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1. Introduction. In 1972, Chang and Zadeh [2] first introduced the concept of fuzzy

derivative, followed up ten years later by Dubois and Prade [5], who used the extension

principle in their approach. In the mean time, Puri and Ralescu [12] used the notion

of H-differentiability to extend the differential of set-valued functions to that of fuzzy

functions. This led Seikkala [13] to introduce the notion of fuzzy derivative as an ex-

tension of the Hukuhara derivative and the fuzzy integral, which was the same as that

proposed by Dubois and Prade [3, 4].

Naturally, the investigation of fuzzy differential and integral equations, existence

and uniqueness theorems for the solutions of fuzzy initial value problems, drew upon

the interest of many researchers of the fuzzy domain. See [1, 6, 7, 8, 9, 10, 11, 12, 13, 14]

and the references therein.

In this paper, using the properties of fuzzy integration [8, 9], we examine the ex-

istence and uniqueness of initial value problems of second-order fuzzy differential

equations:

x′′(t)= f (t,x(t),x′(t)), x
(
t0
)= k1, x′

(
t0
)= k2. (1.1)

2. Preliminaries. A nonempty subset A of Rn is called convex if and only if (1−
k)x+ky ∈ A for every x,y ∈ A and k ∈ [0,1]. By Pk(Rn), we denote the family of all

nonempty compact convex subsets of Rn.

For A,B ∈ Pk(Rn), the Hausdorff metric is defined by

d(A,B)=max
{

sup
a∈A

inf
b∈B

‖a−b‖,sup
b∈B

inf
a∈A

‖a−b‖
}
. (2.1)

A fuzzy set inRn is a function with domainRn and values in [0,1], that is, an element

of [0,1]Rn (see [15, 16]).

A member u of [0,1]Rn is contained in a member v of [0,1]Rn denoted by u ≤ v if

and only if u(x)≤ v(x), for every x ∈Rn (see [15, 16]).
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Let u,v ∈ [0,1]Rn . We define the following fuzzy sets (see [15, 16]):

(1) u∧v ∈ [0,1]Rn by (u∧v)(x)=min{u(x),v(x)}, for every x ∈Rn (intersection);

(2) u∨v ∈ [0,1]Rn by (u∨v)(x)=max{u(x),v(x)}, for every x ∈Rn (union);

(3) uc ∈ [0,1]Rn by uc(x)= 1−u(x), for every x ∈Rn.

Let u∈ [0,1]Rn , the a-level set is

[u]a = {x ∈Rn :u(x)≥ a}, a∈ (0,1],
[u]0 = Cl({x ∈Rn :u(x) > 0

})
.

(2.2)

By En, we denote the family of all fuzzy sets u∈ [0,1]Rn (see, e.g., [12, 16]), for which

(i) u is normal, that is, there exists an element x0 ∈Rn such that u(x0)= 1;

(ii) u is fuzzy convex, that is, for any x,y ∈Rn and k∈ [0,1],

u
(
kx+(1−k)y)≥min

{
u(x),u(y)

}
; (2.3)

(iii) u is upper-semicontinuous;

(iv) [u]0 is compact.

Let u∈ En. Then for each a∈ (0,1], the a-level set [u]a of u is a nonempty compact

convex subset of Rn, that is, u∈ Pk(Rn). Also [u]0 ∈ Pk(Rn).
Let

D : En×En �→ [0,∞),
D(u,v)= sup

{
d
(
[u]a,[v]a

)
: a∈ [0,1]}, (2.4)

where d is the Hausdorff metric for nonempty compact convex subsets of Rn.

It is well known that (En,D) is a complete metric space, but it is not locally compact.

Let u,v ∈ En and let c be a positive number. The addition u+v and (positive) scalar

multiplication c ·u in En are defined in terms of the a-level sets by

[u+v]a = [u]a+[v]a, [c ·u]a = c[u]a, (2.5)

for every a∈ [0,1].
This defines a linear structure on En such that

D(u+w,v+w)=D(u,v), D(c ·u,c ·v)= cD(u,v), (2.6)

for all u,v ∈ En and c > 0.

Let T = [t0, t0+a] with a> 0 and x,y ∈ En.

A mapping f : T → En is differentiable at t ∈ T if there exists an f ′(t)∈ En such that

the limits

lim
h→0+

f(t+h)−f(t)
h

, lim
h→0+

f(t)−f(t−h)
h

(2.7)

exist and are equal to f ′(t).
Here the limit is taken in the metric space (En,D). At the endpoints of T , we consider

the one-sided derivatives.
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Let f : T → En; the integral of f over T , denoted by
∫
T f (t)dt, is defined levelwise

by the equation [
∫
T f (t)dt]a =

∫
T fa(t)dt = {

∫
T f (t)dt : f : T → En is a measurable

selection for fa}, for all a∈ (0,1].
We say that a mapping f : T → En is strongly measurable if, for all a ∈ [0,1], the

set-valued mapping fa : T → Pk(Rn) is defined by fa(t)= [f (t)]a.

If f : T → En is continuous, then it is integrable (see [8]).

3. Fuzzy differential equations

Theorem 3.1. Let t0 ∈ [a,b] and assume that f : [a,b]× En × En→ En is continuous.

Consider the initial value problem (1.1). A mapping x : [a,b]→ En is a solution to (1.1)

if and only if x,x′ are continuous and satisfy the integral equation

x(t)= k2
(
t−t0

)+
∫ t
t0

(∫ t
t0
f
(
s,x(s),x′(s)

)
ds
)
ds+k1. (3.1)

Proof. Since f is continuous, by [8, Corollary 4.1], it must be integrable. So, for

x′′(t)= f (t,x(t),x′(t)), t ∈ [a,b], (3.2)

we have equivalently

x′(t)=
∫ t
t0
f
(
s,x(s),x′(s)

)
ds+x′(t0) (3.3)

(see [9, Lemma 3.1]). Since x′(t0)= k2, we have

x′(t)=
∫ t
t0
f
(
s,x(s),x′(s)

)
ds+k2. (3.4)

Thus, by [9, Lemma 3.1],

x(t)=
∫ t
t0

(∫ t
t0
f
(
s,x(s),x′(s)ds

)+k2

)
ds+x(t0); (3.5)

equivalently (see [8, Theorem 4.3]),

x(t)=
∫ t
t0

(∫ t
t0
f
(
s,x(s),x′(s)

)
ds
)
ds+

∫ t
t0
k2ds+x

(
t0
)
; (3.6)

equivalently (see [8, Example 4.1]),

x(t)=
∫ t
t0

(∫ t
t0
f
(
s,x(s),x′(s)

)
ds
)
ds+k2

(
t−t0

)+x(t0), (3.7)
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or

x(t)=
∫ t
t0

(∫ t
t0
f
(
s,x(s),x′(s)

)
ds
)
ds+k2

(
t−t0

)+k1. (3.8)

Example 3.2. The second-order linear nonhomogeneous fuzzy differential equation

x′′(t)= q1x′(t)+q2x(t)+A(t), (3.9)

where x, x′,A : [a,b]→ En are continuous functions and q1,q2 ∈R\{0}, with the initial

conditions

x
(
t0
)= k1, x′

(
t0
)= k2, t0 ∈ [a,b], (3.10)

is equivalent to a Volterra-type fuzzy integral equation

x(t)=
∫ t
t0
k
(
t,s,x(s)

)
ds+g(t), (3.11)

where k : [a,b] × [a,b] × En→ En and g(t)= k2(t−t0)+k1.

Indeed, by Theorem 3.1, the second-order linear fuzzy differential equation

x′′(t)= q1x′(t)+q2x(t)+A(t), x
(
t0
)= k1, x′

(
t0
)= k2, t0 ∈ [a,b], (3.12)

is equivalent to the integral equation

x(t)=
∫ t
t0

(∫ t
t0
f
(
s,x(s),x′(s)

)
ds
)
ds+g(t), (3.13)

where f(t,x(t),x′(t))= q1x′(t)+q2x(t)+A(t) and g(t)= k2(t−t0)+k1.

Let k : [a,b]×[a,b]×En → En be a map such that k(t,s,x(s))= ∫ tt0 f(s,x(s),x′(s))ds.
Then the above integral equation is equivalent to the integral equation (3.11).

Thus, all the theorems on existence and uniqueness proved in [6, 11] hold true, equiv-

alently for the fuzzy differential equation examined here.

Theorem 3.3. Let f : [a,b]×En×En → En be a continuous map and assume that

there exists k > 0 such that

D
(
f
(
t,x1(t),x2(t)

)
,f
(
t,y1(t),y2(t)

))≤ kD(x1(t),y1(t)
)

(3.14)

for all t ∈ [a,b], x1, x2, y1, y2 : [a,b]→ En. Then the initial value problem

x′′(t)= f (t,x(t),x′(t)), x
(
t0
)= k1, x′

(
t0
)= k2, t0 ∈ [a,b], (3.15)

has a unique solution on [a,b].
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Proof. Denote by C(J,En) the set of all continuous mappings from J to En, where

J is an interval in R. We metricize C(J,En) by setting

H(x,y)= sup
{
D
(
x(t),y(t)

)
: t ∈ J} (3.16)

for all x,y ∈ C(J,En). The pair (C(J,En),H) is a complete metric space (see [8]).

Now, let (t1,y1(t),y2(t))∈ [a,b] × En × En be arbitrary and let n > 0 be such that

n2k < 1. We will show that the initial value problem

x′′(t)= f (t,x(t),x′(t)), x
(
t1
)=y1, x′

(
t1
)=y2, t1 ∈ [a,b], (3.17)

has a unique solution on I = [t1, t1+n].
For x ∈ C(I,En), define Gx on I by the equation

Gx(t)=y2
(
t−t1

)+
∫ t
t1

(∫ t
t1
f
(
s,x(s),x′(s)

)
ds
)
ds+y1. (3.18)

Then by [8, Corollary 4.2], Gx ∈ C(I,En). Furthermore, by [8, Theorem 4.3] and the

Lipschitz condition on f , we have

H(Gx,Gy)= sup
{
D
(
Gx(t),Gy(t)

)
: t ∈ I}

= sup
{
D
(∫ t

t1

(∫ t
t1
f
(
s,x(s),x′(s)

)
ds
)
ds,

∫ t
t1

(∫ t
t1
f
(
s,y(s),y ′(s)

)
ds
)
ds
)

: t ∈ I
}

≤
∫ t1+n
t1

(∫ t1+n
t1

D
(
f
(
s,x(s),x′(s)

)
,f
(
s,y(s),y ′(s)

))
ds
)
ds

≤
∫ t1+n
t1

(∫ t1+n
t1

kD
(
x(s),y(s)

)
ds
)
ds

≤ kn2H(x,y)

(3.19)

for all x,y ∈ C(I,En). Hence, by Banach’s contraction mapping theorem,G has a unique

fixed point, which by Theorem 3.1 is the desired solution to problem (1.1).

Express [a,b] as a union of a finite family of intervals Ik with the length of each

interval less than n. The preceding paragraph guarantees the existence of a unique

solution to problem (1.1) on each interval Ik. Piecing these solutions together gives us

the unique solution on the whole interval [a,b].

Example 3.4. The second-order linear nonhomogeneous differential equation

x′′(t)= q1x(t)+A(t), (3.20)

where x,x′,A ∈ C([a,b],En) and q1 ∈ R\{0}, with the initial conditions (3.10), has a

unique solution x ∈ C([a,b],En) satisfying the initial conditions.
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Let f : [a,b]× En × En → En be such that f(t,x(t),x′(t)) = q1x(t)+A(t), t ∈ T .

Clearly, the map f is continuous and

D
(
f
(
t,x1(t),x2(t)

)
,f
(
t,y1(t),y2(t)

))
=D(q1x1(t)+A(t),q1y1(t)+A(t)

)
=D(q1x1(t),q1y1(t)

)≤ ∣∣q1

∣∣D(x1(t),y1(t)
) (3.21)

for all t ∈ [a,b].
Thus, by Theorem 3.3, the above problem has a unique solution.

Theorem 3.5. Let f : T × En × En→ En be a continuous map and assume that there

exists k > 0 such that

d
([
f
(
t,x(t),x′(t)

)]a,[f (t,y(t),y ′(t))]a)≤ kd([x(t)]a,[y(t)]a) (3.22)

for all a∈ [0,1]. Then the initial value problem

x′′(t)= f (t,x(t),x′(t)), x
(
t0
)= k1, x′

(
t0
)= k2, t0 ∈ T , (3.23)

has a unique solution.

Proof. Indeed, we have

D
(
f
(
t,x(t),x′(t)

)
,f
(
t,y(t),y ′(t)

))

= sup
{
d
([
f
(
t,x(t),x′(t)

)]a,[f (t,y(t),y ′(t))]a) : a∈ [0,1]
}

≤ ksup
{
d
(
[x(t)]a,[y(t)]a

)
: a∈ [0,1]}

= kD(x(t),y(t))
(3.24)

for all t ∈ T and x,y ∈ En.

Thus, by Theorem 3.3, the above problem has a unique solution.

Example 3.6. Let x,A : T → En be continuous maps and q > 0. Then the initial value

problem

x′′(t)= qx(t)+A(t), x
(
t0
)= k1, x′

(
t0
)= k2, t0 ∈ T , (3.25)

has a unique solution.

Let f : T × En ×En → En be such that f(t,x(t),x′(t)) = qx(t)+A(t), t ∈ T , and

x(t),x′(t)∈ En. Clearly, the map f is continuous and

d
([
f
(
t,x(t),x′(t)

)]a,[f (t,y(t),y ′(t))]a)
≤ d([qx(t)+A(t)]a,[qy(t)+A(t)]a)
= d([qx(t)]a+[A(t)]a,[qy(t)]a+[A(t)]a)
= d([qx(t)]a,[qy(t)]a)
≤ qd([x(t)]a,[y(t)]a)

(3.26)

for all t ∈ T , x,y ∈ En, and a∈ [0,1].
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Thus the above problem has a unique solution.
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