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Preface

Hideki Omori is widely recognized as one of the world’s most creative and original
mathematicians. This volume is dedicated to Hideki Omori on the occasion of his
retirement from Tokyo University of Science. His retirement was also celebrated in
April 2004 with an influential conference at the Morito Hall of Tokyo University of
Science.

Hideki Omori was born in Nishionmiya, Hyogo prefecture, in 1938 and was an
undergraduate and graduate student at Tokyo University, where he was awarded his
Ph.D degree in 1966 on the study of transformation groups on manifolds [3], which
became one of his major research interests. He started his first research position at
Tokyo Metropolitan University. In 1980, he moved to Okayama University, and then
became a professor of Tokyo University of Science in 1982, where he continues to
work today.

Hideki Omori was invited to many of the top international research institutions,
including the Institute for Advanced Studies at Princeton in 1967, the Mathematics
Institute at the University of Warwick in 1970, and Bonn University in 1972. Omori
received the Geometry Prize of the Mathematical Society of Japan in 1996 for his
outstanding contributions to the theory of infinite-dimensional Lie groups.

Professor Omori’s contributions are deep and cover a wide range of topics as illus-
trated by the numerous papers and books in his list of publications. His major research
interests cover three topics: Riemannian geometry, the theory of infinite-dimensional
Lie groups, and quantization problems. He worked on isometric immersions of Rie-
mannian manifolds, where he developed a maximum principle for nonlinear PDEs [4].
This maximum principle has been widely applied to various problems in geometry as
indicated in Chen–Xin [1]. Hideki Omori’s lasting contribution to mathematics was the
creation of the theory of infinite-dimensional Lie groups. His approach to this theory
was founded in the investigation of concrete examples of groups of diffeomorphisms
with added geometric data such as differential structures, symplectic structures, con-
tact structures, etc. Through this concrete investigation, Omori produced a theory of
infinite-dimensional Lie groups going beyond the categories of Hilbert and Banach
spaces to the category of inductive limits of Hilbert and Banach spaces. In particular,
the notion and naming of ILH (or ILB) Lie groups is due to Omori [O2]. Furthermore,
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he extended his theory of infinite-dimensional Lie groups to the category of Fréchet
spaces in order to analyze the group of invertible zeroth order Fourier integral opera-
tors on a closed manifold. In this joint work with Kobayashi, Maeda, and Yoshioka,
the notion of a regular Fréchet Lie group was formulated. Omori developed and unified
these ideas in his book [6] on generalized Lie groups.

Beginning in 1999, Omori focused on the problem of deformation quantization,
which he continues to study to this day. He organized a project team, called OMMY
after the initials of the project members: Omori, Maeda, Miyazaki and Yoshioka. Their
first work showed the existence of deformation quantization for any symplectic man-
ifold. This result was produced more or less simultaneously by three different ap-
proaches, due to Lecomte–DeWilde, Fedosov and Omori–Maeda–Yoshioka. The ap-
proach of the Omori team was to realize deformation quantization as the algebra of a
“noncommutative manifold.” After this initial success, the OMMY team has continued
to develop their research beyond formal deformation quantization to the convergence
problem for deformation quantization, which may lead to new geometric problems and
insights.

Hideki Omori is not only an excellent researcher, but also a dedicated educator
who has nurtured several excellent mathematicians. Omori has a very charming sense
of humor that even makes its way into his papers from time to time. He has a friendly
personality and likes to talk mathematics even with non-specialists. His mathematical
ideas have directly influenced several researchers. In particular, he offered original
ideas appearing in the work of Shiohama and Sugimoto [2], his colleague and student,
respectively, on pinching problems. During Omori’s visit to the University ofWarwick,
he developed a great interest in the work of K. D. Elworthy on stochastic analysis, and
they enjoyed many discussions on this topic. It is fair to say that Omori was the first
person to introduce Elworthy’s work on stochastic analysis in Japan. Throughout their
careers, Elworthy has remained one of Omori’s best research friends.

In conclusion, Hideki Omori is a pioneer in Japan in the field of global analysis fo-
cusing on mathematical physics. Omori is well known not only for his brilliant papers
and books, but also for his general philosophy of physics. He always remembers the
long history of fruitful interactions between physics and mathematics, going back to
Newton’s classical dynamics and differentiation, and Einstein’s general relativity and
Riemannian geometry. From this point of view, Omori thinks the next fruitful interac-
tion will be a geometrical description of quantum mechanics. He will no doubt be an
active participant in the development of his idea of “quantum geometry.”

The intended audience for this volume includes active researchers in the broad
areas of differential geometry, global analysis, and quantization problems, as well as
aspiring graduate students, and mathematicians who wish to learn both current topics
in these areas and directions for future research.

We finally wish to thank Ann Kostant for expert editorial guidance throughout the
publication of this volume. We also thank all the authors for their contributions as well
as their helpful guidance and advice. The referees are also thanked for their valuable
comments and suggestions.
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VII, The group generated by pseudo-differential operators of negative order,
Tokyo J. Math. 7 (1984), 315–336.

[33] Y. Maeda, H. Omori, O. Kobayashi, A. Yoshioka, On regular Fréchet–Lie groups
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Fréchet linear Poisson algebras of Heisenberg type, Global differential geome-
try: the mathematical legacy of Alfred Gray, Bilbao, 2000, Contemp. Math., 288
(2001), 391–395.

[66] H. Omori, Associativity breaks down in deformation quntization, Lie groups, ge-
ometric structures and differential equations—one hundred years after Sophus
Lie, Advanced Studies in Pure Math., 37 (2002), 287–315.

[67] H. Omori, Y. Maeda, N. Miyazaki, A. Yoshioka, Star exponential functions for
quadratic forms and polar elements, Quantization, Poisson brackets and beyond,
Manchester, 2001, Contemp. Math., 315 (2002), 25–38.

[68] H. Omori, One must break symmetry in order to keep associativity,Geometry and
analysis on finite- and infinite-dimensional Lie groups, Bedlewo, 2000, Banach
Center Publi., 55 (2002), 153-163.

[69] H. Omori, Y. Maeda, N. Miyazaki, A. Yoshioka, Strange phenomena related to
ordering problems in quantizations, Jour. Lie Theory 13 (2003), 481–510.

[70] Y. Maeda, N. Miyazaki, H. Omori, A. Yoshioka, Star exponential functions as
two-valued elements, The breadth of symplectic and Poisson geometry, Progr.
Math., 232 (2005), 483–492.



From Geometry to
Quantum Mechanics



Part I

Global Analysis and Infinite-Dimensional Lie Groups





Aspects of Stochastic Global Analysis

K. D. Elworthy

Mathematics Institute, Warwick University, Coventry CV4 7AL, England
kde@maths.warwick.ac.uk

Dedicated to Hideki Omori

Summary. This is a survey of some topics where global and stochastic analysis play a role.
An introduction to analysis on Banach spaces with Gaussian measure leads to an analysis of
the geometry of stochastic differential equations, stochastic flows, and their associated connec-
tions, with reference to some related topological vanishing theorems. Following that, there is
a description of the construction of Sobolev calculi over path and loop spaces with diffusion
measures, and also of a possible L2 de Rham and Hodge-Kodaira theory on path spaces. Dif-
feomorphism groups and diffusion measures on their path spaces are central to much of the
discussion. Knowledge of stochastic analysis is not assumed.

AMS Subject Classification: Primary 58B20; 58J65; Secondary 53C17; 53C05; 53C21; 58D20;
58D05; 58A14; 60H07; 60H10; 53C17; 58B15.

Key words: Path space, diffeomorphism group, Hodge–Kodaira theory, infinite dimensions,
universal connection, stochastic differential equations, Malliavin calculus, Gaussian measures,
differential forms, Weitzenbock formula, sub-Riemannian.

1 Introduction

Stochastic and global analysis come together in several distinct ways. One is from the
fact that the basic objects of finite dimensional stochastic analysis naturally live on
manifolds and often induce Riemannian or sub-Riemannian structures on those mani-
folds, so they have their own intrinsic geometry. Another is that stochastic analysis is
expected to be a major tool in infinite dimensional analysis because of the singularity
of the operators which arise there; a fairly prevalent assumption has been that in this
situation stochastic methods are more likely to be successful than direct attempts to
extend PDE techniques to infinite dimensional situations. (Ironically that situation has
been reversed in recent work on the stochastic 3D Navier–Stokes equation, [DPD03].)
Stimulated particularly by the approach of Bismut to index theorems, [Bis84], and by
other ideas from topology, representation theory, and theoretical physics, this has been
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extended to attempts to use stochastic analysis in the construction of infinite dimen-
sional geometric structures, for example on loop spaces of Riemannian manifolds. As
examples see [AMT04], and [Léa05]. In any case global analysis was firmly embed-
ded in stochastic analysis with the advent of Malliavin calculus, a theory of Sobolev
spaces and calculus on the space of continuous paths on Rn , as described briefly be-
low, and especially its relationships with diffusion operators and processes on finite
dimensional manifolds.

In this introductory selection of topics, both of these aspects of the intersection are
touched on. After a brief introduction to analysis on spaces with Gaussian measure
there is a discussion of the geometry of stochastic differential equations, stochastic
flows, and their associated connections, with reference to some related topological van-
ishing theorems. Following that, there is a discussion of the construction of Sobolev
calculi over path and loop groups with diffusion measures, and also of de Rham and
Hodge–Kodaira theory on path spaces. The first part can be considered as an updating
of [Elw92], though that was written for stochastic analysts. A more detailed introduc-
tory survey on geometric stochastic analysis 1950–2000 is in [Elw00]. The section here
on analysis on path spaces is very brief, with a more detailed introduction to appear in
[ELb], and a survey for specialists in [Aid00]. Many important topics which have been
developed since 2000 have not been mentioned. These include, in particular, the ex-
tensions of Nevanlinna theory by Atsuji, [Ats02], stochastic analysis on metric spaces
[Stu02] and geometry of mass transport and couplings [vRS05], geometric analysis on
configuration spaces, [Dal04], and on infinite products of compact groups, [ADK00],
and Brownian motion on Jordan curves and representations of the Virasoro algebra
[AMT04].

In this exposition the diffeomorphism group takes its central role: I was introduced
to it by Hideki Omori in 1967 and I am most grateful for that and for the continuing
enjoyment of our subsequent mathematical and social contacts.

2 Convolution semi-groups and Brownian motions

Consider a Polish group G. Our principle examples will be G = Rm or more generally
a separable real Banach space, and G = Diff(M) the group of smooth diffeomor-
phisms of a smooth connected finite dimensional manifold M with the C∞-compact
open topology, and group structure given by composition; see [Bax84]. By a convo-
lution semigroup of probability measures on G we mean a family of Borel measures
{μt }t�0 on G such that:

(i) μt (G) = 1
(ii) μt � μs = μs+t
where � denotes convolution, i.e., the image of the product measure μt ⊗μs on G×G
by the multiplication G × G → G.

The standard example onRm is given by the standard Gaussian family {γm
t }t whose

values on a Borel set A are given by:
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γm
t (A) = (2π t)−m/2

∫
A
e−|x |

2/2t dx .

More generally when G is a finite dimensional Lie group with right invariant metric
we could set μt = pt (id, x)dx , the fundamental solution of the heat equation on G
from the identity element. In these examples we also have symmetry and continuity,
i.e.,

(iii) μt (A−1) = μt (A) for all Borel sets A where A−1 = {g−1 : g ∈ A}.
(iv) (1/t)μt (G −U )→ 0 as t → 0 for all neighbourhoods U of the identity element.

Given a convolution semigroup satisfying (i), (ii), and (iv) there is an associated
Markov process on G; that is, a family of measurable maps

zt : �→ G, t � 0,

defined on some probability space {�,F,P} such that:

(a) z0(ω) = id for all ω ∈ �

(b) t �→ zt (ω) is continuous for all ω ∈ �

(c) for each Borel set A in G and times 0 � s � t <∞

P{ω ∈ � : zt (ω)zs(ω)−1 ∈ A} = μt−s(A).

In particular we can take � to be the space of continuous maps of the positive reals
into G which start at the identity element, and then take zt (ω) = ω(t). This is the
canonical process. In any case the process satisfies:

(A) (independent increments on the left ) If 0 � s < t � u < v, then zt z−1s and zvz−1u
are independent.

(B) (time homogeneity) For 0 � s � t and a Borel set A, we have P{ω : zt (ω)zs(ω)−1∈
A} depends only on t − s.

For proofs in this generality see [Bax84]. Baxendale calls such processes Brownian
motions on G, though such terminology may be restricted to the case where the sym-
metry condition (iii) holds with the general case referred to as Brownian motions with
a drift. In the symmetric case we will call the measure P on the path space of G the
Wiener measure. However it will often be more convenient to restrict our processes to
run for only a finite time,T, say. Our canonical probability space will then be the space
Cid([0, T ];G) of continuous paths in G starting at the identity and running for time
T . In the example above where G = Rm we obtain the standard, classical Brownian
motion and classical Wiener measure on C0([0, T ];Rm).

There are also corresponding semi-groups. For this we refer to the following lemma
of Baxendale:

Lemma 2.1 ([Bax84]) Let B be a Banach space and G× B → B a continuous action
of G by linear maps on B. Set Ptb =

∫
(gb)dμt (g). This integral exists and {Pt }t�0

forms a strongly continuous semi-group of bounded linear operators on B satisfying
‖Pt‖ � cedt for some constants c and d.
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In our example with G = Rm we can take B to be the space of bounded continuous
real-valued functions on Rm , or those vanishing at infinity, or L2 functions etc., with
the action given by (x, f ) �→ f (· + x). The resulting semi-group is then just the usual
heat semi-group with generator− 1

2	where we use the sign convention that Laplacians
are non-negative. From convolution semi-groups on DiffM we will similarly obtain
semi-groups acting on differential forms and other tensors on M as well as the semi-
group {Pt }t acting on functions on Diff(M): see below. Note that if our convolution
semi-group satisfies (i), (ii), and (iv) so does the family {μr t }t�0 for each r > 0. We
therefore get a family of probability measures {Pr }r�0 on Cid([0, T ];G)with P = P1,
which will also form a convolution semi-group.

2.1 Gaussian measures on Banach spaces

Take G to be a separable (real) Banach space E . If E is finite dimensional, a prob-
ability measure γ on E is said to be (centred) Gaussian if its Fourier transform
γ̂ (l) := ∫

E eil(x)dγ (x) = exp(− 1
2 B(l, l)) for all l in E∗, the dual space of E , for some

positive semi-definite bilinear form B on E∗. General Gaussians are just translates of
these. When E is infinite dimensional γ is said to be Gaussian if its push forward l∗γ
is Gaussian on R for each l ∈ E∗. The Levy–Khinchin representation gives a decom-
position of any convolution semigroup on E , e.g., see [Lin86], from this, (even just the
one-dimensional version), we see that each measure μt of a convolution family on E
satisfying (iv) is Gaussian.

Gaussian measures have a rich structure. If γ is a centred Gaussian measure on E ,
by a result given in a general form in [DFLC71] but going back to Kuelbs, Sato, and
Stefan, there is a separable Hilbert space H, 〈, 〉H and an injective bounded linear map
i : H → E such that γ̂ (l) = exp(− 1

2‖ j (l)‖2H ) for all l ∈ E∗ where j : E∗ → H
is the adjoint of i . If γ is strictly positive (i.e., the measure of any non-empty open
subset of E is positive) it is said to be non-degenerate and then i has dense image. Any
triple {i, H, E} which arises this way is called an abstract Wiener space following L.
Gross, e.g., in [Gro67]. If γ = μ1 for a convolution semi-group, then μt = γt for each
t where γt has Fourier transform γ̂t (l) = exp(− 1

2 t‖ j (l)‖2H ) for l ∈ E∗.
Among the important properties of abstract Wiener spaces and their measures are:

• the image i[H ] in E has γ -measure zero,
• translation by an element v of E preserves sets of measure zero if and only if v lies

in the image of H ,
• if T : E → K is a continuous linear map into a Hilbert space K then the compo-

sition T ◦ i is Hilbert–Schmidt,
• if s �= t , then γt and γs are orthogonal, in the sense that there is a set which has full

measure for one and measure zero for the other.

Gross showed that to do analysis, and in particular potential theory, using these mea-
sures, it was natural to differentiate only in the H-directions, and to consider the H-
derivative of a suitable function f : E → K of E into a separable Hilbert space K ,
e.g., a Fréchet differentiable function, as a map of E into the space of Hilbert–Schmidt
maps of H into K :
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dH f : E → L2(H ; K ).

He generalised an integration by parts theorem, for classical Wiener space, of
Cameron and Martin to this context. Malliavin calculus took this much further; going
to the closure dH of the H-derivative as an operator between L p spaces of functions on
E and showing that a wide class of functions defined only up to sets of measure zero on
classical Wiener space (for example as solutions of stochastic differential equations)
actually lie in the domain of the closure of the H-derivative, and so can be considered
to have H-derivatives lying in L2. The closability of the H-derivative can be deduced
from the integration by parts theorem.

In its simplest form the integration by parts formula is as follows: Let f : E → R
be Fréchet differentiable with bounded derivative and let h ∈ H . Then∫

E
(dH f )x (h)dγ (x) = −

∫
E
f (x)div(h)(x)dγ (x)

where div(h) : E → R is −W(h) where W(h) = limL2 ln for {ln}n a sequence in E∗
such that j (ln)→ h in H .

If E is finite dimensional, W(h)(x) is just 〈h, x〉. For classical Wiener space it is
often written

∫ T
0 〈 dhdt , dx〉 and known as the Paley–Wiener integral. Unless dh

dt is of
bounded variation, or has some similar smoothness property, it will have no classical
meaning since almost all paths x will not have bounded variation. It is the simplest ex-
ample of a ‘stochastic integral’. In general it is not continuous in x ∈ C0([0, T ];Rm).
However it is in the domain of dH with dH (W(h))x (k) = 〈h, k〉H for all x ∈ E and
k ∈ H .

More generally we have a divergence operator acting on a class of H-vector fields,
i.e., maps V : E → H . Let Dp,1 be the domain of dH acting from L p(E;R) to
L p(E; H∗) with its graph norm. Then∫

E
(dH f )x (V (x))dγ (x) = −

∫
E
f (x) div(V )(x)dγ (x)

for f ∈ D2,1 if V is in the domain of div in L2. In the classical Wiener space case
an H-vector field is a map V : C0([0, T ];Rm) → L2,1([0, T ] : Rm) and so we have
∂V (σ )

∂t ∈ L2([0, T ];Rm), for σ ∈ C0([0, T ];Rm). This can be considered as a stochas-
tic process in Rm with probability space the classical Wiener space with its Wiener
measure. If this process is adapted or non-anticipating, (which essentially means that
for each t ∈ [0, T ], ∂V (σ )

∂t depends only on the path σ up to time t), and is square inte-
grable with respect to the Wiener measure, then V is in the domain of the divergence
and its divergence turns out to be minus the Ito integral, written

div(V ) = −
∫ T

0

∂V (σ )

∂t
dσ(t).

This is the stochastic integral which is the basic object of stochastic calculus (and so,
of course to its applications, for example to finance). It has the important isometry
property that
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0

∂V (σ )

∂t
dσ(t)

∥∥∥∥2
L2
=
∫
C0([0,T ];Rm )

∫ T

0

∥∥∥∥∂V (σ )

∂t

∥∥∥∥2 dtdγ (σ ).

In the non-adapted case it is, now by definition, the Skorohod integral, or Ramer–
Skorohod integral, although it may involve differentiation as is standard in finite di-
mensions.

Corresponding to dH there is the gradient operator, acting on L2 as ∇ : D2,1 →
L2(E; H). The relevant version of the Laplacian is the ‘Ornstein–Uhlenbeck’ opera-
tor L given by L = dH

∗
dH = − div∇. With its natural domain this is self-adjoint. Its

spectrum in L2 consists of eigenvalues of infinite multiplicity, apart from the ground
state. The eigenspace decomposition it induces is Wiener’s homogeneous chaos de-
composition, at least in the classical Wiener space case, or in field theoretic language
the Fock space decomposition with L the number operator. When E = H = Rn the
operator L is given by

L( f )(x) = 	( f )(x)+ 〈∇( f )(x), x〉

for	 the usual Laplacian on Rn (with the sign convention that it is a positive operator).
The H-derivative also gives closed operators dH : Dom(dH ) ⊂ L p(E;G) →

L p(E;L2(H ;G)) for 1 � p < ∞ where the Hilbert space of Hilbert–Schmidt oper-
ators, L2(H ;G), is sometimes identified with the completed tensor product G

⊗
2 H .

This leads to the definitions of higher derivatives and Sobolev spaces. An L2–de Rham
theory of differential forms was described by Shigekawa, [Shi86], in this context. It
was based on H-forms, i.e., maps ϕ : E → ∧k H∗ for k-forms, where

∧k H∗ refers
to the Hilbert space completion of the k-th exterior power of H∗ with itself. He defined
an L2-Hodge–Kodaira Laplacian, gave a Hodge decomposition and proved vanishing
of L2 harmonic forms with consequent triviality of the de Rham cohomology. In finite
dimensions these Laplacians could be considered as Bismut–Witten Laplacians for the
Gaussian measure in question.

2.2 Brownian motions on diffeomorphism groups

For convolution semi-groups on a finite dimensional Lie group G there is an analogous
Levy–Khinchin description to that described above. It is due to Hunt [Hun56]. In par-
ticular given the continuity condition (iv) above, the semi-group {Pt }t�0 induced on
functions on G has generator a second-order right-invariant semi-elliptic differential
operator with no zero-order term (a right invariant diffusion operator) on the group.

For diffeomorphism groups of compact manifolds Baxendale gave an analogue of
this result of Hunt. Given a convolution semi-group of probability measures, satisfying
(iii) and (iv), on Diff(M) for M compact, he showed that there is a Gaussian measure,
γ say, on the tangent space TidDiff(M) at the identity, i.e., the space of smooth vec-
tor fields on M , with an induced convolution semi-group of Gaussian measures and
Brownian motion {Wt }t on TidDiff(M) such that the Brownian motion on Diff(M)

can be taken to be the solution, starting at the identity, of the right invariant stochastic
differential equation
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dξt = T Rξt ◦ dWt

where Rg denotes right translation by the group element g and T Rg its derivative act-
ing on tangent vectors. Such a (Stratonovich) stochastic differential equation gives the
solution{ξt }t as a non-anticipating function of {Wt }t (taking W− to be the canonical
Brownian motion). The solution can be obtained by taking piecewise linear approxi-
mations {Wn

t }t to each path W−, solving the ordinary differential equations

dξnt
dt

= T Rξnt

dWn
t

dt

with ξ0 = id to obtain measurable maps

ξn− : C0([0, T ]; TidDiff(M))→ Cid([0, T ];Diff(M)),

n = 1, 2, . . . . These will converge in measure, (and so a subsequence almost surely),
to the required solution of the stochastic differential equation. The point of this proce-
dure being that typical Brownian paths are too irregular for our stochastic differential
equation to have classical meaning. The solution will be measurable but not continu-
ous in W−. However one of the main points of the Malliavin calculus is that for such
equations, at each time t , it is possible to define the H-derivative of the solution.

As in the case of finite dimensional Lie groups the situation is also determined by
a diffusion operator B, say, acting on functions f : Diff(M)→ R. This is given by the
sum of Lie derivatives

B( f ) = 1/2
∑
j

L
X̃ jLX̃ j

where {X j } j is an orthonormal base for the Hilbert space Hγ of vector fields deter-

mined by the Gaussian measure γ and X̃ j denotes the corresponding right invariant
vector field on Diff(M): for θ ∈ Diff(M) we have X̃ j (θ) : M → T M given by
X̃ j (θ)(y) = X j (θ(y)).

If we fix a point x0 ∈ M , there is the one-point motion {ξt (x0) : 0 � t � T }. This
almost-surely defined function of W− ∈ C0([0, T ]; TidDiff(M)) solves the stochastic
differential equation on M:

dxt = evxt ◦ dWt

where evxt denotes evaluation at xt , which could equally be written as

dxt =
∑
j

X j (xt ) ◦ dW j
t

where W j
t now is the j th component of the Brownian motion W− ( or to be more

precise it is W(s �→ (s ∧ t)X j ), for W the Paley–Wiener map described above),
which is a Brownian motion on R.

In case the symmetry condition (iii) on the convolution semi-group does not hold,
the only difference is the appearance of a vector field A, say, on M , whose right trans-
late Ã needs to be added to our expression for B as a first-order operator, and which



10 K. D. Elworthy

has to be added on to the stochastic differential equations. The stochastic differential
equation for the one-point motion is then:

dxt = evxt ◦ dWt + A(xt )dt (1)

which has the same interpretation via approximations as that described for the first
equation on Diff(M), or can be interpreted in terms of stochastic integrals as described
below. In any case the Brownian motion {ξt : 0 � t � T } is the solution flow of the
S.D.E. for the one-point motion.

The semi-group {Pt }t of operators on functions on M that {μt }t determines has
generator the diffusion operator A for

A = 1/2
∑
j

LX jLX j + LA. (2)

Thus for bounded measurable f : M → R if we set ft = Pt ( f ) =
∫

f ◦ ξt , then
ft solves the equation

∂ ft
∂t = A( ft ) at least if f is smooth, or more generally if A is

elliptic. In fact the standard definition of a solution to 1 is that for any C2 function
f : M → R we have for all relevant t :

f (xt ) = f (x0)+
∫ t

0
(d f )xs dWs(xs)+

∫ t

0
A( f )(xs)ds

where the first integral is an Ito stochastic integral, described above as minus the diver-
gence ofW �→ ∫ .

0(d f )xs(W−)ds considered as an H-vector field E → L2,1
0 ([0, T ]; Hγ ),

where E is the closure of Hγ in the space C0([0, T ]; TidDiffM), i.e., the support of
γ . In summary the main result of [Bax84] can be expressed as:

Theorem 2.2 (Baxendale) Every Brownian motion on the diffeomorphism group of
a compact manifold is the solution flow of a stochastic differential equation driven
by, possibly infinitely many, Brownian motions on R. The flow is determined by the
expression of the generator A in Hörmander form, or more precisely by the Hilbert
space H of vector fields which has the vector fields X j as orthonormal basis, together
with the “drift” A.

It is important to appreciate that there are in general many ways to write a diffusion
generator such as A in Hörmander form, even using only finitely many vector fields.
These different ways correspond to flows which may have very different behaviour,
[CCE86]. We shall look below a bit more deeply at the extra structure a Hörmander
form decomposition involves. When M is Riemannian and A = −1/2	, we can ob-
tain a Hörmander form decomposition via Nash’s isometric embedding theorem. For
this take such an embedding α : M → Rm say, write α in components (α1, . . . , αm)

and set X j = grad(α j ). The corresponding S.D.E. equation 1, with A = 0, has solu-
tions which have −1/2	 as generator in the sense described above. This means they
are Brownian motions on M by definition of a Brownian motion on a Riemannian man-
ifold. Such an S.D.E. is called a gradient Brownian S.D.E. For a compact Riemannian
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symmetric space the symmetric space structure can be used to give a Hörmander form
decomposition or equivalently an SDE for its Brownian motion, e.g., see [ELL99]. The
flow will then consist almost surely of isometries and, equivalently, the measures μt

will be supported on the subgroup of Diff(M) consisting of isometries.
A Hörmander form decomposition of a diffusion operatorA on M also determines

operators on differential forms and general tensor fields (in fact on sections of arbitrary
natural vector bundles) using the standard interpretation of the Lie derivative of such
sections. It turns out that this operator is the generator of the semi-group of operators
on sections induced by the corresponding convolution semi-group {μt }t of measures
on Diff(M), see [ELJL] with special cases in [ELL99], [ER96], and [Elw92]. Conse-
quently, for example on differential forms, a solution to the equation

∂φt

∂t
= 1/2

∑
j

LX jLX jφt + LAφt (3)

is given by

φt =
∫
Cid ([0,T ];Diff(M))

ξ∗t (φ0)dP(ξ) (4)

for a suitably smooth initial differential form φ0.
In [ELL99] it is observed that for A = 0 these operators on forms also can be

written as 1/2(∂d + d∂) where d is the usual exterior derivative and ∂ = ∑LX j ιX j

for ιX j the interior product.
Note, for example by the path integral formula, equation (4), that under these non-

standard heat flows of forms, if an initial form φ0 is closed, then so is φt and the de
Rham cohomology class is preserved, [ELL99]. Thus decay properties of the semi-
groups on forms will be reflected in vanishing of the relevant de Rham cohomology.
Such decay is implied by suitable decay of the norm of the derivative T ξt of the flow.
This relates to stability of the flow in the sense of having negative Lyapunov exponents,
but it is the stronger moment exponents, e.g.,

μ
q
M (p) := lim sup

t→∞
1

t
log sup

x∈M

∫
Cid ([0,T ];Diff(M))

‖ ∧q Txξt‖pdP(ξ)

which are needed, and stability in this sense leads to vanishing of homotopy and/ or
integral homology of our compact manifold M by considering the action of the flow
on integral currents representing homology classes [ER96]. When applied to the gra-
dient Brownian flow of a compact submanifold in Euclidean space these yield such
topological vanishing results given positivity of an expression in the sectional and
mean curvatures of the manifold, regaining results in [LS73]. However the approach
via stochastic flows in [ER96] does not require the strict positivity needed in [LS73].
The property that Brownian motion instantly explores every part of the manifold al-
lows the use of forms of “spectral positivity” or “stochastic positivity”, see below and
[ELR93], can be used. The following vanishing result for the fundamental group of
certain non-compact submanifolds of Rn is due to Xue-Mei Li. Analogous results for
higher homotopy, or integral homology, groups for non-compact manifolds seem to be
lacking.
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Theorem 2.3 ([Li95]) Let M be a complete Riemannian manifold isometrically im-
mersed in a Euclidean space with second fundamental form α satisfying ‖α‖2 �
const.(1 + log[1 + d(x)]), x ∈ M where d is the Riemannian distance from a fixed
point of M. Denote its mean curvature by H and let Ric(x) be the smallest eigenvalue
of the Ricci curvature at the point x. Suppose Ric − ‖α‖2/2 + n

2 |H |2 is positive, or
more generally spectrally positive. Then π1(M) = 0.

3 Reproducing kernel Hilbert spaces, connections, and stochastic
flows

3.1 Reproducing kernels and semi-connections on the diffeomorphism bundle

We have seen how a stochastic flow on M or equivalently a convolution semi-group of
probability measures on Diff(M) determines a Gaussian measure γ with Hilbert space
Hγ of smooth vector fields on M .

From now on we assume that the principal symbol of the generator A of the one-
point motion on M,

σA : T ∗M → T M

has constant rank and so has image in a sub-bundle E, say of T M. The symbol then
induces an inner product on each fibre Ex , giving E a Riemannian metric.

Then our Hilbert space Hγ consists of sections of E and is ample for E in the sense
that at any point x of M its evaluations span Ex . It determines, and is determined by, a
smooth reproducing kernel kγ (x, y) : E∗x → Ey [Bax76] defined by

kγ (x,−) = (evx )
∗ : E∗x → Hγ

where evx denotes evaluation at x . Using the metric to identify E∗x with Ex we obtain
k�γ (x, y) : Ex → Ey . The defining properties of such a reproducing kernel are that

(i) k�(x, y) = k�(y, x)∗;
(ii) k�(x, x) = identity : Ex → Ex ;
(iii) for any finite set x1, . . . , xq of elements of M we have

q∑
i, j=1

〈k�(xi , x j )ui , u j 〉 � 0

for all {u j }qj=1 with u j ∈ Ex j .

Let π : Diff(M)→ M be the evaluation map at the point x0 of M . We will consider
it as a principal bundle with group the subgroup Diffx0(M) consisting of those diffeo-
morphisms which fix x0. We are being indecisive about the precise differentiability
class of these diffeomorphisms and related vector fields, and the differential structure
we are using on these infinite dimensional spaces: see [Mic91] for a direct approach
for C∞ diffeomorphisms, via the Frólicher–Kriegl calculus, otherwise we can work
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with Hilbert manifolds of mappings in sufficiently high Sobolev classes as [EM70],
[Elw82]. The latter approach has the advantage that stochastic differential equations
on Hilbert manifolds are well behaved, but it is necessary to be aware of the drops in
regularity of compositions. More details will be found in [Elw]. In any case the tangent
space TθDiff(M) to Diff(M) at a diffeomorphism θ can be identified with the relevant
space of maps V : M → T M lying over θ .

A reproducing kernel k on sections of E as above determines a horizontal lift map

hθ : Eπθ → TθDiff(M)

for each θ ∈ Diff(M). This is the linear map given by

hθ (u)(x) = k�(θ(x0), θ(x))u

for u ∈ Eθ(x0) and x ∈ M . Set Hθ equal to the image of hθ , the horizontal subspace
at θ . This is equivariant under the action of Diff x0(M) and would correspond to a
connection if E = T M , i.e., whenA is elliptic. In general we call it a semi-connection
over E . It gives a horizontal lift σ̃ : [0, T ] → Diff(M) for any piecewise C1 curve
σ : [0, T ] → M with derivative σ̇ (t) ∈ Eσ (t) for all t ∈ [0, T ]. For example,
[ELJL04], [ELJL], if σ(0) = x0 the lift σ̃ starting at the identity diffeomorphism is
just the solution flow of the dynamical system on M given by

ż(t) = k�(σ (t), z(t))σ̇ (t).

‘Semi-connections’ are also known as ‘partial connections’ or ‘E-connections’, [Ge92].
[Gro96].

Given a metric on E the map, � say, from reproducing kernels satisfying (i), (ii),
(iii) above, to semi-connections on Diff(M) is easily seen to be injective [ELJL]. In
theory therefore all the properties of the flow, e.g., its stability properties, should be
obtainable from this semi-connection.

Our bundle π : Diff(M) → M can be considered as a universal natural bundle
over M and a semi-connection on it induces one on each natural bundle over M . For
example for the tangent bundle T M , given our curve σ above, the parallel translation
/̂/t : Tx0M → Tσ(t)M along σ is simply given by the derivative of the horizontal lift
σ̃ , i.e., /̂/t = Tx0 σ̃ (t). The corresponding covariant derivative operator (in this case
differentiating a vector field in the direction of an element of E to obtain a tangent
vector) will be denoted by ∇̂, or ∇̂γ if it comes initially from our Gaussian measure γ

and we wish to emphasise that fact.

3.2 The adjoint connection

The kernel k� also determines a connection on E which is given by its covariant deriva-
tive ∇̆ defined by:

∇̆vU = d{k(−, x)(U (−))}(v)
for v ∈ TxM and U a differentiable section of E . In other words it is the projection
on E of the trivial connection on the trivial H - bundle over M by the evaluation map
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at x0. This is a metric connection and all metric connections on E can be obtained
by a suitable Hilbert space H of sections of E , in fact by a finite dimensional H , see
[ELL99]. The latter fact is a consequence of Narasimhan and Ramanan’s construction
of universal connections, [NR61]; see [Qui88] for a direct proof. This connection was
discussed in detail in [ELL99] together with its relationships to stochastic flows, and
called the LW-connection for the flow. It had appeared in a very different form in the
elliptic case in [LW84], see also [AMV96].

There is a correspondence, � ↔ �′ between connections on E and certain semi-
connections on T M over E , [Dri92], [ELL99], given in terms of the co-variant deriva-
tives by :

∇′uV = ∇vU + [U, V ](x).

We say ∇ and ∇′ are adjoints. (When E = T M this relationship is shown to be one of
the complete list of natural automorphisms of the space of connections given in section
25 of [KMS93].) It is shown in [ELJL04], [ELJL], that ∇̂γ and ∇̆γ are adjoints.

3.3 The space of Hörmander form decompositions of A
Now fix an infinite dimensional separable Hilbert space H. For our fixed diffusion
operatorA on M with constant rank symbol and associated Riemannian sub-bundle E
of T M , let SDE(E) denote the space of all smooth vector bundle maps

X : M × H → E

which are surjective and induce the given metric on E . Let q be the dimension of
the fibres of E and let G be its gauge group i.e., the space of all metric preserving
vector bundle automorphisms of E over the identity of M . For a fixed orthonormal
basis e1, e2, . . . of H there is a bijection between SDE(E) and the set of Hörmander
form representations as in equation (2) obtained by taking Xi = X (−)(ei ) and then
choosing the vector field A so that the equation (2) is satisfied. There is an obvious
right action of G on SDE(E) leading to a principal G-bundle

π1 : SDE(E)→ SDE(E)/G.

Local sections can be obtained on noting the injection

κ0 : SDE(E)/G→ Map[M;G(q, H)]

into the space of maps of M into the Grassmannian of q-dimensional subspaces in H ,
where κ0 sends X to the map x �→ [ker X (x)]⊥.

Let V (q, H) denote the space of orthonormal q-frames in H and p : V (q, H) →
G(q, H) the projection, a universal O(q)-bundle. Let MapE [M;G(q, H)] be the sub-
space of Map[M;G(q, H)] consisting of maps which classify E , i.e., those maps f for
which f ∗(p) is equivalent to O(E), the orthonormal frame bundle of E . This is the im-
age of κ0. Indeed if MapO(q)[O(E); V (q, H)] denotes the space of O(q)-equivariant

maps f̃ : O(E) → V (q, H), the left action of G on O(E) induces a right action on
MapO(q)[O(E); V (q, H)] leading to a principle G-bundle
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π2 : MapO(q)[O(E); V (q, H)]→ MapE [M;G(q, H)]

and this is equivalent to the bundle π1 by the map

� : SDE(E)→ MapO(q)[O(E); V (q, H)]

given by �(X)(u) = (Yxu(e1), . . . , Yxu(eq)) for u an orthonormal frame at a point x
of M , with e1, . . . , eq the standard base of Rq and Yx : Ex → H the adjoint of X (x),
c.f. Chapter 6 of [ELL99]. According to [AB83] the bundle π2 is a universal bundle
for G, and so therefore must be π1.

From our earlier discussions we have some related spaces and maps. One is
the space SCE (DiffM) the space of semi-connections over E on our bundle p :
Diff(M)→ M , considered as the space of Diff x0(M)-equivariant horizontal lift maps
h : p∗(E)→ TDiff(M). Another is the space of reproducing kernels of Hilbert spaces
of sections of E satisfying (i), (ii) and (iii) of Section 3.1. This can also be considered
as the space of stochastic flows which have A as one-point generator and will be de-
noted by FlowA. This has a right-action of G given in terms of reproducing kernels
by (k�.g)(x, y) = g(y)−1k�(x, y)g(x). There is also the usual space CE of metric
connections on E with its right G-action.

We can summarise the situation by the following diagram, [Elw]:

MapO(q)[O(E); V (q, H)]
�−1

� SDE(E)

�

N R

CE

�

�adjoint

�
H

FlowA

�
SCE (DiffM).SCE (T M) �

Here the vertical maps are G-equivariant; the map N R refers to the pull-back
of Narasimhan and Ramanan’s universal connection and so is surjective and G-
equivariant. The diagram shows how the use of Narasimhan and Ramanan’s construc-
tion to give a connection on a metric sub-bundle of a tangent bundle T M gives a
semi-connection on the diffeomorphism bundle and so on all natural bundles over M .

4 Heat semi-groups on differential forms

4.1 Spectral and stochastic positivity

As mentioned above there are various weakenings of the the notion of positivity as
applied, in particular, to the sort of curvature terms which arise in Bochner type van-
ishing results. For a measurable function ρ : M → R and a diffusion operator A, as
before, we say:

1) The function ρ is A-stochastically positive if
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lim sup
t→∞

1

t
log

∫
Cx0 ([0,∞);M)

e(−
1
2

∫ t
0 ρ(σ(s))ds)dμA

x0(σ ) = 0

for each x0 ∈ M , where the measure μA
x0 is the diffusion measure corresponding

to A and could be obtained as a push-forward measure by the evaluation map at
x0 of our measure P on paths (now defined for all time) on Diff(M), or by solving
an SDE such as equation (1). We are not assuming M compact in this section but
for simplicity we will assume that the solutions to equation (1) exist for all time
or equivalently that the semi-group on functions on M , with generator A, satisfies
Pt (1) = 1 for all t � 0.

2) For M Riemannian, the function ρ is spectrally positive if there exists c > 0
such that

∫
M (	( f )(x) + ρ(x) f (x)) f (x)dx � c‖ f ‖2L2

for all smooth compactly
supported functions f on M .

When M is Riemannian and A = − 1
2	 we just refer to ‘stochastic positivity’ and

if also M is compact this is equivalent to spectral positivity. Also A-stochastic posi-
tivity of ρ implies the corresponding property for its lifts to any covering of M , see
[ER91], [ELR93], [Li95], [ELR98] and also [Li02] for a similar condition. The fact
that stochastic positivity lifts to covers made it an especially effective condition to ap-
ply and led to results beyond the scope of the usual Bochner methods, as pointed out
in Ruberman’s Appendix in [ER91].

4.2 Refined path integrals for the semi-groups on forms and generalised
Weitzenbock curvatures

As remarked, for the compact case, near the end of Section 2.2, a convolution semi-
group on DiffM determines semi-groups{Pk

t : t � 0} on spaces of differential forms
via the natural action of diffeomorphisms on forms, and these semi-groups map closed
forms to closed forms in the same de Rham cohomology class. There are analogous
results in many non-compact situations, especially covering spaces, but some care is
required: see [Li94], [ELL99] and we will only discuss the compact case here.

The path integral giving Pk
t φ is given by equation (4). However it can be simplified

by integrating first over the fibres of the map

Cid([0, T ];Diff(M))→ Cx0([0, T ];M),

in probabilistic terms “conditioning on the one-point motion”, or “filtering out the re-
dundant noise”, [EY93], [ELL99]. We are then left with the more intrinsic path integral
representation

Pk
t φ(V0) =

∫
Cx0 ([0,T ];M)

φ0(Vt (σ ))dμA
x0(σ )

where, for almost all paths σ we have defined the vector field {Vt (σ ) : 0 � t � T }
along σ , by the covariant differential equation:

D̂

dt
Vt = −1

2
R̆k(Vt )+ d ∧k (∇̆(−)A)Vt (5)
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where the hat and breve refer respectively to the semi-connection over E determined
by our flow, and its adjoint connection on E , with the linear operator R̆k : ∧kT M →
∧kT M a generalised Weitzenbock curvature obtained from the curvature of the con-
nection on E by the same use of annihilation and creation operators as in the classical
Levi-Civita case. For example for k = 1 it is just the Ricci-curvature

˘Ricci
�
: T M → E

given by
˘Ricci

�
(v) = traceE R̆(v,−)−

for v ∈ E .
If the drift A does not take values in E this differential equation needs special

interpretation, [ELL99].

4.3 Generalised Bochner type theorems

For the case of Riemannian manifolds withA = − 1
2	, so E = T M , and if our flow is

chosen to give the Levi-Civita connection, for example by using a gradient Brownian
SDE, then the semi-groups on forms are seen to be the standard heat semi-groups,
cf. [Kus88], [Elw92] and Bochner type vanishing theorems result from the refined
path integral formula as discussed in [ER91] for example, but going back to the work
of Malliavin and his co-workers, as examples: [Mal74], [Mér79]. The extension of
these to more general connections and operators is not at present among the usual
preoccupations of geometers and we will state only one simple result. However clearly
many of the usual theorems will have more versions in this sort of generality:

Theorem 4.1 Suppose M is compact and k ∈ 1, 2, . . . , dim(M)− 1. If T M admits
a metric with a metric connection ∇̆ such that its adjoint connection ∇̂ is adapted to
some metric, 〈 , 〉′ say, on T M, and its generalised Weitzenbock curvature, R̆k , in par-
ticular its Ricci curvature if k = 1, is such that inf{〈R̆k(V ), V 〉′ : V ∈ ∧kT M, |V |′ =
1} is positive, then the cohomology group Hk(M;R) vanishes.

Positivity can be replaced by A-stochastic positivity where A f = 1
2 traceE ∇̆−(d f ).

For a proof, and a version with M non-compact, see the proof of Proposition 3.3.13 in
[ELL99].

5 Analysis on path spaces

5.1 Bismut tangent spaces and associated Sobolev calculus

Consider the path space Cx0 = Cx0([0, T ];M) furnished with a diffusion measure
μA
x0 , for example with Brownian motion measure μx0 , taking A = − 1

2	. As with
Gaussian measures on Banach spaces, to do analysis in this situation it seems that
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differentiation should be restricted to a special set of directions, giving an analogue of
H -differentiation. To do this for Brownian motion measure, the standard procedure,
going back at least to [JL91], is to use the Levy-Civita connection (of the Riemannian
structure determined by the Laplace–Beltrami operator 	) and define Hilbert spaces
Hσ for almost all paths σ , by

Hσ = {v ∈ TCx0 : [t �→ (//t )
−1v(t)] ∈ L2,1

0 ([0, T ]; Tx0M} (6)

where //t refers to parallel translation along σ . Since almost all σ are non-differentiable
the parallel translation is made using stochastic differential equations, hence the fact
that it is defined only for almost all σ . Following the integration by parts formula in
[Dri92] the Sobolev calculus was defined, as described in Section 2.1, giving closed
operators d̄H and ∇̄H from their domains Dp,1 in L p(M,R) to L p sections of the
“Bismut tangent bundle” H = ⋃

σ Hσ and its dual bundle H∗ respectively. Again we
have a “Laplacian”, (d̄H )∗d̄H , acting on functions. However in general little is known
about it apart from the important result of S. Fang that it has a spectral gap and the
refinements of that to logarithmic Sobolev and related inequalities; see [ELL99] for
versions valid for more general diffusion measures.

In [Dri92], Driver showed Bismut tangent spaces using more general, but ‘torsion
skew-symmetric’, metric connections could be used. This was extended by Elworthy,
LeJan, and Li to cover a wide class of diffusion measures, with operator A possibly
degenerate but having symbol of constant rank, and so having an associated sub-bundle
E of T M with induced metric as in Section 3.1. In this situation a metric connection
∇̆ on E is chosen. The space Hσ of admissible directions at the path σ is defined
by a modification of equation ( 6). Essentially it consists of those tangent vectors v

at σ to TCx0 for which the covariant derivative along σ , D̂v
dt , using the adjoint semi-

connection, exists for almost all t ∈ [0, T ], takes values in E , and has
∫ T
0 | D̂v

dt |2dt <

∞, see [ELL99].
By the Narasimhan and Ramanan construction we can find a finite dimensional

SDE

dxt = X (xt ) ◦ dBt + A(xt )dt (7)

where X : M × Rm → T M is a smooth vector bundle map, with image E , which
induces the connection ∇̆ (and so has flow inducing ∇̂). Here A is a smooth vector field
chosen so that the equation corre sponds to a Hörmander form decomposition of A or
equivalently so that the solutions of the equation form an A-diffusion. The Brownian
motion {Bt : 0 � t � T } will be taken to be the canonical process Bt (ω) = ω(t)
defined on classical Wiener space C0([0, T ];Rm). The solution map

I : C0([0, T ];Rm)→ Cx0 = Cx0([0, T ];M)

given by I(ω)(t) = xt (ω) for {xt : 0 � t � T } the solution to equation (7)
starting at the point x0, is called the Ito map of the SDE. It sends the Wiener
measure on C0([0, T ];Rm) to the measure μA

x0 . Moreover it has an H -derivative
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TωI : L2,1
0 ([0, T ] : Rm) → Tx·(ω)Cx0([0, T ];M) which is continuous, linear and

defined for almost all ω. It is given by Bismut’s formula:

TI(h)(t) = T ξt

∫ t

0
T ξ−1s X (xs)(ḣ(s))ds (8)

for h ∈ L2,1
0 ([0, T ];Rm) and where {ξt : 0 � t � T } is the solution flow of our SDE.

(In fact the integration by parts formula, and log-Sobolev formula in this context can
be derived from “mother” formulae for paths on the diffeomorphism group, [ELL99].)

It can be shown that with such a careful choice of SDE, composition with the Ito
map pulls back functions in the L p domains of the H-derivative operator on the path
space of M to elements in Dp,1, at least when the semi-connection ∇̂ is compatible
with some metric on T M . For this see [EL05] where some fundamental, but still open,
problems in this direction are discussed. A key point is that although TωI does not map
h ∈ L2,1

0 ([0, T ];Rm) toHx· we can ‘filter out the redundant noise’ by conditioning as

at the beginning of Section 4.2. The result is a map TIσ : L2,1
0 ([0, T ];Rm) → Hσ

given by:

TIσ (h)t = W 1
t

∫ t

0
(W 1

s )
−1X (σ (s))(ḣs)ds (9)

where for r = 1, 2, . . . , n, the map Wr
t : ∧r Tx0M → ∧r Tσ(t)M is the evolution

determined by equation (5). This map, TIσ , maps onto the Bismut tangent space and
it is convenient to use the inner product it induces on those spaces, [ELL99]. It is
also convenient to use the connection it induces on the ‘Bismut tangent bundle’ by
projection, to define higher order derivatives, [EL05]. This connection is conjugate, by

the operator D̂
dt Vt + 1

2R̆1(Vt )−∇̆(−)A)Vt , to the pointwise metric connection, [Eli67],
induced on the bundle of L2-paths in E which lie over Cx0 . It appeared in the work of
Cruzeiro and Fang, e.g., in [CF95] (in the Brownian motion measure situation) called
the damped Markovian connection following an ‘undamped version’ described earlier
by Cruzeiro and Malliavin.

5.2 L2L2L2-de Rham and Hodge–Kodaira theory

From the discussion above and the results of Shigekawa in the flat case, [Shi86], it
would be natural to look for a differential form theory of “H-forms” these being sec-
tions of the dual ‘bundle’ to the completed exterior powers of the Bismut tangent bun-
dle. However in the presence of curvature this fails at the definition of the exterior
derivative of an H-one-form φ. The standard definition would give

dφ(V 1 ∧ V 2) = d(φ(V 2))(V 1)− d(φ(V 1))(V 1))− φ([V 1, V 2]) (10)

for H-vector fields (i.e., sections of the Bismut tangent bundle), V 1, V 2. However in
general the Lie bracket of H-vector fields is not an H-vector field so the final term in
(10) does not make sense (at least not classically). One approach, by Léandre, was
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to interpret this last term as a stochastic integral. This leads to rather complicated
analysis but he was able to develop a de Rham theory, [Léa96]. Much earlier there had
been an approach by Jones and Léandre using stochastic Chen forms, [JL91]. However
Hodge–Kodaira theory, and a more standard form of L2-cohomology did not appear
in this work.

A different approach, by Elworthy and Li, was to modify the space of H-forms.
This was done by using the conditional expectation

∧r TIσ : ∧r L2,1
0 ([0, T ] : Rm)→ ∧r TσCx0

of ∧r TI, ‘filtering out the redundant noise’ or ‘integrating over the fibres of I,’
[EL00]. Weitzenbock curvature terms come in rather as the first term, the Ricci cur-
vature, did in equation (9), through (5). This led to a closed exterior derivative on H-
one-forms and H-two-forms, and an L2 Hodge–Kodaira decomposition in these cases
[EL00], [ELa]. The situation for higher forms is unclear, and the algebra involved ap-
pears complicated, but there is some positive evidence in [EL03]. Even in dimensions
1 and 2 it is not known if the corresponding L2 cohomology is trivial. The question
of whether any reasonable L2-cohomology for such a contractible space should be
expected to be trivial, or if defined on loop spaces whether it should agree with the
standard de Rham cohomology, stimulated work on L2 de Rham cohomology for fi-
nite dimensional Riemannian manifolds with measures which have a smooth density
decaying at infinity, (or growing rapidly), see [Bue99], [BP02], [GW04].

5.3 Geometric analysis on loops

The case of based loops is rather easier to deal with than free loops. There is a natural
measure on the space of based on a Riemannian manifold M , the so called Brownian
bridge measure. This corresponds to Brownian motion conditioned to return at time
T , say, to its starting point. The conditioning is achieved by adding a time dependent
vector field which is singular at time T , to the SDE, or equivalently to the generator
A, [Dri97]. This is obtained from the gradient of the heat kernel of M , and estimates
on that play a vital role in the consequent analysis. For free loops an averaged version
of this is used [Lea97]. There is also a heat kernel measure which is used, especially
for loops on Lie groups, [Dri97], [AD00].

A beautiful and important result by Eberle, [Ebe02], showed that the spectrum of
the natural Laplacian on these spaces does not have a gap at 0 if there is a closed
geodesic on the underlying compact manifold M with a suitable neighbourhood of
constant negative curvature.

For based loops and free loops on a compact Lie group with bi-invariant metric
the (right invariant say) flat connection can be used to define Bismut tangent spaces
and the absence of curvature allows the construction of a full L2 de Rham and Hodge–
Kodaira theory [FF97]. The work of Léandre and of Jones and Léandre referred to
above included loop spaces, giving the topological real cohomology groups. More
recently Léandre has been advocating the use of diffeologies, with a stochastic version
for loop spaces, again leading to the usual cohomology groups, [Léa01].
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Another approach to analysing based loop spaces has been to consider them as
submanifolds of the space of paths on the the tangent space to M at the base point by
means of the stochastic development map

D : C0([0, T ]; Tx0M)→ Cx0([0, T ];M).

Since this map is obtained by stochastic differential equations, [Elw82], [IW89],
[Elw00], it is defined only up to sets of measure zero and is not continuous, although
it is smooth in the sense of Malliavin calculus. Quasi-sure analysis, [Mal97] has to be
invoked to choose a nice version for which the inverse image of the based loops has
at least the rudiments of the structure of a submanifold of C0([0, T ]; Tx0M). Even so
as a space it is only defined up to ‘slim’ sets and there has not been a proof that its
homotopy type is well determined and equal to that of the loop space itself. For a de
Rham theory in this context see [Kus91].
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[Léa96] R. Léandre. Cohomologie de Bismut–Nualart–Pardoux et cohomologie de Hoch-
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riemannienne à bord. Bull. Sci. Math. (2), 103(4):379–400, 1979.

[Mic91] P. W. Michor. Gauge theory for fiber bundles, volume 19 ofMonographs and Text-
books in Physical Science. Lecture Notes. Bibliopolis, Naples, 1991.

[NR61] M. S. Narasimhan and S. Ramanan. Existence of universal connections. American
J. Math., 83:563–572, 1961.

[Qui88] D. Quillen. Superconnections; character forms and the Cayley transform. Topology,
27(2):211–238, 1988.

[Shi86] I. Shigekawa. de Rham–Hodge–Kodaira’s decomposition on an abstract Wiener
space. J. Math. Kyoto Univ., 26(2):191–202, 1986.

[Stu02] K.-T. Sturm. Nonlinear martingale theory for processes with values in metric spaces
of nonpositive curvature. Ann. Probab., 30(3):1195–1222, 2002.

[vRS05] M.-K. von Renesse and Karl-Theodor Sturm. Transport inequalities, gradient es-
timates, entropy, and Ricci curvature. Comm. Pure Appl. Math., 58(7):923–940,
2005.



A Lie Group Structure for Automorphisms of
a Contact Weyl Manifold

Naoya Miyazaki∗

Department of Mathematics, Faculty of Economics, Keio University,
Yokohama, 223-8521, Japan.
miyazaki@math.hc.keio.ac.jp

Dedicated to Professor Hideki Omori

Summary. In the present article, we are concerned with the automorphisms of a contact Weyl
manifold, and we introduce an infinite-dimensional Lie group structure for the automorphism
group.

AMS Subject Classification: Primary 58B25; Secondary 53D55

Key words: Infinite-dimensional Lie group, contact Weyl manifold, star product, deformation
quantization.

1 Introduction

The concept of Lie group has a long history. It originated from Sophus Lie who ini-
tiated the systematic investigation of group germs of continuous transformations. As
can be seen in the introduction of the monograph by H. Omori [32], S. Lie seemed to
be motivated by the following:

• To construct a theory for differential equations similar to Galois theory.
• To investigate groups such as continuous transformations that leave various geo-

metrical structures invariant.

It is well known that the theory of Lie groups has expanded in two directions:

(A) The theory of finite dimensional Lie groups and Lie algebras.
(B) The theory expanded to include Banach–Lie groups and transformations that leave

various geometrical structures invariant.
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There are a large number of works from the standpoint of (A). With respect to (B),
there are also numerous works which are concerned with Banach–Lie groups and their
geometrical and topological properties (cf. [42]). However, it was already known in
[31] that a Banach–Lie group acting effectively on a finite dimensional smooth mani-
fold is necessarily finite dimensional. So there is no way to model the diffeomorphism
group on a Banach space as a manifold. Under the situation above, at the end of the
1960s, Omori initiated the theory of infinite-dimensional Lie groups, called “ILB-Lie
groups”, beyond Banach–Lie groups, taking ILB-chains as model spaces in order to
treat the diffeomorphism group on a manifold (see [32] for the precise definition).
Shortly after these foundations were laid, Omori et al. [39] introduced the definition of
Lie group modeled on a Fréchet space equipped with a certain property called “regu-
rality” by relaxing the conditions of an ILB-Lie group. Roughly speaking, regularity
means that the smooth curves in the Lie algebra integrate to smooth curves in the Lie
group in a smooth way (see also [26], [32] and [40]). Using this notion, they studied
subgroups of a diffeomorphism group, and the group of invertible Fourier integral op-
erators with suitable amplitude functions on a manifold. For technical reasons, they
assumed that the base manifold is compact (cf. [25], [39], [1], [2] and [3]). Beyond a
compact base manifold, in order to treat the diffeomorphism group on a noncompact
manifold, we need a more general category of Lie groups, i.e., infinite-dimensional
Lie groups modeled on locally convex spaces which are Mackey complete (see §2. See
also [10] and [19]).

In this article, we are concerned with the group 1 Aut(M, ∗) of all modified contact
Weyl diffeomorphisms on a contact Weyl manifold over a symplectic manifold (M, ω),
where a contact Weyl manifold is a geometric realization of the star product introduced
by A. Yoshioka in [50]. In this context, a modified contact Weyl diffeomorphism is
regarded as an automorphism on a contact Weyl manifold. As to the group Aut(M, ∗),
we have the following.

Theorem 1.1 1) Set

Aut(M, ∗) = {� ∈ Aut(M, ∗) |� induces the base identity map.}.

Then Aut(M, ∗) is a Lie group modeled on a Mackey complete locally convex
space.

2) Any element � ∈ Aut(M, ∗) induces a symplectic diffeomorphism on the base
manifold and there exists a group homomorphism p fromAut(M, ∗) intoDiff(M, ω),
where Diff(M, ω) is the regular Lie group of all symplectic diffeomorphisms on
the symplectic manifold (M, ω).

3) Assume that there exists a map (not necessarily a Lie group homomorphism) j
from Diff(M, ω) into Aut(M, ∗) satisfying p ◦ j = identity. Then Aut(M, ∗) is a
Lie group modeled on a Mackey complete locally convex space 2.

1See Definition 5.1 for the precise definition.
2If the base manifold is compact, the model spaces of Aut(M, ∗) and Aut(M, ∗) are Fréchet

spaces.
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4) Under the same assumption above,

1→ Aut(M, ∗)→ Aut(M, ∗)→ Diff(M, ω)→ 1

is a short exact sequence of Lie groups. Moreover Aut(M, ∗) and Aut(M, ∗) are
regular Lie groups.

Remark that from the point of view of differential geometry, a contact Weyl manifold
might be seen as a “prequantum bundle” over a symplectic manifold (M, ω) where the
symplectic structure ω is not necessarily integral, and a modified contact diffeomor-
phism can be regarded as a quantum symplectic diffeomorphism over a “prequantum
bundle”.

As is well known, the theory of infinite-dimensional Lie algebras including Kac–
Moody algebras has made rapid and remarkable progress for the past two decades
involving completely integrable systems (Sato’s theory), loop groups, conformal field
theory and quantum groups. However, it would be difficult for me to review this entire
fruitful field. A definitive treatment of the infinite-dimensional Lie algebras is found
in Kac [17], Tanisaki [45] and Wakimoto [46].

Since the purpose of this article is to give an exhibitory review of relations between
contactWeyl manifolds and deformation quantization, and automorphisms on a contact
Weyl manifold, please consult [29], [11], [37], [38] and [50] for the detailed proofs
omitted in the present article.

2 Infinite-dimensional Lie groups

In this section we give a survey of regular Lie groups. For this purpose, we first recall
Mackey completeness; see the excellent monographs [16], [19] for details.

Definition 2.1 A locally convex space E is called Mackey complete (MC for short) if
one of the following equivalent conditions is satisfied:

1) For any smooth curve c in E there is a smooth curve C in E with C ′ = c.
2) If c : R→ E is a curve such that l ◦ c : R→ R is smooth for all � ∈ E∗, then c

is smooth.
3) Local completeness: that is, for every absolutely convex closed bounded3 subset

B, EB is complete, where EB is a normed space linearly generated by B with a
norm pB(v) = inf{λ > 0|v ∈ λB}.

4) Mackey completeness: that is, any Mackey–Cauchy net converges in E .
5) Sequential Mackey completeness: that is, any Mackey–Cauchy sequence con-

verges in E .

A net {xγ }γ∈� is called Mackey–Cauchy if there exists a bounded set B and a net
{μγ,γ ′ }(γ,γ ′)∈�×� in R converging to 0, such that xγ − xγ ′ ∈ μγ,γ ′B = {μγ,γ ′ · x |
x ∈ B}.

3A subset B is called bounded if it is absorbed by every 0-neighborhood in E , i.e., for every
0-neighborhood U , there exists a positive number p such that [0, p] · B ⊂ U .
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Next we recall the fundamentals relating to infinite-dimensional differential geom-
etry.

1) Infinite-dimensional manifolds are defined on Mackey complete locally con-
vex spaces in much the same way as ordinary manifolds are defined on finite-
dimensional spaces. In this article, a manifold equipped with a smooth group
operation is referred to as a Lie group. Remark that in the category of infinite-
dimensional Lie groups, the existence of exponential maps is not ensured in gen-
eral, and even if an exponential map exists, the local surjectivity of it does not hold
(cf. Definition 2.2).

2) A kinematic tangent vector (a tangent vector for short) with a foot point x of an
infinite-dimensional manifold X modeled on a Mackey complete locally convex
space F is a pair (x, X) with X ∈ F . Let Tx F = F be the space of all tangent
vectors with foot point x . It consists of all derivatives c′(0) at 0 of a smooth curve
c : R → F with c(0) = x . Remark that operational tangent vectors viewed as
derivations and kinematic tangent vectors via curves differ in general. A kinematic
vector field is a smooth section of a kinematic vector bundle T M → M .

3) We set �k(M) = C∞(Lskew(T M × · · · × T M, M × R)) and call it the space of
kinematic differential forms, where “skew” denotes “skew-symmetric”. Remark
that the space of kinematic differential forms turns out to be the right ones for
calculus on manifolds; especially for them the theorem of de Rham is proved.

Next we recall the precise definition of regularity (cf. [26], [32], [39] and [40]):

Definition 2.2 A Lie group G modeled on a Mackey complete locally convex space G
is called a regular Lie group if one of the following equivalent conditions is satisfied:

1) For each X ∈ C∞(R,G), there exists g ∈ C∞(R,G) satisfying

g(0) = e,
∂

∂t
g(t) = Rg(t)(X (t)), (1)

2) For each X ∈ C∞(R,G), there exists g ∈ C∞(R,G) satisfying

g(0) = e,
∂

∂t
g(t) = Lg(t)(X (t)), (2)

where R(X) (resp. L(X)) is the right (resp. left) invariant vector field defined by the
right (resp. left)-translation of a tangent vector X at e.

The following lemma is useful (cf. [19], [26], [39] and [40]):

Lemma 2.3 Assume that

1→ N → G → H → 1 (3)

is a short exact sequence of Lie groups with a local smooth section4 j from a neigh-
borhood U ⊂ H of 1H into G, and N and H are regular. Then G is also regular.

4Remark that this does not give global splitting of the short exact sequence.
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To end this section, we remark that the fundamental properties of a principal regular
Lie group bundle (P,G) over M are (these are the usual properties for principal finite-
dimensional Lie group bundles):

1) The parallel transformation is well defined.
2) The horizontal distributionH of a flat connection is integrable, i.e., there exists an

integral submanifold forH at each point.

3 Deformation quantization

The concept of quantization has a long history. Mathematically it originated from H.
Weyl [47], who introduced a map from classical observables (functions on the phase
space) to quantum observables (operators on Hilbert space). The inverse map was con-
structed by E. Wigner by interpreting functions (classical observables) as symbols of
operators. It is known that the exponent of the bidifferential operator (Poisson bivector)
coincides with the product formula of (Weyl type) symbol calculus developed by L.
Hörmander who established the theory of pseudo-differential operators and used them
to study partial differential equations (cf. [20] and [30]).

In the 1970s, supported by the mathematical developments above, Bayen, Flato,
Fronsdal, Lichnerowicz and Sternheimer [6] considered quantization as a deforma-
tion of the usual commutative product of classical observables into a noncommutative
associative product which is parametrized by the Planck constant h̄ and satisfies the
correspondence principle. Nowadays deformation quantization, or more precisely, the
star product becomes an important notion. In fact, it plays an important role to give
passes from Poisson algebras of classical observables to noncommutative associative
algebras of quantum observables. In the approach above, the space of quantum observ-
ables and star product is defined in the following way(cf. [6]):

Definition 3.1 A star product of Poisson manifold (M, π) is a product ∗ on the space
C∞(M)[[h̄]] of formal power series of parameter h̄ with coefficients in C∞(M), de-
fined by

f ∗h̄ g= f g + h̄π1( f, g)+ · · · + h̄nπn( f, g)+ · · · , ∀ f, g ∈ C∞(M)[[h̄]]

satisfying
(a) ∗ is associative,
(b) π1( f, g) = 1

2
√−1 { f, g},

(c) each πn (n ≥ 1) is a C[[h̄]]-bilinear and bidifferential operator,
where {, } is the Poisson bracket defined by the Poisson structure π .

A deformed algebra (resp. a deformed algebra structure) is called a star algebra
(resp. a star product). Note that on a symplectic vector space R2n , there exists the
“canonical” deformation quantization, the so-called Moyal product:

f ∗ g = f exp

[
ν

2

←
∂x ∧

→
∂y

]
g,



30 N. Miyazaki

where f, g are smooth functions of a Darboux coordinate (x, y) on R2n and ν = i h̄.
The existence and classification problems of star products have been solved by

succesive steps from special classes of symplectic manifolds to general Poisson man-
ifolds. Because of its physical origin and motivation, the problems of deformation
quantization was first considered for symplectic manifolds, however, the problem of
deformation quantization is naturally formulated for the Poisson manifolds as well.
For example, Etingof and Kazhdan proved every Poisson–Lie group can be quantized
in the sense above, and investigated quantum groups as deformation quantization of
Poisson–Lie groups. After their works, for a while, there were no specific develop-
ments for existence problems of deformation quantization on any Poisson manifold.
The situation drastically changed when M. Kontsevich [10] proved his celebrated for-
mality theorem. As a collorary, he showed that deformation quantization exists on any
Poisson manifold. (cf. [8], [12], [10], [11], [37], [44] and [50]).

4 Contact Weyl manifold over a symplectic manifold

As mentioned in the introduction, for a symplectic manifold, the notion of a Weyl
manifold was introduced in [37]. Later, Yoshioka [50] proposed the notion of a con-
tact Weyl manifold as a bridge joining the theory of Weyl manifold (Omori–Maeda–
Yoshioka quantization) and Fedosov quantization. In order to recall the construction of
a contact Weyl manifold, we have to give precise definitions of fundamental algebras.

Definition 4.1 1) An associative algebraW is called a Weyl algebra ifW is formally
generated by ν, Z1, . . . , Zn, Zn+1, . . . , Z2n satisfying the following commuta-
tion relations:

[Zi , Z j ] = ν�i j , [ν, Zi ] = 0, (4)

where � =
[

0 −1n
1n 0

]
, and the product of this algebra is denoted by ∗. This algebra

has the canonical involution¯such that

a ∗ b = b̄ ∗ ā, ν̄ = −ν, Z̄ i = Zi . (5)

We also define the degree d by d(νl Zα) = 2l + |α|.
2) A Lie algebra C is called a contact Weyl algebra ifC = τC⊕W with an additional

generator τ satisfying the following relations:

[τ, ν] = 2ν2, [τ, Zi ] = νZi , (6)

and¯ is naturally extended by τ̄ = τ .

Remark that the relation (4) is nothing but the commutation relation of the Moyal
product, and called the canonical commutation relation.

Definition 4.2 1) A C[[ν]]-linear isomorphism � from W onto W is called a ν-
automorphism of Weyl algebra W if
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(a) �(ν) = ν,
(b) �(a ∗ b) = �(a) ∗�(b),
(c) �(ā) = �(a).

2) A C[[ν]]-linear isomorphism � from C onto C is called a ν-automorphism of
contact Weyl algebra C if

(a) � is an algebra isomorphism,
(b) �|W is a ν-automorphism of Weyl algebra.

In order to explain the construction of contact Weyl manifolds, it is useful to re-
call how to construct the prequantum line bundle, which plays a crucial role in the
theory of Souriau–Kostant (geometric) quantization[49]. This bundle is constructed in
the following way: Let ω be an integral symplectic structure, then we have d(θα) =
(δω)α, d( fαβ) = (δθ)αβ, cαβγ = (δ f )αβγ where fαβ (resp. θα) is a local function
(resp. a local 1-form) defined on an open set Uα ∩ Uβ (resp. Uα), U = {Uα} is a
good covering of a symplectic manifold (M, ω), d is the deRham exterior differential
operator, and δ is the Čech coboundary operator. Setting hαβ = exp[2π i fαβ ], we see
that

θα − θβ = 1

2π i
d log hαβ. (7)

This equation ensures the exsistence of a line bundle defined by

L =
∐

(Uα × C)/
hαβ
∼ , ∇ξ (φα1α) = (ξφα + 2π iθα(ξ)φα)1α. (8)

This gives the desired bundle with a connection whose curvature equals ω.
Inspired by the idea above, Yoshioka proposed the notion of contact Weyl mani-

folds and obtained the fundamental results (cf. [50]). To state the precise definition of
contact Weyl manifolds and theorems related to them, we first recall the definitions of
Weyl continuation and locally modified contact Weyl diffeomorphism:

Definition 4.3 Set (X1, . . . , Xn, Y 1, . . . , Yn) := (Z1, . . . , Zn, Zn+1, . . . , Z2n) (see
Definition 4.1). Consider the trivial contact Weyl algebra bundle CU := U × C over a
local Darboux chart (U ; (x, y)). A section

f # := f (x + X, y + Y ) =
∑
αβ

1

α!β!
∂α
x ∂

β
y f (x, y)XαY β ∈ �(CU )

determined by a local smooth function f ∈ C∞(U ) is called a Weyl function, and
# : f �→ f # is referred to as Weyl continuation. We denote by FU the set of all Weyl
functions on U .

A bundle map � : CU → CU is referred to as a locally modified contact Weyl
diffeomorphism if it is a fiberwise ν-automorphism of the contact Weyl algebra and its
pull-back preserves the set of all Weyl functions FU .

Definition 4.4 Let π : CM → M be a locally trivial bundle with a fiber being iso-
morphic to the contact Weyl algebra over a symplectic manifold M . Take an atlas
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{(Vα, ϕα)}α∈A of M such that ϕα : Vα → Uα ⊂ R2n gives a local Darboux co-
ordinate for every α ∈ A. Denote by �α : CVα → CUα a local trivialization and
by �αβ = �β�

−1
α : CUαβ → CUβα the glueing map, where CUα := π−1(Uα),

Uαβ := ϕα(Vα ∩ Vβ), Uβα := ϕβ(Vα ∩ Vβ), CUαβ := �α(CVα |Vα∩Vβ ), etc. Under the
notation above, (

π : CM → M, {�α : CVα → CUα }α∈A
)

(9)

is called a contact Weyl manifold if the glueing maps �αβ are modified contact Weyl
diffeomorphisms.

Theorem 4.5 Let (M, ω) be an arbitrary (not necessarily integral) symplectic mani-
fold. For any closed form �M (ν2) = ω + ω2ν

2 + ω4ν
4 + · · · , where ν = √−1h̄ is

a formal parameter, there exists a contact Weyl manifold CM with a connection ∇Q

whose curvature equals �M (ν2), and the restriction of ∇Q to WM is flat, where WM

is the Weyl algebra bundle associated to M equipped with the canonical fiber-wise
product ∗̂.
This bundleCM is called a contactWeyl manifold equipped with a quantum connection
∇Q . Yoshioka [50] also proved that the connection ∇|WM is essentially the same as the
Fedosov connection [12]. It is known (cf. [50] and [11]) that

Theorem 4.6 There is a bijection between the space of the isomorphism classes of a
contact Weyl manifold and [ω]+ ν2H2

dR(M)[[ν2]], which assigns a class [�M (ν2)] =
[ω + ω2ν

2 + · · · ] to a contact Weyl manifold (CM → M, {�α}).
The flatness of ∇Q |WM ensures the existence of a linear isomorphism # between
C∞(M)[[ν]] and FM the space of all parallel sections with respect to the quantum
connection restricted to WM . An element of FM is called a Weyl function. Using this
map #, we can recapture a star product in the following way:

f ∗ g = #−1
(
#( f )∗̂#(g)). (10)

Furthermore, the following theorem is known (cf. [11]):

Theorem 4.7 There is a bijection between the space of the equivalence classes of star
products and [ω]+ ν2H2

dR(M)[[ν2]].

5 A Lie group structure of Aut(M, ∗)(M, ∗)(M, ∗)
With the preliminaries in the previous section, we give a precise definition of Aut(M, ∗):

Definition 5.1

Aut(M, ∗) = {� : CM → CM | fiber-wise ν-automorphism, �∗(FM ) = FM } (11)
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Aut(M, ∗) = {� ∈ Aut(M, ∗) | � induces the base identity map}. (12)

An element of Aut(M, ∗) is called a modified contact Weyl diffeomorphism (an
MCWD for short).

To illustrate automorphisms of a contact Weyl manifold, we consider the automor-
phisms of a contact Weyl algebra. For any real symplectic matrix A ∈ Sp(n,R),
set a ν-automorphism of C by ÂZ i = ∑

aij Z
j and Âν = ν. Then we easily have

Â([a, b]) = [ Âa, Âb]. Conversely, combining the Baker–Campbell–Hausdorff for-
mula with the Poincaré lemma, we have the following.

Proposition 5.2 ([50]) If � is a ν-automorphism of contact Weyl algebra, there exists
uniquely

A ∈ Sp(n,R),

F ∈
{
a =

∑
2�+|α|≥3,|α|>0

a�αν
�Zα

}
,

c(ν2) =
∞∑
i=0

c2iν
2i ∈ R[[ν2]],

such that � = Â ◦ ead( 1ν (c(ν2)+F)), where ÂZi =∑
aij Z

j and Âν = ν.

This ν-automorphism can be seen as a “linear” example appearing in the simplest
model of contact Weyl manifolds.

Next we study the basic properties of a modified contact Weyl diffeomorphism. Set
τ̃U = τ +∑ ziωi j Z j where U ⊂ R2n is an open subset and ωi j dzi ∧ dz j stands for
the symplectic structure. Then for any modified contact Weyl diffeomorphism, we may
set �|∗CU

(τ̃U ) = aτ̃U + F , where a ∈ C∞(U ), F ∈ �(WU ), where WU is a trivial
bundle WU = U × W . Furthermore the following proposition is known (cf. Lemma
2.21 in [50]).

Proposition 5.3 Let U be an open set in R2n, � a modified contact Weyl diffeomor-
phism and φ the induced map on the base manifold. Then the pull-back of τ̃φ(U ) by �

can be written as

�∗τ̃φ(U ) = τ̃U + f # + a(ν2), (13)

for some Weyl functions f # := #( f ) ∈ FU with f̄ # = f # and a(ν2) ∈ C∞(U )[[ν2]].

Definition 5.4 A modified contact Weyl diffeomorphism � is called a contact Weyl
diffeomorphism (CWD, for short) if

�∗τ̃U ′ = τ̃U + f #. (14)

For a contact Weyl diffeomorphism, we obtain the following (see Corollary 2.5 in [11]
and Proposition 2.24 in [50]).
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Proposition 5.5 1) Suppose that � : CU → CU is a contact Weyl diffeomorphism
which induces the identity map on the base space. Then, there exists uniquely a
Weyl function f #(ν2) of the form

f # = f0 + ν2 f #+(ν
2) ( f0 ∈ R, f+(ν2) ∈ C∞(U )[[ν2]]), (15)

such that � = ead
1
ν
{ f0+ν2 f #+(ν2)}.

2) If � induces the identity map on WU , then there exists a unique element c(ν2) ∈
R[[ν2]] with c(ν2) = c(ν2), such that 5 � = ead

1
ν
c(ν2).

Combining Propositions 5.3 and 5.5, we have the following.

Proposition 5.6 For any modified contact Weyl diffeomorphism � : CU → CU which
induces the identity map on the base space, there exists a Weyl function f #(ν2) of the
form

f #(ν2) = f0 + ν2 f #+(ν
2) ( f0 ∈ R, f+(ν2) ∈ C∞(U )[[ν2]]), (16)

and smooth function g(ν2) ∈ C∞(U )[[ν2]] such that � = ead(
1
ν
{g(ν2)+ f #(ν2)}).

Remark Please compare this result with Proposition 5.2.

Furthermore, we have

Proposition 5.7 Let �Uα (resp. �Uβ ) be a modified contact Weyl diffeomorphism on
CUα (resp. CUβ ) inducing the identity map on the base manifold. Suppose that

�Uα |CUαβ
= �Uβ |CUβα

,

where Uαβ := ϕα(Vα ∩ Vβ), Uβα := ϕβ(Vα ∩ Vβ), CUαβ := �α(CVα |Vα∩Vβ ) etc.
6

Then

�
−1,∗
αβ

(
(gα(ν

2)+ ν2 f #α (ν
2))|Uαβ

) = (gβ(ν
2)+ ν2 f #β (ν

2))|Uαβ . (17)

Thus, patching {gU + ν2 f #U } together we can make a global function g + ν2 f # ∈
C∞(M)[[ν2]]+ ν2C∞(M)#[[ν2]]. Hence there is a bijection between Aut(M, ∗) and
C∞(M)[[ν2]]+ ν2C∞(M)#[[ν2]].

The propositions mentioned above imply that the space

Cc(M) = C∞c (M)[[ν2]]+ ν2C∞c (M)#[[ν2]]

is a candidate for the model space of Aut(M, ∗). In fact, the Baker–Campbell–
Hausdorff formula shows the smoothness of group operations. Therefore we have the
following:

5Note that this does not induce the identity on the whole of CU . In [50], a notion of modified
contact Weyl diffeomorphism is introduced to make {CUα

,�αβ } a contact Weyl algebra bundle
by adapting the glueing maps to satisfy the cocycle condition and patching them together.

6See also Definition 4.4.
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Theorem 5.8 Aut(M, ∗) is a Lie group modeled on Cc(M).

We can now state

Lemma 5.9 Suppose that � is a quasi-multiplicative,7 associative product on aMackey
complete locally convex space8 (E, {|| · ||ρ}ρ); that is, there exists a positive number
Cρ such that

|| f � g||ρ ≤ Cρ || f ||ρ · ||g||ρ. (18)

Then,
∑∞

n=0
f �···� f
n! converges. Set e f

� =
∑∞

n=0
f �···� f
n! . Then we have

||e f
� ||ρ ≤

∑ Cn−1
ρ || f ||nρ

n!
. (19)

We also have

Lemma 5.10 The space

Cc(M) = ind lim
K:compact

(
C∞K (M)[[ν2]]+ ν2C∞K (M)#[[ν2]]

)
is Mackey complete and quasi-multiplicative, where C∞K (M) is the space equipped
with the standard locally convex topology.

Proof. The first assertion is followed by [19]. Since the proof of second assertion is
bit long and a messy one, we does not give it here. See [29] or [27].

Combining Lemma 5.10 with Lemma 5.9, we can show the exsistence of solution
for the equation (1) when G = Aut(M, ∗) in Definition 2.2 (cf. [27] and [29]). Then
we see that smooth curves in the Lie algebra integrate to smooth curves in the Lie
group in a smooth way. Thus we have

Theorem 5.11 Aut(M, ∗) is a regular Lie group modeled on Cc(M).

As will be seen in the next proposition, general modified contact Weyl diffeomor-
phims are closely related to symplectic diffeomorphisms.

Proposition 5.12 For any modified contact Weyl diffeomorphism �, it induces a sym-
plectic diffeomorphism on the base symplectic manifold. Moreover, there exists a group
homomorphism p from Aut(M, ∗) into Diff(M, ω).

7The assumption (18) can be replaced by || f � g||ρ ≤ Cρ || f ||ρ · ||g||ρ̂ .
8Here {|| · ||ρ}ρ denotes a family of seminorms which gives a locally convex topology.
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Conversely, we consider the following problem:

Problem For any globally defined symplectic diffeomorphism φ : M → M, does
there exist a globally defined modified contact Weyl diffeomorphism (referred to as a
MCW-lift) φ̂ which induces φ?

Although the author does not know the proof, he believes that the problem has an
affirmative answer. Instead of the problem above, we consider the existence of a local
CWD-lift of a locally symplectic diffeomorphism. Although the following argument
seems well known for specialists, we review it for readers’ convenience.

Assume that(
U, z = (z1, . . . , z2n)

)
,

(
φ(U ), z′ = (z

′1, . . . , z
′2n)

)
are star-shaped Darboux charts. Then φ|U is expressed as(

z
′1, . . . , z

′2n) =(φ1(z), . . . , φ2n(z)
)

and satisfies

{φi , φ j } = {φi+n, φ j+n} = 0, {φi , φn+ j } = −δi j (1 ≤ i, j ≤ n),

because φ is a symplectic diffeomorphism defined on U . The Weyl continuations
φi# (i = 1, . . . , 2n) only satisfy

[φi#, φ j#] = ν3ai, j#(3) + · · · + ν2l+1ai, j#(2l+1) + · · · ,
[φi#, φn+ j#] = −νδi j + ν3ai,n+ j#

(3) + · · · + ν2l+1ai,n+ j#
(2l+1) + · · · , (20)

[φn+i#, φn+ j#] = ν3an+i,n+ j#
(3) + · · · + ν2l+1an+i,n+ j#

(2l+1) + · · · .
However the Jacobi identity holds:

[φs#[φt#, φu#]]+ c.p. = 0, (21)

where “c.p.” means “cyclic permutation”. This gives

{z′s, at,u(3)} + c.p. = {φs, at,u(3)} + c.p. = 0 (1 ≤ s, t, u ≤ 2n). (22)

Set

ω′(z′) = 1

2

∑
1≤i, j≤n

[
a(3)
n+i,n+ j (z

′)dx
′i ∧ dx

′ j

−2a(3)
n+i, j (z

′)dx
′i ∧ dy

′ j + a(3)
i, j (z

′)dy
′i ∧ dy

′ j
]

(z′ ∈ U ′). (23)

A direct computation shows that (22) is equivalent to dω′ = 0. As in the proof of
Lemma 3.4 in [38], the closedness of ω′ above ensures the existence of elements b′j ∈
C∞(φ(U ))[[ν]], ( j = 1, . . . , 2n) such that replacing φs# by
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φs
(1) =

{
φ j (z)+ ν2b′j+n(φ(z)), s = j
φ j+n(z)− ν2b′j (φ(z)), s = j + n

(1 ≤ j ≤ n), (24)

shows that ν3-components of (20) vanish. Repeating the argument above for the ν5-,
ν7- components gives

φ(∞) = (φ1
(∞), . . . , φ

2n
(∞)),

where

φi
(∞) = φi (z)+

∑
p≥1

ν2pgip(z) (25)

such that

[φi#
(∞), φ

j#
(∞)] = [φn+i#

(∞) , φ
n+ j#
(∞) ] = 0, [φi#

(∞), φ
n+ j#
(∞) ] = −νδi j , (i, j = 1, . . . , n).

Thus, by Lemma 3.2 in [37], there exists a local Weyl diffeomorphism �U which
induces the base map φU . We next extend �U to a local contact Weyl diffeomorphism
�U . Set

�∗
U (a) =

{
�∗U (a), (a ∈ FU ),

τ̃U + H, (a = τ̃φ(U ))
(26)

where H = ∑
m νmh#m is an unknown term. �U is a contact Weyl diffeomorphism if

it satisfies the following equation w.r.t. H ,

[�∗
U (τ̃φ(U )), �

∗
U (z

′i#)] = �∗
U [τ̃φ(U ), z

′i#]. (27)

As to the equation, we easily have

R.H.S. of (27) = �∗
U (νz

′i#)
de f= ν(φ#

i + B#(ν)), (28)

where B(ν) =∑
l≥1 ν2l gl . On the other hand, we also obtain

L.H.S. of (27)
(2.18) in [50]= ν

(∑
l

zl
∂z

′i

∂zl

)#+[∑
m

νmhm(z
′i ◦ φ)+

∑
p

ν2pgp
]#

+
(
2ν2∂νB+ν(EB)

)#
(29)

where E = ν
∑2n

l=1 zl∂zl . As in the proof of Theorem 3.6 in [37], comparing the
components w.r.t. ν1-, ν2-,ν3-,. . . of both sides splits the equation w.r.t. H above into
infinitely many equations. Since the component of ν is

{h0, z′i ◦ φ} = (z
′i ◦ φ)−

∑
zl
(
∂z

′i

∂zl

)
, (30)

we can find the solution h0 for this equation, and then we can solve the infinitely many
equations recursively.9 Summing up the above, we have

9Thanks to star-shapeness of U , we can fix b′s and H canonically.
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Proposition 5.13 Take a star-shaped Darboux chart U. For any symplectic diffeomor-
phism φ : U → φ(U ), there canonically exists a contact Weyl diffeomorphism (CW-
lift) φ̂ which induces φ.

Then we have

Corollary 5.14 Assume that a symplectic manifold M is covered by a star-shaped
Darboux chart. Then for any symplectic diffeomorphism φ : M → M, there canoni-
cally exists a contact Weyl diffeomorphism (CW-lift) φ̂ which induces φ.

We also have

Proposition 5.15 Assume that there exists a map 10 j fromDiff(M, ω) intoAut(M, ∗)
satisfying p ◦ j = identity. Then we have a bijection:

Aut(M, ∗) ∼= Diff(M, ω)× Aut(M, ∗). (31)

Proof. As mentioned in Proposition 5.12, any element � ∈ Aut(M, ∗) induces a
symplectic diffeomorphism φ = p(�) on the base manifold. Set φ̂ = j (φ) and
� = φ̂−1 ◦ �. By the assumption, � induces the base identity map. According to
Proposition 5.6, we see � = exp[ad( 1

ν
(g(ν2)+ ν2 f #(ν2)))].

As seen in the proposition above, in order to determine the model space of
Aut(M, ∗), we have to determine the model space of Diff(M, ω). Take a diffeomor-
phism (prM , σ ) from an open neighborhood U0 of the zero section in T ∗M onto an
open neighborhood U2 of the diagonal set of M × M , such that σ(0-section|x ) = x .
Let ω0 be the canonical symplectic structure of T ∗M , and ω1 := (prM , σ )∗(ω⊕ω−),
where the reversed symplectic structure of ω is denoted by ω−. Since ω0 and ω1 vanish
when restricted to the zero section, by virtue of Moser’s technique (cf. [5]), there exists
a diffeomorphism ϕ : U0 → U1 between two open neighborhoods U0 and U1 of the
zero section in T ∗M which is the identity on the zero section and satisfies ϕ∗ω1 = ω0.
Thus we obtain that

η = (prM , σ ) ◦ ϕ : (U0, ω0)
ϕ←→ (U1, ω1)

(prM ,σ )←→ (U2, ω ⊕ ω−). (32)

10The map j is not a Lie group homomorphism in general.
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We also see that

{η−1(x, f (x)) | x ∈ M} is a closed form (∈ �1
c(T

∗M))

⇔ {η−1(x, f (x)) | x ∈ M} is a Lagrangian submanifold of (T ∗M, ω0)

⇔ the graph is a Lagrangian submanifold of (M × M, ω ⊕ ω−)
⇔ 0 = (I dM , f )∗(pr∗1 (ω)− pr∗2 (ω)) = I d∗Mω − f ∗ω
⇔ f ∈ Diffc(M, ω).

Let U be an open neighborhood of I dM consisting of all f ∈ Diff(M) with compact
support satisfying (I dM , f )(M) ⊂ U2 and prM : η−1({(x, f (x))|x ∈ M}) → M is
still a diffeomorphism. For f ∈ U , the map (I dM , f ) : M → graph( f ) ⊂ M × M is
the natural diffeomorphism onto the graph of f . According to (32), we can define the
smooth chart of Diff(M) which is centered at the identity in the following way:

Diffc(M) ⊃ U �→ �(U) ⊂ �1
c(M), �( f ) = η−1(I dM , f ) ; M → T ∗M.

Since �1
c(T

∗M) is Mackey complete (cf. [19]), U ∩ Diff(M, ω) gives a submanifold
chart for Diff(M, ω) at I dM . Moreover, conditions of Definition 2.2 can be shown by
the standard argument for an ordinary differential equation under a certain identifica-
tion of T ∗M with T M . Therefore, we have the following.

Theorem 5.16 ([19], [32]) Let (M, ω) be a finite-dimensional symplectic manifold.
Then the group Diff(M, ω) of symplectic diffeomorphisms is a regular Lie group and a
closed submanifold of the regular Lie groupDiff(M) of diffeomorphisms. The Lie alge-
bra of Diff(M, ω) is a Mackey complete locally convex space Xc(M, ω) of symplectic
vector fields with compact supports.

Combining the Baker–Campbell–Hausdorff formula with Theorem 5.11 and Propo-
sition 5.15, we have the following:

Lemma 5.17 The following maps are smooth:

(i) Diff(M, ω)× Aut(M, ∗)→ Aut(M, ∗); (φ,�) �→ φ̂−1 ◦� ◦ φ̂,
(ii) Diff(M, ω)× Diff(M, ω)→ Aut(M, ∗); (φ, ψ) �→ ̂(φ ◦ ψ)

−1 ◦ φ̂ ◦ ψ̂ ,

(iii) Diff(M, ω)→ Aut(M, ∗);φ �→ φ̂ ◦ ˆφ−1.
According to Theorem 5.11 and Proposition 5.15, Xc(M, ω) × Cc(M) is a model

space, which is a Mackey complete locally convex space. Let �i = ψ̂i ◦ ead( 1ν Hi (ν
2)),

where Hi (ν
2) = gi (ν2) + ν2 f #i (ν

2) (i = 1, 2). Then the multiplication is written in
the following way:

�1 ◦�2 = ψ̂1 ◦ ead( 1ν H1(ν
2)) ◦ ψ̂2 ◦ ead( 1ν H2(ν

2))

= ψ̂1 ◦ ψ2 ◦
{

̂(ψ1 ◦ ψ2)
−1 ◦ ψ̂1 ◦ ψ̂2

}



40 N. Miyazaki

◦
{
ψ̂2
−1 ◦ ead( 1ν H1(ν

2)) ◦ ψ̂2

}
◦ ead( 1ν H2(ν

2)). (33)

According to (i) and (ii) of Lemma 5.17, (33) is written as(
ψ̂1 ◦ ψ2

)
◦ ead( 1ν H(ψ1,ψ2,H1(ν

2),H2(ν
2))),

and we see the smoothness of

(ψ1, ψ2, H1(ν
2), H2(ν

2)) �→ H(ψ1, ψ2, H1(ν
2), H2(ν

2)).

In a similar way, we can verify the smoothness of the inverse operation. Summing up
the above, we have

Theorem 5.18 Under the assumption of Proposition 5.15, Aut(M, ∗) is a Lie group
modeled on a Mackey complete locally convex space Xc(M, ω)× Cc(M).

Furthermore, combining Definition 5.1 of Aut(∗) with Proposition 5.12 gives a
short exact sequence

1→ Aut(M, ∗)→ Aut(M, ∗)→ Diff(M, ω)→ 1.

Asmentioned in Theorem 5.16, the group of all symplectic diffeomorphisms Diff(M, ω)

is a regular Lie group modeled on a Mackey complete locally convex space Xc(M, ω).
Therefore, combining Theorem 5.11 with Lemma 2.3, that Aut(M, ∗) is regular. Thus,
we obtain the following.

Theorem 5.19 Suppose the assumption of Proposition 5.15.

1) 1 → Aut(M, ∗) → Aut(M, ∗) → Diff(M, ω) → 1 is a short exact sequence of
Lie groups.

2) Aut(M, ∗) and Aut(M, ∗) are regular Lie groups.
This completes the proof of Theorem 1.1.

6 Concluding remarks

In the previous section, we proved that Aut(M, ∗) has a regular Lie group structure
under suitable assumptions. In this section, we note the advantages of the smooth
structure of Aut(M, ∗). It is known that, in order to analyse properties of the group
Aut(M, ∗), there are several tools such as Floer theory and the residue trace of Wodz-
icki [48] and Guillemin [13] (see also [7]). In the present section, we focus on the
former one and then our goal is to suggest a problem with respect to the relation be-
tween Aut(M, ∗) and symplectic Floer and quantum homology.

First we give a brief review of the fundamentals for the Floer theory. There exist
analytical difficulties to be overcome and certain conditions to be assumed in order to
give the definition. However, we will not mention them again. Roughly speaking, Floer
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homology theory can be seen as Morse homology theory for a certain functional with
a suitable index. In fact, we use the symplectic action11 aH on a loop space with the
dimM −μConley–Zhender instead of the Morse function f with the Morse index μMorse
used in the finite-dimensional Morse theory.

On the other hand, quantum homology QH∗(M, ω) := ⊕k⊕i+ j=k Hi (M,Z2)⊗� j

under suitable assumptions, where � = ⊕� j is called the Novikov ring of (M, ω),
see [43] for details.

Next we explain the advantages of the smooth structure of Aut(M, ∗) and Diff(M, ω).
According to the argument developed in [28], with certain assumptions, we can find a
secondary characteristic 1-form μ which gives the nontrivial cohomology class12

[μ] ∈ H1
dR(Aut(M, ∗)),

and then we can explicitly find nontrivial elements in π1(Aut(M, ∗)) under a suitable
condition of the base manifold13 M.

As to Floer theory, it is known that there exists a mapS (called the Seidel map [43])
from π1(Diff(M, ω)) into the Floer homology group HF∗(M, ω). Thus composing S
with

WF∗ : π1(Aut(M, ∗))→ π1(Diff(M, ω)),

we obtain a map

S ◦WF∗ : π1(Aut(M, ∗))→ HF∗(M, ω).

Furthermore Piunikhin–Salamon–Schwarz [41] showed the existence of an iso-
morphism between symplectic Floer homology HF∗(M, ω) and quantum homology
QH∗(M, ω). Hence under the above situation, it is natural to ask that

Problem Do the images of nontrivial cycles of Aut(∗) by S ◦ WF∗ give invertible
elements in a quantum homology ring QH∗(M, ω)?

Remark that invertible elements in quantum homology seem to play a crucial role
in particle physics (cf. [41] and [43]). We will be concerned with this problem in a
forthcoming paper.

11Here, the symplectic action integral is defined by aH : LM → R/Z defined by

aH (x) = −
∫
{z∈C:|z|≤1}

u∗ω −
∫ 1

0
Ht (x(t))dt

for x ∈ LM with a suitable periodic hamiltonian function H and a suitable smooth map u : {z ∈
C : |z| ≤ 1} → M such that u(eeπ i t ) = x(t).

12For construction of differential forms, we need the Lie group structure.
13For example, when M = Dpq (C), i.e., bounded symmetric domain, we can find closed

paths �λ of Aut(M, ∗), where λ = (λ1, . . . , λp, λp+1, . . . , λp+q ), λi ∈ Z such that

〈μ,�λ〉 = q
∑p

i=1 λi − p
∑p+q

i=p+1 λi .
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1 Introduction

In the paper [1], the author andM.Wada introduced two kinds of Schwarzian derivative
of a regular curve x : I → (M, g) in a Riemannian n-manifold. One is defined as

sgx = (∇ẋ∇ẋ ẋ)ẋ
−1 − 3

2
((∇ẋ ẋ)ẋ

−1)2 − Rg

2n(n − 1)
ẋ2,

where multiplications are understood to be the Clifford multiplications with respect to
the metric g, and Rg is the scalar curvature of the metric g. The other is defined as

s̃gx = (∇ẋ∇ẋ ẋ)ẋ
−1 − 3

2
((∇ẋ ẋ)ẋ

−1)2 − 1

n − 2
ẋ(Lg · ẋ),

where

Lg = Ricg − Rg

2(n − 1)
g,

and Ricg is the Ricci curvature. We call sgx and s̃gx the Schwarzian and the conformal
Schwarzian of the curve respectively. These two Schwarzian derivatives coincide if g
is an Einstein metric.

In this paper we will show that the Möbius (resp. conformal) structure of (M, g)
induces a projective structure of the curve x through sgx (resp. s̃gx), and we rephrase
Theorem 1.3 of [1] as follows:
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Theorem Let I be an interval and x : I → (Sn, g0) be a regular curve of the Euclidean
sphere. If the projective developing map

devx : I → RP1

is injective, then x : I → Sn is injective.

2 Projective structures of a curve

We recall some basic properties of the Schwarzian derivatives of a regular curve ([1]).
First we note that our Schwarzians sgx and s̃gx have decompositions into their 0-parts
and 2-parts:

sgx(t) = sgx
(0)(t)+ sgx

(2)(t) ∈ R⊕�2Tx(t)M,

s̃gx(t) = s̃gx
(0)(t)+ s̃gx

(2)(t) ∈ R⊕�2Tx(t)M.

Lemma 2.1 ([1]) For a regular curve x = x(t) on a Riemannian manifold (M, g), we
have

(i) sgx
(0) = 2|ẋ |2

⎛⎝ d2

ds2
√|ẋ |
√|ẋ | + 1

4

(
κ2 + Rg

n(n − 1)

)⎞⎠,

(ii) s̃gx
(0) = sgx

(0) − 1

n − 2
Ric◦g(ẋ, ẋ),

where · = d/dt, d/ds = (1/|ẋ |)d/dt is the derivation with respect to an arclength
parameter s, κ is the geodesic curvature of the curve x, and Ric◦g = Ricg − (Rg/n)g.

Lemma 2.2 ([1]) Suppose ĝ = e2ϕg. Then,

(i) sĝx
(0) = sgx (0) + Pϕ(ẋ, ẋ),

(ii) s̃ĝ x
(0) = s̃gx (0),

where Pϕ = −eϕ∇2e−ϕ + 1
n e

ϕ(�e−ϕ)g.

Thus if g and ĝ are Möbius equivalent, then sĝx
(0) = sgx (0) (cf. [1], [2], [3]), and

if g and ĝ are conformal and n = dimM ≥ 3, then s̃ĝ x
(0) = s̃gx (0).

We are interested in parametrization of the curve x : I → M . Let U ⊂ I be an
open set and u : U → R be a new local parameter. We assume u̇ = du/dt > 0, and
put

f =
√

dt

du
,

that is, u = ∫
dt/ f 2. Put x̂ := x ◦ u−1, that is, x̂(u(t)) = x(t). Then we have
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Lemma 2.3

(i) sg x̂ (0) = 2 f 3( f̈ + 1
2 (sgx

(0)) f ).
(ii) s̃g x̂ (0) = 2 f 3( f̈ + 1

2 (s̃gx
(0)) f ).

Proof. By a straightforward calculation, we have

d2

ds2

√∣∣∣∣ ddu x̂
∣∣∣∣ = |ẋ |− 3

2 f̈ + (
d2

ds2
√
|ẋ |) f.

This, together with Lemma 2.1, yields the desired equalities. $%

From the above lemma we see that for any point t ∈ I , there is a neighborhood U ⊂ I
of t where we have a local parameter u : U → R such that either

sg(x ◦ u−1)(0) = 0 (2.1)

or
s̃g(x ◦ u−1)(0) = 0 (2.2)

holds.

Proposition 2.4 Let u : U → R and v : V → R be local parameters of the curve
x : I → M such that either

sg(x ◦ u−1)(0) = sg(x ◦ v−1)(0) = 0

or
s̃g(x ◦ u−1)(0) = s̃g(x ◦ v−1)(0) = 0.

Then,

u = av + b

cv + d

for some a, b, c, d ∈ R.

Proof. Since the argument is local, we may assume t = v. Then it follows from
Lemma 2.3 that f̈ = 0, i.e., ((du/dv)−1/2)̈ = 0, which implies

u...

u̇
− 3

2

(
ü

u̇

)2

= 0.

Hence u is a linear fractional function in t = v. $%

In this way we have an open covering {Uλ} of I and maps uλ : Uλ → R which satisfy
either (2.1) or (2.2), and then Proposition 2.4 says that the coordinate transforma-
tions uλ ◦ u−1μ are 1-dimensional projective transformations. Namely, two projective
structures are defined on the interval I . It follows from Lemma 2.2 that the projective



50 O. Kobayashi

structure defined through sgx with (2.1) (resp. s̃gx with (2.2)) depends only on the
Möbius (resp. conformal) structure of (M, g). These two projective structures through
sgx and s̃gx may be essentially different. For example, let (M, g) = R × Sn−1(1),
and x : R → M; x(t) = (t, p0) for some p0 ∈ Sn−1(1). Then it is easy to see that
the projective structures on R through sgx and s̃gx are different because the projective
developing map, devx : R → RP1 = R ∪ {∞} for the former one, is not injective but
the one for the latter is injective.

It is natural to consider a projective developing map devx : I → RP1 in order to
see the projective structure of I . Here a projective developing map means simply a
projective map. Once a projective structure is defined on the interval I , a developing
map devx : I → RP1 is defined, since I is simply connected. Moreover the developing
map is uniquely determined up to a projective transformation of RP1. The following
propositions give some conditions on the injectivity of the projective developing maps.

Proposition 2.5 The following are equivalent:

(i) There is a global parameter u : I → R, such that sg(x ◦ u−1) = 0.
(ii) There is a global parameter v : I → R, such that sg(x ◦ v−1) ≤ 0.
(iii) The developing map devx : I → RP1 with respect to the projective structure de-

fined through sgx with (2.1) is injective.

Proposition 2.5′ The following are equivalent:

(i) There is a global parameter u : I → R, such that s̃g(x ◦ u−1) = 0.
(ii) There is a global parameter v : I → R, such that s̃g(x ◦ v−1) ≤ 0.
(iii) The developing map devx : I → RP1 with respect to the projective structure de-

fined through s̃gx with (2.2) is injective.

Proof. The proofs of Propositions 2.5 and 2.5′ are completely similar. and we will
prove Proposition 2.5. It is obvious that the conditions (i) and (iii) are equivalent, and
it is trivial that (i) implies (ii). So we have only to show that (ii) implies (i).

We may assume sgx (0)(t) ≤ 0 for any t ∈ I . Consider an ordinary differential
equation

f̈ + 1

2
(sgx

(0)) f = 0. (2.3)

Since this is a linear ordinary differential equation, we have a solution f : I → R
which satisfies (2.3) with initial conditions f (t0) = 1 and ḟ (t0) = 0 for some fixed
t0 ∈ I . Then f̈ ≥ 0 whenever f > 0 since sgx (0) ≤ 0. Hence we have f ≥ 1 on I .
Thus u = ∫

dt/ f 2 : I → R is a parameter of x for which sg(x ◦ u−1)(0) = 0 because
of Lemma 2.3 (i). $%

The Theorem in our Introduction is readily proved from Propositions 2.5 and The-
orem 1.3 of [1]. The theorem in [1] asserts that a regular curve x of the Euclidean
n-sphere satisfying sgx (0) ≤ 0 is injective.
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Introduction

In [11], Burstall, Pedit and Pinkall gave a fundamental theorem of surface theory in
Möbius 3-space in modern formulation. Surfaces in Möbius 3-space are determined
by conformal Hopf differential and Schwarzian derivative up to conformal transfor-
mations. Isothermic surfaces are characterized as surfaces in Möbius 3-space which
admit deformations preserving the conformal Hopf differential.

On every surface in Möbius 3-space, a (possibly singular) conformally invariant
Riemannian metric is introduced. This metric is called the Möbius metric of the sur-
face. The Gaussian curvature of the Möbius metric is called the Möbius curvature.

Here we point out that the preservation of Möbius metric is weaker than that of
conformal Hopf differential.

Constant mean curvature surfaces (abbreviated as CMC surfaces) in the space
forms are typical examples of isothermic surfaces. Bonnet showed that every constant
mean curvature surface admits a one-parameter family of isometric deformations pre-
serving the mean curvature. A surface which admits such a family of deformations is
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called a Bonnet surface. Both the isothermic surfaces and Bonnet surfaces are regarded
as geometric generalizations of constant mean curvature surfaces.

On the other hand, from the viewpoint of integrable system theory, Bobenko intro-
duced the notion of surface with harmonic inverse mean curvature (HIMC surface, in
short) in Euclidean 3-space R3. The first named author extended the notion of HIMC
surface in R3 to that of 3-dimensional space forms [19]. HIMC surfaces have deforma-
tion families (associated family) which preserve the conformal structure of the surface
and the harmonicity of the reciprocal mean curvature. Moreover, there exist local bi-
jective conformal correspondences between HIMC surfaces in different space forms.

It should be remarked that while every Bonnet surface is isothermic, HIMC sur-
faces are not necessarily isothermic. In fact, the associated family of Bonnet surfaces
or HIMC surfaces preserves the Möbius metrics, while the conformal Hopf differential
of HIMC surfaces are not preserved in the associated family.

These observations motivate us to study surfaces in Möbius 3-space (or space
forms) which admit deformations preserving the Möbius metric. We call such surfaces
Möbius applicable surfaces.

In this paper we study Möbius applicable surfaces.
First, we shall show the following new characterization of Willmore surfaces.

Theorem 1.5 A surface in Möbius 3-space is Willmore if and only if it is a Möbius
applicable surface whose deformation family preserves the Schwarzian derivative.

Next, we shall characterize both Bonnet surfaces and HIMC surfaces in the class
of Möbius applicable surfaces in terms of similarity invariants:

Theorem 2.4 A surface in Euclidean 3-space is a Bonnet surface or a HIMC surface if
and only if it is a Möbius applicable surface with specific deformation family in which
the ratio of principal curvatures is preserved.

Furthermore we shall give the following characterization of flat Bonnet surfaces:

Theorem 2.6 A Bonnet surface of non-constant mean curvature in Euclidean 3-space
is flat if and only if its ratio of principal curvatures or Möbius curvature is constant.

Our characterization results imply that “Bonnet” and “HIMC” are similarity no-
tions. Thus these classes of surfaces fit naturally into similarity geometry.

We emphasize that similarity geometry provide us non-trivial differential geometry
of integrable surfaces. In fact, the Burgers hierarchy is derived as a deformation of
plane curves in similarity geometry.

1 Deformation of surfaces preserving conformal invariants

1.1 Generalities of surface theory in conformal geometry

Let R3 be the Euclidean 3-space. The group Conf(3) of all conformal diffeomorphisms
are generated by isometries, dilations and inversions. The conformal compactification
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M3 of R3 is called the Möbius 3-space. By definition, M3 is the 3-sphere equipped
with the canonical flat conformal structure.

In this paper, we use the projective lightcone model of the Möbius 3-space intro-
duced by Darboux.

Let R5
1, be theMinkowski 5-space with canonical Lorentz scalar product:

〈ξ, η〉 = −ξ0η0 + ξ1η1 + ξ1η2 + ξ1η3 + ξ4η4.

We denote the natural basis of R5
1 by {e0, e1, . . . , e4}. The unit timelike vector e0

time-orients R5
1. The linear isometry group of R5

1 is denoted by O1(5) and called the
Lorentz group [27]. The lightcone L of R5

1 is

L = {v ∈ R5
1 | 〈v, v〉 = 0, v �= 0}.

The lightcone has two connected components

L± := {v ∈ L | ± 〈e0, v〉 < 0}.

These connected components L+ and L− are called the future lightcone and past light-
cone, respectively.

For v ∈ L and r ∈ R×, clearly, rv ∈ L. Thus R× acts freely on L. The quotient
P(L) of L by the action of R× is called the projective lightcone.

The projective lightcone has a conformal structure with respect to which it is con-
formally equivalent to the unit sphere S3 with constant curvature 1 metric.

In fact, let us take a unit timelike vector t0 and set

St0 := {v ∈ P(L) | 〈t0, v〉 = −1}.

For v ∈ St0 , express v as v = v⊥ + t0 so that v⊥ ⊥ t0. Then

0 = 〈v, v〉 = 〈v⊥, v⊥〉 + 〈t0, t0〉 = 〈v⊥, v⊥〉 − 1.

This implies that the projection v �→ v⊥ is an isometry from St0 ⊂ P(L) onto the unit
3-sphere S3 in the Euclidean 4-space R4 = (Rt0)⊥. This identification induces the
following identification:

M3 → P(L); v �−→ [1 : v]

between the Möbius 3-space and the projective lightcone.
More generally, all space forms are realized as conic sections of L. In fact, for a

non-zero vector v0, the section Sv0 inherits a Riemannian metric of constant curvature
−〈v0, v0〉.

Definition 1.1 A diffeomorphism of M3 is said to be a Möbius transformation if it
preserves 2-spheres. The Lie group Möb(3) of Möbius transformations is called the
Möbius group.
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Any conformal diffeomorphism ofM3 is a Möbius transformation.
The following result is due to Liouville:

Proposition 1.2 Let φ : U → V be a conformal diffeomorphism between two con-
nected open subsets of M3. Then there exists a unique Möbius transformation � of
M3 such that φ = �|U .

The linear action of Lorentz group O1(5) on R5
1 preserves L and descends to an

action on P(L). For a unit timelike vector t0 and T ∈ O1(5), T restricts the action
to giving an isometry St0 → ST t0 so that the induced transformation on P(L) is a
conformal diffeomorphism. These facts together with Liouville’s theorem imply that
the sequence

0→ Z2 → O1(5)→ Möb(3)→ 0

is exact. Hence Möb(3) ∼= O+1 (5), where O+1 (5) is the subgroup of O1(5) that pre-
serves L±. (See [9, Theorem 1.2, 1.3].)

The de Sitter 4-space

S41 = {v ∈ R5
1 | 〈v, v〉 = 1}

parametrizes the space of all oriented conformal 2-spheres in M3. In fact, take a unit
spacelike vector v ∈ S41 and denote by V the 1-dimensional linear subspace spanned
by v. Then P(L ∩ V⊥) is a conformal 2-sphere in M3. Conversely any conformal
2-sphere can be represented in this form. Via this correspondence, the space of all
conformal 2-spheres is identified with S41/Z2. Viewed as a surface Sv0 ∩ V⊥ of the
conic section Sv0 , this conformal 2-sphere has the mean curvature vector Hv ,

Hv = −v⊥0 − 〈v⊥0 , v⊥0 〉v

at v, where v0 is decomposed as v0 = vT0 + v⊥0 according to the orthogonal direct sum
R5
1 = V ⊕ V⊥.
Let F : M → M3 = P(L) be a conformal immersion of a Riemann surface into

the Möbius 3-space. The central sphere congruence (or mean curvature sphere) of F
is a map S : M → S41 which assigns to each point p ∈ M , the unique oriented 2-
sphere S(p) tangent to F at F(p) which has the same orientation to M and the same
mean curvature vector HS(p) = Hp at F(p) as F . The pull-back IM := 〈dS, dS〉 of
the metric of S41 by the central sphere congruence gives a (possibly singular) metric on
M and called theMöbius metric of (M, F). The Möbius metric is singular at umbilics.
The area functional AM of (M, IM) is called the Möbius area of (M, F). A confor-
mally immersed surface (M, F) is said to be a Willmore surface if it is a critical point
of the Möbius area functional.

1.2 The integrability condition

Let F : M → M3 be a conformal immersion of a Riemann surface. A lift of F is
a map ψ : M → L+ into the future lightcone such that Rψ(p) = F(p) for any
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p ∈ M . For instance, φ := (1, F) : M → Se0 ⊂ L+ is a lift of F . This lift is called
the Euclidean lift of F . Now let φ be the Euclidean lift of F . Then for any positive
function μ on M , φμ is still a lift of F . Direct computation shows that

〈d(φμ), d(φμ)〉1 = μ2〈dF, dF〉1,
where 〈·, ·〉1 is the constant curvature 1 metric ofM3. Take a local complex coordinate
z. Then the normalized lift ψ with respect to z is defined by the relation:

〈dψ, dψ〉 = dzdz̄.

This lift is Möbius invariant. For another local complex coordinate z̃, the normalized
lift ψ̃ with respect to z̃ is computed as ψ̃ = ψ |z̃z |.

The normalized lift ψ satisfies the following inhomogeneous Hill equation:

ψzz + c

2
ψ = κ.

Under the coordinate change z �→ z̃, the coefficients c and κ are changed as

κ̃
dz̃2

|dz̃| = κ
dz2

|dz| ,

c̃d z̃2 = (c − Sz(z̃))dz
2, (1)

where Sz(z̃) is the Schwarzian derivative of z̃ with respect to z. Here we recall that the
Schwarzian derivative Sz( f ) of a meromorphic function f on M is defined by

Sz( f ) :=
(

fzz
fz

)
z
− 1

2

(
fzz
fz

)2

.

Moreover two meromorphic functions f and g are Möbius equivalent, i.e., related by
a linear fractional transformation:

g = a f + b

c f + d
,

(
a b
c d

)
∈ SL2C

if and only if their Schwarzian derivatives Sz( f ) = Sz(g) agree.
Now we denote by L the 1-density bundle of M :

L := (K ⊗C K )−1/2, K is the canonical bundle of M.

The transformation law (1) implies that κ dz2/|dz| is a section of L K 2, i.e., an L-
valued quadratic differential on M . This section is called the conformal Hopf differen-
tial of (M, F). The differential cdz2 is called the Schwarzian of (M, F). The coeffi-
cient function c is also called the Schwarzian.

Note that the conformal Hopf differential vanishes identically if and only if M is
totally umbilical.

The integrability condition for a conformal immersion F : M → M3 is given in
terms of κ and c as follows:
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1
2cz̄ = 3κ̄zκ + κ̄κz,

Im
(
κz̄ z̄ + 1

2 c̄κ
)
= 0.

(2)

These equations are called the conformal Gauss equation and the conformal Codazzi
equation, respectively.

The Möbius metric IM is represented by

IM = 4|κ|2dzdz̄. (3)

The Euler–Lagrange equation for the Möbius area functional AM is called the
Willmore surface equation and given in terms of κ and c as follows if [11, p. 51]:

κz̄ z̄ + 1

2
c̄κ = 0. (4)

1.3 Deformation of surfaces preserving the Schwarzian derivative or the
conformal Hopf differential

Generally speaking, the conformal Hopf differential alone determines surfaces inM3.
However, there are the only exceptional surfaces–isothermic surfaces [10]. Isothermic
surfaces are defined as surfaces in M3 conformally parametrized by their curvature
lines away from umbilics. Away from umbilics, there are holomorphic coordinates in
which the conformal Hopf differential is real valued. Such holomorphic coordinates
(and their associated real coordinates) are called isothermic coordinates.

Now let (M, F) be an isothermic surface parametrized by an isothermic coordinate
z. Then under the deformation:

c −→ cr := c + r, r ∈ R,

the conformal Gauss–Codazzi equations

cz̄ = 4(κ2)z, Re

(
κz̄ z̄ + 1

2
c̄κ

)
= 0

are invariant. Hence, as in the case of CMC surfaces, one obtains a 1-parameter fam-
ily {Fr } of deformations through F = F0 preserving the conformal Hopf differential
κ . Since all cr are distinct, the surfaces {Fr } are non-congruent to each other. The
family {Fr } is referred to as the associated family of an isothermic surface (M, F).
The correspondence F �→ Fr is called the T -transformation by Bianchi [3]. The
T -transformation was independently introduced by Calapso [12] and also called the
Calapso transformation.

The existence of deformations preserving the conformal Hopf differential charac-
terizes isothermic surfaces as follows:

Theorem 1.3 ([11]) A surface in M3 is isothermic if and only if it has deformations
preserving the conformal Hopf differential.
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Corollary 1.4 ([11]) Let F1, F2 : M →M3 be two non-congruent surfaces with the
same conformal Hopf differential. Then both F1 and F2 belong to the same associated
family of an isothermic surface.

On the other hand, for deformations preserving Möbius metric and Schwarzian, we
have the following new characterization of Willmore surfaces.

Theorem 1.5 A surface in M3 is Willmore if and only if it has Möbius-isometric de-
formations preserving the Schwarzian derivative.

Proof. Let F be a surface in M3 with the Schwarzian derivative c and the conformal
Hopf differential κ . If F has deformation preserving the Möbius metric IM and c,
there exists an S1-valued function λ such that λκ and c satisfy the conformal Gauss
equation. Combining this with the conformal Gauss equation for F , we have

3λ̄zλ+ λ̄λz = 0, (5)

which implies that λ3λ̄ is holomorphic and hence λ is an S1-valued constant. Since
λκ and c satisfy the conformal Codazzi equation, combining this with the conformal
Codazzi equation for F , we have

κz̄ z̄ + 1

2
c̄κ = 0, (6)

which implies that F is Willmore. $%

Remark 1.6 É. Cartan formulated a general theory of deformation of submanifolds in
homogeneous spaces. The classical deformation problems (also called applicability of
submanifolds in classical literatures) in Euclidean, projective and conformal geometry
are covered by Cartan’s framework [13]–[14].

According to Griffiths [6] and Jensen [24], two immersions F1, F2 : M → G/K
of a manifold into a homogeneous manifold are said to be kth order deformation of
each other if there exists a smooth map g : M → G such that, for every p ∈ M ,
the Taylor expansions about p of F2 and g(p)F1 agree through kth order terms. An
immersion F : M → G/K is said to be deformable of order k if it admits a non-trivial
kth order deformation.

Musso [25] showed that a conformal immersion of a Riemann surface M into the
Möbius 3-space is 2nd-order deformable if and only if it is isothermic.

Remark 1.7 (Special isothermic surfaces) Among isothermic surfaces inR3, Darboux
[18] distinguished the class of special isothermic surfaces. An isothermic surface F :
M → R3 with first and second fundamental forms,

I = eω(dx2 + dy2), I = eω(k1dx
2 + k2dy

2),

is called special of type (A, B,C, D) if its mean curvature H satisfies the equation:

4eω|∇H |2 + m2 + 2Am + 2BH + 2C�+ D = 0,



60 A. Fujioka and J. Inoguchi

where � = 2eω
√
H2 − K , m = −H� and A, B,C, D are real constants. Constant

mean curvature surfaces are particular examples of a special isothermic surface. Spe-
cial isothermic surfaces with B = 0 are conformally invariant. Moreover, Bianchi [2]
and Calapso [12] showed that an umbilic free isothermic surface inM3 is special with
B = 0 if and only if it is conformally equivalent to a constant mean curvature surface
in space forms. For modern treatment of special isothermic surfaces and their Darboux
transformations, we refer to [26]. In [1], Bernstein constructed non-special, non-canal
isothermic tori inM3 with spherical curvature lines.

Let F : M →M3 be a conformal immersion. Then F is said to be a constrained
Willmore surface if it is a critical point of the Möbius area functional under (compactly
supported) conformal variations.

Proposition 1.8 ([6]) A compact surface F : M → M3 is constrained Willmore if
and only if there exists a holomorphic quadratic differential qdz2 such that

κz̄ z̄ + 1

2
c̄κ = Re (q̄κ). (7)

The constrained Willmore surface equation (7) has the following deformation:

κ −→ κλ := λκ, c −→ cλ := c + (λ2 − 1)q, q −→ qλ := λq,

for λ ∈ S1.
Hence we obtain a one-parametric conformal deformation family {Fλ} of a con-

strained Willmore surface (M, F). This family is referred to as the associated family
of F .

Obviously, for Willmore surfaces (q = 0), the associated family preserves the
Schwarzian.

The following characterization of a constrained Willmore surface equation can be
verified in a way similar to the proof of Theorem 1.5:

Proposition 1.9 A surface F : M →M3 has a deformation of the form

κ �→ λκ, c �→ c + r

for some S1-valued function λ and a holomorphic quadratic differential rdz2 if and
only if M satisfies (7).

Remark 1.10 A classical result by Thomsen says that a surface is isothermic Will-
more if and only if it is minimal in a space form ([8], [23, Theorem 3.6.7], [29]).
Constant mean curvature surfaces in space forms are isothermic and constrained Will-
more. Richter [28] showed that in the case of immersed tori in M3, all isothermic
constrained Willmore tori are constant mean curvature tori in some space forms. In
contrast to Thomsen’s result, the assumption “tori” is essential for Richter’s result.
In fact, Burstall constructed isothermic constrained Willmore cylinders which are not
realized as constant mean curvature surfaces in any space forms. See [6].
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2 Deformation of surfaces preserving similarity invariants

As we saw in the preceding section, preservation of conformal Hopf differentials is a
strong restriction in the study of deformation of surfaces. Clearly, preservation of the
Möbius metric is weaker than that of the conformal Hopf differential. In this section
we study deformation of surfaces preserving the Möbius metric.

2.1 Möbius invariants via metrical language

First, we discuss relations between metrical invariants and Möbius invariants.
Let F : M → R3 be a conformal immersion of a Riemann surface into the Eu-

clidean 3-space. Denote by I the first fundamental form (induced metric) of M . The
Levi-Civita connections D of R3 and ∇ of M are related by the Gauss equation:

DX F∗Y = F∗(∇XY )+ I(X, Y )n.

Here n is the unit normal vector field. The symmetric tensor field I is the second
fundamental form derived from n.

The trace free part of the second fundamental form is given by I− H I, where H is
the mean curvature function. Define a function h by h := √H2 − K . This function h
is called the Calapso potential.

Then one can check that the normal vector field n/h and the symmetric tensor
field h2 I are invariant under the conformal change of the ambient Euclidean metric.
Moreover the trace free symmetric tensor field

IM := h(I− H I)

is also conformally invariant. It is easy to see that h2 I coincides with the Möbius
metric IM of (M, F). The pair (IM, IM) is called Fubini’s conformally invariant
fundamental forms. The Gaussian curvature KM of (M, IM) is called the Möbius
curvature of (M, F). The Möbius area functional AM of (M, IM) is computed as

AM =
∫
M
(H2 − K )d AI.

Now let us take a local complex coordinate z and express the first fundamental
form as I = eωdzdz̄. The (metrical) Hopf differential is defined by

Q# := Qdz2, Q = 〈Fzz, n〉.
Then the conformal Hopf differential and the metric one are related by the formula:

κ = Qe−ω/2. (2.1)

The Schwarzian derivative is represented as

c = ωzz − 1

2
(ωz)

2 + 2HQ.
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2.2 Similarity geometry

The similarity geometry is a subgeometry of Möbius geometry whose symmetry group
is the similarity transformation group:

Sim(3) = CO(3) � R3,

where CO(3) is the linear conformal group

CO(3) = {A ∈ GL3R | ∃c ∈ R; t AA = cE }.

Let F : M → R3 be an immersed surface with unit normal n as before.
Under the similarity transformation of R3, Levi-Civita connections D and ∇ are

invariant. Hence the vector-valued second fundamental form In is similarity invariant.
The shape operator S = −dn itself is not similarity invariant, but the ratio of principal
curvatures are invariant. It is easy to see that the constancy of the ratio of principal
curvatures is equivalent to the constancy of K/H2. The function K/H2 is similarity
invariant. The principal directions are yet another similarity invariant.

2.3 Deformation of surfaces preserving the Möbius metric and the ratio of
principal curvatures

Let F : M → R3 be a surface in Euclidean 3-space. Then the Gauss–Codazzi equa-
tions of (M, F) are given by{

ωzz̄ + 1
2H

2eω − 2|Q|2e−ω = 0,

Qz̄ = 1
2Hzeω.

(2.2)

The Gauss–Codazzi equations imply the following fundamental fact due to Bonnet.

Proposition 2.1 ([7]) Every non-totally umbilical constant mean curvature surface
admits a one-parameter isometric deformation preserving the mean curvature.

Here we exhibit two examples of surfaces which admit deformations preserving
the Möbius metric.

Example 2.2 (Bonnet surfaces) Let F : M → R3 be a Bonnet surface. Namely
(M, F) admits a non-trivial isometric deformation F �→ Fλ preserving the mean cur-
vature. The deformation family {Fλ} is called the associated family of (M, F).

Since all the members Fλ have the same metric and mean curvature, they have the
same Möbius metric. Note that the conformal Hopf differential is not preserved under
the deformation.

Example 2.3 (HIMC surfaces) A surface F : M → R3 is said to be a surface with
harmonic inverse mean curvature (HIMC surface, in short) if its inverse mean curva-
ture function 1/H is a harmonic function on M [4]. Since 1/H is harmonic, H can be
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expressed as 1/H = h + h̄ for some holomorphic function h. The associated family
{Fλ} of a HIMC surface F is given by the following metric data (Iλ, Hλ, Qλ):

Iλ = eωλdzdz̄, eωλ = eω

(1− 2
√−1 h̄t)2(1+ 2

√−1ht)2 ,

1

Hλ

= hλ + hλ, hλ = h

1+ 2
√−1ht ,

Qλ = Q

(1+ 2
√−1ht)2 , λ = 1− 2

√−1h̄t
1+ 2

√−1ht , t ∈ R.

From these, we have

(H2
λ − Kλ) = (1− 2

√−1h̄t)(1+ 2
√−1ht)(H2 − K ),

Hence
(H2

λ − Kλ)e
ωλ = (H2 − K )eω.

Thus the Möbius metric is preserved under the deformation F �→ Fλ. On the other
hand, the conformal Hopf differential is not preserved under the deformation. In fact,
the conformal Hopf differential of Fλ is

κλ := Qλe
− ωλ

2 = κ
1− 2

√−1h̄t
1+ 2

√−1ht .

Clearly κλ is not preserved under the deformation.
While Bonnet surfaces are isothermic, HIMC surfaces are not necessarily so. The

dual surfaces of Bonnet surfaces are isothermic HIMC surfaces. Since the associated
families of Bonnet’s surfaces or isothermic HIMC surfaces do not preserve the confor-
mal Hopf differential, these families differ from the T -transformation families. Note
that T -transformations are only well defined up to Möbius transformations [9, section
2.2.3].

Now we prove the following theorem which characterizes Bonnet surfaces and
HIMC surfaces in the class of surfaces which posses Möbius metric preserving defor-
mations. We call such surfacesMöbius applicable surfaces.

Theorem 2.4 Let F be a surface in R3 which has deformation preserving the Möbius
metric and the ratio of principal curvatures. Then the deformation is given by

eω → |λ|2eω, H → 1

|λ|H, Q → λQ, (2.3)

where λ is a function with |λ| = | f | for some holomorphic function f . Moreover if
|λ| = 1 (respectively λ is holomorphic), then F is a Bonnet surface (respectively a
HIMC surface).
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Proof. Note that the quantities |Q|2e−ω and e−ω/H2 are invariant under the deforma-
tion, which implies that the deformation is given as above for some function λ (see
(2.1)). From the Gauss equation we have

(log |λ|2)zz̄ = 0,

which implies that |λ| = | f | for some holomorphic function f .
If |λ| = 1, the deformation is nothing but the isometric deformation preserving the

mean curvature. Hence F is a Bonnet surface.
If λ is holomorphic, putting (H ′)2 = H2/|λ|2 and differentiating it by z, we have

2H ′H ′z = −
λ̄λz

|λ|4 H
2 + 2

|λ|2 HHz .

Note that Q �= 0 since F is umbilic-free. Combining the Codazzi equations for F and
the surface obtained by deformation, we have

H ′z =
1

λ̄
Hz . (2.4)

Hence we have

H ′ = − λz

2λ2
H2

Hz
+ 1

λ
H.

Differentiating it by z̄ and using (2.4) again, we have

Hzz̄ − 2|Hz |2
H

= 0,

which implies that F is a HIMC surface. $%

2.4 Flat Bonnet surfaces

Let M be a Bonnet surface in R3. Then away from umbilics, there exists an isothermic
coordinate z such that the Gauss–Codazzi equations of M reduce to the following
third-order ordinary differential equation (Hazzidakis equation [22]):{(

Hss

Hs

)
s
− Hs

}
R2 = 2− H2

Hs
, Hs < 0, (2.5)

where s = z+ z̄ and the coefficient function R(s) is one of the following functions [5,
p. 30]:

RA(s) = sin(2s)

2
, RB(s) = sinh(2s)

2
, RC (s) = s.

The modulus |Q| of the metrical Hopf differential Qdz2 is given by

|Q(z, z̄)| = 1

R(s)2
. (2.6)

A Bonnet surface is said to be of type A, B or C , respectively, if away from critical
points of the mean curvature, it is determined by a solution to a Hazzidakis equation
with coefficient RA, RB or RC ([5, Definition 3.2.1], [15]).
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Proposition 2.5 ([5], [20]) Flat Bonnet surfaces in R3 are of C-type.

Flat Bonnet surfaces are characterized as follows in terms of conformal (Möbius)
or similarity invariants.

Theorem 2.6 A Bonnet surface in R3 with non-constant mean curvature is flat if the
Möbius curvature or the ratio of the principal curvatures is constant.

Proof. First we consider Bonnet surfaces with constant ratio of principal curvatures.
By the assumption the function K/H2 is constant. Computing K/H2 by using (2.5)
and (2.6), one can deduce that K = 0 if K/H2 is constant.

Next, the Möbius curvature KM is computed as

KM = 1

Hs
(log Hs)ss

by using the Hazzidakis equation (2.5).
If KM is constant, a direct computation shows that the solution of (2.5) is

H = − 2

KM
1

s

with KM < 0. Hence the surface is flat. $%

Appendices

A.1 Curves in similarity geometry

Let us consider plane curve geometry in the 2-dimensional similarity geometry (R2,
Sim(2)). Here Sim(2) denotes the similarity transformation group of R2.

Let γ (s) be a regular curve on R2 parametrized by the Euclidean arclength σ .
Then the Sim(2)-invariant parameter s is the angle function s = ∫ σ

κE (s)dσ , where
κE is the Euclidean curvature function. The Sim(2)-invariant curvature κS is given
by κS = (κE )σ /κ

2
E . Obviously, every circle is a curve of similarity curvature 0. The

Sim(2)-invariant frame field F = (T, N ) is given by

T = γs, N = Ts + κT .

The Frenet–Serret equation of F is

F−1 dF
ds

=
(−κS −1

1 −κS

)
.

Now let us consider plane curves of nonzero constant similarity curvature.
Put κS = c1 (constant). Then we have 1/κE = (−c1)σ + c2, namely γ is a curve

whose inverse Euclidean curvature 1/κE is a linear function of the Euclidean arclength
parameter. Thus γ is a log-spiral (if c1 �= 0) or a circle (c1 = 0, c2 �= 0).
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These curves provide fundamental examples of Bonnet surfaces as well as HIMC
surfaces. In fact, let γ be a plane curve of constant similarity curvature. Then a cylinder
over γ is a flat Bonnet surface in R3 as well as a flat HIMC surface in R3. Generally,
the Hazzidakis equation of Bonnet or isothermic HIMC surfaces reduces to Painlevé
equations of type III, V or VI. The solutions to a log-spiral cylinder are elementary
function solutions to these Painlevé equations. (see [5], [20]).

A.2 Time evolutions

Let us consider the time evolution of a plane curve γ (s) in similarity geometry.
Denote by γ (s; t) the time evolution which preserves the similarity arclength pa-

rameter s;
∂

∂t
γ (s; t) = gN + f T .

Then the similarity curvature u = κS obeys the following partial differential equation:

ut = fsss − 2u fss − (3us − u2 − 1) fs − (uss − 2uus) f + aus, a ∈ R.

In particular, if we choose f = −1, a = 0, then the time evolution of κ obeys the
Burgers equation:

ut = uss − 2uus .

More generally, the Burgers hierarchy is induced by the above time evolution, see [16,
pp. 17–18]. Space curves in similarity geometry and their time evolution, we refer to
[17].

References

1. H. Bernstein, Non-special, non-canal isothermic tori with spherical lines of curvature,
Trans. Amer. Math. Soc. 353 (2000), no. 6, 2245–2274.

2. L. Bianchi, Ricerche sulle superficie isoterme e sulle deformazione delle quadriche, Annali
di Mat. 11 (1905), 93–157.

3. L. Bianchi, Complementi alle ricerche sulle superficie isoterme, Annali di Mat. 12 (1905),
20–54.

4. A. I. Bobenko, Surfaces in terms of 2 by 2 matrices. Old and new integrable cases, in: Har-
monic maps and integrable systems, 83–127, Aspects Math., E23, Vieweg, Braunschweig,
1994.
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15. É. Cartan, Sur les couples de surfaces applicables avec conservation des courbures prin-
cipales, Bull. Sci.Math. 66 1942 55–85 Reprinted as: Oeuvres Complètes III 1, pp.1591–
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Hamb. Math. Abh. 3 (1923), 31–56.





Global Structures of Compact Conformally Flat
Semi-Symmetric Spaces of Dimension 3 and of
Non-Constant Curvature

Midori S. Goto∗

Faculty of Information Engineering, Fukuoka Institute of Technology, Higashi-ku, Fukuoka
811-0295, Japan; m-gotou@fit.ac.jp

Summary. Let (M, g) be a compact connected locally conformally flat semi-symmetric space
of dimension 3 and with principal Ricci curvatures ρ1 = ρ2 �= ρ3 = 0. Then M is a Seifert fibre
space. Moreover, in case the holonomy group is discrete, M is commensurable to a Kleinian
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1 Introduction

The aim of this note is to investigate global structures of compact connected confor-
mally flat semi-symmetric spaces of dimension 3 and of non-constant curvature, using
the method of W. Thurston’s geometric structures in [19]. We determine such spaces
completely.

A semi-symmetric space is a smooth Riemannian manifold (M, g) with the curva-
ture tensor R satisfying the identity R(X, Y ) · R = 0 for all vector fields X, Y on M ,
where R(X, Y ) acts as a derivation on R. The condition implies that, at each point p,
Rp is the same as the curvature tensor of a symmetric space (which may change with
the point).

A motivation of the present study is the following. In [2] p. 179, there is a problem
asking if there exist compact semi-symmetric spaces of dimension n � 3 which are
locally irreducible and not locally symmetric. This is the compact version of Nomizu’s
conjecture in [12]. Most investigations of compact Riemannian manifolds would be-
long to geometry in the large. As a matter of fact, complete Riemannian manifolds have

∗The author is partially supported by the Grant-in-Aid for Scientific Researches ((C)(2), No.
16540089) Japan Society for the Promotion of Science.
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no cones. So, we consider, as a geometry in the large, compact semi-symmetric spaces
except for cases of constant sectional curvature. In this note, we restrict ourselves to
cases of dimension 3 that are (locally) conformally flat.

The first work on global structures of compact conformally flat manifolds goes
back to Kuiper’s around 1949, see [9] and [10]. Since Thurston’s lectures on the geom-
etry and topology of 3-manifolds, flat conformal structures on compact manifolds have
been studied extensively by many authors, especially, in the field of topology, cf. [1],
[3], [6] and [11]. In the study of conformally flat n-manifolds, developing maps and
homomorphisms from fundamental groups into Möbius groups of Sn form the most
important invariants. The image of the fundamental group under the homomorphism is
called the holonomy group. Limit sets of holonomy groups give rise to distinctions on
global structures of compact conformally flat manifolds. Hence our work in this note
concerns the study of limit sets of holonomy groups.

Semi-symmetric spaces have been investigated by many authors since E. Cartan’s
work on symmetric spaces in the middle 1940s. In 1982, Z. I. Szabó gave the full
local classification of semi-symmetric spaces. He proved that a semi-symmetric space
is locally a de Rham product of irreducible semi-symmetric spaces. However, he did
not give explicit expressions for the metric of such spaces. So, in 1996 O. Kowalski
studied the class of foliated semi-symmetric spaces in dimension 3. He solved the
partial differential equations to give explicit descriptions of spaces in the class, and
he classified them. The notion ‘semi-symmetricity’ has already been generalized as
‘pseudo-symmetricity’. Most of those researches belong to the local geometry.

Recently, G. Calvaruso classified in [20] the class of conformally flat semi-
symmetric spaces. He proved that a conformally flat semi-symmetric space M (of
dimension n > 2) is either locally symmetric or it is locally irreducible and isometric
to a semi-symmetric real cone.

Let M be a connected, locally conformally flat, semi-symmetric space of dimen-
sion 3 and with principal Ricci curvatures ρ1 = ρ2 �= ρ3 = 0. When M is complete,
we see in Section 2 that the universal covering of M is the Riemannian direct product
of a 2-dimensional space of constant curvature and a line R. In case M is, further, com-
pact, then we see that M turns out to be a Seifert fibre space (Theorem 2.6). By looking
into holonomy groups, we consider the cases that the holonomy group is discrete or
indiscrete, separately. We obtain the following theorems:

Theorem 5.3 Let M be a compact, locally conformally flat, semi-symmetric space of
dimension 3 and with the principal Ricci curvatures ρ1 = ρ2 �= ρ3 = 0. Suppose that
the holonomy group is discrete. Then M is commensurable to a Kleinian manifold.

Theorem 6.6 Let (M, g) be a compact, locally conformally flat, semi-symmetric space
of dimension 3 and with the principal Ricci curvatures ρ1 = ρ2 �= ρ3 = 0. Suppose
that the holonomy group is indiscrete. Then the developing map is a homeomorphism
onto S3 \ S1 and (M, g) is a hyperbolic surface bundle over S1. Here g denotes a
metric induced from the flat conformal structure.

Corollary 6.7 Let (M, g) be as in the above Theorem 6.6. Suppose that the holonomy
group is indiscrete. Then (M, g) has negative scalar curvature.
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In this note we always assume that manifolds are smooth, connected and without
boundary. Also we assume that dimensions of manifolds are greater than or equal to 3
unless mentioned otherwise.

The contents of the paper is as follows: In Section 2 we give preliminaries for
semi-symmetric spaces. In Section 3, we recall the definition of geometric structure
and some basic notions. In Section 4, we introduce limit sets of holonomy groups. The
proofs of the above theorems are in Sections 5 and 6.

For the sake of completeness, brief proofs of some known results are included.

Acknowledgements The author is grateful to Professor O. Kowalski who pointed out a
mistake in the original manuscript. Also, the author would like to express appreciation
to the referee who informed her of G. Calvaruso’s paper.

2 Preliminaries

Let (M, g) be a three-dimensional semi-symmetric space. Let Ric be the Ricci form
of (M, g) and Q the field of symmetric endomorphisms satisfying Ric(X, Y ) =
g(QX, Y ) for vector fields X and Y on M . Since M is of dimension 3, the curvature
tensor R of (M, g) is given by

R(X, Y ) = QX ∧ Y + X ∧ QY − trace Q

2
X ∧ Y (1)

for all vector fields X and Y . At each point of M we may choose an orthonormal basis
{e1, e2, e3} such that Qei = λi ei for i = 1, 2, 3. Then we have g(R(ei , e j )ek, eh) = 0
whenever at least three of the indices i, j, k and h are distinct. Hence we can see that
one of the following three cases occurs:

λ1 = λ2 = λ3 = λ, λ �= 0;
λ1 = λ2 = λ, λ3 = 0, λ �= 0;
λ1 = λ2 = λ3 = 0.

It is known that, if the rank of the Ricci form is 3 at least at one point of M , then
(M, g) is a space of constant curvature, cf [15]. And, if λ1 = λ2 = λ3 = 0, then M
is flat. Next we shall assume that the rank of the Ricci form is 2 at any point of M .
Namely, we consider the case that the principal Ricci curvatures λ1 = λ2 = λ �= 0
and λ3 = 0 everywhere. We may assume that M is orientable, by taking the orientable
double covering space of M if necessary.

In [8], O. Kowalski proved the following

Proposition 2.1 Let (M, g) be a 3-dimensional semi-symmetric space with the prin-
cipal Ricci curvatures λ1 = λ2 = λ �= 0 and λ3 = 0 everywhere. Then, in a normal
coordinate neighborhood U of any point p, there exists a local coordinate system
(U ; x, y, t) such that

g = (ω1)2 + (ω2)2 + (ω3)2
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where

ω1 = f1(x, y, t)dx, ω2 = f2(x, y, t)dy + q(x, y, t)dx, ω3 = dt + h(x, y)dx

and f1 f2 �= 0. Furthermore, it follows that the equations ω1 = ω2 = 0 determine the
principal directions of zero Ricci curvature and the corresponding integral curves in
(U, g) are geodesics; and the variable t measures the arc-length along any geodesic
of this family.

Let (U; x, y, t) be the local coordinate system as in Proposition 2.1 and {E1,E2,E3}
the local orthonormal frame dual to the coframe {ω1, ω2, ω3}. Then Ei , i = 1, 2, 3, are
vector fields of eigenvectors of the Ricci operator Q corresponding to the eigenvalues
λi , respectively. The Levi-Civita connection ∇ of (M, g) is given by

∇E1

⎛⎝E1
E2
E3

⎞⎠ =
⎛⎜⎜⎝ 0

− f1 ′y
f1 f2

−a
f1 ′y
f1 f2

0 −c
a c 0

⎞⎟⎟⎠
⎛⎝E1
E2
E3

⎞⎠ ,

∇E2

⎛⎝E1
E2
E3

⎞⎠ =
⎛⎝0 −α −b
α 0 −e
b e 0

⎞⎠⎛⎝E1
E2
E3

⎞⎠ ,

∇E3

⎛⎝E1
E2
E3

⎞⎠ =
⎛⎝0 −b 0
b 0 0
0 0 0

⎞⎠⎛⎝E1
E2
E3

⎞⎠ ,

where

a = f1′t
f1

, b = 1

2 f1 f2
(h′y + f2q

′
t − q f2

′
t ), c = b − h′y

f1 f2
, e = f2′t

f2
,

and

α = −1
f1 f2

( f2
′
x − q ′y − h f2

′
t ).

Notice that the last identity implies that the integral curves of the vector field E3
are geodesics. With respect to the basis {E1, E2, E3}, we have

R(E1, E2) = λE1 ∧ E2, R(E1, E3) = 0, R(E2, E3) = 0. (2)

If (M, g) is locally conformally flat, the following identity holds:

(∇X Q)Y − (∇Y Q)X = 1

4
(X (trace Q)Y − Y (trace Q)X) (3)

for all vector fields X, Y on M .
Taking X, Y in (3) from {E1, E2, E3} and using QEi = λi Ei , we have

E1λ = 0, E2λ = 0, h′y = 0, b = 0, c = 0 (4)
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and

E3λ+ 2λa = 0, E3λ+ 2λe = 0. (5)

By λ �= 0, it follows that a = e. Because of R(E1, E3)E3 = 0 and (5), we have

E3a + a2 = 0. (6)

Hence we have a = 1/(t + c) for some constant c. Thus, we have λ = c′/(t + c)2,
where c and c′ are some constants. If we, furthermore, assume that M is complete,
then the integral curve of E3 is infinitely extendible and λ(t) must be defined for any
t along the integral curve of E3. But, if a �= 0, 1

λ
will be 0 for t = −c, which is a

contradiction. Thus, a = e = 0 and fi = fi (x, y) for i = 1, 2. Also q = q(x, y). In
the case when a = 0, it follows that λ is constant. Since h′y = 0, applying a similar
argument as in the proof of Theorem 7.10 in [8], we may assume that h = 0. Thus,
summarizing the above argument, we obtain

Proposition 2.2 Let M be a 3-dimensional complete, locally conformally flat, semi-
symmetric space with the principal Ricci curvatures λ1 = λ2 = λ �= 0 and λ3 = 0
everywhere and M̃ its universal covering space. Then M̃ is a Riemannian product
space of a 2-dimensional space of constant curvature and a line R.

Applying G. Calvaruso’s work, Proposition 4.3 in [20], we see that M in the above
Proposition 2.2 is locally symmetric.

Corollary 2.3 Let M be a compact locally conformally flat 3-dimensional semi-
symmetric space with the principal Ricci curvatures λ1 = λ2 = λ �= 0 and λ3 = 0
everywhere. Then the fundamental group π1(M) is infinite.

Now, we shall define a Seifert fibre space.

Definition 2.4 A 3-manifold M is called a Seifert fibre space if it has a decomposition
into disjoint circles, called fibres, such that each circle has a neighborhood in M which
is a union of fibres and is isomorphic to a fibred solid torus or a Klein bottle.

For compact 3-manifolds, a manifold is a Seifert fibre space if and only if it is
foliated by circles.

Let M be a compact, locally conformally flat, semi-symmetric space of dimension
3 and with the principal Ricci curvatures λ1 = λ2 = λ �= 0 and λ3 = 0 everywhere.
Let M̃ be the universal covering space of M . Then M̃ is N (k) × R (the Riemannian
direct product), where N (k) is a 2-dimensional manifold of constant curvature k. The
group of isometries of N (k) × R, denoted by I (N (k) × R), can be identified with
I (N (k)) × I (R) and the factors are regarded as subgroups naturally. Let G be the
discrete subgroup of I (N (k) × R) which acts freely and has quotient M . If we set
K := G ∩ I (R), then K is discrete and must be {1}, Z, Z2 or Z2 � Z. As G acts freely
on N (k) × R, it is torsion free. So K cannot be Z2. Let φ : G → I (N (k)) be the
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projection, and � the image of φ. Then, as K is normal in G and is the kernel of φ, we
have the exact sequence

1→ K → G → � → 1.

If K is Z or Z2 � Z, each line {x}×R covers a circle in (N (k)×R)/K . Thus we have

Proposition 2.5 Let M be a compact, locally conformally flat, semi-symmetric space
of dimension 3 and with the principal Ricci curvatures λ1 = λ2 = λ �= 0 and λ3 = 0
everywhere. Let G be a discrete subgroup of I (N (k) × R) which acts freely and has
quotient M. If K = G ∩ I (R) is isomorphic to Z or Z2 � Z, then the natural foliation
of N (k)× R by lines descends to a Seifert bundle structure on M.

When M is compact, K cannot be a finite group. Consequently, we have

Theorem 2.6 Let M be a compact, locally conformally flat, semi-symmetric space of
dimension 3 and with the principal Ricci curvatures λ1 = λ2 = λ �= 0 and λ3 =
0 everywhere. Then M is a Seifert fibre space. Furthermore, let G be the discrete
subgroup of I (N (k) × R) which acts freely and has quotient M. Then G ∩ I (R) is Z
or Z2 � Z.

3 Geometric structures

We say two metrics g and g1 on a manifold M are (pointwise) conformal if g = f (x)g1
for some positive smooth function f on M . A smooth map ψ : (M, g)→ (M1, g1) is
called a conformal map if g is (pointwise) conformal to ψ∗g1.

We shall recall the definition of a geometric structure originally defined by W.
Thurston. We refer to, say [19], [1] or [3] for more details.

Definition 3.1 Let X be a real analytic manifold of dimension n � 3 and G a Lie
group acting on X faithfully, analytically and transitively. Let M be a paracompact
smooth manifold, {Uλ}λ∈� a collection of open sets of M and ϕλ : Uλ → X an open
embedding into X . Then {(Uλ, ϕλ)}λ∈� is called an (X,G)-atlas if it satisfies the
following conditions:

1) {Uλ}λ∈� is an open covering of M , and Uλ ∩Uμ is connected if it is non-empty;
2) If Uλ ∩ Uμ �= ∅, then there exists ψ of G such that ϕμ ◦ ϕ−1λ |ϕλ(Uλ∩Uμ) is the

restriction of ψ .

A maximal (X,G)-atlas is called an (X,G)-structure on M . If M has an (X,G)-
structure, we say M is modeled on the pair (X,G), or M is an (X,G)-manifold.

Two (X,G)-atlases on M are called equivalent if their union is an (X,G)-atlas.
When X = Sn = Rn ∪ {∞} =: R̂n is the one-point compactification of Rn and

G =M(Sn) is the group ofMöbius transformations of Sn , we call an (X,G)-manifold
M a (locally) conformally flat manifold, and the corresponding (X,G)-structure on M
a flat conformal structure.
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If {(Uλ, ϕλ)}λ∈� is a flat conformal structure on M , there is the induced Rieman-
nian metric ϕ∗λgs on Uλ, where gs is the standard metric on Sn . As Uλ ∩ Uμ is con-
nected, there exists a unique ψ ∈ M(Sn) such that ϕμ = ψ ◦ ϕλ by the Liouville
theorem. Since ψ is conformal with respect to gs , two metrics ϕ∗λgs and ϕ∗μgs are
(pointwise) conformal on Uλ ∩ Uμ. Therefore, this metric pieces together to give a
Riemannian metric g on M : g =∑

λ tλφ
∗
λgs , where {tλ} is a locally finite partition of

unity subordinating to the open covering {Uλ} of M . It follows that a flat conformal
structure on a manifold M corresponds to a conformal class of Riemannian metrics on
M bijectively.

Let p : N → M be a covering map. If U = {(Uλ, φλ)}λ∈� is a flat conformal
structure on M , we call a flat conformal structure on N containing {(Vλ, φλ ◦ p)}λ
the lift of {(Uλ, φλ)}λ∈� by p, where Vλ is a connected component of p−1(Uλ). In
particular, when p is a homeomorphism, p∗U and U are said to be isomorphic.

By the Liouville theorem, the conformal transformations of Sn are determined lo-
cally and are given by Möbius transformations of Sn . Therefore, by a standard mon-
odromy argument, a simply connected conformally flat manifold with dimension � 3
has a conformal immersion into Sn which is unique up to composition with a Möbius
transformation of Sn . We call such an immersion the developing map.

For a general (X,G)-manifold M , we can determine the developing map from the
universal cover M̃ . We call it the developing map of M also.

Let M be a locally conformally flat manifold of dimension n � 3, p : M̃ → M
the universal covering and D : M̃ → Sn the developing map. The fundamental group
π1(M) with base point p(xo) is identified, via xo, with the group of deck transforma-
tions on M̃ . If γ ∈ π1(M), the relation D ◦ γ = ξ ◦ D holds for some ξ ∈ M(Sn)
by the uniqueness of the developing map up to composition with a conformal transfor-
mation of Sn . Hence we have a representation ρ : π1(M) → M(Sn), which is called
the holonomy representation of the flat conformal structure. The image ρ(π1(M)) is
called the holonomy group.

Let M be locally conformally flat and g a Riemannian metric on M . We say g is
compatible with the flat conformal structure if for each λ the map ϕλ : (Uλ, g) → Sn

is a conformal map. The following result was established in [7], cf. [13].

Proposition 3.2 If M is a compact, locally conformally flat manifold, then M admits a
compatible metric whose scalar curvature does not change sign. The sign is uniquely
determined by the conformal structure: M admits a compatible metric of (1) positive,
(2) negative, or (3) identically zero scalar curvature.

Lastly, we shall recall the following theorem, called the holonomy theorem in the
literature. For a compact manifold M with a flat conformal structure, let us denote
by FCr (M) the set of Cr -developing maps of M and DiffrH (M) the group of Cr -
diffeomorphisms of M which are homotopic to the identity.

Theorem 3.3 (see [19], [3]). Let M be a compact, locally conformally flat man-
ifold of dimension n (� 3) and D : M̃ → Sn the Cr -developing map. Then
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there is a neighborhood V ⊂ FCr (M) of D homeomorphic to V1 × V2, where
V1 ⊂ Hom(π1(M),M(Sn)) is a neighborhood of the holonomy representation ρ of D
and V2 is a neighborhood of the identity in DiffrH (M).

4 Limit sets

In this section we define limit sets of subgroups of the Möbius group M(Sn) and
briefly discuss their properties. We refer to, say [1] for details.

Let � be any (may not be discrete nor finitely generated) subgroup of M(Sn) . A
subset A ⊂ Sn is said to be �-invariant if γ (A) = A for any γ ∈ �. We denote by��

the set of points x ∈ Sn such that there exists a neighborhoodU of x with γU ∩U = ∅
except for finitely many γ ∈ �. The set �� , called the domain of discontinuity of
�, is the maximal �-invariant open subset of Sn on which � acts discontinuously. We
say that � is a Kleinian group if �� �= ∅. A Kleinian group is discrete in M(Sn). If
a Kleinian group � acts freely on a �-invariant domain � ⊂ Sn , we call the quotient
manifold �/� a Kleinian manifold.

Definition 4.1 Let � be any subgroup ofM(Sn). The set of accumulation points in Sn

of the orbit �(a) of some (and hence any) point a ∈ Dn+1 is called the limit set of �.
Here Dn+1 denotes the unit disk bounded by the unit sphere Sn .

We denote by L(�) the limit set of �, which is a closed and �-invariant subset of
Sn . A subgroup � is precompact if and only if L(�) = ∅.

Remark 4.2 There are several other ways to define limit sets of subgroups ofM(Sn).
However, it is known that for the holonomy group of a compact, locally conformally
flat manifold they are identical.

For an arbitrary subgroup � ⊂M(Sn) the cardinality of L(�) is 0, 1, 2 or infinite.
If it is 1 or 2, then every point of L(�) is a common fixed point of elements of �.
Whereas, if it is infinite, then L(�) is the unique minimal set ( i.e., L(�) is contained
in any non-empty closed �-invariant subset of Sn), and any two points x, y of L(�) are
dual relative to�. Hence, for two distinct points x, y of L(�), we can find a loxodromic
element of � whose fixed points are close to x, y, respectively. Here we say two points
x, y of L(�) are dual relative to � if there exists a sequence {γk} ⊂ � such that
γk(a)→ x and γ−1k (a)→ y as k →∞.

Let � be a discrete subgroup of M(Sn) and � a �-invariant open subset of Sn for
which Sn \� is neither empty nor a singleton. Then � acts on � discontinuously.

Now we shall discuss holonomy groups.
Let M be a compact, locally conformally flat manifold. Let D : M̃ → Sn be the

developing map, ρ : π1(M) → M(Sn) the holonomy homomorphism and H :=
ρ(π1(M)) the holonomy group. Note that if the developing map is a covering map
onto its image, then D(M̃) ∩ L(H) = ∅.
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Proposition 4.3 Let M be a compact, locally conformally flat manifold of dimension
n � 3. Suppose that the developing map D : M̃ → Sn is a covering map onto its
image. If the cardinality of the limit set L(H) is less than or equal to 2, then the
holonomy group H := ρ(π1(M)) is discrete.

Proof. By |L| we denote the cardinality of the set L .
If |L(H)| =0, then the developing map D is a homeomorphism and hence the

holonomy group H is a discrete group.
If |L(H)| = 1, we have D(M̃) ⊆ Sn\{x}. We choose coordinates on Sn\{x} so that

Sn \ {x} is identified with Rn and x corresponds to the point∞. In these coordinates
a Möbius transformation of Sn which leaves the point∞ fixed is a similarity map. It
follows that the developing map is a homeomorphism and the holonomy group is a
discrete group.

Let |L(H)| = 2. If Sn \ D(M̃) = {x, x ′}, then H has a subgroup of index 2 which
leaves the point x fixed. Thus the situation reduces to the preceeding one. $%

Corollary 4.4 Let M be as in Proposition 4.3. If H = ρ(π1(M)) is indiscrete, then
|L(H)| is infinite.

Remark 4.5 Let M be a compact, locally conformally flat manifold of dimension 3.
The developing map D : M̃ → S3 is an immersion. Suppose that M has infinite
fundamental group. Then D(M̃) �= S3 if and only if the developing map is a covering
map (cf. [6]).

Proposition 4.6 Let M be a compact, locally conformally flat, semi-symmetric man-
ifold of dimension 3 and with the principal Ricci curvatures λ1 = λ2 �= λ3 = 0
everywhere. Then the developing map is a covering map.

Proof. If D(M̃) = S3, the developing map D is a homeomorphism. Because the fun-
damental group of M is infinite by Corollary 2.3, we have a contradiction. $%

5 Discrete holonomy groups

Let M be a compact, locally conformally flat manifold of dimension n � 3 and g a
Riemannian metric induced from the flat conformal structure. Let H = ρ(π1(M)) be
the holonomy group. In this section we consider the case that H is discrete.

If the developing map D : M̃ → Sn is surjective onto Sn , then it is a homeomor-
phism. The holonomy group is discrete and (M, g) is a spherical space form (i.e., a
complete Riemannian manifold of constant positive curvature).

If ∂D(M̃) = {a point}, then (M, g) is a Euclidean space form. This is due to Fried
[4] and Matsumoto [11]. In this case the holonomy group is discrete and is isomorphic
to π1(M).

A closed similarity manifold M is said to be aHopf manifold if the developing map
D is a homeomorphism onto Sn \ {two points} and the holonomy group is a subgroup
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of the group of similarities of Rn . A Hopf manifold has a finite covering which is
homeomorphic to Sn−1 × S1, and the holonomy group is discrete.

In the last two cases, if M has infinite fundamental group, the developing map D
is a covering map. In particular, ∂D(M̃) = L(H).

Next, we shall study the general case under the following two conditions:

(H1) The developing map D : M̃ → Sn is a covering map onto its image.

(H2) The holonomy group H := ρ(π1(M)) is discrete.

Suppose that the conditions (H1) and (H2) hold for M . Let � be a torsion free
subgroup of the holonomy group H with finite index. Then � acts on D(M̃) freely.
The existence of such a � is due to Selberg ([16]). Since the action of � is conformal
on a locally conformally flat manifold D(M̃), the Kleinian manifold D(M̃)/� admits
a flat conformal structure. The developing map D induces the covering map

D : M̃/ρ−1(�)→ D(M̃)/�.

Since ρ−1(�) is of finite index in π1(M), the covering q : M̃/ρ−1(�)→ M is a finite
covering. Therefore M̃/ρ−1(�) is compact and the map D is also a finite covering.

Here we introduce a terminology and summarize the above observation using it.

Definition 5.1 Two locally conformally flat manifolds are said to be commensurable if
they have isomorphic finite coverings.

Proposition 5.2 Let M be a compact, conformally flat manifold of dimension n � 3.
Suppose that two conditions (H1) and (H2) hold for M. Then M is commensurable to
a Kleinian manifold.

Thus Proposition 5.2, together with Proposition 4.6, yields

Theorem 5.3. Let M be a compact, locally conformally flat semi-symmetric space of
dimension 3 and with the principal Ricci curvatures λ1 = λ2 �= λ3 = 0 everywhere.
Suppose that M satisfies the condition (H2). Then M is commensurable to a Kleinian
manifold.

6 Indiscrete holonomy groups

Let M be a compact, locally conformally flat manifold of dimension n � 3. In this
section we shall study the case that the holonomy group is indiscrete. Recall that the
limit set L(H) of the holonomy group is infinite in this case, cf. Corollary 4.4. We
consider the conditions:

(H1) The developing map D : M̃ → Sn is a covering map onto its image.

(H3) The holonomy group H = ρ(π1(M)) is indiscrete.
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Let H0 be the closure of the identity component of H . Note that H0 �= {1} by
(H3). Since H0 is a normal subgroup of H , the closure of H , it follows that the limit
set L(H0) is invariant under the action of H . We have L(H) = L(H0).

Lemma 6.1. Fix x ∈ L(H) and let K := H0(x) be the orbit of x. Then K is dense in
L(H).

Proof. Let y ∈ L(H) and V a neighborhood of y in D
n+1

. Let z ∈ L(H) be dual
to y. Since L(H) is an infinite set, there is ψ ∈ H0 such that ψ(x) �= z. If U is

a neighborhood of z in D
n+1

with ψ(x) /∈ U , then there exists φ ∈ H0 such that

φ(D
n+1 \U ) ⊂ V . In particular φψ(x) ∈ V . $%

First, we shall study the case that H0 is non-compact.

Proposition 6.2. Let M be a compact, locally conformally flat manifold of dimension
n � 3. Suppose that the conditions (H1) and (H3) hold for M. If H0 is non-compact,
then the limit set L(H) of the holonomy group H is R̂n−2.

Proof. We consider the coordinates of R̂n . We note that the orbit H0(x) of x ∈ L(H)

under the action of H0 is dense in L(H) by Lemma 6.1. Moreover, since H0 is non-
compact, there is no fixed point of H0 in L(H). In fact, if there were a fixed point of
H0 in L(H), there must be at least three fixed points of H0 in L(H). Hence there is a
fixed point in Dn+1, a contradiction.

Fix any point x ∈ L(H) and let K = H0(x) be the orbit of x . Then K is a
smoothly injective immersed submanifold in R̂n . We may assume that the origin o lies
in K . Since L(H) is infinite, there is a loxodromic transformation, cf. Section 4. We
call it f . We may assume the fixed points of f are 0 and∞. Then f can be written as

f (x) = λP(x), where λ > 1, P ∈ O(n).

Since K is invariant under f , we have K = R̂k for some positive integer k(� n). Thus
L(H) = R̂k . By (H1) we have k �= n. Finally we obtain k = n − 2, since otherwise
the developing map is a homeomorphism onto a connected component of R̂n \ R̂k and
H must be discrete, contradicting (H3). $%

Next we shall study the case that H0 is compact.

Proposition 6.3 Let M be a compact, locally conformally flat manifold of dimension
n � 3. Suppose that the conditions (H1) and (H3) hold for M. If H0 is compact, then
the limit set L(H) is Sn−2.

Proof. The coordinates of Sn are convenient in this case. We assert that if H0 is com-
pact, the fixed point set of H0 in Sn is Sk for some k, 0 � k � n. Assuming this
assertion, we prove Proposition 6.3 as follows: We have k �= n since H0 is non-trivial.
Suppose k = n−1. Since H0 is connected, H0 ⊆ SO(n+1) Thus H ⊆ O(n+1) and
M turns out to be modeled on the pair (Sn, O(n + 1)) with finite fundamental group
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since M is compact, a contradiction. If k < n − 2, then Sn \ Sk is simply connected.
Since the developing map D is a covering map, D must be a homeomorphism and H
must be a discrete group, a contradiction. We have k = n − 2.

We shall prove the above assertion. Since H0 is compact, there is a fixed point
of H0 in Dn+1. We may assume that it is the origin o. If o is the only fixed point
of H0. Then o is also a fixed point of H since H0 is a normal subgroup of H . As
H0 is connected, we have H0 ⊆ SO(n + 1). Thus H ⊆ O(n + 1) and we have a
contradiction. Therefore at least one of the fixed points of H0 lies in Sn . Let us denote
by Sk the fixed point set of H0 in Sn . By the H -invariance of Sk and the minimality
of the limit set we have L(H) ⊆ Sk . To prove the inverse inclusion, suppose that
there were a point x ∈ Sk \ L(H). Let V be an open neighborhood in Sn of x such
that V ∩ L(H) = ∅. We may assume k � n − 2. Then D−1(V \ Sk) is connected
and hence D−1(V ) is connected. So D must be a homeomorphism and H discrete, a
contradiction. $%

With the above results we shall study global structures of compact, locally confor-
mally flat semi-symmetric spaces. We need another preparation.

Let M be a compact, locally conformally flat space of dimension 3. Suppose that
the conditions (H1) and (H3) hold for M . Then it follows from Propositions 6.2 and
6.3 that the limit set of the holonomy group has no interior points.

Let Hn−1 be the upper half space model of the hyperbolic space, i.e.,

Hn−1 = {(x1, . . . , xn) ∈ Rn : xn−1 > 0, xn = 0}
with the Riemannian metric ds2H = (dx21 + · · · + dx2n−1)/x

2
n−1, and Hn−1 × R the

Riemannian product space with the metric ds2H + dt2, where dt2 is the metric on
R. The isometry group I (Hn−1) is identified with M(R̂n−2). Furthermore, we can
identifyM(R̂n−2) with the group

{ f ∈M(R̂n) : f (Hn−1) = Hn−1}.

Theorem 6.4. Let M be a compact, locally conformally flat manifold of dimension
n(� 3). Suppose that the conditions (H1) and (H3) hold for M. Then (M, g) is a
hyperbolic manifold bundle over the circle, where g is a Riemannian metric induced
from the (Hn−1 × R,M(R̂n−2)× R)-structure.

To prove the theorem we need the following lemma.

Lemma 6.5 Let M be a compact, locally conformally flat manifold of dimension n
(� 3). Let D : M̃ → R̂n be the developing map and ρ : π1(M) → M(R̂n) the
holonomy homomorphism. Suppose that D(M̃) = R̂n \ R̂n−2.

Then the pair (D, ρ) can be lifted to the pair (D, ρ), where

D : M̃ → Hn−1 × R,
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ρ : π1(M)→M(R̂n−2)× R.

Proof of Lemma 6.5. Let us denote by Rθ ∈ M(R̂n) the rotation by angle θ around
R̂n−2. We define p : Hn−1 × R → R̂n \ R̂n−2 by p(x, t) = R2π t (x). Then p is a
universal covering map. Let

S = { f ∈M(R̂n) : f (R̂n−2) = R̂n−2}.
If f ∈ S, then f maps Hn−1 to a half plane bounded by R̂n−2. Namely, such an f is
determined by f |

R̂n−2 and the image f (Hn−1). So, it commutes with Rθ . We have the
surjective homomorphism

ξ : M(R̂n−2)× R → S

defined by ξ( f, t) = R2π t ◦ f . Taking the diagonal action ofM(R̂n−2)×R on Hn−1×
R, we have an equivariant map

(p, ξ) : (Hn−1 × R,M(R̂n−2)× R)→ (R̂n \ R̂n−2,S).

Thus we have the lift (D, ρ) of the pair (D, ρ) as desired. $%

Proof of Theorem 6.4 Let M be as in Theorem 6.4. We consider the coordinates R̂n .
Then the image of M̃ by the developing map is R̂n\R̂n−2. We have the pair (D, ρ) such
that D : M̃ → Hn−1 ×R and ρ : π1(M)→M(R̂n−2)×R by Lemma 6.5. Theorem
3.3 (the holonomy theorem) allows us a small perturbation of a pair (D, ρ): Namely,
let us denote by pi the projection map fromM(R̂n−2)× R to the i-th factor. Define a
map ρ′ : π1(M)→M(R̂n−2)×R so that p1 ◦ ρ′ = p1 ◦ ρ and p2 ◦ ρ′(π1(M)) ⊆ Q.
Set ρ′′ = ξ ◦ ρ′, where ξ : M(R̂n−2) × R → S is the map defined in the proof of
Lemma 6.5 above. Then there is a smooth immersion D′ : M̃ → R̂n \ R̂n−2 such that
D′(γ x) = ρ′′(γ )◦D′(x) for γ ∈ π1(M) and x ∈ M̃ . Moreover, the limit set of the pair
(D′, ρ′′) is R̂n−2, because ρ′ was perturbed only in the R-direction. The immersion D′
is a covering map onto R̂n \ R̂n−2.

Again by Lemma 6.5, the map D′ lifts to a homeomorphism

D′ : M̃ → Hn−1 × R.

Since p2 ◦ ρ′(π1(M)) ⊆ Q, it follows that p2 ◦ ρ′(π1(M)) is infinite cyclic with a
generator, say θ . Let � be the kernel of p2 ◦ ρ′. Then we have an exact sequence

1→ � → π1(M)→ θZ → 1

and a bundle structure of M with fibre Hn−1/p1 ◦ ρ′(�) over R/θZ ∼= S1.
We introduce the Riemannian metric on R̂n \ R̂n−2 so that the universal covering

map p : (Hn−1 ×R, ds2H + dt2)→ R̂n \ R̂n−2, defined in the proof of Lemma 6.5, is
(locally) isometric. $%

Let (M, g) be a compact, locally conformally flat, semi-symmetric space of di-
mension 3 and with the principal Ricci curvatures λ1 = λ2 �= λ3 = 0 everywhere.
Then the developing map is a covering map by Proposition 4.6. Therefore we have
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Theorem 6.6 Let (M, g) be a compact, locally conformally flat, semi-symmetric space
of dimension 3 and with the principal Ricci curvatures λ1 = λ2 �= λ3 = 0 every-
where. Suppose that the holonomy group is indiscrete. Then the developing map is a
homeomorphism onto S3 \ S1 and (M, g) is a hyperbolic surface bundle over S1.

Owing to Proposition 3.2, we obtain

Corollary 6.7 Let M be as in above Theorem 6.6. Suppose that the holonomy group is
indiscrete. Then (M, g) has negative scalar curvature.
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Introduction

In the previous paper [S] we studied elementary properties of analytic curves with
singularities and obtained two fundamental theorems. In the present paper we first
review those and, next, study elementary concepts and formulae on analytic surfaces
around singularities.

1 Curves at singularities

Let C be an analytic curve with a singular point x0 in the Euclidean 3-space E3. We
may take a local parameter t defined on a small open interval L containing t = 0 and
an analytic mapping x(t) of L into C with x(0) = x0 and (dx/dt)(0) = 0 ([S], §1).
Let us define a function h(t) by

h(t) = ‖dx/dt‖2,

where ‖ · ‖ is the Euclidean norm in E3. It is analytic on L and vanishes only at t = 0.
It coincides with (ds/dt)2 at any non-zero point where s is the arc-length parameter.
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We define two functions on L which are said to be the curvature and the torsion of
C by

K (t) = (h · ‖dx2/dt2‖2 − (dx/dt, d2x/dt2)2)/h3,

τ (t) = det(dx/dt, d2x/dt2, d3x/dt3)/(h3K ),

respectively, where ( , ) is the Euclidean inner product of E3 and det(·) denotes the
determinant of a matrix. They are analytic on L − {0}, and coincide with the square of
the curvature and the torsion in the classical meaning at non-singular points in x(L),
respectively.

We define a frame {ei (t)} (i = 1, 2, 3) on C as follows:

e1 = dx/dt, e2 = d2x/dt2 − (dh/dt)e1/(2h), e3 = e1 × e2.

We can easily show that ei is analytic in t . The relation between the classical Frenet
frame {ei } and the above is stated as follows.

e1 = h1/2e1, e2 = hK 1/2e2, e3 = (h3K )1/2e3.

Then {
‖e1‖2 = h, ‖e2‖2 = h2K , ‖e3‖2 = h3K ,

(ei , e j ) = 0, for i �= j.
(∗)

An elementary calculation shows that;

de/dt =

⎛⎜⎜⎝
(log h)′/2 1 0

−hK (log h2K )′/2 τ

0 −hτ (log h3K )′/2

⎞⎟⎟⎠ e

where e = t (t e1, t e2, t e3). This corresponds to the classical Frenet–Serret equation
and is uniquely determined by h, K and τ . It is said to be the fundamental equation of
C with respect to t .

Theorem (The first fundamental theorem). Let C be an analytic curve in E3. Let
x0 be a singular point of C and let t be a local parameter of C at x0. Then there
exists an orthogonal frame {ei (t)} which satisfies (∗) and the fundamental equation. In
particular, the directions of ei (i = 1, 2, 3) are independent of the choice of t .

Observing the power series expansions of h, K and τ by virtue of a canonical local
parameter ([S], §1) where L is small enough, we can summarize those properties as
follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h(t) =∑∞
k=2(λ−1) hktk, h2(λ−1) = λ2 and h > 0 on L − {0},

K (t) =∑∞
k=2μ Kktk, K2μ > 0, K > 0 on L − {0},

τ (t) =∑∞
k=ν τk tk, τν �= 0, λ ≥ 2, λ+ μ > 0, λ+ ν > 0.

(∗∗)
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We note that K and τ may have poles at t = 0.
Finally we have obtained:

Theorem (The second fundamental theorem). Let h(t), K (t) and τ(t) be functions
which satisfy the conditions (∗∗). Then there exists an analytic curve C : x = x(t)
which admits an orthogonal frame {ei } satisfying (∗) and the fundamental equation
with given K and τ as its curvature and torsion, respectively. Such a curve is uniquely
determined up to a motion of E3.

2 Surfaces around singularities

Let S be an analytic surface defined by

X = X(u, v) = (x(u, v), y(u, v), z(u, v)),

in E3, where x, y and z are analytic functions.
We know that

Definition 1 At X(u, v), S has a singularity (or, S is singular) if and only if

r(u, v) = rank

[
xu yu zu
xv yv zv

]
< 2.

Thus the set S(S) of singularities of S has dimension ≤ 1 and, r(u, v) = 0 or 1
there.

Example 1 X = (uv, u3, v3) i.e., x3−yz = 0, S(S) = {(u, v) = (0, 0)} and r(0, 0) =
0.

Example 2 (Whitney umbrella without handle). X =(uv, u2, v),S(S) = {(0, 0)} and
r(0, 0) = 1.

Example 3 (Cone). X = (u cos v, u sin v, u)). Then r(S(S)) = r(0, 0) = 1.

Let us define E, F and G as usual by

E = 〈Xu,Xu〉 , F = 〈Xu,Xv〉 , G = 〈Xv,Xv〉 ,

where 〈· , ·〉 means the inner product in E3. Then the following is obvious.

Lemma 1 X(u, v) ∈ S(S) if and only if g = g(u, v) = EG − F2 = 0.

We set

Definition 2 N = Xu × Xv , where × is the exterior product in E3.
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Since 〈N,Xu〉 = 〈N,Xv〉 = 0, the following hold;

L = −〈Xu,Nu〉 = 〈N,Xuu〉 = det(Xuu,Xu,Xv),

M = −〈Xu,Nv〉 = 〈N,Xuv〉 = det(Xuv,Xu,Xv),

N = −〈Xv,Nv〉 = 〈N,Xvv〉 = det(Xvv,Xu,Xv),

where det is the determinant of a matrix. Then the following relations hold between
the above and the quantities defined by Gauss, i.e., the unit normal vector n, the second
fundamental quantities L , M and N ;

N = √g n, L = √g L , M = √g M, N = √gN .

We note that these are analytic.

Lemma 2 If X = (u, v) ∈ S(S), N = 0, L = M = N = 0, where 0 is the zero
vector.

Lemma 3 (Gauss’ equation)The Gaussian curvature is

K = 1

g2
(LN −M2) = − 1

g2
R1212

where Rabcd is the so-called Riemann–Christoffel tensor.

Remark By the definition R1212 is analytic.

Now, we rewrite u, v;Xu,Xv; E, F,G and L,M,N by ua;Xa; gab and Lab, re-
spectively. Then Gauss’ and Weingarten’s formulae are stated as follows;

∂Xa

∂ub
= �c

ab Xc + 1

g
Lab N (#)

∂N
∂ua

= gbcLcaXb + 1

2

∂

∂ua
(log g)N (b)

where �c
ab is the Christoffel symbol. These equations constitute a system of total dif-

ferential equations with singularities {g = 0}. The integrability conditions are Lemma
3 and

Lab;c − Lac;b = 1

2

(
∂

∂uc
(log g)Lab − ∂

∂ub
(log g)Lac

)
(bb)

where ; is the covariant differential. It is the so-called Mainardi–Codazzi’s equation.
Next we consider the converse. Let analytic gab and Lab be given. Suppose they

satisfy (#) and (b) with integrability conditions Lemma 3 and (bb). Then;

Conjecture There always exists an analytic solution of (#) and (b), i.e., an analytic
surface with arbitrary gab and Lab as the first and second fundamental quantities, and
with singularities {g = 0}.

At the present time the best result applicable to this problem is due to Takano and
Yoshida ([T] and [TY]).

Theorem Let g = ∏
a h

a, where ha = ∑
b c

a
bu

b is linear in ub. Then the above
conjecture is true.
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1 Introduction

It is a pleasure to dedicate this paper to Professor Hideki Omori. His work over many
years, introducing ILH manifolds [30], Weyl manifolds [32], and blurred Lie groups
[31] has broadened the notion of what constitutes a “space.” The problem of “inte-
grating” complex vector fields on real manifolds seems to lead to yet another kind of
space, which is investigated in this paper.

Recall that a Lie algebroid over a smooth manifold M is a real vector bundle E over
M with a Lie algebra structure (over R) on its sections and a bundle map ρ (called the
anchor) from E to the tangent bundle T M , satisfying the Leibniz rule

[a, f b] = f [a, b]+ (ρ(a) f )b

for sections a and b and smooth functions f : M → R. Sections of a Lie algebroid
may be thought of as “virtual” vector fields, which are mapped to ordinary vector fields
by the anchor.

∗Research partially supported by NSF grant DMS-0204100.
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There is an analogous definition for complex manifolds, in which E is a holomor-
phic vector bundle over M , and the Lie algebra structure is defined on the sheaf of
local sections. Such objects are called complex Lie algebroids by Chemla [6], but they
will be called in this paper holomorphic Lie algebroids to distinguish them from the
“hybrid” objects defined in [5] as follows.

Definition 1.1 A complex Lie algebroid ( CLA) over a smooth (real) manifold M is a
complex vector bundle E over M with a Lie algebra structure (over C) on its space E
of sections and a bundle map ρ (called the anchor) from E to the complexified tangent
bundle TCM , satisfying the Leibniz rule

[a, f b] = f [a, b]+ (ρ(a) f )b

for sections a and b in E and smooth functions f : M → C.

The unmodified term “Lie algebroid” will always mean “real Lie algebroid.”
Every Lie algebroid may be realized as the bundle whose sections are the left in-

variant vector fields on a local Lie groupoid �. The integration problem of determining
when � can be taken to be a global groupoid was completely solved in [8], but, for a
complex Lie algebroid, it is not even clear what the corresponding local object should
be. The main purpose of the present paper is to propose a candidate for this object.

Any CLA E whose anchor is injective may be identified with the involutive sub-
bundle ρ(E) ⊆ TCM . Such subbundles have been studied extensively under the name
of “involutive structures” or “formally integrable structures,” for instance by Treves
[39]. An important issue in these studies has been to establish the existence (or nonex-
istence) of “enough integrals,” i.e., smooth functions which are annihilated by all the
sections of E . In the general C∞ case, the question is very subtle and leads to deep
problems and results in linear PDE theory. When E is analytic,1 though, one can some-
times proceed in a fairly straightforward way by complexifying M and extending E
by holomorphic continuation to an involutive holomorphic tangent subbundle of the
complexification, where it defines a holomorphic foliation. The leaf space of this fo-
liation is then a complex manifold whose holomorphic functions restrict to M to give
integrals of E . (A succinct example of this may be found at the end of [35]; see Section
3.2 below.)

The leaf space described above may be thought of as the “integration” of the invo-
lutive subbundle E ; this suggests a similar approach to analytic CLAs whose anchors
may not be injective. Any analytic CLA E over M may be holomorphically contin-
ued to a holomorphic Lie algebroid E ′ over a complexification MC; E ′ may then be
integrated to a (possibly local) holomorphic groupoid G. Since G will generally have
nontrivial isotropy, one must take this into account by considering not just the orbit
space of G, but the “holomorphic stack” associated to G.

Some intuition behind the complexification approach to integration comes from
the following picture in the real case. If G is a Lie group, there is a long tradition of

1In this paper, “analytic” will always mean “real analytic”, and “holomorphic” will be used
for “complex analytic.”
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thinking of its Lie algebra elements as tiny arrows pointing from the identity of G to
“infinitesimally nearby” elements. If G is now a Lie groupoid over a manifold M , M
may be identified with the identity elements ofG, and an element a of the Lie algebroid
E of G may be thought of as an arrow from the base x ∈ M of a to a groupoid element
with its source at x and its target at an infinitesimally nearby y ∈ G. The tangent vector
ρ(a) is then viewed as a tiny arrow in M pointing from x to y.

Now suppose that E is a complex Lie algebroid over M . Then ρ(a) is a complex
tangent vector. To visualize it, one may still think of the tail of the tiny arrow as being
at a, but the imaginary part of the vector will force the head to lie somewhere “out
there” in a complex manifold MC containing M as a totally real submanifold. To invert
(and compose) such groupoid elements requires that their sources as well as targets be
allowed to lie in this complexification MC. Thus, the integration should be a groupoid
over the complexification.

What exactly is this complexification? Haefliger [18], Shutrick [37], and Whitney
and Bruhat [44] all showed that every analytic manifold M may be embedded as an
analytic, totally real submanifold of a complex manifold MC. Any two such complex-
ifications are canonically isomorphic near M . Consequently, the identity map extends
uniquely near M to an antiholomorphic involution of MC (“complex conjugation”)
having M as its fixed point set. Finally, Grauert [16] showed that the complexification
may be taken to have a pseudoconvex boundary and therefore be a Stein manifold. MC

is then called a Grauert tube.
Of course, constructing the complexification requires that the Lie algebroid have a

real analytic structure. For the underlying smooth manifold M , such a structure exists
and is unique up to isomorphism [43], though the isomorphism between two such
structures is far from canonical. Extending the analyticity to E is an issue which must
be deal with in each example.

In fact, examples are at the heart of this paper. Except for some brief final remarks,
the many observations and questions about CLAs which arise naturally by extension
from the real theory and from complex geometry will be left for future work. Concepts
such as cohomology, connections, modular classes, Kähler structure, and quantization
are discussed by Block [3] and in work with Cannas [5] and with Leichtnam and Tang
[24].

Acknowledgements The ideas in this paper have developed over several years, in part
during visits to MSRI, Institut Mathématique de Jussieu, and École Polytechnique. I
would like to thank these institutions for their support and hospitality, and many people
for their helpful comments, includingMarco Gualtieri, Yvette Kosmann-Schwarzbach,
Claude Lebrun, Eric Leichtnam, Pierre Schapira, Xiang Tang, and François Treves.
Finally, I thank Asha Weinstein for editorial advice.

2 Complexifications of real Lie algebroids

A complex Lie algebroid over a point is just a Lie algebra g over C. It seems natural to
take as integration of g a holomorphic Lie group G with this Lie algebra. In particular,
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if g is the complexification of a real Lie algebra gR, then G is a complexification of a
real Lie group GR.

Next, given any real Lie algebroid ER, its complexification E becomes a complex
Lie algebroid when the bracket and anchor are extended by complex (bi)linearity. If
ER is integrated to a (possibly local) Lie groupoid GR, then a natural candidate for G
would be a complexification of GR. For this complexification to exist, GR must admit
an analytic structure, and, when this structure does exist, it is rarely unique (though it
may be unique up to isomorphism). Examples follow.

2.1 Zero Lie algebroids

Let ER be the zero Lie algebroid over M . An analytic structure on ER is just an ana-
lytic structure on M , which exists but is unique only up to noncanonical isomorphism.
Now the unique source-connected Lie groupoid integrating ER is the manifold M it-
self, which always admits a complexification MC. This complex manifold is far from
unique, but its germ along M is unique up to natural (holomorphic) isomorphism, given
the analytic structure on M . One could say that the choice of analytic structure on M
is part of the integration of this zero complex Lie algebroid.

This example suggests that the object integrating M should be the germ along M
of a complexification of M . Getting rid of all the choices, including that of the analytic
structure, requires that the complexification MC be shrunk even further, to a formal
neighborhood of M in MC. Both of these possibilities will be considered in many of
the examples which follow.

Remark 2.1 One could define the germ as an object for which the underlying topo-
logical space is M , but with a structure sheaf given by germs along M of holomor-
phic functions on MC. But these are just the analytic functions on M . For the formal
neighborhood, the structure sheaf becomes simply the infinite jets of smooth complex-
valued functions.

2.2 Tangent bundles

Let E = TCM be the full complexified tangent bundle. Once again, an analytic struc-
ture on ER = T M is tantamount to an analytic structure on M , which leads to many
complexifications MC, as above. A source-connected Lie groupoid integrating T M is
the pair groupoid M × M , while the source-simply connected groupoid is the funda-
mental groupoid π(M). The pair groupoid MC × MC is then a complexification of
M × M and may be taken as an integration of the complex Lie algebroid TCM . On
the other hand, π(M) could be complexified to π(MC); however, the result is sensi-
tive, even after restriction to M , to the choice of MC. If MC is taken to be a small
neighborhood of M , the restriction to M is just π(M).

2.2.1 Interlude: The integration as a stack

Some of the dependence on the choice of MC disappears when two groupoids are
declared to be “the same” when they are Morita equivalent. The groupoid is then seen
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as a presentation of a differential stack (see Behrend [2] and Tseng and Zhu [40]) or,
more precisely, a holomorphic stack. Since a transitive groupoid is equivalent to any of
its isotropy groups, the stack represented by a pair groupoid M×M is just a point. The
only difference between this and MC×MC is that the latter represents a “holomorphic
point.” Depending on the choice of groupoid, this point as a stack might carry isotropy
equal to the fundamental group of M or even of one its complexifications.

2.3 Action groupoids

Any (right) action of a Lie algebra k on M induces an action, or transformation,
groupoid structure on the trivial vector bundle ER = M × k. The complexified bun-
dle E = M × kC becomes a complex Lie algebroid whose anchor maps the constant
sections of E to a finite dimensional Lie algebra of complex vector fields on M .

When the k action comes from a (left) action of a Lie group K , ER integrates to
the transformation groupoid K × M ; in fact, Dazord [9] showed that ER is always
integrable to a global groupoid GR which encodes the (possibly local) integration of
the k action.

Passing from ER to E complicates issues significantly. First, complexifying G
requires an analytic structure on it, which amounts to an analytic structure on M for
which the k action is analytic. But this can fail to exist even when k = R, in other
words, when the action is simply given by a vector field. For instance, if the vector
field vanishes to infinite order at a point p of M , but not on a neighborhood of p, it
can never be made analytic, so complexification of the action groupoid GR and hence
integration of E become impossible except on the formal level.

In addition, it is conceivable that some smooth action groupoids may be made ana-
lytic in essentially different ways, even though, according to Kutzschebauch [21], this
cannot happen for proper actions by groups with finitely many connected components.
Perhaps there is a smooth action which admits several quite different complexifica-
tions.

When M and the k action are analytic, the vector fields generating the action extend
to holomorphic vector fields on a complexification MC, leading to a holomorphic Lie
algebroid structure on MC × kC. This integrates to a holomorphic Lie groupoid G, the
“local transformation groupoid” of the complexified KC action.

Note the slightly different strategy here—the Lie algebroid is first extended to the
complexification and then integrated, rather than the other way around. This strategy
will be used extensively below.

Example 2.2 Let k = R act on M = R via the vector field x ∂
∂x . When k is considered

as the Lie algebra of the multiplicative group R+, the resulting action groupoid is
R+ × R, with the first component acting on the second by multiplication. The orbits
of this groupoid are the two open half lines and the origin.

A natural complexification of R+ × R is the action groupoid C× × C, whose
orbits are the origin in C and its complement C×. When this groupoid is restricted
to the original manifold R, the two half lines now belong to the same orbit, even if
the complexification C is replaced by a small neighborhood of the real axis. (In this
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case, the complexified groupoid would no longer be an action groupoid, but it would
still have just the two orbits.) As a stack, the complexified groupoid represents a space
with two points, one of which is an ordinary holomorphic point. The second point is
in the closure of the first and has isotropy group C×.

After restriction of the groupoid to the germ of C around M , or to the formal
neighborhood, the notion of “orbit” is harder to pin down, since the groupoid does not
directly define an equivalence relation.

A somewhat different result is obtained if the algebroid is first extended and then
integrated. The extended complex Lie algebroid is C × C; for its natural integration,
the group is the simply connected cover C of C×. The action groupoid is now C × C
with the actionw ·z = ewz, for which the orbits are the same as before, but the isotropy
group of nonzero z (including real z) is now 2π iZ.

Remark 2.3 A similar but slightly more complicated example is given by the vector
field on the phase plane M = R2 which describes a classical mechanical system near
a local maximum of the potential function. The complexication of the action groupoid
R×R2 includes groupoid elements connecting states on opposite sides of the potential
maximum which cannot be connected by real classical trajectories. These groupoid
elements are not without physical interest, though, since they may be interpreted as
representing quantum tunneling.

2.4 Foliations

An analytic foliation ER ⊂ T M extends to a holomorphic foliation of MC, and, if MC

is small enough, the leaf stack of the latter is just a straightforward complexification
of the (analytic) leaf stack of the former. In particular, if the former is a manifold, so is
the latter.

But there are many foliations which admit no compatible analytic structure. Take
for example the Reeb [33] foliation (or for that matter, according to Haefliger [18],
any foliation) on S3. The leaf space of the Reeb foliation consists of two circles and
a special point whose only open neighborhood is the entire space. The isotropy group
of the holonomy groupoid is trivial for the leaves on the circles and Z2 for the special
leaf.

To complexify the Lie algebroid by complexifying the foliation groupoid, one
might look instead at the equivalent groupoid given by restriction to a cross section
to the leaves. This cross section can be taken as a copy of R on which Z2 acts, fixing
the origin, with one of the two generators acting by 1-sided contractions on the left
half line and the other by contractions on the right. Complexifying the action of the
generators gives maps on C which have essential singularities at the origin, and there
seems to be no way to make a holomorphic stack out of this data.

3 Involutive structures

A complex Lie algebroid E over M with injective anchor may be identified with the
image of its anchor, which is an involutive subbundle of TCM . Following Treves [39],
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these subbundles will be called here involutive structures. An analytic structure on E
is just an analytic structure on M for which E admits local bases of analytic complex
vector fields.

Let E be an analytic subbundle of TCM , then, and MC a complexification of M .
Identifying TCM with the restriction to M of T MC, one may extend the local bases
of analytic sections of E to local holomorphic sections of T MC. For MC sufficiently
small, local bases again determine a holomorphic subbundle E ′ of T MC. Holomorphic
continuation of identities implies that E ′ is itself involutive; by the holomorphic Frobe-
nius theorem, it determines a holomorphic foliation of MC. The holonomy groupoid
of this foliation determines a holomorphic stack which may be considered as the inte-
gration of the complex Lie algebroid E .

The rest of this section is devoted to examples of involutive structures viewed as
CLAs.

3.1 Complex structures

An almost complex structure on M is an endomorphism J : T M → T M such that
−J 2 is the identity. TCM is the direct sum of the −i and +i eigenspaces of the com-
plexified operator JC. These conjugate complex subbundles, denoted by T 0,1

J M and

T 1,0
J M respectively, are involutive if and only if J is integrable in the sense that the

Nijenhuis tensor NJ vanishes. The eigenspace T 0,1
J M is then a CLA which, like J it-

self, is called a complex structure. It is a standard fact that every subbundle E ⊂ TCM
such that E ⊕ E = TCM is T 0,1

J M for some almost complex structure J .
Theorems of Eckmann–Frölicher [11] and Ehresmann [12] (analytic case)2 and

Newlander–Nirenberg [29] (smooth case) tell us that any complex structure on M is
locally isomorphic to the standard one on R2n = Cn ; i.e., it gives a reduction of
the atlas of smooth charts on M to a subatlas with holomorphic transition functions,
making M into a complex manifold. Let us pretend for a moment, though, that we do
not know those theorems and look directly at the integration of an analytic complex
structure as a holomorphic stack. (The result of this exercise will turn out to be the
original 1951 proof!)

According to the discussion above, complexification gives a foliation E ′ of a suit-
ably small MC whose leaves, by the condition E ⊕ E = TCM , have tangent spaces
along M which are complementary to the real subbundle T M . As a result, shrinking
MC again can insure that each leaf is a holomorphic ball intersecting M exactly once,
transversely, so that the leaf space of this foliation may be identified with M . This leaf
space being a complex manifold, M itself inherits the structure of a complex manifold.
Holomorphic local coordinates on M result from sliding open sets in M along the fo-
liation E ′ to identify them with open sets in holomorphic transversals, e.g., leaves of
the holomorphic foliation E ′ which extends E .

The holomorphic stack in this case may be identified with M as a complex man-
ifold, presented by the holonomy groupoid of the foliation E ′. An alternate presenta-
tion is the etale groupoid obtained by restricting the holonomy groupoid to the union

2The cited authors also attribute the result to de Rham.
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of enough transversals to cover M under projection along E ′. The latter groupoid is
just the equivalence relation associated to a covering of M by holomorphic charts.

When E is given simply as a smooth complex structure, the only recourse is to
invoke the Newlander–Nirenberg theorem. This has the consequence that M has an
analytic structure in which E is analytic, so the previous situation is obtained.

Remark 3.1 The analytic structure on M which makes a complex structure E analytic
is unique, since it must be the one attached to the holomorphic structure determined
by E . The situation is therefore different from that for the complex Lie algebroid TCM
and the zero Lie algebroid, whose integration depends on an arbitrary choice of ana-
lytic structure compatible with the given smooth structure.

3.2 CR structures

A step beyond the complex structures within the class of involutive systems are the
general CR structures. These are subbundles E of TCM such that E and E intersect
only in the zero section, but E ⊕ E is not necessarily all of TCM .3

Any “generic” real submanifold M in a complex manifold X inherits a CR struc-
ture, namely the intersection GM,X = TCM ∩ T 0,1

J X . To be precise, the submanifold
is called generic when GM,X has constant dimension; note that real hypersurfaces are
always generic in this sense. GM,X ⊕ GM,X is the complexification of the maximal
complex subbundle FM,X of T M . A natural geometric problem, which has led to fun-
damental developments in linear PDE theory, is whether a given CR manifold can be
realized either locally or globally as a submanifold in some complex manifold, and in
particular in Cn . For analytic CR structures, the integration method of this paper solves
this problem. What follows below essentially reproduces an argument of Andreotti and
Fredricks [1], or more precisely, that in the review by Rossi [35] of that paper.

Let E ′ be the integrable holomorphic subbundle of T MC which extends E . The
corresponding foliation will be called theCR foliation. If M has (real) dimension 2n+r
and E has complex dimension n, then MC has complex dimension 2n + r , and the
leaves of the CR foliation have complex dimension n; each of them meets M in a
point, with no common tangent vectors (since E contains no real vectors). It follows
that MC can be chosen so that the leaves are simply connected; the stack defined by the
foliation groupoid is then simply a complex manifold N of complex dimension n + r
containing M as a real hypersurface of real codimension r . When r = 0, N = M , and
M is a complex manifold; when n = 0 (zero Lie algebroid), N = MC. (Andreotti and
Fredricks [1] call N a complexification of M for any n; thus, the complexification of a
complex manifold is the manifold itself.)

3.3 The Mizohata structure

The next example shows that the natural map from M to a stack which integrates a
complex Lie algebroid E → M may not be injective.

3Some authors use the term “CR structure” only when E ⊕ E is of codimension 1 in TCM .
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As in Example I.10.1 of Treves [39], the Mizohata structure over M = R2 is
defined to be the involutive system E spanned by the complex vector field

i∂/∂t − t ∂/∂x .

It is a complex structure except along the x-axis, where it is the complexification of the
real subspace spanned by ∂/∂t . The holomorphic continuation of E over C2 is spanned
by the same vector field in which (x, t) are taken as complex variables, and the leaves
of the corresponding foliation E ′ are the levels of the invariant function ζ = x− i t2/2.
These levels, which can be described as graphs x = i t2/2 + ζ with the parameter t
running through C, are contractible, so the stack defined by the foliation groupoid is
isomorphic to C with ζ as its complex coordinate. The natural map from M to this
stack folds R2 along the x-axis, and the image is the (closed) lower half plane.

The situation becomes more complicated rather than simpler if the complexifica-
tion is shrunk to a neighborhood of R2 in C2, for instance that defined by the bounds
|*t | < ε and |*z| < ε on the imaginary parts. In this case, some of the level mani-
folds of ζ split into two components, so that the corresponding part of the leaf space
(the complement of a strip near the origin in the lower half plane) bifurcates into two
branches.4 The common closure of these branches is a family of leaves depending on
one (real) parameter, so we can describe the integration of the Mizohata structure (or
the “complexification”, in the language used in CR geometry) as the non-Hausdorff
complex manifold which is the union of an open strip along the real axis in the com-
plex ζ -plane with two copies of the rest of the lower half plane. The map from M to
this stack now separates points except those in a strip along the x axis, which is folded
as before.

Integrals of the involutive structure on M must be even in t near the x axis; since
they are holomorphic away from the x axis, they must be even everywhere. In this
case, there are integrals of E which are not the pullback of holomorphic functions on
the stack. (See Example III.2.1 in Treves [39].)

It is not clear what kind of geometric object is obtained in the limit as the complex-
ification shrinks down to M , or for the formal complexification.

A test problem for any global theory of integration is to describe the integration of
involutive structures on smooth surfaces which have Mizohata-type singularities along
a collection of simple closed curves and which are complex structures elsewhere.

3.4 Eastwood–Graham and LeBrun–Mason structures

In the next example, due to Eastwood and Graham [10], the map from M to the stack
integrating a complex Lie algebroid has nondiscrete fibres.

Consider C2 with coordinates z = x + iy and w = s + i t and the involutive
structure spanned by ∂/∂x+ i ∂/∂y and ∂/∂t− (x+ iy) ∂/∂s, or, in complex notation,
∂/∂z and ∂/∂t − z ∂/∂s. When y �= 0, this is a complex structure, while when y = 0,
it contains the real subspace spanned by ∂/∂t − x ∂/∂s. The integrals for this structure
are generated by z = x+ iy and ζ = s+ zt . On the complexification C2

C
= C4, x , y, s,

4There is no bifurcation in the upper half plane.
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and t may have complex values, and then the map (z, ζ ) : C2
C
→ C2 is a submersion

whose fibres are the leaves of the extended foliation; thus, the leaf space (and hence the
stack which integrates the structure) may be identified with the complex (z, ζ ) plane.

What is singular here is the map φ from the original C2 = R4 to this stack. When
the variables (x, y, s, t) are real, φ is a local diffeomorphism, except on the hypersur-
face y = 0, where each of the orbits of the vector field ∂/∂t − x ∂/∂s is mapped to a
constant. The image of this hypersurface is the subset of the (z, ζ ) plane on which the
variables are both real, and, as is clearly described by Eastwood and Graham [10], the
map φ realizes the (real) blow-up of R2 in C2.

A similar involutive structure was constructed by Lebrun and Mason [23] on the
projectivized complexified tangent bundle of a surface with affine connection; the sin-
gular curves in their example are the geodesics.

4 Boundary Lie algebroids

This section exhibits CLAs which are neither involutive systems nor the complexifica-
tion of real Lie algebroids. The example is taken from work with Leichtnam and Tang
[24] on Kähler geometry and deformation quantization in the setting of CLAs. The
description of the integration of these CLAs is not complete.

Let X be a complex manifold of (complex) dimension n + 1 with boundary M ,
and let EM,X be the space of complex vector fields on X whose values along M lie in
the induced CR structure GM,X . EM,X is a module over C∞(X) and is closed under
bracket. The following lemma shows that it may be identified with the space of sections
of a complex Lie algebroid EM,X .

Lemma 4.1 EM,X is a locally free C∞(X)-module.

Proof. Away from the boundary, EM,X is the space of sections of TCM , hence lo-
cally free. Near a boundary point, choose a defining function ψ , i.e., a function which
vanishes on the boundary and has no critical points there. Next, choose a local basis
v1, . . . , vn of GM,X and extend it to a linearly independent set of sections of T 0,1X ,
still denoted by v j , defined in an open subset of X , to be shrunk as necessary. Let
v j be the complex conjugate of v j . These vectors all annihilate ψ on M ; there is no
obstruction to having them annihilate ψ everywhere. Next, choose a local section v0
of T 0,1X such that v0 · ψ = 1, and let v0 be its conjugate. This gives a local basis
(v, v) for the complex vector fields. Such a vector field belongs to EM,X if and only
if, when it is expanded with respect to this basis, the coefficients of v0 and all the v j

vanish along M . Since this means that all these coefficients are divisible by ψ with
smooth quotient, setting u′0 = ψv0, u′j = v j for j = 1, . . . , n, and u j = ψv j for
j = 0, . . . , n produces a local basis (u, u′) for EM,X . $%

To integrate the boundary Lie algebroid EM,X , assuming analyticity as usual, one
may begin by extending X slightly beyond M , so that M becomes an embedded hy-
persurface. In the complexification XC, M extends to a submanifold MC of complex
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codimension 1. The CR structure on M extends (see Section 3.2) to the tangent bun-
dle E ′ of the CR foliation on MC. The holomorphic continuation of EM,X is then the
holomorphic Lie algebroid whose local sections are the vector fields on XC whose
restrictions to MC have their values in E ′.

What is the groupoid of this Lie algebroid over XC? Over the complement of MC,
the Lie algebroid is the tangent bundle, so the groupoid could be taken to be the pair
groupoid. Since MC has complex codimension 1, though, its complement generally has
a nontrivial fundamental group, and the fundamental groupoid or one of its nontrivial
quotients might be appropriate as well. The choice depends in part on compatibility
with the choice made on MC itself.

Over MC, the image of the anchor of the extended Lie algebroid is the tangent
bundle E ′ to the CR foliation, but now, unlike in the pure CR situation, there is non-
trivial isotropy. To describe this isotropy, note that, at each point x of MC, there is a
flag E ′x ⊂ TxMC ⊂ Tx XC. The isotropy algebra may be identified with the endomor-
phisms of the normal space Tx XC/E ′x which vanish on TxMC. Given two points x and
y in MC, there are morphisms in the integrating groupoid from x to y if and only if
x and y lie in the same leaf of the CR foliation. Each such morphism is then a linear
map Tx XC/E ′x → Ty XC/E ′y whose restriction TxMC/E ′x → TyMC/E ′y coincides
with the linearized holonomy map along any path in the leaf. (Assume that the com-
plexification is small enough so that the leaves are simply connected.) In particular,
when x = y, the isotropy group consists of the automorphisms of Tx XC/E ′x which
fix TxMC/E ′x . (Compare the author’s discussion in Section 6 of [42], where the Lie
algebroid and its integrating groupoid are studied for the vector fields tangent to the
boundary of a real manifold, as well as the treatment by Mazzeo [25] of vector fields
tangent to the fibres of a submersion on the boundary. Finally, a slightly different, class
of vector fields on a manifold with fibred boundary is used by Mazzeo and Melrose
[26].)

When x lies on the real hypersurface M , the space above admits an explicit de-
scription in terms of the CR geometry. Over M , T XC restricts to TCX , T MC is just
TCM , and E ′ is the CR structure GM,X = TCM ∩ T 0,1

J X. Thus, the isotropy of the

integrating groupoid consists of the automorphisms of TCX/TCM ∩ T 0,1
J X which fix

its codimension 1 subspace TCM/TCM ∩ T 0,1
J X. These automorphisms act on the

complexified normal bundle TCX/TCM , and those which act trivially on the normal
bundle are “shears” which may be identified with the additive group of linear maps
from that normal bundle to TCM/TCM ∩ T 0,1

J X. The choice of a defining function
trivializes the normal bundle, so the isotropy is an extension of the automorphism (or
“dilation”) group of the normal bundle by the abelian group TCM/TCM ∩ T 0,1

J X.

The preceding description of the integrating groupoid is not complete, since it lacks
an explanation of how the piece over the interior and the piece over the boundary fit
together. In particular, if one were to use the fundamental groupoid on the interior, as
described above, it may be necessary to use a covering of the automorphisms of the
line bundle on the boundary.
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5 Generalized complex structures

In the rapidly developing subject of generalized geometry, originated by Hitchin [19],
the tangent bundle T M of a manifold with its Lie algebroid structure is replaced by the
generalized tangent bundle T M , which is the direct sum T M ⊕ T ∗M equipped with
the Courant algebroid structure consisting of the bracket

[[(ξ1, θ1), (ξ2, θ2)]] =
(
[ξ1, ξ2],Lξ1θ2 − Lξ2θ1 −

1

2
d(iξ1θ2 − iξ2θ1)

)
,

the anchor T M → T M which projects to the first summand, and the symmetric bilin-
ear form

〈(ξ1, θ1), (ξ2, θ2)〉 = 1

2
(iξ1θ2 + iξ2θ1).

Like the tangent bundle, T M may be complexified to the “complex Courant alge-
broid” TCM . It is not a complex Lie algebroid, but it contains many CLAs, in particu-
lar the complex Dirac structures, i.e., the (complex) subbundles E which are maximal
isotropic for the symmetric form and whose sections are closed under the bracket. For
instance, if A ⊆ TCM is an involutive system and A⊥ ⊆ T ∗

C
M is its annihilator, then

A ⊕ A⊥ is a complex Dirac structure.
Of special interest among the complex Dirac structures are those for which E ⊕

E = T M . These are called generalized complex structures and are the−i eigenspaces
of (the complexifications of) integrable almost complex structures J : T M → T M ;
the integrability condition here is that the Nijenhuis torsion is zero, the usual bracket
of vector fields in the definition of the torsion being replaced by the Courant bracket.

In particular given a complex structure J : T M → T M , with associated
CLA T 0,1

J M , the direct sum with its annihilator is the generalized complex structure

T 0,1
J M = T 0,1

J M ⊕ T 1,0
J

∗
M . The image of the anchor is the involutive system T 0,1

J M ,

but T 0,1
J M itself is not an involutive system, since the kernel of its anchor is the non-

trivial bundle T 1,0
J

∗
M. Also, T 0,1

J M is not isomorphic to the complexification of a real
Lie algebroid, since the image of its anchor is not invariant under complex conjugation.

Another kind of example arises from symplectic structures on M , viewed as bundle
maps ω : T M → T ∗M . Here, the generalized complex structure Eω is defined to be
the graph of the complex 2-form iω. This time, the anchor is bijective, so, as a Lie
algebroid, Eω is isomorphic to TCM .

What is the integration, in the sense of this paper, of a generalized complex struc-
ture? First, let J be a complex structure on M , T 0,1

J M = T 0,1
J M ⊕ T 1,0

J
∗
M the corre-

sponding generalized structure. Complexifying M and J as in Section 3.1 gives a foli-
ation on MC. The groupoid which integrates the holomorphic continuation of T 0,1

J M
is the semidirect product groupoid obtained from the action of the holonomy groupoid
of the foliation (via the “Bott connection”) on its conormal bundle. (This is just the
holomorphic version of a construction by Bursztyn, Crainic, Zhu, and the author [4].)
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This action groupoid is equivalent to the holomorphic leaf space M carrying the cotan-
gent bundle T 1,0

J
∗
M of additive groups as its isotropy. The corresponding stack is the

bundle over M whose fibres are the “universal classifying stacks” of the cotangent
spaces.

Next let ω be a symplectic structure on M . Since the generalized complex structure
Eω is isomorphic to TCM , its integration must be that of TCM , i.e., the holomorphic
point, perhaps carrying the fundamental group of M as isotropy. To see what has be-
come of ω, it is best to look again at (real and complex) Dirac structures.

As a subbundle of T M , a Dirac structure E carries a natural skewsymmetric bilin-
ear form, the restriction of

B(ξ1, θ1), (ξ2, θ2)) = (1/2)(iξ1θ2 − iξ2θ1).

It is shown in [4] that this form gives rise to a multiplicative closed 2-form on a
groupoid integrating E , producing a presymplectic groupoid. Applying this construc-
tion to the holomorphic extension of any complex Dirac structure E shows that its
integration as a CLA is a holomorphic symplectic groupoid over MC. In particular, for
Eω or any other complex Poisson structure, it is a holomorphic symplectic groupoid.
For EJ , or any other direct sum of an involutive structure with its annihilator, the re-
striction of B is zero, and hence so is the presymplectic structure on the integrating
groupoid.

6 Further topics and questions

A notion of integration for complex Lie algebroids has been proposed in this paper.
There are many interesting questions about other extensions of Lie algebroid theory to
the complex case, including the relation between these extensions and the integration
construction proposed here. Some examples conclude this paper.

6.1 Integrability

Does the integrability criterion of Crainic and Fernandes [8] apply in the holomor-
phic case? What are the conditions on an analytic CLA which determine whether its
holomorphic continuation is integrable? What can one do in the nonanalytic case?

6.2 Cohomology

A “van Est” theorem of Crainic [7] describes the relation between the cohomology
of a Lie algebroid and that of its integrating groupoids. The definition of cohomology
extends in a straightforward to CLAs (for instance, it gives the Dolbeault cohomology
in the case of a complex structure). Is there a van Est theorem in this case, too?
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6.3 Bisections

One consequence of the integration of a Lie algebroid E is that the submanifolds of an
integrating groupoid which are sections for the source and target maps form a group
whose Lie algebra in some formal sense is the space of sections of E . Is there a similar
construction for the case of a complex Lie algebroid? Some hints might come from
the constructions by Neretin [27] and Segal [36] (also see Yuriev [45]) of a semigroup
which in some sense integrates the complexified Lie algebra of vector fields on a circle.
Conversely, a general construction for CLAs could provide complexifications for the
diffeomorphism groups of other manifolds.

6.4 Quantization

Once a Lie algebroid E has been integrated, the groupoid algebra of an integrating
groupoid may be considered, following Landsman and Ramazan [22], as a deformation
quantization of the Poisson structure on the dual bundle E∗, or as a completion of
Rinehart’s [34] universal enveloping algebra of E . Is there a corresponding application
for the integration of a CLA?

On the other hand, given a complex Poisson structure " on M , it defines a CLA
structure on the complexified cotangent bundle. Integration of this structure should
give a holomorphic symplectic groupoid which should be somehow related to the
deformation quantization of (M, π). On the formal level (without integration), it is
possible [24] to extend the methods of Karabegov [20] and Nest and Tsygan [28] to
construct deformation quantizations of certain boundary Lie algebroids as in Section
4 above.

6.5 Connections and representations

If E is a CLA over M and V is a complex vector bundle V , an E-connection on V
is a map a �→ ∇a from the sections of E to the C-endomorphisms of the sections of
V which satisfies the conditions ∇ f au = f∇au and ∇agu = g∇au + (ρ(a)g)u. The
connection is flat and is also called a representation of E on V if the map a �→ ∇a is a
Lie algebra homomorphism.

For instance, if E is a complex structure, a representation of E on V is a holo-
morphic structure on V . More generally, representations of CR structures correspond
to CR vector bundles, as in the work of Webster [41]. After complex extension, an
analytic representation of an analytic CR structure becomes a flat connection along the
leaves of the CR foliation, which leads to a holomorphic vector bundle on the com-
plexification.

If E is the generalized complex structure associated to a complex structure on M ,
a representation on V is a holomorphic structure on V together with a holomorphic
action of the (abelian) cotangent spaces of M as endomorphisms of the fibres of V .
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6.6 The modular class

The modular class of a Lie algebroid, introducted by Evens, Lu, and the author [14] is
the obstruction to the existence of an “invariant measure.” Its definition extends directly
to the case of CLAs. For a complex structure, the modular class is the obstruction to
the existence of a Calabi–Yau structure.
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Introduction

A symplectic connection on a symplectic manifold (M, ω) is a torsionless linear con-
nection ∇ on M for which the symplectic 2-form ω is parallel. A symplectic connec-
tion exists on any symplectic manifold and the space of such connections is an affine
space modelled on the space of symmetric 3-tensorfields on M .

In what follows, the dimension 2n of the manifold M is assumed to be ≥ 4 unless
explicitly stated. The curvature tensor R∇ of a symplectic connection ∇ decomposes
[5] under the action of the symplectic group into two irreducible components, R∇ =
E∇ + W∇ . The E∇ component is defined only in terms of the Ricci-tensor r∇ of ∇.
All traces of the W∇ component vanish.

Two particular types of symplectic connections thus arise:

— symplectic connections for which W∇ = 0; we call them Ricci-type symplectic
connections;
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— symplectic connections for which E∇ = 0; they are called Ricci-flat since E∇ =
0⇔ r∇ = 0.

When studying [1] local and global models for Ricci-type symplectic connections,
(or more generally [2] so-called special symplectic connections), Lorenz Schwachhöfer
and the present authors were led to consider examples of the following construction:

• start with a symplectic manifold (M, ω) of dimension 2n;
• build a (cooriented) contact manifold (N , α) of dimension 2n+1 and a submersion

π : N → M such that dα = π∗ω;
• define on the manifold P = N × R a natural symplectic structure μ.

It was observed [1] that if (M, ω) admits a symplectic connection of Ricci type, one
could “lift” this connection to P and the lifted connection is symplectic (relative to μ)
and flat.

The aim of this paper is to generalize this result. More precisely we formalize
a notion of induction for symplectic manifolds. Starting from a symplectic manifold
(M, ω), we define a contact quadruple (M, N , α, π), where N , α and π are as above,
and we build the corresponding 2n + 2-dimensional symplectic manifold (P, μ). We
prove the following:

Theorem 4.1 Let (M, ω) be a symplectic manifold which is the first element of a con-
tact quadruple (M, N , α, π). Let ∇ be an arbitrary symplectic connection on (M, ω).
Then one can lift ∇ to a symplectic connection on (P, μ) which is Ricci-flat.

This theorem has various applications. In particular one has

Theorem 5.3 Let (P, μ) be a symplectic manifold admitting a conformal vector field
S which is complete, a symplectic vector field E which commutes with S and as-
sume that, for any x ∈ P, μx (S, E) > 0. Assume the reduction of # = {x ∈ P |
μx (S, E) = 1} by the flow of E has a manifold structure M with π : # → M a
surjective submersion. Then (P, μ) admits a Ricci-flat connection.

The paper is organized as follows. In Section 1 we study sufficient conditions for
a symplectic manifold (M, ω) to be the first element of a contact quadruple and we
give examples of such quadruples. Section 2 is devoted to the lift of hamiltonian (resp.
conformal) vector fields from (M, ω) to the induced symplectic manifold (P, μ) con-
structed via a contact quadruple. We show that if (M, ω) is conformal homogeneous,
so is (P, μ). Section 3 describes the structure of conformal homogeneous symplec-
tic manifolds; this part is certainly known but as we had no immediate reference we
decided to include it. Section 4 gives some constructions of lifts of symplectic connec-
tions of (M, ω) to symplectic connections on the induced symplectic manifold (P, μ)

constructed via a contact quadruple. We also prove Theorem 4.1. In Section 5 we give
conditions for a symplectic manifold (P, μ) to be obtained by induction from a contact
quadruple (M, N , α, π). We give also a proof of Theorem 5.3.
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1 Induction and contact quadruples

Definition 1.1 A contact quadruple is a quadruple (M, N , α, π) where M is a 2n-
dimensional smooth manifold, N is a smooth (2n + 1)-dimensional manifold, α is a
cooriented contact structure on N (i.e., α is a 1-form on N such that α ∧ (dα)n is
nowhere vanishing), π : N → M is a smooth submersion and dα = π∗ω where ω is
a symplectic 2-form on M .

Definition 1.2 Given a contact quadruple (M, N , α, π) the induced symplectic mani-
fold is the (2n + 2)-dimensional manifold

P := N × R

endowed with the (exact) symplectic structure

μ := 2e2s ds ∧ p∗1α + e2s dp∗1α = d(e2s p∗1α)

where s denotes the variable along R and p1 : P → N the projection on the first
factor.

Remark 1.3 The word induction has been used by various authors in symplectic ge-
ometry, with different meanings. In [4], Guillemin and Sternberg consider a construc-
tion which is a symplectic analogue of the induced representation construction. In-
duction in the sense of building a (2n + 2)-dimensional symplectic manifold from
a symplectic manifold of dimension 2n is considered by Kostant in [4] (see further
Example 2).

Remark 1.4 • The vector field S := ∂s on P is such that i(S)μ = 2e2s(p∗1α);
hence LSμ = 2μ and S is a conformal vector field.

• The Reeb vector field Z on N (i.e., the vector field Z on N such that i(Z)dα = 0
and i(Z)α = 1) lifts to a vector field E on P such that: p1∗E = Z and ds(E) = 0.
Since i(E)μ = −d(e2s), E is a Hamiltonian vector field on (P, μ). Furthermore

[E, S] = 0,

μ(E, S) = −2e2s .

• Observe also that if # = { y ∈ P | s(y) = 0 }, the reduction of (P, μ) relative to
the constraint manifold # (which is isomorphic to N ) is precisely (M, ω).

• For y ∈ P define Hy(⊂ Ty P) => E, S <⊥μ . Then Hy is symplectic and (π ◦
p1)∗y defines a linear isomorphism between Hy and Tπp1(y)M . Vector fields on M
thus admit “horizontal” lifts to P .

We shall now make some remarks on the existence of a contact quadruple, the first
term of which corresponds to a given symplectic manifold (M, ω).
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Lemma 1.5 Let (M, ω) be a smooth symplectic manifold of dimension 2n and let
N be a smooth (2n + 1)-dimensional manifold admitting a smooth surjective sub-
mersion π on M. Let H be a smooth 2n-dimensional distribution on N such that
π∗x : Hx → Tπ(x)M is a linear isomorphism (remark that such a distribution may
always be constructed by choosing a smooth Riemannian metric g on N and setting
Hx = (kerπ∗x )⊥). Then either there exists a smooth nowhere vanishing 1-form α and
a smooth vector field Z such that ∀x ∈ N we have (i) kerαx = Hx (ii) Zx ∈ kerπ∗x
(iii) αx (Zx ) = 1 or the same is true for a double cover of N .

Proof. Choose an auxiliary Riemannian metric g on M and consider N ′ = {Z ∈ T N |
Z ∈ kerπ∗ and g(Z , Z) = 1}. If N ′ has two components, one can choose a global
vector field Z ∈ kerπ∗ on N and define a smooth 1-form α with kerα = H and
α(Z) = 1. If N ′ is connected, N ′ is a double cover of N (p : N ′ → N : Zx → x)
and we can choose coherently Z ′ ∈ TZ N ′ by the rule that its projection on Tx N is
precisely Z . $%

This says that if we have a pair (M, N ) with a surjective submersion π : N → M
we can always assume (by passing eventually to a double cover of N ) that there exists
a nowhere vanishing vector field Z ∈ kerπ∗ and a nowhere vanishing 1-form α such
that α(Z) = 1 and kerα projects isomorphically on the tangent space to M . The vector
field Z is determined up to a non-zero multiplicative factor by the submersion π ; on
the other hand, having chosen Z , the 1-form α can be modified by the addition of an
arbitrary 1-form β vanishing on Z . If α̃ = α + β is another choice, the 2-form dα̃ is
the pullback of a 2-form on M iff i(Z)dα̃ = 0; i.e., iff:

(i) LZβ = −LZα, (ii) β(Z) = 0.

This can always be solved locally. We shall assume this can be solved globally.

Lemma 1.6 Let (M, ω) be a smooth symplectic manifold of dimension 2n and let N
be a smooth (2n+ 1)-dimensional manifold admitting a smooth surjective submersion
π on M. Let Z be a smooth nowhere vanishing vector field on N belonging to kerπ∗.
Let α be a 1-form such that α(Z) = 1. If L Zα = μα, for a certain μ ∈ C∞(N ), then
μ = 0 and dα is the pullback of a closed 2-form ν on M. Furthermore if X (resp. Y )
is a vector field on M and X̄ (resp. Ȳ ) is the vector field on N such that (i) π∗ X̄ = X
(resp. π∗Ȳ = Y ) (ii) α(X̄) = α(Ȳ ) = 0, then:

[X̄ , Ȳ ]− [X, Y ] = −π∗(ν(X, Y ))Z ,

[Z , X̄ ] = 0.

Proof. We have π∗[Z , X̄ ] = 0, [Z , X̄ ] = α([Z , X̄ ])Z = −(LZα)(X̄)Z = 0.
Since (LZα)(Z) = dα(Z , Z) = 0, μ vanishes. Also:

i(Z)dα = LZα = 0,

so dα is the pullback of a closed 2-form ν on M . Finally:
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π∗[X̄ , Ȳ ] = π∗[X, Y ],

[X̄ , Ȳ ] = [X, Y ]+ α([X̄ , Ȳ ])Z = [X, Y ]− dα(X̄ , Ȳ )Z .

$%

Corollary 1.7 If ν = ω, the manifold (N , α) is a contact manifold and Z is the cor-
responding Reeb vector.

We shall now give examples of contact quadruples for given symplectic manifolds.

Example 1 Let (M, ω = dλ) be an exact symplectic manifold. Define N = M × R,
π = p1 (= projection of the first factor), α = dt + p∗1λ; then (N , α) is a contact
manifold and (M, N , α, π) is a contact quadruple.

The associated induced manifold is P = N ×R = M×R2; with coordinates (t, s)
on R2 and obvious identification

μ = e2s [ dλ+ 2ds ∧ (dt + λ) ].

Example 2 Let (M, ω) be a quantizable symplectic manifold; this means that there is

a complex line bundle L
p−→ M with hermitian structure h and a connection ∇ on L

preserving h whose curvature is proportional to iω.
Define N := { ξ ∈ L | h(ξ, ξ ) = 1} ⊂ L to be the unit circle sub-bundle. It is a

principal U (1) bundle and L is the associated bundle L = N ×U (1) C. The connection
1-form on N (representing∇) is u(1) = iR-valued and will be denoted α′; its curvature
is dα′ = ikω. Define α := 1

ikα
′ and π := p|N : N → M the surjective submersion.

Then (M, N , α, π) is a contact quadruple.
The associated induced manifold P is in bijection with L0 = L\ zero section;

indeed, consider

� : L0 → P = N × R : ξ →
(

ξ

h(ξ, ξ)1/2
, k ln h(ξ, ξ)1/2

)
.

Clearly L0 is a C∗ principal bundle on M ; denote by α̌ the C∗-valued 1-form on L0
representing ∇; if j1 : N → L0 is the natural injection and similarly j2 : iR → C the
obvious injection, we have

j∗1 α̌ = j2 ◦ α′.
Then (

(�−1)∗α̌
)
(ξ0,s)

(Xξ0 + a∂s) = α̌ξ0es/k (�
−1
∗ (Xξ0 + a∂s)

= α̌ξ0(Re−s/k ∗ ◦�−1
∗ (Xξ0 + a∂s))

= α̌ξ0(Xξ0 + a∂s) = j2 α
′(Xξ0)+

a

k

i.e.,

�−1∗α̌ = p∗1 j2 α
′ + ds

k
.
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On the other hand the 1-form e2s p∗1α = 1
ik e

2s p∗1 j
∗
2 α

′ ; this shows how the sym-
plectic form μ = d(e2s p∗1α) on P is related to the connection form on L0 [μ =
d( e

2s

ik �−1∗α̌)]. Such examples have been studied by Kostant in [4].

Example 3 Let (M, ω) be a connected homogeneous symplectic manifold; i.e., M =
G/H where G is a Lie group which we may assume connected and simply connected
and where H is the stabilizer in G of a point x0 ∈ M . If p : G → M : g →
gx0, p∗ω is a left invariant closed 2-form on G and � = (p∗ω)e, (e = neutral
element of G) is a Chevalley 2-cocycle on g (= Lie Algebra of G) with values in R
(for the trivial representation). Notice that � vanishes as soon as one of its arguments
is in h̄ (= Lie algebra of H ). Let g1 = g⊕ R be the central extension of g defined by
�; i.e.,

[(X, a), (Y, b)] = ([X, Y ], �(X, Y )).

Let h̄′ be the subalgebra of g1, isomorphic to h̄, defined by h̄′ := { (X, 0) | X ∈ h̄ }.
Let G1 be the connected and simply connected group of algebra g, and let H ′ be the
connected subgroup of G1 with Lie algebra h̄′. Assume H ′ is closed. Then G1/H ′
admits a natural structure of smooth manifold; define N := G1/H ′. Let p1 : G1 → G
be the homomorphism whose differential is the projection g1 → g on the first factor;
clearly p1(H ′) ⊂ H . Define π : N = G1/H ′ → M = G/H : g1H ′ �→ p1(g1)H ; it
is a surjective submersion.

We shall now construct the contact form α on N : p∗1 ◦ p∗ω is a left invariant closed
2-form on G1 vanishing on the fibers of p ◦ p1 : G1 → M . Its value �1 at the neutral
element e1 of G1 is a Chevalley 2-cocycle of g1 with values in R. Define the 1-cochain
α1 : g1 → R : (X, a)→−a. Then

�1((X, a), (Y, b)) = (p∗ω)e(X, Y ) = �(X, Y ) = −α1([(X, a), (Y, b)])

= δα1((X, a), (Y, b)),

i.e.,�1 = δα1 is a coboundary. Let α̃1 be the left invariant 1-form onG1 corresponding
to α1. Let q : G1 → G1/H ′ = N be the natural projection. We shall show that
there exists a 1-form α on N so that q∗α = α̃1. For any U ∈ g1 denote by Ũ the
corresponding left invariant vector field on G1. For any X ∈ h̄′ we have

i(X̃)α̃1 = α1(X) = 0,

(L X̃ α̃1)((̃Y, b)) = −α̃1([X̃ , (̃Y, b)]) = −α1([X, (Y, b)]) = �(X, Y ) = 0,

so that indeed α̃1 is the pullback by q of a 1-form α on N = G1/H ′. Furthermore
dα = π∗ω because both are G1 invariant 2-forms on N and:

(dα)q(e1)((X, a)∗N , (Y, b)∗N ) = (q∗dα)e1((̃X, a), (̃Y, b))

= (dα̃1)e1((̃X, a), (̃Y, b))

= �(X, Y ),

= ωx0(X
∗M , Y ∗M )

= (π∗ω)q(e1)((X, a)∗N , (Y, b)∗N )
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where we denote by U∗N the fundamental vector field on N associated to U ∈ g1.
Thus

Lemma 1.8 Let (M = G/H, ω) be a homogeneous symplectic manifold; let � be the
value at the neutral element of G of the pullback of ω to G. This is a Chevalley 2-
cocycle of the Lie algebra g of G. If g1 = g⊕R is the central extension of g defined by
this 2-cocycle and G1 is the corresponding connected and simply connected group, let
H ′ be the connected subgroup of G1 with algebra h̄′ = { (X, 0) | X ∈ h̄ } ∼= h̄. Assume
H ′ is a closed subgroup of G1. Then N = G1/H ′ admits a natural submersion π on
M and has a contact structure α such that dα = π∗ω. Hence (G/H,G1/H ′, α, π) is
a contact quadruple.

Remark 1.9 The center of G1 is connected and simply connected, hence the central
subgroup expt (0, 1) is isomorphic to R. The subgroup p−11 (H) is a closed Lie sub-
group of G1 whose connected component is p−11 (H0) (H0 = connected component of

H ). The universal cover ˜p−11 (H0) of p
−1
1 (H0)) is the direct product of H̃0 (= universal

cover of H0) by R. If ν : ˜p−11 (H0) → p−11 (H0) is the covering homomorphism, the
subgroup H ′ we are interested in is H ′ = ν(H̃0). Clearly if π1(H0) ∼ ker ν is finite ,
H ′ is closed and the construction proceeds.

2 Lift of hamiltonian vector fields and of conformal vector fields

Let (M, ω) be a symplectic manifold of dimension 2n and let (P, μ) be the in-
duced symplectic manifold of dimension 2n+ 2 constructed via the contact quadruple
(M, N , α, π). Let X be a hamiltonian vector field on M ; i.e.,

LXω = 0, i(X)ω = d fX .

Consider the horizontal lift X̄ of X to N defined by

α(X̄) = 0, π∗(X̄) = X,

and the lift ¯̄X of X̄ to P defined by

p1∗ ¯̄X = X̄ , ds( ¯̄X) = 0.

Let Z be the Reeb vector field on (N , α) and let E be its lift to P defined by

p1∗E = Z , ds(E) = 0.

Definition 2.1 Define the lift X̃ of a hamiltonian vector field X on (M, ω) as the vector
field on P defined by:

X̃ = ¯̄X − (p∗1π
∗ fX ) · E =: ¯̄X − f̃ X E .
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Lemma 2.2 The vector field X̃ is a hamiltonian vector field on (P, μ). Furthermore
if g is a Lie algebra of vector fields X on M having a strongly hamiltonian action,
then the set of vector fields X̃ on P form an algebra isomorphic to g and its action on
(P, μ) is strongly hamiltonian.

Proof. i(X̃)μ = i( ¯̄X − f̃ X E)(e2s(p∗1π
∗ω + 2ds ∧ p∗1α)) = e2s(d f̃X + 2ds f̃X ) =

d(e2s f̃X )which shows that X̃ is hamiltonian and that the hamiltonian function is f X̃ =
e2s f̃X . Also if X, Y ∈ g:

[X̃ , Ỹ ] = [ ¯̄X − f̃ X E, ¯̄Y − f̃Y E]

= [X, Y ]− (π ◦ p1)
∗ω(X, Y )E − (̃X fY )E + Ỹ fX E

= [X, Y ]− (π ◦ p1)
∗ f[X,Y ]E

= [̃X, Y ]

and
{ f X̃ , fỸ } = ( ¯̄X − f̃ X E)(e2s f̃Y ) = e2s X̃ fY = e2s f̃[X,Y ] = f

[̃X,Y ]
.

$%
If C is a conformal vector field on (M, ω) we may assume

LCω = ω, di(C)ω = ω.

By analogy of what we just did, define the lift C̃1 of C to (P, μ) by:

ds(C̃1) = 0, p1∗C̃1 = C̄ + bZ

(i.e., π∗ p1∗C̃1 = C and C̃1 = ¯̄C + p∗1bE). Then

LC̃1
μ = di(C̃1)e

2s(p∗1π
∗ω + 2ds ∧ p∗1α) = d[e2s(p∗1π

∗i(C)ω − 2p∗1bds)]

= e2s[p∗1π
∗ω + 2ds ∧ p∗1π

∗i(C)ω − 2p∗1db ∧ ds]

= e2s[p∗1π
∗ω + 2ds ∧ (p∗1π

∗(i(C)ω)+ p∗1db)].

Thus C̃1 is a conformal vector field provided:

p∗1π
∗i(C)ω + p∗1db = p∗1α.

Or equivalently
α − π∗i(C)ω = db.

The left-hand side is a closed 1-form. If this form is exact we are able to lift C to a
conformal vector field C̃1 on P . Notice that the rate of variation of b along the flow of
the Reeb vector field is prescribed:

Zb = 1.
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A variation of this construction reads as follows. Let

C̃2 = ¯̄C + aE + l∂s .

Then:

LC̃2
μ = d(i( ¯̄C + aE + l∂s))e

2s(p∗1π
∗ω + 2ds ∧ p∗1α)

= d
(
e2s(p∗1π

∗(i(C)ω)− 2ads + 2lp∗1α)
)

= e2s[p∗1π
∗ω − 2da ∧ ds + 2lp∗1π

∗ω + 2ds ∧ p∗1π
∗i(C)ω + 2lds ∧ p∗1α

+2dl ∧ p∗1α]
= e2s[(1+ 2l)p∗1π

∗ω + 2ds ∧ (da + p∗1π
∗i(C)ω + 2lp∗1α)+ 2dl ∧ p∗1α].

If we choose l = −1/2,
LC̃2

μ = 2e2sds ∧ (p∗1π
∗i(C)ω − p∗1α + da).

Thus C̃2 is a symplectic vector field on (P, μ) if the closed 1-form π∗i(C)ω − α is
exact. If this is the case the lift C̃2 is hamiltonian and

fC̃2
= −ae2s .

Lemma 2.3 If C is a conformal vector field on (M, ω), it admits a lift C̃1 (resp. C̃2)
to (P, μ) which is conformal (resp. hamiltonian) if the closed 1-form π∗i(C)ω − α is
exact.

Let g be an algebra of conformal vector fields on (M, ω). Let X ∈ g be such that
LX∗ω = ω (where X∗x = d

dt exp−t X.x |0; x ∈ M). Then g = RX ⊕ g1, where the
vector fields associated to the elements of g1, are symplectic. We shall assume here
that they are hamiltonian; i.e., ∀ Y ∈ g1, i(Y ∗)ω = d fY . Consider the lifts of these
vector fields to (P, μ).

[X̃∗1, Ỹ
∗] = [ ¯̄X∗ + p∗1bE, ¯̄Y ∗ − f̃Y E]

= [ ¯̄X∗, ¯̄Y ∗]− p∗1π
∗(X fY )E − p∗1(Ȳ

∗b)E + f̃Y p
∗
1(Zb)E

= [X, Y ]
∗

+[−p∗1π
∗ω(X, Y )− p∗1π

∗ω(Y, X)+ p∗1π
∗ω(X, Y )+ f̃Y ]E

= [X, Y ]
∗ + p∗1π

∗(ω(X, Y )+ fY )E;
i([X∗, Y ∗])ω = −LY ∗ i(X

∗)ω = −(i(Y ∗)d + di(Y ∗))i(X∗)ω
= −i(Y ∗)ω − dω(X, Y ) = −d(ω(X, Y )+ fY ).

Hence
[X̃∗1, Ỹ

∗] = ˜[X∗, Y ∗].

A similar calculation shows that
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[X̃∗2, Ỹ
∗] = ˜[X∗, Y ∗].

Notice as before that LEμ = 0 and L∂sμ = −2μ.

Proposition 2.4 Let (M, ω) be the first term of a contact quadruple (M, N , α, π) and
let (P, μ) be the associated induced symplectic manifold. Then

(i) If G is a connected Lie group acting in a strongly hamiltonian way on (M, ω),
this action lifts to a strongly hamiltonian action of G̃ (= universal cover of G) on
(P, μ).

(ii) If X is a conformal vector field on (M, ω) it admits a conformal (resp. symplectic)
lift to (P, μ) if the closed 1-form π∗(i(X)ω)− α is exact. The symplectic lift is in
fact hamiltonian.

(iii) The vector field E on P is hamiltonian and the vector field ∂s is conformal.

Corollary 2.5 If (M, ω) admits a transitive hamiltonian action, (P, μ) admits a tran-
sitive conformal action. If (M, ω) admits a transitive conformal (hamiltonian) action,
then so does (P, μ).

The stability of the class of conformally homogeneous spaces under this construc-
tion leads us to the study of these spaces.

3 Conformally homogeneous symplectic manifolds

Definition 3.1 Let (M, ω) be a smooth connected 2n ≥ 4-dimensional symplectic
manifold. A connected Lie group G is said to act conformally on (M, ω) if

(i) ∀g ∈ G, g∗ω = c(g)ω.
(ii) There exists at least one g ∈ G such that c(g) �= 1.

As ω is closed, c(g) ∈ R; also c : G → R is a character of G. Let G1 = ker c; it is a
closed, normal, codimension 1 subgroup of G. Let g (resp. g1) be the Lie algebra of G
(resp. G1). Then there exists 0 �= X ∈ g such that

g = g1 ⊕ RX and c∗(X) = 1.

The 1-parametric group exp t X is such that

(exp t X)∗ω = etω

and this group exp t X is thus isomorphic to R. Hence the group G1 is connected and if
G is simply connected so is G1. If X∗ is the fundamental vector field on M associated
to X , remark that LX∗ω = −ω since X∗x = d

dt exp−t X · x |0.

Definition 3.2 A symplectic manifold (M, ω) of dimension 2n ≥ 4 is called confor-
mal homogeneous if there exists a Lie group G acting conformally and transitively on
(M, ω).
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We assume M and G connected. Then G̃ (= the universal cover of G) is the semi-
direct product of G̃1 (= the universal cover of G1) by R. By transitivity the orbits of
G1 are of dimension ≥ 2n − 1. So there are two cases:

(i) The maximum of the dimension of the G1 orbits is (2n − 1).
(ii) G1 admits an open orbit.

Case (i) By transitivity the dimension of all G1 orbits is (2n − 1). If we write as
above g = g1 ⊕ RX , the vector field X∗ is everywhere transversal to the G1 orbits. In
particular it is everywhere �= 0. Since g1 is an ideal in g, the group exp t X permutes
the G1 orbits. Clearly if θ1 is a G1 orbit, ∪t∈R exp t X · θ1 = M . The restriction ω|Tx θ1
has rank (2n − 1). Let Zx span the radical of ω|Tx θ1 and let α := −i(X∗)ω �= 0 (so
dα = ω). As αx (Zx ) �= 0, we normalize Zx so that αx (Zx ) = 1. Then

TxM = RX∗ ⊕ Txθ1 = RX∗ ⊕ (RZx ⊕ kerαx )

if αx = αx |Tx θ1 . If j : θ1 → M denotes the canonical injection,

α ∧ (dα)n−1 = j∗(α ∧ (ω)n−1) �= 0.

Thus the orbit θ1 is a contact manifold, and Z is the Reeb vector field. Notice that

(LX∗α)(X
∗) = X∗α(X∗) = 0,

(LX∗α)(Y
∗) = X∗α(Y ∗)− α([X∗, Y ∗])
= −X∗ω(X∗, Y ∗)+ ω(X∗, [X∗, Y ∗])
= −(LX∗ω)(X∗, Y ∗) = ω(X∗, Y ∗) = −α(Y ∗)

for any Y ∈ g1. Hence
LX∗α = −α.

This says that the various orbits of G1 have “conformally” equivalent contact structure;
i.e.,

αexp t X ·x (exp t X∗ · Y ∗) = etαx (Y
∗) Y ∈ G1.

Furthermore

ω([X∗, Z ], Y ∗) = X∗ω(Z , Y ∗)− (LX∗ω)(Z , Y ∗)− ω(Z , [X∗, Y ∗]) = 0

as [X∗, Y ∗] is tangent to the orbit. This says that [X∗, Z ] is proportional to Z ; also

α([X∗, Z ]) = X∗α(Z)− (LX∗α)(Z) = α(Z) = 1,

hence [X∗, Z ] = Z and thus

(exp t X)∗Zx = et Zexp t X ·x .

Finally

α([Y ∗, Z ]) = −ω(X∗, [Y ∗, Z ])
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= −Y ∗ω(X∗, Z)+ LY ∗ω(X∗, Z)+ ω([Y ∗, X∗], Z) = 0,

ω([Y ∗, Z ], Y ′∗) = Y ∗ω(Z , Y ′∗)− LY ∗ω(Z , Y ′∗)− ω(Z , [Y ∗, Y ′∗]) = 0.

Hence [Y ∗, Z ] must be proportional to Z and thus

[Y ∗, Z ] = 0

which says that the Reeb vector is G1 stable.

Case (ii) G1 admits an open orbit. We shall assume that this orbit coincides with M .
Thus (M, ω) is a G1 homogeneous sympletic manifold and ω is exact.

ω = dη where η := −i(X∗)ω.

Assume that the action of G1 is strongly hamiltonian; i.e., ∀Y ∈ g1

i(Y ∗)ω = d fY ,

{ fY , fY ′ } = −ω(Y ∗, Y ′∗) = f[Y,Y ′]

where U∗ denotes the fundamental vector field associated to U ∈ g1 on θ1. Then

LY ∗η = −LY ∗ i(X
∗)ω = −(LY ∗ i(X

∗)− i(X∗)LY ∗)ω = −i([Y ∗, X∗])ω
= d f[X,Y ] = d fDY

if D = adX |g1 . We also haveLX∗η = −η.
By Kostant’s theorem we may identify M (up to a covering) with a coadjoint orbit

θ1 of G1. Let ξ ∈ θ1, let π : G1 → θ1 : g1 → g1 · ξ = Ad∗g1ξ and let H1 be
the stabilizer of ξ in G1. It is no restriction to assume X∗ξ = 0 (since one can replace
X by X + Y for any Y ∈ g1 and any tangent vector at ξ can be written in the form
Y ∗ξ ). Assuming G (hence G1) to be connected and simply connected, the derivation

D exponentiates to a 1-parametric automorphism group of g1 given by et D and these
“exponentiate” to a 1-parametric automorphism group of G1 which will be denoted
a(t). The product law in G = G1 · R reads:

(g1, t1)(g2, t2) = (g1a(t1)g2, t1 + t2).

As X∗ξ = 0 we have:

(1, t) · ξ = ξ,

(1, t)(g1, 0) · ξ = (a(t)g1, t)ξ = (a(t)g1, 0)(1, t) · ξ
= (a(t)g1, 0) · ξ = (a(t)g1 ◦ g−11 , 0)(g1, 0) · ξ.

In particular if g1 ∈ H1 (= stabilizer of ξ in G1) a(t)g1 ∈ H1; hence if Y ∈ h̄1 (= Lie
algebra of H1), [Y, X ] ∈ h̄1. Furthermore

(LX∗ω)(Y ∗1 , Y
∗
2 ) = −ω(Y ∗1 , Y

∗
2 )

= X∗ω(Y ∗1 , Y
∗
2 )− ω([X∗, Y ∗1 ], Y

∗
2 )− ω(Y ∗1 , [X

∗, Y ∗2 ]).
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The above relation at ξ reads:

ωξ (Y
∗
1 , Y

∗
2 ) = ωξ ([X, Y ∗1 ], Y

∗
2 )+ ωξ (Y

∗
1 , [X, Y ∗2 ]).

But on θ1, ω is the Kostant–Souriau symplectic form; hence

〈ξ, [Y1, Y2]〉 = 〈ξ, D[Y1, Y2]〉,
〈ξ − ξ ◦ D, [Y1, Y2]〉 = 0.

That is ξ − ξD vanishes identically on the derived algebra g′1.
Conversely suppose we are given an algebra g1, an element ξ ∈ g∗1 and a derivation

D of g1 such that
ξ − ξ ◦ D vanishes on g′1.

Then, if, as above, H1 denotes the stabilizer of ξ in G1 and h̄1 its Lie algebra, one
observes that Y ∈ h̄1 implies DY ∈ h̄1. On the orbit θ1 = G1 · ξ = G1/H1 define the
vector field X̂ at ξ̃ = g1 · ξ by:

X̂ ξ̃ =
d

dt
a(−t)g1 · g−11 · ξ̃ |t=0.

This can be expressed in a nicer way as:

〈X̂ ξ̃=g1ξ , Z〉 =
d

dt
〈a−t (g1)g−11 g1ξ, Z〉|0 = d

dt
〈a−t (g1)ξ, Z〉|0

for Z ∈ g1,

Ad a−t (g−11 )Z = d

ds
a−t (g−11 )esZa−t (g1)|0 = d

ds
a−t (g−11 ate

sZ g1)|0

= d

ds
a−t (g−11 ese

t DZ g1)|0 = a−t∗Ad g−11 et D Z ,

d

dt
Ad a−t (g−11 )Z |0 = −D ◦ Adg−11 Z + Ad g−11 DZ ,

i.e.,
X̂ ξ̃=gξ = −ξ ◦ D ◦ Ad g−11 + ξ ◦ Ad g−11 ◦ D.

Observe that this expression has a meaning; indeed if we assume that g ∈ H1
(= stabilizer of ξ )

ξ ◦ Ad g−1 = ξ.

Also if Y ∈ h̄1,
d
ds 〈ξ ◦ D ◦ Ade−sY 〉|s = −〈ξ ◦ D ◦ adY ◦ Ade−sY , Z〉 = 0 so that

〈ξ ◦ D ◦ Ade−sY , Z〉 = 〈ξ ◦ D, Z〉. Thus X̂ξ = 0 and, if h ∈ H1:

X̂ ξ̃=g·ξ=g·h·ξ = ξ ◦ D ◦ Ad h−1 ◦ Ad y−1 + ξ ◦ Ad h−1 ◦ Ad g−1D
= ξ ◦ D ◦ Ad g−1 + ξ ◦ Ad g−1D.

Furthermore if Y ∈ g1:
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[Y ∗, X̂ ]ξ̃ = (LY ∗ X̂)ξ̃ =
d

dt
(ϕY ∗
−t∗ X̂ϕY∗

t ξ̃
)|0 = −(DY )∗

ξ̃
.

Hence, if Y1, Y2 ∈ g1:

(L X̂ω)ξ (Y
∗
1 , Y

∗
2 ) = X̂ξω(Y ∗1 , Y

∗
2 )− ω((DY1)

∗, Y ∗2 )− ω(Y ∗1 , (DY2)
∗)

= 〈−ξ, D[Y1, Y2]〉 = −〈ξ, [Y1, Y2]〉 = −ωξ (Y
∗
1 , Y

∗
2 )

and similarly at any other point, so that X̂ is a conformal vector field (L X̂ω = −ω).
We conclude by

Proposition 3.3 Let (M, ω)be a smooth connected 2n(≥ 4)-dimensional symplectic
manifold which is conformal homogeneous and let G denote the connected component
of the conformal group. Then

(i) G admits a codimension 1 closed, connected, invariant subgroup G1 which acts
symplectically on M and G/G1 = R.

(ii) If the maximum dimension of the G1 orbits is (2n − 1), M is a union of (2n − 1)-
dimensional G1 orbits; each of these orbits is a contact manifold.

(iii) If G1 acts transitively on M in a strongly hamiltonian way, M is a covering of a
G1 orbit θ in g∗1 (= dual of the Lie algebra g1 of G1). Furthermore if ξ ∈ θ , there
exists a derivation D of g1 such that

ξ − ξ ◦ D
vanishes on the derived algebra. Conversely if we are given an element ξ ∈ g∗1
and a derivation such that ξ − ξ ◦ D vanishes on the derived algebra, the orbit θ
has the structure of a conformal homogeneous symplectic manifold.

4 Induced connections

We consider the situation where we have a smooth symplectic manifold (M, ω) of
dim 2n, a contact quadruple (M, N , α, π) and the corresponding induced symplectic
manifold (P, μ).

Let as before Z be the Reeb vector field on the contact manifold (N , α) (i.e.,
i(Z)dα = 0 and α(Z) = 1). At each point x ∈ N , Ker (π∗x ) = RZ and LZα = 0.
Recall that P = N × R and μ = 2e2s ds ∧ p∗1α + e2s dp∗1α where s is the variable
along R and p1 : P → N the projection on the first factor.

Let ∇ be a smooth symplectic connection on (M, ω). We shall now define a con-
nection ∇P on P induced by ∇.

Let us first recall some notation: Denote by p the projection p = π ◦ p1 : P → M .

If X is a vector field on M , ¯̄X is the vector field on P such that

(i) p∗ ¯̄X = X, (ii) (p∗1α)(
¯̄X) = 0, (iii) ds( ¯̄X) = 0.

We denote by E the vector field on P such that
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(i) p1∗E = Z , (ii) ds(E) = 0.

Clearly the values at any point of P of the vector fields ¯̄X , E, S = ∂s span the tangent
space to P at that point and we have

[E, ∂s] = 0 [E, ¯̄X ] = 0 [∂s,
¯̄X ] = 0 [ ¯̄X , ¯̄Y ] = [X, Y ]− p∗ω(X, Y )E .

The formulas for ∇P are:

∇P
¯̄X
¯̄Y = ∇XY − 1

2 p
∗(ω(X, Y ))E − p∗(ŝ(X, Y ))∂s,

∇P
E
¯̄X = ∇P

¯̄X E = 2σ X + p∗(ω(X,U ))∂s,

∇P
∂s
¯̄X = ∇P

¯̄X ∂s = X ,

∇P
E E = p∗ f ∂s − 2U ,

∇P
E ∂s = ∇P

∂s
E = E,

∇P
∂s
∂s = ∂s,

where f is a function on M , U is a vector field on M , ŝ is a symmetric 2-tensor on M ,
and σ is the endomorphism of T M associated to s, hence ŝ(X, Y ) = ω(X, σY ).

Notice first that these formulas have the correct linearity properties and yield a
torsion free linear connection on P . One checks readily that ∇Pμ = 0 so that ∇P is a
symplectic connection on (P, μ).

We now compute the curvature R∇P
of this connection ∇P . We get

R∇
P
( ¯̄X , ¯̄Y ) ¯̄Z = R∇(X, Y )Z ,

+2ω(X, Y )σ Z − ω(Y, Z)σ X + ω(X, Z)σY − ŝ(Y, Z)X + ŝ(X, Z)Y ,

+p∗[ω(X, D(σ,U )(Y, Z))− ω(Y, D(σ,U )(X, Z)]∂s,

R∇
P
( ¯̄X , ¯̄Y )E = 2D(σ,U )(X, Y )− 2D(σ,U )(Y, X)

+p∗[ω(X, 1
2 f Y − ∇YU − 2σ 2Y )− ω(Y, 1

2 f X − ∇XU − 2σ 2X)]∂s,

R∇
P
( ¯̄X , E) ¯̄Y = 2D(σ,U )(X, Y )− p∗[ω(Y, 1

2 f X − ∇XU − 2σ 2X)]∂s,

R∇
P
( ¯̄X , E)E = 21

2 f X − ∇XU − 2σ 2X + p∗[X f + 4s(X, u)]∂s,

R∇
P
( ¯̄X , ¯̄Y )∂s = 0 R∇

P
( ¯̄X , E)∂s = 0

R∇
P
( ¯̄X , ∂s)

¯̄Y = 0 R∇
P
( ¯̄X , ∂s)E = 0 R∇

P
( ¯̄X , ∂s)∂s = 0

R∇
P
(E, ∂s)

¯̄X = 0 R∇
P
(E, ∂s)E = 0 R∇

P
(E, ∂s)∂s = 0,

where
D(σ,U )(Y, Y ′) := (∇Yσ)Y ′ + 1

2ω(Y ′,U )Y − 1
2ω(Y, Y ′)U.
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The Ricci tensor r∇P
of the connection ∇P is given by

r∇
P
( ¯̄X , ¯̄Y ) = r∇(X, Y )+ 2(n + 1)ŝ(X, Y ),

r∇
P
( ¯̄X , E) = −(2n + 1)ω(X, u)− 2Tr[Y → (∇Yσ)(X)],

r∇
P
( ¯̄X , ∂s) = 0,

r∇
P
(E, E) = 4Tr(σ 2)− 2n f + 2Tr[X → ∇XU ],

r∇
P
(E, ∂s) = 0,

r∇
P
(∂s, ∂s) = 0.

Theorem 4.1 In the framework described above, ∇P is a symplectic connection on
(P, μ) for any choice of ŝ,U and f . The vector field E on P is affine ( L Ẽ∇P = 0) and
symplectic ( L Ẽμ = 0); the vector field ∂s on P is affine and conformal (L∂sμ = 2μ).

Furthermore, choosing

ŝ = −1
2(n + 1)

r∇ ,

U : = ω(U, ·) = 2

2n + 1
Tr[Y → ∇Yσ ],

f = 1

2n(n + 1)2
Tr(ρ∇)2 + 1

n
Tr[X → ∇XU ],

we have:

• the connection ∇P on (P, μ) is Ricci-flat (i.e., has zero Ricci tensor);
• if the symplectic connection ∇ on (M, ω) is of Ricci-type, then the connection ∇P

on (P, μ) is flat;
• if the connection ∇P is locally symmetric, the connection ∇ is of Ricci-type, hence
∇P is flat.

Proof. The first point is an immediate consequences of the formulas above for r∇P
.

The second point is a consequence of the differential identities satisfied by the Ricci-
type symplectic connections (which appear in M. Cahen, S. Gutt, J. Horowitz and
J. Rawnsley, Homogeneous symplectic manifolds with Ricci-type curvature, J. Geom.
Phys. 38 (2001) 140–151).

The third point comes from the fact that (∇P
¯̄Z R∇P

)( ¯̄X , ¯̄Y ) ¯̄T contains only one term

in E whose coefficient is 1
2W

∇P
(X, Y, T, Z). $%

5 A reduction construction

We present here a procedure to construct symplectic connections on some reduced
symplectic manifolds; this is a generalisation of the construction given by P. Baguis
and M. Cahen [Lett. Math. Phys. 57 (2001), pp. 149–160]. Let (P, μ) be a symplectic
manifold of dimension (2n + 2). Assume P admits a complete conformal vector field
S:
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LSμ = 2μ; define α := 1
2 i(S)μ so that dα = μ.

Assume also that P admits a symplectic vector field E commuting with S,

LEμ = 0, [S, E] = 0, (⇒ LEα = 0).

Then Sμ(S, E) = (LSμ)(S, E) = 2μ(S, E), so if x is a point of P where μx (S, E) �=
0 and if s is a parameter along the integral line γ of S passing through x and taking
value 0 at x , we have μγ(s)(S, E) = e2sμx (S, E).

Assume P ′ := {x ∈ P|μx (S, E) > 0} �= ∅ and let:

# = {x ∈ P | μx (S, E) = 1} = {x ∈ P | fE (x) = 1
2 }

where fE = −i(E)α = − 1
2μ(S, E) so that d fE = −LEα + i(E)dα = i(E)μ. Thus

# �= ∅ and it is a closed hypersurface (called the constraint hypersurface). Remark
that P ′ ∼= # × R. The tangent space to the hypersurface # is given by

Tx# = ker(d fE )x = ker(i(E)μ)x = E⊥μ.

The restriction of μx to Tx# has rank 2n − 2 and a radical spanned by Ex . Remark
thus that the restriction of α to # is a contact 1-form on #.

Let ∼ be the equivalence relation defined on # by the flow of E . Assume that the
quotient #/ ∼ has a 2n-dimensional manifold M structure so that π : # → #/ ∼=
M is a smooth submersion. Define on # a “horizontal” distribution of dimension 2n,
H, by

H => E, S <⊥μ,

and remark that π∗|Hy
: Hy → Tx=π(y)M is an isomorphism. Define as usual the

reduced 2-form ω on M by

ωx=π(y)(Y1, Y2) = μy(Ȳ1, Ȳ2)

where Ȳi (i = 1, 2) is defined by (i) π∗Ȳi = Yi (ii) Ȳi ∈ Hy . Notice that π∗[E, Ȳ ] = 0,
and μ(S, [E, Ȳ ]) = −LEμ(S, Ȳ )+ Eμ(S, Ȳ ) = 0 hence

[E, Ȳ ] = 0.

The definition of ωx does not depend on the choice of y. Indeed

Eμ(Ȳ1, Ȳ2) = LEμ(Ȳ1, Ȳ2)+ μ([E, Ȳ1], Ȳ2)+ μ(Ȳ1, [E, Ȳ2]) = 0.

Clearly ω is of maximal rank 2n asH is a symplectic subspace. Finally

π∗(dω(Y1, Y2, Y3)) = +�
123

(Y1ω(Y2, Y3)− ω([Y1, Y2], Y3))

= +�
123

(Ȳ1μ(Ȳ2, Ȳ3)− μ([Y1, Y2], Y 3))

and
[Ȳ1, Ȳ2] = [Y1, Y2]+ μ(S, [Ȳ1, Ȳ2])E .

Hence ω is closed and thus symplectic. Clearly π∗ω = μ|# = d(α|#).
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Remark 5.1 The symplectic manifold (M, ω) is the first element of a contact quadru-
ple (M, #, 1

2α|# , π) and the associated symplectic (2n + 2)-dimensional manifold is
(P ′, μ|P ′ ).

We shall now consider the reduction of a connection. Let (P, μ), E, S, #, M, ω

be as above. Let ∇P be a symplectic connection on P and assume that the vector field
E is affine (LE∇P = 0).

Then define a connection ∇# on # by

∇#
A B := ∇P

A B − μ(∇P
A B, E)S = ∇P

A B + μ(B,∇P
A E)S.

Then:

∇#
A B − ∇#

B A − [A, B] = (μ(B,∇P
A E)− μ(A,∇P

B E))S

= (μ(B,∇P
E A + [A, E])− μ(A,∇P

E B + [B, E]))S

= (Eμ(B, A)− μ(B, [E, A])− μ([E, B], A))S

= (LEμ(B, A))S = 0.

Also

(LE∇#)AB = [E,∇P
A B + μ(B,∇P

A E)S]

− ∇P
[E,A]B − μ(B,∇P

[E,A]E)S − ∇P
A [E, B]− μ([E, B],∇P

A E)S

= (LE∇P )AB + (Eμ(B,∇P
A E)− μ(B,∇P

[E,A]E)− μ([E, B],∇P
A E))S

= (LEμ)(B,∇P
A E)+ μ(B, [E,∇P

A E]− ∇P
[E,A]E)S = 0,

i.e., ∇# is a torsion free connection and E is an affine vector field for ∇# .
Define a connection ∇M on M by:

∇M
Y1
Y2(y) = ∇#

Ȳ1
Ȳ2(y)− μ(Ȳ2,∇P

Ȳ1
S)E .

If x ∈ M , this definition does not depend on the choice of y ∈ π−1(x). Also

∇M
Y1
Y2 −∇M

Y2
Y1 − [Y1, Y2] = ∇#

Ȳ1
Ȳ2 − ∇#

Ȳ2
Ȳ1 − [Y1, Y2]

+ (−μ(Ȳ2,∇P
Ȳ1
S)+ μ(Ȳ1,∇P

Ȳ2
S))E

= μ(S, [Ȳ1, Ȳ2])E + (μ(∇P
Ȳ1
Ȳ2, S)− μ(∇P

Ȳ2
Ȳ1, S))E = 0.

Finally

π∗((∇M
Y1ω)(Y2, Y3)) = π∗(Y1ω(Y2, Y3)− ω(∇M

Y1Y2, Y3)− ω(Y2,∇M
Y1Y3))

= Ȳ1μ(Ȳ2, Ȳ3)− μ(∇P
Ȳ1
Ȳ2 + μ(Ȳ2,∇P

Ȳ1
E)S − μ(Ȳ2,∇P

Ȳ1
S)E, Ȳ3)

− μ(Ȳ2,∇P
Ȳ1
Ȳ3 + μ(Ȳ3,∇P

Ȳ1
E)S − μ(Ȳ3,∇P

Ȳ1
S)E)

= 0,

i.e., the connection ∇M is symplectic.
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Lemma 5.2 Let (P, μ) be a symplectic manifold admitting a symplectic connection
∇P , a conformal vector field S which is complete, a symplectic vector field E which is
affine and commutes with S. If the constraint manifold # = {x ∈ P|μx (S, E) = 1} is
not empty, and if the reduction of# is a manifold M, this manifold admits a symplectic
structure ω and a natural reduced symplectic connection ∇M.

In particular:

Theorem 5.3 Let (P, μ) be a symplectic manifold admitting a conformal vector field
S (LSμ = 2μ) which is complete, a symplectic vector field E which commutes with
S and assume that, for any x ∈ P, μx (S, E) > 0. If the reduction of # = {x ∈ P |
μx (S, E) = 1} by the flow of E has a manifold structure M with π : # → M a
surjective submersion, then M admits a reduced symplectic structure ω and (P, μ) is
obtained by induction from (M, ω) using the contact quadruple (M, #, 1

2 i(S)μ|# , π).
In particular (P, μ) admits a Ricci-flat connection.

Reducing (P, μ) as above and inducing back we see that Theorem 4.1 immediately
proves this.
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Summary. It is proven that a local Lie algebra in the sense of A. A. Kirillov determines the
base manifold up to a diffeomorphism provided the anchor map is nowhere-vanishing. In par-
ticular, the Lie algebras of nowhere-vanishing Poisson or Jacobi brackets determine manifolds.
This result has been proven for different types of differentiability: smooth, real-analytic, and
holomorphic.
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1 Introduction

The classical result of Shanks and Pursell [PS] states that the Lie algebra Xc(M) of
all compactly supported smooth vector fields on a smooth manifold M determines the
manifold M , i.e., the Lie algebras Xc(M1) and Xc(M2) are isomorphic if and only
if M1 and M2 are diffeomorphic. A similar theorem holds for other complete and
transitive Lie algebras of vector fields [KMO1, KMO2] and for the Lie algebras of all
differential and pseudodifferential operators [DS, GP].

There is a huge list of papers in which special geometric situations (hamiltonian,
contact, group invariant, foliation preserving, etc., vector fields) are concerned. Let us
mention the results of Omori [O1] (Ch. X) and [O2] ([Ch. XII), or [Ab, AG, FT, HM,
Ry, G5], for which specific tools were developed in each case. There is however a case
when the answer is more or less complete in the whole generality. These are the Lie
algebras of vector fields which are modules over the corresponding rings of functions
(we shall call them modular). The standard model of a modular Lie algebra of vector

∗Research supported by the Polish Ministry of Scientific Research and Information Tech-
nology under grant No 2 P03A 020 24.
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fields is the Lie algebra X (F) of all vector fields tangent to a given (generalized) foli-
ation F . If Pursell–Shanks-type results are concerned in this context, let us recall the
work of Amemiya [Am] and our paper [G1], where the developed algebraic approach
made it possible to consider analytic cases as well. The method of Shanks and Pursell
consists of the description of maximal ideals in the Lie algebra Xc(M) in terms of
the points of M : maximal ideals are of the form p̃ for p ∈ M, where p̃ consists of
vector fields which are flat at p. This method, however, fails in analytic cases, since
analytic vector fields flat at p are zero on the corresponding component of M. There-
fore in [Am, G1] maximal finite-codimensional subalgebras are used instead of ideals.
A similar approach is used in [GG] for proving that the Lie algebras associated with
Lie algebroids determine base manifolds.

The whole story for modular Lie algebras of vector fields has been in a sense
finished by the brilliant purely algebraic result of Skryabin [S1], where one associates
the associative algebra of functions with the Lie algebra of vector fields without any
description of the points of the manifold as ideals. This final result implies in particular
that, in the case when modular Lie algebras of vector fields contain finite families
of vector fields with no common zeros (we say that they are strongly non–singular),
isomorphisms between them are generated by isomorphisms of corresponding algebras
of functions, i.e., by diffeomorphisms of underlying manifolds.

On the other hand, there are many geometrically interesting Lie algebras of vector
fields which are not modular, e.g., the Lie algebras of hamiltonian vector fields on a
Poisson manifold etc. For such algebras the situation is much more complicated and no
analog of Skryabin’s method is known in these cases. In [G6] a Pursell–Shanks-type
result for the Lie algebras associated with Jacobi structures on a manifold has been
announced. The result suggests that the concept of a Jacobi structure should be devel-
oped for sections of an arbitrary line bundle rather than for the algebra of functions,
i.e., sections of the trivial line bundle. This is exactly the concept of local Lie algebra
in the sense of A. A. Kirillov [Ki] which we will call also Jacobi–Kirillov bundle.

In the present note we complete the Lie algebroid result of [GG] by proving that
the local Lie algebra determines the base manifold up to a diffeomorphism if and only
if the anchor map is nowhere-vanishing (Theorem 7). The methods, however, are more
complicated (due to the fact that the Lie algebra of Jacobi–hamiltonian vector fields is
not modular) and different from those in [GG]. A part of these methods is a modifica-
tion of what has been sketched in [G6]. However, the full generalization of [G6] for
local Lie algebras on arbitrary line bundles, i.e., the description of isomorphisms of
local Lie algebras, is much more delicate and we postpone it to a separate paper. Note
also that in our approach we admit different categories of differentiability: smooth,
real-analytic, and holomorphic (Stein manifolds).

2 Jacobi modules

What we will call Jacobi module is an algebraic counterpart of geometric structures
which include Lie algebroids and Jacobi structures (or, more generally, local Lie al-
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gebras in the sense of Kirillov [Ki]). For a short survey one can see [G7], where these
geometric structures appeared under the name of Lie QD-algebroids.

The concept of a Lie algebroid (or its pure algebraic counterpart—a Lie pseudoal-
gebra) is one of the most natural concepts in geometry.

Definition 1 Let R be a commutative and unitary ring, and let A be a commutative R-
algebra. A Lie pseudoalgebra over R and A is an A-module E together with a bracket
[· , ·] : E × E → E on the module E , and an A-module morphism α : E → Der(A)

from E to the A-module Der(A) of derivations of A, called the anchor of E , such that

(i) the bracket on E is R-bilinear, alternating, and satisfies the Jacobi identity:

[[X, Y ], Z ] = [X, [Y, Z ]]− [Y, [X, Z ]].

(ii) For all X, Y ∈ E and all f ∈ A we have

[X, f Y ] = f [X, Y ]+ α(X)( f )Y ; (1)

(iii) α([X, Y ]) = [α(X), α(Y )]c for all X, Y ∈ E , where [· , ·]c is the commutator
bracket on Der(A).

A Lie algebroid on a vector bundle E over a base manifold M is a Lie pseudoalgebra on
the (R,C∞(M))-module E = Sec(E) of smooth sections of E . Here the anchor map
is described by a vector bundle morphism α : E → T M which induces the bracket
homomorphism from (E, [· , ·]) into the Lie algebra (X (M), [· , ·]v f ) of vector fields
on M . In this case, as in the case of any faithfulA-module E , i.e., when f X = 0 for all
X ∈ E implies f = 0, the axiom (iii) is a consequence of (i) and (ii). Of course, we can
consider Lie algebroids in the real-analytic or holomorphic (on complex holomorphic
bundles over Stein manifolds) category as well.

Lie pseudoalgebras appeared first in a paper by Herz [He] but one can find similar
concepts under more than a dozen names in the literature (e.g., Lie modules, (R, A)-
Lie algebras, Lie–Cartan pairs, Lie–Rinehart algebras, differential algebras, etc.). Lie
algebroids were introduced by Pradines [Pr] as infinitesimal parts of differentiable
groupoids. In the same year a book by Nelson [Ne] was published, where a general
theory of Lie modules together with a big part of the corresponding differential calcu-
lus can be found. We also refer to a survey article by Mackenzie [Ma2].

Note that Lie algebroids on a singleton base space are Lie algebras. Another canon-
ical example is the tangent bundle T M with the canonical bracket [· , ·]v f on the space
X (M) = Sec(T M) of vector fields.

The property (1) of the bracket in the A-module E can be expressed as the fact
that adX = [X, ·] is a quasi-derivation in E , i.e., an R-linear operator D in E such
that D( f Y ) = f D(Y )+ D̂( f )Y for any f ∈ A and certain derivation D̂ of A called
the anchor of D. The concept of quasi-derivation can be traced back to N. Jacobson
[J1, J2] as a special case of his pseudo-linear endomorphism. It has appeared also in
[Ne] under the name of a module derivation and used to define linear connections in
the algebraic setting. In the geometric setting, for Lie algebroids, it has been studied in
[Ma1], Ch. III, under the name covariant differential operator.
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Starting with the notion of Lie pseudoalgebra we obtain the notion of Jacobi mod-
ule when we drop the assumption that the anchor map is A-linear.

Definition 2 Let R be a commutative and unitary ring, and let A be a commutative
R-algebra. A Jacobi module over (R,A) is an A-module E together with a bracket
[· , ·] : E × E → E on the module E , and an R-module morphism α : E → Der(A)

from E to the A-module Der(A) of derivations of A, called the anchor of E , such that
(i)–(iii) of Definition 1 are satisfied. Again, for faithful E , the axiom (iii) follows from
(i) and (ii). This concept is in a sense already present in [He], although in [He] it has
been assumed that A is a field. It has been observed in [He] that every Jacobi module
(over a field) of dimension > 1 is just a Lie pseudoalgebra.

Definition 3 (cf. [G7]) A Lie QD-algebroid is a Jacobi module structure on the
(R,C∞(M)-module E = Sec(E) of sections of a vector bundle E over a manifold
M .

The case rank(E) = 1 is special for many reasons and it was originally studied
by A. A. Kirillov [Ki]. For a trivial bundle, well-known examples are those given by
Poisson or, more generally, Jacobi brackets (cf. [Li]). In [Ki] such structures on line
bundles are called local Lie algebras and in [Mr] Jacobi bundles. We will refer to them
also as local Lie algebras or Jacobi–Kirillov bundles and to the corresponding brackets
as to Jacobi–Kirillov brackets.

Definition 4 A Jacobi–Kirillov bundle (local Lie algebra in the sense of Kirillov) is
a Lie QD-algebroid on a vector bundle of rank 1. In other words, a Jacobi–Kirillov
bundle is a Jacobi module structure on the (R,C∞(M))-module E of sections of a
line bundle E over a smooth manifold M . The corresponding bracket on E we call a
Jacobi–Kirillov bracket and the values of the anchor map α : E → X (M) we call
Jacobi–hamiltonian vector fields.

It is easy to see (cf. [G7]) that any Lie QD-algebroid on a vector bundle of rank> 1
must be a Lie algebroid. Of course, we can consider Lie QD-algebroids and Jacobi–
Kirillov bundles in real-analytic or in holomorphic category as well.

Since quasi-derivations are particular first-order differential operators in the alge-
braic sense, it is easy to see that, for a Jacobi module E over (R,A), the anchor map
α : E → Der(A) is also a first-order differential operator, i.e.,

α( f gX) = f α(gX)+ gα( f X)− f gα(X) (2)

for any f, g ∈ A and X ∈ E . Denoting the Jacobi–hamiltonian vector field α(X)

shortly by X̂ , we can write for any f, g ∈ A and X, Y ∈ E ,

[gX, f Y ] = ĝX( f )Y − f · Ŷ (g)X + f g[X, Y ] (3)

= g · X̂( f )Y − f̂ Y (g)X + f g[X, Y ],
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so that for the map �X : A ×A → A defined by �X (g, f ) := ĝX( f ) − gX̂( f ) we
have

�X (g, f )Y = −�Y ( f, g)X. (4)

The above identity implies clearly that, roughly speaking, rankAE = 1 ‘at points where
� is non-vanishing’ (cf. [G7]) and that

�X (g, f )X = −�X ( f, g)X. (5)

The identity (5) does not contain much information about�X if there is ‘much torsion’
in the module E . But if, for example, there is a torsion-free element in E , say X0, (this is
the case for the module of sections of a vector bundle), then the situation is simpler. In
view of (5), �X0 is skew-symmetric and, in turn, by (4) every �X is skew-symmetric.
Every �X is by definition a derivation with respect to the second argument, so, being
skew-symmetric, it is a derivation also with respect to the first argument. Since in view
of (3),

[gX, f X ] = (
gX̂( f )− f · X̂(g)+�X (g, f )

)
X,

and since �X and X̂ respect the annihilator Ann(X) = { f ∈ A : f X = 0}, we get
easily the following.

Proposition 1 If E is a Jacobi module over (R,A), then, for every X ∈ E , the map
�X : A×A→ A induces a skew-symmetric bi-derivation of A/Ann(X), the deriva-
tion X̂ of A induces a derivation of A/Ann(X) and the bracket

{ f , g}X = �X ( f , g)+ f · X̂(g)− g · X̂( f ), (6)

where f denotes the class of f ∈ A in A/Ann(X), is a Jacobi bracket on A/Ann(X)

associated with the Jacobi structure (�X , X̂). Moreover, A/Ann(X) - f �→ f X ∈ E
is a Lie algebra homomorphism of the bracket {·, ·}X into [· , ·].
For pure algebraic approaches to Jacobi brackets we refer to [S2, S3, G4].

Corollary 1 If the A-module E is generated by torsion-free elements, then for every
X ∈ E , the map �X : A×A→ A is a skew-symmetric bi-derivation and the bracket

{ f, g}X = �X ( f, g)+ f · X̂(g)− g · X̂( f ), (7)

is a Jacobi bracket on A associated with the Jacobi structure (�X , X̂). Moreover,
A - f �→ f X ∈ E is a Lie algebra homomorphism of the bracket {·, ·}X into [· , ·].

For any torsion-free generated Jacobi module, e.g., a module of sections of a vector
bundle, we have additional identities as shows the following.

Proposition 2 If the A-module E is generated by torsion-free elements, then for all
f1, . . . , fm ∈ A, m ≥ 2, and all X, Y ∈ E ,

(a) (m − 1)[FX, Y ] =∑m
i=1[Fi X, fi Y ]− [X, FY ]
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and

(b) (m − 2)[FX, Y ] =∑m−1
i=1 [Fi X, fi Y ]+ [FmY, fm X ],

where F =∏m
i=1 fi , Fk =

∏
i �=k fi .

Proof. (a) We have (cf. (3))

m∑
i=1

[Fi X, fi Y ] =
m∑
i=1

(
Fi X̂( fi )Y − fi Ŷ (Fi )X + F[X, Y ]+�X (Fi , fi )Y

)
= X̂(F)Y − (m − 1)Ŷ (F)X + mF[X, Y ]+

∑
i �= j

Fi j�X ( f j , fi )Y

= [X, FY ]+ (m − 1)[FX, Y ]+
∑
i �= j

Fi j�X ( f j , fi )Y,

where Fi j =
∏

k �=i, j fk . The calculations are based on the Leibniz rule for derivations:

X̂

(
m∏
i=1

fi

)
=

m∑
i=1

Fi X̂( fi ),

etc. Since, due to Corollary 1, �X is skew-symmetric and Fi j = Fji , we have∑
i �= j

Fi j�X ( f j , fi )Y = 0

and (a) follows.

(b) In view of (a), we have

(m − 2)[FX, Y ] =
m∑
i=1

[Fi X, fi Y ]− [X, FY ]− [FX, Y ]

=
m−1∑
i=1

[Fi X, fi Y ]+ [FmX, fmY ]− [X, Fm fmY ]− [Fm fm X, Y ].

But
[FmX, fmY ]− [X, Fm fmY ]− [Fm fm X, Y ] = [FmY, fm X ]

is a particular case of (a). $%

3 Useful facts about associative algebras

In what follows, A will be an associative commutative unital algebra over a field K of
characteristic 0. Our standard model will be the algebra C(N ) of class C functions on a
manifold N of class C, C = C∞,Cω,H. Here C∞ refers to the smooth category with
K = R, Cω – to the R-analytic category with K = R, andH – to the holomorphic cat-
egory of Stein manifolds with K = C (cf. [G1, AG]). All manifolds are assumed to be
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paracompact and second countable. It is obvious what is meant by a Lie QD-algebroid
or a Jacobi–Kirillov bundle of class C. The rings of germs of class C functions at a
given point are noetherian in analytic cases, which is no longer true in the C∞ case.
However, all the algebras C(N ) are in a sense noetherian in finite codimension. To
explain this, let us start with the following well-known observation.

Theorem 1 Every maximal finite-codimensional ideal of C(N ) is of the form p = { f ∈
C(N ) : f (p) = 0} for a unique p ∈ N and p is finitely generated.

Proof. The form of such ideals is proven e.g., in [G1], Proposition 3.5. In view of
embedding theorems for all types of manifolds we consider, there is an embedding
f = ( f1, . . . , fn) : N → Kn , fi ∈ C(N ). Then, the ideal p is generated by { fi −
fi (p) · 1 : i = 1, . . . , n}. In the smooth case it is obvious, in the analytic cases it can
be proven by means of some coherent analytic sheaves and methods parallel to those
in [G2], Note 2.3. $%

Remark Note that in the case of a non-compact N there are maximal ideals of C(N )

which are not of the form p. They are of course of infinite codimension. It is not
known if the above theorem holds also for manifolds which are not second countable
(cf. [G8]).

For a subset B ⊂ A, by Sp(A, B) we denote the set of those maximal finite-
codimensional ideals of A which contain B. For example, Sp(A, {0}) is just the set
of all maximal finite-codimensional ideals which we denote shortly by Sp(A). Put
B = ∩I∈Sp(A,B) I . For an ideal I ⊂ A, by

√
I we denote the radical of I , i.e.,

√
I = { f ∈ A : f n ∈ I, for some n = 1, 2, . . . }.

The following easy observations will be used in the sequel.

Theorem 2 (a) If I is an ideal of codimension k in A, then
√
I = I and (I )k ⊂ I .

(b) Every finite-codimensional prime ideal in A is maximal.
(c) If a derivation D ∈ Der(A) preserves a finite-codimensional ideal I in A, then

X (A) ⊂ I .
(d) If I1, . . . , In are finite-codimensional and finitely generated ideals of A, then the

ideal I1· · ·In is finite-codimensional and finitely generated.

Proof. (a) The descending series of ideals

I + I ⊃ I + (I )2 ⊃ · · ·
stabilizes at kth step at most, so I + (I )k = I + (I )k+1. Applying Nakayama’s Lemma
to the finite-dimensional module (I+(I )k)/I over the algebra A/I , we get (I+(I )k)/
I = {0}, i.e., (I )k ⊂ I , thus I ⊂ √I . Since for all J ∈ Sp(A, I )we have

√
I ⊂ √J =

J , also I ⊃ √I .

(b) If I is prime and finite-codimensional,
√
I = I and

√
I = I by (a). But a finite

intersection of maximal ideals is prime only if they coincide, so I = J for a single
J ∈ Sp(A).
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(c) By Lemma 4.2 of [G1], D(I ) ⊂ I for a finite-codimensional ideal I implies
D(A) ⊂ J for each J ∈ Sp(A, I ).

(d) It suffices to prove (d) for n = 2 and to use induction. Suppose that I1, I2 are
finite-codimensional and finitely generated by {ui } and {v j }, respectively. It is easy to
see that I1 · I2 is generated by {ui · v j } and that I1 · I2 is finite-codimensional in I1.
Indeed, if c1, . . . , ck ∈ A represent a basis of A/I2, then {clui } represent a basis of
I1/(I1 · I2). $%
Theorem 3 For an associative commutative unital algebraA the following are equiv-
alent:

(a) Every finite-codimensional ideal of A is finitely generated.
(b) Every maximal finite-codimensional ideal of A is finitely generated.
(c) Every prime finite-codimensional ideal of A is finitely generated.

Proof. (a)⇒ (b) is trivial, (b)⇒ (c) follows from Theorem 1 (b), and (c)⇒ (a) is a
version of Cohen’s theorem for finite-dimensional ideals. $%

Definition 5 We call an associative commutative unital algebra A noetherian in finite
codimension if one of the above (a), (b), (c), thus all, is satisfied.

An immediate consequence of Theorem 1 is the following.

Theorem 4 The algebra A = C(N ) is noetherian in finite codimension.

4 Spectra of Jacobi modules

Let us fix a Jacobi module (E, [· , ·]) over (K,A). Throughout this section we will
assume that E is finitely generated by torsion-free elements and that A is a noetherian
algebra in finite codimension over a fieldK of characteristic 0. The (K, C(N ))-modules
of sections of class C vector bundles over N can serve as standard examples.

For L ⊂ E , by L̂ denote the image of L under the anchor map: L̂ = {α(X) : X ∈
L} ⊂ Der(A). The set Ê is a Lie subalgebra in Der(A) with the commutator bracket
[· , ·]c and we will refer to Ê as to the Lie algebra of ‘Jacobi–hamiltonian vector fields’.
The main difference with the ‘modular’ case (in particular, with that of Pursell and
Shanks [PS]) is that Ê is no longer, in general, an A-module, so we cannot multiply
by ‘functions’ inside Ê . However, we still can try to translate some properties of the
Lie algebra (E, [· , ·]) into the properties of the Lie algebra Ê of Jacobi–hamiltonian
vector fields by means of the anchor map and to describe some ‘Lie objects’ in E or Ê
by means of ‘associative objects’ in A.

The spectrum of the Jacobi module E , denoted by Sp(E), will be the set of
such maximal finite-codimensional Lie subalgebras in E that do not contain finite-
codimensional Lie ideals of E . In nice geometric situations, Sp(E) will be interpreted
as a set of points of the base manifold at which the anchor map does not vanish. Note
that the method developed in [GG] for Lie pseudoalgebras fails, since Lemma 1 therein
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is no longer true for Jacobi modules. In fact, as easily shown by the example of a
symplectic Poisson bracket on a compact manifold, [E, E] may include no non-trivial
A-submodules of E . Therefore we will modify the method from [G3] where Poisson
brackets have been considered.

Let us fix some notation. For a linear subspace L in E and for J ⊂ A, denote

• NL = {X ∈ E : [X, L] ⊂ L}—the Lie normalizer of L;
• UL = {X ∈ E : [X, E] ⊂ L};
• I (L) = { f ∈ A : ∀X ∈ E [ f X ∈ L]}—the largest associative ideal I in A such

that IE ⊂ L;
• EJ = {X ∈ E : X̂(A) ⊂ J }.
It is an easy excercise to prove the following proposition (cf. [G3], Theorem 1.6).

Proposition 3 If L is a Lie subalgebra in E , then NL is a Lie subalgebra containing
L, the set UL is a Lie ideal in NL , and N̂L(I (UL)) ⊂ I (UL).

Choose now generators X1, . . . , Xn of E over A. For a fixed finite-codimensional
Lie subalgebra L in E put Ui = { f ∈ A : f Xi ∈ UL} and U = ⋂n

i=1Ui . Since UL is
clearly finite-codimensional in E , all Ui are finite-codimensional in A, so is U .

Lemma 1

(a) [UmX j , Xk] ⊂ L for all j, k = 1, . . . , n and m ≥ 3.
(b) [UmX j ,Ul Xk] ⊂ L for all j, k = 1, . . . , n and m, l ≥ 1.

Proof. (a) Take f1, . . . , fm ∈ U . Since fi Xk ∈ UL , Proposition 2 (b) implies
[ f1 · · · fm X j , Xk] ∈ L .

(b) The inclusion is trivial for l = 1, so suppose l ≥ 2. Take f1, . . . , fm ∈ U ,
fm+1 ∈ Ul and put F = f1 . . . fm+1, Fi =

∏
r �=i fr . By Proposition 2 (b)

[ f1 · · · fm Xk, fm+1X j ] = (m − 1)[FX j , Xk]−
m∑
i=1

[Fi X j , fi Xk].

Since F ∈ Um+l , according to (a), [FX j , Xk] ∈ L and [Fi X j , fi Xk] ⊂ [E,UL ] ⊂ L ,
so the lemma follows. $%
Theorem 5 The ideal I (UL) is finite-codimensional in A provided L is a finite-
codimensional Lie subalgebra in E .

Proof. Let U be the associative subalgebra in A generated by U . It is finite-codimen-
sional and, in view of Lemma 1 (b), [UX j ,UXk] ⊂ L . Being finite-codimensional
in A, the associative subalgebra U contains a finite-codimensional ideal J of A (cf.
[G3], Proposition 2.1 b)). Hence [J X j , J Xk] ⊂ L and, since Xi are generators of E ,
[JE, JE] ⊂ L . Note that we do not exclude the extremal case U = A = J . Applying
the identity

[ f1 f2X, Y ] = [ f2X, f1Y ]+ [ f1X, f2Y ]− [ f1 f2Y, X ]
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for f1, f2 ∈ J , X ∈ UL , we see that J 2UL ⊂ UL . In particular, J 2UXi ⊂ UL

for all i = 1, . . . , n, so J 2U ⊂ U and hence J 2U ⊂ U and J 3E ⊂ UL . Conse-
quently J 3 ⊂ I (UL). Since J is finite-codimensional and finitely generated, J 3 is
finite-codimensional (Theorem 1 (d)), so I (UL) is finite-codimensional. $%

Denote by SpE (A) the set of these maximal finite-codimensional ideals I ⊂ A
which do not contain Ê(A), i.e., EI �= E . Geometrically, SpE (A) can be interpreted
as the support of the anchor map. Recall that Sp(E) is the set of these maximal finite-
codimensional Lie subalgebras in E which do not contain finite-codimensional Lie
ideals.

Theorem 6 The map J �→ EJ constitutes a bijection of SpE (A) with Sp(E). The in-
verse map is L �→ √

I (L).

Proof. Let us take J ∈ SpE (A). In view of (2), J 2E ⊂ EJ which implies that EJ is
finite-codimensional, as J 2 is finite-codimensional and E is finitely generated.

We will show that EJ is maximal. Of course, EJ �= E and EJ is of finite codimen-
sion, so there is a maximal Lie subalgebra L containing EJ . We have

J 2E ⊂ EJ ⊂ L ⇒ J 2 ⊂ I (L) ⇒ J ⊂
√
I (L) ⇒ J =

√
I (L).

Moreover, I (L) is finite-codimensional, and since, due to (1), L̂(I (L)) ⊂ I (L), then,
by Theorem 2 (c), L̂(A) ⊂ J , i.e., L ⊂ EJ and finally L = EJ .

Finally, suppose P is a finite-codimensional Lie ideal of E contained in EJ . Then
UP is a Lie ideal in E of finite codimension and, according to Theorem 5, I (UP ) is
a finite-codimensional ideal in A. Since Ê(I (UP )) ⊂ I (UP ), and since I (UP ) ⊂
I (UL) ⊂ J , we have Ê(A) ⊂ J , i.e., E = EJ ; a contradiction.

Suppose now that L ∈ Sp(E). Observe first thatNL = L , since otherwise L would
be a Lie ideal, that would, in turn, imply UL ⊂ L and I (UL) ⊂ I (L). Since UL is
finite-codimensional, Theorem 5 shows that I (L) is finite-codimensional. Exactly as
above we show that L̂(A) ⊂ √

I (L), i.e., L ⊂ EJ , where J = √
I (L). By Theorem

2 (a), J k ⊂ I (L) for some k, so if we had EJ = E , then J k · E would be a finite-
codimensional Lie ideal contained in L . Thus EJ �= E and there is I ∈ Sp(A, J ) with
EI �= E . We know already that in this case EI is maximal. Since L ⊂ EJ ⊂ EI and L
is maximal, we have L = EI and I = J = √I (L). $%
Corollary 2 Let (E, [· , ·]) be a Lie QD-algebroid of class C (i.e., a Jacobi module over
(K, C(N )) of class C sections of a class C vector bundle) over a class C manifold N.
Let S ⊂ N be the open support of the anchor map, i.e., S = {p ∈ N : X̂(p) �= 0 for
some X ∈ E}. Then the map p �→ p∗ = {X ∈ E : X̂(p) = 0} constitutes a bijection of
S with Sp(E).

Let Ê be the image of the anchor map α : E → Der(A). By definition of a Jacobi
module, Ê is a Lie subalgebra in (Der(A), [· , ·]c). Since α : E → Ê is a surjective Lie
algebra homomorphism, it induces a bijection of Sp(E) onto Sp(Ê), L �→ L̂ = α(L).
Thus we get the following.



Local Lie Algebra Determines Base Manifold 141

Corollary 3 Let (E, [· , ·]) be a Lie QD-algebroid of class C over a class C manifold
N. Let S ⊂ N be the open support of the anchor map, i.e., S = {p ∈ N : X̂(p) �= 0
for some X ∈ E}. Then the map p �→ p̂ = {ξ ∈ Ê : ξ(p) = 0} constitutes a bijection
of S with Sp(Ê).

5 Isomorphisms

It is clear that any isomorphism � : E1 → E2 of the Lie algebras associated with
Jacobi modules Ei over (Ri ,Ai ), i = 1, 2, induces a bijection ψ : Sp(E2) → Sp(E1).
Since the kernels Ki of the anchor maps αi : Ei → Êi are the intersections

Ki =
⋂

L∈Sp(Ei )
L , i = 1, 2,

�(K1) = K2, so � induces a well-defined isomorphism

�̂ : Ê1 → Ê2, �̂(X̂) = �̂(X)

with the property

L̂ ∈ Sp(Ê1)⇔ �̂(L̂) ∈ Sp(Ê2). (8)

Proposition 4 If the Lie algebras (Ei , [· , ·]i ), associated with Jacobi modules Ei , i =
1, 2, are isomorphic, then the Lie algebras of Jacobi–hamiltonian vector fields Êi ,
i = 1, 2, are isomorphic.

The following theorem describes isomorphisms of the Lie algebras of Jacobi–
hamiltonian vector fields.

Theorem 7 Let (Ei , [· , ·]i ) be a Lie QD-algebroid of class C, over a class C manifold
Ni , and let Si ⊂ Ni be the (open) support of the anchor map αi : Ei → Êi , i = 1, 2.
Then every isomorphism of the Lie algebras of Jacobi–hamiltonian vector fields � :
Ê1 → Ê2 is of the form �(ξ) = φ∗(ξ) for a class C diffeomorphism φ : S1 → S2.

Corollary 4 If the Lie algebras associated with Lie QD-algebroids Ei of class C, over
class C manifolds Ni , i = 1, 2, are isomorphic, then the (open) supports Si ⊂ Ni of
the anchor maps αi : Ei → Êi , i = 1, 2, are C-diffeomorphic. In particular, N1 and
N2 are C-diffeomorphic provided the anchors are nowhere-vanishing.

Proof of Theorem 7. According to Corollary 3, the isomorphism� induces a bijection
φ : S1 → S2 such that, for every ξ ∈ Ê1 and every p ∈ S1,

ξ(p) = 0⇔ �(ξ)(φ(p)) = 0. (9)

First, we will show that φ is a diffeomorphism of class C. For, let f ∈ C(N1). Since
the anchor map is a first-order differential operator, for every X ∈ E1 we have f̂ 2X =
2 f · f̂ X − f 2 · X̂ . In particular, for any p ∈ N1,
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f̂ 2X(p)− 2 f (p) f̂ X(p)+ f 2(p)X̂(p) = 0,

so that, due to (9),

�( f̂ 2X)(φ(p)) = 2 f (p)�( f̂ X)(φ(p))− f 2(p)�(X̂)(φ(p)). (10)

We can rewrite (9) in the form

�( f̂ 2X) = 2( f ◦ ψ) ·�( f̂ X)− ( f ◦ ψ)2 ·�(X̂), (11)

where ψ = φ−1 and both sides of (11) are viewed as vector fields on S2. In a similar
way one can get

�( f̂ 3X) = 3( f ◦ ψ)2 ·�( f̂ X)− 2( f ◦ ψ)3 ·�(X̂). (12)

To show that f ◦ ψ is of class C, choose q ∈ S2 and X ∈ E1 such that �(X̂)(q) �= 0.
Then we can choose local coordinates (x1, . . . , xn) around q such that �(X̂) = ∂1 =
∂/∂x1. If a is the first coefficient of the vector field �( f̂ X) in these coordinates, we
get out of (11) and (12) that ( f ◦ ψ)2 − 2a( f ◦ ψ) and 2( f ◦ ψ)3 − 3a( f ◦ ψ)2 are
of class C in a neighbourhood of q . But

( f ◦ ψ)2 − 2a( f ◦ ψ) = ( f ◦ ψ − a)2 − a2 (13)

and

2( f ◦ ψ)3 − 3a( f ◦ ψ)2 = 2( f ◦ ψ − a)3 + 3a( f ◦ ψ − a)2 − a2, (14)

so ( f ◦ψ − a)2 and ( f ◦ψ − a)3 are functions of class C in a neighbourhood of q , as
the function a is of class C. Now we will use the following lemma which proves that
f ◦ ψ − a, thus f ◦ ψ , is of class C.

Lemma 2 If g is a K-valued function in a neighbourhood of 0 ∈ Kn such that g2 and
g3 are of class C, then g is of class C.

Proof. In the analytic cases the lemma is almost obvious, since g = g3/g2 is a mero-
morphic and continuous function. In the smooth case the Lemma is non-trivial and
proven in [Jo]. $%

To finish the proof of the theorem, we observe that f ◦ ψ is of class C for all
f ∈ C(N2) implies that ψ , thus φ = ψ−1, is of class C and we show that� = φ∗ or, in
other words, that Ŷ ( f ) ◦ψ = �(Ŷ )( f ◦ψ) for all f ∈ C(N1) and all Y ∈ E1. Indeed,
for arbitrary f ∈ C(N1) and X, Y ∈ E1, the bracket of vector fields [Ŷ , f̂ 2X ] reads

[Ŷ , f̂ 2X ] = [Ŷ , 2 f · f̂ X − f 2 · X̂ ]
= 2Ŷ ( f ) · f̂ X − 2 f · Ŷ ( f ) · X̂ + 2 f [Ŷ , f̂ X ]− f 2[Ŷ , X̂ ].

Hence, similarly as in (11),



Local Lie Algebra Determines Base Manifold 143

�([Ŷ , f̂ 2X ]) = 2(Ŷ ( f ) ◦ ψ) ·�( f̂ X)− 2( f ◦ ψ) · (Ŷ ( f ) ◦ ψ) ·�(X̂)

+ 2( f ◦ ψ) ·�([Ŷ , f̂ X ])− ( f ◦ ψ)2 ·�([Ŷ , X̂ ]).

Comparing the above with

[�(Ŷ ),�( f̂ 2X)] = [�(Ŷ ), 2( f ◦ ψ) ·�( f̂ X)− ( f ◦ ψ)2 ·�(X̂)],

we get easily(
Ŷ ( f ) ◦ ψ −�(Ŷ )( f ◦ ψ)

) (
�( f̂ X)− ( f ◦ ψ) ·�(X̂)

) = 0. (15)

After polarizing with f := f +h and multiplying both sides by Ŷ ( f )◦ψ−�(Ŷ )( f ◦
ψ), we get the identity(

Ŷ ( f ) ◦ ψ −�(Ŷ )( f ◦ ψ)
)2 (

�(ĥX)− (h ◦ ψ) ·�(X̂)
) = 0, (16)

valid for all f, h ∈ C(N1) and all X, Y ∈ E1. From (16) we get

(Ŷ ( f ) ◦ ψ)(q) = (�(Ŷ )( f ◦ ψ))(q)

for such q = φ(p) ∈ S2 for which in no neighbourhood of them the anchor map is a
differential operator of order 0, i.e., for q which do not belong to

S02 = {φ(p) ∈ S2 : ĥX(p′) = h(p′)X̂(p′) for all h ∈ C(N1), X ∈ E1 and p′ close to p}.
If, on the other hand, q ∈ S02 , then �(ĥX)(q ′) = (h ◦ ψ)(q ′) ·�(X̂)(q ′) for q ′ from a
neighbourhood of q , so that comparing in this neighbourhood

�([Ŷ , f̂ X ]) = (Ŷ ( f ) ◦ ψ) ·�(X̂)+ ( f ◦ ψ) ·�([Ŷ , X̂ ])

with

[�(Ŷ ),�( f̂ X)] = �(Ŷ )( f ◦ ψ) ·�(X̂)+ ( f ◦ ψ) · [�(Ŷ ),�(X̂)]

we get
(Ŷ ( f ) ◦ ψ)(q) ·�(X̂)(q) = �(Ŷ )( f ◦ ψ)(q) ·�(X̂)(q),

thus
(Ŷ ( f ) ◦ ψ)(q) = �(Ŷ )( f ◦ ψ)(q)

also for q ∈ S02 . $%

Remark (a) For Jacobi–Kirillov bundles with all leaves of the characteristic foliation
(i.e., orbits of Ê) of dimension > 1 there is a much simpler argument showing that ψ
is smooth than the one using Lemma 2. The difficulty in the general case comes from
singularities of the ‘bivector field’ part of the anchor map and forced us to use Lemma
2.

(b) Theorem 7 has been proven for Lie algebroids in [GG], so the new (and dif-
ficult) case here is the case of Jacobi–Kirillov bundles with non-trivial ‘bivector part’
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of the bracket. A similar result for the Lie algebras of smooth vector fields preserv-
ing a symplectic or a contact form up to a multiplicative factor has been proven by
H. Omori [O1]. These Lie algebras are the Lie algebras of locally hamiltonian vector
fields for the Jacobi–Kirillov brackets associated with the symplectic and the contact
form, respectively.

Corollary 5

(a) If the Lie algebras (C(Ni ), {·, ·}βi ) of the Jacobi contact brackets, associated with
contact manifolds (Ni , βi ), i = 1, 2, of class C, are isomorphic, then the manifolds
N1 and N2 are C-diffeomorphic.

(b) If the Lie algebras associated with nowhere-vanishing Poisson structures of class
C on class C manifolds Ni , i = 1, 2, are isomorphic, then the manifolds N1 and
N2 are C-diffeomorphic.
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Summary. Given a 2-vector field and a closed 1-form on a manifold, we consider the set of
cotangent vectors which annihilate the deformed Schouten bracket of the 2-vector field by the
closed 1-form. We show that if the space of cotangent vectors forms a vector bundle, it carries a
structure of a Lie algebroid. We treat this theorem in the category of Lie algebroids. As a special
case, this result contains the well-known fact that the 1-jet bundle of functions of a contact
manifold has a Lie algebroid structure.
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1 Introduction

The Poisson bi-vector field on a Poisson manifold (M, π) defines a bundle morphism
π̃ : T∗(M) → T(M) which is given by α �→ π(α, ·). The image of π̃ is called
the characteristic distribution of the Poisson structure π . It is integrable and gives a
generalized foliation of M consisting of leaves with symplectic structure. Moreover,
T∗(M) has a structure of a Lie algebroid which leads to the Poisson cohomology.
One can naturally ask the condition for a general 2-vector field π (not necessarily a
Poisson), under which the image of π̃ is integrable and ask how special a Poisson bi-
vector is. The condition for the integrability can well be seen from the formula (see
Section 3)

[π(α), π(β)] = π({α, β})+ (1/2)[π, π](α, β) for 1-forms α and β

where {α, β} is the bracket on �(T∗(M)), and π(α)means precisely π̃(α), but we often
use both notations interchangeably. The formula above says, if the Schouten bracket
[π, π] is in the image of π̃ , the Frobenius conditions are satisfied and the distribution
is integrable (while in the case of a Poisson structure a fortiori [π, π] = 0 holds). In
[5], the authors considered the condition that [π, π] is an image of a closed 3-form
under the induced map of π̃ and proved T∗(M) has a Lie algebroid structure which
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they call a twisted Poisson structure. Clearly, this condition implies the integrability of
the image of π̃ by the above formula.

In our previous paper ([4]), we considered the space of cotangent vectors A =
{α | [π, π](α, ·, ·) = 0} and proved A has a natural Lie algebroid structure (provided
A is a vector bundle of constant rank). In this paper, we generalize the discussion
to the case of deformed Schouten bracket [π, π]φ and show that the same result is
obtained in this case too (Theorem 3.4). Also, we introduce the definition of a Jacobi–
Lie algebroid. It is nothing but a Lie algebroid equipped with a specified 1-cocycle.
However, this definition is sometimes preferable when we treat such objects formally.
For example, one can define a homomorphism between two Jacobi–Lie algebroids. In
the next section, we recall some basics on the Lie algebroids and the Schouten–Jacobi
bracket. In section 3, we prove our main theorem and give a computational example of
the theorem.

2 Lie algebroids and Jacobi–Lie algebroids

In this section, we review some basic ingredients of Lie algebroids for later use and in-
troduce the notion of a Jacobi–Lie algebroid. All manifolds and functions are assumed
to be smooth (C∞) throughout the paper.

Definition 2.1 A vector bundle L over a manifold M is a Lie algebroid if

(a) the space of sections �(L) is endowed with a Lie algebra bracket [·, ·] over R,
(b) there is given a bundle map a : L→ T(M) (called an anchor) which induces a Lie

algebra homomorphism a : �(L)→ �(T(M)), satisfying the condition

[X, f Y ] = 〈a(X), d f 〉Y + f [X, Y ], X, Y ∈ �(L), f ∈ C∞(M).

Thus a Lie algebroid is a triple (L, [·, ·], a), however we often call L a Lie algebroid
when the bracket and the anchor are understood. The most popular and important ex-
ample of a Lie algebroid is the tangent bundle with usual Lie bracket of vector fields.
The cotangent bundle of a Poisson manifold is another example of a Lie algebroid.
There are many other examples of Lie algebroids which are useful in geometry (see
[1]).

Let L∗ be the dual vector bundle of L. We note that the anchor of L induces a dual
morphism a∗ : T∗(M) −→ L∗.

The Lie algebra bracket on �(L) and the action of a(X) on C∞(M) induces an
‘exterior differential’ dL on �(�•L∗) defined by a well-known formula;

(dLω)(X0, X1, . . . , Xr ) :=
r∑

i=0
(−1)i 〈d(ω(. . . , X̂i , . . . )), a(Xi )〉

+
∑
i< j

(−1)i+ jω([Xi , X j ], . . . , X̂i , . . . , X̂ j , . . . ),

ω ∈ �(�rL∗), X0, . . . , Xr ∈ �(L),
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For example,

〈dL f, X〉 = 〈d f, a(X)〉 = 〈a∗(d f ), X〉, f ∈ �(�0L∗) = C∞(M), X ∈ �(L),

(dLβ)(X, Y ) = 〈d(β(Y )), a(X)〉 − 〈d(β(X)), a(Y )〉 − 〈β, [X, Y ]〉
= La(X)(β(Y ))− La(Y )(β(X))− 〈β, [X, Y ]〉,

β ∈ �(�1L∗), X, Y ∈ �(L) .

With this differential dL, �(�•L∗) becomes a differential graded algebra and a∗ in-
duces a homomorphism of differential graded algebras �(�•T∗(M))→ �(�•L∗).

Conversely, the exterior differential dL on �(�•L∗) recovers the anchor and the
Lie algebra bracket on L, hence recovers the Lie algebroid structure of L by the for-
mulas

(a′) 〈a(X), d f 〉 := 〈X, dL f 〉,
(b′) 〈[X, Y ], β〉 := 〈X, dL(β(Y ))〉 − 〈Y, dL(β(X))〉 − (dLβ)(X, Y ), (β ∈ �(L∗)).

In [3], the authors introduced the deformed exterior differential and the Schouten–
Jacobi bracket on �(�•L) deformed by a 1-cocycle φ.

Definition 2.2 Let φ be a 1-cocycle in �(�•L∗) with respect to dL, i.e., φ ∈ �(L∗)
and φ satisfies

φ([X, Y ]) = La(X)(φ(Y ))− La(Y )(φ(X))

for X, Y ∈ �(L). The deformed exterior differential is defined by

dφ

Lα = dLα + φ ∧ α, α ∈ �(�•L∗). (2.1)

The operator dφ

L satisfies

dφ

L ◦ d
φ

L = 0, dφ

L(α ∧ β) = dφ

Lα ∧ β + (−1)|α|α ∧ dφ

Lβ − φ ∧ α ∧ β,

where |α| means the degree of α, namely, α ∈ �(�|α|L∗). On the other hand, (φ-
deformed) Schouten–Jacobi bracket [·, ·]φ is defined by

[P, Q]φ = [P, Q]+ (−1)p P(φ) ∧ (q − 1)Q + (p − 1)P ∧ Q(φ), (2.2)

P ∈ �(�pL), Q ∈ �(�qL).

Here and hereafter, P(φ) denotes the interior product ιφP or φ−|P of φ and P . We
use these notations interchangeably.

This bracket on �(�•L) shares similar properties with the usual Schouten–Nijen-
huis bracket. In our sign convention, formulas of calculation for [·, ·]φ are the follow-
ing:

(1) [X, Y ]φ = [X, Y ] (Lie algebra bracket), for X, Y ∈ �(L),
(2) [P, Q]φ = −(−1)(p−1)(q−1)[Q, P]φ ,
(3) [P, [Q, R]φ]φ = [[P, Q]φ, R]φ + (−1)(p−1)(q−1)[Q, [P, R]φ]φ (super Jacobi

identity),
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(4) [P, Q ∧ R]φ = [P, Q]φ ∧ R + (−1)(p−1)q Q ∧ [P, R]φ + (−1)p P(φ) ∧ Q ∧ R,
(5) [ f, P]φ = −P(dφ

L f ), f ∈ C∞(M),

where P ∈ �(�pL), Q ∈ �(�qL), R ∈ �(�rL).
For φ = 0, these are just the formulas for the Nijenhuis–Schouten bracket. The

only difference is that the deformed one does not satisfy the Leibniz property for the
wedge product (see (4) above). Since dφ

L f in (5) above is defined by dL f + f φ =
a∗(d f )+ f φ in �(L∗), the action of X ∈ �(L) on C∞(M) through [·, ·]φ is given by
X · f := [X, f ]φ = 〈a(X), d f 〉 + f 〈X, φ〉 where 〈a(X), d f 〉 is the usual action of
Lie algebroid through the anchor map. Putting f = 1, we see that the 1-cocycle φ is
recovered from the bracket since φ(X) = [X, 1]φ = X · 1 holds.

The difference of the action of X on C∞(M) from the usual derivation leads to the
different ‘exterior differential’ and ‘Lie derivation’. The φ-Lie derivative operator Lφ

for ‘forms’ and ‘vectors’ are defined by

Lφ
Xα = (dφ

LiX + iXd
φ

L)α = LXα + φ(X)α, (2.3)

Lφ
X P = [X, P]φ = [X, P]− (p − 1)φ(X)P (2.4)

respectively. Then we have the following list of formulas.

Lφ
X (α ∧ β) = Lφ

Xα ∧ β + α ∧ Lφ
Xβ − φ(X)α ∧ β (2.5)

Lφ
X (P ∧ Q) = Lφ

X P ∧ Q + P ∧ Lφ
X Q − φ(X)P ∧ Q (2.6)

Lφ
X (P(α)) = (Lφ

X P)(α)+ P(Lφ
Xα)+ (|α| − 1)φ(X)P(α) (2.7)

Lφ
X (α(P)) = α(Lφ

X P)+ (Lφ
Xα)(P)+ (p − 1)φ(X)α(P) (2.8)

Lφ
X [P, Q]φ = [Lφ

X P, Q]φ + [P, Lφ
X Q]φ (2.9)

Lφ
f X P = f Lφ

X P − X ∧ P(dL f ) (2.10)

Note that (2.7) or (2.8) tells us that Lφ
X does not commute with the contraction in

general, although LX does.

Remark 2.1 Let φ be a usual closed 1-form on M . We can see a cue of defining the
φ-deformed Schouten–Jacobi bracket [·, ·]φ in the following observation when L =
T(M). Let φ = d f locally where f is a function on M . For a p-vector field P , we
put P̂ = e−(p−1) f P . Note that this assignment P �→ P̂ is injective and it is the
identity transformation on the space of vector fields. If we compute [P̂, Q̂], we have
e−(p+q−2) f [P, Q]φ .

As we will see below, one of the advantages of introducing [·, ·]φ is that we can
treat a Jacobi structure on M as if it were a Poisson structure on M with respect to
[·, ·]φ . It seems natural here to generalize the Lie algebroid slightly and to introduce
the notion of Jacobi–Lie algebroid.

Let T ∗M denote the bundle of 1-jets of functions on M . T ∗M has a natural pro-
jection onto the bundle of 0-jets which is a trivial line bundle ε ∼= M × R. The
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kernel of the projection is the cotangent bundle T∗(M) and T ∗M ∼= T∗(M) ⊕ ε by
j1x f �→ (d fx , f (x)). Let T M denote the dual bundle and call it the extended tangent
bundle of M . The sections of T M form the set of differential operators on C∞(M) of
order ≤ 1. Geometrically, T M can be identified with the tangent bundle T(M × R)

restricted to M × {0} (or to any level M × {t}). Then a section X of T M is expressed
as

X = X + λ
∂

∂τ

where X is a vector field on M lifted to M × R and ∂
∂τ
= (

∂
∂t

)
0 is the tangent vector

of R at 0. From this viewpoint, we may write 1-jet j1 f as d f + f dτ , where dτ is the
dual of ∂

∂τ
.

X acts on C∞(M) as a first-order differential operator by

X · f = 〈X, j1 f 〉 = LX f + λ f.

The commutator bracket of X = X + λ ∂
∂τ

and Y = Y + μ ∂
∂τ

in �(T M) as operators
is

[[X,Y]] =
[[
X + λ

∂

∂τ
, Y + μ

∂

∂τ

]]
= [X, Y ]+ (〈X, dμ〉 − 〈Y, dλ〉) ∂

∂τ
.

With this bracket on �(T M) and the natural projection pr1 : T M → T(M) as the
anchor, (T M, [[·, ·]] , pr1) is a Lie algebroid, and the action of X on f ∈ C∞(M)

here, is through the vector field X . The difference between the two actions of X is the
multiplication by λ. The map φ0 : X �→ λ = X · 1 can be considered as a 1-cocycle of
the Lie algebroid T M . Indeed

(dφ0)(X,Y) = LXμ− LYλ− φ0([[X,Y]]) = 0.

We call this cocycle φ0 of T M the canonical 1-cocycle.
Let (L, [·, ·], a) be a Lie algebroid and φ any Lie algebroid-1-cocycle of L. Then

we have a bundle map ā : L→ T M defined by ā(X) = a(X)+φ(X) ∂
∂τ
∈ T(M)⊕ε =

T M . Using this map, we formulate a Lie algebroid with specified 1-cocycle as follows.

Definition 2.3 A Jacobi–Lie algebroid over a manifold M is a triplet (L, [·, ·], ā) of a
vector bundle L, a Lie algebra structure [·, ·] on �(L), and a bundle map ā of L into
T M (called also an anchor), satisfying

(1) (L, [·, ·], pr1 ◦ ā) is a Lie algebroid over M ,
and

(2) ā induces a Lie algebra homomorphism from �(L) into �(T M).

Note that φ = ā∗(φ0) is a 1-cocycle of L. Conversely, if a Lie algebroid (L, [·, ·], a)
has a 1-cocycle φ, then the map ā : X �→ ā(X) = a(X)+ φ(X) ∂

∂τ
is verified to be an

anchor of a Jacobi–Lie algebroid. Indeed, for X, Y ∈ �(L), we have

ā([X, Y ]) = a([X, Y ])+ φ([X, Y ])
∂

∂τ
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= [a(X), a(Y )]+ (〈a(X), d(φ(Y ))〉 − 〈a(Y ), d(φ(X))〉) ∂

∂τ

=
[[
a(X)+ φ(X)

∂

∂τ
, a(Y )+ φ(Y )

∂

∂τ

]]
= [[ā(X), ā(Y )]] ,

and

[X, f Y ] = f [X, Y ]+ 〈a(X), d f 〉Y.

Since T M ∼= T(M)⊕ ε, we have an isomorphism �pT M ∼= �pT(M)⊕�p−1T(M).
Thus an element P ∈ �(�p(T M) is expressed also as a pair (P, P ′) of a p-vector field
and a (p−1)-vector field. The correspondence is given by P = P+ ∂

∂τ
∧P ′ ↔ (P, P ′).

Similarly, an element ααα = α + dτ ∧ α′ ∈ �(�pT ∗M) is given as a pair (α, α′)
consisting of a p-form and a (p − 1)-form. Especially, the canonical 1-cocycle φ0 is a
pair (0, 1) where 0 denotes the zero 1-form and 1 is a constant function. We sometimes
adopt this notation.

Example 2.1 (Jacobi structure on M) Let πππ = (π, ξ) be an element in �(�2T M).
With the above notation, we have

[πππ,πππ ]φ0 = [(π, ξ), (π, ξ)]φ0 = [(π, ξ), (π, ξ)]+ 2(iφ0(π, ξ)) ∧ (π, ξ)

= ([π, π], 2[ξ, π])+ (2ξ ∧ π, 0) = ([π, π]+ 2ξ ∧ π, 2[ξ, π]).

Thus [πππ,πππ ]φ0 = 0 is equivalent to (π, ξ) being a Jacobi structure. The differential
dφ0 f is (d f, f ) and ‘Hamiltonian vector field’ πππ(dφ0 f ) of f is a pair

(
π(d f ) +

f ξ,−〈ξ, (d f )〉). The bracket of functions f and g is given by

{ f, g} = πππ(dφ0 f, dφ0g) = Lφ0

πππ(dφ0 f )
g = L(π(d f )+ f ξ,−〈ξ,d f 〉) g + φ0(πππ(dφ0 f ))g

= π(d f, dg)+ f 〈ξ, dg〉 − g〈ξ, d f 〉 .

In the case of a contact structure, πn ∧ ξ is nowhere zero and the map f �→ π(d f )+
f ξ is injective from C∞(M) into �(T(M)) and this vector field is called a contact
Hamiltonian vector field.

3 Deformed bracket on 1-forms

Let L be a Lie algebroid over a manifold M whose anchor is a : L → T(M) . We
fix a 1-cocycle φ and consider φ-deformed exterior differential dφ

L and φ-deformed
Schouten bracket [·, ·]φ . By an abuse of language, we call P ∈ �(�pL) a p-vector
field and α ∈ �(�pL∗) a p-form. In this section, we prove our main theorem. Namely,

we show that
(
[π, π]φ

)0
has a Lie algebroid structure (Theorem 3.4). (P0 denotes the

space of annihilating elements of P in L∗.)
First we prove
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Lemma 3.1 Let P ∈ �(�pL), Q ∈ �(�qL) be a p-vector field and a q-vector field,
respectively. For a 1-form α, the following equality holds;

[P, Q]φ(α) = [P(α), Q]φ + (−1)p−1[P, Q(α)]φ + (−1)p(P ∧ Q)(dφ

Lα)

+ (−1)p−1P(dφ

Lα) ∧ Q + (−1)p−1P ∧ Q(dφ

Lα) (3.1)

where for p ≤ 1, we understand P(dφ

Lα) = 0 and similarly for q ≤ 1, Q(dφ

Lα) = 0.

This immediately shows the following.

Corollary 3.2 For a 2-vector field π and a 1-form α, we have

[π(α), π]φ = −1

2
(π ∧ π)(dφ

Lα)+
1

2
[π, π]φ(α)+ π(dφ

Lα)π.

Proof of Lemma 3.1. In the case φ = 0, the proof is seen in [4]. For general φ, we
recall the defining equation (2.1) dφ

Lα = dLα + φ ∧ α of dφ

L and the equation (2.2)
of [·, ·]φ . Using these formulas, we can check that the terms containing φ are equal on
both sides in (3.1). Consequently, the equality is valid for a general Schouten–Jacobi
bracket. $%

Given a 2-vector field π ∈ �(�2L) and a 1-cocycle φ, we define a bracket on
1-forms as follows.

{α, β}φπ := Lφ

π(α)β − Lφ

π(β) α − dφ

L(π(α, β)), α, β ∈ �(L∗). (3.2)

Since dφ

L(π(α, β)) = Lφ

π(α)β − iπ(α)d
φ

Lβ, we have another expression

{α, β}φπ = iπ(α)d
φ

Lβ − Lφ

π(β)α. (3.3)

This bracket is not a Lie algebra bracket in general. The following formula is useful in
our computations.

Lemma 3.3 For a 2-vector field π , the following equality holds:

[π(α), π(β)]φ = π({α, β}φπ )+
1

2
[π, π]φ(α, β). (3.4)

Proof. When L = T(M) and φ = 0, the above equation is already known in [4]. Since
{α, β}φπ = iπ(α)d

φ

Lβ − Lφ

π(β) α, we have

π({α, β}φπ ) = π(iπ(α)d
φ

Lβ)− π(Lφ

π(β) α)

= π(iπ(α)d
φ

Lβ)+ [π(α), π(β)]φ + [π(β), π]φ(α). (3.5)

Here, we used a general formula
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Lφ
X (P(α)) = (Lφ

X P)(α)+ P(Lφ
X α)+ (|α| − 1)φ(X)P(α)

for X = π(β) and P = π . By Corollary 3.2, (3.5) is followed by

π(iπ(α)d
φ

Lβ)+ [π(α), π(β)]φ − 1

2
[π, π]φ(α, β)− (π(α) ∧ π)(dφ

Lβ)+ π(dφ

Lβ)π(α)

= [π(α), π(β)]φ − 1

2
[π, π]φ(α, β).

Here we used the identity

π(iπ(α)d
φ

Lβ)− (π(α) ∧ π)(dφ

Lβ)+ π(dφ

Lβ)π(α) = 0

which can be verified by putting dφ

Lβ = θ1∧ θ2 if necessary, where θ1, θ2 ∈ �(L). $%

Remark 3.1 Since [X, Y ]φ = [X, Y ] for each 1-vector field, the lemma above means,
for a 2-vector field π , the following equality holds:

[π(α), π(β)] = π({α, β}φπ )+
1

2
[π, π]φ(α, β). (3.6)

Theorem 3.4 Let (L, [·, ·], a) be a Lie algebroid over a manifold M and φ be a
1-cocycle. That is, L has a Jacobi–Lie algebroid structure with anchor ā : L →
T M, X �→ a(X) + φ(X) ∂

∂τ
. Let π be an arbitrary 2-field of L, that is π ∈ �(�2L).

Suppose that the rank of [π, π]φ is constant. Then the sub-bundle ([π, π]φ)0 is a
Jacobi–Lie algebroid with respect to the bracket

{α, β}φπ = Lφ

π̃(α)
β − Lφ

π̃(β)
α − dφ

L(L(α, β))

and the anchor is given by the composition of ā and π̃ restricted to ([π, π]φ)0.

Corollary 3.5 H = a ◦ π̃(([π, π]φ)0) is an integrable distribution.

Proof of Theorem 3.4. First we show the space of sections of ([π, π]φ)0 is closed under
the bracket { , }φπ . Let 1-forms α and β be sections of ([π, π]φ)0 so that α−|[π, π]φ =
β−|[π, π]φ = 0. In order to prove {α, β}φπ−|[π, π]φ = 0, we use Corollary 3.2 again.
It says

1

2
{α, β}φπ−|[π, π]φ = [π̃({α, β}φπ ),L]φ +

1

2
(dφ

L{α, β}φπ )−|(L ∧ L)− L(dφ

L{α, β}φπ )L

in general. By the same formula, α and β satisfy

[π̃(α),L]φ + 1

2
(dφ

Lα)−|(L ∧ L)− L(dφ

Lα)L = 0

and

[π̃(β),L]φ + 1

2
(dφ

Lβ)−|(L ∧ L)− L(dφ

Lβ)L = 0 .
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Since π̃({α, β}φπ ) = [π̃(α), π̃(β)]φ and {α, β}φπ = Lφ

π̃(α)
β− Lφ

π̃(β)
α−dφ

Lπ(α, β),
we have
1

2
{α, β}φπ−|[π, π]φ

= [[π̃(α), π̃(β)]φ, π ]φ + 1

2

(
Lφ

π̃(α)
dφ

Lβ − Lφ

π̃(β)
dφ

Lα
)
−|π2

− π
(
Lφ

π̃(α)
dφ

Lβ − Lφ

π̃(β)
dφ

Lα
)
π

= [π̃(α), [π̃(β), π ]φ]φ + [[π̃(α), π ]φ, π̃(β)]φ

+ 1

2

(
Lφ

π̃(α)
dφ

Lβ − Lφ

π̃(β)
dφ

Lα
)
−|π2 − π

(
Lφ

π̃(α)
dφ

Lβ − Lφ

π̃(β)
dφ

Lα
)
π

= Lφ

π̃(α)

(
−1

2
(dφ

Lβ)−|π2 + π(dφ

Lβ)π
)
− Lφ

π̃(β)

(
−1

2
(dφ

Lα)−|π2 + π(dφ

Lα)π
)

+ 1

2

(
Lφ

π̃(α)
dφ

Lβ − Lφ

π̃(β)
dφ

Lα
)
−|π2 − π

(
Lφ

π̃(α)
dφ

Lβ − Lφ

π̃(β)
dφ

Lα
)
π

= −1

2

(
Lφ

π̃(α)
dφ

Lβ
)
−|π2 − 1

2
dφ

Lβ−|L
φ

π̃(α)
π2 − 1

2
φ(π̃(α))dφ

Lβ−|π2

+ (Lφ

π̃(α)
π)(dφ

Lβ)π + π(Lφ

π̃(α)
(dφ

Lβ))π + π(dφ

Lβ)L
φ

π̃(α)
π

+ 1

2

(
Lφ

π̃(β)
dφ

Lα
)
−|π2 + 1

2
dφ

Lα−|L
φ

π̃(β)
π2 + 1

2
φ(π̃(β))dφ

Lα−|π2

− (Lφ

π̃(β)
π)(dφ

Lα)π − π(Lφ

π̃(β)
(dφ

Lα))π − π(dφ

Lα)L
φ

π̃(β)
π

+ 1

2

(
Lφ

π̃(α)
dφ

Lβ − Lφ

π̃(β)
dφ

Lα
)
−|π2 − π

(
Lφ

π̃(α)
dφ

Lβ − Lφ

π̃(β)
dφ

Lα
)
π

= −1

2
dφ

Lβ−|L
φ

π̃(α)
π2 + (Lφ

π̃(α)
π)(dφ

Lβ)π + π(dφ

Lβ)L
φ

π̃(α)
π

+ 1

2
dφ

Lα−|L
φ

π̃(β)
π2 − (Lφ

π̃(β)
π)(dφ

Lα)π − π(dφ

Lα)L
φ

π̃(β)
π

− 1

2
φ(π̃(α))dφ

Lβ−|π2 + 1

2
φ(π̃(β))dφ

Lα−|π2 .

The sum of the 2nd and 5th terms of the right-hand sides of the equations above is zero
as we see from the assumption

(Lφ

π̃(α)
π)(dφ

Lβ)π − (Lφ

π̃(β)
π)(dφ

Lα)π

=
(
−1

2
dφ

Lβ−|d
φ

Lα−|π2 + π(dφ

Lα)π(dφ

Lβ)
)
π

−
(
−1

2
dφ

Lα−|d
φ

Lβ−|π2 + π(dφ

Lβ)π(dφ

Lα)
)
π

= 0

and also from the assumption the sum of the 3rd and 6th terms becomes

−1

2
π(dφ

Lβ)d
φ

Lα−|π2 + 1

2
π(dφ

Lα)d
φ

Lβ−|π2.
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Thus,

{α, β}φπ−|[π, π]φ

= −dφ

Lβ−|(2[π̃(α), π]φ ∧ π − φ(π̃(α))π2)

+ dφ

Lα−|(2[π̃(β), π ]φ ∧ π − φ(π̃(β))π2)

− π(dφ

Lβ)d
φ

Lα−|π2 + π(dφ

Lα)d
φ

Lβ−|π2

− φ(π̃(α))dφ

Lβ−|π2 + φ(π̃(β))dφ

Lα−|π2

= dφ

Lβ−|
(
(dφ

Lα−|π2) ∧ π − 2π(dφ

Lα)π
2
)

− dφ

Lα−|
(
(dφ

Lβ−|π2) ∧ π − 2π(dφ

Lβ)π
2
)

− π(dφ

Lβ)d
φ

Lα−|π2 + π(dφ

Lα)d
φ

Lβ−|π2

= dφ

Lβ−|
(
(dφ

Lα−|π2) ∧ π
)
− π(dφ

Lα)(d
φ

Lβ−|π2)

− dφ

Lα−|
(
(dφ

Lβ−|π2) ∧ π
)

+ π(dφ

Lβ)(d
φ

Lα−|π2).

We claim that the above is identically zero. To prove this, it suffices to verify the
claim in the case when dφ

Lα = θ1 ∧ θ2 and dφ

Lβ = η1 ∧ η2. By a direct and lengthy
computation, we can verify that the above actually vanishes.

Proof of the Jacobi identity. Let α, β, γ ∈ ([π, π]φ)0. Using the definition of the
bracket, we see that

{α, {β, γ }φπ }φπ = π̃(α)−|d
φ

L{β, γ }φπ − Lφ

π̃({β,γ }φπ )
α

= Lφ

π̃(α)
{β, γ }φπ − dφ

L(π̃(α)−|{β, γ }φπ )− Lφ

π̃({β,γ }φπ )
α

using Lemma 3.3

= Lφ

π̃(α)

(
π̃(β)−|d

φ

Lγ − Lφ

π̃(γ )
β
)

− dφ

L
(
π̃(α)−|(π̃(β)−|d

φ

Lγ − Lφ

π̃(β)
γ )
)
− Lφ

[π̃(β),π̃(γ )]φ
α

= Lφ

π̃(α)

(
Lφ

π̃(β)
γ − dφ

L(π̃(β)−|γ )
)
− Lφ

π̃(α)
Lφ

π̃(γ )
β

− dφ

L
(
π̃(α)−|π̃(β)−|d

φ

Lγ − π̃(α)−|L
φ

π̃(β)
γ
)
− Lφ

[π̃(β),π̃(γ )]φ
α

= Lφ

π̃(α)
Lφ

π̃(β)
γ − Lφ

π̃(α)
dφ

L(π(β, γ ))− Lφ

π̃(α)
Lφ

π̃(γ )
β

− dφ

L
(
π̃(α)−|π̃(β)−|d

φ

Lγ − π̃(α)−|L
φ

π̃(β)
γ
)
− Lφ

[π̃(β),π̃(γ )]φ
α

= Lφ

π̃(α)
Lφ

π̃(β)
γ − Lφ

π̃(α)
Lφ

π̃(γ )
β − Lφ

[π̃(β),π̃(γ )]φ
α

− dφ

L
(
Lφ

π̃(α)
(π(β, γ ))+ π̃(α)−|π̃(β)−|d

φ

Lγ − π̃(α)−|L
φ

π̃(β)
γ
)
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= Lφ

π̃(α)
Lφ

π̃(β)
γ − Lφ

π̃(α)
Lφ

π̃(γ )
β − Lφ

[π̃(β),π̃(γ )]φ
α

− dφ

L
(
π̃(α)−|d

φ

L(π(β, γ ))+ π̃(α)−|π̃(β)−|d
φ

Lγ

−π̃(α)−|π̃(β)−|d
φ

Lγ − π̃(α)−|d
φ

L(π̃(β)−|γ )
)

= Lφ

π̃(α)
Lφ

π̃(β)
γ − Lφ

π̃(α)
Lφ

π̃(γ )
β − Lφ

[π̃(β),π̃(γ )]φ
α

and so we have

S
α,β,γ

{α, {β, γ }φπ }φπ = S
α,β,γ

(
(Lφ

π̃(α)
Lφ

π̃(β)
γ − Lφ

π̃(β)
Lφ

π̃(α)
γ )− Lφ

[π̃(β),π̃(γ )]φ
α
)
= 0

using Lφ
X ◦ Lφ

Y − Lφ
Y ◦ Lφ

X = Lφ

[X,Y ]φ
on �(�•L∗) for each pair of vector fields X and

Y , which is true by virtue of the closedness of φ.

The anchor for Lie algebroid Since

Lφ
X ( fβ) = (Lφ

X f )β + f Lφ
Xβ − 〈φ, X〉 fβ,

Lφ
f Xα = f Lφ

Xα + (X−|α)dL f,

we have

{α, fβ}φπ = (Lφ

π̃(α)
f )β + f Lφ

π̃(α)
β − 〈φ, π̃(α)〉 fβ − ( f Lφ

π̃(β)
α + (π̃(β))−|α)dL f

− ( f dL(π(α, β))+ π(α, β)dL f − f π(α, β)φ)

= f {α, β}φπ + Rest,

where

Rest = (Lφ

π̃(α)
f )β − 〈φ, π̃(α)〉 fβ − (π̃(β)−|α)dL f − (π(α, β)dL f − f π(α, β)φ)

= 〈π̃(α), dL f 〉β = 〈a(π̃(α)), d f 〉β .

Thus, we have

{α, fβ}φπ = f {α, β}φπ + 〈a(π̃(α)), d f 〉β.

This shows a ◦ π̃ is the anchor for Lie algebroid (([π, π]φ)0, {·, ·}φπ ).
Corresponding 1-cocycle We will verify φ ◦ π̃ is a 1-cocycle on (([π, π]φ)0, {·, ·}φπ ,
a ◦ π̃). Put here φ ◦ π̃ by ϕ. We have to show

ϕ({α, β}φπ ) = Lb(α)(ϕ(β))− Lb(β)(ϕ(α)) for each α, β ∈ ([π, π]φ)0 .

The right-hand side is reduced as

RHS = La(π̃(α))(φπ̃(β))− La(π̃(β))(φπ̃(α)) = φ([π̃(α), π̃(β)])

because of φ being closed. Concerning the left-hand side, we have
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LHS = (φ ◦ π̃){α, β}φπ
= φ([π̃(α), π̃(β)]− 1

2
[π, π]φ(α, β)) using (3.6)

= φ([π̃(α), π̃(β)]

because of α, β ∈ ([π, π]φ)0. Thus we have checked the equality of both sides, and
ā ◦ π̃ is the anchor for the Jacobi–Lie algebroid. $%

Remark 3.2 In the proof above, we see that if φ is exact, then the corresponding 1-
cocycle is also exact. In fact, assume φ = dL f for some f , i.e., 〈φ, X〉 = 〈dL f, X〉 =
〈d f, a(X) → for each X ∈ �(L). Then, we have 〈ϕ, α〉 = 〈φπ̃, α〉 = 〈φ, π̃(α)〉 =
〈d f, a(π̃(α))〉.

3.1 An example

We show an example on the 5-dimensional Euclidean space R5 with the Cartesian co-
ordinates (x1, . . . , x5), which exhibits some difference between the ordinary bracket
and the deformed one. Since the space is simply-connected, every closed 1-form is
exact, and every closed 1-form φ is of form φ = d f =∑5

j=1
∂ f
∂x j dx

j =∑5
j=1 f j dx j

for some function f , where f j = ∂ f
∂x j .

Take the frame field {Z1, . . . , Z5} defined by

Z1 = ∂

∂x1
− x2

2

∂

∂x5
, Z2 = ∂

∂x2
+ x1

2

∂

∂x5
,

Z3 = ∂

∂x3
− x4

2

∂

∂x5
, Z4 = ∂

∂x4
+ x3

2

∂

∂x5
, Z5 = ∂

∂x5
.

Then, Z5 is a central element and the bracket relations are given by

[Z1, Z2] = −[Z2, Z1] = [Z3, Z4] = −[Z4, Z3] = Z5

and all the other brackets vanish.
Let us consider a 2-vector field π :

π = a12Z1 ∧ Z2 + a13Z1 ∧ Z3 + a15Z1 ∧ Z5 + a23Z2 ∧ Z3

+ a25Z2 ∧ Z5 + a35Z3 ∧ Z5

where {ai j } are constant. The rank of π is 4 if and only if � := a12a35 − a13a25 +
a15a23 �= 0. Hereafter, we assume that π is of rank 4. We have the following calcula-
tion:

[π, π] = 2a12
(
a12Z1 ∧ Z2 + a13Z1 ∧ Z3 + a23Z2 ∧ Z3

)
∧ Z5

= 2a12
(
a12

∂

∂x1
∧ ∂

∂x2
+ a13

∂

∂x1
∧ ∂

∂x3
+ a23

∂

∂x2
∧ ∂

∂x3

)
∧ ∂

∂x5
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and

1

2
[π, π]φ = 1

2
[π, π]+ π̃(φ) ∧ π

= − f5�
∂

∂x1
∧ ∂

∂x2
∧ ∂

∂x3
+
(
a12a12 + f3�

) ∂

∂x1
∧ ∂

∂x2
∧ ∂

∂x5

+
(
a12a13 − f2�

) ∂

∂x1
∧ ∂

∂x3
∧ ∂

∂x5

+
(
a12a23 + f1�

) ∂

∂x2
∧ ∂

∂x3
∧ ∂

∂x5
.

These equations above imply that [π, π] = 0 if and only if a12 = 0, and [π, π]φ =
[π, π] if and only if φ = d f with f1 = f2 = f3 = f5 = 0 for some function f , and
[π, π]φ = 0 if and only if

f1 = − 1

�
a12a23 , f2 = 1

�
a12a13 , f3 = − 1

�
a12a12 , f5 = 0 . (3.7)

Now, we consider the following special cases.

Case 1 If a12 = 0 and � �= 0, then [π, π] = 0, and so [π, π]0 is the whole cotangent
bundle of R5 and dim π̃([π, π]0) = 4, π̃([π, π]0) = Imπ̃ . Choose φ = d f with
f1 �= 0 and f2 = f3 = 0. Then ([π, π]φ)0 is spanned by φ and dx4. π̃(([π, π]φ)0) is
spanned by

π̃(d f ) = f5

(
x4

2
a13 − a15

)
∂

∂x1
+ f5

(
x4

2
a23 − a25

)
∂

∂x2

+
(
f1a

13 + f5

(
x1

2
a23 − x2

2
a13 − a35

))
∂

∂x3
− f1

(
x4

2
a13 − a15

)
∂

∂x5

and we see that this does never vanish from the assumption� �= 0. Thus, π̃(([π, π]φ)0)
is of dimension 1.

Case 2 Assume a12 �= 0 and � �= 0. For example, choose a12 = a35 = 1, a13 =
a23 = 0. Then [π, π] = 2 ∂

∂x1
∧ ∂

∂x2
∧ ∂

∂x5
and so [π, π]0 is spanned by dx3 and

dx4. Thus, π̃([π, π]0) is spanned by ∂

∂x5
and dim π̃([π, π]0) = 1. According to the

condition (3.7), if we choose f1 = f2 = 0, f3 = 1 and f5 = 0, then [π, π]φ = 0 and
so ([π, π]φ)0 is the whole cotangent bundle and π̃(([π, π]φ)0) = Imπ̃ is of dimension
4, which is spanned by Z1, Z2, Z3, Z5.

If we choose f1 �= −a12a23/�, (i.e., f �= 0 right now), f2 = f5 = 0, and f3 = 1,
then [π, π]φ = 2 f1 ∂

∂x2
∧ ∂

∂x3
∧ ∂

∂x5
�= 0. ([π, π]φ)0 is spanned by dx1 and dx4.

Since π̃(dx1) = ∂

∂x2
+ (a15 + x1

2 ) ∂

∂x5
and π̃(dx4) = 0, we see that π̃(([π, π]φ)0) is

1-dimensional.
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1 Introduction

The geometry of ordinary differential equations for scalar functions is strongly linked
to the Lie algebra sl(2,R) = sl(V̂ ), where V̂ is a vector space of dimension 2. Asso-
ciated to the geometry of kth order ordinary differential equation

dk y

dxk
= F

(
x, y,

dy

dx
, . . . ,

dk−1y
dxk−1

)
,

we have the irreducible representation of l̂ = sl(V̂ ) on S = Sk−1(V̂ ∗), where
Sk−1(V̂ ∗) is the space of homogeneous polynomials of degree k − 1 in two vari-

ables and is the solution space of the model equation dk y
dxk

= 0 on the model space

P1(R) = P(V̂ ). It is known that the Lie algebra l = gl(V̂ ) is the infinitesimal group of
linear automorphisms of the model equation (cf. Proposition 4.4.1 [Sea88]). Moreover

the Lie algebra gk = gk(1, 1) of infinitesimal contact transformations of dk y
dxk

= 0 is

given as follows; (1) g2 is isomorphic to sl(3,R). (2) g3 is isomorphic to sp(2,R).
(3) Otherwise, for k � 4, gk = S ⊕ l is a subalgebra of the affine Lie algebra
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A(S) = S ⊕ gl(S) (see Section 2.1). The Lie algebra gk plays a fundamental role
in the contact geometry of kth order ordinary differential equations.

Thus, when k = 2 and 3, special phenomena prevail and result in rich automor-
phism groups so that these two cases offer examples of parabolic geometries associ-
ated with differential equations. Here the Parabolic Geometry is a geometry modeled
after the homogeneous space G/P , where G is a (semi-)simple Lie group and P is a
parabolic subgroup of G (cf. [Bai93]). Precisely, in this paper, we mean, by a parabolic
geometry, the geometry associated with the simple graded Lie algebra in the sense of
N. Tanaka ([Tan79]). The main purpose of this paper is to seek other such special
phenomena and to present other classes of parabolic geometries associated with dif-
ferential equations of finite type, which naturally arise from Se-ashi’s principle and
generalize the above cases of g2 and g3.

For the geometry of differential equations of finite type, our study is based on
the geometry of differential systems in the following way (cf. [YY02]): We regard a
kth order differential equation as a submanifold R of the k-jet space J k(n,m) for n
independent and m dependent variables. Defined on R, we have the differential system
D̂ obtained by restricting to R the canonical system Ck on J k(n,m) (see Section
2.1). Especially, when R is a kth order involutive differential equation of finite type,
p = πk

k−1 |R : R → J k−1 is an immersion so that we have a pseudo-product structure

D = E ⊕ F on R, where D is the pullback (p∗)−1(Ck−1) of Ck−1 through p, E = D̂
is the restriction of Ck to R and F = Ker (πk

k−2 |R)∗ is the fibre direction of πk
k−2 |R .

Now, let us recall Se-ashi’s procedure to form good classes of linear differential
equations of finite type, following [Sea88] and [YY02]. Se-ashi’s procedure starts from
a reductive graded Lie algebra (GLA) l = l−1 ⊕ l0 ⊕ l1 and a faithful irreducible l-
module S. Then we form the pseudo-product GLA g = ⊕

p∈Z gp of type (l, S) as
follows: Let l = l−1 ⊕ l0 ⊕ l1 be a finite dimensional reductive GLA of the first kind
such that

(1) The ideal l̂ = l−1 ⊕ [l−1, l1]⊕ l1 of l is a simple Lie algebra.
(2) The center z(l) of l is contained in l0.

Let S be a finite dimensional faithful irreducible l-module. We put

S−1 = {s ∈ S | l1 · s = 0 }
and

Sp = ad(l−1)−p−1S−1 for p < 0.

We form the semi-direct product g of l by S, and put

g = S ⊕ l, [S, S] = 0,

gk = lk (k � 0), g−1 = l−1 ⊕ S−1,

gp = Sp (p < −1).
Then g =⊕

p∈Z gp enjoys the following properties (Lemma 2.1);

(1) S =⊕−μ
p=−1 Sp, where S−μ = {s ∈ S | [l−1, s] = 0 }.
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(2) m =⊕
p<0 gp is generated by g−1.

(3) Sp is naturally embedded as a subspace of W ⊗ Sμ+p(l−1∗) through the bracket
operation in m, where W = S−μ.

Thus S = S−μ ⊕ S−μ+1 ⊕ · · · ⊕ S−1 ⊂ W ⊕ W ⊗ V ∗ ⊕ · · · ⊕ W ⊗ Sμ−1(V ∗)
defines a symbol of μth order differential equations of finite type by putting S0 =
{0} ⊂ W ⊗ Sμ(V ∗). We can construct the model linear equation R0 of finite type,
whose symbol at each point is isomorphic to S (see Section 4 [Sea88]). R0 is a μth or
der involutive differential equation of finite type. Then, we see that the symbol algebra
of (R0, D0) is isomorphic tom, where D0 is the pullback of the canonical systemCμ−1
on the (μ− 1)-jet space Jμ−1. m has the splitting g−1 = l−1 ⊕ S−1, corresponding to
the pseudo-product structure on R0, where V = l−1 and W = S−μ. In this way, m is
a symbol algebra of μth order differential equation of finite type, which is called the
typical symbol of type (l, S).

This class of higher order (linear) differential equations of finite type first appeared
in the work of Y. Se-ashi [Sea88], who discussed the linear equivalence of this class of
equations and gave the complete system of differential invariants of these equations,
generalizing the classical theory of Laguerre–Forsyth for linear ordinary differential
equations.

We ask the following question for the pseudo-product GLA g =⊕
p∈Z gp of type

(l, S):

When is g the prolongation of m or (m, g0)?

Namely we ask whether g exhausts all the infinitesimal automorphisms of the differ-
ential system (R0, D0) or its pseudo-product structure.

The answer to this question is given in Theorem 5.2 of [YY02] (Theorem 2.3
below), where we can find the classes of parabolic geometries, which generalize the
cases of second and third order ordinary differential equations. More precisely, this
theorem states : For a pseudo-product GLA g = ⊕1

p=−μ gp of type (l, S) satisfying

the condition H1(m, g)0,0 = 0, g is the prolongation of m = ⊕
p<0 gp except for

three cases. Let b̌ be the prolongation of g = b−1 ⊕ b0, where b−1 = S and b0 = l.
Then the three exceptional cases correspond to cases : (a) dim b̌ <∞ and b̌1 �= 0, (b)
dim b̌ = ∞, (c) g is a pseudo-projective GLA (for the detail, see Section 2). In case
(a), b̌ = b−1⊕ b0⊕ b̌1 becomes a simple graded Lie algebra containing g = b−1⊕ b0
as a parabolic subalgebra. Thus, basically, the case (a) corresponds to the parabolic
geometries that we seek. In fact, in the case of kth order ordinary differential equations
for a scalar function, g2 and g3 belong to case (a) and gk belongs to case (c) for k � 4.

In Section 2, we will recall the above results from [YY02]. The symbol algebras
of these parabolic geometries will be given in Theorem 2.3 in terms of root space de-
compositions of the corresponding simple Lie algebras. We will describe these symbol
algebras and the model differential equations of finite type explicitly by utilizing the
explicit matrices description of the simple graded Lie algebra b̌ for the classical cases
in Section 3 and by describing the structure of m explicitly by use of the Chevalley
basis of the exceptional simple Lie algebras in Section 4. Finally, in Section 5, we will
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discuss the equivalence of each parabolic geometry associated with the differential
equations of finite type explicitly described in previous sections.

2 Pseudo-product GLA g =⊕
p∈Z gp of type (l, S)

In this section, we will summarize the results in [YY02] and explain the prolongation
theorem (Theorem 2.1). We will first discuss the prolongation of symbol algebras of the
pseudo-product structures associated with higher order differential equations of finite
type. Moreover we will generalize this algebra to the notion of the pseudo-product
GLA (graded Lie algebras) of irreducible type and introduce the pseudo-product GLA
g =⊕

p∈Z gp of type (l, S) and ask when g is the prolongation of m or (m, g0), where
m = ⊕

p<0 gp. In the answer to this question, we will find the classes of finite type
differential equations mentioned in the introduction.

2.1 Pseudo-projective GLA of order k of bidegree (n,m)

We first consider a system of higher order differential equations of finite type of the
following form :

∂k yα

∂xi1 · · · ∂xik
= Fα

i1···ik (x1, . . . , xn, y
1, · · · , ym, . . . , pβi , . . . , p

β
j1··· jk−1)

(1 � α � m, 1 � i1 � · · · � ik � n),

where pβi1···i� =
∂�yβ

∂xi1 ···∂xi�
. These equations define a submanifold R in k-jets space J k

such that the restriction
p to R of the bundle projection πk

k−1 : J
k → J k−1 gives a diffeomorphism ;

p : R → J k−1; diffeomorphism. (2.1)

On J k , we have the contact (differential) system Ck defined by

Ck = {%α = %α
i = · · · = %α

i1···ik−1 = 0},
where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

%α = d yα −∑n
i=1 pαi d xi , (1 � α � m)

%α
i = d pαi −

∑n
j=1 pαi j d x j , (1 � α � m, 1 � i � n)

· · · · · · · · · · · · ,
%α

i1···ik−1 = d pαi1···ik−1 −
n∑
j=1

pαi1···ik−1 j d x j

(1 � α � m, 1 � i1 � · · · � ik−1 � n).

(2.2)

Then Ck gives a foliation on R when R is integrable. Namely the restriction E of Ck

to R is completely integrable.
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Thus, through the diffeomorphism (2.1), R defines a completely integrable differ-
ential system E ′ = p∗(E) on J k−1 such that

Ck−1 = E ′ ⊕ F ′, F ′ = Ker (πk−1
k−2 )∗

where πk−1
k−2 : J k−1 → J k−2 is the bundle projection. The triplet (J k−1; E ′, F ′) is

called the pseudo-product structure associated with R.
Corresponding to the splitting D = E ⊕ F = (p−1)∗(Ck−1), we have the splitting

in the symbol algebra of the regular differential system (R, D) ∼= (J k−1,Ck−1) of
type Ck−1(n,m);

C−1 = e⊕ f,

where e = V , f = W ⊗ Sk−1(V ∗). At each point x ∈ R, e corresponds to E(x)
(the point in R(1) over x) and f corresponds to Ker (πk−1

k−2 )∗(p(x)). Here we recall
(see Section 1.3[YY02] for detail) that the fundamental graded Lie algebra (FGLA)
Ck−1(n,m) is defined by

Ck−1(n,m) = C−k ⊕ · · · ⊕ C−2 ⊕ C−1,

where C−k = W,Cp = W ⊗ Sk+p(V ∗), C−1 = V ⊕ W ⊗ Sk−1(V ∗). Here V and
W are vector spaces of dimension n and m respectively and the bracket product of
Ck−1(n,m) = Ck−1(V,W ) is defined accordingly through the pairing between V and
V ∗ such that V and W ⊗ Sk−1(V ∗) are both abelian subspaces of C−1. Here Sr (V ∗)
denotes the r th symmetric product of V ∗.

Now we put

ǧ0 = {X ∈ g0(C
k−1(n,m)) | [X, e] ⊂ e, [X, f] ⊂ f }

and consider the (algebraic) prolongation gk(n,m) of (Ck−1(n,m), ǧ0), which is
called the pseudo-projective GLA of order k of bidegree (n,m) ([Tan89]). Here
g0(C

k−1(n,m)) denotes the Lie algebra of gradation preserving derivations of
Ck−1(n,m).

Let Ǧ0 ⊂ GL(Ck−1(n,m)) be the (gradation preserving) automorphism group of
Ck−1(n,m) which also preserve the splitting C−1 = e⊕ f. Then Ǧ0 is the Lie subgroup
of GL(Ck−1(n,m)) with Lie algebra ǧ0. The pseudo-product structure on a kth order
differential equation R of finite type given above, which is called the pseudo-projective
system of order k of bidegree (n,m) in [Tan89], can be formulated as the Ǧ�

0-structure
over a regular differential system of type Ck−1(n,m) ([Tan70], [Tan89], [DKM99]).
Thus the prolongation gk(n,m) of (Ck−1(n,m), ǧ0) represents the Lie algebra of in-
finitesimal automorphisms of the (local) model kth order differential equation R0 of
finite type, where

R0 =
{

∂k yα

∂xi1 · · · ∂xik
= 0 (1 � α � m, 1 � i1 � · · · � ik � n)

}
.

The isomorphism φ of the pseudo-product structure on R preserves the differential
system D = E ⊕ F , which is equivalent to the canonical system Ck−1 on J k−1.
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Hence, by Bäcklund’s theorem (cf. [Yam83]), φ is the lift of a point transformation on
J 0 whenm � 2 and k � 2 and is the lift of a contact transformation on J 1 whenm = 1
and k � 3. When (m, k) = (1, 2), φ is the lift of the point transformation on J 0, since
φ preserves both D and F = Ker (π1

0 )∗. Thus the equivalence of the pseudo-product
structure on R is the equivalence of the kth order equation under point or contact
transformations. To settle the equivalence problem for the pseudo-projective systems
of order k of bidegree (n,m), N. Tanaka constructed the normal Cartan connections
of type gk(n,m) ([Tan79], [Tan82], [Tan89]).

It is well known that gk(n,m) (k � 2) has the following structure ([Tan89],
[Yam93], [DKM99], [YY02]);

(1) k = 2. g2(n,m) is isomorphic to sl(m + n + 1,R) and has the following
gradation:

sl(m + n + 1,R) = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2,

where the gradation is given by subdividing matrices as follows;

g−2 =
⎧⎨⎩
⎛⎝0 0 0
0 0 0
ξ 0 0

⎞⎠∣∣∣∣∣∣ ξ ∈ W ∼= Rm

⎫⎬⎭ ,

g−1 =
⎧⎨⎩
⎛⎝0 0 0
x 0 0
0 A 0

⎞⎠∣∣∣∣∣∣ x ∈ V ∼= Rn, A ∈ M(m, n) = W ⊗ V ∗
⎫⎬⎭ ,

g0 =
⎧⎨⎩
⎛⎝a 0 0
0 B 0
0 0 C

⎞⎠∣∣∣∣∣∣ a ∈ R, B ∈ gl(V ), C ∈ gl(W ),

a + trB + trC = 0

⎫⎬⎭ ,

g1 = { t X | X ∈ g−1 }, g2 = { t X | X ∈ g−2 },
where V = M(n, 1), W = M(m, 1) and M(a, b) denotes the set of a × b matrices.

(2) k = 3 andm = 1. g3(n, 1) is isomorphic to sp(n+1,R) and has the following
gradation:

sp(n + 1,R) = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3.

First we describe

sp(n + 1,R) = {X ∈ gl(2n + 2,R) | t X J + J X = 0 },
where

J =

⎛⎜⎜⎝
0 0 0 1
0 0 In 0
0 −In 0 0
−1 0 0 0

⎞⎟⎟⎠ ∈ gl(2n + 2,R), In = (δi j ) ∈ gl(n,R).

Here In ∈ gl(n,R) is the unit matrix and the gradation is given again by subdividing
matrices as follows;
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g−3 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
2a 0 0 0

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ a ∈ R

⎫⎪⎪⎬⎪⎪⎭ ,

g−2 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
0 0 0 0
0 0 0 0
ξ 0 0 0
0 tξ 0 0

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ ξ ∈ Rn ∼= V ∗

⎫⎪⎪⎬⎪⎪⎭ ,

g−1 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
0 0 0 0
x 0 0 0
0 A 0 0
0 0 −t x 0

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ x ∈ Rn = V, A ∈ Sym(n) ∼= S2(V ∗)

⎫⎪⎪⎬⎪⎪⎭ ,

g0 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
b 0 0 0
0 B 0 0
0 0 −t B 0
0 0 0 −b

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ b ∈ R, B ∈ gl(V )

⎫⎪⎪⎬⎪⎪⎭ ,

gk = { t X | X ∈ g−k }, (k = 1, 2, 3),

where Sym(n) = { A ∈ gl(n,R) | t A = A } is the space of symmetric matrices.

(3) otherwise. For vector spaces V and W of dimension n and m respectively,
gk(n,m) =⊕

p∈Z gp has the following description:

gk = {0} (k � 2), g1 = V ∗, g0 = gl(V )⊕ gl(W ),

g−1 = V ⊕W ⊗ Sk−1(V ∗), gp = W ⊗ Sk+p(V ∗) (p < −1).
Here the bracket product in gk(n,m) is given through the natural tensor operations.

For the structure of gk(n,m) in case (3), we observe the following points. We put

l = V ⊕ g0 ⊕ g1 = (V ⊕ gl(V )⊕ V ∗)⊕ gl(W )

∼= sl(V̂ )⊕ gl(W ),

S = W ⊗ Sk−1(V̂ ∗), V̂ = R⊕ V .

(2.3)

where the gradation of the first kind; sl(V̂ ) = V ⊕gl(V )⊕V ∗ is given by subdividing
matrices corresponding to the decomposition V̂ = R⊕ V . Then

Sk−1(V̂ ∗) ∼=
k−1⊕
�=0

S�(V ∗),

and S is a faithful irreducible l-module such that l = l−1⊕ l0⊕ l1 is a reductive graded
Lie algebra, where l−1 = V, l0 = g0, l1 = g1. Moreover gk(n,m) ∼= S ⊕ l is the
semi-direct product of l by S.
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In the following sections, we will seek to find other parabolic geometries associated
with differential equations of finite type, which are the generalizations of the above
cases (1) and (2).

2.2 Pseudo-product GLA of type (l, S)(l, S)(l, S)

We will now give the notion of the pseudo-product GLA of type (l, S), generalizing
the pseudo-projective GLA of order k of bidegree (n,m).

Let g =⊕
p∈Z gp be a (transitive) graded Lie algebra (GLA) over the field K such

that the negative part m = ⊕
p<0 gp is a FGLA, i.e., [gp, g−1] = gp−1 for p < 0,

whereK is the fieldR of real numbers or the fieldC of complex numbers. Let e and f be
subspaces of g−1. Then the system G = (g, (gp)p∈Z, e, f) is called a pseudo-product
GLA (PPGLA) of irreducible type if the following conditions hold:

(1) g is transitive, i.e., for each k � 0, if X ∈ gk and [X, g−1] = 0, then X = 0.
(2) g−1 = e⊕ f, [e, e] = [f, f] = 0.
(3) [g0, e] ⊂ e and [g0, f] ⊂ f.
(4) g−2 �= 0 and the g0-modules e and f are irreducible.

It is known that g becomes finite dimensional under these conditions (see [Tan85],
[Yat88]).

As a typical example, starting from a reductive GLA l = l−1 ⊕ l0 ⊕ l1 and a
faithful irreducible l-module S, we define the pseudo-product GLA g = ⊕

p∈Z gp of
type (l, S) as follows: Let l = l−1 ⊕ l0 ⊕ l1 be a finite dimensional reductive GLA of
the first kind such that

(1) The ideal l̂ = l−1 ⊕ [l−1, l1]⊕ l1 of l is a simple Lie algebra.
(2) The center z(l) of l is contained in l0.

Let S be a finite dimensional faithful irreducible l-module. We put

S−1 = {s ∈ S | l1 · s = 0 }

and
Sp = ad(l−1)−p−1S−1 for p < 0.

We form the semi-direct product g of l by S, and put

g = S ⊕ l, [S, S] = 0,

gk = lk (k � 0), g−1 = l−1 ⊕ S−1,

gp = Sp (p < −1).
Namely g is a subalgebra of the Lie algebra A(S) = S ⊕ gl(S) of infinitesimal

affine transformations of S.
Then we have (Lemma 2.1 [YY02])
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Lemma 2.1 Notation being as above,

(1) S =⊕−μ
p=−1 Sp, where S−μ = {s ∈ S | [l−1, s] = 0 }.

(2) m =⊕
p<0 gp is generated by g−1.

(3) [Sp, l1] = Sp+1 for p < −1.
(4) Sp is naturally embedded as a subspace of W ⊗ Sμ+p(l−1∗) through the bracket

operation in m, where W = S−μ.
(5) S−1, S−μ are irreducible l0 -modules.

Thus m is a graded subalgebra of Cμ−1(V,W ), which has the splitting g−1 =
l−1 ⊕ S−1, where V = l−1 and W = S−μ. Hence m is a symbol algebra of μth order
differential equations of finite type, which is called the typical symbol of type (l, S).
Moreover the system G = (g, (gp)p∈Z, l−1, S−1) becomes a PPGLA of irreducible
type, which is called the pseudo-product GLA of type (l, S).

This class of higher order (linear) differential equations of finite type first appeared
in the work of Y. Se-ashi [Sea88].

2.3 Prolongation Theorem

Let G = (g, (gp)p∈Z, l−1, S−1) be a pseudo-product GLA of type (l, S), i.e., g = S⊕ l

is endowed with the gradation (gp)p∈Z, g = ⊕1
p=−μ gp given in Section 2.2. g has

also another gradation (bp)p∈Z, g =
⊕0

p=−1 bp, given by b−1 = S and b0 = l. Thus
g has a bigradation (gp,q)p,q∈Z, where gp,q = gp ∩ bq . We have the cohomology
group H∗(G) = H∗(m, g) associated with the adjoint representation of m = g− on
g, that is, the cohomology space of the cochain complex C∗(G) =⊕

C p(G) with the
coboundary operator ∂ : C p(G) −→ C p+1(G), where C p(G) = Hom(

∧p g−, g). We
put

C p(G)r,s = {ω ∈ C p(G) | ω(gi1, j1 ∧ · · · ∧ gi p, jp ) ⊂ gi1+···+i p+r, j1+···+ jp+s
for all i1, . . . , i p, j1, . . . , jp }.

As is easily seen, C∗(G)r,s =
⊕

p C
p(G)r,s is a subcomplex of C∗(G). Denoting its

cohomology space by H (G)r,s =
⊕

H p(G)r,s , we obtain the direct sum decomposi-
tion

H∗(G) =
⊕
p,r,s

H p(G)r,s .

The cohomology space, endowed with this tri-gradation, is called the generalized
Spencer cohomology space of the PPGLA G of type (l, S). Note that H1(G)0,0 = 0 if
and only if g0 coincides with the Lie algebra of derivations of m such that D(gp) ⊂ gp

(p < 0), D(l−1) ⊂ l−1 and D(S−1) ⊂ S−1.
From now on, we assume for the sake of simplicity that the ground field is the field

C of complex numbers. For the discussion over R, the corresponding results will be
obtained easily through the argument of complexification as in Section 3.2 in [Yam93].
We set l̂ = l−1⊕ [l−1, l1]⊕ l1 and u = D(zl(l̂)); then l = l̂⊕u⊕ z(l),D(l) = l̂⊕u and
l̂ = l−1⊕ l̂0⊕l1, where l̂0 = [l−1, l1], is a simple GLA. Let us take a Cartan subalgebra
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h of l such that h ⊂ l0. Then h∩ l̂ (resp. h∩ u) is a Cartan subalgebra of l̂ (resp. u). Let
� = {α1, . . . , α�} (resp.�′ = {β1, . . . , βm}) be a simple root system of (l̂, h∩ l̂) (resp.
(u, h ∩ u)) such that α(Z) � 0 for all α ∈ �, where Z is the characteristic element of
the GLA l = l−1 ⊕ l0 ⊕ l1. We assume that l̂ is a simple Lie algebra of type X�. We
set �1 = {α ∈ � | α(Z) = 1 }. It is well known that the pair (X�,�1) is one of the
following type (up to a diagram automorphism) (cf. Section 3 in [Yam93]):

(A�, {αi }) (1 � i � [(�+ 1)/2]), (B�, {α1}) (� � 3), (C�, {α�}) (� � 2),

(D�, {α1}) (� � 4), (D�, {α�−1}) (� � 5), (E6, {α1}), (E7, {α7}).
We denote by {%1, . . . ,%�} (resp. {π1, . . . , πn}) the set of fundamental weights

relative to � (resp. �′). Since S is a faithful l-module, we have dim z(l) � 1. Assume
that z(l) �= {0}. Let σ be the element of z(l)∗ such that σ(J ) = 1, where J is the
characteristic element of the GLA g = b−1 ⊕ b0. Namely J = −idS ∈ z(l) ⊂ b0 = l
as the element of gl(S). There is an irreducible l̂ -module T (resp. zl(l̂ ) -module U )
with highest weight χ (resp. η − σ ) such that S = b−1 is isomorphic to U ⊗ T as an
l-module, where η is a weight of u. Then we have (Lemma 4.5 [YY02]).

Lemma 2.2 H1(G)0,0 = 0 if and only if zl(l̂ ) is isomorphic to gl(U ) and η = π1.
Especially, when D(l) = l̂, H1(G)0,0 = 0 if and only if l = l̂⊕ z(l), where z(l) = 〈J 〉.

Thus, when H1(G)0,0 = 0, the semisimple GLA D(l) is of type (X� × An, {αi })
and S is an irreducibleD(l)-module with highest weight� = χ+π1 when dimU > 1
and D(l) is of type (X�, {αi }) and S is an irreducible l̂-module with highest weight χ ,
when D(l) = l̂ (i.e., when dimU = 1).

The following theorem was obtained in Theorem 5.2 [YY02] as the answer to the
following question:

When is g the prolongation of m or (m, g0) ?

In the following theorem (a), the simple graded Lie algebra b = ǧ = ⊕
p∈Z ǧp

is described by (Y�+n+1, #1) such that g = ⊕1
p=−μ gp is a graded subalgebra of

ǧ =⊕μ
p=−μ ǧp satisfying gp = ǧp for p � 0.

Theorem 2.3 Let G be a pseudo-product GLA of type (l, S) satisfying the condition
H1(G)0,0 = 0. Let b =⊕

p∈Z bp be the prolongation of g = b−1⊕b0, where b−1 = S
and b0 = l. Then g = ⊕

p∈Z gp is the prolongation of m = ⊕
p<0 gp except for the

following three cases.

(a) dim b < ∞ and b1 �= 0 (b = b−1 ⊕ b0 ⊕ b1: simple) (see Table 1). In this
case (Y�+n+1, #1) is the prolongation of m except for (A�+n+1, {γ1, γ�+1}) and
(C�+1, {γ1, γ�+1}). Moreover the latter two are the prolongations of (m, g0).

(b) dim b = ∞ (see Table 2). In the (C�, {α�})-case, μ = 2

S−2 = V ∗, S−1 = V, l−1 = S2(V ∗),

l0 = V ⊗ V ∗ ⊕ C, l1 = S2(V ).
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Table 1.

D(l) = [l, l] �1 b−1 = S ǧ = Y�+n+1 #1

A� × An {αi } %� + π1 A�+n+1 {γi , γ�+1}
A� {αi } 2%l C�+1 {γi , γ�+1}

A� (� � 3) {αi } %�−1 D�+1 {γi , γ�+1}
B� (� � 2) {α1} %1 B�+1 {γ2, γ1}
D� (� � 4) {α1} %1 D�+1 {γ2, γ1}
D� (� � 4) {α�} %1 D�+1 {γ�+1, γ1}

D5 {α1} %5 E6 {γ1, γ6}
D5 {α5} %5 E6 {γ3, γ1}
D5 {α4} %5 E6 {γ2, γ1}
E6 {α6} %6 E7 {γ6, γ7}
E6 {α1} %6 E7 {γ1, γ7}

Table 2.

D(l) �1 b−1 g(m, g0)

A� {αi } %� (A�+1, {γi , γ�+1})
C� {α�} %1 g

(c) g is a pseudo-projective GLA, i.e., D(l) = (A� × An, {α1}), � = k%� + π1,
(k � 2, n � 1), or D(l) = (A�, {α1}), χ = k%�, (k � 3, n = 0)

S−μ = W, Sp = W ⊗ Sμ+p(V ∗) (−μ < p < 0),

l−1 = V, l0 = gl(V )⊕ gl(W ), l1 = V ∗,

where μ = k+1, dim V = � and dimW = n+1. In this case g is the prolongation
of (m, g0).

By Proposition 4.4.1 in [Sea88], the Lie algebra of infinitesimal linear automor-
phisms of the model equation of type (l, S) coincides with l. Hence the cases (a) and
(b) of the above theorem exhaust classes of the equations of type (l, S), for which
the model equations admit non-trivial nonlinear automorphisms. These cases corre-
spond to the parabolic geometries associated with differential equations of finite type,
which generalize the case of second and third order ordinary differential equations,
mentioned in the introduction. More precisely, in the cases of (A�+1, {γ1, γi }) and
(C�+1, {γ1, γ�+1}), m coincides with the symbol algebra of the canonical system of
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the first or second order jet spaces (cf. Section 4.5 [Yam93]) and g0 determines the
splitting of g−1, hence the parabolic geometries associated with these graded Lie al-
gebras are geometries of the pseudo-product structures on the first or second order jet
spaces. In fact the parabolic geometry associated with (Am+n, {γ1, γn+1}) is the ge-
ometry of the pseudo-projective system of order 2 of bidegree (n,m) and the parabolic
geometry associated with (Cn+1, {γ1, γn+1}) is the geometry of the pseudo-projective
system of order 3 of bidegree (n, 1) (see the following section).

In the other cases of the above theorem (a), (Y�+n+1, #1) is the prolongation of
m. This fact implies that the parabolic geometries associated with these graded Lie
algebras are geometries of regular differential systems of type m, which have the (al-
most) pseudo-product structure corresponding to g−1 = S−1 ⊕ l−1. Moreover every
isomorphism of these regular differential systems preserves this pseudo-product struc-
ture. Thus the parabolic geometries associated with (Y�+n+1, #1) have the canonical
(almost) pseudo-product structures in the regular differential system of type m corre-
sponding to the splitting g−1 = S−1 ⊕ l−1.

In the following sections, we will calculate explicit forms of typical symbols of
type (l, S) of the above cases and describe the above (almost) pseudo-product struc-
tures as differential equations of finite type.

3 Symbol of the classical cases

In this section we will describe the symbol algebra m = ⊕
p<0 gp explicitly as the

subalgebra of Cμ−1(V,W ), where V = l−1 and W = S−μ, by utilizing the explicit
matrices description of the graded Lie algebra ǧ of type (YL , #1). For an explicit ma-
trices description of the graded Lie algebra (YL , #1), we refer the reader to Section 4.4
in [Yam93]. By this calculation, we can explicitly write down the class of differential
equations of finite type corresponding to the pseudo-product structure associated with
the simple graded Lie algebra (YL , #1). In this section, we shall work in the complex
analytic or the real C∞ category depending on whether K = C or R.

Case (1) [(A�× An, {αi }),%�+π1, (A�+n+1, {γi , γ�+1})] (1 < i � �, n � 0, � � 2).
This includes the first case of (b) in the above theorem as the case n = 0.

b = b−1 ⊕ b0 ⊕ b1 is described by (A�+n+1, {γ�+1}) and ǧ = ⊕μ
p=−μ ǧp is de-

scribed by (A�+n+1, {γi , γ�+1}). Hence μ = 2 and we obtain the following matrix
representation of ǧ = b = sl(�+ n + 2,K):

sl(�+ n + 2,K) = g−2 ⊕ g−1 ⊕ g0 ⊕ ǧ1 ⊕ ǧ2 = S ⊕ l⊕ S∗,

where the gradation is given by subdividing matrices as follows:

g−2 = S−2 =
⎧⎨⎩
⎛⎝0 0 0
0 0 0
A 0 0

⎞⎠∣∣∣∣∣∣ A ∈ M(n + 1, i) ∼= U ⊗ T ∗0

⎫⎬⎭ ,

g−1 = S−1 ⊕ l−1,
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S−1 = U ⊗ T ∗−1 =
⎧⎨⎩
⎛⎝0 0 0
0 0 0
0 B 0

⎞⎠∣∣∣∣∣∣ B ∈ M(n + 1, j)

⎫⎬⎭ ,

l−1 = T−1 ⊗ T ∗0 =
⎧⎨⎩
⎛⎝0 0 0
C 0 0
0 0 0

⎞⎠∣∣∣∣∣∣ C ∈ M( j, i)

⎫⎬⎭ ,

g0 = ľ0 ⊕ u =
⎧⎨⎩
⎛⎝F 0 0
0 G 0
0 0 H

⎞⎠∣∣∣∣∣∣ F ∈ gl(T0), G ∈ gl(T−1), H ∈ gl(U ),

trF + trG + trH = 0

⎫⎬⎭ ,

ǧ1 = { t X | X ∈ g−1 }, ǧ2 = { t X | X ∈ g−2 },

where i + j = � + 1, U = Kn+1, T = T0 ⊕ T−1 = K�+1, T0 = Ki , T−1 = K j and
M(a, b) denotes the set of a × b matrices. Thus we have

S = U ⊗ T ∗, l = sl(T )⊕ gl(U ), and ǧ = sl(T ⊕U ).

We will divide the argument into the following two cases. We first consider the typical
case:

(i) i = � � 2, n = 0.

We have j = 1 and n = 0 in the above matrix description. Hence dim l−1 =
dim S−2 = � and dim S−1 = 1. We put l−1 = S−2 = V . Then

m = S−2⊕(S−1⊕ l−1) =
⎧⎨⎩
⎛⎝0 0 0
x 0 0
y a 0

⎞⎠ = y̌ + â + x̂

∣∣∣∣∣∣ x, y ∈ V = M(1, �), a ∈ K

⎫⎬⎭ .

By a direct calculation, we have [â, x̂] = ˇ(ax) ∈ S−2 = V , i.e., y = ax . Thus S−1
is embedded as the 1-dimensional subspace of scalar multiplications of V ⊗ V ∗ =
S−2⊗ (l−1)∗ through the bracket operation in m. This implies that the model equation
of our typical symbol m = g−2 ⊕ g−1 ⊂ C1(V, V ) is given by

∂yp
∂xq

= δpq
∂y1
∂x1

for 1 � p, q � �. (3.1)

where y1, . . . , y� are dependent variables and x1, . . . , x� are independent variables. By
a direct calculation, we see that the prolongation of the first order system (3.1) is given
by

∂2yp
∂xq∂xr

= 0 for 1 � p, q, r � �. (3.2)
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(ii) otherwise.
We have S−2 = U ⊗ T ∗0 ∼= M(n + 1, i), S−1 = U ⊗ T ∗−1 ∼= M(n + 1, j) and

l−1 = T−1 ⊗ T ∗0 ∼= M( j, i). Then

m = S−2 ⊕ (S−1 ⊕ l−1)

=
⎧⎨⎩
⎛⎝0 0 0
X 0 0
Y A 0

⎞⎠ = Y̌ + Â + X̂

∣∣∣∣∣∣ Y ∈ M(n + 1, i), A ∈ M(n + 1, j), X ∈ M( j, i)

⎫⎬⎭ .

By a direct calculation, we have [ Â, X̂ ] = (AX )̌ ∈ S−2, i.e., yα =
∑ j

τ=1 a
α
τ x

τ , where
yα is the αth row of Y , xτ is the τ th row of X and A = (aα

τ ). From (i), we see that the
model equation of our typical symbol m = g−2 ⊕ g−1 ⊂ C1(l−1, S−2) is given by

∂yαp
∂xτq

= δpq
∂yα1
∂xτ1

for α = 1, . . . , n + 1, τ = 1, . . . , j, 1 � p, q � i,

(3.3)

where y11 , . . . , y
1
i , . . . , y

n+1
1 , . . . , yn+1i are dependent variables and x11 , . . . , x

1
i , . . . ,

x j
1 , . . . , x

j
i are independent variables. By a direct calculation, we see that the prolon-

gation of the first order system (3.3) is given by

∂2yαp
∂xτq ∂x

υ
r
= 0 for α = 1, . . . , n + 1, 1 � τ, υ � j, 1 � p, q, r � i. (3.4)

Case (2) [(A� × An, {α1}),%� + π1, (A�+n+1, {γ1, γ�+1})] (n � 0, � � 1).
b = b−1 ⊕ b0 ⊕ b1 is described by (A�+n+1, {γ�+1}) and ǧ = ⊕μ

p=−μ ǧp is
described by (A�+n+1, {γ1, γ�+1}). Hence μ = 2 and we obtain ǧ = g2(�, n+ 1). The
matrix representation is given as (1) in Section 2.1.

We have S−2 = W ∼= M(n + 1, 1), l−1 = V ∼= M(�, 1), S−1 = W ⊗ V ∗ ∼=
M(n + 1, �) and g0 determines the splitting of g−1 = S−1 ⊕ l−1. Thus the model
equation of our typical symbol m = C1(V,W ) is given by

∂2yα

∂xp∂xq
= 0 for α = 1, . . . , n + 1, 1 � p, q � �, (3.5)

where y1, . . . , yn+1 are dependent variables and x1, . . . , x� are independent variables.

Case (3) [(A�, {αi }), 2%l , (C�+1, {γi , γ�+1})] (1 < i � �, � � 2).
b = b−1⊕b0⊕b1 is described by (C�+1, {γ�+1}) and ǧ =⊕μ

p=−μ ǧp is described
by (C�+1, {γi , γ�+1}). Hence μ = 3 and ǧ = b is isomorphic to sp(�+ 1,K). First we
describe

sp(�+ 1,K) = {X ∈ gl(2�+ 2,K) | t X J + J X = 0 },
where
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J =

⎛⎜⎜⎝
0 0 0 Ii
0 0 I j 0
0 −I j 0 0
−Ii 0 0 0

⎞⎟⎟⎠ ∈ gl(2�+ 2,K), Ik = (δpq) ∈ gl(k,K).

Here Ik ∈ gl(k,K) is the unit matrix and the gradation is given again by subdividing
matrices as follows;

g−3 = S−3 = S2(T ∗0 ) =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
A 0 0 0

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ A ∈ Sym(i)

⎫⎪⎪⎬⎪⎪⎭ ,

g−2 = S−2 = T−1 ⊗ T ∗0 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
0 0 0 0
0 0 0 0
B 0 0 0
0 t B 0 0

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ B ∈ M( j, i)

⎫⎪⎪⎬⎪⎪⎭ ,

g−1 = S−1 ⊕ l−1,

S−1 = S2(T ∗−1) =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 D 0 0
0 0 0 0

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ D ∈ Sym( j)

⎫⎪⎪⎬⎪⎪⎭ ,

l−1 = T−1 ⊗ T ∗0 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
0 0 0 0
C 0 0 0
0 0 0 0
0 0 −tC 0

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ C ∈ M( j, i)

⎫⎪⎪⎬⎪⎪⎭ ,

g0 = ľ0 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
F 0 0 0
0 G 0 0
0 0 −tG 0
0 0 0 −t F

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ F ∈ gl(i,K), G ∈ gl( j,K)

⎫⎪⎪⎬⎪⎪⎭ ,

ǧk = { t X | X ∈ g−k }, (k = 1, 2, 3),

where i + j = � + 1, T = T0 ⊕ T−1 = K�+1, T0 = Ki , T−1 = K j and Sym(k) =
{ A ∈ gl(k,K) | t A = A } is the space of symmetric matrices. Thus we have

S = S2(T ∗), l = sl(T ), and ǧ = sp(T ⊕ T ).

We will divide the argument into the following two cases. We first consider the typical
case:

(i) i = � � 2.

We have j = 1 in the above matrix description. Hence dim l−1 = S−2 = �,
dim S−1 = 1 and dim S−3 = 1

2�(�+ 1). Then
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m = S−3 ⊕ S−2 ⊕ (S−1 ⊕ l−1)

=

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
0 0 0 0
x 0 0 0
ξ a 0 0
Y tξ −t x 0

⎞⎟⎟⎠ = Ŷ + ξ̌ + â + x̂

∣∣∣∣∣∣∣∣
a ∈ K, x, ξ ∈ K� = M(1, �),

Y ∈ Sym(�)

⎫⎪⎪⎬⎪⎪⎭ ,

By calculating [ξ̂ , x̂] and [[â, x̂], x̂], we have

ypq(= yqp) = ξpxq + ξq xp = 2axpxq ,

where Y = (ypq), ξ = (ξ1, . . . , ξ�) and x = (x1, . . . , x�). From the first equality,
we can embed S−2 as a subspace of S−3 ⊗ (l−1)∗ and obtain the following first order
system as the model equation whose symbol coincides with this subspace:

∂ypq
∂xr

= 0 for r �= p, q,
∂ypq
∂xq

= 1

2

∂ypp
∂xp

for p �= q, (3.6)

where ypq = yqp (1 � p � q � �) are dependent variables and x1, . . . , x� are
independent variables. Moreover, by a direct calculation, we see that the prolongation
of the first order system (3.6) is given by

∂2ypq
∂xr∂xs

= 0 for {r, s} �= {p, q}, ∂2ypq
∂xp∂xq

= 1

2

∂2ypp
∂2xp

= 1

2

∂2yqq
∂2xq

for p �= q.

(3.7)

From the second equality, we observe that the above second order system is the model
equation of the 1-dimensional embedded subspace S−1 in S−3 ⊗ S2((l−1)∗). Further-
more, by a direct calculation, we see that the prolongation of this second order system
(3.7) is given by

∂3ypq
∂xr∂xs∂xt

= 0 for 1 � p, q, r, s, t � �. (3.8)

(ii) 1 < i < �.
We have S−3 = S2(T ∗0 ) ∼= Sym(i), S−2 = T−1⊗T ∗0 ∼= M( j, i), S−1 = S2(T ∗−1) ∼=

Sym( j) and l−1 = T−1 ⊗ T ∗0 ∼= M( j, i). Then

m = S−3 ⊕ S−2 ⊕ (S−1 ⊕ l−1)

=

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
0 0 0 0
X 0 0 0
� A 0 0
Y t� −t X 0

⎞⎟⎟⎠ = Ŷ + �̌+ Â + X̂

∣∣∣∣∣∣∣∣
A ∈ Sym( j), X, � ∈ M( j, i),

Y ∈ Sym(i)

⎫⎪⎪⎬⎪⎪⎭ .

By calculating [�̂, X̂ ] and [[ Â, X̂ ], X̂ ], we have
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ypq(= yqp) =
j∑

α=1
(ξα

p x
α
q + ξα

q x
α
p) = 2

j∑
α,β=1

aαβx
α
p x

β
q ,

where Y = (ypq), � = (ξα
p ) A = (aαβ) and X = (xαp). From the first equality, we can

embed S−2 as a subspace of S−3 ⊗ (l−1)∗ and obtain the following first order system
as the model equation whose symbol coincides with this subspace:

∂ypq
∂xαr

= 0 for r �= p, q,
∂ypq
∂xαq

= 1

2

∂ypp
∂xαp

for p �= q (3.9)

where ypq = yqp (1 � p � q � i) are dependent variables and xαp (1 � p � i, 1 �
α � j) are independent variables. Moreover, by a direct calculation, we see that the
prolongation of the first order system (3.9) is given by

∂2ypq

∂xαr ∂x
β
s

= 0 for {r, s} �= {p, q}, ∂2ypq

∂xαp∂x
β
q

= 1

2

∂2ypp

∂xαp∂x
β
p

= 1

2

∂2yqq

∂xαq ∂x
β
q

for p �= q.

(3.10)

From the second equality, we observe that the above second order system is the model
equation of the embedded subspace S−1 in S−3⊗ S2((l−1)∗). Furthermore, by a direct
calculation, we see that the prolongation of this second order system (3.10) is given by

∂3ypq

∂xαr ∂x
β
s ∂x

γ
t

= 0 for 1 � p, q, r, s, t � i, 1 � α, β, γ � j. (3.11)

Case (4) [(A�, {α1}), 2%l , (C�+1, {γ1, γ�+1})] (� � 1).
b = b−1 ⊕ b0 ⊕ b1 is described by (C�+1, {γ�+1}) and ǧ = ⊕μ

p=−μ ǧp is de-
scribed by (C�+1, {γ1, γ�+1}). Hence μ = 3 and we obtain ǧ = g3(�, 1). The matrix
representation is given as (2) in Section 2.1.

We have S−3 = K, S−2 = V ∗, l−1 = V , S−1 = S2(V ∗) and g0 determines
the splitting of g−1 = S−1 ⊕ l−1. Thus the model equation of our typical symbol
m = C2(V,K) is given by

∂3y

∂xp∂xq∂xr
= 0 for 1 � p, q, r � �, (3.12)

where y is a dependent variable and x1, . . . , x� are independent variables.

Case (5) [(B�, {α1}),%1, (B�+1, {γ2, γ1})] (� � 2) [(D�, {α1}),%1, (D�+1, {γ2, γ1})]
(� � 4).

b = b−1⊕b0⊕b1 is described by (BD�+1, {γ1}) and ǧ =⊕μ
p=−μ ǧp is described

by (BD�+1, {γ2, γ1}). Hence μ = 3 and ǧ = b is isomorphic to o(n + 4). First we
describe

o(n + 4) = {X ∈ gl(n + 4,K) | t X J + J X = 0 },
where
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J =

⎛⎜⎜⎜⎜⎝
0 0 0 0 1
0 0 0 1 0
0 0 In 0 0
0 1 0 0 0
1 0 0 0 0

⎞⎟⎟⎟⎟⎠ ∈ gl(n + 4,K), In = (δi j ) ∈ gl(n,K).

Here In ∈ gl(n,K) is the unit matrix and the gradation is given again by subdividing
matrices as follows;

g−3 = S−3 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
y 0 0 0 0
0 −y 0 0 0

⎞⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣∣
y ∈ K

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

g−2 = S−2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
ξ 0 0 0 0
0 0 0 0 0
0 0 −tξ 0 0

⎞⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣∣
ξ ∈ Kn = M(n, 1)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

g−1 = S−1 ⊕ l−1,

S−1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
b 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −b 0

⎞⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣∣
b ∈ K

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

l−1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 x 0 0 0
0 0 −t x 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣∣
x ∈ Kn = M(n, 1)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

g0 = ľ0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
a1 0 0 0 0
0 a2 0 0 0
0 0 A 0 0
0 0 0 −a2 0
0 0 0 0 −a1

⎞⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣∣
a1, a2 ∈ K, A ∈ o(n)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

ǧk = { t X | X ∈ g−k }, (k = 1, 2, 3).

We have dim S−3 = dim S−1 = 1 and dim S−2 = dim l−1 = n. Then
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m = S−3 ⊕ S−2 ⊕ (S−1 ⊕ l−1)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
a 0 0 0 0
ξ x 0 0 0
y 0 −t x 0 0
0 −y −tξ −a 0

⎞⎟⎟⎟⎟⎠ = ŷ + ξ̌ + â + x̂

∣∣∣∣∣∣∣∣∣∣
y, a ∈ K, x, ξ ∈ Kn = M(n, 1)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

From [ξ̌ , x̂] = (
∑n

i=1 ξi xi )̂ and [[â, x̂], x̂] = (−a∑n
i=1 x2i )̂, we have S−2 = V ∗,

putting S−3 = K and l−1 = V . Moreover S−1 is embedded as the 1-dimensional sub-
space spanned by the unit matrix in Sym(n) ∼= S2(V ∗) through the bracket operation in
m. This implies that the model equation of our typical symbolm = g−3⊕g−2⊕g−1 ⊂
C2(V,K) is given by

∂2y

∂xp∂xq
= δpq

∂2y

∂2x1
for 1 � p, q � n, (3.13)

where y is a dependent variable and x1, . . . , xn are independent variables. By a direct
calculation, we see that the prolongation of the second order system (3.13) is given by

∂3y

∂xp∂xq∂xr
= 0 for 1 � p, q, r � n. (3.14)

Case (6) [(D�, {α�}),%1, (D�+1, {γ�+1}, γ1)] (� � 4).
b = b−1 ⊕ b0 ⊕ b1 is described by (D�+1, {γ1}) and ǧ =⊕μ

p=−μ ǧp is described
by (D�+1, {γ�+1}, γ1}). Hence μ = 2 and ǧ = b is isomorphic to o(2� + 2). First we
describe

o(2�+ 2) = {X ∈ gl(2�+ 2,K) | t X J + J X = 0 },
where

J =

⎛⎜⎜⎝
0 0 0 1
0 0 I� 0
0 I� 0 0
1 0 0 0

⎞⎟⎟⎠ ∈ gl(2�+ 2,K), I� = (δi j ) ∈ gl(�,K).

Here the gradation is given again by subdividing matrices as follows;

g−2 = S−2 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
0 0 0 0
0 0 0 0
y 0 0 0
0 −t y 0 0

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ y ∈ K� = M(�, 1)

⎫⎪⎪⎬⎪⎪⎭ ,

g−1 = S−1 ⊕ l−1,
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S−1 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
0 0 0 0
ξ 0 0 0
0 0 0 0
0 0 −tξ 0

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ ξ ∈ K� = M(�, 1)

⎫⎪⎪⎬⎪⎪⎭ ,

l−1 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 X 0 0
0 0 0 0

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ X ∈ o(�)

⎫⎪⎪⎬⎪⎪⎭ ,

g0 = ľ0 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
a 0 0 0
0 A 0 0
0 0 −t A 0
0 0 0 −a

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ a ∈ K, A ∈ gl(�,K)

⎫⎪⎪⎬⎪⎪⎭ ,

ǧk = { t X | X ∈ g−k }, (k = 1, 2, 3).

We have dim S−2 = dim S−1 = �, dim l−1 = 1
2�(�− 1), l = o(2�) and S = K2�. Then

m = S−2 ⊕ (S−1 ⊕ l−1)

=

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
0 0 0 0
ξ 0 0 0
y X 0 0
0 −t y −tξ 0

⎞⎟⎟⎠ = ŷ + ξ̌ + X̂

∣∣∣∣∣∣∣∣ y, ξ ∈ K� = M(�, 1), X ∈ o(�)

⎫⎪⎪⎬⎪⎪⎭ .

By calculating [ξ̌ , X̂ ], we have

yp =
�∑

q=1
xpqξq , (xpq + xqp = 0),

where y = t (y1, . . . , y�), ξ = t (ξ1, . . . , ξ�) and X = (xpq). Then the model equation
of our typical symbol m = g−2 ⊕ g−1 ⊂ C1(l−1, S−2) is given by

∂yp
∂xqr

= 0 for distinct p, q, r
∂yp
∂xpq

= ∂yr
∂xrq

for p, r �= q, (3.15)

where y1, . . . , y� are dependent variables and xpq (1 � p < q � �) are independent
variables. By a direct calculation, we see that the prolongation of the first order system
(3.15) is given by

∂2yp
∂xq1r1∂xq2r2

= 0 for 1 � p, q1, r1, q2, r2 � �. (3.16)

Case (7) [(A�, {α1},%�−1, (D�+1, {γ1, γ�+1})] (� � 3).
b = b−1⊕b0⊕b1 is described by (D�+1, {γ�+1}) and ǧ =⊕μ

p=−μ ǧp is described
by (D�+1, {γ1, γ�+1}). Hence μ = 2 and ǧ = b is isomorphic to o(2� + 2). First we
describe
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o(2�+ 2) = {X ∈ gl(2�+ 2,K) | t X J + J X = 0 },
as in Case (6) and the gradation is given again by subdividing matrices as follows;

g−2 = S−2 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
0 0 0 0
0 0 0 0
y 0 0 0
0 −t y 0 0

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ y ∈ K� = M(�, 1)

⎫⎪⎪⎬⎪⎪⎭ ,

g−1 = S−1 ⊕ l−1,

S−1 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 � 0 0
0 0 0 0

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ � ∈ o(�)

⎫⎪⎪⎬⎪⎪⎭ ,

l−1 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
0 0 0 0
x 0 0 0
0 0 0 0
0 0 −t x 0

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ x ∈ K� = M(�, 1)

⎫⎪⎪⎬⎪⎪⎭ ,

g0 = ľ0 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
a 0 0 0
0 A 0 0
0 0 −t A 0
0 0 0 −a

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ a ∈ K, A ∈ gl(�,K)

⎫⎪⎪⎬⎪⎪⎭ ,

ǧk = { t X | X ∈ g−k }, (k = 1, 2, 3).

We have dim S−2 = dim l−1 = �, dim S−1 = 1
2�(� − 1), l = sl(T ) and S = ∧2 T ∗.

Then

m = S−2 ⊕ (S−1 ⊕ l−1)

=

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
0 0 0 0
x 0 0 0
y � 0 0
0 −t y −t x 0

⎞⎟⎟⎠ = y̌ + �̂+ x̂

∣∣∣∣∣∣∣∣ x, y ∈ K� = M(�, 1), � ∈ o(�)

⎫⎪⎪⎬⎪⎪⎭ .

By calculating [�̂, x̂], we have

yp =
�∑

q=1
ξpq xq , (ξpq + ξqp = 0),

where y = t (y1, . . . , y�), x = t (x1, . . . , x�) and � = (ξpq).
Then the model equation of our typical symbol m = g−2 ⊕ g−1 ⊂ C1(l−1, S−2) is

given by

∂yp
∂xq

+ ∂yq
∂xp

= 0 for 1 � p < q � �, (3.17)
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where y1, . . . , y� are dependent variables and x1, . . . , x� are independent variables.
By a direct calculation, we see that the prolongation of the first order system (3.17) is
given by

∂2yp
∂xq∂xr

= 0 for 1 � p, q, r � �. (3.18)

Case (8) [(A�, {α�}),%�−1, (D�+1, {γ�, γ�+1})](� � 3).

b = b−1⊕b0⊕b1 is described by (D�+1, {γ�+1}) and ǧ =⊕μ
p=−μ ǧp is described

by (D�+1, {γ�, γ�+1}). Hence μ = 2 and ǧ = b is isomorphic to o(2� + 2). First we
describe

o(2�+ 2) = {X ∈ gl(2�+ 2,K) | t X J + J X = 0 },
where

J =

⎛⎜⎜⎝
0 0 0 I�
0 0 1 0
0 1 0 0
I� 0 0 0

⎞⎟⎟⎠ ∈ gl(2�+ 2,K), I� = (δi j ) ∈ gl(�,K).

Here the gradation is given again by subdividing matrices as follows;

g−2 = S−2 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
Y 0 0 0

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ Y ∈ o(�)

⎫⎪⎪⎬⎪⎪⎭ ,

g−1 = S−1 ⊕ l−1,

S−1 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
0 0 0 0
0 0 0 0
ξ 0 0 0
0 −tξ 0 0

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ ξ ∈ M(1, �)

⎫⎪⎪⎬⎪⎪⎭ ,

l−1 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
0 0 0 0
x 0 0 0
0 0 0 0
0 0 −t x 0

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ x ∈ K� = M(1, �)

⎫⎪⎪⎬⎪⎪⎭ ,

g0 = ľ0 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
A 0 0 0
0 a 0 0
0 0 −a 0
0 0 0 −t A

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ a ∈ K, A ∈ gl(�,K)

⎫⎪⎪⎬⎪⎪⎭ ,

ǧk = { t X | X ∈ g−k }, (k = 1, 2, 3).

We have dim S−2 = 1
2�(� − 1), dim S−1 = dim l−1 = �, l = sl(T ) and S = ∧2 T ∗.

Then
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m = S−2 ⊕ (S−1 ⊕ l−1)

=

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
0 0 0 0
x 0 0 0
ξ 0 0 0
Y −tξ −t x 0

⎞⎟⎟⎠ = Ŷ + ξ̌ + x̂

∣∣∣∣∣∣∣∣ x, ξ ∈ K� = M(1, �), Y ∈ o(�)

⎫⎪⎪⎬⎪⎪⎭ .

By calculating [ξ̌ , x̂], we have

ypq = ξq xp − ξpxq , (ypq + yqp = 0),

where x = (x1, . . . , x�), ξ = (ξ1, . . . , ξ�) and Y = (ypq). Then the model equation of
our typical symbol m = g−2 ⊕ g−1 ⊂ C1(l−1, S−2) is given by

∂ypq
∂xr

= 0 for distinct p, q, r
∂ypq
∂xp

+ ∂yqr
∂xr

= 0 for q �= p, r, (3.19)

where ypq (1 � p < q � �) are dependent variables and x1, . . . , x� are independent
variables. By a direct calculation, we see that the prolongation of the first order system
(3.19) is given by

∂2ypq
∂xr∂xs

= 0 for 1 � p, q, r, s � �. (3.20)

Case (9) [(A�, {αi }),%�−1, (D�+1, {γi , γ�+1})] (2 < i < �, � � 4).
b = b−1⊕b0⊕b1 is described by (D�+1, {γ�+1}) and ǧ =⊕μ

p=−μ ǧp is described
by (D�+1, {γi , γ�+1}). Hence μ = 3 and ǧ = b is isomorphic to o(2� + 2). First we
describe

o(2�+ 2) = {X ∈ gl(2�+ 2,K) | t X J + J X = 0 },
where

J =

⎛⎜⎜⎝
0 0 0 Ii
0 0 I j 0
0 I j 0 0
Ii 0 0 0

⎞⎟⎟⎠ ∈ gl(2�+ 2,K), Ik = (δpq) ∈ gl(k,K).

Here the gradation is given again by subdividing matrices as follows;

g−3 = S−3 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
Y 0 0 0

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ Y ∈ o(i)

⎫⎪⎪⎬⎪⎪⎭ ,

g−2 = S−2 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
0 0 0 0
0 0 0 0
� 0 0 0
0 −t� 0 0

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ � ∈ M( j, i)

⎫⎪⎪⎬⎪⎪⎭ ,



184 K. Yamaguchi and T. Yatsui

g−1 = S−1 ⊕ l−1,

S−1 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 A 0 0
0 0 0 0

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ A ∈ o( j)

⎫⎪⎪⎬⎪⎪⎭ ,

l−1 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
0 0 0 0
X 0 0 0
0 0 0 0
0 0 −t X 0

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ X ∈ M( j, i)

⎫⎪⎪⎬⎪⎪⎭ ,

g0 = ľ0 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
F 0 0 0
0 G 0 0
0 0 −tG 0
0 0 0 −t F

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ F ∈ gl(i,K), G ∈ gl( j,K)

⎫⎪⎪⎬⎪⎪⎭ ,

ǧk = { t X | X ∈ g−k }, (k = 1, 2, 3).

We have i + j = � + 1, dim S−3 = 1
2 i(i − 1), dim S−2 = dim l−1 = i j , dim S−1 =

1
2 j ( j − 1), l = sl(T ) and S =∧2 T ∗. Then

m = S−3 ⊕ S−2 ⊕ (S−1 ⊕ l−1)

=

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
0 0 0 0
X 0 0 0
� A 0 0
Y −t� −t X 0

⎞⎟⎟⎠ = Ŷ + �̌+ Â + X̂

∣∣∣∣∣∣∣∣
X, � ∈ M( j, i), Y ∈ o(i),

A ∈ o( j)

⎫⎪⎪⎬⎪⎪⎭ .

By calculating [�̌, X̂ ] and [[ Â, X̂ ], X̂ ], we have

ypq(= −yqp) =
j∑

α=1
(ξα

q x
α
p − ξα

p x
α
q ) = 2

j∑
α,β=1

aαβx
α
p x

β
q ,

where Y = (ypq),� = (ξα
p ) and X = (xαp). From the first equality, we can embed S−2

as a subspace of S−3⊗ (l−1)∗ and obtain the following first order system as the model
equation whose symbol coincides with this subspace:

∂ypq
∂xαr

= 0 for distinct p, q, r,
∂ypq
∂xαp

+ ∂yqr
∂xαr

= 0 for q �= p, r, (3.21)

where ypq (1 � p < q � i) are dependent variables and xαp 1 � p � i, 1 �
α � j) are independent variables. Moreover, by a direct calculation, we see that the
prolongation of the first order system (3.21) is given by

∂2ypq

∂xαr ∂x
β
s

= ∂2ypq

∂xαp∂x
β
p

= 0 for {r, s} �= {p, q},
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∂2ypq

∂xαp∂x
β
q

= ∂2yrs

∂xαr ∂x
β
s

for (p, q) �= (r, s). (3.22)

From the second equality, we observe that the above second order system is the model
equation of the embedded subspace S−1 in S−3⊗ S2((l−1)∗). Furthermore, by a direct
calculation, we see that the prolongation of this second order system (3.22) is given by

∂3ypq

∂xαr ∂x
β
s ∂x

γ
t

= 0 for 1 � p, q, r, s, t � i, 1 � α, β, γ � j. (3.23)

Case (10) [(A�, {α2}),%�−1, (D�+1, {γ2, γ�+1})] (� � 3).
b = b−1⊕b0⊕b1 is described by (D�+1, {γ�+1}) and ǧ =⊕μ

p=−μ ǧp is described
by (D�+1, {γ2, γ�+1}). Hence μ = 3 and ǧ = b is isomorphic to o(2� + 2). First we
describe

o(2�+ 2) = {X ∈ gl(2�+ 2,K) | t X J + J X = 0 },
where

J =

⎛⎜⎜⎝
0 0 0 I2
0 0 I�−1 0
0 I�−1 0 0
I2 0 0 0

⎞⎟⎟⎠ ∈ gl(2�+ 2,K), I�−1 = (δi j ) ∈ gl(�− 1,K).

Hence the gradation is given as in the case (9) with i = 2 and j = � − 1. We have
dim S−3 = 1, dim S−2 = dim l−1 = 2(�− 1), dim S−1 = 1

2 (�− 1)(�− 2), l = sl(T )

and S =∧2 T ∗.
Then

m = S−3 ⊕ S−2 ⊕ (S−1 ⊕ l−1)

=

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
0 0 0 0
X 0 0 0
� A 0 0
Y −t� −t X 0

⎞⎟⎟⎠ = Ŷ + �̌+ Â + X̂

∣∣∣∣∣∣∣∣
X, � ∈ M(�− 1, 2), Y ∈ o(2),

A ∈ o(�− 1)

⎫⎪⎪⎬⎪⎪⎭ .

By calculating [�̌, X̂ ] and [[ Â, X̂ ], X̂ ], we have

y =
�−1∑
α=1

(ξα
1 x

α
2 + ξα

2 x
α
1 ) = 2

�−1∑
α,β=1

aαβx
α
1 x

β

2 ,

where Y =
(
y 0
0 −y

)
, A = (aαβ) (aαβ + aβα = 0), � = (ξα

p ) and X = (xαp). From

the first equality, we have S−2 = V ∗, putting S−3 = K and l−1 = V . Moreover, from
the second equality and aαβ + aβα = 0, we see that the model equation of our typical
symbol m = g−3 ⊕ g−2 ⊕ g−1 ⊂ C2(V,K) is given by

∂2y

∂xαi ∂x
β
j

+ ∂2y

∂xβi ∂x
α
j

= 0 for 1 � i, j � 2, 1 � α < β � �− 1, (3.24)



186 K. Yamaguchi and T. Yatsui

where y is a dependent variable and x11 , . . . , x
�−1
1 , x12 , . . . , x

�−1
2 are independent vari-

ables. By a direct calculation, we see that the prolongation of the second order system
(3.24) is given by

∂3y

∂xαi ∂x
β
j ∂x

γ

k

= 0 for 1 ≤ i, j, k � 2 1 � α, β, γ � �− 1. (3.25)

4 Symbol of the exceptional cases

In this section we will describe the symbol algebra m = ⊕
p<0 gp explicitly as the

subalgebra of Cμ−1(V,W ), where V = l−1 and W = S−μ, by first describing the
structure of m =⊕

p<0 gp explicitly by use of the Chevalley basis of YL .
We first recall that the graded Lie algebra ǧ of type (YL , #1) is described in terms

of the root space decomposition as follows (cf. Section 3 in [Yam93]): Let us fix a
Cartan subalgebra h of ǧ and choose a simple root system # = {γ1, . . . , γL} of the
root system � of ǧ relative to h. For the subset #1 of #, we put

�+k =
{
α =

L∑
i=1

ni (α)γi ∈ �+ |
∑
γi∈#1

ni (α) = k

}
for k � 0,

where �+ denotes the set of positive roots. Then the gradation ǧ is given by

ǧ−k =
⊕
α∈�+k

g−α, ǧ0 = h⊕
⊕
α∈�+0

(gα ⊕ g−α), ǧk =
⊕
α∈�+k

gα (k > 0),

where gα is the root space for α ∈ �.
In the following, let us take a Chevalley basis {xα(α ∈ �); hi (1 � i � L)} of

ǧ and put yβ = x−β for β ∈ �+ (cf. Chapter VII [Hum72]). We will describe the
structure of the negative part m = ∑

p<0 ǧp of (YL , #1) in terms of {yβ}β∈�+ . For
the property of the Chevalley basis, we recall that, for α, β ∈ �+, if α + β ∈ � and
α − β /∈ �, then [yα, yβ ] = ±yα+β (see Section 25.2 in [Hum72]).

In this section, we shall treat both complex simple graded Lie algebras (YL , #1)

and their normal real forms at the same time and we shall work in the complex analytic
or the real C∞ category depending on whether we treat complex simple graded Lie
algebras (YL , #1) or their normal real forms.

Case (1) [(D5, {α1},%5, (E6, {γ1, γ6})].
For the gradation of type (E6, {γ1, γ6}), we have

�+2 =
{

α−7 = 1 1 1 1 1
0 , α−5 = 1 1 1 1 1

1 , α−3 = 1 1 2 1 1
1 , α−1 = 1 1 2 2 1

1 ,

α1 = 1 2 2 1 1
1 , α3 = 1 2 2 2 1

1 , α5 = 1 2 3 2 1
1 , α7 = 1 2 3 2 1

2

}
,

�+1 = �1 ∪�6
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�1 =
{

ξ−7 = 1 0 0 0 0
0 , ξ−5 = 1 1 0 0 0

0 , ξ−3 = 1 1 1 0 0
0 , ξ−1 = 1 1 1 1 0

0 ,

ξ1 = 1 1 1 0 0
1 , ξ3 = 1 1 1 1 0

1 , ξ5 = 1 1 2 1 0
1 , ξ7 = 1 2 2 1 0

1

}
,

�6 =
{

η−7 = 0 0 0 0 1
0 , η−5 = 0 0 0 1 1

0 , η−3 = 0 0 1 1 1
0 , η−1 = 0 1 1 1 1

0 ,

η1 = 0 0 1 1 1
1 , η3 = 0 1 1 1 1

1 , η5 = 0 1 2 1 1
1 , η7 = 0 1 2 2 1

1

}
,

where a1 a3 a4 a5 a6
a2 stands for the root α = ∑6

i=1 aiγi ∈ �+ (see Planche V in
[Bou68]).

Thus we have μ = 2,

m = ǧ−2 ⊕ ǧ−1 and ǧ−1 = S−1 ⊕ l−1,

where ǧ−2 = S−2, S−1 and l−1 are spanned by the root spaces g−β for β ∈ �+2 , �6

and �1 respectively. Hence dim S−2 = dim S−1 = dim l−1 = 8.
For �+2 , �1 and �6, we observe that α+β /∈ � for α, β ∈ �+2 ∪�1 or for α, β ∈

�+2 ∪ �6 and that η − ξ /∈ � for η ∈ �6, ξ ∈ �1. This implies that [yα, yβ ] = 0 for
α, β ∈ �+2 ∪�1 or for α, β ∈ �+2 ∪�6 and that [yη, yξ ] = ±yη+ξ for η ∈ �6, ξ ∈ �1,
if η + ξ ∈ �, by the above mentioned property of the Chevalley basis. Hence, from
Planche V in [Bou68], we readily obtain the non-trivial bracket relation among ǧ−1 as
in (4.1) below up to signs.

We solve the problem of signs as follows. First we choose the orientation of yβ for
β ∈ �1, �6 and �+2 as in the following: We choose the orientation of yγi for simple
roots by fixing the root vectors yi = yγi ∈ g−γi . For ξ ∈ �1, we fix the orientation by
the following order;

yξ−7 = y1, yξ−5 = [y3, yξ−7 ], yξ−3 = [y4, yξ−5 ], yξ−1 = [y5, yξ−3 ],

yξ1 = [y2, yξ−3 ], yξ3 = [y5, yξ1 ], yξ5 = [y4, yξ3 ], yξ7 = [y3, yξ5 ].

For η ∈ �6, we fix the orientation by the following order;

yη−7 = y6, yη−5 = [y5, yη−7 ], yη−3 = [y4, yη−5 ], yη−1 = [y3, yη−3 ],

yη1 = [y2, yη−3 ], yη3 = [y3, yη1 ], yη5 = [y4, yη3 ], yη7 = [y5, yη5 ].

Finally, for α ∈ �+2 , we fix the orientation by the following;

yα−7 = [yη−1 , yξ−7 ], yα−5 = [yη3 , yξ−7 ], yα−3 = [yη5 , yξ−7 ], yα−1 = [yη7 , yξ−7 ],

yα1 = [yη5 , yξ−5 ], yα3 = [yη7 , yξ−5 ], yα5 = [yη7 , yξ−3 ], yα7 = [yη7 , yξ1 ].

Then, for example, we calculate

[yη−1 , yξ−7 ] = [[y3, yη−3 ], yξ−7 ] = [[y3, yξ−7 ], yη−3 ]+[y3, [yη−3 , yξ−7 ]] = [yξ−5 , yη−3 ].

In the same way, by the repeated application of Jacobi identities, we obtain
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yα−7 = [yη−1 , yξ−7 ]=− [yη−3 , yξ−5 ]=[yη−5 , yξ−3 ]=− [yη−7 , yξ−1 ],

yα−5 = [yη3 , yξ−7 ] =− [yη1 , yξ−5 ] =[yη−5 , yξ1 ] =− [yη−7 , yξ3 ],

yα−3 = [yη5 , yξ−7 ] =− [yη1 , yξ−3 ] =[yη−3 , yξ1 ] =− [yη−7 , yξ5 ],

yα−1 = [yη7 , yξ−7 ] =− [yη1 , yξ−1 ] =[yη−3 , yξ3 ] =− [yη−5 , yξ5 ], (4.1)

yα1 = [yη5 , yξ−5 ] =− [yη3 , yξ−3 ] =[yη−1 , yξ1 ] =− [yη−7 , yξ7 ],

yα3 = [yη7 , yξ−5 ] =− [yη3 , yξ−1 ] =[yη−1 , yξ3 ] =− [yη−5 , yξ7 ],

yα5 = [yη7 , yξ−3 ] =− [yη5 , yξ−1 ] =[yη−1 , yξ5 ] =− [yη−3 , yξ7 ],

yα7 = [yη7 , yξ1 ] =− [yη5 , yξ3 ] =[yη3 , yξ5 ] =− [yη1 , yξ7 ].

Thus, by fixing the basis {yαi } of S−2 and {yξ j } of l−1, an element A = a1 ad(yη−7)+
a2 ad(yη−5) + a3 ad(yη−3) + a4 ad(yη−1) + a5 ad(yη1) + a6 ad(yη3) + a7 ad(yη5) +
a8 ad(yη7) ∈ S−1 ⊂ S−2 ⊗ (l−1)∗ ∼= M(8, 8) is represented as the matrix of the
following form; ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a4 −a3 a2 −a1 0 0 0 0
a6 −a5 0 0 a2 −a1 0 0
a7 0 −a5 0 a3 0 −a1 0
a8 0 0 −a5 0 a3 −a2 0
0 a7 −a6 0 a4 0 0 −a1
0 a8 0 −a6 0 a4 0 −a2
0 0 a8 −a7 0 0 a4 −a3
0 0 0 0 a8 −a7 a6 −a5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Hence the standard differential system (M(m), Dm) of type m in this case is given by

Dm = {%1 = %2 = · · · = %8 = 0 },

where

%1 = dy1 + p4dx1 − p3dx2 + p2dx3 − p1dx4,

%2 = dy2 + p6dx1 − p5dx2 + p2dx5 − p1dx6,

%3 = dy3 + p7dx1 − p5dx3 + p3dx5 − p1dx7,

%4 = dy4 + p8dx1 − p5dx4 + p3dx6 − p2dx7,

%5 = dy5 + p7dx2 − p6dx3 + p4dx5 − p1dx8,

%6 = dy6 + p8dx2 − p6dx4 + p4dx6 − p2dx8,

%7 = dy7 + p8dx3 − p7dx4 + p4dx7 − p3dx8,

%8 = dy8 + p8dx5 − p7dx6 + p6dx7 − p5dx8.

Here (y1, . . . , y8, x1, . . . , x8, p1, . . . , p8) is a coordinate system of M(m) ∼= K24.
Thus the model equation of our typical symbol m = ǧ−2 ⊕ ǧ−1 ⊂ C1(l−1, S−2) is
given by

∂y1
∂x4

= ∂y2
∂x6

= ∂y3
∂x7

= ∂y5
∂x8

,
∂y1
∂x3

= ∂y2
∂x5

= − ∂y4
∂x7

= − ∂y6
∂x8

,
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∂y1
∂x2

= − ∂y3
∂x5

= − ∂y4
∂x6

= ∂y7
∂x8

,
∂y1
∂x1

= ∂y5
∂x5

= ∂y6
∂x6

= ∂y7
∂x7

,

∂y2
∂x2

= ∂y3
∂x3

= ∂y4
∂x4

= ∂y8
∂x8

,
∂y2
∂x1

= − ∂y5
∂x3

= − ∂y6
∂x4

= ∂y8
∂x7

, (4.2)

∂y3
∂x1

= ∂y5
∂x2

= − ∂y7
∂x4

= − ∂y8
∂x6

,
∂y4
∂x1

= ∂y6
∂x2

= ∂y7
∂x3

= ∂y8
∂x5

,

∂yi
∂x j

= 0 otherwise,

where y1, . . . , y8 are dependent variables and x1, . . . , x8 are independent variables.
By a direct calculation, we see that the prolongation of the first order system (4.2) is
given by

∂2yi
∂x j∂xk

= 0 for 1 � i, j, k � 8. (4.3)

Case (2) [(D5, {α5}),%5, (E6, {γ3, γ1})].
For the gradation of type (E6, {γ3, γ1}), we have

�+3 =
{
α1 = 1 2 2 1 0

1 , α2 = 1 2 2 1 1
1 , α3 = 1 2 2 2 1

1 , α4 = 1 2 3 2 1
1 ,

α5 = 1 2 3 2 1
2

}
,

�+2 =
{
η1 = 1 1 0 0 0

0 , η2 = 1 1 1 0 0
0 , η3 = 1 1 1 0 0

1 , η4 = 1 1 1 1 0
0 ,

η5 = 1 1 1 1 0
1 , η6 = 1 1 1 1 1

0 , η7 = 1 1 1 1 1
1 , η8 = 1 1 2 1 0

1 ,

η9 = 1 1 2 1 1
1 , η10 = 1 1 2 2 1

1

}
,

�+1 = �1 ∪�3,

�3 =
{
ξ1 = 0 1 0 0 0

0 , ξ2 = 0 1 1 0 0
0 , ξ3 = 0 1 1 0 0

1 , ξ4 = 0 1 1 1 0
0 ,

ξ5 = 0 1 1 1 0
1 , ξ6 = 0 1 1 1 1

0 , ξ7 = 0 1 1 1 1
1 , ξ8 = 0 1 2 1 0

1 ,

ξ9 = 0 1 2 1 1
1 , ξ10 = 0 1 2 2 1

1

}
,

�1 =
{
γ1 = 1 0 0 0 0

0

}
where a1 a3 a4 a5 a6

a2 stands for the root α = ∑6
i=1 aiγi ∈ �+ (see Planche V in

[Bou68]).
Thus we have μ = 3,

m = ǧ−3 ⊕ ǧ−2 ⊕ ǧ−1 and ǧ−1 = S−1 ⊕ l−1,
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where ǧ−3 = S−3, ǧ−2 = S−2, S−1 and l−1 are spanned by the root spaces g−β for
β ∈ �+3 ,�+2 , �1 and �3 respectively. Hence dim S−3 = 5, dim S−2 = dim l−1 = 10
and dim S−1 = 1.

For �+3 ,�+2 , �1 and �3, we observe that α + β /∈ � for α, β ∈ �+3 ∪�+2 ∪ �1,
ξ − γ /∈ � for ξ ∈ �3, γ ∈ �1 and that, if η + ξ ∈ �+3 for η ∈ �+2 , ξ ∈ �3, then
η−ξ /∈ �. This implies that [yα, yβ ] = 0 for α, β ∈ �+3 ∪�+2 ∪�1, [yγ , yξ ] = ±yγ+ξ

for ξ ∈ �3, γ ∈ �1, if γ + ξ ∈ � and [yη, yξ ] = ±yη+ξ for η ∈ �+2 , ξ ∈ �3, if
η+ ξ ∈ �, by the property of the Chevalley basis. Hence, from Planche V in [Bou68],
we readily obtain the non-trivial bracket relation among ǧ−1 and [ǧ−2, l−1] as in (4.4)
and (4.5) below up to signs.

We fix the signs of yβ for β ∈ �+3 ,�+2 , �3 and �1 as follows: First we choose
the orientation of yγi for simple roots by fixing the root vectors yi = yγi ∈ g−γi . For
ξ ∈ �3, we fix the orientation by the following order;

yξ1 = y3, yξ2 = [y4, yξ1 ], yξ3 = [y2, yξ2 ], yξ4 = [y5, yξ2 ],

yξ5 = [y5, yξ3 ], yξ6 = [y6, yξ4 ], yξ7 = [y2, yξ6 ], yξ8 = [y4, yξ5 ],

yξ9 = [y6, yξ8 ], yξ10 = [y5, yξ9 ].

For η ∈ �+2 , we fix the orientation by the following ;

yηi = [y1, yξi ] for i = 1, 2, . . . , 10. (4.4)

Finally, for α ∈ �+3 , we fix the orientation by the following;

yα1 = [yη8 , yξ1 ], yα2 = [yη9 , yξ1 ], yα3 = [yη10 , yξ1 ],

yα4 = [yη10 , yξ2 ], yα5 = [yη10 , yξ3 ].

Then, for example, we calculate

[yηp , yξq ] = [[y1, yξp ], yξq ] = [[y1, yξq ], yξp ] = [yηq , yξp ] for 1 � p, q � 10,

and

[yη5 , yξ2 ] = [yη5 , [y4, yξ1 ]] = [[yη5 , y4], yξ1 ] = [[[y1, yξ5 ], y4], yξ1 ]

= [[y1, [yξ5 , y4]], yξ1 ] = −[[y1, yξ8 ], yξ1 ] = −[yη8 , yξ1 ].

In the same way, by the repeated application of Jacobi identities, we obtain

yα1 = [yη8 , yξ1 ] = −[yη5 , yξ2 ] = [yη4 , yξ3 ]= [yη3 , yξ4 ] = −[yη2 , yξ5 ] = [yη1 , yξ8 ],

yα2 = [yη9 , yξ1 ] = −[yη7 , yξ2 ] = [yη6 , yξ3 ]= [yη3 , yξ6 ] = −[yη2 , yξ7 ] = [yη1 , yξ9 ],

yα3 = [yη10 , yξ1 ]= −[yη7 , yξ4 ] = [yη6 , yξ5 ]= [yη5 , yξ6 ] = −[yη4 , yξ7 ]= [yη1 , yξ10 ],

yα4 = [yη10 , yξ2 ]= −[yη9 , yξ4 ] = [yη8 , yξ6 ]= [yη6 , yξ8 ] = −[yη4 , yξ9 ]= [yη2 , yξ10 ],

yα5 = [yη10 , yξ3 ]= −[yη9 , yξ5 ] = [yη8 , yξ7 ]= [yη7 , yξ8 ] = −[yη5 , yξ9 ]= [yη3 , yξ10 ].

(4.5)
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Then, by fixing the basis {yαi }5i=1 of S−3 and {yξ j }10j=1 of l−1, an element A =∑10
j=1 a j ad(yη j ) ∈ S−2 ⊂ S−3 ⊗ (l−1)∗ ∼= M(5, 10) is represented as the matrix

of the following form;⎛⎜⎜⎜⎜⎝
a8 −a5 a4 a3 −a2 0 0 a1 0 0
a9 −a7 a6 0 0 a3 −a2 0 a1 0
a10 0 0 −a7 a6 a5 −a4 0 0 a1
0 a10 0 −a9 0 a8 0 a6 −a4 a2
0 0 a10 0 −a9 0 a8 a7 −a5 a3

⎞⎟⎟⎟⎟⎠
Moreover, for y1 ∈ S−1, we have

yα1 = [[y1, yξ1 ], yξ8 ] = −[[y1.yξ2 ], yξ5 ] = [[y1, yξ3 ], yξ4 ],

yα2 = [[y1, yξ1 ], yξ9 ] = −[[y1, yξ2 ], yξ7 ] = [[y1, yξ3 ], yξ6 ],

yα3 = [[y1, yξ1 ], yξ10 ]= −[[y1, yξ4 ], yξ7 ] = [[y1, yξ5 ], yξ6 ],

yα4 = [[y1, yξ2 ], yξ10 ]= −[[y1, yξ4 ], yξ9 ] = [[y1, yξ6 ], yξ8 ],

yα5 = [[y1, yξ3 ], yξ10 ]= −[[y1, yξ5 ], yξ9 ] = [[y1, yξ7 ], yξ8 ].

Thus S−1 is embedded as the 1-dimensional subspace of S−3⊗ S2((l−1)∗) spanned by
the quadratic form f ,

f (X, X) = (x1x8 − x2x5 + x3x4)yα1 + (x1x9 − x2x7 + x3x6)yα2
+ (x1x10 − x4x7 + x5x6)yα3 + (x2x10 − x4x9 + x6x8)yα4
+ (x3x10 − x5x9 + x7x8)yα5

for X =∑10
j=1 x j yξ j ∈ l−1.

By the above matrix representation, we can embed S−2 as a subspace of S−3 ⊗
(l−1)∗ ∼= M(5, 10) and obtain the following first order system as the model equation
whose symbol coincides with this subspace:

∂y1
∂x8

= ∂y2
∂x9

= ∂y3
∂x10

, − ∂y1
∂x5

= − ∂y2
∂x7

= ∂y4
∂x10

,
∂y1
∂x4

= ∂y2
∂x6

= ∂y5
∂x10

,

∂y1
∂x3

= − ∂y3
∂x7

= − ∂y4
∂x9

, − ∂y1
∂x2

= ∂y3
∂x6

= − ∂y5
∂x9

,
∂y2
∂x3

= ∂y3
∂x5

= ∂y4
∂x8

,

− ∂y2
∂x2

= − ∂y3
∂x4

= ∂y5
∂x8

,
∂y1
∂x1

= ∂y4
∂x6

= ∂y5
∂x7

,
∂y2
∂x1

= − ∂y4
∂x4

= − ∂y5
∂x5

,

∂y3
∂x1

= ∂y4
∂x2

= ∂y5
∂x3

,
∂yi
∂x j

= 0 otherwise, (4.6)

where y1, . . . , y5 are dependent variables and x1, . . . , x10 are independent variables.
Moreover, by a direct calculation, we see that the prolongation of the first order system
(4.6) is given by

∂2y1
∂x1∂x8

= ∂2y2
∂x1∂x9

= ∂2y3
∂x1∂x10

= ∂2y4
∂x10∂x2

= ∂2y5
∂x10∂x3
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= ∂2y2
∂x3∂x6

= ∂2y1
∂x3∂x4

= − ∂2y3
∂x4∂x7

= − ∂2y4
∂x4∂x9

= − ∂2y5
∂x9∂x5

= ∂2y3
∂x5∂x6

= − ∂2y1
∂x5∂x2

= − ∂2y2
∂x2∂x7

= ∂2y5
∂x7∂x8

= ∂2y4
∂x8∂x6

,

∂2yi
∂xp∂xq

= 0 otherwise. (4.7)

From the above expression of f , we observe that the above second order system is the
model equation of the 1-dimensional embedded subspace S−1 in S−3 ⊗ S2((l−1)∗).
Furthermore, by a direct calculation, we see that the prolo ngation of this second order
system (4.7) is given by

∂3yi
∂xp∂xq∂xr

= 0 for 1 � i � 5, 1 � p, q, r � 10. (4.8)

Case (3) [(D5, {α4}),%5, (E6, {γ2, γ1})]. For the gradation of type (E6, {γ2, γ1}), we
have

�+3 =
{
θ = 1 2 3 2 1

2

}
,

�+2 =
{
η1 = 1 2 3 2 1

1 , η2 = 1 2 2 2 1
1 , η3 = 1 1 2 2 1

1 , η4 = 1 2 2 1 1
1 ,

η5 = 1 1 2 1 1
1 , η6 = 1 2 2 1 0

1 , η7 = 1 1 2 1 0
1 , η8 = 1 1 1 1 1

1 ,

η9 = 1 1 1 1 0
1 , η10 = 1 1 1 0 0

1

}
,

�+1 = �2 ∪�1,

�2 =
{
ξ1 = 0 0 0 0 0

1 , ξ2 = 0 0 1 0 0
1 , ξ3 = 0 1 1 0 0

1 , ξ4 = 0 0 1 1 0
1 ,

ξ5 = 0 1 1 1 0
1 , ξ6 = 0 0 1 1 1

1 , ξ7 = 0 1 1 1 1
1 , ξ8 = 0 1 2 1 0

1 ,

ξ9 = 0 1 2 1 1
1 , ξ10 = 0 1 2 2 1

1

}
,

�1 =
{
ζ1 = 1 0 0 0 0

0 , ζ2 = 1 1 0 0 0
0 , ζ3 = 1 1 1 0 0

0 , ζ4 = 1 1 1 1 0
0 ,

ζ5 = 1 1 1 1 1
0

}
.

where a1 a3 a4 a5 a6
a2 stands for the root α = ∑6

i=1 aiγi ∈ �+ (see Planche V in
[Bou68]).

Thus we have μ = 3,

m = ǧ−3 ⊕ ǧ−2 ⊕ ǧ−1 and ǧ−1 = S−1 ⊕ l−1,
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where ǧ−3 = S−3, ǧ−2 = S−2, S−1 and l−1 are spanned by the root spaces g−β for
β ∈ �+3 ,�+2 , �1 and �2 respectively. Hence dim S−3 = 1, dim S−2 = dim l−1 = 10
and dim S−1 = 5.

For �+3 ,�+2 , �1 and �2, we observe that �+3 = {θ}, where θ is the highest root,
α+β /∈ � for α, β ∈ �+3 ∪�+2 ∪�1, ζ−ξ /∈ � for ξ ∈ �2, ζ ∈ �1 and that ηi+ξi = θ ,
ηi − ξi /∈ �, ξi + ξ j /∈ � and ηi + ξ j /∈ � if i �= j for ηi ∈ �+2 and ξi , ξ j ∈ �2

(i, j = 1, . . . , 10). This implies that [yα, yβ ] = 0 for α, β ∈ �+3 ∪�+2 ∪�1, [yζ , yξ ] =
±yζ+ξ for ξ ∈ �2, ζ ∈ �1, if ζ + ξ ∈ � and that [yξi , yξ j ] = 0, [yηi , yξ j ] = ±δi j yθ
for ηi ∈ �+2 , ξi , ξ j ∈ �2 (i, j = 1, . . . , 10), by the property of the Chevalley basis.
Hence, from Planche V in [Bou68], we readily obtain the non-trivial bracket relation
among ǧ−1 and [ǧ−2, l−1] as in (4.9) and (4.10) below up to signs.

We fix the signs of yβ for β ∈ �+3 ,�+2 , �2 and �1 as follows: First we choose
the orientation of yγi for simple roots by fixing the root vectors yi = yγi ∈ g−γi . For
ζ ∈ �1, we fix the orientation by the following order;

yζ1 = y1, yζ2 = [y3, yζ1 ], yζ3 = [y4, yζ2 ], yζ4 = [y5, yζ3 ], yζ5 = [y6, yζ4 ].

For ξ ∈ �2, we fix the orientation by the following order;

yξ1 = y2, yξ2 = [yξ1 , y4], yξ3 = [yξ2 , y3], yξ4 = [yξ2 , y5],

yξ5 = [yξ3 , y5], yξ6 = [yξ4 , y6], yξ7 = [yξ5 , y6], yξ8 = [yξ5 , y4],

yξ9 = [yξ8 , y6], yξ10 = [yξ9 , y5].

For η ∈ �+2 , we fix the orientation by the following order;

yη1 = [yζ3 , yξ10 ], yη2 = [yζ2 , yξ10 ], yη3 = [yζ1 , yξ10 ], yη4 = −[yζ2 , yξ9 ],
yη5 = −[yζ1 , yξ9 ], yη6 = [yζ2 , yξ8 ], yη7 = [yζ1 , yξ8 ], yη8 = [yζ1 , yξ7 ],

yη9 = −[yζ1 , yξ5 ], yη10 = [yζ1 , yξ3 ].

Finally, for θ ∈ �+3 , we fix the orientation by the following;

yθ = [yη10 , yξ10 ].

Then, for example, we calculate

[yη10 , yξ10 ] = [yη10 , [yξ9 , y5]] = [yξ9 , [yη10 , y5]] = [yξ9 , [[yζ1 , yξ3 ], y5]]

= [yξ9 , [yζ1 , [yξ3 , y5]]] = [yξ9 , [yζ1 , yξ5 ]] = [yξ9 ,−yη9 ] = [yη9 , yξ9 ],

and obtain

[yηi , yξ j ] = δi j yθ , [yηi .yη j ] = [yξi , yξ j ] = 0 for 1 � i, j � 10. (4.9)

Moreover we calculate as in

[yζ3 , yξ7 ] = [[y4, yζ2 ], yξ7 ] = [[y4, yξ7 ], yζ2 ] = [[y4, [yξ5 , y6]], yζ2 ]
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= [[[y4, yξ5 ], y6], yζ2 ] = [[−yξ8 , y6], yζ2 ] = −[yξ9 , yζ2 ] = −yη4 ,

and obtain

yθ = [[yζ1 , yξ3 ], yξ10 ]= −[[yζ1 , yξ5 ], yξ9 ] = [[yζ1 , yξ7 ], yξ8 ],

yθ = [[yζ2 , yξ2 ], yξ10 ]= −[[yζ2 , yξ4 ], yξ9 ] = [[yζ2 , yξ6 ], yξ8 ],

yθ = [[yζ3 , yξ1 ], yξ10 ]= −[[yζ3 , yξ4 ], yξ7 ] = [[yζ3 , yξ5 ], yξ6 ], (4.10)

yθ = [[yζ4 , yξ1 ], yξ9 ] = −[[yζ4 , yξ2 ], yξ7 ] = [[yζ4 , yξ3 ], yξ6 ],

yθ = [[yζ5 , yξ1 ], yξ8 ] = −[[yζ2 , yξ2 ], yξ5 ] = [[yζ5 , yξ3 ], yξ4 ].

From (4.9), we have S−2 = V ∗, by fixing the base of S−3 ∼= K and putting l−1 = V .
Moreover, from (4.10), S−1 is embedded as the 5-dimensional subspace of S2(V ∗)
spanned by the following quadratic forms f1, . . . , f5;

f1(X, X) = x3x10 − x5x9 + x7x8, f2(X, X) = x2x10 − x4x9 + x6x8,

f3(X, X) = x1x10 − x4x7 + x5x6, f4(X, X) = x1x9 − x2x7 + x3x6,

f5(X, X) = x1x8 − x2x5 + x3x4,

for X =∑10
i=1 xi yξi ∈ l−1. Thus, by fixing the basis {yθ } of S−3 and {yξ1 , . . . , yξ10} of

l−1, an element A = ∑5
i=1 ai ad(yζi ) ∈ S−1 ⊂ S2(V ∗) ∼= Sym(10) is represented as

the symmetric matix of the following form;⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 a5 a4 a3
0 0 0 0 −a5 0 −a4 0 0 a2
0 0 0 a5 0 a4 0 0 0 a1
0 0 a5 0 0 0 −a3 0 −a2 0
0 −a5 0 0 0 a3 0 0 −a1 0
0 0 a4 0 a3 0 0 a2 0 0
0 −a4 0 −a3 0 0 0 a1 0 0
a5 0 0 0 0 a2 a1 0 0 0
a4 0 0 −a2 −a1 0 0 0 0 0
a3 a2 a1 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Hence the standard differential system (M(m), Dm) of type m in this case is given by

Dm = {% = %1 = %2 = · · · = %10 = 0 },

where

% = dy − p1dx1 − · · · − p10dx10,

%1 = dp1 + q5dx8 + q4dx9 + q3dx10, %2 = dp2 − q5dx5 − q4dx7 + q2dx10,

%3 = dp3 + q5dx4 + q4dx6 + q1dx10, %4 = dp4 + q5dx3 − q3dx7 − q2dx9,

%5 = dp5 − q5dx2 + q3dx6 − q1dx9, %6 = dp6 + q4dx3 + q3dx5 + q2dx8,
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%7 = dp7 − q4dx2 − q3dx4 + q1dx8, %8 = dp8 + q5dx1 + q2dx6 + q1dx7,

%9 = dp9 + q4dx1 − q2dx4 − q1dx5, %10 = dp10 + q3dx1 + q2dx2 + q1dx3.

Here (x1, . . . , x10, y, p1, . . . , p10, q1, . . . , q5) is a coordinate system of M(m) ∼= K26.
Thus the model equation of our typical symbol m = ǧ−3 ⊕ ǧ−2 ⊕ ǧ−1 ⊂ C2(l−1,K)

is given by

∂2y

∂x3∂x10
= − ∂2y

∂x5∂x9
= ∂2y

∂x7∂x8
,

∂2y

∂x2∂x10
= − ∂2y

∂x4∂x9
= ∂2y

∂x6∂x8
,

∂2y

∂x1∂x10
= − ∂2y

∂x4∂x7
= ∂2y

∂x5∂x6
,

∂2y

∂x1∂x9
= − ∂2y

∂x2∂x7
= ∂2y

∂x3∂x6
, (4.11)

∂2y

∂x1∂x8
= − ∂2y

∂x2∂x5
= ∂2y

∂x3∂x4
,

∂2y

∂xi∂x j
= 0 otherwise,

where y is a dependent variable and x1, . . . , x10 are independent variables. By a direct
calculation, we see that the prolongation of the second order system (4.11) is given by

∂3y

∂xi∂x j∂xk
= 0 for 1 � i, j, k � 10. (4.12)

Case (4) [(E6, {α6}),%6, (E7, {γ6, γ7})].
For the gradation of type (E7, {γ6, γ7}), we have

�+3 =
{

α1 = 0 1 2 2 2 1
1 , α2 = 1 1 2 2 2 1

1 , α3 = 1 2 2 2 2 1
1 , α4 = 1 2 3 2 2 1

1 ,

α5 = 1 2 3 3 2 1
1 , α6 = 1 2 3 2 2 1

2 , α7 = 1 2 3 3 2 1
2 , α8 = 1 2 4 3 2 1

2 ,

α9 = 1 3 4 3 2 1
2 ,α10 = 2 3 4 3 2 1

2

}
,

�+2 =
{

η1 = 0 0 0 0 1 1
0 , η2 = 0 0 0 1 1 1

0 , η3 = 0 0 1 1 1 1
0 , η4 = 0 0 1 1 1 1

1 ,

η5 = 0 1 1 1 1 1
0 , η6 = 0 1 1 1 1 1

1 , η7 = 1 1 1 1 1 1
0 , η8 = 1 1 1 1 1 1

1 ,

η9 = 0 1 2 1 1 1
1 ,η10 = 1 1 2 1 1 1

1 , η11 = 0 1 2 2 1 1
1 ,η12 = 1 2 2 1 1 1

1 ,

η13 = 1 1 2 2 1 1
1 ,η14 = 1 2 2 2 1 1

1 , η15 = 1 2 3 2 1 1
1 ,η16 = 1 2 3 2 1 1

2

}
,

�+1 = �6 ∪�7,

�6 =
{

ξ1 = 0 0 0 0 1 0
0 , ξ2 = 0 0 0 1 1 0

0 , ξ3 = 0 0 1 1 1 0
0 , ξ4 = 0 0 1 1 1 0

1 ,

ξ5 = 0 1 1 1 1 0
0 , ξ6 = 0 1 1 1 1 0

1 , ξ7 = 1 1 1 1 1 0
0 , ξ8 = 1 1 1 1 1 0

1 ,

ξ9 = 0 1 2 1 1 0
1 , ξ10 = 1 1 2 1 1 0

1 , ξ11 = 0 1 2 2 1 0
1 ,ξ12 = 1 2 2 1 1 0

1 ,

ξ13 = 1 1 2 2 1 0
1 , ξ14 = 1 2 2 2 1 0

1 , ξ15 = 1 2 3 2 1 0
1 ,ξ16 = 1 2 3 2 1 0

2

}
,

�7 =
{
γ7 = 0 0 0 0 0 1

0

}
,
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where a1 a3 a4 a5 a6 a7
a2 stands for the root α = ∑7

i=1 aiγi ∈ �+ (see Planche VI in
[Bou68]).

Thus we have μ = 3,

m = ǧ−3 ⊕ ǧ−2 ⊕ ǧ−1 and ǧ−1 = S−1 ⊕ l−1,

where ǧ−3 = S−3, ǧ−2 = S−2, S−1 and l−1 are spanned by the root spaces g−β for
β ∈ �+3 ,�+2 , �7 and�6 respectively. Hence dim S−3 = 10, dim S−2 = dim l−1 = 16
and dim S−1 = 1.

For �+3 ,�+2 , �7 and �6, we observe that α + β /∈ � for α, β ∈ �+3 ∪�+2 ∪ �7,
ξ − γ /∈ � for ξ ∈ �6, γ ∈ �7 and that, if η + ξ ∈ �+3 for η ∈ �+2 , ξ ∈ �6, then
η−ξ /∈ �. This implies that [yα, yβ ] = 0 for α, β ∈ �+3 ∪�+2 ∪�7, [yγ , yξ ] = ±yγ+ξ

for ξ ∈ �6, γ ∈ �7, if γ + ξ ∈ � and [yη, yξ ] = ±yη+ξ for η ∈ �+2 , ξ ∈ �6, if
η+ξ ∈ �, by the property of the Chevalley basis. Hence, from Planche VI in [Bou68],
we readily obtain the non-trivial bracket relation among ǧ−1 and [ǧ−2, l−1] as in (4.13)
and (4.14) below up to signs.

We fix the signs of yβ for β ∈ �+3 ,�+2 , �7 and �6 as follows: First we choose
the orientation of yγi for simple roots by fixing the root vectors yi = yγi ∈ g−γi . For
ξ ∈ �6, we fix the orientation by the following order;

yξ1 = y6, yξ2 = [yξ1 , y5], yξ3 = [yξ2 , y4], yξ4 = [yξ3 , y2],

yξ5 = [yξ3 , y3], yξ6 = [yξ5 , y2], yξ7 = [yξ5 , y1], yξ8 = [yξ7 , y2],

yξ9 = [yξ6 , y4], yξ10 = [yξ9 , y1], yξ11 = [yξ9 , y5], yξ12 = [yξ10 , y3],

yξ13 = [yξ11 , y1], yξ14 = [yξ13 , y3], yξ15 = [yξ14 , y4], yξ16 = [yξ15 , y2].

For η ∈ �+2 , we fix the orientation by the following ;

yηp = [y7, yξp ] for p = 1, 2, . . . , 16. (4.13)

Finally, for α ∈ �+3 , we fix the orientation by the following;

yα1 = [yη11 , yξ1 ], yα2 = [yη13 , yξ1 ], yα3 = [yη14 , yξ1 ], yα4 = [yη15 , yξ1 ],

yα5 = [yη15 , yξ2 ], yα6 = [yη16 , yξ1 ], yα7 = [yη16 , yξ2 ], yα8 = [yη16 , yξ3 ],

yα9 = [yη16 , yξ5 ], yα10 = [yη16 , yξ7 ].

Then, for example, we calculate

[yηp , yξq ] = [[y7, yξp ], yξq ] = [[y7, yξq ], yξp ] = [yηq , yξp ] for 1 � p, q � 16,

and

[yη11 , yξ1 ] = [[y7, yξ11 ], yξ1 ] = [[y7, [yξ9 , y5]], yξ1 ] = [[[y7, yξ9 ], y5], yξ1 ]

= [[yη9 , y5], yξ1 ] = [yη9 , [y5, yξ1 ]] = −[yη9 , yξ2 ].

In the same way, by the repeated application of Jacobi identities, we obtain
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yα1 = [yη11 , yξ1 ] = −[yη9 , yξ2 ] =[yη6 , yξ3 ] = −[yη5 , yξ4 ],
yα2 = [yη13 , yξ1 ] = −[yη10 , yξ2 ]=[yη8 , yξ3 ] = −[yη7 , yξ4 ],
yα3 = [yη14 , yξ1 ] = −[yη12 , yξ2 ]=[yη8 , yξ5 ] = −[yη7 , yξ6 ],
yα4 = [yη15 , yξ1 ] = −[yη12 , yξ3 ]=[yη10 , yξ5 ] = −[yη9 , yξ7 ],
yα5 = [yη15 , yξ2 ] = −[yη14 , yξ3 ]=[yη13 , yξ5 ] = −[yη11 , yξ7 ], (4.14)

yα6 = [yη16 , yξ1 ] = −[yη12 , yξ4 ]=[yη10 , yξ6 ] = −[yη9 , yξ8 ],
yα7 = [yη16 , yξ2 ] = −[yη14 , yξ4 ]=[yη13 , yξ6 ] = −[yη11 , yξ8 ],
yα8 = [yη16 , yξ3 ] = −[yη15 , yξ4 ]=[yη13 , yξ9 ] = −[yη11 , yξ10 ],
yα9 = [yη16 , yξ5 ] = −[yη15 , yξ6 ]=[yη14 , yξ9 ] = −[yη12 , yξ11 ],
yα10 = [yη16 , yξ7 ] = −[yη15 , yξ8 ]=[yη14 , yξ10 ]= −[yη13 , yξ12 ].

Then, by fixing the basis {yαi }10i=1 of S−3 and {yξ j }16j=1 of l−1, an element A =∑16
j=1 a j ad(yη j ) ∈ S−2 ⊂ S−3 ⊗ (l−1)∗ ∼= M(10, 16) is represented as the matrix

of the following form;⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a9∗ a6 a5∗ a4∗ a3 0 0 a2∗ 0 a1 0 0 0 0 0
a13 a10∗ a8 a7∗ 0 0 a4∗ a3 0 a2∗ 0 0 a1 0 0 0
a14 a12∗ 0 0 a8 a7∗ a6∗ a5 0 0 0 a2∗ 0 a1 0 0
a15 0 a12∗ 0 a10 0 a9∗ 0 a7∗ a5 0 a3∗ 0 0 a1 0
0 a15 a14∗ 0 a13 0 a11∗ 0 0 0 a7∗ 0 a5 a3∗ a2 0
a16 0 0 a12∗ 0 a10 0 a9∗ a8∗ a6 0 a4∗ 0 0 0 a1
0 a16 0 a14∗ 0 a13 0 a11∗ 0 0 a8∗ 0 a6 a4∗ 0 a2
0 0 a16 a15∗ 0 0 0 0 a13 a11∗ a10∗ 0 a9 0 a4∗ a3
0 0 0 0 a16 a15∗ 0 0 a14 0 a12∗ a11∗ 0 a9 a6∗ a5
0 0 0 0 0 0 a16 a15∗ 0 a14 0 a13∗ a12∗ a10 a8∗ a7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where ai ∗ = −ai . Moreover, for y7 ∈ S−1, we have

yα1 = [[y7, yξ1 ], yξ11 ]= −[[y7, yξ2 ], yξ9 ] =[[y7, yξ3 ], yξ6 ] = −[[y7.yξ4 ], yξ5 ],
yα2 = [[y7, yξ1 ], yξ13 ]= −[[y7, yξ2 ], yξ10 ]=[[y7, yξ3 ], yξ8 ] = −[[y7, yξ4 ], yξ7 ],
yα3 = [[y7, yξ1 ], yξ14 ]= −[[y7, yξ2 ], yξ12 ]=[[y7, yξ5 ], yξ8 ] = −[[y7, yξ6 ], yξ7 ],
yα4 = [[y7, yξ1 ], yξ15 ]= −[[y7, yξ3 ], yξ12 ]=[[y7, yξ5 ], yξ10 ] = −[[y7, yξ7 ], yξ9 ],
yα5 = [[y7, yξ2 ], yξ15 ]= −[[y7, yξ3 ], yξ14 ]=[[y7, yξ5 ], yξ13 ] = −[[y7, yξ7 ], yξ11 ],
yα6 = [[y7, yξ1 ], yξ16 ]= −[[y7.yξ4 ], yξ12 ]=[[y7, yξ6 ], yξ10 ] = −[[y7.yξ8 ], yξ9 ],
yα7 = [[y7, yξ2 ], yξ16 ]= −[[y7, yξ4 ], yξ14 ]=[[y7, yξ6 ], yξ13 ] = −[[y7, yξ8 ], yξ11 ],
yα8 = [[y7, yξ3 ], yξ16 ]= −[[y7, yξ4 ], yξ15 ]=[[y7, yξ9 ], yξ13 ] = −[[y7, yξ10 ], yξ11 ],
yα9 = [[y7, yξ5 ], yξ16 ]= −[[y7, yξ6 ], yξ15 ]=[[y7, yξ9 ], yξ14 ] = −[[y7, yξ11 ], yξ12 ],
yα10 = [[y7, yξ7 ], yξ16 ]= −[[y7, yξ8 ], yξ15 ]=[[y7, yξ10 ], yξ14 ]= −[[y7, yξ12 ], yξ13 ].

Thus S−1 is embedded as the 1-dimensional subspace of S−3⊗ S2((l−1)∗) spanned by
the following quadratic form f :
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f (X, X) = (x1x11 − x2x9 + x3x6 − x4x5)yα1
+ (x1x13 − x2x10 + x3x8 − x4x7)yα2
+ (x1x14 − x2x12 + x5x8 − x6x7)yα3
+ (x1x15 − x3x12 + x5x10 − x7x9)yα4
+ (x2x15 − x3x14 + x5x13 − x7x11)yα5
+ (x1x16 − x4x12 + x6x10 − x8x9)yα6
+ (x2x16 − x4x14 + x6x13 − x8x11)yα7
+ (x3x16 − x4x15 + x9x13 − x10x11)yα8
+ (x5x16 − x6x15 + x9x14 − x11x12)yα9
+ (x7x16 − x8x15 + x10x14 − x12x13)yα10

for X =∑16
j=1 x j yξ j ∈ l−1.

By the above matrix representation, we can embed S−2 as a subspace of S−3 ⊗
(l−1)∗ ∼= M(10, 16) and obtain the following first order system as the model equation
whose symbol coincides with this subspace:

∂y1
∂x11

= ∂y2
∂x13

= ∂y3
∂x14

= ∂y4
∂x15

= ∂y6
∂x16

,

− ∂y1
∂x9

= − ∂y2
∂x10

= − ∂y3
∂x12

= ∂y5
∂x15

= ∂y7
∂x16

,

∂y1
∂x6

= ∂y2
∂x8

= − ∂y4
∂x12

= − ∂y5
∂x14

= ∂y8
∂x16

,

∂y1
∂x5

= ∂y2
∂x7

= ∂y6
∂x12

= ∂y7
∂x14

= ∂y8
∂x15

,

− ∂y1
∂x4

= ∂y3
∂x8

= ∂y4
∂x10

= ∂y5
∂x13

= ∂y9
∂x16

,

∂y1
∂x3

= − ∂y3
∂x7

= ∂y6
∂x10

= ∂y7
∂x13

= − ∂y9
∂x15

,

− ∂y2
∂x4

= − ∂y3
∂x6

= − ∂y4
∂x9

= − ∂y5
∂x11

= ∂y10
∂x16

,

∂y2
∂x3

= ∂y3
∂x5

= − ∂y6
∂x9

= − ∂y7
∂x11

= − ∂y10
∂x15

,

− ∂y1
∂x2

= − ∂y4
∂x7

= − ∂y6
∂x8

= ∂y8
∂x13

= ∂y9
∂x14

,

− ∂y2
∂x2

= ∂y4
∂x5

= ∂y6
∂x6

= − ∂y8
∂x11

= ∂y10
∂x14

,

∂y1
∂x1

= − ∂y5
∂x7

= − ∂y7
∂x8

= − ∂y8
∂x10

= − ∂y9
∂x12

,

∂y3
∂x2

= ∂y4
∂x3

= ∂y6
∂x4

= ∂y9
∂x11

= ∂y10
∂x13

,
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∂y2
∂x1

= ∂y5
∂x5

= ∂y7
∂x6

= ∂y8
∂x9

= − ∂y10
∂x12

,

∂y3
∂x1

= − ∂y5
∂x3

= − ∂y7
∂x4

= ∂y9
∂x9

= ∂y10
∂x10

,

∂y4
∂x1

= ∂y5
∂x2

= − ∂y8
∂x4

= − ∂y9
∂x6

= −∂y10
∂x8

,

∂y6
∂x1

= ∂y7
∂x2

= ∂y8
∂x3

= ∂y9
∂x5

= ∂y10
∂x7

,

∂yi
∂x j

= 0 otherwise, (4.15)

where y1, . . . , y10 are dependent variables and x1, . . . , x16 are independent variables.
Moreover, by a direct calculation, we see that the prolongation of the first order system
(4.15) is given by

∂2y1
∂x1∂x11

= ∂2y2
∂x1∂x13

= ∂2y3
∂x1∂x14

= ∂2y4
∂x1∂x15

= ∂2y6
∂x1∂x16

= ∂2y7
∂x16∂x2

= ∂2y8
∂x16∂x3

= ∂2y9
∂x16∂x5

= ∂2y10
∂x16∂x7

= − ∂2y5
∂x7∂x11

= − ∂2y4
∂x7∂x9

= − ∂2y3
∂x7∂x6

= − ∂2y2
∂x7∂x4

= − ∂2y6
∂x4∂x12

= − ∂2y7
∂x4∂x14

= − ∂2y8
∂x4∂x15

= − ∂2y1
∂x4∂x5

= ∂2y3
∂x5∂x8

= ∂2y4
∂x5∂x10

= ∂2y5
∂x5∂x13

= ∂2y7
∂x13∂x6

= ∂2y8
∂x13∂x9

= − ∂2y10
∂x13∂x12

= − ∂2y9
∂x12∂x11

= − ∂2y4
∂x12∂x3

= − ∂2y3
∂x12∂x2

= ∂2y5
∂x2∂x15

= − ∂2y2
∂x2∂x10

= − ∂2y1
∂x2∂x9

= − ∂2y6
∂x9∂x8

= ∂2y9
∂x9∂x14

= − ∂2y5
∂x14∂x3

= ∂2y10
∂x14∂x10

= − ∂2y8
∂x10∂x11

= ∂2y6
∂x10∂x6

= − ∂2y9
∂x6∂x15

= ∂2y1
∂x6∂x3

= ∂2y2
∂x3∂x8

= − ∂2y7
∂x8∂x11

= − ∂2y10
∂x8∂x15

,

∂2yi
∂xp∂xq

= 0 otherwise. (4.16)

From the above expression of f , we observe that the above second order system is the
model equation of the 1-dimensional embedded subspace S−1 in S−3 ⊗ S2((l−1)∗).
Furthermore, by a direct calculation, we see that the prolo ngation of this second order
system (4.16) is given by

∂3yi
∂xp∂xq∂xr

= 0 for 1 � i � 10, 1 � p, q, r � 16. (4.17)
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Case (5) [(E6, {α1}),%6, (E7, {γ1, γ7})].
For the gradation of type (E7, {γ1, γ7}), we have

�+3 =
{
θ = 2 3 4 3 2 1

2

}
,

�+2 =
{
η1 = 1 3 4 3 2 1

2 , η2 = 1 2 4 3 2 1
2 , η3 = 1 2 3 3 2 1

2 , η4 = 1 2 3 3 2 1
1 ,

η5 = 1 2 3 2 2 1
2 , η6 = 1 2 3 2 2 1

1 , η7 = 1 2 3 2 1 1
2 , η8 = 1 2 3 2 1 1

1 ,

η9 = 1 2 2 2 2 1
1 , η10 = 1 2 2 2 1 1

1 , η11 = 1 1 2 2 2 1
1 , η12 = 1 1 2 2 1 1

1 ,

η13 = 1 2 2 1 1 1
1 , η14 = 1 1 2 1 1 1

1 , η15 = 1 1 1 1 1 1
1 , η16 = 1 1 1 1 1 1

0

}
,

�+1 = �1 ∪�7,

�1 =
{
ξ1 = 1 0 0 0 0 0

0 , ξ2 = 1 1 0 0 0 0
0 , ξ3 = 1 1 1 0 0 0

0 , ξ4 = 1 1 1 0 0 0
1 ,

ξ5 = 1 1 1 1 0 0
0 , ξ6 = 1 1 1 1 0 0

1 , ξ7 = 1 1 1 1 1 0
0 , ξ8 = 1 1 1 1 1 0

1 ,

ξ9 = 1 1 2 1 0 0
1 , ξ10 = 1 1 2 1 1 0

1 , ξ11 = 1 2 2 1 0 0
1 , ξ12 = 1 2 2 1 1 0

1 ,

ξ13 = 1 1 2 2 1 0
1 , ξ14 = 1 2 2 2 1 0

1 , ξ15 = 1 2 3 2 1 0
1 , ξ16 = 1 2 3 2 1 0

2

}
,

�7 =
{
ζ1 = 0 0 0 0 0 1

0 , ζ2 = 0 0 0 0 1 1
0 , ζ3 = 0 0 0 1 1 1

0 , ζ4 = 0 0 1 1 1 1
0 ,

ζ5 = 0 1 1 1 1 1
0 , ζ6 = 0 0 1 1 1 1

1 , ζ7 = 0 1 1 1 1 1
1 , ζ8 = 0 1 2 1 1 1

1 ,

ζ9 = 0 1 2 2 1 1
1 , ζ10 = 0 1 2 2 2 1

1

}
,

where a1 a3 a4 a5 a6 a7
a2 stands for the root α = ∑7

i=1 aiγi ∈ �+ (see Planche VI in
[Bou68]).

Thus we have μ = 3,

m = ǧ−3 ⊕ ǧ−2 ⊕ ǧ−1 and ǧ−1 = S−1 ⊕ l−1,

where ǧ−3 = S−3, ǧ−2 = S−2, S−1 and l−1 are spanned by the root spaces g−β for
β ∈ �+3 ,�+2 , �7 and �1 respectively. Hence dim S−3 = 1, dim S−2 = dim l−1 = 16
and dim S−1 = 10.

For �+3 ,�+2 , �7 and �1, we observe that �+3 = {θ}, where θ is the highest root,
α+β /∈ � for α, β ∈ �+3 ∪�+2 ∪�7, ζ−ξ /∈ � for ξ ∈ �1, ζ ∈ �7 and that ηi+ξi = θ ,
ηi − ξi /∈ �, ξi + ξ j /∈ � and ηi + ξ j /∈ � if i �= j for ηi ∈ �+2 and ξi , ξ j ∈ �2

(i, j = 1, . . . , 16). This implies that [yα, yβ ] = 0 for α, β ∈ �+3 ∪�+2 ∪�7, [yζ , yξ ] =
±yζ+ξ for ξ ∈ �2, ζ ∈ �7, if ζ + ξ ∈ � and that [yξi , yξ j ] = 0, [yηi , yξ j ] = ±δi j yθ
for ηi ∈ �+2 , ξi , ξ j ∈ �2 (i, j = 1, . . . , 16), by the property of the Chevalley basis.
Hence, from Planche VI in [Bou68], we readily obtain the non-trivial bracket relation
among ǧ−1 and [ǧ−2, l−1] as in (4.18) and (4.19) below up to signs.
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We fix the signs of yβ for β ∈ �+3 ,�+2 , �7 and �1 as follows: First we choose
the orientation of yγi for simple roots by fixing the root vectors yi = yγi ∈ g−γi . For
ζ ∈ �7, we fix the orientation by the following order;

yζ1 = y7, yζ2 = [y6, yζ1 ], yζ3 = [y5, yζ2 ], yζ4 = [y4, yζ3 ],

yζ5 = [y3, yζ4 ], yζ6 = [y2, yζ4 ], yζ7 = [y2, yζ5 ], yζ8 = [y4, yζ7 ],

yζ9 = [y5, yζ8 ], yζ10 = [y6, yζ9 ].

For ξ ∈ �1, we fix the orientation by the following order;

yξ1 = y1, yξ2 = [yξ1 , y3], yξ3 = [yξ2 , y4], yξ4 = [yξ3 , y2],

yξ5 = [yξ3 , y5], yξ6 = [yξ5 , y2], yξ7 = [yξ5 , y6], yξ8 = [yξ7 , y2],

yξ9 = [yξ6 , y4], yξ10 = [yξ9 , y6], yξ11 = [yξ9 , y3], yξ12 = [yξ11 , y6],

yξ13 = [yξ10 , y5], yξ14 = [yξ13 , y3], yξ15 = [yξ14 , y4], yξ16 = [yξ15 , y2].

For η ∈ �+2 , we fix the orientation by the following order;

yη1 = −[yζ5 , yξ16 ], yη2 = −[yζ4 , yξ16 ], yη3 = −[yζ3 , yξ16 ], yη4 = [yζ3 , yξ15 ],

yη5 = −[yζ2 , yξ16 ], yη6 = [yζ2 , yξ15 ], yη7 = −[yζ1 , yξ16 ], yη8 = [yζ1 , yξ15 ],

yη9 = −[yζ2 , yξ14 ], yη10 = −[yζ1 , yξ14 ], yη11 = [yζ2 , yξ13 ], yη12 = [yζ1 , yξ13 ],

yη13 = [yζ1 , yξ12 ], yη14 = −[yζ1 , yξ10 ], yη15 = [yζ1 , yξ8 ], yη16 = −[yζ1 , yξ7 ].

Finally, for θ ∈ �+3 , we fix the orientation by the following;

yθ = [yη16 , yξ16 ].

Then, for example, we calculate

[yη16 , yξ16 ] = [−[yζ1 , yξ7 ], yξ16 ] = [−[yζ1 , yξ16 ], yξ7 ] = [yη7 , yξ7 ]

and obtain

[yηp , yξq ] = δpq yθ , [yηp .yηq ] = [yξp , yξq ] = 0 for 1 � p, q � 16. (4.18)

Moreover we calculate as in

[yζ3 , yξ12 ] = [[y5, yζ2 ], yξ12 ] = [[y5, yξ12 ], yζ2 ] = [yζ2 , [yξ12 , y5]] = [yζ2 , yξ14 ]

= −yη9 ,

and obtain

yθ = −[[yζ1 , yξ7 ], yξ16 ] = [[yζ1 , yξ8 ], yξ15 ] = −[[yζ1 , yξ10 ], yξ14 ]= [[yζ1 , yξ12 ], yξ13 ],

yθ = −[[yζ2 , yξ5 ], yξ16 ] = [[yζ2 , yξ6 ], yξ15 ] = −[[yζ2 , yξ9 ], yξ14 ] = [[yζ2 , yξ11 ], yξ13 ],

yθ = −[[yζ3 , yξ3 ], yξ16 ] = [[yζ3 , yξ4 ], yξ15 ] = −[[yζ3 , yξ9 ], yξ12 ] = [[yζ3 , yξ10 ], yξ11 ],

yθ = −[[yζ4 , yξ2 ], yξ16 ] = [[yζ4 , yξ4 ], yξ14 ] = −[[yζ4 , yξ6 ], yξ12 ] = [[yζ4 , yξ8 ], yξ11 ],
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yθ = −[[yζ5 , yξ1 ], yξ16 ] = [[yζ5 , yξ4 ], yξ13 ] = −[[yζ5 , yξ6 ], yξ10 ] = [[yζ5 , yξ8 ], yξ9 ],

yθ = −[[yζ6 , yξ2 ], yξ15 ] = [[yζ6 , yξ3 ], yξ14 ] = −[[yζ6 , yξ5 ], yξ12 ] = [[yζ6 , yξ7 ], yξ11 ],

yθ = −[[yζ7 , yξ1 ], yξ15 ] = [[yζ7 , yξ3 ], yξ13 ] = −[[yζ7 , yξ5 ], yξ10 ] = [[yζ7 , yξ7 ], yξ9 ],

yθ = −[[yζ8 , yξ1 ], yξ14 ] = [[yζ8 , yξ2 ], yξ13 ] = −[[yζ8 , yξ5 ], yξ8 ] = [[yζ8 , yξ6 ], yξ7 ],

yθ = −[[yζ9 , yξ1 ], yξ12 ] = [[yζ9 , yξ2 ], yξ10 ] = −[[yζ9 , yξ3 ], yξ8 ] = [[yζ9 , yξ4 ], yξ7 ],

yθ = −[[yζ10 , yξ1 ], yξ11 ]= [[yζ10 , yξ2 ], yξ9 ] = −[[yζ10 , yξ3 ], yξ6 ] = [[yζ10 , yξ4 ], yξ5 ].
(4.19)

From (4.18), we have S−2 = V ∗, by fixing the base of S−3 ∼= K and putting l−1 = V .
Moreover, from (4.19), S−1 is embedded as the 10-dimensional subspace of S2(V ∗)
spanned by the following quadratic forms f1, . . . , f10;

f1(X) = −x7x16 + x8x15 − x10x14 + x12x13,

f2(X) = −x5x16 + x6x15 − x9x14 + x11x13,

f3(X) = −x3x16 + x4x15 − x9x12 + x10x11,

f4(X) = −x2x16 + x4x14 − x6x12 + x8x11,

f5(X) = −x1x16 + x4x13 − x6x10 + x8x9,

f6(X) = −x2x15 + x3x14 − x5x12 + x7x11,

f7(X) = −x1x15 + x3x13 − x5x10 + x7x9,

f8(X) = −x1x14 + x2x13 − x5x8 + x6x7,

f9(X) = −x1x12 + x2x10 − x3x8 + x4x7,

f10(X) = −x1x11 + x2x9 − x3x6 + x4x5

for X =∑16
i=1 xi yξi ∈ l−1. Thus, by fixing the basis {yθ } of S−3 and {yξ1 , . . . , yξ16} of

l−1, an element A = ∑10
i=1 ai ad(yζi ) ∈ S−1 ⊂ S2(V ∗) ∼= Sym(16) is represented as

the symmetric matix of the following form;⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 a10 a9 0 a8 a7 a5
0 0 0 0 0 0 0 0 a10∗ a9∗ 0 0 a8∗ 0 a6 a4
0 0 0 0 0 a10 0 a9 0 0 0 0 a7∗ a6∗ 0 a3
0 0 0 0 a10∗ 0 a9∗ 0 0 0 0 0 a5∗ a4∗ a3∗ 0
0 0 0 a10∗ 0 0 0 a8 0 a7 0 a6 0 0 0 a2
0 0 a10 0 0 0 a8∗ 0 0 a5 0 a4 0 0 a2∗ 0
0 0 0 a9∗ 0 a8∗ 0 0 a7∗ 0 a6∗ 0 0 0 0 a1
0 0 a9 0 a8 0 0 0 a5∗ 0 a4∗ 0 0 0 a1∗ 0
0 a10∗ 0 0 0 0 a7∗ a5∗ 0 0 0 a3 0 a2 0 0
0 a9∗ 0 0 a7 a5 0 0 0 0 a3∗ 0 0 a1 0 0
a10 0 0 0 0 0 a6∗ a4∗ 0 a3∗ 0 0 a2∗ 0 0 0
a9 0 0 0 a6 a4 0 0 a3 0 0 0 a1∗ 0 0 0
0 a8∗ a7∗ a5∗ 0 0 0 0 0 0 a2∗ a1∗ 0 0 0 0
a8 0 a6∗ a4∗ 0 0 0 0 a2 a1 0 0 0 0 0 0
a7 a6 0 a3∗ 0 a2∗ 0 a1∗ 0 0 0 0 0 0 0 0
a5 a4 a3 0 a2 0 a1 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Parabolic Geometries Associated with Differential Equations of Finite Type 203

where ai ∗ = −ai . Hence the standard differential system (M(m), Dm) of type m in
this case is given by

Dm = {% = %1 = %2 = · · · = %16 = 0 },
where

% = dy − p1dx1 − · · · − p16dx16,

%1 = dp1 + q10dx11 + q9dx12 + q8dx14 + q7dx15 + q5dx16,

%2 = dp2 − q10dx9 − q9dx10 − q8dx13 + q6dx15 + q4dx16,

%3 = dp3 + q10dx6 + q9dx8 − q7dx13 − q6dx14 + q3dx16,

%4 = dp4 − q10dx5 − q9dx7 − q5dx13 − q4dx14 − q3dx15,

%5 = dp5 − q10dx4 + q8dx8 + q7dx10 + q6dx12 + q2dx16,

%6 = dp6 + q10dx3 − q8dx7 + q5dx10 + q4dx12 − q2dx15,

%7 = dp7 − q9dx4 − q8dx6 − q7dx9 − q6dx11 + q1dx16,

%8 = dp8 + q9dx3 + q8dx5 − q5dx9 − q4dx11 − q1dx15,

%9 = dp9 − q10dx2 − q7dx7 − q5dx8 + q3dx12 + q2dx14,

%10 = dp10 − q9dx2 + q7dx5 + q5dx6 − q3dx11 + q1dx14,

%11 = dp11 + q10dx1 − q6dx7 − q4dx8 − q3dx10 − q2dx13,

%12 = dp12 + q9dx1 + q6dx5 + q4dx6 + q3dx9 − q1dx13,

%13 = dp13 − q8dx2 − q7dx3 − q5dx4 − q2dx11 − q1dx12,

%14 = dp14 + q8dx1 − q6dx3 − q4dx4 + q2dx9 + q1dx10,

%15 = dp15 + q7dx1 + q6dx2 − q3dx4 − q2dx6 − q1dx8,

%16 = dp16 + q5dx1 + q4dx2 + q3dx3 + q2dx5 + q1dx7.

Here (x1, . . . , x16, y, p1, . . . , p16, q1, . . . , q10) is a coordinate system of M(m) ∼=
K43. Thus the model equation of our typical symbol m = ǧ−3 ⊕ ǧ−2 ⊕ ǧ−1 ⊂
C2(l−1,K) is given by

∂2y

∂x7∂x16
= − ∂2y

∂x8∂x15
= ∂2y

∂x10∂x14
= − ∂2y

∂x12∂x13
,

∂2y

∂x5∂x16
= − ∂2y

∂x6∂x15
= ∂2y

∂x9∂x14
= − ∂2y

∂x11∂x13
,

∂2y

∂x3∂x16
= − ∂2y

∂x4∂x15
= ∂2y

∂x9∂x12
= − ∂2y

∂x10∂x11
,

∂2y

∂x2x. 16
= − ∂2y

∂x4∂x14
= ∂2y

∂x6∂x12
= − ∂2y

∂x8∂x11
,

∂2y

∂x1∂x16
= − ∂2y

∂x4∂x13
= ∂2y

∂x6∂x10
= − ∂2y

∂x8∂x9
,

∂2y

∂x2∂x15
= − ∂2y

∂x3∂x14
= ∂2y

∂x5∂x12
= − ∂2y

∂x7∂x11
,
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∂2y

∂x1∂x15
= − ∂2y

∂x3∂x13
= ∂2y

∂x5∂x10
= − ∂2y

∂x7∂x9
,

∂2y

∂x1∂x14
= − ∂2y

∂x2∂x13
= ∂2y

∂x5∂x8
= − ∂2y

∂x6∂x7
,

∂2y

∂x1∂x12
= − ∂2y

∂x2∂x10
= ∂2y

∂x3∂x8
= − ∂2y

∂x4∂x7
,

∂2y

∂x1∂x11
= − ∂2y

∂x2∂x9
= ∂2y

∂x3∂x6
= − ∂2y

∂x4∂x5
,

∂2y

∂xi∂x j
= 0 otherwise, (4.20)

where y is a dependent variable and x1, . . . , x16 are independent variables. By a direct
calculation, we see that the prolongation of the second order system (4.20) is given by

∂3y

∂xi∂x j∂xk
= 0 for 1 � i, j, k � 16. (4.21)

5 Equivalence of Parabolic Geometries

In this section, we will discuss the equivalence of each parabolic geometry associ-
ated with the differential equations of finite type explicitly described in Section 3 and
Section 4.

In the following, we will first show a common property of the typical symbol m
of type (l, S). Here m = ⊕−μ

p=−1 gp is a graded subalgebra of Cμ−1(V,W ), which
has the splitting g−1 = l−1 ⊕ S−1, where V = l−1 and W = S−μ. In particular
Sp ⊂ W ⊗ Sμ+p(V ∗). Thus we have the notion of the algebraic prolongation ρ(Sp)
of Sp, which is defined by

ρ(Sp) = Sp ⊗ V ∗ ∩W ⊗ Sμ+p+1(V ∗) for − μ+ 1 � p � −1.
We will show the following Proposition 5.1 concerning the property of the prolonga-
tions of Sp for the typical symbol m of type (l, S).

Let g =⊕1
p=−μ gp be a pseudo-product GLA of type (l, S).

Lemma 5.1 Let p be an integer with −μ + 1 � p � −1. If H1(m, g)p+1,−1 = 0,
then the algebraic prolongation ρ(Sp) of Sp is equal to Sp+1, where we put S0 = 0.

Proof. Since the fact Sp+1 ⊂ ρ(Sp) is clear, it is sufficient to prove that ρ(Sp) ⊂
Sp+1. Let ϕ be an element of ρ(Sp). The space ρ(Sp) can be considered as a subspace
of Hom(l−1, Sp). We define an element ϕ̃ of C1(m, g)p+1,−1 as follows:

ϕ̃(X) = ϕ(X) (X ∈ l−1), ϕ̃(S) = 0.

Then we have
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∂ϕ̃(X1, X2) = [X1, ϕ(X2)]− [X2, ϕ(X1)] for X1, X2 ∈ l−1.

Since ϕ ∈ ρ(Sp), we get ∂ϕ̃ = 0. Also since H1(m, g)p+1,−1 = 0, there exits an
element s ∈ Sp+1 such that ∂s = ϕ̃. Hence ρ(Sp) ⊂ Sp+1. $%

For a pseudo-product GLA g of type (l, S), we furthermore assume that the pro-
longation ǧ = ⊕

p∈Z ǧp of (m, g0) is a simple graded Lie algebra (SGLA), where
m = g−.

Now we investigate the space H1(m, g)r,−1. Note that, from ǧp = gp for p � 0,
H1(m, g)r,−1 = H1(m, ǧ)r,−1 for r � 1. Also we know that H1(m, g)r,−1 is isomor-
phic to H1(l−1, S)r as a g0-module(see Section 5 in [YY02]). Let # = { γ1, . . . , γL}
be a simple root system of ǧ and let θ be the highest root of ǧ. Assume that

(i) The SGLA ǧ is of type (YL , {γa, γb});
(ii) l−1 is a g0-module with highest weight −γa ;
(iii) S−1 is a g0-module with highest weight −γb.

By Kostant’s theorem, H1(m, g)r,−1 is an irreducible g0-module with lowest weight
σa(−θ − δ) + δ, where we use the notation in [Yam93]. Let E be the characteristic
element of the GLA ǧ; then

(σa(−θ − δ)+ δ)(E) = −μ+ 〈θ, γa〉 + 1.

Hence H1(m, ǧ)r,−1 �= 0 if and only if r = −μ + 〈θ, γa〉 + 1. From the table in
Theorem 2.1 (a) and [Bou68], we obtain the following lemma.

Lemma 5.2 Under the above assumptions, we have

(1) Assume that (YL , {γa, γb}) is one of the following types: (A�+n+1, {γ1, γ�+1})
(n � 0, � � 1), (C�+1, {γ1, γ�+1}) (� � 1). Then H1(m, g)r,−1 �= 0 if and only if
r = 0.

(2) Assume that (YL , {γa, γb}) is one of the following types: (A�+n+1, {γi , γ�+1})
(1 < i � �, � � 2, n � 0), (B�+1, {γ2, γ1}) (� � 2), (D�+1, {γ2, γ1}) (� � 4),
(D�+1, {γ�+1, γ1}) (� � 4), (D�+1, {γ1, γ�+1}) (� � 3), (D�+1, {γ�, γ�+1})
(� � 3), (D�+1, {γ2, γ�+1}) (� � 3), (E6, {γ1, γ6}), (E6, {γ2, γ1}), (E7, {γ1, γ7}).
Then H1(m, g)r,−1 �= 0 if and only if r = −1.

(3) Assume that (YL , {γa, γb}) is one of the following types: (C�+1, {γi , γ�+1}) (1 <

i � �, � � 2), (D�+1, {γi , γ�+1}) (2 < i < �, � � 4), (E6, {γ3, γ1}),
(E7, {γ6, γ7}). Then H1(m, g)r,−1 �= 0 if and only if r = −2.
By Lemmas 5.1 and 5.2, we get the following proposition.

Proposition 5.1 Under the above assumptions, we have:

(1) Unless (YL , {γa, γb}) is (A�+n+1, {γ1, γ�+1}) (n � 0, � � 1) or (C�+1, {γ1, γ�+1})
(� � 1), the algebraic prolongation ρ(S−1) of S−1 is {0}.

(2) Assume that (YL , {γa, γb}) is one of the following types: (C�+1, {γi , γ�+1}) (1 <

i � �, � � 2), (D�+1, {γi , γ�+1}) (2 < i < �, � � 4), (E6, {γ3, γ1}),
(E7, {γ6, γ7}). Then ρ(S−2) = S−1 and ρ(S−1) = 0.
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Actually we can check these properties by direct calculations in each cases in the previ-
ous sections. By these properties of the typical symbols, we can classify our parabolic
geometries into the following four groups.

(A) The parabolic geometry associated with (A�+n+1, {γ1, γ�+1}) (n � 0, � � 1)
is the geometry of the pseudo-projective systems of second order of bidegree (�, n+1),
i.e., the geometry of the second order equations of � independent and n + 1 de-
pendent variables by point transformations. The parabolic geometry associated with
(C�+1, {γ1, γ�+1}) (� � 1) is the geometry of the pseudo-projective systems of third
order of bidegree (�, 1), i.e., the geometry of the third order equations of � independent
and one dependent variables by contact transformations.

(B) The parabolic geometries associated with (A�+n+1, {γi , γ�+1}) (2 � i �
�, n � 0), (D�+1, {γ�+1, γ1}) (� � 4), (D�+1, {γ1, γ�+1}) (� � 3), (D�+1, {γ�, γ�+1})
(� � 3) and (E6, {γ1, γ6}) are the contact geometries of finite type equations of the
first order in the following sense.

In this case μ = 2 and the typical symbol m has the following description:
m = g−2⊕g−1 ⊂ C1(V,W ), whereW = S−2 and V = l−1. Moreover g−1 = V⊕S−1
and S−1 ⊂ W ⊗ V ∗. Let J k(n,m) be the space of k-jets of n independent and m de-
pendent variables, where n = dim V and m = dimW . We consider a submanifold
R of J 1(n,m) such that π1

0 |R : R → J 0(n,m) is a submersion. Let D be the re-
striction to R of the canonical system C1 on J 1(n,m) and R(1) ⊂ J 2(n,m) be the
first prolongation of R (cf. Section 4.2 [Yam82]). We assume that p(1) : R(1) → R
is onto. This assumption is equivalent to saying that (R, D) has an (n-dimensional)
integral element (transversal to the fibre Ker (π1

0 |R)∗) at each point of R. Under this
integrability condition, (R, D) is a regular differential system of type m if and only
if the symbols of this equation R are isomorphic to S−1 ⊂ W ⊗ V ∗ at each point
of R (see Section 2.1 in [SYY97] for the precise meaning of the isomorphism of the
symbol). In this case, by (1) of Proposition 5.1, integral elements of (R, D) are unique
at each point of R so that p(1) : R(1) → R is a diffeomorphism. Thus (R, D) has
the (almost) pseudo-product structure corresponding to the splitting g−1 = V ⊕ S−1.
In fact S−1 corresponds to the fibre direction Ker (π1

0 |R)∗ and V corresponds to the
restriction to R(1) of the canonical system C2 on J 2(n,m). Since ǧ is the prolongation
of m, an isomorphism of (R, D) preserves the pseudo-product structure. In particular
an isomorphism of (R, D) preserves the projection π1

0 |R : R → J 0(n,m). Hence a
local isomorphism of (R, D) is the lift of a local point transformation of J 0(n,m).

In this class (B), we can discuss the duality of our pseudo-product structures
as in [Tan89]. For example, (A�+n+1, {γn+1, γn+ j+1}) corresponds to the dual of
(A�+n+1, {γi , γ�+1}).

By Theorem 2.7 and 2.9 [Tan79] and Proposition 5.5 [Yam93], we observe that
parabolic geometries associated with (A�+n+1, {γi , γ�+1}) (3 � i � � − 1, n � 2),
(D�+1, {γ�, γ�+1}) (� � 3) and (E6, {γ1, γ6}) have no local invariants. Hence in these
cases, (R, D), satisfying the integrability condition, is always locally isomorphic to the
model equation given in Case (1), (8) of Section 3 or Case (1) of Section 4 respectively.
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(C) The parabolic geometries associated with (B�+1, {γ2, γ1}) (� � 2), (D�+1,
{γ2, γ1}) (� � 4), (D�+1, {γ2, γ�+1}) (� � 3), (E6, {γ2, γ1}) and (E7, {γ1, γ7}) are the
contact geometries of finite type equations of the second order in the following sense.

In this case μ = 3 and the typical symbol m has the following description: m =
g−3 ⊕ g−2 ⊕ g−1 ⊂ C2(V,W ), where W = K, V = l−1 and dim V = n. Moreover
we have g−2 = V ∗, g−1 = V ⊕ S−1 and S−1 ⊂ S2(V ∗). In this case, we note that
the standard differential system (Mg, Dg) of type (YL , {γa}) is the standard contact
manifold of type YL (see Section 4 in [Yam93]).

We consider a submanifold R of J 2(n, 1) such that π2
1 |R : R → J 1(n, 1) is a

submersion. Let D be the restriction to R of the canonical systetem C2 on J 2(n, 1)
and R(1) ⊂ J 3(n, 1) be the first prolongation of R. We assume that p(1) : R(1) →
R is onto. Under this integrability condition, (R, D) is a regular differential system
of type m if and only if the symbols of this equation R are isomorphic to S−1 ⊂
S2(V ∗) at each point of R. In this case, by (1) of Proposition 5.1, integral elements of
(R, D) are unique at each point of R so that p(1) : R(1) → R is a diffeomorphism.
Thus (R, D) has the (almost) pseudo-product structure corresponding to the splitting
g−1 = V ⊕ S−1. In fact S−1 corresponds to the fibre direction Ker (π2

1 |R)∗ and V
corresponds to the restriction to R(1) of the canonical system C3 on J 3(n, 1). Since
ǧ is the prolongation of m, an isomorphism of (R, D) preserves the pseudo-product
structure. In particular an isomorphism of (R, D) preserves the projection π2

1 |R : R →
J 1(n, 1) and ∂D = (π2

1 )
−1∗ (C1). Hence a local isomorphism of (R, D) is the lift of a

local contact transformation of J 1(n, 1).
By Theorem 2.7 and 2.9 [Tan79] and Proposition 5.5 [Yam93], we observe that

parabolic geometries associated with (D�+1, {γ2, γ�+1}) (� � 3), (E6, {γ2, γ1}) and
(E7, {γ1, γ7}) have no local invariants. Hence in these cases, (R, D), satisfying the
integrability condition, is always locally isomorphic to the model equation given in
Case (10) of Section 3 or Case (3), (5) of Section 4 respectively. The rigidity of the
parabolic geometry associated with (D�+1, {γ2, γ�+1}) (� � 3) is already discussed in
[YY02] in connection with the Plücker embedding equations.

(D) The parabolic geometries associated with (C�+1, {γi , γ�+1}) (1 < i � �, � �
2), (D�+1, {γi , γ�+1}) (2 < i < �, � � 4), (E6, {γ3, γ1}) and (E7, {γ6, γ7}) are the
geometries of finite type equations of the first order in the following sense.

In this case μ = 3 and the typical symbol m has the following description:
m = g−3 ⊕ g−2 ⊕ g−1 ⊂ C2(V,W ), where W = S−3 and V = l−1. More-
over g−2 = S−2, g−1 = V ⊕ S−1, S−2 ⊂ W ⊗ V ∗, S−1 ⊂ W ⊗ S2(V ∗) and
dim S−2 = dim V . In this case we first consider a submanifold R of J 1(n,m) such
that π1

0 |R : R → J 0(n,m) is a submersion, where n = dim V and m = dimW . Let D
be the restriction to R of the canonical systetem C1 on J 1(n,m) and R(1) ⊂ J 2(n,m)

be the first prolongation of R. We assume that the symbols of this equation R are iso-
morphic to S−2 ⊂ W ⊗ V ∗ at each point of R and also assume that p(1) : R(1) → R
is onto. Then (R, D) is a regular differential system of type m̂ = ĝ−2 ⊕ ĝ−1,
where ĝ−2 = W and ĝ−1 = V ⊕ S−2. Here the symbol algebra m̂ is the negative
part of the simple graded Lie algebra of type (YL , {γa}), i.e., of type (C�+1, {γi })
(2 � i � �), (D�+1, {γi }) (2 < i < �), (E6, {γ3}) and (E7, {γ6}) respectively. Fur-
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thermore, by (2) of Proposition 5.1, the symbols of this equation R(1) are isomorphic
to ρ(S−2) = S−1 ⊂ W ⊗ S2(V ∗). Let D(1) be the restriction to R(1) of the canon-
ical system C2 on J 2(n,m) and R(2) ⊂ J 3(n,m) be the prolongation of R(1). We
further assume that p(2) : R(2) → R(1) is onto. Under these integrability conditions,
(R(1), D(1)) becomes a regular differential system of type m. Actually the set of n-
dimensional integral elements of (R, D) forms a bundle over R, which contains R(1)

as an open dense subset such that D(1) coincides with the canonical system induced by
this Grassmanian construction (cf. Section 2 in [Yam82], Section 1 in [Yam99]). More-
over, by (1) of Proposition 5.1, integral elements of (R(1), D(1)) are unique at each
point of R(1) so that p(2) : R(2) → R(1) is a diffeomorphism. Thus (R(1), D(1)) has
the (almost) pseudo-product structure corresponding to the splitting g−1 = V ⊕ S−1.
In fact S−1 corresponds to the fibre direction Ker (p(1))∗ and V corresponds to the
restriction to R(2) of the canonical system C3 on J 3(n,m). Since ǧ is the prolonga-
tion of m, an isomorphism of (R(1), D(1)) preserves the pseudo-product structure. In
particular an isomorphism of (R(1), D(1)) preserves the projection p(1) : R(1) → R
and ∂D(1) = (p(1))−1∗ (D). Thus a local isomorphism of (R(1), D(1)) induces that of
(R, D) and coincides with the local lift of this isomorphism of (R, D). Hence the local
equivalence of (R(1), D(1)) is reducible to that of (R, D).

By Theorem 2.7 and 2.9 [Tan79] and Proposition 5.5 [Yam93], we observe that
parabolic geometries associated with (C�+1, {γi , γ�+1}) (2 < i < �), (D�+1, {γi ,
γ�+1}) (2 < i < �), (E6, {γ3, γ1}) and (E7, {γ6, γ7}) have no local invariants.

Hence in these cases, (R, D), satisfying the integrability conditions, is always lo-
cally isomorphic to the model equation given in Case (3), (9) of Section 3 or Case (2),
(4) of Section 4 respectively.

Remark 5.1 Among the cases in (A) and (C), notable omissions are the parabolic
geometries asociated with (A�+1, {γ1, γi+1, γ�+1}) (0 < i < �), which do not show
up in the exceptional lists in Theorem 2.1, but are associated with differential equations
of finite type as follows. In fact the standard contact manifold of type A�+1 is given by
(A�+1, {γ1, γ�+1}). Hence the typical symbol m in this case has the same description
as in (C). The model equation in this case, as the second order system, is given by

∂2y

∂xi1∂xi2
= ∂2y

∂x j1∂x j2
= 0 for 1 � i1, i2 � i, and i < j1, j2 < �+ 1,

where y is a dependent variable and x1, . . . , x� are independent variables.
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Summary. The notion of μ-regulated algebras is given in a slightly revised version. Notions
of their localizations, limit localizations and intertwiners among them are defined. A family of
limit localizations parameterized by # is viewed as the space of deformations of expressions
of the algebra obtained by a limit localization. The space has a flat connection defined through
infinitesimal intertwiners. Several examples of localized algebra with finite generator system
are given. In concrete calculation, there appear several strange phenomena such as an element
having two different inverses, or an expression of some elements having sign ambiguity. How-
ever, such phenomena are related with Jacobi’s theta functions, where Jacobi’s theta function is
redefined as the bilateral power series in a ∗-algebra.
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A little ant digs a tiny hole in a big established bank. No one cares about this tiny
hole. But in some rainy season, this may grow to a big hole to cause the bank itself to
collapse.

In this note, the author wants to propose a rough scenario for the geometrical
quantum theory, which may be acceptable by differential geometers, although not by
topologists, because the underlying object is not a topological space.

Section 1 and the first part of Section 2 up to Section 2.1 are devoted to giving
a short summary of notions and several results which have already appeared in our
papers. At first, a notion of μ-regulated algebra is given abstractly in a slightly revised
version.

In Section 2.2 and in what follows, notions of their localizations, limit and extremal
localizations, intertwiners, and infinitesimal intertwiners are defined so as to provide a
new philosophical key to open the quantum world.

The original algebra is understood as a patchwork of a collection of localizations.
However, the collection does not satisfy the cocycle condition. The discordance of
patchwork is defined.
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In Section 3, the parameter space of all limit localizations are viewed as the param-
eter space of possible deformations of expressions of a limit localized algebra. This is
viewed as if it were a moduli-space of a limit localized algebra.

In Section 4, Section 5, we give an example of deformation of expressions of alge-
bra generated only by one variable. It is a little surprising that Jacobi’s theta functions
are expressed simply as bilateral power series of an exponential function.

In Section 6, we treat several examples of localizations which might be interesting
objects for study in the future. However in this paper, we have reached only the front
door of the geometrical quantum world. Detailed description of the inside will be given
in forthcoming papers.

1 μμμ-regulated algebras

In this section we introduce a notion of μ-regulated algebras, revised a little from
that given in [17], as an abstraction of the algebra of all pseudo-differential operators
of order 0 investigated in [16]. μ-regulated algebras give abstract models of algebras
obtained by non-formal deformation quantizations.

1.1 Primitive axioms

In an associative algebra (O, ∗), we denote by [a, b] the commutator a ∗ b − b ∗ a. A
topological associative algebra (O, ∗) over R or C (denote this by K) with the multi-
plicative unit 1 is called a Fréchet algebra, when O is a Fréchet space as a topological
linear space. Here a Fréchet space means a complete topological vector space defined
by a countable system of seminorms. A Fréchet algebra (O, ∗) is called a μ-regulated
algebra, if there is an element μ (�=0) in O, called a regulator, and (O, μ, ∗) satisfies
the following axioms:

(A:1) [μ,O] ⊂ μ ∗O ∗ μ.
(A:2) [O,O] ⊂ μ ∗O.
(A:3) μ ∗ O is a closed subspace and there is a closed linear subspace B of O such

that O = B ⊕ μ ∗O (topological direct sum).
(A:4) Mappings μ∗ : O→μ ∗ O, ∗μ : O→O ∗ μ defined by a→μ ∗ a, a→a ∗ μ

respectively are linear isomorphisms over K.

If (O, ∗) is defined over K = C, we often take an additional axiom

(A:5) There is an involutive anti-automorphism a → ā such that μ̄ = μ or μ̄ = −μ.

The most typical example of μ-regulated algebra is the symbol calculus of all
pseudo-differential operators (�DO) of order 0 on the cotangent bundle T ∗N of a closed
Riemannian manifold N . In this calculus, the regulator μ is the symbol of the oper-
ator such as

√
1+�, which plays the role of determining the notion of “order” of

operators.
The simplest example of μ-regulated algebra is the space C∞(R) of all C∞ func-

tions of the variable μ with the C∞-topology, where C∞(R) = C⊕ μ ∗ C∞(R).
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Let Hol(C) be the space of all entire functions on C with the compact open topol-
ogy, and let μ be a complex coordinate function on C. Viewing Hol(C) as an al-
gebra over R, we define an associative but non-commutative product ∗ by request-
ing μn ∗ i = (−1)ni ∗ μ. Then, (Hol(C), ∗) is a μ-regulated algebra such that
Hol(C) = C⊕ μ ∗ Hol(C).

Note that μ2 is a central element and (μ2 + 1) is the maximal two - sided ideal
such that the quotient algebra (Hol(C), ∗)/(μ2 + 1) is the standard quaternion field,
H, such that μ = j, i ∗ μ = k.

We next state several facts induced easily by the axioms. By (A.1), we see a ∗μ =
μ ∗ (a − b ∗ μ), b ∈ O, hence O ∗ μ ⊂ μ ∗ O. Similarly, we have O ∗ μ ⊃ μ ∗ O.
Thus O ∗ μ = μ ∗O, and this is a closed two-sided ideal of O.

By (A.2), (A.3), ∗-product on O defines naturally a topological commutative alge-
bra structure on the quotient space O/μ ∗O which is identified with B. This commu-
tative algebra is denoted by (B, ·).

The symmetric product a◦b = (1/2)(a ∗ b+ b ∗ a) makes (O, ◦) a special Jordan
algebra. Since

a◦(b◦c)− (a◦b)◦c = 1

4
[b, [c, a]] ∈ μ2 ∗O, (1)

the symmetric product induced on O/μ2 ∗O is associative and commutative.
The axiom (A:4) is crucial for making it possible to consider the inverse μ−1 of μ

by setting [μ−1, a] = −μ−1∗[μ, a]∗μ−1. LetO[μ−1] be the space of all polynomials

μ−k ∗ a−k + · · · + μ−1 ∗ a−1 + a0, a j ∈ O, where μ−k = (μ−1)k . (2)

The product ∗ on O extends O[μ−1] to form an associative algebra. It is easy to see
that

[μ−1 ∗O,O] ⊂ O, [μ−1 ∗O, μ−1 ∗O] ⊂ μ−1 ∗O.

By these relations we have the following:

Proposition 1 (O[μ−1], ∗) is an associative algebra and ad(μ−1∗O) is a Lie algebra
of derivations of (O, ∗).

By the property (A.3), O is decomposed for every positive integer N into

O = B ⊕ μ ∗ B ⊕ · · · ⊕ μN−1 ∗ B ⊕ μN ∗O. (3)

Set ad(μ−1)(a) = [μ−1, a], and Ad(μ−1)(a) = μ−1 ∗a ∗μ. According to the decom-
position (3), we may write uniquely as follows for any a, b ∈ B:

a ∗ b = π0(a, b)+ μ ∗ π1(a, b)+ · · · + μk ∗ πk(a, b)+ · · · ,
ad(μ−1)(a) = ξ0(a)+ μ ∗ ξ1(a)+ · · · + μk ∗ ξk(a)+ · · · ,
Ad(μ−1)(a) = a + ξ0(a) ∗ μ+ μ ∗ ξ1(a) ∗ μ+ · · · + μk ∗ ξk(a) ∗ μ+ · · · .

(4)
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Definition 1 A continuous surjective homomorphism p : (O, ∗) → K such that
p(μ) = 0 is called a classical point. Ker p is denoted by Ip. A continuous homomor-
phism p̃ : (O, ∗) → K[[μ]] with dense image is called a semiclassical point, where
K[[μ]] is the formal power series ring

∏
k Kμk with the direct product topology.

The totality M of classical points may be viewed as the phase space. The closed two-
sided ideal R = ∩p∈MIp is called the radical of O. Every f̃ ∈ O/R is viewed as a
function on M . The topology on M is given in such a way that every f̃ is viewed as a
continuous function.

Definition 2 A topological automorphism ψ of (O, ∗) is called a μ-automorphism, if
ψ(μ ∗O) = μ ∗O. By Autμ(O), we denote the group of all μ-automorphisms.

It is obvious that Autμ(O)μ ∗O = μ ∗O, Autμ(O)R = R, and every ψ ∈ Autμ(O)

induces a homeomorphism of M . Let Autμ(O)M be the normal subgroup consisting
of all ψ which leaves each classical point fixed. Since μ ∗O ⊂ R, Autμ(O)M acts on
R/μ ∗O.

To consider a smooth structure on M , we have to assume several nice properties
for Autμ(O) and its action on O, which will be given only as an optional assumption:

Option 1 Autμ(O) is a generalized Lie group with the Lie algebra g contained in
ad(μ−1 ∗O) as a real Lie subalgebra, and Autμ(O) acts smoothly on O.

A generalized Lie group defined in [16], [18] is not a genuine notion of Lie groups,
but a pair consisting of a topological group and a Lie algebra, which has several
amenable properties as Lie groups and the following conceptual advantage:

• Every closed subgroup of a generalized Lie group is a generalized Lie group.
• The quotient group of a generalized Lie group by a closed normal subgroup is a

generalized Lie group.
• Finite dimensional Lie groups are generalized Lie groups, and the converse is true

if the exponential mapping gives a local surjective mapping.

We do not repeat the detail, but recall the following fundamental fact:

Lemma 1 If the equation d
dt ft = ad(μ−1∗a)( ft ), f0 = f , has a real analytic solution

for every t ∈ R, and the continuity holds for initial conditions, then the fundamental
solution denoted by etad(μ

−1∗a) : (O, ∗) → (O, ∗) is a one-parameter subgroup of
Autμ(O).

1.2 Classical notions defined on BBB, or BBB ⊕μBμBμB

Recall (B, ·) is the commutative algebra over K defined by O/μ ∗O, and π0(a, b) =
a· b. Note that the commutator bracket [a, b] is a biderivation ofO×O intoO. Hence
the skew part π−1 of π1 gives a skew biderivation of B × B into B, which is denoted
by {a, b}.
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1.2.1 Characteristic vector fields

The derivation ad(μ−1) of O is decomposed for a∈B into

ad(μ−1)(a) = ξ0(a)+ · · · + μk ∗ ξk(a)+ · · · .
ξ0 is also a derivation of (B, ·), which is called the characteristic vector field. We easily
have

ξ0({a, b}) = {ξ0(a), b} + {a, ξ0(b)} (5)

and since μ−1 ∗O forms a Lie algebra, we see that Liouville bracket

{a, b}L = aξ0(b)− ξ0(a)b + {a, b} (6)

defines a Lie algebra structure on B, i.e., skew-symmetric with Jacobi identity.

Definition 3 A μ-regulated algebra (O, ∗) is called a q-Jacobi algebra, if ξ0 �= 0.
(O, ∗) is called a q-Poisson algebra, if [μ,O] = {0}.

1.2.2 From qqq-Jacobi to qqq-Poisson

Set Oμ = {a; [μ−1, a] = 0}. Then Oμ may be viewed as a q-Poisson algebra. There
is also another way to obtain a q-Poisson algebra from a q-Jacobi algebra.

Let r be the coordinate function of an open interval (1 − ε, 1 + ε). Let O{r, ε},
B{r, ε} be Fréchet spaces of all C∞ mappings from (1 − ε, 1 + ε) into a μ-regulated
algebra O, and into its subspace B respectively. Give them the C∞-topology. Set
μ = νr−1, and treat ν as a central element, i.e., [ν,O{r, ε}] = 0. It is easy to see
that O{r, ε} = B{r, ε} ⊕ νO{r, ε}. O{r, ε} is ν-regulated algebra under the naturally
extended commutation relation [r, f ] = ν ad(μ−1)( f ).

By this observation, the case where μ is in the center is fundamental. When μ is
in the center, one may set μ = i h̄ for any complex number h̄. This is the procedure
for making the quotient Fréchet algebra O/ Īh̄ by the closure Īh̄ of the two-sided ideal
Ih̄ = O ∗ (μ− i h̄) of O.

We call O/ Īh̄ the restricted algebra at μ = i h̄. However if (1− 1
i h̄μ)−1∈O, such

as in the case when μ is a formal parameter, the quotient algebra collapsesO/ Īh̄ = {0}
(cf. [11]).

1.2.3 ZZZ2-graded structure

Suppose a μ-regulated algebra (O;μ) is decomposed into O = O0 ⊕ O1 (= Oev ⊕
Ood) such that

O0∗O0 ⊂ O0, O1∗O1 ⊂ μ∗O0, O0∗O1, O1∗O0 ⊂ O1, O1◦O1 ⊂ μ2∗O0,

where ◦ means the symmetric product (cf. (1)). In this situation, we often use the
graded commutator defined by [a, b]± = a ∗ b− (−1)|a||b|b ∗ a, where |a| means the
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parity of a. For a ∈ Oi (i = 0, 1), we define D(a)( f ) = a ∗ f − (−1)|a|| f | f ∗a. D(a)
is a graded derivation similar to the exterior derivative, i.e.,

D(a)( f ∗ g) = D(a)( f ) ∗ g + (−1)| f | f ∗ D(a)(g), (7)

and in particular if a ∈ Ood , then D(a)
(
D(a)( f )

) = D(a2)( f ) ∈ μ3 ∗O.

2 Deformation quantizations and localizations

Like many other theories, our ultimate aim is the theory of gravity. But here, we give
only few examples by assuming that (B, ·) ∼= (C∞(M), ·); the space of all C∞ func-
tions on a manifold M with the ordinary commutative product: Suppose there are a
derivation ξ0 and a skew biderivation { f, g} on C∞(M). (C∞(M), ξ0, { , }) is called
a Jacobi algebra (cf. [7]), if it satisfies (5) and { f, g}L defined by (6) gives a Lie
algebra structure on C∞(M). A Jacobi algebra with ξ0 = 0 is called a Poisson al-
gebra. A Poisson algebra is called a symplectic algebra, if the rank of { , } is dimM
at every point. (C∞(M), ξ0, { , }) is a contact algebra, if ξ0 vanishes nowhere and
rank{ , } = dimM−1 everywhere; M is odd dimensional in particular. For a symplec-

tic algebra (C∞(M), { , }), the theorem of Darboux shows that there is a canonical
local coordinate system x1, . . . , xm, y1, . . . , ym on a neighborhood of p such that

{xi , x j } = {yi , y j } = 0, {xi , y j } = δi j .

Exterior algebra Let (F∗(M),∧) be the exterior algebra of all smooth differential
forms on a finite dimensional manifold. Let (F∗(M)[[μ]],∧) be the algebra defined
naturally on the space F∗(M)[[μ]] =∏

k F∗(M)μk with the direct product topology.
Define a new product ∗ on O = F∗(M)[[μ]] by

ω ∗ ω′ =
{

ω∧ω′, ω or ω′ ∈ Fev(M),

μω∧ω′, ω and ω′ ∈ Fod(M).

Proposition 2 (F∗(M)[[μ]], ∗) is a μ-regulated algebra such that B = Fev(M).

If we want to take a Riemannian structure into account, we have to set dxi ∗dx j =
μ2gi j . If M is the cotangent bundle T ∗N of a Riemannian manifold N , it is possible to
include such a structure in a μ-regulated algebra. (See [18].)

We have seen various structures in classical differential geometry that are involved
in the first few terms of the expansions (4). Thus, it is natural to ask the following
(quantization problem):

Do these structures defined by classical terms come from μ-regulated algebras?

If this is the sole question, one has only to make a μ-regulated algebra where μ is a
formal parameter, and then the quantization problems would have almost been settled.
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Namely, Kontsevich [10] showed every Poisson algebra is quantizable. (See also [21],
where we proved that all symplectic algebra is deformation quantizable.)

Thus, as a corollary, we see also that every Jacobi algebra is deformation quantiz-
able [11].

However, if μ is not a formal but a central element of an algebra, then there appear
several anomalous phenomena in the restricted algebra at μ = i h̄, (h̄ �=0), such as the
spontaneous break-down of the associativity (cf. Section 5.4). Some of them have been
discussed in [9], [12], [13] in the case of the simplest Weyl algebra of 2 generators.

2.1 Notion of vacuums and left-regular representations

By putting the traditional quantum theory in mind, a μ-regulated algebra has to be rep-
resented by a left-representation κ on a fixed Fréchet space� over C with a Hermitian
inner product structure (pre-Hilbert space). This is indeed a left-regular representation
by considering a closed left ideal defined by {a∈O; a|0〉 = 0}. In general, |0〉 is not an
element of O, but an element of an O-bimodule (cf. Section 2.2.1). |0〉 is sometimes
called the vacuum.

Writing the quotient space by � = O|0〉, and assuming there is a closed subspace
� ⊂ O representing �, the left-regular representation κ is given as an operator

κ(a) : ψ |0〉 → a ∗ ψ |0〉.

If the complex conjugation is defined and one can set ψ |0〉 = 〈0|ψ∗, then κ∗(a) :
〈0|ψ∗ → 〈0|ψ∗ ∗ a gives a right-regular representation as an anti-homomorphism.
In other words, letting L(�) be the space of all continuous linear operators of � into
itself (with a compact open topology), we get that κ (resp. κ∗) become (continuous)
homomorphisms (resp. anti-homomorphisms) of (O, ∗) into L(�). An elementψ ∈ �

is called a state function.
For the sole purpose of obtaining left-, right-regular representations, one may

choose |0〉 = 1 ∈ O. However, in the quantum theory it is required that 〈0|a|0〉 ∈ C.
Although this is not enough to make an inner product structure, this condition means
in particular that

codim
({a; a|0〉 = 0} + {a; 〈0|a = 0}) = 1.

Remarking that O = � ⊕ {a; a|0〉 = 0} = �∗ ⊕ {a; 〈0|a = 0} and � ∩�∗ = C, we
see that the representation space � has approximately half the dimension of O.

For simplicity, we denote κ(a) by aκ . By such a representation, the μ-regulated
algebra (O, ∗) is represented as a subalgebra Oκ = {aκ ; a ∈ O} of L(�).

For an element Hκ∈Oκ , the Schrödinger equation is written as d
dtψt = i Hκψt .

However, since the fundamental solution exp t Hκ may not be included inOκ , we have
to consider a certain extended system of Oκ by constructing an exponential calculus
so that the fundamental solution is included.
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2.2 Notion of localizations

It is easy to consider a localization ofO, if B∼=C∞(M),
⋂

k μ
k ∗O = {0} and every πk

and ξk appearing in the expansion (4) is respectively a bilinear or a linear differential
operator.

Namely, on every open subset U of M one can make C∞(U )[[μ]] a μ-regulated
algebra by using the same πk , ξk , k ∈ N. The naturally defined restriction O →
C∞(U )[[μ]] is an algebra homomorphism. C∞(U )[[μ]] may be called a localization
of O.

Furthermore, if O = C∞(M)[[μ]], then the localization theorem given in [16]
shows that one can replace B in the splitting O = B ⊕ μ ∗O of (A.3) in such a way
that πk , ξk , k ∈ N in (4) can be replaced by bilinear and linear differential operators.

However, if some of πk or ξk are not local operators, or if O∞ = ⋂
k μ

k ∗ O is
a nontrivial two-sided ideal, then there is no such effective notion of localization. In
spite of such difficulties, we want to know the “local generator system” of O in order
to analyze the detailed structure of O.

Recall that in algebraic geometry, the localization of algebra is considered by join-
ing the inverse a−1 of the element a called the divisor. The inclusion homomorphism
O → O[a−1] is naturally defined. The notion of localizations defined in the next
subsection is a mixture of these notions of localizations mentioned above. From my
personal view point, this is similar to the notion of so-called “second quantization” in
quantum physics.

2.2.1 O-bimodules

Here we give the notion of localization of an associative algebra (O, ∗) with 1. We
consider first another Fréchet space F, and a system {(κl , κr ); κ ∈ K } of left- and
right-representations of the algebra (O, ∗) onto F.

(F, κl , κr ) is called an O-bimodule, if the following conditions are satisfied:

(R:1) There is 1 ∈ F such that κl(a)(1) = κr (a)(1) for every a ∈ O.
(R:2) κl(1)( f ) = f = κr (1) for every f ∈ F.
(R:3) κr (a)(κl(b)( f )) = κl(b)(κr (a)( f )).
(R:4) If κl(a)(1) = 0, then κl(a)( f ) = κr (a)( f ) = 0 for every f ∈ F.

Obviously Iκ = {a ∈ O; κl(a)(1) = 0} is a closed two - sided ideal. Denote O/Iκ by
Oκ and the induced product by ∗κ . (Oκ , ∗κ) is an associative algebra. We denote by
πκ the natural projection (O, ∗)→ (Oκ , ∗κ).

The left- and right-representations (κl , κr ) of the algebra (O, ∗) onto F induces
naturally the left- and right-representations (κ̃l , κ̃r ) of the algebra (Oκ , ∗κ) onto F.
Hence, an O-bimodule (F, κ̃l , κ̃r ) is an Oκ -bimodule. (Oκ , ∗κ) is called the effective
quotient algebra of (O, ∗).

By denoting left-, right-multiplications by ιl , ιr , (Oκ , ιl , ιr ) becomes also an Oκ -
bimodule. We denote κl(a)(1) = πκ(a) by aκ ∈ Oκ , and κl(a)( f ), κr (a)( f ), respec-
tively, by aκ ∗κ f , f ∗κ aκ .
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It is often convenient to regard an O-bimodule (F, κl , κr ) as an extension of
the effective quotient algebra algebra (Oκ , ∗κ). In such a case, we denote this by
(F,Oκ , ∗κ).
Proposition 3 (F,Oκ , ∗κ) has the following properties:

• f ∗κ g is defined if f or g is in Oκ .
• ∗κ are continuous bi-linear mapping of Oκ × F→ F and F ×Oκ → F.
• The associativity f ∗κ (g ∗κ h) = ( f ∗κ g) ∗κ h holds if two of f, g, h are in Oκ .

A concrete example of such an extension will be given in Theorem 1 below. The fol-
lowing shows that there are many examples of O-bimodules:

Proposition 4 If (F,Oκ , ∗κ) is anO-bimodule, then the tensor product F⊗M(n) with
the matrix algebra M(n), and the dual space F∗ are Oκ -bimodules, providing F∗ is a
Fréchet space.

As for notations forO-bimodules, we often use (Fκ ,Oκ , ∗κ) instead of (Fκ , κl , κr ),
where the suffix κ is the label of the representation when we consider a system of O-
bimodules, and (Oκ , ∗κ) is the effective quotient algebra of (O, ∗).
Definition 4 An O-bimodule (Fκ ,Oκ , ∗κ) becomes a localization of a μ-regulated
algebra (O, ∗, μ), if the following holds:

(L.1) By setting μκ = πκ(μ), Bκ = πκ(B), (Oκ , ∗κ , μκ) is a μκ -regulated algebra
such that Oκ = Bκ ⊕ μκ∗κOκ .

(L.2) Oκ is dense in Fκ , and μκ∗κFκ , Fκ∗κ μκ are closed subspaces of Fκ .
(L.3) μκ∗κ : Fκ → μ∗κFκ , and ∗κ μ : Fκ → Fκ∗κ μ are continuous linear isomor-

phisms.
(L.4) The closure πκ(B) in Fκ is a direct summand of μκ∗κFκ .

By continuity, we see [μκ,Fκ ] ⊂ μκ∗κFκ∗κ μκ , [Oκ ,Fκ ] ⊂ μκ∗κFκ , and by using
(L.3) for every a∈Oκ , ad(μ−1κ ∗κ a) is defined as a continuous linear mapping of Fκ

into itself.

Let KO be the set of all localizations of a μ-regulated algebra (O, ∗, μ). An el-
ement of KO is denoted by (Fκ ,Oκ , ∗κ , μκ). (O,O, ∗, μ) is a member of KO as
the trivial localization. Sometimes we denote a member of KO simply by κ , and
1 = (O,O, ∗, μ).

For two localizations κ = (Fκ ,Oκ , ∗κ , μκ), κ ′ = (Fκ ′ ,Oκ ′ , ∗κ ′ , μκ ′), we consider
the following:

Definition 5 A continuous bimodule homomorphism ψ : (Fκ ,Oκ , ∗κ) →
(Fκ ′ ,Oκ ′ , ∗κ ′) is a morphism, if the following conditions are fulfilled:

• ψ induces a continuous homomorphism (Oκ , ∗κ) onto (Oκ ′ , ∗κ ′) such that
ψ(μκ) = μ

κ′ .• ψ(Bκ) is a direct summand of μκ ′∗κ′Oκ ′ .

• The closure ψ(Bκ) in Fκ ′ is a direct summand of μκ ′∗κFκ ′ .
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For every κ ∈ KO we have a morphism πκ : (O,O, ∗, μ) → (Fκ ,Oκ , ∗κ , μκ),
called the projection. For localizations κ, κ ′ ∈ KO, we say that κ ′ is a localiza-
tion of κ , and denote κ . κ ′, if there is a morphism πκ ′

κ : (Fκ ,Oκ , ∗κ , μκ) →
(Fκ ′ ,Oκ ′ , ∗κ ′ , μκ ′) such that πκ ′

κ πκ = πκ ′ .
For later use we denote

Iκ = Kerπκ, I Bκ = B ∩ Iκ Iμκ = (μ∗O) ∩ Iκ . (8)

KO is partially ordered by .. For κ, κ ′ ∈ KO, let κ = (Fκ ,Oκ , ∗κ , μκ),
κ ′ = (Fκ ′ ,Oκ ′ , ∗κ ′ , μκ ′). By definition, we see Fκ = O ∗ 1 etc. Set Oκ∪κ ′ =
O/Kerπκ∩ Kerπκ ′ , and consider the O-bimodule (Fκ ⊕ Fκ ′ ,Oκ∪κ ′ , ∗κ∪κ ′), where
∗κ∪κ ′ is the product which is naturally induced on O/Kerπκ∩ Kerπκ ′ . Take the clo-
sure O ∗ (1, 1) in the space Fκ ⊕ Fκ ′ and denote this by Fκ∪κ ′ . Then, it is not difficult
to check that

κ∪κ ′ = (Fκ∪κ ′ ,Oκ∪κ ′ , ∗κ∪κ ′ , μκ∪κ ′), μκ∪κ ′ = the image of μ

is a localization such that κ∪κ ′ . κ, κ ′. Morphisms κ∪κ ′ → κ, κ ′ are induced by
projections Fκ ⊕ Fκ ′ → Fκ ,Fκ ′ , but one should be careful, for πκ

κ∪κ ′ : Fκ∪κ ′ → Fκ

may not be surjective.

κ and κ ′ are called mutually independent, if there is no κ ′′ such that κ, κ ′ . κ ′′.

Recall that a localization κ = (Fκ ,Oκ , μκ) is defined by a pair of left-, right-
representations (κl , κr )which makes Fκ anO/Iκ -bimodule. For an automorphism ϕ ∈
Autμ(O), the pull-back ϕ∗κ = (ϕ∗κl , ϕ∗κr ) is a pair of left-, right-representations
which makes Fκ an O/ϕ−1(Iκ)-bimodule by defining

a∗
ϕ∗(κ) f = ϕ(a) ∗κ f, f ∗

ϕ∗(κ)a = f ∗κ ϕ(a), for a∈O, f ∈Fκ . (9)

We define ϕ∗(κ) = (Fϕ∗(κ),Oϕ∗(κ), ∗ϕ∗(κ), μϕ∗(κ))∈KO by (Fκ ,O/ϕ−1 Iκ , ∗ϕ∗(κ),
πκ(ϕ−1(μ))), where ∗ϕ∗(κ) is the product induced naturally on O/ϕ−1 Iκ .

In this way, Autμ(O) acts naturally on KO as order preserving isomorphisms. We
denote the isotropy subgroup at κ by Aut[κ](O) = {φ∈Autμ(O);φ∗(κ) = κ}. Note
that φ∗(κ) = κ if and only if φ : O → O induces an isomorphism φκ : Oκ → Oκ

which extends to an isomorphism Fκ → Fκ .

2.2.2 Typical examples

For making an example, we have to start with a little more general setting. Let (O; ∗̂)
be a μ-regulated algebra, and let O[uuu] be the totality of polynomials of u1, . . . , un
with coefficients in O. O[uuu] is an associative algebra under the naturally extended
∗̂-product. Here each ui is treated as a central element.

For an arbitrarily fixed (n × n)-complex matrix �, we define the product
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f ∗� g = f e
μ
2 (
∑←−

∂ui ∗̂�i j−→∂u j )g =
∑
k

μk

k!2k
�i1 j1· · ·�ik jk∂ui1

· · ·∂uik f ∗̂ ∂u j1
· · ·∂u jk

g.

(10)

This defines an associative algebra (O[uuu], ∗�).
In what follows we denote ∂ui ∂u j · · · ∂uk by simplified notation ∂ui u j ···uk . It is easy

to see ∂ui is a derivation of (O[uuu], ∗�).
Equality (10) is also written by a little strange notation

∑
k

(μ)k

k!2k
f
←−−−−
∂ui1 ···uik �

i1 j1 ∗̂ · · · ∗̂ �ik jk−−−−→∂u j1 ···u jk
g

The over left/right arrows indicate to which side the differentiation operator acts.
Let Hol(Cn,O) be the space of all holomorphic mappings from Cn into O. For

every p>0, we set a subspace as follows:

Ep(Cn,O) = { f (uuu)∈Hol(Cn,O); ‖ f ‖p,s;λ = sup ‖ f ‖λe−s|uuu|p <∞, ∀ s > 0}
(11)

where |uuu|2 = u21 + · · · + u2n and ‖ · ‖λ is the family of seminorms defining the
Fréchet topology of O. The family of seminorms {‖ f ‖p,s;λ}λ,s>0 induces a topology
of Ep(Cn,O).

We denote Ep+(Cn,O) =⋂
q>p Eq(Cn,O)with the intersection (projective limit)

topology.
The following result can be obtained by almost the same proof as in [11], [12], in

which the case O = C has been treated:

Theorem 1 For every pair (p, p′) such that 1
p + 1

p′ ≥ 1 the product (10) extends to
define a continuous bilinear mapping Ep(Cn,O)× Ep′(Cn,O)→ Ep∨p′(Cn,O).

IfO is aμ-regulated algebra overC, then Ep(Cn,O) = Ep(Cn, B)⊕μ∗�Ep(Cn,O).
Thus, if 0 < p ≤ 2, then Theorem 1 shows that (Ep(Cn,O), ∗�) is a μ-regulated al-
gebra. However, if p>2, then Ep(Cn,O) is only an Ep′(Cn,O)-bimodule for p′>0
such that 1

p + 1
p′ ≥ 1. Thus, Ep(Cn,O) is a localization of the μ-regulated algebra

Ep′(Cn,O).

For another constant matrix �̃, we define another product on (O[uuu], ∗�) by

f ∗̃g = f e
μ
2 (
∑←−

∂ui �̃
i j∗

�

−→
∂u j )g =

∑
k

(μ)k

k!2k
�̃i1 j1 · · · �̃ik jk∂ui1 ···uik f ∗�∂u j1 ···u jk

g.

This defines also an associative algebra (O[uuu], ∗̃).
Since�, �̂ are constant matrices, and compositions of matrices are not used in the

calculus, we may exchange the order of differentiations ∂ui1 ···uik ; the new product is
written as
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f ∗̃g =
∑
k

(μ)k

k!2k
(�̃+�)

i1 j1 · · · (�̃+�)
ik jk

∂ui1 ···uik f ∗̂∂u j1 ···u jk
g.

This may be rewritten as follows:

f e
μ
2 (
∑←−

∂ui (�̃+�)
i j ∗̂−→∂u j )g = f e

μ
2 (
∑←−

∂ui �̃
i j e

μ
2 (
∑←−

∂uk�kl ∗̂ −→∂uk )−→
∂u j )g. (12)

On the other hand, using a symmetric matrix K we consider 1
k! (

μ
4

∑
Ki j∂ui u j )

k( f ∗�

g). Splitting this into∑
p+q+r=k

(μ)r

r !2r
K i1 j1· · · Kir jr

{
∂ui1 ···uir

1

p!

(μ
4

∑
Ki j∂ui u j

)p
f

}

∗�

{
∂u j1 ···u jr

1

q!

(μ
4

∑
Ki j∂ui u j

)q
g

}
,

we have the following useful formula:

e
μ
4

∑
Ki j ∂ui u j

((
e−

μ
4

∑
Ki j ∂ui ∂u j f

)∗�

(
e−

μ
4

∑
Ki j ∂ui u j g

))
= f e

μ
2 (
∑←−

∂ui ∗�Ki j∗
�

−→
∂u j )g = f ∗

�+K g. (13)

Namely, the new product obtained by using a symmetric matrix does not change the
algebraic structure. Thus, the equality (13) gives:

Proposition 5 e
μ
4

∑
Ki j ∂ui u j : (O[uuu]; ∗�)→ (O[uuu]; ∗

�+K ) is an isomorphism. Namely,
the algebraic structure depends only on the skew symmetric part J of �.

Let κ , κ ′ = κ + K be symmetric parts of �, �+ K respectively, and let J be the

skew symmetric part of �. We call e(μ/4)
∑

(κ ′−κ)
i j
∂ui u j the intertwiner, and denote it

by I κ
′

κ .
The following result can be obtained by the same proof as in [11], [12]:

Theorem 2 If p ≤ 2, the intertwiner I
κ′
κ extends a topological algebra isomorphism

from (Ep(Cn,O), ∗κ+J ) onto (Ep(Cn,O), ∗κ ′+J ).

2.3 Abstract notion of intertwiners and sogo

These are also the most fundamental notions besides the notion of localization. To give
an abstract notion of intertwiners, we have to take a little smaller subset K̃O of KO
having the following property:

• If κ, κ ′ . κ0, then there is κ̃ such that κ̃ . κ, κ ′ and π
κ0
κ Fκ ∩ π

κ0
κ ′ Fκ ′ = π

κ0
κ̃
Fκ̃

holds.

Autμ(O) acts naturally on the partially ordered subset K̃O preserving the partial order
..
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Definition 6 For κ, κ ′ ∈ K̃O, a densely defined linear one-to-one mapping I κ
′

κ from
Fκ into Fκ ′ is called an intertwiner, if:

• I κ
′

κ : (Oκ , ∗κ , μκ)→ (Oκ ′ , ∗κ ′ , μκ ′) is an isomorphism.
• If κ̃ . κ, κ ′, then the equality I κ

′
κ πκ

κ̃
(a) = πκ ′

κ̃
(a) holds for all a ∈ Fκ̃ .

• For κ, κ ′ ∈ K̃O, suppose κi . κ, κ ′ for i = 1, 2, . . . ,m. Then the defining domain
of I κ

′
κ must contain the linear hull of ∩m

i=1π
κ
κi
Fκi .

It is clear that (I κ
′

κ )−1 = I κ
κ ′ , and I κκ = 1. We can find such intertwiners in several

concrete examples (cf. Theorem 2). However, the existence of intertwiners is not so
obvious in general. In general, intertwiners do not satisfy the cocycle condition, i.e.,
I κ
κ ′′ I

κ ′′
κ ′ I

κ ′
κ ( f ) is not necessarily f . Therefore it should deserve a definition of sogo.

Definition 7 Dκκ ′κ ′′ = I κ
κ ′′ I

κ ′′
κ ′ I

κ ′
κ is called the discordance, or sogo 1.

An example of sogo will be given in Section 4. But, remark that known examples

of

κ̃

κ̃ ′

κ̃ ′′

κ

κ ′

κ ′′

sogo appear only as multiplicative con-
stants, or additive constants (see [25]). Here
we give only the reason why sogo appears.
For κ , κ ′, κ ′′ ∈ K̃O, suppose there are κ̃ , κ̃ ′,
κ̃ ′′ such that κ̃ . κ , κ ′, κ̃ ′ . κ ′, κ ′′, κ̃ ′′ .
κ ′′, κ . Even if the following identities hold
πκ ′
κ̃
( f ) = πκ ′

κ̃ ′ ( f
′), πκ ′′

κ̃ ′ ( f
′) = πκ ′′

κ̃ ′′ ( f
′′),

πκ
κ̃ ′′( f

′′) = πκ
κ̃
( f̂ ), we can not conclude

πκ
κ̃
( f̂ ) = πκ

κ̃
( f ).

Proposition 6 Intertwiners have sogo in general, even though these give isomorphisms
between Oκ ’s. Suppose κ0 . κ, κ ′, κ ′′. Then Dκκ ′κ ′′ is a densely defined monomor-
phism which is the identity on πκ

κ0
Fκ0 .

When a sogo appears in localizations, we have to treat f ∈ Fκ such that Dκκ ′κ ′′ f �=
f as amulti-valued, or a set-valued element. Hence the disjoint union

∐
κ Fκ can never

have a vector bundle structure. The notion of bundle gerbe (cf. [3]) may be useful for
that purpose. Although the cohomological aspect is stressed in the notion of gerbes,
we think the idea is based on much more primitive phenomena.

In general, representation spaces of localized algebras may not be glued together
to form a global representation space (cf. [14]).

In spite of this, we have to treat the space of “sections” of
∐

κ Fκ in order to con-
struct the field theory. For that purpose we have to restrict the “domain” of localizations
so that the sogo disappears. We shall give later an example of elements whose domain
of localizations are restricted to the complex “right half” space (cf. (49)).

1Sogo means in Japanese the discordance of upper and lower arrangement of teeth.
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2.3.1 Exponential calculus on a localization

In a suitably localized system, it is natural to expect that we have a generator system.

Definition 8 A finite dimensional linear subspace Lκ ofOκ is a local generator system
of (Oκ , ∗κ), if the subalgebra generated by Lκ is dense in Oκ .

However, since (Oκ , ∗κ) is non-commutative in general, it is difficult to express an
element in a univalent way. In the beginning of quantum theory, this was called the
ordering problem. In fact, there are few concrete examples of algebras given by an ex-
plicit formula of ∗κ -product by using a system of generators. Thus, a non-commutative
algebra with which we are concerned needs to be restricted to the one that is linearly
isomorphic to a certain well-known algebra having univalent expression rule such as
the usual polynomial algebra or Grassmann algebra, on which non-commutative prod-
uct structure is given by a concrete product formula. The ordering problem in the
Weyl algebra has been discussed in [11], and in [13] as K -orderings, but since this
is the same context as localizations, it is better to call them K -expressions. Since K
moves continuously, K may be viewed as a deformation parameter or the parameter
of variations. However, since both “deformation” and “variation” have certain specific
meanings in [12] and [6], we use “deformation of expressions” .

See also Section 4 for its simplest version.
Suppose a localization (Fκ ,Oκ , ∗κ) is given. For every a∈Oκ , the left-/right-

multiplication f → a ∗κ f ,/ f → f ∗κ a are regarded as vector fields on the space
Fκ . Equations of integral curves through 1 ∈ Fκ are respectively

d

dt
ft (κ) = a ∗κ ft (κ), f0(κ) = 1,

d

dt
gt (κ) = gt (κ) ∗κ a, g0(κ) = 1. (14)

The existence of solutions is not ensured in general, even if a is a member of Lκ , but
the uniqueness holds for real analytic solutions.

If ft (κ) is a real analytic solution of the left equation of (14), then we see ft (κ) ∗
a = a ∗ ft (κ) by the uniqueness and the associativity (a ∗ ft (κ))∗ a = a ∗ ( ft (κ)∗ a).
Using this, we see ft (κ) is also the solution of the right equation. We denote the real
analytic solution by eta∗κ if it exists in Fκ . By the uniqueness, the exponential law holds
which will be denoted by

e(s+t)a∗κ = esa∗κ ∗κ eta∗κ , ez+ta∗κ = ezeta∗κ , s, t, z ∈ C. (15)

On the other hand, [a, f ] = a ∗κ f − f ∗κ a is defined for every a∈Oκ as a
continuous linear mapping of Fκ into itself. Denote this by ad(a) and consider the
equation

d

dt
gt (κ) = ad(a)gt (κ), g0(κ) = g. (16)

If the solution exists, it will be denoted by etad(a)g. If the solution eta∗κ of (14) exists,
then we have the identity etad(a)g = eta∗κ ∗κ g ∗κ e−ta∗κ , if the associativity (eta∗κ ∗κ g) ∗κ
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e−ta∗κ = eta∗κ ∗κ (g ∗κ e−ta∗κ ) holds. We denote the right-hand side by Ad(eta∗κ )(g) if this
is the case.

Recall that we do not have a good criterion for the associativity. The way of check-
ing the associativity is mainly based on the fact that the associativity holds when the
regulator μ is treated as a formal parameter. Therefore, if the subsystem with which
we are concerned is embedded in another subsystem in which the regulator μ is for-
mal, then we obtain the desired associativity. See [18] for detail. However, in a general
setting, one can not say anything further without knowledge of a concrete expression
such as (50) obtained in the sequel by using a generator system.

In the last part of this section, we indicate a strange fact which often appears in the
exponential calculus. (Cf. [12].) Loosely speaking, this is the fact that for “almost all”
elements a∈Oκ , the integral

∫∞
−∞ eta∗ dt , and hence

∑
n∈Z ena∗ converge in a certain

Fκ (see Section 4 for concrete examples). Since limt→±∞ eta∗ = 0 in such a case,
these imply that a∈Oκ , and ea∗ − 1 have two different two-sided inverses respectively:
Namely, we have inverses as follows:

−
∫ ∞

0
eta∗ dt,

∫ 0

−∞
eta∗ dt, −

∞∑
n=0

ena∗ ,

0∑
n=−∞

ena∗ , (cf. Section 5.4).

For instance, the continuity of a∗ gives a∗∫ 0
−∞e

ta∗ dt =
∫ 0
−∞a∗eta∗ dt =

∫ 0
−∞

d
dt e

ta∗ dt =
1, and similarly we see

∫ 0
−∞e

ta∗ dt ∗ a = 1.
These violate the associativity. Recall that a−1 = a−1 ∗ (a ∗ (a′)−1) = (a−1 ∗ a) ∗

(a′)−1 = (a′)−1 if the associativity holds. In particular, write the last two quantities as

∞∑
n=0

ena∗ = 1

1− ea∗
, −

1∑
−∞

ena∗ = e−a∗
e−a∗ − 1

to see how the associativity is broken.
However, such a phenomenon is necessary to define a closed left ideal {a ∈ O; a ∗

|0〉 = 0}. Suppose |0〉 = ∫∞
−∞ eta∗ dt is an element of Fκ . Then, we see that

a ∗ |0〉 =
∫ ∞

−∞
d

dt
eta∗ dt = lim

t→∞ eta∗ − lim
t→−∞ eta∗ = 0

must hold, but the breakup of associativity makes it possible to avoid collapsing such
that |0〉 = (a−1 ∗ a) ∗ |0〉 = 0.

The main difference of −∫∞0 eta∗ dt and
∑∞

n=0 ena∗ appears in the following calcu-
lations:

−
∞∑
k=1

(
∂

∂β
log

)∫ ∞

0
etβka∗ dt,

∞∑
k=1

(
∂

∂β
log

) ∞∑
n=0

enβka∗ , (17)

where ( ∂
∂β

log) f (β) = f ′(β)∗ f (β)−1. For the first one, the integration by parts gives
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∂

∂β

∫ ∞

0
etβka∗ dt = β−1

∫ ∞

0
t (kβa) ∗ etkβa∗ dt = −β−1

∫ ∞

0
etβka∗ dt.

Thus, the first quantity of (17) is
∑∞

k=1 β−1, and there is no way to avoid divergence.
On the other hand for the second one, the identity

∂

∂β

∞∑
n=0

enβka∗ = ka ∗
∞∑
n=0

nenβka∗ = ka ∗
( ∞∑
n=0

enβka∗

)
∗
( ∞∑
n=1

enβka∗

)
,

gives
∑∞

k=1(
∑∞

n=1 e
nβka
∗ ) ∗ ka. This converges under certain K -expressions (cf. τ -

expression of Section 5.1).

3 Limit, extremal localizations, infinitesimal intertwiners

There are infinitely long series of localizations κ0 . κ1 . κ2 . · · · . We call such a
series a countable chain of localizations, and denote by C(K̃O) the set of all countable
chains. Countable chains σ = {κi }i , σ ′ = {κ ′i }i are said to be co-final, if there is a
countable chain including both σ, σ ′ in an order preserving manner.

Given a countable chain σ = {κi }i ∈ C(K̃O), we consider the following series:

Oκ0 → Oκ1 → Oκ2 → · · · , Fκ0 → Fκ1 → Fκ2 → · · · .

Recall that Oκi = O/Iκi , Bκi = B/I Bκi , μκ∗κOκi = μ ∗O/Iμκi where Iκi = Kerπκi ,

and Iκi ⊂ Iκi+1 . We set Oσ = O/∩i Iκi , Bσ = B/∩i I Bκi , μ∗σOσ = μ ∗ O/∩i Iμκi ,
where A is the closure of A in O. Let πσ

κi
: Oκi → Oσ be the natural projection, and

set μσ = πσ
κi
(μκi ). Denote by ∗σ the product induced naturally on Oσ . Then, we see

that (Oσ , ∗σ , μσ ) is a μσ -regulated algebra.

Recall also Kerπ
κ j
κi ⊂ Kerπ

κ j+1
κi . Let F̃κi = Fκi /∩ j≥iKerπ

κ j
κi . Then we have an

increasing sequence of Fréchet spaces {F̃κi }i . Let F̃σ = lim−→ F̃κi = ∩F̃κi the injective
limit.

We call the countable chain {κi }i finite type, if F̃σ = ∩F̃κi = F̃κ j for some κ j so

that F̃σ is a Fréchet space. Note that this does not necessarily imply that∩k≥iKerπκk
κi =

∩ j≥k≥iKerπκk
κi .

Let FO be the subset of C(K̃O) consisting of all countable chains of finite type.

Lemma 2 For a countable chain of finite type, we see that (F̃σ ,Oσ , ∗σ , πσ (μ)) is a
localization of (O, ∗, μ). This will be called the limit localization.

Lemma 3 Autμ(O) acts naturally on FO.

Proof. Let ϕ∈Autμ(O). Recall that the action of ϕ on anO-bimodule Fκi etc. is given
by regarding Fκi as a ϕ(O)-bimodule. Hence, everything is traced as ϕ(O)-bimodules.

$%
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3.1 Topology and a smooth structure on###

Apparently, we are concerned only with co-final classes of FO. We denote the set of
all co-final classes by # = FO/∼. An element σ ∈ # is called the co-final point of
the series {κi }i .

If we imagine the limit “point” σ of such an infinitely long sequence, then totality
of σ = limn κn may be viewed as a continuum #. For a fixed κ we have many count-
able chains of finite type starting with κ . Taking all co-final points we have a subset
#κ of #. Using the cascade structure on FO, we make # a topological space. Namely
for a co-final point σ of {κi }i , {#κi , i = 0, 1, 2, . . . } gives the basis of neighborhoods
of σ .

Proposition 7 Autμ(O) acts on the set # as homeomorphisms.

For a co-final point σ , we denote the isotropy group at σ by Aut[σ ](O) =
{φ∈Autμ(O);φ(σ) = σ }.

If we take Option 1, we can define the smoothness by saying that Autμ(O) acts
smoothly on the set # as “diffeomorphisms”:

Definition 9 A function f : # → R is said to be smooth, if for every one-parameter
subgroup ϕt of Autμ(O), generated by a member of g, f (ϕt (σ )) is C∞ with respect
to t and every derivative is continuous with respect to (t, σ ).

Intuitively speaking, # is the underlying space where we have to develop differ-
ential geometry. However, as a matter of fact, this is far from the notion of manifolds.
Here, recall the Option 1 of general Lie groups. Every Autμ(O)-orbit may be viewed
as a manifold.

It is important to remark that# is not viewed as the phase space, but as a parameter
space of limit localizations.

Consider now a neighborhood Vσ of σ∈#. Suppose for a moment that Vσ =
V (o)
σ ×V (m)

σ where V (o)
σ = Vσ ∩ Autμ(O)(σ ). Then, V (m)

σ is viewed as the param-
eter space of deformations of algebraic system (F̃σ , ∗σ , μσ ) like the moduli-space.
However, since algebraic systems are mutually isomorphic along V (o)

σ , we think what
is deformed along V (o)

σ is the expression of the algebraic system (F̃σ , ∗σ , μσ ) given
by a limit localization of (O, ∗, μ), although the precise definition of deformation of
expressions will be given later.

3.1.1 Infinitesimal intertwiners

Let σ = lim−→ κi∈#. For every f ∈F̃σ , there is κi (depending on f ) such that f ∈ πσ
κi
Fκi .

Suppose the intertwiner lim−→ j I
κ ′j
κi ( f ) is defined for another σ ′ = lim−→ κ ′j∈# such

that σ ′ ∈ #κi . We denote this by

I σ
′

σ ( f ) = lim−→ j I
κ ′j
κi ( f ). (18)
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If σ(t) is a continuous curve with σ(0) = 0 in #. The above observation shows
that for every f ∈F̃σ , there is ε>0 such that I σ(t)

σ ( f ) is defined for every t , |t |<ε.
Let φt be a one-parameter subgroup of Autμ(O) whose infinitesimal generator

is X : O → O. We denote φt = exp t X . By definition, exp t X(σ ) is viewed as a
“smooth” curve in # starting at σ . Since the action is continuous by definition, there
is ε>0 for any neighborhood Vσ of σ such that exp t X(σ )∈Vσ for every t, |t |<ε.

Using (18), we define the infinitesimal intertwiner as follows:

d Iσ (X)( f ) = d

dt

∣∣∣
t=0

Iφt (σ )
σ ( f ), for all f ∈ F̃σ . (19)

By defining the tangent space Tσ# at σ as the symbolic set { ddt |t=0 exp t X(σ ); g},
d Iσ (X) is defined for all X ∈ Tσ#. The tangent space Tσ# is more realistic, if we
take Option 1 stated before. However, d Iσ (X) is not a derivation in general as it will
be seen in Section 3.2.1 and Section 5.3.

On the other hand, let F̃∗κi be the dual space of F̃κi . Since F̃κi is dense in F̃κi+1 , we

see F̃∗κi⊃F̃∗κi+1 . Denote the projective limit space lim←− F̃∗κi = ∩F̃∗κi by F̃∗σ . This is the
dual space of F̃σ , and a Fréchet space if F̃∗κi is a Fréchet space. By this duality, we see

Lemma 4 The infinitesimal intertwiner d Iσ (X) is defined also on F̃∗σ .

Remark For a descending sequence U0 ⊃ U1 ⊃ U2 ⊃ · · · of open subsets shrinking
to a point σ∈Rn , we have the sequence C∞(Rn) → C∞(U0) → C∞(U1) → · · · ,
hence the inductive limit lim−→C∞(Uk) is the space of germs of C∞-functions at σ .
However, since we take the closure of ∩i Iκi in our case, Oσ is the space of all for-
mal power series. The dual spaces make a projective system D0(M) ← D0(U0) ←
D0(U1)← · · · where D0(Ui ) is the space of the Schwartz distributions with compact
support on Ui , and F∗σ = lim←−D0(Ui )[μ] is also considered. However, our F̃∗σ is the
space of all polynomials of μ with coefficients of distributions supported on a single
point σ .

Elements of (O, ∗, μ) are represented naturally as a “smooth section” of bimodule
bundles ∐

σ∈#
(Oσ , ∗σ , μσ ),

∐
σ∈#

(F̃σ , ∗σ , μσ ),
∐
σ∈#

(F̃∗σ , ∗σ , μσ ).

Although local triviality does not hold in general, we denote these respectively byO# ,
F̃# , F̃∗# for simplicity.

Since O contains 1 and C∞(#) is viewed as a subspace of ΓΓΓ (O#), we can define
a probability measure on # (cf. [27]).

Let ΓΓΓ (O#), ΓΓΓ (F̃#), ΓΓΓ 0(F̃∗#) be respectively the space of “smooth” sections of
O# , F̃# , and of F̃∗# with compact support. Every f ∗σ ∈ F̃∗σ may be viewed as a distri-
bution supported only at the point σ . Such an element f ∗σ is called a particle function
in [22].

Any field theoretic quantities are expressed by sections of these bundles. The sec-
ond quantization is formulated by setting a family of vacuums on the bimodule bundle∐

σ∈#(Oσ , ∗σ , μσ ).
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For the computations using distributions, we define the pairing as follows:

〈F̃σ , F̃
∗
σ ′ 〉 = {0}, if σ �= σ ′. (20)

Note that for every “smooth” function φ(σ), the pairing

〈h,
∫
#

dσφ(σ) f ∗σ 〉 =
∫
#

dσ 〈h(σ ), φ(σ ) f ∗σ 〉, h ∈ ΓΓΓ (F̃#)

makes sense. Hence
∫
#
dσφ(σ) f ∗σ is defined as an element of ΓΓΓ 0(F̃∗#).

3.1.2 Extremal localizations

Definition 10 (Oσ , F̃σ , ∗σ , μσ ) is called an extremal localization, if F̃σ is a Fréchet
space, on which infinitesimal intertwiner d Iσ (X) is defined for every continuous one-
parameter μ-automorphism group exp t X , and there is no further localization of it.

An example of extremal localization. Let C∞(Rn) be the algebra of all C∞ functions
with the C∞-topology. Let O = C∞(Rn)[[μ]] be the space of all formal power series
of μ with coefficients in C∞(Rn). By defining [μ, xi ] = μ ∗ xi ∗ μ, [xi , x j ] = 0,
we can make (O, ∗, μ) a μ-regulated algebra. We see that Oσ = F̃σ is the space of
all formal power series �(n)[[μ]]. Since the direct product topology is the weakest
topology to make projections to each component continuous, we see there is no further
localization.

The classification of extremal localizations are not fixed yet. But, note that even
in an extremal localization σ , we may have a nontrivial isotropy subgroup. Suppose
the isotropy subgroup Aut[κ](O) of a certain localization κ contains ϕ = cI such as
ϕ( f ) = c f , c �= 1. Then, the automorphism ϕ : Oκ → Oκ must extend to a continuous
linear isomorphism of Fκ . We see there is no localization of κ ′ of κ excluding cI from
the isotropy subgroup, that is, ϕ(κ ′) �= κ ′, because if such κ ′ exists, then ϕ must not
extend to Fκ ′ , but this is impossible.

3.2 Infinitesimal intertwiners as a flat connection

As was mentioned before, intertwiners are not defined on the whole space, but in-
finitesimal intertwiners are defined on the whole space. In this subsection, we show
that infinitesimal intertwiners may be regarded as infinitesimal parallel translations of
some flat connections on an algebra bundle over #.

Recall that Autμ(O) acts on the bundle F̃# =
∐

σ∈# F̃σ , where# is the space of all
limit localizations. We regard an infinitesimal intertwiner as a horizontal distribution
Hσ, f defined by

Hσ, f = {(X, d Iσ (X)( f )); X∈Tσ#}, Hσ : Tσ#×F̃σ → F̃σ . (21)

Along a smooth curve σ(t) in #, the equation of parallel translation is given by
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∂t ft = d Iσ(t)(σ̇ (t))( ft ), f0 = f ∈ F̃σ . (22)

If ft satisfies (22), then ft is said to be parallel along the curve σ(t). However, if f is
general, (22) may not have a solution. The following is easy to see.

Proposition 8 The linear connection (21) defined on F̃# is a flat connection, and for
every a ∈ O, aσ = πσ (a), σ∈# is a parallel section of F̃# .

If σ is fixed, then a → πσ (a) is only a homomorphism in general. However, as
we take all possible limit localizations, it is natural to think that the mapping a →
{πσ (a); σ ∈ #} is faithful, i.e., an into-isomorphism.

For a ∈ Oκ , {a∗σ 1; σ ∈ #} gives only a locally defined parallel section defined on
#κ (⊂ #). We may regard q-number functionsmentioned in [1] as maximally defined
parallel sections of F̃# (cf. Section 5.1), although the explicit definition is not given in
[1].

3.2.1 The flow of ad(μμμ−1) on###

Now, let # be the set of all limit localization of (O, ∗, μ), and suppose that elements
f ∈ O are represented faithfully as parallel sections (q-number functions) of F̃# .

For a while, we assume that etad(μ
−1) exists as a one-parameter automorphism

group of (O, ∗). This induces a “smooth” one-parameter flow φt on the base space #.
etad(μ

−1) gives an isomorphism of (Oσ , ∗σ ) onto (Oσ(t), ∗σ(t)) where σ(t) = φt (σ ).

We denote this by etad(μ
−1)(σ ) : (Oσ , ∗σ ) → (Oφt (σ ), ∗φt (σ )). In a limit localization,

it is natural to think that φt (σ ) �=σ for every t �= 0. Thus, d
dt

∣∣
t=0φt may be viewed as

a non-vanishing “vector field” �0, just like the characteristic vector field. We denote
�0(σ ) = d

dt

∣∣
t=0φt (σ ).

Now we have to consider how the family of isomorphisms

etad(μ
−1)(σ ) : (F̃σ ,Oσ , ∗σ )→ (F̃φt (σ ),Oφt (σ ), ∗φt (σ ))

relates to the family of intertwiners Iφt (σ )
σ . At this stage, it is natural to consider its in-

finitesimal version by setting (ad(μ−1)( f ))(σ ) = d
dt

∣∣
t=0(e

tad(μ−1) f )(σ ), since Iφt (σ )
σ

is not defined for all F̃σ .

However, there are many ways to consider derivatives. It depends how F̃σ(t) is
identified with F̃σ . As in the classical differential geometry, we define

∇�0(σ ) f∗ = (∇�0 f∗)(σ ) = d

dt

∣∣∣∣
t=0

(
etad(μ

−1) I ·φt (·)( f∗)
)
(σ ), (covariant derivative),

where I ·φt (·)( f∗) is a parallel section defined by I σ
′

φ(t)(σ ′)( fσ ′). We define also

(L�0 f∗)(σ ) = d

dt

∣∣∣∣
t=0

etad(μ
−1
κ )( f∗(e−tad(μ

−1
κ )(σ ))), (Lie derivative).
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Both of them are derivations. However, let us note here the following computation:

d

dt

∣∣∣∣
t=0

etad(μ
−1
κ )(σ )( f ∗σ g)

= d

dt

∣∣∣∣
t=0

(
etad(μ

−1
κ )(σ )( f ) ∗σ(t) e

tad(μ−1κ )(σ )(g)
)

=
(

d

dt

∣∣∣∣
t=0

etad(μ
−1
κ )(σ )( f )

)
∗σ g + f ∗σ

(
d

dt

∣∣∣∣
t=0

etad(μ
−1
κ )(σ )(g)

)
+ d

dt

∣∣∣∣
t=0

f ∗σ(t) g.

This makes sense, if both Oσ(t) and Oσ are identified respectively with subspaces of
a common Fréchet space. Here we think that the notion of deformation of expressions
gives this identification.

Here “deformation” means neither the traditional deformation theory of Gersten-
haber (cf. [6] and references therein) nor its noncommutative generalization (cf. [12]).

The usual theory of deformation of algebras mainly concerns deformations of al-
gebraic structures, written in terms of Hochschild cohomology groups. In our theory
of deformation, the underlying algebraic structure is fixed, but this structure plays only
a supplemental role in order to give the univalent expression for elements, and to give
several operations which will be used for the construction of algebras. Algebraic sys-
tems to be considered are given separately by the product formula written by using the
underlying algebraic structure.

We are assuming that (F̃σ(t),Oσ(t), ∗σ (t)) is given by a deformation of expressions
of (Oσ , ∗σ ).

Thus, what is deformed is product formulas written on the space (F̃σ ,Oσ ). Such a
notion has been extensively discussed in [12],[13].

We denote (D�0 f ) = d
dt

∣∣
t=0e

tad(μ−1κ ) f and call this a deformation derivative. In
general D�0 is not a derivation. The typical example is D2 considered in (26) below.

In the case where intertwiners are given on a common underlying algebra, D�0 =
d I•(�0) gives a typical example. But in general, d I•(�0) is a linear combination of
D�0 and ∇�0(σ ), L�0 .

We see that ad(μ−1κ )(σ ) must satisfy

(D�0)(σ )( f ∗σ g)) = (D�0 f )(σ )( f )∗σ g + f ∗σ (D�0 f )(σ )(g)+ 〈 f, g〉σ (23)

where 〈 f, g〉σ is the bilinear mapping defined by 〈 f, g〉σ = d
dt

∣∣
t=0 f ∗σ(t) g.

The polynomial algebra of one variable is very rigid, but even in such a case,
there are many ways of expressions. We discuss such deformations in the next section
together with a more precise definition of (23).

4 Deformation by one variable

So far, we treated the notion of localizations, and limit localizations. In this section, we
give a basic idea of deformation which may appear in such a localization. Especially,
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we want to give a precise meaning to (23). For that purpose we have to start with a
little more generality. The precise meaning of (23) will be given in the last paragraph
of Section 4.1.

4.1 Basic formula

Let (A, ∗̂) be a Fréchet algebra and let (F,A, ∗̂) be an (A, ∗̂)-bimodule such that A
itself is an effective quotient algebra and densely included in F.

Definition 11 A continuous linear mapping D : F → F is a derivation, if D gives a
continuous derivation of (A, ∗̂) and D( f ∗̂g) = D( f )∗̂g + f ∗̂D(g) holds if f or g is
in A.

Given such a derivation D, we define a new product ∗τ by the following formula:

f ∗τ g =
∑
k≥0

τ k

2kk!
Dk f ∗̂Dkg = f e

τ
2
←−
D ∗̂−→D g (see also (10), (50)) (24)

where τ ∈ C is viewed as the deformation parameter. If τ = 0, then ∗0 = ∗̂. Here we
stress that ∗̂-product is used in order to define ∗τ . The usual deformation theory does
not take this formulation.

Under a suitable condition for D ensuring the convergence, (A, ∗τ ) is an associa-
tive Fréchet algebra and (F,A, ∗τ ) is an (A, ∗τ )-bimodule. A sufficient condition for
convergence is that {Dk}k=0,1,2... is equi-continuous, i.e.:

Let {‖ · ‖λ}λ be a family of seminorms which give the topology of A. {Dk}k is
called equi-continuous, if for every ‖ · ‖λ there are ‖ · ‖λ′ and a constant Cλ,λ′ such that
‖Dka‖λ ≤ Ck

λ,λ′ ‖a‖λ′ for every k.
Under the condition that {Dk}k=0,1,2... is equi-continuous, the mapping e(τ/4)D

2
:

A → A is a linear isomorphism. In general, e(τ/4)D
2
does not extend to F. Since A

is dense in F, e(τ/4)D
2
: F → F is only densely defined. However, D2 : F → F is a

continuous linear mapping.
Moreover, by splitting 1

k! (
τ
4D

2)k( f ∗̂g) into
∑

p+q+r=k

τ r

r !2r
Dr
(

1

p!

(τ
4
D2
)p

f

)
∗̂Dr

(
1

q!

(τ
4
D2
)q

g

)
, (25)

we see that

e
τ
4 D

2
: (A, ∗̂)→ (A, ∗τ ) (26)

is an algebra isomorphism. Hence the new algebra (A, ∗τ ) is isomorphic to the original
algebra.

Remark LetA′ = {a∈A; Dka = 0, for some k = k(a)}. ThenA′ is a subalgebra of
A and F is viewed as an A′-bimodule. The details about the convergence will appear
in [19]. See also the next section for the simplest example.
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We see that D acts as a derivation of (F,A, ∗τ ), and for any other constant τ̂ ,
another product formula

f e
τ̂
2

∑←−
D ∗τ−→D g =

∑
k

1

k!2k
τ̂ k Dk f ∗τ Dkg

defines also an associative algebra (A, ∗τ̂ ) and (F,A, ∗τ̂ ) is an (A, ∗τ )-bimodule.
Since τ , τ̂ are constants, this formula can be written as

f e
τ̂
2 (
←−
D e

1
2 (
←−
D ∗τ−→D )−→D )g =

∑
k

1

k!2k
(τ̂ + τ)k Dk f ∗̂Dkg = f ∗τ+τ̂ g. (27)

Moreover, the same argument as in (25) gives the following formula:

e
τ̂
4 D

2
((
e−

τ
4 D

2
f
)∗τ (e− τ

4 D
2
g
)) = f e

τ̂
2 (
←−
D ∗τ−→D )g = f ∗τ+τ̂ g. (28)

This means ∗τ+τ̂ -product is isomorphic to ∗τ -product by the isomorphism e(1/4)(τ̂−τ)D2
.

Hence intertwiners are given as follows (cf. Theorem 2):

Proposition 9 For every τ, τ ′, the intertwiner is defined by

I τ
′

τ ( f ) = exp

(
1

4
(τ ′− τ)D2

)
f (= I τ

′
0 (I τ0 )

−1( f )), (29)

and by (28) it gives an algebra isomorphism I τ
′

τ : (A; ∗τ )→(A, ∗τ ′).

4.1.1 Combination with automorphisms

Note that (24) is only a typical example of deformation. One can combine this with
arbitrary automorphisms ψ : (A; ∗̂) → (A; ∗̂), ψ ′ : (A; ∗τ ) → (A; ∗τ ). Namely, we
define

f ∗ψ,τ,ψ ′ g = ψ ′(ψ( f ) ∗τ ψ(g)). (30)

The associativity is checked by noting

f ∗ψ,τ,ψ ′ (g ∗ψ,τ,ψ ′ h) = ψ ′(ψ( f )∗̂ψ ′−1(g ∗ψ,τ,ψ ′ h)) = ψ ′(ψ( f )∗̂(ψ(g) ∗̂ψ(h)).

The intertwiner Î τ0 of the combined deformation is

Î τ0 ( f ) = ψ ′ ◦ I τ0 ◦ ψ( f ). (31)
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4.1.2 Relation with limit localizations

Now, go back to the family of localizations (F̃σ(t),Oσ(t), ∗σ(t)) given in the last sec-

tion. This was defined by the one-parameter automorphisms ψt = ead(μ
−1) ∈ Autμ(O)

which were temporarily assumed to exist. In the previous section, we viewed ψt as in-
ducing deformations of (F̃σ ,Oσ , ∗σ ). Namely we regard t as a deformation parameter
and set etad(μ

−1)(σ ) = Î σ(t)
σ .

Taking the derivative at t = 0, we think that ad(μ−1)(σ ) is given by

ad(μ−1)(σ ) = D2 + X (cf. (39)) (32)

where D, X are derivations of Oσ , one of which is possibly zero.

5 The case where DDD is the ordinary differential

Let Hol(C,A0) be the Fréchet space of all holomorphic mappings of C into a Fréchet
spaceA0. Let ‖ ·‖λ be the family of seminorms defining the topology ofA0. For every
p > 0, we define the Fréchet space Ep(C,A0) by (11) replaced O by A0.

It is easily seen that for 0 < p < p′, there is a continuous embedding Ep(C,A0) ⊂
Ep′(C,A0) as Fréchet spaces (cf. [4]). Every element of Ep(C,A0) may be written as
an A0-valued function f (ζ ), where ζ is the complex coordinate function of C.

Suppose now that A0 is a Fréchet algebra with 1 over C. Denote by ∗̂ the product
defined on A0. Here, ζ is viewed naturally as a member of Ep(C,A0) as ζ → ζ ·1. It
is easy to see (Ep(C,A0), ∗̂) is an associative Fréchet algebra.

The theory of deformation can be constructed more concretely by setting D = ∂ζ .
The following are the special cases of Theorems 1 and 2:

Theorem 3 For every pair (p, p′) such that 1
p + 1

p′ ≥ 1, the product formula (24)
gives a continuous bi-linear mapping of Ep(C,A0)×Ep′(C,A0)→ Ep∨p′(C,A0).

If 0 < p ≤ 2, the product formula (24) extends to make the space (Ep(C,A0), ∗τ )
a complete non-commutative topological associative algebra over C (cf. [11]), but for
p > 2, Ep(C,A0) is only a Ep′(C,A0)-bimodule for every p′ > 0 such that 1

p + 1
p′ ≥

1. By taking the limit of the associativity of Ep′(C,A0), the associativity

f ∗τ (g∗τh) = ( f ∗τ g)∗τh (33)

holds if any two of f, g, h are in Ep′(C,A0).

Theorem 4 I τ
′

τ gives an algebra isomorphism of (Ep(C,A0), ∗τ ) onto (Ep(C,A0), ∗τ ′)
for every p ≤ 2 (cf. [12]).

It is easily seen that the following identities hold on Ep(C,A0), p ≤ 2,

I ττ ′ I
τ ′
τ = 1, I τ

′′
τ ′ I

τ ′
τ = I τ

′′
τ . (34)
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Suppose that our algebra (Oσ , ∗σ ) is linearly isomorphic to E1+(C,A0), and Fσ

is linearly isomorphic to Ep(C,A0) for some p > 2. This implies that if f, g ∈
E1+(C,A0), then the product f ∗τ g defined by (24) converges, and if one of f (ζ ), g(ζ )
is in E1+(C,A0) and another is in Ep(C,A0), then f ∗τ g converges in Ep(C,A0) .

However, the product ∗τ extends for a fairly wide class of functions. For instance,
Taylor expansion gives the following for every holomorphic mapping f of C into A0:

e2sζ∗τ f (ζ ) = e2sζ ∗̂ f (ζ + sτ) = e2sζ ∗̂esτ∂ζ f (ζ ). (35)

5.1 qqq-number functions

By a direct calculation of the intertwiner, we see that I τ
′

τ (esζ ) = e(1/4)(τ
′−τ)s2esζ .

Hence, we have I τ
′

τ (e(1/4)s
2τ esζ ) = e(1/4)s

2τ ′esζ .

We shall denote the set {e(1/4)s2τ esζ ; τ ∈ C} symbolically by esζ∗ , and we regard
esζ∗ as the exponential function in the world of ∗-product. In this context, esζ∗ is called
a q-number exponential function or a ∗-exponential function. We use also the notation
: · :τ for the τ -expression. : esζ∗ :τ is viewed as the τ -expression of esζ∗ ,

: esζ∗ :τ= e
1
4 s

2τ esζ = e
1
4 s

2τ+sζ . (36)

Using the product formula (24), we easily see the exponential law

: esζ∗ :τ ∗τ : etζ∗ :τ=: e(s+t)ζ∗ :τ , ∀ τ ∈ C. (37)

This may be written as esζ∗ ∗etζ∗ = e(s+t)ζ∗ . Moreover for every τ , : esζ∗ :τ is the solution
of d

dt g(t) = ζ∗τ g(t) with initial data g(0) = 1. esζ∗ forms a one-parameter group
of elements which are mutually intertwined. By the uniqueness of the real analytic
solution, we obtain a little more general exponential law (15) than (37). In general, we
have the formula

: e2sζ∗ ∗ h∗(ζ ) :τ= e2sζ+s
2τh(ζ + sτ), h ∈ E∞(C). (38)

In this context, we may write as follows:

: aζ + b :τ= aζ + b, : 2ζ∗2 :τ= 2ζ 2 + τ, : 2ζ∗3 :τ= 2ζ 3 + 3τζ, etc.

Putting Theorem 4 in mind, we set f∗ = {I τ0 ( f ); τ ∈ C} for every f ∈ Ep(C), p ≤ 2,
and call f∗ a q-number function or ∗-function. sin∗ ζ , cos∗ζ are defined in this way.

Moreover, any f ∈E∞(C) may be seen as the τ -expression of a q-number function
f∗. That is, one may write formally : f∗ :τ= f , although : f∗ :τ ′ may not be defined
for τ ′ �= τ .

We confirm (32) by the following:

∂τ |τ=0 e2aζ+a
2τ

∗ ∗τ e2bζ+b
2τ

∗
= a2e2aζ∗ ∗0e2bζ∗ + b2e2aζ∗ ∗0e2bζ∗ + ∂τ |τ=0 e2aζ∗ ∗τ e2bζ∗
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= a2e2aζ∗ ∗0e2bζ∗ + b2e2aζ∗ ∗0e2bζ∗ + 2abe2aζ∗ ∗0e2bζ∗
= 1

4
∂2ζ
(
e2aζ∗ ∗0e2bζ∗

)
. (39)

We are thinking that if we forget about μσ , an extremal localization (Fσ ,Oσ , ∗σ )
is a system something like

(E∞(C), E1+(C), ∗τ ),
and the original O is given by the space of parallel sections of

∐
τ (E1+(C), ∗τ ).

5.2 Star-exponential functions of quadratics and intertwiners

Consider now the exponential function e
tζ 2∗∗ where ζ 2∗ = ζ ∗ ζ . Remark that : ζ 2∗ :τ=

ζ 2+ τ
2 . Such exponential functions are extensively investigated in [9], [12], [13]. Con-

sider the differential equation

d

dt
ft = ζ 2∗ ∗ ft , f0 = 1.

Remembering the uniqueness of the real analytic solution, we set : ft :τ= g(t)eh(t)ζ
2
.

By using : ζ 2∗ :τ= ζ 2 + τ
2 and (24), the equation turns out to be a system of ordinary

differential equations for every τ ∈ C:⎧⎪⎨⎪⎩
d

dt
h(t) = (1+ τh(t))2, h(0) = 0,

d

dt
g(t) = 1

2
(τ 2h(t)+ τ)g(t), g(0) = 1.

Solving this, we have

: e
tζ 2∗∗ :τ= 1√

1− τ t
e

t
1−τ t ζ

2
, for every τ, tτ �= 1. (40)

Because of the √ in this formula, we have to treat e
tζ 2∗∗ as a two-valued element with

± ambiguity. The reason is as follows: Let τ(θ) = eiθ (τ − 1
t )+ 1

t . Then, we see that

: e
tζ 2∗∗ :τ(θ)= 1√

eiθ (1− τ t)
e

t
eiθ (1−τ t)

ζ 2

.

Tracing θ from 0 to 2π , we see that : e
tζ 2∗∗ :τ= ± : e

tζ 2∗∗ :τ . This gives indeed the sogo
in Z2.

In the above tracing, we fix the element e
tζ 2∗∗ and move the τ -expressions, but re-

versing the situation we can fix the expression and move the ∗-functions. In a sim-

ilar way, we can make a one-parameter element e
a(θ)ζ 2∗∗ such that a(0) = a(2π),

a(θ) �= −1, and : e
a(θ)ζ 2∗∗ :−1 is defined but
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: e
a(0)ζ 2∗∗ :−1= − : e

a(2π)ζ 2∗∗ :−1 .

These are not contradictions, but imply that e
tζ 2∗∗ is a two-valued function. (See also

[13].) Since the solution is real analytic where they are defined, the exponential law

e
sζ 2∗∗ ∗ etζ 2∗∗ = e

(s+t)ζ 2∗∗ holds by the uniqueness. Rewriting this we have

1√
1− τ s

e
s

1−τ s ζ
2 ∗τ 1√

1− τ t
e

t
1−τ t ζ

2 = 1√
1− τ(s + t)

e
s+t

1−τ(s+t) ζ
2
.

Setting s
1−τ s = a, t

1−τ t = b, we have

eaζ
2 ∗τ ebζ 2 = 1√

1− abτ 2
e
a+b+abτ
1−abτ2 ζ 2

. (41)

Note that the ± ambiguity of the √ can not be eliminated. Note also the following
equalities which can very easily lead to mistakes:

: e
1
τ
ζ 2∗∗ :τ= ∞, : e

1
2τ ζ

2∗∗ :τ=
√
2e

1
τ
ζ 2 .

Since ζ 2∗ and ζ commutes, we see that e
tζ 2∗ +2sζ∗ = e

tζ 2∗∗ ∗ e2sζ∗ . Hence by (40)

: e
tζ 2∗ +2sζ∗ :τ= 1√

1− tτ
es

2τ e
t

1−tτ ζ
2 ∗τ e2sζ = 1√

1− tτ
e

t
1−tτ (ζ+sτ)2es

2τ e2sζ .

Multiplying e(1/t)s
2
to both sides and setting α = s/t , we have that

: e
t (ζ+α)2∗∗ :τ= 1√

1− tτ
e

t
1−tτ (ζ+α)2 . (42)

This confirms that the formula (40) is invariant by parallel translation.
Note that functions such as eaζ

2
are not contained in E2(C), but in E2+(C). Fur-

thermore, for p>2, intertwiners are not defined on the whole space Ep(C). However

we can define the intertwiner on the space CeCζ 2 of exponential functions of quadratic
forms (cf. [12]). The formulas for intertwiners are obtained by solving the evolution
equation by setting

et∂
2
ζ (geaζ

2
) = g(t)eq(t)ζ

2
, g(0) = g ∈ C, q(0) = a ∈ C. (43)

A direct calculation gives ∂2ζ
(
g(t)eq(t)ζ

2) = g(t)
(
2q(t)+ 4q(t)2ζ 2

)
eq(t)ζ

2
. Thus, we

have ⎧⎪⎨⎪⎩
d

dt
q(t) = 4q(t)2

d

dt
g(t) = 2g(t)q(t)

q(0) = a, g(0) = g.

Hence we have q(t) = a
1−4at , g(t) = g√

1−4at . Setting t = 1
4 , we have the intertwiner

I τ0 :
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I τ0 (ge
aζ 2) = g√

1− aτ
e

a
1−aτ ζ

2 =: geaζ 2∗∗ :τ . (44)

This confirms that e
aζ 2∗∗ is a ∗-exponential function, but its τ -expression is given only

for τ �= a−1 and it is two-valued.

5.3 Infinitesimal intertwiners viewed as linear connections

Intertwiners may not be defined for f ∈ Ep(C), p > 2. However, infinitesimal inter-
twiners are defined.

Define the infinitesimal intertwiner at τ ∈ C to the direction τ ′ as follows:

d Iτ (τ
′)( f ) = d

dt

∣∣∣∣
t=0

I τ+tτ
′

τ ( f ) = 1

4
τ ′∂2ζ f,

(
(∂τ I ) f = 1

4
∂2ζ f

)
(cf. (19)).

(45)

Infinitesimal intertwiners are defined for all f ∈ E∞(C). Define the horizontal
distribution Hτ ( f ) at the point (τ ; f ) by Hτ ( f ) = {(τ ′, d Iτ (τ ′)( f )); τ ∈ C}. This is
viewed as the linear connection defined on the trivial algebra bundle

∐
τ∈C E∞(C). The

curvature of this connection vanishes obviously. Along a curve τ(t) in C, the equation
of parallel translation is given by ∂

∂t f = 1
4
d
dt τ(t)∂

2
ζ f . If t is a complex variable, this

is written by setting t = τ as

∂

∂τ
f = 1

4
∂2ζ f. (Cf.(22).) (46)

If f (t, ζ ) satisfies (46), then f (t, ζ ) is said to be parallel along the curve τ(t). Typical
parallel sections are

e2aζ+a
2τ , a(4τ + ζ 2) for an arbitrary a ∈ C. (47)

Hence, for every f ∈ Ep(C), p ≤ 2, the set f∗(ζ ) = {I τ0 ( f ); τ ∈ C} is a globally
defined parallel section. However, since one can not solve (46) for all initial elements,
one can not give local trivializations by using locally defined parallel sections.

For parallel sections : f∗ :τ , : g∗ :τ , the product : f∗ :τ ∗τ : g∗ :τ is also a parallel
section, whenever they are defined. This may be written as : f∗ ∗ g∗ :τ , on which the
family of infinitesimal intertwiners d Iτ = 1

4∂
2
ζ acts as a derivation, for ∂τ f∗ = 1

4∂
2
ζ f∗

holds for every parallel section. In other words, on the space of parallel sections, the
operator 1

4∂
2
ζ is replaced by ∂τ .

Computing the inverse I 0τ = (I τ0 )
−1, and the composition I τ

′
0 I 0τ , we easily see

I τ
′

τ (geaζ
2
) = g

1√
1− a(τ ′ − τ)

e
a

1−a(τ ′−τ)
ζ 2

.

Proposition 10 If a �= 0, then g√
(1−aτ)e

a
1−aτ ζ

2
is a two-valued parallel section defined

on Da = {τ ∈ C; 1− aτ �= 0}.
Such a monodromic phenomenon gives an example of discordance I τ

τ ′′ I
τ ′′
τ ′ I

τ ′
τ �=1

taking place on E2+(C). The sign ambiguity of this is called Z2-sogo.
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5.4 Strange phenomena

Since : es(z+ζ )
∗ :τ= e(τ/4)t

2+t (z+ζ ), we have easily the following strange fact mentioned
in the last paragraph of Section 2.3.1.

Proposition 11 If Reτ<0 and f (s) is a smooth function of exponential growth, then
for every z ∈ C, the integral

∫∞
−∞ f (s)es(z+ζ )

∗ ds converges absolutely for every fixed

ζ . Similarly, for every z ∈ C, the bilateral power series
∑∞

n=−∞ f (n)en(z+ζ )
∗ ds con-

verges absolutely.

By the continuity we see∫ ∞

−∞
e

τ
4 t

2+t (z+ζ )dt =
∫ ∞

−∞
: et (z+ζ )
∗ :τ dt =:

∫ ∞

−∞
et (z+ζ )
∗ dt :τ .

A little more careful estimate shows that
∫∞
−∞ f (s)es(z+ζ )

∗ ds ∈ E2+(C) for any τ with
Reτ<0. It is not hard to see that∫ ∞

0
es(z+ζ )
∗ ds,

∫ 0

−∞
es(z+ζ )
∗ ds ∈ E2+(C).

Hence by Theorem 3, we see the following:

Corollary 1 Both − ∫∞0 es(z+ζ )
∗ ds and

∫ 0
−∞ es(z+ζ )

∗ ds are inverses of z + ζ . Similarly

both
∑∞

0 en(z+ζ )
∗ and −∑∞

1 e−n(z+ζ )
∗ are inverses of 1− ez+ζ

∗ .

However, such a strange phenomenon seems to be necessary for supporting the
multi-valuedness of elements.

Proposition 12 eiθ
∫∞
−∞ ee

iθ s(z+ζ )
∗ ds does not depend on θ whenever Re eiθ τ<0. The

τ -expression of this integral is

: eiθ
∫ ∞

−∞
ee

iθ s(z+ζ )
∗ ds :τ= eiθ

∫ ∞

−∞
ee

τ
4 e

2iθ s2

ee
iθ s(z+ζ )ds.

Proof. Since the integral converges absolutely, the differentiation by θ gives

ieiθ
∫ ∞

−∞
ee

iθ s(z+ζ )
∗ ds + eiθ

∫ ∞

−∞
ieiθ s(z + ζ ) ∗ eeiθ s(z+ζ )

∗ ds.

The integration by parts gives 0. $%

Thus, replacing τ by e−2iθ τ , we see that Ree−2iθ τe2iθ = Re τ<0, and therefore

: eiθ
∫ ∞

−∞
ee

iθ s(z+ζ )
∗ ds :e−2iθ τ=

∫ ∞

−∞
e−

1
4 |τ |s2ee

iθ s(z+ζ )d(eiθ s)

exists for any τ �= 0. Tracing θ = 0 to π , we see that the parallel transform of :∫∞
−∞ es(z+ζ )

∗ ds :τ along the closed curve eiθ τ , 0 ≤ θ ≤ 2π of expressions gives

− :
∫∞
−∞ es(z+ζ )

∗ ds :τ at θ = 2π .
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This implies that
∫∞
−∞ es(z+ζ )

∗ ds should be treated as a two-valued element. An-
other concrete example is seen in [12], [13].

By a similar proof, we can show also the following:

Proposition 13 There is a closed curve τ(t), 0 ≤ t ≤ 2π such that the par-
allel translation of : −∫∞0 es(z+ζ )

∗ ds :τ(0) given in Corollary 1 along τ(t) gives

:
∫ 0
−∞ es(z+ζ )

∗ ds :τ(0) at t = 2π .

Note also that Propositions 12, 13 hold for
∫∞
−∞ f (s)es(z+ζ )

∗ ds when f (s) is an
entire function of exponential order, (precisely f ∈ E1+(C)).

However, it is seen in Section 5.5 that two inverses
∑∞

0 en(z+ζ )
∗ and−∑∞

1 e−n(z+ζ )
∗

of 1− ez+ζ
∗ can not be connected by a parallel translation.

5.5 Theta functions

We show in this subsection that such a strange phenomena relates to elliptic theta
functions of Jacobi. Consider the following bilateral power series:

θ1(ζ, ∗) = 1

i

∞∑
n=−∞

(−1)ne(2n+1)iζ∗ , θ2(ζ, ∗) =
∞∑

n=−∞
e(2n+1)iζ∗ ,

θ3(ζ, ∗) =
∞∑

n=−∞
e2niζ∗ , θ4(ζ, ∗) =

∞∑
n=−∞

(−1)ne2niζ∗ .

(48)

Suppose Re τ>0. Then, we see that τ -expressions θi (ζ, τ ) =: θ1(ζ, ∗) :τ converge
absolutely for every fixed ζ , and these are nothing but Jacobi’s elliptic theta functions
(cf. [2]).

For instance, the τ -expression θ3(ζ, τ ) of θ3(ζ, ∗) is given as follows:

θ3(ζ, τ ) =: θ3(ζ, ∗) :τ=
∑
n∈Z

e−n
2τ+2niζ =

∑
n∈Z

qn
2
e2niζ , q = e−τ . (49)

The τ -expression of the trivial identity e2niζ∗ ∗ θ3(ζ, ∗) = θ3(ζ, ∗) gives the formula of
quasi-periodicity of θ3(ζ, τ ). (Use (35) in order to compute e−n2τ+2niζ∗τ θ3(ζ, τ ).)

Although θ3(ζ, 0) diverges,
∑

n e
2niζ may be regarded as the delta function δ0(ζ )

on S1. Hence, θ3(ζ, ∗) may be regarded as a ∗-delta function on S1. The parameter τ
in the theory of Jacobi’s theta functions means quasi-period other than 2π , but here τ

is only a deformation parameter of expressions of ∗-delta function on S1. This might
imply that θi (ζ, ∗) is the genuine physical existence of 2π -periodic q-number func-
tions.

The important feature of theta functions θi (ζ, ∗) is the fact that the domain of τ -
expression is restricted to the right half-plane Re τ>0. The famous Hadamard’s gap
theorem shows that |q| = 1 in the expression (49) is the natural boundary with respect
to the holomorphic function of q. Consequently, θi (ζ, ∗) are single valued q-number
functions. There is no monodromic phenomenon such as Proposition 13.
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Corollary 2 There is no closed curve of τ -expression along which two inverses∑∞
n=0 e

2niζ
∗ and

∑1
−∞ e2niζ∗ of 1− e2iζ∗ are connected by a parallel translation.

Proof. Note that

:
∞∑
n=0

e2niζ∗ :τ=
∞∑
n=0

e−n
2τ e2niζ ,

and

:
1∑

n=−∞
e2niζ∗ :τ=

∞∑
n=1

e−n
2τ e2ni(−ζ ).

Consider a curve such as
∑∞

n=0 ee
2iθn2τ e2nie

iθ ζ . To ensure the convergence, we have
to keep the inequality Re e2iθ τ>0. Hence one can not form a closed curve to obtain
e2iθ = 1, eiθ = −1. $%

In general, we define as follows:

Definition 12 For a pair (a, b) of complex numbers, a ∗-theta function of type (a, b)
is an element f∗ ∈ E∞(C) satisfying

eaζ∗ ∗ f∗(ζ ) = eα f∗(ζ ), e
b∂ζ∗ f∗(ζ ) = eβ f∗(ζ ), for some α, β ∈ C.

By +(a, b) we denote the totality of ∗-theta functions of type (a, b).

The second equality gives the quasi-periodicity f∗(ζ + b) = eβ f∗(ζ ) and the first
equality is rewritten as ea(ζ−(α/a))

∗ ∗ f∗(ζ ) = f∗(ζ ). This gives the quasi-periodicity
in the τ -expression as follows: eaζ+(a2/4)τ−α f (ζ + a

2 τ) = f (ζ ). Setting g∗(ζ ) =
e−(β/b)ζ
∗ f∗(ζ ), we have g∗(ζ + b) = g(ζ ) and eaζ∗ ∗ g∗(ζ ) = eαg∗(ζ ), and this is
eaζ+(1/4)a2τ g(ζ + 1

2aτ) = eαg(ζ ).

Lemma 5 +(a, b) �= {0}, if and only if ab ∈ 2π iZ.

Proof. Since the product formula is translation invariant, we see ea(ζ+b)∗ ∗ g∗(ζ +b) =
eαg∗(ζ + b). Hence eabeaζ∗ ∗ g(ζ ) = eαg(ζ ). It follows that eab = 1. $%

6 Special localizations

In this section we treat the case where a localization κ = (Fκ ,Oκ , ∗κ , μκ) has certain
nice properties. Roughly speaking, localizations are classified by the property of μκ :

• There exists ζ ∈ Oκ such that [μ−1κ , ζ ] = i .
• There exists X ∈ Oκ such that [μ−1κ , X ] = X .
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6.1 Localizations where the canonical conjugate of μ−1κ exists

First, we take the case where there is a special element ζ∈Oκ such that [ζ, μκ ]∗ = iμ2
κ .

In view of Proposition 1, this may be written as [μ−1κ , ζ ]∗ = i .
Let Oμ,ζ = { f ∈ Oκ ; [μκ, f ]∗ = [ζ, f ]∗ = 0}, and Fμ,ζ = { f ∈ Fκ ; [μκ, f ]∗ =

[ζ, f ]∗ = 0}. We denote the restricted product ∗κ simply by ∗̂. Here we assume the
following:

Option 2 Set u = μ−1κ , v = ζ for simplicity. (Oκ , ∗κ) is given by a certain algebra
of Oμ,ζ -valued ordinary (but very restricted in the variable u) C∞-functions f (u, v)
defined on R2 with the following product formula, called theMoyal product formula:

f (u, v) ∗κ g(u, v) = f (u, v) exp
{κ
2
(
←−
∂u ∗̂ −→∂v −←−∂v ∗̂ −→∂u )

}
g(u, v), (50)

where ∗̂ is the product restricted on Oμ,ζ and the arrow indicates to which side the
derivation operators act. Similarly, Fκ is given by a certain space of Fμ,ζ -valued ordi-
nary functions f (u, v). Recall again that u may not be a member of Oκ .

Remark The product formula (50) is not unique for obtaining the algebra (Oκ , ∗κ).
Just as in the previous section, we have seen in [12] that these can be deformed in such
a way that the algebra structure does not change, but the expression changes.

The product f (u, v) ∗κ g(u, v) is well-defined at least if one of f, g is an Oμ,ζ -
valued polynomial, and the associativity ( f ∗κ g) ∗κ h = f ∗κ (g ∗κ h) holds if any
two of f, g, h are Oμ,ζ -valued polynomials.

One can define the ∗-exponential function eau+ibv∗ by solving the differential equa-
tion d

dt ft = (au + ibv) ∗κ ft . However, since the product formula (50) gives

(au + ibv) ∗κ g(au + ibv) = (au + ibv)g(au + ibv),

the uniqueness of a real analytic solution, and (50) give

eau+ibv∗ = eau+ibv, eau+ibv∗ ∗κ ea
′u+ib′v
∗ = e

i
2 (ab

′−ba′)e(a+a
′)u+i(b+b′)v

∗ . (51)

The following formula can be directly proved from (50)

e−2isu−2tv ∗κ f (u, v) = e−2isu−2tv f (u + t, v + s)

= f (u, v) ∗κ e2isu+2tv, s, t ∈ R (52)

whenever f (u, v) is real analytic. In general, we extend the ∗κ -product by (52).
Let f̂ (u, t) = ∫

R
d-s f (u, s)e−i ts be the partial Fourier transform. f (u, v) is recov-

ered by

f (u, v) =
∫

R

d-t f̂ (u, t)eitv =
∫

R

d-t f̂ (u + t

2
, t) ∗κ eitv. (53)

Now we suppose an element %00 = 2e2iuv , called a vacuum, is contained in Fκ .
Consider a closed left-ideal { f ∈ Oκ ; f ∗ %00 = 0} of Oκ . By the product formula
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(50) we easily see that v ∗κ %00 = 0. Moreover, using the uniqueness of real analytic
solutions, we see eitv ∗κ %00 = %00, and

eitv ∗κ φ(u) ∗κ %00 = φ(u + t

2
) ∗κ %00,

and

f (u, v) ∗κ %00 =
∫

R

d-t f̂ (u − t

2
, t) ∗κ %00 = f (u, 0) ∗κ %00. (54)

Using (54) to f (u, v) ∗κ φ(u) ∗κ %00, we have

f (u, v) ∗κ φ(u) ∗κ %00 =
∫

R

d-t f̂ (u + t

2
, t) ∗κ eitv ∗κ φ(u) ∗κ %00

=
∫

R

d-t f̂ (u + t

2
, t)φ(u + t

2
) ∗κ %00.

Hence we have the formula for the regular representation φ(u) ∗κ %00 → f (u, v) ∗κ
φ(u) ∗κ %00 in the form of pseudo differential operators (�DO):

f (u, v) ∗κ φ(u) ∗κ %00 =
∫

R

d-t
∫

R

d-s f (u + t

2
, s)e−i tsφ(u + t

2
) ∗κ %00.

6.2 Localization to the periodic phenomena

One can consider a localization where only periodical phenomena are concerned. In
the physical phenomena, the periodicity always means the time periodicity of state
functions. As in the previous subsection, we assume the following:

Option 3 μ−1κ ∈Fκ , and there are elements einζ∗ ∈Oκ such that [μ−1κ , einζ∗ ] = −neinζ∗
for every n∈Z, that is, μ−1κ ∗κ einζ∗ = einζ∗ ∗κ μ−1κ − neinζ∗ .

Set w = μ−1κ ∗κ eiζ∗ , and w = e−iζ∗ so that [w,w] = 1, μ−1κ = w ∗κ w . Note that
w is only a member of Fκ , while w−1, w ∈ Oκ .

We assume now there is an element %00∈Fκ such that μκ ∗κ %00 = %00, and for
every a∈Oκ , the identity (a∗κ μ−1κ )∗κ%00 = a∗κ%00 holds. (Note that% = e2i(u−1)v
in the notation of (50) satisfies u∗κ% = % .) If the associativity holds, then the identity
(a ∗κ μ−1κ ) ∗κ %00 = a ∗κ %00 is trivial. But let us first note the following:

Lemma 6 %00 can not be in Oκ .

Proof. Suppose an element�∈Oκ satisfies μ−1κ ∗κ � = �. Then we have w ∗κ � = 0
by using μ−1κ ∗κ eiζ ∗κ � = [μ−1κ , eiζ ] ∗κ � + eiζ ∗κ �. Since w−1, � ∈ Oκ , the
associativity gives

� = (w−1 ∗κ w) ∗κ � = w−1 ∗κ (w ∗κ �) = 0.

$%



246 H. Omori

It is easy to see the following:

w ∗κ %00 = 0, (w ∗κ w) ∗κ %00 = %00, w ∗κ %00 = w−1 ∗κ %00.

Moreover, we have w−1∗κ(w ∗κ %00) = 0, but this does not imply %00 = 0, because
of the break-down of the associativity.

Define a closed left ideal of Oκ by {a∈O; a ∗κ %00 = 0}. Then, w,μκ , μ−1κ

disappear in the factor space � = Oκ ∗κ %00. Since by the assumption, we have

(μ−1κ ∗κ e−inζ∗ ) ∗κ %00 = [μ−1κ , e−inζ∗ ] ∗κ %00 + (e−inζ∗ ∗ μ−1κ ) ∗κ %00

= (n + 1)e−inζ∗ ∗κ %00,

(w)n ∗κ %00 are eigenstate functions of μ−1κ .
By these observations, it is natural to think that � consists of Oμ,ζ -valued holo-

morphic functions of w on C− {0}. Since w = e−iζ∗ , this implies every state function
is not only 2π-periodic as a function of ζ but also a holomorphic function of w .

Note that w ∗κ φ(w) ∗κ %00 = φ′(w) ∗κ %00. Hence, w , w are called respectively
the creation, and the annihilation operators.

Now, in addition to the assumption that φ(w) is holomorphic on C − {0}, we
consider the following scale-transformation property for state functions: For some a,
Re a > 0,

φ(aw) ∗κ %00 = (αw + β)φ(w) ∗κ %00. (55)

If α = 0, then β = a� ∈ Z and φ(w) = c(w)�.
To treat the case α �=0, we first take note of the formula

e
sμ−1κ∗ ∗κ φ(w) ∗κ %00 = Ad(esμ

−1
κ )(φ(w)) ∗κ es ∗κ %00.

Since Ad(esnμ
−1
κ )(φ(eiζ )) = φ(ei(ζ+si)), the equality we have to consider is

φ(aw)a−1 ∗κ %00 = (αw + β)φ(w) ∗κ %00, a = e−s . (56)

Rewriting this as a function of ζ by setting φ(eiζ ) = ψ(ζ ), we have

ψ(ζ + si) ∗κ %00 = es(αeiζ + β)ψ(ζ ) ∗κ %00.

Thus, such a scale-translation property of state functions gives theta functions.

6.3 Localization where no canonical conjugate ofμμμ−1κκκ exists

In this subsection we fix a localization κ = (Fκ ,Oκ , μκ) of (O, μ), and denote this by
κ = (F,O, μ) omitting the subscript κ . Let #κ be the set of all extremal localizations
of κ .

Recall the definition of characteristic vector field (5). If its orbit behaves chaot-
ically, it seems impossible to find an element ζ such that [μ−1, ζ ] = i . Classical
statistical mechanics is based on such a situation.



Toward Geometric Quantum Theory 247

We assume here the convergence and the nontriviality of

lim
k→∞

μk = %00 ∈
⋂
k

μk ∗O.

Hence we have μ−1∗%00 = %00 and by the uniqueness of the real analytic solution of
d
dt ft = iμ−1 ∗ ft , we have e

itμ−1
∗ ∗%00 = eit%00. In particular e

2π iμ−1
∗ ∗%00 = %00.

Thus, Lemma 6 shows that there is no ζ∈O such that eitζ∗ ∈O and [μ−1, ζ ] = i .

However, we suppose f → Ad(eitμ
−1

∗ )( f ) is defined for all t ∈ R and a continuous
linear mapping of F into itself for each t , and it gives a one-parameter automorphism
group of (O, ∗).

Proposition 14 Under the assumption as above, if limn→∞ 1
n

∑n
0 Ad(e

2π ikμ−1
∗ )(φ)

converges in the weak topology to an element X ∈ F, then the identityAd(e2π iμ
−1

∗ )(X)

= X holds.

Proof. Let F∗ be the dual space of F regarded as an O-bimodule. We show for every

ψ ∈ F∗ that 〈ψ |Ad(e2π iμ−1∗ )(X)〉 = 〈ψ |X〉. Since the continuity of Ad(eitμ
−1

∗ ) is
assumed, we compute as follows:

〈
ψ |Ad

(
e2π iμ

−1
∗

)
(X)

〉
=
〈
Ad∗

(
e2π iμ

−1
∗

)
(ψ)

∣∣∣∣ lim
n→∞

1

n

n∑
0

Ad
(
e2πkiμ

−1
∗

)
(φ)

〉

= lim
n→∞

1

n

〈
Ad∗

(
e2π iμ

−1
∗

)
(ψ)

∣∣∣∣ n∑
0

Ad
(
e2π ikμ

−1
∗

)
(φ)

〉

= lim
n→∞

1

n

〈
ψ

∣∣∣∣ n+1∑
1

Ad
(
e2π ikμ

−1
∗

)
(φ)

〉

= lim
n→∞

〈
ψ

∣∣∣∣1n
n∑
0

Ad
(
e2π ikμ

−1
∗

)
(φ)

〉
.

$%
Using this, we have a lot of elements X ∈ F satisfying e2π iμ

−1
∗ ∗ (X ∗ %00) =

X ∗%00.

Since %00 ∈ O and e2π iμ
−1

∗ ∗%00 = %00, the continuity of ∗%00 and the unique-

ness of real analytic solutions give X ∗%00 = limn→∞ 1
n

∑n
0 e

2π ikμ−1
∗ ∗φ∗%00.Hence

we have

e2π iμ
−1

∗ ∗ (X ∗%00) = lim
n→∞

1

n

n+1∑
1

e2π ikμ
−1

∗ ∗ φ ∗%00 = X ∗%00.
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6.4 Relativistic situation

Suppose the derivation D is given by ∂ζ . In this subsection, we show the case
ad(μ−1κ ) = ∂2ζ might have some relativistic explanation.

We assume that a suitably localized algebra Oκ is given by a generator system

u1, . . . , um, v1, . . . , vm

together with the fundamental relation [ui , v j ] = i h̄δi j , [ui , u j ] = [vi , v j ] = 0.
Suppose now there is an element %00 ∈ Fκ such that vi∗κ%00 = 0.

Consider the case μ−1 =∑
i j g

i j (uuu)∗ viv j +V (uuu). The vacuum representation of

∗-exponential function et (1/i h̄)μ−1∗ is obtained by setting ψ ∗%00 = et (1/i h̄)μ
−1

∗ ∗ ψ0 ∗
%00 and solving the evolution equation

∂tψ ∗%00 = 1

i h̄
μ−1 ∗ ψ ∗%00.

Since μ−1 ∗ %00 = V ∗ %00, this turns out to be the (nonrelativistic) Schrödinger
equation:

∂tψ(t,uuu) ∗%00 =
(
−i h̄

∑
i j

gi j (uuu)∂i∂ j + 1

i h̄
V (uuu)

)
ψ(t,uuu) ∗%00.

Set τ = −i h̄t and suppose that the time parameter of Schrödinger’s equation is the
imaginary part of the deformation parameter τ .

In the spirit of q-number functions, a deformation is only a change of expression
of the “same” object. Intuitively, it should be permitted to think that the time evolution
is something like a deformation (24).

Suppose now ψ(t,uuu) is always given in the form f (τ, 2ζ,uuu) of parallel section
with respect to τ, ζ . That is, we assume that f always satisfies

∂τ f (τ, 2ζ,uuu) = ∂2ζ f (τ, 2ζ,uuu), (cf.(46)).

Thus, replacing ∂τ f by ∂2ζ f , we have a relativistic equation

∂2ζ f (τ, 2ζ,uuu) ∗%00 =
(∑

i j

gi j (uuu)∂i∂ j − 1

h̄2
V (uuu)

)
f (τ, 2ζ,uuu) ∗%00, (57)

if we regard ζ as the (universal) time.
At this stage the vacuum %00 can be eliminated from both left- and right-hand

sides. If we set : f∗(2ζ,uuu) :τ= f (τ, 2ζ,uuu), then we have

∂2ζ f∗(2ζ,uuu) =
(∑

i j

gi j (uuu)∂i∂ j − 1

h̄2
V (uuu)

)
f∗(2ζ,uuu).

Since τ is a deformation parameter, variables involved in the equation are only ζ and
the variables contained inO. Hence, if gi j or V in the nonrelativistic Schrödinger equa-
tion contain the variable t , then these must contain also the variable ζ in the beginning
so that gi j (τ, ζ,uuu) and V (τ, ζ,uuu) are parallel sections with respect to τ .
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6.4.1 Another application

In the last part, we note that the notion of deformation can be used as a modifier,
a technique that makes everything smooth. Though it is not directly relevant to the
relativity, such technique will be useful especially in the relativity.

Consider the case μ−1κ = p(〈aaa,vvv〉) where p(z) is a polynomial of order n and
〈aaa,vvv〉 =∑m

i=1 aivi . The equation we want to solve is

∂2t ψ∗(t,uuu) ∗%00 = p(〈aaa,vvv〉) ∗ ψ∗(t,uuu) ∗%00. (58)

Choose a vector bbb so that [〈aaa,vvv〉, 〈bbb,uuu〉]∗ = i and set

ψ(t, 〈bbb,uuu〉) =
∫

g(t, s)eis〈bbb,uuu〉∗ d-s

by the partial Fourier transform.
Here we set ζ = 〈bbb,uuu〉 and consider the τ -expression of eisζ∗ as in Section 5.

Namely, we set

: eis〈bbb,uuu〉∗ :τ= e−
1
4 s

2τ eis〈bbb,uuu〉.

Since e−(1/4)s2τ is rapidly decreasing whenever Re τ>0, this makes calculations very
smooth. Thus, we have only to solve

∂2t g(t, s) = p(i∂s)g(t, s).

In order to solve this, we set g(t, s) = ∫
ρ(t, ξ)eisξd-ξ and consider the equation

∂2t ρ(t, ξ) = p(iξ)ρ(t, ξ), ρ(0, ξ) = 1, (59)

for every fixed ξ . The solution is given by ρ(t, ξ) = et
√
p(iξ), after fixing a branch of

the 2-valued function
√
p(iξ). Hence, in the form of τ -expression such that Re τ>0, a

solution of (58) is given by

e
tp( 1i 〈bbb,uuu〉)

1/2
∗

∗ (P) =
∫∫

P
etp(iξ)

1/2
eisξ e

s 1i 〈bbb,uuu〉∗ d-sd-ξ, (60)

where the path P of integration by ξ is a curve from −∞ to ∞ chosen in such a
way that this does not hit the branching points of

√
p(iξ). However, because of the

2-valued character of
√
p(iξ), we have a lot of such paths of integration. Fixing any

one of them, we easily see that the τ -expression is

: e
tp( 1i 〈bbb,uuu〉)

1/2
∗

∗ (P) :τ=
∫∫

P
etp(iξ)

1/2
eisξ e−

1
4 s

2τ es
1
i 〈bbb,uuu〉d-sd-ξ.

Since the τ -expression : eis〈bbb,uuu〉∗ :τ with Re τ>0 is rapidly decreasing with respect to
s, so is its Fourier transform
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eisξ eis〈bbb,uuu〉∗ d-s. (61)

Thus, if etp(iξ)
1/2

is a temperate distribution, (60) is well-defined. Recall that Fourier
transform for temperate distributions is well-defined.

Proposition 15 If p(z) = a0zn + a1zn−1 + · · · + an is a polynomial such that a0 > 0,
then etp(iξ)

1/2
is a temperate distribution.

Proof. On a domain |z|<2D, ep(z)
1/2

is bounded together with its derivatives. Set
p(z) = zn(a0 + a1z−1 + · · · + anz−n). q(z) = a0 + a1z−1 + · · · + anz−n is bounded
on a domain |z| > D. Hence eq(z)

1/2
is bounded together with its derivatives. Taking

a1/20 as a real number and setting p(iξ)1/2 = ia1/20 ξq(iξ)1/2, we see that ep(iξ)
1/2

is a
temperate distribution. $%

Let ξ = C(η) be one of such paths P . Then,
√
p(iC(η) is C∞ on C . The value

of the integral does not change by any slight move of C in a compact region without
hitting the branching point. However, if C crosses a branching point, this causes the
drastic change of path of integration by switching branches.

Moreover, we have another problem that the Fourier transform (61) has the sign
ambiguity by the same reasoning as in Propositions 12, 13, since eisξ is an entire
function of exponential order with respect to s. Thus, we see the following important
result, which shows we have to treat many-valued functions:

Proposition 16 The solution given etp(i〈bbb,uuu〉)
1/2
∗∗ given by (60) is defined as a 2-valued

parallel section with respect to the deformation parameter τ .

We remark now that even for multi-valued functions, one can ask whether it is
holomorphic on a domain which does not contain a branching point.

Now regard the constant term an of p(z) in Proposition 15 as a variable and set

p(z) = p0(z) + w. Though etp(i〈bbb,uuu〉)
1/2
∗∗ is a 2-valued parallel section, we have the

following:

Proposition 17 et (w+p0((1/i h̄)〈bbb,uuu〉))1/2∗∗ can be defined so that it is holomorphic with
respect to w on a neighborhood of∞.
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Quantizations, Deformations, and Symmetries, Vol II, Math. Phys. Studies 22, Kluwer Aca-
demic Press, 2000, 233–246.

14. H. Omori, One must break symmetry in order to keep associativity, Banach Center Publ.
vol.55, 2002, 153–163.

15. H. Omori, Beyond point set topology, Informal preprint.
16. H. Omori, Infinite dimensional Lie groups, AMS Translation Monograph 158, 1997.
17. H. Omori,Noncommutative world, and its geometrical picture, A.M.S translation of Sugaku

expositions, 2000.
18. H. Omori, Physics in mathematics, (in Japanese) Tokyo Univ. Publications, 2004.
19. H. Omori, A note on deformation calculus (A point of pointless calculus), in preparation.
20. H. Omori, T.Kobayashi, Singular star-exponential functions, SUT Jour, Mathematics 37,

no.2, (2001), 137–152.
21. H. Omori, Y. Maeda, and A. Yoshioka, Weyl manifolds and deformation quantization,

Advances in Math., Vol 85, No 2, pp. 224–255, 1991.
22. H. Omori, Y. Maeda, and A. Yoshioka. Global calculus on Weyl manifolds, Japanese J.

Math. vol 17, pp. 57–82, 1991.
23. H. Omori, Y. Maeda, N. Miyazaki and A. Yoshioka, Strange phenomena related to ordering

problems in quantizations, Jour. Lie Theory vol. 13, no 2, 481–510, 2003.
24. H. Omori, Y. Maeda, N. Miyazaki and A. Yoshioka, Star exponential functions as two-

valued elements, Progress in Math. 232, Birkhäuser, 2004, 483–492.
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Summary. We describe irreducible representations, coherent states and star-products for alge-
bras of integrals of motions (symmetries) of two-dimensional resonance oscillators. We demon-
strate how the quantum geometry (quantum Kähler form, metric, quantum Ricci form, quantum
reproducing measure) arises in this problem. We specifically study the distinction between the
isotropic resonance 1 : 1 and the general l : m resonance for arbitrary coprime l,m. A quantum
gyron is a dynamical system in the resonance algebra. We derive its Hamiltonian in irreducible
representations and calculate the semiclassical asymptotics of the gyron spectrum via the quan-
tum geometrical objects.

AMS Subject Classification: 81Rxx, 81Sxx, 53Dxx, 53Cxx.

Key words: Resonance oscillator, averaging, polynomial Poisson brackets, non-Lie commu-
tation relations, irreducible representations, coherent transform, quantum geometry, symplectic
geometry.

1 Introduction

For complicated dynamical systems, it is important to be able to abstract from studying
concrete motions or states and to observe surrounding structures, like spaces, algebras,
etc., which carry essential properties of the variety of motions in the whole.

For quantum (wave) systems, the standard accompanying mathematical structures
are algebras of “observables,” i.e., functions on phase spaces, and representations of
these algebras in Hilbert vector spaces of “states.” This is the starting viewpoint for the
mathematical quantization theory [1]–[10]. The more complicated systems are studied
the more complicated algebras and phase spaces (symplectic manifolds) have to be
used. Note that for general symplectic and even Kählerian manifolds the quantization
problem is still unsolved.

∗This work was partially supported by RFBR (grant 05-01-00918-a).
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It was demonstrated in [11, 12] that for general symplectic manifolds it is possible
to approximate the symplectic potential by its quadratic part (the oscillator!), then to
use this quadratic part in order to define the standard Groenewold–Moyal [13, 14]
product on the tangent spaces, and to construct a formal ∗-product on the original
manifold by a perturbation theory. Such oscillator-generated quantum manifolds were
called the “Weyl manifolds” in [11].

In quantum and wave mechanics, one often meets a situation similar in a certain
sense: the dynamics of a system is, in general, chaotic, but there are some exclusive
invariant submanifolds (for instance, equilibrium points) in the phase space around
which the dynamics is regular and can be approximated by the oscillator motion in
directions transversal to the submanifold. Thus the given system contains inside a built-
in harmonic oscillator plus a certain anharmonic part near the equilibrium:

1

2

∑
(p2j + ω2

j q
2
j )+ cubic+ quartic+ · · · . (1.1)

If the frequencies ω j of the harmonic part are incommensurable (not in a reso-
nance), then in a small neighborhood of the submanifold the anharmonic part just
slightly perturbs these frequencies, and the whole motion is performed along the per-
turbed Liouville tori. This is the well-investigated situation both on the classical and
quantum levels [15]–[21].

If the frequencies ω j are in a resonance then all standard approaches do not work
and the picture occurs to be much more interesting from the viewpoint of quantum
geometry. Here we will follow the works [22]–[25].

First of all, in the resonance case the Liouville tori are collapsed (to a smaller
dimension), and the anharmonic part generates a nontrivial “averaged” motion in the
new phase spaces: in the symplectic leaf� of the commutant Fω of the harmonic part.
The new phase spaces represent certain hidden dynamics committed to the resonance.
This dynamics describes a precession of the parameters of the resonance harmonic
motion under the action of the anharmonic part. We call this dynamical system a gyron
(from the Greek word “gyro,” i.e., “rotating”).

In the simplest case of the isotropic 1:1 resonance for two degrees of freedom the
gyron system is just the Euler top system from the theory of rigid body rotations, which
is related to the linear Poisson brackets. For the general l : m resonance, the gyron is
described by a nonlinear Poisson brackets polynomial of degree l + m − 1, see in
[24, 25].

Of course, in the quantum case the resonance function algebra Fω has to be re-
placed by a resonance operator algebra Fω which consists of operators commuting
with the quantum oscillator 1

2

∑
j ( p̂

2
j + ω2

j q
2
j ), where p̂ j = −i h̄∂/∂q j . This algebra

is described by nonlinear commutation relations of polynomial type, see in [24, 25]. It
is the dynamic algebra for quantum gyrons.

Note that there is a variety of important physical models containing inside the reso-
nance Hamiltonians like (1.1). The quantum gyrons in these models can be considered
as an analog of known quasiparticles similar to polarons, rotons, excitons, etc.1 As the

1Attention to this was paid by V. Maslov.
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simplest example, we mention the models of nano-physics (quantum dots, artificial
atoms, quantum wires, see examples in [24]). Another example is fiber waveguides in
optics; they are described by the Hamiltonian

p2 − n2(q), q, p ∈ R3, (1.2)

where n(q) is the refraction index having maximum value along the waveguide axis,
that is, along an arbitrary smooth curve in R3. The quadratic part of n2(q) in directions
transversal to this curve is assumed to have commensurable frequencies in a certain
resonance proportion ω1 : ω2 = l : m, where l,m are coprime integers. The quantum
gyron in this model describes certain hidden “polarization” of the light beam along the
given curve in the optical medium, see in [24]. The propagation of such optical gyrons
and their spectrum depend on the anharmonic part of the refraction index, and so one
can control the properties of the gyron waves by changing the geometry of the curve
just by bending the optical fiber.

The aim of the given paper is to describe the quantum geometry of the gyron phase
spaces in the case of the l : m resonance.

If l = m = 1, then these phase spaces � are just homogeneous spheres S2, that
is, the coadjoint su(2) orbits. The quantum geometry in this case coincides with the
classical symplectic (Kählerian) geometry generated by linear Lie–Poisson brackets.

If at least one of the integers l or m exceeds 1, then, as we will see below, the quan-
tum geometry occurs to be unusual. The quantum phase spaces are still diffeomorphic
to S2, but the classical symplectic form is singular on them. The correct symplectic
(Kählerian) form and the reproducing measure of the quantum phase space are chosen
from the nontrivial condition that the operators of irreducible representations of the
quantum resonance algebras Fω = Fl,m have to be differential operators, not pseudod-
ifferential (the maximal order of these operators is max(l,m)).

Thus the geometry [26, 27] determining the Wick–Klauder–Berezin ∗-product on
the gyron phase space has a purely quantum behavior and the ∗-product itself cannot
be obtained by a formal deformation technique from the classical data.

Note that here we mean the phase spaces corresponding either to low energy levels
of the oscillator (i.e., to the nano-zone near its equilibrium point, in the terminology
of [24]) or to excited levels (i.e., to the micro-zone). Thus one can talk about quantum
nano- or micro-geometry generated by the l : m frequency resonance.

The distinction between the specific case l = m = 1 and the generic case
max(l,m) > 1 is the distinction between algebras with linear and nonlinear commuta-
tion relations. We see that the nonlinearity of relations in the algebra Fl,m (the absence
of a Lie group of symmetries) for the resonance oscillator implies the quantum charac-
ter of the phase spaces in nano- and micro-zones near the ground state. The motion in
these spaces is the gyron dynamics. In the nano-zone, this dynamics is purely quantum
and does not have a classical analog at all. In the micro-zone, the gyron dynamics and
the gyron spectrum can be described by semiclassical methods [23, 24] if one at first
fixes the quantum geometry of the gyron phase space.

Applying this theory, for instance, to optical gyrons, we come to the conclusion
that the light beam propagating near the axis of a resonance fiber waveguide cannot
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be described by purely geometric optics and carry essentially quantum properties. This
opens an opportunity to apply such simple optical devices, for example, in constructing
elements of quantum computers.

Also note that the l : m resonance oscillators, which we discuss here, can be pre-
sented in the form

l̂ + m̂, (1.3)

where l̂ and m̂ are mutually commutating action operators with spectra l · Z+ and
m · Z+ in the Hilbert space L = L2(R × R). The operators l̂ and m̂ can be con-
sidered as “quantum integer numbers” and their sum as a quantum sum of integers.
Then the representation theory of the algebra Fl,m and the corresponding quantum ge-
ometry could be considered as a brick for construction of something like “quantum
arithmetics.”

2 Commutation relations and Poisson brackets for lll : mmm resonance

The Hamiltonian of the resonance oscillator (1.3) can be written as

E = lb∗1b1 + mb∗2b2. (2.1)

Here l,m are coprime integers, b1,b2 are annihilation operators in the Hilbert space
L, and b∗1,b∗2 are the conjugate creation operators. The commutation relations are

[b1,b∗1] = [b2,b∗2] = h̄I,

all other commutators are zero.
In the algebra generated by b1, b2, b∗1, b

∗
2, let us consider the commutant of the

element (2.1). This commutant is a nontrivial, noncommutative subalgebra. We call it
a resonance algebra. It is related to quantum gyrons.

Note that the resonance algebra is generated by the following four elements:

A1 = b∗1b1, A2 = b∗2b2, A+ = (b∗2)
lbm1 , A− = A∗+. (2.2)

Let us define the polynomials

ρ(A1, A2)
def=

m∏
j=1

(A1 + j h̄) ·
l∏

s=1
(A2 − sh̄ + h̄), (2.3)

-(A1, A2)
def= l A1 + mA2.

Lemma 2.1 Elements (2.2) obey the commutation relations

[A1,A2] = 0,

[A1,A±] = ∓h̄mA±, [A2,A±] = ±h̄lA±, (2.4)

[A−,A+] = ρ(A1 − h̄m,A2 + h̄l)− ρ(A1,A2).
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Lemma 2.2 In the abstract algebra Fl,m with relations (2.4) there are two Casimir
elements

κ = -(A1,A2), C = A+A− − ρ(A1,A2).

In realization (2.2) the Casimir element C is identically zero, and the Casimir element
κ coincides with the oscillator Hamiltonian E (2.1).

Note that the operatorsA1,A2 (2.2) are self-adjoint, butA+ is not. Let us introduce
the self-adjoint operators A3,A4 by means of the equalities

A± = A3 ∓ iA4.

Then commutation relations (2.4) read

[A1,A2] = 0, [A1,A3] = i h̄mA4, [A1,A4] = −i h̄mA3,

[A2,A3] = −i h̄lA4, [A2,A4] = i h̄lA3, (2.4a)

[A3,A4] = i

2

(
ρ(A1 − h̄m,A2 + h̄l)− ρ(A1,A2)

)
.

Let us denote by A j the classical variable (a coordinate onR4) corresponding to the
quantum operator A j . Then the relations (2.4a) are reduced to the following Poisson
brackets on R4:

{A1, A2} = 0,

{A1, A3} = −mA4, {A1, A4} = mA3, (2.5)

{A2, A3} = l A4, {A2, A4} = −l A3,

{A4, A3} = 1

2
(l2A1 − m2A2)A

m−1
1 Al−1

2 .

Lemma 2.3 Relations (2.5) determine the Poisson brackets on R4 with the Casimir
functions

- = l A1 + mA2, C = A2
3 + A2

4 − Am
1 Al

2.

Lemma 2.4 In the subset in R4 determined by the inequalities A1 ≥ 0 and A2 ≥ 0,
there is a family of surfaces

� = {- = E,C = 0}, E > 0, (2.6)

which coincide with the closure of symplectic leaves �0 of the Poisson structure (2.5).
These surfaces are homeomorphic to the sphere: � ≈ S2.

The topology of the symplectic leaves �0 is the following:

– if l = m = 1, then �0 = �;
– if l = 1, m > 1 or l > 1, m = 1, then �0 is obtained from � by deleting the point

(0, E
m , 0, 0) or the point ( El , 0, 0, 0);

– if l > 1, m > 1, then�0 is obtained from� by deleting both the points (0, E
m , 0, 0)

and ( El , 0, 0, 0).



258 M. Karasev

Lemma 2.5 If l > 1 or m > 1, then the Kirillov symplectic form ω0 on the leaf
�0 ⊂ � has a weak (integrable) singularity at the point A2 = 0 or A1 = 0. The
symplectic volume of �0 is finite

1

2π

∫
�0

ω0 = E

lm
. (2.7)

Lemma 2.6 On the subset A1 > 0 the complex coordinate

z0 = A3 + i A4

Am
1

(2.8)

determines a partial complex structure consistent with the brackets (2.5) in the sense
of [32]. On each symplectic leaf �0, this partial complex structure generates the
Kählerian structure with the potential

�0 =
∫ |z0|2

0

(
E

2lm
+ αE (x)

)
dx

x
, ω0 = i∂∂�0. (2.9)

Here ∂ is the differential by z0 and αE = αE (x) is the solution of the equation

x =
(

E

2m
+ lαE

)l( E

2l
− mαE

)−m
(2.10)

with values on the interval − E
2lm ≤ αE ≤ E

2lm .
The singular points of ω0 on �0 correspond to the poles

A2 = 0 ⇐⇒ z0 = 0, ω0 ∼ 1

l2

(
E

l

)m/ l dx ∧ dϕ

x1−1/ l
as z0 → 0, (2.11)

A1 = 0 ⇐⇒ z0 = ∞, ω0 ∼ 1

m2

(
E

m

)l/m dx ∧ dϕ

x1+1/m
as z0 →∞,

where (x, ϕ) are polar coordinates, z0 = x1/2 exp{iϕ}.
The restrictions of coordinate functions to the surface (2.6) are given by

A1

∣∣∣∣
�0

= E

2l
− mαE (|z0|2), A2

∣∣∣∣
�0

= E

2m
+ lαE (|z0|2), (2.12)

(A3 + i A4)

∣∣∣∣
�0

= z0

(
E

2l
− mαE (|z0|2)

)m

.

Note that the properties of classical symplectic leaves of the l : m resonance alge-
bra, described in Lemmas 2.4–2.6, are a particular case of the topology and geometry
of toric varieties (in our case the torus T1 = S1 is the cycle); about this see general
theorems in [28]–[30]. The Poisson extension (2.5) by means of polynomial brackets
was first described in [22, 23] for the case of 1 : 2 resonance and in [24, 25] for the
l : m case, as well for the general multidimensional resonances. A type of Poisson
extension was also considered in [31] for some specific class of resonance proportions
(which does not include, for instance, the 1 : 2 : 3 resonance).
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3 Irreducible representations of lll : mmm resonance algebra

First of all, let us discuss the basic problems in constructing irreducible representations
of algebras like (2.4), (2.4a). Following the standard geometric quantization program
[6] one has to choose a line bundle over symplectic leaves �0 of the Poisson alge-
bra related to (2.4a), that is, the Poisson algebra (2.5). Then this bundle is endowed
with the Hermitian connection whose curvature is iω0, and a Hilbert space H0 of an-
tiholomorphic sections of the bundle is introduced. In this Hilbert space, the operators
of irreducible representation of the algebra (2.4a) are supposed to act and to be self-
adjoint.

However, there are two principle difficulties. First, we do not know which measure
on �0 to take in order to determine the Hilbert norm in the space H0. The choice of
measure should imply the reproducing property [32, 33]

ω0 = i∂∂ ln
∑
k

|ϕ(k)
0 |2, (3.1)

where {ϕ(k)
0 } is an orthonormal basis in H0. For the inhomogeneous case, where the

commutation relations (2.4a) are not linear and no Lie group acts on �0, the existence
of such a reproducing measure is, in general, unknown. This difficulty was discovered
in [34] (more precisely, it was observed in [34] that the Liouville measure generated
by the symplectic form ω0 does not obey the property (3.1) in general).

Secondly, even if one knows the reproducing measure, there is still a problem: the
operators of the irreducible representation constructed canonically by the geometric
quantization scheme would be pseudodifferential, but not differential operators. There
are additional nontrivial conditions on the complex structure (polarization) that make
the generators of the algebra be differential operators (of order greater than 1, in gen-
eral). About such highest analogs of the Blattner–Kostant–Sternberg conditions for the
polarization to be “invariant” see in [35, 36].

Taking these difficulties into account, we modify the quantization scheme. From
the very beginning, we look for an appropriate complex structure and the scalar prod-
uct in the space of antiholomorphic functions that guarantee the existence of an Her-
mitian representation of the given algebra by differential operators, and then introduce
a “quantum” Kählerian form ω on�, a “quantum” measure and the “quantum” Hilbert
spaceH which automatically obeys the reproducing property like (3.1) (without “clas-
sical” label 0). This approach is explained in [32, 33, 37].

Note that the polynomial structure of the right-hand sides of relations (2.4), (2.4a)
is critically important in this scheme to obtain representations by differential operators.

Denote by Pr the space of all polynomials ϕ(λ) = ∑r
n=0 ϕnλn of degree r ≥ 0

with complex coefficients.

Lemma 3.1 Let f+, f− be two complex functions on Z+ such that

f+ f− > 0 on the subset {1, . . . , r} ⊂ Z+, (3.2)

f−(0) = f+(r + 1) = 0.
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Then the differential operators

a+ = f+
(
λ
d

dλ

)
· λ, a− = 1

λ
· f−

(
λ
d

dλ

)
(3.3)

leave the space Pr invariant and they are conjugate to each other with respect to the
following scalar product in Pr :

(g, g′) def=
r∑

n=0

n∏
s=1

f−(s)
f+(s)

ϕnϕ′n . (3.4)

Any operator f
(
λ d
dλ

)
, where f is a real function on Z+, is self-adjoint in Pr with

respect to this scalar product.

Now we consider a map
γ : Rk → Rk

and a real function ρ on Rk . Denote by Rr ⊂ Rk the subset of all points a0 such that

ρ(γ r+1(a0)) = ρ(a0), (3.5)

ρ(γ n(a0)) > ρ(a0) (n = 1, . . . , r).

For any a0 ∈ Rr we define real functions f j ( j = 1, . . . , k) on Z+ by the formula

f j (n)
def= γ n(a0) j , and introduce mutually commuting operators in the space Pr :

a j
def= f j

(
λ
d

dλ

)
. (3.6)

Lemma 3.2 Let a0 ∈ Rr , and let there be a factorization

ρ(γ n(a0))− ρ(a0) = f+(n) f−(n), 0 ≤ n ≤ r + 1, (3.7)

where the factors f± obey the property (3.2). Then the operator a+ (3.3) and a j (3.6)
in the space Pr with the scalar product (3.4) satisfy the relations

a∗+ = a−, a∗j = a j ( j = 1, . . . , k),

and

[a j , as] = 0, (3.8)

a ja+ = a+γ j (a), a−a j = γ j (a)a− ( j = 1, . . . , k),

[a−, a+] = ρ(γ (a))− ρ(a).

Lemma 3.3 Consider the abstract algebra F with relations (3.8). The element C =
a+a− − ρ(a) belongs to the center of F. If a function - on Rk is γ -invariant, then the
element κ = -(a) belongs to the center of F.

In the representation (3.3), (3.6), these central elements are scalar: C = ρ(a0) · I,
κ = -(a0) · I. This representation of the algebra F is irreducible and Hermitian.

If the map γ has no fixed points, then all irreducible Hermitian representations of
the algebra F can be obtained in this way. All such representations of dimension r + 1
are parameterized by elements of the set Rr (r = 0, 1, 2, . . . ).
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Now let us return to commutation relations (2.4). In this case k = 2, the function
ρ is given by (2.3), and the mapping γ ≡ �h̄ : R2 → R2 is

�h̄
(
A1
A2

)
def=
(
A1 − h̄m
A2 + h̄l

)
. (3.9)

It follows from (2.2) that we have to be interested in a subset A1 ≥ 0, A2 ≥ 0 in
R2. Also in view of Lemma 2.2, the values of the Casimir element C = ρ(a0) · I must
be zero. From (3.5) we obtain

ρ(a0) = ρ(�h̄(r+1)(a0)) = 0,

ρ(�h̄n(a0)) > 0 (n = 1, . . . , r).

Using (2.3) let us factorize:

ρ = ρ+ρ−, ρ+(A)
def=

m∏
j=1

(A1 + h̄ j), ρ−(A)
def=

l∏
s=1

(A2 − h̄s + h̄). (3.10)

It is possible to satisfy (3.7) by choosing

f±(n) = ρ±(�h̄n(a0)).

In this case, the set Rr ⊂ R2 consists of all points a0 =
(
h̄(rm + p)

h̄q

)
for which the

pair of integers p, q obeys the inequalities

0 ≤ q ≤ l − 1, 0 ≤ p ≤ m − 1. (3.11)

The γ -invariant function - in our case (3.9) is just -(A) = l A1 + mA2. In view
of Lemma 3.3, the value of the second Casimir element κ = -(a) in the irreducible
representation (3.3), (3.6) is -(a0) = Er,q,p, where

Er,q,p
def= h̄(lmr + lp + mq). (3.12)

From Lemma 2.2 we conclude that these numbers coincide with eigenvalues of the
oscillator E (2.1).

Also from (3.4) we see that the scalar product in the space Pr is given by

(ϕ, ϕ′) =
r∑

n=0
h̄(l−m)n (q + nl)!(p + (r − n)m)!

q!(p + rm)!
ϕnϕ′n . (3.13)

Thus the vector space of the irreducible representation depends on the number r only,
but its Hilbert structures are parameterized by the pairs q, p from (3.11). That is why
below we will use the notation Pr ≡ Pr,q,p.

Let us summarize the obtained results.
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Theorem 3.4 The commutant of the l : m resonance oscillator E (2.1) is generated by
operators (2.2) obeying commutation relation (2.4). The irreducible representation of
the algebra (2.4), corresponding to the eigenvalue Er,q,p (3.12) of the operator E, is
given by the following ordinary differential operators a = (a1, a2) and a±:

a = �h̄λ d
dλ (a0), a+ = ρ+(a) · λ, a− = 1

λ
· ρ−(a). (3.14)

Here a0 =
(
h̄(rm + p)

h̄q

)
, the flow � on R2 is defined by (3.9) and the factors ρ± are

defined by (3.10). The representation (3.14) acts in the space Pr,q,p of polynomials
in λ of degree r , and it is Hermitian with respect to the scalar product (3.13). The
dimension of this representation is r + 1.

In fact, formula (3.14) determines just the matrix representations of the algebra
(2.4): elements a are represented by a diagonal matrix and a± by near-diagonal matri-
ces with respect to the orthonormal basis of monomials

ϕ(k)(λ) = h̄(m−l)k/2
(

q!(p + rm)!

(q + kl)!(p + (r − k)m)!

)1/2

· λk (k = 0, . . . , r) (3.15)

in the space Pr,q,p. These matrices are real-valued and determined by the integer num-
bers l,m (from the resonance proportion) and r, p, q (labeling the representation):

(a1)ns = h̄(p + (r − n)m)δn,s, (a2)ns = h̄(q + nl)δn,s,

(a+)ns = h̄(l+m)/2
(
(q + nl)!(p + (r − s)m)!

(q + sl)!(p + (r − n)m)!

)1/2

δn−1,s, (3.16)

(a−)ns = (a+)sn .

Here the matrix indices n, s run over the set {0, . . . , r} and δn,s are the Kronecker
symbols.

In the particular case l = m = 1, from (3.16) one obtains the well-known Her-
mitian matrix irreducible representations of the “spin” Lie algebra su(2) with cyclic
commutation relation between generators 1

2 (A1 − A2), 1
2 (A+ + A−), i

2 (A+ − A−).

4 Quantum geometry of the lll : mmm resonance

Now we give a geometric interpretation of the obtained representations of the reso-
nance algebra.

It follows from (3.4) that the element ρ+(A)−1(A3 − iA4), in the algebra gener-
ated by relations (2.4), is represented by the multiplication by λ in each irreducible
representation (3.14). If we denote

z = (A3 + iA4)ρ+(A)−1, (4.1)



Resonance Gyrons and Quantum Geometry 263

then the conjugate operator z∗ in each irreducible representation can be taken equal to
the multiplication by a complex variable z:

z∗ = z.

Thus, here we change our notation and use z instead of λ. From now on, Pr,q,p is
the space of anti-holomorphic functions (polynomials in z of degree ≤ r ) on R2.

Let us assume that the scalar product (3.13) in the space Pr,q,p can be written in
the integral form

(ϕ, ϕ′) = 1

2π h̄

∫
R2

ϕ(z(a))ϕ′(z(a))L(a) da, (4.2)

where da = |dz(a) ∧ dz(a)| and a → z(a) is the complex coordinate on R2.

Lemma 4.1 The explicit formula for the density L in (4.2) is

L(a) = 1

4h̄rm+p+q+1(p + rm)!q!x

×
∫ ∞

0
Arm+p
1 Aq

2

(
l2

A2
+ m2

A1

)−1
exp

{
− A1 + A2

2h̄

}
dE,

where A1 = E
2l−mαE (x), A2 = E

2m+lαE (x), αE is taken from (2.10), and x = |z(a)|2.
These are first steps to assign some geometry to the quantum algebra (2.4) and its

irreducible representations. The next step is to consider the multiplication operation in
this algebra.

Note that linear operators in Pr,q,p can be presented by their kernels. So, the al-

gebra of operators is naturally isomorphic to Sr,q,p def= Pr,q,p ⊗ Pr,q,p. The operator
product is presented by the convolution of kernels which is generated by pairing be-
tween Pr,q,p and Pr,q,p given by the scalar product (3.13).

The algebra Sr,q,p consists of functions in z, z, they are polynomials on R2. On
this function space we have a noncommutative product (convolution), but the unity
element of this convolution is presented by the function

K =
r∑

k=0
ϕ(k) ⊗ ϕ(k), (4.3)

where ϕ(k) is the orthonormal basis in Pr,q,p. This function is called a reproducing
kernel [38, 39], it is independent of the choice of the basis {ϕ(k)}. From (3.15) we see
the explicit formula for the reproducing kernel

K = k(|z|2), k(x)
def=

r∑
n=0

h̄(m−l)n q!(p + rm)!

(q + nl)!(p + (r − n)m)!
xn . (4.4)

In order to give a Gelfand type spectral–geometric interpretation of some algebra,
we, first of all, have to ensure that the unity element of this algebra is presented by the
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unity function. It is not so for the algebra Sr,q,p. That is why we have to divide the
“kernel elements” from Sr,q,p by the reproducing kernel (4.4). The correct function
algebra consists of ratios of the type

f = ϕ ⊗ ϕ′

K
, (4.5)

where ϕ, ϕ′ ∈ Pr,q,p. The product of two functions of this type generated by the
convolution of kernels is given by

( f1 ∗ f2)(a) = 1

2π h̄

∫
phase space

f #1 (a|b) f #2 (b|a)pa(b) dm(b). (4.6)

Here

dm(b)
def= L(b)K (b) db, (4.7)

pa(b)
def= |K #(a|b)|2K (a)−1K (b)−1, (4.8)

and the operation f → f # denotes the analytic continuation holomorphic with respect
to the “right” argument and anti holomorphic with respect to the “left” argument in the
notation f #(·|·). The product (4.6) possesses the desirable property: 1∗ f = f ∗1 = f .

Let us look at formula (4.5). Since f is going to be a function on an invariant
geometric space, ϕ and ϕ′ have to be sections of a Hermitian line bundle with the
curvature form

ω = i h̄∂∂ ln K ≡ igdz ∧ dz. (4.9)

Here ∂ denotes the differential by z. Formula (4.9) means that the measure dm (4.7) is
the reproducing measure with respect to the Kählerian form ω in the sense [33].

Note that formula (4.9) defines both the quantum form ω and the quantum metric
g = g(|z|2), g(x) = h̄ d

dx (x
d
dx (ln k(x))) via the polynomial (4.4).

After the quantum form ω appears, the “probability” factor pa in the noncommu-
tative product (4.6) can be written as

pa(b) = exp

{
i

h̄

∫
∑

(a,b)
ω

}
. (4.10)

Here
∑

(a, b) is a membrane in the complexified space whose boundary consists of
four paths connecting points a → b|a → b → a|b → a along leaves of the complex
polarization and its conjugate [26, 40].

Note that the set of functions (4.10) makes up a resolution of unity:

1

2π h̄

∫
phase space

pa dm(a) = 1, (4.11)

and each pa is the “eigenfunction” of the operators of left or right multiplication:
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f ∗ pa = f (·|a)pa, pa ∗ f = f (a|·)pa . (4.12)

The details about such a way to establish a correspondence between quantum algebras
and Kählerian geometry can be found in [33].

Let us discuss global aspects of this quantum geometry. The Kählerian form ω

(4.9) is actually well defined on the compactified plane R2 ∪ {∞} which includes the
infinity point z = ∞. To see this, we just can make the change of variables z′ = 1/z
and observe that ω is smooth near z′ = 0.

Thus the actual phase space is diffeomorphic to S2 and we have

1

2π h̄

∫
S2

ω = r,
1

2π h̄

∫
S2

dm = r + 1. (4.13)

The first formula (4.13) follows from the fact that K ∼ const · |z|2r as z → ∞
(see in (4.4)). It means that the cohomology class 1

2π h̄ [ω] is integer, and this is the

necessary condition for the Hermitian bundle with the curvature iω over S2 to have
global sections [41].

The second formula (4.13) follows from the definition (4.3) which implies

1

2π h̄

∫
dm =

r∑
k=0

‖ϕ(k)‖2,

where the norm of each ϕ(k) is taken in the sense (4.3) and is equal to 1 by definition.
The number r + 1 in (4.13) is the dimension of the irreducible representation of the
resonance algebra.

We stress that the quantum Kählerian form ω, given by (4.4), (4.9), and the quan-
tum measure dm, given by (4.7) and Lemma 4.1, are essentially different from the
classical form ω0 (2.9) and the classical Liouville measure dm0 = |ω0|. The main dif-
ference is that ω is smooth and dm is regular at poles while ω0 and dm0 are not. Some
information regarding asymptotics of the quantum objects as h̄ → 0 and asymptotics
near the poles is summarized in the following lemma.

Lemma 4.2 (a) In the classical limit h̄ → 0, Er,q,p → E > 0, out of neighborhoods
of the poles z = 0 and z = ∞ on the sphere, the quantum geometrical objects are
approximated by the classical ones:

ω = ω0 + O(h̄), dm = dm0(1+ O(h̄)).

(b) The behavior of the quantum reproducing measure near the poles is the follow-
ing:

dm ∼ const · dx ∧ dϕ

x1−(q+1)/ l as x → 0,

dm ∼ const · dx ∧ dϕ

x1+(p+1)/m as x →∞,

(4.14)
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where z = x1/2 exp{iϕ}. Thus the reproducing measure has weak singularities at
poles.

(c) Near the poles, the quantum Kählerian form looks as

ω ∼ h̄m−l+1
(p + rm)!q!

(p + rm − m)!(q + l)!
idz ∧ dz as z → 0,

ω ∼ h̄l−m+1
p!(q + rl)!

(p + m)!(q + rl − l)!

idz ∧ dz

|z|4 as z →∞.

Thus, near the poles, the asymptotics of ω as h̄ → 0 is

ω ∼ consth̄1−l idz ∧ dz (z ∼ 0), (4.15)

ω ∼ consth̄1−m
idz ∧ dz

|z|4 (z ∼ ∞).

Comparing (4.14) with (2.11) we see that, near poles, dm is not approximated by
dm0 as h̄ → 0 if q > 0 or p > 0. So, the usual deformation theory (starting with
classical data) cannot be applied to compute the reproducing measure globally on the
phase space.

Formulas (4.15) demonstrate that the quantum ω is not approximated by ω0 as
h̄ → 0 near the poles; the classical form ω0 must be singular at z = 0 if l > 1 and be
singular at z = ∞ if m > 1. This statement is in agreement with (2.11).

Note that the cohomology class of the classical symplectic form ω0 on the classical
leaf with the quantized energy E = Er,q,p (3.12) is given by (2.7):

1

2π h̄

∫
�0

ω0 = r + q

l
+ p

m
. (4.16)

Here r ∼ h̄−1 is the main quantum number which controls the dimension of the quan-
tum Hilbert space Pr,q,p. The integers q, p vary on the intervals (3.11), they control
the fine structure of the scalar product (4.2) in Pr,q,p.

In the case of “ground states,” where q = p = 0, the condition (4.16) becomes
standard for the geometric quantization. In the “excited” case where q ≥ 1 or p ≥ 1,
we observe something like an index contribution to the geometric quantization picture
appearing due to an additional holonomy around the conical poles in �0. Because of
these “excitations,” the leaves �0 with quantized energies are distant from each other
by 1

l or
1
m fractions of the parameter h̄.

To conclude this section, let us discuss what quantum leaves of the algebra (2.4)
are. To each element F of the algebra one can assign the corresponding operator f in
the irreducible representation. This operator acts in the Hilbert space Pr,q,p of anti-
holomorphic sections over the phase space. Thus we can compose the function

f
def= 1

K
f(K ). (4.17)

Here K is the reproducing kernel (4.4) and the operator f acts by z. The function f
(4.17) is called theWick symbol of the operator f, for more details see in [3, 34, 42, 43].
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The product of symbols in the sense of (4.6) corresponds to the product of operators.
Moreover, one can reconstruct the operator by its symbol using the simple formula

f = f (
2
z∗,

1
z),

where z∗ is the operator of multiplication by z and z is the conjugate operator.
To generators of the algebra (2.4) we now can assign functions on the phase space:

a j
def= 1

K
a j (K ) ( j = 1, 2), a±

def= 1

K
a±(K ). (4.18)

We can consider them as quantum analogs of the coordinate functions A1, A2, A± =
A3 ∓ i A4 on classical symplectic leaves of the Poisson algebra (2.5).

Theorem 4.3 (a) The quantum coordinate functions obey the Casimir identities

ka1 + ma2 = Er,q,p,

a+ ∗ a− = (a1 + h̄) ∗ · · · ∗ (a1 + mh̄) ∗ a2 ∗ (a2 − h̄) ∗ · · · ∗ (a2 − lh̄ + h̄).

Here ∗ is the quantum product (4.6).
(b) In the classical limit h̄ → 0 (and r ∼ h̄−1 → ∞) the quantum coordinate

functions coincide with the classical coordinate functions (2.12) on the closure� (2.6)
of the symplectic leaves �0.

Taking into account this theorem, we below identify the quantum phase space S2

with the closure � of the symplectic leaf (2.6), where E = Er,q,p. We will call �
endowed with this structure a quantum leaf.

Each element F of the algebra (2.4) can be represented as a polynomial in genera-
tors:

F = F(A), A = (
3
A+,

2
A1,

2
A2,

1
A−). (4.19)

Here F is a function on R4. The operation of multiplication of elements (4.19) deter-
mines a product operation 4 in the algebra of polynomials over R4:

F(A)G(A) = (F 4 G)(A)

(see details in [32]).
Following [32, 33], one can define the quantum restriction of the function F onto

the leaves �:

F
∣∣∣
�̂

def= 1

K
F(a)(K ). (4.20)

From [33] one knows the following assertion.
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Theorem 4.4 (a) The quantum restriction (4.20) F → F
∣∣∣
�̂
is a homomorphism of

algebras:

(F 4 G)

∣∣∣
�̂
= F

∣∣∣
�̂
∗ G

∣∣∣
�̂
.

The equivalent formula for the quantum restriction is

F
∣∣∣
�̂
= F(a∗)1,

where a∗ are the operators of left multiplication by the quantum coordinate functions
a = (a+, a1, a2, a−) (4.18) in the algebra (4.6).

(b) The asymptotics as h̄ → 0 of the quantum restriction can be derived from

F
∣∣∣
�̂
= F

(
a − i h̄ ad−(a)+ O(h̄2)

)
1 = F(a)+ h̄e1(F)+ O(h̄2). (4.21)

Here ad−(·) denotes the anti-holomorphic part of the Hamiltonian field: ad−(·) =
ig−1∂(·)∂ , where g is the quantum metric (4.9). The h̄-correction e1 in (4.21) is the
second order operator e1 = 1

2 〈R ∂
∂a ,

∂
∂a 〉 determined by the symmetric tensor R jl =

5(g−1∂a j∂al).

5 Coherent states and gyron spectrum

In the Hilbert space Pr,q,p of anti-holomorphic sections of the Hermitian line bundle
with the curvature iω over the phase space � ≈ S2 we have the irreducible represen-
tation of the resonance algebra (2.4) by differential operators

a1 = h̄(rm + p)− h̄mz∂, a2 = h̄q + h̄lz∂, (5.1)

a+ = h̄m
m∏
j=1

(rm + p + j − mz∂) · z, a− = h̄l

z

l∏
s=1

(q − s + 1+ lz∂),

where ∂ = ∂/∂z.
The unity section 1 = z0 is the vacuum vector for this representation in the sense

that it is the eigenvector of the operators a1, a2 and it is annulled by the operator a−.
Now let us take the vacuum vector P0 in the original Hilbert space L = L2(R2) which
corresponds to the representation (2.2):

A1P0 = h̄(rm + p) ·P0, A2P0 = h̄q ·P0, A−P0 = 0.

Definition 5.1 The coherent states of the algebra (2.4) is the holomorphic family of
vectors Pz ∈ L defined by

Pz =
r∑

n=0

q!

(q + ln)!

(
z

h̄l

)n

An
+P0, z ∈ C.
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For each a ∈ � let us denote by """a the projection onto the one-dimensional
subspace in L generated by Pz(a). We call "a a coherent projection.

Regarding these definitions, may be, it is useful to note the following: if one takes
the Hilbert space Pr,q,p instead of L and the vacuum 1 instead of P0, then instead
of coherent states Pz and the coherent projection """a one would see the reproducing
kernel K #(·|z) and the probability function pa .

In the following theorem we collect the basic properties of the coherent states Pz .
In the general context of quantization theory, see more details in [32, 33, 34].

Theorem 5.1 (a) The scalar product of two coherent states coincides with the repro-
ducing kernel (4.4):

‖Pz(a)‖2 = K (a), a ∈ �.

(b) One has the resolution of unity by coherent projections:

1

2π h̄

∫
�

"""a dm(a) = Ir,q,p.

Here Ir,q,p is the projection in L onto the Hilbert subspace Lr,q,p spanned by all
vectors An+P0, n = 0, . . . , r .

(c) The whole Hilbert space L is the direct sum of the irreducible subspaces:

L =
⊕
r≥0

0≤q≤l−1
0≤p≤m−1

Lr,q,p.

(d) The coherent transform Lr,q,p
ν→ Pr,q,p defined by

ν(ψ)(z) = (ψ,Pz), (5.2)

has the inverse

ν−1(ϕ) = 1

2π h̄

∫
�

P⊗ ϕ

K
dm. (5.3)

The mappings (5.2), (5.3) intertwine the representations (2.2) and (5.1) of the algebra
(2.4).

(e) Let F be an element of the algebra (2.4) realized in the Hilbert space L via the
generators (2.2) as in (4.19), and let f = ν ◦F ◦ ν−1 be the coherent transformation of
F realized in the Hilbert space Pr,q,p. Then the Wick symbol f (4.17) coincides with
the Wick symbol of F given by

f (a) = tr(F"""a), a ∈ �.

The operators F, f are reconstructed via their symbols using the formulas

F = F(A) = f

(
2
z∗,

1
z
)
, f = F(a) = f

(
2
z,

1
z∗
)
, (5.4)

where z is the operator of complex structure (4.1), a are the operators of irreducible
representation (5.1). The Wick symbol of the coherent projection"""a is the probability
function pa (4.10).
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Now following [36], [44]–[48] we explain how to reduce the coherent transform to
closed curves (Lagrangian submanifolds) in the phase space.

Let � ⊂ � be a smooth closed curve, which obeys the quantization condition

1

2π h̄

∫
#

(
ω − h̄

2
ρ
)
− 1

2
∈ Z, (5.5)

where ω = igdz∧dz is the quantum Kählerian form (4.9), ρ = i∂∂ ln g is the quantum
Ricci form, and # is a membrane in � with the boundary ∂# = �.

We choose certain parameterization of the curve expressed via the complex coor-
dinate on the leaf as follows:

� = {z = z(t) | 0 ≤ t ≤ T },

and define the following basis of smooth functions on the curve:

φ( j)(t) =
√
ż(t) exp

{
− i

h̄

∫ t

0

(
θ − h̄

2
-
)}

ϕ( j)(z(t)), j = 0, . . . , r. (5.6)

Here θ
def= i h̄∂ ln K and - = i∂ ln g are primitives of the quantum Kählerian form

ω = dθ and the quantum Ricci form ρ = d-, the integral in (5.6) is taken over a
segment of the curve �, and the monomials ϕ( j) are defined in (3.15).

Let us denote byL� the vector subspace inC∞(�) spanned by φ( j) ( j = 0, . . . , r )
and introduce the Hilbert structure in L� by means of the following norm:

‖φ‖� def= 1
4
√
2π h̄

( r∑
j=0

∣∣(φ, φ( j))L2

∣∣2)1/2

, (5.7)

where the scalar product (·, ·)L2 is taken in the L2-space over �.
For any smooth function φ ∈ C∞(�) we define

μ�(φ) = 1
4
√
2π h̄

∫
�

φ(t)
√
ż(t) exp

{
i

h̄

∫ t

0

(
θ − h̄

2
-
)}

Pz(t) dt, (5.8)

where P ∈ L are coherent states of algebra (2.4) corresponding to its (r, q, p)-
irreducible representation.

Theorem 5.2 (a) The mapping μ� defined by (5.8) is an isomorphism of Hilbert
spaces

μ� : L� → Lr,q,p ⊂ L.

(b) Under the isomorphism (5.8) the representation of the algebra (2.4) in the
Hilbert space L is transformed to the irreducible representation in the Hilbert space
L�:

F→ F�
def= μ−1� ◦ F ◦ μ�. (5.9)
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(c) In the classical limit as h̄ → 0 the Hilbert structure (5.7) coincides with the
L2-structure:

‖φ‖� =
(∫

�

|φ(t)|2 dt
)1/2

+ O(h̄). (5.10)

(d) Let f be the Wick symbol (5.4) of the operator F, then the asymptotics of the
operator (5.9) as h̄ → 0 is given by

F� = F
∣∣∣
�
− i h̄

(
v + 1

2
div v

)
+ O(h̄2). (5.11)

HereF = f − h̄
4� f , by� we denote the Laplace operator with respect to the quantum

Kählerian metric g, and v = ad+(F)
∣∣
�
is the restriction to� of the holomorphic part

of the Hamiltonian field ad+(F) = −ig−1∂F · ∂ .
The next terms of the asymptotic expansion (5.11) are also known (see in [36]).
In Theorem 5.2, the curve � is arbitrary except it has to obey the quantization

condition (5.5).
Let us now choose � specifically to be a closed curve on the energy level

� ⊂ {F = λ}, (5.12)

and choose the coordinate t to be time on the trajectory � of the Hamiltonian field
ad(F). Then v = ad(F)

∣∣
�
= d

dt , div v = 0, and we have

F� = λ− i h̄
d

dt
+ O(h̄2). (5.13)

This formula implies the asymptotics of eigenvalues of the operator F�:

λ+ h̄
2πk

T
+ O(h̄2), (5.14)

where T = T (λ) is the period of the trajectory � = �(λ) (5.12) and λ is determined
by the quantization condition (5.5).

Note that the contribution 2πk
T added to λ in (5.14) can be transformed to adding

the number k to the integer number on the right-hand side of condition (5.5). Thus one
can omit the summand h̄ 2πk

T in (5.16) without loss of generality.

Corollary 5.3 Let F be an operator commuting with the oscillator E (2.1). Up to
O(h̄2), the asymptotics of its eigenvalues λ is determined by the quantization con-
dition:

1

2π h̄

∫
#

(
ω − h̄

2
ρ
)
− 1

2
∈ Z. (5.15)

Here # is a membrane in � with the boundary � = ∂# (5.12); the curve � is the
energy level of the function F = f − h̄

4� f , where f is the Wick symbol of F and
� is the Laplace operator. The operator � and the forms ω, ρ are generated by the
quantum Kählerian metric g (4.9).
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Now we can apply the obtained results in studying quantum gyrons. Assume one
has a Hamiltonian of the type

E+ εB, (5.16)

where E is the oscillator (2.1) and B is a perturbation presented as a function in oper-
ators b,b∗,

B =
∑

βμ,νb∗νbμ. (5.17)

There is an operator averaging procedure [47, 48], which is a unitary transformation
reducing (5.16) (up to O(εN )) to the Hamiltonian

E+ εB ∼ E+ εFN + O(εN ), [FN ,E] = 0. (5.18)

For instance, if N = 1, then

F1 =
∑

lν1+mν2=lμ1+mμ2

βμ,νb∗νbμ (5.19)

(see also the Appendix in [25]). For any N ≥ 1 in (5.18), the operator FN , commuting
with E, is uniquely determined and can be presented in the form (4.19):

FN = FN (A),

and after this in the form (5.4):

ν ◦ FN ◦ ν−1 = FN (a) = fN (
2
z,

1
z∗). (5.20)

Thus the study of the operator (5.16) up to O(εN ) is reduced to the study of the
properties of the operator (5.20) in each irreducible representation of the algebra (2.4).

The symbols FN or fN are gyron Hamiltonians. In the (r, q, p)-irreducible repre-

sentation, the gyron is described by the operator FN (a) = FN (
3
a+,

2
a1,

2
a2,

1
a−) acting

in Pr,q,p, where the generators a are given by (5.1).
In the semiclassical approximation h̄ → 0 the gyron system can be reduced to

(5.11) and even to (5.13) over the trajectory � of the effective Hamiltonian FN =
fN − h̄

4� fN + O(h̄2) on the leaf � ≈ S2. The asymptotics of the gyron spectrum was
described in Corollary 5.3 by means of the membrane versions (5.15) of the Bohr–
Sommerfeld quantization condition.

The quantum Kählerian geometry (via the measure dm and the forms ω, ρ) is
essentially presented in all these results regarding the gyron spectrum.

The gyron is a model. It is very simple, since it arises from the “textbook” oscilla-
tor Hamiltonian. At the same time, it already contains many nontrivial aspects of the
quantization theory and, of course, it has a variety of important physical applications.
About more complicated models of this type and about further ideas on the quantum
geometry we refer to [25, 32, 33], [51]–[63].

Acknowledgements. The author is grateful to V. P. Maslov and E. M. Novikova for
very useful discussions and help.
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Birkhäuser, Basel–Boston, 1994.

21. Y. Colin de Verdiere, Quasi-modes sur les varietes Riemanniennes, Invent. Math., 43
(1977), 15–52.

22. M. V. Karasev, Resonances and quantum method of characteristics, Intern. Conference
“Differential Equations and Related Topics” (Moscow, 16–22 May, 2004), Petrovskii Sem-
inar and Moscow Math. Society, Book of Abstracts, Publ. Moscow Univ., Moscow, 2004,
99–100 (in Russian).

23. M. V. Karasev, Birkhoff resonances and quantum ray method, Proc. Intern. Seminar “Days
of Diffraction – 2004”, St. Petersburg University and SteklovMath. Institute, St. Petersburg,
2004, 114–126.



274 M. Karasev

24. M. V. Karasev, Noncommutative algebras, nano-structures, and quantum dynamics gen-
erated by resonances, I. In: Quantum Algebras and Poisson Geometry in Mathematical
Physics (M. Karasev, ed.), Amer. Math. Soc. Transl. Ser. 2, Vol. 216, Providence, RI, 2005,
pp. 1–18. Preprint version in arXiv: math.QA/0412542.

25. M. V. Karasev, Noncommutative algebras, nano-structures, and quantum dynamics gener-
ated by resonances, II, Adv. Stud. Contemp. Math., 11 (2005), 33–56.

26. M. V. Karasev, Formulas for noncommutative products of functions in terms of membranes
and strings, Russ. J. Math. Phys., 2 (1994), 445–462.

27. M. V. Karasev, Geometric coherent states, membranes, and star products. In: Quantization,
Coherent States, Complex Structures J.-P. Antoine et al., eds., Plenum, New York, 1995,
185–199.

28. W. Fulton, Introduction to Toric Varieties, Ann. of Math. Stud., Princeton Univ., 131 (1993).
29. G. W. Schwarz, Smooth functions invariant under the action of a compact Lie group, Topol-

ogy, 14 (1975), 63–68.
30. V. Poénaru, Singularités C∞ en présence de symmétrie, Lect. Notes Math., 510 (1976).
31. A. S. Egilsson, Newton polyhedra and Poisson structures from certain linear Hamiltonian

circle actions, Preprint version in arXiv: math.SG/0411398
32. M. V. Karasev, Advances in quantization: quantum tensors, explicit star-products, and re-

striction to irreducible leaves, Diff. Geom. and Its Appl., 9 (1998), 89–134.
33. M. V. Karasev, Quantum surfaces, special functions, and the tunneling effect, Lett. Math.

Phys., 56 (2001), 229–269.
34. M. Cahen, S. Gutt, and J. Rawnsley, Quantization of Kähler manifolds, I, J. Geom. Phys.,

7 (1990), 45–62; II, Trans. Amer. Math. Soc., 337 (1993), 73–98; III, Lett. Math. Phys., 30
(1994), 291–305; IV, Lett. Math. Phys., 180 (1996), 99–108.

35. R. Brylinski and B. Kostant, Nilpotent orbits, normality, and Hamiltonian group actions, J.
Amer. Math. Soc., 7 (1994), 269–298.

36. M. V. Karasev, Quantization and coherent states over Lagrangian submanifolds, Russ. J.
Math. Phys., 3 (1995), 393–400.

37. M. V. Karasev and E. M. Novikova, Non-Lie permutation relations, coherent states,
and quantum embedding. In: Coherent Transform, Quantization, and Poisson Geometry
(M. Karasev, ed.), Amer. Math. Soc. Transl. Ser. 2, Vol. 187, Providence, RI, 1998, pp.
1–202.

38. S. Bergmann, The kernel functions and conformal mapping, Math. Surveys Monographs,
Vol. 5, Amer. Math. Soc., Providence, RI, 1950.

39. V. Bargmann, On a Hilbert space of analytic functions and associated integral transform,
Comm. Pure Appl. Math., 14 (1961), 187–214.

40. M. V. Karasev, Integrals over membranes, transitions amplitudes and quantization, Russ. J.
Math. Phys., 1 (1993), 523–526.

41. S. Chern, Complex manifolds, Bull Amer. Math. Soc., 62 (1956), 101–117.
42. F. A. Berezin, Wick and anti-Wick symbols of operators, Mat. Sb., 86 (1971), 578–610 (in

Russian); English transl. in Math. USSR-Sb., 15 (1971).
43. F. A. Berezin, Covariant and contravariant symbols of operators, Izv. Akad. Nauk SSSR,

Ser. Mat., 36 (1972), 1134–1167 (in Russian); English transl., Math. USSR Izv., 8 (1974),
1109–1165.

44. M. V. Karasev, Connections over Lagrangian submanifolds and certain problems of semi-
classical approximation, Zapiski Nauch. Sem. Leningrad. Otdel. Mat. Inst. (LOMI), 172
(1989), 41–54 (in Russian); English transl., J. Sov. Math., 59 (1992), 1053–1062.

45. M. V. Karasev, Simple quantization formula. In: Symplectic Geometry and Mathematical
Physics, Actes du colloque en l’honneur de J.-M.Souriau (P. Donato et al., eds.), Birkhäuser,
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Introduction

As is well known, the von Neumann algebras are classified into factors of type I, II and
III. Factors of type III are further classified into type IIIλ (0 ≤ λ ≤ 1) according to
the value λ determined from the S-set, which is an invariant of von Neumann algebras
introduced by A. Connes. There is a unique hyperfinite factor Rλ of type IIIλ. There-
fore, it is definitely an interesting problem to study such factors also from a geometric
point of view. In fact the hyperfinite factor of type III1 can be constructed from the
Anosov foliation on the unit tangent bundle of a close surface. For 0 < λ < 1 there
exists a foliated space (Mμ,Fμ) whose foliation W ∗-algebra W ∗(Mμ,Fμ) is isomor-
phic to Rλ with λ = μ2. A description of such construction is given in Connes [3].
We shall provide other descriptions of such foliations in Sections 1 and 2, which are
suitable in order to define a new secondary invariant of foliations. We then introduce
a secondary invariant called the k-class in Section 3. We also define a numerical in-
variant of foliations called the K -set, which is a priori a subgroup of R. The K -set
for (Mμ,Fμ) is computed in Section 3 and it turns out that the isomorphism class
of foliation (Mμ,Fμ) can be detected by the K -set. In fact, the K -set for (Mμ,Fμ)



278 H. Moriyoshi

is (log λ)Z ⊂ R with λ = μ2. On the other hand, the S-set of Rλ is known to be
{0, λn | n ∈ Z}. Thus, it seems that the behaviors of these invariants are quite similar
to each other for hyperfinite factors of type IIIλ. This suggests that the K -set can be
considered as a geometric counterpart of the S-set, which plays the central role in the
classification of type IIIλ factors.

1 Foliations that yield type IIIλ factors

Let G denote the special linear group SL2(R) of rank 2 and Ĝ the general linear group
GL+2 (R) of rank 2 with positive determinants. We denote by � a cocompact discrete
subgroup of G that is a central Z/2Z-extension of the fundamental group π1(#) of a
closed surface #:

1→ Z/2Z → � → π1(#)→ 1.

Namely, � is the inverse image of π1(#) with respect to the projection map:G →
PSL2(R). Given 0 < μ < 1, we put

�̂ = � ×
{[

μk 0
0 μk

] ∣∣∣∣ k ∈ Z
}
⊂ Ĝ,

which is a discrete subgroup of Ĝ. Let Mμ denote the right coset space �̂\Ĝ and Ĥ
the following subgroup of Ĝ:

Ĥ =
{[

a b
0 1

] ∣∣∣∣ a > 0, b ∈ R
}
.

Note that translations by Ĥ from the right induces a locally free action on Mμ.

Definition 1.1 A foliated space (Mμ,Fμ) for 0 < μ < 1 is defined by the locally free
action of Ĥ .

Note that Mμ is diffeomorphic to ST#×S1, where ST# denotes the sphere bundle
of unit tangent vectors in T#; see Proposition 2.2. However, foliations Fμ are not
isomorphic to each other due to the following theorem; see Connes [3] for instance.

Theorem 1.2 The foliation W ∗-algebra W ∗(Mμ,Fμ) associated to (Mμ,Fμ) is iso-
morphic to the hyperfinite factor of type IIIλ with λ = μ2.

According to the S-set, which was introduced by A. Connes [1], type III factors
are further classified into the type IIIλ factors where 0 < λ < 1. In the present case the
foliationW ∗-algebra of (Mμ,Fμ) is isomorphic to the crossed product L∞(Mμ)� Ĥ ,
which is isomorphic to the hyperfinite factor of type IIIλ with λ = μ2. As a conse-
quence, it follows that foliations (Mμ,Fμ) are not isomorphic to each other even in a
measurable sense.
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2 Lifted Anosov foliations and foliated T 2-bundles

In this section we shall consider the foliation (Mμ,Fμ) from a different point of view.
We recapture (Mμ,Fμ) as a lifted foliation of the Anosov foliation on ST# and also
as a foliated T 2-bundle on #. This point of view will be exploited to define a new
secondary invariant on (Mμ,Fμ) in the next section.

Let R+ denote the multiplicative group of positive real numbers. Then Ĝ is iso-
morphic to G × R+ via the isomorphism:

φ : G × R+ → Ĝ, φ(g, c) = g

[
c 0
0 c

]
.

The inverse map is given by

ψ : Ĝ → G × R+, ψ(g) =
([

1/d 0
0 1/d

]
g , d

)
with d = √det g. Take the following subgroup in G:

H =
{[

a b
0 1/a

] ∣∣∣∣ a > 0, b ∈ R
}
.

We then define a right action of H on G × R+ as

(g, c) · h = (gh, ca) for h =
[
a b
0 1/a

]
∈ H,

where (g, c) ∈ G×R+. We identify the right coset (�×μZ)\(G×R+) with (�\G)×
(R+/μZ). Then the corresponding H -action is nothing but

(g, c) · h = (gh, cδ(h))

for h ∈ H and (g, c) ∈ (�\G) × (R+/μZ), where δ : H → R+ is a homomorphism
given by δ(h) = a. The orbits of the diagonal H -action above yields a foliation on
(�\G)× (R+/μZ). This is the description given by Connes [3, p. 58].

Proposition 2.1 The isomorphism φ induces an equivariant diffeomorphism

ϕ1 : (�\G)× (R+/μZ)→ Mμ

with respect to the isomorphism ρ : H → Ĥ given by

ρ(h) =
[
a2 ab
0 1

]
for h =

[
a b
0 1/a

]
∈ H.

Therefore, (Mμ,Fμ) is isomorphic to the foliation on (�\G)× (R+/μZ) given by the
diagonal H-action above.



280 H. Moriyoshi

Proof. It is obvious that φ induces a diffeomorphism ϕ1. Since we have

φ((g, c) · h) = φ(gh, ca) = ghac = g

[
a b
0 1/a

]
ac = g

[
a2 ab
0 1

]
c = φ(g, c)ρ(h),

it follows that ϕ1 is equivariant. Hence it yields an isomorphism between those folia-
tions. $%

Due to the proposition above we obtain another description of (Mμ,Fμ). Recall
that �\G is diffeomorphic to ST#. It is known that the orbits in �\G of right trans-
lations by H corresponds to the Anosov foliation on ST#. Thus (Mμ,Fμ), which is
isomorphic to the foliation given by the diagonal H -action on (�\G)× (R+/μZ), can
be considered as a lifted Anosov foliation on ST# × S1.

Next we shall describe (Mμ,Fμ) as a foliated bundle. Put

J =
{
y

∂

∂x
∈ T S1

∣∣∣∣ y > 0

}
,

where ∂/∂x is the standard tangent vector on S1. Let Tg denote the fractional linear
transformation

Tg(z) = az + b

cz + d
for g =

[
a b
c d

]
∈ G,

which induces the actions on the upper half plane H as well as on S1. Here S1 is
identified with the one-point compactification ofR. We then define an action of �×μZ

on H× J such that
γ · (z, v) =

(
Tg(z), λ

kdTg(v)
)

for γ = (g, μk) ∈ � × μZ and (z, v) ∈ H× J , where λ = μ2. Here dTg denotes the
differential of Tg . We also define an action of � × μZ on G × R+ such that

γ · (h, c) =
(
gh, μkc

)
for (h, c) ∈ G × R+. Let ϕ2 : G × R+ → H× J be the map defined by

ϕ2(g, c) =
(
Tg(i), c

2dTg(v)
)
,

where v = ∂/∂x ∈ TpS1 and p ∈ S1 is the point corresponding to∞. Then we have:

Proposition 2.2 The map ϕ2 defined above is an equivariant diffeomorphism with re-
spect to the (� × μZ)-actions. Furthermore, it induces a diffeomorphism on each H-
orbit in G × R+ onto a slice H× {∗} in H× J .

Proof. It is easy to verify that ϕ2 is a diffeomorphism. We then have

ϕ2(γ · (h, c)) = ϕ2

(
gh, μkc

)
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=
(
Tgh(i), λ

kc2dTgh(v)
)

= γ ·
(
Th(i), c

2dTh(v)
)

= γ · ϕ2(g, c)
since Tgh = TgTh . This proves that ϕ2 is equivariant. Furthermore, we have

ϕ2((g, c) · k) = ϕ2(gk, ca)

=
(
Tgk(i), c

2a2dTgk(v)
)

=
(
TgTk(i), c

2dTg(v)
)

for k = [ a b
0 1/a ] ∈ H since dTk(v) = a−2v, which proves the second claim. $%

Let μ be the generator of μZ and act on J as previously:

μ · (z, v) = (z, λv) .

Thus the orbit space is J/λZ, which is diffeomorphic to the 2-dimensional torus T 2.
We then define the diagonal action of � on H× J/λZ by γ · (z, w) = (

Tγ (z), dTγ (w)
)

for (z, w) ∈ H× J/λZ. The orbit space turns out to be a foliated bundle

H×
�
J/λZ → #

with the typical fiber T 2, whose leaves are images of the slices H×{∗}. Then Proposi-
tion 2.2 claims that there exists an isomorphism from the foliated bundle to the foliation
on (�\G)× (R+/μZ) and hence to (Mμ,Fμ) as foliated spaces.

Remark 2.3 Taking J instead of J/λZ we can construct a foliated bundle

H×
�
J → #

with leaves which are the images of H× {∗}, (∗ ∈ J ). As is mentioned previously, the
resulting foliated bundle can be considered as a lift of the Anosov foliation (ST#,F).
The foliation W ∗-algebra W ∗(H×

�
J,F) is then isomorphic to the crossed product of

W ∗(ST#,F)�σ R with respect to the modular automorphisms {σt } onW ∗(ST#,F),
and the dual action σ̂t corresponds to the action induced from the translations by R+
on J ; see Moriyoshi [5] for instance.

3 A secondary invariant associated to (MMMμμμ,FFFμμμ)

Let (M,F) be a C∞-foliation of codimension q. Take a covering space M̃ → M with
" the deck transformation group, and denote by F̃ the induced foliation on M̃ from
F . Suppose that there exists a differential form ω on M̃ with degω = q such that:
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T) ω is a transverse invariant volume form for F̃ , namely, it satisfies that

ιXω = 0, LXω = 0

for any vector field X along the foliation F̃ on M̃ and that ω is nowhere vanishing
on M̃ . Here LX denotes the Lie derivative with respect to X .

P) ω is projectively invariant with respect to the "-action, namely, there exists cg ∈
R+ for each g ∈ " such that g∗ω = cgω.

Remark 3.1 In general, a differential form ω on M is called F-basic if it satisfies that

ιXω = 0, LXω = 0

for any vector field X along F . Then the condition T) is equivalent to saying that ω is
a nowhere vanishing F̃-basic q-form on M̃ .

Observe that there exists a group homomorphism:

ρω : "→ R+, ρω(g) = cg

due to the condition P). It is then verified that logρω : "→ R is a group 1-cocycle:

δ log ρω(g, h) = log ρω(h)− log ρω(gh)+ log ρω(g) = 0.

Put
C p,q = C p(",�q M̃),

where C p,q is the set of cochains on the group " with values in the differential
form �q M̃ of degree q. We then introduce the following double cochain complex
{C p,q , d, δ}. @⏐⏐

C0(�,�3M̃) −−−−→@⏐⏐ @⏐⏐
C0(�,�2M̃) −−−−→ C1(�,�2M̃) −−−−→@⏐⏐ @⏐⏐ @⏐⏐
C0(�,�1M̃) −−−−→ C1(�,�1M̃) −−−−→ C2(�,�1M̃)@⏐⏐d @⏐⏐ @⏐⏐
C0(�,�0M̃)

δ−−−−→ C1�,�0(M̃) −−−−→ C2(�,�0M̃) −−−−→
Here we denote by δ the coboundary map for chains of " and by d the exterior differ-
entiation on �q M̃ . Observe that the double complex is acyclic with respect to δ since
the "-action on M̃ is proper. It then follows that the cohomology group of the total
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complex {C•,•, d + δ} is isomorphic to the cohomology group of "-invariant differ-
ential forms on M̃ , which is isomorphic to the de Rham cohomology group H∗dR(M):

H∗(C•,•) ∼= H∗dR(M).

Recall that logρω is closed with respect to δ. It is obvious that

d log ρω = 0

since the value of logρω is a constant. Thus it yields a 1-cocycle in the total complex
C•,• and hence a cohomology class in H∗(C•,•).

Definition 3.2 The k-class associated to ω is the cohomology class

kω = [log ρω] ∈ H1
dR(M) ∼= H1(C•,•).

Let ω and ω′ be differential forms on M̃ of degree q satisfying the condition T)
and P) above. This implies that there exists a smooth function f on M̃ with values in
R+ such that ω′ = f ω. It then follows that

log ρω′(g)− log ρω(g) = log(g∗( f ω)/( f ω))− log(g∗ω/ω)

= log g∗ f − log f

= δ log f (g),

namely,
log ρω′ − log ρω = δ log f.

It also follows that

δd log f = dδ log f = d(log ρω′ − log ρω) = 0

and hence d log f is a closed 1-form on M̃ that is"-invariant, which can be considered
as a closed 1-form on M .

d log f
δ−−−−→ 0

d

@⏐⏐ @⏐⏐d
log f −−−−→

δ
log ρω′ − log ρω

Given a vector field X along the foliation F̃ , we obtain

0 = LXω
′ = (X f )ω + f LXω = (X f )ω

since LXω
′ = LXω = 0. Hence we have X f = 0 since ω is a transverse volume form.

It then follows that

ιXd log f = X (log f ) = 0
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LXd log f = dιXd log f = 0,

which implies that d log f is a F-basic closed 1-form on M .
Now we have

kω′ − kω = [log ρω′ ]− [log ρω] = [δ log f ] = [−d log f ] (1)

in the total complex C•,•. Observe that the space �∗b(M,F) of F-basic forms on M
is a subcomplex of �∗(M) with respect to d. Hence we can take the cohomology
group, which is called a basic cohomology group of foliation (M,F) and denote it by
H∗b (M,F). We also denote by H

∗
b(M,F) the image of H∗b (M,F) in H∗dR(M) via the

natural inclusion from �∗b(M,F) into �∗(M). The identity (1) then proves that the

k-class is independent of the choice of ω modulo H
∗
b(M,F).

It may appear that it depends on the choice of the preferred covering space M̃ .
Given such a covering space M̃ , we can take a surjective covering projection to M̃
from the universal covering space M̃o. We then consider the pullback of ω to M̃o

instead of ω. Applying the same argument as above, we can conclude that the resulting
class is also independent of the choice of M̃ . We have thus proved the following:

Theorem 3.3 Let (M,F) be a C∞-foliation satisfying the conditions T) and P) above.
The k-class associated to ω is independent of the choice of ω and M̃ when it is consid-
ered as the following element:

k = [log ρω] ∈ H1
dR(M)/H

1
b(M,F).

Put
H =

⋂
α

ker[α : H1(M;Z)→ R] ⊂ H1(M;Z)

where α is arbitraryF-basic closed 1-form on M . We then obtain a numerical invariant
of (M,F).

Definition 3.4 The K-set of C∞-foliation (M,F) is defined by

K (M,F) = im [k : H → R] ⊂ R.

If there does not exist ω satisfying the conditions, we set K (M,F) = ∅.

Obviously the K-set is a subgroup of R and an invariant of C∞-foliation (M,F)

satisfying the conditions T) and P). Recall that k is defined as a de Rham cohomology
class modulo the image of the basic cohomology group of (M,F); however, we note
that k yields a dual map without ambiguity once it is restricted to H .

In general it is not easy to calculate the basic cohomology group of (M,F). How-
ever, the situation is very simple in our case.

Example 3.5 Let (M,F) be the foliated bundle H×
�
J/λZ → # described in Section

2. First we shall prove that the foliation F satisfy the conditions T) and P).
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There is a natural identification between the jet bundle J and the product space
S1 × R+:

y∂/∂x ∈ J ⊂ Tx S
1 ←→ (x, y) ∈ S1 × R+.

Let γ denote an orientation-preserving diffeomorphism of S1 which acts on J . The
induced action on J is given by

γ · (x, y) = (γ (x), γ ′(x)y).

Here γ ′(x) denotes the derivative of γ at x ∈ S1, which is a positive real number. The
action is a multiplication. Let ω be a volume form on J given by

ω = dx∧dy
y2

.

It yields

γ ∗ω = dγ (x)∧d(γ ′(x)y)
γ ′(x)2y2

= dx∧dy
y2

and follows that ω is invariant with the induced action of γ on J . Let H ×
�

J denote

the orbit space with respect to the diagonal action of �. We then take H ×
�

J as M̃ ,

which is a covering space of M with the deck transformation group Z. The translation
λ · (x, y) = (x, λy) on J gives rise to a generator of Z. Then ω yields a transverse
invariant volume form (M̃, F̃). Since

λ∗ω = dx∧λdy
λ2y2

= λ−1ω,

it follows that
log ρω(n) = −n log λ

for n ∈ Z. Let d log y be the Haar measure on R+. Note that it yields a closed form on
M . Set

f : H×
�
J → R, f (z, x, y) = − log y.

We then obtain

δ f (n) = n∗ f − f = − log λn y + log y = −n log λ

and hence
[log ρω] = [log ρω − (d + δ) f ] = [d log y].

Thus the k-class is represented by d log y on M .
With basic differential forms on (M,F), we can prove that there do not exist such

forms on M except for the trivial ones. Thus the quotient group HdR(M)/Hb(M,F)

is isomorphic to the de Rham cohomology group and it follows that H = H1(M;Z).
Note that M is diffeomorphic to ST# × R+/λZ. Obviously the evaluation of the k-
class with homology classes in H1(ST#;Z) is trivial. It then yields
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〈k, [R+/λZ]〉 =
∫ λ

1
d log y = log λ

and hence the K-set is given by

K (M,F) = (log λ)Z.

On the other hand the foliation W ∗-algebra W ∗(Mμ,Fμ) is isomorphic to the hy-
perfinite factor Rλ of type IIIλ and the S-set of Rλ is equal to {0, λn | n ∈ Z}; see
Connes [3] for instance. It seems that these invariants have similar behavior at least for
Rλ. However, the author does not know whether there is a direct relationship between
the S-set and the K-set at this point.
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1 Epistemological introduction

Our representation of the universe evolved with time, based on experimental data and
the interpretation we gave them. That is particularly true of the concepts of space and
time, around which this text is centered—even if the definition of the word time may
not be quite the same in both instances.

More generally, mathematics arose as an abstraction of our representations of the
physical universe. The language it developed was in turn seminal for a better formu-
lation of that representation, but a Babel tower effect can be perceived almost from
the start. Indeed, as Sir Michael Atiyah said (after Oscar Wilde in 1887 about UK and
US) in his closing lecture of the 2000 International Congress in Mathematical Physics
(with examples taken from algebraic geometry), “Mathematics and Physics are two
communities separated by a common language.” In the best cases, physicists speak
the mathematical language with a distinctive accent that mathematicians may have a
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hard time to understand while, as said by Goethe, mathematicians are like Frenchmen:
they translate everything into their own language, and henceforth it is something en-
tirely different. Being originally a French mathematician, I shall do my best to bring a
counterexample to that affirmation.

Mathematics proceeds by logical deduction: If A, and A implies B, then B. In
other words, A is a sufficient condition for B to hold. As simple as that sentence may
seem, it is often distorted in ordinary life where (for external reasons) one is tempted
to take for necessary a sufficient condition. Schematically that can be expressed as
follows: Given that A implies B, if I find B nice (thus want A because it will give
me B), then A. The subtle logical mistake is perpetrated by almost all in experimental
sciences when building models.

The need for modelling is as old as Science: more and more data are being collected
and it is natural to try and put some order there. So from experimental data E one
imagines a model M that can explain them. Eventually (with deeper intuition) it may
be possible to show that the model M is a consequence of more fundamental principles,
a theory T . That is the implicit part, taken for granted by experimental scientists (the
part A implies B above).

Now if new data E1 � E are found that can also be derived from T , i.e., B becomes
nice, the model or theory receives experimental confirmation (then A). One does not
argue with success. The confusion between necessary and sufficient conditions may go
as far as saying that abstract entities involved in T or M were “directly observed” with
the new data: in fact, what has been observed is only a consequence of these entities in
some model. The confusion is enhanced by the fact that nowadays our interpretation
of the raw experimental data is often made within existing models or theories, so that
what we call an experimental result may, in fact, be theory-dependent.

But it often happens that with a larger data set E ′, the new data will not be easily
cast in the existing model. [Cf. a quote attributed [FerW] to Fermi: “There are two
possible outcomes: if the result confirms the hypothesis, you’ve made a measurement.
If the result is contrary to the hypothesis, you’ve made a discovery.”] Then there will
be a need to develop a new model M ′, if possible deriving from a new theory T ′, that
can explain everything observed so far (one should not hope for a definitive theory
of everything). Occasionally a far-sighted scientist may (triggered by some intuition
or logical deduction) imagine the new theory even when there are not yet experimen-
tal data that make it necessary. That can be a dangerous attitude but it may prove
prophetic. A scientist should therefore, even (especially) when everything seems for
the best in the best of possible worlds and many are sure that we can now explain
everything, be always prepared for surprises and have, in the back of his mind, a tune
playing it ain’t necessarily so in relation with the best accepted theories. That is even
more true when trying to block some avenues with “no go” theorems, overlooking the
hypotheses (sometimes hidden) on which they rely or the lack of rigor in their proofs
(see an example in (2.2.2) below).

Towards the end of the XIXth century, with classical Newtonian mechanics and
electromagnetism, many thought we had achieved our understanding of Nature—at
least of Physics. What happened soon afterwards, in particular with quantum mechan-
ics and relativity, shows that deformation theory, developed in an appropriate context,
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can lead us to “deformed” models and theories that fit better newly discovered (or yet
undiscovered) data.

Physical theories have their domain of applicability defined by the relevant dis-
tances, velocities, energies, etc. involved. But the passage from one domain (of dis-
tances, etc.) to another does not happen in an uncontrolled way: experimental phe-
nomena appear that cause a paradox and contradict accepted theories. Eventually a
new fundamental constant enters and the formalism is modified: the attached structures
(symmetries, observables, states, etc.) deform the initial structure to a new structure
which in the limit, when the new parameter goes to zero, “contracts” to the previous
formalism. The question is therefore, in which category do we seek for deformations?
Usually physics is rather conservative and if we start e.g., with the category of associa-
tive or Lie algebras, we tend to deform in the same category. But there are important
examples of generalization of this principle: e.g., quantum groups are deformations of
(some commutative) Hopf algebras.

That is the basis for Flato’s deformation philosophy [Fl82]. The main mathemat-
ical language for it was developed in 1964 by Gerstenhaber [Ge64] with his theory
of deformation of algebras, though its origin can be traced back to Riemann’s surface
theory in the XIXth century, generalized in 1957 in the short paper by Froelicher and
Nijenhuis [FN57] identifying the infinitesimal deformations that led (the fact is ac-
knowledged in [KS58]) to the monumental works of Kodaira and Spencer [KS58] on
deformations of complex analytic structures.

Since the 1970s we have been developing that philosophy in three interrelated di-
rections. The first one, our main concern here, deals with deformations of the under-
lying space-time geometry. Then, at some point, one has to deal with quantum phe-
nomena: In a nutshell the idea is to deform algebras (a linear structure) of physical
observables from commutative to noncommutative, what we called deformation quan-
tization. Incidentally the strategy of noncommutative geometry [Co94] proceeds in a
similar fashion: the idea is to formulate usual (commutative) geometry in a somewhat
unusual way using algebras and related concepts, so as to be able to “plug in” noncom-
mutativity in a natural way. But one cannot do physics (which requires measurements)
without interactions, and their mathematical expression calls for nonlinearities: The
idea is then to deform (in a generalized sense) mathematical structures such as linear
representations of symmetries into nonlinear ones. That is the third aspect of our tril-
ogy [S05C]. It has to be tackled also (if not mainly) at the quantized level; that brings
in formidable mathematical questions (even more so in hyperbolic theories, on non-
compact space-times) posed by the need of renormalization—extracting finite results
from quantities that are, at mathematical face value, infinite. Here again, subtle avatars
of the deformation philosophy are proving seminal, see e.g., [Co06].

2 From Atlas to Galileo and Newton to Einstein and Planck

2.1 Deformations

The discovery of the non-flat nature of Earth may be the first example of the appear-
ance of deformation theory in our representation of the physical space. Interestingly at
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first, in contradistinction with the commonly accepted idea until that time (ca. 550 BC),
Pythagoras emitted the theory that all celestial bodies (including the earth) are spheri-
cal. He did that apparently on aesthetic grounds (nowadays we would say that this was
a theoretical prediction). Two centuries later, Aristotle provided (indirect) physical ev-
idence for a spherical Earth. Finally, around 240 BC, Eratosthenes proved experimen-
tally that our Earth is not a plate, carried by a giant called Atlas in Greek mythology,
but is spherical; he even used mathematics (geometry) to interpret the data and eval-
uate its circumference to be 252,000 stades, very close to our present knowledge. So
we have a theoretician who comes up with a revolutionary idea, later indirectly proved
by a phenomenologist and finally confirmed by direct observation. (The case of parity
violation in particle physics is not very different, except for the time scale between
events!)

Closer to us, the paradox coming from the Michelson and Morley experiment
(1887) was resolved in 1905 by Einstein with the special theory of relativity. In mod-
ern language one can express that by saying that the Galilean geometrical symmetry
group of Newtonian mechanics (SO(3) · R3 · R4) is deformed to the Poincaré group
(SO(3, 1) · R4) of special relativity, the new fundamental constant being c−1 where c
is the velocity of light in vacuum. Time has to be treated on the same footing as space,
expressed mathematically as a purely imaginary dimension. Here, experimental need
triggered the theory.

All this is by now well known and a century old, so we shall not develop it any
further. But, interestingly, only after the work of Gerstenhaber [Ge64] was it realized
that the passage from nonrelativistic to relativistic physics can be interpreted as a de-
formation in that precise mathematical sense, even if a kind of inverse (a “contraction”
[IW53, WW00] c−1 → 0) has been intuitively understood for many years. The fact
triggered strong interest for deformation theory in France among a number of theoret-
ical physicists, including Flato who had just arrived from the Racah school and knew
well the effectiveness of symmetry in physical problems. He was soon to realize that,
however important symmetry is as a notion and a tool in a mathematical treatment of
physical problems, it is not the only one and should be complemented with other (often
related) concepts. The notion of deformation can be applied to a variety of categories
that are used to express mathematically the physical reality.

For completeness, let us give a concise form of the definition of deformations of
algebras, in the sense of Gerstenhaber [Ge64, BGGS] (more general forms exist, see
e.g., [Na98]):

Definition 1 A deformation of an algebra A over a field K is an algebra Ã (flat) over
K[[ν]] such that Ã/ν Ã ≈ A. Two deformations Ã and Ã′ are said to be equivalent if
they are isomorphic over K[[ν]] and Ã is said to be trivial if it is isomorphic to the
original algebra A considered by base field extension as a K[[ν]]-algebra.



The Geometry of Space-Time and Its Deformations from a Physical Perspective 291

2.2 Some facts around symmetries and elementary particle physics

2.2.1 Symmetries and generations

At the same time (if I may write so), i.e., in the mid-1960s, particle physicists were
interested in “internal” symmetries of elementary particles. These were introduced em-
pirically in an attempt to put some order in the increasing number of “elementary” par-
ticles that were discovered in accelerators, a number that was getting so large already
in the early 1950s that one day Enrico Fermi is said [FerW] to have told his student
(and future Nobel Laureate) Leon Lederman: “Young man, if I could remember the
names of all these particles, I would have been a botanist!”

Symmetries (groups and their representations) have proved seminal in a variety of
physical problems, especially since the advent of quantum mechanics [We28]. In this
domain the feedback from physics into mathematics, and vice-versa, has been essential
(cf. e.g., [Wi39] and the monumental works of Harish Chandra, originally a physicist).
In molecular and atomic spectroscopy the forces are well understood and the symme-
tries dictated by the physical problems studied (e.g., SU (2), the spin group of 3-space,
and finite subgroups associated with crystals, studied by the Racah school [Fl65]).
The idea was to use similar methods in what can be called particle spectroscopy and
regroup them in “supermultiplets” based on finite dimensional unitary irreducible rep-
resentations (UIR) of compact Lie groups—hopefully as a first step towards a more
dynamical theory.

At first, because of the isospin I , a quantum number separating proton and neutron
introduced (in 1932, after the discovery of the neutron) by Heisenberg, SU (2) was
tried; then in 1947 a second generation of “strange” particles started to appear and in
1952 Pais suggested a new quantum number, the strangeness S. (See a nice account of
the situation in the early 1960s in [Sa64]; in 1975 a third generation was discovered,
associated e.g., with the τ lepton, and its neutrino ντ first observed in 2000.) In the
context of what was known in the 1960s, a rank 2 group was the obvious thing to try
and introduce in order to describe these “internal” properties; that is how in particle
physics theory appeared the simplest simple group of rank 2, SU (3), which subsists
until now in various forms.

2.2.2 Space-time and internal symmetries

A natural question was then to study the relation (if any) of this internal world with
space-time (relativity). That was, and still is a hard question. (E.g., combining the
present Standard Model of elementary particles with gravitation is until now some
quest for a Holy Grail.) Negating any connection, at least at the symmetry level, was
a comfortable way out—especially when one has to convince politicians to fund the
expensive apparatus needed in high energy physics (which turned out to have very
positive if unexpected by-products, from medical physics to the World Wide Web).

For many, the proof of a trivial relation was achieved by what is often called the
O’Raifeartaigh Theorem [OR65], a “no go theorem” stating that any finite-dimensional
Lie algebra containing the Poincaré Lie algebra and an “internal” Lie algebra must
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contain these two as a direct product. The proof was based on the nilpotency of the
Poincaré energy-momentum generators but implicitly assumed the existence of a com-
mon invariant domain of differentiable vectors, something which Wigner was careful
to state as an assumption in his seminal paper [Wi39] and was proved later for Ba-
nach Lie group representations by (in his own words) “a Swedish gentleman” [Gå47].
Indeed one has to be careful with no go theorems. Shortly after [OR65] a couple of
trouble-makers showed in a provocative Letter [FS65] that the result was not proved in
the generality it was stated, then exhibited a number of counterexamples [FS66, FS69].
In the latter paper we also mention that another, more sophisticated, attempt to prove
a direct product relation [CM67] contained an implicit hypothesis, hidden in the nota-
tion, that basically presupposed the result claimed to be proved.

We know at present that the situation is much more complex, especially when
dynamics has to be introduced in the theory. Nevertheless one cannot and should not
rule out a priori any relation between space-time and internal symmetries. We shall
sketch in Section 3 some recent and ongoing research based on such a nontrivial subtle
relation.

2.2.3 Infinite-dimensional groups

The above mentioned counterexamples are basically infinite-dimensional groups, ei-
ther generated by the one-parameter groups of “local” (i.e., nonexponentiable to rep-
resentations of the corresponding Lie group) representations of finite-dimensional Lie
algebras containing the Poincaré (inhomogeneous Lorentz) Lie algebra, or explicitly
infinite-dimensional Lie algebras exponentiable to Banach or Fréchet Lie groups. In
spite of the fact that fields with an infinity of components are known to exhibit some
problems, they appear recurrently in theoretical physics in a variety of contexts.

Interestingly that period (the second half of the 1960s) saw a strong renewal of
interest, from a variety of perspectives, in infinite-dimensional Lie groups, a subject
that had been more or less dormant since the fundamental works of Lie and Cartan at
the beginning of last century. See for instance (in the Lie–Cartan line) [GS64, Ri66],
the now classic Kac–Moody algebras [Ka68, Mo68] and their many avatars, and the
very original works by Omori from the same time, a nice exposition of which can be
found e.g., in [Om74].

2.3 Quantization as a deformation

The need for quantization appeared for the first time around 1900 when, faced with
the impossibility to explain otherwise the black body radiation, Planck proposed the
quantum hypothesis: the energy of light is not emitted continuously but in quanta pro-
portional to its frequency. He wrote h for the proportionality constant which bears
his name. This paradoxical situation got a beginning of a theoretical basis when, in
1905, Einstein came with the theory of the photoelectric effect. Around 1920 Louis de
Broglie was introduced (among other things) to the photoelectric effect in the labora-
tory of his much older brother, Maurice de Broglie. This led him, in 1923, to his discov-
ery of the duality of waves and particles, which he described in his celebrated Thesis
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published in 1925, and to what he called ‘mécanique ondulatoire’. Physicists pub-
lishing in German, in particular Weyl, Heisenberg and Schrödinger, and Niels Bohr,
transformed it into the quantum mechanics that we know, where the observables are
operators in Hilbert spaces of wave functions—and were led to its probabilistic inter-
pretation that neither Einstein nor de Broglie were at ease with.

Intuitively, classical mechanics is the limit of quantum mechanics when h̄ = h
2π

goes to zero. But how can this be realized when in classical mechanics the observables
are functions over phase space (a Poisson manifold) and not operators? The deforma-
tion philosophy promoted by Flato shows the way: one has to look for deformations of
algebras of classical observables, functions over Poisson manifolds, and realize there
quantum mechanics in an autonomous manner. That is what we have done since the
1970s and is now called deformation quantization. Some recent reviews on the sub-
ject including its many avatars, from various perspectives with appropriate details, can
be found in [DS01, S05A, S05C, S05L]. We shall not repeat them here. Among its
avatars are quantum groups, noncommutative geometry [Co94] and quantized mani-
folds. These are a central theme in the program, much of which remains to be devel-
oped, that we shall sketch at the end of the next section.

3 Possible quantized anti de Sitter structures in the microworld

3.1 The context and an overview

At our distances, for most practical matters, the theory of special relativity is rele-
vant. The corresponding space-time is Minkowski space, a 4-dimensional flat space
R4 endowed with a hyperbolic metric. A natural question is therefore to ask whether
that structure can be deformed. General relativity, introduced by Einstein in 1916, has
done just that, somewhat like the passage from flat to spherical Earth but with differ-
ent motivation (incorporating gravitation): Space-time is a curved Lorentzian mani-
fold. Those with constant nonzero curvature are of special interest. At cosmological
distances, there is at present reasonable experimental evidence that the curvature (or
cosmological constant in Einstein equations) is positive. If constant, that is called a de
Sitter universe and the Poincaré group of special relativity is deformed to the de Sitter
group SO(1, 4), one of the two simple groups it can be deformed to, and “the buck
stops there” in the category of Lie groups or algebras.

Elementary particles are traditionally (since Wigner [Wi39]) associated, in Min-
kowski space, with UIR of the Poincaré group (massive or massless). In these the
energy operator (generator of time translations) is bounded below, as it should be. That
does not happen with SO(1, 4) but it does with the ultrahyperbolic version SO(2, 3),
symmetry of anti de Sitter universe AdS4 with negative curvature. We (and others)
have therefore suggested that, at least at “small” distances, our universe might have
a tiny negative curvature. At both the kinematical and dynamical levels this brings
in very interesting new features, such as the possibility of considering the photon as
composite of more fundamental particles (the Dirac singletons) in a manner compatible
with Quantum Electrodynamics [FF88], and maybe also e.g., the leptons [Fr00].
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But we know that, in the category of Hopf algebras, algebras of functions over
a simple Lie group or their topological duals, completed universal enveloping alge-
bras (see e.g., [BGGS]) can be deformed to quantum groups. It is thus tempting to
try and introduce the quantum group SOq(3, 2). It turns out that again new features
appear, such as the existence of finite-dimensional UIR for q an even root of unity
[FHT93, Sc98]. One is thus tempted to deform also space-time once more, to a quan-
tum analogue of AdS4, an ultrahyperbolic version (to be developed) of the quan-
tum spheres recently studied extensively by Connes and Dubois-Violette (see e.g.,
[CoDV]). It is in line with recent attempts aiming at developing field theory on quan-
tized space-time, which could be the structure needed at very small distances, e.g.,
around the Planck length (6 10−32 cm). That is the program we shall now present.

3.2 Deforming Minkowski to anti de Sitter

In line with our deformation philosophy one is led to consider the possibility that
our Minkowski flat space-time is deformed with a tiny curvature. In the spirit of the
strategy of deformation quantization and noncommutative geometry, albeit here in the
commutative context, that intuitive geometric notion may be expressed by deforming
in a subtle way (because the Harrison cohomology can be trivial) as in [Fr01] the co-
ordinate algebra A = C0[x0, . . . , x3] of polynomial functions over Minkowski space
without constant term into a subalgebra of the coordinate algebra of polynomial func-
tions on AdS4. Such an approach could be useful in quantizing AdS4 (see (3.3) below).

However, dealing with elementary particles, it is natural to see first what happens
with the UIR of the Poincaré group, especially those associated with free particles as
described by Wigner [Wi39]. As we have explained above, there are problems with
that interpretation when a positive curvature is introduced. This does not contradict
the fact that a positive curvature can be present at cosmological distances, e.g., due to
the presence of matter; it only means that a group like SO(1, 4) does not have a good
particle interpretation, consistent with the flat space limit.

It turns out that with the negative curvature deformation, not only these problems
do not appear, but there are significant advantages (see e.g., [AFFS, FF88, FFS99,
Fr00]). The strategy is the following. SO(2, 3) group representation theory shows
us that the UIR which, for many good reasons (see e.g., [AFFS]), should be called
massless, are (in contradistinction with the flat space limit) composed of two more
degenerate UIR of (the covering of) SO(2, 3), discovered by Dirac [Di63] who called
them singletons. We denoted them Di and Rac, on the pattern of Dirac’s “bra” and
“ket”. They are the massless representations of the Poincaré group in 1+2 dimensional
space-time, where SO(2, 3) is the conformal group (AdS4/CFT3 correspondence).

3.2.1 Kinematically composite massless particles in anti de Sitter space

More precisely, we denote by D(E0, s) the minimal weight representations of the
twofold covering of the connected component of the identity of SO(2, 3). Here E0
is the minimal SO(2) eigenvalue and the half-integer s is the spin. These irreducible
representations are unitary provided E0 ≥ s+1 for s ≥ 1 and E0 ≥ s+ 1

2 for s = 0 and
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s = 1
2 . The massless representations of SO(2, 3) are defined (for s ≥ 1

2 ) as D(s+1, s)
and (for helicity zero) D(1, 0)⊕D(2, 0). At the limit of unitarity (when going down in
the values of E0) the Harish Chandra module D(E0, s) becomes indecomposable and
the physical UIR appears as a quotient, a hallmark of gauge theories. For s ≥ 1 we get
in the limit an indecomposable representation D(s+ 1, s)→ D(s+ 2, s− 1), a short-
hand notation [FF88] for what mathematicians would write as a short exact sequence
of modules.

For s = 0 and s = 1
2 , the above mentioned gauge theory appears not at the level of

the massless representations D(1, 0)⊕D(2, 0) and D( 32 ,
1
2 ) but at the limit of unitarity,

the singletons Rac = D( 12 , 0) and Di = D(1, 1
2 ). These UIR remain irreducible on

the Lorentz subgroup SO(1, 3) and on the (1+2)-dimensional Poincaré group, of which
SO(2, 3) is the conformal group. The singleton representations have a fundamental
property: (Di ⊕ Rac) ⊗ (Di ⊕ Rac) = (D(1, 0) ⊕ D(2, 0)) ⊕ 2

⊕∞
s=1/2 D(s +

1, s). Note that all the representations that appear in the decomposition are massless
representations. Thus, in contradistinction with flat space, in AdS4, massless states are
“composed” of two singletons. The flat space limit of a singleton is a vacuum and,
even in AdS4, the singletons are very poor in states: their (E, J ) diagram has a single
trajectory (hence their name). In normal units a singleton with angular momentum J
has energy E = (J + 1

2 )ρ, where ρ is the curvature of the AdS4 universe. This means
that only a laboratory of cosmic dimensions can detect a J large enough for E to
be measurable. Elementary particles would then be composed of two, three or more
singletons and/or anti singletons (the latter being associated with the contragredient
representations). As with quarks, several (at present three) flavors of singletons (and
anti singletons) should eventually be introduced to account for all elementary particles.

3.2.2 Quantum Electrodynamics with composite photons

Dynamics require in particular the consideration of field equations, initially at the first
quantized level, in particular the analogue of the Klein–Gordon equation in AdS4 for
the Rac. There, as can be expected of massless (in 1+2 space) representations, gauges
appear, and the physical states of the singletons are determined by the value of their
fields on the cone at infinity of AdS4 (see below; we have here a phenomenon of
holography [tH93], in this case an AdS4/CFT3 correspondence).

We thus have to deal with indecomposable representations, triple extensions of
UIR, as in the Gupta–Bleuler (GB) theory, and their tensor products. [It is also de-
sirable to take into account conformal covariance at these GB-triplets level, which
in addition permits distinguishing between positive and negative helicities (in AdS4,
the time variable being compact, the massless representations of SO(2, 3) of helicity
s > 0 contract (resp. extend in a unique way) to massless representations of helicity
±s of the Poincaré (resp. conformal) group.] The situation gets therefore much more
involved, quite different from the flat space limit, which makes the theory even more
interesting.

In order to test the procedure it is necessary to make sure that it is compatible
with conventional Quantum Electrodynamics (QED), the best understood quantum
field theory, at least at the physical level of rigor since from the point of view of
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strict mathematical rigor there is still work to be done. [Only recently was classical
electrodynamics rigorously understood; by this we mean the proof of asymptotic com-
pleteness and global existence for the coupled Maxwell–Dirac equations, and a study
of the infrared problem; that was done [FST97] with the third aspect of the trilogy
mentioned at the end of Section 1, a theory of nonlinear group representations, plus a
lot of hard analysis using spaces of initial data suggested by the group representations.]

One is therefore led to see whether QED is compatible with a massless photon
composed of two scalar singletons. For reasons explained e.g., in [FFS99] and refer-
ences quoted therein, we consider for the Rac, the dipole equation (� − 5

4ρ)
2φ = 0

with the boundary conditions r1/2φ < ∞ as r → ∞, which carries the indecom-
posable representation D( 12 , 0) → D( 52 , 0). A remarkable fact is that this theory is a
topological field theory; that is [FF81], the physical solutions manifest themselves only
by their boundary values at r → ∞: lim r1/2φ defines a field on the 3-dimensional
boundary at infinity. There, on the boundary, gauge invariant interactions are possible
and make a 3-dimensional conformal field theory (CFT).

However, if massless fields (in four dimensions) are singleton composites, then sin-
gletons must come to life as 4-dimensional objects, and this requires the introduction
of unconventional statistics (neither Bose–Einstein nor Fermi–Dirac). The requirement
that the bilinears have the properties of ordinary (massless) bosons or fermions tells
us that the statistics of singletons must be of another sort. The basic idea is [FF88]
that we can decompose the Rac field operator as φ(x) = ∑∞

−∞ φ j (x)a j in terms
of positive energy creation operators a∗ j = a− j and annihilation operators a j (with
j > 0) without so far making any assumptions about their commutation relations. The
choice of commutation relations comes later, when requiring that photons, considered
as 2-Rac fields, be Bose–Einstein quanta, i.e., their creation and annihilation operators
satisfy the usual canonical commutation relations (CCR). The singletons are then sub-
ject to unconventional statistics (which is perfectly admissible since they are naturally
confined), the total algebra being an interesting infinite-dimensional Lie algebra of a
new type, a kind of “square root” of the CCR. An appropriate Fock space can then be
built. Based on these principles, a (conformally covariant) composite QED theory was
constructed [FF88], with all the good features of the usual theory—however about 40
years after QED was developed by Schwinger, Feynman, Tomonaga and Dyson.

3.2.3 Composite leptons and massive neutrinos

After QED the natural step is to introduce compositeness in electroweak theory. Along
the lines described above, that would require finding a kind of “square root of an
infinite-dimensional superalgebra,” with both CAR (canonical anticommutation rela-
tions) and CCR included: The creation and annihilation operators for the naturally
confined Di or Rac need not satisfy CAR or CCR; they can be subject to unusual
statistics, provided that the two-singleton states satisfy Fermi–Dirac or Bose–Einstein
statistics depending on their nature. We would then have a (possibly Z-)graded algebra
where only the two-singleton states creation and annihilation operators satisfy CCR or
CAR. That has yet to be done. Some steps in that direction have been initiated but the
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mathematical problems are formidable, even more so since now the three generations
of leptons have to be considered.

But here a more pragmatic approach can be envisaged [Fr00], triggered by recent
experimental data which indicate that there are oscillations between various flavors of
neutrinos. The latter would thus not be massless. This is not as surprising as it seems
from the AdS point of view, because one of the attributes of masslessness is the pres-
ence of gauges. These are group theoretically associated with the limit of unitarity in
the representations diagram, and the neutrino is above that limit in AdS: the Di is at the
limit. Thus, all nine leptons can be treated on an equal footing. One is then tempted to
arrange them in a square table and consider them as composites, writing L A

B = RADB .
(We know, but do not necessarily tell phenomenologists in order not to scatter them
away with a high brow theory, that they are Rac-Di composites.) In this empirical
approach, the vector mesons of the electroweak model are Rac-Rac composites and
the model predicts a new set of vector mesons that are Di-Di composites and play
exactly the same role for the flavor symmetry UF (2) as the weak vector bosons do for
the weak groupUW (2). A set of (maybe five pairs of) Higgs fields would have Yukawa
couplings to the leptons currents and massify the leptons (and the vector mesons and
the new mesons.) This attempt has been developed in part in [Fr00] (Frønsdal and I are
still pursuing that direction) and is qualitatively promising. In addition to the neutrino
masses it could explain why the Higgs has so far escaped detection: instead of one
“potato” one has a gross purée of five, far more difficult to isolate from background.
Quantitatively however its predictive power is limited by the presence of too many free
parameters.

Maybe the addition to the picture of a deformation induced by the strong force and
of the 18 quarks, which (with the nine leptons) could be written in a cube and also con-
sidered composite (of maybe three constituents when the strong force is introduced),
would make this “composite Standard Model” more predictive. But introducing the
hadrons (strongly interacting particles) brings in a significant quantitative change that
could require a qualitative change, e.g., some further deformation.

Moreover it is one thing to explain abstractly that matter is composed of initially
massless particles that are massified by some mechanism, and another to describe
where, when and how that baryogenesis occurs. In the next subsection we shall sketch
a framework in which these questions could be addressed.

3.3 Quantizing locally anti de Sitter

Since around 1980 and until now, ’t Hooft has been interested in combining quantum
mechanics and black holes, using tools that a theoretical physicist can understand; see
[tH85, tH05] among many. The first time I heard about it was at a conference in Stock-
holm in September 1980 when, dry jokingly, he called that “quantum meladynamics.”
In contrast with what was (until recently) conventional wisdom, he came early to the
conclusion that one can get some information on black holes by communication at their
surface, albeit with information loss. (“That is what we found about Nature’s book
keeping system: the data can be written onto a surface, and the pen with which the
data are written has a finite size” [tH00].) This has lead him to two important notions,
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also in which he was a pioneer. The first is the principle of holography [tH93, tH00],
which tells us that in some circumstances physics “in the bulk” is determined by what
happens at the boundary; the AdS/CFT correspondence is a manifestation of it, being
a very elaborate version of the fact that the anti de Sitter group SO(2, n) is the con-
formal group of (1 + n)-dimensional space-time (we have seen it above for n = 3; it
was given that name after its appearance in String Theory, for n = 4, conjectured by
Maldacena in 1997 and proved in part by Witten in 1998, see also [FF98] in a form
closer to our context). The second is the idea (shared with many) that at very small
distances, space-time should be quantized, see e.g., [tH96].

Until now we have seen a number of instruments making use of various aspects of
deformation theory. For the “finale” of this paper we shall play all of them together—
hopefully in a way that will reflect Kepler’s Harmonia Mundi. At this stage the mo-
tivation (like that of Pythagoras, if I may use the comparison) is essentially aesthetic.
Some may call it Science Fiction.

One Ansatz is that, at least in some regions of our universe, our Minkowski space-
time is, at very small distances, both deformed to anti de Sitter and quantized, to qAdS.
These regions would appear as black holes, from which matter would emerge. That
matter could then be responsible, at very large distances, for a positive cosmological
constant, consistent with recent data. For cosmological experimental reasons, there
would be few (if any) such black holes in our extended neighborhood of the universe.
But there could be many of these at the edge of our expanding universe. In line with
’t Hooft’s ideas, we would get an idea of what is inside through interactions at the
boundary.

Another Ansatz is that “inside” these qAdS black holes, some kind of singletons
would exist or be created. At their boundary (where both q → 1 and curvature would
vanish) massless 2-singleton states would interact with dark matter which according
to what is now believed constitute about 23% of the universe, and/or with dark energy
which constitutes 73% of it (the matter that we know representing only 4%). In a way
similar to the Higgs mechanism, that would massify these states and create matter. It
is a picture of a universe in constant creation.

There are a number of mathematical questions, interesting in themselves, to ad-
dress in order to make this “double deformation theory” plausible. First, one should
study the ultrahyperbolic version qAdS4 of the 4-spheres considered in [CoDV]. That
is in progress (in particular with Pierre Bieliavsky and coworkers); first indications are
that the theory could be simpler than in the case of quantized spheres. One should look
more closely at the representation theory of the quantum group SOq(2, 3), in particular
study what becomes there of the singletons and what are those special finite dimen-
sional UIR (when q is even root of unity). The existence of the latter suggests that
these quantized spaces qAdS4 might be considered in some sense as “q-compact” or
“q-bounded” (in general topological vector spaces the two notions are not equivalent).
That also needs to be studied more carefully, as well as what happens at the double
limit.

On the physical side, a possibly new field theory has to be developed in relation
with the above deformed and quantized space-time. It could be that “inside” (whatever
that may mean) these qAdS black holes are the extra dimensions of String Theory and
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other higher dimensional theories, the field theories of which would need to be adapted
to the present construct. It may even be that most of our present ideas on black holes
will have to be revised, as in the challenging approach which is now being developed
by Frønsdal [Fr05]. The attempts made to a field theory of singletons would also need
to be adapted to the q-deformed context. The hope, of course, is that deforming and
quantizing space-time would reduce the ambiguities and infinities of the usual theories.
That is easier said than done, but these problems are worthy of attack—and are likely
to prove their worth by hitting back. Whatever the physical outcome is, some very
nice mathematics can be expected. That’s enough for us (dayenu in Hebrew, as is
traditionally said at Passover).
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[WW00] E. Weimar-Woods, Generalized Inönü-Wigner contractions and deformations of
finite-dimensional Lie algebras, Rev. Math. Phys. 12 (2000), 1505–1529.

[We28] H. Weyl, The theory of groups and quantum mechanics, Dover, New-York 1931, edited
translation of Gruppentheorie und Quantenmechanik, Hirzel Verlag, Leipzig 1928.

[Wi39] E. Wigner, On unitary representations of the inhomogeneous Lorentz group, Ann. of
Math. (2) 40 (1939), 149–204.





Geometric Objects in an Approach to Quantum
Geometry

Hideki Omori1, Yoshiaki Maeda∗,2, Naoya Miyazaki∗∗,3, and Akira Yoshioka∗∗∗,4

1 Department of Mathematics, Tokyo University of Science, Noda, Chiba, 278-8510, Japan;
omori@ma.noda.tus.ac.jp

2 Department of Mathematics, Faculty of Science and Technology, Keio University, Hiyoshi,
Yokohama, 223-8522, Japan; maeda@math.keio.ac.jp

3 Department of Mathematics, Faculty of Economics, Keio University, Hiyoshi, Yokohama,
223-8521, Japan; miyazaki@math.hc.keio.ac.jp

4 Department of Mathematics, Tokyo University of Science, Kagurazaka, Tokyo, 102-8601,
Japan; yoshioka@rs.kagu.tus.ac.jp

Summary. Ideas from deformation quantization applied to algebra with one generator lead to
the construction of non-linear flat connection, whose parallel sections have algebraic signifi-
cance. The moduli space of parallel sections is studied as an example of bundle-like objects
with discordant (sogo) transition functions, which suggests a method to treat families of mero-
morphic functions with smoothly varying branch points.
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1 Introduction

The aim of this paper is to show that deformation quantization provides us with a new
geometric idea going beyond classical geometry. In fact, there have been several at-
tempts to describe “quantum objects” in a geometric way (cf. [3], [5], [6]), although no
treatment has been accepted as definitive. Motivated by these attempts, we produce a
description of objects which arise from the deformation of algebras, as one approach to
describing quantum mechanics mathematically is via deformation quantization, which
is a deformation of Poisson algebras. Through the construction of the star exponential

∗Partially supported by Grant-in-Aid for Scientific Research (#18204006), Ministry of Edu-
cation, Science and Culture, Japan.
** Partially supported by Grant-in-Aid for Scientific Research (#18540093), Ministry of Edu-

cation, Science and Culture, Japan.
*** Partially supported by Grant-in-Aid for Scientific Research (#17540096), Ministry of Edu-
cation, Science and Culture, Japan.



304 H. Omori et al.

functions of the quadratic forms in the complexWeyl algebra, we found several strange
phenomena which cannot be treated as classical geometric objects (cf. [9], [11], [12],
[13]). Our main concern is to understand how to handle these objects geometrically,
and we hope that our results are a step toward quantum geometry. However, similar
questions arise even for deformations of commutative algebras, as in the case of defor-
mation quantizations. For this reason, in this paper we deal with the simplest case of
the deformation of the associative commutative algebra of polynomials of one variable.

In §2.1, we construct an algebra C∗[ζ ] whose elements of C[ζ ] are parametrized
by the indeterminate κ .

Motivated by deformation quantization, we introduce associative commutative
products on C[ζ ] parametrized by a complex number κ (cf. Definition 2.1), which
gives both a deformation of the canonical product and a representation parameterized
by κ of C.

Our standpoint formulated in § 2.1 is to view elements in the abstract algebra C∗[ζ ]
as a family of elements. The deformation parameter κ is viewed as an indeterminate.

One method of treating this family of elements as geometric objects is to introduce
the notion of infinitesimal intertwiners, which play the role of a connection. In fact,
elements of C∗[ζ ] can be viewed as parallel sections with respect to this connection.
These elements are called q-number polynomials.

In § 2.2 and § 2.3, we extend this setting to a class of transcendental elements such
as exponential functions. In this setting, the notion of densely defined multi-valued
parallel sections appears crucially. We also call these q-number functions in analogy
with [1]. However, the only geometrical setting possible is to extend the infinitesimal
intertwiners to a linear connection on a trivial bundle over C with a certain Fréchet
space of entire functions.

In § 3 we investigate the moduli space of densely defined parallel sections consist-
ing of exponential functions of quadratic forms. We show that the moduli space is not
an ordinary bundle, as it contains fuzzy transition functions. This has similarities to
the theory of gerbes (cf. [2], [8]).

However, our construction has a different flavor from the differential geometric
point of view, since gerbes are classified by the Dixmier–Douady classes in the third
cohomology over Z, while our example is constructed on the 2-sphere or the complex
plane. We prefer to call this fuzzy object a pile, althoughZ2-gerbes have been proposed
as similar notions (cf.[14]).

We run into a similar situation in quantizing non-integral closed 2-forms on man-
ifolds. As for integral symplectic forms on symplectic manifolds, we can construct a
prequantum bundle, which is a line bundle with connection whose curvature is given
by the symplectic form. We attempt the prequantization of a non-integral closed 2-
form by mimicing our examples describing the moduli space of densely defined multi-
valued parallel sections. We note that Melrose [7] proposed a method handling a type
of prequantization of non-integral closed 2-forms, which seems closely related to our
approach.

In § 5, we give a simple example for treating solution spaces of ordinary differential
equations with movable branch singularities. We introduce an associative product on
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the space of parallel sections of exponential functions of quadratic forms, but this
product is “broken” in the sense that for every κ , there is a singular set on which the
product diverges. Thanks to the movable singularities, this broken product defines an
associative product by treating κ as an indeterminate. This computation provides a
novel aspect of the noncommutative calculus. We also hope that our attempt will help
with the study for solutions of ordinary differential equations with movable branch
singularities.

In the end, our work seems to extend the notion of points as established elements
of a fixed set to a more flexible notion of elements.

2 Deformation of a commutative product

We give an algebra C∗[ζ ] whose elements of C[ζ ] are parametrized by the indetermi-
nate κ . For convenience, we denote by ∗ the product on the algebra C∗[ζ ]. The algebra
C∗[ζ ] is isomorphic to the algebra C[ζ ] of polynomials in ζ over C, but we will view
C∗[ζ ] as a family of algebras which are mutually isomorphic.

2.1 A deformation of commutative product on C[ζ ]

We denote the set of polynomials of ζ viewed as a linear space by P(C). We introduce
a family of product ∗κ on P(C) parametrized by κ ∈ C as follows.

Definition 2.1 For every f, g ∈ P(C), we set

f ∗κ g =
∞∑
�=0

1

�!

(κ
2

)�
∂�
ζ f (ζ ) · ∂�

ζ g(ζ ).

Then (P(C), ∗κ) is an associative commutative algebra for every κ ∈ C. Since putting
κ = 0 gives the algebra C[ζ ], the family of algebras {(P(C), ∗κ)}κ∈C gives a defor-
mation of C[ζ ] within associative commutative algebras. We note the following.

Lemma 2.2 For every κ, κ ′ ∈ C, the algebras (P(C), ∗κ) and (P(C), ∗κ ′) are mutu-
ally isomorphic. Namely, the mapping T κ ′

κ : P(C)→ P(C) given by

T κ ′
κ ( f ) =

(
exp

1

4
(κ ′ − κ)∂2ζ

)
f (ζ ) =

∞∑
�=0

1

�!

(1
4
(κ ′ − κ)

)�
(∂2�ζ ) f (ζ ) (1)

satisfies T κ ′
κ ( f ∗κ g) = T κ ′

κ ( f ) ∗κ ′ T κ ′
κ (g).

Definition 2.3 The isomorphism T κ ′
κ given by (1) is called the intertwiner between

the algebras (P(C), ∗κ) and (P(C), ∗κ ′).
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Taking the derivative in κ ′ for T κ ′
κ defines an infinitesimal intertwiner. Namely, for

κ ∈ C we set

tκ(u)( f ) = d

ds

∣∣
s=0T

κ+su
κ ( f ) = 1

4
u∂2ζ f. (2)

The infinitesimal intertwiner gives a realization ofC∗[ζ ] as follows. Let π : C×P(C)→
C be the trivial bundle over C, and �(C×P(C)) the set of sections of this bundle.
Using the infinitesimal intertwiner defined by (2), we introduce a connection ∇ on
�(C×P(C)): For a smooth curve c(s) in C and γ ∈ �(C×P(C)), we set

∇ċγ (s) = d

ds
γ (c(s))− tc(s)(ċ(s))(γ (c(s)), where ċ(s) = d

ds
c(s). (3)

Definition 2.4 A section γ ∈ �(C×P(C)) is parallel if ∇γ = 0. We denote by
S(C×P(C)) the set of all parallel sections γ ∈ �(C×P(C)).

Let us consider an element f∗ ∈ C∗[ζ ]. Corresponding to the unique expression of an
element f∗ ∈ C∗[ζ ] as

f∗ =
∑

a j ζ∗ · · · ∗ζ︸ ︷︷ ︸
j-times

(finite sum), a j ∈ C,

we set the element fκ ∈ P(C) for κ ∈ C by

fκ =
∑

a j ζ ∗κ · · · ∗κ ζ︸ ︷︷ ︸
j-times

(finite sum), a j ∈ C.

The section γ f∗(κ) = fκ gives a parallel section of the bundle π : C×P(C)→C.
Using the product formula ∗κ , we define a product ∗ on S(C×P(C)) by

(γ1∗γ2)(κ) = γ1(κ) ∗κ γ2(κ), γ1, γ2 ∈ S(C×P(C)). (4)

Lemma 2.5 (S(C×P(C)), ∗) is an associative commutative algebra.

This procedure gives an identification of the algebra (S(C×P(C)), ∗) with C∗[ζ ]. El-
ements of (S(C×P(C)), ∗) will be called q-number polynomials. Although the space
of parallel sections could also be defined as the space of leaves of a foliation, we at-
tempt to give examples via deformations as alternative geometric objects.

2.2 Strange exponential functions

We now extend this procedure to exponential functions. For f∗ ∈ C∗[ζ ], we want to
describe the star exponential functions exp∗ f∗, which may be a highly transcendental
element.

Let E(C) be the set of all entire functions on C. For p > 0, we set
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Ep(C) = { f ∈ E(C) | || f ||p,δ = sup
ζ∈C

e−δ|ζ |p | f (ζ )| <∞,∀δ > 0}, (5)

and also set Ep+(C) = ∩q>pEq(C). Then (Ep(C), ∗κ) is a Fréchet commutative as-
sociative algebra for p ≤ 2 (cf. [11]). Recalling the intertwiner T κ ′

κ given by (1), we
have the following [12]:

Lemma 2.6 Let p ≤ 2. The intertwiner T κ ′
κ in (1) canonically extends to a map T κ ′

κ :
Ep(C)→ Ep(C) satisfying

T κ ′
κ ( f ∗κ g) = T κ ′

κ ( f ) ∗κ ′ T κ ′
κ (g) for every f, g ∈ Ep(C). (6)

We note that while the product ∗κ does not give an associative commutative product
and the intertwiner T κ ′

κ does not extend to Ep(C) for p > 2, the notion of the connec-
tion ∇ is still defined.

Namely, we consider the trivial bundle π : C×E(C) → C over C with the fiber
E(C), and the set of sections �(C×E(C)). For γ ∈ �(C×E(C)), we define a co-
variant derivative ∇ċγ as the natural extension of (3). It is easily seen that ∇ is well
defined for �(C×Ep(C)) and �(C×Ep+(C)) for every p≥0. As before, we denote by
S(C×Ep(C)), S(C×Ep+(C)) the sets of parallel sections.

We wish to treat the star exponential function exp∗ f∗ for f∗ ∈ C∗[ζ ]. As in §2.1,
we have the realization { fκ}κ∈C of f∗ ∈ C∗[ζ ], where fκ ∈ P(C). Fixing the ∗κ prod-
uct gives the star exponential functions of fκ ∈ P(C) with respect to ∗κ as follows.
We consider the evolution equation{

∂t Fκ(t) = fκ(ζ ) ∗κ Fκ(t),
Fκ(0) = gκ .

(7)

If (7) has a real analytic solution in t , then this solution is unique. Thus, we may set
exp∗κ fκ = Fκ(1) when (7) has an analytic solution with Fκ(0) = 1.

By letting κ vary in C, the totality of the star exponential functions {exp∗κ fκ}κ∈C

may be viewed as a natural representation of the star exponential function exp∗ f∗.

As an example, we consider the linear function f (ζ ) = aζ , where a ∈ C. Then
the evolution equation (7) is expressed as{

∂t Fκ(t) = aζ Fκ + κ
2a∂ζ Fκ ,

Fκ(0) = 1.
(8)

By a direct computation, we have

Lemma 2.7 The equation (8) has the solution Fκ(t) = exp(atζ + κ
4a

2t2). Thus, we
may set

exp∗κ tζ = exp(tζ + κ

4
t2) (9)

which is contained in E1+(C) for every κ ∈ C.



308 H. Omori et al.

Since the intertwiner T κ ′
κ is defined on E1+(C), and T κ ′

κ (exp∗κ aζ ) = exp∗κ′ aζ , we
see that {exp∗κ aζ }κ∈C is an element of S(C×E1+(C)). As in §2.1, it is natural to
regard {exp∗κ aζ }κ∈C as the star exponential function exp∗ aζ , which may be called a
q-number exponential function.

From the star exponential functions exp∗κ aζ , we construct a type of delta function
via the star Fourier transform: Namely, we call

δ∗κ (ζ ) =
∫ ∞

−∞
exp∗κ i tζ dt (10)

the ∗κ -delta function. Using (9), we have

Lemma 2.8 The ∗κ -delta function δ∗κ (ζ ) is well defined as an element of E2+(C) for
every κ ∈ C such that Re(κ) > 0.

Using integration by parts, we easily see that

eiθ
∫ ∞

−∞
exp∗κ e

iθ i tζ dt, Re e2iθ κ>0

does not depend on θ whenever Re(e2iθ κ) > 0. This allows us to define δ∗κ (ζ ) ∈
E2+(C) for κ ∈ C− {0}.

Lemma 2.9 The mapping δ∗ : C−{0} → E2+(C) defined by κ→δ∗κ is double-valued.

Proof. We set

δ(ζ ; eiθ , κ) = eiθ
∫ ∞

−∞
exp(ieiθ tζ − κ

4
e2iθ t2)dt. (11)

��������

��������

��������

��������
θ

τ••

Figure 1

Setting κ = eiτ gives that δ(ζ ; eiθ , eiτ )
is well defined on the strip bounded by
θ = −π

2 ± π
4 given in Figure 1. Note that

δ(ζ ; eiθ , κ) depends only on τ in this strip
−π/2<τ+2θ<π/2 and δ(ζ ; eiθ , κ) is a par-
allel section with respect to κ . By varying θ ,
we may move τ from 0 to 2π such that (τ, θ)
is contained in the strip as indicated in the
figure. Moving along such a path from τ = 0
to τ = 2π gives

δ(ζ ; 1, c) =
∫ ∞

−∞
exp(i tζ − 1

4
ct2)dt = −

∫ ∞

−∞
exp(−i tζ − 1

4
ct2)dt = −δ(ζ ; 1, c).

Let us consider the trivial vector bundle over C − {0}. Lemma 2.9 tells us that δ∗(ζ )
can be viewed as a double-valued holomorphic parallel section over C−{0}. Note that
δ(ζ ; 1, c) = 2

√
π√
c
e−

1
c ζ

2
, and limc→0 δ(ζ ; 1, c) gives us the ordinary delta function.
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As seen in the construction of the star delta functions, the notion of densely defined
multi-valued parallel sections arises naturally, which could be handled as leaves of
a foliation. However, as mentioned in §2.1, we prefer to interpret this object as an
alternative geometric notion.

2.3 Star exponential functions of quadratic functions

We set

P(2)(C) = { f (ζ ) = aζ 2 + b | a, b ∈ C},
C(2)
∗ [ζ ] = { f∗(ζ ) = aζ∗ζ ∈ C∗[ζ ] | a ∈ C}.

Thus, we view aζ∗ζ as the section γ (κ) = aζ 2 + a
2κ ∈ �(C×P(2)(C)), where π :

C×P(2)(C)→C is the trivial bundle over C with fiber P(2)(C). We now attempt to
give a meaning to the star exponential function exp∗ aζ∗ζ , a ∈ C along the argument
in §2.1.

We consider a quadratic element f∗ ∈ C(2)
∗ [ζ ]. Then the corresponding polynomial

fκ is given by

fκ = ζ∗κζ = ζ 2 + κ

2
. (12)

As in §2.1, we view { fκ}κ∈C as a parallel section of C×P(2)(C). We consider the
following evolution equation.

∂t Fκ(t) = fκ(ζ ) ∗κ Fκ(t), Fκ(0) = gκ , (13)

where fκ can be given by (12). (13) is rewritten as

∂t Fκ(t) = (ζ 2 + κ

2
)Fκ + κζ∂ζ Fκ + κ2

4
∂2ζ Fκ , Fκ(0) = gκ . (14)

We assume that the initial condition gκ is given by the form gκ = ρκ,0 exp aκ,0ζ 2,
where ρκ,0 ∈ C× = C − {0} and aκ,0 ∈ C. Putting gκ = 1 gives the star exponential
function exp∗κ fκ(ζ ). To solve (14) explicitly, we assume that Fκ is of the following
form:

Fκ(t) = ρκ(t) exp aκ(t)ζ
2. (15)

Plugging (15) into (14), we have⎧⎨⎩ ∂t aκ = 1+ 2aκκ + a2κκ
2,

∂tρκ = κ
2

(
1+ κaκ

)
ρ,

aκ(0) = aκ,0, ρκ(0) = ρκ,0.

(16)

Proposition 2.10 The solution of (16) is given by

aκ(t) = aκ,0 + t (1+ κaκ,0)

1− κt (1+ κaκ,0)
, ρκ(t) = ρκ,0√

1− κt (1+ κaκ,0)
, (17)
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where we note the ambiguity in choosing the sign of the square root in (17). We define
a subset E (2)(C) of E(C) by

E (2)(C) = { f = ρ exp aζ 2 | ρ ∈ C×, a ∈ C}.
Identifying f = ρ exp aζ 2 ∈ E (2)(C) with (ρ, a) gives E (2)(C) ∼= C××C. Note that
E (2)(C) is not contained in E2(C) but in E2+(C), on which the product ∗κ may give
rise to strange phenomena (cf. [12]).

Consider the trivial bundle π : C×E (2)(C) over C with fiber E (2)(C). In particular,
putting aκ,0 = 0, ρκ,0 = 1 and t = a in Proposition 2.10, we see that

exp∗κ aζ∗κζ =
1√

1− aκ
exp

a

1− aκ
ζ 2 (18)

where the right-hand side of (18) still has an ambiguous choice for the sign of the
square root.

Keeping this ambiguity in mind, we have a kind of fuzzy one-parameter group
property for the exponential function of (18). Namely, for gκ = exp∗κ bζ∗κζ , where
b ∈ C, the solutions of (14) yield the exponential law:

exp∗κ aζ∗κζ ∗κ exp∗κ bζ∗κζ =
1√

1− (a + b)κ
e

a+b
1−(a+b)κ ζ

2 = exp∗κ (a + b)ζ∗κζ,
(19)

where (19) still contains an ambiguity in the sign of the square root.

Recall the connection ∇ on the trivial bundle π : C×E(C)→C. It is easily seen
that the connection ∇ gives a specific trivialization of the bundle π : C×E (2)(C)→C.
According to the identification E (2)(C) ∼= C××C, we write γ (κ) = ρ(κ) exp a(κ)ζ 2

as (ρ(κ), a(κ)). Then the equation ∇∂t γ = 0 gives{
∂t a(t) = a(t)2,
∂tρ(t) = 1

2ρ(t)a(t).
(20)

We easily see that (18) gives a densely defined parallel section. As seen in [12], it
should also be considered as a densely defined multi-valued section of this bundle.
Thus, we may view the star exponential function exp∗ aζ∗ζ as a family{

Fκ(ζ ) = 1√
1− aκ

exp
a

1− aκ
ζ 2
}
κ∈C

.

This realization of exp∗ aζ∗ζ is a densely defined and multi-valued parallel section
γ (κ) = ρ(κ) exp a(κ)ζ 2 of the bundle π : C×E (2)(C)→C. In the next section, we
investigate the solution of (20) more closely.

3 Bundle gerbes as a non-cohomological notion

The bundle π : C×E(C)→C with the flat connection ∇ gave us the notion of parallel
sections, where we extended this notion to be densely defined and multi-valued sec-
tions. This is in fact the notion of leaves of the foliation given by the flat connection
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∇. We now analyze the moduli space of densely defined multi-valued parallel sections
of the bundle π : C×E (2)(C)→C with respect to the connection ∇. The moduli space
has an unusual bundle structure, which we would call a pile. We analyse the evolution
equation (20) for parallel sections as a toy model of the phenomena of movable branch
singularities.

3.1 Non-linear connections

First, consider a non-linear connection on the trivial bundle
∐

κ∈C C = C×C over C
given by a holomorphic horizontal distribution

H(κ; y) = {(t; y2t); t ∈ C} (independent of κ). (21)

The first equation of parallel translation (20) is given by dy
dκ = y2. Hence, parallel

sections are given in general by

(κ; y(κ)) =
(
κ; 1

c − κ

)
=
(
κ; c−1

1− c−1κ

)
. (22)

There is also the singular solution (κ; 0), corresponding to c−1 = 0. Note that (κ,− 1
κ
)

is not a singular solution. For consistency, we think that the singular point of the section
(κ, 0) is at∞.

Let A be the set of parallel sections including the singular solution (κ, 0). Every
f ∈ A has one singular point at a point c ∈ S2 = C ∪ {∞}. The assignment of f ∈ A
to its singular point σ( f ) = c gives a bijection σ : A→S2 = C ∪ {∞}. Namely, A is
parameterized by S2 by

σ( f ) = c⇔ f =
(
κ,

1

c − κ

)
, σ ( f ) = ∞⇔ f = (κ, 0) ∈ A. (23)

In this way, we give a topology on A.

Let T κ ′
κ (y) be the parallel translation of (κ; y) along a curve from κ to κ ′. Since

(21) is independent of the base point κ , T κ ′
κ (y) is given by

T κ ′
κ (y) = y

1− y(κ ′ − κ)
, T κ ′

κ (∞) = 1

κ − κ ′
.

We easily see that T κ ′′
κ = T κ ′′

κ ′ T
κ ′
κ , T κ

κ = I. Every f ∈ A satisfies T κ ′
κ f (κ) = f (κ ′)

where they are defined.

3.1.1 Extension of the non-linear connection

We now extend the non-linear connection H defined by (21) to the space C×C2 by
giving the holomorphic horizontal distributions
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H̃(κ; y, z) = {(t; y2t,−yt); t ∈ C} (independent of κ, z). (24)

Parallel translation with respect to (24) is given by the following equations:

dy

dκ
= y2,

dz

dκ
= −y. (25)

For the equation (25), multi-valued parallel sections are given in both ways(
κ,

a

1− aκ
, z + log(1− aκ)

)
,

(
κ,

1

b − κ
,w + log(κ − b)

)
, (a, b ∈ C)

(26)

although they are infinitely valued. The singular solution (κ; 0, z) occurs in the first
expression. The set-to-set correspondence

(a, z + 2π iZ)
ι⇐⇒ (b, w + 2π iZ) = (a−1, z + log a + π i + 2π iZ) (27)

identifies these two sets of parallel sections, which gives multi-valued parallel sections.
However, because of the ambiguity of log a, we can not make this correspondence a
univalent correspondence (cf. Proposition 3.1).

Denote by Ã the set of all parallel sections written in the form (26). Denote by
π3 : Ã→A be the mapping which forgets the last component. This is surjective. For
every v ∈ A such that σ(v) = b = a−1 ∈ S2, we see

π−13 (v) =
{(

κ,
1

b − κ
,w + log(κ − b)

)
;w ∈ C

}
=
{(

κ,
a

1− aκ
, z + log(1− aκ)

)
; z ∈ C

}
.

Since there is one-dimensional freedom of moving, π−13 (v) should be parameterized
by C. However, there is no natural parameterization and there are many technical
choices.

3.1.2 Tangent spaces of Ã
For an element f = (κ, a

1−aκ , z+log(1−aκ)) = (κ, 1
b−κ

, w+log(κ−b)), the tangent

space T f Ã of Ã at f is

T f Ã =
{
d

ds

∣∣∣
s=0

(
a(s)

1− a(s)κ
, z(s)+ log(1− a(s)κ)

)
; (a(0), z(0)) = (a, z)

}
=
{(

ȧ

(1− aκ)2
, ż − ȧκ

1− aκ

)
; ȧ, ż ∈ C

}
=
{( −ḃ

(b − κ)2
, ẇ − ḃ

κ − b

)
; ḃ, ẇ ∈ C

}
.
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Hence [
ḃ
ẇ

]
=
[−a−2 0
a−1 1

] [
ȧ
ż

]
= (dι)(a,z)

[
ȧ
ż

]
, and T f Ã ∼= C2.

Consider now a subspace H f of T f Ã obtained by setting ż = 0 in the definition of
T f Ã. Then, {H f ; f ∈ Ã} is defined without ambiguity 2π iZ, and obviously H f ∼= C.
We regard {H f ; f ∈ Ã} an unambiguously defined horizontal distribution on π3 :
Ã→ A.

The invariance in the vertical direction gives that {H f ; f ∈ Ã} may be viewed as
an infinitesimal trivialization of π3 : Ã→ A.

Parallel translation I κ
′

κ for (25) is given by

I κ
′

κ (y, z) =
(

y

1− y(κ ′ − κ)
, z + log(1− y(κ ′ − κ))

)
,

=
(

1

y−1 − κ ′ + κ
, z + log y + log(y−1 − κ ′ + κ)

)
,

(28)

which is obtained by solving for (25) under the initial data (κ, y, z).
By definition we see I κκ = I , and I κ

′′
κ = I κ

′′
κ ′ I

κ ′
κ , as a set-to-set mapping Every

f ∈ Ã satisfies I κ
′

κ f (κ) = f (κ ′) where they are defined.

Proposition 3.1 Parallel translation via the horizontal distribution {H f : f ∈ Ã}
does not give a local trivialization of π3 : Ã→ A.

Proof. For a point g = (κ, a
1−aκ ) of A, and a small neighborhood Va of a, Ṽa =

{ a′
1−a′κ ; a′ ∈ Va} is a neighborhood of f in A. Consider the set

π−13 (Ṽa) =
{(

κ,
a′

1− a′κ
, z + log(1− a′κ)

)
; a′ ∈ Va, z ∈ C

}
.

The horizontal lift of the curve a′(s)
1−a′(s)κ , a

′(s) = a + s(a′ − a) along the infinitesimal
trivialization is given by solving the equation

d

ds
z(s) = − (a′ − a)κ

1− a′(s)κ
, z(0) ∈ log(1− aκ).

Hence z(s) = log(1−(a+s(a′ −a))κ), and z(1) = log(1−a′κ). Thus it is impossible
to eliminate the ambiguity of log(1−a′κ) on Va , no matter how small the neighborhood
Va is. $%

Proposition 3.1 shows that π3 : Ã → A is not an affine bundle. In spite of this,
one may say that the curvature of its connection vanishes.
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3.1.3 Affine bundle gerbes

Although π3 : Ã→A does not have a bundle structure, we can consider local trivial-
izations by restricting the domain of κ .

(a) Let V∞ = {b; |b|>3} ⊂ S2 be a neighborhood of∞. First, we define a fiber
preserving mapping p∞,D from the trivial bundle π : V∞×C → V∞ into π3 : Ã→ A
such that π3 p∞,D = σ−1π by restricting the domain of κ in a unit disk D: Consider
(κ, a

1−aκ , z + log(1 − aκ)) for (κ, a−1) ∈ D×V∞. Since |aκ|<1/3, log(1 − aκ) is
defined as a univalent function log(1 − aκ) = log |1 − aκ| + iθ , −π<θ<π on this
domain by setting 1− aκ = |1− aκ|eiθ , which will be denoted by log(1− aκ)D×V∞ .
We define

p∞,D (b, z) = (κ,
a

1− aκ
, z + log(1− aκ)), a−1 = b ∈ V∞, z ∈ C (29)

where log(1− aκ) in the right-hand side is the analytic continuation of log(1− aκ) =
log(1− aκ)D×V∞ .

Figure 2
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V∞

D
D′

Vb0
Vb1

Vb−1

Vb−2

Vb2
Vb3

cu

cl
·······

(b) We take a simple covering of the
domain |z| ≤ 3 by unit disks Vb−k , . . . ,
Vb−1 , Vb0 , Vb1 , . . . , Vb� as in Figure 2, and
fix a unit disk D′ apart from all Vbi . We
define a fiber preserving mapping p

Vbi
,D′

from the trivial bundle π : Vbi×C → Vbi
to the bundle π3 : Ã → A such that
π3 pVbi

,D′ = σ−1π by restricting the do-

main of κ in a unit disk D′.
We see that setting κ − b = |κ − b|eiθ , log(κ − b) is defined as a univalent function
on the domain D′×Vbi as log |κ − b| + iθ , −π<θ<π , which is denoted by log(κ −
b)D′×Vbi .

Consider (κ, 1
b−κ

, w + log(κ − b)) for (κ, b) ∈ D′×Vbi . We define

p
Vbi

,D′ (b
′, w) =

(
κ,

1

b′ − κ
,w + log(κ − b′)

)
, (b′, w) ∈ Vbi×C (30)

where log(κ − b) on the r.h.s. is the analytic continuation of log(κ − b)Vbi×D′ .

(c) Suppose c ∈ Vbi∩Vbj and pVbi ,D′(c, w) = pVb j ,D′(c, w
′). Then we see that

there exists a unique n(i, j) ∈ Z such that w′ = w + 2π in(i, j). For the above
covering, we see n(i, j) = 0 for every pair (i, j).

Let c ∈ Vbi∩V∞ and pVbi ,D′(c, w) = p∞,D(c, z). To fix the coordinate transfor-
mation, we have to choose the identification of two sets of values log(κ−b)D′×Vbi and
log(1−aκ)D×V∞ . For bi , except b1, we identify these through the analytic continuation
along the (lower) curve cl joining D and D′, but for b1, we identify log(κ − b)D′×Vb1
and log(1 − aκ)D×V∞ through the analytic continuation along the (upper) curve cu
joining D and D′.
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Therefore there is a positive integer n(i,∞) such that w′ = z+ 2π in(i,∞) by the
same argument. For the above covering we see in fact that if n(1,∞) = m for i = 1,
then n(i,∞) = m + 1 for every i �= 1.

These give coordinate transformations. However, the collection of these local triv-
ializations do not glue together, for these do not satisfy the cocycle condition on the
triple intersection marked with the triangle in Figure 2.

We denote by
∐

b∈S2 Cb the collection of these local trivializations. Thus we have
a commutative diagram ∐

b∈S2 Cb
p(•)−→ Ã

π ↓ π3 ↓
S2

σ←− A .

(31)

One can consider various local trivializations of the bundle-like object of the left-hand
side.

∐
b∈S2 Cb is not an affine bundle, but an “affine bundle gerbe” with a holomorphic

flat connection (cf. [8]). However, the geometric realization of a holomorphic parallel
section is nothing but an element of Ã given by (26).

3.2 Geometric notions on Ã
Recall that the discordance (the Japanese word sogo is the term used in [10]) of patch-
ing of three local coordinate neighbourhood occurs only on the small dotted triangle
in Figure 2.

In this section, we construct two examples which give almost the same phenomena
as in the previous section for gluing local bundles.

3.2.1 Geometric quantization for a non-integral 2-form

Consider the standard volume form dV on S2 with total volume 4π . Let � be a non-
integral, closed smooth 2-form (current) on S2 such that

∫
S2 � = 4πλ, and with the

support of � concentrated on a small disk neighborhood of the north pole N . For
{Ui }i∈I a simple cover of S2, on each Ui , � is of the form � = dωi , and hence
ωi j = ωi − ω j on Ui j = Ui ∩ Uj is a closed 1-form (current), and is written by
ωi j = d fi j on Ui j for a smooth 0-form (current) fi j .

Now we want to make a U (1)-vector bundle using e
√−1 fi j as transition functions.

However, since on Ui jk = Ui ∩Uj ∩Uk we only have

e
√−1 fi j e

√−1 f jk e
√−1 fki = e

√−1( fi j+ f jk+ fki ),

e
√−1 fi j cannot be used as patching diffeomorphisms. In spite of these difficulties, we
see that the horizontal distributions defined by ωi glue together.

Thus, we can define a linear connection on such a broken vector bundle, which
is precisely the notion of bundle gerbes. Since � = dωi , the curvature form of this
connection is given by �. Note that we can make a parallel translation along any
smooth curve c(t) in S2.
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The support of � is concentrated in a small neighborhood VN of the north pole N .
Therefore any closed curve in S2 − VN can be shrunk to a point in S2 − VN . In spite
of this, the homotopy lifting of parallel translation does not succeed, because of the
discordance (sogo) of the patching diffeomorphisms.

If Ui does not intersect VN , then we have a product bundle Ui × C with the triv-
ial flat connection. Since ωi = d log ehi , the integral submanifold of the horizontal
distribution of ωi is given by log ehi . This looks like a pile. Thus, even if the object
is restricted to S2 − VN , we have a non-trivial bundle gerbe which is apparently not
classified by a cohomology class.

We note that this gives also a concrete example of the local line bundles over a
manifold treated by [7].

3.2.2 A simple example

The simplest example of objects we propose in this paper is given by the Hopf-fibering

S3
S1→ S2. Viewing S3 = ∐

q∈S2 S1q (disjoint union), we consider the �-covering S̃1q of

each fiber S1q , and denote by S̃3 the disjoint union
∐

q∈S2 S̃1q . We are able to define

local trivializations of S̃3|Ui
∼= Ui×S̃1 naturally through the trivializations S3|Ui given

on a simple open covering {Ui }i∈� of S2. This structure permits us to treat S̃3 as a local
Lie group, and hence it looks like a topological space. On the other hand, we have a
projection

π : S̃3 =
∐
q∈S2

S̃1q → S3 =
∐
q∈S2

S1q

as the union of fiberwise projections, as if it were a non-trivial �- covering. However
S̃3 cannot be a manifold, since S3 is simply connected. In particular, the points of S̃3

should be regarded as �-valued elements.
We now consider a 1-parameter subgroup S1 of S3 and the inverse image π−1(S1).

Since all points of S̃3 are “�-valued”, this simply looks like a combined object of
S1 × Z� and the � covering group, i.e., in some restricted region, this object can be
regarded as a point set in several ways. In such a region, the ambiguity is caused
simply by the reason that two pictures of point sets are mixed up.

3.2.3 Conceptual difficulties beyond ordinary mathematics

Let Pc be the parallel translation along a closed curve. Let cs(t) be a family of closed
curves. Suppose cs(0) = cs(1) = p and c1(t) = p. We see that there is (p; v) such that
Pcs (p; v) �= v. Therefore there must be somewhere a singular point for the homotopy
chasing, caused by the discordance. However the position of singular point can not be
specified.

Even though the parallel translation is defined for every fixed curve, these parallel
translations are in general set-to-set mappings when one-parameter families of closed
curves are considered.

Thus, we have some conceptual difficulty that may be explained as follows: a paral-
lel translation along a curve has a definite meaning, but when we think this in a family
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of curves, then we have to think suddenly this is a set-to-set mapping. Recall here the
“Schrödinger’s cat”.

Such a strange phenomenon is caused in Ã by movable branch singularities. In
§3.1, we considered a non-linear connection on the trivial bundle S2×C, and an
extended connection to treat the amplitude of the star exponential functions of the
quadratic form.

4 Broken associative products and extensions

In this section we give an example where such fuzzy phenomena play a crucial role in
defining a concrete algebraic structure. We consider the product bundle

∐
κ∈C C, and

we define in each fiber an associative product which is broken in the sense that each
product is not necessarily defined for all pairs (a, b).

4.1 Associative products combined with the Cayley transform

First of all, we give such a product on the fiber at κ = 0. Let S2 be the 2-sphere
identified with C ∪ {∞}. Consider the Cayley transform C0 : S2→S2, C0(X) = 1−X

1+X ,
and define the product by

a •0 b = a + b

1+ ab
∼ C−10 (C0(a)C0(b)). (32)

Here ∼ means algebraic equality where defined: an algebraic procedure through the
calculations such as follows:

1− 1−a
1+a · 1−b1+b

1+ 1−a
1+a · 1−b1+b

∼ (1+ a)(1+ b)− (1− a)(1− b)

(1+ a)(1+ b)+ (1− a)(1− b)
= a + b

1+ ab
.

The product is defined for every pair (a, b) such that ab �= −1, and is commutative
and associative whenever they are defined. Note also that

a •0 b = a + b

1+ ab
∼ a−1 + b−1

1+ (ab)−1
= a−1 •0 b−1. (33)

Hence we set∞•0 b = b−1, ∞•0∞ = 0, in particular.
One can extend this broken product to pairs (a : g) ∈ C×C as follows:

(a : g) •0 (b : g′) = (a •0 b : gg′(1+ ab)).

This is an associative product, which follows from ( 32).

(1+ bc)

(
1+ a

b + c

1+ bc

)
=
(
1+ a + b

1+ ab
c

)
(1+ ab).

It is worthwhile to write this identity in the logarithmic form
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log(1+ bc)+ log

(
1+ a

b + c

1+ bc

)
= log

(
1+ a + b

1+ ab
c

)
+ log(1+ ab), mod 2π iZ (34)

although the logarithmic form uses infinitely-valued functions. If one sets C(a, b) =
log(1+ ab), then (34) is the Hochschild 2-cocycle condition:

C(b, c)− C(a •0 b, c)+ C(a, b •0 c)− C(a, b) = 0, mod 2π iZ.

We extend the product as follows:

(a : g) •ln (b : g′) = (a •0 b : g + g′ + log(1+ ab)). (35)

This is associative as a set-to-set mapping. By using (27), (35) is rewritten as

(a−1 : g) •ln (b−1 : g′) = (a−1 •0 b−1 : g + g′ + log(1+ a−1b−1)).

Next we define a family of products defined on each fiber at κ . To define such a
product, we use the twisted Cayley transform defined by Cκ ∼ C0T 0

κ , where T 0
κ is

given in the equality (1). The result is

Cκ(y) = 1− y(1− κ)

1+ y(1+ κ)
, (36)

and we define

a •κ b = a + b + 2abκ

1+ ab(1− κ2)
∼ C−1κ (Cκ(a)Cκ(b)). (37)

The point is that the singular set of the product depends on κ . a •κ b is defined for
every pair (a, b) such that ab(1 − κ2) �= −1. In other words, for an arbitrary pair
(a, b) ∈ C2, the product a •κ b is defined for some κ in an open dense domain.

For the parallel sections given in (22), we see that

a

1− aκ
•κ b

1− bκ
= a + b

1− (a + b)κ + ab
. (38)

In particular,

−κ−1 •κ −κ−1 = 0, −κ−1 •κ 1

b−1 − κ
= 1

b − κ
.

For simplicity, we denote by f (κ) the section f of the bundle π : S2 × C → S2.

Proposition 4.1 For parallel sections f (κ), g(κ) defined on open subsets, the product
f (κ) •κ g(κ) is also a parallel section where defined.
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4.1.1 Extension of the product

Using (35), one can extend the product a •κ b by the formula

(a; g) •κ (b; g′) ∼ I κ0
(
(I 0κ (a; g)) •ln (I 0κ (a; g′))

)
.

Indeed, we see how the algebraic trick works:

(a : g) •κ (b : g′) = (a •κ b : g + g′ + log(1+ ab(1− κ2))

=
(

a + b + 2abκ

1+ ab(1− κ2)
: g + g′ + log(1+ ab(1− κ2))

)
.

(39)

Proposition 4.2 The extended product (a : g) •κ (b : g′) is defined with a 2π iZ
ambiguity. However, the •κ product is associative where defined.

The point of such a fiberwise product is the following:

Proposition 4.3 For parallel sections f (κ), g(κ) defined on open subsets, the product
f (κ) •κ g(κ) is also a parallel section where defined.

Proof. We have only to prove I κ
′

κ ( f •κ h) = I κ
′

κ ( f ) •κ ′ I κ ′κ (h).
For f = ( a

1−aκ , log(1− aκ)), h = ( b
1−bκ , log(1− bκ)), we see that

f •κ h =
(

a + b

1− (a + b)κ + ab
,

log((1− aκ)(1− bκ)

(
1+ a

1− aκ

b

1− bκ
(1− κ2)

))
=
(

a + b

1− (a + b)κ + ab
, log(1− (a + b)κ + ab)

)
.

It is easily seen that I κ
′

κ ( f •κ h) = ( a+b
1−(a+b)κ ′+ab , log(1− (a + b)κ ′ + ab)). $%

5 The notion of qqq-number functions

Using Propositions 4.1, 4.3, we define a multiplicative structure on the setsA and Ã of
parallel sections. A notion of q-number functions which describe quantum observables
was introduced in [1], and our notion of parallel sections is stimulated by this idea.
From this point of view, we may employ the notation : f :κ for a section f of the
bundle π :

∏
κ∈C C → C.

For f ∈ A, we view κ as an indeterminate. For every f, g ∈ A, excluding the pair
( f, g) = ( 1

1−κ
, −1
1+κ

), we define an element f • g ∈ A by

: f • g :κ= f (κ) •κ g(κ). (40)

Some product formulas on A are given as follows:
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0 • f = f,
−1
κ
• −1

κ
= 0,

1

1− κ
• f = 1

1− κ
,

−1
1+ κ

• f = −1
1+ κ

,

where 0 stands for the singular solution (κ, 0). These formulas say that ±1
1∓κ

acts like 0
or∞. HenceA is viewed naturally as the Riemann sphere with standard multiplicative
structure such that a0 = 0, a∞ = ∞, but 0∞ is not defined. By the definition of •κ ,
we have Cκ( f •κ g) = Cκ( f )Cκ(g).

Here the correspondence is given by the family of twisted Cayley transforms∐
κ∈C Cκ : A→C∪{∞}. We view A as a topological space through the identifica-

tion
∐

κ∈C Cκ .
The table of correspondence is as follows:

A 0 −1
κ

1
1−κ

−1
1+κ

a
1−aκ

1−a
1−κ+a(1+κ)

f (κ)

ImageCκ 1 −1 0 ∞ 1−a
1+a a 1− f (κ)(1−κ)

1+ f (κ)(1+κ)

singular point ∞ 0 1 −1 1
a

1+a
1−a —

Note that

C−1κ (a) = 1− a

1− κ + a(1+ κ)
∼

1−a
1+a

1− 1−a
1+a κ

∼ T κ
0 C

−1
0 (a)

is a parallel section, and 1− f (κ)(1−κ)
1+ f (κ)(1+κ)

is independent of κ for every parallel section f .

5.1 A product on Ã
Let Ã be the space of all parallel sections given in (26), and consider the product • on
Ã is given by the product formula (39). For f, f ′ ∈ Ã, we set f = (κ, y(κ), z(κ)),
f ′ = (κ, y′(κ), z′(κ)). f • g is defined as a parallel section defined on the open dense
domain where y(κ), y′(κ) �= ∞.

Note that (
κ,

a

1− aκ
, log(1− aκ)

)
•
(
κ,

−1
1+ κ

, log(1+ κ)

)
=
(
κ,

−1
1+ κ

, log(1− a)+ log(1+ κ)

)
,(

κ,
a

1− aκ
, log(1− aκ)

)
•
(
κ,

1

1− κ
, log(1− κ)

)
=
(
κ,

1

1− κ
, log(1+ a)+ log(1− κ)

)
.

Although ±1
1∓κ

plays the role of 0 or∞, the third component depends on a.
For simplicity, we denote in particular
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%c =
(
κ; 1

1− κ
, c + log

1

2
(1− κ)

)
, %̄c =

(
κ; −1

1+ κ
, c + log

1

2
(1+ κ)

)
.

(41)

It is easy to see that

%c •%c′ = %c+c′ , %̄c • %̄c′ = %̄c+c′ ,

but %c • %̄c′ diverges.
Let Ã× be the subset of Ã excluding the parallel sections (κ; ±11∓κ

, c+ log(1∓κ)).
We also set

Ã0 = Ã× ∪ {%c}, Ã∞ = Ã× ∪ {%̄c}.

Proposition 5.1 Ã is closed under the extended product •κ , where defined. In partic-
ular, Ã×, Ã0 Ã∞ are each closed respectively under the •-product.

5.2 The infinitesimal left action

Note that the singular solution 1 = (κ, 0, 0) ∈ Ã is the multiplicative identity. A
neighborhood of 1 is given by (κ, a

1−aκ , g + log(1 − aκ)) by taking (a, g) in a small
neighborhood of 0. For g = 0, we set fa = (κ, a

1−aκ , log(1 − aκ)). For a parallel

section h = (κ, y(κ), z(κ)) ∈ Ã, the product fa • h is given by

fa • h =
(

a + y(κ)+ ay(κ)κ

1− aκ + ay(κ)(1− κ2)
, z + log(1− aκ + ay(κ)(1− κ2))

)
,

Consider the infinitesimal action

d

ds

∣∣∣
s=0

fas •κ (y, z) = (a(1+ 2yκ − y2(1− κ2)), a(−κ + y(1− κ2)).

Define for every fixed κ the invariant distribution

L̃κ(y, z) = {(a((1+ yκ)2 − y2), a(−κ + y(1− κ2))); a ∈ C}.
By Proposition 5.1, we have d I κ0 L̃0 I 0κ (y, z) = L̃κ .

5.3 The exponential mapping

The equation for the integral curves of the invariant distribution L̃κ through the identity
(0, 0) is

d

dt
(y(t), z(t)) = (a((1+y(t)κ)2−y(t)2), a(−κ+y(t)(1−κ2)), (y(0), z(0)) = (0, 0).

For the case κ = 0, a = 1, we have (y(t), z(t)) = (tanh t, log cosh t).

We define Exp• : C → A× by the family of Expκ :
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Expκ t = T κ
0 (tanh t) = sinh t

cosh t − (sinh t)κ
,

Exp•t = (κ; T κ
0 (tanh t)) =

(
κ; sinh t

cosh t − (sinh t)κ

)
. (42)

For a fixed t , Exp•t is a parallel section with the exponential law

Exp•s • Exp•t = Exp•(s + t), and Exp•(s + 2π i) = Exp•s.

For the extended product, let Ẽxp0 t = (tanh t; log cosh t), and let

Ẽxpκ t = I κ0 Ẽxp0 t =
( sinh t

cosh t − (sinh t)κ
, log(cosh t − (sinh t)κ)

)
.

Although Ẽxpκ is not defined for all t ∈ C, viewing κ as an indeterminate permits us
to define the exponential mapping Ẽxp• : C → Ã× by

Ẽxp•t =
(
κ; sinh t

cosh t − (sinh t)κ
, log(cosh t − (sinh t)κ)

)
. (43)

This is a parallel section with the exponential law

Ẽxp•s • Ẽxp• t = Ẽxp•(s + t).

For a closer look at Ẽxp•, we define the logarithmic function log(cosh t−(sinh t)κ)
by the integral

log(cosh t − (sinh t)κ) =
∫ t

0

sinh s − (cosh s)κ

cosh s − (sinh s)κ
ds (44)

by setting the initial condition Ẽxp•0 = (κ, 0, 0).
Using this, we see the following:

Proposition 5.2 If the initial condition Ẽxp•0 = (κ, 0, 0) is requested, Ẽxp• : C →
Ã× is an injective homomorphism, that is, Ẽxp•z = Ẽxp•w in Ã implies z = w and
the exponential law Ẽxp•(z + w) = Ẽxp•z • Ẽxp•w holds.

Proof. We have only to show the injectivity. Suppose Ẽxp•z = Ẽxp•w. Then, we see
that for every κ ,

ez = ew,

∫ z

0

sinh s − (cosh s)κ

cosh s − (sinh s)κ
ds =

∫ w

0

sinh s − (cosh s)κ

cosh s − (sinh s)κ
ds.

It follows that w = z+ 2π in for some n. We will show that n = 0. So suppose n �= 0,
but we assume n = 1 for simplicity. The second identity gives∫ z+2π i

0

sinh s − (cosh s)κ

cosh s − (sinh s)κ
ds −

∫ z

0

sinh s − (cosh s)κ

cosh s − (sinh s)κ
ds

=
∫ z+2π i

z

sinh s − (cosh s)κ

cosh s − (sinh s)κ
ds = 0.
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Set z = x + iy. Then,
∫ z+2π i
z

sinh s−(cosh s)κ
cosh s−(sinh s)κ ds is the contour integral∫

|w|=1
(1− κ)e2xw − (1+ κ)

(1− κ)e2xw + (1+ κ)
· dw

w
=
{
−2π i, e−2x |κ+1||κ−1| > 1,

2π i, e−2x |κ+1||κ−1| < 1.

Since this does not vanish, we must have n = 0. $%
We see also that for every α ∈ C,

Ẽxp
(α)

• s =
(
κ; sinh s

cosh t − (sinh s)κ
, log eαs(cosh s − (sinh s)κ)

)
satisfies the exponential law.

Using this formula, it is easily seen that for t ∈ R,

: %0 :κ= lim
t→∞

( sinh t

cosh t − (sinh t)κ
, log e−t (cosh t − (sinh t)κ)

)
,

: %̄0 :κ= lim
t→−∞

( sinh t

cosh t − (sinh t)κ
, log et (cosh t − (sinh t)κ)

)
.

We end by noting that Ã× is a strange object, which one cannot treat as a usual
manifold. Ã× is a group-like object and the mapping which forgets the last component
for the map Ã× → A× is a homomorphism onto A× ∼= C×.
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