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Using the scalar curvature of the product manifold S
2 × R and the complete group

classification of nonlinear Poisson equation on (pseudo) Riemannian manifolds, we extend
the previous results on symmetry analysis of homogeneous wave equation obtained by
H. Azad and M.T. Mustafa [H. Azad, M.T. Mustafa, Symmetry analysis of wave equation on
sphere, J. Math. Anal. Appl. 333 (2007) 1180–1188] to nonlinear Klein–Gordon equations
on the two-dimensional sphere.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In a previous work, Azad and Mustafa [1] considered the Lie point symmetries of the homogeneous wave equation
induced by the 2-sphere S

2 metric

utt = uxx + (cot x) ux + 1

sin2 x
u yy. (1)

Eq. (1) is a particular case of the general equation

�g u + f (u) = 0, (2)

where

�g u = 1√
g

∂

∂xi

(√
g gij ∂u

∂x j

)
= gij∇i∇ ju = ∇ j∇ ju = ∇i∇ iu,

where �g is the Laplace–Beltrami operator on an arbitrary (pseudo) Riemannian manifold (Mn, g) and ∇i is the covariant
derivative corresponding to the Levi-Civita connection and the Einstein summation convention over repeated indices is
understood.

Eq. (2) covers Poisson and Klein–Gordon semilinear equations, depending on if (Mn, g) is a Riemannian or a pseudo-
Riemannian manifold, respectively. Eq. (1) can be obtained from (2) taking on S

2 × R the metric

ds2 = dt2 − dx2 − sin2 x dy2 (3)

and f (u) = 0.
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We shall denote the product manifold S
2 × R endowed with the metric (3) as (S2 × R, g).

Group classification of equations with coefficients depending on metric tensor on specific Riemannian manifolds are well
known. See [1,4,6–8,11].

The Lie point symmetries of Eq. (2) on flat manifolds, with some functions f (u) are performed in [11]. In [4,3,5,10] the
Lie point symmetries, the Noether symmetries and the conservation laws of the Kohn–Laplace equations were studied. In
[6] the symmetry analysis of Eq. (2) was carried out on an arbitrary (pseudo) Riemannian manifold. The Lie symmetries of
the Poisson equation with Euclidean metric are well known, see [20]. The group classification of the Poisson equation on the
hyperbolic plane with metric of Klein’s model of Lobachevskian geometry and in S

2 was carried out in [7,8], respectively.
In this article we are interested in the Lie point symmetries, the Noether symmetries and the conservation laws of

equation

utt = uxx + (cot x) ux + 1

sin2 x
u yy + f (u), (4)

where f : R → R is a smooth function. Existence, uniqueness and behavior of solutions of initial value problems of (4) are
established in [19].

Denoting by Isom(S2 × R) the Lie algebra of the Killing vector fields of (S2 × R, g), our main result can be formulated as
follows:

Theorem 1. Except to the linear cases, the symmetry Lie algebra of Eq. (4) with an arbitrary function f (u) is generated by Isom(S2 ×
R, g), that is,

S0 = ∂

∂t
, S1 = ∂

∂ y
, S2 = sin y

∂

∂x
+ cot x cos y

∂

∂ y
, S3 = cos y

∂

∂x
− cot x sin y

∂

∂ y
. (5)

If f (u) = c u, c = const, in (2), in addition to Isom(S2 × R), we have the following generators:

S4 = u
∂

∂u
(6)

and

S∞ = b(x, y, t)
∂

∂u
, (7)

where

btt = bxx + (cot x)bx + 1

sin2 x
byy + c b. (8)

The case f (u) = k = const �= 0 is reduced to the case f (u) = 0 under the change u → u + kt2/2.

As a consequence, we have the following classification of the Noether symmetries.

Theorem 2. For any function f (u) in (4), the isometry algebra Isom(S2 × R) generates a variational symmetry Lie algebra. If
f (u) = c u, the symmetry (7) is a Noether symmetry, where b = b(x, y, t) satisfies (8).

From Theorem 2 and the Noether’s theorem, we have:

Corollary 1. Let F = F (u) be a function such that F ′(u) = f (u). The conservation laws of the Noether symmetries of Eq. (4), for any
function f (u), are:

1. For the symmetry S0 , the conservation law is Div(A) = 0, where A = (A0, A1, A2) and

A0 = − sin x

2
u2

t − sin x

2
u2

x − 1

2 sin x
u2

y − sin x F (u), A1 = sin x ut ux, A2 = 1

sin x
ut u y . (9)

2. For the symmetry S1 , the conservation law is Div(B) = 0, where B = (B0, B1, B2) and

B0 = − sin x ut u y, B1 = sin x uxu y, B2 = sin x

2
u2

t − sin x

2
u2

x + 1

2 sin x
u2

y − sin x F (u). (10)
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3. For the symmetry S2 , the conservation law is Div(C) = 0, where C = (C0, C1, C2) and

C0 = − sin x sin y ut ux − cos x cos y ut u y,

C1 = sin x sin y

2
u2

t + sin x sin y

2
u2

x − sin y

2 sin x
u2

y + cos x cos y uxu y − sin x sin y F (u),

C2 = cos x cos y

2
u2

t − cos x cos y

2
u2

x + cos x cos y

2 sin2 x
u2

y + sin y

sin x
uxu y − cos x cos y F (u). (11)

4. For the symmetry S3 , the conservation law is Div(D) = 0, where D = (D0, D1, D2) and

D0 = − sin x cos y ut ux + cos x sin y ut u y,

D1 = sin x cos y

2
u2

t + sin x cos y

2
u2

x − cos y

2 sin x
u2

y − cos x sin y uxu y − sin x cos y F (u),

D2 = −cos x sin y

2
u2

t + cos x sin y

2
u2

x − cos x sin y

2 sin2 x
u2

y + cos y

2 sin x
uxu y + cos x sin x F (u). (12)

5. If F (u) = c u2/2, then the conservation law for the symmetry (7), with b satisfying (8), is Div(α) = 0, where α = (α0,α1,α2)

and

α0 = sin x(but − bt u), α1 = sin x(bxu − bux), α2 = 1

sin x
(but − bt u). (13)

We shall not present preliminaries concerning Lie point symmetries of differential equations supposing that the reader
is familiar with the basic notions and methods of contemporary group analysis. See [2,11,15]. For a geometric viewpoint of
Lie point symmetries, see [13,14].

This paper is organized as follows. In Section 2 we recall some geometric results regarding to (S2 × R, g). These results
will be used in Section 3 to prove Theorem 1. The Noether’s symmetries and the conservation laws are obtained in Section 4.
In Section 5 we identify the classical Lie algebras that the symmetry Lie algebras are isomorphic to.

2. The product manifold SSS
2 ×RRR

Let x0 = t , x1 = x and x2 = y be local coordinates of (S2 ×R, g). We observe that the Riemann and the Ricci tensors used
in this paper coincide with those in Yano’s book [16] and in Dubrovin, Fomenko and Novikov’s book [9].

Lemma 1. The scalar curvature R of the product manifold (S2 × R, g) is constant.

Proof. The Riemann tensor of (S2 × R, g) is

Ri
jks = −(

δ2iδ1 jδ2kδ1s − δ2iδ1 jδ1kδ2s
) + sin2 x

(
δ2iδ2 jδ2kδ1s − δ1iδ2 jδ1kδ2s

)
.

Then Ri
s = −δ2iδ2s − δ2iδ1s and R = −1. �

Lemma 2. The sectional curvature of (S2 × R, g) is non-constant.

Proof. Let K (p, X, Y ) be the sectional curvature of (S2 × R, g) at a point p = (t, x, y). (See [12] for the definitions.) Let
X = (X0, X1, X2) and Y = (Y 0, Y 1, Y 2). Then, we obtain

K (p, X, Y ) = −X2 sin2 x + X1

2X1
. �

Lemma 3. The isometry group of (S2 × R, g) is generated by the vector fields S0 , S1 , S2 and S3 .

Proof. It is clear that the vector fields (5) satisfy the equation

L X gij = ξ s ∂ gij

∂xs
+ gkj

∂ξk

∂xi
+ gik

∂ξk

∂x j
= 0.

From Lemma 2, the sectional curvature of (S2 × R, g) is non-constant. Then, from Yano [16, p. 57, Theorem 6.2],
dim(Isom(S2 × R)) < 6. From Fubini’s theorem (see Yano [16]), dim(Isom(S2 × R)) cannot be 5. Thus, dim(Isom(S2 × R)) � 4.
Since (5) are isometries, we conclude that the isometry algebra Isom(S2 × R) is generated by S0, S1, S2 and S3. �
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3. The group classification

In this section we perform the group classification of Eq. (4). To begin with we need of the following lemma:

Lemma 4. Let (Mn, g) be a manifold with non-null constant scalar curvature. Then the Lie point symmetry group of the Poisson
equation (2) with an arbitrary f (u) coincides with the isometry group of Mn.

In the particular cases f (u) = c u, where c = const, in addition to the isometry group, we have the generators

U = u
∂

∂u
and X∞ = b(x)

∂

∂u
,

where b satisfies (2).

Proof. See [6]. �
We observe that Lemma 4 is a particular case of the main result obtained in [6]. In this work the authors carried out

the group classification of Eq. (2) on an arbitrary (pseudo) Riemannian manifold.

Proof of Theorem 1. From Lemma 1, the scalar curvature of (S2 ×R, g) is R = −1. Then, Theorem 1 follows from Lemmas 3
and 4. �
4. The Noether’s symmetries and the conservation laws

In this section we prove Theorem 2.
It is easy to check that if X ∈ Isom(S2 × R), then X is a variational symmetry of Eq. (2), for any function f (u). That is,

X (1)L + L Diξ
i = 0,

where

L = sin x

2
u2

t − sin x

2
u2

x − 1

2 sin x
u2

y + sin x F (u) (14)

is the function of Lagrange of Eq. (2). For more details, see [6].
Let us consider the symmetry (7). It is easy to verify that

X (1)L + L Diξ
i = Div

(
sin x bt u,− sin x bxu,− 1

sin x
byu

)
,

where F (u) = c u2/2 in (14). These observations prove Theorem 2.
The following lemma establishes the conservation laws (9)–(13):

Lemma 5. The conservation laws of the Noether symmetries of Eq. (2), where (Mn, g) is a manifold with constant, non-null scalar
curvature, are Di Ai = 0, where

Ak = √
g

(
1

2
gijξk − gkjξ i

)
uiu j − √

gξk F (u), (15)

for any function f (u). If f (u) = c u, then the conservation law corresponding to the symmetry (7) is

Ak = √
g g jk(bu j − b ju). (16)

Proof. It is a consequence of [6] when the scalar curvature of (Mn, g) is constant. �
Proof of Corollary 1. Substituting the symmetries and the metric coefficients into (15)–(16), we obtain (9)–(13). �
5. Symmetry Lie algebras

Let S1, S2 be the finite dimensional symmetry Lie algebras for an arbitrary f (u) and f (u) = c u, c = const, respectively.
Following the notations of [17,18], the symmetry Lie algebras are:

1. If f (u) is an arbitrary function, then [S1, S2] = S3, [S1, S3] = −S2, [S2, S3] = S1. Thus, S1 = Isom(S2 × R) ≈ A3,9 ⊕ A1,
where A3,9 = s0(3).

2. If f (u) = c u, then S2 ≈ A3,9 ⊕ 2A1.
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We have the following one-dimensional subalgebras of S1: L1 = 〈S0 + a S1〉 and L2 = 〈S1〉.
If f (u) = c u, we have the following classification of subalgebras of S2:

1. Dimension 1: L1 = 〈a S0 + S1 + b S4〉 ≈ A1 and L2 = 〈a S0 + b S4〉 ≈ A1.
2. Dimension 2: L3 = 〈a S0 + b S4, S1〉 ≈ 2A1 and L4 = 〈S0, S4〉 ≈ 2A1.
3. Dimension 3: L5 = 〈S1, S2, S3〉 ≈ A3,9 and L6 = 〈S0, S1, S4〉 ≈ 3A1.
4. Dimension 4: L7 = 〈a S0 + b S4, S1, S2, S3〉 ≈ A3,9 ⊕ A1.

We observe that the subalgebras (1–4) above were obtained by Azad and Mustafa when f (u) = 0 in (4).
The invariant solutions of (4) can be obtained following the same procedure employed by Azad and Mustafa in [1] with

addition of the corresponding term f (u) in (2). Thus we shall omit the details.
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