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Abstract

It has recently been provég8] that the solution spaces of certain classes of differential equations
whose local solutions are parametrized by three or four arbitrary constants can be endowed with
conformal Lorentzian metrics in a natural way. We shall prove that these conformal structures are
preserved when the differential equations are transformed by a contact transformation.
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1. Introduction

It has recently been showB] that the solution spaces of certain classes of differential
equations whose local solutions are parametrized by arbitrary real constants are naturally
endowed with conformal Lorentzian structures.

In the three-dimensional case, this result is classical and can be viewed as a corollary of
Chern’s solutiorj2] of the local equivalence problem for third-order ODES

d3u du d?u

el = - 1

03 (s,u, & ds2>’ 1)
under the Lie pseudogroup of contact transformations (seg¢@lso
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In four-dimensional case, the starting point is given by an overdetermined system of
second-order partial differential equations of the form

92u u du d%u 92u du du 9%u
=U S,t, us k) ) ) =V S,t, M? ) k) ) (2)
952 ds’ 0t 9sdt 912 ds’ 9t dsot

where the function#/ andV are chosen in such a way that the solutions depend smoothly
on four arbitrary constants.

Abasicissueisto decide whether to use the pair of real variabled as ourindependent
variables or to combine them into a pair of conjugate complex coordinateds*. While
the analysis can be carried out with either choice, it turns out that using the pair of real
variables is most natural when seeking a metric of split signaturé, —1, —1) on the
solution space, while the use of the complex conjugate pair is better adapted in the Lorentzian
case(1, —1, —1, —1). We will use the complex conjugate pair and stress that there is no
implication of holomorphicity in this choice. It will thus be convenient to re-formulate this
overdetermined system as a single complex partial differential equation of the form

92 du du 92
_th = S s, S*v u, _us _lis —u* 3 (3)
as ds 0s* 0sds

wheres is acomplexs* denotes the complex conjugate@ndS a complex-valued function
which is determined by/ andV . It was shown ir{3] that, locally, every four-dimensional
Lorentzian metric can be realized in a natural way as a metric on the solution space of
(3), and that further assumptions dngive rise to all the local solutions of the Einstein
equations.

Our goal in this paper is to further clarify the relationship between the contact geometry
of the differentiakequations (3and(1) and the conformal geometry of their solution spaces.
More precisely, we will show that the action induced by the Lie pseudogroup of contact
transformations will preserve the conformal classes of the underlying Lorentzian metrics.
Our proof is based on the equivalence between the classical envelope construction which is
used to solve the eikonal equation and Lie’s description of contact transformations in terms
of characteristic functions. Itis thus different in spirit from the proof given in Chern’s paper
[2] in the three-dimensional case.

2. Contact geometry of athird-order ODE

To the third-order ODE
d3u du d%u
r(on8.22),

ds? = \"" s ag?

we associate the completely integrable Pfaffian sygtermn J2(R, R) ~ R* generated by
the 1-forms

61 = du — ' ds, 02 = du’ — u’ ds, 0% =du” — F(s,u,u’,u”)ds, (5)
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where(s, u, u’, u”) denote local jet coordinates orf(R, R) in which the contact Pfaffian
system is generated by the 1-forfis 62. The local solutions of4) correspond to integral
curvesc : R — J2(R, R) satisfying the independence conditionds = 0.

We shallwork locally by restricting the domainBfs, u, u’, u”) to an open neighborhood
U of J?(R,R) whereF is C* and where the Cauchy problem f@) admits a unique
C* solution depending in &°° fashion on Cauchy data given . It follows from this
assumption that the séf3 of local solutions of(4) is endowed with the structure of a
three-dimensional"> manifold. We will denote the local coordinates Mz by (x¢) =
(x1, x2, x3) and refer taM3 as thesolution spacef (4). The ODE(4) thus gives rise to a
local fibrationpr : J2(R, R) — M3, where

D
kerpp, = I ={—1}, 6
or. =1 ={ 5] ©
and
D 8 /a " a i " a
- = a . F , Uy ) . 7
Dy ~ a5 Yo W g TG wuwuDT ()

By working locally in M3, we obtain aC>® mapz : M3 x R — R, u = z(x1, x2, x3, 5),
such that for fixedg in M3 with local coordinatesxé, xg, xg), the induced map,, : R —
R,s — u = z(x§, x3, x3, 5) is a solution of(4), that is

(j%2x0)*ZF = 0. ®)
Consider now o3 x R the three 1-forms given by

Br=(.2)dx?,  BZ=(duz)dx?, B3 = (Buzsd dx’. 9)

It follows from the preceding discussion that there exists a local diffeomorphism
J?(R,R) — Mz xR which fibers over the identity map itk — R through the source map
o J2R,R) — R, a(s,u,u’,u”) = s, and the projection ps x R — R, pr(x1, x2,

3
x°,5) =35,

J*(R,R) —— M3 xR

a [r

and which pulls back the completely integrable Pfaffian systgm= {1, 82, 8%} on
M3 x RtoZp,
c*JIr =ZIf. (10)

We shall consider the ODH4) from the point of view of the Lie pseudogroup of contact
transformations off (R, R). We will say that the ODHE4) and the third-order ODE

da  _/_ _ di d%
= (g ) -
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are locally equivalent if there exists a contact transformafian/2(R, R) — J2(R, R),
(s,u,u’,u”) — (5,u,u’, 1" such that

Ly =1, (12)

that is a local diffeomorphisnf : J2(R, R) — J2(R, R) such that

61 aigz 0 0 61
f* 62 | = a»p, azxp O 62 , (13)
63 az1 asz2 ass 63

wheregj areC* functions onlU satisfying]_[?=1 aij #Z 0. Note that the matrix appearing
in the right-hand side of13) s triangular as a direct consequence of Backlund’s theorem
on contact transformationgg].

We shall restrict our attention to ODE#4) satisfying the contact-invariant condition

D
Wr = F, — aFy + D—“ —ab=0, (14)
N

wherea andb are defined by

2 1DF, 1
20 =—Fy—-F%4+>-—""% b=—CF,. 15
@="l = glw T 37Dy 3l (19)
The functionWg, known as th&Vinschmann invariari] of (4), is a relative invariant of
the contact geometry @#l), in the sense that {##) and (11)are locally contact equivalent,
then

f*Wg =AWk (16)

for some non-vanishing® multiplier A. Alternatively, the Winschmann invariaitz can
be viewed as a section of a certain natural line bundle naturally associd#d to

3. Theconformal Lorentzian structure on the solution space

Our purpose in this section is to exhibit a correspondence which associates to the contact
orbit of each ODH4) satisfying the contact-invariant conditioWiz = 0 a local conformal
Lorentzian structure on its solution spale This correspondence is mentioned briefly by
Chern in[2] as a byproduct of his solution of the equivalence problen4punder the Lie
pseudogroup of contact transformations. The approach we have adopted here is a bit different
in the sense that it is based on the characterization of the conformal class of a Lorentzian
metric by its characteristic surfaces. Our main reason for treating the three-dimensional
case first is that it serves as guide for the four-dimensional case, which is treated in the next
section of our paper.

We start or/2(R, R) with the quadratic differential forrh given by

he=nt@nrP+nPent—n? e 17
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where
nt=c*pt =B nP=c"B+ac* B+ b B (18)
wherec : J2(R, R) — M3 x R was defined irf{10) anda, b were given in(15).
Lemma 1. Consider a third-order ODK4) with vanishing Wiinschmann invariant
Wr =0.
Then, we hav§s]
Lojoshr = 5Fuhp.
We now letgr denote the quadratic differential form definedg x R by
gr = (sH*hr. (19)

It follows from the preceding lemma that induces om/3 a conformal Lorentzian struc-
ture, which we shall denote by f]. We can thus write a representative f@iz|] in the
form

gr =o' ®0° +0° @ 0! — 0? ® v, (20)
where
=gl =g P =+ + [ TH BB (21)

Before stating the main result of this section, we remark that any contact transformation
f 1 J3R,R) — J2(R,R) relating (4)—(11)will map local solutions to local solutions
and will therefore induce a local diffeomorphisfn: M3 — M3 between the solution
spaces of these ODEs. We shall choose adapted chalts and M3 in which the local
diffeomorphism{ is represented by the identity.

Theorem 1. Let(4) be a third-order ODE with vanishing Wiinschmann invariant and let
(11) be a third-order ODE locally equivalent t¢}) under a contact transformatioif :
J2(R,R) — J2(R,R). Then the local diffeomorphism of solution spages M3 — M3
induced byf preserves the corresponding conformal Lorentzian structures, that is

Tlgf] = [grl.

In particular, any three-parameter family of solutions= z(x1, x2, x2, s) of the ODE(4)
is a complete integral of the eikonal equation

828,20,z =0 (22)

for [gF], and, conversely, any complete integral of the eikonal equéfidjgives rise to a
solution of a third-order ODE which is contact equivalen{4).

Proof. We shall give a proof in the case of contact transformations which are not the
prolongation of point transformations, and leave the case of prolonged pointtransformations
as an exercise to the reader.
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First recal[5] that a contact transformation which is not a prolonged point transformation
is determined in terms of a generating functiam, u, 5, it) by solving the following implicit
relations:

S(s,u,5,i)=0,  Sq+u'S, =0, S;+i&'Sy =0 (23)

for 5, i, u’ as functions of, u, u’, respectively. (We are of course assuming thattis-
fies the solvability conditions required by the implicit function theorem.) With no loss of
generality, we take to be of the form

S(s,u,5,i) =it — V(s,u,5), (24)
and write the contact transformation generated lay the form

i=Vis,u ls,u,u)),  §=I16uu), @ =Vi(s,u Is,u,u)), (25)
where/ is determined by solving

Vi+u'V, =0 (26)

for 5 in terms ofs, u, u’. The contact orbit of1) is thus obtained by applying the transfor-
mation(25) to the 1-formg5).

Next, note that, fronf20), it follows that for each value of, the 1-formw? is null for the
conformal classgr], so that any three-parameter family of solutions: z(x1, x2, x3, )
of (4) gives rise to a one-parameter family of solutions of the eikeqahtion (22)In other
words, the solutions d#) are complete integrals of the eikonal equation.

We now want to invoke the envelope construction to take one complete integral of the
eikonal equation into another such solution. To this effect, we must first pull@&gland
(26)to M3 x R by means of the local diffeomorphisgm! : M3 x R — J2(R, R).

We now consider the functiof(x?, x2, x3, §) defined by

7=V, z(xl, x2, x3, s),S), 27)
wheres is defined implicitly as a function of!, x2, x2 ands by the envelope condition
Vo' + V, = 0. (28)

Note that althougk28) has the same form &86), it now lives onM3 x R, and thus involves
the variablesc!, x2, x3, ands.

It is important to note that since the functiofx®, x2, x3, 5) solves the eikonatquation
(22), the functionz(x!, x2, x3, 5) will also solve it. This proves the second part of the
statement of our theorem.

From(27) and (28)it follows that

dV ds
7= —_—. 29
© T s ds (29)
But we have
dv. a9V  avd vV ds
_ du S (30)

O os T ouds T 95 ds
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Now, the sum of the first two terms on the right-hand side of the above equation is zero by
virtue of (26), so that we have
_, avds a9V
C T %5 ds 95

Thisshowsthatthemap: M3 — Msinduced by acontacttransformatign J2(R, R) —
J?(R, R) will map the envelope of a 1-parameter family of null surfacegfoto another,
and will therefore preserve the conformal clasg pf

Stated more informally, what we have shown is that the contact equivalence class of a
third-order ODE satisfyingVr = 0 is characterized by the conformal equivalence class of a
three-dimensional Lorentzian metric. Furthermore, we have shown that the three-parameter
set of solutions of each ODE in a given class form a one-parameter family of solutions of
the eikonal equation for that Lorentzian metric. |

(1)

We conclude this section by illustrating the proof of our theorem in the simplest case of the
differential equation

d3u

ds3
which will give rise to three-dimensional conformal Minkowski space. We will thus re-
cover Lie’s classical correspondence between circle geometry in the Euclidean plane and

conformal Minkowskian geometij].
We will change the notation slightly and rewr{{g2) as

0, (32)

d3a

- =0, 33

i (33)
whose general solution may be written as

it = (1+ p?r + 2px+ (1 — p)y, (34)

where the parameters, x, y) are constants of integration, which will serve as local coor-
dinates on the solution space. It is straightforward to check from the eikgnation (22)
that the corresponding conformal structure on the solution space is Minkowskian,

¢ = 2%diag1, -1, —1), (35)
and that for any fixed value qf, the level surfaces d84) are null planes fo(35).

We now apply a suitable contact transformation the differeetigiation (33Yo map it
into the equation

da_ (dii/ds)(d%i/ds?)?

i 36
ds3 1+ (di/ds)2 (36)
whose solutions, given implicitly by
-y’ +GE-x)?—1*=0, (37)

are the light cones with apex @i, s, 0). This contact transformation can be conveniently
expressed as the composition of three relatively simple transformations. We first apply the
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fiber-preserving point transformation

1 2
ut = L, COSs = P , (38)
1+ p2 1+ p2
to transform(33) into
d3 T d T
du’_ dul (39)
ds3 ds
with general solution given by
uJr =1t + x COSs + ySins, (40)

where(t, x, y) are the same constants of integration as before. The level surfack s
null planes. Next, we perform the fiber-preserving point transformatiof3®)ygiven by

ul = usins (41)
to obtain

d3u d?u du

— =—-3—cots +2— 42

ds3 ds? cots + ds’ (42)

whose general solution is given by

u=xcots+y+

, 43
sins (43)

with the level surfaces af being null planes. Finally, we apply {d2) the contact trans-
formation with generating functiof (s, u, s, i) given by
H(s,u,s,i) = (u— u)Sins + 5 COSs, (44)

which yields(36).
We now show that the ODE36) and the light cone§37) can be constructed by forming
envelopes of plang®3). From(44), we have

i=V(s,u,5) =u—75cots, (45)
or, in view of (43)

t
u = x cots + y + —— — s cots. (46)
sins

To apply the envelope construction, we set to zero the derivati@6)with respect to,
so that

coss = ST (47)

When(47)is substituted int@46), we obtain the family of light cone87), and therefore
the ODE(36).
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4. Contact geometry of a pair of second-order PDEs

Our purpose in this section is to show how the main theorem of the preceding section can
be extended to the case of four-dimensional Lorentzian metrics. We will only give details
in the instances where there are notable differences with the three-dimensional case.

We first point out that it is not our intention at this stage to carry out a complete analysis
of the conformal geometry of the Lorentzian metric in terms of differential equations. We
will only concern ourselves with the relevant problem of establishing a correspondence
between conformal geometry of four-dimensional Lorentzian metrics and the contact ge-
ometry of certain differential equations. These differential equations will be overdetermined
systems of two second-order PDEs for one function of two variables, whose solutions de-
pend smoothly on four arbitrary constants. These constants will serve as local coordinates
on the four-dimensional solution space of our PDE system.

Recall from(3) that the differential equations which serve as the starting point of our
construction are overdetermined systems of PDEs of the form

8%u du du  0%u
— =39 ) *7 "N P a w’a.a.= | 48
952 (s Sl G B 8s8s*> (48)

wheres is complex-valueds* denotes the complex conjugatesainds is complex-valued.

We will be interested in the case in which the Pfaffian system naturally associéd&lito
completely integrable, so that the local solution§4®) will depend on arbitrary constants.
We thus consided2(R2, R) with local jet coordinatess, s*, u, us, ug+, Uss, Uss, Ugrs*) iN
which the contact Pfaffian system is generated by the 1-forms

0, =du —uz ds — ug ds™, (49)
Oy, = dug — ussds — usg ds™, (50)
Oupe = Qugs — usg ds — grgs ds™. (51)

To (48)is naturally associated the lociis in J2(R2, R), defined by the equations
uss= S(s, 8™, u, us, Usr, Usg), Ugrgs = ST(s, 8™, u, Uy, Usx, Usg). (52)

We shall work locally and assume that this locus is a six-dimensiGffasubmanifold of
J2(R?, R), with local coordinates given by, s*, u, uy, uy+, uss ). Furthermore, we assume
that the signature condition

1= Suge Suge > 0, (53)
and the integrability condition
D2s*  D2§
—_— = = 54
Ds2  Ds*2 (54)
where
D 9 9 9 d d
Us— +S— + usg (55)

Ds  9s  “ou dug ut g+ + se
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D b 0 0 0 B
= s— + + 85—+ Q* , 56
Ds* os* s ou usg& U ol g* Q Ol sg (56)

and whereQ is defined by

o L [8s  as . as N
0 =usss = ( _Sllsgk uss*) _+Ms ET +S8_MS+MS§ ttyr
aS* 0.5* 0.5* 0.5*
S — S* , 57
+ s <8s* e s -t Bus*):| (57)

are satisfied at every point éfs. The signature conditio(b3) can be shown to ensure the
Lorentzian character of the signature of the metric on the solution space.
To (48), we associate ohg the rank 4 Pfaffian systeffy generated by the 1-forms

= dut — uy ds — uye ds*, (58)

=duy, — S(s, 5%, ug, ugr, usg) ds — ugg ds™*, (59)
0% = dug — use ds — S*(s, s*, uy, g+, uss) ds*, (60)
0% = duss — Q(s, 5%, U, ugr, uss) ds — O (s, 5%, uy, s+, use) ds*. (61)

The local solutions of48)are in one-to-one correspondence with the two-dimensional local
integral manifolds: : R2 — L of Zs satisfying the independence condition

c*(ds Ads™) £ 0 (62)

It is now easy to show using the Frobenius theorem that the local solutions of our overde-
termined system are parametrized by four arbitrary real constants.

Lemma?2. Consider an overdetermined systétB) satisfying the rank conditiob3) and
the integrability conditiorf54). Then the corresponding Pfaffian systBm= {61, 62, 63, 64}
on the 6-manifold. s is completely integrable

It follows from this lemma that the séif, of local solutions of the systei@8), where
S satisfieq53), is a four-dimensional’* manifold M,4. The local coordinates ok, will
be denoted byx?, x2, x3, x#), and we have now & mapz : M4 x R2 - R,u =
z(xt, x2, x3, x4, 5, 5%) such that for fixedrg in M4 with local coordinategxd, x3, x3, x3),
the induced mapy, : R — R, s — u = z(x%, x2, x3, x5, s, s*) satisfies

(j%2:0)*Zs = 0 (63)
for everyxg € Mjy.
We proceed in analogy with the three-dimensional case and considey onR? the
1-forms given by
A=) dx, B =(daz)dx?, BT = (dazs) dx?,
B = (dazss) dx”. (64)

We now have a local diffeomorphise: Ls — M4 x R2 which pulls back the completely
integrable Pfaffian system generateddly 81, —, g1 to Zs.
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In order to have a well-defined conformal Lorentzian structurédfanwe will have to
restrict our attention to a subclass of the class of overdetermined sy@t8pfisr which a
certain invariant analogous to the Wiinschmann invariant is identically zero. This invariant,
which we will denote byM, is defined i3] and is given by

1 g1+

Ms = é(DsS) - Susgk Sus - Sus* + Susgk Fa (65)

where
1+ 1 1
g = ——((DsSuge — Suy — Suge Sy )+ 7—Suee (Ds S ue =S . — St Suce)s
gOJ_ 2A ss* s s* MUggr 4A ss¥ ss¥ Ugx Us ~Usgk
(66)

and where

A=1-3S5Si . (67)
The condition

Mg =0 (68)
is invariant under contact transformations/G{R2, R) preservingLs.

We now consider the 1-forms

0¥ = ¢*p°, (69)

ot =a(s*BT +bs*B7), (70)

0 =als* BT +b*s*BT), (71)

ot =c*prtac* Bt +a*s B + s (72)

where the coefficients, a, b andc are defined in the following way3]

/1S5 Sue —1
b= (73)

% )
Uggr

_ (,/1— Siise Suss +1) _ (1+bb) (74)

201~ S} Suge) "~ (1—bb*)2

-1
1/Ds*
— -1
a=(1-SuyS;.) (1— 3 ( 5 )u S;*Ssk)
sst
1
x IE [531* + 8% Suge — <

3 DS
-3 Si . [Sux + SupSi, — (DS* )J } (75)
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c=-3G —(a—a*b*)(a* — ab)(1+ bb") ™, (76)
and

l *
G (14 5 Suee Sig

_(DS) ,(Ds) . [(Ds *+ s\ 1
~ \ Ds* s Ds* u? Usgr Ds* ut Ds* s Ussr

1/ D2S . . .
-2 (== + = (S”A Sus Suss + Sug Sz + Sie Suz S o + Sur Si,
Ss*

2 \ Ds*2 "
*
1 DS gt
- S:ss* Su — S“ss* S*) a E (S”SS* + Suss‘F S* +2 |:(Ds*>us§:| > ﬁ
1 DS g
2 (SI"SS"< Slj + Suz YS;:SS" +2 (DS*) ) E’ (77)
Usgsr

wheregl~ /g% denotes the complex conjugate of the quanitty/g°* defined in(66).
Using these 1-forms, we define a quadratic differential fbgnon the 6-manifold. s by

hs=’ @'+’ @’ -0 ®@0w —0w Qut. (78)
We have
Lemma 3. Consider an overdetermined syste(8), with vanishing generalized
Wiinschmann invariant

Mg = 0.
Then, we hav{d]

Lp/pshs = Ahg

for some multiplierA.

We now letgs denote the quadratic differential form definedda x R? by
gs = (s H*hs. (79)
Itfollows from the preceding lemmathg¢ induces oM 4 a conformal Lorentzian structure,

which we shall denote byk].
We can now state our main result in the four-dimensional case:

Theorem 2. Let (48) be an overdetermined PDE system with vanishing generalized
Winschmann invarians = 0, and consider a PDE system locally equivalen{4pun-
der a contact transformatiof : J2(R?, R) — J?(R?, R). Then the local diffeomorphism

of solution spaceg : M4 — M, induced byf preserves the corresponding conformal
Lorentzian structures, that is

Fr1es1 = [esl.
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The proof is similar to the one given in the three-dimensional case. We remark that in the
four-dimensional case, a complete integral of the eikonal equatiog §onfill depend on
two arbitrary real constants.
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