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Discretizations of the Helmholtz, heat, and wave equations on uniform lattices are
considered in various space–time dimensions. The symmetry properties of these
finite-difference equations are determined and it is found that they retain the same
Lie symmetry algebras as their continuum limits. Solutions with definite transfor-
mation properties are obtained; identities and formulas for these functions are then
derived using the symmetry algebra. ©1995 American Institute of Physics.

I. INTRODUCTION

Finite-difference analysis has recently attracted wide interest, both in mathematics and phys-
ics. On the one hand, the advent of supercomputers and the development of efficient numerical
schemes have led to the discrete modeling of complex continuous systems. On the other hand,
genuine discrete physical systems defined on space–time lattices have been seen to possess rich
symmetry properties, that allow for their complete solvability.1,2

In this respect, the study of finite-difference equations is central in any development related to
the analysis of discrete systems. The theory underlying these equations can be established, at least
formally, in parallel to the one associated to differential equations. Nevertheless, little is known
actually, on the symmetry properties of difference equations.

The importance of symmetry techniques in the study of partial differential equations need not
be stressed.3 They allow to systematically obtain and classify solutions, and provide at the same
time a deep connection with the theory of the special functions of mathematical physics. Indeed,
the relation between symmetries of second-order partial differential equations and their solutions
via separation of variables is one of the most useful and efficient tool for studying properties of
special functions.4–8

A systematic study of the symmetry properties of linear finite-difference equations on uniform
lattices will be presented below. Though differential techniques are not available in the case of
difference equations, for linear equations at least, one can devise an algorithm that allows to
determine the symmetry operators. The striking outcome of our investigation is that these sym-
metry operators obey the same Lie algebra as their continuum counterparts. In other words, the
symmetry algebra is left unchanged by the process of discretization.

Notice that this result holds only in the case of finite-difference equations on uniform lattices.
A similar analysis of difference equations on exponential lattices has shown that generalized
algebraic structures, such as quantum algebras, are needed to describe their symmetry
properties.9–12

Once the symmetries of a linear difference equation have been obtained, they can be used to
find solutions of the equations with definite transformation properties. These solutions turn out to
be expressible in terms of hypergeometric series: they appear to be lattice generalizations of many
classical special functions and polynomials. Properties and identities for these functions can then
be derived using the symmetry algebra.

After devoting a section to the notations and definitions that are used throughout the article,
we first examine in Sec. III a discrete version of the two-dimensional Helmholtz equation. The
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Euclidean algebraE~2! is seen to be the symmetry algebra of this equation. In the following two
sections lattice versions of the heat equation in two and three dimensions are, respectively, con-
sidered. The Schro¨dinger algebra is here seen to be the symmetry algebra of these equations.
Discrete versions of the wave equations in three and four dimensions are studied in Secs. VI and
VII. The Lie algebras so~5! and sl~4! emerge as the respective symmetry algebras. In each case,
solutions of the difference equations are constructed using techniques akin to the classical method
of separation of variables. Discrete analogs of the Gauss hypergeometric and Bessel functions, and
of the polynomials of Hermite, Laguerre, and Gegenbauer are thus found in this way. Finally, Sec.
VII comprises concluding comments and remarks.

II. NOTATIONS

We collect here a few formulas in finite difference analysis that will be used in the
sequel.13,14,7

The shifted factorial~a!n , with a complex andn integer, is defined by15,16

~a!n5a~a11!~a12!•••~a1n21!, n Þ 0,
~2.1!

~a!051.

More generally, forn complex, one uses the equivalent definition in terms ofG functions

~a!n5G~a!/G~a1n!. ~2.2!

The symbol~a!n satisfy many useful identities; we list those that shall be used in the following:
15

~a!n1k5~a!n~a1n!k , ~2.3a!

~a!n2k5
~21!k~a!n
~12a2n!k

, ~2.3b!

~a!2n5
~21!n

~12a!n
, ~2.3c!

~2n!k5~21!k
n!

~n2k!!
. ~2.3d!

It is customary to introduce two discrete versions of the derivatived/dz

Dz
15

1

s
~Tz21!, ~2.4a!

Dz
25

1

s
~12Tz

21!, ~2.4b!

wheres is the lattice spacing, andTz is the shift operator which acts as

Tzf ~z!5 f ~z1s! ~2.5!

on any function of the complex variablez. BothDz
1 andDz

2 reduce to the ordinary derivatived/dz
ass→ 0. Further, notice thatDz

2Tz5Dz
1 and similarly, thatDz

1Tz
215Dz

2. The following useful
relations are also readily verified
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Dz
2S zs D

n

5
n

s S zs D
n21

, ~2.6a!

zDz
1S zs D

n

5nS zs D
n

. ~2.6b!

Discrete versions of the exponential function are naturally defined

e~lz!5 (
n50

`

~21!n
lsn

n! S 2
z

s D
n

5~11ls!z/s, ~2.7a!

e21~lz!5 (
n50

`

~21!n
lsn

n! S zs D
n

5~11ls!2z/s, lPC. ~2.7b!

They are the inverse of the other, and eigenfunctions of the finite-difference derivatives

Dz
1e~lz!5le~lz!, ~2.8a!

Dz
2e21~lz!52le21~lz!. ~2.8b!

In the continuum limit, s→ 0, they tend to standard exponentials:e(lz) → elz,
e21(lz) → e2lz. The exponential functions~2.7! will play an important role in the the consid-
erations that follow.

The generalized hypergeometric seriesrFs is defined by

rFs~a1 ,a2 ,...,ar ;b1 ,...,bs ;z![ rFsF a1 ,a2 ,...,ar ;z

b1 ,...,bs
G5 (

n50

`
~a1!n~a2!n•••~ar !n
n! ~b1!n•••~bs!n

zn,

~2.9!

where ai and bj are complex parameters, andbj are different from negative integers. Since
(2m)n50, for n5m11,m12,..., the seriesrFs terminates if one of the numerator parameters
$ai% is a negative integer. By the ratio test, therFs series converges absolutely for allz if r<s, and
for uzu,1 if r5s11. Of particular interest is the caser52 ands51 of Eq. ~2.9!; it gives the
Gauss hypergeometric series

2F1~a,b;c;q,z!5 (
n50

`
~a!n~b!n
n! ~c!n

zn, uzu,1. ~2.10!

In the following sections we shall see that these hypergeometric functions arise in solutions of
linear partial finite-difference equations.

III. THE HELMHOLTZ EQUATION IN TWO DIMENSIONS

We start our analysis by examining linear equations on a two-dimensional rectangular lattice,
with coordinatesx1 andx2. We denote bys1 ands2 the lattice spacings in the two directions, so
thatx1/s1 andx2/s2 are integers.~Without loss of generality, we assume that the origin belongs to
the lattice.! On this lattice, let us consider the following simple finite-difference equation

@Dx1
2 Dx2

2 2v2#w~x1 ,x2!50, ~3.1!
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with v a complex parameter. In the continuum limits1, s2→ 0, it reduces to the two-dimensional
Helmholtz equation@]x1]x22v2#w 5 0. We shall call~3.1! the discrete Helmholtz equation in two
dimensions.

A general class of solutions of Eq.~3.1! can be expressed in terms of the discrete exponentials
~2.7!. Indeed, using the properties~2.8! one sees that

w~x1 ,x2 ;a,b!5~11as1!
2x1 /s1~11bs2!

2x2 /s2 ~3.2!

solves Eq.~3.1! provided the two complex parametersa andb satisfy the constraintab5v2.
By definition, the symmetry operators of a finite-difference equation have the property of

transforming solutions into solutions. In the case of differential equations, general algorithms
based on local Lie theory allow to construct in an efficient way the corresponding symmetries.3

These methods are not yet developed in the case of discrete equations, though some partial results
in this direction can be found in the recent literature.17,18,1One is therefore forced at this point to
look for different strategies.

In cases for which a general class of solutions is explicitly known, one can find symmetry
transformations by acting with trial operators on solutions to determine which of those operators
give back solutions. This method has been successfully applied toq-difference equations in Refs.
9, 10, and will also be used here. For a general nonlinear difference equation this strategy is rather
cumbersome and can only give partial results; however, for linear equations it is exhaustive and
easy to implement.

Let us consider the solution~3.2! of the discrete-Helmholtz equation. The symmetry operators
must be built out of the lattice translation operatorsTx1 andTx2 and the variablesx1 andx2. When
acting on solutions they will have the effect of multiplying Eq.~3.2! by polynomialsP n(x1 ,x2) of
degreen in x1 andx2. To determine the coefficients and degree of these polynomials, one acts
directly onP nw with the operator

O5@Dx1
2 Dx2

2 2v2# ~3.3!

and requires the result to be zero. This produces a set of algebraic defining or consistency relations
that have to be solved in order to find a new solution. In this way one recursively constructs the
symmetry operators, by considering polynomials with increasing degreen. We refer to Ref. 10 for
further details.

In the present case, multiplying any solution~3.2! by a constant gives back a solution. When
this constant is eithera or b one finds the first two symmetry operators

P15Dx1
2 , P25Dx2

2 . ~3.4!

A third symmetry operator is obtained whenn51. Following the approach outlined above, one
easily finds its explicit expression

M5x2Dx2
1 2x1Dx1

1 . ~3.5!

One can check that Eq.~3.1! does not admit any other symmetry beyondP1, P2, andM . Indeed,
one obtains only combinations of products of these three operators from considering polynomials
P n of higher order.

The operators~3.4! and ~3.5! are particularly simple and could have been guessed directly,
without recourse to the algorithm described above. It has been applied here to illustrate the general
method that will be followed in the more complicated situations that will be encountered in the
coming sections.

The operatorsP1, P2, andM satisfy the commutation relations
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@M , P1#5P1 , @M , P2#52P2 , @P1 , P2#50 ~3.6!

and generate the Euclidean algebraE~2!. This is therefore the symmetry algebra of the discrete-
Helmholtz equation~3.1!. It is also the symmetry algebra of the classical two-dimensional Helm-
holtz differential equation.4 This is the first example of a pattern that will repeat itself in the
subsequent sections: in passing from the continuum to the lattice, the symmetry properties of the
equation are not modified.

Solutions of Eq.~3.1! with definite transformation properties under the action of the symmetry
operatorsP1, P2, andM can be easily found, using techniques that resemble the method of
separation of variables. First, notice that the solution~3.2! is separated in Cartesian coordinates: it
is an eigenfunction of the symmetry operatorsP1 andP2. One can choose to diagonalize instead
the operatorM , and to look therefore for solutions of the discrete Helmholtz equation of the form

wn~x1 ,x2!5 (
k50

`

ckS x1s1
D
k
S x2s2

D
k1n

~3.7!

for which

Mwn~x1 ,x2!5nwn~x1 ,x2!, nPC. ~3.8!

Substitution of theAnsatz~3.7! into Eq. ~3.1!, provides a recursion relation for the coefficientsck
that can be solved; one finds

wn~x1 ,x2!5~vs2!
n(
k50

`
1

k!G~k1n11! S x1s1
D
k
S x2s2

D
k1n

~v2s1s2!
k. ~3.9!

Recalling the definition of Gauss’s hypergeometric function~2.10!, one can also rewrite

wn~x1 ,x2!5
~vs2!

n

G~n11! S x2s2
D

n
2F1S x1s1

,
x2
s2

1n;n11;v2s1s2D . ~3.10!

Notice that the coordinatesx1 andx2 appear as parameters of the2F1 function, while its variable
is expressed in terms of the lattice spacingss1 ands2. In the continuum limit, one finds

lim
s1 ,s2→0

wn~x1 ,x2!5S x1x2D
n/2

I n~2vAx1x2!, ~3.11!

where I n is the classical modified Bessel function of first kind.16 One can thus consider the
solutions~3.9! of the Eq.~3.1! as a discrete generalization of these Bessel functions.

From the algebra~3.6!, one realizes that the operatorsP1 andP2 when acting on solutions
wn(x1 ,x2), increase and decrease, respectively, the indexn by 1. More specifically, one finds

Dx1
2 wn5vwn11 , ~3.12a!

Dx2
2 wn5vwn21 . ~3.12b!

Recalling Eq.~3.10!, these formulas imply the following identities for Gauss’s hypergeometric
function ~2.10!:
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2F1~a,b;c;z!22F1~a21,b;c;z!5
bz

c 2F1~a,b11;c11;z!, ~3.13a!

2F1~a,b;c;z!22F1~a,b21;c;z!5S c21

c2bD @2F1~a,b;c;z!22F1~a,b21;c21;z!#.

~3.13b!

Further, a generating relation for the functionswn , with n integer, can be found by expanding
in terms these functions, the solutions~3.2! of Eq. ~3.1!

~11as1!
2x1 /s1~11v2s2 /a!2x2 /s25 (

k52`

`

dk~a,v!wk~x1 ,x2!. ~3.14!

Applying the operatorsP1 or P2 to both sides of this equation and using Eq.~3.12!, one obtains a
recursion relation for the coefficientsdk , that can be easily solved:dk(a,v)5(v/a)k. Recalling
Eq. ~3.10! and with obvious redefinitions, one finally obtains the following generating formula:

~11z/t !2m~11t !2n5 (
k52`

`
~n!k
k!

tk2F1~m,n1k;k11;z!. ~3.15!

These are just a few examples of the identities for the functions~3.10! that can be obtained
using the symmetry algebra of the simple equation~3.1!. More complicated situations will be
analyzed in detail in the following. Nevertheless, let us conclude this section by considering an
even simpler finite-difference equation, the one obtained from Eq.~3.1! by lettingv50

Dx1
2 Dx2

2 w~x1 ,x2!50. ~3.16!

It is a discrete version of the wave equation in two dimension. In the continuum

]x1]x2w~x1 ,x2!50 ~3.17!

the wave equation possesses an infinite-dimensional symmetry algebra, the direct sum of two
copies of the~centerless! conformal, or Witt algebra. It is generated by the elements:vm

0

5 x1
m]x1 andwm

0 5 x2
m]x2, with m integer. Actually, the operatorsvm

k 5 x1
m(]x1)

k11 andwm
k

5 x2
m(]x2)

k11, with k a non-negative integer, clearly map solutions of Eq.~3.17! into other solu-
tions; they generate the algebraW11` %W11`,

19 which is the symmetry algebra of Eq.~3.17!.
In the discrete case~3.16!, similar conclusions can be drawn. In fact, the elements

Vm
k 5s1

mS x1s1
D
m

Tx1
m ~Dx1

2 !k11, Wm
k 5s2

mS x2s2
D
m

Tx2
m ~Dx2

2 !k11 ~3.18!

map solutions of Eq.~3.16! into solutions. Each set of operators$Vm
k % and $Wm

k % generate the
algebraW11`, so that in the discrete case also, the symmetry algebra is the direct sum
W11` %W11`.

The situation is different if one abandons ‘‘light-cone’’ coordinates and considers the equation

@~D t
2!22~Dx

2!2#w~ t,x!50. ~3.19!

It still has an infinite number of symmetry operators; however, their general expression is hard to
find. They involve polynomials of arbitrary degree int andx, Tt andTx . The simplest examples
arePt5D t

2, Px5Dx
2, M5tD t

11xDx
1, andG5tDx

2Tt1xD t
2Tx . This situation is in contrast with
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the case of the equation [] t
22]x

2]w50, which has conformal invariance in the coordinatest1x
and t2x. This phenomenon is a clear consequence of the fact that the coordinate transformation
(t,x) → (t1x,t2x) does not preserve the uniform two-dimensional lattice. Light-cone coordi-
nates seem more appropriate in the study of the symmetry properties of finite-difference equations,
and for this reason in the following we shall work with them whenever possible.

IV. THE HEAT EQUATION IN TWO DIMENSIONS

In this section we shall study the symmetries of the following finite-difference equation in the
two discrete coordinatest andx:

@D t
22~Dx

2!2#w~ t,x!50. ~4.1!

We shall denote byt ands the lattice spacings in the timet and spacex directions, so thatt/t and
x/s are integers. In the limitt, s→ 0 this equation becomes the standard heat equation in two
dimensions: [] t2]x

2]w50. Other discrete generalizations of the heat equation have been studied in
Refs. 20.

The symmetry operators of Eq.~4.1! can be determined by using the method illustrated in the
previous section. These are

Pt5D t
2 , ~4.2a!

Px5Dx
2 , ~4.2b!

D52tD t
11xDx

12 1
2Tx11, ~4.2c!

G52tDx
2Tt1S x2

s

2 DTx , ~4.2d!

K5t2D t
1Tt1txDx

1Tt1
x2

4
Tx
21tS Tt22 1

2
TtTxD2

s2

16
Tx
2 ~4.2e!

together with the identityI . In the continuum limit,t, s→ 0, these operators become

Pt → ] t , Px → ]x , D → 2t] t1x]x1
1
2,

~4.3!

G → 2t]x1x, K → t2] t1tx]x1
x2

4
1

t

2

and one thus recovers the usual generators of the Schro¨dinger algebra, the symmetry algebra of the
classical heat equation.4

It is remarkable that the finite-difference operators~4.2! realize exactly the same Schro¨dinger
algebra with commutation relations

@Pt , G#52Px , @Px , G#5I ,

@Pt , D#52Pt , @Px , D#5Px ,

@Pt , K#5D, @Px , K#5G/2,

@D, G#5G, @K, G#50,

@D, K#52K, @Pt , Px#50.

~4.4!
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Since Eq.~4.1! is an evolution equation, one can check these relations att50. In fact, any solution
of Eq. ~4.1! can be written in the formw(t,x)5U(t)w(0,x), with the time evolution operator
U(t) and its inverseU(t)21 formally given by

U~ t !5„12t~Dx
2!2…2t/t, U~ t !215„12t~Dx

2!2…t/t. ~4.5!

On the space of solutions, all generatorsX(t) satisfy

X~ t !5U~ t !X~0!U~ t !21 ~4.6!

provided one replacesDt
2 by ~Dx

2!2 in the expressions~4.2!. The relations~4.4! are invariant under
the conjugation~4.6! and therefore they can be most easily determined att50.

The symmetry algebra~4.4! can now be exploited to find solutions of Eq.~4.1! by requiring
these solutions to be eigenfunctions of one of the symmetry generators. It is readily seen that the
functions

wl~ t,x!5~12l2t!2t/t~11ls!2x/s ~4.7!

are the solutions of Eq.~4.1! that diagonalizePt andPx , for any value of the complex parameter
l. Indeed

Ptwl~ t,x!5l2wl~ t,x!, Pxwl~ t,x!5lwl~ t,x!. ~4.8!

Another set of solutions is obtained by looking for the eigenfunctionswn(t,x) of D, with
eigenvaluen11/2, n a non-negative integer. Their explicit expression is

wn~ t,x!5sn (
k50

nn/2m
~2n!2k
k! S tt D

k
S xs2

1

2D
n22k

S t

s2D k, ~4.9!

wherevxb stands for the integer part ofx. In the continuum limit, the functionswn(t,x) tend to
solutions of the heat equation where the variablest andx/A2t are separated. We have

lim
t,s→0

wn~ t,x!5~2t !n/2HnS x

2A2t
D , ~4.10!

with Hn the classical Hermite polynomials.
16 One can thus consider the function~4.9! as a suitable

discrete generalization of these polynomials.
As in the continuum case, many properties of the functionwn(t,x) can now be algebraically

determined. First, notice that

Gnw0~ t,x!5wn~ t,x!, ~4.11!

where w0(t,x)51. Then, using the symmetry algebra~4.4!, the following formulas are easily
obtained:

Ptwn5n~n21!wn22 , ~4.12a!

Pxwn5nwn21 , ~4.12b!

Dwn5~n1 1
2!wn , ~4.12c!

Gwn5wn11 , ~4.12d!
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Kwn5
1
4wn12 . ~4.12e!

From Eqs.~4.12d! and~4.2d! we straightforwardly find thatwn(t,x) obeys a four-term recurrence
relation

wn11~ t,x!2sS n1
x

s
2
1

2Dwn~ t,x!2tnS n12
t

t
21Dwn21~ t,x!

1tsn~n21!S n1
x

s
2
1

2Dwn22~ t,x!50. ~4.13!

A generating relation for the functionwn can be obtained by expanding the solutions~4.7! of
the discrete-heat equation~4.1! in terms of the solutions~4.9! following the steps described in the
previous section~for details, see Ref. 20!. Instead, we shall adopt here a different strategy and start
by computing the action of the operatorelG, with l a complex parameter, on the function
w0(t,x)51. Writing G5A1B, A52tDx

2Tt , and B5(x2s/2)Tx , and using the classical
Campbell–Hausdorff formula,eAeB5eA1B1[A,B]/21•••, one finds

elG
•15els~x/s21/2!Txel2tTt

•1. ~4.14!

The two exponential operators on the right hand side~rhs! act separately on 1; these actions can be
easily expressed in terms of discrete exponentials. One finds

elG
•15~12l2t!2t/t~12ls!1/22x/s. ~4.15!

Expanding in series the exponential function and using Eq.~4.11!, one also sees that

elG
•15 (

n50

`
ln

n!
wn~ t,x!. ~4.16!

Putting together the results~4.15! and ~4.16!, one finally obtains

~12l2t!2t/t~12ls!1/22x/s5 (
n50

`
ln

n!
wn~ t,x!. ~4.17!

In the continuum limit, recalling Eq.~4.10!, this formula reduces to the following generating
relation for the Hermite polynomials16

e2lz2l25 (
n50

`
ln

n!
Hn~z!. ~4.18!

V. THE HEAT EQUATION IN THREE DIMENSIONS

As explained at the end of Sec. III, it is convenient to choose ‘‘light-cone’’ coordinates in the
spatial directions, and to consider the following finite-difference version of the three-dimensional
heat equation

@D t
22Dx1

2 Dx2
2 #w~ t,x1 ,x2!50. ~5.1!

In the continuum limit, where the lattice spacings go to zero

t,s1 ,s2 → 0; ~5.2!
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this equation reduces to@] t 2 ]x1]x2#w(t,x1 ,x2) 5 0.
Solutions of Eq.~5.1! in terms of the discrete exponentials~2.7! are easily found. Indeed, the

functions

w~ t,x1 ,x2 ;a,b1 ,b2!5~12at!2t/t~11b1s1!
2x1 /s1~11b2s2!

2x2 /s2 ~5.3!

satisfy Eq. ~5.1!, provided the three complex parametersa, b1, and b2 obey the constraint:
a5b1b2. These solutions are eigenfunctions ofDt

2, Dx1
2 , andDx2

2 , and these operators are there-

fore symmetries of Eq.~5.1!. However, this equation possesses five more nontrivial symmetries;
indeed, one can check that the complete list of symmetry operators is

Pt5D t
2 , P15Dx1

2 , P25Dx2
2 , M5x1Dx1

1 2x2Dx2
1 ,

D52tD t
11x1Dx1

1 1x2Dx2
1 11, G15tDx2

2Tt1x1Tx1, ~5.4!

G25tDx1
2Tt1x2Tx2, K5t2D t

1Tt1t~x1Dx1
1 1x2Dx2

1 !Tt1x1x2Tx1Tx21tTt
2

and the identityI . In the continuum limit~5.2!, these operators reduce to the generators of the
nine-dimensional Schro¨dinger algebra, the symmetry algebra of the classical heat equation in three
dimensions4

Pt → ] t , P1 → ]x1, P2 → ]x2, M → x1]x12x2]x2, ~5.5!

D → 2t] t1x1]x11x2]x211, G1 → t]x21x1 , ~5.5!

G2 → t]x11x2 , K → t2] t1t~x1]x11x2]x2!1x1x21t

and the identityI .
Both the finite-difference operators~5.4! and the differential operators in Eq.~5.5! realize the

commutation relations of the three-dimensional Schro¨dinger algebra~i51,2!:

@P1 , G1#5I , @P2 , G1#50, @Pt , G1#5P2 ,

@P1 , G2#50, @P2 , G2#5I , @Pt , G2#5P1 ,

@P1 , M #5P1 , @P2 , M #52P2 , @Pt , M #50,

@P1 , D#5P1 , @P2 , D#5P2 , @Pt , D#52Pt ,

@P1 , K#5G2 , @P2 , K#5G1 , @Pt , K#5D,

@D, G1#5G1 , @D, G2#5G2 , @D, K#52K,

@M , G1#5G1 , @M , G2#52G2 , @M , K#50,

@G1 , G2#50, @P1 , P2#50, @Pt ,Pi #50,

@Gi , K#50, @M , D#50.

~5.6!

In the case of the operators~5.4!, these relations are easily verified att50, by using the formula
~4.6!,withU(t)5 (12 tDx1

2 Dx2
2 )2t/t.
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One can now use these symmetries to obtain new solutions of Eq.~5.1!, with specific trans-
formation properties under the action of the operators~5.4!. More specifically, one can check that
the following functions labeled by the complex parametersm andn:

wm,n~ t,x1 ,x2!5tns1
m(
k50

`
~21!k~2n!k
k! ~m11!k

S s1s2

t D kS tt D
n2k

S x1s1
D
k1m

S x2s2
D
k

~5.7!

satisfy Eq.~5.1! and are moreover eigenfunctions of the operatorsM andD with eigenvaluesm
and 2n1m11, respectively. They can be rewritten in terms of the generalized hypergeometric
function 3F2

wm,n~ t,x1 ,x2!5tnS tt D
n

s1
mS x1s1

D
m

3F2F2n, m1x1 /s1 , x2 /s2

12n2t/t, m11;
s1s2

t G . ~5.8!

When the parametern is a positive integer, the function3F2 truncates and becomes a hypergeo-
metric polynomial of degreen. For m a negative integer and for unit lattice spacings,
t5s15s251, this function is identified as a classical Racah polynomial.

In the continuum limit~5.2!, one finds

wm,n~ t,x1 ,x2! → tnx1
m
1F1~2n;m11;2x1x2 /t !. ~5.9!

The1F1 hypergeometric function is the Laguerre polynomialLn
(m)(2x1x2/t), and one thus recov-

ers with Eq.~5.9!, the solutions of the continuum heat equation separated in the homogeneous
variablex1x2/t. One can therefore consider that the functions in Eqs.~5.7! and ~5.8! represent
discrete generalizations of the classical Laguerre polynomials.

From the explicit expression of the generators~5.4!, it is clear that each one of these operators
maps the functionswm,n into themselves. From this observation and the commutation relations
~5.6!, one can derive the following identities:

Ptwm,n5nwm,n21 , ~5.10a!

P1wm,n5mwm21,n , ~5.10b!

P2wm,n5
n

m11
wm11,n21 , ~5.10c!

Mwm,n5mwm,n , ~5.10d!

Dwm,n5~m12n11!wm,n , ~5.10e!

G1wm,n5
m1n11

m11
wm11,n , ~5.10f!

G2wm,n5mwm21,n11 , ~5.10g!

Kwm,n5~m1n11!wm,n11 . ~5.10h!

One can easily check that this provides a model for the three-dimensional Schro¨dinger algebra and
that the commutation relations~5.6! are verified.
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Further properties of the solutions~5.7! can be obtained by considering the action of the
operatorelG2, with l a complex parameter, on the special solutionswm,0(t,x1 ,x2)[s1

m(x1/s1)m .
Recalling the explicit expression ofG2 given in Eq. ~5.4! and using again the Campbell–
Hausdorff formula, one can write

elG2wm,05eltDx1

2Tt
•wm,0e

lx2Tx2•1. ~5.11!

In the right-hand side, the action of the last exponential can be easily resummed to find
(1 2 ls2)

2x2 /s2. On the other hand, the action of the first exponential can be expressed in terms
of a 2F1 hypergeometric function

eltDx1

2Ttwm,05s1
m~x1 /s1!m 2F1S 2m,

t

t
;12m2

x1
s1

;
lt

s1
D . ~5.12!

We shall takem to be a positive integer; in this case Eq.~5.12! is a Jacobi polynomial of orderm
in the variable 122lt /s1. Further, by iterating Eq.~5.10g!, one sees that

G2
nwm,05~21!n~2m!nwm2n,n . ~5.13!

Putting together these results, one finally finds the following identity:

s1
m~x1 /s1!m~12ls2!

2x2 /s2
2F1S 2m,

t

t
;12m2

x1
s1

;
lt

s1
D5 (

n50

` Smn Dlnwm2n,n~ t,x1 ,x2!,

~5.14!

where (n
m) is the standard binomial coefficient. In the continuum limit, this relation reduces to the

classical generating formula for the Laguerre polynomials

~11l!me2lz5 (
n50

`

lnLn
~m2n!~z!. ~5.15!

Before concluding this section, let us mention that one can diagonalize the symmetry operator
Pt by writing

w~ t,x1 ,x2!5~12v2t!2t/tc~x1 ,x2!, ~5.16!

wherec is any solution of the discrete Helmholtz equation considered in Sec. III

@Dx1
2 Dx2

2 2v2#c~x1 ,x2!50. ~5.17!

In particular, recalling the solutionwn of this equation, given in Eq.~3.10!, one sees that

w~ t,x1 ,x2!5~12v2t!2t/t
~vs2!

n

G~n11! S x2s2
D

n
2F1S x1s1

,
x2
s2

1n;n11;v2s1s2D ~5.18!

satisfies Eq.~5.1!. This observation is nontrivial since any symmetry operator of Eq.~5.1! will
map Eq.~5.18! into another solution. By choosing appropriate symmetries and solutionsc of Eq.
~5.17!, one can construct solutions of Eq.~5.1! satisfying various boundary conditions.

VI. THE WAVE EQUATION IN THREE DIMENSIONS

The discrete generalization of the three-dimensional wave equation that we shall consider in
this section is
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@~D t
2!22Dx1

2 Dx2
2 #w~ t,x1 ,x2!50. ~6.1!

We keep the notations of the previous section for the coordinates and lattice spacings; in particular,
we use ‘‘light-cone’’-like variables for the spatial coordinates. In the continuum limit~5.2!, Eq.
~6.1!becomes@] t

22 ]x1]x2#w 5 0.
Solutions of Eq.~6.1! in terms of discrete exponentials are readily found

w~ t,x1 ,x2 ;a,b1 ,b2!5~11at!2t/t~11b1s1!
2x1 /s1~11b2s2!

2x2 /s2, ~6.2!

with a25b1b2. The symmetry operators of Eq.~6.1! that transform solutions~6.2! into other
solutions are

P15Dx1
2 , P25Dx2

2 , Pt5D t
2 , M5x1Dx1

1 2x2Dx2
1 ,

D5tD t
11x1Dx1

1 1x2Dx2
1 2 1

2Tt11,

G15S t2 t

2DDx2
2Tt12x1D t

2Tx1,

G25S t2 t

2DDx1
2Tt12x2D t

2Tx2, ~6.3!

K15S t22 t2

4 DDx2
2Tt

214x1
2Dx1

1Tx114tx1D t
1Tx112x1~2Tx12Tt!Tx1,

K25S t22 t2

4 DDx1
2Tt

214x2
2Dx2

1Tx214tx2D t
1Tx212x2~2Tx22Tt!Tx2,

Kt5t2D t
1Tt12S t2 t

2D ~x1Dx1
1 1x2Dx2

1 !Tt14x1x2D t
2Tx1Tx21tTt2

t

4
~Tt1Tt

2!.

In the continuum limit they tend to the symmetry generators of the classical three-dimensional
wave equation4

P1 → ]x1, P2 → ]x2, Pt → ] t , M → x1]x12x2]x2,

D → t] t1x1]x11x2]x211/2, G1 → t]x212x1] t ,

G2 → t]x112x2] t , K1 → t2]x214x1
2]x114tx1] t12x1 , ~6.4!

K2 → t2]x114x2
2]x214tx2] t12x2 ,

Kt → ~ t214x1x2!] t12t~x1]x11x2]x2!1t.

To determine the commutation relations that the operators~6.3! obey, one cannot proceed here
as in the previous two sections. Equation~6.1! is not a~discrete! evolution equation int; one has
to keept Þ 0 and compute the various commutators directly. After a lengthy calculation, one finds
that the nonvanishing commutators are~i51,2!

@Pt , G1#5P2 , @Pi , Gi #52Pt , @G1 , G2#52M ,
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@Pt , G2#5P1 , @P1 , K1#54~D1M !, @P2 , K2#54~D2M ,

@Pt , D#5Pt , @P1 , Kt#52G2 , @P2 , Kt#52G1 ,

@Pt , Ki #52Gi , @P1 , M #5P1 , @P2 , M #52P2 ,

@Pt , Kt#52D, @Pi , D#5Pi , @G1 , M #52G1 ,

@G1 , K2#52Kt , @G2 , K1#52Kt , @G2 , M #5G2 ,

@Gi , Kt#5Ki , @M , K1#5K1 , @M , K2#52K2 ,

@D, Ki #5Ki , @D, Kt#5Kt .

~6.5!

This coincides with the commutation relations realized by the symmetry operators~6.4! of the
classical wave equation. They define the Lie algebra so~5!. To prove this, it is sufficient to
construct from the generators~6.3!, the elements of the corresponding Chevalley basis. These are
given by the following complex combinations:

e15G1 , f 15G2 , h15M ,
~6.6!

e25
i

&

P1 , f 25
i

&

K1 , h252~M1D !.

Indeed, one can check that these operators satisfy the commutation relations

@ei , f j #5d i j hi , @hi , ej #5ai j ej ,
~6.7!

@hi , hj #50, @hi , f j #2ai j f j

and the Serre relations

(
m50

12ai j

~21!mS 12ai j
m Dei12ai j2mejei

m , i Þ j , ~6.8a!

(
m50

12ai j

~21!mS 12ai j
m D f i12ai j2mf j f i

m , i Þ j ; ~6.8b!

where ai j is the 232 Cartan matrix for the algebra so~5!, with a115a2252, a12522, and
a21521.

We shall now study of the solutions of Eq.~6.1! that are at the same time eigenfunctions of the
operatorsM andD, with eigenvalues2m2n and 1/22m, respectively; here,m and n are in
general complex parameters, but we shall be mainly interested in the casen a nonnegative integer.
These solutions have the form

wm,n~ t,x1 ,x2!5tns1
2m2n (

k50

nn/2m
~21!k~m!n2k

k! ~n22k!! S s1s2

t2 D kS tt2
1

2D
n22k

S x1s1
D
k2m2n

S x2s2
D
k

.

~6.9!

For n even, orn odd, they can be expressed in terms of two different hypergeometric functions

4F3. In the continuum limit, these solutions tend to solutions of the classical wave equation that
are separated in terms of the homogeneous variablex1x2/t

2. They involve the ultraspherical or
Gegenbauer classical polynomialsCn

(m) ~Ref. 16!
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wm,n~ t,x1 ,x2! → tnx1
2m2nS 2

x1x2
t2 D n/2Cn

~m!F12 S 2
t2

x1x2
D 1/2G . ~6.10!

The action of the symmetry operators~6.3! on the solutionswm,n(t,x1 ,x2) can be computed
by using the algebra~6.5!. One explicitly finds

Ptwm,n5mwm11,n21 , P1wm,n52mwm11,n , P2wm,n52mwm11,n22 ,

Mwm,n52~m1n!wm,n , Dwm,n5~1/22m!wm,n ,

G1wm,n5~2m1n21!wm,n21 , G2wm,n52~n11!wm,n11 , ~6.11!

K1wm,n52
~2m1n21!~2m1n22!

~m21!
wm21,n ,

K2wm,n52
~n11!~n12!

~m21!
wm21,n12 ,

Ktwm,n52
~n11!~2m1n21!

~m21!
wm21,n11 .

One can check that these relations define a representation of the so~5! algebra~6.5!.
Finally, let us observe that an interesting class of solutions of Eq.~6.1! is provided by func-

tions of the form

w~ t,x1 ,x2!5~12s2!
2x2 /s2c~ t,x1!. ~6.12!

Indeed, the function~6.12! satisfies Eq.~6.1! if c solves

@Dx1
2 2~D t

2!2#c~ t,x1!50. ~6.13!

By letting

~ t,x1! → ~x,t ! ~6.14!

one recognizes in Eq.~6.13! the two-dimensional discrete heat equation discussed in Sec. IV. Of
the symmetries~6.3!, only Pt , P1, M1D, G1, andK1 survives after the dimensional reduction of
Eq. ~6.1! to Eq. ~6.13!. Under the conjugation

X → ~12s2!
x2 /s2X~12s2!

2x2 /s2 ~6.15!

the explicit expressions of these symmetry operators become identical to those given in Eq.~4.2!,
provided the redefinition~6.14! is taken into account. One can now express a solution of Eq.~6.1!
in terms of the discrete polynomials of Eq.~4.9!. Recalling their explicit expression, one imme-
diately sees from Eq.~6.12! that

w~ t,x1 ,x2!5~12l2s2!
2x2 /s2~lt!n (

k50

nn/2m
~2n!2k
k! S x1s1

D
k
S tt2

1

2D
n22k

S s1

l2t2D
k

~6.16!

satisfies Eq.~6.1!, for any complexl. This solution is a simultaneous eigenfunction of the sym-
metry operatorsP2 andM1D, with eigenvaluesl2 andn11/2, respectively.
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VII. THE WAVE EQUATION IN FOUR DIMENSIONS

In this section, we shall move to four dimensions and study the following discrete version of
the wave equation, using complex light-cone coordinates:

@Dx1
2 Dx2

2 2Dx3
2 Dx4

2 #w~x1 ,x2 ,x3 ,x4!50. ~7.1!

In the limit in which all the lattice spacingssi , i51,2,3,4, go to zero, this equation reduces to
@]x1]x2 2 ]x3]x4#w 5 0. Equation~7.1! admits the following 15 symmetry operators:

P15Dx1
2 , P25Dx2

2 , P35Dx3
2 , P45Dx4

2 ,

M15x1Dx1
1 1x4Dx4

1 , M25x2Dx2
1 1x4Dx4

1 , M35x3Dx3
1 2x4Dx4

1 ,

G15x1Dx3
2Tx11x4Dx2

2Tx4, G25x1Dx4
2Tx11x3Dx2

2Tx3,

G35x2Dx3
2Tx21x4Dx1

2Tx4, G45x2Dx4
2Tx21x3Dx1

2Tx3,

~7.2!
K15x1x2Dx4

2Tx1Tx21x1x3Dx1
1Tx31x2x3Dx2

1Tx31x3
2Dx3

1Tx31x3Tx3
2 ,

K25x1x2Dx3
2Tx1Tx21x1x4Dx1

1Tx41x2x4Dx2
1Tx41x4

2Dx4
1Tx41x4Tx4

2 ,

K35x3x4Dx1
2Tx3Tx41x2x3Dx3

1Tx21x2x4Dx4
1Tx21x2

2Dx2
1Tx21x2Tx2

2 ,

K45x3x4Dx2
2Tx3Tx41x1x3Dx3

1Tx11x1x4Dx4
1Tx11x1

2Dx1
1Tx11x1Tx1

2 .

In the continuum limit these operators become

Pi → ]xi, i51,2,3,4,

M1 → x1]x11x4]x4, M2 → x2]x21x4]x4, M3→x3]x32x4]x4,

G1 → x1]x31x4]x2, G2 → x1]x41x3]x2,

G3 → x2]x31x4]x1, G4 → x2]x41x3]x1,

~7.3!
K1 → x1x2]x41x1x3]x11x2x3]x21x3

2]x31x3 ,

K2 → x1x2]x31x1x4]x11x2x4]x21x4
2]x41x4 ,

K3 → x3x4]x11x2x3]x31x2x4]x41x2
2]x21x2 ,

K4 → x3x4]x21x1x3]x31x1x4]x41x1
2]x11x1 .

These elements generates the Lie algebra sl~4!, the symmetry algebra of the continuum wave
equation in four dimensions. The same algebra is also the symmetry algebra of the finite-
difference equation~7.1!. Indeed, it is easy to construct a Chevalley basis for sl~4! from the
operators~7.2!:

e15G1 , e25 iP1 , e35G2 , f 15G4 , f 25 iK 4 , f 35G3 ,
~7.4!
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h15M12M22M3 , h252~2M11M311!, h35M12M21M3 .

One can check that these elements obey the commutation relations~6.7! and ~6.8!, where in the
present case, the 333 Cartan matrixai j has for nonzero entriesaii52 andaii61521.

The solutions of Eq.~7.1! that are simultaneously eigenfunctions of the translation operators
Pi involve once more the discrete exponentials~2.7!, i51,2,3,4

w~xi ;a i !5~11a1s1!
2x1 /s1~11a2s2!

2x2 /s2~11a3s3!
2x3 /s3~11a4s4!

2x4 /s4. ~7.5!

Other interesting solutions can be found by diagonalizing the operatorsM1, M2, andM3. The
following functions:

w l ,m,n~xi !5s1
2 ls2

2ms3
n21(

k50

`
~ l !k~m!k
k! ~n!k

S s3s4

s1s2
D kS x1s1

D
2 l2k

S x2s2
D

2m2k
S x3s3

D
n1k21

S x4s4
D
k
~7.6!

satisfy Eq.~7.1! and are at the same time eigenfunctions ofM1, M2, andM3 with complex
eigenvalues2l , 2m, andn21, respectively. One can rewritewl ,m,n more conveniently in terms of

4F3 hypergeometric functions

w l ,m,n~xi !5s1
2 l S x1s1

D
2 l

s2
2mS x2s2

D
2m

s1
n21S x3s3

D
n21

3 4F3F l ,n, m,
l2x1 /s111,

x3 /s31n21,
m2x2 /s211

x4 /s4

;
s3s4

s1s2
G . ~7.7!

In the continuum limit,si → 0, the 4F3 function becomes the hypergeometric function2F1 of
Gauss, and one has

w l ,m,n~xi ! → x1
2 lx2

2mx3
n21

2F1S l ,m;n; x3x4x1x2
D . ~7.8!

This is the solution of the classical wave equation studied in Refs. 21 and 22.
The solutions~7.7! of the discrete wave equation naturally provide a sl~4!-module. The action

of the symmetry operators~7.2! on these functions can be computed using the commutation
relations of the algebra sl~4!. Explicitly, one finds

P1w l ,m,n52 lw l11,m,n ,

P2w l ,m,n52mw l ,m11,n , P3w l ,m,n5~n21!w l ,m,n21 ,

P4w l ,m,n5
lm

n
w l11,m11,n11 , M1w l ,m,n52 lw l ,m,n , M2w l ,m,n52mw l ,m,n ,

M3w l ,m,n5~n21!w l ,m,n , G1w l ,m,n5~n21!w l21,m,n21 ,
~7.9!

G2w l ,m,n5
m~ l2n!

n
w l ,m11,n11 , G3w l ,m,n5~n21!w l ,m21,n21 ,

G4w l ,m,n5
l ~m2n!

n
w l11,m,n11 , K1w l ,m,n5

~n2 l !~n2m!

n
w l ,m,n11 ,
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K2w l ,m,n5~n21!w l21,m21,n21 , K3w l ,m,n5~n2m!w l ,m21,n , K4w l ,m,n5~n2 l !w l21,m,n .

One can check that this action reproduces the commutation relations that define the Lie algebra
sl~4!; the functions~7.7! therefore constitute a basis for an irreducible representation of this
algebra.

Finally notice that the relations~7.9! can be used to find identities involving the hypergeo-
metric function

F[4F3Fa1 ,b1 ,
a2 ,
b2 ,

a3 ,
b3

a4
; zG . ~7.10!

For example, inserting Eq.~7.7! in the first formula in~7.9!, one obtains

~a12b2!@F~b211!2F#5a1@F~a111;b211!2F#, ~7.11!

whereF(b211) stands for the function~7.10! with the parameterb2 replaced byb211, and
similarly for F(a111;b211). Other more complicated identities can be obtained from the rest of
the relations~7.9!.

VIII. CONCLUDING REMARKS

Symmetry techniques provide some of the most useful methods to analyze and classify solu-
tions of partial differential equations. Separation of variables, in particular, allows to prove many
properties of special functions that are important in applications to physical problems.

In the case of finite-difference equations the corresponding techniques have not been studied
so well, and only partial results are known. Symmetry properties of discrete canonical systems are
studied in Ref. 23. The methods developed there are however limited and difficult to apply to
specific examples. Lie algebras in connection with finite-difference equations are also discussed in
Ref. 24. However, the symmetries considered there are of a generalized form, since they affect the
underlying space–time lattice, which is not kept fixed.

In the case of linear partial equations the situation is clearer. A systematic analysis of the
symmetry properties has been given in Refs. 10 for equations defined on nonuniform exponential
lattices~see also Ref. 25!, while in the present article, we examined the symmetries of difference
equations on uniform rectangular lattices. In the first case, generalized algebraic structures, like
quantum algebras, are needed to describe the underlying symmetry structures, while for equations
on uniform lattices, ordinary Lie algebras appear as symmetry algebras.~In this respect, notice that
realizations of Lie algebras in terms of finite-difference operators have been constructed in Refs.
26 and 27.!

Actually, one finds that the symmetries of the various finite-difference equations we have
analyzed are the same as those of their continuum differential versions. In other words, it appears
that the Lie symmetries of linear partial differential equations are preserved by the process of
discretization.

Although this conclusion might be true only for linear equations, it is nevertheless striking and
can be of great help in applications. We have used this result to find solutions of various finite-
difference equations with specific transformation properties under the action of symmetry opera-
tors. These solutions can be expressed in terms of generalized hypergeometric functions and
reduce to ordinary special functions in the continuum limit. Therefore, they can be considered as
discrete generalizations of these classical functions.

In particular, we have met discrete versions of the classical polynomials of Hermite, Laguerre,
and Gegenbauer, and discrete analogs also of the Bessel functions. Other discrete generalizations
of these special functions have been introduced in the literature,13 as particular solutions of dis-
crete versions of Sturm–Liouville problems in one dimension. However, these functions are of
little use in the study of partial finite-difference equations. As shown by the examples that we have
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examined, it is clear that true separation of variables is not generally allowed on uniform lattices,
so that one cannot reduce the various difference equations to one-dimensional problems.

On the other hand, the discrete functions we have discussed emerge directly as solutions of the
difference equations and should therefore prove important in applications. Furthermore, the sym-
metry algebras can be used to study properties of these functions in analogy with the classical
special functions. We have indeed derived in this way various formulas and identities for these
discrete functions.

We would like to point out that these formulas and identities are just a few examples of the
many properties that can be algebraically derived. Indeed, since the discrete functions we dis-
cussed are directly connected with classical Lie algebras, a more systematic study of their prop-
erties can be carried out using standard Lie group techniques, in strict analogy with what is done
for the usual special functions. Further investigations along these lines are presently under devel-
opment and will be reported elsewhere.
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