
ELECTRONIC RESEARCH ANNOUNCEMENTSOF THE AMERICAN MATHEMATICAL SOCIETYVolume 1, Issue 3, 1995THE COHOMOLOGICAL EQUATION FOR AREA-PRESERVINGFLOWS ON COMPACT SURFACESGIOVANNI FORNI(Communicated by Svetlana Katok)Abstract. We study the equation Xu = f where X belongs to a class ofarea-preserving vector �elds, having saddle-type singularities, on a compactorientable surface M of genus g � 2. For a \full measure" set of such vector�elds we prove the existence, for any su�ciently smooth complex valued func-tion f in a �nite codimensional subspace, of a �nitely di�erentiable solution u.The loss of derivatives is �nite, but the codimension increases as the di�erentia-bility required for the solution increases, so that there are a countable numberof necessary and su�cient conditions which must be imposed on f , in additionto in�nite di�erentiability, to obtain in�nitely di�erentiable solutions. This isrelated to the fact that the "Keane conjecture" (proved by several authors suchas H.Masur, W.Veech, M.Rees, S.Kerckho�, M.Boshernitzan), which impliesfor "almost all" X the unique ergodicity of the 
ow generated by X on thecomplement of its singularity set, does not extend to distributions. Indeed,our approach proves that, for \almost all" X, the vector space of invariantdistributions not supported at the singularities has in�nite (countable) dimen-sion, while according to the Keane conjecture the cone of invariant measuresis generated by the invariant area form !.x1. IntroductionIn this announcement we describe results on the cohomological equation Xu = f ,where X is a smooth area-preserving vector �eld on a compact orientable surface Mof genus g � 2. Topological reasons force X to have singularities, which will be as-sumed to be of a canonical polynomial saddle type (not necessarily non-degenerate).The question we answer can be stated as follows: given a smooth complex valuedfunction f on M , is it possible to �nd a (smooth) solution u on M to the equationXu = f?The study of cohomological equations is mainly motivated by the problem of de-scribing time-changes for 
ows. In fact, the time-change induced in the 
ow gen-erated by a vector �eld X by a positive function f is trivial if and only if theequation Xu = f � 1 has (smooth) solutions. In this case the 
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THE COHOMOLOGICAL EQUATION FOR AREA-PRESERVING FLOWS 115condition on f for the existence of a continuous solution of the equation Xu = f .In fact, if � is a probability measure invariant for �Xt ,(1:1) ZM u � �Xt d� � ZM u d�which implies, by taking the derivative with respect to t at t = 0, R Xud� = 0.In the case of hyperbolic (Anosov) 
ows (or di�eomorphisms) the Livshitz propertyholds [L-M-M]. Suppose X is an Anosov 
ow on a compact manifoldM . Then, forany f 2 C1(M ) satisfying the condition(1:2) ZM fd� = 0 for all invariant measures � supported on periodic orbits,the cohomological equation Xu = f has a C1 solution which is unique up toadditive constants. The Livshitz property is also true in the H�older classes C�(� 2 R+). In fact, if f is assumed to be only C�, then the cohomological equationis still solvable and the solution u 2 C�0, for any �0 < � [L-M-M, (2.3)]. Theseresults were obtained for 0 < � < 1 in the pioneering work of Livshitz in theearly seventies [Lv], while the C1 case is due to Guillemin-Kazhdan [G-K1-2] forthe special case of geodesic 
ows on some negatively curved manifold and to dela Llave-Marko-Moriyon [L-M-M] for more general Anosov 
ows. In the Anosovcase the range of the Lie derivative operator on functions is closed in C� (� > 0)and C1 by the Livshitz property. In fact, it is described by the conditions (1:2)which are all produced by invariant measures. Secondly, there is essentially no lossof derivatives, i.e. the solution u is almost as regular as the given f . However,the hyperbolic nature of the dynamical system forces the existence of a very large(countable) number of periodic orbits so that the codimension of the cohomologicalequation (i.e. the codimension of the Lie derivative operator on functions) is in�nitein all the function spaces where it holds.A di�erent behaviour is expected for uniquely ergodic 
ows. A 
ow (or a home-morphism) on a compact space M is uniquely ergodic if it has a unique ergodicinvariant probability measure. Indeed, for the simplest and best known examplesof uniquely ergodic 
ows, the irrational translations on tori, the cohomologicalequation is generically solvable with codimension 1 in C1. Another importantexample of uniquely ergodic 
ow is given by the horocycle 
ow on a surface ofnegative curvature. In this case not very much is known on the properties of thecohomological equation, but in the constant curvature case it is not di�cult toshow by SL(2;R) Fourier analysis that the codimension is in�nite because of theexistence of in�nitely many linearly independent invariant distributions. It is worthexamining a bit more closely the properties of the cohomological equation on thetorus, since the results which we have obtained can be seen as a generalization tohigher genus. Furthermore the torus case will serve as a model. Without loss ofgenerality one can consider the two-dimensional torus. Let(1:3) X� := �1 @@x1 + �2 @@x2be the generator of a translation on the two-torus T 2. By the Weyl equidistribu-tion theorem, the corresponding 
ow on T 2 is uniquely ergodic i� the ratio �1=�2 is



116 GIOVANNI FORNIirrational. However, in such generality no Livshitz type property holds: the rangemay not be closed even in C1 or in the analytic category. In fact, after the pioneer-ing paper by C.L. Siegel [Sg] and the later landmark papers by A.N. Kolmogorov[Kl1-2] and J.Moser [Mo] which started the so-called KAM theory, it is well knownthat a number theoretic condition of Diophantine type must be imposed on theratio �1=�2 to overcome the di�culties created by the appearance of small divisorsin the formal series expansion of the solutions. The situation can be explained inthis simple context. It goes as follows. Any f 2 Cs(T 2) can be expanded in Fourierseries with respect to an orthonormal basis of eigenfunctions of the 
at Laplacian� := �(@2=@x21 +@2=@x22) . It is possible to choose a Fourier basis of eigenfunctionsof � consisting at the same time of eigenfunctions of X�. This is due to the factthat the vector �eld X� commutes with � and the eigenfunctions of any ellipticpartial di�erential operator such as the Laplacian � are smooth. Indeed,(1:4) X�ek = 2�i(k; �) ek ; if ek = exp 2�i(k1x1 + k2x2) ;where (k; �) := k1�1 + k2�2 , for k = (k1; k2) 2 Z2. The cohomological equationX�u = f can therefore be immediately solved, and the Fourier coe�cients uk ofthe solution u are:(1:5) uk = fk2�i(k; �) ;where fk are the Fourier coe�cients of the function f . It follows from the irra-tionality of the ratio �1=�2 that, if f0 = 0, the equation is formally solvable. Thecondition f0 = 0 is not surprising since f0 = RT2 f!, where ! = dx1 ^ dx2 is theinvariant area form which spans the (1-dimensional) cone of invariant measures forX�. However, the convergence of the formal solution requires further conditionsof Diophantine type on the \small divisors" (k; �), k 2 Z2 n f0g, for example theexistence of constants C > 0, 
 > 1 such that(DC) j(k; �)j � Cjkj
 ; for all k 2Z2 n f0g :Assuming a Diophantine condition (DC) the following standard result holds. Thereexists a natural number l > 1 (which is related to the constant 
 > 1 in (DC))such that, if s � l, for any f 2 Cs(T 2) having zero average with respect to area-form !, there exists a solution u 2 Cs�l (unique up to additive constants) of theequationX�u = f . The proof of this statement depends on the fact that the Fouriercoe�cients of a Cs function decay polynomially fast (as jkj�s) as jkj ! +1 and aretherefore able to compensate the e�ect of the small divisors (which is kept undercontrol by (DC)) if s is su�ciently large.Thus, irrational 
ows on the torus give a very important example of �nite codi-mension cohomological equation, where the only condition for solvability is theobvious necessary condition produced by the invariant area. However, this \im-provement", with respect to the case of hyperbolic 
ows, has the drawback thatone loses a �nite number of derivatives in the solution. In fact, the phenomenonof �nite loss of di�erentiability is typical of \small divisors" problem. Solvabilityproperties (with estimates) for the cohomological equation in the case of irrational



THE COHOMOLOGICAL EQUATION FOR AREA-PRESERVING FLOWS 117translations are the cornerstone of the classical KAM theory, which leads to �nitecodimension smooth stability (with respect to smooth conjugacies) of such 
owsunder \small" perturbations and to the famous results concerning the persistenceof invariant tori in Hamiltonian systems (the reader can consult [Bs] for a reviewof the theory). Similarly the Livshitz property was the key step in establishing thecanonical perturbation theory for Anosov 
ows, which describes a complete set ofinvariants for the smooth stability of such 
ows under \small" hamiltonian pertur-bations ([C-E-G] in the case of the geodesic 
ow on surfaces of constant negativecurvature, [L-M-M] for more general Anosov 
ows).A class of recurrent 
ows on compact orientable surfaces of genus g � 2, having nondegenerate saddle singularities, was studied in a pioneering paper by A.Katok [Kt],who proved that they always have at most a �nite number of non-trivial invari-ant probability measures. Later the notion of a measured foliation on a compactorientable surface was introduced by Thurston [Th] in his classi�cation of di�eo-morphisms of surfaces. Duality with respect to a �xed smooth area form gives aone-to-one correspondence between orientable measurable foliations and a class ofarea-preserving 
ows to which Katok's results apply. Since the space of measuredfoliations can be interpreted as a boundary of Teichm�uller space (Thurston's bound-ary), Teichm�uller theory began to play a role in understanding the ergodic proper-ties of such 
ows and related dynamical systems (such as interval exchange trans-formations and rational polygonal billiards). The approach based on Thurston`stheory (described in detail in [F-L-P]) and Teichm�uller theory led in the eightiesto a major breakthrough. The work of several authors such as H.Masur, W.Veech,S.Kerckho�, M.Rees, J.Smillie, M.Boshernitzan settled the problem of the generic(in the sense of measure) unique ergodicity of such systems, known (for intervalexchange transformations) as the Keane conjecture [Kn1-2]. Masur [Ms] and Veech[Vc] solved the Keane conjecture a�rmatively, giving independent proofs of uniqueergodicity for \almost all" measured foliations (or interval exchange transforma-tions). Later, di�erent proofs were given by Rees [Rs], Kerckho� [Kr], Bosher-nitzan [Bn] and others. The methods of Teichm�uller theory developed by Masurwere applied to rational polygonal billiards by Kerckho�-Masur-Smillie [K-M-S].The meaning of these results for area-preserving 
ows on surfaces of higher genus(whose singularities are saddle-type) is the following. For a \full measure" set ofsuch 
ows there are no non-trivial probability invariant measures besides the nor-malized invariant area. A natural question is then to determine the properties ofthe corresponding cohomological equation. The results we have obtained show howthe presence of singularities generates a sequence of invariant distributions whichrepresent additional obstructions to the solvability of the cohomological equation,besides the obvious one given by the invariant area as explained above. However,the �nite codimension property still holds if we seek �nitely di�erentiable solu-tions. We believe a natural and interesting direction of research is to pursue thestudy of solvability properties of the cohomological equation for uniquely ergodic(non-hyperbolic) 
ows preserving a smooth volume form and of the related KAM-type stability properties. Our approach seems to indicate that the choice of a welladapted Fourier analysis is a key step in this kind of problem, due to the subtlenature of the cancellations involved in the existence of solutions.



118 GIOVANNI FORNIx2. The resultsLet M be a compact orientable surface of genus g � 2. Let ! be a smooth areaform on M . Let E!(M;�) be the set of smooth vector �elds X on M whichpreserve the area (i.e. the Lie derivative LX! = 0) and have ` � 1 hyperbolicsingularities (saddles) with (negative) indices (i1; :::; i`) (satisfying i1 + :::+ i` =2 � 2g) at � := fp1; :::; p`g � M (modeled on the singularities of the 1-formsIm(z�ik dz)). The standard L2 Sobolev spaces on the compact manifoldM will bedenoted byHs(M ), s 2Z. A natural measure class can be introduced in a standardway on E!(M;�) by considering the Lebesgue measure class on the fundamentalcohomology classes associated to the vector �elds as follows. The fundamentalclass of a vector �eld X 2 E!(M;�) is the cohomology class of the closed 1-form�X := {X! in H1(M;�;R), which is a �nite dimensional vector space carrying thestandard Lebesgue measure class. The following results, concerning the solvabilityof the cohomological equation for vector �elds in E!(M;�) are proved:Theorem A. There exists a \full measure" set F!(M;�) � E!(M;�) such that,for every X 2 F!(M;�), the following holds. There exists a natural number l > 0such that, if f 2 H l(M ) is supported in a compact set K � M n � and satis�esRM f ! = 0, then the di�erential equation Xu = f has a solution u 2 L2loc(M n�).Theorem B. If X 2 F!(M;�), then for any s > l there exists a �nite numberns > 0 of distributions on M n�, DX1 ; :::;DXns 2 H�sloc (M n�), such that the followingholds. If f 2 Hs(M ) is supported in a compact set K �M n� and satis�esZM f ! = 0 ; DX̀ (f) = 0 ; ` = 1; :::; ns ;then the di�erential equation Xu = f has a solution u 2 Hs�l(M ).The above solvability results are obtained through "a priori" estimates in Sobolevspaces. Therefore the argument proving Theorem B also proves the following: thereexists a constant CsX;K > 0 such that the solution u of the equation Xu = f , whoseexistence is the content of Theorem B, satis�es the Sobolev estimate:(�) jju� vol (M )�1 ZM u!jjs�l � CsX;K jjf jjs :It should also be noticed that the estimated loss of derivatives l > 0 in TheoremB is uniform for all vector �elds X in the \full measure" set F!(M;�) (in fact theargument shows that l = 7 will do). Estimates such as (�) are also a key ingredientof the Nash-Moser iteration scheme, which is the core of the KAM method in thesmooth category. They are therefore of interest in the attempt of applying theKAM method to the smooth conjugacy problem for the orbit foliations associatedto the class of area-preserving 
ows we are considering. This program will hopefullybe completed in a forthcoming paper.For area-preserving vector �elds on M the Keane conjecture, which establishesthe unique ergodicity of \almost all" measured foliations on compact higher genussurfaces, in the sense of Thurston [Th], (or, equivalently, of \almost all" intervalexchange transformations), can be stated as follows:



THE COHOMOLOGICAL EQUATION FOR AREA-PRESERVING FLOWS 119Keane conjecture. For \almost all" X 2 E!(M;�), the 
ow �X of X is uniquelyergodic on M n�, i.e. the cone of invariant measures for �X on M n� is generatedby the area induced by the invariant 2-form !.Thus, for \almost all" X 2 E!(M;�), the 
ow �X has no other invariant measuresbesides the delta measures supported at its singularities and the area !. In partic-ular, the Keane conjecture implies that the dynamical system (�X ; !) is ergodic or,equivalently, that the Lie derivative LX as a di�erential operator on L2(M;!) hastrivial kernel (consisting only of constant functions), for \almost all"X 2 E!(M;�).This weaker form of the Keane conjecture, which is su�cient for our analysis, canbe obtained as a direct consequence of Theorem A by standard ergodic theory. Allthe results that we prove in the paper are therefore independent of earlier proofs ofthe Keane conjecture, such as [Ms], [Vc], [Rs], [Bn], [Kr] and others. The approachdeveloped in this paper also shows that the Keane conjecture (in the form statedabove) does not extend to invariant distributions. In fact, the following result isproved:Theorem C. For \almost all" X 2 E!(M;�), the vector space of invariant dis-tributions on M n � (i.e. those distributions D satisfying the equation XD = 0 onM n�) has in�nite (countable) dimension.x3. A short description of the proofsMeasured foliations and quadratic di�erentials. As mentioned, the orbitfoliation of a vector �eld X 2 E!(M;�) is a measured foliation in the sense ofThurston [Th], i.e. it has a transverse measure given by j�X j where �X := {X! isthe closed dual 1-form. The closedness of �X is equivalent to the area preservingproperty by the identity:(3:1) d{X! + {Xd! = LX! = 0 ;where d! = 0, since ! is a 2-form. A pair of transverse measured foliations hav-ing the same singularities induces a complex structure on the complement of thesingularity set, which can be uniquely extended to the whole surface M , and de-�nes a holomorphic quadratic di�erential on M having the two given foliations ashorizontal and vertical foliations in the following sense. A (holomorphic) quadraticdi�erential q is a holomorphic quadratic form on M . With respect to a local holo-morphic coordinate z = x1 + ix2, q can be written as q = �(z)dz2, where � is alocally de�ned holomorphic function. Then, the horizontal foliationFq and the ver-tical foliation F�q associated to q are de�ned as follows: Fq is given by Imq1=2 = 0with transverse measure jImq1=2j; similarly,F�q is given by Re q1=2 = 0 with trans-verse measure jRe q1=2j. A measured foliation F is said to be realizable if F = Fqfor some holomorphic quadratic di�erential q. A measured foliation is realizablei� it is possible to �nd another measured foliation transverse to it. By resultscontained in [H-M], \almost all" measured foliations are realizable. In fact, a mea-sured foliation is realizable if it has a 1-dimensional dense leaf (hence by [Kt] andreferences therein all 1-dimensional leaves are dense).A holomorphic quadratic di�erential q vanishing at a �nite set of points � inducesa 
at structure with cone type singularities at �. There is in fact a 
at metricRq canonically associated to q, de�ned as Rq := jqj1=2 and in coordinates Rq =



120 GIOVANNI FORNIj�(z)j1=2jdzj. This metric has cone-type singularities in the sense that, at eachp 2 �, there exists a neighborhood Up of p in M such that the metric can bewritten on Up n fpg, with respect to coordinates (�; �), as(3:2) Rq = �d�2 + (c� d�)2�1=2 ;where c is a positive real number (2�c is called the cone angle at p). In our case, thecone angle is always > 2� and depends on the order of vanishing of the quadraticdi�erential q at p. The reader can consult [St] for properties of the geometrygiven by the metric Rq. In the particular case of the two-torus there exists a non-vanishing holomorphic quadratic di�erential de�ned by q = dz2 with respect toa global holomorphic coordinate for any complex structure. The horizontal (resp.vertical) foliations are spanned by the vector �elds S = @=@x1 (resp. T = @=@x2)and the metric Rq is the standard 
at Riemannian metric. In analogy with thetorus case we proceed to establish the basic properties of Fourier analysis for anyholomorphic quadratic di�erential on a compact Riemann surface M .Fourier analysis for quadratic di�erentials. Since the metric Rq is 
at, thereexists on M n � an orthonormal frame fS; Tg of the tangent bundle TM . Thevector �elds S, T are not de�ned at the singularity set � of the metric Rq (the set� corresponds to the set of zeros of the quadratic di�erential q and to the singularityset of its horizontal and vertical foliations). In fact, if written in coordinates at asingular point p 2 �, their coe�cients are divergent at p. The Laplace-Beltramioperator associated to the metric Rq can be written as �q := �(S2 + T 2). It is awell de�ned second order elliptic di�erential operator on M n�, but (as for S, T )its expression in coordinates diverges at the singularities. It is natural to introduceadapted Sobolev spaces Hsq (M ) as follows. The space H0q (M ), denoted by L2q(M ),is simply the L2 space de�ned with respect to the area-element !q of the metricRq. The space Hsq (M ) (for s 2 N) is de�ned as completion of C1(M ) with respectto the norm(3:3) jujs := ( Xi+j�s jSiT juj20)1=2 :The Laplace-Beltrami operator �q has a L2q orthonormal basis of weak eigenfunc-tions. In fact, one can consider its Dirichlet form(3:4) Q(u; v) := (Su; Sv)q + (Tu; Tv)q ;(where (�; �)q denotes the L2q inner product) and prove the following:Theorem 3.1 (Spectral Theorem). The hermitian form Q on L2q(M ) has thefollowing properties:1. Q is positive semi-de�nite and the set EV(Q) of its eigenvalues is a discretesubset of [0;+1);2. Each eigenvalue has �nite multiplicity, in particular the eigenvalue 0 hasmultiplicity 1 and the kernel of Q consists only of constant functions;3. The space L2q(M ) decomposes as an orthogonal sum of eigenspaces. Further-more, the eigenfunctions fekgk2Nare C1 (real analytic) on M .It is also important to establish the Weyl asymptotics for the eigenvalues of thehermitian formQ. This formula gives the information which we need on the rate ofgrowth of the eigenvalues. For any � > 0, let Nq(�) := card f� 2 EV(Q) j� � �g,where each eigenvalue � is counted according to its multiplicity.



THE COHOMOLOGICAL EQUATION FOR AREA-PRESERVING FLOWS 121Theorem 3.2 (Weyl asymptotics). There exists a constant C > 0 such thatlim Nq(�)=� = C volq(M ) ; as �! +1 :Theorem 3.1 and 3.2 can be proved by standard methods (the reader can consult[Ch]). Theorem 3.1 was proved by J.Cheeger in [Cg] for any compact Riemannmanifold with cone-type singularities. Theorem 3.2 can also be deduced in thegeneral case by Cheeger methods. Theorem 3.2 says that the growth of the eigen-values is linear in k 2 N. As a simple consequence we obtain that the Fouriercoe�cients fk := (f; ek)q of a function f 2 Hsq (M ) decay polynomially (as k�s) asin the torus case. However, there is an obstruction (and indeed it must be so) tocarrying over the argument sketched above for the case of irrational translationson the torus: although the vector �elds S and T commute (hence they commutewith the Laplacian �q), the eigenfunctions ek 2 H1q (M ) but in general they do notbelong to H2q (M ). Therefore, they are not eigenfunctions of the vector �elds S, Tor their linear combinations. Thus, a di�erent strategy must be found.A unitary operator. The circle group acts on the space of (holomorphic) qua-dratic di�erentials as follows: (�; q)! q� := (e�i�)2q, for all � 2 S1. The horizontalfoliation F� of the quadratic di�erential q� (de�ned by the closed 1-form Im(q�)1=2)is spanned by a vector �eld S� , unitary with respect to the metric Rq, which canbe obtained through a rotation by the angle � from the vector �eld S spanningthe horizontal foliation of q. It is essentially an application of the Fubini theoremto show that all statements concerning a \full measure" class of area-preservingvector �elds can be reduced to the corresponding statements about the family S�for \almost all" � 2 S1 (with respect to the 1-dimensional Lebesgue measure). Interms of the orthonormal frame fS; Tg introduced earlier:(3:5) S� := fe�i�(S + i T ) + ei�(S � i T )g=2 :One is led therefore to the study of the simpler Cauchy-Riemann operators S � iT(these are elliptic �rst order di�erential operators), for which the following proper-ties can be proved:Proposition 3.3. The Cauchy-Riemann operators S�i T are closable operators onL2q(M ), whose closures (denoted by the same symbols) have the following properties.LetM� (resp. M�) be the (�nite dimensional) vector spaces of meromorphic (resp.anti-meromorphic ) L2q functions.1. D(S � i T ) = H1q (M ) and N (S � i T ) = C .2. R+ := Ran (S + i T ) =M?� and R� := Ran (S � i T ) =M?� .3. S � i T : (H;Q)! (R�; ( � ; � )q) are unitary operators.Consequently the operator Uq : R� ! R+, de�ned as Uq := (S + iT )(S � iT )�1,is a partial isometry (with respect to the L2q scalar product). Therefore it can beextended by any isometry J :M� !M� to a unitary operator UJ on L2q(M ) forwhich the following key identities hold:(3:6) S� = e�i��UJ + e2i��(S � i T ) = ei��U�1J + e�2i��(S + i T ) :Estimates for the solution of the equation S�u = f in the Sobolev spaces Hsq (M ) willtherefore be related to estimates for the resolvents R�J (z) of the unitary operators



122 GIOVANNI FORNIUJ (resp. U�1J ) at points on the circle S1 (which contains the spectrum). It turnsout that such estimates can be obtained in the weak sense for any unitary operator,by applying Fatou's theory on boundary values of holomorphic functions. In fact,for any u, v 2 L2q(M ), the function z ! (RJ (z)u; v)q is holomorphic on the unitdisk and, by the spectral theorem for unitary operators, it can be represented as aCauchy integral over the spectral measure d(F (t)u; v)q:(3:7) (RJ (z)u; v)q = 12� Z 2�0 (z � eit)�1 d(F (t)u; v)q ; jzj < 1 ;It is a classical theorem [Zy, VII.9] that, for any Borel complex measure, the cor-responding Cauchy integral I�(z) (de�ned as in (3:7) by replacing the spectralmeasure by the measure �) has the following property:Lemma 3.4. The non-tangential limit I�(z) ! I��(�) as z ! ei� exists almosteverywhere with respect to the Lebesgue 1-dimensional measure L on S1. Further-more, there exists a constant C > 0 such that the following estimates hold:Lf� 2 S1 j jI��(�)j > �g � C� jj�jj ;where jj�jj denotes the total mass of the measure �.(In fact, we need a re�ned version of this, whose proof can be obtained by applyingresults from [Rd], [Sn] and [S-W]).Sobolev estimates and existence of invariant distributions. The re�nedversion of Lemma 3.4 can be applied to �nd a distributional solution of the equa-tion S�u = f for any given f 2 L2q(M ) having zero average and for a full measure setof � 2 S1 (which will depend on the function f considered). This is obtained essen-tially by proving certain estimates in the Sobolev spaces Hsq (M ). The dependenceon f can be eliminated by Fourier series decomposition. Here the information onthe decay rate of the Fourier coe�cients of Hsq functions plays a crucial role (thusmotivating the Fourier analysis of Theorems 3.1 and 3.2). The solution is then reg-ularized through a procedure based on properties of Cauchy-Riemann operators.Finally, the existence of non-trivial distributions is proved by the following idea.By the Riemann-Roch theorem, the dimension of the space M� of L2q meromor-phic function has dimension equal to the genus g � 2. Hence, there always existsa meromorphic function � having zero average. By the previous construction theequation S�U = � has a distributional solution for almost all � 2 S1. By thecommutation property D := (S + iT )U is an invariant distribution, i.e. S�D = 0 indistributional sense.Aknowledgments. I am grateful to Prof. J.N.Mather who suggested to me thestudy of smooth properties of area-preserving 
ows on higher genus surfaces.References[Bn] M.Boshernitzan,A condition for minimal interval exchange maps to be uniquely ergodic,Duke Math. J.Ast�erisque 133-134 (1986).[Bs] J.-B. Bost, Tores invariantes des syst�emes dynamiques hamiltoniens, S�em. Bourbaki no.639, Duke Math. J. 52 (1985), 723-752.[Ch] I.Chavel, Eigenvalues in Riemannian Geometry, Academic Press, 1984.
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