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RIEMANNIAN GEOMETRY

V. V. Trofimov and A. T. Fomenko UDC 514.764.2

Introduction

In recent years, the role of geometric methods in mathematics as well as in a number of fields of
natural science has grown considerably. This is related to the following: (a) geometric methods allow
us to study various phenomena “in the large,” for large values of certain parameters; (b) the geometric
language is very convenient for describing many phenomena; various mathematical relationships have
been successfully described and have obtained a beautiful qualitative explanation. As an example, we
present connection theory in principal bundles. Different variants of field theory are described in its terms.
Riemannian geometry is also applicable in general relativity.

1. Historical remarks. In the eighteenth to nineteenth centuries, the historical development of the
foundations of Riemannian geometry was considerably determined by the needs of applied problems
from mechanics, physics, and engineering. We give only one example. After the age of great geographical
discoveries (the period from the middle of the fifteenth century up to the middle of the seventeenth century)
followed a time for creating sharp geographical maps. In this connection, there arose the mathematical
problem of constructing planar maps that were sufficiently convenient for use. This purely practical
need became one of the problems that leds to the creation of an important field of modern mathematics,
Riemannian geometry, which deeply influenced the development of mathematics and its applications.

An important reference point in the development of new ideas in geometry was the work of
Lobachevskii on the foundations of geometry and the work of Gauss on surface theory. On February
11(23) of 1826, Professor Nikolai Ivanovich Lobachevskii of Kazan’ University gave a report, Short Pre-
sentation of the Foundations of Geometry, at a session of the Department of Physics and Mathematics.
This report became a turning point in the history of the development of geometry. The first publication
of Lobachevskii, which is devoted to the foundations of geometry, appeared in 1829–1830. Independently
of Lobachevskii, the work of the Hungarian mathematician Janos Bolyai containing similar results was
published in 1832.

Later on, when the manuscript legacy of the great mathematician Gauss was examined, it became
known that Gauss obtained the same conclusion as Lobachevskii and Bolyai, but he did not publish these
results.

It was F. Klein who in 1879 solved the mathematical problem on the possibility of the emergence of
logical contradictions in the scheme proposed by Lobachevskii. He showed that if there are no contradic-
tions in the Euclidean scheme, then there are no contradictions in the Lobachevskii scheme. Moreover,
Beltrami showed that the geometry of geodesics coincides with Lobachevskii’s plane geometry on surfaces
of constant negative curvature.

In 1828, Gauss published a remarkable work on differential geometry of surfaces, General Studies
on Curved Surfaces, which is closely related to the geodesic problems he dealt with at that time. Gauss
developed the idea of the so-called “intrinsic” geometry, which was completely new for that time.

Gauss’ idea on the “intrinsic” geometry of a surface was developed further by Riemann. He came
to consider an object that is given by the analytic machinery by Gauss, the first fundamental form,
independently, not starting from a surface given in the Euclidean space. Such an object is now called
a two-dimensional Riemannian manifold. Some of these two-dimensional manifolds can be realized as
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surfaces in the three-dimensional Euclidean space. In this case, Gauss’ theory is applicable for them.
Other two-dimensional Riemannian manifolds admit a realization as a surface in the three-dimensional
space only locally, which only complicates the general theory.

The generalization of the ideas of Lobachevskii and Gauss to the n-dimensional case was done by
Riemann in his famous lecture On Hypotheses Lying in the Foundations of Geometry, which he gave
in 1854 in Göttingen. Riemann gave a precise general definition of geometry, which is now known as
Riemannian.

Finally, in the works of Ricci during 1887–1893, and also in his joint work with Levi-Civita written
in 1901, the technique of covariant differentiation was elaborated, and the foundations of tensor analysis
were laid.

In 1918, G. Weyl introduced the concept of an affine connection space. At the same time, E. Cartan
introduced new differential-geometric ideas. The described period of development of Riemannian geometry
was summarized in [55].

The next period in the development of Riemannian geometry is related to topology. There arose new
problems on the connections of geometric properties of manifolds with their topological structure. The
main results proved before 1970 are contained in [71].

The last period in the development of Riemannian geometry can conditionally be characterized by
the fact that earlier one studied general differential operators on simple manifolds, and mathematicians
in topology and geometry dealt with simple operators on general manifolds, but now, in order to attain
considerable progress in Riemannian geometry, we need to use general differential operators on general
manifolds. As an example, we mention the progress in studying manifolds of positive scalar curvature.

2. Problems of Riemannian geometry. The subject of Riemannian geometry is a Riemannian
metric on manifolds. Various geometrical concepts and constructions are related to this object: the affine
connection, parallel translation, geodesics, and curvature (its different variants). The general problem of
Riemannian geometry is studying the relations between these objects and also their connection to other
fields of mathematics, for example, with topology, probability theory, etc. We consider in detail some
of the main problems of Riemannian geometry. We focus only on the following three problems in this
review.

(a) One of the main problems of Riemannian geometry is the problem of studying the behavior of
geodesics on Riemannian manifolds. To understand this, it suffices to say that Euclidean geometry is the
geometry of the simplest Riemannian manifold, the three-dimensional Euclidean space. Lobachevskii’s
plane geometry is realized as the geometry of geodesics on the Beltrami sphere. In modern treatment
of geometry, we can highlight three aspects in studying geodesics on Riemannian manifolds. First, we
consider the problems on existence of one or many closed geodesics on a Riemannian manifold. There
are several approaches to the solution of this problem: the Lyusternik–Shnirel’man theory and the Morse
theory. The second aspect is related to the study and classification of manifolds all of whose geodesics
are closed. Finally, geodesic flows that can be integrated in one sense or another are studied.

We present three important problems of the geometry of geodesics. The central problem related to the
studying of geodesics on a Riemannian manifold is to prove that there are infinitely many closed geodesics
on any compact Riemannian manifold. This is one of the oldest problems of Riemannian geometry.

A Riemannian manifold is called a Blaschke manifold if there exists l > 0 such that for any point
m ∈ M , the exponential mapping exp : Dm → M of the disk Dm of radius l into the manifold M is
such that exp |intDm is an embedding and exp |∂Dm is a bundle into r-dimensional spheres for a certain
r. The Blascke conjecture says that any Blaschke manifold is either the sphere Sn, or the n-dimensional
real projective space RPn, or the n-dimensional complex projective space CPn, or the n-dimensional
quaternion projective space HPn, or the projective Cayley plane CaP 2.

Lyusternik and Shnirel’man showed that there are at least three geometrically distinct closed
geodesics on a manifold homeomorphic to the sphere S2. It is required to give a bound on the num-
ber of geometrically distinct closed geodesics on a manifold diffeomorphic to the n-dimensional sphere Sn.
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(b) An important characteristic of a Riemannian manifold is its curvature, and one of the central
problems is to reveal to what extent the topology of a manifold depends on its curvature. In other words,
how the local properties of Riemannian manifolds influence their structure as a whole. This problem also
arises in modern mathematical physics, since in real physical experiments, we can study only a bounded
domain of our space. In the framework of the same problem, we can ask to what extent is a metric
determined by its curvature. In dimension n ≥ 3, the metric is, in general, completely determined by its
curvature tensor (if there are no pieces of constant curvature). For n = 2, this is no longer true (for this,
see [90,116]). Spaces of constant curvature are also determined by their curvature tensor.

In the problem of describing of Riemannian manifolds in terms of curvature, an important role is
played by estimates of the complete curvature tensor, sectional curvatures, etc. In particular, one obtains
from them the classification theorems for Riemannian manifolds according to their curvature.

So, the problem is to find those restrictions on the curvature of Riemannian manifolds that allow us
to completely describe the topology and the metric of manifolds. For example, let the sectional curvature
Kσ of a Riemannian manifold M be constant: Kσ = const = c with respect to any two-dimensional
direction σ. If c > 0, then the Riemannian manifold M is the quotient Sn/Γ of the sphere Sn by the
group Γ with discrete action on the sphere Sn; if c = 0, then M is the quotient Rn/Γ of the Euclidean
space Rn by the group Γ with discrete action on Rn; if c < 0, then M is the quotient Hn/Γ of the
Lobachevskii space Hn by the group Γ with discrete action on Hn.

The next problem arising in the framework of studying the relations between the curvature and
the topology can be stated as follows: what restrictions on the curvature of a Riemannian manifold are
imposed by its topology? In connection with the problem of describing the topological classification
of Riemannian manifolds, there arises the problem on the finiteness of topological types of Riemannian
manifolds under various restrictions on curvatures (the complete Riemannian tensor, sectional curvatures,
etc.).

In Riemannian geometry, we can highlight conditions that allow us to describe not only the topological
type of a Riemannian manifold but also its metric structure. For example, if sectional curvatures Kσ of a
Riemannian manifold M satisfy the inequality 1

4 ≤ Kσ ≤ 1, then M is either homeomorphic to the sphere
Sn or isometric to the complex projective space CPn with the Fubini metric.

In considering the problem on the relation between the topology and curvature, we highlight sepa-
rately the following four cases: the study of manifolds of positive, nonnegative, nonpositive, and negative
sectional curvature; moreover, compact and noncompact manifolds should be considered separately.

(c) The next range of problems is related to the study of specific Riemannian manifolds with rich
automorphism groups. The classical examples of Riemannian manifolds, the sphere Sn, Euclidean space
Rn, and Lobachevskii spaceHn, give examples of Riemannian manifolds that are used as models in proving
various properties of general Riemannian manifolds. The geometry of these spaces has been intensively
studied. The study of spaces such as homogeneous Riemannian manifolds, symmetric spaces, and Kähler
manifolds are divided into separate parts of Riemannian geometry.

3. Methods of Riemannian geometry. The methods of Riemannian geometry include, in particular,
the following ones. First, this is the variational theory of geodesics, the Morse theory. Second, there are
the comparison theorems. Many problems of Riemannian geometry are related to the solution of sets
of partial differential equations. As a rule, sets of partial differential equations arising in geometry are
complicated sets of nonlinear partial differential equations. The main operator that finds applications in
geometric problems is the Laplace operator

∆ =
1
√
g

∑
i,j

∂

∂xi

(
√
ggij

∂

∂xj

)
,

where
∑
i,j

gijdx
idxj is a metric and g = det‖gij‖. Important equations such as the Laplace equation, the

heat equation, and the wave equation are related to this operator.
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An important role is played by the concept of convex sets in Riemannian manifolds in studying spaces
of nonpositive and nonnegative sectional curvature.

4. Content of the review and bibliographical sources. Chapter 1 is devoted to the main concepts of
Riemannian geometry, such as the Riemannian metric, affine connection associated with the Riemannian
metric, parallel translation, geodesics, covariant derivatives, curvature tensor, torsion tensor, isometries,
conformal transformations, and affine transformations.

Chapter 2 contains a review of various properties of geodesics on Riemannian manifolds: the varia-
tional theory of geodesics and the theory of closed geodesics on Riemannian manifolds.

Chapter 3 is devoted to one of the central problems of Riemannian geometry, the relation between
the curvature and topology. We first consider manifolds of constant curvature, and then we separately
study manifolds with various restrictions on the sectional curvature, Ricci curvature, and scalar curvature.
Also, we consider the relation between the volume of Riemannian manifolds and their topology.

Chapter 4 is devoted to a discussion of various properties of Riemannian manifolds with rich auto-
morphism groups. We consider homogeneous and symmetric spaces, Kähler manifolds, and also various
applications of Riemannian geometry.

Because of the lack of space, we certainly cannot consider all modern applications of Riemannian
geometry. We simply mention some of them: the geodesic flow theory on manifolds of negative curvature
and the concepts related to them such as Anosov diffeomorphisms, ergodicity, the Bernoulli property,
scattering of geodesics, the theory of completely integrable geodesic flows on Riemannian manifolds, ex-
plicit finding of geodesics, the theory of volumes of tubular neighborhoods of submanifolds in Riemannian
manifolds, the theory of two-dimensional manifolds of bounded curvature, the geometry of the Laplace
operator, and geometric applications of the Monge–Ampére equation. For the reader’s convenience, we
give a brief reference to the literature where one can find a more detailed discussion of separate problems
related to Riemannian geometry. For geodesic flows on manifolds of negative curvature, see the second vol-
ume of the Encyclopedia of Mathematical Science and also Anosov’s work [9]. For the theory of completely
integrable Hamiltonian flows and, in particular, for completely integrable geodesic flows, see the review
[183] (and also, e.g., [111,114,201,202]). Modern methods of explicitly integrable dynamical systems are
presented in [50, 125], and in the fourth volume of the Encyclopedia of Mathematical Science. Gray’s
works are devoted to the volume theory of tubes in Riemannian manifolds (see, e.g., [144]). The theory
of four-dimensional Riemannian manifolds is presented in [181] in detail (see also [172]). The foundations
of the theory of two-dimensional manifolds of bounded curvature were created by A. D. Aleksandrov in
[4, 5]. On the basis of these works, Aleksandrov and his disciples constructed the intrinsic and external
geometry of various classes of nonregular surfaces. For this, see [4, 5, 12]. For geometric properties of
the Laplace operator, see [19]. A detailed presentation of the geometric properties of the Monge–Ampére
equation and the corresponding differential operator can be found in [11].

There exist several topics that are close to Riemannian geometry in different senses: Riemannian
metrics and connections in bundles and the geometry of pseudo-Riemannian manifolds. In our review,
the brief Sec. 5 of Chap. 4 is devoted to the theory of pseudo-Riemannian manifolds, and the geometry
of bundles is not considered at all. A separate book can be devoted to each of these fields of geometry.

For a general theory of pseudo-Riemannian manifolds, see [16]; the theory of spaces with indefinite
metrics of constant curvature is presented in [213], and the connection between the theory of pseudo-
Riemannian manifolds and relativity theory is presented in [92] (see also, e.g., [154,161]). Modern appli-
cations of Riemannian geometry to pseudo-Riemannian geometry include the solution of the “problem of
the positivity of energy in general relativity” (see [175,176]).

Our presentation is of a two-level nature. The first level of presentation is related to main concepts of
Riemannian geometry, and the corresponding facts are presented from the very beginning. For example,
the first chapter is referred to this level. The second level of presentation is related to more developed
problems of Riemannian geometry, and we assume that the reader possesses a sufficient preliminary
knowledge; for example, in Chap. 3, which is devoted to relations between the topology and curvature
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of Riemannian manifolds, we use freely various topological notions. In presenting facts of the second
level, we use freely (a) simple concepts of the theory of Lie groups and Lie algebras (see, e.g., [30, 48,
101, 158, 160, 188]), such as a Lie group, the Lie algebra of a Lie group, compact semisimple Lie groups,
and homomorphisms; (b) topological concepts such as homotopy groups, homotopy equivalence, space
of type K(π, n), bundles, coverings, cohomology, genus, and degree of mapping (for these concepts, see
[45, 49, 95, 178]); (c) concepts from calculus such as the integral, partition of unity, metric spaces and
their completeness, and differential operators and their symbols (for these concepts, see any sufficiently
complete textbook on calculus).

In what follows, we use everywhere the following abbreviated rule of summation: if the index (sub-
script or superscript) occurs twice in a certain algebraic expression, the summation with respect to this
index is presupposed. In our presentation, we try to use the coordinate method of description of geometric
objects since precisely the coordinate description is used in various mechanical and physical applications
of Riemannian geometry (see, e.g., [177]).

We present certain literature sources devoted to Riemannian geometry. The textbooks: [1, 4, 12, 22,
34, 43, 48, 55, 69, 71, 94, 106, 112, 113, 115, 117, 120, 129, 134, 146, 155, 159, 161, 188, 189, 211, 213, 218]. The
reviews on various fields of Riemannian geometry: [3,19,52,61,82,122,135,153,160,170,182,187,196,203,
216]. Application of Riemannian geometry in relativity theory: [92,117,154,161]; in classical mechanics:
[10, 64, 177, 185, 190]; in electromagnetic theory: [117, 161, 180]. These books and reviews contain the
history of the questions considered and a sufficiently large bibliography. In our work, we do not consider
the history of one concept or another, as a rule.

In conclusion, we collect the notation used in the book, which now is conventional:
R, the field of real numbers,
C, the field of complex numbers,
H, the quaternion division ring,
Z, the group of integers,
Zn, residues modulo n,
Sn, the n-dimensional sphere,
Rn, the n-dimensional Euclidean space,
Hn, the hyperbolic space of dimension n,
RPn, the real projective space of dimension n,
CPn, the complex projective space of dimension n,
O(n), the orthogonal group,
SO(n), the special orthogonal group,
U(n), the unitary group,
SU(n), the special unitary group,
Sp(n), the symplectic group,
SL(r,C), complex matrices of size r × r whose determinant equals 1,
SL(n,R), real matrices of size n× n, whose determinant equals 1,
E(n), the group of motions of the Euclidean space Rn,
so(n), the Lie algebra of the Lie group SO(n),
u(n), the Lie algebra of the Lie group U(n),
su(n), the Lie algebra of the Lie group SU(n),
sp(n), the Lie algebra of the Lie group Sp(n).
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Chapter 1

MAIN CONCEPTS OF RIEMANNIAN GEOMETRY

1. Geometry of Riemannian Manifolds

1.1. Concept of a smooth manifold. We recall some of the main concepts of smooth manifold theory
(a more detailed discussion of these concepts can be found in textbooks on differential geometry; see, e.g.,
[48,134,188]).

1.1.1. The topological structure is a law according to which the passage to the limit is defined on
the space considered. Initially, by topology, one means the study of properties of lines or surfaces that
are preserved under arbitrary transformations not violating the continuity. The term was introduced by
Listing in Preparatory Studies in Topology, where the topology of lines was considered. The topology of
surfaces and higher-dimensional spaces was created by Riemann in Theory of Abelian Functions. The
first axiomatic definition of an abstract topological space was given by Hausdorff in Foundations of Set
Theory.

A topological space is an arbitrary set in which a family of subsets, called open, is highlighted, and,
moreover, this family has the following properties: the union of any collection of open sets is an open set;
the intersection of finitely many open sets is an open set; the empty set and the whole space are open
sets. Any open set containing a given point x is called its neighborhood.

A topological space X is said to be Hausdorff if any two of its points x, y ∈ X (x 
= y) can be
included in disjoint neighborhoods. One says that X has a countable base if any open set is the union of
open sets from a certain countable family.

A mapping f : X1 → X2 of a topological space X1 into a topological space X2 is said to be continuous
if the inverse image of any open set U ⊂ X2 is an open set in X1. A one-to-one mapping f : X1 → X2 is
called a homeomorphism if f as well as f−1 are continuous mappings. The term “homeomorphism” was
introduced by H. Poincaré in Analysis Situs.

Example. The arithmetical space Rn is the set of all possible sequences of n real numbers x1, . . . , xn;
moreover, as open sets, one takes all possible open parallelepipeds of the form ai < xi < bi, 1 ≤ i ≤ n,
and all their possible unions.

A Hausdorff topological space Mn with countable base is called a topological manifold of dimension
n if, for any point x ∈ Mn, there exist a neighborhood V of this point and a homeomorphism h of
this neighborhood onto a certain open set from Rn. By definition, a smooth structure on a topological
manifold Mn consists of a collection {(Vi, hi)}, where Vi is an open set in Mn and hi is a homeomorphism
of the set Vi onto a certain open set of the space Rn; moreover, the following conditions hold:

(1) the collection of sets {Vi} forms an open covering of the manifold Mn;
(2) for any pair (i, j), the mapping hjhi

−1 : hi(Vi ∩ Vj) → Rn is smooth (see Fig. 1);
(3) the collection {(Vi, hi)} is maximal with respect to the above properties.

Obviously, each collection of pairs (Vi, hi) satisfying conditions (1) and (2) can be uniquely com-
plemented up to a collection satisfying conditions (1)–(3). A topological n-dimensional manifold Mn

equipped with a certain smooth structure is called a smooth n-dimensional manifold. Pairs (Vi, hi) are
called coordinate neighborhoods. The coordinates x1, . . . , xn defined in the space Rn and transferred to
Vi via the mapping hi are called local coordinates in the coordinate neighborhood Vi.

The term “manifold” (Mannigfaligkeit) was initially used by B. Riemann in his lecture On Hypotheses
Lying in the Foundations of Geometry in the sense of a higher-dimensional space. H. Poincaré used the
term “manifold” (variété) in Analysis Situs. In the sense used here, this concept was introduced by
L. E. Brauer in Proof of the Invariance of Dimension.

An open set U of a smooth n-dimensional manifold Mn is also a smooth n-dimensional manifold;
namely, the coordinate neighborhoods of the manifold U are the coordinate neighborhoods (V, h) of the
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Fig. 1

manifold Mn with V ⊂ U . Such a smooth structure on U is called a structure induced by the smooth
structure on Mn.

If M1 and M2 are two smooth manifolds, then a certain natural smooth structure is well defined on
the product M1 ×M2.

In the definition of a smooth manifold, instead of the space Rn, one can take the half-space

Rn+ = {(x1, . . . , xn) | xn ≥ 0}.

Then we obtain a manifold with boundary. The set of points for which xn = 0 is called the boundary
∂M of the manifold M . This concept does not depend on the choice of a local coordinate system on the
manifold M .

A mapping ϕ : Mm
1 → Mn

2 of smooth manifolds Mm
1 and Mn

2 is said to be smooth if, for any
coordinate neighborhoods (V, h) and (W,k) of the manifolds Mm

1 and Mn
2 , respectively, the composition

kϕh−1 : h(V ∩ ϕ−1(W )) → Rn

is smooth. Two smooth manifolds Mn
1 and Mn

2 are said to be diffeomorphic if there exists a smooth
homeomorphism f : Mn

1 → Mn
2 such that the inverse homeomorphism f−1 is also smooth. In this case,

the mapping f is called a diffeomorphism. The homeomorphisms ϕij = hjh
−1
i are called gluing functions

or transition functions (in a given atlas); see Fig. 1.
A topological manifold is called a manifold of class Cr or an analytic manifold if all transition

functions ϕij belong to the class Cr or are analytic.
A subset V of a manifold Mn is called a smooth submanifold of dimension n − k if for any point

p ∈ V , there exist an open neighborhood U(p) � p with local coordinates x1, . . . , xn and a collection of k
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smooth functions g1, . . . , gk defined on U(p) such that

rk


∂g1
∂x1

. . .
∂g1
∂xn

...
. . .

...
∂gk
∂x1

. . .
∂gk
∂xn

 = k

and
V ∩ U(p) = {x ∈ U(p) | gi(x) = 0, 1 ≤ i ≤ k}.

In other words, the intersection of V with U(p) should coincide with a common zero level surface of the
functions g1, . . . , gk.

1.1.2. One says that a tangent vector (or merely, a vector) ξ is given at a point p ∈ Mn of a smooth
manifold Mn if in each chart with local coordinates (x1, . . . , xn) = x that contains the point p, we have a
sequence of real numbers ξ = (ξ1(x), . . . , ξn(x)) (coordinates of the vector ξ) that transforms according
to the following rule when passing from one chart to another:

ξi(x) =
∂xi

∂yj
ξj(y), (1.1)

where y1, . . . , yn and x1, . . . , xn are “old” and “new” coordinates in the intersection of charts; derivatives
are taken at the point p. In (1.1), we assume the summation with respect to j = 1, . . . , n = dimMn, as
was explained in the Introduction.

The addition of vectors and the multiplication by a number are defined in an obvious way. Vectors
at a given point p ∈ Mn form a vector space TpM

n, called the tangent space of the manifold Mn at the
point p ∈ Mn. Its dimension is equal to dimMn = n. If a vector ξ(p) is given at each point p ∈ Mn, and,
moreover, if its coordinates in each chart are a smooth function of the coordinates of a point, then one
says that a vector field is given.

One can consider each vector field ξ on a manifoldM as a differential operator ξ : C∞(M) → C∞(M)
acting on the space C∞(M) of smooth functions on the manifold M by the formula

ξf = ξi
∂f

∂xi
,

where ξi are the coordinates of the vector field ξ in a local coordinate system (x1, . . . , xn) on the mani-
fold M .

An ordered pair of vector fields ζ, ξ generates one more vector field, called the commutator [ζ, ξ] of
the vector fields ζ and ξ, which is defined by

[ζ, ξ]i = ζj
∂ξi

∂xj
− ξj

∂ζi

∂xj
.

Obviously,
[ξ, η] = −[η, ξ] and [[ξ, η], ζ] + [[η, ζ], ξ] + [[ζ, ξ], η] = 0.

A smooth curve on a manifold Mn is a smooth mapping of the interval (−1, 1) into the manifold Mn.

If we have a curve xi = xi(t), 1 ≤ i ≤ n, then the tangent vector to this curve is defined by ξi =
dxi(t)

dt
,

and any tangent vector to the manifold M can be represented in such a form.
Under a smooth mapping f : M → N of one manifold M into another manifold N , any vector

ξ ∈ TxM passes to the point f(x) according to the rule

(f∗ξ)
i =

∂yi

∂xj
ξj .

Therefore, we have the linear mapping f∗ : TxM → Tf(x)N , which is called the differential of the mapping

f . Here the mapping f in charts x1, . . . , xn and y1, . . . , ym that include neighborhoods of the points x
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and f(x), respectively, is assumed to be written in the form yi = f i(x1, . . . , xn), i = 1, . . . ,m, where f i

are smooth functions. The tangent vector ξi =
dxi(t)

dt
to a curve x(t) is transformed according to the rule

(f∗ξ)
i =

df(x(t))i

dt
, 1 ≤ i ≤ n.

A vector field is correctly transformed in this way only if f is a diffeomorphism of manifolds.
The union of all tangent spaces TxM for all points x ∈ M is called the tangent bundle of the manifold

M and is denoted by TM . Let π : TM → M be a mapping that to a point (x, ξ) (x ∈M and ξ ∈ TxM is
a vector tangent to the manifold M at the point x) assigns the point x, i.e., the application point of the
vector ξ. We can introduce a topology in TM by taking the sets π−1(U) for all coordinate neighborhoods
U on the manifold M as a basis of neighborhoods of this topology. Moreover, we can introduce the
structure of a smooth manifold in TM by defining charts for TM as the inverse images π−1(U), where U
is a chart on M , and the mapping f : π−1(U) → R2n as f(x, ξ) = (x1, . . . , xn, ξ1, . . . , ξn), where ξi are
coordinates of the vector ξ in a given coordinate system x1, . . . , xn on Mn.

1.2. Riemannian metric and Riemannian manifolds. The higher-dimensional generalization of the
idea of the intrinsic geometry of a surface leads to a very elegant and deep theory, Riemannian geometry.

Definition 1.2.1. We say that a Riemannian metric is given on a connected smooth manifold if in each

chart with local coordinates (x1, . . . , xn) = x, we have a collection of smooth functions g
(x)
ij (p) = gij(p)

(coordinates of the metric) that are transformed according to the law

g
(y)
ij =

∂xk

∂yi
∂xl

∂yj
g
(x)
kl (1.2)

when passing from one chart to another; here y1, . . . , yn and x1, . . . , xn are “old” and “new” coordinates
in the intersection of the charts. Moreover, it is required that the matrix G = ‖gij(p)‖ be positive definite
at each point of the manifold, and gij(p) = gji(p), i.e., the matrix G is symmetric. In this case, the
manifold is said to be Riemannian.

Riemannian manifolds were defined by B. Riemann.
We note that it is not clear in advance whether such an object always exists on an arbitrary smooth

manifold. However, the following existence theorem holds; its proof can be found, e.g., in [48,134].

Theorem 1.2.1. There exists at least one Riemannian metric on each smooth manifold Mn.

The assignment of a Riemannian metric on a manifold Mn is equivalent to the assignment of a
nondegenerate positive-definite form smoothly depending on the point p on each tangent space TpM

n to
the manifold Mn for p ∈ Mn. Clearly, it defines a symmetric inner product 〈a, b〉 in each tangent space
TpM

n by 〈a, b〉 = gija
ibj , where a = (a1, . . . , an) ∈ TpM

n and b = (b1, . . . , bn) ∈ TpM
n. According to

law (1.2) of transformation of the components gij under the change of coordinates (x
1, . . . , xn), the inner

product 〈a, b〉 does not depend on the choice of a local coordinate system.
Let a certain curve γ(t) = (x1(t), . . . , xn(t)), a ≤ t ≤ b, be given in local coordinates (x1, . . . , xn) on

a Riemannian manifold Mn. Then we can define the length l(γ) of an arc of the curve γ from the point
γ(a) up to the point γ(b) by

l(γ) =

b∫
a

√
gij

dxi

dt

dxj

dt
dt =

b∫
a

|γ̇(t)| dt,

where |γ̇(t)| denotes the length of the velocity vector γ̇(t) calculated with respect to the inner product
〈X,Y 〉 in the space TpM

n. Sometimes, it is useful to write the square of the differential dl2 = gijdx
idxj

using the differentials dxi of coordinates xi. Often, one writes ds instead of dl.
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The length l(γ) of the curve γ does not depend on the choice of the local coordinate system and
on the choice of the regular parametrization t of the curve. Therefore, the length of a curve is a scalar
invariant that is determined only by a Riemannian metric and the trajectory itself, which is considered
as the set of points of the curve γ in the manifold M such that the order of passing through these points
when the parameter t varies is given.

The simplest example of a Riemannian metric is the Euclidean metric in the arithmetical space Rn.
The corresponding Riemannian manifold is called the Euclidean space. In the Cartesian coordinates, the
Euclidean metric is given by gij = δij , where δij is the standard Kronecker symbol; δij = 0 for i 
= j and
δij = 1 for i = j. Here

dl2 =
n∑
i=1

(dxi)2.

Definition 1.2.2. Local coordinates on a smooth Riemannian manifold Mn are said to be Euclidean if
the Riemannian metric gij in these coordinates becomes Euclidean, that is, δij . If such a system exists,
then the Riemannian metric in the domain of these coordinates is said to be Euclidean.

Let M be a Riemannian manifold. We define the function ρ : M × M → R ∪ {∞} of the form
ρ(m,n) = inf

γ∈Γ
l(γ) on the manifold M , where Γ is the set of all piecewise-smooth curves that connect the

points m and n. Sometimes, one uses the notation d(x, y) for ρ(x, y).

Lemma 1.2.1. The function ρ is a metric on a Riemannian manifold M , i.e., it satisfies the following
relations:

(a) ρ(x, y) = ρ(y, x);
(b) ρ(x, y) = 0 iff x = y;
(c) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) (triangle inequality).

The number d(M) = sup ρ(x, y), x, y ∈ M , is called the diameter of the manifold M . The metric
ρ induces the initial topology on M , i.e., the topology given by the metric ρ is equivalent to the initial
topology of the manifold M , and, therefore, ρ is a continuous function on M ×M .

The concept of angle is defined on a Riemannian manifold. Let two curves γ1(t) and γ2(t) intersecting
at a point p = γ1(t0) = γ2(t0) be given on a Riemannian manifold M with metric gij. Then the angle ϕ
between these curves at the point p is defined by

cosϕ =
gij

dxi1
dt

dx
j
2

dt√
gij

dxi1
dt

dxj1
dt

√
gij

dxi2
dt

dxj2
dt

,

where xi1 = xi1(t) and xi2 = xi2(t), 1 ≤ i ≤ n, are the coordinate representations of the curves γ1 and γ2 in
local coordinates (x1, . . . , xn) on the manifold Mn.

We can define the volume of a domain in a Riemannian manifold. Let D be a domain in a Riemannian
manifold Mn with metric gij . In the case where the domain D is contained in one chart U , as the volume
vol(D) of the domain D, we take the number

vol(D) =

∫
D

√
detGdx1 . . . dxn,

where G = ‖gij‖ is the matrix of the metric gij . If the domain D is contained in several charts U1, . . . , UN ,
then

vol(D) =
N∑
i=1

∫
Ui∩D

ϕi
√
detGdx1i . . . dx

n
i ,
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where ϕi, i = 1, . . . ,N , is a partition of unity subordinated to the covering U1, . . . , UN (see [48, p. 467]).
Therefore, the main geometric concepts, such as the length of a curve, Euclidean coordinates, the

distance between points, angles, areas, and volumes are defined on an arbitrary Riemannian manifold. In
Sec. 4, we define the concept of motion of a Riemannian manifold. Therefore, we can develop geometry
in Riemannian manifolds in the large. In this geometry, which is called the Riemannian geometry, one
can find deep distinctions from the Euclidean geometry. For example, we cannot directly compare vectors
applied to distinct points of this manifold; for this, see Sec. 2.4. In contrast to Euclidean manifolds,
arbitrary Riemannian manifolds have curvature (see Sec. 3). In Sec. 2.4, we define specific analogs of
Euclidean lines.

We can study other structures on smooth manifolds, which, at first glance, look like a Riemannian
metric. We mention only one of them. In the definition of a Riemannian manifold, we can reject the
requirement that the matrix G = ‖gij‖ be positive definite. In this case, we arrive at the concept of a
pseudo-Riemannian manifold.

Definition 1.2.3. We say that a pseudo-Riemannian metric is given on a smooth manifold if, in each

chart with local coordinates x = (x1, . . . , xn), we have a collection of smooth functions g
(x)
ij = gij that

are transformed according to law (1.2) when passing from one chart to another such that the matrix
G = ‖gij‖ is nonsingular at each point p ∈ Mn of the manifold Mn and gij = gji, i.e., the matrix G is
symmetric.

Pseudo-Riemannian manifolds were defined by A. Einstein in Foundations of Relativity Theory.
In the case of pseudo-Riemannian manifolds, there is no longer an existence theorem that is similar

to Theorem 1.2.1. For example, there is no pseudo-Riemannian metric of the form x2 + y2 + z2 − t2 on
the four-dimensional sphere S4 (see, e.g., [48]). However, it is possible to construct a geometry that looks
like a Riemannian geometry (see [16]).

1.3. Constructions of Riemannian manifolds. If f : M → N is a smooth mapping such that the
differential f∗ : TxM → Tf(x)N is a monomorphism and there is a Riemannian metric on N , then the
relation

f∗(g)(A,B) = g(f∗(A), f∗(B)),

where A,B ∈ TxM , defines a Riemannian metric on the manifold M . This metric is called the metric
induced by the mapping f .

Let p : M → N be a smooth covering over the Riemannian manifold N . Then we can define a
Riemannian metric on the manifold M by what was said above. The manifold M with this induced
metric is called a Riemannian covering over the Riemannian manifold N . For example, the Euclidean
space Rn is a simply connected Riemannian covering (i.e., the universal Riemannian covering) over the
flat torus Tn (i.e., the torus equipped with a locally Euclidean metric).

We note that if p :M → N is a covering and the smooth manifold M is equipped with a metric such
that all automorphisms of the covering are isometries, then there arises a natural induced metric on the
base N with respect to which the mapping p : M → N becomes a Riemannian covering in the sense of
the previous definition (see, e.g., [22]).

Let (M,gij) and (N, g′ij) be Riemannian manifolds; then their product M ×N is equipped with the

Riemannian metric that is defined by the inner product with the matrix

(
gij 0
0 g′ij

)
in the tangent space

T(p,q)(M ×N) = TpM ⊕ TqN.

The Riemannian manifold M × N defined in such a way is called the direct product of Riemannian
manifolds M and N .

Let Nm ⊂ Mn be a submanifold of a Riemannian manifold (Mn, gij). Then there naturally arises
the induced Riemannian metric i∗(g) on Nm that is given by

i∗(g)(A,B) = g(i∗(A), i∗(B))
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Fig. 2

for any vectors A,B ∈ TxN
m ⊂ TxM

n, where i : Nm → Mn is the inclusion mapping. In particular, if
Mn = Rn, then TxR

n = Rn, and TxN
m ⊂ Rn can be considered as the usual tangent space to the surface

Nm. In this case, the charts on Nm are called the “parametric assignment of an m-dimensional surface”
and are written as r(u1, . . . , um). Then the mapping that defines the chart transforms the base vector
∂/∂ui = (0, . . . , 0, 1, 0, . . . , 0) into the vectors ∂r/∂ui. Therefore, we obtain a Riemannian metric on N
in the form

gij =

(
∂r

∂ui
,
∂r

∂uj

)
,

where (X,Y ) denotes the usual inner product in Rn (see Fig. 2 for the two-dimensional case).
In the classical case n = 3 and m = 2, surfaces are defined in the parametric form (u, v) → 8r(u, v).

In this case, it has been conventional to denote g11 = E, g12 = F , and g22 = G since Gauss’ time. Then
the square of the differential of the length ds2 is called the first quadratic form and is written as

ds2 = Edu2 + 2Fdudv +Gdv2,

where

E =

∣∣∣∣ ∂r∂u
∣∣∣∣2 , F =

(
∂r

∂u
,
∂r

∂v

)
, and G =

∣∣∣∣∂r∂v
∣∣∣∣2 .

Therefore, each submanifold in Rn is a Riemannian manifold. There arises a natural question: is it
true that any Riemannian manifold can be obtained by using this construction?

Let U be an open set in the space Rn, and let g = (gij) be a Riemannian metric on U . The mapping
f : U → RN of the domain U into a certain Euclidean space RN is an isometric immersion if it satisfies
the set of equations

N∑
α=1

∂fα

∂xi
∂fα

∂xj
= gij(x), 1 ≤ i, j ≤ n.

Any solution to this set of equations is automatically an immersion, and, therefore, it becomes an embed-
ding when we replace the neighborhood U by a smaller one. The earliest publication devoted to locally
isometric embeddings was that of Schläfli (see [173]). He asserted that every Riemannian manifold of
dimension n admits an isometric embedding in the Euclidean space of dimension 1

2n(n+ 1).
In 1926, Janet [102] published the proof of the Schläfli conjecture, and in 1931, Burstin [33] made

the proof more sure (see also the work [38] of E. Cartan).
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Theorem 1.3.1 (Janet and Burstin). Each analytic manifold of dimension n with a distinguished point
contains a neighborhood of the distinguished point that admits an isometric analytic embedding in the
Euclidean space Rsn, where sn =

1
2n(n+ 1).

At present, the theory of isometric embeddings of Riemannian manifolds is an independent field of
geometry with its own subject of study and its own methods. In this section, we focus only on the fact,
fundamental for Riemannian geometry, that any Riemannian manifold can be considered as a certain
higher-dimensional surface in a higher-dimensional Euclidean space.

The problem on the isometric embedding of Riemannian manifolds in the case of C∞-smoothness as
well as in the analytic case was positively solved by Nash.

Theorem 1.3.2 ([144]). Every compact Riemannian manifold Mn of class Cr, 3 ≤ r ≤ ∞, admits an
isometric Cr-embedding into Rm, where m = 1

2(3n
2 + 11n). If Mn is not compact, then it admits an

isometric embedding in RN , where

N =
1

2
(3n2 + 11n)(n+ 1).

In the works of Nash, only manifolds without boundary are considered. However, both results for the
compact as well as the noncompact case are easily extended to manifolds with boundary. The dimension of
the Euclidean space indicated by Nash is more than three time greater than the dimension we encounter
in local theory, and it seems to be overstated. The following improved bound was proved in [82] by
M. L. Gromov and V. A. Rokhlin.

Theorem 1.3.3. Every compact Riemannian manifold of dimension n and of class C∞ admits an iso-
metric embedding of class C∞ in the space Rq with q = sn + 4n+ 5 = 1

2(n
2 + 9n+ 10).

In this theorem, the dimension sn+4n+5 was further reduced to sn+3n+5 (see [79]). In the same
work, this result was extended to noncompact manifolds.

2. Geometry of Affine Connection Manifolds

2.1. Affine connection manifolds. In many problems, there arises the problem of differentiation of
vector fields on manifolds. The usual differentiation of components of vector fields in local coordinates is
the first candidate for this operation. However, elementary examples show that this operation depends
on the choice of local coordinates on a manifold. There arises the problem on the invariant differentiation
of vector fields in arbitrary coordinates. To solve the problem, we need to create an additional structure
(see [48,71,113,134,149,161]).

Definition 2.1.1. We say that an affine connection is given on a smooth manifold if a collection of
smooth functions Γijk(x) is given in each chart with local coordinates x = (x1, . . . , xn), and when we pass
from one chart to another, these functions are transformed according to the law

Γijk(x) =
∂xi

∂yl
∂ys

∂xj
∂yt

∂xk
Γlst(y) +

∂xi

∂ys
∂2ys

∂xj∂xk
, (2.1)

where y1, . . . , yn and x1, . . . , xn are the “old” and “new” coordinates in the intersection of the charts.

An affine connection space of general form was defined by H. Cartan in the paper “On affine con-
nection spaces and generalizations of relativity theory.” The first particular case of this space, which is a
Riemannian space, was defined by G. Weyl in the book Space, Time, and Matter .

Theorem 2.1.1. There is at least one affine connection on any smooth manifold.

An affine connection Γijk on a manifold Mn is said to be symmetric if Γijk = Γikj. If this requirement
holds in one coordinate system, then it holds in any other coordinate system, as is easily implied by the
transformation law (2.1).
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Definition 2.1.2. Local coordinates (x1, . . . , xn) are said to be Euclidean with respect to a given con-
nection if Γijk(p) ≡ 0 in these coordinates for all p. In this case, the connection is said to be flat .

We note that a Riemannian metric and an affine connection are, in general, independent structures on
a manifold Mn. In particular, Euclidean coordinates for an affine connection and Euclidean coordinates
for a Riemannian metric are, in general, distinct concepts. In the general case, a Riemannian metric and
an affine connection do not determine one another.

2.2. Tensor calculus. In the previous geometric considerations, we have encountered geometric objects
that are not described by scalar fields on a manifold. For example, a vector field is described by its
coordinates, which are smooth functions, only in local coordinate systems. A similar object arises in
the definition of Riemannian and pseudo-Riemannian manifolds. These geometric constructions can be
organized in the general scheme, which is known as a tensor field on a smooth manifold. Many physical
and mechanical quantities are described by tensor fields. Also, we note that objects arising in geometric
constructions are not exhausted by tensors.

Definition 2.2.1. One says that a tensor field of type (p, q) is given on a smooth manifold Mn if, in
each chart with local coordinates x = (x1, . . . , xn), we have a collection of np+q, n = dimMn, smooth

functions T
i1,... ,ip
j1,... ,jq

(x) that are transformed according to the law (tensor law)

T
i1...ip
j1...jq

(x) =
∂xi1

∂yl1
. . .

∂xip

∂ylp
∂ys1

∂xj1
. . .

∂ysq

∂xjq
T
l1...lp
s1...sq(y) (2.2)

when passing from one chart to another; here y1, . . . , yn and x1, . . . , xn are the “old” and “new” coordi-

nates in the intersection of the charts. The number p+ q is called the rank of the tensor T
i1...ip
j1...jq

.

A tensor field of type (1, 0) is a vector field, a tensor field of type (0, 1) is called a covector field , and
a tensor field of type (1, 1) is called a linear operator field . Riemannian and pseudo-Riemannian metrics
on a manifold are examples of tensors of type (0, 2).

The following fundamental algebraic operations are defined on the set of tensor fields. Let two tensor

fields T
i1...ip
j1...jq

and R
i1...ip
j1...jq

of the same structure be given. Then we can compose a new tensor field, assigning

its components C
i1...ip
j1...jq

by

C
i1...ip
j1...jq

= fT
i1...ip
j1...jq

+ gR
i1...ip
j1...jq

,

where f and g are arbitrary smooth functions on the manifold Mn. Clearly, C
i1...ip
j1...jq

is a tensor field. It is

called a linear combination of tensor fields T
i1...ip
j1...jq

and R
i1...ip
j1...jq

. If T
i1...ip
j1...jq

is an arbitrary tensor field, then

we can construct a tensor field C
i1...ip
j1...jq

by

C
i1...ip
j1...jq

= T
σ(i1...ip)
τ(j1...jq)

,

where σ and τ are arbitrary permutations. As a result of this operation, we have a tensor field. It is
essential here that indices of the same type be permuted. A permutation for distinct types (subscripts
and superscripts) is not a tensor operation. We fix two indices of distinct type is and jr of a tensor field

T
i1...ip
j1...jq

of type (p, q) and construct a new tensor field C
i1...ip
j1...jq

of type (p− 1, q − 1) by

C
i1...is−1is+1...ip
j1...jr−1jr+1...jq

=
n∑

α=1

T
i1...is−1, is=α, is+1...ip
j1...jr−1, jr=α, jr+1...jq

.

The obtained tensor field C
i1...ip
j1...jq

is called the compression of the field T
i1...ip
j1...jq

with respect to the indices

is and jr.
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Let two tensor fields T
i1...ip
j1...jq

and Ri1...is
j1...jr

of an arbitrary structure be given. Then we can form a new

tensor field C
i1...ip+s
j1...jr+q

of type (p+ s, r + q) given by its components:

C
i1...ip+s
j1...jr+q

= T
i1...ip
j1...jq

R
ip+1...ip+s
jq+1...jq+r

.

This operation is called the tensor product and is denoted by C = T ⊗ R. The tensor product is not
commutative, i.e., T ⊗R 
= R⊗ T .

Let a nondegenerate tensor field of type (0,2), i.e., a field given by a nonsingular matrix fieldA = ‖aij‖
in certain coordinate system, be given on the manifoldMn. Then the matrix of this field is nonsingular in
any other coordinate system. The inverse matrix (which is also nonsingular) is denoted by A−1 = ‖aij‖.

Then for any tensor field T
i1...ip
j1...jq

, where p ≥ 1, we can construct a new tensor field:

Cα
i2...ip
j1...jq

= aαi1T
i1i2...ip
j1j2...jq

.

Similarly, we construct the field

Qαi1...ip
j2...jq

= aαj1T
i1i2...ip
j1j2...jq

.

The first operation is called the lowering of a superscript , and the second operation is called the raising of
a subscript . Since the field A is nondegenerate, these operations are mutually inverse. The operation of
raising of subscripts (or lowering of superscripts) allows one to identify canonically the space of all tangent
vectors to M with the space of all cotangent vectors on M . In particular, the operations of lowering and
raising are defined on Riemannian and pseudo-Riemannian manifolds because we have here the field gij
of the nondegenerate tensor of type (0,2).

With any tensor field T
i1...ip
j1...jq

, we can associate a new tensor field T
i1...ip
(j1...jq)

by

T
i1...ip
(j1...jq)

=
1

q!

∑
σ

T
i1...ip
σ(j1...jq)

,

where the summation is carried out over all permutations σ of subscripts (j1, j2, . . . , jq). This operation

is called the symmetrization of the field T
i1...ip
j1...jq

with respect to the subscripts (j1, . . . , jq). Similarly, one

defines the symmetrization with respect to superscripts.

We can associate with any tensor field T
i1...ip
j1...jq

a new tensor field T
i1...ip
[j1...jq]

by

T
i1...ip
[j1...jq]

=
1

q!

∑
σ

(−1)σT
i1...ip
σ(j1...jq)

,

where the summation is carried out over all permutations σ of subscripts (j1, j2, . . . , jq), and (−1)σ = +1
for even permutations σ and (−1)σ = −1 for odd permutations σ. This operation is called the alternation
of the field T with respect to the subscripts (j1, j2, . . . , jq). Similarly, one defines the alternation with
respect to superscripts.

Definition 2.2.1 can obviously be rewritten at “one point.” Then we obtain the definition of a tensor
of type (p, q) at a point of a smooth manifold Mn. Clearly, tensors at a point m ∈ Mn form a linear space
T p
q (M)m. In the same way as for T (M), it is easy to show that the union

T p
q (M) =

⋃
m∈M

T p
q (M)m

is a smooth manifold. It is called the tensor bundle of type (p, q). There is a natural projection π :
T
p
q (M) → M that associates a base point with each tensor.

We now pass to the study of differentiation of tensor fields. We state the problem more precisely.
We now restrict ourselves to the case of the space Rn. It is required to find an operation on Rn (denoted
by ∇) that possesses the following properties:
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(a) in the Cartesian coordinates (xi) of the space Rn, the operation ∇ = {∇i} coincides with the usual

differentiation

{
∂

∂xi

}
;

(b) the operation ∇ is a tensor one, i.e., if T is a tensor field of type (p, q), then ∇T is a tensor field of
type (p, q + 1).

We try to find an explicit form of the operation ∇ starting from properties (a) and (b). We consider a
vector field T i in Rn. Let (xi) be the Cartesian coordinates, and let (yi) be the curvilinear coordinates;
then it is easy to calculate that the operation ∇ on vector fields in the Euclidean space Rn has the form

(∇T )ij(y) = ∇jT
i(y) =

∂T i(y)

∂yj
+ T k(y)Γijk,

where

Γijk =
∂yi

∂xs
∂2xs

∂yj∂yk
.

Therefore, there arise certain functions Γijk, which measure the deviation of the operation ∇ from the
usual Euclidean differentiation in the case of non-Cartesian coordinates. Calculating the explicit form of
the operation ∇ on covector fields Ti, we obtain

(∇T )ij = ∇jTi =
∂Ti
∂xj

− TkΓ
k
ij,

where the functions Γijk already appeared in calculation of the action of the operation ∇ on vector fields.
Proceeding similarly for an arbitrary tensor field, we obtain the following statement. Let M = Rn, let
(x1, . . . , xn) be the Cartesian coordinates, and let (y1, . . . , yn) be arbitrary coordinates (local coordinate
system). Then there is a tensor operation ∇ on Rn that satisfies conditions (a) and (b) and is given by
the following formula on arbitrary tensor fields:

(∇T )i1...ikj1...jp,α
= ∇αT

i1...ik
j1...jp

=
∂

∂xα
T i1...ik
j1...jp

+
k∑

s=1

T
i1...(is→q)...ik
j1...jp

Γisqα −
p∑

s=1

T i1...ik
j1...(js→q)...jp

Γqjsα , (2.3)

where the functions Γijq are transformed by law (2.1) under the transformation (x) → (y), i.e., they are
transformed according to the law describing the transformation of an affine connection. Here the existence
of the desired operation ∇ is asserted. The existence of the Cartesian coordinates allows us to explicitly
calculate the functions Γijk, which measure the deviation of the operation ∇ from the usual differentiation.
We use essentially the fact that there is a privileged coordinate system in Rn, the Cartesian one, in which

the operation ∇ coincides with the usual differentiation, i.e., ∇i =
∂

∂xi
.

Now passing to arbitrary smooth manifolds, we can define the operation ∇ axiomatically taking the
properties of the operation ∇ on the space Rn found above as the base of definition of the operation ∇.

Definition 2.2.2. Let Mn be an affine connection manifold Γijk, and let T i1...ik
j1...jp

be an arbitrary tensor

field on Mn. Then the covariant derivative ∇αT
i1...ik
j1...jp

of the field T i1...ik
j1...jp

is defined by (2.3).

The covariant derivative was defined by Ricci–Curbastro in the paper “On covariant and counter-
variant differentiation,” in which the general concept of a tensor was also introduced.

A tensor field T
i1...ip
j1...jq

on a manifoldM is said to be covariantly constant with respect to a given affine

connection if ∇αT
i1...ip
j1...jq

= 0.

The covariant differentiation on an arbitrary affine connection manifold satisfies the following rela-
tions:

(1) the operation ∇ = {∇i} is linear;

(2) for an arbitrary tensor field T
i1...ip
j1...jq

= T
(i)
(j) , the collection of functions ∇kT

(i)
(j) = (∇T )

(i)
(j),k forms a

tensor field;
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(3) if a tensor field f is a scalar field, then ∇f = {∇if} =

{
∂f

∂xi

}
= grad f ;

(4) the operation ∇ on the vector fields Ti has the form

∇kT
i =

∂T i

∂xk
+ TαΓiαk ,

and the operation ∇ on covector fields Ti has the form

∇kTi =
∂Ti
∂xk

− TαΓ
α
ik;

(5) the operation ∇ satisfies the Leibnitz formula

∇(T ⊗R) = (∇T )⊗R+ T ⊗ (∇R),

where T and R are arbitrary tensor fields.

It turns out that the above properties uniquely define the operation ∇. More precisely, let the
operation ∇ = {∇i} satisfying the above properties (1)–(5) be given on the manifold M . Then, for

an arbitrary tensor field T
(i)
(j) , we have relation (2.3), i.e., ∇ is the covariant differentiation in the sense

of Definition 2.2.2. Therefore, the operation ∇ = {∇i} can axiomatically be given by using properties
(1)–(5).

Let a tensor field T = T
i1...ip
j1...jq

and a curve γ(t) = {xi(t)} be given in the space Mn of an affine

connection Γijk. The tensor

∇γ̇T = ∇iT
dxi(t)

dt

is called the covariant derivative of the tensor T
i1...ip
j1...jq

= T along the curve γ, and the operation

∇γ̇ = ∇i
dxi(t)

dt

is called the covariant differentiation along the curve γ(t). The operation ∇γ̇ is sometimes also denoted

by
D

dt
.

The differentiation ∇γ̇ allows us to look at Γijk from a new viewpoint; they have a clear geometric

sense. We consider a local coordinate system (x1, . . . , xn) and denote the vector fields

∂

∂xi
= (0, . . . , 0, 1︸︷︷︸

i

, 0, . . . , 0)

by ∂i for brevity. Then the vector fields vαβ = ∇∂α(∂β) are defined for arbitrary α and β. We have the
relation vαβ = Γiαβ∂i. Therefore, the functions Γ

i
jk are merely the functional coefficients of the expansion

of the covariant derivative of the base vector fields ∂β along the fields ∂α with respect to the basis ∂i.

2.3. Riemannian connections. Let a Riemannian metric gij be given and fixed on a smooth manifold
Mn, i.e., let Mn be a Riemannian manifold. Then one highlights one and only one connection compatible
with the metric and completely determined by it in the set of all symmetrical connections on Mn (see,
e.g., [71,83,161]).

Definition 2.3.1. An affine symmetrical connection is said to be Riemannian (or compatible with the
Riemannian metric gij) iff ∇kgij = 0, i.e., the metric tensor gij is covariantly constant with respect to
this connection.
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Therefore, the identity ∇kgij = 0 holds in all coordinate systems since the operation ∇ is a tensor
operation. This and the Leibnitz formula imply that

∇(g ⊗ T ) = g ⊗∇T

for any tensor field T . In particular, ∇ commutes with the operation of raising and lowering of indices.

Theorem 2.3.1. Let gij be a Riemannian metric on a manifold M
n. Then there exists a uniquely defined

symmetrical connection compatible with the metric gij, i.e., a Riemannian connection on Mn. Moreover,

Γijk =
1

2
giα
(∂gkα
∂xj

+
∂gjα
∂xk

−
∂gjk

∂xα

)
.

If local coordinates are chosen in such a way that all first derivatives of the metric tensor are equal to
zero at a given point, then the functions Γijk corresponding to the Riemannian connection are also equal
to zero at this point.

We now return to the problem on the relation between Euclidean coordinates in the sense of the metric
and Euclidean coordinates in the sense of the affine connection. In the case of the Riemannian connection,
these concepts coincide with accuracy up to an affine transformation. Indeed, if the tensor gij is constant
in certain coordinates (x1, . . . , xn), then Γijk(x) = 0 by Theorem 2.3.1, and the coordinates (x1, . . . , xn)

are also Euclidean for the Riemannian connection Γijk. Conversely, if Γ
i
jk = 0, then Theorem 2.3.1 implies

∂gij
∂xk

= gαjΓ
α
ik + gαiΓ

α
jk,

i.e.,
∂gij

∂xk
= 0. Therefore, the tensor gij is constant in the coordinate system (x1, . . . , xn) and is reduced

to the form δij by an affine transformation.
As one of the applications of the Riemannian connection, we give a correct definition of the divergence

of the vector field T i; namely, divT = ∇iT
i. By properties of the operation ∇, we obtain a scalar-valued

function on Mn. One can calculate that

divT =
∂T i

∂xi
+ Tα ∂

∂xα
(ln

√
g),

where g = det ‖gij‖.

2.4. Parallel translation and geodesics in an affine connection space. We consider a smooth
manifold Mn and two tangent vectors a and b applied to distinct points x, y ∈ Mn. In many problems, it
is required to compare these vectors, which is itself nontrivial since the tangent spaces TxM

n and TyM
n

are, in general, distinct, and in the general case there is no canonical method for identifying them. In the
Euclidean space Mn = Rn, we have the operation of parallel translation, which allows one to compare
vectors applied at distinct points. It is useful to consider this operation in the following way. We connect
the points x and y by a smooth curve γ in Rn and translate the vector a from the point x to the point y
in a parallel way so that the origin of the vector slides along the curve γ all the time (see Fig. 3). This
operation generates a vector field a(t) along the curve γ(t) that has constant components with respect
to t. In particular, the derivatives with respect to t of the components ai(t) of the field a(t) equal zero.
There is an analog of the derivative, the covariant differentiation introduced above, in an arbitrary affine
connection manifold. Therefore, the definition of parallelism given here can be literally extended to the
case of an arbitrary affine connection manifold (see [48,113,134,161]).

Definition 2.4.1. Let a smooth vector field T i be given along a smooth curve γ(t) in a manifold Mn.
This field is said to be parallel along the curve γ with respect to an affine connection Γijk if ∇γ̇T ≡ 0. In

other words, the components of this field are covariantly constant along γ(t).
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Fig. 3 Fig. 4

A vector field T i is parallel along a curve γ(t) iff

dT i

dt
+ ΓipkT

pdx
k

dt
≡ 0,

where
dT i

dt
=

∂T i

dxk
dxk

dt

and
dxk

dt
are components of the velocity vector γ̇ of the curve γ(t).

Definition 2.4.2. The set of equations

dT i

dt
+ ΓipkT

pdx
k

dt
= 0, i = 1, . . . , n,

is called the equations of parallel translation along the curve γ on the affine connection manifold (M,Γijk).

The parallel translation of a vector in a Riemannian space was defined by T. Levi-Civita, the Italian
researcher in geometry and mechanics, in the paper “The concept of parallelism in an arbitrary manifold
and the geometric characteristic of the Riemannian curvature implied by it.”

Changing the path γ, we naturally change the equation of parallel translation. When the curve γ is

given, the functions
dxk

dt
are known. The functions Γijk and

dxk

dt
in the equation for T i are known. The

relation T (0) = a holds at the initial instant of time. Since all the functions are smooth, the theory of
ordinary differential equations implies that a solution to the set of equations

dT i

dt
+ ΓipkT

p dx
k

dt
= 0

exists, is unique, and is continued up to the point y. The vector b = T (1) arising here at the point y
is naturally called the result of the parallel translation of the initial vector a = T (0) along the curve γ.
In general, the vector b depends on the curve along which the parallel translation is carried out (see
Fig. 4). Clearly, the previous constructions generalize the classical parallel translation in the Euclidean
space. Therefore, the result of the parallel translation along any curve is uniquely determined by the
initial vector and linearly depends on it.

There is one essential distinction of the parallel translation in an arbitrary affine connection manifold
from that in the Euclidean space: in the Euclidean space, the parallel translation is independent of the
curve along which the translation of a vector is carried out, and in an arbitrary manifold, it depends on
such a curve.

In the case of the Riemannian connection, there exist some distinguishing features of the parallel
translation. The parallel translation with respect to the Riemannian connection preserves the inner
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product, i.e., if a(t) and b(t) are parallel vector fields along a curve γ(t), then their inner product (a(t), b(t))
is constant along the curve γ(t). Here, by the inner product we mean the inner product (a, b) = gija

ibj

generated by the Riemannian metric gij . Therefore, under the parallel translation with respect to the
Riemannian connection, the length of vectors and angles between them are preserved.

The converse statement is also true: if an affine connection is given on a Riemannian manifold
in which the parallel translation along any curve preserves the inner product, then this connection is
Riemannian. The parallel translation from the point x to the point y along a curve γ(t) with respect to
the Riemannian connection is an orthogonal transformation of the tangent space TxM at the point x into
the tangent space TyM at the point y.

For any affine connection, there exist trajectories that are analogs of straight lines for the Euclidean
connection.

Definition 2.4.3. Let an affine connection be given on a manifold M . A smooth curve γ(t) is called a
geodesic of the given affine connection if ∇γ̇(γ̇) = 0, where γ̇ is the velocity field of the trajectory γ(t). In
other words, the velocity vector is parallel translated along the curve itself. The corresponding parameter
along the geodesic is said to be canonical .

Two canonical parameters along a geodesic differ one from another by an affine transformation.
The problem of searching for geodesics on surfaces was one of the first problems of the application

of calculus to geometry. The differential equation of a geodesic on a surface was published for the first
time by Euler in his work “Shortest line on an arbitrary surface connecting two arbitrary points.” In
Mechanics, Euler proved that the point moving without acceleration always describes a geodesic. The
term “geodesic” was applied initially by Laplace in the second volume of Celestial Mechanics to geodesics
on the Earth’s surface, which was considered as a revolution ellipsoid. Then this term was extended first
to all quadrics and then to any surface by Liouville in the paper “Theorem concerning the integration of
the geodesic equation.”

Since the velocity vector γ̇ along a geodesic γ(t) remains its velocity vector under the parallel trans-
lation along it, we obviously obtain a generalization of the property of straight line to be the most straight
in the space Rn. Writing this property in local coordinates (x1, . . . , xn), we obtain the following set of
equations for geodesics:

d2xi

dt2
+ Γijk

dxj

dt

dxk

dt
= 0, i = 1, . . . , n.

In the next chapter, we will consider the dependence between the properties of being the most straight and
of being the shortest. The written set of equations is obtained from the equations of parallel translations

by the substitution T i =
dxi

dt
, where γ(t) = (x1(t), . . . , xn(t)) in it.

Definition 2.4.4. The differential equations

d2xi

dt2
+ Γijk

dxj

dt

dxk

dt
= 0

are called the geodesic equations of an affine connection Γijk on a manifold Mn.

The geodesics γ(t) = (x1(t), . . . , xn(t)) yield their solutions. Since it is a set of n equations with
ordinary derivatives of the second order, it follows that a geodesic is uniquely determined by assignment
of an initial point x0 ∈ Mn (n parameters) and the initial velocity vector γ̇(0) (additional n parameters).

Proposition 2.4.1. In a certain open neighborhood of any point x ∈ M of an affine connection manifold
M, for any tangent vector a ∈ TxM at this point, there exists a unique geodesic γ(t) that emanates from
the point x with the initial velocity vector a = γ̇(0).
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Example. In the case of surfaces, i.e., two-dimensional Riemannian manifolds, the general geodesic
equations can be rewritten in the following classical form:

2
d

ds
(Eus

′ + Fvs
′) = Eu(us

′)2 + 2Fuus
′vs
′ +Gu(vs

′)2,

2
d

ds
(Fus

′ +Gvs
′) = Ev(us

′)2 + 2Fvus
′vs
′ +Gv(vs

′)2,

where E = g11, F = g12, and G = g22.

Let M be a Riemannian manifold, S be a connected submanifold in M , and p ∈ S. The submanifold
S is said to be geodesic at a point p if each geodesic in M tangent to S at the point p is a curve in S.
The submanifold S is said to be totally geodesic if it is geodesic at each of its points.

Using the concept of a geodesic, we can construct certain special coordinates in affine connection
manifolds.

Let Mn be an affine connection manifold. We consider an arbitrary point x ∈ Mn and the tangent
space TxM

n; let a ∈ TxM
n. Then, by Proposition 2.4.1, there exists a uniquely defined geodesic γa(t)

emanating from the point x = γa(0) and having the initial vector γ̇a(0) = a. It is defined for all sufficiently
small t. We construct the mapping expx :W → M , where W is a certain star-shaped open domain in the
tangent space TxM centered at zero, i.e., a domain that, along with any of its points, contains the whole
segment connecting this point with zero. We set expx(ta) = γa(t). The mapping expx is a diffeomorphism
of a sufficiently small neighborhood of zero in the space TxM onto a certain neighborhood of the point x
in the manifold M .

Definition 2.4.5. The mapping expx is called the exponential mapping at the point x ∈M of the affine
connection manifold M .

Therefore, the segment of a straight line in TxM passing through zero in TxM is mapped into an arc
of a geodesic inM . We consider a chart U ⊂ Mn centered at the point x; let ϕ : U → Rn be the coordinate
mapping defining curvilinear coordinates (x1, x2, . . . , xn) in U . We assume that ϕ(x) = 0 ∈ Rn.

Definition 2.4.6. The curvilinear coordinates (x1, x2, . . . , xn) are said to be normal if the inverse images
of rays passing through zero in Rn are geodesics in the manifold M . In this case, the neighborhood U is
called a normal coordinate neighborhood .

In a normal coordinate neighborhood U , each point y can be connected with the center x = ϕ−1(0)
by a unique geodesic of U . Such neighborhoods are useful for particular calculations on the manifold M .

The mapping exp : TpM → M defines the normal curvilinear coordinates in an arbitrary affine
connection manifold.

Definition 2.4.7. Let e1, . . . , en be an orthonormal basis of the tangent space TmM
n. Then the normal

coordinates corresponding to this basis are the coordinates defined by the relation

xj
(
exp
( n∑
i=1

tiei

))
= ti.

As a natural generalization of normal coordinates, we can take the so-called Fermi coordinates,
which are obtained if we replace the point m by a submanifold P . Let ν be the normal bundle over
the submanifold P in Mn. By definition, ν = {(p, v) | p ∈ P , v ∈ TpP

⊥}, where W⊥ denotes the
orthogonal complement to the subspace W . The exponential mapping expν of the bundle ν is defined by
expν(p, v) = expp(v) for (p, v) ∈ ν.

To define a Fermi coordinate system, we need an arbitrary coordinate system (y1, . . . , yq) defined in
a neighborhood V ⊂ P of the point p and an orthonormal set of sections Eq+1, . . . , En of the bundle ν|V .
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Definition 2.4.8. The Fermi coordinates (x1, . . . , xn) for a submanifold P ⊂ V at a point p (with respect
to the coordinate system (y1, . . . , yq) and normal vector fields Eq+1, . . . , En) are the coordinates defined
by

xq expν

( n∑
j=q+1

tjEj(p
′)
)
= ya(p′), xi expν

( n∑
j=q+1

tjEj(p
′)
)
= ti,

where a = 1, . . . , q and i = q + 1, . . . , n for p′ ∈ ν.

Remark 2.4.1. In what follows, these coordinates will be needed for the description of the so-called
Jacobi fields.

In the case where the submanifold P coincides with the point m, we obtain the definition of the usual
normal coordinates in a neighborhood of the point m ∈ M .

In what follows, we will need the concept of the set of first conjugate points. We give the corresponding
definition. For p ∈ M , we denote by Q̃p the tangent set of the first conjugate points for p. By definition,

Q̃p = {v ∈ TpM | the mapping (expp)∗(tv) : Ttv(TpM) → Texpp tvM has the maximum rank for 0 ≤ t < 1,

and it is not maximum for t = 1}. The image expp(Q̃p) of the set Q̃p under the mapping exp is called the
set of the first conjugate points and is denoted by Qp(M).

2.5. Completeness of affine connection spaces. In the above, we speak about small segments of
geodesics. In some cases, the geodesic can be continued infinitely to both sides.

Definition 2.5.1. An affine connection on a manifold M is said to be complete if geodesics can be
infinitely continued. This is equivalent to the fact that the exponential mapping is defined on the whole
tangent space.

We consider the concept of completeness for the case of Riemannian manifolds in detail. Let a
Riemannian metric gij be given on a manifold M , and let Γijk be the Riemannian connection, i.e., a
symmetric connection compatible with the given metric. This connection defines geodesics on the manifold
M . At each point x ∈ M , we consider the tangent space TxM and the exponential mapping exp : TxM →
M .

Definition 2.5.2. A Riemannian manifold M is said to be geodesically complete if the mapping exp :
TxM → M is defined for all points and for all vectors a ∈ TxM . The corresponding Riemannian connection
is said to be geodesically complete.

Obviously, the condition of geodesical completeness is equivalent to the fact that each segment
γ : [a, b] → M of each geodesic γ on the manifold M is continued to both sides “up to infinity,” i.e., up
to a smooth mapping γ : R1 → M . We recall that a geodesic is considered as a continuous mapping of a
(closed) interval into the manifold, i.e., together with the given parameter t. In the Riemannian case, as
a canonical parameter, we can take the length of a curve (natural parameter). The natural parameter s
along the curve is defined with accuracy up to the transformation ±s + c. Therefore, when speaking of
the infinite continuability of geodesics, we keep in mind the continuability of the natural parametrization
on γ. Along with the concept of the geodesic completeness of a manifold M , it is reasonable to consider
the completeness of the manifold M as a metric space. (For the definition of a complete space, see, e.g.,
[22,71].)

We recall that the assignment of a Riemannian metric on M transforms M into a metric space. As
the distance ρ(x, y) between two points x and y, we take inf l(γ), where γ(0) = x, γ(1) = y, and l(γ) is
the length of a piecewise-smooth trajectory γ connecting the points x and y. The following important
theorem, which was discovered by Hopf and Rinow, holds.

Theorem 2.5.1. For a Riemannian manifold M , the following two conditions are equivalent :

(a) M is a complete manifold (here we mean the completeness of the manifold M as a metric space);
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Fig. 5

(b) all geodesics on M are infinitely continued ; in other words, the Riemannian connection on M is
geodesically complete.

For the proof of this theorem, see, e.g., [71,98,159,169].

Definition 2.5.3. A Riemannian manifold satisfying the conditions of this theorem is said to be complete.

An important property of complete Riemannian manifolds is that in a complete Riemannian space,
any two points x, y ∈M can be connected by a geodesic whose length is exactly equal to ρ(x, y), i.e., the
distance between the points x and y. Such a geodesic is called a minimal arc or a minimal geodesic.

We note that not on every manifold can any two points be connected by a minimal arc. If we remove
a closed disk D2 from R2, then points p and q lying on the continuation of the diameter to different sides

of the center cannot be connected by a minimal arc since a “true” minimal arc should go along the arc
!
rs,

which does not belong to the manifold considered (see Fig. 5).
The example of the disk D2 ⊂ R2 shows that completeness is not implied by the fact that any two

points can be connected by a minimal arc.
The example of a sphere and its two diametrically opposite points shows that a minimal geodesic

connecting two points is not unique in general. The uniqueness holds only when points x and y are
sufficiently close to one another.

Any connected manifold admits a complete Riemannian metric. It is proved in [146] that if every
Riemannian metric on M is complete, then the manifold M is compact. The converse theorem on the
completeness of a compact metric space is well known. We can construct an example of a noncomplete
Riemannian manifold of infinite diameter such that any two points distant from one another by a distance
greater than 1 cannot be connected by a curve of minimum length (see [22]).

The completeness property is preserved under the operations considered above. The direct product
M ×N of two complete Riemannian manifolds M and N is a complete Riemannian manifold. If M is a
complete manifold and M̃ is a Riemannian covering over M , then M̃ is a complete Riemannian manifold.

3. Curvature of Affine Connection Manifolds and Riemannian Manifolds

3.1. Curvature tensor. We consider a manifold Mn with an affine connection Γijk. There arises the

following question: how to define a local characteristic of deviation of the connection Γijk from the Eu-

clidean one? In other words, it is required to reveal whether there exist coordinates (x1, x2, . . . , xn) in
which Γijk = 0 at all points. If the connection Γijk is not symmetric, then there are no such coordinates.

For an arbitrary affine connection Γijk, the collection of functions Sijk = Γijk − Γikj forms a tensor.

Definition 3.1.1. The tensor Sijk is called the torsion tensor of the affine connection Γijk.

Thus, the first obstruction to the existence of Euclidean coordinates is the torsion tensor Sijk. There-
fore, in what follows, we will be interested in the search for the Euclidean coordinates for symmetric
connections.
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For smooth functions f , we always have the identity

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
,

i.e., the operations
∂

∂xi
and

∂

∂xj
commute. If a connection admits the Euclidean coordinates

(x1, x2, . . . , xn), then the tensor fields T are differentiated in the usual way in them since ∇i = ∂/∂xi.
Therefore, in the Euclidean coordinates, we always have ∇i∇jT = ∇j∇iT , i.e., (∇i∇j − ∇j∇i)T = 0.
Since T is a tensor field and the operation ∇ is tensor, this relation holds in any curvilinear coordinate
system, not only in the Euclidean one. It turns out that the deviation of the connection Γijk from the
Euclidean connection is conveniently characterized by the expression ∇i∇j − ∇j∇i. If this operator is
different from zero in a certain coordinate system, then the connection Γijk is not Euclidean. Here we
essentially used the fact that the operation ∇i is tensor. We calculate the operation ∇i∇j−∇j∇i in local
coordinates.

Theorem 3.1.1. Let T i be a vector field, and let Γijk be a symmetrical affine connection. Then

(∇k∇l −∇l∇k)T
i = −Ri

q,klT
q,

where Ri
q,kl is a tensor of rank four. In explicit form, the components of this tensor are given by

−Ri
q,kl =

∂Γiql
∂xk

−
∂Γiqk
∂xl

+ΓipkΓ
p
ql − ΓiplΓ

p
qk.

Definition 3.1.2. The tensor Ri
j,pq is called the Riemannian tensor (or Riemannian curvature tensor)

of the given affine connection Γijk.

The curvature tensor was in essence defined by Riemann and was calculated in the paper “An answer
to the question suggested by the Paris Academy of Sciences.” In this paper, he solved the problem of
reducing the heat differential equation

∂

∂xα

(
aαβ

∂u

∂xβ

)
= h

∂u

∂t

to the simplest form, which is equivalent to the problem of transforming the quadratic form aαβdx
αdxβ

into the sum of squares. Riemann showed that the necessary and sufficient condition of reducing this form
into the sum of squares consists in the vanishing of components of the tensor Rα

β,γδ. The components of
the curvature tensor were also found by E. B. Christoffel.

Therefore, if the connection is Euclidean, then Ri
j,kl = 0, i.e., the Riemannian tensor vanishes iden-

tically. The action of the operation ∇i∇j −∇j∇i on arbitrary vector fields is described as follows:

(∇k∇l −∇l∇k)T
i1...ip
j1...js

= −Ri1
q,klT

qi2...ip
j1j2...js

− . . .−R
ip
q,klT

i1...ip−1q
j1...js−1js

+R
q
j1,kl

T
i1i2...ip
qj2...js

+R
q
js,kl

T
i1i2...ip
j1...js−1q

.

Above, we have given the definition of the Riemannian tensor using the language of local coordinates.
We can give an invariant definition, which is useful in certain problems. Let X,Y, and Z be arbitrary
smooth vector fields on a manifold M . We construct the “curvature operator” R that associates a new
vector field R(X,Y )Z with a triple of vector fields X,Y,Z. We will treat fields as differential operators
acting on smooth functions by setting

Xf = Xi ∂f

∂xi
,

where X = (X1,X2, . . . ,Xn).

Proposition 3.1.1. Let the operation R(X,Y )Z be defined by

−R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.
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Then the field R(X,Y )Z is linear in each of the arguments X, Y , and Z. The mapping Z �→ R(X,Y )Z
is given by a tensor of rank 4 coinciding with the Riemannian tensor.

The connection between the invariant and coordinate definitions of the Riemannian tensor is stated
as follows. As X and Y , we take the coordinate fields ∂i and ∂j, respectively. Since ∇∂i = ∇i and
[∂i, ∂j ] = 0, we have

−R(∂i, ∂j)Z = (∇i∇j −∇j∇i)Z, −R(∂i, ∂j) = ∇i∇j −∇j∇i, R(∂i, ∂j)∂k = Rl
k,ij∂l.

The Riemannian tensor possesses a number of important algebraic properties that are listed in the
following theorem.

Theorem 3.1.2. For any smooth vector fields X, Y , and Z on an affine connection manifold M, the
following identities hold :

(a) R(X,Y )Z+R(Y,X)Z = 0, or Ri
j,kl+Ri

j,lk = 0 in coordinates, i.e., we have the skew symmetry with
respect to the arguments X and Y ;

(b) R(X,Y )Z+R(Z,X)Y +R(Y,Z)X = 0 (the Jacobi identity) or Ri
j,kl+R

i
l,jk+R

i
k,lj = 0 in coordinates;

(c) if the connection is Riemannian, then (R(X,Y )Z,W ) + (R(X,Y )W,Z) = 0 for any vector fields
X,Y,Z, and W (here (a, b) denotes the inner product generated by the metric gij); in coordinates,
we have Rij,kl +Rji,kl = 0, where Rij,kl = giαR

α
j,kl;

(d) if the connection is Riemannian, then (R(X,Y )Z,W ) = (R(Z,W )X,Y ), i.e., Rij,kl = Rkl,ij.

Definition 3.1.3. The Ricci tensor of an affine connection is the trace of the Riemannian tensor, i.e.,
the tensor Rjl = Ri

j,il of rank two, obtained by the compression with respect to the pair of indices of the
Riemannian tensor. The Ricci tensor is symmetric.

The Ricci tensor was defined by Ricci–Curbastro in the paper “Main formulas of the general theory
of manifolds and their curvature.”

The previous considerations have a sense in any affine connection manifold. We now pass to the
Riemannian case. Therefore, let M be a Riemannian manifold with a Riemannian metric gij .

Definition 3.1.4. The scalar curvature R of a Riemannian manifold is the scalar-valued function R(x) =
gklRkl, i.e., the complete compression of the Ricci tensor with tensor inverse to the metric tensor. Clearly,
R(x) = gklRi

k,il.

In calculations, it is useful to know the following explicit expression of the Riemannian tensor for the
Riemannian connection through the metric tensor:

−Riq,kl = −giαR
α
q,kl =

1

2

(
∂2gil
∂xq∂xk

+
∂2gqk
∂xi∂xl

−
∂2gik
∂xq∂xl

−
∂2gql
∂xi∂xk

)
+ gmp

(
ΓmqkΓ

p
il +ΓmqlΓ

p
ik

)
.

The Riemannian tensor admits an important geometric interpretation. We consider a local coordinate
system centered at a point x; let (x1, . . . , xn) be the coordinates in this chart. We denote by K a small
square with side ε spanned by the coordinate lines xi and xj (see Fig. 6).

We fix a tangent vector a ∈ TxM
n at the point x and translate it in a parallel way (with respect to

the given connection) along the square K moving in such a way that the interior of the square remains
to the left (see Fig. 6). As a result, we obtain a vector a(ε) at the point x.

Proposition 3.1.2. We have the relation

lim
ε→0

ak(ε)− ak

ε2
= −Rk

l,ija
l.

Therefore, the Riemannian tensor measures the deviation of a vector from its initial position after
going around a small closed contour. As we know, the parallel translation in the Euclidean space is
independent of the path. It turns out that it is a general fact related to the vanishing of the curvature
tensor. More precisely, we have the following theorem.
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Fig. 6 Fig. 7

Theorem 3.1.3. Let Mn be an affine connection space with zero curvature tensor Ri
j,pq ≡ 0. Let two

curves x1(t) and x2(t) : [0, 1] → Mn be homotopic, and, moreover, if x(t, s), 0 ≤ s ≤ 1, is the corre-
sponding homotopy, we set x(0, s) = x1(0) = x2(0) = p, x(1, s) = x1(1) = x2(1) = q, t ∈ [0, 1] (see
Fig. 7). Then the parallel translation of a vector ξ ∈ TpM

n along the curve x1(t) coincides with the
parallel translation of the vector ξ along the curve x2(t).

We mention the identity (Bianchi identity)

∇mR
α
i,kl +∇lR

α
i,mk +∇kR

α
i,lm = 0,

which is important in the characteristic class theory. In terms of vector fields, it is written as follows:

∇XR(Y,Z)W +∇YR(Z,X)W +∇ZR(X,Y )W = 0.

We consider a Riemannian manifold M ; let σ ⊂ TxM be an arbitrary two-dimensional subspace in
the tangent space TxM of the manifold M at a point x. Let X and Y be two arbitrary base vectors in
the plane σ.

Definition 3.1.5. The sectional curvature (or merely, curvature) of the Riemannian manifold (M,gij)
in the two-dimensional direction σ is the number

K(σ) = −
(R(X,Y )X,Y )

(X,X)(Y, Y )− (X,Y )2
,

where (X,Y ) = gijX
iY j is the inner product with respect to the metric gij.

Lemma 3.1.1. The number K(σ) is well defined, i.e., it depends only on the two-dimensional subspace
σ ⊂ TxM (plane) in the tangent space TxM .

The sectional curvature of a Riemannian manifold was defined (with accuracy up to a multiplier) by
Riemann in the paper “On hypotheses lying in the foundations of geometry.”

In Riemannian geometry, one divides manifolds having a positive, negative, zero, constant, etc.
sectional curvature into separate classes. These fields of geometry differ from each other not only in
results but also in the methods of study (see Chapt. 3).

If a Riemannian manifold is two-dimensional, then at each point there exists only one two-dimensional
direction, which coincides with the tangent plane. Therefore, the function K(σ) becomes a scalar-valued
function on the manifold M2 and is called the Gauss curvature. We note that the definition of the Gauss
curvature is given here independently of any embedding ofM2 in the space R3. In other words, the Gauss
curvature (as well as other objects described above) belongs to the intrinsic geometry of a Riemannian
manifold. The Gauss curvature can be calculated in terms of an embedding of the surface M2 in the
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space R3. (For more details, see textbooks on differential geometry [134,162,206].) An explicit expression
of the curvature K through the coefficients of the first quadratic form looks as follows:

K =−
1

4(EG− F 2)2

∣∣∣∣∣∣
E Eu Ev

F Fu Fv
G Gu Gv

∣∣∣∣∣∣− 1

2
√
EG− F 2

{(
Ev − Fu√
EG− F 2

)
v

−

(
Fv −Gv√
EG− F 2

)
u

}
.

We have the relation R = 2K on a two-dimensional Riemannian manifold, where R is the scalar
curvature and K is the Gauss curvature. The curvature with respect to a two-dimensional direction has
the following clear treatment. We consider a two-dimensional plane σ ⊂ TxM at a point x ∈ Mn and
draw a geodesic going in the direction of each vector a ∈ σ. These geodesics (locally) form a certain
two-dimensional surface M2 whose tangent plane coincides with σ. There arises an induced Riemannian
metric on this plane, and we can calculate the Gauss curvature K of this surface M2 at the point x. It
turns out that K(σ) coincides with K.

3.2. Structural equations. We can describe connections using the language of differential forms. We
recall some facts from the exterior differential form theory. For more details, see modern courses of
calculus or detailed courses of differential geometry (see [22,48,113,134,177,188]).

Definition 3.2.1. An exterior differential form is a covariant tensor field ai1...ik (the number k is called
the degree of this form) that is skew symmetric, i.e., its coordinates change their sign under an odd
permutation of subscripts and do not change it under an even permutation: aσ{i1i2...ik} = δσai1i2...ik ,
where δσ = +1 if σ is an even permutation and δσ = −1 if σ is an odd permutation.

We can use tensor operations in the calculus of exterior differential forms. However, the tensor
product does not preserve the class of exterior differential forms. Therefore, a new operation, the exterior
product, is introduced.

Definition 3.2.2. The exterior product ci1i2...ik+l of exterior differential forms ai1...ik and bi1...il is an
exterior differential form defined by

ci1...ik+l = a[i1...ikbik+1...ik+l].

The symbol c = a ∧ b is used for the exterior product. The exterior product possesses the following
properties:

(a) a ∧ (b+ c) = a ∧ b+ a ∧ c,
(b) (b+ c) ∧ a = b ∧ a+ c ∧ a,
(c) a ∧ b = (−1)klb ∧ a, where k is the degree of the form a and l is the degree of the form b,
(d) a ∧ (b ∧ c) = (a ∧ b) ∧ c.

Definition 3.2.3. Let ai1...ik be an exterior differential form of degree k. Then the collection of functions
(da)i0i1...ik defined by

(da)i0i1...ik = ∂[i0ai1...ik],

where ∂i0 =
∂

∂xi0
, defines an exterior differential form of degree k+1, which is called the exterior derivative

of the form ai1...ik .

The exterior derivative possesses the following properties:

(a) d(a+ b) = da+ db,
(b) d(a ∧ b) = da ∧ b+ (−1)deg aa ∧ db,
(c) d2 = 0.

Now let Mn be an affine connection manifold, and let X1, . . . ,Xn be a basis of vector fields on a
certain open neighborhood Up of a point p ∈ Mn, i.e., each vector field X on Up can be represented in

the form X =
n∑
i=1

fiXi, where fi are smooth functions on Up. Let ω
i and ωij, 1 ≤ i, j ≤ n, be 1-forms on
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Fig. 8

Up defined by ωi(Xj) = δij and ωij =
∑
k

Γikjω
k. Clearly, the forms ωij define the functions Γ

i
jk on Up and,

therefore, the connection. On the other hand, as the following theorem shows, the forms ωi and ωij are
described by the curvature and torsion tensor fields.

Theorem 3.2.1 (the Cartan structural equations). We have the following relations:

dωi + ωip ∧ ωp =
1

2
Sijkω

j ∧ ωk, dωil + ωip ∧ ωpl =
1

2
Ri
l,jkω

j ∧ ωk.

3.3. Principal frame bundles. In various geometric constructions, it is useful to pass to the principal
frame bundle (see [188,189]).

Definition 3.3.1. Let Mn be a smooth manifold. A pair (x, l), where l = (l1, . . . , ln) is a basis of the
tangent space TxM

n, is called a frame. On the set R(M) of all frames (see Fig. 8), we have a natural
structure of a smooth manifold of dimension n2 + n, where n = dimMn (see [189]). There is a natural
projection π : R(M) → M that is the principal bundle [22]. Now let M be an affine connection manifold
with connection Γijk. In this case, differential forms of degree 1, ωi and ωij, are defined on the manifold

R(M).

By definition, we set
d

dt
x(t) = ωi(ξ)li and

∇

dt
li(t) = ω

j
i (ξ)lj ,

where ξ is a tangent vector to the manifold R(M) at the point (x, l) ∈ R(M) and

ξ =
d

dt

∣∣∣∣
t=0

(
x(t), l1(t), . . . , ln(t)

)
.

Therefore, we have n2 + n linearly independent 1-forms ωi and ωij in the frame bundle R(M), which
completely describe the connection.
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The differential forms ωi and ωij satisfy the structural equations described in Theorem 3.2.1; here

Sijk and Ri
j,kl are now smooth functions on the space R(M) but not tensor fields on the manifold M . On

the space R(M), the group GL(n) of nonsingular transformations of the space Rn acts in an obvious way.
Under this action, the functions Sijk and Ri

j,kl are transformed according to the tensor law described in
Sec. 2.2.

The pointwise approach to affine connections is a particular case of the frame one. To observe

this, it suffices to consider an n-dimensional submanifold M̃ in R(M) that consists of base vectors of a
certain chart in the manifold M . The restriction of the forms ωij to this submanifold yields the relation

ωij(d) = Γipjdx
p, i.e., the affine connection Γijk is reconstructed. (Here d is a tangent vector to R(M).)

Using the Cartan structure equations restricted to the described submanifold M̃ , we obtain that Sijk is

the usual torsion tensor and Ri
j,kl is the usual curvature tensor. In the case of the Riemannian connection,

there arise some distinguishing features in the structure of the forms ωij; namely, we have ω
i
j = −ωji . The

distinguishing features of the curvature tensor in the Riemannian case were described above, and we do
not repeat them here.

3.4. Gauss and Bonnet theorem. Let Rkl,ij be the curvature tensor, and let l1, . . . , l2p be an or-
thonormal basis in the tangent plane. We set R(li, lj)ll =

∑
k

Rkl,ijlk. As is easily seen, the number

K(R) =
1

2p(2p)!

∑
α,β∈S2p

δαδβRi1i2j1j2 · · ·Ri2p−1i2pj2p−1j2p

is independent of the choice of the orthonormal basis (S2p is the set of all permutations of order 2p and
δα is the sign of a permutation α). This number is called the Lipschitz–Killing curvature of the tensor
R. For a smooth function f : M → R on a Riemannian manifold (M,gij), we define the integral

∫
M

f by∫
M

fdv, where dv is the volume element of the manifold M .

We consider a Riemannian manifold Mn of even dimension n = 2p with boundary ∂Mn. The
Gaussian curvature of the manifold Mn is the Lipschitz–Killing curvature of the curvature tensor Ri

j,pq

of the manifold Mn. Therefore, the Gaussian curvature is a smooth function K : Mn → R. We denote
by ν : ∂M → TM the unit vector of the exterior normal to the boundary ∂M . For m ∈ ∂M , the second
fundamental tensor is the linear operator

B(m) : Tm(∂M) → Tm(∂M)

defined by

B(m)X = ∇Xν, X ∈ Tm(∂M).

For each r = 0, 1, . . . , p− 1, we define a smooth function ϕr : ∂M
2p → R as follows. Let m ∈ ∂M2p,

l1, . . . , ln−1, ln = ν be an orthonormal basis in the space TmM
2p. We set

B(m)lα =
n−1∑
β=1

bαβlβ, α = 1, . . . , n− 1,

and

R(li, lj)ls =
n∑

k=1

Rij,kslk, i, j, s = 1, . . . , n.

The number

ϕr(m) =
∑

α,β∈Sn−1

δαδβRα1α2β1β2 · · ·Rα2r−1α2rβ2r−1β2rbα2r+1β2r+1 · · · bαn−1βn−1
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is independent of the choice of the orthonormal basis l1, . . . , ln−1. We introduce the notation

ϕ =

p−1∑
r=0

drϕr,

where dr are positive rational coefficients defined by

dr =
π

r!22p+rΓ
(
1
2(2p+ 1)

)
Γ
(
1
2(2p− 2r + 1)

) .
Denoting by ωn the volume of the unit n-dimensional sphere, we have

ωn−1 =
2π

n
2

Γ(n2 )
.

In this notation, we have the following theorem.

Theorem 3.4.1 (Gauss and Bonnet). Let M be a compact Riemannian manifold of an even dimension
n with boundary ∂M . Then ∫

M

K +

∫
∂M

ϕ =
1

2
ωnχ(M),

where χ(M) is the Euler characteristic of the manifold M .

For the proof of this theorem, see [6,113,183,189,206].

4. Transformations of Affine Connection Manifolds and Riemannian Manifolds

4.1. Isometries. In this section, we define an analog of motions for arbitrary Riemannian manifolds.

Definition 4.1.1. Let M and N be two Riemannian manifolds with Riemannian structures gij and hij ,
respectively. Let f be a smooth mapping of the manifold M into N . The mapping f is called an isometry
if f is a diffeomorphism of M onto N and f∗gij = hij (the operation f∗ is defined in Sec. 1.3). The
mapping f is called a local isometry if, for each point p ∈ M , there exist open neighborhoods U and V of
points p and f(p), respectively, such that f is an isometry of the manifold U onto V .

Obviously, if f is an isometry of a Riemannian manifold M onto itself, then f preserves the distance,
i.e., ρ(f(p), f(q)) = ρ(p, q). The converse statement also holds.

Theorem 4.1.1. Let M be a Riemannian manifold, and let f be a distance-preserving mapping. Then
f is an isometry.

For the proof of this statement, see [113]. The set of all isometries forms a group, which is denoted
by I(M), and I0(M) is its connected component of the identity. As for the structure of the isometry
group I(M), we have the following important theorem.

Theorem 4.1.2 ([94,113]). For a Riemannian manifold M , the isometry group I(M) of M is a Lie
transformation group with respect to the compact-open topology. The stationary subgroup

Ix(M) = {g ∈ I(M)|g(x) = x}

of an arbitrary point x ∈ M is compact. If the manifold M is compact, then the group I(M) is also
compact.

In fact, the idea of the proof of this theorem consists of the fact that isometries are uniquely defined
by their values at one point. More precisely, we have the following statement. Let M be a Riemannian
manifold, and let f and g be two isometries of the manifold M onto itself such that there exists a point
p ∈ M for which f(p) = g(p) and f∗,p = g∗,p. Then f = g.

As a consequence of this statement, we have the following estimate of the dimension of the isometry
group.
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Proposition 4.1.1 (see, e.g., [134]). Let M be a compact smooth Riemannian manifold, and let
G = I(M) be its isometry group. Then dimG ≤ 1

2n(n + 1), i.e., the transformations g ∈ G depend

on no more than 1
2n(n+ 1) continuous parameters.

A vector field X on a manifold M is called an infinitesimal isometry (or a Killing vector field) if the
local one-parameter transformation group generated by the field X in a neighborhood of each point of
M consists of isometries only. The set i(M) of all infinitesimal isometries of the manifold M forms a Lie
algebra with respect to the commutator of vector fields [X,Y ] = XY − Y X.

We can estimate the dimension of the Lie algebra of infinitesimal isometries. The Lie algebra i(M) of
infinitesimal isometries of a Riemannian manifoldM is of dimension at most 1

2n(n+1), where n = dimM .

If dim i(M) = 1
2n(n+1), then M is a space of constant curvature (see [113]). Geodesics of a Riemannian

manifold can be represented as orbits of infinitesimal isometries. More precisely, let ϕt be a local one-
parameter isometry group generated by a vector field X on the Riemannian manifold M . If x is a critical
point of the length function

√
g(X,X) (i.e., all partial derivatives of this function vanish at the point x),

then the orbit ϕt(x) is a geodesic (see [113]).

4.2. Conformal transformations. Let (M,g) and (M ′, g′) be two n-dimensional Riemannian manifolds
with Riemannian metrics g and g′, respectively. A diffeomorphism f : M → M ′ is called a conformal
mapping of the manifold M into M ′ if the Riemannian metric g∗ = f∗g′ induced by g′ via the mapping f
is conformally equivalent to g, i.e., there exists a scalar-valued function ϕ on M such that g∗ = e2ϕg. If
ϕ = const, then the mapping f is called the homothety, and if ϕ ≡ 0, then we obtain the concept of an
isometry, which is already known.

For example, conformal transformations of the plane were initially considered by Euler in Arguments
on Orthogonal Trajectories. Euler applied conformal mappings in cartographic works, where he considered
conformal mappings of the sphere onto the plane that consist of the stereographic projection of the sphere
on the plane and conformal mappings of the plane by using analytic functions. Conformal transformations
of the three-dimensional space were initially considered by Liouville.

The set of conformal mappings of a Riemannian manifold forms a group denoted by Conf(M); its
connected component of the identity is denoted by Conf0(M). The structure of this group is described
by the following important theorem.

Theorem 4.2.1 ([113]). The group of conformal transformations of an n-dimensional Riemannian man-
ifold M for n ≥ 3 is a Lie transformation group of dimension at most 1

2(n+ 1)(n+ 2).

The case n = 2 is exceptional in most problems concerning conformal mappings because of the
following. If M is a complex manifold of complex dimension 1 with a local coordinate system z = x+ iy
and g is a Riemannian metric onM of the form f(z)(dx2+dy2) = fdzdz̄, where f(z) is a positive function
on the manifold M , then each complex-analytic transformation of the manifold M is conformal.

We consider the case where the group Conf0(M) does not coincide with the group I0(M). In this
case, if M is a compact Riemannian manifold of dimension n > 3 that is also homogeneous, then M is
isometric to the sphere; if M is a complete Riemannian manifold of dimension n ≥ 3 with a parallel Ricci
tensor, then the manifold Mn is isometric to the sphere Sn. If M is a complete Riemannian manifold
that is not a local Euclidean space, then a complete homothetic transformation f of the manifold M is
an isometry (see [113]).

4.3. Affine transformations of affine connection manifolds. Let f :M → N be a diffeomorphism
of a manifold M onto N , and let the object of an affine connection Γijk onM be given, that is, the parallel

translation law dξi = −Γijkdx
jξk. The diffeomorphism f transfers the connection Γijk from the manifold

M to the manifold N . We can give two definitions of the transferred affine connection.
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Definition 4.3.1. By definition, we set

Γ̂ijk =
∂yi

∂xα
∂xβ

∂yj
∂xγ

∂yk
Γαβγ +

∂2xα

∂yj∂yk
∂yi

∂xα
;

here the diffeomorphism f is given by the collection of functions yi = yi(x1, . . . , xn) and the inverse
diffeomorphism f−1 is given by xi = xi(y1, . . . , yn).

The object of the affine connection defined by this relation is uniquely defined and does not depend on

the choice of charts; moreover, Γ̂ijk is also the object of the linear connection. Definition 4.3.1 is equivalent

to the definition consisting of the fact that the coordinates of the object of the affine connection Γ̂ijk in the
chart mapped by the diffeomorphism f coincide with the coordinates of the object of the affine connection
Γijk. This is equivalent to the existence of a path with a vector field that is parallel translated such that
under the mapping of this path and this vector field, we obtain the vector field that is parallel translated

with respect to the connection Γ̂ijk.

Definition 4.3.2. A diffeomorphism of a manifold M onto itself is called an affine transformation if it

preserves the object of the linear connection, i.e., if Γ̂ijk is the mapped object of the affine connection,

then Γ̂ijk = Γijk.

It is easily seen that the preservation of the object of an affine connection is equivalent to the
preservation of the parallel translation. The set of affine transformations of the manifold obviously
defines a group denoted by Aff(M); the connected component of the identity is denoted by Aff0(M). The
structure of the group of affine transformations is described by the following important theorem.

Theorem 4.3.1 ([113]). Let M be an affine connection manifold. Then the group Aff(M) of affine
transformations of the manifoldM is a Lie transformation group with respect to the compact-open topology.

Definition 4.3.3. A vector field on an affine connection manifold M with connection Γijk is called an
infinitesimal affine transformation if, for each point x ∈ M , the local one-parameter group of transfor-
mations ϕt of a neighborhood U of a point x ∈ M preserves the connection Γijk: more precisely, if each
transformation ϕt : U → M is an affine transformation, where U is equipped with an affine connection
equal to the restriction of the connection Γijk to U .

Infinitesimal affine transformations of the affine connection manifold M with connection Γijk form a

Lie algebra, aff(M).

Theorem 4.3.2. IfM is an affine connection manifold, then the Lie algebra aff(M) of infinitesimal affine
transformations of the manifold M is of dimension at most n2 + n, where n = dimM . If dim aff(M) =
n2+n, then Γijk is a flat connection, i.e., the torsion and curvature of the connection Γ

i
jk vanish identically.

The completeness of an affine connection can be expressed using the language of infinitesimal trans-
formations. In this connection, we mention the following result of Kobayashi [113].

Theorem 4.3.3. Let Γijk be a complete affine connection on M . Then each infinitesimal affine trans-
formation X of the manifold Mn is complete, i.e., it generates a global one-parameter group of affine
transformations of the manifold M .

In the case of a Riemannian manifold M , it is clear that I(M) is a closed subgroup in the group
Aff(M). In many cases, the components of the identity of the groups I(M) and Aff(M) coincide. We
mention only the following result: if X is an infinitesimal affine transformation of a complete Riemannian
manifold and the lengths of vectors of the field X are bounded, then X is an infinitesimal isometry. This
result implies the following Yano theorem.

Theorem 4.3.4 ([113]). We have I0(M) = Aff0(M) on a compact Riemannian manifold M .
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Fig. 9

4.4. Holonomy groups. For each point x ∈Mn, we denote by C(x) the space of all loops at the point
x, i.e., the set of all closed curves with the origin and the end at the point x. If τ, µ ∈ C(x), then the
composition τµ ∈ C(x) is defined in an obvious way (µ follows τ). The parallel translation along each
curve τ ∈ C(x) defines an isomorphism τ̂ of the space TxM onto itself.

Definition 4.4.1. The set of all isomorphisms τ̂ , τ ∈ C(x), of the space TxM onto itself forms a group
Φ(x), which is called the holonomy group of the connection Γijk with support point (or reference point)

x. Let C0(x) be a subset in C(x) consisting of loops that are homotopic to zero. The subgroup of the
holonomy group consisting of parallel translations along τ ∈ C0(x) is called the restricted holonomy group
for the connection Γijk with support point x. This group is denoted by Φ0(x). The group Φ0(x) is a
connected group, because if a loop can be continuously contracted into a point, then the transformations
of the holonomy group Φ0(x) can be connected by a continuous path with the identity transformation.
The holonomy group Φ0(x) lies in the group GL(n) of nonsingular transformations of the space TxM

n.
One asks: is it a Lie subgroup or not? To solve this problem, we can use the following deep theorem
belonging to Yamabe.

Theorem 4.4.1. Each connected subgroup (in the abstract sense) of a Lie group is a Lie group.

This implies that Φ0(x) is a Lie group. The Lie group Φ0(x) is a normal subgroup in Φ(x), and the
quotient group Φ(x)/Φ0(x) is countable. This implies that Φ(x) is a Lie group whose component of the
identity is Φ0(x).

Now let Mn be a Riemannian manifold with metric gij .

Definition 4.4.2. The manifold Mn is said to be reducible or irreducible in accordance with the re-
ducibility or irreducibility of Φ(x) as a linear group acting on the space TxM

n.

Also, a similar definition can be certainly given for affine connection manifolds.

Let T
(0)
x be the set of elements of TxM that are fixed with respect to the group Φ(x). This is

the maximal linear subspace of TxM on which the group Φ(x) acts trivially. Let T⊥x be the orthogonal
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complement to T
(0)
x in the space TxM . It is invariant under the action of the group Φ(x), and, therefore,

we can decompose it into a direct sum T⊥x =
k∑
i=1

T
(i)
x of mutually orthogonal irreducible subspaces. The

decomposition TxM =
k∑
i=0

T
(i)
x is called the de Rham decomposition of the space TxM (see Fig. 9).

Theorem 4.4.2 ([113]). LetM be a Riemannian manifold, TxM =
k∑
i=0

T
(i)
x be the de Rham decomposition

of TxM , and T (i) be an involutive distribution on M obtained by the parallel translation of the space T
(i)
x

for each i = 0, 1, . . . , k. Let y ∈ M , and let Mi be the maximal integral manifold of T
(i) passing through

the point y. Then the following assertions hold.

(1) A point y admits an open neighborhood V such that V = V0 × V1 × . . . × Vk, where Vi is an open
neighborhood of the point y in Mi and the Riemannian metric in V is the direct product of the
Riemannian metrics of all neighborhoods Vi.

(2) The maximal integral manifold M0 is locally Euclidean in the sense that each point of M0 admits
a neighborhood that is isometric to an open set of the n0-dimensional Euclidean space, where n0 =
dimM0.

(3) IfM is simply connected, then the holonomy group Φ(x) is a direct product Φ0(x)×Φ1(x)×. . .×Φk(x)

of normal subgroups, where Φi(x) acts trivially on the space T
(j)
x if i 
= j and is irreducible on T

(i)
x

for each i = 1, . . . , k, and Φ0(x) consists of the identity only.
(4) If M is simply connected, then the canonical decomposition

TxM =
k∑
i=0

T (i)
x

is unique up to the enumeration.

We can deduce from this result the statement on the global decomposition of a Riemannian manifold
M . It is known as the de Rham decomposition (see [113]).

Theorem 4.4.3. A simply connected complete Riemannian manifold is isometric to a direct product
M0 ×M1 × . . . ×Mk, where M0 is the Euclidean space (possibly of zero dimension) and M1, . . . ,Mk are
simply connected complete irreducible Riemannian manifolds. Such a decomposition is unique up to an
enumeration.

Using the language of irreducibility, we can give a condition under which the groups I(M) and
Aff(M) coincide (see [113]).

Theorem 4.4.4. If M is a complete irreducible Riemannian manifold, then I(M) = Aff(M), except for
the case where M is the one-dimensional Euclidean space.

5. Homogeneous Spaces

5.1. Main definitions and constructions. In Vergleichende Betrachtungen über neuere geometrische
Forshungen,1 Felix Klein stated the goal of geometry as follows: “Given a manifold and a transformation
group acting on it, develop an invariant theory of this group,”2 and he considered this principle as the
general principle of geometry. Therefore, after the appearance of Riemannian manifolds that do not
admit a transitive transformation group, the space admitting a transitive transformation group came to
be known as homogeneous spaces or Klein spaces. The term “homogeneous space” was introduced by E.
Cartan. We give the following key definitions of the theory of homogeneous spaces. Let X be a topological

1It is also known as Erlangen Programm (1872).
2Translated from the Russian translation of the German edition.
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space, and let G be a topological group. We say that G is a topological transformation group of the space
X if with each element g ∈ G of the group G, one associates a homeomorphism fg : X → X of the space
X onto itself, and, moreover, the following three conditions hold:

(1) the mapping (g, γ) → fg(γ) from G×X into the space X is continuous;
(2) the identity element e of the group G defines the identical homeomorphism of the space X;
(3) the relation fg1fg2(γ) = fg1g2(γ) holds for g1, g2 ∈ G and γ ∈ X, i.e., (g1g2)(γ) = g1(g2(γ)) and

fg(x) = gx.

A topological space X on which a group G acts is called a G-space.
We say that a group G acts transitively on a space X if, for each pair of points x1, x2 ∈ X, there

exists an element g ∈ G of the group G such that g(x1) = x2. If e is a unique element in the group
G that leaves each point x ∈ X fixed, then we say that the group G acts effectively on the space X,
and G is called an effective transformation group. A space X is said to be homogeneous if there exists a
transformation group G that acts transitively on X. A subgroup in G that leaves a point x ∈ X fixed is
called the stationary subgroup of the point x ∈ X. If Hx is the stationary subgroup of the point x ∈ X
and gx = y, then the stationary subgroup of the point y is Hy = gHxg

−1. Therefore, the stationary
subgroups of any two points of a homogeneous space are isomorphic.

The quotient space G/H is an important example of a homogeneous space. Let G be a topological
group, H be a closed subgroup of G, and G/H be the set of left cosets of elements of the group G by
the subgroup H. On the space G/H, we define a topology by the canonical mapping π : G → G/H.
Namely, a subset U ⊂ G/H is open if π−1(U) is open in G. The collection of open sets defined in this
way defines a certain Hausdorff topology on the space G/H. If, with each element g ∈ G, we associate a
transformation g : xH → gxH, then G becomes a transitive topological transformation group that acts
on the space G/H, and, therefore, G/H is a homogeneous space. The group G acts effectively on the
space G/H iff H does not contain a normal subgroup of the group G.

The presented construction yields a description of an arbitrary homogeneous space. In fact, a more
precise statement holds.

Theorem 5.1.1 ([94]). Let G be a locally compact group with a countable base that acts transitively
on a locally compact Hausdorff space X. Let x ∈ X be any point of the space X, and let Hx be the
stationary subgroup of the point x. Then Hx is a closed subgroup in G and the mapping gH → g(x) is a
homeomorphism from G/H onto X.

Let G be a Lie group, and let M be a smooth manifold. In this case, there is reason to speak of a
smooth action of the Lie group G on the manifoldM . For this purpose, we need to require the smoothness
of the mapping G×M → M instead of its continuity. In this case, the homogeneous space M also admits
a realization in the form of the quotient space G/H (see, e.g., the work [94] of Helgason).

If M is a Riemannian manifold, then to define a homogeneous Riemannian manifold, we have to
require that G be a subgroup of the isometry group of the manifold M . In this case, the metric on the
manifold M is said to be G-invariant (see [94]).

On the space G/H of left cosets of a Lie group G by a subgroup H, the group G acts by left
translations. There arises a natural question on the existence of invariant metrics on the homogeneous
spaces G/H. An answer to this question is given by the following theorem.

Theorem 5.1.2 ([94]). Each homogeneous space G/H, where G is a Lie group and H is a compact
subgroup, admits an invariant Riemannian metric.

To obtain geometric assertions for homogeneous Riemannian manifolds that are rich in content,
one focuses on various special classes of these spaces. There is one remarkable class of Riemannian
homogeneous spaces, the symmetric spaces. The symmetric spaces have become traditional in modern
mathematics, starting from the works of E. Cartan. Their role is determined by the fact that various
problems of geometry, group theory, differential equations, Hamiltonian mechanics, theoretical physics,
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etc. are often reduced to one or another problem on symmetric spaces. Since the topological and algebraic
structures of these spaces are rich, it is convenient to use them for verifying the effectiveness of many
modern methods for studying Riemannian manifolds and related objects. We give here only the definition
of these spaces; a slightly more detailed description will be given in Chap. 4. Let G be a connected Lie
group, and let σ be an involutive automorphism of the Lie group G (i.e., σ2 = 1 and σ 
= 1). Let Gσ

be a closed subgroup in G consisting of all points of the group G that are invariant with respect to the
automorphism σ, and let (Gσ)0 be the connected component of the identity of the group Gσ. We assume
that H is a closed subgroup such that Gσ ⊃ H ⊃ (Gσ)0. In this case, we say that the homogeneous space
G/H is symmetric (defined according to σ). If σ is also an involutive automorphism of the Lie algebra G
of the group G that is induced by the automorphism σ, then G = Y⊕R, where Y = {X ∈ G | σ(X) = X}
coincides with the subalgebra corresponding to the subgroup H and R = {X ∈ G | σ(X) = −X}. In this
case, we have the inclusions [Y,Y] ⊂ Y, [Y,R] ⊂ R, and [R,R] ⊂ Y.

5.2. Reductive homogeneous spaces. Let a group G act on an affine connection manifold M . We
say that the affine connection on M is invariant with respect to the action of the group G if all transfor-
mations are affine. In Sec. 5.1, we solve the problem on the existence of invariant Riemannian metrics
on homogeneous spaces. We now consider a similar question on affine connections. For this purpose, we
focus on a special class of homogeneous manifolds.

Definition 5.2.1. Let G ⊃ Y be the Lie algebras of two Lie groups G and H, respectively. Let we
have a subspace M ⊃ G such that G = M + Y (a direct sum of vector spaces), and let adhM = M
for each h ∈ Y. In this case, we say that the homogeneous space G/H is reductive with respect to the
decomposition G =M+Y. Obviously, we have the inclusion [Y,M] ⊂M.

Theorem 5.2.1 ([115]). On any reductive homogeneous space M = G/H, there exists a unique G-
invariant affine connection such that for each X ∈ M and any vector field Y on the manifold M , we
have

(∇X∗Y )0 = [X∗, Y ]0,

where X∗ denotes the vector field generated by the action of an element X ∈M, i.e.,

X∗(p) =
d

dt

∣∣∣∣
t=0

(exp tX)p.

Definition 5.2.2. The affine connection defined in Theorem 5.2.1 is called the canonical connection or
Rashevskii connection on the homogeneous space.

We now present certain important geometric properties of reductive homogeneous spaces. The par-
allel translation of vectors at a point O = H along the curve (exp tX)(0), 0 ≤ t ≤ s, coincides with the
differential of the mapping exp(sX) ∈ G acting on the manifold M . For each point X ∈ M, the curve
x(t) = (exp tX)(0) is a geodesic. Conversely, each geodesic emanating from the point O has the form
(exp tX)(0) for a certain element X ∈M. The canonical connection on a reductive space is complete. If
a tensor field on M is invariant under the action of G, then it is parallel with respect to the canonical
connection ∇ (see [115]).

Example. Let GL+(n,R) be the Lie group of real matrices of order n with positive determinant, and
let SO(n) be the group of orthogonal matrices with determinant equal to 1. The homogeneous space
GL+(n,R)/SO(n) is reductive since we can take the set of all symmetrical matrices as the invariant
complement to the Lie algebra so(n).

We now present a useful reductivity criterion of homogeneous spaces.

Theorem 5.2.2. If H is a closed subgroup of a connected semisimple Lie group G, then the homogeneous
space G/H is reductive.
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In conclusion, we present a description of invariant affine connections on reductive homogeneous
spaces.

Theorem 5.2.3 (Nomizu). Let G/H be a reductive homogeneous space with the decomposition G = Y+
M, where AdHM = M. There exists a bijective correspondence between the set of all invariant affine
connections on G/H and the set of all bilinear mappings α :M×M→M that are invariant with respect
to AdH , i.e.,

Adh α(X,Y ) = α(AdhX,Adh Y )

for all X,Y ∈M and h ∈ H. The correspondence is given by

α(X,Y ) = (∇X∗Y
∗)p0 ,

and α is called the connection function (Nomizu function) on M×M.

Chapter 2

GEODESICS ON RIEMANNIAN MANIFOLDS

1. Variational Theory of Geodesics

1.1. The action functional and the length functional. We consider a Riemannian manifold M .
Let p and q ∈ M be two fixed points, and let γ : [0, 1] → M be a piecewise-smooth path with γ(0) = p
and γ(1) = q, i.e., there exists a partition 0 = t0 < t1 < . . . < tk = 1 of the closed interval [0, 1] such that
γ |[ti,ti+1], 0 ≤ i ≤ k− 1, is a smooth mapping and γ is continuous as a whole. The set of all such paths is
denoted by Ω(M,p, q). The piecewise smoothness (but not the smoothness) of trajectories γ(t), γ(0) = p,
and γ(1) = q, is technically useful in proving the theorem on decomposition of the space Ω(M,p, q) into
“cells.” With each point γ ∈ Ω(M,p, q), we associate a certain infinite-dimensional linear space TγΩ,
which can be naturally imagined as the “tangent space” to Ω at a “point” γ ∈ Ω = Ω(M,p, q).

Definition 1.1.1. The tangent space TγΩ to Ω at a point γ is the linear space of all piecewise-smooth
vector fields v along the path γ such that v(0) = 0 and v(1) = 0.

A variation with respect to the parameter u, −ε ≤ u ≤ ε, of the path γ that leaves two points p and
q fixed is a mapping α̃ : (−ε,+ε) → Ω (ε > 0 is sufficiently small) such that α̃(0) = γ and there exists a
partition 0 = t0 < t1 < . . . < tk = 1 for which α(u, t) defined by α(u, t) = α̃(u)(t) is a smooth mapping
into M on each band ti ≤ t ≤ ti+1 (see Fig. 10).

Since we obtain a piecewise-smooth path α̃(u)(t) for each fixed u, −ε ≤ u ≤ ε, we can consider α̃
as a trajectory in the space Ω = Ω(M,p, q). Therefore, we can consider the velocity vector α̃(u) of this

trajectory at the point γ = α̃(0). By definition, we set v =
∂α̃

∂u
(0, t); the field v = v(t) is a piecewise-

smooth field along γ(t) and, therefore (by the definition of the tangent space TγΩ), belongs to TγΩ. It is
easy to verify the converse statement: if an arbitrary field v ∈ TγΩ is given, then there always exists a

trajectory α̃(u) ∈ Ω such that
∂

∂u
α̃(0, t) = v(t). The field v(t) is usually denoted by δγ in the calculus of

variations.
Let F (γ) be a real-valued function on the space Ω. We consider a path γ ∈ Ω and a field v = δγ ∈ TγΩ.

We consider the derivative
∂

∂u
F (α̃(u))|u=0, assuming that this derivative exists. In the specific example

of the functionals F (γ) we will deal with, the existence of the derivative will be obvious. We note that

the above definition of the derivative
∂

∂u
F (α̃(u)) is an exact copy of the “finite-dimensional” definition of

the directional derivative of a smooth function on a finite-dimensional manifold. Following this ideology
further, we give the definition of a critical path for F (γ). We say that a path γ(0) ∈ Ω is critical for F (γ)
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Fig. 10

if
∂

∂u
F (α̃(u))

∣∣∣∣
u=0

≡ 0

for any variation α̃(u) of the path γ0 (or the variational derivative
δF

δγ
vanishes).

We now examine the following specific functionals on Ω. These are the action E and the length l of
a path γ:

E(γ) =

1∫
0

∣∣∣∣dγdt
∣∣∣∣2 dt and l(γ) =

1∫
0

∣∣∣∣dγdt
∣∣∣∣ dt.

There is a simple inequality, l2 ≤ E, for the functionals E and l, and, moreover, the equality holds here
iff |γ̇| = const, i.e., in the case where the parameter t is proportional to the arclength (natural parameter)
on γ(t).

Let α̃(u) be a variation of the path γ, v = v(t) =
∂α

∂u
(0, t) be the vector field δγ of the variation α̃(u)

(along γ(t)), γ̇(t) be the velocity vector of the trajectory γ(t), a(t) = ∇γ̇(γ̇) be the acceleration vector,
and ∆γ̇(t) = γ̇(t+) − γ̇(t−) be a jump of the velocity vector at a point t. Then the following theorem
(formula of the first variation) holds.

Theorem 1.1.1 ([17,71,113]). We have

1

2

d

du
E(α̃(u))

∣∣∣∣
u=0

= −
∑
(t)

〈v(t),∆γ̇(t)〉 −

1∫
0

〈v(t), a(t)〉dt,

where a(t) is the variational derivative of the functional and E is a smooth function.

Since the path γ(t) is piecewise smooth, we have ∆γ̇(t) = 0 for all t, except for finitely many values
of t (discontinuity points of the derivative).

The formula of the first variation implies the following statement.

Theorem 1.1.2. A curve γ0 ∈ Ω is a critical point of the functional E(γ) iff γ0 is a geodesic.

1.2. Jacobi fields. A vector field v(t) along a geodesic γ0 is called a Jacobi field if it satisfies the Jacobi
differential equation

(∇γ̇0)
2v +R(γ̇0, v)γ̇0 = 0.

It is convenient to write this equation in coordinates in the following basis: we choose vector fields
l1(t), . . . , ln(t) parallel along γ0(t) (i.e., ∇γ̇0 lα(t) ≡ 0) that are orthonormal (for each t). Then v(t) =
vili(t), and we obtain

d2vi

dt2
+

n∑
j=1

Ri
j(t)v

j(t) = 0,
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where
Ri
j(t) = 〈R(γ̇0, lj)γ̇0, lj〉.

Therefore, a Jacobi field (as a solution to this system) is uniquely defined by the following initial data:
v(0) and ∇γ̇0v(0) ∈ Tγ0(0)M

n.

For a pair of points A,B ∈ γ0(t), let there exist a nonzero Jacobi field v(t) along γ0(t) such that
v|A = v|B = 0 (i.e., the field v(t) vanishes at the points A and B). Then the points A and B are said to be
conjugate along the geodesic γ0(t). The multiplicity of the pair of conjugate points A,B ∈ γ0 (along γ0)
is the dimension of the linear space of all such Jacobi fields (along γ0).

We now state a correspondence between the Jacobi fields and the Fermi coordinate systems introduced
in Sec. 2.4 of Chap. 1. Let U be an open subset in a Riemannian manifold M ; in U , we have the Fermi
coordinate system (x1, x2 . . . , xn) with respect to a submanifold P q ⊂ M and p ∈ U ∩ P . Let D(U) be
the Lie algebra of all vector fields on U .

A vector field A ∈ D(U) is called a Fermi tangent field if it has the form

A =

q∑
i=1

ci
∂

∂xi
,

where ci = const. Similarly, a vector field X ∈ D(U) of the form

X =
n∑

i=q+1

di
∂

∂xi
,

where di = const, is called a Fermi normal field . Let D(P, p)T and D(P, p)⊥ be the spaces of Fermi
tangent fields and Fermi normal fields, respectively. Clearly, dimD(P, p)T = q and dimD(P, p)⊥ = n− q,
q = dimP .

Let (x1, x2, . . . , xn) be the Fermi coordinate system with respect to a submanifold P ⊂ M . Then we
define a function σ2 by

σ2 =
n∑

i=q+1

x2i .

The function σ2 is independent of the choice of the Fermi coordinate system; it depends only on the
submanifold P ⊂ M . The following assertion states a correspondence between the Fermi coordinates and
the Jacobi fields.

Proposition 1.2.1. (a) Let γ be a geodesic orthogonal to a submanifold P at a point p, and let
X ∈ D(P, p)⊥ and A ∈ D(P, p)T . Then the restriction of the fields σX and A to γ are Jacobi
fields.

(b) Let (x1, x2, . . . , xn) be a normal coordinate system in a neighborhood of a point m ∈ M , and let σ(p)

be the distance from the point m to a point p. Then the vector fields σ
∂

∂xi
are Jacobi fields along

any radial geodesic.

1.3. Hessian of the action functional. We consider a parametric variation α : U × [0, 1] → M ,
where U(u1, u2) is an open neighborhood of the point (0, 0) ∈ R2(u1, u2), t ∈ [0, 1], α(0, 0, t) = γ(t),
∂α

∂u1
(0, 0, t) = v1(t), and

∂α

∂u2
(0, 0, t) = v2(t). It is easy to verify that for any pair of fields v1, v2 ∈ TγΩ,

there exists such a variation (see Fig. 11).

Definition 1.3.1. The Hessian of the functional E at a critical point γ0(t) ∈ Ω is an expression of the
form

d2E(v1, v2) =
∂2E(α̃(u1, u2))

∂u1∂u2

∣∣∣∣
u1=u2=0

.

Here α̃(u1, u2)(t) = α(u1, u2, t). We have the following formula for the second variation of the functional E.
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Theorem 1.3.1. Let γ0 ∈ Ω be a geodesic (i.e., a critical point of the functional E(γ)), and let α̃(u1, u2)

be a two-parametric variation of the path γ0, vi =
∂α̃

∂ui
(0, 0), i = 1, 2. Then

1

2

∂2E(α̃)

∂u1∂u2
(0, 0) = −

∑
(i)

〈
v2(ti),∆(∇γ̇0v1(ti))

〉
−

1∫
0

〈
v2(t),∇γ̇0∇γ̇0v1(t) +R(γ̇0, v1)γ̇0

〉
dt,

where ∆(∇γ̇0v1(t)) = ∇γ̇0v1(t
+)−∇γ̇0v2(t

−) is a jump of the derivative ∇γ̇0v1(t) at one of its discontinuity
points and R is the curvature tensor.

The geodesics γ0(t) have no break points, and, therefore, we can restrict ourselves to variations α̃ for
which v1(t) and v2(t) have no break points. Then

1

2

∂2E(α̃)

∂u1∂u2
(0, 0) = −

1∫
0

〈
v2(t),∇γ̇0∇γ̇0v1 +R(γ̇0, v1)γ̇0

〉
dt.

We consider d2E(v1, v2); let Wγ0 ⊂ Tγ0Ω be the linear subspace in Tγ0Ω that consists of all vector fields
v1 such that d2E(v1, v2) ≡ 0 for any v2 ∈ Tγ0Ω. Sometimes, the subspace Wγ0 is called the null-subspace
of the Hessian d2E at the point γ0 ∈ Ω or the kernel of the Hessian d2E. The degree of degeneration of
the Hessian d2E is the dimension dimWγ0 (at the critical point γ0 ∈ Ω).

Theorem 1.3.2. Let γ0 be a geodesic on M that connects two points p and q. Then a vector field v
belongs to the kernel Wγ0 of the Hessian d

2E iff v is a Jacobi field along γ0 (in particular, v|p = v|q = 0).

Therefore, the kernel Wγ0 of the Hessian d2E is different from zero iff the ends p and q of a geodesic
γ0 are conjugate along γ0. The dimension of the kernel Wγ0 (i.e., the degree of degeneracy of the Hessian
d2E) is equal to the multiplicity of the conjugate points p and q along γ0.

The dimension of the kernel of the Hessian d2E is always finite since it is equal to the number of
linearly independent Jacobi fields along γ0 (annihilating at the points p and q).

Among the different variations of trajectories γ0, we highlight the class of so-called geodesic variations,
i.e., smooth mappings α : (−ε,+ε)× [0, 1] → M under which α(0, t) = γ0(t) and each trajectory α̃(u) (we
recall that α̃(u)(t) = α(u, t)) is a geodesic (i.e., the perturbed trajectories remain geodesics in the process
of perturbation of a geodesic γ). We consider the “velocity vector” of such trajectories α̃ in the space Ω,

i.e., the vector field
∂α

∂u
along γ0. A simple calculation shows that this field is a Jacobi field. The converse

statement also holds. Any Jacobi field along the geodesic γ0 can be obtained by using a certain geodesic
variation. Indeed, we first suppose that a geodesic γ0 connects two points p′ and q′ that are sufficiently
close to one another and are located on a certain disk Dn ⊂ Mn of sufficiently small radius ε > 0. Then
we can suppose that any pair of points α, β ∈ Dn is connected by a unique geodesic contained in the
domain Dn. We show that there exist Jacobi fields along γ0 (from p′ to q′) that have arbitrarily given
values at the points p′ and q′ (see Fig. 12). We consider arbitrary tangent vectors a and b tangent to M
at the points p′ and q′ and construct a Jacobi field along γ0 with the initial data a at the point p′ and b at

the point q′. We draw a smooth curve a(u) through the point p′ such that
dq(0)

du
= a; similarly, we draw a

trajectory b(u) through the point q′ such that
db(0)

dt
= b. We obtain the desired family of geodesics when

the points p′ and q′ are connected by a geodesic (such a geodesic is unique). Changing u, we obtain the
desired perturbation of the geodesic γ0 going from p′ to the point q′ with the given initial values a and b
(see Fig. 13).

The desired Jacobi field along γ0 going from p′ to q′ is obtained by the differentiation in the parameter
u of the geodesic variation constructed above. Since a Jacobi field is uniquely defined by its values at the
points p′ and q′, any Jacobi field along γ0 going from the point p′ to the point q′ can be obtained by the
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Fig. 11 Fig. 12

Fig. 13 Fig. 14

above method. We note that the linear space of all Jacobi fields along γ0 going from p′ to q′ is isomorphic
to the 2n-dimensional linear space Tp′M

n× Tq′M
n. A more general statement holds: a Jacobi field along

a geodesic γ0 going from a point p to a point q (where the points p and q are not necessarily close to one
another) is uniquely define by its values at two other nonconjugate points (along γ0).

We now show the existence of a geodesic variation generating a given Jacobi field v on the whole
geodesic γ0 going from p to q. For this purpose, we consider a pair of points p′, q′ ∈ γ0 that are located
inside a sufficiently small ball Dn and define the vectors a = v|p′ and b = v|q′ at the points p

′ and q′.
Further, we construct a geodesic variation that generates a Jacobi field v along γ0 going from the point
p′ to the point q′ and extend the constructed family of geodesics outside the disk Dn, which yields the
desired geodesic variation on the whole geodesic γ0.

Definition 1.3.2. The index of a bilinear functional H on a vector space V is the maximum dimension
of a subspace W ⊂ V on which the functional H is negative definite.

There is an important connection between points conjugate along γ0 and the properties of the Hessian
d2E, which is more precisely described in the following theorem.

Theorem 1.3.3. The index of the quadratic form d2E at a critical point γ0 ∈ Ω is equal to the number
of points on the geodesic γ0(t), 0 < t < 1, that are conjugate to the initial point p = γ0(0) along γ0(t)
(each point of γ0(t) conjugate to γ0(0) = p is counted with its multiplicity). The index λ = λ(γ0) of the
quadratic form d2E is always finite.

If two points p and q are not conjugate along γ0, then we can consider the whole trajectory γ0(t),
0 ≤ t ≤ 1. In this case, ker d2E = 0 and γ0 ∈ Ω is a nondegenerate critical point of index λ.
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Fig. 15 Fig. 16

Fig. 17

In particular, this theorem implies that each segment of a geodesic γ0 contains only finitely many
points conjugate to the point p = γ0(0).

Because of the importance of this theorem, we present a clear explanation that shows that conjugate
points define variations α̃(u) in the space Ω along which the quadratic part of the functional E decreases.
For a formal proof, see [60,71,113,129,159].

Let x0 ∈ γ0 be a point conjugate to p = γ0(0) along γ0(t). Then, along the segment [p, x0] of the
geodesic γ0, there exist λ(x0) Jacobi fields (λ(x0) ≥ 1) that annihilate at the points p and x0 (these fields
can certainly vanish at some interior points of the segment [p, x0]). We consider a geodesic variation α̃(u)
of the segment [p, x0] in the direction of a certain Jacobi field along [p, x0] that annihilates at p and x0.
This means that there exists an infinitely small “rotation” of the geodesic [p, x0] that leaves the points p
and x0 fixed (see Fig. 14).

We consider geodesics α̃(u)(t), 0 ≤ t ≤ t0, that define this geodesic variation, where t0 corresponds
to the point x0 ∈ γ0. Then we can consider the smooth path ϕ̃(u) in the space Ω defined as follows:
ϕ̃(u)(t) = α̃(u)(t) for 0 ≤ t ≤ t0 and ϕ̃(u)(t) = γ0(t) for t0 ≤ t ≤ 1 (see Fig. 15).

By the choice of ϕ̃(u), we can assume in the first approximation that the length of the curve γ0 going
from p to q is equal to the length of α̃(u) going from p to x0 plus the length of γ0 going from x0 to q,
i.e., we can assume that the functional E is not changed under a sufficiently small displacement along the
trajectory ϕ̃(u), 0 ≤ u ≤ ε. Since a Jacobi field is completely defined by its initial data, the angle between
the velocity vector of the trajectory γ0 and the trajectory α̃(u)(t) at the point x0 is different from zero
(see Fig. 16).

We now construct a new trajectory ψ̃(u) in the space Ω emanating from the point γ0 along which

the quadratic part of the functional E strictly decreases, i.e., the velocity vector
˙̃
ψ(u)

∣∣∣
u=0

belongs to a

subspace on which the Hessian d2E is negative definite. The construction of the variation ψ̃(u) is shown
in Fig. 17.

Since the strict inequality length(x0, y) + length(x0, z) > length(z, y) holds in a sufficiently small

triangle x0yz, we see that the length of the trajectory ψ̃(u)(t) (ψ̃ = (pz) + (zy) + (yq)) is also strictly
less than the length of ϕ̃(u)(t), i.e., the length of γ0 (from p to q). (Of course, we used here the positive
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definiteness of the Riemannian metric.) Therefore, each Jacobi field on the segment px0 that annihilates
at the points p and x0 yields the unit contribution to the index of the Hessian d2E at the point γ0.

1.4. Applications of the index theorem. We consider the action functional E(γ), where γ ∈ ΩM .
This functional is a “Morse function” if all its critical points (i.e., geodesics going from a point p to a point
q) are nondegenerate. This is the case iff the points p and q are not conjugate to one another along any
geodesic connecting p and q. Further, at each critical point γ0 ∈ ΩM of the functional E, there arises an
integer, the Morse index of this critical point, i.e., the index of the geodesic γ0 going from the point p to
the point q. Therefore, we can expect that at each critical point (i.e., a geodesic γ0), one cell of dimension
equal to the index of this critical point (i.e., the index of the geodesic γ0) “is suspended.” Therefore,
there arises a cell partition of the space ΩM into cells whose number and dimension are defined by those
of the geodesics connecting the points p and q (if p and q are not conjugate).

Theorem 1.4.1. Let Mn be a compact (or complete) Riemannian manifold, and let p and q be a pair of
points in Mn that are not conjugate along any geodesic. Then the space Ω(Mn, p, q) is of a cell complex
homotopy type such that exactly one cell of dimension λ corresponds to each geodesic going from the point
p to the point q and whose index is λ.

Remark. If a geodesic γ0 is fixed, then the corresponding cell σλ (λ is the index of γ0) arises as the set
of trajectories obtained from γ0 by perturbation of γ0 in the direction of all Jacobi fields along γ0.

2. Periodic Problem of the Calculus of Variations

2.1. Statement of the periodic problem. We consider a compact smooth Riemannian manifold Mn.
Let Π(Mn) be the space of all closed smooth curves on Mn, i.e., a point of the space Π(Mn) is a smooth
mapping γ : S1 → Mn, where S1 = S1(t), 0 ≤ t ≤ 2π, is the circle parametrized by the standard angle
coordinate t, and the initial point is not fixed in this case.

The space Π(Mn), as well as the space Ω(Mn, p, q), can be naturally transformed into an “infinite-
dimensional manifold”; if γ ∈ Π(Mn) is a closed trajectory (by the term “trajectory,” we mean a trajectory
with a parametrization), the “tangent space” TγΠ(M) to the “manifold” Π(M) at the point γ ∈ Π(M)
consists of all smooth vector fields along γ (i.e., periodic vector fields). On the space Π(M), both
functionals l(γ) and E(γ) (the length of a path and the action of this path) are defined exactly in
the same way as in the case of the space Ω(Mn, p, q). We describe extremals of the functionals l(γ) and
E(γ). If γ0 ∈ Π(M) is a closed extremal of the functional E, then γ0 is a closed geodesic related to the
parameter, which is proportional to the natural parameter. If γ(t) is a periodic extremal for the functional
l(γ) of the length of γ, then all trajectories γ(t′) that are obtained from γ(t) by smooth changes of the
parameter t → t′ are also extremals of the functional l. Therefore, “critical points” of the functional l are
not isolated in the space Π(M); in particular, in any sense, they cannot be “isolated and nondegenerate”
critical points of the functional l(γ). Therefore (as in the case of the space Ω(M,p, q)), we focus our main
attention on the study of extremals of the functional E. We note that a closed geodesic γ0(t) ∈ Π(M) can
be multiple in the sense that when t varies from 0 to 1, the set {γ(t)} ⊂ Mn, which is a smooth curve, is
going around several times. Geodesics γ(t) depicted by a smooth curve in Mn that is going around one
time are said to be simple (of multiplicity 1) geodesics.

Conversely, if a certain simple closed geodesic is given, then it defines an infinite discrete sequence
of closed geodesics that are obtained from it by a multiple going around (with greater velocities than
the velocity of the initial geodesic). All these trajectories are distinct points of the space Π(M). For
example, if the initial trajectory γ0(t) defines a nonzero element of the fundamental group π1(M) (more
precisely, its coset is different from the identity element), then the trajectories that are multiple to it and
are described above belong to other cosets of the group π1(M).

2.2. Hessian of the action functional. As in the case of geodesics with fixed ends, it is natural to
associate a certain integer with each closed geodesic; by analogy with the previous case, it is also called
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the degree of degeneration of a geodesic. We now give its definition. If the degree of degeneration equals
zero, then a geodesic is said to be nondegenerate.

In the previous section, we have obtained the following formula for the second variation:

1

2

∂2E(α̃)

∂u1∂u2
(0, 0) = −

1∫
0

〈
v2,∇γ̇0∇γ̇0v1 +R(γ̇0, γ̇1)γ̇0

〉
dv,

where R is the Riemannian curvature tensor, γ̇0 is the velocity vector of a geodesic γ0, and the vector fields
v1 and v2 describe a two-parameter variation, i.e., a pair of “tangent vectors” to the infinite-dimensional
manifold Π(M) at the point γ0. As was noted, the vector fields v1 and v2 are defined along the whole
trajectory γ0 and are smooth and periodic. Since the Hessian d2E defines a bilinear symmetric form
on the tangent space Tγ0(Π(M)), we can uniquely define this form by the linear differential operator
corresponding to it, which, obviously, has the form

D = −(∇γ̇0)
2 −R(γ̇0, )γ̇0.

Here we proceed similarly to the finite-dimensional case, where “to define a bilinear form” means “to
define a linear operator D such that the desired form B is defined by B(x, y) = 〈x,Dy〉.” In our case, the
action of the operator D on the “tangent vectors” v ∈ Tγ̇0(ΠM) (i.e., smooth periodic vector fields along
the closed geodesic γ0) is given by

D(v) = −(∇γ̇0)
2v −R(γ̇0, v)γ̇0 = −

[
(∇γ̇0)

2 +R(γ̇0, v)γ̇0

]
(v).

A “tangent vector” v, i.e., a periodic vector field, is called a Jacobi field if it is annihilated by the operator
D, i.e., if it is a solution to the differential equation

D(v) = −(∇γ̇0)
2v −R(γ̇0, v)γ̇0 = 0.

Therefore, Jacobi fields are elements of the kernel of the linear operator D acting on the tangent space
Tγ̇0(ΠM).

Definition 2.2.1. The degree of degeneration of a closed geodesic γ0 is the dimension of the kernel of
the operator D. A closed geodesic is said to be nondegenerate if its degree of degeneration equals zero.

For simplicity, we mainly restrict ourselves to the consideration of closed nondegenerate geodesics. It
turns out that an integer called the “index of a geodesic” is naturally associated with each such geodesic.
To define this number, we consider the operator D again. The index can be defined in several ways.
Indeed, since the index is equal to the number of negative squares of the Hessian after its reduction to
the canonical form on the tangent space Tγ0(ΠM), we see that along each “tangent” vector v ∈ Tγ0(ΠM)
corresponding to one of the negative squares of the form d2E, this form is negative definite, and hence this
“tangent vector” is an eigenvector of the operator D corresponding to the eigenvalue λ < 0. Therefore,
the index of the Hessian d2E can be merely defined as the number of linearly independent solutions to
the differential equation D(v) = λv, λ < 0 (this is a set of differential equations with the parameter λ,
which is an eigenvalue). Therefore, the solutions to the equation D(v) = λv, λ < 0, are smooth periodic
vector fields along the geodesic γ0 (of course, if these solutions exist at all). This case is different from
the case of Jacobi “tangent vectors” where at least the zero solution to the homogeneous system always
exists. In the case λ < 0, a solution may not exist: in this case, we say that the index of a closed geodesic
equals zero.

Definition 2.2.2. The index of a nondegenerate closed geodesic is the number of linearly independent
solutions to the set of differential equations

D(v) = −(∇γ̇0)
2v −R(γ̇0, v)γ̇0 = 0.
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Fig. 18

In the case of geodesics with fixed ends, this definition is also applicable.
The index of a closed geodesic is related to the distribution of points conjugate to a chosen initial

point along this geodesic; however, this relation is of a more complex character than that in the case of
geodesics with fixed ends, and we do not go into it in detail here. In some sense, the study of the “periodic
problem of the calculus of variations” is more complex than the study of geodesics with fixed ends. The
character of the difficulties that occur is sufficiently illustrated by the existence of multiple geodesics; for
example, the problem of finding the number of simple geodesics is far from trivial.

2.3. Some applications. To simplify the problem of studying closed geodesics, we examine here one
example: the case of Riemannian manifolds of negative curvature, i.e., manifolds on which all curvatures
with respect to all two-dimensional directions are negative.

Theorem 2.3.1. Let M be a compact smooth Riemannian manifold of negative curvature. Then, in each
free one-dimensional homotopy class, there exists a unique closed geodesic.

To prove this, we consider a certain fixed class of free closed loops that are homotopic to each other.
Let C be the greatest lower bound of all values of the functional on this homotopy class; there exists an
infinite sequence of closed loops whose lengths converge to C. By the compactness of the manifold, we
can extract from this sequence a sequence of curves that pointwise converge to a certain smooth curve γ0
that is a closed geodesic.

The proof of the uniqueness is implied by the following statement, which itself is important (see [60]).
Let γ0 be a closed geodesic on a manifold M of negative curvature (we can assume that the manifold

is not compact). Then this geodesic is nondegenerate and its index equals zero, in other words, the
differential equations D(v) = λv, λ < 0, have no solutions, and the differential equation D(v) = 0 has
only the zero solution.

We can deduce from this statement the following important corollary.

Theorem 2.3.2. Let M be a smooth manifold of negative curvature with respect to all two-dimensional
directions. Then there are no two points of the manifold that are conjugate along some geodesic.
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The behavior of geodesics on manifolds of negative curvature was studied by Hadamard and then by
Morse. They considered geodesics on surfaces in R3 that approximately have the form depicted in Fig. 18.
More precisely, these surfaces are characterized by the following properties:

(a) the Gaussian curvature of such a surface is everywhere negative (strictly speaking, the vanishing of
the curvature is also supposed, but this problem is not studied in detail);

(b) such a surface has a ≥ 2 expanding “funnels” going to infinity;
(c) such a surface is homeomorphic to the sphere with p handles and a holes, where 2p+ a ≥ 3.

First, Hadamard proved the existence of such surfaces in R3, and then he found the fundamental
property of geodesics on surfaces of negative curvature: in a given homotopy class of curves connecting
two fixed points A and B (see Fig. 18), there exists exactly one geodesic, and the minimum of the length is
attained at it. Starting from this fact, Hadamard proved the existence of infinitely many closed geodesics
and also the possibility of approximating any other geodesic remaining in a finite part of the surface by
them.

3. Comparison Theorems

In studying the relations between a connection and topological properties of complete Riemannian
manifolds, it turns out that comparison theorems of the corresponding differential-geometric or topological
properties of two Riemannian manifolds are useful. Choosing the standard space, e.g., one of the spaces
of constant curvature as one of them, we apply various constructions in these well-studied spaces and
compare them with similar constructions in the space under study. The results obtained in this way are
called the comparison theorems. They have come to be of independent interest in Riemannian geometry
(see [71,106]).

Here we present the Morse–Shoenberg comparison theorem for indices, the Rauch theorem for com-
parison of Jacobi fields, the very strong Toponogov theorem on the comparison of angles of a triangle
in a complete Riemannian manifold of negative curvature with angles of a triangle in the sphere in the
Euclidean space with the same lengths of its sides, and, finally, the Berger comparison theorem.

We recall the main definitions that will be needed in what follows. Let c : [α, β] → M be a certain
path in a Riemannian manifold M . It is said to be normal if |ċ(t)| = 1 for all t ∈ [α, β]. The length
of a path c is denoted by l(c). The index (resp. quasi-index ) of a quadratic form H on a linear space
V is the least upper bound of dimensions of all subspaces in V on which H is negative definite (resp.
negative semi-definite). For a normal geodesic c : [α, β] → M , we consider the space Bc of all piecewise-
smooth fields Y along c that are orthogonal to ċ and satisfy the conditions Y (α) = Y (β) = 0. The index
(quasi-index) of the quadratic form I : Bc ×Bc → R defined by

I(X,Y ) =

β∫
α

(〈
X ′, Y ′

〉
−
〈
R(X, ċ)ċ, Y

〉)
dt

(〈X,Y 〉 is the inner product on the manifold M) is called the index (quasi-index) of the geodesic c. The
index of the geodesic c is denoted by Ind c, and its quasi-index is denoted by Ind0 c (Ind c ≤ Ind0 c). For
more details, see Sec. 1.

Example. For a normal geodesic c : [0, β] → Snρ on the sphere Snρ , we have Ind c = ν(n − 1) for
νπρ < β < (ν + 1)πρ, and Ind0 c = ν(n− 1) for νπρ ≤ β < (ν + 1)πρ, where ν ≥ 0 is an integer.

In the Euclidean space Rn, all geodesics are of zero index and zero quasi-index.

Theorem 3.1 (Morse and Shoenberg). Let M be a Riemannian manifold of dimension n, and let c :
[0, β] → M be a normal geodesic. Then the following assertions hold.
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Fig. 19

(a) If K(σ) ≤ λ (λ > 0) for all two-dimensional sections σ and l(c) < (ν + 1)π/
√
λ (respectively,

l(c) ≤ (ν + 1)π/
√
λ), where ν ≥ 0 is an integer, then Ind c ≤ Ind0 c ≤ ν(n − 1) (respectively,

Ind c ≤ ν(n− 1)); if l(c) < π/
√
λ, then there are no conjugate points on c.

(b) If, for all two-dimensional sections σ, we have the inequality K(σ) ≤ 0, then there are no conjugate
points on c and Ind c = Ind0 c = 0.

(c) If K(σ) ≥ κ > 0 for all two-dimensional sections σ and l(c) ≥ νπ/
√
κ (respectively, l(c) > νπ/

√
κ),

where ν ≥ 1 is an integer, then Ind0 c ≥ ν(n − 1) (respectively, Ind0 c ≥ Ind c ≥ ν(n − 1)), and,
moreover, there is at least one conjugate point on c lying in the semi-open interval (0, β] (respectively,
[0, β)).

For the proof of this theorem, see [71].
The classical Sturm theorem for ordinary differential equations of the second order admits a gener-

alization to an arbitrary Riemannian manifold; this is the so-called Rauch comparison theorem.

Theorem 3.2 (Rauch [164]). Let M and M ′ be two Riemannian manifolds of the same dimension, c :

[0, β] → M and c̃ : [0, β] → M̃ be normal geodesics, Y and Ỹ be Jacobi fields along c and c̃ satisfying the
conditions Y (0) = 0, Ỹ (0) = 0, 〈Y ′, ċ〉|0 = 〈Ỹ ′, ˙̃c〉|0 = 0, and |Y ′(0)| = |Ỹ ′(0)|, and c̃ have no conjugate
points in (0, β). If the curvature of the manifold M along c does not exceed the curvature of the manifold

M̃ along c̃, i.e., K(σ) ≤ 0K(σ̃) for all two-dimensional sections σ tangent to M at the point c(t) and for

all two-dimensional sections σ̃ tangent to M̃at the point c̃(t) (t ∈ [0, β]), then |Y (t)| ≥ |Ỹ (t)| for t ∈ [0, β].

The geometric sense of the Rauch comparison theorem consists of the fact that if we identify the
tangent spaces TpM and Tp̃M̃ by a linear isomorphism, then one and the same path on TpM passes to a
longer path on a submanifold whose curvature is less under the mapping expp (see Fig. 19).

The following important theorem on angles of a triangle is proved by Toponogov.

Theorem 3.3. Let Mn, n ≥ 3, be a complete (not necessarily simply connected) Riemannian manifold
with K(σ) ≥ c, and let Sc be a simply connected two-dimensional space of constant curvature c. Consider

a triangle � in Mn (three points and three minimal arcs). Then there exists a triangle �̃ in Sc with the
same lengths of sides such that the angles of the triangle � are not less than the corresponding angles of
the triangle �̃.

In conclusion, we consider a generalized comparison theorem due to Berger, which is based on the
Rauch comparison theorem (see [20]). The Rauch comparison theorem deals with one-parameter families
of geodesics in a Riemannian manifold M that emanate from the same point p ∈ M . We now consider a
family of geodesics whose initial point moves along a certain geodesic γ0(t).
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Fig. 20

Theorem 3.4 (Berger). In a Riemannian manifold Mn with δ ≤ K(σ) ≤ 1, we consider the family

λ(t, s), 0 ≤ s ≤ l, 0 ≤ t ≤ t0 ≤
π

2
, of normal geodesics λs(t) = λ(t, s) such that the curve γ(s) = λ(0, s)

is a normal geodesic and the vector field
d

ds
λs is parallel along γ(s). Denote the similar constructions on

a complete simply connected surface of constant curvature δ by the same letters with a bar. Moreover,
assume that 〈

d

ds
λs, γ

′
s

〉
=

〈
d

ds
λ̄s, γ̄

′
s

〉
(see Fig. 20). Then, for any function m, 0 ≤ m(s) ≤

π

2
, the length of the curve λ(m(s), s) is not greater

than the length of the curve λ̄(m(s), s).

Using his generalized comparison theorem [20], Berger gave a new proof of the Toponogov comparison
theorem.

4. Manifolds with Various Restrictions on the Minimum Loci

4.1. Minimum locus. Let Mn be a compact connected n-dimensional Riemannian manifold, and let
TM and UM be its tangent bundle and the unit spherical bundle, respectively. Let ρM (x, y) be the
distance function on M . Let

Br(x,M) = {y ∈ M | (ρM (x, y) < r}, B̄r(x,M) = {y ∈ M | ρM (x, y) ≤ r},

and let KM be the sectional curvature of the Riemannian manifold M . We assume that geodesics are
parametrized by the natural parameter: |γ̇′(t)| = 1, i.e., normal geodesics are considered.

For a given vector v ∈ UM , the c-value of the manifold M in the direction v is the number cp(v):

cp(v) = max{λ ∈ R | λ > 0, ρ(p, expp λv) = λ}.

The set

Ap = {v ∈ TpM | ρ(p, expp v) = |v|}

is called the fundamental domain for a point p ∈ M . The boundary c̃p = ∂Ap of the fundamental domain
Ap is called the tangent minimum locus. The minimum locus cp of a point p is the set cp = expp c̃p.
Sometimes, the minimum locus is also called the separation set or the cut locus. A minimal geodesic
segment or a minimal arc is a geodesic segment that minimizes the arclength between its ends. A
minimum point of a point p along a geodesic γ is a point m on γ such that the segment of the curve γ
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Fig. 21

from p to m is minimal, but any larger segment is no longer minimal. The set of all minimum points is
the minimum (cut) locus cp of the point p.

Since geodesics do not minimize an arclength beyond the first conjugate point, we see that if m is the
first point conjugate to p along a geodesic γ, then a minimum point p along γ is located before m. The
definition of conjugate points is given in Sec. 1, and the first conjugate point is also defined in Sec. 2.4 of
Chap. 1 in terms of the exponential mapping.

A geometric ray emanating from a point p contains at most one minimum point of the point p,
although it can contain no such points at all. We mention the following properties. If a point m is not
a minimum point of a point p, then there exists no more than one minimal segment γ connecting p with
m. If there exists a minimal segment going from the point p to m on which the point m is conjugate to
p, then m is a minimum point of the point p. In the case where M is a complete Riemannian manifold,
the converse statement holds: if m is a minimum point for p, then either there are two minimal segments
or the point m is conjugate to p along a unique segment. A Riemannian manifold M is compact iff for
a certain point p there exist its minimum points in any direction. The subsets ∂Ap, Ap, and intAp are
homeomorphic to Sn−1, the n-dimensional closed disk D̄n, and the open disk Dn, respectively.

The number
min{cp(v) | v ∈ UpM}

is called the injectivity radius of a manifold M at a point p and is denoted by ip; min{ip | p ∈ M} is
called the injectivity radius of the manifold M . We denote by dM the diameter of a manifold M , i.e.,

dM = max{dp | p ∈ M},

where
dp = max{cp(v) | v ∈ UpM}.

The minimum locus is said to be spherical if ip = dp. The link of points p, q ∈ M is the subset

Λ(p, q) = {v ∈ UqM | expq(ρ(p, q)v) = p}.

A compact Riemannian manifold M is called a Blaschke manifold at a point p ∈ M if, for any point
q ∈ cp, the link Λ(p, q) is the intersection of the fiber UqM with a certain subspace of the space TqM . A
manifold M is called a Blaschke manifold if it is a Blaschke manifold at each of its points.

In other words, a Riemannian manifold Mn (n ≥ 1) is called a Blaschke manifold if there exists
a number l > 0 such that for any point m ∈ M , the exponential mapping exp : TmM → M is a
diffeomorphism of the interior intD of the disk D of radius l centered at zero 0 ∈ TmM and the restriction
exp |∂D is a principal bundle in r-dimensional spheres (for a certain integer r ≥ 0) (see Fig. 21 and [152]).

The following list of manifolds gives examples of the so-called canonical Blaschke manifolds:
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(a) the unit n-dimensional sphere Sn;
(b) the real n-dimensional projective space RPn;
(c) the complex n-dimensional projective space CPn;
(d) the quaternion n-dimensional projective space HPn;
(e) the Cayley projective plane CaP 2.

In the first case, l = π and r = n− 1, and in the other cases, l =
π

2
and r = 0, 1, 3, 7, respectively.

A Riemannian manifold M is a Blaschke manifold if the distance from a point p to the minimum
locus cp along a geodesic does not depend on the choice of the geodesic and the point. The minimum
locus of an arbitrary point of the manifold M is either a point or a smooth submanifold of dimension
n− 1, n− 2, and n− 4, or, if n = 16, then dim cp = 8. In these cases, we say that Mn is modeled on the
sphere, real projective space, complex projective space, quaternion projective space, or Cayley projective
plane, respectively.

There arises a natural problem of constructing the Blaschke manifolds. The following regular process
was suggested by Weinstein.

Theorem 4.1.1 ([21]). Let Mn be a manifold of the form Mn = D̄n ∪
a
E, where D̄n is an n-dimensional

closed disk, E is the total space of the bundle in k-dimensional disks over an (n−k)-dimensional compact
manifold, and, moreover, ∂E ∼= Sn−1 with a gluing diffeomorphism a : ∂D̄n → ∂E. Then we can define
a metric on M such that M is a Blaschke manifold at the point p, which is the center of the disk D̄n.

We consider the properties of Blaschke manifolds. We begin with the following two fundamental
properties of Blaschke manifolds.

(1) All geodesics on a Blaschke manifold are closed and have the same length, equal to 2l.
(2) An arbitrary Blaschke manifold has the same cohomology ring as the canonical Blaschke manifolds.

This assertion admits a converse in a certain sense. If a Blaschke manifold M has the same coho-
mology ring as Sn or RPn, then M is homeomorphic to the sphere Sn or the projective space RPn; if
H∗(M,Z) = H∗(CPn,Z), then M is homotopy equivalent to CPn (the Bott–Samelson theorem).

For manifolds all of whose geodesics are closed, we can define an important invariant by the following
theorem.

Theorem 4.1.2 (Weinstein). Let (M, q) be a Riemannian manifold all of whose geodesics are closed and
have length 2πL. Then the ratio

i(M,g) =
vol(M,g)

Ln vol(Sn, can)

is an integer.

The integer i(M) is called the Weinstein invariant of the Riemannian manifold M . For canonical
Blaschke manifolds, we have

i(Sn, can) = 1, i(RPn, can) = 2n−1,

i(CPn, can) = Cn−1
2n−1, i(HPn, can) =

1

2n+ 1
C2n−1
4n−1 ,

i(CaP 2, can) = 39.

Let UM be the total space of the bundle of unit normal vectors to a manifold M , and let CM be the
space of oriented closed geodesics on M . We have the bundle τ : UM → CM over the circle. If M is a
Blaschke manifold, then the Weinstein invariant, which is defined as mentioned above, has the following
topological description:

i(M) =
1

2
en−1 ∩ [CM ],
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where n = dimM , e is the Euler class of the bundle τ , [X] is the fundamental homology class of the
manifold X, [X] ∈ Hm(X,Z), and m = dimX.

As we will show in the next chapter, important information about the structure of Riemannian
manifolds as a whole is contained in the volume of a Riemannian manifold. We demonstrate this by
examining a Blaschke manifold. If a Blaschke manifold M is homeomorphic to the sphere Sn and the
length of closed geodesics on M is the same as on Sn, then vol(M) ≥ vol(Sn) and we have an equality
here iff the manifold M is isometric to the sphere Sn.

4.2. Manifolds with the spherical minimum locus. Let M be a compact connected Riemannian
manifold, K(σ) ≤ 1, and for a certain point p ∈ M , let M admit the spherical minimum locus, i.e.,
ip = dp. Then M possesses a number of specific geometric properties. If ip = dp = l, then l ≥ 1

2π, i.e.,

the manifold M cannot be too small. In the extreme case where l = 1
2π, the manifold M is isometric to

the real projective space RPn (KM ≡ 1 in this case). From the cohomological viewpoint, the manifold
M is the projective space; more precisely, if 1

2π < l < π, then H∗(M) = H∗(RPn), and the universal
covering over M is homeomorphic to the sphere Sn. If M is a simply connected manifold, then l ≥ π. If
the minimum locus of a point p is not contained in the set Qp(M) of the first conjugate points, then the
tangent minimum locus of the point p does not intersect the tangent set of the first conjugate points, the
manifold Mn has the same cohomology groups as the projective space RPn, and the universal covering
is homeomorphic to the sphere Sn. We assume additionally that l = π/

√
max(KM ); then each geodesic

segment starting from the point p and having length 2l is a geodesic loop at the point p, and for any
point q ∈ Qp(M), the multiplicity of q with respect to p (as a conjugate pair) is constant and is equal
to λ = 0, 1, 3, 7, or n − 1. For a nonsimply connected manifold, we have λ = 0; such a manifold has the
same cohomology groups as the projective space RPn, and the universal covering is homeomorphic to
the sphere Sn. Let M be a simply connected manifold; then λ = n − 1 implies that the manifold M is
isometric to the sphere of a constant sectional curvature max(KM ); in the cases λ = 1, 3, 7, the manifold
M has the same integral homology ring as a compact symmetric space of rank 1, i.e., Sn, RPn, CPn,
HPn, and CaP 2. The proof of these assertions can be found, e.g., in [141,142].

In the work [21] of Besse, it is proved that a manifold M has the spherical minimum locus at a point
p ∈ M iff M is a Blaschke manifold at the point p ∈ M . For more details about Blaschke manifolds,
see [21].

Blaschke conjecture. Any Blaschke manifold (i.e., iM = d(M)) is isometric to one of the following
manifolds: Sn, RPn, CPn, HPn, and CaP 2, whose metric is proportional to the standard one.

We have the following result (see [63]), which allows us to describe the topological structure of the
Blaschke manifolds.

Theorem 4.2.1. Any Blaschke manifold M of dimension ≤9 is homeomorphic either to the sphere Sn

or the projective space. If, in addition, the manifold M is modeled on the Cayley projective plane CaP 2,
then it is homeomorphic to this plane.

This theorem yields the following table of Blaschke manifolds:

dimM 1 2 3 4 5 6 7 8 9
S1 S2 S3 S4 S5 S6 S7 S8 S9

M RP 2 RP 3 RP 4 RP 5 RP 6 RP 7 RP 8 RP 9

CP 2 CP 3 CP 4

HP 2

As for the isometry structure of the Blaschke manifolds, we present the following important result of
Berger. If the sphere Sn admits a Riemannian metric with respect to which Sn is a Blashcke manifold,
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then the manifold Sn is isometric to the sphere with the metric proportional to the standard metric on
the sphere.

5. Manifolds All of Whose Geodesics are Closed

We have already considered the so-called Blaschke manifolds Sn, CPn, HPn, and CaP 2. Another
description of this class of Riemannian manifolds (here only the so-called simply connected compact
symmetric spaces of rank one are under consideration) is given by the following remarkable theorem
obtained by E. Cartan.

Theorem 5.1 ([94]). On a simply connected symmetric compact space of rank one, all geodesics are
closed, and simple closed geodesics are of the same length. More precisely, let the metric on such a
manifold M be normalized so that the least upper bound of the curvatures along two-dimensional directions
is equal to 1. Then the length of all simple closed geodesics equals 2π.

If M is a sphere, then all geodesics with origin at a point p ∈ M again intersect when they pass the
distance π. If M is one of the projective spaces CPn, HPn, or CaP 2 of real dimension 2n, 4n, or 16,
then projective lines whose dimensions are 2, 4, and 8, respectively, are spheres of constant curvature 1
embedded isometrically. Therefore, each simple closed geodesic lies on its own sphere, S2, S4, or S8, as
a large disk.

There arises the following natural problem: is it possible to convert the assertion of Theorem 5.1, i.e.,
is it true that all Riemannian manifolds all of whose geodesics are closed are exhausted by the symmetric
space of rank one?

It is important to note that there exist examples of Riemannian manifolds all of whose geodesics are
closed and have the same length but that are not isometric to any of the symmetric spaces of rank 1. The
first examples of such surfaces were constructed by Zoll in [223].

Theorem 5.2 ([21,223]). On the smooth two-dimensional sphere S, there exists a one-parameter fami-
ly gt, 0 ≤ t ≤ ε, of metrics such that g0 is the standard metric of constant curvature 1, and for each t > 0,
the surface (S2, gt) is not isometric to (S

2, g0), but, at the same time, (S
2, gt) is a surface of revolution on

which all geodesics are closed. Further, simple closed geodesics on this surface have no self-intersections,
and their length is equal to 2π. For all sufficiently large t, the surface (S2, gt) contains a domain where
the curvature is negative.

The proof of this theorem is rather complicated and uses many modern concepts of nonlinear analysis;
we refer the reader to [21], which is devoted to the proof of this theorem.

There is an essential distinction between the behavior of geodesics on the sphere S2 with the standard
metric and that on the Zoll surface. On the standard sphere S2, all geodesics with the origin at a given
point are collected together at one and the same point, the antipode of m, after the time π. On the Zoll
surface, geodesics with the origin at a certain point m not lying on the axis of revolution have a nontrivial
envelope in general (see Fig. 22).

Surfaces on which all geodesics with the origin at a given point m are collected together at one
and the same point after a certain time are called return surfaces. In 1962, Green proved the following
statement.

Theorem 5.3 ([21]). A return surface is isometric to the sphere with the standard metric of constant
curvature.

The topological structure of manifolds all of whose geodesics are closed is described by the classical
Bott theorem. To state this theorem, we need a new concept. Let M be a Riemannian manifold all of
whose geodesics are closed. We define the number λ, called the index of the manifold M . Let g(x) be
an arbitrary geodesic emanating from a point p. The index λ is equal to the number of points (counted
together with their multiplicity) that are conjugate to the point p on the geodesic arc g(x) (0 < x < w).
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Fig. 22

Theorem 5.4 (Bott [26]). Let all geodesics of a Riemannian manifold M be closed and simple, and let
dimM ≥ 2. If λ = 0, then the fundamental group of the manifold M is a group of second order, and
the universal covering of the manifold M is a homologic sphere. If λ > 0, then the manifold M is simply
connected, and its integral cohomology ring is a truncated polynomial ring generated by one element θ of
dimension λ+ 1.

We recall that a truncated polynomial ring is a ring obtained from the ring Z[x] of polynomials with
integer coefficients by imposing a single relation xn = 0.

The constraints imposed on the ring H∗(M) by this theorem are very strong. For example, the
number λ + 1 should divide dimM . If the number λ + 1 is odd, then λ + 1 = dimM ; the Poincaré
polynomial of the manifold M over an arbitrary field k has the form

P (t) = 1 + tλ+1 + t2(λ+1) + . . .+ tn(λ+1).

Very strong constraints for the truncated polynomial ring that is the cohomology ring of a complex are
obtained in [2]. The results of [2] imply that if θ2 
= 0, then dim θ is a power of 2, and if dim θ ≥ 0, then
θ3 = 0.

A very interesting characteristic of manifolds all of whose geodesics are closed can be given in terms
of a certain differential operator, which can be defined on an arbitrary Riemannian manifold and is called
the Laplace operator . Let (M,Gij) be a Riemannian manifold; then, by definition, we set

∆f =
1√

det(gij)

∑
k

∂

∂xk

(∑
i

gik
√
det(gij)

∂f

∂xi

)
, gikgks = δis.

Let M be a Riemannian manifold all of whose geodesics have the period l. Manifolds with such
a property can be characterized as those compact Riemannian manifolds for which the square roots of
eigenvalues of the Laplace operator ∆ form asymptotically an arithmetical progression. The initial value
and the difference in this progression are equal to the least common period l and the index of these closed
geodesics (modulo 4) (see [21,200]).

6. Closed Geodesics on Riemannian Manifolds

In the geometry of geodesics, we can consider two large topics. The first topic of problems is related
to the study of manifolds all of whose geodesics are closed (see the previous section and [21]). The second
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topic is related to the study of the existence of one or many closed geodesics on a Riemannian manifold.
We now consider the second topic.

6.1. Behavior of geodesics on noncompact manifolds and manifolds of nonnegative and pos-
itive curvature. We begin our description with manifolds that in principle have no closed geodesics.
The fundamental fact is that this phenomenon arises on manifolds of positive sectional curvature.

Theorem 6.1.1 ([71]). Let M be a noncompact Riemannian manifold of positive sectional curvature
K(σ) > 0. Then there are no closed geodesics on M .

A complete description of the behavior of geodesics was obtained by Toponogov. Let the sectional
curvature K(σ) of a noncompact manifold M satisfy the inequality K > K(σ) > 0 at each point and for

any two-dimensional direction. Then each geodesic on M whose length does not exceed l = π/
√
k is a

minimal arc.
In the case where the sectional curvatureK(σ) of a manifoldM satisfies the inequality K > K(σ) ≥ 0

at each point and in each two-dimensional direction, the exact value of r is not indicated, but only the
existence of a number r such that any geodesic on the space M whose length does not exceed r is a
minimal arc is guaranteed.

These results imply that the injectivity radius of a noncompact manifold M of a sectional curvature
K > K(σ) > 0 is not less than π/

√
k, and the greatest lower bound of the injectivity radii taken over all

points of the space M is different from zero for noncompact spaces M of sectional curvature K(σ) ≥ 0.

6.2. Existence of several closed geodesics. The simplest case in studying closed geodesics arises in
the case of closed surfaces of negative curvature. In this case, each closed geodesic that is not homotopic to
zero can be deformed into a closed curve of the minimum length in its free homotopy class. With accuracy
up to a parametrization, this closed curve is unique and itself is a closed geodesic (see Theorem 2.3.1).

The problem on the existence of a closed geodesic on a simply connected closed surface is much more
complicated. The history of this problem can be found in Klingenberg’s work [107].

Considerable progress was obtained by Gromol and Meyer. Let S1 be the parametrized circle. A
mapping c : S1 → M is called an H1-mapping if it is absolute continuous and its derivative ċ(t) (which is
defined almost everywhere) is square integrable with respect to the Riemannian metric on the manifoldM :∫

S1

〈ċ(t), ċ(t)〉c(t) dt < ∞.

Let Λ(M) be the set of all H1-mappings of the circle S1 into the Riemannian manifold M . We say that
the manifold M satisfies the condition Gp if the sequence of Zp-Betti numbers bi(Λ(M)) of the space
Λ(M) is not bounded.

Theorem 6.2.1 ([107]). LetM be a compact Riemannian manifold, and, for a certain p, let the condition
Gp hold. Then there are infinitely many closed simple geodesics on M .

The case p = ∞, i.e., the case where the field of coefficients coincides with R, is possible in this
theorem.

A partial description of manifolds satisfying condition G∞ is given in the following theorem.

Theorem 6.2.2 ([208]). Let M be a simply connected compact smooth manifold. Then the fulfillment of
condition G∞ is equivalent to the rational cohomology ring H∗(M,Q) not being a truncated polynomial
ring. Condition Gp does not hold for any p ifM is of the homotopy type of one of the irreducible symmetric
spaces of rank one.

Ziller [222] defined the Z2-cohomology of the space Λ(M) for all compact symmetric spaces M . As
a consequence of this, he revealed that symmetric spaces, except for spaces of rank one, satisfy condition
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Gp for p = ∞ or p = 2. Symmetric spaces for which condition G2 holds and condition G∞ does not hold
are as follows:

SU(3)/SO(3), SO(2n+ 1)/SO(2n− 1)× SO(2), and G2/SO(4).

Therefore, Ziller proved the following result.

Theorem 6.2.3 ([222]). If a smooth manifoldM is of the homotopy type of a symmetric space of rank >1,
then any Riemannian metric on M admits infinitely many closed simple geodesics.

The previous theorems refer to those spaces whose topological structure of the corresponding space
of closed curves is not too complicated.

Considerable progress in the solution of one of the most remarkable problems of the global theory of
closed geodesics was attained by Klingenberg. He proved the following important theorem.

Theorem 6.2.4. Let M be a compact Riemannian manifold whose fundamental group is finite. Then
there exist infinitely many closed simple nonparametrized geodesics on M .

Klingenberg’swork [107] is devoted to the proof of this theorem.
For simply connected manifolds, the generalization of Lyusternik and Shnirel’man on three closed

geodesics [123] is obtained in [107]. More precisely, the following statement is proved.

Theorem 6.2.5. Let (M,gij) be a compact simply connected Riemannian manifold, and let f :
(Sk, can) → (M,gij) be the mapping of the standard k-dimensional sphere, which represents a nondi-
visible integral homology class of infinite order. (It is known that such a mapping exists and k ≥ 2.) Then
there exist 2k− 1 ≥ 8 simple closed geodesics on (M,g) that are short in the following sense. Let λ(f) be
the least upper bound of lengths of curves on (M,gij) that are images under the mapping f of circles in
(S∗, can). Then the lengths of these 2k − 1 simple geodesics are not greater than λ(f).

For manifolds with an infinite fundamental group, the following statement holds.

Theorem 6.2.6 ([107]). Let M be a compact Riemannian manifold. If the fundamental group π1(M) is
infinite, then there exist at least two simple closed geodesics on M .

If the fundamental group is of a special form, then we can obtain various improved bounds. As an
example, we mention the following statement, which is referred to manifolds whose fundamental group is
isomorphic to the group Z.

Theorem 6.2.7 ([15]). Let M be a compact Riemannian manifold, dimM ≥ 2, and let π1(M) ∼= Z. If
n(l) is the number of geometrically distinct closed geodesics whose lengths do not exceed l, then

lim
l→∞

n(l)
ln l

l
> 0.

6.3. Certain estimates on the number of closed geodesics on the sphere and projective space.
In this subsection, we present some estimates on the number of closed geodesics on Riemannian manifolds
that are homeomorphic to the sphere Sn or the projective spaces RPn, which improve the estimates in
[107]. We first consider the case of manifolds that are homeomorphic to the sphere Sn. Let K be the
sectional curvature of a Riemannian manifold.

Theorem 6.3.1 ([13]). Let a manifold M be homeomorphic to the sphere Sn, and let 4
9 ≤ δ ≤ K ≤ 1.

Then the geodesic loop c of maximum length L ≤ 2π/
√
δ is a closed geodesic without self-intersections

and Ind0(c) = 3(n− 1). Moreover, c is a geodesic triangle of the maximum perimeter.

Here Ind0(c) stands for the dimension of a space of maximum dimension in the space of vector fields
X(t) along the closed geodesic c(t) for which 〈X(t), ċ(t)〉 = 0, t ∈ [0, 1], and X(0) = X(1), such that the
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form

d2E(X,Y ) =

1∫
0

(
〈∇X,∇Y 〉 − 〈R(X, ċ)ċ, Y 〉

)
dt

is not positive. Here ∇ is the covariant derivative with respect to the given metric 〈X,Y 〉 and R is the
curvature tensor.

Theorem 6.3.2 ([13]). If a manifold M is homeomorphic to the sphere Sn, 1
4 ≤ δ ≤ K ≤ 1, and the

curvature K is not constant, then there are no closed geodesics whose lengths belong to the closed interval
[2π/

√
δ, 4π].

We now pass to similar properties of spaces homeomorphic to the projective space RPn.

Theorem 6.3.3 ([13]). Let gij be a metric on the projective space RP
n such that 1

4 ≤ δ ≤ K ≤ 1, where
K is the sectional curvature of the manifold M . Then, for gij, there exist at least g(n) = 2n− s− 1, 0 ≤

s = n− 2k < 2k, closed geodesics without self-intersections whose lengths are varied in [π, π/
√
δ] ⊂ [π, 2π]

and which are not homotopic to zero. If all closed geodesics of length ≤2π are nondegenerate, then the
metric gij has at least

1
2n(n+ 1) such closed geodesics.

Let g0 be a metric of constant curvature 1 on the sphere Sn; a metric g on Sn satisfies the Morse
condition if g0 < g < 4g0 (see [136]). In [3], Al’ber stated the assertion that if a metric g satisfies the
Morse condition and 0 < K ≤ 1 if n is even or 1

4 < K ≤ 1 if n is odd, then there exist g(n) closed
geodesics without self-intersections whose lengths belong to the closed interval [2π, 4π]; for the proof of
this fact (see [8]).

Theorem 6.3.4 ([13]). (a) If the diameter dp = max
q∈M

ρ(p, q) is greater than π for all p ∈ M and the

curvature K is not less than 1
4 , then there exist at least (n− 1) closed geodesics whose lengths belong

to the closed interval [2π, 4π].
(b) If the metric g on the sphere Sn satisfies the Morse condition and K ≤ 1

4 , then there exist g(n)
closed geodesics whose lengths belong to the interval (2π, 4π).

(c) Let g be a metric on the projective space RPn such that g0 < g < 9g0, where g0 is a metric of
constant curvature 1 on RPn. Then there exist at least g(n) closed geodesics that are not homotopic
to zero and whose lengths belong to the interval (π, 3π).

The behavior of geodesics of metrics of positive curvature on the sphere S2 is of great interest. Such
metrics can be realized by an appropriate immersion of the sphere S2 in the Euclidean space (see [212]).

Theorem 6.3.5 ([13]). (a) Let a manifold M be diffeomorphic to the sphere Sn, and let 1
9 < δ ≤ k ≤ 1.

Then there are no simple closed geodesics whose lengths belong to the interval (2π/
√
δ, 6π).

(b) Let M be diffeomorphic to the sphere S2, and let 1
4 ≤ k ≤ 1. Any shortest closed geodesic on the

manifold M has no self-intersections, and its index equals 1.
(c) Let M be a convex hypersurface in the Euclidean space Rn+1 that contains a ball of radius r and is

contained in a ball of radius R. Let 2r > R; then there exist at least g(n) closed geodesics on the
manifold M whose lengths belong to the closed interval [2πr, 2πR].
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Chapter 3

INFLUENCE OF CURVATURE ON GLOBAL PROPERTIES
OF RIEMANNIAN MANIFOLDS

1. Spaces of Constant Curvature

1.1. General definitions and concepts. The simplest and, at the same time, a very specific class of
Riemannian manifolds is formed by spaces of constant curvature. The main distinguishing feature of spaces
of constant curvature is their homogeneity; it is as complete as that of Euclidean spaces. This homogeneity
is expressed in the existence of a motion group that depends on the same number of parameters as in the

Euclidean case, i.e.,
1

2
n(n+ 1) in an n-dimensional space.

Definition 1.1.1. A Riemannian manifold Mn (n ≥ 2) is called a space of constant curvature if its
sectional curvatures K(σ) in all possible two-dimensional directions σ are the same at every point. In the
case n = 2, it is required that K = const, where K is the Gaussian curvature.

The theory of spaces of constant curvature was elaborated on by Minding. In the papers “How
one does verify whether two given curvilinear surfaces are applicable or not and remarks on surfaces
of a constant measure of curvature?” and “Supplements to the theory of minimal arcs on curvilinear
surfaces,” Minding discovered three types of surfaces of revolution of a constant negative curvature, found
trigonometric relations in geodesic triangles on these surfaces, and observed that these relations can be
obtained from the same relations for the sphere by multiplying the radius of this sphere by i =

√
−1, i.e.,

these relations coincide with the Lobachevskii relations. The relation between the studies of Minding and
Lobachevskii’s geometry was found by Beltrami.

We note that for n ≥ 3, it is not assumed in advance that the curvatures K(σ) are the same at
distinct points of the manifold. In spaces of constant curvature, the curvature tensor has the following
structure (see [161]):

Rij,kl = K(gikgjl − gilgjk),

where K should be supposed for now to be a function depending on the coordinates of a point, i.e.,
K = K(x1, . . . , xn). In fact, the function K is a constant. This affirms the following theorem (see [161]).

Theorem 1.1.1. Let M be a Riemannian manifold, and let dimM ≥ 3. If the sectional curvature K(σ)
of the manifold M is constant at each point, then K is a constant function on the manifold M .

Therefore, for Riemannian manifolds of dimension greater than 2, in order to assert that the curvature
is the same at each of the points of the space, it suffices to require that the sectional curvature be constant
in all the directions at each of the given points.

This classical result of Schur generated a number of analogs. We present some of these generalizations.

Theorem 1.1.2. Let M be an Einstein manifold, i.e., let the Ricci tensor of the manifold M be propor-
tional to the metric tensor. If dimM ≥ 3, then λ = const, where Rij = λgij.

Berger proved the following analog of Schur’s theorem.

Theorem 1.1.3. Let M be a Riemannian manifold with the metric tensor gij and the Riemann curvature
tensor Rij,kl. Let ∑

i,j,k,l

RijklR
ijkt = λgts.

If dimM ≥ 5, then λ = const.

In [66], Gray proposed a general construction that allows us to obtain the above theorems as a
particular case. To formulate Gray’s results, we need a new concept, the concept of a double differential
form. A double differential form of type (p, q) is a tensor field ωi1...ipj1...jq that is skew-symmetric with
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respect to the first p and the last q subscripts. If D(M) is the Lie algebra of vector fields on the manifold
M , then we can interpret a double differential form as a multilinear mapping D(M)p+q → C∞(M) that
is skew-symmetric with respect to the first p and the last q arguments.

We define a linear operator C acting from the space of double differential forms of type (p, q) into
the space of double differential forms of type (p− 1, q − 1) as follows. Let E1, . . . , En be an orthonormal
basis of vector fields on a certain open subset of the manifold M . If ω is a double differential form of type
(p, q), then, by definition, we set

(Cω)(X1, . . . ,Xp−1, Y1, . . . , Yq−1) =
n∑
i=1

ω(X1, . . . ,Xp−1, Ei, Y1, . . . , Yq−1, Ei);

here n = dimM . The operators Cr, r = 0, 1, 2, . . . , are defined by induction:

C1ω = Cω and Cr+1ω = C(Cr(ω)).

For p = 0 and q = 0, we set Cω = 0. A double differential form ω of type (p, p) is said to be symmetric if

ω(X1, . . . ,Xp, Y1, . . . , Yp) = ω(Y1, . . . , Yp,X1, . . . ,Xp).

Let M be a Riemannian manifold with metric gij , and let ∇ be the corresponding affine connection.
For X ∈ D(M), the form ∇Xω is defined. We define the operator D acting from the space of double
differential forms of type (p, q) into the space of double differential forms of type (p+ 1, q) by

(Dω)(X1, . . . ,Xp+1, Y1, . . . , Yq) =

p+1∑
j=1

(−1)j+1(∇Xjω)(X1, . . . , X̂j , . . . ,Xp+1, Y1, . . . , Yq).

The operator D is an analog of the operator of exterior differentiation d (see Sec. 3.2 of Chap. 1). A
double differential form ω is said to be Riemannian if it is symmetric and Dω = 0.

Theorem 1.1.4. Let A and B be two double Riemannian forms of types (p, p) and (r, r), respectively.
Assume that

(a) the form B is parallel, i.e., ∇XB = 0 for all X ∈ D(M);
(b) Cr−1B = αg for a certain smooth function α that is not identically equal to zero;
(c) p < n = dimM ;
(d) there exist a smooth function λ and an integer q such that for all X1, . . . ,Xp−q ∈ D(M), we have

(CqA)(X1, . . . ,Xp−q,X1, . . . ,Xp−q) = λ(Cr−p+qB)(X1, . . . ,Xp−q,X1, . . . ,Xp−q).

Then λ = const on the manifold M .

1.2. Classification problems of spaces of constant curvature. We give the following important
definition. A complete connected Riemannian manifoldM of constant curvatureK(σ) is called a spherical
(for K(σ) > 0), Euclidean (for K(σ) = 0), or hyperbolic (for K(σ) < 0) space form.

There exists a remarkable relation between the groups with free and completely discontinuous action
and the Riemannian manifold of constant curvature. We recall the definition of the completely discontin-
uous action of a group Γ. We say that the group Γ acts completely discontinuously if each of its points
admits a neighborhood U such that the set {γ ∈ Γ | γ(U) ∩ U 
= ∅} is finite. More precisely, the rela-
tion mentioned above is described by the following theorem of Killing and Hopf (its proof can be found
in [213]).

Theorem 1.2.1. Let Mn be a Riemannian manifold (dimM = n ≥ 2), and let k be a real number. Then
M is a complete connected manifold of constant curvature K iff it is isometric to one of the following
quotient spaces:

(a) Sn/Γ, where Γ ⊂ Iso(Sn) = O(n+ 1) if K > 0;
(b) Rn/Γ, where Γ ⊂ E(n) = Iso(Rn) = O(n) · Rn if K = 0;
(c) Hn/Γ, where Γ ⊂ Iso(Hn) if K < 0.
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Here Γ acts freely and completely discontinuously on the corresponding manifold.

This theorem explains why a complete connected Riemannian manifold of constant curvature K is
called a spherical (for K > 0), Euclidean (for K = 0), or hyperbolic (for K < 0) space form.

A local variant of the description of spaces of constant curvature is of interest. In fact, this was done
by Riemann. Let Mn be a Riemannian manifold of dimension n ≥ 2, and let k be a real number. Then
the following conditions are equivalent.

(1) The manifold M is of constant curvature K.
(2) In a certain neighborhood of an arbitrary point x ∈ M , there exists a local coordinate system

u1, . . . , un in which the metric ds2 of the manifold M becomes

ds2 =

n∑
i=1

(dui)2[
1 +

1

4
K

n∑
i=1

(ui)2
]2 .

(3) Each point x ∈ M has a neighborhood isometric to an open subset of one of the spaces Sn for K > 0,
Rn for K = 0, or Hn for K < 0.

The state of the art concerning the classification of spaces of constant curvature K > 0, K = 0, and
K < 0 can be described as follows.

(1) As a consequence of Theorem 1.2.1, this is the problem on completely discontinuous isometry
groups acting freely (without fixed points) on the spaces Sn, Rn, and Hn, respectively.

(2) A contiguous question arising in the framework of this study is the problem of classification
of all isometry groups acting discontinuously on the sphere Sn, Euclidean space Rn, and Lobachevskii’
space Hn.

(3) The solution of these problems is different in the spaces Sn, Rn, and Hn. In the case of the
sphere Sn, there is a complete (in some sense) classification up to the solution of comparison systems.
In the case of the Euclidean space Rn, there is no such classification. The initial study of Euclidean
space forms is merely an application of certain results of geometric crystallography. The main structural
theorems on discontinuous groups are the Bieberbach theorems. In the case of the hyperbolic space Hn,
we have a very rich isometry group. At present, there is no complete classification of hyperbolic space
forms (except for dimension 2).

In the general problem of classification of spaces of constant curvature, we can mention the following
three subproblems:

(a) the classification of manifolds with accuracy up to a diffeomorphism;
(b) the classification of manifolds with accuracy up to affine isomorphisms;
(c) the classification of manifolds with accuracy up to an isometry.

Under the assumptions of homogeneity of a Riemannian manifold, the problem of classification of
the spaces of constant curvature is considerably simplified.

Theorem 1.2.2 ([213]). Let Mn be a connected homogeneous Riemannian manifold of dimension n and
constant curvature K. If K < 0, then Mn is isometric to the hyperbolic space Hn. If K = 0, then Mn is
isometric to the direct product Rm × Tn−m of the Euclidean space Rm by the flat torus Tn−m. If K > 0,
then Mn is isometric to the quotient space Sn/Γ, where Sn and Γ have the following meaning. Let F
be the field R of real numbers, the field C of complex numbers, or the quaternion algebra H. Then Sn

is the sphere |x| = 1 in the left-Hermitian vector space V over F of real dimension n + 1; Γ is a finite
multiplicative group of elements with norm 1 in F that is not contained in any proper subfield F1 in F
such that R ⊂ F1 ⊂ F , F1 
= F , and, moreover, Γ acts on Sn by the F -inner product of vectors.

Conversely, all the manifolds listed above are n-dimensional Riemannian homogeneous manifolds of
constant curvature.
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Fig. 23 Fig. 24

As a consequence of the above statement, we obtain that a homogeneous Riemannian manifoldMn of
dimension n and constant curvature K > 0 is determined by its fundamental group π1(M) with accuracy
up to an isometry.

1.3. Riemannian manifolds of constant positive curvature. It is known from topology that for
even n, any orientation-preserving diffeomorphism f : Sn → Sn of the sphere Sn onto itself has a fixed
point. Therefore, in the case of even dimension, there are a few manifolds of constant positive curvature.
More precisely, the following assertion holds.

Theorem 1.3.1 (see, e.g., [213]). A complete Riemannian manifold M2m of even dimension 2m and
positive curvature K > 0 is isometric either to the sphere S2m of radius K−1/2 or to the projective space
RP 2m.

In particular, with accuracy up to an isometry, only the sphere S2 and the projective plane RP 2 are
complete two-dimensional surfaces of positive Gaussian curvature.

We now consider the problem on discrete subgroups of the group of motions of the sphere Sn−1 (the
problem on fixed points is ignored for now). The group of motions of the sphere Sn−1 coincides with
O(n). Since this group is compact, each of its discrete subgroups is finite. We consider the case where
n = 3. Therefore, let Sn−1 = S2. The group of motions of this space coincides with O(3), i.e., we seek
finite groups of rotations of the three-dimensional Euclidean space R3.

It turns out that finite groups of rotations of the space R3 are exhausted by the following list:

(a) cyclic groups;
(b) the dihedral group;
(c) symmetry groups of the regular tetrahedron, octahedron, and icosahedron.

We note that these groups yield a complete list of finite subgroups in O(3). They all are simply
described in the language of generators and relations (for more details, see the work [213] of Wolf). In the
classification presented above, there arise all regular polyhedrons, but two of them are dual to one another.
We recall that all these groups, except for one exceptional group, have fixed points, and, therefore, they
do not correspond to any space (see Theorem 1.3.1). See Figs. 23–26.

Here there arises the so-called A, D, E-classification. It occurs in various fields of mathematics, for
example, in the critical point theory of functions, Lie algebras, category of linear spaces, wave fronts,
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caustics, regular polyhedrons in the three-dimensional space, and crystallographic groups generated by
reflections. The symmetry groups Γ ⊂ O(3) form two infinite series and three exceptions, the symmetry
groups of the tetrahedron (E6), octahedron (E7), and icosahedron (E8), the series being the groups of a
regular polygon and regular dihedron, i.e., a two-sided polygon with sides of distinct color.

In odd dimension, there are infinitely many spaces of constant curvature that are not isometric to
each other. We consider the case where dimM = 3. The most well-known examples of such a type are
lens spaces. Let p and q be two relatively prime positive integers. We represent a cyclic group Zq of qth

order as a multiplicative group of qth roots of the unit,

{
exp

2πik

q
, 0 ≤ k ≤ q − 1

}
, that acts freely on

the sphere S3 according to the rule

(z1, z2) �→
(
z1e

2πik
q , z2e

2πik
q

)
,

where S3 ⊂ R4 ∼= C2 is described by the equation z1z̄1 + z2z̄2 = 1. The lens space L(p, q) is the quotient
space S3/Zq with respect to the group operation described above and the induced Riemannian structure.
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Also, there exist examples of non-Abelian groups that acts orthogonally and freely on the sphere S3.
As an example, we can take the Poincaré manifold (see [49]), which is obtained by identifying the opposite
sides of the dodecahedron (pentagons) that are turned by an angle of π/5 with respect to each other. In
Fig. 27, we depict the dodecahedron assigning the Poincaré space.

We call attention to the fact that isomorphic groups can lead, in general, to nonisometric Riemannian
spaces. As an example, we can present lens spaces.

We consider the groups that act discontinuously on the sphere by using the methods of group rep-
resentation theory, and in each dimension the problem is reduced to the problem of solving a certain
comparison system. For more details, see the work [213] of Wolf.

1.4. Riemannian manifolds of constant zero curvature. As an example, we first consider two-
dimensional manifolds. In the case where dimM = 2, all surfaces of zero curvature K ≡ 0 admit a simple
classification. The following theorem yields a topological classification of such manifolds.

Theorem 1.4.1 (see, e.g., [213]). A complete connected surface of constant Gaussian curvature K ≡ 0
can topologically be only the Euclidean plane, cylinder, torus, Möbius band, or, finally, Klein bottle (see
Fig. 28). Moreover, any two cylinders, tori, Möbius bands, and Klein bottles are affinely isomorphic.

For a more detailed description of surfaces of zero curvature, we recall some facts about the group
of motions of the Euclidean plane.

The classification of motions of the plane is based on the Chasles theorem describing all motions of
the plane. Any motion of the plane is a parallel translation, a turn, or a gliding symmetry. We recall that
the motion of the plane consisting of a symmetry in direction of a line and a shift (parallel translation)
in direction to this line is called a gliding symmetry. Therefore, the following five types of groups acting
on the plane are possible.

(1) The group Γ of motions of the first type consists of only one identity motion. In this case,
R2/Γ = R2 is the Euclidean plane.

(2) The group Γ of motions of the second type is given by a nonzero vector a and consists of parallel
translations by vectors of the form ma, where m is any integer. In this case, R2/Γ is a cylinder. The class
of cylinders isometric to each other is in a one-to-one correspondence with positive reals. The number |a|
corresponds to the cylinder described by a vector a.

(3) The group Γ of motions of the third type is given by a line l and a nonzero vector a parallel to l.
It consists of parallel translations by vectors of the form ma, m ∈ Z, and gliding symmetries along the
line l by vectors of the form na+ a/2, where n is an arbitrary integer. In this case, R2/Γ is the Möbius
band . The isometry classes of Möbius bands are in a one-to-one correspondence with positive reals. With
the Möbius band described by the vector a, one associates the number 2|a|.

(4) The group Γ of motions of the fourth type is given by a line l, a vector a parallel to this line,
and a vector b orthogonal to it. This group consists of parallel translations by a vector of the form
ma+ nb, where m and n are any integers, and gliding symmetries along the line l by vectors of the form
ma + nb + a/2, where m,n ∈ Z. In this case, R2/Γ is the Klein bottle. The isometry classes of Klein
bottles are in a one-to-one correspondence with ordered pairs of positive reals. With the Klein bottle
described by a pair of vectors (a, b), one associates the pair (2|b|, |a|).

(5) The group Γ of motions of the fifth type is given by two noncollinear vectors a and b and consists
of parallel translations by all vectors of the form ma+ nb, where m and n are arbitrary integers. In this
case, R2/Γ is the torus. The isometry classes of tori are in a one-to-one correspondence with pairs (r2, ϕ),
where r2 is a positive real and ϕ belongs to the quotient space H2/SL(2,Z) of the upper half-plane H2

by the natural action of the group SL(2,Z) on it. The pair (r2,SL(2,Z)(u)) corresponds to the isometry
class of the torus

R2/{n1r + n2ru | ui ∈ Z, r > 0, i = 1, 2}.
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Fig. 28

The action of the group SL(2,Z) on H2 is described as follows. Let H2 = {z ∈ C | Im z > 0}, and let
SL(2,Z) be the group of integral 2× 2 matrices with unit determinant. Then with an element

α =

(
a b
c d

)
∈ SL(2,Z),

one associates the transformation fα : H2 → H2 given by fα(z) = (az + b)/(cz + d). The quotient group
G = SL(2,Z)/±E is called the modular group. In fact, we consider the modular group, since the matrix
±E acts trivially. We denote by D the subset in H2 consisting of points z ∈ H2 such that |z| ≥ 1 and
|Re(z)| ≤ 1

2 . In Fig. 29, we depict the transformations of a domain D under the action of the elements 1,

T , TS, ST−1S, ST−1, S, ST , STS, T−1S, and T−1 of the group G, where S(z) = −1/z and T (z) = z+1.
The domain D is the fundamental domain of the action of the group G on the half-plane H2. More

precisely, the following assertion holds.

Theorem 1.4.2. (a) For each z ∈ H2, there exists an element g ∈ G such that g(z) ∈ D.
(b) Let z and z′ be two distinct points of the domain D that are comparable modulo group G. Then

either R(z) = ±1
2 and z = z′ ± 1 or |z| = 1 and z′ = −1/z.

(c) Let z ∈ D, and let J(z) = {g ∈ G | gz = z} be the stationary subgroup of the point z.
Then J(z) = 1, except for the following three cases:

(a) z = i; in this case, J(z) is a group of second order generated by the element S;

(b) z = ρ = e
2πi
3 ; in this case, J(z) is a group of third order generated by the element ST ;

(c) z = −ρ̄ = eπi/3; in this case, J(z) is a group of third order generated by the element TS.

We now recall that the upper half-plane is a model of the Lobachevskii geometry, and the group
SL(2,R) is its group of motions.
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Fig. 29

Proposition 1.4.1. The set of geometries on the torus (or lattices on the plane) is itself a geometry, a
triangle on the Lobachevskii plane with angles π/3 and π/2 and one vertex at infinity, with accuracy up
to an isometry.

We now pass to the consideration of manifolds of arbitrary dimension. A closed subgroup H ⊂ G
is said to be uniform if the quotient space G/H is compact. Let Γ be a subgroup of the group E(n) of
motions of the Euclidean space Rn. The group Γ acts completely discontinuously with compact quotient
space Rn/Γ iff Γ is a discrete uniform subgroup in E(n). A closed subgroup Γ ⊂ E(n) acts on Rn freely
iff Γ is torsion-free. A discrete uniform subgroup in the group E(n) is called a crystallographic group
on Rn. The structure of crystallographic groups is described in the following two fundamental Bieberbach
theorems.

Theorem 1.4.3. If Γ ∈ E(n) is a crystallographic group, then the intersection Γ∩Rn is a normal subgroup
of the group Γ of finite index ; any minimal set of generators of the group Γ ∩ Rn is a basis of the vector
space Rn; moreover, with respect to this basis, O(n)-components of the elements of the group Γ have integer
coordinates.

Theorem 1.4.4. For each integer n > 0, there exist only a finite number of classes of pairwise isomorphic
crystallographic groups acting on the space Rn. Two crystallographic groups on Rn are isomorphic iff they
are conjugate in the affine group.

We note that, as for the sphere Sn, on the space Rn, isomorphic groups (even with compact quotients)
can also have distinct actions.

Now we can state a theorem that describes the structure of flat compact Riemannian manifolds.
The first problem being solved here is the problem on the finiteness of types. Then the problem on the
affine classification of such a manifold is solved by a simple topological invariant, the fundamental group.
Owing to this remark, there arises a natural problem on an abstract description of fundamental groups
of compact flat Riemannian manifolds.

Theorem 1.4.5 ([213]). If M is a flat compact Riemannian manifold of dimension n, then M admits
a normal Riemannian covering by a flat n-dimensional torus. There exist only a finite number of flat
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compact connected Riemannian manifolds of a given dimension affinely equivalent to each other. Two flat
compact Riemannian manifolds are equivalent iff their fundamental groups are isomorphic; in particular,
for flat compact manifolds, the affine equivalence is equivalent to the topological equivalence.

Theorem 1.4.6 ([213]). An abstract group Γ is isomorphic to the fundamental group of a compact flat
Riemannian manifold M of dimension n iff

(1) Γ contains a normal free Abelian subgroup Γ1 of finite index and rank n;
(2) Γ1 is the maximal Abelian subgroup of the group Γ;
(3) in Γ, there are no elements of a finite order different from 1. In this case, we can consider Γ as a

subgroup in the group E(n) of motions of the n-dimensional Euclidean space Rn.

Then M = Rn/Γ, Γ1 = Γ ∩ Rn (Rn lies in E(n) as a translation subgroup), and Γ/Γ1 is the auto-
morphism group of the normal Riemannian covering Rn/Γ1 → M of the manifold M by the flat torus.

Although the last two theorems give certain information about flat manifolds, they do not solve the
classification problem for them. In dimension dimM = 3, there exists such a classification, and it can be
found in [213].

The study of noncompact flat complete Riemannian manifolds is reduced to the compact case; this is
proved by the following theorem (Theorem 1.4.7). The simplest flat Riemannian manifolds are Euclidean
spaces Rn. The next in complexity are flat cylinders Rn/∆, where ∆ is a discrete group of translations
of rank less than n. They are followed by flat tori Tn = Rn/Γ, where Γ is a discrete subgroup in the
group E(n) of motions of the n-dimensional Euclidean space Rn consisting of translations only; moreover,
its rank equals n. If Rk ⊂ Rn is the linear span of ∆, then Rk/∆ is a flat torus, and the space Rn/∆ is
isometric to (Rk/∆)×Rn−k. Therefore, each flat cylinder contains a compact totally geodesic submanifold
on which it is retracted, and this compact submanifold contains the main information about the geometry
of the cylinder. This phenomenon is generalized to the case of an arbitrary noncompact flat manifold in
the following theorem.

Theorem 1.4.7 ([213]). Let M be a flat complete Riemannian manifold. Then there exists a compact
totally geodesic submanifold that is a real analytic deformation retract of the manifold M .

The compact submanifold described in this theorem is a flat compact Riemannian manifold, and,
therefore, its structure is described by Theorems 1.4.5 and 1.4.6. The theorem presented implies the
following two important consequences for the topology of flat manifolds.

(1) The class of fundamental groups of flat complete Riemannian manifolds coincides with the class of
fundamental groups of compact flat Riemannian manifolds.

(2) Let M be a complete flat Riemannian manifold. Denote by χ the Euler–Poincaré characteristic for
any homology or cohomology theory satisfying the homotopy axiom (as it holds for the singular
theory). Then χ(M) = 0 or M is the Euclidean space Rn.

Corollary (1) is immediately implied by Theorem 1.4.7, since a deformation retraction preserves the
homotopy type. By the same reason, χ(M) = χ(N) under the conditions of corollary (2), where N is a flat
compact submanifold. By Theorem 1.4.6, N admits an r-fold covering by the torus T , r > 0. Therefore,
χ(N) = rχ(T ) = 0, since χ(T ) = 0 if dimT > 0.

1.5. Riemannian manifolds of constant negative curvature. We first consider the simplest case
of two-dimensional Riemannian manifolds, i.e., surfaces. A metric of constant negative curvature exists
on any oriented surface of genus g > 1. There is no such metric on the spheres and on the torus, which is
implied by the Gauss–Bonnet theorem. Moreover, on each closed surface of genus g, there exists a 6(g−1)-
family of distinct Riemannian metrics of curvature −1. There is a continuum of Riemannian metrics of
constant curvature −1 on each noncompact and finitely connected surface of Euler characteristic χ < 0,
except for a sphere with three punctured points.
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Fig. 30

We now show how to construct an infinite number of hyperbolic space forms. Moreover, we indicate
a specific example of a discrete group of motions of the Lobachevskii plane that has a 4g-gon with sum
of angles 2π as the fundamental domain. As such a fundamental domain, we take a regular 4g-gon
with angles π/2g centered, e.g., at the center of the unit disk (we consider the Poincaré model of the
Lobachevskii plane in the unit disk; see Fig. 30).

Let A1, . . . , A2g be “shifts” on the Lobachevskii plane that interchange pairs of opposite sides. Each
subsequent transformation Ak+1 is obtained from the preceding transformation Ak by a turn of the
direction of a “shift” by the angle π− π/2g (i.e., by the conjugation via the matrix of rotation Bg by the

angle π − π/2g). The transformations A1, . . . , A2g are related by A1 . . . A2gA
−1
1 . . . A−12g = id (for more

details and an explicit form of the transformations Ak, see [48]).
We now pass to the consideration of general discrete transformation groups of the Lobachevskii plane.

Definition 1.5.1. Let Γ be a discrete transformation group of the Lobachevskii plane which is a subgroup
of the isometry group. A subset D of the Lobachevskii plane is called a fundamental domain of the group
Γ if D is a closed set such that the orbit Γ(D) of D coincides with the whole Lobachevskii plane, the
covering γ(D), γ ∈ Γ, is such that only finitely many sets of the form γ(D) intersect a sufficiently small
neighborhood of an arbitrary point, and the image of the set of interior points of D under the action of
any transformation from Γ that is different from the identity does not intersect the set of interior points
of D.

As a fundamental domain of an arbitrary discrete group Γ on the Lobachevskii plane, we can take
a convex polygon with finitely many sides. Above, we explicitly described the fundamental domain of
the modular group. Our goal now is to give a geometric description of discrete groups of motions of the
Lobachevskii plane. Since the isometry group of the Lobachevskii plane is isomorphic to SL(2,R)/Z2, this
problem is equivalent to the enumeration of discrete subgroups in SL(2,R). Groups with discrete action
on the Lobachevskii plane naturally arise in classifying Riemannian structures on the two-dimensional
torus and also in studying the conformal geometry on one-dimensional complex analytic manifolds.

Let H2 be the Lobachevskii plane, and let Γ be an arbitrary discrete group of motions on H2. Let
D be a convex fundamental polygon for the action of the group Γ. We consider polygons of the form
γD, γ ∈ Γ. They do not overlap each other and cover the whole Lobachevskii plane. Elements of these
partitions of the Lobachevskii plane are usually called “meshes.” Two meshes are said to be adjacent if
their intersection is a one-dimensional subset, i.e., a curve on the plane. We can assume that if D1 and
D2 are two adjacent meshes, then D1 ∩ D2 is a common side of these two polygons. To obtain this, it
suffices to add to the fundamental polygon a certain number of vertices such that the angle at each of
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Fig. 31 Fig. 32

them equals π. Using this, we can obtain that the intersection of any two adjacent meshes occurs exactly
along their common side (see Fig. 31).

For any side a of a mesh D, there exists a unique mesh D1 that is adjacent to D along the side a.
In this case, the mesh D1 is obtained from the mesh D by applying some transformation γ ∈ Γ. We
denote this transformation by γ(a). Since the domain D passes to D1 under the transformation γ(a), we
see, therefore, that there exists a certain side a′ ∈ D such that γ(a)a′ = a (the domain D intersects its
image under the action of γ(a)). This implies that γ(a′) = (γ(a))−1 and, in particular, a′′ = (a′)′ = a (see
Fig. 32). With each side a, we associate the side a′ corresponding to it under the above mapping. There
arises an involutive transformation (i.e., a transformation the square of which is the identity mapping) of
the set of sides of the domain D. Of course, in this case, it can happen that a′ = a, but then (γ(a))2 = e,
and, therefore, γ(a) is a mapping of the domain D with respect to this side a or a turn by the angle π
with respect to the middle of the side a. Therefore, two meshes γ1D and γ2D are adjacent iff γ2 = γ1γ(a).

A sequence of meshes D = D0,D1, . . . ,Dk such that the meshes Di−1 and Di are adjacent for
i = 1, . . . , k is called a mesh chain. For a mesh Di, there exists a unique motion γi such that γiD = Di.
In this case, there arises an induced mapping of the sides of the fundamental polygon onto the sides of
the mesh. Therefore, the sides of the mesh Di can be denoted by the same symbol as the sides of the
polygon D0 = D.

In the mesh chain D = D0,D1, . . . ,Dk (let Di = γiD0), the polygons Di−1 and Di are adjacent,
and, therefore, we have γi = γi−1γ(ai) and γk = γ(a1)γ(a2) . . . γ(ak). Therefore, with the mesh chain,
one associates the sequence of sides D : a1, a2, . . . , ak of the mesh. These arguments prove the following
statement.

Theorem 1.5.1. The group Γ is generated by the elements γ(a), where a runs over all sides of the
fundamental polygon D.

We now describe the relations in this group. Let γ(a1) . . . γ(ak) = e. We consider the corresponding
chain. Then its last element is the mesh D itself, the initial fundamental polygon (see Fig. 33).
Therefore, with relations in the group Γ, one associates the closed chains, which are usually called cycles.
Relations of the form γ(a)γ(a′) = e are called elementary relations of the first type. These relations
generate the cycle D0,D1,D0.

We consider a vertex of a mesh D and all the meshes containing this vertex. Then the sequence of
these meshes forms a cycle (see Fig. 34). Such a cycle is called an elementary cycle of the second type,
and the relation corresponding to it is called an elementary relation of the second type.
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Fig. 33

Theorem 1.5.2. Elementary relations of the first and second types compose a defining system of group
relations for generators γ(a) of the discrete group Γ, i.e., each relation is their consequence.

We have thus described the structure of any discrete group of motion of the Lobachevskii plane using
the geometric language. We now consider the following inverse problem: how does one reconstruct a
discrete group Γ by a given fundamental polygon? On the Lobachevskii plane, let a convex polygon with
finitely many sides that has no infinitely distant vertices for now be given (see Fig. 35).

It is possible that angles at certain vertices of the polygon are equal to π. Let an involutive permu-
tation a → a′ of sides of this polygon be given. For any side a, there exists a unique motion γ(a) such
that γ(a)a′ = a and γ(a)D ∩D = a. Let the following two conditions hold:

(1) γ(a)γ(a′) = e;
(2) for any vertex A of the polygon D, there exists a sequence of sides a1, a2, . . . , ak such that

γ(a1)γ(a2) . . . γ(ak) = e and the sequence of polygons D,γ(a1)D,γ(a1)γ(a2)D, . . . , γ(a1) . . . γ(ak)D
forms a going around of this vertex A in the sense that each of them contains the vertex A and each
element of this chain is adjacent to the preceding element.

In addition, they do not overlap each other and cover (in totality) a certain neighborhood of the point A.

Theorem 1.5.3. If the conditions (1) and (2) indicated above are fulfilled, then the motions γ(a) generate
a discrete group of motions of the Lobachevskii plane for which the domain D is its fundamental domain.

We now consider the case where dimM = n > 2. For hyperbolic geometry (as also in the case
n = 2), n = 3 is an exceptional case. For n > 4, there are finitely many (say, volM < const) hyperbolic
manifolds, while for n = 3, they form an infinite set. In particular, this makes the three-dimensional
hyperbolic geometry rich in content. It was Thurston who obtained the strong results which transform
the theory of three-dimensional hyperbolic manifolds into an independent field of geometry, which is rich
in content. He has elaborated a new method for studying three-dimensional manifolds based on their
cut into pieces admitting a locally homogeneous metric. For the theory of three-dimensional manifolds,
see [179].

We begin with examples of three-dimensional manifolds. We describe three series of such examples
following Gutsul [88,89]. In constructing these manifolds, we use prisms in the Lobachevskii space whose
dihedral angles between neighboring lateral faces equal π/2 and whose dihedral angles between a lateral
face and any of the bases equal π/3. Moreover, for the first two series of manifolds, we use prisms whose
number of lateral faces is m = 12 ·2k, and for the third series of manifolds, we use prisms with the number
of lateral faces equal to m = 12 · k, where k = 2, 3, . . . .
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Fig. 34 Fig. 35

We consider a certain m-gon prism, where m = 12 · 2k and k = 2, 3, . . . . We denoted by δ1 and δ2
the bases of the prism and by β1, β2, . . . , β12·2k its lateral faces. We first indicate identifications of certain
pairs of faces of the prism that are the same for the first two series of manifolds.

We identify the lower base δ1 of the prism with its upper base δ2 by a screw motion with the angle
of turn ψ = π/3 and the axis u (u is the axis of the prism; the turn is clockwise if we look from the upper
base of the prism).

We identify the lateral faces β3i+1, i = 0, 1, . . . , 2 ·2k−1, of the prism with the lateral faces β6·2k+3i+1

by the screw motions B3i+1. The angle of turn of each screw motion B3i+1 is equal to ϕ = π, and the
axis of rotation is the common perpendicular of the faces β3i+1 and β6·2k+3i+1. We can easily obtain any
screw motion B3i+1 in the form of the product of two turns of second order around crossed axes: the turn
of second order around the line of intersection of two planes β3i+1 and ω (the plane of the middle cross
section of the prism) and the turn of second order around the line u (the axis of the prism).

We identify the remaining faces of the prism using two different methods, and owing to this, we
obtain two distinct series of manifolds.

We divide the screw motions B3i+1 into two categories: even screw motions for i = 1, 3, . . . , 2 ·2k− 1
(when 3i+1 is an even number) and odd screw motions for i = 0, 2, . . . , 2 · 2k − 2. The faces of the prism
that are identified by even screw motions are called the faces of even screw motions, and the faces that are
identified by odd screw motions are called the faces of odd screw motions. Also, we divide the remaining
lateral faces of the prism into two categories: the faces adjacent to the faces of even screw motions are
said to be even, and the faces adjacent to the faces of odd screw motions are said to be odd.

We draw two planes, τ1 and τ2, orthogonal the faces β1 and β3·2k+1, respectively, passing threw the
axis of the prism. We consider the first method for identifying the remaining faces of the prism. We
identify each of the odd faces with the odd face symmetric with respect to the plane τ1 by a shift; we
identify each of the even faces with the face symmetric to it with respect to the plane τ2 also by a shift.
The prism with such face identifications is a fundamental polygon of a certain group Γk1, and the motions
identifying the faces of the prism are generators of the group Γk1; moreover, Γ

k
1 is a torsion-free group.

Factorizing the Lobachevskii space H3 by the groups Γk1, we obtain an infinite series of pairwise
nonhomeomorphic compact three-dimensional hyperbolic manifolds.
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We consider the construction of the second series of manifolds. We draw two planes, τ3 and τ4,
orthogonal to the planes β4 and β12·2k−2 , respectively, passing through the axis of the prism. For faces
of screw motions of even dimension, we introduce one more gradation: faces of even screw motions β3i+1

and β6·2k+3i+1, where i = 1, 5, 9, . . . , 2 · 2k − 3, are called faces of even screw motions of the first category,

and faces β3i+1 and β6·2k+3i+1, where i = 3, 7, 11, . . . , 2 · 2k − 1, are called faces of even screw motions
of the second category. We refer an odd face to the first or second category if, under a turn by an angle
of π/3 around the axis of the prism, it is the image of the face of an even screw motion of the first or
second category, respectively. We identify all faces of the prism, except for odd faces, according to the
same scheme as in constructing the first series of manifolds. Using a shift, we identify each of the odd
faces of the first category with another odd face of the first category that is symmetric to it with respect
to the plane τ3, and we identify each of the odd faces of the second category with an odd face of the
second category that is symmetric to it with respect to the plane τ4 using a shift. The prism with such
identification of the faces is a fundamental domain of a certain group Γk2, and the motions identifying the
faces are generators of the group Γk2, and, moreover, the group Γk2 is a torsion-free group. Factorizing
the Lobachevskii space H3 by the groups Γk2, we obtain an infinite series of pairwise nonhomeomorphic
(compact) manifolds of constant negative curvature.

We consider the construction of the third series of manifolds. For this purpose, we use 12k-gon
prisms, where k = 1, 2, . . . .

We identify the bases of the prisms δ1 and δ2 using a screw motion with angle of turn π/3k and axis
u (the axis of the prism); this is a clockwise turn if we look from the upper base. We identify each lateral
surface β3i+1 with the lateral surface β6k+3i+1 using a screw motion B3i+1 with angle of turn ϕ = π whose
axis is the common perpendicular of the faces β3i+1 and β6k+3i+1, and, moreover, i = 0, 1, . . . , 2k−1. We
divide the remaining faces of the prism into two categories: the faces β3i+2 belong to the first category
and the faces β3(i+1), where i = 0, 1, . . . , 4k − 1, belong to the second category. We identify each of the
faces of the first category with a face of the second category that is the image of a face of the first category

under a turn by an angle of ϕ = π
3k + 1

6k
around the axis of the prism.

The group Γk3 generated by motions that identify the faces of the prism is a torsion-free group, and
the initial prism is a fundamental polygon of the group Γk3. Therefore, the quotient space H

3/Γk3 of the
Lobachevskii space H3 by the group Γk3 is a compact three-dimensional manifold of constant negative
curvature.

We now describe two series of examples of noncompact manifolds of constant negative curvature
whose volume is finite. To construct these examples, we use prisms in the Lobachevskii space H3 with
dihedral angles between lateral faces equal to π/2 such that dihedral angles between a lateral face and
each of the bases of the prism equal to π/4 and all of whose vertices are infinitely distant points.

We consider a certain 4p-gon prism and find the motions that identify the faces of the prism (p ≥ 2).
We identify the lower base δ1 of the prism with its upper base δ2 using a screw motion with angle of
turn ϕ = π/2p and axis u (the axis of the prism). We identify each lateral face β2i of the prism with
the face β2i+2p, i = 1, 2, . . . , p − 1, opposite to it using a shift and any lateral face β2i−1 with the face
β2p+2i−1 opposite to it using a screw motion with angle of turn ϕ = π, i = 1, 2, . . . , p − 1. The prism
with the identification of faces described above is a fundamental polygon of a certain discrete group Γ.
Factorizing the Lobachevskii space H3 by the group Γ, we obtain a noncompact manifold of constant
negative curvature whose volume is finite.

To construct the second series of noncompact manifolds, we use 4(2p − 1)-gon prisms, where p ≥ 2.
We identify the lower base δ1 of such a prism with its upper base δ2 using a screw motion with angle of
turn ϕ = π/2 and axis u (the axis of the prism). We identify each lateral face β2i−1, i = 1, . . . , 2p − 1,
with the face β2(2p−1)+2i−1 opposite to it by a screw motion whose angle of turn is ϕ = π and whose
axis is the common perpendicular of these faces. The faces β2p and β2(3p−1) are identified by a shift. We
identify the faces β2i, i = 1, 2, . . . , p− 1, p+1, 2p− 1, with the faces β4(2p−1)−2i+2 by screw motions. The
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prism with the identifications of faces described is a fundamental polygon of a certain discrete group of
motions Γ of the Lobachevskii space. Factorizing the space H3 by the group Γ, we obtain an infinite
series of three-dimensional noncompact manifolds of finite volume and constant negative curvature.

Therefore, we now have a sufficiently rich set of examples of three-dimensional manifolds of constant
negative curvature.

We now study the general properties of n-dimensional hyperbolic manifolds. We compare these
properties with similar properties of two-dimensional manifolds. For dimM = 2, we have compact
manifolds of constant negative curvature. A similar statement also holds in the case of an arbitrary
dimension: the Lobachevskii space Hn admits compact space forms Hn/Γ; this is implied by the general
theorem of Borel [24].

As was mentioned, on a two-dimensional compact surface of genus g > 1, there exists a continuum
of distinct metrics of constant curvature −1. This is no longer the case in dimension n > 2. In this case,
the following remarkable Mostow theorem holds (see [137]).

Theorem 1.5.4 (algebraic version). Let Γ1 and Γ2 be two discrete subgroups of the isometry group of
the Lobachevskii space Hn, n ≥ 3, and, moreover, let the manifold Hn/Γi, i = 1, 2, have a finite volume.
If ϕ : Γ1 → Γ2 is a group isomorphism, then Γ1 and Γ2 are conjugate subgroups.

We can state this theorem using the language of hyperbolic manifolds, since the space Hn is a
universal covering of a hyperbolic manifold and the fundamental group of this manifold acts as a discrete
isometry group of the Lobachevskii space Hn.

Theorem 1.5.4 (geometric version). Let Mn
1 and M

n
2 be complete hyperbolic manifolds of finite volume.

Then any isomorphism ϕ : π1(M1) → π1(M2) of the fundamental groups π1(M1) and π1(M2) is realized
by a unique isometry f :M1 → M2.

Since the universal covering a hyperbolic manifold is the Lobachevskii space Hn, any hyperbolic
manifold is a manifold of type K(π, 1). Therefore, any two such manifolds are homotopy equivalent iff
there exists an isomorphism between their fundamental groups. As a consequence, we obtain that two
hyperbolic manifolds of finite volume are homeomorphic iff they are homotopy equivalent.

For an arbitrary manifold M , there exists a homeomorphism

h : Diff(M) → Out(π1(M))

of the diffeomorphism group Diff(M) of the manifold M into the outer automorphism group

Out(π1(M)) = Aut(π1(M))/ Int(π1(M))

(see Fig. 36).

Theorem 1.5.5. Let Mn be a complete hyperbolic manifold of a finite volume, and let n ≥ 3. Then the
group Out(π1(M)) is of finite order and isomorphic to the isometry group of the manifold M .

This result shows a sharp distinction of the dimension n ≥ 3 from n = 2 when the group Out(π1(M
2))

is infinite.
The study of hyperbolic manifolds of finite volume is based on the following important Margulis

lemma. We present here only a certain particular case of this lemma.

Lemma 1.5.1. For any n ≥ 2, there exists C(n) > 0 such that for 0 < ε < c(n) and for any point x ∈ Hn,
the group Γε(x) generated by those isometries γ of the space Hn for which ρ(x, γ(x)) < ε contains an
Abelian subgroup of finite index.

In conclusion, we present a theorem of Thurston that shows a varirty of hyperbolic three-dimensional
manifolds.

Theorem 1.5.6. Let M be a smooth closed oriented three-dimensional manifold satisfying the following
three conditions:
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Fig. 36

(1) its universal covering space is diffeomorphic to R3;
(2) the fundamental group of the manifold M does not contain a subgroup isomorphic to Z⊕ Z;
(3) the manifold M contains an embedded two-sided surface of genus g > 0 such that the mapping of the

fundamental groups induced by the embedding is injective. Then there exists a metric of constant
negative curvature −1 on M .

2. Riemannian Manifolds with Restrictions on the Sectional Curvature

2.1. Compact Riemannian manifolds of nonnegative sectional curvature. The topological clas-
sification of closed Riemannian manifolds Mn with K(σ) > 0, and the more so, with K(σ) ≥ 0 remains
an important unsolved problem. We begin with the construction of examples of Riemannian manifolds
with K(σ) ≥ 0. Let G be an n-dimensional Lie group, and let H be its closed Lie subgroup. The
quotient space G/H is a smooth manifold. Moreover, the natural projection π : G → G/H is a smooth
bundle with structural group H. On G, let there exist a bi-invariant Riemannian metric 〈X,Y 〉. We
choose the subspace M complementary to Y and orthogonal to Y (here Y is the Lie algebra of the Lie
group H). For each point ḡ ∈ G/H in the space Tḡ(G/H), there exists a unique metric 〈X,Y 〉ḡ such that
dpg maps isometrically the orthogonal complement Lg∗M to Lg∗Y in TgG into Tḡ(G/H). The mapping
ḡ �→ 〈X,Y 〉ḡ is a Riemannian metric on the space G/H, which is called a normal homogeneous metric
on G/H. Therefore, G/H is a Riemannian manifold, which is called a normal homogeneous space.

Proposition 2.1.1 ([71]). Normal homogeneous spaces are always of nonnegative sectional curvature
K(σ) ≥ 0.

Among these spaces, only several symmetric spaces of rank one are simply connected and have
K(σ) > 0. Along with Sn, they are the projective spaces CPn, HPn, and CaP 2 and also spaces of the
type Sp(2)/SU(2) (of dimension 7) and SU(5)/Sp(2) × S1 (of dimension 13; see, e.g., [71]).

Among even-dimensional simply connected homogeneous spaces, along with the space mentioned
above, only the spaces SU(3)/T , Sp(3)/SU(2)×SU(2)× SU(2), and F4/ spin(9), where T is the maximal
torus (see [209]), admit a metric with K(σ) > 0.
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For n = 7, there exist infinitely many pairwise nonhomeomorphic compact manifolds that admit a
metric with K(σ) > 0. These are the spaces of type SU(3)/T 1, where T 1 is a closed connected one-
dimensional subgroup in SU(3) having no fixed points. More precisely, these manifolds are described as
follows: Mp,q = SU(3)/Up,q, where p and q are positive integers and

Up,q = {exp(2πitdiag(p, q,−p,−q)) | t ∈ R}.

Until recently, no other spaces withK(σ) > 0, except for homogeneous spaces, were known. The paper [56]
by Eschenburg constructed examples of inhomogeneous Riemannian manifolds with K(σ) > 0. We
describe these examples (for more details, see [56]).

Let G = SU(3), and let U be a closed one-parameter subgroup in G2 = G×G. We define the action
of the group U on G by setting

(u, g) �→ u1gu
−1
2 , g ∈ G, u = (u1, u2) ∈ U.

Let

W = 2πi(diag(k, l,−k,−l), diag(p, q,−p,−q)).

The subgroup exp tW , t ∈ R, is denoted by Uklpq. Let K = U(2) ⊂ G be a subgroup canonically embedded
in U(3). We fix a Riemannian metric on G that is invariant with respect to left translations by elements of
the group G and right translations by elements of the group K and induces a metric of a strictly positive
sectional curvature K(σ) > 0 on Mpq = G/Upq for arbitrary integers p and q.

For fixed numbers p and q such that pq(p + q) 
= 0, let a1, . . . , ak be the set of all prime numbers
that divide pq(p+ q). We set ni = 3ia1a2 . . . ak and

Mi = SU(3)/U1,0,nip,niq.

A compact topological space is said to be strictly inhomogeneous if it is not homotopy equivalent to
any homogeneous Riemannian manifold. There is the following topological characterization of the strict
inhomogeneity (see [56]). Let G = SU(3), let U(1) ∼= U ⊂ G×G without fixed points, and let M = G/U .
If

H4(M) = Zr, r ≡ 2 (mod 3),

then the manifoldM is strictly inhomogeneous. In our case, the spaceM = SU(3)/Uklpq is of the following
cohomologic structure: the ring H∗(M) is generated by elements w ∈ H2(M) and z ∈ H5(M), and the
relations rw2 = 0, w3 = 0, zw2 = 0, and z2 = 0, where r = |(k2 + l2 + kl) − (p2 + q2 + pq)|, hold. The
homotopic structure of the space M = G/U , where G = SU(3) and U(1) ∼= U ⊂ G×G, is described by
the relations π1(M) = 0, π2(M) = Z, and πi(M) = πi(SU(3)), i ≥ 3.

Proposition 2.1.2. The spaces Mi have the following properties:

(a) π1(Mi) = 0;
(b) Mi is a strictly inhomogeneous Riemannian manifold ;
(c) the manifolds Mi are pairwise homotopy nonequivalent ;
(d) K(σ) > 0 for all integers p, q > 0 and any i.

Before passing to the general facts about manifolds of positive or nonnegative sectional curvature,
we mention the Hopf conjecture, which concerns four-dimensional manifolds. The sphere S4, the real
projective space RP 4, and the complex projective plane CP 2 are the only known examples of compact four-
dimensional manifolds of strictly positive sectional curvature. Among the known examples of manifolds
of nonnegative sectional curvature are two new types: products of manifolds of lower dimension and zero
or positive curvature and connected sums CP 2#CP 2 and CP 2#(−CP 2).

The following is the Hopf conjecture: on the product S2 × S2, there is no metric of strictly positive
sectional curvature.

We begin our consideration of manifolds of positive curvature with a remark that indicates distinctions
between the cases of even and odd dimension. The following fundamental theorem holds.
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Theorem 2.1.1 ([71]). For a connected closed manifold M2m, m ≥ 1, of sectional curvature K(σ) > 0,
the orientability is equivalent to the simple connectedness. If such a manifold M2m is nonorientable, then
its fundamental group π̄1(M

2m) is isomorphic to the group Z2. An odd-dimensional Riemannian manifold
Mn with K(σ) > 0 is always orientable.

The causes of such a dependence of the properties of manifolds on the evenness and oddness will
be clear from the scheme of the proof. On an oriented even-dimensional manifold M2m, along a closed
geodesic C, there exists a parallel field composed of vectors orthogonal to C. Indeed, let us enclose
a bundle of unit vectors orthogonal to C along C. Their ends forming the sphere S2m−2 again fill in
this sphere. Therefore, there exists a vector that returns to the initial position after the enclosing. By a
parallel translation along C, it generates the field required. Similarly, in an nonorientable odd-dimensional
manifold M2m+1, there exists a similar field along a closed geodesic C that has no oriented neighborhood.
For K(σ) > 0, the existence of such a field allows us to shorten the geodesic C by varying it along this
field.

The inequality K(σ) ≥ 0 also yields strong restrictions on the topology of a manifold. One of the
most important topological invariants is the homology group. The simplest bound on the homology groups
is given by the following theorem.

Theorem 2.1.2 ([75]). There exists a constant C = C(n) such that each compact n-dimensional Rie-
mannian manifold M of negative curvature K(σ) ≥ 0 satisfies the inequality

n∑
i=0

bi ≤ C,

where bi are Betti numbers of the manifold M , i.e.,

bi = bi(M,F ) = dimF Hi(M ;F ),

and F is a certain field.

As a consequence of this theorem, we obtain the following: the connected sum of sufficiently many
copies of the products of spheres Sp × Sn−p, 0 < p < n, or complex projective spaces does not admit
metrics of nonnegative sectional curvature.

The next topological invariant is the fundamental group of a manifold. If a manifold admits a metric
with K(σ) ≥ 0, then this yields restrictions on the fundamental group of this manifold.

Theorem 2.1.3. Let Mn be a complete Riemannian manifold of sectional curvature K(σ) ≥ 0. Then its

fundamental group can be generated by no more than 2 · 5
1
2
n elements.

We note a close result concerning the number of generators of the fundamental group of manifolds
whose sectional curvature is bounded from below.

Theorem 2.1.4. Let Mn be a compact Riemannian manifold of diameter d(M) < D/2 and sectional
curvature K(σ) ≥ −Λ2. Then its fundamental group π1(M) can be generated by no more than 2 · (3 +

2 chΛD)
1
2
n elements.

The few number of examples of manifolds with K(σ) > 0 leads to the fact that first of all, one study
conditions under which manifolds with K(σ) > 0 are diffeomorphic or homeomorphic to the model spaces,
first of all, to the sphere Sn with the standard metric. The first result of such a type is the theorem on
the “sphere.”

Definition 2.1.1. A metric of a complete Riemannian manifold Mn of sectional curvature K(σ) > 0
can be assumed to be normalized by multiplying it by a constant such that the sectional curvature K(σ)
satisfies the inequality δ ≤ K(σ) ≤ 1. In this case, the manifold is called a manifold with δ-clamped
curvature.
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We have the following fundamental theorem on the “sphere,” which generated an entire direction in
studying Riemannian manifolds.

Theorem 2.1.5. A complete simply connected Riemannian manifoldMn of δ-clamped curvature is home-
omorphic to the sphere Sn for δ > 1

4 .

For even n, the bound is sharp here: for δ = 1
4 , there exist spaces that are not homeomorphic to the

sphere Sn. These are exactly symmetric spaces of rank one. For odd n, the theorem remains valid also for
δ = 1

4 . The theorem on the “sphere” stated above with nonexact value of δ was proved by Rauch in [165].
Then it was improved by a number of authors: Berger, Klingenberg, and Toponogov (see [17,18,108,196]).
The final statement was obtained by Klingenberg in [109, 110]. A detailed proof of this theorem can be
found in [71].

In Theorem 2.1.5, for n = 2, the value δ > 0 is not essential; by the Gauss–Bonnet theorem, a
two-dimensional manifold M2 with K > 0 has a positive Euler characteristic, and in the case whereM2 is
simply connected, it is homeomorphic to the sphere S2. This manifold is diffeomorphic to the sphere S2.

As was shown in [99], there exists a sequence of numbers 0 < δ(n) < 1 such that lim
n→∞

δ(n) ≤ 0.68,

and if a complete simply connected manifold M satisfies the condition δ(n) < K(σ) ≤ 1, then Mn is
diffeomorphic to the sphere Sn.

Therefore, each simply connected complete Riemannian manifold M with K(σ) sufficiently close
to 1 is homeomorphic to Sn. There arises a natural question on the fulfillment of a similar theorem for a
nonsimply connected manifold, naturally, with the replacement of Sn by the corresponding spherical form,
i.e., one asks is it true that the topology of spherical forms is stable with respect to a small perturbation
of the curvature? In the case of nonsimply connected manifolds Mn, the simplest case is π1(M

n) ∼= Z2.
In this case, δ = 0.56 is enough for the homeomorphity, and δ = 0.7 is enough for the diffeomorphity of
the manifold Mn to the projective space RPn.

In the general case, we have the following result.

Theorem 2.1.6 ([84,99]). There exists δ0, 0 < δ0 < 1, such that for any δ, δ0 < δ ≤ 1, we have the
following. If, on a simply connected complete Riemannian manifold Mn with δ < K(σ) ≤ 1, a Lie
group G acts by isometries, then there exist a diffeomorphism F : Mn → Sn and a homomorphism
ϕ : G → O(n+ 1) such that

(ϕ(g))(x) = F (g(F−1(x))) for all g ∈ G, x ∈ Sn.

This theorem is a stability theorem for spherical space forms and their isometry groups. In particular,
it implies that if δ < K(σ) ≤ 1, then Mn is diffeomorphic to the spherical space form Sn/Γ, where the
group Γ is isomorphic to π1(M

n).
The exact value of δ (universal as well as a particular one for each n) is not known. We have only

its estimates.
We now consider the so-called extremal theorems. Restrictions on the curvature imply estimates of

other geometric characteristics. Such estimates are usually related to the comparison theorems. Extremal
theorems are referred to the behavior of manifolds under the imposing of restrictions on them that are
related to limit estimates of various geometric quantities.

The inequality K(σ) ≥ 1 implies d(M) ≤ π. Therefore, the following statement is an extremal
theorem. If K(σ) ≥ 1 and d(M) ≤ π, then the manifold Mn is isometric to the sphere Sn.

In even dimension, the inequality K(σ) ≥ 1 implies that the length of a closed geodesic is not less
than 2π. We have the following extremal theorem by Toponogov. If K(σ) ≥ 1 and there is a closed
geodesic on a manifold Mn whose length is 2π (the dimension n is even), then Mn contains a totally
geodesic submanifold isometric to the sphere S2. More precisely, if the index Ind l of a closed geodesic l
of length 2π equals k, then M contains a sphere of dimension k.
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Fig. 37

If the diameter d = d(M) of a manifold M satisfies the inequality d ≥ π/2, then the topology is
described only with accuracy up to a homotopy equivalence. More precisely, Nagayushi and Tsukamoto
proved the following statement (see [140, 204]). If Mn is a complete Riemannian manifold such that
K(σ) ≥ 1 and its diameter d satisfies the inequality d ≥ π/2, then Mn is a homotopic sphere. If K(σ) ≥ 1
and its volume v(M) satisfies the inequality v(Mn) ≥ 1

2v(S
n), then Mn is either a homotopic sphere or

isometric to the projective space RPn of constant curvature; if, moreover, Mn contains a periodic geodesic
of length l = π, then the manifold Mn is isometric to the space RPn with the standard Riemannian
structure.

We mention the following beautiful result that strengthens the previous results.

Theorem 2.1.7 ([85]). If the conditions K(σ) ≥ δ > 0 and d(Mn) ≥ π/2
√
δ hold for a complete Rie-

mannian manifold Mn, then the manifold Mn is homeomorphic to the sphere Sn.

Therefore, a manifold of a positive curvature K(σ) ≥ δ > 0 cannot be very large.
For a manifold of a positive curvature, the injectivity radius admits a lower bound (cf. Sec. 6.1 of

the previous chapter). This bound is described in the following Klingenberg theorem.

Theorem 2.1.8. In a closed Riemannian space Mn of positive curvature, for even n, the injectivity
radius of the exponential mapping is uniformly estimated from below : i(x) ≥ π for 0 < K(σ) ≤ 1, n is
even. For an odd n, a similar estimate holds under an additional restriction on the curvature: i(Mn) ≥ π
for 1/4 < K(σ) ≤ 1 and n is odd.

The proof of this statement is based on Theorem 2.1.1, more precisely, on the construction that
shortens the deformations and is described above (see [71]). Moreover, one uses the following estimate of
the injectivity radius i(M), which holds in an arbitrary Riemannian manifold M all of whose sectional
curvatures K(σ) satisfy the inequality

K(σ) ≤ 1 : i(M) = min{i(x) | x ∈ M} ≥ min(π, l/2),

where l is the length of the shortest periodic geodesic that is not degenerate into a point.

2.2. Noncompact Riemannian manifolds of nonnegative sectional curvature. The noncompact
case was initially considered by Cohn-Vossen.

Theorem 2.2.1. In dimension 2, a noncompact complete Riemannian manifold of negative curvature is
either diffeomorphic to the plane R2 or flat.

The proof of this statement can be found, e.g., in [113].

Definition 2.2.1. A submanifold Mk of a Riemannian manifold Mn is said to be absolutely convex if
each geodesic segment with ends in Mk lies entirely in Mk (see Fig. 37).
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The concept of convexity plays a fundamental role in studying noncompact manifolds of nonnegative
curvature. The ideas related to convexity form an independent field of geometry having its own methods.

The structure of noncompact Riemannian manifolds of sectional curvature K(σ) ≥ 0 is revealed
by the following fundamental theorem, which plays a key role in studying the structure of Riemannian
manifolds with K(σ) ≥ 0.

Theorem 2.2.2. An open Riemannian manifold Mn satisfying the condition K(σ) ≥ 0 contains a closed
absolutely convex totally geodesic submanifold Mk, 0 ≤ k < n, without boundary such that Mn is diffeo-
morphic to the space ν(Mk) of the normal bundle of the submanifold Mk in Mn.

The manifold Mk is called a soul . This theorem with the replacement of a diffeomorphism by a
homeomorphism was formulated by Cheeger and Gromov. It was independently strengthened by Shara-
futdinov [184].

In general, the soul of a manifold is not uniquely defined (even in the homogeneous case). Sharafut-
dinov proved the following results related to the uniqueness of the soul.

Theorem 2.2.3. Let S1 and S2 be two souls of a complete open manifold M of nonnegative curvature
K(σ) ≥ 0. Then there exists a diffeomorphism of the manifold M onto itself that isometrically maps S1
onto S2.

Theorem 2.2.4. Let S be a soul of a complete open manifold M of nonnegative curvature K(σ) ≥ 0.
Then S is a unique soul if the normal bundle ν(S) admits a nonzero parallel section.

Theorem 2.2.2 implies the structural theorem concerning the topological structure of manifolds with
K(σ) > 0. The topology of such manifolds is simple.

Theorem 2.2.5. Any complete open Riemannian manifold of positive curvature K(σ) > 0 is diffeomor-
phic to the Euclidean space.

In the paper by Gromol and Meyer, this theorem was proved first for dimension dimM ≥ 5. A
complete version of this theorem was obtained by Sharafutdinov in [184]. In proving this theorem, one
uses sufficiently deep topological facts.

The topological structure of manifolds admitting metrics with K(σ) ≥ 0 is revealed by the following
fundamental theorem of Toponogov.

Theorem 2.2.6. An open Riemannian manifold Mn of sectional curvature K(σ) ≥ 0 is isometric to the
direct metric product Mn−k × Rk, 0 ≤ k ≤ n, where the manifold Mn−k contains no lines, i.e., geodesics
that are minimal arcs on any part of them.

We present a scheme for proving this theorem. Let M contain a line γ : R → M . We consider the
horospheres

Da
+ =

⋃
t>a

D(γ(t), t− a) and Da
− =

⋃
t>a

D(γ(−t), t− a),

where a > 0; the balls D(x, r) are taken with the intrinsic metric of the manifold M . One verifies that the
set Q = M \ (Da

+ ∪Da
−) is absolutely convex in M . In this case, Q 
= ∅, since γ(0) ∈ Q. The geodesics

emanating from γ(0) that are orthogonal to γ fill in an (m− 1)-dimensional absolutely convex subset M ′

that is equidistant from Da
+ and Da

−. This easily implies that M is isometric to M ′ × R. If M ′ contains
a line, the process can be repeated. In this way, we obtain a manifold M0 containing no lines.

This theorem, together with Theorem 2.2.2, yields a complete classification of noncompact three-
dimensional manifolds with K(σ) ≥ 0. We do not present their list here; the reader can find it in [113].

A generalization of Theorem 2.2.6 was obtained by Cheeger and Gromol: instead of the inequality
K(σ) ≥ 0, it suffices to require that the Ricci tensor be nonnegative: Ric ≥ 0.
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Theorem 2.2.6 implies the decomposition of the isometry group Iso(M) of the manifold M into the
direct product

Iso(M) = Iso(M̄)× Iso(Rk);

moreover, the isometry group Iso(M̄) is compact. The manifold M contains a line if the isometry group
Iso(M) is not compact.

In the homogeneous case, the Toponogov theorem can be strengthened.

Theorem 2.2.7. If M is a homogeneous space of sectional curvature K(σ) ≥ 0, then M is isometric to
the direct product

M̄n−k × Rk, 0 ≤ k ≤ n,

where Mn−k is a compact homogeneous space of nonnegative curvature.

We can give a complete classification of homogeneous spaces with K(σ) ≥ 0. For this purpose, we
need certain preparatory considerations. For a given Riemannian manifold S and for p ∈ S, we have a
natural representation Γ of the isometry group Iso(S) in the group Out(π) of all outer automorphisms
of the fundamental group π = π1(S, p). It is defined as follows. For each element g ∈ Iso(S), we choose
a path ϕ connecting a point p with g(p). In each class {h} ∈ π, we take a representative h. Then Γ(g)
is the class of the automorphism {h} → {−ϕ · g(h) · ϕ}. This definition does not depend on the choice
of ϕ. Let Cπ be the set of equivalence classes of orthogonal representations of the group π that do not
contain trivial summands in a certain fixed Euclidean space V , and let PCπ be the group of permutations
of the set Cπ. We have a natural homomorphism ∆ of the group Out(π) into the group PCπ that is
defined as follows. Let r be a representative of the class [r] ∈ Cπ, and let s be a representative of the class
[s] ∈ Out(π). Then ∆([s])([r]) is the equivalence class for r · s. We have the following main classification
theorem for homogeneous Riemannian manifolds with K(σ) ≥ 0.

Theorem 2.2.8. Let S be a compact locally homogeneous space of nonnegative sectional curvature with
isometry group I = I(S) and fundamental group π = π1(S, p), and let V be a fixed Euclidean space. There
exists a one-to-one correspondence between the isometry classes of irreducible complete noncompact locally
homogeneous spaces of nonnegative curvature whose soul is isometric to S and bundle of dimension dimV
and the elements of the set Cπ/(∆ ◦ Γ)(I).

In conclusion, we describe the structure of the fundamental group of manifolds with metric of non-
negative sectional curvature. We have the following statement.

Theorem 2.2.9. Consider a complete Riemannian manifold M with K(σ) ≥ 0 and soul S. Then π =
π1(M) ∼= π1(S). There exists an invariant finite subgroup Φ ⊂ π such that π∗ = π/Φ is isomorphic
to the crystallographic group, π∗ contains an Abelian normal free subgroup Γ ∼= Z ⊕ . . . ⊕ Z of rank k,
0 ≤ k ≤ dimS ≤ dimM , and the group π∗/Γ is finite. In particular, M is a compact flat manifold if
k = dimM .

As a consequence, we have that in the case where π is a finite group, the Euler characteristic χ(M)
of the manifold M is zero. If, in addition, M is compact, then all real Pontryagin numbers vanish.

2.3. Riemannian manifolds of negative and nonpositive sectional curvature. The theory of
manifolds with K(σ) < 0 (or K(σ) ≤ 0) is a field of Riemannian geometry, which is very rich in content
and is related to various directions of modern geometry. It is not possible to give a complete survey of
all of these directions; for example, the theory of geodesic flows on manifolds with K(σ) < 0 became an
independent field with its own methods.

2.3.1. Cartan and Hadamard theorem. The following theorem describing the topological structure
of Riemannian manifolds with K(σ) < 0 was proved by Hadamard for surfaces, and later on, E. Cartan

1422



generalized it to Riemannian manifolds of higher dimension (see [71]). It turns out that from the topologi-
cal viewpoint Riemannian manifolds with K(σ) < 0 are of a very simple structure: they are diffeomorphic
to the space Rn.

Theorem 2.3.1. Let Mn be a complete simply connected Riemannian manifold of dimension n ≥ 2 such
that the sectional curvatures K(σ) ≤ 0 for all directions σ. Then for each point p ∈ Mn, the exponential
mapping is a diffeomorphism. In particular, Mn ∼= Rn.

We present a scheme for proving this theorem. Since the manifold Mn is simply connected, the
space Ω(Mn, p, q) is connected. Any two points p and q of the manifold Mn are not conjugate along
any geodesic (see Theorem 2.3.2 of Chap. 2). Therefore, every geodesic is of index zero. The Morse
theorem implies that the space Ω(M,p, q) has the cell complex homotopy type whose dimension is zero,
and one zero-dimensional cell (a point) corresponds to each geodesic. By the connectedness, Ω(M,p, q)
has only one vertex, and, therefore, the points p and q are connected by a unique geodesic. Therefore,
the exponential mapping of the tangent space onto the manifold is one-to-one, which proves the theorem.

Definition 2.3.1. A complete simply connected Riemannian manifold is called an Hadamard manifold
if all its sectional curvatures are nonpositive.

LetMn be a complete Riemannian manifold with nonpositive sectional curvatures, and let dimMn =
n ≥ 2. Since the universal covering M̃ over M is diffeomorphic to the space Rn by the Hadamard–Cartan
theorem and, in particular, is contractible into a point in itself, we have that M is an Eilenberg–McLane
space of type K(π, 1), where π = π1(M) is the fundamental group of the manifold M (the definition and
properties of Eilenberg–McLane spaces can be found, e.g., in [49, p. 101]).

2.3.2. Geometry and fundamental group. Therefore, a complete Riemannian manifold of nonposi-
tive sectional curvature is, in fact, determined by its fundamental group π1(M). Therefore, the geometry
of such Riemannian manifolds is reflected in the algebraic properties of the fundamental group. We present
several statements of such a type, which show how various algebraic properties of the fundamental group
are reflected in geometry of Riemannian manifolds and vice versa.

Let Mn be a compact Riemannian manifold with fundamental group π and nonpositive sectional
curvature K(σ) ≤ 0. We have the following important theorem on “flat tori,” which relates Abelian
subgroups in π and flat submanifolds (see [119]).

Theorem 2.3.2. There exists an Abelian subgroup of rank k in the group π iff M contains an embedded
totally geodesic flat k-dimensional torus.

If the fundamental group falls into a direct product of subgroups, then the manifold considered
is a direct product of submanifolds. More precisely, the following beautiful “splitting” theorem holds
(see [119]).

Theorem 2.3.3. Let the group π have no center. If π = A1 × . . . ×AN is a direct product of subgroups
Ai, 1 ≤ i ≤ N , then the manifold M is isometric to the direct product M = M1 × . . . × MN , where
π1(Mk) = Ak for 1 ≤ k ≤ N .

The center of the fundamental group π admits a useful geometric description, which is given in the
theorem on the “center” (see [119]).

Theorem 2.3.4. Let C be the center of the group π. Then C ∼= Zk for a certain k ≥ 0, and there exists a
foliation of the manifold M into totally geodesic flat k-dimensional tori. Moreover, there exists an Abelian
covering T k ×M ′ → M over M , where T k is a flat torus. Let N = π1(M

′), and let A be the Abelian
automorphism group of the covering. Then N is a normal subgroup in π containing the commutant [π, π]
and the sequences

1 → C ×N → π → A → 1
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and

0 → C × (N/[π, π]) → H1(M,Z) → A → 0

are exact.

The center of the fundamental group can be described by using the language of vector fields on a
manifold; more precisely, the following statement holds.

Theorem 2.3.5 ([119]). Let M be a compact Riemannian manifold of sectional curvature K(σ) ≤ 0.
Then there exist exactly k linearly independent vector fields on M iff the center of the group π1(M) is of
rank k.

If M is a compact manifold of negative sectional curvature K(σ) < 0, then any isometry that is
homotopic to the identity mapping is itself the identity mapping. In [119], this property was generalized
to the case of compact manifolds of nonpositive sectional curvature.

Theorem 2.3.6. Let M be a compact Riemannian manifold of nonpositive sectional curvature K(σ) ≤ 0,
and let there exist a nontrivial isometry f of the manifold M such that f ∼ 1. Then

(a) the manifold M admits a parallel nonzero vector field ;
(b) the center of the group π1(M) is nontrivial (and the assertion of the theorem on the “center” holds);
(c) there exists a locally free action of the torus T k on the manifold M (i.e., the stationary subgroup of

each point is finite) by isometries; moreover, f ∈ T k.

The isometry group of manifolds of negative sectional curvature is, as a rule, very small. More
precisely, as a consequence of Theorem 2.3.6, we obtain the following statement. Let M be the same as
in Theorem 2.3.6, and let one of the following assumptions hold:

(a) the curvature K(σ) < 0;
(b) the Euler characteristic χ(M) 
= 0;
(c) the center of the group π1(M) is trivial;
(d) the first Betti number of the manifold M is zero.

Then an isometry of the manifold M that is homotopic to the identity mapping is the identity
mapping. In particular, the isometry group of such a manifold is finite.

Let M be the same as in Theorem 2.3.6, and let I(M) be its isometry group. Then

(a) a connected component I0(M) of the group I(M) coincides with the torus I0(M) = T k, where k is
the rank of the center of the group π1(M);

(b) if f ∈ I(M) \ I0(M), then f is not homotopic to the identity mapping.

Some of the results listed above can be extended to the case of complete manifolds with K(σ) ≤ 0
(see [119]). Let M be a complete Riemannian manifold of sectional curvature K(σ) ≤ 0 and of finite
volume vol(M) < ∞. Then the assertion of the theorem on the “center” holds. If, moreover, the group
π1(M) is finitely generated, then the assertions of Theorems 2.3.5 and 2.3.6 and also all their corollaries
hold for the manifold M .

In connection with the consideration of the fundamental group of manifolds of nonpositive curvature,
we demonstrate certain features of the de Rham decomposition of such manifolds. LetM be a Riemannian
manifold of sectional curvature K(σ) ≤ 0. In this case, the de Rham decomposition obeys additional (to
the general case) interesting properties. The dimension of the Euclidean factor is expressed through the
rank of the fundamental group. More precisely, the following statement holds.

Theorem 2.3.7. Let M be a complete Riemannian manifold of finite volume and nonpositive sectional
curvature. Then the dimension of the Euclidean factor in the local de Rham decomposition is equal to the
rank of the unique maximal Abelian normal subgroup of the fundamental group π1(M) of the manifold M .

The proof of this theorem can be found in [51].
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As a consequence, we obtain a number of properties of such manifolds. LetM1 andM2 be Riemannian
manifolds of nonpositive curvature and finite volume with isomorphic fundamental groups. Then the
dimension of the Euclidean factor in the de Rham decompositions of the manifolds M1 and M2 is the
same. Let M1 and M2 be compact Riemannian manifolds with K(σ) ≤ 0 and isomorphic fundamental

groups: π1(M1) ∼= π1(M2); let H1 = H
(1)
0 ×H

(1)
1 × . . .×H

(1)
k and H2 = H

(2)
0 ×H

(2)
1 × . . .×H

(2)
j be the

de Rham decompositions of the universal coverings of M1 and M2, respectively, and let H
(1)
0 and H

(2)
0 be

the Euclidean factors; moreover, let the factors be ordered in such a way that

dimH
(1)
i ≤ dimH

(1)
i+1, 1 ≤ i ≤ k − 1, and dimH(2)

r ≤ dimH
(2)
r+1, 1 ≤ r ≤ j − 1.

Then k = j and

dimH
(1)
i = dimH

(2)
i , 0 ≤ i ≤ k

(see [51]).
In the framework of studying the fundamental group, we can introduce the concept of rank of a

manifold.

Definition 2.3.2. The rank rkM of a manifoldM is the rank of a free Abelian subgroup that is contained
in π1(M).

The rank rkM is equal to the maximum dimension of a flat torus that is isometrically and totally
geodesically immersed in M (see [35]). Therefore, 1 ≤ rkM ≤ n.

The manifold M is said to be k-splittable, 1 ≤ k ≤ n, if the group π1(M) contains an invariant free
Abelian subgroup of rank k (see [73]). As was proved by Yao, Lawson, Wolf, and Gromol, the following
statement holds.

Theorem 2.3.8. If a manifold M is a k-splittable Riemannian manifold, then its universal covering M̃
is isometric to M̃ ′×Rk, and, moreover, the action of the group π1(M) on M̃ preserves this decomposition.
In particular, M is fibered into isometric totally geodesic immersed flat tori.

2.3.3. Structure of the fundamental group. The fundamental group of manifolds admitting a metric
with K(σ) < 0 (K(σ) ≤ 0) has a specific algebraic structure. First of all, we mention the following three
fundamental properties of the groups π1(M) of such manifolds M .

(a) Let M be a complete Riemannian manifold of nonpositive sectional curvature. Then each element
of the group π1(M) that is different from the identity is of infinite order.

(b) Let M be a compact manifold with Riemannian metric which has a positive curvature everywhere.
Then the Abelian subgroup Γ of the fundamental group π1(M) is an infinite cyclic subgroup.

(c) The fundamental group π1(M) of a compact Riemannian manifold of strictly negative curvature
cannot be Abelian.

The proof of these statements can be found, e.g., in [49].

Example. Let M = M2
g ×M2

h , where M
2
g and M2

h are two compact orientable surfaces of genus g and
h ≥ 2 and of negative curvature. The metric of the productM is of curvature K(σ) ≤ 0 everywhere. The
properties of the fundamental group of manifolds of negative curvature indicated above imply that there
is no metric of strictly negative curvature on M , since the group π1(M) contains a subgroup isomorphic
to Z⊕ Z. Exactly in the same way, there is no metric of strictly negative curvature on the torus Tn.

The study of the structure of the fundamental group of manifolds of negative curvature became a
separate important direction of geometry. Here many beautiful and important results were obtained, but
there is no final answer for now. We describe the structure of fundamental groups of complete Riemannian
manifolds of negative sectional curvature in detail.

In [58], Floyd obtained a necessary condition for a groupG to be isomorphic to the fundamental group
of a compact Riemannian manifold of negative curvature. We now need the construction for completion of
the group. Let G be a finitely generated group, and let Σ = {g1, . . . , gn} be a finite set of its generators.
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Fig. 38

For g ∈ G, we define the norm |g| as the minimum length of a word composed of the generators g1, . . . , gn
that yields the element g. On G, we introduce the left-invariant metric ρ(a, b) = |a−1b| for a, b ∈ G.
This metric depends on the choice of the set of generators, but with accuracy up to a quasi-isometry, the
corresponding metric space does not depend on the choice of the set of generators. Two metric spaces are
said to be quasi-isometric if there exists a mapping f : X1 → X2 of the first metric space (X1, ρ1) onto
the second metric space (X2, ρ2) for which there exists two constants c, d > 0 such that

cρ1(x, y) ≤ ρ2(f(x), f(y)) ≤ dρ1(x, y) for all x, y ∈ X1.

We now define the graph K(G,Σ). The vertices of the graph K(G,Σ) are in a one-to-one correspon-
dence with the elements of the group G. Two vertices a, b ∈ G are joined by an edge if a = bg ± 1 for
a certain element g ∈ Σ. The graph K(G,Σ) is called the Cayley diagram or the group diagram. On
K(G,Σ), we define the metric ρ(a, b) = min(|a|−2, |b|−2). Let K̄(G,Σ) be the completion of the graph
K(G,Σ) as a metric space. We define the completion of the group G by

Ḡ = Ḡ(Σ) = K̄(G,Σ) \K(G,Σ).

For the free product G = Z ∗Z of two groups that are isomorphic to the group of integers Z, we have
Σ = {a, b}, the graph K(G,Σ) is a tree, and Ḡ(Σ) is a Cantor set. In Fig. 38, we depict the subset of the
graph of the group G consisting of vertices whose norm does not exceed 4.

The infinite cyclic group Z has the completion Z̄ consisting of two points.
We indicate simplest properties of the group completion (see [58]):

(1) The space Ḡ is a compact metric space.
(2) The group AutG acts on the space Ḡ, and, in particular, G acts on Ḡ (one uses the action of the

group G on itself by inner automorphisms).
(3) If H ⊂ G is a subgroup of finite index, then there exists a quasi-isometric homeomorphism

f : H̄ → Ḡ.

Theorem 2.3.9 ([58]). Let M be an n-dimensional (n ≥ 2) compact Riemannian manifold of class C∞

and negative sectional curvature. Then the completion of the fundamental group of this manifold is
homeomorphic to the (n− 1)-dimensional sphere.

Since the completion of a free group of rank r ≥ 2 is an infinite metric space everywhere discontinuous,
the fundamental group of a compact Riemannian manifold of negative sectional curvature is not free.
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In order conclude what the curvature of a Riemannian manifold is using the properties of the fun-
damental group, we need a new concept. Let G be a certain set, and let X be a closed subset of the
space B(G) consisting of all complex-valued functions on G equipped with the uniform norm ‖f‖. Let all
constant functions belong to X, and let this space be invariant with respect to the complex conjugation.
By definition, a linear functional m on X is called a mean if

(a) m(f̄) = m(f) for all f ∈ X;
(b) inf{f(x)} ≤ m(f) ≤ sup{f(x)} for all real-valued functions f ∈ X.

If G is a group and the functional space X is left-invariant (i.e., f ∈ X implies the inclusion fx ∈ X,
where fx(t) = f(x−1t), x ∈ G), then a mean m is said to be left-invariant if m(fx) = m(f) for all
elements x ∈ G and all functions f ∈ X. Similarly, m is called a right-invariant mean if m(fx) = m(f)
for all x ∈ G, where fx(t) = f(tx) by definition; m is a two-sided invariant mean if it is simultaneously
left- and right-invariant.

A group G is said to be amenable if there is a left-invariant (or right-invariant) mean on the group
X = B(G). The work [68] of Greenleaf is devoted to the study of amenable groups. These groups naturally
arise in various fields of geometry, for example, in studying the geometry of the Laplace operator (see,
e.g., [31,32]).

Examples. If G is an Abelian group, then there always exists an invariant mean on B(G) (see [68]). If a
finitely generated group has the property that a function equal to the number of words of length n grows
more slowly than exponential as n increases, then the group is amenable. For a free group G with two
generators, there is no invariant mean on the space B(G). The proper orthogonal group SO(3) contains
a free subgroup with two generators and, therefore, is not amenable (in this case, the group SO(3) is
considered with the discrete topology). If G is an amenable group and π is its homomorphism onto a
group H, then H is also amenable. Each subgroup H of an amenable group G is amenable. If N is the
normal divisor of a group G, and, moreover, if it is amenable and N and G/N are amenable, then G are
also amenable (see [68]).

Hypothesis. A discrete group G is not amenable iff it contains no free subgroups with two generators.

To state the next assertion, we introduce the class C of groups. By definition, this class contains all
amenable groups and is closed with respect to products and finite extensions.

Theorem 2.3.10 ([87]). Let M be an n-dimensional (n ≥ 2) compact Riemannian manifold of nonzero
Euler characteristic, χ(M) 
= 0. Then if the fundamental group π1(M) of the manifold M belongs to the
class C, then the sectional curvature of the manifoldM at a certain point and in a certain two-dimensional
direction is nonpositive.

If the fundamental group π1(M) of a compact n-dimensional (n ≥ 2) Riemannian manifold of negative
curvature belongs to the class C, then, as is shown in [87], it is free.

Milnor introduced an important concept of growth function of a finitely generated group (see [128]).
Let X be a finite set that generates a group G, i.e., G = F/N , where F is the free group with basis X.
For each positive integer n, let γ(n) be the number of elements of the group G that can be represented by
elements w in F such that |w| ≤ n. If we choose one more finite set X ′ generating the group G, then the
functions γ and γ′ are equivalent in the following sense. There exist positive integers k and k′ such that
for all n, we have the inequalities γ(n) ≤ γ′(kn) and γ′(n) ≤ γ(k′n). Milnor showed that the quantity
γ(n)1/n always converges to a certain number a, 1 ≤ a < ∞. A function γ is exponential if a > 1. Milnor
related these concepts with the curvature of Riemannian manifolds.

Theorem 2.3.11 ([128]). Let M be a compact Riemannian manifold of sectional curvature K(σ) < 0.
Then the growth function of the fundamental group π1(M) is at least exponential.
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Fig. 39

Therefore, the fundamental group of manifolds of negative curvature is very large: it has an expo-
nential growth.

We present examples of groups with known growth. If a group admits a finitely generated nilpotent
subgroup of finite index, then its growth function is equivalent to a polynomial. If, in a polycyclic
group, we have no finitely generated nilpotent subgroup of finite index, then its growth is exponential. A
nonpolycyclic solvable group is of exponential growth.

In [70], Grigorchuk constructed examples of groups whose growth functions are not equivalent to a
power function and also to an exponential function. These groups are defined as transformation groups
of the closed interval [0, 1] that preserve the Lebesgue measure. Let the letter T denote the identity
transformation of the interval, and let Π denote an interchanging of the halves of a closed interval [α, β],
i.e.,

Π(x) =


x+

1

2
(β − α), α < x <

1

2
(α+ β),

x−
1

2
(β − α),

1

2
(α+ β) < x < β.

Let U, V , and W be infinite words in the alphabet {Π, T}, U = u1u2 . . . un . . . , V = v1v2 . . . vn . . . , and
W = w1w2 . . . wn . . . . We define the transformations b, c, and d by the diagrams that are depicted in
Fig. 39 and set a = Π.

We consider only those triples (U, V,W ) for which, among the letters un, vn, and wn, we have exactly
two letters Π and one letter T for each n = 1, 2, . . . . For any triple (U, V,W ) of the indicated form, we
define the group G = G(U, V,W ) generated by the transformations a–d. We introduce the coding

0 ↔

ΠΠ
T

 , 1 ↔

ΠT
Π

 , 2 ↔

TΠ
Π

 ;

it induces a one-to-one correspondence between the triples described above and the sequences ω =
ω1ω2 . . . ωn . . . of letters in the alphabet {0, 1, 2}. Let Ω be the space of such sequences, and let Gω

be the group defined by using the sequence ω. Let Ω0 be the set of sequences in which each of the symbols
0, 1, and 2 occurs infinitely many times, and let Ω−1 be the set of sequences that are constant starting
from a certain number and Ω1 = Ω \ {Ω−1 ∪ Ω0}.

Theorem 2.3.12. Let ω ∈ Ω0 ∪ Ω1. Then the growth function of the group Gω is not equivalent to a
power function and an exponential function.

In particular, the group Gω, where ω = 012 0 1 2 0 1 2 . . . , is a group of intermediate growth. For
estimates of the growth function, see [70].
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2.3.4. Volume of manifolds and its estimates. We now consider the problem of the volume of
manifolds of nonpositive curvature. In [35], Buyalo obtained a lower bound on the volume of such
manifolds M, which allows one to prove the finiteness of topological types of manifolds with K(σ) ≤ 0.

Theorem 2.3.13 ([35]). Let the sectional curvatures of the metric gij of a closed Riemannian manifold
(M,gij) satisfy the condition −1 ≤ K(σ)g ≤ 0. Then there exists a Riemannian metric ḡij on M with
−1 ≤ K(σ)ḡ ≤ 0 such that the inequalities

vol(M, ḡ) ≥ αn exp

(
−
2

n
d(M, ḡ)

)
and d(M, ḡ) ≤ βnd(M,g),

where d(M, ḡ) (respectively, d(M,g)) is the diameter of the metric ḡ (respectively, g), hold for its volume;
the constants αn, βn > 0 depend only on the dimension n ≥ 2 of the manifold M . Moreover, if the
manifold M is not splittable, then we can take the metric g as the metric ḡ.

As a consequence of this statement, we have the following important finiteness theorem. For given
n ≥ 2 and C > 0, there exists only finitely many pairwise nonhomeomorphic n-dimensional closed
Riemannian manifolds M with −1 ≤ K(σ) ≤ 0 and d(M) ≤ C.

The rank of a manifold, which was defined above, can be estimated by using the estimates of its
volume. More precisely, we have the following statement (see [35]). There exists a constant Cn > 0 such
that if the volume of an n-dimensional closed Riemannian manifold M of curvature −1 ≤ K(σ) ≤ 0
satisfies the inequality vol(M) ≤ Cn, then rkM ≥ 2.

In the case where the sectional curvature of a manifold satisfies the inequality −ε < K(σ) ≤ −1, we
can prove the following important result of Gromov.

Theorem 2.3.14. For any C > 0 and n 
= 3, there exists a number ε = ε(C,n) such that each complete
n-dimensional Riemannian manifold of sectional curvatures −ε < K(σ) ≤ −1 and volume vol(M) < C
is diffeomorphic to a certain hyperbolic space form, i.e., a complete connected Riemannian manifold of
constant sectional curvature K < 0.

To describe the next bound on the volume, we need the concept of a semisimple isometry. Let H
be a certain Hadamard manifold. With each isometry γ : H → H, one relates its displacement function
δγ(x) = ρ(x, γ(x)), x ∈ H, where ρ is the distance in H. The set

Cγ = {x ∈ H | δγ(x) = inf δγ}

is called the minimal set of the isometry γ. The function δγ is convex, and, therefore, Cγ is also convex.

Definition 2.3.3. An isometry γ is said to be semisimple if Cγ 
= ∅.

Recall that a transformation group Γ of the manifold M is said to be discrete if all its orbits have
no accumulation points, and it is said to be uniform if the orbit space M/Γ is compact. A group Γ with
a uniform and discrete action on an Hadamard manifold H consists of semisimple elements. We have the
following lower bound on the volume of manifolds of positive sectional curvature.

Theorem 2.3.15 ([35]). (a) Let H be a complete simply connected manifold whose sectional curvatures
satisfy the inequality −1 ≤ K(σ) ≤ 0, and let the Ricci curvature be negative definite: Ric < 0. Let
Γ be a discrete group (possibly not torsion-free) of semisimple isometries of the manifold H. Then
vol(H/Γ) ≥ Cn.

(b) If H is a noncompact irreducible symmetric space and Γ is the same as in item (a), then vol(H/Γ) ≥
CnK

−n/2, where K = sup |K(σ)|.

Let Γ be a discrete uniform isometry group of an n-dimensional Hadamard manifoldH whose sectional
curvature satisfies the inequality −1 ≤ K(σ) ≤ 0. We denote by δΓ(x) the greatest lower bound

inf{δγ(x) | γ ∈ Γ, γ 
= e}, x ∈ H,
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of the displacement functions δγ(x). The quantity σ(Γ) = max δΓ is an important characteristic of the
action of the group Γ on H. Obviously, vol(H/Γ) ≥ αnσ

n(Γ) > 0, where the constant αn depends only
on n. In the case where H is the universal covering space of a closed manifold M = H/π1(M), the
quantity σ(M) = σ(π1(M)) is equal to the doubled maximum of the injectivity radius of the manifold M .

We can also estimate the diameter using the invariant R(Γ), which is defined as follows. The group
Γ acts uniformly on H; therefore, for x ∈ H, there exists a number R > 0 such that the orbit of the
ball of radius 1

2R centered at the point x covers entirely the manifold H. Let R(x) be the greatest lower
bound of these numbers, and let R(Γ) = sup

x
R(x). In the case of the universal covering of H over a closed

manifold M , we have the inequality

1

2
R(π1(M)) ≤ diamM ≤ R(π1(M)).

Using the invariant R(Γ), we can also give a characterization of the Euclidean space Rn. There exists a
constant εn such that if R(Γ) ≤ εn, then H is isometric to the space Rn.

In studying Riemannian manifolds of nonpositive sectional curvature, an important role is played
by the assertion known as the Margulis lemma (see [127]). We have considered a particular case of it in
Sec. 1.

Theorem 2.3.16. Let M be a simply connected n-dimensional complete Riemannian manifold of sec-
tional curvature K(σ) satisfying the inequality −1 ≤ K(σ) ≤ 0. Further, let Γ be a discrete isometry
group of the manifold M . Then there exists a positive number εn depending only on n such that for any
point x ∈ M and for 0 < ε ≤ εn, the group Γε(x) generated by {γ ∈ Γ | ρ(x, γ(x)) < ε} is almost nilpotent
in the sense that it contains a nilpotent subgroup of finite index.

2.3.5. Infinitely distant points. The structure of the isometry group. Let M be a simply
connected complete Riemannian manifold of nonpositive sectional curvature. Two geodesic rays γ1 and γ2
with natural parametrization are said to be equivalent if the distance ρ(γ1(t), γ2(t)) is uniformly bounded
for all t > 0. The set of all equivalence classes of geodesic rays with natural parametrization on rays
is denoted by M(∞). The space M(∞) ∪M is equipped with a topology (the set of all open cones of
geodesic rays forms a subbasis of this topology) with respect to whichM(∞)∪M is a compact topological
space homeomorphic to a cell. Each isometry of the manifold M is extended up to a homeomorphism of
the space M ∪M(∞).

Definition 2.3.4. An isometry f of a manifold M is said to be elliptic if f has a fixed point in M . An
isometry of the manifold M is said to be parabolic if f has no fixed points in M and there exists exactly
one fixed point in M(∞). An isometry f of the manifold M is said to be hyperbolic if it has no fixed
points in M and has exactly two fixed points in M(∞).

One proves that if the sectional curvatures of a manifold M are bounded from above by a negative
number, then the isometry group of the manifold M is divided into three pairwise disjoint classes of
elliptic, parabolic, and hyperbolic elements.

We have the following useful statement owing to Gromov, which yields a criterion for a discrete
isometry group to have no hyperbolic transformations.

Lemma 2.3.1. Let M be a simply connected complete Riemannian manifold whose sectional curvature
K(σ) satisfies the inequality −1 ≤ K(σ) < 0. Let Γ be a discrete isometry group acting without fixed
points such that the volume of the space M/Γ is finite. Then there exists a positive number ε′ depending
on M and Γ such that if γ ∈ Γ and ρ(x, γ(x)) < ε′ for a certain point x ∈ M , then γ is not a hyperbolic
isometry.

As for elliptic elements, we have the following fundamental result owing to E. Cartan, which finds
many applications in geometry. For the proof, see, e.g., [94].
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Theorem 2.3.17. Let M be a complete simply connected Riemannian manifold of negative curvature,
and let K be a compact Lie transformation group of the manifold M whose elements are isometries of the
manifold M . Then transformations from the group K admit a common fixed point.

We now consider parabolic elements of the isometry group. For x ∈ M(∞), we denote by Γx the set
of all parabolic elements of the group Γ for which x is a unique fixed point. The set Γx either is empty
or consists of all elements of the group Γ for which x is a fixed point. The set of all parabolic elements of
the group Γ can be represented in the form of a union of disjoint subsets Γxi , where xi ∈ M(∞). Let ε be
the minimum of two constants εn and ε′n from the Margulis lemma and from the Gromov lemma, and let

Ai = {x ∈ M | min
γ∈Γxi

ρ(x, γ(x)) < ε},

D = {x ∈M | min
γ∈Γ

ρ(x, γ(x)) ≥ ε}.

Then the Margulis lemma implies the following important decomposition of the manifold M : M =
D ∪
⋃
i

Ai.

Let Γ be a completely discontinuous isometry group of a manifold M of nonpositive sectional cur-
vature. We define the limit set L(Γ) ⊂ M(∞), where L(Γ) is the set of accumulation points of the orbit
Γ(p) in M(∞) for an arbitrary point p ∈ M . This set does not depend on the choice of the point p.

Definition 2.3.5. A complete Riemannian manifold M is said to be visible if the sectional curvature
K(σ) is not positive, and for any two points x 
= y in M̃(∞), there exists at least one geodesic connecting

x with y, where M̃ is the universal covering of the manifold M .

To obtain results sufficiently rich in content in the case of manifolds of curvature K(σ) ≤ 0 that to
some extent reproduce what is referred to a metric of negative curvature bounded away from zero, it is
necessary to require the fulfillment of certain additional conditions. As such a condition, one often uses
the concept of visibility. For visible manifolds, we can sufficiently well discover the geometrical properties
of such manifolds.

Visible manifolds are divided into three classes. Let M be a complete visible manifold of sectional
curvature K(σ) ≤ 0, and let M̃ be its universal covering. The manifold M is said to be axial if the limit
set L(π1(M)) ⊂ M̃(∞) consists of exactly two points; the manifold M is said to be parabolic if the set
L(π1(M)) consists of one point; the manifold M is said to be Fuchsian in the opposite case.

We do not present a complete survey of all geometric properties of the classes of manifolds introduced
above, since the study of many classes of Riemannian manifolds was divided into separate directions of
geometry with their own subject and methods.

We present three examples illustrating that various restrictions imposed on the set of limit points
allow us to obtain interesting geometric results. The first example is related to one if Chen’s theorems.

Theorem 2.3.18. Let M be a simply connected complete Riemannian manifold whose sectional curva-
tures K(σ) are negative, K(σ) < 0, such that any two points of M(∞) can be connected by a unique
geodesic. If a subgroup G in the isometry group I(M) has no common fixed points in M(∞) and the limit
set L(G) contains more than two points, then G contains a free subgroup with infinitely many generators.

This theorem implies two important consequences. Let M be a complete Riemannian manifold of
sectional curvatures K(σ) < 0 such that its universal covering M̃ satisfies the assumption of the preceding
theorem. Then the fundamental group π1(M) of the manifold M contains a free subgroup with infinitely
many generators. Furthermore, if M is a compact Riemannian manifold of negative curvature, then the
group π1(M) is of exponential growth.

As the second example, we present certain important properties of the isometry group of visible
manifolds.
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Theorem 2.3.19. Let M be a complete visible manifold. If L(G) = M(∞), then either the isometry
group I(M) of the manifold M is discrete or the connected component I0(M) of the identity of the group
I(M) is a noncompact semisimple Lie group.

As a consequence of this theorem, we indicate two properties of visible manifolds. LetN be a complete
visible manifold. If N is of finite volume, then either the group I(N) is discrete or I0(N) is a noncompact
semisimple Lie group. Let N be a two-dimensional complete visible manifold, and let L(G) = M(∞).
Then either the group I(M) is discrete or N is the hyperbolic plane, i.e., N is a hyperbolic space form.

The third example is related to Fuchsian manifolds. Let M be a Fuchsian manifold. Then there
exists an infinite subset A in π1(M) such that the subgroup G generated by the set A is a free group and
the set A is its free set of generators. We consider a Fuchsian manifold M1. For any finite group F , there
exists a Fuchsian manifold M2 covering M1 such that F is a subgroup in the isometry group I(M2) of the
manifold M2. Various properties of visible manifolds can be found in the works of Eberlein.

2.4. Almost flat Riemannian manifolds. A compact Riemannian manifold M is said to be ε-flat if
the inequality |K(σ)| ≤ εd(M)−2 holds; here K(σ) is the sectional curvature of the manifoldM and d(M)
is the diameter of the manifold M . A manifold is said to be almost flat if it admits an ε-flat metric for
an arbitrary ε > 0.

We consider several examples of almost flat Riemannian manifolds. We recall that a quotient space
of a nilpotent Lie group is called a nilmanifold .

Proposition 2.4.1. Any nilmanifold is almost flat.

As an illustration of this proposition, we consider the construction of almost flat metrics on the
quotient space M = G/Γ, where G is the Lie group of upper triangular matrices:

G =



1 a12 . . . a1n
0 1 . . . a2n
...

...
. . .

...
0 0 . . . 1


 .

For this purpose, on the Lie algebra of upper triangular matrices

y =



0 x12 . . . x1n
0 0 . . . x2n
...

...
. . .

...
0 0 . . . 0


 ,

we consider the set of inner products

‖A‖2q =
∑
i<j

x2ijq
2(j−i).

They define the corresponding invariant metric on the Lie group G. Since the estimate

‖Rq(A,B)C‖q ≤ 24(n− 2)2‖A‖2q‖B‖2q‖C‖2q

holds, on any compact coset M = G/Γ, we have the Riemannian metric that is almost flat.
We have the following main theorem on the structure of almost flat Riemannian manifolds, which

belongs to Buser and Karcher.

Theorem 2.4.1. Let M be a compact Riemannian manifold whose sectional curvatures satisfy the in-
equality

|K(σ)| ≤ εnd
−2(M),

where
εn = exp(− exp(expn2)).
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Then M is covered by a nilmanifold. More precisely, we have:

(a) the fundamental group π1(M) contains a normal torsion-free subgroup Γ of rank n;

(b) the quotient group G = π1(M)/Γ is of order s ≤ 2 · (6π)
1
2
n(n−1) and is isomorphic to a certain

subgroup in O(n);
(c) the finitely sheeted covering of the manifold M with the fundamental group Γ and the automorphism

group G is diffeomorphic to the nilmanifold N/Γ;
(d) the simply connected and nilpotent Lie group N is uniquely defined by the fundamental group π1(M).

In addition, Gromov showed that any nilmanifold admits an ε-flat metric for an arbitrary ε > 0. The
previous theorem was recently strengthened by Rou.

Theorem 2.4.2. Let M be a compact Riemannian manifold, d be its diameter, and K(σ) be its sectional
curvature. There exists a constant ε = ε(n) > 0 such that the inequality K < εd−2 implies that the
manifold M is diffeomorphic to the quotient space N/Γ, where N is a simply connected nilpotent Lie
group and Γ is a certain extension of the lattice L ⊂ N by a finite group H.

We indicate the following connection between the injectivity radius and the commutativity. Let Mn

be an ε-flat Riemannian manifold, ε ≤ εn. If the injectivity radius i of the manifold Mn satisfies the
inequality i > 2−n

3
( ε
εn
)1/2d(M), then the subgroup Γ ⊂ π1(M) is Abelian and the manifold Mn is called

the torus.

3. Riemannian Manifolds with Restrictions on the Ricci Curvature

3.1. Meyers theorem. As a rule, the restrictions imposed on the Ricci curvature are weaker than the
restrictions imposed on the full Riemann curvature tensor. However, the Ricci curvature on manifolds is
not arbitrary.

Definition 3.1.1. We say that the Ricci curvature Rij satisfies the inequality Ric ≥ a if Rijx
ixj ≥ a for

any tangent vector v = (x1, . . . , xn) of unit length.

From the Morse–Schoenberg theorem, it is easy to obtain the following theorem of Meyers (see [138]),
which describes the topology of Riemannian manifolds with positive Ricci curvature tensor.

Theorem 3.1.1. Let Mn be a complete n-dimensional Riemannian manifold whose Ricci curvature sat-
isfies the inequality Ric ≥ (n− 1)a2 > 0. Then the manifold Mn is compact, its diameter does not exceed
π/a, and the fundamental group is finite.

For sufficiently small r, we denote by v(m, r) the volume of the sphere S(m, r) contained in a normal
coordinate neighborhood. If (n − 1)a2 is the greatest lower bound of Rijx

ixj and b2 is the least upper

bound of Rijx
ixj, where ‖v‖ = 1 and v(x1, . . . , xn), then v(m, r)

(
b

sin br

)n−1
is a nondecreasing function

of r and v(m, r)
( a

sinar

)n−1
is nonincreasing function of r. With accuracy up to a constant, the function( a

sin ar

)n−1
coincides with the volume of the sphere in a space of constant curvature. These arguments

imply an important theorem on the comparison of volumes of Riemannian manifolds (see [22]).

Theorem 3.1.2. Let Mn be a complete n-dimensional Riemannian manifold, and let

(n− 1)a2 = inf Rijx
ixj,

where v = (x1, . . . , xn) is a unit vector in the tangent space of the manifold Mn. Then the volume of a
ball in normal coordinates does not exceed the volume of the normal coordinate ball of the same diameter
in these normal coordinates on a simply connected space form (i.e., on the sphere Sn, Euclidean space Rn,
or hyperbolic Hn-space) of constant curvature a2.
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If a2 > 0, then the volume of the manifold M does not exceed the volume of the sphere of radius
1/a, and, moreover, the equality is attained only if M is isometric to such a sphere.

3.2. Three-dimensional manifolds of positive-definite Ricci curvature. We can completely de-
scribe the topological structure of three-dimensional manifolds on which there is a metric with positive-
definite Ricci tensor. First of all, this is related to the fact that in dimension three, the full Riemannian
curvature tensor is expressed through the Ricci curvature tensor:

Rijkl = gikRjl − gilRjk − gjkRil + gjlRik −
1

2
R(gikgjl − gilgjk).

We can always reduce the Ricci tensor Rij at a point to the diagonal form

Rij =

λ 0 0
0 µ 0
0 0 ν

 ,

where λ, µ, and ν are eigenvalues of the matrix ‖Rij‖. Then the essential component Rijkl of the curvature

tensor is expressed through R1212 =
1
2(λ+µ−ν) in terms of the eigenvalues λ, µ, and ν of the matrix ‖Rij‖.

This implies that in the three-dimensional case, the condition of positivity of the sectional curvature can
be expressed through the eigenvalues of the Ricci tensor. In dimension three, a metric is a metric of
positive sectional curvature iff Rij <

1
2Rgij , where R is the scalar curvature. Therefore, the positivity

condition of the Ricci curvature is weaker than the positivity condition of the sectional curvature. The
main fact of the theory of compact three-dimensional manifolds of positive-definite Ricci curvature is
described in the following theorem.

Theorem 3.2.1 ([91]). Let M be a compact three-dimensional manifold admitting a metric of positive-
definite Ricci curvature. Then M also admits a metric of constant positive curvature.

The method for proving this theorem is based on the following observation. On the manifold M , we
fix a metric with positive-definite Ricci tensor. Using the heat equation

∂

∂t
gij =

2

n
Rgij − 2Rij ,

we improve this metric. This equation describes the minimization problem of the “energy”

∫
Rdµ.

Unfortunately, the heat equation written above has no solutions. Therefore, we replace it by the equation

∂

∂t
gij =

2

n
rgij − 2Rij ,

where

r =

∫
Rdµ∫
dµ

and R is the scalar curvature. This equation admits a solution at least for sufficiently small t. There are
technical difficulties (one uses the Nash–Moser inverse function theorem). The construction described can
be carried out in a Riemannian manifold of arbitrary dimension.

For compact three-dimensional manifolds, it is proved that if the Ricci tensor of the initial metric is
positive definite, then this property holds for all t. There exists a limit as t → ∞, and the limit metric
is a metric of constant positive curvature. To prove this assertion, we use the maximum principle for
parabolic equations.

All manifolds of constant curvature were classified by Wolf (see [213] and also Sec. 1 of this chapter).

Example. The manifold S2 × S1 admits a metric with nonnegative Ricci tensor Rij (two eigenvalues
equal 1, and the third eigenvalue equals 0). This manifold does not admit a metric of constant curvature,
and hence it also does not admit a metric of positive Ricci curvature.
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The topology of noncompact three-dimensional manifolds is described by the following important
theorem (see [182]).

Theorem 3.2.2. Let M be a complete noncompact three-dimensional manifold of positive-definite Ricci
curvature. Then the manifold M is diffeomorphic to the space R3.

The proof is based on the following theorem of Stallings: a contractible three-dimensional manifold
is diffeomorphic to the space R3 iff it is simply connected at infinity and a two-dimensional sphere em-
bedded in M bounds the three-dimensional disk. The verification of the first condition is easy under the
assumptions of our theorem. The verification of the second condition is technically more complicated.

There is the following interesting characteristic of three-dimensional symmetric spaces among all
Riemannian manifolds. For its description, we define the tensor

Qij = 6Sij − 3RRij + (R2 − 2S)gij ,

where

Sil = R2
il = Rijg

jkRkl and S = gilSil.

Theorem 3.2.3. The tensor Qij vanishes identically on any three-dimensional symmetric Riemannian
manifold. Any symmetric tensor that is a quadratic form in the Ricci tensor and vanishes identically on
any three-dimensional symmetric Riemannian manifold is necessarily proportional to the tensor Qij.

3.3. Metrics with prescribed Ricci tensor on two-dimensional manifolds. The search for con-
ditions under which a given symmetric covariant tensor is the Ricci tensor of a certain metric is a fun-
damental problem. This problem is reduced to the solution of the set of nonlinear partial differential
equations

∂

∂xs
Γsij −

∂

∂xj
Γsis + ΓsijΓ

t
st − ΓsitΓ

t
sj = Rij,

Γijk =
1

2
gis
(
∂gjs

∂xk
+
∂gsk
∂xj

−
∂gjk
∂xs

)
.

In the two-dimensional case, the situation is considerably simplified, since any metric on a two-
dimensional manifold is an Einstein metric. Therefore, if a tensor Rij is the Ricci curvature tensor of a
certain Riemannian metric, then it should be Rij = kγij , where γij is a certain tensor that is positive
definite at each point. Locally, this condition is also sufficient (see [182]). All the results in this field
of Riemannian geometry are related to the study of various geometric properties of solutions to sets of
nonlinear equations.

Theorem 3.3.1. Let a tensor Rij be defined on a certain neighborhood of a point p ∈ M2 in a two-
dimensional manifold M2. There exists a Riemannian metric on M2 for which Rij is the Ricci tensor iff
Rij = kγij for a certain scalar-valued function k and a positive-definite tensor γij.

The idea of the proof of this theorem consists of seeking the metric gij in the form gij = e2uγij . Then
we obtain the equation ∆u = ϕ−k, Sij = ϕγij for the function u, and the assertion is implied by the local
solvability of this equation.

Let dvγ be a volume element of a metric γij . We have the following global analog of Theorem 3.3.1.

Theorem 3.3.2. Let M2 be a compact two-dimensional manifold, and let Rij be a tensor satisfying the
necessary condition Rij = kγij, γ > 0. Then Rij is the Ricci tensor of a certain metric on M2 iff∫

M2

k dvγ = 2πχ(M),

where χ(M) is the Euler characteristic of the manifold M .
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We can state a problem of the same type for the full Riemannian curvature tensor. We can consider
the Riemannian curvature tensor as a 2-form with values in the set of traceless matrices. In this case, we
have the following statement.

Theorem 3.3.3. The matrix-valued 2-form Ri
j,kl is locally the curvature tensor of a certain two-

dimensional metric iff the eigenvalues of all matrices are purely imaginary.

We can restrict ourselves to the problem of the search for not a metric with a given Ricci tensor but
an affine connection. In such a statement of the problem, it always has a solution because of the following
assertion.

Theorem 3.3.4. In a certain neighborhood of a point x0, let a tensor Rij (which is not necessarily
symmetric) be given. Then there exists a connection Γijk whose Ricci curvature coincides with the ten-
sor Rij.

If the tensor Rij is symmetric, then it is natural to seek a solution Γijk in the class of symmetric
connections because of the following theorem.

Theorem 3.3.5. In a certain neighborhood of a point x0, let a symmetric tensor Rij be given. Then there
always exists an affine connection Γijk which is symmetric (Γ

i
jk = Γikj) and such that its Ricci curvature

coincides with Rij.

3.4. Metrics with prescribed Ricci tensor on manifolds of dimension ≥3. In dimension not less
than 3, the fulfillment of the Bianchi identity is an obstruction to the existence of a metric with prescribed
Ricci tensor. We introduce the notation

Bian(g,R) = gst
(
∇tRsm −

1

2
∇mRst

)
.

We always have the relation Bian(g,R) = 0. The identity Bian(g,R) = 0 for a certain metric is a necessary
condition for the existence of a metric with prescribed Ricci tensor.

Example. The tensor
R = x1dx1 ⊗ dx1 ± dx2 ⊗ dx2 ± . . .± dxn ⊗ dxn

is not the Ricci tensor of any Riemannian metric near x1 = 0. In fact, there exists a metric for x1 > 0;
namely, in the case n = 3, it has the form

x1(f(x1))2dx1 ⊗ dx1 + 2f(x1)dx2 ⊗ dx2 + 2f(x1)dx3 ⊗ dx3,

where f(x) = sech2(x3/2/
√
18) and R is its Ricci curvature.

Example. The tensor
n∑
i=1

(x1dxi ⊗ dxi) +
1

2

n∑
i=1

(xidxi ⊗ dx1) +
1

2

n∑
i=1

(xidx1 ⊗ dxi)

is not the Ricci tensor of a metric of an arbitrary signature near the origin 0 ∈ Rn.

Proposition 3.4.1. For sufficiently small ρ > 0, solutions to the equations Bian(g,R) = 0 in the ball
Bρ(0) of radius ρ centered at zero form a Banach submanifold in the space of Riemannian metrics near
a given infinitesimal solution g0ij if the matrix ‖Rij(0)‖ is invertible.

Locally, the invertibility condition of the matrix ‖Rij(0)‖ appearing in Proposition 3.4.1 completely
solves the problem of the existence of a metric with prescribed Ricci tensor (see [182]).

Theorem 3.4.1. Let Rij be a tensor field in a neighborhood of a point x0, and let the matrix ‖Rij(x0)‖
be invertible. Then there exists a Riemannian metric gij such that its Ricci curvature tensor coincides
with Rij in a neighborhood of the point x0.
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To find the metric required, we need to solve the elliptic equation

Ric(g) + div(R−1Bian(g,R)) = R.

It is solved by a method similar to the Picard–Newton method. A successive approximation g
(n)
ij is

constructed in two stages:

(a) using the initial approximation g
(n)
ij as in the usual Picard–Newton method, we find the next ap-

proximation ḡ
(n)
ij ;

(b) after that, we project ḡ
(n)
ij to the submanifold of solutions of the Bianchi equation and obtain the

next approximation g
(n+1)
ij . The successive approximations g

(n)
ij converge to the required metric,

since the metrics g
(n)
ij automatically satisfy the relation

div(R−1Bian(g,R)) = 0.

3.5. Riemannian manifolds of nonnegative Ricci curvature. The results obtained in the descrip-
tion of the structure of Riemannian manifolds of nonnegative Ricci curvature are generalization of the
theorems referring to Riemannian manifolds of nonnegative sectional curvature. The following theorem
describes the structure of such manifolds.

Theorem 3.5.1 ([42]). For a closed Riemannian manifold Mn of positive semi-definite Ricci curvature,
we have the following commutative diagram whose vertical mappings are locally isometric coverings, whose
horizontal mappings are locally trivial bundles, and whose diagonal mapping is a diffeomorphism (T k is a
flat torus):

M0 M̃n ∼=Mn−k
0 × Rk Rk

M1 M̃ T k

Mn M1 × T k

✲

❄

✲

❄ ❄
✲ ✲

❄

◗
◗

◗
◗

◗
◗◗�

M̃ is the universal covering of Mn and Mn−k
0 is a closed simply connected space, 0 ≤ k ≤ n.

In studying manifolds with Ric < 0, as in studying manifolds with K(σ) ≤ 0, an important role is
played by arguments related to the convexity.

If we impose the homogeneity condition on a Riemannian manifold with Ric ≤ 0, then the classi-
fication problem of such manifolds can be considerably more developed than that in studying general
Riemannian manifolds with Ric ≤ 0.

Theorem 3.5.2 ([42]). Let Mn be a complete locally homogeneous space of nonnegative Ricci curvature.
Then there exists an absolutely convex compact submanifold S ⊂ Mn such that the normal bundle ν(S)
with the standard metric is flat and isometric to the manifold Mn.

Therefore, the classification problem of locally homogeneous complete Riemannian manifolds Mn of
nonnegative Ricci curvature is reduced to the problem on flat vector bundles over closed spaces of the
same type.
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3.6. Riemannian manifolds of negative Ricci curvature. The classification of such manifolds still
remains an open problem now. We present here examples of metric manifolds for which Rij < 0. For this
purpose, we need the decomposition sl(n,R) = R⊕Y⊕N of the Lie algebra sl(n,R) of all real trace-free
n × n-matrices into vector subspaces; here R is the subspace of all skew-symmetric matrices, Y is the
subspace of all symmetric matrices, and N is subspace of diagonal matrices. We denote by 〈v,w〉 the
Killing form of the Lie algebra sl(n,R), i.e., 〈v,w〉 = 1

2 tr vw
t, where wt is the transposed matrix. With

respect to this inner product, the decomposition sl(n,R) = R⊕Y⊕N is orthogonal. We define the linear
operator σ: sl(n,R) → sl(n,R) by setting σ(v) = αv for v ∈ R, σ(v) = βv for v ∈ Y, and σ(v) = γv for
v ∈ N. On the Lie algebra sl(n,R), we define a new inner product 〈v,w〉αβγ = 〈σ(v), w〉. We extend the

inner product 〈v,w〉αβγ to the group SL(n,R) by left translations and obtain a left-invariant metric gαβij
on SL(n,R).

Proposition 3.6.1. The Ricci curvature Rij of the metric g
αβ
ij on the Lie group SL(n,R) for n ≥ 3 is

negative when α, β, and γ are generic.

In particular, if Γ is a uniform discrete torsion-free subgroup in the group SL(n,R), then we obtain
examples of compact Riemannian manifolds M = SL(n,R)/Γ on which there exists a set of metrics of
negative Ricci curvature, and, moreover, the group SO(n) acts freely on these manifolds.

We present general facts about the structure of the isometry group of manifolds of negative Ricci
curvature. We have the following statement owing to Bochner, which plays the role of the maximum
principle for infinitesimal isometries of Riemannian manifolds of negative Ricci curvature.

Theorem 3.6.1 ([113]). LetM be a Riemannian manifold of negative Ricci curvature. If the length of an
infinitesimal isometry X of the manifold M attains a relative maximum at a certain point of the manifold
M , then the vector field X vanishes identically on M .

Under certain natural finiteness-type restrictions on the volume, the isometry group of Riemannian
manifolds of negative Ricci curvature is very small.

Theorem 3.6.2. Let M be a complete Riemannian manifold of sectional curvature K(σ) ≤ 0, finite
volume, and negative Ricci curvature. Then the connected component I0(M) of the identity of the isometry
group I(M) of the manifold M is trivial, i.e., I0(M) = {e}.

3.7. Manifolds with zero Ricci tensor. If M is a compact Riemannian manifold with zero Ricci
tensor, then each of its infinitesimal isometries is a parallel vector field. This result is implied by Theo-
rem 3.6.1 (see [113]).

As a consequence, we can describe the structure of homogeneous Riemannian manifolds of zero Ricci
curvature.

Theorem 3.7.1 ([113]). Let M be a compact homogeneous Riemannian manifold having zero Ricci ten-
sor. Then it coincides with a flat torus.

4. Riemannian Manifolds with Restrictions on the Scalar Curvature

4.1. Riemannian manifolds of negative scalar curvature. Let R be the scalar curvature of a
Riemannian metric gij on a manifold Mn. There arises a natural problem about restrictions on the
topology of the manifold Mn that are imposed by the existence of a metric of negative scalar curvature.
An answer is given by the following theorem owing to Aubin (see [11]).

Theorem 4.1.1. There exists a Riemannian metric of negative scalar curvature on any compact Rie-
mannian manifold.

Therefore, the inequality R < 0 contains no topological information about the manifold M .
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4.2. Compact Riemannian manifolds of positive scalar curvature. There exist nontrivial topo-
logical obstructions to the existence of Riemannian metrics of positive scalar curvature. They are related
to the so-called Hirzebruch Â-genus. We recall that the characteristic series of a multiplicative sequence
according to which the Â-genus is constructed is the series expansion of the function

√
z/2 sinh(12z) (for

more details, see [95,181]).
We recall that the spinor structure on an oriented Riemannian manifold Mn of dimension n is the

principal spin(n)-bundle F over M such that the SO(n)-bundle F ×
spin(n)

SO(n) is SO(n)-equivalent to the

principal SO(n)-bundle of oriented orthogonal frames over M .
One can show that the spin(n)-structure exists on Mn iff the second Stieffel–Whitney class w2(M)

of the tangent bundle T (M) vanishes. In this case, the number of nonequivalent spin(n)-structures equals
the order of the group H1(M,Z2).

Before passing to negative results, we present several simple constructions, which allow us to construct
examples of manifolds on which there exists a Riemannian metric of positive scalar curvature. Let M and
N be two Riemannian manifolds with metrics ds2M and ds2N of scalar curvatures RM and RN , respectively,
and let f : M → R+ be a smooth function on M . On the manifold M × N , we consider the metric
ds2 = ds2M + f2ds2N . Then the scalar curvature R of this metric is given by

R = RM +
1

f2
RN −

n(n− 1)

f2
‖∇f‖2 −

2n

f
∆f,

where ∆f =
∑

∇ei,eif is the Laplace operator on the manifold M and n = dimN . In particular, if M is
compact and −t∇2 + k ≥ k0 for a certain t ≤ 2, then M × S1 has a metric of positive scalar curvature
not less than k0.

If (X,ds2) is a Riemannian manifold with metric ds2, n = dimX, and R is the scalar curvature of

the manifold X, then for any function f > 0, the scalar curvature of the metric dŝ2 = f
4
n−2 ds2 has the

form

R̂ = f
n+2
2−n

[
−
4(n− 1)

n− 2
∇2f + kf

]
.

In particular, if X is compact and −t∇2 + k > 0 for a certain t ≤
4(n− 1)

n− 2
, then X admits a metric of

positive scalar curvature.
We now pass to the topological characteristics of manifolds on which there exists a metric of positive

scalar curvature. We begin with the Lichnerowich theorem [121].

Theorem 4.2.1. Let M be a spinor manifold such that Â(M) 
= 0. Then on M , there is no Riemannian
metric whose scalar curvature is nonnegative and positive at least at one point.

Examples of spinor manifolds for which Â(M) 
= 0 are well known in the theory of spin-manifolds
(see [131]). In [97], also by using the index theorem, it is shown that an exotic sphere that does not bound
a spin-manifold does not admit a metric of positive scalar curvature.

The condition Â(M) = 0 admits a simple topological interpretation: it holds iff the union of a certain
number of copies of M is cobordant to a spinor manifold that admits a nontrivial action of the group S1.

We give several definitions that will be needed for describing obstructions to the existence of metrics
of positive scalar curvature. A mapping f : M → N of a Riemannian manifold M into a Riemannian
manifold N is said to be ε-contractible if ‖f∗v‖ ≤ ε‖v‖ for any vector v ∈ TxM . A complete oriented
n-dimensional Riemannian manifold Mn is said to be ε-spherical if there exists an ε-contractible mapping
f : M → Sn that is constant outside a certain compact subset in M and whose degree is different from
zero. We recall that the degree of a mapping f is the number

deg f =
∑

p∈f−1(q)

sign(det f∗)p,
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where q is a regular value of the mapping f (see, e.g., [48]). A Riemannian manifold is said to be spherical
if it is ε-spherical for any ε > 0. As an example, we note that a complete simply connected Riemannian
manifoldM whose sectional curvatures are not positive is spherical. Each Euclidean space Rn is spherical.
The direct product of two spherical Riemannian manifolds is again a spherical manifold.

A compact manifold M is said to be narrow if, for any ε > 0 and for any Riemannian metric on M ,
there exists a spinor ε-spherical manifold M̃ covering M (in the metric lifted on M̃).

Any compact manifold admitting a metric of nonpositive sectional curvature is narrow. We indicate
certain properties of narrow manifolds (see [81]). The property of a manifold to be narrow is an invariant
of the homotopy type. The product of two narrow manifolds is a narrow manifold. The connected sum of
any spinor manifold and a narrow manifold is a narrow manifold. We have the following main theorem.

Theorem 4.2.2 ([81]). There is no metric of positive scalar curvature on a narrow manifold. Any metric
of nonpositive scalar curvature on a narrow manifold is necessarily Ricci-flat.

As a consequence of this theorem, we obtain the following statement. A compact manifold M on
which there exists a metric of nonpositive sectional curvature cannot be equipped with a Riemannian
metric of positive scalar curvature. In fact, any metric of nonnegative scalar curvature is necessarily
flat. The previous results can be slightly improved. Let f : M → N be a smooth mapping, and let q
be its regular value. Then the Â-degree of the mapping f is the value of the Â-genus on f−1(q), i.e.,

Â(f−1(q)), where Â(X) is the complete Â-class of the manifold X (see [111]). A complete connected
oriented Riemannian manifold M is said to be ε-spherical in dimension n (0 ≤ n ≤ dimM) if there
exists an ε-contractible mapping f : M → Sn that is constant outside a certain compact set and has a
nonzero Â-degree. If dimM = n, then we obtain an ordinary ε-sphericity of the manifold M . A compact
Riemannian manifold is said to be narrow in dimension n if, for any ε > 0, there exists an oriented spinor
covering M̃ over M that is ε-spherical in dimension n.

The property to be narrow in dimension n is an invariant of the homotopy type. If X is a narrow
manifold in dimension n and Y is narrow in dimension m, then X × Y is a narrow manifold in dimension
n+m. A compact spinor manifold N such that Â(N) 
= 0 is a narrow manifold in dimension 0. In this
case, N ×M , where M is a narrow manifold in dimension n, is narrow in dimension n. The following
theorem is a generalization of Theorem 4.2.2.

Theorem 4.2.3. A compact manifold M that is narrow in dimension n ≥ 0 cannot have a metric of
positive scalar curvature. In other words, any metric of nonnegative scalar curvature on the manifold M
is flat.

As a consequence, we obtain that if M is a compact manifold admitting a spinor mapping of nonzero
Â-degree onto a manifoldM0 with metric of nonnegative sectional curvature, then the manifoldM cannot
have a metric of positive scalar curvature. In particular, the product M0 ×N , where N is any compact
spinor manifold with Â(N) 
= 0, cannot have a metric of positive scalar curvature (see [81]).

Theorem 4.2.4. Let M be a compact manifold of type k(π, 1), and let M contain a narrow submanifold
M0 ⊂ M of type k(π, 1) and codimension 2, and, moreover, let a homeomorphism π1(M0) → π1(M)
induced by an embedding be injective. If the boundary of a tubular neighborhood of the submanifold M0 in
M is a narrow manifold, then there is no metric of positive scalar curvature on M .

The following statement is a direct consequence of this theorem. There is no (nonflat) Riemannian
metric of negative scalar curvature on manifolds M of the following form:

(1) M =M1#M2, where M2 is a spinor manifold and M1 is as in the previous theorem;

(2) M =M1×M2, whereM2 is a spinor manifold with Â(M2) 
= 0 andM1 is as in the previous theorem.

We now briefly consider methods for proving the above theorems. The so-called Dirac operator
serves as the main working tool. We recall its definition. Let M be a Riemannian manifold. We denote
by Cl(M) the Clifford bundle over M . The fiber of the bundle Cl(M) over a point x ∈ M is the Clifford
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algebra Cl(TxM) of the tangent space TxM of the manifold M at the point x ∈ M (see [25]). We have
the canonical embedding T (M) ⊂ Cl(M). The Riemannian connection and the Riemannian metric are
extended to the bundle Cl(M) so that the covariant differentiation preserves the metric and

∇(ϕ · ψ) = (∇ϕ) · ψ + ϕ · (∇ψ)

for all sections ϕ,ψ of the bundle Cl(M) (the dot stands for the product in the Clifford algebra).
Further, let S → M be the bundle of left modules over the bundle Cl(M) (i.e., for any point x ∈ M ,

the fiber Sx is a module over the algebra Clx(M), and the multiplication depends smoothly on the point).
We assume that S is equipped with a metric and a connection ∇ compatible with this metric; moreover,
let the following conditions hold:

(a) the module multiplication l : Sx → Sx by an arbitrary unit vector e ∈ TxM is an isometry at each
point x ∈ M ;

(b) ∇(ϕ · σ) = (∇ϕ) · σ + ϕ · (∇σ) for all sections ϕ of the bundle Cl(M) and all sections σ of the
bundle S.

We denote by Γ(S) the space of all sections of the bundle S. Under the above conditions, we define
the first-order differential operator D : Γ(S) → Γ(S), called the Dirac operator , by setting

D ≡
n∑
i=1

ek · ∇ek ,

where e1, . . . , en is an orthonormal basis of the space TxM . We have the canonical orthogonal decompo-
sition S = S+ ⊕ S− with respect to which the operator D becomes

D =

(
0 D−

D+ 0

)
.

If the manifold M is compact, then the operator D+ is a Fredholm operator of index indD+ =
dimkerD+ − dim cokerD+.

The Dirac operator was initially considered in the middle of the 60s in connection with the develop-
ment of the index theory aimed at a generalization of the Rokhlin result on the divisibility of the signature
of a smooth four-dimensional spinor manifold by 16. In contrast to the Laplace operator, the dimension
of the kernel of the Dirac operator is not a topological invariant and depends on the geometry of the
manifold considered.

Partial information about the spectrum of the Dirac operator is obtained from the following theorem
owing to Wolf.

Theorem 4.2.5. If (Mn, g) is a complete oriented Riemannian spinor manifold, then the Dirac operator
and its square are essentially self-adjoint operators on the Hilbert space of square integrable spinor fields.

We mention the following two properties of the spectrum of the Dirac operator. If (Mn, g) is a
complete Riemannian manifold, then the spectrum Spec(D) of the Dirac operator is real and does not
contain the residual spectrum. If M is a compact Riemannian manifold, then Spec(D) consists of only
real eigenvalues of finite multiplicity.

The first eigenvalue of the Dirac operator on a Riemannian manifold of positive scalar curvature R
yields a lot of information. Let λ± be the minimum positive (negative) eigenvalue of the operator D, and
let

R0 = min{R(x) | x ∈ Mn}.

Then the following (Friedrichs) estimate holds:

1

2

√
n

n− 1
R0 ≤ |λ±|.
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Theorem 4.2.6. If

1

2

√
n

n− 1
R0 or −

1

2

√
n

n− 1
R0

are eigenvalues of the Dirac operator, then M is an Einstein space.

Therefore, the greatest lower bound of
1

2

√
n

n− 1
R0 is attained only on an Einstein space. The

problem on description of compact Einstein spaces M that admit a spinor field ψ such that

Dψ = ±
1

2

√
R0n

n− 1
ψ

is still open.
We consider the case dimM = 3. An Einstein space M3 is a manifold of a constant sectional

curvature, i.e., M3 = S3/Γ. The number ±
1

2

√
n

n− 1
R0 is an eigenvalue of the Dirac operator for the

space S3/Γ iff S3/Γ is a homogeneous space, i.e., Γ ⊂ I(S3). As was indicated in Sec. 1.3 of Chap. 3,
there exist five possibilities for Γ: a cyclic group, a dihedral group, E6, E7, or R8. Finally, we have the

following picture. On M3 = S3, both values ±
1

2

√
R0n

n− 1
are eigenvalues of the operator D. The space

M3 = RP 3 admits two spinor structures. With respect to one of them,
1

2

√
nR0

n− 1
is an eigenvalue, and

this is not the case for −
1

2

√
nR0

n− 1
. With respect to the second structure, the case is the opposite. On

all other homogeneous spaces S3/Γ, the number −
1

2

√
nR0

n− 1
is not an eigenvalue, while

1

2

√
nR0

n− 1
is an

eigenvalue of one and only one spinor structure.
In dimension four, we have the following description of Spec(D).

Theorem 4.2.7. If M4 is a compact Riemannian spinor manifold of positive scalar curvature and if√
R0/3 or −

√
R0/3 is an eigenvalue of the Dirac operator, then the manifold M4 is isometric to the

sphere S4.

In dimension five, we restrict ourselves to an example of an Einstein manifold of nonconstant sectional
curvature at which the greatest lower bound indicated above is attained as an eigenvalue.

Example. We consider the Stieffel manifold V4,2 = SO(4)/SO(2) and the corresponding decomposition
of the Lie algebra so(4) = so(2) +M. Let B be the Killing metric on so(4). Then we define the metric
g(X,Y ) on V4,2 by setting

g(a + ξ, b+ η) =
1

2
B(ξ, η) +

2

3
B(a, b),

where a, b ∈ so(2) and ξ, η ∈ M. This Riemannian metric is an Einstein metric of scalar curvature
R = 26/3. On the space (V4,2, g), the equation

Dψ = ±
1

2

√
5R

4
ψ

admits a nontrivial solution.

The eigenvalues of the Dirac operator on five-dimensional manifolds of constant sectional curvature
were studied by Sulanke. In particular, he proved that there exists an inhomogeneous space of constant

sectional curvature for which ±
1

2

√
5R

4
is an eigenvalue of the Dirac operator D.
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We denote by Spec∆(M) the spectrum of the Laplace operator on a manifold M and by SpecD(M)
the spectrum of the Dirac operator D. In certain cases, knowledge of SpecD(M) allows us to say much
more about the geometry of the Riemannian manifold considered. We present several statements of such
a type.

Let Mn and M̄n be two closed spinor manifolds for which

Spec∆(Mn) = Spec∆(M̄n) and SpecD(Mn) = SpecD(M̄n).

If the sectional curvature of the manifold Mn is constant, then the sectional curvature of the manifold
M̄n is also constant and is equal to the sectional curvature of the manifold Mn. Therefore, Mn and M̄n

are locally isometric.

Let SpecD
2
(M) be the spectrum of the square D2 of the operator D. Let M4 and M̄4 be four-

dimensional closed Riemannian spinor manifolds of constant scalar curvatures R and R̄, respectively. If

SpecD
2
(M4) = SpecD

2
(M̄4) and Spec∆(M4) = Spec∆(M̄4), then the manifolds M4 and M̄4 are of the

same Euler characteristic.
The consideration of the Dirac operator allows us to define a new metric invariant, the so-called index

coefficient of a pair of Riemannian metrics, which possesses some interesting geometric properties. Let g0
and g1 be two metrics on a manifold M . On M × R, we define a metric ds2 of the form ds2 = gt + dt2,
where gt = g0 for t = 0, gt = g1 for t = 1, and gt is an arbitrary smooth homotopy between g0 and g1 for
0 ≤ t ≤ 1.

The index coefficient i(g0, g1) of a pair of metrics g0, g1 on a manifold M is the number i(g0, g1) =
ind(D+), where D is the canonical Dirac operator on the manifold M ×R. This definition is correct. The
index coefficient of metrics has the following properties:

(a) i(g0, g1) = −i(g1, g0);
(b) i(g0, g1) + i(g1, g2) + i(g2, g0) = 0;
(c) if a metric g0 is homotopic to g1, and, moreover, in the process of homotopy, we pass through metrics

of positive scalar curvature, then i(g0, g1) = 0.

Therefore, the invariant i(g0, g1) is constant on connected components of the space of metrics of
positive scalar curvature. The invariant i(g0, g1) is not trivial, which is asserted by the following theorem.

Theorem 4.2.8. For metrics g of positive scalar curvature on the sphere S7, the invariant i(g, gcan)
assumes infinitely many integer values.

In particular, the space of metrics of positive scalar curvature on the sphere S7 has infinitely many
connected components.

For an arbitrary fixed metric g on a compact spinor manifold M and for an arbitrary diffeomorphism
F ∈ Diff(M), we set ig(F ) = i(g, F ∗(g)).

Theorem 4.2.9. For any metric g of positive scalar curvature on a manifold M , the mapping ig :
Diff(M) → Z is a group homomorphism.

As a consequence of this theorem, we have that each metric gij of positive scalar curvature assigns a
homomorphism ig : Γ(M) → Z, where

Γ(M) = Diff(M)/Diff0(M)

is the group of components of the diffeomorphism group of the manifold M . In particular, if the group
Γ(M) is finite, then ig = 0 for an arbitrary metric g.

4.3. Noncompact Riemannian manifolds of positive scalar curvature. We now consider the case
of noncompact Riemannian manifolds that admit a metric of positive scalar curvature. The results of the
preceding subsection admit a generalization to this case (for the corresponding proofs, see [81]).

Let M1 and M2 be two Riemannian manifolds. A smooth mapping f : M1 → M2 is said to be
(ε,Λ2)-contractible or ε-contractible on 2-forms if ‖f∗ϕ‖ ≤ ε‖ϕ‖ for any 2-form ϕ on the manifold M2. A
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connected manifold M is said to be Λ2-narrow if, for any given metric on M and any ε > 0, there exists
a spinor covering M̃ → M such that M̃ is (ε,Λ2)-spherical in the metric lifted from M . A lift of a Λ2-
narrow manifold in dimension n is defined similarly to a narrow manifold in dimension n. The following
two important characteristics of the Λ2-narrowness of a manifold hold. Let M and N be connected
oriented manifolds, and let f : M → N be a proper spinor mapping of zero Â-degree. If N is Λ2-narrow
in dimension n, then the manifold M also has this property. The second characteristic is related to the
existence of Λ2-narrow submanifolds. More precisely, letM be a connected spinor manifold. IfM contains
an open Λ2-narrow submanifold U ⊂ M such that the homomorphism π1(U) → π1(M) is injective, then
M is Λ2-narrow.

We indicate several interesting examples of Λ2-narrow manifolds. If M0 is an arbitrary compact
narrow manifold, then M = M0 × R is Λ2-narrow. Any hyperbolic manifold M of finite volume is
Λ2-narrow.

We have the following main theorem.

Theorem 4.3.1. LetM be a Λ2-narrow manifold. ThenM cannot have a complete Riemannian metric of
positive scalar curvature. In other words, any metric of nonnegative scalar curvature on M is necessarily
Ricci-flat.

As a consequence, we obtain that there is no complete Riemannian metric of positive scalar curvature
on the following manifolds M :

(1) M =M0 × R, where M0 is a narrow manifold;
(2) M is a connected manifold such that M contains a compact narrow submanifold M0 ⊂ M of

codimension one and the homomorphism π1(M0) → π1(M) induced by embedding is injective;
(3) M is a hyperbolic Riemannian manifold of finite volume;
(4) M = M1 ×M2, where M1 is any manifold described in items (1)–(3) and M2 is a compact spinor

manifold with Â(M2) 
= 0 (for example, R×M2).

4.4. Manifolds of lower dimension. We consider the following two cases: dimM = 3 and dimM = 4.
Any three-dimensional manifold admits the decomposition

M =M1# · · ·#Ml#(S
1 × S2)# · · ·#(S1 × S2)#K1# · · ·#Kn,

where the group π1(Mj) is finite for 1 ≤ j ≤ l and each kj is a manifold of type k(π, 1) (see Fig. 40).

Theorem 4.4.1 ([81]). Let M be a compact three-dimensional manifold having k(π, 1) summands in the
above decomposition. Then M admits no metrics of positive scalar curvature.

We note that a manifold of the form

M1# · · ·#Ml#(S
1 × S2)# · · ·#(S1 × S2)

admits a metric of positive scalar curvature under the condition that each Mj is diffeomorphic to S
3/Γj

for a certain subgroup Γj ⊂ O(4) acting on the sphere S3 in the standard way.
A compact surface Σ embedded in a manifold M is said to be incompressible if the fundamental

group π1(Σ) is infinite and the induced mapping π1(Σ) → π1(M) is injective. If we replace the embedding
by a proper imbedding in this definition, then we obtain the definition of a tight surface in M . Any
incompressible surface is tight.

Theorem 4.4.2 ([81]). A three-dimensional manifold containing a tight surface does not admit a com-
plete Riemannian metric of positive scalar curvature. Moreover, there is no Riemannian metric whose
scalar curvature R satisfies the inequality R ≥ const > 0.

A three-dimensional manifold containing an incompressible surface cannot have a complete nonflat
Riemannian metric of nonnegative scalar curvature.
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Fig. 40

Theorem 4.4.3. On a compact four-dimensional manifold of type k(π, 1) that contains an incompressible
surface, there is no metric of positive scalar curvature.

Let M be a three-dimensional manifold. We say that a smoothly embedded curve γ ⊂M is small if
it has infinite order in the group H1(M) and the normal circle γ′ in the normal bundle to γ has infinite
order in H1(M \ γ). A similar definition can also be given in the four-dimensional case. A compact
incompressible surface Σ ⊂ M embedded in a four-dimensional manifoldM is said to be small if the order
of the quotient π1(M)/π1(Σ) is finite and the normal circle from the normal bundle of Σ has infinite order
in the group H1(M̃ \ Σ), where M̃ is a covering over M with π1(M̃) ∼= π1(Σ).

Theorem 4.4.4. Let M be an open three-dimensional manifold such that the group H1(M) is finitely
generated. If M contains a small curve, then M has no Riemannian metric whose scalar curvature R
satisfies the inequality R ≥ const > 0.

We note that Theorem 4.4.4 implies Theorem 4.4.1.
A similar result holds for four-dimensional manifolds.

Theorem 4.4.5. A compact four-dimensional manifold containing a small surface cannot have a Rie-
mannian metric of positive scalar curvature.

In conclusion, we present one more important result that concerns restrictions on the fundamental
group of manifolds admitting a metric of positive curvature.

Theorem 4.4.6. Let M be a three-dimensional manifold whose fundamental group π1(M) contains a
subgroup isomorphic to the fundamental group of a compact surface of positive genus. Then the manifold
M cannot have a complete metric of positive scalar curvature.

4.5. Metrics of prescribed scalar curvature. It was noted long ago that there are global restrictions
imposed by the topology of a manifold on its differential-geometric structures. The simplest restrictions
come from the Gauss–Bonnet theorem for two-dimensional Riemannian manifolds:

(a) if the Euler characteristic χ(M2) of a manifold M2 satisfies the inequality χ(M2) > 0, then the
Gaussian curvature K of the manifold M2 should be positive somewhere on M2;

(b) if χ(M2) = 0, then the Gauss curvature K should change its sign or should be identically equal to
zero;

(c) if χ(M2) < 0, then the Gauss curvatureK of the manifoldM2 should be negative somewhere onM2.

We can assume that any smooth function K on a two-dimensional manifold is locally the Gaussian
curvature of a certain Riemannian metric. In a coordinate neighborhood U(x, y), we seek a metric of a
special form ds2 = dx2+G(x, y)dy2 in which the lines y = const are geodesics. Such a coordinate system
always exists in a neighborhood of any point. The function G and the curvature K are related by the
equation

∂2
√
G

∂x2
+K(x, y)

√
G = 0
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for which we take the initial conditions

√
G
∣∣∣
x=0

= 1 and
∂
√
G

∂x

∣∣∣∣∣
x=0

= 0.

This ordinary differential equation has a positive solution
√
G > 0 (y is a parameter) near x = 0, which

yields the desired metric. We assume that a smooth real-valued function K :M → R is given on a closed
two-dimensional manifold M . One asks: does there exist a Riemannian metric on N for which K is its
Gaussian curvature? The Gauss–Bonnet condition cannot be stated in advance on M , since we have no
area element on M for now. The following theorem completely solves the problem on conditions under
which a given function coincides with the Gaussian curvature of a certain metric.

Theorem 4.5.1 ([105]). Let M be a compact two-dimensional Riemannian manifold of Euler character-
istic χ(M). Then a function K ∈ C∞(M) is the Gaussian curvature of a certain metric iff

(a) the function K is positive somewhere and χ(M) > 0;
(b) the function K changes sign or K ≡ 0 if χ(M) = 0;
(c) the function K is negative somewhere if χ(M) < 0.

4.6. Functional λ1(g). On a Riemannian manifold M , there always exists a differential operator, the
so-called Laplace operator, which always deserves more attention. Let gij be a Riemannian structure
on M , and let (x1, . . . , xn) be a local coordinate system in a neighborhood U ⊂ M . We define gjk by
the relation gijg

jk = δki , g = det(gij). Each function f on M generates the vector field grad f whose
restriction to U is given by

grad f = gij
∂f

∂xj
∂

∂xi
.

If X is a vector field on M , then its divergence is a function on M that is given by

divX =
1
√
g

∑
i

∂

∂xi
(
√
gXi)

on U , where

X = Xi
∂

∂xi

on U . The Laplace operator ∆ is defined by ∆f = div grad f on smooth functions f . In local coordinates,
we have

∆f =
1
√
g

∑
k

∂

∂xk

(∑
i

gik
√
g
∂f

∂xi

)
.

The operator ∆ is a differential operator whose principal symbol is of the form q(λ) = q−1(λ, λ), where g−1

stands for the norm on T ∗M induced by the Riemannian metric gij . In local coordinates, q(λ) = gijλiλj .
Therefore, ∆ is an elliptic differential operator. We indicate the simplest properties of the operator ∆ on
a Riemannian manifold (M,gij). The operator ∆ is symmetric, i.e.,∫

M

u(x)[∆v](x) dx =

∫
M

[∆u](ẋ)v(x) dx

for any functions u and v such that one of them is compactly supported. If f is a diffeomorphism of the
manifold M , then the operator ∆ is invariant with respect to f iff f is an isometry.

The operator ∆ can be extended to a positive self-adjoint unbounded operator on the space L2(M,µ),
where µ is a measure generated by the Riemannian metric. The operator thus obtained is also denoted
by ∆. Since the resolvent of the operator ∆ is completely continuous, its spectrum is discrete (see,
e.g., [221]).

In some cases, the spectrum of the operator ∆ completely determines the Riemannian manifold
considered. For example, let us consider the simplest case of a one-dimensional manifold. Let (M,g) and
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(M ′, g′) be two one-dimensional Riemannian manifolds. Then if the spectra Spec(M,g) and Spec(M ′, g′)
of the Laplace operator on M and M ′ coincide, we have (M,g) = (M ′, g′). Let Γ and Γ′ be two lattices in
the space R2. If Spec(R2/Γ) = Spec(R2/Γ′), then (R2/Γ, g0/Γ) = (R2/Γ′, g0/Γ

′), i.e., the two-dimensional
torus is uniquely determined by the spectrum of the Laplace operator. We consider the Klein bottle
k(a, b) obtained by factorization of the plane R2 by the action of the group (x, y) �→ (x + a, b − y). Let
Speck(a, b) = Speck(a′, b′). Then k(a, b) = k(a′, b′).

In general, it is not true that if the spectra of two manifolds coincide, then these manifolds are
isometric. Milnor constructed two nonisometric tori of dimension 16 with the same spectrum. Kneser
proved that the number of pairwise nonisomorphic tori with the same spectrum is finite. We present
the Milnor example. In R8, we consider the lattice Γ1. Let e1, . . . , e8 be the standard basis of the
space R8. Then Γ1 is generated by the vectors e1 − e8, e2 − e8, . . . , e7 − e8, e1 + e2, e3 + e4, e5 + e6, and
ω = 1

2(e1 + e2 + . . . + e8). All the generators of the lattice Γ1 are of length
√
2. In R16, we consider the

lattice Γ2. Let e1, . . . , e16 be the standard basis of the space R16. Then elements of the lattice Γ2 are of
the form a1e1 + . . . + a16e16 and (a1 +

1
2)e1 + . . . + (a16 +

1
2)e16, where a1, . . . , a16 ∈ Z. The length of

the vectors of the second type is not equal to
√
2, since 1

2 [(2a1 + 1)2 + . . . + (2a16 + 1)2]1/2 ≥ 2. In the

space R16 = R8 ⊕ R8, we consider two lattices, Γ1 ⊕ Γ1 and Γ2. The first lattice is generated by a vector
of length

√
2, and at the same time, the second lattice does not satisfy this condition. Therefore, the tori

R16/Γ1 ⊕ Γ1 and R16/Γ2 are not isometric, but at the same time, Spec(R16/Γ1 ⊕ Γ1) = Spec(R16/Γ2)
(see [19]).

An important role in the problem of existence of metrics with given scalar curvatures is played by
the functional λ1(g), the minimum eigenvalue of the Laplace operator ∆ of a metric gij (∆ψ = λ1(g)ψ).
The functional λ1(g) obeys a number of surprising properties, which show that it is closely related to the
geometry of the Riemannian manifold (M,gij).

Theorem 4.6.1. Let M be a compact Riemannian manifold, and let dimM = n ≥ 3. Then

(a) the sign λ1(g) is a conformal invariant ;
(b) on M , one can introduce a metric of positive (resp. zero and negative) scalar curvature that is

pointwise conformally equivalent to the metric g iff λ1(g) > 0 (resp. λ1(g) = 0 and λ1(g) < 0);
(c) there exist topological obstructions to the assignment of a metric with λ1(g) > 0 and λ1(g) = 0 on M ;
(d) on any manifold M , one can introduce a Riemannian metric g with λ1(g) < 0;
(e) if M admits a metric gt with λ1(gt) > 0, then it also admits a metric with λ1(g) = 0;
(f) critical points of the functional λ1(g) on the space of all metrics g with vol(M,g) = 1 are Einstein

metrics, i.e.,

Rij(x) =
1

n
R(x)gij(x).

Let CE(g) stand for the set of smooth functions that are scalar curvatures of metrics conformal to
a metric g.

Theorem 4.6.2 ([104]). (a) If λ1(g) < 0, then CE(g) coincides with the set of smooth functions that
are negative somewhere on M .

(b) If λ1(g) = 0, then CE(g) coincides with the set of smooth functions that either change their sign on
M or are identically equal to zero.

(c) If λ1(g) > 0, then CE(g) contains those smooth functions K for which there exists a constant
C > 0 such that minK < Ck < maxK. Moreover, if CE(g) contains a constant function, then
CE(g) coincides with the set of smooth functions that are positive somewhere on M (K is the scalar
curvature of the metric g).

As an example, we note that on the sphere Sn (n ≥ 3), any function K ∈ C∞(M) is the scalar
curvature of a certain metric.
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4.7. Riemannian manifolds with zero scalar curvature. The following theorem yields a simple
example of a topological obstruction to the existence of metrics of zero scalar curvature. We denote by
Â(M) the Hirzebruch genus. Let b1(M) be the first Betti number, and let all manifolds considered be
compact and connected.

Theorem 4.7.1. Let M be a spinor manifold such that Â(M) 
= 0 and b1(M) = dimM . Then this
manifold does not admit a metric of zero scalar curvature.

As an example of such a manifold, we can take the manifold M , which is the connected sum of the
n-dimensional torus and an n-dimensional spin manifold M1 of genus Â(M1) 
= 0 (as M1, a K3-surface
can be taken).

4.8. Conformally equivalent metrics. Let (M,gij) be a compact Riemannian manifold of dimension
n ≥ 3, and let R be its scalar curvature. There arises a natural question: does there exist a metric g′ on
the manifold that is conformally equivalent to g such that its scalar curvature R′ ≡ const (see [215])? An
answer to this question is given by the following theorem of Yamabe (see [113]).

Theorem 4.8.1. Each Riemannian metric on a compact Riemannian manifold M of dimension n ≥ 3
can be conformally deformed into a Riemannian metric of constant scalar curvature.

The sign of the scalar curvature is preserved under conformal transformations in the following sense.
There is no conformal mapping of a compact Riemannian manifold whose scalar curvature is nonpositive
everywhere onto the manifold whose scalar curvature is nonnegative everywhere, except for the case where
both scalar curvatures vanish identically. If two compact Riemannian manifolds of dimension n ≥ 3 are
of zero scalar curvature, then any conformal transformation is a homothety.

Let (M,gij) and (M ′, g′ij) be two compact Riemannian manifolds of scalar curvatures Rg and Rg′ ,
respectively, which are nonnegative everywhere and do not vanish identically. Then a conformal mapping
f : M → M ′ is a homothety iff Rf∗g = f∗Rg = e−2kRg for a certain constant k (see [148]). In this case,

f∗g
′ = e2kg. In particular, a conformal mapping of compact Riemannian manifolds of scalar curvature

that is nonpositive everywhere and does not vanish identically is an isometry iff this mapping preserves
the scalar curvature.

We now consider the case of Riemannian manifolds of constant scalar curvature. In this case, both
numbers Rg and Rg′ are either simultaneously zero or of the same sign. Let (M,gij) and (M ′, g′ij)
be two compact Riemannian manifolds of nonpositive constant scalar curvature. Then each conformal
transformation f : M → M ′ is a homothety such that Rg′f∗g

′ = Rgg. These assertions easily imply
(see [148]) that a conformal transformation of a Riemannian manifold of nonpositive constant scalar
curvature is always an isometry.

For compact Riemannian manifolds (Mn, gij), we define a conformal invariant ν(g) as follows. Let

W i
jkl = Ri

jkl −
1

n− 2
(Likgjl + gikLjl − Lilgjk − gilLjk),

where

Lij = Rij −
R

2(n− 1)
gij , Lij = gisLs (W = 0 if dimM = n ≤ 2).

By definition, we set

ν(g) =
2

n

∫
M

|W |
n
2 dνg,

where

|W |
n
2 = 〈W,W 〉

n
4 = (gipg

jqgkrglsW i
jklW

p
qrs)

n
4 .

The functional ν(q) has the following properties:

(a) ν(e2lg) = ν(g) for any smooth function f on the manifold M ;
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(b) for any diffeomorphism ϕ, we have ν(ϕ∗g) = ν(g);
(c) if dimM = n ≤ 3, then ν(g) = 0;
(d) if dimM = n ≥ 4, then sup

g
ν(g) = ∞.

The functional ν(g) is estimated from below by the first Pontryagin class:

|p1(M)| ≤
ν(g)

8π2
, dimM = 4.

The functional ν(g) allows us to define a new invariant of Riemannian manifolds:

ν(M) = inf{ν(g)|g ∈ R(M)},

where R(M) is the space of all Riemannian metrics on the manifold M .
Using the invariant ν(M), we can distinguish conformally flat metrics because of the following result.

If g is a conformally flat metric, then ν(g) = 0. Therefore, if a manifold M can be equipped with a
conformally flat metric, then ν(M) = 0. However, the relation ν(M) = 0 does not imply, in general, that
the manifold M admits a conformally flat metric.

Examples. If g0 is a Fubini–Study metric on CP 2, then ν(CP 2) = ν(g0) = 24π2. If M = kCP 2 =
CP 2# · · ·#CP 2 (k times), then ν(kCP 2) = 24π2.

Let g and ḡ be two Riemannian metrics on the sphere S2 with Gaussian curvatures K and K̄,
respectively. Then for the metric ĝ = g × ḡ on the product S2 × S2, we have

ν(g) =
128

3
π2 +

2

3

∫
S2×S2

(K − K̄)2dν.

The vanishing of the invariant ν(M) admits a topological interpretation because of the following
Kobayashi theorem.

Theorem 4.8.2. If the group S1 acts freely on a manifold M , then ν(M) = 0.

5. Volume of Riemannian Manifolds and Their Topology

5.1. Simplicial volume and its estimates. We have already considered the problem of estimation
of the volume in terms of various geometric and topological characteristics of Riemannian manifolds.
As recent studies show, these problems are related to deep topological problems. Let M be a com-
plete Riemannian manifold with metric gij such that its sectional curvatures K(σ) satisfy the inequality
|K(σ)| < 1.

Definition 5.1.1. The minimum volume of the manifoldM is the number mvol(M) = inf
|K(σ)|≤1

vol(M,g).

Examples. If M is a closed connected surface, then mvol(M) = 2π|χ(M)|, where χ(M) is the Euler
characteristic of the manifold M . If n = dimM > 2, then for a closed manifold M , the Gauss–Bonnet
formula implies the inequality mvol(M) ≥ Cn|χ(M)| for a certain constant Cn > 0. For an even n, this
inequality is noninformative. A similar inequality also holds for the Pontryagin numbers:

mvol(M) ≥ C ′n|p(M)|.

To estimate the volume of a Riemannian manifold, we introduce a new concept-simplicial volume.
Let X be an arbitrary topological space, and let C∗ = C∗(X) be the chain complex of the space X with
coefficients in the field R. Any chain c ∈ C∗ is a linear combination c =

∑
ciσi of singular simplexes σi of

the space X with real coefficients ci ∈ R. We define the norm ‖c‖ on the space C∗ by setting ‖c‖ =
∑
i

|ci|.

On the homology space H∗ = H∗(X
i,R), this norm generates the pseudonorm ‖α‖ = inf

z
‖z‖, where z

runs over all singular cocycles representing a cohomology class α ∈ H∗(X,R).
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Definition 5.1.2. Let M be a closed manifold; its simplicial volume ‖M‖ is the norm of its fundamental

class. If M is not orientable, then we set ‖M‖ = 1
2‖M̃‖, where M̃ is a two-sheeted covering over M .

Example. We have the relations ‖R1‖ = ∞ and ‖Rn‖ = 0 for n ≥ 2 (see [76]). If M is a closed surface
of constant negative curvature, then ‖M‖ = 2|χ(M)|.

The simplicial volume has the following properties.

(1) If M1 is a closed manifold and M2 is arbitrary, then

C‖M1‖‖M2‖ ≥ ‖M1 ×M2‖ ≥ C−1‖M1‖‖M2‖,

where C > 0 is a constant depending only on n = dim(M1 ×M2).
(2) Let n ≥ 3; for the connected sum of n-dimensional manifolds M1 and M2, we have

‖M1#M2‖ = ‖M1‖+ ‖M2‖.

The problem on the existence of manifolds of a nonzero simplicial volume is solved by the Milnor–
Sullivan–Thurston inequality.

Theorem 5.1.1 ([130]). If a closed manifold M admits a flat bundle ξ of dimension n = dimM , then
‖M‖ ≥ |χ|, where χ is the Euler characteristic of the bundle ξ.

This theorem is useful only in the case where n is even, since the Euler characteristic vanishes in odd
dimension. The following estimate holds in any dimension.

Theorem 5.1.2 ([76]). Let M be a complete Riemannian manifold of finite volume vol(M) < ∞. If
the sectional curvatures K(σ) of the manifold M satisfy the inequality −∞ < −K ≤ K(σ) ≤ −1, then
vol(M) ≤ Cn‖M‖.

Two Riemannian manifolds are said to be étally isometric if their universal coverings are isometric.
The ratio ‖M‖/vol(M) is an invariant of the étale isometry. More precisely, the following statement
holds.

Theorem 5.1.3 ([76]). If the universal coverings of two closed Riemannian manifolds M1 and M2 are
isometric, then ‖M1‖/vol(M1) = ‖M2‖/vol(M2).

The usual volume of a Riemannian manifold admits the following estimate in terms of the Betti
numbers bi(M) = dimHi(M,R) of the manifold M . Let M be a complete connected real analytic
manifold such that −K2 ≤ K(σ) ≤ 0, and let the Ricci tensor of the manifold M be negative at a certain
point x ∈ M . Then

n∑
i=0

bi(M) ≤ constKn vol(M),

where n = dimM .
A similar estimate also holds for the simplicial volume. Let M be the connected sum of manifolds of

one of the following two types:

(a) compact locally symmetric spaces of nonzero simplicial volume;
(b) complete manifolds of finite volume whose sectional curvature satisfies the inequality −K1 ≤

KM (σ) ≤ −K2 < 0.

Then
n∑
i=0

bi(M) ≤ C‖M‖,

where the constant C depends only on the dimension n = dimM and the ratio K1/K2.
As usual, we denote by Ric(M) the Ricci tensor of a manifold M . The following inequality owing to

Gromov holds (see [76]).
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Theorem 5.1.4. Let M be a complete n-dimensional Riemannian manifold such that

Ric(M)(τ, τ) ≥ −
1

n− 1
〈τ, τ〉

for all tangent vectors τ ∈ T (M). Then ‖M‖ ≤ C(n) vol(M) for a certain constant C(n) such that
0 < C(n) < n!

This result implies the following estimate for the minimum volume of a Riemannian manifold: ‖M‖ ≤
(n − 1)nn!mvol(M). If M is a complete Riemannian manifold such that Ric(τ, τ) ≥ −K2〈τ, τ〉 for all
tangent vectors τ ∈ T (M) and M is homeomorphic to a compact hyperbolic manifold or, more generally,
to the connected sum of manifolds of the types (a) and (b) described above, then

n∑
i=0

bi(M) ≤ C(n)Kn vol(M).

Finally, we give one more consequence of Theorem 5.1.4. Let M and M ′ be complete Riemannian
manifolds of dimension n, and let f :M → M ′ be a continuous proper mapping. If

Ric(M)(τ, τ) ≥ −
1

n− 1
〈τ, τ〉, −∞ < −K ≤ KM ′(σ), vol(M ′) < ∞,

then

|deg f | ≤ C(n)
vol(M)

vol(M ′)
.

We have presented above the estimate of the simplicial volume of the product of two mani-
folds. Similarly, we can estimate the minimum volume of the product of two Riemannian manifolds:
p(M1)‖M2‖ ≤ C(n)mvol(M1 × M2), where n = dimM and p(M1) is the Pontryagin number of the
manifold M1.

The following theorem yields the criterion for vanishing of the simplicial volume of a Riemannian
manifold (see [76]).

Theorem 5.1.5. Let M be a complete n-dimensional manifold such that Ric(τ, τ) ≥ −〈τ, τ〉 for all
tangent vectors τ ∈ TM , and let the unit ball centered at an arbitrary point x ∈ M satisfy the inequality
vol(Bx(1)) ≤ ε for a sufficiently small positive number ε = ε(n). Then the simplicial volume ‖M‖ of the
manifold M is zero. In particular, if vol(M) ≤ ε(n), then ‖M‖ = 0.

For an arbitrary Riemannian manifold M , we have two important invariants: the simplicial volume
‖M‖ and the injectivity radius i(M). In some sense, both these invariants measure the “value” of
the manifold M ; therefore, there naturally arises the question about their interrelation. In fact, this
interrelation exists because of the following result.

Theorem 5.1.6 ([76]). Let the sectional curvatures K(σ) of a manifold M satisfy the inequality
|K(σ)| ≤ 1, and let Uε ⊂ M be the set of all points x ∈ M of the manifold M for which the injectiv-
ity radius i(M) of the manifold M satisfies the inequality i(M) ≥ ε = εn. Then ‖M‖ ≤ C(n) vol(Uε). In
particular, if the inequality i(M) ≤ εn holds for all points x ∈ M , then ‖M‖ = 0.

5.2. Volume of hyperbolic manifolds. The volume of hyperbolic manifolds is an important invariant
of them. For dimMn = 2, by the Gauss–Bonnet theorem, the volume vol(M) of a complete compact
hyperbolic surface M can assume only discrete values: vol(M) = 2πk, k = −1,−2,−3, . . . ; moreover,
only finitely many pairwise nondiffeomorphic surfaces correspond to each k. The finiteness theorem for
an arbitrary dimension was proved by Wang (see [210]).

Theorem 5.2.1. For n ≥ 4 and for any a > 0, there exist only finitely many pairwise nondiffeomorphic
(or, which is equivalent, pairwise nonisometric) n-dimensional complete hyperbolic manifolds of volume
not exceeding a.
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Fig. 41

In Sec. 5.1, we have introduced the concept of the simplicial volume of a Riemannian manifold. For
hyperbolic manifolds, the concept of simplicial volume practically coincides with the concept of the usual
volume of a Riemannian manifold because of the following result.

Theorem 5.2.2 ([193]). For a closed orientable hyperbolic manifold Mn, we have the relation vol(M) =
µn‖M‖, where µn is the volume of the n-dimensional regular simplex.

This theorem implies that the volume of a hyperbolic manifold naturally behaves under map-
pings. More precisely, if f : M1 → M2 is an arbitrary smooth mapping of closed oriented hyperbolic
n-dimensional manifolds, then vol(M1) ≥ |deg f | vol(M2).

Theorem 5.2.2 admits generalizations to the case of G-manifolds, where G is a Lie group acting on a
manifold M , and also to the case of manifolds with boundary. We do not consider these generalizations
but refer the reader to Thurston’s works.

As was mentioned early, the geometry of three-dimensional hyperbolic manifolds is considerably
distinct from the geometry of hyperbolic manifolds of higher dimension (dimM ≥ 3). For example, in
contrast to the general case, the set H of all three-dimensional hyperbolic manifolds can be transformed
into a topological space.

Definition 5.2.1. Manifolds Mi converge to M if the following conditions hold. There exist points
xi ∈ M , x ∈ M , such that for any δ > 0 and s > 0 and for i > i0(δ, s), there exist mappings fi of metric
balls B(xi, s) ⊂ Mi into the manifold M such that f(xi) = x and f(B(xi, s)) ⊃ B(x, s − δ), and for all
y, z ∈ B(xi, s), we have the inequalities (1− δ)ρ(y, z) ≤ ρ(fi(y), fi(z)) ≤ (1 + δ)ρ(y, z).

Thurston has proved the following two important theorems on the structure of topology in the set H.

Theorem 5.2.3 ([193]). If three-dimensional manifolds Mi converge to M and c = supvol(Mi) < ∞,
then M is a hyperbolic manifold and vol(Mi) → vol(M) for i → ∞.

To state the next result, we need a new concept. We consider the decompositionM =M(0,ε]∪M[ε,∞),
where M(0,ε] is the set of points x ∈ M that are vertices of geodesic loops which are noncontractible in

M and have length ≤ε and M[ε,∞) = M \M(0,ε]. In Fig. 41, we schematically depict a two-dimensional
analog of this decomposition. The Margulis lemma 2.3.16 implies the existence of a constant C such that
for 0 < ε < 1

2C, the set M(0,ε] consists of finitely many components of standard form: these are either an
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“annulus,” a tubular neighborhood of a closed geodesic, or a horospheric “horn,” a manifold T 2 × [0,∞)
with metric ds2 = e−tds20 + dt2, where ds20 is the metric of the flat torus.

Now can present the second fundamental result of Thurston.

Theorem 5.2.4 ([193]). For any three-dimensional hyperbolic manifold M with vol(M) < ∞ that has k
horns and for any number 0 ≤ l < k, there exists a sequence of hyperbolic manifolds Mi with l horns that
converge to M , and, moreover, vol(Mi) < vol(M).

From these results of Thurston, we can obtain information about the structure of the function
V : H → R+ whose value is the volume vol(M) of the three-dimensional manifold M ∈ H. The set V (H)
of all values of volumes in R+ forms a closed linearly ordered subset in R+. Moreover, for any x ∈ R+,
V −1(x) contains finitely many manifolds. A similar statement also holds for the simplicial volume ‖M‖.

5.3. Fill-in radius of a Riemannian manifold. We can estimate the volume of a Riemannian manifold
using a new metric invariant defined by Gromov. Let M be a closed Riemannian n-dimensional manifold,
ρ(x, y) be a metric on M , and L∞(M) be the space of all bounded functions on M equipped with the
sup norm ‖f‖. The function dx(y) = ρ(x, y), x, y ∈ M , belongs to the space L∞(M). The canonical
embedding M → L∞(M), x → dx yields an isometric embedding. Let Uε(M) ⊂ L∞(M) be an ε-
neighborhood of the space M in L∞(M), and let αε : Hn(M,Z2) → Hn(Uε(M),Z2) be a homomorphism
induced by the embedding. In [77], Gromov introduced a new metric invariant of a Riemannian manifold,
its fill-in radius.

Definition 5.3.1. The fill-in radius frad(M) of a Riemannian manifoldM is the minimum number ε > 0
such that αε([M ]) = 0, where [M ] is the fundamental class of the manifold M and [M ] ∈ Hn(M,Z2).

For an arbitrary Riemannian manifold M , the fill-in radius has, e.g., the following properties: for
any Riemannian manifold M , we have the inequality frad(M) ≤ 1

3d(M); if M1 and M2 are Riemannian
manifolds, then frad(M1×M2) = min(fradM1, fradM2). For a detailed discussion and additional proper-
ties of the fill-in radius frad(M) of a Riemannian manifold M , see [77]. We present two results concerning
the exact value of the fill-in radius. Their proofs can be found in [103].

Theorem 5.3.1. (a) The fill-in radius of the projective space RPn with metric of constant curvature 1
is equal to fradRPn = 1

3d(RP
n) = π/6.

(b) The fill-in radius of the sphere Sn with metric of constant curvature 1 equals half of the spherical
distance between the vertices of the inscribed regular (n+1)-simplex, i.e., fradSn = 1

2 arccos(−
1

n+1).

For estimating the volume of a Riemannian manifold in terms of its fill-in radius, we have the following
theorem, proved in [77].

Theorem 5.3.2. Let M be a closed Riemannian manifold of dimension n. Then fradM ≤ Cn(volM)1/n

for a certain universal constant Cn such that 0 < Cn < n(n+ 1) n
√
n!.

Chapter 4

RIEMANNIAN MANIFOLDS WITH ADDITIONAL STRUCTURE
AND THEIR APPLICATIONS

1. Symmetric Spaces

1.1. Main constructions. Riemannian spaces (M,gij) with curvature tensor Rabcd of a symmetric
connection compatible with gij are covariantly constant, i.e., ∇sRabcd = 0, where ∇s is the covariant
derivative, are of great interest. The relation ∇sRabcd = 0 implies that the manifold M is homogeneous
whenever it is simply connected, i.e., π1(M) = {e}. Nonsimply connected manifolds whose curvature
tensor Rabcd is covariantly constant can be obtained by factorizing by a discrete motion group. In this
case, it can happen that a discrete group Γ does not commute with its own motion group of the manifoldM ,
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and then the quotient space M/Γ is not homogeneous. Such spaces are called locally symmetric. Usually,
one initially introduces the homogeneity condition into the definition of symmetric space, and then the
definition given above is obtained from this (see [94]).

Definition 1.1.1. A Riemannian manifold M is called a symmetric space if, for any point p ∈ M , there
exists a mapping σp :M → M such that the following conditions hold:

(a) σp 
= id is an isometry of the manifold M ;
(b) σ2p = id;
(c) σp(p) = p;
(d) if γ(t) is a geodesic such that γ(0) = p, then σp(γ(t)) = γ(−t).

The existence of the mapping σp implies the homogeneity of the manifold M . To prove this, we
connect two points x, y ∈ M by a broken geodesic line (see Fig. 42). Then the mapping g = σyk ◦ . . . ◦σy1
maps the point x into y; here σyj is the reflection with respect to the middle of the jth link of the broken
geodesic line. If we want to get the connected component of the identity of the automorphism group,
then in the case of an odd k, we need one more symmetry, the symmetry with respect to the point x.

Symmetric Riemannian spaces were defined by E. Cartan in the paper “On one remarkable class of
Riemannian spaces.” This class of spaces was also considered by A. P. Shirokov.

If, in Definition 1.1.1, we require the isometry σp to be defined only in a certain neighborhood of the
point p, then we obtain the definition of a locally symmetric space. We present the simplest example of
a locally symmetric space that is not globally symmetric.

Example. We consider the space R3 equipped with the metric ds2 = dx2 + dy2 + dz2. This space is
globally symmetric. Let α ∈ (0, 2π) be a fixed number. We define the action of the group Z on R3 as
follows. We fix a generator a ∈ Z of the group Z. By definition, it acts on R3 by

x′ = x cosα+ y sinα,

y′ = −x sinα+ y cosα,

z′ = z + 1.

Identifying equivalent points, we obtain the desired example of a three-dimensional locally symmetric
space M3. Obviously, M3 is locally symmetric. This space is not homogeneous with respect to the
motion group, and, therefore, it is not symmetric, since points located on the axis Oz have a specific
property that there exists a closed geodesic of length 1. Other points do not have this property (see
Fig. 43). The geodesic aa′ is not closed, and the closed geodesic aa′′ is of length greater than 1 (for the
notation, see Fig. 43).

There exists a remarkable connection of Riemannian globally symmetric spaces and Lie group theory
(see [94]). LetM be a Riemannian globally symmetric space, and let G be the maximal connected motion
group. If the Riemannian space M is of class C2, then the motion group of this manifold is a Lie group
(see [139]). This statement holds without the assumption that M is a symmetric space. The group G
acts transitively on the symmetric space M . Let x0 ∈ M , and let H be the stationary subgroup of the
point x0: H = {g ∈ G | gx0 = x0}.

Proposition 1.1.1. Let M be a Riemannian symmetric space, G be its maximal connected motion group,
and H be the stationary subgroup. Then in the group G, there exists an involutive automorphism ϕ
whose subgroup of fixed points contains H and has the same connected component of the identity as H:
(Gϕ)0 ⊂ H ⊂ Gϕ, where Gϕ = {g ∈ G | ϕ(g) = g} and (Gϕ)0 is the connected component of the identity.

In a certain sense, this proposition admits a converse statement (see [113]).

Theorem 1.1.1. Let M be a homogeneous Riemannian space with motion group G and stationary sub-
group H. If the group G admits an involutive automorphism ϕ whose fixed subgroup contains H and has
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Fig. 42 Fig. 43

the same connected component of the identity as H: (Gϕ)0 ⊂ H ⊂ Gϕ, then the space M is a Riemannian
globally symmetric space.

In Chap. 1, we take this statement as the definition. In terms of the involutive automorphism of the
motion group, we can give a description of geodesics in symmetric spaces.

Proposition 1.1.2. Let M be a simply connected Riemannian space with motion group G and stationary
subgroup H. As we know, G admits an involutive automorphism ϕ such that (Gϕ)0 ⊂ H ⊂ Gϕ. These
geodesics on M coincide with trajectories of one-parameter subgroups whose tangent lines belong to the
subspace R = {Y ∈ G | dϕ(Y ) = −Y }; here G is the Lie algebra of the Lie group G.

1.2. Cartan models. The following two main theorems of the theory of symmetric spaces hold (see,
e.g., [59,94]).

Theorem 1.2.1. Let M be a complete simply connected Riemannian manifold such that ∇sR
i
j,pq = 0 and

Sipq = 0. Then M is a globally symmetric space; here Ri
j,pq is the curvature tensor and S

i
pq is the torsion

tensor.

We note that the statement converse to this theorem is obvious. Therefore, we obtain the charac-
terization of symmetric spaces given in the beginning of this section, which historically is the first such
characterization.

Theorem 1.2.2. Any globally symmetric Riemannian space M is realized as a totally geodesic surface
in an appropriate Lie group.

In this theorem, the Lie group is considered as the space of affine connection Γijk. There are the fol-

lowing three connections on an arbitrary Lie group: the left connection lΓijk defined by the parallelization

via left translations, the right connection rΓijk defined by right translations, and the neutral connection

Γijk =
1
2(

lΓijk +
rΓijk). With respect to the connection Γijk, the Lie group is a symmetric space.

The Lie algebra G of the motion group G of a symmetric space M falls into a direct sum G = Y+R,
where Y = {X ∈ G | dσ(X) = X}, R = {X ∈ G | dσ(X) = −X}, and σ is the involutive automorphism
of the motion group described above. The commutativity of elements from the subspaces Y and R is
described by the relations [Y,Y] ⊂ Y, [Y,R] ⊂ R, and [R,R] ⊂ Y. It turns out that the decomposition
of the Lie algebra generates a certain “decomposition” of the corresponding Lie group. In the Lie group
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Fig. 46

G, we have a subgroup H, the stationary subgroup of the space M . One asks: is it possible to embed
the symmetric space itself in the group G as a “homogeneous surface”? If M is not merely homogeneous,
then its embedding in the group is not possible in general. However, for symmetric space, the case is
more favorable. It turns out that in this case, it can be realized in the form of a certain “homogeneous
surface” in the simply connected group G. In the group G, we consider a simply connected component
V1 of the subset of elements g ∈ G such that σ(g) = g−1. We denote by V2 the subset in G that is swept
by geodesics γ of the group G passing through the identity of the group such that γ̇(0) ∈ R and γ(0) = e.
Finally, let V3 ⊂ G be the subset in the group G that is the image of the group G under its mapping into
itself via the mapping p(g) = gσ(g−1) (see Fig. 44).

Theorem 1.2.3. The sets V1, V2, and V3 coincide in the group G. This subset is a smooth manifold
in the group G that is diffeomorphic to the symmetric space M = G/H. Moreover, this submanifold is
totally geodesic, i.e., any geodesic of the group G that is tangent to the submanifold M lies entirely in this
submanifold. The continuous mapping p is a principal bundle p : G → M with fiber H.

The proof of this theorem can be found in [59]. The mapping M → G of the symmetric space M
into the group G constructed above is called the Cartan model of the symmetric space G/H. One should
not think that this embedding is a section of the bundle p : G → M . The following statement describes
the intersection of cosets by the subgroup H with the submanifold M ⊂ G.

Proposition 1.2.1. Each coset gH has nonzero intersection with the submanifold M . Let mH be an
arbitrary coset (where m ∈ M). Then the relation mH ∩M = {

√
m2} ∩M holds (see Fig. 45).
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The action of the projection p : G → M is schematically shown in Fig. 46.

1.3. Classification problems. There is a natural action adY of a subalgebra Y on the space tangent
to a symmetric space G/H at a point O = H ∈ G/H.

Definition 1.3.1. A symmetric space M = G/H is said to be irreducible if the adjoint representation
adY of the subalgebra Y on the tangent space T0M is irreducible, i.e., does not have proper nonzero
invariant subspaces.

Theorem 1.3.1 (E. Cartan). A compact simply connected Riemannian symmetric space M falls into a
direct product M =M1 × . . . ×Ms of irreducible compact symmetric spaces.

There is a complete classification of compact irreducible symmetric spaces (E. Cartan, [37]). They fall
into the following two series: series I and series II. Spaces of series I are not Lie groups, and a complete list
of them can be found, e.g., in [94]. For example, they are SU(n)/SO(n), SU(2n)/Sp(n), SO(2n)/U(n),
SU(n)/SU(k)×SU(n−k), SO(n)/SO(k)×SO(n−k), Sp(n)/Sp(k)×Sp(n−k), and Sp(n)/U(n). Compact
Riemannian irreducible symmetric spaces of series II are compact connected simple Lie groups equipped
with a two-sided invariant metric. Each Lie group is naturally transformed into a symmetric space.
Indeed, the isometry group of a group G is naturally isomorphic to the direct product G×G. The action
of the group G×G on the group G is generated by left and right translations: (g1, g2) : g → g1gg

−1
2 . The

stationary subgroup H coincides with the diagonal ∆ of the direct product G×G, i.e., the subgroup H
consists of elements of the form (g, g), g ∈ G. Therefore, the group G is represented in the form of the
symmetric space G×G/G, where the symmetry gx is given by the relation gx(h) = xh−1x. Along with the
two series of spaces with a compact motion group indicated above, there is one more class of symmetric
spaces with a noncompact symmetry group (see [94]). For Lie groups, various characteristics related to
the curvature tensor are calculated in an especially simple way. This is explained by the existence of
explicit formulas for the Riemannian tensor.

Definition 1.3.2. Let G be a Lie group. A metric gij on G is said to be bi-invariant if left translations
La(x) = ax and right translations Ra(x) = xa are isometries with respect to the metric gij for all a ∈ G.

In the case of a bi-invariant Riemannian metric, all transformations of the form i(x) = Rx−1Lx and
s(x) = x−1 are also isometries. Bi-invariant Riemannian metrics exist on all compact Lie groups (see [94]).

Theorem 1.3.2 ([94]). Let G be a Lie group with a bi-invariant Riemannian metric (X,Y ) = gijX
iY j,

and let R(X,Y )Z be the Riemannian tensor. If X,Y, and Z are arbitrary vector fields on the Lie group
G (i.e., X,Y,Z ∈ G), then the following formulas hold :

(1) R(X,Y )Z =
1

2
[[X,Y ]Z];

(2) (R(X,Y )Z,W ) =
1

4
([X,Y ], [Z,W ]).

Since the fields X,Y , and Z can be considered as elements of the Lie algebra G, these formulas are in
fact written at the identity of the Lie group G. Theorem 1.3.2 implies that in the case of the Lie group G,
the curvature in any two-dimensional direction has the form

(R(X,Y )X,Y ) =
1

4
([X,Y ], [X,Y ]) =

1

4
‖[X,Y ]‖2;

therefore, it is always nonnegative and vanishes iff the vectors X and Y commute in the Lie algebra G.
In the case of a bi-invariant metric, geodesics on a Lie group admit a simple description in group-

theoretic terms. More precisely, the following statement holds.

Theorem 1.3.3 ([94]). Let gij be a bi-invariant Riemannian metric on a Lie group G. Then each geodesic
is obtained by a left translation from a certain one-parametric subgroup and vice versa.
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Fig. 47

We now consider briefly the classification of Riemannian compact irreducible symmetric spaces of
series II. It turns out that there are four infinite series and five isolated exceptional groups. All of them
are enumerated by certain graphs on the plane. The complete list of graphs describing simple compact
Lie groups is presented in Fig. 47. The construction of graphs of simple compact Lie groups can be found,
e.g., in [30,59,158].

The classification of complex simple Lie groups coinciding with the classification of compact real
simple groups was obtained by W. Killing in the paper “Structure of continuous finite transformation
groups”; gaps of the Killing proof were removed by E. Cartan. The classification of real noncompact
simple Lie groups was given by E. Cartan in the paper “Real simple finite continuous groups.”

1.4. Conjugate points of compact symmetric spaces. Let M be a compact Riemannian manifold,
and let p ∈ M . We denote by Qp(M) the set of all first conjugate points in M for p (see Sec. 2.4 of
Chap. 1, where the definition of the set Qp(M) is given, and also see Chap. 2 for the general concept of
conjugate points).

We consider a compact Lie group G and its involutive automorphism θ : G → G. We denote by
Gθ = {g ∈ G | θ(g) = g} the set of fixed points of the automorphism θ. Let K ⊂ G be a closed subgroup
of G such that (Gθ)0 ⊂ K ⊂ Gθ, where H0 is the connected component of the identity in H. In a
natural way, the bi-invariant metric on G induces a G-invariant Riemannian metric on the homogeneous
space M = G/K. With respect to this metric, the space M is a Riemannian symmetric space. Any
compact symmetric space is obtained from the construction presented above. We now assume that M
is an irreducible space. The Lie algebra of the Lie group G is denoted by G, and the Lie algebra K is
denote by R. The involutive automorphism θ of the Lie group G induces an involutive automorphism of
the Lie algebra G, which is also denoted by θ. Since K lies between Gθ and the connected component of
the identity of the subgroup Gθ, we have R = {X ∈ G | θ(X) = X}. We setM = {X ∈ G | θ(X) = −X}.
Since θ is an involutive automorphism, the decomposition G = R⊕M holds. We take the maximal Abelian
subspace N in M and the maximal Abelian subalgebra I in G containing N. Then the complexification
IC of the subalgebra I is a Cartan subalgebra in the complexification GC of the Lie algebra G. The
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bi-invariant metric gij on G induces an AdG-invariant inner product 〈X,Y 〉 on G. For a ∈ I, we set
Ga = {X ∈ GC | [X,H] =

√
−1〈a,H〉X for all H ∈ I}. An element a ∈ I \ O is called a root if Ga 
= 0.

Let ∆ be the set of all roots. Then we have a decomposition into the direct sum: GC = IC +
∑
α∈∆
Gα.

For an arbitrary γ ∈ N, we define the subspace Gγ ⊂ GC by Gγ = {X ∈ GC | [H,X] =
√
−1〈γ,H〉X for

all H ∈ N} and set Σ = {γ ∈ N \ O | Gγ 
= 0}. Let H → H̄ be the orthogonal projection of R on N.
Then Σ = {ᾱ | α ∈ ∆ and ᾱ 
= 0}. We choose a lexicographic order > on R and N in such a way that
α ∈ ∆ and ᾱ > 0 imply α > 0. We denote by ∆+ and Σ+ the set of all positive roots in ∆ and Σ,
respectively. We introduce the subspaces Rγ = R ∩ (Gγ +G−γ) and Mγ =M ∩ (Gγ +G−γ) for γ ∈ Σ+,
R0 = {X ∈ R | [H,X] = 0 for all H ∈ N}.

The root decomposition has the following properties (the proof can be found in [94]):

(a) all summands in the direct sums R = R0+
∑

γ∈∆+

Rγ andM = N+
∑

γ∈Σ+

Mγ are pairwise orthogonal;

(b) one can choose elements Sα ∈ R and Tα ∈ M for all α ∈ ∆, where ᾱ 
= 0, such that the following
conditions hold. For all γ ∈ Σ+, the sets {Sα | α ∈ ∆+, ᾱ = γ} and {Tα | α ∈ ∆+, ᾱ = γ} form an
orthonormal basis for Rγ andMγ , respectively. For each α ∈ ∆+ such that ᾱ = γ ∈ Σ+ and for any
H ∈ N, we have

[H,Sα] = 〈γ,H〉Tα, [H,Tα] = −〈γ,H〉Sα,

AdexpH Sα = cos〈γ,H〉Sα + sin〈γ,H〉Tα,

AdexpH Tα = − sin〈γ,H〉Sα + cos〈γ,H〉Tα.

The rank of a symmetric space M is the maximal dimension of flat totally geodesic submanifolds M .
For example, the spheres Sn and various projective spaces RPn, CPn, HPn, and CaP 2 are symmetric
spaces of rank one.

If a symmetric space M is irreducible, then the simple root system of the space M contains r roots
γ1, . . . , γr, where r is the rank of the space M . In this case, the root system Σ is irreducible, and there
exists a unique maximum root δ in Σ. We set S = {H ∈ N | 〈δ,H〉 = π, 〈γi,H〉 ≥ 0, i = 1, . . . , r}. The
set of first conjugate points for the space M is described by the following theorem.

Theorem 1.4.1. The set of first conjugate points Q0(M) of a symmetric irreducible space M with respect
to a point O ∈ M coincides with the set

Q0(M) =
⋃
k∈K

kExp(S).

1.5. Rigidity of symmetric spaces. In Sec. 1.5 of Chap. 3, we have indicated the rigidity theorem for
hyperbolic spaces. An analog of Theorem 1.5.4 was proved by Mostow for symmetric spaces (see [137]). To
state this generalization, we need new concepts. LetM1 andM2 be complete connected locally symmetric
spaces, and let M̄1, and M̄2 be their universal coverings, so that Mi = M̄i/Γi, i = 1, 2, where Γi is a
discrete isometry group acting on M̄i. Let M̄1 = N0 ×N1 × . . . ×Nt and M̄2 = N ′0 ×N ′1 × . . . ×N ′t′ be
their decompositions into Euclidean irreducible factors (see [113]).

Definition 1.5.1. Two locally symmetric spaces M1 and M2 are said to be isometric with accuracy up
to a renormalization if t = t′ and there exist positive numbers λ1, . . . , λt such that M1 is isometric to the
manifold (N ′0 × λ1N

′
1 × . . .× λtN

′
t)/Γ2, where the action of the group Γ2 is naturally defined.

The following theorem is due to Mostow.

Theorem 1.5.1 ([137]). Let M1 and M2 be complete connected compact locally symmetric spaces. Let
the local decompositions of the manifolds M1 and M2 into the direct metric decompositions into Euclidean
and irreducible spaces not contain one-dimensional and two-dimensional factors (in particular, N0 and
N ′0 are zero-dimensional). If, moreover, the fundamental groups π1(M1) and π1(M2) are isomorphic, then
the spaces M1 and M2 are isometric with accuracy up to a normalization.
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2. Riemannian Geometry on Homogeneous Spaces

2.1. Geometry on G/H. Let G be a compact Lie group, H be its connected closed subgroup, and G
and Y be the Lie algebras of the Lie groups G and H, respectively. We denote by N(H) the normalizer of
the subgroup H in G and by N its Lie algebra. We consider decompositions G = N+L and N = Y+R of
the Lie algebras G and N, respectively, such that AdN(H) L ⊂ L and AdH R ⊂ R. We define J = R+ L.
Then we have the inclusions [Y,R] = 0, [R,R] ∈ R, and AdH J ⊂ J. We can identify the space J
with the tangent space to the homogeneous space G/H at the origin H ∈ G/H and R with the Lie
algebra K = N(H)/H. In addition, we have R = {ξ ∈ J | Adh ξ = ξ, h ∈ H}. On the homogeneous
space G/H, we can construct a canonical movable frame. For this purpose, according to each element
v ∈ G, we construct the corresponding vector field Zv on the space G/H, the so-called fundamental

vector field generated by v. By definition, Zv(y) =
d

dt

∣∣∣∣
t=0

yetv. Clearly, (Ra)∗Zv = ZAda−1 v
. This implies

[Zv, Zw] = Z(v,w). Let εi be a basis of the Lie algebra G compatible with the decomposition G = Y+R+L.
We denote by εα′ a part of the basis lying in Y and by εα ∈ J a part of the basis lying in J = R + L.
The fundamental vector fields on G/H corresponding to εi are denoted by ei. Then [ei, ej ] = ckijek, where

ckij is the structural tensor of the Lie algebra G. At the point O = [e], all vector fields eα′ corresponding

to the stationary subgroup H vanish, and eα(0) forms a basis of the space T0(G/H). eα is called the
canonical movable frame of the homogeneous space G/H.

By Theorem 5.1.2 of Chap. 1, we have a G-invariant Riemannian metric g = (gij) on the space G/H.
Its restriction to the space T0(G/H) = J is an AdH-invariant metric. Conversely, each AdH -invariant
inner product on J defines a G-invariant Riemannian metric on the space G/H. The fundamental vector
fields Zv, v ∈ G, are Killing fields for the invariant metric g. Therefore, the space G/H admits the
movable frame consisting of Killing vectors.

We calculate the curvature of homogeneous spaces in explicit form. Let ∇ be the covariant derivative
corresponding to a connection compatible with a Riemannian metric gij , i.e., X(Y,Z) = (∇XY,Z) +
(Y,∇XZ) and ∇XY −∇YX − [X,Y ] = 0. We decompose ∇XY into the symmetric and antisymmetric
parts: ∇XY = S(X,Y ) + A(X,Y ); here S(X,Y ) = S(Y,X) and A(X,Y ) = −A(Y,X). For arbitrary
vector fields X and Y , we have A(X,Y ) = 1

2 [X,Y ]. If X,Y , and Z are Killing vector fields, then

(S(X,Y ), Z) = −1
2{([Z,X], Y ) + (X, [Z, Y ])}. For the curvature tensor (R(X,Y )Z,W ), we have

(R(X,Y )Z,W ) =−
1

4
{([[X,Y ], Z],W )− ([[X,Y ],W ], Z)} −

1

2
{([[Z,W ],X], Y )− ([[Z,W ], Y ],X)}

+
1

4
{([X,Z], [Y,W ]) + 2([X,Y ], [Z,W ]) − ([Y,Z], [X,W ])}

+ (S(X,Z), S(Y,W )) − (S(Y,Z), S(X,W )),

where X,Y,Z, and W are arbitrary Killing vector fields. We now can express the curvature of a ho-
mogeneous space G/H using the language of the structural tensor cδi,β. Let ciβ,γ = gγδc

δ
iβ . Then

Sα,βγ = −1
2(cγα,β + cγβ,α) (we note that, in the general case, the structural constants ciα,β are not

antisymmetric with respect to the last two subscripts, since the metric is not bi-invariant in gen-
eral). For the Christoffel symbols Γαβ,γ = (∇αeβ, eγ), we have the following explicit expression:
Γαβ,γ =

1
2(cαβ,γ − cγα,β + cβγ,α). Further, for Rαβγδ = (R(eα, eβ)eγ , eδ), we have

Rαβγδ =−
1

4
{ciαβciγ,δ − ciαβciδ,γ + ciγδciα,β − ciγδciβ,α}+

1

4
{ckαγcβδ,k + 2ckαβcγδ,k − ckβγcαδ,k}

+
1

4
gkλ{(ckα,γ + ckγ,α)(cλβ,δ + cλδ,β)(ckβ,γ + ckγ,β)(cλα,δ + cλδ,α)}.

The Ricci tensor Rβγ = gαδRαβγδ is given by

Rβγ =
1

4
cαk,βcαk,γ −

1

2
cβα,kcγα,k −

1

2
cβα,kcγk,α −

1

2
ck
′

βαc
α
γk′ −

1

2
ck
′

γαc
α
βk′ −

1

2
(ckβ,γ + ckγ,β)c

α
kα.
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In all these expressions, if a certain index occurs twice on the same level, then one sums up with respect
to this index after the compression with the metric tensor; for example,

cαk,βcαk,γ = gαδgkigβεgγξc
ε
αkc

ξ
δi.

Finally, for the scalar curvature R = gβγRβγ, we have

R = −
1

4
cαβ,γcαβ,γ −

1

2
cαβ,γcαγ,β − ck

′

βαc
α
βk′ − cαkαc

β
kβ.

In terms of structural constants, we can give a reductivity criterion of a homogeneous space G/H.
The space G/H is reductive if the tensor cαβ,γ is anti-symmetric with respect to the last two subscripts.

In the case of a reductive space, ∇XY = 1
2 [X,Y ], Rβγ = 1

4c
α
βkc

k
γα +

1
2kβγ , and R = 1

4c
α
βkc

k
βα +

1
2g

βγkβγ ,

where kij = −cmil c
l
jm is the Killing metric. In particular, if G/H is a symmetric space, i.e., cαβ,γ = 0, then

Rβγ = 1
2kβγ and R = 1

2g
βγkβγ. If H = {e} (the case of a group) and gαβ = kαβ , then Rβγ = 1

4kβγ and

R = 1
4 dimG.

2.2. The Ambrose–Singer theorem. A simply connected complete Riemannian manifold is a sym-
metric space iff the covariant derivative of the curvature tensor field and the torsion tensor vanishes (see
Theorem 1.2.1). Ambrose and Singer generalized this classical result and characterized the homogeneity
of a Riemannian manifold by using certain conditions for the covariant derivative of the curvature tensor
and a certain additional tensor of type (1, 2), which is trivial in the symmetric case. An elegant proof of
this theorem was obtained by Costant (see [115]).

Theorem 2.2.1. (a) Let (M,gij) be a homogeneous Riemannian manifold (i.e., a Riemannian manifold
admitting a transitive isometry group). Then there exists a tensor field D of type (1, 2) on M such
that for any vector X ∈ T (M), we have
(i) D(X) = D(X, ·) is a skew-symmetric endomorphism;
(ii) ∇XR = D(X) ·R;
(iii) ∇XD = D(X) · D, where ∇ and R stand for the connection compatible with a Riemannian

metric and the curvature tensor field on the manifold (M,gij), respectively.
(b) Let (M,gij) be a simply connected complete Riemannian manifold. Let there exist a tensor field D

of type (1, 2) on it that satisfies conditions (i)–(iii). Then (M,gij) is a homogeneous manifold.

2.3. Isometry groups of left-invariant metrics. We consider a connected compact Lie group G.
Denote by Lg (resp. Rg) left (resp. right) translations by an element g ∈ G, where Lg(x) = gx (resp.
Rg(x) = xg). Let gij be a Riemannian metric on the Lie group G, and let I(G, gij) be the isometry
group of the metric gij . The metric gij is said to be left-invariant if it is invariant with respect to all
left translations on the group G, i.e., L(G) ⊂ I(G, gij) (L(G) is the group of all left translations of the
group G). In a similar way, one defines a right-invariant metric on G. A Riemannian metric on the
Lie group G is said to be bi-invariant if Lx and Rx are isometries with respect to gij for all x ∈ G.
We denote by I0(G, gij) the connected component of the identity of the group I(G, gij). Let G be a
connected semisimple Lie group, and let gij be a bi-invariant Riemannian metric on the Lie group G.
Then I0(G, gij) = L(G)R(G), where R(G) is the group of right translations on G. For the proof, see [94].
We can generalize this statement to the case of left-invariant metrics on a Lie group. For the isometry
groups of left-invariant metrics on Lie groups, we refer the reader to [151].

Theorem 2.3.1. Let G be a connected simple compact Lie group, and let gij be a left-invariant Riemann-
ian metric on the Lie group G. Then I0(G, gij) ⊂ L(G)R(G), i.e., for any element f ∈ I0(G, gij), there
exist elements x, y ∈ G such that f = Lx ◦Ry.

In specific examples, this theorem yields rich-in-content information about the structure of the isom-
etry group of left-invariant metrics.
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We now consider infinitesimal isometries of left-invariant metrics, i.e., Killing fields. Let gij be a
left-invariant Riemannian metric on a connected Lie group G. Then the Lie algebra of the Lie group
I0(G, gij) can be naturally identified with the Lie algebra of all Killing vector fields, and the Lie algebra
of the group L(G) (or R(G)) can be identified with the Lie algebra of all right- (resp. left-) invariant
vector fields on the Lie group G (see [113]).

Theorem 2.3.2. Let G be a compact connected simple Lie group, and let gij be a left-invariant Riemann-
ian metric on G. Then:

(1) a right-invariant vector field on G is the Killing vector field corresponding to gij ;
(2) the Killing vector field on the group G corresponding to gij is the sum of left-invariant and right-

invariant vector fields on G;
(3) the Lie algebra of all right-invariant vector fields on G is an ideal in the Lie algebra of all Killing

fields on G corresponding to the metric gij.

Example. On the Lie group SO(n), we define a left-invariant metric, which is important for applications;
to assign it, we need to define a linear operator ϕ : so(n) → so(n) in the Lie algebra so(n). We describe
a slightly more general construction of such operators for an arbitrary compact Lie algebra Gu. Each
complex semisimple Lie algebra G admits a compact real form Gu. We recall that Gu = {Eα+E−α, i(Eα−
E−α), iHα}, where Eα are root vectors with respect to the Cartan subalgebra T ⊂ G and Hα ∈ T are
vectors representing these roots (see [94,101]). Let a, b ∈ iT0 (where T0 is the real subspace in the Cartan
subalgebra spanned by all roots Hα ∈ T) be generic elements. Clearly,

ada(Eα +E−α) = α(a′)(i(Eα −E−α)),

ada(i(Eα −E−α)) = −α(a′)(Eα +E−α),

where a = ia′ and a′ ∈ T0. We define the operator ϕ = ϕabD : Gu → Gu by

ϕ(X) = ϕ(X ′ + t) = ϕa,b(X
′) +D(t) + ad−1a adbX

′ +D(t),

where X = X ′ + t is a unique decomposition of X into those components for which t ∈ iT0, X
′ ⊥ iT0.

In each compact form Gu, we consider the subalgebra Gn, which is called a normal compact subalgebra
and is spanned by the vectors Eα + E−α, where α runs over the set of roots of the Lie algebra G with
respect to the Cartan subalgebra. Since all these vectors are eigenvectors of the operators ϕ, we obtain
a normal series when these vectors are restricted to the subalgebra Gn. These operators merely coincide
with ϕa,b : Gu → Gu, ϕ(X) = ad−1a adb(X), X ∈ Gn. The construction of the operators ϕa,b,D presented
here was given by A. S. Mishchenko and A. T. Fomenko. The Lie algebra so(n) can be realized as a
normal compact subalgebra in u(n). The classical metric of a “rigid body” (see [10]) is obtained if we set

a =

iλ1 0
. . .

0 iλn

 and b =

iλ
2
1 0

. . .

0 iλ2n

 .

Then ϕab(X) = XI+ IX, where I = −ia. We assign the metric on so(n) according to the operator ϕab in
the standard way: (X,Y ) = 〈X,ϕab(Y )〉, where 〈X,Y 〉 is the Killing form of the algebra Gn. In our case,
(X,Y ) = tr(XIY t + Y IXt). We describe the connected component of the identity of the isometry group
of this metric. Since SO(n) is a connected compact simple Lie group, we have I0(SO(n)) = L(SO(n))H,
where H is the stationary subgroup of the Lie group I0(SO(n)) that leaves the point e ∈ SO(n) fixed.
Moreover, H ⊂ Int(G) (i.e., any element h ∈ H is represented in the form h = Lx−1Rx) and H is a
connected compact subgroup (see [151]). Therefore, to describe I0(SO(n)), we need to find the group
of right translations preserving the metric and take the maximal connected subgroup B in it. Then
H = {Lb−1Rb | b ∈ B}. We find H in our example. A simple calculation shows that if ϕ is a generic
operator (all λi are pairwise distinct), then I0(SO(n)) ∼= L(SO(n)) ∼= SO(n). In particular, for G = SO(3),
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in the case of a generic operator, we have I0(SO(3)) ∼= SO(3). In a similar way, we can examine, for
example, the case where λ1 = λ2; under this assumption, we have

I0(SO(3)) ∼= L(SO(3)) × SO(2) ∼= SO(3)× S1.

2.4. Left-invariant Einstein metrics on Lie groups. A left-invariant metric on a Lie group G is
completely determined by an inner product on the Lie algebra G. We will consider metrics of a fixed

volume. Let g
(0)
ij be a fixed metric, X1, . . . ,Xn be an orthonormal basis, and gij be one more metric with

the same volume element and with an orthonormal basis Y1, . . . , Yn. If Yj =
n∑

k=1

akjXk, then the matrix

‖aij‖ belongs to the group SL(n,R). Therefore, we obtain a one-to-one correspondence between bases
having a fixed volume element in G and the group SL(n,R). Any basis in G defines an inner product
in which it is orthonormal. Two bases (Y1, . . . , Yn) and (Z1, . . . , Zn) define the same inner product iff
(Z1, . . . , Zn) = (Y1, . . . , Yn)u, where u ∈ SO(n). Therefore, the set of inner products is in a one-to-one
correspondence with the homogeneous space SL(n,R)/SO(n). It is not necessary that distinct inner

products generate nonisometric left-invariant metrics on a Lie group. If two inner products g
(1)
ij and g

(2)
ij

yield isometric Riemannian manifolds after left translations, then there exists an isometry ϕ : G → G

such that ϕ∗g
(1)
ij = g

(2)
ij . Since Lϕ(e)−1 ◦ ϕ is also a diffeomorphism, Lϕ(e)−1 ◦ ϕ(e) = e, and

(Lϕ(e)−1 ◦ ϕ) ∗ g
(1)
ij = ϕ∗L∗ϕ(e)−1g

(1)
ij = ϕ∗g

(1)
ij = g

(2)
ij ,

we can assume that ϕ(e) = e. Since the metrics are of the same volume, we have detϕe = 1. There
arises the problem of describing all volume-preserving diffeomorphisms for which ϕ(e) = e and ϕ∗gij is a
left-invariant metric for any left-invariant metric gij .

A Lie group G is said to be unimodular if Tr(adX) = 0 for any element X of its Lie algebra, where
adX(Y ) = [X,Y ], Y ∈ G.

If a Lie group G is unimodular, then for any [a] ∈ SL(n,R)/SO(n), each element in Int(G)[a] leads
to isometric left-invariant Riemannian metrics.

We now consider the scalar curvature function of a left-invariant metric on a Lie group. Since G
is a Riemannian homogeneous space with respect to the left-invariant metric on the group G, the scalar
curvature of the left-invariant metric is a constant function. For distinct metrics, the scalar curvature
function R assumes distinct values in general.

Definition 2.4.1. The scalar curvature function of a left-invariant metric is the function

R : SL(n,R)/SO(n) → R

such that with each class [a], it associates the value of the scalar curvature of the left-invariant metric
that is generated by this class.

If G is a unimodular group, then the scalar curvature function is invariant with respect to the action
of the group Int(G) on the space SL(n,R)/SO(n).

A metric gij is called an Einstein metric if its metric tensor is proportional to the Ricci tensor. Ein-
stein metrics can be obtained as critical points of certain functionals defined on the set of all Riemannian
metrics. Let M be a compact oriented manifold. Nagano proved that all Einstein metrics are exactly
critical points of the functional

I(g) =

∫
M

Rg dv,

where Rg is the scalar curvature and dv is a fixed volume element. Riemannian metrics are considered
with the same volume element. If M = G is a Lie group with a left-invariant metric, then the restriction
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of the functional I(g) to the set of all left-invariant metrics yields

I =

∫
G

Rg dv = Rg vol(G).

Therefore, there naturally arises the problem on the correspondence between the set of all Einstein metrics
and the set of all critical points of the scalar curvature function.

Theorem 2.4.1. Let G be a Lie group, G be its Lie algebra, and G be unimodular. Then left-invariant
Einstein metrics are exactly critical points of the scalar curvature function.

For matrices that are not unimodular, this statement is not true in the general case. As an example,
it suffices to take

G =

{(
x1 . . . xn

0

)
, x ∈ R, 1 ≤ i ≤ n

}
, Xi =

(
δ1i . . . δni

0

)
.

This Lie algebra is the Lie algebra of the Lie group

G =

{(
x1 . . . xn
0 | En−1

)
, x1 > 0

}
.

The formulas presented above easily imply Rpq = 0, p 
= q, R11 = −n/2, and Rkk = −n/2, k = 2, . . . , n,

i.e., Rjk = −
n

2
δjk, and we obtain an Einstein metric. For this metric to be a critical point, it is necessary

that

ajk =

(
1

2

∑
(cjpk + ckpj)Trcp − TrcjTrck

)
= λδjk,

where ci = ‖ckij‖, c
k
ij being the structural constants of the Lie algebra G in the basis X1,X2, . . . ,Xn. We

have a11 = −n2 and akk = n/2, k = 2, . . . , n. Therefore, this metric is not a critical point of the scalar
curvature function.

We us now consider the case of semisimple Lie groups in more detail. Let G be a compact semisimple
Lie group. Then its Killing form ϕ(X) tr ad2X defined on its Lie algebra is nondegenerate and negative
definite on G. Let θ : G → G be a nontrivial involutive automorphism of the semisimple Lie algebra G.
Then the subalgebra of fixed points R = {X | θ(X) = X} is a compactly embedded subalgebra in G.
If M = {X ∈ G | θ(X) = −X}, then G = R ⊕M is a direct sum that is orthogonal with respect to
the Killing metric. The form ϕ is negative definite on R and is positive definite or negative definite on
M depending on whether the Lie algebra G is of compact or noncompact type. Let n = dimG, and let
r = dimR. We consider the matrix

B =

 1
rEr 0

0 − 1
n−rEn−r

 ,

where Es is the identity matrix of size s× s and TrB = 0. We examine the behavior of R(etB).

Theorem 2.4.2. We have

R(etB) =
λ

8
(3r − n)e

2t
r −

1

2
ελ(n− r)e−

2t
n−r −

1

8
λ(n− r)e−2t(

2
n−r+

1
r
),

where ε = +1 in the case of noncompact type and ε = −1 in the case of compact type.

The behavior of the function R(etB) is depicted in Figs. 48–51.

A simple calculation shows that the function R(etB) has the critical point t0 =
r(n− r)

2n ln

[
n+ 1

3n− r

] ,
t0 > 0, in the case where G is compact and R is non-Abelian.
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Fig. 48 Fig. 49

Fig. 50 Fig. 51

The following statement gives an answer to the question of when the metric corresponding to t0 is
an Einstein metric.

Theorem 2.4.3. Let et0B be a critical point of the functional I(g), i.e., the corresponding metric is
Einstein. Then the Killing form of the subalgebra R is proportional to the Killing form of the algebra G
that is restricted to R×R (the proportionality coefficient is a positive constant); this condition is necessary
and sufficient. The necessary condition is that R be a compact and semisimple algebra, and the sufficient
condition is that R be a compact and simple algebra.

We now return to arbitrary Lie groups. There exists a complete classification of left-invariant Einstein
metrics on four-dimensional Lie groups owing to Jensen. Let G be a four-dimensional Lie group equipped
with a left-invariant Riemannian metric. Then G is an Einstein space iff its Lie algebra G is one of
the following solvable Lie groups with an inner product such that the basis X1, X2, X3, X4 becomes
orthonormal with respect to it. For distinct t, we obtain nonisomorphic Lie algebras.

1.

[X1,X2] = 0, [X2,X3] = 0,

[X1,X3] = X4, [X2,X4] = 0,

[X1,X4] = −X3, [X3,X4] = 0.

In this case, we obtain a flat manifold.
2.

[X1,X2] = X2 − tX3, [X2,X3] = 2X4,
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[X1,X3] = tX2 +X3, [X2,X4] = 0,

[X1,X4] = 2X4, [X3,X4] = 0, 0 ≤ t < ∞.

The corresponding Riemannian space is isometric to a hyperbolic space of constant sectional curvature
k, −1 ≥ k ≥ −4.

3.

[X1,X2] = X2, [X2,X3] = 0,

[X1,X3] = X3 − tX4, [X2,X4] = 0,

[X1,X4] = tX3 +X4, [X3,X4] = 0, 0 ≤ t < ∞.

The corresponding Riemannian space is isometric to a hyperbolic space of constant sectional curvature
k = −1.

4.

[X1,X2] = 0, [X2,X3] = 0,

[X1,X3] = X3, [X2,X4] = X4,

[X1,X4] = 0, [X3,X4] = 0.

This Lie algebra is the direct sum of two copies of a two-dimensional Lie algebra. The corresponding
Riemannian space is the product of a two-dimensional solvable group of curvature k = −1 by itself.

3. Geometry of Kählerian Manifolds

3.1. Main concepts and definitions. Let M2n be a complex manifold (see [44, 48, 94, 113, 211]) on
which an Hermitian inner product (ξ, η) is given. We consider the form ω(ξ, η) = Im(ξ, η). Obviously, ω
is a skew-symmetric nondegenerate 2-form. Generally speaking, this form is not closed on an arbitrary
complex manifold equipped with an Hermitian metric.

Definition 3.1.1. A complex manifold equipped with an Hermitian metric is said to be Kählerian if the
imaginary part ω of the inner product (ξ, η) is a closed differential form: dω = 0.

The complex projective space CPn is one of the classical examples of a Kählerian manifold. There
is a natural holomorphic mapping π : Cn+1 \ 0 → CPn. On Cn+1 \ 0, we consider the covariant 2-tensor

F̂ =
4R(

n∑
k=0

zkz̄k

)2
{(

n∑
k=0

zkz̄k

)(
n∑

k=0

dzk ⊗ dz̄k

)
−

(
n∑

k=0

z̄kdzk

)
⊗

(
n∑

k=0

zk ⊗ dz̄k

)}
,

where z0, z1, . . . , zn are standard coordinates in Cn+1 and R = const.

Proposition 3.1.1. On CPn, there exists a Kählerian metric F such that π∗F = F̂ , where F̂ is defined
by the above formula.

This statement is implied by the following four obvious properties of the tensor F̂ :

(a) the restriction of F̂ to a fiber of the mapping π : Cn+1 \ 0 → CPn vanishes;

(b) the tensor F̂ is invariant with respect to the natural action of the group C∗ = C \ 0 on Cn+1 \ 0 :
z(z0, z1, . . . , zn) = (zz0, zz1, . . . .zzn), z ∈ C∗;

(c) the restriction of F̂ to the orthogonal complement to the fiber with respect to a flat metric on Cn+1

is positive definite;
(d) the differential 3-form d(ImF ) on CPn is invariant with respect to the mapping induced by unitary

transformations A of the space Cn+1, A ∈ U(n+ 1).
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The metric F on CPn constructed above is called the Fubini–Study metric (for more details, see, e.g., [10]).
As a consequence of this construction, we obtain that any complex analytic submanifold of CPn is
Kählerian.

A one-dimensional complex manifold is called a Riemann surface. A simple example of a one-
dimensional manifold that is not reduced to one chart is the Riemann sphere (or extended complex plane)

C̃ = C ∪ {∞}. Any Riemann surface is obviously a Kählerian manifold. We indicate certain important
properties of Riemann surfaces. Let Y be a Riemann surface. Then there exist a simply connected
Riemann surface X and a covering p : X → Y . We denote by Γ the group of this covering (Γ ∼= π1(Y )).
This is a discrete group of analytic automorphisms of the surfaceX, and Y ∼= X/Γ. Therefore, for describe
Riemann surfaces, we need to solve the following two problems:

(a) to classify simply connected Riemann surfaces;
(b) to classify discrete automorphism groups of simply connected Riemann surfaces.

The first problem was solved by Poincaré and Koebe in 1907.

Theorem 3.1.1. Any simply connected Riemann surface is isomorphic to one of the following surfaces:
C, Ĉ, and U , where C is the field of complex numbers, Ĉ is the Riemann sphere, and U is the upper
half-plane.

This theorem is a sufficiently deep analytic property.
Complete automorphism groups of simply connected surfaces are described by the following theorem.

Theorem 3.1.2. (a) The automorphism group Aut(Ĉ) consists of all linear-fractional transformations

W =
az + b

cz + d
, where

(
a b
c d

)
is an arbitrary nonsingular matrix. These transformations can be

normalized in such a way that

(
a b
c d

)
∈ SL(r,C).

(b) The automorphism group Aut(C) consists of all linear transformations W = az+ b, a, b ∈ C, a 
= 0.

(c) The automorphism group Aut(U) consists of linear-fractional transformations W =
az + b

cz + d
, where(

a b
c d

)
∈ SL(r,R).

We note that any automorphism of the sphere Ĉ has a fixed point. Discrete automorphism groups
of the plane C consist of parallel translations. All possible case are represented in the following table.

Γ {id} {id} z �→ z + 2πin, n ∈ Z z �→z+ω1n1+ω2n2,
n1,n2∈Z

Y Ĉ C C∗ = C \ 0 torus

X Ĉ C C C

In the case of a torus, the complex structure depends on ω1 and ω2, and the ratio ω1/ω2 is an
invariant of the structure. We obtain a continuum of nonisomorphic tori (from the topological viewpoint,
all tori are the same, and as Riemann surfaces, they are different. For the metric classification of tori, see
Sec. 1.4 of Chap. 3.

Any Riemann surface admits a conformal geometry, i.e., we can measure angles in it. The tangent
space is a one-dimensional complex vector space. Therefore, any two directions are obtained from one
another via multiplication by eiϕ, and ϕ is the angle between these directions. Any holomorphic mapping
with a nonzero derivative preserves angles. Any R-smooth mapping preserving angles is said to be
conformal . Any conformal orientation-preserving mapping is holomorphic. The conformal geometry on
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simply connected Riemann surface is related to a rich-in-content geometry on the classical spaces R2, S2,
and H2.

Theorem 3.1.3. (a) The space Ĉ is conformally isomorphic to the standard sphere S2.
(b) The space C is conformally isomorphic to the Euclidean plane R2.
(c) The space U is conformally isomorphic to the Lobachevskii plane H2.

We now reveal the connection between the motion groups and the automorphism groups of Riemann
surfaces. We denote by I+ the group of orientation-preserving isometries of a Riemann surface.

Theorem 3.1.4. (a) The group I+(Ĉ) consists of transformations of the form W =
az + b

cz + d
, where(

a b
c d

)
∈ SU(r).

(b) The group I+(C) consists of transformations of the form W = az + b, where |a| = 1, a, b ∈ C.
(c) The group I+(U) coincides with the whole automorphism group Aut(U), i.e., it consists of all trans-

formations of the form W =
az + b

cz + d
, where

(
a b
c d

)
∈ SL(r,R).

Therefore, we have more analytic automorphisms. However, in all three cases, discrete automorphism
groups consist of motions.

Proposition 3.1.2. Any discrete group of analytic automorphisms of a simply connected Riemann sur-
face X is conjugate to the motion group in the group Aut(X).

There are finitely many automorphisms of a compact Riemann surface.

Theorem 3.1.5. There are no more than 84(g − 1) automorphisms of a compact Riemann surface Y of
genus g > 1.

This bound is attained for infinitely many but not for all g.
The condition of existence of the Kählerian structure on a manifold Mn imposes strong topological

conditions on Mn. We present the simplest obstructions of such a type. If a compact manifold admits
a Kählerian structure, even-dimensional Betti numbers b2k(M

n) of the manifold Mn are positive. To
observe that b2q(M

n) > 0, it suffices to verify that the closed 2q-form ωq is not exact. Indeed, if ωq = dψ
for a certain form ψ, then ∫

M

ω ∧ . . . ∧ ω︸ ︷︷ ︸
n

=

∫
M

d(ψ ∧ ω ∧ . . . ∧ ω︸ ︷︷ ︸
n−q

) = 0,

where ω is the form Im ds2 associated with the Kählerian metric ds2. The form ωn/n! coincides with the
volume form of the manifold Mn; therefore, the above relation is not possible.

Further examples of Kählerian manifolds will be presented below.
The Kählerian condition admits the following geometric interpretation. We say that a metric ds2 on

a manifold M has a contact of order k with the Euclidean metric on Cn if, in a neighborhood of each
point z0 ∈ M , we can find holomorphic local coordinates z1, . . . , zn in which

ds2 =
n∑

i,j=1

(δij + gij)dz
i ⊗ dzj ,

where the function gij has a zero of order k at the point z0.
The following characterization of Kählerian manifolds holds. A manifold M with metric ds2 is

Kählerian iff it has a contact of the second order with the Euclidean metric everywhere.
Kählerian manifolds can be equivalently defined in a slightly different way. A Riemannian manifold

M of even dimension is said to be Kählerian if on M , we have a field J of tensor of type (1, 1) such that
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J2 = E (J a linear operator on each tangent plane) and

(a) (JX, JY ) = (X,Y )

(b) ∇X(J) = 0

for arbitrary vector fields X and Y on the manifold M . If we have a Kählerian manifold in the sense
of Definition 3.1.1, then it suffices to take as J the linear operator of multiplication by the imaginary
unit

√
−1. We recall that a tensor field J of type (1, 1) such that J2 = E is called an almost complex

structure on the manifoldM . The curvature tensor on Kählerian manifolds satisfies the additional identity
RJX,JY = RX,Y .

Definition 3.1.2. A two-dimensional subspace in the tangent space TxM spanned by the vectors x and
Jx (x 
= 0) is called a holomorphic section at x ∈ M . The holomorphic sectional or bisectional curvatureH
of a Kählerian manifold M is the usual sectional curvature restricted to holomorphic sections. Therefore,
we can assume that H is a real-valued function of a tangent vector X ∈ TpM , p ∈ M .

The following analog of the Schur theorem holds for Kählerian manifolds (see Sec. 1.1 of Chap. 3).

Theorem 3.1.6. Let M be a Kählerian manifold with dimM ≥ 4. If the holomorphic sectional curvature
H of the manifold M is pointwise constant, then it is constant.

This theorem is a particular case of the construction presented in Sec. 1.1 of Chap. 3.
In conclusion, we describe certain important properties of the Fubini–Study metric on the projective

space CPn. The sectional curvature of this metric has the maximum value 4R and the minimum value R.
More precisely, the curvature tensor (R(w, x)y, z) of the Fubini–Study metric equals

R{〈w, y〉〈x, z〉 − 〈w, z〉〈x, y〉 + 〈Jw, y〉〈Jx, z〉 − 〈Jw, z〉〈Jx, y〉 + 2〈Jw, x〉〈Jy, z〉}.

Therefore, the holomorphic sectional curvature is identically equal to 4R. Because of this observation,
the projective space CPn plays the same role among Kählerian manifolds as the ordinary sphere among
real Riemannian manifolds. The general formula for the sectional curvature of the projective space CPn

has the form

Kxy = R

[
1 +

3〈Jx, y〉2

|x|2|y|2 − 〈x, y〉2

]
.

This implies the assertion on the maximum and minimum of the sectional curvature Kxy. Let v(x) be

the volume of a geodesic ball of radius r. Then v(x) =
1

n!

( π
R

)n
sin2n(r

√
R). In particular, the volume

of the projective space CPn(R) is equal to
1

n!

( π
R

)n
. The volume of nonsingular projective manifolds is

easily calculated through their algebraic characteristics. More precisely, the following assertion holds. Let
S ⊂ CPn be a nonsingular r-dimensional projective manifold. Then vol2r(S) = degS vol2r(L), where vol2r
is the 2r-dimensional volume with respect to the Fubini–Study metric (R = 1) and L is any r-dimensional
linear subspace of the projective space CPn.

3.2. Hodge manifolds. We now focus on a specific class of Kählerian manifolds defined by a certain
topological condition. If M is a compact manifold, then the closed differential form ϕ on M is said
to be integral if its cohomology class [ϕ] ∈ H∗(M,C) belongs to the image of the natural mapping
H∗(M,Z) → H∗(M,C) induced by an embedding of the group Z into the field C. Let h be a Kählerian
metric on a complex manifold, and let ω be the associated form: ω = Imh.

Definition 3.2.1. If ω is an integral differential form, then it is called a Hodge form on M , and ω is also
called a Hodge metric. A Kählerian manifold is called a Hodge manifold if it admits a Hodge metric.

Hodge manifolds play an important role because of the following fundamental Kodaira theorem.

Theorem 3.2.1. A compact complex manifold is a Hodge manifold iff it is a projective algebraic variety.
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There are many examples of Hodge manifolds; moreover, for some of them, it is not obvious in ad-
vance that they are projective algebraic varieties. Also, we mention the Chow theorem, which asserts that
projective manifolds are algebraic varieties, i.e., they are defined by zeros of homogeneous polynomials.
We now present examples of Hodge manifolds. Any complex submanifold of a Hodge manifold is itself a
Hodge manifold. Let X be a compact complex manifold such that it is a covering of a Hodge manifold Y ,
i.e., there exists a holomorphic mapping π : X → Y such that π−1(p) is discrete for all p ∈ Y and π is
locally biholomorphic at each point x ∈ X. Then X is a Hodge manifold. Therefore, basic operations on
Riemannian manifolds preserve the class of Hodge manifolds. If X is a connected compact Riemannian
surface, then X is a Hodge manifold. Let D be a bounded domain in Cn, and let Γ be a proper discon-
tinuous subgroup of the group Aut(D) of biholomorphic self-mappings of D acting without fixed points
such that M = D/Γ is a compact set. Then M is a Hodge manifold. We consider the case of tori in
more detail. Let ω1, . . . , ω2n be 2n vectors of the space Cn that are linearly independent over R, and
let Γ be the lattice consisting of all integer linear combinations of the vectors ω1, . . . , ω2n. The lattice
Γ naturally acts on the space Cn by translations: z �→ z + γ if γ ∈ Γ. The quotient space Cn/Γ is a
complex manifold, and its universal covering is Cn. The manifold M = C/Γ is called the complex torus.
It is homeomorphic to the product of 2n circles S1 × . . . × S1. A Kählerian metric h on Cn is invariant
with respect to the action of the group Γ. Because of this invariance, there exists an Hermitian metric
h̃ on M such that if π : Cn → Cn/Γ is a natural holomorphic projection, then π∗(h̃) = h. The metric

h̃ is Kählerian. The complex torus M = Cn/Γ is called an Abelian variety if it is a projective algebraic
variety, i.e., admits an embedding in the projective space. Since Cn is a universal covering of the torus
M , we can identify H1(M,Z) = Γ. Let ω1, . . . , ωn be vectors of the lattice that form an integer basis of
Γ; it is also a basis of the real vector space R2n = Cn. We denote by x1, . . . , xn the dual real coordinates
on R2n and by dx1, . . . , dxn the corresponding 1-forms on M . We set dxi =

∑
α
πiαdzα +

∑
α
π̄iαdz̄α and

denote by Π = ‖πiα‖ the matrix with entries πiα.

Theorem 3.2.2 (Riemann). The torusM is an Abelian variety iff there exists an integer skew-symmetric
matrix Q for which ΠtQΠ = 0 and −

√
−1ΠtQΠ̄ > 0; here the sign > stands for the positive definiteness.

Usually the Riemann conditions are written in terms of the dual matrix of basis change. Let
ω1, . . . , ωn be an integer basis in Γ, and let e1, . . . , en be a basis of the complex space Cn. We define the
period matrix for Γ ⊂ Cn as an n× 2n-matrix Ω = (ωαi) for which ωi =

∑
α
ωαieα. Then dzα =

∑
i

ωαidx
i

and dz̄α =
∑
α
ω̄αidxi.

Theorem 3.2.3. The torus M is an Abelian variety iff there exists an integer skew-symmetric matrix Q
such that ΩQ−1Ωt = 0 and −

√
−1ΩQ−1Ωt > 0.

Definition 3.2.2. A matrix Ω for which the conditions of Theorem 3.2.3 hold is called a Riemannian
matrix .

Not every torus is an Abelian variety. An example of a complex torus that does not satisfy the
Riemann conditions is given by the period matrix

Ω =

(
1 0

√
−2

√
−5

0 1
√
−3

√
−7

)
.

We present an important example of Abelian varieties that arise in the Riemann surface theory. We
consider a compact Riemann surface S of genus g (from the topological viewpoint, it is the sphere with
g handles) (see Fig. 52). Let δ1, . . . , δ2g be a basis in the homology group H1(S,Z) (see Fig. 52), and let
α1, . . . , αg be a basis of one-dimensional differentials on S. The Jacobian of the surface S is the quotient
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Fig. 52

manifold J(S) = Cg/{λ1, . . . , λg}, where λi are vectors of the form

λi =

∫
δi

α1, . . . ,

∫
δi

αg

t

.

There exist bases δ1, . . . , δ2g and α1, . . . , αg for which∫
δi

ωα = δiα, 1 ≤ i, α ≤ g.

Then the period matrix Ω has the form Ω = (E,Z). Let Z = X +
√
−1Y . In this case, Z is symmetric

and Y > 0. As a result, the torus J(S) is an Abelian variety. We can give an intrinsic definition of the
Jacobian J(S) of the surface S (in this connection, see [44]). The theory of invariant Kählerian structures
is presented in [211] in more detail.

3.3. Chern forms of Kählerian manifolds. Let Mn be a Riemannian manifold, and let E1, . . . , En

be a local orthonormal basis. Then we can define real curvature forms Ωij(X,Y ), 1 ≤ i, j ≤ n, on
M by Ωij(X,Y ) = 〈RXYEi, Ej〉, where RXY is ∇[X,Y ] − [∇X ,∇Y ] as usual. The matrix Ω = ‖Ωij‖ is
skew-symmetric, and we can calculate the Pfaffian Pf(Ω). If M is an oriented Riemannian manifold of
dimension 2n, then the form χ = (2π)−n Pf(Ω) is called the Euler class of the manifold M . In fact, we
have seen it in the Gauss–Bonnet formula.

We now consider a Kählerian manifold M and fix a holomorphic basis {e1, Je1, . . . , en, Jen} =
{e1, e1∗ , . . . , en, en∗}.

Definition 3.3.1. Complex curvature forms are differential forms Ξij defined by Ξij(v,w) = Ωij(v,w)−√
−1Ωij∗(v,w). In contrast to the anti-symmetric matrix ‖Ωij‖, the matrix ‖Ξij‖ is anti-Hermitian.

Definition 3.3.2. Let det ‖δij −
1

2π
√
−1

Ξij‖ = 1 + C1 + . . . + Cn = C. The form C is called the full

Chern form of the manifold M , and Ci is called the ith Chern form of the manifold M .
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It is easily verified that C does not depend on the choice of the orthonormal basis e1, e1∗ , . . . , en, en∗ .
Under an isomorphism of the de Rham cohomology space onto topological cohomologies, the full form
C transforms into the full Chern class of the manifold M by the de Rham theorem. It is easy to see

that 2πC(v,w) =
n∑
i=1

Ωii∗(v,w). The first form C1 plays the role of the Ricci curvature, since Rijx
iyj =

2πC1(x, Jy).
Let

Ωi1...i2k =
1

2kk!

∑
σ∈S2k

ε(σ)Ωiσ(1)iσ(2) ∧ . . . ∧ Ωiσ(2k−1)iσ(2k) .

The forms Ck are explicitly expressed through Ωi1...ik by the formula

(2π)kCk =
∑

i1<...<ik

Ωi1i1∗ ...ikik∗ .

This implies that the form Cn of degree n = dimCM coincides with the Euler form (2π)nCn = Pf(Ω).
Therefore, the Chern form is a generalization of the Euler form.

We construct analogs of the Euler characteristic for compact Kählerian manifolds (n = dimCM).
Since the form Cn coincides with the Euler form, the Euler characteristic χ(M) is equal to the integral
χ(M) =

∫
M

Cn.

Definition 3.3.3. Let (i1, . . . , ik) be a sequence of integers such that i1+2i2+ . . .+kik = 2n. Then the
Chern number Ci1i2...ik(M) defined by

Ci1i2...ik(M) =

∫
M

Ci1 ∧ . . . ∧Cik

corresponds to this sequence.

As an example, we consider the complex projective space. The full Chern form C of the projective

space CPn(R) is equal to C =

(
1 +

R

π
ω

)n+1

. This implies that the ith Chern form is given by Ci =

Ci
n+1

(
Rω

π

)i
. Here ω is the imaginary part of the Fubini–Study metric. Further,

Ci1...ik(CP
n(R)) = Ci1

n+1 . . . C
ik
n+1.

We note that the Chern numbers of the projective space CPn(R) are always integers. In fact, this
statement is true for an arbitrary Kählerian manifold M . These numbers are a useful generalization of
the Euler characteristic of the manifold M ; they give a lot of information about the topology of the
manifold M . As an example of assertions of such a type, we present a theorem owing to Michelson
(see [182]). Let M be a compact simply connected Kählerian manifold with C1(M) = 0. Then td(M) = 0
or 2k for a certain k. More precisely, M is the productM =M1× . . .×Mk of simply connected Kählerian
manifolds Mi with zero Chern class, and, moreover, td(Mi) = 0, if the dimension of Mi is odd and
td(Mi) = 2 if the dimension of Mi is even. Here we use the Todda genus td(M), which is constructed by
a multiplicative sequence corresponding to the power series Q(x) = x/(1 − e−x) (see [95]).

3.4. Kählerian manifolds and the Wirtinger inequality. LetM be a Kählerian manifold equipped
with an almost complex structure J and a metric 〈X,Y 〉. We say that a submanifold P ⊂ M is a Kählerian
submanifold if for any vector X ∈ TaP , one has JX ∈ TaP . Clearly, the restriction of J to P assigns an
almost complex structure, called the induced almost complex structure. The following statement holds.
Let P be a Kählerian submanifold of a Kählerian manifold M . Then the induced Riemannian metric and
the induced almost complex structure assign the structure of a Kählerian manifold on P . Moreover, the
mean curvature vector of the manifold P vanishes identically, i.e., P is a minimal submanifold in M .
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Fig. 53

We recall the definition of the mean curvature vector. Let M be a submanifold of a Riemannian
manifold W , and let ∇ be the covariant derivative with respect to a connection that is compatible with
the Riemannian metric on the manifold W . Let x, y ∈ Tm(M). We include the vector y into a smooth
vector field Y on W that is tangent to the submanifold M . We define the second fundamental form
B(x, y) of the submanifold M . By definition, we set B(x, y) = (∇xY )

N , i.e., we differentiate the field Y
in the direction of the field x and project the result obtained on the normal subspace. We consider the
second fundamental form represented as the form B on the tangent space Tm(M), m ∈ M , with values in
the normal space Nm(M). Since an inner product is defined on Tm(M), we can consider the trace of the
form B, which is a certain vector at each point m that belongs to Nm(M). This section H of the normal
bundle NM is called the mean curvature of the embedded submanifold M ⊂ W . If e1, . . . , ek is a certain

orthonormal basis of the space TmM , then H =
k∑
i=1

B(ei, ei) ∈ Nm(M). A submanifold M ⊂ W is said

to be locally minimal if its mean curvature H vanishes identically (at all points m ∈ M).
The following fundamental fact holds (see [60] and Fig. 53).

Theorem 3.4.1 (Wirtinger). If S is a complex submanifold of dimension d in a manifold M , then

vol(S) =
1

d!

∫
S

ωd =

∫
S

ω ∧ . . . ∧ ω︸ ︷︷ ︸
d

.

This theorem shows the fundamental distinction between Riemannian geometry and Hermitian dif-
ferential geometry. The volume of a complex submanifold S of a complex manifold M is expressed as the
integral over S of the differential form globally defined on M . This is no longer true in the real case. For
example, for a smooth arc (x(t), y(t)) in R2, the length element is given by (x′(t)2 + y′(t)2)1/2dt, which
is not the inverse image of any differential form on the space R2. Moreover, on a Kählerian manifold,
we have a canonical orientation defined by the volume form ω ∧ . . . ∧ ω︸ ︷︷ ︸

d

. Using the Wirtinger theorem,

we easily obtain the following Wirtinger inequality. Let P be a Kählerian submanifold in M having a
finite volume, and let P ′ be any submanifold that is homologic to P . Then vol(P ) ≤ vol(P ′), i.e., P is a
minimal submanifold.

3.5. Manifolds of negative bisectional curvature. We only have certain results this problem. The
classification of such manifolds remains an open problem. Certain important results on the structure of
such manifolds are obtained in dimension two. We mention some of them. Let M be a Kählerian surface
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of negative curvature, and let M = M̃/Γ, where M̃ is the universal covering over M and Γ is a discrete

subgroup in the component of the identity in the automorphism group Aut(M̃) acting freely on M̃ . Then
M̃ is biholomorphically isomorphic to the unit disk in C2. If we omit the condition that the surface M is
Kählerian, then we obtain the following assertion. If M = M̃/Γ is a compact complex surface such that

M̃ is a bounded domain in C2, ∂M̃ is a three-dimensional topological manifold, and Γ ⊂ Aut0(M̃) is a
discrete subgroup acting freely on M̃ , then M̃ is a bounded symmetric domain in the space C2.

We now impose a weaker condition for the biholomorphic curvature of a surface to be negative. We
therefore consider a compact complex surface M = M̃/Γ, where M̃ is a universal covering of M , M̃ is

a bounded domain in C2, the group Γ ⊂ Aut0(M̃) acts freely on M̃ , and Γ is not isomorphic to the

fundamental group of a real surface. Then M̃ is a bounded symmetric domain. It is useful to compare
these results with the Poincaré–Koebe theorem from Sec. 3.1. For the proofs of these statements, see [214].

Theorem 3.5.1 ([217]). The polydisk ∆n (n > 1) does not admit a complete Kählerian metric of bisec-
tional curvature H satisfying the inequality −c2 ≤ H ≤ −d2.

3.6. The Calabi problem. In Calabi’s paper [36], there are several conjectures on the existence of cer-
tain classes of metrics. One of his conjectures is as follows: if M is a Kählerian manifold with C1(M) = 0,
then there exists a Kählerian metric of nonzero Ricci curvature. A confirmation of this conjecture was
given by Yau in [219]. A detailed solution can be found in [29].

There arises a natural question: is it true that the class C1(M) can be represented by the Ricci form
of a certain metric? An affirmative answer is given by the following theorem.

Theorem 3.6.1. On a compact Kählerian manifold, each form representing the class C1(M) is the Ricci
form of a certain Kählerian metric.

We can improve this theorem. With each positive cohomology class, one associates one and only
one metric. In particular, if dimH2(M,R) = 1, then a solution of the problem of realization of the class
C1(M) by the Ricci form is unique with accuracy up to a homothetic transformation of a metric. For the
proof of the above statements, see [11].

For Kählerian manifolds with negative class C1(M), in order to obtain uniqueness of the solution, it
is necessary to restrict the class of metrics to the class of Einstein metrics.

Theorem 3.6.2 ([11]). A compact Kählerian manifold with negative first Chern class admits a
Kählerian–Einstein metric, and all such metrics are proportional.

In concluding of this subsection, we present one useful extremal property of Kählerian–Einstein
metrics. In Sec. 4.8 of Chap. 3, we have defined the functional ν(g) on the space of all Riemannian
metrics on a given manifold M . For this functional, we have the following estimate in the Kählerian case.

Theorem 3.6.3. Let dimM = 4, and let g be a Kählerian metric of a certain complex structure on the
manifold M . Then

ν(g) ≥ 24π2|τ |+
16

3
π2min{2χ− 6τ, 2χ+ 3τ},

where τ and χ are the signature and the Euler characteristic of the manifold, respectively. The equality
holds iff M is a Kählerian–Einstein metric.

As a consequence of this statement, we obtain that for any Kählerian metric g on the product S2×S2,
the inequality ν(g) ≥ 128

3 π2 holds, since τ(S2 × S2) = 0 and χ(S2 × S2) = 4.

3.7. Kählerian manifolds of positive curvature. Let M be a Kählerian manifold of dimension n,
σ = {X,Y } be a two-dimensional subspace in TxM , andK(σ) be the sectional curvature in direction σ. We
denote |g(X,JY )| by cosα(σ) (this is the angle between the planes σ and J(σ)). We define the Kählerian
sectional curvature by K∗(σ) = 4K(σ)/(1 + 3 cos2 α(σ)). This definition is natural since the sectional
curvature of a Kählerian manifold of constant holomorphic curvature 1 equals 1

4(1 + 3 cos2 α(σ)). In the
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theory of manifolds of positive curvature, results whose form is similar to those in Sec. 2.1 of Chap. 3 were
obtained. A Kählerian manifold M is said to be δ-clamped if it is δ-clamped as a Riemannian manifold,
and M is said to be Kählerian δ-clamped if, after the corresponding normalization of the metrics, the
inequality δ ≤ K∗(σ) ≤ 1 holds for all planes σ. If this inequality holds for all planes invariant with
respect to J , then M is said to be holomorphically δ-clamped .

The connections between various concepts of clamping are reflected in the following theorem.

Theorem 3.7.1. A complete Kählerian manifold M of complex dimension n is holomorphically isometric
to the complex projective space CPn equipped with the Fubini–Study metric iff one of the following three
conditions holds:

(a) the manifold M is 1
4-clamped ;

(b) M is holomorphically 1-clamped ;
(c) M is Kählerian 1-clamped.

The clamping condition imposes various restrictions on the topology as in the case of real Riemannian
manifolds. For example, a complete holomorphically δ-clamped Kählerian manifold with δ > 0 is compact
and simply connected. In fact, for a manifold to be simply connected, we need a weaker condition than
the positivity of the curvature. We have the following complex analog of the Meyers theorem.

Theorem 3.7.2. A compact Kählerian manifold M with positive Ricci tensor is simply connected.

With accuracy up to a homotopy equivalence, the projective space CPn can be characterized by using
the language of δ-clamping. In the following two theorems, this is done for two other types of clamping.

Theorem 3.7.3. A compact n-dimensional Kählerian manifold of Kählerian clamping δ > 9/16 has the
same homotopy type as the complex projective space CPn.

Theorem 3.7.4. A compact n-dimensional Kählerian manifold M of holomorphic δ-clamping has the
same homotopy type as the complex projective space CPn for δ > 4/5.

To obtain an isometry of a given Kählerian manifold to the projective complex space, along with
the condition of δ-clamping we need to impose additional conditions. As an example of such a type, we
present the following theorem.

Theorem 3.7.5. A compact Kählerian manifold of dimension n and constant sectional curvature is holo-
morphically isometric to the projective space CPn equipped with the Fubini–Study metric.

4. Pseudo-Riemannian Manifolds

4.1. Pseudo-Euclidean spaces. In Sec. 1 of Chap. 1, we have presented the definition of a pseudo-
Riemannian manifold (M,gij). If we restrict the metric tensor gij to the tangent space TxM , then we
obtain the so-called pseudo-Euclidean space on it, i.e., a linear space on which a nondegenerate symmetric
inner product is given. We consider the simplest example of a pseudo-Euclidean space. We associate the
space Rn with Cartesian coordinates x1, . . . , xn and endow it with an additional structure by assigning

the metric −
s∑
i=1

(dxi)2 +
n∑

j=s+1
(dxj)2. The symmetric indefinite nondegenerate inner product

(a, b)s = −
s∑
i=1

aibi +
n∑

j=s+1

ajbj,

where a, b are vectors from Rn, corresponds to this metric. A linear space equipped with such a metric is
said to be pseudo-Euclidean of index s and is denoted by Rns . As in R

n
0 , the length of a vector a in Rns is

defined by |a|s =
√
(a, a)s. Since the form (X,Y )s is not positive definite, the set of all vectors a in Rns

emanating, e.g., from the origin, is divided into the following three disjoint subsets:
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Fig. 54

(1) time-like vectors for which (a, a)s < 0,
(2) light or isotropic vectors for which (a, a)s = 0,
(3) space-like vectors for which (a, a)s > 0 (see Fig. 54).

These vectors have imaginary, zero, or real length, respectively. The concepts indicated above originate
from special relativity theory in which the pseudo-Euclidean space R4s of index 1 is called the Minkowski
space (see [48, 117, 161]). The existence of three types of vectors in Rns , which are considerably different
in their properties, defines a geometry more rich in content as compared with Euclidean geometry in a
certain sense. At each point of Rns , the set of isotropic vectors emanating from it form the cone given by
the equation

−
s∑
i=1

(ai)2 +
n∑

j=s+1

(aj)2 = 0;

this cone is said to be isotropic or light . In the case of the Minkowski space, a light ray emanating from the
origin goes along one of the rulings of the isotropic cone if as the coordinate a1, we choose the parameter
ct, where c is the speed of light and t is time.

Pseudo-Euclidean geometry is closely related to Riemannian geometry; this can be illustrated by
examining R31 and the Lobachevskii plane. The pseudo-sphere Sn−1s of index s in the space Rns is the set
of points that are distant from a fixed point (for example, the origin) by a fixed distance ρ. In this case,
ρ can be a real number, a purely imaginary number, or zero. The pseudo-sphere of zero radius coincides
with the isotropic cone. We consider the example where n = 2 and s = 1. The isotropic cone with
vertex at the origin consists of two lines x = ±y, where x and y are Cartesian coordinates on the plane.
Pseudo-circles of real radius are hyperbolas −x2 + y2 = α2, where α is a real number. Pseudo-circles of
imaginary radius are hyperbolas −x2 + y2 = −α2. Let n = 3, and let s = 1. The isotropic cone, i.e., the
pseudo-sphere of zero radius, is the usual second-order cone −x2 + y2 + z2 = 0. Pseudo-spheres of real
radius are hyperboloids of one sheet −x2 + y2 + z2 = α2. Pseudo-spheres of imaginary radius are two-
sheeted hyperboloids −x2+y2+z2 = −α2. We consider a metric on the pseudo-sphere of purely imaginary
radius that is induced by the ambient pseudo-Euclidean metric. For this purpose, it is convenient to use
the stereographic projection as in the case of the ordinary sphere (see Fig. 55).
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Fig. 55

Fig. 56

As the center of the pseudo-sphere, we take the origin, as the north pole N , the point with the
Cartesian coordinates (−α, 0, 0), and as the south pole S, the point with the coordinates (α, 0, 0). As the
plane on which the pseudo-sphere is projected, we take the plane Y OZ. We consider a variable point P
on the right sheet of the two-sheeted hyperboloid and join it with the north pole N by a segment. This
segment intersects the plane Y OZ at a certain point, which is denoted by f(P ) and is called the image
of the point P under the stereographic projection f : S2

1 → R2 (see Fig. 56). In Fig. 57, we show the
section of the pseudo-sphere of imaginary radius by the plane XOZ. The image of the right sheet of the
hyperboloid covers the interior of the disk y2 + z2 < α2 of radius α in the plane Y OZ. The image of
the left sheet of the hyperboloid covers the complement to the closure of this disk. The isotropic cone is
projected on the boundary of the disk, i.e., on the circle y2+z2 = α2. Let u1, u2 be Cartesian coordinates
on the disk D2 of radius α in the plane Y OZ. Then it is easy to state the relation between the coordinates
x, y, z of the point P ∈ S2

1 and the coordinates u1, u2 of the point f(P ) on the disk D2. Namely,

x = α
|u|2 + α2

α2 − |u|2
, y =

2α2u1

α2 − |u|2
, z =

2α2u2

α2 − |u|2
,

where u = (u1, u2) and |u|2 = (u1)2 + (u2)2. It is easily verified that the coordinates on the disk D2

assign a regular coordinate system on the right sheet of the hyperboloid, i.e., the stereographic projection
f : S2

1 → R2 described above assigns a regular coordinate system on the pseudo-sphere of imaginary
radius (for the left sheet, the arguments are similar). It is easy to compute an explicit form of the metric
induced on the pseudo-sphere by its embedding in the space R31. In coordinates u

1, u2, this metric becomes

4
(du1)2 + (du2)2

(α2 − |u|2)2
. In particular, the induced metric turns out to be Riemannian (i.e., positive definite),

although the ambient metric is indefinite. The open disk of radius α with the metric indicated above is
called the Poincaré model of the Lobachevskii geometry (see [48, 53]). In polar coordinates (for α = 1),
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Fig. 57

Fig. 58 Fig. 59

the Lobachevskii metric becomes 4
dr2 + r2dϕ2

(1− r2)2
. In some cases, it is convenient to use this metric in

the pseudo-spherical coordinates that are defined similarly to the spherical coordinates but replacing the
usual trigonometric functions by hyperbolic functions. Replacing the coordinates r, ϕ by new coordinates

χ,ϕ according to the formulas r = coth
χ

2
and ϕ = ϕ, we obtain dχ2 + sinh2 χdϕ2.

Sometimes, it is convenient to represent the properties of the Lobachevskii metric in terms of “points”
and “lines” on the Poincaré model. We consider a plane section of a pseudo-sphere of imaginary radius,
i.e., the two-sheeted hyperboloid, by planes in R31 passing through the origin, i.e., the center of the pseudo-
sphere. We consider the images of these plane sections under the stereographic projection f : S2

1 → R2. It
turns out that each line of intersection of the pseudo-sphere with a plane of the form ax+by+cz = 0 passes
to an arc of the circle on the Poincaré model under the mapping f , and, moreover, this arc intersects the
circle y2 + z2 = α2 by a right angle (see Fig. 58). Therefore, the properties of the Lobachevskii plane
(geometry) can be studied considering the open disk of radius α as the set of points of Lobachevskii
geometry; moreover, as “lines,” one should take arcs of circles intersecting the boundary of the disk
y2 + z2 = α2 (it is called the absolute) by a right angle. In particular, “lines” are all diameters of the
disk (circles of infinite radius). We see from Fig. 59 in which form the “postulate on parallel lines” holds
in Lobachevskii geometry. There are an infinite set of lines passing through each point located outside a
line that do not intersect it, i.e., lines parallel to it. If we let the parameter α tend to infinity, then in
any finite domain on the Poincaré model, the Lobachevskii geometry “tends” to the Euclidean geometry,
since the arcs of circles become straightened and transform into Euclidean lines.
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4.2. Einstein manifolds. A pseudo-Riemannian (and also Riemannian) manifold (Mn, gij) is called an
Einstein space if it satisfies the relation Rij = ρ(x)gij(x), where Rij is the Ricci tensor of the space M

n.

Compressing this relation with the tensor gij defined by gijgjk = δik, we obtain ρ =
R(x)

n
, where R(x) =

gαβRαβ is the scalar curvature of the space M . Therefore, in an Einstein space, we have the equation

Rij(x) =
R(x)

n
gij(x),

which is called the Einstein equation.
As an example of an Einstein space, we consider the four-dimensional space R4 with coordinates

t, r, θ, ϕ and metric

ds2 = −

(
1−

2M

r

)
dt2 +

(
1−

2M

r

)−1
dr2 + r2(dθ2 + sin2 θ dϕ2).

The geometry of this space is called the Scwarzschild geometry. The constant M is called the mass of the
field source. As one more example, we present the so-called Kerr–Newman black hole. In this case, the
metric has the form

ds2 =−

(
1−

2Mr −G2

Σ

)
dt2 −

(2Mr − θ2)2a sin2 θ

Σ
dtdϕ

+
Σ

∆
dr2 +Σdθ2 +

(
r2 + a2 +

(2Mr − θ2)a2 sin θ

Σ

)
sin2 θdϕ2,

and in the coordinates t, ϕ, r, θ, where a2 + θ2 ≤ M2, M is called the mass, a is the motion momentum
per mass unit, and θ the charge, ∆ = r2− 2Mr+ a2+ θ2, Σ = r2+ a2 cos2 θ. A large number of examples
of Einstein space can be found in the work [154] of A. Z. Petrov. Also, an extensive bibliography can be
found therein.

We begin our study of general properties of Einstein manifolds with examples of manifolds on which
it is not possible, in principle, to assign an Einstein metric. On the product S1×S3 and on the connected
sum nCP 2 = CP 2# · · ·#CP 2 (n copies of the space CP 2), there is no Einstein metric for n ≥ 4 (see [96]).

The topological restrictions that are imposed on manifolds equipped with an Einstein metric are
presented in the following Hitchin theorem.

Theorem 4.2.1 ([96]). Let M be a compact four-dimensional Einstein manifold of signature τ and Euler
characteristic χ. Then we have the inequality |τ | ≤ 2

3χ. Moreover, if the equality holds in it, then M is
either a flat manifold, or a K3 surface (π1(M) = e), or an Enriques surface (π1(M) = Z2), or a quotient
Enriques surface with respect to a free antiholomorphic involution (π1(M) = Z2 ⊕ Z2).

We recall that a K3 surface is a complex surface with first nonzero Betti number b1 = 0 and first
nonzero Chern number c1 = 0; an Enriques surface is a complex surface with b1 = 0 and 2c1 = 0.

The following examples of four-dimensional manifolds admitting an Einstein metric are known:

(a) flat Riemannian manifolds;
(b) the complex symmetric spaces S4, S2 × S2, and CP 2;
(c) manifolds whose universal covering is the corresponding noncompact symmetric space (see [24]).

If we impose additional geometric restrictions on the space M , then the estimate of Theorem 2.2.1
can be improved. As an example of such a type, we mention the following inequality.

Theorem 4.2.2 ([97]). Let M be a compact four-dimensional Einstein manifold with nonnegative (or
positive) sectional curvature. Then |τ | ≤ (23)

3/2χ. Since (23)
3/2 is irrational, the equality is possible here

only in the case of flat manifolds M .

This result of Hitchin was recently improved by Kobayashi; moreover, he used the invariant ν(g)
considered in Sec. 4.8 of Chap. 3.
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Theorem 4.2.3. Let M be a compact four-dimensional manifold. If M admits an Einstein metric, then
the inequality ν(M) ≤ 16π2χ holds. If M admits an Einstein metric of nonnegative sectional curvature,
then ν(M) ≤ 64

5 π
2χ.

As a consequence, we obtain that if a compact orientable four-dimensional manifold M admits an

Einstein metric of nonnegative sectional curvature, then |τ | ≤
8χ

15
and the equality holds here iff M has

a flat metric.

4.3. Local immersions of pseudo-Riemannian manifolds. Similar to Riemannian manifolds, there
arises the problem on the embeddability of an arbitrary pseudo-Riemannian manifold into a certain
pseudo-Euclidean space. Let Mn(p, q) be a pseudo-Riemannian manifold endowed with a metric of the
form

dx21 + . . .+ dx2p − dy21 − . . . − dy2q , p+ q = n.

Theorem 4.3.1 ([62]). Any pseudo-Riemannian manifold Mn(p, q) with analytic metric admits an ana-
lytic isometric local immersion into the space Rms , where m = 1

2n(n+ 1) and m− s and s are arbitrarily
given numbers satisfying the conditions m− s ≥ p and s ≥ q.

Let k0 be the least nonnegative integer such that Mn(p, q) admits a local immersion in the space
Rn+k0(p, q + k0). For each k, 0 ≤ k ≤ k0, we define the kth immersion class of Mn(p, q) as the least
number Nk such that Mn(p, q) admits a local isometric immersion in the space Rn+Nk(q + qk, q + k),
where ak + k = Nk. The immersion class of M

n(p, q) is minNk for 0 ≤ k ≤ k0.
According to Theorem 4.3.1, Nk ≤ 1

2n(n + 1) for all k. The main problem consists of finding, for
a given manifold Mn(p, q), the number Nk. To determine whether the relation Nk = 0 holds or not, it
suffices to verify whether the Riemannian curvature tensor vanishes identically. In [171, 192], there is a
sufficiently ambiguous criterion for determination of whether the immersion class equals 1 or not. We
present an example of the simplest necessary conditions for validity of the relation Nk = 1.

Theorem 4.3.2. If the Ricci tensor of the manifold Mn(p, q) vanishes, then Nk 
= 1.

4.4. Geodesics on a pseudo-Riemannian manifold. A curve xk = xk(s) satisfying the differential
equations

d2x2

ds2
+ Γskl

dxk

ds

dxl

ds
= 0, Γmkl =

1

2

(
−
∂gkl
∂xm

+
∂gml

∂xk
+
∂gkm
∂xl

)
is called a geodesic as above, and the parameter s is said to be natural. The quantity Φ = gjkẋ

jẋk is
constant along a geodesic, and the following three cases are possible: if Φ > 0, then the geodesic is said
to be space-like, if Φ = 0, then this geodesic is said to be zero, and if Φ < 0, then the geodesic is said
to be time-like. Since Φ is a quadratic function, this classification does not depend on the choice of a
natural parameter. The parameter s can be chosen such that Φ = 1 in the first case and Φ = −1 in the
second case; in these cases s is respectively called the distance and the proper time along the geodesic
considered. Geodesics play an important role in general relativity theory.

A nonremovable singularity (singularity) of a pseudo-Riemannian manifold is a certain point (or
a set points) at (or on) which a certain invariant of curvature (i.e., a certain scalar value constructed
according to the functions gij and their derivatives of various order) vanishes. It is not possible to remove
singularities of such a type by a change of coordinates, since the scalar value indicated above, being an
invariant, tends to infinity in any coordinate system when it approaches this set of points.

A pseudo-Riemannian manifold is said to be geodesically complete if a geodesic emanating from any
point in the initial direction given by any tangent vector either can be prolonged in the manifold for
arbitrary large values of the natural parameter or meets a nonremovable singularity for a certain finite
value of it.
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The general problem of expanding Einstein manifolds is far from solution. Almost nothing is known
on the existence or uniqueness of geodesically complete expansions. It is possible to construct simple
examples in which a geodesically complete expansion does not exist or is not unique.

4.5. Dirac operator on pseudo-Riemannian spaces. The Dirac operator of a pseudo-Riemannian
manifold is a generalization of the classical Dirac equation of relativistic quantum mechanics. The defini-
tion of the Dirac operator is given in Sec. 4.2 of Chap. 3. The properties of the Dirac operator of compact
Riemannian manifolds listed there are not extended to pseudo-Riemannian manifolds. We indicate the
following self-adjointness property of the Dirac operator. Denote by D∗ the operator formally adjoint
to D.

Theorem 4.5.1 (Baum). Let (Mn
k , gij) be an oriented spinor manifold, ξk ⊂ TM be a time-like k-

dimensional subbundle, and g(ξ) be a Riemannian metric on M that is naturally defined by g and ξ. If the
Riemannian manifold (M,g(ξ)) is complete, then the operators Re(D) = 1

2(D+D∗) and ImD = i
2(D

∗−D)
are essentially self-adjoint in the Hilbert space of all square-integrable spinor fields.

This results generalizes the essential self-adjointness of the free Hamilton operator of the classical
Dirac operator of relativistic quantum mechanics.

On compact pseudo-Riemannian manifolds, there exist (real) complex eigenvalues and eigenvalues of
infinite multiplicity.

Example. We consider the sphere S3 = SU(r) with the following properties of left-invariant metrics
g(λ,µ), λ, µ ∈ R+, of index 2. Let

X1 =

√
2

4

(
0 −1
1 0

)
, X2 =

√
2

4

(
0 i
i 0

)
, X3 =

√
2

4

(
i 0
0 −i

)
be matrices orthogonal with respect to g(λ,µ); we set

g(λ,µ)(X1,X1) = g(λ,µ)(X2,X2) = −λ2, g(µ,λ)(X3,X3) = µ2.

The eigenvalues of the operator D on (S3, gλµ) are described as follows:

αm = −

√
2

8

µ

λ2
+

√
2

4µ
(m+ 1)

have the multiplicity 2(m+ 1), and

α±r,l = −

√
2

8

µ

λ2
±

√
2

4µ

√
(r − l)2 − 4rl

µ2

λ2

have the multiplicities r + l, where m = 0, 1, 2, . . . , r and l = 1, 2, . . . .

Example. Let T 3 be the three-dimensional torus, and let gλ, where λ = (λ1, λ2, λ3) ∈ (R+)3, stand for
the left-invariant metric defined by gλ(Xl,Xj) = κ(j)δljλ

2
j , κ(j) = −1 for j = 1 and κ(j) = 1 for j = 2, 3.

For a = (a1, a2, a3) ∈ Z32 = H1(T 3,Z2), we denote by Da the Dirac operator of the manifold (T 3, gλ) with
respect to the spinor structure corresponding to a. Then D has the eigenvalues

α±(m) = ±
π

2

√
−

(
4m1 + 1− a1

λ1

)2
+

(
4m2 + 1− a2

λ2

)2
+

(
4m3 + 1− a3

λ3

)2
,

m = (m1,m2,m3) ∈ Z3. In particular, the dimension of harmonic spinors depends on the metric and the
chosen spin-structure. It can be equal to zero, a finite number, or infinity for the same metric.
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5. Classical Mechanics from the Viewpoint of Riemannian Geometry

5.1. Kinematic line element. In mechanics, one usually describes the motion of a mechanical system
by using a set of parameters that assigns the position of the system and velocities of its parts. The set of all
positions of a mechanical system is called the configuration space. As a rule, it is a smooth manifold. The
dimension of the configuration space is called the number of degrees of freedom. The set of all positions of
a mechanical system, together with their velocities, is called the state space. The state space is identified
with the tangent bundle TM of the configuration space M . Local coordinate systems (q1, . . . , qn) on the
manifold Mn are usually called generalized coordinates of this mechanical system (see [190]).

Example. The configuration space of the “spherical” mathematical pendulum is the two-dimensional
sphere S2. As generalized coordinates, we can take the usual spherical coordinates.

If a mechanical system moves in a certain way, then its generalized coordinates are functions of time.
Therefore, the motion is determined by equations of the form qi = qi(t). The corresponding curve in the
configuration space is called a trajectory of this mechanical system. The object q̇i, which is a vector with
respect to coordinate transformations, is called the generalized velocity. The kinetic energy T of a system,
being written in generalized coordinates qi, is a positive-definite form with respect to q̇i with coefficients
depending on q̇i: T = 1

2aik(q
1, . . . , qn)q̇iq̇k. The collection of functions aik forms a tensor field of type

(0,2) on the configuration space M .

Definition 5.1.1. The Riemannian metric ds2 = aijdq
idqj on the configuration space M of a given

mechanical system is called the kinematic linear element .

The generalized acceleration f2 is the covariant derivative in t of the velocity vector q̇i. We have the
following explicit expression for f2:

f2 = q̈i + Γ2
stq̇

sq̇t,

where Γijk is an affine connection compatible with the kinematic linear element. It is easy to see that the
components fr = arsf

s have the form

fr =
d

dt

∂T

∂q̇r
−

∂T

∂qr
.

The force field on the configuration space is usually the differential form ω of degree 1. Its integral
over a certain curve on the configuration space M is equal to the work that is done under the motion of
the system along this curve. We recall that the evolution of a mechanical system is represented in this
language by the motion of a point along a curve in the configuration space. If the force field is conservative,
then ω = −dU , where U is the potential energy . We consider the vector fieldXω canonically corresponding
to the 1-form ω. This field is uniquely defined by the relation 2〈X,Y 〉 = ω(Y ), which should hold for any
vector field Y on M . In this notation, the Newton law of motion is written as ∇γ̇(γ̇) = Xω, where γ(t) is
a trajectory on M , γ̇ is the vector field of velocities of the trajectory γ, and ∇ is the covariant derivative
defined by the Riemannian connection. In particular, a trajectory of a free motion of a mechanical system
(i.e., in the case where the force field vanishes) is a geodesic, and, moreover, time along the trajectory
is proportional to the length of this geodesic, i.e., to the natural parameter. The Riemannian manifold
described above is geodesically complete if after any shock, the motion of the system is unboundedly long.
In this case, we can direct the mechanical system from any initial position x with unit kinetic energy
so that under the free motion, it attains any configuration y (i.e., a point of the manifold M) given in
advance at time equal to the distance between these points x and y in the manifold M .

Therefore, if the form ω has coordinates Qr, then the equation of motion of our mechanical system
is

d

dt

∂T

∂q̇r
−

∂T

∂qr
= Qr.
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5.2. Linear action element. One can associate mechanics with Riemannian geometry in an essentially
different way. In the case of conservative forces, on trajectories of a mechanical system, we have the
energy conservation law T + U = h, where h is the total mechanical energy, T is the kinetic energy, and
U is the potential energy. In this subsection, we consider only those trajectories for which the complete
energy is equal to a constant h.

Definition 5.2.1. The Riemannian metric ds2 = 2(h − U)arsdq
rdqs is called the linear action element.

Theorem 5.2.1. Trajectories of a mechanical system with a given total energy h are geodesics of the
configuration space if, as a metric in this space, we take the linear action element.

The proof of this theorem can be found in any course on theoretical mechanics.

5.3. Brachistochrones. Trajectories such that the time of motion along them is stationary are called
brachistochrones. They are trajectories on which the integral

t =

B∫
A

√
amnq̇mq̇n

2(h− U)
ds

assumes a stationary value.

Theorem 5.3.1. Brachistochrones of a given system coincide with geodesics in the configuration space if

the linear element is defined by ds2 =
amndq

mdqn

(h− U)
.

5.4. Geometry of the configuration space of a rigid body rotating around a fixed point. A
rigid body rotating around a fixed point is the most well known and important mechanical system (see
[10,190]). The space of positions of this system is the three-dimensional projective space RP 3 (see [10]).
The kinetic energy of a rigid body assigns a Riemannian metric on this space. The class of Riemannian
manifolds thus obtained admits a geometric description in terms of the Ricci curvature.

Theorem 5.4.1 ([206]). A Riemannian manifold is the configuration space of a rigid body rotating around
a fixed point iff the roots of the characteristic equation of the Ricci tensor are constant and negative and
the principal directions form a geodesic net.

Let r1, r2, and r3 be roots of the characteristic equation of the Ricci tensor. Then the principal
inertia moments Ii, 1 ≤ i ≤ 3, of a body for which this space is the configuration space are found from
the relations

Ii = −
2ri

r2i + r1r2 + r1r3 + r2r3
.

6. Yang–Mills Connections

6.1. Geometry and physics of Yang–Mills fields. The Maxwell equations describe an electromag-
netic interaction. The Yang–Mills equations describe a class of interactions between particles, which are
called weak interactions, and arise, for example, in certain process of radioactive decay. The Yang–Mills
equations are nonlinear generalization of the Maxwell equations. A natural geometric language for de-
scription of these fields is given by fiber bundle theory. With a Yang–Mills field, one associates the concept
of connection in a principal bundle over a Riemannian manifold.

One says that a smooth manifold M is a principal fiber manifold if

(1) a Lie group G acts smoothly on M , and, moreover, it has no fixed points on M ;
(2) the quotient space B = M/G is a smooth manifold, and, moreover, the canonical projection p :

M → B is a smooth mapping;
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Fig. 60

(3) the bundle p :M → B is locally trivial, i.e., for any point b ∈ B, there exists a neighborhood U such
that its full inverse image p−1(U) is homeomorphic to the direct product U ×G, and, moreover, the
mapping x → (p(x), h(x)) ∈ U ×G, where x ∈ p−1(U), is a diffeomorphism and h(g)x)) = g(h(x))
for any g ∈ G (see [22,48,113,120,178,189]).

The manifold B is called the base of the bundle and G the fiber , and at the same time, the structural
group. On each fiber manifold, we define fundamental vector fields. Since G acts on M , there exists a
homeomorphism α of the Lie algebra G of the Lie group G into the Lie algebra V (M) on smooth vector
fields on M that is defined by

α(X)p =
d

dt

∣∣∣∣
t=0

(exp tX)p.

The image α(X) of an element X ∈ G is called the fundamental vector field on the manifold M corre-
sponding to X. Since G has no fixed points, α is an isomorphism of the Lie algebra G onto the subalgebra

α(G) in V (M). We consider two principal bundles p :M
G
−→ B and p′ :M ′ G′

−→ B having the same base
B but, in general, distinct structural groups G and G′.

Definition 6.1.1. A smooth mapping f :M ′ → M is called a homomorphism of principal bundles p′ and
p if there is a fixed homomorphism f of the group G′ into the group G such that f(g′(x′)) = f(g′)(f(x′))
for any x′ ∈ M ′ and g ∈ G′ (see Fig. 60) and the self-mapping of f of the base B induced by the
homomorphism f : G′ → G is smooth. If f is a one-to-one mapping, then it is called an isomorphism
of principal bundles. If G′ is a subgroup of G, then the principal bundle homomorphism f : M ′ → M
corresponding to an embedding of G′ in G is called an embedding of the bundle p′ :M ′ → B in the bundle
p :M → B if the mapping f induced by it is the identical transformation of the base B.

Definition 6.1.2. Let p : M
G

−→ B be a principal bundle. One says that its structural group G is

reducible to a Lie subgroup G if there exists a principal bundle p′ :M ′ G′
−→ B with the same base B and

the structural group G′ such that it admits an embedding in the bundle p :M
G

−→ B. Then M ′, together
with the mapping f , is called a reduced fiber manifold.

A principal bundle can be given by using the so-called gluing functions. Let the base B be covered
by open domains Ui whose full inverse images (under the projection p) are equipped with the structural
group of a direct product by using diffeomorphisms ϕi : Ui × F → p−1(Ui) such that p(ϕi(b, e)) = e for
b ∈ Ui and e ∈ F , where F is a fiber of the mapping p : F = p−1(x). The transformations λij = ϕ−1j ϕi :

Uij×F → Uij×F , where Uij = Ui∩Uj , are called gluing functions (or transition functions) of the bundle.
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They can be written as follows: λ̃ij(b, e) = (b, ωij(b)e). It is required that for any i, j, and b ∈ B the
transformation ωij(b) : F → F be an element of the group G (which was already fixed). Therefore, the
gluing functions ωij define smooth mappings of the domain Uij into the group G, i.e., ωij : Uij → G, where

b → ωij(b) (see Fig. 61). It follows from the definition that ωij = ω−1ji and ωijωjkωki = ωii = 1. Here 1
stands for the identity transformation. The latter relation holds on the intersection Uijk = Ui∩Uj ∩Uk of
three domains in B. The domains Ui are called coordinate neighborhoods of the bundle. The geometrical
sense of the reducibility of principal bundles is explained by the following statement. The structural group

G of the principal fiber manifold p : M
G

−→ B is reducible to a subgroup G′ iff there exists a covering of
the base B by coordinate neighborhoods Ui such that the transition functions ωij assume their values in
the subgroup G′ ⊂ G.

We define the concept of an associated fiber manifold. Let there be a principal bundle p : M
G

−→ B
and a smooth manifold F on which the group G acts on the right, i.e., (g, h) → hg, where g ∈ G,
h ∈ F . We consider the direct product M × F ; on it, we can define a left action of the group G as
follows: (x, h) → (x, h)g = (g(x), hg−1), where (x, h) ∈ MxF , g ∈ G. We consider the quotient space
E = (M × F )/G; let p : M → B be the initial projection. We construct a mapping that transforms a
point of E corresponding to the class (x, h) ∈ M × F into the point p(x) ∈ B. Obviously, this mapping
induces a projection λ of the space E on the base B. The fiber of this projection over a point b ∈ B
is the set of points of the space E that correspond to the class (x, h), where x is any point of M for
which p(x) = b and h runs over the whole fiber F . The manifold E is endowed with the structure of a

smooth manifold, and, moreover, the projection λ : E
F

−→ B turns out to be smooth. Therefore, we have

constructed the bundle λ : E
F

−→ B with the structural group G, which is called the bundle associated

with the initial fiber space p : M
G
−→ B. Roughly speaking, we “change the fiber”: instead of the group

G, there arises the space F on which the right action of the Lie group G is defined.
We consider an arbitrary principal fiber manifold M with base B and structural group G. Let TmM

be the tangent space to the manifold M at the point m ∈ M , and let TmG be the subspace TmM tangent
to the fiber passing through the point m (see Fig. 62).

Definition 6.1.3. A connection Γ in the fiber manifold M is a correspondence that to each point x ∈ M
sets in correspondence a certain tangent subspace Qx in TxM for which the following conditions hold:

(1) TxM is the direct sum of the subspaces Qx and TxG;
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(2) for any x ∈ M and g ∈ G, the subspace Qg(x) is the image of the subspace Qx under the mapping
induced by the left translation Lg(a) = ga (see Fig. 63);

(3) the subspace Qx smoothly depends on the point x.

Let X be an arbitrary vector field on M . Then at each point m ∈ M , there arises a unique
decomposition of the vector Xm into two components Xm = Ym + Zm, where Ym ∈ TxG and Zx ∈ Qx

(see Fig. 64). The vector field Y is called the vertical component of the field X, and the vector field Z is
called the horizontal component of the field X. For a given connection, the subspace Qx is usually called
the horizontal subspace.

For each connection Γ in a principal fiber manifold, we can define a certain 1-form ω that assumes its
values in the Lie algebra G of the group G. Let x ∈ M be an arbitrary point, and let TxM = Qx+TxG be
the decomposition of the tangent space generated by the connection Γ. Since the fiber G passing through
the point x is homeomorphic to the group G and the horizontal subspaces {Qg(x)} pass to one another
under the action of the group G by left translations on itself, the tangent space TxG coincides with the set
of tangent vectors of the form α(h)x, where h ∈ G and α(h) is the fundamental vector field corresponding
to the element h ∈ G. The connection form ωx at each point x is the linear mapping defined on the set
of all vectors tangent to M at the point x that to a vector X ∈ TxM sets in correspondence the vector
ωx(vX) ∈ TxG, which is the vertical component of the field X at the point x, and at the same time,
corresponds to an element of the Lie algebra G. In particular, if X is tangent to the fiber G at a point
x, then the value of the connection form ωx at it is the element of the Lie algebra G corresponding to X
under the identification α indicated above. If X lies in the horizontal plane Qx, then ωx(X) = 0. The
connection form ω satisfies the following conditions:

(1) ω(α(h)) = h for any element h ∈ G;
(2) for any element g ∈ G, the left translation Lg transforms the form ω into the form Adg(ω), where

Adg : G→ G is the adjoint representation of the Lie group G on its Lie algebra G.

Proposition 6.1.1. If a 1-form ω with values in the Lie algebra G of the structural group G is given on
a principal fiber manifold M and it satisfies conditions (1) and (2) indicated above, then it is possible to
construct a connection Γ for which this form is its connection form.

We consider the projection p :M → B; clearly, at each point x ∈ M , the differential of this projection
assigns a linear isomorphism between the spaces Qx and Tp(x)B. This allows us to define the concept of
a lift of a vector field from the base to the space M .
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Definition 6.1.4. Let v be a vector field on the base B. Its lift is a unique horizontal vector field v∗ on
M covering the field v under the projection p :M → B.

The existence and uniqueness of a lift is obviously implied by the above remark on the isomorphism
between Qx and Tp(x)B under (dp)x.

In Chap. 1, we have considered an affine connection, which allows one to assign the operation of
parallel translation along paths on a smooth manifold. Similarly, the operation of parallel translation is
naturally related to each connection Γ in a principal bundle; we now describe this operation. Let τ be a
certain curve in a principal fiber manifoldM . We say that this curve is horizontal if all its tangent vectors
are horizontal, i.e., τ̇(t) ∈ Qτ(t), where Qτ(t) is a horizontal at the point τ(t) ∈ M . If γ(t) is an arbitrary
piecewise smooth curve in the base B, then its lift γ∗(t) is a horizontal curve γ∗(t) in the manifold M
such that pγ∗(t) = γ(t) for all t (see Fig. 65).

Proposition 6.1.2. Let γ(t), 0 ≤ t ≤ 1, be an arbitrary piecewise-smooth curve in the base B of a
principal fiber manifold p : M → B, and let x0 be a point such that p(x0) = γ(0). Then there exists a
unique lift γ∗(t) of the curve γ(t) with the initial point x0 ∈ M .

The existence and uniqueness of the lift of curves allows us to define an important concept of parallel
translation generated by a given connection. Let γ(t), 0 ≤ t ≤ 1, be a piecewise-smooth curve in the base
B, and let x0 be an arbitrary point of the fiber p−1(γ(0)) that projected into the point γ(0). According to
Proposition 6.1.2, there exists a unique lift γ∗ of the curve γ emanating from the point x0 (see Fig. 66).
The endpoint γ∗(1) of the curve γ∗ is projected into the endpoint γ(1) of the curve γ(t). This point γ∗(1)
is uniquely defined if the point x0 is fixed. We define the mapping fγ of the fiber p

−1(γ(0)) onto the fiber
p−1(γ(1)) by associating with each point x0 of the fiber p

1(γ(0)) the point γ∗(1) corresponding to it. The
mapping fγ is a diffeomorphism of the fiber p−1(γ(0)) onto the fiber p−1(γ(1)).

We consider a principal bundle p :M → B with a connection Γ; let ω be the corresponding connection
form.

Definition 6.1.5. Let α be an arbitrary differential form of order k on the manifold M assuming the
values in an arbitrary vector space. The covariant differential Dα of the form α is the form given by
(Dα)(X1, . . . ,Xk+1) = (dα)(hX1, . . . , hXk+1) for any vector fields X1, . . . ,Xk+1 on the manifold M ,
where d stands for the usual exterior differential, and h stands for the horizontal components of vector
fields.

Definition 6.1.6. The form Ω = Dω is called the curvature form of a given connection Γ on the principal
bundle p :M → B.

Therefore, the curvature form is a 2-form assuming the values in the Lie algebra G of the Lie group G.
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We show that electromagnetic phenomena can be described in the framework of connection theory.
We first recall that theMaxwell equations in their traditional form in the unit system with c = µ0 = ε0 = 1
have the form

rotB −
∂

∂t
E = 4πJ,

rotE +
∂

∂t
B = 0,

divB = 0,

divE = 4πρ.

In this case, we naturally used the operators rot and div in the usual three-dimensional flat space. We
recall how to write these equations in terms of the metric and exterior derivative. For this purpose, we
introduce the Faraday 2-form F with the components

(Fij) =


0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bz

Ez By −Bx 0

 .

The second and third Maxwell equations become F[µν,γ] = 0, i.e., dF = 0, (x, γ) =
∂x

∂xγ
. We introduce

the following pseudo-Euclidean metric (of special relativity theory) in the space R4:

(gij) =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Then we can raise the subscripts of the form F and obtain the antisymmetric tensor F ij = gikgjlFkl, i.e.,

(Fij) =


0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0

 .

Moreover, the remaining Maxwell equations become Fµν
,ν = 4πJµ, where (J t = ρ, Jx, Jy, Jz) = (Jµ) is the

four-dimensional current vector. Let ω = dt∧ dx∧ dy ∧ dz be the volume form in R4(t, x, y, z). We define
the 2-form ∗F as the compression ∗F = 1

2ω(F ), i.e., (∗F )µν =
1
2ωαβµνF

αβ. This is the so-called dual form
to F . We define the 3-form ∗J as the compression ∗J = ω(J), i.e., (∗J)µνγ = ωµνγJ

γ . Then the equation
Fµν
,ν = 4πJµ is equivalent to d(∗F ) = 4π(∗J). Therefore, in our new notation, the Maxwell equations

become dF = 0, d(∗F ) = 4π(∗J). Now they are represented in coordinate-free form and, therefore, in
such a form they can be written on any manifold with metric (Riemannian or pseudo-Riemannian). The
metric is needed in order to obtain ∗F from F . The operation ∗ is defined on an arbitrary Riemannian
manifold. To this end, we define the tensor εi1...in according to the rule εi1i2...in 
= 0 only if among the
subscripts i1, . . . , in, we now have equal ones; then

εi1...in =

{
+1, sgn(i1 . . . in) = +1,

−1, sgn(i1 . . . in) = −1.

If Ti1...ik is a skew-symmetric tensor of type (0, k), then ∗T denotes the skew-symmetric tensor of
type (0, n− k) given by

(∗T )ik+1,... ,in =
1

k!

√
det(gij)εi1...inT

i1...ik ,

where T i1...ik = gi1j1 . . . gikjkTj1...jk .
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We note that if in nature we have magnetic monopoles, then the Maxwell equations take the sym-
metrical form dF = 4π(∗Jm), d(∗F ) = 4π(∗Je), where Jm and Je are the corresponding currents.

Since F is a closed 2-form, there exists a 1-form A such that F = dA in a certain neighborhood of
each point. Using the metric, with this 1-form, we can associate a vector called the potential vector . The
form A is not uniquely defined: A′ = A + df for any function f yields the same F . Such a change is
called a gauge transformation. We note that if there exist magnetic monopoles, then A in this case can
be defined only on simply connected domains containing no magnetic monopoles.

The above formalism can be rewritten in terms of bundles and connections in them. We consider
a trivial U(1)-bundle over the pseudo-Riemannian manifold R41 = R

4 with metric (gij). We consider the
potential A of the electromagnetic field as a connection in this bundle. As was shown above, such a
connection is given by the form with values in the Lie algebra u(1) of the Lie group U(1). In our case,
u(1) ∼= iR, and the form is equal to iA. Gauge transformations are smooth mappings g : R4 → U(1) that
can be represented in the form g(x) = exp(−if(x)). Then the connection is transformed according to
the law Ag = A + df . The curvature of the connection iA coincides with ω = dA. On the space of all
connections, we consider the functional

L =
1

2

∫
‖ω‖2.

It is easy to see that the condition δL = 0, where δL is the first variation of the functional L, yields the
Maxwell equations for the field ω.

Weak interactions can be described similarly with the replacement of the group U(1) by a more
complicated group. For the first time, this was observed by Yang and Mills; they wrote the corresponding
Lagrangian for the potential, assuming its values in the Lie algebra su(2) of the Lie group SU(2): g :
R41 → SU(2), which is transformed according to the formula

ag = gag−1 + gdg−1

of transformation of a connection in the trivial SU(2)-bundle over R41. The curvature form is Ω =
da+ 1

2 [a, a]. Equations describing the corresponding interaction are obtained as equations for extremals
of the functional

1

2

∫
‖Ω‖.

At present, in physics, one uses the connections in SU(2)-, SU(3)-, and SU(4)-principal bundles (see [186]).
From the geometric viewpoint, we have the following. We consider an arbitrary principal bundle E

with structural Lie group G (compact Lie group) over an arbitrary smooth manifold. The potential is an
arbitrary connection ∇ in this bundle. The field associated with the potentials are the curvatures R∇ of
the connection ∇. The group of gauge transformations GE is the automorphism group of the bundle E.
With the group GE , one associates the Lie algebra GE ∼= E ×

ad
G, where G is the Lie algebra of the Lie

group G; we have GE
∼= E ×

Ad
G. IfM is a Riemannian manifold, then on the space C(E) of all connections

in the bundle E, we define the Yang–Mills functional

YM(∇) =
1

2

∫
M

‖R∇‖2,

where ‖Z‖ is the norm, which is naturally defined by using the Riemannian metric on M and the G-
invariant norm in GE . The group of gauge transformations GE acts on the space C(E) in a natural way.
The Yang–Mills functional is invariant with respect to this action.

Definition 6.1.7. A connection ∇ ∈ C(E) with a finite action is called a Yang–Mills potential , and R∇

is called a Yang–Mills field if ∇ is a critical point of the Yang–Mills functional, i.e., if the first variation
of this functional vanishes at the point ∇.
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6.2. Four-dimensional case. An important property of the Yang–Mills functional in dimension four
consists of its conformal invariance, i.e., YM(∇) depends only on the conformal class of metric of this
manifold (for a detailed discussion of this concept, see Sec. 4.8 of Chap. 3; an example of another important
functional that is also conformally invariant was considered there). Over an arbitrary compact orientable
manifold M4, any G-bundle E has characteristic numbers. If G is a simple group, then there exists only
one characteristic number, namely, the Pontryagin number p1(E) (it is called a topological charge by
physicists). We denote its absolute value by k = |p1(E)|. For a connection ∇ on E, it can be expressed
through the curvature tensor:

4π2p1(E) =

∫
M

〈R∇, R∇〉,

where 〈X,Y 〉 is the inner product on GE .
The space of 2-forms Ω2 on an oriented four-dimensional manifold M4 admits the decomposition

Ω2 = Ω+⊕Ω− into eigensubspaces Ω± of the involution ∗; the space Ω+ corresponds to the eigenvalue +1,
and Ω− corresponds to the eigenvalue −1. This decomposition generates the corresponding decomposition
of the curvature tensor: R∇ = R∇+ +R∇− , where ∗R∇± = ±R∇± and

4πp1(E) =

∫
M

{‖R∇+‖
2 − ‖R∇−‖

2}, YM(∇) =

∫
M

{‖R∇+‖
2 + ‖R∇−‖

2}.

Therefore, 4πk2 ≤ YM(∇) for any connection ∇ on E. This bound is attained iff R∇ε ≡ 0, where
εk = −p1(E).

Definition 6.2.1. Fields for which R∇− (resp. R∇+) vanishes are said to be self-dual (resp. anti-self-dual).
In the case S4 and G = SU(2) such connections are called instantons.

Atiyah, Hitchin, and Singer proved a remarkable fact that the instanton space is finite-dimensional,
and its dimension equals 8k − 3.

Definition 6.2.2. One says that a Yang–Mills connection is stable if the second variation of the functional
YM(∇) at the point ∇ is nonnegative (a local minimum is always stable).

Simons showed that on the sphere Sn, there is no stable Yang–Mills fields for n ≥ 5. On the other
hand, stable critical points of the functional YM(∇) are related to the self-duality or anti-self-duality.

Theorem 6.2.1. Any stable Yang–Mills field over the sphere S4 with the group SU(2), SU(3), or U(2)
is self-dual or anti-self-dual.

A similar assertion holds for the Lie group SO(4).
As the following theorem shows, sometimes the stability implies that the Yang–Mills functional

attains its minimum value.

Theorem 6.2.2. Let M4 be a compact oriented homogeneous four-dimensional Riemannian manifold.
Then any stable Yang–Mills field on M4 with the group SU(2), SU(3), U(2), or an Abelian group is an
absolute minimum.

In some cases, critical points of the Yang–Mills functional are isolated. As an example, we consider
the case of the sphere Sn. To state the corresponding results, we need a new concept. Let a principal
bundle p : M → B be trivial, i.e., the direct product M = B × G. Then a section Ng of the bundle
p : B × G → B, consisting of points of the form (q, g), where q runs over all points of the base and the
element g is fixed, passes through any point (b, g) ∈ M . It is clear that Ng is a submanifold in the direct
product homeomorphic to the base (see Fig. 67). A connection in M is said to be flat if at each point
x = (b, g), as the horizontal plane Qx, we take the tangent space to the submanifold Ng. Clearly, the
curvature form of such a connection is identically equal to zero.
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Fig. 67

A connection in a principal bundle p :M
G

−→ B is said to be locally flat if for each point b ∈ B, there
exists a neighborhood U such that the connection induced by the ambient connection in p−1(U) ∼= U×G is
flat in the direct product U×G. The following important property, characterizing locally flat connections
through their curvature tensor, holds. A connection in a principal bundle p :M → B is locally flat iff the
curvature form of this connection is identically equal to zero.

In the following estimates, we use the norm on GE defined by ‖A‖2 = 1
2 tr(A

tA). We need to consider
the following three cases separately: n ≥ 5, n = 4, and n = 3. In the following three theorems, it is shown
in which sense critical points of the functional YM(∇) are isolated on the sphere Sn.

Theorem 6.2.3 (n ≥ 5). Any Yang–Mills connection ∇ over the standard sphere Sn of dimension n,
n ≥ 5, such that ‖R∇‖2 ≤ 1

2C
2
n is locally flat, i.e., R

∇ ≡ 0.

Theorem 6.2.4 (n = 4). Let R∇ be a Yang–Mills field on a bundle E over the sphere S4 satisfying the
pointwise condition ‖R∇‖2 ≤ 3. Then either E is a flat bundle or E = E0 + S, where E0 is a flat bundle
and S is one of two four-dimensional spinor bundles with canonical connection. Further, if R∇ satisfies
the condition ‖R∇+‖

2 < 3 (or ‖R∇−‖
2 < 3) pointwise, then R∇+ ≡ 0 (resp. R∇− ≡ 0).

Theorem 6.2.5 (n = 3). Let R∇ be a Yang–Mills field on a bundle E over the sphere S3 that satisfies
the condition ‖R∇‖2 ≤ 3/2 pointwise. Then either E is a flat bundle or E = E0 + S, where E0 is a flat
bundle and S is a four-dimensional spinor bundle with canonical Riemannian connection.

The proof of these assertions can be found in [27].
In many respects, the problem of finding critical points of the functional YM(∇) on four-dimensional

manifolds is similar to the problem of studying harmonic mappings of two-dimensional manifolds (see,
e.g., the paper [205] of Uhlenbeck).

6.3. Moduli spaces of self-dual Yang–Mills connections. As a rule, all self-dual connections form
a “good” space. To explain what we mean, certain additional considerations are necessary. Let GE =
E ×

AdG
G be the vector bundle associated with a principal bundle E by the adjoint representation. The

operator ∗ acts on sections of the bundle GE ⊗ Λp, where Λp is the space of forms of degree p on a
manifold M . We have

GE ⊗ Λ2 = (GE ⊗ P+Λ
2)⊕ (GE ⊗ P−Λ

2),

where P± = 1
2(1 ± ∗). The curvature tensor RA of the connection A is a section of the bundle GE ⊗ Λ2.

If P−RA = 0, then the connection A is said to be self-dual , and if P+RA = 0, the connection A is said
to be anti-self-dual . The equation P−RA = 0 is called the duality condition. Solutions of this equation
are also called instantons. Each instanton is a Yang–Mills connection. The curvature tensor assigns the
mapping R : Λ2 → Λ2. We consider the following decomposition of R into irreducible components with
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respect to the representation of the group SO(4) (see [28]):

R = uij+x
i
+ ⊗ xj+ + ωij−x

i
− ⊗ xj− +Bijxi+ ⊗ xj− +Bij

+x
i
− ⊗ xj+ +

S

6
(xj+ ⊗ xj+ + xj− ⊗ xj−),

where (xi±), i = 1, 2, 3, is a local orthonormal basis for ±Λ2, respectively, and the function S coincides

with the scalar curvature on M . We call ωij− the self-dual part of the curvature tensor. We denote by

HK(M) the de Rham cohomology space of the complex

0 → Γ(Λ0)
d

−→ Γ(Λ1)
d

−→ Γ(Λ2)
d

−→ Γ(Λ3)
d

−→ Γ(Λ4) → 0,

where d is the exterior derivative and Γ(ξ) denotes the space of all sections of the bundle ξ.
We first present the following existence theorem.

Theorem 6.3.1 ([191]). Let M be a compact orientable Riemannian manifold of dimension 4. Let
P−H

2(M) = 0, and let G be a compact semisimple Lie group. Then there exists a principal G-bundle
over the manifold M that admits smooth irreducible self-dual connections.

We consider a compact semisimple Lie group G. With accuracy up to an isomorphism, principal
G-bundles over M are in a one-to-one correspondence with homotopy classes of mappings of the manifold
M into the classifying space BG of the Lie group G, and, moreover, there is a surjective mapping
ϕ : [M,BG] → Zp → 0, where p is the number of nontrivial ideals in the Lie algebra G of the Lie group G.
Moreover, there is a canonical mapping (see [191])

η : [M,BG] → H2(Mπ1(G)),

where [X,Y ] is the set of homotopy classes of mappings of the space X into Y .

Theorem 6.3.2 ([191]). LetM be a compact orientable four-dimensional Riemannian manifold satisfying
the condition P−H

2(M) = 0, G be a compact semisimple Lie group, and E → M be a principal G-bundle
such that all its Pontryagin classes pkj (GE), k = 1, . . . , p, are nonnegative. Moreover, we assume that the

image of the bundle E in H2(M,π1(G)) under the mapping η is trivial. Then:

(1) the space C(E) contains a smooth self-dual connection;
(2) if the principal G-bundle over S4 with unit Pontryagin classes admits an irreducible self-dual con-

nection, then in the space C(E), there also exists such a connection;
(3) if M is a real-analytic manifold, then there exists a real analytic principal G-bundle E′ isomorphic

to E for which assertions (1) and (2) hold for real analytic connections.

We consider the group AutE = Γ(E ×
AdG

G). It naturally acts on the space C(E). Consider the

orbit space with respect to the action of the group AutE on the spaces of connections C(E). The set
of irreducible self-dual connections in C(E) modulo this action is called the moduli space of self-dual
connections in C(E). Atiyah, Hitchin, and Singer proved that if the self-dual part of the curvature tensor
of the manifold M vanishes, then the moduli space is a finite-dimensional manifold.

Theorem 6.3.3 ([191]). Let the conditions of the preceding theorem hold. Let E → M be a princi-
pal G-bundle, and, moreover, let G be a compact semisimple Lie group. Consider the connection A
from assertion (2) of the previous theorem. Then, in a neighborhood of the connection A in the space
C(E)/AutE, the moduli space of irreducible self-dual connections is a smooth manifold of dimension

p1(GE) =
1
2(dimG)(χ − τ), where p1(GE) =

l∑
j=1

p1j(GE) is the sum of Pontryagin classes of the vector

bundle GE = E ×
AdG
G, χ is the Euler characteristic of the manifold M , and τ is the signature of the

manifold M .
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The previous theorem is of local character. If we impose additional restrictions, a global statement
can be obtained.

Theorem 6.3.4 ([191]). In addition to the conditions of the previous theorem, we assume that the
Riemannian metric on M is conformally equivalent to the Riemannian metric g′ on M for which
S′2 − 3ω′− > 0, where S′(x) is the scalar curvature of the metric g′ and ω′−(x) = sup

ξ∈S2⊂R3
ω′ijξiξj, ω′

is the self-dual part of the curvature tensor of the metric g′. Then the moduli space of irreducible self-dual
connections is a Hausdorff manifold as a whole, and its dimension is calculated by the formula presented
above.

The theory of self-dual connections found surprising applications in topology. For these applications,
see [46,47].
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98. H. Hopf and W. Rinov, “Über der Begriff der vollstandigeb differentialgeomentrischen Flache,”
Comment. Math. Helv., 3, 209–225 (1931).

99. H. C. Im Hof and E. Ruh, “An equivariant pinching theorem,” Comment. Math. Helv., 50, No. 3,
389–402 (1975).

100. Y. Itokawa, “The topology of certain Riemannian manifolds with positive Ricci curvature,” J. Diff.
Geom., 18, 151–155 (1983).

101. N. Jacobson, Lie Algebras, Interscience Publishers, New York–London (1962).
102. M. Janet, “Sur la possibilite de plonger un espace Riemannien donne dans espace Euclidien,” Ann.

Soc. Polon. Math., 5 (1926).
103. M. Katz, “The filling radius of two-point homogeneous spaces,” J. Diff. Geom., 18, 505–511 (1983).
104. J. L. Kazdan and F. W. Warner, “Existence and conformal deformation of metrics with prescribed

Gaussian and scalar curvatures,” Ann. Math., 101, No. 2, 317-331 (1975).
105. J. L. Kazdan and F. W. Warner, “A direct approach to the determination of Gaussian and scalar

curvature functions,” Invent. Math., 28, No. 3, 227–230 (1975).
106. W. Klingenberg, Riemannian Geometry, Walter de Gruyter, Berlin–New York (1982).
107. W. Klingenberg, Lectures on Closed Geodesics, Springer-Verlag, Berlin–Heidelberg–New York

(1978).
108. W. Klingenberg, “Contribution to Riemannian geometry in the large,” Ann. Math., 69, No. 3,

654–666 (1959).
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204. Y. Tsukamoto, “Über gewisse Riemannische mannigfaltigkeiten mit positiver Krümmung,” Nagoya
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