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Foreword

The main definitions and properties of Lie superalgebras are proposed à la façon de a
short dictionary, the different items following the alphabetical order. The main topics deal
with the structure of simple Lie superalgebras and their finite dimensional representations;
rather naturally, a few pages are devoted to supersymmetry.

This modest booklet has two ambitious goals: to be elementary and easy to use. The
beginner is supposed to find out here the main concepts on superalgebras, while a more
experimented theorist should recognize the necessary tools and informations for a specific
use.

It has not been our intention to provide an exhaustive set of references but, in the
quoted papers, the reader must get the proofs and developments of the items which are
presented hereafter, as well as a more detailed bibliography.

Actually, this work can be considered as the continuation of a first section, entitled
”Lie algebras for physicists” written fifteen years ago (see ref. [40]). The success of this
publication as well as the encouragements of many of our collegues convinced us to repeat
the same exercise for superalgebras. During the preparation of the following pages, it has
appeared to us necessary to update the Lie algebra part. In this respect we are writing
a new version of this first section, by adding or developing some properties which are of
some interest these recent years in the domains of theoretical physics where continuous
symmetries are intensively used (elementary particle physics, integrable systems, statis-
tical mechanics, e.g.). Finally, a third section is in preparation and deals with infinite
dimensional symmetries – Kac-Moody algebras and superalgebras, two-dimensional con-
formal symmetry and its extensions. When completed, we have in mind to gather the
three parts in an unique volume. However, we have preferred to display right now the
second part on superalgebras since we do not see any reason to keep in a drawer this
document which might be of some help for physicists. Moreover, we hope to receive from
the interested readers suggestions and corrections for a better final version.
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Main Notations

[ . , . ] commutator
{ . , . } anticommutator
[[ . , . ]] super or Z2-graded commutator (Lie superbracket)
( . , . ) inner product, Killing form
N,Z,R,C,H sets of positive integers, of integers, of real numbers,

of complex numbers, of quaternions
K commutative field of characteristic zero
A,A0,A1 (super)algebra, even/odd part of a superalgebra
B Borel subalgebra
G,G0,G1 Lie superalgebra, even/odd part of a Lie superalgebra
H Cartan subalgebra
N nilpotent subalgebra
V module, representation space
A(m,n) ≃ sl(m+ 1|n+ 1) unitary basic superalgebras
B(m,n) ≃ osp(2m+ 1|2n) orthosymplectic basic superalgebras
C(n+ 1) ≃ osp(2|2n) ” ” ”
D(m,n) ≃ osp(2m|2n) ” ” ”
0, 1 Z2-gradation of a superalgebra
Aut automorphism group
Der derivation algebra
Int inner automorphism group
Out set of outer automorphisms
∆,∆0,∆1 root system, even root system, odd root system
∆+,∆+

0
,∆+

1
positive roots, positive even roots, positive odd roots

∆0 simple root system



1 Automorphisms

Let G = G0 ⊕G1 be a simple Lie superalgebra. An automorphism Φ of G is a bijective

homomorphism from G into itself which respects the Z2-gradation, that is Φ(G0) ⊂ G0

and Φ(G1) ⊂ G1. The automorphisms of G form a group denoted by Aut(G). The group

Int(G) of inner automorphisms of G is the group generated by the automorphisms of the

form X 7→ gXg−1 with g = expY where X ∈ G and Y ∈ G0. Every inner automorphism

of G0 can be extended to an inner automorphism of G. The automorphisms of G which

are not inner are called outer automorphisms.

In the case of a simple Lie algebra A, the quotient of the automorphism group by the

inner automorphism group Aut(A)/Int(A) – called the factor group F (A) – is isomorphic

to the group of symmetries of the Dynkin diagram of A.

In the same way, the outer automorphisms of a basic Lie superalgebra G can also

be connected with some Dynkin diagram (→) of G. It is possible to write Out(G) =

Aut(G)/Int(G), where Int(G) ≃ G0, and Out(G) can be reconstructed in general by looking

at the symmetries of the Dynkin diagrams of G. More precisely, when Out(G) is not trivial,

there exists at least one Dynkin diagram of G which exhibits a symmetry associated to

Out(G) – except in the case of sl(2m+1|2n+1). The table I lists the outer automorphisms

of the basic Lie superalgebras. For more details, see ref. [43].

superalgebra G Out(G) superalgebra G Out(G)

A(m,n) (m 6= n 6= 0) Z2 D(m,n) Z2

A(1, 1) Z2 D(2, 1;−2) Z2

A(0, 2n− 1) Z2 D(2, 1;−1/2) Z2

A(n, n) (n 6= 0, 1) Z2 × Z2 D(2, 1; e2iπ/3) Z3

A(0, 2n) Z4 D(2, 1; e4iπ/3) Z3

B(m,n) I D(2, 1;α) for generic α I

C(n+ 1) Z2 F (4), G(3) I

Table I: Outer automorphisms of the basic Lie superalgebras.

→ Dynkin diagram, Roots, Weyl group.

2 Cartan matrices

Let G be a basic Lie superalgebra with Cartan subalgebra H. To a simple root system

∆0 = (α1, . . . , αr) of G, it is always possible to associate a matrix A = (aij), called the
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Cartan matrix, with the following conditions:
[
Hi, Hj

]
= 0 ,

[
Hi, E±αj

]
= ±aijE±αj

,
[[
Eαi

, E−αj

]]
= δijHi ,

the set (H1, . . . , Hr) generating the Cartan subalgebra H.

For all basic Lie superalgebras, there exists a non-degenerate inner product ( . , . ) such

that

(Eαi
, E−αj

) = (Eαj
, E−αj

)δij

(Hi, Hj) = (Eαj
, E−αj

)aij

Notice that this inner product coincides with the Killing form (→) except for A(n, n),

D(n+ 1, n) and D(2, 1;α) for which the Killing form vanishes.

A non-degenerate bilinear form on H∗ (→ Simple root systems) is then defined by

(αi, αj) ≡ (Hi, Hj), where αi, αj are simple roots, such a form being invariant under

the Weyl group of G, generated by the reflections of the even roots.

Definition: For each basic Lie superalgebra, there exists a simple root system for

which the number of odd roots is the smallest one. Such a simple root system is called

the distinguished simple root system (→). The associated Cartan matrix is called the

distinguished Cartan matrix.

The distinguished Cartan matrices can be found in Tables 4 to 12.

One can also use symmetric Cartan matrices. A symmetric Cartan matrix As =

(a′ij) can be obtained by rescaling the Cartan generators Hi → H ′
i = Hi/(Eαi

, E−αi
).

The commutation relations then become
[
H ′
i, E±αj

]
= ±a′ijE±αj

and
[[
Eαi

, E−αj

]]
=

(Eαi
, E−αi

)H ′
iδij , from which it follows that a′ij = (H ′

i, H
′
j).

If one defines the matrix Dij = diδij where the rational coefficients di satisfy diaij = djaji,

the (distinguished) symmetric Cartan matrix is given by As = DA. One has:

di = (1, . . . , 1︸ ︷︷ ︸
m+1

,−1, . . . ,−1︸ ︷︷ ︸
n

) for A(m,n),

di = (1, . . . , 1︸ ︷︷ ︸
n

,−1, . . . ,−1︸ ︷︷ ︸
m−1

,−1/2) for B(m,n),

di = (1, . . . , 1︸ ︷︷ ︸
n−1

, 1/2) for B(0, n),

di = (1,−1, . . . ,−1︸ ︷︷ ︸
n−1

,−2) for C(n+ 1),

di = (1, . . . , 1︸ ︷︷ ︸
n

,−1, . . . ,−1︸ ︷︷ ︸
m

) for D(m,n).
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→ Killing form, Simple root systems.

3 Cartan subalgebras

Let G = G0⊕G1 be a classical Lie superalgebra. A Cartan subalgebra H of G is defined

as the maximal nilpotent (→) subalgebra of G coinciding with its own normalizer, that is

H nilpotent and
{
X ∈ G

∣∣∣
[
X,H

]
⊆ H

}
= H

In most cases (for basic Lie superalgebras e.g.), a Cartan subalgebra H reduces to the

Cartan subalgebra of the even part G0 (then the Cartan subalgebras of a Lie superalgebra

are conjugate since the Cartan subalgebras of a Lie algebra are conjugate and any inner

automorphism of the even part G0 can be extended to an inner automorphism of G).

In the case of the strange superalgebra Q(n), the Cartan subalgebra H does not

coincide with the Cartan subalgebra of the even part sl(n), but admits also an odd part:

H ∩ G1 6= ∅. Since the odd generators of H change the gradation of the generators on

which they act, it is rather convenient to give the root decomposition of Q(n) with respect

to H0 = H ∩ G0 instead of H.

From what precedes, all Cartan subalgebras of a classical superalgebra G have the

same dimension. By definition, the dimension of a Cartan subalgebra H is the rank of G:

rankG = dimH

4 Cartan type superalgebras

The Cartan type Lie superalgebras are superalgebras in which the representation of

the even subalgebra on the odd part is not completely reducible (→ Classification of

simple Lie algebras). The Cartan type simple Lie superalgebras are classified into four

infinite families called W (n) with n ≥ 2, S(n) with n ≥ 3, S̃(n) and H(n) with n ≥ 4.

S(n) and S̃(n) are called special Cartan type Lie superalgebras and H(n) Hamiltonian

Cartan type Lie superalgebras. Strictly speaking, W (2), S(3) and H(4) are not Cartan

type superalgebras since they are isomorphic to classical ones (see below).

4.1 Cartan type superalgebras W (n)

Consider Γ(n) the Grassmann algebra (→) of order n with generators θ1, . . . , θn and

relations θiθj = −θjθi. The Z2-gradation is induced by setting deg θi = 1. Let W (n)

3



be the derivation superalgebra of Γ(n): W (n) = DerΓ(n). Any derivation D ∈ W (n) is

written as

D =
n∑

i=1

Pi
∂

∂θi

where Pi ∈ Γ(n) and the action of the θ-derivative is defined by

∂θj
∂θi

= δij

The Z2-gradation of Γ(n) induces a consistent Z-gradation of W (n) (→ Z-graded super-

algebras) by

W (n)k =
{ n∑

i=1

Pi
∂

∂θi
, Pi ∈ Γ(n), degPi = k + 1

}
where − 1 ≤ k ≤ n− 1

One has

W (n) =
n−1⊕

k=−1

W (n)k

where [[
W (n)i,W (n)j

]]
⊂W (n)i+j

The superalgebra W (n) has the following properties:

• W (n) has dimension n2n, the number of even generators being equal to the number

of odd generators.

• The superalgebra W (n) is simple for n ≥ 2.

• The semi-simple part of W (n)0 is isomorphic to gl(n).

• The superalgebra W (2) is isomorphic to A(1, 0).

• Every automorphism of W (n) with n ≥ 3 is induced by an automorphism of Γ(n).

• The superalgebra W (n) is transitive (→ Z-graded superalgebras).

• W (n) is universal as a Z-graded Lie superalgebra. More precisely, if G = ⊕i≥−1Gi is

a transitive Z-graded superalgebra with dimG−1 = n, then there is an embedding

of G in W (n) preserving the Z-gradation.

• The representations of sl(n) in the subspace W (n)i (i = −1, 0, .., n−1) are in Young

tableaux notation [2i+11n−2−i] ⊕ [1i] where the second representation appears only

for i ≥ 0 and [10] has to be read as the singlet. For example we have (the subscripts

stand for the Z-gradation indices i):

4



for W (3) (3)−1 ⊕ (8 ⊕ 1)0 ⊕ (6 ⊕ 3)1 ⊕ (3)2

for W (4) (4)−1 ⊕ (15 ⊕ 1)0 ⊕ (20 ⊕ 4)1 ⊕ (10 ⊕ 6)2 ⊕ (4)3

for W (5) (5)−1 ⊕ (24 ⊕ 1)0 ⊕ (45 ⊕ 5)1 ⊕ (40 ⊕ 10)2 ⊕ (15 ⊕ 10)3 ⊕ (5)4

4.2 Cartan type superalgebras S(n) and S̃(n)

The Cartan type Lie superalgebras S(n) and S̃(n), called special Lie superalgebras, are

constructed as follows. Consider Θ(n) the associative superalgebra over Γ(n) with gen-

erators denoted by ξθ1, . . . , ξθn and relations ξθi ∧ ξθj = −ξθj ∧ ξθi. A Z2-gradation is

induced by setting deg ξθi = 1. Any element of Θ(n) is written as

ωk =
∑

i1<...<ik

ai1...ik ξθi1 ∧ . . . ∧ ξθik

where ai1...ik ∈ Γ(n).

One defines then the volume form superalgebra S(ω) as a W (n) subsuperalgebra by

S(ω) =
{
D ∈W (n)

∣∣∣ D(ω) = 0
}

where ω = a(θ1, . . . , θn) ξθ1 ∧ . . . ∧ ξθn and a ∈ Γ(n)0, a(0) 6= 0.

Any element of S(ω) has the form

n∑

i=1

Pi
∂

∂θi
with

n∑

i=1

∂(aPi)

∂θi
= 0

One sets also

S(n) = S
(
ω = ξθ1 ∧ . . . ∧ ξθn

)
=
{
D ∈W (n)

∣∣∣ D
(
ξθ1 ∧ . . . ∧ ξθn

)
= 0

}

and

S̃(n) = S
(
ω = (1 + θ1 . . . θn) ξθ1 ∧ . . . ∧ ξθn

)

=
{
D ∈W (n)

∣∣∣ D
(
(1 + θ1 . . . θn) ξθ1 ∧ . . . ∧ ξθn

)
= 0

}
where n is even

Elements of S(n) are thus divergenceless derivations of W (n):

S(n) =
{ n∑

i=1

Pi
∂

∂θi
∈W (n)

∣∣∣
n∑

i=1

∂Pi
∂θi

= 0
}

The Lie superalgebras S(n) and S̃(n) have the following properties:

• S(n) and S̃(n) have dimension (n− 1)2n + 1, the number of even generators being

less (resp. greater) by 1 than the number of odd generators for n even (resp. odd).
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• The superalgebra S(n) is simple for n ≥ 3 and S̃(n) is simple for n ≥ 4.

• The semi-simple part of S(n)0 and S̃(n)0 is isomorphic to sl(n).

• The superalgebra S(3) is isomorphic to P (3).

• the Z-graded Lie superalgebra S(n) is transitive (→ Z-graded superalgebras).

• Every automorphism of S(n) with n ≥ 3 and S̃(n) with n ≥ 4 is induced by an

automorphism of Γ(n).

• Every superalgebra S(ω) is isomorphic either to S(n) or S̃(n).

• The representation of sl(n) in the subspace S(n)i (i = −1, 0, .., n − 2) is in Young

tableaux notation [2i+11n−2−i]. For example we have (the subscripts stand for the

Z-gradation indices i):

for S(4) (4)−1 ⊕ (15)0 ⊕ (20)1 ⊕ (10)2

for S(5) (5)−1 ⊕ (24)0 ⊕ (45)1 ⊕ (40)2 ⊕ (15)3

for S(6) (6)−1 ⊕ (35)0 ⊕ (84)1 ⊕ (105)2 ⊕ (70)3 ⊕ (21)4

4.3 Cartan type superalgebras H(n)

The Cartan type Lie superalgebras H(n) and H̃(n), called Hamiltonian Lie superalgebras,

are constructed as follows. Consider Ω(n) the associative superalgebra over Γ(n) with

generators denoted by dθ1, . . . , dθn and relations dθi ◦ dθj = dθj ◦ dθi. The Z2-gradation

is induced by setting deg dθi = 0. Any element of Ω(n) is written as

ωk =
∑

i1≤...≤ik
ai1...ik dθi1 ◦ . . . ◦ dθik

where ai1...ik ∈ Γ(n).

Among them are the Hamiltonian forms defined by

ω =
n∑

i,j=1

aij dθi ◦ dθj

where aij ∈ Γ(n), aij = aji and det(aij(0)) 6= 0. One defines then for each Hamiltonian

form ω the Hamiltonian form superalgebra H̃(ω) as a W (n) subsuperalgebra by

H̃(ω) =
{
D ∈W (n)

∣∣∣ D(ω) = 0
}

and

H(ω) =
[[
H̃(ω), H̃(ω)

]]

6



Any element of H̃(ω) has the form

n∑

i=1

Pi
∂

∂θi
with

∂

∂θj

n∑

t=1

aitPt +
∂

∂θi

n∑

t=1

ajtPt = 0

One sets also

H̃(n) = H̃
(
(dθ1)

2 + . . .+ (dθn)
2
)

H(n) =
[[
H̃(n), H̃(n)

]]

The Lie superalgebra H(n) has the following properties:

• H(n) has dimension 2n − 2, the number of even generators being equal (resp. less

by 2) to (than) the number of odd generators for n odd (resp. even).

• The superalgebra H(n) is simple for n ≥ 4.

• The semi-simple part of H̃(n)0 is isomorphic to so(n).

• The superalgebra H(4) is isomorphic to A(1, 1).

• The Z-graded Lie superalgebras H(n) and H̃(n) are transitive (→ Z-graded super-

algebras).

• Every automorphism of H(n) with n ≥ 4 and of H̃(n) with n ≥ 3 is induced by an

automorphism of Γ(n).

• The representation of so(n) in the subspace H(n)i (i = −1, 0, .., n− 3) is given by

the antisymmetric tensor of rank i+ 2. For example we have (the subscripts stand

for the Z-gradation indices i):

for H(4) (4)−1 ⊕ (6)0 ⊕ (4)1

for H(5) (5)−1 ⊕ (10)0 ⊕ (10)1 ⊕ (5)2

for H(10) (10)−1⊕(45)0⊕(120)1⊕(210)2⊕(252)3⊕(210)4⊕(120)5⊕(45)6⊕(10)7

For more details, see ref. [21].

5 Casimir invariants

The study of Casimir invariants plays a great role in the representation theory of sim-

ple Lie algebras since their eigenvalues on a finite dimensional highest weight irrreducible

7



representation completely characterize this representation. In the case of Lie superalge-

bras, the situation is different. In fact, the eigenvalues of the Casimir invariants do not

always characterize the finite dimensional highest weight irrreducible representations of

a Lie superalgebra. More precisely, their eigenvalues on a typical representation com-

pletely characterize this representation while they are identically vanishing on an atypical

representation (→ Representations: typicality and atypicality).

Definition: Let G = G0 ⊕ G1 be a classical Lie superalgebra and U(G) its universal

enveloping superalgebra (→). An element C ∈ U(G) such that [[C,X]] = 0 for all X ∈
U(G) is called a Casimir element of G ([[ , ]] denotes the Z2-graded commutator). The

algebra of the Casimir elements of G is the Z2-center of U(G), denoted by Z(G). It is a

(Z2-graded) subalgebra of U(G).

Standard sequences of Casimir elements of the basic Lie superalgebras can be con-

structed as follows. Let G = sl(m|n) with m 6= n or osp(m|n) be a basic Lie superalgebra

with non-degenerate bilinear form. Let {EIJ} be a matrix basis of generators of G where

I, J = 1, . . . , m+ n with deg I = 0 for 1 ≤ I ≤ m and deg I = 1 for m+ 1 ≤ I ≤ m+ n.

Then defining (Ē0)IJ = δIJ and (Ēp+1)IJ = (−1)degKEIK(Ēp)KJ , a standard sequence of

Casimir operators is given by

Cp = str(Ēp) = (−1)deg I(Ēp)II = EII1(−1)deg I1 . . . EIkIk+1
(−1)deg Ik+1 . . . EIp−1I

Consider the (m+n)2 elementary matrices eIJ of order m+n satisfying (eIJ)KL = δILδJK .

In the case of sl(m|n) with m 6= n, a basis {EIJ} is given by the matrices Eij = eij −
1
m
δij
∑q=m
q=1 eqq, Ekl = ekl − 1

n
δkl
∑q=m+n
q=m+1 eqq and Y = 1

m−n(n
∑q=m
q=1 eqq + m

∑q=m+n
q=m+1 eqq),

for the even part and Eik = eik, Ekj = ekj for the odd part, where 1 ≤ i, j ≤ m and

m+ 1 ≤ k, l ≤ m+ n. One finds for example

C1 = 0

C2 = EijEji − EklElk + EkiEik − EikEki −
m− n

mn
Y 2

In the case of osp(m|n), a basis {EIJ} is given EIJ = GIKeKJ+(−1)(1+deg I)(1+deg J)GJKeKI

where the matrix GIJ is defined in ”Orthosymplectic superalgebras” (→). One finds for

example

C1 = 0

C2 = EijEji −EklElk + EkiEik −EikEki

where 1 ≤ i, j ≤ m and m+ 1 ≤ k, l ≤ m+ n.

8



One has to stress that unlike the algebraic case, the center Z(G) for the classical Lie

superalgebras is in general not finitely generated. More precisely, the only classical Lie

superalgebras for which the center Z(G) is finitely generated are osp(1|2n). In that case,

Z(G) is generated by n Casimirs invariants of degree 2, 4, . . . , 2n.

Example 1: Consider the superalgebra sl(1|2) with generators H,Z, E+, E−, F+, F−,

F̄+, F̄− (→ Superalgebra sl(1|2)). Then one can prove that a generating system of the

center Z(G) is given by, for p ∈ N and H± ≡ H ± Z:

Cp+2 = H+H−Z
p + E−E+(Z − 1

2
)p + F̄−F+

(
H+Z

p − (H+ + 1)(Z + 1
2
)p
)

+F−F̄+
(
(H− + 1)(Z − 1

2
)p −H−Z

p
)

+ (E−F̄+F+ + F̄−F−E+)
(
Zp − (Z − 1

2
)p
)

+F̄−F−F̄+F+
(
(Z + 1

2
)p + (Z − 1

2
)p − 2Zp

)

In that case, the Casimir elements Cp satisfy the polynomial relations CpCq = CrCs for

p+ q = r + s where p, q, r, s ≥ 2.

Example 2: Consider the superalgebra osp(1|2) with generators H , E+, E−, F+, F−

(→ Superalgebra osp(1|2)). In that case, the center Z(G) is finitely generated by

C2 = H2 + 1
2
(E−E+ + E+E−) − (F+F− − F−F+)

Moreover, there exists in the universal enveloping superalgebra U of osp(1|2) an even

operator S which is a square root of the Casimir operator C2 such that it commutes with

the even generators and anticommutes with the odd ones, given by

S = 2(F+F− − F−F+) + 1
4

More precisely, it satisfies S2 = C2 + 1
16

.

Such an operator exists for any superalgebra of the type osp(1|2n) [1].

Harish–Chandra homomorphism:

Consider a Borel decomposition G = N+ ⊕H⊕N− of G (→ Simple root systems) where

H is a Cartan subalgebra of G and set ρ = ρ0−ρ1 where ρ0 is the half-sum of positive even

roots and ρ1 the half-sum of positive odd roots. The universal enveloping superalgebra

U(G) can be decomposed as follows:

U(G) = U(H) ⊕ (N−U(G) + U(G)N+)

Then any element of the center Z(G) can be written as z = z0 + z′ where z0 ∈ U(H) and

z′ ∈ N−U(G) + U(G)N+. Let S(H) ⊂ U(H) be the symmetric algebra over H. Consider

the projection h̄ : Z(G) → S(H), z 7→ z0 and γ the automorphism of S(H) such that for

all H ∈ H and λ ∈ H∗, γ(H(λ)) = H(λ− ρ). The mapping

h = γ ◦ h̄ : Z(G) → S(H), z 7→ γ(z0)

9



is called the Harish–Chandra homomorphism [23, 24].

Property: Let S(H)W be the subset of elements of S(H) invariant under the Weyl

group of G (→). Then the image of Z(G) by the Harish–Chandra homomorphism is a

subset of S(H)W .

Example: Consider the Casimir elements Cp of sl(1|2) given above. In the fermionic

basis of sl(1|2) (→ Simple root systems), the positive (resp. negative) root generators

are E+, F+, F̄+ (resp. E−, F−, F̄−) and ρ = 0. It follows that the image of Cp by the

Harish–Chandra homomorphism is given by

h(Cp+2) = H+H−Z
p = 2−pH+H−(H+ −H−)p

which is obviously invariant under the action of the Weyl group H+ ↔ −H−.

For more details, see refs. [13, 19, 36, 38].

6 Centralizer, Center, Normalizer of a Lie superalgebra

The definitions of the centralizer, the center, the normalizer of a Lie superalgebra

follow those of a Lie algebra.

Definition: Let G be a Lie superalgebra and S a subset of elements in G.

- The centralizer CG(S) is the subset of G given by

CG(S) =
{
X ∈ G

∣∣∣
[[
X, Y

]]
= 0, ∀ Y ∈ S

}

- The center Z(G) of G is the set of elements of G which commute with any element of G
(in other words, it is the centralizer of G in G):

Z(G) =
{
X ∈ G

∣∣∣
[[
X, Y

]]
= 0, ∀ Y ∈ G

}

- The normalizer NG(S) is the subset of G given by

NG(S) =
{
X ∈ G

∣∣∣
[[
X, Y

]]
∈ S, ∀ Y ∈ S

}

7 Characters and supercharacters

Let G be a basic Lie superalgebra with Cartan subalgebra H. Consider V(Λ) a highest

weight representation (→) of G with highest weight Λ, the weight decomposition of V
with respect to H is

V(Λ) =
⊕

λ

Vλ where Vλ =
{
~v ∈ V

∣∣∣ h(~v) = λ(h)~v, h ∈ H
}

10



Let eλ be the formal exponential, function on H∗ (dual of H) such that eλ(µ) = δλ,µ for

two elements λ, µ ∈ H∗, which satisfies eλeµ = eλ+µ.

The character and supercharacter of V(Λ) are defined by

chV(Λ) =
∑

λ

(dimVλ)eλ

schV(Λ) =
∑

λ

(−1)deg λ(dimVλ)eλ

Let W (G) be the Weyl group (→) of G, ∆ the root system of G, ∆+
0

the set of positive

even roots, ∆+
1

the set of positive odd roots, ∆
+
0 the subset of roots α ∈ ∆+

0
such that

α/2 /∈ ∆+
1
. We set for an element w ∈W (G), ε(w) = (−1)ℓ(w) and ε′(w) = (−1)ℓ

′(w) where

ℓ(w) is the number of reflections in the expression of w ∈ W (G) and ℓ′(w) is the number

of reflections with respect to the roots of ∆
+
0 in the expression of w ∈ W (G). We denote

by ρ0 and ρ1 the half-sums of positive even roots and positive odd roots, and ρ = ρ0 − ρ1.

The characters and supercharacters of the typical finite dimensional representations V(Λ)

(→) of the basic Lie superalgebras are given by

chV(Λ) = L−1
∑

w

ε(w)ew(Λ+ρ)

schV(Λ) = L′−1
∑

w

ε′(w)ew(Λ+ρ)

where

L =

∏
α∈∆+

0

(eα/2 − e−α/2)
∏
α∈∆+

1

(eα/2 + e−α/2)
and L′ =

∏
α∈∆+

0

(eα/2 − e−α/2)
∏
α∈∆+

1

(eα/2 − e−α/2)

In the case of the superalgebra B(0, n) all the representations are typical. One finds

then explicitly

chV(Λ) =

∑
w ε(w)ew(Λ+ρ)

∑
w ε(w)ew(ρ)

schV(Λ) =

∑
w ε

′(w)ew(Λ+ρ)

∑
w ε

′(w)ew(ρ)

In the case of the superalgebra A(m,n), the character of the typical representation

V(Λ) is given by

chV(Λ) =
1

L0

∑

w

ε(w)w


eΛ+ρ0

∏

β∈∆+

1

(1 + e−β)




and the character of the singly atypical representation by (see ref. [49])

chV(Λ) =
1

L0

∑

w

ε(w)w


eΛ+ρ0

∏

β∈∆+

1
,〈Λ+ρ|β〉6=0

(1 + e−β)
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where L0 is defined as
∏

α∈∆+

0

(eα/2 − e−α/2)

In the case of the superalgebra C(n+1), the highest weight irreducible representations

are either typical or singly atypical. It follows that the character formulae of the typical

and atypical representations of C(n + 1) are the same as for A(m,n) above (with the

symbols being those of C(n+ 1)).

→ Representations: highest weight, induced modules, typical and atypical.

For more details, see refs. [23, 49].

8 Classical Lie superalgebras

Definition: A simple Lie superalgebra G = G0 ⊕G1 is called classical if the representa-

tion of the even subalgebra G0 on the odd part G1 is completely reducible.

Theorem: A simple Lie superalgebra G is classical if and only if its even part G0 is a

reductive Lie algebra.

Let G = G0 ⊕ G1 be a classical Lie superalgebra. Then the representation of G0 on G1

is either (i) irreducible or (ii) the direct sum of two irreducible representations of G0. In

that case, one has (see below)

G1 = G−1 ⊕ G1

with {
G−1,G1

}
= G0 and

{
G1,G1

}
=
{
G−1,G−1

}
= 0

In the case (i), the superalgebra is said of the type I and in the case (ii) of the type II.

Theorem: Let G = G0 ⊕ G1 be a classical Lie superalgebra. Then there exists a

consistent Z-gradation G = ⊕i∈Z Gi of G (called the distinguished Z-gradation) such that

- for the superalgebras of type I, Gi = 0 for |i| > 1 and G0 = G0, G1 = G−1 ⊕ G1.

- for the superalgebras of type II, Gi = 0 for |i| > 2 and G0 = G−2⊕G0⊕G2, G1 = G−1⊕G1.

Definition: A classical Lie superalgebra G is called basic if there exists a non-degenerate

invariant bilinear form on G (→ Killing form). The classical Lie superalgebras which are

not basic are called strange.

The Table II resumes the classification and the Table III gives the G0 and G1 structure

of the classical Lie superalgebras.

→ Exceptional Lie superalgebras, Orthosymplectic superalgebras, Strange superalge-

bras, Unitary superalgebras.
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type I type II
BASIC A(m,n) m > n ≥ 0 B(m,n) m ≥ 0, n ≥ 1

(non-degenerate C(n+ 1) n ≥ 1 D(m,n)

{
m ≥ 2, n ≥ 1
m 6= n+ 1

Killing form) F (4)
G(3)

BASIC A(n, n) n ≥ 1 D(n+ 1, n) n ≥ 1
(zero Killing form) D(2, 1;α) α ∈ C \ {0,−1}

STRANGE P (n) n ≥ 2 Q(n) n ≥ 2

Table II: Classical Lie superalgebras.

superalgebra G G0 G1

A(m,n) Am ⊕ An ⊕ U(1) (m,n) ⊕ (m,n)
A(n, n) An ⊕An (n, n) ⊕ (n, n)
C(n+ 1) Cn ⊕ U(1) (2n) ⊕ (2n)
B(m,n) Bm ⊕ Cn (2m+ 1, 2n)
D(m,n) Dm ⊕ Cn (2m, 2n)
F (4) A1 ⊕ B3 (2, 8)
G(3) A1 ⊕G2 (2, 7)

D(2, 1;α) A1 ⊕A1 ⊕ A1 (2, 2, 2)
P (n) An [2] ⊕ [1n−1]
Q(n) An ad (An)

Table III: G0 and G1 structure of the classical Lie superalgebras.

13



9 Classification of simple Lie superalgebras

Among Lie superalgebras appearing in the classification of simple Lie superalgebras,

one distinguishes two general families: the classical Lie superalgebras in which the repre-

sentation of the even subalgebra on the odd part is completely reducible and the Cartan

type superalgebras in which such a property is no more valid. Among the classical super-

algebras (→), one naturally separates the basic series from the strange ones.

The basic (or contragredient) Lie superalgebras split into four infinite families denoted

by A(m,n) or sl(m+ 1|n + 1) for m 6= n and A(n, n) or sl(n + 1|n + 1)/Z where Z is a

one-dimensional center for m = n (unitary series), B(m,n) or osp(2m + 1|2n), C(n) or

osp(2|2n), D(m,n) or osp(2m|2n) (orthosymplectic series) and three exceptional super-

algebras F (4), G(3) and D(2, 1;α), the last one being actually a one-parameter family of

superalgebras. Two infinite families denoted by P (n) and Q(n) constitute the strange (or

non-contragredient) superalgebras.

The Cartan type superalgebras (→) are classified into four infinite families, W (n),

S(n), S̃(n) and H(n).

The following scheme resumes this classification:

Simple Lie
superalgebras
ւ ց

Classical Lie Cartan type
superalgebras superalgebras
ւ ց

W (n), S(n), S̃(n), H(n)
Basic Lie Strange

superalgebras superalgebras

A(m,n), B(m,n) P (n), Q(n)
C(n+ 1), D(m,n)

F (4), G(3), D(2, 1;α)

→ Cartan type superalgebras, Classical Lie superalgebras.

For more details, see refs. [21, 22, 29].

10 Clifford algebras

Let {γi} (i = 1, . . . , n) be a set of square matrices such that

{
γi, γj

}
= γiγj + γjγi = 2δijI
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where I is the unit matrix. The algebra spanned by the n matrices γi is called the Clifford

algebra. These relations can be satisfied by matrices of order 2p when n = 2p or n = 2p+1.

Consider the 2 × 2 Pauli matrices σ1, σ2, σ3:

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)

Then the matrices γi can be expressed in terms of a p-fold tensor product of the Pauli

matrices.

Property: There exists a representation such that

i) if n is even, the matrices γi are hermitian, half of them being symmetric, half of them

being antisymmetric.

ii) if n is odd, the matrices γi with i = 1, . . . , 2p are hermitian, half of them being

symmetric, half of them being antisymmetric and the matrix γ2p+1 is diagonal.

In this representation, the matrices γ can be written as (i = 1, . . . , p− 1)

γ1 = σ
(1)
1 ⊗ . . .⊗ σ

(p)
1

γ2i = σ
(1)
1 ⊗ . . .⊗ σ

(p−i)
1 ⊗ σ

(p−i+1)
2 ⊗ I

(p−i+2) ⊗ . . .⊗ I
(p)

γ2i+1 = σ
(1)
1 ⊗ . . .⊗ σ

(p−i)
1 ⊗ σ

(p−i+1)
3 ⊗ I

(p−i+2) ⊗ . . .⊗ I
(p)

γ2p = σ
(1)
2 ⊗ I

(2) ⊗ . . .⊗ I
(p)

γ2p+1 = σ
(1)
3 ⊗ I

(2) ⊗ . . .⊗ I
(p)

One can check that with this representation, one has (i = 1, . . . , p)

γt2i = −γ2i and γt2i+1 = γ2i+1 , γ
t
2p+1 = γ2p+1

Definition: The matrix C =
∏p
i=1 γ2i−1 for n = 2p and C =

∏p+1
i=1 γ2i−1 for n = 2p + 1

is called the charge conjugation matrix.

Property: The charge conjugation matrix satisfies

• CtC = 1

• for n = 2p

Ct = (−1)p(p−1)/2C =

{
C for p = 0, 1 (mod 4)
−C for p = 2, 3 (mod 4)

Cγi = (−1)p+1γtiC (i = 1, . . . , 2p)

• for n = 2p+ 1

Ct = (−1)p(p+1)/2C =

{
C for p = 0, 3 (mod 4)
−C for p = 1, 2 (mod 4)

Cγi = (−1)pγtiC (i = 1, . . . , 2p+ 1)
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11 Decompositions w.r.t. osp(1|2) subalgebras

The method for finding the decompositions of the fundamental and the adjoint rep-

resentations of the basic Lie superalgebras with respect to their different osp(1|2) subsu-

peralgebras is the following:

- one considers an osp(1|2) embedding in a basic Lie superalgebra G = G0⊕G1, determined

by a certain subsuperalgebra K in G (→ Embeddings of osp(1|2)), which is expressed as

a direct sum of simple components: K = ⊕i Ki.

- to each couple (G,Ki) one associates osp(1|2) representations given in Tables 17 (regular

embeddings) and 18 (singular embeddings); the notations R and R′′ are explained below.

- the decomposition of the fundamental representation of G with respect to the osp(1|2)

subalgebra under consideration is then given by a direct sum of osp(1|2) representations.

- starting from a decomposition of the fundamental representation of G of the form

fund K G =
(
⊕i Rji

)
⊕
(
⊕k R′′

jk

)

the decomposition of the adjoint representation adK G is given in the unitary series by

ad K G =
(
⊕i Rji ⊕k R′′

jk

)
⊗
(
⊕i Rji ⊕k R′′

jk

)
−R0 for sl(m|n) , m 6= n

ad K G =
(
⊕i Rji ⊕k R′′

jk

)
⊗
(
⊕i Rji ⊕k R′′

jk

)
− 2R0 for sl(n|n)

and in the orthosymplectic series by

ad K G =
(
⊕i Rji

)
⊗
(
⊕i Rji

)∣∣∣
A
⊕
(
⊕k R′′

jk

)
⊗
(
⊕k R′′

jk

)∣∣∣
S
⊕
(
⊕i Rji

)
⊗
(
⊕k R′′

jk

)

The symmetrized and antisymmetrized products of osp(1|2) representations Rj are ex-

pressed, with analogy with the Lie algebra case, by (in the following formulae j and q are

integer)

Rj ⊗Rj

∣∣∣
A

=
j⊕

q=1

(
R2q−1 ⊕R2q−1/2

)

Rj ⊗Rj

∣∣∣
S

=
j−1⊕

q=0

(
R2q ⊕R2q+1/2

)
⊕R2j

Rj−1/2 ⊗Rj−1/2

∣∣∣
A

=
j−1⊕

q=0

(
R2q ⊕R2q+1/2

)

Rj−1/2 ⊗Rj−1/2

∣∣∣
S

=
j−1⊕

q=1

(
R2q−1 ⊕R2q−1/2

)
⊕R2j−1

together with (for j, k integer or half-integer)
(
(Rj ⊕Rk) ⊗ (Rj ⊕Rk)

)∣∣∣
A

=
(
Rj ⊗Rj

)∣∣∣
A

⊕
(
Rk ⊗Rk

)∣∣∣
A

⊕ (Rj ⊕Rk)
(
(Rj ⊕Rk) ⊗ (Rj ⊕Rk)

)∣∣∣
S

=
(
Rj ⊗Rj

)∣∣∣
S

⊕
(
Rk ⊗Rk

)∣∣∣
S

⊕ (Rj ⊕Rk)
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and (n integer)

(nRj ⊗ nRj)
∣∣∣
A

=
n(n+ 1)

2
(Rj ⊗Rj)

∣∣∣
A

⊕ n(n− 1)

2
(Rj ⊗Rj)

∣∣∣
S

(nRj ⊗ nRj)
∣∣∣
S

=
n(n+ 1)

2
(Rj ⊗Rj)

∣∣∣
S

⊕ n(n− 1)

2
(Rj ⊗Rj)

∣∣∣
A

The same formulae also hold for the R′′ representations.

Let us stress that one has to introduce here two different notations for the osp(1|2)

representations which enter in the decomposition of the fundamental representation of

G, depending on the origin of the two factors Dj and Dj−1/2 of a representation Rj

(let us recall that an osp(1|2) representation Rj decomposes under the sl(2) part as

Rj = Dj ⊕ Dj−1/2). For G = sl(m|n) (resp. G = osp(m|n)), an osp(1|2) representation

is denoted Rj if the representation Dj comes from the decomposition of the fundamental

of sl(m) (resp. so(m)), and R′′
j if the representation Dj comes from the decomposition of

the fundamental of sl(n) (resp. sp(n)).

In the same way, considering the tensor products of R and R′′ representations given

above, one has to distinguish the osp(1|2) representations in the decomposition of the

adjoint representations: the Rj representations are such that the Dj comes from the

decomposition of the even part G0 for j integer or of the odd part G1 for j half-integer

and the R′
j representations are such that Dj comes from the decomposition of the even

part G0 for j half-integer or of the odd part G1 for j integer.

Finally, the products between unprimed and primed representations obey the following

rules

Rj1 ⊗Rj2 =

{
⊕Rj3 if j1 + j2 is integer
⊕R′

j3
if j1 + j2 is half-integer

R′′
j1
⊗R′′

j2
=

{
⊕Rj3 if j1 + j2 is integer
⊕R′

j3 if j1 + j2 is half-integer

Rj1 ⊗R′′
j2

=

{
⊕R′

j3 if j1 + j2 is integer
⊕Rj3 if j1 + j2 is half-integer

The tables 17 to 28 give the different decompositions of the fundamental and ad-

joint representations of the basic Lie superalgebras with respect to the different osp(1|2)

embeddings. For more details, see ref. [9].

12 Decompositions w.r.t. sl(1|2) subalgebras

The method for finding the decompositions of the fundamental and the adjoint repre-

sentations of the basic Lie superalgebras with respect to their different sl(1|2) subsuper-

algebras is the following:
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- one considers a sl(1|2) embedding in a basic Lie superalgebra G = G0 ⊕ G1, determined

by a certain subsuperalgebra K in G (→ Embeddings of sl(1|2)), which is expressed as a

direct sum of simple components: K = ⊕i Ki.

- to each couple (G,Ki) one associates (atypical) sl(1|2) representations π(±ji, ji) ≡ π±(ji)

or osp(2|2) representations π(0, 1
2
) (→ Superalgebra sl(1|2)) given in the following table:

G K fund K G

sl(m|n) sl(p+ 1|p) π+(p
2
)

sl(p|p+ 1) π′′
+(p

2
)

osp(m|2n) sl(p+ 1|p) π+(p
2
) ⊕ π−(p

2
)

sl(p|p+ 1) π′′
+(p

2
) ⊕ π′′

−(p
2
)

osp(2|2) π′′(0, 1
2
)

(The notation π or π′′ is just to distinguish the superalgebras sl(p + 1|p) or sl(p|p + 1)

they come from. This will be used below).

In the case of sl(m|n), one could also use π− and π′′
− representations as well, leading to

different but equivalent decompositions of the adjoint representation of G. This fact is

related to the existence of non-trivial outer automorphims for sl(1|2).

- the decomposition of the fundamental representation of G with respect to the sl(1|2)

subalgebra under consideration is then given by a direct sum of sl(1|2) representations of

the above type, eventually completed by trivial representations.

- starting from a decomposition of the fundamental representation of G of the form

fund K G =
(
⊕i π±(ji)

)
⊕
(
⊕k π

′′
±(jk)

)

the decomposition of the adjoint representation adK G is given in the unitary series by

ad K G =
(
⊕i π±(ji) ⊕k π

′′
±(jk)

)2 − π(0, 0) for A(m|n) , m 6= n

ad K G =
(
⊕i π±(ji) ⊕k π

′′
±(jk)

)2 − 2π(0, 0) for A(n|n)

and in the orthosymplectic series by

adK G =
(
⊕i π±(ji)

)2∣∣∣
A
⊕
(
⊕k π

′′
±(jk)

)2∣∣∣
S
⊕
(
⊕i π±(ji) ⊕i π

′′
±(jk)

)

The symmetrized and antisymmetrized products of atypical sl(1|2) representations are

given by

(
π±(j) ⊕ π±(k)

)2∣∣∣
A

=
(
π±(j) ⊗ π±(j)

)2∣∣∣
A
⊕
(
π±(k) ⊗ π±(k)

)2∣∣∣
A
⊕
(
π±(j) ⊗ π±(k)

)

(
π±(j) ⊕ π±(k)

)2∣∣∣
S

=
(
π±(j) ⊗ π±(j)

)2∣∣∣
S
⊕
(
π±(k) ⊗ π±(k)

)2∣∣∣
S
⊕
(
π±(j) ⊗ π±(k)

)
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and (n integer)

(
nπ±(j) ⊗ nπ±(j)

)∣∣∣
A

=
n(n+ 1)

2

(
π±(j) ⊗ π±(j)

)∣∣∣
A

⊕ n(n− 1)

2

(
π±(j) ⊗ π±(j)

)∣∣∣
S

(
nπ±(j) ⊗ nπ±(j)

)∣∣∣
S

=
n(n+ 1)

2

(
π±(j) ⊕ π±(j)

)∣∣∣
S

⊕ n(n− 1)

2

(
π±(j) ⊗ π±(j)

)∣∣∣
A

where (in the following formulae j and q are integer)

(
π+(j) ⊕ π−(j)

)2∣∣∣
A

= ⊕2j
q=0 π(0, q) ⊕j

q=1 π(2j + 1
2
, 2q − 1

2
) ⊕j

q=1 π(−2j − 1
2
, 2q − 1

2
)

(
π+(j) ⊕ π−(j)

)2∣∣∣
S

= ⊕2j
q=0 π(0, q) ⊕j−1

q=0 π(2j + 1
2
, 2q + 1

2
) ⊕j

q=0 π(−2j − 1
2
, 2q + 1

2
)

⊕π+(2j) ⊕ π−(2j)
(
π+(j + 1

2
) ⊕ π−(j + 1

2
)
)2∣∣∣

A
= ⊕2j+1

q=0 π(0, q) ⊕j
q=0 π(2j + 3

2
, 2q + 1

2
)

⊕j
q=0 π(−2j − 3

2
, 2q + 1

2
)

(
π+(j + 1

2
) ⊕ π−(j + 1

2
)
)2∣∣∣

S
= ⊕2j+1

q=0 π(0, q) ⊕j
q=1 π(2j + 3

2
, 2q − 1

2
)

⊕j
q=1 π(−2j − 3

2
, 2q − 1

2
) ⊕ π+(2j + 1) ⊕ π−(2j + 1)

Finally, in the case of osp(2|2) embeddings, the product of the π(0, 1
2
) representation by

itself is not fully reducible but gives rise to the indecomposable sl(1|2) representation of

the type π(0;−1
2
, 1

2
; 0) (→ Superalgebra sl(1|2)).

Considering the tensor products of π and π′′ representations given above, one has to

distinguish the sl(1|2) representations in the decomposition of the adjoint representations.

Let us recall that a sl(1|2) representation π(b, j) decomposes under the sl(2) ⊕ U(1)

part as π(b, j) = Dj(b) ⊕ Dj−1/2(b − 1/2) ⊕ Dj−1/2(b + 1/2) ⊕ Dj−1(b) and π±(j) =

Dj(±j)⊕Dj−1/2(±j± 1/2). The π(b, j) representations are such that the Dj comes from

the decomposition of the even part G0 for j integer or of the odd part G1 for j half-integer

and the π′(b, j) representations are such that Dj comes from the decomposition of the

even part G0 for j half-integer or of the odd part G1 for j integer. Finally, the products

between unprimed and primed representations obey the following rules

π(b1, j1) ⊗ π(b2, j2) =

{
⊕π(b3, j3) if j1 + j2 is integer
⊕π′(b3, j3) if j1 + j2 is half-integer

π′′(b1, j1) ⊗ π′′(b2, j2) =

{
⊕π(b3, j3) if j1 + j2 is integer
⊕π′(b3, j3) if j1 + j2 is half-integer

π(b1, j1) ⊗ π′′(b2, j2) =

{
⊕π′(b3, j3) if j1 + j2 is integer
⊕π(b3, j3) if j1 + j2 is half-integer

The tables 29 to 34 give the different decompositions of the fundamental and ad-

joint representations of the basic Lie superalgebras with respect to the different sl(1|2)

embeddings. For more details, see ref. [33].
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13 Derivation of a Lie superalgebra

Definition: Let G = G0⊕G1 be a Lie superalgebra. A derivationD of degree degD ∈ Z2

of the superalgebra G is an endomorphism of G such that

D
[[
X, Y

]]
=
[[
D(X), Y

]]
+ (−1)degD.degX

[[
X,D(Y )

]]

If degD = 0, the derivation is even, otherwise degD = 1 and the derivation is odd.

The space of all the derivations of G is denoted by DerG = Der0 G ⊕ Der1 G.

If D and D′ are two derivations of G, then
[[
D,D′

]]
∈ DerG, that is the space DerG closes

under the Lie superbracket.

The space DerG is called the superalgebra of derivations of G. In particular,

adX : Y 7→ adX(Y ) =
[[
X, Y

]]

is a derivation of G. These derivations are called inner derivations of G. They form an

ideal InderG of DerG. Every derivation of a simple Lie superalgebra with non-degenerate

Killing form is inner.

14 Dirac matrices

→ Clifford algebra, Spinors (in the Lorentz group), Supersymmetry algebra, Super-

conformal algebra.

15 Dynkin diagrams

Let G be a basic Lie superalgebra of rank r and dimension n with Cartan subalgebra

H. Let ∆0 = (α1, . . . , αr) be a simple root system (→) of G and As = (a′ij) be the

corresponding symmetric Cartan matrix (→), defined by a′ij = (αi, αj). One can associate

to ∆0 a Dynkin diagram according to the following rules:

1. one associates to each simple even root a white dot, to each simple odd root of

non-zero length (a′ii 6= 0) a black dot and to each simple odd root of zero length

(a′ii = 0) a grey dot.

2. the ith and jth dots will be joined by ηij lines where

ηij =
2|a′ij |

min(|a′ii|, |a′jj|)
if a′ii.a

′
jj 6= 0

ηij =
2|a′ij|

mina′
kk

6=0 |a′kk|
if a′ii 6= 0 and a′jj = 0

ηij = |a′ij | if a′ii = a′jj = 0

20



3. we add an arrow on the lines connecting the ith and jth dots when ηij > 1, pointing

from i to j if a′ii.a
′
jj 6= 0 and |a′ii| > |a′jj| or if a′ii = 0, a′jj 6= 0, |a′jj| < 2, and pointing

from j to i if a′ii = 0, a′jj 6= 0, |a′jj| > 2.

Since a basic Lie superalgebra possesses many inequivalent simple root systems, there

will be for a basic Lie superalgebra many inequivalent Dynkin diagrams. For each basic Lie

superalgebra, there is a particular Dynkin diagram which can be considered as canonical.

Its characteristic is that it contains the smallest number of odd roots. Such a Dynkin

diagram is called distinguished.

Definition: The distinguished Dynkin diagram is the Dynkin diagram associated to

the distinguished simple root system (→) to which corresponds the distinguished Cartan

matrix (→). It is constructed as follows: the even dots are given by the Dynkin diagram

of the even part G0 (it may be not connected) and the odd dot corresponds to the lowest

weight of the representation G1 of G0.

The list of the distinguished Dynkin diagrams of the basic Lie superalgebras are given

in Table 13 (see also Table 4 to 12).

→ Cartan matrices, Simple root systems.

For more details, see refs. [10, 21, 22].

16 Embeddings of osp(1|2)

The determination of the possible osp(1|2) subsuperalgebras of a basic Lie superal-

gebra G can be seen as the supersymmetric version of the Dynkin classification of sl(2)

subalgebras in a simple Lie algebra. Interest for this problem appeared recently in the

framework of supersymmetric integrable models (in particular super-Toda theories) and

super-W algebras [9, 25]. As in the algebraic case, it uses the notion of principal embed-

ding (here superprincipal).

Definition: Let G be a basic Lie superalgebra of rank r with simple root system

∆0 = {α1, . . . , αr} and corresponding simple root generators E±αi
in the Serre–Chevalley

basis (→). The generators of the osp(1|2) superprincipal embedding in G are defined by

F+ =
r∑

i=1

Eαi
, F− =

r∑

i=1

r∑

j=1

ajiE−αi

aij being the Cartan matrix of G and aij = (a−1)ij. The even generators of the superprin-

cipal osp(1|2) are given by anticommutation of the odd generators F+ and F−:

H = 2
{
F+, F−

}
, E+ = 2

{
F+, F+

}
, E− = −2

{
F−, F−

}
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Not all the basic Lie superalgebras admit an osp(1|2) superprincipal embedding. It

is clear from the expression of the osp(1|2) generators that a superprincipal embedding

can be defined only if the superalgebra under consideration admits a completely odd

simple root system (which corresponds to a Dynkin diagram with no white dot). This

condition is however necessary but not sufficient (the superalgebra A(n|n) does not admit

a superprincipal embedding although it has a completely odd simple root system). The

basic Lie superalgebras admitting a superprincipal osp(1|2) are thus the following:

sl(n± 1|n), osp(2n± 1|2n), osp(2n|2n), osp(2n+ 2|2n), D(2, 1;α) with α 6= 0,±1

The classification of the osp(1|2) embeddings of a basic Lie superalgebra G is given by

the following theorem.

Theorem:

1. Any osp(1|2) embedding in a basic Lie superalgebra G can be considered as the

superprincipal osp(1|2) subsuperalgebra of a regular subsuperalgebra K of G.

2. For G = osp(2n± 2|2n) with n ≥ 2, besides the osp(1|2) superprincipal embeddings

of item 1, there exist osp(1|2) embeddings associated to the singular embeddings

osp(2k ± 1|2k) ⊕ osp(2n− 2k ± 1|2n− 2k) ⊂ osp(2n± 2|2n) with 1 ≤ k ≤
[
n−1

2

]
.

3. For G = osp(2n|2n) with n ≥ 2, besides the osp(1|2) superprincipal embeddings

of item 1, there exist osp(1|2) embeddings associated to the singular embeddings

osp(2k ± 1|2k) ⊕ osp(2n− 2k ∓ 1|2n− 2k) ⊂ osp(2n|2n) with 1 ≤ k ≤
[
n−2

2

]
.

17 Embeddings of sl(2|1)

In the same way one can consider osp(1|2) embeddings of a basic Lie superalgebra, it

is possible to determine the sl(2|1) subsuperalgebras of a basic Lie superalgebra G. This

problem was recently considered for an exhaustive classification and characterization of

all extended N = 2 superconformal algebras and all string theories obtained by gauging

N = 2 Wess–Zumino–Witten models [33]. Let us consider the basic Lie superalgebra

sl(n + 1|n) with completely odd simple root system ∆0:

∆0 =
{
ε1 − δ1, δ1 − ε2, ε2 − δ2, . . . , δn−1 − εn, εn − δn, δn − εn+1

}

Denote by E±(εi−δi), E±(δi−εi+1) (1 ≤ i ≤ n) the corresponding simple root generators in

the Serre–Chevalley basis (→). The sl(2|1) superprincipal embedding in sl(n + 1|n) is
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defined as follows. The odd part of the superprincipal sl(2|1) is generated by F±α and

F±β where

F+α =
n∑

i=1

Eδi−εi+1
F−α =

n∑

i=1

2n∑

j=1

aj,2iE−δi+εi+1

F+β =
n∑

i=1

Eεi−δi F−β =
n∑

i=1

2n∑

j=1

aj,2i−1E−εi+δi

aij being the Cartan matrix of sl(n+ 1|n), aij = (a−1)ij and aij is chosen as

a =




0 1
1 0 −1

−1 0 1
1 0

. . .

0 1
1 0




The even generators of the superprincipal sl(2|1) are given by anticommutation of the

odd generators F±α and F±β:
{
F+α, F−α

}
= H+ +H−

{
F+β, F−β

}
= H+ −H−{

F±α, F±α
}

=
{
F±β, F±β

}
= 0

{
F±α, F±β

}
= E±

One obtains finally
[
E±, F±α

]
= 0

[
E±, F±β

]
= 0

[
E±, F∓α

]
= ∓F±β

[
E±, F∓β

]
= ∓F±α[

H±, F+α

]
= ±1

2
F+α

[
H±, F−α

]
= ∓1

2
F−α[

H±, F+β

]
= 1

2
F+β

[
H±, F−β

]
= −1

2
F−β[

H+, E±
]

= ±E±
[
H−, E±

]
= 0

where

H± = 1
2

n∑

i=1

2n∑

j=1

(aj,2iH2i ± aj,2i−1H2i−1)

Notice that this sl(2|1) superprincipal embedding contains as maximal subsuperalgebra

the superprincipal osp(1|2) with generators H+, E± and F± = F±α + F±β.

The classification of the sl(2|1) embeddings of a basic Lie superalgebra G is given by

the following theorem.

Theorem: Let G be a basic Lie superalgebra. Any sl(2|1) embedding into G can be

seen as the principal embedding of a (sum of) regular sl(n|n ± 1) subsuperalgebra of G,

except in the case of osp(m|n) (m > 1), F (4) and D(2, 1;α) where the (sum of) regular

osp(2|2) has also to be considered.
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18 Exceptional Lie superalgebra F (4)

The Lie superalgebra F (4) of rank 4 has dimension 40. The even part (of dimension

24) is a non-compact form of sl(2) ⊕ o(7) and the odd part (of dimension 16) is the

spinorial representation (2, 8) of sl(2)⊕ o(7). In terms of the vectors ε1, ε2, ε3 and δ such

that εi.εj = δij, δ
2 = −3, εi.δ = 0, the root system ∆ = ∆0 ∪ ∆1 is given by

∆0 =
{

± δ, ±εi ± εj, ±εi
}

and ∆1 =
{

1
2
(±δ ± ε1 ± ε2 ± ε3)

}

The different simple root systems of F (4) with the corresponding Dynkin diagrams and

Cartan matrices are the following:

Simple root system ∆0 =
{
α1 = 1

2
(δ − ε1 − ε2 − ε3), α2 = ε3, α3 = ε2 − ε3, α4 = ε1 − ε2

}

m m m m
α1 α2 α3 α4

�@ �
@

Cartan matrix =




0 1 0 0
−1 2 −2 0

0 −1 2 −1
0 0 −1 2




Simple root system ∆0 =
{
α1 = 1

2
(−δ + ε1 + ε2 + ε3), α2 = 1

2
(δ − ε1 − ε2 + ε3), α3 =

ε2 − ε3, α4 = ε1 − ε2

}

m m m m
α1 α2 α3 α4

�@ �@ �
@

Cartan matrix =




0 1 0 0
−1 0 2 0

0 −1 2 −1
0 0 −1 2




Simple root system ∆0 =
{
α1 = ε1 − ε2, α2 = 1

2
(δ − ε1 + ε2 − ε3), α3 = 1

2
(−δ + ε1 + ε2 −

ε3), α4 = ε3

}

m m m
α1 α2 α3

α4

@
� �@ �@

mA
A

A

�
�
� Cartan matrix =




2 −1 0 0
−2 0 2 1

0 −2 0 1
0 −1 −1 2




Simple root system ∆0 =
{
α1 = 1

2
(δ + ε1 − ε2 − ε3), α2 = 1

2
(δ − ε1 + ε2 + ε3), α3 =

1
2
(−δ + ε1 − ε2 + ε3), α4 = ε2 − ε3

}

m

m

α1

α2

m
α3�@

�@

�@
���

HH
HHH

m
α4

@
�

Cartan matrix =




0 3 2 0
−3 0 1 0
−2 −1 0 1

0 0 −2 2




Simple root system ∆0 =
{
α1 = δ, α2 = 1

2
(−δ + ε1 − ε2 − ε3), α3 = ε3, α4 = ε2 − ε3

}
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m m m m
α1 α2 α3 α4

@
� �@ �

@
Cartan matrix =




2 −1 0 0
−3 0 1 0

0 −1 2 −2
0 0 −1 2




Simple root system ∆0 =
{
α1 = δ, α2 = 1

2
(−δ − ε1 + ε2 + ε3), α3 = ε1 − ε2, α4 = ε2 − ε3

}

m m m m
α1 α2 α3 α4

�@@
�

�
@

Cartan matrix =




2 −1 0 0
−3 0 2 0

0 −1 2 −1
0 0 −1 2




Denoting by Ti where i = 1, 2, 3 the generators of sl(2), by Mpq = −Mqp where

1 ≤ p 6= q ≤ 7 the generators of so(7) and by Fαµ where α = +,− and 1 ≤ µ ≤ 8 the

generators of the odd part, the commutation relations of F (4) read as:
[
Ti, Tj

]
= iεijkTk

[
Ti,Mpq

]
= 0

[
Mpq,Mrs

]
= δqrMps + δpsMqr − δprMqs − δqsMpr

[
Ti, Fαµ

]
= 1

2
σiβαFβµ

[
Mpq, Fαµ

]
= 1

2
(γpγq)νµFαν

{
Fαµ, Fβν

}
= 2C(8)

µν (C(2)σi)αβTi +
1
3
C

(2)
αβ (C(8)γpγq)µνMpq

where σ1, σ2, σ3 are the Pauli matrices and C(2) (= iσ2) is the 2 × 2 charge conjugation

matrix. The 8-dimensional matrices γp form a Clifford algebra {γp, γq} = 2δpq and C(8) is

the 8 × 8 charge conjugation matrix. They can be chosen, I being the 2 × 2 unit matrix,

as (→ Clifford algebra):

γ1 = σ1 ⊗ σ3 ⊗ I , γ2 = σ1 ⊗ σ1 ⊗ σ3 , γ3 = σ1 ⊗ σ1 ⊗ σ1

γ4 = σ2 ⊗ I ⊗ I , γ5 = σ1 ⊗ σ2 ⊗ I , γ6 = σ1 ⊗ σ1 ⊗ σ2

γ7 = σ3 ⊗ I ⊗ I

The generators in the Cartan-Weyl basis are given by (with obvious notations):

H1 = T3 E±δ = T1 ± iT2

H2 = iM41 H3 = iM52 H4 = iM63

E±ε1 = i√
2
(M17 ± iM47) E±ε2 = i√

2
(M27 ± iM57) E±ε3 = i√

2
(M37 ± iM67)

E±(ε1+ε2) = i
2
(M12 ± iM42 +M54 ± iM15) E±(ε1−ε2) = i

2
(M12 ± iM42 −M54 ∓ iM15)

E±(ε2+ε3) = i
2
(M23 ± iM53 +M65 ± iM26) E±(ε2−ε3) = i

2
(M23 ± iM53 −M65 ∓ iM26)

E±(ε1+ε3) = i
2
(M13 ± iM43 +M64 ± iM16) E±(ε1−ε3) = i

2
(M13 ± iM43 −M64 ∓ iM16)

E 1

2
(±δ±ε1±ε2±ε3) = Fα,µ

where in the last equation the index α and the sign in ±δ are in one-to-one correspondence

and the correspondence between the index µ and the signs in ±ε1 ± ε2 ± ε3 is given by

(1, 2, 3, 4, 5, 6, 7, 8) = (+ + +,+ −−,−− +,− + −,− + +,−−−,+ − +,+ + −).
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19 Exceptional Lie superalgebra G(3)

The Lie superalgebra G(3) of rank 3 has dimension 31. The even part (of dimension

17) is a non-compact form of sl(2) ⊕ G2 and the odd part (of dimension 14) is the

representation (2, 7) of sl(2) ⊕G2. In terms of the vectors ε1, ε2, ε3 with ε1 + ε2 + ε3 = 0

and δ such that εi.εj = 1− 3δij , δ
2 = 2, εi.δ = 0, the root system ∆ = ∆0 ∪∆1 is given by

∆0 =
{

± 2δ, εi − εj, ±εi
}

and ∆1 =
{

± εi ± δ, ±δ
}

The different simple root systems of G(3) with the corresponding Dynkin diagrams and

Cartan matrices are the following:

Simple root system ∆0 =
{
α1 = δ + ε3, α2 = ε1, α3 = ε2 − ε1

}

m m m
α1 α2 α3

�@ �
@

Cartan matrix =




0 1 0
−1 2 −3

0 −1 2




Simple root system ∆0 =
{
α1 = −δ − ε3, α2 = δ − ε2, α3 = ε2 − ε1

}

m m m
α1 α2 α3

�@ �@ �
@

Cartan matrix =




0 1 0
−1 0 3

0 −1 2




Simple root system ∆0 =
{
α1 = δ, α2 = −δ + ε1, α3 = ε2 − ε1

}

} m m
α1 α2 α3

�@ �
@

Cartan matrix =




2 −2 0
−2 0 3

0 −1 2




Simple root system ∆0 =
{
α1 = δ − ε1, α2 = −δ + ε2, α3 = ε1

}

m

m

α1

α2

m
α3�@

�@
���

HH
HHH

Cartan matrix =




0 3 2
−3 0 1
−2 −1 2




In order to write the commutation relations of G(3), it is convenient to use a so(7)

basis. Consider the so(7) generators Mpq = −Mqp where 1 ≤ p 6= q ≤ 7. The singular

embedding G2 ⊂ so(7) is obtained by imposing to the generators Mpq the constraints

ξijkMij = 0

where the tensor ξijk is completely antisymmetric and whose non-vanishing components

are

ξ123 = ξ145 = ξ176 = ξ246 = ξ257 = ξ347 = ξ365 = 1
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Denoting by Ti where i = 1, 2, 3 the generators of sl(2), by Fαp where α = +,− and

1 ≤ p ≤ 7 the generators of the odd part, the commutation relations of G(3) read as:

[
Ti, Tj

]
= iεijkTk

[
Ti,Mpq

]
= 0

[
Mpq,Mrs

]
= δqrMps + δpsMqr − δprMqs − δqsMpr + 1

3
ξpquξrsvMuv

[
Ti, Fαp

]
= 1

2
σiαβFβp

[
Mpq, Fαr

]
= 2

3
δqrFαp − 2

3
δprFαq + 1

3
ζpqrsFαs

{
Fαp, Fβq

}
= 2δpq(Cσ

i)αβTi +
3
2
CαβMpq

where the tensor ζpqrs is completely antisymmetric and whose non-vanishing components

are

ζ1247 = ζ1265 = ζ1364 = ζ1375 = ζ2345 = ζ2376 = ζ4576 = 1

It can be written as

ζpqrs = δpsδqr − δprδqs +
7∑

u=1

ξpquξrsu

The σi’s are the Pauli matrices and C (= iσ2) is the 2 × 2 charge conjugation matrix.

In terms of the Mpq, the generators of G2 are given by

E1 = i(M17 −M24) E ′
1 = i

√
3(M17 +M24)

E2 = i(M21 −M74) E ′
2 = −i

√
3(M21 +M74)

E3 = i(M72 −M14) E ′
3 = i

√
3(M72 +M14) = −E8

E4 = i(M43 −M16) E ′
4 = i

√
3(M43 +M16)

E5 = i(M31 −M46) E ′
5 = i

√
3(M31 +M46)

E6 = i(M62 −M73) E ′
6 = i

√
3(M62 +M73)

E7 = i(M32 −M67) E ′
7 = i

√
3(M32 +M67)

The Ea’s with a = 1, . . . , 8 generate sl(3) and satisfy the commutation relations

[
Ea, Eb

]
= 2ifabcEc

where fabc are the usual totally antisymmetric Gell-Mann structure constants. The com-

mutation relations between the G2 generators Ea and E ′
i (i = 1, 2, 4, 5, 6, 7) are

[
Ea, E

′
i

]
= 2icaijE

′
j

[
E ′
i, E

′
j

]
= 2i(caijEa + c′ijkE

′
k)

where the structure constants caij (antisymmetric in the indices i, j) and c′ijk (totally

antisymmetric) are

c147 = c156 = c257 = c345 = c367 = c417 = c725 = 1/2
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c246 = c426 = c516 = c527 = c615 = c624 = c714 = −1/2

c845 = c876 = −1/2
√

3 c812 = −1/
√

3

c′147 = c′165 = c′246 = c′257 = −1/
√

3

The generators E3 and E8 constitute a Cartan basis of the G2 algebra. One can also

take a basis H1, H2, H3 such that H1 + H2 + H3 = 0 given by H1 = 1
2
(E3 +

√
3

3
E8),

H2 = 1
2
(−E3 +

√
3

3
E8), H3 = −

√
3

3
E8. The generators in the Cartan-Weyl basis are given

by (with obvious notations):

H1 = 1
2
(E3 +

√
3

3
E8) H2 = 1

2
(−E3 +

√
3

3
E8) H3 = −

√
3

3
E8

E±(ε1−ε2) = E1 ± iE2 E±(ε2−ε3) = E6 ± iE7 E±(ε1−ε3) = E4 ± iE5

E±ε1 = E ′
7 ∓ iE ′

6 E±ε2 = E ′
4 ∓ iE ′

5 E±ε3 = E ′
1 ∓ iE ′

2

E±δ+ε1 = F±1 + iF±4 E±δ+ε2 = F±7 + iF±2 E±δ+ε3 = F±3 + iF±6

E±δ−ε1 = F±1 − iF±4 E±δ−ε2 = F±7 − iF±2 E±δ−ε3 = F±3 − iF±6

H4 = T3 E±2δ = T1 ± iT2 E±δ = F±5

20 Exceptional Lie superalgebras D(2, 1; α)

The Lie superalgebras D(2, 1;α) with α 6= 0,−1,∞ form a one-parameter family of

superalgebras of rank 3 and dimension 17. The even part (of dimension 9) is a non-

compact form of sl(2) ⊕ sl(2) ⊕ sl(2) and the odd part (of dimension 8) is the spinorial

representation (2, 2, 2) of the even part. In terms of the vectors ε1, ε2, ε3 such that ε2
1 =

−(1 + α)/2, ε2
2 = 1/2, ε2

3 = α/2 and εi.εj = 0 if i 6= j, the root system ∆ = ∆0 ∪ ∆1 is

given by

∆0 =
{
± 2εi

}
and ∆1 =

{
± ε1 ± ε2 ± ε3

}

D(2, 1;α) is actually a deformation of the superalgebra D(2, 1) which corresponds to the

case α = 1.

The different simple root systems of D(2, 1;α) with the corresponding Dynkin diagrams

and Cartan matrices are the following:

Simple root system ∆0 =
{
α1 = ε1 − ε2 − ε3, α2 = 2ε2, α3 = 2ε3

}

m�@

m

m

α1

α2

α3
α

��

HH

Cartan matrix =




0 1 α
−1 2 0
−1 0 2




Simple root system ∆0 =
{
α1 = 2ε2, α2 = −ε1 − ε2 + ε3, α3 = 2ε1

}

m�@

m

m

α2

α3

α1

1+α
��

HH

Cartan matrix =




2 −1 0
1 0 1 + α
0 −1 2
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Simple root system ∆0 =
{
α1 = 2ε3, α2 = 2ε1, α3 = −ε1 + ε2 − ε3

}

m�@

m

m

α3

α2

α1

1+α

α

��

HH

Cartan matrix =




2 0 α
0 2 1 + α

−1 −1 0




Simple root system ∆0 =
{
α1 = −ε1 + ε2 + ε3, α2 = ε1 + ε2 − ε3, α3 = ε1 − ε2 + ε3

}

m�@

m

m

α3

α1

α2

α

1+α

��

HH
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Cartan matrix =




0 1 α
1 0 −1 − α
α −1 − α 0




(the labels on the links are equal to the absolute values of the scalar products of the

simple roots which are linked.)

Denoting by T
(a)
i where i = 1, 2, 3 and a = 1, 2, 3 the generators of the three sl(2)

and by Fββ′β′′ where β, β ′, β ′′ = +,−, the generators of the odd part, the commutation

relations of D(2, 1;α) read as:
[
T

(a)
i , T

(b)
j

]
= iδabεijkT

(a)
k

[
T

(1)
i , Fββ′β′′

]
= 1

2
σiγβFγβ′β′′

[
T

(2)
i , Fββ′β′′

]
= 1

2
σiγ′β′Fβγ′β′′

[
T

(3)
i , Fββ′β′′

]
= 1

2
σiγ′′β′′Fββ′γ′′

{
Fββ′β′′ , Fγγ′γ′′

}
= s1Cβ′γ′Cβ′′γ′′(Cσ

i)βγT
(1)
i + s2Cβ′′γ′′Cβγ(Cσ

i)β′γ′T
(2)
i

+s3CβγCβ′γ′(Cσ
i)β′′γ′′T

(3)
i

where s1+s2+s3 = 0 is imposed by the generalized Jacobi identity. The σi’s are the Pauli

matrices and C (= iσ2) is the 2 × 2 charge conjugation matrix. Since the superalgebras

defined by the triplets λs1, λs2, λs3 (λ ∈ C) are isomorphic, one can set s2/s1 = α and

s3/s1 = −1 − α (the normalization of the roots given above corresponds to the choice

s1 = 1, s2 = α and s3 = −1 − α). One can deduce after some simple calculation that:

Property: The superalgebras defined by the parameters α, α−1, −1−α and
−α

1 + α
are

isomorphic. Moreover, for the values 1, −2 and −1/2 of the parameter α, the superalgebra

D(2, 1;α) is isomorphic to D(2, 1).

In the Cartan-Weyl basis, the generators are given by:

H1 = T
(1)
3 H2 = T

(2)
3 H3 = T

(3)
3

E±2ε1 = T
(1)
1 ± iT

(1)
2 E±2ε2 = T

(2)
1 ± iT

(2)
2 E±2ε3 = T

(3)
1 ± iT

(3)
2

E±ε1±ε2±ε3 = Fββ′β′′

where in the last equation the signs in the indices ±ε1 ± ε2 ± ε3 and the indices ββ ′β ′′ are

in one-to-one correspondence.
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21 Gelfand-Zetlin basis

Consider a finite dimensional irreducible representation π of gl(m|n) with highest

weight Λ = (λ1, . . . , λm+n). The coefficients λi are complex numbers such that the differ-

ences λi−λi+1 ∈ N for i 6= m. The construction of the Gelfand-Zetlin basis stands on the

reduction of π with respect to the chain of subalgebras

gl(m|n) ⊃ gl(m|n− 1) ⊃ . . . ⊃ gl(m) ⊃ gl(m− 1) ⊃ . . . ⊃ gl(1)

It is sufficient of course to achieve the first reduction.

This construction has been done up to now only in the case of the star representations

of gl(m|n). Let us recall that the superalgebra gl(m|n) has two classes of star representa-

tions and two classes of superstar representations (→ Star and superstar representations):

if eIJ is the standard basis of gl(m|n) (→ Unitary superalgebras) where 1 ≤ I, J ≤ m+n,

the two star representations π are defined by π†(eIJ) = π(e†IJ) where

e†IJ = eJI adjoint 1

e†IJ = (−1)deg(eIJ )eJI adjoint 2

and the two superstar representations π by π‡(eIJ) = π(e‡IJ) where

e‡IJ =

{
eIJ for deg(eIJ) = 0
eIJ sign(J − I) for deg(eIJ) = 1

superadjoint 1

e‡IJ =

{
eIJ for deg(eIJ) = 0
eIJ sign(I − J) for deg(eIJ) = 1

superadjoint 2

In the following, we will concentrate on the star representations.

Theorem: The irreducible representation of gl(m|n) with highest weight Λ = (λ1, . . . ,

λm+n) is a star representation if and only if all the λi are real and the following conditions

are satisfied:

1. λm + λm+n − n + 1 ≥ 0.

2. there is some k ∈ {1, . . . , n − 1} such that 0 ≤ λm + λm+k − k + 1 ≤ 1 and

λm+k = λm+k+1 = . . . = λm+n.

3. λ1 + λm+1 +m− 1 ≤ 0.

Theorem: Let π be a star representation of gl(m|n) with highest weight Λ = (λ1, . . . ,

λm+n). The reduction of the representation π of gl(m|n) with respect to of gl(m|n − 1)

gives exactly once the irreducible representations of gl(m|n − 1) with highest weights
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Λ′ = (λ′1, . . . , λ
′
m+n−1) where the differences λi − λ′i ∈ N for 1 ≤ i ≤ m + n − 1 and the

coefficients satisfy the following inequalities:

· λ1 ≥ λ2 ≥ . . . ≥ λm−1 ≥ λm

· λ′1 ≥ λ′2 ≥ . . . ≥ λ′m−1 ≥ λ′m

· λi ≥ λ′i ≥ λi − εi (1 ≤ i ≤ m)

· λm+1 ≥ λ′m+1 ≥ λm+2 ≥ λ′m+2 . . . ≥ λm+n−1 ≥ λ′m+n−1 ≥ λm+n

where

ε1 =

{
0 if λ1 + λm+1 +m− 1 = 0
1 otherwise

ε2 = . . . = εm−1 = 1

εm =






0 if λ1 + λm+1 +m− 1 = 0 or λm + λm+k + k − 1 = 0
with λ′m+k−1 6= λm+k (2 ≤ k ≤ n)

1 otherwise

εm = 0 in the case of the star adjoint 1 representations while ε1 = 0 for the star adjoint

2 representations.

It follows that the Gelfand-Zetlin basis for the star representations of gl(m|n) is given

by the following theorem:

Theorem: Let π be a star representation of gl(m|n) with highest weight Λ = (λ1, . . . ,

λN) ≡ (λ1N , . . . , λNN ) where N = m+ n. The Gelfand-Zetlin basis in the representation

space V(Λ) is given by

eΛ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ1N λ2N λ3N . . . λNN
λ1,N−1 λ2,N−1 . . . λN−1,N−1

. . . . .
.

λ12 λ22

λ11

B
B

B
B

�
�

�
�

where the real numbers λij, with λi,j+1 − λij ∈ N, satisfy the following inequalities:

· λ1,j+1 ≥ λ2,j+1 ≥ . . . ≥ λm−1,j+1 ≥ λm,j+1

· λ1j ≥ λ2j ≥ . . . ≥ λm−1,j ≥ λmj

· λi,j+1 ≥ λij ≥ λi,j+1 − εi,j+1 (1 ≤ i ≤ m)

· λi,j+1 ≥ λij ≥ λi+1,j+1 for j ≥ i ≥ m+ 1 or i ≤ j ≤ m− 1

where

ε1,j+1 =

{
0 if λ1,j+1 + λm+1,j+1 +m− 1 = 0
1 otherwise

εm,j+1 =






0 if λm,j+1 + λm+1,j+1 = 0 or λm,j+1 + λm+k,j+1 − k + 1 = 0
with λm+k−1,j 6= λm+k,j+1 (1 ≤ k ≤ j + 1)

1 otherwise
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and ε2,j+1 = . . . = εm−1,j+1 = 1. Notice that εm,j+1 = 0 in the case of the star adjoint 1

representations while ε1,j+1 = 0 for the star adjoint 2 representations.

For more details on the Gelfand-Zetlin basis for gl(m|n), in particular the action of

the gl(m|n) generators on the basis vectors, see ref. [18].

22 Grassmann algebras

Definition: The real (resp. complex) Grassmann algebra Γ(n) of order n is the algebra

over R (resp. C) generated from the unit element 1 and the n quantities θi (called

Grassmann variables) which satisfy the anticommutation relations

{
θi, θj

}
= 0

This algebra has 2n generators 1, θi, θiθj , θiθjθk, . . . , θ1 . . . θn.

Putting deg θi = 1, the algebra Γ(n) acquires the structure of a superalgebra: Γ(n) =

Γ(n)0 ⊕ Γ(n)1, where Γ(n)0 is generated by the monomials in θi with an even number of

θi (even generators) and Γ(n)1 by the monomials in θi with an odd number of θi (odd

generators). Since dim Γ(n)0 = dim Γ(n)1 = 2n−1, the superalgebra Γ(n) is supersym-

metric. The Grassmann superalgebra is associative and commutative (in the sense of the

superbracket).

It is possible to define the complex conjugation on the Grassmann variables. However,

there are two possibilities to do so. If c is a complex number and c̄ its complex conjugate,

θi, θj being Grassmann variables, the star operation, denoted by ∗, is defined by

(cθi)
∗ = c̄θ∗i , θ∗∗i = θi , (θiθj)

∗ = θ∗j θ
∗
i

and the superstar operation, denoted by #, is defined by

(cθi)
# = c̄θ#

i , θ##
i = −θi , (θiθj)

# = θ#
i θ

#
j

Let us mention that the derivation superalgebra (→) Der Γ(n) of Γ(n) is the Cartan

type (→) simple Lie superalgebra W (n).

23 Killing form

Definition: Let G be a Lie superalgebra. One defines the bilinear form Bπ associated

to a representation π of G as a bilinear form from G × G into the field of real numbers R

such that

Bπ(X, Y ) = str(π(X), π(Y )) , ∀ X, Y ∈ G
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where π(X) are the matrices of the generators X ∈ G in the representation π.

If {Xi} is the basis of generators of G (i = 1, . . . , dimG), one has therefore

Bπ(Xi, Yj) = str(π(Xi), π(Yj)) = gπij

Definition: A bilinear form B on G = G0 ⊕ G1 is called

- consistent if B(X, Y ) = 0 for all X ∈ G0 and all Y ∈ G1.

- supersymmetric if B(X, Y ) = (−1)degX. deg YB(Y,X), for all X, Y ∈ G.

- invariant if B([[X, Y ]], Z) = B(X, [[Y, Z]]), for all X, Y, Z ∈ G.

Property: An invariant form on a simple Lie superalgebra G is either non-degenerate

(that is its kernel is zero) or identically zero, and two invariant forms on G are proportional.

Definition: A bilinear form on G is called an inner product on G if it is consistent,

supersymmetric and invariant.

Definition: The bilinear form associated to the adjoint representation of G is called

the Killing form on G and is denoted K(X, Y ):

K(X, Y ) = str(ad (X), ad (Y )) , ∀ X, Y ∈ G

We recall that ad (X)Z = [[X,Z]] and
(
ad (Xi)

)k

j
= −Ck

ij where Ck
ij are the structure

constants for the basis {Xi} of generators of G. We can therefore write

K(Xi, Xj) = (−1)degXjCn
miC

m
nj = gij

Property: The Killing form K of a Lie superalgebra G is consistent, supersymmetric

and invariant (in other words, it is an inner product).

Property: The Killing form K of a Lie superalgebra G satisfies

K(φ(X), φ(Y )) = K(X, Y )

for all φ ∈ Aut(G) and X, Y ∈ G.

The following theorems give the fundamental results concerning the Killing form of

the (simple) Lie superalgebras:

Theorem:

1. A Lie superalgebra G with a non-degenerate Killing form is a direct sum of simple

Lie superalgebras each having a non-degenerate Killing form.
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2. A simple finite dimensional Lie superalgebra G with a non-degenerate Killing form

is of the type A(m,n) where m 6= n, B(m,n), C(n+ 1), D(m,n) where m 6= n+ 1,

F (4) or G(3).

3. A simple finite dimensional Lie superalgebra G with a zero Killing form is of the

type A(n, n), D(n+ 1, n), D(2, 1;α), P (n) or Q(n).

→ Cartan matrices.

For more details, see refs. [21, 22].

24 Lie superalgebra, subalgebra, ideal

Definition: A Lie superalgebra G over a field K of characteristic zero (usually K = R

or C) is a Z2-graded algebra, that is a vector space, direct sum of two vector spaces G0

and G1, in which a product [[ , ]], is defined as follows:

• Z2-gradation: [[
Gi,Gj

]]
⊂ Gi+j (mod 2)

• graded-antisymmetry:

[[
Xi, Xj

]]
= −(−1)degXi. degXj

[[
Xj , Xi

]]

where degXi is the degree of the vector space. G0 is called the even space and G1

the odd space. If degXi. degXj = 0, the bracket [[ , ]] defines the usual commutator,

otherwise it is an anticommutator.

• generalized Jacobi identity:

(−1)degXi.degXk

[[
Xi,

[[
Xj, Xk

]]]]
+ (−1)degXj .degXi

[[
Xj,

[[
Xk, Xi

]]]]

+(−1)degXk. degXj

[[
Xk,

[[
Xi, Xj

]]]]
= 0

Notice that G0 is a Lie algebra – called the even or bosonic part of G – while G1 –

called the odd or fermionic part of G – is not an algebra.

An associative superalgebra G = G0⊕G1 over the field K acquires the structure of a Lie

superalgebra by taking for the product [[ , ]] the the Lie superbracket or supercommutator

(also called generalized or graded commutator)

[[
X, Y

]]
= XY − (−1)degX.deg Y Y X
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for two elements X, Y ∈ G.

Definition: Let G = G0 ⊕ G0 be a Lie superalgebra.

- A subalgebra K = K0⊕K1 of G is a subset of elements of G which forms a vector subspace

of G that is closed with respect to the Lie product of G such that K0 ⊂ G0 and K1 ⊂ G1.

A subalgebra K of G such that K 6= G is called a proper subalgebra of G.

- An ideal I of G is a subalgebra of G such that
[[
G, I

]]
⊂ I, that is

X ∈ G, Y ∈ I ⇒
[[
X, Y

]]
∈ I

An ideal I of G such that I 6= G is called a proper ideal of G.

Property: Let G be a Lie superalgebra and I, I ′ two ideals of G. Then
[[
I, I ′

]]
is an

ideal of G.

25 Matrix realizations of the classical Lie superalgebras

The classical Lie superalgebras can be described as matrix superalgebras as follows.

Consider the Z2-graded vector space V = V0⊕V1 with dimV0 = m and dimV1 = n. Then

the algebra EndV acquires naturally a superalgebra structure by

EndV = End0V ⊕ End1V where EndiV =
{
φ ∈ EndV

∣∣∣ φ(Vj) ⊂ Vi+j
}

The Lie superalgebra ℓ(m,n) is defined as the superalgebra EndV supplied with the Lie

superbracket (→ Lie superalgebras). ℓ(m,n) is spanned by matrices of the form

M =

(
A B
C D

)

where A and D are gl(m) and gl(n) matrices, B and C are m× n and n×m rectangular

matrices.

One defines on ℓ(m,n) the supertrace function denoted by str:

str(M) = tr(A) − tr(D)

The unitary superalgebra A(m− 1, n− 1) = sl(m|n) is defined as the superalgebra of

matrices M ∈ ℓ(m,n) satisfying the supertrace condition str(M) = 0.

In the case m = n, sl(n|n) contains a one-dimensional ideal I generated by I2n and one

sets A(n− 1, n− 1) = sl(n|n)/I.

The orthosymplectic superalgebra osp(m, 2n) is defined as the superalgebra of matrices

M ∈ ℓ(m,n) satisfying the conditions

At = −A , DtG = −GD , B = CtG
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where t denotes the usual sign of transposition and the matrix G is given by

G =

(
0 In

−In 0

)

The strange superalgebra P (n) is defined as the superalgebra of matrices M ∈ ℓ(n, n)

satisfying the conditions

At = −D , Bt = B , Ct = −C , tr(A) = 0

The strange superalgebra Q̃(n) is defined as the superalgebra of matrices M ∈ ℓ(n, n)

satisfying the conditions

A = D , B = C , tr(B) = 0

The superalgebra Q̃(n) has a one-dimensional center Z. The simple superalgebra Q(n) is

given by Q(n) = Q̃(n)/Z.

→ Orthosymplectic superalgebras, Strange superalgebras, Unitary superalgebras.

For more details, see refs. [22, 34].

26 Nilpotent and solvable Lie superalgebras

Definition: Let G = G0 ⊕ G1 be a Lie superalgebra. G is said nilpotent if, considering

the series

[[
G,G

]]
= G[1]

[[
G,G[1]

]]
= G[2]

. . .
[[
G,G[i−1]

]]
= G[i]

then it exists an integer n such that G[n] = {0}.

Definition: G is said solvable if, considering the series

[[
G,G

]]
= G(1)

[[
G(1),G(1)

]]
= G(2)

. . .
[[
G(i−1),G(i−1)

]]
= G(i)

then it exists an integer n such that G(n) = {0}.
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Theorem: The Lie superalgebra G is solvable if and only if G0 is solvable.

Property: Let G = G0 ⊕ G1 be a solvable Lie superalgebra. Then the irreducible

representations of G are one-dimensional if and only if
{
G1,G1

}
⊂
[
G0,G0

]
– let us recall

that in the case of a solvable Lie algebra, the irreducible finite dimensional representation

are one-dimensional.

Property: Let G = G0 ⊕ G1 be a solvable Lie superalgebra and let V = V0 ⊕V1 be the

space of irreducible finite dimensional representations. Then either dimV0 = dimV1 and

dimV = 2s with 1 ≤ s ≤ dimG1, or dimV = 1.

27 Orthosymplectic superalgebras

The orthosymplectic superalgebras form three infinite families of basic Lie superal-

gebras. The superalgebra B(m,n) or osp(2m + 1|2n) defined for m ≥ 0, n ≥ 1 has as

even part the Lie algebra so(2m + 1) ⊕ sp(2n) and as odd part the (2m + 1, 2n) rep-

resentation of the even part; it has rank m + n and dimension 2(m + n)2 + m + 3n.

The superalgebra C(n + 1) or osp(2|2n) where n ≥ 1 has as even part the Lie algebra

so(2) ⊕ sp(2n) and the odd part is twice the fundamental representation (2n) of sp(2n);

it has rank n+ 1 and dimension 2n2 + 5n + 1. The superalgebra D(m,n) or osp(2m|2n)

defined for m ≥ 2, n ≥ 1 has as even part the Lie algebra so(2m) ⊕ sp(2n) and its odd

part is the (2m, 2n) representation of the even part; it has rank m + n and dimension

2(m+ n)2 −m+ n.

The root systems can be expressed in terms of the orthogonal vectors ε1, . . . , εm and

δ1, . . . , δn as follows.

- for B(m,n) with m 6= 0:

∆0 =
{

± εi ± εj, ±εi, ±δi ± δj , ±2δi
}

and ∆1 =
{

± εi ± δj, ±δj
}
,

- for B(0, n):

∆0 =
{

± δi ± δj , ±2δi
}

and ∆1 =
{

± δj
}
,

- for C(n+ 1):

∆0 =
{

± δi ± δj , ±2δi
}

and ∆1 =
{

± ε± δj
}
,

- for D(m,n):

∆0 =
{

± εi ± εj, ±δi ± δj, ±2δi
}

and ∆1 =
{

± εi ± δj
}
.
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The Dynkin diagrams of the orthosymplectic superalgebras are of the following types:

- for the superalgebra B(m,n)

v v v v2 2 2 2 m
2

@
�

v v v v1 2 2 2 m
2

@
�

v v v v1 2 2 2 }
2

@
�

v v v v2 2 2 2 }
2

@
�

K = 1 K = 0

- for the superalgebra C(n + 1)

v v v v1 2 2 2���

HHH

m1

m1

�@

�@

v v v v2 2 2 2���

HHH

m1

m1

�@

�@

v v v v1 2 2 2 m
1

�
@

v v v v2 2 2 2 m
1

�
@

K = 1 K = 0

-for the superalgebra D(m,n)

v v v v2 2 2 2���

HHH

m1

m1

v v v v1 2 2 2���

HHH

m1

m1

v v v v1 2 2 2���

HHH

m1

m1

�@

�@

v v v v2 2 2 2���

HHH

m1

m1

�@

�@

v v v v1 2 2 2 m
1

�
@

v v v v2 2 2 2 m
1

�
@

K = 1 K = 0

In these diagrams, the labels are the Dynkin labels which give the decomposition of the

highest root in terms of the simple roots. The small black dots represent either white

dots (associated to even roots) or grey dots (associated to odd roots of zero length), K is

the parity of the number of grey dots. The Dynkin diagrams of the orthosymplectic Lie

superalgebras up to rank 4 are given in Table 14.

The orthosymplectic superalgebras osp(M |N) (with M = 2m or 2m+ 1 and N = 2n)

can be generated as matrix superalgebras by taking a basis of (M + N)2 elementary
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matrices eIJ of order M + N satisfying (eIJ)KL = δILδJK (I, J,K, L = 1, . . . ,M + N).

One defines the following graded matrices

GIJ =




0 Im

Im 0
0

0
0 In

−In 0


 if M = 2m

GIJ =




0 Im 0
Im 0 0
0 0 1

0

0
0 In

−In 0




if M = 2m+ 1

where Im and In are the m×m and n× n identity matrices respectively.

Dividing the capital indices I, J, . . . into small unbared indices i, j, . . . running from 1

to M and small bared indices ı̄, ̄, . . . running from M + 1 to M + N , the generators of

osp(M |N) are given by

Eij = Gikekj −Gjkeki

Eı̄̄ = Gı̄k̄ek̄̄ +Ḡk̄ek̄ı̄

Eī = Ēi = Gikek̄

Then the Eij (antisymmetric in the indices i, j) generate the so(M) part, the Eı̄̄ (sym-

metric in the indices ı̄, ̄) generate the sp(N) part and Eī transform as the (M,N) rep-

resentation of osp(M |N). They satisfy the following (super)commutation relations:
[
Eij , Ekl

]
= GjkEil +GilEjk −GikEjl −GjlEik

[
Eı̄̄, Ek̄l̄

]
= −Ḡk̄Eı̄l̄ −Gı̄l̄Ēk̄ −Ḡl̄Eı̄k̄ −Gı̄k̄Ēl̄

[
Eij , Ek̄l̄

]
= 0

[
Eij , Ekl̄

]
= GjkEil̄ −GikEjl̄

[
Eī, Ek̄l̄

]
= −Ḡk̄Eil̄ −Ḡl̄Eik̄

{
Eī, Ekl̄

}
= GikĒl̄ −Ḡl̄Eik

In the case of the superalgebra osp(1|N), the commutation relations greatly simplify. One

obtains
[
Eı̄̄, Ek̄l̄

]
= −Ḡk̄Eı̄l̄ −Gı̄l̄Ēk̄ −Ḡl̄Eı̄k̄ −Gı̄k̄Ēl̄

[
Eı̄, Ēk̄

]
= −Gı̄̄Ek̄ −Gı̄k̄Ē

{
Eı̄, Ē

}
= Eı̄̄

where Eı̄ denote the odd generators.
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28 Oscillator realizations: Cartan type superalgebras

Oscillator realizations of the Cartan type superalgebras can be obtained as follows.

Take a set of 2n fermionic oscillators a−i and a+
i with standard anticommutation relations

{
a−i , a

−
j

}
=
{
a+
i , a

+
j

}
= 0 and

{
a+
i , a

−
j

}
= δij

In the case of the W (n) superalgebra, one defines the following subspaces:

G−1 =
{
a−i0

}

G0 =
{
a+
i0
a−i1

}

G1 =
{
a+
i0a

+
i1a

−
i2

}
i0 6= i1

. . .

Gn−1 =
{
a+
i0a

+
i1 . . . a

+
in−1

a−in

}
i0 6= i1 6= . . . 6= in−1

the superalgebra W (n) is given by

W (n) =
n−1⊕

i=−1

Gi

with Z-gradation
[
Gi,Gj

]
⊂ Gi+j .

In the case of S(n) and S̃(n), defining the following subspaces:

G−1 =
{
a−i0

}
and G′

−1 =
{
(1 + a+

1 . . . a
+
n )a−i0

}

G0 =
{
a+

1 a
−
1 − a+

i0a
−
i0 (i0 6= 1), a+

i0a
−
i1 (i1 6= i0)

}

G1 =
{
a+
i1
(a+

1 a
−
1 − a+

i0
a−i0) (i1 6= i0 6= 1),

a+
1 (a+

2 a
−
2 − a+

i0a
−
i0) (i0 6= 1, 2),

a+
i2
a+
i1
a−i0 (i2 6= i1 6= i0)

}

G2 =
{
a+
i2a

+
i1(a

+
1 a

−
1 − a+

i0a
−
i0) (i2 6= i1 6= i0 6= 1),

a+
i1
a+

1 (a+
2 a

−
2 − a+

i0
a−i0) (i1 6= i0 6= 1, 2),

a+
1 a

+
2 (a+

3 a
−
3 − a+

i0
a−i0) (i0 6= 1, 2, 3),

a+
i3a

+
i2a

+
i1a

−
i0 (i3 6= i2 6= i1 6= i0)

}

. . .

the superalgebra S(n) is given by

S(n) =
n−2⊕

i=0

Gi ⊕ G−1
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and the superalgebra S̃(n) by

S̃(n) =
n−2⊕

i=0

Gi ⊕ G′
−1

Finally, in the case of H(n) one defines the following subspaces:

G−1 =
{
a−i0

}

G0 =
{
a+
i0a

−
i1 − a+

i1a
−
i0

}

G1 =
{
a+
i0
a+
i1
a−i2 − a+

i0
a+
i2
a−i1 − a+

i2
a+
i0
a−i1 + a+

i1
a+
i2
a−i0 + a+

i2
a+
i0
a−i1 − a+

i2
a+
i1
a−i0

}

. . .

The superalgebra H(n) is given by

H(n) =
n−3⊕

i=−1

Gi

For more details, see ref. [34].

29 Oscillator realizations: orthosymplectic and unitary series

Let us consider a set of 2n bosonic oscillators b−i and b+i with commutation relations:

[
b−i , b

−
j

]
=
[
b+i , b

+
j

]
= 0 and

[
b−i , b

+
j

]
= δij

and a set of 2m fermionic oscillators a−i and a+
i with anticommutation relations:

{
a−i , a

−
j

}
=
{
a+
i , a

+
j

}
= 0 and

{
a−i , a

+
j

}
= δij

the two sets commuting each other:

[
b−i , a

−
j

]
=
[
b−i , a

+
j

]
=
[
b+i , a

−
j

]
=
[
b+i , a

+
j

]
= 0

Oscillator realization of A(m− 1, n− 1)

Let

∆ =
{
εi − εj, δi − δj , εi − δj , −εi + δj

}

be the root system of A(m−1, n−1) expressed in terms of the orthogonal vectors ε1, . . . , εm

and δ1, . . . , δn. An oscillator realization of the simple generators in the distinguished basis

is given by

Hi = b+i b
−
i − b+i+1b

−
i+1 Eδi−δi+1

= b+i b
−
i+1 Eδi+1−δi = b+i+1b

−
i (1 ≤ i ≤ n− 1)

Hn = b+n+1b
−
n+1 + a+

1 a
−
1 Eδn−ε1 = b+n a

−
1 Eε1−δn = a+

1 b
−
n

Hn+i = a+
i a

−
i − a+

i+1a
−
i+1 Eεi−εi+1

= a+
i a

−
i+1 Eεi+1−εi

= a+
i+1a

−
i (1 ≤ i ≤ m− 1)
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By commutation relation, one finds the realization of the whole set of root generators:

Eεi−εj
= a+

i a
−
j Eδi−δj = b+i b

−
j

Eεi−δj = a+
i b

−
j E−εi+δj = a−i b

+
j

Oscillator realization of B(m,n)

Let

∆ =
{

± εi ± εj, ±εi, ±δi ± δj , ±2δi, ±εi ± δj , ±δi
}

be the root system of B(m,n) expressed in terms of the orthogonal vectors ε1, . . . , εm and

δ1, . . . , δn. An oscillator realization of the simple generators in the distinguished basis is

given by

Hi = b+i b
−
i − b+i+1b

−
i+1 Eδi−δi+1

= b+i b
−
i+1 Eδi+1−δi = b+i+1b

−
i (1 ≤ i ≤ n− 1)

Hn = b+n b
−
n + a+

1 a
−
1 Eδn−ε1 = b+n a

−
1 Eε1−δn = a+

1 b
−
n

Hn+i = a+
i a

−
i − a+

i+1a
−
i+1 Eεi−εi+1

= a+
i a

−
i+1 Eεi+1−εi

= a+
i+1a

−
i (1 ≤ i ≤ m− 1)

Hn+m = 2a+
ma

−
m − 1 E+

εm
= (−1)Na+

m E−
εm

= a−m(−1)N

where N =
∑m
k=1 a

+
k a

−
k .

By commutation relation, one finds the realization of the whole set of root generators:

E±εi±εj
= a±i a

±
j E±εi±δj = a±i b

±
j

E±δi±δj = b±i b
±
j E±2δi = (b±i )2

Eεi
= (−1)Na+

i E−εi
= a−i (−1)N

Eδi = (−1)Nb+i E−δi = b−i (−1)N

Oscillator realization of B(0, n)

The case B(0, n) requires special attention. The root system of B(0, n) can be ex-

pressed in terms of the orthogonal vectors δ1, . . . , δn and reduces to

∆ =
{

± δi ± δj , ±2δi, ±δi
}

An oscillator realization of the generators of B(0, n) can be obtained only with the help

of bosonic oscillators. It is given for the simple generators by

Hi = b+i b
−
i − b+i+1b

−
i+1 Eδi−δi+1

= b+i b
−
i+1 Eδi+1−δi = b+i+1b

−
i (1 ≤ i ≤ n− 1)

Hn = b+n b
−
n + 1

2
Eδn = b+n E−δn = b−n

By commutation relation, one finds the realization of the whole set of root generators:

E±δi±δj = b±i b
±
j E±2δi = (b±i )2 E±δi = 1√

2
b±i
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Oscillator realization of C(n + 1)

Let

∆ =
{

± δi ± δj , ±2δi, ±ε± δj
}

be the root system of C(n+ 1) expressed in terms of the orthogonal vectors ε, δ1, . . . , δn.

An oscillator realization of the simple generators in the distinguished basis is given by

H1 = a+
1 a

−
1 + b+1 b

−
1 Eε−δ1 = a+

1 b
−
1 Eδ1−ε = b+1 a

−
1

Hi = b+i b
−
i − b+i+1b

−
i+1 Eδi−δi+1

= b+i b
−
i+1 Eδi+1−δi = b+i+1b

−
i (2 ≤ i ≤ n)

Hn+1 = b+n b
−
n + 1/2 E2δn = 1

2
(b+n )2 E−2δn = 1

2
(b−n )2

By commutation relation, one finds the realization of the whole set of root generators:

E±δi±δj = b±i b
±
j E±2δi = (b±i )2/2

Eε±δj = a+
1 b

±
j E−ε±δj = b±j a

−
1

Oscillator realization of D(m,n)

Let

∆ =
{

± εi ± εj, ±δi ± δj , ±2δi, ±εi ± δj
}

be the root system of D(m,n) expressed in terms of the orthogonal vectors ε1, . . . , εm and

δ1, . . . , δn. An oscillator realization of the simple generators in the distinguished basis is

given by

Hi = b+i b
−
i − b+i+1b

−
i+1 Eδi−δi+1

= b+i b
−
i+1 Eδi+1−δi = b+i+1b

−
i (1 ≤ i ≤ n− 1)

Hn = b+n b
−
n + a+

1 a
−
1 Eδn−ε1 = b+n a

−
1 Eε1−δn = a+

1 b
−
n

Hn+i = a+
i a

−
i − a+

i+1a
−
i+1 Eεi−εi+1

= a+
i a

−
i+1 Eεi+1−εi

= a+
i+1a

−
i (1 ≤ i ≤ m− 1)

Hn+m = a+
m−1a

−
m−1 + a+

ma
−
m − 1 Eεm−1+εm

= a+
ma

+
m−1 E−εm−εm−1

= a−m−1a
−
m

By commutation relation, one finds the realization of the whole set of root generators:

E±εi±εj
= a±i a

±
j E±εi±δj = a±i b

±
j

E±δi±δj = b±i b
±
j E±2δi = (b±i )2

For more details, see refs. [4, 45]. Note that in ref. [4], oscillator realizations were used

to analyse supersymmetric structure in the spectra of complex nuclei; the first reference

of this interesting approach is [17].
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30 Oscillator realizations: strange series

Let us consider a set of 2n bosonic oscillators b−i and b+i with commutation relations:
[
b−i , b

−
j

]
=
[
b+i , b

+
j

]
= 0 and

[
b−i , b

+
j

]
= δij

and a set of 2n fermionic oscillators a−i and a+
i with anticommutation relations:

{
a−i , a

−
j

}
=
{
a+
i , a

+
j

}
= 0 and

{
a−i , a

+
j

}
= δij

the two sets commuting each other:
[
b−i , a

−
j

]
=
[
b−i , a

+
j

]
=
[
b+i , a

−
j

]
=
[
b+i , a

+
j

]
= 0

Oscillator realization of P (n)

An oscillator realization of the generators of P (n) is obtained as follows:

- the generators of the even sl(n) part are given by

Hi = a+
i a

−
i − a+

i+1a
−
i+1 + b+i b

−
i − b+i+1b

−
i+1 with 1 ≤ i ≤ n− 1

E+
ij = a+

i a
−
j + b+i b

−
j with 1 ≤ i < j ≤ n

E−
ij = a+

i a
−
j + b+i b

−
j with 1 ≤ j < i ≤ n

- the generators of the odd symmetric part GS of P (n) by

F+
ij = b+i a

+
j + b+j a

+
i with 1 ≤ i 6= j ≤ n

F+
i = b+i b

+
j with 1 ≤ i ≤ n

- the generators of the odd antisymmetric part GA of P (n) by

F−
ij = b−i a

−
j + b−j a

−
i with 1 ≤ i 6= j ≤ n

Oscillator realization of Q(n)

An oscillator realization of the generators of Q(n) is obtained as follows:

- the generators of the even sl(n) part are given by

Hi = a+
i a

−
i − a+

i+1a
−
i+1 + b+i b

−
i − b+i+1b

−
i+1

Eij = a+
i a

−
j + b+i b

−
j

- the generator of the U(1) part by

Z =
n∑

i=1

a+
i a

−
i + b+i b

−
i

- the generators of the odd sl(n) part by

Ki = a+
i b

−
i − a+

i+1b
−
i+1 + b+i a

−
i − b+i+1a

−
i+1

Fij = a+
i b

−
j + b+i a

−
j

For more details, see ref. [11].
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31 Real forms

Definition: Let G be a classical Lie superalgebra over C. A semimorphism φ of G is a

semilinear transformation of G which preserves the gradation, that is such that

φ(X + Y ) = φ(X) + φ(Y )

φ(αX) = ᾱφ(X)

[[φ(X), φ(Y )]] = φ([[X, Y ]])

for all X, Y ∈ G and α ∈ C.

If φ is an involutive semimorphism of G, the superalgebra Gφ = {X + φ(X) | X ∈ G}
is a real classical Lie superalgebra. Moreover, two involutive semimorphisms φ and φ′

of G being given, the real forms Gφ and Gφ′ are isomorphic if and only if φ and φ′ are

conjugate by an automorphism (→) of G.

It follows that the real classical Lie superalgebras are either the complex classical

Lie superalgebras regarded as real superalgebras or the real forms obtained as subsu-

peralgebras of fixed points of the involutive semimorphisms of a complex classical Lie

superalgebra. The real forms of a complex classical Lie superalgebra G are thus classified

by the involutive semimorphisms of G in the automorphism group of G. One can prove

that the real forms of the complex classical Lie superalgebras are uniquely determined by

the real forms Gφ
0

of the even part G0 of G. They are displayed in Table 16.

Notice that m,n have to be even for sl(m|n,H), sl(n|n,H) and HQ(n). We recall

that su∗(2n) is the set of 2n × 2n matrices of the form

(
Xn Yn
−Y ∗

n X∗
n

)
such that Xn, Yn

are matrices of order n and and tr(Xn) + tr(X∗
n) = 0 and so∗(2n) is the set of 2n × 2n

matrices of the form

(
Xn Yn
−Y ∗

n X∗
n

)
such that Xn and Yn are antisymmetric and hermitian

complex matrices of order n respectively.

For more details, see refs. [21, 32].

32 Representations: basic definitions

Definition: Let G = G0 ⊕ G1 be a classical Lie superalgebra. Let V = V0 ⊕ V1 be

a Z2-graded vector space and consider the superalgebra EndV = End0V ⊕ End1V of

endomorphisms of V. A linear representation π of G is a homomorphism of G into EndV,

that is, [[ , ]] denoting the superbracket,

π(αX) = απ(X) and π(X + Y ) = π(X) + π(Y )
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π([[X, Y ]]) = [[π(X), π(Y )]]

π(G0) ⊂ End0V and π(G1) ⊂ End1V

for all X, Y ∈ G and α ∈ C.

The vector space V is the representation space. The vector space V has the structure of

a G-module by X(~v) = π(X)~v for X ∈ G and ~v ∈ V.

The dimension (resp. superdimension) of the representation π is the dimension (resp.

graded dimension) of the vector space V:

dim π = dimV0 + dimV1

sdim π = dimV0 − dimV1

Definition: The representation π is said

- faithful if π(X) 6= 0 for all X ∈ G.

- trivial if π(X) = 0 for all X ∈ G.

Every classical Lie superalgebra has a finite dimensional faithful representation.

In particular, the representation ad : G → EndG (G being considered as a Z2-graded

vector space) such that ad (X)Y = [[X, Y ]] is called the adjoint representation of G.

33 Representations: exceptional superalgebras

33.1 Representations of F (4)

A highest weight irreducible representation of F (4) is characterized by its Dynkin labels

(→ Highest weight representations) drawn on the distinguished Dynkin diagram:

m m m m
a1 a2 a3 a4

�@ �
@

where a2, a3, a4 are positive or null integers.

For the so(7) part, a2 is the shorter root. The sl(2) representation label is hidden by

the odd root and its value is given by b = 1
3
(2a1 − 3a2 − 4a3 − 2a4). Since b has to be

a non-negative integer, this relation implies a1 to be a positive integer or half-integer.

Finally, a F (4) representation with b < 4 has to satisfy a consistency condition, that is

b = 0 a1 = a2 = a3 = a4 = 0

b = 1 not possible

b = 2 a2 = a4 = 0

b = 3 a2 = 2a4 + 1
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The eight atypicality conditions for the F (4) representations are the following:

a1 = 0 or b = 0

a1 = a2 + 1 or b = 1
3
(2 − a2 − 4a3 − 2a4)

a1 = a2 + 2a3 + 3 or b = 1
3
(6 − a2 − 2a4)

a1 = a2 + 2a3 + 2a4 + 5 or b = 1
3
(10 − a2 + 2a4)

a1 = 2a2 + 2a3 + 4 or b = 1
3
(8 + a2 − 2a4)

a1 = 2a2 + 2a3 + 2a4 + 6 or b = 1
3
(12 + a2 + 2a4)

a1 = 2a2 + 4a3 + 2a4 + 8 or b = 1
3
(16 + a2 + 4a3 + 2a4)

a1 = 3a2 + 4a3 + 2a4 + 9 or b = 1
3
(18 + 3a2 + 4a3 + 2a4)

Moreover, a necessary (but not sufficient) condition for a representation to be typical is

that b ≥ 4.

The dimension of a typical representation with highest weight Λ = (a1, a2, a3, a4) is given

by

dimV(Λ) =
32

45
(a2 + 1)(a3 + 1)(a4 + 1)(a2 + a3 + 2)(a3 + a4 + 2)(a2 + 2a3 + 3)

(a2 + a3 + a4 + 3)(a2 + 2a3 + 2a4 + 5)(a2 + 2a3 + a4 + 4)(2a1 − 3a2 − 4a3 − 2a4 − 9)

For more details, see refs. [24, 41].

33.2 Representations of G(3)

A highest weight irreducible representation of G(3) is characterized by its Dynkin labels

(→ Highest weight representations) drawn on the distinguished Dynkin diagram:

m m m
a1 a2 a3

�@ �
@

where a2, a3 are positive or null integers.

For the G(2) part, a2 is the shorter root. The sl(2) representation label is hidden by the

odd root and its value is given by b = 1
2
(a1 − 2a2 − 3a3). Since b has to be a non-negative

integer, this relation implies a1 to be a positive integer. Finally, a G(3) representation

with b < 3 has to satisfy a consistency condition, that is

b = 0 a1 = a2 = a3 = 0

b = 1 not possible

b = 2 a2 = 0
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The six atypicality conditions for the G(3) representations are the following:

a1 = 0 or b = 0

a1 = a2 + 1 or b = 1
2
(1 − a2 − 3a3)

a1 = a2 + 3a3 + 4 or b = 1
2
(4 − a2)

a1 = 3a2 + 3a3 + 6 or b = 1
2
(6 + a2)

a1 = 3a2 + 6a3 + 9 or b = 1
2
(4 + a2 + 3a3)

a1 = 4a2 + 6a3 + 10 or b = 1
2
(10 + 2a2 + 3a3)

Let us remark that the first condition corresponds to the trivial representation and the

second one is never satisfied.

Moreover, a necessary (but not sufficient) condition for a representation to be typical is

that b ≥ 3.

The dimension of a typical representation with highest weight Λ = (a1, a2, a3) is given by

dimV(Λ) =
8

15
(a2 + 1)(a3 + 1)(a2 + a3 + 2)(a2 + 3a3 + 4)(a2 + 2a3 + 3)

(2a2 + 3a3 + 5)(a1 − 2a2 − 3a3 − 5)

For more details, see refs. [24, 42].

33.3 Representations of D(2, 1;α)

A highest weight irreducible representation of D(2, 1;α) is characterized by its Dynkin

labels (→ Highest weight representations) drawn on the distinguished Dynkin diagram:

m m m
a2 a1 a3

�@

where a2, a3 are positive or null integers.

The sl(2) representation label is hidden by the odd root and its value is given by b =
1

1+α
(2a1 − a2 − αa3), which has to be a non-negative integer. Finally, a D(2, 1;α) repre-

sentation with b < 2 has to satisfy a consistency condition, that is

b = 0 a1 = a2 = a3 = 0

b = 1 α(a3 + 1) = ±(a2 + 1)

The four atypicality conditions for the D(2, 1;α) representations are the following:

a1 = 0 or b = 0

a1 = a2 + 1 or b = 1
1+α

(2 + 2a2 − αa3)

a1 = α(a3 + 1) or b = 1
1+α

(2α− a2 − αa3)

a1 = a2 + αa3 + 1 + α or b = 1
1+α

(2 + 2α+ a2 + αa3)
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The dimension of a typical representation with highest weight Λ = (a1, a2, a3) is given by

dimV(Λ) =
16

1 + α
(a2 + 1)(a3 + 1)(2a1 − a2 − αa3 − 1 − α)

For more details, see refs. [24, 47].

34 Representations: highest weight representations

Let G = G0 ⊕ G1 be a basic Lie superalgebra with Cartan subalgebra H and H∗ be

the dual of H. We assume that G 6= A(n, n) but the following results still hold for

sl(n+ 1|n+ 1). Let G = N+ ⊕H⊕N− be a Borel decomposition of G where N+ (resp.

N−) is spanned by the positive (resp. negative) root generators of G (→ Simple root

systems).

Definition: A representation π : G → EndV with representation space V is called a

highest weight representation with highest weight Λ ∈ H∗ if there exists a non-zero vector

~vΛ ∈ V such that

N+~vΛ = 0

h(~vΛ) = Λ(h)~vΛ (h ∈ H)

The G-module V is called a highest weight module, denoted by V(Λ), and the vector

~vΛ ∈ V a highest weight vector.

From now on, H is the distinguished Cartan subalgebra (→) of G with basis of gener-

ators (H1, . . . , Hr) where r = rankG and Hs denotes the Cartan generator associated to

the odd simple root. The Dynkin labels are defined by

ai = 2
(Λ, αi)

(αi, αi)
for i 6= s and as = (Λ, αs)

A weight Λ ∈ H∗ is called a dominant weight if ai ≥ 0 for all i 6= s, integral if ai ∈ Z for

all i 6= s and integral dominant if ai ∈ N for all i 6= s.

Property: A necessary condition for the highest weight representation of G with highest

weight Λ to be finite dimensional is that Λ be an integral dominant weight.

Following Kac (see ref. [24]), one defines the Kac module:

Definition: Let G be a basic Lie superalgebra with the distinguished Z-gradation

G = ⊕i∈Z Gi (→ Classical Lie superalgebras). Let Λ ∈ H∗ be an integral dominant weight

and V0(Λ) be the G0-module with highest weight Λ ∈ H∗. Consider the G-subalgebra

K = G0 ⊕N+ where N+ = ⊕i>0Gi. The G0-module V0(Λ) is extended to a K-module by
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setting N+V0(Λ) = 0. The Kac module V̄(Λ) is defined as follows:

i) if the superalgebra G is of type I (the odd part is the direct sum of two irreducible repre-

sentations of the even part), the Kac module is the induced module (→ Representations:

induced modules)

V̄(Λ) = Ind G
K V0(Λ)

ii) if the superalgebra G is of type II (the odd part is an irreducible representation

of the even part), the induced module Ind G
K V0(Λ) contains a submodule M(Λ) =

U(G)Gb+1
−ψ V0(Λ) where ψ is the longest simple root of G0 which is hidden behind the odd

simple root (that is the longest simple root of sp(2n) in the case of osp(m|2n) and the

simple root of sl(2) in the case of F (4), G(3) and D(2, 1;α)) and b = 2(Λ, ψ)/(ψ, ψ) is the

component of Λ with respect to ψ (→ Representations: orthosymplectic superalgebras,

exceptional superalgebras for explicit expressions of b). The Kac module is then defined

as the quotient of the induced module Ind G
K V0(Λ) by the submodule M(Λ):

V̄(Λ) = Ind G
K V0(Λ)/U(G)Gb+1

−ψ V0(Λ)

In case the Kac module is not simple, it contains a maximal submodule I(Λ) and the

quotient module V(Λ) = V̄(Λ)/I(Λ) is a simple module.

The fundamental result concerning the representations of basic Lie superalgebras is

the following:

Theorem:

• Any finite dimensional irreducible representation of G is of the form V(Λ) = V̄(Λ)/I(Λ)

where Λ is an integral dominant weight.

• Any finite dimensional simple G-module is uniquely characterized by its integral

dominant weight Λ: two G-modules V(Λ) and V(Λ′) are isomorphic if and only if

Λ = Λ′.

• The finite dimensional simple G-module V(Λ) = V̄(Λ)/I(Λ) has the weight decom-

position

V(Λ) =
⊕

λ≤Λ

Vλ with Vλ =
{
~v ∈ V

∣∣∣ h(~v) = λ(h)~v, h ∈ H
}

35 Representations: induced modules

The method of induced representations is an elegant and powerful way to construct

the highest weight representations (→) of the basic Lie superalgebras. This section is
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quite formal compared to the rest of the text but is fundamental for the representation

theory of the Lie superalgebras.

Let G be a basic Lie superalgebra and K be a subalgebra of G. Denote by U(G) and

U(K) the corresponding universal enveloping superalgebras (→). From a K-module V, it

is possible to construct a G-module in the following way. The vector space V is naturally

extended to a U(K)-module. One considers the factor space U(G) ⊗U(K) V consisting of

elements of U(G) ⊗ V such that the elements h ⊗ ~v and 1 ⊗ h(~v) have been identified

for h ∈ K and ~v ∈ V. This space acquires the structure of a G-module by setting

g(u⊗ ~v) = gu⊗ ~v for u ∈ U(G), g ∈ G and ~v ∈ V.

Definition: The G-module U(G) ⊗U(K) V is called induced module from the K-module

V and denoted by Ind G
K V.

Theorem: Let K′ and K′′ be subalgebras of G such that K′′ ⊂ K′ ⊂ G. If V is a

K′′-module, then

Ind G
K′ (Ind K′

K′′ V) = Ind G
K′′ V

Theorem: Let G be a basic Lie superalgebra, K be a subalgebra of G such that

G0 ⊂ K and V a K-module. If {f1, . . . , fd} denotes a basis of odd generators of G/K,

then Ind G
K V =

⊕
1≤i1<...<ik≤d fi1 . . . fikV is a direct sum of subspaces and dim Ind G

K V =

2d dimV.

Example: Consider a basic Lie superalgebra G of type I (the odd part is the direct

sum of two irreducible representations of the even part, that is G = sl(m|n) or osp(2|2n))

with Z-gradation G = G−1 ⊕ G0 ⊕ G1 (→ Classical Lie superalgebras). Take for K the

subalgebra G0 ⊕ G1. Let V0(Λ) be a G0-module with highest weight Λ, which is extended

to a K-module by setting G1V0(Λ) = 0. Since
{
G−1,G−1

}
= 0, only the completely

antisymmetric combinations of the generators of G−1 can apply on V0(Λ). In other words,

the G-module V(Λ) is obtained by

V =
∧

(G−1) ⊗ V0 ≃ U(G−1) ⊗ V0

where
∧

(G−1) =
dimG−1⊕

k=0

∧k(G−1)

is the exterior algebra over G−1 of dimension 2d if d = dimG−1.

It follows that V(Λ) is built from V0(Λ) by induction of the generators of G/K:

V = U(G−1) ⊗ V0 = U(G) ⊗U(G0⊕G1) V0 = Ind G
G0⊕G1

V0
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Since dim∧k(G−1) =
(
d
k

)
, the dimension of V is given by

dimV(Λ) =
d∑

k=0

(
d

k

)
dimV0(Λ) = 2d dimV0(Λ)

while its superdimension (→ Representations: basic definitions) is identically zero

sdimV(Λ) =
d∑

k=0

(−1)k
(
d

k

)
dimV0(Λ) = 0

Let us stress that such a G-module is not always an irreducible one.

For more details, see refs. [23, 24, 49].

36 Representations: orthosymplectic superalgebras

A highest weight irreducible representation of osp(M |N) is characterized by its Dynkin

labels (→ Highest weight representations) drawn on the distinguished Dynkin diagram.

The different diagrams are the following:

• osp(2m+ 1|2n) with Λ = (a1, . . . , am+n)

m m m m m m
a1 an−1 an an+1 am+n−1 am+n

�@ @
�

• osp(2|2n) with Λ = (a1, . . . , an+1)

m m m m
a1 a2 an an+1

�@ �
@

• osp(2m|2n) with Λ = (a1, . . . , am+n)

m m m m m
a1 an−1 an an+1 am+n−2

�@
�

�

@
@

mam+n−1

m am+n

• osp(1|2n) with Λ = (a1, . . . , an)

m m }
a1 an−1 an

@
�
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Notice that the superalgebra osp(2|2n) is of type I, while the superalgebras osp(2m +

1|2n) and osp(2m|2n) are of type II: in the first case, the odd part is the direct sum of

two irreducible representations of the even part, in the second case it is an irreducible

representation of the even part. The numbers ai are constrained to satisfy the following

conditions:

an is integer or half-integer for osp(2m+ 1|2n) and osp(2m|2n),

a1 is an arbitrary complex number for osp(2|2n).

The coordinates of Λ in the root space characterize a so(M) ⊕ sp(2n) representation

(M = 2m or M = 2m + 1). The so(M) representation can be directly read on the Kac-

Dynkin diagram, but the longest simple root of sp(2n) is hidden behind the odd simple

roots. From the knowledge of (an, . . . , am+n), it is possible to deduce the component b

that Λ would have with respect to the longest simple root:

in the osp(2m+ 1|2n) case, one has b = an − an+1 − . . .− am+n−1 − 1
2
am+n

in the osp(2m|2n) case, one has b = an − an+1 − . . . − am+n−2 − 1
2
(am+n−1 + am+n)

Notice that the number b has to be a non-negative integer.

The highest weight of a finite representation of osp(M |2n) belongs therefore to a so(M)⊕
sp(2n) representation and thus one must have the following consistency conditions:

b ≥ 0

for osp(2m+ 1|2n), an+b+1 = . . . = an+m = 0 if b ≤ m− 1

for osp(2m|2n), an+b+1 = . . . = an+m = 0 if b ≤ m− 2 and an+m−1 = an+m if b = m− 1

We give hereafter the atypicality conditions of the representations for the superalgebras of

the orthosymplectic series. If at least one of these conditions is satisfied, the representation

is an atypical one. Otherwise, the representation is typical, the dimension of which is given

by the number dimV(Λ).

• superalgebras osp(2m+ 1|2n)

The atypicality conditions are

n∑

k=i

ak −
j∑

k=n+1

ak + 2n− i− j = 0

n∑

k=i

ak −
j∑

k=n+1

ak − 2
m+n−1∑

k=j+1

ak − am+n − 2m− i+ j + 1 = 0

with 1 ≤ i ≤ n ≤ j ≤ m+ n− 1

The dimensions of the typical representations are given by

dim


 m m m m m m

a1 an−1 an an+1 an+m−1 an+m

�@ @
�


 =
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2(2m+1)n × dim



 m m m

a1 an−1 b−m− 1
2

@
�



 × dim



 m m m

a1 an+m−1 an+m

�
@





that is

dimV(Λ) = 2(2m+1)n
∏

1≤i<j≤n−1

j − i+ 1 +
∑j
k=i ak

j − i+ 1

∏

n+1≤i≤j≤m+n−1

j − i+ 1 +
∑j
k=i ak

j − i+ 1

∏

1≤i≤j≤n

∑j−1
k=i ak + 2(

∑n
k=j ak −

∑m+n−1
k=n+1 ak) − am+n + 2n− 2m− i− j + 1

2n− i− j + 2

∏

n+1≤i≤j≤m+n−1

∑j−1
k=i ak + 2

∑m+n−1
k=j ak + am+n + 2m− i− j + 1

2m− i− j + 1

• superalgebras osp(2|2n)

The atypicality conditions are

a1 −
i∑

k=2

ak − i+ 1 = 0

a1 −
i∑

k=2

ak − 2
n+1∑

k=i+1

ak − 2n+ i− 1 = 0

with 1 ≤ i ≤ n

The dimensions of the typical representations are given by

dim



 m m m m

a1 a2 an an+1

�@ �
@



 = 2n × dim



 m m m

a2 an an+1

�
@





that is

dimV(Λ) = 22n
∏

2≤i≤j≤n

ai + . . .+ aj + j − i+ 1

j − i+ 1

∏

2≤i≤j≤n+1

ai + . . .+ aj−1 + 2aj + . . .+ 2an+1

2n− i− j + 4

• superalgebras osp(2m|2n)

The atypicality conditions are

n∑

k=i

ak −
j∑

k=n+1

ak + 2n− i− j = 0

with 1 ≤ i ≤ n ≤ j ≤ m+ n− 1
n∑

k=i

ak −
m+n−2∑

k=n+1

ak − am+n + n−m− i+ 1 = 0

with 1 ≤ i ≤ n
n∑

k=i

ak −
j∑

k=n+1

ak − 2
m+n−2∑

k=j+1

ak − am+n−1 − am+n − 2m− i+ j + 2 = 0

with 1 ≤ i ≤ n ≤ j ≤ m+ n− 2
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The dimensions of the typical representations are given by

dim



 m m m m m

a1 an−1 an an+1 am+n−2

�@
��

HH

man+m−1

m an+m



 =

22mn × dim


 m m m

a1 an−1 b−m

�
@


 × dim


 m m

an+1 an+m−2

��

HH

man+m−1

m an+m




and one obtains the same formula for dimV(Λ) as for osp(2m+ 1|2n).

• superalgebras osp(1|2n)

The superalgebras osp(1|2n) carry the property of having only typical representation (the

Dynkin diagram of osp(1|2n) does not contain any grey dot). One has

dimV(Λ) =
∏

1≤i<j≤n

ai + . . .+ aj + 2(aj+1 + . . .+ an−1) + an + 2n− i− j

2n− i− j

∏

1≤i≤n

2(ai + . . .+ an−1) + an + 2n− 2i+ 1

2n− 2i+ 1

Moreover, the representations of osp(1|2n) can be put in a one-to-one correspondence

with those of so(2n+ 1) [36]. More precisely, one has

dim


 m m }

a1 an−1 an
@
�


 = dim


 m m m
a1 an−1 an

@
�




as well as

sdim


 m m }

a1 an−1 an
@
�


 =

1

2n−1
dim


 m m

a1 an−2

��

HH

m an−1

man−1+
an + 1




(let us recall that dimV = dimV0 + dimV1 while sdimV = dimV0 − dimV1).

For more details, see refs. [14, 15, 24, 28, 36].

37 Representations: reducibility

Definition: Let G be a classical Lie superalgebra. A representation π : G → EndV
is called irreducible if the G-module V has no G-submodules except trivial ones. The G-

module V is then called a simple module. Otherwise the representation π is said reducible.

In that case, one has V = V ′⊕V ′′, V ′′ being a complementary subspace of V ′ in V and the

G-submodule V ′ is an invariant subspace under π. If the subspace V ′′ is also an invariant
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subspace under π, the representation π is said completely reducible. The G-module V is

then called a semi-simple module.

Definition: Two representations π and π′ of G being given, with representation spaces

V and V ′, one defines the direct sum π⊕π′ with representation space V⊕V ′ and the direct

(or tensor) product π ⊗ π′ with representation space V ⊗ V ′ of the two representations.

The action of the representations π ⊕ π′ and π ⊗ π′ on the corresponding representation

spaces is given by, for X ∈ G, ~v ∈ V and ~v′ ∈ V ′:

(π ⊕ π′)(X)~v ⊕ ~v′ = π(X)~v ⊕ π′(X)~v′

(π ⊗ π′)(X)~v ⊗ ~v′ = π(X)~v ⊗ ~v′ + ~v ⊗ π′(X)~v′

The representations π and π′ of G being irreducible, the tensor product π ⊗ π′ is

a representation which is in general reducible. Notice however that, contrary to the

Lie algebra case, in the Lie superalgebra case, the tensor product of two irreducible

representations is not necessary completely reducible. In fact, one has the following

theorem:

Theorem (Djokovic-Hochschild): The only Lie superalgebras for which all finite di-

mensional representations are completely reducible are the direct products of osp(1|2n)

superalgebras and semi-simple Lie algebras.

38 Representations: star and superstar representations

The star and superstar representations of a classical Lie superalgebra are the gener-

alization of the hermitian representations of a simple Lie algebra. The importance of

the hermitian representations for simple Lie algebras comes from the fact that the finite

dimensional representations of a compact simple Lie algebra are equivalent to hermitian

representations.

Let G = G0 ⊕ G1 be a classical Lie superalgebra. One can define two different adjoint

operations as follows.

Definition: An adjoint operation in G, denoted by †, is a mapping from G into G such

that:

i) X ∈ Gi ⇒ X† ∈ Gi for i = 0, 1,

ii) (αX + βY )† = ᾱX† + β̄Y †,

iii)
[[
X, Y

]]†
=
[[
Y †, X†

]]
,

iv) (X†)† = X,

where X, Y ∈ G and α, β ∈ C.
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Definition: A superadjoint operation in G, denoted by ‡, is a mapping from G into G
such that:

i) X ∈ Gi ⇒ X‡ ∈ Gi for i = 0, 1,

ii) (αX + βY )‡ = ᾱX‡ + β̄Y ‡,

iii)
[[
X, Y

]]‡
= (−1)degX. deg Y

[[
Y ‡, X‡

]]
,

iv) (X‡)‡ = (−1)degXX,

where X, Y ∈ G and α, β ∈ C.

The definitions of the star and superstar representations follow immediately.

Definition: Let G be a classical Lie superalgebra and π a representation of G acting in

a Z2-graded vector space V. Then π is a star representation of G if π(X†) = π(X)† and

a superstar representation of G if π(X‡) = π(X)‡ for all X ∈ G.

The following properties hold:

Property:

1. Any star representation π of G in a graded Hilbert space V is completely reducible.

2. Any superstar representation π of G in a graded Hilbert space V is completely

reducible.

3. The tensor product π ⊗ π′ of two star representations (resp. to superstar represen-

tations) π and π′ is a star representation (resp. a superstar representation).

4. The tensor product π⊗π′ of two star representations π and π′ is completely reducible.

Let us emphasize that the last property does not hold for superstar representations (that is

the tensor product of two superstar representations is in general not completely reducible).

The classes of star and superstar representations of the classical Lie superalgebras are

the following:

- the superalgebra A(m,n) has two classes of star representations and two classes of

superstar representations.

- the superalgebras B(m,n) and D(m,n) have two classes of superstar representations.

- the superalgebra C(n+ 1) has either two classes of star representations and two classes

of superstar representations, or one class of superstar representations, depending on the

definition of the adjoint operation in the Lie algebra part.

- the superalgebras F (4) and G(3) have two classes of superstar representations.

- the superalgebra P (n) has neither star nor superstar representations.

- the superalgebra Q(n) has two classes of star representations.

For more details, see ref. [30].

57



39 Representations: typicality and atypicality

Any representation of a basic Lie superalgebra G = G0 ⊕G1 can be decomposed into a

direct sum of irreducible representations of the even subalgebra G0. The generators asso-

ciated to the odd roots will transform a vector basis belonging to a certain representation

of G0 into a vector in another representation of G0 (or into the null vector), while the

generators associated to the even roots will operate inside an irreducible representation

of G0.

The presence of odd roots will have another important consequence in the represen-

tation theory of superalgebras. Indeed, one might find in certain representations weight

vectors, different from the highest one specifying the representation, annihilated by all the

generators corresponding to positive roots. Such vector have, of course, to be decoupled

from the representation. Representations of this kind are called atypical, while the other

irreducible representations not suffering this pathology are called typical.

More precisely, let G = G0 ⊕G1 be a basic Lie superalgebra with distinguished Cartan

subalgebra H. Let Λ ∈ H∗ be an integral dominant weight. Denote the root system of

G by ∆ = ∆0 ∪ ∆1. One defines ∆0 as the subset of roots α ∈ ∆0 such that α/2 /∈ ∆1

and ∆1 as the subset of roots α ∈ ∆1 such that 2α /∈ ∆0. Let ρ0 be the half-sum of the

roots of ∆+
0
, ρ̄0 the half-sum of the roots of ∆̄+

0
, ρ1 the half-sum of the roots of ∆+

1
, and

ρ = ρ0 − ρ1.

Definition: The representation π with highest weight Λ is called typical if

(Λ + ρ, α) 6= 0 for all α ∈ ∆
+
1

The highest weight Λ is then called typical.

If there exists some α ∈ ∆
+
1 such that (Λ+ρ, α) = 0, the representation π and the highest

weight Λ are called atypical. The number of distinct elements α ∈ ∆
+
1 for which Λ is

atypical is the degree of atypicality of the representation π. If there exists one and only

one α ∈ ∆
+
1 such that (Λ + ρ, α) = 0, the representation π and the highest weight Λ are

called singly atypical.

Denoting as before V̄(Λ) the Kac module (→ Representations: highest weight rep-

resentations) corresponding to the integral dominant weight Λ, one has the following

theorem:

Theorem: The Kac module V̄(Λ) is a simple G-module if and only if the highest weight

Λ is typical.
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Properties:

1) All the finite dimensional representations of B(0, n) are typical.

2) All the finite dimensional representations of C(n+1) are either typical or singly atypical.

Let V be a typical finite dimensional representation of G. Then the dimension of V(Λ)

is given by

dimV(Λ) = 2
dim∆+

1

∏

α∈∆+

0

(Λ + ρ, α)

(ρ0, α)

and

dimV0(Λ) − dimV1(Λ) = 0 if G 6= B(0, n)

dimV0(Λ) − dimV1(Λ) =
∏

α∈∆̄+

0

(Λ + ρ, α)

(ρ̄0, α)
=

∏

α∈∆̄+

0

(Λ + ρ, α)

(ρ, α)
if G = B(0, n)

It follows that the fundamental representations of sl(m|n) and osp(m|n) (of dimension

m+n) and the adjoint representations of the basic Lie superalgebras G 6= sl(1|2), osp(1|2n)

(of dimension dimG) are atypical ones (since dimV0 − dimV1 6= 0).

For more details, see refs. [23, 24].

40 Representations: unitary superalgebras

A highest weight irreducible representation of sl(m|n) is characterized by its Dynkin

labels (→ Highest weight representations) drawn on the distinguished Dynkin diagram.

The different diagrams are the following:

m m m m m
a1 am−1 am am+1 am+n−1

�@

The numbers ai are constrained:

ai are non-negative integer for i = 1, . . . , m− 1, m+ 1, . . . , m+ n− 1,

am is an arbitrary real number.

For the atypical representations, the numbers ai have to satisfy one of the following

atypicality conditions:

j∑

k=m+1

ak −
m−1∑

k=1

ak − am − 2m+ i− j = 0

with 1 ≤ i ≤ m ≤ j ≤ m+ n− 1.
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Otherwise, the representation under consideration is a typical one. Then its dimension

is given by

dimV(Λ) = 2(m+1)(n+1)
∏

1≤i≤j≤m

ai + . . .+ aj + j − i+ 1

j − i+ 1

∏

m+2≤i≤j≤m+n+1

ai + . . .+ aj + j − i+ 1

j − i+ 1

For more details, see refs. [14, 16, 24].

41 Roots, root systems

Let G = G0 ⊕ G1 be a classical Lie superalgebra of dimension n. Let H be a Cartan

subalgebra of G. The superalgebra G can be decomposed as follows:

G =
⊕

α

Gα

where

Gα =
{
x ∈ G

∣∣∣
[
h, x

]
= α(h)x, h ∈ H

}

The set

∆ =
{
α ∈ H∗

∣∣∣ Gα 6= 0
}

is by definition the root system of G. A root α is called even (resp. odd) if Gα ∩ G0 6= ∅
(resp. Gα ∩ G1 6= ∅). The set of even roots is denoted by ∆0 : it is the root system of

the even part G0 of G. The set of odd roots is denoted by ∆1 : it is the weight system

of the representation of G0 in G1. One has ∆ = ∆0 ∪ ∆1. Notice that a root can be both

even and odd (however this only occurs in the case of the superalgebra Q(n)). The vector

space spanned by all the possible roots is called the root space. It is the dual H∗ of the

Cartan subalgebra H as vector space.

Except for A(1, 1), P (n) and Q(n), using the invariant bilinear form defined on the su-

peralgebra G, one can define a bilinear form on the root space H∗ by (αi, αj) = (Hi, Hj)

where the Hi form a basis of H (→ Cartan matrix, Killing form).

One has the following properties.

Properties:

1. G(α=0) = H except for Q(n).

2. dimGα = 1 when α 6= 0 except for A(1, 1), P (2), P (3) and Q(n).

3. Except for A(1, 1), P (n) and Q(n), one has
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•
[[
Gα,Gβ

]]
6= 0 if and only if α, β, α+ β ∈ ∆

• (Gα,Gβ) = 0 for α + β 6= 0

• if α ∈ ∆ (resp. ∆0, ∆1), then −α ∈ ∆ (resp. ∆0, ∆1)

• α ∈ ∆ =⇒ 2α ∈ ∆ if and only if α ∈ ∆1 and (α, α) 6= 0

The roots of a basic Lie superalgebra do not satisfy many properties of the roots of a

simple Lie algebra. In particular, the bilinear form on H∗ has in general pseudo-euclidean

signature (except in the case of B(0, n)). The roots of a basic Lie superalgebra can be

classified into three classes:

- roots α such that (α, α) 6= 0 and 2α is not a root. Such roots will be called even or

bosonic roots.

- roots α such that (α, α) 6= 0 and 2α is still a root (of bosonic type). Such roots will be

called odd or fermionic roots of non-zero length.

- roots α such that (α, α) = 0. Such roots will be called odd or fermionic roots of zero

length (or also isotropic odd roots).

The root systems of the basic Lie superalgebras are given in Table IV.

superalgebra even root system ∆0 odd root system ∆1

A(m− 1, n− 1) εi − εj, δi − δj ±(εi − δj)

B(m,n) ±εi ± εj, ±εi, ±δi ± δj , ±2δi ±εi ± δj , ±δi
B(0, n) ±δi ± δj , ±2δi ±δi
C(n+ 1) ±δi ± δj , ±2δi ±ε± δi

D(m,n) ±εi ± εj, ±δi ± δj, ±2δi ±εi ± δj

F (4) ±δ, ±εi ± εj, ±εi 1
2
(±ε1 ± ε2 ± ε3 ± δ)

G(3) ±2δ, ±εi, εi − εj ±δ, ±εi ± δ

D(2, 1;α) ±2εi ±ε1 ± ε2 ± ε3

Table IV: Root systems of the basic Lie superalgebras.

For the superalgebras A(m− 1, n− 1), B(m,n), D(m,n), the indices i 6= j run from 1 to

m for the vectors ε and from 1 to n for the vectors δ. For the superalgebras C(n+1), the

indices i 6= j run from 1 to n for the vectors δ. For the superalgebras F (4), G(3), D(2, 1;α),

the indices i 6= j run from 1 to 3 for the vectors ε, with the condition ε1 + ε2 + ε3 = 0 in

the case of G(3) (see Tables 4 to 12 for more details).

→ Cartan matrices, Killing form, Simple root systems.

For more details, see refs. [21, 22].
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42 Schur’s lemma

The Schur’s lemma is of special importance. Let us stress however that in the super-

algebra case it takes a slightly different form than in the algebra case [22].

Theorem: Let G = G0 ⊕ G1 be a basic Lie superalgebra and π be an irreducible

representation of G in a complex linear vector space V. Let

C(π) =
{
φ : V → V

∣∣∣
[[
π(X), φ

]]
= 0 , ∀X ∈ G

}

where φ ∈ EndV. Then either

• C(π) is a multiple of the identity operator I.

• If dimG0 = dimG1, C(π) =
{
I, σ

}
where σ is a non-singular operator in G permuting

G0 and G1.

43 Serre-Chevalley basis

The Serre presentation of a Lie algebra consists to describe the algebra in terms of

simple generators and relations (called the Serre relations), the only parameters being

the entries of the Cartan matrix of the algebra. For the basic Lie superalgebras, the

presentation is quite similar to the Lie algebra case but with some subtleties.

Let G be a basic Lie superalgebra of rank r with Cartan subalgebra H and simple root

system ∆0 and denote by E±
i (1 ≤ i ≤ r) the raising/lowering generators associated to

the simple root system ∆0. If τ is a subset of I =
{
1, . . . , r

}
, the Z2-gradation is defined

by degE±
i = 0 if i /∈ τ and degE±

i = 1 if i ∈ τ . The defining commutation relations are

[
Hi, Hj

]
= 0

[
Hi, E

±
j

]
= ±aijE±

j
[
E+
i , E

−
j

]
= δijHi for i /∈ τ

{
E+
i , E

−
j

}
= δijHi for i ∈ τ

and the Serre relations read as

(adE±
i )1−ãijE±

j =
1−ãij∑

n=0

(−1)n
(

1 − ãij
n

)
(E±

i )1−ãij−nE±
j (E±

i )n = 0

where the matrix Ã = (ãij) is deduced from the Cartan matrix A = (aij) of G by replacing

all its positive off-diagonal entries by −1.

In the case of superalgebras however, the description given by these Serre relations

leads in general to a bigger superalgebra than the superalgebra under consideration. It is

necessary to write supplementary relations involving more than two generators, in order to
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quotient the bigger superalgebra and recover the original one. As one can imagine, these

supplementary conditions appear when one deals with odd roots of zero length (that is

aii = 0).

The supplementary conditions depend on the different kinds of vertices which appear

in the Dynkin diagrams. For the superalgebras A(m,n) with m,n ≥ 1 and B(m,n),

C(n+ 1), D(m,n), the vertices can be of the following type:

v m v�@

m− 1 m m+ 1

v m m�@

m− 1 m m+ 1

�
@ v m }�@

m− 1 m m+ 1

�
@

type I type IIa type IIb

vm− 1
���

HHH

m m

mm+ 1

�@

�@ m m m�@ �@

m− 1 m m+ 1

�
@

v m m m�@

m− 2 m− 1 m m+ 1

�
@

type III type IV type V

where the small black dots represent either white dots associated to even roots or grey

dots associated to isotropic odd roots.

The supplementary conditions take the following form:

- for the type I, IIa and IIb vertices:

(adE±
m)(adE±

m+1)(adE±
m)E±

m−1 = (adE±
m)(adE±

m−1)(adE±
m)E±

m+1 = 0

- for the type III vertex:

(adE±
m)(adE±

m+1)E
±
m−1 − (adE±

m+1)(adE±
m)E±

m−1 = 0

- for the type IV vertex:

(adE±
m)
([

(adE±
m+1)(adE±

m)E±
m−1, (adE±

m)E±
m−1

])
= 0

- for the type V vertex:

(adE±
m)(adE±

m−1)(adE±
m)(adE±

m+1)(adE±
m)(adE±

m−1)E
±
m−2 = 0

For A(m,n) with m = 0 or n = 0, F (4) and G(3), it is not necessary to impose supple-

mentary conditions.

For more details, see refs. [8, 26, 39, 52].

44 Simple root systems

Let G = G0⊕G1 be a basic Lie superalgebra with Cartan subalgebra H and root system

∆ = ∆0∪∆1. Then G admits a Borel decomposition G = N+⊕H⊕N− where N+ and N−

are subalgebras such that
[
H,N+

]
⊂ N+ and

[
H,N−

]
⊂ N− with dimN+ = dimN−.
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If G = H⊕
α Gα is the root decomposition of G, a root α is called positive if Gα∩N+ 6= ∅

and negative if Gα ∩ N− 6= ∅. A root is called simple if it cannot be decomposed into a

sum of positive roots. The set of all simple roots is called a simple root system of G and

is denoted here by ∆0.

Let ρ0 be the half-sum of the positive even roots, ρ1 the half-sum of the positive odd

roots and ρ = ρ0−ρ1. Then one has for a simple root αi, (ρ, αi) = 1
2
(αi, αi). In particular,

one has (ρ, αi) = 0 if αi ∈ ∆0
1

with (αi, αi) = 0.

We will call B = H⊕N+ a Borel subalgebra of G. Notice that such a Borel subalgebra

is solvable but not maximal solvable. Indeed, adding to such a Borel subalgebra B a

negative simple isotropic root generator (that is a generator associated to an odd root

of zero length, → Roots), the obtained subalgebra is still solvable since the superalgebra

sl(1, 1) is solvable. However, B contains a maximal solvable subalgebra B0 of the even

part G0.

In general, for a basic Lie superalgebra G, there are many inequivalent classes of

conjugacy of Borel subalgebras (while for the simple Lie algebras, all Borel subalgebras

are conjugate). To each class of conjugacy of Borel subalgebras of G is associated a

simple root system ∆0. Hence, contrary to the Lie algebra case, to a given basic Lie

superalgebra G will be associated in general many inequivalent simple root systems, up to

a transformation of the Weyl group W (G) of G (under a transformation of W (G), a simple

root system will be transformed into an equivalent one with the same Dynkin diagram).

Let us recall that the Weyl group W (G) of G is generated by the Weyl reflections ω with

respect to the even roots:

ωα(β) = β − 2
(α, β)

(α, α)
α

where α ∈ ∆0 and β ∈ ∆.

For the basic Lie superalgebras, one can extend the Weyl group W (G) to a larger

group by adding the following transformations (called generalized Weyl transformations)

associated to the odd roots of G [10, 25]. For α ∈ ∆1, one defines:

ωα(β) = β − 2
(α, β)

(α, α)
α if (α, α) 6= 0

ωα(β) = β + α if (α, α) = 0 and (α, β) 6= 0

ωα(β) = β if (α, α) = 0 and (α, β) = 0

ωα(α) = −α

Notice that the transformation associated to an odd root α of zero length cannot be lifted

to an automorphism of the superalgebra since ωα transforms even roots into odd ones and

vice-versa, and the Z2-gradation would not be respected.

64



The generalization of the Weyl group for a basic Lie superalgebra G gives a method

for constructing all the simple root systems of G and hence all the inequivalent Dynkin

diagrams: a simple root system ∆0 being given, from any root α ∈ ∆0 such that (α, α) = 0,

one constructs the simple root system ωα(∆
0) and repeats the procedure on the obtained

system until no new basis arises.

In the set of all inequivalent simple root systems of a basic Lie superalgebra, there is

one simple root system that plays a particular role: the distinguished simple root system.

Definition: For each basic Lie superalgebra, there exists a simple root system for which

the number of odd roots is the smallest one. It is constructed as follows: the even simple

roots are given by the simple root system of the even part G0 and the odd simple root is

the lowest weight of the representation G1 of G0. Such a simple root system is called the

distinguished simple root system.

Example:

Consider the basic Lie superalgebra sl(2|1) with Cartan generators H,Z and root gener-

ators E±, F±, F̄±. The root system is given by ∆ = {±(ε1 − ε2),±(ε1 − δ),±(ε2 − δ)}.
One can find two inequivalent Borel subalgebras, namely B′ = {H,Z,E+, F̄+, F̄−} and

B′′ = {H,Z,E+, F̄+, F+}, with positive root systems ∆′+ = {ε1 − ε2, ε1 − δ, ε2 − δ} and

∆′′+ = {ε1 − ε2, ε1 − δ,−ε2 + δ} respectively. The corresponding simple root systems are

∆′0 = {ε1−ε2, ε2−δ} (called distinguished simple root system) and ∆′′0 = {ε1−δ,−ε2+δ}
(called fermionic simple root system). The fermionic simple root system ∆′′0 is obtained

from the distinguished one ∆′0 by the Weyl transformation associated to the odd root

ε2 − δ: ωε2−δ(ε2 − δ) = −ε2 + δ and ωε2−δ(ε1 − ε2) = ε1 − δ.

We give in Table V the list of the distinguished simple root systems of the basic Lie

superalgebras in terms of the orthogonal vectors εi and δi. For more details, see ref. [21].

superalgebra G distinguished simple root system ∆0

A(m− 1, n− 1) δ1 − δ2, . . . , δn−1 − δn, δn − ε1, ε1 − ε2, . . . , εm−1 − εm

B(m,n) δ1 − δ2, . . . , δn−1 − δn, δn − ε1, ε1 − ε2, . . . , εm−1 − εm, εm

B(0, n) δ1 − δ2, . . . , δn−1 − δn, δn

C(n) ε− δ1, δ1 − δ2, . . . , δn−1 − δn, 2δn

D(m,n) δ1 − δ2, . . . , δn−1 − δn, δn − ε1, ε1 − ε2, . . . , εm−1 − εm, εm−1 + εm

F (4) 1
2
(δ − ε1 − ε2 − ε3), ε3, ε2 − ε3, ε1 − ε2

G(3) δ + ε3, ε1, ε2 − ε1

D(2, 1;α) ε1 − ε2 − ε3, 2ε2, 2ε3

Table V: Distinguished simple root systems of the basic Lie superalgebras.
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45 Simple and semi-simple Lie superalgebras

Definition: Let G = G0 ⊕ G1 be a Lie superalgebra.

The Lie superalgebra G is called simple if it does not contain any non-trivial ideal. The

Lie superalgebra G is called semi-simple if it does not contain any non-trivial solvable

ideal.

A necessary condition for a Lie superalgebra G = G0 ⊕ G1 to be simple is that the

representation of G0 on G1 is faithful and
{
G1,G1

}
= G0. If the representation of G0 on G1

is irreducible, then G is simple.

Recall that if A is a semi-simple Lie algebra, then it can be written as the direct sum

of simple Lie algebras Ai: A = ⊕iAi. It is not the case for superalgebras. However, the

following properties hold.

Properties:

1. If G is a Lie superalgebra and I is the maximal solvable ideal, then the quotient G/I
is a semi-simple Lie superalgebra. However, opposed to the case of Lie algebras, one

cannot write here G = Ḡ∈ I where Ḡ is a direct sum of simple Lie superalgebras.

2. If G is a Lie superalgebra with a non-singular Killing form, then G is a direct sum

of simple Lie superalgebras with non-singular Killing form.

3. If G is a Lie superalgebra whose all its finite dimensional representations are com-

pletely reducible, then G is a direct sum of simple Lie algebras and osp(1|n) simple

superalgebras.

4. Let G = G0⊕G1 be a Lie superalgebra such that its even part G0 is a semi-simple Lie

algebra. Then G is an elementary extension of a direct sum of Lie algebras or one

of the Lie superalgebras A(n, n), B(m,n), D(m,n), D(2, 1;α), F (4), G(3), P (n),

Q(n), DerQ(n) or G(S1, . . . , Sr;L). (For the definition of G(S1, . . . , Sr;L), see ref.

[21]).

The elementary extension of a Lie superalgebra G = G0 ⊕ G1 is defined as G∈ I
where I is an odd commutative ideal and

{
G1, I

}
= 0.

For more details, see refs. [21, 34].

46 Spinors (in the Lorentz group)

The algebra of the Lorentz group is o(1, 3) whose generators Mµν = −Mνµ satisfy the
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commutation relations (µ, ν = 0, 1, 2, 3)

[
Mµν ,Mρσ

]
= i(−gνσMµρ + gνρMµσ + gµσMνρ − gµρMνσ)

where the metric is gµν = 2δµ0δν0 − δµν = diag(1,−1,−1,−1) and gµσgσν = δµν .

If we define Ji = 1
2
εijkM

jk and Ki = M0i, we have

[
Ji, Jj

]
= i εijk Jk

[
Ki, Kj

]
= −i εijk Jk

[
Ji, Ki

]
= i εijk Kk

where i, j, k = 1, 2, 3 and εijk is the completely antisymmetric rank three tensor, ε123 = 1.

Defining Mi = 1
2
(Ji + iKi) and Ni = 1

2
(Ji− iKi), the Lorentz algebra can be rewritten as:

[
Mi,Mj

]
= i εijk Mk

[
Ni, Nj

]
= i εijk Nk

[
Mi, Nj

]
= 0

The finite dimensional irreducible representations of the Lorentz group are labelled by

a pair of integers or half-integers (m,n). These representations are non-unitary since the

generators Mi and Ni can be represented by finite dimensional Hermitian matrices while

Ji and Ki are not. Because of the relation Ji = Mi + Ni, the combination m + n is the

spin of the representation. Representations with half-integer spin (resp. integer spin) are

called spinorial (resp. tensorial) representations. The two representations (1/2, 0) and

(0, 1/2) are the fundamental spinorial representations: all the spinorial and tensorial rep-

resentations of the Lorentz group can be obtained by tensorialization and symmetrization

of these.

The σi being the Pauli matrices, one has in the representation (1/2, 0)

Mi = 1
2
σi and Ni = 0 that is Ji = 1

2
σi and Ki = − i

2
σi

and in the representation (0, 1/2)

Mi = 0 and Ni = 1
2
σi that is Ji = 1

2
σi and Ki = i

2
σi

The vectors of the representation spaces of the spinorial representations are called (Weyl)

spinors under the Lorentz group. Define σµ = (I, σi) and σ̄µ = (I,−σi). Under a Lorentz

transformation Λµ
ν , a covariant undotted spinor ψα (resp. contravariant undotted spinor

ψα) transforms as

ψα 7→ S β
α ψβ and ψα 7→ ψβ (S−1) α

β
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where the matrix S is related to the matrix Λµ
ν by

Λµ
ν = 1

2
tr(SσνS

†σ̄µ)

The spinors ψα (or ψα) transform as the (1/2, 0) representation of the Lorentz group.

Under a Lorentz transformation Λµ
ν , a covariant dotted spinor ψ̄α̇ (resp. contravariant

dotted spinor ψ̄α̇) transforms as

ψ̄α̇ 7→ ψ̄β̇ (S†)β̇α̇ and ψ̄α̇ 7→ (S†−1
)α̇
β̇
ψ̄β̇

where the matrix S is related to the matrix Λµ
ν by

Λµ
ν = 1

2
tr((S†)−1σ̄νS

−1σµ)

The spinors ψ̄α̇ (or ψ̄α̇) transform as the (0, 1/2) representation of the Lorentz group.

The relation between covariant and contravariant spinors is given by means of the two-

dimensional Levi-Civita undotted tensors εαβ, ε
αβ and dotted tensors εα̇β̇ , ε

α̇β̇ such that

εαβ = εαβ = −εα̇β̇ = −εα̇β̇ and ε12 = 1:

ψα = εαβψβ , ψα = ψβεβα , ψ̄α̇ = ψ̄β̇ε
β̇α̇ , ψ̄α̇ = εα̇β̇ψ̄

β̇

Notice that ψ̄α̇ = (ψα)∗ and ψ̄α̇ = (ψα)
∗ where the star denotes the complex conjugation,

and also εα̇β̇ = −(εαβ)
∗.

Finally, the rule for contracting undotted and dotted spinor indices is the following:

ψζ ≡ ψαζα = −ψαζα and ψ̄ζ̄ ≡ ψ̄α̇ζ̄
α̇ = −ψ̄α̇ζ̄α̇

The space inversion leaves the rotation generators Ji invariant but changes the sign

of the boost generators Ki. It follows that under the space inversion, the undotted Weyl

spinors are transformed into dotted ones and vice-versa. On the (reducible) representation

(1/2, 0)⊕(0, 1/2), the space inversion acts in a well-defined way. The corresponding vectors

in the representation space are called Dirac spinors. In the Weyl representation, the Dirac

spinors are given by

ΨD =

(
ψα
χ̄α̇

)

Under a Lorentz transformation Λµ
ν , a Dirac spinor ΨD transforms as

ΨD 7→ L ΨD =

(
S(Λµ

ν) 0
0 S(Λµ

ν
†)−1

)(
ψα
χ̄α̇

)
=

(
S(Λµ

ν) ψα
S(Λµ

ν
†)−1 χ̄α̇

)

The generators of the Lorentz group in the (1/2, 0)⊕ (0, 1/2) representation are given by

Σµν = i
2

[
γµ, γν

]
where the matrices γµ are called the Dirac matrices. They satisfy the

Clifford algebra in four dimensions:
{
γµ, γν

}
= 2gµν
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One defines also the γ5 matrix by γ5 = iγ0γ1γ2γ3 such that
{
γ5, γ

µ
}

= 0 and γ2
5 = I.

The adjoint spinor Ψ̄ and the charge conjugated spinors Ψc and Ψ̄c of a Dirac spinor

Ψ =

(
ψα
χ̄α̇

)
are defined by Ψ̄ =

(
χα ψ̄α̇

)
, Ψc =

(
χα
ψ̄α̇

)
and Ψ̄c = (ψα χ̄α̇). The spinors

Ψ and Ψc are related through the charge conjugation matrix C by Ψc = CΨ̄t. Moreover,

one has C−1γµC = −(γµ)t. The six matrices C, γµγ5C, γ5C are antisymmetric and the ten

matrices γµC,ΣµνC are symmetric. They form a set of 16 linearly independent matrices.

A Majorana spinor is a Dirac spinor such that Ψ = Ψc. For such a spinor, there

is a relation between the two Weyl components: a Majorana spinor Ψ has the form

Ψ =

(
ψα
ψ̄α̇

)
. In the Majorana representation of the γ matrices, the components of a

Majorana spinor are all real and the γ matrices are all purely imaginary.

The γ matrices are given, in the Weyl representation, by

γ0 =

(
0 σ0

σ0 0

)
γi =

(
0 σi

−σi 0

)
γ5 =

(
I 0
0 −I

)
C =

(
−iσ2 0

0 iσ2

)

Another often used representation of the γ matrices is the Dirac representation:

γ0 =

(
σ0 0
0 −σ0

)
γi =

(
0 σi

−σi 0

)
γ5 =

(
0 I

I 0

)
C =

(
0 −iσ2

−iσ2 0

)

Finally, in the Majorana representation, one has:

γ1 =

(
iσ3 0
0 iσ3

)
γ2 =

(
0 −σ2

σ2 0

)
γ3 =

(
−iσ1 0

0 −iσ1

)

γ0 =

(
0 σ2

σ2 0

)
γ5 =

(
σ2 0
0 −σ2

)
C =

(
0 −iσ2

−iσ2 0

)

47 Strange superalgebras P (n)

We consider the superalgebra A(n− 1, n− 1) and P (n− 1) the subalgebra of A(n−
1, n− 1) generated by the 2n× 2n matrices of the form

(
λ S
A −λt

)

where λ are sl(n) matrices, S and A are n × n symmetric and antisymmetric complex

matrices which can be seen as elements of the twofold symmetric representation ([2] in

Young tableau notation) of dimension n(n + 1)/2 and of the (n − 2)-fold antisymmetric

representation ([1n−2] in Young tableau notation) of dimension n(n − 1)/2 respectively.
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The Z-gradation of the superalgebra P (n− 1) being G = G−1 ⊕G0 ⊕G1 where G0 = sl(n),

G1 = [2] and G−1 = [1n−2], the subspaces Gi satisfy the following commutation relations

[
G0,G0

]
⊂ G0

[
G0,G±1

]
⊂ G±1

{
G1,G1

}
=
{
G−1,G−1

}
= 0

{
G1,G−1

}
⊂ G0

The Z-gradation is consistent: G0 = G0 and G1 = G−1 ⊕ G1.

Defining the Cartan subalgebra H as the Cartan subalgebra of the even part, the root

system ∆ = ∆0 ∪ ∆1 of P (n − 1) can be expressed in terms of the orthogonal vectors

ε1, . . . , εn as

∆0 =
{
αij = εi − εj

}

and

∆1 =
{

± βij = ±
(
εi + εj −

2

n

n∑

k=1

εk

)
, γi = 2εi −

2

n

n∑

k=1

εk
}

Denoting by Hi the Cartan generators, by Eα the even root generators and by Eβ, Eγ

the odd root generators of P (n− 1), the commutation relations in the Cartan-Weyl basis

are the following:

[
Hk, Eαij

]
= (δik − δjk − δi,k+1 + δj,k+1)Eαij

[
Hk, Eβij

]
= (δik + δjk − δi,k+1 − δj,k+1)Eβij

[
Hk, E−βij

]
= −(δik + δjk − δi,k+1 − δj,k+1)E−βij

[
Hk, Eγi

]
= 2(δik − δi,k+1)Eγi

[
Eαij

, Eαkl

]
= δjkEαil

− δilEαkj

[
Eαij

, E−αij

]
=

j−1∑

k=i

Hk

[
Eαij

, Eβkl

]
=

{
δjkEβil

+ δjlEβik
if (i, j) 6= (k, l)

Eγi
if (i, j) = (k, l)

[
Eαij

, E−βkl

]
=

{
−δikE−βjl

+ δilE−βjk
if (i, j) 6= (k, l)

0 if (i, j) = (k, l)
[
Eαij

, Eγk

]
= δjkEβik{

E−βij
, Eγk

}
= −δikEαkj

+ δjkEαki

{
Eβij

, E−βkl

}
=

{
−δikEαjl

+ δilEαjk
− δjkEαil

+ δjlEαik
if (i, j) 6= (k, l)

∑j−1
k=i Hk if (i, j) = (k, l)

{
Eβij

, Eβkl

}
=
{
E−βij

, E−βkl

}
=
{
Eβij

, Eγk

}
= 0
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Let us emphasize that P (n) is a non-contragredient simple Lie superalgebra, that is

the number of positive roots and the number of negative roots are not equal. Moreover,

since every bilinear form is identically vanishing in P (n), it is impossible to define a non-

degenerate scalar product on the root space. It follows that the notions of Cartan matrix

and Dynkin diagram are not defined for P (n). However, using an extension of P (n) by

suitable diagonal matrices, one can construct a non-vanishing bilinear form on the Cartan

subalgebra of this extension and therefore generalize in this case the notions of Cartan

matrix and Dynkin diagram.

→ Oscillator realization of the strange superalgebras.

For more details, see ref. [11].

48 Strange superalgebras Q(n)

We consider the superalgebra sl(n|n) and Q̃(n−1) the subalgebra of sl(n|n) generated

by the 2n× 2n matrices of the form

(
A B
B A

)

where A and B are sl(n) matrices. The even part of the superalgebra Q̃(n− 1) is the Lie

algebra G0 = sl(n)⊕U(1) of dimension n2 and the odd part is the adjoint representation

G1 of sl(n) of dimension n2 − 1. The even generators of G0 are divided into the sl(n)

Cartan generators Hi with 1 ≤ i ≤ n − 1, the U(1) generator Z and the n(n − 1) root

generators Eij with 1 ≤ i 6= j ≤ n of sl(n). The odd root generators of G1 are also divided

into two parts, Fij with 1 ≤ i 6= j ≤ n and Ki with 1 ≤ i ≤ n − 1. This superalgebra

Q̃(n − 1) is not a simple superalgebra: in order to obtain a simple superalgebra, one

should factor out the one-dimensional center, as in the case of the sl(n|n) superalgebra.

We will denote by Q(n− 1) the simple superalgebra Q̃(n− 1)/U(1).

Following the definition of the Cartan subalgebra (→), the strange superalgebra Q(n−
1) has the property that the Cartan subalgebra H does not coincide with the Cartan

subalgebra of the even part sl(n), but admits also an odd part: H ∩ G1 6= ∅. More

precisely, one has

H = H0 ⊕H1

where H0 is spanned by the Hi generators and H1 by the Ki generators (1 ≤ i ≤ n −
1). However, since the Ki generators are odd, the root generators Eij and Fij are not

eigenvectors of H1. It is convenient in this case to give the root decomposition with

respect to H0 = H∩ G0 instead of H. The root system ∆ of Q(n− 1) coincide then with
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the root system of sl(n). One has

G = G0 ⊕ G1 = H0 ⊕
( ⊕

α∈∆

Gα
)

with dimG(α6=0) = 2 and dimG(α=0) = n

Moreover, since dimGα∩G0 6= ∅ and dimGα∩G1 6= ∅ for any non-zero root α, the non-zero

roots of Q(n− 1) are both even and odd.

Denoting by Hi the Cartan generators, by Eij the even root generators and by Fij the

odd root generators of Q̃(n), the commutation relations in the Cartan-Weyl basis are the

following:
[
Hi, Hj

]
=
[
Hi, Kj

]
= 0

{
Ki, Kj

}
=

2

n
(2δij − δi,j+1 − δi,j−1)

(
Z −

n−1∑

k=1

kHk

)

+2(δij − δi,j+1)
n−1∑

k=i

Hk + 2(δij − δi,j−1)
n−1∑

k=i+1

Hk

[
Hk, Eij

]
= (δik − δjk − δi,k+1 + δj,k+1)Eij

[
Hk, Fij

]
= (δik − δjk − δi,k+1 + δj,k+1)Fij

[
Kk, Eij

]
= (δik − δjk − δi,k+1 + δj,k+1)Fij

{
Kk, Fij

}
= (δik + δjk − δi,k+1 − δj,k+1)Eij

[
Eij , Ekl

]
= δjkEil − δilEkj (i, j) 6= (k, l)

[
Eij , Eji

]
=

j−1∑

k=i

Hk

[
Eij , Fkl

]
= δjkFil − δilFkj (i, j) 6= (k, l)

[
Eij , Fji

]
=

j−1∑

k=i

Kk

{
Fij , Fkl

}
= δjkEil + δilEkj (i, j) 6= (k, l)

{
Fij , Fji

}
=

2

n
Z +

n− 2

n


2

n−1∑

k=i

kHk − n
n−1∑

k=i

Hk − n
n−1∑

k=j

Hk




→ Cartan subalgebras, Oscillator realization of the strange superalgebras.

49 Subsuperalgebras (regular)

Definition: Let G be a basic Lie superalgebra and consider its canonical root decom-

position

G = H⊕
⊕

α∈∆

Gα
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where H is a Cartan subalgebra of G and ∆ its corresponding root system (→).

A subsuperalgebra G′ of G is called regular (by analogy with the algebra case) if it has

the root decomposition

G′ = H′ ⊕
⊕

α′∈∆′

G′
α′

where H′ ⊂ H and ∆ ⊂ ∆′. The semi-simplicity of G′ will be insured if to each α′ ∈ ∆′

then −α′ ∈ ∆′ and H′ is the linear closure of ∆′.

The method for finding the regular semi-simple sub(super)algebras of a given basic

Lie superalgebra G is completely analogous to the usual one for Lie algebras by means of

extended Dynkin diagrams. However, one has now to consider all the Dynkin diagrams

associated to the inequivalent simple root systems. For a given simple root system ∆0

of G, one considers the associated Dynkin diagram. The corresponding extended simple

root system is ∆̂0 = ∆0 ∪ {Ψ} where Ψ is the lowest root with respect to ∆0, to which

is associated the extended Dynkin diagram. Now, deleting arbitrarily some dot(s) of the

extended diagram, will yield to some connected Dynkin diagram or a set of disjointed

Dynkin diagrams corresponding to a regular semi-simple sub(super)algebra of G. Indeed,

taking away one or more roots from ∆̂0, one is left with a set of independent roots which

constitute the simple root system of a regular semi-simple subsuperalgebra of G. Then

repeating the same operation on the obtained Dynkin diagrams – that is adjunction of a

dot associated to the lowest root of a simple part and cancellation of one arbitrary dot

(or two in the unitary case) – as many time as necessary, one obtains all the Dynkin

diagrams associated with regular semi-simple basic Lie sub(super)algebras. In order to

get the maximal regular semi-simple sub(super)algebras of the same rank r of G, only the

first step has to be achieved. The other possible maximal regular subsuperalgebras of G if

they exist will be obtained by deleting only one dot in the non-extended Dynkin diagram

of G and will be therefore of rank r − 1.

The table VI presents the list of the maximal regular semi-simple sub(super)algebras

for the basic Lie superalgebras.

→ Cartan subalgebras, Dynkin diagrams, Roots, Simple and semi-simple Lie superal-

gebras.

For more details, see ref. [48].

50 Subsuperalgebras (singular)

Definition: Let G be a basic Lie superalgebra and G′ a subsuperalgebra of G. G′ is

called a singular subsuperalgebra of G′ if it is not regular (→).
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superalg. subsuperalgebra superalg. subsuperalgebra

A(m,n) A(i, j) ⊕ A(m− i− 1, n− j − 1) C(n + 1) Ci ⊕ C(n− i+ 1)
Am ⊕ An Cn

B(m,n) B(i, j) ⊕D(m− i, n− j) D(m,n) D(i, j) ⊕D(m− i, n− j)
Bm ⊕ Cn Dm ⊕ Cn
D(m,n) A(m− 1, n− 1)

G(3) A1 ⊕G2 F (4) A1 ⊕ B3

A1 ⊕ B(1, 1) A2 ⊕A(0, 1)
A2 ⊕ B(0, 1) A1 ⊕D(2, 1; 2)
A(0, 2) A(0, 3)
D(2, 1; 3) C(3)
G(3) F (4)

D(2, 1;α) A1 ⊕ A1 ⊕ A1

A(0, 1)
D(2, 1;α)

Table VI: Maximal regular sub(super)algebras of the basic Lie superalgebras.

Some of the singular subsuperalgebras of the basic Lie superalgebras can be found

by the folding technique. Let G be a basic Lie superalgebra, with non-trivial outer au-

tomorphism (Out(G) does not reduce to the identity). Then, there exists at least one

Dynkin diagram of G which has the symmetry given by Out(G). One can notice that

each symmetry τ described on that Dynkin diagram induces a direct construction of the

subsuperalgebra G′ invariant under the G outer automorphisms associated to τ . Indeed,

if the simple root α is transformed into τ(α), then 1
2
(α+ τ(α)) is τ -invariant since τ 2 = 1,

and appears as a simple root of G′ associated to the generators Eα +Eτ(α), the generator

Eα (resp. Eτ(α) corresponding to the root α (resp. τ(α)). A Dynkin diagram of G′ will

therefore be obtained by folding the Z2-symmetric Dynkin diagram of G, that is by trans-

forming each couple (α, τ(α)) into the root 1
2
(α + τ(α)) of G′. One obtains the following

invariant subsuperalgebras (which are singular):

superalgebraG singular subsuperalgebraG′

sl(2m+ 1|2n) osp(2m+ 1|2n)
sl(2m|2n) osp(2m|2n)
osp(2m|2n) osp(2m− 1|2n)
osp(2|2n) osp(1|2n)

74



51 Superalgebra, subsuperalgebra

Definition: Let A be an algebra over a field K of characteristic zero (usually K = R or

C) with internal laws + and ·. One sets Z2 = Z/2Z = {0, 1}. A is called a superalgebra

or Z2-graded algebra if A can be written into a direct sum of two spaces A = A0 ⊕A1,

such that

A0 · A0 ⊂ A0, A0 · A1 ⊂ A1, A1 · A1 ⊂ A0

Elements X ∈ A0 are called even or of degree degX = 0 while elements X ∈ A1 are

called odd or of degree degX = 1.

One defines the Lie superbracket or supercommutator of two elements X and Y by

[[
X, Y

]]
= X · Y − (−1)degX.deg Y Y ·X

A superalgebra A is called associative if (X ·Y )·Z = X ·(Y ·Z) for all elements X, Y, Z ∈ A.

A superalgebra A is called commutative if X · Y = Y ·X for all elements X, Y ∈ A.

Definition: A (graded) subalgebra K = K0 ⊕ K1 of a superalgebra A = A0 ⊕A1 is a

non-empty set K ⊂ A which is a superalgebra with the two composition laws induced by

A such that K0 ⊂ A0 and K1 ⊂ A1.

Definition: A homomorphism Φ from a superalgebra A into a superalgebra A′ is a

linear application from A into A′ which respects the Z2-gradation, that is Φ(A0) ⊂ A′
0

and Φ(A1) ⊂ A′
1
.

Let A and A′ be two superalgebras. One defines the tensor product A⊗A′ of the two

superalgebras by

(X1 ⊗X ′
1)(X2 ⊗X ′

2) = (−1)degX2.degX′

1(X1X2 ⊗X ′
1X

′
2)

if X1, X2 ∈ A and X ′
1, X

′
2 ∈ A′.

→ Lie Superalgebras.

52 Superalgebra osp(1|2)

The superalgebra osp(1|2) is the simplest one and can be viewed as the supersymmetric

version of sl(2). It contains three bosonic generatorsE+, E−, H which form the Lie algebra

sl(2) and two fermionic generators F+, F−, whose non-vanishing commutation relations
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in the Cartan-Weyl basis read as
[
H,E±

]
= ±E±

[
E+, E−

]
= 2H

[
H,F±

]
= ±1

2
F±

{
F+, F−

}
= 1

2
H

[
E±, F∓

]
= −F±

{
F±, F±

}
= ±1

2
E±

The three-dimensional matrix representation (fundamental representation) is given by

H =




1
2

0 0
0 −1

2
0

0 0 0


 E+ =




0 1 0
0 0 0
0 0 0


 E− =




0 0 0
1 0 0
0 0 0




F+ =




0 0 1
2

0 0 0
0 1

2
0


 F− =




0 0 0
0 0 −1

2
1
2

0 0




The quadratic Casimir operator is

C2 = H2 + 1
2
(E+E− + E−E+) − (F+F− − F−F+)

The superalgebra osp(1|2) reveals many features which make it very close to the Lie

algebras. In particular, one has the following results for the representation theory:

1. All finite dimensional representations of osp(1|2) are completely reducible.

2. Any irreducible representation of osp(1|2) is typical.

3. An irreducible representation R of osp(1|2) is characterized by a non-negative inte-

ger or half-integer j = 0, 1/2, 1, 3/2, . . . and decomposes under the even part sl(2)

into two multiplets Rj = Dj ⊕ Dj−1/2 for j 6= 0, the case j = 0 reducing to the

trivial one-dimensional representation. The dimension of an irreducible representa-

tion Rj of osp(1|2) is 4j + 1. The eigenvalue of the quadratic Casimir C2 in the

representation Rj is j(j + 1
2
).

4. The product of two irreducible osp(1|2) representations decomposes as follows:

Rj1 ⊗Rj2 =
j=j1+j2⊕

j=|j1−j2|
Rj

j taking integer and half-integer values.

→ Casimir invariants, Decomposition w.r.t. osp(1|2) subalgebras, Embeddings of

osp(1|2).

For more details, see refs. [5, 30].
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53 Superalgebra sl(1|2)

The superalgebra sl(1|2) ≃ sl(2|1) is the (N=2) extended supersymmetric version

of sl(2) and contains four bosonic generators E+, E−, H, Z which form the Lie algebra

sl(2)⊕U(1) and four fermionic generators F+, F−, F̄+, F̄−, whose commutation relations

in the Cartan-Weyl basis read as
[
H,E±

]
= ±E±

[
H,F±

]
= ±1

2
F±

[
H, F̄±

]
= ±1

2
F̄±

[
Z,H

]
=
[
Z,E±

]
= 0

[
Z, F±

]
= 1

2
F±

[
Z, F̄±

]
= −1

2
F̄±

[
E±, F±

]
=
[
E±, F̄±

]
= 0

[
E±, F∓

]
= −F±

[
E±, F̄∓

]
= F̄±

{
F±, F±

}
=
{
F̄±, F̄±

}
= 0

{
F±, F∓

}
=
{
F̄±, F̄∓

}
= 0

{
F±, F̄±

}
= E±

[
E+, E−

]
= 2H

{
F±, F̄∓

}
= Z ∓H

The three-dimensional matrix representation (fundamental representation) is given by

H =




1
2

0 0
0 −1

2
0

0 0 0


 Z =




1
2

0 0
0 1

2
0

0 0 1


 E+ =




0 1 0
0 0 0
0 0 0


 E− =




0 0 0
1 0 0
0 0 0




F+ =




0 0 0
0 0 0
0 1 0


 F̄+ =




0 0 1
0 0 0
0 0 0


 F− =




0 0 0
0 0 0
1 0 0


 F̄− =




0 0 0
0 0 1
0 0 0




The quadratic and cubic Casimir operators are

C2 = H2 − Z2 + E−E+ + F−F̄+ − F̄−F+

C3 = (H2 − Z2)Z + E−E+(Z − 1
2
) − 1

2
F−F̄+(H − 3Z + 1)

−1
2
F̄−F+(H + 3Z + 1) + 1

2
E−F̄+F+ + 1

2
F̄−F−E+

The irreducible representations of sl(1|2) are characterized by the pair of labels (b, j)

where j is a non-negative integer or half-integer and b an arbitrary complex number. The

representations π(b, j) with b 6= ±j are typical and have dimension 8j. The representations

π(±j, j) are atypical and have dimension 4j+ 1. In the typical representation π(b, j), the

Casimir operators C2 and C3 have the eigenvalues C2 = j2 − b2 and C3 = b(j2 − b2) while

they are identically zero in the atypical representations π(±j, j).
The typical representation π(b, j) of sl(1|2) decomposes under the even part sl(2) ⊕

U(1) for j ≥ 1 as

π(b, j) = Dj(b) ⊕Dj−1/2(b− 1/2) ⊕Dj−1/2(b+ 1/2) ⊕Dj−1(b)
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the case j = 1
2

reducing to

π(b, 1
2
) = D1/2(b) ⊕D0(b− 1/2) ⊕D0(b+ 1/2)

where Dj(b) denotes the representation of sl(2)⊕U(1) with isospin j and hypercharge b.

The irreducible atypical representations π±(j) ≡ π(±j, j) of sl(1|2) decompose under

the even part sl(2) ⊕ U(1) as

π+(j) = Dj(j) ⊕Dj−1/2(j + 1/2)

π−(j) = Dj(−j) ⊕Dj−1/2(−j − 1/2)

The not completely reducible atypical representations of sl(1|2) decompose as semi-

direct sums of sl(1|2) irreducible (atypical) representations. They are of the following

types:

π±(j; j − 1/2) ≡ π±(j)∋ π±(j − 1/2)

π±(j − 1/2; j) ≡ π±(j − 1/2)∋ π±(j)

π±(j − 1/2, j + 1/2; j) ≡ π±(j − 1/2)∋ π±(j)∈ π±(j + 1/2)

π±(j; j − 1/2, j + 1/2) ≡ π±(j − 1/2)∈ π±(j)∋ π±(j + 1/2)

π±(j, j ± 1; j ± 1/2; j ± 3/2) ≡ π±(j)∋ π±(j ± 1/2)∈ π±(j ± 1)∋ π±(j ± 3/2)

π±(j; j − 1/2, j + 1/2; j) ≡ π±(j)
∋ π±(j − 1/2)∋
∋ π±(j + 1/2)∋ π±(j)

where the symbol ∋ (resp. ∈ ) means that the representation space on the left (resp. on

the right) is an invariant subspace of the whole representation space.

It is also possible to decompose the sl(1|2) representations under the superprincipal

osp(1|2) subsuperalgebra of sl(1|2) (→ Embeddings of osp(1|2)). One obtains for the typ-

ical representations π(b, j) = Rj ⊕Rj−1/2 and for the irreducible atypical representations

π±(j) = Rj where Rj denotes an irreducible osp(1|2)-representation.

We give now the formulae of the tensor products of two sl(1|2) representations π(b1, j1)

and π(b2, j2). In what follows, we set b = b1+b2, j = j1+j2 and ̄ = |j1−j2|. Moreover, the

product of two irreducible representations will be called non-degenerate if it decomposes

into a direct sum of irreducible representations; otherwise it is called degenerate.

• product of two typical representations

The product of two typical representations π(b1, j1) and π(b2, j2) is non-degenerate when

b 6= ±(j − n) for n = 0, 1, . . . , 2 min(j1, j2). It is then given by

π(b1, j1) ⊗ π(b2, j2) =
2min(j1,j2)⊕

n=0

π(b, j − n)
2min(j1,j2)−1⊕

n=1

π(b, j − n)

78



2min(j1,j2)−1⊕

n=0

π(b+ 1
2
, j − 1

2
− n) ⊕ π(b− 1

2
, j − 1

2
− n)

π(b1, j1) ⊗ π(b2,
1
2
) = π(b, j1 + 1

2
) ⊕ π(b, j1 − 1

2
) ⊕ π(b+ 1

2
, j1) ⊕ π(b− 1

2
, j1)

π(b1,
1
2
) ⊗ π(b2,

1
2
) = π(b, 1) ⊕ π(b+ 1

2
, 1

2
) ⊕ π(b− 1

2
, 1

2
)

When the product is degenerate, one has

if b = ±j
π(b, j) ⊕ π(b∓ 1/2, j − 1/2) is replaced by π±(j − 1/2; j − 1, j; j − 1/2)

if b = ±̄ 6= 0

π(b, ̄) ⊕ π(b± 1/2, ̄+ 1/2) is replaced by π±(j; j − 1/2, j + 1/2; j)

if b = ̄ = 0

π(b+ 1/2, 1/2)⊕ π(b− 1/2, 1/2) is replaced by π(0;−1/2, 1/2; 0)

if b = ±(j − n) for n = 1, . . . , 2 min(j1, j2)

π(b± 1/2, j + 1/2 − n) ⊕ π(b, j − n) ⊕ π(b, j − n) ⊕ π(b∓ 1/2, j − 1/2 − n)

is replaced by π±(j − 1/2 − n; j − 1 − n, j − n; j − 1/2 − n)

⊕ π±(j − n; j − 1/2 − n, j + 1/2 − n; j − n)

• product of a typical with an atypical representation

The non-degenerate product of a typical representation π(b1, j1) with an atypical one

π±(j2) (b2 = ±j2) is given by

π(b1, j1) ⊗ π±(j2) =





2min(j1,j2)−1⊕

n=0

π(b, j − n) ⊕ π(b± 1
2
, j − 1

2
− n)

if j1 ≤ j2
2min(j1,j2)−1⊕

n=0

π(b, j − n) ⊕ π(b± 1
2
, j − 1

2
− n) ⊕ π(b, |j1 − j2|)

if j1 > j2

When the product π(b1, j1) ⊗ π+(j2) is degenerate, one has

if b = −(j − n) for n = 0, 1, . . . , 2 min(j1, j2) − 1

π(b, j − n) ⊕ π(b+ 1/2, j − 1/2 − n) is replaced by

π±(j − 1/2 − n; j − 1 − n, j − n; j − 1/2 − n)

if b = j − n for n = 1, . . . , 2 min(j1, j2)

π(b, j − n) ⊕ π(b+ 1/2, j + 1/2 − n) is replaced by

π±(j − n; j − 1/2 − n, j + 1/2 − n; j − n)
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The case of the degenerate product π(b1, j1) ⊗ π−(j2) is similar.

• product of two atypical representations

The product of two atypical representations π±(j1) and π±(j2) is always non-degenerate.

It is given by

π±(j1) ⊗ π±(j2) = π±(j) ⊕
2min(j1,j2)−1⊕

n=0

π(±(j + 1
2
), j − 1

2
− n)

π(j1, j1) ⊗ π(−j2, j2) =
2min(j1,j2)−1⊕

n=0

π(j1 − j2, j − n) ⊕






π(j1 − j2, j1 − j2) if j1 > j2
π(j1 − j2, j2 − j1) if j1 < j2
(0) if j1 = j2

→ Casimir invariants, Decomposition w.r.t. sl(1|2) subalgebras, Embeddings of sl(1|2).

For more details, see refs. [27, 30].

54 Superconformal algebra

For massless theory the concept of Fermi-Bose symmetry or supersymmetry requires

the extension of the conformal Lie algebra including the generators of the supersymmetry

transformations Qα, Sα which transform bosonic fields into fermionic ones and vice-versa.

The conformal algebra in four space-time dimensions is spanned by the 15 generators Mµν ,

Pµ, Kµ and D (with the greek labels running from 0 to 3). The generators Mµν and Pµ

span the Poincaré algebra and their commutation relations are given in ”Supersymmetry

algebra” (→), while Kµ and D are respectively the generators of the conformal transfor-

mations and of the dilatation. The commutation relations of the N = 1 superconformal

algebra read as (the metric is gµν = diag(1,−1,−1,−1)):
[
Mµν , Kρ

]
= i(gνρKµ − gµρKν)

[
Pµ, Kν

]
= 2i(gµνD −Mµν)[

D,Mµν

]
= 0

[
D,Pµ

]
= −iPµ[

Kµ, Kν

]
= 0

[
D,Kµ

]
= iKµ[

Mµν , Qa

]
= −1

2
(Σµν)

b
a Qb

[
Mµν , Sa

]
= −1

2
(Σµν)

b
a Sb[

Pµ, Qa

]
= 0

[
Pµ, Sa

]
= −(γµ)

b
a Qb[

Kµ, Qa

]
= −(γµ)

b
a Sb

[
Kµ, Sa

]
= 0

[
D,Qa

]
= −1

2
iQa

[
D,Sa

]
= 1

2
iSa{

Qa, Qb

}
= 2(γµC)abP

µ
{
Sa, Sb

}
= 2(γµC)abK

µ

{
Qa, Sb

}
= (ΣµνC)abM

µν + 2iCabD

+3i(γ5C)abY[
Y,Qa

]
= i(γ5)

b
a Qb

[
Y, Sa

]
= −i(γ5)

b
a Sb[

Y,Mµν

]
=
[
Y,D

]
= 0

[
Y, Pµ

]
=
[
Y,Kµ

]
= 0

80



where γ are the Dirac matrices in Majorana representation, C is the charge conjugation

matrix and Y is the generator of the (chiral) U(1). The transformations of Qa and Sa

under Mµν show that the Qa and Sa are spinors. The superconformal algebra contains

the super-Poincaré as subsuperalgebra, however in the conformal case the are no central

charges for N > 1.

Let us emphasize that the superconformal algebra is isomorphic to the simple Lie

superalgebra su(2, 2|N), real form of sl(4|N).

→ Spinors, Supersymmetry algebra.

For more details, see refs. [44, 51].

55 Supergroups

In order to construct the supergroup or group with Grassmann structure associated

to a (simple) superalgebra A = A0⊕A1, one starts from the complex Grassmann algebra

(→) Γ(n) of order n with n generators 1, θ1, . . . , θn satisfying
{
θi, θj

}
= 0. The element

η =
∑

m≥0

∑

i1<...<im

ηi1...imθi1 . . . θim

is called even (resp. odd) if each complex coefficient ηi1...im in the above expression of η

corresponds to an even (resp. odd) value of m. As a vector space, one decomposes Γ(n)

as Γ(n) = Γ(n)0 ⊕Γ(n)1 with Γ(n)0 (resp. Γ(n)1) made of homogeneous even (resp. odd)

elements.

The Grassmann envelope A(Γ) of A consists of formal linear combinations
∑
i ηiai

where {ai} is a basis of A and ηi ∈ Γ(n) such that for a fixed index i, the elements ai and

ηi are both even or odd. The commutator between two arbitrary elements X =
∑
i ηiai

and Y =
∑
j η

′
jaj is naturally defined by

[
X, Y

]
=
∑
ij ηiη

′
j

[[
ai, aj

]]
where

[[
ai, aj

]]
means

the supercommutator in A. This commutator confers to the Grassmann envelope A(Γ)

of A a Lie algebra structure.

The relation between a supergroup and its superalgebra is analogous to the Lie alge-

bra case: the supergroup A associated to the superalgebra A is the exponential mapping

of the Grassmann envelope A(Γ) of A, the even generators of the superalgebra A corre-

sponding to even parameters (that is even elements of the Grassmann algebra) and the

odd generators of A to odd parameters (that is odd elements of the Grassmann algebra).

The above approach is due to Berezin. In particular, the case of osp(1|2) is worked

out explicitly in ref. [5]. On classical supergroups, see also refs. [21, 22].

→ Grassmann algebras.
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56 Supergroups of linear transformations

Let Γ = Γ0 ⊕ Γ1 be a Grassmann algebra (→) over a field K = R or C and consider

the set of (m+ n) × (m+ n) even supermatrices (→) of the form

M =

(
A B
C D

)

where A,B,C,D are m×m, m×n, n×m and n×n submatrices respectively, with even

entries in Γ0 for A,D and odd entries in Γ1 for B,C.

The general linear supergroup GL(m|n; K) is the supergroup of even invertible super-

matrices M , the product law being the usual matrix multiplication.

The transposition and adjoint operations allow us to define the classical subsuper-

groups of GL(m|n; K) corresponding to the classical superalgebras.

The special linear supergroup SL(m|n; K) is the subsupergroup of supermatrices M ∈
GL(m|n; K) such that sdet(M) = 1.

The unitary and superunitary supergroups U(m|n) and sU(m|n) are the subsuper-

groups of supermatrices M ∈ GL(m|n; C) such that MM † = 1 and MM ‡ = 1 respectively

(for the notations † and ‡, → Supermatrices).

The orthosymplectic supergroup OSP (m|n; K) is the subsupergroup of supermatrices

M ∈ GL(m|n; K) such that MstHM = H where (n = 2p)

H =

(
Im 0
0 J2p

)
and J2p =

(
0 Ip

−Ip 0

)

The compact forms are USL(m|n) and sOSP (m|n), subsupergroups of supermatrices

M ∈ GL(m|n; C) such that sdet(M) = 1, MM † = 1 and MstHM = H, MM ‡ = 1

respectively.

Finally the strange supergroups are defined as follows. The supergroup P (n) is the

subsupergroup of supermatrices M ∈ GL(n|n; K) such that sdet(M) = 1 and MJ2nM
st =

J2n with J2n defined above. The supergroup Q(n) is the subsupergroup of supermatrices

M ∈ GL(n|n; K) with A = D and B = C such that tr ln((A− B)−1(A+B)) = 0.

For more details, see ref. [34].

57 Supermatrices

Definition: A matrix M is called a complex (resp. real) supermatrix if its entries have

values in a complex (resp. real) Grassmann algebra Γ = Γ0⊕Γ1. More precisely, consider
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the set of (m+ n) × (p+ q) supermatrices M of the form

M =

(
A B
C D

)

where A,B,C,D are m × p, m × q, n × p and n × q submatrices respectively. The

supermatrix M is called even (or of degree 0) if A,D ∈ Γ0 and B,C ∈ Γ1, while it is

called odd (or of degree 1) if A,D ∈ Γ1 and B,C ∈ Γ0.

The product of supermatrices is defined as the product of matrices: M and M ′ being

two (m+n)×(p+q) and (p+q)×(r+s) supermatrices, the entries of the (m+n)×(r+s)

supermatrix MM ′ are given by

(MM ′)ij =
p+q∑

k=1

MikM
′
kj

Since the Grassmann algebra Γ is associative, the product of supermatrices is also asso-

ciative.

From now on, we will consider only square supermatrices, that is such that m = p and

n = q. The set of (m+n)× (m+n) complex (resp. real) square supermatrices is denoted

by M(m|n; C) (resp. M(m|n; R)).

A square supermatrix M is said to be invertible if there exists a square supermatrix

M ′ such that MM ′ = M ′M = I where I is the unit supermatrix (even supermatrix with

zero off-diagonal entries and diagonal entries equal to the unit 1 of the Grassmann algebra

Γ).

Definition: The general linear supergroupGL(m|n; C) (resp. GL(m|n; R)) is the super-

group of even invertible complex (resp. real) supermatrices, the group law being the

product of supermatrices.

The usual operations of transposition, determinant, trace, adjoint are defined as follows

in the case of supermatrices.

Let M ∈M(m|n; C) be a complex square supermatrix of the form

M =

(
A B
C D

)

The transpose and supertranspose of M are defined by:

M t =

(
At Ct

Bt Dt

)
transpose

Mst =

(
At (−1)degMCt

−(−1)degMBt Dt

)
supertranspose
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Explicitly, one finds

Mst =

(
At Ct

−Bt Dt

)
if M is even

Mst =

(
At −Ct

Bt Dt

)
if M is odd

It follows that

((M)st)st =

(
A −B
−C D

)

((((M)st)st)st)st = M

(MN)st = (−1)degM.degNN stMst

but (MN)t 6= N tM t.

The supertrace of M is defined by

str(M) = tr(A) − (−1)degMtr(D) =

{
tr(A) − tr(D) if M is even
tr(A) + tr(D) if M is odd

One has the following properties for the supertrace:

str(M +N) = str(M) + str(N) if degM = degN

str(MN) = (−1)degM.degNstr(M)str(N)

str(Mst) = str(M)

If M is even invertible, one defines the superdeterminant (or Berezinian) of M by

sdet(M) =
det(A− BD−1C)

det(D)
=

det(A)

det(D − CA−1B)

Notice that M being an even invertible matrix, the inverse matrices A−1 and D−1 exist.

One has the following properties for the superdeterminant:

sdet(MN) = sdet(M) sdet(N)

sdet(Mst) = sdet(M)

sdet(exp(M)) = exp(str(M))

The adjoint operations on the supermatrix M are defined by

M † = (M t)
∗

adjoint

M ‡ = (Mst)
#

superadjoint
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One has

(MN)† = N †M †

(MN)‡ = N ‡M ‡

(M †)† = M and (M ‡)‡ = M

sdet(M †) = sdet(M) = (sdet(M))∗

where the bar denotes the usual complex conjugation and the star the Grassmann complex

conjugation (→ Grassmann algebra).

→ Supergroups of linear transformations.

For more details, see refs. [34, 3].

58 Superspace and superfields

It is fruitful to consider the supergroup associated to the supersymmetry algebra, the

super-Poincaré group. A group element g is then given by the exponential of the super-

symmetry algebra generators. However, since Qα and Q̄α̇ are fermionic, the corresponding

parameters have to be anticommuting (→ Grassmann algebra). More precisely, a group

element g with parameters xµ, ωµν , θα, θ̄α̇ is given by

g(xµ, ωµν, θα, θ̄α̇) = exp i(xµPµ + 1
2
ωµνMµν + θαQα + Q̄α̇θ̄

α̇)

One defines the superspace as the coset space of the super-Poincaré group by the Lorentz

group, parametrized by the coordinates xµ, θα, θ̄α̇ subject to the condition θ̄α̇ = (θα)∗.

The multiplication of group elements is induced by the supersymmetry algebra:

g(xµ, θα, θ̄α̇) g(yµ, ζα, ζ̄ α̇) = g(xµ + yµ + iθσµζ̄ − iζσµθ̄, θ + ζ, θ̄ + ζ̄)

If group element multiplication is considered as a left action, one can write infinitesimally

g(yµ, ζα, ζ̄ α̇) g(xµ, θα, θ̄α̇) =
[
1 − iyµPµ − iζαQα − iζ̄α̇Q̄

α̇
]
g(xµ, θα, θ̄α̇)

where the differential operators

Qα = i
∂

∂θα
− (σµθ̄)α∂µ and Q̄α̇ = −i ∂

∂θ̄α̇
+ (θσµ)α̇∂µ

are the supersymmetry generators of the supersymmetry algebra (→).

If group element multiplication is considered as a right action, one has infinitesimally

g(xµ, θα, θ̄α̇) g(yµ, ζα, ζ̄ α̇) =
[
1 − iyµPµ − iζαDα − iζ̄α̇D̄

α̇
]
g(xµ, θα, θ̄α̇)
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where the differential operators

Dα = i
∂

∂θα
+ (σµθ̄)α∂µ and D̄α̇ = −i ∂

∂θ̄α̇
− (θσµ)α̇∂µ

satisfy the following algebra

{
Dα, D̄β̇

}
= −2iσµ

αβ̇
∂µ

{
Dα, Dβ

}
=
{
D̄α̇, D̄β̇

}
= 0

and anticommute with the Qα and Q̄α̇ generators.

Unlike the Q generators, the D generators behave like covariant derivatives under the

super-Poincaré group.

One defines a superfield F as a function of the superspace. Since the parameters θα, θ̄α̇

are Grassmann variables, a Taylor expansion of F in θ, θ̄ has a finite number of terms:

F(x, θ, θ̄) = f(x) + θφ(x) + θ̄χ̄(x) + θθm(x) + θ̄θ̄n(x)

+θσµθ̄Aµ(x) + θθθ̄λ̄(x) + θ̄θ̄θλ′(x) + θθθ̄θ̄d(x)

Notice the very important property that the product of two superfields is again a super-

field.

Under a superspace transformation, the variation of the superfield F is given by the

action of the supersymmetry generators Qα and Q̄α̇:

δF(x, θ, θ̄) = −i(ζQ+ Q̄ζ̄)F

The superfield F forms a representation of the supersymmetry algebra. However, this

representation is not irreducible. Irreducible representations can be obtained by imposing

constraints on the superfields. The two main examples are the scalar (chiral or antichiral)

and the vector superfields.

- The chiral superfield F is defined by the covariant constraint D̄α̇F = 0. It follows that

the chiral superfield F can be expressed, in terms of yµ = xµ − iθσµθ̄ and θ, as

F = A(y) + 2θψ(y) + θθF (y)

The transformation law for the chiral superfield is therefore

δA = 2ζψ

δψ = −iσµζ̄∂µA+ ζF

δF = 2i∂µψσ
µζ̄
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- In the same way, the antichiral superfield F is defined by the covariant constraint

DαF = 0. The antichiral superfield F can be expressed, in terms of (yµ)† = xµ + iθσµθ̄

and θ̄, as

F = A∗(y†) + 2θ̄ψ̄(y†) + θ̄θ̄F ∗(y†)

and the transformation law for the antichiral superfield is

δA† = 2ψ̄ζ̄

δψ̄ = iζσµ∂µA
† + F †ζ̄

δF † = −2iζσµ∂µψ̄

- The vector superfield F is defined by the reality constraint F † = F . In terms of x, θ, θ̄,

it takes the form (with standard notations)

F(x, θ, θ̄) = C(x) + iθχ(x) − iθ̄χ̄(x) + i
2
θθ
(
M(x) + iN(x)

)
− i

2
θ̄θ̄
(
M(x) − iN(x)

)

−θσµθ̄Aµ(x) + iθθθ̄
(
λ̄(x) + i

2
σ̄µ∂µχ(x)

)
− iθ̄θ̄θ

(
λ(x) + i

2
σµ∂µχ̄(x)

)

+1
2
θθθ̄θ̄

(
D(x) + 1

2
2C(x)

)

where C,M,N,D are real scalar fields, Aµ is a real vector field and χ, λ are spinor fields.

→ Grassmann algebras, Spinors, Supersymmetry algebra: definition, representations.

For more details, see refs. [2, 44, 51].

59 Supersymmetry algebra: definition

The concept of Fermi-Bose symmetry or supersymmetry requires the extension of the

Poincaré Lie algebra including the generators of the supersymmetry transformations Qα

and Q̄α̇, which are fermionic, that is transform bosonic fields into fermionic ones and

vice-versa. The supersymmetry generators Qα and Q̄α̇ behave like (1/2,0) and (0,1/2)

spinors under the Lorentz group.

The metric being gµν = diag(1,−1,−1,−1), the N = 1 supersymmetry algebra takes

the following form in two-spinor notation (the indices µ, ν, . . . = 0, 1, 2, 3 are space-time

indices while the indices α, β = 1, 2 and α̇, β̇ = 1̇, 2̇ are spinorial ones):
[
Mµν ,Mρσ

]
= i(−gνσMµρ + gνρMµσ + gµσMνρ − gµρMνσ)

[
Mµν , Pρ

]
= i(gνρPµ − gµρPν)

[
Pµ, Pν

]
= 0

[
Mµν , Qα

]
= −1

2
(σµν)

β
α Qβ

[
Mµν , Q̄α̇

]
= −1

2
Q̄β̇(σ̄µν)

β̇
α̇[

Pµ, Qα

]
=
[
Pµ, Q̄α̇

]
= 0

{
Qα, Qβ

}
=
{
Q̄α̇, Q̄β̇

}
= 0

{
Qα, Q̄β̇

}
= 2σµ

αβ̇
Pµ
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where the σi are the Pauli matrices, σ̄i = −σi for i = 1, 2, 3 and σ0 = σ̄0 = I. The

matrices 1
2
σµν and 1

2
σ̄µν are the generators of the Lorentz group in the two fundamental

spinorial representations: σµν = i
2
(σµσ̄ν − σν σ̄µ) and σ̄µν = i

2
(σ̄µσν − σ̄νσµ).

In four-spinor notation, the N = 1 supersymmetry algebra reads as:

[
Mµν , Qa

]
= −1

2
(Σµν)

b
a Qb

[
Pµ, Qa

]
= 0

{
Qa, Qb

}
= 2(γµC)abP

µ

where Qa =

(
Qα

Q̄α̇

)
is a Majorana spinor (a = 1, 2, 3, 4), γµ are the Dirac matrices

in the Majorana representation, C is the charge conjugation matrix and the Σµν are

the generators of the Lorentz group in the representation (1/2, 0) ⊕ (0, 1/2): Σµν =
i
2
(γµγν − γνγµ) (→ Spinors).

There is an extended version of this algebra if one considers many supersymmetry

generators QA
α , Q̄A

α̇ with A = 1, . . . , N transforming under some symmetry group. The

extended N -supersymmetry algebra becomes then in two-spinor notation:

[
Mµν , Q

A
α

]
= −1

2
(σµν)

β
α Q

A
β

[
Mµν , Q̄

A
α̇

]
= −1

2
Q̄A
β̇
(σ̄µν)

β̇
α̇[

Pµ, Q
A
α

]
= 0

[
Pµ, Q̄

A
α̇

]
= 0

{
QA
α , Q

B
β

}
= 2εαβZ

AB
{
Q̄A
α̇ , Q̄

B
β̇

}
= −2εα̇β̇(Z

AB)†
{
QA
α , Q̄

B
β̇

}
= 2σµ

αβ̇
Pµ δAB

[
Ti, Tj

]
= i fkijTk

[
Ti,Mµν

]
=
[
Ti, Pµ

]
= 0

[
Ti, Q

A
α

]
= (ζi)

A
BQ

B
α

[
Ti, Q̄

A
α̇

]
= −Q̄B

α̇ (ζi)
A
B[

ZAB, anything
]

= 0

while in four-spinor notation it takes the form (for the relations involving the supersym-

metry generators):

[
Mµν , Q

A
a

]
= −1

2
(Σµν)

b
a Q

A
b

[
Pµ, Q

A
a

]
= 0

{
QA
a , Q

B
b

}
= 2(γµC)abPµδ

AB + CabU
AB + (γ5C)abV

AB

[
Ti, Q

A
a

]
= (ξi)

A
BQ

B
a + (iζi)

A
B(γ5)

b
aQ

B
b

[
UAB, anything

]
=
[
V AB, anything

]
= 0

UAB and V AB being central charges and the matrices ξi, ζi having to satisfy (ξi + iζi) +

(ξi + iζi)
† = 0.
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Actually, the number of central charges UAB = −UBA and V AB = −V BA present in the

algebra imposes constraints on the symmetry group of the matrices ξi and ζi. If there is

no central charge this symmetry group is U(N), otherwise it is USp(2N), compact form

of Sp(2N).

For more details, see refs. [2, 44, 51].

60 Supersymmetry algebra: representations

We will only consider the finite dimensional representations of the N -supersymmetry

algebra (→ Supersymmetry algebra: definition). Since the translation generators P µ

commute with the supersymmetry generators QA
α and Q̄A

α̇ , the representations of the N -

supersymmetry algebra are labelled by the mass M if M2 is the eigenvalue of the Casimir

operator P 2 = P µPµ.

If NF denotes the fermion number operator, the states |B〉 such that (−1)NF |B〉 = |B〉
are bosonic states while the states |F 〉 such that (−1)NF |F 〉 = −|F 〉 are fermionic ones. In

a finite dimensional representation, one has tr(−1)NF = 0, from which it follows that the

finite dimensional representations of the supersymmetry algebra contain an equal number

of bosonic and fermionic states.

For the massive representations (M 6= 0), the supersymmetry algebra in the rest frame,

where P µ = (M, 0, 0, 0), takes the form (with vanishing central charges)

{
QA
α , Q̄

B
β̇

}
= 2Mδαβ̇δAB{

QA
α , Q

B
β

}
=
{
Q̄A
α̇ , Q̄

B
β̇

}
= 0

with A,B = 1, . . . , N .

The rescaled operators aAα = QA
α/

√
2M and (aAα )† = Q̄A

α̇/
√

2M satisfy the Clifford algebra

(→) in 2N dimensions. The states of a representation can be arranged into spin multiplets

of some ground state – or vacuum – |Ω〉 of given spin s, annihilated by the aAα operators.

The other states of the representation are given by

|aA1

α1
. . . aAn

αn
〉 = (aA1

α1
)† . . . (aAn

αn
)†|Ω〉

When the ground state |Ω〉 has spin s, the maximal spin state has spin s + 1
2
N and the

minimal spin state has spin 0 if s ≤ 1
2
N or s− 1

2
N if s ≥ 1

2
N .

When the ground state |Ω〉 has spin zero, the total number of states is equal to 22N with

22N−1 fermionic states (constructed with an odd number of (aAα )† operators) and 22N−1

bosonic states (constructed with an even number of (aAα )† operators). The maximal spin
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is 1
2
N and the minimal spin is 0.

In the case N = 1, when the ground state |Ω〉 has spin j, the states of the multiplet have

spins (j, j + 1
2
, j − 1

2
, j). When the ground state |Ω〉 has spin 0, the multiplet has two

states of spin 0 and one state of spin 1
2
.

The following table gives the dimensions of the massive representations with ground states

Ωs (of spin s) for N = 1, 2, 3, 4.

N = 1

spin Ω0 Ω1/2 Ω1 Ω3/2

0 2 1
1
2

1 2 1
1 1 2 1
3
2

1 2
2 1

spin Ω0

0 42
1
2

48
1 27
3
2

8
2 1

N = 4

N = 2

spin Ω0 Ω1/2 Ω1

0 5 4 1
1
2

4 6 4
1 1 4 6
3
2

1 4
2 1

spin Ω0 Ω1/2

0 14 14
1
2

14 20
1 6 15
3
2

1 6
2 1

N = 3

We consider now the massless representations corresponding to P 2 = 0. In a reference

frame where P µ = (E, 0, 0, E), the supersymmetry algebra become

{
QA
α , Q̄

B
β̇

}
= 4EδABδαβ̇,11̇{

QA
α , Q

B
β

}
=
{
Q̄A
α̇ , Q̄

B
β̇

}
= 0

The rescaled operators aA = QA
1 /

√
4E and (aA)† = Q̄A

1̇
/
√

4E satisfy the Clifford algebra

in N dimensions while the operators a′A = QA
2 /

√
4E and (a′A)† = Q̄A

2̇
/
√

4E mutually

anticommute and act as zero on the representation states. A representation of the super-

symmetry algebra is therefore characterized by a Clifford ground state |Ω〉 labelled by the

energy E and the helicity λ and annihilated by the aA operators. The other states of the

representation are given by

|aA1 . . . aAn〉 = (aA1)† . . . (aAn)†|Ω〉

The number of states with helicity λ+ n with 0 ≤ n ≤ 1
2
N is

(
N
2n

)
. The total number of

states is therefore 2N with 2N−1 bosonic states and 2N−1 fermionic states.

For more details on the supersymmetry representations (in particular when the central

charges are not zero), see refs. [2, 44, 51].
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61 Unitary superalgebras

The superalgebras A(m− 1, n− 1) with m 6= n

The unitary superalgebra A(m−1, n−1) or sl(m|n) with m 6= n defined for m > n ≥ 0

has as even part the Lie algebra sl(m)⊕ sl(n)⊕U(1) and as odd part the (m,n)+ (m,n)

representation of the even part; it has rank m+ n− 1 and dimension (m+ n)2 − 1. One

has A(m− 1, n− 1) ≃ A(n− 1, m− 1).

The root system ∆ = ∆0 ∪ ∆1 of A(m − 1, n − 1) can be expressed in terms of the

orthogonal vectors ε1, . . . , εm and δ1, . . . , δn such that ε2
i = 1 and δ2

i = −1 as

∆0 =
{
εi − εj, δi − δj

}
and ∆1 =

{
εi − δj , −εi + δj

}

The Dynkin diagrams of the unitary superalgebras A(m − 1, n − 1) are of the following

types:

v v v v1 1 1 1

where the small black dots represent either white dots (associated to even roots) or grey

dots (associated to odd roots of zero length). The diagrams are drawn with their Dynkin

labels which give the decomposition of the highest root in terms of the simple ones. The

Dynkin diagrams of the unitary Lie superalgebras up to rank 4 are given in Table 14.

The superalgebra A(m−1, n−1) can be generated as a matrix superalgebra by taking

matrices of the form

M =

(
Xmm Tmn
Tnm Xnn

)

where Xmm and Xnn are gl(m) and gl(n) matrices, Tmn and Tnm are m × n and n ×m

matrices respectively, with the supertrace condition

str(X) = tr(Xmm) − tr(Xnn) = 0

A basis of matrices can be constructed as follows. Consider (m + n)2 elementary

matrices eIJ of order m + n such that (eIJ)KL = δILδJK (I, J,K, L = 1, . . . , m+ n) and

define the (m+ n)2 − 1 generators

Eij = eij −
1

m− n
δij(ekk + ek̄k̄) Eī = eī

Eı̄̄ = eı̄̄ +
1

m− n
δı̄̄(ekk + ek̄k̄) Eı̄j = eı̄j

where the indices i, j, . . . run from 1 to m and ı̄, ̄, . . . from m + 1 to m + n. Then the

generator Z = Ekk = −Ek̄k̄ = − 1
m−n(nekk +mek̄k̄) generate the U(1) part, the generators
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Eij− 1
m
δijZ generate the sl(m) part and the generators Eı̄̄+

1
n
δı̄̄Z generate the sl(n) part,

while Eī and Eı̄j transform as the (m,n) and (m,n) representations of sl(m)⊕sl(n)⊕U(1).

In all these expressions, summation over repeated indices is understood.

The generators in the Cartan-Weyl basis are given by:

• for the Cartan subalgebra

Hi = Eii − Ei+1,i+1 with 1 ≤ i ≤ m− 1

Hı̄ = Eı̄̄ı −Eı̄+1,̄ı+1 with m+ 1 ≤ ı̄ ≤ m+ n− 1

Hm = Emm + Em+1,m+1

• for the raising operators

Eij with i < j for sl(m) , Eı̄̄ with ı̄ < ̄ for sl(n) , Eī for the odd part

• for the lowering operators

Eji with i < j for sl(m) , Ēı̄ with ı̄ < ̄ for sl(n) , Eı̄j for the odd part

The commutation relations in the Cartan-Weyl basis read as:

[
HI , HJ

]
= 0

[
HK , EIJ

]
= δIKEKJ − δI,K+1EK+1,J − δKJEIK + δK+1,JEI,K+1 (K 6= m)

[
Hm, EIJ

]
= δImEmJ + δI,m+1Em+1,J − δmJEIm − δm+1,JEI,m+1

[
EIJ , EKL

]
= δJKEIL − δILEKJ for EIJ and EKL even

[
EIJ , EKL

]
= δJKEIL − δILEKJ for EIJ even and EKL odd

{
EIJ , EKL

}
= δJKEIL + δILEKJ for EIJ and EKL odd

The superalgebras A(n− 1, n− 1) with n > 1

The unitary superalgebra A(n − 1, n− 1) defined for n > 1 has as even part the Lie

algebra sl(n)⊕sl(n) and as odd part the (n, n)+(n, n) representation of the even part; it

has rank 2n− 2 and dimension 4n2 − 2. Note that the superalgebra A(0, 0) is not simple.

The root system ∆ = ∆0 ∪ ∆1 of A(n − 1, n − 1) can be expressed in terms of the

orthogonal vectors ε1, . . . , εn and δ1, . . . , δn such that ε2
i = 1 and δ2

i = −1 as

∆0 =
{
εi − εj, δi − δj

}
and ∆1 =

{
εi − δj , −εi + δj

}

The Dynkin diagrams of the unitary superalgebras A(n − 1, n− 1) are of the same type

as those of the A(m− 1, n− 1) case.
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The superalgebra A(n−1, n−1) can be generated as a matrix superalgebra by taking

matrices of sl(n|n). However, sl(n|n) contains a one-dimensional ideal I generated by I2n

and one sets A(n−1, n−1) ≡ sl(n|n)/I, hence the rank and dimension of A(n−1, n−1).

One has to stress that the rank of the superalgebra is 2n − 2 although the Dynkin

diagram has 2n− 1 dots: the 2n− 1 associated simple roots are not linearly independent

in that case.

Moreover, in the case of A(1, 1), one has the relations ε1 + ε2 = 0 and δ1 + δ2 = 0

from which it follows that there is only four distinct odd roots α such that dimGα = 2

and each odd root is both positive and negative.

62 Universal enveloping algebra

Definition: Let G = G0 ⊕ G1 be a Lie superalgebra over a field K = R or C. The

definition of the universal enveloping superalgebra U(G) is similar to the definition in

the algebraic case. If G⊗ is the tensor algebra over G with Z2-graded tensor product (→
Superalgebra) and I the ideal of G generated by [[X, Y ]]− (X ⊗Y − (−1)degX. deg Y Y ⊗X)

where X, Y ∈ G, the universal enveloping superalgebra U(G) is the quotient G⊗/I.

Poincaré–Birkhoff–Witt theorem: Let b1, . . . , bB (B = dimG0) be a basis of the even

part G0 and f1, . . . , fF (F = dimG1) be a basis of the odd part G1. Then the elements

bi11 . . . b
iB
B f

j1
1 . . . f jFF with i1, . . . , iB ≥ 0 and j1, . . . , jF ∈ {0, 1}

form a basis of the universal enveloping superalgebra U(G), called the Poincaré–Birkhoff–

Witt (PBW) basis.

The universal enveloping superalgebra U(G) contains in general zero divisors (let us

remind that U(G0) never contains zero divisors). In fact, if F ∈ G1 is a generator associated

to an isotropic root, one has F 2 = {F, F} = 0 in U(G). More precisely, one has the

following property:

Property: The universal enveloping superalgebra U(G) does not contain any zero

divisors if and only if G = ops(1|2n). In that case, U(G) is said entire.

Filtration of G: U(G) can be naturally filtered as follows. Let Un be the subspace of

U(G) generated by the PBW-basis monomials of degree ≤ n (e.g. U0 = K and U1 = K+G).

Then one has the following filtration, with Ui Uj ⊂ Ui+j :

U0 ⊂ U1 ⊂ . . . ⊂ Un ⊂ . . . ⊂ U(G) =
∞⋃
Un

93



Defining the quotient subspaces Ū0 = U0 and Ūi = Ui/Ui−1 for i ≥ 1, one can associate to

U(G) the following graded algebra Gr(U(G)):

Gr(U(G)) = Ū0 ⊕ Ū1 ⊕ . . . ⊕ Ūn ⊕ . . .

Then, one can show that

Gr(U(G)) ≃ K[b1, . . . , bB] ⊗ Λ(f1, . . . , fF )

where K[b1, . . . , bB] is the ring of polynomials in the indeterminates b1, . . . , bB with coef-

ficients in K and Λ(f1, . . . , fF ) is the exterior algebra over G.

For more details, see ref. [21].

63 Weyl group

Let G = G0 ⊕G1 be a classical Lie superalgebra with root system ∆ = ∆0 ∪∆1. ∆0 is

the set of even roots and ∆1 the set of odd roots. The Weyl group W (G) of G is generated

by the Weyl reflections ω with respect to the even roots:

ωα(β) = β − 2
(α, β)

(α, α)
α

where α ∈ ∆0 and β ∈ ∆.

The properties of the Weyl group are the following.

Properties:

1. The Weyl group W (G) leaves ∆, ∆0, ∆1, ∆0, ∆1 invariant, where ∆, ∆0, ∆1 are

defined above, ∆0 is the subset of roots α ∈ ∆0 such that α/2 /∈ ∆1 and ∆1 is the

subset of roots α ∈ ∆1 such that 2α /∈ ∆0.

2. Let eλ be the formal exponential, function on H∗ such that eλ(µ) = δλ,µ for two

elements λ, µ ∈ H∗, which satisfies eλeµ = eλ+µ. One defines

L =

∏
α∈∆+

0

(eα/2 − e−α/2)
∏
α∈∆+

1

(eα/2 + e−α/2)
and L′ =

∏
α∈∆+

0

(eα/2 − e−α/2)
∏
α∈∆+

1

(eα/2 − e−α/2)

where ∆+
0

and ∆+
1

are the sets of positive even roots and positive odd roots respec-

tively. Then one has

w(L) = ε(w)L and w(L′) = ε′(w)L′ where w ∈W (G)

with ε(w) = (−1)ℓ(w) and ε′(w) = (−1)ℓ
′(w) where ℓ(w) is the number of reflections

in the expression of w ∈ W (G) and ℓ′(w) is the number of reflections with respect

to the roots of ∆
+
0 in the expression of w ∈W (G).

For more details, see ref. [21].
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64 Z-graded Lie superalgebras

Definition: Let G = G0 ⊕G1 be a Lie superalgebra. G is a Z-graded Lie superalgebra if

it can be written as a direct sum of finite dimensional Z2-graded subspaces Gi such that

G =
⊕

i∈Z

Gi where
[[
Gi,Gj

]]
⊂ Gi+j

The Z-gradation is said consistent with the Z2-gradation if

G0 =
∑

i∈Z

G2i and G1 =
∑

i∈Z

G2i+1

Definition: Let G be a Z-graded Lie superalgebra. It is called

- irreducible if the representation of G0 in G−1 is irreducible,

- transitive if X ∈ Gi≥0,
[[
X,G−1

]]
= 0 ⇒ X = 0,

- bitransitive if X ∈ Gi≥0,
[[
X,G−1

]]
= 0 ⇒ X = 0 and X ∈ Gi≤0,

[[
X,G1

]]
= 0 ⇒ X = 0.

For more details, see ref. [21].
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Simple Lie
superalgebras
ւ ց

Classical Lie Cartan type
superalgebras superalgebras

ւ ց W (n), S(n), S̃(n), H(n)
Basic Lie Strange

superalgebras superalgebras
A(m,n), B(m,n) P (n), Q(n)
C(n+ 1), D(m,n)

F (4), G(3), D(2, 1;α)

Table 1: Classification of the simple Lie superalgebras.

type I type II
BASIC A(m,n) m > n ≥ 0 B(m,n) m ≥ 0, n ≥ 1

(non-degenerate C(n+ 1) n ≥ 1 D(m,n)

{
m ≥ 2, n ≥ 1
m 6= n+ 1

Killing form) F (4)
G(3)

BASIC A(n, n) n ≥ 1 D(n+ 1, n) n ≥ 1
(zero Killing form) D(2, 1;α) α ∈ C \ {0,−1}

STRANGE P (n) n ≥ 2 Q(n) n ≥ 2

Table 2: Classical Lie superalgebras.

superalgebra G even part G0 odd part G1

A(m,n) Am ⊕ An ⊕ U(1) (m,n) ⊕ (m,n)
A(n, n) An ⊕An (n, n) ⊕ (n, n)
C(n+ 1) Cn ⊕ U(1) (2n) ⊕ (2n)
B(m,n) Bm ⊕ Cn (2m+ 1, 2n)
D(m,n) Dm ⊕ Cn (2m, 2n)
F (4) A1 ⊕ B3 (2, 8)
G(3) A1 ⊕G2 (2, 7)

D(2, 1;α) A1 ⊕A1 ⊕ A1 (2, 2, 2)
P (n) An [2] ⊕ [1n−1]
Q(n) An ad (An)

Table 3: G0 and G1 structure of the classical Lie superalgebras.
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Table 4: The basic Lie superalgebra A(m− 1, n− 1) = sl(m|n).

Structure: G0 = sl(m) ⊕ sl(n) ⊕ U(1) and G1 = (m,n) ⊕ (m,n), type I.

Rank: m+ n− 1, dimension: (m+ n)2 − 1.

Root system:

∆ = {εi − εj, δk − δl, εi − δk, δk − εi}
∆0 = {εi − εj, δk − δl}, ∆1 = {εi − δk, δk − εi}
∆0 = ∆0, ∆1 = ∆1

where 1 ≤ i 6= j ≤ m and 1 ≤ k 6= l ≤ n.

dim ∆0 = dim ∆0 = m2 + n2 −m− n+ 1 and dim ∆1 = dim ∆1 = 2mn.

Distinguished simple root system:

α1 = δ1 − δ2, . . . , αn−1 = δn−1 − δn, αn = δn − ε1,

αn+1 = ε1 − ε2, . . . , αn+m−1 = εm−1 − εm

Distinguished positive roots (1 ≤ i < j ≤ m and 1 ≤ k < l ≤ n):

δk − δl = αk + . . .+ αl−1

εi − εj = αn+i + . . .+ αn+j−1

δk − εi = αk + . . .+ αn+i−1

Sums of even/odd distinguished positive roots:

2ρ0 = (m− 1)ε1 + (m− 3)ε2 + (m− 5)ε3 + . . .− (m− 3)εm−1 − (m− 1)εm

+(n− 1)δ1 + (n− 3)δ2 + (n− 5)δ3 + . . .− (n− 3)δn−1 − (n− 1)δn

2ρ1 = m(δ1 + . . .+ δn) − n(ε1 + . . .+ εm)

Distinguished Dynkin diagram:

m m m m m
1 1 1 1 1

�@
︸ ︷︷ ︸

n−1
︸ ︷︷ ︸
m−1
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Distinguished Cartan matrix:




2 −1 0 · · · 0 · · · · · · · · · 0

−1
. . .

. . .
. . .

...

0
. . .

. . . 0
...

. . .
. . .

. . . −1
. . .

0 0 −1 2 −1
. . .

...
...

. . . −1 0 1
. . .

...
...

. . . −1 2 −1 0 0
. . . −1

. . .
. . .

. . .
...

0
. . .

. . . 0
. . .

. . .
. . . −1

0 · · · · · · · · · 0 · · · 0 −1 2




Longest distinguished root:

−α0 = α1 + . . .+ αn+m−1 = δ1 − εm

Distinguished extended Dynkin diagram:

m m m m m

m

1 1 1 1 1

1

�@

�@

��������

HHHHHHHH

︸ ︷︷ ︸
n−1

︸ ︷︷ ︸
m−1

Factor group Out(G) = Aut(G)/Int(G):

Out(G) = Z2 for A(m,n) with m 6= n 6= 0 and A(0, 2n− 1)

Out(G) = Z4 for A(0, 2n)
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Table 5: The basic Lie superalgebra A(n− 1, n− 1) = sl(n|n)/Z.

Structure: G0 = sl(n) ⊕ sl(n) and G1 = (n, n) ⊕ (n, n), type I.

Rank: 2n− 2, dimension: 4n2 − 2.

Root system:

∆ = {εi − εj, δi − δj , εi − δj, δj − εi}
∆0 = {εi − εj, δi − δj}, ∆1 = {εi − δj, δj − εi}
∆0 = ∆0, ∆1 = ∆1

where 1 ≤ i 6= j ≤ n.

dim ∆0 = dim ∆0 = 2n2 − 2n and dim ∆1 = dim ∆1 = 2n2.

Distinguished simple root system:

α1 = δ1 − δ2, . . . , αn−1 = δn−1 − δn, αn = δn − ε1,

αn+1 = ε1 − ε2, . . . , α2n−1 = εn−1 − εn

Number of simple roots = 2n− 1 ( 6= rank); the simple roots are not independent:

α1 + 2α2 + . . .+ nαn + (n− 1)αn+1 + . . .+ 2α2n−2 + α2n−1 = 0

Distinguished positive roots (1 ≤ i < j ≤ m and 1 ≤ k < l ≤ n):

δk − δl = αk + . . .+ αl−1

εi − εj = αn+i + . . .+ αn+j−1

δk − εi = αk + . . .+ αn+i−1

Sums of even/odd distinguished positive roots:

2ρ0 = (n− 1)ε1 + (n− 3)ε2 + (n− 5)ε3 + . . .− (n− 3)εn−1 − (n− 1)εn

+(n− 1)δ1 + (n− 3)δ2 + (n− 5)δ3 + . . .− (n− 3)δn−1 − (n− 1)δn

2ρ1 = n(δ1 + . . .+ δn − ε1 − . . .− εn)

Distinguished Dynkin diagram:

m m m m m
1 1 1 1 1

�@
︸ ︷︷ ︸

n−1
︸ ︷︷ ︸

n−1
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Distinguished Cartan matrix:




2 −1 0 · · · 0 · · · · · · · · · 0

−1
. . .

. . .
. . .

...

0
. . .

. . . 0
...

. . .
. . .

. . . −1
. . .

0 0 −1 2 −1
. . .

...
...

. . . −1 0 1
. . .

...
...

. . . −1 2 −1 0 0
. . . −1

. . .
. . .

. . .
...

0
. . .

. . . 0
. . .

. . .
. . . −1

0 · · · · · · · · · 0 · · · 0 −1 2




Longest distinguished root:

−α0 = α1 + . . .+ α2n−1 = δ1 − εn

Distinguished extended Dynkin diagram:

m m m m m

m

1 1 1 1 1

1

�@

�@

��������

HHHHHHHH

︸ ︷︷ ︸
n−1

︸ ︷︷ ︸
n−1

Factor group Out(G) = Aut(G)/Int(G):

Out(G) = Z2 × Z2 for A(n, n) with n 6= 1

Out(G) = Z2 for A(1, 1)
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Table 6: The basic Lie superalgebra B(m,n) = osp(2m+ 1|2n).

Structure: G0 = so(2m+ 1) ⊕ sp(2n) and G1 = (2m+ 1, 2n), type II.

Rank: m+ n, dimension: 2(m+ n)2 +m+ 3n.

Root system:

∆ = {±εi ± εj, ±εi, ±δk ± δl, ±2δk, ±εi ± δk, ±δk}
∆0 = {±εi ± εj, ±εi, ±δk ± δl, ±2δk}, ∆1 = {±εi ± δk, ±δk}
∆0 = {±εi ± εj, ±εi, ±δk ± δl}, ∆1 = {±εi ± δk}

where 1 ≤ i 6= j ≤ m and 1 ≤ k 6= l ≤ n.

dim ∆0 = 2m2 + 2n2, dim ∆1 = 4mn+ 2n, dim ∆0 = 2m2 + 2n2 − 2n, dim ∆1 = 4mn.

Distinguished simple root system:

α1 = δ1 − δ2, . . . , αn−1 = δn−1 − δn, αn = δn − ε1,

αn+1 = ε1 − ε2, . . . , αn+m−1 = εm−1 − εm, αn+m = εm

Distinguished positive roots (1 ≤ i < j ≤ m and 1 ≤ k < l ≤ n):

δk − δl = αk + . . .+ αl−1

δk + δl = αk + . . .+ αl−1 + 2αl + . . .+ 2αn+m

2δk = 2αk + . . .+ 2αn+m

εi − εj = αn+i + . . .+ αn+j−1

εi + εj = αn+i + . . .+ αn+j−1 + 2αn+j + . . .+ 2αn+m

εi = αn+i + . . .+ αn+m

δk − εi = αk + . . .+ αn+i−1

δk + εi = αk + . . .+ αn+i−1 + 2αn+i + . . .+ 2αn+m

Sums of even/odd distinguished positive roots:

2ρ0 = (2m− 1)ε1 + (2m− 3)ε2 + . . .+ 3εm−1 + εm

+2nδ1 + (2n− 2)δ2 + . . .+ 4δn−1 + 2δn

2ρ1 = (2m+ 1)(δ1 + . . .+ δn)

Distinguished Dynkin diagram:

m m m m m m
2 2 2 2 2 2

�@ @
�︸ ︷︷ ︸

n−1
︸ ︷︷ ︸
m−1
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Distinguished Cartan matrix:




2 −1 0 · · · 0 · · · · · · · · · 0

−1
. . .

. . .
. . .

...

0
. . .

. . . 0
...

. . .
. . .

. . . −1
. . .

0 0 −1 2 −1
. . .

...
...

. . . −1 0 1
. . .

...
...

. . . −1 2 −1 0 0
. . . −1

. . .
. . .

. . .
...

0
. . .

. . . −1 0
. . . −1 2 −1

0 · · · · · · · · · 0 · · · 0 −2 2




Longest distinguished root:

−α0 = 2α1 + . . .+ 2αn+m = 2δ1

Distinguished extended Dynkin diagram:

m m m m m m m
1 2 2 2 2 2 2

�@@
�

@
�︸ ︷︷ ︸

n−1
︸ ︷︷ ︸
m−1

Factor group Out(G) = Aut(G)/Int(G) = I.
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Table 7: The basic Lie superalgebra B(0, n) = osp(1|2n).

Structure: G0 = sp(2n) and G1 = (2n), type II.

Rank: n, dimension: 2n2 + 3n.

Root system:

∆ = {±δk ± δl, ±2δk, ±δk}
∆0 = {±δk ± δl, ±2δk}, ∆1 = {±δk}
∆0 = {±δk ± δl}, ∆1 = ∅

where 1 ≤ k 6= l ≤ n.

dim ∆0 = 2n2, dim ∆1 = 2n, dim ∆0 = 2n2 − 2n, dim ∆1 = 0.

Simple root system:

α1 = δ1 − δ2, . . . , αn−1 = δn−1 − δn, αn = δn

Positive roots (1 ≤ k < l ≤ n):

δk − δl = αk + . . .+ αl−1

δk + δl = αk + . . .+ αl−1 + 2αl + . . .+ 2αn+m

2δk = 2αk + . . .+ 2αn+m

δk = αk + . . .+ αn+m

Sums of even/odd positive roots:

2ρ0 = 2nδ1 + (2n− 2)δ2 + . . .+ 4δn−1 + 2δn

2ρ1 = δ1 + . . .+ δn

Dynkin diagram:

m m }
2 2 2

@
�︸ ︷︷ ︸

n−1

Cartan matrix: 


2 −1 0 · · · · · · 0

−1 2
. . .

. . .
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . . 2 −1 0
...

. . . −1 2 −1
0 · · · · · · 0 −2 2
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Longest distinguished root:

−α0 = 2α1 + . . .+ 2αn = 2δ1

Extended Dynkin diagram:

m m m }
1 2 2 2

@
�

@
�︸ ︷︷ ︸

n−1

Factor group Out(G) = Aut(G)/Int(G) = I.
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Table 8: The basic Lie superalgebra C(n+ 1) = osp(2|2n).

Structure: G0 = so(2) ⊕ sp(2n) and G1 = (2n) ⊕ (2n), type I.

Rank: n+ 1, dimension: 2n2 + 5n+ 1.

Root system:

∆ = {±δk ± δl, ±2δk, ±ε± δk}
∆0 = {±δk ± δl, ±2δk}, ∆1 = {±ε± δk}
∆0 = ∆0, ∆1 = ∆1

where 1 ≤ k 6= l ≤ n.

dim ∆0 = dim ∆0 = 2n2 and dim ∆1 = dim ∆1 = 4n.

Distinguished simple root system:

α1 = ε− δ1, α2 = δ1 − δ2, . . . , αn = δn−1 − δn, αn+1 = 2δn

Distinguished positive roots (1 ≤ k < l ≤ n):

δk − δl = αk+1 + . . .+ αl

δk + δl = αk+1 + . . .+ αl + 2αl+1 + . . .+ 2αn+1

2δk = 2αk+1 + . . .+ 2αn + αn+1 (k 6= n) 2δn = αn+1

ε− δk = α1 + . . .+ αk

ε+ δk = α1 + . . .+ αk + 2αk+1 + . . .+ 2αn + αn+1 (k < n)

ε+ δn = α1 + . . .+ αn+1

Sums of even/odd distinguished positive roots:

2ρ0 = 2nδ1 + (2n− 2)δ2 + . . .+ 4δn−1 + 2δn

2ρ1 = 2nε

Distinguished Dynkin diagram:

m m m m
1 2 2 1

�@ �
@︸ ︷︷ ︸

n−1

Distinguished Cartan matrix:



0 1 0 · · · · · · 0
−1 2 −1 0 0

0 −1
. . .

. . .
. . .

...

0 0
. . .

. . . −1 0
...

. . . −1 2 −2
0 · · · · · · 0 −1 2
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Longest distinguished root:

−α0 = α1 + 2α2 + . . .+ 2αn+1 + αn = ε+ δ1

Distinguished extended Dynkin diagram:

m

m

1

1

m m m
2 2 1�@

�@
��

HH �
@︸ ︷︷ ︸

n−1

Factor group Out(G) = Aut(G)/Int(G) = Z2.
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Table 9: The basic Lie superalgebra D(m,n) = osp(2m|2n).

Structure: G0 = so(2m) ⊕ sp(2n) and G1 = (2m, 2n), type II.

Rank: m+ n, dimension: 2(m+ n)2 −m+ n.

Root system:

∆ = {±εi ± εj , ±δk ± δl, ±2δk, ±εi ± δk}
∆0 = {±εi ± εj, ±δk ± δl, ±2δk}, ∆1 = {±εi ± δk}
∆0 = ∆0, ∆1 = ∆1

where 1 ≤ i 6= j ≤ m and 1 ≤ k 6= l ≤ n.

dim ∆0 = dim ∆0 = 2m2 + 2n2 − 2m and dim ∆1 = dim ∆1 = 4mn.

Distinguished simple root system:

α1 = δ1 − δ2, . . . , αn−1 = δn−1 − δn, αn = δn − ε1,

αn+1 = ε1 − ε2, . . . , αn+m−1 = εm−1 − εm, αn+m = εm−1 + εm

Distinguished positive roots (1 ≤ i < j ≤ m and 1 ≤ k < l ≤ n):

δk − δl = αk + . . .+ αl−1

δk + δl = αk + . . .+ αl−1 + 2αl + . . .+ 2αn+m−2 + αn+m−1 + αn+m

2δk = 2αk + . . .+ 2αn+m−2 + αn+m−1 + αn+m

εi − εj = αn+i + . . .+ αn+j−1

εi + εj = αn+i + . . .+ αn+j−1 + 2αn+j + . . .+ 2αn+m−2 + αn+m−1 + αn+m (j < m− 1)

εi + εm−1 = αn+i + . . .+ αn+m−2 + +αn+m−1 + αn+m

εi + εm = αn+i + . . .+ αn+m−2 + αn+m

δk − εi = αk + . . .+ αn+i−1

δk + εi = αk + . . .+ αn+i−1 + 2αn+i + . . .+ 2αn+m−2 + αn+m−1 + αn+m (j < m− 1)

δk + εm−1 = αk + . . .+ αn+m−2 + +αn+m−1 + αn+m

δk + εm = αk + . . .+ αn+m−2 + αn+m

Sums of even/odd distinguished positive roots:

2ρ0 = (2m− 2)ε1 + (2m− 4)ε2 + . . .+ 2εm−1 + 2nδ1 + (2n− 2)δ2 + . . .+ 4δn−1 + 2δn

2ρ1 = 2m(δ1 + . . .+ δn)
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Distinguished Dynkin diagram:

m m m m m
2 2 2 2 2

�@
��

HH

m1

m1
︸ ︷︷ ︸

n−1
︸ ︷︷ ︸
m−2

Distinguished Cartan matrix:




2 −1 0 · · · 0 · · · · · · · · · 0

−1
. . .

. . .
. . .

...

0
. . .

. . . 0
...

. . .
. . .

. . . −1
. . .

0 0 −1 2 −1
. . .

...
...

. . . −1 0 1
. . .

...
...

. . . −1 2 −1 0 0
. . . −1

. . .
. . .

. . .
...

0
. . .

. . . −1 −1
. . . −1 2 0

0 · · · · · · · · · 0 · · · −1 0 2




Longest distinguished root:

−α0 = 2α1 + . . .+ 2αn+m−2 + αn+m−1 + αn+m = 2δ1

Distinguished extended Dynkin diagram:

m m m m m m
1 2 2 2 2 2

�@@
�

��

HH

m1

m1
︸ ︷︷ ︸

n−1
︸ ︷︷ ︸
m−2

Factor group Out(G) = Aut(G)/Int(G) = Z2.
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Table 10: The basic Lie superalgebra F (4).

Structure: G0 = sl(2) ⊕ so(7) and G1 = (2, 8), type II.

Rank: 4, dimension: 40.

Root system:

∆ = {±δ, ±εi ± εj, ±εi, 1
2
(±ε1 ± ε2 ± ε3 ± δ)}

∆0 = {±δ, ±εi ± εj, ±εi}, ∆1 = {1
2
(±ε1 ± ε2 ± ε3 ± δ)}

∆0 = ∆0, ∆1 = ∆1

where 1 ≤ i 6= j ≤ 3.

dim ∆0 = dim ∆0 = 20 and dim ∆1 = dim ∆1 = 16.

Distinguished simple root system:

α1 = 1
2
(δ − ε1 − ε2 − ε3), α2 = ε3, α3 = ε2 − ε3, α4 = ε1 − ε2

Distinguished positive roots (1 ≤ i < j ≤ 3):

εi − εj = α3, α4, α3 + α4

εi + εj = 2α2 + α3, 2α2 + α3 + α4, 2α2 + 2α3 + α4

εi = α2, α2 + α3, α2 + α3 + α4

δ = 2α1 + 3α2 + 2α3 + α4

1
2
(δ ± ε1 ± ε2 ± ε3) = α1, α1 + α2, α1 + α2 + α3, α1 + α2 + α3 + α4, α1 + 2α2 + α3,

α1 + 2α2 + α3 + α4, α1 + 2α2 + 2α3 + α4, α1 + 3α2 + 2α3 + α4

Sums of even/odd distinguished positive roots:

2ρ0 = 5ε1 + 3ε2 + ε3 + δ

2ρ1 = 4δ

Distinguished Dynkin diagram:

m m m m
2 3 2 1

�@ �
@

Distinguished Cartan matrix:




0 1 0 0
−1 2 −2 0

0 −1 2 −1
0 0 −1 2
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Longest distinguished root:

−α0 = 2α1 + 3α2 + 2α3 + α4 = δ

Distinguished extended Dynkin diagram:

m m m m m
1 2 3 2 1

�@@
�

�
@

Factor group Out(G) = Aut(G)/Int(G) = I.
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Table 11: The basic Lie superalgebra G(3).

Structure: G0 = sl(2) ⊕G2 and G1 = (2, 7), type II.

Rank: 3, dimension: 31.

Root system:

∆ = {±2δ, ±εi, εi − εj, ±δ, ±εi ± δ}
∆0 = {±2δ, ±εi, εi − εj}, ∆1 = {±δ, ±εi ± δ}
∆0 = {±εi, εi − εj}, ∆1 = {±εi ± δ}

where 1 ≤ i 6= j ≤ 3 and ε1 + ε2 + ε3 = 0.

dim ∆0 = 14, dim ∆1 = 14, dim ∆0 = 12, dim ∆1 = 12.

Distinguished simple root system:

α1 = δ + ε3, α2 = ε1, α3 = ε2 − ε1

Distinguished positive roots:

even roots: α2, α3, α2 + α3, 2α2 + α3, 3α2 + α3, 3α2 + 2α3, 2α1 + 4α2 + 2α3

odd roots: α1, α1 + α2, α1 + α2 + α3, α1 + 2α2 + α3, α1 + 3α2 + α3,

α1 + 3α2 + 2α3, α1 + 4α2 + 2α3

Sums of even/odd distinguished positive roots:

2ρ0 = 2ε1 + 4ε2 − 2ε3 + 2δ

2ρ1 = 7δ

Distinguished Dynkin diagram:

m m m
2 4 2

�@ �
@

Distinguished Cartan matrix: 


0 1 0
−1 2 −3

0 −1 2




Longest distinguished root:

−α0 = 2α1 + 4α2 + 2α3 = 2δ

Distinguished extended Dynkin diagram:

m m m m
1 2 4 2

�@@
�

�
@

Factor group Out(G) = Aut(G)/Int(G) = I.
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Table 12: The basic Lie superalgebra D(2, 1;α).

Structure: G0 = sl(2) ⊕ sl(2) ⊕ sl(2) and G1 = (2, 2, 2), type II.

Rank: 3, dimension: 17.

Root system:

∆ = {±2εi, ±ε1 ± ε2 ± ε3}
∆0 = {±2εi}, ∆1 = {±ε1 ± ε2 ± ε3}
∆0 = ∆0, ∆1 = ∆1

where 1 ≤ i ≤ 3.

dim ∆0 = dim ∆0 = 6 and dim ∆1 = dim ∆1 = 8.

Distinguished simple root system:

α1 = ε1 − ε2 − ε3, α2 = 2ε2, α3 = 2ε3

Distinguished positive roots (1 ≤< j ≤ 3):

even roots: α2, α3, 2α1 + α2 + α3

odd roots: α1, α1 + α2, α1 + α3, α1 + α2 + α3

Sums of even/odd distinguished positive roots:

2ρ0 = 2ε1 + 2ε2 + 2ε3

2ρ1 = 4ε1

Distinguished Dynkin diagram:

m2 �@
��

HH

m1

m1

Distinguished Cartan matrix: 


0 1 α
−1 2 0
−1 0 2




Longest root (in the distinguished root system):

−α0 = 2α1 + α2 + α3 = 2ε1
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Distinguished extended Dynkin diagram:

m m
1 2

�@
��

HH

m1

m1

Factor group Out(G) = Aut(G)/Int(G):

Out(G) = I for generic α

Out(G) = Z2 for α = 1,−2,−1/2

Out(G) = Z3 for α = e2iπ/3, e4iπ/3
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Table 13: Distinguished Dynkin diagrams of the basic Lie superalgebras.

A(m,n) m m m m m
1 1 1 1 1

�@
︸ ︷︷ ︸

n
︸ ︷︷ ︸

m

B(m,n) m m m m m m
2 2 2 2 2 2

�@ @
�︸ ︷︷ ︸

n−1
︸ ︷︷ ︸
m−1

B(0, n) m m }
2 2 2

@
�︸ ︷︷ ︸

n−1

C(n+ 1) m m m m
1 2 2 1

�@ �
@︸ ︷︷ ︸

n−1

D(m,n) m m m m m
2 2 2 2 2

�@
��

HH

m1

m1
︸ ︷︷ ︸

n−1
︸ ︷︷ ︸
m−2

F (4) m m m m
2 3 2 1

�@ �
@

G(3) m m m
2 4 2

�@ �
@

D(2, 1;α) m2 �@
��

HH

m1

m1
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Table 14: Dynkin diagrams of the basic Lie superalgebras of rank ≤ 4

sl(1|1) m
1

�@ osp(1|2) }
1

sl(1|2) m m
1 1

�@ m m
1 1

�@ �@ osp(2|2) m m
2 2

�@ �@ m m
2 2

@
��@

osp(1|4) m }
2 2

@
�

osp(3|2) m m
2 2

@
��@ m }

1 2
@
��@

sl(1|3) m m m
1 1 1

�@ m m m
1 1 1

�@ �@

sl(2|2) m m m
1 1 1

�@ m m m
1 1 1

�@ �@ �@ m m m
1 1 1

�@ �@

osp(1|6) m m }
2 2 2

@
�

osp(2|4) m m m
1 2 1

@
��@ m m m

2 2 1

@
��@ �@ m

2
��

HH

m1

m1

�@

�@

osp(3|4) m m m
2 2 2

@
��@ m m }

1 2 2
@
��@ m m }

2 2 2
@
��@ �@

osp(4|2) m m m
1 2 1

@
��@ m

1
��

HH

m1

m1

�@ m
1

��

HH

m1

m1

�@

�@

�@

osp(5|2) m m m
2 2 2

@
��@ m m m

1 2 2
@
��@ �@ m m }

1 2 2
@
��@
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sl(1|4) m m m m
1 1 1 1

�@ m m m m
1 1 1 1

�@ �@

m m m m
1 1 1 1

�@ �@

sl(2|3) m m m m
1 1 1 1

�@ m m m m
1 1 1 1

�@ �@ �@

m m m m
1 1 1 1

�@ �@ �@ m m m m
1 1 1 1

�@ �@ �@ �@

m m m m
1 1 1 1

�@ �@ m m m m
1 1 1 1

�@ �@

osp(1|8) m m m }
2 2 2 2

@
�

osp(2|6) m m m m
1 2 2 2

@
��@ m m m m

2 2 2 2

@
��@ �@

m m m m
2 2 2 2

@
��@ �@ m m

2 2
��

HH

m1

m1

�@

�@

osp(3|6) m m m }
1 2 2 2

@
��@ m m m }

2 2 2 2
@
��@ �@

m m m }
2 2 2 2

@
��@ �@ m m m m

2 2 2 2
@
��@

osp(4|4) m m m m
1 2 2 1

@
��@ �@ �@ m m m m

1 2 2 1

@
��@

m m m m
2 2 2 1

@
��@ �@ m m

2 2

�@
��

HH

m1

m1

m m
2 2

�@ �@
��

HH

m1

m1

�@

�@

m m
1 2

�@
��

HH

m1

m1

�@

�@
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osp(5|4) m m m m
2 2 2 2

@
��@ m m m m

2 2 2 2
@
��@ �@ �@

m m m m
1 2 2 2

@
��@ �@ m m m }

1 2 2 2
@
��@ �@ �@

m m m }
1 2 2 2

@
��@ m m m }

2 2 2 2
@
��@ �@

osp(6|2) m m m m
1 2 2 1

@
��@ m m

1 2

�@
��

HH

m1

m1

�@

�@

m m
1 2

�@ �@
��

HH

m1

m1

m m
2 2

�@
��

HH

m1

m1

osp(7|2) m m m }
1 2 2 2

@
��@ m m m m

1 2 2 2
@
��@ �@

m m m m
1 2 2 2

@
��@ �@ m m m m

2 2 2 2
@
��@
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Table 15: Distinguished extended Dynkin diagrams of the basic Lie superalgebras.

A(m,n)(1) m m m m m

m

1 1 1 1 1

1

�@

�@

��������

HHHHHHHH

︸ ︷︷ ︸
m

︸ ︷︷ ︸
n

B(m,n)(1) m m m m m m m
1 2 2 2 2 2 2

�@@
�

@
�︸ ︷︷ ︸

n−1
︸ ︷︷ ︸
m−1

B(0, n)(1) m m m }
1 2 2 2

@
�

@
�︸ ︷︷ ︸

n−1

C(n+ 1)(1)

m

m

1

1

m m m
2 2 1�@

�@
��

HH �
@︸ ︷︷ ︸

n−1

D(m,n)(1) m m m m m m
1 2 2 2 2 2

�@@
�

��

HH

m1

m1
︸ ︷︷ ︸

n−1
︸ ︷︷ ︸
m−2

F (4)(1) m m m m m
1 2 3 2 1

�@@
�

�
@

G(3)(1) m m m m
1 2 4 2

�@@
�

�
@

D(2, 1;α)(1) m m
1 2

�@
��

HH

m1

m1
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G G0 Gφ Gφ
0

A(m,n) sl(m) ⊕ sl(n) ⊕ U(1) sl(m|n; R) sl(m,R) ⊕ sl(n,R) ⊕ R

sl(m|n; H) su∗(m) ⊕ su∗(n) ⊕ R

su(p,m− p|q, n− q) su(p,m− p) ⊕ su(q, n− q) ⊕ iR
A(n, n) sl(n) ⊕ sl(n) sl(n|n; R) sl(n,R) ⊕ sl(n,R)

sl(n|n; H) su∗(n) ⊕ su∗(n)
su(p, n− p|q, n− q) su(p, n− p) ⊕ su(q, n− q)

B(m,n) so(2m+ 1) ⊕ sp(2n) osp(p, 2m+ 1 − p|2n; R) so(p, 2m+ 1 − p) ⊕ sp(2n,R)
B(0, n) sp(2n) osp(1|2n; R) sp(2n,R)
C(n+ 1) so(2) ⊕ sp(2n) osp(2|2n; R) so(2) ⊕ sp(2n,R)

osp(2|2q, 2n− 2q; H) so∗(2) ⊕ sp(2q, 2n− 2q)
D(m,n) so(2m) ⊕ sp(2n) osp(p, 2m− p|2n; R) so(p, 2m− p) ⊕ sp(2n,R)

osp(2m|2q, 2n− 2q; H) so∗(2m) ⊕ sp(2q, 2n− 2q)
F (4) sl(2) ⊕ so(7) F (4; 0) sl(2,R) ⊕ so(7)

F (4; 3) sl(2,R) ⊕ so(1, 6)
F (4; 2) sl(2,R) ⊕ so(2, 5)
F (4; 1) sl(2,R) ⊕ so(3, 4)

G(3) sl(2) ⊕G2 G(3; 0) sl(2,R) ⊕G2,0

G(3; 1) sl(2,R) ⊕G2,2

D(2, 1;α) sl(2) ⊕ sl(2) ⊕ sl(2) D(2, 1;α; 0) sl(2,R) ⊕ sl(2,R) ⊕ sl(2,R)
D(2, 1;α; 1) su(2) ⊕ su(2) ⊕ sl(2,R)
D(2, 1;α; 2) sl(2,C) ⊕ sl(2,R)

P (n) sl(n) P (n; R) sl(n,R)
Q(n) sl(n) Q(n; R) sl(n,R)

HQ(n) su∗(n)
UQ(p, n− p) su(p, n− p)

Table 16: Real forms of the classical Lie superalgebras.
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G K fundG / K

sl(m|n) sl(p+ 1|p) Rp/2 ⊕ (m− p− 1)R0 ⊕ (n− p)R′′
0

sl(p|p+ 1) R′′
p/2 ⊕ (m− p)R0 ⊕ (n− p− 1)R′′

0

osp(2m|2n) osp(2k|2k) R′′
k−1/2 ⊕ (2n− 2k)R′′

0 ⊕ (2m− 2k + 1)R0

osp(2k + 2|2k) Rk ⊕ (2m− 2k − 1)R0 ⊕ (2n− 2k)R′′
0

sl(p+ 1|p) 2Rp/2 ⊕ 2(m− p− 1)R0 ⊕ 2(n− p)R′′
0

sl(p|p+ 1) 2R′′
p/2 ⊕ 2(n− p− 1)R′′

0 ⊕ 2(m− p)R0

osp(2m+ 1|2n)
osp(2k|2k)

osp(2k − 1|2k)

}
R′′
k−1/2 ⊕ (2n− 2k)R′′

0 ⊕ (2m− 2k + 2)R0

osp(2k + 2|2k)
osp(2k + 1|2k)

}
Rk ⊕ (2m− 2k)R0 ⊕ (2n− 2k)R′′

0

sl(p+ 1|p) 2Rp/2 ⊕ 2(m− p− 1)R0 ⊕R0 ⊕ 2(n− p)R′′
0

sl(p|p+ 1) 2R′′
p/2 ⊕ 2(n− p− 1)R′′

0 ⊕R0 ⊕ 2(m− p)R0

osp(2|2n) osp(2|2) R′′
1/2 ⊕R0 ⊕ (2n− 2)R′′

0

sl(1|2) 2R′′
1/2 ⊕ (2n− 4)R′′

0

Table 17: osp(1|2) decompositions of the fundamental representations of the basic Lie
superalgebras (regular cases).

→ osp(1|2) decompositions

122



G K fundG / K

osp(2n+ 2|2n)
osp(2k + 1|2k)⊕

osp(2n− 2k + 1|2n− 2k)
Rk ⊕Rn−k

osp(2n− 2|2n)
osp(2k − 1|2k)⊕

osp(2n− 2k − 1|2n− 2k)
R′′
k−1/2 ⊕R′′

n−k−1/2

osp(2n|2n)
osp(2k + 1|2k)⊕

osp(2n− 2k − 1|2n− 2k)
Rk ⊕R′′

n−k−1/2

osp(2k − 1|2k)⊕
osp(2n− 2k + 1|2n− 2k)

Rn−k ⊕R′′
k−1/2

Table 18: osp(1|2) decompositions of the fundamental representations of the basic Lie
superalgebras (singular cases).

→ osp(1|2) decompositions
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Table 19: osp(1|2) decompositions of the adjoint representations of the basic Lie superal-
gebras (regular cases).

ad osp(2m|2n)

osp(2k|2k) =

R2k−1 ⊕ R2k−5/2 ⊕ R2k−3 ⊕ R2k−9/2 ⊕ . . . ⊕ R3/2 ⊕ R1

⊕ (2m− 2k + 1)Rk−1/2 ⊕ 2(n− k)R′
k−1/2 ⊕ 2(2m− 2k + 1)(n− k)R′

0

⊕ [(2m− 2k + 1)(m− k) + (2n− 2k + 1)(n− k)]R0

ad osp(2m|2n)

osp(2k + 2|2k) =

R2k−1/2 ⊕ R2k−1 ⊕ R2k−5/2 ⊕ R2k−3 ⊕ . . . ⊕ R3/2 ⊕ R1

⊕ (2m− 2k − 1)Rk ⊕ 2(n− k)R′
k ⊕ 2(2m− 2k − 1)(n− k)R′

0

⊕ [(2m− 2k − 1)(m− k − 1) + (2n− 2k + 1)(n− k)]R0

ad osp(2m|2n)

sl(2k + 1|2k) =

R2k ⊕ 3R2k−1 ⊕ R2k−2 ⊕ . . . ⊕ R2 ⊕ 3R1 ⊕ R0

⊕ 3R2k−1/2 ⊕ R2k−3/2 ⊕ 3R2k−5/2 ⊕ . . . ⊕ 3R3/2 ⊕ R1/2

⊕ 4(m− 2k − 1)Rk ⊕ 4(n− 2k)R′
k ⊕ 4(m− 2k − 1)(n− 2k)R′

0

⊕ [(2m− 4k − 3)(m− 2k − 1) + (2n− 4k + 1)(n− 2k)]R0

ad osp(2m|2n)

sl(2k − 1|2k) =

3R2k−1 ⊕ R2k−2 ⊕ 3R2k−3 ⊕ . . . ⊕ R2 ⊕ 3R1 ⊕ R0

⊕ R2k−3/2 ⊕ 3R2k−5/2 ⊕ R2k−7/2 ⊕ . . . ⊕ 3R3/2 ⊕ R1/2

⊕ 4(m− 2k + 1)Rk−1/2 ⊕ 4(n− 2k)R′
k−1/2 ⊕ 4(m− 2k + 1)(n− 2k)R′

0

⊕ [(2m− 4k + 1)(m− 2k + 1) + (2n− 4k + 1)(n− 2k)]R0

ad osp(2m|2n)

sl(2k|2k + 1)
=

3R2k ⊕ R2k−1 ⊕ 3R2k−2 ⊕ . . . ⊕ 3R2 ⊕ R1 ⊕ 3R0

⊕ R2k−1/2 ⊕ 3R2k−3/2 ⊕ R2k−5/2 ⊕ . . . ⊕ R3/2 ⊕ 3R1/2

⊕ 4(m− 2k)R′
k ⊕ 4(n− 2k − 1)Rk ⊕ 4(m− 2k)(n− 2k − 1)R′

0

⊕ [(2m− 4k − 1)(m− 2k) + (2n− 4k − 1)(n− 2k − 1)]R0
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ad osp(2m|2n)

sl(2k|2k − 1)
=

R2k−1 ⊕ 3R2k−2 ⊕ R2k−3 ⊕ . . . ⊕ 3R2 ⊕ R1 ⊕ 3R0

⊕ 3R2k−3/2 ⊕ R2k−5/2 ⊕ 3R2k−7/2 ⊕ . . . ⊕ R3/2 ⊕ 3R1/2

⊕ 4(m− 2k)R′
k−1/2 ⊕ 4(n− 2k + 1)Rk−1/2 ⊕ 4(m− 2k)(n− 2k + 1)R′

0

⊕ [(2m− 4k − 1)(m− 2k) + (2n− 4k + 3)(n− 2k + 1)]R0

ad osp(2m+ 1|2n)

osp(2k|2k) =
ad osp(2m+ 1|2n)

osp(2k − 1|2k) =

R2k−1 ⊕ R2k−5/2 ⊕ R2k−3 ⊕ R2k−9/2 ⊕ . . . ⊕ R3/2 ⊕ R1

⊕ 2(m− k + 1)Rk−1/2 ⊕ 2(n− k)R′
k−1/2 ⊕ 4(m− k + 1)(n− k)R′

0

⊕ [(2m− 2k + 1)(m− k + 1) + (2n− 2k + 1)(n− k)]R0

ad osp(2m+ 1|2n)

osp(2k + 2|2k) =
ad osp(2m+ 1|2n)

osp(2k + 1|2k) =

R2k−1/2 ⊕ R2k−1 ⊕ R2k−5/2 ⊕ R2k−3 ⊕ . . . ⊕ R3/2 ⊕ R1

⊕ 2(n− k)R′
k ⊕ 2(m− k)Rk ⊕ 4(m− k)(n− k)R′

0

⊕ [(2m− 2k − 1)(m− k) + (2n− 2k + 1)(n− k)]R0

ad osp(2|2n)

osp(2|2)
= R1 ⊕ R1/2 ⊕ (2n− 2)R′

1/2 ⊕ (2n2 − 3n+ 1)R0 ⊕ (2n− 2)R′
0

ad osp(2|2n)

sl(1|2)
= 3R1 ⊕ R1/2 ⊕ (4n− 8)R′

1/2 ⊕ (2n2 − 7n+ 7)R0

→ osp(1|2) decompositions
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Table 20: osp(1|2) decompositions of the adjoint representations of the basic Lie superal-
gebras (singular cases).

ad osp(2n+ 2|2n)

osp(2k + 1|2k) ⊕ osp(2n− 2k + 1|2n− 2k)
=

R2n−2k−1 ⊕ R2n−2k−3 ⊕ . . . ⊕ R1 ⊕ R2n−2k−1/2 ⊕ R2n−2k−3/2 ⊕ . . .

⊕ R3/2 ⊕ R2k−1 ⊕ R2k−3 ⊕ . . . ⊕ R1 ⊕ R2k−1/2 ⊕ R2k−3/2

⊕ . . . ⊕ R3/2 ⊕ Rn ⊕ Rn−1 ⊕ . . . ⊕ Rn−2k

⊕ Rn−1/2 ⊕ Rn−3/2 ⊕ . . . ⊕ Rn−2k+1/2

ad [osp(2n− 2|2n)]

osp(2k − 1|2k) ⊕ osp(2n− 2k − 1|2n− 2k)
=

R2n−2k−1 ⊕ R2n−2k−3 ⊕ . . . ⊕ R1 ⊕ R2n−2k−5/2 ⊕ R2n−2k−7/2 ⊕ . . .

⊕ R3/2 ⊕ R2k−1 ⊕ R2k−3 ⊕ . . . ⊕ R1 ⊕ R2k−5/2 ⊕ R2k−7/2

⊕ . . . ⊕ R3/2 ⊕ Rn−1 ⊕ Rn−2 ⊕ . . . ⊕ Rn−2k

⊕ Rn−3/2 ⊕ Rn−5/2 ⊕ . . . ⊕ Rn−2k+1/2

ad [osp(2n|2n)]

osp(2k + 1|2k) ⊕ osp(2n− 2k − 1|2n− 2k)
=

R2n−2k−1 ⊕ R2n−2k−3 ⊕ . . . ⊕ R1 ⊕ R2n−2k−5/2 ⊕ R2n−2k−7/2 ⊕ . . .

⊕ R3/2 ⊕ R2k−1 ⊕ R2k−3 ⊕ . . . ⊕ R1 ⊕ R2k−1/2 ⊕ R2k−3/2

⊕ . . . ⊕ R3/2 ⊕ Rn−1 ⊕ Rn−2 ⊕ . . . ⊕ Rn−2k

⊕ Rn−1/2 ⊕ Rn−3/2 ⊕ . . . ⊕ Rn−2k−1/2

ad [osp(2n|2n)]

osp(2k − 1|2k) ⊕ osp(2n− 2k + 1|2n− 2k)
=

R2n−2k−1 ⊕ R2n−2k−3 ⊕ . . . ⊕ R1 ⊕ R2n−2k−1/2 ⊕ R2n−2k−3/2 ⊕ . . .

⊕ R3/2 ⊕ R2k−1 ⊕ R2k−3 ⊕ . . . ⊕ R1 ⊕ R2k−5/2 ⊕ R2k−7/2

⊕ . . . ⊕ R3/2 ⊕ Rn−1 ⊕ Rn−2 ⊕ . . . ⊕ Rn−2k+1

⊕ Rn−1/2 ⊕ Rn−3/2 ⊕ . . . ⊕ Rn−2k+1/2

→ osp(1|2) decompositions
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G SSA Decomposition of the Decomposition of the
in G fundamental of G adjoint of G

A(0, 1) A(0, 1) R′′
1/2 R1 ⊕R1/2

A(0, 2) A(0, 1) R′′
1/2 ⊕R′′

0 R1 ⊕R1/2 ⊕ 2R′
1/2 ⊕R0

A(1, 1) A(0, 1) R′′
1/2 ⊕R0 R1 ⊕ 3R1/2

A(0, 3) A(0, 1) R′′
1/2 ⊕ 2R′′

0 R1 ⊕R1/2 ⊕ 4R′
1/2 ⊕ 4R0

A(1, 2) A(1, 2) R′′
1 R2 ⊕R3/2 ⊕R1 ⊕R1/2

A(0, 1) R′′
1/2 ⊕R0 ⊕R′′

0 R1 ⊕ 3R1/2 ⊕ 2R′
1/2 ⊕ 2R0 ⊕ 2R′

0

A(1, 0) R1/2 ⊕ 2R′′
0 R1 ⊕ 5R1/2 ⊕ 4R0

Table 21: osp(1|2) decompositions of the A(m,n) superalgebras up to rank 4.

G SSA Decomposition of the Decomposition of the
in G fundamental of G adjoint of G

B(0, 2) B(0, 1) R′′
1/2 ⊕ 2R′′

0 R1 ⊕ 2R′
1/2 ⊕ 3R0

B(1, 1) B(1, 1) R1 R3/2 ⊕R1

C(2), B(0, 1) R′′
1/2 ⊕ 2R0 R1 ⊕ 2R1/2 ⊕R0

B(0, 3) B(0, 1) R′′
1/2 ⊕ 4R′′

0 R1 ⊕ 4R′
1/2 ⊕ 10R0

B(1, 2) B(1, 2) R′′
3/2 R3 ⊕R3/2 ⊕R1

B(1, 1) R1 ⊕ 2R′′
0 R3/2 ⊕R1 ⊕ 2R′

1 ⊕ 3R0

C(2), B(0, 1) R′′
1/2 ⊕ 2R0 ⊕ 2R′′

0 R1 ⊕ 2R1/2 ⊕ 2R′
1/2 ⊕ 4R0 ⊕ 4R′

0

C(2) ⊕ B(0, 1), A(0, 1) 2R′′
1/2 ⊕R0 3R1 ⊕ 3R1/2 ⊕R0

B(2, 1) D(2, 1), B(1, 1) R1 ⊕ 2R0 R3/2 ⊕ 3R1 ⊕R0

C(2), B(0, 1) R′′
1/2 ⊕ 4R0 R1 ⊕ 4R1/2 ⊕ 6R0

A(1, 0) 2R1/2 ⊕R0 R1 ⊕ 3R1/2 ⊕ 2R′
1/2 ⊕ 3R0

Table 22: osp(1|2) decompositions of the B(m,n) superalgebras of rank 2 and 3.
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G SSA Decomposition of the Decomposition of the
in G fundamental of G adjoint of G

B(0, 4) B(0, 1) R′′
1/2 ⊕ 6R′′

0 R1 ⊕ 6R′
1/2 ⊕ 21R0

B(1, 3) B(1, 2) R′′
3/2 ⊕ 2R′′

0 R3 ⊕R3/2 ⊕ 2R′
3/2 ⊕R1 ⊕ 3R0

B(1, 1) R1 ⊕ 4R′′
0 R3/2 ⊕R1 ⊕ 4R′

1 ⊕ 10R0

C(2) ⊕ B(0, 1), A(0, 1) 2R′′
1/2 ⊕R0 ⊕ 2R′′

0 3R1 ⊕ 3R1/2 ⊕ 4R′
1/2 ⊕ 4R0 ⊕ 2R′

0

C(2), B(0, 1) R′′
1/2 ⊕ 4R′′

0 ⊕ 2R0 R1 ⊕ 2R1/2 ⊕ 4R′
1/2 ⊕ 11R0 ⊕ 9R′

0

B(2, 2) B(2, 2) R2 R7/2 ⊕R3 ⊕R3/2 ⊕R1

D(2, 2), B(1, 2) R′′
3/2 ⊕ 2R0 R3 ⊕ 3R3/2 ⊕R1 ⊕R0

D(2, 1), B(1, 1) R1 ⊕ 2R′′
0 ⊕ 2R0 R3/2 ⊕ 3R1 ⊕ 2R′

1 ⊕ 4R0 ⊕ 4R′
0

D(2, 1) ⊕B(0, 1)
B(1, 1) ⊕ C(2)

}
R1 ⊕R′′

1/2 ⊕R0 2R3/2 ⊕ 4R1 ⊕ 2R1/2

C(2) ⊕ C(2), A(0, 1) 2R′′
1/2 ⊕ 3R0 3R1 ⊕ 7R1/2 ⊕ 4R0

C(2), B(0, 1) R′′
1/2 ⊕ 4R0 ⊕ 2R′′

0 R1 ⊕ 4R1/2 ⊕ 2R′
1/2 ⊕ 9R0 ⊕ 8R′

0

A(1, 0) 2R1/2 ⊕R0 ⊕ 2R′′
0 R1 ⊕ 7R1/2 ⊕ 2R′

1/2 ⊕ 6R0 ⊕ 2R′
0

B(3, 1) D(2, 1), B(1, 1) R1 ⊕ 4R0 R3/2 ⊕ 5R1 ⊕ 6R0

C(2), B(0, 1) R′′
1/2 ⊕ 6R0 R1 ⊕ 6R1/2 ⊕ 15R0

A(1, 0) 2R1/2 ⊕ 3R0 R1 ⊕ 3R1/2 ⊕ 6R′
1/2 ⊕ 6R0

Table 23: osp(1|2) decompositions of the B(m,n) superalgebras of rank 4.
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G SSA Decomposition of the Decomposition of the
in G fundamental of G adjoint of G

C(3) A(0, 1) 2R′′
1/2 3R1 ⊕R1/2 ⊕R0

C(2) R′′
1/2 ⊕R0 ⊕ 2R′′

0 R1 ⊕R1/2 ⊕ 2R′
1/2 ⊕ 3R0 ⊕ 2R′

0

C(4) A(0, 1) 2R′′
1/2 ⊕ 2R′′

0 3R1 ⊕R1/2 ⊕ 4R′
1/2 ⊕ 4R0

C(2) R′′
1/2 ⊕R0 ⊕ 4R′′

0 R1 ⊕R1/2 ⊕ 4R′
1/2 ⊕ 10R0 ⊕ 4R′

0

Table 24: osp(1|2) decompositions of the C(n+ 1) superalgebras up to rank 4.

G SSA Decomposition of the Decomposition of the
in G fundamental of G adjoint of G

D(2, 1) D(2, 1) R1 ⊕R0 R3/2 ⊕ 2R1

C(2) R′′
1/2 ⊕ 3R0 R1 ⊕ 3R1/2 ⊕ 3R0

A(1, 0) 2R1/2 R1 ⊕ 3R1/2 ⊕ 3R0

D(2, 2) D(2, 2) R′′
3/2 ⊕R0 R3 ⊕ 2R3/2 ⊕R1

D(2, 1) R1 ⊕R0 ⊕ 2R′′
0 R3/2 ⊕ 2R1 ⊕ 2R′

1 ⊕ 5R0

C(2) R′′
1/2 ⊕ 3R0 ⊕ 2R′′

0 R1 ⊕ 3R1/2 ⊕ 2R′
1/2 ⊕ 6R0 ⊕ 6R′

0

C(2) ⊕ C(2), A(0, 1) R′′
1/2 ⊕ 2R0 3R1 ⊕ 5R1/2 ⊕ 2R0

B(1, 1) ⊕ B(0, 1) R1 ⊕R′′
1/2 2R3/2 ⊕ 3R1 ⊕R1/2

A(1, 0) 2R1/2 ⊕ 2R′′
0 R1 ⊕ 7R1/2 ⊕ 6R0

D(3, 1) D(2, 1) R1 ⊕ 3R0 R3/2 ⊕ 4R1 ⊕ 3R0

C(2) R′′
1/2 ⊕ 5R0 R1 ⊕ 5R1/2 ⊕ 10R0

A(1, 0) 2R1/2 ⊕ 2R0 R1 ⊕ 3R1/2 ⊕ 4R′
1/2 ⊕ 4R0

Table 25: osp(1|2) decompositions of the D(m,n) superalgebras up to rank 4.
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SSA Decomposition of the
in G adjoint of G

A(1, 0) R1 ⊕ 7R1/2 ⊕ 14R0

A(0, 1) R1 ⊕ 3R1/2 ⊕ 6R′
1/2 ⊕ 6R0 ⊕ 2R′

0

C(2) 5R1 ⊕ 3R1/2 ⊕ 6R0

D(2, 1; 2) R3/2 ⊕ 2R′
3/2 ⊕ 2R1 ⊕ 2R′

1/2 ⊕ 3R0

Table 26: osp(1|2) decompositions of the superalgebra F (4).

SSA Decomposition of the
in G adjoint of G

A(1, 0) R1 ⊕ 3R1/2 ⊕ 4R′
1/2 ⊕ 3R0 ⊕ 2R′

0

A(1, 0)′ 2R′
3/2 ⊕R1 ⊕ 3R1/2 ⊕ 3R0

B(0, 1) R1 ⊕ 6R1/2 ⊕ 8R0

B(1, 1) R3/2 ⊕ 2R′
3/2 ⊕R1 ⊕ 3R0 ⊕ 2R′

0

D(2, 1; 3) R2 ⊕R3/2 ⊕ 3R1

Table 27: osp(1|2) decompositions of the superalgebra G(3).

SSA Decomposition of the Decomposition of the
in G fundamental of G adjoint of G

D(2, 1) R1 ⊕R0 R3/2 ⊕ 2R1

C(2) R′′
1/2 ⊕ 3R0 R1 ⊕ 3R1/2 ⊕ 3R0

A(1, 0) 2R1/2 R1 ⊕ 3R1/2 ⊕ 3R0

Table 28: osp(1|2) decompositions of the superalgebra D(2, 1;α).
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G SSA Decomposition of the Decomposition of the
in G fundamental of G adjoint of G

A(0, 1) A(0, 1) π′′(1
2
, 1

2
) π(0, 1)

A(0, 2) A(0, 1) π′′(1
2
, 1

2
) ⊕ π′′(0, 0) π(0, 1) ⊕ π′(1

2
, 1

2
) ⊕ π′(−1

2
, 1

2
) ⊕ π(0, 0)

A(1, 1) A(0, 1) π′′(1
2
, 1

2
) ⊕ π(0, 0) π(0, 1) ⊕ π(1

2
, 1

2
) ⊕ π(−1

2
, 1

2
)

A(0, 3) A(0, 1) π′′(1
2
, 1

2
) ⊕ 2π′′(0, 0) π(0, 1) ⊕ 2π′(1

2
, 1

2
) ⊕ 2π′(−1

2
, 1

2
) ⊕ 4π(0, 0)

A(1, 2) A(1, 2) π′′(1, 1) π(0, 2) ⊕ π(0, 1)

A(0, 1) π′′(1
2
, 1

2
) ⊕ π(0, 0) ⊕ π′′(0, 0)

π(0, 1) ⊕ π(1
2
, 1

2
) ⊕ π(−1

2
, 1

2
)

⊕π′(1
2
, 1

2
) ⊕ π′(−1

2
, 1

2
) ⊕ 2π(0, 0) ⊕ 2π′(0, 0)

A(1, 0) π(1
2
, 1

2
) ⊕ 2π′′(0, 0) π(0, 1) ⊕ 2π(1

2
, 1

2
) ⊕ 2π(−1

2
, 1

2
) ⊕ 4π(0, 0)

Table 29: sl(1|2) decompositions of the A(m,n) superalgebras up to rank 4.

G SSA Decomposition of the Decomposition of the
in G fundamental of G adjoint of G

B(1, 1) C(2) π′′(0, 1
2
) ⊕ π(0, 0) π(0, 1) ⊕ π(0, 1

2
)

B(1, 2) C(2) π′′(0, 1
2
) ⊕ π(0, 0) ⊕ 2π′′(0, 0)

π(0, 1) ⊕ π(0, 1
2
) ⊕ 2π′(0, 1

2
)

⊕3π(0, 0) ⊕ 2π′(0, 0)

A(0, 1) π′′(1
2
, 1

2
) ⊕ π′′(−1

2
, 1

2
) ⊕ π(0, 0)

π(0, 1) ⊕ π(1, 1) ⊕ π(−1, 1)
⊕π(1

2
, 1

2
) ⊕ π(−1

2
, 1

2
) ⊕ π(0, 0)

B(2, 1) C(2) π′′(0, 1
2
) ⊕ 3π(0, 0) π(0, 1) ⊕ 3π(0, 1

2
) ⊕ 3π(0, 0)

A(1, 0) π(1
2
, 1

2
) ⊕ π(−1

2
, 1

2
) ⊕ π(0, 0)

π(0, 1) ⊕ π(3
2
, 1

2
) ⊕ π(−3

2
, 1

2
)

⊕π′(1
2
, 1

2
) ⊕ π′(−1

2
, 1

2
) ⊕ π(0, 0)

Table 30: sl(1|2) decompositions of the B(m,n) superalgebras of rank 2 and 3.
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G SSA Decomposition of the Decomposition of the
in G fundamental of G adjoint of G

B(1, 3) A(0, 1)
π′′(1

2
, 1

2
) ⊕ π′′(−1

2
, 1

2
)

⊕π(0, 0) ⊕ 2π′′(0, 0)

π(0, 1) ⊕ π(1, 1) ⊕ π(−1, 1)
⊕π(1

2
, 1

2
) ⊕ π(−1

2
, 1

2
) ⊕ 2π′(1

2
, 1

2
)

⊕2π′(−1
2
, 1

2
) ⊕ 4π(0, 0) ⊕ 2π′(0, 0)

C(2) π′′(0, 1
2
) ⊕ 4π′′(0, 0) ⊕ π(0, 0)

π(0, 1) ⊕ π(0, 1
2
) ⊕ 4π′(0, 1

2
)

⊕10π(0, 0) ⊕ 4π′(0, 0)

B(2, 2) 2 C(2) 2π′′(0, 1
2
) ⊕ π(0, 0) 3π(0, 1) ⊕ 2π(0, 1

2
) ⊕ π(0;−1

2
, 1

2
; 0)

A(0, 1) π′′(1
2
, 1

2
) ⊕ π′′(−1

2
, 1

2
) ⊕ 3π(0, 0)

π(0, 1) ⊕ π(1, 1) ⊕ π(−1, 1)
⊕3π′(1

2
, 1

2
) ⊕ 3π′(−1

2
, 1

2
) ⊕ 4π(0, 0)

C(2) π′′(0, 1
2
) ⊕ 3π(0, 0) ⊕ 2π′′(0, 0)

π(0, 1) ⊕ 3π(0, 1
2
) ⊕ 2π′(0, 1

2
)

⊕6π(0, 0) ⊕ 6π′(0, 0)

A(1, 0)
π(1

2
, 1

2
) ⊕ π(−1

2
, 1

2
)

⊕π(0, 0) ⊕ 2π′′(0, 0)

π(0, 1) ⊕ π(3
2
, 1

2
) ⊕ π(−3

2
, 1

2
)

⊕2π(1
2
, 1

2
) ⊕ 2π(−1

2
, 1

2
) ⊕ π′(1

2
, 1

2
)

⊕π′(−1
2
, 1

2
) ⊕ 4π(0, 0) ⊕ 2π′(0, 0)

B(3, 1) C(2) π′′(0, 1
2
) ⊕ 5π(0, 0) π(0, 1) ⊕ 5π(0, 1

2
) ⊕ 10π(0, 0)

A(1, 0) π(1
2
, 1

2
) ⊕ π(−1

2
, 1

2
) ⊕ 3π(0, 0)

π(0, 1) ⊕ π(3
2
, 1

2
) ⊕ π(−3

2
, 1

2
)

⊕3π′(1
2
, 1

2
) ⊕ 3π′(−1

2
, 1

2
) ⊕ 4π(0, 0)

Table 31: sl(1|2) decompositions of the B(m,n) superalgebras of rank 4.
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G SSA Decomposition of the Decomposition of the
in G fundamental of G adjoint of G

C(3) A(0, 1) π′′(1
2
, 1

2
) ⊕ π′′(−1

2
, 1

2
) π(0, 1) ⊕ π(1, 1) ⊕ π(−1, 1) ⊕ π(0, 0)

C(2) π′′(0, 1
2
) ⊕ 2π′′(0, 0) π(0, 1) ⊕ 2π′(0, 1

2
) ⊕ 3π(0, 0)

C(4) A(0, 1) π′′(1
2
, 1

2
) ⊕ π′′(−1

2
, 1

2
) ⊕ 2π′′(0, 0)

π(0, 1) ⊕ π(1, 1) ⊕ π(−1, 1)
⊕2π′(1

2
, 1

2
) ⊕ 2π′(−1

2
, 1

2
) ⊕ 4π(0, 0)

C(2) π′′(0, 1
2
) ⊕ 4π′′(0, 0) π(0, 1) ⊕ 4π′(0, 1

2
) ⊕ 10π(0, 0)

Table 32: sl(1|2) decompositions of the C(n+ 1) superalgebras up to rank 4.

G SSA Decomposition of the Decomposition of the
in G fundamental of G adjoint of G

D(2, 1) C(2) π′′(0, 1
2
) ⊕ 2π(0, 0) π(0, 1) ⊕ 2π(0, 1

2
) ⊕ π(0, 0)

A(1, 0) π(1
2
, 1

2
) ⊕ π(−1

2
, 1

2
) π(0, 1) ⊕ π(3

2
, 1

2
) ⊕ π(−3

2
, 1

2
) ⊕ π(0, 0)

D(2, 2) C(2) π′′(0, 1
2
) ⊕ 2π(0, 0) ⊕ 2π′′(0, 0)

π(0, 1) ⊕ 2π(0, 1
2
) ⊕ 2π′(0, 1

2
)

⊕4π(0, 0) ⊕ 4π′(0, 0)

2 C(2) 2π′′(0, 1
2
) 3π(0, 1) ⊕ π(0;−1

2
, 1

2
; 0)

A(0, 1) π′′(1
2
, 1

2
) ⊕ π′′(−1

2
, 1

2
) ⊕ 2π(0, 0)

π(0, 1) ⊕ π(1, 1) ⊕ π(−1, 1)
⊕2π(1

2
, 1

2
) ⊕ 2π(−1

2
, 1

2
) ⊕ 2π(0, 0)

A(1, 0) π(1
2
, 1

2
) ⊕ π(−1

2
, 1

2
) ⊕ 2π′′(0, 0)

π(0, 1) ⊕ π(3
2
, 1

2
) ⊕ π(−3

2
, 1

2
)

⊕2π(1
2
, 1

2
) ⊕ 2π(−1

2
, 1

2
) ⊕ 4π(0, 0)

D(3, 1) C(2) π′′(0, 1
2
) ⊕ 4π(0, 0) π(0, 1) ⊕ 4π(0, 1

2
) ⊕ 6π(0, 0)

A(1, 0) π(1
2
, 1

2
) ⊕ π(−1

2
, 1

2
) ⊕ 2π(0, 0)

π(0, 1) ⊕ π(3
2
, 1

2
) ⊕ π(−3

2
, 1

2
)

⊕2π′(1
2
, 1

2
) ⊕ 2π′(−1

2
, 1

2
) ⊕ 2π(0, 0)

Table 33: sl(1|2) decompositions of the D(m,n) superalgebras up to rank 4.
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G SSA Decomposition of the
in G adjoint of G

F (4) A(1, 0) (0, 1) ⊕ 3π(1
6
, 1

2
) ⊕ 3π(−1

6
, 1

2
) ⊕ 8π(0, 0)

A(0, 1)
π(0, 1) ⊕ π(1, 1

2
) ⊕ π(−1, 1

2
) ⊕ 4π(0, 0)

⊕2π′(1
2
, 1

2
) ⊕ 2π′(−1

2
, 1

2
) ⊕ 2π′(0, 1

2
)

C(2)
π(0, 1) ⊕ 2π(1, 1) ⊕ 2π(−1, 1)
⊕π(5

2
, 1

2
) ⊕ π(−5

2
, 1

2
) ⊕ 4π(0, 0)

G(3) A(1, 0)
π(0, 1) ⊕ π(5

6
, 1

2
) ⊕ π(−5

6
, 1

2
) ⊕ π′(1

6
, 1

2
)

⊕π′(−1
6
, 1

2
) ⊕ π′(1

2
, 1

2
) ⊕ π′(−1

2
, 1

2
) ⊕ π(0, 0)

A(1, 0)′
π(0, 1) ⊕ π(7

2
, 1

2
) ⊕ π(−7

2
, 1

2
)

⊕π′(3
2
, 3

2
) ⊕ π′(−3

2
, 3

2
) ⊕ π(0, 0)

C(2) π(0, 1) ⊕ 2π(1
4
, 1

2
) ⊕ 2π(−1

4
, 1

2
) ⊕ π(0, 1

2
)

D(2, 1;α) A(1, 0) π(0, 1) ⊕ π(1
2
(2α + 1), 1

2
) ⊕ π(−1

2
(2α + 1), 1

2
) ⊕ π(0, 0)

A(1, 0)′ π(0, 1) ⊕ π(1
2

(
1−α
1+α

)
, 1

2
) ⊕ π(−1

2

(
1−α
1+α

)
, 1

2
) ⊕ π(0, 0)

C(2) π(0, 1) ⊕ π(1
2

(
2+α
α

)
, 1

2
) ⊕ π(−1

2

(
2+α
α

)
, 1

2
) ⊕ π(0, 0)

Table 34: sl(1|2) decompositions of the exceptional superalgebras.

Let us remark that for D(2, 1;α) from any sl(1|2) decomposition one gets the two

others by replacing α by one of the values α−1, −1 − α,
−α

1 + α
. This corresponds to

isomorphic versions of the exceptional superalgebra D(2, 1;α) (→). One can check this

triality-like property, which certainly deserves some developments, by the studying the

completely odd Dynkin diagram of D(2, 1;α).

134



References

[1] D. Arnaudon, M. Bauer, L. Frappat, On Casimir’s ghost, preprint ENSLAPP-A-

587/96, q-alg/9605021.

[2] J. Bagger, J. Wess, Supersymmetry and supergravity, Princeton Series in Physics,

Princeton (1983).

[3] A.B. Balantekin, I. Bars, Dimension and character formulas for Lie supergroups, J.

Math. Phys. 22 (1981) 1149 and Representations of supergroups, J. Math. Phys. 22

(1981) 1810.

[4] A.B. Balantekin, I. Bars, F. Iachello, U(6|4) dynamical supersymmetry in nuclei,

Phys. Rev. Lett. 47 (1981) 19.

[5] F.A. Berezin, V.N. Tolstoy, The group with Grassmann structure UOSP (1|2), Com-

mun. Math. Phys. 78 (1981) 409.

[6] A. Della Selva, A. Sciarrino, Realization of exceptional superalgebras in terms of

fermion-boson creation-annihilation operators, J. Math. Phys. 33 (1992) 1538.

[7] B.S. DeWitt, P. van Nieuwenhuizen, Explicit construction of the exceptional super-

algebras F (4) and G(3), J. Math. Phys. 23 (1982) 1953.

[8] R. Floreanini, D. Leites, L. Vinet, On the defining relations of quantum superalge-

bras, Lett. Math. Phys. 23 (1991) 127.

[9] L. Frappat, E. Ragoucy, P. Sorba, W-algebras and superalgebras from constrained

WZNW models: a group-theoretical classification, Commun. Math. Phys. 157 (1993)

499.

[10] L. Frappat, A. Sciarrino, P. Sorba, Structure of basic Lie superalgebras and of their

affine extensions, Commun. Math. Phys. 121 (1989) 457.

[11] L. Frappat, A. Sciarrino, P. Sorba, Dynkin-like diagrams and representations of the

strange superalgebra P (n), J. Math. Phys. 32 (1991) 3268 and Oscillator realization

of the strange superalgebras P (n) and Q(n), J. Math. Phys. 33 (1992) 3911.

[12] P.G.O. Freund, I. Kaplansky, Simple supersymmetries, J. Math. Phys. 17 (1976) 228.

[13] H.S. Green, P.D. Jarvis, Casimir invariants and characteristic identities for generators

of the general linear, special linear and orthosymplectic graded Lie algebras, J. Math.

Phys. 20 (1979) 2115.

135

http://arxiv.org/abs/q-alg/9605021


[14] J.P. Hurni, Young supertableaux of the basic Lie superalgebras, J. Phys. A: Math.

Gen. 20 (1987) 5755.

[15] J.P. Hurni, B. Morel, Irreducible representations of superalgebras of type II, J. Math.

Phys. 23 (1982) 2286.

[16] J.P. Hurni, B. Morel, Irreducible representations of su(m|n), J. Math. Phys. 24

(1983) 157.

[17] F. Iachello, Dynamical supersymmetries in nuclei, Phys. Rev. Lett. 44 (1980) 772.

[18] I.F. Istomina, Yu.F. Smirnov, V.N. Tolstoi, The Gelfand-Zetlin basis for the Lie

superalgebra gl(n|m), in Yurmala 1985, Proceedings, Group theoretical methods in

physics, vol. 1, p. 337.

[19] P.D. Jarvis, M.K. Murray, Casimir invariants, characteristic identities and tensor

operators for strange superalgebras, J. Math. Phys. 24 (1983) 1705.

[20] V.G. Kac, Classification of Lie Superalgebras, Funct. Anal. Appl. 9 (1975) 263.

[21] V.G. Kac, Lie Superalgebras, Adv. Math. 26 (1977) 8.

[22] V.G. Kac, A sketch of Lie superalgebra theory, Commun. Math. Phys. 53 (1977) 31.

[23] V.G. Kac, Characters of typical representations of classical Lie superalgebras, Com-

mun. Algebra 5 (1977) 889.

[24] V.G. Kac, Representations of classical Lie superalgebras, Lectures Notes in Mathe-

matics 676 (1978) 597; Springer-Verlag, Berlin.

[25] D.A. Leites, M.V. Saveliev, V.V. Serganova, Embeddings of Lie superalgebra osp(1|2)

and the associated nonlinear supersymmetric equations, in ”Group Theoretical Meth-

ods in Physics”, Markov M.A., Man’ko V.I. and Dodonov V.V. eds., p.255, VUN

Science Press, Utrecht, The Netherlands (1986).

[26] D.A. Leites, V.V. Serganova, Defining relations for classical Lie superalgebras, Pro-

ceedings of the Euler IMI conference on quantum groups, Leningrad (1990).

[27] M. Marcu, The representations of spl(2|1): an example of representations of basic su-

peralgebras, J. Math. Phys. 21 (1980) 1277 and The tensor product of two irreducible

representations of the spl(2|1) superalgebra, J. Math. Phys. 21 (1980) 1284.

136



[28] B. Morel, A. Sciarrino, P. Sorba, Representations of osp(M |2n) and Young su-

pertableaux, J. Phys. A: Math. Gen. 18 (1985) 1597.

[29] W. Nahm, V. Rittenberg, M. Scheunert, Classification of all simple graded Lie alge-

bras whose Lie algebra is reductive. 1, J. Math. Phys. 17 (1976) 1626 and Classifica-

tion of all simple graded Lie algebras whose Lie algebra is reductive. 2 (construction

of the exceptional algebras), J. Math. Phys. 17 (1976) 1640.

[30] W. Nahm, V. Rittenberg, M. Scheunert, Graded Lie algebras: generalization of her-

mitian representations, J. Math. Phys. 18 (1977) 146 and Irreducible representations

of the osp(1, 2) and spl(1, 2) graded Lie algebras, J. Math. Phys. 18 (1977) 155.

[31] A. Pais, V. Rittenberg, Semi-simple graded Lie algebras, J. Math. Phys. 16 (1975)

2062, Erratum ibid. 17 (1976) 598.

[32] M. Parker, Classification of real simple Lie superalgebras of classical type, J. Math.

Phys. 21 (1980) 689.

[33] E. Ragoucy, A. Sevrin, P. Sorba, Strings from N = 2 gauged Wess-Zumino-Witten

models, Commun. Math. Phys. XXX (1996).

[34] V. Rittenberg, A guide to Lie superalgebras, Proceedings of the VIth ICGTMP,
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