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Abstract. A description of the full symmetry algebra (i.e., including higher symmetries) for a
general nonlinear system of ordinary differential equations is given in terms of its general solution
and differential constants. More precisely, the full symmetry algebra of a system is a module over the
ring of its differential constants; the module is generated by partial derivatives of the general solution
w.r.t. independent constants. Given a general solution, this description is both effective and explicit.
Special solutions, such as an envelope of a family of solutions, are described naturally in this context.
These results are extended to control systems; in this case, differential constants become operators
on controls. Examples are provided.
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1. Introduction

The study of symmetries of ordinary differential equation (ODE) was initiated by
Sophus Lie [5] and has a long history described briefly in [8]. The latest results
were obtained in [7] and [3].

To find symmetries for a particular equation still remains a hard task. The
present paper deals, however, with another problem. We give a full description
of the symmetry algebra of a system of ODE in a nondegenerate situation using
the general solution whose (local) existence is guaranteed by classical theorems.
For a linear system of ODEs, this result was obtained in [8] and it was recently
generalized to the normal form scalar ODEs in [3].��

Given a general solution, our description of the symmetry algebra is both effec-
tive and explicit: the full symmetry algebra of a system is a module over the ring of
its differential constants; the module is generated by partial derivatives of the gen-
eral solution with respect to independent constants. Special solutions, such as the
envelope of a family of solutions, are described naturally in this context. (We note
that [1] contains an implicit description of ODE symmetries, see Remark 3 below.)

� This work was partially supported by INTAS grant 96-0793.
�� See also Yumaguzhin’s paper in this special issue (editor’s note).
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Of course, these results are of little practical importance since there is no need in
symmetries when a general solution is known. Symmetries are used to obtain new
solutions, not the other way round. Yet the interconnection between differential
invariants, symmetries and a general solution is quite transparent in the case of
ODEs and sometimes may be used as a model applicable in other situations.

In this paper, we give two such applications. First, we describe the symmetries
of a boundary/initial value problem for a one-dimensional wave equation. The
main second application deals with symmetries of control systems. In both cases,
differential invariants become nonlocal ones.

The paper is organized as follows. Section 2 describes the full symmetry algebra
for a general nonlinear system of ordinary differential equations. It also contains
a description of special solutions as invariants of basic symmetries for a given
general solution (Subsection 2.3) and examples (Subsection 2.4). Section 3 is an
application of this approach to control systems; examples are also provided.

2. Full Symmetry Algebra for a General Nonlinear Ordinary Differential
Equation and a System of Equations

2.1. GENERAL SOLUTION AND DIFFERENTIAL CONSTANTS

We begin with trivialities to introduce notation. Let E denote a general scalar
ordinary differential equation of nth order:

y(n) − F(x, y, y′, . . . , y(n−1)) = 0. (1)

Its general solution (or a general integral) is of the form


(x, y, c1, c2, . . . , cn) = 0. (2)

When (2) is solved with respect to y, we get

y = f (x, c1, . . . , cn); (3)

almost any solution of (1) is obtained from (3) by a proper choice of constants ci .
(The solution that is not produced by the general one is called a special solution.
Such solutions are discussed below.)

Remark 1. Existence of a general solution of (1) is by no means guaranteed.
Yet if F is continuously differentiable, the classical theorem on a differentiable
dependence of a solution of ODE on initial data guaranties existence of a local
form of (2) in a neighborhood of a chosen solution. In this local form the initial
datum y(k)(x0) is taken as a differential constant ck, k = 0, . . . , n − 1. Below
we proceed with a global general solution, but it is always possible to make the
corresponding local statement.
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Differentiating (3) by x, we obtain the following system of n independent equa-
tions

y = f (x, c1, . . . , cn),

y′ = f ′(x, c1, . . . , cn),

. . . . . . . . . . . . . . . . . . . . .

y(n−1) = f (n−1)(x, c1, . . . , cn)

(4)

(further differentiation produces dependent equations, since y(k), k � n, are ex-
pressed in y(i), i < n, via (1)).

One can obtain an expression (not necessary explicit) for ci solving (4). Thus

ci = ci(x, y, y
′, . . . , y(n−1)), i = 1, . . . , n. (5)

In this way, all ci are differential constants of order < n. In other words, they are
differential operators of order n− 1, or functions on the jet space J n−1(R).

In the case of a system of m differential equations,

y(n) − F(x, y, y′, . . . , y(n−1)) = 0, (6)

where y = (y1, . . . , ym), F = (F1, . . . , Fm), the general solution is of the form


k(x, y, c1, c2, . . . , cmn) = 0, k = 1, . . . , m, (7)

or

y = f(x, c1, . . . , cmn). (8)

Almost any solution of (6) is obtained from (8) by a proper choice of constants ci .

2.2. FULL SYMMETRY ALGEBRA

By definition of a solution, if the right-hand side of (3) is substituted for y in (1),
we obtain the identity

f (n) − F(x, f, f ′, . . . , f (n−1)) ≡ 0. (9)

Hence

∂

∂ci

(
f (n) − F(x, f, f ′, . . . , f (n−1))

) = 0 (10)

for all i, or(
Dn −

n∑
j=1

∂F (x, y, y′, . . . , y(n−1))

∂yj
Dj

)∣∣∣∣∣
y=f (x,y,c1,...,cn)

fci = 0, (11)

where D = d/dx is the total derivative with respect to x and fci denotes the partial
derivative over ci .
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Recall that

Ly(n)−F
def= Dn −

n∑
j=1

∂F (x, y, y′, . . . , y(n−1))

∂yj
Dj (12)

is called the universal linearization of the operator y(n) − F and that a solution φ

of the equation

(Ly(n)−F )ϕ|E = 0 (13)

is a symmetry of E .

THEOREM 1. The partial derivatives fci , i = 1, . . . , n, form a full functionally
independent basis of symmetries for Equation (1).

Proof. The difference between (11) and (13) is that the same operator is re-
stricted to formally different objects. However, note that the set

{y = f (x, c1, . . . , cn), y
′ = f ′(x, y, c1, . . . , cn), . . . | ∀ci ∈ R} ⊂ J n(R)

coincides with E . Indeed, codim J n(R) = n+ 2, dim E ⊂ J n(R) = 1, so dim E =
n+1. It follows from the existence theorem for ordinary differential equations that
there is a solution containing any initial value point x0, y0, y

′
0, . . . , y

n−1
0 ∈ E . Now,

since (3) produces almost all solutions and

dim{y = f (x, y, c), y′ = f ′(x, y, c), . . . | ∀c ∈ R
n} = n+ 1,

we conclude that (11) coincides with the symmetry equation (13) almost every-
where on E . Therefore, fci , i = 1, . . . , n, are symmetries of Equation (1). More-
over, they form a basis of the symmetry algebra.

Indeed, let ϕ be a symmetry. Then it defines a flow on the set of solutions by the
formula

∂y

∂τ
= ϕ|y, (14)

where y = f (x, y, c1, . . . , cn). It can be solved (see [2]), and a solution of this
equation is a one-parameter family of solutions of (1). By (3), it has the form

y = f (x, c1(τ ), . . . , cn(τ )). (15)

On the other hand, differentiating (15) by τ , we obtain (via (14)) that

ϕ|y =
(

n∑
i=1

∂ci

∂τ
fci

)∣∣∣∣∣
y

(16)

for any solution y of Equation (1). Therefore,

ϕ =
n∑

i=1

∂ci

∂τ
fci (17)
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holds everywhere on E .
Note that the derivatives ∂ci/∂τ |y depend on y, that is, on c1, . . . , c1, which are

functions on J n−1(R) by virtue of (5). Since any choice of arbitrary functions ci(τ )
define some symmetry by (15), the functions ∂ci/∂τ |y are also arbitrary.

Thus, we got the general form of a symmetry for Equation (1):

ϕ =
n∑

i=1

Ai(c1, . . . , cn)
∂

∂ci
f (x, y, c1, . . . , cn); (18)

here f is a general solution, Ai are arbitrary functions and ci are functions on
J n−1(R) given by system (4).

Formula (18) completes the proof of the theorem.

Remark 2. A full symmetry algebra is a module over the ring of the equation
differential constants. The module is generated by partial derivatives of a general
solution over independent constants.

Remark 3. Formula (18) gives a representation of the algebra of vector fields
on R

n in the full symmetry algebra of (6) by the isomorphism

n∑
i=1

Ai(c1, . . . , cn)
∂

∂ci
←→

n∑
i=1

Ai(c1, . . . , cn)
∂

∂ci
f (x, c1, . . . , cn) (19)

(on the left-hand side, ci are coordinates in R
n; on the right-hand side they denote

differential invariants (5) of (1) or special functions on J n−1(R)).
It was first stated in [1, Proposition 4.6] that the symmetry algebra for an ordi-

nary differential equation coincides with the algebra of vector fields on the solution
space. Theorem 1 gives an explicit representation of this correspondence, provided
the general solution is known. Yet its existence is guaranteed only locally; hence,
formula (19) is also generally local.

Remark 4. Theorem 1 generalizes easily to the case of system of differential
equations (6). Locally, its full symmetry algebra is isomorphic to the algebra of
vector fields on R

mn: the representation is given by

mn∑
i=1

Ai(c1, . . . , cmn)
∂

∂ci
←→ ∂f× A,

where ∂f, A are respectively m × mn and mn × 1 matrices with matrix elements
given by the formulas

(∂f)j,i = ∂fj

∂ci
, (A)i = Ai.
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A version of Theorem 1 is also valid in the case of an even more general system of
ordinary differential equations,

y
(nj )

j − Fj (x, y1, y
′
1, . . . , y

(n1−1)
1 , . . . , ym, y

′
m, . . . , y

(nm−1)
1 ) = 0.

It is not hard to write down the corresponding isomorphism between vector fields
on the solution space and symmetries in this case too. Yet the formula is awkward
to read and therefore it is omitted here. See [7] for relevant technicalities.

Let us call fci , i = 1, . . . , n, basic symmetries. They correspond to the flows
y(τ) = f (x, c1, . . . , ci + τ, . . . , cn). Thus, in the case of explicit general solu-
tion (3) basic symmetries are fci = yci .

Remark 5. If a general solution of (1) is given in implicit form (2), then

d


dci
= ∂


∂ci
+ ∂


∂y

∂y

∂ci
= 0.

It follows immediately that basic symmetries are given by

yci = −
(
∂


∂ci

)/(
∂


∂y

)
. (20)

This formula generalizes in a straightforward way for the case of a system of
equations.

2.3. SPECIAL AND INVARIANT SOLUTIONS

Invariant or self-similar solution y of (1) is a solution that satisfies the condition
ϕ(y) = 0 for some symmetry ϕ of the form (18). Hence, an invariant solution
satisfy the system of equations

E(f ) = y(n) − F(x, y, y′, . . . , y(n−1)) = 0,

φ(y) =
n∑

i=1

Ai(c1(y), . . . , cn(y))
∂

∂ci
f (x, y, c1(y), . . . , cn(y)) = 0.

(21)

Since ci are constants on solutions of (1), so are Ai(c1(y), . . . , cn(y)). Thus (21)
is simply

E(f ) = y(n) − F(x, y, y′, . . . , y(n−1)) = 0,

φ(y) =
n∑

i=1

Aifci (x, y, c1, . . . , cn) = 0
(22)

with constant Ai and ci . The second condition in (22) means that basic symmetries
are linearly dependent of an invariant solution. If rank {fc1, . . . , fcn}|y = n − k, it
is natural to introduce the notion of a k-invariant solution.
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Remark 6. Recall that fci represent independent vector fields on R
n. In this way

the structure of invariant solutions of ordinary differential equation is connected
with the structure of degenerate points of a system of n independent vector fields
on R

n.

Consider a simple case of (22),

y(n) − F(x, y, y′, . . . , y(n−1)) = 0,

fci = 0.
(23)

Its solution is a fixed point of the flow ci → ci+τ . Geometrically, such a solution is
the envelope for the family of solutions generated by this flow, see Subsection 2.4.

2.4. EXAMPLES

EXAMPLE 1. Consider the equation y′′ + 9
8(y
′)4 = 0. It is invariant with respect

to the translations in both x and y. Its general solution is


(x, y, c1, c2) = (y + c1)
3 − (x + c2)

2 = 0,

or

y = f (x, c1, c2) = (x + c2)
2/3 − c1.

Therefore, its basic symmetries are fc1 = −1, fc2 = 2
3 (x + c2)

−1/3. They depend
on the differential constants c1, c2 that may be found from system (4),

(y + c1)
3 = (x + c2)

2, 3y′(y + c1)
2 = 2(x + c2).

It follows that

c1 =
(

2

3y′

)2

− y, c2 =
(

2

3y′

)3

− x.

Now, basic symmetries come to fc1 = −1, fc2 = y′, which are (not surprisingly)
translations in y and x respectively.

So the general symmetry for this equation is of the form (18)

ϕ = A1(c1, c2)fc1 + A2(c1, c2)fc2

= −A1

((
2

3y′

)2

− y,

(
2

3y′

)3

− x

)
+

+A2

((
2

3y′

)2

− y,

(
2

3y′

)3

− x

)
y′,

where A1, A2 are arbitrary functions in two variables.
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Figure 1. Enveloping invariant solution y = 2.

Invariant solutions must satisfy system (22)

A+ y′B = 0, y′′ + 9

8
(y′)4 = 0

for some constants A, B. It follows that y′ = 0, so y = const. This is a special
solution (i.e., it is not obtained from the general integral). Each special solution is
the envelope for the family (y − const)3 − (x + c2)

2 = 0 for all c2, see Figure 1.

EXAMPLE 2. Consider the equation

yy′′ + 2(y′2 + 1) = 0.

The general integral in this case is as follows:


 =
∫

y2 dy√
c1 − y4

± x + c2.

Basic symmetries are obtained here by formula (20):

ϕ1 = −
c1


y

= 1

2

√
c1 − y4

y2

∫
y2 dy

(
√
c1 − y4)3

,

ϕ2 = −
c2


y

= −
√
c1 − y4

y2
.

To obtain the final form for these symmetries it remains to express differential
constants as functions on J 1(R) using (4):∫

ya dy√
c1 − y2a

± x + c2 = 0, y′
√
c1 − y4

y2
± 1 = 0.
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It follows immediately that

c1 = y4(y′2 + 1), c2 = ±
∫

dx ∓ x = c2.

Substituting these expressions into basic symmetries, we obtain

ϕ1 = y′

2

∫
dy

y′3y4
, ϕ2 = y′.

Note that ϕ1 is a nonlocal symmetry.

EXAMPLE 3. Linear equations (cf. [7]) y(n) +∑n−1
i=0 ai(x)y

(i) = 0. Here the
general integral is if the form y = ∑n

i=1 cifi(x), where fi(x) are independent
solutions, i.e., their Wronskian is nonzero:

W = W(f1, . . . , fi, . . . , fn) =

∣∣∣∣∣∣∣
f1 . . . fi . . . fn
f ′1 . . . f ′i . . . f ′n
. . .

f
(n−1)

1 . . . f
(n−1)
i . . . f (n−1)

n

∣∣∣∣∣∣∣ �= 0.

Independent solutions fi coincide with basic symmetries in this case: fi = fci .
Differential constant ci is given by the formula

ci(y, y
′, . . . , y(n−1)) = Wi

W
,

where Wi is obtained from W by changing the entries of the ith column of W for
y, y′, . . . , y(n−1) in respective order.

The general form of a symmetry is

ϕ =
n∑

i=1

Ai

(
W1

W
, . . . ,

Wi

W
, . . . ,

Wn

W

)
fi(x).

EXAMPLE 4. Linear boundary problem

utt − uxx = 0, u|x=0 = u|x=π = 0.

This example is a rather wide generalization of the previous one. Fourier general
solution on [0, π ] for this string is

u =
∞∑
n=0

sin nx(an cos nt + bn sin nt),

where an, bn are constants, but neither differential nor local: the Fourier coefficient
formula states that

an = 2

π

∫ π

0
u|t=0 sin nx dx, bn = 2

πn

∫ π

0
ut |t=0 sin nx dx. (24)
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A general form of symmetries is given by

ϕ =
∞∑
n=0

sin nx(An(a1, b1, . . . , ai, bi, . . .) cos nt +

+Bn(a1, b1, . . . , ai, bi, . . .) sin nt).

Here An, Bn are arbitrary functions depending on any finite number of ai , bj given
by (24).

3. Full Symmetry Algebra for a General Control System

3.1. GENERAL SOLUTION AND DIFFERENTIAL CONSTANTS

Consider a first-order control system

y′ = F(x, y, v(x)), (25)

where y ∈ R
m is an m-vector of unknown functions and v(x) ∈ R

k is a k-vector of
control functions.

With any fixed choice of controls, (25) comes to (6), where n = 1. Thus, the
general solution of (25) is of the form

y = f(x, c1, . . . , cm, v(x)), (26)

where ci are constants. From (26) it follows that there exists (at least an implicit)
dependence

ci = ci(x, y(x), y′(x), v(x)), i = 1, . . . , m, (27)

of constants ci on x, y(x), y′(x), v(x). Both f and ci are operators on v. Examples
below show that these operators may be nonlocal.

3.2. FULL SYMMETRY ALGEBRA

Technically, Equation (25) is an equation with two types of dependent variables,
that is, y and v. Let us put this equation in the form

H(y, v) = y′ − F(x, y, v(x)) = 0.

The symmetry equation in this case is as follows:

(D − Fy)A− FvB|H=0 = 0, (28)

where (A,B) is a symmetry (if it defines a flow, then yτ = A, vτ = B). Besides,
Fy is an m × m matrix with the entries (Fi)yj and Fv is an m × k matrix with the
entries (Fi)vj .
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It is convenient to put (28) in the vector form,

(D − Fy,−Fv) ·
(

A
B

) ∣∣∣∣
H=0

= 0. (29)

The left factor in this formula is the linearization of H denoted by LH .

THEOREM 2. Partial derivative vectors(
fc

0

)
,

(
fv

I

)
(30)

form a full functionally independent basis of symmetries for Equation (25).
Proof. In terms of the general solution, the general form of a flow on the set of

solutions of Equation (25) is given by the formula

y = f(x, c1(τ ), . . . , cm(τ), v(x, τ)), (31)

where τ is a parameter of the flow. Since (31) is a solution for any τ , we have

f′(x, c1(τ ), . . . , cm(τ), v(x, τ))−
−F(x, f(x, c1(τ ), . . . , cm(τ), v(x, τ)), v(x, τ)) = 0.

Therefore,

d

dτ

(
f′(x, c1(τ ), . . . , cm(τ), v(x, τ))−
−F(x, f(x, c1(τ ), . . . , cm(τ), v(x, τ)), v(x, τ))

) = 0.

It follows that

((D − Fy)(fc · cτ + fv · vτ )− Fvvτ )|H=0

= (D − Fy,−Fv) ·
(

fc · cτ + fv · vτ
vτ

) ∣∣∣∣
H=0

= LH

(
fc · cτ + fv · vτ

vτ

) ∣∣∣∣
H=0

= 0. (32)

Thus, the general solution of the symmetry equation is (cf. (17))(
fc

0

)
· cτ +

(
fv

I

)
· vτ . (33)

Here fc = (fi)cj is an m×m matrix, fv is an m×k matrix and I is the k×k identity
matrix.

To obtain the general form of the symmetry for Equation (25) it remains to
notice that

(i) vτ is an arbitrary vector-function;
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(ii) for any fixed v, Equation (25) coincides with (6), so ciτ are the components
of a vector field on the solution space for this v. Therefore, ciτ = Ai(c, v) are
arbitrary functions;

(iii) ci are constants on solution of (25) given by (27).

Finally, we can write down the general form of a symmetry for (25):

ϕ =
(

fc

0

)
·A(c, v(x)) +

(
fv

I

)
· u(x). (34)

Here A(c, v(x)) and u(x) are arbitrary proper-sized matrices.

Remark 7. Generally, solution (26) and its derivatives, as well as expressions of
the type A(c, v(x)) or u(x), are operators on v(x). If they are differential operators
of order l, we obtain lth order higher symmetries by formula (34).

3.3. EXAMPLES

EXAMPLE 5. A linear scalar equation

y′ = xy + v(x). (35)

The general solution in this case is

y = ex
2/2
∫ x

x0

e−t
2/2v(t) dt + cex

2/2.

Thus,

c = ye−x
2/2 − I (x), where I (x) =

∫ x

x0

e−t
2/2v(t) dt,

is constant on any solution of (35).
Therefore, from (34) it follows that the general form of the symmetry in this

example is

ϕ =
(

ex
2/2

0

)
A(ye−x

2/2 − I (x), v(x))+
(

ex
2/2
∫ x

x0
e−t2/2[•] dt
1

)
u(x). (36)

Here A(c, v(x)) and u(x) are arbitrary operator and function respectively;

fv = ex
2/2
∫ x

x0

e−t
2/2[•] dt

is an operator acting on u(x) by the formula(
ex

2/2
∫ x

x0

e−t
2/2[•] dt

)
u(x) = ex

2/2
∫ x

x0

e−t
2/2u(t) dt.
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This example shows that, since a general solution f = f (v) of a control system
is an operator on controls, fv in formula (34) is a linearization of this operator.

In Theorem 2 the flow of the control function v is arbitrary, so v is a free
functional parameter. Suppose now it is subjected to some differential constraint
vτ = G(x, v, v′, . . . , v(r)).�

If r is the maximal order of the derivative of v entering such a constraint, then yτ
can depend on v(s), s � r − 1, only, cf. [6]. The next example is an illustration of
this general statement.

EXAMPLE 6. vτ = v, cτ = 0. From (29) and (33) we obtain

(D − Fy,−Fv) ·
(
fvv

v

) ∣∣∣∣
H=0

= 0. (37)

The highest-order derivative of v entering this equation is v′. It enters linearly
and its coefficient is fv+ vfvv, so it must vanish. Solving fv+ vfvv = 0, we obtain
fv = 1/v and yτ = fvv = 1. In particular, it does not depend on v in a perfect
accordance with the result of [6].
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