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Abstract. Let G be a connected semisimple Lie group without compact factors whose real
rank is at least 2, and let Γ ⊂ G be an irreducible lattice. We provide a C∞ classification for
volume preserving Cartan actions of Γ and G. Also, if G has real rank at least 3, we provide a
C∞ classification for volume preserving, multiplicity free, trellised, Anosov actions on compact
manifolds.

1. Introduction

Anosov diffeomorphisms and flows are some of the best understood and most important dy-
namical systems. They are the prototype of hyperbolic dynamical systems and enjoy special
rigidity properties such as structural stability. Indeed, D. Anosov showed that a sufficiently
small C1 perturbation of an Anosov diffeomorphism is conjugate to the original diffeomorphism
by a homeomorphism [1]. In this paper we will study Anosov actions of more general groups
than Z and R. By an Anosov action, we mean a locally faithful action of a (not necessarily
connected) Lie group which contains an element which acts normally hyperbolically to the orbit
foliation. This generalizes a definition of such actions by C. Pugh and M. Shub in [22]. Note
that an Anosov action of a discrete group is simply an action such that some element of this
group acts by an Anosov diffeomorphism.

Anosov actions of higher rank abelian or semisimple groups and their lattices are markedly
different from Anosov diffeomorphisms and flows. In fact, during the last decade remarkable
rigidity properties of actions of higher rank groups were discovered, ranging from local smooth
rigidity to rigidity of invariant measures. Consider the standard action of SL(n,Z) on the n torus,
a prime example of an Anosov action of a lattice in a semisimple Lie group. In 1986, R. Zimmer
conjectured that for n > 2, any sufficiently small C1 perturbation of this action is smoothly
conjugate to the standard action [30]. Infinitesimal, deformation and finally smooth local rigidity
were established for this action in a sequence of papers by J. Lewis, S. Hurder, A. Katok and
R. Zimmer [20, 10, 12, 16, 15, 17] and later generalized to other toral and nilmanifold actions
by N. Qian [23, 24, 27].

Hurder actually conjectured that any Anosov action of a lattice in a higher rank semisimple
group is essentially algebraic [10]. We will prove this conjecture for a special class of Anosov
actions of lattices and a more general one for groups. The first are the Cartan actions introduced
by Hurder in [10]. They are characterized by the property that suitable intersections of stable
manifolds of certain commuting elements of the action are one dimensional (cf. Definition 3.8).
The second class, also introduced by Hurder, is that of trellised actions. If A ⊂ G is an abelian
subgroup, then we call an Anosov action ofG trellised with respect to A if there exists a sufficiently
large collection of one dimensional foliations invariant under the action of A (cf. Definition 2.1).
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Cartan actions are always trellised. Finally, we will also use the notion of a multiplicity free
action. These actions are characterized by the property that the superrigidity homomorphism
corresponding to the action consists of irreducible subrepresentations which are all multiplicity
free (cf. Definition 3.3).

To clarify what we consider an essentially algebraic action we provide the following

Definition 1.1. Let H be a connected, simply connected Lie group with Λ ⊂ H a cocompact
lattice. Define Aff(H) to be the set of diffeomorphisms of H which map right invariant vector
fields on H to right invariant vector fields. Define Aff(H/Λ) to be the diffeomorphisms of H/Λ
which lift to elements of Aff(H). Finally, we define an action ρ : G×H/Λ→ H/Λ to be affine
algebraic if ρ(g) is given by some homomorphism σ : G→ Aff(H/Λ).

Theorem 1.2. Let G be a connected semisimple Lie group without compact factors and with real
rank at least three, and let A ⊂ G be a maximal R-split Cartan. Let M be a compact manifold
without boundary, and let µ be a smooth volume form on M . If ρ : G ×M → M is an Anosov
action on M which preserves µ, is multiplicity free, and is trellised with respect to A, then, by
possibly passing to a finite cover of M , ρ is C∞ conjugate to an affine algebraic action, i.e., there
exist

1. a finite cover M ′ →M ,
2. a connected, simply connected Lie group L,
3. a cocompact lattice Λ ⊂ L,
4. a C∞ diffeomorphism φ : M → L/Λ, and
5. a homomorphism σ : G→ Aff(L/Λ)

such that ρ′(g) = φ−1σ(g)φ, where ρ′ denotes the lift of ρ to M ′.

If, for a given Cartan subgroup A ⊂ G, the nontrivial elements of the Oseledec decomposition
of TM = ⊕Ei corresponding to A consist entirely of one dimensional spaces, then it follows that
the action must be both trellised and multiplicity free. This yields the following

Corollary 1.3. Let G be a connected semisimple Lie group without compact factors and with
real rank at least three, and let A ⊂ G be a maximal R-split Cartan. Let M be a compact
manifold without boundary, and let µ be a smooth volume form on M . If ρ : G ×M → M is
an Anosov action on M which preserves µ and such that the nontrivial elements of the Oseledec
decomposition with respect to A consists of one dimensional Lyapunov spaces, then, by possibly
passing to a finite cover of M , ρ is C∞ conjugate to an affine algebraic action.

We obtain R-rank 2 results with an additional assumption.

Corollary 1.4. Assume the conditions of Theorem 1.2. If, in addition, the trellis consists of
one dimensional strongest stable foliations, i.e. the action is Cartan, then the above classification
holds when the real rank of G is at least two.

The next results provide a similar classification for actions of lattices.

Theorem 1.5. Let G be a connected semisimple Lie group without compact factors such that
each simple factor has real rank at least 2, and let Γ ⊂ G be a lattice. Let M be a compact
manifold without boundary and µ a smooth volume form on M . Let ρ : Γ×M →M be a volume
preserving Cartan action. Then, on a subgroup of finite index, ρ is C∞ conjugate to an affine
algebraic action.

More specifically, on a subgroup of finite index, ρ lifts to an action of a finite cover M ′ →M
which is C∞ conjugate to the standard algebraic action on the nilmanifold π̃1(M ′)/π1(M ′), where
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π̃1(M ′) denotes the Malcev completion of the fundamental group of M ′, i.e., the unique simply
connected nilpotent Lie group containing π1(M ′) as a cocompact lattice.

We point out that Theorem 1.5 proves Hurder’s conjecture of Anosov Rigidity of lattice actions
in the case of Cartan actions [10].

As an immediate corollary, we recover the local rigidity results obtained for Cartan homoge-
neous actions.

Corollary 1.6. Let Γ ⊂ G be an irreducible lattice as in Theorem 1.5, and let φ : Γ×M →M
be a volume preserving Cartan action on a closed manifold M . Then φ is locally C∞ rigid.

Rigidity of higher rank groups and their actions is typically connected with an analysis of the
action of a maximal abelian subgroup A of the original group. As a first step in the proof we
show that there always exists a Hölder Riemannian metric on the manifold with respect to which
A has uniform expansion and contraction. For G actions, we proved this in an earlier paper [7].
For lattices, this follows from a result of N. Qian on the existence of a continuous framing which
transforms under G according to some finite dimensional representation of G [25].

The main contribution of the current paper is an analysis of the regularity of this metric and of
various unions of stable and unstable foliations. This analysis involves only the abelian subgroup
A. In fact, in Section 2 we present an abstract version of this for general trellised Anosov actions
of Rk. A key ingredient of the argument is the construction of isometries of subfoliations of the
manifold using an element of A which does not expand or contract the leaves. This is an idea
due to A. Katok and was employed in [18] to control invariant measures for hyperbolic actions
of higher rank abelian groups.

In Section 3, we consider the semisimple situation. At this point, we have a smooth framing
of the manifold which transforms according to a finite dimensional representation of G. We then
adapt an argument of G. A. Margulis and N. Qian [25] to finish the proof of our main results.

We thank G. Prasad, C. Pugh, F. Raymond, and M. Brown for several helpful discussions.

2. Smooth Geometric Structures for Rk Actions

In this section, we consider a certain class of Rk actions on a closed manifold M with constant
derivative with respect to some Hölder framing. By analyzing the behavior of this action on
certain stable and unstable subfoliations, we show that this framing is actually smooth. This is
the key ingredient in the classification of the actions we consider in Section 3.

2.1. Preliminaries. We shall assume that A = Rk acts smoothly on a closed manifold M
preserving a measure µ. For any a ∈ A, we have a Lyapunov decomposition of the tangent
bundle, with Lyapunov exponents {χi}. Since A is abelian, we may refine this decomposition to
a joint splitting TM =

⊕
Ei for all a ∈ A. Note that the exponents still vary with the choice

of a ∈ A. Because A is abelian, and identifying A with its Lie algebra, we can consider the
exponents as linear functionals on A, which, henceforth, we shall refer to as the weights of the
action with respect to µ. Let W(A) denote the set of such weights for this action.

We present a modified version of Hurder’s definition of a trellised action. We will call two
foliations pairwise transverse if their tangent spaces intersect trivially. The standard notion in
differential topology also requires the sum of the tangent spaces to span the tangent space of the
manifold. This condition is substituted by the first condition in the defintion below.

Definition 2.1. Let A be an (abelian) group. A C∞ action φ : A×X → X is trellised if there
exists a collection T of one dimensional, pairwise transverse foliations {Fi} of X such that
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1. the tangential distributions have internal direct sum TF1 ⊕ · · · ⊕ TFr ⊕ TA ∼= TX, where
TA is the distribution tangent to the A orbit,

2. for each x ∈ X the leaf Li(x) of Fi through x is a C∞ immersed submanifold of X,
3. the C∞ immersions Li(x) → X depend uniformly Hölder continuously on the basepoint x

in the C∞ topology on immersions, and
4. each Fi is invariant under φ(a) for every a ∈ A.

Moreover, if a group H acts on a manifold M and A ⊂ H is an abelian subgroup, then we say
the action is trellised with respect to A if the action restricted to A is trellised.

Later in this paper, we will consider the case where H is a semisimple Lie group without
compact factors and A is a maximal R-split Cartan subgroup. We present a few examples of
these actions.

Example 2.2 (Trellised Actions). 1. Let G = SO(n, n), the R-split group with Lie algebra
bn, and let M = SO(n, n+1)/Λ for some cocompact lattice Λ ⊂ SO(n, n+1). Suppose that
the action of G on M comes from the standard inclusion SO(n, n) ↪→ SO(n, n+1). The set
of weights for this inclusion is the union of the roots for bn and the weights corresponding
to the standard action of SO(n, n + 1) on R2n+1. In particular, each weight space is one
dimensional and no weight is a positive multiple of any other. It follows that this action
is trellised, and all the nontrivial Lyapunov spaces are one dimensional. However, it is not
Cartan (cf. Definition 3.8), since the weight spaces corresponding to weights of the standard
action cannot be written as the strongest stable space for any element in SO(n, n).

2. For simpler (transitive) examples, consider an R-split semisimple connected Lie group G
without compact factors. If Λ ⊂ G is a cocompact lattice, then the natural G action on
G/Λ will be trellised.

Let us return to the case of an action of an abelian group A on a compact manifold M .
Throughout this section, we shall make the following assumptions

(A0) the action is locally free,
(A1) the Lyapunov decomposition extends to a Hölder splitting TM =

⊕
Ei of the tangent

bundle,
(A2) there exists an A-invariant smooth volume on M ,
(A3) the action of any 1 parameter subgroup of A is ergodic on M ,
(A4) the action on M is trellised with respect to A,
(A5) there exists a Hölder Riemannian metric on M such that ‖av‖ = eχi(a)‖v‖ for every a ∈ A

and for every v ∈ Ei, and
(A6) if Ei 6⊂ TA, then χi 6≡ 0.

Since for an ergodic flow {φt}t∈R, the map φt0 is ergodic for almost every t0 ∈ R, we can replace
Assumption (A3) with the equivalent assumption

(A3′) every 1 parameter subgroup of A contains an ergodic element.

An immediate consequence of these assumptions is that the A action on M is Anosov, i.e.,
there exists some element in A that acts normally hyperbolically on M with respect to the A
foliation. In fact, every element in the complement of the union of the hyperplanes ker(χi), for i
such that Ei 6⊂ TA, is normally hyperbolic. We also point out another immediate consequence.

Lemma 2.3. The trellis is subordinate to the Lyapunov decomposition, i.e., for every i, there
exists some j such that TFi ⊂ Ej.
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Proof. Suppose that TFi ⊂ ⊕j∈JEj where J is the smallest possible set of indices. Pick an
ergodic element a ∈ A. As n → ∞, dan(TFi) converges into Ej1 where χj1(a) is the maximum
value of {χj(a)}J . Similarly, as n → −∞, dan(TFi) converges into Ej2 where χj2(a) is the
minimum value of {χj(a)}J . Because of the recurrence property of the action, continuity of
the Fi, and the assumption that Fi is fixed by A, we are presented with a contradiction unless
j1 = j2, i.e., unless TFi ⊂ Ej for some j.

The main result of this section is that the geometric structures on M have significantly greater
regularity than initially assumed.

Theorem 2.4. Suppose A = Rk, k ≥ 3, acts on a closed manifold M satisfying Assumptions
(A0) through (A6). Then the trellis T and the Riemannian metric in (A5) are both C∞. In
particular, the C∞ immersions Li(x) → M depend C∞ on the basepoint x in the C∞ topology
on immersions, and each Fi has uniformly C∞ leaves.

Since the proof proceeds through a number of steps, we provide a brief outline. First, we
define a distribution N+

H of TM consisting of a particular collection of stable directions and
show that it is an integrable distribution tangent to a Hölder foliation with C∞ leaves N+

H(x).
By restricting the Hölder metric on M to the leaves of this foliation, we can consider the group
of isometries of a particular leaf. We then show that there exists a subgroup of isometries that
acts simply transitively on N+

H(x). The idea is that certain elements a ∈ A as well as limits of
certain sequences of powers of such an a are isometries between the leaves of N+

H . We continue
by showing that there exists a canonically defined set of these limiting isometries which acts
simply transitively on N+

H(x).
The second step is to consider a larger foliation NH of M with leaves that consist both of

certain stable and unstable directions. We define a new metric on NH(x), and show that its
group of isometries acts transitively. Using Montgomery and Zippin’s work on Hilbert’s Fifth
Problem, we conclude that NH(x) is a homogeneous space of a Lie group. This yields a new
differentiable structure on NH(x) for all x with respect to which the part of the trellis tangent
to NH(x) is automatically smooth on NH(x).

The final step in the proof of Theorem 2.4 is to show thatNH(x) with its differentiable structure
as a homogeneous space smoothly immerses into M via the inclusion NH(x) ↪→ M . Theorem
2.4 then quickly follows. To accomplish this, we use an argument similar to that presented by
Katok and Lewis in [16] where they use the Nonstationary Sternberg Linearization to show that
an a priori topological conjugacy is actually smooth. We note that in light of our assumptions,
we require only a simplified version of Katok and Lewis’ original argument.

2.2. Simply Transitive Groups of Isometries for Stable Subfoliations. Fix some b0 ∈ A
once and for all. Suppose H ⊂ A is a proper vector subspace. Define J +

H = {χi ∈ W(A)|χi(b0) >
0 and H ⊂ ker(χi)}, and set

N+
H =

⊕

χi∈J+
H

Ei.

We can similarly define N−H . Of course, we are most interested in the case where J +
H is not

empty. We shall call kernels of non-zero weights χi weight hyperplanes. Since there are only
finitely many weights, there are also only finitely many weight hyperplanes.

If a ∈ A does not lie on any of the weight hyperplanes, then a is a normally hyperbolic or
regular element. If H is a weight hyperplane then call a ∈ H generic, if for every weight χ,
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χ(a) = 0 implies χ(H) = 0. For a ∈ A, let

E+
a =

⊕

{χi∈W(A),χi(a)>0}
Ei.

We similarly define E−a and E0
a.

Lemma 2.5. Let P ⊂ W(A) be the set of weights which are positive on b0. Then there exist

1. an ordering of P = {χ1, . . . , χr}, and
2. regular elements bi ∈ A, 1 ≤ i ≤ r,

such that E+
b0
∩ E+

bi
=
⊕i

j=1Ej. Hence,
⊕i

j=1Ej forms an integrable distribution tangent to a
Hölder foliation with uniformly C∞ leaves.

Proof. Let P be a two dimensional plane in A which contains b0. Then P is not contained in any
weight hyperplane. Thus, the intersection of any weight hyperplane with P is a one dimensional
line. Let Lχ = P ∩ ker(χ) for every χ ∈ P . These lines divide P into 2r distinct sectors such
that ±b0 6∈ Lχ for every χ ∈ P . Let −B0 be the region in P which contains −b0, and pick B1 to
be a region adjacent to −B0. Pick b1 ∈ B1 to be some regular element. For every 1 < i ≤ r, let
Bi be the unique region adjacent to Bi−1 not equal to Bi−2 (or −B0 if i = 2), and pick bi ∈ Bi

to be some regular element. Note that Br contains b0 so that we may choose br = b0.
Let χi be the element of P such that P ∩ ker(χi) separates Bi−1 and Bi (−B0 and B1 when

i = 1). It follows that b0 and bi lie on the same side of Lχj whenever j ≤ i, and on opposite sides

of Lχj whenever j > i. We therefore conclude E+
b0
∩ E+

bi
=
⊕i

j=1Ej. The final comment follows

from [28, Appendix IV, Theorem IV.1].

Remark 2.6. This proof easily generalizes to produce an ordering of the weights in J +
H , and

regular elements {bi} ∈ A such that E+
b0
∩ E+

bi
∩ N+

H =
⊕i

j=1Ej. In conjunction with the

following lemma, we have that
(⊕i

j=1E
+
bj

)
∩ N+

H is an integrable distribution tangent to a

Hölder foliation with uniformly C∞ leaves. Hence, we can produce a nested sequence of Hölder

foliations L1 ⊂ L2 ⊂ · · · ⊂ N+
H with C∞ leaves such that

(⊕i
j=1E

+
bj

)
∩ N+

H is the distribution

tangent to Li.
Lemma 2.7. Suppose H ⊂ A is a proper linear subspace contained in some weight hyperplane.
There exist regular elements c, d ∈ A such that N+

H = E+
c ∩ E−d . Hence, N+

H (x) is an integrable
distribution tangent to the intersection N+

H(x) = W+
c (x)∩W−

d (x), which forms a Hölder foliation
with C∞ leaves. A similar result holds for N−H .

Proof. Let P be a two dimensional plane containing b0 and some nonzero a ∈ H. Let c = a− εb0

and d = a+ εb0. If ε is small enough then the only weight hyperplane that the line segment from
c to d intersects contains H. In particular, we may assume that c and d are regular.

If µ ∈ W(A) and µ(c) and µ(d) are both greater than 0, we must have µ(a) > 0 since
a = (c+ d)/2. By choice of ε, if µ(a) > 0, then µ(c) and µ(d) are both greater than 0. It follows
that E+

a = E+
c ∩ E+

d , and similarly that E−a = E−c ∩ E−d . In fact, an analogous argument shows
that we can write E0

a = N+
H +N−H + T (A) or E0

a = (E+
c ∩E−d ) + (E−c ∩E+

d ) + T (A) where T (A)
represents the tangent space to the orbit. It follows that N+

H = E−c ∩ E+
d = E+

−c ∩ E+
d .

Consider the restriction of the Hölder metric on M to N+
H(x), and let Isom(N+

H(x)) be the
set of isometries with respect to this metric. By [3], any isometry with respect to this metric

must be at least C1. Denote by Î(N+
H(x)) the subgroup of Isom(N+

H(x)) which preserves the
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tangent bundle for each element of the trellis belonging to N+
H (x), i.e., if φ ∈ Î(N+

H(x)), then
dφx(TFi(x)) = TFi(φ(x)) for every Fi(x) ⊂ N+

H(x). Let I(N+
H(x)) be the connected component

of the identity of Î(N+
H(x)).

Theorem 2.8. Let H ⊂ A be a proper linear subspace contained in some weight hyperplane.
Then I(N+

H(x)) acts simply transitively on N+
H(x) for every x ∈M .

The main step in the proof is to demonstrate the existence of a certain class of isometries.

Proposition 2.9. Let a ∈ H ⊂ A and suppose {nk} is a sequence such that limk→∞ ankx =
y. Then there exist a subsequence {mj} and a map α : N+

H(x) → N+
H(y) such that α(z) =

limj→∞ amj(z) and α is an isometry with respect to the relevant induced Hölder metrics.

We need a few basic lemmas.

Lemma 2.10. Let 〈·, ·〉∞ be a C∞ Riemannian metric on M and consider its restriction to
N+
H(x). Let expx : N+

H (x) → N+
H(x) denote the corresponding exponential map. Then the map

x 7→ expx is C0 in the Ck topology, i.e., if φ : Rl × T → M is a local trivialization for the
foliation, then the composition

Rl dφ→ N+
H (x)

expx→ N+
H(x)

φ−1→ Rl × {x} proj→ Rl

depends C0 in the Ck topology on x.

Proof. Note that N+
H (q) varies C0 in the Ck topology since stable manifolds vary C0 in the

Ck topology and N+
H (x) is a transverse intersection of stable manifolds. Also note that gij =〈

∂
∂xi
, ∂
∂xj

〉
∞

is C0 in q which is a Ck−1 function on each N+
H (q). Choose an embedding q : Dm →

M , and pull back the metric on M to a metric on Dm: (Dm, gq). Then gq is a C∞ metric
on Dm which varies C0 in q in the Ck topology. This implies that the Christoffel symbols Γkij
vary continuously in q. The exponential map is the solution to a differential equation whose
parameters vary continuously in q since the Γkij do. This implies that the solutions vary C0 in q.

Hence the exponential maps vary C0 in q.

The next lemma is an immediate corollary.

Lemma 2.11. Let 〈·, ·〉∞ be a C∞ Riemannian metric on M . There exists a lower bound ι for
the injectivity radius of 〈·, ·〉∞ |N+

H(x) which is independent of x.

Proof. We will need the following slight generalization of the implicit function theorem, really a
parametrized version of the inverse function theorem. We indicate a proof as we were unable to
find a reference.

Proposition 2.12. Let U be open in Rn, V open in Rm, and let F : U × V → Rn be a map
such that every restriction Fv := F |U×{v} is C1 on U with derivative f ′v = Id. Assume further
that the map v 7→ Fv is continuous in the C1-topology. Then there exist open sets U ′ ⊂ U and
V ′ ⊂ V such that for all v ∈ V , Fv is a diffeomorphism from U ′ × {v} onto its image.

Proof. Since the Fv depend continuously in the C1-topology, this follows straight away from the
following standard estimate (cf. [19, p. 124]) of the size of the radius of a ball on which the
maps Fv are diffeomorphisms:

Consider a closed ball B̄r(0) ⊂ U and a number 0 < s < 1 such that | F ′v(z)− F ′v(x) |≤ s for
all x, z ∈ Br(0). Then Fv is a diffeomorphism of Br(1−s)(0) onto its image.
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Applying this proposition to the exponential maps expx : N+
H (x) → N+

H(x), we see that for
all x there is a neighborhood Ux of x such that the expx are diffeomorphisms on balls about
0 in N+

H (x) of fixed radius. Covering the the compact manifold M with finitely many usch
neighborhoods Ux shows that the injectivity radius is bounded below.

Proof of Proposition 2.9. Let 〈·, ·〉 and dx be the induced Hölder metric and corresponding
distance function on N+

H(x). Assume for the time being that for i = 1, 2, there exist xi ∈
N+
H(x), yi ∈ N+

H(y) such that limk→∞ ankxi = yi. Pick a C∞ Riemannian metric 〈·, ·〉∞ on M
such that there exist constants s and S such that

s <

√
〈v, v〉
〈v, v〉∞

< S

for any v ∈ TM . Thus, if c is any curve in N+
H(x) between x1 and x2, we have

s · l∞(c) < l(c) < S · l∞(c),

where l and l∞ are the Hölder and C∞ lengths for the curve c respectively.
Let ι be the bound on the injectivity radius obtained in Lemma 2.11. Pick ε > 0 and suppose

d(x1, x2) < s·ι
1+ε

. Let c be a curve in N+
H(x) from x1 to x2 such that l(c) < (1 + ε)d(x1, x2).

Since a ∈ H implies χi(a) = 0 for every χi ∈ J +
H , by Assumption (A5), we must have that

l(a(c)) = l(c), and hence l(ank(c)) = l(c) < (1 + ε)d(x1, x2). Thus

l∞(ank(c)) ≤ 1

s
l(ank(c)) <

1 + ε

s
d(x1, x2) < ι.

This implies that for every k there exists a vk ∈ N+
H (ank(x1)) such that expank (x1)(vk) = ank(x2)

and

‖vk‖∞ = d∞(ank(x1), ank(x2)) <
1 + ε

s
d(x1, x2).

Pick a subsequence such that vk → v ∈ N+
H (y1). By Lemma 2.10,

expy1
(v) = lim

k→∞
expankx1

(vk) = lim
k→∞

ankx2 = y2.

Thus,

d∞(y1, y2) ≤ ‖v‖∞ ≤ 1 + ε

s
d(x1, x2).

But

‖v‖∞ ≤ 1

S
l(expy1

(tv|t∈[0,1]) ≤ 1

S
d(y1, y2).

Consequently, for any ε > 0 and any x1, x2 ∈ N+
H(x) such that d(x1, x2) < s·ι

1+ε
, we have

d(y1, y2) ≤ S

s
d(x1, x2).(1)

However, for arbitrary x1, x2 ∈ N+
H(x), we can divide any curve between x1 and x2 into a

finite number of pieces each with length less than s·ι
1+ε

. As a result, Equation 1 holds for any

x1, x2 ∈ N+
H(x). By choosing a C∞ Riemannian metric which better approximates the Hölder

metric, we can ensure S
s

is arbitrarily close to 1. Thus if limk→∞ ank(xi) = yi for i = 1, 2, then

d(y1, y2) ≤ d(x1, x2).(2)

Choose {xi} to be a countable dense subset of N+
H(x). Since any a ∈ A preserves the Lyapunov

decomposition, it follows that a maps N+
H(x) to N+

H(ax). Hence, setting {n0
k} = {nk} then, using
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Equation 2 and compactness of M , for every i there exists a subsequence {nil} of {ni−1
k } such

that an
i
l(xi) → yi for some yi ∈ N+

H(y). Using a standard diagonal argument, there exists a
subsequence {mj} of {nk} such that amj(xi)→ yi for every i. Define α(xi) = yi. By Equation 2,
we can extend α continuously to be defined on all of N+

H(x) and such that α(z) = limk→∞ ankz
for all z ∈ N+

H(x).
Summarizing, we have α : N+

H(x) → N+
H(y) which is Lipschitz with Lipschitz constant ≤ 1.

To complete the proof, we will show that α has an inverse which is also Lipschitz with Lipschitz
constant ≤ 1.

Suppose x1, x2 ∈ N+
H(x) and d∞(x1, x2) < ι, i.e., x1 and x2 are within the bounds for the

injectivity radius of the C∞ metric. Let v ∈ Tα(x1)N+
H (y) such that expα(x1)(v) = α(x2). Pick

a sequence of vectors vk ∈ Tank (x1)N+
H (ank(x1)) such that expank (x1)(vk) = ank(x2). By Lemma

2.10, expank (x1)(vk) → α(x2), and by uniqueness of geodesics below the injectivity radius, we
have that the limiting curve must be the geodesic expα(x1) (tv). Hence, we get expank (x1)(tvk)→
expα(x1)(tv). As a result, vk → v, and we may conclude

d∞(α(x1), α(x2)) = lim
k→∞

d∞(ank(x1), ank(x2)).

Therefore, for any x1, x2 ∈ N+
H(x) such that d∞(x1, x2) < ι,

d(α(x1), α(x2)) ≥ s · d∞(α(x1), α(x2)) = s · limk→∞ d∞(ank(x1), ank(x2))

≥ s
S

limk→∞ d(ank(x1), ank(x2)) = s
S
d(x1, x2).

Let ε = ι
2S

, then if d(x1, x2) < ε, we have d∞(x1, x2) < ε · S ≤ ι
2
, and therefore d(αx1, αx2) ≥

s
S
d(x1, x2). Now fix δ > 0, and pick a C∞ Riemannian metric so that s

S
> 1− δ. The argument

above shows that there exists an ε > 0 such that

d(x1, x2) < ε implies d(α(x1), α(x2)) ≥ (1− δ)d(x1, x2).(3)

In particular, this shows that α is locally injective: if d(x1, x2) < ε, then αx1 6= αx2. Using
Invariance of Domain [8, Corollary 18-9], α is an open map and is therefore a local homeomor-
phism.

Let Br(x) and Sr(x) be the r-ball and the r-sphere in the Hölder metric about x, and let
ζ = ε(1− δ)/3. We claim

Bζ(α(x1)) ⊂ α(Bε/2(x1))(4)

for any x1 ∈ N+
H(x). Suppose y ∈ Bζ(α(x1)), and let γ(t), t ∈ [0, 1] be a path from α(x1) to

y lying inside Bζ(α(x1)). Since α(x1) = γ(0), the set {t|γ(t) ∈ α(Bε/2(x1)} is nonempty. Let
t0 be the supremum of this set. Since α is a local homeomorphism, t0 > 0. Pick tn → t0 and
xn ∈ Bε/2(x1) such that γ(tn) = α(xn). Passing to a subsequence, we may assume that xn → x′

as n→∞. Then γ(t0) = α(x′). By Equation 3, we have Bζ(α(x1))∩α(Sε/2(x1)) is empty. Hence
x′ ∈ Bε/2(x1). Since α is a local homeomorphism, this yields a contradiction unless t0 = 1. This
proves Equation 4.

Since Equation 4 holds for all x1 ∈ N+
H(x), it follows α is a closed map. Since N+

H(x) is
connected, α must be surjective. Equation 3 shows that α−1(y1) is discrete for all y1 ∈ N+

H(y),
and with Equation 4, it is elementary to show that α is actually a covering map. We now claim
that N+

H(y) is simply connected. To see this, note that for appropriate n, bn0 maps the ball of
any radius in N+

H(y) into a ball of arbitrarily small radius in N+
H(bn0 (y)). It follows that N+

H(y)
is a monotone union of open cells. That N+

H(y) is simply connected now follows from [2].
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Since N+
H(y) is simply connected, it follows that α is a homeomorphism, and therefore invert-

ible. Equations 3 and 4 together now yield

d(y1, y2) < ζ implies d(y1, y2) ≥ (1− δ)d(α−1y1, α
−1y2).(5)

Using the triangle inequality, we can obtain Equation 5 for all y1, y2 ∈ N+
H(y), i.e., α−1 is a

Lipschitz map with Lipschitz constant ≤ 1
1−δ . As δ > 0 can be chosen arbitrarily small, we

conclude α is an isometry.

Proof of Theorem 2.8. For almost every x ∈ M , there exists a ∈ H such that the a orbit of x
is dense. We will first prove the result for such an x, and then complete the proof for arbitrary
points in M . So, we assume that a ∈ H and x ∈ M are chosen so that the a orbit of x is
dense. Then for every y ∈ N+

H(x), there exists some sequence {nk} such that ank(x) → y. By
Proposition 2.9, there exists some isometry α of N+

H(x) such that α(x) = y, i.e., Isom(N+
H(x))

is transitive on N+
H(x). Since N+

H(x) is finite dimensional, locally compact, connected and
locally connected, this transitive group of isometries is a Lie group [21]. Hence, there exists
a C∞ differentiable structure on N+

H(x) as a homogeneous space. By [3], these isometries are
actually C1 with respect to the original differentiable structure, and by [21, Section 5.1], it
follows that the C∞ differentiable structure on N+

H(x) as a homogeneous space is C1 equivalent
to the original differentiable structure. Let g(y, v; t) denote the geodesic (with respect to the
C∞ differentiable structure on N+

H(x) as a homogeneous space) through y with initial velocity
v. Since the homogeneous metric on each leaf is the restriction of a Hölder metric on all of M ,
it follows that g varies continuously in y. Consequently, there exists some ι > 0 such that if
〈v, v〉 < ι, then for all y ∈ M , g(y, v; t) is defined and is the unique length minimizing geodesic
for all |t| < 1.

Let La(x, y) be the set of isometries from N+
H(x) to N+

H(y) which can be written as a limit
of {ank} for some sequence {nk}. Then La(x, x) is transitive on N+

H(x). We wish to show first

that La(x, x) ⊂ Î(N+
H(x)). To do this, suppose that α ∈ La(x, x) and α = limk→∞ ank . Let

x, y ∈ N+
H(x) such that d(x, y) < ι. Then there exists a unique v ∈ N+

H (x) such that g(x, v; t)
is the unique length minimizing curve from x to y. Let vk = dank(v), so that ank(g(x, v; t)) =
g(ankx, vk, t). Since α(g(x, v; t)) is a length minimizing curve from α(x) to α(y), it follows that
there exists w ∈ N+

H (α(x)) such that α(g(x, v; t)) = g(α(x), w; t). Since g varies continuously
in x, we must have limk→∞ vk = w. Since the derivative of an isometry is determined by how
geodesics get mapped, we conclude that dα = limk→∞ dank . Since a preserves TFi for every i,
and TFi varies continuously, it follows that α does as well. In other words, La(x, x) ⊂ Î(N+

H(x)).

Note that Î(N+
H(x)) is a closed subgroup of Isom(N+

H(x)) since the elements of Isom(N+
H(x))

are C1. Hence Î(N+
H(x)) is a Lie group, and acts transitively on N+

H(x). Since N+
H(x) is

connected, the connected component I(N+
H(x)) also acts transitively on N+

H(x). Indeed, the
orbits of I(N+

H(x)) are open in N+
H(x), hence closed and by connectedness equal N+

H(x).
Suppose that φ ∈ I(N+

H(x)) fixes x. Since φ preserves each TFi, all of which are one di-
mensional, and I(N+

H(x)) is connected, dφ must be the identity. Hence, φ is the identity and
I(N+

H(x)) acts without isotropy on N+
H(x).

To complete the proof consider an arbitrary z ∈ M . As in the proof of Proposition 2.9, the
density of the a orbit through x implies there exists an isometry of N+

H(x) with N+
H(z), i.e.

L(x, z) is nonempty. Using the argument above, we may conclude that for any θ ∈ L(x, z) and
φ ∈ L(x, x), θφθ−1 ∈ I(N+

H(z)). The result now follows.
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Remark 2.13. Later we shall need to make use of the fact that this argument applies when
M is the fiber of some bundle X → B. More specifically, assume that A acts via bundle
automorphisms on the bundle X → B with compact fibers M satisfying Assumptions (A2) and
(A3). If, in addition, the action is trellised with respect to A in the direction of the fibers and
there exists the appropriate A equivariant Hölder Riemannian metric on each fiber, then our
argument still holds. The key ingredients are density of a orbits in X and compactness of the
fiber M . Compactness of the base space is irrelevant.

2.3. Unions of Stable and Unstable Foliations. Having identified the structure of certain
types of stable submanifolds, we will now attempt to do the same for a class of more general
sets. To begin, we present some necessary technical facts.

Lemma 2.14. Let c ∈ A be regular, let d−c be the leafwise distance for the W−
c foliation, and

define W−
c,ε(x) = {y ∈ W−

c (x)|d−c (x, y) < ε}.
1. There exists ε > 0 such that for every x, y ∈ M , the intersection of W 0+

c,ε (y) ∩ W−
c,ε(x)

consists of at most a single point, called [x, y]c.
2. There exists δ > 0 such that if d(x, y) < δ, then W 0+

c,ε (y) ∩W−
c,ε(x) = {[x, y]c}.

3. There exists δc > 0 such that if d(x, y) < δc, then d(x, [x, y]c), d(y, [x, y]c) <
ε

m(c)
, where

m(c) is the maximal expansion of dc on TM with respect to the Hölder metric.

Proof. See Proposition 6.4.13 in [14] and Theorem 6.1.9 in [9].

Lemma 2.15. If c1, c2 ∈ A are two regular elements, and a is a positive linear combination of
c1 and c2, then there exists ε > 0 such that for every z ∈ W−

c1,ε
(x)∩W−

c2,ε
(x), there exist constants

C > 0 and λ > 0 so that d(anz, anx) < Ce−nλd(z, x).

Proof. Without loss of generality we may assume a = c1 + c2 by passing to suitable roots of
c1 and c2 in A. Since the ci are regular, there exist constants ε > 0, Ci > 0 and λi > 0 such
that for every x ∈ M and for every y ∈ W−

ci,ε
(x), d(cni y, c

n
i x) < Cie

−nλid(y, x). Since c1 and
c2 commute, c1W

−
c2

(x) = W−
c2

(cn1x). Hence, letting C = max(C1, C2) and λ = min(λ1, λ2) the
lemma follows.

Given an a ∈ H, there exist normally hyperbolic a1, a2 nearby such that E−a (x) = E−a1
(x) ∩

E−a2
(x) and E+

a (x) = E+
a1

(x) ∩ E+
a2

(x), and N±H (x) is the neutral direction (cf. proof of Lemma
2.7), i.e. N−H (x) = W−

a1
(x) ∩W+

a2
(x) ∩W−

b0
(x) = W−

a1
(x) ∩W+

a2
(x). It is also clear that E−ai(x)

is tangent to the foliation W−
ai

(x) and similarly for E+
ai

(x). As a result, we have that E−a (x) is
tangent to the foliation W−

a1
(x)∩W−

a2
(x), and similarly for the unstable directions. In particular,

E+
a (x) is integrable with integral foliation W+

a (x) defined to be W+
a1

(x) ∩W+
a2

(x). Note that by
Lemma 2.15, W+

a (x) is indeed contracted by a, because both a1 and a2 contract W+
a (x) and a

can be written as a positive linear combination of a1 and a2.

Lemma 2.16. Let c ∈ A be regular, and choose δb0 as in Lemma 2.14.3. Suppose y ∈ W−
b0

(x)

with d(x, y) < δb0. Then [x, y]c ∈W−
b0

(x).

Proof. First we claim that b0[x, y]c = [b0x, b0y]c if d(x, y) < δb0 . Clearly b0[x, y]c ∈ W−
c (x) ∩

W 0+
c (y), and by choice of δb0 , we have d(b0x, [x, y]c), d(b0y, [x, y]c) <

ε
m(b0)

m(b0) = ε. So, by

uniqueness, our claim follows.
Note that y ∈ W−

b0
(x) implies d−c (b0x, b0y) < d−c (x, y). Since locally we can bound d(b0x, b0y)

in terms of d−c (b0x, b0y), we have that d(b0x, b0y) < d(x, y). This allows us to repeat the argu-
ment, yielding bn0 [x, y]c = [bn0x, b

n
0y]c. As bn0x and bn0y approach each other, it follows [bn0x, b

n
0y]c

approaches bn0x, i.e., [x, y]c ∈ W−
b0

(x).
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Lemma 2.17. Suppose a ∈ H. There exists ∆ > 0 such that if d(anx, any) < ∆ for all n ∈ Z,
then [x, y]b0 ∈ N−H(x) and y ∈ AN+

H([x, y]b0).

Proof. Recall that N−H(x) = W−
a1

(x) ∩ W+
a2

(x) ∩ W−
b0

(x). Without loss of generality we may
assume that a1 and a2 are chosen so that a is a positive linear combination of a2 and b0, but not
a positive linear combination of a1 and b0. Let m = max(m(b0),m(a1),m(a2)). Choose ε so that
ε/m < min(δb0 , δa1 , δa2). For w sufficiently close to z, define

S(w) = max{d(w, [w, z]b0), d(w, [w, z]a1), d(w, [w, z]a2), d(z, [w, z]b0), d(z, [w, z]a1), d(z, [w, z]a2)}.
By Lemma 2.14, we can pick ∆1 < ε/m so that if d(w, z) < ∆1, then S(w) < ε/m. Next, pick
∆ < ε/m so that if d(w, z) < ∆, then S(w) < ∆1.

Let z = [x, y]b0 . First, we claim that z ∈ W−
a1

(x). In particular, we will show that if z1 =
[x, z]a1 , then z = z1. Note by Lemma 2.16, z1 ∈ W−

b0
(x) = W−

b0
(z). However, by definition, z1 ∈

W 0+
a1

(z). Since b0 is regular, we may assume that z1 ∈ W+
a1

(z). Consequently, by Lemma 2.15,
z1 ∈ W+

a (z). Now, since {d(anx, any)} is bounded by ∆, {d(anx, anz)}must be bounded by ∆1 <
ε
m

, and we may conclude that [anx, anz]a1 is defined for all n, and that {d([anx, anz]a1 , a
nz])} is

bounded by ε
m

. By the uniqueness of canonical coordinates, we must have [anx, anz]a1 = anz1.
Thus {d(anz1, a

nz)} is bounded by ε
m

for all n ∈ Z.
As z1 ∈ W+

a (z), the leafwise distance between z1 and z grows under positive iterates of a,
unless z = z1. Since the foliations are Hölder, there exists a neighborhood of x in the leaf in
which the ambient distance is a continuous function of the leafwise distance. By shrinking ε
(and hence ∆) if necessary, we may assume that the ε/m-ball about x lies in this neighborhood.
Thus, if z1 ∈ W+

a (z) then there exists some n so that d(anz, anz1) > ε/m unless z = z1. We are
forced to conclude that z = z1.

Now let z2 = [x, z]a2 . By definition, z2 ∈ W−
a2

(x), and since z ∈ W−
b0

(x), Lemma 2.16 im-

plies z2 ∈ W−
b0

(x). Thus z2 ∈ W−
a (x). As above, we see that anz2 = [anx, anz]a2 , and that

{d(anz2, a
nx)} is bounded by ε

m
for all n ∈ Z. However, since z2 ∈ W−

a (x), the distance between
x and z2 will be expanded under negative iterates of a, unless x = z2. Again, this contradiction
forces x = z2. We conclude z ∈ W−

a1
(x) ∩W+

a2
(x) ∩W−

b0
(x) = N−H(x).

The second claim follows in a similar manner.

Define PH to be the set of paths in M which are piecewise tangent to N+
H or A · N−H . More

explicitly, if γ : [0, 1]→ M is a path, then γ ∈ PH if there exists a sequence 0 = t0 < t1 < · · · <
tk = 1 such that γ|[ti,ti+1] is C1, γ|[ti,ti+1] ⊂ N+

H(ti) or γ|[ti,ti+1] ⊂ A ·N−H(ti). Next, we define

NH(x) = {y ∈M | there exists γ ∈ PH with γ(0) = x and γ(1) = y}.
We intend to demonstrate the existence of a smooth differentiable structure on NH(x). The
first step in this direction is to define a distance function on NH(x). For x1, x2 ∈ NH(x) define

d̂(x1, x2) to be the infimum of the lengths measured via the Hölder metric of any path γ ∈ PH
with γ(0) = x1 and γ(1) = x2. Note that d̂(x1, x2) ≥ d(x1, x2). It is then a simple exercise to
prove

Lemma 2.18. d̂ defines a metric on NH(x).

Proposition 2.19. The topology generated by d̂ makes NH(x) a connected, locally connected,
locally compact, finite dimensional, locally simply connected topological space.

Proof. Note that any γ ∈ PH is continuous under d̂. Connectedness and local connectedness
thus follow.
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To see that the topology is locally compact, consider a sequence {xn} ⊂ NH(x) such that

d̂(xn, x) ≤ ζ for some sufficiently small ζ. Since d̂ ≥ d, we may assume without loss of generality
that xn converges to some y with respect to d. To establish local compactness, we first show
that y ∈ NH(x) and second show that d̂(xn, y)→ 0 as n→∞. Then d̂(x, y) ≤ ζ, and the ζ-ball
about x is compact.

If ζ is chosen sufficiently small, then Lemma 2.17 implies that [x, xn]b0 ∈ N+
H(x)∩A ·N−H(xn).

Further, we have that d([x, xn]b0 , [x, y]b0)→ 0 as n→∞. Since the closed ball about x in N+
H(x)

is closed in the Hölder metric, we conclude [x, y]b0 ∈ N+
H(x). Also, since locally the leaves of

A ·N−H are continuous in a sufficiently small neighborhood, the fact that [x, xn]b0 ∈ A ·N−H(xn)
implies that [x, y]b0 ∈ A · N−H(y). Hence [x, y]b0 ∈ N+

H(x) ∩ A · N−H(y) from which we conclude
y ∈ NH(x).

Let δb0 be as in Lemma 2.14.3. Since {xn} ⊂ NH(x), Lemma 2.17 implies there exists some
ξ such that if d(xk, x) < ξ, then d(anx, anxk) < δb0/2 for all n ∈ Z. Similarly, since we may
pick ζ < ξ/2, d(anx, any) < δb0/2 for all n ∈ Z. It follows that for all xk sufficiently close to y,
d(anxk, a

ny) < δb0 for all n ∈ Z. As a consequence of Lemma 2.17, [xk, y]b0 ∈ N+
H(xk)∩A ·N−H(y)

for xk sufficiently close to y. Since the leaves of the N+
H foliation are uniformly Hölder continuous,

we have that d̂(xk, [xk, y]b0) → 0 as n → ∞. Similarly, using the continuity of [·, ·]b0 , we have

d̂([xk, y]b0 , y) → 0 as n → ∞. Thus d̂(xk, y) → 0 as n → ∞, and local compactness of the
topology results.

To see that the topology is finite dimensional, consider a closed ball about x in NH(x). Because

d̂ ≥ d, the canonical embedding of such a ball into M is continuous. Thus, the image of a closed
ball of sufficiently small radius about x is homeomorphic onto its image. Since any compact
subset of Euclidean space is finite dimensional, it follows that NH(x) is finite dimensional.

To see that the topology is locally simply connected, note that Lemma 2.17 implies that NH(x)
has a local product structure with respect to N+

H(x) and AN−H(x). Hence, it must be locally
simply connected.

Proposition 2.20. With respect to the metric d̂, there exists a transitive set of local isometries
on NH(x) for almost every x. Hence, NH(x) is a locally homogeneous space for every x.

Proof. The proof is essentially the same as for Proposition 2.9 with minor modifications. We
begin by considering an x ∈M which lies in the conull set of points is M such that there exists
a ∈ H so that the a-orbit of x is dense. First, note that if γ ∈ PH then a(γ) ∈ PH, and therefore
α(γ) ∈ PH. The ergodicity of a ∈ A implies that for every y ∈ NH(x), there exists an α such
that α(x) = y. Second, since NH(x) need not be simply connected, the proof of Proposition
2.9 implies only that α is a covering map and not necessarily a homeomorphism. However, the
rest of the proof shows that α is a local isometry. By lifting α to ÑH(x), the universal cover of
NH(x), we obtain a map α̃. The arguments of Proposition 2.9 now imply that α̃ is an isometry
with respect to the distance function lifted from NH(x). Since the deck transformations are also
isometries, we conclude that ÑH(x) admits a transitive group of isometries.

That we can write ÑH(x) ∼= L/Lx follows from the work of Montgomery and Zippin [21].
Consequently, NH(x) is a locally homogeneous space.

For an arbitrary point y ∈ M , we find a sequence {nk} so that for x as above, we have
ankx → y. Using the same limiting argument from the proof of Proposition 2.9, we obtain a
local isometry β : NH(x) → NH(y) which lifts to an isometry β̃ : ÑH(x) → ÑH(y). Hence, we
can write ÑH(y) as a homogeneous space, and NH(y) as a locally homogeneous space.
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For all y ∈ NH(x), we have N+
H(y) ⊂ NH(x). The following proposition shows that this

inclusion is well behaved.

Proposition 2.21. For every y ∈ NH(x), N+
H(y) is a C∞ submanifold of NH(x) (with respect to

its differentiable structure as a homogeneous space) which gives rise to an L-invariant foliation.

Proof. Let iy : N+
H(y) ↪→ NH(x) be the canonical inclusion. Recall that the leaves of N+

H
admit distance functions defined by restriction of the ambient Hölder metric, and NH(x) has the

distance function d̂ defined above. With respect to these distances, iy is distance non-increasing,
thus Lipschitz, and therefore almost everywhere differentiable. Using transitivity of I(N+

H(y))
on N+

H(y), for every z ∈ N+
H(y) there exists a distribution tangent to N+

H . Since this distribution
is invariant under the action of L, it must be C∞. The proposition now follows.

Remark 2.22. We interpret Propositions 2.20 and 2.21 as providing a smooth differentiable
structure on NH(x) with respect to which the Lyapunov spaces lying in NH(x) vary smoothly
with respect to each other. Of course, it remains to be seen whether this new differentiable
structure has any relation to the original differentiable structure on M .

2.4. Smooth Conjugacy. The next goal in our exposition is to show that the differentiable
structure on NH(x) as a locally homogeneous space is C∞ equivalent to the original differentiable
structure on M . To do this we will adapt an argument by Katok and Lewis [16]. The first step
in this argument is to use the Nonstationary Sternberg Linearization to construct a smooth
conjugacy between the one dimensional foliations Fi.

Let L = M × R be the trivial line bundle over M . Fix some smooth Riemannian metric on
M , and define Ei : L →M so that Ei(x, t) is the point on Fi(x) which is t units from x measured
with respect to this smooth Riemannian metric. We may have to pass to a finite cover of M to
ensure that there exists an orientation for Fi for all i. We note that Ei varies smoothly with t,
and by Assumption (A4), varies Hölder with x.

For any a ∈ A define

â : L → L so that â(x, t) = (ax, eχi(a)t),

and also define

ã : L → L so that ã(x, t) = (ax, E−1
i (ax, aEi(x, t))),

where E−1
i is the leafwise inverse. Next define H : L → L so that H(x, t) = (x, dH(x, Ei(x, t)))

where dH is the distance measured with respect to the Hölder metric.
Using the Nonstationary Sternberg Linearization [16], there exists a unique reparameterization

G : L → L, (x, t) 7→ (x,Gx(t)) such that

1. each Gx is a C∞ diffeomorphism of R,
2. Gx(0) = 0, G′x(0) = 1 for every x ∈M ,
3. x 7→ Gx is a continuous map M → C∞(R), and
4. Gã(x, t) = âG(x, t) for every x ∈M, t ∈ R.

As in [16, Lemma 4.8], we remark that since A is abelian, the uniqueness property of G ensures
that G simultaneously linearizes the transformations on L for every a ∈ A. We claim that H
satisfies the same equivariance property as G, i.e., Hã = âH.

Hã(x, t) = H(ax, E−1
i (ax, aEi(x, t))) = (ax, dH(ax, Ei(ax, E−1

i (ax, aEi(x, t)))
= (ax, dH(ax, aEi(x, t)) = (ax, eχi(a)dH(x, Ei(x, t)))
= â(x, dH(x, Ei(x, t)) = âH(x, t).
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Let K = GH−1. Then we have

Kâ = GH−1â = GãH−1 = âGH−1 = âK.

Hence, if K(x, t) = (x,Kx(t)), then we have

eχi(a)Kx(t) = Kax(e
χi(a)t).

However, there exists some j such that TFi ⊂ Ej. So, if we choose a ∈ ker(χj), then Kx(t) =
Kax(t). Note that the map κ : M → CHölder(R), κ(x) = Kx is a continuous map into a countably
separated space. By Assumption (A3), the action of the one parameter subgroup of A through a
is ergodic. Hence κ must be constant, i.e., for every x ∈M , Kx(t) = K(t) for some Hölder map
K : R → R. It follows that K(eχj(a)t) = eχj(a)K(t) for all t ∈ R and any a ∈ A. If a is regular,
then it is easy to see that K must be C∞ for all t except perhaps 0. However, smoothness at
0 follows exactly as in [15]. Since H−1

x = G−1
x K determines the inclusion of iH(x) along Fi, we

have just proved

Proposition 2.23. Suppose TFi ⊂ Ej, H ⊂ ker(χj), and iH(x) : NH(x)→ M is the inclusion
map. Then

1. iH(x) is C∞ along Fi(y) for every y ∈ NH(x), and
2. the map y 7→ iH(x)|Fi(y) is uniformly continuous in the C∞ topology on C∞(R,M) where y

ranges over NH(x).

By a similar argument as for K we see that K−1 is smooth, which implies that K is a
diffeomorphism. Hence we get

Corollary 2.24. Let H ⊂ A be a linear subspace. Then iH(x) : NH(x)→M is a C∞ immersion
for every x ∈M .

The proof of this corollary is similar to an argument due to Katok and Lewis [16], which
requires the following result of Journé [13].

Lemma 2.25. Let M be a C∞ manifold and L and L′ two Hölder foliations, transverse, and
with uniformly C∞ leaves. If a function f is uniformly C∞ along the leaves of the two foliations,
then it is C∞ on M .

Proof of Corollary 2.24. Using Remark 2.6, there exists a nested sequence of Hölder foliations
L1 ⊂ L2 ⊂ · · · ⊂ N+

H(x) with uniformly C∞ leaves such that
⊕i

j=1E
+
bj
∩ N+

H is the distribution

tangent to Li. Using the arguments following Lemma 4.11 in [16], we can apply Lemma 2.25
inductively to see that iH(x) is smooth along each leaf of Li for every i, and therefore is C∞

along N+
H(y) for every y ∈ NH(x). An analogous argument allows us to conclude that iH(x) is

C∞ along N−H(y) for every y ∈ NH(x). Next, since iH(x) must be C∞ along the A orbit, Lemma
2.25 implies that iH(x) is smooth along the weak unstable leaves in NH(x). A final application
of Lemma 2.25 to the weak unstable and stable foliations shows that iH(x) is C∞ on all of
NH(x).

Proof of Theorem 2.4. The proof is essentially the same as for Corollary 2.24. Let χ and λ be two
distinct weights for A. Since k ≥ 3, there exists a nontrivial linear subspace H ⊂ A such that
H ⊂ ker(χ)∩ ker(λ). Thus, the distributions Eχ and Eλ both lie in the distributions tangent to
NH. Corollary 2.24 implies that Eχ varies smoothly with respect to the foliation corresponding
to Eλ for any other weight λ. Using Lemma 2.5 and applying Lemma 2.25 inductively, it follows
that the distribution Eχ varies smoothly along the stable foliation for b0. Again, a similar
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argument can be used to show that Eχ varies smoothly along the weak unstable foliation for b0,
and, with yet another application of Lemma 2.25, we have that Eχ varies smoothly along of M .

To see that the Hölder metric is actually C∞, choose a section of the frame bundle which is
orthonormal with respect to this metric at every point. Using Proposition 2.23.1 and the fact
that the Eχ now all vary smoothly, it follows that this section, and hence the metric, must be
smooth.

3. Actions of Semisimple Groups and Their Lattices

We now turn our attention to the primary purpose of this paper, Anosov actions of semisimple
groups and their lattices on closed manifolds. By considering actions of abelian subgroups we
can apply results from Section 2 to prove Theorems 1.2 and 1.5.

3.1. Trellised Actions of Semisimple Lie Groups. Let G be a connected semisimple Lie
group without compact factors with real rank at least three, and let A ⊂ G be a maximal R-split
Cartan subgroup. The following two results, taken from [7], allow us to apply our results from
Section 2.

Theorem 3.1. Suppose G is a connected semisimple Lie group of higher rank without compact
factors such that each simple factor of G has R-rank at least 2. Suppose that G acts on a closed
manifold M such that the G action is Anosov and volume preserving. Let H be the Hölder
algebraic hull of the G action on P →M , the G-invariant reduction of the derivative action on
the full frame bundle over M . Then, by possibly passing to a finite cover of G, there exist

1. a normal subgroup K ⊂ H,
2. a Hölder section s : M → P/K, and
3. a homomorphism π : G→ H/K,

such that s(gm) = g.s(m).π(g)−1 for every g ∈ G and every m ∈M .
Moreover, if the irreducible subrepresentations of π are multiplicity free, then K ⊂ H is a

compact normal subgroup.

Remark 3.2. Note that the Hölder algebraic hull H may be viewed as a subgroup of SL(n,R).
By [7, Theorem 3.1], H is reductive with compact center. Using this, and the fact that K is
normal, we can produce a homomorphism (which by abuse of notation we also call) π : G →
H ⊂ SL(n,R) which modulo K factors to π. This is the representation to which we refer in the
above theorem. See [7, Remark 3.5].

Definition 3.3. We call a volume preserving Anosov action multiplicity free if the irreducible
subrepresentations of π are multiplicity free.

Corollary 3.4. Let G, P , M , and H be as in Theorem 3.1. Assume that the action is multi-
plicity free so that K is compact. Let A be a maximal R-split Cartan of G, with {χ} the set of
weights of π with respect to A. There exist

1. a K-invariant Hölder Riemannian metric, ‖ · ‖K, on M , and
2. a K-invariant Hölder decomposition TM =

⊕
Eχ

such that for every v ∈ Eχ and a ∈ A
‖av‖K = eχ(log a)‖v‖K .

Combining Corollary 3.4 with Theorem 2.4 we obtain
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Corollary 3.5. Suppose G is a connected semisimple Lie group of higher rank without compact
factors such that the R-rank of G is at least 3. Suppose that G acts on a closed manifold M such
that the G action is Anosov and volume preserving. Let A be a maximal R-split Cartan of G,
with {χi} the set of weights of π with respect to A. If the action of G on M is multiplicity free
and trellised with respect to A, then there exist

1. a C∞ Riemannian metric, ‖ · ‖, on M , and
2. a C∞ decomposition TM = TA

⊕
Ei, where TA is the tangent space to the A orbit,

such that for every v ∈ Ei and a ∈ A
‖av‖ = eχi(log a)‖v‖.

Moreover, if we assume the trellis consists of one dimensional strongest stable foliations, i.e.
the action is Cartan, then this result holds when the real rank of G is at least two.

Proof. The result follows immediately by applying Theorem 2.4, hence we need only check that
Assumptions (A0) through (A6) from Section 2 hold. Any Anosov action satisfies (A6). As-
sumption (A0) holds since Anosov actions are locally faithful by definition. Assumption (A2)
holds by hypothesis. Since A ⊂ G is a noncompact subgroup, Assumption (A3) follows from
Moore’s Ergodicity Theorem. Finally, Corollary 3.4 ensures that Assumptions (A1), (A4) and
(A5) hold.

For the Cartan case, we use the smoothness of the one dimensional strongest stable foliations
inside a stable manifold, cf. proof of Theorem 3.12.

Corollary 3.6. Assume the conditions of Corollary 3.5. Then, by possibly passing to a finite
cover of M , there exists a C∞ totally π-simple framing of M .

More specifically, let P →M be the principal H bundle which is the G-invariant reduction of
the derivative action on the full frame bundle over M as in Theorem 3.1. If M ′ → M is the
finite cover, and if P ′ →M ′ is the principal H bundle over M ′ lifted from P , then there exists a
C∞ section φ of P ′ →M ′ such that φ(gm) = g.φ(m).π(g)−1 for all g ∈ G and for all m ∈M ′.

Proof. Let M ′ →M be the finite cover such that for each i the foliation Fi is orientable. For each
i = 1, . . . , n, define a vector field Xi on M ′ such that Xi(x) is an element of TFi(x) with unit
length measured with respect to the C∞ Riemannian metric from Corollary 3.5. Smoothness of
the foliations of the trellis and the metric assure us that each Xi is indeed C∞. Hence, we have
a C∞ section φ of the full frame bundle P ′ →M ′.

Let p : P ′ → P ′/K be the usual projection, where K is as in Corollary 3.4. From the proofs
of Theorem 3.1 and Corollary 3.4 in [7], it follows that φ projects to a totally π-simple section
s′ : M ′ → P ′/K induced from s : M → P/K, i.e., p ◦ φ = s′. It follows that φ may be
constructed from s′ along with some smooth cocycle κ : G×M → K. More explicitly, we have
φ(gx) = dg.φ(x).π(g)−1.κ(g, x). To show that φ is totally π-simple, and thereby completing the
proof, we need to demonstrate that κ is trivial.

First, note that κ : A ×M → K must be trivial. Without loss of generality, we may assume
that π(A) ⊂ H ⊂ SL(n,R) is a diagonal subgroup, and, in particular, that each entry along
the diagonal of π(a) has the form eχl(a) for some weight χl. Since TFi ⊂ Ej for some weight
χj, Assumption (A5) implies that da(Xi(x)) = eχj(a).Xi(ax). By construction of φ, we have
φ(ax) = da.φ(x).π(a)−1, forcing κ(a, x) = 1 for all a ∈ A and all x ∈M .

From the cocycle identity, for any g ∈ G, we have κ(a−ngan, x) = κ(g, anx). Suppose that
u ∈ G is unipotent. We can find a ∈ A so that a−nuan → 1 as n → ∞. By continuity of κ,
we have κ(a−nuan, x) → 1 as n → ∞. Now, if x ∈ M is a recurrent point, there exists some
subsequence {nk} such that ankx→ x as k →∞. Hence, as k →∞, κ(u, ankx)→ κ(u, x). Since
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κ(a−nuan, x) = κ(u, x), we conclude κ(u, x) = 1. But the set of recurrent points in M is dense,
so continuity of κ forces κ to be trivial for any unipotent element. As G is generated by this set,
it follows that κ is the trivial cocycle.

Proof of Theorem 1.2. The proof is completed by applying arguments from [25, Section 3] and
Feres [4]. As an aid to the reader, we will briefly summarize these arguments here.

From Corollary 3.6, we have a C∞ framing for M ′. The first step is to show that this fram-
ing, viewed as a collection of non-vanishing C∞ vector fields, generates a finite dimensional
Lie algebra. Let {Xi} be the C∞ vector fields determined by the framing, and also iden-
tify TxM ∼= Rn via this framing in the standard way. Define f(x) : Rn × Rn → Rn so that
f(x)((u1, . . . , un), (v1, . . . , vn)) = (w1, . . . , wn) where[∑

i

uiXi(x),
∑
i

viXi(x)

]
=
∑
i

wiXi(x).

As defined, f(x) : Rn × Rn → Rn is bilinear, i.e., f(x) ∈ BL(n,R). Using π : G → H from
Corollary 3.6, we obtain a homomorphism Ξ : G→ GL(BL(n,R)) defined so that [Ξ(g)f ](u, v) =
π(g).f(π(g)−1u, π(g)−1v). Note, then, that f(ρ(g)x) = [Ξ(g)f ](x).

By ergodicity of the action, and using arguments of Furstenberg [5] (see also [29, Section 3.2]),
it is shown that f is G-invariant, i.e., Ξ(g)f = f . Ergodicity of the action and continuity of f
thus force f to be constant. Hence, f(x) = f(ρ(g)x) for almost every x ∈ M ′. Equivalently,
there exist constants Ck

i,j such that [Xi, Xj] =
∑

k C
k
i,jXk, thereby producing the structure of a

finite dimensional Lie algebra.
The proof is now completed using Proposition 3.3 in [4].

Proof of Theorem 1.4. The proof follows exactly as for Theorem 1.2, noting that Corollaries 3.5
and 3.6 hold in this situation as well.

3.2. Cartan Actions of Lattices. In this subsection we consider actions of a lattice Γ ⊂ G
on a closed manifold M . In particular, we consider Cartan actions of such lattices [10].

Definition 3.7. Let A be a free abelian group and let {γ1, . . . , γn} be a set of generators. A
Cr action ρ : A×M →M is called an abelian Cartan action if

1. for each i, ρ(γi) is an Anosov diffeomorphism,
2. for each i, ρ(γi) has a one dimensional strongest stable foliation F ssi ,
3. the tangential distributions TF ssi are pairwise transverse with internal direct sum TF ss1 ⊕
· · · ⊕ TF ssn ∼= TM .

Definition 3.8. Let ρ : Γ×M →M be an Anosov Cr action. Then ρ is called a Cartan (lattice)
action if there is a subset of commuting hyperbolic elements {γ1, . . . , γn} ⊂ Γ which generate an
abelian subgroup A such that the restriction of ρ|A is an abelian Cartan Cr action on M .

Remark 3.9. Since the collection of strongest stable foliations is one dimensional for a Cartan
action, it follows that a Cartan action must be multiplicity free.

Example 3.10 (Cartan Actions). Consider the standard action of SL(n,Z) on the n-torus Tn ∼=
Rn/Zn. The superrigidity representation π obtained from Theorem 3.11 must be the standard
representation of SL(n,R) on Rn. Hence, each Lyapunov distribution is one dimensional, and, in
fact, can be made the strongest stable distribution for some element in a fixed Cartan subgroup
in SL(n,Z). It follows that the action is Cartan. See [6] for related results concerning actions
of SL(n,Z) on a compact n dimensional manifold. For additional examples of Cartan actions,
and in particular on nilmanifolds, we refer the reader to [26].
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Let P → M be the bundle of full frames over M , so that P is a principal GL(n,R) bundle
where GL(n,R) acts on the right on P . If Γ acts on M then there exists a natural lift via the
derivative to a Γ action on P . In [25], N. Qian established the following

Theorem 3.11. Let G be a connected semisimple Lie group with finite center and without com-
pact factors such that each simple component of G has R-rank at least two. Let Γ ⊂ G be a
lattice. Let M be a compact n dimensional smooth manifold with a measure µ taking positive
values on open sets. Let ρ be a C1 Cartan action of Γ on M which is ergodic with respect to µ.
Then there exist

1. a subgroup Γ0 ⊂ Γ of finite index,
2. a C0 section φ of the frame bundle P →M , and
3. a homomorphism π : Γ0 → GL(n,R)

such that with respect to the induced action of Γ0 on P → M , φ is a totally π-simple section,
i.e., φ(γx) = γ.φ(x).π(γ)−1 for every x ∈M , and every γ ∈ Γ0.

In fact, Qian proves this result holds under the weaker assumption that ρ is weakly Cartan.
We remark that in conjunction with Remark (d) following the proof of Theorem 1.1 in [25], this
framing is actually Hölder. Further, because of the assumption that there exist Anosov elements
in Γ, it follows that the measurable algebraic hull of the Γ action on P cannot contain compact
factors, for otherwise the Anosov elements would admit zero Lyapunov exponents. Hence, the
homomorphism π extends to a homomorphism π : G→ H.

To apply our results from the previous section, we induce the Γ action on M to an action of

G on X =
G×M

Γ
(for ease of notation and without loss of generality, we may assume Γ = Γ0).

By construction, X → G/Γ is a fiber bundle with compact fibers M . Define actions of G and Γ
on G×M so that

g(h,m) = (gh,m) and γ(h,m) = (hγ−1, γm),

and G and Γ actions on G× P so that

g(h, p) = (gh, p) and γ(h, p) = (hγ−1, γp).

Next, define Φ : G×M → G× P so that

Φ(g,m) = (g, φ(m)π(g)−1).

Then, for any γ ∈ Γ,

Φ(γ(g,m)) = Φ(gγ−1, γm) = (gγ−1, φ(γm)π(γ)π(g)−1)

= (gγ−1, γφ(m)π(g)−1) = γΦ(g,m),

so that Φ is Γ-equivariant, and therefore defines a function Ψ : X =
G×M

Γ
→ Y =

G× P
Γ

.

As a principal bundle over X, Y is the bundle of frames tangent to the fiber for the bundle
X → G/Γ. Thus Ψ is a Hölder section of Y → X which produces a framing for the fiber over
every x ∈ X. Most importantly, Ψ is also totally π-simple for every g ∈ G:

Ψ(g[h,m]) = Ψ([gh,m]) = [gh, φ(m)π(h)−1π(g)−1] = g.Ψ([h,m])π(g)−1.

This establishes an analog of Corollary 3.4 for the induced action of G on X. Let A ⊂ Γ be
the maximal abelian subgroup such that the action ρ|A is abelian Cartan. If Fx ⊂ X is the
fiber through x ∈ X, then Fx ∼= M and the Hölder section Ψ produces a Hölder framing for
the fiber which can then be used to construct a Hölder Riemannian metric ‖ · ‖x for the fiber.
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The decomposition TM = ⊕Ei induces a corresponding decomposition of the tangent space of
Fx, and since Ψ is totally π-simple, we have precise knowledge of the rates of expansion and
contraction by elements in A, i.e., ‖av‖ax = eχi(log a)‖v‖x for every v ∈ Ei and every a ∈ A. The
fact that the original Γ action on M is Cartan implies there exists an A-invariant trellis tangent
to Fx for the Γ action on X. In particular, the G action on X is trellised with respect to A.
Consequently, if we restrict our attention to the direction of the fibers, then Assumptions (A1),
(A4) and (A5) from Section 2 hold. We also note that the ergodicity of G on the finite volume
space X ensure that Assumptions (A2) and (A3) hold.

If X is not compact, which occurs whenever Γ is not cocompact in G, we cannot directly apply
our arguments from Section 2. However, as we have just noted, if we restrict our attention to
the fibers of X → G/Γ, then Assumptions (A1) through (A5) from Section 2 still hold. With
the help of Remark 2.13, we can easily adapt the argument used in proving Theorem 2.8 to hold
in this situation, and, consequently, obtain C∞ information about the fibers of X → G/Γ.

We have nearly proved the following result.

Theorem 3.12. Suppose G is a connected semisimple Lie group of higher rank without compact
factors such that each simple factor of G has R-rank at least 2. Let Γ ⊂ G be a lattice and
suppose that Γ acts on a closed manifold M so that the action is Cartan and volume preserving
for some smooth measure taking positive values on open sets. Let A be a maximal R-split Cartan
of G, with {χi} the set of weights of π with respect to A. Then there exist

1. a C∞ Riemannian metric, ‖ · ‖, on M , and
2. a C∞ decomposition TM =

⊕
Ei

such that for every v ∈ Ei and a ∈ A
‖av‖ = eχi(log a)‖v‖.

In particular, there exists a C∞ totally π-simple framing of M .

Proof. It remains only to consider the R-rank two case. In this case, we use the fact that inside
the stable manifold, the one dimensional strongest stable foliation is C∞ with uniformly C∞

leaves. Hence we can apply Journé’s result, Lemma 2.25, directly to conclude that Fi varies C∞

along any Fj unless they have weights which are a negative multiple of one another. However,
in this case, we can appeal to Proposition 2.23 to establish the required smoothness of Fi along
Fj.
Proof of Theorem 1.5. The proof is essentially the same as that for Theorem 1.2. We use The-
orem 3.12 to provide a smooth linearizing framing for the action on a subgroup of finite index,
and then, exactly as in the proof of Theorem 1.2, we apply the arguments in [25, Section 3].
That H is nilpotent follows from the Proposition 3.13. To conclude that the action is conjugate
to the standard algebraic action on π̃1(M̃)/π1(M̃), we refer to [11, Corollary 2] to conclude that
the action has a fixed point, and point out that any affine action with a fixed point must be
conjugate to the standard action.

Proof of Corollary 1.6. Any action sufficiently close to φ must also be volume preserving and
Cartan [17], and therefore, just as φ, is C∞ conjugate to the standard algebraic action on
π̃1(M ′)/π1(M ′).

Although the following result is presumably well-known, we provide a proof for the sake of
completeness.
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Proposition 3.13. Suppose there exists Φ ∈ Aff(H) such that Φ is an Anosov diffeomorphism.
Then H is nilpotent.

Proof. From [4], we can write Φ as a composition of an automorphism of H with left multiplica-
tion by an element of H, i.e., Φ = Lg ◦φ for φ some automorphism of H. Let h be the Lie algebra
of H and define ψ to be the automorphism of h induced by Ad(g)◦φ∗. Let ψs be the semisimple
component of the Jordan decomposition of ψ, also an automorphism of h. Since, with respect
to a right invariant metric on H, (Lg)∗φ∗(v) and (Rg−1)∗(Lg)∗φ∗(v) have the same norm for any
v, Φ being Anosov implies that ψ and hence ψs cannot have eigenvalues of modulus one.

Let s be the solvradical of h. Then ψs descends to an automorphism ψ̃s of h/s. Since h/s

is a semisimple Lie algebra, some finite power of ψ̃s must be the Adjoint for some element of
h/s, i.e., we may assume ψ̃s = Ad(h + s). But h/s being semisimple, Ad(h + s) must contain

eigenvalues of modulus one. Since, the eigenvalues of ψ̃s are a subset of those of ψs, this yields
a contradiction unless h/s is trivial. We therefore may assume that H is solvable.

To see that h is nilpotent, we intend to show that h is equal to its nilradical. For this purpose,
we may, without loss of generality, consider the complexification of h, which we will also denote
by h. Let n be the nilradical of h, so that [h, h] ⊂ n. If h 6= n, then we may pick some X ∈ h
such that X 6∈ n and X is an eigenvector for ψs with eigenvalue λ. Note that |λ| 6= 1. To see
that h is nilpotent, it will suffice to show that RX + n is a nilpotent ideal.

We shall now describe two distinct filtrations for n. First, we have the descending central
series. Let C0n = n and define Cin = [n, Ci−1n]. Since n is nilpotent there exists k such that
Ckn = 0. Therefore we have the filtration

n = C0n ⊃ C1n ⊃ · · · ⊃ Ckn = 0.

Note that [X, Cin] ⊂ Cin. For the second filtration, when |λ| > 1 order the eigenvalues
{λ1, . . . , λr} of ψs on n so that |λi| ≤ |λj| for every i < j, and if |λ| < 1, then order them
so that |λi| ≥ |λj| for every i < j. If Vi is the eigenspace of with eigenvalue λi, then by defining
Wi =

⊕r
j=i+1 Vi,we have

n = W0 ⊃ W1 ⊃ · · · ⊃ Wr = 0.

We claim that RX + n is nilpotent with nilpotency degree kr. To see this consider some
element in Cl(RX + n) with l > kr:

Y = [alX +Nl, [· · · [a2X +N2, a1X +N1] · · · ],
where ai ∈ R and Ni ∈ n. By expanding this expression, we can write Y as a linear combination
of terms of the form

y = ad(Yl)ad(Yl−1) · · · ad(Y2)(Y1)

where either Yi = X or Yi ∈ n for every i. Since [X, Cin] ⊂ Cin, if at least k of the Yi’s lie in n, then
y = 0. However, by construction of the Wi’s, we have [X,Wi] ⊂ Wi+1. Hence (ad(X))r(N) = 0
for any N ∈ n. So if there exists a string of r consecutive Yi’s all equal to X, then again y = 0.
Since l > kr, one of these situations always occurs, i.e., we must have either at least k of the
Yi’s belong to n or that there exists some j such that Yi = X for i = j, j + 1, . . . , j + r − 1. In
either case, we have that y = 0, forcing Y = 0.

We conclude that RX+n is nilpotent. Since it is clearly an ideal, we may conclude h = n.
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