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Second-order differential invariants
of the rotation group O(n)
and of its extensions: E(n), P(1,n), G(1,n)

W.I. FUSHCHYCH, I.A. YEGORCHENKO

Functional bases of second-order differential invariants of the Euclid, Poincaré, Galilei,
conformal, and projective algebras are constructed. The results obtained allow us to
describe new classes of nonlinear many-dimensional invariant equations.

0. Introduction

The concept of the invariant is widely used in various domains of mathematics. In
this paper, we investigate the differential invariants within the framework of symmetry
analysis of differential equations.

Differential invariants and construction of invariant equations were considered by
S. Lie [1] and his followers [2, 3]. Tresse [2] had proved the theorem on the existence
and finiteness of a functional basis of differential invariants. However, there exist quite
a few papers devoted to the construction in explicit form of differential invariants for
specific groups involved in mechanics and mathematical physics.

Knowledge of differential invariants of a certain algebra or group facilitates clas-
sification of equations invariant with respect to this algebra or group. There are also
some general methods for the investigation of differential equations which need tide
explicit form of differential invariants for these equations’ symmetry groups (see, e.g.,
(3, 4]).

A brief review of our investigation of second-order differential invariants for the
Poincaré and Galilei groups is given in [5, 6]. Our results on functional bases
of differential invariants are founded on the Lemma about functionally independent
warrants for the proper orthogonal group and two n-dimensional symmetric tensors
of the order 2.

We should like to stress that we consider functionally independent invariants of
but not irreducible ones, as in the classical theory of invariants.

Bases of irreducible invariants for the group O(3) and three-dimensional symmetric
tensors and vectors are adduced in [7].

The definitions of differential invariants differ in various domains of mathematics,
e.g. in differential geometry and symmetry analysis of differential equations. Thus,
we believe that some preliminary notes are necessary, though these formulae and
definitions can be found in [8, 9, 10].

We deal with Lie algebras consisting of the infinitesimal operators

X = fl(xau)azv + WT(I,U)au"- (01)

Here z = (x',22,...,2"), u = (u',...,u™). We usually mean the summation over

the repeating indices.
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Detinition 1. The function

F:F(.r7u,r[1147...,r[ll)7

where u is the set of all kth-order partial derivatives of the function w is called

a differential invariant for the Lie algebra L with basis elements X; of the form
(0.1) (L =(X;)) if it is an invariant of the lth prolongation of this algebra:

!
XSF(x,u,zlL,...,u) = X(z,u,u,...,u)F, (0.2)

where the \s are some functions; when \; = 0, F is called an absolute invariant;
when \; # 0, it is a relative invariant.

Further, we deal mostly with absolute differential invariants and when writing
‘differential invariant’ we mean ‘absolute differential invariant’.

Definition 2. A maximal set of functionally independent invariants of order r <1 of
the Lie algebra L is called a functional basis of the lth-order differential invariants
for the algebra L.

We consider invariants of order 1 and 2 and need the first and second prolongations
of the operator X (0.1) (see, e.g., [8-11])

1 21
X =X+n00u, X =X+1;0u,
the coelificients n;" and n;; taking the form

N = (Oz; +ufOus )" — up(0r, + uf@us)fk,
;= (0, + u30ys + u?kauz)nf —ufy (0, + uj@us)fk.

While writing out lists of invariants, we shall use the following designations

ou 0%u
Ug = 7 Ugb =
T Oz T Ox,Oxy’
Sk(uab) = UayasUazas "~ Uap_raxUagars (0.3)

S]k(uaba Uab) = ualaz e uaj,laj Uajaj+1 e Uaka17
Rk(uaa uab) = Ua, UapUarasUasas * " Uap_1a, Waray -
Here and further we mean summation over the repeated indices from 1 to n. In all
the lists of invariants, k takes on the values from 1 to n and j takes the values from

0 to k. We shall not discern the upper and lower indices with respect to summation:
for all Latin indices

_ _ 2 2 2
TaToq = Tax® = 2%, = ] + 25 + -+ + x5

1. Differential invariants for the Euclid algebra
The Euclid algebra AE(n) is defined by basis operators
0
0x,’

Here and further, the letters a, b, ¢, d, when used as indices, take on the values from
1 to n, n being the number of space variables (n > 3).

Oq

Jab = l‘aab — ;Cbaa. (11)
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The algebra AE(n) is an invariance algebra for a wide class of many-dimensional
scalar equations involved in mathematical physics — the Schrédinger, heat, d’Alembert
equations, etc.

In this section, we shall explain in detail how to construct a functional basis of the
second-order differential invariants for the algebra AE(n). This basis will be further
used to find invariant bases for various algebras containing the Euclid algebra as
a subalgebra — the Poincaré, Galilei, conformal, projective algebras, etc.

1.1. The main results. Let us first formulate the main results of the section in
the form of theorems.

Theorem 1. There is a functional basis of second-order differential invariants for
the Euclid algebra AE(n) with the basis operators (1.1) for the scalar function

u=u(z1,...,T,) consisting of these 2n + 1 invariants

u,  Sk(uap), Ri(ta;Uap)- (1.2)
Theorem 2. The second-order differential invariants of the algebra AE(n) (1.1) for
the set of scalar functions u”, r = 1,...,m, can be represented as functions of the
[ollowing expressions:

u", Sjk(Uap,ugy),  Ri(ug, tg)- (1.3)

1.2. Proofs of the theorems. Absolute differential invariants are obtained as
solutions of a linear system of first-order partial differential equations (PDE). Thus,
the number of elements of a functional basis is equal to the number of independent
integrals of this system. This number is equal to the difference between the number
of variables on which the functions being sought depend, and the rank of the corres-
ponding system of PDE (in our case, this rank is equal to the generic rank of the
prolonged operator algebra [8, 9].

To prove the fact that N invariants which have been found, F* = F¥(x, u, Uy ,th),

form a functional basis, it is necessary and sufficient to prove the following state-
ments:

(1) the F? are invariants;
(2) the F* are functionally independent;

(3) the set of invariants F* is complete or N is equal to the difference of the number
of variables (:c,u,tlc, e IZL) and the rank of the system of defining operators.

We seek second-order differential invariants in the form
F=F(z,u,u,u).

[t follows from the condition of invariance with respect to translation operators 9,
that F' does not depend on x,; evidently, w is an invariant of the operators (1.1). Thus,
it is sufficient to seek invariants depending on u and U only. The criterion of the
absolute invariance (0.1) in this case has the form

JabF(rﬁLa ,Lzb) = 07 (14)
where

Jab = ugOur — upOur + 2(ug Our — upOur ), (1.5)

the summation over r from 1 to m being implied.
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In that way, the problem of finding the second-order differential invariants of the
algebra AFE(n) is reduced to the construction of a functional basis for the rotational
algebra AO(n) with the basis operators (1.5) for m vectors and m symmetric tensors
of order 2.

Lemma 1. The rank of the algebra AO(n) is equal to (n(n —1))/2.

Proof. It is sufficient to prove the lemma for m = 1. The basis of the algebra (1.5)
consists of (n(n —1))/2 operators. According to definition [8], its rank is equal to the
generic rank ol the coefficient matrix of these operators. Let us put us, = 0 when

a # b and write down the coefficient columns by 9, of the operators (1.5):

U1 — U22 0 cee 0
0 ul —ugz 0 (1.6)
0 0 ot Up—1,n—1 — Unpn

When ug, # up, for a # b and all u,, # 0, the determinant of the matrix (1.6)
does not vanish, therefore its generic rank (that is, the generic rank the algebra being
considered) cannot be less than (n(n — 1))/2. The lemma is proved. |

Lemma 2. The expressions

Sk(tap), Ri(ta,ap) (L.7)

are functionally independent.

Proof. To establish independence of expressions (1.7), it is sufficient to consider the
case when ug, = 0 if a # b and wy, # 0. Let us write down the Jacobian of the
invariants

1 ... 1
2ull e 2u7m 0
n—1 n—1
nuy, o Uy, (18)
2uq cee 2un,
n—1 n—1
2U1’U,11 e QuTLunn

The Jacobian (1.8) is equal up to a coefficient to the product of two Vandermonde
determinants and is not equal to zero if wu,, # wup, whenever a # b. Thus, the
expressions (1.17) are functionally independent. [ |

Proof of Theorem 1. The fact that expressions (1.2) are invariants of AO(n) can be
easily proved by direct substitution of these expressions into the invariance conditions.
Nevertheless, it is useful to note that Si(usp) are traces of the symmetric matrix
(uqp) = U and its powers, Ri(uq,uqp) are the scalar products of the vector (u,) =
(u1,...,uy,), the matrix U¥~1 and the vector (uq)?.

The invariants for the vector (u,) and the symmetric tensor (uq,) depend on their
(n(n + 3))/2 elements. Thus, it follows from Lemma 1 that a functional basis of the
algebra AO(n) for (u,) and (ugep) must consist of

nn+3) nn-1)

_ -9
2 2 "

invariants.
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Therefore the set (1.7) is a complete set of functionally independent invariants
of the form F = F(’lll,’lél,) and (1.2) represents a functional basis of the second-order

invariants for the algebra AF(n). The theorem is proved. |
Let us consider the case of two vectors (u,), (v,) and two symmetric tensors of
the second order (ugp), (vap). The operators of the rotation algebra have the form
(1.5), u=u!, v = u?.
In this case, a functional basis of invariants contains
-1 -1
5 (n(n2 ) N 2n> o n(n—1) n(n+7)

2 2

elements for which we take the following expressions

Ri(ta, tap);  Ri(va,uab),  Sjk(Uab, Vab)- (1.9)

The invariance of expressions (1.9) with respect to the operators (1.5) can be easily
proved by their direct substitution to (1.4). To establish their functional independence,
we shall use the following lemma.

Lemma 3. Let
U= (uab)ap=1,..ns V = Yab)ab=1,..n
be symmetric matrices. Then the expressions
Sik(Uap, Vap) = tr UIVETI 5 =0,k k=1,...,n, (1.10)

are functionally independent.

Prooi. To prove Lemma 3, it is sufficient to show that the generic rank of the Jacobi
matrix of expressions (1.10) is equal to (n(n+3))/2 that is the difference between the
number of independent elements of U and V' and the rank of the operators (1.5). We
shall limit ourselves to the case when u,, = 0 if a # b. Then equations (1.10) depend
on (n(n+ 3))/2 variables and their independence is equivalent to the nonvanishing of
the Jacobian.

Let us write down the elements of the Jacobian which are needed for further
reasoning

1 1
2u11 - 2Un, 0
nupy e gt RN B1))
1 ) 1 ... 1
2011 4viz - 4v, 2022 - 2Upy,

Since, in the first n rows, all the elements besides the first n columns are equal
to j zero, the Jacobian (1.11) is equal to the product of the Jacobian of the elements
trU*, k = 1,...,n, and the Jacobian of all other elements. According to Lemma 2,
the expressions trU¥, k = 1,...,n, are independent and their Jacobian is not equal
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to zero; thus, it remains to show the nonvanishing of the Jacobian and the functional
independence only for the elements

tr UV 5 =0,....k—1; k=1,...,n.

[t follows from (1.11) that it is sufficient to show the nonvanishing of this Jacobian
without the (n + 1)th rows and columns. Thus, to prove the lemma, it is enough to
show that the following expressions are independent

trUIVEIV, j=0,...,k k=1,...,n—1. (1.12)

The above reasoning allows us to make use of the principle of mathematical inducti-
on.

When n =1, uy; and vy; are independent and the lemma is true. Let us suppose
that it is true for » — 1 and then prove from this that it is valid for n. Let the
expressions

tr UV 5 =0,...k k=1,...,n—1, (1.13)

where U, V are symmetric (n — 1) x (n — 1) matrices and are independent. Then,
we shall prove the independence of (1.12) for the same matrices. The sets (1.12) and
(1.13) coincide with the exception of the following subsets

tr UV, j=0,....n—1 (1.14)
belong only to (1.12) and
trU’, j=1,....,n—1 (1.15)

belong only to (1.13).

The assumption of validity of the lemma for n — 1 means that for two symmetric
tensors of order 2, the set (1.13) is a functional basis of invariants of the rotation
algebra. Thus, all the invariants of this algebra can be represented as functions of
(1.13). To prove the functional independence of (1.12), it is sufficient to prove the
nondegeneracy of the Jacobi matrix of the functions expressing the invariants (1.12)
with (1.13). This matrix has the form

(1.16)

Bt U7V "7
0 D(tr U7)

W being the derivative by trV of the expression
trVr=F(trVE k=1,...,n—1).

(We know that from the Hamilton—-Cayley theorem); W # 0.
We have only to prove the nonvanishing of the Jacobian of the expressions

tr (V") = F(trU*, k=1,...,n—1,...). (1.17)
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When V = E, the corresponding quadrant of the matrix (1.16) is the unit matrix
and its determinant does not vanish identically. This fact proves the nondegeneracy of
the matrix (1.16). The expressions (1.17) can be obtained from the Hamilton—Cayley
theorem. They are polynomials and, thus, continuous functions of their arguments.
The functional independence of the expressions (1.12) for (n—1) x (n —1) matrices
implies their independence for n x n matrices. From the above, it follows that the
expressions (1.10) are independent, thus Lemma 3 is proved. |

Proof of Theorem 2. It is easy to see from the structure of the set (1.3) that

the invariants involving (ul),..., (u™), (u?,),...,(u™) depend on the components of

(ul,) and of the corresponding vector or tensor, thus it is sufficient to prove the
functions independence of each of the following sets:

Ry (ul, ul,) for every r=1,...,m;
1 T — .
Sik(ugy, uby) for every r=2,...,m;

The functional independence of each set of Ry(u”,ul,) can be proved similarly
to the proof of Lemma 2. The functional independence of the set Sjx(ul,,u’,) easily
follows from Lemma 3, u" are evidently independent of other elements of (1.3).

To make sure that expressions (1.3) are invariants of AO(n), it is sufficient to
substitute them into the condition (1.4).

The set (1.3) consists of

nn—1) nin+1)
T_m<T

n(n —1)

2mn+m+ (m—1) 5

+n+1)—

elements and, thus, it is complete.

So we have proved that this set forms a basis of invariants for the algebra AE(1.n)
(1.1).

1.3. Bases of invariants for the extended Euclid algebra and for the confor-
mal algebra. The extended Euclid algebra AFE;(n) for one scalar function is defined
by the basis operators 9,, Jup (1.1) and D depending on a parameter A:

D = 2400 + Mud, (9, = 8/0u). (1.18)

The basis of the conformal algebra AC(n) consists of the operators d,, Jup (1.1)
and D (1.18) and

K, =2x,D — x,1,0,. (1.19)

Theorem 3. There is a functional basis for the extended Euclid algebra that has
the following form
(1) when X\ #0:

Ry (ua, tap) Sk(Uap)

WFA—2/0F17 L k(1—2/X)’ (1.20)
(2) when X\ = 0:
Rk(uav uab) Sk (Uab)
, (aa)® " (ttan)? (k #1); (1.21)

a functional basis for the conformal algebra has the following form:
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(1) when X\ £ 0:

S (Bap)uF /A (1.22)
(2) when X\ = 0:
u, Sk(wab)(uaua)_% (k #n), (1.23)
where
u(l uC C
eab = )\Uab“i’(l*A)ﬂ *5ab 2Z ’

(1.24)

ab
Wab = UcUe (Uab + 5 _ nudd> - uc(uaubc + ubuaC)a

0ap being the Kronecker symbol.

Proof. To find absolute differential invariants of the algebra AE;(n), it is necessary
to add to (1.4) the following condition

2
DF =x,F,, + \uFy, + (A —DugFy, + (A —2)ugpFy,, = 0. (1.25)
Solving equation (1.25) for
F= F(ua Rk(u(u uab)7 Sk(uab))y

we obtain functional bases (1.20), (1.21) for the extended Euclid algebra.
The second-order differential invariants of the algebra AC(n) are defined by the
conditions (1.4), (1.25) and

ka _[2<aF - 07 (126)

2
where k, are arbitrary real numbers, K, are the second prolongations of the operators
K, (1.19):

2 2 2
Ko =2x,D + b Jap + 2A\[u0y, + 2up0y,, ] + 2ua0y,, — 4updy,

ab*®

Solving this system for an arbitrary n requires a lot of cumbersome computations.
It is simpler to construct conformally co variant tensors from wu, u,, ue, and then to
construct invariants of the rotation algebra.

Detinition 3. Tensors 0, and 04, of order 1 and 2 are called covariant with respect
to some algebra L = (Jup, X;) if

X0, = Jébﬁb + o',

; i 1, (1.27)
Xilap = pabecb + pbceac +p eab;

i

X, are operators of the form (0.1), p*, o' are some functions, o', p', are some

skew-funmetric tensors.

[t is easy to show that the expressions Sk(6ap), Ri(0a,04p), Where 6,, 0,4, are
tensors covariant with respect to the algebra L are relative invariants of this algebra.
The fact that 6, and wgy, (1.24) are covariant with respect to the conformal algebra
AC(n) can be verified by direct substitution of these tensors into the conditions (1.27)

2 2
for the operators D and K.
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The rank of the second prolongation of the algebra AC(n) is equal to the number
of its operators

n(n —1) et ngl— n(n + 3)
2 2
and, therefore, a functional basis of second-order differential invariants must contain
n invariants.

The functional independence of the expressions (1.22) follows from Lemma 2 if we
notice that the transformation wy, — 6, is nondegenerated. The same is true for the
set (1.23).

The expressions (1.22) and (1.23) satisfy (1.25) and (1.26) for the corresponding A
and they are invariants of the conformal algebra.

All that is stated above leads to the conclusion that (1.22) and (1.23) form functi-
onal bases for the conformal algebra AC(n) with A # 0 and A = 0, respectively.

+1

Note 1. Using condition (1.26), it is easy to show that when X\ # 0 covariant tensors
exist for AC(n) of order 2 only; when A = 0, the tensors wg, (1.24) and u, are
conformally covariant but Si(wes) and Ry (uq,wap) are dependent.

Theorem 4. The second-order differential invariants for a vector function u =
(ul,...,u™) and for the algebra AEi(n) = (a4, Jup, D), the operator D having the
form

D = 2,0, + Au"Oyr (1.28)
with a summation over r from 1 to m, can be represented as the functions of the

[ollowing expressions:
(1) when X\ #£0:

uir (7” -9 m) Sjk(u}zbvqu) Rk(“z’u}zb) .
ul O T ) R(I=2/) 0 (y1)R(=2/A) 41
(2) when X\ = 0:

u”, Ry (u27 uclzb)(utlza)_k7 Sjk (u¢1zb7 qu)(uzlm)_k
(when r =1 then k # 1);
the corresponding basis for the conformal algebra AC(n) = (04, Jap, D, K,)
(Ko = 22,D — zpx40,) has the following form:
(1) when X\ #0:

T - u’
S (O Oap) () A0, (1.29a)
Ri(0,0,)F D=1 (p =3 m);
(2) when A =0:
u” (’I" = 1a <o 7m>7 (u}lu(li)_Qijk(wrlzb’ wa)’ (1 29b)
(uhul) ' Ri(ug, why)  (r=2,...,m) |

(for the set of invariants (ulul) =2k Sk(wap), k does not take the value n); the tensors

0r,, wh, are constructed similarly to (1.24) and

r 1
gr — Ya _ Ua
@y ul

Theorem 4 is proved similarly to Theorem 3.
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The functional independence of the sets of invariants follows from Lemma 2 and 3
taking into account the fact that transformations u?, — 67, v, — wl, (r=1,...,m)
and ul, — 07 (r =2,...,m) are nondegenerate.

1.4. Diiferential invariants of the rotation algebra. The rotation algebra is
defined by the basis operators Jg (1.1).

The second-order invariants of this algebra for m scalar functions u" are construc-
ted with x4, u”, uy, wl, similarly to invariants of the Euclid algebra.

Theorem 5. There is a functional basis of the second-order differential invariants
for the algebra AO(n) that has the form

ur’ Sjk(uzlzb7 qu)7 Rk(“’; uzlzb)7 Rk(xaa u}zb)’ r=1,...,m;

the corresponding basis of invariants for the algebra (J., D), where D is defined
by (1.28), consists of the expressions

e S (tgy: 1o
— (r=2,...,m), W’ Ri(u?, (llb)(ul)%/)\ 1=k
Ry (20, uly) (uh)2AED =KL phen X # 0;

Ry (ug

uab)(uéa)ih Sik gy ugy) (Ugq) ™" (k # 1 when r =1),
Ri(za,uly)(ul,)?™% when A =0.

T

u,

A basis of invariants for the algebra (J.p, D, K,) when A # 0, consists of the
expressions (1.29a) and

Ry (24, eib)
72 (ul)(kfl)(172/>\) ’

k=2,....,n+1;

when X\ = 0 it consists of the expressions (1.29b) and

Rk(xav wib)

2 _
P2(wl Jhd (% = zoxq).
aa

The proof of this theorem is similar to the proofs of Theorems 2 and 3; notice that
(z,) is a co variant tensor with respect to the conformal operators.

2. Ditferential invariants of the Poincaré and conformal algebra
In this section, we consider differential invariants of the second order for a set
of m scalar functions

u =u"(xg,21,...,Zpn), n>3. (2.1

The Poincaré algebra AP(1,n) is defined by the basis operators
) 0
Pp = Zg'uya—%’ Juu = TuPv — TvPu, (22)
where u, v take the values 0,1,...,n; the summation is implied over the repeated

indices (if they are small Greek letters) in the following way:

2t =x,a” =a¥x, =2t —at — - — a2, g =diag(1,-1,...,-1). (2.3)
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We consider x, and z” equal with respect to summation not to mix signs of
derivatives and numbers of functions.

The quasilinear second-order invariants of the Poincaré algebra were described
in [12].
Theorem 6. There is a functional basis of the second-order differential invariants
of the Poincaré algebra AP(l,n) for a set of m scalar functions u" consisting of

1
m(2n +3) + (m — 1)@
invariants
u”, Rk(uz, u}w), S (uzy,uiy).

In this section, everywhere k=1,...,n+ 1, j=0,...;kr=1,...,m.
For the extended Poincaré algebra AP(l,n) = (p,, J.., D), where

D =2,p, + M pyr (2.4)

(pur = 9(0/0u™), the summation over r from I to m is implied) the corresponding
basis has the following form:

(1) when A\ = 0:

uT’ Sjk(uzu’ uiu)(u}la)ika Rk(u;‘auiu)(u(lla)ik;
(2) when \ # O:

u’l"

S (ul ul )(ul)k@/’\*l), Rk(u;,uiy)(ul)%/’\*k”,

ar i

where S;i, Ry are defined similarly to (0.3) and the summation over small Greek
indices is of the type (2.2).
For the conformal algebra AC(1,n) = (pu, Juw, D, K,), @where

K, =2x,D—x,2,p,

(D being the dilation operator (2.3)), the corresponding basis consists of the expres-
sions

Sk (0], 0) (') FEATD, % Ry (67,61, (ul)FEA-D-1L,

o Yy
when N #0; r =2,...,m, there is no summation over r; the conformally covariant
) b
tensors have the form
r 1 T T,
" = & _ u_ll« o = " + (1 _ )\)uuuy _ Uﬁuﬁ
1 u” ul’ pv 124 u” uv 2T

When \ = 0, the corresponding basis of invariants for the conformal algebra has
the form

1,1 )—Qk

u’, Sjk(wuuywiy)(uaua 1 1)1—2k

, Rk(u;,wil,)(uaua L, r=2,...,m;

the tensors (wy,,,),

ro_ .r.r r Guv
Wy = UgUg, (u/u/ - 1-n

i) = w0l + )

are conformally invariant (there is no summation over r).
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The proof of Theorem 6 follows from those of Theorems 2, 3 for x = (z1,...,Zn41)
if we substitute iz instead of 1.

Similarly to the results of Paragraph 1.4, it is possible to construct the invariants
of the algebras (J,,,.), (Juw, D), (Juv, D, K,).

The obtained results allow us to construct new nonlinear many-dimensional equa-
tions, e.g. the equation

UaUg,
muuu — Uy UpUpyy = (ul/uV>2F(u)’
where F' is an arbitrary function, is invariant under the algebra AC(1,n), A = 0. The
left member of the above equation is equal to w,,,.

There is another quasi-linear relativistic equation with rich symmetry properties
(1 — uqUa )Upp — UaUplay =0,

that is, the Born-Infeld equation. The symmetry and solutions of this equation were
investigated in [10, 13]. This equation is invariant under the algebra AP(1,n+1) with
the basis operators

JaB = %apB — TBDA,
AB=1,....n+1, z,41 = u.
Let us consider the class of equations
Upp Uy = F (W, WUy Uy, WUy, ).

[t is evident that they are invariant with respect to the Poincaré algebra AP(1,n)
out the straightiorward search the conformally invariant equations from this class
with the standard Lie technique requires a lot of cumbersome calculations. The use of
differential invariants turns this problem into one of elementary algebra, e.g. if A # 0

1
352 (Op) + w2V (1 (0 )u A7),
where 6,,,, is of the form (1.24) and ¢ is an arbitrary function. Whence
_ _ A+ N Ug U
F:U2(1 2/)\)¢ <u2/>\ 1 (uMM_ )\ )) _

u

F—uguy, =—

1 2(1 - 1)) 2UppUa o
A2 At t + DY
[t is useful to note that besides the traces of matrix powers (0.3), one can utilize
all possible invariants of covariant tensors 6}, wy,, to construct conformally invariant
equations.

()‘2 + n2)(uaua)2 -

3. Differential invariants of an infinite-dimensional algebra
[t is well-known that the simplest first-order relativistic equation — the eikonal or
Hamilton equation

Uale = UE — Ui — - —u2 =0 (3.1)

is invariant under the infinite-dimensional algebra AP*°(1,n) generated by the opera-
tors [10, 14]

X = "z, +a")0, + n(u)0y, (3.2)



516 W.I. Fushchych, I.A. Yegorchenko

—bv = b¥#, at, n being arbitrary differentiate functions on u. Equation (3.1) is widely
used in geometrical optics.

In this section, we describe a class of second-order equations invariant under the
algebra (3.2).

[t is easy to show that the tensor of the rank 2

9;1,1/ = Uy U pUN + Uy U UN — QU'MU'Vu)\/\ (33)
is covariant under the algebra AP>°(1,n) (3.2).
Theorem 7. The equations of the form

Se(0w) =0, k=1,2,..., (3.4)

Sk being defined as (0.3), are invariant with respect to the algebra AP (1,n) (3.2).

The problem of the description of all such equations is more difficult and we do
not consider it here.
Let us investigate in more detail the quasi-linear second-order equation of the form

Uy Uy Uy — UpUyUae = 0. (35)

Theorem 8. When n > 2, equation (3.5) is invariant with respect to the algebra
AP (1,n) with generators of the form

X +d(u)x,0,,

X is of the form (3.2), d(u) is an arbitrary function on w.

The proofs of Theorems 7 and 8 can be easily obtained with the Lie technique
using the criterion of invariance
2

S0, =0,
X S(0w) S1(6,1)=0

2
where X is the second prolongation of the operator X [8-10].

4. Differential invariants of the Galilei algebra
4.1. 1t is well-known that the heat equation

2uuy + Au =0, Au = ugq,

u=u(t,xz), x=(r1,...,2,), n>3

(4.1)

is invariant under the generalized Galilei algebra AGL(1,n) with the basis operators

0 0
8t = &’ 8@ = 3—%’ Jab = xaab - 3?(]6@7
Gy = t0q + praudy, <8u = ;L) ;o w0y, D=2t + 1,0, + Aud,, (4.2)

A:thtQ&nguTaPu@u (/\:,g).

The Schrédinger equation
21m¢t + waa = Oa (43)
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¥ = (t,x) being a complex-valued function, is also invariant [16] under the genera-
lized Galilei algebra with the basis operators

0 .0 . “
Pozlay Pa:*la » Jab = TaPb — TpPa, J:Z(T/Jawfiﬁ aw*)7
Gq = tpa — mxeJ, D =2tpyg — x4ps + Al (I = '(/)alb + ¢*8¢*)7 (44)
2
2 mx __n
A= py —twopa + NI+ 720 (A= =2,

The asterisk means the complex conjugation.
We shall designate the algebra (4.4) with the symbol AGZ!(1,n). Besides,

AGI(]_,TL) = <atvaaauau7 Gaa Jab>»

the operators being of the form (4.2). A basis of the algebra AGI(1,n) consists of
the basis operators or AG!(1,n) and of the operator D. Furthermore AG!!(1,n) =
(D0, Pas Iy Jap, Ga) (4.4). A basis of the algebra AGII(1,n) consists of the previous
operators and also D (4.4).

To simplify the form of invariants, we introduce the following change of dependent
variables:

u=-expp, P=expo (Im(Z) = arctg %) . (4.5)

All the indices & in the expressions of the type (0.3) here will take on values from
1 to n, the indices j will take on values from O to k.
We seek invariants of the algebra AGL(1,n) in the form

F= F(‘)Otasoa790tt790at7<;0ab)~ (46)
Obviously, they do not include ¢, z,, and ¢ because the basis (4.2) contains operators
0y, O, 0.

Using the definition of an absolute differential invariant (0.2) we get the following
conditions on the function F (4.6):

2
JapF' = QpaFgab - @bFLpa + FSDthOat - Qpthcpag + 2@11chpr - Q@chgaac =0, (47)

2
GoF = —paFyp, + 1Fy, =200 Fy,, — 0arFyp,, =0, (4.8)
2
DF = =2p.F,, —p Fy, —4puF,,, —30atFs,, —20aF,,, =0, (4.9)
2 2 2
AF =tDF +x,GoF — AFy, — 20 F,,, — @aFo,, + 1 Fy,, = 0. (4.10)
From equations (4.8), we can see that the tensors
ea = UPat + PbPaby Pab (411)

are covariant with respect to the algebra AGY(1,n) (i # 0).

Theorem 9. There is a functional basis of absolute differential invariants for the
algebra AG'(1,n), when u # 0, consisting of these 2n + 2 invariants:

My =2up; + 9apa, Mo = Qi + 21PaPat + PaPoPabs

412
Ry = Ri(0a,0a), Sk = Sk(©ap)- (*412)
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For the algebra AGL(1,n) (u # 0) such a basis has the form
Ms Ry, Sk

— —_— —. 4.13
M7 MER ME (4.13)
For the algebra AGL(1,n) (u # 0), there is a basis of the form
N, Ry, S
N—127 W, N—{C (k=2,...,n), (414)
where
N1 =2ppt + PaPa + Paas
) 1 1 1,
No = p“pu + 2 —$tPaa + PaPat | T PaPePab + —PaPaPib T —Php,
k 1
- —n)'k!
B =S Ry, k1 MR (4.15)
k ; l(gp ) l'(k — l)' 5
k 1
R —n)(k—-DNk+1 _
Sk = ( ) ( ) ( )Sl(waa)k l’

=0 (14 Dk —1)!

Sk, Ry are defined by (4.12) and 0, has the form (4.11).

The proof of this theorem is similar to the proof of Theorems 2 and 3. We shall
present here only some hints to the proof.

It is evident that the function F' must depend on the invariants of the Euclid
algebra

F = F(‘Pt;<PttaRk(‘ﬁay@ab)yRk(Wat7@ab)aS¢ab))-

First we construct two invariants of AGY(1,n) M; and M, (4.12) which depend on ¢,
and ¢y respectively. The other invariants of the adduced basis (4.12) do not depend on
@t or g and the sets {M;, My} and {Ry, Sk} are independent. The invariants Ry, Sk
are constructed with the covariant tensors ,, pqp (4.11) similarly to invariants of the
conformal algebra investigated above, and it is easy to see that they are independent.

The generic ranks of the prolonged algebras AG!(1,n), AGI(1,n), AGL(1,n) are
equal to the numbers of their operators and from this fact we can compute the number
of elements in the bases for these algebras.

Adding to (4.7) and (4.8) the condition (4.9), we obtain from the invariants (4.12)
the basis (4.13) for the algebra AGI(1,n).

Relative invariants Ry, Si (4.15) of the algebra AGL(1,n) were found from the
equation

Ay, —20iFy,, — paFy,, + 10arFyp,, =0,

F' = F(Ry, Si), and then we constructed absolute invariants using (4.9). Besides, it is
possible to construct analogues to Ry, Sy with AGL(1,n)-covariant tensors 6, (4.11)
and

L
Oab = ©ab — T“(wc% + ppy).
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Considering (pat), (va), (pap) as independent vectors and tensors and putting
wapb = 0 whenever a # b, v, = 0, we see from Lemma 2 that the adduced sets of
invariants are independent.

Note 2. A basis of invariants for the Galilei algebra without translations contains
expressions (4.12) and

1
Rk(hm ¢ab)7 §IME2 - (pt7

the Galilei-covariant vector h, having the form

he = pzg — tp,.
Let us also adduce an A-covariant tensor
]iba = fa — %a
t

depending on x,, and a relative invariant of the operators A and D (4.2)

e’
eXp Y — —Qt

with which it is possible to construct a basis of invariants for the algebra (G, Jap, D,
A).

We have presented a method to find the bases of invariants for Lie algebras for
which Jg, (1.1) are basis operators. Further, we shall adduce functional bases for the
algebras AGL(1,n) where p = 0 and AG4!(1,n) where p = 0 or u # 0. We omit
proofs because they are similar to proofs of the previous theorems.

It is evident from the conditions (4.7)—(4.10) that the case p = 0 for the algebra
AGL(1,n) has to be specially considered. The tensors (p,) and (p4) are covariant
with respect to this algebra; the tensor (6,) involved in invariants is defined by an
implicit correlation

Pt = ea(palr (416)

Theorem 10. There is a functional basis of the second-order differential invariants
for the algebra AGT(1,n), where u =0, that has the form

Ml =Yt — @aeaa M2 = Pt — Saataa;

Ry, = Ri(¢as Pab), Sk = Sk(Pab)-

The corresponding basis for the algebra AGL(1,n), where u =0 has the form

MP R S

My, M} MF’
for the algebra AGL(1,n), when u =0, it has the form

Ry Sk

M1/2k7  pf1/2k?

where Ry, Sy are defined by (4.17) and

(4.17)

M = ((pt - ea(pa)2 + ((ptt - (patea)()\ + @a@brab)~

Here, the matrix {rap} = {pav} % 04 = rapp: are the same as in (4.16).
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Note 3. It is possible to use, instead of My, Ms, the invariants

Pt Y1 Pn Pt Pt Pnt
My=| TP T A= | TP
Spnt Sanl e (Pnn Qont ®ni1 Tt (Pnn

which have been found in [17] as the solution of the problem of finding the equations
invariant under the Galilei algebra when p = 0.

Note 4. The invariants for the algebra (J,p, G4, J, D, A) (4.2), where pu = 0, which
depend on z,, t, can be constructed with ¢,, wu and the following covariant vector

. hy 2 4 ;
ha = "2 4 Ztpup, + — 0P
t n n 4
where h, = zppap + t@q: is covariant with respect to the operators G, when p = 0.
4.2. Let us proceed to describe the basis of the invariants for the algebra AGZ{(1,n).
Theorem 11. Any absolute differential invariant of order < 2 for the algebras listed
below is a function of the following expressions:
(1) AGH(1,n), m # 0:
¢+¢", My =2im¢s + ¢ada, My,
M2 = 7m2¢tt + 2im¢a¢at + ¢a¢b¢ab7 M;a
Sjk — Sjk((babv (;521;)7 Rl = Rk(eav ¢ab)7
R} = Ri(0;, ¢ab), R} = Ri(pa + &3, dab),
the covariant tensors being 0, = —imoas + dvPab;
(2) AGH(1,n), m # 0:
My My My R B S
M, MP ME MR MET o ME
¢+ ¢* when X=0, MR/ when \ £ 0;

(3) AGH (Ln), m £ 0, A= 1.

* Hl H3 Q
Nyettmeren - N Ne N B g gy B 5%
Ny©ON{TON{T NPT Ny Nj
where
Nl = 2Zm¢t + ¢aa +¢a¢a7

N = —20u + 2im (Gutn + 1) + Guhdun + 5 udtn + -0

k J
6= 20 2 Su(=n) CICE T (Bual T (63 k(D) (05)F

<.

(1=1,2,3).



Second-order differential invariants of the rotation group O(n) 521

The invariants for the algebras AG'(1,n), AGI(1,n) (m = 0) can be construc-
ted similarly to the case of real function. Let us adduce a functional basis for the
algebra AGL(1,n).

(1) when A =0, then there is a basis consisting of the following expressions:

N NP2 (Sp)?

N2 AT—k—1
e I RL)2N 1=1,2,4);
N2° N, NF” ()" Ny ( 2,4);

¢+ 97,

(2) \ £ 0:

* 1 \2 2
NN @+67), %’ Nye@N@+sr) () (1=1,2.3), (Sjk)

K K
1 Ny M

where

N1 = (¢ — 0ada)? + (D1t — Oadat) (A + PababTab)
(with {rap} = {¢ap} " and 4 = rapdrr),
No = (91 — ¢0c)9adyray — (07 — 9207)PadoTab,
N3 = (¢t — ¢7) = Ta(Pa — 03) (Ta(Adab + ad) = Podt + Anr),
R = Ri(¢a; ¢ab); Ri = Re(9}, dab), Ry = Ri(0a — 0, dab),
R = Ri(pa, dab) (pa = (¢ — O6d) (5T ac — dctie) — Godarva(fa — 03)).
The proof of this theorem will be easier if we notice that by putting u = im
in (4.4), we obtain operators similar to the operators (4.2).
The change of variables (4.5) in the adduced invariants allows us to obtain bases

for the algebras AGE and AGL! in the representations (4.2) and (4.4). These results
can also be generalized for the case of several scalar functions.

4.3. Let us present some examples of new invariant equations

e+ 5 {2 (010 + 000 ) + s + 1 0ubum + 0% b =
p n " "
= <2M¢t + ¢a¢a + ¢aa)2F7

(4.18)

—mP by + 2im (qsaasat + %qﬁmaa) + Gududas + - Gubudn + G =
= (2im¢; + daBa + Daa)?F.

(4.19)

Equations (4.18) and (4.19) are invariant, respectively, under the algebras
AGE(1,n), p#0 (4.2), and AGLI(1,n), m # 0 (4.4). The F’s are arbitrary functions
of the invariants for corresponding algebras.

Evidently, wide classes of invariant equations can be constructed with the adduced
invariants.

5. Conclusion
[t is well-known that a mathematical model of physical or some other phenomena
must obey one of the relativity principles of Galilei or Poincaré. Speaking the language
of mathematics, it means that the equations of the model must be invariant under the
Galilei or the Poincaré groups. Having bases of differential invariants for these groups
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(or for the corresponding algebras), we can describe all the invariant scalar equations,
or sort the invariant ones out of a set of equations.

The construction of differential invariants for vector and spinor fields presents
more complicated problems. The first-order invariants for a four-dimensional vector
potential had been found in [18]. The cases of spinor and many-dimensional vector
Poincaré-invariant equations and corresponding bases of invariants are still to be
investigated.

Note 5. After having prepared the present paper, we became acquainted with the
article [19] where realizations of the Poincaré group P(1,1) and the corresponding
conformal group were investigated, and all second-order scalar differential equations
invariant under these groups were obtained. Reference [19] contains bases of absolute
differential invariants of the order 2 for the Poincaré, the similitude, and the conformal
groups in (1 + 1)-dimensional Minkowski space for various realizations of the corres-
ponding Lie algebras.

Note 6. It was noticed by the referee that an essential misunderstanding arose in the
calculation of second prolongations for differential operators, e.g. in formulae (1.5)
and (1.25).

When we calculate such prolongations with the usual Lie technique (see, e.g., [8]),
we imply that action of an operator of the form X9, _,, where X are some functi-
ons, is as follows

ab?

b b
X 8uab (ucducd) =2X° Uab, 8uabucd = 6a06bd-

With this assumption, 9,,,,us, =0, a # b.
Otherwise, the second prolongation of the operator Ju; (1.1) will be of the form

2 ~

Jab = Jab + Jaba

jab - uaaub - ubau(z + uacaubC - ubcauaC + uab(aubb - aua@)-
Note 7. The equations which are conditionally invariant with respect to the Poincaré
and Galilei algebras were investigated in [20, 21].
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