ(g). The continuity of φ(g) is imme-
diate; in fact, φ(g) is the composite of the action φ and the inclusion X ×{g} ↪→
X ×G. �

An action φ : X×G→X gives rise to an equivalence relation≡φ in X (a partition
of X into G-orbits):

x ≡φ x′ ⇐⇒ (∃g ∈ G)x′ = xg.

The equivalence class [x] of the element x ∈ X is the orbit of x, also denoted by
xG (or Gx, if the action is on the left); and we write X/G to indicate the set X/≡φ
of the orbits of X . The set X/G with the quotient topology given by the canonical
epimorphism

q : X → X/G , x �→ [x]

is called orbit space of X under the action of G.

(I.3.2) Lemma. The quotient map q : X → X/G is open. If G is a finite group, then
q is also closed.5

Proof. Let U be any open set in X . Then

q−1(q(U)) = {x ∈ X |q(x) ∈ q(U)}
= {x ∈ X | (∃ g ∈ G)(∃ y ∈U) x = yg}
= {x ∈ X | (∃ g ∈ G)x ∈Ug}
=
⋃

g∈G

φ(g)(U).

Since, according to Lemma (I.3.1), the functions φ(g) are homeomorphisms for
every g ∈ G, q−1(q(U)) is a union of open sets in X ; hence q(U) is open in X/G.

If G is finite and K ⊂ X is closed,

q−1(q(K)) = ∪g∈Gφ(g)(K)

is closed as a finite union of closed sets. �
We recall that the real projective plane RP2 in Example (I.1.5) on p. 5 was

constructed as the quotient space D2≡, obtained from the unit disk D2 by iden-
tifying (x,y) = (−x,−y) for every (x,y) ∈ D2 such that x2 + y2 = 1. Then, we
note that the discrete topological group Z2 = {1,−1} acts on the unit sphere

5 That is to say, it takes closed sets into closed sets.
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S2 = {(x,y,z) ∈R3 | x2 + y2 + z2 = 1} by φ : S2 ×Z2 → S2, with φ((x,y,z),1) =
(x,y,z) and φ((x,y,z),−1) = (−x,−y,−z). Therefore, we obtain the orbit space
S2/Z2 of this action by identifying antipodal points of the sphere S2. On the other
hand, let E ∼= S1 be the equator of S2 and let the antipodal points a and −a of S2

�E
be identified. Let S2

+ be the north hemisphere of S2; we note that S2
+ � E alone rep-

resents the classes [a]∈ S2/Z2 where a ∈ S2
�E . In order to obtain S2/Z2 , we must

still identify the antipodal points of E . Since S2
+ is homeomorphic to the unit disk

D2, RP2 is also homeomorphic to the space S2
+/Z2 .

In general, Z2 acts on the n-dimensional unit sphere (n ≥ 1)

Sn =

{
(x0,x1, . . . ,xn) ∈Rn+1 |

n

∑
i=0

xi = 1

}

by the antipodal action φ : Sn ×Z2 → Sn, such that

φ((x0,x1, . . . ,xn),1) = (x0,x1, . . . ,xn)

and
φ((x0,x1, . . . ,xn),−1) = (−x0,−x1, . . . ,−xn).

The orbit space Sn/Z2 is the n-dimensional real projective space . When n = 1, we
have the real projective line, which is homeomorphic to the circle S1.

We say that a group G acts freely on a space X if

(∀x ∈ X)(∀g ∈ G , g 	= 1G) xg 	= x.

Exercises

1. Prove that the projective line RP1 is homeomorphic to S1.

2. Prove that the action of a subgroup H ⊂ G of a topological group G given by the
product (g,h) �→ gh is an action (on the right) of H on G. Find the quotient G/H
when G = SO(2) and H ⊂ G is the group generated by a rotation angle θ .

3. Prove that the topological group GL(n,R) is connected.

4. Prove that all discrete subgroups of R are cyclic and infinite.

5. Find a (non-Abelian) subgroup of SO(3) that is free on two generators.

6. Consider the action of Q on R given by (x,q) �→ x+q. Is the quotient connected?
Hausdorff? Compact?

7. Let G be a topological group that acts on the left on two spaces X and Y . Prove
that the action of G

(g, [x �→ f (x)]) ∈ G× [X ,Y ] �→ [x �→ g f (g−1x)] ∈ [X ,Y ]

on the homotopy classes of maps is well defined.





Chapter II
The Category of Simplicial Complexes

II.1 Euclidean Simplicial Complexes

Let us recall that a subset C ⊂Rn is convex if x,y∈C,t ∈ [0,1] =⇒ tx+(1−t)y∈C.
The convex hull of a subset X ⊂ Rn is the smallest convex subset of Rn, which
contains X . We say that d + 1 points x0,x1, . . . ,xd belonging to the Euclidean space
Rn are linearly independent (from the affine point of view) if the vectors x1 − x0,
x2 − x0, . . . , xd − x0 are linearly independent. A vector x− x0 of the vector space
generated by these vectors can be written as a sum x− x0 = ∑d

i=1 ri(xi − x0) with
real coefficients ri; notice that if we write x as x = ∑d

i=0 αixi, then ∑d
i=0 αi = 1.

If {x0, . . . ,xd} ∈ X are affinely independent, the convex hull of X is said to be an
(Euclidean) simplex of dimension d contained in Rn; its points x can be written in a
unique fashion as linear combinations

x =
d

∑
i=1

λixi,

with real coefficients λi. The coefficients λi are called barycentric coordinates of x;
they are nonnegative real numbers and satisfy the equality ∑d

i=0 λi = 1. The points
xi are the vertices of the simplex. The standard n-simplex is the simplex obtained by
taking the convex hull of the n+1 points of the standard basis of Rn+1 (see Figs. II.1
and II.2 for dimensions n = 1 and n = 2, respectively).

The faces of a simplex s ⊂ Rn are the convex hulls of the subsets of its ver-
tices; the faces which do not coincide with s are the proper faces. We can define
the interior of a simplex s as the set of all points of s with positive barycentric
coordinates λi > 0. We indicate the interior of s with s̊. If the dimension of s
is at least 1, s̊ coincides with the topological interior. At any rate, it is not hard
to prove that we obtain the interior of a simplex by removing all of its proper
faces.

An Euclidean simplicial complex is a finite family of simplexes of an Euclidean
space Rn, which satisfies the following properties:

D.L. Ferrario and R.A. Piccinini, Simplicial Structures in Topology, 43
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(1, 0)

(0, 1)

Fig. II.1

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

Fig. II.2

S1 If s ∈ K, then every face of s is in K.
S2 If s1 and s2 are simplexes of K with nondisjoint interiors s̊1 ∩ s̊2 �= /0, then
s1 = s2.

The dimension of K is the maximal dimension of its simplexes.1 Figure II.3 repre-

Fig. II.3

sents a two-dimensional simplicial complex of R2; Fig. II.4 is a set of simplexes,
which is not a simplicial complex.

1 It is possible to define Euclidean complexes with infinitely many simplexes, provided we add the
local finiteness property that is to say, we ask that each point of a simplex has a neighborhood,
which intersects only finitely many simplexes of K. We do this so that the topology of the (infinite)
Euclidean complex K coincides with the topology of the geometric realization |K̂| (we are referring
to the topology defined by Remark (II.2.13)) of the abstract simplicial complex |K̂| associated in a
natural fashion to K (we shall give the definition of abstract simplicial complex in a short while).
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Fig. II.4

(II.1.1) Example (Euclidean polyhedra). 1. Every simplex of Rn together with
all its faces is a simplicial complex.

2. The set of all proper faces of a d-dimensional simplex in Rn is a (d − 1)-
dimensional simplicial complex.

3. The set of all closed intervals [1/n,1/(n + 1)], with n ∈N, is a simplicial com-
plex (with infinitely many simplexes) of R.

4. Let Pm be the regular polygonal line contained in C∼=R2, whose vertices are the
mth-roots of the unity {z ∈ C | zm = 1}. The corresponding simplicial complex
is homeomorphic to the circle S1 and is depicted in Fig. II.5.

Fig. II.5

5. The Platonic solids can be subdivided by triangles; they give rise to simplicial
complexes of R3. An example is given by the icosahedron of Fig. II.6.

Fig. II.6
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II.2 Abstract Simplicial Complexes

In this section, we shall give the definition of the category Csim of simplicial
complexes and simplicial maps; furthermore, we shall define two important func-
tors with domain Csim, namely, the geometric realization functor and the homology
functor.

An (abstract) simplicial complex is a pair K = (X ,Φ) given by a finite set X and
a set of nonempty subsets of X such that:

K1 (∀x ∈ X) , {x} ∈ Φ ,
K2 (∀σ ∈ Φ)(∀σ ′ ⊂ σ , σ ′ �= /0) , σ ′ ∈ Φ .

The elements of X are the vertices of K. The elements of Φ are the simplexes of K.
If σ is a simplex of K, every non-empty σ ′ ⊂ σ is a face of σ . According to
condition K2, we can say that all faces of a simplex are simplexes. A simplex σ
with n + 1 elements (n ≥ 0) is an n-simplex (we also say that σ is a simplex of
dimension n); we adopt the notation dimσ = n. It follows that the 0-simplexes are
vertices. The dimension of K is the maximal dimension of its simplexes; if the
dimensions of all simplexes of K have a maximum n, we say that K has dimension
n or that K is n-dimensional.

(II.2.1) Remark. We explicitly observe that in this book all simplicial complexes
have a finite number of vertices.

Before we present some examples and constructions with simplicial complexes,
we give a definition: a simplicial complex L = (Y,Ψ ) is a subcomplex of K = (X ,Φ)
if Y ⊂ X and Ψ ⊂ Φ .

(II.2.2) Remark. Let K0 = (X0,Φ0) and K1 = (X1,Φ1) be subcomplexes of a sim-
plicial complex K; we observe that the union K0 ∪K1 = (X0 ∪X1,Φ0 ∪Φ1) and the
intersection K0∩K1 = (X0∩X1,Φ0∩Φ1) (with X0∩X1 �= /0) are subcomplexes of K.
In particular, the union of two disjoint simplicial complexes K0 and K1 (that is to
say, such that X0 ∩X1 = /0) is a simplicial complex.

Let us now give some examples.

1. Let X be a finite set and let ℘(X) = 2X be the set of all subsets of X ; clearly,
the pair K = (X ,℘(X)� /0) is a simplicial complex.

2. The set of all simplexes of an Euclidean simplicial complex is an abstract sim-
plicial complex if we forget the fact that its vertices are points of Rn. The
set X is the set of all vertices, while Φ is the set of simplexes. Thus, the ex-
amples of Euclidean polyhedra on p. 45 are examples of abstract simplicial
complexes.

3. Let Γ be a graph (that is to say, a set of vertices X and a symmetric subset Φ
of X ×X , called set of edges). It is not hard to prove that (X ,Φ) is a simplicial
complex if we assume that σ ∈ Φ ⊂ 2X whenever σ is a set with just one
element or is the set of the two vertices at the ends of an edge.
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(II.2.3) Definition (generated complex). Let K = (X ,Φ) be a simplicial complex;
for every simplex σ ∈ Φ , the pair

σ = (σ ,℘(σ)� /0)

is a simplicial complex; σ is the simplicial complex generated by σ (sometimes
also called closure of σ ). More generally, let B be a set of simplexes of K, that is to
say, B ⊂ Φ; then

B =
⋃

σ∈B

σ

is the simplicial complex generated by all the simplexes of the set B. Observe that
B is a subcomplex of K.

(II.2.4) Definition (boundary of a simplex). For every simplex σ of a simplicial
complex,

•σ = (σ ,℘(σ)�{ /0,σ})
is a simplicial complex, called boundary of σ . By an abuse of notation, we write

σ = •σ ∪σ .

(II.2.5) Definition (join and suspension). Given two simplicial complexes K =
(X ,Φ) and L = (Y,Ψ ), the join of K and L is the simplicial complex K ∗L whose
vertices are all the elements of the set X ∪Y , and whose simplexes are the elements
of the sets Φ , Ψ and of the set

Φ ∗Ψ = {{x0, . . . ,xn,y0, . . . ,ym} | {x0, . . . ,xn} ∈ Φ ,{y0, . . . ,ym} ∈Ψ}.

In other words, a nonempty subset {x0, . . . ,xn,y0, . . . ,ym} of X ∪Y is a simplex of
K ∗L if and only if {x0, . . . ,xn} ∈ Φ ∪{ /0} and {y0, . . . ,ym} ∈Ψ ∪{ /0}. In particular,
if L = (Y,Ψ) is the simplicial complex defined by a unique point y, K ∗y = Ky is the
cone (sometimes called abstract cone) of K with vertex y (of course, we can also
define the cone yK). An n-simplex with n ≥ 1 can be interpreted as the cone of any
of its faces (of dimension n−1).

If L is the simplicial complex determined by exactly two points x and y, that is
to say,

L = (Y,Ψ ) with Y = {x,y} , Ψ = {{x},{y}} ,

the join K ∗L = ΣK is called suspension of K. Observe that ΣK can be viewed as
the union of the cones K ∗ x and K ∗ y.

The category Csim of simplicial complexes is the category whose objects are all
simplicial complexes, and whose morphisms f : K = (X ,Φ) → L = (Y,Ψ) are the
functions (between sets) f : X → Y such that

(∀σ = {x0,x1, . . . ,xn} ∈ Φ) , f (σ) = { f (x0), f (x1), . . . , f (xn)} ∈Ψ .

A morphism f ∈ Csim(K,L) is a simplicial function from K to L.
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II.2.1 The Geometric Realization Functor

For a given simplicial complex K = (X ,Φ), let V (K) be the set of all functions
p : X → R≥0 (nonnegative real numbers); we define the support of an arbitrary
p ∈V (K) to be the finite set

s(p) = {x ∈ X | p(x) > 0}.

Let |K| be the set defined as follows:

|K| = {p ∈V (K) | s(p) ∈ Φ and ∑
x∈s(p)

p(x) = 1}.

We now define the function

d : |K|× |K| −→R≥0

which takes any pair (p,q) ∈ |K|× |K| into the real number

d(p,q) =
√

∑
x∈X

(p(x)−q(x))2.

This function is a metric on K (verify the conditions defining a metric given in
Sect. I.1.5); hence, it defines a (metric) topology on |K|. The metric space |K| is the
geometric realization of K. Observe that |K| is a bounded space, in the sense that
(∀p,q ∈ |K|), d(p,q) ≤√

2. Moreover, |K| is a Hausdorff space.
We can write the elements of K as finite linear combinations. In fact, for each

vertex x of K, with a slight abuse of language, let us denote with x the function
of V (K), with value 1 at the vertex x and 0 at any other vertex; in a more formal
fashion,

(∀y ∈ X) x(y) =
{

0 if y �= x
1 if y = x

(in other words, we identify the vertex x with the corresponding real function of
V (K), whose support coincides with the set {x}). Hence if s(p) = {x0,x1, . . . ,xn} is
the support of p∈ |K|, and assuming that p(xi)= αi, i = 0,1, . . . ,n, we can write p as

p =
n

∑
i=0

αixi.

The real numbers αi , i = 0, . . . ,n, are the barycentric coordinates of p (in agreement
with the barycentric coordinates defined by n+1 independent points of an Euclidean
space).

(II.2.6) Remark. Because K has a finite number of vertices, say n, we can embed
the set of vertices X in the Euclidean space Rn, so that the images of the elements of
X coincide with the vectors of the standard basis. Then we can take the convex hulls
in Rn of the vectors corresponding to the simplexes of K, to obtain an Euclidean
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simplicial complex K′ ⊂ Rn associated with K. We shall see in a short while that
K ′ is isomorphic to the geometric realization |K| (actually, there exists an isometry
between these two metric spaces; furthermore, the set of all functions X → R≥0

coincides with the positive quadrant of Rn).

The following statement holds true: two points p,q ∈ |K| coincide if and only if
they have the same barycentric coordinates.

The geometric realization functor

| | : Csim −→ Top

is defined over an object K ∈ Csim as the geometric realization |K|, and over a
morphism f ∈ Csim(K,L) as

| f | : |K| → |L| , | f |(∑αixi) = ∑αi f (xi) .

To prove that | | is indeed a functor, we need the following result.

(II.2.7) Theorem. The function | f | induced from a simplicial function f : K → L is
continuous.

Proof. It is enough to prove that, for every p ∈ |K|, there exists a constant c(p) > 0
which depends on p and such that, for every q∈ |K|, d(| f |(p), | f |(q))≤ c(p)d(p,q).

Assume that

s(p) = {x0, . . . ,xn} and s(q) = {y0, . . . ,ym}

and also that p(xi) = αi for i = 0, . . . ,n, and q(y j) = β j for j = 0, . . . ,m. We consider
three cases.
Case 1: s(p)∩ s(q) = /0 - In this situation

d(p,q) =

√
n

∑
i=0

α2
i +

m

∑
j=0

β 2
j ≥

√
n

∑
i=0

α2
i ;

because ∑n
i=0 αi = 1, ∑n

i=0 α2
i has its minimum value only when αi = 1/(n+1), for

every i = 0, . . . ,n. It follows that d(p,q) ≥ 1/
√

n + 1 and

d(| f |(p), | f |(q))
d(p,q)

≤
√

2

1/
√

n + 1

(recall that d(| f |(p), | f |(q)) ≤√
2); so,

d(| f |(p), | f |(q)) ≤
√

2(n + 1)d(p,q);

thus, we define c(p) =
√

2(n + 1).
Case 2: s(p)∩ s(q) �= /0, but s(p) �⊂ s(q) and s(q) �⊂ s(p) –
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Let us rewrite the indices of the elements of s(p) and s(q) to have the following
common elements:

xr = y0,xr+1 = y1, . . . ,xn = yn−r.

Notice that the set s(p)∪s(q) has exactly m+r+1 common elements. Now consider
the elements

zi =

⎧
⎨

⎩

xi, 0 ≤ i ≤ r−1
xi = yi−r, r ≤ i ≤ n
yi−r, n + 1 ≤ i ≤ m+ r

together with the real numbers

γi =

⎧
⎨

⎩

−αi, 0 ≤ i ≤ r−1
−αi +βi−r, r ≤ i ≤ n
βi−r, n + 1 ≤ i ≤ m+ r .

Notice that γi < 0 for i = 0, . . . ,r − 1 and γi > 0 for i = n + 1, . . . ,m + r, because
αi > 0 for every i = 0,1, . . . ,n and βi > 0 for i = 1, . . . ,m. Let us order the numbers
γi in such a way that γ0 ≤ γ1 ≤ . . . ≤ γm+r (if necessary, we make a permutation of
the indices). Let l be the largest index for which γl < 0 (because of the assumptions
we made, such a set of indices cannot be empty - thus l exists - nor can it be the set of
all indices - thus r ≤ l ≤ n); moreover, the vertices (viewed as functions) z0,z1, . . . ,zl

are summands of p (the numbers γi are negative), while the vertices zl+1, . . . ,zm+r

are part of q (the corresponding numbers γi are non-negative). At this point, take
λ = ∑l

i=0 γi < 0 and the two finite successions of real positive numbers

{γ0

λ
, . . . ,

γl

λ
} and { γl+1

−λ
, . . . ,

γm+r

−λ
}.

The elements

p′ =
l

∑
i=0

γi

λ
zi and q′ =

m+r

∑
i=l+1

γi

−λ
zi

are in |K| because
l

∑
i=0

γi

λ
=

m+r

∑
i=l+1

γi

−λ
= 1;

from what we proved above, it follows that s(p′) ⊂ s(p) and s(q′) ⊂ s(q). But
s(p′)∩ s(q′) = /0 and so, by Case 1,

d(| f |(p′), | f |(q′)) ≤
√

2(l + 1)d(p′,q′).

The equalities

d(p′,q′) =
1
−λ

d(p,q),

d(| f |(p′), | f |(q′)) =
1
−λ

d(| f |(p), | f |(q)),

and the fact that
√

2(l + 1)≤√2(n + 1) allow us to conclude that
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d(| f |(p), | f |(q)) ≤
√

2(n + 1)d(p,q).

Case 3: Let us assume that s(p) ⊂ s(q). Rewrite the indices of the elements of s(p)
and s(q) in such a way that, xi = yi for every i = 0, . . . ,n. Similar to the previous
case, we consider the elements

zi =
{

xi = yi, 0 ≤ i ≤ n
y j, n + 1 ≤ j ≤ m

and the real numbers

γi =
{−αi +βi, 0 ≤ i ≤ n

β j, n + 1 ≤ j ≤ m.

If −αi +βi ≥ 0 for every i = 0, . . . ,n, then s(p) = s(q) and p = q, because ∑n
i=0 αi =

1. Hence, there exists a number 0 ≤ i ≤ n such that −αi +βi < 0. At this point, we
argue as in the previous case. If s(q) ⊂ s(p), we use an analogous procedure. �

In particular, the following result holds true:

(II.2.8) Theorem. Any piecewise linear function (the simplicial realization of a
simplicial function)

F : |K| → |L| , F

(
n

∑
i=0

αixi

)
=

n

∑
i=0

αiF(xi)

is continuous.

Hence | | is a functor.
We now investigate some of the properties of the geometric realization of a sim-

plicial complex. Recall that it is possible to characterize a convex set X of an
Euclidean space as follows: for every p,q ∈ X , the segment [p,q], with end-points p
and q, is contained in X . As we are going to see in the next theorem, this convexity
property is valid for the geometric realization of the complex σ (called geometric
simplex), for every simplex σ of a simplicial complex K.

(II.2.9) Theorem. Let K = (X ,Φ) be a simplicial complex. The following results
hold true:

(i) The geometric realization σ of any simplex σ ∈ Φ is convex.
(ii) For every two simplexes σ ,τ ∈ Φ we have

|σ | ∩ |τ| = |σ ∩ τ|.

(iii) For every σ ∈ Φ , σ is compact .

Proof. (i) Assume that σ = {x0, . . . ,xn} and let p,q be arbitrary points of |σ |; sup-
pose that p = ∑n

i=0 αixi and q = ∑n
i=0 βixi. The segment [p,q] is the set of all points

r = t p +(1− t)q, for every t ∈ [0,1]. Then
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r = t p +(1− t)q =
n

∑
i=0

(tαi +(1− t)βi)xi

with ∑n
i=0(tαi +(1− t)βi) = 1 and so, r ∈ |σ |.

(ii) Let us first observe that if p ∈ |σ |, then s(p) ⊂ σ . Now if p ∈ |σ |⋂ |τ|, s(p) ⊂
σ ∩τ , and thus p ∈ |s(p)| ⊂ |σ ∩ τ|. Conversely, if p ∈ |σ ∩ τ| then p ∈ |s(p)| ⊂ |σ |,
p ∈ |s(p)| ⊂ |τ|, and therefore p ∈ |σ |⋂ |τ|.
(iii) Take the standard n-simplex

Δ n = {(z0, . . . ,zn) ∈Rn+1|0 ≤ zi ≤ 1,∑
i

zi = 1}

endowed with a system of barycentric coordinates with respect to the vertices

e0 = (1,0, . . . ,0), . . .en = (0,0, . . . ,1);

we can write the elements of Δ n as linear combinations with nonnegative real coeffi-
cients ∑n

i=0 αiei where ∑n
i=0 αi = 1. Furthermore, we observe that Δ n is compact as a

bounded and closed subset of Rn+1 (see Theorem (I.1.36)). Let f : Δ n → |σ | be the
function taking any p = ∑n

i=0 αiei ∈ Δ n to the point f (p) = ∑n
i=0 αixi. This function

is bijective, continuous, and takes a compact space to a Hausdorff space; hence, f
is a homeomorphism (see Theorem (I.1.27)). It follows that |σ | is compact. �

As we have observed before, the geometric realization |K| can be viewed as a
subspace of Rn, where n is the number of vertices of K. Thus, it is possible to con-
sider an affine structure on the ambient space Rn, and again analyze the convexity
of the various parts of K and the linear combinations of elements with barycentric
coordinates. For every p ∈ |K|, let B(p) be the set of all σ ∈ Φ such that p ∈ |σ |;
now take the space

D(p) =
⋃

σ∈B(p)

|σ | .

The boundary S(p) of D(p) is the union of the geometric realizations of the com-
plexes generated by the faces τ ⊂ σ , with σ ∈ B(p) and p /∈ |τ |. Intuitively, D(p)
is the “disk” defined by all geometric simplexes, which contain p and S(p) is its
bounding “sphere”. Observe that D(p) and S(p) are closed subsets of |K|; finally,
leaving out the geometric realization, D(p) and S(p) are subcomplexes of K.

(II.2.10) Theorem. Let K be a simplicial complex; the following properties are
valid.

(i) For every p ∈ |K|, D(p) is compact.
(ii) For every q ∈ D(p)�{p} and every t ∈ I, the point r = (1− t)p + tq belongs

to D(p).
(iii) Every ray in D(p) with origin p intersects S(p) at a unique point.

Proof. (i): The compactness of D(p) follows from Theorem (II.2.9), (iii).
(ii): Because q ∈ D(p)�{p}, there exists a simplex σ ∈ B(p) such that q ∈ |σ |, a
convex space; it follows that the segment [p,q] is entirely contained in |σ | ⊂ D(p).
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(iii): Let � be a ray with origin p, and let q be the point of � determined by the
condition

d(p,q) = sup{d(p,q′) | q′ ∈ �∩D(p)}.
Then, |s(q)| ∈ S(p); otherwise, we could extend � in D(p) beyond q and thus we
would have q∈ S(p). On the other hand, because s(q) is a face of a simplex contain-
ing p, the vertices of s(p) and s(q) define a simplex of which s(p) is a face (in fact,
s(p)∪ s(q) is a simplex of the simplicial complex D(p)). The points of � beyond q
cannot be in S(p) and the open segment (p,q) is contained in D(p)� S(p). Hence,
� intersects S(p) in one point only. �

Notice that D(p) is not necessarily convex; at any rate, as we have seen in part
(ii) of the previous theorem, D(p) is endowed with a certain kind of convexity in
the sense that, for every q ∈ D(p), the segment [p,q] is entirely contained in D(p).
We say that D(p) is p-convex (star convex). Theorem (II.2.10) allows us to define
a map

πp : D(p)�{p}→ S(p) , q �→ �p,q ∩S(p)

where �p,q is the ray with origin p and containing q; the function πp is the radial
projection with center p from D(p) onto S(p). Let i : S(p) → D(p) � {p} be the
inclusion map; then πpi = 1S(p), and iπp is homotopic to the identity map of D(p)�

{p} onto itself with homotopy given by the map

H : (D(p)�{p})× I → D(p)�{p} , (q,t) �→ (1− t)q + tπp(q).

Hence, S(p) is a deformation retract of D(p) � {p} (see Exercise 2, Sect. I.2).
This shows another similarity between the spaces D(p), S(p) and, respectively, the
n-dimensional Euclidean disk and its boundary.

The next result (cf. [24]) will be used only when studying triangulable manifolds
(Sect. V.1); the reader could thus leave it for later on.

(II.2.11) Theorem. Let f : |K|→ |L| be a homeomorphism. Then, for every p∈ |K|,
S(p) and S( f (p)) are of the same homotopy type.

Proof. Assume that s( f (p)) = {y0, . . . ,yn} and let U = |s( f (p))|� | •
s( f (p))| be the

interior of |s( f (p))|, that is to say, the set of all q ∈ |L| such that q(yi) > 0, for
every i = 0, . . . ,n. Notice that U is an open set of D( f (p)); moreover, f−1(U) is
an open set of |K| containing p. The bounded, compact set D(p) can be shrunk at
will: in fact, for any real number 0 < λ ≤ 1 we define the compression λD(p) as
the set of all points r = (1− λ )p + λ q, for every q ∈ D(p); observe that λD(p)
is a closed subset of |K|, and is homeomorphic to D(p). Let λ ∈ (0,1] be such
that

p ∈ λD(p) ⊂ f−1(U);

then
f (p) ∈ f (λD(p)) ⊂U ⊂ D( f (p)).
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In a similar fashion, we can find two other real numbers μ ,ν ∈ (0,1] such that

f (p) ∈ f (νD(p)) ⊂ μD( f (p)) ⊂ f (λD(p)) ⊂ D( f (p)).

Because f (νD(p)) ⊂ μD( f (p)), we can define the radial projection with cen-
ter f (p)

ψ : f (νS(p)) → μS( f (p)) , f (q) �→ π f (p)( f (q))

for every q ∈ νS(p). We also define the map

φ : μS( f (p)) → f (νS(p)) , q �→ f (ν(πp( f−1(q)))

where πp is the radial function with center p in λD(p) (notice that f−1(q) �= p, for
every q ∈ μS( f (p)) and moreover, f−1(μD( f (p)) ⊂ λD(p)).

Since the spaces f (νS(p)) and μS( f (p)) are contained in D( f (p)) and this last
space is f (p)-convex, we can define the homotopy

H1 : μS( f (p))× I −→ D( f (p))

H1(q,t) =
{

(1−2t)ψφ(q)+ 2t f (p) , 0 ≤ t ≤ 1
2

(2−2t) f (p)+ (2t−1)φ(q) , 1
2 ≤ t ≤ 1

for every q ∈ μS( f (p)). Strictly speaking, H1 is a homotopy between φ composed
with the inclusion map f (νS(p) ⊂ D( f (p)) and ψφ composed with μS( f (p)) ⊂
D( f (p)). We now take the maps

f−1φ : μS( f (p)) → νD(p) and f−1 : μS( f (p)) → λD(p).

Because D(p) is p-convex, we can construct the homotopy

H2(q,t) =
{

(1−2t) f−1φ(q)+ 2t p , 0 ≤ t ≤ 1
2

(2−2t)p +(2t−1) f−1(q) , 1
2 ≤ t ≤ 1 .

which, when composed with the homeomorphism f , gives rise to a homotopy

f H2 : μS( f (p))× I → D( f (p));

finally, we consider the homotopy

F : μS( f (p)× I → D( f (p))

defined by the formula

F(q,t) =
{

H1(q,2t) , 0 ≤ t ≤ 1
2

f H2(q,2t −1) , 1
2 ≤ t ≤ 1 .
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The map F is a homotopy between ψφ and the identity map of μS( f (p)). Similarly,
we prove that φψ is homotopic to the corresponding identity map. Thus, μS( f (p))
and f (νS(p)) are of the same homotopy type. On the other hand, μS( f (p)) and
f (νS(p)) are homeomorphic, respectively, to S( f (p)) and S(p); hence, S( f (p))
and S(p) are of the same homotopy type. �

The geometric realization |K| of a simplicial complex K is called polyhedron.2

The next theorem gives a better understanding of the topology of |K| = (X ,Φ).

(II.2.12) Theorem. A set F ⊂ |K| is closed in |K| if and only if, for every σ ∈ Φ ,
the subset F ∩|σ | is closed in |σ |.
Proof. Because |σ | is a compact subset of a Hausdorff space |K|, |σ | is closed in
|K| (see Theorem (I.1.25)); thus, if F is closed in |K|, F ∩ |σ | is closed in |K| and
therefore, F is closed in |σ |.

Conversely, if F ∩|σ | is closed in |σ | for every |σ | ⊂ |K|, then F =
⋃

|σ |(F ∩|σ |)
is closed in |K| as a finite union of closed sets. �

A topological space X is said to be triangulable if there exists a polyhedron K,
which is homeomorphic to X ; the simplicial complex K is a triangulation of X .
A triangulable space can have more than one triangulation. For example, it is easy
to understand that S1 has a triangulation given by a simplicial complex whose ge-
ometric realization is homeomorphic to the boundary of an equilateral triangle; but
it can also be triangulated by a complex whose geometric realization is a regular
polygon with vertices in S1 (the homeomorphisms are given by a projection from
the center of S1). More generally, a disk Dn and its boundary Sn−1 are examples of
triangulable spaces; these spaces also have several possible triangulations. Next, we
describe the standard triangulation of Sn.

Let Σn be the set of all points (x1,x2, . . . ,xn+1) ∈ Rn+1 such that ∑i |xi| = 1.

Let X be the set of all vertices of Σn, that is to say, of the points ai = (0, . . . ,
i
1

, . . . ,0) and a′i = (0, . . . ,
i−1, . . . ,0) in Rn+1, i = 1, . . . ,n + 1. Now, let Φ be the

set of all nonempty subsets of X of the type {xi0 , . . . ,xir} with 1 ≤ i0 < i1 < .. . <
ir ≤ n + 1 and xis equal to either ais or a′is . Since any set of vertices of this type is
linearly independent, Kn = (X ,Φ) is a simplicial complex. Its geometric realization
is homeomorphic to Σn; on the other hand, Σ n and Sn are homeomorphic by a radial
projection from the center and therefore, Kn is a triangulation of Sn. The simplicial
complex Kn is the so-called standard triangulation of Sn.

(II.2.13) Remark. As we have already notice, in this book we work exclusively
with finite simplicial complexes. However, it is possible to give a more extended
definition of simplicial complexes, which includes the infinite case. With this in
mind, we define a simplicial complex as a pair K = (X ,Φ) in which X is a set

2 In some textbooks, polyhedra are the geometric realizations of two-dimensional complexes; for
the more general case, they use the word polytopes.
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(not necessarily finite) and Φ is a set of nonempty, finite subsets of X satisfying the
following properties:

1. (∀x ∈ X) , {x} ∈ Φ ,
2. (∀σ ∈ Φ)(∀σ ′ ⊂ σ , σ ′ �= /0) , σ ′ ∈ Φ .

The price we must pay is a strengthening of the topology of K. We keep the metric

d : |K|× |K| −→R≥0

(∀p,q ∈ |K|) d(p,q) =

{

∑
x∈X

(p(x)−q(x))2

} 1
2

which defines a topology on K. While the necessary condition of Theorem (II.2.12)
is still valid, the sufficient condition does not hold because, to prove it, we need
the assumption that X is finite. However, it is precisely the topology of Theo-
rem (II.2.12) that we impose on |K|; in other words, we must exchange the metric
topology of K with a finer topology. We say that

F ⊂ |K| is closed ⇐⇒ (∀σ ∈ Φ) F ∩|σ | is closed in σ .

This topology is normally called “weak topology”; this is somehow a strange
name, considering the fact that the weak topology for K is finer (that is to say, has
more open sets) than the metric topology.

II.2.2 Simplicial Complexes and Immersions

We have proved, aided by the geometric realization functor, that every abstract finite
simplicial complex K can be immersed in an Euclidean space and hence can be
viewed as an Euclidean simplicial complex. The dimension of the Euclidean space
in question is equal to the number of vertices, say m, of the complex. At this point,
we ask ourselves whether it is possible to immerse K in an Euclidean space of
dimension lower than m. The next theorem answers that question. Before stating the
theorem, we define Euclidean simplicial complexes in a different (but equivalent)
fashion. Let K ⊂ Rn be a union of finitely many Euclidean simplexes of Rn such
that

1. If σ ⊂ K, every face of σ is in K.
2. The intersection of any two Euclidean simplexes of K is a face of both.

It is not difficult to prove that a set of simplexes of Rn verifying the previous
conditions is an Euclidean simplicial complex as defined in Sect. II.1. We also no-
tice that if F ⊂K is closed, the intersection F ∩σ is closed in σ for every Euclidean
simplex σ of K; conversely, if F is a subset of K such that, for every Euclidean
simplex σ of K, F ∩ σ is closed in σ , then F is closed in K because F is the fi-
nite union of the closed sets F ∩ σ . Clearly, an Euclidean complex K of Rn is
compact and closed in Rn. We now state the immersion theorem for simplicial
complexes.
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(II.2.14) Theorem. Every n-dimensional polyhedron |K| is homeomorphic to an
Euclidean simplicial complex.

Proof. Let N be the set of all points Pi = (i, i2, . . . , i2n+1) ∈ R2n+1, for every
i ≥ 0. We claim that the set N has the following property: every 2n + 2 points
Pi0 , . . . ,Pi2n+1 are linearly independent. In fact, a linear combination

2n+1

∑
j=1

α j(Pij −Pi0) = 0

gives rise to the equations

2n+1

∑
j=1

α j = 0,

2n+1

∑
j=1

α j i
1
j = 0,

. . .

2n+1

∑
j=1

α ji
2n+1
j = 0;

because the determinant of the system of linear homogeneous equations defined by
the 2n + 2 equations written above is equal to ∏k> j(ik − i j) �= 0, the only solution
for the system is the trivial one, α1 = α2 = . . . = α2n+1 = 0.

Assume that K = (X ,Φ) with X = {a0, . . . ,as} and s ≤ n. To each vertex
ai, we associate the point Pi = (i1, i2, . . . , i2n+1) ∈ R2n+1, and to each simplex
{a j0 ,a j1 , . . . ,a jp} ∈ Φ we associate the Euclidean simplex {P j0 ,P j1 , . . . ,P jp} (ob-
serve that the points P ji with j = 0, . . . , p are linearly independent because p ≤
n < 2n + 1). Let K be the set of vertices and Euclidean simplexes obtained in
this way.

We begin by observing that K clearly satisfies condition 1 of the definition of
Euclidean simplicial complexes. Let us prove that condition 2 is also valid. Let σp

and σq be two Euclidean simplexes of K with r common vertices; altogether σp and
σq have p + q− r+ 2 vertices. Because p + q− r + 2 ≤ 2n + 2, these vertices form
an Euclidean simplex of R2n+1 having σp and σq as faces; hence, σp ∩σq is either
empty (if r = 0) or a common face of σp and σq.

Therefore, K is an Euclidean simplicial complex homeomorphic to |K|. �

The reader could ask whether Theorem (II.2.14) is the best possible result or else,
whether it is possible to realize all n-dimensional simplicial complexes in Euclidean
spaces of dimension less than 2n + 1. Clearly, a complex of dimension n must be
immersed in a space of dimension at least n. We shall now give two examples of one-
dimensional simplicial complexes (that is to say, graphs) that cannot be immersed
in R2.
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Let K3,3 be the complete bipartite graph over two sets of 3 vertices, also known
as utility graph: K3,3 = (X ,Φ) with X = {1,2,3,a,b,c} and

Φ = {{1},{2},{3},{a},{b},{c},{1,a},{1,b},{1,c},{2,a},{2,b},
{2,c},{3,a},{3,b},{3,c}}.

Figure II.7 shows its graphic representation (which however is not a geometric real-

a

1b

2

c 3 Fig. II.7

ization of K3,3 because its distinct 1-simplexes have empty intersections). Another
way to represent K(3,3) is given in Fig. II.8. To ask whether or not K(3,3) can be

a 1

b 2

c 3

Fig. II.8

represented as a planar graph is a classical query; the answer would be affirmative
if one could determine an immersion of K(3,3) in R2 (but planarity is a weaker
property: It is enough to show that |K3,3| is homeomorphic to a subspace of R2).
Another example of a simplicial complex with an analogous property is given by
the complete graph over 5 vertices K5: X = {1,2,3,4,5} and Φ is the set of all
nonempty subsets of X with at most 2 elements. Figure II.9 is a standard graphic
representation of this graph. It is not difficult to prove that both K3,3 and K5 cannot
be immersed in R2.
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Fig. II.9

II.2.3 The Homology Functor

We now define the homology functor

H∗(−;Z) : Csim → AbZ,

another important functor with domain Csim.
Let K = (X ,Φ) be an arbitrary simplicial complex. We begin our work by giving

an orientation to the simplexes of K. Let σn = {x0,x1, . . . ,xn} be an n-simplex
of K; the elements of σn can be ordered in (n + 1)! different ways. We say that
two orderings of the elements of σn are equivalent whenever they differ by an even
permutation; an orientation of σn is an equivalence class of orderings of the vertices
of σn, provided that n > 0. An n-simplex σn = {x0,x1, . . . ,xn} has two orientations.
A 0-simplex has clearly only one ordering; its orientation is given by ±1.

If σn = {x0,x1, . . . ,xn} is oriented, the simplex {x1,x0, . . . ,xn} for example, is
denoted with −σ . If n≥ 1, a given orientation of σn = {x0,x1, . . . ,xn} automatically
defines an orientation in all of its (n−1)-faces: For example, if σ2 = {x0,x1,x2} is
oriented by the ordering x0 < x1 < x2, its oriented 1-faces are

{x1,x2} , {x2,x0} = −{x0,x2} and {x0,x1}.

More generally, if σn = {x0,x1, . . . ,xn} is oriented by the natural ordering of the
indices of its vertices, its (n−1)-face

σn−1,i = {x0,x1, . . . , x̂i, . . . ,xn} = {x0,x1, . . . ,xi−1,xi+1, . . . ,xn}

(opposite to the vertex xi with i = 0, . . . ,n) has an orientation given by (−1)iσn−1,i;
we say that σn−1,i is oriented coherently to σn if i is even, and is oriented coherently
to −σn if i is odd. We observe explicitly that the symbol ̂ over the vertex xi means
that such vertex has been eliminated.

We are now ready to order a simplicial complex K = (X ,Φ). We recall that the
technique used to give an orientation to a simplex was first to order its vertices in
all possible ways, and then choose an ordering class (there are two possible classes:
the class in which the orderings differ by an even permutation, and that in which the
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orderings differ by an odd permutation). Now let us move to K. Begin by taking a
partial ordering of the set X in such a way that the set of vertices of each simplex
σ ∈ Φ is totally ordered; in this way, we obtain an ordering class – that is to say,
an orientation – for each simplex. A simplicial complex whose simplexes are all
oriented is said to be oriented.

Let K = (X ,Φ) be an oriented simplicial complex. For every n ∈Z, with n ≥ 0,
let Cn(K) be the free Abelian group defined by all linear combinations with coef-
ficients in Z of the oriented n-simplexes of K; in other words, if {σ i

n} is the fi-
nite set of all oriented n-simplexes of K, then Cn(K) is the set of all formal sums
∑i miσ i

n , mi ∈Z (called n-chains), together with the addition law

∑
i

piσ i
n +∑

i
qiσ i

n := ∑
i
(pi + qi)σ i

n.

If n < 0, we set Cn(K) = 0. Now, for every n ∈ Z, we define a homomorphism
∂n = ∂ K

n : Cn(K) −→Cn−1(K) as follows: if n ≤ 0, ∂n is the constant homomor-
phism 0; if n ≥ 1, we first define ∂n over an oriented n-simplex {x0,x1, . . . ,xn}
(viewed as an n-chain) as

∂n({x0,x1, . . . ,xn}) =
n

∑
i=0

(−1)i {x0, . . . , x̂i, . . . ,xn} ;

finally, we extend this definition by linearity over an arbitrary n-chain of oriented
n-simplexes. The homomorphisms of degree −1, that we have just defined, are
called boundary homomorphisms.

(II.2.15) Lemma. For every n ∈Z, the composition ∂n−1∂n = 0.

Proof. The result is obvious if n = 1. Let {x0,x1, . . . ,xn} be an arbitrary oriented
n-simplex with n ≥ 2. Then

∂n−1∂n({x0,x1, . . . ,xn}) = ∂n−1

n

∑
i=0

(−1)i{x0, . . . , x̂i, . . . ,xn}

= ∑
j<i

(−1)i(−1) j{x0, . . . , x̂ j, . . . , x̂i, . . . ,xn}

+ ∑
j>i

(−1)i(−1) j−1{x0, . . . , x̂i, . . . , x̂ j, . . . ,xn}.

This summation is 0 because its addendum {x0, . . . , x̂ j, . . . , x̂i, . . . ,xn} appears twice,
once with the sign (−1)i(−1) j and once with the sign (−1)i(−1) j−1. �

This important property of the boundary homomorphisms implies that, for every
n∈Z, the image of ∂n+1 is contained in the kernel of ∂n; using the notation Zn(K) =
ker∂n and Bn(K) = im∂n+1, we conclude that Bn(K)⊂ Zn(K) for every n∈Z. Thus,
to each integer n ≥ 0, we can associate the quotient group

Hn(K;Z) = Zn(K)/Bn(K);

to each n < 0, we associate Hn(K;Z) = 0.
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(II.2.16) Definition. An n-chain cn ∈ Cn(K) is an n-cycle (or simply cycle) if
∂n(cn) = 0; thus Zn(K) is the set of all n-cycles. An n-chain cn, for which we can
find an (n+1)-chain cn+1 such that cn = ∂n+1(cn+1), is an n-boundary; thus, Bn(K)
is the set of all n-boundaries. Two n-chains cn and c′n are said to be homologous if
cn − c′n ∈ Bn(K).

What we have just described is a method to associate a graded Abelian group

H∗(K;Z) = {Hn(K;Z) |n ∈Z}

to any oriented simplicial complex K ∈ Csim. To define a functor on Csim we must
see what happens to the morphisms; we proceed as follows. Let f : K = (X ,Φ) →
L = (Y,Ψ ) be a simplicial function (K and L have a fixed orientation). We first
define

Cn( f ) : Cn(K) −→Cn(L)

on the simplexes by

Cn( f )({x0, . . . ,xn}) =
{ { f (x0), . . . , f (xn)}, (∀i �= j) f (xi) �= f (x j)

0, otherwise

and then extend Cn( f ) linearly over the whole Abelian group Cn(K). It is easy to
prove that ∂ L

n Cn( f ) = Cn−1( f )∂ K
n , for every n ∈ Z (one can verify this on a single

n-simplex). We now define

Hn( f ) : Hn(K;Z) −→ Hn(L;Z)
z+ Bn(K) �→Cn( f )(z)+ Bn(L)

for every n ≥ 0. We begin by observing that Cn( f )(z) is a cycle in Cn(L): in fact,
since z is a cycle,

∂ L
n Cn( f )(z) = Cn−1( f )∂ K

n (z) = 0 .

On the other hand, we note that Hn( f ) is well defined: let us assume that z− z′ =
∂ K

n+1(w); then

Cn( f )(z− z′) = Cn( f )∂ K
n+1(w) = ∂ L

n+1Cn+1( f )(w)

and thus Cn( f )(z − z′) ∈ Bn(L); from this, we conclude that Hn( f )((z − z′) +
Bn(K)) = 0.

If n < 0, we set Hn( f ) = 0; in this way, we obtain a homomorphism Hn( f )
between Abelian groups, for every n ∈Z. The reader is invited to prove that

Hn(1K) = 1Hn(K) e Hn(g f ) = Hn(g)Hn( f )

for every n ∈Z.

(II.2.17) Remark. The construction of the homology groups Hn(K;Z) is indepen-
dent from the orientation of K, up to isomorphism. In fact, suppose that O and O′
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are two distinct orientations of K and denote by KO and KO′
the complex K together

with the orientations O and O′, respectively.
The simplexes of KO are denoted by σ , and those of KO′

, by σ ′. Now define
φn : Cn(KO) → Cn(KO′

) as the function taking a simplex σn into the simplex σ ′
n

if O and O′ give the same orientation to σn, and taking σn into −σ ′
n if O and O′

give opposite orientations to σn; next, extend φn by linearity over the whole group
Cn(KO). It is easy to prove that φn is a group isomorphism. Moreover, for every
n ∈ Z, ∂nφn = φn−1∂n. For a given n-simplex σn of KO, we have two cases to
consider:
Case 1: O and O′ give the same orientation to σn; then

∂nφn(σn) = ∂n(σ ′
n) =

n

∑
i=0

(−1)iσ ′
n−1,i

φn−1∂n(σn) = φn−1(
n

∑
i=0

(−1)iσn−1,i) =
n

∑
i=0

(−1)iσ ′
n−1,i;

Case 2: O and O′ give different orientations to σn; then

∂nφn(σn) = ∂n(−σ ′
n) =

n

∑
i=0

(−1)i+1σ ′
n−1,i

φn−1∂n(σn) = φn−1(
n

∑
i=0

(−1)i+1σn−1,i) =
n

∑
i=0

(−1)i+1σ ′
n−1,i.

Similar to what we did to define the homomorphism Hn( f ), we can prove that φn

induces a homomorphism

Hn(φn) : Hn(KO;Z) −→ Hn(KO′
;Z)

which is actually an isomorphism.

Therefore, up to isomorphism, the orientation given to a simplicial complex has
no influence on the definition of the group Hn(K;Z); thus, we forget the orientation
(however, we note that in certain questions it cannot be ignored). With this, we
define the covariant functor

H∗(−;Z) : Csim −→ AbZ

by setting

H∗(K;Z) = {Hn(K;Z) | n ∈Z} and H∗( f ) = {Hn( f ) | n ∈Z}

on objects and morphisms, respectively. The graduate Abelian group H∗(K;Z) is
the (simplicial) homology of K with coefficients in Z.

We are going to compute the homology groups of the simplicial complex T 2

depicted in Fig. II.10 and whose geometric realization is the two-dimensional torus.
We begin by orienting T 2 so that we go clockwise around the boundary of each
2-simplex. To simplify the notation, let us write Ci(T 2) as Ci (the same for the
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0 1 2 0

4 7 8 4

3 5 6 3

0 1 2 0

Fig. II.10 A triangulation
of the torus with oriented
simplexes

groups of boundaries and cycles). We notice that C2
∼=Z18, C1

∼= Z27, C0
∼=Z9. We

represent the boundary homomorphisms in the next diagram

0 �� C2
∂2 �� C1

∂1 �� C0 �� 0 .

Clearly, each vertex (and hence, each 0-chain) is a cycle; hence, Z0 = C0. The
elements {0}, {1}−{0}, . . .{8}− {0} form a basis of Z0. Any two vertices can
be connected by a sequence of 1-simplexes and so the 0-cycles {1}− {0}, . . . ,
{8}−{0} are 0-boundaries. Since the boundary of a generic 1-simplex {i, j} can
be written as

∂1 ({i, j}) = { j}−{i}= { j}−{0}− ({i}−{0}),

we have that B0 ⊂ Z0 is generated by {1}−{0}, . . . , {8}−{0} and thus,

H0(T 2;Z) ∼= Z .

The homology class of any vertex is a generator of this group.
Next, we compute H1(T 2;Z). The two 1-chains

z1
1 = {0,3}+{3,4}+{4,0} and z2

1 = {0,1}+{1,2}+{2,0}

are cycles and generate (in Z1) a free Abelian group of rank 2 which we denote by
S ∼= Z⊕Z. Let z ∈ Z1 be a 1-cycle z = ∑i kiσ i

1, in which σ i
1 are the 1-simplexes

and ki ∈ Z. By adding suitable multiples of 2-simplexes, it is possible to find a
1-boundary b such that the 1-cycle z − b does not contain the terms, which cor-
respond to the diagonal 1-simplexes {0,5}, {1,6}, . . . , {7,2}, {8,0}. Similarly,
adding suitable pairs of adjacent 2-simplexes (those forming squares with a common
diagonal) it is possible to find a 1-boundary b′ such that the cycle z−b−b′ contains
only the terms corresponding to the 1-simplexes {0,3}, {3,4}, {4,0},{0,1}, {1,2},
and {2,0} (we leave the details to the reader, as an exercise). Because z−b−b′ is a
1-cycle, it follows that z−b−b′ ∈ S. This argument shows that B1 +S = Z1. Let us
now suppose that B1 ∩S �= 0; then there exists a linear combination of 2-simplexes
∑ j h jσ j

2 such that ∑ j h j∂σ j
2 ∈ S. If two 2-simplexes σ i

2 and σ j
2 have a common
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1-simplex “internal” to the square of Fig. II.10, then they must have equal coeffi-
cients hi = h j. This implies that there exists h ∈ Z such that h j = h for each j,
that is to say, ∑ j h jσ j

2 = hz2 where z2 is the 2-chain ∑ j σ j
2 . It is easy to see that

∂ z2 = ∑ j ∂σ j
2 = 0 and so B1 ∩S = 0, implying that H1(T 2;Z) ∼= S ∼= Z2, with free

generators z1
1 and z2

1.
Finally, similar arguments show that any 2-cycle of C2 is a multiple of the 2-chain

z2 defined above (given by the sum of all oriented 2-simplexes of T 2) and therefore,
H2(T 2;Z) ∼= Z.

Exercises

1. Let U = {Ux|x ∈ X} be a finite open covering of a topological space B, and take
the set

Φ = {σ ⊂ X |
⋂

x∈σ
Ux �= /0}.

Prove that N(U ) = (X ,Φ) is a simplicial complex. This is the so-called nerve of U .

2. Let K = (X ,Φ) be a simplicial complex. For a given x ∈ X , let St(x) be the
complement in |K| of the union of all |σ | such that x �∈ σ , σ ∈ Φ . St(x) is called
star of x in |K|. Prove that S = {St(x) | x ∈ X} is an open covering of |K|, and
N(S ) = K.

3. Let X be a compact metric space and let ε be a positive real number. Take the set
Φ of all finite subsets of X with diameter less than ε . Prove that K = (X ,Φ) is a
simplicial complex (infinite).

4. Exhibit a triangulation of the following spaces:

a) Cylinder C – recall that the cylinder C is obtained from a rectangle by identifica-
tion of two opposite sides;

b) Möbius band M obtained from a rectangle by identification of the “inverse”
points of two opposite sides; more precisely, let S be the rectangle with vertices
(0,0), (0,1), (2,0), and (2,1) of R2; then

M = S/{(0,t)≡ (2,1− t)} , 0 ≤ t ≤ 1;

c) Klein bottle K obtained by identifying the “inverse” points of the boundary of the
cylinder C;

d) real projective plane RP2 obtained by the identification of the antipodal points
of the boundary ∂D2 ∼= S1 of the unit disk D2 ⊂R2;

e) G2 obtained by attaching two handles to the sphere S2; prove that G2 is homeo-
morphic to the space obtained from an octagon with the suitable identifications
of the edges of its border a1b1a−1

1 b−1
1 a2b2a−1

2 b−1
2 .
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II.3 Introduction to Homological Algebra

In the previous section, we have seen that we can associate a graded Abelian
group C(K) = {Cn(K)} with any simplicial complex K and a homomorphism
∂n : Cn(K) → Cn−1(K), such that ∂n−1∂n = 0, to each integer n; these homomor-
phisms define a graded Abelian group H∗(K;Z) = {Hn(K;Z)}. All this can be
viewed in the framework of a more general and more useful context.

A chain complex (C,∂ ) is a graded Abelian group C = {Cn} together with
an endomorphism ∂ = {∂n} of degree −1, called boundary homomorphism3 ∂ =
{∂n : Cn → Cn−1}, such that ∂ 2 = 0; this means that, for every n ∈ Z, ∂n∂n+1 = 0.
Hence

Bn = im∂n+1 ⊂ Zn = ker∂n

and so we can define the graded Abelian group

H∗(C) = {Hn(C) = Zn/Bn | n ∈Z};

this is the homology of C.
A chain homomorphism between two chain complexes (C,∂ ) and (C′,∂ ′) is a

graded group homomorphism f = { fn : Cn → C′
n} of degree 0 commuting with the

boundary homomorphism, that is to say, for every n ∈Z, fn−1∂n = ∂ ′
n fn.

Chain complexes and chain homomorphisms form a category C, the category of
chain complexes.

It is costumary to visualize chain complexes as diagrams

· · · �� Cn+1
∂n+1

�� Cn
∂n �� Cn−1 �� · · ·

and their morphisms as commutative diagrams

· · · �� Cn+1
∂n+1

��

fn+1

��

Cn
∂n ��

fn

��

Cn−1 ��

fn−1

��

· · ·

· · · �� C′
n+1

∂ ′
n+1

�� C′
n

∂ ′
n �� C′

n−1
�� · · ·

The previous definitions are clearly inspired by what we did to define the homol-
ogy groups of a simplicial complex; indeed, we emphasize the fact that, for every
simplicial complex X , the graded Abelian group {Cn(K)|n ∈ Z} together with its
boundary homomorphism ∂ K = {∂ K

n |n ∈ Z} is a chain complex (C(K),∂ K). The
chain complex C(K) is said to be positive because its terms of negative index are 0.
In particular, for every simplicial function f : K → M, the homomorphism

C( f ) : C(K) →C(M)

is a chain homomorphism.

3 In some textbooks, it is called differential operator.
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An infinite sequence of Abelian groups

· · · �� Gn+1
fn+1

�� Gn
fn

�� Gn−1 �� · · ·

is said to be exact if and only if, for every n ∈Z, im fn+1 = ker fn.
The exact sequences with only three consecutive nontrivial groups

. . . �� 0 �� Gn+1
fn+1

�� Gn
fn

�� Gn−1 �� 0 �� . . .

are particularly important; in that case, fn+1 is injective and fn is surjective. These
sequences are called short exact sequences. The previous short exact sequence is
also written up in the form

Gn+1 ��
fn+1

�� Gn
fn

�� �� Gn−1.

The concept of short exact sequence of groups can be easily exported to the
category C of chain complexes: a sequence of chain complexes

(C,∂ ) ��
f

�� (C′,∂ ′)
g

�� �� (C′′,∂ ′′)

is exact if every horizontal line of its representative diagram

...

∂n+2

��

...

∂ ′
n+2

��

...

∂ ′′
n+2

��

Cn+1 ��
fn+1

��

∂n+1

��

C′
n+1

gn+1
�� ��

∂ ′
n+1

��

C′′
n+1

∂ ′′
n+1

��

Cn ��
fn

��

∂n

��

C′
n

gn
�� ��

∂ ′
n

��

C′′
n

∂ ′′
n

��

Cn−1 ��
fn−1

��

∂n−1

��

C′
n−1

gn−1
�� ��

∂ ′
n−1

��

C′′
n−1

∂ ′′
n−1

��

...
...

...
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is exact and each square is commutative.
The next result is very important; it is the so-called Long Exact Sequence

Theorem.

(II.3.1) Theorem. Let

(C,∂ ) ��
f

�� (C′,∂ ′)
g

�� �� (C′′,∂ ′′)

be a short exact sequence of chain complexes. For every n ∈ Z, there exists a ho-
momorphism

λn : Hn(C′′) → Hn−1(C)

(called connecting homomorphism) making exact the following sequence of homol-
ogy groups

. . . �� Hn(C)
Hn( f )

�� Hn(C′)
Hn(g)

�� Hn(C′′)
λn �� Hn−1(C) �� . . . .

Proof. The proof of this theorem is not difficult. However, it is very long; we shall
divide it into several steps, leaving some of the proofs to the reader, as exercises.

1. Definition of λn. Take the following portion of the short exact sequence of chain
complexes:

Cn
��

fn
��

∂n

��

C′
n

gn
�� ��

∂ ′
n

��

C′′
n

∂ ′′
n

��

Cn−1 ��

fn−1

�� C′
n−1 gn−1

�� �� C′′
n−1

Let z be a cycle of C′′
n ; since gn is surjective, there exists a chain z̃ ∈ C′

n such
that gn(z̃) = z. Because the diagram is commutative,

gn−1∂ ′
n(z̃) = ∂ ′′

n gn(z̃) = ∂ ′′
n (z) = 0

and thus, ∂ ′
n(z̃)∈ kergn−1 = im fn−1; hence, there exists a unique chain c∈Cn−1

such that
fn−1(c) = ∂ ′

n(z̃).

Actually, c is a cycle because

fn−2∂n−1(c) = ∂ ′
n−1 fn−1(c) = ∂ ′

n−1∂ ′
n(z̃) = 0

and fn−2 is a monomorphism. It follows that we can define

λn : Hn(C′′) → Hn−1(C)

by setting λn[z] := [c].
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2. λn is well defined. We must verify that λn is independent from both the choice
of the cycle z representing the homology class and the chain z̃ mapped into z.
Let z′ ∈C′′ be a cycle such that [z] = [z′], and let z̃′ ∈C′

n be such that gn(z̃′) = z′;
moreover, take a cycle c′ in C′

n−1 satisfying the property fn−1(c′) = ∂ ′
n(z̃

′). The
definition of homology classes implies that there exists a chain b ∈ C′′

n+1 such
that ∂ ′′

n+1(b) = z− z′. Since gn+1 is an epimorphism, we can find a b̃ ∈ C′
n+1

such that gn+1(b̃) = b. Hence,

gn(z̃− z̃′ − ∂ ′
n+1(b̃)) = z− z′ − ∂ ′′

n+1(b) = 0

and thus, there exists a ∈Cn such that

fn(a) = z̃− z̃′ −∂ ′
n+1(b̃).

At this point, we have that

fn−1(∂n(a)) = ∂ ′
n(z̃− z̃′ −∂ ′

n+1(b̃)) = fn−1(c− c′)

and because fn−1 is injective, we conclude that c− c′ = ∂n(a). Therefore, c and
c′ represent the same homology class in Hn(C).

(II.3.2) Remark. The previous items 1. and 2. are typical examples of the
so-called “diagram chasing” technique. We suggest the reader to draw the
diagrams indicating the maps without their indices which, although necessary
for precision, are sometimes difficult to read; all this will help in following up
the arguments.

3. The sequence is exact. To prove the exactness of the sequence of homology
groups, we must show the following:

a. imHn( f ) = kerHn(g);
b. imHn(g) = kerλn;
c. imλn = kerHn−1( f ).

We shall only prove (b), leaving the proof of the other cases to the reader. We
pick a class [z] ∈ Hn(C′′) and compute λnHn(g)([z]) = λn[gn(z)]. Since we can
take any (!) element of C′

n which is projected onto gn(z), we choose z itself;
given that ∂ ′′

n (z) = 0, we conclude that λn[gn(z)] = 0, that is to say, imHn(g) ⊆
kerλn. Conversely, let [z] be a homology class of Hn(C′′) such that λn[z] = 0;
the definition of λn implies that there exist z̃ ∈C′

n and a cycle c ∈Cn−1 such that

gn(z̃) = z and Cn−1( f )(c) = ∂ ′
n(z̃).

Because λn[z] = 0, there exists c̃ ∈Cn such that c = ∂n(c̃). Notice that

∂ ′
n(Cn( f )(c̃)− z̃) = 0

and moreover, Hn(g)(Cn(g)(c̃)− z̃) = z; hence, kerλn ⊆ imHn(g).

�
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The connecting homomorphisms λn are natural in the following sense:

(II.3.3) Theorem. Let

(C,∂ ) ��
f

��

h

��

(C′,∂ ′)
g

�� ��

k

��

(C′′,∂ ′′)

�

��

(C̄, d̄) ��

f̄
�� (C̄′, d̄′) ḡ

�� �� (C̄′′, d̄′′)

be a commutative diagram of chain complexes in which the horizontal lines are
short exact sequences. Then, for every n ∈Z, the next diagram commutes.

Hn(C′′)
λn ��

Hn(�)
��

Hn−1(C)

Hn−1(h)

��

Hn(C̄′′)
λ̄n

�� Hn−1(C̄)

The proof of this theorem is easy and is left to the reader.
Let f ,g : (C,∂ ) → (C′,∂ ′) be chain complex morphisms. We say that f and g

are chain homotopic if there is a graded group morphism of degree + 1, s : C →C′
such that f −g = d′s+ sd; more precisely

(∀n ∈Z) fn −gn = ∂ ′
n+1sn + sn−1∂n .

The morphism s : C → C′ is a chain homotopy between f and g (or from f to g).
Notice that the chain homotopy relation just defined is an equivalence relation in
the set

C((C,∂ ),(C′,∂ ′)) .

In particular, a morphism f ∈ C((C,∂ ),(C′,∂ ′)) is chain null-homotopic if there
exists a chain homotopy s such that f = d′s + sd (it follows that f and g are chain
homotopic if and only if f −g is chain null-homotopic).

(II.3.4) Proposition. If f ,g ∈ C((C,∂ ),(C′,∂ ′)) are chain homotopic, then

(∀n) Hn( f ) = Hn(g) : HnC → HnC′.

Proof. For any cycle z ∈ ZnC, we have that

Hn f [z] = [ fn(z)] = [gn(z)]+ [∂ ′
n+1sn(z)]+ [sn−1∂n(z)] = Hng[z];

we now notice that ∂nz = 0 and that ∂ ′
n+1sn(z) is a boundary and thus, homologous

to zero. �
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Please notice that if f is chain null-homotopic, then Hn( f ) = 0 for every n.
A chain complex (C,∂ ) is free if all of its groups are free Abelian; it is positive

if Cn = 0 for every n < 0. A positive chain complex (C,∂ ) is augmented (to Z) if
there exists an epimorphism

ε : C0 → Z

such that ε∂1 = 0. The homomorphism ε is the augmentation (homomorphism).

(II.3.5) Remark. The chain complex C(K) associated with a simplicial complex K
is free and positive. Moreover, the function

ε : C0(K) →Z, Σ n
i=1ai{xi} �→ Σ n

i=1ai

is an augmentation.

A chain complex (C,∂ ) is acyclic if, for every n ∈Z, ker∂n = im∂n+1, that is to
say, if the sequence

· · · �� Cn+1
∂n+1

�� Cn
∂n �� Cn−1 �� · · ·

is exact. A positive chain complex (C,∂ ) with augmentation is acyclic if the
sequence

· · · �� Cn
∂n �� · · · ∂1 �� C0

ε �� �� Z

is exact.
Let (C,∂ ) and (C′,∂ ′) be two positive augmented chain complexes. A morphism

f ∈ C((C,∂ ),(C′,∂ ′)) is an extension of a homomorphism f̄ : Z→ Z if the next
diagram commutes.

· · · �� C1
∂1 ��

f1

��

C0
ε �� ��

f0

��

Z

f̄

��· · · �� C′
1

∂ ′
1 �� C′

0
ε ′ �� �� Z

(II.3.6) Theorem. Let (C,∂ ) and (C′,∂ ′) be positive augmented chain com-
plexes; assume that (C,∂ ) is free and (C′,∂ ′) is acyclic. Then any homomor-
phism f̄ : Z → Z admits an extension f : (C,∂ ) → (C′,∂ ′), unique up to chain
homotopy.

Proof. Since the augmentation ε ′ : C′
0 →Z is surjective, for every basis element x0

of C0, we choose an element of C′
0 which is taken onto f̄ ε(x0) by ε ′; in this way, we

obtain a homomorphism f0 : C0 →C′
0 such that f̄ ε = ε ′ f0. We now take an arbitrary

basis element x1 of C1; because
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ε ′ f0∂1(x1) = f ε∂1(x1) = 0

and im∂ ′
1 = kerε ′, there exists y′1 ∈ C′

1 such that ∂ ′
1(y

′
1) = f0∂1(x1). This defines a

homomorphism f1 : C1 →C′
1 such that f0∂1 = ∂ ′

1 f1.
Assume that we have inductively constructed the homomorphisms fi : Ci → C′

i
commuting with the boundary homomorphisms for i≤ n; now, take the commutative
diagram

· · · �� Cn+1
∂n+1

�� Cn

fn

��

∂n �� Cn−1 ��

fn−1

��

· · ·

· · · �� C′
n+1

∂ ′
n+1

�� C′
n

∂ ′
n �� C′

n−1
�� · · ·

For every basis element xn+1 of Cn+1

∂ ′
n fn∂n+1(xn+1) = fn−1∂n∂n+1(xn+1) = 0

that is to say, fn∂n+1(xn+1) ∈ ker∂ ′
n. It follows that fn∂n+1(xn+1) is an n-cycle

of (C′,∂ ′); but this chain complex is acyclic and so there exists yn+1 ∈ C′
n+1

such that ∂ ′(yn+1) = fn∂ (xn+1). By extending linearly xn+1 �→ yn+1, we obtain a
homomorphism

fn+1 : Cn+1 →C′
n+1 , d′ fn+1 = fnd.

This concludes the inductive construction.
Suppose that g : (C,∂ ) → (C′,∂ ′) is another extension of f̄ . Then, for any arbi-

trary generator x0 of C0,
ε ′( f0 −g0)(x0) = 0;

since kerε ′ = im∂ ′
1, there exists an element y1 ∈C′

1 such that ∂ ′
1(y) = ( f0 −g0)(x0).

We define s0 : C0 → C′
1 by s0(x0) = y1 on the generators and extend this function

linearly over the entire group C0; in this way, we obtain a homomorphism s0 : C0 →
C′

1 such that ∂ ′
1s1 = f0 − g0. Let us assume that, for every i = 1, · · · ,n, we have

defined the homomorphisms si : Ci →C′
i+1 satisfying the condition

∂ ′
i+1si + si−1∂i = fi −gi.

For any generator xn+1 of Cn+1

∂ ′
n+1( fn+1 −gn+1 − sn∂n+1)(xn+1) = 0

(because ∂ ′
n+1sn + sn−1∂n = fn −gn); thus, there exists yn+2 ∈C′

n+2 such that

( fn+1 −gn+1− sn∂n+1)(xn+1) = ∂ ′
n+2(yn+2).

In this fashion, we construct a homomorphism sn+1 : Cn+1 → C′
n+2 and, in the end,

we obtain a chain homotopy from f to g. �
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(II.3.7) Corollary. Let (C,∂ ) and (C′,∂ ′) be two positive augmented chain com-
plexes; assume (C,∂ ) to be free and (C′,∂ ′) to be acyclic. If f : (C,∂ ) → (C′,∂ ′) is
an extension of the trivial homomorphism 0 :Z→Z, then f is chain null-homotopic.

The next result gives a good criterion to check if a positive, free, augmented
chain complex is acyclic.

(II.3.8) Lemma. Let (C,∂ ) be a positive, free, augmented chain complex with aug-
mentation homomorphism

ε : C0 −→ Z.

Then, (C,∂ ) is acyclic if and only if the following conditions hold true:

I. There exists a function η : Z→C0 such that εη = 1.
II. There exists a chain homotopy s : C →C such that

1. ∂1s0 = 1−ηε ,
2. (∀n ≥ 1) ∂n+1sn + sn−1∂n = 1.

Proof. Suppose that C is acyclic. Since ε : C0 → Z is a surjection, there exists
x ∈C0 such that ε(x) = 1. Define

η : Z→C0 , n �→ nx.

Clearly εη = 1.
The homomorphisms 1: Z→ Z and 0: Z→ Z can be extended trivially to the

chain homomorphisms 1,0: (C,∂ ) → (C,∂ ); because of Theorem (II.3.6), there
exists a chain homotopy s : C →C satisfying conditions 1 and 2.

Conversely, assume that there exists a chain homotopy s : C → C′, and a
homomrophism η with properties 1. and 2.; because of Noether’s Homomorphism
Theorem,

C0/kerε ∼= Z;

since ε∂1 = 0, we have that im∂1 ⊂ kerε and, from ∂1s0 = 1−ηε , we conclude that
every x ∈C0 can be written as

x = ∂1s0(x)+ ηε(x).

Hence for every x ∈ kerε, we have that x = ∂1s0(x), that is to say, kerε ⊂ im∂1, and
therefore

H0(C) ∼= Z.

Finally, because
∂n+1sn + sn−1∂n = 1

in all positive dimensions, it follows that Hn(C) = 0 for every n > 0. Thus, (C,∂ ) is
acyclic. �

Theorem (II.3.6) and Corollary (II.3.7) require (C′,∂ ′) to be acyclic; this require-
ment can be replaced by a more interesting condition within the framework of the so-
called acyclic carriers. The following definition is needed: given (C,∂ ),(C′,∂ ′)∈ C,
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we say that (C′,∂ ′) is a (chain) subcomplex of (C,∂ ) if, for every n ∈ Z, C′
n is a

subgroup of Cn and ∂ ′
n = ∂n|C′

n; we use the notation (C′,∂ ′) ≤ (C,∂ ) to indicate
that (C′,∂ ′) is a subcomplex of (C,∂ ). Let (C,∂ ) be a free chain complex; for

each n ∈ Z, let {x(n)
λ | λ ∈ Λn} be a basis of Cn. Now, let (C′,∂ ′) be an arbitrary

chain complex. A chain carrier from (C,∂ ) to (C′,∂ ′) (relative to the choice of

basis) is a function S, which associates with each basis element x(n)
λ a subcomplex

(S(x(n)
λ ),∂S) ≤ (C′,∂ ′) satisfying the following properties:

1. (S(x(n)
λ ),∂S) is an acyclic chain complex.

2. If x is a basis element of Cn such that ∂x = ∑aλ x(n−1)
λ and aλ �= 0, then

(S(x(n−1)
λ ),∂S) ≤ (S(x),∂S).

We say that a morphism f ∈ C((C,∂ ),(C′,∂ ′)) has an acyclic carrier S if f (x(n)
λ ) ∈

S(x(n)
λ ) for every index λ and every n ∈ Z. In this case, if x is a basis element, then

f (∂ (x)) ∈ S(x). The next result is the Acyclic Carrier Theorem.

(II.3.9) Theorem. Let (C,∂ ),(C′,∂ ′) ∈ C be positive augmented chain complexes;
suppose that (C,∂ ) is free and let S be an acyclic carrier from (C,∂ ) to (C′,∂ ′).
Then, any homomorphism f̄ : Z → Z has an extension f : (C,∂ ) → (C′,∂ ′) with
chain carrier S. The chain homomorphism f is uniquely defined, up to chain
homotopy.

Proof. Take any generator x0 of C0; let S(x0) ≤ (C′,∂ ′) be the acyclic subcomplex
defined by S. Notice that the restriction of ε ′ to S(x0)0 is an augmentation homo-
morphism for S(x0). Since such a restriction is a surjection, there exists y0 ∈ S(x0)0

such that ε ′(y0) = f̄ ε(x0); the usual argument determines f0 with carrier S.
We continue the proof using an induction procedure as in Theorem (II.3.6). As-

sume that, for every i ≤ n, we have constructed the homomorphisms fi : Ci → C′
i

that commute with the boundary homomorphisms. Notice that if xn+1 is an arbi-
trary generator of Cn+1

∂ ′
n fn∂n+1(xn+1) = fn−1∂n∂n+1(xn+1) = 0;

on the other hand, fn∂n+1(xn+1) belongs to the acyclic subcomplex

S(xn+1) ≤ (C′,∂ ′)

and thus there exists yn+1 ∈ C′
n+1 ∩ S(xn+1) such that d′(yn+1) = fnd(xn+1). The

function xn+1 �→ yn+1 can be linearly extended to the homomorphism

fn+1 : Cn+1 →C′
n+1

such that d′ fn+1 = fnd.
Also the proof of the second part follows the steps of the proof given in

Theorem (II.3.6). �
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(II.3.10) Corollary. Let (C,∂ ) and (C′,∂ ′) be given positive augmented chain com-
plexes and let (C,∂ ) be free. Then any chain homomorphism f : (C,∂ ) → (C′,∂ ′),
extending the trivial homomorphism 0: Z→ Z and having an acyclic carrier S, is
null-homotopic.

We prove now an important result known as Five Lemma.

(II.3.11) Lemma. Let the diagram of Abelian groups and homomorphisms

A
f

��

α
��

B
g

��

β
��

C
h ��

γ
��

D
k ��

δ
��

E

ε
��

A′ f ′
�� B′ g′

�� C′ h′ �� D′ k′ �� E ′

be commutative and with exact lines. If the homomorphisms α , β , δ , and ε are
isomorphisms, so is γ .

Proof. Let c ∈ C be such that γ(c) = 0; then δ h(c) = h′γ(c) = 0 and because δ
is an isomorphism, h(c) = 0. In view of the exactness condition, there is a b ∈ B
with g(b) = c and g′β (b) = γg(b) = 0; thus, there exists a′ ∈ A′ such that f ′(a′) =
β (b). But

c = g(b) = gβ−1 f ′(a′) = g f α−1(a′) = 0

and so γ is injective. For an arbitrary c′ ∈C′,

kδ−1h′(c′) = ε−1k′h′(c′) = 0

and, hence, there exists c ∈C such that h(c) = δ−1h′(c′). Moreover,

h′(c′ − γ(c)) = h′(c′)−δδ−1h′(c′) = 0

and hence, there exists b′ ∈ B′ such that g′(b′) = c′ − γ(c). It follows that

γ(c + gβ−1(b′)) = γ(c)+ g′β β−1(b′) = c′

and so γ is also surjective. �

Exercises

1. A short exact sequence of Abelian groups

Gn+1 ��
fn+1

�� Gn
fn

�� �� Gn−1
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splits (or is split) if there exists a homomorphism hn−1 : Gn−1 → Gn such that
fnhn−1 = 1Gn−1 (or if there exists a homomorphism kn : Gn → Gn+1 such that
kn fn+1 = 1Gn+1). Prove that if the short exact sequence

Gn+1 ��
fn+1

�� Gn
fn

�� �� Gn−1

splits, then
Gn

∼= Gn+1 ⊕Gn−1.

2. Prove Theorem (II.3.3).

II.4 Simplicial Homology

In this section, we give some results which allow us to study more in depth the
homology of a simplicial complex. We begin with some important remarks on the
homology of a simplicial complex K. The groups Cn(K) of the n-chains are free,
with rank equal to the (finite) number of n-simplexes of K; hence, also the subgroups
Zn(K) and Bn(K) of Cn(K) are free, with a finite number of generators. Finally,
the homology groups Hn(K) are Abelian and finitely generated; therefore, by the
decomposition theorem for finitely generated Abelian groups, they are isomorphic
to direct sums

Zβ (n)⊕Zn(1)⊕ . . .⊕Zn(k)

where Zn(i) is cyclic of order n(i). The number β (n) – equal to the rank of the
Abelian group Hn(K) – is the nth-Betti number of the complex K.

Let p be the dimension of the simplicial complex K; for each 0 ≤ n ≤ p, let s(n)
be the number of n-simplexes of K (remember that K is finite). Hence, the rank
of the free Abelian group Cn(K) is s(n). We indicate with z(n) and b(n) the ranks of
the groups Zn(K) and Bn(K), respectively, where n = 0, . . . , p. Since the boundary
homomorphism ∂n : Cn(K)→Cn−1(K) is a surjection on Bn−1(K), by Nöther’s Ho-
momorphism Theorem, for each n ≥ 1

(1) s(n)− z(n) = b(n−1);

if n = 0, we have s(0) = z(0) because C0(K) = Z0(K) and B−1(K) = 0; on the other
hand, Hn(K,Z) = Zn(K)/Bn(K) and so

(2) β (n) = z(n)−b(n)

for n ≥ 0. Subtracting (2) from (1) (when n ≥ 1) it follows that

(3) s(n)−β (n) = b(n)−b(n−1).
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If we do the alternate sum of the equalities (3) together with s(0)−β (0) = b(0), we
obtain

p

∑
n=0

(−1)n(s(n)−β (n)) = ±β (p);

since Cp+1(K) = 0, we have that β (p) = 0 and so the equality

p

∑
n=0

(−1)ns(n) =
p

∑
n=0

(−1)nβ (n)

holds true. The number

χ(K) =
p

∑
n=0

(−1)nβ (n)

is the Euler-Poincaré characteristic of K; this may be useful in determining the
homology of some finite simplicial complexes.

Let L be a simplicial subcomplex of a simplicial complex K; we now ask whether
it is possible to compare the homology of a subcomplex L ⊂K with the homology of
K. The (positive) answer lies with the exact homology sequence of the pair (K,L).
Let us see how we may find this exact sequence. For every n ≥ 0, consider the
quotient of the chain groups Cn(K)/Cn(L) and define

∂ K,L
n : Cn(K)/Cn(L) →Cn−1(K)/Cn−1(L)

by
∂ K,L

n (c +Cn(L)) = (∂ K
n (c))+Cn−1(L).

This is a well-defined formula because, if c′ is another representative of c +Cn(L),
then, c− c′ ∈Cn(L) and

∂ K
n (c− c′) = ∂ L

n (c− c′) ∈Cn−1(L) ;

hence, ∂ K,L
n (c +Cn(L)) = ∂ K,L

n (c′ +Cn(L)). The reader can easily verify that the
homomorphisms ∂ K,L

n are boundary homomorphisms and so that

C(K,L) = {Cn(K)/Cn(L),∂ K,L
n }

is a chain complex whose homology groups Hn(K,L;Z) are the so-called relative
homology groups of the pair (K,L). We point out that

Hn(K,L;Z) = Zn(K,L)/Bn(K,L)

where
Zn(K,L) = ker∂ K,L

n and Bn(K,L) = im∂ K,L
n+1.

Let CCsim be the category whose objects are pairs (K,L), where K is a simplicial
complex, L is one of its subcomplexes, and whose morphisms are pairs of simplicial
functions

(k, �) : (K,L) −→ (K′,L′)



II.4 Simplicial Homology 77

such that k : K → K′ and � : L → L′ is the restriction of k to L. The reader can easily
verify that the relative homology determines a covariant functor

H(−,−;Z) : CCsim −→ AbZ.

The next result, which is an immediate application of the Long Exact Sequence
Theorem (II.3.1), is called Long Exact Homology Sequence Theorem; it relates
the homology groups of L, K, and (K,L) to each other.

(II.4.1) Theorem. Let (K,L) be a pair of simplicial complexes. For every n > 0,
there is a homomorphism

λn : Hn(K,L;Z) → Hn−1(L;Z)

(connecting homomorphism) that causes the following sequence of homology
groups

. . . → Hn(L;Z)
Hn(i)−→ Hn(K;Z)

q∗(n)−→ Hn(K,L;Z) λn−→ Hn−1(L;Z) → . . . ,

to be exact; here, Hn(i) is the homomorphism induced by the inclusion i : L→K and
q∗(n) is the homomorphism induced by the quotient homomorphism qn : Cn(K) →
Cn(K)/Cn(L).

Proof. For every n > 0, let

qn : Cn(K) →Cn(K)/Cn(L)

be the quotient homomorphism. With the given definitions, it is easily proved that

(∀n ≥ 0) ∂ K,L
n qn = qn−1∂ K

n

and therefore,
q = {qn} : C(K) →C(K,L)

is a homomorphism of chain complexes. We note furthermore that for each n ≥ 0,
the sequence of Abelian groups

Cn(L) ��
Cn(i)

�� Cn(K)
qn

�� �� Cn(K)/Cn(L)

is a short exact sequence and therefore, we have a short exact sequence of chain
complexes

C(L) ��
C(i)

�� C(K)
q

�� �� C(K,L);

the result follows from Theorem (II.3.1). �

The exact sequence of homology groups described in the statement of Theorem
(II.4.1) is the exact homology sequence of the pair (K,L).
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In the context of the categories Csim and CCsim, the naturality of the connecting
homomorphism

λn : Hn(K,L;Z) → Hn−1(L;Z)

can be explained as follows. We start with a result whose proof is easily obtained
from the given definitions and is left to the reader.

(II.4.2) Theorem. Let (k, �) : (K,L) → (K′,L′) be a given simplicial function.
Then, for every n ≥ 1, the following diagram commutes.

Hn(K,L;Z)
λn ��

Hn(k, �)

��

Hn−1(L;Z)

Hn−1(�)

��

Hn(K′,L′;Z)
λn

�� Hn−1(L′;Z)

Let
pr2 : CCsim → Csim

be the functor defined by

(∀(K,L) ∈ CCsim) pr2(K,L) = L

and
(∀(k, �) ∈ CCsim((K,L),(K′,L′))) pr2(k, �) = � .

For each n ≥ 0, take the covariant functors

Hn(−,−) : CCsim → Gr

and
Hn−1(−)◦ pr2 : CCsim → Gr .

Theorem (II.3.3) states that

λn : Hn(−,−;Z) → Hn−1(−;Z)◦ pr2

is a natural transformation (see the definition of natural transformation of functors
in Sect. I.2).

Computing the homology of a complex K can be made easier by the exact ho-
mology sequence, provided that we can compute the homology of L and the relative
homology of (K,L). Another very useful technique for computing the homology of
a simplicial complex is using the Mayer–Vietoris sequence. Consider two simpli-
cial complexes K1 = (X1,Φ1) and K2 = (X2,Φ2) such that K1 ∩K2 and K1 ∪K2 are
simplicial complexes; in addition, K1 ∩K2 must be a subcomplex of both K1 and K2.
The inclusions

Φ1 ∩Φ2 ↪→ Φα , Φα ↪→ Φ1 ∪Φ2 , α = 1,2
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define simplicial functions

iα : K1 ∩K2 −→ Kα , jα : Kα −→ K1 ∪K2 , α = 1,2

which, in turn, define the homomorphisms

ı̃(n) : Cn(K1 ∩K2) →Cn(K1)⊕Cn(K2)
c �→ (Cn(i1)(c),Cn(i2)(c)) ,

j̃(n) : Cn(K1)⊕Cn(K2) →Cn(K1 ∪K2)
(c,c′) �→Cn( j1)(c)−Cn( j2)(c′).

These homomorphisms have the following properties:

1. ı̃(n) is injective;
2. j̃(n) is surjective;
3. im ı̃(n) = ker j̃(n);
4. (∂ K1

n ⊕ ∂ K2
n )ı̃(n) = ı̃(n−1)∂ K1∩K2

n ;
5. j̃(n−1)(∂ K1

n ⊕∂ K2
n ) = ∂ K1∪K2

n j̃(n).

In this way, the chain complex sequence

0 →C(K1 ∩K2)
ı̃−→C(K1)⊕C(K2)

j̃−→C(K1 ∪K2) → 0

is short exact.
Theorem (II.3.1) enables us to state the next theorem, known as Mayer–Vietoris

Theorem:

(II.4.3) Theorem. For every n ∈Z, there is a homomorphism

λn : Hn(K1 ∪K2;Z) −→ Hn−1(K1 ∩K2;Z)

such that the infinite sequence of homology groups

. . . → Hn(K1 ∩K2;Z)
Hn(ı̃)−→ Hn(K1;Z)⊕Hn(K2;Z)

Hn(j̃)−→ Hn(K1 ∪K2;Z) λn−→ Hn−1(K1 ∩K2;Z) → . . .

is exact.

We now give some results on the homology of certain simplicial complexes.
Given a simplicial complex K = (X ,Φ), we say that two vertices x,y ∈ X are con-
nected if there is a sequence of 1-simplexes

{{xi
0,x

i
1} ∈ Φ, i = 0, . . . ,n}

where x0
0 = x,xn

1 = y, and xi
1 = xi+1

0 ; we then have an equivalence relation on the set
X , braking it down into a union of disjoint subsets X = X1 �X2 � . . .�Xk. The sets
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Φi = {σ ∈ Φ|(∃x ∈ Xi|x ∈ σ)} , i = 1, . . . ,k

are disjoint; moreover, the pairs Ki = (Xi,Φi), i = 1, . . . ,k, called connected compo-
nents of K, are simplicial subcomplexes of K. Hence, the relation of connectedness
subdivides the complex K into a union of disjoint simplicial subcomplexes of K.
From this point of view, a complex K is connected if and only if it has a unique
connected component.

(II.4.4) Lemma. A simplicial complex K is connected if and only if |K| is connected.

Proof. Suppose K to be connected and let p and q be any two points of |K|. Join
p to a vertex x of its carrier s(p) by means of the segment with end points p and x;
this segment is contained in |s(p)| and is therefore a segment of |K|; similarly, join
q to a vertex y of its carrier s(q). However, the vertices x and y are also vertices of K
and since K is connected, there is a path of 1-simplexes of K which links x to y. In
this manner, we obtain a path of |K| that links p to q; hence, |K| is path-connected
and so, |K| is connected (see Theorem (I.1.21)).

Conversely, suppose |K| to be connected and let Ki be a connected component
of K; since Ki and K � Ki are subcomplexes of K, we have that |Ki| is open and
closed in |K|; since |K| is connected, |Ki| = |K|, that is to say, Ki = K and so, K is
connected. �

The reader is encouraged to review the results on connectedness and path-
connectedness in Sect. I.1; note that these two concepts are equivalent for polyhedra.

(II.4.5) Lemma. The following properties regarding a simplicial complex K =
(X ,Φ) are equivalent:

1. K is connected;
2. H0(K;Z) �Z;
3. the kernel of the augmentation homomorphism

ε : C0(K) → Z ,
n

∑
i=1

gi{xi} �→
n

∑
i=1

gi

coincides with the group B0(K).

Proof. 1 ⇒ 3: We first notice that the inclusion

B0(K) ⊂ ker ε

is always true: indeed,

ε

(
∂1

(
k

∑
i=0

gi{xi
0,x

i
1}
))

=
k

∑
i=0

gi −
k

∑
i=0

gi = 0.

Let x be a fixed vertex of K. The connectedness of K means that, for every ver-
tex y of K, the 0-cycles {x} and {y} are homological and so, for every 0-chain
c0 = ∑k

i=0 gi{xi}, there exists a 1-chain c1 such that
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k

∑
i=0

gi{xi}−
(

k

∑
i=0

gi

)
{x} = ∂1(c1).

Therefore, it is clear that c0 ∈ ker ε implies c0 ∈ B0(K).
3 ⇒ 2: Given two homological 0-cycles z0 and z′0, it follows from the property

z0 − z′0 ∈ B0(K) that ε(z0) = ε(z′0) and so we may define the homomorphism

θ : H0(K;Z) → Z , z0 + B0(K) �→ ε(z0)

which is easily seen (by hypothesis 3) to be injective. The surjectivity of θ follows
immediately; in fact, for every g ∈ Z, we have θ(g{x}+ B0(K)) = g, where x ∈ X
is a fixed vertex.

2 ⇒ 1: Let K = K1 �K2 � . . .�Kk be the decomposition of K into its connected
components. We obtain

H0(K;Z) �
k

∑
i=1

H0(Ki;Z) �
k

∑
i=1

Z

from the given definitions and from what we have proved so far; however, since
H0(K;Z) �Z, we must have k = 1, which means that K is connected. �

The next three examples are examples of abstract simplicial complexes called
acyclic because they induce chain complexes which are acyclic (see Sect. II.3).

Homology of σ – Let σ be the simplicial complex generated by a simplex σ =
{x0,x1, . . . ,xn}. Since σ is connected, Lemma (II.4.5) ensures that H0(σ ,Z) = Z.
We wish to prove that Hi(σ ,Z) = 0 for every i > 0. With this in mind, we begin to
order the set of vertices, assuming that x0 is the first element. Then, for any integer
0 < j < n and any ordered simplex {xi0 , . . . ,xi j}, we define

k j({xi0 , . . . ,xi j} =
{ {x0,xi0 , . . . ,xi j} for i0 > 0

0 for i0 = 0

and linearly extend it to all j-chain of σ and therefore, to a homomorphism

k j : Cj(σ ) −→Cj+1(σ).

A simple computation (on the simplexes of σ ) shows that for every chain c ∈Cj(σ)

∂ j+1k j(c)+ k j−1∂ j(c) = c

and so any z j ∈ Zj(σ) is a boundary, that is to say, Hj(σ ,Z) ∼= 0. Regarding
Hn(σ ,Z), we note that σ , being the only n-simplex of σ , cannot be a cycle; conse-
quently, Zn(σ) ∼= 0.

Homology of a simplicial cone – Since σ = {x0,x1, . . . ,xn+1}, we call the sim-
plicial complex

C(σ) = •σ �{x1, . . . ,xn+1},
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obtained by removing the n-face opposite to the vertex x0 from the simplicial com-
plex

•σ , n-simplicial cone with vertex {x0} . Clearly

H0(C(σ),Z) ∼= Z

because C(σ) is connected. A similar proof to the one used for σ shows that
Hj(C(σ),Z) ∼= 0 for every 0 < j < n. We note that, when j = n, the vertex x0

belongs to every n-simplex of C(σ) and so

(∀c ∈Cn(C(σ)))c = kn−1∂n(c),

allowing us to conclude that the trivial cycle 0 is the only n-cycle of C(σ); in other
words, Hn(C(σ);Z) ∼= 0.

In the next example we refer to the construction of an acyclic carrier.
Homology of the (abstract) cone – Let vK = v ∗ K be the join of a simpli-

cial complex K = (X ,Φ) and of a simplicial complex with a single vertex (and
simplex) v.

(II.4.6) Lemma. The cones vK are acyclic simplicial complexes.

Proof. Let v be the simplicial complex with the single vertex v and no other sim-
plex; it is clear that v (considered as a simplicial complex) is an acyclic simplicial
complex. The chain complex C(v) is a subcomplex of C(vK); let ι : C(v) →C(vK)
be the inclusion. Consider the simplicial function

c : vK → v , y ∈ vΦ �→ {v} .

It is readily seen that the chain morphism

C(c)ι : C(v) −→C(v)

coincides with the identity homomorphism of C(v); then, for every n ∈Z, the com-
posite Hn(c)Hn(ι) equals the identity. Let us prove that ιC(c) and the identity ho-
momorphism 1C(vK) of C(vK) are homotopic. We define

sn : Cn(vK) →Cn+1(vK)

on the oriented n-simplexes σ ∈ vΦ (understood as a chain) by the formula

sn(σ) =
{

0 if v ∈ σ ,
vσ if v �∈ σ ;

sn may be linearly extended to a homomorphism of Cn(vK). Let us take a look into
the properties of these functions.
Case 1: n = 0 – Let x be any vertex of vK.

(1C0(vK) − ιC0(c))(x) =
{

x− v if x �= v,
0 if x = v.



II.4 Simplicial Homology 83

∂1s0(x) =
{

x− v if x �= v,
0 if x = v.

Case 2: n > 0 – Let σ be any oriented n-simplex of vK. We first observe that
ιCn(c)(σ) = 0; moreover, if v is not a vertex of σ , we have

∂n+1(vσ) = σ − v∂n(σ).

Consequently, v �∈ σ implies

sn−1∂n(σ)+ ∂n+1sn(σ) = v∂n(σ)+ ∂n+1(vσ) = σ .

We now suppose that v ∈ σ . Then,

sn−1∂n(σ)+ ∂n+1sn(σ) = sn−1∂n(σ) = σ .

It follows from these remarks that ιC(c) and the identity homomorphism 1C(vK)
are homotopic and we conclude from Proposition (II.3.4) that, for every n ∈ Z,
Hn(ι)Hn(c) coincides with the identity homomorphism. �

We now seek a better understanding of the relative homology H∗(K,L;Z) of a
pair of simplicial complexes (K,L). As usual, K = (X ,Φ) and L = (Y,Ψ ) with
Y ⊂ X and Ψ ⊂ Φ . Let v be a point which is not in the set of vertices of ei-
ther K or L. Let CL be the abstract cone vL. It follows from the definitions that
K ∩CL = L.

(II.4.7) Theorem. The homology groups Hn(K,L;Z) and Hn(K ∪CL;Z) are iso-
morphic for each n ≥ 1.

Proof. The central idea in this proof is to compare the exact homology sequence of
the pair (K,L) and the exact sequence of Mayer–Vietoris of K and CL, before using
the Five Lemma; the notation is the one already adopted for the Mayer–Vietoris
Theorem.

Let us consider the simplicial function f : K →CL defined on the vertices by

f (x) =
{

x if x ∈ Y
v if x ∈ X �Y.

For each nonnegative integer n, we now define the homomorphisms

k̃n : Cn(K) →Cn(K)⊕Cn(CL) , c �→ (c,Cn( f )(c))

and

h̃n : Cn(K)/Cn(L) −→Cn(K ∪CL),
c +Cn(L) �→Cn( j1)(c)−Cn( j2)Cn( f )(c)
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(that is to say, h̃n(c+Cn(L)) = j̃nk̃n(c)). The function h̃n is well defined; in fact, had
c′ ∈Cn(K) been such that c−c′ ∈Cn(L), we would have c−c′ ∈Cn(K∩CL) and so

j̃nk̃n(c− c′) = j̃n ı̃n(c− c′) = 0.

The homomorphism sequences h̃ = {h̃n|n ≥ 0} and k̃ = {k̃n|n ≥ 0} are homomor-
phisms of chain complexes giving rise to a commutative diagram

C(L) ��
C(i)

��

1

��

C(K)
q̃

�� ��

k̃
��

C(K,L)

h̃
��

C(K ∩CL) �� ı̃ �� C(K)⊕C(CL)
j̃

�� �� C(K ∪CL)

Since CL is an acyclic simplicial complex, we obtain, for every n ≥ 2, the com-
mutative diagram of Abelian groups

Hn(L;Z)

1
��

�� Hn(K;Z) ��

∼=
��

Hn(K,L;Z) ��

γ
��

Hn−1(L;Z)

1
��

�� Hn−1(K;Z)

∼=
��

Hn(L;Z) �� Hn(K;Z) �� Hn(K ∪CL;Z) �� Hn−1(L;Z) �� Hn−1(K;Z)

and by the Five Lemma, we conclude that γ is an isomorphism; when n = 1, the last
vertical arrow is an injective homomorphism

H0(K;Z) −→ H0(K;Z)⊕Z

and again with an argument similar to the Five Lemma, we conclude that γ is an
isomorphism. �

(II.4.8) Remark. We recall that we have defined the relative homology groups
of a pair of simplicial complexes (K,L) through the chain complex C(K,L) =
{Cn(K)/Cn(L),∂ K,L

n }; we now construct the relative groups Hn(K,L;Z), n≥ 0, from
a slightly different point of view which turns out to be very useful for computing
homology groups.

For any n ≥ 0, let Cn(K,L) be the Abelian group of formal linear combinations,
with coefficients in Z, of all n-simplexes of K which are not in L; in other words, if
K = (X ,Φ), L = (Y,Ψ ) with Y ⊂ X and Ψ ⊂ Φ ,

Cn(K,L;Z) = {∑
i

miσ i
n|σ i

n ∈ Φ �Ψ}.

The inclusion i : L → K induces an injective homomorphism Cn(i) : Cn(L) →
Cn(K) for each n ≥ 0; we now take, for every n ≥ 0, the following linear
homomorphisms:

βn : Cn(K) →Cn(L)
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defined on the n-simplexes of K by the conditions

βn(σn) =
{

0 if σn ∈ Φ �Ψ
σn if σn ∈Ψ

αn : Cn(K,L) →Cn(K) , σn ∈ Φ �Ψ �→ σn

μn : Cn(K) →Cn(K,L)

such that

μn(σn) =
{

σn if σn ∈ Φ �Ψ
0 if σn ∈Ψ .

It is easy to check that βnCn(i) = 1, μnαn = 1, μnCn(i) = 0, and Cn(i)βn +αnμn = 1
for each n ≥ 0. Hence, for every n ≥ 0, we have a short exact sequence

Cn(L) ��
Cn(i)

�� Cn(K)
μn

�� �� Cn(K,L).

We now consider the boundary homomorphism ∂n : Cn(K) →Cn−1(K) and define

∂ n : Cn(K,L) →Cn−1(K,L)

as the composite homomorphism ∂ n = μn−1∂nαn. We note that

∂ n−1∂ n = (μn−2∂n−1αn−1)(μn−1∂nαn)
= (μn−2∂n−1)(1−Cn−1(i)βn−1)∂nαn

= μn−2∂n−1∂nαn − μn−2∂n−1Cn−1βn−1 = 0

since the factor ∂n−1∂n = 0 appears in the first term and also because the second term
is null on all (n−1)-simplex of K. The graded Abelian group {Cn(K,L) | n ∈ Z},
where Cn(K,L) = 0 for every n < 0, has a boundary homomorphism {∂ n | n ∈ Z}
with ∂ n = 0 for n ≤ 0; let

H∗(K,L;Z) = {Hn(K,L;Z)}

be its homology. Let θn : Cn(K,L) → Cn(K) be the linear homomorphism defined
on an n-simplex σn ∈ Φ �Ψ by θn(σn) = σn +Cn(L) (if n < 0, we define θn = 0).
We note that θn commutes with the boundary homomorphisms; it is sufficient to
verify this statement for an n-simplex σn ∈ Φ �Ψ :

∂ K,L
n θn(σn) = ∂n(σn)+Cn−1(L) = ∑

σn−1,i∈Φ�Φ
(−1)iσn−1,i +Cn(L);

θn−1∂ n(σn) = θn−1(μn−1 ∑
i
(−1)iσn−1,i) = ∑

σi,n−1∈Φ�Φ
(−1)iσn−1,i +Cn(L).
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Therefore, the set {θn | n ∈Z} induces a homomorphism

Hn(θn) : Hn(K,L;Z) → Hn(K,L;Z) .

On the other hand, θn is an isomorphism for each n ≥ 0 (it is injective by definition
and surjective because θnμn = qn). Therefore, the two types of homology groups
are isomorphic.

Let
{Ki = (Xi,Φi) |i = 1, . . . , p}

be a finite set of simplicial complexes; we choose a base vertex xi
0 ∈ Xi for each Ki

and construct the wedge sum of all Ki as the simplicial complex

∨p
i=1Ki : =

n⋃

i=1

({x1
0}× . . .×Ki × . . .×{xp

0})

that is to say
∨p

i=1Ki = (∨p
i=1Xi,∨p

i=1Φi) .

The next theorem shows that the homology of the wedge sum of simplicial com-
plexes acts in a special way.

(II.4.9) Theorem. For every q ≥ 1,

Hq(∨p
i=1Ki;Z) ∼= ⊕p

i=1Hq(Ki;Z).

Proof. It is enough to prove this result for p = 2. The short exact sequence of chain
complexes

C(K1) �� i �� C(K1 ∨K2)
k �� �� C(K1 ∨K2,K1;Z)

induces a long exact sequence of homology groups

. . . → Hn(K1;Z)
Hn(i)−→ Hn(K1 ∨K2;Z)

q∗(n)−→ Hn(K2;Z) λn−→ Hn−1(K1;Z) → . . .

(see Remark (II.4.8)). Let us now examine how the homomorphisms of chain
complexes

C(K1)
i ��C(K1 ∨K2)

C(K1 ∨K2)
k ��C(K1 ∨K2,K1;Z) ∼= C(K2)

are defined on simplexes (in other words, the generators of the free groups that
concern us):

(∀σ1
n ∈ Φ1) in(σn) = σ 1

n ×{x2
0}

(∀σ1
n ×{x2

0} ∈ Φ1 ×{x2
0}) kn(σ 1

n ×{x2
0} = 0

(∀{x1
0}×σ2

n ∈ {x1
0}×Φ2) kn({x1

0}×σ 2
n ) = σ 2

n .
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We now define the homomorphisms

j : C(K1 ∨K2) →C(K1) and h : C(K1 ∨K2,K1;Z) →C(K1 ∨K2)

as follows:

(∀σ 1
n ×{x2

0} ∈ Φ1 ×{x2
0}) jn(σ 1

n ×{x2
0}) = σ 1

n

(∀{x1
0}×σ 2

n ∈ {x1
0}×Φ2) jn({x1

0}×σ 2
n ) = 0

(∀σ 2
n ∈ Φ2) hn(σ 2

n ) = {x1
0}×σ 2

n .

Morphisms i,k, j, and h are induced by simplicial functions and so they commute
with boundary operators. Moreover, ji = 1C(K1) and kh = 1C(K2), a property
that extends to the respective homomorphisms regarding homology groups.
Hence, for each q ≥ 1, we have a splitting short exact sequence of homology
groups

Hq(K1;Z) ��
Hq(i)

�� Hq(K1 ∨K2;Z)
Hq(k)

�� �� Hq(K2;Z). �

II.4.1 Reduced Homology

It is sometimes an advantage to introduce a little change to the simplicial homology,
named reduced homology; the only difference between the two homologies lies on
the group H0(−;Z). To obtain the reduced homology H̃∗(K;Z) of a simplicial
complex K, we consider the chain complex

C̃(K,Z) = {C̃n(K), d̃n}
where

C̃n(K) =

⎧
⎨

⎩

Cn(K) , n ≥ 0
Z , n = −1
0 , n ≤−2

and define the boundary homomorphism

d̃n =

⎧
⎨

⎩

∂n , n ≥ 1
ε : C0(K) → Z , n = 0
0 , n ≤−1

where ε is the augmentation homomorphism (see Lemma (II.4.5)). We only need to
verify that d̃0d̃1 = 0; but this follows directly from the definition of ε.

We leave to the reader, as an exercise, to prove that if K is a connected simplicial
complex, then

(∀n �= 0) H̃n(K;Z) ∼= Hn(K;Z)

and
H̃0(K;Z) ∼= 0.
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Exercises

1. The simplicial n-sphere is the simplicial complex

•σn+1 = (σn+1,Φ)

where σn+1 = {x0,x1, . . . ,xn+1} and Φ =℘(X)\{ /0,σn+1}. Prove that

Hp(
•σn+1) =

{
Z , p = 0,n
0 , p �= 0,n.

2. Prove that a subgroup of a free Abelian group is free (if this proves to be very
difficult, refer to [17], Theorem 5.3.1f).

3. Compute the homology groups of the triangulations associated with the following
spaces (see Exercise 4 on p. 64).

a) cylinder C = S1 × I;
b) Möbius band M;
c) Klein bottle K;
d) real projective plane RP2;
e) G2, obtained by adding two handles to the sphere S2.

4. Compute the Betti numbers and the Euler–Poincaré characteristic for the surfaces
of the previous exercise.

5. Let K be a given connected simplicial complex and ΣK = K ∗ {x,y} be the sus-
pension of K (see examples of simplicial complexes given in Sect. II.2). Prove that

(∀n ≥ 0) H̃n(ΣK) ∼= H̃n−1(K)

by means of the Mayer–Vietoris sequence.

6. Let K be a one-dimensional connected simplicial complex (namely, a graph), and
C(K) = 1− χ(K) its cyclomatic number (also called the circuit rank). Prove that
C(K) ≥ 0 and that the equality holds if and only if |K| is contractible (that is to say,
K is a tree).

II.5 Homology with Coefficients

In Sect. II.4, we have studied the homology of oriented simplicial complexes K
determined by the chain complex

(C(K),∂ ) = {Cn(K),∂ K
n |n ∈Z},
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Cn(K) being the free Abelian groups of formal linear combinations with coefficients
in Z of the n-simplexes of K. We now wish to generalize our homology with co-
efficients in the Abelian group Z to a homology with coefficients drawn from any
Abelian group G.

We begin by reviewing the construction of the tensor product of two Abelian
groups A, B: by definition, A ⊗ B is the Abelian group generated by the set of
elements

{a⊗b|a∈ A , b ∈ B}
where (∀a,a′ ∈ A , b,b′ ∈ B)

1. (a + a′)⊗b = a⊗b + a′⊗b ,
2. a⊗ (b + b′) = a⊗b + a⊗b′ .

We notice that the function

A⊗Z→ A , a⊗n �→ na

is a group isomorphism, that is to say, A⊗Z∼= A (similarly, Z⊗A ∼= A). The reader
may easily prove that

(A⊕B)⊗C ∼= (A⊗C)⊕ (B⊗C)

for any three Abelian groups A, B, and C. Finally, given two group homomorphisms
φ : A → A′ and ψ : B → B′, the function φ ⊗ψ : A⊗B → A′ ⊗B′ defined by φ ⊗
ψ(a⊗b) = φ(a)⊗ψ(b) is a homomorphism of Abelian groups.

In this way, by fixing an Abelian group G we are able to construct a covariant
functor

−⊗G : Ab → Ab

that transforms a group A into A⊗G and a morphism φ : A → B into the morphism
φ ⊗1G.

We extend this functor to chain complexes. We transform a given chain complex
(C,∂ ) ∈ C in (C⊗G,∂ ⊗1G), by setting

(C⊗G)n := Cn ⊗G

for every n ∈Z, and by defining the homomorphisms

(∂ ⊗1G)n := ∂n ⊗1G : Cn ⊗G →Cn−1 ⊗G .

Since

(∂ ⊗1G)n−1(∂ ⊗1G)n = (∂n−1 ⊗1G)(∂n ⊗1G) = ∂n−1∂n ⊗1G = 0 ,

we conclude that (C⊗G,∂ ⊗ 1G) is a chain complex whose homology groups are
the homology groups of (C,∂ ) with coefficients in G. The nth-homology group of
(C,∂ ) with coefficients in G is defined by the quotient group
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Hn(C;G) = ker(∂n ⊗1G)/ im(∂n+1 ⊗1G);

the graded Abelian group H∗(C;G) is the graded homology group of C with coef-
ficients in G. In particular, if (C,∂ ) = (C(K),∂ ), the chain complex of the oriented
complex K, then H∗(C(K);G) – simply denoted by H∗(K;G) – is the homology of
K with coefficients in G.

We recall that the chain complex (C(K),∂ ) is positive, free, and has an augmen-
tation homomorphism ε : C0(K) → Z. To continue with our work, we only need
one of these properties, namely, that (C,∂ ) be free.

For every free chain complex (C,∂ ) and for each n ∈ Z, we have a short exact
sequence of free Abelian groups

Zn(C) �� �� Cn
∂n �� �� Bn−1(C) .

The main point is that, by taking the tensor product of each component of this exact
sequence with G, we obtain again a short exact sequence.

(II.5.1) Lemma. If

A ��
f

�� B
g

�� �� C

is a short exact sequence of free Abelian groups and G is an Abelian group, then
also the sequence

A⊗G ��
f ⊗1G

�� B⊗G
g⊗1G

�� �� C⊗G

is exact.

Proof. We begin by noting that the group C is free; therefore, we may define a map
s : C → B simply by choosing for each element of a basis of C an element of its anti-
image under g, and by extending this operation linearly; through this procedure, we
obtain a homomorphism of Abelian groups

s : C −→ B

such that gs = 1C, the identity homomorphism of C onto itself. It follows that g(1B−
sg) = g− (gs)g = 0, in other words, the image of 1B− sg is contained in the kerg =
im f ; for this reason, we may define the map r := f−1(1B − sg) : B → A that also
satisfies r f = f−1(1B − sg) f = 1A. We thus obtain the relations

r f = 1A , gs = 1C , and f r + sg = 1B.

We know that the tensor product by G is a functor and that it transforms sums of ho-
momorphisms into sums of transformed homomorphisms; consequently, tensoriza-
tion gives us the relations
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(r⊗1G)( f ⊗1G) = 1A⊗G (g⊗1G)(s⊗1G) = 1C⊗G

and
( f ⊗1G)(r⊗1G)+ (s⊗1G)(g⊗1G) = 1B⊗G.

The first of these relations tells us that ( f ⊗1G) is injective; the second, that (g⊗1G)
is surjective, and the third, that im( f ⊗ 1G) = ker(g⊗ 1G) because, if we take x ∈
B⊗G such that (g⊗1G)(x) = 0, then

x = ( f ⊗1G)(r⊗1G)(x)+ (s⊗1G)(g⊗1G)(x)
= ( f ⊗1G)((r⊗1G)(x)) ∈ im( f ⊗1G).

�

Returning to our free chain complex (C,∂ ), we notice that for each integer n, the
sequence

Zn(C)⊗G �� �� Cn ⊗G
∂n ⊗1G �� �� Bn−1(C)⊗G

is short exact. In addition, we observe that the graded Abelian groups Z(C) =
{Zn(C)|n ∈Z} and B(C) = {Bn(C)|n ∈Z} may be viewed as chain complexes with
trivial boundary operator 0; we then construct the chain complexes

1. (Z(C)⊗G,0⊗1G);
2. (C⊗G,∂ ⊗1G);
3. (˜B(C)⊗G,0⊗1G), where ˜B(C)n = Bn−1(C)

and observe that in view of the preceding short exact sequence of Abelian groups,
we have a short exact sequence of chain complexes

(Z(C)⊗G,0⊗1G) �� �� (C⊗G,∂ ⊗1G) �� �� (˜B(C)⊗G,0⊗1G).

By the Long Exact Sequence Theorem (II.3.1), we obtain the long exact sequence
of homology groups

· · · �� Hn(Z(C)⊗G) �� Hn(C⊗G) ��

Hn(˜B(C)⊗G) �� Hn−1(Z(C)⊗G) �� · · ·
in other words, by considering the format of the boundary operators, we have the
following exact sequence of Abelian groups:

· · · �� Bn(C)⊗G
in ⊗1G �� Zn(C)⊗G

jn
��

Hn(C;G)
hn �� Bn−1(C)⊗G

in−1 ⊗1G
�� Zn−1(C)⊗G �� · · ·

Note that in is the inclusion of Bn(C) in Zn(C) and jn is the induced homomorphism
by the inclusion of Zn(C) in Cn; the reader is also asked to notice that the connecting
homomorphism λn+1 in Theorem (II.3.1) coincides with in ⊗1G.
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Since im jn = kerhn, we conclude that, for every n ≥ 0, the sequence

im jn �� �� Hn(C;G)
hn �� �� imhn

is short exact.

(II.5.2) Lemma. If the group G is free, the short exact sequence

im jn �� �� Hn(C;G)
hn �� �� imhn

splits,4 and so
Hn(C;G) ∼= im jn ⊕ imhn

(however, one should note that this isomorphism is not canonic).

Proof. Let us take the homomorphism of Abelian groups

hn : Hn(C;G) → Bn−1(C)⊗G.

As a subgroup of the free Abelian group Cn−1, Bn−1(C) is free and by hypothesis
G is also free; then Bn−1(C)⊗G is free and it follows that imhn is free. We now
choose, for every generator x ∈ imhn, an element y ∈ Hn(C;G) such that hn(y) = x;
by linearity, we obtain a homomorphism

s : imhn −→ Hn(C;G)

such that hns = 1imhn . Exercise 1 in Sect. II.3 completes the proof.
The homomorphism s depends on the choice of the elements y for the generators

x; therefore, s is not canonically determined. �

We now give another interpretation of the groups im jn and imhn. Note that

im jn ∼= Zn(C)⊗G/ker jn = Zn(C)⊗G/ im(in ⊗1G);

the quotient group

Zn(C)⊗G/ im(in ⊗1G) := coker(in ⊗1G)

is called cokernel of in ⊗1G. Since imhn = ker(in−1 ⊗1G), the exact sequence

im jn �� �� Hn(C;G)
hn �� �� imhn

is written as

coker(in ⊗1G) �� �� Hn(C;G) �� �� ker(in−1 ⊗1G)

4 The definition of splitting short exact sequence can be found in Exercise 1, Sect. II.3.
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where the first and the third terms may be viewed in another way; we begin with
coker(in ⊗1G).

(II.5.3) Lemma. coker(in ⊗1G) ∼= Hn(C)⊗G.

Proof. Since by definition coker(in ⊗ 1G) = Zn(C)⊗G/ im(in ⊗ 1G), there exists a
homomorphism

φ : coker(in ⊗1G) → Hn(C)⊗G

defined on the generators by φ [z ⊗ g] := p(z)⊗ g (where p : Zn(K) → Hn(C) is
the natural projection). On the other hand for each y ∈ Hn(C), we may choose an
x ∈ p−1(y) ⊆ Zn(C) and define

ψ : Hn(C)⊗G → coker(in ⊗1G)

on the generators, with ψ(y⊗ g) := [x⊗ g]. The homomorphism ψ is well defined
because, in view of the exactness of the long exact sequence, we have for each x′
such that p(x′) = y

x⊗g− x′ ⊗g = (x− x′)⊗g ∈ ker jn ∼= im(in ⊗1G),

that is to say, [x⊗g] = [x′ ⊗g]. The homomorphisms φ and ψ are clearly the inverse
of each other and so coker(in ⊗1G) ∼= Hn(C)⊗G. �

The preceding lemma shows that coker in ⊗1G depends neither on Bn(C)⊗G nor
on Zn(C)⊗G, but only on Hn(C) (the cokernel of the monomorphism in : Bn(C) →
Zn(C)) and on G. This fact suggests that the same may be true for ker(in ⊗1G) and
indeed it is so.

(II.5.4) Theorem. Let H be the cokernel of the the monomorphism i : B → Z be-
tween free Abelian groups and let G be any fixed Abelian group. Then, both the
kernel and the cokernel of the homomorphism i⊗1G depend entirely on H and G.

Moreover, coker(i⊗1G)∼= H⊗G, while ker(i⊗1G) gives rise to a new covariant
functor

Tor(−,G) : Ab −→ Ab

called torsion product.

Proof. Due to the fact that H is the cokernel of the monomorphism i : B → Z, the
bases of Z and B represent H with generators and relations; we then have a free
presentation of H

B �� i �� Z
q

�� �� H.

Suppose that we had another free presentation of H

R ��
j

�� F
q′

�� �� H
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and consider the following free chain complexes with augmentation to the Abelian
group H (viewed as a Z-module):5

1. (C,∂ ), with C1 = B, C0 = Z, ∂1 = i, ε = q, Ci = 0 for all i �= 0,1 and ∂i = 0 for
all i ≥ 2;

2. (C′,∂ ′), with C′
1 = R, C′

0 = F , ∂ ′
1 = j, ε ′ = q′, C′

i = 0 for all i �= 0,1 and ∂ ′
i = 0

for all i ≥ 2.

These chain complexes are free and acyclic; by Theorem (II.3.6), we obtain chain
morphisms f : C → C′ and g : C′ → C whose composites f g and g f are chain ho-
motopic to the respective identities. The tensor product with G is a functor that
preserves compositions of morphisms; therefore, their tensor products by G pro-
duce the chain morphisms

f ⊗1G : C⊗G →C′ ⊗G

g⊗1G : C′ ⊗G →C⊗G

and besides,
( f ⊗1G)(g⊗1G) and (g⊗1G)( f ⊗1G)

are still chain homotopic to their respective identities. This means that the induced
morphisms in homology

ker(i⊗1G)

H1( f ⊗1G)
��

ker( j⊗1G)

H1(g⊗1G)

��

are the inverse of each other and likewise for

coker(i⊗1G)

H0( f ⊗1G)
��

coker( j⊗1G)

H0(g⊗1G)

��

This implies that neither ker(i⊗ 1G) nor coker(i⊗ 1G) depends on the chosen pre-
sentation of H.

Hence, by following the argument in Lemma (II.5.3),

coker(i⊗1G) ∼= H ⊗G

regardless of which free presentation of H we take.

5 Chain complexes can be constructed over Λ -modules, with Λ a commutative ring with unit
element.
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We now focus our attention on functor Tor(−,G). For any H ∈ Ab, we define
the group Tor(H,G) as follows. Let F(H) be the free group generated by all the
elements of H; the function

q : F(H) → H , h �→ h

is an epimorphism of F(H) onto H. Let i : kerq → F(H) be the inclusion homo-
morphism; we then have a representation of H by free groups

kerq �� i �� F(H)
q

�� �� H.

We define
Tor(H,G) := coker(i⊗1G).

By the first part of the theorem, Tor(H,G) does not depend on the presentation
of H. As for the morphisms, for any f̄ ∈ Ab(H,H ′), we choose the presentations
R � F � H and R′ � F ′ � H ′; by Theorem (II.3.6), we obtain a chain morphism f
between the complexes C and C′ (determined by R � F and R′ � F ′, respectively)
that extends f̄ and is unique up to chain homotopy. By taking their tensor product
by G and computing the homology groups, we obtain

H1( f ⊗1G) : Tor(H,G) → Tor(H ′,G)

which is, by definition, the result of applying the torsion product on f̄ . �

When (C,∂ ) is the chain complex (C(K),∂ ) of an oriented simplicial complex
K, the previous results prove the Universal Coefficients Theorem in Homology:

(II.5.5) Theorem. The homology of a simplicial complex K with coefficients in an
Abelian group G is determined by the following short exact sequences:

Hn(K;Z)⊗G �� �� Hn(K;G) �� �� Tor(Hn−1(K;Z),G).

What is more, if G is free,

Hn(K;G) ∼= Hn(K;Z)⊗G⊕Tor(Hn−1(K;Z),G).

Let us now see what happens when G = Q, the additive group of rational num-
bers. This group is not free, but it is locally free: we say that an Abelian group G is
locally free if every finitely generated subgroup of G is free; in particular, due to the
Finitely Generated Abelian Groups Decomposition Theorem (see p. 75), a finitely
generated Abelian group is locally free if and only if it is torsion free. We now state
the following

(II.5.6) Lemma. If i : A → A′ is a monomorphism and G is locally free, then

i⊗1G : A⊗G −→ A′ ⊗G

is a monomorphism.
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In particular, the monomorphism

in−1 : Bn−1(K) −→ Zn−1(K)

determines the monomorphism

in−1 ⊗1Q : Bn−1(K)⊗Q−→ Zn−1(K)⊗Q

and so
Tor(Hn−1(K;Z),Q) = ker(in−1 ⊗1Q) = 0 .

Theorem (II.5.5) allows us to afirm that

Hn(K;Q) ∼= Hn(K;Z)⊗Q

and so, helped once more by the Finitely Generated Abelian Groups Decomposition
Theorem, we say that Hn(K;Q) is a rational vector space of dimension equal to the
rank of Hn(K;Z) (the nth- Betti number of K).

Exercises

1. Prove that, if A and B are free Abelian groups, then, A⊗B is a free Abelian group.

2. Let K be any simplicial complex. Prove that for every prime number p the short
exact sequence

0 �� Z
p ·−

�� Z
mod p

�� Zp �� 0

creates an exact sequence of homology groups

· · · �� Hn(K;Z)
p ·−

�� Hn(K;Z)
mod p

��

mod p
�� Hn(K;Zp)

βp
�� Hn−1(K;Z) �� · · ·

called Bockstein long exact sequence. The homomorphism of Abelian groups

Hn(K;Zp)
βp

�� Hn−1(K;Z)

is called Bockstein operator.

3. (Snake Lemma) Consider the following commutative diagram, whose rows are
exact sequences of Abelian groups:
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A ��

f

��

B ��

g

��

C

h

��

�� 0

0 �� A′ �� B′ �� C′

Prove that there exists a homomorphism d that turns the sequence

ker f �� kerg �� kerh
d �� coker f �� cokerg �� cokerh

into an exact sequence; also, by using this Lemma, give an alternative proof to
Theorem (II.3.1).

4. (General form of the Five Lemma) Let

A
f

��

α
��

B
g

��

β
��

C
h ��

γ
��

D
k ��

δ
��

E

ε
��

A′ f ′
�� B′ g′

�� C′ h′ �� D′ k′ �� E ′

be a commutative diagram of Abelian groups with exact rows. Prove that:

• If α is surjective and β , δ are injective, then γ is injective;
• If ε is injective and β , δ are surjective, then γ is surjective.

It follows directly from these results that, if α, β , δ , and ε are isomorphisms, then
also γ is an isomorphism.





Chapter III
Homology of Polyhedra

III.1 The Category of Polyhedra

In Sect. II.2, we have defined polyhedra as geometric realizations of (finite)
simplicial complexes. We have also seen that polyhedra are compact topological
spaces. We shall indicate with P the category of polyhedra and continuous functions
between them; clearly, P is a subcategory of Top.

We start by proving that the category P is closed under finite products, that is to
say, the Cartesian product of a finite number of polyhedra is (homeomorphic to) a
polyhedron; it is enough to prove this result for two polyhedra.

(III.1.1) Theorem. Let two simplicial complexes

K = (X ,Φ) and L = (Y,Ψ ) ,

be given. There exists a simplicial complex K ×L such that

|K ×L| ∼= |K|× |L| .

Proof. The simplicial complex K ×L is defined as follows:

1. The vertices of K ×L are the elements of X ×Y .
2. To define the simplexes of K ×L, we first order the sets X and Y ; we then give

X ×Y the lexicographical order.
3. A n-simplex of K ×L is given by a set {(xi0 ,y j0), . . . ,(xin ,y jn)} of elements of

X ×Y satisfying the following conditions:

(a) (xi0 ,y j0) < .. . < (xin ,y jn)

(b) {xi0 , . . . ,xin} ∈ Φ

(c) {y j0 , . . . ,y jn} ∈Ψ

D.L. Ferrario and R.A. Piccinini, Simplicial Structures in Topology, 99
CMS Books in Mathematics, DOI 10.1007/978-1-4419-7236-1 III,
© Springer Science+Business Media, LLC 2011
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(the vertices xik and y jk are not necessarily different). As a consequence, the
projections

pr1 : X ×Y → X , pr2 : X ×Y → Y

are morphisms between simplicial complexes determining therefore a map

φ = |pr1|× |pr2| : |K ×L| → |K|× |L| .

We wish to prove that φ is a homeomorphism.
Let p ∈ |K| and q ∈ |L| be given by

p =
m

∑
i=0

αixi , αi > 0 ,
m

∑
i=0

αi = 1 , x0 < · · · < xm

and

q =
n

∑
j=0

β jy j , β j > 0 ,
n

∑
j=0

β j = 1 , y0 < · · · < yn .

We define

as =
s

∑
i=0

αi , s = 0,1, . . . ,m

and

bt =
t

∑
j=0

β j , t = 0,1, . . . ,n ;

we then take the set {0,a0, . . . ,am−1,b0, . . . ,bn = 1}, rename and reorder its
m+ n + 2 elements so to obtain the ordered set {c−1,c0, . . . ,cm+n} such that

0 = c−1 < c0 < c1 < .. . < cm+n,cm+n = 1 .

For every r = 0,1, . . . ,m + n, take zr = (xi,y j) where the indices i (respectively, j)
equal the number of real numbers as (respectively, bt) in the set {c0,c1, . . . ,cr−1}.
We note that

z0 = (x0,y0) , zm+n = (xm,yn) .

We also note that if zr = (xi,y j), the element zr+1 is equal either to (xi+1,y j) or to
(xi,y j+1); in either case zr < zr+1 and so

z0 = (x0,y0) < z1 < .. . < zm+n = (xm,yn).

Since
m+n

∑
i=0

(ci − ci−1) = cm+n − c−1 = 1 ,

we may conclude that

w =
m+n

∑
i=0

(ci − ci−1)zi ∈ |K ×L| .
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This line of reasoning allows us to define a function

ψ : |K|× |L| −→ |K ×L| , ψ(p,q) =
m+n

∑
i=0

(ci − ci−1)zi

which is the inverse of φ . In fact, if we take p ∈ |K| and q ∈ |L| as before,

|pr1|ψ(p,q) =
m

∑
i=0

γixi .

Let zr < zr+1 < .. . < zr+t be the elements zi of ψ(p,q) with xs for first coordinate,
as described by the following table:

vertices coefficients in ψ(p,q)
zr−1 = (xs−1,yα) cr−1 − cr−2

zr = (xs,yα) cr − cr−1

. . . . . .

. . . . . .

. . . . . .
zr+t = (xs,yα+t) cr+t − cr+t−1

zr+t+1 = (xs+1,yα+t) cr+t+1 − cr+t .

We note that the coefficient γs in |pr1|ψ(p,q) is equal to cr+t − cr−1; moreover,
by the definitions of zr−1 and zr, we may conclude that cr−1 = as−1 (similarly,
cr+t = as). It follows that

γs = cr+t − cr−1 = as −as−1 = αs

and so, |pr1|ψ(p,q) = p. The proof of

|pr2|ψ(p,q) = q

is completely similar; these two results show that φψ = 1|K|×|L|.
Let us now take an element

u =
s

∑
r=0

ζrzr ∈ |K ×L|

where ∑s
r=0 ζr = 1 and z0 < z1 < .. . < zs. Let x0, . . . ,xm (respectively, y0, . . . ,yn)

be the distinct vertices that appear as first (respectively, second) coordinates of
z0, . . . ,zs; then

{x0, . . . ,xm} ∈ Φ , {y0, . . . ,yn} ∈Ψ

and besides, z0 = (x0,y0) and zs = (xm,yn). By the definitions given here, we are
able to write the equality

|pr1|(u) =
m

∑
i=0

αixi ,
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where αi is the sum of the coefficients ζr of the elements zr whose first coordinate
equals xi; now, we can easily see that ∑m

i=0 αi = 1. After making similar remarks
for |pr2|(u), we conclude that

ψφ = 1|K×L| .

Since |K ×L| is compact, φ is a homeomorphism. �

(III.1.2) Example. The diagram in Fig. III.1 illustrates the case in which K is

(0, 0)
(1, 0)

(2, 0)

(0, 1)
(1, 1)

(2, 1)

Fig. III.1

a 2-simplex with vertices {0,1,2} and L is the 1-simplex with vertices {0,1}.
The resulting prism consists of the three 3-simplexes {(0,0),(1,0),(2,0),(2,1)},
{(0,0),(1,0), (1,1),(2,1)} and {(0,0),(0,1),(1,1),(2,1)}, respectively.

Let K = (X ,Φ) be a simplicial complex; we construct an infinite sequence of
simplicial complexes {K(r)|r ≥ 0} as follows:

1. K(0) = K
2. K(1) = (X (1),Φ(1)) is the simplicial complex defined by:

(i) X (1) = Φ
(ii) Φ(1) is the set of all nonempty subsets of Φ such that

{σi0 , . . . ,σin} ∈ Φ(1) ⇔ σi0 ⊂ . . . ⊂ σin ;

3. K(r) is defined iteratively:

K(r) = (K(r−1))(1) .

The simplicial complex K(r) is the rth- barycentric subdivision of K.

(III.1.3) Remark. The definition we gave of the first barycentric subdivision K(1)

of a simplicial complex is, perhaps, a little convoluted, and so we give here another,
which is equivalent but refers to the geometric realization |K|. For every n-simplex
σ = {x0, . . . ,xn} of K, we define the barycenter of σ to be the point

b(σ) =
n

∑
i=0

1
n + 1

xi ;
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then, the vertices of K(1) are represented abstractly by the elements of the set

X (1) = {b(σ)|σ ∈ Φ}

(in other words, X (1) contains all vertices of K together with those vertices repre-
sented by barycenters of all simplexes of K that are not vertices). From this point of
view, a set {b(σi0), . . . ,b(σin)} of n + 1 vertices of K(1) is an n-simplex if and only
if σi0 ⊂ σi1 ⊂ . . . ⊂ σin .

From the simplicial complexes point of view, the elements of the sequence
{K(r)|r ≥ 0} are all different; but, from the geometric point of view, they are not
distinct; actually, we have the following result:

(III.1.4) Theorem. Let K = (X ,Φ) be a simplicial complex and r any positive
integer. Then the polyhedra |K| and |K(r)| are homeomorphic.

Proof. It is sufficient to prove the result for r = 1. For instance, Fig. III.2 shows

{0}

{1} {2}

{0, 1}

{1, 2}

{0, 2}

{0 ,1,2}

Fig. III.2

the barycentric subdivision of a 2-simplex. The function that associates with each
σ ∈ K(1) the barycentre b(σ) may be extended linearly to a continuous function

F : |K(1)| −→ |K| , F

(
n

∑
i=0

αiσ i

)
=

n

∑
i=0

αib(σ i)

(all linear functions are continuous: cf. Theorem (II.2.8)). We wish to prove that
the function F is a bijection. Let p = ∑n

i=0 αiσ i be an arbitrary point of |K(1)|; note
that σ0, . . .σn are simplexes of K such that

σ 0 ⊂ σ1 ⊂ . . . ⊂ σ n .

Let us suppose that dim σ 0 = r; we may assume that dim σ 1 = r + 1 (otherwise,
we could take intermediate simplexes

σ 0 = τ0 ⊂ τ1 ⊂ . . . ⊂ τk = σ 1



104 III Homology of Polyhedra

such that dim τ j+1 = dim τ j +1 and to which we could assign coefficients equal to
zero in the sum representing p). Consequently, we may assume that

σ 0 = {x0} ,

σ 1 = {x0,x1} ,

· · ·
σ n = {x0,x1, . . . ,xn}

and so

F(p) = α0x0 +α1

(
x0 + x1

2

)
+ . . .+ αn

(
x0 + x1 + . . .+ xn

n + 1

)
.

Therefore, if

q =
n

∑
i=0

βixi ∈ |K|

and F(p) coincide, we have

β0 = α0 +α1/2 + . . .+ αn/(n + 1)
β1 = α1/2 + . . .+ αn/(n + 1)

· · ·
βn = αn/(n + 1)

and
1 ≥ β0 ≥ β1 ≥ . . . ≥ βn ≥ 0 .

On the other hand, given a sequence of real numbers

1 ≥ β0 ≥ β1 ≥ . . . ≥ βn ≥ βn+1 = 0

the real numbers
αi = (i+ 1)(βi−βi+1) , i = 0,1, . . . ,n

satisfy the preceding equalities and so we see that the coefficients αi and βi are
determined by each other; this means that F is a bijection. The proof is completed
by recalling that F is a continuous bijection from a compact space to a Hausdorff
space. �

Although the spaces |K(r)| are homeomorphic, they may differ by the length of
the geometric realizations of their 1-simplexes. Indeed, let us consider |K(r)| as a
subspace of |K| (the topology on |K| being defined by the metric d) and define the
diameter of |K(r)| to be the maximum length of the geometric realizations of all
1-simplexes of K(r); the notation diam |K(r)| indicates the diameter of |K(r)|. We
note that diam |K| = √

2. The next result shows that the diameter decreases with
the successive barycentric subdivisions.
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(III.1.5) Theorem. For every real number ε > 0, there is a positive integer r such
that diam |K(r)| < ε.

Proof. Suppose that dimK = n and take a 1-simplex {σ0,σ1} of K(1) arbitrarily; we
may assume that

σ0 = {xi0 , . . . ,xiq}

and

σ1 = {xi0 , . . . ,xiq ,x j0 , . . . ,x jp}

where p + q + 1 ≤ n. Since |K| ∼= |K(1)| (actually, it is useful to make the identifi-
cation |K| ≡ |K(1)|), the length of the 1-simplex of |K(1)| represented abstractly by
{σ0,σ1} is computed through the formula

d

(
q

∑
k=0

1
q + 1

xik ,
q

∑
k=0

1
p + q + 2

xik +
p

∑
�=0

1
p + q + 2

x j�

)
=

=

{(
1

q + 1
− 1

p + q + 2

)2

(q + 1)+
(

1
p + q + 2

)2

(p + 1)

}1/2

=

=
1

p + q + 2

√
(p + 1)(p + q + 2)

q + 1
=

=
p + q + 1
p + q + 2

√
(p + 1)(p + q + 2)
(p + q + 1)2(q + 1)

<
n

n + 1

√
2

because
p + q + 1
p + q + 2

<
n

n + 1
,

(p + 1)(p + q + 2)
(p + q + 1)2(q + 1)

< 2 .

Therefore,
diam |K(1)| < n

n + 1

√
2 . �

Note that the dimension of a simplicial complex is not affected by successive
barycentric subdivisions. Besides, by definition, the dimension of a polyhedron |K|
is the dimension of the simplicial complex K, that is to say, dim |K| = dimK.

Let L be a simplicial subcomplex of K; the pair of polyhedra (|K|, |L|) has the
Homotopy Extension Property: for every topological space Z and every pair of
maps

f : |K|×{0}−→ Z

G : |L|× I −→ Z

with the same restriction to |L| × {0}, there is a map (not necessarily unique)
F : |K| × I → Z whose restrictions to |K| × {0} and |L| × I coincide with f and
G (see the following commutative diagram).
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|L|×{0} ��

i×1{0}
��

|L|× I

i×1I

�� G

��

|K|×{0} ��

f
��

|K|× I

F
����

��
��

��
��

��

Z

Before proving this property of pairs of polyhedra, we prove a lemma that charac-
terizes the homotopy extension property.

(III.1.6) Lemma. Let A be a closed subspace of X. Then, (X ,A) has the homotopy
extension property if and only if there exists a retraction

r : X × I −→ X̂ = X ×{0}∪A× I

(that is to say, a map r whose restriction to X̂ is the identity).

Proof. We note that, since A is closed in X , the following diagram is a pushout:

A×{0} 1A × i0 ��

i×1{0}
��

A× I

i×1{0}
��

X ×{0}
1A × i0

�� X̂

In the diagram, i0 is the inclusion of {0} in I and i is the inclusion of A in X .
Let us suppose that the pair (X ,A) has the homotopy extension property. Then,

there is a map

r : X × I −→ X̂

such that

r(i×1I) = i×10 and r(1X × i0) = 1A × i0 .

Let ι be the inclusion of X̂ in X × I. By the universal property of pushouts, rι = 1X̂
and so r is a retraction.

Conversely, let us suppose that r : X× I → X̂ is a retraction and let f : X ×{0}→
Z and G : A× I → Z be maps such that f (i× i0) = G(1A × i0); by the definition
of pushout, there is a map H : X̂ → Z that completes the following commutative
diagram:
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A×{0} 1A× i0 ��

i×1{0}
��

A× I

i×1{0}
�� G

��

X ×{0}

f
��

1A× i0 �� X̂

H

		�
��

��
��

��
��

�

Z

The function F = Hr : X × I → Z is the extension of the homotopy that we were
seeking. �

(III.1.7) Theorem. Let L be a subcomplex of the simplicial complex K. Then, the
pair of polyhedra (|K|, |L|) has the homotopy extension property.

Proof. We start the proof by assuming that |K| and |L| are the geometric realiza-
tions of the simplicial complexes K = (X ,Φ) and L = (Y,Ψ ), respectively. By
Lemma (III.1.6), we only need to prove that there exists a retraction of |K|× I onto

|̂K|. Let σ = {x0, . . . ,xn} be an n-simplex of K and let |σ | be the geometric real-
ization of (σ ,℘(σ)� /0). Let b(σ) be the barycenter of |σ |. For every p ∈ |σ | and
for every real number t ∈ I, let the point tb(σ)+ (1− t)p ∈ |σ | be denoted by [p,t]
(we recall that |σ | is a convex space – see Theorem (II.2.9)). We now consider the
function

Hσ : |σ |× I× I −→ |σ |× I

defined by the equations:

Hσ([p,t],s,u) =

{
([p,(1−u)t + u(2t−s)

2−s ],(1−u)s) , s ≤ 2t

([p,(1−u)t],(1−u)s+ u(s−2t)
1−t , 2t ≤ s .

To understand geometrically how we have come to this function, suppose that |σ |
is a 2-simplex that we have placed in the plane (x,y) of R3 with its barycenter
b(σ) at the origin (0,0,0); we then project |σ |× I on |σ |× {0}∪ | •σ |× I from the
point (0,0,2) (here | •σ | is the boundary of |σ |). Note that, in this way, we obtain
a retraction of |σ | × I onto |σ | × {0}∪ | •σ | × I. In the general case, when σ is an
n-simplex, the function Hσ (−,1) is a retraction.1

For each integer n ≥−1, we define

Mn = |K|×{0}∪ |Kn∪L|× I

where Kn is the simplicial subcomplex determined by all simplexes of K with
dimension ≤ n, and such that K−1 = /0; then,

M−1 = |̂K| = |K|×{0}∪ |L|× I .

1 | •σ | is the geometric realization of the simplicial complex
•σ = {σ ′ ⊂ σ |dimσ ′ ≤ n−1} .
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We now define
Hn : Mn × I −→ Mn

as follows:

1. For every σ ∈ Φ �Ψ , the restriction of Hn onto |σ |× I× I coincides with Hσ
2. For every (x,t) ∈ Mn−1 × I, Hn(x,t) = x

The function
rn = Hn(−,1) : Mn −→ Mn−1

is a retraction; if dimK = m, then Mm = |K| × I and the composite function

r = r0 · · · rm is a retraction of |K|× I onto |̂K|. �

III.2 Homology of Polyhedra

We begin this section by recalling that the geometric realizations of a polyhedron
and any one of its barycentric subdivisions are homeomorphic; one of our objectives
is to prove that, given two simplicial complexes K and L, and a map f : |K| → |L|,
there exists a simplicial function from a barycentric subdivision K(r) to L whose
geometric realization is homotopic to the composite of f and the homeomorphism
F : |K(r)| → |K|. Once this “simplicial approximation” of f has been obtained, we
may define a functor

H∗(−,Z) : P → AbZ

from the category of polyhedra and continuous functions to that of graded Abelian
groups. Here is an overview of how this is done. We associate the graded Abelian
group H∗(K,Z) with a polyhedron |K|; the map f induces a homomorphism, among
the corresponding graded groups, which derives from the “approximation” of f .

With all this, it is not surprising that we may also give the concept of homotopy
among chain morphisms, in parallel to the homotopy of maps among spaces. We
shall see later some consequences of this important result.

Once again we remind the reader that an oriented simplicial complex K defines
a positive free augmented chain complex (C(K),∂ K) with augmentation homomor-
phism ε : C0(K) → Z. In particular, if the simplicial complex K is acyclic (for in-
stance, K is the simplicial complex σ generated by a simplex σ , a simplicial n-cone,
or an abstract cone), then the chain complex (C(K),∂ K) is acyclic.

We define the functor

Hn(−,Z) : P → AbZ

on the objects |K| ∈ P simply as

Hn(|K|,Z) = Hn(K,Z) .
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Now the problem is to define Hn(−,Z) on the morphisms of P, in other words,
on continuous functions between polyhedra. To solve this problem, we make here
some initial remarks. Two simplicial functions f ,g : K = (X ,Φ) → L = (Y,Ψ ) are
contiguous if for every σ ∈ Φ there exists τ ∈Ψ such that f (σ) ⊂ τ and g(σ) ⊂ τ;
in symbols,

(∀σ ∈ Φ)(∃τ ∈Ψ) f (σ) ⊂ τ , g(σ) ⊂ τ .

Suppose that f and g are contiguous; for each n-simplex σ ∈ Φ (a generator of
Cn(K)), let τ be the smallest simplex of L which contains both simplexes f (σ) and
g(σ). We define the chain complex (S(σ),∂ σ ) as follows:

S(σ)n =
{

Cn(τ) , n ≥ 0
0 , n < 0

(recall that τ is the simplicial complex (τ,℘(τ)� /0)). Since τ is an acyclic simpli-
cial complex, it follows that S is an acyclic carrier between C(K) and C(L). More-
over, S is an acyclic carrier of C( f )−C(g): in fact, if x is a vertex of K such that
f (x) �= g(x), the fact that f and g are contiguous ensures the existence of a simplex
τ of L, which contains both vertices f (x) and g(x); therefore,

(C0( f )−C0(g))(x) ∈C0(τ) = S(x)0 .

It is easy to prove that, for any generator σ of C(K),

(C( f )−C(g))(σ) ⊂ S(σ)

that is to say, S is an acyclic carrier for the chain homomorphism C( f )−C(g).

(III.2.1) Theorem. If f ,g : K → L are contiguous, Hn( f ,Z) = Hn(g,Z) for every
n ∈Z.

Proof. We first prove that the chain homomorphism

C( f )−C(g) : C(K) →C(L)

extends the homomorphism 0: Z→Z. Indeed, let x be a vertex of K; if f (x) = g(x),
then (C0( f )−C0(g))(x) = 0; otherwise, if f (x) �= g(x),

ε(C0( f )−C0(g))(x) = ε( f (x)−g(x)) = 0

and so, C( f )−C(g) extends 0 (recall that ε : C0(K)→Z is the augmentation homo-
morphism). By Corollary (II.3.10), we conclude that C( f )−C(g) is homologically
null. We complete the proof with the help of Theorem (II.3.4). �

Theorem (III.1.4) shows that the geometric realizations of a simplicial complex
and one of its barycentric subdivisions are homeomorphic; we now show that the
homology groups of simplicial complexes remain unchanged (up to isomorphism)
under barycentric subdivisions.
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Let K = (X ,Φ) be a simplicial complex. A projection of K(1) on K is a function

π : K(1) → K

that takes each vertex of K(1) (that is to say, a simplex of K) to one of its vertices.
Any projection is a simplicial function; in fact, if

{σi0 , · · · ,σin} ∈ Φ(1) , with σi0 ⊂ ·· · ⊂ σin ,

π({σi0 , · · · ,σin}) ⊂ σin and, since the latter is a simplex of K, we conclude that
π({σi0 , · · · ,σin})∈ Φ . From the homological point of view, the choice of vertex for
each simplex is absolutely irrelevant because, if π ′ were any other projection, we
would have

π ′({σi0 , · · · ,σin}) ⊂ σin ⊃ π({σi0 , · · · ,σin})
for every {σi0, · · · ,σin} ∈ Φ(1); therefore, the projections π and π ′ would be con-
tiguous. It follows from these considerations that we may choose π to be the func-
tion that associates to each simplex of K its last vertex.

(III.2.2) Theorem. Let π : K(1) → K be a projection. Then, for every n ∈ Z,
Hn(π ,Z) is an isomorphism.

Proof. The projection π produces a chain complex homomorphism

C(π) : C(K(1)) −→C(K) ;

we wish to find a chain complex homomorphism

ℵ : C(K) −→C(K(1))

such that ℵC(π) is chain homotopic to 1C(K(1)) and C(π)ℵ is chain homotopic to
1C(K). If we reach this goal, from the homological point of view, the homomorphism

H∗(ℵ) : H∗(K,Z) −→ H∗(K(1),Z)

induced by ℵ is the inverse of H∗(π,Z).
The morphism ℵ does not come from a simplicial function and is defined by

induction as follows. Since the vertices of K are also vertices of K(1), we define ℵ0

on the generators {x} of C0(K) by ℵ0({x}) = {x}. Suppose that we have defined
ℵi for every i = 1, . . . ,n−1 such that

ℵi−1∂ K
i = ∂ K(1)

i ℵi .

We define ℵn on the generators σn of Cn(K) (namely, the oriented n-simplexes of
K) by the formula

ℵn(σn) : = ℵn−1(∂ K
n (σn))∗b(σn)
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where b(σn) is the barycenter of σn (hence, a vertex of K(1)) and

ℵn−1(∂ K
n (σn))∗b(σn)

represents the n-chain obtained by taking the join of each component of the (n−1)-
chain ℵn−1(∂ K

n (σn)) and b(σn) (abstract cone with vertex b(σn)). The only impor-

tant fact to be proved here is that ℵn−1∂ K
n = ∂ K(1)

n ℵn. But this is immediate:

∂ K(1)

n (ℵn(σn)) = ℵn−1(∂ K
n (σn))− ∂ K(1)

n−1 (ℵn−1(∂ K
n (σn))∗b(σn))

= ℵn−1(∂ K
n (σn))

since ∂ K(1)

n−1 ℵn−1 = ℵn−2∂ K
n−1. We call ℵ : C(K) −→ C(K(1)) barycentric subdivi-

sion homomorphism.
Arriving to the equality C(π)ℵ = 1C(K) is a straightforward procedure. We now

prove that 1C(K(1))−ℵC(π) is chain null-homotopic and so, by Proposition (II.3.4),
we have H∗(ℵ)H∗(π) = 1. As a matter of simplicity, we shall indicate 1C(K(1))

with 1, K(1) with K′, ∂ K(1)
n with ∂ ′

n, and all n-simplexes of K′ with the generic
expression σ ′

n.
Let ε : C0(K′) → Z be the augmentation homomorphism of the chain complex

(C(K′),∂ ′); since

ε((1−ℵ0C0(π))(σn) = ε(σn −{xn}) = 0,

1−ℵC(π)) is a trivial extension of the homomorphism Z on itself.
On the other hand, to each generator

σ ′
n = {σ 0, . . . ,σ n}

of Cn(K′), we associate the chain complex S(σ ′
n)≤C(K′) defined by the free groups

S(σ ′
n)i =

{
Ci((σ n)(1)) , i ≥ 0
0 , i < 0 .

The simplicial complex (σn)(1) comes from the first barycentric subdivision of σ n

and is, therefore, an acyclic complex since it may be interpreted as the abstract
cone with vertex at the barycenter of σ n relative to the boundary of (σ n)(1) (see
Sect. II.4); hence, the chain complex

S(σ ′
n) ≤C(K′)

just defined is acyclic. We have thus obtained an acyclic carrier of C(K′) on itself.
We maintain that S is an acyclic carrier of 1−ℵC(π). Indeed, for any vertex σn =
{x0, . . . ,xn} of K′,

(1−ℵ0C0(π))(σn) = σn −{xn} ∈C0(σ
(1)
n ) = S(σ ′

n)0 ;
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the given definitions ensure that, for every n ≥ 1,

(1−ℵnCn(π))(σ ′
n) ∈ S(σ ′

n) .

We complete the proof by using Corollary (II.3.10). �

Theorem (III.2.2) may be extended by iteration: Let K(r) be the rth-barycentric
subdivision of K and let

π r : K(r) → K

be the composition of projections

K(r) π−→ K(r−1) π−→ . . .
π−→ K .

Then for every n ≥ 0,

Hn(πr,Z) : Hn(K(r),Z) → Hn(K,Z)

is an isomorphism whose inverse is induced by the (not simplicial) homomorphism

ℵr
n : Cn(K) −→Cn(K(r))

obtained from ℵn by iteration.
We precede the important Simplicial Approximation Theorem by some remarks

toward the characterization of the simplexes of a simplicial complex K = (X ,Φ) by
working with the topology on |K|. For each vertex x of K, let A(x) be the set of all
points p ∈ |K| such that p(x) > 0; in addition, we define the function

δx : |K| −→R , δx(p) = p(x) .

This function is continuous since, for every q ∈ |K|,
|δx(p)−δx(q)| < d(p,q) ;

since A(x) = δ−1
x (0,∞), we conclude that A(x) is open in |K|. Note that in this way

we obtain an open covering of |K|.
(III.2.3) Lemma. Given x0, . . . ,xn ∈ X arbitrarily,

σ = {x0, . . . ,xn} ∈ Φ ⇐⇒
n⋂

i=0

A(xi) �= /0 .

Proof. ⇒: if σ ∈ Φ , its barycenter

b(σ) =
n

∑
i=0

1
n + 1

xi ∈
n⋂

i=0

A(xi) .

⇐: if p ∈⋂n
i=0 A(xi), then p(xi) > 0 for every i = 0, . . . ,n; hence

{x0, . . . ,xn} ⊂ s(p) ∈ Φ . �
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A simplicial function g : K(r) → L is called a simplicial approximation of a map
f : |K| −→ |L| if |g|(p) ∈ |s( f F(p))| for every p ∈ |K(r)| (recall that s( f F(p)) is
the carrier of the point f F(p) and that F : |K(r)| → |K| is the homeomorphism in
Theorem (III.1.4)).

(III.2.4) Theorem (Simplicial Approximation Theorem). Let K = (X ,Φ) and
L = (Y,Ψ) be two simplicial complexes and let f : |K| → |L| be a map. Then, there
are an integer r ≥ 0 and a simplicial function g : K(r) → L, which is a simplicial
approximation of f .

Proof. Consider the finite open covering {A(y)|y ∈ Y} of |L| and let � be
the Lebesgue number (see Theorem (I.1.41)) of the finite open covering
{ f−1(A(y)) | y ∈ Y} of |K|. Let r be a positive integer such that diam |K(r)| < �/2
(see Theorem (III.1.5)). For every vertex σ of K(r), there exists a vertex y ∈ Y such
that

A(σ) ⊂ f−1(A(y)) .

We now define a function
g : K(r) −→ L

by setting g(σ) = y. The function g is simplicial: for each simplex {σ0, . . . ,σ n}
of K(r),

n⋂

i=0

A(σ i) �= /0

(see Lemma (III.2.3)); moreover,

(∀i = 0, . . . ,n) A(σ i) ⊂ f−1(A(g(σ i)))

and so
n⋂

i=0

A(g(σ i)) �= /0

follows from
n⋂

i=0

A(σ i) ⊂ f−1

(
n⋂

i=0

A(g(σ i))

)
;

again by Lemma (III.2.3) we conclude that

{g(σ 0), . . . ,g(σn)} ∈Ψ .

Let us now prove that g is a simplicial approximation of f : for any

p =
n

∑
i=0

αiσ i ∈ |K(r)|

we have p ∈ A(σ i) for each i = 0, . . . ,n; then

f (p) ∈ f (A(σ i)) ⊂ A(g(σ i))
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that is to say, {g(σ0), . . . ,g(σ n)} ⊂ s( f (p)). Since

|g|(p) =
n

∑
i=0

αig(σ i) ,

we may conclude that |g|(p) ∈ |s( f F(p))|. �

(III.2.5) Theorem. The geometric realization of a simplicial approximation
g : K(r) → L of a map f : |K| → |L| is homotopic to f F.

Proof. By definition, given any p ∈ |K(r)|, the segment with ends f F(p) and |g|(p)
is entirely contained in the convex space |s( f F(p))| ⊂ |L| (see Theorem (II.2.9)).
The map

H : |K(r)|× I → |L| , H(p,t) = t f F(p)+ (1− t)|g|(p)

is a homotopy between f F and |g|. �

(III.2.6) Theorem. Let g : K(r) → L and g′ : K(s) → L be two simplicial approxi-
mations of a map f : |K| → |L|. Suppose that s < r and π (r,s) : K(r) → K(s) is the
composition of projections. Then the simplicial functions

g : K(r) → L and g′π(r,s) : K(r) → L

are contiguous.

Proof. We have to prove that, for every simplex σ ∈ Φ(r), there is a simplex τ ∈Ψ
such that g(σ) ⊂ τ and g′π (r,s)(σ) ⊂ τ.

For every σ ∈ Φ(r), let us define τ = s( f (b(σ))) where b(σ) is the barycenter of
σ . Since g is a simplicial approximation of f ,

|g|(b(σ)) ∈ |s( f (b(σ)))| ;

but g(σ) is the smallest simplex of L whose geometric realization contains the point
|g|(b(σ)) and so, g(σ) ⊂ τ.

On the other hand, let P(σ) be the smallest simplex of K(s) such that |σ | ⊂
|P(σ)|. Clearly,

|π (r,s)(σ)| ⊂ |P(σ)|
and

|g′(π (r,s)(σ))| ⊂ |g′(P(σ))| .
From b(σ) ∈ |σ | ⊂ |P(σ)|, it follows that

|g′|(b(σ)) ∈ |g′(P(σ))|

and because |g′|(b(σ)) ∈ |s( f (b(σ)))|, it also follows that

|g′(P(σ))| ⊂ |s( f (b(σ)))|.



III.2 Homology of Polyhedra 115

From this, we conclude that

|g′(π(r,s)(σ))| ⊂ |s( f (b(σ)))|

and, consequently, g′(π(r,s)(σ)) ⊂ s( f (b(σ))). �

(III.2.7) Corollary. A map f : |K| → |L| defines a unique homomorphism of graded
groups

H∗( f ,Z) : H∗(|K|,Z) → H∗(|L|,Z) .

Proof. For any simplicial approximation g : K(r) → L of f , let us set

H∗( f ,Z) = H∗(g,Z)(H∗(π r))−1

(recall that (H∗(πr))−1 = H∗(ℵr) ).
Suppose g′ : K(s) → L to be another simplicial approximation of f , with s < r.

The contiguity of the simplicial functions g and g′π(r,s) (which follows from the
previous theorem) ensures that

H∗(g′π (r,s)) = H∗(g)

(cf. Corollary (III.2.1)). But πr = π sπ(r,s) and therefore

H∗(g′,Z)(H∗(π s,Z))−1 = H∗(g,Z)(H∗(πr,Z))−1 .

�

Corollary (III.2.7) completes the definition of functor H∗(−,Z) on morphisms;
we repeat it here: for every n ≥ 0 and any map f : |K| → |L|,

Hn( f ,Z) := Hn(g,Z)(Hn(π r,Z))−1 : Hn(|K|,Z) → Hn(|L|,Z)

where g : K(r) → L is any simplicial approximation of f .
We now prove that the homomorphism H∗( f ,Z), defined by a map f : |K| → |L|,

is a homotopy invariant, meaning that the next result is true.

(III.2.8) Theorem. Let f ,g : |K| → |L| be homotopic maps. Then

H∗( f ,Z) = H∗(g,Z) .

Proof. Let H : |K|× I →|L| be the homotopy that links f to g; suppose that H i0 = f
and H i1 = g, where i0 and i1 are the maps

iα : |K| → |K|× I , p �→ (p,α) , α = 0,1 .

We represent the intervall I = [0,1] as the geometric realization of the complex

I = (Y,ϒ ) , Y = {0,1} , ϒ = {{0},{1},{0,1}} .
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With the appropriate identification |K ×I | ≡ |K| × I (cf. Theorem (III.1.1)), we
may assume that i0 and i1 are the geometric realizations of the simplicial functions

ı̃α : K → K ×I

that take each 0-simplex {x} of K to the 0-simplex {(x,α)} of K ×I . To verify
this theorem, it is sufficient to prove that ı̃0 and ı̃1 are contiguous. We order the set
X = {x0,x1 . . . ,xr} of all vertices of K by setting x0 < x1 < .. . < xr. For each integer
n = 0, . . . ,r + 1, we define the simplicial functions

fn : K → K ×I

fn({xi}) =
{ {(xi,0)} , i < n ,
{(xi,1)} , i ≥ n .

These functions have the following properties:

1. (∀n = 0, . . . ,r−1) fn and fn+1 are contiguous.
2. fr+1 = ı̃0 and f0 = ı̃1.

The second property is a direct consequence of the definition of fn; to prove the first
property, we consider any

σ = {xi0 , . . . ,xik} ∈ Φ

such that
xi0 < xi1 < .. . < xn−1 < xn < xn+1 < .. . < xik .

It follows from the definition of fn and fn+1 that

fn(σ) = {(xi0 ,0), . . . ,(xn−1,0),(xn,1), . . . ,(xik ,1)}

and
fn+1(σ) = {(xi0 ,0), . . . ,(xn,0),(xn+1,1), . . . ,(xik ,1)};

notice that both sets fn(σ) and fn+1(σ) are subsets of

{(xi0 ,0), . . . ,(xn−1,0),(xn,0),(xn,1), . . . ,(xik ,1)} . �

(III.2.9) Corollary. The homology groups of two polyhedra of the same homotopy
type are isomorphic.

Proof. Let f : |K| → |L| be a homotopy equivalence with homotopy inverse
f ′ : |L| → |K|. Then

H∗( f ,Z)H∗( f ′,Z) = 1 and H∗( f ′,Z)H∗( f ,Z) = 1 . �

Corollary (III.2.7) and Theorem (III.2.8) allow us to define a functor

H∗ : HP −→ AbZ,
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where HP is the category of polyhedra and of homotopy classes of maps among
polyhedra.

(III.2.10) Remark. Corollary (III.2.9) tells us in particular that, for every polyhe-
dron |K| and whatever barycentric subdivision |K(r)|, we have

H∗(|K|;Z) ∼= H∗(|K(r)|;Z) ;

moreover, the homology H∗(X ;Z) of a compact and triangulable topological space
is invariant under the chosen triangulation of X .

Exercises

1. Prove that a projection π : K(1) → K is a simplicial approximation of the identity
map 1: |K| → |K|.
2. Prove (using the Simplicial Approximation Theorem) that the set [|K|, |L|] of
homotopy classes of maps from a polyhedron |K| to a polyhedron |L| is countable.

III.3 Some Applications

In this section, we give some applications of simplicial homology to geometry. Our
first important result is the Lefschetz Fixed Point Theorem. Before we state it, let
us review some well-known results in linear algebra.

The trace of a rational square matrix (ai j), i = j = 1, . . . ,n is the rational number

Tr ((ai j)) =
n

∑
i=1

aii .

We note that for two rational square matrices A and B,

Tr (AB) = Tr (BA) .

Thus, we may define the trace of a linear transformation α : V → V of an
n-dimensional rational vector space. Indeed, if A represents α , then B represents
α if and only if there exists C such that B = CAC−1. We then define

Tr (α) = Tr (B) = Tr (A) .

(III.3.1) Lemma. Let

0 →U
α−→V

β−→W → 0

be an exact sequence of finite dimensional rational vector spaces and of linear trans-
formations. Let γ : V → V be a linear transformation whose restriction to U is a
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linear transformation γU : U → U. Then γ induces a unique linear transformation
γW : W →W such that γW β = β γ , and therefore

Tr (γ) = Tr (γU )+ Tr (γW ) .

Proof. Let us consider a basis {�u1, . . . ,�ur} of U and the vectors �vi = α(�ui) ∈ V ,
i = 1, . . . ,r. The latter are linearly independent in V and may, therefore, be com-
pleted so that we have a basis {�v1, . . . ,�vn} of V . Note that the vectors �wr+1 =
β (�vr+1), . . . ,wn = β (�vn) constitute a basis for W . The matrix (ai j), with i, j =
1, . . . ,n, obtained by the equalities

γ(�vi) =
n

∑
j=1

a ji�v j , i = 1, . . . ,n

represents γ . Transformations γU and γW are defined by the rules

γU(�ui) =
r

∑
j=1

a ji�u j , for every i = 1, . . . ,r

and

γW (�wi) =
n

∑
j=r+1

a ji�wj , for every j = r + 1, . . . ,n . �

We now concern ourselves with geometry. Our proofs will take place in the realm
of rational homology, that is to say, homology with coefficients in Q. We briefly
recall that, for every polyhedron |K|, Hn(|K|;Q) is a rational vector space of dimen-
sion β (n). On the other hand, a map f : |K| → |K| produces a linear transformation

Hn( f ,Q) : Hn(|K|;Q) → Hn(|K|;Q)

for each integer n ∈ {0, . . . ,dimK}. By definition, the Lefschetz Number of a map
f : |K| → |K| is the rational number

Λ( f ) =
dimK

∑
n=0

(−1)nTr Hn( f ,Q) .

We consider a simplicial approximation g : K(r) →K to f (see Theorem (III.2.4))
that produces a chain morphism

C(g) : C(K(r)) →C(K)

and therefore, a homomorphism

Cn(g)⊗1Q : C(K(r),Q) →C(K,Q) ;
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we now consider the chain morphism (subdivision homomorphism)

ℵ : C(K) →C(K(1))

defined in Theorem (III.2.2); we remind the reader that the homomorphism

C(g)ℵr : C(K) −→C(K)

is precisely the homomorphism that defines Hn( f ,Z) = Hn(C(g)ℵr
n). Since for

every n = 0, . . . ,dimK,

(Cn(g)⊗1Q)(ℵr
n ⊗1Q) : Cn(K,Q) →Cn(K,Q)

is a linear transformation, we may define the number

Λ(C(g)ℵ) =
dimK

∑
n=0

(−1)nTr [(Cn(g)⊗1Q)(ℵr
n ⊗1Q)] ;

it is natural to wonder whether there is any relation between this number and the
Lefschetz Number Λ ( f ). The answer to this question is the next result, known as
the Hopf Trace Theorem.

(III.3.2) Lemma. For every map f : |K| → |K|, we have

Λ(C(g)ℵ) = Λ( f ) .

Proof. For every n ≥ 0, we consider two exact sequences

(1) 0 → Zn(K,Q) →Cn(K,Q) → Bn−1(K,Q) → 0

(2) 0 → Bn(K,Q) → Zn(K,Q) → Hn(K,Q) → 0

Then for any fixed t ∈Z, we define the numbers

c(t) = ∑ tnTr [(Cn(g)⊗1Q)(ℵr
n ⊗1Q)] ,

z(t) = ∑ tnTr [(Cn(g)⊗1Q)(ℵr
n ⊗1Q)]|Zn(K,Q)) ,

b(t) = ∑ tnTr [(Cn(g)⊗1Q)(ℵr
n ⊗1Q)]|Bn(K,Q)) ,and

h(t) = ∑ tnTr (Hn( f ,Q)) .

By applying Lemma (III.3.1) to the exact sequences (1) and (2), we conclude that

c(t) = z(t)+ tb(t)
z(t) = b(t)+ h(t) ;

it follows from these two equalities that c(t)− h(t) = (1 + t)b(t); we arrive to the
thesis by setting t = −1. �

We now turn to the Lefschetz Fixed Point Theorem.
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(III.3.3) Theorem. For every map f : |K| → |K| with no fixed points, Λ( f ) = 0.

Proof. Let Ψ : |K| → R be a function defined by Ψ(p) = d(p, f (p)) for each p ∈
|K|. Since f has no fixed points, (∀p ∈ |K|) Ψ(p) > 0. On the other hand, since
|K| is compact, there exists an ε > 0 such that Ψ(p) ≥ ε for every p ∈ |K|. By
Theorem (III.1.5), there is an integer r such that the diameter of |K(r)| is less than
ε
3 . By Theorem (III.1.4), there exists a homeomorphism F : |K(r)| → |K|; we then
define the map f (r) = F−1 f F : |K(r)| → |K(r)|. The next two assertions are now
easily proved and we leave their proofs to the reader.

1. Λ( f (r)) = Λ( f ).
2. f has no fixed points if and only if f (r) has no fixed points.

So, we only need to prove that Λ ( f (r)) = 0.
Let the simplicial function g : K(t) → K(r), with t ≥ r, be an approximation to

f (r); then
(∀p ∈ |K(t)|) |g|(p) ∈ |s( f (r)(p))|

and, since s( f (r)(p)) is a simplex of K(r), we conclude that

(∀p ∈ |K(t)|) d(|g|(p), f (r)(p)) <
ε
3

.

This last inequality, the metric triangular property, and condition

(∀p ∈ |K(t)|) ε <Ψ(p) = d(p, f (r)(p))

enable us to conclude that

(∀p ∈ |K(t)|) d(p, |g|(p)) > 2
ε
3

;

in other words, for every point p ∈ |K(t)|, |g|(p) and p cannot coexist in the same
simplex of |K(r)|. Now, let σ be any n-simplex of K(r) viewed as an element of the
canonic basis of Cn(K(r),Q), and suppose σ to be one of the vectors in the com-
position of Cn(g)ℵr

n(σ),2 written as a linear combination of vectors of the canonic
basis. However, ℵr

n(σ) is a linear combination of n-simplexes of K(t), whose ge-
ometric realizations are contained in |σ |; since σ is a component of Cn(g)ℵr

n(σ),
Cn(g) must take to σ one of the n-simplexes of K(t), among the components of the
chain ℵr

n(σ); on the other hand, since Cn(π (t,r))ℵr
n(σ) = σ , there must be a point

p ∈ |K(t)| such that d(p, |g|(p)) < ε
3 , contradicting the preceeding results. Hence,

Tr (Cn(g)ℵr
n) = 0; the Hopf Trace Theorem allows us to conclude that Λ( f (r)) = 0

and so, Λ( f ) = 0. �

The Lefschetz Fixed Point Theorem supplies a necessary but not sufficient con-
dition for a map f : |K| → |K| to have no fixed points. Indeed,

f : S1 → S1 , e2π it �→ e2πi(t+ 1
12 ),t ∈ [0,1)

2 We simplify the notation by writing Cn(g)ℵr
n instead of (Cn(g)⊗1Q)(ℵr

n ⊗1Q).
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has no fixed points and so Λ ( f ) = 0; but f is homotopic to the identity 1S1 through

H(e2π it ,s) = e2π i(t+s 1
12 )

and therefore Λ(1S1) = 0 (because the Lefschetz Number is invariant up to homo-
topy); however, 1S1 has only fixed points.

We now consider an important corollary to the Lefschetz Fixed Point Theorem,
known as the Brouwer Fixed Point Theorem. A self-map of a space X is a map of
X into itself.

(III.3.4) Corollary. Every nonconstant self-map of a connected acyclic polyhedron
has a fixed point.

Proof. Let |K| be such a polyhedron3; by hypothesis, the homology of |K| is all
trivial, except for H0(K;Q)∼=Q. Let us suppose that f is simplicially approximated
by g : K(r) → K. Let x0 be a vertex of |K| and let us suppose that {x0}+ B0(K,Q)
is a generator of H0(K,Q). On the other hand,

C0(g)ℵ0({x0}) = g(x0)

and g(x0) is a vertex of K because g is simplicial. Since |K| is connected, g(x0)
is homological to {x0} and therefore Λ ( f ) = 1. Lefschetz theorem allows us to
conclude that f must have a fixed point. �

Before stating the next corollary, let us look into the definition of the degree of
a self-map of a sphere. It is easy to see that the n-sphere Sn (n ≥ 1) is the geo-
metric realization of a simplicial complex Σ n. Let f : Sn → Sn be a given map and
g : (Σn)(r) → Σ n be a simplicial approximation of f . Σn has trivial homology in all
dimensions except for 0 and n, when it is isomorphic to the Abelian group Z. We
recall that Hn((Σ n)(r)) ∼= Zn((Σ n)(r)) has only two possible generators (differing by
their orientation); let z be one of them. Then, there exists an integer d such that
Hn(g)(z) = d z. This number, which is obviously independent from the homotopy
class of the map f , the cycle z, and the simplicial approximation g of f , is the degree
of f (notation: gr ( f )).4

(III.3.5) Lemma. For every map f : Sn → Sn,

Λ( f ) = 1 +(−1)n gr ( f ) .

Proof. The Lefschetz number is defined for the homology with rational coefficients.
Since Σn is connected, Tr H0( f ,Q) = 1; we only need to prove that Tr Hn( f ,Q) =
gr ( f ), to which end it is sufficient noting that

Zn((Σn)(r),Q) ∼= Zn((Σ n)(r))⊗Q . �

3 See examples of acyclic complexes in Sect. II.4.
4 Case n = 1 is particularly interesting: when we move along the cycle z, its image g(z) wraps the
corresponding generating cycle of Z1(S1) d times around S1.
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(III.3.6) Corollary. If a map f : S2 → S2 has no fixed point, there exists p∈ S2 such
that f (p) = −p.

Proof. Suppose that f has no fixed point; by the preceeding lemma gr ( f ) =−1. In
particular, the antipodal function

A : S2 → S2 , p �→ −p

has degree −1. Since gr (A f ) = gr (A)gr ( f ) = 1, it follows that

Λ(A f ) = 1 +(−1)2gr (A f ) = 2

and so, there is p ∈ S2 such that A f (p) = p; hence, f (p) = −p. �

(III.3.7) Corollary. There is no map f : S2n → S2n with n ≥ 1, such that the vectors
p and f (p) are perpendicular for every p ∈ S2n.

Proof. Suppose there is such a function. Then

(∀p ∈ S2n) ||(1− t) f (p)+ t p|| �= 0

and we may therefore define a map

F : S2n × I → S2n , (p,t) �→ (1− t) f (p)+ t p
||(1− t) f (p)+ t p|| .

This map is a homotopy between function f and the identity function 1S2n . It follows
that

Λ( f ) = Λ(1S2n) = 1 +(−1)2n = 2

and so (∃p ∈ S2n) f (p) = p, against the hypothesis on f . �

(III.3.8) Remark. A tangent vector field on a sphere Sn is a set of vectors of Rn+1

tangent to Sn, one at each point p ∈ Sn, and such that the length and direction of
the vector at p vary continuously with p. Corollary (III.3.7) states that no sphere of
even dimension has a nonvanishing tangent vector field. Odd-dimensional spheres
have such fields; for instance,

S2n−1 → S2n−1 , (x1, . . . ,x2n) �→ (−x2,x1, . . . ,−x2n,x2n−1) .

The important Fundamental Theorem of Algebra may be easily proved as a
consequence of the Lefschetz Fixed Point Theorem:

(III.3.9) Corollary. A polynomial

f (z) = zn + a1zn−1 + . . .+ an−1z+ an ∈ C[z]

(with n ≥ 1) has a complex root. Consequently, the equation f (z) = 0 has n solu-
tions, not necessarily distinct.
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Proof. We consider that polynomial as a map P : R2 → R2 To prove that P is
surjective and that, as a consequence, there exists an α ∈C corresponding to 0 ∈R2

such that

αn + a1αn−1 + . . .+ an−1α + an = 0 .

We take the compactification S2 of R2 obtained by adding a point ∞ to R2 and we
extend P to a map P : S2 → S2 by setting P(∞) = ∞. The map

H : S2 × I → S2 , (p,t) �→ zn +(1− t)
(
a1zn−1 + . . .+ an

)
, ∞ �→ ∞

is a homotopy between maps P and

f : S2 → S2 , z �→ zn .

We wish to prove that gr ( f ) = n. To this end, we construct two simplicial complexes
K and L homeomorphic to S2, and consider a simplicial approximation of f . Let us
take the complex numbers

xs = e
2πis
n2 , s = 0,1, . . . ,n2 −1

and construct the simplicial complex K, formed by
vertices:

{0},{x0}, . . . ,{xn2−1},{∞} ;

1-simplexes:

{0,x0}, . . . ,{0,xn2−1}
{x0,∞}, . . . ,{xn2−1,∞}
{x0,x1}, . . . ,{xn2−1,x0}

2-simplexes:

{0,x0,x1}, . . . ,{0,x1,x2}, . . . ,{0,xn2−1,x0}
{∞,x0,x1}, . . . ,{∞,x1,x2}, . . . ,{∞,xn2−1,x0} ,

whose geometric realization is homeomorphic to S2.
We now take the complex numbers

yt = e
2πit

n , t = 0,1, . . . ,n−1

and consider the simplicial complex L, formed by
vertices:

{0},{y0}, . . . ,{yn−1},{∞} ;



124 III Homology of Polyhedra

1-simplexes:

{0,y0}, . . . ,{0,yn−1}
{y0,∞}, . . . ,{yn−1,∞}
{y0,y1}, . . . ,{yn−1,y0}

2-simplexes:

{0,y0,y1}, . . . ,{0,y1,y2}, . . . ,{0,yn−1,y0}
{∞,y0,y1}, . . . ,{∞,y1,y2}, . . . ,{∞,yn−1,y0} ,

whose geometric realization is also homeomorphic to S2. Note that

f (0) = 0 , f (∞) = ∞ and f (xs) = ys.

Let z be a generator of H2(L;Z) (the sum of all oriented 2-simplexes of L) and z′
be the corresponding generator of K (a subdivision of L); we can easily see that
H2( f )(z′) = nz, which means that gr ( f ) = n.

Since the degree of a map is invariant up to homotopy, we conclude that
gr (P) = n. Assuming that P is not a surjection, there should exist a p ∈ S2 such
that P(S2) ⊂ S2\p ≈ R2. We could then interpret P as a map from S2 to R2 and,
therefore, homotopic to the constant map from S2 to 0 ∈ R2 (if X is a topological
space and h : X → R2 is a continuous function, then h is homotopic to the con-
stant map to 0 through the homotopy ht(x) = tx). But a constant map has degree 0,
contradicting the fact that P has degree n > 0. �

Exercises

1. Let A : S1 → S1 be the antipodal function. Prove that gr A = 1.

2. Prove that there is no retraction of the unit disk Dn ⊂Rn onto its boundary Sn−1.

3. A polyhedron |K| has the fixed point property if every map f : |K| → |K| has at
least one fixed point. Prove that the fixed point property is invariant up to homeo-
morphism.

4. Let |K| be a polyhedron with the fixed point property. Prove that if |L| is a retrac-
tion of |K| then also |L| has the fixed point property.

5. Consider the space

X = {(x0,x1,x2) ∈R3|(∀i = 0,1,2)xi ≥ 0}

with the topology induced by R3 and let f : X → X be a given continuous function.
Prove that it is possible to find a unit vector�v ∈ X and a nonnegative real number λ
such that f (�v) = λ�v.
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6. Let M+
3×3 be the set of all real square matrices with no negative elements. Apply

the preceeding exercise to prove that every matrix A ∈ M+
3×3 has at least one non-

negative eigenvalue.

III.4 Relative Homology for Polyhedra

In Sect. II.4, we have studied the relative homology of a pair of simplicial complexes
(K,L); specifically, we have proved that given two simplicial complexes K = (X ,Φ)
and L = (Y,Θ ) with Y ⊂ X and Θ ⊂ Φ , then

(∀n ≥ 1) Hn(K,L;Z) ∼= Hn(K ∪CL;Z)

where CL is the abstract cone vL Theorem (II.4.7). In Sect. III.2, we have stud-
ied the homology functor in the category of polyhedra, giving the definition of
H∗(|K|,Z) := H(K,Z) for any polyhedron |K| (the definition of functor H∗(−,Z)
on morphisms is more intricate and depends on the Simplicial Approximation The-
orem). Nevertheless, we may say that

(∀n ≥ 1) Hn(|K|, |L|;Z) ∼= Hn(|K ∪CL|;Z)

for every pair of polyhedra (|K|, |L|). In this section, we prove the following result:

(III.4.1) Theorem. For every pair of polyhedra (|K|, |L|) (with L a subcomplex of
K) and every integer n ≥ 1,

Hn(|K|, |L|;Z) ∼= Hn(|K|/|L|;Z) .

This theorem is a direct consequence of a more general result in the category of
topological spaces:

(III.4.2) Theorem. Let (X ,A) be a pair of topological spaces with A closed in X;
suppose that (X ,A) has the Homotopy Extension Property. Let CA be the cone
(A× I)/(A×{0}). Then the adjunction space X ∪CA and the quotient space X/A
are of the same homotopy type.

Proof. The reader may intuitively come to this result by considering the cone CA as
a space contractible to a point; here is a rigorous proof of the statement.

In this theorem, we have two pushouts: one for constructing X ∪CA and the other
for X/A; these are their corresponding diagrams:

A
i ��

i1

��

X

i1
��

CA
i

�� X ∪CA
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with i1 : A →CA given by x �→ [x,1] and i : A → X the inclusion;

A
i

��

c

��

X

c

��

∗
i

�� X/A

with c : A →∗ the constant map and c = q : X → X/A the quotient map.
Let p : CA → X/A be the constant map to the point [a0] that is identified with A

in X/A. Since qi = pi1, there exists a unique map � : X ∪CA → X/A such that the
following diagram is commutative:

A
i ��

i1

��

X

ī1
�� q





CA
ī ��

p
��

X ∪CA

�

��������������

X/A

Now we must find a function �̃ : X/A→ X ∪CA such that �̃�∼ 1X∪CA and ��̃∼ 1X/A.
With this in mind, we consider the homotopy

H : A× I → X ∪CA , (x,t) �→ [x,1− t]

and apply the Homotopy Extension Property of (X ,A) to get a continuous function

G : A× I −→ X ∪CA

whose restriction to A×{0} coincides with i1 and such that G(i×1I) = H. The map

g : A −→ X ∪CA , g = G(−,1)

is homotopic to the inclusion i : X → X ∪CA and is such that, for every x ∈ A,
g(x) = [x,0], the vertex of the cone CA. Since X/A is a pushout space, there exists a
unique map

�̃ : X/A −→ X ∪CA
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such that �̃q = g. To prove that �̃� and ��̃ are homotopic to their respective identity
functions, we construct the following homotopies:

H1 : (X ∪CA)× I −→ X ∪CA

1. (∀[x,t] ∈CA) , H1([x,t],s) = [x,ts],
2. (∀x ∈ X) , H1(x,s) = G(x,1− s)

and

H2 : X/A× I −→ X/A

H2(q(x),t) = �G(x,t) , x ∈ X � A .

We ask the reader to verify that these homotopies are well defined and to complete
the proof. �

We now turn to Theorem (III.4.1). It is sufficient to notice the following facts:
(a) |L| is a closed subspace of |K|; (b) the pair (|K|, |L|) has the Homotopy Exten-
sion Property (see Theorem (III.1.7)), (c) |K ∪CL| ∼= |K| ∪ |CL| is a pushout space;
finally, we apply Theorem (III.4.2).

Theorem (II.4.9) in Sect. II.4 has a corresponding version in the category of poly-
hedra: let {|Ki| |i = 1, . . . , p} be a finite set of based polyhedra, each with base point
given by a vertex xi

0 ∈ Ki; we then take the wedge product

∨p
i=1|Ki| := ∪n

i=1({x1
0}× . . .×|Ki|× . . .×{xp

0}) .

(III.4.3) Theorem. For every q ≥ 1,

Hq(∨p
i=1|Ki|,Z) ∼= ⊕p

i=1Hq(|Ki|,Z) .

We consider the topological space

X = S2 ∨ (S1
1 ∨S1

2)

which is the wedge product of a two-dimensional sphere and two circles. The space
X is clearly triangulable and therefore, by Theorem (III.4.3), its homology is as
follows:

Hq(X ;Z) ∼=

⎧
⎪⎪⎨

⎪⎪⎩

Z q = 0
Z⊕Z q = 1
Z q = 2
0 q �= 0,1,2 .

Therefore, X and the torus T 2 have the same homology groups. But these spaces
are not homeomorphic. To prove that X and T 2 are not homeomorphic, we recall
Remark (I.1.17). We suppose f : X → T 2 to be a homeomorphism and let x0 be the
identification point of spheres S2, S1

1, and S1
2; then, X � {x0} and T 2

� { f (x0)} are
homeomorphic; but X �{x0} has three connected components while T 2

�{ f (x0)}
is connected, which leads to a contradiction.
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III.5 Homology of Real Projective Spaces

We have already computed the homology groups of some elementary polyhedra
such as the sphere S2 and the torus T 2 (see also exercises in Sect. II.4). We have
also studied techniques that, in theory, allow us to study the homology of polyhedra
(for instance, the Exact Homology Sequence Theorem). In this section, we compute
the homology of real projective spaces; we shall see that the methods learned so far
are not enough to complete our pre-established task and for this reason we shall
provide a new method for computing homology groups.

Those readers who have done the exercises of Sect. II.2 will have found at least
one triangulation for RP2; whatever the case, we consider the triangulation P of
RP2 that has 6 vertices, 15 edges, and 10 faces in Fig. III.3 (the geometric realization

3 4

5

1

02

0

1

2

Fig. III.3

of this simplicial complex is homeomorphic to the disk D2
1 with the identification of

its boundary antipodal points).
In one of the exercises in Sect. II.4, we have asked the reader to compute the ho-

mology groups (with coefficients in Z) of a triangulation of RP2; the reader should
have come to the results that are put together in the following lemma (in any case,
this lemma will be proved later on with another method).

(III.5.1) Lemma.

Hq(RP2,Z) ∼=
⎧
⎨

⎩

Z , q = 0
Z2 , q = 1
0 , q �= 0,1 .

We now consider the n-dimensional real projective spaces RPn, with n ≥ 3. As
for the two-dimensional case, RPn is a quotient space of Sn by identification of
antipodal points. Let us rephrase the definition of RPn as follows: We define the
equivalence relation in Rn+1

� (0, . . . ,0):

x = (x0, . . . ,xn) ≡ y = (y0, . . . ,yn) ⇐⇒
(∃λ ∈R,λ �= 0)(∀i = 0, . . . ,n)xi = λyi .
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We ask the reader to prove that

Sn|Z2 = RPn ∼= (Rn+1
� (0, . . . ,0))/ ≡ .

In this way, we adopt the definition RPn = (Rn+1
� (0, . . . ,0))/ ≡.

We now prove that RPn+1 may be obtained from RPn by “adjunction” of an
(n+1)-dimensional disk Dn+1; more precisely, RPn+1 is the pushout of the diagram

Sn
qn

��

ın

��

RPn

Dn+1

where ın is the inclusion of Sn in Dn+1 and qn is the map that takes a point
(x0, . . . ,xn) ∈ Sn into its equivalence class

[(x0, . . . ,xn)] ∈ (Rn+1
� (0, . . . ,0))/ ≡ .

We start by constructing the pushout

Sn
qn

��

ın

��

RPn

ı̄n

��

Dn+1
q̄n

�� RPn �qn Dn+1

and the following commutative diagram

Sn
qn

��

ın

��

RPn

jn

��

Dn+1
gn

��
RPn+1

where

gn(x0, . . . ,xn) =

[
(x0, . . . ,xn,

√
1−

n

∑
0

|xi|2)
]

and
jn([(x0, . . . ,xn)] = [(x0, . . . ,xn,0)]

for every (x0, . . . ,xn) ∈ Sn and [(x0, . . . ,xn)] ∈ RPn. By the definition of pushout,
there is a unique continuous function

� : RPn �qn Dn+1 →RPn+1
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such that
�q̄n = gn and �ı̄n = jn .

We wish to prove that the map � is a homeomorphism. We first prove that � is
bijective; to this end, it is sufficient to prove that the restriction

� : Dn+1
� Sn −→RPn+1

�RPn

is bijective. With this in mind, we define the function

g̃n : RPn+1
�RPn −→ Dn+1

� Sn

such that, for every [(x0, . . . ,xn+1)] ∈RPn+1
�RPn,

g̃n([(x0, . . . ,xn+1)]) =
(

x0xn+1

|xn+1|r , . . . ,
xnxn+1

|xn+1|r
)

where

r =

√
n+1

∑
0
|xi|2 ,

and we notice that gng̃n = g̃ngn = 1. The continuity of the inverse function �−1

derives from the fact that � is a bijection from the compact space RPn�qn Dn+1 onto
the Hausdorff space RPn+1 (see Theorem (I.1.27)).

(III.5.2) Proposition.

Hq(RP3,Z) ∼=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Z if q = 0

Z2 if q = 1

Z if q = 3

0 if q �= 0,1,3.

Proof. The exact homology sequence for the pair (RP3,RP2) is

. . . �� Hn(RP2;Z)
Hn(i)

�� Hn(RP3;Z)
q∗(n)

�� Hn(RP3,RP2;Z)
λn ��

λn �� Hn−1(RP2;Z) �� Hn−1(RP3;Z) �� . . .

(see Theorem (II.4.1)). By Lemma (III.5.1), Hn(RP2;Z) is zero if n �= 0,1. By
Theorem (II.4.7) and considering that

RP3/RP2 ∼= S3 ,

we have that, for every n ≥ 1, Hn(RP3,RP2;Z) ∼= Hn(S3) is zero if n �= 3 and is
isomorphic to Z if n = 3. The significant part of the sequence becomes
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0 �� H3(RP3;Z)
∼= �� Z �� 0 �� H2(RP3;Z) ��

�� 0 �� Z2 ∼=
�� H1(RP3;Z) �� 0,

which easily leads to the thesis. �

At this stage, the reader could be tempted to compute the homology of RP4 with
this method and then apply the Exact Sequence Theorem in Homology to compute
the homology of RPn by induction; unfortunately, this idea will not work, because
the connecting homomorphisms λq : Hq(Sn,Z) → Hq−1(RPn−1,Z) are generally
not known. Therefore, we must come up with another method for computing the
homology of RPn when n ≥ 4; this will be done in the next subsection.

III.5.1 Block Homology

We begin by reviewing how to compute the homology of the torus T 2. To start
with, we interpret the torus T 2 as deriving from the square with vertices (0,0),
(1,0), (0,1), and (1,1) by identifying the two horizontal edges and then the two
vertical ones. A possible triangulation T of the torus is represented in Fig. III.4

0 1 2 0

4 7 8 4

3 5 6 3

0 1 2 0

Fig. III.4

(see also p. 63). We have 9 vertices, 27 edges, and 18 faces, a total of 54 sim-
plexes in it, too large a number, considering what we started with; in fact, given
the identifications made on the Euclidean square, we could take the simplexes in
“blocks”, consider only one vertex (the four vertices have been identified), two one-
dimensional “blocks”, namely, one vertical edge and one horizontal edge (with-
out their end-points), and only one two-dimensional “block”, namely, the square
without its boundary. We then ask ourselves whether it is possible to compute the
homology of T 2 by means of this block (or “cellular”) interpretation of the torus
and, in doing so, avoid handling a rather large number of simplexes; because, if
the procedure is already a little complicated for the torus, a space that can, after
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all, be easily interpreted, imagine what might happen when we try to compute the
homology of a more complex polyhedron. We now explain what a “block” decom-
position of a polyhedron is and how the homology of a polyhedron divided into
blocks is computed.

Let K = (X ,Φ) be a given simplicial complex; for every subset e ⊂ Φ , let e be
the smallest subcomplex of K that contains e (we observe that e is not necessarily
a simplicial complex; for instance, take the previous triangulation T of the torus T 2

and let e be the set of the simplexes {2}, {0,3,5}, and {3,4,6}; in this example,
{0,3} ⊂ {0,3,5} but {0,3} �∈ e). The simplicial complex e may be described in
another way:

e =
⋃

σ∈e

σ .

The simplicial complex e associated with the set e is called closure of e.
For every e ⊂ Φ , we define the boundary of e as

•e = e� e;

this, by definition, is a subcomplex of K; furthermore,
•
e is a simplicial subcomplex

of e:

e� e ⊂ e ⇒ e � e ⊂ e = e ⇒ •e ⊂ e .

Finally, e = e∪ •
e: in fact, since e ⊂ e and •

e ⊂ e, we have the inclusion e∪ •
e ⊂ e; on

the other hand, if σ ∈ e and σ �∈ e then σ ∈ e � e and thus

σ ∈ e� e = •e ;

we conclude that e∪ •
e ⊂ e.

We extend the definition of closure of a set e ⊂ Φ to a chain cn = ∑i miσ i
n ∈

Cn(K,Z): the closure of cn is the simplicial complex

cn =
⋃

i : mi �=0

σ i
n .

(III.5.3) Definition. A p-block or block of dimension p of K is a set ep ⊂ Φ such
that:

(i) ep contains no simplex of dimension > p
(ii) Hp(ep,

•ep;Z) ∼= Z

(iii) (∀q �= p) Hq(ep,
•
ep;Z) ∼= 0

(III.5.4) Remark. To compute the homology of the pair of simplicial complexes
(ep,

•
ep), it is necessary to give an orientation to K. However, we also could give an

orientation to ep individually by choosing a generator βp of the Abelian group

Hp(ep,
•ep;Z) ∼= Zp(ep,

•ep) ∼= Z .
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Note that a generator βp may be interpreted as a linear combination of p-simplexes
of K or of ep; in any case, ∂ (βp) is a chain of •ep and therefore

∂ (βp) ⊂ •ep .

(III.5.5) Definition. A block triangulation5 of a simplicial complex K = (X ,Φ) (or
of a polyhedron |K|) is a set e(K) = {ei

p} of blocks with the following conditions:

(1) For every σ ∈Φ , there is a unique block e(σ) of the set e(K) such that σ ∈ e(σ).
(2) For every p-block ei

p ∈ B(K), •ei
p is a union of blocks with dimension < p.

It follows from the preceding definition that

1. For every i, j, p, •ei
p ∩ e j

p = /0

2. If i �= j, then ei
p ∩ e j

p = /0

As an example, we give a block triangulation of the torus T 2 with the triangula-
tion T previously described. We consider the following sets of simplexes of T :

1. e0 = {0}
2. e1

1 = {{3},{4},{0,3},{3,4},{4,0}}
3. e2

1 = {{1},{2},{0,1},{1,2},{2,0}}
4. e2 = T � (e0 ∪ e1

1 ∪ e2
1)

We determine that the set

e(T 2) = {e0,e
1
1,e

2
1,e2}

is a block triangulation for T 2. We notice at once that

e0 = {0} ,
•
e0 = /0 ,

e1
1 = {0,3}∪{3,4}∪{4,0} ,

•e1
1 = {0} ,

e2
1 = {0,1}∪{1,2}∪{2,0} ,

•e2
1 = {0} ,

e2 = T ,
•
e2 = e1

1 ∪ e2
1 ;

we now recall Theorem (III.4.1) and observe that

|ei
1|/| •ei

1| ∼= S1 , i = 1,2 ,

|e2|/| •e2| ∼= S2 ;

this shows that the elements of e(T 2) are blocks. It is easily proved that they form a
block triangulation.

5 In spite of the name, this is not a triangulation. In fact, it is the analog of a cellular decomposition
of |K|. The block homology can be seen as the cellular homology of such a cellular complex (see
e.g. [7, Chap. V]).
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For the real projective plane, with the previously described triangulation we have
the block triangulation given by:

1. e0 = {0}
2. e1 = {{1},{2},{0,1},{1,2},{2,0}}
3. e2 = P� (e0 ∪ e1)

Let |K| be a polyhedron with a block triangulation e(K) = {ei
p}; for every integer

q such that 0 ≤ q ≤ dimK, we define

e(q) = {ei
p ∈ e(K)|p ≤ q} .

(III.5.6) Proposition. Let A be any union of q-blocks. Then, e(q)
�A is a simplicial

subcomplex of K.

Proof. Let σ be any simplex of e(q)
� A; then σ is in a certain block ei

p of e(q)
� A,

with p ≤ q. Suppose σ ′ ⊂ σ ; then either e(σ ′) = ei
p or σ ′ ∈ •

ei
p; in the latter case,

e(σ ′) is an r-block with r < p; in any case, σ ′ ∈ e(q)
� A. �

At this point, we can define the “block homology” of |K| with block triangula-
tion e(K): in a nutshell, it comes from the chain complex C(e(K)) = {Cn(e(K))}
defined as

Cn(e(K)) = Hn(e(n),e(n−1);Z) ∼=
�n⊕

j=1

Hn(e j
n,

•e j
n;Z)

where {e1
n, . . . ,e

�n
n } is the set of n-blocks. The boundary operator ∂ e(K)

n will be given
by suitable sum of compositions

Hn(en,
•
en;Z) λn−→ Hn−1(

•
en;Z)

Hn−1(i)−→ Hn−1(en−1;Z)
q∗(n−1)−→ Hn−1(en−1,

•
en−1;Z)

where λn, q∗(n−1) are the appropriate homomorphisms of the long exact sequences
for (en,

•en), (en−1,
•en−1), respectively, and Hn−1(i) is the homomorphism arising

from the inclusion •
en ⊂ en−1. The problem is also to relate this homology to

H∗(|K|;Z). For this, we proceed along the lines of [17, 3.8], and we will define

∂ e(K)
∗ in the process.

We begin with the following key result:

(III.5.7) Lemma. Let cp be a p-chain of K such that ∂p(cp) ⊂ e(p−1); then there
exists a chain of p-blocks ∑i miβ i

p homologous to cp.

Proof. Suppose that cp ⊂ e(q), with q > p. Let us first prove the existence of a
p-chain c′p ∈ Cp(K) homologous to cp, where c′p ⊂ e(p) (this means that we may
remove cp from the blocks with dimension strictly larger than p). To this end, it
is enough to prove the existence of a p-chain fp ∈ Cp(K) homologous to cp, with
fp ⊂ e(q−1): in fact, since cp and fp are homologous, ∂p(cp) = ∂p( fp); we may
therefore conclude that ∂p( fp) ⊂ e(p−1) from the hypothesis ∂p(cp) ⊂ e(p−1); if
q−1 > p, we apply the preceding argument on fp, and so forth.
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Let ei
q be any q-block (recall that q > p). We begin by removing cp from ei

q: we
write

cp = ci
p + f i

p where ci
p ⊂ ei

q , f i
p ⊂ e(q)

� ei
q .

Hence, ∂p(ci
p) ⊂ ei

q; in addition,

∂p(ci
p) ⊂ ∂p(cp)∪∂p( f i

p) ⊂ e(p−1)∪ (e(q)
� ei

q) = e(q)
� ei

q

which leads to
∂p(ci

p) ⊂ ei
q ∩ (e(q)

� ei
q) = •ei

q .

Therefore, ci
p ∈ Zp(ei

q,
•ei
p); since p �= q, we have Hp(ei

q,
•ei
p) = 0 and so

ci
p = ∂p+1( f i

p+1)+ gi
p , where f i

p+1 ∈Cp+1(ei
q) and gi

p ∈Cp(
•ei
q) .

Hence, cp is homologous to

cp − ∂p+1( f i
p+1) = ci

p + f i
p − (ci

p −gi
p) = f i

p + gi
p ;

note that the closure of the p-chain f i
p + gi

p is contained in

(
e(q)

� ei
p

)
∪ •ei

q = e(q)
� ei

q ;

since f i
p + gi

p is homologous to cp, we may say that we have removed cp from the
block ei

p.

Let us now remember that i �= j =⇒ ei
q∩e j

q = /0; then, because ∂p+1( f i
p+1)⊂ ei

q,

the coefficient of each p-simplex of ∂p+1( f i
p+1) in e j

q is zero. Hence for every i, we

may find a (p + 1)-chain f i
p+1 such that

cp −∑
i

∂p+1( f i
p+1) ⊂ e(q−1) .

We define the p-chain fp = cp −∑i ∂p+1( f i
p+1); from the observations made at the

beginning of the proof, we conclude that there is a p-chain c′p of K homologous to

cp and such that ∂p(c′p) ⊂ e(p).
Now the proof proceeds as before: let ei

p be an arbitrary p-block; we write

c′p = ki
p + hi

p where ki
p ⊂ ei

p , hi
p ⊂ e(p)

� ei
p and hi

p ⊂ e(p)
� ei

p .

As before, ki
p ∈ Zp(ei

p,
•ei
p). However, Zp(ei

p,
•ei
p)∼=Z; let β i

p be one of its generators;
then, ki

p = miβ i
p for a certain nonzero integer mi. Repeating this procedure for each

i we obtain a chain of p-blocks with

c′p −∑
i

miβ i
p ⊂ e(p−1) ;
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since e(p−1) contains no p-simplex, we conclude that

c′p = ∑
i

miβ i
p

and so cp is homologous to ∑i miβ i
p. �

This lemma has an important consequence, essential to the definition of block
homology:

(III.5.8) Theorem. The following results hold for any polyhedron |K| with a block
triangulation:

(1) Every p-cycle zp ∈ Zp(K) is homologous to a cycle of p-blocks ∑i miβ i
p.

(2) If ∑i miβ i
p is a boundary, there exists a chain of (p + 1)-blocks ∑ j n jβ j

p+1 such
that

∂p+1

(

∑
j

n jβ j
p+1

)
= ∑

i

miβ i
p ;

(3) ∂p(β i
p) is a chain of (p−1)-blocks like ∑ j mi

jβ
j
p−1.

Proof. (1) Let zp be a p-cycle of K; then ∂p(zp) = 0 and so ∂p(zp) ⊂ e(p−1); we
conclude from Lemma (III.5.7) that there is a chain of p- blocks c′p = ∑i miβ i

p,
which is homologous to zp; then, c′p is a cycle because ∂p(c′p) = ∂p(zp) = 0.

(2) Let us suppose that ∑i miβ i
p = ∂p+1(cp+1), where cp+1 ∈ Cp+1(K); since

∂p+1(cp+1) ⊂ e(p), the (p + 1)-chain cp+1 is homologous to a chain of (p + 1)-
blocks ∑ j n jβ j

p+1; hence

∑
i

miβ i
p = ∂p+1(cp+1) = ∂p+1

(

∑
j

n jβ j
p+1

)
.

(3) By definition, β i
p is a generator of Hp(ei

p,
•
ei

p) ∼= Z; hence

∂p(β i
p) ⊂ •

ei
p ⊂ e(p−1) ;

we now proceed as we did for the second part of Lemma (III.5.7); we substitute
∂p(β i

p) for c′p and p−1 for p. �

Let |K| be a polyhedron with a block triangulation e(K). We now construct the
chain complex

C(e(K)) =
{(

Cn(e(K)),∂ e(K)
n

)
|n ≥ 0

}

as follows: for each n ≥ 0, Cn(e(K)) is the free Abelian group generated by β i
n;

the boundary operators ∂ e(K)
n are defined on generators according to part (3) of

Theorem (III.5.8):
∂ e(K)

p (β i
p) = ∂p(β i

p) = ∑
j

mi
jβ

j
p−1 ;
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hence, ∂ e(K)
p ∂ e(K)

p+1 = 0. As for the simplicial homology, we define

Zn(e(K);Z) = ker∂ e(K)
n , Bn(e(K);Z) = im∂ e(K))

n+1 ,

Hn(e(K),Z) := Zn(e(K);Z)/Bn(e(K);Z)

if n ≥ 0, and Hn(e(K),Z) = 0 when n < 0.

(III.5.9) Theorem. Let |K| be a polyhedron with a block triangulation e(K). Then
for every n ∈Z, there is a group isomorphism

Hn(e(K),Z) ∼= Hn(|K|,Z) .

Proof. Every chain of n-blocks may be interpreted as a normal simplicial n-chain
of K; hence, there exists a homomorphism

in : Cn(e(K)) →Cn(K)

which is easily seen to commute with the boundary operators and induces therefore
a homomorphism in : Hn(e(K),Z) → Hn(|K|,Z) for every n. By Theorem (III.5.8),
parts (1) and (2), in is bijective. �

We now compute the homology of T 2 and RP2 through their block triangulations
that we have mentioned before. Since both polyhedra are connected,

H0(e(T 2),Z) ∼= H0(T 2,Z) ∼= Z

H0(e(RP2),Z) ∼= H0(RP2,Z) ∼= Z

(see Lemma (II.4.5)). For the torus T 2, we have the following results: (a) C1(e(T 2))
has two generators, β 1

1 and β 2
1 , corresponding to the 1-blocks e1

1 and e2
1, respectively;

these generators are the only 1-cycles of the block triangulation e(T 2) and so

H1(e(T 2),Z) ∼= H1(T 2,Z) ∼= Z⊕Z ;

(b) C2(e(T 2)) has only one generator β2 corresponding to e2; since β2 is a cycle,

H2(e(T 2),Z) ∼= H2(T 2,Z) ∼= Z .

For RP2, we have that C1(e(RP2)) has only one generator β1 corresponding to e1;
but 2β1 is a boundary (of e2) and therefore

H1(e(RP2),Z) ∼= H1(RP2,Z) ∼= Z2 ;

on the other hand, C2(e(RP2)) has a generator (corresponding to e2) but has no
cycles and so

H2(e(RP2),Z) ∼= H2(RP2,Z) ∼= 0

(this is the proof of Lemma (III.5.1)).
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III.5.2 Homology of RPn, with n ≥ 4

We first wish to find a convenient triangulation for RPn. We remind the reader that
RPn is also interpreted as the pushout space of the diagram

Sn−1
qn−1

��

ın−1

��

RPn−1

Dn

where qn−1 is the map that identifies antipodal points of Sn−1 and ın−1 is the inclu-
sion. In fact, in this way we have a sequence of real projective spaces

RP1 ⊂ . . . ⊂RPn−1 ⊂RPn .

Let Sn
+ be the northern hemisphere of Sn, that is to say, the set of all points

(x1, . . . ,xn+1) ∈Rn+1, where r =
√

∑n+1
i=1 x2

i = 1 and xn+1 ≥ 0. We define the func-
tion f : Dn → Sn

+ as follows:

f (x1, . . . ,xn) =

{
( x1

r sin πr
2 , . . . , xn

r sin πr
2 ,cos πr

2 ) if r =
√

∑n
i=1 x2

i �= 0

(0,0, . . . ,1) if r = 0 .

This function is a homeomorphism whose restriction to the boundary of Sn
+ is the

identity. With this in mind, we may say that RPn is obtained from Sn
+ by identifying

the antipodal points of ∂Sn
+
∼= Sn−1.

Let Kn−1 be the standard triangulation of Sn−1 (see p. 55). We define a triangu-
lation Kn

+ of Sn
+ as the join of Kn−1 and {an+1}, where an+1 = (0, . . . ,0,1) ∈Rn+1.

We are tempted to define a triangulation for RPn by identifying the antipodal ver-
tices of Sn−1; it does not work, as we could have different simplexes defined by the
same vertices in RPn. The trick is to work with barycentric subdivisions. Hence, we
define the triangulation Mn ofRPn, identifying the antipodal vertices of (Kn−1)(1) in
(Kn

+)(1). The set en of n-simplexes of Mn is an n-block of Mn: in fact, the simplicial
function ((Kn

+)(1),(Kn−1)(1))→ (en,
•en) is injective into (Kn

+)(1)
�(Kn−1)(1) and in-

duces therefore an isomorphism among the chain complexes C((Kn
+)(1),(Kn−1)(1)),

and C(en,
•en); on the other hand, the relative version of the chain complexes homo-

morphism
ℵ : C((Kn

+),(Kn−1);Z) →C(Kn
+)(1),(Kn−1)(1);Z) ,

defined in Theorem (III.2.2), induces an isomorphism between the relative homol-
ogy of pairs ((Kn

+)(1),(Kn−1)(1))) and (en,
•en); hence,

Hr(en,
•en;Z) ∼=

{
Z if r = n

0 if r �= n.



III.5 Real Projective Spaces 139

We find a triangulation Mn−1 of RPn−1 in a similar way and so on. Note that
•en coincides with the set of (n− 1)-simplexes en−1 of Mn−1, which in turn is an
(n−1)-block, etc. In this way, we obtain a block triangulation of RPn.

All that is left to do is to look into the generators of Hr(er,
•er;Z) and their bound-

aries. We denote a generator of Hn−1(Sn−1,Z) with zn−1 ∈ Zn−1(Sn−1;Z).6 The
exact sequence of the homology groups of (Kn

+,Kn−1) shows that zn−1 ∗ an+1 is a
generating cycle of Hn(Kn

+,Kn−1;Z). It follows that ℵ(zn−1 ∗ an+1) is a genera-
tor for Zn((Kn

+)(1),(Kn−1)(1);Z) and if q : |Kn
+| → |Mn| is the quotient map, then

qℵ(zn−1 ∗an+1) is a generator of Zn(|Mn|, |Mn−1|;Z). Now,

∂qℵ(zn−1 ∗an+1) = qℵ∂ (zn−1 ∗an+1) =

(−1)nqℵ(zn−1) = (−1)nqℵ(zn−2 ∗an − zn−2 ∗a′n) .

We interchange in zn−2 all points ar with a′r; this gives rise to an element which we
denote with z′n−2; indeed, zn−2 = (−1)n−1z′n−2. Hence,

∂qℵ(zn−1 ∗an+1) = (−1)nqℵ(zn−2 ∗an − (−1)n−1z′n−2 ∗a′n)

= (−1)nqℵ(zn−2 ∗an)− (−1)n(−1)n−1qℵ(z′n−2 ∗a′n) .

Finally, since qℵ(zn−2 ∗an+1) = qℵ(z′n−2 ∗a′n), we conclude that

∂qℵ(zn−1 ∗an+1) = (1 +(−1)n)qℵ(zn−2 ∗an) .

To simplify the notation, we write βr = qℵ(zr−1 ∗ ar+1); this is a generator of
Cr(e(Mn);Z) and has the property

∂ (βr) = (1 +(−1)r)βr−1 .

Specifically for 0 < 2r ≤ n, the group C2r(e(Mn);Z) is generated by the elements
β2r and ∂ (β2r) = 2β2r−1; therefore, Z2r(e(Mn);Z) = 0 and H2r(RPn;Z) = 0. If
2r−1 < n, then the group C2r−1(e(Mn);Z) is generated by β2r−1 and ∂ (β2r−1) = 0;
hence, the group Z2r−1(e(Mn);Z)∼=Z is generated by β2r−1, the group B2r−1(e(Mn);
Z) is generated by 2β2r−1, and there is an isomorphism H2r−1(RPn;Z) ∼= Z2. We
have proved the following result:

(III.5.10) Theorem.

Hp(RPn,Z) ∼=

⎧
⎪⎪⎨

⎪⎪⎩

Z if p = 0
0 if 0 < p = 2q ≤ n
Z2 if 0 < p = 2q−1 < n
Z if n is odd and p = n .

6 We start with S0 and select a generator z0 = {a1}−{a′1}; next, for S1, we define z1 as the join of
z0 and {a1,a′1}, etc.
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III.6 Homology of the Product of Two Polyhedra

In this section, we study the homology of the product of two polyhedra. The main
result is given by the Acyclic Models Theorem.

III.6.1 Acyclic Models Theorem

This theorem is due to Samuel Eilenberg and Saunders MacLane (see [12]). The
reader who wishes to go considerably deeply in this subject is advised to consult the
book [4] by Michael Barr.

In former sections, we have noticed that we can associate a chain complex C(K)
with an augmentation

ε : C0(K) → Z , Σ n
i=1ai{xi} �→ Σ n

i=1ai

to every oriented simplicial complex K. We have also proved the Acyclic Car-
rier Theorem (II.3.9) which makes it possible to compare two augmented chain
complexes under certain conditions (broadly speaking, these conditions require that
some of the local homology groups be trivial). Unfortunately, the Acyclic Carrier
Theorem is not powerful enough for studying the homology of a product of two
polyhedra; to this end, we need the Acyclic Models Theorem.

We have defined the category C of chain complexes in Sect. II.3; in this sec-
tion, we work with a subcategory of C, namely, the category Clp whose objects are
chain complexes of free Abelian groups with an augmentation homomorphism; as
we have done in C, we indicate the objects of Clp with sequences of free Abelian
groups

· · · �� Cn
∂n �� Cn−1

∂n−1
�� · · · ∂1 �� C0

ε �� Z

and a morphism between objects C and C′ with a commutative diagram

· · · �� Cn
∂n ��

fn

��

Cn−1

fn−1

��

∂n−1
�� · · · ∂1 �� C0

f0

��

ε �� Z

f̄

��· · · �� C′
n

∂ ′
n �� C′

n−1
∂n−1

�� · · · ∂1 �� C′
0

ε ′ �� Z

Let a category C and a (covariant) functor

F : C −→ Clp
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be such that:

1. For every n ≥ 0, there is a set Mn of objects Mi
n ∈ C, i ∈ Jn (Jn is a set of

indexes).
2. For each Mi

n there is an element xi
n ∈ F(Mi

n)n such that, for every X ∈ C, the set

{F( f )n(xi
n)| f ∈ C(Mi

n,X), i ∈ Jn}

is a basis for the free Abelian group F(X)n in the chain F(X).

Such a functor (if any exists!) is a free functor with models M = {Mn|n ≥ 0} and
universal elements {xi

n|i ∈ Jn,n ≥ 0}.
We show the existence of free functors with models and universal elements by

means of an example.

Example. Starting from the category Csim of simplicial complexes, we consider
the functor

C : Csim −→ Clp

that takes each simplicial complex K to the augmented chain complex

C(K) = {Cn(K;Z),∂n}.

For every n ≥ 0, we choose an n-simplex σn (fixed) and the corresponding ori-
ented simplicial complex σn; we then set

Mn = {σn}

(the set Jn has therefore only one element); these are the sets of models. We now
look for the universal elements. For each n ≥ 0, let xn ∈ Cn(σn,Z) be the gen-
erator represented by the oriented simplex σn (the only n-simplex of the simpli-
cial complex σn). For every model σn, the only simplicial functions f : σn →
K, which produce nontrivial homomorphisms are precisely the bijective simpli-
cial functions that take σn into the various oriented n-simplexes of K; hence, the
set {C( f )(xn)} contains all oriented n-simplexes of K and is therefore a basis of
Cn(K;Z).

Before we go over other examples, let us define the tensor product of two chain
complexes. Given C,C′ ∈ C arbitrarily, we define the Abelian group

(C⊗C′)n =
⊕

i+ j=n

Ci ⊗C′
j ,

for every n ≥ 0, and the homomorphism

d⊗
n : (C⊗C′)n −→ (C⊗C′)n−1

for every n ≥ 1 such that, for every xi ∈Ci and y j ∈C′
j,

d⊗
i+ j(xi ⊗ y j) = ∂i(x)⊗ y j +(−1)ixi ⊗ ∂ ′

j(y j).
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Note that d⊗ = {d⊗
n |n ≥ 1} is really a differential:

d⊗
i+ j−1d⊗

i+ j(xi ⊗ y j) = ∂i−1∂i(x)⊗ y j +(−1)i−1∂i(xi)⊗∂ ′
j(y j)+

(−1)i∂i(xi)⊗∂ ′
j(y j)+ xi ⊗∂ ′

j−1∂ ′
j(y j) = 0.

It is sometimes convenient to leave the chain morphisms indexes out, to simplify
the definition and, therefore, also the proofs; for instance, we define the boundary
morphism

d⊗ : C⊗C′ →C⊗C′

on generators x⊗ y ∈C⊗C′ by the formula

d⊗(x⊗ y) = d(x)⊗ y +(−1)|x|x⊗d′(y)

(remember that |x| indicates the degree of x, that is to say, |x| = n ⇐⇒ x ∈ Cn ).
As an exercise, we leave to the reader the task of proving that the tensor product
of two free chain complexes with an augmentation homomorphism is a free chain
complex with augmentation. The reader is advised to do the exercises on tensor
products of chain complexes, at the end of this section. Let K and L be two sim-
plicial complexes. In Sect. III.1, we have proved that the product of two polyhedra
is a polyhedron. Actually, we have proved that, given the polyhedra |K| and |L|,
there exists a simplicial complex K × L such that |K × L| ∼= |K| × |L| (see Theo-
rem (III.1.1)); the reader is also advised to review the construction of the simplicial
complex K ×L in the proof of Theorem (III.1.1).

Therefore, given two simplicial complexes K and L, we can define two new func-
tors from the product category Csim×Csim (see examples of categories in Sect. I.2)
to the category Clp:

C× : Csim×Csim → Clp , (K,L) �→C(K ×L) ,

C⊗C : Csim×Csim → Clp , (K,L) �→C(K)⊗C(L) .

The functors C× and C⊗C are examples of free functors with models and uni-
versal elements. In fact, as we did for the functor C : Csim → Clp, we fixate an
n-simplex σn for each n ≥ 0 and we take as models the pairs (σ j,σn− j) for C×, and
(σn,σn) for C⊗C. The universal elements are easily described.

We note that on each model σn the functor C : Csim → Clp produces a positive,
acyclic free chain complex, that is to say,

Hi(σn,Z) ∼=
{
Z if i = 0

0 if i > 0

(see the definition of acyclic chain complexes in Sect. II.3 and how to compute the
homology of σn in Sect. II.4). For this reason, we say that the models σn are acyclic
for the functor C.

(III.6.1) Lemma. The models (σ j,σn− j) are acyclic for the functor C× and the
models (σn,σn) are acyclic for C⊗C.
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Proof. In regard to the first part of the statement, we need only to note that

Hi(σ j ×σn− j,Z) ∼= Hi(|σ j|× |σn− j|,Z) ∼= Hi(|σ n|,Z)

∼=
{
Z if i = 0

0 if i > 0.

For the proof of the second part, we recall Lemma (II.3.8), which tells us that

I. There exists a function
η : Z→C0(σn)

such that εη = 1,
II. There exists a homotopy

s : C(σn) →C(σn)

such that

1. ∂1s0 = 1−ηε
2. ∂n+1sn + sn−1∂n = 1 for every n ≥ 1

We define the morphism

S : C(σn)⊗C(σn) →C(σn)⊗C(σn)

on generators by the formula

S(x⊗ y) = s(x)⊗ y + ηε(x)⊗ s(y)

provided that ηε(x) = 0 if |x| �= 0. Since ε∂1 = 0, we conclude that

d⊗S(x⊗ y) = d⊗[s(x)⊗ y)+ ηε(x)⊗ s(y)]

= d(s(x))⊗ y +(−1)|x|+1s(x)⊗d(y)+ηε(x)⊗d(s(y)).

On the other hand,

S(d⊗(x⊗ y)) = S(d(x)⊗ y +(−1)|x|x⊗d(y))

= s(d(x))⊗ y +(−1)|x|s(x)⊗d(y)+ηε(x)⊗ s(d(y))

and then,

(∀x⊗ y ∈ (C(σn)⊗C(σn))i with i > 0) (d⊗S + Sd⊗)(x⊗ y) = x⊗ y

while

(∀x⊗ y ∈ (C(σn)⊗C(σn))0) d⊗S(x⊗ y) = (1−ηε ⊗ηε)(x⊗ y).

We conclude that properties II.1 and 2 of Lemma (II.3.8) hold for η ⊗η and for S.
�
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We may now concern ourselves with the Acyclic Models Theorem:

(III.6.2) Theorem. Let C be any category and let two (covariant) functors

F,G : C −→ Clp;

be given; suppose that F has models M = {Mn|n ≥ 0} that are acyclic for the
functor G. Then, for every homomorphism f̄ : Z→ Z, there exists a natural trans-
formation

η f̄ : F −→ G

such that, for each object X ∈ C, η f̄ (X) is an extension of f̄ . Moreover, if τ is
another natural transformation from F to G with the same property held by η , there
exists a natural homotopy of chain complexes E such that

dGE + EdF = η − τ.

Before we begin the proof of the Acyclic Models Theorem, we observe that the
assertion for each X ∈ C the morphism

η f̄ (X) : F(X) −→ G(X)

is an extension of f̄ means that there is a commutative diagram

· · ·F(X)n

η f̄ (X)n

��

dF
n �� F(X)n−1

η f̄ (X)n−1

��

dF
n−1

�� · · · dF
1 �� F(X)0

η f̄ (X)0

��

ε �� Z

f̄

��

· · ·G(X)n
dG

n �� G(X)n−1
dG

n−1
�� · · · dG

1 �� G(X)0
ε ′ �� Z

Note that the boundary homomorphisms depend on X ; and from now on, for the
sake of a simpler notation, we shall write ηn instead of η f̄ (X)n.

We advise the reader to go back to Sect. II.3 to review the definition of homotopy
among chain complexes and for properly interpreting the last part of the statement
on each given object X ∈ C.

Proof. We begin by building η0. For each Mi
0 ∈ M0, there is an element xi

0 ∈
F(Mi

0)0 such that, for every X ∈ C, the set

{F( f )0(xi
0)| f ∈ C(Mi

0,X), i ∈ J0}

is a basis for F(X)0. Since ε ′ : G(Mi
0)0 →Z is surjective, for each element f̄ ε(xi

0)∈
Z there exists yi

0 ∈ G(Mi
0)0 such that

ε ′(yi
0) = f̄ ε(xi

0);

we define
η0(F( f )0(xi

0)) := G( f )0(yi
0)

on the generators F( f )0(xi
0) and linearly extend η0 to the entire free group F(X)0.
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The diagram

F(X)0

η0

��

ε �� Z

f̄

��

G(X)0
ε ′

�� Z

is commutative. In fact,

f̄ ε(F( f )0(xi
0)) = ε ′G( f )0(yi

0) = ε ′η0(F( f )0(xi
0))

and therefore f̄ ε = ε ′η0.
We now prove that η0 is natural. For any given g ∈ C(X ,Y ),

η0F(g)0(F( f )0(xi
0)) = η0F(g f )0(xi

0)

G(g f )0(yi
0) = G(g)0G( f )0(yi

0) = G(g)0η0(F( f )0(xi
0)),

that is to say, the diagram

F(X)0

η0

��

F(g)0
�� F(Y )0

η0

��

G(X)0
G(g)0

�� G(Y )0

is commutative.
We now construct η1. Let us consider the diagram

F(Mi
1)1

d �� F(Mi
1)0

η0

��

ε �� Z

f̄

��

G(Mi
1)1

d ′
�� G(Mi

1)0 ε ′
�� Z

for a model Mi
1 ∈ M1 and let us take

η0d(xi
1) ∈ G(Mi

1)1

for every universal element xi
1 ∈ F(Mi

1)1.
Here is where the hypothesis on the acyclicity of G on the models of the set M

is needed. Indeed, since εd = 0, we have

η0d(xi
1) ∈ kerε ′ = imd′
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and, consequently, there is yi
1 ∈ G(Mi

1)1 such that d′(yi
1) = η0d(xi

1); we then define

η1(F( f )1(xi
1)) := G( f )1(yi

1)

for every f : Mi
1 → X . We ask the reader to prove that η0d = d′η1 and that η1 is

natural. The functor ηn is obtained by induction.
We now suppose θ : F → G to be a natural transformation extending f̄ . We

wish to construct the homotopy E : F → G that connects η to θ . We begin with
E0 : F(X)0 → G(X)1 for an arbitrary X . Let us take a model Mi

0 ∈ M0 and a uni-
versal element xi

0 ∈ F(Mi
0)0. From

ε ′[η(xi
0)−θ(xi

0)] = 0

and since G is acyclic for the model Mi
0, it follows that there exists zi

0 ∈ G(Mi
0)1

such that
d′(zi

0) = η(xi
0)−θ (xi

0);

we now define E0 : F(X)0 → G(X)1 on the generators of F(X)0 by the formula

E0(F( f )0(xi
0)) := G( f )1(zi

0)

and then extend it on F(X)0 by linearity. We now suppose that the morphisms
E1, . . . ,En−1 have been defined; our aim is to define En.

As usual, we take a model Mi
n and a universal element xi

n ∈ F(Mi
n)n. We note

that
d′(ηn−1d(xi

n)−θn−1d(xi
n)−En−1d(xi

n)) = 0

because ηn−1d(xi
n)−θn−1d(xi

n)−En−1d(xi
n)) = En−2d(d(xi

n)). Therefore, since G
is acyclic on the model,

(∃ti
n ∈ G(Mi

n)n+1)d′t i
n = ηn−1d(xi

n)−θn−1d(xi
n)−En−1d(xi

n).

We define En on the generators F( f )n(xi
n) of F(X)n by

En(F( f )n(xi
n)) := G( f )n+1(t i

n)

and linearly extend it. We leave to the reader the final details of the proof. �

The next result, known as the Eilenberg–Zilber Theorem, is a direct conse-
quence of the Acyclic Models Theorem.

(III.6.3) Theorem. Let
C : Csim −→ Clp

be the functor that takes each simplicial complex K to the augmented chain complex

C(K) = {Cn(K),∂n}.
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There are natural transformations

η : C× −→C⊗C

τ : C⊗C −→C×

which extend the identity homomorphism 1Z : Z → Z. Besides, ητ and τη are
homotopic to the natural transformations given by the identities.

III.6.2 Homology of the Product of Two Polyhedra

Let two polyhedra |K|, |L| ∈ Csim be given. Our aim here is to compute the homol-
ogy groups of the polyhedron |K|× |L| in terms of those of |K| and |L|.

By the Eilenberg–Zilber Theorem (III.6.3), the chain complexes C(K)⊗C(L)
and C(K ×L) are chain equivalent; therefore, we have a graded group isomorphism

H∗(|K|× |L|;Z) ∼= H∗(C(K)⊗C(L)).

Following the steps taken in Sect. II.5 when studying the relationship between
H∗(K;G) and H∗(K,Z), we interpret the graded Abelian groups Z(K) = {Zn(K)|n≥
0} and B(K) = {Bn(K)|n ≥ 0} as chain complexes with trivial boundary operator 0;
we then construct the chain complexes

1. (Z(K)⊗C(L),0⊗dL)
2. (C(K)⊗C(L),∂ K ⊗∂ L)
3. (˜B(K)⊗C(L),0⊗ ∂ L), where ˜B(K)n = Bn−1(K)

since the chain complex sequence

Z(K) �� i �� C(K) dK
�� �� ˜B(K)

is exact and short, with an argument similar to that used in Lemma (II.5.1), we
conclude that

(Z(K)⊗C(L),0⊗ ∂ L) �� �� (C(K)⊗C(L),dK ⊗ ∂ L)

�� �� (˜B(C)⊗C(L),0⊗ ∂ L)

is a short exact sequence.
By the Long Exact Sequence Theorem (II.3.1), we obtain the exact sequence

. . . → Hn(Z(K)⊗C(L)) i∗→ Hn(C(K)⊗C(L)) ∂∗→ Hn(˜B(K)⊗C(L))

λn→ Hn−1(Z(K)⊗C(L)) → . . . .
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We now have to understand the nature of the groups

Hn(Z(K)⊗C(L)) and Hn(˜B(K)⊗C(L)) .

We begin by observing that

Zn(Z(K)⊗C(L)) = ker(0⊗ ∂ L) ∼= ∑
i+ j=n

(Zi(K)⊗Zj(L)) ,

Zn(˜B(K)⊗C(L)) = ker(0⊗∂ L) ∼= ∑
i+ j=n

(˜B(K)i ⊗Zj(L))

∼= ∑
i+ j=n−1

(Bi−1(K)⊗Z j(L)) ,

Bn(Z(K)⊗C(L)) = im(0⊗ ∂ L) ∼= ∑
i+ j=n

(Zi(K)⊗B j(L)) ,

Bn(˜B(K)⊗C(L)) = im(0⊗ ∂ L) ∼= ∑
i+ j=n

(˜B(K)i ⊗B j(L))

∼= ∑
i+ j=n−1

(Bi−1(K)⊗B j(L)).

Therefore,

Hn(Z(K)⊗C(L)) ∼= ∑
i+ j=n

(Zi(K)⊗Hj(L;Z))

Hn(˜B(K)⊗C(L)) ∼= ∑
i+ j=n−1

(Bi(K)⊗Hj(L;Z))

and the long exact homology sequence takes the form

. . . → ∑
i+ j=n

(Zi(K)⊗Hj(L;Z)) i∗→ Hn(K ×L;Z) ∂∗→ ∑
i+ j=n−1

(Bi(K)⊗Hj(L;Z))

λn→ ∑
i+ j=n−1

(Zi(K)⊗Hj(L;Z)) → . . . .

We consider the homomorphism

∂n : Hn(K ×L;Z) → ∑
i+ j=n−1

(Bi(K)⊗Hj(L;Z))

and the short exact sequence

ker∂n
�� �� Hn(K ×L;Z) �� �� im∂n;

note that

im∂n
∼= ∑

i+ j=n

(Zi(K)⊗Hj(L;Z))/ker in

∼= ∑
i+ j=n

(Zi(K)⊗Hj(L;Z))/ im λn+1
∼= cokerλn+1
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and so, for every n ≥ 1, we obtain the short exact sequence

cokerλn+1
�� �� Hn(K ×L;Z) �� �� kerλn.

As for changing the group of coefficients in homology (Sect. II.5), we prove that

cokerλn+1
∼= ∑

i+ j=n

(Hi(K;Z)⊗Hj(L;Z))

kerλn
∼= ∑

i+ j=n−1

Tor(Hi(K;Z),Hj(L;Z))

and so we have the next result, known as the Künneth Theorem:

(III.6.4) Theorem. For every pair of polyhedra |K| and |L| and every n ≥ 1, the
following short sequence of Abelian groups

∑
i+ j=n

(Hi(K;Z)⊗Hj(L;Z)) �� �� Hn(K ×L;Z)

�� �� ∑
i+ j=n−1

Tor(Hi(K;Z),Hj(L;Z))

is exact.

Exercises

1. Prove that, for every C,C′ ∈ Clp, the tensor product C⊗C′ belongs to Clp.

2. Let f ∈ C(C,D) and g ∈ C(C′,D′) be two morphisms of given chain complexes;
prove that

f ⊗g : C⊗C′ → D⊗D′

defined on the generators by

( f ⊗g)(x⊗ y) = f (x)⊗g(y)

is a morphism of chain complexes.

3. Let C,C′ ∈ C be two chain complexes. Prove that

μ : C⊗C′ →C′ ⊗C

defined on generators by the formula

μ(x⊗ y) = (−1)|x||y|y⊗ x

is an isomorphism of chain complexes.





Chapter IV
Cohomology

IV.1 Cohomology with Coefficients in G

In Sect. II.5, we have seen that the homology groups Hn(K;Q) of an oriented
simplicial complex K, with rational coefficients, have the structure of vector spaces
and may therefore be dualized. The possibility of dualizing such vector spaces
led mathematicians to ask whether it was also possible to “dualize” the homol-
ogy groups with coefficients in a different Abelian group G. Let us remember that
we used the tensor product to change the coefficients of the homology groups; to
“dualize” homology or change the coefficients of the dualized theory, we use the
functor

Hom(−,G) : Ab → Ab

where G is a fixed Abelian group. More precisely, given an Abelian group A, we
define Hom(A,G) to be the Abelian group of all homomorphisms from A to G with
the addition

Hom(A,G)×Hom(A,G)) → Hom(A,G)

defined, for each pair (φ ,ψ) and for each a ∈ A, by

(φ +ψ)(a) = φ(a)+ ψ(a) .

On morphisms, Hom(−,G) acts as follows: given f : A → A′,

f̃ = Hom( f ,G) : Hom(A′,G) → Hom(A,G) , φ �→ φ f .

The homomorphism f̃ = Hom( f ,G) is called adjoint of f . Note that the functor

Hom(−,G) : Ab → Ab

is contravariant.

D.L. Ferrario and R.A. Piccinini, Simplicial Structures in Topology, 151
CMS Books in Mathematics, DOI 10.1007/978-1-4419-7236-1 IV,
© Springer Science+Business Media, LLC 2011
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(IV.1.1) Theorem. Suppose that the sequence of Abelian groups

A
f

�� B
g

�� C �� 0

is exact. Then, for every Abelian group G, the sequence of Abelian groups

0 �� Hom(C,G)
g̃

�� Hom(B,G)
f̃

�� Hom(A,G)

is exact.

Proof. Let us prove that g̃ is injective. Take φ ∈ Hom(C,G) such that g̃(φ) = 0.
Then, for every b ∈ B, φ(g(b)) = 0. Since g is surjective, for every c ∈ C, there
exists b ∈ B such that c = g(b). Hence, for every c ∈C, φ(c) = φ(g(b)) = 0; that is
to say, φ = 0.

We now prove the exactness at Hom(B,G). For every φ ∈ Hom(C,G),

f̃ g̃(φ) = φ(g f ) = 0

since g f = 0; hence, im g̃⊂ ker f̃ . Let ψ ∈ Hom(B,G) be such that f̃ (ψ) = ψ f = 0.
Then the restriction of ψ to f (A) is null and so there exists a homomorphism
ψ ′ : B/ f (A) → G such that the composite function

B
q

�� B/ f (A)
ψ ′

�� G

(where q is the quotient homomorphism) coincides with ψ . On the other hand,
since im f = kerg, there exists an isomorphism g′ : B/ f (A) ∼= C for which g′q = g.
The homomorphism φ = ψ ′(g′)−1 : C → G is such that g̃(φ) = ψ and therefore,
ker f̃ ⊂ im g̃. �

We note that if A is the direct sum of the Abelian group of the integers Z with
itself n times (A = Z× . . .×Z = Zn), then

Hom(Z× . . .×Z︸ ︷︷ ︸
n times

,G) ∼= Hom(Z,G)× . . .×Hom(Z,G)︸ ︷︷ ︸
n times

∼= G× . . .×G︸ ︷︷ ︸
n times

;

indeed, the function

φ : Hom(Z× . . .×Z,G) −→ G× . . .×G

(defined by φ( f ) = ( f (1,0, . . . ,0), . . . , f (0, . . . ,1)) for every f ∈ Hom(Z× . . .×
Z,G)) is an isomorphism.

We use Theorem (IV.1.1) for computing Hom(Z2,G). In view of the exact se-
quence

0 �� Z
2 �� Z �� Z2

�� 0,
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we conclude that the sequence

0 �� Hom(Z,G) �� Hom(Z,G) 2̃ �� Hom(Z2,G)

is exact. However, Hom(Z,G) ∼= G and since 2̃ is precisely the multiplication by 2
in G, we conclude from the last exact sequence that Hom(Z2,G)∼= ker(2: G → G).
In particular, Hom(Z2,Z) = 0.

As in the case for changing the coefficients in homology, where we have applied
the functor −⊗G to a chain complex (C,∂ ) – in particular, the complex (C(K),∂ ) –
we can apply the functor Hom(−,G) to (C,∂ ).

We now construct the cohomology (with coefficients in an Abelian group G) of a
chain complex (C,∂ ). The image of (C,∂ ) by the functor Hom(−,G) is the graded
Abelian group

Hom(C,G) = {Cn(C,G)} := {Hom(Cn,G)}.

We denote the adjoint homomorphism of the boundary homomorphism

∂n : Cn →Cn−1

with ∂ n−1, that is to say,

∂ n−1 := Hom(∂n,G) : Cn−1(C,G) →Cn(C,G) .

Since ∂n∂n+1 = 0, we immediately conclude that ∂ n∂ n−1 = 0 and so that

im∂ n−1 := Bn(C,G) ⊂ ker∂ n := Zn(C,G) .

The quotient group

Hn(C;G) = Zn(C,G)/Bn(C,G)

is the nth-cohomology group of the chain complex (C,∂ ) with coefficients in G.
In particular, if (C,∂ ) = (C(K),∂ ) is the positive free chain complex associated
with the oriented chain simplex K = (X ,Φ), the graded Abelian group H∗(K;Z)
is the simplicial cohomology of K with integral coefficients. In this case, since the
Abelian group Cn(K) is generated by the oriented n-simplexes σ of K, we define the
homomorphisms

cσ : Cn(K) → Z , (∀τ ∈ Φ,dimτ = n) cσ (τ) =
{

1 , τ = σ
0 , τ �= σ

Consequently,
Cn(K) = Hom(Cn(K),Z)

is the free Abelian group generated by the homomorphisms cσ , where σ runs over
the set of all oriented n-simplexes of K.
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(IV.1.2) Remark. It is easily proved that, for every cn+1 ∈ Cn+1(K) and for every
cn ∈Cn(K),

(∂ n(cn))(cn+1) = cn∂n+1(cn+1) ;

in particular, if cn = ∑
σ∈Φ

dimσ=n

nσ cσ , we have

∂ n(cn) = ∑
σ∈Φ

dimσ=n

nσ ∂ n(cσ )

and therefore, for every oriented (n + 1)-simplex τ of K,

∂ n(cn)(τ) = ∑
σ∈Φ

dimσ=n

nσ cσ(∂n+1(τ)) .

We now prove that
H∗(−;Z) : Csim −→ AbZ

is a contravariant functor. Let K, L be two simplicial complexes and f : K → L be
a simplicial function. We know that, for each n ≥ 0, f defines a homomorphism
Cn( f ) : Cn(K) → Cn(L); therefore, for every n ≥ 0, we have a homomorphism of
Abelian groups

Cn( f ) : Cn(L) −→Cn(K)

such that Cn( f )(cn) = cnCn( f ) for every cn ∈ Cn(L). It is easily proved that, for
every n ≥ 0,

Cn+1( f )∂ n
L = ∂ n

KCn( f ) ;

consequently, Cn( f ) induces a homomorphism of Abelian groups

Hn( f ) : Hn(L;Z) → Hn(K;Z).

Here, the situation is completely analogous to the one for homology.
As in the case of simplicial homology, we define the cohomology H∗(K,L;Z)

of a pair of simplicial complexes (K,L): for that, it is enough to apply the functor
Hom(−,Z) to the chain complex

(C(K,L),∂ K,L) := {Cn(K)/Cn(L),∂ K,L
n } .

What is more, (K,L) produces a long exact sequence in simplicial cohomol-
ogy, that is to say, the following Cohomology Long Exact Sequence Theorem
holds:

(IV.1.3) Theorem. Let (K,L) be a pair of simplicial complexes. For every n > 0,
there exists a homomorphism

λ̃ n : Hn(L;Z) → Hn+1(K,L;Z)
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for which the following sequence of cohomology groups

. . . → Hn(K;Z)
Hn(i)−→ Hn(L;Z) λ̃ n−→ Hn+1(K,L;Z)

q∗(n+1)−→ Hn+1(K;Z) → . . .

is exact.

The proof of this theorem follows the steps taken in proving the corresponding
theorem in homology Theorem (II.3.1); we only wish to point out that the main
result needed for this proof is the following lemma:

(IV.1.4) Lemma. If

A ��
f

�� B
g

�� �� C

is a short exact sequence of free groups and G is an Abelian group, then also the
sequence

Hom(C,G) ��
g̃

�� Hom(B,G)
f̃

�� �� Hom(A,G)

is exact.

The reader may take the proof of Lemma (II.5.1) as a basis for proving this one;
actually, the only tensor product property used in Lemma (II.5.1) is that −⊗G is
a functor which takes sums of morphisms into sums of morphisms; this very same
property holds also for the (contravariant) functor Hom(−,G).

The cohomology determined by an oriented chain simplex K with coefficients in
an Abelian group G is defined in the same manner as the one with coefficients in
Z, except that we apply to the chain complex (C(K),∂ ) the contravariant functor
Hom(−,G) instead of Hom(−,Z).

We wish to determine the cohomology with coefficients in G of a simplicial com-
plex, based on its homology with coefficients in Z and the Abelian group G. We
seek to use the same previous ideas to our benefit, bearing in mind that the functor
A �→ A⊗G is covariant, whereas A �→ Hom(A,G) is contravariant. We begin by re-
viewing what has been done so far in general terms. A cochain complex (or cocom-
plex) is a graded Abelian group {Cn} together with an endomorphism of degree +1,
called coboundary homomorphism ∂ ∗ = {∂ n : Cn →Cn+1,}, for which ∂ n+1∂ n = 0.
A cochain homomorphism between two cochain complexes (C,∂ ∗) and (C′,∂ ′∗) is
a homomorphism between the graded Abelian groups C and C′ that commutes with
the coboundary homomorphisms.

Also the other concepts defined for chain complexes have their dual correspon-
dents: the elements of Cn are called n-cochains; the elements of

Zn(C) := ker(∂ n : Cn →Cn+1)

are n-cocycles, and those of

Bn(C) := im(∂ n−1 : Cn−1 →Cn)

are n-coboundaries; finally, the quotient Hn(C) := Zn(C)/Bn(C) is the cohomology
group of the cocomplex (C,∂ ∗) in dimension n.
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If, starting from a cocomplex (C∗,∂ ∗), we define Cn := C−n and ∂n := ∂−n,
it becomes clear that (C∗,∂ ) is a chain complex and all concepts have their respec-
tive equivalents. Specifically, the cohomology of (C∗,∂ ∗) is exactly the homology
of the complex (C∗,∂ ). This gives us an indication of how to write all results in
cohomological terms (and we shall do so from now on, without further comments).

For every complex (C,∂ ) and for every Abelian group G, we may define a co-
complex (C∗,∂ ∗) where Cn := Hom(Cn,G) is the homomorphism group from Cn

into G, and ∂ n : Cn → Cn+1 is the map adjoint to ∂n+1 : Cn+1 → Cn. This cocom-
plex cohomology is called cohomology of the complex (C,∂ ) with coefficients in G.

We therefore assume that the complex (C,∂ ) is free and, so, both ZnC and BnC
are also free; for every n, the sequence of free Abelian groups

Zn(C) �� �� Cn
∂n �� �� Bn−1(C)

is short exact; hence, by Lemma (IV.1.4), the sequence

Hom(Bn−1(C),G) �� �� Hom(Cn,G) �� �� Hom(Zn(C),G)

is exact. This enables us to construct the short exact complex sequence

(Hom(˜B(C),G),0) �� �� (Hom(C,G),∂ ) �� �� (Hom(Z(C),G),0)

where
˜B(C) = {˜B(C)

n} := {Bn−1(C)} .

The Cohomology Long Exact Sequence Theorem, in its general form (in terms
of chain complexes), allows us to write the long exact sequence

· · · �� Hom(Zn−1(C),G)
ĩn−1

�� Hom(Bn−1(C),G)
hn �� Hn(C;G)

jn
�� Hom(Zn(C),G)

ĩn �� Hom(Bn(C),G) �� · · ·

(where ĩn is the adjoint of the inclusion in : Bn(C) → Zn(C)) that breaks down into
short exact sequences

imhn
�� �� Hn(C;G) �� �� im j̃n .

Since we have the isomorphisms imhn ∼= Hom(Bn−1(C),G)/kerhn and kerhn =
im ĩn−1, we have imhn = coker(ĩn−1); besides, im j̃n = ker ĩn and so these last short
exact sequences become the short exact sequences

coker(ĩn−1) �� �� Hn(C;G) �� �� ker ĩn .
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(IV.1.5) Lemma. ker(ĩn) ∼= Hom(Hn(C),G).

Proof. We define

φ : ker(ĩn) → Hom(Hn(C),G)

so that, for every x+Bn(C) ∈ Hn(C), φ( f )(x+Bn(C)) = f (x). This function is well
defined and is a homomorphism. On the other hand, we define

ψ : Hom(Hn(C),G) → ker(ĩn)

by setting ψ(g) = gp, where p : Zn(C) → Hn(C) is the quotient homomorphism.
Also this function is a homomorphism; in addition, the compositions satisfy ψφ =
1ker(ĩn) and φψ = 1Hom(Hn(C),G). �

This result shows that ker(ĩn) is independent from the groups Hom(Bn(C),G) and
Hom(Zn(C),G), and depends only on Hn(C), the cokernel of the monomorphism
in : Bn(C) → Zn(C), and on G. As in the case of the functor −⊗G, we wonder
whether the same is also true for coker(ĩn−1). In fact, we have the following result
which is dual to Proposition (II.5.4):

(IV.1.6) Proposition. Let H be the cokernel of the monomorphism i : B → Z be-
tween free Abelian groups and any Abelian group G. Then, both the kernel and
the cokernel of the homomorphism ĩ : Hom(Z,G) → Hom(B,G) depend only on
H and G. Moreover, ker(̃i) ∼= Hom(H,G), while coker(̃i) gives rise to a new con-
travariant functor

Ext(−,G) : Ab −→ Ab,

called extension product.

Proof. The method used in this proof is analogous to the one for proving
Proposition (II.5.4), that is to say, merely replacing the functor −⊗G with the
functor Hom(−,G) and keeping in mind the contravariance of the latter. We leave
the details to the reader. Nevertheless, we note that Ext(−,G) does not depend on
the free presentation of H. �

Let us compute Ext(Zn,G) for any Abelian group G. Since Ext(−,G) does not
depend on any particular free presentation of Zn, we choose the presentation

Z �� n �� Z �� �� Z/n

where n is the multiplication by n. Then, we have the exact sequence

Hom(Zn,G) �� Hom(Z,G) ñ �� Hom(Z,G) �� Ext(Zn,G) �� 0

and since Hom(Z,G) ∼= G, we conclude that Ext(Zn,G) ∼= G/nG. In particular,
Ext(Zn,Z) ∼= Zn.

Due to Lemma (IV.1.4), if H is free, Ext(H,G) = 0.



158 IV Cohomology

When we apply this result to these exact sequences, we get the Universal Coef-
ficients Theorem in Cohomology:

(IV.1.7) Theorem. The cohomology of a free positive complex (C,∂ ) with coeffi-
cients in an Abelian group G is determined by the following short exact sequences:

Ext(Hn−1(C),G) �� �� Hn(C;G) �� �� Hom(Hn(C),G) .

We note that for an oriented simplicial complex K, we apply the functor
Hom(−,G) to the positive free chain complex (C(K),∂ ) to obtain, for every n ≥ 0,
the following short exact sequences:

Ext(Hn−1(K;Z),G) �� �� Hn(K;G) �� �� Hom(Hn(K;Z),G) .

IV.1.1 Cohomology of Polyhedra

We now wish to study the cohomology (with coefficients in Z, to make it simple) as
a contravariant functor from the category P of polyhedra to the category AbZ,

H∗(−;Z) : P −→ AbZ .

The definition of the functor on the objects is obvious:

(∀|K| ∈ P) H∗(|K|;Z) = H∗(K;Z).

As for the morphisms, let f : |K| → |L| be a continuous function; by the Sim-
plicial Approximation Theorem, there exists a simplicial function g : K(r) → L that
approximates f simplicially. It produces a homomorphism

Hn(g;Z) : Hn(L;Z) → Hn(K(r);Z)

for every n ∈ Z. All results in Sect. III.2, needed to prove that a map f : |K| → |L|
defines a homomorphism H∗( f ;Z) between the homology of the polyhedron |K|
and the homology of |L|, hold in cohomology; in particular, we point out that if a
chain complex C is acyclic, also the chain complex Hom(C,Z) is acyclic (use the
Universal Coefficients Theorem in Cohomology). In addition, if we return to the
proof of Theorem (III.2.2), we see that, for any projection πr : K(r) → K, we may
find a homomorphism of chain complexes

ℵr : C(K) →C(K(r))

such that ℵrC(π r) is chain homotopic to 1C(K(r) , and C(πr)ℵr is chain homotopic
to 1C(K). This means that, homologically speaking, the homomorphisms induced by
ℵr and C(π r) are isomorphisms and the inverse of each other. We now consider the
cochain complexes
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Hom(C(K);Z) = {Hom(Cn(K);Z)} ,

Hom(C(K(r));Z) = {Hom(Cn(K(r));Z)}
and the morphisms

Hom(C(π r);Z) : Hom(C(K);Z) → Hom(C(K(r));Z) ,

Hom(ℵr;Z) : Hom(C(K(r));Z) → Hom(C(K);Z) .

The chain homotopies mentioned before become homotopies of the functor
Hom(−;Z) and so we obtain homomorphisms

H∗(ℵr;Z) : H∗(K(r);Z) → H∗(K;Z) ,

H∗(π r;Z) : H∗(K;Z) → H∗(K(r);Z)

that are isomorphisms and the inverse of each other. We then define

H∗( f ;Z) : H∗(|L|;Z) → H∗(|K|;Z)

as
H∗( f ;Z) = H∗(ℵr;Z)H∗(g;Z) .

Considerations similar to the ones in Corollary (III.2.7) allow us to conclude that
H∗( f ;Z) is well defined.

Finally, we use the short exact sequences

Ext(Hn−1(|K|;Z),G) �� �� Hn(|K|;G) �� �� Hom(Hn(|K|;Z),G) ,

associated with the polyhedron |K|, for computing the cohomology groups, with
coefficients in Z, of the torus T 2 and of the real projective plane RP2:

Hi(T 2;Z) ∼=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Z if i = 0

Z×Z if i = 1

Z if i = 2

0 if i �= 0,1,2.

Hi(RP2;Z) ∼=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Z if i = 0

0 if i = 1

Z2 if i = 2

0 if i �= 0,1,2.

Exercises

1. An Abelian group G is said to be divisible if, for every positive integer n and every
g ∈ G, there exists a g′ ∈ G (not necessarily unique) such that ng′ = g. The Abelian
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groups Q and R are examples of divisible groups. Prove that, if G is a finitely gen-
erated Abelian group without a free part (see the decomposition theorem of finitely
generated Abelian groups) and H is a divisible group, then G⊗H ∼= 0.

2. Prove that if G is free or if H is divisible, then Ext(G,H) ∼= 0.

3. Prove that Ext(Zp,Zq) ∼= Z(p,q).

4. Prove that Ext(Z,Zq) ∼= 0.

5. From the homology of real projective spaces (see Sect. III.5), prove that

H p(RPn,Z) ∼=

⎧
⎪⎪⎨

⎪⎪⎩

Z if p = 0
Z2 if 0 < p = 2q ≤ n
0 if 0 < p = 2q−1 < n
Z if n odd and p = n .

IV.2 The Cohomology Ring

After studying the section on the cohomology of simplicial complexes, the reader
could arrive to the conclusion that the graded (homology and cohomology) Abelian
groups H∗(K;Z) and H∗(K;Z) are simply similar algebraic structures connected
to K and, therefore, that all the work done to construct the contravariant functor
H∗(−;Z) will produce no information on K, which is not already given by H∗(−;Z);
this is not the case, because cohomology has a richer structure than homology and,
for this reason, produces more results than homology.

This section is written in the context of cohomology with coefficients in Z but
all results could be written for cohomology with coefficients in a commutative ring
A with unity 1A. We shall first of all see that H∗(K;Z) has the structure of a ring.

Let K = (X ,Φ) be a finite oriented simplicial complex; let

cp ∈Cp(K;Z) = Hom(Cp(K),Z)

and cq ∈ Cq(K;Z) be any two cochains. We define the (p + q)-cochain cp ∪ cq ∈
Cp+q(K,Z) as follows: for any generator {x0,x1, . . . ,xp+q} of Cp+q(K), we set

cp ∪ cq({x0,x1, . . . ,xp+q}) := cp({x0,x1, . . . ,xp})× cq({xp,xp+1, . . . ,xp+q})

where × is the product in the ring Z; we linearly extend the action of cp ∪ cq to
every element of Cp+q(K). In this manner, we have defined a function

∪ : Cp(K;Z)×Cq(K;Z) −→Cp+q(K;Z)

known as cup product. Proving that the cup product is associative and distributive
relatively to addition is not difficult; besides, the element c0 ∈C0(K;Z) defined by

(∀x ∈ X) c0({x}) = 1
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is such that
(∀cp ∈Cp(K;Z)) c0 ∪ cp = cp ∪ c0 = cp .

We conclude from these remarks that the cup product provides the graded Abelian
group C∗(K;Z) with a structure of graded ring with identity c0.

(IV.2.1) Theorem. For every cp ∈Cp(K;Z) and cq ∈Cq(K;Z),

∂ p+q(cp ∪ cq) = ∂ p(cp)∪ cq +(−1)pcp ∪∂ q(cq)

holds.

Proof. We prove this result by computing ∂ p+q(cp ∪ cq) on any generator
{x0, . . . ,xp+q+1} of Cp+q+1(K).

∂ p+q(cp ∪ cq)({x0, . . . ,xp+q+1}) = (cp ∪ cq)(∂p+q+1({x0, . . . ,xp+q+1}))

= (cp ∪ cq)

(
p+q+1

∑
i=0

(−1)i{x0, . . . , x̂i, . . . ,xp+q+1}
)

;

On the other hand,

∂ p(cp)∪ cq({x0, . . . ,xp+q+1}) =
= ∂ p(cp)({x0, . . . ,xp+1})× cq({xp+1, . . . ,xp+q+1})

= cp

(
p+1

∑
i=0

(−1)i{x0, . . . , x̂i, . . . ,xp+1}
)
× cq({xp+1, . . . ,xp+q+1})

= cp ∪ cq

(
p

∑
i=0

(−1)i{x0, . . . , x̂i, . . . ,xp+q+1}
)

+

+(−1)p+1cp({x0, . . . ,xp})× cq({xp+1, . . . ,xp+q+1})

and

cp ∪∂ q(cq)({x0, . . . ,xp+q+1}) =

= cp({x0, . . . ,xp})× cq

(
p+q+1

∑
i=p

(−1)i{xp, . . . , x̂i, . . . ,xp+q+1}
)

= cp({x0, . . . ,xp})× cq({xp+1, . . . ,xp+q+1})+

+(−1)pcp ∪ cq

(
p+q+1

∑
i=p+1

(−1)i{x0, . . . , x̂i, . . . ,xp+q+1}
)

.

Therefore,

∂ p+q(cp ∪ cq)({x0, . . . ,xp+q+1}) =
= (∂ p(cp)∪ cq +(−1)pcp ∪∂ q(cq))({x0, . . . ,xp+q+1}) . �
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(IV.2.2) Corollary. The graded Abelian group Z∗(K;Z) is a graded ring with iden-
tity; the graded Abelian group B∗(K;Z) is one of its (bilateral) ideals.

Proof. It is enough to prove that the cup product has the following properties:

∪ : Zp(K;Z)×Zq(K;Z) −→ Z p+q(K;Z) ,

∪ : Zp(K;Z)×Bq(K;Z) −→ Bp+q(K;Z) ,

∪ : Bp(K;Z)×Zq(K;Z) −→ Bp+q(K;Z) .

We prove only the last one. Let cp = ∂ p−1(cp−1) ∈ Bp(K;Z) and cq ∈ Zq(K;Z) be
given arbitrarily. Then,

cp ∪ cq = ∂ p+q−1(cp−1 ∪ cq) . �

The quotient ring
H∗(K;Z) = Z∗(K;Z)/B∗(K;Z)

is called cohomology ring of the (finite and oriented) simplicial complex K with
coefficients in Z. This ring is skew-commutative; in fact, we have the following
result:

(IV.2.3) Theorem. For every x ∈ H p(K;Z) and y ∈ Hq(K;Z),

x∪ y = (−1)pqy∪ x .

Proof. Let us suppose that

x = cp + Bp(K;Z) and y = cq + Bq(K;Z) ;

we wish to prove that, for every generator {x0, . . . ,xp+q} of Cp+q(K),

cp ∪ cq({x0, . . . ,xp+q}) = (−1)pqcq ∪ cp({x0, . . . ,xp+q}) .

Since we are working with oriented simplexes, according to our rules we have, for
every �-simplex {x0,x1, . . . ,x�},

{x0,x1, . . . ,x�} = (−1)
1
2 �(�−1){x�,x�−1, . . . ,x0}

and so

cp ∪ cq({x0,x1, . . . ,xp+q} =

= cp ∪ cq((−1)
1
2 (p+q)(p+q−1)({xp+q, . . . ,x0})

= (−1)
1
2 (p+q)(p+q−1)cp({xp+q, . . . ,xp})× cq({xp, . . . ,x0})

= (−1)
1
2 (p+q)(p+q−1)cq({xp, . . . ,x0})× cp({xp+q, . . . ,xp})
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(for Z is commutative)

= (−1)
1
2 (p+q)(p+q−1)(−1)

1
2 q(q−1)(−1)

1
2 p(p−1)

= cq({x0, . . . ,xq})× cp({xq, . . . ,xp+q})
= (−1)pqcq({x0, . . . ,xq})× cp({xq, . . . ,xp+q}) .�

Hence, H∗(K;Z) is a graded skew-commutative ring with identity. We now prove
that H∗(−;Z) is a contravariant functor from the category of simplicial complexes
Csim to the category of graded commutative rings with identity.

(IV.2.4) Lemma. For any cp ∈Cp(L;Z), cq ∈Cq(L;Z), and any simplicial function
f : K → L, the equality

Cp+q( f )(cp ∪ cq) = Cp( f )(cp)∪Cq( f )(cq)

holds.

Proof. For each {x0, . . . ,xp, . . . ,xp+q} ∈Cp+q(K),

Cp+q( f )(cp ∪ cq)({x0, . . . ,xp, . . . ,xp+q})

= (cp ∪ cq)Cp+q( f )({x0, . . . ,xp, . . . ,xp+q})

=
{

cp({ f (x0), . . . , f (xp)})× cq({ f (xp), . . . , f (xp+q)}) (∀i �= j) f (xi) �= f (x j)
0 otherwise .

On the other hand,

(Cp( f )(cp)∪Cq( f )(cq))({x0, . . . ,xp, . . . ,xp+q})

= (cpCp( f )∪ cqCq( f ))({x0, . . . ,xp, . . . ,xp+q})

=
{

cp({ f (x0), . . . , f (xp)})× cq({ f (xp), . . . , f (xp+q)}) (∀i �= j) f (xi) �= f (x j)
0 otherwise .

�

Consequently, C∗( f ) : C∗(L;Z) → C∗(K;Z) preserves cup products; since the
homomorphisms Cp( f ) commute with the appropriate coboundary operators, the
simplicial function induces a ring homomorphism H∗( f ) : H∗(L;Z) → H∗(K;Z).

Regarding the cohomology of polyhedra, given any polyhedron |K|, we may
define in H∗(|K|;Z) a structure of ring with identity simply because H∗(|K|;Z) =
H∗(K;Z). We must verify that H∗(−;Z) is a contravariant functor from the cat-
egory of polyhedra P to the category of graded commutative rings with identity.
In fact, let f : |K| → |L| be a continuous function and g : K(r) → L a simplicial
approximation of f . We know that the homomorphism H∗(π r;Z) induced by the
projection π r : K(r) → K is an isomorphism; in addition,

H∗( f ;Z) = H∗(π r;Z)−1H∗(g;Z) : H∗(|L|;Z) → H∗(|K|;Z).
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Since g and π r are simplicial functions, H∗(g;Z) and H∗(π r;Z) are ring homo-
morphisms; however, since H∗(π r;Z) is an isomorphism, also H∗(π r;Z)−1 pre-
serves cup products. We conclude that if two polyhedra |K| and |L| are of the same
homotopy type, then their cohomology rings are isomorphic (as rings).

We now wish to prove that the equality of the (co)homology groups is a necessary
but not sufficient condition for the cohomology rings to be isomorphic. To this end,
let us return to the cohomology of the bi-dimensional torus T 2 and of the space
X = S2 ∨ (S1 ∨ S1). We have already proved (see Sect. III.4) that these two trian-
gulable spaces have the same homology and, by the Universal Coefficient Theorem
in Cohomology, also the same cohomology; moreover, we have already seen (see
Sect. III.4 again) that T 2 and X are not homeomorphic. We now compute the coho-
mology of T 2 and X once more, by explicitly considering the ring structure.

We begin with T 2. Let us consider the oriented triangulation of T 2 used to
compute H∗(T 2;Z) (see Fig. II.10 in Sect. II.2, p. 63). We recall that if z1

1 and
z2

1 are the two 1-cycles

z1
1 = {0,3}+{3,4}+{4,0} and z2

1 = {0,1}+{1,2}+{2,0},

then

w1
1 = {1,6}+{6,5}+{5,8}+{8,7}+{7,2}+{2,1}

is a 1-cycle homologous to z1
1 (see how H∗(T 2,Z) was computed) and

w2
1 = {3,7}+{7,5}+{5,8}+{8,6}+{6,4}+{4,3}

is a 1-cycle homologous to z2
1. For each 1-simplex {i, j} of T 2, let

{i, j}∗ ∈ Hom(C1(T 2),Z)

be the function such that

(∀{k, �} ∈ T 2) {i, j}∗({k, �}) =

{
1 if {k, �} = {i, j}
0 if {k, �} �= {i, j}.

We now perform some calculations:

1. ∂ 1{1,6}∗({1,6,5}) = ({1,6}∗∂2)({1,6,5}) = {1,6}∗(∂2{1,6,5}) = 1
2. ∂ 1{1,6}∗({1,2,6}) = −1

we conclude that ∂ 1{1,6}∗ = {1,6,5}∗−{1,2,6}∗. Similarly, we find that

∂ 1{6,5}∗ = {1,6,5}∗−{5,6,8}∗, ∂ 1{5,8}∗ = {5,8,7}∗−{5,6,8}∗,
∂ 1{8,7}∗ = {5,8,7}∗−{7,8,2}∗, ∂ 1{7,2}∗ = {7,2,1}∗−{7,8,2}∗,
∂ 1{2,1}∗ = {7,2,1}∗−{1,2,6}∗,
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and therefore

∂ 1({1,6}∗−{6,5}∗+{5,8}∗−{8,7}∗+{7,2}∗−{2,1}∗) = 0,

that is to say, the cochain

ζ 1
1 = {1,6}∗−{6,5}∗+{5,8}∗−{8,7}∗+{7,2}∗−{2,1}∗

is a cocycle. Likewise, we prove that

ζ 1
2 = {3,7}∗−{7,5}∗+{5,8}∗−{8,6}∗+{6,4}∗−{4,3}∗

is a cocycle. These cocycles are not cohomologous to each other; therefore, their
classes generate the cohomology group H1(T 2;Z). In order to compute the cup
product ζ 1

1 ∪ζ 1
2 , we need to apply it to the 2-simplexes of T 2; we are able to draw

nontrivial conclusions only from {5,6,8} and {8,7,5}; besides, by the distributivity
of the cup product with respect to the sum, {5,6}∗ ∪ {6,8}∗ and {8,7}∗ ∪ {7,5}∗
are the parts of ζ 1

1 ∪ζ 1
2 , which may yeld nontrivial results when applied to the two

2-simplexes that we have just singled out. In fact,

{5,6}∗ ∪{6,8}∗({5,6,8}) = 1 and {8,7}∗ ∪{7,5}∗({8,7,5}) = 1

and so, ζ 1
1 ∪ζ 1

2 is not null.

0

12
3

4

5

6

7

Fig. IV.1

We now look into the cohomology of S2 ∨ (S1 ∨S1). We represent S2 ∨ (S1 ∨S1)
by the geometric realization of the simplicial complex with eight vertices, namely,
0, 1, 2, 3, 4, 5, 6, 7, depicted in Fig. IV.1, having the following simplexes (besides
the vertices):
1-simplexes:

{0,1},{0,2},{0,3},{0,4},{0,5},{0,6},{0,7},{4,5},
{6,7},{1,2},{1,3},{2,3};

2-simplexes:
{0,1,2},{0,1,3},{0,2,3},{1,2,3}.
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It is easily proved that the only 1-cocycles are ξ 1
1 = {0,4}∗ + {4,5}∗ + {5,0}∗

and ξ 1
2 = {0,6}∗ + {6,7}∗+ {7,0}∗. These cocycles are indipendent and their co-

homology classes generate H1(S2 ∨ (S1 ∨S1);Z); also easily proved is the fact that
ξ 1

1 ∪ξ 1
2 = 0. The cohomology rings of T 2 and S2 ∨ (S1 ∨S1) are therefore different;

consequently, the polyhedra T 2 and S2 ∨ (S1 ∨S1) cannot be of the same homotopy
type.

IV.3 The Cap Product

In this section, we study a product between homology and cohomology classes.
More precisely, let K be a simplicial complex that we once again assume to be finite
and oriented. Consider the chain and the cochain groups associated with K

Cn(K;Z) and Cn(K;Z) = Hom(Cn(K),Z) ,

where n is an integer such that 0 ≤ n ≤ dimK. For every d ∈Cp(K;Z) and for every
(p + q)-simplex {x0, . . . ,xp, . . . ,xp+q} of K (that is to say, a generator of Cp+q(K)),
we define

d∩{x0, . . . ,xp, . . . ,xp+q} := d({x0, . . . ,xp}){xp, . . . ,xp+q} ∈Cq(K);

we linearly extend the definition d∩c to every (p+q)-chain c ∈Cp+q(K;Z); in this
way we obtain a bilinear relation

∩ : Cp(K;Z)×Cp+q(K;Z) −→Cq(K;Z)

called cap product. Note that the cap product is not defined if q < 0 or q > dimK− p.
In particular, if p = q, for every d ∈ Cp(K;Z) and every p-simplex {x0, . . . ,xp,},
we have

d∩{x0, . . . ,xp} = d({x0, . . . ,xp}){xp} ∈C0(K;Z).

Let ε : C0(K;Z) → Z be the augmentation homomorphism of the positive chain
complex C(K,Z); by definition,

ε(d ∩{x0, . . . ,xp}) = d({x0, . . . ,xp})

and by linearity
ε(c∩d) = d(c)

for every c ∈ Cp(K;Z) and any d ∈ Cp(K;Z). The next two results establish a
relation between cap and cup products.

(IV.3.1) Theorem. For every c ∈ Cp+q+r(K;Z), d ∈ Cp(K;Z), and e ∈ Cq(K;Z),
the equality

d ∩ (e∩ c) = (d ∪ e)∩ c

holds.
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Proof. Let us suppose that c = {x0, . . . ,xp, . . . ,xp+q, . . . ,xp+q+r}; then

d∩ (e∩ c) = d∩ (e∩{x0, . . . ,xp, . . . ,xp+q, . . . ,xp+q+r})
= d∩ e({x0, . . . ,xq}){xq, . . . ,xp+q+r}
= e({x0, . . . ,xq})d({xq, . . . ,xq+p}){xq+p, . . . ,xq+p+r} .

On the other hand,

(d∪ e)∩ c = (d∪ e)∩{x0, . . . ,xp, . . . ,xp+q, . . . ,xp+q+r}
= e({x0, . . . ,xq})d({xq, . . . ,xq+p}){xq+p, . . . ,xq+p+r} .

The general result follows by linearity. �

(IV.3.2) Theorem. For every c ∈Cp+q(K;Z), d ∈Cp(K;Z), and e ∈Cq(K;Z), the
equality

(d ∪ e)(c) = e(d ∩ c)

holds.

Proof. This proof is similar to the previous one: we first show that the equation is
true for c = {x0, . . . ,xp+q} and then use linearity for completing the proof. �

(IV.3.3) Theorem. For every c ∈Cp+q(K;Z) and d ∈Cp(K;Z),

∂q(d ∩ c) = (−1)p(d ∩∂p+q(c)− ∂ p(d)∩ c) .

Proof. We begin by noting that an element x ∈Cp+q(K;Z) is null if and only if, for
every e ∈Cp+q(K;Z), we have e(x) = 0. Hence, it is enough to prove that

e(∂q(d∩ c)) = e((−1)p(d∩∂p+q(c)− ∂ p(d)∩ c))

for any e. In fact, by Remark (IV.1.2) and by Theorem (IV.3.2),

e(∂q(d ∩ c)) = (∂ q−1e)(d ∩ c) = (d ∪∂ q−1(e))(c) .

On the other hand,

e((d∩∂p+q(c)− ∂ p(d)∩ c)) = ((d ∪ e)(∂p+q(c))− (∂ p(d)∪ e)(c))

= ∂ p+q−1(d∪ e)(c)− (∂ p(d)∪ e)(c) ;

however, by Theorem (IV.2.1), this last expression equals

(∂ p(d)∪e)(c)+(−1)p(d∪∂ q−1(e))(c)− (∂ p(d)∪e)(c) = (−1)p(d∪∂ q−1(e)(c) .
�

(IV.3.4) Corollary. The cap product induces the following homomorphisms:

∩ : Zp(K;Z)×Zp+q(B;Z) −→ Zq(K;Z) ,



168 IV Cohomology

∩ : Bp(K;Z)×Zp+q(B;Z) −→ Bq(K;Z) ,

∩ : Zp(K;Z)×Bp+q(B;Z) −→ Bq(K;Z) .

Proof. The first assertion follows directly from the theorem.
Given d = ∂ p−1(d′) ∈ Bp(K;Z) and c ∈ Zp+q(K;Z),

∂q+1(d′ ∩ c) = (−1)p(d′ ∩∂p+q(c)− ∂ p−1(d′)∩ c) = (−1)p(d ∩ c)

and, therefore,
d∩ c = (−1)p∂q+1(d′ ∩ c) ∈ Bq(K;Z) .

The last case is proved in a similar way. �

By what we have showed, the cap product of p-cochains and (p + q)-chains
becomes a bilinear relation in (co)homology

∩ : H p(K;Z)×Hp+q(K;Z) −→ Hq(K;Z)

which is also called cap product. The remarks on cohomology of polyhedra (see
Sect. IV.1.1) allow us to define

∩ : H p(|K|;Z)×Hp+q(|K|;Z) −→ Hq(|K|;Z)

for any polyhedron |K| ∈ P.
We now consider the morphisms. Let a simplicial function f : K → L, an element

d of Cp(L), and c ∈Cp+q(K) be given. Then,

Cp+q( f )(c) ∈Cp+q(L) and Cp( f )(d) ∈Cp(K)

(recall that

Cp( f ) = Hom( f ;Z) : Hom(Cp(L);Z) = Cp(L) → Hom(Cp(K);Z) ).

Therefore, d∩Cp+q( f )(c) ∈Cq(L) and Cp( f )(d)∩ c ∈Cq(K).

(IV.3.5) Theorem. Given a simplicial function f : K → L, d ∈ Cp(L), and c ∈
Cp+q(K),

d∩Cp+q( f )(c) = Cq( f )(Cp( f )(d)∩ c) ,

Cq( f ))(d ∩Cp+q( f )(c)) = Cp( f )(d)∩ c .

Proof. We only prove the first equality. Let us suppose that

c = {x0, . . . ,xp, . . . ,xp+q}

and that for any i �= j between 0 and p + q, f (xi) �= f (x j); it follows that

Cp+q( f )(c) = { f (x0), . . . , f (xp), . . . , f (xp+q)} .
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Therefore

d∩Cp+q( f )(c) = d({ f (x0, . . . , f (xp)}){ f (xp), . . . , f (xp+q)} .

On the other hand, Cp( f ) = dCp( f ) and so,

Cq( f )(Cp( f )(d)∩ c) = d({ f (x0, . . . , f (xp)}){ f (xp), . . . , f (xp+q)} .

If there are i, j for which f (xi) = f (x j), then Cp+q( f )(c) = 0 and at least one of the
two assertions

Cp( f )(d) = 0 , Cq( f )({xp, . . . ,xp+q}) = 0

is true; therefore, the theorem holds also in this case. �

Theorem (IV.3.5) and what we have previously done enable us to state the fol-
lowing result:

(IV.3.6) Theorem. Let |L|, |K| ∈P and a continuous function f : |K|→ |L| be given.
The following diagram:

H p(|L|;Z)×Hp+q(|K|;Z)
H p( f ;Z)×1

��

1×Hp+q( f ;Z)

��

H p(|K|;Z)×Hp+q(|K|;Z)

∩

��

Hq(|K|;Z)

Hq( f ;Z)

��

H p(|L|;Z)×Hp+q(|L|;Z) ∩ �� Hq(|L|;Z)

is commutative.

Proof. We leave it to the reader. �

Exercises

1. Let f : |K| → |L| be a given map, z ∈ Hn(|K|,Z), and u ∈ Hq(|L|,Z). Prove that

Hn−q( f )(u∩Hn( f )(z)) = Hq( f )(u)∩ z .

2. Prove that
(∀z ∈ Hn(|K|,Z)) 1∩ z = z .





Chapter V
Triangulable Manifolds

V.1 Topological Manifolds

A Hausdorff topological space X is called an n-dimensional manifold1 or simply an
n-manifold, if for every point x ∈ X there exists an open set U of X that contains x
and is homeomorphic to an open set of Rn. Hence, an n-manifold X is characterized
by a set A = {(Ui,φi) | i ∈ J}, where Ui are open sets covering X , and φi is a
homeomorphism from Ui onto an open set of Rn. The set A is the atlas of X and
each pair (Ui,φi) is a chart of X .

Even before we give some examples of manifolds, we note that the condition that
X be Hausdorff is an integral part of the definition and does not depend on the other
conditions. In fact, consider

X =]−1,2] = {x ∈R|−1 < x ≤ 2}

with the topology given by the set U of open sets U , where U ∈ U if and only if one
of the following conditions holds true: (a) U = X ; (b) U = /0; (c) U is any union of
sets such as ]α,β [ with −1 ≤ α < β ≤ 2 or ]α,0[∪]β ,2], where −1 ≤ α < 0 and
−1≤ β < 2. This is not a Hausdorff space since any open set containing 0 intersects,
any open set containing 2. On the other hand, any x ∈ X � {2} is contained by an
open set homeomorphic to an open set of R; regarding the point x = 2, the reader
may verify that the open set U =]− 1

2 ,0[∪] 3
2 ,2] is homeomorphic to an open interval

of R; hence, X has the properties of 1-manifold except for the Hausdorff separation
property. Here is a simple and useful result:

(V.1.1) Lemma. Let V be an open set in an n-manifold X. Then V is an n-manifold.

Proof. For any x ∈ V ⊂ X , let (U,φ) be a chart of X containing x. Then U ∩V
is open in V containing x and φ(U ∩V ) is an open set of Rn homeomorphic to
U ∩V . �

1 In the literature, it is sometimes required that the topological space X fulfill other conditions to
be defined as a manifold (e.g., second countable, paracompact).
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(V.1.2) Lemma. The Cartesian product of an n-manifold X by an m-manifold Y is
an (n + m)-manifold.

Proof. For any (x,y) ∈ X ×Y , we choose two charts (U,φ) and (V,ψ) of x ∈ X and
y ∈ Y , respectively; we note that (U ×V,φ ×ψ) is a chart of the Cartesian product
of the manifolds: in fact, φ(U)×ψ(V ) is an (elementary) open set of Rn ×Rm ∼=
Rn+m. �

We now give some examples. It is easily proved that, for every n > 0, the Eu-
clidean space Rn is an n-manifold. The circle S1 ⊂ R, with the topology induced
by the Euclidean topology of R, is a 1-manifold; this is readily proved. The sphere
S2 with the topology induced by R3 is a 2-manifold (or surface): in fact, S2 is
Hausdorff and its atlas is the set

A = {(S2
�{−x},φx) | x ∈ S2}

where φx is the stereographic projection of S2
�{−x} from the point−x on the plane

Tx tangent to S2 at x. A similar result holds also for hyperspheres Sn, n > 2.
An immediate consequence from Lemma (V.1.2) is that the torus T 2 = S1 × S1

is a 2-manifold.
To prove that the real projective space RPn is an n-manifold, we use the following

theorem.

(V.1.3) Theorem. Let X be a compact n-manifold and let G be a finite topological
group freely acting on X. Then, the quotient space X/G is an n-manifold.

Proof. Let G be the finite group whose elements are g1 = 1G, g2, . . . ,gp; then, the
orbit of any element x ∈ X consists in p (distinct) elements x = xg1,xg2, . . . ,xgp.
For each pair (x,xgi), i = 2, . . . , p, we take a pair (Ui,Vi) of open sets of X such that

x ∈Ui, xgi ∈Vi and Ui ∩Vi = /0.

Since Vi contains xgi, Vig
−1
i surely contains x; therefore, the set

U =
p⋂

i=2

(
Ui ∩Vig

−1
i

)

is an open set of X containing x, is disjoint from all open sets Vi, i = 2, . . . , p and,
consequently, from all Ugi, i = 2, . . . , p (because

Ugi ⊂
(
Ui ∩Vig

−1
i

)
gi ⊂Vig

−1
i gi = Vi

and Vi ∩U = /0 for each i = 2, . . . , p). The restriction to U of the canonical epimor-
phism q : X → X/G, that is to say,

q|U : U → q(U) ⊂ X/G
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is a bijection. By Lemma (I.3.2), the projection q (and so also its restriction q|U)
is a map both open and closed; therefore, q|U is a homeomorphism. Since U , as
an open set of X , is an n-manifold, (see Lemma (V.1.1)), it follows that the point
[x] ∈ X/G belongs to an open set of X/G homeomorphic to an open set of Rn. To
reach the conclusion that X/G is an n-manifold, we need to demonstrate that X/G
is a Hausdorff space. But this is a direct consequence of Theorem (I.1.29), because
of the hypotheses. �

Since the real projective space may be written as the quotient RPn = Sn/Z2, it is
a consequence of this theorem that RPn is an n-manifold.

V.1.1 Triangulable Manifolds

An n-manifold X is triangulable if there exists a polyhedron |K| homeomorphic
to X . The real projective space RPn is an example of a triangulable manifold (see
Sect. III.5). An open disk D̊n

r (x)⊂Rn with radius r and center x∈Rn is triangulable.

Fig. V.1 Triangulated torus

Fig. V.2 Triangulated torus
(with fewer triangles)

We now prove that the dimension of the simplicial complex K = (X ,Φ) equals
the dimension of the manifold X ; moreover, if X is connected, the spaces |σ | ⊂ |K|
appear in a particular way, in other words, each two of them either intersect each
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other at an n− 1 face or they are linked by a chain of n-simplexes. The proof of
these results is based on an argument found in the next lemma; we ask the reader
to remember that we may associate the closed subspace S(p), that is to say, the
boundary of the space

D(p) =
⋃

σ∈B(p)

|σ |,

with each p ∈ |K|, where B(p) is the set of all σ ∈ Φ such that p ∈ |σ | (see
Sect. II.2).

(V.1.4) Lemma. Let X ∼= |K| be a triangulable n-manifold; then for whatever p ∈
|K|, S(p) is of the same homotopy type as the sphere Sn−1.

Proof. Let (U,φ) be a chart of |K| containing the point p. Since φ(U) is homeo-
morphic to an open set W ⊂Rn, there is a closed disk Dn

ε(φ(p)), with center φ(p)
and radius ε , contained in W . The restriction of φ−1 to Dn

ε(φ(p)) is a homeomor-
phism from Dn

ε(φ(p)) into a subspace of |K| containing p. We recall that Dn
ε (φ(p))

is a triangulable space; let L be a simplicial complex whose geometric realization is
identified to Dn

ε (φ(p)). We now consider the homeomorphism φ−1 : |L| → |K| and
apply Theorem (II.2.11) to conclude that S(φ(p)) ∼ S(p). We complete the proof
by noting that S(φ(p)) ∼= Sn−1. �

The following result is very important (cf. [24, Theorem 5.3.3]).

(V.1.5) Theorem. Any triangulable n-manifold |K| has the following properties:

1. dimK = n
2. For every vertex p ∈ |K|, there is an n-simplex σ of K such that p ∈ |σ |
3. Every (n−1)-simplex of K is a face of exactly two n-simplexes

Moreover, if |K| is connected, for any two n-simplexes σ and τ of K, there is a
sequence of n-simplexes σ = σ1, . . . ,σr = τ such that σi∩σi+1 is an (n−1)-simplex
for every i = 1, . . . ,r−1.

Proof. 1. Lemma (V.1.4) shows that Hn−1(S(p);Z) ∼= Z for each p ∈ |K|. Hence,
if dimK < n, for every p ∈ |K|, dimS(p) < n− 1; therefore, Hn−1(S(p);Z) = 0,
contradicting the lemma. We now suppose that dimK = m > n; this means that
the simplicial complex K has at least one m-simplex with m > n and so, for every
point p in the interior of |σ |, the space S(p) is of the same homotopy type as Sm−1,
once again in contradiction to Lemma (V.1.4) (two spheres of different dimensions
cannot be of the same homotopy type).
2. If K had no n-simplex with geometric realization containing p, then the dimen-
sion of the simplicial complex S(p) would be strictly less than n−1 and thus S(p)
could not be of the same homotopy type as Sn−1.
3. Let us suppose σn−1 to be a face of r n-dimensional simplexes τ i

n, i = 1, . . . ,r. Let

Int |σn−1| = |σ n−1|� | •σn−1|

be the interior of |σn−1|; for every i = 1, . . . ,r, we define
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|Ki| = | •τ i
n|� Int|σ n−1|

(remember that
•τ i
n is the boundary of τ i

n – see definition in Sect. II.2).
We note that for each p ∈ Int |σ n−1|, the space S(p) is written as the union

S(p) =
⋃r

i=1 |Ki|; besides, |Ki| ∩ |Kj| = | •σn−1| for each pair of distinct exponents
(i, j) with i, j ∈ {1,2, . . . ,n}. By applying the Mayer–Vietoris sequence to the pair
(|K1|, |K2|), we obtain

Hn−1(|K1| ∪ |K2|;Z) ∼= Hn−2(| •σn−1|;Z) ∼= Z

(note that | •σn−1| ∼= Sn−2); we next apply the Mayer–Vietoris sequence to the pair
(|K1| ∪ |K2|, |K3|) and so on, to get the free group with r−1 generators

Hn−1

(
r⋃

i=1

|Ki|;Z
)

;

however,

Hn−1

(
r⋃

i=1

|Ki|;Z
)

∼= Hn−1(S(p);Z) ∼= Z

and so, r−1 = 1, that is to say, r = 2.
We now assume that |K| is connected. Then by Lemma (II.4.4), K is connected,

in the meaning of the definition given in Sect. II.4 (from the topological point of
view, |K| is connected if and only if it is path-connected).

Let σn ∈ Φ be any n-simplex. We view the simplicial complex K as the union
of two subcomplexes: (a) the simplicial complex L defined by all n-simplexes of K
(and their subsimplexes) that may be linked to σn by a sequence of n-simplexes as
mentioned in 3; (b) the simplicial complex M of all n-simplexes of K for which this
condition does not hold. Note that K = L∪M. If M = /0, the assertion is proved;
this occurs when dim |K| = 1 because K is connected; incidentally note that since
K is connected L∩M 	= /0. We now consider M nonempty and dim |K| ≥ 2. Then,
dim(L ∩ M) ≤ n− 2; in fact, if σn−1 were an (n− 1)-simplex of both L and M,
σn−1 would be a face of both an n-simplex of L and an n-simplex of M, which is
impossible because of the definitions. For any vertex x of L∩M,

dim(S(x)∩L) = dim(S(x)∩M) = n−1

and dim(S(x)∩ L ∩ M) ≤ n− 3. However, because of 2., every (n − 2)-simplex
of S(x) is a face shared by two (n − 1)-simplexes; thus if (S(x) ∩ L)n−1 and
(S(x) ∩ M)n−1 are the sets of all (n − 1)-simplexes of S(x) ∩ L and S(x) ∩ M,
respectively, the chains

cL = ∑
τ∈(S(x)∩L)n−1

τ ,

cM = ∑
τ∈(S(x)∩M)n−1

τ
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are linearly independent cycles of Cn−1(S(x))⊗Z2, because the (n− 2)-simplexes
of (dn−1 ⊗ 1Z2)(cL) and (dn−1 ⊗ 1Z2)(cM) appear always twice; consequently,
the vector space Hn−1(S(x);Z2) has dimension ≥ 2, a fact that contradicts the
well-known result Hn−1(S(x);Z2) ∼= Z2 (see Theorem (II.5.5)). Therefore, M = /0
and K = L. �

Exercises

1. Show by means of an example that a closed subspace of an n-manifold is not
necessarily an n-manifold.

2. Let p be a positive integer, p ≥ 2, and let Cp be the (multiplicative) cyclic group
of order p of the p-th roots of the identity in C,

Cp =
{

ζ j
p | j = 1 . . . p

}
,

where ζp = e2π i/p. If q is an integer prime to p, then Cp acts on S3 = {(z,w) ∈
C2 | |z|2 + |w|2 = 1} ⊂ C2 by setting

(
(z,w),ζ j

p

) �→ (
zζ j

p ,wζ q j
p

)

for every j. Prove that the quotient space (called lens space and denoted by L(p,q))
is a 3-manifold.

3. Let G be a finite group that acts freely on a G-space X . Prove that if X/G is an
n-manifold, then also X is an n-manifold.

4. Prove that each compact manifold is homeomorphic to a subspace of an Eu-
clidean space RN , for some N.

V.2 Closed Surfaces

In this section we study the compact connected topological 2-manifolds which we
shall henceforth call closed surfaces. In the previous section we gave some exam-
ples of closed surfaces: S2, RP2, T 2 ∼= S1×S1. But there are more, like the complex
projective line (which, nevertheless and as we shall presently see, is homeomorphic
to the sphere S2) and the Klein bottle. We begin by studying these examples in more
detail.

In order to construct the complex projective line CP1, we may proceed as fol-
lows: we consider the space C2

�{(0,0)} and the equivalence relation

(z0,z1) ≡ (z′0,z
′
1) ⇐⇒ (∃z ∈C�{0}) z′0 = zz0, z′1 = zz1;
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we define
CP1 := (C2

�{0})/≡ .

In what follows, the equivalence class of (z0,z1) ∈ C2
�{(0,0)} is denoted by

square brackets [(z0,z1)]. We consider S2 contained in C×R∼= R3. The function

η : CP1 → S2

defined by setting

η ([(z0,z1)]) =
(

2z1z0

|z0|2 + |z1|2 ,
|z1|2 −|z0|2
|z0|2 + |z1|2

)
⊂ C×R∼= R3

has image S2 = {(w,x) ∈ C×R : |w|2 + x2 = 1}. It is easily seen that η is a home-
omorphism from CP1 onto S2 and so that

CP1 ∼= S2

is a closed surface. We recall that the Klein bottle K is obtained from a rectangular
band with vertices (0,0), (0,1), (1,0), (1,1) through the identifications

(t,0) ≡ (t,1) , 0 ≤ t ≤ 1,

(0,s) ≡ (1,1− s) , 0 ≤ s ≤ 1 .

The reader can easily prove that K is a closed 2-manifold by noting, for instance,
that if the group of order 2 acts on the torus T 2 = S1 × S1 by the transformation
(defined on pairs (t,s) of real numbers modulo 1)

(t,s) �→ (t + 1/2,1− s),

then the quotient is a surface homeomorphic to K (by Theorem (V.1.3) on p. 172).
Figure V.3 shows a possible embedded triangulation (with auto-intersection).

Fig. V.3 Klein Bottle

We intend to define an operation for 2-manifolds, the so-called connected sum.
For every point x of a 2-manifold S, there exist a closed disk D in S, such that x ∈ D,
and a homeomorphism h : D2 → D. We now consider two 2-manifolds S1 and S2
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and take the closed disks D1 ⊂ S1 and D2 ⊂ S2, together with the homeomorphisms
h1 : D2 → D1 and h2 : D2 → D2; let S1 = ∂D2 be the boundering circle of the unit
disk D2. The restrictions of the homeomorphisms h1 and h2 to S1 are homeomor-
phisms from S1 onto the boundaries ∂D1 and ∂D2, respectively. We now define the
maps

h′1 : S1 h1|S1

−→ ∂D1 ↪→ S1 � IntD1

h′2 : S1 h2|S1

−→ ∂D2 ↪→ S2 � IntD2

and construct the pushout of the pair of morphisms (h′1,h
′
2) in Top. In this manner,

we obtain the space (unique up to homeomorphism)

S1#S2 := S1 � IntD1

⊔

h′1,h′2

S2 � IntD2

named connected sum of S1 and S2. Figures V.4, V.5, and V.6 outline a procedure

Fig. V.4 Two tori less a disk

Fig. V.5 Attaching two tori

for obtaining the connected sum of two tori.

(V.2.1) Theorem. The connected sum S1#S2 of two connected surfaces is a
2-manifold independent (up to homeomorphism) from the choice of the closed
disks D1 and D2, and from the homeomorphisms h1 and h2.

Proof. It is easily proved that S1#S2 is a 2-manifold; we only need to find local
charts for the points in the gluing zone. It does not depend on the choice of the
disks D1 and D2 and on the homeomorphisms h1 : D2 → D1 and h2 : D2 → D2 due
to the following result: if S is a surface, then for every pair of homeomorphisms
h1 : D2 → S and h2 : D2 → S (on the images), there is a homeomorphism f between
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Fig. V.6 Connected sum of
two tori: the torus of genus 2

their images such that h2 = f h1. The independence from the choice of h1 and h2

derives from the universal property of pushouts. The details of this proof are left to
the reader. �

If S represents the set of all classes of homeomorphisms of closed connected
surfaces, we have the following result whose proof we shall omit:

(V.2.2) Proposition. The connected sum determines an operation

#: S×S→ S

which is associative, commutative, and has a neutral element (the sphere S2).

The sphere S2, the torus T 2, the real projective plane RP2, and the connected
sums of these spaces have particularly interesting representations. We begin
with S2. In Sect. I.1 we have proved that the sphere S2 is homeomorphic to the
quotient space obtained from D2 by identifying each point (x,y) ∈ S1 to (x,−y)
(see Example (I.1.7)). So if, as in Fig. V.7, a denotes the semicircle from (−1,0)

a

a=b

A B

Fig. V.7 Identifying polygon
for S2

to (1,0) through (0,1) and b, the semicircle from (−1,0) to (1,0) through (0,−1)
(both from (−1,0) to (1,0) ), S2 may be viewed as the disk D2 with two vertices
A = (−1,0), B = (1,0) and two identified arcs (sides), that is to say, a disk with
two vertices and only one side a = b; if the boundary is travelled clockwise from
A, side b is travelled against the direction we have given it and we may therefore
view S2 as a disk with boundary a1a−1 (we assign the exponent 1 to side a when
following the chosen direction, and the exponent −1 when following the opposite
direction).
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We view the torus T 2 as a square (homeomorphic to a closed disk) whose hori-
zontal sides, as well as its vertical sides, have been identified. See Fig. V.8. In other

a

b

a

b
Fig. V.8 Identifying polygon
for the torus T 2

words, we interpret T 2 as a square (closed disk) with a single vertex A and two sides
a, b. If we travel clockwise the boundary of the square that represents T 2, we read
such boundary as the word a1b1a−1b−1.

The real projective plane RP2 is viewed as a closed disk with a single vertex A;
its boundary is given by a1a1 (we identify the antipodal points of the boundary), as
in Fig. V.9.

a

a=b

A B

Fig. V.9 Projective plane

Let us now try to interpret the connected sum T 2#T 2. We suppose the first torus
to be represented by a square with boundary a1b1a−1b−1 and the second one, by
a square with boundary c1d1c−1d−1; we remove from each square the interior of
(a portion corresponding to) a closed disk that meets the boundary of the square
exactly at one of its vertices, as shown in Fig. V.10. We obtain two closed polygons
with boundaries a1b1a−1b−1e and c1d1c−1d−1 f , respectively. By identifying e and
f , we may interpret T 2#T 2 as an octagon whose vertices are all identified into a
single one, and with boundary a1b1a−1b−1c1d1c−1d−1, as in Fig. V.11.

How should we interpret the connected sum RP2#RP2? We assume the first
(respectively, the second) of these projective planes to be a closed disk with two
identified antipodal vertices and two sides a1a1 (respectively, b1b1) whose antipodal
points have been identified. We remove, from each of these disks, the interior of
a small closed disk tangent to the boundary of the larger disk, at one of the two
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a

b

a

b
Fig. V.10 Torus less a closed
disk

a b

a

b

cd

c

d

Fig. V.11 Connected sum of
two tori

a

b

a

b d

b

d

b

a

b

a

bd a

b

d

b

ad

Fig. V.12 Connected sum of two projective planes: the Klein bottle

chosen vertices; in this manner, we obtain two triangles with boundaries a1a1c1 and
b1b1c−1; these triangles are put together by identifying c (in other words, by taking
their connected sum) and getting a square with boundary a1a1b1b1; this square,
with the necessary identifications, is homeomorphic to RP2#RP2. By cutting the
square along the diagonal d, we are now left with two right triangles, both having a
side a and a side b; we have thus obtained the right triangles a1b1d−1 and b1a1d1.
Next, we glue the triangles along the (oriented) side a in order to obtain a square
with boundary d1b1d1b−1 which, with the necessary identifications, corresponds to
a Klein bottle. Figure V.12, illustrates the steps for the procedure that we have just
described.

We close by noting that the surfaces

nT 2 := T 2# . . .#T 2
︸ ︷︷ ︸

n times

nRP2 := RP2# . . .#RP2
︸ ︷︷ ︸

n times
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may be represented respectively by 4n-agons (polygons with 4n sides) and 2n-agons
whose boundaries are respectively 4n-poligonal lines and 2n-poligonal lines with
sides identified pairwise and denoted by

a1
1b1

1a−1
1 b−1

1 . . .a1
nb1

na−1
n b−1

n ,

a1
1a1

1a1
2a1

2 . . .a1
na1

n .

(V.2.3) Remark. We point out to the reader that the interpretations of T 2 and RP2

given in this section correspond to their block triangulations given in Sect. III.5.1:
for the torus T 2, we have only one 0-block e0 = {0}, two 1-blocks (e1

1 corresponding
to side a and e2

1 corresponding to side b), and one 2-block e2 = T 2
� (e0 ∪ e1

1 ∪ e2
1);

for RP2, we have one 0-block e0 = {0}, one 1-block e1 corresponding to side a,
and one 2-block e2 = RP2

� (e0 ∪ e1). A similar situation occurs for the closed
surfaces nT 2 and nRP2. In fact, such closed surfaces are triangulable, for they
derive from triangulable 2-manifolds (the triangulability is preserved by connected
sums). Moreover, one can easily see that nT 2 has a block triangulation with only
one 0-block, 2n blocks in dimension 1,

e(a)1
1,e(a)2

1, . . . ,e(a)n
1 and e(b)1

1,e(b)2
1, . . . ,e(b)n

1 ,

represented respectively by the sides a1, . . . ,an and b1, . . . ,bn; finally, it has one
2-block

e2 = nT 2
� (e0 ∪ (∪n

i=1e(a)i
1)∪ (∪n

i=1e(b)i
1)) .

As for nRP2, we have a block triangulation with only one 0-block e0, n 1-blocks
e1

1, . . . ,e
n
1 corresponding to the a1, . . . ,an, and only one 2-block e2 = nRP2

� (e0 ∪
(∪n

i=1ei
1)).

As a consequence, we have the following

(V.2.4) Theorem. The closed surfaces S2, nT 2, and nRP2 (with n ≥ 1) are, pair-
wise, not homeomorphic.

Proof. In order to prove this result, we compute the homology groups H1(S2;Z),
H1(nT 2;Z), H1(nRP2;Z) and show that no two of them are isomorphic.

We know that H1(S2;Z) ∼= 0. We now compute the first homology group with
coefficients in Z of the other two manifolds through the block triangulation that we
have just described. Beginning with nT 2, we give e(a)i

1 and e(b)i
1 an orientation, by

choosing a generator β (a)i
1 and β (b)i

1, respectively, for each

H1(e(a)i
1,

•
e(a)i

1;Z) and H1(e(b)i
1,

•
e(b)i

1;Z)
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where i = 1, . . . ,n (we note that the generators β (a)i
1 and β (b)i

1 are cyclic – see the
definition of block homology); similarly, the simplicial complex e2 is given an ori-
entation by choosing a generator β2. The chain group C1(e(nT 2)) is the free Abelian
group generated by β (a)i

1 and β (b)i
1, i = 1, . . . ,n; on the other hand, d2(β2) = 0,

since the 1-blocks appear twice, and in opposite directions. Therefore,

H1(nT 2;Z) ∼= Z2n

(see Theorem (III.5.9)). In the case of nRP2, we give the 1-blocks ei
1 an orientation

by choosing a generator β i
1 for each H1(ei

1,
•ei
1;Z), and a generator

β2 ∈ H2(e2,
•e2;Z) ∼= Z .

In this case, we have d2(β2) = 2(∑n
i=1 β i

1); then, C1(e(nRP2)) is the Abelian group
generated by β 1

1 ,β 2
1 , . . . ,β n−1

1 ,∑n
i=1 β i

1 and since 2(∑n
i=1 β i

1) is a boundary,

H1(nRP2;Z) ∼= Zn−1 ×Z2 . �

The connected sum enables us to join two surfaces, but there are other similar
constructions. Let us consider the cylinder I × S1 and two immersions of the disk
h1,h2 : D2 → S in the surface S in such a way that D1 = h1(D2) and D2 = h2(D2)
are disjoint. The space

S′ = S � (IntD1 ∪ IntD2)�h (I ×S1),

obtained by joining S � (IntD1 ∪ IntD2) and the cylinder I×S1 through the map

h : {0,1}×S1 → S � (IntD1 ∪ IntD2),

defined by h(0,t) = h1(t) and h(1,t) = h2(t) for every t ∈ S1 ⊂ D2, is still a surface.
We say that S′ is obtained by attaching a handle to S. Unlike the connected

sum, the attachment of a handle depends on the homotopy class of the attaching
function h. In Figs. V.13 and V.14, we see two different procedures for attaching the

Fig. V.13 Attaching a handle
(first method)

handle. It can be proved (Exercise 2) that the attaching in Fig. V.13 (first method)
is equivalent to the connected sum with a torus, whereas the one in Fig. V.14



184 V Triangulable Manifolds

Fig. V.14 Attaching a handle
(second method)

(second method), to the connected sum with a Klein bottle. The connected sum
with a projective plane, pictured in Fig. V.15, will be one of the fundamental steps

Fig. V.15 Attaching a projec-
tive plane

in the proof of the next theorem, known as the Fundamental Theorem of Closed
Surfaces, which classifies all closed surfaces. It tells us that the only closed sur-
faces are exactly the sphere S2, nT 2, and nRP2. Its proof is based on the fact
that any closed surface is triangulable. The existence of a triangulation for closed
surfaces was first proved by Tibor Radó in [29]; we assume this result to be well
known.2 Here is another fundamental step in the proof: if γ ⊂ S is a (simplicial)
simple closed curve in S, then, there exists a neighbourhood of γ in S, given by
the union of triangles in a simplicial subdivision of a triangulation of S, which
is homeomorphic to either a cylinder or a Möbius band. By cutting the surface
along γ we obtain, therefore, a new surface with either two (in the case of the cylin-
der) or one (in the case of the Möbius band) boundary component. Finally, ei-
ther one or two disks D2 may be attached to these boundaries, in order to obtain
a (triangulated) surface S′ without boundary. If the surface S′ is in turn con-
nected, a homeomorphic copy of S may be constructed by attaching either a han-
dle (in the case of the cylinder) or a projective plane (in the case of the Möbius
band).

2 See [8] for an elementary proof, based essentially on the Jordan–Schoenflies Theorem: a simple
closed curve J on the Euclidean plain divides it into two regions and there exists a homeomorphism
from the plane in itself that sends J into a circle.



V.2 Closed Surfaces 185

Before proceeding with this Theorem, we note that the real projective plane may
be obtained by the adjunction of a disk to a Möbius band. In fact, the Möbius band M
is obtained from a square by identifying the vertical sides with opposite orientations:
for instance, M comes from the square I× I through the identifications:

(0,t) ≡ (1,1− t) , 0 ≤ t ≤ 1 .

Let D2 be the unity disk of R2 and let S1 = ∂ D2. We define the function

f : S1 → M, e2π it �→
{

(2t,0) 0 ≤ t ≤ 1
2

(2t −1,1) 1
2 ≤ t ≤ 1;

the reader may easily verify that RP2 is given by the pushout

S1
f

��

��

��

M
��

��

D2
f̄

�� RP2

The reader could study the problem also backwards: the real projective plane has
a closed disk D2 with boundary a1a1 as a model; let Oa be the origin of a and D a
small closed disk contained in D2, with centre at Oa; it is easily seen that

D2
� D̊ ∼= M

and so RP2 is homeomorphic to the adjunction space of M and a closed disk. Note
that M is a surface with boundary.

We finally note that, as a consequence of the preceding results, the connected
sum of a torus and a real projective plane is homeomorphic to the connected sum of
three real projective planes; for its proof, it is enough to see that

T 2#RP2 ∼= K#RP2.

Initially, we have noted that the connected sum of two surfaces does not depend on
the position of the disks that we remove for gluing the two surfaces; therefore, we
may glue T 2 and K to the component of RP2 given by the Möbius band M. In order
to attach T 2 to M, we have to remove an open disk of T 2 and an open disk of M,
and glue the two spaces (by means of a pushout!) on the boundaries created by this
removal; as we have seen, this is like attaching a handle to M. However, the space
that we obtain is exactly the same as the one we would get by removing two distinct
open disks from M and gluing a cylinder to M, the two circles that bound the cylinder
being identified with the same orientation to the boundaries formed by the removal
of the two open disks (if we travel clockwise the two circles limiting the cylinder,
both attachments will be made clockwise). For attaching a Klein bottle K to M,
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we take the cylinder that gives rise to K and glue it to M in such a manner that the
circles that bound the cylinder are glued in opposite directions (one clockwise, the
other anticlockwise, as seen in Fig. V.14). Now, the spaces obtained by the addition
of a cylinder to M by these two procedures are homeomorphic to each other.

(V.2.5) Theorem. Any closed surface is homeomorphic to one of the following
surfaces:

(i) S2

(ii) nT := T 2# . . .#T 2 (n times)
(iii) nRP2 := RP2# . . .#RP2 (n times)

Proof. Let S be a surface and K one of its triangulations. The complex K has
a finite number of vertices, 1-simplexes, and 2-simplexes; for simplicity of nota-
tion, we denote by Ti (respectively, �i) the geometric realizations of the 2-simplexes
(respectively, the 1-simplexes) of K; these are called triangles and sides. Let us go
through some preliminary considerations.

We begin by observing that each side of |K| is only a side of two triangles (see
Theorem (V.1.5)). Now, let v be a vertex of K; then the triangles with the vertex v
may be arranged in cyclic order T1,T2, . . . ,Tr = T0 so that for each i ∈ {1, . . . ,r}, the
intersection Ti−1 ∩Ti is the side �i. In fact, we note that, if there were two such sets
of triangles around v, they would have only the point v in common; therefore, by
removing v from their union, we would have a non-connected space; on the other
hand, since S is a surface, there would be an open set U ⊂ S that would contain v
and be homeomorphic to an open disk of R2; hence U � v would be connected, a
contradiction. It follows that the neighbourhood of every simple cycle of sides in
|K| is homeomorphic to the cylinder I ×S1 or the Möbius band.

We now consider the one-dimensional simplicial complex G (namely, the graph)
defined as follows: the vertices of G are all triangles of K, and for each pair of
adjacent triangles (that is to say, with one side in common) T1 and T2 of K, we
add the 1-simplex {T1,T2} to G. The complex G may be embedded in S ∼= |K| by
sending the triangle Ti (viewed as a vertex of G) to its barycentre b(Ti) (viewed as a
point of |K|). Through a barycentric subdivision of K, the 1-simplexes of G will be
represented by a broken line that joins the two barycentres and crosses the common
side of T1 and T2.

We now recall the concept of spanning tree (or maximal tree). A tree of |K| is
a contractible unidimensional subpolyhedron |L| ⊂ |K|; the existence of trees in a
polyhedron |K| is assured by the fact that the geometric realization of any 1-simplex
of K, being homeomorphic to the disk D1, is contractible. The trees of a complex
are partially ordered by inclusion; a tree is called spanning if it is not contained in a
tree strictly larger; since K is finite, the existence of a spanning tree is also certain.

(V.2.6) Lemma. If |K| is path-connected and |L| is a spanning tree, then L contains
all vertices of K.

Proof. We suppose a to be a vertex of K but not of L. Let us take any vertex b of
L; since |K| is path-connected, there is a path γ : I → |K| joining a and b. By the
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Simplicial Approximation Theorem, there are a subdivision of I and a simplicial
approximation γ ′ : I → |K| of γ that may be viewed as a path of 1-simplexes of
K, say,

α = {b,x0}.{x0,x1}. . . . .{xn,a} .

Let xr be the last vertex of α in L; {xr,xr+1} is then a 1-simplex that is not in L (we
may assume xr 	= xr+1 because a 	∈ L). It follows that

|L| = |L| ∪ |{xr,xr+1}|

is a unidimensional subcomplex of |K|, strictly larger than |L| and contractible, as
the union of two contractible spaces with a point in common. Hence, |L| is not
spanning, against the hypotesis. �

We now consider a spanning tree T ⊂ G, that has the following properties:

(a) T contains all vertices of G.
(b) T is a tree, in other words, |T | is contractible to a point.

We finally define the subcomplex KT ⊂ K whose vertices are precisely those of K
and whose edges are all edges of K not crossed by any side of G. Since T is a tree,
it is easily shown that KT is connected. We see in Fig. V.16 the triangulation for the
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Fig. V.16 The tree T and the
graph KT for the projective
plane

projective plane with the two graphs, T (in thicker line) and KT (in broken line). If
we now consider the second barycentric subdivision of K, we may have two open
sets U ⊃ |T | and V ⊃ |KT | such that

(a) U ∩V = /0 and U ∪V = |K|
(b)

•
U =

•
V

as shown in Fig. V.16.3 We note that U is homeomorphic to the disk D2, since T is
contractible.

We now consider the Euler–Poincaré characteristic χ(KT ) (in this regard, see
also Exercise 6 on p. 88). We have χ(KT ) ≤ 1 and χ(KT ) = 1 if and only if KT is

3 For instance, U may be defined as |T | together with the interior of all triangles and the sides of
the second barycentric subdivision of K that intersect T .
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a tree. When χ(KT ) = 1, V is then homeomorphic to the disk D2 and S is obtained
by gluing two disks on the boundaries; it follows that S ∼= S2. Instead, if χ(KT ) < 1,
then the homology H1(KT ) is non-trivial and so there is at least one non-trivial
simple cycle, denoted by γ , in the graph KT . Let us consider the simplicial complex
Kγ obtained by cutting K along γ (in other words, we duplicate all vertices and edges
of γ). The resulting triangulated surface Sγ = |Kγ | is still connected: indeed, the tree
T and the cycle γ are disjoint, but T has a vertex in the interior of each triangle of
K, and therefore also of Kγ . It is a surface with boundary: if γ has a neighbourhood
homeomorphic to a Möbius band, then its boundary has one component; on the
other hand, if the neighbourhood of γ is a cylinder, there are two components. Let
us consider the cones on the components of the boundary of Kγ and attach them to
the holes that we have created: we end up with a new triangulated surface S′ ∼= |K′|.
The tree T is easily extended to a tree T ′ ⊂K′ by adding a vertex to the barycentre of
every triangle of the attached cones and an edge crossing the edge of the boundary
of the attachment, as in Fig. V.17. Let l be the number of edges of the component of

Fig. V.17 Extension of T to
the cone on the boundary
component

such a boundary. As it is easily inferred from Fig. V.17, by attaching a triangulated
disk (cone on the component of γ), l sides are removed from the graph KT , whereas
one vertex (the centre of the cone) and l edges through such a vertex are added.
The Euler–Poincaré characteristic of the corresponding graph K′

T ′ , obtained in this
manner, is

χ(K ′
T ′) =

{
χ(KT )+ 1 if Kγ has one boundary component

χ(KT )+ 2 if Kγ has two boundary components.

We note that the process of cutting along γ may be reversed: |K| is obtained by
attaching a handle (in the case of two components) to |K′| or a projective plane (in
the case of a single component). By repeating this procedure, we must end up with
nothing other than a sphere.4

We have therefore proved that every surface is the connected sum of a sphere,
a certain number nT of tori, a certain number nK of Klein bottles, and a certain
number nP of projective planes. However, since the Klein bottle is homeomorphic

4 For a proof based on identifying polygons, see William Massey [25, Theorem 1.5.1].
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to the connected sum of two projective planes, and the connected sum is associative,
every surface is the connected sum of S2, nT tori, and 2nK +nP projective planes. If
2nK +nP = 0, then clearly S = S2 when nT = 0 and S = T 2#T 2# . . .#T 2 (nT times) if
nT > 0. Finally, if 2nK +nP > 0, we may substitute T 2#RP2 with the connected sum
RP2#RP2#RP2, iteratively, and conclude that S is homeomorphic to the connected
sum of 2nK + nP + 2nT projective planes. �

Exercises

1. Prove that, if S1 and S2 are two closed surfaces, the connected sum S1#S2 is a
closed surface.

2. Prove that the attaching of a handle to a surface S is equivalent to the connected
sum of S with either a torus or a Klein bottle.

3. Let the closed surfaces S1 and S2 be given; prove that

χ(S1#S2) = χ(S1)+ χ(S2)−2 .

V.3 Poincaré Duality

The reader must have noticed that the second integral homology group of the torus
T 2 is isomorphic to Z, whereas the corresponding homology group of RP2 is trivial.
On the other hand, in the proof of the Fundamental Theorem of Closed Surfaces,
we have noted that the real projective plane may be obtained by the adjunction
of a 2-disk to the Möbius band, while the Klein bottle is the connected sum of
two real projective planes. Well, everybody knows the story of the little man who
walks on a Möbius band and, having gone around once, found himself upside down
on the starting point (this is why the Möbius band was defined a “nonorientable”
surface5). The reader could wonder whether the presence of the Möbius band in the
real projective space – and consequently in the Klein bottle – is responsible for the
“abnormal” behavior of the second homology group of these spaces. The answer
is “yes” and has to do with the orientation of the simplexes of these triangulated
spaces. Thus, we give the following definition.

(V.3.1) Definition. A triangulable manifold V ∼= |K| is orientable if its n-simplexes
may be oriented coherently, that is to say, each (n−1)-simplex of K inherits oppo-
site orientations from its two adjacent n-simplexes (see Theorem (V.1.5)).

The reader is highly advised to draw triangulations for the spaces mentioned
above and to verify that it is not possible to give the Klein bottle and the real pro-
jective plane coherent orientations, while this is possible in the case of the torus.

5 Not in the sense of our definition of 2-manifold; it is really a 2-manifold with boundary.
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The definition of orientability as given here is obviously incomplete and not very
useful: in fact, a good definition must be independent from the triangulation and
based on an invariant by homeomorphisms. The next result is meant to correct this
flaw.

(V.3.2) Theorem. Let |K| be a triangulable n-manifold;6 then

Hn(|K|;Z) ∼= Z ⇐⇒ |K| is orientable.

Proof. Let us suppose that |K| is orientable and let z = ∑σ be the formal sum of all
n-simplexes of K. The definition of orientability implies that z and all its integral
multiples are n-cycles. On the other hand, if z′ ∈ Zn(K) has a term which is a
multiple rτ of an n-simplex τ, then the terms of z′ are of the form rτ ′, where τ ′ runs
over the set of all n-simplexes of K intersecting τ in (n− 1)-simplexes (otherwise,
z′ would not be a cycle); but then, by part 3 of Theorem (V.1.5), z′ would equal the
formal sum r ∑σ = rz, where σ runs over the set of all n-simplexes of K. Therefore,
Hn(|K|;Z) ∼= Z.

With a similar argument we may prove that, conversely, given any orientation of
the n-simplexes of K, the n-cycles of Cn(K) are of the type rz where z = ∑±σ and σ
runs over the set of all n-simplexes. Since ∂n(z) = 0, we conclude that it is possible
to give an orientation to the n-simplexes, according to the Definition (V.3.1). �

Because of this last result, the definition of orientability of a triangulable
n-manifold does not depend on the triangulation; furthermore, two triangulable
connected n-manifolds of the same homotopy type are either both orientable or both
nonorientable.

Let V be a triangulable n-manifold and let us suppose that V ∼= |K|, where K =
(X ,Φ). We consider the barycentric subdivision K(1) = (Φ,Φ(1)) and associate
with every simplex σ ∈ Φ (that is to say, a vertex of K(1)) the subset Bσ of Φ(1)

defined by

eσ = {{σ ,σ 1, . . . ,σ r}|σ ⊂ σ 1 ⊂ . . . ⊂ σ r} .

Note that, if dimσ = p, the dimension of the simplexes of eσ is ≤ n− p; in partic-
ular, if dimσ = n, eσ coincides with the vertex σ (namely, the barycenter b(σ) )
of K(1).

We now consider the closure and the boundary of eσ , that is to say, the simplicial
subcomplexes eσ and

•
eσ of K(1) (see Sect. III.5). The reader is asked to note that

•
eσ

is the set of all simplexes of eσ not having b(σ) as a vertex; hence,

eσ = •eσ ∗b(σ)

and, therefore, |eσ | is contractible.
The reader is also asked to review Definitions (III.5.3) and (III.5.5) before turning

to the next result.

6 We remember that our definition of triangulable manifold requires K to be connected by
1-simplexes.
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(V.3.3) Theorem. For every p-simplex σ ∈ Φ , the block eσ is a (n− p)-block of
K(1); besides, the set defined by

e(K(1)) = {eσ |σ ∈ Φ}

is a block triangulation of K(1).

Proof. We first have to prove that

Hr(eσ ,
•eσ ;Z) ∼=

{
Z if r = n− p
0 if r 	= n− p .

As we have already seen, if σ is an n-simplex, eσ is a simplicial subcomplex of
K(1) having only the vertex b(σ) and no other simplex; so,

•
eσ = /0 and the state-

ment above is true. We then assume that dimσ ≤ n− 1. Since |K(1)| ∼= |K| and
dimK(1) = n, the relative homology of the simplicial subcomplex S(b(σ)) of K(1)

(see the definition given in Theorem (II.2.10)) is

H̃r(S(b(σ));Z) ∼=
{
Z if r = n−1
0 if r 	= n−1

(see Lemma (V.1.4)).
We now prove that

S(b(σ)) = |
•

(σ)(1) ∗ •eσ |

where
•

(σ)(1) is the barycentric subdivision of the boundary of σ . In fact,

|{σ1, . . . ,σ r}| ∈ S(b(σ)) ⇐⇒ {σ 1, . . . ,σ r} ∈ Φ(1) with σ ⊂ σ 1 ⊂ . . . ⊂ σ r

⇐⇒ (∃t) σ t ⊂ σ ⊂ σ t+1 with {σ 1, . . . ,σ t} ∈
•

(σ)(1) and {σ t+1, . . . ,σ r} ∈ •
Bσ .

On the other hand, |
•

(σ)(1)| ∼= Sp−1 and consequently

S(b(σ)) ∼= Sp−1 ∗ | •eσ | .

Let us now go back a step to note that if L1, . . . ,Lp are p simplicial complexes, each
of them having only two 0-simplexes (and no 1-simplex), then

|L1 ∗ . . .∗Lp| ∼= Sp−1

and we conclude that S(b(σ)) is homeomorphic to the pth suspension of | •eσ | (the
suspension of an abstract simplicial complex K is defined on p. 47 – it is easily seen
that the suspension of the sphere Sn is homeomorphic to the sphere Sn+1; the pth
suspension of K is defined by iteration). By Exercise 5 of Sect. II.4, we conclude
that

H̃q(S(b(σ));Z) ∼= H̃q−p(
•eσ ;Z)
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and therefore

H̃r(
•eσ ;Z) ∼=

{
Z if r = n− p−1
0 if r 	= n− p−1 .

This result and the fact that the (reduced) homology of eσ is trivial (for eσ is
contractible) applied to the exact sequence of the (reduced) homology of the pair
(eσ ,

•eσ ) enable us to conclude that

(∀σ ∈ Φ , dimσ = p) eσ is an (n− p)-block of K(1).

We only need to prove that the set {eσ |σ ∈ Φ} is a block triangulation of K(1). In
fact, let σ̃ = {σ 0, . . . ,σ r} be any simplex of K(1); by the definition of K(1), we have
σ0 ⊂ . . . ⊂ σ r and so

σ̃ ⊂ eσ 0 �
•
eσ 0 .

Finally, for every σ ∈ Φ ,
•
eσ = ∪τ⊂σ ,τ 	=σ eτ . �

We now have all that is needed to prove the Poincaré Duality Theorem.

(V.3.4) Theorem. Let V be an oriented triangulable n-manifold, with triangulation
given by the simplicial complex K = (X ,Φ). Then, for every integer p with 0 ≤
p ≤ n,

H p(V ;Z) ∼= Hn−p(V ;Z) .

Proof. To prove this theorem, we must consider the first barycentric subdivision
K(1) of K and use both the projection π : K(1) → K and the homomorphism of chain
complexes ℵ : C(K)→C(K(1)) (review Sect. III.2). Let z be the cycle of dimension
n defined as the formal sum of all n-simplexes of K; the homology class [z] is a
generator of Hn(|K|;Z) ∼= Z (see the proof of Theorem (V.3.2)).

For each generator cσ ∈Cp(K;Z)7, we define the map

β σ
p : Cp(K;Z) −→Cn−p(K(1);Z)

β σ
p (cσ ) := cσCp(π)∩ℵn(z) .

Since dK(1)
n ℵn = ℵn−1dK

n and z is a cycle, the n-chain ℵn(z) is a cycle: in fact, it
is the sum of all oriented n-simplexes of K(1) in agreement with the fact that |K(1)|
is an oriented n-manifold. For any term of this sum, in other words, an n-simplex
{σ0, . . . ,σn} of K(1), we have

(*) cσCp(π)∩{σ0, . . . ,σ n} = ±{σ0, . . . ,σ n}
and so β σ

p (z) ∈Cn−p(Bσ ).
By Theorem (IV.3.3),

dK(1)

n−p(cσCp(π)∩ℵn(z)) = (−1)p(cσCp(π)∩dK(1)

n (ℵn(z))−dK
p (cσCp(π))∩ℵn(z))

= (−1)p(cσCp(π)∩dK(1)

n (ℵn(z)));

7 We remind the reader that cσ is the map that takes the p-simplex σ to 1 ∈ Z and all other
p-simplexes to 0 ∈Z.
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therefore, β σ
p (z) is an element of Cn−p−1(

•
eσ ) and thus

β σ
p (z) ∈ Zn−p(eσ ,

•
eσ ;Z).

The result (*) implies that β σ
p (z) is the sum of all (n− p)-simplexes of Bσ with

coefficients ±1 and so, it is a cycle that generates Zn−p(eσ ,
•
eσ ;Z).

We now recall that the set

e(K(1)) = {eσ |σ ∈ Φ}

is a block triangulation of K(1) (see Theorem (V.3.3)); moreover, the block homol-
ogy of K(1) derives from the chain complex

C(e(K(1))) = {Cn−p(e(K(1)),de(K(1)

n−p |n− p ≥ 0}

where Cn−p(B(K(1))) is the free Abelian group defined by the generators

β σ
p (z) ∈ Zn−p(eσ ,

•eσ ;Z)

(see Sect. III.5). Thus, the map

βp : Cp(K) →Cn−p(e(K(1))) , βp(σ) = β σ
p (z)

defined on all p-simplexes σ ∈ Φ is an isomorphism. It follows that there exists an
isomorphism

H(βp) : H p(K;Z) −→ Hn−p(e(K(1));Z) ∼= Hn−p(K;Z). �

Exercises

1. Compute the Euler–Poincaré characteristic of the closed surfaces.

2. An n-dimensional connected compact manifold without boundary is called
a closed n-manifold. It is known that the closed 3-manifolds are triangulable
(E. Moise, 1952). Prove that if M and N are two orientable closed 3-manifolds such
that π1(M) ∼= π1(N), then Hi(M;Z) ∼= Hi(N;Z) for i = 0,1,2,3.8

8 In particular, if π1(M) = 0, then M has the same homology groups as the 3-sphere S3; in 1904,
Poincaré asked the question: in this case, is it true that M is homeomorphic to S3? It was only
recently that this famous “Poincaré conjecture” was proved affirmatively by Grigory Perelman,
who used methods of differential geometry, specially, the Ricci flow.





Chapter VI
Homotopy Groups

VI.1 Fundamental Group

The Fundamental Theorem of Surfaces assures us that any connected compact
surface is homeomorphic to one of the following closed surfaces: the two-
dimensional sphere, a connected sum of tori, or a connected sum of real projective
planes. We have seen that the homology groups of such closed surfaces are not
isomorphic, and therefore, the surfaces under discussion cannot be homeomorphic.
It is possible to arrive at this same result by computing another algebraic invariant
of the polyhedra, the so-called fundamental group, which is clearly related to the
first homology group. In what follows, we shall study such concepts in detail.

In Sect. I.2, we have defined the concept of homotopy between two based maps
f ,g ∈ Top∗((X ,x0),(Y,y0)) and we have considered the set

[X ,Y ]∗ = Top∗(X ,Y )/ ∼;

we now turn our attention to the set [X ,Y ]∗ when (X ,x0) is the unit circle S1 with
base point e0 = (1,0).

We intend to define a group structure on the set [S1,Y ]∗; we must, therefore, de-
fine a multiplication in [S1,Y ]∗. We start by saying that a map f : (S1,e0) → (Y,y0)
is a loop of Y (based at y0); we can now compose two loops f and g to form a loop
( f ∗g), obtained by traveling with double speed first the loop f and then g; formally,
this loop is given by the function

( f ∗g)(e2πti) =
{

f (e2π2ti) 0 ≤ t ≤ 1
2

g(e2π(2t−1)i) 1
2 ≤ t ≤ 1.

This is an intuitive approach to the multiplication in [S1,Y ]∗. Let us now go over
this definition in such a way that we may prove the following results more system-
atically. Let us take the wedge product

S1 ∨S1 = {e0}×S1∪S1 ×{e0} ⊂ S1 ×S1

D.L. Ferrario and R.A. Piccinini, Simplicial Structures in Topology, 195
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and define the map (called comultiplication in S1)

ν : S1 → S1 ∨S1 , e2πti 
→
{

(e0,e2π2ti) 0 ≤ t ≤ 1
2

(e2π(2t−1)i,e0) 1
2 ≤ t ≤ 1;

besides, let us define the folding map σ : S1 ∨S1 → S1:

(∀0 ≤ t ≤ 1) (e0,e
2tiπ ) 
→ e2tiπ , (e2tiπ ,e0) 
→ e2tiπ .

By these definitions, one can easily see that for every point e2πti ∈ S1

( f ∗g)(e2πti) = σ( f ∨g)ν(e2πti);

moreover, we note that if f ′ ∼ f and g′ ∼ g, then σ( f ′ ∨ g′)ν is homotopic to
σ( f ∨g)ν . Finally, for any based space (Y,y0), we define the function (called mul-
tiplication)

[S1,Y ]∗ × [S1,Y ]∗ −→ [S1,Y ]∗

(∀[ f ], [g] ∈ [S1,Y ]∗) [ f ]
ν× [g] := [σ( f ∨g)ν].

(VI.1.1) Theorem. The set [S1,Y ]∗ with the multiplication
ν× is a group whose unit

element is the homotopy class of the constant function c : S1 → Y (it takes each
point of S1 to y0); besides, the inverse of [ f ] is the homotopy class of the based map
h : S1 → Y defined, for each e2πti ∈ S1, by the formula h(e2πti) = f (e2π(1−t)i).1

Proof. We first prove that the function ν : S1 → S1 ∨S1 is associative (up to homo-
topy), in other words, that the diagram

S1 ν ��

ν
��

S1 ∨S1

1∨ν
��

S1 ×S1
ν ∨1

�� S1 ∨S1 ∨S1

commutes up to homotopy (that is to say (1∨ ν)ν ∼ (ν ∨ 1)ν). In fact, for every
e2πti ∈ S1,

(1∨ν)ν(e2πti) =

⎧
⎨

⎩

(e0,e0,e2π2ti) 0 ≤ t ≤ 1
2

(e0,e2π2(2t−1)i,e0) 1
2 ≤ t ≤ 3

4
(e0,e0,e2π(4t−3)ti) 3

4 ≤ t ≤ 1

(ν ∨1)ν(e2πti) =

⎧
⎨

⎩

(e0,e0,e2π4ti) 0 ≤ t ≤ 1
4

(e0,e2π(4t−1)i,e0) 1
4 ≤ t ≤ 1

2
(e2π(2t−1)i,e0,e0) 1

2 ≤ t ≤ 1

1 Intuitively, the loop h is the loop f , but traveled in the opposite direction.
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The function

H : S1 × I −→ S1 ∨S1 ∨S1,

defined for every (e2πti,s) ∈ S1 × I by the formula

H(e2πti,s) =

⎧
⎨

⎩

(e0,e0,e2π(2s+2)ti) 0 ≤ t ≤ 2−s
4

(e0,e2π [4t−2(1− s
2 )]i,e0) 2−s

4 ≤ t ≤ 3−s
4

(e2π [4(1− s
2 )(t−1)+1]i,e0,e0) 3−s

4 ≤ t ≤ 1,

is the desired homotopy.

We now prove that the multiplication
ν× is associative. We have to prove that

(∀ f ,g,h ∈ Top∗(S
1,Y )) σ(σ( f ∨g)ν ∨h)ν ∼ σ( f ∨σ(g∨h)ν)ν.

In fact, the associativity of ν implies

σ(1Y ∨σ)( f ∨g∨h)(1∨ν)ν ∼ σ(σ ∨1Y )( f ∨g∨h)(ν ∨1)ν;

on the other hand,

σ(1Y ∨σ)( f ∨g∨h)(1∨ν)ν = σ( f ∨σ(g∨h)ν)ν
σ(σ ∨1Y )( f ∨g∨h)(ν ∨1)ν = σ(σ( f ∨g)ν ∨h)ν.

The homotopy class [c] of the constant function at the base point y0 ∈ Y is the
identity element of [S1,Y ]∗. We first prove that, if i : S1 ∨S1 → S1 ×S1 is the inclu-
sion map and Δ : S1 → S1 × S1 is the diagonal function e2πti 
→ (e2πti,e2πti), then
iν ∼ Δ ; in fact, this assertion is ensured by the homotopy H : S1 × I → S1 ×S1

H(e2πti,s) =
{

(e2πtsi,e2π(t(2−s)i) 0 ≤ t ≤ 1
2

(e2π [2t−1+s(1−t)]i,e2π(st+1−s)i) 1
2 ≤ t ≤ 1.

We then conclude that, for every based map f : S1 → Y ,

σ( f ∨ c)ν = σ( f × c)iν ∼ σ( f × c)Δ = f

σ(c∨ f )ν = σ(c× f )iν ∼ σ(c× f )Δ = f .

Finally, we prove that every [ f ] ∈ [S1,Y ]∗ has an inverse. Indeed, for each e2πti, we
define h : S1 → Y by h(e2πti) = f (e2π(1−t)i) and note that

σ( f ∨h)ν(e2πti) =
{

f (e2π2ti) 0 ≤ t ≤ 1
2

h(e2π(2t−1)i) 1
2 ≤ t ≤ 1;

the function

H(e2πti,s) =

⎧
⎪⎪⎨

⎪⎪⎩

y0 0 ≤ t ≤ s
2

f (e2π(2t−s)i) s
2 ≤ t ≤ 1

2
f (e2π(2−2t−s)i) 1

2 ≤ t ≤ 2−s
2

y0
2−s

2 ≤ t ≤ 1
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is a homotopy σ( f ∨ h)ν ∼ c; therefore, [h] is a right inverse of [ f ]. Similarly, we
prove that [h] is also a left inverse of [ f ]. �

The group [S1,Y ]∗ := π(Y,y0) is the so-called fundamental group of Y (relative
to the base point y0). We leave to the reader the proof of the following result:

(VI.1.2) Theorem. The construction of the fundamental group defines a covariant
functor

π : Top∗ → Gr.

By its definition, it is intuitive that the fundamental group of a space depends
generally on the base point (see Exercise 1 on p. 210). We recall that two points
y0,y1 ∈ Y are joined by a path in Y if there is a map λ : I → Y such that λ (0) = y0

and λ (1) = y1. The product ∗ may be easily defined also by the composition of two
paths λ and μ , whenever λ (1) = μ(0), by setting

(λ ∗μ)(t) =

{
λ (2t) if 0 ≤ t ≤ 1

2

μ(2t −1) if 1
2 ≤ t ≤ 1.

For simplicity, we often write λ μ = λ ∗μ .
The following theorem holds true:

(VI.1.3) Theorem. Let y0 and y1 be two points of Y joined by a path λ : I → Y .
Then λ gives rise to a group isomorphism

φλ : π(Y,y0) → π(Y,y1).

Proof. The homomorphism φλ is given by

(∀[ f ] ∈ π(Y,y0)) φλ ([ f ]) := [λ−1 ∗ ( f ∗λ )]

and its inverse φλ
−1 is defined by

(∀[g] ∈ π(Y,y1)) φλ
−1([g] = [λ ∗ (g∗λ−1)]

with λ−1(t) = λ (1− t), for every t ∈ I. The result comes from

λ−1λ ∼ cy0 and λ λ−1 ∼ cy1 . �

(VI.1.4) Corollary. The fundamental groups of a path-connected space do not de-
pend on the base point (that is to say, they are isomorphic to each other).

In general, two different paths of Y joining two points y0, y1 ∈ Y produce two
distinct isomorphisms between π(Y,y0) and π(Y,y1); the next result tells us when
two paths will produce the same isomorphism.

(VI.1.5) Theorem. Let λ ,μ : I → Y be two paths such that λ (0) = μ(0) = y0 and
λ (1) = μ(1) = y1. Then,

φλ = φμ ⇐⇒ [λ ∗ μ−1] ∈ Zπ(Y,y0)

where Zπ(Y,y0) is the center of the group π(Y,y0).
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Proof. Let us suppose that φλ = φμ . Then, for every [ f ] ∈ π(Y,y0),

λ−1 ∗ f ∗λ ∼ μ−1 ∗ f ∗μ

λ−1 ∗ f ∗λ ∗μ−1 ∼ μ−1 ∗ f

(μ ∗λ−1)∗ f ∗ (λ ∗ μ−1) ∼ f ;

since (μ ∗λ−1)−1 = λ ∗μ−1, we have that

f ∗ (λ ∗μ−1) ∼ (λ ∗μ−1)∗ f

and therefore
[λ ∗μ−1] ∈ Zπ(Y,y0).

Proving the converse is equally easy. �

(VI.1.6) Corollary. The isomorphism φλ : π(Y,y0) → π(Y,y1) associated with a
path λ : I → Y from y0 to y1 does not depend on λ when π(Y,y0) is Abelian.

VI.1.1 Fundamental Groups of Polyhedra

There are no fixed rules for computing the fundamental group of an arbitrary-based
space; there is, however, a practical and efficient method for computing the funda-
mental group of a polyhedron based at a vertex. The reader is advised to review
the material on simplicial complexes and their geometric realizations, also because
of the notation. We recall that, by Lemma (V.2.6) on p. 186, there exists a one-
dimensional subcomplex of each connected finite simplicial complex K that con-
tains all vertices and whose geometric realization is contractible; such a subcomplex
is a spanning tree and is such that:

1. dim(L) = 1.
2. L contains all vertices of K (that is to say, X = Y ).
3. The polyhedron |L| is contractible to a point.

(VI.1.7) Theorem. Let K = (X ,Φ) be a connected simplicial complex with a fixed
vertex a0 and let L = (Y,Θ) be a spanning tree in K. Let a symbol gi j be associated
with every 1-simplex {ai,a j} ∈ Φ and let S be the set of all symbols gi j obtained in
this manner; let

R = {gi j | {ai,a j} ∈Θ}∪{gi jg jkgki | {ai,a j,ak} ∈ Φ}.

Then, π(|K|,a0) is isomorphic to the group Gp(S;R) generated by the set S with the
relations R.
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Proof. First of all, let us order the finite set of the vertices of K:

a0 < a1 < .. . < an.

Then, each p-simplex σ of |K| may be written as

σ = {ai0, . . . ,aip}.

We now consider an arbitrary element [ f ] ∈ π(|K|,a0) represented by the loop
f : S1 → |K|; by the Simplicial Approximation Theorem (III.2.4), there is a simpli-
cial function

g : (S1)(r) → K

such that, after identifying (S1)(r) with S1, |g| ∼ f . Thus, the homotopy class [ f ]
can be represented by a loop based at a0 and consisting exclusively of 1-simplexes
of K. We now define a homomorphism

ψ : π(|K|,a0) −→ Gp(S;R).

For each 1-simplex {ai,a j} of K, we define the symbol

hi j :=
{

gi j if {ai,a j} ∈ K � L
1 if {ai,a j} ∈ L;

we use these symbols for defining ψ on any element [ f ] ∈ π(|K|,a0); in fact, f may
be represented, up to homotopy, by a closed path of 1-simplexes

α = {a0,ai}{ai,a j} . . .{ak,a0},

and so, we define
ψ([ f ]) := h0ihi j . . .hk0 ∈ Gp(S;R).

It is necessary to prove that ψ is well defined, in other words, that two simpli-
cial maps f and f ′ : S1 → |K|, represented by two closed paths of 1-simplexes
α = {a0,ai}{ai,a j} . . .{ak,a0} and α ′ = {a′0,a

′
i}{a′i,a′j} . . .{a′k,a

′
0} with a′0 = a0,

induce the same element ψ([ f ]) = ψ([ f ′]). By the Simplicial Approximation
Theorem (III.2.4) (on p. 113), it is possible to suppose that the homotopy between
f and f ′ is given by a simplicial map. The equality between h0ihi j . . .hk0 and
h′0ih

′
i j . . .h′k0 will follow after applying the relations in Gp(S;R) a finite number of

times.
Reciprocally, we define a group homomorphism

φ : Gp(S;R) −→ π(|K|,a0)

as follows: let {ai,a j} be the simplex associated with the generator gi j ∈ S; since L
contains all vertices of K, we choose two paths in L originating at a0:

1. αi, path in L from a0 to ai

2. α j, path in L from a0 to a j
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We now define
φ(gi j) := [αi{ai,a j}α−1

j ].

Notice that φ is independent from the choice of αi and α j : a path of 1-simplexes
contained in L is contractible because L is contractible; hence, if α ′

i and α ′
j were

new paths of 1-simplexes from a0 to ai and a j, respectively, we would have αi ∼ α ′
i

and α j ∼ α ′
j for they are contractible.

Suppose {ai,a j,ak} to be a 2-simplex of K; then

φ(gi j)φ(g jk)φ(gki) = [αi{ai,a j}α−1
j ][α j{a j,ak}α−1

k ][αk{ak,ai}α−1
i ]

= [αiα−1
i ] = 1

and so φ may be extended to a group homomorphism.
Now, for every generator gi j of Gp(S;R),

ψφ(gi j) = ψ([αi{ai,a j}α−1
j ]) = gi j

as the paths αi and α j consist of 1-simplexes of L (see the definition of φ ). There-
fore,

ψφ = 1Gp(S;R).

On the other hand, for every 1-simplex {ai,a j} of K

φψ([αi{ai,a j}α−1
j ]) = [αi{ai,a j}α−1

j ]

(here αi and α j are paths of L taken accordingly to the definition of φ ). Therefore,
for a closed path of 1-simplexes

α = {a0,ai}{ai,a j} . . .{ak,a0},

we may write

φψ(α) = φψ([α0{a0,ai}α−1
i ]) . . .φψ([αk{ak,a0}α−1

0 ])

= [α0{a0,ai}α−1
i ] . . . [αk{ak,a0}α−1

0 ] = α,

and so φψ = 1π(|K|,a0). �

We now compute the fundamental groups of some spaces by way of examples.

(VI.1.8) Example (π(S1) ∼= Z). We triangulate the circle with the simplicial com-
plex K of vertices a0,a1,a2 and 1-simplexes

{a0,a1},{a1,a2} and {a2,a0}.

Here, we have the spanning tree |L| given by the two simplexes {a0,a1} and
{a1,a2}. Hence, by Theorem (VI.1.7), π(S1,a0) has only one generator.

(VI.1.9) Example (π(S2) = 0). It follows directly from Theorem (VI.1.7), when
we triangulate S2 as the boundary of a tetrahedron.
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(VI.1.10) Example (π(S1 ∨S1) is the free group with two generators). This group
is not Abelian. It is an immediate consequence from Theorem (VI.1.7), when we
triangulate each circle as the boundary of a triangle.

(VI.1.11) Example (π(T 2)∼=Z×Z). We consider the triangulation of a torus with
9 vertices, 27 edges, and 18 faces (see figure in Sect. III.5.1). The spanning tree |L|
is given by the geometric realizations of the following 1-simplexes (to simplify the
notation, we omit curly brackets and commas between two vertices):

01,12,23,34,46,65,57,78

Sixteen of the twenty seven generators gi j become the identity in π(T 2,0):

g01,g05,g12,g15,g16,g23,g26,g34,g36,g46,g48,g56,g57,g58,g68,g78;

but there are also the relations

g02g28g80 and g17g74g41.

All this leads us to the conclusion that we only have two generators in the funda-
mental group that are not reduced to the identity: g02 and g28; besides,

g02g28(g02)(−1)(g28)(−1) = 1

in π(T 2,0) which is, therefore, isomorphic to Z⊕Z.2

3 4

5

1

02

0

1

2

Fig. VI.1 A triangulation of
the real projective plane

(VI.1.12) Example (π(RP2) ∼= Z2). Let us consider the triangulation of the real
projective plane with 6 vertices, 15 edges, and 10 faces, as in Sect. III.5. The span-
ning tree |L| is given by the geometric realizations of the following 1-simplexes:
01,12,24,43,35, as shown in Fig. VI.1. In this example, the generators

g01,g03,g12,g13,g14,g24,g34,g35,g45

2 Another way to prove this result is as follows: if X and Y are topological spaces, then the
fundamental group of the product X ×Y coincides with the direct product of the fundamental
groups π(X) and π(Y ) (see Exercise 3 on p. 210).
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are reduced to the identity of the fundamental group; besides,

g02 = g04 = g05 = g15 = g23 = g25

and so we have only one generator, let us say, g15, but with the property (g15)2 = 1
in π(RP2,0).

Theorem (VI.1.7) enables us to compute the fundamental group of a path-
connected polyhedron, but at a price: indeed, the number of generators and relations
may be excessively large. So, we try to obtain results in a more economical way;
with this in mind, let us consider a few things.

In Sect. I.2, we have proved that the category of groups is closed by pushouts.
We now review this assertion. Let G1 and G2 be two groups given by generators
and relations

G1 = Gp(S1,R1) and G2 = Gp(S2,R2);

We now consider the homomorphisms f : G → G1 and g : G → G2, and form
the pushout of the pair ( f ,g) to obtain the group G1 ∗ f ,g G2. This group is ac-
tually isomorphic to the group presented as Gp(S1 ∪ S2;R1 ∪ R2 ∪ R f ,g), where
R f ,g = { f (x)g(x)−1|x ∈ G}. By definition of pushout, the group G1 ∗ f ,g G2 has
the following properties:

1. There exist two homomorphisms

g : G1 −→ G1 ∗ f ,g G2

f : G2 −→ G1 ∗ f ,g G2

such that f g = g f
2. For every group H and homomorphisms

h : G1 → H and k : G2 → H

such that h f = kg, there exists a unique homomorphism

� : G1 ∗ f ,g G2 −→ H

such that

� f = k and �g = h

Specifically, if G = 0 then f = g = 0, Rf ,g = 0, and the group

G1 ∗0,0 G2 := Gp(S1 ∪S2;R1 ∪R2)

(also denoted by the symbol G1 ∗G2) is called free product of G1 and G2.
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(VI.1.13) Theorem (Seifert–Van Kampen). Let |L| and |M| be two path-connected
polyhedra such that |L∩M| is path-connected and not empty. Let a0 be a vertex
shared by both polyhedra. The diagram

π(|L∩M|,a0)
π(iL)

��

π(iM)

��

π(|L|,a0)

π(iM)
��

π(|M|,a0)
π(iL)

�� π(|L∪M|,a0)

(where iL and iM are the inclusion maps) is a pushout.

Proof. We extend a spanning tree |A(L∩M)| of |L∩M| to the spanning trees |A(L)|
and |A(M)| of |L| and |M|, respectively; the union

|A(L)| ∪ |A(M)| = |A(L∪M)|
is a spanning tree of |L ∪ M| and so, by Lemma (V.2.6), it contains all vertices
of L∪M.

We now order the vertices of L∪M; this automatically gives the vertices of L and
of M an order. By Theorem (VI.1.1), we know that π(|L∪M|,a0) is generated by the
elements gi j corresponding to the ordered 1-simplexes {ai,a j} of L∪M �A(L∪M),
with the relations gi jg jkgki relative to the ordered 2-simplexes {ai,a j,ak} of L∪M.

On the other hand, the pushout of groups π(|L|,a0) and π(|M|,a0) relative to the
homomorphisms

π(iL) : π(|L∩M|,a0) → π(|L|,a0),
π(iM) : π(|L∪M|,a0) → π(|M|,a0),

is determined by the generators gi j and hi j corresponding, respectively, to the
ordered 1-simplexes of L � A(L) and M � A(M), with the relations gi jg jkgki,
hi jh jkhki and

π(iL)gi j(π(iM)h ji)−1

whenever gi j = hi j in L∩M.
It is now easy to realize that the group π(|L∪M|,a0) described as above in terms

of generators and relations coincides with the pushout in question. �

(VI.1.14) Corollary. If π(|L∩M|,a0) = 0, then π(|L∪M|,a0) is the free product

π(|L|,a0)∗π(|M|,a0).

Let us consider a few things before we turn to another result. Let |K| be a con-
nected polyhedron and let α be a closed path, based at a vertex a0 ∈ K, that may be
represented by the sequence of 1-simplexes:

α = {a0,a1}.{a1,a2}. . . . .{an,a0}.
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We take a disk D2 with center c and divide its boundary ∂D2 into n + 1 parts by
means of the (distinct) points b0, . . . ,bn. Let D = (Y,Ψ) be the simplicial complex
with vertices

Y = {c,b0, . . . ,bn}
and simplexes

Ψ = {c,b0, . . . ,bn;b0b1,b1b2, . . . ,bnb0,cb0,cb1, . . . ,cbn,

cb0b1,cb1b2, . . . ,cbnb0}
(we omit the curly brackets for the simplexes). The one-dimensional simplicial com-
plex ∂D formed by the simplexes

{b0, . . . ,bn;b0b1,b1b2, . . . ,bnb0}

is a subcomplex of D; note that

|D| ∼= D2 and |∂ D| ∼= ∂D2 ∼= S1.

The construction is nothing but a cone (with vertex c) on a simplicial subdivision of
S1. We now consider the simplicial function

f : ∂D → K , (∀i = 0,1, . . . ,n) f (bi) = ai

and an adjunction space X defined by the pushout

S1 ∼= |∂ D|
| f |

��

��

|K|

��

D2 ∼= |D|
| f |

�� X

With these conditions we have the following:

(VI.1.15) Theorem. The fundamental group π(X ,a0) of the space X, obtained
by adjoining a 2-cell to |K| by means of the path α , is obtained from the group
π(|K|,a0) together with the relation defined by the homotopy class of the same
path α .

Proof. We consider the barycentric subdivision of the triangulation of D2 just de-
scribed, in other words, before gluing D2 to K, we refine the triangulation of D2 by
adding 2(n + 1) new vertices

c0,c1, . . . ,cn; d0,d1, . . . ,dn



206 VI Homotopy Groups

to the simplicial complex D, where each ci is the barycenter of the simplex {c,bi}
and each di is the barycenter of the triangle {c,bi,bi+1} (here the index i = 0 . . .n is
understood as modulo n). See in Fig. VI.2 such a subdivision, for n = 6. Let then

b0

b1b2

b3

b4 b5

c0

c1c2

c3

c4 c5
d0

d1

d2

d3

d4

d5 Fig. VI.2 Barycentric subdi-
vision of D2

M = (Z,Θ) be the simplicial complex of the barycentric subdivision.
The space obtained by gluing |M| ∼= D2 to |K| is still X ; note that, naturally, X

may be viewed as the geometric realization of an abstract simplicial complex W . We
now consider the 2-simplex σ = {b0,c0,d0} (indicated in Fig. VI.2) and the pushout

|W � σ | ∩ |σ | iW�σ
��

iσ

��

|W � σ |

iσ

��|σ |
iW�σ

�� X

By Theorem (VI.1.13), we conclude that π(X,a0) is a pushout of the diagram

π(|W � σ | ∩ |σ |,a0)
π(iW�σ )

��

π(iσ)

��

π(|W � σ |,a0)

π(|σ |,a0)

and thus π(X ,a0) is obtained from the free product

π(|σ |,a0)∗π(|W � σ |,a0)

together with the relations

π(iW�σ )(c)(π(iσ )(c))−1,
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c being the generator of π(|∂σ |,a0) (notice that

|W � σ | ∩ |σ |= |∂σ |
and that ∂σ is the one-dimensional simplicial complex defined by the 1-simplexes
{b0,c0}, {c0,d0}, and {d0,b0}).

Since π(|σ |,a0) = 0, the matter becomes much simpler: π(X ,a0) derives from
π(|W � σ |,a0) together with the relation

π(iW�σ )(c) = |{b0,c0}|.|{c0,d0}|.|{d0,b0}|.
The only thing left to do now is to compute the fundamental group of |W � σ |. To
this end, we consider the barycenter b(σ) of σ and the radial projection of |D � σ |
on |∂D|; we obtain a retraction that extends to a strong deformation retraction (see
the definition given in Exercise 2 of Sect. I.2)

F : |W � σ | −→ |K|
where F(|{b0,c0}|.|{c0,d0}|.|{d0,b0}|) = α . We conclude the proof by noting that
F induces an isomorphism among the homotopy groups concerned. �

Let us recalculate the fundamental group of the real projective plane without us-
ing so many generators and relations as we did when we applied Theorem (VI.1.7).
We know that RP2 is obtained from a disk D2 by identifying the antipodal points of
the boundary ∂D2; in other words, RP2 is a pushout of the diagram

S1
f

��

g

��

S1

D2

f : S1 → S1 , eiθ 
→ e2iθ .

We have only one generator (that of π(S1,a0) given by the closed path α) and only
one relation α2; therefore, π(RP2,a0) ∼= Z2.

VI.1.2 Polyhedra with a Given Fundamental Group

We intend to prove that, for every group G given by a finite number of generators and
relations, there exists a polyhedron whose fundamental group is G. More precisely:

(VI.1.16) Theorem. Let G = Gp(S;R) be a group with generators S = {g1, . . . ,gm}
and relations R = {r1, . . . ,rn}. Then there exists a two-dimensional polyhedron |K|
such that

π(|K|,a0) ∼= G

for some vertex a0 ∈ K.
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Proof. For each generator gi, we take a circle S1
i with a base point ei ∈ S1

i , i =
1, . . . ,m. We consider the set

Y = S1
1 ∨S1

2 ∨ . . .∨S1
m

of all m-tuples (x1, . . . ,xm) ∈ S1
1 × . . .S1

m with no more than one coordinate xi dif-
ferent from its base point ei; we give Y the base point a0 = (e1, . . . ,em) and the
topology induced by the topology of the product space S1

1× . . .×S1
m. We pause here

to interpret Y in another way. We consider the pushout

{x} i1 ��

i2

��

S1
1

i2

��

S1
2

i1
�� Z

(with i j(x) = e j , j = 1,2); note that Z ∼= S1
1 ∨ S1

2 and, by induction, also S1
1 ∨ S1

2 ∨
. . .∨ S1

m may be viewed as the pushout space of an appropriate diagram. Besides,
we observe that, due to Corollary (VI.1.14), π(S1

1 ∨ S1
2,a0) is a free group with

two generators and, in general, π(S1
1 ∨ S1

2 ∨ . . . ∨ S1
m,a0) is a free group with m

generators.
We now return to our theorem. A relation, let us say, r j is a word

r j = bε1
i1

. . .b
εp
ip

with εi = ±1; we define a function

f j : S1 −→ Y,

corresponding to the word r j, as follows: since the word r j has p letters, we divide
S1 into p equal parts; the qth arc is completely wrapped around the component S1

iq
of Y , clockwise if εq = +1 and counter-clockwise if εq = −1. Analytically, such a
function is described as follows:

f j(eiθ ) =

{
ei(pθ−2(q−1)π) if εq = 1

ei(2qπ−pθ) if εq = −1 ,

where 2(q−1)π/p≤ θ ≤ 2qπ/p, 1≤ q≤ p (look up the function f : S1 → S1 used
for computing the fundamental group of the real projective plane, just before this
subsection).
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We now construct the pushout

∂W = ∨n
j=1S1

j

∨ f j
��

��

Y

��

W = ∨n
j=1D2

j ∨ f j

�� X

In other words, we construct a space X by gluing n two-dimensional disks D2
j to Y

by means of the functions f j , j = 1, . . . ,n, one for each relation r j .
We may consider the space Y as the geometric realization of a one-dimensional

simplicial complex with 2m+ 1 vertices

a0;a1
1,a

1
2;a2

1,a
2
2; . . . ;am

1 ,am
2

(the vertices ai
1,a

i
2 correspond to two distinct points of S1

i , a0 = (e1, . . . ,em)), and
3m 1-simplexes

{a0,a
1
1},{a1

1,a
1
2},{a1

2,a0}; . . . ;{a0,a
m
1 },{am

1 ,am
2 },{am

2 ,a0}

(each group of three 1-simplexes corresponds to a circle). After this, we view
the disk D2

j , that corresponds to the relation r j given by a word of length p, as

a regular 3p-polyhedron, j = 1, . . . ,n. In this manner, the disk D2
j is glued to Y

— as we did in Theorem (VI.1.15) — by means of the closed path of geometric
1-simplexes

r̃ j = (|{a0,a
i1
1 }|.|{ai1

1 ,ai1
2 }|.|{ai1

2 ,a0}|)ε1 . . . (|{a0,a
ip
1 }|.|{a

ip
1 ,a

ip
2 }|.|{a

ip
2 ,a0}|)εp .

On the other hand, the fundamental group of Y is the free group generated by g̃i,
i = 1, . . . ,n where each g̃i equals the homotopy class of the closed geometric path

|{a0,a
i
1}|.|{ai

1,a
i
2}|.|{ai

2,a0}|.

We conclude the proof by applying Theorem (VI.1.15). �

Theorem (VI.1.16) may be used backward for computing the fundamental group
of certain two-dimensional polyhedra: actually, if a polyhedron |K| is constructed
as in the theorem, we have at once the generators and the relations that de-
fine the fundamental group of |K|. For instance, let |K| = T 2 be the torus; if
we use the triangulation given in Sect. III.5.1 and indicate the sides 01,12,20
and 03,34,40, respectively, with a and b, we see that π(T 2,0) is the group de-
fined by the generators a,b and the relation aba−1b−1; therefore, π(T 2,0) ∼=
Z×Z.
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Exercises

1. Let X be the space defined by the union of the unit circle S1 and the closed
segment [(4,0),(5,0)]; take the vertices a0 = (1,0) and a1 = (4,0). Prove that the
fundamental groups of X based at a0 and a1 are not isomorphic.

2. Let f : (Y,y0) → (X ,x0) be a homotopy equivalence. Prove that π(Y,y0) ∼=
π(X ,x0).

3. Let (X ,x0) and (Y,y0) be two topological-based spaces. Prove that π(X ×Y,x0 ×
y0) ∼= π(X ,x0)×π(Y,y0).

VI.2 Fundamental Group and Homology

Let ∗ be a generic base point of either nT 2 or nRP2; by Theorem (VI.1.15),

π(nT 2,∗) ∼= Gp(a1,b1,a2,b2, . . . ,an,bn;a1
1b1

1a−1
1 b−1

1 . . .a1
nb1

na−1
n b−1

n )

π(nRP2,∗) ∼= Gp(a1,a2, . . . ,an;a1
1a1

1 . . .a1
na1

n).

For n ≥ 2, these groups are not Abelian; to better understand whether they are
isomorphic, we resort to a little algebraic trick: we abelianize them. An element of
the form ghg−1h−1 of a given group G is called a commutator of G; the subset of G

[G,G] = {x ∈ G|x = ghg−1h−1, g,h ∈ G}

is a normal subgroup of G known as the commutator subgroup of G and is the
smallest subgroup H of G for which G/H is Abelian. The Abelian group G/[G,G]
is called the abelianized group of G.

(VI.2.1) Lemma. A group homomorphism φ : G → H induces a homomorphism

φ̄ : G/[G,G] → H/[H,H]

such that the following diagram commutes:

G
φ

��

��

H

��

G/[G,G]
φ̄

�� H/[H,H]

Moreover, if φ is an isomorphism then also φ̄ is an isomorphism.
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Proof. We define the homomorphism

φ̄(g +[G,G]) := φ(g)+ [H,H]

for every g +[G,G] ∈ G/[G,G]. �

Let us go back to the surfaces. The abelianized group of G = π(nT 2,∗) is the
group generated by the elements

a1,b1,a2,b2, . . . ,an,bn

together with the set of relations

R = {a1
1b1

1a−1
1 b−1

1 . . .a1
nb1

na−1
n b−1

n ;xyx−1y−1|x,y ∈ G};

hence,

π(nT2,∗)/[π(nT 2,∗),π(nT 2,∗)] ∼= Z2n.

On the other hand, the abelianized group of H = π(nRP2,∗) is the group pre-
sented as Gp(S;R) where

S = {a1,a2, . . . ,an}
R = {a1

1a1
1 . . .a1

na1
n}∪{xyx−1y−1|x,y ∈ S};

therefore, the abelianized group of H is an Abelian group generated by the elements

a1,a2, . . . ,an

together with the relation

2(a1 + a2 + . . .+ an) = 1

and thus, by setting h = a1 + . . .+ an, we have

π(nRP2,∗)/[π(nRP2,∗),π(nRP2,∗)] ∼= Gp(a1, . . . ,an−1,h;2h) ∼= Zn−1 ×Z2.

Since Z2n and Zn−1×Z2 are not isomorphic, we conclude that the two fundamental
groups π(nT 2,∗) and π(nRP2,∗) are not isomorphic. By the way, this conclusion
proves once more that nT 2 and nRP2 are not homeomorphic.

What is interesting to note is that the abelianized groups of the fundamen-
tal groups of nT 2 and nRP2 coincide with the corresponding homology groups
H1(nT 2;Z) and H1(nRP2;Z). Hence, it is reasonable to ask whether this is merely
a coincidence or it is a fact that holds true for specific types of polyhedra; the answer
to this question is found in the following result:

(VI.2.2) Theorem. The abelianized group of the fundamental group of a connected
polyhedron |K| is isomorphic to H1(|K|;Z).
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Proof. Since K is connected, we may neglect writing the base point and simply refer
to π(|K|). We define the function

ϕ : π(|K|) → H1(|K|;Z)

as follows: let [z] be a generator of H1(S1;Z); then,

(∀[ f ] ∈ π(|K|))ϕ([ f ]) := H1( f ;Z)([z]).

This definition is independent from the representative chosen for the homotopy class
[ f ]. We now wish to make sure that ϕ is a group homomorphism. In fact, for every
[ f ], [g] ∈ π(|K|),

ϕ([ f ]
ν× [g]) = ϕ([σ( f ∨g)ν]) = ϕ([ f ])+ ϕ([g])

because

H1(ν;Z) : H1(S1,Z) → H1(S1 ∨S1;Z) ∼= H1(S1;Z)⊕H1(S1;Z),

[z] 
→ ([z], [z]);

H1( f ∨g;Z) : H1(S1;Z)⊕H1(S1;Z) → H1(|K|;Z)⊕H1(|K|;Z),

H1( f ∨g;Z)([z], [z]) = (H1( f ;Z)([z]),H1(g;Z)([z]));

H1(σ ;Z) : H1(|K| ∨ |K|;Z) → H1(|K|;Z),

(H1( f ;Z)([z]),H1(g;Z)([z])) 
→ H1( f ;Z)([z])+ H1(g;Z)([z]).

The homomorphism ϕ is surjective: in fact, let c = ∑i miσ i
1 be a 1-cycle of the

one-dimensional C1(|K|;Z). We take a vertex ∗ of |K| as the base point of π(|K|);
for each 1-simplex σ i

1 of c, let σ i
1(0) be its first vertex and σ i

1(1) its second one;
since K is connected, for each 1-simplex σ i

1 of c, there is a path of 1-simplexes λ i
0

(respectively, λ i
1) that joins ∗ to σ i

1(0) (respectively, σ i
1(1)). The homotopy class

of the loop λ i
0.σ

i
1.(λ

i
1)

−1, obtained by composition, is an element [ fi] ∈ π(|K|,∗);
hence, with a suitable triangulation of S1, we may say that

ϕ(
ν×i ( fi)mi) = ∑

i
mi{λ i

0.σ
i
1.(λ

i
1)

−1}.

However, since |K| is connected, each λ i
0.σ

i
1.(λ

i
1)

−1 is homologous to σ i
1 and so, ϕ

is surjective.
The surjection ϕ : π(|K|) → H1(|K|;Z) is easily extended to a surjection

ϕ : π(|K|)/[π(|K|),π(|K|)]→ H1(|K|;Z).

We now prove that ϕ is injective. Let us suppose [ f ] ∈ π(|K|) to be such that
ϕ([ f ]) = 0 ∈ H1(|K|;Z); then, ϕ([ f ]) is a boundary

ϕ([ f ]) = ∂2

(

∑
i

miσ 2
i

)
.
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We now set the rule that, for every σ 2
i , F j

i (σ2
i ) is the jth-face of σ 2

i ; in this manner,

∂2(σ 2
i ) = F0

i (σ2
i )−F1(σ 2

i )+ F2
i (σ 2

i ).

Similarly to what we have done before for k = 0,1,2, let λ k
i (0) (respectively, λ k

i (1))
be a path of 1-simplexes of |K| that joins ∗ to the first (respectively, second) vertex
of Fk(σ2

i ); we now associate the loop μi, defined by the composition of loops

λ 0
i (0).F0

i (σ2
i ).(λ 0

i (1))−1 ν× λ 1
i (0).F1

i (σ 2
i ).(λ 1

i (1))−1 ν× λ 2
i (0).F2

i (σ2
i ).(λ 2

i (1))−1,

with every 2-simplex σ 2
i (see Sect. VI.1 on p. 195). On the other hand,

[ f ]+ [π(|K|),π(|K|)] = [
ν×i (μi)mi ]+ [π(|K|),π(|K|)]

and, since every μi is homotopic to the constant loop because |σ i
2| is contractible,

[ f ] ∈ [π(|K|),π(|K|)]. �

VI.3 Homotopy Groups

The fundamental group π(Y,y0) of a based space (Y,y0)∈ Top∗, henceforth denoted
by π1(Y,y0), is the first of a series

{πn(Y,y0)|n ≥ 1}

of groups associated with (Y,y0). All these groups, called homotopy groups of Y
(with base point y0) are homotopy invariants; in addition, we shall prove that, for
every n ≥ 2, all groups πn(Y,y0) are Abelian, even if π1(Y,y0) may not be Abelian.

As we have seen before, the principal tool in constructing the fundamental group
of a based space is the comultiplication

ν : S1 → S1 ∨S1 , e2πti 
→
{

(e0,e2π2ti) 0 ≤ t ≤ 1
2

(e2π(2t−1)i,e0) 1
2 ≤ t ≤ 1 .

The comultiplication ν , that we now indicate with ν1, has a very simple geometric
interpretation: it is essentially the quotient map obtained by the identification of the
points (1,0) and (−1,0) of the unit circle S1. We may pursue a similar idea for
defining a comultiplication in a unit sphere Sn ⊂ Rn+1, for n ≥ 2: let Sn−1 be the
intersection of Sn with the hyperplane zn+1 = 0 and let

qn : Sn −→ Sn/Sn−1

be the quotient map; then, the comultiplication

νn : Sn −→ Sn ∨Sn
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is precisely the composite map of qn and the homeomorphism

Sn/Sn−1 ∼= Sn ∨Sn.

We have previously defined ν1through a formula that we shall now generalize, know-
ing that the sphere Sn is homeomorphic to the suspension of Sn−1 (see Sect. I.2); in
fact, if we identify Sn with ΣSn−1 and then write the points of Sn as t∧x, where t ∈ I
and x ∈ Sn−1, we have the comultiplication

νn : Sn −→ Sn ∨Sn

νn(t ∧ x) =
{

(e0,2t ∧ x) 0 ≤ t ≤ 1
2

((2t −1)∧ x,e0) 1
2 ≤ t ≤ 1

(here e0 = (1,0, . . . ,0) is the base point of Sn).
The following properties of the comultiplication νn, stated here as two lemmas,

are of a particular interest.

(VI.3.1) Lemma. For every n ≥ 1, the comultiplication νn : Sn → Sn ∨ Sn is asso-
ciative up to homotopy, that is to say, the maps (1Sn ∨ νn)νn and (νn ∨ 1Sn)νn are
homotopic.

Proof. The desired homotopy is given by the map

H : Sn × I −→ Sn ∨Sn ∨Sn

such that, for every (t ∧ x,s) ∈ ΣSn−1 × I,

H(t ∧ x,s) =

⎧
⎨

⎩

( 4t
s+1 ∧ x,e0,e0) 0 ≤ t ≤ s+1

4
(e0,(4t − s−1)∧ x,e0) s+1

4 ≤ t ≤ s+2
4

(e0,e0,
4t−s−2

2−s ∧ x) s+2
4 ≤ t ≤ 1.

�

(VI.3.2) Lemma. For every n ≥ 1, the comultiplication νn : Sn → Sn ∨ Sn is a ho-
motopic factor of the diagonal map Δ : Sn → Sn ×Sn; in other words, the maps ινn

and Δ are homotopic (ι is the inclusion of Sn ∨Sn in the product Sn ×Sn).

Proof. The homotopy ινn ∼ Δ is given by the map

H : Sn × I −→ Sn ×Sn

H(t ∧ x,s) =
{

(t(2− s)∧ x,ts∧ x) 0 ≤ t ≤ 1
2

((st + 1− s)∧ x,(2t−1 + s(1− t))∧ x) 1
2 ≤ t ≤ 1.

�

As in the case where n = 1, we define the multiplication
νn× : [Sn,Y ]∗ × [Sn,Y ]∗ −→ [Sn,Y ]∗

(∀[ f ], [g] ∈ [Sn,Y ]∗) [ f ]
νn× [g] := [σ( f ∨g)νn]
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for every n ≥ 2 and for every (Y,y0) ∈ Top∗; also in this case, the definition does
not depend on the representatives of the homotopy classes [ f ] and [g].

(VI.3.3) Theorem. The set [Sn,Y ]∗ with the multiplication
νn× is a group.

Proof. The associativity of
νn× stems from νn being homotopy associative (see

Lemma (VI.3.1)): indeed, for every f ,g,h ∈ Top∗((Sn,e0),(Y,y0)),

σ(1Y ∨σ)( f ∨g∨h)(1Sn ∨νn)νn ∼ σ(σ ∨1Y )( f ∨g∨h)(νn ∨1Sn)νn

and the equalities

σ(1Y ∨σ)( f ∨g∨h)(1Sn ∨νn)νn = σ( f ∨σ(g∨h)νn)νn,

σ(σ ∨1Y )( f ∨g∨h)(νn ∨1Sn)νn = σ(σ( f ∨g)νn ∨h)νn

are also valid.
The homotopy class [c] of the constant map

c : Sn → Y , t ∧ x 
→ y0

is the identity element for the multiplication defined in πn(Y,y0): in fact, for every
f ∈ Top∗((Sn,e0),(Y,y0)) and by Lemma (VI.3.2), the following homotopies:

σ( f ∨ c)νn = σ( f × c)ινn ∼ σ( f × c)Δ = f ,

σ(c∨ f )νn = σ(c× f )ινn ∼ σ(c× f )Δ = f

hold true.
As for the inverses, we proceed in the following manner. Let [ f ] ∈ πn(Y,y0) be

an arbitrarily given element. We define

h : Sn → Y , t ∧ x 
→ f ((1− t)∧ x);

note that, for every t ∧ x ∈ Sn,

σ( f ∨h)νn(t ∧ x) =
{

f (2t ∧ x) 0 ≤ t ≤ 1
2

h((2t −1)∧ x) 1
2 ≤ t ≤ 1.

The homotopy

H(t ∧ x,s) =

⎧
⎪⎪⎨

⎪⎪⎩

y0 0 ≤ t ≤ s
2

f ((2t − s)∧ x) s
2 ≤ t ≤ 1

2
f ((2−2t− s)∧ x) 1

2 ≤ t ≤ 2−s
2

y0
2−s

2 ≤ t ≤ 1

shows that [h] is the right inverse of [ f ]; similarly, one proves that [h] is also the left
inverse of [ f ]. �
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The group
πn(Y,y0) := [Sn,Y ]∗

is the nth homotopy group of the based space (Y,y0); the homotopy groups πn(Y,y0)
with n ≥ 2 are also called higher homotopy groups of (Y,y0).

The next lemma characterizes the maps f : (Sn,e0) → (Y,y0) that are homotopic
to the constant map and thus characterizes the unit element of the group πn(Y,y0);
here the reader is asked to return to Exercise 2 of Sect. I.2 to review at least the
definition of contractibility of a space. Note that the sphere Sn is homeomorphic
to the geometric realization of the simplicial complex

•σn+1 (σn+1 is an (n + 1)-
simplex).

(VI.3.4) Lemma. A based map

f : | •σn+1| −→ Y ;

may be extended to |σn+1| if and only if f is homotopic to the constant map.

Proof. Let us suppose f to be extended to a map

f : |σn+1| −→ Y.

Since |σn+1| ∼= Dn+1 is contractible, the identity map of |σn+1| onto itself is homo-
topic to the constant map c; let

H : |σn+1|× I −→ |σn+1|

be the homotopy, which joins 1|σn+1| and c. The composite map

•σn+1 × I
ι ×1I �� |σn+1|× I H �� |σn+1|

f
�� Y

is a homotopy from f to c.
Let us now suppose that

G : | •σn+1|× I −→ Y

is a homotopy from f to c. Since the pair of polyhedra (|σn+1|, | •σn+1|) has the
Homotopy Extension Property (see Theorem (III.1.7)), there exists a map

H : |σn+1|× I −→ Y
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such that the following diagram is commutative:

| •σn+1|×{0}
1| •σn+1| × ι0

��

ι ×1{0}
��

| •σn+1|× I

ι ×1{0}
�� G

��

|σn+1|×{0}
1| •σn+1| × ι0

��

c
��

|σn+1|× I

H
����

��
��

��
��

��
�

Y

The restriction of H to |σn+1|×1 = |σn+1| is the desired extension of f . �

Our next lemma is important to the proof of the two theorems that follow it.

(VI.3.5) Lemma. For every n ≥ 1, the function

h : Σ(Sn ∨Sn) −→ ΣSn ∨ΣSn

such that, for every t ∈ I and x ∈ Sn,

h(t ∧ (x,e0)) = (t ∧ x,e0), h(t ∧ (e0,x)) = (e0,t ∧ x),

is a homeomorphism; moreover, the maps νn+1 and (hΣ)νn are homotopic.

Proof. The definitions are such that, for every t ∧ s∧ x ∈ Σ 2Sn−1 ∼= ΣSn,

h(Σνn)(t ∧ s∧ x) =
{

(t ∧2s∧ x,e0) 0 ≤ s ≤ 1
2 ,

(e0,t ∧ (2s−1)∧ x) 1
2 ≤ s ≤ 1,

νn+1(t ∧ s∧ x) =
{

(2t ∧ s∧ x,e0) 0 ≤ s ≤ 1
2 ,

(e0,(2t −1)∧ s∧ x) 1
2 ≤ s ≤ 1.

We now define the following functions:

1. | | : R2 −→R , |(y1,y2)| = max(|y1|, |y2|), for every (y1,y2) ∈R2

2. For every α ∈ [−1,1],
ρα : R2 −→R2

(∀(y1,y2) ∈R2) ρα(y1,y2) =
(

cosα π
2 −sinα π

2
sinα π

2 cosα π
2

)(
y1

y2

)

3. ρ̃α : R2 −→R2

(∀(y1,y2) ∈R2) ρ̃α(y1,y2) =
|(y1,y2)|

|ρα(y1,y2)|ρα(y1,y2)
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4. R′
α : I2 −→ I2

(∀(s,t) ∈ I2) R′
α(s,t) =

(
1
2
,

1
2

)
+ ρ̃α

(
s− 1

2
,t − 1

2

)

The function ρ̃α may be geometrically described as follows: given a vector �v =
(y1,y2) ∈ R2, let r = |(y1,y2)|; the point (y1,y2) belongs to the boundary of the
square Qr with vertices (r,r), (−r,r), (−r,−r), and (r,−r); we rotate the half-line
(0,0) , (y1,y2) through an angle α π

2 , ending up with a half-line that crosses Qr at
the point ρ̃α(y1,y2). With this description in mind, we shall say that ρ̃α is a square
rotation of R2 with center at (0,0) and through the angle α π

2 . It follows that R′
α is a

square rotation of I2 about ( 1
2 , 1

2 ) and through the angle α π
2 ; therefore, R′

α induces
a map

Rα : ΣΣSn−1 −→ ΣΣSn−1

(∀s∧ t ∧ x ∈ ΣΣSn−1) Rα(s∧ t ∧ x) = R′
α(s∧ t)∧ x.

The homotopy
F : Σ 2Sn−1× I −→ Σ 2Sn−1 ∨Σ2Sn−1

that we seek is the following composition:

(∀u ∈ I) F(−,u) = (R−u ∨R−u){h(Σνn)}Ru. �

(VI.3.6) Remark. Notice that by iteration

νn+1 ∼ (hΣ)nν1.

We recall that the symbol ΩY indicates the space of paths of a based space (Y,y0)
(see p. 32).

(VI.3.7) Theorem. For every n ≥ 2 and every (Y,y0) ∈ Top∗, the groups πn(Y,y0)
and πn−1(ΩY,cy0) are isomorphic.

Proof. We know that every based map

f : Sn ∼= ΣSn−1 → Y

has an adjoint map
f : Sn−1 → ΩY

such that, for every x ∈ Sn−1 and every t ∈ I,

{ f (x)}(t) = f (t ∧ x).

In Sect. I.2, we have seen that the function

Φ : M∗(ΣX ,Y ) → M∗(X ,ΩY ) , f 
→ f
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is a bijection for every pair of based spaces X and Y ; this result extends itself to the
sets of homotopy classes (see Exercise 3 of Sect. I.2): the corresponding function

[Φ] : [ΣX ,Y ]∗ → [X ,ΩY ]∗

is a bijection. We need then to prove that the bijection of sets

[Φ] : πn(Y,y0) → πn−1(ΩY,cy0)

is a group homomorphism; in other words, we must prove that

[Φ]([ f ]
νn× [g]) = [ f ]

νn−1× [g]

for any [ f ], [g] ∈ πn(Y,y0). This means that we must prove that the adjoint of σ( f ∨
g)νn, namely, σ( f ∨g)νn, is homotopic to σ( f ∨g)νn−1. We now have on the one
hand that

σ( f ∨g)νn ∼ σ( f ∨g)hΣνn−1

Lemma (VI.3.5); on the other hand, we see that

σ( f ∨g)hΣνn−1(t ∧ s∧ x) = {σ( f ∨g)νn−1}(s∧ x)(t)

for every t ∧ s∧ x ∈ Σ2Sn−2. �

A based space (Y,y0) is called an H-space if there exists a “multiplication”

μY : Y ×Y −→ Y

such that the maps
μY ι , σ : Y ∨Y −→ Y

are homotopic. For instance, the space of paths ΩY is an H-space. In fact, we define

μΩY : ΩY ×ΩY −→ ΩY

as follows:
(∀(α,β ) ∈ ΩY ×ΩY )(∀t ∈ I) μΩY (α,β )(t) =

{
α(2t) 0 ≤ t ≤ 1

2
β (2t −1) 1

2 ≤ t ≤ 1.

For proving that μΩY is a multiplication, it is enough to consider the constant loop
cy0 at the base point y0 and construct the homotopy

H : (ΩY ∨ΩY )× I −→ ΩY,

defined by

H((α,cy0),s)(t) =
{

α( 2t
s+1) 0 ≤ t ≤ s+1

2
y0

s+1
2 ≤ t ≤ 1,
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and

H((cy0 ,β ),s)(t) =
{

y0 0 ≤ t ≤ 1−s
2

β ( 2t+s−1
s+1 ) 1−s

2 ≤ t ≤ 1.

(VI.3.8) Theorem. Let (Y,y0) be a given H-space; then, for every n ≥ 1, the
homotopy group πn(Y,y0) is Abelian.

Proof. Due to the definitions of multiplication in Y and comultiplication in Sn, and
also to [cy0 ] being the identity element of πn(Y,y0), the homotopies

f ∼ σ( f ∨ cy0)νn ∼ μY ( f × cy0)Δ = f ′

g ∼ σ(cy0 ∨g)νn ∼ μY (cy0 ×g)Δ = g′

hold true for every f ,g ∈ Top∗(Sn,Y ); therefore,

σ( f ∨g)νn ∼ σ( f ′ ∨g′)νn ∼ μY ( f ′ ×g′)Δ
σ(g∨ f )νn ∼ σ(g′ ∨ f ′)νn ∼ μY (g′ × f ′)Δ .

However, for every x ∈ Sn, either f ′(x) or g′(x) must equal y0 and so, ( f ′ ×g′)Δ is
a map from Sn to Y ∨Y ; consequently, we have the homotopies

μY ( f ′ ×g′)Δ ∼ σ( f ′ ×g′)Δ
μY (g′ × f ′)Δ ∼ σ(g′ × f ′)Δ .

We end this proof by observing that

σ( f ′ ×g′)Δ = σ(g′ × f ′)Δ . �

(VI.3.9) Theorem. For every n ≥ 2 and every (Y,y0) ∈ Top∗, πn(Y,y0) is Abelian.

Proof. It is a consequence of Theorems (VI.3.7), (VI.3.8), and of the fact that ΩY
is an H-space. �

(VI.3.10) Theorem. For every n ≥ 2,

πn : Top∗ −→ Ab

is a covariant functor.

Proof. A based map k : (Y,y0) −→ (X ,x0) induces a group homomorphism

πn(k) : πn(Y,y0) −→ πn(X ,x0)

as follows: for every [ f ] ∈ πn(Y,y0),

πn(k)([ f ]) := [k f ].

We must use the fact that σ(k∨ k) = kσ . �



VI.3 Homotopy Groups 221

VI.3.1 Action of the Fundamental Group on the Higher
Homotopy Groups

Like the fundamental group, the higher homotopy groups depend on the choice of a
base point. In fact, in Sect. VI.1 we have proved that a path λ : I → Y between two
points y0 and y1 of Y defines an isomorphism

φλ : π1(Y,y0) −→ π1(Y,y1)

as follows: for every [ f ] ∈ π1(Y,y0),

φλ ([ f ]) := [λ−1 ∗ ( f ∗λ )].

When λ is a closed path at y0, that is to say, a loop of Y with base at y0, we have an
isomorphism from π1(Y,y0) onto itself and this defines an action

φ : π1(Y,y0)×π1(Y,y0) −→ π1(Y,y0)

given by the conjugation:

(∀[ f ], [g] ∈ π1(Y,y0)) φ([ f ], [g]) = [ f ]−1 ν× [g]
ν× [ f ].

For the higher homotopy groups, we avail ourselves of the Homotopy Extension
Property for polyhedra. Let λ be a path from y0 to y1 in Y . We identify Sn with the
polyhedron | •σn+1| and suppose that the base point e0 of Sn is identified with a vertex
of | •σn+1|. By the Homotopy Extension Property, applied to the pair of polyhedra
(| •σn+1|,e0), the function f and the path λ give rise to a homotopy (not necessarily
unique)

F : | •σn+1|× I → Y

through the diagram

e0 ×{0} ��

��

e0 × I

�� λ

��

| •σn+1|×{0} ��

f
��

| •σn+1|× I

F

		��
��

��
��

��
��

�

Y
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Let f := F(−,1). Note that the maps f and f are homotopic to each other by means
of a free homotopy (actually, the restriction of F to e0× I coincides with the path λ );
moreover, f (e0) = y1. We thus define the relation

φn
λ : πn(Y,y0) −→ πn(Y,y1)

with the condition φλ ([ f ]) = [ f ].

(VI.3.11) Theorem. The relation φn
λ defined by the path λ is a group isomorphism

such that:

1. If μ : I →Y is a path from y0 to y1 homotopic rel∂ I to the path λ , then φn
μ = φn

λ .
2. The constant path cy0 at y0 induces the identity isomorphism

φ n
cy0

: πn(Y,y0) → πn(Y,y0).

3. If η : I → Y is a path from y1 to y2 ∈Y , then

φn
λ∗η = φ n

η φ n
λ .

Proof. We have not yet established whether φn
λ is well defined; this will follow from

the proof of 1. Let
G : | •σn+1|× I → Y

be a homotopy induced by f and μ , in other words, such that

G(−,0) = f and G(e0,t) = μ(t).

We define g = G(−,1) and note that the composite homotopy

H = F−1 ∗G : | •σn+1|× I −→ Y

is a free homotopy from f to g, that may be transformed into a based homotopy, as
follows. From the condition μ ∼ λ rel∂ I, we obtain a based homotopy

K : I × I −→ Y

such that K(−,0) = μ−1 ∗λ and K(−,1) = cy1 . Note that the restriction H|e0 × I
coincides with the closed path μ−1 ∗λ . We consider the polyhedra

M = | •σn+1|× I

and
L = | •σn+1|×{0}∪ e0× I∪| •σn+1|×{1};

since L is a subpolyhedron of M, the Homotopy Extension Property holds for the
pair (M,L) and, therefore, there exists a retraction

r : M× I −→ M×{0}∪L× I.
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We now construct the following maps:

F : (| •σn+1|×{0})× I → Y

and
G : (| •σn+1|×{1})× I → Y

such that, for every x ∈ | •σn+1| and every t ∈ I,

F(x,0,t) = f (x) and G(x,1,t) = g(x).

Note that

F(e0,0,t) = G(e0,1,t) = y1.

Let

H : M×{0}∪L× I −→ Y

be the map defined by the union of the maps H∪(F∪K∪G) (note that the restriction
of H to L×{0} coincides with f ∪μ−1 ∗λ ∪g); we now consider the homotopy

θ : M× I
r �� M×{0}∪L× I

H �� Y

in other words, the function defined by the commutative diagram

L×{0} ��

��

L× I

�� H





M×{0} ��

H
��

M× I

θ

���
��

��
��

��
��

�

Y

The homotopy
H̃ = θ(−,−,1) : | •σn+1|× I → Y

is a free homotopy from f to g. Hence, [ f ] = [g] ∈ πn(Y,y1) and thus, by setting
μ = λ , we see that φn

λ ([ f ]) does not depend on the choices of f , the representative of
the class [ f ], or the homotopy F with the required properties. We have then proved
that φn

λ is a (well defined) function that satisfies property 1 stated in the theorem.
We leave the proof of properties 2 and 3 to the reader (anyway, the results follow

easily from the definitions). A consequence of properties 1, 2, and 3 is that φ n
λ is

injective and surjective.
We now prove that φn

λ is a group homomorphism. Let [ f ], [g]∈ πn(Y,y0) be given
arbitrarily and let

F,G : Sn × I → Y
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be two homotopies such that F(−,0) = f , G(−,0) = g and, for every t ∈ I, the
equality F(e0,t) = G(e0,t) = λ (t) holds; besides, let f = F(−,1) and g = G(−,1).
We must prove that

φn
λ ([ f ]

νn× [g]) = φn
λ ([ f ])

νn× φn
λ ([g])

that is to say
[σ( f ∨g)νn] = [σ( f ∨g)νn]

with σ( f ∨g)νn = K(−,1); here

K : Sn × I −→ Y

is any homotopy such that K(−,0) = σ( f ∨g)νn and K(e0,t) = λ (t), for every t ∈ I.
We choose

K := σ(F ∨G)(νn ×1I) : Sn × I −→ Y ;

in this case, a simple calculation shows that

(∀t ∧ x ∈ Sn) K(t ∧ x,1) = σ( f ∨g)νn(t ∧ x)

and so φn
λ is a homomorphism. �

The following result is a direct consequence of the previous theorem.

(VI.3.12) Corollary. For every closed loop at y0, the function

φn
λ : πn(Y,y0) −→ πn(Y,y0)

is an automorphism of πn(Y,y0), which depends only on the class of λ .

We say that the fundamental group π1(Y,y0) acts on πn(Y,y0); as we have already
remarked, when n = 1, this action is achieved by means of inner automorphisms.
Suppose Y to be path-connected; then the set of orbits

πn(Y,y0)/π1(Y,y0),

induced by the action of π1(Y,y0) on πn(Y,y0), is in relation with the set of free
homotopy classes [Sn,Y ]; actually, we have the following

(VI.3.13) Theorem. Let (Y,y0) be a path-connected based space. Then there exists
a bijection

φ : πn(Y,y0)/π1(Y,y0) −→ [Sn,Y ].

We do not prove this theorem here; the reader, who wishes to read a proof of this
result, is asked to seek Corollary 7.1.3 in [26].

Let us suppose Y to be simply connected, that is to say, π1(Y,y0) = 0; any loop
of Y with base at y0 is homotopic to the constant loop cy0 ; thus, by part 2 of
Theorem (VI.3.11), φn

λ is the identity automorphism of πn(Y,y0) and consequently

πn(Y,y0) ≡ [Sn,Y ].



VI.3 Homotopy Groups 225

The following definition is important to Sect. VI.4.

(VI.3.14) Definition. A path-connected space Y is n-simple if, for a given y0 ∈ Y ,
the action of π1(Y,y0) on πn(Y,y0) is trivial; in other words, if φ n

λ is the identity
isomorphism, for every loop with base at y0. This happens, for instance, if Y is
simply connected, that is to say, if π1(Y,y0) ∼= 0. Therefore, the n-sphere Sn is
n-simple. In other words, Y is n-simple if, for every pair of points y0 and y1 of
Y , πn(Y,y0) ∼= πn(Y,y1), and this isomorphism does not depend on the choice of the
path from y0 to y1.

VI.3.2 On the Homotopy Groups of Spheres

We know that spheres have a very simple triangulation; in fact, the n-dimensional
sphere is homeomorphic to the polyhedron | •σn+1|. This gives us an easy way to
prove that the fundamental group of S1 is isomorphic to Z and that π1(S2,e0) ∼= 0
(see Sect. VI.1). We now prove that the “lower groups” of the spheres are trivial,
that is to say,

(VI.3.15) Theorem. For every n ≥ 2 and every r with 1 ≤ r ≤ n−1,

πr(Sn,e0) ∼= 0.

Proof. Let us choose [ f ] ∈ πr(Sn,e0) arbitrarily; we must prove that the map f is
homotopic to the constant map ce0 . Let K = (X ,Φ) and L = (Y,Ψ ) be two simpli-
cial complexes such that |K| ∼= Sr and |L| ∼= Sn. By the Simplicial Approximation
Theorem, there exists a simplicial function g : K(t) → L, of a suitable barycentric
subdivision of K such that |g| ∼ f F , where F : |K(t)| → |K| is the homeomorphism
defined in Sect. III.1. Let us suppose that |K| and |K(t)| are identified with Sr; in
addition, let us identify L with Sn and let us assume that |g| and f are maps from
Sr to Sn; hence, notwithstanding the homeomorphisms, we have that |g| ∼ f . Yet,
since dimK(t) = r and r < n, the simplicial function g cannot be surjective and so

|g| : Sr −→ Sn

is not surjective. Let p be a point of Sn that does not belong to the image of |g|;
hence,

|g| : Sr −→ Sn
�{p} ∼= Rn

(the homeomorphism φ : Sn
� {p} → Rn is a stereographic projection). Now, let

c : Sr → Rn be the constant map at the point φ(e0); from the identification Sn
�

{p} ≡ Rn, we conclude that |g| and c are homotopic, with the homotopy given by
the map

H : Sr × I −→Rn

(∀(x,t) ∈ Sr × I) H(x,t) = (1− t)|g|(x)+ tc.

We may then say that f is homotopic to a constant function. �
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(VI.3.16) Remark. Let S0 be the 0-dimensional sphere, that is to say, the pair
{−1,1} of points of R with the discrete topology and the base point (1). For any
based space (Y,y0), let π0(Y ) be the set [S0,Y ]∗; it is easily seen that, if Y is path-
connected, then π0(Y ) = 0: in fact, two based maps f ,g : S0 → Y are always ho-
motopic, the homotopy being given by a path that joins f (1) and g(1); thus, there
exists only one homotopy class in [S0,Y ]∗, that of the constant map.

In particular, since for each n ≥ 1, Sn is path-connected, π0(Sn) = 0.

We know that π1(S1,e0) ∼= Z; what can we tell about the groups πn(Sn,e0)? We
have the following result:

(VI.3.17) Theorem. For every n ≥ 1, πn(Sn,e0) ∼= Z.

Before proving the theorem, we recall that the degree of a map f : Sn → Sn (see
p. 121) is homotopy invariant and so, it induces a function

d : πn(Sn) −→ Z.

(VI.3.18) Lemma. For every n ≥ 1, the degree function

d : πn(Sn,e0) −→Z

is a group isomorphism.

Proof. Let [ f ], [g] ∈ πn(Sn,e0) be given arbitrarily; we wish to determine the degree
of the function

σ( f ∨g)νn : Sn −→ Sn.

First of all we note that, by Theorem (III.4.3),

Hn(Sn ∨Sn;Z) ∼= Hn(Sn;Z)⊕Hn(Sn;Z);

we now identify the components {e0}× Sn and Sn ×{e0} of Sn ∨ Sn with Sn (in
other words, we interpret Sn ∨ Sn as a “union” of two spheres Sn) and consider the
“projections”

p1 : Sn ∨Sn → Sn and p2 : Sn ∨Sn → Sn;

it is easy to verify that p1νn ∼ 1Sn and p2νn ∼ 1Sn ; hence,

Hn(νn) : Hn(Sn,Z) −→ Hn(Sn;Z)⊕Hn(Sn;Z)

is such that Hn(νn)({z}) = {z}⊕{z}. Moreover,

Hn(σ) : Hn(Sn;Z)⊕Hn(Sn;Z) −→ Hn(Sn;Z) , x⊕ y 
→ x + y

for every x⊕ y ∈ Hn(Sn;Z)⊕Hn(Sn;Z). Therefore,

Hn(σ( f ∨g)νn)({z}) = Hn(σ)(Hn( f )({z})⊕Hn(g)({z}))
= Hn( f )({z})+ Hn(g)({z}) = d( f )+ d(g).
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Since the map 1Sn : Sn → Sn has obviously degree 1, the degree function that we
have defined is surjective.

It must be proved that the degree function is injective; we do not prove it here,
but the reader can find the proof in the work of H. Whitney [34]. However, Theorem
(VI.3.17) may also be proved in different ways (see, for instance, Sect. V.3 of [26]).

�

Lemma (VI.3.18) proves Theorem (VI.3.17).
So far, not all homotopy groups of the spheres are known; yet, we have two

important results due to Jean–Pierre Serre [31] and based on difficult techniques of
homological algebra:

(VI.3.19) Theorem. If n is odd and m �= n, then πm(Sn,e0) is a finite group.

(VI.3.20) Theorem. If n is even, then

1. πm(Sn,e0) is finite if m �= n and m �= 2n−1.
2. π2n−1(Sn,e0) is the direct sum of an infinite cyclic group and a finite group

(eventually trivial).

VI.3.3 Another Approach to Homotopy Groups

In the literature, the homotopy groups are also described in a different way but
equivalent to ours; sometimes it is convenient to study the homotopy groups under
this other point of view. We begin our work with a lemma that is very important to
the development of our theme.

(VI.3.21) Lemma. Given two maps f ,g ∈ CTop((X ,A),(Y,B)) such that f |A =
g|A, let

H : (X × I,A× I)−→ (Y,B)

be a homotopy relative to A from f to g. Then, there exists a based homotopy

H : X/A× I −→ Y/B

between the maps
f ,g : X/A −→ Y/B

induced by f and g.

Proof. The quotient space X/A is given by the following pushout

A
iA ��

cA

��

X

qX

��

∗ �� X/A
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where iA is the inclusion map and qX : X → X/A is a quotient map. By Corollary
(I.1.40), also the following diagram is a pushout:

A× I
iA ×1I ��

��

X × I

qX ×1I

��

∗× I �� X/A× I

Let qY : Y →Y/B be the quotient map and c : ∗×I →Y/B be the constant map at
the base point of Y/B. Since (qY H)(iA×1I) = c(cA×1I), by the Universal Property
of Pushouts, there exists a homotopy

H : X/A× I −→ Y/B

with the required properties. �

We now choose a special pair: for every n ≥ 1, (In,∂ In) is the pair defined by the
n-dimensional hypercube and its boundary ∂ In. Given any map

f ∈CTop((In,∂ In),(Y,y0)),

we consider the following pushout diagram

∂ In ι ��

q

��

In

q

�� f

��

∗ ι ��

��

Sn

f


��

��
��

��
��

�

Y

where ι is the inclusion map and q is a quotient map qIn followed by the homeo-
morphism In/∂ In ∼= Sn. By the preceding lemma, if

g ∈CTop((In,∂ In),(Y,y0))

is homotopic to f rel∂ In, then f and g are homotopic through a based homotopy. Let

[(In,∂ In),(Y,y0)]rel∂ In := CTop((In,∂ In),(Y,y0))/rel∂ In

be the set of the homotopy classes rel∂ In of maps of pairs from (In,∂ In) to (Y,y0).
The following result is easily obtained from our preceding remarks.
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(VI.3.22) Theorem. The function of sets

ψ : [(In,∂ In),(Y,y0)]rel∂ In −→ πn(Y,y0)

[ f ]rel∂ In 
→ [ f ]

is a bijection.

We now define the operation

rel∂ In

× : [(In,∂ In),(Y,y0)]rel∂ In × [(In,∂ In),(Y,y0)]rel∂ In −→

−→ [(In,∂ In),(Y,y0)]rel∂ In

as follows: let [ f ]rel∂ In and [g]rel∂ In be any two elements in [(In,∂ In),(Y,y0)]rel∂ In ;
let us suppose that these two classes are represented, respectively, by the functions
f and g; we now consider the function

f ∗g : (In,∂ In) → (Y,y0)

such that

( f ∗g)(x1, . . . ,xn) =
{

f (2x1, . . . ,xn−1,xn) 0 ≤ x1 ≤ 1
2

g(2x1 −1, . . . ,xn−1,xn) 1
2 ≤ x1 ≤ 1.

Note that
(∀(x1, . . . ,xn) ∈ ∂ In) ( f ∗g)(x1, . . . ,xn) = y0.

Thus, by definition,

[ f ]rel∂ In
rel∂ In

× [g]rel∂ In := [ f ∗g]rel∂ In .

This operation is well defined, in other words, it does not depend on the element
representing the class.

(VI.3.23) Theorem. The set [(In,∂ In),(Y,y0)]rel∂ In with the operation
rel∂ In

× is a
group isomorphic to πn(Y,y0).

Proof. By Theorem (VI.3.22), it is sufficient to prove that the function

ψ : [(In,∂ In),(Y,y0)]rel∂ In −→ πn(Y,y0)

keeps the operations. Let

f ,g : (In,∂ In) −→ (Y,y0)

be two given functions; let us break them down into functions through Sn, that is
to say,
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f : In q
�� Sn

f
�� Y

g : In q
�� Sn

g
�� Y.

On the other hand, we define the map θ : In → In ∨ In such that, for every

(x1, . . . ,xn) ∈ In ,

we have

θ(x1, . . . ,xn) =
{

(∗,(2x1, . . . ,xn)) 0 ≤ x1 ≤ 1
2

((2x1 −1, . . . ,xn),∗) 1
2 ≤ x1 ≤ 1;

we then notice that the following diagram is commutative:

In
q

��

θ
��

Sn ≡ ΣSn−1

νn

��

In ∨ In
q∨q

�� Sn ∨Sn.

By directly applying the definitions, we have

(σ( f ∨g)νn)q = σ( f ∨g)(q∨q)θ =
= σ( f ∨g)θ = f ∗g .�

Exercises

1. Let X be any based space. Prove that the suspension ΣX of X is a space with an
associative comultiplication.

2. Prove that for every (X ,x0),(Y,y0) ∈ Top∗, the set of based homotopy classes
[ΣX ,ΩY ]∗ is an Abelian group.

3. Let f : A → B and g : Y → B be two given maps; take the space

X = {(a,y) ∈ A×Y | f (a) = g(y)}

with the projections pr1 : X → A and pr2 : X → B. Prove that f pr1 = gpr2. Fur-
thermore, prove that, for every topological space Z and any maps h : Z → Y and
k : Z → A such that f k = gh, there exists a unique map � : Z → X such that pr1� =
pr2�. This is an example of pullback, the pushout dual in Top, which was defined in
Sect. I.2. This situation is depicted by the following commutative diagram:
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Z

k

��

�


��

��
��

��
��

�
h

��
X

f̄
��

ḡ

��

Y

g

��

A
f

�� B

4. Let f ∈ Top∗((A,a0),(B,b0)) be a given map; construct the space of based func-
tions

PB = {λ : I → B | λ (0) = b0}
(space of paths beginning at b0) and the map

g : PB −→ B , λ 
→ λ (1).

Then, construct the pullback diagram determined by f and g to obtain the space

Cf = {(a,λ ) ∈ A×PB | f (a) = g(λ )}

with the maps f̄ and ḡ. Prove that for every n the sequence of homotopy groups

πn(Cf ,∗)
πn(ḡ)

�� πn(A,a0)
πn( f )

�� πn(B,b0)

is exact in πn(A,a0).

5. A map f : A → B is a fibration if,

(∀X ∈ Top)(∀g ∈ Top(X ,A))(∀H ∈ Top(X × I,B)) | H i0 = f g,

there exists G : X×I →A such that G(−,0)= g and f G = H. Prove that a projection
map f : X ×Y → X is a fibration. Moreover, prove that the map p : PB → B of
Exercise 4 above is a fibration.

6. Prove that, if the map f : (A,a0)→ (B,b0) of Exercise 4 above is a fibration, then
the space Cf is of the same homotopy type as the fiber f−1(b0) over b0.

7. Prove that, if f : (A,a0)→ (B,b0) is a fibration, there exists an (left) infinite exact
sequence of homotopy groups

. . . �� πn( f−1(b0),a0) �� πn(A,a0) �� πn(B,b0)

�� πn−1( f−1(b0),a0) �� πn−1(A,a0) �� . . .
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8. Prove that the function p : R→ S1 defined by

(∀t ∈R) p(t) = e2πit

is a fibration with fiber Z over every point of S1; with this result and the previous
exercise, prove that πn(S1) ∼= 0, for every n ≥ 2.

9. Prove that, for every n ≥ 1 and for every (Y,y0) ∈ Top∗, the function

Σ∗ : πn(Y,y0) −→ πn+1(ΣY, [y0])

defined by

(∀[ f ] ∈ πn(Y,y0)) Σ∗([ f ]) = [Σ f ]

is a group homomorphism.

VI.4 Obstruction Theory

In this last section, we put together the homotopy groups and the cohomology with
coefficients in a homotopy group to study the map extension problem. More pre-
cisely, let |K| be a polyhedron, |L| a subpolyhedron of |K|, and W a topological
space. We intend to study under what conditions a map f : |L| →W can be extended
to a map g : |K| → W , in other words, when it is possible to find f : |K| →W such
that the diagram

|L|

ι
��

f


��
��

��
��

��
�

|K|
f

�� W

commutes. Here, ι is the inclusion map. We answer this question in the case where
W is n-simple, with 1 ≤ n ≤ dimK − 1 (see Definition (VI.3.14)). Note that the
homotopy groups of W do not depend on the choice of a base point; then, we forgo
the base point and just write πn(W ) for such groups.

Let us suppose that K = (X ,Φ) and L = (Y,Ψ); since L is a subcomplex of K, it
follows that Y ⊂ X and Ψ ⊂ Φ . We start by giving an orientation to K (and conse-
quently also to L) so that we are able to compute their homology and cohomology;
let Kn be the n-dimensional subcomplex of K (in other words, the union of all sim-
plexes whose dimension is less than or equal to n). Suppose that we have extended
f to a map f n : |Kn ∪L| →W . We note that, for every (n + 1)-simplex σ of K, the
simplicial complex

•σ is a subcomplex of Kn ∪L. Let f n
σ be the restriction of f n to

| •σ |; since | •σ | ∼= Sn, we may regard f n
σ as a map from Sn to W ; then this map defines

an element [ f n
σ ] ∈ πn(W ). By linearity, we define the homomorphism
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cn+1
f : Cn+1(K;Z) −→ πn(W )

that takes each ∑i miσ i ∈ Cn+1(K;Z) into ∑i mi[ f n
σ i ]. We notice that if σ ∈Ψ , then

by Lemma (VI.3.4), [ f n
σ ] = 0: in fact, f is defined in |L| and f n can be therefore

extended to |σn+1|. This allows us to conclude that cn+1
f ∈ Cn+1(K,L;πn(W )), that

is to say, cn+1
f is a cochain.

The next lemma is useful for proving that cn+1
f is a cocycle.

(VI.4.1) Lemma. Let W be an n-simple space and Sn+1 be the sphere viewed as an
(n + 1)-manifold, which is triangulated by a simplicial complex K = (X ,Φ), as in
Theorem (V.1.5); let σ i, with i = 1,2, . . . ,s, be the (n+1)-simplexes of K; finally, let
Kn = (X ,Φn) be the simplicial n-dimensional subcomplex of K, where

Φn = {σ ∈ Φ | dimσ ≤ n}.

Then, for any map f : |Kn| →W,

s

∑
i=1

[ f i
σ ] = 0.

Proof. By Theorem (V.1.5), every n-simplex of K is a face of exactly two (n + 1)-
simplexes; besides, by Definition (V.3.1), each n-simplex inherits opposite orienta-
tions from its two adjacent (n + 1)-simplexes. The spaces | •σ i| are homeomorphic
to the sphere Sn whose elements may be considered as t ∧x, with x ∈ Sn−1; this way
of viewing the elements of Sn gives us an idea of the orientation of the sphere; in
other words, if we take the elements in the format t ∧ x, we travel the sphere with a
“positive” orientation but, if we take them in the format (1− t)∧x, we travel Sn with
the opposite orientation, that is to say, we give Sn a “negative” orientation. With this
in mind, we observe that the function f is applied twice on each | •σ i|: once, viewed
as the function f (t ∧ x) and once, as the function f ((1− t)∧ x); on the other hand,

the product by
νn× of the homotopy classes of these functions is the trivial class of

πn(W ) (see Theorem (VI.3.3)).
We note that the base point of each homotopy class is irrelevant because W is

n-simple. �

(VI.4.2) Theorem. The cochain cn+1
f is a cocycle.

Proof. It is necessary to prove that, for every (n + 2)-simplex σn+2 of Kn ∪L,

dn+1(cn+1
f )(σn+2) = cn+1

f (dn+2(σn+2)) = 0.
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This derives directly from the preceding lemma when we interpret Sn+1 as | •σn+2|
and, writing as usual σn+2 = {x0, . . . ,xn+1}, if we consider the orientation of its
(n + 1)-simplexes given by

(−1)i{x0, . . . , x̂i, . . . ,xn+1}
(see the beginning of Sect. II.2.3). �

The cocycles cn+1
f are of particular interest, as we may realize from what follows.

(VI.4.3) Theorem. An extension f n : |Kn∪L| →W of f : |L| →W can be extended
to |Kn+1∪L| if and only if cn+1

f : Cn+1(K;Z)→ πn(W ) is the trivial homomorphism.

Proof. The map f n can be extended to |Kn+1 ∪L| if and only if f n can be extended
to |σn+1|, for every σn+1 of Kn+1 ∪L (see Lemma (VI.3.4)); therefore, f n can be
extended to |Kn+1 ∪L| if and only if cn+1

f = 0. �

Somehow, cn+1
f indicates whether there are obstructions to the extension of f n;

this is why cn+1
f is known as obstruction cocycle . We now go over some examples

of possible applications of Theorem (VI.4.3).

1. Let a polyhedron |K| with dimension n ≥ 2 be given and let |L| be a subpoly-
hedron; if, for every 0 ≤ i ≤ n−1, πi(Y ) ∼= 0, then every map f : |L| → Y can
be extended to a map f : |K| → Y . For instance, if Y = S2, |K| is the torus
T 2 with the triangulation shown in Sect. III.5.1 and |L| is the geometric real-
ization of a generating 1-cycle of the homology of T 2 (for example, L is the
simplicial complex with vertices {0}, {3}, {4} and 1-simplexes {0,3}, {0,4},
{3,4}), then every map f : |L| → S2 can be extended to a map f : T 2 → S2.
The construction of f is easy: we choose a point of yi ∈ S2 for each vertex of
K distinct from {0}, {3}, {4} (for these, we have y0 = f ({0}), y3 = f ({3}),
and y4 = f ({4})); then, since S2 is path-connected, we choose a path of S2 for
each 1-simplex of K; in this way, we extend f to f 1 : |K1 ∪L| → S2; finally, we
apply Theorem (VI.4.3) to extend f 1 to |K|.

2. (VI.4.4) Theorem. Let K be a simplicial complex of dimension n ≥ 2 and
Y a space such that πi(Y ) ∼= 0, for every 0 ≤ i ≤ n. Then, any two maps
f ,g : |K| → Y are homotopic.

Proof. Let f ,g : |K| → Y be two maps given arbitrarily. The product |K|× I is
an (n+1)-dimensional polyhedron; let |L|= |K|×∂ I and let h : |L| →Y be the
map such that

h| |K|×{0}= f and h| |K|×{1}= g.

For each vertex {x} ∈ K we choose a path hx : {x}× I → Y (this is possible
because Y is path-connected) and, in doing so, we obtain an extension h1 of h
to |K1 ∪L|. By Theorem (VI.4.3), we have an extension of h1 to |K2 ∪L|, and
so on, arriving to a homotopy

H : |K|× I → Y

from f to g. �
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3. (VI.4.5) Theorem. Let K be a simplicial complex of dimension n ≥ 2. Then,
|K| is contractible if and only if πi(|K|) ∼= 0, for every 0 ≤ i ≤ n.

Proof. If |K| is contractible, the statement is evident. If |K| is n-simple and
πi(|K|) ∼= 0 for every 0 ≤ i ≤ n, then, by the preceding result, the identity map
1|K| and any constant map from |K| onto itself are homotopic. �

The condition cn+1
f = 0 is unfortunately too strong for the more general cases,

even if it works well in cases as the ones previously mentioned. The results obtained
when the obstruction cocycles are cohomologous to 0 are much more interesting.
Let us consider these cases. For the next definition (when necessary), we consider
the homotopy group πn(W ) with the structure given by Theorem (VI.3.23). Let
f ,g : |Kn ∪L| → W be two maps whose restrictions to |Kn−1 ∪L| coincide; in ad-
dition, let fi and gi be the restrictions of f and g to |σ i

n|, the geometric realization
of the simplicial complex generated by an n-simplex σ i

n of Kn ∪L. We identify the
space |σ i

n| with the hypercube In and interpret fi and gi as maps In → W . Since fi

and gi coincide at | •σ i
n| ≡ ∂ In, the restriction of the map

fi ∗ g−1
i (x1, . . . ,xn) =

{
fi(2x1, . . . ,xn) 0 ≤ x1 ≤ 1

2
gi((2−2x1), . . . ,xn) 1

2 ≤ x1 ≤ 1

to ∂ In is homotopic to a constant map, and so

fi ∗g−1
i : (In,∂ In) −→ (W,w0)

for a suitable w0. We define

δ n( f ,g)(σ i
n) := [ fi ∗g−1

i ]rel∂ In ∈ πn(W ) .

We point out to the reader that had σ i
n been in L, then

δ n( f ,g)(σ i
n) = 0.

We have thus defined a homomorphism

δ n( f ,g) : Cn(K;Z) −→ πn(W )

δ n( f ,g){Σimiσ i
n} := Σimi[ fi ∗g−1

i ]rel∂ In ;

δ n( f ,g) ∈Cn(K;πn(W )) is the difference n-cochain of f and g.

(VI.4.6) Theorem. If the maps f ,g,h : |Kn ∪L| →W coincide in |Kn−1 ∪L|, then

1. δ n(g, f ) = −δ n( f ,g)
2. δ n( f , f ) = 0
3. δ n( f ,g)+ δ n(g,h) = δ n( f ,h)
4. dn(δ n( f ,g)) = cn+1

f − cn+1
g
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Proof. The first three assertions are direct consequences of the definition of differ-
ence cochain. For proving the 4th one, we take any (n + 1)-simplex

σ = {x0,x1, . . . ,xn+1}
of K and let fσ (respectively, gσ ) be the restriction of f (respectively, g) to | •σ |; we
intend to prove that

{(cn+1
f − cn+1

g )−dn(δ n( f ,g))}(σn+1) = 0

that is to say
[ fσ ]− [gσ ]− (Σ n+1

i=0 (−1)iδ n( f ,g)(σ i)) = 0

where σ i = {x0,x1, . . . , x̂i, . . . ,xn+1}. To obtain this result, we identify Sn+1 with the
boundary of In+2 ∼= |σ |× I, that is to say,

Sn+1 = ∂ (|σ |× I) = |σ |×{0}∪ |σ|×{1}∪ (∪n+1
i=0 |σ i|× I);

after this, we define the map of

F : | •σ |×{0}∪ | •σ |×{1}∪ (∪i| •σ i|× I)→W

given by the union of maps

f : | •σ |×{0}→W,

g : | •σ |×{1}→W,

∪n+1
i=0 fi ∗g−1

i : (∪i|σ i|× I)→W

and finally, we apply Lemma (VI.4.1) to F . �

(VI.4.7) Remark. If g is a constant map, we conclude that

[ f | | •σ |] = Σn+1
i=0 [ f | |σ i|].

This is the so-called Homotopy Addition Theorem; it states that the (based) homo-
topy class of a map f : Sn →Y is the sum of the homotopy classes of the restrictions
of f to the geometric n-simplexes of the triangulation of the sphere. It is interest-
ing to note that the Homotopy Addition Theorem appeared (without proof) in the
literature for the first time in [35]; its first formal proof was written by S-J. Hu [20].

Part 4 of Theorem (VI.4.6) shows that two extensions to |Kn ∪ L| of a
map f : |Kn−1 ∪ L| → W have cohomologous (n + 1)-obstruction cocycles and,
therefore, these cocycles produce the same element of the cohomology group
Hn+1(K,L;πn(W )) (provided that W be n-simple). We now prove the converse of
this result.

(VI.4.8) Theorem. Let W be an n-simple space and f n : |Kn∪L| →W an extension
of f whose obstruction (n + 1)-cocycle cn+1

f is cohomologous to a cocycle zn+1 ∈
Cn+1(K,L;πn(W )). Then, there is an extension g : |Kn+1∪L| →W of the restriction
of f n to |Kn−1 ∪L| such that cn+1

g = zn+1.
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Proof. The hypothesis cn+1
f ∼ zn+1 points to the existence of an n-cochain

cn ∈Cn(K,L;πn(W )) such that

cn+1
f − zn+1 = dn(cn).

We construct g over each n-simplex σ i of Kn ∪L (we may suppose that σ i is not in
L, as indicated by Remark (II.4.8)) as follows. We suppose that cn(σ i) = [hi]rel∂ In ;
since

(|σ i|, | •σ i|) ∼= (In,∂ In),

we may view hi as a map

hi : (|σ i|, | •σ i|) → (W,w0),

for a suitable w0. On the other hand, the restriction of f n to |Kn−1 ∪L| is homotopic
to a constant map, and we note that

[ f n ∗ (hi ∗ f n)−1]rel∂ In = [hi]rel∂ In = cn(σ i).

In this way, we have constructed a map

gi = hi ∗ f n : (|σ i|, | •σ i|) → (W,w0)

whose homotopy class rel∂ In coincides with cn(σ i). By proceeding like this for
each n-simplex of Kn ∪L, we obtain an extension g : |Kn+1 ∪L| →W of the restric-
tion of f n to |Kn−1 ∪L| such that cn+1

g = zn+1. �

We finally prove the most important theorem of this section.

(VI.4.9) Theorem. Let an n-simple space W , a polyhedron |K| with one of its sub-
polyhedra |L|, and a map f : |L| →W be given; in addition, let f n−1 : |Kn−1∪L| →
W be an extension of f and suppose that f n−1 extends to |Kn ∪L|. Then, f n−1 can
be extended to |Kn+1 ∪L| if and only if cn+1

f is cohomologous to zero.

Proof. If f n−1 can be extended to |Kn+1∪L|, then f n−1 has an extension g : |Kn ∪L|
→ W that can be extended to |Kn+1 ∪L|; therefore, by Theorem (VI.4.3), we have
cn+1

g = 0. However, cn+1
f ∼ cn+1

g (see Theorem (VI.4.6)) and so cn+1
f ∼ 0.

Reciprocally, if cn+1
f ∼ 0, we conclude that there exists an extension g : |Kn ∪

L| → W of f n−1 such that cn+1
g = 0 (see Theorem (VI.4.8)). Hence, by Theorem

(VI.4.3), it is possible to extend g over the entire polyhedron Kn+1 ∪L|. �





References

1. J.W. Alexander – A proof of the invariance of certain constants of analysis situs, Trans. Am.
Math. Soc. 16 (1915), 148–154.

2. J.W. Alexander – On the chains of a complex and their duals, Proc. Natl. Acad. Sci. USA 21
(1935), 509–511.
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