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Discretizations of the Helmholtz, heat, and wave equations on uniform lattices are
considered in various space—time dimensions. The symmetry properties of these
finite-difference equations are determined and it is found that they retain the same
Lie symmetry algebras as their continuum limits. Solutions with definite transfor-
mation properties are obtained; identities and formulas for these functions are then
derived using the symmetry algebra. 95 American Institute of Physics.

I. INTRODUCTION

Finite-difference analysis has recently attracted wide interest, both in mathematics and phys-
ics. On the one hand, the advent of supercomputers and the development of efficient numerical
schemes have led to the discrete modeling of complex continuous systems. On the other hand,
genuine discrete physical systems defined on space—time lattices have been seen to possess rich
symmetry properties, that allow for their complete solvabiiity.

In this respect, the study of finite-difference equations is central in any development related to
the analysis of discrete systems. The theory underlying these equations can be established, at least
formally, in parallel to the one associated to differential equations. Nevertheless, little is known
actually, on the symmetry properties of difference equations.

The importance of symmetry techniques in the study of partial differential equations need not
be stressed They allow to systematically obtain and classify solutions, and provide at the same
time a deep connection with the theory of the special functions of mathematical physics. Indeed,
the relation between symmetries of second-order partial differential equations and their solutions
via separation of variables is one of the most useful and efficient tool for studying properties of
special function§®

A systematic study of the symmetry properties of linear finite-difference equations on uniform
lattices will be presented below. Though differential techniques are not available in the case of
difference equations, for linear equations at least, one can devise an algorithm that allows to
determine the symmetry operators. The striking outcome of our investigation is that these sym-
metry operators obey the same Lie algebra as their continuum counterparts. In other words, the
symmetry algebra is left unchanged by the process of discretization.

Notice that this result holds only in the case of finite-difference equations on uniform lattices.

A similar analysis of difference equations on exponential lattices has shown that generalized
algebraic structures, such as quantum algebras, are needed to describe their symmetry
properties’ ™12

Once the symmetries of a linear difference equation have been obtained, they can be used to
find solutions of the equations with definite transformation properties. These solutions turn out to
be expressible in terms of hypergeometric series: they appear to be lattice generalizations of many
classical special functions and polynomials. Properties and identities for these functions can then
be derived using the symmetry algebra.

After devoting a section to the notations and definitions that are used throughout the article,
we first examine in Sec. Il a discrete version of the two-dimensional Helmholtz equation. The
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Euclidean algebr#&(2) is seen to be the symmetry algebra of this equation. In the following two
sections lattice versions of the heat equation in two and three dimensions are, respectively, con-
sidered. The Schringer algebra is here seen to be the symmetry algebra of these equations.
Discrete versions of the wave equations in three and four dimensions are studied in Secs. VI and
VII. The Lie algebras s®) and s(4) emerge as the respective symmetry algebras. In each case,
solutions of the difference equations are constructed using techniques akin to the classical method
of separation of variables. Discrete analogs of the Gauss hypergeometric and Bessel functions, and
of the polynomials of Hermite, Laguerre, and Gegenbauer are thus found in this way. Finally, Sec.
VII comprises concluding comments and remarks.

II. NOTATIONS

We collect here a few formulas in finite difference analysis that will be used in the
sequef-3147
The shifted factoriala),, with « complex anch integer, is defined By

(a)p=a(a+1)(a+2) - (a+n—=1), n # 0,

(2.9
(a)o=1.
More generally, fom complex, one uses the equivalent definition in term$’ déinctions
(a)p=T()IT'(a+n). (2.2

The symbol(a),, satisfy many useful identities; we list those that shall be used in the folloWing:

(a)n+k=(@)n(atn)y, (2.33
. (— 1)k( a)n
(a)nfk—m, (2.3b
(=" 23
(a)—n—m. (2.309
K n!
(=Mi=(= D =7 (2.3d
It is customary to introduce two discrete versions of the derivatiftez
. 1
A;=—(T,—1), (2.439
(o
1 »
A, =;(1—TZ ), (2.4b
whereg is the lattice spacing, and, is the shift operator which acts as
T,f(z)=f(z+0) (2.5

on any function of the complex variakte Both A;” andA, reduce to the ordinary derivativédz
aso — 0. Further, notice thah, T,=A; and similarly, thatA; T, *=A_ . The following useful
relations are also readily verified

J. Math. Phys., Vol. 36, No. 12, December 1995

Downloaded-27-Jul-=2009-t0-194.225.238.135.-Redistribution-subject-to-AlP-license-or-copyright;=see-http://jmp.aip.org/jmp/copyright.jsp



7026 R. Floreanini and L. Vinet: Lie symmetries of finite-difference equations

z niz
NERER
g n g \o n—1
z z
zA;(—) =n<—) ) (2.6b
o n o n

Discrete versions of the exponential function are naturally defined

” Ao" z
e(xz):ngo(—l) - (—;)n=(1+)\a)’, (2.79
e l\z)=> (—1)“2(5) =(1+\o) 77, NeC. (2.7b
n=0 n! g

n

They are the inverse of the other, and eigenfunctions of the finite-difference derivatives
AJe(\z)=\e(\2), (2.8a
Aje Y(Az)=—re Y (N\2). (2.8b

In the continuum limit, 0 — 0, they tend to standard exponentialg(\z) — e'?
e }(\z) — e % The exponential function€.7) will play an important role in the the consid-
erations that follow.

The generalized hypergeometric seriEs is defined by

a;,a,...,a,

o | = (@)n(@)n(a)n
bs,z)_ Fs Z —nZO n!(bl)n"'(bs)n zZ,

(2.9

Fia,as,....a,:bq,...,
bq,....bg

where a; and b; are complex parameters, amdq are different from negative integers. Since
(=m),=0, for n=m+1,m+2,..., the seriesF terminates if one of the numerator parameters
{a;} is a negative integer. By the ratio test, tfg series converges absolutely for alf r<s, and

for |z|<1 if r=s+1. Of particular interest is the case=2 ands=1 of Eq. (2.9); it gives the
Gauss hypergeometric series

o

b)n
1(a,b;c;q,2)= nZO ‘:?(i)) 2", |z|<1. (2.10

In the following sections we shall see that these hypergeometric functions arise in solutions of
linear partial finite-difference equations.

lll. THE HELMHOLTZ EQUATION IN TWO DIMENSIONS

We start our analysis by examining linear equations on a two-dimensional rectangular lattice,
with coordinates; andx,. We denote byr; and o, the lattice spacings in the two directions, so
thatx,/o, andx,/o, are integers(Without loss of generality, we assume that the origin belongs to
the lattice) On this lattice, let us consider the following simple finite-difference equation

I:Ax1 Xy _wz](P(Xl!XZ):O! (3.1
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with v a complex parameter. In the continuum limait, o, — 0, it reduces to the two-dimensional
Helmholtz equatiovﬁ&xlaxz— w?]e = 0. We shall call3.1) the discrete Helmholtz equation in two
dimensions.

A general class of solutions of E(.1) can be expressed in terms of the discrete exponentials
(2.7. Indeed, using the properti€2.8) one sees that

@(X1, Xz @, B)=(1+ acy) /7 1+ Boy) ~*2/72 3.2

solves Eq(3.1) provided the two complex parametersand 3 satisfy the constraint8=w?.

By definition, the symmetry operators of a finite-difference equation have the property of
transforming solutions into solutions. In the case of differential equations, general algorithms
based on local Lie theory allow to construct in an efficient way the corresponding symmietries.
These methods are not yet developed in the case of discrete equations, though some partial results
in this direction can be found in the recent literatifé®1One is therefore forced at this point to
look for different strategies.

In cases for which a general class of solutions is explicitly known, one can find symmetry
transformations by acting with trial operators on solutions to determine which of those operators
give back solutions. This method has been successfully appligedifierence equations in Refs.

9, 10, and will also be used here. For a general nonlinear difference equation this strategy is rather
cumbersome and can only give partial results; however, for linear equations it is exhaustive and
easy to implement.

Let us consider the solutia3.2) of the discrete-Helmholtz equation. The symmetry operators
must be built out of the lattice translation operatbys andTX2 and the variableg; andx,. When

acting on solutions they will have the effect of multiplying E8.2) by polynomials7,(x; ,X5) of
degreen in x; andx,. To determine the coefficients and degree of these polynomials, one acts
directly on#,¢ with the operator

O=[A Ay — %] (3.3

and requires the result to be zero. This produces a set of algebraic defining or consistency relations
that have to be solved in order to find a new solution. In this way one recursively constructs the
symmetry operators, by considering polynomials with increasing degréé refer to Ref. 10 for
further detalils.

In the present case, multiplying any solutig812) by a constant gives back a solution. When
this constant is eithes or 8 one finds the first two symmetry operators

Pi=A,, Py=A,. (3.9

A third symmetry operator is obtained whers=1. Following the approach outlined above, one
easily finds its explicit expression

M:XZAIZ_XJ.A;;' (35)

One can check that E€3.1) does not admit any other symmetry beydhd P,, andM. Indeed,
one obtains only combinations of products of these three operators from considering polynomials
7, of higher order.

The operatorg3.4) and (3.5) are particularly simple and could have been guessed directly,
without recourse to the algorithm described above. It has been applied here to illustrate the general
method that will be followed in the more complicated situations that will be encountered in the
coming sections.

The operator$,, P,, andM satisfy the commutation relations
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[M, P1]=Ps, [M, Py]==P,, [Py, P,]=0 (3.6

and generate the Euclidean algebr@). This is therefore the symmetry algebra of the discrete-
Helmholtz equatior{3.1). It is also the symmetry algebra of the classical two-dimensional Helm-
holtz differential equatiofi. This is the first example of a pattern that will repeat itself in the
subsequent sections: in passing from the continuum to the lattice, the symmetry properties of the
equation are not modified.

Solutions of Eq(3.1) with definite transformation properties under the action of the symmetry
operatorsP,, P,, and M can be easily found, using techniques that resemble the method of
separation of variables. First, notice that the solut®g) is separated in Cartesian coordinates: it
is an eigenfunction of the symmetry operatérsandP,. One can choose to diagonalize instead
the operatoM, and to look therefore for solutions of the discrete Helmholtz equation of the form

” X1 (xz)
S(X1,X0)= Cl —| | — 3.
P X2) = 2 k(alkazk” (3.7
for which
M(pV(X].YXZ):V(PV(XlIXZ)i VEC- (38)

Substitution of theAnsatz(3.7) into Eq.(3.1), provides a recursion relation for the coefficieats
that can be solved; one finds

X2

- 1 X
@»(Xl,XZ):(wUZ)VkZo W(_l)
=5 k! k

2 K
o5 1) oy )Hy(w o105)". (3.9

02
Recalling the definition of Gauss’s hypergeometric funcii@ri0), one can also rewrite

X1 X
—, — 4+ v+ 1;w20'10'2
g 02

. (3.10

(wa3)” (Xz
oF1

¢V(X1,X2)=m

(TZV

Notice that the coordinates andx, appear as parameters of €, function, while its variable
is expressed in terms of the lattice spaciegsand o,. In the continuum limit, one finds

vl2
I|m ‘PV(X]"XZ):(%) IV(Z(U\ X1X2), (31])

0q,0,—0
where |, is the classical modified Bessel function of first kiffdOne can thus consider the
solutions(3.9) of the Eq.(3.1) as a discrete generalization of these Bessel functions.

From the algebrd3.6), one realizes that the operatd?s and P, when acting on solutions
¢,(X1,X5), increase and decrease, respectively, the indby 1. More specifically, one finds

Ay 0= 00,41, (3.123

A @m0, 1. (3.12h
Recalling Eq.(3.10, these formulas imply the following identities for Gauss’s hypergeometric
function (2.10:
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bz
,Fi(a,b;c;z)—,F(a—1,b;c;z)= S oFi(a,b+1;c+1;2), (3.133
c—1
2F1(a,bic;z) —oFy(a,b—1;c;2)=| —|[2F1(a,bie;z) —oFy(a,b—1ic—1:2)].
(3.13h

Further, a generating relation for the functiaps with » integer, can be found by expanding
in terms these functions, the solutio(®&2) of Eq. (3.1)

o0

(1+aoy) 71+ w0y /@) 272= X di(@,0) Xy, X)- 3.14
k=—o

Applying the operator®; or P, to both sides of this equation and using E812), one obtains a
recursion relation for the coefficient, that can be easily solved;(«,®»)=(w/a)¥. Recalling
Eqg. (3.10 and with obvious redefinitions, one finally obtains the following generating formula:

(1+z/t)*m(1+t)*”=k_2 (% tF (mn+kk+1:2). (3.15

These are just a few examples of the identities for the functi@ri) that can be obtained
using the symmetry algebra of the simple equatidrl). More complicated situations will be
analyzed in detail in the following. Nevertheless, let us conclude this section by considering an
even simpler finite-difference equation, the one obtained from(Ed) by letting =0

A As e(X1,%2)=0. (3.16
It is a discrete version of the wave equation in two dimension. In the continuum
axlﬁngo(xl X2)=0 (3.17

the wave equation possesses an infinite-dimensional symmetry algebra, the direct sum of two
copies of the(centerless conformal, or Witt algebra. It is generated by the elements:
= X{'dy, and wo = X3'dx,, with m integer. Actually, the operatorsy, = xT(aXl)k+1 and wy,
= x?(axz)k“, with k a non-negative integer, clearly map solutions of E417) into other solu-

tions; they generate the algebi ..®W, . .,,*° which is the symmetry algebra of E¢8.17.
In the discrete cas€.16), similar conclusions can be drawn. In fact, the elements

X1 _ X2 _
VE=UT<U—1) To (A, w';nza;“( ) To (A (3.18
m

P X
O'zm 2

map solutions of Eq(3.16 into solutions. Each set of operatdfgX} and {WK} generate the
algebraW, .., so that in the discrete case also, the symmetry algebra is the direct sum
Wi o®@Wyo.

The situation is different if one abandons “light-cone” coordinates and considers the equation

[(A0)*=(A)?Te(t,x)=0. (3.19
It still has an infinite number of symmetry operators; however, their general expression is hard to

find. They involve polynomials of arbitrary degreetimndx, T, andT, . The simplest examples
areP,=A;, P,=A, M=tA +xA;, andG=tA, T,+XxA; T,. This situation is in contrast with
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the case of the equatiomi— 2] ¢=0, which has conformal invariance in the coordinates
andt—x. This phenomenon is a clear consequence of the fact that the coordinate transformation
(t,x) — (t+x,t—x) does not preserve the uniform two-dimensional lattice. Light-cone coordi-
nates seem more appropriate in the study of the symmetry properties of finite-difference equations,
and for this reason in the following we shall work with them whenever possible.

IV. THE HEAT EQUATION IN TWO DIMENSIONS

In this section we shall study the symmetries of the following finite-difference equation in the
two discrete coordinatesandx:

[A; = (A)%Te(t,x)=0. 4.1

We shall denote by ando the lattice spacings in the timeand space& directions, so that/and
x/o are integers. In the limit, o — O this equation becomes the standard heat equation in two
dimensions: §,— 92] ¢=0. Other discrete generalizations of the heat equation have been studied in
Refs. 20.

The symmetry operators of E(#.1) can be determined by using the method illustrated in the
previous section. These are

P=A,, (4.2a
Py=A4,, (4.2b
D=2tA;] +xA; — 3T +1, (4.20
_ o
G=2tA T+|x— E)TX’ (4.20
28+ + x? 2 , 1 o 2
K= A T XA Tt 7 Tott| TP = 5 Tl | = 76 T (4.28

together with the identity. In the continuum limit,r, o — 0, these operators become

P, — dy, Py — dy, D — 2td+Xdy+ 3,
(4.3

X2t

G — 2tdt+x, K — t20t+txﬁx+z+§

and one thus recovers the usual generators of the Giciger algebra, the symmetry algebra of the
classical heat equatich.

It is remarkable that the finite-difference operat®#<) realize exactly the same Schiinger
algebra with commutation relations

[P, G]=2Py, [Py, G]=I,

[Py, DJ=2P, [Py, D]=Py,

[P, K]I=D, [Py, K]=G/2, (4.9
[D, G]=G, [K, G]=0,

[D, K]=2K, [P, P,]=0.
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Since Eq(4.]) is an evolution equation, one can check these relatiots @tIn fact, any solution
of Eq. (4.1 can be written in the formp(t,x)=U(t) ¢(0,x), with the time evolution operator
U(t) and its inverseJ(t) ! formally given by

U =(1-r(A)3)7", Ut =@1-7(4,))"". (4.5
On the space of solutions, all generat¥i@) satisfy
X(t)=U(t)X(0)U(t) ! (4.6)

provided one replaces, by (AX‘)2 in the expression@t.2). The relationg4.4) are invariant under
the conjugatior(4.6) and therefore they can be most easily determined=éx
The symmetry algebr&t.4) can now be exploited to find solutions of Eg.1) by requiring
these solutions to be eigenfunctions of one of the symmetry generators. It is readily seen that the
functions

or(6,X)=(1=N?7) "V (1+ o) X" 4.7

are the solutions of Ed4.1) that diagonalizé®; and P, , for any value of the complex parameter
\. Indeed

PtQD)\(t,X):}\Z(p)\(t,X), PXQD)\(t:X):}\QD)\(tvx)- (48)

Another set of solutions is obtained by looking for the eigenfunctigg@,x) of D, with
eigenvaluen+1/2, n a non-negative integer. Their explicit expression is

x 1 7 \K
53, o “9
k n—2k

where[x] stands for the integer part af In the continuum limit, the functiong,(t,x) tend to
solutions of the heat equation where the varialbtlasdx/+/ —t are separated. We have

/2
i (—n)a (E
-

en(tX)=0" > —
K=0 k!

lim @, (t,x)=(—t)"2H,

7,0—0

X
2\/——_t) , (4.10

with H , the classical Hermite polynomial8 One can thus consider the functi¢h9) as a suitable
discrete generalization of these polynomials.

As in the continuum case, many properties of the functigft,x) can now be algebraically
determined. First, notice that

G"po(t,X) = @n(t,X), (4.11)
where ¢q(t,x) =1. Then, using the symmetry algebfé.4), the following formulas are easily
obtained:

Pion=n(n—1)¢,_», (4.123

Pyen=nen-1, (4.12bh
Den=(n+3) ey, (4.129
Gen=¢n+1, (4.129
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Ken=Z¢n+2- (4.129

From Egs.(4.129 and(4.2d we straightforwardly find thap,(t,x) obeys a four-term recurrence
relation

x 1 t
enr1(t,X)—0o n+;—§>€0n(t,x)—7n(n+2 ;—1)<Pn1(t,x)

+7on(n—1) @n_o(t,x)=0. (4.13

+x1
T2

A generating relation for the functiog, can be obtained by expanding the solutié4s) of
the discrete-heat equati@.1) in terms of the solution$4.9) following the steps described in the
previous sectioitfor details, see Ref. 20Instead, we shall adopt here a different strategy and start
by computing the action of the operatet®, with A\ a complex parameter, on the function
eo(t,x)=1. Writing G=A+B, A=2tA, T,, and B=(x—0/2)T,, and using the classical
Campbell-Hausdorff formulag®ef=eATBHABI2* " "gne finds

eMG. 1= ho(Wo— 12T My 1 (4.14)

The two exponential operators on the right hand éitle) act separately on 1; these actions can be
easily expressed in terms of discrete exponentials. One finds

erC. 1=(1-\27) V" (1-No) V2 X0, (4.19
Expanding in series the exponential function and using(Ed.1), one also sees that

e 1= — (). (4.16
A=o n!
Putting together the resul{d.15 and(4.16), one finally obtains
* n

(1-N27) " Ur(1—Ng)HZXo=> )r:—, en(t,X). (4.17)

In the continuum limit, recalling Eq(4.10, this formula reduces to the following generating
relation for the Hermite polynomiai$

©

ez)\z—xzz 2 A"

P Hn(2). (4.18

V. THE HEAT EQUATION IN THREE DIMENSIONS

As explained at the end of Sec. Ill, it is convenient to choose “light-cone” coordinates in the
spatial directions, and to consider the following finite-difference version of the three-dimensional
heat equation

[A; —A A Je(txy,x,) =0. (5.2
In the continuum limit, where the lattice spacings go to zero

7,01,02 — 01 (52)
J. Math. Phys., Vol. 36, No. 12, December 1995

Downloaded-27-Jul-=2009-t0-194.225.238.135.-Redistribution-subject-to-AlP-license-or-copyright;=see-http://jmp.aip.org/jmp/copyright.jsp



R. Floreanini and L. Vinet: Lie symmetries of finite-difference equations 7033

this equation reduces i@, — 0x1aX2]qo(t,x1,x2) =0.
Solutions of Eq(5.1) in terms of the discrete exponenti@s7) are easily found. Indeed, the
functions

@(t,X1, X5 @, B1,B2)=(1—ar) "V (1+ Byoy) /71 1+ By0,) *2/2 (5.3

satisfy Eq.(5.1), provided the three complex parameters 3;, and 3, obey the constraint:
a=13,. These solutions are eigenfunctions/qf, Ax_l, andA;z, and these operators are there-

fore symmetries of Eq(5.1). However, this equation possesses five more nontrivial symmetries;
indeed, one can check that the complete list of symmetry operators is

P=A;, P;=A,

Xl’

P2:AX_2, M:XJ.A)-(:__XZA:Z’
D=2tA +x;A; +XA, +1, Gr=tA, Ti+xi Ty, (5.4
Go=tA, Ti+%,T,,, K=tZAiTt+t(xlAX*1+szX*z)Tt+x1x2TxlTX2+tTt2

and the identityl. In the continuum limit(5.2), these operators reduce to the generators of the
nine-dimensional Schdinger algebra, the symmetry algebra of the classical heat equation in three
dimension$

P;— d, Py— s P, — Ix, M — X1y, — X20x,, (5.5
D — 2'[07t+X10"X1+X20X2+1, Gl — t&X2+X1, (55)
Gy — toy tXp, K — t2a+t(Xqdx +X20x,) +X1Xp

and the identityl .
Both the finite-difference operato(5.4) and the differential operators in E(.5) realize the
commutation relations of the three-dimensional Sdhnger algebrdi =1,2):

[P1, Gi]=1, [Pz, G1]=0, [Py, G1]=Py,

[P1, G2]=0, [P2, G;]=1, [Py, G2]=Py,

[P1, M]=Py, [Py, M]==P,, [P{, M]=0,

[P1, D]=Py, [Pz, D]=Py, [P, D]=2Py,

[P1, K]=G,, [Py, K]=Gy, [P:, K]=D, (5.6
[D, G1]=G;, [D, G2]=Gy, [D, K]=2K,

[M, G1]=G;, [M, G;]=-G,, [M,K]=0,

[G1, G2]=0, [Py, P2]=0, [P,Pi]=0,

[G;, K]=0, [M, D]=0.

In the case of the operato(5.4), these relations are easily verifiedtat0, by using the formula
(4.6),withU(t) = (1 — 7A A )7,

X177 X2
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One can now use these symmetries to obtain new solutions dfbEl, with specific trans-
formation properties under the action of the operatérd). More specifically, one can check that
the following functions labeled by the complex parametarandn:

G e
T T a—k\ 91 ktm\ 92/

satisfy Eq.(5.1) and are moreover eigenfunctions of the operaMrandD with eigenvaluesn
and 2h+m+ 1, respectively. They can be rewritten in terms of the generalized hypergeometric
function 5F,

e (mDK-n)
(Pm,n(tixla)(Z): Tno-l kgo k| (m+ 1)kk

—n, m+X1/O'1, X2/O’2. 0107

1-n—-t/7, m+21 (5.8

n t m| X1
Emn(t,X1,X0) =7 7 71\ o 3F2
n m

When the parametar is a positive integer, the functiogir, truncates and becomes a hypergeo-
metric polynomial of degreen. For m a negative integer and for unit lattice spacings,
T=0,=0,=1, this function is identified as a classical Racah polynomial.

In the continuum limit(5.2), one finds

Emn(t,X1,X) — ' F1(—n;m+1;—Xx,/1). (5.9

The ;F, hypergeometric function is the Laguerre polynomi§l’(—x,x,/t), and one thus recov-
ers with Eq.(5.9), the solutions of the continuum heat equation separated in the homogeneous
variable x;x,/t. One can therefore consider that the functions in E§<) and (5.8) represent
discrete generalizations of the classical Laguerre polynomials.

From the explicit expression of the generat@4), it is clear that each one of these operators
maps the functionsp, , into themselves. From this observation and the commutation relations
(5.6), one can derive the following identities:

Pt@mn=Nemn-1, (5.103
Piomn=M@m_1n, (5.10bh
PZQDm,n:% Pm+1n—1 (5.100
Memn=Memn, (5.109
Demn=(M+2n+1)¢n,, (5.100
m+n+1
C1omn=—q 7 Pm+in (5.109
G2@mn=Mem-1n+1, (5.109
Kemn=(M+n+1)@mni1- (5.10h

One can easily check that this provides a model for the three-dimensionab8aenalgebra and
that the commutation relatior(5.6) are verified.
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Further properties of the solution$.7) can be obtained by considering the action of the
operatore*®2, with A a complex parameter, on the special solutipRsy(t, X1 ,X2) =o' (X1/ 071) .-
Recalling the explicit expression db, given in Eq. (5.4 and using again the Campbell-
Hausdorff formula, one can write

e 2p o=eMi T g el 1, (5.11)

In the right-hand side, the action of the last exponential can be easily resummed to find
(1 — No,) *2/?2. On the other hand, the action of the first exponential can be expressed in terms
of a ,F; hypergeometric function

- t Xl AT

May Tt 0= 0T (X1 /o) m oF 1| —m, ;;1—m— ——. (5.12

e

We shall takem to be a positive integer; in this case Ef.12) is a Jacobi polynomial of orden
in the variable +2\7/ay. Further, by iterating Eq5.109, one sees that

Gg‘Pm,OZ(_l)n(_m)n@mfn,n- (5.13

Putting together these results, one finally finds the following identity:

Xl )\7')

t m
O'T(X]_/O'l)m(l_)\0’2)_)(2/0—22[:1 —m, ;,1_m_—, —_— :Z (n))\n@m_n'n(t,xl,XZ),

(5.19

where () is the standard binomial coefficient. In the continuum limit, this relation reduces to the
classical generating formula for the Laguerre polynomials

(1+N)Me M= 20 A"LIM Y (2). (5.19
=

Before concluding this section, let us mention that one can diagonalize the symmetry operator
P; by writing

e(t,X1,%0) = (1= 0?7) "Tg(x1,%9), (5.16
wherey is any solution of the discrete Helmholtz equation considered in Sec. IlI
[A A~ 0?]¢(xg %) =0. (517
In particular, recalling the solutiop, of this equation, given in Eq3.10, one sees that

(woy)”
I'(v+1)

X2 X1 X2
—, =+ v+l;wo.0, (5.18

— _ 2 _N\—tlT
‘p(taxlyxz) (1 w T) 1 o, o,

02,2
satisfies Eq(5.1). This observation is nontrivial since any symmetry operator of (Bdl) will

map Eq.(5.18 into another solution. By choosing appropriate symmetries and solufiafi€q.
(5.17), one can construct solutions of E®.1) satisfying various boundary conditions.

VI. THE WAVE EQUATION IN THREE DIMENSIONS

The discrete generalization of the three-dimensional wave equation that we shall consider in
this section is
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[(A0)2= A AL lo(tXg %) =O0. (6.0

We keep the notations of the previous section for the coordinates and lattice spacings; in particular,
we use “light-cone”-like variables for the spatial coordinates. In the continuum ligR), Eq.
(6.1) become$s; — dy dy,1¢ = 0.

Solutions of Eq(6.1) in terms of discrete exponentials are readily found

@(t,X1, X5 @, B1,B2) = (1+ar) "V (1+ Byoy) 711+ B,0,) *2/2, (6.2

with o®=p,8,. The symmetry operators of E@6.1) that transform solution$6.2) into other
solutions are

Pi=A,, Py=A_, Pi=Ar, M=xiA; —XA5,

D=tA +x145 +XA, —3Ti+1,
T\ _ —
G]_: ( t— E) AXZTtJ’_ 2X1AI TXl’
T _ _
G,= ( t— 5) Axth+ 2xA¢ Ty, (6.3
7_2
K,= ( 2 Z) AX—ZT5+ 4x§AX+lTX1+ At ATy 2% (2T, — T Ty,
7_2
K2: ( t2_ Z) A;th2+ 4X§A;2TX2+ 4tX2At+TX2+ 2X2(2TX2_ Tt)TXZ'

24 + T + + - T 2
Ke=t2A, Tt+2( t— 5) (1A + XA ) Tit XA T Ty + T 7 (T T7).

In the continuum limit they tend to the symmetry generators of the classical three-dimensional
wave equatioch

P, — (?Xl, P, — o'?xz, Pi— d, M— Xlé’xl—Xgﬂxz,
D — tdi+Xqdy, +Xa0x,+ 1/2, G, — ty,+2X,;,
Gy — tdy +2Xp0;, Ky — 20y +4XTdy +Atxydp+2xq, (6.4)
Ka — t20y +4x5d, +4txa0,+2X,,
Ky — (24 4x1X) 3yt 2H(X1 0y +Xady,) + L.

To determine the commutation relations that the operd€8s obey, one cannot proceed here
as in the previous two sections. Equati@nl) is not a(discrete evolution equation in; one has
to keept # 0 and compute the various commutators directly. After a lengthy calculation, one finds
that the nonvanishing commutators dre-1,2)

[Pt!Gl]:PZl [Pi!Gi]:zpt! [Gl!GZ]:ZM!
J. Math. Phys., Vol. 36, No. 12, December 1995
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[P, Go]=P1, [Py, K1]J=4(D+M), [P, K;]=4(D—M,

[Py, D]=Py, [P1, K]=2G, [P2, K{]=2Gy,

[Pi, Ki]=2G;, [Py, M]=Py, [P2, M]==P;,

[P, KJ=2D, [P, D]=P;, [G1, M]=—Gy, 69
[G1, K2]=2K;, [Ga, Ki]=2Kq, [G2, M]=Gy,

[Gi, K=K;,  [M, K=Ky, [M, Kz]=—Ky,

[D, Ki]=K;, [D, Ki]=K;.

This coincides with the commutation relations realized by the symmetry ope(étdrsf the
classical wave equation. They define the Lie algebrd)sdo prove this, it is sufficient to
construct from the generato(8.3), the elements of the corresponding Chevalley basis. These are
given by the following complex combinations:

el:Gl, f1=Gz, h]_:M,

(6.6
i i
ezzﬁ Pl! f2=ﬁ Klv h2=_(M+D)
Indeed, one can check that these operators satisfy the commutation relations
[ei, fil=6ihi,  [hi, gl=aey,
(6.7)
[hi! hJ]:O, [hi, fl]_a”fJ
and the Serre relations
gy 1-a| 1-a.
mZO (—om e e, i # (6.8
gy 1-ay),1-a -
> (—1)”‘( m ”)fi WM, 0 (6.8h
m=0

where a;; is the 2<2 Cartan matrix for the algebra &, with a;;=a,,=2, a;,=-2, and
a21: —-1.

We shall now study of the solutions of E@.1) that are at the same time eigenfunctions of the
operatorsM and D, with eigenvalues—m—n and 1/2-m, respectively; herem andn are in
general complex parameters, but we shall be mainly interested in the easennegative integer.
These solutions have the form

[n/21

e (_1)k(m)nk(0'10'2)k<t 1) (X1> (Xz)
t,Xq,Xp)=7"g; ™" -— = — — .
emaltXX2) =0 T2 S oor |2 \7 2] el 1G]

(6.9
For n even, orn odd, they can be expressed in terms of two different hypergeometric functions
4F 3. In the continuum limit, these solutions tend to solutions of the classical wave equation that

are separated in terms of the homogeneous varieplg/t>. They involve the ultraspherical or
Gegenbauer classical polynomi&@§™ (Ref. 16
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1 t2 1/2
B e

n/2
R (m)
X1X2

Emn(t,X1,X5) — tnxl_m_n( = n

The action of the symmetry operatdi&3) on the solutionsp,, ,(t,X;,X,) can be computed
by using the algebré6.5). One explicitly finds

Pt‘Pm,n: Memt+1n-1, F)1§Dm,n: —M@m+1ns PZ‘Pm,n: —M@mt1n-2s

M‘Pm,n: _(m+n)(Pm,n1 D‘Pm,n:(llz_m)(:pm,n’

Gl‘Pm,n:(zm"' n— 1)‘Pm,n—1a GZQDm,n: —(n+ 1)€Dm,n+1a (6.1
(2m+n—1)(2m+n—-2)
Kl‘Pm,n:_ (m—1) Pm-1,n>
(n+1)(n+2)
Kopmn= = ") #m-1ns2

(n+1)(2m+n—-1)
Ktﬁom,n:_ (m—1) Pm-1,n+1-

One can check that these relations define a representation of(8)eatgebra(6.5).
Finally, let us observe that an interesting class of solutions of(&d) is provided by func-
tions of the form

@(t,X1,%p) =(1—05) X2/72¢(1,x,). (6.12
Indeed, the functioni6.12 satisfies Eq(6.1) if ¢ solves
[A,— (AD)21g(t,x,) =0. 6.13
By letting
(t,x1) — (X,t) (6.14

one recognizes in Ed6.13 the two-dimensional discrete heat equation discussed in Sec. IV. Of
the symmetrie$6.3), only P, P;, M+D, G,, andK; survives after the dimensional reduction of
Eqg. (6.1) to Eqg.(6.13. Under the conjugation

X — (1= 0,)2/72X(1— gp) *2/o2 (6.15

the explicit expressions of these symmetry operators become identical to those giveri4r2Eq.
provided the redefinitioi6.14) is taken into account. One can now express a solution of&dj.

in terms of the discrete polynomials of E@.9). Recalling their explicit expression, one imme-
diately sees from E¢6.12) that

2l (—n X, [t 1 k
= ' k 2k

satisfies Eq(6.1), for any complex\. This solution is a simultaneous eigenfunction of the sym-
metry operator®®, andM +D, with eigenvalues.? andn+1/2, respectively.
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VIl. THE WAVE EQUATION IN FOUR DIMENSIONS

In this section, we shall move to four dimensions and study the following discrete version of
the wave equation, using complex light-cone coordinates:

[A;lA;z_A;3A;4](P(Xl1X21X31X4)=O' (71)

In the limit in which all the lattice spacings;, i=1,2,3,4, go to zero, this equation reduces to
[9x,0x, = dx9x,J¢ = 0. Equation(7.1) admits the following 15 symmetry operators:

Pl:A;l, P2:A7

Xy P3=A;3, P4:A;4:
_ + + _ + + _ + +
Ml—Xlel+X4AX4, M2—X2AX2+X4AX4, M3—X3AX3_X4AX4,
Gl: XlA ;3TX1+ X4A;2TX4, G2: XlA ;4TX1+ XEA;ZTX?”

G3: XzA;3TX2+ X4A;1TX4, G4: XzA;4TX2+ XSA;lTX?,

(7.2
- + + 25+ 2
Kl = X1X2AX4TX1TX2+ X1X3A XlTX3 + X2X3AX2TX3 + XSAX3TX3 + X3TX3,
_ - + + 25 + 2
K= XX T, T, T XaXaAy To, T XoXah s T, X34, Ty, +Xa Ty,
Ka=XaXaAL T, T +XoXaAL Ty + XX AT T, +X3AT T, +Xx,T2
3 34X1X3X4 23x3><2 24x4X2 294X, 1 Xy 2X2’
Ka=XaXaAo T, T + X XaAL T, + XX AT T, +X2AT T, +x,T2
4 34><2x3><4 13x3xl 14X4X1 1%, " Xg lxl'
In the continuum limit these operators become
P, — (?Xi, i=1,2,3,4,
Ml — Xlﬁxl+ X43X41 M2 — X207X2+X4(9X4! M3—>X30"X3_X40X4,
Gl — X1(9X3+X4(9X2, G2 — Xl(?x4+X3(?X2,
G3 — X2(9X3+X4(9Xl, G4 — X28X4+ Xsaxl,
(7.3

K1 = XqXpdy, +X1Xdy +XoXadx, + X505, +Xs,

Kz — XqXpdy, T X1 Xgdy, + XoX4dy,+ Xqox, + X4,

K3 — XaXgdy, +XoXady,+ XoXadx, + X505, Xz,

Ky — XaXady, T X1Xady,+ X1Xadx, + X5y +Xy.
These elements generates the Lie algeb{),sthe symmetry algebra of the continuum wave
equation in four dimensions. The same algebra is also the symmetry algebra of the finite-

difference equatior(7.1). Indeed, it is easy to construct a Chevalley basis fo4) from the
operatorg7.2):

e]_:Gl, ez=iP1, engz, f1=G4, f2=iK4, f3=G3,
(7.4
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7040 R. Floreanini and L. Vinet: Lie symmetries of finite-difference equations

hlel_Mz_M3, h2:_(2M1+M3+1), h3:M1_M2+M3.

One can check that these elements obey the commutation relédighsand (6.8), where in the
present case, thex3 Cartan matrixa;; has for nonzero entries; =2 anda;; ., =—1.

The solutions of Eq(7.1) that are simultaneously eigenfunctions of the translation operators
P; involve once more the discrete exponentid@s’), i=1,2,3,4

@(Xi ;)= (14 @101) 17U L1+ ap0,) *2/72(1+ az03) 3731+ auo,) X474 (7.5)

Other interesting solutions can be found by diagonalizing the operbteraM,, andM;. The
following functions:

e BT (3 (3), [
@I,m,n(xl)_a-l 7293 kZO k'(n)k 0103 01 —l—k g2 —m—k g3 n+k—1 Oy K
(7.6

satisfy Eq.(7.1) and are at the same time eigenfunctionsMf, M,, and M5 with complex
eigenvalues-1, —m, andn—1, respectively. One can rewritg , , more conveniently in terms of
4F 3 hypergeometric functions

X X X
-1 M - 2 —1/ "3
@1mn(Xi) =07 (_) Uzm(_> o1 (_>
e 92) _m 93/ n-1
% E |1 m, X3/0'3+n_1, X4/O’4 030y 7
3N, l=xi/oq+1, m—x,/0,+1 ;o105 (7.7)

In the continuum limit,o; — 0, the 4F; function becomes the hypergeometric functighn, of
Gauss, and one has

o o—mon— X3Xq
@1 mn(Xi) — X1|X2 X3 12F1<I,m;n; Vv ) (7.9
1X2

This is the solution of the classical wave equation studied in Refs. 21 and 22.

The solutionq7.7) of the discrete wave equation naturally provide(@)sinodule. The action
of the symmetry operatoré7.2) on these functions can be computed using the commutation
relations of the algebra(gl). Explicitly, one finds

Pl(PI,m,n: =1 Pl+1,mn>

F’Z‘PI,m,n: —Me m+1ns PS‘PI,m,n: (n— 1)(Pl,m,nfla

Im

P4‘Pl,m,n=F‘Pl+l,m+1,n+1v I\/ll(PI,m,nz_l‘PI,m,na MZ‘PI,m,nz_mQDI,m,nv

M 3P, mn— (n_ 1)QDI,m,n ) Gl@l,m,n: (ﬂ— 1)@I—1,m,n—1v
(7.9
m(l—n)

GZ‘PI,m,n:—

n Plm+1n+1s G3‘Pl,m,n:(n_l)(PI,mfl,nflv

[(m—n) (n=1H(n—m)

G4‘Pl,m,n:— Pl+1,mn+1> Kl‘PI,m,n: n

n Plmn+1s
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KZ‘PI,m,n:(n_ 1)‘PI—1,m—1,n—11 KSQDI,m,n:(n_m)‘PI,m—l,nv K4‘Pl,m,n:(n_|)‘Pl—1,m,n .

One can check that this action reproduces the commutation relations that define the Lie algebra
sl(4); the functions(7.7) therefore constitute a basis for an irreducible representation of this
algebra.

Finally notice that the relation&7.9) can be used to find identities involving the hypergeo-
metric function

a;, 4ap, as, ay

FE4F3 bl! bZl b3 ,

z|. (7.10

For example, inserting Ed7.7) in the first formula in(7.9), one obtains
(ay—by)[F(by+1)—F]=ay[F(a;+1;b,+1)—F], (7.11)

where F(b,+1) stands for the functiori7.10 with the parameteb, replaced byb,+1, and
similarly for F(a;+1;b,+1). Other more complicated identities can be obtained from the rest of
the relationg7.9).

VIIl. CONCLUDING REMARKS

Symmetry techniques provide some of the most useful methods to analyze and classify solu-
tions of partial differential equations. Separation of variables, in particular, allows to prove many
properties of special functions that are important in applications to physical problems.

In the case of finite-difference equations the corresponding techniques have not been studied
so well, and only partial results are known. Symmetry properties of discrete canonical systems are
studied in Ref. 23. The methods developed there are however limited and difficult to apply to
specific examples. Lie algebras in connection with finite-difference equations are also discussed in
Ref. 24. However, the symmetries considered there are of a generalized form, since they affect the
underlying space—time lattice, which is not kept fixed.

In the case of linear partial equations the situation is clearer. A systematic analysis of the
symmetry properties has been given in Refs. 10 for equations defined on nonuniform exponential
lattices(see also Ref. 25while in the present article, we examined the symmetries of difference
equations on uniform rectangular lattices. In the first case, generalized algebraic structures, like
quantum algebras, are needed to describe the underlying symmetry structures, while for equations
on uniform lattices, ordinary Lie algebras appear as symmetry algebrakis respect, notice that
realizations of Lie algebras in terms of finite-difference operators have been constructed in Refs.
26 and 2.

Actually, one finds that the symmetries of the various finite-difference equations we have
analyzed are the same as those of their continuum differential versions. In other words, it appears
that the Lie symmetries of linear partial differential equations are preserved by the process of
discretization.

Although this conclusion might be true only for linear equations, it is nevertheless striking and
can be of great help in applications. We have used this result to find solutions of various finite-
difference equations with specific transformation properties under the action of symmetry opera-
tors. These solutions can be expressed in terms of generalized hypergeometric functions and
reduce to ordinary special functions in the continuum limit. Therefore, they can be considered as
discrete generalizations of these classical functions.

In particular, we have met discrete versions of the classical polynomials of Hermite, Laguerre,
and Gegenbauer, and discrete analogs also of the Bessel functions. Other discrete generalizations
of these special functions have been introduced in the literituas particular solutions of dis-
crete versions of Sturm-Liouville problems in one dimension. However, these functions are of
little use in the study of partial finite-difference equations. As shown by the examples that we have
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7042 R. Floreanini and L. Vinet: Lie symmetries of finite-difference equations

examined, it is clear that true separation of variables is not generally allowed on uniform lattices,
so that one cannot reduce the various difference equations to one-dimensional problems.

On the other hand, the discrete functions we have discussed emerge directly as solutions of the
difference equations and should therefore prove important in applications. Furthermore, the sym-
metry algebras can be used to study properties of these functions in analogy with the classical
special functions. We have indeed derived in this way various formulas and identities for these
discrete functions.

We would like to point out that these formulas and identities are just a few examples of the
many properties that can be algebraically derived. Indeed, since the discrete functions we dis-
cussed are directly connected with classical Lie algebras, a more systematic study of their prop-
erties can be carried out using standard Lie group techniques, in strict analogy with what is done
for the usual special functions. Further investigations along these lines are presently under devel-
opment and will be reported elsewhere.
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