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Preface

The study of queuing control began in the 1960s and gave rise to a vast amount of 
literature. The basic tools of this field were drawn from dynamic programming and 
the theory of Markov processes. Such issues as the operational characteristics of 
controlled systems as well as questions of existence of optimal controls and their 
structural properties were and still are being studied. 

The experience of four decades, however, is not encouraging. Most queuing con-
trol problems cannot be solved explicitly because of their complexity and enormous 
computational demands. Queuing control is mathematically more demanding than 
the analysis of queues, which also reaches its limits when non-Markovian problems 
are studied. 

To overcome analytical difficulties, researchers turned to approximate or heuris-
tic methods. Lately fuzzy logic was employed to problems of queuing control. 

This book provides a number of results in queuing control from the point of 
view of fuzzy logic. Fuzzy control is an effective approach in nonlinear or large-
scale systems control, especially when mathematical models are difficult to obtain 
or do not exist at all. It turns out that fuzzy control is computationally efficient and, 
in conjunction with analytical results, precise. 

A number of control problems will be presented, which were developed by the 
authors in the past decade. This is the first systematic effort of solving queuing 
control problems using the tools of fuzzy logic. 

The material of this book can be useful to advanced undergraduate and graduate 
students. Also, researchers and practitioners in the field of queuing control, systems 
analysis, manufacturing, and communications may benefit from it. 

The material is organized into nine chapters. The introductory chapter outlines 
the book and discusses background. Chapters 2 and 3 provide technical background 
on fuzzy logic and fuzzy control. Chapters 4–7 cover fuzzy queueing control. 
These chapters are organized along the lines of problem description, architecture of 
the fuzzy logic controllers, and numerical examples. Comparisons are provided 
whenever feasible. Chapter 8 presents applications to the Internet.  Chapter 9 con-
cludes with suggestions for further investigations. The Appendix provides a brief 
introduction to Markov queuing models and simulation, which were used to vali-
date the performance of the fuzzy algorithms. A list of references is given at the 
end, which is by no means exhaustive. 

We are indebted to a number of people who assisted us in the writing of the 
book. Several anonymous referees gave us invaluable advice in the course of our 
research. 

We thank Nili Phillis for proofreading the manuscript. 
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1  Introduction 

1.1 Queues and Queuing Theory 

Queues are ubiquitous. We wait in cars, banks, hotels, supermarkets, box offices, 
airports, hospitals, and so on. These are examples of visible queues. In fact, queues 
of voice calls or data packets in communication channels are common but invisible. 
Queues are often undesirable because they cost time, money, and resources. They 
exist because the service resources are not sufficient to satisfy demand. This is 
because of a number of reasons. Servers may be unavailable because of space or 
cost limitations, or it may not always pay to provide the level of service necessary 
to prevent waiting. The burstiness of traffic in communication lines or computer 
networks is also a reason why queues cannot be easily avoided. 

Queuing theory uses mathematical tools to predict the behavior of queuing sys-
tems. Predictions deal with the probability to have n customers in the system, mean 
length of queues, mean waiting time, throughput, and so on. A queuing system 
consists of a stream of arriving customers, a queue, and a service stage. To model 
such a system, the following basic elements are needed: 

A stochastic process describing the arrivals of customers 
A stochastic process describing the service or departures of customers 
Number of servers (m)
System capacity (K)
Size of customer population (N)
Queue discipline 

A queuing system is described using the notation A/ /m/K/N/Z, where A and B
specify the distributions of the interarrival and service times, respectively: M 
(memoryless) denotes the exponential distribution, Ek stands for the k-Erlang distri-
bution, G is used for an arbitrary distribution, D for deterministic times, and so on. 
Finally, Z is the queue discipline: FIFO (First In First Out), LIFO (Last In First 
Out), and so on. 

If any of the descriptors K, N, and Z is missing, then we assume that K ,
N , and Z  FIFO, respectively. 
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1.2 Models of Queuing Control 

1.2.1 Introduction 

The majority of the early queuing optimization problems were static, where the 
system characteristics would not change over time. Static optimization, however, 
cannot meet the demand for dynamic allocation of customers or resources in com-
plex manufacturing or communication systems. One has to move from the descrip-
tive, where all the parameters are given, to the prescriptive or normative, where 
parameters change. 

Design problems, usually with the aid of descriptive models and some perform-
ance measure, provide among others the optimal mean arrival rate , mean service 
rate , and system capacity K. Control, on the other hand, is dynamic and provides 
actions according to the state of the system. Customers can be directed to different 
servers depending on the queue size, arriving customers may be denied entry, wait-
ing customers may be denied service although servers are available until the queue 
reaches a threshold size, and so on. 

Control problems are mostly solved using dynamic programming techniques. 
Heuristic algorithms are not uncommon in complex situations. This book focuses 
on a new approach using fuzzy logic. Fuzzy queuing control seems to be a promis-
ing method where dynamic programming does not work. Indeed, dynamic pro-
gramming handles simple and mathematically well-posed problems. But the major-
ity of practical problems do not have nice mathematical descriptions or they are so 
complicated as to defy analysis. Fuzzy logic seems to be well suited to fill this gap. 
This is so for a number of reasons, as we shall see later. Here it suffices to say that 
fuzzy logic uses words to develop models and perform computations emulating an 
experienced operator. It is thus able to handle highly nonlinear problems and pro-
vide efficient control policies. 

The control problems of the book belong to the following general categories: 

1. Control of the number of servers. Servers are removable and may be turned on 
or off according to the state of the system. The varying number of active servers 
must be determined. 

2. Control of the service rate. This category generalizes (1). We change the service 
process by varying the service rate rather that modifying the number of servers. 

3. Control of the queue discipline. The order of service is determined among dif-
ferent classes of customers, and an allocation of customers to servers is made. 

4. Control of the admission of customers. The arrival rate can be modified, custom-
ers may be denied entry, or customers control the decision for entry. 

Next we give a brief review of each category. 

1.2.2 Control of the Number of Servers 

The systems in this category are usually called queuing systems with removable 
servers or with vacations. The servers may be unavailable over certain intervals of 
time, and a decision should be made about the time of activity for each one. The 
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objective is to minimize the expected system cost. Vacation models are motivated 
by problems in which the vacation time is used by other jobs, which could even 
belong to another system, so that the idle time of a server is not necessarily lost. 
The notion of vacation can be generalized to various queuing problems in which 
the service station is subject to breakdowns. 

Three types of policies have been discussed in the literature. 

N-policy: The state of removable servers depends on the number of customers 
present in the system. A common type of N-policy is called ( , N )-policy, with 
0 N < + , according to which the server is turned on when N customers 
are present and the server is turned off when it terminates a service with  cus-
tomers left in the system. 
D-policy: The state of removable servers depends on the total amount of work in 
the system. 
T-policy: An active server goes on serving the queue as long as there is at least 
one customer in the system, but when the system empties, the server becomes 
unavailable for some length of time (a vacation). 

Bibliographical Notes 

Yadin and Naor (1963) were the first to introduce queuing systems with removable 
servers applying a (0, N )-policy. Most of the subsequent work was devoted to sin-
gle-server systems. Using an average criterion, Heyman (1968) proved that the 
optimal N-policy is either (0, N ) with 0 N < +  or (0, 0), i.e., always an exhaus-
tive policy. For a discounted criterion, the optimal stationary operating policy de-
pends on the starting state, which for simplicity is (0, 0); that is, the server is off 
and there are no customers in the system. In this case, Heyman (1968) and Bell 
(1971) proved that the optimal N-policy is either (0, N) with 0 N < +  (as in the 
average case) or (0, + ) or (0, N )* with 1 N < + . This policy turns on the server 
when N customers are present, and the server stays on thereafter. Kimura (1981) 
used a diffusion approximation model to determine explicit solutions for a problem 
with a discounted criterion. Bell (1973) introduced a vacation model with priority 
queue; Teghem (1987) and Wang and Huang (1995) considered the same problem 
for M/G/1 and M/Ek/1 queues, respectively, with finite queuing capacity; Makis 
(1984) studied the batch service problem; Altman and Nain (1993) proposed a new 
model with a removable server. Boxma (1976) investigated D-policies. Heyman 
(1977) studied the T-policy for the M/G/1 queue. 

Unlike the single-server case, very few studies have been devoted to multiserver 
queues with removable servers. Bell (1975) discussed the difficulties of this prob-
lem. He showed that an optimal policy is not necessarily an efficient policy, which 
is defined as an operating rule that never allows the number of available servers to 
be larger than the number of customers present. Bell (1980) further investigated an 
M/M/2 system under an N-policy, and Winston (1978) considered an M/M/m queue 
with removable servers in which the arrival rate depends on the number of custom-
ers. The characterization and the explicit determination of optimal control policies 
are still open problems. 
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1.2.3 Control of the Service Rate 

A queuing system with variable rate, as the name suggests, is one where the mean 
service rate may be chosen from a set of finite service rates { k | k K }, where K is 
a fixed set of service types. The service time of a customer is a random variable 
independent of the arrival process and the previous service times. This problem is a 
generalization of the removable server problem in Section 1.2.2. Two types of 
control policies are considered in this category, N-policy where the state of the 
system is the queue length and D-policy where the state of the system is the work-
load. The set K may be countable or uncountable. 

Most of the work in this category is devoted to countable service rates under an 
N-policy, and the following policies have been introduced: 

1. Hysteretic policy: Whenever the queue size reaches a value 
–
Rk+1 from below 

while the service in progress is of type k, the next service will be of type k + 1; 
whenever the queue size reaches a value Rk from above while the service is of 
type k + 1, the next service will be of type k. The parameters 

–
Rk and Rk are in-

creasing in k and 
–
Rk+1 Rk. The length of the hysteresis loop is Hk

–
Rk+1 – Rk. It 

is possible that 
–
Rk

–
Rk+1 and Rk Rk+1; in which case, service type k is not used 

in the policy. When there are two available service rates including zero, the op-
timal ( , N )-policy is R1  and 

–
R2 N.

2. Monotone hysteretic policy: A hysteretic policy is said to be increasing if the 
service rates satisfy k+1 k and decreasing if k+1 k.

3. Uniform hysteretic policy: A uniform hysteretic policy results when Hk is con-
stant k.

4. Connected policy: A connected policy is a uniform hysteretic policy with Hk  1, 
k.

Bibliographical Notes 

Yadin and Naor (1967) and Gebhard (1967) were the first to introduce the hyster-
etic policy. They provided some useful properties of the steady-state distribution of 
the queue length for systems with an exponential server. An extension of such 
properties is given in the work of Sobel (1982). Federgruen and Tijms (1980) de-
scribed a method for recursively computing the steady-state queue length distribu-
tion. Under an average criterion, Crabill (1972) and Lippman (1973) proved the 
optimality of connected increasing policies for an exponential server without 
switching costs. Similar results were obtained by Sabeti (1973). This system may 
give a decreasing optimal policy if its queue capacity is limited (e.g., Schassberger 
1975 and Beja and Teller 1975). Crabill (1974) proved the existence of an optimal 
increasing hysteretic policy for exponential distributions of service time with 
switching costs. Rath (1975) dealt with asymptotic results in heavy traffic condi-
tions in a GI/G/1 queue, that is, a system whose interarrival times are independent 
of each other and independent of the service times. An interesting paper by Lu and 
Serfozo (1984) analyzed an M/M/1 queuing decision process in which the finite set 
of decisions concerns not only the service rate but also the arrival rate. Finally, 
Weber and Stidham (1987) extended these results to multiserver systems. 
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For countable sets of service rates, the work of Jo and Stidham (1983) gave 
properties of both N-policies and D-policies. D-policies may also be found in the 
papers of Tijms and van der Schouten Duyn (1978) and Cohen (1986). 

N-policies and D-policies also apply to uncountable sets of service rates. Most of 
the results in the literature are derived for zero switching costs. For an exponential 
server, Lippman (1975) proved the existence of a monotone increasing optimal 
policy with a discounted cost criterion. Jo (1983) extended Lippman’s results to a 
more general cost structure as well as an average cost criterion. Gallish (1979) 
studied general service time distributions. The paper by Zacks and Yadin (1970) is 
among the few studies considering nonzero switching costs. All the systems men-
tioned in this paragraph have a single server. Undoubtedly, systems with multiple 
servers are of greater importance, but the analysis is mathematically hard. Rosberg 
et al. (1982) considered the optimal service rate control to a tandem queuing sys-
tem. Doshi (1978) considered M/G/1 queues with control of the workload (D-
policy) for uncountable sets of service rates and proved the existence of an increas-
ing connected optimal policy for both discounted and average criteria. Deshmukh 
and Jain (1977) integrated design and control with variable service rates. Finally, 
Stidham and Weber (1989) established the monotonicity of optimal policies for 
combined control of arrival and service rates. 

1.2.4 Control of the Queue Discipline 

Think of a queuing system where different classes of customers arrive for service. 
The arrivals may line up in different queues, and the servers may offer diverse 
services. We say that the system has heterogeneous customers, queues, and servers. 
Think also of a dynamic assignment of customers to idle servers so as to minimize 
an expected cost. This is a problem of control of the queue discipline. There is an 
abundant literature in this area for single-server systems. Multiserver systems may 
have parallel, tandem, or tandem-parallel servers. 

Perhaps the most well known strategy in single-server scheduling problems is 
the c  rule. This rule states that when service times are exponential or geometric, 
serving the customer with the largest ci i minimizes the expected discounted cost, 
where ci is the holding cost rate of customer i and i is its service rate. 

Bibliographical Notes 

Various aspects of the c  rule have been examined in the literature (Cox and Smith 
1961; Klimov 1974; Harrison 1985; Baras et al. 1985; Buyukkoc et al. 1985; 
Righter and Shanthikumar 1989; Shanthikumar and Yao 1992). 

Many results have been reported on optimal routing of customers to multiple 
servers. Weber (1978) and Ephremides et al. (1980) show that if a system consists 
of multiple identical M/M/1 queues in which the queue sizes are observable at any 
time, then the expected discounted cost is minimized by the shortest queue policy, 
which routes a new arrival to the queue with the shortest queue length. For a simi-
lar system, Whitt (1986) provides counterexamples of service time distributions for 
which it is not optimal to always join the shortest queue and, if the elapsed service 
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time of customers in service is known, the long run average delay is not always 
minimized by customers joining the queue, which minimizes their individual ex-
pected delay. Hlynka et al. (1994) show that, under certain conditions, the smart 
customer can lower his expected sojourn time in the system by waiting and observ-
ing rather than immediately joining the shortest queue. Lin and Kumar (1984) and 
Walrand (1984) prove that the optimal policy is of the threshold type for M/M/2 
systems with heterogeneous servers. Hajek (1984) considers the case of two inter-
acting nonidentical service stations. 

Heterogeneity in service functions was investigated in Xu et al. (1992), where a 
certain kind of customer can be served only by a certain kind of server. Optimality 
of the threshold policy was established. However, optimal control of queuing sys-
tems with server heterogeneity in both service rates and service functions is still an 
open problem. 

Bell’s paper (1980) on the optimal operation of an M/M/2 queue with removable 
servers can be viewed in the context of optimal routing problems. Chow and Koh-
ler (1979) and Seidmann and Schweitzer (1984) studied dynamic routing of cus-
tomers among multiple servers in queuing systems arising in manufacturing net-
works. Recently, Phillis and Kouikoglou (1995) proposed a general entropy ap-
proach for the problem of queue discipline control. Relevant work can be found in 
Baras and Dorsey (1981), Rosberg and Kermani (1989), Courcoubetis and Varaiya 
(1984), among others. 

1.2.5 Control of the Admission of Customers 

This category is so named because the system can either accept or reject an arriving 
customer or, in some cases, the arriving customer may refuse to join the system. 
Usually the objectives are to determine the optimal admission control policies to 
maximize the expected profit. 

It is inevitable to face different criteria of either individual or social optimization 
when one deals with problems of admission and routing control. Most of the rout-
ing control problems briefly discussed in Section 1.2.4 use a social optimization 
criterion. The former criterion depends on the customer’s own benefits, and the 
latter views system performance as a whole. The decrease in utility imposed on 
future customers by an arriving customer’s decision to enter the system is often 
referred to as the external effect (as opposed, to the internal effect, which is associ-
ated with a customer’s delay). It is believed that, because of the presence of exter-
nality, the policy implemented by self-interested individuals does not lead in gen-
eral to the best social outcome. These terms have aroused considerable interest 
among economists and operations researchers. To bring the two policies into 
agreement, it is often proposed to impose an admission toll or entrance fee on cus-
tomers who decide to join. 

Optimal policies for individual customers are usually easy to obtain and take 
simple and explicit forms, whereas socially optimal policies, which are of greater 
practical importance, often defy simple analysis. 

For M/M/1 queues, the individually and socially optimal policies are of the 
threshold (or critical-number or control-limit) type, but the critical numbers that 
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characterize the two policies are not necessarily equal, and typically, the socially 
optimal critical number is less than its individual counterpart. Similar results exist 
for GI/M/1 and GI/M/m queuing systems. 

Bibliographical Notes 

Naor (1969) first showed that the optimal policies for M/M/1 queues are of the 
threshold type. The individually vs. socially optimal problem was discussed by Bell 
and Stidham (1983) and Hassin (1975). The determination of threshold values for 
involved systems is difficult (see, for example, van Nunen and Puterman 1983 and 
Xu and Shanthikumar 1993). Miller (1969) studied an M/M/m/K system, i.e., a 
multiserver system with losses, with a finite number of customer classes, each 
having a different reward and no holding cost. Lippman and Stidham (1977) ex-
tended Miller’s model to one with infinite capacity and linear holding costs. In a 
subsequent paper, Stidham (1978) considered a batch-arrival GI/M/1 system allow-
ing for a nonlinear holding cost rate. Langen (1982) extended the results of Stid-
ham (1978) to GI/M/m systems. Johansen and Stidham (1980) proposed a general 
model for control of arrivals to a stochastic input output system, which views sev-
eral single-server versions as special cases. Blanc et al. (1992) examined optimal 
control of admission to an M/M/m queuing system with one controlled and one 
uncontrolled arrival stream. Surveys on admission control may be found in Stidham 
(1985) and Stidham and Weber (1993). 

1.3 Methodologies of Queuing Control 

1.3.1 Dynamic Programming 

Dynamic programming is a powerful tool in the field of dynamic control. Its fun-
damental tenet is so obvious that it may sound trivial. Indeed its informational 
content is straightforward, but its power in reducing the number of computations 
when an optimal policy is sought is enormous. This tenet is called the principle of 
optimality and states that if a path P123 in a multistage decision problem is optimal 
from decision 1 to decision 3, then P23 is the optimal path from 2 to 3. As the late 
Richard Bellman, the inventor of the principle put it: 

An optimal policy has the property that whatever the initial state and initial decision are, 
the remaining decisions must constitute an optimal policy with regard to the state resulting 
from the first decision. 

When the state of a queuing system is known at each time instant, we say that 
we have complete observation. In this case, dynamic programming, in principle at 
least, could solve any control problem. The computations, however, even then 
could become prohibitive because of the curse of dimensionality, as Bellman called 
the basic drawback of dynamic programming. 

The optimal cost is evaluated moving from stage to stage using some quantiza-
tion levels that represent the possible states at each stage. Assume that we need to 
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evaluate the optimal cost C*
N k, N from stage N k to the final stage N. Then we 

need to store the values C*
N (k 1), N , which resulted from a previous iteration. For a 

first-order system with m quantization levels, we need m storage places. However, 
for an nth order system with m quantization levels for each state variable, we need 
mn storage places and this number can easily become prohibitive even for simple 
problems. 

Now think of a process observed as it evolves at times t0, t1, … or simply k  0, 
1, …. The process has a countable set of possible states. After observing the state, 
an action is chosen from a finite set of possible actions and the system jumps to 
another state with a given probability called the transition probability. The new 
state may depend on the previous state and the last action taken or it may depend 
on the history of past states and actions. Let Xk be the state and ak the action taken 
at time k. Given a course of actions, the state of the process is Xk, k  0, 1, …. If Xk

is a Markov chain, that is, a process for which the state transition probabilities 
satisfy P(Xk | ak 1, k 1, ak 2, k 2, …, a0, 0) ( k | ak 1, k 1), then we say that we 
have a Markov Decision Chain (MDC). If the time is continuous, then we speak of 
a Markov decision process when the times between transitions are exponential 
random variables, or a semi-Markov decision process when these times have arbi-
trary distributions. 

To describe an MDC we need, in addition to the state space S, which contains 
all the states of the process, and the set A of actions, a cost or reward associated 
with each action and state, which is minimized or maximized upon choosing a 
course of actions or decision rules. Optimization may take place over a finite hori-
zon, where tk T  [0, ), k, or an infinite horizon, where T  [0, ). Often dis-
counted costs are used because future costs have a small present value. Other costs 
include the finite horizon expected cost, the long run expected average cost, and so 
on. 

We define a policy u to be a sequence of decision rules for choosing actions. 
Each decision rule dk may depend on the current time tk and the history of previous 
states and actions. A particular class of policies that are optimal for most cost struc-
tures is the class of Markov policies, which depend only on the current time and 
current state of the system and not on the past. Thus, a Markov policy u  (d0, d1,
…) is a sequence of mappings from S to A such that dk(n) A is an action on the 
queuing system for a state Xk n S and a time tk T. A Markov policy is called 
stationary if dk(n) depend only on n and not on time. This means that whenever the 
system is in state n, the controller employs a decision rule independently of the 
current time and the history of the system. Thus, for a stationary policy u, we have 
u  (d, d, …) and the resulting decision process is an MDC. 

A policy that specifies a unique action a dk(n) for a given current state n and 
time index k is called a deterministic Markov policy. If the controller chooses ac-
tion a with a probability Pk(n, a), then the policy is called a randomized Markov 
policy.

This is in general the setting of dynamic programming. The books by Walrand 
(1988) and Kitaev and Rykov (1995) deal with the application of dynamic pro-
gramming to the control of queuing systems. As has already been mentioned, this 
approach, powerful as it may be, has serious shortcomings. Later we shall see how 
we overcome such shortcomings using fuzzy logic. 
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1.3.2 Heuristic Algorithms 

Dynamic programming is an efficient mathematical method that works in certain 
areas. Most realistic problems, however, are not amenable to mathematical tech-
niques because either the resulting dimensions are prohibitive or simply our tools 
cannot model reality reliably. Heuristics may then be used with varying degrees of 
success. 

Heuristic techniques do not have specific rules although they deal with rules that 
aim at finding precise and computationally efficient solutions. Heuristics is an 
approach that relies on experience, intuition, and a few general strategies to provide 
solutions to complex problems. Such problems may have in principle mathematical 
solutions, but their dimensions may be such that the hope of numerical results is 
nil. Take, for example, the problem of analyzing a simple serial production line 
with intermediate storage. The dimension of this problem increases geometrically 
with the number of machines and in a multiplicative fashion with the size of the 
storage. The solution is straightforward using Markov chains, but the numerical 
analysis is impossible for lines with more than three machines and two storage 
spaces. Heuristics has solved this problem reasonably well in many cases. Problems 
of this sort are the rule rather than the exception in many fields including control of 
queues. A heuristic strategy may lead to the final solution following a step-by-step 
procedure as it is done in the control of queues, or a hierarchy of subproblems may 
be developed and the solution proceeds from subproblems to the whole. Some 
approaches of the production line problem use this strategy. Alternatively, a solu-
tion may be obtained by another heuristic or approximate analysis that is modified 
to achieve better accuracy or computational speed. Finally, incoming information 
may be used to redirect the solution as it is done in a game of chess. 

These approaches do not necessarily stand on their own but may be combined 
together or may even use mathematical or simulation techniques at some stage. A 
hierarchical heuristic search may use, for example, an optimization algorithm to 
solve a subproblem and then validate the efficacy of the solution using simulation. 

1.3.3 Fuzzy Logic Control 

In 1987, over 2000 patents were issued in Japan related to the technological appli-
cations of fuzzy logic. Fuzzy logic theory and technology are among the fastest 
developing areas in science and engineering. Where traditional mathematics was 
unable to solve complex practical problems, fuzzy logic is filling the gap mostly 
with tremendous success: home appliances, aircraft control, production systems, 
medical applications and so on. 

Fuzzy control, which is a combination of control theory and fuzzy logic, is 
probably the spearhead of fuzzy logic. The number of publications as well as appli-
cations in this field has been growing by the day. 

Aristotle is the founder of logic and deductive reasoning. Much later, a two-
valued logic was developed, where a proposition is either true or false but not both, 
and its epitome, Boolean algebra, is applied today in the analysis and design of 
digital systems. More recently, Lukasiewicz proposed a three-valued logic where a 
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proposition might assume three values: 1 (true), 2(false), and 1/2 (neuter). Gray 
areas were introduced in logic, and finally in 1965, Lotfi Zadeh launched fuzzy 
logic by assuming that there are propositions with an infinite number of truth val-
ues in infinitely varying degrees. Any logic then is just a subset of fuzzy logic. 
There are two extreme values, 1 (totally true) and 0 (totally false), and a continuum 
in between that justifies the term “fuzzy.” 

Fuzzy logic, like probability theory, deals with uncertainty, but unlike probabil-
ity, this uncertainty is masked in semantic and subjective ambiguity. Different 
people, for instance, judge and evaluate reality differently. Fuzzy logic, again 
unlike probability theory, deals with degrees of occurrence, whereas the latter deals 
only with occurrence. Take, for example, the sentence “there is a 0.15 probability 
to get a good grade in queuing control.” The number 0.15 is a probability, but the 
event “good grade” is fuzzy; it is not black or white. 

As Zadeh said, fuzzy logic is computation with words and 

Fuzzy logic’s primary aim is to provide a formal, computationally-oriented system of 
concepts and techniques for dealing with modes of reasoning which are approximate rather 
than exact. 

Thus, fuzzy logic deals with degrees of truth that are provided in the context of 
fuzzy sets by what is called membership functions. To be able to perform logical, 
albeit fuzzy, reasoning, fuzzy operators such as OR, AND, IF, and THEN ought to 
be defined. 

Fuzzy control systems are rule-based systems in which a set of rules, called 
fuzzy rules, define a control mechanism to adjust the system. Figure 1.1 shows the 
block diagram of a fuzzy logic controller for queues that comprises four principal 
components: a fuzzification interface, a knowledge base, an inference engine, and a 
defuzzification interface. 

The output of the fuzzy logic controller in Figure 1.1 is used to tune the system 
parameters according to some predefined program based on the state of the system. 
This control mechanism is adaptive. 

System under Control 
Arrivals Departures 

non-fuzzy 

Fuzzi-
fication 

Inference
Engine 

Defuzzi-
fication 

Knowledge Base 

non-fuzzy fuzzyfuzzy

Fuzzy Controller

Figure 1.1. Block diagram of a fuzzy logic controller for queues. 

The aim of fuzzy control systems is normally to substitute for or replace a 
skilled human operator with a fuzzy rule-based system. Greater details on fuzzy 
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logic and fuzzy control will be given in Chapter 3. For the moment, we provide a 
brief introduction to the subject. 

1.4 Control of Queuing Systems 

Fuzzy control of queuing systems is an application of fuzzy logic theory to the 
control of queues. A fuzzy logic controller provides a decision mechanism that 
dynamically determines the parameters, patterns, and policies of a queuing system 
in some specified optimal sense. Fuzzy queuing control is a combination of artifi-
cial intelligence, operations research, and optimal control. The results to be given in 
this work are among the first in the literature. 

Queuing theory has already had a long history and has been used to solve practi-
cal problems in manufacturing, communication, and other fields. In the last four 
decades, there has been an increasing interest in the study of queuing control that 
has provided queuing theory with renewed vigor. Most of the work in this field 
uses conventional stochastic control techniques, which, although often successful, 
have severe computational limitations as already mentioned. Recently, fuzzy logic 
has made remarkable progress in many applied control problems. Now has come its 
time to provide powerful results in queuing control. 

There are many reasons why fuzzy control is a good and promising choice to 
control queues. 

1. Conventional control theory is very well developed, but its success depends 
heavily on the quality of the model of the controlled system. Queuing systems 
are often not amenable to mathematical descriptions, or such descriptions are too 
complicated to be of any value. Fuzzy control does not require a mathematical 
model of the system under control. In fact, fuzzy control is suitable in cases of 
complex systems or ill-defined processes, as long as it is equipped with an op-
erator’s experience, knowledge, and learning. Thus, fuzzy logic appears to be an 
excellent candidate in queuing control. 

2. Fuzzy control is well suited to deal with highly nonlinear systems such as queu-
ing systems. It appears then that fuzzy control, in principle at least, should be ef-
fective. 

3. Analytical solutions for the control of queues exist only for very simple cases. 
Policy reinforcement and heuristic algorithms determine the optimal control 
policies for more complicated queuing systems such as tandem, parallel, and 
tandem-parallel ones. However, the computational demand increases exponen-
tially with the dimension of the system. Fuzzy control seems to be a promising 
alternative. Conventional policy reinforcement algorithms choose the best ac-
tions by eliminating nonoptimal ones, and fuzzy control does this by directly de-
termining the best action. The larger the system scale, the more obvious this ad-
vantage becomes. 

4. There are queuing systems whose arrival and service rates are described by 
fuzzy linguistic variables. We call such systems fuzzy queues. In certain situa-
tions, they represent reality well. Fuzzy control is the best if not the only choice 
to dynamically control such systems. 
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1.5 Issues of Fuzzy Queuing Control 

A number of issues arise when fuzzy control is used to make dynamic decisions in 
queuing systems. We briefly discuss them here. 

Optimality 

The word “optimal” will be used to qualify the policies determined by the fuzzy 
controllers. A question, however, arises about how to test optimality. Optimality is 
one of the most difficult problems in the fuzzy control field, and although it has 
attracted a lot of attention, the answers are still unsatisfactory. This is because of 
the nature of fuzzy logic and the common absence of mathematical models of the 
controlled system. Optimality is pursued by emulating an expert operator. This is 
the best that can be done in the context of fuzzy logic. It is worth noting, however, 
that in all cases of queuing control where a mathematically optimal solution is 
known, the fuzzy controllers yield precisely the same optimal solutions. 

Stability 

Stability is another open issue in fuzzy control. The lack of analytical descriptions 
is apparent here too. On the other hand, stability can be achieved by properly train-
ing the fuzzy rule bases and the membership functions. A rule of thumb is to 
choose continuous universes of discourse. The final answer about stability cannot 
be provided a priori, however. This is done with the aid of simulation, which has 
shown that all algorithms in this book are stable. 

Membership Functions 

The form of most membership functions is straightforward. On occasion, however, 
this form is involved and is derived after the inner workings of each queuing sys-
tem are brought to light. This is done automatically by the fuzzy controllers in a 
self-tuning manner. 

Freedom from Analytical Models 

It should be stressed that all adjustments rely on experience and knowledge of the 
operator. The fact that fuzzy logic works where conventional mathematics does not 
is because of this feature. We try to emulate a human operator performing complex 
tasks such as landing an airplane, parking a car, or prescribing an effective dose of 
chemotherapy. This, however, is also the main problem of fuzzy logic. We cannot 
prove rigorously optimality and stability, among others. Freedom from mathemati-
cal models has its blessings and curses. 

It is important to note that the assumption of Poisson arrivals and exponential 
service could be dropped when fuzzy control is used. Poisson and exponential as-
sumptions usually lead to Markov or semi-Markov decision processes that have a 
solid theoretical background. Many practical systems, on the other hand, do not 
behave in Markovian ways, especially when complicated geometries of networks 
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are present, and thus no precise mathematical solutions are possible. Fuzzy logic 
holds a promise there. 

1.6 Applications of Queuing Control 

The areas of application of queuing control abound: communication, transportation, 
manufacturing, urban systems, and so on. The goal is always to share a limited 
resource while at the same time a performance measure is optimized. Customers 
could be information packets waiting to be processed through a channel, aircraft 
waiting for an available runway, workpieces in a factory to be routed to a machine, 
and patients waiting for an ambulance. Obviously, in some cases, proper allocation 
of resources is not only an economical problem but also, literally, a matter of life or 
death. 

There are several possibilities of queue control. In Figure 1.2, we have one 
server and one queue. Customers arrive at the queue awaiting service. A controller 
may decide which customers may enter the system and which the expected rate will 
be.

Arrivals Departures

Queue Server 

…

Figure 1.2. Single-queue single-server. 

A common manufacturing system comprises a production line with N machines 
(servers) and N + 1 buffers (queues) as shown in Figure 1.3. The controller may 
adjust the arrival rate of workparts (customers) and the production rates of the ma-
chines (service rates). Design actions could define the optimum size of each buffer 
given a number of constraints as well as the best allocation of repair resources 
when machines break down. 

B1 M1 B2 M2 BN MN BN+1 

Figure 1.3. Tandem production line. 

Another system in Figure 1.4 has m queues and m servers that, in general, have 
different mean service rates. The controller decides which arriving customer is to 
be routed where. 
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Queue 1 Server 1

Arrivals 

Queue 2 Server 2

Queue m Server m

Controller

Figure 1.4. Parallel queues. 

A system with m queues, as shown in Figure 1.5, may have one server and the 
controller decides which queue to serve next. 

Queue 1 

Server Controller

Queue 2 

Queue m

Figure 1.5. Multiple queues one server. 

Other systems will be examined in Chapters 4–8. 
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2.1 Fuzzy Sets 

Fuzzy set theory and its attendant fuzzy logic were developed by Lotfi Zadeh in 
1965 to handle semantic and subjective ambiguity. In classical logic, the number 
300 is an integer, whereas 300.7 is not. The same number, however, could be con-
sidered large, small, very large, very small, and so on depending on context and 
subjective opinion. Therefore, the number 300 could be considered large to a cer-
tain degree, very large to another, and so on. We then have various linguistic values
of one linguistic variable, which are true to some degree. This degree, subjective as 
it may be, varies from 0 to 1. 

In classical set theory, an element of a set either belongs or does not belong to 
the set. In fuzzy set theory, an element belongs with a membership grade in the 
interval [0, 1]. All membership grades together form the membership function. A 
classical set is often called crisp as opposed to fuzzy. 

Definition 2.1. A set is a collection of elements or members. A set may be an ele-
ment of another set. 

Definition 2.2. Let X be a set of elements x. A fuzzy set A is a collection of ordered 
pairs (x, (x)) for x X. X is called the universe of discourse and (x): X [0, 1] is 
the membership function. 

The function (x) provides the degree of fulfillment of x in X. When X is count-
able, the fuzzy set A is represented as 

A A(x1)/x1 + A(x2)/x2 + … + A(xn)/xn.

This is a common notation in the context of fuzzy sets. It simply states the elements 
xi of X and the corresponding membership grades. 

Example 2.1 

Consider the temperature of a patient in degrees Celsius. Let X  {36.5, 37, 37.5, 
38, 38.5, 39, 39.5}. The fuzzy set A  “High temperature” may be defined 

A  { (x)/x | x X }

 0/36.5 + 0/37 + 0.1/37.5 + 0.5/38 + 0.8/38.5 + 1/39 + 1/39.5, 

where the numbers 0, 0.1, 0.5, 0.8, and 1 express the degree to which the corre-
sponding temperature is high. 
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Definition 2.3. The support of a fuzzy set A is the crisp set of all elements of X
with nonzero membership in A, or symbolically 

S(A)  {x X | (x) > 0}. 

Example 2.2 

Take Example 2.1. S(A)  {37.5, 38, 38.5, 39, 39.5}. 

Definition 2.4. The set of all elements of X with membership in A at least  is 
called the -level set, or symbolically 

A  {x X | (x) }.

Definition 2.5.  fuzzy set A is said to be convex if the membership function is 
quasiconcave; that is, x1, x2 , and [0, 1], the following is true: 

[ x1 + (1 )x2]  min[ A(x1), (x2)].

Definition 2.6. The height of a fuzzy set A on X is defined as 

h(A)
Xx

sup (x).

If h(A)  1, A is called normal, otherwise subnormal.

Definition 2.7. The nucleus of a fuzzy set A is the set of values x for which 
(x)  1. 

Example 2.3 

(x)

1

x1 xm x2

(x)

1

xx

A B

Figure 2.1. Convex-nonconvex fuzzy sets. 

In Figure 2.1, A is convex but B is nonconvex. The -level set of A is the set of 
x [x1, x2], the height is h(A)  1, and the nucleus is {xm}.

Definition 2.8. A fuzzy number A is a fuzzy set in the reals R for which the follow-
ing are true: 

a. A is normal ( x: A(x)  1) 
b. A is convex 
c. A is upper semicontinuous 
d. A has bounded support 
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Example 2.4 

The following are examples of fuzzy numbers. 

1

(x)

x

(x)

x

1

x

1

(x)

Figure 2.2. Fuzzy numbers. 

2.2 Operations of Fuzzy Sets 

The basic notions concerning operations on crisp sets will now be extended to 
fuzzy sets. 

Definition 2.9. Two fuzzy sets A and B in X are equal if A(x) (x), x X. We 
write A B.

Definition 2.10. A fuzzy set A in X is a subset of another fuzzy set B also in X if 
(x) (x), x X.

The following definitions are concerned with the complement, the union, and the 
intersection of fuzzy sets as defined by Zadeh. It should be stressed that these defi-
nitions, intuitively appealing as they may be, are by no means unique because of 
the nature of fuzzy sets. Others have proposed different definitions. 

Definition 2.11. The following membership functions are defined: 

a. Complement A
–

 of a fuzzy set A in X

A
–  1 A(x) , x X.

b. Union A B of two fuzzy sets in X

A B  max[ A(x), B(x)], x X.

c. Intersection A B of two fuzzy sets in X

A B  min[ A(x), B(x)], x X.

xample 2.5

In the context of Example 2.1 let us define a new fuzzy set B  “Dangerous tem-
perature” as B  {0/37.5, 0.1/38, 0.2/38.5, 0.5/39, 0.8/39.5, 1/40}. According to 
Definition 2.11, we have 
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A B  “High or dangerous temperature” 

 0/36.5 + 0/37 + 0.1/37.5 + 0.5/38 + 0.8/38.5 + 1/39 + 1/39.5 + 1/40. 

A B  “High and dangerous temperature” 

 0/36.5 + 0/37 + 0/37.5 + 0.1/38 + 0.2/38.5 + 0.5/39 +.0.8/39.5 

            + 1/40. 

A
–

 “Not high temperature” 

 1/36.5 + 1/37 + 0.9/37.5 + 0.5/38 + 0.2/38.5 + 0/39 + 0/39.5. 

The definitions of an intersection and union can be developed from a more gen-
eral point of view. An intersection may be defined via a t-norm.

Definition 2.12. A t-norm is a bivariate function t: [0, 1] [0, 1] [0, 1] satisfying: 

a. t(0, 0)  0 
b. t(x, 1) x
c. t(x, y) t(w, z) if x w and y z (monotonicity) 
d. t(x, y) t(y, x) (symmetry) 
e. t[x, t(y, z)] t[t(x, y), z] (associativity) 

This definition provides the tools of combining two membership functions to find 
the membership function of A B. For the union A B, we have correspondingly the 
definition of the t-conorm or s-norm.

Definition 2.13. A t-conorm is a bivariate function c: [0, 1] [0, 1] [0, 1] satisfy-
ing: 

a. c(1, 1)  1 
b. c(x, 0) x
c. c(x, y) c(w, z) if x w and y z  (monotonicity) 
d. c(x, y) c(y, x) (symmetry) 
e. c[x, c(y, z)] c[c(x, y), z] (associativity) 

From these definitions, for two fuzzy sets (x) and B(x), we obtain 
A B(x) t[ A(x), B(x)] and A B(x) c[ A(x), B(x)].

Example 2.6 

The following are examples of t-norms and t-conorms. 
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Name  t(x, y) (intersection)  c(x, y) (union) 
Algebraic 
product-sum 

x y x + y x y

Hamacher 
product-sum xyyx

xy

xy

xyyx

1

2

Einstein 
product-sum )1)(1(1 yx

xy

xy

yx

1
Bounded difference 
product-sum  max(0, x + y  1)  min(1, x + y)

Dubois-Prade 
0 p  1 ),,max( pyx

xy

]),1(),1[(max

)1)(1(
1

pyx

yx

Minimum-maximum  min(x, y)  max(x, y)

It is worth noting that, contrary to what holds in set theory, when A is a fuzzy set 
in X, then A A

–
X and A A

–
 because it is not certain where A ends and A

–

 begins. This is the fundamental reason that places probability and fuzzy sets apart, 
although both handle uncertainty. Probability is suitable for a different kind of 
uncertainty than fuzzy sets, and in our opinion, the debate about which discipline is 
“better” or “correct” is rather beside the point. Each of them performs its own sci-
entific function successfully within its capabilities and limitations. Below we out-
line some of the differences between probability and fuzzy sets. 

1. In probability, an event is a crisp subset of a -algebra and the uncertainty re-
volves about the odds of its occurrence. For example, the probability of being 1.75 
m tall, or P(height  1.75), concerns the frequency of the relevant event. In fuzzy 
set theory, events do not form -algebras. A pertinent question in this context 
would be “to what degree is 1.75 m tall?” 

2. Given a probability space ( , F , P), where  is the universe, F  a -algebra 
of events, P a probability measure, and mutually exclusive events Ai, then by an 
axiom 

P( i Ai) i P(Ai).

This does not happen in fuzzy set theory. A fuzzy measure in [0, 1] could be de-
fined for a finite X, called a possibility measure , as follows: 

a. ( )  0 
b. (X)  1 
c. A B (A) (B)
d. ( i Ai)  supi (Ai)

bviously  and P obey different rules. 
3. Finally, although a membership function  ranges in [0, 1], it does not share 

all the features of a probability distribution function F(x), which are 

F( )  0, F(+ )  1, 

F(x) F(x+),
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F(x1) F(x2) if x1 < x2,

or of a density function, which are 

f (x)  0, 

1)( dxxf .

2.3 The Extension Principle 

Functions in mathematics map points x1, x2, … in a set X to points in another set Y.
Such mappings may occur between fuzzy sets X and Y using the extension princi-
ple. Let a function f that maps subsets of X into subsets of Y. If 

A 1/x1 + 2/x2 + … + n/xn,

then by the extension principle 

                           B f (A) 1/f (x1) + 2/f (x2)+ …+ n/f (xn)

                              1/y1 + 2/y2 + …+ n/yn

for xi X and yi f(xi) Y. If the same y corresponds to more than one xi’s, then we 
use the maximum of the membership grades of the xi’s such that y f (x1) f (x2)
… f (xn); i.e., 

B(y)  max[ A(x1), A(x2), …, A(xn)].

If the function f is defined on vector spaces of proper dimensions, i.e., B
f (A1, A2, …, Ak), then 

B(y)  min[ A1(x1), A2(x2), …, Ak(xk)],

which is the minimum of the membership grades of the values xi that produce y.
Furthermore, if 

y f (x1, x2, …, xk) f (x'1, x'2, …, x'k)  …, 

then 

B(y)  max  {min[ A1(x1), …, Ak(xk)], min[ A1(x'1), …, Ak(x'k)], …}.
          (x1, …, xk)

          (x '1, …, x'k )

                

Example 2.7 

Let A  0.5/x1 + 0.2/x2 + 0.7/x3 and y f (x1) f (x2) f (x3). Then 

B  max(0.5, 0.2, 0.7)/y  0.7/y.
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Example 2.8 

Let A be a fuzzy set in [2, 4] with the triangular membership function of Figure 2.3 
and y  lnx.

A(x)

x

y = x – 2 y = 4 – x

2 3 4 

1

B(y)

1

y
ln2 ln3 ln4 

Figure 2.3. Membership functions of Example 2.8. 

Then we obtain x  ey and 

B(y)
ey  2   if ln2 y  ln3,

4 ey   if ln3 y  ln4.

Example 2.9 

Now we have two fuzzy sets 

A1  0.1/x1 + 0.4/x2 + 0.8/x3

A2  0.6/x'1 + 1/x'2

and a function f that maps xi and x'i into yi as follows: 

y1 f (x1, x'1) f (x1, x'2) f (x3, x'2),

y2 f (x2, x'1),

y3 f (x2, x'2) f (x3, x'1),

 or in matrix form 

x'1 x'2

1

3

1

3

2

1

3

2

1

y

y

y

y

y

y

x

x

x

.

Then 

B(y1)  max[min(0.1, 0.6), min (0.1, 1), min (0.8, 1)]  0.8, 
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B(y2)  max[min(0.4, 0.6)]  0.4, 

B(y3)  max[min(0.4,1), min (0.8, 0.6)]  0.6. 

Therefore, B  0.8/y1 + 0.4/y2 + 0.6/y3.

2.4 Linguistic Variables 

Loosely speaking, a linguistic variable is a variable “whose values are words or 
sentences in a natural or artificial language,” as Zadeh has put it. Take, for example 
the concept “Height,” which can be seen as a linguistic variable with values “very 
tall,” “tall,” “not tall,” “average,” “short,” “very short,” and so on. To each of these 
values, we may assign a membership function. Let the height range over a region 
[0, 230 cm] and assume that the linguistic terms are governed by a given set of 
rules. Then we define formally a linguistic variable. 

Definition 2.14. A linguistic variable is a 4-tuple (T, X, G, M), where 

T is a set of natural language terms called linguistic values
X is a universe of discourse 
G is a context free grammar used to generate elements of T
M is a mapping from T to the fuzzy subsets of X

Example 2.10 

In the example above, 

T  {very tall, tall, …}, X  [0, 230] 

and M for tall: 

A(x)

   0          if x  170,

15
170x  if 170 < x  185,

   1          if 185 < x.

Linguistic variables are fundamental when we want to represent knowledge in 
approximate reasoning. Often the meaning of a term needs to be modified. 

Examples of modifiers are the following: 

VERY  [ A(x)]2,

MORE OR LESS )(xA ,

INDEED

  2[ A(x)]2             if 0 A(x) < 0.5,

1  2[1 A(x)]2  if 0.5 < A(x)  1.
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2.5 Fuzzy Reasoning 

A queue is observed, and the conclusion “the queue is positive small” is derived. 
This conclusion may be formally written as “s is PS” by choosing a symbol s for 
queue size and a symbol PS for “positive small.” Experience has shown that in 
fuzzy control, a large number of linguistic variables can be represented by seven 
linguistic values: NB (negative big), NM (negative medium), NS (negative small), 
ZO (zero), PS (positive small), PM (positive medium), and PB (positive big). A 
common domain for these values is the standard domain [ 6, 6] or the normalized
one [ 1, 1]. A large number of control problems can be solved efficiently over 
these domains. 

The proposition “s is PS” is called atomic and assumes a certain membership 
grade, say PS  0.4. Atomic propositions together with connectives such as AND, 
OR, NOT, or IF-THEN form compound propositions. For example, the expressions 

IF X is A, THEN X is B,

X is A OR B,

and so on are compound propositions. 
The connective AND corresponds to logical conjunction “X is A B” where A

and B are fuzzy sets and the appropriate membership function is A B. Similarly 
OR corresponds to disjunction “X is A B” and A B and NOT corresponds to “X is 
–
A” and –

A .
Now consider two queues in parallel with queue lengths s1 and s2 and one server 

with variable service rates. An experienced operator decides in terms of natural 
language “if the queue size s1 is large and the queue size s2 is also large, then the 
server should run at a high rate.” This statement can be written 

IF s1 is PB AND s2 is PB, THEN r is PB. 

This proposition has the form 

IF (antecedents) THEN (consequents) 

 and is called a fuzzy conditional or fuzzy if-then production rule. 

2.6 Rules of Inference 

Classical logic is based on tautologies of the following type (we use “ ” for 
“AND,” “ ” for “OR,” and “ ” for “implies”). 

1. Modus ponens

Premise: A is true 
Implication: if A then B
Conclusion: B is true 

Symbolically: [A (A B)] B
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2. Modus tollens

Premise: not B is true 
Implication: if A then B
Conclusion: not A is true 

Symbolically: [
–
B (A B)]

–
A

3. Syllogism

Premise: “if A then B” is true 
Implication: if B then C
Conclusion: “if A then C” is true 

Symbolically: [(A B) (B C)]  (A C)

Such rules can be generalized in the context of fuzzy logic. Two common rules 
of approximate reasoning are the Generalized Modus Ponens (GMP) and the Com-
positional Rule of Inference (CRI). Let A, A', B, and B' be fuzzy sets and X, Y be 
linguistic variables. Then we define 

GMP Premise: X is A'
 Implication: if X is A, then Y is B
 Conclusion: y is B'

Example 2.11 

GMP Premise: a student has a very high IQ 
 Implication: if a student has a high IQ, then he is academically good
 Conclusion: The student is academically very good 

The compositional rule of inference is a special case of the generalized modus 
ponens and has the form 

CRI Premise: X is A'
 Implication: X R  (X is related to )
 Conclusion: y is B'

Here R substitutes for “if-then.” 

Example 2.12 

CRI Premise: Jim is tall 
 Implication: Jim is somewhat taller than George
 Conclusion: George is rather tall 

2.7 Mamdani Implication 

The meaning of “if-then” rules is represented by relevant membership functions. 
As expected, there is a long list of ways to represent the meaning of “if-then” rules. 
They are all subjective, but their efficacy depends on the application. 
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In fuzzy control, the most commonly used and the most efficient implication is 
called Mamdani implication. It is defined by 

C(x, y)  min[ A(x), B(y)]

for the rule if X is A, then Y is B. In the sequel, we shall see numerous applications 
of the amdani implication in practical control problems. Here we give a simple 
example. 

Example 2.13 

 Let 

A  0.2/x1 + 0.3/x2 + 0.4/x3,

B  0.1/y1 + 0.2/y2 + 0.6/y3 + 0.7/y4.

The following table summarizes the Mamdani implication for the rule if X is A, 
then Y is B:

y1 y2 y3 y4

x1 0.1 0.2 0.2 0.2 
x2 0.1 0.2 0.3 0.3 
x3 0.1 0.2 0.4 0.4 
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3.1 Introduction 

The previous chapter provided all the basics we need to proceed with fuzzy control 
of queuing systems. The main ingredient of a fuzzy control system is knowledge. 

Knowledge-based systems in the context of control are mechanisms for incorpo-
rating knowledge in control systems. This knowledge cannot be included in the 
conventional mathematical model but is important in achieving good performance 
and robustness and is ordinarily handled by such means as manual operation. 

A knowledge-based system may assist a closed-loop controller by directly and 
fully substituting for the control loop, which conventionally consists of a mathe-
matical algorithm, or by just supervising the control procedure. Simply put, knowl-
edge-based systems take the knowledge and experience of a human operator or 
designer, which cannot take the form of elegant mathematics, and transfer it to 
practical control situations. 

3.2 Knowledge-Based Systems as Controllers 

What follows is a rough classification of knowledge-based systems as controllers. 
Such a list is indicative of the potential of knowledge-based systems. 

Process Monitoring 

An operator receives various signals about a process: deviations of quality specifi-
cations, sudden disruptions or changes, and so on. The operator then uses past and 
present data to identify causes and select actions. The same operator aided by a 
knowledge-based system may act faster and more systematically. 

A knowledge-based system assists the operator in monitoring the various stages 
of the process providing early warnings about impending changes and zeroing in on 
causes of alarms. The system stores histories of operation and provides guidance in 
real time. 

The knowledge-based system should be capable of combining information in 
numerical and symbolic forms, assisting decision making in real time, and validat-
ing its procedures. 
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Process Planning 

Process planning entails a complicated task of meeting demand, be it stochastic or 
deterministic, static or dynamic, for a process while satisfying an array of techno-
logical, environmental, economic, and other constraints. This sort of planning is 
done conventionally through a host of operations research tools such as linear and 
nonlinear programming, discrete event control, as well as special techniques of 
scheduling theory. 

Knowledge-based systems may successfully complement these methods where 
mathematical models do not represent reality well or simply do not exist at all. 
Such systems incorporate knowledge about the controlled process at as many levels 
as possible: physical, experiential, and mathematical. 

Process Fault Diagnosis 

This category of knowledge-based systems deals with the detection of faults relying 
on detailed knowledge of the process. The system performs routine measurements 
and focuses on errors between the expected and current outputs. Expected outputs 
result from knowledge that could be model based. 

Supervisory Process Control 

Supervisory control is usually applied in conjunction with a conventional controller 
with the aim of tuning the process so as to achieve certain goals. In effect, supervi-
sory control complements conventional control, enhancing its effectiveness. 

A conventional controller needs a mathematical model. It is often the case that 
such a model does not exist or, if it exists, it is ineffective. A knowledge-based 
system may then substitute completely for the conventional controller. It is called a 
knowledge-based controller. If the knowledge and the inference are fuzzy, then we 
have a Fuzzy Knowledge-Based Controller (FKBC). 

In this book, we examine the control of queuing systems, which belong to the 
category of discrete event systems, using FKBCs. As we proceed, detailed descrip-
tions of all details of FKBCs will be given. In the present chapter, we shall examine 
some general features of fuzzy controllers. 

3.3 Fuzzification 

The fuzzification interface of a FKBC functions as follows: 

1. Identifies and measures the input variables. 
2. Performs a scale transformation of the physical domain into a normalized or 

standard universe of discourse. This transformation is not always necessary. 
There are, however, cases where the physical domain is inconvenient and a 
transformation facilitates the fuzzy operations significantly. The most common 
standard domains in this book are [ 6, 6], [0, 6], [ 4, 4], [0, 4], [ 1, 1], and 
[0, 1]. 
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3. Fuzzifies the crisp input data, whether normalized or not. Fuzzification is a way 
of dealing with data that, subjective or objective, might be fraught with vague-
ness and imprecision. The fuzzifier transforms crisp data into suitable linguistic 
values, corresponding to fuzzy sets, so that these data become compatible with 
the fuzzy antecedent-consequent mechanism. Thus, for a crisp value x0, we ob-
tain a fuzzy set X via 

X  fuzzifier(x0). (3.1)

Fuzzification is closely related to knowledge because the membership functions 
used in Equation (3.1) are the result of deep system knowledge, mathematical or 
experiential. 

3.4 Knowledge Base 

The knowledge base contains the knowledge related to a particular control prob-
lem. It consists of a data base and a rule base.

Data Base 

The data base provides information needed to devise linguistic control rules and the 
fuzzification/defuzzification procedures. Thus, the fundamental function of the data 
base is twofold: 

1. Selection of membership functions to define the meaning of pertinent in-
put/output variables. This selection may be straightforward or rather involved in 
queuing control. We shall develop in detail all the ideas concerning membership 
functions as we develop each queuing system. Of course, engineering judgment 
and expert knowledge play an important role. 

2. Definition of the physical and normalized domains, which boils down to select-
ing proper normalization/denormalization coefficients. 

The number of inputs and corresponding fuzzy sets define the size of the rule 
base and thus the dimension of the system. As we shall see, this dimension grows 
geometrically with the number of fuzzy sets. Therefore, the choice of membership 
functions should be as economical as possible. Such a choice, on the other hand, 
may provide for an inaccurate system model. The final number of fuzzy sets is a 
tradeoff between computational speed and accuracy, which is the result of trial-
and-error as well as experience. 

Rule Base 

The rule base summarizes the control actions of an expert in the form 

IF (input variables) THEN (control policy). 

In other words, a linguistic description based on expert knowledge provides the 
“best” policy. We then have an antecedent or IF side that incorporates the linguistic 
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values of the inputs, expressed as linguistic variables, and a consequent or THEN 
side that includes the control outputs also in a linguistic form. 

Example 3.1 

For a 3-input, 2-output system, the fuzzy control rules have the form: 

Rule 1: IF x1 is A1
(1)

 AND x2 is A2
(1)

 AND x3 is A3
(1)

, THEN u1 is B1
(1)

AND u2 is B2
(1)

Rule 2: IF x1 is A1
(2)

 AND x2 is A2
(2)

 AND x3 is A3
(2)

, THEN u1 is B1
(2)

AND u2 is B2
(2)

Rule n: IF x1 is A1
(n)

 AND x2 is A2
(n)

 AND x3 is A3
(n)

, THEN u1 is B1
(n)

AND u2 is B2
(n)

The following are needed to construct a rule base: 

1) Input/output variables 
A proper choice of input/output variables is crucial in the description and per-

formance of the system. This choice determines the structure of the controller and 
relies on experience and engineering knowledge. Typical inputs in queuing control 
are mean incoming or outgoing rates and sizes of queues. Typical control variables 
are service rates, service discipline, decisions about turning on or off a server, and 
decisions about which customer goes to which server and when. 

2) Range of linguistic values
 The choice of the linguistic values is closely tied to the choice of membership 

functions as we have already seen. Their range is a matter of achieving the best 
performance and needs tuning via some computational procedure. 

0 1

ZO S M B VB 

2 3

75 100

75 150
SF=

150

4

ZO: zero 
S: small 
M: medium 
B: big 
VB: very big

 4 

SF=
100

4

Figure 3.1. Tuning scaling factors. 

Tuning may affect the scaling coefficients of the normalized domain or the 
shape of membership functions. To illustrate this process, suppose we have a queue 
with capacity 100 and normalized range [0, 4]. The physical domain [0, 100] needs 
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to be scaled down to [0, 4] using a factor of 0.04. Consider the membership func-
tions of Figure 3.1. A queue size of 75 corresponds to B with membership grade 1. 

If the scaling factor now becomes 4/150, then 75 corresponds to M with grade 1, 
thus reducing the sensitivity of the controller with respect to the input. 

This sensitivity reduction is across the board and uniform. A selective alteration 
of the shape of the membership functions achieves a sensitivity change over spe-
cific ranges. A controller using the membership functions of Figure 3.2 is more 
sensitive to large values for queues than to small ones. If such adaptations are done 
automatically by the controller, we speak of a self-tuning controller. 

0 1

ZO S M B VB 

2 3  4 

1

Figure 3.2. Change of membership functions. 

3) Derivation of fuzzy rules 
A large amount of information and concomitant reasoning in everyday life is 

linguistic. In a sense, we operate as fuzzy controllers in an impressive number of 
ways: when we drive, open a faucet, tune in on a radio station, play soccer or ten-
nis, give a shot, squeeze an orange, and so on. Fuzzy control rules, consciously or 
subconsciously, are ubiquitous and may enable experts express their knowledge in 
convenient ways. Loosely speaking, we have the following ways of building a rule 
base: 

Experience and engineering knowledge: We have already spoken about daily 
tasks requiring experience. Such experience and engineering knowledge ex-
pressed linguistically are the core of a rule base. Devising a rule may be aided by 
properly constructed questionnaires directed to specialists or operators. 
Fuzzy model: The linguistic description of a system comprises a fuzzy model of 
the system. The rule base is then constructed from this model. 
Mathematical model: If a mathematical model of the system exists, it may be 
used to develop a fuzzy rule base and control algorithm. 

Fuzzy control rules belong in two categories depending on objectives. 

State evaluation rules: Such rules evaluate the state of the system such as queue 
length, expected rate of arrivals, and expected service rate at time t and then 
compute a control policy such as to turn on or off the server so as to achieve 
minimum cost. 
Object evaluation rules: Rules of this type are associated with the so-called 
object evaluation or predictive fuzzy control. The control now is the result of ob-
jectives in the following linguistic form. 
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IF performance index x1 is A1 AND … AND performance index xn is An when 
control u is U, THEN this rule is selected and U is the control chosen. 

 Compactly 

IF [u is U (X1 is A1 AND … AND Xn is An)] THEN u is U.

Example 3.2 

This example of object evaluation rules is taken from an automatic fuzzy control 
algorithm for train operation. “If the train stops in the predetermined allowance 
zone when the control notch is not changed, then the control notch is not changed.” 

A number of issues arise in the context of building a rule base. These are as fol-
lows: 

1) Consistency
A rule base should be designed in such a way that no contradictions ensue. 

Definition 3.1. A rule base is consistent if it contains no rules with the same ante-
cedents and different consequents. 

Take, for example, a rule base where the following rules are encountered: 

IF s1 is PS AND s2 is ZO, THEN u is ZO, 
IF s1 is PS AND s2 is ZO, THEN u is PS. 

This rule base is inconsistent. It should be stressed that all the rule bases in this 
book are formulated so that no two rules have the same antecedents and thus they 
are consistent. 

2) Completeness 
A rule base is a matrix of linguistic values for a control output given linguistic 

combinations of the inputs. There might be combinations of inputs that produce a 
null output. Then we say that the rule base is not complete. 

Definition 3.2. A rule base is complete if all combinations of inputs produce non-
null outputs. 

Incompleteness of rule bases in FKBCs is common because not all input combi-
nations are of interest. 

3.5 Inference Engine 

The inference engine is also known as rule firing and is the mechanism whereby 
the input rules are combined to produce a control output. There are two basic types 
of inference engines, which for Mamdani implication are equivalent. 

Composition inference: This engine aggregates all rules in one fuzzy relation. 
Then the fuzzified inputs and the aggregated fuzzy relation are combined with 



  3.6  Defuzzification 33 

the aid of the composition operation to obtain the fuzzy control output. This type 
of engine is not so common in fuzzy control. 
Individual rule firing: Here each rule is fired individually and the control output 
is computed. As was already mentioned, Mamdani implication is commonly 
used to obtain the fuzzy output. In the following chapters, the use of this impli-
cation will be illustrated in detail. Individual rule firing is the most frequently 
used implication in fuzzy control. We use it exclusively in queuing control. 

Example 3.3 

Consider two queues in series with expected arrival rates 1 and 2 and queue 
lengths s1 and s2, respectively. The second queue also receives all serviced custom-
ers of queue 1. An incoming customer may be accepted or rejected at each entry 
point, depending on cost considerations. The following comprise individual rule 
firing via Mamdani implication (min-inference): 

If s1 is PM with grade 0.09 and s2 is ZO with grade 0.72 and 1 is ZO with grade 
0.74 and 2 is PS with grade 0.67, then d1 is NO (reject) with grade 
0.09  min(0.09, 0.72, 0.74, 0.67). 

f s1 is PS with grade 0.74 and s2 is PS with grade 0.62 and 1 is PS with grade 
0.6 and 2 is PM with grade 0.67, then d1 is NO with grade 0.6  min(0.74, 
0.62, 0.6, 0.67). 

The final crisp decision is obtained via defuzzification. 

3.6 Defuzzification 

Defuzzification is a mechanism for converting fuzzy control actions into nonfuzzy 
or crisp ones. This is done because in practice crisp values of controls can be used. 
The defuzzifier, in addition to converting fuzzy values into crisp ones, denormal-
izes the control values if normalized domains are used. 

There are several defuzzification methods. Below we show the most common 
ones when rules fire individually. 

Center of Gravity 

Let ui, i  1, …, k be the values of the control policies and the corresponding mem-
bership grades A(ui). Then the center of gravity defuzzification formula provides a 
crisp value uc for the control as follows: 
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which for continuous values becomes 
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Height Method 

First we give one definition. Recall that the nucleus of a normal fuzzy set A is the 
set of values x for which (x)  1. 

Definition 3.3. The peak value of a normal fuzzy set A is its nucleus if there is only 
one point for which A(x)  1. 

The method of height defuzzification takes account of k outputs ui. Each ui has a 
membership grade or height fi, whereas the corresponding peak values are ei. Then 

uc k

i
i

k

i
ii

f

fe

1

1 . (3.2)

This method will be used in queuing control. 

Example 3.4 

We have two rules that result in “u is PS with grade 0.1” and “u is ZO with grade 
0.2.” Let the membership functions be as in Figure 3.3. Then the heights are e1  0, 
e2  1, and Equation (3.2) gives 

uc
3
2

0.20.1
0.210.10 .

0 1

ZO PS M

2

Figure 3.3. Membership functions of ZO and PS in Example 3.4. 

Other methods include first of maxima, center of largest area, and middle of 
maxima.

It turns out that the height method is the most convenient and advantageous one. 
It exhibits continuity (small input changes produce small output changes), lack of 
ambiguity (it chooses unambiguously between different fuzzy subsets), small com-
putational demand, and weight counting (takes account of each rule via fi ).
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3.7 Design Parameters of a Fuzzy Logic Controller 

The principal design parameters for a fuzzy logic controller are (Driankov et al.
1996): 

1. Fuzzification methods and meaning 

2. Knowledge base 

a. discretization/normalization of universes of discourse 
b. choice of inputs and outputs 
c. choice of membership functions 
d. derivation of fuzzy control rules 
e. consistency, completeness of fuzzy control rules 

3. Inference engine 

a. definition of fuzzy implication 
b. inference mechanism 

4. Defuzzification method 

3.8 Fuzzy Queue Control 

Queuing systems are controlled using fuzzy control by emulating a skilled human 
operator at each decision epoch. The current state is observed, and then an infer-
ence engine equipped with a fuzzy rule base fires an on-line decision to adjust the 
system behavior in order to guarantee that the system is optimal in some sense. 

The architecture of the fuzzy logic controllers depends on the features of each 
queuing system. However, the basic principles of each fuzzy logic controller are 
similar. First of all, the inner workings of a control action and the state of the sys-
tem are explored and then proper policies are devised by mimicking the human way 
of thinking. 

The universes of discourse for all fuzzy sets are continuous, and the membership 
functions are chosen to be triangular. We make this choice because the parametric, 
functional descriptions of triangular membership functions are the most economic 
ones and because such membership functions can approximate any other member-
ship function. To present the fuzzy rules, we usually use NB, NM, NS, ZO, PS, 
PM, and PB to indicate “negative big,” “negative medium,” “negative small,” 
“zero,” “positive small,” “positive medium,” and “positive big,” respectively, 
unless otherwise explained. 

Queuing systems are simulated and controlled using the C programming lan-
guage. Mamdani implication is used to present the meaning of “if-then” rules. This 
implication is most popular in the fuzzy control field because it produces good 
results in most practical applications. 

To change the fuzzy output into a usable crisp one, the height method of defuzzi-
fication is used. 
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Finally, it should be stressed that the policies of this book will be called optimal 
although optimality cannot be proven mathematically, but this is the case with 
many fuzzy logic applications, as we have already pointed out. The existence of 
such policies will always be assumed in the sense of deterministic stationary ones. 
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4.1 Introduction 

In this chapter, we consider queuing systems in which the service rate is the con-
trolled variable. The cost depends on the queue length and selected rate. The objec-
tive is to choose the service rate dynamically, based on the state of the system so as 
to minimize the average cost over an infinite horizon. Six problems, either known 
in the literature or new, are studied in detail: 

M/M/1 and M/M/m queuing systems with server vacations 
Single-server queuing systems with and without switching costs 
Tandem queuing systems with and without service costs 

A fuzzy control approach is presented to solve these problems. Simulation shows 
that the approach is efficient and promising, in cases where analytical solutions do 
not exist. 

It should be stressed at the outset that the reservations about optimality ex-
pressed in Section 1.5 are valid throughout the rest of the book. It should also, 
however, be stressed that the fuzzy algorithms yielded identical results to those of 
analytical models whenever available. In this chapter, the problem of Section 4.2 
has an analytical solution, and the problems of Sections 4.3 and 4.4 have analytical 
solutions only for special cases. The remaining problems have no analytical coun-
terparts. 

4.2 Single Server with Vacations 

4.2.1 Problem Description 

A queuing system in which a server may be turned off is said to be a system with 
vacations or with a removable server, as illustrated in Figure 4.1. 

Arrivals Departures 

Server  Buffer 

Figure 4.1. Queuing system with vacations. 
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Customers arrive into the system, according to a Poisson process with parameter 
, and the queue has infinite capacity. There is one exponential server in the system 

with service rate , where  > . This is an M/M/1 queuing system where the ser-
vice rate may be adjusted to zero during certain intervals of time depending on the 
state of the system. 

The operation of the system is associated with three types of cost: 

1. service cost r, which is the cost per time unit when the server is on 
2. switch-on cost R, which is the fixed nonnegative cost incurred whenever 

the server is turned on 
3. holding cost h, which is the holding cost per time unit per customer in the 

system, including the one in service (if any) 

Here we assume that there is no running cost when the server is off or switched off. 
However, the model can easily be extended to admit such cost parameters (see 
Section 4.2.4). 

The system objective is to find an optimal control policy, which dictates when 
the server is turned off, that minimizes the average cost rate of the system over an 
infinite time horizon. This queuing process is a semi-Markov decision process. 
Indeed, because of the presence of the controller, the times between successive 
service completions are no longer exponentially distributed. However, at the in-
stants of state transitions, this stochastic process behaves like Markov. It is then 
called semi-Markov. 

Studying a more general process (see Section 4.2.4), Heyman (1968) has proved 
that it is optimal to keep the server always on when 

h
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< 0, (4.1)

where /  is the traffic intensity, otherwise to turn the server on when there are 
N customers waiting before a dormant server and to turn it off when the system 
enters an idle period; N is one of the integers about 

n*
h

R )1(2
, (4.2)

whichever gives the smallest cost. This policy is called an exhaustive hysteretic 
policy or a (0, N ) N-policy with N  0 when inequality (4.1) is true. Thus, under an 
optimal policy, it seems beneficial to keep the server always on when the switch-
off cost R is sufficiently larger than the service cost rate r.

In the next sections, we develop a controller for this system using fuzzy logic. 
To emphasize the dynamic aspect of the problem, we assume that inequality (4.1) is 
not true. Furthermore, we adopt the first part of the optimal policy, which dictates 
that the server is kept on whenever customers are present in the system and it is 
switched off when the system empties. Thus, the fuzzy controller determines when 
the server must be turned on. Equation (4.2) will be used to compare the optimal 
and proposed policies. 
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4.2.2 Architecture of the Fuzzy Knowledge-Based Controller 

State Evaluation 

At any time t, the system may be empty or nonempty and the server may be on 
(busy or idle) or off. In the latter case, we say that the server is dormant. The server 
is idle if it is kept on although there are no customers in the system. 

Conventional control techniques usually describe the state of the system by 
(k, s), where k k(t) is the state of the server at time t, taking the value 1 if the 
server is on or 0 if the server is off, and s s(t) is the number of customers in the 
system at time t. The state variable s changes whenever a new customer arrives or 
the server completes service. The state variable k changes whenever we decide to 
switch the server on or off. By the memoryless (Markovian) property of the interar-
rival and service times, we restrict the decision epochs when the server can be 
turned on or off to the times at which the state changes. Therefore, time can be 
regarded as discrete rather than continuous with no loss of generality. In this set-
ting, the average cost rate of the system over an infinite time horizon can be ex-
pressed as follows: 
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where 1{x} is the indicator function that takes the value 1 if condition x is true and 0 
otherwise; thus, R 1{k(t 1)  0, k(t)  1} is the switching cost incurred if the server is 
turned on at time t.

In order to treat switching costs, we introduce one more parameter c, which is 
the accumulated holding cost within the current server state. The cost c is given by 

c
n

i
ish

1
, (4.4)

where n is the total time the server rests in the current state k starting from the last 
time it was switched to that state, i is the ith consecutive time unit within the cur-
rent server state, and si is the number of customers present in the system in the ith 
time unit. By comparing the accumulated holding cost and the switch-on cost R, we 
can determine the time beyond which it is no longer beneficial to keep the server 
off. We will explain the role of c in detail soon. 

Derivation of Heuristic Decision Criteria 

In this section, we present a number of decision criteria, which are derived by ex-
amining simple versions of the problem, where the state variables and/or parame-
ters of the process take extreme (i.e., very large or very small) values. The optimal 
decisions for the original (complex) process will then be derived by using fuzzy 
logic to aggregate all these decision criteria. 

Recall that we have already adopted part of the optimal policy, which dictates 
that the server is always kept on whenever customers are present in the system and 
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it is switched off when the system empties. Thus, we only need to specify when to 
turn on the server. 

We examine three distinct cases. 
1) If there are no switching costs, it is trivially optimal to turn on the server 

when a customer arrives. The existence of a switch-on cost may lead to a delay in 
turning on the server even though there may be customers present in the system. 
The optimal turn-on time will be determined by the relationships between holding 
and switching costs. Clearly, we have the following: 

Criterion (1): When the accumulation of holding cost c during a vacation 
period is high enough to compete with the switching cost, it is optimal to 
turn on the server. 

2) The traffic intensity /  is the average use of the server over an infinite 
horizon T . The quantity 1  is the fraction of the time the server can be idle 
or dormant. If  1, that is, the arrival rate is greater than or equal to the service 
rate, then the number of customers in the system will grow without bound. If we 
decide to keep the server off during a fraction of the total operation time T, then we 
will save a constant cost rate r (because the service cost will be zero during this 
fraction), but the holding cost rate will keep on growing at an average rate of h .
As a result, the average holding cost rate, expressed by the first summation term in 
Equation (4.3), will dominate the other cost rates of g after some initial transient 
period. Therefore, in this case, it is optimal to keep the server always on. Using the 
same arguments, we can show that when  is less than but close to one, again we 
should urgently turn a dormant server on. On the other hand, when  0, it is 
optimal to serve all customers, if any, initially present in the system and then 
switch the server off permanently. To avoid this trivial situation, we assume that 

 > 0. Finally, if  is close to zero, then the server can stay in the dormant state for 
some time until the accumulation of holding cost satisfies Criterion (1). These ob-
servations are summarized by Criterion (2) as follows: 

Criterion (2): The higher the , the easier it is to make the decision to turn 
the server on. 

3) If h  0, keeping the server always off achieves the minimum cost g  0, al-
though the number of customers in the system explodes as T . Again, this is a 
trivial situation; hence, we assume that h > 0. Using the same arguments as in the 
previous case, we reach the following: 

Criterion (3): The higher the h, the easier it is to make the decision to turn 
the server on. 

It is interesting to note that the rule base is independent of the service cost rate r.
This is because of the property of the removable server model where the single 
server under a long-run criterion is busy with probability  at any time instant, 
independent of the service cost rate. 

Next, we use the above criteria to build a rule base of the fuzzy controller and 
derive the functional forms of the linguistic values for each input and output. 
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Rule Base 

The inputs of the rule base are the parameters c, h, and . Each parameter is repre-
sented by four linguistic values, ZO, PS, PM, and PB, which stand for “zero,” 
“positive small,” “positive medium,” and “positive big,” respectively. The com-
plete rule base comprises 43  64 rules. The output of each rule, denoted by d, is the 
decision concerning whether to turn the server on and it is represented by the lin-
guistic values YES and NO. 

According to Criteria (1)–(3), whenever all input parameters are zero, it is opti-
mal to keep the server off. This gives us the first rule of the rule base 

Rule 1: if c is ZO and h is ZO and  is ZO, then d is NO.

Dual to the above is the last rule of the rule base 

Rule 64: if c is PB and h is PB and  is PB, then d is YES.

All other rules fall within these two extreme cases. The complete rule base is 
shown in Table 4.1. 

Table 4.1. Rule base. 

Rules 1–16 Rules 17–32 Rules 33–48 Rules 49–64 
c h d c h d c h d c h d

ZO ZO ZO NO ZO ZO PS NO ZO ZO PM NO ZO ZO PB YES 
PS ZO ZO NO PS ZO PS NO PS ZO PM YES PS ZO PB YES 
PM ZO ZO NO PM ZO PS YES PM ZO PM YES PM ZO PB YES 
PB ZO ZO YES PB ZO PS YES PB ZO PM YES PB ZO PB YES 
ZO PS ZO NO ZO PS PS NO ZO PS PM YES ZO PS PB YES 
PS PS ZO NO PS PS PS YES PS PS PM YES PS PS PB YES 
PM PS ZO YES PM PS PS YES PM PS PM YES PM PS PB YES 
PB PS ZO YES PB PS PS YES PB PS PM YES PB PS PB YES 
ZO PM ZO NO ZO PM PS YES ZO PM PM YES ZO PM PB YES 
PS PM ZO YES PS PM PS YES PS PM PM YES PS PM PB YES 
PM PM ZO YES PM PM PS YES PM PM PM YES PM PM PB YES 
PB PM ZO YES PB PM PS YES PB PM PM YES PB PM PB YES 
ZO PB ZO YES ZO PB PS YES ZO PB PM YES ZO PB PB YES 
PS PB ZO YES PS PB PS YES PS PB PM YES PS PB PB YES 
PM PB ZO YES PM PB PS YES PM PB PM YES PM PB PB YES 
PB PB ZO YES PB PB PS YES PB PB PM YES PB PB PB YES 

To complete the rule base, we applied the following heuristic procedure. To each 
linguistic value we assign an integer weight: ZO 0, PS 1, PM 2, and PB 3. 
For each rule, we compute the sum of the weights associated with the linguistic 
values of its input parameters. We set d  NO, if the sum is less than or equal to 2; 
otherwise we set d  YES. Thus, for example, the rule with antecedent part if c is 
ZO and h is PS and  is PS has a total weight 0 + 1 + 1  2, and therefore, its con-
sequent part is d is NO, whereas when at least one linguistic value is PB, the rule 
yields d is YES.
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Membership Functions 

The membership functions of the input variables are chosen to be triangular or 
trapezoidal. Although we use the same linguistic values, ZO, PS, PM, and PB, to 
represent the inputs, the functional forms of the membership functions of these 
values depend on the corresponding input and will be determined according to the 
criteria and rules derived in the previous subsections. 

The physical domain of the accumulated cost c is the interval [0, + ). Let us 
consider an extreme situation of the system where h and  are close to zero, i.e., 
these two parameters do not bear any effects on the decision to turn on the server. 
According to Criterion (1), it is optimal to turn on the server when the accumula-
tion of holding cost c in the period of server vacation is equal to the switching cost 
R. Hence, we see that for this extreme situation, it is optimal to turn on the dormant 
server when c is greater than or equal to R. This situation is equivalent to Rule 4 of 
Table 4.1, if c is PB and h is ZO and  is ZO, then d is YES. In other words, when 
c R, then c belongs to the fuzzy set PB with membership grade 1.0, or 

PB(c)  1.0. Thus, PB for c has a trapezoidal membership function with nucleus 
{c | c R}. The membership functions of ZO, PS, and PM for c are triangular with 
their peak values equally distributed between the values 0 and R. Hence, the peak 
value of ZO is 0, the peak value of PS is R/3, and the peak value of PM is 2R/3. 
The membership functions of c are shown in Figure 4.2a. 
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Figure 4.2. Membership functions: (a) original and (b) normalized input variable c.

The physical domains of the inputs are transformed into their normalized coun-
terparts using appropriate scaling factors. The normalized values of c are obtained 
by multiplying the observed values by the scaling factor 6/R. The membership 
functions of the normalized variable are shown in Figure 4.2b. 

Next, we hypothesize the functional forms of membership functions of the lin-
guistic values for  and h. These functions will be specified in part by examining 
the features of the problem at hand, taking into account our previous choice of 
membership functions for the accumulated holding cost c.

Arguing as before, it follows that when h R, then h belongs to the fuzzy set PB 
with membership grade 1.0, and when h 0, then h belongs to ZO again with 
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membership grade 1.0. Finally, as (0, 1), PB for  with membership grade 1.0 is 
fixed at 1 and ZO is fixed at 0. Hence, the scaling factor of h is 6/R and that of  is 
6.

Suppose that the system empties and the server is switched off at some time, 
which, with no loss of generality, we denote by i  0. Hence, the number of cus-
tomers in the system is s si  0. Suppose further that the server stays off during n
consecutive time units, i  1, 2, …, n. Each time unit corresponds to the arrival of a 
new customer in the system whereby s is increased by one; thus, si si 1 +1. From 
Equation (4.4), we observe that c increases with n as the sequence 1h, 3h, 6h, …, 
which is given by 

cn cn 1 + hsn cn 1 + hn
2

)1(nn
h ,    n  1, 2, …. 

(4.5)

We observe that the expected number n of arrivals in any interval is proportional to 
, which, in turn, is proportional to . Thus, for example, if  is increased to the 

value '  2 , then the expected holding cost in the same period will be c'  3c; if 
'  3 , then c'  6c; and so on. It then follows that the peak values of the linguistic 

values of  are smaller than the peak values of the corresponding linguistic values 
of c.
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Figure 4.3. Membership functions: (a)   and (b) h.

The membership functions of , after normalization, are shown in Figure 4.3a.
These functions showed the best performance among various candidates in a num-
ber of numerical experiments with different problem instances. From these experi-
ments, we found that the “optimal” membership functions for h, shown in Figure 
4.3b, are the same as for , the only difference being that the normalized values of 
h are not bounded from above. 

Defuzzification is the final operation of the knowledge base. At this stage, we 
have a number of rules whose antecedent parts are YES or NO and the degrees to 
which they are applicable to a given decision epoch, and we must make a crisp 
decision YES or NO as to whether to turn the server on or keep it off. One possibil-
ity for defuzzification would be to assume that the output d is continuous in the 



44 4  Control of the Service Activities 

interval [0, 1], where the value 0 corresponds to the crisp decision NO and 1 corre-
sponds to YES. Any value d between 0 and 1 is assigned a membership grade that 
represents the degree of fulfillment of d to the corresponding decision. If several 
rules are applicable, then the crisp decision could be obtained by applying any 
method of defuzzification and integrating the result to 0 or 1 (for example, d  0.5 
could give YES, otherwise NO). 

Another possibility for defuzzification results from the observation that the rule 
base of Table 4.1 is somehow biased because the majority of its rules yield YES. 
To compensate for this bias, we consider an alternative defuzzification method 
whereby a decision YES is made whenever all the applicable fuzzy outputs are 
YES. Numerical experiments showed that the system incurs a smaller operational 
cost when this method is followed. 

4.2.3 A Numerical Example 

We examine an M/M/1 system with the following parameters: arrival rate  1/20, 
service rate  1/6, holding cost rate per customer h  1.2, and fixed switching 
cost R  96. 

Here  0.3 is scaled to 0.3  6  1.8, which from Figure 4.3a is interpreted as 
is PM with grade 0.825 and PB with grade 0.067. In addition, R  96 implies that 
the scaling factors for c and h are 6/R  0.0625, and hence, h is scaled down to 
1.2  0.0625  0.075, which from Figure 4.3b corresponds to the statement h is ZO 
with grade 0.7 and PS with grade 0.1.

The fuzzy inference procedures are briefly illustrated as follows. At each deci-
sion epoch, we compute the current cost accumulation c and fuzzify it into suitable 
linguistic values. Then the applicable fuzzy rules are determined and the corre-
sponding fuzzy outputs are collected. A decision YES is made whenever all the 
fuzzy outputs are YES. For example, let us assume that the current cost accumula-
tion c  6. This value is scaled down to 6  0.0625  0.375, which from Figure 4.2b 
corresponds to ZO with grade 0.875 and PS with grade 0.458. According to the 
fuzzy rule base (Table 4.1) and Mamdani implication, the fuzzy decisions d are 
formulated as follows: 

If c is ZO with grade 0.875 and h is ZO with grade 0.7 and is PM with grade 
0.825, then d is NO with grade 0.7. 

If c is PS with grade 0.458 and h is ZO with grade 0.7 and is PM with grade 
0.825, then d is YES with grade 0.458. 

If c is ZO with grade 0.875 and h is PS with grade 0.1 and is PM with grade 
0.825, then d is YES with grade 0.1. 

If c is PS with grade 0.458 and h is PS with grade 0.1 and is PM with grade 
0.825, then d is YES with grade 0.1. 

If c is ZO with grade 0.875 and h is ZO with grade 0.7 and is PB with grade 
0.067, then d is YES with grade 0.067. 

If c is PS with grade 0.458 and h is ZO with grade 0.7 and is PB with grade 
0.067, then d is YES with grade 0.067. 
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If c is ZO with grade 0.875 and h is PS with grade 0.1 and is PB with grade 
0.067, then d is YES with grade 0.067. 

If c is PS with grade 0.458 and h is PS with grade 0.1 and is PB with grade 
0.067, then d is YES with grade 0.067. 

Among the eight fuzzy outputs d, one is NO. Therefore, the decision is NO. 
We simulated the system starting from an initial state k  0, s  0, and c  0, em-

ploying the fuzzy control at each decision epoch (see the Appendix for an introduc-
tion to simulation and Examples A.5 and A.7 for a description of the simulation 
algorithm). The evolution of k and s for the first 3000 time units is shown in Figure 
4.4 (the first 130 time units were considered a warmup period). 
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Figure 4.4. Evolution of k and s.

By careful examination of Figure 4.4, it follows that a dormant server is not 
turned on immediately after a customer arrives (that is, when s is increased from 0 
to 1) but after a delay of two or more arrivals. 
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Figure 4.5. Frequency of switches versus number of customers in the system. (IEEE T Syst 
Man Cyb B, Vol. 29, p. 507, by Yannis A. Phillis and Runtong Zhang. © 1999 by IEEE. 
Used with permission.) 

This gives us an idea of the hysteretic property and is illustrated in Figure 4.5, 
which shows the number of times the server is turned on as a function of s during a 
period of 30,000 time units. We see that the server is most often turned on when 
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there are two customers in the system. Hence, we obtain the optimal policy with the 
hysteretic property as shown in Figure 4.6. By Heyman’s Equation (4.2), n* is 
2.366, which does coincide with our result. 
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Figure 4.6. The optimal policy. (IEEE T Syst Man Cyb B, Vol. 29, p. 507, by Yannis A. 
Phillis and Runtong Zhang. © 1999 by IEEE. Used with permission.) 

4.2.4 An Extension 

We now examine systems that incur additional costs when the server is off or 
switched off. We shall give an informal proof that the optimal switching policy is 
the same with or without additional costs. 

Consider two queuing systems, each with a single removable server. The first 
system is identical to the one described in Section 4.2.1 with cost parameters r, R,
and h. The second system has the following cost parameters: 

1. service cost rk, k  0, 1, per unit time when the server is on (k  1) or off 
(k  0), with r0 r1

2. switching cost Rk, k  0, 1, per unit time incurred whenever the server is 
turned on (k  1) or off (k  0) 

3. holding cost rate h, as in Section 4.2.1 

Assume that r r1 r0 and R R0 + R1. The optimal policy for the first system 
is a (0, N) policy. We now show that this policy is also optimal for the second sys-
tem. We do this by comparing the sample paths of the two systems using a com-
mon probability space and any control policy. This means that the arrivals, depar-
tures, and server switchings are synchronized in both systems. Each system will 
evolve according to an alternating sequence of uptimes and downtimes in which the 
server is kept on and off, respectively. During any time interval consisting of an 
uptime followed by a vacation, the total switching costs are R R1 + R2, that is, 
equal for both systems. Over a long time T, the frequencies of uptimes and vaca-
tions differ by no more than one. Hence, the average switching cost rates of the two 
systems are equal. Furthermore, the second system incurs an additional cost of r0T
(this is so because when the server is on, the second system incurs a cost rate 
r1 r + r0 and when the server is off, the cost rate is r0). It then turns out that the 
average cost rate of the second system equals that of the first system plus 
(r0T)/T r0, provided the systems use the same policy. Therefore, as (0, N) is opti-
mal for the first system, it must be optimal for the second one. 
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4.3 Parallel Servers with Vacations 

4.3.1 Problem Description 

We consider a queuing system with m exponential servers in parallel and a single 
queue with infinite capacity, as illustrated in Figure 4.7. The number of working 
servers can be adjusted to 0, 1,…, or m by turning one or more servers on or off. 
Customers arrive into the system according to a Poisson process with parameter ,
and service times are independent exponentially distributed random variables with 
mean 1/ , where m  > . This is an M/M/m queuing system with a variable number 
of working servers that extends the one we discussed in the previous section. 

Arrivals 

Departures 
Server 2 

 Buffer 

Departures 
Server 1 

Departures 
Server m

Figure 4.7. M/M/m system with vacations. 

The objective is to minimize the average cost over an infinite horizon by adjust-
ing the number of working servers. We consider three types of costs: 

1. service cost rK per time unit when K servers are on regardless of busy or 
idle status, K  0, 1, …, m

2. switching cost R incurred whenever a server is turned on 
3. holding cost h per unit time per customer in the system, including those in 

service (if any) 

As in the single-server case, we assume that there is no cost when a server is off or 
switched off. As discussed in Section 4.2.4, the introduction of service costs rk

when the server is on (k  1) or off (k  0) as well as switching costs Rk when the 
server is turned on (k  1) or off (k  0), where r r1 r0 and R R0 + R1, does not 
affect the optimal policy. 

Bell (1980) has shown that the optimal policy for an M/M/2 queuing system has 
a hysteresis form characterized by four parameters, 0, 1, N1, and N2, which are the 
numbers of the customers in the system when the number of working servers 
should be adjusted down to 0, 1, and up to 1, 2, respectively. The optimal policy 
satisfies the following relationships:  
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1 0 1, N2 N1, N2 1 and Ns s, s  1, 2. (4.6)

Note that if 0 1, then it is optimal for this system to have always one server on, 
although not necessarily the same one, regardless of busy or idle status. However, 
complete characterization of the M/M/m model and explicit determination of the 
optimal policy, even for the M/M/2 model, are still open problems. 

For r sufficiently high and R, h > 0, Bell (1975) proves that it is optimal to never 
allow more working servers than customers present in the system. Such a policy is 
called efficient. Note that if r is close to zero, then it pays more to keep some serv-
ers on to avoid switching costs. For simplicity, we restrict our attention to efficient 
policies. 

4.3.2 Fuzzy Controller 

The state of the system is described by (K, s, c), where K is the number of working 
servers, s is the number of customers in the system, and c is the accumulated hold-
ing cost within the current server state. 

The variable c is defined as follows. Suppose that K is constant during n con-
secutive events, that is, arrivals or departures of customers. Let si be the number of 
customers present when event i occurs, i  1, 2, …, n. As we consider efficient 
policies, we must have K si, which implies that the K servers are always busy. 
Hence, si K is nonnegative and equals the number of customers in the queue upon 
the occurrence of event i. At time n, the accumulated holding cost of these custom-
ers is given by 

c
n

i
i Ksh

1
)( . (4.7)

For the special case described in Section 4.2 in which m  1 and decisions are made 
only when K  0, the above reduces to Equation (4.4). 

Note that an efficient control policy is independent of the running cost rate r per
server. Indeed, as the arrivals occur at mean rate , each customer requires on the 
average 1/  time units of service, and no idle servers are permitted, the average 
running cost over a long period T is r( T )(1/ ), for every efficient control policy 
that eventually serves all incoming customers. Thus, the long-term average running 
cost rate is r / , and this quantity is independent of the particular policy. There-
fore, r need not be considered as input to the controller. 

The decision epochs at which service channels may be turned on or off are the 
times of customer arrivals or service completion. In the single-server system, the 
inputs of the rule base are the state c and parameters h and , and a basic tenet is, 
the higher the c, h, or , the easier it is to turn the server on. Here we shall not use h
as an input parameter of the rule base. We do this to simplify the model and to test 
the flexibility of our approach and its robustness to modeling assumptions. 

The output of the controller is the variation K of the number of servers. The 
system amends the number of working servers by simply adding the defuzzified 
crisp output of K, K (m  1), …, 1, 0, 1, …, m  1, to the current number of 



  4.3  Parallel Servers with Vacations 49 

working servers K. The decision criteria are similar to the ones derived in the pre-
vious case. 

If R  0, it is trivially optimal to adjust the number of working servers to 
min(s, m). Indeed, when s m, as there are no switching costs, we must use the 
maximum capacity of the system to avoid holding costs, and when s < m, we must 
reduce the number of running servers to s to avoid the service costs incurred by idle 
servers. The existence of a switch-on cost may lead to a delay in turning on the 
server even though there may be customers present in the system. The optimal turn-
on time will be determined by the relationships between holding and switching 
costs. In summary: 

Criterion (1): When the accumulation of holding cost c during a vacation 
period is high enough to compete with the switching cost R K, it is optimal 
to turn on K dormant servers. 

Let /(m ) be the traffic intensity of the system when all its servers are on. 
The second criterion is the same as in the single-server case. 

Criterion (2): The higher the , the easier it is to make the decision to turn 
on a dormant server. 

Finally, when the number K of active servers is less than the number s of cus-
tomers in the system, then K should be positive or, at least, nonnegative. By the 
assumption of efficient policies, when K is larger than s, we switch off all idle serv-
ers at no cost. These rules are expressed compactly by: 

Criterion (3): The variation K is an increasing function of s K, and 
K + K is not greater than s.

Next, we describe the linguistic values and membership functions of the input 
and output variables. 

We use four linguistic values, ZO, PS, PM, and PB, for the input variables , K,
c, and s, and seven values for the output variable K, NB (negative big), NM (nega-
tive medium), NS (negative small), ZO, PS, PM, and PB. 

The membership functions for  are determined following the arguments of the 
single-server case and are shown in Figure 4.3a. 

The physical domain of the number K of active servers is [0, m]. A normalized 
value for K is obtained by multiplying by 6/m. The corresponding membership 
functions are shown in Figure 4.8. 
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Figure 4.8. Membership functions: (a) original and (b) normalized input variable K.

The physical domain of the accumulated cost c and the number s of customers in 
the system is [0, ). Their normalized values and membership functions are similar 
to the ones shown in Figure 4.2 (or in Figure 4.8, if we extend the range of the x-
axis to ). When s is greater than or equal to m, the number of customers is consid-
ered PB with grade 1.0. Hence, the scaling factor of s is 6/m. Finally, as in the sin-
gle-server case, c is declared PB with grade 1.0 when its crisp value is greater than 
the cost of switching all servers on. This cost being mR, we obtain the correspond-
ing scaling factor 6/(mR).

Finally, the universe of discourse for K is chosen to be the so-called standard 
domain [ 6, 6]. The membership functions for K are shown in Figure 4.9. 

ZO PS PB PM

0 1 6 

1

2 3 4 56 15 4 3 2

NB NSNM 

Figure 4.9. Membership functions of the normalized output variable K.

Table 4.2 shows the rule base of the fuzzy controller, which was determined ac-
cording to Criteria (1)–(3). 
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Table 4.2. Rule base 

Rules 1–64 Rules 65–128 Rules 129–192 Rules 193–256 

K s c K K s c K K s c K K s c K
ZO ZO ZO ZO ZO ZO ZO ZO PS ZO ZO ZO ZO PM ZO ZO ZO ZO PB ZO 
PS ZO ZO ZO NS PS ZO ZO PS NS PS ZO ZO PM NS PS ZO ZO PB NS 
PM ZO ZO ZO NM PM ZO ZO PS NM PM ZO ZO PM NM PM ZO ZO PB NM 
PB ZO ZO ZO NB PB ZO ZO PS NB PB ZO ZO PM NB PB ZO ZO PB NB 
ZO PS ZO ZO ZO ZO PS ZO PS PS ZO PS ZO PM PS ZO PS ZO PB PM 
PS PS ZO ZO ZO PS PS ZO PS ZO PS PS ZO PM ZO PS PS ZO PB PS 
PM PS ZO ZO NS PM PS ZO PS NS PM PS ZO PM NS PM PS ZO PB NS 
PB PS ZO ZO NM PB PS ZO PS NM PB PS ZO PM NM PB PS ZO PB NM 
ZO PM ZO ZO ZO ZO PM ZO PS PS ZO PM ZO PM PM ZO PM ZO PB PM 
PS PM ZO ZO ZO PS PM ZO PS ZO PS PM ZO PM PS PS PM ZO PB PM 
PM PM ZO ZO ZO PM PM ZO PS ZO PM PM ZO PM ZO PM PM ZO PB PS 
PB PM ZO ZO NS PB PM ZO PS NS PB PM ZO PM NS PB PM ZO PB NS 
ZO PB ZO ZO ZO ZO PB ZO PS PS ZO PB ZO PM PM ZO PB ZO PB PB 
PS PB ZO ZO ZO PS PB ZO PS PS PS PB ZO PM PS PS PB ZO PB PB 
PM PB ZO ZO ZO PM PB ZO PS ZO PM PB ZO PM PS PM PB ZO PB PM 
PB PB ZO ZO ZO PB PB ZO PS ZO PB PB ZO PM ZO PB PB ZO PB PS 
ZO ZO PS ZO ZO ZO ZO PS PS ZO ZO ZO PS PM ZO ZO ZO PS PB ZO 
PS ZO PS ZO NS PS ZO PS PS NS PS ZO PS PM NS PS ZO PS PB NS 
PM ZO PS ZO NM PM ZO PS PS NM PM ZO PS PM NM PM ZO PS PB NM 
PB ZO PS ZO NB PB ZO PS PS NB PB ZO PS PM NB PB ZO PS PB NB 
ZO PS PS ZO PS ZO PS PS PS PS ZO PS PS PM PS ZO PS PS PB PM 
PS PS PS ZO ZO PS PS PS PS ZO PS PS PS PM ZO PS PS PS PB PS 
PM PS PS ZO NS PM PS PS PS NS PM PS PS PM NS PM PS PS PB NS 
PB PS PS ZO NM PB PS PS PS NM PB PS PS PM NM PB PS PS PB NM 
ZO PM PS ZO PS ZO PM PS PS PS ZO PM PS PM PM ZO PM PS PB PB 
PS PM PS ZO PS PS PM PS PS PS PS PM PS PM PS PS PM PS PB PM 
PM PM PS ZO ZO PM PM PS PS ZO PM PM PS PM ZO PM PM PS PB PS 
PB PM PS ZO NS PB PM PS PS NS PB PM PS PM NS PB PM PS PB NS 
ZO PB PS ZO PS ZO PB PS PS PM ZO PB PS PM PM ZO PB PS PB PB 
PS PB PS ZO PS PS PB PS PS PS PS PB PS PM PM PS PB PS PB PB 
PM PB PS ZO PS PM PB PS PS PS PM PB PS PM PS PM PB PS PB PM 
PB PB PS ZO ZO PB PB PS PS ZO PB PB PS PM PS PB PB PS PB PS 
ZO ZO PM ZO ZO ZO ZO PM PS ZO ZO ZO PM PM ZO ZO ZO PM PB ZO 
PS ZO PM ZO NS PS ZO PM PS NS PS ZO PM PM NS PS ZO PM PB NS 
PM ZO PM ZO NM PM ZO PM PS NM PM ZO PM PM NM PM ZO PM PB NM 
PB ZO PM ZO NB PB ZO PM PS NB PB ZO PM PM NB PB ZO PM PB NB 
ZO PS PM ZO PS ZO PS PM PS PS ZO PS PM PM PS ZO PS PM PB PM 
PS PS PM ZO ZO PS PS PM PS ZO PS PS PM PM ZO PS PS PM PB PS 
PM PS PM ZO NS PM PS PM PS NS PM PS PM PM NS PM PS PM PB NS 
PB PS PM ZO NM PB PS PM PS NM PB PS PM PM NM PB PS PM PB NM 
ZO PM PM ZO PM ZO PM PM PS PM ZO PM PM PM PM ZO PM PM PB PB 
PS PM PM ZO PS PS PM PM PS PS PS PM PM PM PS PS PM PM PB PM 
PM PM PM ZO ZO PM PM PM PS ZO PM PM PM PM ZO PM PM PM PB PS 
PB PM PM ZO NS PB PM PM PS NS PB PM PM PM NS PB PM PM PB ZO 
ZO PB PM ZO PM ZO PB PM PS PB ZO PB PM PM PB ZO PB PM PB PB 
PS PB PM ZO PM PS PB PM PS PM PS PB PM PM PB PS PB PM PB PB 
PM PB PM ZO PS PM PB PM PS PS PM PB PM PM PM PM PB PM PB PB 
PB PB PM ZO ZO PB PB PM PS ZO PB PB PM PM PS PB PB PM PB PM 
ZO ZO PB ZO ZO ZO ZO PB PS ZO ZO ZO PB PM ZO ZO ZO PB PB PS 
PS ZO PB ZO NS PS ZO PB PS NS PS ZO PB PM NS PS ZO PB PB NS 
PM ZO PB ZO NM PM ZO PB PS NM PM ZO PB PM NM PM ZO PB PB NM 
PB ZO PB ZO NB PB ZO PB PS NB PB ZO PB PM NB PB ZO PB PB NB 
ZO PS PB ZO PS ZO PS PB PS PS ZO PS PB PM PS ZO PS PB PB PM 
PS PS PB ZO ZO PS PS PB PS ZO PS PS PB PM ZO PS PS PB PB PS 
PM PS PB ZO NS PM PS PB PS NS PM PS PB PM NS PM PS PB PB ZO 
PB PS PB ZO NM PB PS PB PS NM PB PS PB PM NM PB PS PB PB NS 
ZO PM PB ZO PM ZO PM PB PS PM ZO PM PB PM PM ZO PM PB PB PM 
PS PM PB ZO PS PS PM PB PS PS PS PM PB PM PS PS PM PB PB PM 
PM PM PB ZO ZO PM PM PB PS ZO PM PM PB PM ZO PM PM PB PB PS 
PB PM PB ZO NS PB PM PB PS NS PB PM PB PM NS PB PM PB PB ZO 
ZO PB PB ZO PB ZO PB PB PS PB ZO PB PB PM PB ZO PB PB PB PB 
PS PB PB ZO PM PS PB PB PS PM PS PB PB PM PB PS PB PB PB PB 
PM PB PB ZO PS PM PB PB PS PS PM PB PB PM PM PM PB PB PB PB 
PB PB PB ZO ZO PB PB PB PS ZO PB PB PB PM PS PB PB PB PB PM 

For comparison with Bell’s results for an M/M/2 queue, we will present an ex-
ample dealing with a two-server queuing model in the next subsection. This exam-
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ple illustrates the excellent accuracy of the fuzzy model when m  2. The same 
framework can be applied to M/M/m models with m>2, but no comparisons can be 
made because no analytical solutions exist. 

4.3.3 A Numerical Example 

We consider an M/M/2 queuing system with vacations, arrival rate  1/30, ser-
vice rate of each working server  1/40, switching cost per server R  20, and 
holding cost rate h  0.04. 

As m  2, /(2 )  0.67. This value is scaled up to 6  0.67  4, which from 
Figure 4.3a is declared PM with grade 0.125 and PB with grade 0.56. The scaling 
factor for c is 6/(2R)  0.15, and for s and K, it is 6/m  3. 

Suppose that the current inputs are c  1, K  0, and s  1. Then, c is scaled 
down to 1  0.15  0.15, which from Figure 4.2b is ZO with membership grade 
0.95 and PS with grade 0.38; K  0 is ZO with grade 1.0; and s is scaled up to 3, 
which from Figure 4.2b is declared PS or PM with grade 0.67. According to Table 
4.2, the fuzzy decisions K are formulated as follows: 

If K is ZO with grade 1.0 and s is PS with grade 0.67 and c is ZO with grade 
0.95 and is PM with grade 0.125, then K is PS with grade 0.125. 

If K is ZO with grade 1.0 and s is PM with grade 0.67 and c is ZO with grade 
0.95 and is PM with grade 0.125, then K is PM with grade 0.125. 

If K is ZO with grade 1.0 and s is PS with grade 0.67 and c is PS with grade 0.38 
and is PM with grade 0.125, then K is PS with grade 0.125. 

If K is ZO with grade 1.0 and s is PM with grade 0.67 and c is PS with grade 
0.38 and is PM with grade 0.125, then K is PM with grade 0.125. 

If K is ZO with grade 1.0 and s is PS with grade 0.67 and c is ZO with grade 
0.95 and is PB with grade 0.56, then K is PM with grade 0.56. 

If K is ZO with grade 1.0 and s is PM with grade 0.67 and c is ZO with grade 
0.95 and is PB with grade 0.56, then K is PM with grade 0.56. 

If K is ZO with grade 1.0 and s is PS with grade 0.67 and c is PS with grade 0.38 
and is PB with grade 0.56, then K is PM with grade 0.38. 

If K is ZO with grade 1.0 and s is PM with grade 0.67 and c is PS with grade 
0.38 and is PB with grade 0.56, then K is PB with grade 0.38. 

From Figure 4.9, the peak values and heights of the fuzzy sets corresponding to the 
eight decisions K are e1 e3  2, e2 e4 e5 e6 e7  4, e8  6 and f1 f2 f3

f4  0.125, f5 f6  0.56, f7 f8  0.38. By using the height method of defuzzifica-
tion, the normalized crisp output K* is given by 
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As K* [ 6, 6] and K { (m  1), …, 0, …, m  1}  { 1, 0, 1}, the crisp output 
is 4.1  (1/6)  0.68, which is greater than 0.5. Hence, one server should be turned 
on. 

The operation of the system and the fuzzy controller are simulated for 30,000 
time units. From Figure 4.10, we see that when all servers are off (K  0) and there 
are customers in the system, the fuzzy controller activates one server, usually right 
after an arrival brings the number of customers to four. Similarly, the number of 
servers is adjusted from one to two when the number of customers is usually six. 
Thus, we obtain a hysteretic policy. In addition, the controller always adjusts the 
number of working servers down to one when a service completion leaves one 
customer behind or down to zero when the system is empty. 
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Figure 4.10. Frequency of switches versus number of customers in the system. (IEEE T Syst 
Man Cyb B, Vol. 29, p. 508, by Yannis A. Phillis and Runtong Zhang. © 1999 by IEEE. 
Used with permission.) 
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Figure 4.11. The hysteretic policy. (IEEE T Syst Man Cyb B, Vol. 29, p. 509, by Yannis A. 
Phillis and Runtong Zhang. © 1999 by IEEE. Used with permission.) 

From the above, we see that the fuzzy controller approximates a hysteresis pol-
icy with parameters 0  0, 1  1, N1  4, and N2  6 (see Figure 4.11). These val-
ues satisfy conditions (4.6), which are necessary for an optimal control policy. 
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4.4 Single Server without Switching Costs 

4.4.1 Problem Description 

Consider a system with infinite queuing capacity and a single exponential server 
whose rate can be adjusted to one of a finite set of service rates k, k  1, 2, …, m,
ordered as 0 1 < 2 < … < m < + . Customers arrive according to a Poisson 
process with parameter . There is a holding cost rate h for each customer in the 
system and a service cost rate rk when service rate k is used. 

The server may decide which type of service rate k is applied based on the state 
of the system. The objective is to find an optimal control policy that minimizes the 
average cost over an infinite time horizon. 

We assume that the maximum rate satisfies m > . Thus, a policy that always 
uses the maximum service rate is stable; that is, the number of customers in the 
system is finite at any time. We also assume that the higher the service rate, the 
higher the corresponding service cost; that is, 0 r1 < r2 < … < rm < + .

The state of the system is described by (s, k), where s is the number of customers 
in the system and k is the current service type. The decision process is a semi-
Markov decision process. 

Crabill (1972) and Lippman (1973) have proved that the optimal policy for this 
problem is a stationary increasing policy, whereby more customers in the system 
lead to a faster service rate. Furthermore, certain conditions exist for excluding 
certain service rates from consideration as an optimal decision for any state. Define 
H1 , Hm+1 , and 

Hk
1

1

kk

kk rr
, k  2, …, m. (4.8)

Crabill (1974) proved that if Hk > Hk+1, then it is not optimal to employ rate k at 
any state. When Hk Hk+1, rate k is redundant in the sense that if it is optimal for 
some state, then k+1 will also be optimal. In the sequel, we assume that Hk Hk+1

for all k.
A stationary policy is specified by an integer function f(s) that assigns a service 

rate f(s) to each state s. Under a stationary policy, the system is a birth death queu-
ing system. The equilibrium probabilities Ps, s  0, 1, …, and the long-run cost rate 
g are computed from the following equations: 

Ps+1 s
sf
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0s

sP  1, g
0

)( )(
s

ssf Phsr . (4.9)

Furthermore, any stationary increasing policy is specified by a sequence of inte-
gers sk, k  1, …, m  1, where sk is the threshold number of customers in the sys-
tem when the service rate increases from k to k+1. When m  2, the optimal policy 
can be found by performing a search of possible s1 values using Equations (4.9). 
We shall use this procedure to verify our results. 
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4.4.2 Fuzzy Controller 

The state variable s changes at each customer arrival or service completion. We 
assume that the service rate of a busy server cannot be changed. Then, the decision 
epochs coincide with the transition instants of s. This is a typical N-policy problem, 
which means that the service type is set according to the number of customers pre-
sent in the system. 

To incorporate the service cost into the decision-making process, we use the 
holding cost per time unit hs as one input to the fuzzy controller. A decision that 
changes or maintains the current service rate k depends on hs and the service cost 
rk. The higher the hs, the easier it is to make the decision to turn on a dormant 
server. Also, the lower the rk, the easier it is to make the decision to increase the 
service rate, if needed. 

Formally speaking, we choose the current service rate type, k  1, 2, …, m, and 
the current holding cost per time unit of the system hs (0, ) as the fuzzy inputs, 
and the variation k of the service rate type as the fuzzy output. The universes of 
discourse for the fuzzified variables k and hs are [0, 6] and [0, ), respectively. The 
universe of discourse for k is chosen to be the standard domain [ 6, +6]. The cor-
responding membership functions for hs, k, and k are shown in Figures 4.3b, 4.8b, 
and 4.9. We assign the linguistic value ZO to the input k when the service rate is of 
type 1, because this is the basic type even when there are no customers present in 
the system. The server amends its service rate type by simply adding the defuzzi-
fied crisp output of k (m  1), …, 1, 0, 1, … m  1, to the current type k. The 
fuzzy rule base is shown in Table 4.3. 

Table 4.3. Rule base 

Rules 1–8 Rules 9–16 
hs k k hs k k
ZO ZO ZO ZO PM NM 
PS ZO PS PS PM NS 
PM ZO PM PM PM ZO 
PB ZO PB PB PM PS 
ZO PS NS ZO PB NM 
PS PS ZO PS PB NM 
PM PS PS PM PB NS 
PB PS PM PB PB ZO 

An example is in order to understand the rule base. Because there are no switch-
ing costs introduced here, when the service rate type has the highest value m, but 
the current holding cost per time unit is zero (there are no customers in the system 
at this moment), the server should be turned down to the lowest service rate 1.
Hence, the variation of the service rate type is negative big. This is the interpreta-
tion of the rule if hs is ZO and k is PB, then k is NB. In a similar fashion, we ob-
tain the remaining rule base. 

The holding cost of customers increases in proportion to the number of custom-
ers in the system. This is the basis for determining the shape of the fuzzy member-
ship functions for hs. It should also be noted that the fuzzy membership functions 
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for hs are determined for the case where the service cost rate is proportional to the 
corresponding service rate type. When this relation is not proportional, we should 
devise fuzzy membership functions for hs working in a case-by-case fashion. 

The quantitative determination of the fuzzy sets for hs relies on the observation 
that it is always better to pay more for a higher service rate, but not to pay more for 
holding a larger number of customers when a higher cost is asked. Therefore, PB 
for hs should be equivalent to the difference of the service costs per time unit be-
tween those of the lowest and the highest service rate. Hence, PB for hs with mem-
bership grade 1.0 is fixed at rm r1. Using a scaling factor, we change a physical 
domain into its normalized counterpart; e.g., rm r1 corresponds to 6 in Figure 4.8b 
by means of a scaling factor. In general, a decision to turn the server from type k to 
l depends on the difference rk rl, not on the individual values rk  or rl.

4.4.3 A Numerical Example 

A system has arrival rate  0.05, seven available service rates k  0.04, 0.05, 
0.06, 0.07, 0.08, 0.09, 0.10, and corresponding cost rates rk  10, 20, 30, 40, 50, 60, 
70, where k  1, 2, …, 7. The holding cost rate is h  2.8. 

As there are seven types of service rate and their universe of discourse is [0, 6], 
the scaling factor for k is 1 and its normalized value is k  1. Also, r1  10 and 
r7  70 imply that the threshold value for which hs is PB with grade 1.0 is 
r7 r1  60. Therefore, the scaling factor for hs is 0.1. 

The fuzzy control procedure is briefly illustrated as follows. At each decision 
epoch, the fuzzy logic controller captures the current service type k and the holding 
cost rate hs and then fuzzifies them into suitable linguistic values. Based on the 
corresponding fuzzy rules, certain fuzzy decisions are fired. Then the defuzzifier 
changes the fuzzy decisions into a usable crisp one. Finally, the defuzzified output 
is added to the current service type to adjust the system behavior. 

For example, assume that the current service type is k  1 and the number of cus-
tomers is s  1. From Figure 4.8b, we see that the normalized value k  1  0 corre-
sponds to ZO with grade 1.0 and PS with grade 0.333. The value hs  2.8  1  2.8 
is scaled down to 2.8  0.1  0.28, which from Figure 4.3b corresponds to PS with 
grade 0.373 and PM with grade 0.015. According to the fuzzy rule base (Table 4.3) 
and Mamdani implication, the fuzzy decisions k are formulated as follows: 

If hs is PS with grade 0.373 and k is ZO with grade 1.0, then k is PS with grade 
0.373. 

If hs is PS with grade 0.373 and k is PS with grade 0.333, then k is ZO with 
grade 0.333. 

If hs is PM with grade 0.015 and k is ZO with grade 1.0, then k is PM with 
grade 0.015. 

If hs is PM with grade 0.015 and k is PS with grade 0.333, then k is PS with 
grade 0.015. 

From Figure 4.9, the peak values and heights of the fuzzy sets corresponding to the 
four decisions k are e1  2, e2  0, e3  4, e4  2, and f1  0.373, f2  0.333,
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f3  0.015, f4  0.015. By the height method of defuzzification, the crisp output k*
is given by 

k*
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Then the next service type is k + k*  1 + 1  2. In words, whenever the queue 
size reaches one from below, while the current service rate type is 1, the next ser-
vice rate type will be 2. Working similarly, we obtain the policy shown in Figure 
4.12, which is a stationary increasing policy. 

For this system, Crabill’s formulas (4.8) and the exclusion conditions described 
in Section 4.4.1 imply that the rates 2, 3, …, 6 are redundant. Thus, an optimal 
policy is one that employs the rate 1  0.04 when s < s7 and the rate 7  0.10 
when s s7, for a suitable threshold s7. By testing various threshold values using 
Equations (4.9), we have found that the optimal value for s7 is 5 and the cost rate is 
46.6. The cost obtained from simulation with the fuzzy control policy is about 50, 
which is very close to the optimal one. 

0 1 2 3 4 5 9

1

Number of customers in the system, s

S
er

vi
ce

 t
yp

e,
 k

2

3

4

5

6 7

6

8 10 11 12 13 14 

Figure 4.12. The connected increasing policy. (IEEE T Syst Man Cyb B, Vol. 29, p. 510, by 
Yannis A. Phillis and Runtong Zhang. © 1999 by IEEE. Used with permission.) 

4.5 Single Server with Switching Costs 

4.5.1 Problem Description 

We now introduce switching costs to the system of the previous section. Let Rk,l be 
a fixed nonnegative cost incurred by a change from service type k to service type l,
where l k. Again, the objective is to find an optimal control policy that minimizes 
the average cost of the system over an infinite time horizon. 

For this problem, Crabill et al. (1977) established the optimality of an increasing
hysteretic policy. This policy generalizes the increasing policy, but the distance 
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between points of optimal switching from k up to k + 1 or from k + 1 down to k is 
not necessarily equal to 1. Explicit expressions of the optimal policy have not been 
found analytically yet. 

4.5.2 Fuzzy Controller 

The existence of switching costs may lead to a delay in switching the server to 
another service rate. To include this possibility, we introduce the accumulated hold-
ing cost c within the current server state given by Equation (4.4). As previously, the 
other inputs of the fuzzy controller are the server state s and the current holding 
cost rate hs. We assume that the service rate of a busy server cannot be changed. 
Therefore, the decision epochs coincide with the transition epochs of the number of 
customers s.

Table 4.4. Rule base. 

Rules 1–16 Rules 17–32 Rules 33–48 Rules 49–64 
k hs c k k hs c k k hs c k k hs c k

ZO ZO ZO ZO ZO ZO PS ZO ZO ZO PM ZO ZO ZO PB ZO 
PS ZO ZO NS PS ZO PS NS PS ZO PM NS PS ZO PB NS 
PM ZO ZO NM PM ZO PS NM PM ZO PM NM PM ZO PB NM 
PB ZO ZO NB PB ZO PS NB PB ZO PM NB PB ZO PB NB 
ZO PS ZO ZO ZO PS PS PS ZO PS PM PS ZO PS PB PS 
PS PS ZO ZO PS PS PS ZO PS PS PM ZO PS PS PB ZO 
PM PS ZO NS PM PS PS NS PM PS PM NS PM PS PB NS 
PB PS ZO NM PB PS PS NM PB PS PM NM PB PS PB NM 
ZO PM ZO ZO ZO PM PS PS ZO PM PM PM ZO PM PB PM 
PS PM ZO ZO PS PM PS PS PS PM PM PS PS PM PB PS 
PM PM ZO ZO PM PM PS ZO PM PM PM ZO PM PM PB ZO 
PB PM ZO NS PB PM PS NS ZO ZO PM ZO PB PM PB NS 
ZO PB ZO ZO ZO PB PS PS PB PM PM NS ZO PB PB PB 
PS PB ZO ZO PS PB PS PS ZO PB PM PM PS PB PB PM 
PM PB ZO ZO PM PB PS PS PS PB PM PM PM PB PB PS 
PB PB ZO ZO PB PB PS ZO PM PB PM PS PB PB PB ZO 

In general, when the accumulated holding cost c in the current server state is 
high enough to compete with a value R of switching costs, it is optimal to change 
the service type. Combining the ideas of Sections 4.2.2 and 4.3.2, we deduce that 
when the service type is to be switched to a lower level, this decision is accom-
plished immediately. When the service type is to be switched to a higher level, we 
should observe whether the accumulated holding cost has reached a level high 
enough to compete with the switching cost. Consequently, the higher the c, the 
easier it is to make the decision to turn the server to a higher service rate. 

Following Table 4.3 and the above argument, we construct a new rule base that 
consists of 64 rules, as shown in Table 4.4. The fuzzy inputs are k, hs, and c, and 
the output is k. Their membership functions are shown in Figures 4.8b, 4.2b, 4.3b, 
and 4.9, respectively. As in Sections 4.2.2 and 4.3.2, PB for hs with membership 
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grade 1.0 is fixed at rm r1, whereas PB for c with membership grade 1.0 is fixed at 
R1,m + Rm,1.

4.5.3 A Numerical Example 

We consider the system of Section 4.4.3 where now we introduce fixed switching 
costs, Rk,k+1 Rk+1,k  12. 

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500 3000

s
k

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500 3000

s
k

(a)              (b) 

Figure 4.13. Evolution of k and s with (a) and without (b) switching costs. 
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Figure 4.14. The increasing hysteretic policy. (IEEE T Syst Man Cyb B, Vol. 29, p. 511, by 
Yannis A. Phillis and Runtong Zhang. © 1999 by IEEE. Used with permission.) 

The simulation starts from an initial state (k, s, c)  (1, 0, 0). The evolution of k
and s for either case, with and without switching costs, during the first 3000 time 
units is shown in Figure 4.13. We see that because of switching costs, the service 
type k in Figure 4.13a is less responsive to changes of the queue lengths as com-
pared with Figure 4.13b, and therefore, the average number of customers in the 
system is kept at a higher level. 
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By applying the rules of Table 4.4, we obtain the fuzzy control policy shown in 
Figure 4.14, which is an increasing hysteretic policy. The hysteretic loops are 
caused by the switching costs. There are no analytical counterparts to these results. 

4.6 Tandem Servers without Service Costs 

4.6.1 Problem Description 

The simplest queuing network is one with two workstations in tandem, as illus-
trated in Figure 4.15. Each workstation has one exponential server with its own 
infinite buffer. Customers arrive in station 1 according to a Poisson process with 
constant rate . Upon completion of service in station 1, customers join station 2, 
which is served by a server with constant rate .

Arrivals 
u

Server  Buffer 

Station 1 

Departures 

Server  Buffer 

Station 2 

Figure 4.15. Tandem workstations. 

The maximum service rate of the server in station 1 is a. The system may alter 
the mean rate u of this server to any value in [0, a]. Such decisions are made using 
information about the state (s1, s2), where si is the number of customers in station i,
i  1, 2. For stability, it is assumed that  < min(a, ).

The holding cost rate per customer in station i is hi. The objective is to minimize 
the average cost H over an infinite horizon, which is given by 

H
T

dttshtsh
T

T

0
2211 )()(

lim , 
(4.10) 

where si(t) is the number of customers in station i at time t.
It is easy to see that if the holding cost rate in station 1 is not less than that in sta-

tion 2, that is, h1 h2, then the optimal service rate is u a. Henceforth, it is as-
sumed that h1 < h2. Rosberg et al. (1982) show that because there are no service 
costs, the optimal policy for this problem is bang-bang taking values 0 or a. Spe-
cifically, an increasing switching function S exists such that u a is optimal if 
s1 > S(s2) and u  0 is optimal if s1 S(s2). However, no explicit method to deter-
mine S has been given.
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4.6.2 Fuzzy Controller 

The state of the system (s1, s2) changes upon customer arrivals and service comple-
tions. As previously, it is assumed that the service rate of a busy server cannot be 
changed and the decision epochs coincide with the transition epochs of the state. 

As h1 < h2, it is reasonable to (1) keep customers in the lower cost place (station 
1) for the longest possible time and in station 2 for the shortest possible time, if 
they have to queue somewhere. Conversely, as all customers must eventually enter 
station 2, we should (2) avoid holding them in station 1 while station 2 is starved. It 
would be desirable to have always only one customer in service in station 2, unless 
there are no customers in station 1. However, the stochastic nature of the interarri-
val and service times makes it impossible to avoid starvation of station 2 while 
keeping s2 low. 

The fuzzy rule base and the corresponding membership functions are developed 
by seeking an optimal balance between cases (1) and (2). To achieve this, we de-
velop the rule base using the following criteria: 

1. By the bang-bang principle, when h1s1 is smaller than h2s2, we turn off the 
server in station 1 to keep s2 relatively small, and thus, the customers stay 
in the high-cost station less. 

2. If s1 is relatively large, to avoid situation (2), we turn off the server in sta-
tion 1 a little later. 

3. As h1 < h2, we should avoid situations where s1 < s2.

The inputs to the fuzzy logic controller are the numbers of customers in stations 1 
and 2, s1 [0, ), s2 [0, ), and the fuzzy output is the next service rate k of the 
server in station 1. The fuzzy output k of an optimal control policy has only two 
values, 0 and a. We henceforth assign two fuzzy sets to the fuzzy output k, ZO and 
PB, which correspond to the service rates of 0 and a, and four fuzzy sets to each 
input, ZO, PS, PM, PB. The server in station 1 directly uses the defuzzified crisp 
output k (k  0, 1) as its next service rate type.  rule base with 4  4  16 rules and 
in accordance with Criteria (1)–(3) is shown in Table 4.5. Note that if s2  0, even 
when s1  0, k is set at the largest value. This is because of the absence of service 
costs. 

Table 4.5. Rule base. 

Rules 1–8 Rules 9–16 
s1 s2 k s1 s2 k

ZO ZO PB PM ZO PB 
ZO PS ZO PM PS PB 
ZO PM ZO PM PM PB 
ZO PB ZO PM PB ZO 
PS ZO PB PB ZO PB 
PS PS PB PB PS PB 
PS PM ZO PB PM PB 
PS PB ZO PB PB PB 
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Now we determine the membership functions for the various quantities involved 
in the fuzzy controller. If h2 is much greater than h1, the server in station 2 should 
be starved rarely. The difference h2 h1, in a sense, determines how often the 
server in station 2 will be starved. We adjust s2 from s1 to 1 as the difference h2 h1

ranges accordingly from 0 to + . For example, if h1 h2, the membership functions 
for s1 and s2 should be similar; if h1 h2, PB for s2 should reach 1 from above in 
the physical domain. Finally, because of the relationship between the membership 
functions for s1 and s2, the membership functions for s1 are automatically fixed if 
the membership functions for s2 have been specified. Hence, the rule if s1 is ZO and 
s2 is PS, then k is ZO in the fuzzy rule base implies that PS for s2 with membership 
grade 1.0 is equal to 1.

The membership functions for the fuzzy inputs s1 and s2 and the fuzzy output k
are shown in Figures 4.2b, 4.3b, and 4.16, respectively. 

ZO PB

0

1

0.5

1

Figure 4.16. Membership function of the output variable k.

4.6.3 A Numerical Example 

Consider a two-stage tandem queuing network with arrival rate  1/30, service 
rate in station 2  1/20, service rate in station 1 either 0 or a  1/20, and holding 
cost rates h1  0.2 and h2  0.4. 

The simulation starts from an initial state s1 s2  0, and the system perform-
ance for the first 5000 time units is shown in Figure 4.17 (see Examples A.6 and 
A.7 in the Appendix for a description of the simulation algorithm). We see that the 
number of customers in station 1 is usually kept at a higher level compared with 
that in station 2. Whenever the number of customers in station 2 is relatively high, 
the server in station 1 is always turned off. 
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Figure 4.17. Evolution of k and si.
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Figure 4.18. Switching policy of the fuzzy controller. (IEEE T Syst Man Cyb B, Vol. 29, p. 
513, by Yannis A. Phillis and Runtong Zhang. © 1999 by IEEE. Used with permission.) 

Observing the quantitative relationships among s1, s2, and k in the first 30,000 
time units, we obtain the optimal policy shown in Figure 4.18. There are two re-
gions in the (s1, s2) plane, one where s1 is relatively large and s2 relatively small and 
the server in station 1 operates at the highest rate a, and another where the server 
operates at the lowest rate 0. The solid line that separates these two regions is a 
switching curve as predicted in Rosberg et al. (1982). Given the absence of service 
costs, the point (0, 0) in the (s1, s2) plane is inside the highest rate region (k  1). 
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4.7 Tandem Servers with Service Costs 

4.7.1 Problem Description 

We now extend the system of the previous section by introducing service costs 
whenever the server in station 1 is used. 

The service rate u in station 1 is selected from a finite countable set of service 
rates k, k  1, 2, …, m where 0 1 < … < m <  and m > , with corresponding 
service cost per unit time rk, where 0 r1 < … < rm < . We assume that h1 < h2.
The system objective is to minimize the average cost over an infinite horizon. This 
model is new in the literature.

4.7.2 Fuzzy Controller 

The state of the system is described by three variables (s1, s2, k), where s1 and s2 are 
the contents of stations 1 and 2 and k is the service type in station 1. This is a com-
bination of the tandem system of the previous section and the single-server system 
without switching costs of Section 4.4, if we view the server in station 1 as a single 
server with variable service rate. 

The fuzzy inputs in the previous two systems, s1, s2, k, and h1s1 are also the in-
puts in this problem, where h1s1 is the counterpart of hs of Section 4.4. All four 
fuzzy inputs have the same definitions as well as universes of discourse and mem-
bership functions as previously. The variation k of service rate type is chosen to be 
the fuzzy output, and its universe of discourse is the standard domain [ 6, 6]. The 
server in station 1 amends its type of service rate by simply adding the defuzzified 
crisp output k (m  1), …, 1, 0, 1, …, m  1 to its current type k.

The membership functions for s1 are shown in Figure 4.2b, for s2 and h1s1 in 
Figure 4.3b, for k in Figure 4.8b, and for k in Figure 4.9. The shape of the mem-
bership functions for the fuzzy input s2 is determined following the ideas of Section 
4.6.2. The membership functions for s1 are automatically fixed according to the 
membership functions for s2, where PS for s2 with membership grade 1.0 is 1. Fi-
nally, PB for h1s1 with membership grade 1.0 is fixed at rm r1.

The controller is developed using the following criteria: 

(i) When station 1 is congested compared with station 2, the controller 
should increase the service rate at station 1. Hence, the service rate of 
station 1 is an increasing function of s1 s2.

(ii) The higher the inventory cost rate at station 1, the easier it is to make a 
decision to increase the service rate. 

A fuzzy rule base that is in line with these criteria is shown in Table 4.6. 
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Table 4.6. Rule base. 

Rules 1–64 Rules 65–128 Rules 129–192 Rules 193–256 

s1 s2 k h1s1 k s1 s2 k h1s1 k s1 s2 k h1s1 k s1 s2 k h1s1 k
ZO ZO PB ZO NB ZO ZO ZO PS ZO ZO ZO ZO PM ZO ZO ZO ZO PB ZO 
PS ZO PB ZO NB PS ZO ZO PS PS PS ZO ZO PM PS PS ZO ZO PB PS 
PM ZO PB ZO NB PM ZO ZO PS PS PM ZO ZO PM PM PM ZO ZO PB PM 
PB ZO PB ZO NB PB ZO ZO PS PS PB ZO ZO PM PM PB ZO ZO PB PB 
ZO PS PB ZO NB ZO PS ZO PS ZO ZO PS ZO PM ZO ZO PS ZO PB ZO 
PS PS PB ZO NB PS PS ZO PS ZO PS PS ZO PM ZO PS PS ZO PB ZO 
PM PS PB ZO NB PM PS ZO PS PS PM PS ZO PM PS PM PS ZO PB PS 
PB PS PB ZO NB PB PS ZO PS PS PB PS ZO PM PM PB PS ZO PB PM 
ZO PM PB ZO NB ZO PM ZO PS ZO ZO PM ZO PM ZO ZO PM ZO PB ZO 
PS PM PB ZO NB PS PM ZO PS ZO PS PM ZO PM ZO PS PM ZO PB ZO 
PM PM PB ZO NB PM PM ZO PS ZO PM PM ZO PM ZO PM PM ZO PB ZO 
PB PM PB ZO NB PB PM ZO PS PS PB PM ZO PM PS PB PM ZO PB PS 
ZO PB PB ZO NB ZO PB ZO PS ZO ZO PB ZO PM ZO ZO PB ZO PB ZO 
PS PB PB ZO NB PS PB ZO PS ZO PS PB ZO PM ZO PS PB ZO PB ZO 
PM PB PB ZO NB PM PB ZO PS ZO PM PB ZO PM ZO PM PB ZO PB ZO 
PB PB PB ZO NB PB PB ZO PS ZO PB PB ZO PM ZO PB PB ZO PB ZO 
ZO ZO PB ZO NB ZO ZO PS PS NS ZO ZO PS PM NS ZO ZO PS PB NS 
PS ZO PB ZO NB PS ZO PS PS ZO PS ZO PS PM ZO PS ZO PS PB ZO 
PM ZO PB ZO NB PM ZO PS PS ZO PM ZO PS PM PS PM ZO PS PB PS 
PB ZO PB ZO NB PB ZO PS PS ZO PB ZO PS PM PS PB ZO PS PB PM 
ZO PS PB ZO NB ZO PS PS PS NS ZO PS PS PM NS ZO PS PS PB NS 
PS PS PB ZO NB PS PS PS PS NS PS PS PS PM NS PS PS PS PB NS 
PM PS PB ZO NB PM PS PS PS ZO PM PS PS PM ZO PM PS PS PB ZO 
PB PS PB ZO NB PB PS PS PS ZO PB PS PS PM PS PB PS PS PB PS 
ZO PM PB ZO NB ZO PM PS PS NS ZO PM PS PM NS ZO PM PS PB NS 
PS PM PB ZO NB PS PM PS PS NS PS PM PS PM NS PS PM PS PB NS 
PM PM PB ZO NB PM PM PS PS NS PM PM PS PM NS PM PM PS PB NS 
PB PM PB ZO NB PB PM PS PS ZO PB PM PS PM ZO PB PM PS PB ZO 
ZO PB PB ZO NB ZO PB PS PS NS ZO PB PS PM NS ZO PB PS PB NS 
PS PB PB ZO NB PS PB PS PS NS PS PB PS PM NS PS PB PS PB NS 
PM PB PB ZO NB PM PB PS PS NS PM PB PS PM NS PM PB PS PB NS 
PB PB PB ZO NB PB PB PS PS NS PB PB PS PM NS PB PB PS PB NS 
ZO ZO PB ZO NB ZO ZO PM PS NM ZO ZO PM PM NM ZO ZO PM PB NM 
PS ZO PB ZO NB PS ZO PM PS NS PS ZO PM PM NS PS ZO PM PB NS 
PM ZO PB ZO NB PM ZO PM PS NS PM ZO PM PM ZO PM ZO PM PB ZO 
PB ZO PB ZO NB PB ZO PM PS NS PB ZO PM PM ZO PB ZO PM PB PS 
ZO PS PB ZO NB ZO PS PM PS NM ZO PS PM PM NM ZO PS PM PB NM 
PS PS PB ZO NB PS PS PM PS NM PS PS PM PM NM PS PS PM PB NM 
PM PS PB ZO NB PM PS PM PS NS PM PS PM PM NS PM PS PM PB NS 
PB PS PB ZO NB PB PS PM PS NS PB PS PM PM ZO PB PS PM PB ZO 
ZO PM PB ZO NB ZO PM PM PS NM ZO PM PM PM NM ZO PM PM PB NM 
PS PM PB ZO NB PS PM PM PS NM PS PM PM PM NM PS PM PM PB NM 
PM PM PB ZO NB PM PM PM PS NM PM PM PM PM NM PM PM PM PB NM 
PB PM PB ZO NB PB PM PM PS NS PB PM PM PM NS PB PM PM PB NS 
ZO PB PB ZO NB ZO PB PM PS NM ZO PB PM PM NM ZO PB PM PB NM 
PS PB PB ZO NB PS PB PM PS NM PS PB PM PM NM PS PB PM PB NM 
PM PB PB ZO NB PM PB PM PS NM PM PB PM PM NM PM PB PM PB NM 
PB PB PB ZO NB PB PB PM PS NM PB PB PM PM NM PB PB PM PB NM 
ZO ZO PB ZO NB ZO ZO PB PS NB ZO ZO PB PM NB ZO ZO PB PB NB 
PS ZO PB ZO NB PS ZO PB PS NM PS ZO PB PM NM PS ZO PB PB NM 
PM ZO PB ZO NB PM ZO PB PS NM PM ZO PB PM NS PM ZO PB PB NS 
PB ZO PB ZO NB PB ZO PB PS NM PB ZO PB PM NS PB ZO PB PB ZO 
ZO PS PB ZO NB ZO PS PB PS NB ZO PS PB PM NB ZO PS PB PB NB 
PS PS PB ZO NB PS PS PB PS NB PS PS PB PM NB PS PS PB PB NB 
PM PS PB ZO NB PM PS PB PS NM PM PS PB PM NM PM PS PB PB NM 
PB PS PB ZO NB PB PS PB PS NM PB PS PB PM NS PB PS PB PB NS 
ZO PM PB ZO NB ZO PM PB PS NB ZO PM PB PM NB ZO PM PB PB NB 
PS PM PB ZO NB PS PM PB PS NB PS PM PB PM NB PS PM PB PB NB 
PM PM PB ZO NB PM PM PB PS NB PM PM PB PM NB PM PM PB PB NB 
PB PM PB ZO NB PB PM PB PS NM PB PM PB PM NM PB PM PB PB NM 
ZO PB PB ZO NB ZO PB PB PS NB ZO PB PB PM NB ZO PB PB PB NB 
PS PB PB ZO NB PS PB PB PS NB PS PB PB PM NB PS PB PB PB NB 
PM PB PB ZO NB PM PB PB PS NB PM PB PB PM NB PM PB PB PB NB 
PB PB PB ZO NB PB PB PB PS NB PB PB PB PM NB PB PB PB PB NB 
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4.7.3 A Numerical Example 

We examine a two-stage tandem queuing network with parameters  1/30 and 
 1/20. The service rate in station 1 can be chosen from a set of four available 

rates k  1/50, 1/40, 1/30, and 1/20 with corresponding service costs rk  10, 20, 
30, and 40, k  1, 2, 3, 4. The holding costs per customer per unit time in stations 1 
and 2 are h1  0.2 and h2  0.4. 

The simulation is started from an initial state s1 s2  0 and k  1. The system 
performance for the first 5000 time units is shown in Figure 4.19. We see that the 
number of customers in station 1 is kept at a higher level compared with station 2. 
Also, as expected, k tends to high values as s1 becomes large or s2 becomes small. 
Comparing Figures 4.17 and 4.19, we see that when several rates are available, the 
curves of s1 and s2 are smoother and station 2 is rarely starved. 
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Figure 4.19. Evolution of k and si.
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Figure 4.20. Switching policy of the fuzzy controller. (IEEE T Syst Man Cyb B, Vol. 29, p. 
513, by Yannis A. Phillis and Runtong Zhang. © 1999 by IEEE. Used with permission.) 

Observing the quantitative relationships among s1, s2, and k in the first 30,000 
time units, we obtain the optimal policy shown in Figure 4.20. There are four re-
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gions in the (s1, s2) plane corresponding to each of the four available service rates. 
In general, when s1 is relatively large and s2 relatively small, the server in station 1 
operates at the highest rate (k  4) and when s1 is small but s2 is large, then we use 
service type k  1. 

Unlike Figure 4.18, the point (0, 0) in the (s1, s2) plane is inside the lowest rate 
region (o) because service costs were introduced. 



5  Control of the Queue Discipline 

5.1 Introduction 

In this chapter, we consider the problem of optimal routing of customers in queuing 
systems with heterogeneous servers in parallel. Five cases are studied in detail: 

Systems in which servers have a common queue with server heterogeneity in 
service rates, in service functions, and in both service rates and service functions 
Systems with two and three arrival streams and two servers with their own 
queues 

The problems in Sections 5.2 and 5.3 are known and are used as benchmarks to the 
fuzzy controllers. No analytical solutions are known for the problems in Sections 
5.4–5.6. The objective is to assign customers dynamically to idle servers based on 
the state of the system to minimize the average cost of customer delays. Each prob-
lem is solved using fuzzy logic. We use Mamdani implication (Section 2.7) to rep-
resent the meaning of “if-then” rules and height defuzzification (Section 3.6) to 
transform the fuzzy outputs into control actions. Once more, simulation is used to 
show the details and efficiency of the fuzzy controllers. 

5.2 Parallel Servers with Different Service Rates 

5.2.1 Problem Description 

The simplest routing problem is one in which a buffer of infinite size accommo-
dates a single stream of arriving customers and feeds two parallel servers. The 
corresponding system is shown in Figure 5.1. Arrivals occur according to a Poisson 
process with constant rate . The buffer is served by two exponential servers with 
mean service rates i, i  1, 2, where 1 + 2 > . With no loss of generality, it is 
assumed that 1 > 2.

The objective is to dynamically assign queuing customers to idle servers to 
minimize the mean sojourn time. The sojourn time is the sum of waiting time in 
queue and service time. By Little’s theorem, 

(mean number of customers in the system)  (mean sojourn time), 

the system objective is equivalent to minimizing the mean number of customers in 
the system. 
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Figure 5.1. A system with two parallel heterogeneous servers. 

This process is a continuous time Markov decision process. For this case, Lin 
and Kumar (1984), Walrand (1984) and Viniotis and Ephremides (1988) prove that 
it is optimal to use the faster server whenever it becomes available for service and 
activate the slower server if and only if the total number of customers in the system 
is strictly larger than a critical threshold value n. This policy is of the threshold 
type  and it is called tn policy.

Lin and Kumar (1984) give a method to calculate the value of the optimal 
threshold. Let /( 1 + 2), a  (  + 1 + 2), b / 1, and 
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For 1, the limiting result of Equation (5.1) is derived as b 1 or by adding a 
very small number to 1. A simple algorithm to determine the optimal threshold 
consists of starting with n  3 and using the above equation to determine n* such 
that J3 J4  … Jn*  and Jn* < Jn* +1.

5.2.2 Fuzzy Controller 

The state of the system can be described by (x, y1, y2), where x  0, 1, …, is the 
number of customers in the buffer, and yi  0, 1 indicates whether server i, i  1,2, 
is idle or busy. Thus, x + y1 + y2 represents the total number of customers in the 
system at this state. 

The state of the system changes at each customer arrival or service completion. 
We assume that service is nonpreemptive; that is, a busy server cannot accept a 
new customer before finishing its current service. In this case, the decision epochs 
are the times when a customer is at the head of the queue and there is at least one 
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available server. This happens when an arriving customer finds an empty queue and 
idle servers or a departing customer leaves the system with customers in queue. 

As service is nonpreemptive, if there are no customers in the queue (x  0) no 
matter whether the servers are busy or idle, then no customers are allocated to any 
server in the system. Furthermore, as 1 > 2, it is reasonable to keep the faster 
server busy when there are customers in the system. Thus, if x > 0 and y1  0, then a 
customer is allocated to this server. It then remains to determine the optimal policy 
when x > 0, y1  1, and y2  0; that is, the slower server is idle and there are cus-
tomers in queue. We shall attempt to do this using fuzzy logic. 

The decision to allocate a customer to server 2 depends on the size of the queue 
and on the arrival rate. We examine two cases: 

(1) When  is zero, a decision to use the slower server depends solely on the to-
tal number of customers in the system. Then, the problem becomes one of finding 
the smallest buffer level x0 for which it is optimal to send one and only one cus-
tomer to server 2. Suppose that at time zero there are x + 1 customers in the system 
(x customers in the buffer plus one in server 1) and server 2 is idle. Let J(x, y) de-
note the expected total cost incurred until the system clears when y out of x + 1 
customers are sent to server 2 and the rest are sent to the faster server. Then x0 is 
the smallest buffer level for which y  1 is optimal; that is, 

J(x0, 1) J(x0, 0). 

The function J(x, y) is the sum of mean sojourn times of the y customers that are 
sent to server 2 and the x y + 1 customers sent to server 1. The first customer to 
be sent to server i will stay in the system for 1/ i time units on average, the second 
one 2/ i, and so on. Therefore, 

                   J(x, y)
2211

111 yyx

                              
21 2

)1(

2

)2)(1( yyyxyx
.

By substituting the above into inequality J(x, 1) J(x, 0), we obtain 

2

1  1 x.

Thus, 

x x0 1
2

1 , (5.2)

where (.)  is the smallest integer greater than or equal to (.). For example, for 
1/ 2  3.5 and  0, we have x0 2.5  3. Hence, when x  3 and the fast server 

is busy (y1  1), it is optimal to send the customer at the head of the queue to server 
2 at time zero and assign the remaining ones to server 1. 

(2) When  is positive, it pays more to start using server 2 earlier in anticipation 
of future arrivals. Thus, the optimal threshold x  is bounded from above by x0.
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In view of the above, the rule base and membership functions should be con-
structed so that when either x or  or both are relatively large, server 2 will be acti-
vated. The fuzzy inputs are the number of queuing customers (x  0, 1, …) and the 
mean arrival rate of customers [0, 1 + 2). The fuzzy output is the decision 
d  1, 0 to allocate a customer to the idle server 2. The universes of discourse for 
the fuzzy inputs x and  are [0, ) and [0, 6), respectively. The universe of dis-
course for the fuzzy output d is [0, 1]. We develop a rule base in Table 5.1, where 
PVB for the input x indicates “positively very big,” which is larger than PB, and 
YES and NO for the fuzzy output d correspond to 1 and 0. If YES is obtained, a 
waiting customer is allocated to the idle server 2; otherwise no allocation is made. 

Table 5.1. Rule base. 

Rules 1–5 Rules 6–10 Rules 11–15 Rules 16–20 
x d x d x d x d 

ZO ZO NO PS ZO NO PM ZO NO PB ZO NO 
ZO PS NO PS PS NO PM PS NO PB PS YES 
ZO PM NO PS PM NO PM PM YES PB PM YES 
ZO PB NO PS PB YES PM PB YES PB PB YES 
ZO PVB YES PS PVB YES PM PVB YES PB PVB YES  

The membership functions for the fuzzy inputs x,  and the fuzzy output d are 
shown in Figure 5.2a–c, respectively. 

The interpretation of Figure 5.2c is that when the defuzzified output d is less 
than 1.0, the decision is NO. Therefore, in order to use the slow server, the outputs 
of all rules must be YES. When  is zero, this happens if x is assigned only the 
largest linguistic value, PVB, as shown in Table 5.1. The situation we are consider-
ing is equivalent to the rule if  is ZO and x is PVB, then d is YES.

Now we determine the fuzzy membership functions of x. In view of Equation 
(5.2), the smallest value for which x is declared merely as PVB when  0 is 

1/ 2  1. From Figure 5.2a, this corresponds to the normalized value 9. The mem-
bership functions of linguistic values ZO, PS, PM, and PB of x have triangular 
forms and become denser as we reach the higher values of x to indicate that the 
sojourn times increase fast with x. Indeed, when x  1 and a new customer arrives, 
its sojourn time will be twice as long as that of the previous customer. In general, 
an arriving customer that finds x others ahead will experience an average delay of 
(x + 1) times the delay of the first customer in the queue. Therefore, the sum of 
sojourn times increases with the number x in the queue as 1, 3, 6, …, which is 
given by 1 + 2 + … + (x + 1). 

The membership functions of  are represented by triangles that are equally dis-
tributed along the line segment [0, 6), as shown in Figure 5.2b. As [0, 1 + 2), a 
value 1 + 2 for  is declared PB with membership grade 1.0 and is assigned the 
normalized value 6. 
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Figure 5.2. Membership functions: (a) x; (b) ; (c) d.

5.2.3 A Numerical Example 

We consider a system with  0.1, 1  0.1, and 2  0.02. We already know that 
1/ 2  1  4 corresponds to 9 in Figure 5.2a and 1 + 2  0.12 corresponds to 6 in 

Figure 5.2b. Hence, the scaling factor is 9/4  2.25 for x and 6/0.12  50 for .
Therefore,  0.1 is scaled up to 5, which is interpreted either as PM with grade 
0.67 or as PB with grade 0.67.

The fuzzy control procedure is briefly illustrated via an example. Assume that 
the current number of queuing customers is x  5. This value is scaled up to 
5  2.25  11.25, which from Figure 5.2a corresponds to PVB with grade 1. Ac-
cording to the fuzzy rule base (Table 5.1) and Mamdani implication, the fuzzy 
decisions d are formulated as follows: 

If is PM with grade 0.67 and x is PVB with grade 1, then d is YES with grade 
min (0.67, 1)  0.67. 



74 5  Control of the Queue Discipline 

If is PB with grade 0.67 and x is PVB with grade 1, then d is YES with grade 
min (0.67, 1)  0.67. 

Both fuzzy outputs d are YES. Therefore, the decision is “Yes.” 
Working similarly, we get the following: 

Fuzzy control policy: (1) If x < 3 and server 2 is idle, then it is kept idle. 
(2) If x  3, server 1 is busy, and server 2 is idle, then server 2 starts serving 
the customer at the head of the queue; in which case, the buffer level drops 
to x  1 immediately. 

Clearly, this is a threshold type policy whereby an idle server 2 is used if and only 
if the number of customers in the system is greater than or equal to 4. Using the 
notation introduced in Section 5.2.1, this is a tn threshold policy with n  3. 

The evolution of the number of customers in the system and in server 2 for the 
first 10,000 time units is shown in Figure 5.3. As the fast server is busy when there 
are customers in the system, the decision d actually corresponds to the state y2 of 
server 2. Thus, for clarity, we only record two key variables of the system, 
x + y1 + y2 and y2. We see from the figure that when server 2 is available, a queuing 
customer is allocated to it only if there are at least four customers in the system. 
This is a threshold policy with threshold value n  3. 

0

5

10

15

20

25

0 5000 10000

x+y1+y2
y2

Figure 5.3. Evolution of state variables under the fuzzy control policy. 

Table 5.2. Performance measure versus threshold, n.

n 1 2 3 4 5 6 
Jn – Equation (5.1) na na 5.57 5.75 6.01 6.32

Jn – simulation 5.70 5.56 5.56 5.70 5.95 6.13

To verify the optimality of this policy we use simulation because Equation (5.1) 
is valid only for n  3. We simulate this system starting from an initial state 
(x, y1, y2)  (0, 0, 0) for 30,000 time units. The mean number of customers in the 
system for various values of n is shown in Table 5.1. From this table, we see that 
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the optimal threshold value n is either 2 or 3, which indicates that the performance 
of the fuzzy controller is very close (if not equal) to the optimal. 

5.3 Parallel Servers with Heterogeneity in Service 
Functions

5.3.1 Problem Description 

We consider the queuing system of Figure 5.4 with two workstations, i  1, 2, and 
two classes of customers, j  1, 2. Station i comprises mi exponential servers having 
mean processing rates . Class j customers arrive at queue j according to a Poisson 
process with rate j. Customers 1 can be only served by any of the m1 servers in 
station 1. Customers 2 can be served by any of the servers at either station. The 
order of service is irrelevant. 

Customer-2 arrivals 

2

 Buffer 

Station 1: m1 servers 

Customer-1 arrivals 

1

Departures 

Departures 

Departures 

Departures 

queue 2

queue 1

Station 2: m2 servers 

Figure 5.4. A system with two parallel heterogeneous servers and two types of customers. 

The holding cost of a customer j per time unit is hj, j  1, 2. We assume that 
h1 h2. To ensure the stability of the system, we assume that 1 < m1  and 

1 + 2 < (m1 + m2) . The objective is to determine the optimal policy, which dy-
namically assigns customers to idle servers and minimizes the average cost of hold-
ing customers. This is a continuous time Markov decision problem. 

For this system, Xu et al. (1992) have proved the following: 
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Optimal policy: (1) Whenever possible, assign class i customers to idle serv-
ers of station i. (2) If queue 1 is empty and the length of queue 2 exceeds a 
critical number, then allocate a class 2 customer to an idle server in station 
1; the critical number is increasing in the number of busy servers in station 
1.

This is a policy of the threshold type . 

5.3.2 Fuzzy Controller 

The state of the system is described by (x1, x2, y1, y2, z), where xi is the number of 
customers in queue i, i  1, 2, yi is the number of class i customers receiving service 
in station i, and z is the number of class 2 customers receiving service in station 1. 
The total number of customers in the system is x1 + x2 + y1 + y2 + z. All state vari-
ables are nonnegative integers. 

As in the previous section, we assume that service is nonpreemptive. Conse-
quently, we may restrict the decision epochs to the transition epochs of the state of 
the system. The following observations eliminate certain trivial situations. 

If there are idle servers in both stations, we need only consider the assignment of 
customers to stations rather than to individual servers, because all servers have 
identically distributed processing times. 
If there are customers in queue i, then we allocate as many of them as possible to 
idle servers of station i, if any. 
Henceforth we will only focus on the optimal assignment of class 2 customers to 
station 1 when station 2 is full. In this case, there are idle servers in station 1, 
queue 1 is empty, there are customers in queue 2, and no idle servers in station 2 
exist. Symbolically, y1 + z < m1, x1  0, x2 > 0, and y2 m2.

We use the following four fuzzy inputs: 

number of class 2 customers in queue x2  0, 1, … 
arrival rates 1 and 2

number of busy servers in station 1, b y1 + z, where b [0, m1]

The fuzzy output is the decision d  1, 0 of allocating a class 2 customer to an idle 
server in station 1. 

The fuzzy input x2 is represented by six linguistic values ZO, PS, PM, PB, PVB, 
and PEB. PEB indicates “positively extremely big,” which is larger than PVB. To 
keep the size of the fuzzy rule base as small as possible, we use only three linguis-
tic values for the remaining input variables ZO, PS, and PB. 

The rule base is constructed by seeking an optimal balance between the follow-
ing cases: (1) As more customers of class 2 arrive, it pays to forward them to sta-
tion 1 to avoid the corresponding holding cost. (2) As more customers of class 2 
arrive, we must reduce the burden of station 2 because of class 1 customers. There-
fore, the larger the 2 or x2, the easier it is to decide “Yes,” and the larger the 1 or 
b, the easier it is to decide “No.” The fuzzy rule base has 162 rules, and it is shown 
in Table 5.3. 
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Table 5.3. Rule base. 

Rules 1–41 Rules 42–81 Rules 82–122 Rules 123–162 

2 x2 1 b d 2 x2 1 b d 2 x2 1 b d 2 X2 1 b d 
ZO ZO ZO ZO NO PB PS PB ZO NO ZO PB PS PS NO PB PVB ZO PB NO 
PS ZO ZO ZO NO ZO PM PB ZO NO PS PB PS PS YES ZO PEB ZO PB NO 
PB ZO ZO ZO NO PS PM PB ZO NO PB PB PS PS YES PS PEB ZO PB NO  
ZO PS ZO ZO NO PB PM PB ZO YES ZO PVB PS PS YES PB PEB ZO PB NO 
PS PS ZO ZO YES ZO PB PB ZO NO PS PVB PS PS YES ZO ZO PS PB NO 
PB PS ZO ZO YES PS PB PB ZO YES PB PVB PS PS YES PS ZO PS PB NO 
ZO PM ZO ZO YES PB PB PB ZO YES ZO PEB PS PS YES PB ZO PS PB NO 
PS PM ZO ZO YES ZO PVB PB ZO YES PS PEB PS PS YES ZO PS PS PB NO 
PB PM ZO ZO YES PS PVB PB ZO YES PB PEB PS PS YES PS PS PS PB NO 
ZO PB ZO ZO YES PB PVB PB ZO YES ZO ZO PB PS NO PB PS PS PB NO 
PS PB ZO ZO YES ZO PEB PB ZO YES PS ZO PB PS NO ZO PM PS PB NO  
PB PB ZO ZO YES PS PEB PB ZO YES PB ZO PB PS NO PS PM PS PB NO 
ZO PVB ZO ZO YES PB PEB PB ZO YES ZO PS PB PS NO PB PM PS PB NO 
PS PVB ZO ZO YES ZO ZO ZO PS NO PS PS PB PS NO ZO PB PS PB NO 
PB PVB ZO ZO YES PS ZO ZO PS NO PB PS PB PS NO PS PB PS PB NO 
ZO PEB ZO ZO YES PB ZO ZO PS NO ZO PM PB PS NO PB PB PS PB NO 
PS PEB ZO ZO YES ZO PS ZO PS NO PS PM PB PS NO ZO PVB PS PB NO 
PB PEB ZO ZO YES PS PS ZO PS NO PB PM PB PS NO PS PVB PS PB NO 
ZO ZO PS ZO NO  PB PS ZO PS YES ZO PB PB PS NO PB PVB PS PB NO  
PS ZO PS ZO NO ZO PM ZO PS NO PS PB PB PS NO ZO PEB PS PB NO 
PB ZO PS ZO NO PS PM ZO PS YES PB PB PB PS YES PS PEB PS PB NO 
ZO PS PS ZO NO PB PM ZO PS YES ZO PVB PB PS NO PB PEB PS PB NO 
PS PS PS ZO NO ZO PB ZO PS YES PS PVB PB PS YES ZO ZO PB PB NO 
PB PS PS ZO YES PS PB ZO PS YES PB PVB PB PS YES PS ZO PB PB NO 
ZO PM PS ZO NO PB PB ZO PS YES ZO PEB PB PS YES PB ZO PB PB NO 
PS PM PS ZO YES ZO PVB ZO PS YES PS PEB PB PS YES ZO PS PB PB NO 
PB PM PS ZO YES PS PVB ZO PS YES PB PEB PB PS YES PS PS PB PB NO  
ZO PB PS ZO YES PB PVB ZO PS YES ZO ZO ZO PB NO PB PS PB PB NO 
PS PB PS ZO YES ZO PEB ZO PS YES PS ZO ZO PB NO ZO PM PB PB NO 
PB PB PS ZO YES PS PEB ZO PS YES PB ZO ZO PB NO PS PM PB PB NO 
ZO PVB PS ZO YES PB PEB ZO PS YES ZO PS ZO PB NO PB PM PB PB NO 
PS PVB PS ZO YES ZO ZO PS PS NO PS PS ZO PB NO ZO PB PB PB NO 
PB PVB PS ZO YES PS ZO PS PS NO PB PS ZO PB NO PS PB PB PB NO 
ZO PEB PS ZO YES PB ZO PS PS NO ZO PM ZO PB NO PB PB PB PB NO 
PS PEB PS ZO YES ZO PS PS PS NO PS PM ZO PB NO ZO PVB PB PB NO 
PB PEB PS ZO YES PS PS PS PS NO PB PM ZO PB NO PS PVB PB PB NO 
ZO ZO PB ZO NO  PB PS PS PS NO ZO PB ZO PB NO PB PVB PB PB NO 
PS ZO PB ZO NO ZO PM PS PS NO PS PB ZO PB NO ZO PEB PB PB NO 
PB ZO PB ZO NO PS PM PS PS NO PB PB ZO PB NO PS PEB PB PB NO 
ZO PS PB ZO NO PB PM PS PS YES ZO PVB ZO PB NO PB PEB PB PB NO 
PS PS PB ZO NO      PS PVB ZO PB NO      

The universe of discourse for the fuzzy input x2 is [0, ), for 1 and 2 it is 
[0, 4), and for b it is [0, 4]. The [0, 4] domain is a convenient and frequently used 
standard domain when we have three fuzzy sets. The universe of discourse for the 
fuzzy output d is [0, 1]; its linguistic values are YES and NO, and the correspond-
ing membership functions are shown in Figure 5.2c. As previously, a decision to 
allocate a class 2 customer from the queue to an idle server in station 1 is made 
only if the defuzzified value of d is 1, which means that all rules must give YES. 

The membership functions for the fuzzy input x2 are shown in Figure 5.5a, and 
for the fuzzy inputs 1, 2, and b, they are shown in Figure 5.5b. 
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Figure 5.5. Membership functions: (a) x2 and (b) 1, 2, and b.

A value m1 for the input variable b corresponds to the fuzzy set PB with mem-
bership grade 1.0. Also, by the stability condition 1 < m1 , 1 m1  is declared 
PB with grade 1.0. 

The rationale for the fuzzy membership functions for x2 and 2 is the same as 
that for x and  in Section 5.2.2. The scaling factor of x2 is determined as follows. 
Consider the rules, which are set in bold on Table 5.3, 

if 1 is ZO and x2 is PB and 2 is ZO and b is ZO, then d is YES
if 1 is ZO and x2 is PB and 2 is ZO and b is PS, then d is YES

According to these rules, 1  0, 2  0, and b is less than m1. Assume that x1  0, 
x2 > 0, and b m1  1; i.e., we want to clear a system while there is exactly one idle 
server in station 1. If the size of queue 2 is greater than the ratio h1/h2, then a deci-
sion “No” would incur a holding cost rate h2x2 that is greater than h1. The latter can 
be interpreted as the additional cost rate if a class 1 customer arrives right after a 
decision “Yes” is made and finds all servers of station 1 busy. In this case, the 
decision “Yes” is optimal. Therefore, the value h1/h2 corresponds to PB for x2 with 
membership grade 1.0. 
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5.3.3 A Numerical Example 

For a queuing system as described in Figure 5.4, we have the following parameters: 
1 2  0.15,  0.15, m1  2, m2  2, h1  0.4, and h2  0.1. 

The simulation starts from an initial state (0, 0, 0, 0, 0), employing fuzzy control 
at each decision epoch. The system performance for the first 1000 units is shown in 
Figure 5.6. 
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Figure 5.6. Evolution of state variables under the fuzzy control policy. 

From the simulation, we observe the following: 

(a) Whenever both servers in station 1 are available, a waiting class 2 cus-
tomer will be allocated to station 1 as long as there are class 2 customers 
in queue, i.e., x2 > 0. Hence, when b  0, the threshold for x2 is n0  0. 

(b) Whenever there is only one idle server in station 1, a waiting class 2 cus-
tomer is allocated to this server only after queue 2 exceeds 2. In this 
case, b m1  1  1 and the threshold for x2 is n1  2. 

This result is identical to that obtained by the traditional value iteration method. 

5.4 Parallel Servers with Different Service Rates and 
Service Functions 

5.4.1 Problem Description 

In this section, we combine the last two cases by considering parallel-server queu-
ing systems with heterogeneity in both service rates and different service functions. 
Such systems are new in the literature. 

An illustrative figure of such a queuing system could be Figure 5.4, except that 
the service rates of servers in stations 1 and 2 should be 1 and 2.

Again, h1 h2 and the task is to determine the optimal policy, which dynami-
cally assigns queuing customers to idle servers to minimize the expected holding 
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cost. From the fuzzy logic point of view, this problem is an extension of the previ-
ous two, and therefore, we shall combine the corresponding results to construct a 
composite fuzzy controller. 

5.4.2 Fuzzy Controller 

The state of the system is represented by (x1, x2, y1, y2, z), where all the components 
have the same meaning as in Section 5.3.2. The decision epochs are the instants 
when a customer arrives in the system with idle servers or leaves the system with 
queuing customers. As previously, we only focus on the optimal assignment of 
class 2 customers to station 1 when station 2 is full. Because only one main pa-
rameter x2 governs this decision, we intuitively know that the optimal policy is of 
the threshold type. However, because of the heterogeneity of the service rates 1

and 2 in the two service stations, we consider two possibilities 1 2 and 1> 2,
which will be called Case 1 and Case 2, respectively. 

Case 1: As class 1 customers can only be served in station 1, conditions 1 2

and h1 h2 impede the decision to allocate class 2 customers to this station. How-
ever, the arguments of Section 5.3.2 on how the parameters of the two customer 
classes affect the decisions of customer assignment are valid here. Hence, the fuzzy 
rules and the fuzzy variables as well as the corresponding membership functions 
are identical in both cases. It then remains to specify the effect of condition 1 2

on the range of the fuzzy set for x2. Following the ideas of the previous sections, we 
examine a specific situation where 1  0, 2  0, x1  0, and x2 > 0. We want to 
clear the system while there is exactly one idle server in station 1, i.e., b m1  1, 
and one new class 1 customer will arrive after the decision has been made. For the 
problem of Section 5.2, we showed that when 1 > 2, the optimal threshold value 
for the queue size x + 1 is ( 1/ 2  1) + 1 1/ 2. When the inequality is reversed, 
i.e., 1 2, the threshold is adjusted to 2/ 1. For the problem of Section 5.3, we 
used a threshold value h1/h2. For the problem herein, we use the sum of the previ-
ous two thresholds. Therefore, the value (h1/h2 + 2/ 1) is PB for x2 with member-
ship grade 1.0. 

Case 2: Now the service rate 1 in station 1 is greater than 2 in station 2, which 
supports the decision of allocating class 2 customers to station 1. Yet, we should 
avoid delaying class 1 customers because they incur a higher holding cost and only 
station 1 can serve them. Hence, the optimal policy is a tradeoff between these two 
antagonistic criteria, which have been used in Sections 5.2 and 5.3. In the first case, 
a customer is optimally allocated to the slower server only when the queue size is 
higher than 1/ 2  1, and in the latter, a customer with lower holding cost is opti-
mally allocated to a server only when the number of customers with higher holding 
cost in the queue exceeds h1/h2. These results will be used here. However, to deal 
with conflicting criteria, we take the difference of the corresponding thresholds. We 
examine two possibilities: 

(a) If h1/h2 1/ 2  1, then the second criterion prevails and class 2 customers 
will be allocated to station 2 whenever possible. 

(b) If 1/ 2  1 > h1/h2, class 2 customers will be allocated to station 1 whenever 
possible. 
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In Case 2a, we should assign class i customers to idle servers in station i, i  1, 
2, whenever possible and allocate a class 2 customer to an idle server in station 1 
only if there are idle servers in station 1; that is, queue 1 is empty, and the length of 
queue 2 exceeds a certain number. Hence, the fuzzy controller is same as that in 
Section 5.3, and following similar arguments, we set fuzzy set PB for x2 with grade 
1.0 at the value (h1/h2 1/ 2 + 1). 

In Case 2b, where the rate of server 1 is very high, i.e., 1/ 2  1 > h1/h2, it may 
be economical to allocate a waiting class 2 customer to an idle server in station 1 
even when there are idle type-2 servers. The fuzzy controller should assign both 
classes of customers to station 1 whenever possible and allocate a waiting class 2 
customer to an idle server in station 2 only if the length of queue 2 exceeds a cer-
tain number. Henceforth, we will only focus on the optimal assignment of queuing 
class 2 customers to station 2 when station 1 is full, but there are idle type-2 servers 
and there are class 2 customers in queue. The fuzzy controller will be developed 
accordingly using those ideas of Sections 5.2 and 5.3, which are still valid. The 
queue size x2 and the arrival rate 2 of class 2 customers are still positive factors for 
the decision of allocating a waiting class 2 customer to an idle type-2 server. How-
ever, unlike in the previous two cases, the arrival rate 1 of class 1 customers be-
comes a positive factor for d to become “Yes” and the number of busy servers in 
station 1 or 2 does not bear any effect on the fuzzy rule base. 

We choose as fuzzy inputs the number of class 2 customers in queue x2  0, 1, 
… and the arrival rates 1 and 2. Again, the fuzzy output is the decision d  1, 0. 
The universe of discourse for the fuzzy input x2 is [0, ), for i it is [0, 4), and for 
the fuzzy output d it is [0, 1]. We assign to each of the fuzzy inputs 1 and 2 three 
fuzzy sets and to x2 four fuzzy sets. The complete rule base, which is shown in 
Table 5.4, has a total of 36 rules and is compiled using previous arguments. 

Table 5.4. Rule base for Case 2b. 

Rules 1–9 Rules 10–18 Rules 19–27 Rules 28–36 

2 x2 1 d 2 x2 1 d 2 x2 1 d 2 x2 1 d
ZO ZO ZO NO ZO PS ZO NO ZO PM ZO NO ZO PB ZO YES 
ZO ZO PS NO ZO PS PS NO ZO PM PS YES ZO PB PS YES 
ZO ZO PB NO ZO PS PB YES ZO PM PB YES ZO PB PB YES 
PS ZO ZO NO PS PS ZO NO PS PM ZO YES PS PB ZO YES 
PS ZO PS NO PS PS PS YES PS PM PS YES PS PB PS YES 
PS ZO PB NO PS PS PB YES PS PM PB YES PS PB PB YES 
PB ZO ZO NO PB PS ZO YES PB PM ZO YES PB PB ZO YES 
PB ZO PS NO PB PS PS YES PB PM PS YES PB PB PS YES 
PB ZO PB NO PB PS PB YES PB PM PB YES PB PB PB YES 

The membership functions for the fuzzy inputs 1 and 2 are shown in Figure 
5.5b, and for the fuzzy output d they are shown in Figure 5.2c. The fuzzy input x2 is 
represented by four linguistic values, whose membership functions are shown in 
Figure 5.7. The value 1/ 2  1 h1/h2 for x2 is PB with grade 1.0. 
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Figure 5.7. Membership functions of the fuzzy input x2.

The arrival rates of both classes of customers are positive factors to decide 
“Yes”; therefore, the optimal threshold here is bounded from above by 

1/ 2  1 h1/h2.

5.4.3 A Numerical Example 

A queuing system with server heterogeneity in both service rates and functions has 
the following characteristics: m1  2 and m2  2, h1  0.4 and h2  0.1, 1  0.05 and 

2  0.2, and 1  0.05 and 2  0.2. 
For this system, 1 > 2 and h1/h2 1/ 2 + 1  2.5 > 0; hence, we use the fuzzy 

controller of Case 2a. The simulation under this controller is started from an initial 
state (x1, x2, y1, y2, z)  (0, 0, 0, 0, 0), and the system performance for the first 5000 
time units is shown in Figure 5.8. 
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Figure 5.8. Evolution of state variables under the fuzzy control policy. 

From the simulation, we observe the following: 
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(1) Whenever both servers in station 1 are available, a waiting class 2 cus-
tomer will be allocated to station 1 as long as there are class 2 customers 
in queue, i.e., x2 > 0. Hence, as in Section 5.3.3, the threshold for x2

when b  0 is n0  0. 
(2) Whenever there is only one idle server in station 1, a waiting class 2 cus-

tomer is allocated to this server after the length of queue 2 exceeds 4. In 
this case, b m1  1  1 and the threshold for x2 is n1  4. This situation 
occurs only once at time 4778 in Figure 5.8. 

5.5 Queuing System with Heterogeneous Servers 

5.5.1 Problem Description 

The system shown in Figure 5.9 consists of two heterogeneous servers in parallel, 
called server i, i  1, 2, each with its own buffer of unlimited capacity. There are 
two classes of customers. Customers of class 2 arrive at queue 2 to be served by 
server 2. However, a customer of class 1, upon arrival, can be transferred to queue 
2 by paying an assignment cost C, or the customer can join queue 1 at no cost. The 
system incurs a holding cost hi per customer per time unit in queue i. Customers of 
class i arrive according to a Poisson process with rate i, and the processing times 
of server i are exponentially distributed with mean 1/ i, i  1, 2. We assume that 
these random variables are mutually independent and i < i.

Class 1 arrivals, 1

 Buffer 1 

Departures 
1

Server 1 

Departures 
2

Server 2  Buffer 2 

Class 2 arrivals, 2

Figure 5.9. Queuing system with heterogeneous servers. 

Suppose that the state of the system is observable. The task is to determine how 
to assign class 1 customers so that the average cost is minimized. This process is a 
semi-Markov decision process. Koyanagi and Kawai (1995) have shown that the 
optimal policy is of a switchover type. However, the explicit determination of the 
optimal policy remains unknown. In the next section, we present a solution to this 
problem using fuzzy logic. 
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5.5.2 Fuzzy Controller 

As in previous problems, the decision epochs coincide with the arrival times of 
class 1 customers. The state of the system at the decision epochs is described by (s1,
s2), where si  0, 1, 2, … is the number of customers in queue i. Let d  1, 0 be the 
decision of whether to transfer an arriving class 1 customer to queue 2. To develop 
the fuzzy rule base, we consider three special cases of this problem. 

Case (1). Suppose we want to clear a system in which an arriving class 1 cus-
tomer finds si customers in queue i, i  1, 2, and there are no further arrivals pend-
ing, i.e., 1 2  0. If the customer joins queue 1, the system incurs an additional 
cost h1s1/ 1 on average, whereas if the customer is transferred to queue 2, the corre-
sponding cost will be h2s2/ 2 + C). The condition under which the second decision 
is optimal is s C, where 

s h1
1

1s h2
2

2s .

Hence, the greater the difference s between the customer’s expected holding costs 
in both queues, the easier it is to decide d  1 for an arriving customer. 

Case (2). A high arrival rate of class 1 customers strengthens the decision d  1. 
Indeed, if 1 is high, we should transfer the present customer to queue 2 in anticipa-
tion of future arrivals, which would increase the length of queue 1 as well as s.

Case (3). In a dual fashion, a higher arrival rate of class 2 customers strengthens 
the decision d  0. 

Table 5.5. Rule base. 

Rules 1–16 Rules 17–32 Rules 33–48 Rules 49–64 
s 1 2 d s 1 2 d s 1 2 d s 1 2 d

ZO ZO ZO NO ZO ZO PS NO ZO ZO PM NO ZO ZO PB NO 
PS ZO ZO YES PS ZO PS NO PS ZO PM NO PS ZO PB NO 
PM ZO ZO YES PM ZO PS YES PM ZO PM NO PM ZO PB NO 
PB ZO ZO YES PB ZO PS YES PB ZO PM YES PB ZO PB NO 
ZO PS ZO YES ZO PS PS NO ZO PS PM NO ZO PS PB NO 
PS PS ZO YES PS PS PS YES PS PS PM NO PS PS PB NO 
PM PS ZO YES PM PS PS YES PM PS PM YES PM PS PB NO 
PB PS ZO YES PB PS PS YES PB PS PM YES PB PS PB YES 
ZO PM ZO YES ZO PM PS YES ZO PM PM NO ZO PM PB NO 
PS PM ZO YES PS PM PS YES PS PM PM YES PS PM PB NO 
PM PM ZO YES PM PM PS YES PM PM PM YES PM PM PB YES 
PB PM ZO YES PB PM PS YES PB PM PM YES PB PM PB YES 
ZO PB ZO YES ZO PB PS YES ZO PB PM YES ZO PB PB NO 
PS PB ZO YES PS PB PS YES PS PB PM YES PS PB PB YES 
PM PB ZO YES PM PB PS YES PM PB PM YES PM PB PB YES 
PB PB ZO YES PB PB PS YES PB PB PM YES PB PB PB YES 

Based on the above arguments, we construct a rule base as shown in Table 5.5. 
We choose the following parameters as fuzzy inputs: the difference s between the 
expected holding costs in both queues, s ( , ), and the customer arrival rates i
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of class i, i [0, i), i  1, 2. Each input is assigned four linguistic values, and the 
rule base consists of 43  64 rules. 

The membership functions for the fuzzy inputs s and i and the fuzzy output d
are shown in Figures 5.10a–c. The universe of discourse for the fuzzy output d is 
[0, 1]. As i < i, we use a scaling factor 6/ i to normalize i over the standard 
domain [0, 6]. 

The universe of discourse for the fuzzy input s is [0, ). Its scaling factor is de-
termined using the rule base in Table 5.5. Consider Rule 2, if s is PS and 1 is ZO 
and 2 is ZO, then d is YES. From Figure 5.10a, we see that PS with membership 
grade 1.0 corresponds to a normalized value 2.0 for s. Also, in Case (1) we have 
shown that if s C then d  1 is optimal. According to Figure 5.10c, the decision 
d  1 corresponds to the linguistic value YES with membership grade 1.0. Hence, a 
value C for s is scaled to 2.0 and the scaling factor for s is 2/C.
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Figure 5.10. Membership functions: (a) s; (b) i; (c) d.
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5.5.3 A Numerical Example 

We examine the system shown in Figure 5.9 with the parameters 1  0.8, 2  0.5, 
1 2  1, C  5, h1  2, and h2  1. 

The optimal policy for d can be determined from the fuzzy logic controller as 
follows: 

1. According to the given information, we determine the scaling factors for 
the fuzzy inputs s, 1, and 2. As C  5, the scaling factor for s is 
2/C  0.4, and from Figure 5.10a, PS for s with membership grade 1.0 is 2 
in the universe of discourse. The scaling factor for i is 6/ i  6. Accord-
ing to Figure 5.10b, 1  0.8 corresponds to PS with grade 0.06, PM with 
grade 0.73, and PB with grade 0.6. Finally, 2  0.5 corresponds to PS 
with grade 0.67 and PM with grade 0.67. 

2. We arbitrarily define two numbers M and N as the limits for s1 and s2, re-
spectively, where we stop the search. If these limits are too small, we run 
the risk of missing the switching points, whereas if they are too large, we 
waste computational time. The proper size of these quantities is a matter of 
experience and experimentation. 

3. We start the algorithm from an initial state s1 s2  0. 
4. According to the current s1 and s2, the fuzzy input s is first calculated. 
5. Using the current s as well as the given 1 and 2 as crisp inputs, we de-

termine the decision d via fuzzification, fuzzy inference, and defuzzifica-
tion. 

6. We plot the decision d in the two dimensional plane of s1 and s2,
7. If the current s2 M, we go to step (8); otherwise we let s2 s2 + 1 and go 

to (4). 
8. If the current s1 N, then we stop; otherwise we let s1 s1 + 1 and go to 

(4).

For example, let us assume that the current numbers of queuing customers of 
class 1 and 2 are s1  3 and s2  2. Then, 

s h1
1

1s h2
2

2s
0.1

20.1
0.1

30.2  4,

which is scaled down to 4  0.4  1.6. We see from Figure 5.10a that s corresponds 
to ZO with grade 0.47, PS with grade 0.87, and PM with grade 0.2. According to 
the fuzzy rule base of Table 5.5, the fuzzy decisions d are formulated as follows: 

If s is ZO with grade 0.46 and 1 is PS with grade 0.06 and 2 is PS with grade 
0.67, then d is 0 with grade 0.06. 

If s is PS with grade 0.86 and 1 is PS with grade 0.06 and 2 is PS with grade 
0.67, then d is 1 with grade 0.06. 

If s is PM with grade 0.2 and 1 is PS with grade 0.06 and 2 is PS with grade 
0.67, then d is 1 with grade 0.06. 

If s is ZO with grade 0.46 and 1 is PM with grade 0.73 and 2 is PS with grade 
0.67, then d is 1 with grade 0.46. 
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If s is PM with grade 0.2 and 1 is PM with grade 0.73 and 2 is PM with grade 
0.67, then d is 1 with grade 0.2. 

If s is ZO with grade 0.46 and 1 is PB with grade 0.6 and 2 is PM with grade 
0.67, then d is 1 with grade 0.46. 

If s is PS with grade 0.86 and 1 is PB with grade 0.6 and 2 is PM with grade 
0.67, then d is 1 with grade 0.6. 

If s is PM with grade 0.2 and 1 is PB with grade 0.6 and 2 is PM with grade 
0.67, then d is 1 with grade 0.2. 

Each of the two inputs s and 1 has three fuzzy sets, whereas 2 has two fuzzy 
sets; hence, 3  3  2  18 fuzzy decisions are fired. The peak value of the decision 
d  1 is 1.0 and that of d  0 is 0.0. By the height method of defuzzification, the 
crisp output d* is given by 

d*
18

1

18

1

i
i

i
i

i

f

fe
 0.86,

where i is the ith firing rule and ei and fi the peak value and membership grade of 
the corresponding fuzzy decision. As d* > 0.5, the crisp decision is d  1, which 
means that the arriving class 1 customer should be transferred to queue 2. 

Repeating the above procedure for all possible pairs (s1, s2), we obtain the fuzzy 
control policy shown in Figure 5.11. This policy has a switchover structure in the 
two-dimensional state space of s1 and s2.
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Figure 5.11. Switchover policy of the fuzzy controller. (J Intell Fuzzy Syst, Vol. 11, p. 168, 
by Runtong Zhang and Yannis A. Phillis. © 2001 by IOS Press. Used with permission.) 

The existence of assignment costs when class 1 customers are routed to queue 2 
is a negative factor for such decisions. However, we see from Figure 5.11 that an 
arriving class 1 customer can be transferred to queue 2 even when the length of 
queue 1 is smaller than the length of queue 2. In this example, this is because the 
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holding cost per customer per unit time in queue 1 is greater than that in queue 2 
and the arrival rate of class 1 customers is greater than the corresponding rate of 
class 2 customers. 

5.6 Parallel Servers with Two Uncontrolled Arrival Streams 

5.6.1 Problem Description 

We now proceed with a queuing system similar to the one studied in the previous 
section but with three classes of customers, as shown in Figure 5.12. Customers of 
class j, j  1, 2, join queue j waiting for service by server j. The length of queue j is 
observable. Class 3 customers can be served by either server and therefore, upon 
arrival, decisions must be made for scheduling. 

Class 3 arrivals, 3

Departures 
2

Server 2 

 Buffer 1 
Departures 

1

Server 1

 Buffer 2 

Class 2 arrivals, 2

Class 1 arrivals, 1

Figure 5.12. Queuing system with two uncontrolled arrival streams. 

As previously, we assume that the interarrival and service times are independent 
exponentially distributed random variables with corresponding rates as shown in 
Figure 5.12. A holding cost hj is paid per customer per unit time in queue j and in 
server j. There are no costs for assigning class 3 customers to either queue. To 
ensure stability, it is assumed that j < j, j  1, 2, and 1 + 2 + 3 < 1 + 2.

We wish to decide the optimal scheduling policy, based on the state of the sys-
tem, which minimizes the overall average holding cost. 

5.6.2 Fuzzy Controller 

The state of the system at the decision epochs can be described by the number of 
customers in queue j,  j  1, 2, sj  0, 1, 2, … 

As there are no assignment costs, a new class 3 customer that joins queue j in-
curs an expected holding cost hj(sj + 1)/ j. From the viewpoint of this individual 
customer, it is optimal to join the queue with the smallest expected holding cost. 
Furthermore, if there are no additional arrivals of customers seeking service, the 
individually optimal behavior is also socially optimal in the sense that it minimizes 
the overall holding cost of the system. When additional arrivals are anticipated, 
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however, the individually optimal behavior generally does not lead to an optimal 
policy for the whole system, because of the decrease in utility imposed on future 
customers. For example, if an arriving class 3 customer chooses queue 1, other 
customers of class 1 will have to wait longer and a higher holding cost for the 
whole system might be incurred. The arrival rates of all three classes play a role in 
bridging individual and social optimization criteria. 

Let d be the decision to transfer an arriving class 3 customer to queue d,
d {0, 1, 2}, where the value 0 for the decision d indicates indifference and 1 or 2 
are chosen randomly. The establishment of the fuzzy rule base relies on similar 
arguments as in Section 5.5.2. 

Case (1). Suppose i  0 for all i  1, 2, 3. We want to schedule a class 3 cus-
tomer in a system with sj customers already assigned to queue j, j  1, 2. From the 
previous discussion, the socially optimal decision is also individually optimal, thus 

d
0   if s  0,
1   if s < 0,
2   if s > 0,

where 

s h1
1

1 1s
h2

2

2 1s .

Hence, the smaller the difference s between the customer’s expected holding costs 
in both queues, the easier it is to decide d  1 for a class 3 customer. 

Case (2). A higher arrival rate of class 2 customers indicates that the length of 
queue 2 and the corresponding holding cost increase fast. In this case, the manager 
of the system would prefer to assign a class 3 customer to queue 1; hence, d  1. In 
a dual fashion, a higher arrival rate of class 1 customers strengthens the decision 
d  2. 

Case (3). When s is negative (positive) and 2 ( 1) is relatively high, the previ-
ous arguments strengthen the decision d  1(2). Otherwise, we have a conflict be-
tween individual and social criteria and the decision should be based on their rela-
tive strength. A higher arrival rate of class 3 customers tips the balance in favor of 
the individually optimal criterion. Thus, for example, if s is negative but close to 
zero and 1 is a little larger than 2, then we have two conflicting situations of 
equal strength. Thus, d  0. However, if 3 is high, then d  1. 

The inputs of the fuzzy controller are the difference s between the expected 
holding costs in both queues, s ( , ), and the customer arrival rates i,
i  1, 2, 3. We use three linguistic values for the arrival rates and five linguistic 
values for s. Based on the above arguments, we construct the rule base shown in 
Table 5.6, which consists of 5  33  135 rules. 

The membership functions for i, d, and s are shown in Figure 5.13. The physi-
cal domain of j, j  1, 2, is [0, j) and for 3 it is [0, 1 + 2 1 2). The uni-
verse of discourse for i is [0, 4), i  1, 2, 3. The universe of discourse for the fuzzy 
output d is [0, 1]. 
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Table 5.6. Rule base. 

Rules 1–45 Rules 46–90 Rules 91–135 
s 1 2 3 d s 1 2 3 d s 1 2 3 d

NB ZO ZO ZO 1 NB ZO ZO PS 1 NB ZO ZO PB 1
NS ZO ZO ZO 1 NS ZO ZO PS 1 NS ZO ZO PB 1
ZO ZO ZO ZO 0 ZO ZO ZO PS 0 ZO ZO ZO PB 0
PS ZO ZO ZO 2 PS ZO ZO PS 2 PS ZO ZO PB 2
PB ZO ZO ZO 2 PB ZO ZO PS 2 PB ZO ZO PB 2
NB PS ZO ZO 1 NB PS ZO PS 1 NB PS ZO PB 1
NS PS ZO ZO 0 NS PS ZO PS 1 NS PS ZO PB 1
ZO PS ZO ZO 2 ZO PS ZO PS 2 ZO PS ZO PB 2
PS PS ZO ZO 2 PS PS ZO PS 2 PS PS ZO PB 2
PB PS ZO ZO 2 PB PS ZO PS 2 PB PS ZO PB 2
NB PB ZO ZO 0 NB PB ZO PS 1 NB PB ZO PB 1
NS PB ZO ZO 2 NS PB ZO PS 2 NS PB ZO PB 2
ZO PB ZO ZO 2 ZO PB ZO PS 2 ZO PB ZO PB 2
PS PB ZO ZO 2 PS PB ZO PS 2 PS PB ZO PB 2
PB PB ZO ZO 2 PB PB ZO PS 2 PB PB ZO PB 2
NB ZO PS ZO 1 NB ZO PS PS 1 NB ZO PS PB 1
NS ZO PS ZO 1 NS ZO PS PS 1 NS ZO PS PB 1
ZO ZO PS ZO 1 ZO ZO PS PS 1 ZO ZO PS PB 1
PS ZO PS ZO 0 PS ZO PS PS 2 PS ZO PS PB 2
PB ZO PS ZO 2 PB ZO PS PS 2 PB ZO PS PB 2
NB PS PS ZO 1 NB PS PS PS 1 NB PS PS PB 1
NS PS PS ZO 1 NS PS PS PS 1 NS PS PS PB 1
ZO PS PS ZO 0 ZO PS PS PS 0 ZO PS PS PB 0
PS PS PS ZO 2 PS PS PS PS 2 PS PS PS PB 2
PB PS PS ZO 2 PB PS PS PS 2 PB PS PS PB 2
NB PB PS ZO 2 NB PB PS PS 2 NB PB PS PB 2
NS PB PS ZO 2 NS PB PS PS 2 NS PB PS PB 2
ZO PB PS ZO 2 ZO PB PS PS 2 ZO PB PS PB 2
PS PB PS ZO 0 PS PB PS PS 2 PS PB PS PB 2
PB PB PS ZO 1 PB PB PS PS 2 PB PB PS PB 2
NB ZO PB ZO 1 NB ZO PB PS 1 NB ZO PB PB 1
NS ZO PB ZO 1 NS ZO PB PS 1 NS ZO PB PB 1
ZO ZO PB ZO 1 ZO ZO PB PS 1 ZO ZO PB PB 1
PS ZO PB ZO 1 PS ZO PB PS 1 PS ZO PB PB 1
PB ZO PB ZO 0 PB ZO PB PS 2 PB ZO PB PB 2
NB PS PB ZO 1 NB PS PB PS 1 NB PS PB PB 1
NS PS PB ZO 1 NS PS PB PS 1 NS PS PB PB 1
ZO PS PB ZO 1 ZO PS PB PS 1 ZO PS PB PB 1
PS PS PB ZO 0 PS PS PB PS 2 PS PS PB PB 2
PB PS PB ZO 2 PB PS PB PS 2 PB PS PB PB 2
NB PB PB ZO 1 NB PB PB PS 1 NB PB PB PB 1
NS PB PB ZO 1 NS PB PB PS 1 NS PB PB PB 1
ZO PB PB ZO 0 ZO PB PB PS 0 ZO PB PB PB 0
PS PB PB ZO 2 PS PB PB PS 2 PS PB PB PB 2
PB PB PB ZO 2 PB PB PB PS 2 PB PB PB PB 2

The physical domain as well as the universe of discourse for the input variable s
are both ( , ). The corresponding scaling factor is determined with the aid of the 
rule base. If a class 3 customer arrives and no additional customers of any classes 
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are expected, i.e., 1 2 3  0, then, according to Rule 4 of Table 5.6, the cus-
tomer will join queue 2 if s is PS. The problem then is to find a threshold value for 
s that is positive enough to tip the balance in favor of d  2. As s is decreasing in s2,
this threshold value should also be positive enough to keep s nonnegative even 
when s2 is increased by one; in which case, s is reduced by h2/ 2. Hence, PS for the 
input s with membership grade 1.0 is fixed at h2/ 2 with normalized value 2.0. 
Similarly, from Rule 2 of Table 5.6, we fix NS for s with grade 1.0 at h1/ 1 with 
normalized value 2.0.
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Figure 5.13. Membership functions: (a) i; (b) d; (c) s.

5.6.3 A Numerical Example 

We examine the system shown in Figure 5.12 with parameters 1  0.5, 1  0.3,
1  0.6, 1 2  1, h1  2, and h2  1. Following the same algorithm as in Section 

5.5.3, we obtain the fuzzy control policy shown in Figure 5.14, which is of a 
switchover structure in the two-dimensional state space of s1 and s2.
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We see from Figure 5.14 that an arriving class 3 customer is often scheduled to 
queue 2, although the length of queue 1 is shorter than that of queue 2. This is be-
cause the holding cost per customer per unit time in queue 1 is greater than that in 
queue 2 and the arrival rate of class 1 customers is also greater than that of class 2 
customers. 

Under this control policy, the average holding cost is 6.83 per time unit. 
No analytical solution is known for this problem. For the special case of equal 

service rates and equal holding cost rates, Weber (1978) and Winston (1977) show 
that the policy of joining the shortest queue minimizes the average cost. 
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Figure 5.14.  Switchover policy of the fuzzy controller. (IEEE T Fuzzy Syst, Vol. 9, p. 312, 
by Runtong Zhang and Yannis A. Phillis. © 2001 by IEEE. Used with permission.) 

To study the efficiency of the method, we examine three control policies: 

Fuzzy Control
Shortest Queue, where the customer is sent to the server with the shortest queue 
Round Robin, where the first customer is sent to queue 1, the next one to queue 
2, and so on 

We simulate the system for each control policy separately under varying class 3 
arrival rates. The average cost versus 3 for each policy is shown in Figure 5.15. 
We see that the fuzzy controller performs better than the round robin and the short-
est queue policies, especially when the load becomes heavy. 
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Figure 5.15. A comparison of policies under varying load conditions. (IEEE T Fuzzy Syst, 
Vol. 9, p. 312, by Runtong Zhang and Yannis A. Phillis. © 2001 by IEEE. Used with per-
mission.) 



6  Control of the Admission of Customers 

6.1 Introduction 

In this chapter, we examine queuing systems in which arriving customers may be 
accepted or rejected. The objective is to determine admission policies that maxi-
mize the net profit (reward minus cost) over an infinite horizon. Four problems are 
studied in detail: 

A single server with one class of customers 
Parallel servers with one class of customers 
Parallel servers with two classes of customers 
Serial queuing networks with two classes of customers 

Only the first problem of the above list has an analytic solution. 
To determine admission policies, one may use individual or social optimality 

criteria. Individual optimality is often easier to be handled mathematically than 
social optimality. Naturally, these two policies do not necessarily coincide as the 
first stresses optimality of the point of view of each customer, and the second views 
the system as a whole entity. One may extend the discussion to optimality in the 
context of social or economic systems where human values play a decisive role. In 
this chapter, we shall use social optimality in the framework of fuzzy logic. Once 
again, the caveats about optimality raised in Section 1.5 hold. However, as in Chap-
ters 4 and 5, whenever analytical solutions exist, they coincide with the fuzzy ones. 
This is as good an indication as we can get about the validity of the fuzzy control-
lers. 

6.2 Single Server with One Arrival Stream 

6.2.1 Problem Description 

We consider an M/M/1 queuing system with arrival control, as shown in Figure 
6.1. Customers arrive into the system according to a Poisson process with mean 
rate , and they are served by one exponential server with mean rate . The system 
receives a fixed reward w for each accepted customer and incurs a holding cost h
per customer per unit time in the system. A controller, located at the entrance of the 
system, has the options of permitting or denying admission to each arriving cus-
tomer depending on the state of the system. The controller’s task is to decide the 
admission policy that maximizes the average profit rate (reward minus holding 
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cost). Because the customer arrivals are controlled, it is not necessary to assume 
that  <  in order to guarantee stability. 

Arrivals 

 Buffer 

Departures

Server 

accepted 

rejected 

Figure 6.1. A system with one server and one class of customers. 

This process is a semi-Markov decision process. Naor (1969) has proved that the 
individually and socially optimal policies are of the threshold type. Specifically, the 
system admits a customer if and only if the number x of customers in the system is 
less than a threshold value. The individually optimal threshold xi is given by 

xi
h

w
< xi + 1, (6.1)

whereas the socially optimal threshold xs is given by 

2)1(

)1()1( sx
sx

h

w
<

2

1

)1(

)1()11)(( sx
sx

, (6.2)

where / . It turns out that xs xi, which means that a socially optimal policy 
admits fewer customers than an individually optimal policy. We shall use these 
formulas to compare our results with the analytical ones. 

To avoid the trivial situation where an arriving customer is immediately denied 
entrance even when the system is empty (xi xs  0), we assume that w > h/ .
Hence, both xs and xi are greater than zero and an arriving customer who finds the 
server idle (x  0) is always accepted. Henceforth we will only focus on the optimal 
admission of customers when the server is busy or x  1. 

6.2.2 Fuzzy Controller 

The decision epochs as always coincide with the customer arrival times in which 
the server is busy. The state of the system is described by x, x  1, 2, …, or, equiva-
lently, by s x  1, where s is the number of customers in queue, s  0, 1, …. 

The number of customers in queue has a negative effect on the decision to admit 
a customer, and together with the arrival rate  determines the fuzzy control policy. 
The output of the fuzzy controller is the decision d  1, 0 of admitting an arriving 
customer into the system. 

Table 6.1 shows a fuzzy rule base that relies on the following arguments. 
1. As s increases, the holding cost becomes greater than the reward, and there-

fore, admission should be denied. 
2. A higher arrival rate of customers implies that the server is rarely starved. As 

a result, the cost of holding customers in the system increases, and this strengthens 
the decision d  0. 
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Table 6.1. Rules whose output is YES. 

s d s d
ZO ZO YES PS ZO YES
ZO PS YES PS PS YES
ZO PM YES PM ZO YES

For brevity, Table 6.1 records only the rules whose output is YES. All other 
combinations of s and  lead to the decision NO. 

The universes of discourse for the fuzzy inputs and s are both [0, ). The uni-
verse of discourse for the fuzzy output d is [0, 1]. The corresponding membership 
functions are shown in Figure 6.2. 
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Figure 6.2. Membership functions: (a) ; (b) s; (c) d.

The membership functions of the input variable  are evenly spaced, as shown in 
Figure 6.2a. After solving a few test problems, we discovered that the membership 
functions for the number of customers in queue should be denser for small values 
of s, as shown in Figure 6.2b. In addition, we have noticed that the decision of 
admitting a customer is beneficial whenever one fuzzy output is YES. In other 
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words, a decision “No” is made only when all the fuzzy outputs are NO, whereby 
we obtain the fuzzy membership functions for d as in Figure 6.2c. 

We now determine the quantitative relationships among the fuzzy output d and 
the two fuzzy inputs s and . For the special case  0, there is a minimum value 
x  0 for the number x of customers in the system beyond which we should reject all 
new customers requesting admission. This value is such that the reward from the 
admission of a new customer, (1 + x  0), is less than the corresponding expected 
holding cost. Hence, 

x  0  min x: w < h 1x

It turns out that x  0 is the individually optimal threshold xi w /h , which is 
computed from inequalities (6.1). This special situation gives rise to the rule: If  is 
ZO and s is PB, then d is NO. The value w /h, therefore, corresponds to the lin-
guistic value PB of s with membership grade 1.0. 

Regarding the fuzzy input , we consider the fuzzy rule if  is PB and s is ZO, 
then d is NO. A threshold value s  0 for  should be such that, for any arrival rate 

s  0, it is more profitable to reject incoming customers when the server is busy, 
i.e., s  0 and x  1. We have then reduced the original system to an M/M/1/1 queu-
ing system. Let J(K ) denote the mean profit rate of an M/M/1/K system in which 
all arrivals that find K customers already in the system are rejected. Then, rejecting 
all arrivals when the server is busy is optimal if the corresponding profit J(1) is 
greater than or equal to J(2), which is the mean profit rate when one more customer 
is allowed in the system. From standard queuing formulas (Kleinrock 1975), we 
obtain 

           J(K ) w (throughput) h (mean number in the system) 

                    
1

1

1 1

)1(1

11
1

1
K

KK

K

KK
hw ,

where / . From the above, the condition J(1) J(2) after a little algebra yields 

1 + 
h

hw

or, equivalently, 

s  0
h

hw )2(
. (6.3)

Hence, PB for  with membership grade 1.0 is fixed at s  0.

6.2.3 A Numerical Example 

An M/M/1 system with admission control has parameters  0.3,  0.3, w  50, 
and h  2. 
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From the previous discussion and Figure 6.2, the scaling factors for the fuzzy 
inputs  and s are 6/ s  0  3.64 and 6/(w /h)  0.8, respectively. Then  0.3 is 
scaled down to 0.3  3.64  1.1 which is interpreted as ZO with grade 0.63, PS with 
grade 0.70, or PM with grade 0.03. 

The fuzzy inference procedure is briefly illustrated as follows. At each decision 
epoch, the fuzzy logic controller fuzzifies the current number of queuing customers 
s into suitable linguistic values. Based on the fuzzy rules, corresponding fuzzy 
decisions are fired. A decision “No” is made only if all the fuzzy outputs are NO. 
For example, let us assume that the current number of queuing customers is s  1. 
This value is scaled down to 1  0.8  0.8, which from Figure 6.2b corresponds to 
PS with grade 0.91 or PM with grade 0.27. According to the fuzzy rule base (Table 
6.1) and Mamdani implication, the fuzzy decisions d are formulated as follows: 

If  is ZO with grade 0.63 and s is PS with grade 0.91, then d is YES with grade 
0.63.

If  is PS with grade 0.70 and s is PS with grade 0.91, then d is YES with grade 
0.70.

If  is PM with grade 0.03 and s is PS with grade 0.91, then d is YES with grade 
0.03.

If  is ZO with grade 0.63 and s is PM with grade 0.27, then d is YES with grade 
0.27.

If  is PS with grade 0.70 and s is PM with grade 0.27, then d is NO with grade 
0.27.

If  is PM with grade 0.03 and s is PM with grade 0.27, then d is NO with grade 
0.03.

From Figure 6.2c, the peak values and heights of the fuzzy decisions d are 
e1 e2 e3 e4  1, e5 e6  0, and f1  0.63, f2  0.70, f3  0.03, f4  0.27, 
f5  0.27, f6  0.03. By the height method of defuzzification, the crisp output d* is 
given by 

d*
6

1

6

1

i
i

i
i

i

f

fe
 0.845.

As d* > 0.5, the decision is “Yes.” 
The simulation in the fuzzy logic control environment is started from an initial 

state x  0, and the system performance for the first 500 time units is shown in 
Figure 6.3. 
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Figure 6.3. Evolution of x and d under the fuzzy control policy. 

Note that the number x of customers in the system is never greater than 3. When 
x is less than 3, the controller always admits an arriving customer to the system 
(d  1); otherwise a decision of rejecting an arriving customer (d  0) is made. This 
is a threshold policy with threshold xs  3, which is the same as that found by for-
mula (6.2). 

6.3 Parallel Servers with One Arrival Stream 

6.3.1 Problem Description 

Now we add parallel identical servers to the previous system and obtain an M/M/m
queuing system with controlled arrivals, as shown in Figure 6.4. Again, we wish to 
decide the optimal admission policy so that the average profit is maximized. 

Arrivals 

 Buffer Departures 

Server 1 

accepted 

rejected 

Departures 
Server m

Figure 6.4. A parallel-server queue with arrival control. 

Knudsen (1972) and Yechiali (1972) have extended Naor’s results by establish-
ing the existence of an optimal policy of the threshold type. Furthermore, it is sug-
gested in Knudsen (1972) that this result is valid for GI/M/m systems, whereas 
Yechiali (1972) uses a variable reward and a nonlinear customer holding cost. 
However, no explicit calculation of the threshold has been provided up to now. 
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6.3.2 Fuzzy Controller 

As in the previous model, the decision epochs are restricted to the arrival times of 
new customers. The state of the system is represented by the total number x of 
customers in queue and in service. To avoid the trivial situation where an arriving 
customer is immediately denied entrance even when there are idle servers, we as-
sume that w > h/ . Hence, if there are idle servers in the system, then an arriving 
customer is admitted. 

Henceforth we shall be concerned with the optimal admission of customers 
when all m servers are busy, or x m. Then, the control policy is governed by the 
number of customers in the buffer, s x m.

The development of the fuzzy controller relies on previous arguments if we view 
the system with m parallel servers as a single-server system with rate m . The 
fuzzy input s has the value PB for membership grade 1.0 at wm /h. Next we rewrite 
inequality (6.3) as 

(m)
s  0

h

hwmm )2(
. (6.4)

Consequently, PB for  with membership grade 1.0 is fixed at 
(m)
s  0 . 

6.3.3 A Numerical Example 

An M/M/m queuing system with controlled arrivals has parameters m  10,  1, 
 0.1, w  50, and h  2. 
We determine the fuzzy control policy as follows: 

1. We start from an initial state x m (s  0). 
2. Using the current number s of queuing customers and the given arrival rate 

 as crisp inputs, we determine the decision via fuzzification, fuzzy infer-
ence and defuzzification. 

3. If the decision is “No,” then we stop and record the value of the current 
state x as the threshold of the fuzzy controller. Otherwise, we add one to 
the current state x and repeat the procedure from step (2). 

Following this algorithm, we find that the threshold is x*  17. It turns out from 
this algorithm that the CPU time is constant with respect to the number of servers m
and linear with respect to the threshold x*. This is a significant improvement over 
the computational time of classical algorithms such as policy iteration where the 
CPU time increases as the mth power of 2 and the third of an upper bound to the 
socially optimal threshold x–s. For the M/M/10 system of our example, the optimal 
threshold is x–s  17. Thus, 

methoditeration policy  theof timeCPU

approachcontrolfuzzy  theof timeCPU
103 217

17 ,

which is an enormous computational saving and one of the great advantages of our 
approach. Conventional policy iteration chooses the best actions by eliminating 
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nonoptimal ones, and fuzzy logic control does this by means of direct determina-
tion of the best action. The larger the system scale, the greater this advantage be-
comes. 

6.4 Parallel Servers with Two Arrival Streams 

6.4.1 Problem Description 

We now assume that the previous system serves two classes of arriving customers 
as shown in Figure 6.5. Customers of class i, i  1, 2, arrive in a Poisson manner 
with rate i. Class 1 customers upon arrival are either permitted or prohibited to 
enter the buffer, and class 2 customers enter the buffer without restriction. As pre-
viously, the system receives a fixed reward w for each accepted customer and pays 
a cost h per customer per time unit in the system. We wish to decide the optimal 
admission policy so that the average profit is maximized. 

Class 1 arrivals, 1
 Buffer Departures 

Server 1 

accepted 

rejected 

Departures 
Server m

Class 2 arrivals, 2

Figure 6.5. A parallel-server queue with two classes of customers. 

Blanc et al. (1992), using dynamic programming, considered a similar system 
with more general reward functions but no holding costs and proved the existence 
of a threshold policy . 

6.4.2 Fuzzy Controller 

As previously, the decision epochs at which the arriving customers are controlled 
are restricted to the times of arrival of new class 1 customers. The state of the sys-
tem at the decision epochs is described by the number of class 1 and class 2 cus-
tomers in the system including the customers in service (if any), x  0, 1, 2, … 

As only class 2 customer arrivals are uncontrolled, we assume that 2 < m . Any 
admission policy ensuring a finite cost rate will also ensure boundedness of class 1 
customers in the system regardless of whether the conditions 1 < m  or 

1 + 2 < m hold. 
As previously, we assume that w > h/ , from which we write a crisp rule for the 

state x < m, if there are idle servers in the system, then an arriving class 1 customer 
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is admitted. We are now interested in the optimal admission of class 1 customers 
when all m servers are busy or x m.

We choose as fuzzy inputs the number of customers in the buffer s  0, 1, 2, …, 
and the arrival rates 1 [0, ) and 2 [0, m ). The fuzzy output is the decision 
d  1, 0 as to whether an arriving class 1 customer is admitted. 

The development of the fuzzy rule base relies on previous ideas. The larger the 
arrival rates or the number of customers in the queue, the more difficult it becomes 
to admit an arriving class 1 customer. The rule base is built as follows. To each 
linguistic value, we assign an integer weight, ZO 0, PS 1, PM 2, and PB 3.
For each rule, we compute the sum of the weights associated with the correspond-
ing linguistic values of its inputs. We decide d is YES, if the sum is less than or 
equal to 2; otherwise we decide d is NO. Thus, for example, the rule with antece-
dent part if s is ZO and 1 is PS and 2 is PS has a total weight 0 + 1 + 1  2, and 
therefore, its consequent part is d is YES. For brevity, Table 6.2 records only the 
rules whose output is YES. All other combinations of s, 1, and 2 lead to the deci-
sion NO. 

Table 6.2. Rules whose output is YES. 

s 1 2 d s 1 2 d
ZO ZO ZO YES ZO PM ZO YES
ZO ZO PS YES PS ZO ZO YES
ZO ZO PM YES PS ZO PS YES
ZO PS ZO YES PS PS ZO YES
ZO PS PS YES PM ZO ZO YES

ZO PS PBPM

0 1 6 

1

0.5 

2 3 4 5 

Figure 6.6. Membership functions of 2.

The membership functions for the fuzzy inputs 1, s, and 2 are shown in Fig-
ures 6.2a,b and 6.6, respectively, and for the fuzzy output d, they are shown in 
Figure 6.2c. The universe of discourse for s and 1 is [0, ), for 2 it is [0, 6), and 
for d it is [0, 1]. 

When 2  0, the problem reduces to the previous one and 1 coincides with .
Hence, PB for s with membership grade 1.0 corresponds to the value wm /h and 
PB for 1 with membership grade 1.0 is fixed at 

(m)
s  0 , which is computed from 
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Equation (6.4). Finally, as 2 < m , a value m  for 2 is declared PB with grade 
1.0.

6.4.3 A Numerical Example 

We apply the fuzzy controller to an M/M/2 queuing system serving two arrival 
streams. The system parameters are 1  0.25, 2  0.05,  0.15, w  50, and 
h  2. 

The simulation of the system is started from an initial state x  0, and the system 
performance for the first 500 time units is shown in Figure 6.7. From the system 
performance, we see that an arriving class 1 customer is admitted when x < 3, but if 
x  3, the incoming customer is rejected. Hence, we obtain the threshold x*  3. 
This policy is not the same as in the single-server example of Section 6.2.3 because 
in the present case, an arriving class 1 customer is admitted only when the buffer is 
empty, whereas in that example an arriving customer is admitted even when there 
is already a customer in the buffer. 

0

1

2

3

4

0 100 200 300 400 500

number x
decision d

Figure 6.7. Evolution of x and d under the fuzzy control policy. 

By modeling the system as a Markov chain, we compute the mean profit rate 
J(x*) under different threshold values x*. The results are J(2)  5.64, J(3)  2.38, 
J(4)  0.09, and J(5) 1.75. We see that the fuzzy controller imposes a threshold 
that is very close to the optimal one. 

6.5 Two Stations in Tandem with Their Own Arrival 
Streams 

6.5.1 Problem Description 

We now consider two queues in tandem, each of which has its own input of arriv-
ing customers that may either be accepted or rejected. This queuing network is 
depicted in Figure 6.8. 
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Station 1 

Class 2 arrivals

2

accepted

rejected

Departures 
2

Server  Buffer 

Station 2 

Class 1 arrivals 

1

accepted 

rejected 

Figure 6.8. Tandem workstations with controlled arrivals. 

Each station has an exponential server and an unlimited queuing capacity. Class 
1 customers seek admission to station 1 and then go to station 2 after being served 
in station 1. Class 2 customers request admission to station 2 directly. All custom-
ers leave the system after being served in station 2. Class i arrivals occur in a Pois-
son stream with constant rate i, i  1, 2. Successive services in each station j are 
independent and exponentially distributed, with mean 1/ j in station j, j  1, 2, 
regardless of the class of customer. An arriving customer may either be permitted 
or prohibited to enter the system. 

Suppose that the system receives a fixed reward wi for each accepted customer 
of class i and pays a holding cost hj per customer per time unit in station j. We wish 
to decide the optimal admission policy, based on the state of the system, so that the 
average profit (reward minus cost) is maximized. This is a semi-Markov decision 
process. Indeed, although the state transitions depend on the current state rather 
than on the history of the process, the times between two successive admissions are 
no longer exponential random variables because of the possibility of rejecting cer-
tain intermediate arrivals. 

For this system, Ghoneim and Stidham (1985) have proved that the optimal pol-
icy is of the monotonic type, whereby more customers in the system strengthen the 
decision to reject an incoming customer. 

6.5.2 Fuzzy Controller 

Fuzzy Inputs and Fuzzy Rule Base 

The state of the system is described by (x1, x2), where xi is the number of customers 
in station i (queue plus service), i  1, 2. To avoid the trivial situation where an 
arriving class 1 customer is rejected even when the system is empty (x1 x2  0) or 
an arriving class 2 customer is rejected even when station 2 is empty (x2  0), we 
assume that the reward at each station per customer is greater than the correspond-
ing expected holding cost. Hence, 

w1 >
2

2

1

1 hh
(6.5)
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and 

w2 >
2

2h
. (6.6)

Hereafter we shall only consider the decision to control a class 1 arrival when 
x1 + x2 > 0 or a class 2 arrival when x2 > 0. 

The system receives a reward for accepting customers and incurs a cost for hold-
ing customers. Under conditions (6.5) and (6.6), the best behavior for the system is 
to keep the server in station 2 busy, as long as customers are arriving, and never 
hold any customers in queue. However, this state cannot be maintained indefinitely 
because of the memoryless property of the exponential distribution whereby neither 
the interarrival nor the service times can be conditioned on the present observable 
state. If the system receives a high reward for accepting and incurs a low cost for 
holding class 1 customers, then the system should accept class 1 customers easily; 
otherwise it should not. The fuzzy logic controller specifies the control policies by 
taking into account such observations. 

The fuzzy inputs are the numbers si  0, 1, …, i  1, 2 of customers in the buffer 
of station i and the customer arrival rates j [0, ), j  1, 2 of class j. The decisions 
dj  1, 0 as to whether an arriving class j customer is admitted into the system are 
the fuzzy outputs. Both the number of queuing customers at each station and the 
customer arrival rates weaken the decision to accept an arriving customer regard-
less of class. 

Based on the above argument, we develop a fuzzy rule base for dj in Table 6.3, 
where YES means that an arriving customer of class j is admitted into station j. We 
choose four fuzzy sets for each of the four inputs, and the complete rule base con-
sists of 44  256 rules. In the table, we record only the rules whose output is YES 
for brevity. All other combinations of s1, s2, 1, and 2 lead to the decision NO. 

The membership functions for the fuzzy inputs si, i  1, 2, and j, j  1, 2, are 
shown in Figure 6.2a, and for the fuzzy outputs dj they are shown in Figure 6.2c. 
The universes of discourse for the fuzzy inputs si and j are all [0, ), and for the 
fuzzy output dj they are [0, 1]. 

Table 6.3. Rules whose output is YES. 

s1 s2 1 2 d1 or d2 s1 s2 1 2 d1 or d2

ZO ZO ZO ZO YES ZO PS PS ZO YES 
ZO ZO ZO PS YES ZO PM ZO ZO YES 
ZO ZO ZO PM YES PS ZO ZO ZO YES 
ZO ZO PS ZO YES PS ZO ZO PS YES 
ZO ZO PS PS YES PS ZO PS ZO YES 
ZO ZO PM ZO YES PS PS ZO ZO YES 
ZO PS ZO ZO YES PM ZO ZO ZO YES 
ZO PS ZO PS YES      

Although the rule bases for d1 and d2 are identical, their control policies are dif-
ferent because the scaling factors for the corresponding fuzzy inputs in the two rule 
bases are also different. For example, 1 might be regarded as PM when we control 
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class 1 arrivals or PB when we control class 2 arrivals. The scaling factors are de-
rived in the next two subsections. 

Membership Functions for the Control of Class 1 Arrivals 

To determine the quantitative relationships between the fuzzy output d1 and the 
fuzzy inputs si and j, we assume that x1 + x2 > 0. 

We start with s1 and consider the special case given by rule if s1 is PB and s2 is 
ZO and 1 is ZO and 2 is ZO, then d1 is NO. We need to decide whether to admit 
the last class 1 customer when there are s1  0 customers already in queue 1, one 
customer is in server 1, and all other input variables are zero, i.e., s2  0, 1  0, and 

2  0. Let E1 be the mean holding cost the last customer incurs in queue 1 and E2

the mean holding cost from the time service starts at server 1 until exit from server 
2. This customer is accepted only if his reward compensates his expected holding 
cost; that is, 

w1 E1 + E2. (6.7)

As there are already s1 + 1 customers in station 1, E1 is h1(s1 + 1)/ 1. The second 
cost component, E2, is computed as follows. Server 1 begins serving the customer 
just when server 2 begins serving the previous customer. Then the state of the sys-
tem is (x1, x2)  (1, 1). From this state, the system moves to state (0, 2) if server 1 
completes service earlier than server 2, or to (1, 0) otherwise. The system moves 
from state (0, 2) or (1, 0) to state (0, 1) and eventually to (0, 0). These transitions 
are shown in Figure 6.9. 

1

1, 1

1, 0 0, 1

0, 2

0, 0

2

1

2

2

customer exits

cost rate  h1 cost rate  h2

customer enters 
server 1 

Figure 6.9. State transitions from the beginning of service at server 1 until exit from the 
system. 

From Figure 6.9, we see that the sojourn time in state (1, 1) is a random variable 
with exponential distribution and mean 1/( 1 + 2). Hence, the mean holding cost 
from server 1 to exit becomes 

                  E2
21

1h
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1  (mean cost from (0, 2) to exit) 
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Substituting E1 h1(s1 + 1)/ 1 and the above into inequality (6.7) and solving for s1

yields 

s1 s1, d1 1
21

1

2

2

1

1

2

2

1

1
1

1

1 h

h

hh
w

h
. (6.8)

Conversely, if the number of customers in queue 1 is greater than the threshold s1, d1

defined above, then the decision is rejection. In other words, the fuzzy set PB for s1

with membership grade 1.0 in the fuzzy rule base for d1 is fixed at s1, d1 and the 
corresponding scaling factor is s1, d1  6/s1, d1.

We now consider the special case described by the rule if s1 is ZO and s2 is PB 
and 1 is ZO and 2 is ZO, then d1 is NO. We want to determine a condition for s2

under which we must reject a class 1 customer when s1  0, 1  0, 2  0, and the 
number of customers in station 2 is x2 s2 + 1. The class 1 customer will incur a 
cost h1/ 1 + h2/ 2 plus an additional queuing cost at station 2, if the customer, upon 
departure from server 1, finds server 2 busy. This may happen in a number of dif-
ferent ways. For example, the customer will depart from server 1 before any other 
customer departs from server 2 with probability 1/( 1 + 2). Hence, the customer 
will find x2 + 1 customers ahead in queue 2 and the corresponding mean queuing 
cost in station 2 will be h2(x2 + 1)/ 2. Similarly, the customer will find x2 customers 
ahead in queue 2 with probability 1 2/( 1 + 2)

2, thus incurring a queuing cost 
h2x2/ 2, and so on. Finally, if all s2 + 1 customers depart from station 2 earlier than 
the class 1 customer departs from server 1, then no additional cost will be incurred. 
This happens with probability [ 2/( 1 + 2)]

s2+1. Let 2/( 1 + 2) and E the 
mean holding cost the customer incurs from the beginning of service at server 1 
until exit from server 2. From the above observations, we write E as follows: 

E
2

2

1

1 hh

2
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21

1 1)(sh
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and upon evaluation of the geometric sums, 

E
2

22
12

21

2

1

2

2

2

1

1 1)(
1

shhhh
s

.

The condition under which the class 1 customer should be rejected is w1 < E or 

w1 <
2

22
12

21

2

1

2

2

2

1

1 1)(
1

shhhh
s

. (6.9)

The above inequality is solved for s2 by trial and error. A lower bound for s2 is 
found by strengthening (6.9); thus, 

                  w1 <
2

22
12
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Then, s2 is bounded from below as follows: 

s2 s2, d1 >
21

1

2

2

1

1
1

2

2 hh
w

h
, (6.10) 

where s2, d1 is the smallest value (not necessarily an integer) for which s2 should be 
interpreted as PB with grade 1.0. The corresponding scaling factor is s1, d1  6/s2, d1.

Regarding the fuzzy input 1, we consider the rule if s1 is ZO and s2 is ZO and 1

is PB and 2 is ZO, then d1 is NO. We have then reduced the original system to a 
serial, two-node queuing network with a single arrival stream. In this case, the rule 
dictates that an arriving class 1 customer is rejected, whereas there is only one 
customer in the system; that is, x1 + x2  1. This is equivalent to imposing an upper 
bound C  1 to the number of customers in the system. The decision to reject the 
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arriving customer is optimal if the mean profit rate of the system when C  1 is 
greater than the mean profit rate when C  2. For any fixed C, the mean profit rate 
JC of the system is given by 

     JC w1 1 P(acceptance) 
2

1 station in customers
ofnumber mean 

i
i i

h

w1 1PC(x1 + x2 < C )
C

x

xC

x
C xxPxhxh

01

1

02
212211 ),()( , (6.11) 

where PC(x1, x2) is the equilibrium probability of state (x1, x2) given that x1 + x2 C.
The state transitions for C  1 and 2 are shown in Figure 6.10. The transitions for 
C  1 are a subset of those for C  2 and are marked by heavy arrows. 

1, 0 0, 1

0, 0
2

1

1

2, 0 

1

1, 1

2

1 0, 2

2

1

1

Figure 6.10. State transitions for C  1 (in bold) and for C  2. 

By analyzing the Markov chains of Figure 6.10, we compute the corresponding 
equilibrium probabilities and from these we find J1 and J2. For C  1, the equilib-
rium probabilities P1(x1, x2) satisfy the Chapman Kolmogorov equations 

1P1(0, 0) 2P1(0, 1), 

1P1(1, 0) 2P1(0, 0), 

2P1(0, 1) 1P1(1, 0), 

and the normalization equation P1(0, 0) + P1(0, 1) + P1(1, 0)  1. From these equa-
tions, we obtain 

P1(0, 0) 

1

2

2

11

1 ,

P1(0, 1) 

1
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2
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1

1 ,
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P1(1, 0)  

1

2

2

11

2

1

1 .

From Equation (6.11), the mean profit rate is given by 

J1 w1 1P1(0, 0) h1P1(1, 0) h2P2(0, 1). 

The mean profit rate J2 for C  2 is computed similarly from Equation (6.11) and 
the corresponding equilibrium probabilities P2(0, 0), …, P2(2, 0), P2(1, 1), and 
P2(0, 2), but the solutions to the Chapman Kolmogorov equations are lengthy and 
will be omitted. After a little algebra, the condition J1 > J2 under which it is optimal 
to reject an arrival when x1 + x2  1 is equivalent to 
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(6.12) 

The range of values of 1 for which the above inequality is satisfied depends on the 
signs of the terms inside the brackets. 

If inequality (6.12) is not satisfied for any nonnegative value 1, then we should 
always admit class 1 customers when s1  0, s2  0, and 2  0. Hence, the rule if 
s1 is ZO and s2 is ZO and 1 is PB and 2 is ZO, then d1 is NO should never fire. 
This implies that the fuzzy input 1 should never be declared PB for any crisp 
value of 1. Hence, we use a scaling factor 1, d1  0 for 1.
If inequality (6.12) is satisfied for any nonnegative value 1, then we should 
always reject class 1 customers when s1  0, s2  0, and 2  0. Hence, the rule if
s1 is ZO and s2 is ZO and 1 is PB and 2 is ZO, then d1 is NO should fire even 
when 1  0. This in turn implies that the fuzzy input 1 should always be de-
clared as PB for any crisp value of 1; in which case, we use a scaling factor 
for 1 or, equivalently, we scale 1 up to 6. 
If inequality (6.12) is satisfied for any 1 greater than or equal to a positive 
number 1, d1, then the fuzzy set PB for 1 with membership grade 1.0 in the 
fuzzy rule base for d1 is fixed at 1, d1.

Finally, for the fuzzy input 2, we consider the rule if s1 is ZO and s2 is ZO and 
1 is ZO and 2 is PB, then d1 is NO. This rule reflects the situation in which the 

last arriving class 1 customer is rejected while there is only one customer (in ser-
vice) in station 2, and no additional class 1 customers are expected to arrive, or 
x1  0, x2  1, s1  0, s2  0, 1  0, and 2  0. The problem here is to find a critical 
value 2, d1 such that the decision to accept a customer is optimal for all 2 2, d1.
To solve this problem rigorously, we should employ dynamic programming. Here 
we derive a threshold using heuristic arguments and intuition. 

If the class 1 customer is rejected while there is another one in server 2, then the 
profit per unit time J reject will be given by w2 h2/ 2 divided by the expected time 
until a next arrival. This time is equal to the expected service time 1/ 2 plus the 
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expected time until the next event (departure or arrival) in the system, which is 
given by 1/( 2 + 2). Thus, the profit rate is 

J reject

222

2

2
2

11

h
w

.

If, on the other hand, the customer is admitted, the system earns a net reward 
w1 h1/ 1 h2/ 2 over the period of service 1/ 1 + 1/ 2. Thus, the profit rate be-
comes 

J accept

21
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11

hh
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.

The condition under which it pays more to accept the customer is J accept J reject,
which is equivalent to 

2 2, d1
2111212

122212122211
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. (6.13) 

Conversely, if 2 > 2, d1 then the decision is rejection. In the rule base, a value 2, d1

for 2 is declared PB with membership grade 1.0. 

Membership Functions for the Control of Class 2 Arrivals 

The rule base for the fuzzy output d2 is identical to that for d1. We now proceed as 
before to specify the numerical settings of si and j for the fuzzy output d2. We 
assume that x2 > 0. 

We start with s1 by considering the special case described by rule if s1 is PB and 
s2 is ZO and 1 is ZO and 2 is ZO, then d2 is NO. We want to determine a condi-
tion for s1 under which we must reject a class 2 customer when 1  0, 2  0, 
s2  0, and because we have assumed x2 > 0, there is one customer in server 2. If we 
accept the customer, then the state of the system at time zero will be (s1 + 1, 2), 
otherwise the system will start from state (s1 + 1, 1). Our objective is to maximize 
the expected total profit until the system clears, that is, until it reaches state (0, 0). 
Let F(i, j) be the total expected holding cost from state (i, j) to state (0, 0). If both i
and j are greater than 0, then the system moves from state (i, j) to (i  1, j + 1) with 
probability 1/( 1 + 2) or to state (i, j  1) with the complementary probability. 
When i  0 ( j  0), the system will visit state (0, j  1) [respectively (i  1, 1)] with 
probability 1. Therefore, F(i, j) can be computed recursively from 
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The condition under which the class 2 customer should be rejected is 

w2 F(s1 + 1, 2) < F(s1 + 1, 1). 

It can be verified by induction that F(s1 + 1, 2) F(s1 + 1, 1) is increasing in s1.
Therefore, if the above condition holds for some value s1, d2, then it also holds for 
every s1 s1, d2. Consequently, the fuzzy set PB for s1 with membership grade 1.0 in 
the fuzzy rule base for d2 is fixed at  

s1, d2  min{s1: F(s1 + 1, 2) F(s1 + 1, 1) > w2}. (6.14) 

We now consider the special case described by the rule if s1 is ZO and s2 is PB 
and 1 is ZO and 2 is ZO, then d2 is NO. We want to determine a condition for s2

under which we must reject a class 2 customer when x1 s1  0, 1  0, 2  0, and 
the number of customers already in station 2 is x2 s2 + 1. This decision is optimal 
if the expected holding cost for the new customer is greater than the corresponding 
reward, or w2 <  (s2 + 2)h2/ 2. Therefore, the fuzzy set PB for s2 with membership 
grade 1.0 in the fuzzy rule base for d2 is fixed at 

s2, d2 22
2

2 w
h

. (6.15) 

Regarding the fuzzy input 1, we consider the rule if s1 is ZO and s2 is ZO and 1

is PB and 2 is ZO, then d2 is NO. In this case, an arriving class 2 customer is re-
jected, and xi  1, si  0, i  1, 2, and only class 1 arrivals are allowed. As previ-
ously, we shall determine the optimal rejection threshold for 1 using heuristic 
arguments. 

If the class 2 customer is rejected while there is one in server 1, then the profit 
per unit time J reject will be given by w1 h1/( 1 + 2) h2/ 2 divided by the ex-
pected time until a next arrival. This time is equal to the expected service time 1/ 2

plus the expected time until the next event (departure or arrival) related to class 1 
customers, which is given by 1/( 2 + 2). Thus, the profit rate is 

J reject
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If, on the other hand, the customer is admitted, the system earns a net reward 
w2 h2[2/ 2  1/( 2 + 2)] over the period of service 1/ 2. Thus, the profit rate 
becomes 
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The condition under which it pays more to reject the customer is J reject J accept,
which is equivalent to 

1 > 1, d2 1
21

2121

ww

hhw
. (6.16) 

Therefore, we fix PB for 1 in the rule base for the decision d2 with membership 
grade 1.0 at 1, d2.

Lastly, the rule if s1 is ZO and s2 is ZO and 1 is ZO and 2 is PB, then d2 is NO
corresponds to the case where an arriving class 2 customer is rejected when there is 
one and only one customer (in service) in station 2 and no class 1 customers admit-
ted, or x1 s1  0, x2  1, s2  0, and 1  0. This case is identical to the one de-
scribed in Section 6.2 if we neglect class 1 customers. A condition under which it is 
optimal to reject the arriving customer is obtained as follows. We know from Sec-
tion 6.2 that the decision to reject is socially optimal if x2 is greater than or equal to 
a threshold value xs, which is the unique solution to inequalities (6.2). In our case, 
rejection should be optimal for all x2  1. Therefore, setting xs  1 and 2/ 2 in 
inequalities (6.2), we obtain 
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The inequality on the left side is true by condition (6.6). It can be verified that the 
inequality on the right side is true if and only if  > w2 2/h2  2 or 

2 > 2, d2 2
2

22
2

h

w
. (6.17) 

Therefore, we fix PB for 2 in the rule base for the decision d2 with membership 
grade 1.0 at 2, d2.If 2, d2 is negative, then 2 is declared PB with grade 1.0. 

6.5.3 A Numerical Example 

We examine the network shown in Figure 6.8 with parameters 1 2  0.5, 1  1, 
2  1.5, w1  10, w2  6, and h1 h2  1. 

We determine the optimal policy for d1 from the architecture of the fuzzy logic 
controller shown in Table 6.3. The algorithm is outlined as follows: 
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1. According to expressions (6.7)–(6.13) and the given information, we de-
termine the scaling factors for the fuzzy inputs s1, s2, 1, and 2 in the rule 
base for d1. For this example, we have s1, d1  7.07, which corresponds to 
PB for s1 with membership grade 1.0 in the rule base for d1. From Figure 
6.2a, PB for s1 with membership grade 1.0 is 6 in the universe of dis-
course. Hence, we obtain the scaling factor s1, d1  0.85 for s1 in the rule 
base for d1. Similarly, we obtain s2, d1  0.46, 1, d1  0, and 2, d1  6. 

2. We start the algorithm from an initial state s1 s2  0. 
3. Using the current s1 and s2, as well as the given 1 and 2 as crisp inputs, 

we determine the decision via fuzzification, fuzzy inference, and defuzzi-
fication. 

4. We plot the decision d1 in the two-dimensional plane of s1 and s2.
5. If d1  0, we go to step (6); otherwise we set s2 s2 + 1 and go to (3), 
6. If d1  0, the calculations stop; otherwise we set s1 s1 + 1 and go to (3). 

We describe step (3) of the above algorithm via an example. Suppose that s1  2 
and s2  2, which should be scaled down to 1.7 and 0.92, respectively. We see from 
Figure 6.2a that s1 corresponds to ZO with grade 0.43, PS with grade 0.90 and PM 
with grade 0.23, and s2 corresponds to ZO with grade 0.69 and PS with grade 0.64. 
In addition, 1  0.5 is ZO with grade 1.0 and 2  0.5 is PS with grade 0.67 and 
PM with grade 0.67. The four inputs s1, s2, 1, and 2 have 3, 2, 1, and 2 fuzzy sets, 
respectively; and hence, 3  2  1  2  12 fuzzy decisions are fired for d1. Accord-
ing to the fuzzy rule base and Mamdani implication, which is associated with the 
min-operation, the fuzzy decisions d1 are formulated as follows: 

If s1 is ZO with grade 0.43 and s2 is ZO with grade 0.69 and 1 is ZO with grade 
1.00 and 2 is PS with grade 0.67, then d1 is YES with grade 0.43. 

If s1 is ZO with grade 0.43 and s2 is ZO with grade 0.69 and 1 is ZO with grade 
1.00 and 2 is PM with grade 0.67, then d1 is YES with grade 0.43. 

If s1 is ZO with grade 0.43 and s2 is PS with grade 0.64 and 1 is ZO with grade 
1.00 and 2 is PS with grade 0.67, then d1 is YES with grade 0.43. 

If s1 is ZO with grade 0.43 and s2 is PS with grade 0.64 and 1 is ZO with grade 
1.00 and 2 is PM with grade 0.67, then d1 is NO with grade 0.43. 

If s1 is PS with grade 0.90 and s2 is ZO with grade 0.69 and 1 is ZO with grade 
1.00 and 2 is PS with grade 0.67, then d1 is YES with grade 0.67. 

If s1 is PS with grade 0.90 and s2 is ZO with grade 0.69 and 1 is ZO with grade 
1.00 and 2 is PM with grade 0.67, then d1 is NO with grade 0.67. 

If s1 is PS with grade 0.90 and s2 is PS with grade 0.64 and 1 is ZO with grade 
1.00 and 2 is PS with grade 0.67, then d1 is NO with grade 0.64. 

If s1 is PS with grade 0.90 and s2 is PS with grade 0.64 and 1 is ZO with grade 
1.00 and 2 is PM with grade 0.67, then d1 is NO with grade 0.64. 

If s1 is PM with grade 0.23 and s2 is ZO with grade 0.69 and 1 is ZO with grade 
1.00 and 2 is PS with grade 0.67, then d1 is NO with grade 0.23. 

If s1 is PM with grade 0.23 and s2 is ZO with grade 0.69 and 1 is ZO with grade 
1.00 and 2 is PM with grade 0.67, then d1 is NO with grade 0. 23. 

If s1 is PM with grade 0.23 and s2 is PS with grade 0.64 and 1 is ZO with grade 
1.00 and 2 is PS with grade 0.67, then d1 is NO with grade 0. 23. 
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If s1 is PM with grade 0.23 and s2 is PS with grade 0.64 and 1 is ZO with grade 
1.00 and 2 is PM with grade 0.67, then d1 is NO with grade 0. 23. 

From Figure 6.2a, the peak values and heights of the fuzzy decisions d are e1 e2

e3 e5  1, e4 e6 … e12  0, and f1 … f4  0.43, f5 f6  0.67, f7 f8  0.64, 
f9  … f12  0.23. By the height method of defuzzification, the crisp output d* is 
given by 

d*
12

1

12

1

i
i

i
i

i

f

fe
 0.373.

As d* < 0.5, the decision d1 is “No,” which means that the server at station 1 should 
not receive an arriving class 1 customer. 
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Figure 6.11. Decisions (a) d1 and (b) d2.

Following the previous algorithm, we obtain the fuzzy control policies for d1 and 
d2 shown in Figure 6.11. We see that although the rule bases for d1 and d2 are iden-
tical, their control policies are not. This is because the scaling factors for the corre-
sponding fuzzy inputs in the two rule bases are different. 
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7.1 Introduction 

In the previous three chapters, we studied various queuing control problems con-
cerning service rate selection, routing, or admission of customers separately. In 
practice, however, it is possible to have the option to either reject or schedule an 
arriving customer among different workstations and at the same time to select the 
service rate in each station. 

Queuing models involving multiple decisions are of interest in manufacturing 
systems producing a variety of parts on demand, multiprocessor systems, and vir-
tual-circuit-switching communication networks. Whenever control is formulated as 
a Markov or semi-Markov decision process, the techniques of dynamic program-
ming can in principle characterize the structure of an optimal policy or numerically 
solve for its parameters. However, when general distributions are considered or 
when the queuing networks are complex, there is no effective way to tackle these 
problems. 

In this chapter, we develop fuzzy controllers for the following four queuing 
models: 

Two-station tandem network with two classes of customers 
Two-station tandem network with two classes of customers and service costs 
Three-station network with two classes of customers 
Three-station network with both controlled and uncontrolled arrivals 

None of these problems has a known analytical solution. We assume that determi-
nistic stationary policies exist, which will be specified by means of the fuzzy logic. 
As in the previous chapters, the specific features of each controller are explored by 
mimicking a human operator who learns from examples. 

7.2 Two Stations in Tandem with Two Arrival Streams 

7.2.1 Problem Description 

Our first model involving multiple decisions is a queuing network with two stations 
in tandem as shown in Figure 7.1. Class i, i  1, 2, customers arrive at station 1 
according to independent Poisson processes with rates i. Class 1 customers visit 
station 1 only, and class 2 customers visit both stations 1 and 2 in series. There is 
one exponential server i in each station i, i  1, 2. The service rate of server 1 can 
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be selected to be any number u in [0, a]. The service in server 1 is nonpreemptive. 
Once a customer initiates service in station 1, its mean service rate u remains fixed 
until the customer completes service. In other words, the service rate of a busy 
server 1 and the customer being served cannot be changed. The service rate of 
server 2 is a constant . The buffers in either station have unlimited capacity, and 
the order of service is irrelevant. 

The state of the system is described by (u, s11, s12, s2), where s1i, i  1, 2, is the 
number of class i customers in station 1 including the one in service (if any) and s2

is the number of class 2 customers in station 2 including the one in service (if any). 
The system incurs an instantaneous cost h1(s11 + s12) + h2s2, where h1 > 0 and h2 > 0 
are the holding costs per customer per time unit in stations 1 and 2, respectively. To 
ensure stability in stations 1 and 2, it is assumed that 1 + 2 < a and 2 < . The 
objective is to dynamically schedule server 1 nonpreemptively between the two 
classes of customers and determine its service rate to minimize the average cost of 
the system.

u

Server 1

Station 1 

Class 2  
departures 

Server 2 Buffer 

Station 2 

 Buffer 

Class 2 arrivals, 2

Class 1 arrivals, 1

 Buffer 

Class 1 departures

Figure 7.1. Queuing network with server scheduling and service rate selection. 

This system is perhaps the simplest queuing network simultaneously dealing 
with both dynamic determination of service rate and scheduling of a server among 
different classes of customers. Harrison and Wein (1990) and Wein (1990) have 
provided a partial characterization of the optimal control policy for this problem. 
Chen et al. (1994) suggested and, later, Bäuerle et al. (1998) showed that the opti-
mal policy has a switching-curve structure in the sense that the server in station 1 
should serve a class 2 customer if s2 < f(s11, s12) and otherwise a class 1 customer 
whenever available. 

7.2.2 Fuzzy Controller 

The state of the system, (u, s11, s12, s2), changes whenever an arrival or a departure 
in either station occurs. Decisions are made at the times the service rate is con-
trolled or server 1 is scheduled. Because the service is nonpreemptive and all proc-
essing and interarrival times are exponential random variables, we restrict the deci-
sion epochs to the transition epochs of state. Hence, the decision epochs are the 
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times when a customer arrives at an empty station 1 or departs from station i, i  1, 
2. As there are no service costs involved, the service rate u does not bear any ef-
fects on the course of the fuzzy decision inference. 

In the next subsections, we consider two different cases, h1 h2 and h1 < h2.

Case A: h1  h2

When the holding cost rate in station 1 is greater than that in station 2, because 
there are no service costs, the optimal service rate for server 1 is trivially u a.
This policy guarantees that class 1 customers are served as fast as possible and that 
class 2 customers stay in the higher cost place (station 1) for the shortest possible 
time. The problem now is which class should an idle server 1 select when custom-
ers of both classes are available. 

If we remove station 2, then the optimal policy is the so-called c rule whereby 
server 1 always serves the customer class that yields the largest inventory cost 
reduction rate. In our case, because the reduction cost rate for class 1 customers is 
h1a and for class 2 customers (h1 h2)a, it seems that class 1 customers should 
have preemptive priority over those of class 2. When the number s11 of class 1 
customers in station 1 is large or the difference s11 s12 is large, this rule is the 
basic decision criterion. However, because of the existence of station 2, an extra 
condition should be attached to this priority, that is, an optimal policy ought to keep 
server 2 busy as long as there are class 2 customers in station 1. This condition is 
strengthened further by the fact that it is more beneficial for the system to keep 
class 2 customers in station 2 than in station 1 because h1 h2.

From the above observations, we obtain the following heuristic decision criteria: 

Criterion (1): The larger the number s11 of class 1 customers in station 1, the 
easier it is for server 1 to receive a class 1 customer to achieve a maximum 
cost reduction rate. 

Criterion (2): The larger the difference s11 s12 in station 1, the easier it is 
for server 1 to receive a class 1 customer, again to achieve a maximum cost 
reduction rate. 

Criterion (3): The smaller the number s2 of class 2 customers in server 2, the 
easier it is for server 1 to receive a class 2 customer in order to avoid starva-
tion of server 2 and unnecessary delays of class 2 customers in the system. 

The fuzzy controller uses the numbers of customers s11, s12, and s2, whose physi-
cal domain is [0, ), as fuzzy inputs. The fuzzy output is the decision d  1, 2, 
which indicates that server 1 should serve a class d customer. The fuzzy rule base is 
shown in Table 7.1. We choose four linguistic values for each input, and therefore, 
the rule base has a total of 43  64 rules. From the table, we see that when s11  0 
and s12 > 0, server 1 serves class 2 customers exclusively (Rules 4–16) and when 
s11 > 0 and s12  0, the server receives class 1 customers (Rules 17–20, 33–36, and 
49–52). The remaining rules are selected according to the previous heuristic crite-
ria. In summary, the decision d  2 is strengthened when s11, s11 s12, and s2 are 
small and weakened otherwise. When there are no customers in station 1, i.e., 
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s11 s12  0, the decisions d in the rule base are meaningless and server 1 simply 
idles. 

Table 7.1. Rule base for Case A. 

Rules 1–16 Rules 17–32 Rules 33–48 Rules 49–64 
s11 s12 s2 d s11 s12 s2 d s11 s12 s2 d s11 s12 s2 d 
ZO ZO ZO 2 PS ZO ZO 1 PM ZO ZO 1 PB ZO ZO 1 
ZO ZO PS 1 PS ZO PS 1 PM ZO PS 1 PB ZO PS 1 
ZO ZO PM 1 PS ZO PM 1 PM ZO PM 1 PB ZO PM 1 
ZO ZO PB 1 PS ZO PB 1 PM ZO PB 1 PB ZO PB 1 
ZO PS ZO 2 PS PS ZO 2 PM PS ZO 2 PB PS ZO 2 
ZO PS PS 2 PS PS PS 1 PM PS PS 1 PB PS PS 1 
ZO PS PM 2 PS PS PM 1 PM PS PM 1 PB PS PM 1 
ZO PS PB 2 PS PS PB 1 PM PS PB 1 PB PS PB 1 
ZO PM ZO 2 PS PM ZO 2 PM PM ZO 2 PB PM ZO 2 
ZO PM PS 2 PS PM PS 2 PM PM PS 1 PB PM PS 1 
ZO PM PM 2 PS PM PM 1 PM PM PM 1 PB PM PM 1 
ZO PM PB 2 PS PM PB 1 PM PM PB 1 PB PM PB 1 
ZO PB ZO 2 PS PB ZO 2 PM PB ZO 2 PB PB ZO 2 
ZO PB PS 2 PS PB PS 2 PM PB PS 2 PB PB PS 1 
ZO PB PM 2 PS PB PM 2 PM PB PM 1 PB PB PM 1 
ZO PB PB 2 PS PB PB 1 PM PB PB 1 PB PB PB 1 

The membership functions for s1i, i  1, 2, are shown in Figure 7.2a, and for d
they are shown in Figure 7.2c. The membership functions for s2 are shown in 
Figure 7.2a,b and will be explained shortly. 

We now determine the relationships between the fuzzy output d and the three 
fuzzy inputs. 

The scaling factors for all three fuzzy inputs are set at 0.75. It then remains to 
determine the membership functions of s2 according to the system parameters h1,
h2, a, and . As the arrival rates are equal for both classes of customers, they have 
no effect on the optimal policy and, therefore, on the choice of membership func-
tions. 

The input variables s11, s12, and s2 determine the cost rate of the system at any 
time instant. Moreover, the processing rates a and  affect the cost reduction rate. If 
h1 h2 and a , the queuing dynamics in both stations are similar, and therefore, 
the membership functions for s11 and s12 as well as for s2 should be similar, as 
shown in Figure 7.2a. However, if h1 >> h2, we should avoid keeping class 2 cus-
tomers in station 1 or starving server 2. Hence, the priority dictated by the c  rule is 
weakened. This observation leads to the membership functions for s2 in Figure 
7.2b. In a similar way, we examine the relationship between service rates  and a.
If a << , PB for s2 should reach 1 from above in the physical domain because it is 
profitable to keep s2 as small as possible, whereas if a >> , PS for s2 should reach 

 from below in the physical domain. The precise location and shape of each 
membership function for s2 is determined by carrying out a few simulations with 
various membership functions and choosing the ones that yield the smallest cost. 
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Figure 7.2. Membership functions: (a) s11, s12, and s2 (if h1 h2 and a ); (b) s2 (if 
h1 >> h2); (c) d.

Case B: h1 < h2

As in Case A, to reduce the inventory cost, whenever class 1 customers are in 
queue, server 1 should always serve customers, irrespective of the choice of class. 
This, however, does not always apply to class 2 customers because, after comple-
tion of service in server 1, they continue into station 2 where they incur higher 
inventory costs. It would be desirable to have always only one customer in service 
in station 2 unless there are no class 2 customers in the system. Such a policy en-
sures that class 2 customers stay in the high-cost place (station 2) for the shortest 
possible time. Therefore, when s11  0 and s12 > 0, the decision to serve class 2 
customers and the selection of the corresponding service rate are based on the 
number of class 2 customers already in station 2. If s2 is very low or zero, to avoid 
unnecessary starvation of server 2, server 1 should serve a class 2 customer as fast 
as possible. 
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As there are no service costs, the optimal control of the service rate of server 1 is 
of the bang-bang type. The service rate is set at the maximal value a when s11 > 0 
or when s11  0 but class 2 customers are present (s12 > 0) and we decide that the 
server becomes operative; we set the service rate at the minimal value 0 if the 
server should idle with class 2 customers present. 

When 1  0, the system becomes a tandem queuing network with a single arri-
val stream, which has been studied in Section 4.6. As 1  0 implies s11  0, the 
rules for which s11 is ZO coincide with those of Table 4.5 in Section 4.6. In this 
case, the control policy is dictated by a switching curve in the two-dimensional 
state space of s12 and s2. However, the presence of class 1 customers destroys the 
switching structure of the policy and makes the problem more involved. As s11

increases, the priority of class 1 customers is gradually strengthened as long as it 
does not cause unnecessary starving of server 2. 

Based on the above observations, we develop the fuzzy rule base of Table 7.2. 
We set d  2 when server 1 serves class 2 customers and d  1 when the server 
serves class 1 customers or idles, albeit with class 2 customers present. As in Case 
A when no customers are present in station 1, the decisions d in the rule base are 
meaningless and server 1 then simply idles. 

Table 7.2. Rule base for Case B. 

Rules 1–16 Rules 17–32 Rules 33–48 Rules 49–64 
s11 s12 s2 d s11 s12 s2 d s11 s12 s2 d s11 s12 s2 d 
ZO ZO ZO 2 PS ZO ZO 1 PM ZO ZO 1 PB ZO ZO 1 
ZO ZO PS 1 PS ZO PS 1 PM ZO PS 1 PB ZO PS 1 
ZO ZO PM 1 PS ZO PM 1 PM ZO PM 1 PB ZO PM 1 
ZO ZO PB 1 PS ZO PB 1 PM ZO PB 1 PB ZO PB 1 
ZO PS ZO 2 PS PS ZO 2 PM PS ZO 1 PB PS ZO 1 
ZO PS PS 2 PS PS PS 1 PM PS PS 1 PB PS PS 1 
ZO PS PM 1 PS PS PM 1 PM PS PM 1 PB PS PM 1 
ZO PS PB 1 PS PS PB 1 PM PS PB 1 PB PS PB 1 
ZO PM ZO 2 PS PM ZO 2 PM PM ZO 2 PB PM ZO 1 
ZO PM PS 2 PS PM PS 2 PM PM PS 1 PB PM PS 1 
ZO PM PM 2 PS PM PM 1 PM PM PM 1 PB PM PM 1 
ZO PM PB 1 PS PM PB 1 PM PM PB 1 PB PM PB 1 
ZO PB ZO 2 PS PB ZO 2 PM PB ZO 2 PB PB ZO 2 
ZO PB PS 2 PS PB PS 2 PM PB PS 2 PB PB PS 1 
ZO PB PM 2 PS PB PM 2 PM PB PM 1 PB PB PM 1 
ZO PB PB 2 PS PB PB 1 PM PB PB 1 PB PB PB 1 

An example is in order to explain the rule base. When station 2 is empty, we 
should serve class 2 customers (if any) first in station 1 to avoid unnecessary starv-
ing of server 2. This gives rise to a number of rules in Table 7.2 for which s2 is ZO 
and d  2. On the contrary, when there are a few class 2 customers in both stations, 
we would let class 2 customers in station 1 wait a little and serve class 1 customers 
(if any) first. Indeed, serving a class 1 customer first offers the highest possible rate 
of inventory cost reduction at a small risk of starving server 2. This gives rise to the 
rule: If s11 is PS and s12 is PS and s2 is PS, then d is 1 in Table 7.2. In a similar way, 
we obtain the remaining rule base. 
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Following the ideas of Case A, we set the membership functions for both s11 and
s12 as in Figure 7.2a, for s2 as in Figure 7.2b, and for d as in Figure 7.2c. 

7.2.3 A Numerical Example 

Suppose the queuing network shown in Figure 7.1 has parameters a  0.1, 
h1  2.8, and h2  1.4. This example corresponds to Case A. 

We determine the optimal policy directly from the architecture of the fuzzy con-
troller as follows: 

1. We arbitrarily define three numbers S11, S12, and S2 as the upper limits of 
s11, s12, and s2, respectively, and we set s11 s12 s2  0. 

2. Using the current s11, s12, and s2 as crisp inputs, we determine the decision 
d via fuzzification, fuzzy inference based on the rule base in Table 7.1 or 
Table 7.2, whichever applies, and defuzzification. 

3. We plot the decision d in the three-dimensional space of s11, s12, and s2.
4. If s2 < S2, we set s2 s2 + 1 and go to (2); otherwise we set s2  0 and go to 

(5).
5. If s12 < S12, we set s12 s12 + 1 and go to (2); otherwise we set s12  0 and 

go to (6). 
6. If s11 < S11, we set s11 s11 + 1 and go to (2); otherwise we stop. 

We describe step (2) of the above algorithm via an example. Suppose that 
s11 s12  4 and s2  2. Using 0.75 as a scaling factor, s11 and s12 are scaled down to 
3 and s2 is called down to 1.5. We see from Figure 7.2a that both s11 and s12 corre-
spond to PS or PM with membership grades 0.67. From Figure 7.2b, s2 is PM with 
grade 0.625. The inputs s11, s12, and s2 have 2, 2, and 1 fuzzy sets, respectively, and 
hence, 2  2  1  4 fuzzy decisions are fired for d. According to the fuzzy rule 
base of Table 7.1 and Mamdani implication, the four fuzzy decisions d correspond 
to the linguistic value 1 with membership grade 0.625. In view of Figure 7.2c, the 
defuzzified output d* is 0, which corresponds to the decision 1. 

By repeating step (2) of the algorithm for various values of the input variables, 
we obtain a policy of a switching-surface form in the three-dimensional space of 
s11, s12, and s2. When s2  1, the fuzzy controller dictates d  1 irrespective of the 
other inputs; that is, server 1 always serves class 1 customers, if any exist. The 
fuzzy control policy for s2  0 is a switching curve as shown in Figure 7.3. The 
switching surface divides the state space into two parts in which either class 1 or 
class 2 customers should be served by server 1 exclusively. When there are no 
customers present in the system, the server in station 1 simply idles. 
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Figure 7.3. Decisions d dictated by the fuzzy control policy when s2  0. 

7.3 Two Stations in Tandem with Two Arrival Streams and 
Service Costs 

7.3.1 Problem Description 

Now we extend the previous model by introducing service costs whenever server 1 
is used. The service rate u of server 1 is selected from a finite countable set of ser-
vice rates uk, k  1, 2, …, m where 0 u1 < … < um <  with corresponding service 
cost per unit time rk, where 0 r1 < … < rm < . Again we assume that 1 + 2 < um

and 2 < . The controller’s task is to dynamically schedule server 1 between the 
two classes of customers and determine the server’s rate u in order to minimize the 
average holding and service costs of the system over an infinite horizon. 

It may be conjectured that a “bang-bang” control is not optimal because of the 
existence of service costs, and therefore, the determination of the optimal policy 
will be more involved. 

7.3.2 Fuzzy Controller 

The state of the system is described by four variables (s11, s12, s2, k), where s11, s12,
and s2 have the same meaning as in Section 7.2, and k is the service type. As previ-
ously, the decision epochs coincide with the times when a customer arrives at an 
empty station 1 and/or leaves station i, i  1, 2. A significant difference is that, 
because of the service costs, the service type k does play an important role in the 
fuzzy decision inference. Again, we consider two cases h1 h2 and h1 < h2.
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Case A: h1  h2

All previous ideas on how to schedule server 1 are valid here. We give priority to 
class 1 over class 2 customers in station 1 under the condition that server 2 should 
not be starved as long as there are class 2 customers in the system. Hence, we use 
the fuzzy rule base shown in Table 7.1 and the membership functions for s11, s12, s2,
and d shown in Figure 7.2. 

Next, we develop one more rule base to determine the optimal service rate for 
server 1. In general, the choice of u depends on the current rates of inventory and 
service costs. When the inventory costs are relatively high, u should be increased, 
and when the service cost is relatively high, the rate should be decreased. We 
choose the current service rate type k  1, 2, …, m and holding cost of the system 
per time unit hs (0, ) as the fuzzy inputs of the rule base and the variation k of 
the service rate type as the fuzzy output, where k (m  1), …, 1, 0, 1, … 
(m  1). The inventory cost rate depends on the preceding decision d regarding the 
class of customer to be next served. For example, if d  1 and the current inventory 
cost rate in station 1 h1(s11 + s12) is higher than the current service cost rate rk, then 
k should be set to a large value in order to reduce the inventory costs because, 

after the completion of service, class 1 customers will leave the system. However, 
if d  2 and h2s2 is greater than h1(s11 + s12), a high service rate in server 1 could be 
less beneficial or even detrimental for the system because class 1 customers will 
stay in the high-cost place (station 2) longer. In order to incorporate this condition 
into the decision-making process, we define hs as the nonnegative part of the hold-
ing cost rate difference between the two stations. Symbolically, 

hs  max{0, h1(s11 + s12) h2s21{d  2}}, (7.1)

where 1{d  2} is an indicator function that takes the value 1 if d  2 and 0 otherwise. 
This expression says that when a class 1 customer is to be next served, only the 
holding cost rate in station 1 is taken into account; otherwise, when a class 2 cus-
tomer is to be next served, the difference between the holding cost rates in both 
stations is considered. 

The membership functions for k and k are shown in Figure 7.4, and for hs, they 
are shown in Figure 7.2b. Server 1 amends its service rate type by simply adding 
the defuzzified crisp output k* (m  1), …, 1, 0, 1, … (m  1) to the current 
type k. We see from Figure 7.2b that the membership functions for hs are denser for 
small values of hs. Hence, when hs is small, we change the service rate without 
delay, whereas as hs increases, the rate is less prone to changes. 

Next, we develop the rule base for k. We examine two extreme cases. When the 
service rate of server 1 has its highest value but hs is zero, the server should be 
switched down to the slowest service rate u1. This yields the rule if k is PB and hs is 
ZO, then k is NB. Conversely, when u u1 and hs is very high, the rate should be 
increased to the largest value, which is equivalent to the rule if k is ZO and hs is 
PB, then k is PB. All other rules fall within these two extreme cases. The complete 
rule base is shown in Table 7.3. 
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Figure 7.4. Membership functions: (a) k and (b) k.

Table 7.3. Rule base for the service rate type in Case A. 

Rules 1–8 Rules 9–16 
hs k k hs k k
ZO ZO ZO ZO PM NM 
PS ZO PS PS PM NS 
PM ZO PM PM PM ZO 
PB ZO PB PB PM PS 
ZO PS NS ZO PB NM 
PS PS ZO PS PB NM 
PM PS PS PM PB NS 
PB PS PM PB PB ZO 

Finally, we determine the scaling factors for the input variables of the rule base. 
When k  1, the corresponding fuzzy input is ZO with membership grade 1, and 
when k m (the highest rate type), the fuzzy input is declared PB with grade 1. 
Hence, the scaling factor for k is 6/(m  1). The scaling factor for the other input 
variable hs is determined directly from Rule 4 of Table 7.3: If hs is PB and k is ZO, 
then k is PB. In this case, we have an individually optimal criterion whereby it is 
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better to pay more for a higher service rate when the difference of the service costs 
exceeds the difference of the holding costs hs, which is given by Equation (7.1). 
Therefore, the peak value of the fuzzy set PB for hs is fixed at rm r1 and the corre-
sponding scaling factor is 6/(rm r1).

Case B: h1 < h2

We also treat this case by decomposing the decision-making process into two 
stages. At each stage, we combine ideas from previous cases. Specifically, for the 
fuzzy output d, we use the same inputs, rule bases, and membership functions as in 
Case B of Section 7.2, and for the fuzzy output k, the fuzzy inputs, rule bases, and 
membership functions coincide with those of Case A. 

7.3.3 A Numerical Example 

We examine a two-station tandem queuing network with two classes of customers 
and service costs. The server in the first station can select among seven service 
rates uk  0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10 with corresponding cost rates 
rk  10, 20, 30, 40, 50, 60, 70, where k  1, 2, …, 7. The rest of the parameters are 
as in the example of Section 7.2.3. This example corresponds to Case A. 

We determine the optimal policy from the architecture of the fuzzy controller us-
ing the algorithm of Section 7.2.3. In step (2) of the algorithm, in addition to the 
decision d, we determine k via fuzzification, fuzzy inference, and height defuzzifi-
cation using k and hs as inputs. 
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Figure 7.5. The connected increasing policy. (J Intell Fuzzy Syst, Vol. 8, p. 38, by Runtong 
Zhang and Yannis A. Phillis. © 2000 by IOS Press. Used with permission.) 

The fuzzy control policy for the service order d has the same switching structure 
as that of Section 7.2.3. The control policy for the service type k, which by Equa-
tion (7.1) is a function of s11 + s12 (the number of customers in station 1), is shown 
in Figure 7.5. We see from this figure that the fuzzy control policy has the same 
connected increasing structure as in the case of the single queuing station serving a 
single arrival stream, which was discussed in Section 4.4. 
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7.4 Three-Station Network with Two Arrival Streams 

7.4.1 Problem Description 

In this section, we consider the problem of simultaneous admission control and 
scheduling of two customer classes for the queuing network illustrated in Figure 
7.6. The system consists of three stations, and each of the stations i, i  0, 1, 2, has 
an exponential server i whose mean processing rate is i. Two classes of customers 
called class i, i  1, 2, need to be first served nonpreemptively by server 0 and sub-
sequently by their corresponding server i. There are always customers of both 
classes in front of server 0, and each of the servers 1 and 2 has its own infinite 
buffer called queue i.

A reward wi, i  1, 2, is earned whenever server 0 completes a service on a class 
i customer and a holding cost hi per customer in queue i per unit time is incurred. 
We assume that the processing rate of server 0 is greater than the sum of the proc-
essing rates of servers 1 and 2, that is, 0 > 1 + 2. When server 0 completes a 
service, a decision must be made as to whether the server will idle or which cus-
tomer to serve next in order to maximize the average benefit of the system. 

0
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departures 

1

Server 1Queue 1

Class 2  
departures 

2

Server 2Queue 2Infinite source of class 2 customers

server 0 is off 

Infinite source of class 1 customers

Station 2

Station 1

Station 0

Figure 7.6. A queuing network with server scheduling and admission control. 

7.4.2 Fuzzy Controller 

The state of the system is described by (s1, s2), where si  0, 1, 2, … is the number 
of class i customers in queue i, i  1, 2. The state of the system changes whenever 
any server completes a service. However, because the service in server 0 is nonpre-
emptive, the decision epochs correspond to the time instants when server 0 has just 
completed a service. 

The fuzzy controller has the state variables si, i  1, 2, as fuzzy inputs. The fuzzy 
inference is completed in two stages. First, we compute the decision dI of whether 
server 0 will next be idle (dI  OFF) or working (dI  ON). Second, if dI  ON, then 
we compute the decision dII about the class of customer to be served; thus, dII  1 or 
2.
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We use five linguistic values, ZO, PS, PM, PB, and PVB, for each fuzzy input si,
two values, OFF and ON, for the fuzzy output dI, and two values, 1 and 2, for the 
fuzzy output dII.

The rule base is intuitive. When there are many customers in queues 1 and 2, to 
avoid a high holding cost, server 0 should idle, i.e., dI  OFF. When there are few 
or no customers in queue i  1 or 2, in order to earn a reward, server 0 should admit 
a class i customer, i.e., dII i. This corresponds to the rules if si is ZO, then dII  i.
However, when both stations 1 and 2 have few or no customers at all, a customer is 
randomly chosen between the two classes. In this case, we write dII  * and the 
corresponding rules read if s1 is ZO(PS) and s2 is ZO(PS), then dII is *. A rule base 
that relies on the above arguments is shown in Table 7.4. 

Table 7.4. Rule base. 

Rules 1–10 Rules 11–20 Rules 21–25 
s1 s2 dI dII s1 s2 dI dII s1 s2 dI dII 

ZO ZO ON * PM ZO ON 2 PVB ZO ON 2 
ZO PS ON 1 PM PS ON 2 PVB PS OFF  
ZO PM ON 1 PM PM OFF  PVB PM OFF  
ZO PB ON 1 PM PB OFF  PVB PB OFF  
ZO PVB ON 1 PM PVB OFF  PVB PVB OFF  
PS ZO ON 2 PB ZO ON 2     
PS PS ON * PB PS OFF      
PS PM ON 1 PB PM OFF      
PS PB OFF  PB PB OFF      
PS PVB OFF  PB PVB OFF      

The universe of discourse for the fuzzy inputs si, i  1, 2, is [0, ) and for the 
fuzzy outputs dI and dII is [0, 1]. The membership functions for si are shown in 
Figure 7.7a, for dI in Figure 7.7b, and for dII in Figure 7.7c. 

To determine the membership functions of si, we observe that the waiting time 
of customers increases with si as the sequence si(si + 1)/2  1, 3, 6, …. This hap-
pens because one customer in queue i incurs a sojourn time proportional to one 
service time, which is the mean service time of the customer currently in service in 
server i. If there are two customers in queue i, the second customer will stay in the 
queue for two service times until the predecessor is serviced. Thus, on average, the 
system incurs a holding cost proportional to 1 + 2  3 for both customers. There-
fore, we devise the fuzzy membership functions for s1 and s2 as in Figure 7.7a. 
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Figure 7.7. Membership functions: (a) s1 and s2; (b) dI; (c) dII.

We now determine the scaling factors for s1 and s2. Let us assume momentarily 
that station 2 and the source of class 2 customers have been removed. We shall 
determine a condition for s1 so that a class 1 customer is rejected. Under an indi-
vidually optimal criterion, this decision is optimal if the reward w1 does not com-
pensate for the customer’s expected holding cost in queue 1. If the customer is 
admitted, then, on average, its service in server 0 will last 1/ 0 time units, during 
which server 1 will complete 1/ 0 customers. Upon departure from server 0, the 
customer will see s1 1/ 0 customers ahead. Therefore, the decision to reject a 
class 1 customer is optimal whenever 

w1 <
1

1

0

1
1

h
s

or, equivalently, 

s1 >
0

1

1

11

h

w
.
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In a similar fashion, we obtain a condition for rejecting class 2 customers in the 
absence of class 1 customers. In general, the fuzzy set PVB for si, i  1, 2, with 
membership grade 1.0 is fixed at 

ni
0

i

i

ii

h

w
, (7.2)

and in view of Figure 7.7a, the scaling factor for si is si  9/ni.

7.4.3 A Numerical Example 

The queuing network of Figure 7.6 has parameters 0  4, 1  1, 2  2, 
w1 w2  3, and h1 h2  1. 

We determine the optimal policy directly from the architecture of the fuzzy con-
troller as follows: 

1. We arbitrarily define two numbers S1 and S2 as the upper limits of s1

and s2, respectively, and set s1 s2  0. 
2. Using the current s1 and s2 as crisp inputs, we determine the decisions dI

and dII via fuzzification, fuzzy inference, and defuzzification. 
3. We plot the decision d in the two-dimensional space of s1 and s2.
4. If s2 < S2, we set s2 s2 + 1 and go to (2); otherwise we set s2  0 and go to 

(5).
5. If s1 < S1, we set s1 s1 + 1 and go to (2); otherwise we stop. 

From this algorithm, we obtain a policy of a switching form in the two-
dimensional space of s1 and s2, as shown in Figure 7.8. The switching curve divides 
the state space into three areas. In the areas 1 and 2, server 0 selects a customer of 
class 1 and class 2, respectively, whereas in the area 0, this server is turned off 
(dI  OFF). 
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Figure 7.8. Decisions dictated by the fuzzy control policy. (J Intell Fuzzy Syst, Vol. 8, p. 41, 
by Runtong Zhang and Yannis A. Phillis. © 2000 by IOS Press. Used with permission.) 
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We elaborate step (2) of the algorithm. From Equation (7.2), we obtain 
n1  (3  1)/1 + 1/4  3.25 and n2  (3  2)/1 + 2/4  6.5, which correspond to PVB 
for s1 and s2, respectively. Hence, the scaling factors for s1 and s2 are s1  2.77 and 

s2  1.38, respectively. Let us assume that the current numbers of queuing custom-
ers of class 1 and 2 are s1  1 and s2  3, which should be scaled up to 2.77 and 
4.14. We see from Figure 7.7a that s1 corresponds to ZO with grade 0.38 and PS 
with grade 0.92 and s2 corresponds to ZO with grade 0.09 and PS with grade 0.73. 
According to the fuzzy rule base (Table 7.4) and Mamdani implication, the fuzzy 
decisions are formulated as follows: 

If s1 is ZO with grade 0.38 and s2 is ZO with grade 0.09, then dI is ON and dII is 
* both with grade 0.09. 

If s1 is ZO with grade 0.38 and s2 is PS with grade 0.73, then dI is ON and dII is 1 
both with grade 0.38. 

If s1 is PS with grade 0.92 and s2 is ZO with grade 0.09, then dI is ON and dII is 2 
both with grade 0.09. 

If s1 is PS with grade 0.92 and s2 is PS with grade 0.73, then dI is ON and dII is * 
both with grade 0.73. 

All fuzzy outputs dI are ON; therefore, the decision dI is ON, which means that 
server 0 should receive a customer. From Figure 7.7c, the peak values and heights 
of the fuzzy decisions dII for the rules above are e1 e4  1.5, e2  1 and e3  2, and 
f1 f3  0.09, f2  0.38, and f4  0.73. By the height method of defuzzification, the 
crisp output dII* is given by 

dII* 4

1

4

1

i
i

i
i

i

f

fe
 1.388.

As dII* < 1.5, the decision dII is 1, which means that server 0 should receive a class 
1 customer. 

7.5 Three-Station Network with Controlled and 
Uncontrolled Arrivals 

7.5.1 Problem Description 

Now we add uncontrolled arrivals to stations 1 and 2 of the previous model. The 
resulting queuing system is shown in Figure 7.9. Again, we wish to decide the 
optimal admission and scheduling policies so that the average profit is maximized. 
For stability, we assume that the system has enough capacity to serve the uncondi-
tionally accepted customers in finite time; that is, i < i, i  1, 2. 
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Figure 7.9. A queuing network with server scheduling and admission control. 

7.5.2 Fuzzy Controller 

As previously, the state of the system is described by (s1, s2), where si  0, 1, 2, …, 
is the number of customers in queue i, i  1, 2. The fuzzy rule base relies on the one 
shown in Table 7.4, which is applicable when 1 2  0. However, the arrival 
rates 1 and 2 also play a role here. Specifically, a higher arrival rate of uncon-
trolled class i customers weakens the decision to accept class i customers. Indeed, if 
the manager of the system knows that the length of queue i grows fast because of 
the uncontrolled arrivals, then, to avoid holding costs, the manager should accept 
fewer class i customers from the controlled infinite source. 

A rule base that relies on the above arguments is shown in Table 7.5. The fuzzy 
controller uses four inputs, s1, s2, 1, and 2 and produces two outputs dI and dII,
whose meaning is the same as in the previous model. For brevity, this table records 
only combinations of the input variables for which server 0 decides to receive a 
customer; that is, dI  ON. All other combinations lead to dI  OFF. 

The membership functions for i, i  1, 2, are shown in Figure 7.4a, and those 
for si, dI, and dII are shown in Figure 7.7. We choose four linguistic values for each 
fuzzy input i, and by the stability condition i < i, we set PB for i with member-
ship grade 1.0 at the value i, i  1, 2. The universe of discourse for i, i  1, 2, is 
[0, 6 ). Hence, the corresponding scaling factors are i  6/ i, i  1, 2. 



134 7  Coordinating Multiple Control Policies 

Table 7.5. Rule base. 

Rules with 2  ZO Rules with 2  PS Rules with 2  PM Rules with 2  PB 
s1 s2 1 2 dII s1 s2 1 2 dII s1 s2 1 2 dII s1 s2 1 2 dII 

ZO ZO ZO ZO * ZO ZO ZO PS 1 ZO ZO ZO PM 1 ZO ZO ZO PB 1 
PS ZO ZO ZO 2 PS ZO ZO PS * PS ZO ZO PM 1 PS ZO ZO PB 1 
PM ZO ZO ZO 2 PM ZO ZO PS 2 PM ZO ZO PM * PM ZO ZO PB 1 
PB ZO ZO ZO 2 PB ZO ZO PS 2 PB ZO ZO PM 2 PB ZO ZO PB * 

PVB ZO ZO ZO 2 PVB ZO ZO PS 2 PVB ZO ZO PM 2 PVB ZO ZO PB 2 
ZO PS ZO ZO 1 ZO PS ZO PS 1 ZO PS ZO PM 1 ZO PS ZO PB 1 
PS PS ZO ZO * PS PS ZO PS 1 PS PS ZO PM 1 PS PS ZO PB 1 
PM PS ZO ZO 2 PM PS ZO PS * PM PS ZO PM 1 PM PS ZO PB 1 
ZO PM ZO ZO 1 ZO PM ZO PS 1 ZO PM ZO PM 1 ZO PM ZO PB 1 
PS PM ZO ZO 1 PS PM ZO PS 1 PS PM ZO PM 1 PS PM ZO PB 1 
ZO PB ZO ZO 1 ZO PB ZO PS 1 ZO PB ZO PM 1 ZO PB ZO PB 1 
ZO PVB ZO ZO 1 ZO ZO PS PS * ZO PVB ZO PM 1 ZO ZO PS PB 1 
ZO ZO PS ZO 2 PS ZO PS PS 2 ZO ZO PS PM 1 PS ZO PS PB 1 
PS ZO PS ZO 2 PM ZO PS PS 2 PS ZO PS PM * PM ZO PS PB * 
PM ZO PS ZO 2 PB ZO PS PS 2 PM ZO PS PM 2 PB ZO PS PB 2 
PB ZO PS ZO 2 PVB ZO PS PS 2 PB ZO PS PM 2 PVB ZO PS PB 2 

PVB ZO PS ZO 2 ZO PS PS PS 1 PVB ZO PS PM 2 ZO PS PS PB 1 
ZO PS PS ZO * PS PS PS PS * ZO PS PS PM 1 PS PS PS PB 1 
PS PS PS ZO 2 ZO PM PS PS 1 PS PS PS PM 1 ZO PM PS PB 1 
PM PS PS ZO 2 ZO PB PS PS 1 ZO PM PS PM 1 ZO PB PS PB 1 
ZO PM PS ZO 1 ZO PVB PS PS 1 ZO PB PS PM 1 ZO PVB PS PB 1 
PS PM PS ZO * ZO ZO PM PS 2 ZO PVB PS PM 1 ZO ZO PM PB 1 
ZO PB PS ZO 1 PS ZO PM PS 2 ZO ZO PM PM * PS ZO PM PB * 
ZO PVB PS ZO 1 PM ZO PM PS 2 PS ZO PM PM 2 PM ZO PM PB 2 
ZO ZO PM ZO 2 PB ZO PM PS 2 PM ZO PM PM 2 PB ZO PM PB 2 
PS ZO PM ZO 2 PVB ZO PM PS 2 PB ZO PM PM 2 PVB ZO PM PB 2 
PM ZO PM ZO 2 ZO PS PM PS * PVB ZO PM PM 2 ZO PS PM PB 1 
PB ZO PM ZO 2 PS PS PM PS 2 ZO PS PM PM 1 ZO PM PM PB 1 

PVB ZO PM ZO 2 ZO PM PM PS 1 ZO PM PM PM 1 ZO PB PM PB 1 
ZO PS PM ZO 2 ZO PB PM PS 1 ZO PB PM PM 1 ZO PVB PM PB 1 
PS PS PM ZO 2 ZO PVB PM PS 1 ZO PVB PM PM 1 ZO ZO PB PB * 
PM PS PM ZO 2 ZO ZO PB PS 2 ZO ZO PB PM 2 PS ZO PB PB 2 
ZO PM PM ZO * PS ZO PB PS 2 PS ZO PB PM 2 PM ZO PB PB 2 
PS PM PM ZO 2 PM ZO PB PS 2 PM ZO PB PM 2 PB ZO PB PB 2 
ZO PB PM ZO 1 PB ZO PB PS 2 PB ZO PB PM 2 PVB ZO PB PB 2 
ZO PVB PM ZO 1 PVB ZO PB PS 2 PVB ZO PB PM 2 ZO PS PB PB 1 
ZO ZO PB ZO 2 ZO PS PB PS 2 ZO PS PB PM * ZO PM PB PB 1 
PS ZO PB ZO 2 PS PS PB PS 2 ZO PM PB PM 1 ZO PB PB PB 1 
PM ZO PB ZO 2 ZO PM PB PS * ZO PB PB PM 1 ZO PVB PB PB 1 
PB ZO PB ZO 2 ZO PB PB PS 1 ZO PVB PB PM 1      

PVB ZO PB ZO 2 ZO PVB PB PS 1           
ZO PS PB ZO 2                
PS PS PB ZO 2                
PM PS PB ZO 2                
ZO PM PB ZO 2                
PS PM PB ZO 2                
ZO PB PB ZO *                
ZO PVB PB ZO 1                
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7.5.3 A Numerical Example 

We examine the queuing network of Figure 7.9 with parameters arrival rates 
1 2  0.1, service rates 3  4, 1  1, and 2  2, rewards w1 w2  3, and 

holding costs per customer per time unit h1 h2  1. 
The scaling factors for the four inputs of the fuzzy controller are s1  2.77 and 

s2  1.38, 1  6/ 1  6, and 2  6/ 2  3. By the algorithm of Section 7.4.3, we 
obtain the fuzzy control policy as shown in Figure 7.8, which turns out to be an 
exact copy of the monotonic switching policy we found in the previous example. 

In the absence of an analytical solution to this problem, we compare the fuzzy 
policy with other admission and scheduling protocols that are often used in prac-
tice. We consider three admission policies: 

Case 1: Server 0 is always off. 
Case 2: Server 0 admits one customer per time unit. 
Case 3: Server 0 admits two customers per time unit. 

For each of Cases 2 or 3 we examine three scheduling policies: 

Least Expected Work: Server 0 receives a customer from the class with the 
smallest work in queue i, si/ i, i  1, 2. 
Shortest Queue: Server 0 receives a customer from the class with the smallest si,
i  1, 2. 
Round Robin: Server 0 receives the first customer from class 1, the second from 
class 2, and so on. 

The simulation results for each combination of admission and scheduling policies 
are summarized in Table 7.6. 

Table 7.6. Mean profit rate for each admission and scheduling policy. (IEEE T Fuzzy Syst, 
Vol. 9, p. 311, by Runtong Zhang and Yannis A. Phillis. © 2001 by IEEE. Used with per-
mission.) 

 Case 2 Case 3
Least Expected Work 1.66 0.90 

Shortest Queue 1.58 0.67 
Round Robin 1.07 – 

Case 1 0.16 
Fuzzy Control 1.91 

We see that the fuzzy controller achieves the highest mean profit rate (1.91). Also, 
the Least Expected Work is better than the Shortest Queue scheduling policy, 
which in turn is better than the Round Robin controller for all admission policies. 



8  Applications of Fuzzy Queuing Control to the 
Internet 

8.1 Introduction 

In this chapter, we present a few applications of fuzzy queuing control in commu-
nication networks with emphasis on the Internet. We begin with a brief description 
of the Internet. The book by Kurose and Ross (2003) provides a detailed descrip-
tion of computer networks and the Internet. 

The Internet is a worldwide communication network that interconnects millions 
of computers and other devices that are called end systems or hosts and can receive, 
store, or transmit information. 

Communication links are physical media through which data are transferred. Co-
axial cables, optical fibers, and radio waves are examples of communication links 
with different transmission rates or bandwidths, measured in bits per second. 

Routers or switches are used to forward data from one link to another. A router 
has several ports where links are attached and several buffers where data are stored 
temporarily before they are transmitted to other links. Each port of the router has 
one link and one buffer. Thus, routers act as intermediate queuing nodes and allow 
multiple end systems to share a link or a path of consecutive links and routers at the 
same time. This is achieved by a technique known as packet switching.

When a host sends a message to another host, the message is divided into 
smaller pieces of data, the packets. Each packet is separately numbered, and it 
includes the Internet address of the destination host and a segment of the original 
message. 

Hosts and routers use a specific format for addressing and forwarding packets, 
called Internet Protocol (IP). IP is a connectionless protocol. Packets can travel 
through different routes across the network, and each traveling packet is treated 
separately from the other packets of the same message. Hence, packets arrive at 
their destination in a different order from the order they were sent. When the last 
packet arrives, the original message is retrieved by putting all packets back in the 
right order. This is done using the Transmission Control Protocol (TCP). 

An important indicator of Internet performance is packet delay. Delays in com-
munication networks happen in various ways. A router spends some time reading a 
packet’s header to determine the communication link where the packet should be 
sent. This results in processing delay. Then the packet is sent to a buffer where it 
waits to be transmitted through the corresponding link and is subject to queuing 
delay. When the link is available, it starts transmitting the bits of the packet one by 
one. The time until the last bit of the packet enters the physical medium of the link 
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is equal to the ratio of the number of bits of the packet to the bandwidth of the link. 
This time is called transmission delay. Finally, the total time the last bit of the 
packet spends inside the physical medium of the link is called propagation delay
and is equal to the ratio of the length of the link to the travel speed, typically close 
to the speed of light. 

Another important performance measure is packet loss. Packets are lost or 
dropped when they attempt to enter a full buffer in a router. Lost packets can be 
retransmitted, but they incur further delay, and because they bind additional re-
sources, they may cause network congestion. 

Queuing delays and the fraction of lost packets increase with the traffic intensity 
when too many hosts and routers send data too frequently. 

Quality of Service (QoS) refers to a collection of methods for controlling the 
way in which users share the available network resources in order to deal with the 
effects of congestion. One such method is the Differentiated Services mechanism 
(DiffServ). DiffServ is based on the idea that all the packets can be grouped into a 
small number of classes. Packets with similar performance requirements belong to 
the same class. For example, e-mail messages are elastic applications because they 
have no real-time requirements (a few minutes of delay in the delivery of a mes-
sage is usually unimportant). In contrast, commercial applications such as video on 
demand, medical diagnostics, and web-based teaching are critical because their 
providers must guarantee some minimum performance. To provide QoS support, 
DiffServ allows for a sort of “controlled unfairness” in the use of resources in favor 
of critical applications. 

Up until now, several DiffServ schemes have been proposed that, among others, 
handle drop and delay priorities. Drop priority is associated with the risk of dis-
carding a packet. If the cost of packet loss is high, then the packet should receive 
preference service; otherwise normal service is selected. Delay priority is associ-
ated with the total delay of a packet. Real-time applications have a high delay prior-
ity over non-real-time ones. These two priorities raise important optimization issues 
for the Internet, but their relationship has not been investigated by researchers. 

An extensive survey on applications of queuing theory and dynamic program-
ming to communication networks is presented by Altman (2000). 

In this chapter, we apply fuzzy logic to control congestion in the Internet. We 
examine three problems: 

Scheduling for packet delay and loss balancing 
Drop-based congestion control 
Routing 

We extend previous results to build the fuzzy controllers for the first two problems 
and present a new approach for solving the third problem. 
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8.2 Drop and Delay Balancing in the Differentiated 
Services 

8.2.1 Problem Description 

We consider a communication network operating under a simple DiffServ scheme 
that provides four types of service. Depending on their service requirements, the 
packets that travel through the network are encoded as follows: 

 11: real-time flow (1) with preference service selection (1) 
 10: real-time flow (1) with normal service selection (0) 
 01: non-real-time flow (0) with preference service selection (1) 
 00: non-real-time flow (0) with normal service selection (0) 

Each router in the network has four buffers denoted 11, 10, 01, and 00 where 
packets wait before they can be transmitted through a link that is attached to the 
router. An incoming packet is scheduled to a buffer according to its type of service, 
but this packet is discarded if its buffer is full. All four buffers operate on a First In 
First Out (FIFO) discipline. To satisfy real-time requirements, all packets in the 
real-time buffer shall be transmitted before any packets in the non-real-time buffer. 
For this reason, the four types of service 11, 10, 01 and 00 are ordered on a prefer-
ence scale from 3 to 0. In addition, to achieve small delays and delay variations, the 
real-time buffer is kept relatively small, whereas the non-real-time buffer could be 
larger. 

An incoming packet passes first through a comparison unit. If the corresponding 
buffer is not full, the packet is accepted; otherwise it is discarded. Given the desti-
nation buffer of a packet, the state of the lower priority buffers is recorded. If these 
buffers are empty, the packet goes directly to its own buffer. If, on the other hand, 
subsequent buffers are not empty, the current packet will be given priority over 
those in the nonempty buffers. Service type 11 is always given priority, and service 
type 01 is given priority over 00. However, priorities between 10 and 01 are not 
obvious. To resolve this question, we isolate buffers 10 and 01 by examining a 
related queuing system with two arrival streams as shown in Figure 8.1. 

Server 

Departures
 Buffer 01

 Buffer 10

Arrivals

Figure 8.1. Controlled system. 

Recall that buffer 10 contains real-time packets with normal service and that 01 
contains non-real-time packets with preference service. Both buffers have limited 
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capacities B10 and B01, but B10 B01 as explained previously. All packets are subject 
to a FIFO discipline. The problem is to determine a queueing policy that dynami-
cally accepts packets from either buffer so as to satisfy a given optimality rule. 

8.2.2 Fuzzy Controller 

The state of the system can be described by (s10, s01), where s10  0, 1, …, B10, and
s01  0, 1, …, B01 are the numbers of packets in buffers 10 and 01, respectively. The 
number of packets in queue is x s10 + s01  0, 1, …, B10 + B01. Decisions are made 
at each packet arrival and departure. 

If a departure channel (link) is not available, a packet at this node cannot be sent 
off. Hence, the decision epochs coincide with the times when a packet arrives in an 
empty buffer with a departure channel available or leaves the node with packets in 
the buffers. 

We now directly write the following obvious crisp rules: (1) If the state 
x  s10  s01  0, that is, if there are no packets in the queues, then no packets are 
sent off;  (2) If x  1, that is, if there is one and only one packet in the system, then 
this packet is sent off. Henceforth we will only focus on scheduling waiting packets 
when both buffers are not empty and a departure channel is available. 

We choose as fuzzy inputs the numbers of packets s10 and s01 in buffers 10 and 
01, with linguistic values ZO, PS, PM, and PB. The fuzzy output is the decision 
d  01 or 10, which indicates that a packet from buffer 10 or 01 is selected to be 
sent. 

The rule base relies on the following observations. When there are many packets 
in the real-time buffer 10 while there are relatively few packets in the non-real-time 
one, to avoid a long delay, a real-time packet is sent off; otherwise a non-real-time 
packet is sent off. When both buffers have similar occupancies, we should check if 
the buffers are approaching full usage. If both queues are short, attention should be 
paid to delay priorities and a real-time packet should be sent off; otherwise a non-
real-time packet is sent off, because now the drop priority is more important. In 
other words, whenever non-real-time packets with preference do not risk being 
discarded, the delay priority of real-time packets is more important. If the traffic is 
heavy and both buffers are full, it is possible that real-time packets be delayed 
longer than an allowed limit. Such a situation is unusual, but it does not affect the 
implementation of the fuzzy controller.  

From these remarks, we develop the rule base shown in Table 8.1, where * for 
the fuzzy output d means that nothing is selected. 
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Table 8.1. Rule base. 

Rules 1–8 Rules 9–16 
s10 s01 d s10 s01 d 
ZO ZO * ZO PM 01 
PS ZO 10 PS PM 01 
PM ZO 10 PM PM 10 
PB ZO 10 PB PM 10 
ZO PS 01 ZO PB 01 
PS PS 10 PS PB 01 
PM PS 10 PM PB 01 
PB PS 10 PB PB 01 

The universe of discourse for the fuzzy inputs s10 and s01 is [0, 6] and for the 
output d is [1, 2]. The membership functions for the fuzzy inputs si, i  01, 10, and 
the decision d are devised as in Chapter 7 and are shown in Figure 8.2. 

ZO PS PBPM

0 1 6 

1

0.5

2 3 4 5 

01 10 

1

1

0.5

2

*

        (a)                                                   (b) 

Figure 8.2. Membership functions: (a) s10, s01 and (b) d. 

As both buffers are finite, we set PB for the fuzzy inputs s10 and s01 with mem-
bership grade 1.0 at B10 and B01, respectively. The scaling factors then become 

si  6/Bi, i  10, 01. 

8.2.3 A Numerical Example 

The controlled system is shown in Figure 8.1 with buffer capacities B10  5 and 
B01  50. We determine the queueing management policy using fuzzy logic. The 
algorithm is outlined as follows: 

1. The scaling factors for both fuzzy inputs s01 and s10 are first determined. 
2. We start from an initial state s10 s01  0. 
3. Using the current s10 and s01 as crisp inputs, we determine the decision d

via fuzzification, fuzzy inference based on the rule base in Table 8.1, and 
defuzzification. 

4. We plot the decision d in the two-dimensional space of s10 and s01.
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5. If s01 < B01, we set s01 s01 + 1 and go to (3); otherwise we set s01  0 and 
go to (6). 

6. If s10 < B10, we set s10 s10 + 1 and go to (3); otherwise we stop. 

For example, let us assume that the current numbers of packets in queue are 
s10  2 and s01  30. These values are scaled to 2 s10  2  6/5  2.4 and 
30 s10  30  6/50  3.6. From Figure 8.2a, s10  2.4 corresponds to ZO with 
grade 0.47 and PS with grade 0.35, and s01  3.6 corresponds to ZO with grade 0.20 
and PS with grade 0.93. According to the fuzzy rule base and Mamdani implica-
tion, the fuzzy decisions d are formulated as follows: 

If s10 is ZO with grade 0.47 and s01 is ZO with grade 0.20, then d is * with grade 
0.20.

If s10 is ZO with grade 0.47 and s01 is PS with grade 0.93, then d is 01 with grade 
0.47.

If s10 is PS with grade 0.35 and s01 is ZO with grade 0.20, then d is 10 with grade 
0.20.

If s10 is PS with grade 0.35 and s01 is PS with grade 0.93, then d is 10 with grade 
0.35.

From Figure 8.2b, the peak values of the decision d are e1  1.5, e2  1, and 
e3 e4  2, and the heights of the decision are f1  0.20, f2  0.47, f3  0.20, and 
f4  0.35. By the height method of defuzzification, the crisp output d* is 

d*
4

1

4

1

i
i

i
i

i

f

fe

22.1
87.1  1.53.

As d* > 1.5, the decision d is 2, which means that a packet from buffer 10 is sent 
off. 

Following this algorithm, we obtain the policy of Figure 8.3. This policy is de-
fined by a switching curve, where “10” packets are transmitted if the state falls in 
the upper area; otherwise “01” packets are transmitted. 

We see from this figure that packets from buffer 10 are sent off more frequently 
than packets from 01. This policy gives priority to real-time packets as expected 
when traffic is below capacity. When traffic becomes heavy, however, priorities 
change. Near the origin, the switching curve appears to be a straight line but 
changes sharply later. In the absence of such change, the fuzzy policy would be 
similar to a strict queue policy. 

High-performance communication networks require control mechanisms as sim-
ple and efficient as possible. Hence, the queue management policy for a given node 
can be calculated off-line and stored in a table format. 
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Figure 8.3. The queue management policy. 

A few important observations ought to be made here to justify the fuzzy ap-
proach. 

1. There are no analytical control algorithms for this system in the literature to 
compare our solution with, and there is no universally acceptable performance 
measure to be optimized. 

2. A strict policy would be linear or piecewise linear, but no mathematical 
means exist to set the slope. 

3. The fuzzy solution resolves the fairness issue for all packets, and when pack-
ets wait too long in a buffer, it reverses its policy. 

4. This is the first problem in a multitude of other Internet problems that, be-
cause of their complexity, could be handled with fuzzy logic. High-performance 
communication networks require simple and fast algorithms that will guarantee 
proper network functioning. The proposed algorithm satisfies these requirements 
and has been tested in actual practice. 

8.2.4 Performance Evaluation 

Consider the network of Figure 8.4 in which Si, i  1, …, n, are data transmitters 
(typically PCs), E1 and E2 are edge nodes or routers, C1 and C2 are core nodes or 
intermediate routers, and Di, i  1, …, n, are data destinations such as PCs. All the 
links of the network have a speed of 10 Mbps and a delay of 1 ms, with the excep-
tion of the link between C2 and E2, which has a speed of 2 Mbps. This is the bottle-
neck of the network. The parameters of the network are those of the previous ex-
ample 8.2.3. 

Each node uses the standard Internet transmission control protocol with expo-
nential on/off times whose mean is 500 ms. The simulation time corresponds to 
60 s of operation. In each router, buffer 10 has a capacity of 5 packets and buffer 01 
has a capacity of 50 packets.  
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Figure 8.4. Network topology. 

We examine two cases with light and heavy load. 

Light Load 

Let n  15. S1, …, S7 send “10” packets at a rate of 100 kbps each or a total rate of 
700 kbps, whereas S8, …, S15 send “01” packets at a total rate of 800 kbps. Two 
policies are tested, fuzzy and crisp. When the crisp policy is employed, the node 
serves non-real-time packets only after all real-time packets have been served. 

For the data of this case, no link is congested and both policies produce the same 
results summarized in Table 8.2. This is so because the fuzzy policy takes over 
only when the load is heavy. The throughput for both policies is 1454 kbps. 

Table 8.2. Drop statistics under light load. 

Buffer
 Packets

sent 
 Packets 

 forwarded
 Drops

10 23,892 23,892 0 
01 28,386 28,350 36 

Total 52,278 52,242 36 

Heavy Load 

Now let n  20. All Si have a sending rate of 100 kbps each. “10” packets are 
transmitted by S1, …, S10 at a total rate of 1000 kbps, and “01” packets are transmit-
ted by S11, …, S20 at the same total rate. The link between C2 and E2 is congested. 
The results are now different as shown in Table 8.3. 

Table 8.3. Drop statistics under heavy load. 

Policy  Buffer
 Packets

sent 
 Packets 

forwarded
Drop

s
Throughput 

[kbps] 
 10 33,200 32,940 260  

01 35,680 32,455 3225  
Fuzzy Total 68,880 65,395 3485 1828 

 10 33,691 33,691 0  
01 35,680 32,165 3515  

Crisp Total 69,371 65,856 3515 1834 
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The fuzzy policy provides a fairer treatment for packets with preference service 
because it does not allow packets to stay too long in a buffer. The throughput, how-
ever, is about the same for both policies. 

8.3 Congestion Control in the Differentiated Services 

8.3.1 Problem Description 

When the network becomes congested, the TCP flow control mechanism slows 
down the sending rates to avoid packet losses. In this section, we describe a drop-
based congestion control method for DiffServ networks. First, the controller denies 
admission to packets having low service preferences, and then, if necessary, it starts 
dropping packets with a higher service preference so as to maximize a certain per-
formance measure. 

We consider a single-server queuing system with two classes of arriving packets 
as shown in Figure 8.5. 

Class 1 arrivals, 1
 Buffer 

Departures 

Server 1 

accepted 

rejected 

Class 2 arrivals, 2

Figure 8.5. A single-server queue with arrival control. 

Two independent Poisson streams of packets, called class 1 and class 2 packets, 
arrive at the buffer with constant rates 1 and 2. The buffer has unlimited capacity, 
and the order of service is irrelevant. The buffer is served by one exponential server 
with service rate . Class 1 packets upon arrival are either permitted or prohibited 
to enter the buffer, whereas class 2 packets enter the buffer without restriction. The 
system receives a fixed reward w for each accepted packet and pays a holding cost 
h per packet per unit time in the system. We wish to decide the optimal admission 
policy so that the average profit (reward minus cost) is maximized. 

This is a special case of the problem in Section 6.4 and will be treated similarly. 

8.3.2 Fuzzy Controller 

The decision epochs at which the arriving packets are controlled coincide with the 
arrival times of class 1 packets. The state of the system at the decision epochs is 
described by the total number x of class 1 and class 2 packets in the system includ-
ing the one in service (if any), x  0, 1, …. 

To avoid the trivial situation where an arriving class 1 packet is immediately de-
nied entrance even when the system is empty, we assume that 
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w > h .

Under this condition, it is always beneficial to admit a class 1 packet when the 
system is empty. Hence, we write a crisp rule for x  0: If there are no packets in 
the system, then an arriving class 1 packet is admitted immediately.

Next, we consider cases where x  1. As only class 2 packet arrivals are uncon-
trolled, the system is stable if 

2 < .

When the number of packets in queue is large or an arrival rate is high, then we 
should reject class 1 customers to avoid queuing delays and costs. We therefore 
choose the number of packets in the buffer s x  1, s  0, 1, …, and the arrival 
rates 1 [0, ) and 2 [0, ) as fuzzy inputs with four linguistic values ZO, PS, 
PM, and PB. The decision d  1, 0 to admit an arriving class 1 packet is the fuzzy 
output with linguistic values YES and NO. 

The establishment of the fuzzy rule base relies on the following arguments: 
1. As the number of packets in queue increases, the holding cost becomes greater 

than the reward and, therefore, admission should be denied. 
2. A higher arrival rate of class 1 packets weakens the decision d is YES. Indeed, 

if the manager of the system knew that packets were arriving at a very high rate, he 
would be unwilling to accept new packets when the server is busy because they 
merely incur a holding cost. 

3. Similarly, 2 affects negatively the decision to admit an arriving class 1 
packet, in anticipation of future uncontrolled class 2 arrivals. 

The rule base and the membership functions for the inputs and output of the 
fuzzy controller are identical to those of Section 6.4, but we present them here for 
convenience. 

For brevity, Table 8.4 records only the rules whose output is YES. All other 
combinations of s, 1, and 2 lead to the decision NO. The membership functions 
for 1, 2, s, and d are shown in Figure 8.6. The threshold values above which the 
fuzzy inputs s, 1, and 2 are declared PB with membership grade 1.0 are computed 
using the ideas of Chapter 6. 

Table 8.4. Rules whose output is YES. 

s 1 2 d s 1 2 d
ZO ZO ZO YES ZO PM ZO YES
ZO ZO PS YES PS ZO ZO YES
ZO ZO PM YES PS ZO PS YES
ZO PS ZO YES PS PS ZO YES
ZO PS PS YES PM ZO ZO YES
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Figure 8.6. Membership functions: (a) 1; (b) 2; (c) s; (d) d.

It follows from the rule if s is PB and 1 is ZO and 2 is ZO, then d is NO and 
the discussion of Section 6.2 that PB for s with membership grade 1.0 is fixed at 

x 1 2  0
h

w
.

Regarding 1, we consider the rule if s is ZO and 1 is PB and 2 is ZO, then d is 
NO. As in Section 6.2, we find the threshold value 

1, s 2  0
h

hw )2(
,

which is declared PB with grade 1. Finally, because 2 is bounded from above by 
, we set 

2, s 1  0 .



148 8  Applications of Fuzzy Queuing Control to the Internet 

8.3.3 Performance Evaluation 

We simulated the network shown in Figure 8.5 with parameters 1  0.25, 
2  0.05,  0.30, w  50, and h  2. For this system, the fuzzy control policy 

produces the same decisions as those for the M/M/2 system with service rate 
 0.15, which was studied in Section 6.4.3. This policy imposes a threshold 

x*  3 on the total number of customers in the system. 
By modeling the system as a Markov chain, we compute the mean profit rate 

J(x*) under different threshold values x*. The results are J(2)  12.3, J(3)  7.1, 
J(4)  3.9, and J(5)  1.5. We see that the fuzzy control policy is very close to the 
optimal one. 

8.4 Quality of Service Routing for Next-Generation 
Networks 

8.4.1 Problem Description 

As we have seen in Section 8.1, the current Internet is connectionless, that is, data 
packets of a message may follow different paths to the destination. However, this 
architecture does not guarantee bounded delays and small loss probabilities. The 
next generation of high-speed networks is likely to be circuit-switched for real-time 
traffic rather than packet-switched (Chen and Nahrstedt 1998). This means that 
before a host can send the first packet to another host, a connection (circuit) must 
be established between the two hosts and this connection will not be changed af-
terward. A circuit is a path from the sender to the destination that passes through a 
number of intermediate routers and links. 

Routing is the problem of selecting a path with sufficient resources to satisfy the 
QoS requirements of a particular connection, using information about the state of 
the network. The state of a path is typically determined by the states of its routers 
and links, including the available (free) bandwidth, buffer space, and queuing and 
propagation delays. Routing problems are distinguished as unicast or multicast, 
depending on the number of destination nodes. A review of routing algorithms can 
be found in Chen and Nahrstedt (1998). 

In this section, we shall develop a fuzzy routing algorithm. 
Consider the network shown in Figure 8.7. For simplicity, it is assumed that the 

links have the same bandwidth and the same lengths. These assumptions are logical 
because, typically, the propagation delays through communication links are much 
shorter than the queuing delays at the switching nodes. Each node has an incoming 
packet buffer with a maximum capacity of B. The nodes 1, 5, 6, 7, 8, 9, and 10 at 
the perimeter of the network act as traffic generating, destination, or switching 
nodes. Nodes 2, 3, and 4 are pure switching nodes. 
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Figure 8.7. A communication network. 

According to the QoS requirements, a path should be determined before a mes-
sage is sent off at its generating node and the chosen route will not be changed 
afterward. The problem is to determine the optimal routing policy for each traffic 
flow at its generating node based on the state of the system so as to minimize 
packet delays, packet losses, and connection rejections at the generating nodes. 

8.4.2 Fuzzy Routing 

For any pair of source and destination nodes, the state of each eligible path is de-
scribed by the numbers of queuing packets in every buffer on the path. The state 
changes whenever an arrival or departure at any nodes along the given path occurs. 
The decision epochs coincide with the times when a new session or traffic flow is 
generated and sent to the network. 

To solve this problem, we apply fuzzy logic to determine path ratings, based on 
the previous criteria, for all eligible paths between the source and destination 
nodes. The path with the highest rating is then chosen to route the traffic flow. A 
connection is only rejected if all the buffers on the chosen path are currently full; 
otherwise all the packets of the session are routed over the chosen path. Whenever 
a packet arrives at a full buffer, the packet is dropped. 

Consider a path with s links and corresponding buffers i  1, 2, …, s. The utili-
zation i of each buffer i on the path is defined as the fraction of buffer space occu-
pied. If ni is the current queue size in buffer i and B its capacity, then 

i
B

ni . (8.1)

Next, we take the sum of these utilization measures and generate a weighting 
measure i for each buffer i
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i s

j
j

i

1

.
(8.2)

We define path utilization  as the weighted sum of buffer occupancies along the 
path 

s

i
iin

1
. (8.3)

For each path, we choose the number of routers s on the path and the path utili-
zation  as fuzzy inputs and the path rating r as the fuzzy output of the algorithm. 
All variables are represented by four linguistic values ZO, PS, PM, and PB. A 
path’s rating is a decreasing function of s and . The fuzzy rule base is shown in 
Table 8.5. 

Table 8.5. Rule base. 

Rules 1–8 Rules 9–16 
s r s r

ZO ZO PB ZO PM PS 
PS ZO PM PS PM ZO 
PM ZO PS PM PM ZO 
PB ZO ZO PB PM ZO 
ZO PS PM ZO PB ZO 
PS PS PS PS PB ZO 
PM PS ZO PM PB ZO 
PB PS ZO PB PB ZO 

The universe of discourse for the fuzzy variables is [0, 6]. The membership func-
tions for s and r are shown in Figure 8.8a. We observe that  is a global measure of 
buffer occupancies and that the total delay is a function of the queue size ni; thus, it 
increases as the sequence 1 + 2 … + ni ni(ni + 1)/2  1, 3, 6, …. From this reason-
ing, we choose the fuzzy membership functions for  as shown in Figure 8.8b. 

The fuzzy routing algorithm is outlined as follows: 

1. All eligible paths between source and destination nodes are recorded at 
each decision epoch. The corresponding state information is also recorded. 

2. For each path, we calculate crisp values for s and using Equations (8.1)–
(8.3). We compute the rating r via fuzzification, fuzzy inference, and de-
fuzzification. 

3. The path with the highest rating is chosen to route the traffic flow. 
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Figure 8.8. Membership functions: (a) s and r; (b) .

8.4.3 Performance Evaluation 

Consider the communication network shown in Figure 8.7. The links between the 
nodes are all 2 km in length, and the bandwidth of the links is 100 Mbps. Each 
node has a queue capacity of 50 packets. Arrivals or connection attempts at each 
source node occur in a Poisson manner. A connection is rejected only if all buffers 
on the chosen path to route the call are full. 

The fuzzy routing scheme is tested against three other routing algorithms: a fixed 
directory routing algorithm, a shortest path routing algorithm, and a crisp version 
of the fuzzy algorithm, which is called crisp routing. The fixed directory routing 
algorithm gives priority to paths with the smallest number of routers. 

The shortest path routing algorithm selects the path with the shortest delay. A 
delay estimate is the sum of the times-to-service all packets currently at each router 
on the path. In case of a tie, the path with the smallest number of routers is chosen. 

Crisp routing selects the path with the smallest utilization  computed from 
Equations (8.1)–(8.3). In the case of a tie, the path with the smallest number of 
routers is chosen. 

The performance of each routing algorithm was evaluated using simulation. The 
mean interarrival times ranged between 0.5 and 1.0 second. For each interarrival 
time, the average performance was computed from ten simulation runs, each span-
ning 300 seconds. During each run, common sequences of random numbers were 
used so that all routing algorithms could be compared in a fair fashion. 

Figure 8.9 illustrates that the fuzzy routing algorithm rejects a smaller percent-
age of connections than the other three routing algorithms. Recall that the only 
reason for which connections are rejected is that all buffers on the route chosen are 
full. 
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Figure 8.9. Percentage of connections rejected versus interarrival time. 

From Figure 8.10, we see that the fuzzy routing algorithm also loses a smaller 
percentage of packets because of buffer overflow, than the other routing algo-
rithms. 
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Figure 8.10. Percentage of packets lost versus interarrival time. 

Finally, from Figure 8.11, we see that the fuzzy routing algorithm also achieves 
the shortest packet delays. 
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Figure 8.11. Mean packet delay versus interarrival time. 

Overall, the fuzzy routing algorithm outperforms the other three routing algo-
rithms in all criteria. The fuzzy algorithm disperses traffic in a more uniform man-
ner among the paths in the network. It also handles an increased traffic load more 
efficiently. 



9  Closure 

Fuzzy logic, despite its lack of rigor, has scored remarkable successes in the field 
of nonlinear control. Its application to queuing systems control seems to be natural. 
This book presents the first systematic approach toward fuzzy queuing control. 

The problems we solved showed us two things. When a complete analytical so-
lution is known, the same results may be obtained via fuzzy control. If a solution is 
not known, the fuzzy approach still works, but unfortunately no proof of optimality 
can be derived. Simulation, however, shows that the fuzzy solutions give the lowest 
cost, although such investigations are by no means exhaustive. 

The systems we presented in this book were governed by Markov or semi-
Markov decision processes. We took advantage of the memoryless properties to 
develop control algorithms. Lack of memory, convenient as it may be, is not al-
ways realistic. One would be tempted to try fuzzy logic when the processes in-
volved are conditioned probabilistically on more than one state. Such is the case in 
most complex manufacturing or communication networks. Practitioners in these 
fields are looking forward to applying new efficient control techniques. This is a 
natural extension of the present results, although not obvious or easy. 

Another interesting avenue of investigation could be the systematization of all 
the algorithms of the book. Indeed, the control algorithms we have presented share 
a few general characteristics in the way the steps are made, but the details are ad 
hoc for each case. A framework would be desirable, whereby the algorithms are 
adapted to each particular system via learning mechanisms such as neuro-fuzzy 
techniques. This task is also nontrivial. 

The aim of this book is to present in a coherent unit a new field. Our results may 
be used by students and practitioners in the field of queuing control. Some of the 
algorithms have already been applied to practical situations. 

Fuzzy queuing control is by no means a complete discipline. A lot of work 
awaits us ahead in several directions. We have already given some hints for new 
avenues. Our hope is that this work will become a stepping stone to open up such 
new avenues that will provide practical results. The demand for good queuing con-
trol algorithms is ever increasing. 



Appendix: Markov Queuing Models and 
Simulation 

A.1 Introduction 

Several results were presented in Chapters 4 8 of this book to illustrate the control 
algorithms. To validate the performance of these algorithms, we used simulation. In 
this appendix, we provide a brief introduction to the simulation of queuing systems. 

A queuing system is a stochastic dynamic system where customers arrive, wait 
in queue until they are served by one or more servers, and finally depart. The evo-
lution of a queuing system can be described by observing the states of its servers 
(e.g., type of service, busy, idle, on, or off) and the number of customers in each 
queue as they evolve over time. Evolution can be conceptualized as a sequence of 
states that the system visits during a period of observation. We shall refer to such 
sequence as the trajectory or sample path of the system. Simulation is a modeling 
technique that uses the computer to generate a sample path and test attributes of the 
stochastic system. A simulation model is a symbolic expression of the underlying 
laws that relate the current state to past states. Thus, given the state at time zero, the 
simulation model generates the next states and the corresponding transition epochs 
in sequence. 

In the next sections, we present methods for simulating random variables and 
review some results from the theory of Markov processes that we use to develop 
simulation models for selected queuing systems. 

A.2 Simulating Random Variables 

A deterministic dynamic system has a unique trajectory. Queuing systems, how-
ever, are stochastic because customers arrive and complete service at random times. 
When we simulate a queuing system, part of the simulation effort goes to generat-
ing sequences of random variables, which represent a possible realization of the 
customer arrival and processing times. Such sequences are generated by the ran-
dom variate generators.

Uniform random numbers or simply random numbers are sample values of a 
random variable U that is uniformly distributed on the interval [0, 1]. The most 
common random number generators are the linear congruential generators. Such 
generators start with an initial integer value Z0, called the seed, and yield successive 
random numbers u0, u1, … by computing 
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Zn+1  (aZn + b) mod c,

un+1 
c

Zn 1 ,

where “x mod y” denotes the remainder of the division of x by y. The parameters a,
b, and Z0 are positive integers, all smaller than c. As Zn uniquely determines the 
next random number and c is integer, the above scheme generates at most c differ-
ent random numbers ranging from 0 to (c – 1) before returning to the value Z0 from 
which it has started. A good random number generator should have a long period 
and a uniform coverage of the interval [0, 1]. Setting c equal to a large integer is 
necessary but not sufficient to guarantee a long period for the Zn's (for example, for 
a  1 and b  0, we get Zn Z0 for all n). Hence, a and b have to be specified care-
fully. 

Setting b  0 yields the so-called multiplicative congruential generator, which is 
more efficient than the linear one because it saves one addition. The period of a 
multiplicative congruential generator is c – 1 if c is prime and the smallest integer k
for which ak – 1 is divisible by c is k c – 1 (Knuth 1981). The generators 

Zn + 1  (75 Zn) mod (231 – 1) 

Zn + 1  (630,360,016 Zn) mod (231 – 1) 

satisfy the above conditions, their period is 231 – 2, and therefore, they are imple-
mentable on any 32-bit personal computer that reserves one bit for the sign. 

Next, we describe a common method for generating samples of random vari-
ables drawn from general distributions. The corresponding sampled values will be 
referred to as random variates to distinguish them from the random numbers u that 
have a uniform distribution. 

Let X be a real random variable with known distribution function FX (x)
P(X x). Define a new random variable U FX (X ). Its distribution function is 

FU (u) P(U u) P[FX (X ) u] P[X FX
1(u)] FX [FX

1(u)] u,

assuming that the inverse function FX
1 exists. By definition, FX and, therefore, U

range over [0, 1]. Thus, U is a random variable over [0, 1], and its distribution func-
tion is FU (u) u, which is the uniform distribution. From this, we obtain the fol-
lowing generator for the random variable X:

1. Generate a random number u.
2. Solve FX (x) u. Then, x FX

1(u) is a sample value of the random vari-
able X.

This method is known as the inverse transform method.
The existence of FX

1 is guaranteed if FX is strictly increasing. If the distribution 
function is not increasing in the strict sense but it contains flat segments and dis-
continuities, as in the case of discrete random variables, then the inverse distribu-
tion function is defined as 

FX
1(u )  inf {t: F(t) u}
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for every u [0, 1]. In this case, x is the smallest t such that FX (t) u.

Example A.1 

If X is exponentially distributed with parameter , then FX (x)  1 – e x and the 
solution to FX (x) u is 

x
)1(ln u

.

As U and 1 – U have the same uniform distribution, using u instead of 1 – u will 
produce a legitimate sample value for X; thus, 

x
uln

. (A.1) 

This saves a subtraction. 

Example A.2 

Suppose that X has a geometric distribution on {0, 1, …} with parameter q, prob-
ability mass function P(X k) q(1 – q)k, k  0, 1, …, and distribution function 

                                    FX (k)  q(1 – q)0 + … + q(1 – q)k

                                               1 – (1 q)k+1.

The inverse transform returns the smallest integer x such that FX (x) u. As FX is 
increasing, this is only possible if FX (x) u > FX (x – 1). From these inequalities, 
we obtain 

x
)1(ln

)1(ln

q

u
,

where t  is the largest integer such that t  < t. As in the previous example, sto-
chastic equivalence of U and 1 – U gives rise to a more economical generator, 

x
)1(ln

ln

q

u
.

Example A.3 

A discrete random variable X has probability mass function 

P(X xj) pj, j  1, 2, …, 

where  < x1 < x2 < …, pj > 0, and p1 + p2 + …  1. Its distribution function is 

FX (x) P(X x)
xjxj

jp
:

and 

FX (xj) FX (xj 1) + pj.
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The inverse transform returns the smallest value xj such that FX (xj) u. As in the 
previous example, this is only possible if FX (xj) u > FX (xj 1). If X has a finite 
range of values {x1, x2, …, xn}, its sample values can be computed using the follow-
ing algorithm: 

Algorithm A.1. Inverse transform method for arbitrary discrete distributions 

1. Precompute the values FX (xj), j  1, 2, …, n.
2. To generate a sample value for X:

a. Generate a random number u and set j  0. 
b. Set j: j + 1. 
c. If FX (xj) u, then return the sample value X xj; otherwise go to step 

(b).

A.3 The Memoryless Assumption 

The complexity of a dynamic system depends on the number of past states needed 
to determine the next state. This number is related to the memory inherent in the 
system. In general, systems with long memory require complex models, whereas 
systems lacking memory are easier to model. 

Lack of memory means that the next state of the system depends only on the 
present state and not on past ones. 

For a deterministic system, the memoryless property implies that if the system is 
in some state during [0, t] and it happens to enter the same state at a later time T,
then it will stay there until time T + t.

The memoryless property has a more general interpretation for random vari-
ables. Let X be a random variable that represents the time when the first customer 
arrives at a queuing system. Suppose that at time zero the system is empty. Then 
P(X > t | X > 0) is the probability that the customer will arrive later than time t
given that he has not arrived by time 0 or X > 0. Now suppose that at time T the 
customer has not yet arrived. The memoryless property implies that the conditional 
probability that the arrival will occur later than T + t is independent of T, or

P(X > T + t | X > T ) P(X > t | X > 0). (A.2) 

As t  0, we have P(X > t, X > 0) P(X > t) and P(X > T + t, X > T ) P(X > T + t)
and Equation (A.2) becomes 

)(

)(

TXP

tTXP

)0(

)(

XP

tXP
. (A.3) 

If X is an absolutely continuous nonnegative random variable with distribution 
function F(x), then F(0)  0 and Equation (A.3) yields 

                                            
)(1

)(1

TF

tTF

)0(1

)(1

F

tF
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                                                                  1 F(t). 

or, by defining G(t)  1 F(t),

G(T + t) G(T ) G(t).

The only class of real valued functions G(t), t > 0, satisfying the above functional 
equation is the exponential family with parameter  (see Parzen 1962 for a proof); 
that is, 

G(t) e t.

Therefore, F(t)  1 e t, which implies that X has an exponential distribution with 
mean 1/  and density function f(t)  e t. Its discrete counterpart is the geometric 
distribution. 

Example A.4 

Consider a server that is switched off after serving a random number of customers 
X, geometrically distributed on {0, 1, 2, …} with P(X  0) q. Suppose that the 
server has served c customers already. What is the probability that the server will 
be switched off after completing k more customers? Using the formulas for the 
geometric probability mass and distribution functions given in Example A.2, this 
probability is expressed as follows: 

                               P(X c + k | X c)
)(

)(

cXP

kcXP

                                                               
c

kc

q

qq

)(1

)1(
q (1 – q) k,

which is independent of c. Hence, the geometric distribution is memoryless. 

The exponential distribution is often used to describe the times between succes-
sive occurrences of independent events. Independence here means that the time of 
occurrence of the next event is independent of past events. The number N(t) of 
occurrences during a time interval [0, t] has the Poisson distribution, 

P[N(t) k] t
k

e
k

t

!

)(
 . (A.4) 

The equivalence of Poisson and exponential distributions follows by noting that the 
time X of occurrence of the first event exceeds t if and only if N(t)  0. Therefore, 

P(X > t) P[N(t)  0] te
t

!0

)( 0

e t,

which shows that X is exponential. By the independence of events, it follows simi-
larly that all the times between successive occurrences are exponential. 

The Poisson distribution gives rise to one of the simplest stochastic processes 
exhibiting the memoryless property, the stationary Poisson process. 
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Definition A.1. The stationary or homogeneous Poisson process N(t) is a process 
that counts the number of events that occur between time 0 and time t, t  0, and it 
has the following properties: 

1. N(0)  0 with probability 1. 
2. N(t) has independent increments; that is, for all choices of 0 t0 < t1 < … 

< tn, the random variables N(ti) N(ti  1), i  1, …, n, are independent. 
3. P[N(t + ) N(t)  1]  + o( ), where o( ), the “little oh” function, de-

notes a function with the property lim 0[|o( )|/| |]  0. 
4. There are no simultaneous events; that is, P[N(t + ) N(t) > 1] o( ). 

From the above definition, the following properties can be derived (Parzen 
1962): 

(a) The probability mass function of N(t) is given by Equation (A.4). 
(b) N(t) has stationary increments; that is, the random variables N(t + ) N(t)

have the same probability distribution for all t  0. 
(c) The time between two successive events has an exponential distribution 

with mean 1/ .
(d) Given that n events have occurred in [0, t + ], the number of events in [0, t]

has a binomial distribution with parameter q t/(t + ) and probability mass 
function 

P[N(t) n | N(t + ) n] knk qq
k
n

)1( . 

In summary, exponential, geometric, Poisson, and binomial processes are mem-
oryless and these are the only processes with this property. This, however, is not 
the case in many queuing applications. Practically all manufacturing, communica-
tion, and public service systems exhibit strong memory. For example, machines in 
a production network are subject to deterioration and have relatively short process-
ing times during the first few processing cycles when their tools are new but be-
come slower progressively as their tools wear out. Such systems can be represented 
more realistically by Markov processes, which are described next. 

A.4 Continuous-Time Markov Chains 

The queuing networks in this book are modeled by Markov chains. 

Definition A.2. A continuous-time Markov chain Xt, t ( , ), is a stochastic 
process that moves in a countable set of states {S1, S2, …} and satisfies the Markov 
property,

P(Xtn | Xtn 1, Xtn 2, … Xt0) P(Xtn | Xtn 1) (A.5) 

for all choices of  < t0 < t1 < … < tn < .

The Markov property says that the future behavior of the process is conditioned 
only on the current state and not on the past. It extends the memoryless property of 
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the Poisson process to systems with several states and to processes that do not sat-
isfy the independent-increment property. 

In analogy to properties 3 and 4 of the definition of the stationary Poisson proc-
ess, we make the following two additional assumptions: 

P(Xt + Sj | Xt Si) i, j  + o( ),  for j i, (A.6) 

and there are no simultaneous transitions; i.e., for any t1 and t2 in [t, t + ],

P(Xt1 Sj, Xt2 Sk  | Xt Si) o( ), for j i, k i, and j k. (A.7) 

From assumption (A.6), we compute the probability of escaping from state Si in 
 time units 

P(Xt + Si | Xt Si) i  + o( ), (A.8) 

where i j i i, j.
The parameters i, j and i are the transition rates associated with state Si. The 

dynamics of a Markov chain are completely specified by its transition rates. Indeed, 

(P1) The sojourn time in state Si has an exponential distribution with parameter 
i

(P2) The probability that the system will move from state Si to Sj is i, j/ i, in-
dependent of the time spent in Si

Property (P1) follows by observing that i in (A.8) plays the same role as the pa-
rameter  of the stationary Poisson process in Definition A.1 for which the times 
between successive events are exponentially distributed with mean value 1/ .

To prove property (P2), suppose that the chain enters state Si at time  and leaves 
this state at time t; that is, Xt Sj Si and Xu Si for every u in [ , t). By the 
Markov property, the event {Xu Si, for u  [ , t)} carries the same information as 
the event {Xt Si}. Therefore, 

       P[Xt Sj | Xt Si, Xu = Si, u [ , t)] ),|(lim
0

ititjt SXSXSXP

                                                                
)|(

)|,(
lim

0 itit

ititjt

SXSXP

SXSXSXP

                                                                
)(

)(
lim ,

o

o

i

ji =
i

ji, .

Therefore, the probability of a conditional transition to state Sj, given that a transi-
tion occurs, is independent of the intertransition time. 

Example A.5 

We examine the M/M/1 queuing system with server vacations, as described in 
Section 4.2. The interarrival and service times of customers are independent, expo-
nential random variables with mean values 1/ and 1/ , respectively. For this sys-
tem, the optimal control is of the threshold type; that is, all arrivals finding K cus-
tomers ahead (in queue and in service) are rejected, for some specified threshold 
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value K. Thus, we have an equivalent M/M/1/K queuing system whose state is 
described by the number of customers in the system, n  0, 1, …, K. The state tran-
sitions are shown in Figure A.12. 

0 ...1 K 1

Figure A.12. State transitions for an M/M/1/K queuing system. 

The transition rates for each state are given by 

n, n + 1

   if n < ,
 0   if n = K,

n, n  1

   if n > 0, 
 0   if n = 0,

and 

n

       if n = 0,

 +    if 0 < n < K,

       if n = K.

All other transitions are zero, e.g., n, n +10  0. 

Example A.6 

Consider the system with two workstations in tandem, as described in Section 4.6. 
Customers arrive in the first station according to a Poisson process with rate , and 
upon completion of service, they join station 2, which is served by a server with 
mean rate . The system controls the server of station 1 by altering its mean service 
rate to any value u in [0, a]. Such decisions are made by the fuzzy controller using 
information about the state (s1, s2), where si is the number of customers in station i.
Therefore, we have u u(s1, s2). The system can be modeled as a Markov chain 
whose transitions from state (s1, s2) are shown in Figure A.13. 
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s1,s2 s1+1,s2

u(s1,s2)

s1 1,s2+1

s1,s2 1

s1

s2

Figure A.13. Transitions from state (s1, s2).

The transition rates for each state (s1, s2), si  0, 1, ..., are given by 

(s1,s2), (s1 1,s2+1)

u(s1, s2)   if s1 > 0,
     0         if s1 = 0,

(s1,s2), (s1+1,s2) ,

(s1,s2), (s1,s2 1)

   if s2 > 0, 
 0   if s2 = 0,

and 

(s1,s2)

 +  + u(s1, s2)   if s1 > 0 and s2 > 0,

 +              if s1 = 0 and s2 > 0,

 + u(s1, s2)        if s1 > 0 and s2 = 0,

                            if s1 = s2 = 0.

All other transitions are zero, e.g., (s1,s2), (s1+10,s2)  0. 

A.5 Simulation of a Markov Queuing System 

We now develop simulation models of Markovian queuing networks using the 
properties (P1) and (P2) of the previous section. 
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We begin with queuing systems having a single state variable that ranges over 
the set {S1, S2, …}, such as the M/M/1/K system of Example A.5. Suppose that at 
time zero, the system is in state Si. By property (P1), the system will stay in this 
state for some random interval of time that has an exponential distribution with 
mean 1/ i. Upon leaving the initial state, by property (P2), the system moves to 
another state Sj with probability i,j/ , where it stays for some random time, and so 
forth. The following is a simulation algorithm that generates a sample path of the 
system. 

Algorithm A.2. Simulation model of a Markov chain 

1. Initialize: Specify the system states, the transition rates, the total simula-
tion time T, and the initial state Si. Set the simulation clock at t  0. 

2. Compute sojourn time in state Si: From Equation (A.1), compute a sample 
value x using the exponential random variate generator with parameter 

i:

x
i

uln
.

3. Advance simulation clock: Set t: t + x. If t T, then terminate the simula-
tion; otherwise go to step (4).

4. Choose next state Sj: Invoke Algorithm A.1 (Example A.3, Section A.1) 
with pj i,j/ i to determine the next state Sj of the system. 

5. Move to next state: Set i j and go to step (2). 

The simulation of Markovian queuing systems follows Algorithm A.2 and dif-
fers only in the definition of the state variables and calculation of the corresponding 
transition rates, as shown in the following examples. 

Example A.7 

Consider an M/M/1/K queuing system (see Example A.5) that earns a reward w per 
accepted customer and incurs a holding cost h per customer per time unit. The 
following algorithm computes the average profit rate of the system during Q state 
transitions. 

1. Initialize: Specify the parameters , , h, and w and the total number of 
transitions Q. Initialize the simulation clock t  0, the state of the system 
n  0, the current transition q  0, and the profit J  0. 

2. Compute sojourn time in state n: If n < K, then set ; otherwise set 
 0. In addition, if n > 0, then set :  + . Generate a random number 

u and compute 

x
uln

.

3. Advance time and update profit: Set t: t + x, q: q + 1, and J: J hnx.
If q Q, then compute the average profit rate Jav J/t and terminate the 
simulation; otherwise go to step (4).
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4. Determine the type of next event: Generate another random number u. If 
u / , then the next event is an arrival; otherwise it is a departure. 

5. Execute next event (move to next state): If a new customer arrives, then 
update the state and the profit; that is, n: n + 1 and J: J + w; otherwise 
update only the state, n: n  1. Go to step (2). 

In the following example, we model a two-dimensional system. 

Example A.8 

Consider a tandem system as described in Example A.6, which incurs a holding 
cost rate hi per customer in station i, i  1, 2. A fuzzy controller controls the rate u
of the server in station 1 using information about the state (s1, s2), where u [0, a].
In Section 4.6, we have seen that for h1 < h2, the optimal control is bang-bang, 
taking values 0 or a; that is, there is an increasing function S(s2), such that u  0 if 
s1 < S(s2) and u a if s1 S(s2). The function S is determined by the fuzzy control-
ler. The following algorithm computes the average cost rate of the system during Q
state transitions. 

1. Initialize: Specify the parameters , a, , h1, and h2 (h1 < h2), the total 
number of transitions Q, and the initial state s1 s2  0. Initialize the simu-
lation clock t  0, the current transition q  0, and the cost C  0. 

2. Compute sojourn time in state (s1, s2): Set . If s1 > 0 and s1 S(s2),
then set :  + a (server 1 is working). If s2 > 0, then set :  + 
(server 2 is working). Generate a random number u and compute 

x
uln

3. Advance time and update cost: Set t: t + x, q: q + 1, and 
C: C + h1s1 + h2s2. If q Q, then compute the average cost rate Cav C/t
and terminate the simulation; otherwise go to step (4).

4. Determine the type of next event: Generate another random number u. If 
u / , then the next event is an arrival; otherwise if s2 > 0 and u
(  + )/ , then it is a departure from station 2, but if s2  0 or u > 
(  + )/ , then it is a departure from station 1. 

5. Execute next event (move to next state): If a new customer arrives, then 
s1: s1 + 1; if a customer leaves station 2, then s2: s2  1; and if a cus-
tomer moves from station 1 to station 2, then s1: s1  1 and s2: s2 + 1. Go 
to step (2). 
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