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ABSTRACT. We study the equation X« = f where X belongs to a class of
area-preserving vector fields, having saddle-type singularities, on a compact
orientable surface M of genus g > 2. For a “full measure” set of such vector
fields we prove the existence, for any sufficiently smooth complex valued func-
tion f in a finite codimensional subspace, of a finitely differentiable solution u.
The loss of derivativesis finite, but the codimension increases as the differentia-
bility required for the solution increases, so that there are a countable number
of necessary and sufficient conditions which must be imposed on f, in addition
to infinite differentiability, to obtain infinitely differentiable solutions. This is
related to the fact that the "Keane conjecture” (proved by several authors such
as H.Masur, W.Veech, M.Rees, S.Kerckhoff, M.Boshernitzan), which implies
for "almost all” X the unique ergodicity of the flow generated by X on the
complement of its singularity set, does not extend to distributions. Indeed,
our approach proves that, for “almost all” X, the vector space of invariant
distributions not supported at the singularities has infinite (countable) dimen-
sion, while according to the Keane conjecture the cone of invariant measures
is generated by the invariant area form w.

§1. INTRODUCTION

In this announcement we describe results on the cohomological equation Xu = f,
where X is a smooth area-preserving vector field on a compact orientable surface M
of genus g > 2. Topological reasons force X to have singularities, which will be as-
sumed to be of a canonical polynomial saddle type (not necessarily non-degenerate).
The question we answer can be stated as follows: given a smooth compler valued
function f on M, is it possible to find a (smooth) solution u on M to the equation
Xu=f?

The study of cohomological equations is mainly motivated by the problem of de-
scribing time-changes for flows. In fact, the time-change induced in the flow gen-
erated by a vector field X by a positive function f is trivial if and only if the
equation Xu = f — 1 has (smooth) solutions. In this case the flow produced by
the time-change is (smoothly) conjugated to the original one [K-H, §2.2]. The first
observation on cohomological equations is that each invariant measure p for the
flow ¢X generated by a vector field X on a compact manifold M gives a necessary
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condition on f for the existence of a continuous solution of the equation Xu = f.
In fact, if 1 is a probability measure invariant for ¢

(1.1) /Muoqsf d/JE/Mudﬂ

which implies, by taking the derivative with respect to ¢t at ¢t = 0, [ Xudu = 0.

In the case of hyperbolic (Anosov) flows (or diffecomorphisms) the Livshitz property
holds [L-M-M]. Suppose X is an Anosov flow on a compact manifold M. Then, for
any f € C°(M) satisfying the condition

(1.2) / fdu =0 for all invariant measures p supported on periodic orbits,
M

the cohomological equation Xu = f has a C'™ solution which 1s unique up to
additive constants. The Livshitz property is also true in the Holder classes C'
(o € RY). In fact, if f is assumed to be only C'*, then the cohomological equation
is still solvable and the solution u € C'*', for any o’ < a [L-M-M, (2.3)]. These
results were obtained for 0 < a < 1 in the pioneering work of Livshitz in the
early seventies [Lv], while the €' case is due to Guillemin-Kazhdan [G-K1-2] for
the special case of geodesic flows on some negatively curved manifold and to de
la Llave-Marko-Moriyon [L-M-M] for more general Anosov flows. In the Anosov
case the range of the Lie derivative operator on functions is closed in C'* (a > 0)
and C'* by the Livshitz property. In fact, it is described by the conditions (1.2)
which are all produced by invariant measures. Secondly, there is essentially no loss
of derivatives, i.e. the solution u is almost as regular as the given f. However,
the hyperbolic nature of the dynamical system forces the existence of a very large
(countable) number of periodic orbits so that the codimension of the cohomological
equation (i.e. the codimension of the Lie derivative operator on functions) is infinite
in all the function spaces where it holds.

A different behaviour is expected for uniquely ergodic flows. A flow (or a home-
morphism) on a compact space M is uniquely ergodic if it has a unique ergodic
invariant probability measure. Indeed, for the simplest and best known examples
of uniquely ergodic flows, the irrational translations on tori, the cohomological
equation 1s generically solvable with codimension 1 in C*°. Another important
example of uniquely ergodic flow is given by the horocycle flow on a surface of
negative curvature. In this case not very much is known on the properties of the
cohomological equation, but in the constant curvature case it is not difficult to
show by SL(2,R) Fourier analysis that the codimension is infinite because of the
existence of infinitely many linearly independent tnvartant distributions. It is worth
examining a bit more closely the properties of the cohomological equation on the
torus, since the results which we have obtained can be seen as a generalization to
higher genus. Furthermore the torus case will serve as a model. Without loss of
generality one can consider the two-dimensional torus. Let

d d
(13) Xa = ala—xl + Ozza—xz

be the generator of a translation on the two-torus 7?. By the Weyl equidistribu-
tion theorem, the corresponding flow on 72 is uniquely ergodic iff the ratio a/as is
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irrational. However, in such generality no Livshitz type property holds: the range
may not be closed even in C'™ or in the analytic category. In fact, after the pioneer-
ing paper by C.L. Siegel [Sg] and the later landmark papers by A.N. Kolmogorov
[K11-2] and J.Moser [Mo] which started the so-called KAM theory, it is well known
that a number theoretic condition of Diophantine type must be imposed on the
ratio oy /s to overcome the difficulties created by the appearance of small divisors
in the formal series expansion of the solutions. The situation can be explained in
this simple context. It goes as follows. Any f € C*(7?) can be expanded in Fourier
series with respect to an orthonormal basis of eigenfunctions of the flat Laplacian
A= —(0%/02% +0?/0x3) . It is possible to choose a Fourier basis of eigenfunctions
of A consisting at the same time of eigenfunctions of X,,. This is due to the fact
that the vector field X, commutes with A and the eigenfunctions of any elliptic
partial differential operator such as the Laplacian A are smooth. Indeed,

(1.4) Xoer = 2mi(k, o) e, if e = exp 2mi(ki21 + koza) |

where (k,a) := kiay + kaao, for k = (k1, ko) € Z% The cohomological equation
Xqu = f can therefore be immediately solved, and the Fourier coefficients wuj of
the solution u are:

Jr
(1.5) W= 2mi(k, o)’

where f; are the Fourier coefficients of the function f. It follows from the irra-
tionality of the ratio «y/as that, if fo = 0, the equation is formally solvable. The
condition f; = 0 is not surprising since fy = fT2 fw, where w = dz1 A dxs 1s the
invariant area form which spans the (1-dimensional) cone of invariant measures for
X,. However, the convergence of the formal solution requires further conditions
of Diophantine type on the “small divisors” (k, ), k € Z%\ {0}, for example the
existence of constants C' > 0, v > 1 such that

(DC) |k, )| > for all k€ Z*\{0}.

C
|k
Assuming a Diophantine condition (DC) the following standard result holds. There
exists a natural number [ > 1 (which is related to the constant ¥ > 1 in (DC))
such that, if s > I, for any f € C*(T?) having zero average with respect to area-
form w, there exists a solution v € C*~! (unique up to additive constants) of the
equation X,u = f. The proof of this statement depends on the fact that the Fourier
coefficients of a C* function decay polynomially fast (as [k|~*) as |k| — 400 and are
therefore able to compensate the effect of the small divisors (which is kept under
control by (DC)) if s is sufficiently large.

Thus, irrational flows on the torus give a very important example of finite codi-
mension cohomological equation, where the only condition for solvability is the
obvious necessary condition produced by the invariant area. However, this “im-
provement”, with respect to the case of hyperbolic flows, has the drawback that
one loses a finite number of derivatives in the solution. In fact, the phenomenon
of finite loss of differentiability 1s typical of “small divisors” problem. Solvability
properties (with estimates) for the cohomological equation in the case of irrational



THE COHOMOLOGICAL EQUATION FOR AREA-PRESERVING FLOWS 117

translations are the cornerstone of the classical KAM theory, which leads to finite
codimension smooth stability (with respect to smooth conjugacies) of such flows
under “small” perturbations and to the famous results concerning the persistence
of invariant tori in Hamiltonian systems (the reader can consult [Bs] for a review
of the theory). Similarly the Livshitz property was the key step in establishing the
canonical perturbation theory for Anosov flows, which describes a complete set of
invariants for the smooth stability of such flows under “small” hamiltonian pertur-
bations ([C-E-G] in the case of the geodesic flow on surfaces of constant negative
curvature, [L-M-M] for more general Anosov flows).

A class of recurrent flows on compact orientable surfaces of genus ¢ > 2, having non
degenerate saddle singularities, was studied in a pioneering paper by A.Katok [Kt],
who proved that they always have at most a finite number of non-trivial invari-
ant probability measures. Later the notion of a measured foliation on a compact
orientable surface was introduced by Thurston [Th] in his classification of diffeo-
morphisms of surfaces. Duality with respect to a fixed smooth area form gives a
one-to-one correspondence between orientable measurable foliations and a class of
area-preserving flows to which Katok’s results apply. Since the space of measured
foliations can be interpreted as a boundary of Teichmiiller space (Thurston’s bound-
ary), Teichmiiller theory began to play a role in understanding the ergodic proper-
ties of such flows and related dynamical systems (such as interval exchange trans-
formations and rational polygonal billiards). The approach based on Thurston‘s
theory (described in detail in [F-L-P]) and Teichmiller theory led in the eighties
to a major breakthrough. The work of several authors such as H.Masur, W.Veech,
S.Kerckhoff, M.Rees, J.Smillie, M.Boshernitzan settled the problem of the generic
(in the sense of measure) unique ergodicity of such systems, known (for interval
exchange transformations) as the Keane conjecture [Knl-2]. Masur [Ms] and Veech
[Ve] solved the Keane conjecture affirmatively, giving independent proofs of unique
ergodicity for “almost all” measured foliations (or interval exchange transforma-
tions). Later, different proofs were given by Rees [Rs], Kerckhoff [Kr], Bosher-
nitzan [Bn] and others. The methods of Teichmiiller theory developed by Masur
were applied to rational polygonal billiards by Kerckhoff-Masur-Smillie [K-M-S].
The meaning of these results for area-preserving flows on surfaces of higher genus
(whose singularities are saddle-type) is the following. For a “full measure” set of
such flows there are no non-trivial probability invariant measures besides the nor-
malized invariant area. A natural question is then to determine the properties of
the corresponding cohomological equation. The results we have obtained show how
the presence of singularities generates a sequence of wnvariant distributions which
represent additional obstructions to the solvability of the cohomological equation,
besides the obvious one given by the invariant area as explained above. However,
the finite codimension property still holds if we seek finitely differentiable solu-
tions. We believe a natural and interesting direction of research is to pursue the
study of solvability properties of the cohomological equation for uniquely ergodic
(non-hyperbolic) flows preserving a smooth volume form and of the related KAM-
type stability properties. Our approach seems to indicate that the choice of a well
adapted Fourier analysis is a key step wn this kind of problem, due to the subtle
nature of the cancellations involved in the existence of solutions.
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§2. THE RESULTS

Let M be a compact orientable surface of genus g > 2. Let w be a smooth area
form on M. Let &,(M,X) be the set of smooth vector fields X on M which
preserve the area (i.e. the Lie derivative Lxw = 0) and have £ > 1 hyperbolic
singularities (saddles) with (negative) indices (i1, ...,4¢) (satisfying i1 + ...+ i, =
2 —2¢) at ¥ = {p1,....,pe} C M (modeled on the singularities of the 1-forms
Im (27% dz)). The standard L? Sobolev spaces on the compact manifold M will be
denoted by H*(M), s € Z. A natural measure class can be introduced in a standard
way on &,(M,X) by considering the Lebesgue measure class on the fundamental
cohomology classes associated to the vector fields as follows. The fundamental
class of a vector field X € &,(M,X) is the cohomology class of the closed 1-form
nx :=ixw in H*(M,Y;R), which is a finite dimensional vector space carrying the
standard Lebesgue measure class. The following results, concerning the solvability
of the cohomological equation for vector fields in &,(M,X) are proved:

Theorem A. There exists a “full measure” set F,(M, %) C E,(M,X) such that,
for every X € F,(M,X), the following holds. There exists a natural number [ >0
such that, if f € H'(M) is supported in a compact set K C M \' ¥ and satisfies
fM fw =0, then the differential equation Xu = f has a solution u € L? (M \ X).

loc

Theorem B. If X € F,(M,X), then for any s > | there exists a finite number
ng > 0 of distributions on M\X, Df¥ ...,D,{ € H; 2(M\X), such that the following

holds. If f € H*(M) is supported in a compact set K C M\ ¥ and satisfies
/ fu=0, DX()=0,¢L=1,..n,,
M

then the differential equation Xu = f has a solution u € H*~!(M).

The above solvability results are obtained through ”a priori” estimates in Sobolev
spaces. Therefore the argument proving Theorem B also proves the following: there
exists a constant '’ g > 0 such that the solution u of the equation Xu = f, whose
existence is the content of Theorem B, satisfies the Sobolev estimate:

() e vol )" [ wilics < G 11

It should also be noticed that the estimated loss of derivatives [ > 0 in Theorem
B is uniform for all vector fields X in the “full measure” set F,(M,X) (in fact the
argument shows that [ = 7 will do). Estimates such as () are also a key ingredient
of the Nash-Moser iteration scheme, which is the core of the KAM method in the
smooth category. They are therefore of interest in the attempt of applying the
KAM method to the smooth conjugacy problem for the orbit foliations associated
to the class of area-preserving flows we are considering. This program will hopefully
be completed in a forthcoming paper.

For area-preserving vector fields on M the Keane conjecture, which establishes
the unique ergodicity of “almost all” measured foliations on compact higher genus
surfaces, in the sense of Thurston [Th], (or, equivalently, of “almost all” interval
exchange transformations), can be stated as follows:
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Keane conjecture. For “almost all” X € £,(M, %), the flow ¢X of X is uniquely
ergodic on M\, i.e. the cone of invariant measures for ¢* on M\X is generated
by the area induced by the invariant 2-form w.

Thus, for “almost all” X € £,(M,X), the flow ¢x has no other invariant measures
besides the delta measures supported at its singularities and the area w. In partic-
ular, the Keane conjecture implies that the dynamical system (¢x,w) is ergodic or,
equivalently, that the Lie derivative £Lx as a differential operator on L%(M,w) has
trivial kernel (consisting only of constant functions), for “almost all” X € &, (M, X).
This weaker form of the Keane conjecture, which is sufficient for our analysis, can
be obtained as a direct consequence of Theorem A by standard ergodic theory. All
the results that we prove in the paper are therefore independent of earlier proofs of
the Keane conjecture, such as [Ms], [Vc], [Rs], [Bn], [Kr] and others. The approach
developed in this paper also shows that the Keane conjecture (in the form stated
above) does not extend to invariant distributions. In fact, the following result is
proved:

Theorem C. For “almost all” X € £,(M,X), the vector space of invariant dis-
tributions on M\ X (i.e. those distributions D satisfying the equation XD =0 on
M\ X) has infinite (countable) dimension.

§3 A SHORT DESCRIPTION OF THE PROOFS

Measured foliations and quadratic differentials. As mentioned, the orbit
foliation of a vector field X € &,(M,X) is a measured foliation in the sense of
Thurston [Th], i.e. it has a transverse measure given by |nx| where nx = ixw is
the closed dual 1-form. The closedness of nx is equivalent to the area preserving
property by the identity:

(3.1) dixw+i1xdo=Lxw=0,

where dw = 0, since w is a 2-form. A pair of transverse measured foliations hav-
ing the same singularities induces a complez structure on the complement of the
singularity set, which can be uniquely extended to the whole surface M, and de-
fines a holomorphic quadratic differential on M having the two given foliations as
horizontal and vertical foliations in the following sense. A (holomorphic) quadratic
differential ¢ is a holomorphic quadratic form on M. With respect to a local holo-
morphic coordinate z = 21 + iz, ¢ can be written as ¢ = ¢(z)dz?, where ¢ is a
locally defined holomorphic function. Then, the horizontal foliation F; and the ver-
tical foliation F_, associated to ¢ are defined as follows: F is given by Im 72 =0

1/2 — () with trans-

with transverse measure [Im q1/2|; similarly, F_, is given by Re ¢
verse measure |Re¢'/?|. A measured foliation F is said to be realizable if F = Fy
for some holomorphic quadratic differential g. A measured foliation is realizable
iff 1t is possible to find another measured foliation transverse to it. By results
contained in [H-M], “almost all” measured foliations are realizable. In fact, a mea-
sured foliation is realizable if it has a 1-dimensional dense leaf (hence by [Kt] and

references therein all 1-dimensional leaves are dense).

A holomorphic quadratic differential ¢ vanishing at a finite set of points ¥ induces
a flat structure with cone type singularities at 3. There is in fact a flat metric
R, canonically associated to ¢, defined as R, := |q|1/2 and in coordinates R, =
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|¢(z)|1/2|dz|. This metric has cone-type singularities in the sense that, at each
p € X, there exists a neighborhood U, of p in M such that the metric can be
written on U, \ {p}, with respect to coordinates (p, 9), as

(3.2) Ry = (dp* + (cpd0)?)''* |

where ¢ is a positive real number (27¢ is called the cone angle at p). In our case, the
cone angle is always > 27 and depends on the order of vanishing of the quadratic
differential ¢ at p. The reader can consult [St] for properties of the geometry
given by the metric 2,. In the particular case of the two-torus there exists a non-
vanishing holomorphic quadratic differential defined by ¢ = dz? with respect to
a global holomorphic coordinate for any complex structure. The horizontal (resp.
vertical) foliations are spanned by the vector fields S = 8/dx; (resp. T = 0/0x3)
and the metric R, is the standard flat Riemannian metric. In analogy with the
torus case we proceed to establish the basic properties of Fourier analysis for any
holomorphic quadratic differential on a compact Riemann surface M.

Fourier analysis for quadratic differentials. Since the metric R, is flat, there
exists on M \ X an orthonormal frame {S,T} of the tangent bundle TM . The
vector fields S, T are not defined at the singularity set ¥ of the metric R, (the set
Y corresponds to the set of zeros of the quadratic differential ¢ and to the singularity
set of its horizontal and vertical foliations). In fact, if written in coordinates at a
singular point p € X, their coefficients are divergent at p. The Laplace-Beltram:
operator associated to the metric R, can be written as A, := —(S? + 77). It is a
well defined second order elliptic differential operator on M \ X, but (as for S, T
its expression in coordinates diverges at the singularities. It is natural to introduce
adapted Sobolev spaces Hj (M) as follows. The space HS(M), denoted by Lg(M),
is simply the L? space defined with respect to the area-element w, of the metric
Ry. The space H;(M) (for s € N) is defined as completion of C*°(M) with respect
to the norm

(3.3) fule = ( 32 ST )2

i+i<s
The Laplace-Beltrami operator A, has a Lg orthonormal basis of weak eigenfunc-
tions. In fact, one can consider its Dirichlet form

(3.4) Qu,v) .= (Su, Sv)y + (Tu,Tv), ,
(where (-, ), denotes the Lg inner product) and prove the following:

Theorem 3.1 (Spectral Theorem). The hermitian form Q on L7(M) has the
following properties:
1. Q is positive semi-definite and the set EV(Q) of its eigenvalues is a discrete
subset of [0, 400);
2. Each eigenvalue has finite multiplicity, in particular the eigenvalue 0 has
multiplicity 1 and the kernel of Q consists only of constant functions;
3. The space Lg(M) decomposes as an orthogonal sum of eigenspaces. Further-
more, the eigenfunctions {ey }rew are C° (real analytic) on M.

It is also important to establish the Weyl asymptotics for the eigenvalues of the
hermitian form Q. This formula gives the information which we need on the rate of
growth of the eigenvalues. For any A > 0, let N (A) ;= card {A € EV(Q) | X < A},

where each eigenvalue X is counted according to its multiplicity.
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Theorem 3.2 (Weyl asymptotics). There exisis a constant C > 0 such that
lim N,(A)/A = Cvoly(M), as A— +oo.

Theorem 3.1 and 3.2 can be proved by standard methods (the reader can consult
[Ch]). Theorem 3.1 was proved by J.Cheeger in [Cg] for any compact Riemann
manifold with cone-type singularities. Theorem 3.2 can also be deduced in the
general case by Cheeger methods. Theorem 3.2 says that the growth of the eigen-
values 1s linear in & € N. As a simple consequence we obtain that the Fourier
coefficients fi 1= (f, ex), of a function f € Hj(M) decay polynomially (as k~*) as
in the torus case. However, there is an obstruction (and indeed it must be so) to
carrying over the argument sketched above for the case of irrational translations
on the torus: although the vector fields S and 7' commute (hence they commute
with the Laplacian A,), the eigenfunctions e; € qu(M) but in general they do not
belong to qu(M). Therefore, they are not eigenfunctions of the vector fields S, T
or their linear combinations. Thus, a different strategy must be found.

A unitary operator. The circle group acts on the space of (holomorphic) qua-
dratic differentials as follows: (6, ¢) — q¢ := (e7%)?q, for all # € S. The horizontal
foliation Fy of the quadratic differential g5 (defined by the closed 1-form Im(gg)'/?)
is spanned by a vector field Sg, unitary with respect to the metric R,, which can
be obtained through a rotation by the angle § from the vector field S spanning
the horizontal foliation of ¢. It is essentially an application of the Fubini theorem
to show that all statements concerning a “full measure” class of area-preserving
vector fields can be reduced to the corresponding statements about the family Sy
for “almost all” @ € S (with respect to the 1-dimensional Lebesgue measure). In
terms of the orthonormal frame {5, T} introduced earlier:

(3.5) Sy = {e (S +iT)+e(S—iT)}/2 .

One is led therefore to the study of the simpler Cauchy-Riemann operators S =& iT'
(these are elliptic first order differential operators), for which the following proper-
ties can be proved:

Proposition 3.3. The Cauchy-Riemann operators S+iT are closable operators on
Lg(M), whose closures (denoted by the same symbols) have the following properties.
Let M, (resp. Ms ) be the (finite dimensional) vector spaces of meromorphic (resp.
anti-meromorphic ) Lg functions.

L. D(S+iT)= HY(M) and N(S+iT) =C,

2. Rt ;= Ran(S+iT) =My, and R~ := Ran(S —iT) = M53.

3. S4+4iT:(H,Q)— (R%,(-,),) are unitary operators.
Consequently the operator U, : R~ — R* | defined as U, := (S + i1)(S — 1)1,
is a partial isometry (with respect to the Lg scalar product). Therefore it can be

extended by any isometry J : Ms — My to a unitary operator UUs on Lg(M) for
which the following key identities hold:

(36)  Sp=e T (Us 4N (S —iT) = (U + ) (S +iT)

Estimates for the solution of the equation Spu = f in the Sobolev spaces H (M) will
therefore be related to estimates for the resolvents Rff(z) of the unitary operators
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Uy (resp. Uj_l) at points on the circle S* (which contains the spectrum). It turns
out that such estimates can be obtained in the weak sense for any unitary operator,
by applying Fatou’s theory on boundary values of holomorphic functions. In fact,
for any u, v € Lg(M), the function z — (Rs(2)u,v), is holomorphic on the unit
disk and, by the spectral theorem for unitary operators, it can be represented as a
Cauchy integral over the spectral measure d(F(t)u, v),:

(3.7) (Rs(2)u,v)g = %/0 W(z — e”)_1 d(F(t)u,v), , |2 <1,

It is a classical theorem [Zy, VIL.9] that, for any Borel complex measure, the cor-
responding Cauchy integral I,(z) (defined as in (3.7) by replacing the spectral
measure by the measure p) has the following property:

¥ exists almost

Lemma 3.4. The non-tangential limit 1,,(z) — [;(0) as 2 — et
everywhere with respect to the Lebesque 1-dimensional measure £ on S*. Further-

more, there exists a constant C' > 0 such that the following estimates hold:
1 * C
L{o e SO > Ay < S el

where || denotes the total mass of the measure p.

(In fact, we need a refined version of this, whose proof can be obtained by applying

results from [Rd], [Sn] and [S-W]).

Sobolev estimates and existence of invariant distributions. The refined
version of Lemma 3.4 can be applied to find a distributional solution of the equa-
tion Spu = f for any given f € Lg(M) having zero average and for a full measure set
of @ € S* (which will depend on the function f considered). This is obtained essen-
tially by proving certain estimates in the Sobolev spaces Hqs(M). The dependence
on f can be eliminated by Fourier series decomposition. Here the information on
the decay rate of the Fourier coefficients of H; functions plays a crucial role (thus
motivating the Fourier analysis of Theorems 3.1 and 3.2). The solution is then reg-
ularized through a procedure based on properties of Cauchy-Riemann operators.
Finally, the existence of non-trivial distributions is proved by the following idea.
By the Riemann-Roch theorem, the dimension of the space My of Lg meromor-
phic function has dimension equal to the genus g > 2. Hence, there always exists
a meromorphic function ® having zero average. By the previous construction the
equation SgU/ = ® has a distributional solution for almost all # € S'. By the
commutation property D := (S +¢T)U is an invariant distribution, i.e. S¢D =0 in
distributional sense.

Aknowledgments. I am grateful to Prof. J.N.Mather who suggested to me the
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