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CHAPTER 1

Physical Prerequisites

§1. Interfaces between two media

The theory of minimal surfaces and surfaces of constant mean curvature
is a branch of mathematics that has been intensively developed, particularly
recently. On the basis of this theory we can investigate soap films and soap
bubbles, interfaces between two media, which occur widely in chemistry and
biology, for example, membranes in living cells, capillary phenomena, and
so on. Minimal surfaces also turn out to be useful in architecture. Before
giving exact definitions, let us consider some examples.

1. Soap films and soap bubbles. If we dip a wire contour into soapy water,
and then carefully lift it out, a soap is left on the contour. For many “young
researchers” this is the time to obtain an iridescent bubble by blowing on
the film. However, the soap films themselves conceal unexpected properties,
which we can immediately see by making a simple experiment. Bend a wire
contour, as shown in Figure 1. This is a so-called Douglas contour. Let u
and v denote the distances between the extreme circles of the contour. It
turns out that by lifting the contour out of the soapy water differently we can
obtain different soap films. Figure 2 shows some of them (for small u = u,
and v = v,).

If the contour is not deformed in the process of obtaining the film, then as
a rule films of type l1a and 1b are formed. A film of type 2 is obtained if at
the time of lifting the contour out of the soapy water the left and right circles
are kept joined (¥ =0, v = 0), but after lifting the contour out they are let
free. The elastic contour returns to its original position (4 = uy, v = v;),
and a film of type 2 remains on it. Films of type 3a and 3b can be obtained
similarly, by combining only right (or only left) circles. To obtain a film of

4 NG
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FIGURE 2

type 4 it is sufficient to puncture a film of type 3a by a disc D’.

We observe that films of type 2 and 3 are not smooth surfaces. They have
singularities: a singular point 4 where four singular edges meet (type 2), or
a singular edge S' (type 3). Moreover, smooth films of types 1 and 4 have
different topological type: a film of type 1 is a two-dimensional disk D?,
while a film of type 4 is a torus with a point deleted (see Figure 3).

Thus, on a given contour we can, generally speaking, stretch many soap

FIGURE 3
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films, and not every film need be a smooth surface. Moreover, on a contour
that is a bent circle we can stretch a minimal torus with a point deleted (a film
of type 4). How many soap films can span a given contour? What topological
types of films can occur? What singularities can be found on a soap film?
These and other questions are considered in the theory of minimal surfaces
(see below).

Soap bubbles and soapsuds, that is, a system of soap bubbles, are just as
interesting to the researcher. Physical bubbles differ from soap films in that
bubbles bound regions of space in which air is under greater pressure than
the air outside. If we look closely at the soapsuds, we observe that the sin-
gularities at the junction of different bubbles are similar to the singularities
of soap films. By carrying out many experiments with the interfaces bewteen
two media the Belgian physicist Joseph Plateau (1801-1883) formulated four
principles, which describe the possible stable singularities on these surfaces.
It turns out that the two types of singularities revealed above—a smooth sin-
gular edge at which three sheets meet, and a singular point at which four
smooth singular edges meet, each pair of which is spanned by a smooth
sheet—are the only possible singularities of stable soap films and soapsuds
(Plateau’s 1st, 2nd, and 3rd principles). Moreover, in the first case the sheets
meet at a singular edge at an angle of 120°, while in the second case the sin-
gular edges meet at a point at an angle of about 109° 28' 16" (more precisely,
the cosine of this angle is —1/3), like the four line segments drawn from the
center of a regular tetrahedron to its vertices (Plateau’s 4th principle). We
give some elementary justification of these principles below, first describing
the variational principle that underlies soap films and soap bubbles.

2. The Poisson-Laplace theorem. Soap films and soap bubbles can be
regarded as the interfaces between two homogeneous media in equilibrium.
A soap film with boundary locally, that is, in a neighborhood of each of
its points, separates two media, air-air, in each of which the pressure is the
same. Therefore the tota! pressure on each small area of a soap film is zero.
In a soap bubble the pressure inside is greater than the pressure outside, so
the vector of the resultant pressure is directed outwards. This force must be
compensated by the forces of surface tension. Since the pressure is always
directed along the normal to the interface and is the same in absolute value
at all points of this interface because of the homogeneity of the media, the
interface is “curved in the mean™ identically at all its points. To give a precise
meaning to this statement, we need to define the geometric concept of “mean
curvature” (for the details see [1], [15]).

Let M be a smooth two-dimensional surface in R , suppose that the point
P lies on the surface M, and that N(P) is one of the two unit normals to
M at P (the vector N(P) is orthogonal to the tangent plane to M passing
through the point P; we denote this tangent plane by 7,M).

Through P we pass a plane I1 containing to N(P). The plane Il inter-
sects M along a curve 7 called a normal section. The unit vector v tangent
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to y at P is called a direction of this normal section. Clearly, the vector —v
determines the opposite direction of the normal section y, and the vectors
v and -v lie in the tangent plane T,M (Figure 4).

Let ¥(v) denote the curvature vector of y in the direction v, that is, the
acceleration vector at P under motion along y with unit speed. We note that
K(v) = R(-v). It is easy to show that the curvature vector K(v) is collinear
with the normal N(P). We define the curvature x(v) of a normal section y
in the direction v with respect to the normal N(P) as the quantity x(v) =
(#(v), N(P)), where the brackets ( , ) denote the standard scalar product
of vectors in R®. Clearly, the continuous function x(v) takes maximum
and minimum values (since x(v) is a function on the (compact) circle s
formed by all directions v). These values are called the principal curvatures
x, and «x, of the surface M at the point P, and the normal sections in
which the values x, and x, are attained are called the principal sections.

DEeFINITION. The mean curvature H of a surface M ata point Pe M
with respect to the normal N(P) is half the sum of the principal curvatures:
H=(x,+x,)/2.

Let ¢ denote the angle between the direction v of an arbitrary normal
section y at a point P € M and the direction of the principal section y,
(Figure §).

If x, is the curvature of the principal section y,, and x, is the other
principal curvature, then by Euler’s well-known formula

K(v) =x(p) =K, cos’ P +K, sin’ ®.

To represent more clearly the distribution of the curvatures of the normal
sections » as the angle @ changes, we construct in the plane with polar
coordinates (p, @) the graph p = |[x(@)|. We can distinguish the following
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cases:

a) x, and x, are nonzero and have the same sign. In this case the graph
is an ellipse with semiaxes |x,| and |x,|. If x; = x, # O, the ellipse
degenerates to a circle (Figure 6a);

b) x, and x, are nonzero and of different signs. In this case the graph is
a “four-leafed rose” (Figure 6b);

c) one of the curvatures x; is zero—the “four-leafed rose” degenerates
into a “two-leafed rose” (Figure 6c);

d) both the principal curvatures are zero. The graph is a point (the origin).

It is now clear that if x, is not equal to x,, then there are exactly two
principal sections, which are in fact orthogonal to each other. If the principal
curvatures are equal, then the curvature of all the normal sections is the same
and equal to the mean curvature H .

\ 1K, 4 [l
\ 2 /// tg (Po- ’K2|
//

Q) K,*O, \\ {) Ki*o: C) Kl:o’
K,#0, v Ky*o, K#0
Kx'K'2>0 ' /(j-/('2<0

FIGURE 6
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EXERCISE. Prove that half the sum of the curvatures of any two mutually
orthogonal normal sections is constant and equal to H .

THE POISSON-LAPLACE THEOREM. Suppose that a smooth two-dimensional
surface M in R® is the interface between two homogeneous media in equilib-
rium. Let P, and P, be the pressures in the media. Then the mean curvature
H of the surface M is constant and equal to H = h(P, — P,), where the
constant A = 1/h is called the coefficient of surface tension, and P, — P, is
the difference between the pressures in the media (the resultant pressure).

Thus, the expression “curved in the mean identically” implies that the
mean curvature of the surface is constant. Taking account of what we said
above, we can conclude that the mean curvature H of a soap film is zero,
H =0, and the mean curvature H of a soap bubble is a constant # 0. In
mathematics surfaces with H = const are called surfaces of constant mean
curvature. For the case H = 0 these surfaces have a special name—minimal
surfaces (the reason for the origin of the name is explained in §2). Sometimes
they are called soap films, and surfaces with H = const # 0 are called soap
bubbles.

Surfaces of constant mean curvature are widespread in nature and play an
important role in various research. Thus, for example, surface interactions on
the interface between two media determine the character and rate of chemical
reactions. Various membranes, such as the ear-drum and membranes that
separate living cells, are minimal surfaces. One more example consists of
microscopic marine animals—Radiolaria (see [2]).

§2. The principle of economy in Nature

In this section we talk about an alternative approach to the description
of minimal surfaces and surfaces of constant mean curvature, based on the
variational principle (for a more detailed historical survey see [3]).

1. Optimality and Nature. In 1744 the French scientist Pierre-Louis-
Moreau de Maupertuis put forward his famous principle, which has become
known as the principle of least action. In 1746 Maupertuis published a paper
“The laws of motion and rest deduced from a metaphysical principle”. This
metaphysical principle is based on the assumption that Nature always acts
with the greatest economy. Starting from this position, Maupertuis draws
the following conclusion: if certain changes occur in Nature, then the total
action needed to carry out these changes must be as small as possible.

In parallel and independently Leonhard Euler in 1744 obtained a strict
proof that the principle of least action can be used to describe the motion
of a material point in a field of conservative forces such as the motion of
the planets around the Sun. Euler also put forward the conjecture that for
any phenomenon in the Universe we can find a maximum or minimum rule
to which it is subject. This remark appeared in the Appendix to his famous
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work of 1743 “Methods of finding curves that are subject to a maximum or
minimum property”, the first textbook on the calculus of variations.

When in 1746 Maupertuis published his work on the principle of least
action he was well aware of Euler’s achievement, since he briefly described
it in the Preface. Then, however, he added: “This remark ... is a beautiful
application of my principle to the motion of the planets”, thus asserting his
priority.

Euler reacted to this remark by giving up his right of priority, for which he
was strongly criticized by certain historians of science. We shall not go into
the details of the subsequent keen discussion that developed over priority in
the discovery of the principle of least action. We shall only say that other
people (Ké6nig and apparently Leibniz) laid claim to authority and that the
discussion was linked to the anthropomorphic understanding of the terms
“living force” and “action” and with theology (see (3], [37]).

However, we observe that Maupertuis, who formulated his principle start-
ing from the idea of the perfection of God, tested it on a few examples, but he
did not investigate some of them thoroughly. It turns out that the principle
of least action is not always true.

Let us consider one of the examples given by Maupertuis—the reflection
of light. Here the law of least action leads to the conclusion that a ray of
light “selects” from all possible routes from the source to the receiver the one
that can be covered in the least time (this rule had already been formulated
by Fermat). If light is propagated in a homogeneous medium, then this
minimum principle leads to the simpler rule: a ray of light moves along the
shortest path joining the source and the receiver.

Consider a spherical mirror situated in a homogeneous medium. Suppose
that the source S and the receiver T are symmetrical about some line /
passing through the center of the sphere. What characterizes the trajectory
SMT of the motion of light emitted from the source S, reflected in the
mirror at a point A, and received by the receiver 77 In this situation we
apply the famous law presented in the work Catoptrica attributed to Euclid—
the so-called law of reflection. The following briéf formulation of it is well
known: the angle of the incidence is equal to the angle of reflection.

Figure 7 shows two situations: a convex mirror (Figure 7a) and a concave
mirror (Figure 7b). In both cases the point M is the point of intersection
of the mirror and the line / (we consider the trajectories of the motion of
light in the plane passing thorugh the source, the receiver, and the line /).
Through M we draw the ellipse with fociat S and T . If M, is an arbitrary
point lying outside the ellipse, M, is an arbitrary point inside it, and M is
an arbitrary point on it, then |M,S|+|M,T| > |MS|+|MT)| > |M,S|+|M,T|
(verify this).

Hence it follows that in the case of a convex mirror the trajectory SMT
actually has the shortest length, but for a concave mirror this is not always
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so. In Figure 7b the source S and the receiver 7' are symmetrical about the
center of the sphere. It is easy to see that any path SM,T, where M, # M,
is shorter than the path SMT .

Thus, whether Nature is most economical or most wasteful depends on the
form of the mirror. Citing similar arguments, d’Arcy showed in 1749 and
1752 that the principle of Maupertuis was not clearly formulated, and leads
to incorrect assertions.

Nevertheless, the idea of optimality of the phenomena of Nature plays
an important role in physics. The mathematical formulation of this idea
has given birth to the calculus of variations, the founders of which are usu-
ally taken to be Lagrange and three Swiss mathematicians from Basel: the
brothers Johann and Jakob Bernoulli and a student of Johann Bernoulli—
Leonhard Euler.

2. Minimal surfaces and optimality. It turns out that the forms of soap
films are also optimal in a certain sense, namely the corresonding minimal
surfaces are the extremals of the area functional. Let us explain this state-
ment. For this we consider a soap film covering a given contour. Surface
tension leads to the film tending to take up a form with the least possible sur-
face energy (of course, this is an approximation, which nevertheless works
well in practice). Since the surface energy is directly proportional to the sur-
face area, as a result of minimizing the surface energy the area of the soap
film is least compared to the areas of all sufficiently neighboring surfaces
covering the given contour.

Thus, soap films are local minima of the area functional. However, mini-
mal surfaces, that is, surfaces of zero mean curvature, need not minimize the
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area even among all neighboring surfaces (with given boundary). To explain
this we note that the concept of “neighboring surfaces” can be defined in
different ways. We shall understand by a neighboring surface of a given sur-
face M one obtained by a small deformation of M, leaving the boundary
M fixed. For a zero-dimensional surface M , that is, when M is a point,
a small deformation is a small displacement of M . When the dimension
of M is at least one, we can define two types of small deformations: a de-
formation with small amplitude, that is, when each point of M is displaced
not far from its original position, and a deformation with small support,
when only a sufficiently small region of M undergoes a deformation; the
closure of such a deformed region is called the support of the deformation.
A deformation with sufficiently small support always increases the area of the
minimal surface, so for such deformations the minimal surfaces do minimize
the area. For deformations with small amplitude this is not so. Nevertheless,
for such deformations minimal surfaces are extremals (critical points) of the
area functional.

It is easy to show that the (finite) area of any surface in R} can always be
increased by an arbitrarily small deformation of this surface, so no surface
can be a local maximum for the area functional. It is well known that critical
points other than a local minimum and a local maximum are called saddle
points. Minimal surfaces corresponding to saddle points of the area func-
tional (for deformations with small amplitude) are said to be unstable. If we
have succeeded in creating a soap film that has the form of an unstable mini-
mal surface, then fluctuations of this film that are small in amplitude, which
always exist in the real world, would instantaneously lead to its collapse—the
film constructed would turn out to be unstable.

Thus, minimal surfaces are critical points of the area functional. It turns
out that the converse is true: a surface M that is a critical point of the
area functional (considered on the space of all possible surfaces close (in
amplitude) to M and having the same boundary 8M ) is minimal, that is,
it has zero mean curvature.

Surfaces of constant mean curvature are also extremals of a certain func-
tional. They can also be obtained as extremals of the area functional if we
restrict the possible deformations. As an example we consider a soap bubble.
If we blow on it, the film, sagging in one place, will swell at another place
in such a way that the volume of the region inside the bubble is unchanged.
This observation is the basis of the definition of a surface of constant mean
curvature from the viewpoint of the variational principle. For a closed sur-
face bounding a region in R®, as admissible deformations we consider only
those that preserve the volume of the region bounded by this surface. The
condition that the volume is preserved can be described in yet another way.
For this we define the function of change of volume of a region ¥ bounded
by a surface M under a deformation M, of this surface. For each ¢ = ¢, we
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consider the totality of regions included between the surfaces M and M,o .
From the total volume of those that lie outside ¥ we subtract the total vol-
ume of those that lie inside ¥, and we call the resulting number the change
in volume at the instant ¢ = t,. Varying {,, we obtain a function which is
called the change of volume function. Clearly, the regions lying inside and
outside ¥ are on opposite sides of M, and so they can be defined without
the use of V.

This observation enables us to define the change of volume function for a
deformation M, of an unclosed surface M (such as the soap film bounded
by a wire contour or a hemisphere having the equator as its boundary), but
in this case we must require that the deformation M, is fixed (= 0) on the
boundary 8M of the surface M .

We say that a deformation M, of a surface M (fixed on 6 M if M # O)
preserves the volume if the change of volume function constructed from this
deformation is identically zero. It turns out that surfaces of constant mean
curvature are critical points of the area functional restricted to the space of
deformations that preserve the volume.

Since surfaces of nonzero constant mean curvature are not minimal sur-
faces, they are also not critical points of the area functional considered on
the space of all possible deformations (fixed on the boundary), not only those
that preserve the volume. Thus, restriction of the space of admissible defor-
mations naturally leads to an increase in the number of surfaces that are
critical points of the area functional considered on this space.

A description of minimal surfaces as extremals of the area functional
proves very useful. For example, this approach has given the possibility of
solving the so-called Plateau problem, which consists in the following: for any
contour, among all surfaces of given topological type that bound it, is there
a surface of least area? A positive answer to this problem in the case when
the contour is a simple rectifiable Jordan curve (it has finite length) and the
surface has the topological type of the disk D? was obtained in 1928 by the
young American mathematician Jesse Douglas. However, his proof turned
out to be incomplete, and up to 1931 his paper had not appeared in print. At
about the same time a solution of Plateau’s problem, obtained by the Hun-
garian mathematician Tibor Radd, was published. In the following decades
Jesse Douglas also solved a number of other problems that arose in the theory
of minimal surfaces. In particular, the powerful mathematical technique that
he developed enabled him to prove the existence of minimal surfaces of high
genus spanning one or finitely many contours. For his achievement Dougals
was awarded in 1936 the highest prize in mathematics—the Fields Medal.

In conclusion we give the one-dimensional version of Plateau’s problem,
the so-called Steiner problem, and show how from its solution there follows
a proof of Plateau’s empirical principles, which describe all possible singu-
larities of soap films of stable minimal surfaces.
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3. Steiner’s problem. Let us begin with the simplest case. Suppose we
need to connect the towns A, B, and C by a system of roads, that there are
no obstructions, and that we are free to construct the roads where we like.
Suppose that the region in which the towns lie is flat. The problem is to find
a system of roads of least length. In mathematical language this means the
following: for three given points A, B, and C lying in a plane, to find a
point P and paths joining P to A, B, and C so that the total length of
these paths shall be as small as possible. Since a line segment is the shortest
path between its ends, the required paths are line segments PA, PB, and
PC . It remains to choose P in an optimal way.

It turns out that the solution depends on the relative positions of 4, B,
and C. If all the interior angles of the triangle ABC are less than 120°,
then the required point P is ugiquely determined from the condition that
the angles APB, BPC,and CPA are equal (they are thus equal to 120°).
But if one of the angles of the triangle ABC, say the angle at C, is at least
120°, then P coincides with C (see Figure 8).

The proof of this assertion is based on some elementary geometrical lem-
mas.

LEMMA 1 (Heron’s theorem). Suppose that points A and B do not lieon a
line a. Then among all the points P of the line a the point P = P, such that
|AP| + |BP| is as small as possible is uniquely determined from the following
condition: the angle between AP, and the line a is equal to the angle between
BP, and the line a (Figure 9).

A

FIGURE 9
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FIGURE 10

If A is a source of light, B is a receiver, and a is a mirror, then Heron’s
law can be regarded as a special case of the law of reflection (see above).

LemMa 2. Suppose that the points A and B are the foci of an ellipse, and
that the line a touches this ellipse at a point P. Then the angles between the
line a and the segments AP and BP are equal (Figure 10).

It follows that if we put a source of light at one focus of an elliptical mirror,
then all the rays collect at the other focus. Moreover, in elliptical billiards
the ball always goes either outside the foci, or through the foci, or between
the foci.

To prove Lemma 2 it is sufficient to observe that the sum of the distances
from any point outside an ellipse to its foci is greater than the sum |PA|+|PB|
(since P lies on the ellipse).

Now suppose that P is a solution of Steiner’s problem for a triangle ABC
in which all the interior angles are less than 120°. Through P we draw
the ellipse whose foci are 4 and B. Through P we draw the tangent a
to this ellipse (see Figure 11). It is easy to see that CP is perpendicular
to a. Therefore from Lemma 2 we see that 4PC = BPC. Similarly,
BPC = APB. Thus, all the angles at P are equal to each other, and therefore
equal to 120°. Now it is easy to construct the required point P and to see
that the solution is unique.

If instead of three points 4, B, and C we take any finite number of
points, we obtain the generalized Steiner problem: it is required to join all
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these points by a finite system of curves of least length. This problem can
be restated as follows: how do we join n towns by a network of roads with
the least expense? From the combinatorial point of view the solution of
this problem is a combination of two solutions, obtained above for the case
n = 3. Here are some examples (Figure 12).

We observe that the solution of the generalized Steiner problem is not
unique. For example, if four points are vertices of a square, we can obtain
two symmetrical solutions (Figure 13). We note that a system of paths of

FIGURE 12
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least length joining n points of a plane is called a minimal network (in the
plane).

The generalized Steiner problem in the plane has still not been completely
solved, so an experimental “solution” is of interest. Take two glass or trans-
parent plastic sheets, place them in parallel planes, and join them by pieces
of wire of the same length, equal to the distance between the sheets. Clearly,
all the pieces of wire are parallel to one another and perpendicular to the
sheets.

If we dip this configuration into soapy water, and carefully lift it out, then
between the sheets there will be a soap film whose boundary consists of two
parts: the set of joining wires and the set of “traces” which the film leaves
on the sheets. We note that in accordance with the minimum principle the
film is at an angle of 90° to each sheet. Moreover, this film consists of
perpendicular sheets of planar rectangles that adjoin each other along the
singular edges (see Figure 14). If a singular edge is not a joining wire, then
in accordance with Plateau’s principles exactly three rectangles meet on it at
angles of 120°. We observe that the area of the resulting soap film is equal
to the total length of the path joining the points where the wires are fastened
(the “trace™ of the soap film on a sheet) multiplied by the distance between
the sheets. If the film has least area among all films with a partially free
boundary consisting of the joining wires (rigid boundary) and the “traces™ on
the sheets (the hypothesis of the existence of such a film is called Plateau’s
problem with obstructions), then the corresponding “trace” on a sheet is a
solution of the generalized Steiner problem for the configuration given by the
fastening points.

Let us now turn to Plateau’s principles, which describe all possible singu-
larities of stable minimal surfaces. On a soap film we choose an arbitrary
point P. We take a smaller and smaller neighborhood of P and blow it up
to the same size. In the limit all the surfaces that join at P become pla-
nar, and the singular edges become segments of straight lines. Clearly, after
such an enlargement the resulting fragment of stable film will also be stable.
Now consider a sphere S? with center at P. Its intersection with the planar
configuration we have constructed is a networks on the sphere S 2, Clearly
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FIGURE 14

the curves of intersection are parts of great circles of s2. Moreover, if [/
denotes the length of the network, and r is the radius of the sphere s? , then
the area s of the part of the planar configuration inside the sphere is equal
to s = Ir/2. Therefore from the stability of the film it follows that at each
node of the network only three arcs can meet at angles of 120° (otherwise
by a small deformation we could lower the length of the network, and hence
the area of the film).

The following natural problem arises (the so-called Steiner problem on the
sphere): to describe all possible networks on the sphere consisting of arcs of
great circles meeting at each vertex of the network three at a time at equal
angles (of 120°). In contrast to the planar Steiner problem, the spherical
problem has been completely solved. It turns out that there are exactly ten
such networks, drawn in Figure 15.

A more careful analysis shows that only three of these ten networks (the
first three in Figure 15) correspond to configurations that minimize the area.
Figure 16 shows soap films stretched on contours corresponding to minimal
networks on a sphere. Only the first three of them are cones corresponding
to the local arrangement of soap films described in Plateau’s principles. This
observation is a physical “proof” that only in the first three cases are the
cones absolutely minimal, that is, they correspond to singularities occurring
in stable soap films.
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CHAPTER 2

Classical Minimal Surfaces in R’

In Chapter 1 we showed how widely minimal surfaces and surfaces of
constant mean curvature occur in Nature. Soap films and soap bubbles are
the most convenient physical objects that enable us to obtain a visual idea of
the properties of these surfaces, and experiments with a contour and soapy
water often make it possible to find the right answers, suggested by Nature
itself, to questions that arise in the theory of minimal surfaces and surfaces
of constant mean curvature. For example, a physical experiment with soap
films helps us to formulate a conjecture that gives a complete description
of a bifurcation (stepwise reconstruction) of soap films spanning a Douglas
contour, which arises under a continuous deformation of this contour (see
[4)).

However, experimental investigation of minimal surfaces is complicated
by the fact that in many cases the corresponding soap films are unstable. This
means that by a small movement of the surface its area can be decreased,
which leads to an instantaneous reconstruction of the corresponding soap
film. The existence of unstable soap films was observed by Poisson in his
investigation of the catenoid (see below). In the final section of Chapter
3 we associate with each minimal surface M an integer Ind M, called its
index. The index of a minimal surface determines its degree of instability,
and roughly speaking it is equal to the “number of ways” of decreasing its
area. If IndM is not zero, then the minimal surface M is unstable. In
Chapter 3 we calculate the indices of all classical minimal surfaces in R}
and describe some maximal domains of stability.

A theoretical investigation distinguishes among the whole class of mini-
mal surfaces those families that have various special properties. Below we
describe the main classical and modern examples of minimal surfaces known
to us and say what different features they have.

§1. Catenoids

ProBLEM 1. To describe all nonplanar minimal surfaces of revolution (the
so-called catenoids).
ANsweR. Each such surface is obtained by rotating a catenary (for the

21
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complete surface) or fragments of it (a catenary is the curve formed by
a sagging heavy chain with uniformly distributed mass). All the complete
catenoids form (up to a motion in R® ) a one-parameter family M_, a > 0:
if we take the z-axis as axis of rotation, then the generator of the catenoid
M, lying in the xz-plane is given by x = acosh(z/a) (see Figures 21 and
26).

SoLuTiON. Let (r, ¢, z) be cylindrical coordinates, and let A be a non-
planar minimal surface of revolution about the z-axis. If y(¢), ¢ € [a, B8],
is part of the generator of M that projects one-to-one on the z-axis, then we
can parametrize the curve y(7) by the coordinate z. We denote the surface
of revolution of y by K. Then on K we can choose coordinates (¢, z).
In these coordinates K has the representation (r=r(z),p=9¢,2=2). It
is easy to calculate the metric ds® induced on K and the area A(K) of K
in this metric:

ds =dr* +r’de* +dz* = r*de® + (# + 1)d 2,

AK) = 2P+ 1)dpdz = ﬂ27tr P +1dz.
K a

If M is minimal, then so is K. We now use the variational principle,
in accordance with which a compact minimal surface is a critical point of
the area functional (see §2 of Chapter 1). Consider a deformation K of
the surface K, fixed on the boundary, in the class of surfaces of revolution
(about the z-axis), where K, = K. Clearly, for sufficiently small s the
surface K can be represented, like K, in the form (r=r(z),9p =9,z =
z), z€[a,B), €S ' where S' denotes the unit circle, the domain of
variation of the coordinate ¢, and r,(z) = r(s, z) is a smooth function of
the variables s and z, where ry(z) = r(z). Since the deformation K| is
fixed on the boundary, all the generators y (z) of the surface K, have the
same ends 4 = y (a) = y(a) and B = y,(B) = y(B). Moreover, the area
A(K,) of K, which is equal to

g
A(K,):/ 2nr\/7 + 1dz,

is a smooth function of s. For K to be minimal it is necessary that the
derivative dA(K)/ds|,_, should be equal to zero for any such deformation.
We use this condition to determine possible forms of generators of catenoids.
It turns out that this condition is also sufficient.

We note that the area A(K) of a surface of revolution K is in fact a
function of all possible curves y, the generators of the surface K: A(K) =
A(y). The integrand L(r, ) = 2rrV#* + 1 depends on the coordinate r and
its derivative 7. Formally we can regard r and 7 as independent variables,
and L(r,F) as a function of two arguments L = L(x, y), where x = r,
y = F. More generally, we consider an arbitrary function L(x, y,!) of
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three variables: x = (x',...,x"), y = (', ..., »"), and ¢. In the case
when L = Zm'\/i'2 +1 wehave n=1, x=r, y =F, and the function L
doesnotdependon ¢, t=z.

For each curve y(t), t € [a, B], lying in the domain of variation of the
coordinate x, we define the number F(y) as follows:

8
F(y) = / L(x(1), %(1), 1)dt,

where x(t) = (x’(t), ..., X"(2)) is the velocity vector of the curve y at
the point y(¢). We have obtained a function F(y) defined on all possible
piecewise-smooth curves 7(f), ! € [a, B], lying in the domain of definition
of the coordinate x (we assume that the domain of variation of y is the
whole of R", and that of the coordinate ¢ is the interval [a, §]). The
function F(y) is usually called a functional, and the function L(x, y, ¢) is
called the Lagrangian corresponding to the functional F .

Let y.(1) be a smooth deformation of the curve y, fixed at the ends, that
is, y,(a) = y(a) = 4 and y(B) = y(B) = B, (1) = y(t). If x,(t) is the
representation of the curves y(¢) in the coordinates x = x' ..., x"), then,
applying the functional F to each curve y,, we obtain a smooth function

8
F6)=Fr) = [ Lix 0. %0, nd.
DEFINITION. A curve y is called an extremal of a functional F if
dF(y,)/ds|,.q=0

for any deformation 7, of y that is fixed at the ends.

CONCLUSION. Any interval y(f), ? € [a, B], of a generator of a minimal
surface of revolution that is projected one-to-one on the axis of rotation is
an extremal of the functionals F(y) = f: 2arVA + 1dz.

How do we find extremals of the functional F ? The following assertion
is an important advance in the solution of this problem.

ASSERTION 1 (see [1]). Let F be the functional corresponding to the La-
grangian L(x, y, t) defined on all possible smooth curves y(t), t € [a, B],
lying in a domain V . Then the curve y is an extremal of F if and only if
along the curve y the expression d(8L/dy)/dt — 8L/Ox is identically zero.

Here
OL_ (S, QL) SL_(oL oL
ax \ax'’""’ax")’ By \ay oy )’

and the total derivative d(8L/dy)/dt is defined as follows: in the expression
dL(x,y,t)/dy we need to first substitute x = x(t) and y = x(t), and then
differentiate the resulting function of t, that is, dL(x(t), x(t), t)/dy with
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respect to t. Explicitly (in the case n = 1) we have
d (81.) 8L . 8L, oL
=z )=+ — %+ .
dt \ 8y 8x0y 3y? 818y
The system of differential equations

d (8L 9oL _ 0

dt (ﬂ) ox
is called the Euler-Lagrange system of equations.

REMARK. We say that the Lagrangian L does not depend explicitly on the
“time” ¢ if 8L/8t = 0. Note that the Lagrangian need not depend explicitly
on ¢, nevertheless dL/dt will not be equal to zero.

Before proceeding to a proof of Assertion 1, let us consider a simple ex-
ample.

ExaMPLE. The motion of a point mass m under the action of the attract-
ing force of the Earth.

Let the coordinates (xl , x2, x’) be chosen in such a way that the x>
axis is vertical and directed upwards, and the (xl , xz)-plane is horizontal.
It is known that the force of gravity that acts on a small ball of mass m is
constant and equal to f = mg, where § is the acceleration of free fall, § =
(0,0, —g), where g ~9.8 ms™2. Here we are considering an approximate
model, well-known in the school physics course. If v = x = ()‘cl s x2 s i3 )
is the velocity of the ball, then the equation of its motion (Newton’s second
law) has the form J a(

p mv) -
ai~—ar ~mE=S
where p = mv is the impulse. Let T and U be the kinetic and potential
energy of the ball. It is well known that T = mv2/2 and U = mgx3 , where
2 3,02
vi=3 (X)),

It turns out that the trajectories of the motion of the ball are extremals
of a certain functional. In fact, we define the Lagrangian L by putting
L=T-U= mv2/2 - mgx3 . It is easy to verify that the impulse p and the
force f can be expressed in terms of this Lagrangian as follows:

pmy= Ok (SL L OLY_oL

v av'’ av?’ av? ox’
f-mg= Ok (OL 9L OL)

ox ax' ax? ox®)’

The equations of motion can be rewritten in terms of the Lagrangian L in
the following form:

dp_d (0L oL _ .,

dt —dt\ox) ox

Thus, Newton's second law produces a system of Euler-Lagrange equations
for the functional F with Lagrangian L equal to my? / 2-mg.1r3 . Therefore
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the trajectories y of the motion of a small ball in a gravitational field are
extremals of the functional F(y) = f Ldt, where L = mvz/z - mgx3 .
PROOF OF ASSERTION 1. Let y (1) = x,(f) be a deformation of the curve
(1), fixed at the ends 4 = y(a) = y,(e) and B = y(B) = y,(B), where
70(8) = 7(1) . We define the field n of the deformation y, as the vector field
along the curve y obtained as follows: with each point ¢ € [a, #] we asso-
ciate the vector n(f), the velocity vector of the motion of the
point y(¢) under the deformation y,(¢) at the initial instant s = 0: n(t) =

87,(1)/0sl,,- Wehave F(y,) = [’ L(x,, x,, 1)d1, so

_/ [8L ox, oL ax]
=0 Ja LOX Os * 3y Bs
where a-b= Y7 a'b'. Moreover,

dF _/’ oL +i(%.)_i(%). d
~J. 10x "ra\ay " ay) "

ESSO
4 e P,
=), |ax @ \ay)| "t "

Since the deformation y, is fixed at the ends, we have n(a) = n(8) =0
so L[y -n|? = 0. Thus,

ol - 5 5) e

By definition, the curve y is an extremal if and only if dF(y,)/ds|,_, = 0 for
any deformation y, of the curve y, fixed at its ends. If dL(8L/3y)/0x —
d(8L/dy)/dt is not equal to zero at some point {, of the interval [a, 8],
then from the continuity it follows that this expression is not equal to zero
in some neighborhood of ¢,. It is easy to construct a deformation, fixed
outside this neighborhood and having a nonzero deformation field, that has
the same directions as the field 8 L(8L/dy)/0x —d(dL/8y)/dt. For such a
deformation dF(y,)/ds|,_, > 0. This completes the proof of Assertion 1.

We note that the Euler-Lagrange equations are a system of ordinary differ-
ential equations of the second order (in the case n = |1 this system consists
of a single equation). It turns out that in some cases the Euler-Lagrange equa-
tions can be much simplified. For example, when n = 1 from a second-order
equation we can go over to a one-parameter family of first-order equations,
whose solutions can as a rule be obtained much more easily. Before for-
mulating the corresponding assertion, we again consider the example of the
motion of a point mass in the force field of the Earth’s attraction.

We recall that the total energy H of a moving ball is equal to the sum of
the kinetic and potential energies, thatis, H = T + U = mv2/2 + mgx’.
The well-known law of conservation of energy asserts that along a trajectory

dF
ds

a
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of the motion the total energy is constant: H = const. This equation is of
the first order and carries easily extracted additional information.
Let us calculate the total energy H in terms of the Lagrangian:

H=T+U=2T—L=p-v—L=%~x—L.
ax

ASSERTION 2 (the law of conservation of energy; see [1], [38]). Let F be
the functional corresponding to the Lagrangian L (see Assertion 1). Suppose
that L does not depend explicitly on the “time” t, thatis, L = L(x,y),
8L/8t=0. Then on an extremal y of the functional F the total energy H ,
calculated from the formula H = 8L/8y -y — 8L/8x, is constant, that is,
H(y(t)) does not depend on t, H(y(t)) = const.

PROOF.

d_”_i(%)“%x_%x_%x_ i(”_’: _9L) o0
dt ~ dt\9x x ox ax” ~ |dt \ox dx -

REMARK. In the case when n = 1, thatis, x = x', y = y', the law
of conservation of energy H = const produces a one-parameter family
(parametrized by a constant) of ordinary differential equations of the first
order. We now use this remark to determine all generators of minimal sur-
faces of revolution.

Thus, suppose that the curve y(z), z € [a, B8], is a generator of a minimal
surface of revolution K that projects one-to-one on the z-axis (see above).
The Lagrangian L = 2nrV P+ corresponding to the area functional A(K)
of the surface K does not depend explicitly on the “time” z. Therefore
along an extremal the total energy H is conserved. We have

p= % _ 2nri
or ‘/'-_2 l’

.2
H=p-v-L= 2nrf —2nr\/i2+l=- 2nr =a,.

Consequently,
r r
F=%\=-1, a>0; z=taarccoshz+c.

Thus, up to a shift along the z-axis and the direction of parametrization
(the coordinate z or —z) we have obtained the equation r/a = cosh(z/a),
z € [a, B], that specifies the surface of revolution K : the generator y(z) of
any minimal surface of revolution about the z-axis satisfies this equation for
some a (after a suitable motion). We show that for any a > 0 the surface
K is minimal (we have not verified the condition of extremality of the area
functional for all deformations). For this it is obviously sufficient to verify
that the mean curvature of K is zero at all points of the generator y.
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FIGURE 17

PROBLEM 2. Prove that the generator y of a surface of revolution is a
principal section for any point of it.

SoLuTION. If this is not so, then the normal section perpendicular to y is
not a principal section. Therefore for a principal section a there is a section
o', not coinciding with it, that is symmetrical about the plane specifying y.
But then the sections a and a’ have the same curvature, which contradicts
Euler’s formula (Figure 17).

LEMMA (Meusnier’s theorem; see [1], and also Chapter 3). Let M be a
smooth surface in R, and P a point of M. Let T1 be a plane passing
through P and not touching M at this point. Let v denote the unit tangent
vector of the section y =TINM at P, and let ¢ denote the angle between the
plane T1 and the normal plane passing through P parallel to v. Then the
curvature K of the section y and the curvature x(v) of the normal section
in the direction v are connected by the relation x cosgp = x(v) (see Figure
18). Here the curvature x is calculated with respect to the normal n in the
plane T1 to the section y, which forms an acute angle with the normal N to
the surface M .
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FIiGURE 18

It is now easy to calculate the principal curvatures of a surface of revo-
lution. Suppose that P lies on the generator y(z) = {x = r(z),y = 0}.
Then one principal curvature at P is the curvature of y. Therefore x, =
F(1+ 22,

The curvature k, of the orthogonal normal section is calculated by means
of Meusnier’s theorem. The section by the plane I1 orthogonal to the z-axis
is a circle with curvature x = —1/r (the minus sign appears because of the
choice of the normal N to the surface of revolution M). The cosine of the
angle between the plane I1 and the corresponding normal plane is equal to

1 1
-(1,0) = —.
V1t Vit
Therefore k, = —1/(rV1 + i”) , and the mean curvature H is equal to

¥ 1 Fr—it -1

T+ -r\/l+r‘2 - r(V1+ )Y

The rest of the verification is obtained automatically. Since each solution can
be extended to the whole z-axis, the case when the generator of a minimal
surface of revolution does not project one-to-one on the z-axis anywhere
leads to a flat surface (that is, this generator is not a graph over the z-axis
anywhere). This completes the solution of Problem 1.

Thus, all nonplanar noncongruent complete minimal surfaces of revolution
form a one-parameter family of catenoids r = acosh(z/a), a> 0.

A compact catenoid can be realized as a soap film covering two coaxial
circles of the same radius lying in parallel planes. How many soap films can
be spanned on this contour?

In 1983 Schoen [5] showed that on such a contour we can span only mini-
mal surfaces of revolution (Schoen’s results refer to a more general situation).

cosp =(1,F)
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minimaf fc‘[m
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We should observe that on a contour consisting of three coaxial circles lying
in parallel planes (a contour invariant under rotation) we can span a mini-
mal surface that is not a surface of revolution (an example of Gulliver and
Hildebrandt, see [3]). We note that the first examples of this kind were con-
structed by Morgan in [6]. Morgan’s contour contains four coaxial circles,
two of which lie in the plane z = 0, and the other two in the planes z = +1.
Figures 19 and 20 show the contours and the corresponding minimal surfaces
from the examples of Morgan and Gulliver-Hildebrandt. The main idea of
both constructions is the following. To a contour that is invariant under
rotation we add a number of segments such that the generating system can
be split into two symmetric parts I', and I', not invariant under rotation.
Covering I', and I', by symmetric soap films M, and M, and combining
I', and T, into the original system, we obtain a minimal surface spanning
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minima® fifm
FiGuRre 20

the original contour and, in accordance with the symmetry principle (see §2),
is smooth along the added segments, which can be removed without losing
anything. The resulting film M, U M, will not be invariant under rotation.

Thus, to describe all minimal surfaces spanning a contour that consists of
two coaxial circles of the same radius situated in parallel planes it is sufficient
to describe all catenoids spanning this contour. The complete solution of this
problem had already been obtained by Poisson (see [2]). We now give the
corresponding results.

Let h be the distance between the circles, and p their radii. It turns out
that for small A there are exactly two catenoids r = a,cosh(z/a,), i =1, 2;
one of them is close to a cylinder, and the other to a cone (see Figure 21(a)).
As h — 0 the radius a, of the mouth of the first catenoid tends to the
radius of the bounding circle, a, — p, and the radius a, of the mouth of
the second catenoid tends to zero, a, — 0. If A increases, then the outer
catenoid sags (a, decreases), and conversely the inner catenoid becomes less
steep (a, increases). Thus, as A increases the catenoids tend to each other.
Finally, for some value h = h_(p) the two catenoids “stick together”. On
such a contour we can span only one catenoid. If we continue to move the
circles apart, then in practice the catenoid corresponding to 4 (p) suddenly
becomes the film spanning each flat disk of the circles: when h > h_ there
is no catenoid spanning this contour (see Figure 21(b)).

For an analytical justification of the behavior of the catenoids as we vary
the distance between the circles, assume that in a cylindrical coordinate sys-
tem (r, ¢, z) the circles of radius p forming our contour lie in the planes
z =% h/2 and the line of centers is the z-axis. Then the catenoids span-
ning this contour have the form r = acosh(z/a) with p = acosh(h/2a).
The number of catenoids is equal to the number of solutions of the last
equation for the variable a, a > 0.

We construct the graph y = acosh(#/2a) in coordinates (a, y) for some
fixed h. The required solutions are given by the intersection of this graph
with the line y = p. As a — 0 or a — +oc we obviously have y — +0c.
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We show that when a > O the function y(a) = acosh(h/2a) has a unique

extremum (a minimum). In fact, the equation

dy h h . h

% =COShz - Esmhﬂ =0
has a unique positive solution a = a,, since this is true for the equivalent
equation cotanh(h/2a) = h/2a, a > 0. Let ¢, denote the unique positive
root of the equation cotanht =¢. Then a, = a, = h/2t,. Thus, the graph
for y(a) = acosh(h/2a) is as shown in Figure 22.

If we now begin to increase h, the graph moves upwards. As h —

+oc the critical point a; = h/2t; — +oc, and so the critical value y, =
aycosh(h/2a;) = a,coshty — +oo. Conversely, as h — 0 we have a; — 0

and y, — 0.

FIGURE 22
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CoNcLUsION. For any p > O there is a critical value A_(p) such that
when h < h_(p) the line y = p intersects the graph of the function y(a) =
acosh(h/2a) in exactly two points which tend to each other as & — h_(p),
and when h = h_(p) the line y = p touches the graph for y(a) =
acosh(h/2a). When h > h_(p) there are no intersections. This justifies
the geometrical picture described above of the behavior of the catenoids as
h varies.

We note that in real experiments we always obtain only one of the two
catenoids, namely the one that is close to a cylinder for small 4. The fact is
that the second catenoid is unstable (see Chapter 3).

§2. The helicoid

A helicoid is a surface swept out by a straight line (the generator of the
helicoid) under a uniform screw motion (see Figure 23).

In order to give an exact meaning to this definition, let us write down the
parametric form of a helicoid. We introduce Cartesian coordinates x, y,
z in such a way that the z-axis coincides with the axis of rotation and the
x-axis with the generator of the helicoid. If & denotes the distance between
the closest noncoincident parallel generators (4 is called the pitch of the
helicoid), v is the angle between the generator and the xz-plane, and u
is the standard coordinate on the generator (points with u = 0 lie on the
z-axis), then the helicoid can be defined parametrically as

X =Ucosv, y =usinv, z=aqv,

where |a| =h/2n, ueR,and v €R.
If a > 0, then an anticlockwise rotation of the generator raises it (z
increases), and if @ < O the rotation lowers it (z decreases).

FIGURE 23
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A simpler representation of the helicoid can be obtained in cylindrical co-
ordinates (r, ¢, z), but in this case only “half™ the helicoid is parametrized:
if for ¥ and v we take u =z, v = ¢, then “half™ the helicoid can be given
by (r=r,p=9¢,z=ap),orsimply z=agp.

The helicoid belongs to the family of ruled surfaces, that is, surfaces swept
out by a straight line (the generator of the ruled surface) as it moves along
some curve, called the directrix of the ruled surface. All cylinders (the gener-
ators are all parallel) and cones (the generators all pass through one point) are
ruled surfaces. An interesting example is a ruled surface obtained by rotating
the generator about an axis of rotation skew to it. If the generator and the
axis of rotation are not perpendicular, this surface is called a hyperboloid of
one sheet and is an example of a second-order surface (the equation speci-
fying the hyperboloid is a polynomial of the second degree in the Cartesian
coordinates x, y, z). We note that a plane, which is also a ruled surface,
is of both conical and cylindrical type. Moreover, a plane can be regarded as
a degenerate helicoid, having zero pitch A =0.

It turns out that a helicoid is a minimal surface. Moreover, among all
ruled surfaces only the helicoid and fragments of it are minimal.

This assertion was proved by E. Catalan in 1842. Here we give a different
proof, which is more geometrical from our point of view.

We first prove that a helicoid is a minimal surface. For this it is sufficient
to verify that the mean curvature along an arbitrary generator, say the x-
axis, is zero, since for any pair of generators there is a motion that takes the
helicoid into itself and the first generator into the second.

Suppose that the point P of the generator X (the x-axis) has coordinates
(4, 0,0). Through P we draw the plane Il perpendicular to X . Clearly,
the intersection of IT with the helicoid is a normal section, which we denote
by y. The plane II is given by the equation x —u = 0. The normal section
y obviously has the form y(¢) = (4, utang, ap), where y(0) = P, so the
curve y in the plane II is the graph of the tangent function, which has a
point of inflexion at ¢ = 0. This means that the curvature of y at P is zero.
Thus, for two mutually perpendicular normal sections—the generator X and
the curve y—the curvature is zero (at P). From this it follows immediately
that the mean curvature H vanishes at P (see the problem in §1 of Chapter
1). The case u = 0 is obtained similarly. Since P is arbitrary, we have
proved that the helicoid is a minimal surface.

To prove that the helicoid is the only complete ruled minimal surface we
need two properties of minimal surfaces, namely the reflection principle of
Schwarz and Riemann and the uniqueness theorem. Both these properties
follow from the fact that in the special coordinates (u, v) the functions
x(u,v), y(u, v), z(u, v) that specify a minimal surface parametrically are
harmonic (see §2 of Chapter 3). This remark enables us to extend many
properties of harmonic and analytic functions to minimal surfaces.
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THE SCHWARZ-RIEMANN REFLECTION PRINCIPLE |. Suppose that the
boundary of a minimal surface M lying in R’ contains an interval 7 of
a straight line /. Let M° denote the minimal surface symmetrical to M
about the line /. Then M" UM is a smooth minimal surface: the surfaces
M and M"° join smoothly along the interval I (compare with the symmetry
principle for analytic and harmonic functions).

THE UNIQUENESS THEOREM. If two smooth minimal surfaces M, and M,
contain an open subset in their intersection, then the union M, UM, of these
surfaces is a smooth minimal surface (compare with the uniqueness theorem
Jor analytic and harmonic functions).

We now give an outline of the proof of Catalan’s theorem.
It turns out that ruled minimal surfaces are completely characterized by
the following property.

LEMMA. Let M be a ruled minimal surface with directrix y(t), and let |,
and |, be the generators of M passing through the points y(t,) and y(t,)
respectively. Then there is a generator | passing through the point y(t) for
some t, ty<t<t,, such that l, is symmetrical to |, about | (we call such
a line | the midline between I, and 1)) .

Proor. Consider an arbitrary generator / passing through some point
('), ty <t <t . Let M[ty, {'] denote the part of the surface M consisting
of all generators drawn through the point y(¢) for all ¢ € [¢,, ']. Let us
reflect M([t,, r'] about /. We denote the image by M"[¢,, ¢']. In accordance
with the reflection principle and the uniqueness theorem the union M| 4, t']U
M*[ty, ['] is either equal to M[t,, ("] for some (*, t, < " < ¢, or it
contains M[ty, 1,]. As ' =y, 1" alsotendsto #,. As { —¢,, " at some
instant becomes greater than ¢, . Because of the continuity it follows that
there is a ¢ such that ¢* =, . This proves the lemma.

Next, we define a frame of an arbitrary ruled surface as a family of gen-
erators that is everywhere dense (on the surface). Obviously the frame com-
pletely determines the form of the ruled surface: if two ruled surfaces M,
and M, have congruent frames, then the surfaces themselves are congruent.

Using the characteristic property of a ruled minimal surface described in
the lemma, on each such surface we construct a frame, which, as it turns out,
is congruent either to a planar frame or a frame lying on the helicoid. This
observation completes the proof of Catalan’s theorem.

Thus, let M be an arbitrary ruled minimal surface with directrix y(¢),
and let /, and /, be an arbitrary pair of noncoincident generators of M
passing through the points 7(¢,) and (,) respectively. We draw the midline
=1 ;2 between ly and /,. From the lemma it follows that / is a generator
of M. Next,let /, ;4 be the midline between /, and /, ;2+ and let 13/4 be the
midline between /, , and /; . By induction, if /;, /, ,n, ...,/ is the family
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of generators constructed at the nth stage, then at the (n+ 1)st stage we add
to this family all the midlines drawn between neighboring generators /, s

and /), forsome j, j=0,1,...,2" - 1. In the limit we obviously
obtain a frame L of the surface M([t,, ¢,]. To obtain a frame for the whole
surface M, we reflect L about the lines /, and /, and consider the union
of the images with L itself. The resulting collection is a frame of the ruled
minimal surface M_ ,= M (UM, t ]UM2 , where M° ,»and M are
the images of the surface M [t0 , t;] under reflection about the generators IN
and /, respectively. Continuing the reflection process in the obvious way, in
the Iimit we obtain a frame L, the frame of the complete ruled minimal
surface, which, in accordance with the uniqueness theorem, contains our
minimal surface M.

It remains to show that the frame L_ is either planar or the frame of a
helicoid. In fact, if /, and /, are parallel or intersect, then L_, is obviously
the frame of a plane (all the midlines lie in one plane). Suppose that /, and
/, are skew. Consider a plane Il parallel to the two generators and project
l, and I, orthogonally onto IT. Let /; and /| be their projections, and let
P €11 be the point of intersection of [, and /| . If / is the midline between
I, and [, , then the orthogonal projection /" of / on II is the bisector of the
angle between 1(', and 1;. Moreover, / is at the same distance from /, and
l, . From what we have said it follows that if we draw through P the line Z
perpendicular to IT, then firstly the lines /), /, and /, are orthogonalto Z,
secondly they intersect Z in points z,, z, and 2z, such that |zyz| = |zz,],
and thirdly the angle between /, and / is equal to the angle between / and
1, . Therefore / lies on some helicoid (with Z as directrix) passing through
ly and /. Similar results hold for any triple of lines of L_ , one of which
is the midline between the other two. It is now clear that L_ is the frame
of a helicoid. This completes the proof of Catalan’s theorem.

We have thus shown that all nonplanar noncongruent complete minimal
ruled surfaces form a one-parameter family of helicoids (for the parameter of
the family we can choose the pitch #). We recall that all nonplanar noncon-
gruent complete minimal surfaces of revolution also form a one-parameter
family, the family of catenoids. For the parameter of this family we can
take the radius of the mouth of the catenoid. It turns out that there is a
very close connection between catenoids and helicoids. Firstly, the catenoid
and helicoid are locally isometric for suitable values of the parameters. This
means the following. We recall that in cylindrical coordinates (r, ¢, z) the
catenoid is given by r = acosh(z/a), a > 0, where z € R, and the angle ¢
varies from 0 to 2n . If we allow the angle ¢ to vary from —occ to +oc, we
obtain a covering, winding of a catenoid with infinitely many sheets. It turns
out that for suitable values of the parameters 4 and a there is a diffeomor-
phism between the helicoid and this covering of a catenoid that preserves the
metric.
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Moreover, by means of a bending we can wind the helicoid onto the cor-
responding catenoid, where the bending can be carried out in the class of
minimal surfaces. This means that there is a one-parameter family of mini-
mal surfaces M,, 0 <t <1, smoothly depending on the parameter ¢, such
that M, is a helicoid, M, is a covering of a catenoid with infinitely many
sheets, and all the surfaces M, are isometric to one another. Below we con-
struct this bending explicitly. Isometric minimal surfaces M, and M, that
can be “joined” by a smooth family M, of isometric minimal surfaces are
said to be conjugate, and the intermediate minimal surfaces M,, 0<t< 1,
are said to be associated. In §3 of Chapter 3 we give another definition (more
convenient for our work) of an associated family and conjugate surfaces in
terms of the Weierstrass representation. For now we just observe that the
catenoid and helicoid (the case a =1, h = 2xn) can be given parametrically
as follows:

x cosh w coshucosv,
catenoid r,(u,v) = (y) = Re (—isinhw) ={ coshusinv,

z w u,
x cosh w sinhusinv,

helicoid r,(u, v) = (y =Im (—isinhw ={ -sinhucosv,
z w v,

where (u, v) are coordinates on the surface, and w = u + iv is the corre-
sponding complex coordinate, w € C. We note that the parameter v is the
angle ¢ in cylindrical coordinates, and for the helicoid the coordinate u is
replaced by sinhu. The joining family of minimal surfaces is given by the
radius vector r(u, v, a) as follows:
r(u,v,a)=cosa-r(u,v)+sina-ry(u,v),

where the parameter a € [0, 7/2). When a = 0 we have a covering of a
catenoid, and when a = n/2 we have a helicoid. The fact that all these
surfaces are minimal follows immediately from a result in §3 of Chapter 3.
The fact that they are all isometric is obtained by direct calculation (verify
this).

Let us fix some a € (0, #/2) and see what the surface r(u, v, a) looks
like. We need to find the “sum” of a catenoid with mouth radius cosa and a
helicoid with pitch 2z sina. Let us put v = 0 and see how the corresponding
generators of the catenoid and helicoid are situated.

The generator of the catenoid is a catenary y(u) in the xz-plane; as u
increases the z-coordinate of the point y(u) increases. The generator of
the helicoid is the y-axis; as u increases the y-coordinate decreases. We
need to find the “sum™ w of the radius vectors of these generators for the
same values of u. In order to represent w visually, we draw through the
catenary y the family of lines parallel to the y-axis. We obtain a cylindrical
surface. Clearly, to the value u = 0 there corresponds the vertex of y. As
u increases the corresponding point of w moves with y along the cylindrical
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FIGURE 24

surface to the left, and as u decreases it moves to the right. The larger |u|
is, the larger the shift (see Figure 24).

What happens to w if we raise the generator of the helicoid by a height
h? Obviously w is also raised by a height 2. One final remark. As v
increases, the generators of the catenoid and helicoid rotate anticlockwise
about the z-axis with the same speed. The generator of the helicoid moves
forward in the direction of the z-axis. Thus, the surface r(u, v, a) is rather
like a helicoid: it is obtained as the surface swept out by the curve @ under
a simultaneous uniform rotation about the z-axis and a uniform forward
motion along this axis.

Let us see what happens to the “generator” w as a varies from 0 to n/2.
When a = 0 the curve w is a catenary y of the catenoid r,(u, v). As a
increases the vertex of y tends to the origin, and w deviates more and more
from y along the corresponding cylindrical surface. The profiles of different
cylindrical surfaces for different a are shown in Figure 25.

In the limit, when a = n/2, the curve w becomes horizontal, and its
vertex coincides with the origin— w becomes a generator of the helicoid.
The distance between neighboring coils of the surface r(u, v, a) is equal to

Az

cosol

al

FIGURE 25
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2nsina, so it tends to 27 as a — n/2. The deformation of the helicoid
into a catenoid is shown visually in Figure 26.

FIGURE 268
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FIGURE 27A
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FIGURE 27B

We note that a similar deformation can easily be seen by experiment with
soap films. For this we make a wire contour formed from two cutting circles
and two connecting wires going along closing meridians of the catenoid (see
Figure 27(a)). Deforming this contour, as shown in the figure, we obtain
what is required.

Interesting experiments can be set up by investigating the helicoid for sta-
bility. We make a contour consisting of two spirals and two closing intervals.
For large pitch (that is, for sufficiently large period of the spirals) a soap film
stretched on this contour is a physical realization of a helicoid. If we decrease
the pitch, contracting the spirals, there is an instant when the film ceases to
be a helicoid and becomes a film of type (2) (see Figure 27(b)). In Chapter 3
we calculate the index of the helicoid and prove that it is an unstable minimal
surface.

§3. The minimal surface equation. Bernstein’s problem.
The Scherk surface

1. The minimal surface equation in R. Suppose that a minimal surface
M in R® is given in the form of the graph of a function z = f(x, y) over

a domain Q C R(zx_y) . How can we describe all such functions f? It turns
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out that all functions whose graphs are minimal surfaces are described by the
following second-order differential equation:

(l+',;'2)'j:\'x—2’,:‘yj;-,;+(l+f;z)'f;y=0,

This is called the minimal surface equation.

For the proof we use the fact that minimal surfaces are critical points of the
area functional (see §2 of Chapter 1). Let Q, denote an arbitrary compact
subdomain of Q, that is, we suppose that the closure ﬁo of Q, is compact
and lies entirely in Q. The restriction of M to , is a minimal surface
M, of finite area. Consider an arbitrary smooth deformation M, of M,
with support lying inside £2,. We recall that the support of a deformation
is the smallest closed subset of the surface outside which deformation does
not occur.

Let A(f) = vol, M, denote the area of the surface M,. Then minimality
of M means that d4/dt|,_, =0 for any such M, and M,.

Clearly, any small deformation of M, specified by a graph is realized in
the class of graphs. Each such deformation is described by the family of
functions

z=f(x,y)=F(x,y,1), F(x,y,0=f(x,y), (x,y)€Q,,

where the functions f, are equal to f outside the support K of the defor-
mation F.

The area of the surface M, given by the graph z = f/(x,y) = F(x, y,?)
over the domain Q, is calculated by means of the integral

A(l)=[ V1 +Fl+Fldxdy.
2,

Since M, is a minimal surface,

A(0) = /no & T+ T4 Fll.pdxdy =0,

+
\/|+I-‘2+F ly0 = S ";' , where F, = %F,
VI+0+ 1 !

We observe that

_LFE o __SLF V_ o (__ L |p
"
VI+i+ /] ox VI+i+f} ox Vi+ 12+ 1]
The integral over €, of the first term on the right-hand side of this equality
is zero. In fact, when ¢ = 0 the function F, is zero outside K because

there is no deformation outside the support. Extending the integrand by
zero outside K to the whole plane R’ and considering the rectangle Q =

=0
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[-a, a] x[-b, b], which contains K, Q D K, we can go over to integration
over Q:

ot ()
a0x \Vi+Z+ 7)) Jkox\\is g4 g2
d f.F, blre o f.F,
=fa5§ ( m) [, [/_ ax (——W 17) dx] dy

xX=a
By
1+ 1+ 1] e

[\J1+ f}+ /). Thus,

Similarly we consider the term ,f; -

) 8 / 8 /,
A0 =-[ | = | =2 |+ Z | ——22__ || Fdxdy.
@ /[‘”(\/——n+f:+f:)*6Y(\/_—n+fﬁ+‘f:)} i

Since we can take for F, any smooth function with support in Q, (the
support of the function is the smallest closed set outside which the function
vanishes) and construct from it the corresponding deformation F, the ex-
pression in square brackets must vanish. (If it is not zero at a point (x,, y,),
then it is not zero in a whole neighborhood of (x,, y,). It remains to con-
struct a smooth nonnegative function with support in this neighborhood that
does not vanish identically.)

The resulting condition is necessary and sufficient for the function f to
specify a minimal surface M . Elementary calculation reduces the equation

9 ___f + i _j;' =0
ox V1+72+2) O VI+2+7
to the minimal surface equation

A+ S = 260 fy + L+ £, =0

2. Bernstein’s problem in R*. The following natural question arises: is
there a function z = f(x, y) that satisfies the minimal surface equation and
is defined on the whole plane R2? Obviously, any linear function (specifying
a plane) is a solution of this equation. Are there any nontrivial solutions?
This a called Bernstein’s problem. It turns out that in R® there are no other
complete graphs (graphs over the whole plane) that are minimal surfaces.

The solution of Bernstein’s problem is based on two facts, which we prove
in Chapter 3.

Let z = f(x,y) be an arbitrary graph over the whole xy-plane that
specifies a minimal surface M .
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1. There is a change of coordinates (x, y) — (u, v), where (u, v) run
through the whole plane R’ , such that the metric on the surface M, written
in the (u, v)-coordinates, has the form ds® = AMu, v)(du2 + dvz), where
A(u, v) is a positive smooth function defined on the whole plane lk(zu'u).
This means that at each point of the graph M the velocity vectors of the
coordinate curves ¥ = const and v = const are orthogonal and have the
same length. Such coordinates are called isothermal (for the details see §1 of
Chapter 3).

2. Let us consider the Gaussian mapping v of M, that is, with each point
(x,y, f(x,y)) we associate the unit normal vector to M at this point that
makes an acute angle with the z-axis. Since the unit vectors of all possible
directions form the sphere s? given by the equation X+ y2 +22=1 , the
mapping v takes our minimal surface into the sphere s? , UM = s2.
Clearly, the Gaussian image (the image of the Gaussian mapping) of any
graph lies in the upper hemisphere.

On the sphere S? with the point P removed we can assign special co-
ordinates, called stereographic coordinates. Let P be the North Pole of the
sphere, thatis, P = (0, 0, 1). We map the sphere S2\P onto the xy-plane,
associating with each point Q € SZ\P the point 7(Q) of the xy-plane at
which the line PQ meets this plane (see Figure 28).

The mapping =n: SZ\P — Oxy is called stereographic projection. Let
(x, y) be the standard coordinates in the xy-plane. In the plane with coor-
dinates (u, v) we form the corresponding complex coordinate & = u + iv,
and in the xy-plane the coordinate 5 = x + iy.

The Gaussian mapping v gives a mapping of the complex plane C, =

R2 ) onto the complex plane C,, ~ R%x , Y

(u,v

2
ng]R

(u,v)

~MLS\PLRx,yxC,,

where C, and C, are the complex planes with coordinates ¢ and 7.

The main assertion of part 2 is that the mapping C,—~C, defined in this
way is holomorphic (complex-analytic). The proof of Bernstein’s theorem
follows immediately from this. In fact, the image of the Gaussian mapping v
of the surface M lies in the upper hemisphere. Therefore its image under the
stereographic projection 7 is a bounded subset of C_. Thus, the Gaussian
mapping v specifies a bounded holomorphic function defined on the whole
complex plane. By Liouville’s theorem this function must be a constant.
Consequently, the Gaussian mapping takes the whole surface M into one
point. Therefore all the normals to the graph are parallel, and so the graph
is a plane.

REMARK. From the proof it is clear that the main feature of part 1 is
the assertion that the coordinates (u#, v) run through the whole plane RZ.
Otherwise we could not apply Liouville’s theorem.
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FIGURE 28

3. The Scherk surface and symmetry principle. One of the simplest types
of functions of several variables is a function that can be represented as a sum
of functions of each variable separately. In our case we consider a function
z=f(x,y)=o(x)+y().

QuEsTiON. When does a function of this type specify a minimal surface?

This problem can be completely investigated. It is easy to see that in
the given case the minimal surface equation has the form (1 + wyz)q)xx +

(1+ ¢,2,)W,,,, =0 and so it separates:

'Il}'}' ¢:tx

2:— 2=a=const.
1+y, 1+ 93

When a = 0 we obtain the equation of a plane. When a # 0 we have
p(x) = % In[cos(ax + b)] +¢,,

vy) = —é In[cos(ay +d)] +¢,,
where b, c,, ¢,, d are arbitrary constants. Thus,

_ _ 1, cos(ax +b)
z=fx,y)= alncos(ay+d) ’

Up to an isometry (a shift along the z-axis by ¢, and also along the x-
axis and y-axis by b and d respectively) we have obtained a one-parameter
family of minimal graphs, given by the functions z = a”~' In(cosax/ cosay),
a # 0, each of which is defined over the “black squares of a chessboard”,
that is, where cosax/cosay > 0, for example, over {(x, y)| lax| < =n/2,
lay| < m/2} . These surfaces are called Scherk surfaces. As in the case of the
catenoid and helicoid, we have a unique Scherk surface (up to isometry and
homothety), given by the function z = In(cosx/cosy).

Let us consider the fragment of the Scherk surface defined over the “black
square” |ax| < m/2, |ay| < n/2. The intersection of this fragment with
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the xy-plane consists of two intervals y = £x, |ax| < #/2. This fragment
goes into itself under rotation through an angle n about the z-axis and has a
saddle form: when |x| < |y| the graph is above the xy-plane, thatis, z > 0,
but when |x| > |y| the graph is below the xy-plane.

As we approach a point of the boundary that is not a vertex of the black
square, the z-coordinate of the graph tends to infinity. As we approach a
vertex of the black square along different curves we can obtain in the limit
any point of the vertical line passing through this vertex. Therefore the clo-
sure of the Scherk surface as a subset of R’ contains, apart from the graph
itself, four vertical lines, passing through the vertices of the black square.
These vertical lines are the boundary of a fragment of the Scherk surface. If
we reflect this fragment about one of these vertical lines, then by the symme-
try principle we obtain a minimal surface that is smooth along the vertical
line. The resulting symmetrical fragment coincides with the fragment that
is defined over a neighboring black square, and it is easy to see that it is
smoothly combined into a single minimal surface with the fragments defined
over the four adjacent black squares. Continuing this operation, we obtain
the complete Scherk surface (see Figure 29).

This surface is a graph over the whole “black part” of the plane with
the removal of a net consisting of lines parallel to the x-axis and the y-

\
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FIGURE 29
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axis passing through the vertices of the lattice {x = (n/2 + nk)/a,y =
(n/2+=nl)/a}, k, 1 € Z. The fragments of the surface over adjacent squares
are joined to each other by vertical lines passing through the vertices of the
lattice.

§4. Periodic minimal surfaces

In §2 we stated the Schwarz-Riemann reflection principle 1, which en-
ables us to extend minimal surfaces beyond rectilinear parts of the boundary.
There is a second Schwarz reflection principle, which we now state.

THE SCHWARZ REFLECTION PRINCIPLE 2. Suppose that a smooth minimal
surface M in R® orthogonally approaches a plane I, that is, the intersection
of Il and the boundary M of the surface M is a smooth regular curve y
along which M and I are orthogonal. Then, if M* denotes the image of
M under reflection in IT, the union M UM" is a smooth minimal surface:
the minimal surfaces M and M" join smoothly along y.

The situation in which a minimal surface approaches a plane at a right
angle occurs naturally in problems known as problems with a partially free
boundary. Let us illustrate this by an example. We assemble a configura-
tion consisting of the surface P of a physical body (for example, a sheet
of plexiglass) and a wire contour I' attached to this surface. If we dip this
configuration into a soap solution and lift it out, then a soap film remains on
it (see Figure 30).

The boundary of this film consists of two parts: the wire contour I" (the
fixed part of the boundary) and a curve 7, the trace left by the soap film on
the surface P (the “free” part of the boundary).

We have already met a similar situation when we spoke about an experi-
mental “solution” of the planar Steiner problem (see §2 of Chapter 1).

Schwarz observed that in a problem with a partially free boundary the

r

FiGURE 30
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soap film spanning a configuration consisting of a set of surfaces and curves
joining them (for example, P UTI") approaches the surfaces occurring in this
configuration at a right angle.

We now consider a connected configuration consisting of a set of flat sur-
faces P, P, ..., P, and segments of lines /, ...,/ (aso-called Schwarz
chain (see Figure 31)).

Suppose that a soap film M is stretched on this configuration. Sup-
pose that the surface M approaches (orthogonally) the planes P P,.
and that Vij»oees ¥, are the traces left by this surface on the correspond-
ing planes. Suppose that the boundary dM of M consists of the “traces”
Vijroeen ¥ and the segments 1I » .-+ » I; of the configuration. Then, in ac-
cordance with the reflection pnncnples 1 and 2, we can extend M to a smooth
minimal surface by reflecting M in the planes P , ..., P, and the segments
1, , ..., 1, . Obviously, the boundary of the resulung mlmmal surface again
consnsts of segments of lines and “traces” lying in planes perpendicular to
the extended surface along these “traces”. We do not exclude the case when
the extended surface has no boundary at all. If the surface has a bound-
ary, then we can again extend the surface, and this extension process breaks
off only when the boundary of the extended surface “disappears”. Such a
disappearance can happen, for example, when the configuration consists of
one plane, and the film is noncompact and is a half-plane orthogonally ap-
proaching the plane of the configuration. If the initial ilm A is bounded,
we can show that the extension process cannot break off after finitely many
steps (since there are no closed, that is, compact without boundary, minimal
surfaces in R’ ; see §5). Let M denote the minimal surface obtained as a
result of all possible extensions. Generally speaking, the surface M can have
self-intersections. If the infinitely extended surface is embedded, that is, it
does not have self-intersections and is a regular surface, then it is called the
periodic minimal surface generated by M .

Back in 1867 Schwarz mentioned that the only minimal surface that spans

FIGURE 31
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FIGURE 32

a spatial quadrilateral consisting of edges of a regular tetrahedron can be
extended by means of reflections to a periodic minimal surface.

In fact, let us consider a cube and choose four points in it: the midpoints
A, B,and C of the three edges meeting at one vertex and the center O of
the cube. Clearly, these four points are the vertices of a regular tetrahedron.
Let us construct the spatial quadrilateral OABC (see Figure 32).

If we reflect OABC about sides of it that do not lie in faces of the cube,
that is, about the lines OA4 and OB, then it is easy to see that we again obtain
a quadrilateral consisting of the vertex O and the midpoints of three edges
meeting at a vertex of the cube. Repeating similar reflections for the resulting
quadrilaterals, we obtain as a result six congruent spatial quadrilaterals, each
of which consists of the center of the cube and the midpoints of three edges
meeting at a vertex of the cube. Figures 33 and 34 show the trajectories of
the points 4 and B, which together constitute the set of vertices of a regular
plane hexagon, and also the trajectory of the point C under the reflections
just described.

If we now stretch a minimal surface (soap film) on the contour OABC,

FIGURE 33A FIGURE 33B
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FIGURE 34

then as a result of the reflections just described we obtain, by the symmetry
principle, a smooth minimal surface lying entirely in the cube and having as
boundary a closed polygon consisting of twelve segments, each of which lies
entirely in a face of the cube and joins the midpoints of the corresponding
edges.

It is now not difficult to show that by reflections of a “cubic cell” about
the edges of the polygon we can obtain a periodic surface (without self-
intersections). This periodic minimal surface is called the Schwarz-Riemann
surface.

There are many other periodic minimal surfaces, interesting examples of
which were constructed by the American physicist and mathematician A.
Schoen and the Finnish mathematician Neovius (see [3]). Figure 35 shows a
fragment of the second Schwarz periodic surface constructed by Schoen.

FIGURE 35
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§5. Complete minimal surfaces

We have considered some basic examples of classical minimal surfaces in
R®. Let us observe one general detail: these surfaces are either noncompact
or compact, but then necessarily with a nonempty boundary. In fact, in R’
there are no closed (compact without boundary) minimal surfaces.

To prove this we need the so-called maximum principle. (In §2 we have
already said that many properties of harmonic and analytic functions carry
over to minimal surfaces. We now present a version of the maximum princi-
ple that is well known from the theory of harmonic and analytic functions.)

Let M, and M, be two minimal surfaces embedded in R’, touching each
other at a point P that is internal for M, and M,, and I the common
tangent plane to M; and M, at P. Locally (in a neighborhood of P)
we specify the surface M, by the graph z = fi(x,y), i =1,2, over II,
where (x, y) are coordinates in Il, the z-axis is perpendicular to I, and
P =(0,0,0). We say that M, locally lies on one side of M, if in some
neighborhood of P either f,(x, y) 2 fy(x,y) or fi(x,y) < fi(x, ).

THE MAXIMUM PRINCIPLE. Let M, and M, be two minimal surfaces em-
bedded in R’, touching at a point P that is interior for M, and M,.
Suppose that M, locally (in a neighborhood of P) lies on one side of M, .
Then M, coincides with M, in some neighborhood of P.

We shall prove by contradiction that there is no closed minimal surface in
R’. Let M be a closed minimal surface in R*. Then since M is bounded
as a subset of R’ there is a plane that does not intersect M . We move this
plane parallel to itself in the direction of M until it first touches M at some
point P (we denote the tangent plane by II). Clearly, P is an internal point
of M and the plane I1 (M has no boundary points because it is closed)
and M lies on one side of I1. By the maximum principle M is flat in some
neighborhood of P. In accordance with the uniqueness theorem (see §2) the
connected component of M containing P is a flat closed surface, that is, an
open-and-closed bounded subset of a plane. This contradicts the fact that a
plane is connected. This completes the proof.

Thus, in R’ any minimal surface without boundary is noncompact.
Among minimal surfaces without boundary an important class is formed
by complete minimal surfaces. Such surfaces are maximal in some sense. As
an illustration we consider a catenoid M givenby r =coshz, z € R. If we
restrict the domain of variation of z, say z € [a, b], or more generally take
any proper subdomain of the catenoid, then the resulting minimal surface
M, can be extended to a large connected minimal surface (for example, to
the whole catenoid M). We note that if there is a nontrivial extension of
some (not necessarily minimal) surface M without boundary to a large sur-
face, then M , regarded as a subset of R?, is not closed. The catenoid M is
a closed subset of R, so it is impossible to extend it to a large surface. Ap-
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plying the uniqueness theorem (see §2), we can conclude that any extension
of M, to a large connected minimal surface is a subdomain of M. Thus,
M is the largest minimal surface among all extensions of M, in the class
of connected minimal surfaces. Moreover, the catenoid M determines all
such extensions. Similar results also hold in the case when M is a helicoid,
a Scherk surface, or a Schwarz-Riemann surface.

There is an alternative way of defining the completeness of a surface in
terms of the completeness of the induced metric. In this direction there
are two possibilities. Let M be an arbitrary connected embedded surface.
On M we can define two distance functions, || and p. If 4 and B are
arbitrary points on M , we put |AB| equal to the Euclidean distance between
A and B as points in R’. We call the function || the extrinsic metric. We
define the function p(A4, B) as the greatest lower bound of the lengths of
piecewise-smooth curves lying on M and joining 4 and B. We call the
function p the intrinsic metric.

Thus, for an embedded surface M we have two metric spaces, (M, | |)
and (M, p).

We recall that a metric space is said to be complete if any fundamental
sequence has a limit lying in this space.

ASSERTION 1. Let M be an arbitrary surface embedded in R. Then the
metric space (M, | |) is complete if and only if M is closed as a subset of
R’

EXERCISE 1. Prove Assertion 1.

Thus, if M is a catenoid, a helicoid, a Scherk surface, or a Schwarz-
Riemann surface, then the metric space (M, | |) is complete.

We have been able to call a surface M complete if the metric space
(M, |) is complete. However, in geometry there is another definition of
completeness of a surface, imposing weaker restrictions, which nevertheless
extends to a wider class of surfaces and turns out to be quite sufficient to
obtain meaningful results.

DEFINITION. Let M be an arbitrary immersed connected surface, and p
the intrinsic metric defined above. Then M is said to be complete if the
metric space (M, p) is complete.

If M is an embedded connected surface, then it is easy to see that p(A4, B)
> |AB| for any points 4 and B of M . Therefore the completeness of the
metric space (M, | |) implies the completeness of the metric space (M, p),
that is, the completeness of M . The converse is false. Consider a spiral-
shaped cylinder defined as follows: the directrix of M is a spiral y lying in
the xy-plane, which at one end tends asymptotically to a circle S ! and at
the other end to infinity; the generator of M is a line perpendicular to the
xy-plane. Clearly, M is not closed as a subset of R’—the cylinder over S :
lies in the closure of A and does not belong to A . Therefore the metric
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space (M, | |) is not complete. Nevertheless the surface M is complete
(verify this).

What does completeness of the metric space (M, p) imply? We note that
a metric on an arbitrary set always determines a class of bounded subsets.
We recall that a subset Y of a metric space (X, p) is said to be bounded if
the distances between all possible points 4 and B of Y are bounded above:
p(A, B) < d forsome d > 0. If M is a surface embedded in R, then the
metrics | | and p defined above have different classes of bounded sets, for
example in the case of a spiral-shaped cylinder.

Let M be a surface immersed in R®, and p the intrinsic metric.

ASSERTION 2. The metric space (M , p) is complete if and only if any closed
bounded (in the metric p) subset of M is a closed subset of R

EXERCISE 2. Prove Assertion 2, using the following lemma.

LEMMA (see [7]). An immersed surface M is complete if and only if any
closed bounded (in the metric p) subset of M is compact.

Thus, completeness of a surface M implies that to a bounded (in the
intrinsic metric p) subset of M we cannot add any point of R’ that is the
limit of points of M but does not lieon M.

For deeper results that follow from the completeness of a surface M , see
(7). In particular, the following assertion is true.

ASSERTION 3 (see [7]). Let M be a complete connected surface without
boundary immersed in R*. Then M cannot be extended: there is no con-
nected surface M, immersed in R® that contains M asa proper (not coin-
ciding with M) subdomain.

REMARK. It should not be thought that any incomplete immersed surface
is extendable. Let M' be the xy-plane with the origin removed, and let
(r, @) be polar coordinates on M', where r € R , and ¢ € [0, 2x]. If we
allow the angle ¢ to vary from —oo t0 +00, we obtain an immersed surface
M—an infinite-sheeted winding of the plane R, xR = R? onto the plane
without the origin (compare with the case of a catenoid in §2). Clearly, the
immersed surface is minimal and not complete.

EXERCISE 3. Prove that the surface M cannot be extended.






CHAPTER 3

General Properties of Minimal Surfaces in R®

We go over to a more detailed description of minimal surfaces in R>. In
Chapter 2 we demonstrated how, by means of the symmetry principle, the
uniqueness theorem, and the maximum principle, we can obtain various non-
trivial results (Catalan’s theorem, and the nonexistence of a closed minimal
surface in R’) . In this chapter we consider these and many other principles
in more detail and give proofs of them.

In §1 we prove that on a minimal surface there are isothermal (conformal)
coordinates that induce a so-called conformal structure. In these coordinates
many formulas are significantly simplified.

In §2 we consider the Gaussian mapping of surfaces and prove that for
minimal surfaces the Gaussian mapping is anticonformal. We have used this
property in the solution of Bernstein’s problem. It also plays an important
role in the investigation of indices of minimal surfaces.

In §3, relying on the results of the first two sections, we construct the
Weierstrass rejpresentation, which describes the local structure of all minimal
surfaces in R° by two complex-valued functions.

In §4 we define the global Weierstrass representation for oriented and
nonoriented surfaces that are minimal.

In §§5 and 6 we talk about the investigation of complete minimal surfaces
that have finite total curvature.

The concluding section (§7) is devoted to the investigation of indices of
surfaces in R>.

§1. Isothermal coordinates

Let M be a regular surface in R®, and let (u, v) be local coordinates on
M.
DEFINITION. Local coordinates (¥, v) on a surface M are called isother-
mal (conformal) if the metric ds® on M induced from R’ , described in the
(u, v)-coordinates, is as follows: ds® = A(u, v)(du’+dv?), where A(u, v) is
a positive function, called the conformal factor. In other words, in isothermal
coordinates the tangential coordinate vectors at each point are perpendicular
and have the same length.

53
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THEOREM (existence of isothermal coordinates; see [8]). Let M be an
arbitrary regular (of class Cz) surface in R}. Then Jor any point P ¢f M
there is a neighborhood U, P € U, and local coordinates (u,v) in this
neighborhood U such that the induced metric ds® on M, written in the
(u, v)-coordinates, is as follows: ds® = Au, v)(du2 + dvz).

ReEMARK. For a real-analytic surface M the construction of isothermal
coordinates is significantly simplified: it actually reduces to the solution of
differential equation [8].

We give a proof of this theorem for minimal surfaces due to Osserman [9].
It turns out that in this case we obtain explicit formulas for the isothermal
coordinates. We choose a Cartesian system of coordinates x, y, z with
origin at P so that the xy-plane coincides with the tangent plane T, M to
M at P. In this coordinate system the surface M in a neighborhood of P
can be given by a graph x = x, y =y, z = f(x, y). All such functions f
are described by the minimal surface equation (see §1 of Chapter 2):

W+ s =2 Sy + 1+ [, = 0.
Let us form three functions:
1+ / JeJy L+ 5
\/l+fx2+fy” I+ R+ \1+72+ 1]
Henceforth for convenience weput p= f,, ¢ =/ ,and w = /1 +j;2+fyz.

We recall that (/1 + f2 + fy2 dxdy is the element of area of the surface M .
It turns out that from the minimal surface equation we have the following

relations:
L0\ _(pa ('_+i’ _(r
w /, w/,’ w o/, w)/,’

In fact, direct calculation shows that

(55), - (58), - -0 srt-2sss, 00 10,

w w
1 2
(55) - (4) =~ Foe-sna s, e

Therefore in any simply-connected neighborhood of the origin in the plane
T, M there are functions F(x,y) and G(x,y) such that

aF 1+p*  8F pg

ax w ° 8y w
G _pq BG_I+q2

ax  w’ 9y  w
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Let us specify a map ®: (x, y) — (¥, v) by putting
u=x+F(x,y), v=y+0G(x,y).

Then (u, v) are isothermal coordinates. In fact, the Jacobian J of the map
® is equalto d(u, v)/d(x, y) = (I +w)2/w, so J >0, and so ® is a local
diffeomorphism. Thus, in some neighborhood of the origin the map ® has
a differential inverse ®~' with Jacobi matrix equal to

(xu xu)___<l+w+q2 -pq 2) 1 .
Yo Vo -pq l+w+p°/ (1 +w)?

In the (u, v)-coordinate the surface M is given by the radius vector

r(u, v) = (x(u,v), y(u, v), f(x(u,v), y(u, v))).

Direct calculation shows that

w2

r=1rf = ——,
(1 +w)

(l‘ wr T v) =0,
where ( , ) is the standard Euclidean scalar product in R,

REMARK. In §3 of Chapter 2 we talked about Bernstein’s problem. If the
graph z = f(x, y) defining a minimal surface is defined on the whole xy-
plane, we can extend the functions F(x, y) and G(x, y) to the whole plane,
and hence define a mapping on the whole plane. As we remarked above,
this mapping is a local difftomorphism. We now show that @ is actually
a diffeomorphism of the xy-plane onto the whole uv-plane. For this it is
sufficient to show that @ does not decrease distances between points. In
fact, if this is so, then any two distinct points go into a pair of noncoincident
points. Therefore ® is bijective and is therefore a diffeomorphism with
image Im®. Suppose that Im ® does not coincide with the whole uv-plane.
Let Q = ®(P), and let Q' be a boundary point of the set Im®. Since @
is a diffeomorphism, Q' does not lie in the 1mage of ®. Suppose that a
sequence Q, of points of Im® converges to Q' and that P = <b"(Qk)
Obviously, the sequence P, does not converge to any point P’ of the xy-
plane. Therefore the distance |PP,| tends to infinity as k — oo, and so

10Q'| = Jim |QQ,| > Jim |PP,| = oo

We have obtained a contradiction. Thus, it remains to show that ¢ does not
decrease distances.

We observe that @ is the sum of the two mappings, the identity id and
the mapping y: (x,y) — (F(x,y), G(x,y)). We now show that y does
not strongly twist the piane. More precisely, let P and P’ be two distinct
points of the xy-plane (which we shall identify with the points of the uv-
plane having the same coordinates), and Q and Q' their images under the

map y.



56 3. GENERAL PROPERTIES OF MINIMAL SURFACES IN R’

LEMMA (see also [9]). The angle between the vectors QQ' and PP’ is
acute.

Proor. Consider the segment joining P and P', defined as follows:
(1-t)P+tP', t€[0,1]. Let G(t) be equal to the scalar product of the
radius vector y((1 —t)P + tP') and the vector

P' = P: G(t) = (w((1 - t)P +tP"), P' - P).
Then G(t) = (H(P' - P), P’ - P), where
He (8F/8x 8F/8y) B ((I +p)/w  pq/w )
~\8G/ax 8G/oy )~ \ pgw (1+¢)/w

is the Jacobi matrix of y. The matrix H is positive definite. In fact,
the principal minors (1 +p2)/w and det H = 1 are positive. Consequently,
G(t) > 0, s0 G(1) > G(0) . Thisinequality is equivalent to (Q'-Q, P'-P) >
0. This completes the proof of the lemma.

It is easy to see that the sum of the identity transformation and a mapping
that does not strongly twist the plane does not decrease distances. The proof
of this assertion is illustrated in Figure 36; a strict proof is left to the reader
as an exercise.

Let us give some examples of global isothermal coordinates. Let (r, ¢, 2)
be cylindrical coordinates in R®. Then on the catenoid r = cosh z the coor-
dinates (@, z) are isothermal: ds® = cosh? z(dq:2 + dzz). On the helicoid,
given in Cartesian coordinates (x, y, z) as

x =sinhucosv, y =sinhusinv, =v;

the coordinates (u, v) are also isothermal: ds’ = cosh? u(du2 + dvz). Be-
low we construct the Weierstrass representation, which also gives minimal
surfaces in isothermal coordinates.

A very useful consequence of the theorem on the existence of isothermal
coordinates is the possibility of introducing a conformal structure on a sur-
face.

(pp'l ¢ IRR]

FIGURE 36
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LEMMA. Let (u,v) and (u', v') be isothermal coordinates defined in some
domain U of a surface M. Then a change of coordinates (u,v) — (¥, v')
that preserves the orientation is a conformal transformation.

We recall that a conformal transformation is a diffcomorphism f: V — W
of a planar domain V C R? onto a planar domain W C R? such that the
differential df of the map f is a composition of a rotation and an expansion
(with respect to the metrics in V' and W).

To prove the lemma, we need to show that a linear transformation that
preserves the conformal form of the scalar product is a composition of an
orthogonal transformation and an expansion (verify this).

We now represent each point of a domain V C R? with coordinates (u,v)
as a point in the complex plane C =~ R? with complex coordinate z = u+iv.
Each tangent vector ae, + be,, where ¢, and e, are the tangent velocity
vectors of the coordinate curves v = const and u = const respectively, can
now be written as (a + ib)e, where e = ¢, ie = e,. We proceed in the
same way with a domain W c R? with coordinates (u’, v').

Then f: V — W isacomplex-valued function on V. How do we describe
the linear mapping df in complex form? Any linear mapping L: (a, b) —
(@', b') can be represented by a matrix

(—?;—{5) (.Z t Z))

@.0=(5 1) (5)+ (% ) (%)

If we introduce complex coordinates w = a+ib and w’' = a’ +ib’, then our
transformation can be written as w’ = (a + iy)w + (B + i6)W . It is easy to
show that if L is the composition of an orthogonal transformation and an
expansion, then it can be written either as w’ = (a + iy)w (L preserves the
orientation) or as w’ = (B + i6)W (L reverses the orientation). Therefore
for a conformal mapping f: ¥V — W the differential df at each point can
be represented by a complex number which acts on the complex coordinate
w = a+ib of the vector ae, +be, = (a+ib)e by multiplication. The second
component in the expansion of df, thatis, (8 + id)W, is equal to zero for
any w.
If f=(p(u,v), v(u,v))=9p+iy, then

ar= (0 )= (5% 258)
(Lo 220 (5)

—(
(B, e (%)

that is,

df(a, b) =

+ NI
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Therefore the condition that f is conformal is the condition that the sec-
ond matrix is zero, that is, ¢, = y,, ¢, = —v,, and this is the Cauchy-
Riemann holomorphy condition that the complex-valued function f = f(z)
is complex-analytic. Moreover, the complex number {;[( e, tv,)+ile,—v,)]
is equal to the complex derivative of f with respect to z, thatis, df/dz =

f..

! ConcLusioN. On an oriented surface M all possible isothermal coordi-
nates such that the transition functions preserve orientation specify a complex
structure. Each pair of functions (u, v) giving isothermal coordinates is re-
placed by the complex coordinate z = u + iv, and the change of coordinate
functions are complex-analytic. In this notation, to differentials of change
of coordinate mappings there correspond the usual complex derivatives of

" the relevant holomorphic functions, which act on the complex coordinates of
the tangent vectors by multiplication. Surfaces with a complex structure are
called Riemann surfaces.

§2. Harmonicity and conformality

The theory of two-dimensional minimal surfaces in R® relies substantially
on the possibility of introducing isothermal coordinates in a neighborhood
of any point of the surface. Let us consider some examples.

1. Suppose that a regular surface M in R is given locally by a radius
vector r(u, v) = (x(u,v), y(u, v), z(u, v)), where (u, v) are isothermal
coordinateson M . Let A = 9> /0 u’+8? /sz denote the standard Euclidean
Laplacian.

PROPOSITION 1. The radius vector Ar = (Ax, Ay, Az) is perpendicular to
the surface M .

PROOF. Since (u, v) are isothermal coordinates on M, we have (r,, r,)
=(r,,r,) and (r,, r,) = 0. Differentiating the first equality with respect to
u and the second with respect to v, we obtain

(ruu ’ ru) = (ruo ’ rv> s (rvv ’ ’u) = _(ruv ’ rv>'
Therefore (Ar, r,) =0. Similarly, (Ar,r)=0.

PROPOSITION 2. The radius vector Ar is equal to 2AHn, where H is the
mean curvature of M, n is the unit normal to M, and A is the conformal
factor of the induced metric ds® on M, where ds® = A(u, v)(du’ + dv?).
If M is a minimal surface, then in isothermal coordinates (u, v) the radius
vector r(u, v) that locally describes the surface M satisfies the equation Ar
=0.

DerFiNiTION. The radius vector r(u, v) of a surface M specified in the
(u, v)-coordinates that satisfies the condition Ar = 0, where A = 3? /¢9u2 +
8* /8v?, is called a harmonic radius vector.
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COROLLARY 1. In isothermal coordinates the minimality of a surface is
equivalent to the harmonicity of the radius vector specifying it.

REMARK. A generalization of a harmonic radius vector is the concept of a
harmonic mapping. The theory of harmonic mappings is a very elegant and
well developed branch of mathematics. A reader who is interested in it can
turn to [39] and [40].

Before proving Proposition 2, we give a more formal construction that
enables us to define the principal curvatures and the mean curvature and to
give a direct proof of Euler’s formula and Meusnier’s theorem, described in
Chapter 1. Suppose that a surface M in R® is specified by a radius vector
r(u, v), where (u,v) are local coordinates. Let n be the unit normal to
M . We define a quadratic form Q (called the second fundamental form) on
the tangent vectors. If v is a tangent vector to M at a point P € M, and
y(t) is a curve on M with tangent vector v, where 7(0) = P and y(0) = v,
we put Q(v) = (¥(0), n). Thus, Q(v) is the normal component of the
acceleration vector of the curve y. If y(¢) is given in the (u, v)-coordinates
as (u(t), v(t)), then y = rm‘itz+2rwﬁt')+rwi)2+(ruﬁ+ru’0). The expression
in parentheses is the tangent vector to M . Therefore

Q(v) = (7, n) = by, i + 2b,uv + byyo°,

where
by =(ry>n), by=by=(r,,n, by=(r,,n

and (i, v) are the coordinates of the tangent vector v = 7(0) = ra +
r,v. We have obtained a quadratic form in the coordinates of the tangent
vector (this implies that Q(v) does not depend on the curve y on condition
that P = y(0) and v = $(0)). Therefore, if we take the normal section of
M in the direction v, the curvature x(v) of this normal section will be
Kk(v) = Q(v)/lvl2 . Thus, the curvature x(v) is equal to Q(v) if the vector
v describes the unit circle in T,M .

We can now define the principal curvatures and principal directions at a
point P € M. Let us choose an orthonormal basis in 7,M . Suppose that
the second fundamental form Q(v) is specified in it by the matrix Q. Then
the principal curvatures, that is, the maximum and minimum values of x(v)
on the unit circle, will be equal to the eigenvalues of the matrix @, and the
principal directions are the directions specified by the eigenvectors of Q.
The equation for the eigenvalues is det(Q — AE) = 0, where E is the unit
matrix; this is equivalent to the equation det[AT(Q—).E )JA) = 0, where 4 is
any nonsingular matrix. If for 4 we take the matrix of transition from the
orthonormal basis to the original basis, then the equation for the eigenvalues
can be rewritten as det(Q — AG) = 0, where G = AT A is the matrix of the
first fundamental form (the metric). An eigenvector v of (, that is, a vector
satisfying the equation (Q —AE)v = 0, can be rewritten in the original basis



60 3. GENERAL PROPERTIES OF MINIMAL SURFACES IN R’

as 7= A"'v, that is, it satisfies the equation
AN Q- AE)A4 v = (Q-1G)T = 0.

Thus, the principal curvatures are equal to the invariants of a pair of
quadratic forms, the first and second fundamental forms, and are equal to
the eigenvalues of the matrix QG'l , and the principal directions are given
by the directions of the eigenvectors of this matrix.

The mean curvature H is equal to half the sum of the principal curvatures,
that is, to half the sum of the eigenvalues of the matrix Q (in the orthogonal
basis) or of the matrix QG~" (in any basis). This means that H = % rQG™',
where tr denotes the trace of a matrix. The Gaussian curvature K, the prod-
uct of the principal curvatures, is equal to K = det QG’l = detQ/detG.
‘Since the eigenvectors are perpendicular for different eigenvalues, the princi-
pal directions are also perpendicular.

REMARK. Euler’s formula (Chapter 1) can now be obtained in an elemen-
tary way. It is sufficient to choose an orthonormal basis from the eigenvectors
of O and observe that in this basis Q = (% fz ), where 4, and A, are the
principal curvatures. If we take the unit tangent vector v = (cos¢, sin ¢),
that is, the vector that makes an angle ¢ with a principal direction, then

Q(v) =4, cos’ P +4, sin’ ? =x(p) =x(v).
It is also easy to obtain a proof of Meusnier’s theorem. It is sufficient to
introduce the natural parameter ¢ on the plane section y =I1, N M, that is,
to force the point to move along y with unit speed.

It is easy to show that y is perpendicular to y (we have (7, ) =1, and
it remains to differentiate with respect to t). Therefore, § = xn, is the
curvature vector of 7, where n, is the unit normal to j in the plane II, .
We have Q(7) = (¥, n) = x(n,, n) = x cos y , where y is the angle between
n, and the normal n to M.

PROOF OF PROPOSITION 2. Let (u, v) be isothermal coordinates on an
(arbitrary) surface M . Then

(A’: n) = (ruu’ ﬂ) + (’vu' n) = bll +b22‘

Since the matrix of the metric G = (3 9) is diagonal, we have H = }1tr 0G™!
= (b,, + b,,)/2A. Therefore (Ar, n) = 2AH.

The fact that the radius vector of a minimal surface in isothermal coordi-
nates is harmonic has many profound consequences.

COROLLARY 2. Let M be a connected compact smooth minimal surface
in R® with boundary &M . Then M lies in the convex hull C(AM) of its
boundary. In particular, any soap film spanning a wire contour lies in the
convex hull of this contour.

We recall that the convex hull of an arbitrary subset of R is the intersec-
tion of all closed half-spaces in R® that contain the given subset completely.
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ProoF. Suppose that M does not lie in the convex hull of its boundary
OM . This means that there is a half-space {f < 0} for some f = ax +
By +7yz+4 such that M lies in this half-space, but some point of M does
not lie in it. Since M is compact, the function f, restricted to M , takes
its maximum value at some point P € M, and f(P) > 0. Therefore P is
an interior point. If we introduce isothermal coordinates in a neighborhood
of P, then the restriction of f to M in these coordinates is a harmonic
function (since x, y, z are harmonic) that takes its maximum value at an
interior point. Consequently, f],, = const in this neighborhood, that is, M
is flat in this neighborhood. By the uniqueness theorem the minimal surface
M is entirely flat. Now it is easy to obtain a contradiction.

CoRroOLLARY 3 (a proof of the uniqueness theorem; see §2 of Chapter
2). Let M| and M, be the two connected minimal surfaces described in
the uniqueness theorem. Suppose that the uniqueness theorem is false. This
implies that there is a point P € M, N M, that is a boundary point of a
maximal domain lying in M, 0 M, (which exists by the condition of the the-
orem). Consider the tangent plane 11 to M, and M, at P and introduce
coordinates (x,y, z) in a neighborhood of P, where (x,y) are Cartesian
coordinates in I1, the z-axis is perpendicular to I1, and P = (0, 0, 0). Then
in a neighborhood of P the surfaces M, are given by graphs z = f(x, ),
i=1,2, where f # f, in any neighborhood of P, and there is an open set
U cII such that P lies on the boundary of U and f, = f, in U.

Carrying out the construction used in the proof of the theorem on the
existence of isothermal coordinates, in some connected neighborhood of P €
IT we construct isothermal coordinates (u, v) for each of the surfaces M,
and M, . The surface M, is given locally by the radius vector r,(u, v), and
in a domain U c M,N M, the two minimal surfaces are parametrized in the
same way: r (u,v)=r,(u,v), (u,v)€UCII.

Since x;(u, v), (4, v), and z,(u, v) are harmonic functions, and

x, (U, v) =x,(u,v), y(u,v)=y,(u,v), z(u,v)=2z(u,v)

in an open set U C II, they coincide in a whole neighborhood of P, that is,
r,(u, v) = ry(u, v), which contradicts the choice of the point P.

In §1 we showed that isothermal coordinates generate a complex structure
on an oriented surface. On the other hand, in isothermal coordinates the
radius vector that specifies a minimal surface is harmonic. As we know, har-
monic functions are the real (or imaginary) parts of complex-analytic func-
tions. From these two remarks it follows that an oriented minimal surface in
R? can be regarded as the real part of a holomorphic curve in c? ; this, for
example, gives the possibility of constructing an associated family of minimal
surfaces (see the example of an associated family for the catenoid and heli-
coid in §2 of Chapter 2). We consider this situation in detail, first recalling
some facts from complex differential geometry.
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Let f be a complex-valued (C-valued) function defined in a planar do-
main U c R® ~ C with coordinates (u,v) and let z = u + iv be the
corresponding complex coordinate. Consider the complex differential opera-

tors
S _1(08 ;0\ 4pq 8 _1(0 ;0
8z 2\8u ‘8v 8z  2\8u ‘ov )’

which act on C-valued functions in the natural way. For example, if f(u, v)
= @(u, v)+iy(u, v), then

Of _1(0 .0\ . . _1(29 0w\ ifov 2p
az‘z(au 'av>(“’+‘”’)'2(au+av *3\ou ")
EXERCISE 1. Prove that if P(z) = a,z" +--- + a, is a polynomial in the

complex variable z, then
oP n-1 ﬂ’_

37 = NG.2  toota, 02-0.

We note that the operators /8z and 8/97Z are a basis of the complexified
tangent space © T U, P € U (we recall that the operators 8/8u and 8/8v
can be regarded as a basis of the tangent space T,U).

Consider the complex differentials dz = du + idv and dZ = du - idv.
We note that the complex differentials dz and dZ form a basis of the ad-
joint (over C) space ~ T U to the tangent space ¢ T, U (we recall that the
differentials du and dv can be regarded as linear functionals defined on the
tangent space T,U :

8 V] i) i)
du(a%+b8—v)—a, d"(“ﬂ+ba_v)'b’
that is, as a dual basis of the adjoint space T,U).

PROBLEM 2. Prove that the pair dz, dZ is the dual basis of the basis
8/8z, 8/97%.

PROBLEM 3. Prove that the differential of a C-valued function f is equal
to

df = g—idu + g—{;dv - %d: +Y a2,
Prove that the Taylor series in complex form is

0 ) Z, i/ ) Z,
S, 0) = (2, 7) = fizg, 7) + LT, _ gy MC0 a5y

1 (8%f(zy, %)) 8% f(z,.7,) -

+5 (—ﬁz—-o—(z - zo)2 + 2—0?(?’7—0(: - 2,)(Z-Z,)
2

+%’_7_‘))(2’_70)2>+...,

as if z and Z are independent coordinates in the domain U.
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The complex notation is often very convenient. For example, it is easy
to verify that the Cauchy-Riemann conditions for a function f to be holo-
morphic are equivalent to 8f/8Z = 0. Therefore, if 8f/8Z = 0, then f
is holomorphic and its Taylor series does not contain Z (in this case we say
that f does not depend on Z and write f(z)). It is convenient to write the
Euclidean Laplacian in terms of complex derivatives. It is easy to see that
A=4(8/8z2)(8/872).

We now return to minimal surfaces. Suppose that a minimal surface M in
R? is specified locally in conformal coordinates (u, v) and that z = u + iv
is the corresponding complex coordinate. Let

r(z,7) = (x'(z,2), x*(z, 7), X'z, 7))
be the radius vector that specifies M, where (xl , xz, x’) are the stan-
dard Euclidean coordinates in R>. If we regard the functions xk (z,2) as
complex-valued, but taking real values, we can define axk [0z = i(xf - ixf) .
Let 9 = 9r/8z = (x}, x2, x}). Then

1) (9)* = Tan,(x)? = 0, since (9)° = (Ir,[* = Ir, ") - 2i(r,, 1), z =
u+ iv and (u,v) are conformal coordinates. In general, if (u,v) are
arbitrary coordinates on an arbitrary surface M, then (8r/8 z)2 =0 is the
condition for the coordinates (u, v) to be conformal, where z =u +iv.

2) |¢|2 = |r“|2 + |rv|2. Therefore |¢|2 # 0 is the condition for the surface
M 1o be regular, that is, for r, and r, to be linearly independent. This is
the regularity condition in conformal coordinates.

3) 09/0Z = 82r/8782 = §Ar = 0. Therefore ¢ is a holomorphic radius
vector (all the coordinates of the function ¢" =ax* /dz are holomorphic).
We have seen (Corollary 1) that in isothermal coordinates the minimality of
a surface is equivalent to the harmonicity of the radius vector that specifies
this surface.

COROLLARY 4. Let M be an arbitrary surface in R} specified locally by
the radius vector r(u,v). Put ¢ = 8r/8z, where z = u + iv. Suppose
that (¢)2 = 0. Then the fact that M is minimal is equivalent to ¢ being
holomorphic.

Clearly, the funcuons X (z Z) can be restored by integrating the holo-
morphic functions qp . More precnsely, if the domain U of the coordinate
z is simply-connected, then x (z Z) = _C' + 2Re f ) kdz, ¢, = const,
¢, € R, where integration is carried out along an arbltrary piecewise-smooth
path in U joining some fixed point z, to the point z. Since U is simply-
connected and ¢"(z) are holomorphic, the integral does not depend on the
path of integration.

By Corollary 4 all minimal surfaces can be described locally (in a simply-
connected domain) by means of a triple of holomorphic functions ( ¢' , ¢2 ,
¢3 ) satisfying the condition 2i=,(¢")2 = 0. The minimal surface is restored
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by integrating the functions ¢" , x"(z V)= + 2Ref¢k dz.

By means of such a representation we can obtain a one-parameter associ-
ated family of minimal surfaces, a classical example of which is the family
of isometric minimal surfaces joining the catenoid and helicoid (see §2 of
Chapter 2). Let r(z, Z) be the radius vector that locally specifies a minimal
surface M, and ¢ = 9r/8z the corresponding holomorphic radius vector,
(qp)2 = 0. Consider the one-parameter family of holomorphic radius vectors

¢0 = e:0¢ - (ena¢| , e:a¢2 , e:ows)'
Clearly, ((v‘,)2 = }:,L,(e'a(vk) = 0. Therefore on the surfaces M,: x: (z,2%)
=c,+2Ref ¢§ dz the coordinates (u, v), z = u+ iv, are conformal, and
so, since @, is holomorphic, all these surfaces are minimal.

DeFiNITION. The minimal surfaces M, ;2 are said to be conjugate to
My=M.

We recall that the catenoid and helicoid have the following representation:

r,(u, v) =Re(coshz, —isinhz, z) = Re/w, (catenoid) ;
ry(u, v) =Im(coshz, —isinhz, z) = —Re/ ip,
= Re / e™™p,  (helicoid).
The associated family is thus described by

r(u,v, 8) = Re/‘e'“’qpl = cosﬂlu:/q)l +sin01m/¢,
=c0s8-r (u,v)+sinf-ry(u,v)
(compare with §2 of Chapter 2).

§3. The Gaussian mapping and the Weierstrass representation

In this section we investigate the Gaussian mapping of minimal surfaces
and, using the resulting information, we construct a geometrically intuitive
local representation of each minimal surface by a pair (f(w), g(w)) of
complex-valued functions (the so-called Weierstrass representation). In fact,
this pair of functions is one of the possible ways of writing the solution of the
equation ((v)2 = 0, where ¢ = 8r/dz is a holomorphic radius vector (see
§2). Many geometric characteristics of minimal surfaces can be expressed
in terms of the functions (f, g) of the Weierstrass representation, namely
the metric, the Gaussian curvature, the Gaussian mapping, and so on. The
Weierstrass representation gives the possibility of constructing an enormous
number of new interesting examples of minimal surfaces, and is essentially
the Tain research tool in the theory of two-dimensional minimal surfaces
in R™.
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1. Let M be a two-dimensional surface in R’. Then the Gaussian
mapping n of the surface M is a mapping of M into the unit sphere s,
n: M — S, that takes each point P € M into one of the two unit normals
to M at this point P. Henceforth we assume that either M is orientable,
or the discussions are local; this gives us the possibility of choosing one of
the two normals in a continuous way.

PROPOSITION 1. Let M be a minimal surface in R, and n: M — S? the
Gaussian mapping of M . Then the tangent mapping n, in each tangent plane
T, M preserves angles between vectors and is therefore a composition of an
orthogonal transformation and an expansion. If we introduce an orientation
on M (locally in the case of an unorientable M) that is positive with respect
to the normal n, and an orientation on S* that is positive with respect to the
inward normal, then n, preserves the orientation. Such mappings are said to
be conformal.

REMARK. The orientation of S’ is usually chosen to be positive with re-
spect to the outward normal. In this case the Gaussian mapping reverses the
orientation and is said to be anticonformal.

PrOOF. We recall that the tangent mapping n, is defined as the mapping
n:TeM—T, ,,)Sz , which is linear on each tangent plane T, M to M and
assigns to each tangent vector v € T, M, which is the tangent vector of a
curve »(t) on M, y(0) = P, $(0) = v, the tangent vector to the curve
n(y(t)) on S? at the point n(P) = n(y(0)). To show that n_ preserves
angles, we choose isothermal coordinates (¥, v) on M in which the metric
induced from R> has the form ds’ = AMu, v)(du2 + dv?). The Gaussian
mapping is written as n: (¥, v) — n(u, v). Therefore under the Gaussian
mapping the tangent vectors r, and r, go into n{ and n, . Since r, and r,
are perpendicular and have the same length, |r | = |ru|2 = 4, it is sufficient
to show that n, and n, are also perpendicular and have the same length
(from this it follows that the tangent mapping in an orthogonal basis is given
by a diagonal matrix, and so it preserves angles):

2
Inul = (nur nu) = _(nllll’ n) ’
2
'nvl = —(nvv ’ n) ’
(n,,n,)=-(n,,n).
(All these equalities follow from the fact that (n, n) = 1, so, for example,
(n,,n)=0and (n,, n)+(n,, n,)=0.) Since n, and n_ are perpendicular
to n, they can be expressed in terms of the basis r_, r, of the tangent space.
Since
(n
where

rg)=-(n,r,)= -bll ’ (n,, r,)=—(n,r,)= _'b12 ’

= b, bIZ)
Q (bIZ by,

u’



66 3. GENERAL PROPERTIES OF MINIMAL SURFACES IN R’

is the matrix of the second fundamental form in the basis (r,, r,), we have

b b
n,= ——i—‘ru - )'Lzrv.
Similarly,
b b
n, = _%2,“ - ‘}Tz’w

Differentiating each of the equalities with respect to ¥ and v, taking account
of the fact that (r,, n) = (r,, n) = 0, we obtain

2 2
2 b, b
Inyl = =, m = 204 22,
2 2
Inyf = =ty m = 22 4 2,

(n,,n,)=-(n,,n)= E“)'—b‘l + 2!.2;21
Since M is a minimal surface and (u, v) are isothermal coordinates, the
mean curvature H = (b, + b,,)/24 = 0, that is, b,, = —b,,. Therefore,
|n“|2 = |nv|2 and (n,,n) = 0. This proves that the Gaussian mapping
preserves angles.

Let us consider what happens to the orientation under the Gaussian map-
ping. We observe that n is also the outward normal to the sphere s?. On
transition from the basis (r,, r,) to the basis (n,, n,) (so long as n, and
n, are nonzero) the transition matrix (see above) is equal to

l (“bn “blz)

A “bnz ‘bzz '
and its determinant is equal to det Q//l2 = K, where K is the Gaussian cur-
vature. Since the Gaussian curvature is equal to the product of the principal
curvatures, and for a minimal surface the principal curvatures have opposite
signs (or they are both zero), we have K < 0. Therefore the orientations
of the bases (r,, r,) and (n,, n,) are opposite. Hence the orientation of
(r,.r,,n) coincides with the orientation of (n,, n,, —n), where (-n) is
the inward normal of the sphere s2.

REMARK. On the way we have proved that the area of the square spanned
by the tangent vectors to M (in isothermal coordinates) under the Gaussian
map is changed by a factor -K .

On the sphere S? we can introduce the canonical coordinates given by
stereographic projection. It turns out that these coordinates are isothermal.
We recall that the stereographic projection =z, of the sphere st = {.7:2 +
y2 +20 = 1} from the North Pole N = (0,0, 1) onto the xy-plane is
specified as follows. Suppose that P € s, P # N; then =n,(P) € Oxy
is the point of intersection of the line NP with the xy-plane. Thus, the
xy-plane parametrizes the whole sphere s? except for the North Pole N.
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PROPOSITION 2. The stereographic projection =, s2 = Oxy of the sphere
S? onto the xy-plane from the North Pole N preserves the angles between
tangent vectors. Thus, the coordinates specified on Sz\N by the stereographic
projection m,, are isothermal.

PROOF. Choose an arbitrary point P € S2, P# N. If P =S =
(0, 0, —1) is the South Pole, everything is obvious. Suppose that P # S.
In T,,S2 we choose two unit tangent vectors e, and e, such that e, is di-
rected along the parallel /, and e, along the meridian m. Since ¢, e,
is an orthonormal basis, it is sufficient to show that z_ e, is orthogonal to
m,e, and |n.e | =|n,e,|. Here n, denotes the corresponding tangent map-
ping. Clearly, 7 e, is orthogonal to =, e, , since the image of a meridian is a
straight line in the xy-plane passing through the origin O = (0, 0), and the
image of a parallel is a circle in the xy-plane with centerat O. Let (p, ¢, 0)
be the standard spherical coordinates in R’. Then the meridian m can be
parametrized by the angle 6, and the parallel / by the angle ¢ . Clearly, the
tangent vector /i has unit length, and / has length sin6. The point n, P
is at a distance cotan(6/2) from the origin O. Therefore along the image
of the meridian n(m) a point moves with speed (nm)  equal in modulus to
|(cotan(6/2)'| = 1/2 sin’ (6/2). Along the image of the parallel—a circle of
radius cotan(6/2)—a point moves with speed cotan(6/2). Therefore under
stereographic projection the unit tangent vector along the parallel goes into
a vector of length cotan(6/2)/sin@ =1/2 sin’ (8/2) (since the tangent map-
ping is linear). This proves that the images of the unit vectors e, and e,
have the same length.

Now a few words about the orientation of S’>. We observe that under
a motion of the point P along the meridian in the direction of increasing
6, that is, from the North Pole N, the image #,(P) moves towards the
origin O of the xy-plane. It is now clear that by means of the stereographic
projection =, the positive orientation of the xy-plane specifies on S? the
orientation that is positive with respect to the inward normal.

REMARK. Instead of the North Pole N = (0, 0, 1) of the sphere s? , we
can choose the South Pole S = (0, 0, —1) and consider the stereographic
projection 7 onto the xy-plane from the South Pole S. On the sphere s?
with the poles N and S removed there arise two coordinate systems. Let
& = x + iy be the complex coordinate in the xy-plane. Then it is easy to see
that we can go over from one coordinate system to the other by means of the
mapping ¢ — 1/€.

If we introduce the coordinate ¢ = x + iy on SZ\N , and the coordinate
n=x-1iy on S2\S , then the transition function will be complex-analytic:
n = 1/&. These are the standard coordinates on the Riemann sphere CU{oc}
in complex analysis.
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COROLLARY. If the sphere S is regarded as the Riemann sphere S* =~
C U {00} by means of stereographic projection, then the Gaussian mapping
n of a minimal surface M, n: M — S*, is represented by a meromorphic
Junction in every isothermal coordinate system (u,v), w =u+iv,on M.
In the coordinates on S* given by the stereographic projection n,, from the
North Pole, the poles of n are all the points P € M at which the normal n(P)
has the direction of the z-axis, that is, n(P) = N = (0,0, 1). The zeros of n
are those points P at which the normal n(P) has the opposite direction to the
z-axis, that is, n(P) = S = (0,0, —1). If we assign coordinates on S* by
means of the stereographic projection ng from the South Pole, then the zeros
and poles of n in the previous coordinate system change places.

2. Let (u,v) be isothermal coordinates on a minimal surface M , let
w = u + iv be the corresponding complex coordinate, let r(u, v) be the
radius vector that specifies M locally, and let ¢ = 8r/8w be the corre-
sponding holomorphic radius vector, (q))2 =0.

ExErcise. Express the Gaussian mapping in terms of the components of

?=(9,,9,,9;).
SoLuTiON. We can write the unit normal n compatible with the orienta-
tion of M as [r,, r,)/Ilr,,r,)l, where [, ] denotes the vector product.

Suppose that [r,, r,] = (A', A2, A%). Clearly,
Al =VuZy — W2y
=Im((y, - iy, )(z, + iz,)] = 4Im(9,,).
We obtain similar expressions for A? and A, Thus,

[’u s = 4lm(¢263 » 919, 9,9,)

i j k
=2{? P2 @3|=2p, 7).
P, 9, 0,
Moreover,
2 2
s r )l =A== i = B IE g2
Therefore,

< 21m(9:75. 057,.9,7)) _ [, 7]
lof? lof?
We now consider the stereographic projection n: st Oxy of the sphere
S? onto the xy-plane and let ¢ = x + iy be the complex coordinate in the
xy-plane. It is easy to show that if (x, y, z) are the coordinates of a point
P lying on the sphere S2. then the coordinates of its projection =, (P) on
the xy-plane are equal to (x/(1 - z), y/(1 — z)) (see Figure 37).
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FIGURE 37

Therefore for the Gaussian mapping of the minimal surface we have
‘= 2 lm(¢§63) +2i Im(¢3'¢’|).
lol” — 2Im(¢,7,)
This expression can be greatly simplified.
Let us calculate the numerator of the expression for & :

21Im(p,@,) + 2iIm(p,7,)

| L
= 7(¢2¢3 - 9,03+ i930, - i9,9))
= 4’3(71 +i9,) - 73(¢| +ip,).
Using the fact that

2, 2, 2 . . 2
P, + 0, +03=(9, —ip,)(p, +ip,)+9;=0,
thatis, @, +ip, = -(vi/(gvl —ip,) we have
o’
P, +iP,)+ P, ——
937, +i9,) + 9, v =i,
_ 03l(®, + 8,)(0, - ipy) +1oyl’)
P, —ip,
9 2 —
= —2—[lp|" - 2Im(p,7,)].
@, — 19,
Thus { = ¢,/(p, — ip,) is the meromorphic function corresponding to the
Gaussian mapping.
Let g = 90,/(p,-ip,). Weput f =@, —ip,. The function f is obviously
holomorphic. Then we can express the three components of ¢ in terms of
f and g:

P, = %f(l -g), o= %f(l +8)), 0,=/s,
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and since ¢,, ¢,, ¢, are holomorphic functions, the product f, g2 must be
holomorphic.

DEFINITION. A pair of complex-valued functions (f, g), defined on a
simply-connected domain U of the complex plane C, U c C, such that
f is holomorphic, g is meromorphic, and f, g2 is holomorphic, is called a
Weierstrass representation.

Thus, we have proved the following theorem.

THEOREM. Let (f, g) be a Weierstrass representation in a (simply-con-
nected) domain U of the complex plane C. If we form three holomorphic
Sunctions ¢, = %f(l-gz), 9, = 5f(|+gz), and ¢, = fg, then the mapping
of U into R} given by

w
xk(w, W) =c, +2Re/ ¢ dw
wo

where |q)|2 # 0 determines a regular immersed (that is, with possible self-
intersections) minimal surface, and from the fact that (q;)2 = Z:Ll ¢,f =0,it
Jollows that the coordinates (u,v), w = u+iv, are isothermal (if r(u, v) =
(x'(u, v),xz(u, v), xs(u, v)), then ¢ = 8r/8w). Here {x"},"=l are the
standard Euclidean coordinates in R®, and w is the complex coordinate in
UcC.

Conversely, if (u,v) are conformal coordinates on M in a simply-
connected domain U c C, w = u + iv is the corresponding complex coordi-
nate, r(u, v) is the radius vector that specifies M locally, and ¢ = 8r/0w is
the corresponding holomorphic radius vector with components (¢, , ¢,, 9,),
then by putting f = ¢, —ip, and g = 9,/(9, — ip,) we obtain a Weierstrass
representation of the minimal surface M in the domain U C C. The function
g is a Gaussian mapping of the minimal surface M if on S? the coordinates
are given by the stereographic projection =, from the North Pole.

It is useful to express the main geometric characteristics of a minimal
surface in terms of the functions of the Weierstrass representation.

1) 1= 2|q;|2 = |f]2(l + lglz)2 where A is the conformal factor of the
induced metric on M in the coordinates given by the Weierstrass represen-
tation. Therefore a sufficient condition for such a minimal surface to be
regularis f # 0. Since g is meromorphic, it is possible that f(w,) = 0 but
f8°(w,) #0.

If we allow the existence of singular points on minimal surfaces, then such
surfaces will be called generalized minimal surfaces. Singular points of gen-
eralized minimal surfaces have a special form (this follows from the Weier-
strass representation), and so they have acquired a special name—they are
called branch points. The condition that w, is a branch point is equivalent

to f(w,) =0 and f gz(wo) = 0 simultaneously.
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2) The Gaussian curvature K. As we mentioned after the proof of Propo-
sition 1, the area of the square spanned by (r,,r,) under the Gaussian
mapping (r,, r,) — (n,, n,) is increased by a factor of —K . Since the area
of the square (r,, r,) is equal to 4, the area of the square (n,, n,) is equal
to —KA.

Next, suppose that the coordinate w = u + iv of the point P € M is
not a pole of the meromorphic function g from the Weierstrass represen-
tation (f, g) (this means that n(P) # N). Then under the stereographic
projection =, the square (n,, n,) tangent to S? at the point n(P) goes
into the square (nN_ n, Ty n,) on the xy-plane. Clearly, the area of the

square (my n,, my n,) is equal to lg(w)l2 , where ¢ =dg/dw.

We alrea'dy know that the tangent mapping m, preserves angles, and so
it expands each vector by the same factor. Therei'ore, to determine the co-
efficient of expansion it is sufficient to calculate it on any vector. Let us
choose the unit tangent vector to the meridian. If (¢, 6) are the coordi-
nates on S° induced by the spherical coordinate system (r, ¢, 6) in R,
then, as we showed in the proof of Proposition 1, this unit vector is ex-
panded 1/2 sin2(0/2) times, and the distance from =z, (n(P)) to 0 is equal
to cotan(6/2). If £ = x + iy and |¢| = cotan(6/2), then the coefficient of
expansion is equal to l/2$in2(0/2) =(1 +|6|2)/2. Putting ¢ = g(w), we see
that the area of the square (n,, n,) is equal to —K4 = |g|’/((1 + |g|2)/2)2 .
Consequently, K = —4|2|*/|/1°(1 +g")*.

Let us recall that a point of a regular surface is said to be an umbilic
if the two principal curvatures are equal there. On a minimal surface this
means that the two principal curvatures are both zero, or equivalently that the
Gaussian curvature K is zero. From the formula just given for the Gaussian
curvature it follows that umbilics of a minimal surface M are just the zeros
of the derivative of the function g in the Weierstrass representation (f, g)
for M.

Later the expression for the Gaussian curvature will be useful to us in the
calculation of the indices of minimal surfaces.

3. Let us give examples of the Weierstrass representation for the classical
minimal surfaces.
The simplest representation (1, w) on the whole plane, U = C, gives the
so-called Enneper surface. The explicit equations of the Enneper surface are
3
X =pcosp — %cos3¢ ,

3

y=-psing - %siniw,

z =p2c052¢,

where (p, @) are polar coordinates in the w-plane, p = |w|, ¢ =argw.
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e ——
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FIGURE 38

This classical minimal surface has a saddle shape in the neighborhood of the
origin. As we increase the domain U, = {w|jw| < r} the upper and lower
ends of the contour I',—the image of 9U,—begin to come together and at
a certain instant a self-intersection of the surface occurs (see Figure 38).

The next classical example is the catenoid 7 = cosh z . Its Weierstrass rep-
resentation is (-1/2w?, w) on C\{0}. The domain C\{0} is not simply-
connected. However, we can still define the Weierstrass representation in
this case. We needed the domain to be simply-connected in order that the
integral f:) @, dw should not depend on the path joining w, and w. Fora
multiply-connected domain we define the so-called periods, that is, integrals
over closed piecewise-smooth curves that are not contractible to a point by
any continuous deformation. The real (imaginary) part of a period is called
the real (respectively, imaginary) period.

In order for the Weierstrass representation in a multiply-connected domain
to correctly define a minimal surface it is necessary and sufficient that all the
real periods should be equal to zero, that is, that the integrals [ ¢, dw along
any closed contour should be purely imaginary numbers.

It is easy to verify that this property is satisfied in the case of the Weier-
strass representation for the catenoid. If (p, @) are polar coordinates in the
w-plane, then the catenoid is given by

1/1 1/1 .
x_i(;+p>cos¢, —5(;+P>Sm¢. z=-Inp.

Thus, the coordinates (p, p) are connected with the coordinates (z, @)
described in §1 of Chapter 2 by the formulas p=¢™*, g =@¢. As p =0
the coordinate z — +oo. The parallels z = const correspond in the w-plane
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to concentric circles p = |w| = const, which contract to the point p =0 as
Z — +4o00.

If we slightly vary the Weierstrass representation for the catenoid by put-
ting (—i /2w2 , w), then on C\{0} the resulting representation will have real
periods. To get rid of them, we cut out from plane C the nonpositive real
axis R_ = {u <0,v =0}. The domain C\R_ is simply-connected. It is
easy to see that we have obtained one coil of the helicoid

1 1\ . . .
X = —i(p - ;) sinp = sinhasinb,

2
z=¢=b,

y= 1(,,_ %) cos@ = —sinhacosbd,

a

where |p|<m, p>0,and p=e", p=b.

If we now glue together countably many copies of C\R in the natural way,
that is, the upper side of the kth copy to the lower side of the (k + 1)st,
k € Z, then we obtain a complete helicoid. This is equivalent to allowing
the angle ¢ to vary from —oo to +oco. We naturally wish to consider the
change of coordinates specified by the exponential e® .

In fact, the complete helicoid can be specified by another Weierstrass rep-
resentation, namely, (e~ , e") on C:

x = -sinhusinv, y=sinhucosv, z=v

where w =u+iv.

It is easy to verify that the Weierstrass representation (e~ ", e") on C
specifies an infinite-sheeted covering of the catenoid. In the (u, v)-coordi-
nates, where u + iv = w, the winding (covering) is given by

x =-—coshucosv, = -coshusinv, z=u.
REMARK. If (f, g) is a Weierstrass representation, then the associated
family (see §2 of Chapter 2) is defined as the family of minimal surfaces
with Weierstrass representation (e'o S, &) . The conjugate surfaces have the

representation (+if, g) (compare with the Weierstrass representation for
the catenoid and helicoid).

ASSERTION. The associated family for a minimal surface M consists of
locally isometric minimal surfaces (as a rule, pairwise noncongruent).

PROOF. Let (e’o f(w), g(w)) be the Weierstrass representation for the
surface M, of the associated family, where w = u + iv. Then the metric
on M, induced from R’ has the form ds’ = A(8, u, v)(du’ + dv’®) and
A0, u,v) = €170 + 1811 = I/1(1 +|g|*)? that is, it does not depend
on 6.

Let us give without proof the Weierstrass representations for the other
classical minimal surfaces.
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The Scherk surface: (l/(l—w‘), w) on U = {|w| < 1} (the graph). If we
consider this representation on C\{w‘ = 1}, then the integrals [ ¢, dw will
have real periods. By analogy with what we did in the case of the helicoid,
we can obtain a representation for the complete Scherk surface.

The Schwarz-Riemann surface. (1/V'1 — 14w + w® , W) on a suitable do-
main U CC.

The Richmond surface: (w?, 1/w?) on C\{0}.

§4. The global Weierstrass representation

To understand the rest of the text we need to have an idea of smooth
manifolds and the basic objects connected with them: smooth functions,
curves, tangent and cotangent vectors, vector fields, and differential forms
(and more generally tensors). We should also understand how these objects
are transformed under smooth mappings of one manifold into another. We
refer those readers who are not familiar with these ideas to [1], [7], and [15].

In the previous section we showed that any minimal surface M can be
specified locally by a pair of C-valued functions (f, g), called a local Weier-
strass representation. In this section we state how it is possible to “glue to-
gether” local representations corresponding to different coordinate domains
of the surface M into a single (global) Weierstrass representation, which will
then describe the whole minimal surface M . The idea of regarding a surface
as a set (topological space) glued together from coordinate domains leads to
the notion of a manifold.

Henceforth a surface will be understood as an immersion y: M — R}
of a connected two-dimensional manifold M into R>. We recall that a
smooth mapping y: M — N of a smooth m-dimensional manifold M
into a smooth n-dimensional manifold N (m < n) is called an immersion
if the tangent mapping y, at each point P € M is an embedding of the
tangent space T,M into the tangent space T, pN, that is, y: TpxM —
T;pN. Animmersion y: M — N is called an embedding if y establishes
a homeomorphism between the manifold M and its image w(M) C N.
Locally any immersion is an embedding (one-to-one with its image), so when
the arguments have a local character we shall identify the manifold M and
its image in R®. In this case we shall not distinguish between the tangent
(cotangent) space T, M (T;M) and its image in R} , keeping the same
notation for both objects. More generally, for convenience of exposition
we shall talk about “a surface M ”, bearing in mind that we are given an
immersion y: M — R® of the manifold M into R®.

All the classical minimal surfaces considered above are naturally still sur-
faces in the new understanding. Thus, the Enneper surface is an immersion
of the plane R? into R, and the catenoid is an embedding of the plane with
a point deleted Rz\{(O, 0)} into R'. An important example of a manifold
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and surface is the standard sphere S2c R®. The stereographic projections
@, and ¢¢ from the North and South Poles specify the coordinates on s? \N
and SZ\S respectively.

We now define more accurately what such a minimal surface is. For this
we need a definition of the metric and the second fundamental form.

DEFINITION OF THE METRIC. A metric on a manifold M is a scalar pro-
duct, defined on each tangent space T, M and depending smoothly on the
point P. A manifold on which a metric is specified is called a Riemann
manifold.

REMARK. Generally speaking, all objects that can be defined on a vector
space carry over to a manifold. For this we need to define this object on each
tangent (cotangent) space and require that it depends smoothly on a point
of the manifold (so that in any coordinate systcm all the functions that take
part in its definition should be smooth). We defined the metric in this way
above. Similarly we can define any bilinear form on M, tensor fields, and
SO on.

If y: M - R} is an immersion, we can define the metric ds* on M
induced by this immersion: we define the scalar product ds’ (&, n) of the
tangent vectors { and #n lyingin T, M as the scalar product in R’ of their
images y,(¢) and y,(n) under the action of the tangent mapping ¥, .

We now define the second fundamental form of a surface M.

DErFINITION. The second fundamental form of a surface M is the vector-
valued bilinear form (with values in R’) defined as follows. Let v € T, M be
the velocity vector of a curve y(f) lying on the surface M, where »(0) = P;
then the quadratic form from which we can uniquely restore the bilinear form
Q is defined as Q(v) = (dzy(t)/dt2| :=0)N where ( )N denotes orthogonal
projection onto a line perpendicular to T,M (see the agreement above). In
other words, the quadratic form Q(v) is equal to the normal component of
the acceleration vector of the curve y(1).

For an orientable surface (the manifold M is orientable) we can define
an R-valued second fundamental form Q. For this we choose (since the
surface M is orientable) the family of unit normals n(P) to M that depend
smoothly on a point P. This means that there is a smooth mapping n: M —
S? that assigns to each point P the unit normal n(P) to M. The mapping
n is called the Gaussian mapping. We put Q(v) = (dzy/dtzl 1=0» 1) where
(, ) is the standard scalar product in R®.

Let G = (g;)) be the matrix of the metric, and Q = (b,.j) the matrix of
an arbitrary bilinear form (in some coordinate chart). We form the local
function H =trG~'Q = ):g”bij where (g') = G™' is the inverse of the
matrix of the metric. It is easy to verify that the local functions H can be
glued together into a single function on M . The resulting function (which
we also denote by H) is called the trace of the bilinear form Q.
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DEFINITION. The function H that is the trace of the second fundamental
form Q is called the mean curvature (if Q is defined as a vector-valued
form, then all the b;; and the mean curvature are smooth families of vectors
orthogonal to the surface M). The surface M is called minimal if its mean
curvature H is identically zero: H =0.

As we mentioned in §l, on an orientable surface we can introduce a
complex structure generated by systems of isothermal coordinates. A two-
dimensional manifold with a complex structure is called a Riemann surface
(not to be confused with a Riemannian manifold).

If M is a Riemann surface, then at each point P € M we can define the
complex tangent space ¢ T,M and the complex cotangent space ¢ T;M .
The tangent space ¢ T, M is the complexification of the real tangent space
T, M of the Riemann surface M, regarded as a real two-dimensional man-
ifold. If (u, v) are local coordinates on M , and 8/8u, 8/8v is a basis in
T, M, then the elements of ¢ T, M are linear combinations a8/du+ po/dv
with complex coefficients, a, f € C. The vectors of ¢ T, M can be regarded
as differentiations in “complex directions™ of C-valued functions defined on
M (or in a neighborhood of a point P € M). The cotangent space is defined
as the space of all possible differentials at a point P € M of C-valued func-
tions on M . Each such differential determines in a natural way an R-linear
mapping of the real tangent space T,M into complex numbers, which can
be extended to a C-linear mapping of ¢ T,M into C, that is, to a C-linear
functional. Therefore © TpM is conjugate to ¢ T, M . As before, the bases
(over C) 8/8u, 8/dv for T,M and du, dv for T, M are dual. Other
dual bases are

8 _1(8 .9 8 _1(a .9
E'i(ﬁ"a_v)’ 37 " 5(5:*’37)
for *T,M and
dz =du+idv, dZ =du - idv
for € M.

A complex-valued 1-form w is a specification at each point P € M of
a linear (over C) mapping w;: ¢ T,M — C that depends smoothly on the
point. In local coordinates (u, v), z = u + iv, the form w can be written
as w = w,dz + w,dZ, where the w,(u, v) are smooth C-valued functions
of the coordinates (u, v).

A l-form w on a Riemann surface is said to be holomorphic if in every
coordinate system z = u + iv the form w can be written as w = w,dz,
where w,(u, v) is a holomorphic function, thatis, dw,/8Z =0, w,(u, v) =
w,(z2).

l'l‘o construct a global Weierstrass representation, it remains to define the
integral of a 1-form on M along a smooth curve in M. Let y: [a, b) = M
be a smooth curve, and w is 1-form. Then y°(¢t) is a family of tangent
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vectors, the “vector field along y ", and we can define the function w(y*(¢))
on [a, b]. The integral of this function along [a, b] is called the integral of
the 1-form w along the curve y :

/7 0¥ /a ’ w(y" (1)) dt.

Now let y: M — R’ be an immersed minimal surface, and suppose that
M is orientable. Let us regard M as a Riemann surface with a complex
structure induced by isothermal coordinates. If (U, n: U — V) is a coordi-
nate chart with complex coordinate z = u + iv, then as in §2 we can define
the holomorphic radius vector ¢ = 8y /8z, where y(u, v) = won"(u, v).
We have defined a local Weierstrass representation of a pair (f, g) of C-
valued functionson U C C: if ¢ = (9, 9,, 9;), then f = ¢, — ip, and
8 =0,/(p, - ig,).

We now form in this domain a local holomorphic 1-form w = fdz. If
we now form in another coordinate system z' a local 1-form o' = fdz’,
where 8

f =9, -ig, ¢'=8—:',=(¢'.,¢;,¢;),
then in fact ' coincides with w in the intersection of the domains of
definition of the coordinate charts. In fact, since

we have
V4

£ = 22N g% and o = f55d7" = fdz,
since under a holomorphic change of coordinates z — z' the basis covector
dze© TpM goes into the covector (82/82")dz' (verify this).

Thus, the local forms w = fdz are glued together into a single holo-
morphic 1-form on the Riemann surface M . Moreover, the locally defined
functions g = ¢,/(@, — ip,) are also glued together into a single meromor-
phic functionon M : if g' = ¢;/ (¢', — @3) then in the intersection we have

g = 9,02'/0z __ 9 _
9,02'/0z-i9,02'[8z @, - ip,

This enables us to define three holomorphic 1-forms (1 - gz)w,
1+ gz)w, and gw. Locally these three forms can be written as ¢,dz,
9,dz, and @,dz respectively, so we denote these forms by ¢" , k =
1,2,3. If y is an arbitrary piecewise-smooth curve joining a fixed point
P € M and a point Q € M, then w"(Q) = w"(P) +2Ref7 ¢" . It is easy to
obtain this result for a curve y lying entirely in one coordinate chart, since

k k
k_ 8L 8_“’_ _/ k _ k ok
2Re/;¢ = \ Bu du+ 9 dv = ydw =y (Q) v (P).

8.
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For an arbitrary curve y this is obtained if we split y into pieces, each of
which lies entirely in some chart.

From what we have said it follows, in particular, that the forms ¢k do not
have real periods, that is, the real part of the integral [ ¢" along any closed
piecewise-smooth curve is zero.

DEFINITION. A pair (w, g) consisting of a holomorphic l-form w and a
meromorphic function g on a Riemann surface M and such that the forms
o' = %(l - gz)w, ¢2 = 3(1 +g2)w and ¢3 = gw are holomorphic 1-forms
not having real periods is called a global Weierstrass representation.

If we are given a global Weierstrass representation, then the mapping
v: M- R’ defined as w"(Q) =c + 2Rcfy ¢" , where y is an arbitrary
piecewise-smooth curve on M joining a fixed point P € M and a point
Q€ M,and ¢ = (¢, c;, ¢;) = w(P), specifies an immersed (except for
a certain number of isolated points) minimal surface. Points at which the
regularity of the minimal surface breaks down are called branch points (see
§3). A point Q € M is a branch point if and only if the forms @ and gzw
simultaneously vanish there. A minimal surface that admits branch points is
called a generalized minimal surface.

As before, the function g specifies a Gaussian mapping of the minimal
surface if we consider coordinates on the sphere S? obtained by means of
stereographic projection from the North Pole. The poles of g are the points
that are mapped into the North Pole by the Gaussian mapping, and the zeros
of g are the points mapped into the South Pole.

We have thus proved the following theorem.

THEOREM. All generalized orientable minimal surfaces in R® are described
by a global Weierstrass representation, that is, by all possible pairs (w, g)
consisting of a holomorphic 1-form w and a meromorphic function g defined
on a Riemann surface M and such that the forms ¢' = $(1 - gz)w, 9 =
(1 + g2 )w, and ¢3 = gw are holomorphic and do not have real periods on
M.

The pair (w, g) specifies a branched minimal immersion y: M — R®
(an immersion having isolated branch points) as follows:

v =ck+2Re/¢k, where ¢, = const € R

and the integration is carried out along an arbitrary piecewise-smooth path
joining a fixed point P € M and a variable point Q € M, y(P) =
(¢),65,65).

We have already said that a minimal surface y: M — R® can also be
defined in the unorientable case, that is, if M is an unorientable manifold.
In this situation also it is possible to construct a global Weierstrass represen-
tation. For this we need to construct a “doubling” M of the manifold M,
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that is, an orientable two-dimensional manifold M together with a smooth
mapping (projection) n: M — M , such that at each point P € M thereisa
sufficiently small neighborhood U whose inverse image n"'(U ) consists of
exactly two connected disjoint open sets ¥, and ¥, such that the restriction
of m to each of them is a diffeomorphism:

nV, RU, k=12

In this case the immersion y: M — R® can be extended to an immersion
Vi M— R} , where ¥ = won. Itis convenient to represent this by the
commutative diagram

YA
x| v
M

The projection n: M — M is called a two-sheeted covering.

Such a doubling can always be constructed. For this it is sufficient to
choose a covering of M by coordinate charts (U, , 7,) such that each U, ,
and also each nonempty intersection U, N U,, is a connected open set (do-
main) (try to construct such a covering). We then take twice as big a domain
U, ={U}, U7}, Uf =U,, and choose coordinates (u,,v,) in U; and
coordinates (u,, -v,) in U, , specified by means of the homeomorphisms
ry{ =1, and n, = ton, respectively, where t: RR~C—-R*~Cisa
conjugation. We can then glue together U, and U, solongas U, intersects
U, and the transition functions r],}(r;,')" preserve the orientation (we glue
along the intersection). We thus obtain an orientable manifold M, called
the doubling of M . The natural projection n: M-M has the properues
listed above. Moreover, on M there is a diffeomorphism I: M - M that
is an involution, that is, = id, where id is the identity transformation.
The involution I interchanges the points of each pair—the inverse image of
a point under the projection n: if Pe M and_n_'(P) = {P,, P}, then
I(P)=P, and I(P,) = P,

If we introduce a complex structure on M , then the involution I is an
antiholomorphic mapping of M into itself without fixed points: in each
chart T is the composition of a holomorphic mapping and a conjugation.

Let (U, n) be a coordinate chart on M, where U is a domain that
projects one-to-one into M. If z = u + jv is a coordinate in U, then in
I (U) we can choose a coordinate z' = v + iu (compatible with the complex
structure).

If y: M — R® is an immersed minimal surface, then v MR is
also an immersed minimal surface, a two-sheeted covering of y: M — R’.
If ¢' , ¢2 , ¢3 are holomorphic 1-forms specifyigg a global Weierstrass rep-
resentation on M for a minimal surface w: M — R, then it is easy to
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show that I ‘(w") = ‘6" , where I° is the mapping of 1-forms induced by the
involution T:(T*p*)(&) = NI, (€)), €€ T,,A? is a tangent vector, and I° is
the tangent mapping.

Moreover, if (w, g) is the Weierstrass representation for y: M - R,
then g(I(/)) = —1/g(l) and I'(w) = —g*w. The first formula follows
from the fact that g is the composition of the Gaussian mapping and a
itereographic projection, and under the immersion ¥ the points P and
I(P) go into one point, at which the normals n(P) and n(I(P)) that orient
this surface are in opposite directions: g and —1/g are the stereographic
coordinates of n and —n (verify this). The second formula is obtained by
direct calculation (verify this, using, if necessary, the formulas

m _¢3___g, f=¢l—i¢2
9 —ip, (9, - igy)’

where ¢ = (9,, 9,, ¢;) =9y/0z).

DEeFINITION. In the case of a nonorientable two-dimensional manifold M
the Weierstrass representation is (w, g), defined on the oriented doubling
M of M and satisfying the following additional conditions: if I: M — M
is an involution on M that interchanges the points of each pair consisting
of the in‘yerse image of a point under the canonical projection x: M-M,
then g(I(p)) = ~1/2(p) and I(0) = -g"w.

It turns out that the additional conditions on g and w described in the
definition of the Weierstrass representation in the nonorientable case com-
pletely characterize the Weierstrass representations of orientable minimal sur-
faces which in fact specify two-sheeted coverings of nonorientable minimal
surfaces.

THEOREM. If (w, g) is a Weierstrass representation on a Riemann surface
M that specifies an immersed orientable connected m:mmal swface V: M-
R®, and if there is an antiholomorphic involution I: M — M without fixed
points such that g(I(p)) = —-1/2(p) and I'(w) = -g’w, then M isa
doubling of an nonorientable manifold M, =n: M — M is the corresponding
projection, and w = Gon': M — R correctly defines an immersion that
specifies a connected nonorientable minimal surface.

ExAMPLE (immersion of an infinite M6bius band). Consider on C\{0} the
Weierstrass representation given by the form w = fdz, f(z) =i(z + I)z/ z*
and the meromorphic function g(z) = zz(z - 1)/(z + 1) (an example of
Meeks, see [10]). Consider on C\{0} the antiholomorphic involution I: z —
—1/Z. This involution is the composition of inversion with respect to the
unit circle {|z} = 1} and reflection about the origin z =0.

In fact, this Weierstrass representation determines a nonorientable
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minimal surface (a two-sheeted covering). For

l) Z+1 1

sden=s(-3) =755 -7

and iz L
Fo=iz+1)?Z =i+ 1) dz= -fo.
y4

Therefore the sets {|z| > 1} and {0 < |z| < 1} specify the same nonori-
entable minimal surface y: M — R® (this surface is immersed, since f(z) =
0 only when z =1, but fgz(l) =i(z+ l)zlz==| # 0). The resulting surface
w: M — R® is nonorientable, since M is obtained from the set {Iz] 2 1}
by identifying opposite points of the circle {|z| = 1}. Topologically M is a
projective plane with a point (at infinity) removed, that is, a Mébius band.
This band is twisted once. In fact, if ()cl s x? , x’) are the standard coordi-
natesin R*,and n = (n,, ny, ny) is the unit normal to ¥ M — R®, while
g(z) is the stereographic coordinate of n(z), thatis, |z| = 1, we have

2 1-Rez |g|2—l

8l = TRz ™7 gf e

=-Rez,

so under a motion round the circle |z| = 1 from the point z = 1 to the
point z = —1 the normal is parallel to the plane x3 = 0 once (the semicircle
{e'?, 0 < ¢ < n} is identified with the semicircle {e"*, ~n < ¢ < 0}).

§5. Total curvature and complete minimal surfaces

To understand this section we need to have an idea of the volume form
on an orientable Riemannian manifold (the area form in the case of two-
dimensional surfaces), and also to be able to integrate p-forms over p-
dimensional manifolds (in the case p = 1 the manifold is a curve; the
definition of the integral in this case was given in §4). We also need to be
familiar with the classification of closed (compact without boundary) two-
dimensional manifolds. For a detailed acquaintance with these questions we
recommend the reader to turn if necessary to [1] and [15}.

An important characteristic of minimal surfaces in R” is their total cur-
vature. The total curvature of an orientable surface is defined as the integral
of the Gaussian curvature over the surface, and in the nonorientable case as
half the total curvature of the orientable doubling of this surface (see §4).

More formally, let y: M — R? be an immersed orientable surface, a the
area form on M in the metric induced by the immersion y, and K the
Gaussian curvature.

DerFiNiTION. The total curvature t(M) of a surface y: M — R’ is the
number 7(M) = [, K -a (possibly equal to infinity).

As we mentioned in the proof of Proposition 1 in §3 of Chapter 3, the area
of the image of the coordinate parallelogram 8/8u, 8/8v of the surface M
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under the Gaussian mapping n: M — s? s multiplied by K, where K is
the Gaussian curvature of M.

REMARK. In §3 of Chapter 3 the coordinates (#, v) were isothermal. In
fact, it is easy to see that this does not depend on the coordinates («, v) and
the tangent parallelogram: under a smooth mapping of one two-dimensional
Riemannian manifold onto another the area of any parallelogram in the tan-
gent space is multiplied by the same number 4. This number is called the
determinant of the tangent mapping.

EXERCISE. Write down the determinant d in local coordinates.

From what we have said it follows that if B is the area form on s?, and
n: M — S is the Gaussian mapping, then the 2-form n°f on M, defined
as (n"B)(&, n) = B(n,¢&, n n) where &, n € T,M,isequal to Ko, where a
is the area form on M . In fact, any 2-form on a two-dimensional manifold
is uniquely determined by its value on a pair of linearly independent vectors.
If { =8/0u and n=08/dv, then

(8 8) 4o on )

) )
= area of parallelogram <"‘8_u , n, 8—v)

= K x area of parallelogram (% , i)

v
a 0
—K'O(a, 8_1))

If the Gaussian mapping is locally (in a domain U c M) a diffeomor-
phism, then [, Ka = [, n°B = % [, ;B = £ area of the domain n(U) C

S2. We put the + sign when the diffeomorphism n: U — n(U) preserves
the orientation, and the — sign otherwise. The first possibility is realized
when K >0 in U, and the second when K < 0 (verify this).

Thus, the total curvature t(M) of a surface y: M — R’ is equal to the
“algebraic™ area of the Gaussian image n(M). If K is positive everywhere or
negative everywhere, then the total curvature 7(M) is equal (up to the sign)
to the area of the Gaussian image n(M) taking account of overlappings.

As we have already said, among minimal surfaces in R there is most inter-
est in complete minimal surfaces. It turns out that if a complete minimal sur-
face has finite total curvature, then it has quite a simple topological structure,
namely, such a surface is isometric to a compact orientable two-dimensional
Riemannian manifold without boundary from which finitely many points
have been removed. (An isometry is a diffecomorphism that preserves the
metric. Two Riemannian manifolds are isometric if there is an isometry
between them.)

All two-dimensional connected closed (compact without boundary) mani-
folds can be classified quite easily. We recall that from the topological point
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of view they are: in the orientable case a sphere to which a finite number
g of handles have been attached, and in the nonorientable case a sphere to
which a finite number 4 of Mébius bands have been attached. The numbers
g and h are called the genus of the closed manifold in the orientable and
nonorientable cases respectively, and the closed manifold itself is called an
orientable (nonorientable) surface of genus g (genus h).

A surface of genus 0 is a sphere S?, a surface of genus g = 1 is a torus
T2 =8"xS' , and a surface of genus g = 2 is a pretzel. In the unorientable
case, a surface of genus 4 = 1 is a projective plane, and a surface of genus
h =2 is a Klein bottle (see Figure 39).

If from a surface of genus g or & we remove a finite number / of points
(or equivalently small closed disjoint disks), then the number / is called the
connectivity of this surface: a sphere S? with [ holes can be represented as
an /-connected domain, the projective plane RP? with one hole is a Mobius

FIGURE 39
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o Spherte with
Mébius tand histed, handee
FIGURE 40

band, and a Klein bottle with a hole is called a disk with a twisted handle
(see Figure 40).

EXERCISE. Show that a sphere with g handles, 4 bands, and / holes is
diffeomorphic to a sphere with 2g + h bands and / holes if A > 1.

THEOREM (Osserman [9]). Let w: M — R’ be an immersed complete
orientable surface, and suppose that the Gaussian curvature K < 0 and the
total curvature t(M) is finite, |t(M)| < co. Then M is isometric to a
surface M of genus g from which finitely many points P, ..., P, have been
removed. It is assumed that M is Riemannian, and that on M we consider
the metric induced by the immersion y .

COROLLARY. The theorem is true for complete immersed minimal surfaces
vi: M— R’ of finite total curvature. Moreover, if (w, g) is a Weierstrass
representation of such a minimal surface, then the function g that gives the
Gaussian mapping can be extended at the deleted points P, , ..., P, to a mero-
morphic function defined on the whole of M . Moreover, the total curvature
t(M) can take only the values —4rnm, where m is a nonnegative integer.

REMARK. The condition that the minimal surface is regular is essential.
We can construct complete nonplanar branched minimal surfaces whose
Gaussian image lies in an arbitrarily small domain of the sphere S2. For
this it is sufficient to construct on the unit disk D = {|z| < 1} a Weierstrass
representation (f,, g) such that g =z, ¢ > 0, and the holomorphic func-
tion f, can be chosen in such a way that for any curve C: z(1), t€ (0, 1),
lying in D and not completely contained in any compactum K C D (a
divergent curve) we have

1
[I/}(Z)Ildzl=/ £ (z()[2()| dt = o
(o 0

This Weierstrass representation determines a complete branched minimal
surface with Gaussian mapping given by the function g = ¢z, [z] < ].

ReMARK. The function f, may have infinitely many zeros in the unit disk
D . As Osserman showed, if f has only finitely many zeros in D, then there
is always a divergent curve C such that [ |f(z)||dz| < oo (see [9]).



§5. TOTAL CURVATURE AND COMPLETE MINIMAL SURFACES 85

Let us give the idea of the proof of the last two assertions of the corollary.
The fact that the function g can be extended at the deleted points to a
meromorphic function follows from the classification of isolated singularities
of functions holomorphic in a punctured disk (a removable singular point, a
pole, an essential singularity) and the great Picard theorem, which asserts that
in any neighborhood of an essential singularity a holomorphic function takes
any finite value (with one possible exception) infinitely many times. From
this we can deduce that if an isolated point P, is an essential singularity for
a function g, then the total curvature (M) is infinite.

The second assertion follows from the formula for transforming the inte-
gral of a form under a smooth mapping, namely, if f: M, — M, is a smooth
mapping between two smooth closed (compact without boundary) connected
orientable two-dimensional manifolds, and a is an arbitrary 2-form on M, ,
then [, M, Sa=degf- | M, @ where the integer deg f is called the degree of
the mapping f and defined as follows.

Consider an arbitrary regular point Q € M, for the mapping f, that is,
a point such that the inverse image f~'(Q) of Q consists of points {P}
at each of which the mapping f is regular. This means that the tangent
mapping f,: T‘,,‘kMI — TQM2 is nonsingular for each point P, . From the

fact that M, is compact it follows that f~ '(Q) consists of finitely many
points P, ..., P, (these points are isolated).

Let us choose oriented atlases on M, and M, and let (u,, v,) be coor-
dinates on M, in a neighborhood of P, , and (u, v) coordinates on M, in
a neighborhood of Q. Then

deg f = angndet }i {;k
Uy [A

We can show that a regular pomt always exists (the set of nonregular points
on M, has measure zero—Sard’s lemma) and that deg /' does not depend
on the choice of regular point Q (see [1]). If we change the orientation on
one of the manifolds M, or M,, then degf changes sign.

For f we choose the extension 7 of the Gaussian mapping n: M — s?
to a smooth mapping 7: M — S2. Since M is oriented with respect to the
normal n, which is also the outward normal to the sphere S2, in our case
the signs of the Jacobians from the definition of the degree of a mapping
are the same and equal to —1. Therefore degnm = —m, where m is the
number of inverse images of any point Q € S? that is regular with respect

Ai. Since t(M) = [, ,n"a = [ a, where a is the area form on s?,
and ;7" a = deg [ a = —4nm, we have 1(M) = —4am, which proves
the last assertion. _

Now let M be a_nonorientable immersed manifold, M its orientable
doubling, and n: M — M the corresponding projection, a two-sheeted
covering. It is natural to define the total curvature (M) as half the total
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curvature r(fl:i ). Thus the total curvature of a complete nonorientable im-
mersed minimal surface can take only the values t(M) = —2nm, where m
is a nonnegative integer.

Let us consider some examples.

1) The plane is a complete minimal simply-connected surface of genus 0
with total curvature 7=0.

2) The Enneper surface is a complete minimal simply-connected surface
of genus 0 with total curvature t = —4n, since the function g of the Weier-
strass representation is g(w) = w and is defined on the whole plane C, so
the Gaussian mapping is a diffefomorphism of the Enneper surface onto a
sphere without the North Pole S’\N .

3) The catenoid is a complete minimal doubly-connected surface of genus
0 with total curvature 1t = —4rx.

4) The helicoid is a complete minimal simply-connected surface of genus
0 with total curvature t = —oo (the function g = e~ “ specifies an infinite-
sheeted covering of the helicoid onto the sphere without the North and South
Poles).

5) The incomplete Scherk surface z = In(cosx/cosy) over {|x| < m/2,
|yl < m/2} has Weierstrass representation (4/(1 — w‘) , w) on the open disk
{lw| < 1} ¢ C. The image of the Gaussian mapping is an open hemisphere,
so the total curvature t = —2n. The complete Scherk surface obviously has
total curvature 7= -0c.

6) All periodic complete minimal surfaces (the Schwarz-Riemann surface,
the gyroid, and so on) have total curvature 7 = —oc.

These are examples of orientable minimal surfaces.

An example of an unorientable minimal surface is

7) an immersion of a Mébius band specified on C\{0} by the Weierstrass
representation (i(w + l)z/w‘, wz(w - 1)/(w + 1)) (an example of Meeks,
see §4).

The Gaussian mapping is given by the function g(w) = wz(w- 1)/(w+1).
If wiw - 1)/(w+ 1) = n, then the equation w’(w — 1) — g(w + 1) = 0
has three roots for each n. Two roots coincide if the derivative of this
polynomial with respect to w also vanishes, that is, if n = 3w? - 2w,
Substituting this into the first equation, we obtain —Zw(w2 +w-1)=0,
which has three roots {wk},"=l . The corresponding values 1, = g(w,) are
the singular values, and all the remaining w € C\{n,, n,, n,} are regular.
Since the inverse image of a regular value consists of exactly three points, the
total curvature of this surface is equal to 1= -12n/2 = —6n.

In fact, the M6bius band can be immersed in ®® with total curvature
T = —-2mr, but then this immersion is branched, that is, there are branch
points. The branched immersion of an infinite Mobius band as a complete
minimal surface has been known for quite a long time—it is the classical
Henneberg surface. The Weierstrass representation that specifies the oriented
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doubling of the Henneberg surface is (2(1 — 1 /w‘)dw, w) on C\{0}, and
the branch points are the fourth roots of unity, that is, w = +/, *1.

We note that for branched minimal surfaces the Gaussian mapping is also
well defined, since the function g can be extended to a meromorphic func-
tion at a branch point. The completeness of the induced metric is also well
defined (despite the fact that the metric is degenerate at branch points). In
fact, we can define the completeness of an immersed surface in the following
equivalent way (see [9]). We call an immersed surface x: M — R’ com-
plete if any divergent curve on M, that is, a ray c: [0, +o0) — M that
does not lie entirely in one compact subset K C M has infinite length, that
is, fo~l¢(1)|dt = oo. Here |¢(1)| is the length of the velocity vector of this
curve in the metric induced from R®. Since the integral fo“’ le(e)| dt is de-
fined for the metric, which is degenerate at certain (isolated) points, a similar
definition of completeness carries over to branched surfaces.

It turns out that there are not many complete immersed minimal surfaces
with total curvature greater than —8n . Namely, we have the following result.

THEOREM (Osserman [9], Meeks [10]). The complete immersed connected
minimal surfaces in R® with total curvature t > —8n are exhausted (up to a
motion and an expansion in R? ) by the following list:

the plane (1 =0),
the catenoid (t = —4n), the Enneper surface (t = —4n),
the Mobius band (Meeks's example, T = —6m).

ReEMARK. The total curvature of the complete Henneberg surface is equal
to T = -2n, but this surface is branched. If we delete the branch points, the
Henneberg surface becomes incomplete.

From Osserman’s theorem, which describes complete minimal surfaces
with finite total curvature, the following natural questions arise:

1) Can any of the possible values of the total curvature be realized on some
complete minimal surface?

2) Are there complete minimal surfaces of any genus and any connectivity?

The answer to the first question is given by the following theorem.

THEOREM. For any integer k > 0, except k = 1, there is a complete
immersed minimal surface y: M — R® with total curvature t(M) = -2nk .
The case k = 1 cannot be realized.

PRrRooF. For each even k = 2m we can easily construct a complete ori-
entable immersed minimal surface with total curvature t(M) = —4am . Each
such surface can be specified, for example, by a Weierstrass representation
(dw, w™) on C.

The fact that the case k = |1 cannot be realized follows from the theorem
of Osserman and Meeks formulated above.
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It remains to construct examples for each odd k > 3. This problem was
solved by Elisa and d’Oliveira (see [11]), and also by Kusner (see [12]). We
now give the examples of the first two authors, and we shall talk about the
somewhat more interesting Kusner surfaces in the next section. Thus, Elisa
and d’Oliveira constructed a family of complete minimal immersions of the
infinite Mobius band with total curvature 7 = -2am, m >3, m odd. The
authors also showed that other values of the total curvature cannot occur
for complete unorientable minimal surfaces of genus 1. Each surface of this
family is specified on C\{0} by the Weierstrass representation

(i(w +1)? dw w™ N (w - 1)) ,
wm+l w+1

modd, m >3, and I: w — -1/w is the standard involution on C\{0}

without fixed points. Each such surface is a Mobius band with (m — 1)/2

twists immersed in R® as a complete minimal surface with total curvature

T = -2nm (verify this).

The answer to the second question is given in the orientable case by a paper
of Klotz and Sario (see [13]), in which they construct complete immersed
orientable minimal surfaces of any genus and any connectivity ¢ > 4.

The idea of the construction is as follows. We first consider a 3-connected
complete minimal surface specified by the Weierstrass representation

dw, g=1/(w-1)+2/(w- 1)} +1/(w+1)=2/(w+1)})

on C\{l, —1}. It is easy to verify that the residues of the forms ¢' =
31 - g)dw) and ¢* = (1 + g¥)dw at the points w = 1 are zero,
and the residues of the form ¢3 = gdw are real numbers, so [ ¢3 along a
closed contour round each singular point is equal to 2mires,,_,, ¢3 (where
res, .4 ¢3 denotes the residue at the corresponding point), that is, it is a

purely imaginary number, and so ¢3 also does not have real periods. More-
over, the induced metric is d5 = (1 + |g|2)|dw| , S0 any divergent curve going
off to infinity has infinite length, since d5 > |dw|. Any divergent curve going
to a singular point w = +1 also has infinite length, since in a neighborhood
of these singular points the metric 45 ~ [dw]|/|1 iwl‘ increases quite rapidly.

Thus, we have constructed a complete immersed 3-connected minimal sur-
face of genus 0.

Next, we take two copies F, and F, of the plane C\{1, —1} and on each
of them we make a cut 7,, k =1, 2, along the real axis from -1 to 1.
We glue the upper side of 7, , to the lower side of 7, » and the lower side of
7, to the upper side of y,. We have obtained a manifold F glued together
from F, and F,. It is easy to define a complex structure on F induced
by the complex structures on F, and F,, and also a holomorphic form @
and a meromorphic function g, which in the coordinates on F induced by
the standard coordinates on the corresponding copies F, coincide with the
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form dw and the function g defined above. It is easy to verify that the
pair (@, g) on F is a global Weierstrass representation, which determines
a complete immersed minimal surface of genus 0, but this time 4-connected
(see Figure 41).

Continuing this procedure, we can obtain surfaces of genus 0 and any
connectivity. To obtain the complete picture for surfaces of genus 0 we
add to this family the simply-connected Enneper surface and the doubly-
connected catenoid. Thus, there are complete immersed orientable minimal
surfaces of genus 0 and any connectivity ¢ > 1.

To obtain a surface of positive genus we take two copies F k ,k=1,2,
of the 4-connected Riemann surface F defined above (F k is glued together
from F,", and F", F,k = C\{l, —1}). We make cuts J, and ¢, on each
F¥: on F,k acut J, from 1 to +oc along the real axis, and on sz acut g
from —1 to —oo also along the real axis. We glue together the upper (lower)
sides of the cuts J, and ¢, on F ! to the lower (upper) sides of the cuts 0,
and ¢, on F 2 As a result we obtain a torus with four singular points: we
denote itby M_, g =1, c = 4 (see Figure 42).

S *ﬂjv. ..

FIGURE 41A

FIGURE 41B
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FIGURE 42

As above, we construct the global Weierstrass representation on M; in-
duced by the Weierstrass representations on each of the components from
which M;‘ is glued. We have thus constructed a complete immersed 4-
connected minimal surface of genus 1.

Continuting this construction, we can obtain a 4-connected minimal sur-

face M; of any genus g > 0. To increase the connectivity (without changing

the genus) we make a cut on M; between the singular points corresponding
to w = x1 and glue the necessary number of copies of F, = C\{l, -1}
(see Figure 43).

IMPORTANT REMARK. We note that the image in R’ of the minimal sur-
faces we have constructed (of any genus and any connectivity) coincides as a
set of points with the 3-connected minimal surface defined at the very begin-
ning by the Weierstrass representation (dw, g) on C\{l, —1}. Of course,
this admits an immersion (compare with the infinite-sheeted covering of the
catenoid in §2 of Chapter 2). Thus we have simply increased the parametric
domain without changing the actual surface as a subset of R

§6. The geometry of complete minimal surfaces
of finite total curvature

In this section we describe the examples of Meeks and Hoffman of com-
plete minimal surfaces of arbitrary genus embedded in R>. All these surfaces
have finite total curvature. We first introduce some concepts that character-
ize the geometry of complete minimal surfaces of finite total curvature that
are used in the construction.

We recall that by Osserman’s theorem every crientable complete minimal
surface y: M — R? of finite total curvature is isometric to a surface M of
some genus g from which a finite number r of points P, , ..., P, have been
deleted. It turns out that in a neighborhood of the deleted points P,, ..., P

r
the immersion y: Ti\{l’l v P} — R’ behaves quite well (here we again
denote by y the composition of the isometry between M\{P,, ..., P} and

M and the immersion y: M — R® ). Namely, let us choose an arbitrary
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FIGURE 43

p > 0. Let X, denote the intersection of the image w(M) contracted by
a factor p, thatis, w(M)/p, and the standard unit sphere SPcrR: x » =

w(M)/pn S,

As Jorge and Meeks showed (see [14]), for sufficiently large p the set X »
is a family {7,,..., 7} of smooth closed curves immersed in the sphere
s?.

DEFINTION. We define an end of a complete minimal surface y: M — R’
of finite total curvature as the image ¢, = y(D,\P,) of a sufficiently small
punctured disk D,\P, on M with center at the point P
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For sufficiently large p the curve y, of the family {y,,...,7} con-
structed above is the intersection of ¢,/p and s =qlpn S?. Thus,
the asymptotic behavior of the curves characterizes the behavior of the ends
of the minimal surface.

It turns out (see [14]) that as p — oc each curve 7, C S? contracts to
a great circle v, in s? (v, is defined as the intersection of 5? and a plane
passing through the origin), and the limit curve 7, is a winding of v, with
a certain multiplicity, which we denote by d, and call the multiplicity of the
end c,. Moreover, v, lies in the plane perpendicular to the image of the point
P, under the Gaussian mapping 7: M-S (an extension of the Gaussian
mapping n: M — S?, which exists by Osserman’s theorem). Geometrically
this means that each end looks asymptotically like a d,-sheeted covering of
the limiting tangent plane (the plane perpendicular to the “limiting value” of
the Gaussian mapping—the image of P,) onto itself (as in the case of the
holomorphic mapping C — C given by the formula w = zf) .

ExAMPLE. Consider the catenoid r = cosh z described in cylindrical co-
ordinates (r, ¢, z). The catenoid has two ends and under an increase in the
scale they are as shown in Figure 44,

Clearly, X » consists of two simple Jordan curves y, and y, lying in
parallel planes, and as p — oo these curves contract to the equator. In this
case d =d,=1.

PrOBLEM 1. Show that the Enneper surface X ) for sufficiently large p
consists of one curve immersed in S, which in the limit winds onto the
equator with multiplicity d, = 3.

PROBLEM 2. Let (f, g) on U C C be a local Weierstrass representation
of a minimal surface y: M — R®, and let ©: R = R® be an orthogonal
transformation that preserves the orientation. The surface toy: M — R}
is obviously a minimal surface congruent to the surface y: M — R® and
has a different Weierstrass representation (f*, g') over U € C. Find the
connection between (f', g') and (f, g).

ANswEgR. If the orthogonal transformation t: R - R’, restricted to
the sphere s2,is given in stereographic coordinates (¥, v), z = u + iv,

FIGURE 44
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by a special unitary matrix (_‘l—,g) ,a,beC, |a’+|b* =1 as follows:
z w— (az + b)/(-bz + @), then the new Weierstrass representation (f’, g')
has the form

(8= (Bsvars, S0,

PrOBLEM 3. Let (f, g) over U be the Weierstrass representation of a
minimal surface y: M — R® ,and A: R* = R® an expansion by a factor
A€R: x — Ax for any x € R*. Prove that the Weierstrass representation
(f', &') over U of the minimal surface Ao y: M — R> is (1f, g).

PrOBLEM 4. Let (f(z), g(z)) over U be the Weierstrass representation
of a minimal surface y: M = R>,let a: U = V be a holomorphic change of
coordinates, and let w be the standard complex coordinate in ¥ . Prove that
the Weierstrass representation (f, g') of the minimal surface y: M — R®
over V in the new coordinates has the form (8z/8w- f, g).

The key feature in the proof of the above assertions that describe the
asymptotic behavior of the ends of a complete minimal surface of finite
total curvature is the following remark: if (w, g) is the global Weierstrass
representation of a complete minimal surface y: M — R® of finite total
curvature, M ~ M\{P,,..., P,}, then not only can the function g be
extended to a meromorphic function on M , but also the holomorphic 1-form
w can be extended on M to a meromorphic 1-form. In fact, if this is true
for the Weierstrass representation (w, g) of a minimal surface y: M — R,
then it is also true for the Weierstrass representation (', g') of the minimal
surface Toy: M — R, where ©: R® = R® is an arbitrary orthogonal
transformation that preserves the orientation (see Problem 2). Obviously, for
each point P € {P,, ..., P,} we can select an orthogonal transformation 7,
such that P, becomes a zero of the function g, the extension of the function
g from the Weierstrass representation for oy M — R®. Since this
minimal surface is also complete, any smooth (divergent) curve y that tends
to P, has infinite length, that is, [ |/|(1+ |g'1)dt = 0. Since g'(P) — 0
as P— P, wehave [ |f|dt=

Hence it follows (try to show this) that |f'(P)| — o as P — P, that is,
f hasapoleat P,.

PrROBLEM 5. Prove that the only (up to a motion and an expansion in
R’) simply-connected and doubly-connected immersed complete minimal
surfaces w: M — R® of genus 0 with total curvature 7(M) = —4n are the
Enneper surface and the catenoid respectively.

Hint. A complete simply-connected immersed minimal surface of genus
0 and finite total curvature is given by the global Weierstrass representation
(w = fdz, g) on the plane C, where g and f are extended to mero-
morphic functions on s?~Cu {oc}, and f is a holomorphic function
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on C. Therefore f is a polynomial, and g = P/Q is a complex func-
tion, where P and Q are polynomials, and because the surface is immersed
f= cQ2 , where ¢ = const. Thus, all such surfaces are described by the
Weierstrass representation (cQ2 ,P/Q) on C, where P and Q are co-
prime polynomials, and the total curvature is calculated from the formula
T(M) = —4n max(deg P, deg Q) , where deg denotes the degree of a polyno-
mial. Similar arguments can be carried out for a doubly-connected surface.

In the investigation of minimal surfaces for embeddedness an important
role is played by a generalization of the classical Gauss-Bonnet theorem. It
turns out that we can calculate the finite total curvature of a complete minimal
surface w: M — R} by starting from the topology of the manifold M and
the geometry of ends. If g is the genus of M, M ~ M\{P,,..., P},
d,,...,d, are the multiplicities of the ends c,, ..., c,, and t(M) is the
total curvature, then we have the following result.

THEOREM 1 (a generalization of the Gauss-Bonnet formula; see [9], [14]).

(M) = 21:(2 -2g-r- Zd,).
j=1
The quantity 2 — 2g is called the Euler characteristic of M and denoted
by x(M). Thus,

(M) =2n (x(ﬁ) -r- Z’:ldj).
=

ExampLEs. 1. The catenoid y: M — R® has two ends, embedded in
R®, thatis, r = 2, d=d=1,and M = S2, so the Euler characteristic
x(M) = x(Sz) = 2. Consequently, (M) = 2n(2 - 2 - 2) = —4xn, which
agrees with the previous results.

2. The Enneper surface y: M — R® has one end of multiplicity 4, ,
x(M) = 2, and the total curvature (M) = -4rn. Therefore —4n =
2n(2-1-d,), from which it follows that d, = 3 (see also above).

From Theorem 1 there follows a necessary condition for a complete mini-
mal surface y: M — R® of finite total curvature (M) to be embedded.
Since the ends of such a surface must be embedded, which is obviously
equivalent to the multiplicity of any end being equal to one, the general-
ized Gauss-Bonnet formula leads to the relation t(M) = 2n(x(M) - 2r) or
g+r—1=—-1(M)/4n = the degree of the Gaussian mapping.

Moreover, all the ends must be “parallel”, that is, the Gaussian mapping
of the surface M must take all the points P, , ..., P_ into a pair of opposite
points of the sphere S’ (otherwise for sufficiently large p the curves of the
family X = {7y»..., 7} will intersect and the surface will not be embed-
ded). After a certain rotation we can arrange that P, ..., P, go into the
North and South Poles. If (w, g) is the global Weierstrass representation of
such a surface, and g is the extension of g to M, then the last condition
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means that P, ..., P_are either zeros or poles of g.

SKETCH OF THE PROOF OF THEOREM 1. First of all we note that the Euler
characteristic of a closed two-dimensional surface of genus g has an intuitive
geometrical definition. To start with we consider a closed convex polyhedron.
Euler’s well-known theorem asserts that the number of faces f, the number
of edges e, and the number of vertices v of any such polyhedron satisfy the
relation f —e + v = 2. Let us project the polyhedron by means of a central
projection onto an arbitrary sphere lying inside it. We obtain a partition of
this sphere into domains corresponding to the faces of the polyhedron, and
the boundary of each domain obviously splits into “edges” and “vertices”.
The relation f — e+ v = 2 naturally remains true for such a partition of the
sphere.

In addition, let us consider an arbitrary closed surface M of genus g.
We split M into finitely many disjoint polygonal domains. This means that
we represent M as the union of the closures U, of finitely many disjoint
open domains U, (faces), each of which is homeomorphic by means of a co-
ordinate homeomorphism to a simply-connected domain, and the boundary
AU, of each face U, is representable as finitely many edges—smooth curves
homeomorphic to an interval, and finitely many points—vertices. We require
that each edge adjoins (that is, lies in the closure of) at most two domains.
The figure shows a possible partition of the torus.

Let f denote the number of faces, e the number of edges, and v the
number of vertices. Then it turns out that the quantity x(M) def f—-e+v
does not depend on the partition of M into polygonal domains. It is easy
to calculate y(M) by representing M as the result of glueing a 4g-gon (see
§5). The corresponding partition consists of one face—the polygon itself,
one vertex, and 2g edges. Consequently, x(M)=2-2g.

This result is called the global Gauss-Bonnet theorem and can be obtained
by calculating the total curvature.

THEOREM 2 (the global Gauss-Bonnet theorem). Let y: M — R® be an
immersion of a closed connected surface M of genus g in R®. Then for any
partition of M into polygonal domains the total curvature t©(M) is equal to
(M) = [,,K=2n(f-e+v) % 2nx(M), where f is the number of faces, e
is the number of edges, and v is the number of vertices of the partition, and
K is the Gaussian curvature of the metric induced by the immersion y .

Thus, the global Gauss-Bonnet theorem proves that the quantity x(M) =
f — e+ v is independent of the panition, and the total curvature t(M) is
independent of the immersion y: M — R’.

To derive a relation between the total curvature [, K and the Euler char-
acteristic y(M) it is sufficient to calculate the total curvature of an arbitrary
simply-connected polygonal domain on M . The answer is given by the so-
called local Gauss-Bonnet theorem.
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REMARK. The constant g € R is the only constant ¢ € C for which the
pair (Pdz, c/P’) on D correctly defines a Weierstrass representation, that
is, the corresponding holomorphic 1-forms w' , ¢p2 , and ¢3 have no real
periods.

We shall not give the proof of this assertion here, or of the fact that the
complete minimal surface constructed by Costa is actually embedded, as
Meeks and Hoffman showed, using the fact that the Weierstrass P-function
has a large number of symmetries. A reader who is interested can turn to
(16].

§7. Indices of two-dimensional minimal surfaces in R’

In this section we touch on questions of stability of minimal surfaces and
their bifurcations and the problem of calculating the indices—an important
characteristic of minimal surfaces, closely connected with the first two ques-
tions. As a rule, we shall not give proofs, since the admitted complexity of
our book and limitations of space do not allow us to do this.

In §1 of Chapter 2 we described in detail the reconstruction (bifurcation)
of catenoids as the distance between the bounding circles varies. How can we
characterize the positions of a contour for which bifurcations occur? Why
does only one catenoid occur in practice?

In §2 of Chapter 1 we mentioned that a soap film always tends to take up
a form having (locally) minimal area. Now suppose that we have succeeded
in realizing as a soap film a certain minimal surface for which there is a
deformation that monotonically decreases the area of this surface. In this
case small fluctuations of the film, which always exist in the real world, lead
to spasmodic modification of its form—the soap film will be unstable. This
observation can serve as motivation for the term “unstable minimal surface”
for such surfaces. In practice it is very difficult to obtain unstable films (see
(2)).

Next, suppose we have a soap film M spanning a wire contour I'. If
we deform I, the film M is also deformed. As we have already observed
in the example of the catenoid, not every continuous change of form of a
contour leads to a continuous change of form of the soap film spanning it.
The reason for the spasmodic modifications that occur here is that at the
time of deformation of the contour I' the film that is deformed with it may
become unstable. An unstable film starts to be modified and continues until
it becomes stable. Generally speaking, its topological type and connectivity
may change (as, for example, in the case of the catenoid). In this connection
we naturally wish to investigate whether the given minimal surface is stable,
and if it is unstable to determine the degree of instability.

For a mathematical study of stability of a minimal surface we proceed, as
we have already mentioned in §2 of Chapter 1, by analogy with the investi-
gation of the extrema of smooth functions. For this we usually calculate the
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second derivative of the area functional—the Hessian, which gives a bilin-
ear form on the space of admissible small variations of the surface—and see
whether the Hessian is positive definite or not. If not, then as in the case of
functions we calculate the null-index and the index, which characterize the
degree of degeneracy and negative definiteness of the Hessian.

The indices of different variational functionals have been, particularly re-
cently, the object of intensive research. There is most interest in the area
functional (in the multidimensional case the volume functional) and the
Dirichlet (energy) functional (see [17], [18], [19], [4]).

Let us give some results that touch on the investigation of stability of two-
dimensional minimal surfaces in R’. Barbosa and Do Carmo showed (see
[20]) that an orientable minimal surface in R® for which the area of the
image under the Gaussian mapping is less than 2z is stable. In [21] Do
Carmo and Peng gave a generalization of Bernstein’s problem in terms of
stability: it turns out that the plane is also the only complete stable minimal
* surface in R® (we recall that the plane is the only minimal surface that is a
complete graph, that is, the graph of a function defined on the whole plane;
see §3 of Chapter 2).

In the case of a compact minimal surface the index is always finite (see
below), but for noncompact minimal surfaces this is not always so. In the
papers mentioned below the authors determine when the index of a complete
minimal surface is finite. We recall that the total curvature 7 of a two-
dimensional orientable surface y: M — R’ is defined as the integral over
the surface of its Gaussian curvature K: 7= [, K. In [22] Fischer-Colbrie
proved that for complete immersed orientable minimal surfaces in R® the
finiteness of the index is equivalent to the finiteness of the total curvature. In
[23] Tysk gave an estimate of the index ind(M) of such a complete minimal
surface y: M — R’ in terms of the Gaussian mapping. It turns out that
ind(M) < 7.68183 - k, where k is the degree of the Gaussian mapping.

The calculation of the indices of noncompact minimal surfaces is a com-
plicated problem, and until recently the investigation of them has been re-
stricted by the determination of the stability, that is, determining whether the
index is zero or not. The first numerical values of indices were apparently
obtained in 1985 by Fischer-Colbrie (see [22]), where, apart from anything
else, she showed that the indices of two classical minimal surfaces, namely
the catenoid and the Enneper surface, are equal to one.

In [24] Lopez and Ros, relying on Fischer-Colbrie’s results, showed that the
catenoid and the Enneper surface are the only complete orientable minimal
surfaces in R® with index one. This result is one more characteristic of these
two classical minimal surfaces: as Osserman showed (see [9]), the catenoid
and the Enneper surface are the only complete minimal surfaces of total
curvature —4n ; they are also the only complete minimal surfaces for which
the Gaussian mapping is a diffeomorphism with an image.



98 3. GENERAL PROPERTIES OF MINIMAL SURFACES IN R’

REMARK. In fact, the Gaussian curvature K of an immersed surface
v: M- R? depends exclusively on the metric induced by the immersion and
not on the immersion: if y,: M — R’, k =1, 2 are two immersions that
induce the same metric on M, then the Gaussian curvature K is the same
in the two cases (however, this is not true for the mean curvature). More-
over, we can define the Gaussian curvature of an arbitrary two-dimensional
Riemannian manifold (respectively, the total curvature) without using an
immersion in R®. The Gauss-Bonnet theorem remains true (see (.

Using the local Gauss-Bonnet theorem, it is not difficult to prove Theorem
1. Let y: M — R’ be an immersed orientable connected complete minimal
surface of finite total curvature, let M be the corresponding Riemann surface
of genus g, and suppose that M is isometric to M\{P,,..., P}. We cut
out from M a set of sufficiently small disjoint open disks D, with centers
at P, k=1,..., r. We denote the remaining compact set by B,

r r
B=M\||D,, 94B=|]aD,.
k=1 k=1
Consider an arbitrary partition of B into polygonal simply-connected do-
mains; for each of these domains we use the local Gauss-Bonnet theorem.
Summing over all the domains of the partition, we obtain

/BK+§/BDkkg=2n(x(M)—r)

(verify this).

If d, is the multiplicity of the end ¢, = w(D,\P,), then it is not difficult
to show that [y, k, — 2nd, as the disk D, contracts to the point P,.
Let us give the idea of the proof of this assertion. Suppose that under the
Gaussian mapping P, goes into the South Pole (this can always be achieved

by a rotation of R} ). From the local Weierstrass representation (f, g) ina
neighborhood of P, we have

_a(z) _ b(z) _c(2)

Ph=7me 0= m 3T mei

where /, m > 0, and when z = 0, which corresponds to the coordinate
of the point P, , the holomorphic functions a(z), b(z), and c(z) do not
vanish.

If x', xz, x> are the standard coordinates in R> and x* = const+
2Re [ @, dz, then it is easy to show that

3 3

p= \/(Jt')2+(x2)2 — o0 and S - B = X1 -0
as z — 0. Hence it follows thatas p - oc y, = w(D,‘\P,‘)/pﬁS2 contracts
to the unit circle (the equator of the sphere) (xI )2 + (xz)2 = 1. The limiting

3
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REMARK. The condition that the variation y, is fixed on the boundary
8M imposes a restriction on the function T: M — R*: Tl =0.

Now it is not difficult to show that the vanishing of the derivative
dA(t)/dt|,_, for any variation fixed on the boundary is equivalent to the
vanishing of the mean curvature H (compare with §2 of Chapter 3).

Let wv: M — R’ be an orientable compact immersed minimal surface.
Consider a two-parameter variation y, : M — R® of our surface, Visli=0.5=0
= y, that is, a smooth mapping F: I xI x M — R, v, (P)=F(,s,P)
which for each fixed ¢ and s is an immersion and F(0, 0, P) = w(P). Let
us construct the function A(t, s) equal to the area of the surface y, : M —
R®, that is, the area of M in the metric dsf, induced by the immersion
W, M- R}. Our problem is to calculate the second mixed derivative of
A(t, s) at the initial moment of deformation, that is, BZA(I , §)/0185|,_g s -

Let { denote the field of the variation y,,, and 7 the field of the variation
¥y » that is,

. o)=Y

oy
$(P)=—
1=0,5=0 ds

1=0,5=0
ProOPOSITION 2. If v: M — R} isan arbitrary immersed compact ori-
entable minimal surface, y,;: M — R’ a two-parameter variation of it that is
fixed on the boundary dM , and A(t, s) the area of the surface y,: M — R}
for each t and s, then
8%A(t, 5)
018s  |,-0.5=0
where T = (£,n), S = (n,n), and n is the field of unit normals to the
surface y: M — R’. Here A denotes the so-called metric Laplacian. If
(u, v) are isothermal coordinates, ds’ = ).(du2 + dvz), then AT = (1/4)-
(0°T/ou® + 8°T/9v?).

REMARK 1. It is easy to see that the standard Euclidean Laplacian 8* /0 ut
+0° /¢':)v2 , written in the (u, v)-coordinates, is changed by a change of co-
ordinates, that is, in the new coordinates (u,, v,) this operator is not equal
to az/auf + az/av} (if we require that its value on each smooth funciton,
written in the new coordinate system, is unchanged).

The metric Laplacian A is an invariant differential operator acting on func-
tions (independent of the coordinate system), and if in the (u#, v)-coordinates
the metric g, i = d; i then this operator coincides with the Euclidean Lapla-
cian a’/auz +0? /(’)v2 . In the general form the metric Laplacian is

AT = (1/V2)-0/9u' (V88" 8T /0’),
where (u', u?) are local coordinates, T(u', u®) is a smooth function, (g")
is the matrix inverse to the matrix of the metric (g;;), and g = det(g;)).

=-/ (AT - 2KT)-S,
M
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FIGURE 47

Figure 47 shows examples of surfaces of genus two and genus nine.

We mention that a computer played an important role in the research
carried out by Meeks and Hoffman. The general idea of using computer
graphics to investigate minimal surfaces for embeddedness is as follows. If
it has been shown that all the ends of a complete minimal surface of finite
total curvature are embedded, parallel, and tend asymptotically to different
planes, then the investigation of embeddedness reduces to the investigation
of a compact fragment of a minimal surface lying in a bounded domain (the
size of which can be estimated). Using a computer, we can immediately see
whether the surface under investigation has self-intersections in this finite
domain or not. In the first case we can, again by using the computer, localize
the self-intersections, that is, determine approximately where they lie and
what they are. If no self-intersections are revealed, the computer can help,
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for example, to observe symmetries of the surface (if there are any). This
is how Meeks and Hoffman used the computer. Thus, computer graphics
enable us to make conjectures about the object under investigation, and this
significantly lightens the problem.

We now touch briefly on the main ideas of the construction. For this we
represent the torus T 2 as a unit square with opposite sides identified. It is
convenient to regard the torus T? as the quotient of the complex plane ¢
by the integral lattice Z2, T = C/Z2 : two points z, and z, of C are
identified if and only if z, — z, = m + in for some integers m and n.
In such a realization we can identify functions on T? with doubly-periodic
(with respect to Z?) functions on C, that is, with functions f: €C—C such
that for any integers m and n and any z € C we have f(z+m+in) = f(z).
Henceforth we shall denote points of Z* by the letter Q, Q =m + in.

From the maximum principle it follows that any holomorphic function on
a torus (and more generally on any closed Riemann surface) is a constant,
since the modulus of such a function attains its maximum (in view of the
compactness) at an internal point because of the absence of a boundary.

If f is a meromorphic function on T2, it is not difficult to show that the
sum of the residues of f over all the poles must be equal to zero. Therefore
the simplest nonconstant meromorphic function on a torus has one pole of
order two.

DEerFINITION. We define the Weierstrass P-function as a meromorphic
doubly-periodic function on C (with respect to Zz) having only double poles
situated only at points of Z? and given by

1 1 1
P 22 * 02#0 [(z -Q)? Qz]'
Q=m+in

It is easy to show that any two meromorphic doubly-periodic functions on
C with respect to z? having only double poles at points of Z? differ from
one another by multiplication by a constant and addition of a (different)
constant. In fact, some linear combination of such functions is a doubly-
periodic function on C and everywhere holomorphic, so it is equal to a
constant.

We have talked about the Weierstrass P-function becausec Costa used
it in his construction. More concretely, let us cut out from the torus &
three points Fy, P, and P, corresponding to 0, w, = 1/2, and w, = i/2
respectively. Let D = T*\({P,, P,, P,}. We put a = 2v2rP(1/2).

THEOREM (Costa; see [16]). If P' denotes the derivative of the Weierstrass
P-function P, and the domain D C T? and the constant a are defined as
above, then the pair (Pdz,a/P') on D is a well-defined Weierstrass repre-
sentation and gives a complete minimal surface with total curvature —12x .
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REMARK. The constant a € R is the only constant ¢ € C for which the
pair (Pdz, c/P’) on D correctly defines a Weierstrass representation, that
is, the corresponding holomorphic 1-forms (v' , qu , and q)’ have no real
periods.

We shall not give the proof of this assertion here, or of the fact that the
complete minimal surface constructed by Costa is actually embedded, as
Meeks and Hoffman showed, using the fact that the Weierstrass P-function
has a large number of symmetries. A reader who is interested can turn to
(16].

§7. Indices of two-dimensional minimal surfaces in R’

In this section we touch on questions of stability of minimal surfaces and
their bifurcations and the problem of calculating the indices—an important
characteristic of minimal surfaces, closely connected with the first two ques-
tions. As a rule, we shall not give proofs, since the admitted complexity of
our book and limitations of space do not allow us to do this.

In §1 of Chapter 2 we described in detail the reconstruction (bifurcation)
of catenoids as the distance between the bounding circles varies. How can we
characterize the positions of a contour for which bifurcations occur? Why
does only one catenoid occur in practice?

In §2 of Chapter 1 we mentioned that a soap film always tends to take up
a form having (locally) minimal area. Now suppose that we have succeeded
in realizing as a soap film a certain minimal surface for which there is a
deformation that monotonically decreases the area of this surface. In this
case small fluctuations of the film, which always exist in the real world, lead
to spasmodic modification of its form—the soap film will be unstable. This
observation can serve as motivation for the term “unstable minimal surface”
for such surfaces. In practice it is very difficult to obtain unstable films (see
(2p.

Next, suppose we have a soap film M spanning a wire contour I'. If
we deform I, the film M is also deformed. As we have already observed
in the example of the catenoid, not every continuous change of form of a
contour leads to a continuous change of form of the soap film spanning it.
The reason for the spasmodic modifications that occur here is that at the
time of deformation of the contour I' the film that is deformed with it may
become unstable. An unstable film starts to be modified and continues until
it becomes stable. Generally speaking, its topological type and connectivity
may change (as, for example, in the case of the catenoid). In this connection
we naturally wish to investigate whether the given minimal surface is stable,
and if it is unstable to determine the degree of instability.

For a mathematical study of stability of a minimal surface we proceed, as
we have already mentioned in §2 of Chapter 1, by analogy with the investi-
gation of the extrema of smooth functions. For this we usually calculate the
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second derivative of the area functional—the Hessian, which gives a bilin-
ear form on the space of admissible small variations of the surface—and see
whether the Hessian is positive definite or not. If not, then as in the case of
functions we calculate the null-index and the index, which characterize the
degree of degeneracy and negative definiteness of the Hessian.

The indices of different variational functionals have been, particularly re-
cently, the object of intensive research. There is most interest in the area
functional (in the multidimensional case the volume functional) and the
Dirichlet (energy) functional (see [17], [18], [19], [4)).

Let us give some results that touch on the investigation of stability of two-
dimensional minimal surfaces in ®*. Barbosa and Do Carmo showed (see
[20]) that an orientable minimal surface in R*® for which the area of the
image under the Gaussian mapping is less than 2z is stable. In [21] Do
Carmo and Peng gave a generalization of Bernstein’s problem in terms of
stability: it turns out that the plane is also the only complete stable minimal
surface in R’ (we recall that the plane is the only minimal surface that is a
complete graph, that is, the graph of a function defined on the whole plane;
see §3 of Chapter 2).

In the case of a compact minimal surface the index is always finite (see
below), but for noncompact minimal surfaces this is not always so. In the
papers mentioned below the authors determine when the index of a complete
minimal surface is finite. We recall that the total curvature 7 of a two-
dimensional orientable surface y: M — R’ is defined as the integral over
the surface of its Gaussian curvature K: 7 = f, K. In [22] Fischer-Colbrie

proved that for complete immersed orientable minimal surfaces in R’ the
finiteness of the index is equivalent to the finiteness of the total curvature. In
[23] Tvsk gave an estimate of the index ind(}f) of such a complete minimal
surface y: M — R® in terms of the Gaussian mapping. It turns out that
ind(M) < 7.68183 - k, where k is the degree of the Gaussian mapping.

The calculation of the indices of noncompact minimal surfaces is a com-
plicated problem, and until recently the investigation of them has been re-
stricted by the determination of the stability, that is, determining whether the
index is zero or not. The first numerical values of indices were apparently
obtained in 1985 by Fischer-Colbrie (see [22]), where, apart from anything
else, she showed that the indices of two classical minimal surfaces, namely
the catenoid and the Enneper surface, are equal to one.

In [24]) Lopez and Ros, relying on Fischer-Colbrie’s results, showed that the
catenoid and the Enneper surface are the only complete orientable minimal
surfaces in R with index one. This result is one more characteristic of these
two classical minimal surfaces: as Osserman showed (see [9]), the catenoid
and the Enneper surface are the only complete minimal surfaces of total
curvature —4n ; they are also the only complete minimal surfaces for which
the Gaussian mapping is a diffeomorphism with an image.
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In [25] Rassias made an attempt to calculate the indices of the classical
minimal surfaces in R>, but it was not crowned with success, because the
author confused the Jacobi equation for a minimal surface written in an
isothermal coordinate system (where the Euclidean Laplacian is used) with
the Jacobi equation “on the surface” (where the metric Laplacian is used).

In this section we consider the problem of calculating the index by an
example of the area functional of two-dimensional minimal surfaces in R.

Let us consider the definition of the index in more detail. We first define
the index of a compact minimal surface, and then generalize this definition
to the noncompact case. Thus, to start with let y: M — R’ be an arbi-
trary immersed surface with smooth boundary y: M — R®. We define
a variation of this surface as a smooth one-parameter family of immersions
v M- R® such that ¥, =¥, 0<t<1, and the field of the variation is
the mapping §: M — R} that assigns to each point P € M the vector {(P)
of R® that is equal to the velocity of the motion of the point y,(P) under
the action of the variation y, at the initial instant:

$(P)=dy,(P)/d1|_q.

Suppose that the manifold M is orientable and compact. Then we can
calculate the area A(y(M)) of M in the metric ds® induced by the im-
mersion y (the area of the surface y: M — RJ). An arbitrary variation
v, M- R® of this surface induces on M a one-parameter family of met-
rics ds,z, ds,2=0 = ds’. The area A(t) of M in the metric ds,2 (the area
of the surface y,: M — R® ) is a smooth function of the parameter ¢. To
justify the equivalence of the two definitions of a minimal surface as a sur-
face of zero mean curvature and as a critical point of the area functional it
is sufficient to calculate the derivative dA(t)/dt|,_, -

Let n be the field of unit normals to the surface y: M — R®, that is,
the mapping n: M — R® that assigns to each point P € M one (chosen
smoothly) of the two unit vectors of R} orthogonal to the image y, (T, M)
of the tangent plane 7,M . Let H denote the mean curvature of this surface
with respect to n.

ProposiTION 1. If w: M — R® is an arbitrary immersed compact ori-
entable surface, and y,;: M — R® is a variation of it that is fixed on the
boundary OM of M (OM may be empty), and A(t) is the area of the sur-
Jace y: M — R® for each t, then

dA(t)/di|, o = - /v 2HE, n) = /v 2HT,

where & is the field of the variation y,, T - n is its normal component,
T = (£, n), and the surface integral of a function is calculated by means of
the area form in the metric ds® induced by the immersion y, = y: M — R,



§7. INDICES OF TWO-DIMENSIONAL MINIMAL SURFACES IN R’ 105

REMARK. The condition that the variation y, is fixed on the boundary
&M imposes a restriction on the function 7: M —R’: TJ,, =0.

Now it is not difficult to show that the vanishing of the derivative
dA(t)/dt|,_, for any variation fixed on the boundary is equivalent to the
vanishing of the mean curvature H (compare with §2 of Chapter 3).

Let y: M — R® be an orientable compact immersed minimal surface.
Consider a two-parameter variation y, : M — R® of our surface, w,,|,=o,,=o
= y, that is, a smooth mapping F: I xI x M — R}, y,(P)=F(,s, P)
which for each fixed ¢ and s is an immersion and F(0, 0, P) = y(P). Let
us construct the function A(t, s) equal to the area of the surface y, : M —
R®, that is, the area of M in the metric ds,zs induced by the immersion
Y, M— R®. Our problem is to calculate the second mixed derivative of
A(t, s) atthe initial moment of deformation, that is, 62A(t » $)/0185],_¢ 50 -

Let ¢ denote the field of the variation y,,, and # the field of the variation
¥, » that is,

=9 . o=

ot

t=0,s=0 t=0,5=0

PROPOSITION 2. If w: M — R® is an arbitrary immersed compact ori-
entable minimal surface, y,: M — R a two-parameter variation of it that is
fixed on the boundary M , and A(t, s) the area of the surface y,: M — R®
for each t and s, then

8%A(t, s)

0105 |z0,5=0

where T = ({,n), S = (n,n), and n is the field of unit normals to the

surface y: M — R®. Here A denotes the so-called metric Laplacian. If

(u, v) are isothermal coordinates, ds’ = A(du2 + dvz) , then AT = (1/4) -
(0°T/9u* + 87T /0v?).

REMARK 1. It is easy to see that the standard Euclidean Laplacian 32 /0 u’
+9? /av2 , written in the (u, v)-coordinates, is changed by a change of co-
ordinates, that is, in the new coordinates (u,, v,) this operator is not equal
to az/auf +0° /81),2 (if we require that its value on each smooth funciton,
written in the new coordinate system, is unchanged).

The metric Laplacian A is an invariant differential operator acting on func-
tions (independent of the coordinate system), and if in the (u, v)-coordinates
the metric g; ;= d; ;» then this operator coincides with the Euclidean Lapla-

cian 82 /0 u? + 82 /81}2 . In the general form the metric Laplacian is

AT = (1/v/8)-8/0u' (/88" 0T /0w'),
where (ul ,ul ) are local coordinates, T(ul , uz) is a smooth function, (g” )
is the matrix inverse to the matrix of the metric (g;;), and g = det(g;;).

=-[ (AT - 2KT)-S,
M
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Here we always assume summation over repeated indices. If (u,v) are
isothermal coordinates, u = u', v = *, and 8;j =Ad;;, then AT =(1/4)-
(8T /04> + 8>T/9v?) (verify this).

REMARK 2. From Propositions 1 and 2 it follows that the first and second
differentials of the area functional depend only on the normal components
of the fields of the variations, and not on the tangential components. This is
easily demonstrated by the following example.

Let ¢ be the field of some variation of an immersed surface y: M —
R®, fixed on the boundary. Suppose that the field { touches this surface,
that is, for any point P the vector {(P) of R? lies in the image y,(T,M)
of the tangent plane 7,M . Since the tangent mapping y,: T,M — R?
is an embedding for any point P € M, we can construct a smooth field
n= w."({) on M, where n =0 on M. The field n generates a local
one-parameter group of diffeomorphisms ¢,: M — M such that ¢, is the
identity transformation, and for any point P € M the tangent vector to the
curve ¢,(P) is equal to n when ¢ =0. The curves y(t) = ¢, (P) are called
the integral curves of this field (see [1]).

If we now consider the variation y = y'¢,: M — R’ which, simply speak-
ing, is a change of parametrization of the surface y: M — R®, then the field
of this variation is precisely equal to n.

Clearly, a change of parametrization does not change the area of the sur-
face y: M — R}, so A(t) = A(y,(M)) = const, and any derivative of A(r)
with respect to ¢ is equal to zero.

From now on we shall only be interested in normal variations, that is,
variations for which the velocity field at the initial instant is orthogonal to the
surface. If M isorientable and n is the field of unit normals to the immersed
surface y: M — R} , then the field ¢ of any normal variation fixed on the
boundary is given by means of the function T: M — R, §(P)=T(P)-n(P),
T|,, = 0. We denote the linear space of such functions by C§° (M).

Thus, the Hessian

IT,S)= —/M(AT— 2KT)-S = /VJ(T) .S

in Proposition 2 is a bilinear form on the space Cg" (M). Here we have
denoted by J the differential operator —A + 2K, J: Cy°(M) — C*(M)
called the Jacobi operator, where C>(M) is the space of smooth functions
on M.

On the space C3° (M) we can introduce the standard scalar product de-
finedas (T,S)=[,,T-S.

PRrROPOSITION '3 (see [26]). The Hessian I is a symmetric bilinear form on
the space Cy°(M). The form I can be expressed by means of a diagonal
matrix in terms of the standard scalar product and has eigenvalues {A,} such
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that
A <2, <3< = Fo00.

In addition, to each real eigenvalue A, there corresponds a finite-dimension-
al eigensubspace V().

DEFINITION. The index ind(M) of an immersed compact orientable min-
imal surface y: M — R’ is defined as the index of the Hessian KT, S)
of the area functional as a bilinear form, that is, the sum of the dimen-
sions of the eigensubspaces V'(4;) corresponding to the negative eigenvalues:
indM)=3, ,dimV(1).

The null-index of a minimal surface is defined as the null-index of the
Hessian I, that is, the dimension of the eigensubspace ¥V (0) corresponding
to the zero eigenvalue (the dimension of the kernel of the bilinear form I).

If the null-index is not equal to zero, then we call the boundary M
conjugate, and the null-index is the multiplicity of this conjugate boundary.
We call the Hessian itself the index form.

The condition that T € C;°(M) lies in the kernel of the index form is
equivalent to 7T being a solution of the equation AT — 2KT = 0, which is
called the Jacobi equation. The fields of variations T - n corresponding to
solutions T of this equation are called Jacobi fields. Clearly, all Jacobi fields
that vanish on M form a linear space whose dimension is either zero or
equal to the multiplicity of the conjugate boundary.

The index and the null-index characterize the degree of instability of a
minimal surface. If they are both zero, then the minimal surface is stable:
any nonzero normal variation fixed on the boundary increases the area of
this surface.

Above we gave a definition of the index of a compact minimal surface.
However, the basic classical examples of two-dimensional minimal surfaces in
R® are complete, and consequently noncompact (see above). For noncompact
minimal surfaces we can also introduce the concept of the index; we now turn
to a definition of it. We first observe that any subdomain of a minimal surface
is also a minimal surface.

DEFINITION. The index ind(M) of a noncompact orientable immersed
minimal surface y: M — R} is defined as the least upper bound of the
indices of minimal surfaces of the form y: K — R, where K ¢ M is
an arbitrary compact subdomain of M having a smooth boundary (by a
compact domain we mean here a domain with compact closure).

Note that a noncompact minimal surface is said to be stable if its index is
zero.

The motivation for the definition of the index just given is a theorem of
Smale and Simons, which describes the behavior of the eigenvalues of the
restriction I, of the index form 7 to the space C§° (K) under a contraction
of K. This theorem enables us to reduce the calculation of the index of a
minimal surface to the solution of the Jacobi equation. First of all we give a
definition of a contraction.
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DerFmiTION. Let K be a compact subdomain of M with smooth bound-
ary. We define a contraction of K as a family {K,} of subdomains of M
with smooth boundaries, ¢ € [a, b], such that K, = K and if ¢ > s, then
K, G K,. A contraction is said to be smooth if the boundary 8K, of the

s
domain K, depends smoothly on .

THEOREM (Smale, Simons; see [27], [26])). Let y: M — R be a compact
orientable immersed minimal surface with smooth boundary and {M,}, t €
[a, b), a smooth contraction. Then the eigenvalues A (t) < A,(t) < --+ — 400
of the index form 1I,, the restriction of the index form I to Co (M), are
continuous strictly monotonically increasing functions of the parameter t (here
the number of times each eigenvalue occurs is equal to the dimension of the
corresponding eigensubspace).

Moreover, there is an ¢ > 0 such that if K is an arbitrary compact subdo-
main of M having a smooth boundary, and the area A(y(K)) of the minimal
surface y: K — R® is less than ¢, A(w(K)) < e, then all the eigenvalues of
the index form I, are strictly positive. If the contraction is not smooth, then
the eigenvalues are again strictly monotonically increasing, but not necessarily
continuous.

DerFNITION. We call a contraction {M,} a contraction of e-type if for
sufficiently large ¢ the area of the surface y: M — R? is less than e.

COROLLARY 1 (Smale, Simons; see [27], [26]). Let y: M — R’ be a
smooth compact orientable immersed minimal surface with smooth boundary.
Then

a) for any contraction {M,}, t € [a, b, of the manifold M (the closure of
the initial domain M, coincides with M) only finitely many minimal surfaces
v: M, — R® have conjugate boundaries OM, ;

b) there is an & > 0 such that for any smooth contraction of e-type {M,},
t € [a, b], of the manifold M the index of the surface y: M — R is
equal to the sum of the multiplicities of the conjugate boundaries M, over
all t € (a, b]. More precisely, if B(t) = dimkerl,, where I, is the restriction
of the index form I to the space Cy°(M)), then ind M) =Y, ., B(1).

If the contraction is not smooth, then ind(M) >3 ., B(1).

We note that from Corollary 1 it follows that the index of any compact
minimal surface is finite.

In the noncompact case the role of a smooth contraction of e-type is played
by a smooth exhaustion.

DEFINITION. An exhaustion of an orientable immersed noncompact min-
imal surface y: M — R® is defined as a family {M}, t € (0,00), of
compact subdomains of M having smooth boundaries such that

a) M,G M solongas t<s;

b) for any compact subset K C M thereisa ¢ such that K C M,;
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c) the indices and the null-indices of the surfaces y: M, — R® are zero
for sufficiently small ¢.

We call an exhaustion smooth if the boundary dM, of the domain M,
depends smoothly on .

COROLLARY 2 (see [29]). Let y: M — R® be a smooth noncompact ori-
entable immersed minimal surface, and {M,}, t € (0, o), a smooth exhaus-
tion of it. Then the index of the surface y: M — R® is equal to the sum of
the multiplicities of the conjugate boundaries dM, over all t € (0, oc). More
precisely, if B(t) = dimkerl,, where I, is the restriction of the index form I
to the space Cy°(M,), then ind M) =Y ,_,... B(1).

If the exhaustion is not smooth, then ind(M) > ¥, _, .. B(t).

Thus, to calculate the index of a compact (noncompact) minimal surface
vi M - R’ it is sufficient to construct a smooth contraction of e-type
(respectively, a smooth exhaustion) {M,}, to find the solution of the Jacobi
equation for each M,, and from all the solutions to choose only those that
vanish on 9 M, . This program enables us to calculate the indices of a whole
series of classical minimal surfaces. Before stating the main result of this
section, we give one more assertion that is very useful in the calculation of
the indices of two-dimensional minimal surfaces in R>.

We first observe the following. Let (f(w), g(w)) over U C C be the
local Weierstrass representation of an immersed orientable minimal surface
v: M- R, w=u+iv; then (u, v) are isothermal coordinates, and the
induced metric ds® has the form ds® = Adu® + dvz). From Proposition 2
it follows that the Jacobi equation in the (u, v)-coordinates has the form

8°T/ou* + 3°T)ov? - 2KAT =0,
where K is the Gaussian curvature. In §3 we establish that
2
A= 0+ g,

and K = —-4|dg/dw|*/|f1*(1 +|g|*)*, so in terms of the functions f and g
that specify the Weierstrass representation the Jacobi equation is written as

8’T/ou’ +0°T/ov? + (8|dg/dw|* /(1 + |g)*)- T = 0.

Thus, the Jacobi equation of a minimal surface in R® does not depend on
f, so it depends only on the Gaussian mapping of this surface. This remark
enables us to state the following proposition (Tuzhilin).

PROPOSITION 4 (see [29]). Let y,: M — R, k=1, 2, betwoimmersed
orientable minimal surfaces. Suppose there is a diffeomorphism F: M — M
compatible with the Gaussian mappings of the two surfaces. This means that
if n, is the Gaussian mapping of the minimal surface y,: M — R®, then
n,oF = gon,, where ¢: 2 = 8% is an isometry of the sphere St Itis
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convenient to specify this condition by means of the commutative diagram
ny 2
M —S

e

M2, 8

Then these surfaces have identical indices.

In all five theorems of Tuzhilin given below, S denotes a noncompact
in;mcrsed orientable two-dimensional connected minimal surface y: M —
R°.

The first theorem gives a necessary and sufficient condition for the finite-
ness of the index of a minimal surface S given by the Weierstrass represen-
tation (M, w, g) for some class of functions g called good (for the defi-
nition, see below). This theorem follows from the results of Fischer-Colbrie
stated above. In Corollary 1 we give a criterion for the finiteness of the index
of a minimal surface y: C — R} given by the Weierstrass representation
(C, fdw, g), where g is a good function. In Corollary 2 we give the most
general form of good functions known to the authors of this book.

DEFINITION. We say that a meromorphic function g, defined on a Rie-
mann surface M , is good if there is a 1-form @ holomorphic on M such
that the Weierstrass representation (M, w, g) defines a complete immersed
minimal surface.

THEOREM 1. Suppose that a minimal surface S is given by the Weierstrass
representation (M, w, g), where g is a good function. Then the index of S
is finite if and only if the total curvature of S is finite.

CoROLLARY . Suppose that a minimal surface S is given by the Weier-
strass representation (C, fdw, g), where g is a good function. Then the
index of S is finite if and only if g is a rational function.

COROLLARY 2. Suppose that a minimal surface S is given by the Weier-
strass representation (C, fdw, g), and that g is either of the form g =
P/h+¢c/Q or of the form g = h/P, where P and Q are arbitrary polyno-
mials, ¢ € C, and h is an arbitrary holomorphic function. Then the index of
S is finite if and only if g is a rational function.

REMARK. The class of good functions described in Corollary 2 is quite
wide. It contains all meromorphic functions having finitely many zeros or
finitely many poles; all rational functions; all trigonometric and hyperbolic
functions, for example,

tan(z) = sin(z)/ cos(z) = (¢ —e~"*)/(e" + e

tan(z) = (e’ ~e *)/(e” +e ") =1-1/e" cosh(z);
all meromorphic functions that take a certain value with finite multiplicity
or do not take a certain value at all (in fact, if ¢ is such a value, then the

-z

=1-1/e" cos(z),
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function g — ¢ can be represented in the form F/h,so g = P/h+c). As
an illustration of the last assertion we consider a partition of the function
e’ into a sum of two holomorphic functions ¢ and y: e’ = ¢ + y. Since
e’ # 0, the meromorphic function g = ¢/ does not take the value —1, so
g+1=1/h, where h=1/(g+1) is holomorphic, and therefore g is equal
to 1/h -1 and is a good function.

THEOREM 2. Suppose that a minimal surface S is given by one of the
Jollowing Weierstrass representation:

a) (C, w, (aw+b)™), a,beC, a#0, where m is a natural number;

b) (C\{-b/a}, w, (aw +b)"), a,beC, a#0, where m is a nonzero
integer.

Then the index of S is equal to 2|m| - 1.

THEOREM 3. Suppose that a minimal surface S is given by the Weierstrass
representation (U, w, (aw +b)™), a,be C, a#0, where m is a nonzero
integer and U C C is a subdomain of the complex plane C (if m is negative,
we assume that the point {-b/a} does not lie in the domain U). Then the
index of S does not exceed 2\m| - 1.

Next we define a closed subset K of the standard Euclidean sphere Sic
R® with center at the origin in one of the following ways:

a) when m > 0 we put K=Szn{x35(m— 1)/m}; if m =1, we take
for K a closed hemisphere not containing the North Pole;

b) when m € Z\{0} let K be the part of the sphere S? not containing the
North Pole and enclosed between two parallel noncoincident planes situated
at a distance tanh(z,,_,) from the center of the sphere. Here ¢, _, denotes
the only positive root of the equation (m—1)/m = tanh(¢)-tanh(t-(m—1)/m).

THEOREM 4. Suppose that a minimal surface S is given by the Weierstrass
representation (U, w, (aw +b)™), a, b€ C, a#0, where m is a nonzero
integer and U C C is a subdomain of the complex plane C (if m is negative,
we assume that the point {—b/a} does not lie in U). Suppose that U con-
tains the inverse image under the Gaussian mapping of the subset K of S’
defined in either a) or b) above. Then the index of S is equal to 2|m| - 1.

Let us define an open subset X' of the standard unit sphere S2 c R® with
center at the origin in one of the following ways:

a) K'=8'n {73 < 0};if m =1, we take for X' an open hemisphere
not containing the North Pole;

b’) K’ is the part of S’ not containing the North Pole and enclosed
between two parallel noncoincident planes situated at a distance tanh(z,)
from the center of the sphere. Here ¢, denotes the only positive root of the
equation ?-tanh(f) =1.

THEOREM 5. Suppose that a minimal surface S is given by the Weierstrass
representation (U, w, (aw +b)™), a,be C, a#0, where m is a nonzero
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integer and U C C is a subdomain of the complex plane C (if m is negative,
we assume that the point {—b/a} does not lie in U). Suppose that the image
of U under the Gaussian mapping is contained in the subset K' of the sphere
s? defined above in a') or b'). Then the index of S is equal to zero.

We give the numerical values of the indices of the classical minimal sur-
faces, obtained by means of Theorems 1-5 (A. A. Tuzhilin).

COROLLARY.

Surface Weierstrass representation Index
Enneper surface (C, dw, w) 1
Catenoid (C\{0}, dw/(2w2), w) 1
Richmond surface (C\{0}, widw, 1/w?) 3
Incomﬁ;;fcherk (U = {lw| < 1}, dw/(1 —w‘), w) 0
Helicoid (C, —ie™“dw, e*) 00

The indices of all periodic minimal surfaces, in particular, the Schwarz-
Riemann surface, and also the complete Scherk surface, are equal to infinity.

In §1 of Chapter 2 we promised to prove that a bifurcation of the catenoid
occurs on the conjugate boundary, that is, when the catenoid loses its stability.
We now fulfill our promise, at the same time illustrating the method of proof
of Theorem 2 by the example of the catenoid. We also show that of the two
catenoids stretched on wire circles (see §1 of Chapter 2) one is stable and the
other unstable.

Let (r, ¢, z) be cylindrical coordinates in R’ in which the catenoid
vi: M— R} is written as r = cosh(z). Let (¢, z) be coordinates on the
catenoid; then it is easy to calculate that the Jacobi equation has the form

8’T/922 +0°T/0¢> +[2/ cosh’(2)]- T = 0.

Consider a smooth exhaustion of the catenoid by domains M, = {|z| < 1}.
For gach z weexpand T(¢@, z) as a Fourier series in ¢ :

T(, z) = ay(2)/2+ Y _ a,(z) cos(kp) + b, (z) sin(k ).

Since T is assumed to be smooth with respect to ¢ and :z, the coefficients
ay(z), a,(z), and b, (z) are also smooth functions of z. Substituting T
into the Jacobi equation, we obtain a system of ordinary differential equations
for the coefficients:

ag +[2/ coshz(z)] -a,=0,
a:+[2/cosh2(z)-k2]-ak =0, k>1,
by +[2/cosh’(z) —k*)-b, =0, k>1.
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The solution of these equations can be written explicitly:

a, = ¢,(z - tanh(z) — 1) + ¢, tanh(z),
a, = ¢,(1/cosh(z)) + c,(sinh(z) + z/ cosh(z)),

when k > 1

a, = c,(tanh(z)sinh(kz) — k - cosh(k z))
+ ¢,(tanh(z) cosh(kz) — k - sinh(kz)),

(similarly for b, ).

Here ¢, and c, are arbitrary real constants.

From these equations we must choose a4, and b, so that the function
T(p, z) = ay(z)/2+3_a,(z) cos(kp)+b,(z)sin(kp), vanishes on the bound-
ary of some M,. This is equivalent to the vanishing of the coefficients a,
and b, when z =z, for some z,>0.

We observe that each coefficient can be represented as a linear combination
of an even and an odd function, and these two functions do not vanish
simultaneously. Hence it follows that only the even component occurs in the
solution. Thus, the second coefficient c, is zero.

When ¢, # 0 the function a, = ¢,/cosh(z) does not vanish anywhere.
When k > 1 the function g, = ¢,(tanh(z)sinh(kz)—k-cosh(kz)) also does
not vanish anywhere, since tanh(z)tanh(kz) < 1 < k (similarly for b, ,
k > 1). Therefore the only candidate for the Jacobi field for our exhaustion
is ay=c|(z-tanh(z) - 1).

It is easy to see that when z > 0 the function z-tanh(z)-1 has a unique
root, since when z > 0 there is a unique point of intersection of the graphs
y=tanh(z) and y=1/z.

Thus, the index of the catenoid r = cosh(z) is equal to one, and the one-
dimensional space of Jacobi fields on Mzo , where z;-tanh(zy) =1, 2z, >0,
is generated by the field (z - tanh(z) — 1) - n, where n is the field of unit
normals to the catenoid.

We now consider an arbitrary catenoid r = a - cosh(z/a) with coordi-
nates (¢, z). It is easy to calculate that the unit normal to such a catenoid
is equal to [1/sinh(z/a)] - (cos(@), sin(¢), — cosh(z/a)), so the diffeomor-
phism F of the catenoids r = cosh(z) and r = a - cosh(z/a) given by
F: (¢, z) = (¢, az) is compatible with the Gaussian mappings. Therefore,
by Proposition 4, the index of the catenoid r = a - cosh(z/a) is also equal
to one. Moreover, under this diffeomorphism the Jacobi field defined by the
function T = z-tanh(z) - | over Mzo goes into the Jacobi field defined
by the function T = (z/a) - tanh(z/a) — 1 over Mazo. Therefore for the
exhaustion M, = {|z| < ¢} of the catenoid r = a - cosh(z/a) only M,,
has a conjugate boundary, where z, is the only positive root of the equation
z-tanh(z) =1.
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REMARK. To calculate the index of the more general minimal surfaces
described in part b) of Theorem 2, it is sufficient to consider, instead of the
catenoid an m-sheeted covering of it, that is, an immersion y: RxS' — R}
of the cylinder RxS' with coordinates (z,9), z€R, 0< ¢ < 2m, defined
by
x' = cosh(z)cos(kp), x*=cosh(z)cos(kp), x =z,

where x' , x? s x* are the standard coordinates in R>.

LEMMA (Tuzhilin). The index of the m-sheeted covering of the catenoid
described above is equal to 2m — 1.

It remains to observe that between the minimal surfaces described by the
Weierstrass representation in part b) of Theorem 2 and the m-sheeted cover-
ing of the catenoid there is a diffeomorphism compatible with the Gaussian
mappings, and to apply Proposition 4.

In §1 of Chapter 2 we established that the parameters a of the catenoids
r = a-cosh(z/a) spanning two circles of radius p at a distance h apart are
obtained as the coordinates (with respect to a) of the points of intersection
of the graphs y = a - cosh(h/2a) and y = p. The graph y = a - cosh(h/2a)
has a unique critical point a, = h/2z,, where z, is the only positive root of
the equation coth(z) = z, or equivalently of the equation z-tanh(z)=1.

Therefore, if h = h_(p) is the distance between the circles for which
the two catenoids stick together, then in this case the line y = p touches
the graph y = a - cosh(h/2a) at the point (a,, p) and the only catenoid
stretched on this contour has the equation r = a, - cosh(z/a,), |z| < h/2.
Since h/2 = ayz,, the boundary of this catenoid, defined over M, , = M,
is the only conjugate boundary of the exhaustion {M,}. This proves that the
bifurcation occurs on the conjugate boundary.

Now if we stretch two catenoids on the circles of radius p, and 4 is the
distance between these circles, then the line y = p intersects the graph y =
acosh(h/2a) in two points (a,, p) and (a,, p), a, < a,. The equations
of the corresponding catenoids have the form r = a, cosh(z/a;) and r =
a,cosh(z/a,).

Since h/2 = a,z,, each of these catenoids is defined over the domain
M, 2= =M, . . For the first catenoid the critical domain of the exhaustion,
that is, the only domain of the exhaustion {M,} having a conjugate boundary,
is M‘z 2 and for the second it is M, 2, . Since a,z, < ayz, < a,z,,, we have

a2 c M, ;, for the first catenond and M, , C M, 2 for the second.
Therefore the ﬁrst catenoid is unstable, while the second is stable.



APPENDIX

Steiner’s Problem for Convex Boundaries

In Chapter 1 we spoke about Steiner’s problem, which, we recall, consists
in constructing a network of minimal length joining 7 given points in a
plane. In this Appendix we present recent results of A. O. Ivanov and A.
A. Tuzhilin [41], in which they obtained a classification of nondegenerate
minimal networks without cycles and with convex boundary up to planar
equivalence (Theorems 1 and 2). They discovered that all such minimal
networks can be described as dual graphs to “planar tree tilings”; for the exact
definition of these see below. They also produced an algorithm, realized on a
computer, for calculating all networks of the given type for any fixed number
of boundary points. Also, the authors found several infinite series of minimal
networks with a regular convex boundary and individual interesting examples
of such networks not contained in them. In the latter case it is important
that the set of boundary points of the network is fixed, which considerably
complicates the investigation,

1. General statement of the problem. We shall understand the minimality
of a network in the following sense: any small fragment of the network has
the shortest length. We recall that soap films have a similar property. When it
is a question of shortest length, we need to distinguish the class of admissible
variations of the network. First of all, by analogy with the way we defined
minimal surfaces by means of the variational principle, we restrict the ad-
missible variations just to those that leave fixed the initial points spanned
by the network (henceforth we shall call these points the fixed points of the
network). Two possibilities arise.

The first possibility: under a deformation of the network its vertices do
not split, that is, variations of the type shown in Figure 48a are forbidden. In
this case it can be shown (see [33), for example) that the network is minimal
if and only if for each moving point the sum of the unit vectors having the
directions of the segments going out from it is equal to zero. In this sense the
network given in Figure 48a is minimal. In Figure 48b we give an example
of a network that is not minimal in this sense.

The second possibility: The vertices of the network are allowed to split. In
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FIGURE 48A

FIGURE 488

this case under a deformation of the network in the direction of decreas-
ing length its vertices split into points of degree at most three, and if three
segments now meet at a vertex, then the angles between them are equal to
120°; if two segments meet at a vertex, then the angle between them is at
least 120° and this vertex is fixed; also, each vertex from which exactly one
segment goes out is fixed.

All these effects can be observed in the following simple experiment. We
take a flat sheet of plexiglass and drill » small holes in it (Figure 49a). These
holes will correspond to the fixed points of the network. From a piece of string
we cut a set of n—1 segments. On one end of n—2 of the segments we make
a small loose loop. We take the segment without a loop and pass it through
an arbitrary number of loops. We can again pass the ends of the resulting
configuration through a certain number of loops and so on, continuing this

FIGURE 49A
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FIGURE 498

process until all the segments have been used. We note that the number of
ends of the resulting configuration is equal to the number of holes.

We place our sheet horizontally and pass all the ends of the resulting con-
figuration upwards through the holes so that through each hole strictly one
end passes. To each end we fasten a load, the loads being equal in mass.

After the system arrives at an equilibrium position, the network of string
takes the form of a minimal network in one of the senses described above
(Figure 49b). More concretely, if all the loops are separated, without inter-
fering with one another, we obtain a minimal network in the second sense.
But if at least one pair of loops is coupled, then there is a disallowed vertex
in the resulting network, and the network is minimal only in the first sense.

Henceforth we shall study networks that are minimal in the second sense. In
order to state our problem more precisely, we give the following definitions.

DEFINITION 1. A topological Steiner network is defined as a connected
graph for which the degree of the vertices is at most three.

A realization of a topological network in a plane is called a planar network.
To give a stricter definition we recall that a planar graph is a collection of
curves in the plane that intersect only at their ends.

DEFINITION 2. A planar Steiner network is a planar graph for which there is
a one-to-one correspondence with a topological Steiner network under which
vertices correspond to vertices, curves correspond to edges, and the incidence
relation is preserved.

A set of fixed points of a planar Steiner network is defined as an arbitrary
subset of the set of vertices of the corresponding planar graph in which there
occur all vertices of degree one or two (which agrees with the description of
possible types of vertices of a network that is minimal in the second sense).
Clearly, a set of fixed points of a network is not uniquely defined.

DEFINITION 3. A planar Steiner network is said to be minimal if it is
minimal for some set of fixed points of it.

THE GENERAL STEINER PROBLEM. Describe the class of Steiner networks
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that can be realized as minimal networks. More precisely, suppose we are
given a class {M} of finite sets M of points of the plane. It is required to
describe all Steiner networks that can be realized as minimal networks with
a set of fixed points lying in this class.

REMARK. In Chapter 1 we talked about closed minimal networks on a
sphere (we needed to study them to prove Plateau’s principles). The prob-
lem of describing closed minimal networks on a closed two-dimensional ori-
entable surface of genus g is an interesting generalization of Steiner’s prob-
lem. A description of special classes of such networks was recently obtained
by Shklyanko [34].

To start with, we consider as the class {M} all possible subsets of points
of the plane.

PROBLEM 1. Describe all Steiner networks that can be realized as minimal
networks.

The class {M} is the widest of all possible classes. However, it is not
possible to realize all Steiner networks even on this. Figure 50a shows an
example of a topological Steiner network that cannot be realized as a planar
network, and hence as a minimal network. Figure 50b shows a planar Steiner
network that cannot be realized as a minimal network. We note that in both
cases all the trouble arises because of the presence of cycles. It turns out that
this is the only obstacle to the realization of a Steiner network as a minimal
network.

FIGURE 50A

FIGURE 508
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PROPOSITION 1. Any acyclic topological Steiner network (Steiner tree) can
be realized as a planar network. Moreover, any planar Steiner tree can be
realized as a minimal network for some set M of fixed points.

We say that a Steiner network is degenerate if it has at least one vertex
of degree two. We note that nondegenerate acyclic Steiner networks, by
definition, are 2-trees. These networks have vertices of degree one, which
we call boundary vertices, and vertices of degree three, which we call branch
points. For such networks it is natural to take the boundary points as fixed,
and we shall do this from now on. Starting from here we shall study acyclic
nondegenerate minimal Steiner networks, that is, minimal 2-trees.

On the set of all planar graphs we can introduce a natural equivalence
relation. We say that two planar graphs are equivalent if there is a homeo-
morphism of the plane onto itself (preserving the orientation) that takes one
planar graph into the other. It is easy to see that there are only finitely many
equivalence classes of 2-trees with a fixed number of boundary points.

The following natural question arises: how many such equivalence classes
are there for a given number n of boundary points? From Proposition 1 it
follows that there are exactly as many of them as there are equivalence classes
of 2-trees. The number of the latter was calculated in 1964 by Brown [35] in
implicit form. The numerical results for n < 23 can be found in [36].

We note that to solve this problem, instead of planar trees we can consider
the dual objects, namely triangulations by diagonals of convex n-gons. Let
us describe in more detail the correspondence between planar 2-trees and
triangulations.

Suppose we are given a 2-tree with n boundary points. Consider a convex
n-gon. We number the boundary points of the 2-tree in succession, going
around anticlockwise, for example. Similarly we number the sides of the
polygon. These numberings generate a natural one-to-one correspondence
between the vertices of the 2-tree and the sides of the n-gon.

Obviously, the boundary points incident with the same branch point have
consecutive numbers. For each pair of such points we consider the corre-
sponding pair of sides of the n-gon and construct a triangle on these sides,
drawing a diagonal of the polygon (this can always be done, since these sides
are adjacent).

We cut out all the triangles obtained in this way and simultaneously discard
from the 2-tree all the edges going out from the boundary points. Obviously,
we again obtain a convex polygon and a 2-tree, and the number of vertices
and the number of boundary points, respectively, are equal.

Between the boundary points and sides of the resulting objects there is
a natural one-to-one correspondence, which is obtained directly from the
correspondence established at the previous stage.

We repeat the procedure just described until the 2-tree is exhausted. (The
last stage is a little more delicate, but it does not present any essential diffi-
culty, so we leave the details to the reader.)
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As a result we obtain a partition of the convex n-gon into triangles, which
is called a triangulation by diagonals corresponding to a planar 2-tree.

Conversely, if we are given a triangulation of a convex n-gon by diagonals,
it is easy to construct the corresponding 2-tree. As boundary points of such a
tree we can take the midpoints of the sides of the n-gon, as branch points the
centers of the triangles of the triangulation, and as edges the segments joining
the centers of adjacent triangles and also the segments joining the midpoints
of the sides of the n-gon to the centers of the triangles constructed on these
sides.

Two triangulations are said to be equivalent if they are equivalent as planar
graphs. In each equivalence class it is convenient to choose as a representative
the corresponding triangulation of a regular polygon inscribed in the unit
circle. Two triangulations of such regular polygons are equivalent if they are
obtained from each other by a motion of the plane. It is easy to see that
equivalent planar 2-trees correspond to equivalent triangulations of convex
n-gons by diagonals and conversely.

Thus, the following proposition is true.

ProPOSITION 2. The equivalence classes of planar 2-trees with n bound-
ary points are in one-to-one correspondence with the equivalence classes of
triangulations of convex n-gons by diagonals.

Figure 51 shows all possible triangulations in the cases when n =3, 4, 5,
6. We note that for n < 6 the triangulation by diagonals is unique (up to
equivalence), but for n = 6 there are three different triangulations.

Another natural class {M} of boundary points of networks is the class of
extremal sets. We recall that a set is called extremal if it lies on the boundary
of some convex set. If the set of boundary points of a network is extremal,
such a network is called a network with convex boundary .
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FIGURE 51
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PROBLEM 2. Describe all minimal Steiner networks with convex boundary.

REMARK. This problem can be generalized. For this we need the following
definition.

DEFINITION 4. Suppose we are given an arbitrary finite set M of points
of the plane. We split it into classes, which we call /evels of convexity.

In the first level of convexity we put all points lying on the boundary of
the convex hull of M . Consider the set M’ obtained from M by discarding
all points of the first level.

The second level of convexity contains the points of the first level of con-
vexity for the set M’ (if M’ is not empty).

Continuing this operation until all the original set M is exhausted, we
obtain the necessary partition.

We observe that extremal sets, and only they, have exactly one level of
convexity.

ProOBLEM 2'. Describe all minimal Steiner networks for which the number
of levels of convexity of sets of boundary points does not exceed some fixed
number.

Below we give a complete solution of Problem 2 for 2-trees.

One more important variant of the general Steiner problem is obtained if
for the class {M} of sets of boundary points of networks we consider the
class consisting of exactly one set.

PrOBLEM 3 (the classical Steiner problem). Describe all minimal Steiner
networks whose set of boundary points is fixed.

An interesting variant of this problem is the following.

ProBLEM 3'. Describe all minimal Steiner networks whose set of bound-
ary points consists of the vertices of a regular polygon.

Below we give some results of A. O. Ivanov and A. A. Tuzhilin, devoted
to investigations of Problem 3’ again for 2-trees.

In connection with the statement of the general Steiner problem, the fol-
lowing interesting question arises: is there a set M consisting of n points
on which all equivalence classes of planar 2-trees with n boundary points
can be realized as minimal networks? For n = 3,4, 5 we can take as such
a set the vertices of the corresponding regular n-gon. For n > § this is not
so. From Proposition 3 (see below) it follows that, generally speaking, such
a set M must have quite a complicated structure (for example, it cannot be
extremal).

2. Classification of minimal 2-trees with convex boundary. An important
role in the classification of minimal 2-trees with a convex set of boundary
points is played by the so-called twisting number; we begin this section with
a definition of it.

For each branch point of a planar 2-tree there is a circular neighborhood
whose intersection with the tree consists of three smooth nonclosed curves
going from its center, not having any other points of intersection, and going
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out to the boundary of this neighborhood. Clearly, the intersection of the
boundary of the neighborhood (the circle) with the tree consists of three
points. We choose one of these curves and call the edge, of which it is a part,
incoming. We call the remaining two edges outgoing. We call the partition
of the edges incident with a point into incoming and outgoing an orientation
of the neighborhood of the branch point.

Now suppose that the plane is oriented. Then we are given a positive
direction for motion along each circle lying in this plane. This gives the
possibility of naturally ordering a pair of outgoing edges in such a way that
a motion along the circle from the first edge to the second along an arc that
does not intersect an incoming edge takes place in the positive direction. We
assign the number —1 to the first outgoing edge, and +1 to the second.
An oriented neighborhood of a branch point together with these numbers is
said to be clothed, and the numbers themselves are called clothings of the
corresponding edges of the tree.

We recall that a path joining a pair of edges of a planar 2-tree is defined as a
minimal connected subtree containing these edges. We now give a definition
of the twisting number between a pair of edges of a planar 2-tree.

Let a and b be a pair of edges of a planar 2-tree. We choose a path y
joining a and b. We orient the path y from a to b. Consider all branch
points lying inside y. The orientation of y canonically specifies orientations
of small neighborhoods of these branch points; for each point we shall take as
incoming an edge for which the point is an end. We fix a certain orientation
of the plane and clothe the neighborhoods of all the branch points under
consideration. A path y together with clothings of all its edges will be called
clothed.

DEFINITION 5. The twisting number tw(a, b) of an ordered pair (a, b) of
distinct edges of a 2-tree is defined as the sum of the clothings of all outgoing
edges of the oriented path y going from a to b. We take tw(a, a) to be
zero.

For the edges a and b of the 2-tree shown in Figure 52a the twisting
number tw(a, b) is five, while for the tree in Figure 52b it is zero.

Jh
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tw(a,b) = 5 tw(a,b) = 0

FIGURE 52a FIGURE 52B
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Let us mention a property that the twisting number has (we leave the proof
to the reader as a useful exercise):

SKEW-SYMMETRY: tw(a, b) = —tw(b, a).

DEFINITION 6. The twisting number tw(D) of a planar 2-tree D is defined
as the largest twisting number of all possible ordered pairs of edges of this
tree:

tw(D) = maxtw(a, b).

The next proposition is a key result in obtaining a complete classification

of minimal 2-trees with convex boundary.

PROPOSITION 3. The twisting number of a minimal Steiner 2-tree with con-
vex boundary is not greater than five.

REMARK. From the classification theorems (see below) it follows that this
bound is exact: any planar 2-tree with twisting number not greater than five
can be realized as a minimal tree with an extremal set of boundary points.

It is convenient to state the classification theorem in the language of tilings.
We define a (triangular) tiling of the plane as a canonical partition of the
plane into regular congruent triangles, which we call the cells of the tiling.
This partition can be obtained as follows.

Let 4 and B be families of equally spaced parallel lines, and suppose that
the angle between the directions of the lines of 4 and B is 60°. Through
the points of intersection of lines of 4 and B we can uniquely draw a third
family C of parallel lines so that together the families 4, B, and C give a
partition of the plane into regular congruent triangles. We call these lines the
directrices of the tiling of the plane, and the six possible directions of these
lines the directions of the tiling.

DEFINITION 7. We define a tiling as an arbitrary collection of cells of a
tiling of the plane.

In exactly the same way as from a triangulation of a convex polygon by
diagonals, from the tiling we can construct a planar graph, which we call
the dual graph of this tiling. We call a tiling connected if its dual graph
is connected. The tilings corresponding to the connected components of
the dual graph are called the components of the tiling. Henceforth we shall
almost always be dealing with connected tilings, so we shall omit the word
“connected” provided it does not lead to misunderstanding.

We note that the dual graph of an arbitrary (connected) tiling is actually
a minimal Steiner network.

DEFINITION 8. A tiling whose dual graph is a 2-tree is called a tree tiling.

In fact, not every equivalence class of planar 2-trees has as its representa-
tive the dual graph of some tree tiling. Nevertheless, the following proposition
is true.

PROPOSITION 4 (on a tiling realization). Any planar 2-tree with twisting
number no greater than five can be realized as the dual graph of some tree
tiling.
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FIGURE 53

REMARK. Although some 2-trees with twisting number greater than five
can be realized as the dual graph of a tree tiling (construct an example), the
bound on the twisting number given in Proposition 4 is exact. Figure 53
shows an example of a planar 2-tree with twisting number equal to six that
cannot be realized as the dual graph of a tree tiling.

Thus, it follows from Propositions 3 and 4 that for a classification of
minimal 2-trees with convex boundary it is sufficient to describe all tree tilings
whose dual graphs have twisting number not exceeding five (henceforth for
brevity we shall call the twisting number of the dual graph of a tree tiling the
twisting number of the tiling itself).

To obtain such a classification we must first of all choose the building
blocks from which all possible tree tilings are formed. We choose three types
of building blocks, which we shall call linear parts, branch points, and growths.
Roughly speaking, every tree tiling is a collection of linear parts joined to one
another by means of branch points and equipped with growths. We now give
more formal definitions.

DEFINITION 9. We define a snake as a tiling placed between two adjacent
directrices of a tiling of the plane (Figure 54).

An extreme cell is defined as a cell of a tiling, two sides of which do not
lie inside the tiling. An interior cell is defined as a cell, all of whose sides lie
inside the tiling.

DEFINITION 10. We call an extreme cell of a tiling a growth if the only cell
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of the tiling adjacent to it is internal. We call the tilings a skeleton if it does
not have growths.

Figure 55 shows a snake with growths.

In order to obtain a skeleton, for each interior cell of the tiling we discard
one of the growths adjoining it (if there are any).

Next, we consider a tree skeleton and cut out from it all internal cells. If
there is at least one internal cell, the skeleton splits into components.

DEefFINITION 11. The components into which a tree skeleton splits after
discarding internal cells are called the /inear parts of the skeleton. The branch
points are the components into which a tree skeleton splits after discarding
the linear parts.

Let us give a complete list of possible branch points of tree skeletons.

PROPOSITION 5. In tree skeletons there can occur exactly five types of branch
points, shown in Figure 56 .

REMARK. We should mention that the linear parts can be fastened to each
branch point in different ways. In all there are 18 ways of fastening (list
them), which we shall call forks. Figure 57 shows the two most important
types of forks, which we shall call T-joints.

We now describe the structure of the linear parts. For this we give the
more general definitions of a linear 2-tree and a linear tiling.

DEFINITION 12. A planar 2-tree is called /inear if the triangulation of a
convex polygon corresponding to it has exactly two extreme triangles (an
extreme triangle of a triangulation is a triangle of which two sides coincide
with sides of the polygon).

We note that the triangulation corresponding to a linear 2-tree does not
have internal triangles. Therefore, for such a triangulation there is a natural
linear ordering of its triangles so that the extreme triangles are the first and
last in this order.



126 APPENDIX. STEINER'S PROBLEM FOR CONVEX BOUNDARIES

VAVAVAVAV

VAVAVAVAVAN

FIGURE 57A FIGURE 57B

Clearly, there are exactly two possibilities for ordering the triangles of a
triangulation, depending on which of the two extreme triangles is taken as
the first. The choice of one of these two orders is called an orientation of the
linear 2-tree and the triangulation corresponding to it.

Now suppose that the dual tree of some tree tiling is linear. In this case
the tiling is also said to be linear. We note that the linear parts are actually
linear tilings.

We now consider an arbitrary linear tiling and orient it. We then show how
we can split such a tiling into a number of snakes, which we call segments of
the linear tiling.

Similarly we define all the later segments. Thus, we can state the following
result.

PROPOSITION 6. Every linear tiling, in particular, the linear part of an ar-
bitrary tree tiling, is the union of a linearly ordered family of distinct disjoint
snakes (segments of the linear tiling), and the initial cell of each subsequent
snake is adjacent to the end cell of the previous one.

In each nonextreme cell of a skeleton we join by segments the midpoints of
its sides inside the skeleton. In each extreme cell we draw a midline parallel
to the midline of the adjacent cell already constructed.

DEFINITION 13. The spine (vertebra) of a linear part (cell) is the part of
the graph constructed above that is contained in this linear part (cell).

If we allow the twisting number of the skeleton to take only values not
exceeding five, then there arise essential restrictions on the structure of the
linear parts of such a skeleton. Namely, the following proposition is true.

PROPOSITION 7. For each linear part of a tree skelelton with twisting number
not exceeding five there is a directrix of the tiling of the plane on which the
spine of this linear part projects one-to-one. Such a directrix is called a directrix
of the linear part.

REMARK. Generally speaking, a directrix of a linear part is not unique.
For a snake, for example, there are three such directrices. If the twisting
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number of the linear part is greater than five, then such a part does not have
directrices.

DEFINITION 14. A snake is defined as a linear part for which there are three
directrices. A stairs is defined as a linear part for which there are exactly two
directrices. A linear part that has exactly one directrix is called a broken
snake (Figure 58a).

REMARK. A linear part that is a snake in the sense of Definition 9 may not
be a snake in the sense of the last definition. Figure 58b shows an example of
such a part. Of course, it all depends on how the given linear part is fastened
to the branch points.

We have thus described all the building blocks from which all possible
tree tilings are formed. Now, in order to state the classification theorems, it
remains to define the operation of reduction for skeletons of tree tilings with
twisting number not exceeding five. This operation consists in cutting out
certain fragments of the tiling.

Firstly, we can cut from the skeleton any part of a linear part containing
an extreme cell.

Secondly, inside the skeleton we can discard any snake Z consisting of
an even number of cells and occurring in some linear part. We observe that
the snake Z is a parallelogram. Let us consider the pair of sides of this
parallelogram not parallel to the spine of this snake. We shall call these sides
the bounding edges of the snake Z . It turns out that the following assertion
is true.

ASSERTION. Let Z be an arbitrary snake consisting of an even number of
cells and occurring in some linear part of the skeleton D with twisting number

FIGURE 58A
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FIGURE 588

FIGURE 59

no greater than five. Let I, and I, be the bounding edges of Z . Let D, and
D, be the connected components into which D splits after discarding Z from
it. Then there is a translation t such that the intersection of D, and t(D,)
is I, = 1(l,). Moreover, D, Ut(D,) is a tree skeleton, whose twisting number
is not greater than the twisting number of D .

We say that the skeleton D, U 7(D,) is reduced from the skeleton D by
cutting out the snake Z .

REMARK. By means of the reduction operation we can obtain a stairs from
a broken snake and a snake from a stairs. By reduction we can turn several
branch points into one point (of a different type). This also happens with
forks. Figure 59 shows the reduction of several forks of T-joint type to a
fork of a more complicated form. The reduction operation also enables us
to discard forks (we need to apply reduction several times).

We are now in a position to state a theorem that classifies skeletons of tree
tilings with twisting number not exceeding five.

THEOREM 1 (classification of skeletons) (Ivanov, Tuzhilin). All skeletons
with twisting number not exceeding five are obtained by reduction from the
three canonical types of skeletons given in Figure 60.

A broken snake is represented by three dashes, and the dashes are parallel
to its directrix.

A stairs is represented by two intersecting dashes, and the dashes are parallel
to its two directrices.
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A snake is represented by one dash, and the dash is parallel to the spine of
the snake.

Forks of T-joint type correspond to points (see Figure 57).

REMARK. If we consider the diagrams of the canonical types as planar 2-
trees, it is easy to observe that they represent all possible planar 2-trees with
six endpoints.

We now describe the possible positions of growths on a skeleton. For this
we need the concept of a profile of a skeleton.

The contour of a tiling is defined as the boundary of the tiling regarded as
a closed subdomain of the plane. Consider an extreme cell of the skeleton
and discard from the contour of the skeleton that edge of it that intersects
the vertebra of this cell. We go through all the extreme cells of the skeleton,
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performing the same operation. The contour of the skeleton splits into broken
lines, which we call the profiles of the skeleton. An outer side of a profile is
called an outer side of it with respect to the skeleton (Figure 61).

We note that the profiles of the skeleton of a tiling with twisting number
not exceeding five have the same properties as the spines of the linear parts of
such skeletons. Therefore for the corresponding profiles we keep the names
snake, stairs, and broken snake.

THEOREM 2 (on the position of growths). (Ivanov, Tuzhilin) 1. On a
profile that is a snake we can plant any number of growths (Figure 62a).

2. For a stairs-profile there are two possibilities.

a) The growths are placed arbitrarily only on segments in one direction
(Figure 62b).

b) We are given a partition of the stairs into three successive broken lines,
the middle one of which may be empty. The middle broken line consists of an
even number of links and the angle between the first pair of links, measured
from the outer side, is equal to 120°.

There are no growths on the middle broken line. On the first broken line
the growths can be situated arbitrarily on the segments that have the direction
of its last link, and on the last broken line they can be situated on segments
having the direction of its first link (Figure 62c).
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3. We present a profile that is a broken snake as the union of three parts,
the outer ones of which are maximal possible stairs, and the inner one, which
may be empty, is all the rest. On the middle part we can plant arbitrarily
many growths only on segments parallel to the directrix of the profile. On the
outer stairss we can plant growths as follows.

Consider a segment of the profile adjacent to an outer stairs. If the angle
between it and the neighboring segment a of the stairs, measured from the
outer side of the profile, is equal to 120°, then growths may be fastened only
on segments of the stairs parallel to the segment a. If this angle is equal to
240°, then we can plant growths on the stairs according to rule 2 (Figure
62d, e).

Now the classification of possible minimal 2-trees with a convex set
of boundary points is obtained from Propositions 3 and 4 and Theorems 1
and 2.

We can show that any planar 2-tree that is the dual graph to the tilings
described in Theorems 1 and 2 can be realized as a minimal tree with a
convex set of boundary points. Thus, the resulting classification is complete.

3. Some results from the investigation of minimal networks that span the
vertices of regular polygons. We begin this section with a description of
a simple algorithm: for a given finite set M of points of the plane this
algorithm enables us to construct a minimal network spanning it by means
of compasses and a straight edge (the idea of this algorithm is due to Melzak
[42]). For this it is sufficient to know the structure of this minimal network
as a planar 2-tree and the correspondence between the endpoints of this 2-
tree and points of the set M . Recall, that the vertices of a minimal network
that do not belong to M are called Steiner points. Let us illustrate the idea
behind this algorithm by an example of constructing the minimal network
for the set M of vertices of a triangle 4ABC, none of whose angles exceeds
120°.

We choose any pair of vertices of the triangle, say 4 and B, and construct
an equilateral triangle ABD on the side AB sothat C and D lie on opposite
sides of AB. We then describe the circle ABD.

Clearly, the only Steiner point ¥ of the minimal network lies on the minor
arc d of this circle joining 4 and B. Moreover, V lies on the ray DC
(prove this). Joining V to the vertices of the triangle ABC, we obtain our
minimal network (Figure 63a).

If the triangle 4BC has an angle greater than or equal to 120°, then the
corresponding minimal network is not a 2-tree. In this case we can carry out
the same construction, but the angles between the segments joining the point
V of intersection of the ray DC and the circle to the vertices of the triangle
will not be equal.

For a quadrilateral 4ABCD the construction consists of two similar steps.
Figure 63b shows a minimal network spanning the vertices of a square. We
split the vertices of the square into pairs consisting of bounding vertices of
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the network for which the edges of the network going out from them meet at
one Steiner point, and choose one of these pairs, say 4 and B. We denote
by V the Steiner point at which the edges of the minimal network going out
from A and B meet, and the other Steiner point by W .

On AB we construct an equilateral triangle ABE. We place the vertex
E of this triangle in such a way that E and V lie on opposite sides of AB
(Figure 63c).

We now consider the triangle CDE and describe the minimal network for
it in the way described above. The Steiner point of this network coincides
with W .

A minimal network for the vertices of the square 4ABCD is obtained as
follows. We describe the circle ABE . The point of intersection of this circle
with the minimal network we have constructed is a Steiner point ¥ of the
required network (prove this). It remains to join ¥ to 4 and B.

These ideas are the basis of the algorithm for constructing minimal net-
works with a given set of boundary points. This algorithm has been realized
on a computer. For lack of space we do not give a detailed description of this
algorithm here. Figure 64 gives minimal trees constructed by the computer.

A computer experiment has enabled us to formulate a number of conjec-
tures about the structure of minimal 2-trees spanning the vertices of regular
n-gons. Some of these conjectures have been proved. We give here a small
part of the results we have obtained.
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PROPOSITION 8. For any n, on the vertices of a regular n-gon we can stretch
a minimal 2-tree of snake type uniquely up to a motion (Figure 65).

PROPOSITION 9. For any n = 6k + 3, where k > O, on the vertices of a
regular n-gon we can stretch a minimal 2-tree of T-joint type (from Figure
57a) uniquely up to a motion (Figure 66). This network is invariant under
rotation about the center of the n-gon through 120°.
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FIGURE 66

There is at least one infinite series of minimal trees—these are snakes with
pairs of symmetrical growths situated close to the center of the snake (Figure
67). The authors have obtained estimates for the possible position of these
growths, which we cannot give for lack of space.

FIGURE 67
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Figure 68 gives representatives of ar apparently finite series (as a com-
puter experiment shows) of minimal trees realized on n-gons when n =
24, 30, 36, 42. We note that since the corresponding tilings have one branch
point and six ends, there can be no growths on these networks.

Figure 69 gives an example of a network whose corresponding tiling has
one branch point, four ends, and one growth. A computer experiment shows
that there may exist an infinite series of such minimal trees.

These examples show that the problem of classifying minimal 2-trees whose
sets of boundary points consist of the vertices of regular polygons is nontriv-
ial.
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Errata

(—9 means line 9 down from the top, and +4 means line 4 up
from the bottom; not including chapter headings or footnotes)

Page Line Currently

Should Be

vii -9 Nitsche ref. add , rev. English transl. of
Chaps. I-V, Lectures on
minimal surfaces. Vol. I,
Cambridge Univ. Press,
Cambridge, 1989.
vii  +4  Osserman ref. add (Dover)
1 -9 a soap is left... a soap film is left...
3 +2  containing to N(P) containing N(P)
9 -19 It is well known that Critical points...
critical points...
10 +6  Dougals Douglas
10 +9  Jesse Douglas Douglas
13 +1  We note that a system... A system...
14 +1 is a networks on is a network on
the sphere §? the sphere §?
30 -1 original contour and, original contour and which,
34 +1 lo,l,,gn,...,ll lo.lijon, ..l
49 +1  large surface larger surface
49 +3  large sur- larger sur-
49 +5  large connected larger connected
minimal surface minimal surface
50 -2 large connected larger connected
minimal surface minimal surface
54 -7,8 reduces to the reduces to the
solution of differential solution of a differential
equation (8]. equation (8].
55 -6 a differential inverse a differentiable inverse
71 -3 is increased by a factor  is expanded® by a factor

(footnote added: *“Increased”

is poor; better, “expanded”,

“multiplied” or “changed”.)
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P-function

diffeomorphism with
an image

smooth funciton

1. Dubrovin ref.
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