From this it follows readily that the consistency of Z_c' is provable in Z_c . (Cf. Theorem IV, p. 260, of [2].)

BIBLIOGRAPHY

1. Hao Wang, The irreducibility of impredicative principles, Math. Ann. vol. 125 (1952) pp. 56-66.

2. ——, Truth definitions and consistency proofs, Trans. Amer. Math. Soc. vol. 73 (1952) pp. 243–275.

3. R. McNaughton, Review of [1], J. Symbolic Logic vol. 18 (1953) pp. 265-266.

4. L. Henkin, Completeness in the theory of types, J. Symbolic Logic vol. 15 (1950) pp. 81-91.

5. B. Rosser and Hao Wang, Non-standard models for formal logics, J. Symbolic Logic vol. 15 (1950) pp. 113-129.

6. A. Tarski, Der Wahrheitsbegriff in den formalisierten Sprachen, Studia Philosophica vol. 1 (1936) pp. 251-405.

7. W. V. Quine, Mathematical logic, New York, 1940.

8. A. Mostowski, On models of axiomatic systems, Fund. Math. vol. 39 (1952) pp. 133-158.

Illinois Institute of Technology

AN EXTENSION THEOREM FOR SOLUTIONS OF $d\omega = \Omega$

HARLEY FLANDERS

Let U and V be open sets in E_n such that $\overline{V} \subset U$ and U is connected and homologically trivial, i.e., all homology groups of U beyond the zero-dimensional case vanish. Let Ω be an exterior differential form of degree p on E_n with infinitely differentiable coefficients whose exterior derivative vanishes: $d\Omega = 0$. The well known converse to the Lemma of Poincaré asserts that $\Omega = d\omega$ where ω is an infinitely differentiable p-1 form on E_n . Let us suppose however that we are merely given a p-1 form α on U such that $d\alpha = \Omega$ on U. The question immediately arises as to whether it is possible to prolong α to all of E_n . The example $U = \{(x, y) | x > 0\}, \ \alpha = (xdy - ydx)/(x^2 + y^2), \ \Omega = 0$ shows us that the answer is negative. Nevertheless, there exists $a \ p-1$ form β on E_n such that $\beta = \alpha$ on V and $d\beta = \Omega$ on E_n .

To prove this, we shall take for granted the existence of an infinitely differentiable function f on E_n such that f=1 on V and f=0outside of a closed subset of U. We have the form ω on E_n such that $d\omega = \Omega$ on E_n and the form α on U such that $d\alpha = \Omega$ on U. Thus $d(\alpha - \omega) = 0$ on U and so it follows from the hypotheses on U and what is essentially de Rham's second theorem that $\alpha - \omega = d\lambda$ on U,

Presented to the Society, November 28, 1953; received by the editors August 31, 1953 and, in revised form, October 5, 1953.

HARLEY FLANDERS

where λ is an infinitely differentiable p-2 form on U.¹ One sets $\mu = f\lambda$ on U, $\mu = 0$ outside U so that μ is a p-2 form on E_n such that $d\mu = d(f\lambda) = d\lambda = \alpha - \omega$ on V. The form $\beta = \omega + d\mu$ solves the problem, for $d\beta = d\omega = \Omega$ on E_n and $\beta = \omega + (\alpha - \omega) = \alpha$ on V.

If any doubt remains about the case p = 1, it is quickly settled when one notes that $\alpha - \omega$ is a function and so $d(\alpha - \omega) = 0$ on U implies that $\alpha - \omega = c$, a constant, on U. Now $\beta = \omega + c$ is the solution.

This result and method of proof can be extended to multiply connected regions; we give a single instance:

Let Ω be a p-form on E_n such that $d\Omega = 0$ and suppose that α is a (p-1)-form on r > 0 $(r^2 = x_1^2 + \cdots + x_n^2)$ such that $d\alpha = \Omega$ on r > 0. Finally, suppose that

$$\lim_{\epsilon \to 0} \int_{r=\epsilon} \alpha = 0$$

in the case p=n. Then given any $\epsilon > 0$, there exists a (p-1)-form β on E_n such that $d\beta = \Omega$ on E_n and $\beta = \alpha$ on $r > \epsilon$.

THE UNIVERSITY OF CALIFORNIA, BERKELEY

¹ This form of de Rham's theorem is given in the paper of A. Weil, *Sur les théorèmes de de Rham*, Comment. Math. Helv. vol. 26 (1952). It is pointed out on p. 138 that in case U is convex, then an elementary proof is possible. Such a proof is given for the case in which U is a cell on p. 94 of the second edition of W. V. D. Hodge, *Harmonic integrals*.