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Foreword

A famous Swiss professor gave a student’s course in Basel on Riemann surfaces.
After a couple of lectures, a student asked him, “Professor, you have as yet not
given an exact definition of a Riemann surface.” The professor answered, “With
Riemann surfaces, the main thing is to UNDERSTAND them, not to define them.”

The student’s objection was reasonable. From a formal viewpoint, it is of course
necessary to start as soon as possible with strict definitions, but the professor’s an-
swer also has a substantial background. The pure definition of a Riemann surface—
as a complex 1-dimensional complex analytic manifold—contributes little to a true
understanding. It takes a long time to really be familiar with what a Riemann sur-
face is.

This example is typical for the objects of global analysis—manifolds with struc-
tures. There are complex concrete definitions but these do not automatically explain
what they really are, what we can do with them, which operations they really admit,
how rigid they are. Hence, there arises the natural question—how to attain a deeper
understanding?

One well-known way to gain an understanding is through underpinning the defi-
nitions, theorems and constructions with hierarchies of examples, counterexamples
and exercises. Their choice, construction and logical order is for any teacher in
global analysis an interesting, important and fun creating task.

This workbook, using a very cleverly composed series of exercises and examples
covering the whole area of manifolds, Lie groups, fibre bundles and Riemannian
geometry, will enable the reader a deeper understanding and feeling for Riemann
surfaces.

Jiirgen Eichhorn
Greifswald University

vii



Preface

This book is intended to cover the exercises of standard courses on analysis and
algebra on differentiable manifolds for advanced undergraduate and graduate years,
with specific focus on Lie groups, fibre bundles and Riemannian geometry. It will
prove of interest for students in mathematics and theoretical physics, and in some
branches of engineering.

It is not intended as a handbook on those topics, in the form of problems, but
merely as a practical complement to the courses, often found in excellent books, as
cited in the bibliography.

The prerequisites are linear and multilinear algebra, calculus on several variables
and various concepts of point-set topology.

The first six chapters contain 375 solved problems sorted according to the afore-
mentioned topics. These problems fall, “grosso modo,” into four classes:

(1) Those consisting of mere calculations, mostly elementary, aiming at checking
a number of notions on the subjects.

(2) Problems dedicated to checking some specific properties introduced in the
development of the theory.

(3) A class of somewhat more difficult problems devoted to focusing the attention
on some particular topics.

(4) A few problems introducing the reader to certain questions not usually ex-
plained. The level of these problems is quite varied, ranging from those handling
simple properties to others that need sophisticated tools.

Throughout the book, differentiable manifolds, functions, and tensors fields are
assumed to be of class C”, mainly to simplify the exposition. We call them, indis-
criminately, either differentiable or C*.

Similarly, manifolds are supposed to be Hausdorff and second countable, though
a section is included analysing what happens when these properties fail, aimed at a
better understanding of the meaning of such properties.

The Einstein summation convention is used.

Chapter 7 provides a selection of the theorems and definitions used throughout
the book, but restricted to those whose terminology could be misleading for the
lack of universal acceptance. Moreover, to solve some types of problems, certain

ix



X Preface

definitions and notations should be precisely fixed; recalling the exact statement of
some theorems is often convenient in practice as well. However, this chapter has by
no means the intention of being either a development or a digest of the theory.

Chapter 8 offers a collection of formulae and tables concerning spaces and groups
frequent in differential geometry. Many of them are used throughout the book; oth-
ers are not, but they have been included since such a collection should be useful as
an aide-mémoire, even for teachers and researchers. As in Chapter 7, no effort to
be exhaustive has been attempted.

We hope the book will render a good service to teachers and students of differen-
tial geometry and related topics. While no reasonable effort has been spared to en-
sure accuracy and precision, the attempt of writing such a book necessarily will con-
tain misprints, and probably some errors. Any corrections, suggestions or comments
helping to improve future editions will be highly appreciated. The reader is kindly
requested to send his/her opinions to pmgadea@iec.csic.es or jaime@iec.csic.es

In this corrected reprint we have corrected a couple of dozens of typos, slightly

modified the statement of Problem 1.1.13, and changed the proof of Problem
5.3.6,(2).

Madrid, August 2009 The authors
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Chapter 1
Differentiable manifolds

1.1 C* manifolds

Problem 1.1.1. Prove that the function ¢: R — R, @(s) = s, defines a C* diffe-
rentiable structure on R different from the usual one (that of the atlas {(R,idg)}).

Solution. Since ¢~!(s) = /s, ¢ is a homeomorphism, so that {(R, @)} is trivially
an atlas for R, with only one chart.

To see that the differentiable structure defined by {(R, @)} is not the usual one,
we must see that the atlases {(R, )} and {(R,idg)} are not equivalent, i.e. that
{(R,9),(R,idr)} is not a C* atlas on R. In fact, although ¢ o idﬁl =@ is C*, the
map idg o @~ ! = ¢! is not differentiable at 0.

Let R, (resp. Rjq) be the topological manifold R with the differentiable structure
defined by the atlas {(R,¢)} (resp. {(R,idr)}). Then, the map ¢: R, — Rjqisa
diffeomorphism. In fact, its representative map ido@o @~': R — R is the identity
map.

Problem 1.1.2. Is the map f: R — R, f(t) =1 a chart?

Solution. No, for any one of the following reasons:

(1) f is not injective.

(2) The image set is not an open subset of R.

(3) The images by f of the open subsets containing the origin are not open sub-
sets of R. For example, f(R) = [0,), f((—a,a)) = [0,a%).
REMARK. Notice that the situation is similar for any map of the type f: R — R,
fiy=1*k=2,3,....

Problem 1.1.3. Prove that if h: R" — R" is a homeomorphism, then the atlas
{(R",h)} defines the usual differentiable structure on R" (that defined by the at-
las {(R",idgn)}) if and only if h and h™" are differentiable.

P.M. Gadea, J. Mufioz Masqué, Analysis and Algebra on Differentiable Manifolds, 1
© Springer Science+Business Media B.V. 2001, First softcover printing 2009



2 1 Differentiable manifolds

Solution. If #: R” — R”" is a homeomorphism such that the atlas {(R", %)} defines
the usual differentiable structure on R, then & = hoidg, and A~ = idgsoh~" are
differentiable. And conversely.

Problem 1.1.4. For each real number r > 0, consider the map ¢,: R — R, where
(1) =t if t <0 and @.(t) =1t if t > 0. Prove that the atlases {(R, ¢;)},~0 de-
fine an uncountable family of differentiable structures on R. Are diffeomorphic the
corresponding differentiable manifolds?

Solution. For each r > 0, ¢, is a homeomorphism, but ¢, and ¢,~ I are differentiable
only when r =1 (¢; = idg). Thus {(R, ¢,)}, for fixed r # 1, is an atlas defining a
differentiable structure different from the usual one. Moreover we have

t ift <0

(prog,)(1) = {(r/s)t ifr > 0.

So, if r # s and both are different from 1, then ¢, o ¢, 1'is not differentiable. Conse-
quently, the atlases { (R, ¢,)} and {(R, ¢5)} define different differentiable structures
and thus {(R, ¢,) },~0 defines a family of different differentiable structures on R.

All of them are diffeomorphic, though. In fact, given two differentiable manifolds
Ry, and Ry, defined respectively from the differentiable structures obtained from
the atlases {(R, ¢, ) } and {(R, ¢, ) }, a diffeomorphism ¢: Ry, — Ry, is givenby
the identity map for # < 0 and by # +— (r;/r2)t for ¢ > 0. Indeed, the representative
map @, o @ o ¢, " is the identity map.

Problem 1.1.5. Consider the open subsets U and V of the unit circle S' of R? given
by

U= {(cosa,sinax) : o € (0,27)}, V ={(cosa,sina) : a € (—m,m)}.
Prove that o ={(U, @), (V,y)}, where
0:U— R, o¢(cosa,sina) =, o€ (0,2m),
yv:V =R, wy(cosa,sina) =a, o€ (—n,m),
is an atlas on S'.

Solution. One has U UV = S' (see Figure 1.1). The maps ¢ and y are homeomor-
phisms onto the open subsets (0,2r) and (—7x, ) of R, respectively, hence (U, )
and (V, y) are local charts on S'.
The change of coordinates yo ¢!, given by
¢! v
ounv) &% unv L ywnv)
o +— (cosa,sine) — o if o €(0,m)
’ o—2x if a€(x,2m),

is obviously a diffeomorphism. Thus .¢7 is an atlas on S'.



1.1 C* manifolds 3

Fig. 1.1 An atlas on S! with two charts.

Problem 1.1.6. Prove:
(1) o = {(Ul ) (Pl)a (U27 (102)7 (U37 (p3)7 (U4a (P4)}’ where

Ur={(xy) €S : x>0}, 01: U — R, o1(x,y) =,
Uzz{(x,y)ESl :y>0}, 0: U —» R, 0 (x,y) =x,
U3:{()c,y)€S1 :x<0}, 03:Us — R, 03(x,y) =y,
Us={(x,y) €S : y< 0}, 04: Uy — R, 01(x,y) = x,

is an atlas on the unit circle S* in R2.

(2) o is equivalent to the atlas given in Problem 1.1.5.

Solution. (1) We have S' = {J,U;, i = 1,2,3,4 (see Figure 1.2), and each ¢; is a
homeomorphism onto the open subset (—1,1) of R, thus each (U;, ¢;) is a chart on
st

The change of coordinates ¢y o @, !, given by

U NU;)=(0,1) — UiNUy — @ (UiNlU,)=(0,1)
t — (,V1-12) = V11—t

is a C* map, since 1 —¢> > 0. Actually it is a diffeomorphism. The other changes of
coordinates are also C*, as it is easily proved, thus 7 is a C* atlas on S L

(2) To prove that the two atlases are equivalent, one must consider the changes
of coordinates whose charts belong to different atlases. For example, for ¢ o ¢, P'we
have ¢ (UNU;) = (—1,0)U(0,1), and the change of coordinates is given by
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Fig. 1.2 An atlas on S' with four charts.

o(UNU) —  UNU,  — <p(UmU1)=(o,§)u(3—”2n)

t — (V1—12t) — o =arcsint,

which is a diffeomorphism of these intervals.
One can prove the similar results for the other cases.

Problem 1.1.7. Consider the set {(Un, @n), (Us, @s)}, where

Uv={(xy)es :y#1}, Us={(xy)es :y#-1},

oy and Qs being the stereographic projection (with the x-axis as image) from the
north pole N and the south pole S of the sphere S', respectively (see Figure 1.3).
(1) Prove that {(Uy, v), (Us, @s)} is a C* atlas on S'.
(2) Prove that the corresponding differentiable structure coincides with the diffe-
rentiable structure on S' obtained in Problem 1.1.6.

Solution. (1) The maps @y: Uy — R and @g5: Us — R, respectively given by

X X

(pN(x7y): 1*)77 (PS(xvy)Zl—ﬂv

are homeomorphisms. The inverse map @y !'is given by

2 X1
T+ 14272

o) = ) =
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Fig. 1.3 Stereographic projections of S'.

As for the change of coordinates
gsopy': on(UvNUs) =R—{0} — @s(UvNUs) =R —{0},

one has (so @y ')(¢) = 1/¢, which is a C* function on its domain. The inverse map
is also C*. Thus, {(Uy, @n), (Us, ps)} is a C* atlas on S'.

(2) Consider, for instance,

UZZ{(xvy)ESI :y>0}7 (1)2:1]2*> (71?1)a (Pz(xay):x'
We have
(PNO(pil: (7170)U(031) - (*wail)u(law)
t — t/(1—vV1-12),

which is C* on its domain. Similarly, the inverse map @, o @y ! defined by

(pN(UNﬁUz) = (—Oo, —1) U (1,00) — (pz(UNﬂ Uz) = (—1,0) U (0, 1)
s = 2s/(1 +s2),
is also C*. As one has a similar result for the other charts, we conclude.
Problem 1.1.8. Can one construct an atlas on the sphere S*> with only one chart?

Solution. No, since the chart ¢: S — R? would be a homeomorphism onto an
open subset of R? and this is not possible. In fact, since S? is compact, ¢(S?) would
be a closed and open subset of R?; hence it would be @(5?) = R2. Absurd, since
RR? is not compact. Every manifold admitting an atlas with only one chart should be
homeomorphic to an open subset of a Euclidean space.

Problem 1.1.9. (1) Define an atlas for the sphere
S ={(xyz) eR 1 P +y +2 =1},

using the stereographic projection with the equatorial plane as image plane.
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(2) Generalize this construction to S", n > 3.

Fig. 1.4 Stereographic projections of S? onto the equatorial plane.

Solution. (1) Let us cover the sphere S with the open subsets
Uv={(xy2) e z<a}, Us={(xyz) €S :z>—a},

for 0 < a < 1. One can consider the equatorial plane as the image plane of the charts
of the sphere (see Figure 1.4).

We define @y: Uy — R? as the stereographic projection from the north pole
N = (0,0,1) and @g: Us — R? as the stereographic projection from the south pole
§=1(0,0,—1).If x’, y" are the coordinates of @y(p), with p = (x,y,z), we have:

ON: Uy — R?
X
(anaZ) = (x/7yl): —7L -
11—z 1—z
Similarly,
@s: Us — R?
n n X y
X, 0,2 = X =\, 7,2 )"
(x.3,2) (".5%) <1+z1+z>
One has

ov(Uy) = @5(Us) =B(0,1/(1—a)) CR*.

Since the cases z = 1 or z = —1, respectively, have been dropped, ¢y and @g are
one-to-one functions onto an open subset of R%. As a calculation shows, qo[,l is
given by

2x/ 2yl x/2+y/271
]+x/2+y/2’ 1+xl2+y/2’ ]+x/2+y/2 )

o' (,y) = (
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If pe UyNUs, p' = on(p), and p” = @s(p), denoting by x’,y’ the coordinates of
p' and by x”,y" the coordinates of p”, we deduce that

(" ") = (@soon ") (x',y")
B X y/
- x/2+y/2’ x/2+y/2 )

is a diffeomorphism.

Hence @go @y~

(2) For arbitrary n, with the conditions similar to the ones for S2. we have

n+1
S" = {(xl,...,x"“) eR™ Y (x) = 1},

i=1
Uy ={@'... .y es w41},
Us={(x',... "y es o xmtl £ -1},

QN UN — R
1
1 +1 X x
(x' ... X" - (l—x”“’m’l—x’l“‘l)’
Qs Us — R

1
(o) il ey ol ,
l—l—x"'H l—|—x"+1

( 2y! 2" Zi(yi)zl)
1+3:002 7 1+35,00) 143,002 )

So

1 n
o (Y, ...y ( Y ey - >y7
((PS (PN )( ) ;1:1 (yl>2 n <yz)2 ‘y|2

=
and similarly

((pNo(pS_I)(ylv"'ayn) = ﬁv

which are C* in @y (Uy NUs) = R" — {0}.

Notice that with the stereographic projections, the number of charts is equal to
two, which is the lowest possible figure, since S is compact.
Problem 1.1.10. Define an atlas on the cylindrical surface

M={(xyz2) eR : X*+y =", 0<z<h},

where h,r € R,
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Solution. We only need to endow the circle S'(r) = {(x,y) € R? : x* +y? = r?}
with an atlas. In fact, let (U, @), (V, y) be an atlas as in Problem 1.1.5. This means
that U,V are open subsets of S'(r) C R? such that S'(r) = U UV, and ¢: U — R,
y: V — R are diffeomorphisms. Then U x (0,4), V x (0, k) are open subsets in M
and one defines an atlas on M by

of ={(U % (0,h); ¢ xid), (V x (0,h); y xid)}.
In fact, the map
(yxid)o (@ xid)~!: @UNV) x (0,h) — w(UNV)x (0,h)
is a diffeomorphism, as it follows from the obvious formula

(yxid)o (@ xid)~! = (yoe~!) xid.

This construction is only an example of the general way of endowing a product
of two manifolds with a differentiable structure. In fact, one can view M as the
Cartesian product of S'(r) by an open interval.

Problem 1.1.11. (1) Define an atlas on the cylindrical surface defined as the quo-
tient set A/~, where A denotes the rectangle [0,a] x (0,h) C R?, a >0, h > 0, and
~ stands for the equivalence relation (0,y) ~ (a,y), where (0,y), (a,y) € A.

(2) Relate this construction to the one in Problem 1.1.10.

,-/L ,__‘{L\ (P R2
/
~ ¢ (U)
" v (V)
— \ 9
U R

Fig. 1.5 Charts for the cylindrical surface.

Solution. (1) Denote by [(x,y)] the equivalence class of (x,y) modulo ~. Let
c,d,e,f € Rbesuchthat 0 < ¢ <e < f <d < a. We define (see Figure 1.5) the
charts (U, @), (V,y) taking U = {[(x,y)] : ¢ <x < d},V =V, UV,, where

Vi={[(xy)]:0<x<e}, Vo ={[(x,y)] : f <x<a},

p:U — Rz’ (p([(x,y)]) = (x7y)’ and
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v: vV - R?

. . (x+a,y) if (x,y) eV
) {(x,y) if (x,y) € Va.

It is obvious that ¢: U — ¢@(U) and y: V — y(V) are homeomorphisms. The
change of coordinates yo @~ ': o(UNV) — w(UNV) is given by

oo-D(x ) = 4 XTay) if (xy) € pUNV)
oo b {m) if (x,9) € pUNV2)

which is trivially a diffeomorphism.
(2) Let

0:A=10,a] x (0,h) — R,
o(a,z) = | reos rsin—-,z
’ a ’ a )

0<a<a, 0<z<h, r=a/2m.

From the very definition of ¢ it follows that ¢(A) = M, where M C R? is the subma-
nifold defined in Problem 1.1.10. Then it is easily checked that ¢(ot,z) = @(a',z’)

if and only if (a,z) ~ (¢,z). Hence ¢ induces a unique homeomorphism ¢: A/~
— M such that ¢ o p = @, where p: A — A/~ is the quotient map.

Problem 1.1.12. Define the infinite Mobius strip M as the topological quotient of
[0,1] x R by the equivalence relation ~ which identifies the pairs (0,y) and (1,—y)
(see Figure 1.6). Show that M admits a structure of C* manifold consistent with its
topology.

Fig. 1.6 The infinite Mobius strip.
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Solution. Let p: [0,1] xR — M = ([0,1] x R)/~ be the quotient map. Consider
the two open subsets of M given by

U=(0,1)xR)/~,  V=(([0,1/2)U(1/2,1]) xR) /~.

Every point z € U can be uniquely written as z = p(x,y), with (x,y) € (0,1) x R and
we can define a homeomorphism ¢: U — ¢(U) C R? by setting ¢(z) = (x,y). We
also define y: V. — y(V) C R? as follows: Set z = p(x,y) with (x,y) € ([0,1/2)U
(1/2,1]) x R. Then,

(x+1,—y) ifx<1/2
y(z) = .
(x,y) if x> 1/2.
The definition makes sense as y(p(0,y)) = w(p(1,—y)) = (1,—y), forally e R. It
is easily checked that y induces a homeomorphism between V and the open subset

(1/2,3/2) x R C R?. The change of coordinates oy~ ': w(UNV) — @(UNV),
that is,

ooy ' ((1/2,1)U(1,3/2)) xR — ((0,1/2)U(1/2,1)) xR,

is given by

. N ES) ifl/2<x<l
(poy 1)(x,y){(x_17_y) if 1 <x<3/2,

which is a C* map. Similarly, the change of coordinates
yoo i pUNV) — w(UNV),
that is,
voop ! ((0,1/2)U(1/2,1)) xR — ((1/2,1)U(1,3/2)) xR,

is given by
(x+1,—y) ifO<x<1/2

(WO(pl)(X7Y):{(x’y) if1/2<x<1,

which also is a C* map.

Problem 1.1.13. (1) Consider the circle in R? given by x> +y> = 4, 7 =0, and the
open segment PQ in the yz-plane in R® given by y = 2, |z| < 1. Move the center
C of PQ along the circle and rotate PQ around C in the plane Cz, so that when C
goes through an angle u, PQ has rotated an angle u/2. When C completes a course
around the circle, PQ returns to its initial position, but with its ends changed.

The surface so described is called the Mobius strip.

Consider the two parametrizations

X(ua v) - (x(u, v),y(u, v),z(u, V))
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*((2 sinu)sin (27 sinu)cos cosu>
= v > u, v > u, v 5)

O<u<2m, -—-1l<v<l,

({2 vsin(E L™ /
(<2 vsm<4+2> cosu ,
!/
_(2—v’sin(g+%)>sinu',v’cos(g+%>>,

n/2<u <5m/2, —1<V <.

X' (u,v) = (X' (u,v),y' (u,v),z' (u,v))

Prove that the Mobius strip with these parametrizations is a 2-dimensional ma-
nifold.

(2) Relate this manifold to the one given in Problem 1.1.12.

Solution. (1) The coordinate neighborhoods corresponding to the parametrizations
cover the Mobius strip. The intersection of these coordinate neighborhoods has the
two connected components

Uy = {x(u,v) : m<u<2r}, Uy ={x(u,v) : 0 <u<m},

and the changes of coordinates are given on U; and U,, respectively, by

A = T , +37r
=U— = u=u+t+—

2 Y 2 )
V/:V v/:—v

which are obviously C™.
(2) Let ¢: [0,27] x (—1,1) — R3 be the map given by

o(u,v) = ((vasing) sinu, (vasing) cosu, vcosg) .

Note that the restriction of ¢ to (0,27) x (—1, 1) coincides with the first parametriza-
tion. Moreover, it is easy to see that im ¢ coincides with the Mobius strip.

Leto: [0,1] x R — [0,27] x (—1,1) be the homeomorphism given by o(s,t) =
(2ms, (2/m)arctan t). Set y = @ o o. Let (s1,11), (s2,22) € [0,1] x R be two distinct
points such that y(s,#;) = y(s2,%2). As @ is a parametrization when restricted to
(0,2m) x (—1,1), the assumption implies that

(S17t1)7(S2,t2) € 8([07 l] XR) = ({O} XR)U({I} X R).

As (s1,11) # (s2,12), either (s1,11) € {0} x Rand (s2,22) € {1} xR or vice versa. In
the first case, y(0,71) = y(1,7,) means

©(0,(2/m)arctant;) = @(2m, (2/m) arctan 12).
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So
(0,2,(2/m)arctan t;) = (0,2, —(2/m)arctan 1),

that is, 1 +1, = 0. The other case is similar. This proves that the equivalence relation
associated to y coincides with the equivalence relation ~ defined in Problem 1.1.12.

Problem 1.1.14. Let T? be a torus of revolution in R3 with center at (0,0,0) € R
and let a: T*> — T? be defined by a(x,y,z) = (—x,—y,—z). Let K be the quotient
space under the equivalence relation p ~ a(p), p € T?, and let m: T> — K denote
the map nt(p) = {p,a(p)}. Assume T? is covered by parametrizations X, : Uy — T?
such that

Xo(Ug) N(aoxg)(Ug) =0,

where each Uy, is an open subset of R2.

Prove that K is covered by the parametrizations (Uy, T 0X,) and that the corres-
ponding changes of coordinates are C*.

K is called the Klein bottle.

Solution. The subsets (7 0 Xy )(Uy) cover K by assumption. Each of them is open
in K as

! (moxe)(Ua)) = Xa(Ug) Ua(xe(Uq))

and X (Uy ), a(xq (Ug)) are open subsets of 72. Moreover, each map moXg: Uy —
K is a parametrization (that is, it is one-to-one) by virtue of the condition x4 (Uy) N
(aoxy)(Uy) = 0. Finally, the changes of coordinates are C*. In fact, let

p € domain ((77:oxﬁ)_1 o(moxq)).

Then p € Uy and (woxXg)(p) € (moxg)(Up); hence either x4(p) € xg(Ug) or
Xa(p) € (aoxg)(Ug). In the first case one has

(7roxﬁ)‘1 o(moxXy) = xlgl 0Xg

on a neighborhood of p; and in the second one we have
(moxg) "o (moxa) = (aoxp) ' oxq,

on a neighborhood of p. Since a is a diffeomorphism, (7 o XB)_I o(moxy) is a
diffeomorphism on a neighborhood of p. Thus, it is C*.

Problem 1.1.15. Define an atlas on the topological space M(r x s,R) of all the real
matrices of order r X s.

Solution. The map ¢: M(r x s,R) — R’ defined by
(P(aij) :(alla'"7a157"'1ar17"'7ar5)?

is one-to-one and surjective. Now endow M (r x s,R) with the topology for which
@ is a homeomorphism. So, (M(r x s,R), ) is a chart on M(r x s,R), whose do-
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main is all of M(r x s,R). The change of coordinates is the identity, hence it is a
diffeomorphism. So, & = {(M(r x s,R), @)} is an atlas on M(r x s, R).

Problem 1.1.16. Prove that there are C* manifolds M for which there exist open
subsets which are not domains of any coordinate system.

Solution. It suffices that M be compact: M is then an open subset of itself and so it
cannot be the domain of any chart.

Another example is a non-orientable connected manifold (see Section 3.1), as
the connected open subsets in R" are orientable. There are also proper open subsets
having the property in the statement: For example, remove a point in the Mdbius
strip (Problems 1.1.12 and 1.1.13).

1.2 Differentiable Structures Defined on Sets

In the present section, and only here, we consider differentiable structures defined
on sets.

Let S be a set. An n-dimensional chart on S is an injection of a subset of S onto
an open subset of R”. A C* atlas on § is a collection of charts whose domains
cover S, and such that if the domains of two charts ¢, y overlap, then the change of
coordinates ¢ o y~! is a diffeomorphism between open subsets of R”.

Hence, the manifold is not supposed to be a priori a topological space. It has
the topology induced by the differentiable structure defined by the C* atlas (see [6,
2.2)).

Problem 1.2.1. Consider E = {(sin2t,sint) € R? : t € R} (the Figure Eight).

(1) Prove that {(E, @)}, where ¢: E — R is the injection of E onto an open
interval of R, defined by ¢(sin2t,sint) =t, t € (0,27) (see Figure 1.7), is an atlas
on the set E. Here E has the topology inherited from its injection in R.

(2) Prove that, similarly, {(E,y)}, where y: E — R, y(sin2t,sint) =t, t €
(—m, &), is an atlas on the set E.

(3) Do the two atlases define the same differentiable structure on E?

REMARK. Notice that the “Figure Eight” is not endowed with the topology inherited
from R? as, in this case, it would not be a differentiable manifold. The arguments
here are similar to those given in studying the sets in Problems 1.2.10, 1.2.11. In-
stead, we endow it with the topology corresponding to its differentiable structure
obtained from each of the atlases above.

Solution. (1) ¢ is an injective map from E onto the open interval (0,27) of R,
whose domain is all of E. Consequently {(E, ¢)} is an atlas on E.

(2) Similar to (E, ).

(3) The two atlases define the same differentiable structure if (E, @) belongs
to the structure defined by (E,y) and conversely. That is, the maps yo ¢! and
@ oy~ ! must be C*. We have
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Fig. 1.7 The “Figure Eight” defined by (E, @).

yoo ' o(E)=(0,21) — E

t +— (sin2¢,sint)

where

t’
y(sin2¢,sint) = ¢ 0,

— Y(E)=(-m,7)
— y(sin2t,sint),

t€(0,m)
t=m

v (sin(2t —4m), sin(t —27)) =1 —2m, t € (m,2m).

Thus, yo ¢!

these atlases are different.

is not even continuous and the differentiable structures defined by

Notice that the topologies induced on E by the two C* structures are also differ-
ent: Consider for instance the open subsets ¢! (Uy) and y~!(Up), where U, and
Uy denote small neighborhoods of 7 and O respectively.

Problem 1.2.2. Consider the subset N of R?* (the Noose) defined (see Figure 1.8)

by

N={(xy) eR*: ¥ +y*=1}U{(0,y) : 1 <y<2}.

(1) Prove that the function

Q: N — R
(sin2ms,cos2ms) +— s
(0,s) — l—s

is a chart that defines a C* structure on N.

(2) Prove that the function

if 0<s<l,
if 1<s<2,
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I/ N - R

(sin2ms,cos2ms) — 1—s if 0<s<1,

(0,s) — l—s if 1<s<2,

also defines a C* structure on N.

(3) Prove that the two above structures are different.

Fig. 1.8 The Noose.

Solution. (1) Obviously ¢: N — (—1,1) is a one-to-one map. Endow N with the
unique topology 7, making ¢ a homeomorphism. Thus, the atlas {(N, @)}, with the
single chart ¢, defines a C™ structure in N.

Notice that if N is endowed with the topology inherited from that of R?, then ¢
is not continuous at the point (0, 1).

(2) Proceed similarly to (1).

(3) If (N,y) would belong to the structure defined from (N, @), then yo
¢~ ': (=1,1) — (—1,1) should be C*, but it is not even continuous.

Problem 1.2.3. Consider the sets

U={(s,0) e R*: s R},

V={(s,0)eR*: s <0}U{(s,1) €R* : 5> 0},
and the maps

0:U—R, 050 =s,
v:V =R, y(s,0)=s, y(s,1)=s,
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VR, ys0)=5  ¥s1)=5.

(1) Prove that {(U, @), (V,y)} defines a C* structure on the set M =U UV (see
Figure 1.9).

(2) Is (V,y) a chart in the previous differentiable structure?

M=UuLV

Fig. 1.9 An example of set with a C* structure.

Solution. (1) The maps ¢ and y are injective, and we have ¢(U) = R, y(V) =
R — {0}, which are open subsets of R. Moreover, both ¢ oy~ ! and yo o ! are
the identity map on y(UNV) = (—,0) = @(UNV),and o(UNV), y(UNV) are
open subsets of R. Hence & = {(U, ¢),(V,y)} is a C* atlas on M.

(2) The map v is injective, and y(V) = R — {0}, y(U NV) = (—eo,0), are open
subsets of R. Moreover, the maps yo @~ ', poy~!, yoy™!, and yoy ! are C*
maps. Thus, 7 is, in fact, a chart of the above differentiable structure.

Problem 1.2.4. Let
§={(x,0eR* :xe (=1,+1)} U {(x,x) eR?:xe (0,1)}.
Let

U={(x0):xe(-1,+1)}, 0:U — R, o(x,0) =x,
V={(x0):x€e(—1,0]} U {(x,x),x€ (0,1)},
yv:V - R, v(x,0) =x, y(x,x) =x

(see Figure 1.10). Is &7 = {(U, ), (V,y¥)} an atlas on the set S?

Solution. We have S = U UV. Furthermore ¢ and y are injective maps onto the
open subset (—1,41) of R. Thus (U, @) and (V, y) are charts on S. However, one
has @(UNV) = yw(UNV) = (—1,0], which is not an open subset of R. Thus & is
not an atlas on S.

Problem 1.2.5. Consider on R? the subsets
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by M=UuUV

Fig. 1.10 Two charts which do not define an atlas.

Ei={(x,0)eR*:xeR}, Ey={(x,1)€R?:xeR}.
Define on E = E1 UE; an equivalence relation ~ by

(xlaO)N(xZaO) — X1 = X2,
(x1,1) ~ (x2,1) <= x1 =x2,
(xl,O)N(X2,l) < x1=x <0.

The classes of the quotient set S = E [/~ are represented by the elements (x,0) for
x < 0, and the elements (x,0) and (x,1) for x > 0 (see Figure 1.11). Prove that S
admits a C* atlas, but S is not Hausdorff with the induced topology.

[(0, 1)]

[(0, 0)]

Fig. 1.11 A set with a C* atlas, whose induced topology is not Hausdorff.

Solution. Denote by [(x,y)] the class of (x,y). We can endow S with a manifold
structure by means of the charts (Uy, ¢;) and (Ua, ¢, ), where

U ={[(x,0)] : xe R}, Uy ={[(x,0)] : x<0}U{[(x,1)] : x =0},
o((x0))=x ¢([(x0)]) = e2([(x, D]) = x.

One has Uy UU, = S. Furthermore ¢;(U;) =R, @2(Uz) = R are open sets and



18 1 Differentiable manifolds

01 O(P271 : (_°°70) - U] ﬂUQ - (—oo’())

x = [(®0)] — x

is a diffeomorphism. Hence S admits a C™ atlas.

Nevertheless, the induced topology is not Hausdorff. The points [(0,1)] and
[(0,0)] do not admit disjoint open neighborhoods. In fact, if U is an open subset
of S containing [(0,0)], then @; (U NU;) must be an open subset of R. But [(0,0)] €
UNUj, hence @;(UNUy) is an open subset of R that contains 0, thus it contains an
interval of the form (—a, ), with o > 0. Therefore {[(x,0)] : —a <x <0} C U.
Similarly, an open subset V of S containing [(0, 1)] can have a subset of the form
{[(x,0)] : =B <x<0,B >0}. Thus U and V cannot be disjoint.

Problem 1.2.6. Let S be the subset of R? which consists of all the points of the set
U=1{(s,0)}, s € R, and the point (0,1). Let U be the set obtained from U replacing
the point (0,0) by the point (0,1). We define the maps

Prove that {(U,),(U1,@1)} is a C* atlas on S, but S is not Hausdorff with the
induced topology.

Solution. UUV =S, ¢ and ¢; are injective maps in R, and the changes of coordi-
nates @ o @, "and @ o ¢! are both the identity on the open subset R — {0}. So,
these two charts define a C* atlas on S.

Let V be a neighborhood of (0,0) and W a neighborhood of (0,1) in S. Then
@(UNV) and ¢ (U NW) are open subsets of R containing 0, and so they will also
contain some point a # 0. The point (a,0) belongs to V NW, hence the topology of
S is not Hausdorff.

Problem 1.2.7. Consider the set S obtained identifying two copies L) and L, of the
real line except at a point p € R (see Figure 1.12). Prove that S admits a C* atlas
but it is not Hausdorff with the induced topology.

Fig. 1.12 The straight line with a double point.
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Solution. Take the usual charts on L; and Ly, i.e. the identity map on R. Then § =
L ULy, and the change of coordinates on the intersection L; N Ly is C™ as it is the
identity map. Nevertheless, the points p; € L and p, € Ly, where p;, i = 1,2, stands
for the representative of p in L;, are obviously not separable.

Problem 1.2.8. Let S = R x R, where in the first factor we consider the discrete
topology, in the second factor the usual topology, and in S the product topology.
Prove that S admits a C* atlas and that S does not satisfy the second axiom of
countability but is paracompact.

Solution. Foreachr € R, let L, = {(z,y) : y € R} = {t} xR, which is an open subset
of S. The map ¢,: L, — R, ¢;(¢,y) =y, is a homeomorphism, hence {(L, ¢;)};cr
is a C* atlas on S such that if s # ¢ then L, N Ly = 0. So that S is a locally Euclidean
space of dimension 1 which admits a differentiable structure. The topological space
S has uncountable connected components; thus it is not second countable with the
induced topology. The space S is paracompact. In fact, S is Hausdorff as a product
of Hausdorff spaces and if {Ug }¢ca is an open covering of S, then, for some fixed
t, {Uq NL;}gea is an open covering of L, (which is paracompact since it is ho-
meomorphic to R with the usual topology) which admits a locally finite refinement
{Vi}aea- Thus {V} }5cq ser is a locally finite refinement of {Ug }aea-

One could alternatively argue that S is paracompact since each connected com-
ponent of S is second countable.

Problem 1.2.9. Let S be a set with a C* atlas and consider the topological space S
with the induced topology.

(1) Is S locally compact, locally connected and locally connected by arcs as a
topological space? Does it satisfy the first axiom of countability? Does it satisfy the
separation axiom Ty ?

(2) Does it satisfy the separation axiom Ty? And the second axiom of countabil-
ity?

(3) Does it satisfy the separation axiom T3? Is S a regular topological space? Is
S pseudometrizable? Does it satisfy all separations axioms T;? Is S paracompact?
Can it have continuous partitions of unity?

(4) Does S satisfy the properties mentioned in (3) if we constrain it to be T» and
to satisfy the second axiom of countability?

HINT: Consider:

(i) Urysohn’s Theorem: If S verifies the second axiom of countability, then it is
equivalent for S to be pseudometrizable and to be regular.

(ii) Stone’s Theorem: If S is pseudometrizable, then it is paracompact.

Solution. (1) S being locally Euclidean, it is locally compact, locally connected,
locally connected by arcs, and satisfies the first axiom of countability.

S satisfies the separation axiom 77. In fact, let p and ¢ be different points of
S. If they belong to the domain of some chart (U, @) of S, we can choose disjoint
open subsets V;,V; in R” (assuming dimS = n), contained in ¢(U), and such that
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o(p) € V1, ¢(q) € V». Since ¢ is continuous, ¢! (V1) and ¢! (V») are disjoint open
subsets of S containing p and g respectively. If p and g do not belong to the domain
of a given chart of S, there must be a chart whose domain U; contains p but not g,
and one chart whose domain U, contains g but not p.

Notice that Uy and U, are open subsets of S.

(2) Tt does not necessarily satisfy the separation axiom 73, as it can be seen in
the counterexamples given in the previous Problems 1.2.5, 1.2.6, 1.2.7. It does not
necessarily satisfy the second axiom of countability, as the counterexample given in
Problem 1.2.8 proves.

(3) Not necessarily, since S is not necessarily 7>.
(4) Yes, as we have:

(a) S is locally compact, as it follows from (1). As S is also T3, it is 73 and
hence regular.

(b) By Urysohn’s Theorem, S is pseudometrizable.
(c) S being pseudometrizable and 7, it satisfies all the separation axioms.
(d) S being pseudometrizable, it is paracompact by Stone’s Theorem.
(e) S being paracompact, it admits continuous partitions of unity.
Problem 1.2.10. Consider the cone S = {(x,y,z) € R® : x> +y* = 7?2} (see Fig-

ure 1.13) with the topology induced by the usual one of R3. Prove that the algebraic
manifold S is not even a locally Euclidean space.

x

Fig. 1.13 The cone is not a locally Euclidean space because of the origin.

Solution. The point (0,0,0) € S does not have a neighborhood homeomorphic to
an open subset of R?. In fact, if such a homeomorphism k: U — V exists between
an open neighborhood U of 0 = (0,0,0) in S and an open subset V of R?, then, for
small enough € > 0, the open disk B(h(0), &) of center £(0) and radius € is contained
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in V. If we drop the point £(0) in B(k(0),¢) the remaining set is connected. So it
suffices to see that if we drop 0 in any of its neighborhoods, the set U — {0} is not
connected. In fact, U — {0} = U, UU_, where

Uy ={(x,y,2) €U : 2> 0}, U_ ={(x,y,2) €U : z< 0},

so Uy NU_ =0, and Uy and U_ are open subsets in the induced topology. Hence S
is not even a locally Euclidean space.

Problem 1.2.11. Let S be the topological space defined by the union of the two
circles in R? with radius 1 and centers (—1,0) and (1,0), respectively (see Fig-
ure 1.14), and the topology inherited from that of R*. Is S a locally Euclidean
space?

N ,
N

Fig. 1.14 Two tangent circles are not a locally Euclidean space.

Solution. No, as none of the connected neighborhoods in S of the point of tangency
(0,0) is homeomorphic to an open subset of R. In fact, let V be a neighborhood of
(0,0) in S inside the unit open ball centered at the origin. If such a neighborhood V
were homeomorphic to R, then V — {(0,0)} and R — {0} would be homeomorphic;
but this is not possible, as V — {(0,0)} has at least four connected components and
R — {0} has only two.

1.3 Differentiable Functions and Mappings

Problem 1.3.1. Consider the map
f:R?> - R, (x,y) — X +xy+y> +1.

(1) Compute the map f.: T,R* — Ty R.

(2) Which of the points (0,0), (%, %) (—%, —%) is fx injective or surjective at?
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Solution. (1)

d _df d
g (a ) - a([’) o f(p)
— (62 +)(0) 2
I yp)
d _df d
ﬁ<@)3%m&ﬂm
0
= (x+3%)(p) -
ot f(p)
()
d d d d
f* 5. = 0 YN ) f* .. = O Y )
(ax (070)> o, <9y (o,o>> ar],
hence f, (o 0) is neither surjective nor injective.
d 20 d
ﬂ<%@@>_3&%_ﬂ<@@@>

hence f*(l H is surjective, but not injective.

d d
f*<$ 1]>:O'E—
(3’ 3> 27

hence f*(7 11 is neither surjective nor injective.
303

REMARK. f, cannot be injective at any point since dim R? > dim RR.

Problem 1.3.2. Let
FIRT =R (xy) = (F—2p,4x%7),
g R =R, (xy) = (Py+y",x—2y,yeh).

(1) Compute f. (1 5) and g.(x.).-

Jd 0
2) Find g, (4— - —) .
( ( dx dy ©.1)

(3) Calculate the conditions that the constants A, L, v must satisfy for the vector
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(2 ul02)
ax z9y 82 2(0,0)
to be the image of some vector by g,.
2xy x*+2
Solution. (1) f > 2 1y 62y
olution. (12) = , o &u(xy) = —
(1.2) 48 16 (x.y) Y
ye* e*
(2)
0 2
g (4i—i> =|1 -6 X
* ax Iy )n) _1
1 1
- 3 9 .0
= 10 =(-2 +10—+3—> .
( ax (9_)) aZ (1,-2,1)
8(0,1)

00

(3) Since g,00)= |1 0 |, the image by g. of T(O,O)Rz is the vector subspace
01

of Tjg9,0)R? of vectors of type (0, ,v).

Problem 1.3.3. The elements of R* can be written as matrices of the form A =
X z cosf —sin6 4 4 . .
.LetAyg = . Let Ty: R* — R* be the differentiable trans-
y t sin @ cos 6
Sformation defined by Ty(A) = AoA.
(1) Calculate Ty, .

0 0 d d
(2) Compute Ty X, where X = cos 0 i sin 6 B +cos 6 Fr sin 6 5
Solution. (1)

cos@ —sinf O 0

sin 0 cos@ 0 0
o= 0 0 cos@ —sin6
0 0 sin 6 cos 6

d
(2) It is immediate that Ty, X =

— + —. The result can also be obtained con-
ox 0z
sidering that if
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0 d d d
X:lla—l-lza—y +l3a—z +A4E

M oA
is a vector field on R?, then Ty, X = AgA, where A = ( 1 3) . We thus have
A M4
cosf® —sinB cos O cosf
Tg.X =
sin cos B —sin® —sinf

1 Jd d

0 0 _8x+9_2'

Problem 1.3.4. Consider the curve & in R? defined by x =cos t, y =sint, t € (0,7),
and the map f: R* — R, f(x,y) = 2x+y>. Find the vector v tangent to ¢ at 7t /4
and calculate v(f).

Solution. We have o’ () = (—sin t,cos ), thus

V2 V2
/ = [ —_—
o<n/4>_< 2y
_ V20 V2 i’
2 Ixlapva 2 Wlanvan)

Hence o/(n/4)f = —/2/4.
Problem 1.3.5. Consider the curve in R? given by o(t) = (x(t),y(t)) = (> — 1,13 —

t). Find o(t) and &' (t) fort =1 and t = —1. Compare o (1) with 6(—1) and ¢’(1)
with o’'(—1).

¢’(-1) c’(1)

Fig. 1.15 The curve o(t) = (x(¢),y(t)) = (1> — 1,3 —1).
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Solution. We have o(1) = (0,0), 6(—1) = (0,0), and

o'(1)= (2,3 - 1)1 =(2,2), o' (=1)=(-2,2).
Hence, 6(1) = o(—1) but 6’(1) # o’(—1) (see Figure 1.15).

Problem 1.3.6. Let E be the “Figure Eight” with its differentiable structure given
by the global chart (sin2s,sins) — s, s € (0,27) (see Problem 1.2.1). Consider the
vector v = (d/ds)q tangent at the origin p = (0,0) to E and let j: E — R? be the
canonical injection of E in R?.

(1) Compute j.v.
(2) Compute j.v if E is given by the chart (sin2s,sins) — s, s € (—m, 7).

Solution. (1) The origin p corresponds to s = 7, so

dsin2s
oy = ds _ 2
K dsins _1
aS S=T
d
Asv= —| we have
ds
P
2
JapV = (1)
2 0 d
- =22 - 2.
-1 dx|, dy|,
(2) We now have
dsin2s
= ds _ 2
T 9sins 1]’

ds s=0

d

SO jupv =2 —| + —| .
P ox » dy »

Problem 1.3.7. Consider the parametrization
x=sinfcos¢p, y=sinOsing, z=cosO, 0<O6<m 0<@<2m,

of $2. Let f: §* — S? be the map induced by the automorphism of R3 with matrix
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V2/2 0 V22
0 1 0
—2/2 0 V2)2

Consider the coordinate neighborhood

U={(x,yz) €S :x+z#0}.

Compute f, (;—9‘ ) and f (%
P

belongs to U.

) for p=(60,90) € U such that f(p) also
p

Solution. This parametrization can be described by saying that we have a chart @
from U to an open subset of A = (0,7) x (0,27) with

@ ! (u,v) = (sinucosv, sinusinv, cosu), u,v €A,

and that we call
0=uod, Q=vod,

where u and v are the coordinate functions on A. Then we need to compute
f+((2/90)p) and f.((d/d¢),), where p € U. As f(p) € U, we have

(3] -5z (25202

f(p)

d(0ofod 1) d d(pofod) d

st IR G e [P

()

D[\ _ (a0, d| (@), @

& <8qo p) - ( I¢ )(p) o f(p)+( IP )(P) I¢ f(p)
d(@ofod 1) d d(pofod) d

— (ML) @) 5 o (222220 @) 5 .

Now,

(B0 fo®d ) (u,v) = (0o0f)(sinucosv, sinusinv, cosu)

ol

2, . . . .
=0 <7(smucosv+cosu), sinusinv, — (—sinucosv+ cosu)
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2
= arccos ({( sinucosv+cosu)> ,

Q! = arct 22—
(pofo®™)(u,v) =arctan <\/_sinucosv+cosu

sinusinv )

(Notice that, since x+z 7 0 on U, the function arctan is well-defined on U.)

Then, we obtain by calculating and substituting the four partial derivatives in (*)

above:
0
+(2

) sin By + cos By cos Qg K ’
p

\/1 + sin’ Gy sin® @0 +sin26p cos Qg 96 f(p)

\/Esin ®o i
1 + sin? 6o sin? @0 +sin26p cos Qg e f(p) ’

) _ — sin 6 sin Qg ) ’
p \/1 + sin® Oy sin’ @0+ sin26y cos Qg f(p)

V/2(sin’ 6y + % sin26pcos ) 0
1+ sin” 6y sin® Qo + sin 26y cos P I | ()

Problem 1.3.8. Let M be a C* manifold of dimension n and % (p) the set of C*
functions f: M — R whose domains contain the point p € M. Let X € T,M. Prove
that if f € % (p), then considering R as a C* manifold with the chart (R,id), where
id denotes the identity map of R with the coordinate t, we have f.X = a(d/dt)y,),
where a=Xf.

Solution. We have f.: T)M — Ty,)R ~ R. In general, given a C* map h from the
C~ manifold M to the C* manifold N, and a tangent vector X € T,M, we have

hX =X(y oh) ;
yl

Wp)

where {y'} denotes coordinate functions on a neighborhood of /(p). In the present
case,

d
fX=X(tof) 3

f(p)
d
= (XN
di f(p)
4
dr f(p)
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1.4 Critical Points and Values

Problem 1.4.1. Consider the map

(1) Find the critical points of ¢ .

(2) Let S? be the unit sphere of R>. Find the critical points of ¢|g .
(3) Find the set C of critical values of ¢|g.

(4) Does C have zero measure?

Fig. 1.16 The set of critical points of @|g.

2 L1
x> x 0
Solution. (1) The Jacobian matrix ¢, = ( ) has rank ¢, < 2 if and only
0 0 1

if x! =x% = 0; that is, the set of critical points of ¢ is the x3-axis.
(2) Consider the charts defined by the parametrization

x! = sinucosv, X = sinusinv, = cosu,

foru e (0,7), ve (0,2n) and u € (0,7), v € (—x, 1), respectively. We have

1 . .
y1 =3 sm2u51n2v, y2 = cosu.
So we can write
1. . .2
[ 5sin2usin2v  sin“ucos2v
(plg), =27 :
—sinu 0

thus rank(@|s2), < 2 if and only if either sinu = 0 or cos2v = 0.
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We have sinu # 0 in both charts. In the first chart, we have cos2v = O for
v=m/4, 3n/4, 5n/4, Tr/4. In the second chart, one has cos2v = 0 for v =
—3n/4,—m/4,m/4,371/4. The sets of respective critical points coincide: They are
the four half-circles in the Figure 1.16 excluding the poles, due to the parametriza-
tion. Now, we must add the poles as they are critical points for ¢ by virtue of (1)
above.

Hence, the set of critical points of ¢|¢ is given by the meridians corresponding
tov=m/4,3n/4,57/4,7n/4.

(3) Since sin2v = £1 forv=n/4,3n/4,51 /4,71 /4, the set of critical values of
ls is

1
C= {(y17y2) yl = ﬂ:E sin®u, y* = cosu} ,
that is, the parabolas
'+ =1, ' -(P)P=-1

Note that the images of the poles are included.

(4) A subset S of an n-manifold M has measure zero if it is contained in a count-
able union of coordinate neighborhoods U; such that, ¢; being the corresponding co-
ordinate map, ¢;(U;NS) C R" has measure zero in R”. This is the case for C C R?,
as it is a finite union of 1-submanifolds of R

Problem 1.4.2. (1) Let N = {(x,y) € R* : y =0} and M = R*. We define f: M —
R by f(x,y) = y°. Prove that the set of critical points of f|y is the intersection with
N of the set of critical points of f.

(2) Let N = {(x,y) eER?: 24y = 1} and M = R?. We define f: M — R by
f(x,y) = x*+y2. Is the set of critical points of f|y the same as the one of f?

Solution. (1) The set of critical points of f is N and f|y is the zero map. Thus all
the points of N are critical for f|y.

(2) No. In this case, the set of critical points of f is reduced to the origin, but
fIn =1, so all the points of N are critical.

Problem 1.4.3. Find the critical points and the critical values of the map f: R3 —
R? (x,3,2) = (x+y%,y+2).

1 2y O
Solution. We have f, = ( Y ) Since rank f, = 2, f has no critical points,
0

1 2z
hence it has no critical values.
Problem 1.4.4. Consider the function

f: R >R, (x,v,z) — xsiny+ysinz+ z sinx.
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(1) Prove that (0,0,0) is a non-degenerate critical point of f.
(2) Calculate the index of f at (0,0,0).

Solution. (1)
f+000) = (siny-+zcosx, xcosy+sinz, ycosz+sinx) g o ) = (0,0,0).

Thus rank f,,0,0) = 0, so (0,0,0) is a critical point. The Hessian matrix of f at
(0,0,0) is

—zsinx cosy cosx 011
H(’; 00) = cosy —xsiny cosz =110 1
cosx cosz —ysing 0.00) 110
Since det H(0 00) = =2 #0, the point (0,0,0) is non-degenerate.

(2) The index of f at (0,0,0) is the index of H(ooo)
negative signs in a diagonal matrix representing the quadratic form 2(xy+xz+yz)

associated to H({).o.o)' Applying Gauss’s method of decomposition in squares, one
has: N

that is, the number of

2xy+2xz+2yz =2((x+2)(y+2) — )

1 1 1 1
=2 27)% — = 2) = = 22— Z(x—vy)2 _ 22
<4(x+y+ 2)? 4(x y)?*— > 2(X+y+ z) 2(x y) =22

As two negative signs appear, the index of f at (0,0,0) is 2.

Problem 1.4.5. Consider the C* manifold R" and a submanifold L given by a vec-
tor subspace of R" with dim L < n— 1. Prove that L has zero measure.

Solution. Let dim L = k < n— 1. Consider the map
f:RY - R", Fxt a2, x5 = Xe;,
where {e;} is a basis of L. By virtue of Sard’s theorem, f(R¥) = L has zero measure.

Problem 1.4.6. Let M and M> be two C™ manifolds. Give an example of differen-
tiable mapping f: My — Mj such that all the points of M are critical points and
the set of critical values has zero measure.

Solution. Let f: M| — M, defined by f(p) = g, for every p € M| and g a fixed
point of M>. Then the rank of f is zero, hence all the points of M, are critical. On
the other hand, the set of critical values is reduced to the point ¢, and the set {g} has
obviously zero measure.
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1.5 Immersions, Submanifolds, Embeddings and
Diffeomorphisms

Problem 1.5.1. Prove that the C* map
YR —RY e (x,y) =210,

(see Figure 1.17), is not an immersion.

Fig. 1.17 The graph of the map ¢ — (¢2,3).

Solution.

rank ¥ = rank (8x 8y>

dt ot
= rank(2¢ 3¢°)
{1 if £ £0

0 ifr=0.

Fort =0, we have rank ¥ = 0 < dim R = 1, thus ¥ is not an immersion. Let us
consider ¥, in detail, as a map between tangent vector spaces. We have

l}’* : EQR - T"P([())RZ

A i — Y (A i
def, def,
and
d d(xo¥) d d(yoW¥) d
YA — =2 —
( dt m) ( ot (t0) X |y(10) Jt (t0) 9 |y ()
d
=A |20 — +313 —
( Dl 9y wm))
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= (2A19,3A13)
(0,0) € ToR>  VAif 1p=0
= (0,0) S T\II([O)RZ ifA=0
#(0,0) € Ty R* if 19,4 #0.

That is, ¥, (ToR) = (0,0) € T(O’O)Rz. The whole tangent space TyR is applied by
Y, onto only one point of the tangent space T(O_VO)RZ.

Problem 1.5.2. Let M = {(x,y) € R? : x> +y* < 1}. Define a C* map by

y 2
M R? —— " .
f - ’ (x7y)H (l_xz_yzve )

(1) Find the set S of points p of M at which f,, is injective.
(2) Prove that f(S) is an open subset of R>.
Solution. (1) One has

2 l—xz—|-y2

— _ _ 2 2
m—o <—x=0o0rl=x -y .

rank f, <2 <= 2xe"

Since 1 > x> +y%, wehave 1 > x> —y?,s0S =M —{(0,y) : =1 <y < 1}.
(2) Consider the subset {(0,y) : —1 <y < 1} of M. We have

oy -1<y<ip={ (251}
= (—o0,00) x {1} C R%.

Thus f(M) = {(x,y) € R?: 1 <y < e}, hence

FS)={(xy) eR*:1<y<e},
which is an open subset of R?.

Problem 1.5.3. Let Riq and Ry be the C* manifolds defined, respectively, by the
differentiable structures obtained from the atlases {(R,id)} and {(R, @} on R,
where ¢: R — R, ¢(t) = t>. Prove that Riq and Ry are diffeomorphic (see Pro-
blem 1.1.1).

Solution. To prove that Riq and R, are diffeomorphic, we only have to give a map
@ such that its representative ¥ in the diagram

RLR

o

R —Y LR
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be a diffeomorphism. Let @(¢) = v/z. One has ¥(t) = po P oid ' (f) =1.
Problem 1.5.4. Consider the map f: R?> — R? —{(0,0)} defined by x = e"cosv,
y=-e"sinv.

(1) Prove that the Jacobian determinant of f does not vanish at any point of the
plane.

(2) Can f be taken as a local coordinate map on a neighborhood of any point?

(3) Is f a diffeomorphism?

(4) Given a point pg = (ug,vo), give an example of a maximal open neighborhood

of po on which we can take f as a local coordinate map.

Solution. (1) Notice that x*> +y? = e > 0; so that f(u,v) € R?> —{(0,0)} for all
(u,v) € R%. We have

Jdx oOx
ou ov e“cosy —e'sinvy

= b
ﬂ @ esiny e*cosvy
Ju dv

hence 9(x,y)/d(u,v) = e* > 0 for all (u,v) € R2.
(2) By (1), f is a local diffeomorphism at every point of R2. So f can be taken
as a local coordinate map on a neighborhood of every point.

(3) The map f is not a diffeomorphism as it is not injective. We have f(u,v) =
f( V) if and only if u = u’ and v —V' = 2kz, k € Z. In fact, from the relations

! . /o

e'cosv =e" cosV, e’sinv = e" sinv/,
. /! . .
we obtain 2 = e2  and so u = u’. Then one has cosv = cosV/, sinv = sinV/, hence
the difference between v and v/ is an integer multiple of 27.

(4) The points having the same image as pg are the ones of the form (ug,vo +
2km), k € Z. The nearest ones to pg are (uo, vo & 27). Hence such a neighborhood
is R x (vo—m,vo+ 7).

Problem 1.5.5. Let V be a finite-dimensional real vector space. Consider the open
subset & of EndrV defined by

& ={T €EndrV : det({I+T) # 0},

where I denotes the identity endomorphism.
(1) Prove that the map

f:& - EndgV, Tw— (I-T)I+T)"",

is an involution of &.

(2) Consider on & the differentiable structure induced by EndrV. Prove that
f: & — & is a diffeomorphism.
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Solution. (1) If T € &, then I+ f(T) =2I(I+T)~' € &. Hence

det(I+ f(T)) = det(2I(I+T)7")
=24mV /det(I+T) #0.

It is easily checked that f(f(T))=T.

(2) The map f is C™. In fact, the entries of f(7') can be expressed as rational
functions of the entries of 7. As f~! = f, we conclude.

Problem 1.5.6. Prove that the function
[IRP =R f(xy) = (ve? +y, xe? —y),
is a C” diffeomorphism.
Solution. Solving the system
xel +y=x, xed —y =y,
in x and y, we conclude that the unique solution is

L x/+y/ :x/_y/'
2e2 Y

hence the map is one-to-one. Let us see that both f and f~! are C*. We have

fi(ny) = (xe? 4y, xe? —y),

1. XY /2 XY
f .<x,y>H<2e ).

Since the components of f and f~! and their derivatives of any order are elementary
functions, f and f~! are C*. Thus f is a C* diffeomorphism.

Problem 1.5.7. Let ¢: R? — R be the map defined by

x = e2y+621’ yl _ er _ e2z7 Z/ =x—.

Find the image set @(R>) and prove that ¢ is a diffeomorphism from R3 to @(R3).

Solution. Solving, one has

!
)C:Z/er, x/:62y+e2z7 y/:e2z e2y76217
and so ,
/ ! 1.2 /
oy X 4y 2, X'eT —y
€ - 7 € - ro
1 +e% 1+eX

Hence it must be x’ > 0, x'+y’ >0, x'e% > y'.
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Thus,
P(RY) ={(x,5,2) eR* : x>0, x+y >0, xe* >y}.

The map ¢ is injective, since the above formulae give the unique point (x,y,z) hav-
ing (x',y’,7') as its image by .
In order to see that ¢ is a diffeomorphism from R? to ¢ (R?), it suffices to prove
that the determinant of its Jacobian matrix J, never vanishes. We have
0 2e¥ 2%
detJ, =det [ 22 0 —2e%
1 -1 0
— _4(62y+2z + e2x+2z) 7& 0.

Problem 1.5.8. Consider the C* function f: R? — R3 defined by
f(x,y,z) = (xcosz—ysinz, xsinz+ycosz, z).

Prove that | is a diffeomorphism from the unit sphere S2 onto itself.

Solution. For each (x,y,z) € $%, one has f(x,y,z) € S?, so that (f|s)(S?) C S
Furthermore, given (u,v,w) € S?, we have to prove that there exists (x,y,z) € S?
such that f(x,y,z) = (u,v,w), that is,

Xcosz—ysinz =u, xsinz+ycosz=v, z=w.
Solving this system in x, y, z, we have
X =ucosw+v sinw, y = —usinw-+vcosw, z=w.

These equations are the ones of the components of the inverse function of f|g,
which is clearly C™, hence f|. is a diffeomorphism.

Problem 1.5.9. Let {(E, @)} and {(E,y)} be the atlases on the “Figure Eight”
built in Problem 1.2.1. Exhibit a diffeomorphism between the differentiable mani-
folds E and E\, defined, respectively, by the differentiable structures obtained from
the atlases {(E, @)} and {(E,y)}.

Solution. Let
f1Ep — Ey, Sf(sin2s,sins) = (sin2(s — 7),sin(s — 1)).
Since (o fo @) (s) =s—m, it follows that f is a diffeomorphism.

Problem 1.5.10. Let (N, @), (N,y) be the atlases on the “Noose” built in Pro-
blem 1.2.2. Exhibit a diffeomorphism between the differentiable manifolds Ny, and
Ny defined, respectively, by the differentiable structures obtained from the atlases

{(N, @)} and {(N,y)}.
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Solution. The map f: (N,¢) — (N,y), (x,y) — (—x,y), mapping a point to its
symmetric with respect to the y-axis, is a diffeomorphism. One has

L) S e Loy % (-1

s =07l = floTl(s) = o

In fact,
o 1(s) = (O',l—s) ?f—1<s<0
(sin2ms,cos2ms) if 0<s< 1,
_ 0,1—s if —1<s<0
[ICRIC) R |
(sin2m(1 —s),cos2m(1—s)) f 0<s< 1,
and

(vofoo )(s)=s,  Vse(-11).
Problem 1.5.11. Prove that the map

p: R — S t +— (cos2mt,sin2xt),

is a covering map.

Solution. We must prove:
(1) p is C~ and surjective.

(2) For each x € S', there exists a neighborhood U of x in S! such that p~! (U) =
UU;, i € I, where the U; are disjoint open subsets of R such that, for each i € I,
p: U; — U is a diffeomorphism.

Now, (1) is immediate. Moreover p is a local diffeomorphism.
As for (2), let y € R; then
p: (y—my+m) — 8" —ply+m)

is a diffeomorphism and

p (8" = py+m)=J v+ (2k— ),y + (2k+1)m).
keZ

Of course, one can take smaller intervals as domains of the diffeomorphisms.
Problem 1.5.12. Consider the curves:
(a o:R — R?
to— (8 ])
(b) o:R — R2
t o (P-4, —4)
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(c) c:R — R3
t +— (cos2mt,sin2mt,t)
(d) c:R — R?
t — (cos2mt,sin2rt)
() o:(l,0) — R2
1 1,
t - ;cosZnt, ;stnt
) o:(le) — R
141t 1+1 .
t - ——cos2mt, ——sin2mt
2t 2t

(2) c:R — R?
t - (2003 (t—%),sinZ(t—g))
(h) c:R — R?

t - (2005 (f(t)—%)ﬁinZ(f(t)—%))

where f(t) denotes a monotonically increasing C* function on —eo <t < oo such
that f(0) = &, lim,,_o f(¢) = 0 and lim,_. f(t) = 27 (for instance, f(t) = w1+
2arctant).

(1) c: R — R?

(1/t,sinmwt) if 1<t <oo
(0,142) if —eo<t<—1,

where in addition one smoothly connects, for —1 <t < 1, the two curves G|(_°o’_1]
and O|[j .y with a C* curve (dotted in the Figure 1.22).

(1) Is o an immersion in (a)? (resp. in (b), (d), (g))?
(2) Is © an injective immersion in (b) (resp. in (d), (g), (h), (i))?
(3) Is o an embedding in (c)? (resp. in (e), (f), (h), (i))?

Solution. (a) o is not an immersion, as it is not a differentiable map at the origin
(see Figure 1.18). We recall that
d
!/
o () =0 — ,
( 0) *1o <dt 10>

that is, 6’ (#9) is the image of the canonical vector at 7 € R.

(b) o is a differentiable map, and since o’(t) = (3t> —4,2t) # (0,0) for all ¢,
the map o is an immersion. But for t = 42, it has a self-intersection, so it is not an
injective immersion.
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y A /y

Fig. 1.18 (a) o is not an immersion. (b) o is a non-injective immersion.
z
A

Fig. 1.19 (c) o is an embedding. (d) o is a non-injective immersion.

y <
8

\}

(c) o is an immersion as
o'(t) = (=2msin2xt,2mcos2mt, 1) # (0,0,0), vt e R.

It is trivially injective and since the map o: R — &(R) is open, o is an embedding
(see Figure 1.19).

(d) o is an immersion since
o'(t) = (—2msin2mt,2wcos2xt) # (0,0)

for all ¢, but o is obviously not injective. Nevertheless, 6(R) is an embedded sub-
manifold. (See Problems 1.1.5 and 1.6.1.)
(e) o is an immersion as
1 2r 1 2n
o'(t) = (——2 COS27t — — sin27t, — — sin 27wt + — cos2m> =(0,0)
t t t t
if and only if each component vanishes or, equivalently, the square of each com-
ponent, or even the sum of those squares vanishes; that is, (1/ t4) +472 / 2 =0, or



1.5 Immersions, Submanifolds, Embeddings and Diffeomorphisms 39

~
\N

S

Fig. 1.20 (e) o is an embedding. (f) o is an immersion.

1 +4¢>w% = 0, which is absurd. Since 6': (1,00) — & (1,0) is an injective and open
map, it follows that ¢ is an embedding (see Figure 1.20).

(f) o is an immersion as

, cos2mwt  t+1 . sin2mt  t+1
= 2nt, ———— + —— 2 =
o'(t) ( > [T ASINME, — 5 - ——meos 27t (0,0)

if and only if the sum of the squares of the components vanishes, that is, if
(1/4t%) 4+ ((t+1)m/t)> =0, or 1 +41*(t +1)?7* = 0, which is absurd. Finally, o is
an embedding, as 0: (1,00) — &(1,°°) is an open injective map.

N ANVAY
U

Fig. 1.21 (g) o is an immersion. (h) o is an injective immersion but not an embedding.

(g) The image is a “Figure Eight,” whose image makes a complete circuit starting
at the origin as # goes from O to 27, in the sense shown in Figure 1.21 (g). The curve
is an immersion as

o' (1) = (—2sin (z - g) 12052 (r - g)) #(0,0)

for all #; but is not an injective immersion since o ({0, £2x, +4r,...}) = {(0,0)}.
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(h) We have a “Figure Eight” as in (g), but the curve now passes through (0,0)

once only. Though it is an injective immersion, it is not an embedding, as the “Figure
Eight” is compact and R is not (see Figure 1.21 (h)).

(0,1) \

0,0 10!

(0,-1)

Fig. 1.22 (i) o is not an embedding.

(i) o is an injective immersion. It is not an embedding: In fact, take a point
p on the vertical segment {0} x (—1,+1) of the graph of the curve. Then an open

neighborhood of p in that vertical interval is never the intersection of an open neigh-
borhood of p in R? with the graph of the curve.

Problem 1.5.13. Let U = {x € R" : |x| < 1} be the open unit ball of the Euclidean
space R". Prove that the map

X
U - R? =—
f - 9 f()C) 1— ‘)C|27
is a diffeomorphism.

Solution. As a computation shows, x = £~ (y) = 2y/(14++/1 +4[y]?).

1.6 Constructing Manifolds by Inverse Image. Implicit Map
Theorem

Problem 1.6.1. Prove that the sphere S" is a closed embedded submanifold of R

Solution. The map f: R™! — R, f(x!,...,.x""1) = ¥71! (x')2, is trivially C* and

has rank constant and equal to 1 on R"*! —{0}. Since " = f~(1), 8" is a closed
embedded submanifold of R"*!.
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Problem 1.6.2. Prove that each of the functions f: R?> — R defined by:

@) flopd)=2+y =21,
(b) flryz) =2 -y -2 -1,
defines the structure of a differentiable manifold on f~'(0). The corresponding man-

ifolds are called one-sheet and two-sheet hyperboloids, respectively. Find in each
case a finite atlas defining its C* structure.

Fig. 1.23 An atlas with one chart for the one-sheet hyperboloid.

Solution. In the case (a), the rank of the Jacobian matrix of f is zero if and only if
x=y=2z=0,but (0,0,0) & f~'(0). Thus the one-sheet hyperboloid is an embedded
submanifold of R3.

In the case (b), one proceeds as in (a), now with the Jacobian matrix J =
diag (2x, —2y, —2z). Thus the two-sheet hyperboloid is a C** submanifold of R3.

As for the atlas, we prove below that the one-sheet hyperboloid is diffeomorphic
to R?> — {0} and hence it suffices to consider only one chart. This fact can be visu-
alized by the map ¢ onto the plane z = 0 mapping each point p of the hyperboloid
to the intersection @(p) with that plane of the straight line parallel to the asymptotic
line by the meridian passing through the point (see Figure 1.23).

Notice that there is another choice, mapping the points of the hyperboloid with
z < 0 to the interior of the disk x*> +y?> < 1 minus the origin, and the points with
z > 0 to the points with x* +y? > 1.

The equations of ¢ are given by

/

Z
X =x|1-—,
< \/1+z2>

/ Z
(o),
( V1422

and, as a computation shows, the inverse map ¢! is given by
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_x/2+y/2+1 ,

Wy
_x/2+y/2+1 ,
YT 20y
B l_xl27yl2

=

Wy

To have an atlas in the case (b), one needs at least two charts, as after finding x,
y or z in the equation x> —y? —z> — 1 = 0, none of them is uniquely defined. Let
H = f~1(0). Then the charts (U1, ¢1), (Ua, @), given by

U :{(x,y,z)EH Z)C>0}, (e Ui *)Rza (pl(x,yvz):(yaz)a
Uy={(xy2) €H:x<0}, U =R,  ¢xy2) =12,
obviously define an atlas for the manifold.

Problem 1.6.3. Let H be the two-sheet hyperboloid defined as in Problem 1.6.2.
By using the charts defined there and proceeding directly, prove that the natural
injection j: H — R3 has rank 2 at every point.

Solution. Take the atlas in Problem 1.6.2 (b). We have U; = ¢, 1(RZ), U, =

0, 1(]RZ), and the corresponding coordinate functions in R3 are given by the in-
clusion j: H=UUU; — R3, so that

jo(pl—l: RZ s R3
0z = (V1+y2+22,y,2),
jo(p{lz R2 — R3

z) = (—/1+y2+22y,2).

We have
. rank(jo (p;l)*(}r,z) if p €Uy, (y,Z) =01 (p)
rank jp, = | .
rank(jo @, ' ).y if p € U2, (1,2) = ¢2(p),
that is,
y Z
VIt +22 14242
rank j,, = rank 1 0 =2,

0 1
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—y —z
VI4y+2 142 +2
rank j,, = rank 1 0 =2,
0 1

if pelUy,(»,2) = @i1(p), and p € Us, (y,2) = ¢2(p), respectively.
Problem 1.6.4. Prove that the function
f: R >R, flxyz) =X +2° +2 +6x°y—1,
defines the structure of a C* manifold on f~'(0).
Solution. The Jacobian matrix
J=(0BC+12xy 6°+6x> 37%)

has rank 0 if and only if (x,y,z) = (0,0,0), but this point does not belong to H =
£71(0), hence rank J = 1 and H admits a structure of C* manifold.

Problem 1.6.5. Prove that the subset H of the Euclidean space R3 of all the points
(x,y,2) of R? satisfying x° +y> +2° — 2xyz = 1 admits a C* 2-manifold structure.

Solution. The map
f: R > R, flyz) =X +y 422 —2xyz—1,
is C” and its Jacobian matrix is
J=(3x*—-2yz 3y*—2xz 3z —2xy),
which vanishes only if (x,y,z) = (0,0,0). In fact, multiplying the identities
3x2 =2yz, 3y? = 2xz, 37% = 2xy,

we get 27x2y°z> = 8x%y?z%, from which xyz = 0. If x # 0 then by the first of the
three equations above we would have the absurd y # 0, z # 0. Thus x = 0. By the
same reason one has y =z = 0; but (0,0,0) & H.

Problem 1.6.6. Prove that the subset M of the Euclidean space R® which consists
of all the points (x,y,z) of R? satisfying

xz—y2+2x272yz:1, 2x—y+2z=0,
admits a structure of C 1-manifold.

Solution. The functions

filxyz) =32 —y*+2xz—2yz—1,  fluyz) =2x—y+z,
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are C* functions. The rank of the Jacobian matrix of fi, f> with respect to x,y,z, is
less than 2 if and only if x — 2y — z = 0, but the points satisfying this equation do not
belong to M = f~1(0).

Problem 1.6.7. Prove that, if F: R*! — R is any differentiable function on R"~!,
then the function f: R" — R defined on R" by

defines the structure of a C* manifold on f~'(0). Prove that this manifold is diffeo-
morphic to R\ Illustrate the result considering the C* manifolds on R3 thus de-
termined by the functions f: R> — R given by

() fluyz)=2+y—z, (b)) flayz) =+ -y -z

which are examples of paraboloids: Elliptic (of revolution) in the case (a), and hy-
perbolic in the case (b).

Solution. The rank of the Jacobian matrix of f is 1 everywhere, thus f~!(0) ad-
mits a structure of C manifold. Furthermore, it suffices to consider the chart

(f7'(0), ), where
@: f7H0) = R ekt ) = (..

In the particular case of the paraboloids, taking into account the previous consid-
erations, it is clear that:
Case (a): It is only necessary to consider the chart (U, ¢) with

U=£70), ¢:f'0) =R, (2= (x)
Case (b): Proceed as in (a).

Problem 1.6.8. Ler F: R" — R be any homogeneous polynomial function (with
degree no less than one) with at least one positive value. Prove that the function
f:R" = R, f(x) = F(x) — 1, defines on f~'(0) a structure of C* manifold.

Solution. The Jacobian matrix of f is

( OF OF )
dx! ox"
If deg F = 1, then at least one of the elements (JF/ dx')(p) does not vanish.

If deg F = r > 1 and the matrix ((dF /dx')(p)) is zero at a point p = (x!,...,x"),
then F(p) is also zero at that point. In fact, since F is homogeneous of degree r one
has

| OF JdF

n

rF(p)=x W(p)+---+x ax,,(p)-

Thus f(p) = F(p) — 1 = —1, hence on f~!(0) the Jacobian J does not vanish. That
is, rank Jy = 1 on £~1(0), so that £~!(0) is a submanifold of R". Notice that f~!(0)
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is not empty as if F has a positive value, then it also takes all the positive values,
since F(tp) =t"F(p).

1.7 Submersions. Quotient Manifolds

Problem 1.7.1. Let f: R? — R be given by f(x,y,z) = x> +y*> — 1.
(1) Prove that C = f~1(0) is an embedded 2-submanifold of R.

(2) Prove that a vector

V= (ai —&—bi +ci>
dx dy 0z ©0.1,1)

is tangent to C if and only if b= 0.
(3)If j: S' — R2 is the inclusion map, prove that j x idg : S' x R — R3 induces
a diffeomorphism from S' x R to C.

Solution. (1) f is a differentiable map and rank f, = rank(2x 2y 0). Hence the rank
of f is 1 at every point except on {(0,0,7) : z € R}, but these points do not belong
to C. Thus, by virtue of the Implicit Map Theorem for submersions 7.1.11, C is a
closed embedded submanifold of R? and dim C = dim R? —dim R = 2.

(2) Given v € T,R?, p € C, one has v € T,,C if and only if v(f) =0, but v(f) =
(2ax+2by)(o,1,1) = 2b, thus v € T,,C if and only if b = 0.

(3) im(j x idg) = C, as (x,y) € S' if and only if x> +y? = 1, or similarly
(x,y,2) € C, for all z € R. Hence F = j xidg: S' x R — R3 is a differentiable
map (as it is a product of differentiable maps) that can be factorized by C, which is
an embedded submanifold of R3. That is, there exists a differentiable map f; that
makes commutative the diagram

Slxr 2R R3

fo ya
C

where i denotes the embedding of C in R3. On the other hand, Jj X idg is also an
embedding, since j is. Thus the map f;° ! that makes commutative the diagram

c LN R3
fo' ™\ /' jxidg
SIxR

is C=. Thus fy is a diffeomorphism.
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Problem 1.7.2. Let ¢ : R? — R? be the map given by

u :x2+y2+22— 1, v=ax+by+cz, a,bceR, a+b+c*=1.

(1) Find the points at which @ is a submersion.

(2) Find ¢~(0).

(3) Find the points where @ is not a submersion, and its image.
Solution. (1)

2x 2y 2z

rank ¢, = rank =
a b ¢

at the points (x,y,z) in which the vector (x,y,z) is not a multiple of (a,b,c). Hence
@ is a submersion on R3 — ((a,b,c)).

(2) Let ((a,b,c))* denote the plane through the origin orthogonal to the vector
(a,b,c). Then:

071(0) = {(x,3,2) €R® 1 2 +)? +22 =1, ax+by+cz =0}
=5>N{((a,b,c))*.

(3) The map ¢ is not a submersion at the points of ((a,b,c)), whose image is

(p(<a’b’c>) = {(2’2_ 1’/’1’)}
CR*= {(u,v)€R2 tu=1v+1}.

Problem 1.7.3. Consider the differentiable map ¢ : R* — R? given by

u=x*+y’ +22+12 -1,
v=x> 4y + 21 =2y —2z+5.
(1) Find the set of points of R* where @ is not a submersion, and its image.
(2) Calculate a basis of Ker ¢,(q,12,0)-
(3) Calculate the image by @ of (1,0,2,1) € 7"(1_’27071)1[%2 and the image by @* of
(du+2dv)_y5) € T(’LI_S)RZ, choosing the point (0,0,0,0) in ¢~ '((—1,5)).

Solution. (1) ¢ is not a submersion at the points of R* where

2x 2y 2z 2t
rank @, = rank < 2.

2x 2y—2 2z—2 2t
Hence, the set is

A:{(x,)@z,t)eR“:x:O,y:;t:O}.
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Therefore,
P(A)={(u,v) eR* : u=2A%*—1,v=22>—4A+5, A €R}.

(2) We have ¢, : T(0,1,2,0)R4 — T(4’4)R2. Every vector X € T(g 1 2,0) is of the type

0 0 0 0
X:)Ll&— +z/2a_ +2/38— +A,4a— 3
Xlp Ylp Zlp ar
, 0240
where p = (0,1,2,0). Since ¢,(,12,0) = , we have
o 0020
0 J
?4(0,120X = (242 +443) D +223 B
“la4) Vi)
If X € Ker ¢,,, we deduce A, = A3 = 0. Thus
0 0
Ker(p*p—{la +‘UVE )L,[J.ER}
P p
0 0 . .
and { R } is a basis of Ker @,.
p p
0
(3) @*(1,2,0,1)(170727 l) =4 a_ - Let p= (0707070)’ SO (P(p) = (_175) and
Ui,

@y 5)(du+2dv) = —4(dy+ dz)0,00,0)-

Problem 1.7.4. We define an equivalence relation ~ in the open subset R**! — {0}
by the condition that two vectors of R"*! — {0} are equivalent if they are propor-
tional. The quotient space RP" = (R"*! —{0})/~ is the real projective space of
dimension n.

(1) Prove that, giving RP" the quotient topology induced by the previous equiv-
alence relation, it is Hausdorff.

(2) Let [x',...,x""1] be the equivalence class in RP" of (x!,...,x"t1) e R™1 —
{0}. For eachi=1,2,...,n+1, let U; be the subset of points [x',... x"*1] of RP"
such that x* # 0. Prove that the functions @;: U; — R" defined by

xl xi*l xi+1 xﬂ+
(pi([xl,...,x"+l]): (- ey Ty T ey - )

xt’ X X xi

are homeomorphisms and that the changes of coordinates ¢;; = @; 0 (p]-’1 are diffe-
rentiable. Hence the systems (U;, @;), i=1,2,...,n+1, define a differentiable struc-
ture on the space RP".

(3) Prove that the projection map
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n: RI_{0} — RpP"

(oot s k)

is a submersion. Hence RP" is a quotient manifold of R"*' —{0}.

Solution. (1) The relation ~ is open, i.e. given the open subset U C R**! — {0},
then [U] = U,y [x] is an open subset of (R"+! —{0}) x (R"*! —{0}). In fact, since
U isopen, sois Uy = {Ax, x €U}, A # 0 being fixed, and [U] = Uy o Uy . Moreover,
the graph of ~ is the subset

I={(x,Ax) : L€ R—{0},xe R""" —{0}}

of (R™!—{0}) x (R™! —{0}). I' is closed, as if (x,,Ax,) — (x,y) then (A,)
is bounded. Thus it has a convergent subsequence (4,, ). Let A = lim;_,.. 4,,. Then
y = limy, e Ayxy, = limg 0 Ay, X, = Ax. So (x,y) € I'. We conclude that the quotient
space is Hausdorff.

(2) It is obvious that the functions ¢; are homeomorphisms. As for the changes
of coordinates

@i =@io9; ' 9;(UiNU)) — ¢(UinU)),
we clearly have fori < j:

o;j(UiNU;) ={(t",...,t") €R":1' #0}.

Furthermore,
—1/,1 1 i—1 i
@ (.. 0=, L

So, for (¢!,..., ") € @;(UiNU;) we have ¢; ' (¢!, ,1") as above and moreover

| (1 -1 il S I m
(pij(t,...,t)— F,...,T7T,...77,575,...,?
1
=(x,...,x").
The equations
]_ll i _tzfl tiJrl
t_i7'”u - ] ) ] Yoy
4 = 1 . 4 "
W= Tl = W= =
t t t t

correspond to differentiable functions on U;;.
(Note that we have supposed i < j, which is not restrictive.)

(3) R™1 — {0} is an open submanifold of R"*!. Using the identity chart on
R**! — {0} and an arbitrarily fixed chart ¢; as in (2) above on U; C RP", the pro-
jection map 7 has on ! (U;) (where x' # 0) the representative map
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piomoid™': n'(U) — R”

| it 5! il it P
(a3 X" : — ,

;,..., e

5 g ey

x x
which is easily seen to have rank n. Since i is arbitrary, 7 is a submersion, thus
concluding.

Problem 1.7.5. Construct an atlas on the real projective space RP" considered as
the quotient space of the sphere S" by identification of antipodal points. Prove that
the projection map ©: §* — RP" is a submersion. Hence RP" is a quotient mani-
fold of S".

HINT: Use the atlas given by the 2n+2 open hemispheres defined by the coordinate
axes, and the canonical projections.

Solution. As we know, RP" is the quotient space of the subspace R"+! — {0} of
R"*1, by the relation ~ given by x ~ y if there exists A € R — {0} such that x = Ay.
The projection 7r: R**! —{0} — RP" is an open mapping. On S" the above relation
is reduced to x ~ =x, that is, [x] = {x, —x} for every x € S". Hence on S" the above
relation corresponds to the antipodal identification.

Consider the restriction to S” of the projection 7, that we continue denoting by
w: §" — RP", m(x) = [x], and which is still open and surjective. In fact, given
[x] € RP", then x/|x| € §" and 7(x/|x|) = m(x) = [x]. Hence, RP" can be consid-
ered (as a topological space) as the quotient space of S” obtained by identifying
antipodal points. From which it follows, since mw: S — RP" is continuous, that
RP™ is compact and connected.

Notice that if U C S" is contained in an open hemisphere and x € U, then —x ¢ U,
hence 7|y : U — m(U) is injective; that is, 7|y is a homeomorphism. This property
allows us to construct an atlas in RP” from an atlas in S whose coordinate domains
are contained in open hemispheres of S"*. For instance, the atlas consisting in the
2n+ 2 open hemispheres defined by the coordinate hyperplanes and the canonical
projections. Let, for instance, Vi+ = {x es x> 0}, and

K v+ — R”

1 1
oDy s (b T R ).

We then define in RP", V; = x(V;") and ¢;" = h;" o (r|,+)~': V; — R". The map
(p,-Jr is a homeomorphism, since it is a composition of homeomorphisms. Consid-
ering V;” = {x € 8" : x' <0}, it follows that 7£(V;") = (V,”) = V; and the similar
homeomorphism is ¢;” = h; o (x|,-)~': V; — R". Notice that ¢; (V;) = ¢."(V;),
but ¢ # ¢;"; in fact, we have ¢; ([x]) = —@: ([x]). Since ¢;” = —@:" (they differ
by the diffeomorphism + — —r of R") we shall forget the charts (V;, ¢, ), and we
shall consider only the charts (V;, (pl-+), i=1,...,n+1.If i# j, then V;NV; #0,
and moreover
o o (0) " @f (VinVy) — o (VinV;)
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is given by

o o(@]) =ho(mly) o (ly+) o (h))!

— h+ o) (7'6'_1 on)|vi+mv/+ O]’lj—_l

which is differentiable since it is a change of coordinates in §”, known to be diffe-
rentiable. By the above constructions, for a given i, the projection map 7 has locally
the representative map

oo (mly+)o (1) B (V) — 9 (V)

which is the identity map, so having rank #n. Since i is arbitrary, 7 is a submersion,
and we have finished.

Problem 1.7.6. (The real Grassmannian as a quotient manifold) Ler

(k
MCR'x---xR"

be the subset of k-tuples (vi,...,vy) of linearly independent vectors of R". Let
GL(k,R) act on M on the right by (vi,...,vi)-A = (V},...,V}), where

V/j.:aj.v,., A:(aj.)eGL(k,R), ihj=1,... k.

Prove:
k
(1) M is an open subset of R" x * x R™,

(2) If ~ is the equivalence relation induced by this action, then the quotient
manifold M/~ exists and can be identified to the Grassmannian Gi(R") of all k-
planes in R".

Solution. (1) Let us denote by xé», 1 <i<n, 1< j<k, the natural coordinates on

(k . .
R" x -« x R". Given (vy,...,v) € M, we write
Xt ryeevi) o (e, k)
X = ) ()
Xf(viyevk) o (v )
that is, xz-(vl ,-.., V) is the ith component of the column vector v;.

Let A;, ., 1 <i) <--- <i; < n, denote the determinant of the k x k submatrix
of (x) defined by the rows ii,...,i;. The subset M is open as it is defined by the
inequality

A} . >0.

ll...ik
1<iy <-<ix<n
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(2) Let ((x’j),(yi)) i,r=1,...,n; j,s = 1,... k, be the natural coordinates on
the product manifold M x M, and let z},, a,b = 1,...,k, be the entries of a matrix in
GL(k,R).

The graph ¢ of ~ is the image of the differentiable map

0: MxGL(k,R) - MxM, 0(X,2)=(X,XZ).

The graph ¥ is closed in M x M, as follows by taking into account that a pair
((viy--svk), (Wi,-..,wi)) € M x M belongs to ¢ if and only if w; € (vi,...,w),
1 < i <k, and that every vector subspace of R”" is a closed subset. Hence, by ap-
plying the Theorem of the Closed Graph 7.1.13, we only need to prove that ¢ is an
embedded submanifold.

Certainly, ¢ is injective as @(X,Z) = @(X',Z’) means X = X', XZ = X'Z’, and
since rank X = k, the latter equation implies Z = Z'.

Next we prove that ¢: M x GL(k,R) — ¥ is a homeomorphism. Assume

Jim O(Xn,Zn) = Lim (Xn> XnZn)
— (X.Y).

Hence lim;,_...X; = X. As ¢ is closed in M X M, there exists Z € GL(k,R) such
that Y = XZ. We only need to prove that limj ... Z, = Z. Set X, = (Vi s, .-, Vkh)s

X = (v1,...,vk). As the vectors vy,. .., v are linearly independent, we can complete
them up to a basis (vi,..., Vg, Vkt1,-..,v) in R™. Let
Vin= Za’mvi—&— 2 bl wvis 1< j<k, (%)
i=1 i=k+1

be the expression of v; ;, in this basis. As limj,_,..v;; = v;, we obtain lim,_... a;.h =
6;j, fori,j=1,....k, and limh_mb’M =0, fork+1<i<n 1<j<k SetX =

(Vk415---5vn), and let Ay, By, be the matrices of sizes k x k, (n — k) x k, respectively,
given by
=Lk _ (i \kHIi<n
Ap=(djp) i B = by )ik

Then, (%*) can be rewritten as X;, = XA, + X By; hence
X.Z, = XAwZy + XB1Zy,
and passing to the limit we obtain

XZ =X lim (4,2) +X lim (B,.Z).

Taking components we have Z = limj,_,..(A;Z;,) and limj_,(ByZ;) = 0. Since Ay,
goes to the k x k identity matrix [ = (8;;) as h — oo, we can conclude.
Let us compute ¢,. We have
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(X,XZ)

where 1 <i<nand j,a,b=1,....k.
We clalm that the tangent vectors &!, {/, are linearly independent for every
(X,Z) € M x GL(k,R). In fact, if

k ok
2 5;—%— 2 uy & =0, (%% %)

a,b=1

HM:

for some scalars A ;, U, then by applying the equation (x*x) to the function xi U we

obtain A j’ = 0. Hence, this equation reduces to

k n a
PIN T REA =0,
ap=1 r=1 b l(x x2)
or else,
n k a
$5 ()| -0
r=1b=1 \a= Ybl(x x2)
Hence
x| )\ I
2 E =0
x| ) \uf T

As rank(x;) = k, the previous equality implies (x;) = 0.
Finally, let us show that M/~ can be identified to the Grassmannian. We have a
natural surjective map
lPZM—>Gk(Rn), lP(Vl,...,Vk):<V1,...,Vk>.

We have dim (vy,...,vx) =k asvy,...,v; are linearly independent. Moreover,

Y(vi,...,v) =P, v) =V
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if and only if {vi,...,v} and {v],...,v;} are two bases of V. Hence there exists
A € GL(k,R) such that (V{,...,v}) = (v1,...,vk) - A, thus proving that the fibres of
¥ are exactly the orbits of GL(k,R).

Problem 1.7.7. Let 7: M — N be a differentiable map. Prove that & is a sub-
mersion if and only if it admits local sections through each point, i.e. for every
qo =7(po), po € M, there exist an open neighborhood V of qo in N, and a differen-
tiable map 6: V — M such that:

(1) o(q0) = po.

(2) moo =idy.
Solution. From (2) we have 7.y, © 0.4, = idr, n. Since the identity map is surjec-
tive, m,: T,yM — TN is surjective. Conversely, if 7 is a submersion at pg, by the
Theorem of the Rank 7.1.8, there exist local coordinates (x!,...,x™), (y!,...,y"),
centered at pg, go in M, N, respectively, such that y' o = x’, 1 < i < n. Notice
that m > n, as & is a submersion. Hence we can define a map o on the domain of
(v',...,y") by setting

doo— yi if1<ign
0 ifn+l1<<i<m.

Then, for every i = 1,...,n, we have

yo(moo)=(yom)oo
=xo0o
:yia

thus proving that ¢ is a local section of 7.

1.8 The Tangent Bundle

Problem 1.8.1. Prove that if © is a C* curve in the C* manifold M, then the tangent
vector field 6’ is a C* curve in the tangent bundle TM.

Solution. Given a C* curve 6: R — M, the tangent vector field ¢’ is, by defini-

tion, a map that we can write as 6’ = 6,0 —: R — TM, where d/dt denotes the

canonical vector field on R and hence it can be considered as a curve in TM (see Fig-

ure 1.24), so that for a coordinate neighborhood U C M with coordinate functions

x!,...,x", one has

> dxios), . 9

o (2] ) =22 2
Narl,) ™ ar Vod o)
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Fig. 1.24 The tangent vector field 6’ to a curve o as a curve in TM.

Thus,

The coordinate functions {x'} and o are C*. Hence the composition x' o & is C*
foreach i =1,...,n; and the functions d(x' o 6)/dt, which are coordinate functions
on the open subset 7! (U) of TM, are also C~.

Problem 1.8.2. Let M and N be C~ manifolds and let p € M, g € N. Prove that there
exists a natural isomorphism

Tipq) (M xN) ~T,M x T;N.

Solution. Letpr;: M XN — M, pr,: M x N — N denote the projection maps, and

ig:M — MxN, x~ (x,q), ip: N—=MxN, y— (p,y),
the inclusion maps. The map

@: Tipg)(MXN) = TyMSTyN, v i— (pry,v,pra,v),
is an isomorphism. In fact, it is immediate that it is linear. Moreover, letting
V: T,MOTN — T ) (M XN), (vi,v2) & igvi +ipeva,

we have

(@ow)(vi,v2) = (pri, (igsvi +ipev2), Pro (igevi +ipev2)).
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From
prjoi, =1id, pry oi, = const, pr, o i, = const, pryoi, =id,

it follows that (¢ o y)(vy,v2) = (vi,v2).
Since dim 7{, ;(M x N) = dim (T,,(M) © T;(N)), the conclusion follows.

Problem 1.8.3. Assume that the manifold M admits a basis {Xi,..., X,} for the
(C*M)-module X(M) of C* vector fields on M.
Prove that the map

MxR" L TM =,y M
(p,a',...,a") F(p,al,...,a"):aiXi|PGT,,M

is a diffeomorphism. That is, that TM is then trivial.
REMARK. Compare Problem 2.1.2.

Solution. To begin with, we prove that for every p € M, the tangent vectors
Xi|p,--.,Xu|p are linearly independent and hence they are a basis of 7,M. Let
(U Xl ,X") be a coordinate system defined on an open neighborhood U of p,
and let f € C”M be a function such that:

(a) f =1 on an open neighborhood V C U.
(b)suppf CU.

Then fd/dx' defines a global vector field. Hence there exists an n x n matrix
with entries f € C*M such that 9 /dx' = f!'X),. Evaluating at p we obtain that

(9/9x)p = F(P) Xnlp- (%)

Moreover, as (9/dx'),,...,(d/dx"), is a basis of T,M, there exist scalars A
such that Xj|, = 4/(d/dx'),, and substituting this expression into (x) we obtain
(9/9x7), = f;‘(p)l,i@/axi)p. As {(d/9x"),} is a basis, we conclude fj'-' (p)A = 51’:,
thus proving that the matrix (f7(p)) is invertible.

Moreover,
(1) F is injective, as if

F(p’a17""an) :F(p/7a17"'7a_n)7

it follows that p = p’. Furthermore, a'Xi|, = @X;| , from which, since the X;|,, are a
basis of T,M, we have a' = a' forevery i =1,...,n.

(2) F is surjective, since each v € T,M is of the form v = A'X;
F(p, At A™).

(3) F is differentiable. In fact, let (U, @) be a chart around p € M, with ¢ =
(x',...,x"), and consider the associated chart (x~!(U),®) in TM, where

p» that is, v =

n:TM — M, v~ n(v)=p, veT,M,
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that is,

l(U) = @U)xR"

i J 1 n

V_A’ ax, i CD(V):((P(p%A’ 7"'72’ )

- j 9 J.
Now, as Xj,..., X, are C™ vector fields, we have X;|,; = f/ FIA ,where f/: U — R
are C* functions. Hence, givent = (t!,...,t") € ¢(U) such that ¢(p) = (¢',...,"),
one has

(®oFo(px ian)_l)(tl,...,t”7a1,...,a") = (®oF)(p,a,...,d")
d

= (a"f,f (07'0) 55
(p—l

= (" d (@7 (1), d S (97 (1))

Thus @ o F o (¢ x idgs)~! is C*, hence F is C*.
Moreover F~! is C=. In fact,

((pxidp)oF to @ 1) (e' ... " AL, A"

. 4 ;0
= ((p xidgn)o F )(l 8x‘ ))

= ((p xidre) o F V) (A (¢~ (t)) Xilp 1)
= (@ xiden) (9~ (1), A'f (971 (1)),.... A'f (9~ (1))
(. A (7 @), AR (D)),

where (fj’) = (fj’) . Hence (¢ xidgn) o F~'o @~ is C* and thus F~! is C*.

Problem 1.8.4. Let j: S> — R3 be the natural inclusion map. Prove that the map
js: TS* — TR3 is an embedding.

Solution. Let U = R? — {(0,0,0)}. As j(S?) C U, we have j, TS> C TU, and since
U is open in R?, it suffices to prove that j,: TS> — TU is an embedding. Consider
the map

(p:U—>Sz><R+, ox) = < m |x|)

Then, ¢ is a diffeomorphism whose inverse map is @' (y,A) = Ay, A € RT,y € §%.
One has (¢ o j)(y) = (y,1), for all y € 2. Hence ¢, o j. = (¢ o j). establishes a
diffeomorphism between T'S? and T(S? x {1}) C TS?> x TR*. As ¢, is a diffeo-
morphism we conclude that j, is a diffeomorphism between 7'S? and the closed
submanifold ¢~ (T($* x {1})) C TU.
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1.9 Vector Fields

1.9.1 Working with Vector Fields

Problem 1.9.1. Consider the vector fields

0 0
X:xyajoz&_z’ Y:y(?_y’

on R3 and the map f: R> — R, f(x,y,z) = x*y. Compute:
() X Y10y 2) X0y ) XNH(,1,0), (4) fulXi10)-

Solution. (1)

0 d

XY =|—ryx5 T ox '

[ ](1,1,0) ( yxax)(l,l,()) dx (1,1,0)
(2)

(M a0 =F11,0X010 = <i+i)
(1,1,0) ’ (1,1,0) Jdx 0z (1_’1_,0).

(3) o

XA, 1,0) =X10f = (a—§> (1,1,0) = 2.
4)

_(df df df
fXa0) = <Z oy 3_2)(1,1,0)

— () —
I
[\
|

where ¢ denotes the canonical coordinate on R.
Problem 1.9.2. Write in cylindrical coordinates the vector field on R? defined by

J d d

Solution. The change from cylindrical coordinates (p, 6, z) to Cartesian coordinates

isx=pcosB, y=psinh, z=z. The Jacobian of this transformation is

cos@ —psinf 0
A=]sin® pcos6 0
0 0 1
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The field X is written in cylindrical coordinates as

d d d
X:fl(p7912)% +f2(p707Z)£ +f3(P7971)a_Z-

Therefore
cos® —psin® 0\ (fi 2
sin@ pcosO O Ll=1-1
0 0 1 NE 3
Hence

d 2sinf+cosb 9 d
X=(2cosf—sinf)— — —— —+3—.
(2cos O —sin )8p ) &9+ 2
Problem 1.9.3. Let f: R? — R be the C* function defined by f(x,y,z) = x> +y* —
1, which defines a differentiable structure on S = f~'(0). Consider the vector fields
on R3:

d 0 0 dJ d d
_(2_1Z 9 9 _.,72,.,9 29
(a) X=(x 1)8x+xy8y+xz8z’ (b) Y_xa +yay+2xz 9%

Are they tangent to S?

HINT: If p€ S and X € TPR3, X is tangent to the submanifold S if and only if
Xf=0.

Solution. (a)

Xf=(x*— 1)% +xy(;—§ +ng—]zc
=2x(x* +y* —1).

Thus if p = (x,y,2) € S, X,f = 0. Hence X is tangent to S.
(b)Y f=2x>+2y>1f p= (x,y,2) €S, then Y, f =2, 50 Y is not tangent to S.

Problem 1.9.4. Find the tangent plane to the one-sheet hyperboloid H = x* 4 y> —
2> = 1 at a generic point of itself.

Solution. Consider the parametrization
x = coshusinv, y = coshucosyv, z = sinhu.

We have on the hyperboloid:

. . d . 0
=sinhusinv— 4 sinhucosv— + coshu—,

ou ox dy 0z

) .
— =coshucosv— —coshusinv—

av ox ay’
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that is, d/du and d/dv are respectively the restrictions to the hyperboloid of the
vector fields on R® — {0} given by

PO S D S Y w1
N s T
2] d
Y: - = .
Yox x&y
Hence, for p = (x9,y0,20) € H,
0 0
TPH: A — +,u_ 7)”“6R
du dv
p P
= {aX,+bY, : a,b R}
x 9 J
= a04m+byo % + ﬂ_bxo dy

0
+a\/x(2)+y(2) 8_z’ ,a,bER}.
p

Problem 1.9.5. Find the tangent space at the point p = (1,1,1) to the surface S in
R3 defined by the equation f = x> —y3 +xyz—xy=0.

Solution. One has
df = (3x* +yz—y)dx+ (=3y* + xz—x)dy +xydz.
So, (df)p = (3dx—3dy+ dz)).

IfX = <Al i +kzi +)L3§> is a vector tangent to S, then df(X) = 0, and
Z
P

ox dy
conversely. So, at (1,1,1) we must have A3 = —34; + 31,. Hence,
0 0 0
Xp=2M 5| +A 5| +(=3ML+34) =
dx|, |, dz|,

0 d 0 d
—A] (a-?’a—Z)p"‘A«z (a—y +3a—z)p,

d d d d
so the vectors ( =— —3—=— | and | =—+3=— ] are a basis of the tangent space to
dx "dz), dy dz/,

Sat (1,1,1).
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Problem 1.9.6. Show that the vector fields X, Y, Z given by
d d 8 d
X, = —y— +x—
P < y8x+x8y dz 67t>p7

y (200
P~ \"ox dy Yo o

Z, = —ti— i+ i+ 9
P ox Zé?y Yo: o p

where p € §3 = {(x,y,z,t) ERY X2y 4241 = 1}, define a global paral-
lelization of S°.

Solution. The vector fields are tangent to S°, as (X,,N,) = (Y,,,N,,) = (Z,,N,) =0,
where N, denotes the unit normal vector to S3 at D,

N, = (xL+ a+2+ri
P \Mox ey TR T o

and (, ) denotes the Euclidean product of T,R* = R*.
Furthermore, the fields are linearly independent, as

-y x —t z
rank | —z ¢t x —y| <3
-t —z y X
if and only if p = (0,0,0,0) & S°.
The fields X, Y, Z are the restriction to S of the fields written similarly on R4,

which are C= on R*. Since $° is an embedded submanifold in R?, the vector fields
given on S3 are C* on S°.

Problem 1.9.7. Give a C~ nonvanishing vector field on the sphere g2+,

Solution. S2n+1 {p . 7x2n+2) c R2n+1 22”+1 _ 1}
The vector field X deﬁned by
J P)
=—x’ ! 2n+2 2+
Xp=—x" o3| +x gg| t =" ogmr| B oo
p » »

where p € §2*1 is tangent to S2. In fact, it is clearly orthogonal to the normal vector

i
N, =x

oxi

p

at p with respect to the Euclidean product ( , ) of R*"*!. Moreover, X is C™ since
the functions x’, i = 1,...,2n+2, are C*. Hence X € X($>"+1).
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Problem 1.9.8. Find the general expression for X € X(IR?) in the following cases:
d d
1) |=—,X|=Xand |—,X| =X.
0 5] =xemt 5
d d
2) | =—+=—,X| =X.
|5+ 5%
HINT (to (2)): Take new coordinates u = %(x+y), v=(x—y).

0 d
Solution. (1) Let X = a(x,y) = + b(x,y)=—. Then,

dx dy’

[0 ] _da(x,y) d  db(x,y) 9
_8x’X_ - ox 8x+ dx dy

=X,
(0] daley) 0 dblxy) D
1oy’ "] dy ox dy OJx

=X,

from which (x.y) b(x.y)
ax,y) X,y)
ax - a(xvy)v ax - b(x7y)a (*)
da(x,y) _ db(x,y)

3)} - a(x,y), 8}7 - b(xvy) (**)

Solving, from (%) we have
alv,y) =Af(y)e',  blx.y) = Bg(y)e".
Substituting these expressions in (x*) one has
O =1, &0)=280),
from which f(y) = Ce”, g(y) = De”. Hence

a(x,y) =Ee"™,  b(x,y)=Fe"",

and P P
X=e""V(E—+F=|.
¢ ( ox + 8y>
J 0
(2) Taking u and v as in the hint, we have — = — + —, and one can write
du Jdx dy

X= a(u,v)% —i—b(u,v)%. We have

[a X} _ da(uy) 3 db(uv) 9

T i on ou v T
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from which 5 9
“g:v) = a(u,v), WY) ).

Hence, as in (1) above, we have a(u,v) = f(v)e", b(u,v) = g(v)e". So

that is,

e ()

for arbitrary C™ functions £, k.

Problem 1.9.9. Consider the two vector fields on R"! defined by

60:(907 ZfOC aa,

where dy = d/9x° and
do=0/dx%, 1< a<n, fo(x) = fu(x°,.... X", 0<i<n.

We define recursively e, = [eq,e,—1], 2 < r < n. Then:
(1) Compute e, in terms of the vector fields dy,.
(2) Find functions f,(x'), such that ey, . .. e, are linearly independent.

Solution. (1) e2 = [, X fo(¥')ar] = Ty do(far(x')) Oer
We proceed by induction: Suppose e, =Y, 8671 (fo(x'))dg; then,

€rrl1 = [307 er]

= Z [aoﬂyil fa( i))goc]

—290 95 (fu(x)) 9
—%80 Jao
(2) Take fo(x) = (x°)*~1. Then
e = do,
e1 = fu(x)du
S

=0 +x"%+---+ ()" 19,
e = Zao(fa(x'))aoc
o
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=Y a((x")* ")k
=Y (a—=1)((x*)*?)dy
=0+ 2x083 -+ 3()60)284 4t (n _ 1)()60)"728",
€= za()z(fa(xi))aa

=Y (= 1)(e=2)(x")* 30,

ey

en=Y(a=1)(a—2)...(0—n+1)(x*)* ",

o

= (n—1)!9,.

Problem 1.9.10. Prove that if (U,¢) = (U,x',...,x") is a coordinate system on a

C” manifold M, then on U we have
J d -
|:ﬁ7ﬁ:|:(), l,]:1,...,l’l.

d

Solution. It suffices t 35035
olution. It suffices to prove [ o ox

] (f) =0, for every function f € C*U,
P

d
p € U.Ift', ... " denote the usual coordinates on R”, we recall that —f is defined

oxi
af d(foeh)

as N o o ¢, hence
I(fop™") d | (Ifoe™")
p< o %) ou ) g

d(fop™") 1)
7.0(‘)0(‘)
<p(p)( o/

J (9(1‘0@1) 1)
— 7[.0(’)0({)
9t | o) ot

_ <8Z(fo<p1) B 82(fo<p‘)> —o
o(p)

Jd d d
_ 9
o

otiot/ ot ot

due to the independence of the order of partial derivatives.

Problem 1.9.11. Let X, Y be vector fields on the C* manifold M.
(1) Find the relation between [fX,gY] and fg|X,Y], where f,g € C*M.
(2) Find the expression in local coordinates of [X,Y].

Solution. (1)

[fX,gY]h = (fX)((g¥)h) — (&¥)((fX)h)
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= fX(@)Yh+ feX(Yh) —gY (f)Xh—g[fY(Xh)
= fX(g)Yh—gY (f)Xh+ fg[X,Y]h.
Hence [fX,gY] = fX(g)Y —g¥ (/)X + fg[X,Y].
.0 el
(2) Let (U,x!,...,x") be coordinate system such that X = Xlﬁ andY =Y/ i
X V-
on U. Then for any f € C”M, we have

(X, Y]f =X(Yf) =Y (XF)

;0 df ; 0 f
— i j _yJ i .
=X oxt <Y 8xf> d ox/ (X 8xi)

:X"ay.ja—f X'y’ a.zf.—yfaxfa—f.— X a.zf.
oxt dx/ oxidx/ ox/ ox 0xJ ox
oYt 9XI\ df
(i _vyi 9J
(X ox/J Y 8xf> oxt’

due to the independence of the order of partial derivatives. Hence,

jOY L jox

XY =x oxi " oxi

with respect to {9/9x'}.

1.9.2 Integral Curves

Problem 1.9.12. Is every vector field on the real line R complete?

Solution. Let X = x>d/dx € X(R). The integral curves are the solutions of the equa-
tion x’(¢) = x?(¢). That is, x’(¢) /x*(¢) = 1, whose solution is x(t) = —1/(t +A). The

integral curve through x verifies x(0) = xp, hence xo = —1/A, thus it is the curve
X0
x(t) =
O =

which is not defined for r = 1/xp, so X is not complete.

Problem 1.9.13. Compute the integral curves of the vector field on R3 given by

0
X:y$+y8—y+2a—z.

Solution. The tangent vector at a point p of an integral curve 7 of the vector field X
coincides with the value of X at p.

Let y(r) = (x(t),y(t),2(1)). Hence, y'(1) = (x'(1),y"(t),2'(¢)), where
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aw_od_ e,
a a0 dr 7

from which the integral curves are of the type y(¢) = (Ae’ + B,Ae’,2t + C) and the
curve passing through (xq,yo,z0) fort =0 is

¥(t) = (xo+yo(e' — 1), yoe', 2t +2).

Problem 1.9.14. For each of the following vector fields find its integral curves and
study whether it is complete or not:

_ 9 2 _9 .9 3
(1) X==eX(®—{0}), () X=F +eg eX®),
N 9 20
(3) X=e aa (4) X_y£7 Y_?a_ya [X7Y}7
d d d

The last four vector fields belong to X(R?).
Solution. (1) The integral curves are the solutions of the system
dy=1,  y(t)=0;

thus,
x(t) =t+A, y(t) = B,

and the integral curve of X through a given point (xo,yo) is
x(t)=t+x0,  y(t)=yo.

If xp > 0, the maximal integral curve through (xo,0) is defined only for the interval
(—xp,4o°). Hence X is not complete.

(2) The integral curves are the solutions of the system

thus,
x(t)=A, y(t)=t+B, z(t)=e't+C.

The integral curve of X through (xo, Yo, 20) is
x(t)=x0,  y@)=t4+yo,  z(t) =e"r+z,

which is defined for ¢ € R, so X is complete.

(3) The integral curves are the solutions of the system
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thus,
e =114, y(t) =B;

that is,
x(t) =log(t +A), y(t) =B.

The integral curve of X through (xo, o) is
x(t) =log(t+e®), (1) =yo.

X is not complete as this curve is only defined for z € (—e*0, 4-o).

(4) The integral curves of X are the solutions of the system

x(t)=y@),  y'(r)=0.

The integral curve through (xo,yo) is x(¢) = yot + xo, y(¢) = yo. Hence, X is com-
plete.
Similarly, for Y we have:

Hence x(t) = xo. So y'(t) = 3x3 and thus y(t) = x5t +yo. Hence, Y is complete.
2
x

As for [X,Y] =xyyo -
y

—, we have the system

0
ox’

As in Problem 1.9.12 we obtain

2)6()

)= .
x() xot +2

So we have y'(r)/y(t) = 2xo/(xot + 2), thus log y(r) = 2log(xor + 2) + log B.
Since y(0) = yy it follows that yg = 4B. Therefore

Y1) = %O(xot +2)2.

Hence [X,Y] is not complete as its integral curve is not defined for t = —2/xy.

(5) The integral curves are the solutions of the system
K@) =x(),  Y()=0.
Hence the integral curve through (xg,yo) is

x(t) =xoe',  y(t) =yo.
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The graph is a horizontal half-line on R? of exponential speed, with x € (—oo,0) or

(0,4-0) depending on either xy < 0 or xo > 0, respectively. The graph is the point
(0,y9) if xo = 0. X is complete.

AN
NI

Fig. 1.25 Integral curves of the vector field X =yd/dx—xd/dy.

(6) The integral curves are the solutions of the system

That is,
x(t) =Asinr+ Bcos t, y(t) = —Bsint+Acos .

As x(0) = xg = B, y(0) = yo = A, the integral curve through (xo,yo) is
x(t) = ypsint +xpcos ¢, y(t) = —xpsint + ypcos .

Since x?(t) +*(t) = x3 + y3, the integral curves are the circles with center at the
origin (see Figure 1.25). The vector field is complete.

1.9.3 Flows

Problem 1.9.15. For each t € R, consider the map @,: R?> — R? given by

(x,y) — @¢(x,y) = (xcost+ysint,—xsint+ycost).

(1) Prove that @ is a 1-parameter group of transformations of R>.
(2) Calculate the associated vector field X.

(3) Describe the orbits.

(4) Prove that X is invariant by @y; that is, that QX = Xy, (p)-
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Solution. (1) Each ¢ is trivially C*. Furthermore:
(@) @o(x,y) = (x,y), thus @o = idgo.
(b)

(@10 @5)(x,y) = @;(xcoss+ ysins, —xsins+ ycoss)
= (xcos(s+1)+ysin(s+1), —xsin(s+1) +ycos(s+1))

= Qris(x,y).
(2) We have X = A iJrl i with
~Mox oy’

d .

Mx,y) = — (xcost+ysint) =y,
dt] o
d .

)Lz(x,y) = 7 (-XSlnt+ycos t) = —x,
dr|,_

that is, X = y% x%.

(3) The orbit through p = (xo,yo) is the image of the map R — R? given by
t — (xpcost+ypsint,—xpsinz+ygcost),

that is, a circle centered at the origin and passing through p = (xo,yo). If p = (0,0),
the orbit reduces to the point p.

(4) If p = (x0,y0), then

d
Xop,(p) = (=xosint +yocost) — (xpcos t + yosint) —

9% g,(p) Yli(p)
Hence
cost sint Yo
X = .
—sint cost —X0
= X(Pt (p):

Problem 1.9.16. Let TM be the tangent bundle over a differentiable manifold M.
Let @: RxTM — TM defined by ¢(t,X) =e'X.

(1) Prove that @ is a 1-parameter group of transformations of TM.
(2) Calculate the vector field Y on TM associated to ¢.

(3) Prove that Y is invariant under .

Solution. Let ¢;: TM — TM, X — e'X. Obviously @y = id7j,. Furthermore
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(@10 @)X = ¢ (e'X)
— eS+1X

= (pt+SX7
SO Q1 © Ps = Prs.
Let us see that ¢ is differentiable. Pick (79,Xp) € R x TM. Let @ denote the
canonical projection from TM to M. Let p = (Xy) € M and (U, y = (x!,...,x"))

be a coordinate system on a neighborhood of p. Let (7! (U),¥) be the chart in TM
built from (U, y); that is,

¥ = (yxidge)ot: 1 (U) — w(U) xR",

with 7: 771 (U) — U x R", where

1((11%4_...4-1"8(1”) ) — (AL AM.

Let us denote ¥ = (x!,...,x",y!,...,y"). Then, given Zy € T,;M, q € U, such that

¥(Zo) = ((x' o) (Z0), ..., (¥ o) (Z0), ¥ (Zo), - ,Y" (Z0))
= (xl(q)v'"axn(Q)ayl(ZO)v“'ayn(ZO))
= (al,...,a",bl,...,b"),

we have, taking on R the chart (R,idg):

(Pogo(idg x¥) ") (t,a',....a"b",....0")
=(Yoo)(t.2)

:lP(e[ZO)
= (x'(q),...,.x"(¢),e'y" (Z0),...,e'y"(Z0))
=(d',...,a"e'b',....e'b").

Hence ¢ is differentiable.

(2) Let Y be the vector field generated by ¢. Let Xo € TM and p = 7(Xp) and
consider as before the charts (U, y) in p, with y = (x!,...,x") and (z~1(U),¥) in
Xo, with ¥ = (x!,... 2"y, ).

ThenY: TM — TTM has at Xj the expression

) .
Y = Y )Cl - +Y yl -
Xo XO( ) ax, X0 XO( ) ayl X
As Y is generated by ¢, one has
i d i i d i
o) = o (loX)),  Yo0)=1| (/(e.X)).
=0 =0
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Thus
)= g ()
d i —
=5 wen=o
Po0) = g (00) =¥ (%)

4 p) )
So Yy, =y'(Xo) a—yl XO, hence Y :leﬂ'

(3) It suffices to prove that (¢y.)x, Yx, = Yerx,. We know that

0
Yox, =eY'(Xo) 55| -
0 dyl o
On the other hand,
gilal,....a" b, b") = melbl, e,
so that the matrix associated to @y, is ( > .
Since Yx, = (O, .. ..,Y"(Xo)), we have

) 0,...,0, y'(Xo), ..., ¥"(Xo))

= (0,...,0, etyl(Xo),..., e’y”(XO))

as expected.

1.9.4 Transforming Vector Fields

Problem 1.9.17. Consider the projection p: R*> — R, (x,y) + x. Find the condi-
tion that must verify a vector field on R? to be p-related to some vector field on
R.

Solution. Let

d d
X :a(xvy)a +b(x’y)8_y € X(Rz)

In order for X to be p-related to some vector field on R, it must happen that for each
couple of points (xo,yo), (x1,y1) € R? such that p(xo,yo) = p(x1,y1) one has
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d d d d
p. (<a<x,y>a +ben)3 ) > ~p. <<a<x,y>a +ben) 3 ) ) .
X Y7/ (x0.y0) * Y/ (1)
()
Since for the given pair of points we have xyo = x1, we can write such a couple of
points in the form (x,yp), (x,y1), and we have
0 0
P+ 5= =D\ 32
ox (x.y0) Jx (xy1)
d
dr|,’
d d
Px| 7= =DPx| 7=
9 | (xy0) 9y
where 7 is the canonical coordinate on R. Substituting in (%), we obtain the condition
we are looking for: a(x,y) = a(x,y;), for all x, yo, 1.
Problem 1.9.18. Let M = {(x,y) € R? : x > 0} be endowed with the natural diffe-
rentiable structure as an open subset of R?, and let f: M — R, (x,y) — x.

(1) Prove that X, ) = (x/r3,y/r), where r = \/x2 +2, is a C vector field on
M.

(2) Is X f-related to a vector field on R?

Solution. (1) The functions M — R, given by (x,y) — x/1/(x%>+y?)3, and (x,y) —
y/+/ (x> +y?)3, are C* on M.

(2) No, as if X were f-related to a vector field on R, then (as in Problem 1.9.17)
[:X, = fiX y if p= (x0,y0), p' = (x0,))» Yo # ¥, and this is not the case, as it is
proved below.

The matrix associated to f, with respect to the bases {d/dx,d/dy} and {d/d¢},
that is, the Jacobian matrix of idg o f oid;,ll, is (1 0). Consequently, if p = (xo,y0) €
M, we have

X0 d

Ve+ar &
Hence f,.X ), # f.X .

Problem 1.9.19. Consider the 2-torus T?* = S' x S'. Consider the submersion

f*Xp =

X0

FIRE ST f(6,0)) = (%),

and a vector field X € X(R?). Under which condition is X f-projectable onto a
vector field Y on T??

Solution. It is immediate that the condition is fi(X(g1or,0'+2¢'7)) = f+(X(0,07))-
Equivalently, X must be invariant under the action of Z? on R? defined by (k,k’) -
(6,0") = (0 +2km,0' +2k'r) (see Figure 1.26).
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Fig. 1.26 A vector field on R? inducing a vector field on 72.

Problem 1.9.20. Let f: M — N be a C* map and X and Y be f-related C vector
fields. Prove that f maps integral curves of X into integral curves of Y.

Solution. For the integral curve of X through p € M, 6: (—€,€) — M, one has
(1) oisC™.
(2) 0(0) =p.

d
0

) = X5 for all 1o € (—¢,€).
1

Then the map foo: (—¢g,€) — N satisfies:

(1) foo is differentiable as a composition of differentiable maps.

(2) (fo0)(0) = f(p).

(3)
d d
(fOG)* (E t0> = (f*o(to) 00'*t0> <a ,0>
d
= froln) <% < dr|, ))
0
=f (XG(ZO))
=Y(fo0)(19)- (X and Y are f-related)

That is, f o  is the integral curve of Y passing through f(p).

Problem 1.9.21. Let ¢ : M — N be a diffeomorphism between the C* manifolds M
and N. Given X € X(M), the vector field image ¢ - X of X is defined by

(¢ X)x = o. (X(p—wx))-
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Prove:
(1) In fact, @ -X € X(N).
2)e-X,Y]=[p-X,0-Y], X,Y € X(M).

Solution. (1) From the definition of @, it is immediate that the image of a vector is
a vector. Moreover, ¢ - X is C™, which follows from

¢-X=g.0Xop .

Further, we have, denoting by 7y (resp. mry) the projection map of the tangent
bundle over M (resp. N), that yy o (¢ - X) = id. In fact,

nrno@.oXop l=@onryoXop l=pop ! =id.

(2) From the definition of ¢ - X it follows (¢ -X)f = X(f o @) o ¢~'. Hence, for
any p € N, one has

(@ [X,Y])pf =X, Y]p10) (fo0)
=Xp 1Y (fo)) =Yp1(,)(X(fo9))
=X 105 (9 Y)(f) 0 @) = Y10, (¢ - X)(f) 0 9)
=(0-X)p((0-Y)f)—(¢-Y),((0-X)f)
=lo-X0-Y],f.
Problem 1.9.22. Let f: R — R, x s ¢*. Find the vector field image f -9 /9x.

Solution. The Jacobian of f is e*. We have, for any fixed xo, that
d d
(3),=* ( o )
x0 f~t(xo)

d
:f* _
(ax logx())
_ (2
~\Mox XO.

Hence



Chapter 2
Tensor Fields and Differential Forms

2.1 Vector Bundles

Problem 2.1.1. Let (E,n,M) be a C™ vector bundle with fibre F", where F =
R, C or H. Prove that the homotheties

h:FxE—E,  (Ay) — h(d,y) =2y,
are C™.

Solution. Let U be an open subset of M. Let ¢: 7~ (U) — U x I be a trivialization
of (E,m,M), that is, a fibre-preserving diffeomorphism linear on the fibres, and ¢ a
chart, that is, a diffeomorphism of the open subset Eyy = ! (U) of E onto U x F",
linear on the fibres.

Then, |y is the composition map

Fx Ey idF—Xfp FxUxTF" L U xF" LA Ey
Ay) —  Apx) +— (pAx) — Ay
Since @ is a diffeomorphism and /4’ is C*, the map h|y is C*.

Problem 2.1.2. Show that for a C* vector bundle & = (E,w,M) with fibre R", triv-
iality is equivalent to the existence of n C™ global sections, linearly independent at
each point.

Solution. Let {¢;} be the canonical basis of R”. If we have a global trivialization

E —% s MxR"

7| |=

M4 m
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then we have sections &; of M x R" given by &; = (id, ¢;). Thus, we have sections
& of E defined by & = u~! 0 &;, which are linearly independent because ! is an
isomorphism on each fibre.

Conversely, if o; are such linearly independent sections of E, we define the triv-
ialization u by u(o) = (n(a),al,...,0") with a = a'&;(m()). Its inverse map is
givenby u~(p,al,... o) = ai& .

Problem 2.1.3. Prove that the infinite Mobius strip M (see Problem 1.1.12) can be
considered as the total space of a vector bundle over S'. Specifically:

(1) Determine the base space, the fibre and the projection map T.
(2) Prove that the vector bundle (M, 7, S") is locally trivial but not trivial.

1

Fig. 2.1 The Mobius strip as the total space of a vector bundle.

Solution. (1) With the notations of Problem 1.1.12, we have that the base space is
S'=([0,1] x {0}) /~ C M, the fibre is R (see Figure 2.1), and the projection map is

defined by
~1(x,0)] if0<x<l1
ﬂ([(xay)])_ {[(0’0)]:[(1’0)] ifx=0orx=1.

(2) The charts in Problem 1.1.12 are in fact trivializations that cover S' entirely.
Now suppose that there exists a nonvanishing global section o: S' — M, i.e. a
continuous map such that 7 o ¢ = idgq:. This is equivalent to a continuous function
s:[0,1] — R such that s(0) = —s(1). Since s must vanish somewhere, ¢ must also
vanish somewhere. Contradiction.

Problem 2.1.4. (1) Consider

E = {(u,v) = (x,y,z,a,b,c) ERIxR?: lul =1, (u,v) :0},
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and the projection map on the unit sphere S* given by n: E — S, m(u,v) = u.
Prove that & = (E, 1t,5?) is a locally trivial bundle over S* with fibre R?.

(2) Let of = {(U;, ®;)}, i = 1,2,3, be as in the solution of (1) below. Prove that
TS? = (E,m,8%, ) is a vector bundle (see Definitions 7.2.1) with fibre R?.

Solution. (1) The open subsets U;,Us,Us of §? given by |x| < 1, |[y| < 1, |z] < 1,

respectively, are an open covering of 2. Define local trivializations by

(pl: n_l(Ul) - Ul XRza (x,y,z,a,b,c) = (X,y,Z, bZ*C'y,a),
Oy: v (Uh) > Uy xR%, (x,y,z,a,b,¢) — (x,3,2, cx—az,b),

O (U3) — Us x R?, (x,y,z,a,b,c) — (x,y,z,ay — bx,c).

It is immediate that they are diffeomorphisms.

(2) As a computation shows, the changes of charts are given, for each u =

(x,,2) € 8%, by
=1 (xy z
g21(u) = ¥+ 22 (—z xy)’
—1 vz X
g3 u) = 2 +x? (—x yz) ’
—1 zx 'y
o =7z (5 23)
The cocycle condition is thus satisfied. Indeed, one has

821 (u)g13(u) = ﬁ (—yxz —);z)
= (g32(w)™!

= g23(u),

and the similar identities for g12(u)g23(«) and g13(u)g32(ut).
Moreover, for

~

E={(uv),WV)) €EXE :u=u, (uv)=(uy')=0},
the maps
s:E — E, ((u,v), (W' V) = (u,v+V),

h: RxE — E, A, (u,v)) — (u,Av),

are C” (as for h, see Problem 2.1.1) and they induce a structure of 2-dimensional
vector space on each fibre of T'S2.

Problem 2.1.5. (1) Let {(Uy, ¢u) } be an atlas on a manifold M, where Q¢ : Uy, —
R, Qo = (xp,-..,xy), n=dim M. Let g3 : Uy NUg — GL(n,R) be the map
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n Oxl,
(gaﬁ(p)),' = 3%

(p)v VPGUamUﬁ~

Prove that {gal;} is a cocycle on M whose associated vector bundle is the tangent
bundle TM.

(2) Similarly, if the map g’;ﬁ : UgNUg — GL(n,R) is given by

: 8x;3

(ap(P))i = 55 (P)y VP EUaNUp,
o

prove that {g, ﬁ'} is a cocycle on M whose associated vector bundle is the cotangent
bundle T*M.

Solution. (1) Let us define two linear frames at p:

(2 (e
“7\ oxl, s p Qxb

According to the definition of g,g(p) we have

d

gy ax’&

p

0
8x;3

h 0
= P)). =
) (g(x/i( ))l axg( »

Hence ug = uq - g4p(p), where the dot on the right-hand side stands for the right
action of GL(n,R) on the bundle of linear frames FM (see Definitions 7.5.1). Ac-
cordingly,

ug = uy-8yp (p)
= (uq 'gay(p)) 'gYB(p)
=ug (8ay(P)gys(P))-

As GL(n,R) acts freely on FM, we conclude that

8op (p)= gOCY(p)gyﬁ (p)s

thus proving that {g,g} is a cocycle.
Moreover, if 7: TM — M is the tangent bundle, for every index o we have a
trivialization

@y: w ' (Ug) = Ua xR",  @y(X)=(p,A',...,2"),
X =2%(9/9xi,), € TyUq, or in other words,

(DOC(X) - (pau&l(x))a

where u,, is understood as a linear isomorphism uq : R" — T,M.
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In order to prove that the cocycle {g,p} defines TM it suffices to see that the
cocycle associated to these trivializations is {gqp}. In fact, if {e;} is the standard
basis of R", for v = A'e;, p € Uy NUp, we have

(@0 @5 ") (p,v) = Dol ()

= (p,ug (up(v))

oxh P
= p, AL Ll
( ) <8x’& ))
= (p,ﬂ,l(gaﬁ (P))leh)
= (p,8ap(P) V)
(2) We have
ox N
(825 (P))' (2ap ()] = 52 ( )ﬁﬁ (»)
dx! '
- ﬁ(l’) 3% (x%)
o ﬁ )
J i
= o p(xa)
=4

Hence g5 (p) = ('gop) " (p), and then

2oy(P)&53(P) = (gay) ™ (P)(2ys) ' (P)
= (2ap)”"(p)
:gi;p(l’)a

thus proving that {g7 ﬁ} is a cocycle.

Finally, by proceeding as in (1) above, it is easily checked that {gy 5} is the
cocycle attached to the trivializations of the cotangent bundle 7: 7*M — M defined
as follows:
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)-+(21)

(0XS T;M, p €Uy NUpg,

Yot (Uy) — Uy xR,

Fo0) = (p, 15 (0) = (,,, 0 ((f

o

where ug,: TyM — (R")* is the dual map to ug: R" — T,M.

Problem 2.1.6. (The tautological bundle over the real Grassmannian) Denote by
y*(R") the subset of pairs (V,v) € Gy (R") x R" such thatv €V and let w: y*(R") —
Gi(R™) be the projection m(V,v) = V. Prove that Y*(R") is a C* vector bundle of
rank k.

Solution. The fibres of 7 are endowed with a natural structure of vector space as
n~1(V) =V. Hence rank 1~ (V) =k, for all V € G;(R"). The maps

TR X Gy Y R") = Y R"),  ((Vov), (Vi) = (Vv 4w),
Rx y(R") = Y (RY), (A, (V,)) = (V,Av),

are differentiable as they are induced by the corresponding operations in R”. It re-
mains to prove that y*(IR") is locally trivial. Let us fix a point Vy € G¢(R") and let
% be the set of k-planes V such that Ker p|y = 0, where p is the orthogonal pro-
jection onto Vj relative to the decomposition R" = V & VOL. Certainly, Vo € % as
p|v0 =id.

If {,...,»9} is an orthonormal basis of Vj and {v1,...,v;} is a basis of V, then
V € % if and only if

0
det ((vi , vj>)l.7j=1Mk #£0,
thus proving that % is an open neighborhood of V. For every V € %, the restriction
plv: V — Vj is an isomorphism as Ker p|y = 0 and dim V = dim Vj. Hence we can
define a C* trivialization
U xVy = a (%) cyRY
(Vivo) = (Vs (plv)~" (v0))-

Problem 2.1.7. Let @: E — E' be a homomorphism of vector bundles over M with
constant rank. Prove that Ker @ and im @ are vector subbundles of E and E', res-
pectively.

Solution. As the problem is local, we can assume that E, E’ are trivial: E = M x R",
E' =M x R™. Then @ is given by

@(p,v) = (p,A(p)v),

whereA:(ai.), 1<i<m 1<j<n, ai-eC""M, is a C* m x n matrix. Set r =
rank, @, for all p € M. Given py € M, by permuting rows and columns in A, we can
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suppose
aj(po) ... a(po)
det :

: : # 0.
ay(po) ... ay(po)

Hence there exists an open neighborhood U of pg such that
det [ : #0, peU.

Asrank A(p) =r, forall p € U, it is clear that Ker(®|y) is defined by the equations

a;(p)vjzo, 1<i<n
where v =1/e;, {e1,...,e,} being a basis of R". By using Cramer’s formulas we
conclude that the previous system is equivalent to

Define sections of E over U by

o(p) = ek, 1<k<
I\ e+ 3 bip)en, r1<

,
k< n.

Then, {o1(p),...,0,(p)} is a basis of E, and {G,11(p),...,0.(p)} is a basis of
(Ker @), for all p € U, thus proving that Ker @ is a subbundle of E.

Moreover, if F C E is a subbundle, then F* = {w € E* : w|r = 0} is a subbundle
of E*, as if {0y,...,0,} is a basis of sections of E over U and {0;1,...,0,} is a
basis of sections of F, then the dual basis {0}, ..., 0, } is a basis of sections of E*|y
and {o},...,0;} is a basis of sections of F°. Furthermore, as ® has constant rank,
then the same holds for @*: E™* — E*, as a matrix and its transpose have the same
rank. We can conclude by remarking that im @ = (Ker @*)°.

Finally, we give the following counterexample. Let E = E’ = R x R be the trivial
bundle over R with fibre R, and let @: E — E’ be defined by @(p,A) = (p,Ap).
Then
0 ifp#0

Ker @), —
(Ker @), {R if p=0.



82 2 Tensor Fields and Differential Forms

2.2 Tensor and Exterior Algebras. Tensor Fields

Problem 2.2.1. Let V be a finite-dimensional vector space. An element 0 € A*V* is
said to be homogeneous of degree k if 8 € A*V* | and a homogeneous element of
degree k > 1 is said to be decomposable if there exist 0',... 0% € A'V* such that
6=0"A---nON

(1) Assume that 6 € AKV* is decomposable. Calculate 6 N\ 6.

(2)If dimV >3 and 0',0%,03,0* are linearly independent, is 0' A 6%+ 63 A 6%
decomposable?

(3) Prove that if dimV = n < 3, then every homogeneous element of degree k > 1
is decomposable.

(4) If dim V =4, give an example of a non-decomposable homogeneous element
of A*V*.
Solution. (1) It is immediate that 6 A 0 = 0.

(2) No, since

(0'A0*+ 0 NOYA(B'NO*+6°N0%) =20"A02NO N O £0,

so by virtue of (1) it is not decomposable.

(3) If dimV =1 or 2 the result is trivial. Suppose then dimV = 3, and let
{o!, 0%, 0%} be a basis of V*. If 8 € A'V* the result follows trivially. If € A3V*,
then @ = aa! A a® A o3, hence it is decomposable. Then suppose 8 € A?V*, so that
0=aa' Na?+ba' Nad +ca? Aod. Assume a # 0. Then

b
0=aa'A <a2+—a3> +co’ Ao
a

b
=(ao! —co?) A (a2+;a3) .

Ifa=0,then 8 = (ba! +ca?) A,

(4) The one given in (2) in the statement is such an example.

Problem 2.2.2. (1) Let A, B be two (1,1) vector fields on a C* manifold M. Define
S by

S(X,Y) = [AX,BY] + [BX,AY] +AB[X,Y] + BA[X,Y] — A[X, BY]
—A[BX,Y] - B[X,AY] - B[AX,Y],  X.Y € X(M).

Prove that S is a (1,2) skew-symmetric tensor field on M, called the Nijenhuis tor-
sion of A and B.

(2) Let J be a tensor field of type (1,1) on the C* manifold M. The Nijenhuis
tensor of J is defined by
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N;(X,Y)=[JX,JY]-J[JX,Y]|—J[X,JY] —i—Jz[X,Y}, X, Y e X(M).

(a) Prove that Ny is a tensor field of type (1,2) on M.
(b) Find its local expression in terms of that of J.

Solution. (1) From the formula
[fX,8Y] = felX, Y]+ f(Xg)Y —g(Y /)X

it follows that S(fX,gY) = fgS(X,Y), f,g € C”M. Since the Lie bracket is skew-
symmetric, so is S.

(2) (a) The proof is similar to the one in the case (1).

d
(b) Let x',....x" be local coordinates in which J = J’a— ®dx/ and Ny =

J k
Nt ;k B ®dx/ @ dxk, so
0 el Jd d 0
J—=Ji— Ny (==, — | =N—.
dxk Tk gxi ! <8x’ " dxi ) Y oxk
From the definition of the Nijenhuis tensor we obtain

Y /Y N 04
=Ji =k _Jt! —J =
Jk Toxt koxl la ko oxi
Problem 2.2.3. Compute the rank of the tensor field J € 'R? given by

0 0 0 0
J:xdx®$+\/§y (dx®8—y+dy® ﬁ) +(x+y)dy® — 5y’

at each point p € R?.

Solution. The matrix of J is

(v
A(ﬂy X+y>'

We have det A = (x+2y)(x—y). Hence

0 ifp=(0,0)
rank J, = ¢ 1 ifeither p = (x,x), x#0, or p=(-2y,y),y#0
2 if (x+2y)(x—y) #0.

Problem 2.2.4. Write the tensor field J € %1R3 given by

d d d
J= dx®af+dy®8fy+dz®a 5
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in the system of spherical coordinates given by

x=pcos@cosB, y=pcos@sinf, p =sing,
p>0, —m/2<@o<m/2, 0<6<2m.

Solution. We have

d 0 0
J—dp®%+d(p®%+d6®(9—97

as J represents the identity map in the natural isomorphism 7*R?*® TR? ~ End TR,
and hence it has the same expression in any coordinate system.

2.3 Differential Forms. Exterior Product
Problem 2.3.1. Consider on R?:

d

9 9
X=(+y) o +0"+1) -

ox dy’
0 = (2xy+x* + 1)dx+ (x> — y)dy,
and let f be the map
f:R® - R?, (u,v,w) — (x,y) = (u—v, > +w).

Compute: (1) [X,Y]0)- (2) 6(X)(0,0). (3) f*6.

Solution. (1) [X,Y] = (y*> —2xy+2x+1) J

a, SO
d
[XvY] 0,0) = a (07())-
(2)
8(X)(0,0) = ((2xy+x* + 1)(x* +y) + (* —y)(»* +1))(0,0) = 0.
3)

0 ={2(u—v)(+w)+ (u—v)>+1}du
+{2v((—v)* = v =w) =2(u—v)(* +w) — (u—v)* — 1}dv
+{(u—v)®—v* —w}dw.
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Problem 2.3.2. Consider the vector fields on R*:

X:xi—&—nyi, Y=y
dy

ox dy’

and let o be the differential form on R? given by
o = (x> +2y)dx + (x+y*) dy.
Show that o satisfies the relation
doX,Y)=XoY)-YolX)-o([X,Y]),

between the bracket product and the exterior differential.
Solution. We have [X,Y] =0 and
I +2 242
do— (20 +D) L I +2y)
ox dy

2 2
N d(x+y )dx—|— d(x+y )dy A dy
ox dy

= —dx A dy.

dy) A dx

From

Xo(Y) = xy+2x°y+6xy°,
Yo (X) = 2xy+2x%y+6xy°,

do(X,Y)=—(dxAdy) (x% +2xy(%,yé%) = —xy,
one easily concludes.
Problem 2.3.3. Find the subset of R? where the differential forms
o =xdx+ydy, B =ydx+xdy,
are linearly independent and determine the field of dual frames {X,Y } on this set.

Solution. We have det (; )yc> =x>—»*#0on R —{(x,) : x = £y}. Thus o

and 8 are linearly independent on the subset of R> complementary to the diagonals
x+y=0andx—y=0.

The dual field of frames
0 0 0 0
X=a—+b=—, Y=c—+d=— b,c,d € C°R?
a3x+ ay’ cc?x+ dy’ %068 € ’

must satisfy X (o) =Y () =1, X(B) =Y (&) = 0. Hence,
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ax+by=1 cx+dy=0
and
ay+bx=0 cy+dx=1.

Solving these systems we obtain

PO 0 y 0 vy — y d x 0
Cx2—y20x x2—y2ay’ 2 —y209x  x2—y29y’

REMARK. The result also follows (here and in other problems below) from the
0

general fact that, if {ei = likﬁ} is a basis of vector fields on a manifold and
X

R , 9
{67 = p/ dx'} denotes the dual basis, then, from (u; dx’) (M‘W) = §;j, one has
X

() ="(2)".
Problem 2.3.4. Let 6 be the differential form on R> defined by
0 =ydx+zdy+xdz.
If v: R? — R3 is given by
W (u,v) = (sinucosv, sinusiny, cosu),

compute y* 0.

Solution.

v 0 = sinusinv(cosucosvdu — sinusinvdv)

+ cosu(cosusinvdu + sinucosvdv) — sinucosvsinudu

1
= (Z sin2usin2v + cos? usinv — sin® ucos v) du
) 1 .
+ | —sin” usin v—i—zsm2ucosv dv.

Problem 2.3.5. Consider the three vector fields on R3:

0 J 0
_ 2\az — 2
er=02+y)et5, =2y +(2+y )ay,
0 0 2]
_ 2 . 2 2
e3 = —2xy e y(2+y )78y+(2+y )jz'

(1) Show that these vector fields are a basis of the module of C™ vector fields on
R3.

(2) Write the elements 0' of its dual basis in terms of dx,dy, dz.

(3) Compute the Lie brackets [e;, e ;| and express them in the basis {e;}.
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Solution. (1) The determinant of the matrix of coefficients is (2 +y*)3e?, which is
never null; hence the three fields are indeed a basis of X(R?).

(2) We proceed by direct computation. One has 6'(e;) = 51’:, where 6} is the
Kronecker delta. Hence, if

0! = A(x,y,z) dx+ B(x,y,z) dy+ C(x,y,z) dz,
we have
1=0'(e;) =A(2+y%)e?,
0=106"'(ey) = A2xy+B(2+)?),
0=10"(e3) = A(—2xy*) + B(—y(2+)*)) +C(2 +?).
Solving the system we have

1 2xy
A=—— B=——"2_  (C=0.
(24y?)e?’ (24y?)e?’

Similarly, if 82 = D(x,y,z)dx+ E(x,y,z)dy + F(x,y,z)dz, we deduce

1 y

D=0 E=—— F=——-.
’ 2+y2’ 2+y2

Finally, if 0% = G(x,y,z) dx+ H(x,y,z)dy +I(x,y,z) dz, we similarly obtain
1

G=0. H=0 I=3 o
Hence,

o= (2+1y2)eZ - (2f;c"‘y>2ez o

0 =55 dy+2_|)_)y2 dz,

6= ZJiy2 d

(3) Applying the formula
/X, 8] = f(Xg)Y —g(Yf)X + f¢[X,Y],
we deduce [e;,e;] = 0. Similarly, one gets

[61763] = 7(24’)}2)61, [82783] = (y2 *2)€2+2y€3~
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Problem 2.3.6. Consider the three vector fields on R:

9 9 ;2 —i+i+(1+x2)i.

A=oy 2TnTy “Tatay 2z

(1) Show that these vector fields are a basis of the module of C* vector fields of
R3.

(2) Write the elements of the dual basis {0'} of {e;} in terms of dx, dy, dz.

(3) Verify the Jacobi identity between e}, ey and es.

Solution. (1)

det

x2

_.,_H
=)

0
0 | =1+x4£0.
1+

1=0"(e;) = (Adx+Bdy+Cdz)(er) =4,

0=06"(e;) =A+B,

0=0"'"(e3) =A+B+(1+x*)C.
Solving the system we have A =1, B= —1, C =0. Hence 0! = dx— dy. Similarly,
we obtain 82 = dy —dz/(1 +x?) and 8% = dz/(1 +x?).

(3) From [e1,e2] =0 and [e1, e3] = [e2,e3] = 2x—=, we have

dz
[[e1,e2],e3] + [[e2,e3],e1] + [e3,e1],€2] = 0.
Problem 2.3.7. Consider the vector fields

d d d
X*’E”a_y’ Y*—ya‘ﬂca—ya

on R?, and let y: R?> — R* defined by
u:)cz—yz7 v:)cz—i-y27 w=x+Y, t=x—).

(1) Compute [X,Y].
(2) Show that X, Y are linearly independent on the open subset R* —{(0,0)} of
R? and write the basis {o, B} dual to {X,Y} in terms of the standard basis {dx,dy}.

(3) Find vector fields on R*, y-related to X and Y, respectively.
Solution. (1) [X,Y]=0.
@)
det (_’yf 1) — 24P £0, Vry) € R —{(0,0)}.
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Let
o =a(x,y)dx+b(x,y)dy, B =c(x,y)dx+d(x,y)dy.

We thus have,
0 d J 0
1=o(X)=alx,y)dx <x$ +ya—y) +b(x,y)dy (xg +ya—y> :

d 0 0 d
0=0a(Y)=a(x,y)dx <—y$ +x8_y> +b(x,y)dy (—ya +x8_y> .
Thatis, 1 = a(x,y)x+b(x,y)y and 0= a(x,y)(—y)+b(x,y)x, and one has a(x,y) =
x/(*+y%), b(x,y) =y/(x*+*). Hence,

x y
o= dx
22 YTy

5 dy.

y X
dx+
yr a2 y?

Similarly, we obtain § = — dy.

2x 2y
2 2y (x
v.X = | 1 (y)
1 -1

= (28> —2)%) (% o 1//) + (232 4+2)%) (% o 1,/>

+(x+y) (%OW) +(x—y) (%OW>,

J 0 0
vy =iy (5oow) =) (5m0w) + (v (Fov).
Taking
~ d d
X—2u$+2v$+w8—+t§,
- d J 0
_ (42 2 _
Y =(¢ w)a —Haw was
we have

wX=Xoy, wY=Yoy.

Problem 2.3.8. Prove that the differential 1-forms ®',...,®" on an n-manifold M
are linearly independent if and only if ®' A --- A @k # 0.

Solution. If ®',..., w* are linearly independent, then each T,M, p € M, has a basis
{V1,.+ Vi, -, vy} such that its dual basis {@,..., @, ..., @"} satisfies ¢’ = o',
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1 <i<k; hence @' A--- A @ is an element of a basis of AXM and so it does not
vanish.

Conversely, suppose that such differential forms are linearly dependent. Then
there exists a point p € M such that '|, = ¥;,;a;®’|,, and thus

' NN NO' NN =0 NP A AN ajel A Aok =0.
J#
Problem 2.3.9. Is a Ado = 0 for any differential 1-form o/?
HINT: Take o0 = xdy+dz € A'R3,

Solution. No, as the given counterexample shows. In fact,
oaAda = (xdy+dz) Adx Ady = dxAdy Adz.
Problem 2.3.10. Prove that the restriction to the sphere S° of the differential form
o =xdy—ydx+zdsr—tdz

on R4, does not vanish.

Solution. Given p € $%, (a|s3), = 0 if and only if ¢, (X) = 0 for all
XeT,8*={XeT,R": (X,N)=0},
where ( , ) stands for the Euclidean metric of R* and

N d d d d
—Xﬁ —I—ya—y +Za_z +IE
is the unit normal vector field to S°. Define the differential form 8 by B(X) = (X, N).
Thus B = xdx+ydy+zdz+tdr.
If (at|g3), =0, then o, and B, vanish on 7,,S>. But two linear forms vanishing
on the same hyperplane are proportional, thus &, = Af3,, A € R, or equivalently,

_—y = ‘E = —= - = )L

X y Z t '

We find x2 —|—y2 =0, 22+1* =0, hence x = y =z =1 =0, which is not possible
because p € S°.

Problem 2.3.11. Let @', ..., " be differential 1-forms on a C* n-manifold M that
are independent at each point. Prove that a differential form 0 belongs to the ideal
7 generated by o', ..., 0" if and only if

OAND' A A =0.

Solution. If 8 € ., then 6 is a linear combination of exterior products where those
forms appear as factors and hence 8 Aw' A--- A" = 0.
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Conversely, given a fixed point, complete @', ..., ®" to a basis
1 ro o r+l n
o,..,0 o . 0",
$O
0= Y fi.g0 A A%

lgil <-~-<ik§n

IfOA® A---A@" =0, then for each {iy,...,i;} we have
Fir @A AN A@ A A" =0.
Then

{,....r30{i,...,ikx} 0 = O"A--AO*AO'A---N" =0,
{1,...,r}ﬁ{i1,...,ik}:® — fil---ik:0~
Hence

0= D Firiy @A A @',

Problem 2.3.12. Let M be a C* manifold. If {®', ..., "} is a basis of T,M, peM,
1 i
=,

prove that there are coordinate functions x', ... x" around p such that dx'

foralli.
Solution. Let (U,y',...,y") be a coordinate system around p. Since the differentials
{dy'],,...,dy"|,} are a basis of T;M for each g € U, we can write o = fj’:dyj\,,.
Since {®',...,@"} is a basis of TyM we have det(fj‘:) # 0. Thus the system
(U,x',...,x") defined by x'(q) = f;yj (¢) is a coordinate system, and one has
dx'|, = f}dY'i|P =0
Problem 2.3.13. Prove:

(1) If o and B are closed differential forms, then o A\ B is also closed.

(2) If moreover B is exact, then o A\ B is also exact.

Solution. (1) d(aAB) =daAB+(—1)*e* g AdB = 0.
(2) If B = do, then

dlahw)=doaro+ (—1)%E* g ndo = (—1)%E* a A B.
Hence, a A B = d((—1)%e% o A ).

Problem 2.3.14. Determine which of the following differential forms on R3 are clo-
sed and which are exact:

(1) a =yzdx+xzdy+xydz

(2) B =xdx+x*y*dy +yzdz.

(3) y=2xy*dx A dy+zdy A dz.
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Solution. (1) o = d(xyz); thus « is exact and hence closed.
(2) dB = 2xy*dx A dy + zdy A dz; thus B is not closed, hence it is not exact.
(3) y=dw, where @0 = (xzy2 - %zz) dy; thus 7 is exact, hence closed.

Remember that, by the Poincaré Lemma, every closed differential form on R” is
exact. Thus, another way to prove (1) and (3) is:

(1) doe = 0, thus a is closed and hence exact.
(3) dy =0, thus v is closed and hence exact.

Problem 2.3.15. Let @ be a differential 1-form on a manifold M and consider a
nowhere vanishing function f: M — R such that d(f®) = 0. Prove that o Adw = 0.

Solution. We have d(f®) = df A @+ fdw, and since f(x) # 0 for all x € M, one has
do =—(1/f)df N w. As o is a differential 1-form, we have ® Adw = —(1/f)w A
df A = 0.

2.4 Lie Derivative. Interior Product

Problem 2.4.1. Let LxT be the Lie derivative of the contravariant tensor field T
with respect to the vector field X on a C* manifold M. Prove that

[Lx,Ly]T = Lix T, Y e X(M).

Solution. Two derivations of the same degree of the contravariant tensor algebra are
equal if and only if they are equal on the functions and on the vector fields, but we
have:

(a) Let f be a function. Then

[Lx,Ly](f) = Lx (Y f) — Ly (X f)
=X(Yf)-Y(Xf)
=[X.Ylf
=Ly /-

(b) Let Z be a vector field. Then

[Lx,Ly]Z = LxLyZ — LyLxZ
= [X7 [Y7Z]] - [Y, [X7ZH
= HX,Y]’Z]
= L[X,Y]Z~

Problem 2.4.2. Let a be a differential form on a C* manifold M. Show that

[Lx,LyK(X) :L[Xﬁy]a, X,YG}:(M).
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Solution. Two derivations of the same degree of the covariant tensor algebra coin-
cide if and only if they coincide on the functions and on the differential 1-forms.
We proved the result for functions in Problem 2.4.1, so we only have to prove it for
differentials of functions.

Since the Lie derivative commutes with the exterior differential, one has:

[Lx,Lyldf = Lx(Lydf) — Ly (Lxdf)
=d(LxLyf—LyLxf)
=d([Lx,Ly](f)) (by Problem 2.4.1)
= d(L[x,Y]f)
= Liy ydf-

Problem 2.4.3. Let M be a C™ manifold and let X,Y be vector fields on M; f,g, C7
functions on M; and ® a differential 1-form on M. Prove:

(1) LyxY = fLxY —df(Y)X.
(2) Lixo = fLxw+ o(X)df.
(3) Lyxg = fLxg.

Solution. (1)

LyxY =[fX,Y]

=fIX.Y]-(Yf)X
= fLxY —df(Y)X.

=
g
-
|
3
>
-
+
=
=
-
=4
>

Lixg = (fX)g
=f(Xg)
= fLxg.
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Problem 2.4.4. Let X and Y be vector fields on a C* manifold M. Prove that if ¢,
is the local 1-parameter group generated by X, we have for all p € M:

0 (LY 1)) = 1im (00,1 = 0rsn, 1) )

Solution. Since ¢; is the local 1-parameter group of X, one has ¢, -X = X, where
by definition (@s-X), = Qs (X o] (p)). Then, applying Problem 1.9.21, we have

@5 LxY = 5 [X,Y]
= (@5 X, 05 Y]
=[X,05-Y]
:LX(‘PS'Y)'

Thus,

Pss ((LXY)¢;1(p)) =Lx ((pS*YQFI(p))

1
1t o (),.,)

—}E%t (‘PS* Sp )“Pf*‘PS*Yw;'(zp;‘w»)

_%(% UWW%M)

Problem 2.4.5. Let X and Y be vector fields on a C* manifold M whose local 1-
parameter groups are @, and s respectively. Prove that [X,Y] = 0 if and only if
OrOoYs = Ys 0 Q.

HINT: Consider that a vector field Z is invariant under a diffeomorphism 1 of M
(that is - Z = Z, where (- Z)x = M:Zy-1(y)), if and only if 1 commutes with the
local 1-parameter group generated by Z.

Solution. If ¢, o y; = y; 0 ¢, then, since y; is the local 1-parameter group of Y, Y
is invariant by ¢y, thatis @;-Y =Y, thus (p,*Y(pq ) = Y,.
Hence for all p € M,

[X,Y]p, = (LxY),
1
_hr% (Y —(pt* ()):O.
Conversely, assume that for all p € M one has [X,Y], = 0. Since the equation (x)

in Problem 2.4.4 can be written as

d

T (@ Y) =~ [X,Y],

t=s
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d
we deduce E((p, -Y) =0 for all 7. So, since ¢, -Y is a constant vector for all ¢ at

each point, we have ¢,-Y = @o-Y =Y, hence Y is invariant for any ¢,. Furthermore
Q: 0 Y5 = Ys 0 ¢y

Problem 2.4.6. Let iy be the interior product with respect to the vector field Y on a
C” manifold M. Prove

[Lx,iy] = ijx v, X exX(M).

Solution. Since iy y| and [Ly,iy] are antiderivations on the algebra of differential
forms, it suffices to prove the formula for functions and 1-forms:

(a) [Lx,iy](f) = Lxiy f —iyLx f = 0, because i has degree —1 and f and Ly f are
functions; and one also has ijx y f = 0.

(0) iy yj® = o([X,¥]), and
[Lx,iy)(©) = Lyiy® — iyLx ®
= Lx(o(Y)) - (Ly®)(Y)
=X(o(Y)) -X(o(Y)) + o([X,Y])

=o([X,Y]).

Problem 2.4.7. Let f denote a diffeomorphism of the C* manifold M. Prove
ix(ffa) = f(irxo), XeX(M), acA'™™M
Solution. If o € A"M, then for X;,...,X,_| € X(M), one has
(ix (f70)p(Xilps- -, Xr1[p) = (F70) p (X, Xt |ps - X1 ]p)
= 0y(p) (i Xp, (Xt ]p)s s fe (Xt )
= () ((F- XD 1) (F - X0) gy -5 (F - Xre1) )
and
(f*Grx0))p(Kilps s Xe1lp) = (irx0)) ) (fe(Xilp) - fe (Kt )
= 04 (p) ((F - XD () (F - X0) s (F - Xt p)-

Problem 2.4.8. Let M a C™ manifold, and consider X € ¥(M), ® € A'M, ©' €
A""M, such that iy =0, ixdw = 0, ixdw’ = 0. Compute ix (0 Adw') and ixd(w A
do').

Solution. Since iy is an antiderivation, we have

ix(wNdo') = (ixo) Ndo' + (—1)" o Aixde' =0,
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ixd(wAdo') = ix(do Ado)
= (ixydw) Adw' + (=1) ' dw A iyde' =0.
Problem 2.4.9. Consider on an open subset of R> the differential 1-form
o = Py (x)dx! + Py (x) do® + P3(x) dx?,

where x = (x',x*,x%).

(1) Find the conditions under which ixdo. = 0, for

X=X10/dx+X,0/dy+X30/0z.
(2) When do we have ixoe = 0 and ixdo, = 0?

Solution. (1) Let us compute det. If we write P;j = OP;/dx/, Qji = Pj;— P, then

do = (P271 —P1’2) dx! A d? + (P371 —P1’3)dx1 A dx + (P3,2 —P273)dx2 Adxd

=Y Qjidx' A d.
i<j
Hence,
ixda =0 < ixdo(Y) =0, forallY € X(R%)
& do Xi =0, k=1,2,3
7axk - ) - b )
. . 0 0d
& ;jSdx’/\ dx’ <Xlaxl’3xk)

J

=Y. > 0;i(X%8/8] - X5(5)
1 i<j

=Y (Z OuX;— Y, szX1>
l i<k k<l

=Y 0uX; =0, k=1,23.
1

(2) By (1),
3
ixda=0 < Y 0uX;=0, k=123,
=1
and

, i (xi 2\ _ i
ixo=0(X)=0 < (P,-dx)(X/ﬁ>O & PX'=0.
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2.5 Distributions and Integral Manifolds. Frobenius’ Theorem.
Differential Ideals

Problem 2.5.1. Consider on the octant of R3 of positive coordinates the vector

fields

X—)ci—Zi Y=x i—xi
C T ox y&y’ N yay ‘oz

(1) Prove that they span an involutive distribution on R3.
(2) Find the integral surfaces.
HINT (to (2)): Substitute Y by x~'Y.

Solution. (1) [X,Y] =Y.

(2) Since in the given domain x does not vanish, we can substitute x~ 'Y for
Y, which, jointly with X, determines the same distribution. The integral curves of
X are (xpe',yoe % ,z0) and that of x~'¥ are (xo,yoe’,z0e ™), so that the respective
local flows are

t

@i(x,y,2) = (xe',ye ™.2),  y(x,pz2) = (x,ye,ze ).

The map

(t,s) € R? (W0 0;)(x0,¥0,20)

= yy(xoe', yoe ¥, 20)

—2t+s

= (xoe', yoe 7T, z0e™?),

is the integral surface through (xo,yo,z0). In fact, the point (s o ¢;)(x0,¥0, z0) is
obtained from (xg, yo,z0) as follows: We first run an interval “¢” from p = (xo,y0,20)
along the integral curve of X through p for = 0, and then an interval “s” from ¢, (p)
along the integral curve of x~'Y through ¢, (p) for s = 0. If we put

N

,2t+s, Z(I,S) =z~ ,

X(I,S) :x()eta y(tas) =Yo€

then we see that x?yz is constant. Hence the integral surfaces are defined by x’yz =
const. As a verification, observe that X (x’>yz) = ¥ (x*yz) =0.

Problem 2.5.2. Consider on R the distribution 9 determined by

0 2xz d 0 2yz 0

=4+ - Y= — 4= Z
8x+l+x2+y281’ dy 1+x2+y?0z

(1) Calculate [X,Y] and find whether 9 is involutive or not.
(2) Calculate the local flows of X and Y.
(3) If Z is involutive, find its integral surfaces.

Solution. (1) [X,Y] =0, thus Z is involutive.
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X =1 xX=xp+t
, <
y=0 Y=o

/
Z 2(.x0+t) 2 2
=" < — & logz=logA(1+ (xg+1t)"+

Z 1 (xO+t)2+y(2) g g A( (xo+1)"+5)

(2) We have

& z=A(1 —l—(xo—i—t)z—&—y%).

1+ (x0+1)% +3
Fort=0,z0 =A(14+x*+y?),s0z=20—————~ -0
0 =A(l+5+p) R R
Hence the local flow of X is
14 (x+1)% +y?
= t _— .
?(x,y,2) G+7xz T+2 42
Similarly, the local flow of Y is
1+x2+ (y+5)?
Vs (x,3,2) = (9@ yts, ey )

(3) The integral manifolds can be written as y/(z,s) — (W0 @;)(x0,0, 20). But let
us see a better solution. We are looking for a differential 1-form annihilating X and
Y. For example, we have as a solution:

o =2xzdx+2yzdy— (1 +x2+y2)dz
=zd(1+x*+y*) — (1 +x*+y*)dz

=—(1+x2+y")%d (4> .

14+ x2 +y?

Hence, the integral manifolds are = const.

_
1422 4 y?

dx 07’
0, z > 0 in R3, determines a 2-dimensional distribution given by the vector fields
orthogonal to X. Is this distribution involutive?

d d d
Problem 2.5.3. The vector field X = x— —}—xy()— +z—=, defined on x >0, y >
y

Solution. The vector fields U = fyg + ; and V = fzg +x§
X y x z

to X and linearly independent at each point. They span that distribution, but [U,V] =

are orthogonal

d
—ya—z. Since
-y 1 0
-z 0 x|=-yz
0 0 —y
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is not identically zero, we have [U,V], & (U,,V,). Hence the distribution is not
involutive.

Problem 2.5.4. Prove that

X = cos®x — +sinx —

ox dy
determines a foliation with non-Hausdorff quotient.

Solution. This vector field determines an integrable distribution of codimension 1
of R%. We have two kind of solutions: Integrating the equation that X determines,

40

20

)
T
\

3 4 Vg 6

-20

Fig. 2.2 An example of foliation with non-Hausdorff quotient manifold.

ie.
dx dy

2. T
COs“x simx

we obtain the curves
y=secx+A

(see Figure 2.2) forx # (2k+ 1)7/2, k € Z.

Moreover, we have the solutions with initial conditions of the type ((2k +
1)7/2,y0). That is, the straight lines ¢ +— ((2k+ 1)7/2,(—1)*t). Actually, if p and
q are two non-separable points of the quotient, then each of them corresponds to a
solution of this kind.

Take, for instance, the integral curve x = —m/2; a point on it, say (—7/2,y0);
and an open disk around this point. This open disk intersects all the integral curves
intersecting the y-axis at the points with ordinate greater than or equal to Ay > 0.
This phenomenon is also true for open disks around the point (7/2,y;). Such an
open disk intersects all the integral curves which intersect the y-axis at points with
ordinate greater than or equal to A; > 0. Now, the integral curves intersecting the
y-axis at points with ordinate greater than max(Ag,A;) intersect both open disks.
Hence the projections of the two open disks on the quotient intersect, so that the
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projections of x = —7/2 and of x = /2 cannot be separated. Consequently, the
quotient manifold is not Hausdorff.

Problem 2.5.5. Consider on R3 the vector fields

Jd d d d Jd d

X:Z$+a—z, Y:&—y+a—z, :Za—&—y.

(1) Prove that X ,Y,Z define a C* distribution 9 on R®. Which dimension is it?
Is it involutive?

(2) Compute the set .7 (D) of forms which annihilate 9. Is it a differential ideal?
Is the ideal % = (¢*dy) a differential ideal?

Solution. (1) X,Y,Z are not linearly independent because Z =X —Y. Hence ¥ is a
2-dimensional C* distribution spanned, for instance, by X and Y, which are linearly

independent. Z is not involutive, as [X,Y] = — =, and —— & 2, since if it were

ox’ ox
0 J 0 J 0

—a :aza +aa—z +b8—y +ba—z,

we should have az = —1, b =0, b+ a = 0, which is absurd.

(2) {X,Y,0/dx} is a basis of X(R?). Therefore, if {o, 8, w} is its dual basis of
1-forms, then .# (2) = (), where (@) stands for the ideal generated by .
Let us determine @ = fdx+ gdy+hdz, f,g,h € C°R?. From

0=w(X)=fz+h, 0=w(Y)=g+h, lza)(%):f,

it follows that f = 1. Thus & = —z, hence g = z; that is, ® = dx+ zdy — zdz. Since
2 is not involutive, .7 (Z) cannot be a differential ideal.

We can also prove this directly. One has do = dz A dy = —dy A dz. If it were,
for a,b,c € C°R3,

do = oA (adx+bdy+cdz)
= (b—az)dx A dy+ (c+az)dx A dz+ (ze +zb)dy A dz,

we should have b —az =0, c+az =0, zc +zb = —1. From the first and second
equations one has b+ ¢ = 0, in contradiction with the third equation. One can also
conclude by applying Problem 2.3.11, as

oANdow =—dxAdyAdz #O.
Finally, .# is a differential ideal, for

d(e*dy) =e*dx A dy
=e"dyA(—dx).
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Problem 2.5.6. Given on R* = {(x,y,z,t)} the 1-forms o« = dx+zdt and B = dz+
dt let 7 be the ideal generated by o and B, and let 2 be the distribution associated
to £.

(1) Compute a basis for 9.
(2) Is @ involutive?

0 0
If p=(1,0,1,0) € R _ 32| 4.2 »
(3)If p=(1,0,1,0) € R*, do we have v, 3ay‘p—|—z Bxpegp
A If o=dxAndz+deAdi+dzAdt isw e I?
(5) Is y = const, z = const, an integral manifold of 2?
Solution. (1) For X,Y € & given by
0 0 0 0 0 0 0 0
TR R F T ‘ox Ty T8 T

fora,b,c,d,e, f,g,h € C°R*, it must be that

OC(X):a+Zd:0, (X(Y):e_FZhZO’
BUX)—c+d=0.  B(Y)—g+h=0.
Thus, for instance, we can consider

x=72,9_9 9
“ox "oz o oy

(2) [X,Y] =0, hence Z is involutive.
(3) No, as

9 9
ay(vp) = (dx+zdr), <3ay “ax>p —14£0.

(4) ®=dxAB+dzAB, hence w € 7.
(5) The tangent space is <i i> but o <i> =1, so y = const, z = const
dx’ ot /)’ dx ’ ’ ’
is not an integral manifold of 2.

Problem 2.5.7. Prove that the 1-form o = (1 +y?)(xdy + ydx), defined on R> —
{0}, generates a rank-1 differential ideal and find the integral manifolds.

Solution. Since 1 + y2 does not vanish, o generates the same annihilator ideal as

172 =xdy+ydx

=d(xy).
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Fig. 2.3 Integral manifolds of o = (14 y?)(xdy+ ydx).

As d(xdy+ydx) = 0, the ideal is differential. The integral manifolds are xy = const
(see Figure 2.3).

Problem 2.5.8. Let U = R3 — axes. Compute the integral surfaces of the distribution
determined by the ideal of A*U generated by

a=yzdx+zxdy+xydz.

Solution. We have o = d(xyz). If X is annihilated by ¢, then we have a(X) =
X (xyz) = 0. Thus the integral surfaces are the surfaces xyz = const (see Figure 2.4).

Fig. 2.4 The component in the first octant of an integral surface of the distribution o« = yzdx +
zxdy+xydz.
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Problem 2.5.9. Consider the (1,1) tensor field

1 0 d
dx hx—®d
coshx8y® Heos *ox oy

on R? and the distribution 9 defined by the condition: X € 9 if and only if JX = X.
(1) Compute the integral curves of 9.
(2) Compute the fields X € 9 for which LxJ = 0.

Solution. (1) If X = f% +hi €9, f,he C°R?, then

dy
1 4 d d dJ\ _ f 0 d
<Coshxay®dx+coshxa®dy) (f(? +h8y> Coshxa—erhcoshxa
d
—faJrha—y.

Thus f = hcosh x. Denoting by (x,y) the integral curves of &, we have dx/d¢ =
(dy/dt) cosh x. Hence dy = dx/ cosh x, and thus

y = arctansinh x + A. (%)

That is, the integral curves of 2 are given by (x).

(2)

_ AV (Lga 2
LxJ = (hxcoshx coshx) <3x®dx Py ®dy (%)
+ (hycosh x+ fsinh x — fycosh x) (a®d la®dx> =0
’ ! ox =27 cosh?x dy o

Moreover, if X € 2, then we have f = gcosh x, and from this equation and (¥*) we
conclude that we have to solve only the following equation:

oh oh

—coshx= —.

ox dy
Let u = 2arctane”. Then we have

o1 o
dx  coshxodu’

oh _ ok
ou dy’

hence Taking t = u+y, w = u —y, we obtain

on on_,on
du 8y ow’
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Thus h = h(u+y) = h(2arctane* 4 y), and we finally have

f = h(2arctane® +y) cosh x,
where h(2arctane® +y) is an arbitrary differentiable function in that argument.

Problem 2.5.10. Let M be a C* n-manifold and let 9 C TM be an integrable distri-
bution of rank p. By Frobenius’ theorem, 9 is spanned by d/dx',...,d/dxP on an
open subset U of M, for a certain coordinate system (U,x'). We can consider local
frames of M of the type

(d/0x',...,0/9x" . X1,...,X,), p+g=n=dimM,

where X, = d/dxP™ — 49 /dx*, 1 <a<p 1<u<gq fl €C°M
Write the integrability condition of the complementary distribution ¢ generated
by Xi,...,X,, on the open subset where these vector fields are defined.

Solution. In order for J# to be integrable it must be [X,,X,] € S for any X,,, X, €
JC,u,v=1,...,q. Then

(X, X)) = [0/9xP T — £99/9x*,0/dxP T — ££9 ] 9xP]

_(9fi  9fy fbafv” o Ofi\ 9 2
T\ gxrty gxptu U gxb v oxb ) x4 '
As [Xy,X,] € A, the last expression in parentheses must be zero, that is, the condi-
tion is a0 a0 Bf 8f“
u v b v b
dxPtv  Qxptu +f” —ho axb

2.6 Almost Symplectic Manifolds

Problem 2.6.1. Denote by (q',...,q",p1,...,pn) the usual Cartesian coordinates
of the space R*", on which we consider:

(a) The 2-form Q = dq' Adp;.
(b) A hypersurface S defined by the implicit equation H(q, p) = const.
(c) The vector field X such that ix{2 = —dH.
Prove that:
(1) X is tangent to S.
(2) If @21 is a (2n— 1)-form such that

QN AQ = way 1 NdH,

then Lx( Wop—1 |S) =0
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Solution. (1) We have to prove that XH = 0, but

XH = (dH)(X)
= —(ix£2)(X)
=-Q(X,X)=0.
(2) Considering the Lie derivative with respect to X of both sides of the equality
QN ~(~n- NQ = wy,_1 NdH, we obtain
ith place

QAN LxQ A ANQ = (Lx®2—1) NdH + 2,1 ANLxdH. (%)

i=1

As

LxQ =ixdQ +dixQ

=dixQ2

and

LxdH =dLxH

=d(XH) =0,

the equation (x) is reduced to

(Lx w2,—1) NdH = 0. (%%)
Let (xl, LoxnlH ) be a local coordinate functions adapted to S; that is, such that

(dH)|s = 0. Then, for some (2n — 2)-form @,—_2, from (x*) it follows that
Lx -1 = 02,2 AdH +Adx! A=A dxznil7

SO
0= (Lywy, 1)AdH = Adx' A---Ad® ' AdH,

and thus A = 0. Hence Ly 07,1 = ®2,—» AdH, so one has
LX( 02,1 |S) = wZn—2|S A (dH)|S = O;
because (dH)|s = 0.

Problem 2.6.2. Let w: T*M — M be the cotangent bundle over a C* n-manifold
M. The canonical 1-form © on T*M is defined by

9o(X)=0(rX), ©ecT'M, XecT,T'M.
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(1) Compute the local expression of ¥ and prove that the 2-form = d¥ is
nondegenerate; that is, that ix Q2 = 0 implies X = 0.

(2) Show that QAN o A # 0 at each point. Hence T*M is orientable. Q is
called the canonical symplectic form on T*M.
Let H € C*(T*M) and let o: (a,b) — T*M be a C* curve with tangent vector ¢'.

(3) Write locally the differential equations
ix(Qo0c)+dHoo =0 (Hamilton equations).

(4) Show that if © is a solution, H o G is a constant function.
(5) Solve the Hamilton equations for the case M = R", and

H=1k(q')+ lmnilp? o
2 2 5 2
where k and m stand for constants.
Solution. (1) Given local coordinates (¢',...,q") on M, they induce local coordina-

tes (¢',..., q",p1,---,pn) on T*M putting @, = p;(wy) dqi‘x for w, € T*"M,x € M.

If 5

then from the definition of ¥ it follows:

€T, T™M,

(2%

+u

Wy

al’i

B(X) = o7 Xo,)

””*(* 3

)
al.

= (pj(er) dg’|,) (W 37
= Aipi( @)

— pi(@y) (de'],, ) (X)

= (pidg')(X),

and so ¥ = p;dg’; hence Q = d® = dp; A dg’, which is obviously nondegenerate.

(2) From (1) we have, &, being the group of permutations of order n, and sgn o
the sign of the permutation o € G,;:

Q"= (dpy Adg' +---+dp, Adg")A---A(dpy Adg' +---+dp, A dg")
= Y dpoyAdg®V A Adpgy A dg®)
ceB,

_ (_])l+2+--~+n 264 dqﬁ(l) Ao A dqc(”) Adpo(iy A+ Adpgy)
oe’S,
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n(n+1l)

=(-1)"2 Y (sgnc)?dg' A---Adg" Adpy A--- Adp,

ce6,
n(n+l
=n!(-1 dg' A---Adg" Adpi A--- Adpy,
#0.
' ~ do; 0 do; 0
(3) Put 6; = ¢' 00, G; = p;oc. We have 6’ = d_tl(?_q’ d_tl FP Therefore

ig'(Qoo)=0"(p) dqi| —0'(¢") dpily

d8',- dG,
= dt ql|0— dr dpil-
Hence
) do; OJH ; JH do;
101(Q06)+dHOG=<d—l+a— )dl]|0+<a—pioc dtl>dpz|g7
and the Hamilton equations are
do; n o0H =0 oH o do; 0
— 0 = o — = V.
dt  dqg ’ dpi dt
do; JH do, OJH
(4) If o is a solution, then o _ 22, o and o _ oo. So
dt a4 dr  dp;

d OH \do; (0H \do;
a;f1o0) = (a—qi"") ar +<api°0) a

Thus H o o is a constant function.

(5)
doy oH do; oH
(a) dr dq! ° b dr a4’ ° ’
fori= 2,...,n, hence:
(b) 0;=A;,i=2,...,n, with A; constants.
do; OJH
(©) d—t‘ &p,oc mo;, fori=1,....n—1.
do, oH
(d —2==—00=0,
" pa
From (b) and (c) it follows that o; = mA;t +B;, fori =2,....n—1, A;,B; €
doj ~ do 2Gl
R. From (a) and (c) we deduce that a4 = mo; and a4 = —koj, hence a7 +

kmoyp = 0, and we have four cases:

(i) k#0, m=0, 6y =A, 6, = —kAt+B,
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(ii) k=0, m#0, 6y =mCt+D, & =C,
~ ©
(i) km = w*> >0, o) = Ecoswt+ Fsinwt, 6; = ——(Esinw? — F cos ot),
m
(iv) km = —w* <0, 61 = Geosh ot + Hsinh wt,

- ®
01 = ——(Gsinh 0t + H cosh ot).
m

do,
Finally, from (b) and (d) we have dtn = A,, thus 0, = A,t + B, for A,,,B, € R.

Problem 2.6.3. Consider the trivial principal bundle m: M x U(1) over the C* n-
manifold M. We use the same notations as in Problem 5.2.3.

(1) Let @y be the flow of a vector field X € X(P). Prove that X is U(1)-invariant
if and only if @y is an automorphism of P, for all t € R.

(2) Let p: T*M — M be the cotangent bundle over M. Each coordinate system
(U,q",...,q") on M induces a coordinate system (p~'(U), q',...,¢",p1,...,pn) by
setting w = p;(w)dq'|, for all covector w € T; M.

If @ is the flow of a U(1)-invariant vector field X € X(P), then @, is a flow on
T*M, which generates a vector field X. Prove that

o d (8 o N2
X7f3q" (9qi+3qiph>9pi’

Whe’e
‘{ f(q""7q) g(Q? ?q) Y
aql aa

and o stands for the local coordinate on U(1).

(3) Let ¥ be the canonical form on T*M and let @ (x, ) = (¢ (x), 0+ y(x)) be
an automorphism of P. Compute ®@* 1.

(4) Conclude that every automorphism of P leaves the canonical symplectic form
d¢ invariant.

(5) Prove that Lgdd = 0, for every U(1)-invariant vector field X.
Solution. (1) The vector field X is U(1)-invariant if and only if for every z € U(1)

we have R, - X = X. This means that R, commutes with @;; i.e. R,0 ®; = @, 0R,, or
equivalently, @ (u) -z = @&, (u - z), thus proving that @, is an automorphism.

(2) If d(x,0) = (¢(x), 0t + y(x)), from (4) in Problem 5.2.3, we have
Dw)= (o) w—(d(yod )y, WwETLM.

Aspod~5:¢op,wehave o ‘
god=qod. (%)

Moreover, from the very definition of the coordinates (p;), we obtain
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(pio®)(w) = pi((97")w—(d(wod™"))gw)

fe) —1 .
= (67 (0a") ~ 28D (00 o)
2g"o0) g oo )

= palo0) TS (0) ~ 2 (0().

Hence (o] 5 »
(g0 )O¢>_ (Woo™) . (500

pioqj:ph( 94’ aq'

If @ (x,a) = (¢(x), 0 + W (x)), then substituting @, for @ in (%), (xx), taking

derivatives with respect to ¢, and then ¢ = 0, we obtain the formula for X in the
statement.

(3) We have

- d(ad"o! d(wod! i
(P*t9=(ph< (qaq? )O¢>— waqd,-) )Ofb)d(q’wb)

a hO -1 .
p (500 )algon) - rayor )

= prdg" — ¢ d(yoo )
=9 —dy.

(4) From the previous formula, we have
D dy = dv.
(5) It follows taking derivatives in @;d¥ = dd, for all 7 € R.

Problem 2.6.4. Let ¥ be the canonical 1-form on the cotangent bundle T*M over a
C* n-manifold M. Prove that d¥ is the only 2-form € on T*M such that:

(1) The vertical bundle of the natural projection p: T*M — M is a Lagrangian
foliation, that is, the fibres of p are totally isotropic submanifolds.

(2) If n is a differential 1-form on M and we denote by Ty the translation
T: T"M —T'M, t(w)=w+1n(x), weTM, xeM,
then
7,2 =Q+p'dn.

(3) LgQ2 =0, for every U(1)-invariant vector field X € X(M x U(1)) (see Pro-
blem 5.2.3).

Solution. First we prove that d® satisfies (1), (2) and (3). Item (1) follows directly
from the local expression 2 = dp; A dq’, as the tangent space to the fibres of p is
locally spanned by d/dp;. As for (3), it follows from Problem 5.2.3.
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Moreover, if n = ﬁdqi , fi € C™M, then the equations of T, are
dotg=q, pjom=pi+fj
Hence
7, dY =d7, 9
= d((pioty)d(g' 0 1y))
=d(pi+ fi) Ndg'
=dp; Adg' +dfi Ndg'
=dd +p*dn.
Conversely, assume € satisfies (1)-(3). From (1) we have
Q=Adg" Ndg' + Bl dpy Ndg',  Ap+An=0,  Aw Bl €C7(T*M).
Let us impose condition (2) on Q. We have
Ty Q2 = (Apio Tn)dq Adg' + (Bl'o ) (dpn +dfi) Adq'
= Apidg" Ndg' + B dpy Adg +dfi Adg.

Hence
afj 9
Apio Ty + (B! oTn)a s = Api+ 3 == 8, *)
Blot, =Bl
Let X = d/dq' in (3). Then, we obtain
dA JB!
L;Q = 3 "aq" Adg' + 5 dpyAdg' = 0.

Accordingly,

0A; _ 8Bf‘ _

dq  aq

that is, Ay; and B! depend only on (p1,. .., py).
Next, let X = ¢'d/da in (3). Then we obtain X = —d/dp;, and

8Ah, 0B .
L:Q = — dg /\d’ —Ldp, Adg' = 0.
X Ip ap, i
H
ence Y ﬁBf‘ B
dpi Ipi

Therefore Aj; and Bf-’ are constant functions.
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Now, let us impose condition (3) for X = ¢*d/dq, for two given indices k, 1. We
have
0 0

X=q¢"=—p5.

Hence

LgQ = (A —Ap)dq* Adg' + Y (Ay — Ayy)dg' Adg*
k<i i<k
— Bfdp; Adq' + Bidp; Adgk = 0.
Thus A;; = A;;. As A;;+Aj; =0, we have Aj; = 0. Accordingly, the equation (%) now
reads as
Ii _,

aqh -

(B! — &)

As the functions d f;/dq" are arbitrary, we have Bl’ = §jj, thus concluding.



Chapter 3
Integration on Manifolds

3.1 Orientable manifolds. Orientation-preserving maps

Problem 3.1.1. Consider two charts (U, @), (V,y) on an orientable manifold M,
with U, V connected. Prove that the Jacobian determinant of the change of coordi-
nates cannot change its sign on (UNV).

Solution. An orientation t on M induces an orientation on U and an orienta-
tion on V. Since U is connected, (x!,...,x") is either positively oriented, i.e.
(9/9x|p,...,0/9x"|,) € Wy, or negatively oriented, i.e. (3/dx'|p, ..., 9/dx"|,)
¢ Up, for every p € U. Similarly for (V,y). If y = (y',...,)"), then 9/dx/ =
(dy'/dx’)(d/ady"). If both charts are positively oriented or both negatively oriented,
then they are similarly oriented so det(dy’/dx/) > 0. If one is positive and the other
negative, then det(dy'/dx/) < 0 on (U NV). So, in any case, the determinant of
the Jacobian of the change of coordinates cannot change its sign on (U NV).

Problem 3.1.2. Prove:
(1) The product of two orientable manifolds is orientable.

(2) The rtotal space of the tangent bundle over any manifold is an orientable
manifold.

Solution. (1) A C* manifold M is orientable if and only if (see Proposition 7.3.2,(2))
there is a collection @ of coordinate systems on M such that
ox!
M= [J U and  det 55 ) >0 on UV
(U.p)ce Y

whenever (U,x!,...,x") and (V,y',...,y") belong to ®.

Suppose M; and M, are orientable. Denote by (U;,x}) and (Us,x3) two such
coordinate systems on M| and M>, respectively. With a little abuse of notation (that
is, dropping the projection maps pr; and pr, from M; x M, onto the factors M
and M,), we can write the corresponding coordinate systems on My x M, as (U; X

P.M. Gadea, J. Mufioz Masqué, Analysis and Algebra on Differentiable Manifolds, 113
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Uz,x’i ,xé). As the local coordinates on each factor manifold do not depend on the
local coordinates on the other one, the Jacobian matrix of the corresponding change
of charts of the product manifold M| x M, can be expressed in block form as

a i
X}( 0
J— J1 0 _ 8y1 )
0 J, 0 axé
9}

Since det J; and det J; are positive, we have det J > 0.

Alternatively, the question can be solved more intrinsically as follows: Given
the nonvanishing differential forms of maximum degree @; and @, determining the
respective orientations on M and M5, it suffices to consider the form @ = prj w; A
prs @, on My x M>.

(2) Let M be a differentiable n-manifold and let 7 be the projection map of the
tangent bundle 7M. For any coordinates {x'} on an open subset U C M, denote by
{x',y'} = {x'omr,dx} the usual coordinates on 7~ !(U). Let {x’’} be another set of
coordinates defined on a open subset U’ C M such that U N U’ # 0. The change of
coordinates x'' = x'!(x/) on U NU’ induces the change of coordinates on 7~ (UNV)
given by

i
— ﬂyj
oxi 7’

The Jacobian matrix of this change of coordinates is

i i

i ] n ..
x=x"(x, a0, iLj=1,...,n

ax/i
ox/
32x/i ' aill
oxkox> o

J=

/i

2
E ) > 0, it follows that TM is orientable.
X

Since det J = det <

Problem 3.1.3. Prove that if a C* manifold M admits an atlas formed by two charts
(U, ), (V,y), and UNV is connected, then M is orientable. Apply this result to the
sphere S", n > 1, with the atlas formed by the stereographic projections from the
poles (see Problem 1.1.9).

Solution. Let ¢ = (x!,...,x") and w = (y',...,y") be the coordinate maps. If
det(dx'/dy’) #0on UNV and UNV is connected, we have either (a) det(dx'/dy/)
> 0 for all UNV; or (b) det(dx'/dy/) < 0 for all U NV. In the case (a) it follows that
M is orientable with the given atlas. In the case (b), we should only have to consider
as coordinate maps @ = (x',...,x") and v = (—y!,y%,...,y").

For §", n > 1, considering the stereographic projections, we have the coordinate
domains
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Uy = {(xl,...,x"+1) esm £ 1},
Us={(x'...x"es ¥ £ -1},

UvNUs = {(xl,...,x"H) est . ! # :l:l}
= oy (R"—{0}),

is connected, we conclude that S” is orientable.

Problem 3.1.4. Study the orientability of the following C* manifolds:
(1) A cylindrical surface of R3, with the atlas given in Problem 1.1.11.
(2) The Mobius strip, with the atlas given in Problem 1.1.12.
(3) The real projective space RP?, with the atlas given in Problem 1.7.4.

Solution. (1) The Jacobian J of the change of the charts given in Problem 1.1.11
always has positive determinant; in fact, equal to 1. Thus the manifold is orientable.

(2) For the given atlas, the open subset U NV decomposes into two connected
open subsets W; and W,, such that on W; (resp. W) the Jacobian of the change
of coordinates has positive (resp. negative) determinant. Hence, by virtue of Pro-
blem 3.1.1, M is not orientable.

(3) With the notations in (2) in Problem 1.7.4, we have in the case of RP? three
charts (U, 1), (U2, ¢2) and (U3, ¢3), such that for instance

01 (U1 N,) = ¢ ({[xl,xz,XS] xt + 0,x° # 0})
={(",1*) eR*: ' £0}
=ViuV,,

where Vi = {(¢1,1?) e R? : ¢! > 0} and V> = {(',1*) e R? : 1! <0} are connec-
ted. The change of coordinates on @; (U; NU,) is given by

(@20¢fl)(tl7t2) = @([17t17t2])
(17
2

and the determinant of its Jacobian matrix is easily seen to be equal to —1/(¢')3,
which is negative on V; and positive on V,. Hence, by virtue of Problem 3.1.1, RP?
is not orientable.

Problem 3.1.5. Consider the map
@:R? > R% (x,y) — (u,v) = (xe” +y,xe’ +1y), A ER.

(1) Find the values of A for which @ is a diffeomorphism.
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(2) Find the values of A for which the diffeomorphism @ is orientation-preser-
ving.

Solution. (1) Suppose that
xey—f—y:x/ey,—l—y/, xe3'+ly:x/e”,+ly/. (*)

Subtracting, we have (1 —A)y = (1—4)y’. Hence, for A # 1, we have y =y’. And
from any of the two equations (%), we deduce that x = x’.
The map ¢ is clearly C* and its inverse map, given by

u—v Au—v u-v

= er—-1

A

is a C* map if and only if A # 1. Thus ¢ is a diffeomorphism if and only if A # 1.

(2) Consider the canonical orientation of R? given by dx A dy, or by du A dv. We
have

ou o
dx dy e’ xe¥+1
det PP = det (ey xey—|—/'L>'
dx dy
Therefore
dundy = 28 4 n gy
d(x,y)

—=e’(A—1)dxA dy.

That is, ¢ is orientation-preserving if A > 1.

3.2 Integration on Chains. Stokes’ Theorem I

Problem 3.2.1. Compute the integral of the differential 1-form
o = (x> +7y)dx + (—x +ysiny*)dy € A'R?

over the 1-cycle given by the oriented segments going from (0,0) to (1,0), then from
(1,0) o (0,2), and then from (0,2) to (0,0).

Solution. Denoting by ¢ the 2-chain (with the usual counterclockwise orientation)
whose boundary is the triangle above, by Stokes’ Theorem I (Theorem 7.3.3), we

have
/ o :/d(x
dc c
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:—S/dxAdy

1/ r2(1-x)
:—8/ </ dy>dx——8.
0 \Jo

Problem 3.2.2. Deduce from Green’s Theorem 7.3.4:
(1) The formula for the area of the interior D of a simple, closed, plane curve
[a,b] — (x(1),y(1)) € R*:

A(D):/I')dxdyz %/b (x(t)%—y(t)j—j) dr.

(2) The formula of change of variables for double integrals:

9(x,y)
d(u,v)
corresponding to the coordinate transformation ¢: R? — R?, x = x(u,v), y =
y(u,v).

|| Fy)asdy = /(pilDF(x(u,v),y(u,v)) dudv,

Solution. (1) follows directly from Green’s Theorem by letting g = x, f = —y in
the formula 7.3.4.

(2) First, we let f =0, dg/dx = F in Green’s formula. Then, from the formula
for change of variables and again from Green’s Theorem we obtain

oo f o
=1 (D)
o o0 (G20 50 )
Lol 02) (o035}
S oo0R) () o

Moreover, we have

D (teom®) (28, 0) 2 (8, N\
%Ogoq’)ﬁ)_((8xo¢>8u+(8y0(p>8u)8v+<g0(p)8u8v’

D (o) (%80)28, (%5, \ Yy, oy
Z((goq))%)((8x0(p>8v+<8y0('0>8v>8u+(g0(p)8v8u'
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Hence
5o (@0 ) -5 (wonf) = oo (55 - 55
oo

Substituting this equality in (x) we have

//DF(x,y)dxdy://(p]D(Fogo)ggz:z;dudv

Problem 3.2.3. Let c; be a 2-chain in R? and f € C*R?. Prove that

d f af
s a—y — gd =0
if f satisfies Laplace’s equation
9? 9°f °f
FIol + == 572 =0.

Solution. From Stokes’ Theorem I we have

9 ge— 2 gy —/d(afdx—% y)

dcy &y a a 8x
°f  9*f
_—/cz(axz—i—a 2)dx/\dy 0.

Problem 3.2.4. Consider the 1-chain
crn: [0,1] = R?— {0}, crn(t) = (x(t) = rcos2mnt, y(t) = rsin2mnt),

forre R, neZ".
Prove that ¢, is not the boundary of any 2-chain in R* — {0}.

Solution. Let 6 be the angle function on C = ¢,,([0,1]). Then, d6 is a globally
defined differential 1-form on C, and we have

/ do = darctan (X) =2nrn.
Crn Crn X

Suppose ¢, = dc; for a 2-chain ¢; € R? — {0}. Then, from Stokes’ Theorem I, it
follows that
/ 6 = / d(de) =0,
Crn 2

thus leading us to a contradiction.
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3.3 Integration on Oriented Manifolds. Stokes’ Theorem II
Problem 3.3.1. Given on R? the differential form
o= (z— x> —xy)dx A dy —dyA dz—dzAdx,
compute [1,i*®, where i denotes the inclusion map of
D={(x,y2) € R : 2 +y? <1, z=0}
in R3,

Solution. We have
/ fo= —/ (x* 4+ xy) dx A dy.
D D

Taking polar coordinates

x=pcosH, y=psin0, p€(0,1), 6¢€(0,2m),

one has 3xy)
x,y) cos® —psin@)
a(p,0) _det<sin6 pcos@) P

Therefore, for Dy = D — {[0,1) x {0}}, one has
/ ifo= f/ (x* +xy) dx A dy
D Dy

=— [ p*(cos’>6 +sinBcosH)pdp Ad6
Dy

2r rl
= —/ / p>(cos® 0 +sin@cosH)dp do
0o Jo

1 2 1+cos29+sin29 dO——E
4 Jo 2 2 4

Problem 3.3.2. Let (u,v,w) denote the usual coordinates on R3. Consider the

parametrization
1 1
w==coso+ =, (%)

I 1. .
= —sino = —sina
u sinocos 3, v=zsin sinf3, 3 3

a € (0,7), B € (0,27), of the sphere S* = u> +v? + (w—1)" = 1 in R,

Let N = (0,0,1) be its north pole and ©: S* — {N} — R? the stereographic
projection onto the plane R> = w = 0. Let p = dx A dy be the canonical volume
form on R? and ¢ = %sinada AdB the volume form on S* above. Write m*p in

terms of ©.
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REMARK. The 2-form ¢ = % sinoedo A dp is called the canonical volume form on
S? because one has 6(X,Y) = 1, X,Y € X(5?), for {X,Y,n} an orthonormal basis
of R3, where n denotes the exterior (i.e. pointing outwards) unit normal field on S*.

Solution. The given stereographic projection is the restriction to S*> — {N} of the
map

~ u y
TR —{w=1 R? -
== e (P ).
whose Jacobian matrix is

1 u

I—-w (1—w)?
1 v

l—w (1—w)?
Hence

T'p =w"(dx A dy)
=n*dxAT*dy

1 u 1 v
= <1_Wdu+ (1—w)2dw) N <1_de+ (l—w)zdw>

1
= mdh/\dV"" ﬁdu/\dw—ﬁd\//\dw (**)

Thus, substituting (x) in (%) we obtain after a computation

Tp=7"p
sino
=————daAd
(1 —cosa)? o/ dp
4

————o0
(1—cosa)?

Problem 3.3.3. Compute the integral of ® = (x —y>)dx+x>dy along S' applying
Stokes’ Theorem 11.

Solution. Let D (resp. D) be the open (resp. closed) unit disk of R?, and let Dy =
D —{[0,1) x {0}}. Applying Stokes’ Theorem II, we have

o=| o
ob

:/_dw
D

= dw
Dy

= [ 3(*+yH)dreAdy.
Dy

Js!
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Taking polar coordinates we have as in Problem 3.3.1:

o= [ 3p>dpArde
JD

Js!
2 1
:3/ (/ p3dp>d9:3—”.
0 0 2

Problem 3.3.4. Let f be a C* function on R?, and D a compact and connected
subset of R? with regular boundary dD such that f|p = 0.

(1) Prove the equality

2f I IANLIAY
/Df<ax2+a z)dx/\d /{(5) +<9—y) dr A dy.

2f 82f

(2) Deduce from (1) that lf 8 =

=0onD, then f|p =
Solution. (1) By Stokes” Theorem II we have
f PN (Y, (Y
/D{f(ﬁw—yz) “(5) +(5) jeno=f,v

where v is a differential 1-form so that dy is equal to the 2-form in the left-hand
side. One solution is given by

=—f fdx+ f f
Since f|yp = 0, we have
= 07
aD v
from which the wanted equality follows.
82 f °f . .
QR UAf=55+55 57 = 0, by the equality we have just proved, one has

B (3 oo

Jp |df|>dx Ady = 0 thus f is constant

on D, but since f|yp = 0 we have f|p = 0.

1 xdy—ydx
Problem 3.3.5. Let o = — -0 Y&
21 x2+y?

(1) Prove that o. is closed.

AN (R?—{0}).

(2) Compute the integral of o on the unit circle S'.
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(3) How does this result show that o is not exact?

(4) Let j: S' < R? be the canonical embedding. How can we deduce from
(3) that j*o is not exact?

Solution.
(1) Immediate.

(2) Parametrizing S! as x = cos 0, y = sin0, 6 € [0,27], one has

1 2 ) .2
/ a:—/ (cos” 0 +sin“6)do = 1.
s! 27 Jo

(3) If it were o = df for a given function f, applying Stokes’ Theorem II, it

would be
/ o= [ df
Sl Sl

= [ f=o.

-~ Jast

(4) Let us suppose that j*o is exact, i.e. j*or = df. Then we would have

/j*(x:/ o
Js! Jj(sh)
:/ o=1.
Sl

On the other hand, as j*d = d j*, we have

[ ita=[ iar
Js! sl
= [ dais
s!

= [ Jir

as!

= [ir=o

where @ denotes the empty set. Absurd.

Problem 3.3.6. Consider

xdyAdz—ydxAdz+zdxAdy 2,03
o= € A°(R° —{0}).
T (&~ {o})
(1) Prove that a is closed.
(2) Compute [ a.

(3) How does this prove that a. is not exact?
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Solution. (1) Immediate.

(2) Consider the parametrization
X =Cos@Qcosy, y=cos@siny, Z=singQ,

¢ € [-n/2,m/2], w € [0,2x], of 2. Then o[z = —cos@dg A dy, and

21 z
/ oc:/ </ —cosqodqo) dy = —4r.
2 0 -z

(3) If o« = df, by Stokes” Theorem II it would be

which contradicts the result in (2).

3.4 De Rham Cohomology

Problem 3.4.1. Prove that the de Rham cohomology groups of the circle are

il R, i=0,1
Han(S'R) {o, i>1.
Solution. One has HgR(S L R) =R, because S 1 is connected. Since dim S! = 1, one
has H'p (S, R) =0if i > 1.

As for H! (ST, R) = R, every 1-form on S! is closed. Now, let ax be the re-
striction to S' of the differential form (—ydx-+xdy)/(x*>4y*) on R? — {(0,0)}. We
locally have wy = d6, 0 being the angle function. Hence d is nonzero at every point
of S. (In spite of the notation, d6 is not exact, cf. Problem 3.3.5.) Hence, if @ is any
1-form on S!, then we have @ = £(6)d6, where f is differentiable and periodic with
period 27. To prove this, we only have to see that there is a constant cand a differen-
tiable and periodic function g(0) such that f(6)d6 = ¢d6 +dg(0). In fact, if this is
s0, integrating we have ¢ = % ( 02”f(9)d6. We then define g(6) = foe (f(t) —c)dt,
where c is the constant determined by the previous equality. One clearly has that g
is differentiable. Finally, we must see that it is periodic. Indeed:

0+2m
g0+2m) =5(0)+ [ (/) —)ds

0+2m 27
=g(0)+ /6 f(e)de _/0 f(z)de (f is periodic)
=2().
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Problem 3.4.2. Compute the de Rham cohomology groups of the annular region
M= {(x,y) eER?: 1</x2+y2 < 2}.

HINT: Apply the following general result: if two maps f,g: M — N between two
C* manifolds are C* homotopic, that is, if there exists a C* map F: M x [0,1] — N
such that F(p,0) = f(p), F(p,1) = g(p) for every p € M, then the maps

f*: Hig(NR) — Hig(M,R),  g": Hig(N,R) — Hjp(M,R),
are equal for every k=0,1,....

Solution. Let N = §'(3/2) be the circle with center at the origin and radius 3/2 in
R?. Let j: N — M be the inclusion map and let 7 be the retraction 7: M — N, p —
3(p/Ip|). Then, ro j: N — N is the identity on §'(3/2). The map jor: M — M,
p +— 3(p/|pl). although not the identity of M, is homotopic to the identity. In fact,
we can define the homotopy by

P

H: Mx[0,1] - M, (p,t) — tp+(1—1) ol

[\SARON)

Thus, for k=0,1,2, we have

J' Hig(M.R) — Hig(s'(3/2).R),
r H§R(Sl (3/2),R) — HgR(M7R)7

so, applying the general result quoted in the hint, we have

r*oj* = (jor)" = identity on H%. (M, R),
jror* = (roj)* = identity on H%.(8'(3/2),R).

Hence, j* and r* are mutually inverse and it follows that
HE (M, R) =~ HER(S'(3/2),R). (*)

Consequently, HSR(M ,R) =R (as one can also deduce directly since M is con-
nected). In fact, there are no exact O-forms, and the closed O-forms (that is, the
differentiable functions f such that df = 0) are the constant functions, since M is
connected.
As dim §'(3/2) = 1, from the isomorphism () we obtain H%,(M,R) =0,k > 2.
Finally, H},(M,R) ~ H},(5'(3/2),R) = R, hence

R, k=0,1
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Problem 3.4.3. (1) Prove that every closed differential 1-form on the sphere S? is
exact.

(2) Using de Rham’s cohomology, conclude that the torus T? and the sphere are
not homeomorphic.

HINT: Consider the parametrization

x=(R+rcos0)cos o, y=(R+rcos0)sino, z=rsing,
R>r, 0,0€l0,2n],

xdy —ydx
of the torus T?, and take the restriction to T? of the differential form ® = %

XT+y
on R3 —z-axis.

Solution. Let @ be a closed 1-form on the sphere. We shall prove that it is exact.
Let U; and U, be the open subsets of S? respectively obtained by removing two
antipodal points. Then, writing @; = ®|y,, since U; is homeomorphic to R?, there
exist functions f;: U; — R, such that @; = df;. As U; NU, is connected, one has
fi = fo+A on Uy NU,, for A € R. The function f: S — R defined by flo, = f1,
flu, = fo+ A is differentiable and df = .

To prove that 72 and $? are not homeomorphic, we only have to find a closed
1-form on the torus which is not exact. Let j: 7% < R? — {0} be the canonical

dy —ydx
% on R3 — {0} is closed. Since do j* = j*od,

injection map. The form w =
the form j*w on T2 is also closed. To see that @ is not exact, by the Stokes theorem,
we only have to see that there exists a closed curve ¥ on the torus such that j), Jo#
0. In fact, let y be the parallel obtained taking 6 = 0 in the parametric equations

above of the torus. Then
2
/j*a)z dp =2 #£0.
b4 0

Problem 3.4.4. Let 7°, ... ,7" be a homogeneous coordinate system on the complex
projective space CP", and let Uy, be the open subset defined by z* £0, oo =0, ... ,n.
Let us fix two indices 0 < o0 < B < n. Set u/ =7/ /7% on Uy, v/ = zj/zB on Ug.

We define two differential 2-forms @ on Uq and wg on Ug, by setting

L (Zdw Adid Sl dtdut A did
=T o ¢’ ’

1 [T/ Add 3 viF A A di
wg = — —
B i v WZ ’
where @ = Z?:o wit/, y= 27':0 Wi, Prove:

(1) ®aluanuy = ©pluanug-
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(2) There exists a unique differential 2-form @ on CP" such that ®|y, = O, for
all o —O,...,n.

(

(4) ®A--- A is a volume form.
(5) o is not exact.

REMARK. Let a = [w] be the (real ) cohomology class of ®. It can be proved that
a generates the real cohomology ring of CP"; specifically, that Hj,(CP",R) ~

R[a]/a" .
Solution. (1) On Uy NUp one has v/ = u/ /uP and hence ¢ = yuPaP. We have

WPduk — ik duP P di/ — i/ diP

k =j
v AdV = (uﬁ)z N (ﬁﬁ)z
1 PR e
:W(uﬁuﬁdu Adiid — uP i/ du® A diP

uFidP duP A diid + uF il duP A dlzﬁ> ,
and substituting into the expression of @g, on Uy NUg we obtain

ubP P Z 1
o 5 (uP )2 )?

iop = (uﬁ P dw Adii — uP i du’ A didP

WP duP N di + W@ duP A dﬁﬁ)
PP ) o Wit 1

o FubaP (uP)?(aP)?
P duf A didP — kP duP A did + ok duP /\duﬁ)

(uﬁ P du® A die!

Since the sum of the 1st and 5th summands above is iw,,, and moreover the 4th and
8th summands are easily seen to cancel, we have

ia)ﬁ =iy
o ﬁ2< Balduw AdaP + u/aP duP /\dﬁj) (%)
uPi
(p ﬁ [32”] ( W du® Aduﬁ—&—ukuﬁduﬁAdu/)
uPi

Consider the last summand. Interchanging the indices j and k, since ¥; wigl =
Y u*i* = ¢, this summand can be written as

1 . .
——— | Y@ uPdul ndidP + kP duP /\dﬁk> ,
Q2uP P <j k

which is the opposite to the second summand in (x). Hence wg = @ on Uy NUg.



3.4 De Rham Cohomology 127

(2) Because of (1), we only need to prove that @, takes real values. In fact,

1 <2jdﬁfAduf Six ﬂjukdﬁk/\duj>
i - ’

RCR R ¢?

and permuting the indices j and k in the second summand, we obtain @y = ®y.
(3) On Uy we easily get

ido = idwy

1 . . . .
== 5 (udul Adi A d7 + 7 du A di A di)
ik P
1 . . .
— Z E (ﬁkdu/ Aduf A di + w/ did A duf A did/ ) (5x)
Jik

2 . .
+ 5 do A Y wdtduf ndir.
\ ik

The first two summands at the right-hand side of (xx) cancel. The third summand

vanishes, as dp = ¥, («"da" + i du’) yields

do A Yl dut pdid) = —dp A Y (wda) A (it du¥)
j’k ./‘k

=—doA <2ujdﬁj> A <d(p—;ujdﬁj> .

J

(4) As in (3) we have

2 Wit duf A dii = 2 a“du A z w di .
jk k J

Set | 1
v=—Ywd/, p=—=YduAdir.
¢ ¢
Theniw = yu —v Av. Thus
i"o"=pu"— (T)u”l/\um?.

Now,

n n! 1 =1 n =1
u :&du Adim A+ Adu” Adid

(we suppose that oc = 0, so that only the coordinates u!, @', ..., u",i" are effective),
and
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n—1 __

(n_l)! C 1 -1 /\k /—\k n =1
o Y du' Adi' A- Aduk AdEEA - Adu AdiT"
k=1

Hence

n!
(pn+l

n
nu" ' AvAD = > du' Ada' A
k=1
Aduk Adidk A - Adu Adid A d du® A uFdi®
! & kg 1
= N widdu' Adi' A Adu AdiT
(pn—Hk:l

_nl(e—1)
- (pn+1

du' Ada' A - Adu Adi,

for
n n
Z ubid* = ula® + Z ki
k=0 k=1
n
=1+ Yy did =g
k=1

Thus
n!

i"0" = q)nﬂdul Adi' Ao Adu AdiT",

which does not vanish on Uy, hence on CP", as the same argument holds for any
o=0,...,n.

(5) Immediate from (4) and Stokes’ Theorem.



Chapter 4
Lie Groups

4.1 Lie Groups and Lie Algebras

Problem 4.1.1. Prove that the following are Lie groups:

(1) Each finite-dimensional real vector space with its structure of additive group.
In particular R".

(2) The set of nonzero complex numbers C* with the multiplication of complex
numbers.

(3) G x H, where G, H are Lie groups, with the product (g,h)(g',1') = (gg’, hl'),
2,8 €G, hl € H. Ingeneral, if G;, i=1,...,n, is a Lie group, then Gy X --- X Gy,
is a Lie group.

(4) T, forn > 1, (toral group).

(5) AutV, where V is a vector space of finite dimension over R or C, with
the composition product, and in particular GL(n,R) = Autg R" and GL(n,C) =
Autc C™.

(6) K =R" x GL(n,R), n > 1, with the group structure defined by

(x,A) (¥, A) = (r+Ax', AA').

Solution. (1) Let V be a finite-dimensional real vector space. If dim V = n, then V
has a natural structure of C* manifold, defined by the global chart (V,¢), ¢: V —
R", the coordinate functions being the dual basis to a given basis of V. The structure
does not depend on the given basis, as it is easily checked. On the other hand, V has
the structure of an additive group with the internal law, and the map V xV — V,
(v,w) — v—w,is C”.

(2) C* has a natural structure of a 2-dimensional manifold as an open subset
of the 2-dimensional real vector space C. C* has the structure of a multiplicative
group, and the map C* x C* — C*, (z,w) — zw™!, is C*, since if z = a + bi,
w = ¢ +di, one has

P.M. Gadea, J. Mufioz Masqué, Analysis and Algebra on Differentiable Manifolds, 129
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_1 ac+bd_|_bcfadi
w =
¢ 2+d 2t

bd bc—ad
E(ac—i— c a)ERZ.

2+d?’ 2442

(3) G x H is a Lie group with the structure of product manifold and the given
product, since

((g’h)’(glvhl)) = (g,h)(g/,h/)_l = (gg,_lvhh/_l)

isC™.
(4) T" =" x o x S'. Hence T" is a Lie group as it is a finite product of Lie
groups.

(5) AutV is an open subset of End V because
AutV ={A €EndV : detA # 0}

and det is a continuous function. Therefore Aut V has a structure of C* manifold
(as an open submanifold of R"z, n = dim V). The multiplication in AutV is the
composition. Taking as its chart the map which associates to an automorphism its
matrix in a basis, the product is calculated by multiplication of matrices. The map
AutV x AutV — AutV, (A,B) — AB~!,is C™, as the components of AB and B~!
are rational functions in the components of A and B. Hence AutV is a Lie group.
We have as particular cases the sets GL(n,R) = Autg R” and GL(n,C) = Autc C".

(6) K =R" x GL(n,R) (n > 1) has the structure of a product manifold, and with
the law (x,A) - (x',A") = (x+Ax',AA’) it has the structure of a group. Let us see that
K is a Lie group. In fact, the above product is C**, and the inverse of (x,A) is (y,B)
such that (y,B) - (x,A) = (0,1). Hence the inverse of (x,A) is (—A~!x,A~1), so that
the map (x,A) — (x,A)~!, is C*. This is the Lie group of affine transformations of
R” (identify the element (v,A) of K with the affine transformations x +— v+ Ax of
R™). The multiplication in K corresponds with the composition of affine transfor-
mations of R".

Problem 4.1.2. Consider the product T' x R* of the one-dimensional torus by the
multiplicative group of strictly positive numbers (that group is called the group of
similarities of the plane). Let (0,x) denote local coordinates. Show that the vector

field
a2

30 ox
is left-invariant.
Solution. (1) Let L;: G — G denote the left translation Lys; = ss; on a Lie group
G. A vector field Y on a Lie group is left-invariant if Ly, Y, = ¥; for all s € G, where
e stands for the identity element of G.
In the present case, let (2, a), (6,x) be in the coordinate domain with (¢, a) arbi-
trarily fixed and any (6, x). The left translation is given by L 4)(8,x) = (0 + 6, ax).
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A YD

Fig. 4.1 The vector field d/d0 +xd/dx on the group of similarities of the plane.

Therefore one has

Aa+0) I(a+6)

a6 dx 10
d(ax) d(ax)
a6 ox

A vector field Z on T x R is left-invariant if

Lig.0)«Z(0,1) = Z(ar,a)-

For the vector field X ,) = 55 eri (see Figure 4.1) we have
i 00 "~ ox
1 0\ /1
Lo.a)+X(0,1) = (0 a) <1>
=26 " “ox
— X(a’a) .
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Since (¢, a) is arbitrary we have the condition (%) above at any point, and X is
in fact left-invariant on the given coordinate domain. The prolongation to all of G is

immediate.

Problem 4.1.3. Using the coordinate vector fields d / 8x§., 1 <i,j<n onGL(nR),
prove that the vector field Y on GL(n,R) whose matrix of components at the identity
is A= (a';), and whose matrix of components is equal to BA at the element B = (b';)

of GL(n,R), is a left-invariant vector field.

Solution. We have ¥; = 3/, ai-(& / 8xj») 1, where I denotes the identity element of

GL(n,R). Since (Lp.Y;)x; = Y;(x; 0 Lp) and
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(xi» oLp)(C) = x;(BC)

:b};c];-,
one has xz. olp = b};x']?. Hence
' « 0 ik
1 _ 1
YI(XjOLB) —th,:laz a_xf‘ (bkxj)
:a?bz,
that is,
1 d
LpY = 3 b, '}y
i,j,h=1 Yilp
n
.0
= 2 (BA>l] O
i,jh=1 Xilg
= B_

Problem 4.1.4. Show that the following are Lie algebras:

(1) The vector space X(M) of C* vector fields on a manifold M with the bracket
of vector fields.

(2) Any vector space where all the brackets of vectors are zero (such a Lie alge-
bra is called an Abelian Lie algebra).

(3) The vector space R* with the vector product operation x of vectors.
(4) The set M(n,R) of real n X n matrices, with the bracket [A,B] = AB — BA.

(5) The space End V of endomorphisms of a vector space V of dimension n, with
the operation [A,B] = AB — BA.

Solution. (1) Let a,b € R and X,Y € X(M). Since
[aX) +bX5,Y]f = a[X1,Y]f +D[Xa,Y]f,

[X,Y] is linear in the first variable. As [X,Y] = —[Y, X], linearity on the first variable
implies linearity on the second one. So [X,Y] is R-bilinear and anticommutative.
The Jacobi identity

((X,Y].Z] +[[,Z],X] +[[2,X].Y] =0
is satisfied, as follows by adding

(X, Y], 2)f = X, Y(Zf) = Z([X, Y]f)
=X(Y(2f)) =Y (X(Zf)) = Z(X(Y f)) + Z(Y (X [)),

and the two similar identities obtained by cyclic permutation of X, Y and Z.
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(2) Immediate.
(3) One defines

vxw=(bf—ce,—af +cd,ae—bd), v={(a,b,c), w=/(d,e,f).

Then we have:

(a) (bilinearity) (Av+uw) xu =Avxu+puwxu, A,u €R, and u x (Av+
Uw) = AuX v+ uXw,as it is easily seen.

(b) (skew-symmetry) u x w4+ w X u = 0. Immediate from the definition of the
vector product.

(c) (Jacobi identity) (u X v) X w=+ (v x w) X u+ (w x u) x v=0.

Using the formula of the relation between the vector product and the scalar prod-
uct, we obtain:

(uxv)xw=(wu)v— (wv)u,
)

(vxw)xu=(u)w— (uw

=

i

=

(wxu)xv=_(vw)v—(vu)

Adding these equalities and taking into account the skew-symmetry of the vector
product, we obtain the Jacobi identity.

(4) M(n,R) is a vector space over R. Furthermore

[ale JrazXz,Y] = (a1X1 +a2X2)Y 7Y((11X1 +a2X2)

=a1[X1, Y]+ ar[X2,Y], ap,ay € R.
Similarly,
[X,b01Y1 + b2Yo) = b1 (X, Y]+ 52X, Yo, b1,by € R,
and [X,Y] = —[¥,X] is obvious. We obtain
X, ],2] + [[¥, ), X+ [[Z,X],¥] =0
asin (2).
(5) The map

EndV xEndV — EndV, (A,B) — [A,B] = AB— BA,
is bilinear, skew-symmetric and satisfies the Jacobi identity, as it is easily seen.

Problem 4.1.5. Consider the set G of matrices of the form

S O =
O =® O

y
z], x,y,ze€R, x>0,
1
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with the structure of a C* manifold defined by the chart mapping each element of G
as above to (x,y,z) € RT x R

(1) Is G a Lie subgroup of GL(3,R)?
(2) Prove that

d d d
X=x—,Y=x—,Z=x—
{ X X 3y’ X 8z} ,
is a basis of left-invariant vector fields.

(3) Find the structure constants of G with respect to the basis in (2).

Solution. (1) The product of elements of G

x 0y u 0 v xu 0 xv+y
0 x z O u w|l=(0 xu xw+z| €G,
001 001 0 0 1
and the inverse of an element
x 0y ! I/x 0 —y/x
0 x z =| 0 1/x —z/x]| €G,
001 0 0 1

yield C* maps G x G — G and G — G, respectively. Hence G is a Lie group, which
is in addition an abstract subgroup of GL(3,R). The inclusion G — GL(3,R) is an
immersion, as its rank (that of the map (x,y,z) € RT x R? — (x,0,,0,x,7,0,0,1) €
R?) is 3, so that G is a submanifold, hence a Lie subgroup, of GL(3,R).

(2) Let (a,b,c) € G be arbitrarily fixed and any (x,y,z) in G. As the left transla-
tion by (a,b,c) is

Ligpe)(x,,2) = (ax, ay+b, az+c),
we have
Ligpeyr = diag(a,a,a).

Let e = (1,0,0) denote the identity element of G, we have

_9
- ox

d

X, ==
e 3)}

Y,

’ )
e e

We deduce L, c)+Xe = X(45,¢) and similar expressions for ¥ and Z. Since X,Y,Z

are C” left-invariant vector fields which are linearly independent at e, they are a
basis of left-invariant vector fields.

(3)LetX; =X, X, =Y, X3 =Z. Then
X1, X] =X, [X1,X3] = X3, [X2,X3] =0,
so, with respect to that basis, the nonzero structure constants are

2 _ 2 _ 3 _ 3 _
Clp=—¢ =cj3=—c3 =1
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Problem 4.1.6. Let

1
H= 0
0

o — =

y
z2|xy,zeR
1

(1) Show that H admits a structure of C* manifold with which it is diffeomorphic
to R3.

(2) Show that H with matrix multiplication is a Lie group (H is called the Heisen-
berg group).

(3) Show that B = { 0 0 0,9 } is a basis of the Lie algebra by of H.

a, a—y, xa—y + (9_Z
Solution. (1) The map

H SAESE
1 x vy
01 z| ~ (xy2)

001

is obviously bijective. Thus {(H, ¢)} is an atlas for H, which defines a C** structure
on H such that ¢ is a diffeomorphism with R>.

(2) H is a group with the product of matrices, because if A, B € H, then AB € H,
and if

1 x vy 1 —x xz—y
A=|01 z|eH, then A7'=|0 1 —z |eH.
001 0 O 1

Moreover, the maps

HxH % H ad H Y H
(A,B) +— AB A — A7l

are C*. Indeed, po ®@o (¢ x @)~ ': R} x R® — R3, given by
(Po@o(px @) ) ((x,1.2),(a,b.¢)) = (a+x,b+xc+y,c+2)
is obviously C*. Similarly,

poWoop!: R — R3
(xx,3,2) = (—xxz—y,-2)

is also C. Thus H is a Lie group.
One can also prove it considering H as the closed subgroup of the general linear
group GL(3,R), defined by the equations

x}:x%:xgzl, x%:x?:xgzo,
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where xi- denote the usual coordinates of GL(3,R) C M(3,R) ~ R°. Hence, by Car-
tan’s criterion on closed subgroups 7.4.2, G is a Lie subgroup of GL(3,R).

(3) We have dim H = 3. Thus dim h = 3, and so we only have to prove that

9 9 9.9
ox’ ay oy a9z

are linearly independent, which is immediate; and that they are left-invariant, for
which we shall write

d d Jd d
X == X, = — X3=x—+—.
o Ty BT T
We have to prove that for every A € H one has
(LA)*B(Xi|B) :Xi|AB7 forall B € H7 i= 1a2a3' (*)

Let (a,b,c) be arbitrarily fixed and any (x,y,z) in H. As the left translation by
(a,b,c) is Ligpe)(x,5,2) = (x+a,y+az+b,z+c), we have

1 00
L(a,b,c)* =101 a
001
Hence
1 00 1
(LA)*B(Xllg)E 01 a 0
001 0
= i
T dx|p
and similarly we obtain
d d d
L) (X2lp) = 5| La)wp (X3|g) =(x+a) ==| + 5|
( )* ( |B) ay B ( ) ( ‘B) ( ) ay B az B

so the condition (x) is satisfied.

Problem 4.1.7. Find the structure constants of the Lie group GL(n,R) with respect
to the standard basis {E'} of matrices in gl(n,R) with (i, j)th entry 1 and 0 else-
where.

Solution. The structure constants ¢/3

) 7 are given by [E;,Elk] =t yES- As [E’],Elk] =
8/Ei — 8!EX, we deduce
k™1 i

rs _ SrSjSs rel s
Cide = 6i 6]{ 61 — 5/( 6i 5,]
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Problem 4.1.8. Find the left- and right-invariant measures on:
(1) The Euclidean group E(2) of matrices of the form

1 0 0
X cos @ sin 6
y —sinf cos6

(2) The group of matrices of the form (8 )Z]) , %,y >0.

(3) The Heisenberg group (see Problem 4.1.6).
(4) The real general linear group GL(2,R).
REMARK. Given a matrix of functions, A = (a;), we shall denote by dA the matrix
(daj-).
Solution. Let A be a generic element of any of the above groups. We have [27, pp.
90-91] that one basis of left- (resp. right-) invariant 1-forms on G is given by a set of
different elements of the matrix A~'dA (resp. (dA)A~!). Then a left- (resp. right-)
invariant measure is given by the wedge product of the given basis of left- (resp.
right-) invariant 1-forms. In the present cases we obtain:
(1)
0 0 o
A7 'dA= [ cosOdx—sinOdy 0 do |,
sin Bdx+cos 6dy —d6 0

0 0 0
(dA)A'=|dx—yde 0 do|,
dy+xd6 —d6 O

hence the left- and right-invariant measures @;, and @g are, up to a constant factor,

o =dxAdyAdO = wg.

(2)
dr 1 d dx 1 dx
1 T ;<dz‘27y) | x ;(dH;>
AT dA = Q ) (dA)A™" = 0 Q )
y y
hence

1
(DL = TdJC/\dy/\dZ,
X7y

1
o = —dxAdyAdz.
Xy



138 4 Lie Groups

0 dx
dz , (daat=10 o dz :
0 0

hence
o; =dxAdyAdz = wp.

(4) Given A = (a;j) € GL(2,R), i,j = 1,2,let A~! = (/) be its inverse. Then
a basis of left-invariant 1-forms is given by the components of A~'dA. The left-
invariant measure @y, on GL(2,R) is given by the wedge product of such compo-
nents:

w;, = (OC”dan +O€lzda21) N (O(”dalz-f— Otlzdazz)

AN (a21da11 + Otzzdazl) AN (Otzldalz + Otzzdazz)

11

= (OC a? - a12a21)2da11 Adajy Adazy Adasy

1
= W dajy Adajpx ANdaz; Adays.

One has @y, = W, as the computation of the components of (dA)A~! shows.

Problem 4.1.9. Let A be a finite-dimensional R-algebra (not necessarily commuta-
tive). Set n = dimgA. Let AutgA =~ GL(n,R) be the group of all R-linear automor-
phisms of A and let G(A) be the group of R-algebra automorphisms of A. Let Der A
be the set of all R-linear maps X : A — A such that

X(a-b)=X(a)-b+a-X(b), Ya,b € A.

Prove:
(1) Der A is a Lie algebra with the bracket

X, Y](a) =X(Y(a)) =Y (X(a)).

(2) G(A) is a closed subgroup of GL(n,R), hence it is a Lie group.
(3) dim G(A) < (n— 1)~
(4) The Lie algebra of G(A) is isomorphic to (Der A, [, ]).

Solution. (1) Certainly, Der A is a R-vector space. Further, the bracket of two
derivations is another derivation, as

[X,Y)(a-b)=X(Y(a-b))—Y(X(a-b))
=X{Y(a)-b+a-Y(b)}—Y{X(a)-b+a-X(b)}
={X{¥(a)) - b+Y(a)-X(b)+X(a) - Y(b)+a-X(Y (b))}

( )

X
—{Y(X(a))-b+X(a) - Y(b)+Y(a)-X(b)+a-Y(X(b))}
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={X(¥(a))-Y(X(a))} b+a-{X(Y (b)) -Y(X(]))}
=[X,Y](a)-b+a-[X,Y](D).

Accordingly, Der A is endowed with a skew-symmetric bilinear map
[,]: DerAxDerA — DerA,

and the Jacobi identity follows from the following calculation:

(X, Y], Z] +[[¥, 2], X] + [[2,X] , Y] (a)

= (X, Y] (2(a)) - Z([X,Y](a))) + ([¥, 2] (X(a)) = X([Y, Z] (a)))
+(12,X](Y(a) - Y([Z,X] (a)))
X(Y(Z(a))) =Y (X(Z(a))) = Z(X (Y (a))) + Z(
+Y(Z(X(a)) = Z(Y(X(a))) = X (Y (Z(a))) +

+2(X(Y(a))) - X (2(Y(a))) —Y(Z(X(a))) +

(2) For every pair a,b € A, let @, ;,: AutgA — A be the map given by @, ,(f) =
fla-b)— f(a)- f(b). Then we have

~
—
<
=
S
2
=
=

=) 2,0

a,beA

As each @, , is a continuous map we conclude that G(A) is a closed subset in AutgA.
Furthermore, G(A) is an abstract subgroup as if f,g € G(A), then

(fog)la-b)=f(gla-b))
f(gla)-g(b))
f(g(a))- f(g(D))
(fog)(a)-(fog)(d).
Hence fog € G(A). Similarly f~! € G(A), for
FFN@) - 71 0) = £ (@) - (1 (B)))
=a-b
:f(fi](a'b)%

and since f is injective we conclude that f~!(a)- £~ (b) = f~!(a-b), forall a,b € A.

(3) If f € G(A) then f(1) = 1. Hence each f € G(A) induces an automorphism
f € Autg(A/R) by setting f(@ mod R) = f(a) mod R and the map h: G(A) —
Autg (A/R), f + f, is clearly a group homomorphism. We claim that  is injective.
In fact, f € Kerh if and only if f(a) mod R = a mod R, for all a € A, and this
condition means f(a) —a € R, for all a € A. Hence we can write f(a) = a+ o(a),
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where @: A — R is a linear form such that @(1) = 0. By imposing f(a-b) =
f(a)- f(b) we obtain

w(a-b) = w(b)a+w(a)b+ w(a)w(b).

Hence
o(b)a+ w(a)b € R, Va,b € A. (%)

If o # 0, then there exists a € A such that @w(a) = 1, and from (*) it follows that
b € R+ Ra for every b € A. Hence dim A = 2 and then either A =~ R[e] or A ~ R[i]
or A =~ R[j], with €2 =0, i = —1, j?> = 1, thus leading us to a contradiction, as in
these cases Ker# is the identity. Accordingly, G(A) is a subgroup of Autg(A/R) so
that dim G(A) < dim Autg (A/R) = (n — 1)

(4) Let g(A) be the Lie algebra of G(A), which is a Lie subalgebra of EndrA =
Lie(AutgA). We know that an element X € EndrA belongs to g(A) if and only if for
every t € R we have exp(tX) € G(A), or equivalently, exp(tX)(a-b) = exp(tX)(a) -
exp(tX)(b). Differentiating this equation at # = 0 we conclude that X is a derivation
of A.

Conversely, if X is a derivation, then by recurrence on k it is readily checked that

ko 7k
Ka-b)= X"(a) X" (b).
Xan)= 3 () )¥@x e
Hence,

Xk
exp(tX)(a-b) Ztk

= 2 Zf X"(a)x*"(b)
k=0h=0 (k—h)tht h ‘h'
— exp(X)(a) - exp(rX) (b),
thus proving that the Lie algebra of G(A) is isomorphic to (Der A, [, ]).

Problem 4.1.10. Prove that the Lie algebra 50(3) does not admit any 2-dimensional
Lie subalgebra.

Solution. Let {e;,e2,e3} be the standard basis; that is:
lerez] = e3, le2,e3] =y, e3,e1] = ea.

Assume g is a 2-dimensional Lie subalgebra. Let {v = A‘e;, w = ui'e;} be a basis of
g. As the rank of the 3 x 2-matrix
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is 2, we can assume that

l] 1
det (12 Zz) 7é 0.

By making a change of basis in g we can thus suppose that
At u (10
A2 u?)\o 1)°

v=e;+Aes, w=e+’e;. (*)

Hence

As g is a Lie subalgebra, we have [v,w] = ov + Bw. By using (x) we obtain
A3 =—q, ,uS =-B, o3 +Bu3 = 1, and substituting the first two relations into the
third one we obtain o + B2 + 1 =0, thus leading to a contradiction.

4.2 Homomorphisms of Lie Groups and Lie Algebras
Problem 4.2.1. Let R be the additive group of real numbers and S' the multiplica-
tive group of the complex numbers of modulus 1. Prove that

R L g

t o f(r) = et
is a homomorphism of Lie groups.
Solution. The map f is a homomorphism of groups, as
f(fl —|—t2) — eZﬂi(tl+t2) _ ezmz] ezmtz _ f(t1)f(lz),
and it is clearly C*.

Problem 4.2.2. Consider the Lie group

G:{<a b) :a,beR,a>0}
0 a

a b

and the map ¢: G — R3, <O 4

) — (a,b,a—b). Is @ a homomorphism of Lie
groups?

Solution. We have

/ /
10} <(g Z) <% z,)> = (ad',ab' +bd ,ad’ — ab' —ba')
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and .
ab a b\ / , Y.
(p(o a)q)<0 a,)—(d—i—d,b—f—b,a—f—a b-b'),
so ¢ is not even a homomorphism of groups.

Problem 4.2.3. Consider the Heisenberg group (cf. Problem 4.1.6) and the map
fiH—-R A— f(A)=x+y+z
(1) Is f differentiable?

(2) Is it a homomorphism of Lie groups?
Solution. Let

W:HHR:;? = ('X:?y’z)?

S O =
S = =
—_—

be the usual global chart of H. The map
fouy R =R, (32— x+y+z

is C* and thus f is C=. The additive group of real numbers (R, +) is a Lie group.
Given

A=

o — =

y 1 b
z|,B=|0 c| €eH,
1 0 1

S = Q

1

0

0
it is easy to see that f(AB) #
groups.

f(A)+ f(B), so that f is not a homomorphism of Lie

Problem 4.2.4. Prove that one has:
(1) An isomorphism of Lie groups SO(2) =~ U(1) ~ S'.
(2) A homeomorphism O(n) = SO(n) x {—1,+1}.

HINT (to (1)): Consider the real representation of the general linear group GL(1,C):

p: GL(1,C) — GL(,R)
athi (Z _2).

SO(2) ={A € GL(2,R) : UA =1, detA = 1}

:{(a b) cdP 4= +d*=1,ab+cd =0, ad—bczl}

Solution. (1)

c d

cos o —sino
~ ) caeR
sin o cos o
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and
U(1)={A€GL(1,C) : AA =1}
={zeC—-{0}:zz=1}
={z€C:z=cosa+isinoa}
~ {(cos a,sin @) : o € R} — s

10

Let p be the real representation of GL(1,C). If <Z _Z> = (O |

a=1,b=0;so p is injective. We have

>, we have

sSin o Ccos 0

mvu»:pqama+mmapz{<®“x'*m“)}zsogy

Since p is injective, one obtains U (1) = SO(2).

(2)
{AEGLn]R *I}

Hence if A € O(n), then det AA = 1. Consider the exact sequence

1 = S0() <& o) & {—1,41) — 1,

where j denotes the inclusion map of SO(n) = {A € O(n) : detA =1} in O(n). The
map
o:{-1,+1} — O(n)
1 — I
-1 — diag{-1,1,...,1}
is a section of det, hence we have a homeomorphism

O(n) =~ SO(n) x {—1,+1}, A — (c(detA)A,detA).

Problem 4.2.5. Let wv: G — G be the diffeomorphism of the Lie group G defined
by y(a) =a~', a € G. Prove that o is a left-invariant form if and only if y* @ is
right-invariant.

Solution.

V(Rpx) = y(xb)

and

Ly iw(x) =Ly ()
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Thus yoR, =L, 10y, hence (WoRy)" = (L,-10y)", thatis Rjoy™ =y* oL, ,
If w is left-invariant, we have
(Ryoy™)(0) = (y oL, ) (o)
=v'o,
thus y* @ is right-invariant. Conversely, if y* is right-invariant, y*® = Ry y* 0 =

V'L, 0, thus ® =L;_,®, because " is an isomorphism, and o is left-invariant.

Problem 4.2.6. Let G be a compact, connected Lie group oriented by a left-invariant
volume form . Prove that for every continuous function f on G and every s € G we

have
[ro=[(ror)0.

where Ry: G — G denotes the right translation by s; that is, the left-invariant inte-
gral f — [ fo is also right-invariant.

Solution. For every s € G there exists a unique scalar ¢(s) € R* such that R =
¢©(s)w. The map ¢: G — R* is clearly differentiable and since ¢(e) = 1 (where e
denotes the identity element of G) and G is connected we have ¢(G) C R™; hence
R, is orientation-preserving. By applying the formula of change of variables to the
diffeomorphism R;: G — G we obtain

| fo= [ R0

Hence

| fo=06) [ (ror)o

Letting f = 1 and taking into account that [; @ # 0, we conclude that ¢(s) = 1, for

all s € G, and consequently
[ro=[(ror)0.

We also remark that ¢(s) = 1, for all s € G, implies that @ is right-invariant.

Problem 4.2.7. Let G be a compact, connected Lie group oriented by a left-invariant
volume form @ and let y: G — G be the map y(a) = a™ ', for all a € G. Prove that
for every continuous function f on G we have

|ro=[(rowo.
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Solution. For every s € G we have from Problem 4.2.5:
Ri(y" o) = (yoR) o
= (Lyroy) @
=V (L] 0)
=vy'o.

Hence y*w is right-invariant and since o is also right-invariant (see Problem 4.2.6),
there exists € € R* such that y*® = £®. Moreover, > = 1 as y is an involution. By
applying the formula of change of variables to the diffeomorphism y (which may
be orientation-reversing) we obtain

/wa=e/cw*(fw)
~e [irowvo

= 8/G(fo v)ey
- [Uowo.

Problem 4.2.8. Let A be an irrational real number and let ¢ be the map
o: R — T2 :SI XSI, (p(t) — (e2n:it, e27‘rilt)'
(1) Prove that it is an injective homomorphism of Lie groups.
(2) Prove that the image of @ is dense in the torus.

Solution. (1) That ¢ is a homomorphism of Lie groups is immediate. We have
@(11) = ¢(12) if and only if (e>711 e2™A1) = (22 e2MiA12) or equivalently if 1] —
t, and A(#; —p) are integers, which happens only if 7; = #,. Hence ¢ is injective.
(2) It suffices to show that the subgroup Z + A Z is dense in R, since if this
happens, given the real numbers 7,1, there exists a sequence m; + A n; such that

Hh— At = 1im(mj+7Lnj),
Jj—roo
that is,
th = 1im(mj—|—l(nj+t1)).
J—oe
Hence

(P(nj +t1) _ (6271'1[1’ eZﬂ:i?L(nj—Hl))

(eZnit] ; e2”i(mj+l(nj+ll)))7
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and thus
hm (P(n] +t1) _ (627171117 eZﬂ:ilz).
oo
Now, to prove that the subgroup A = Z+ A Z is dense in R, it suffices to see that the
origin is an accumulation point in A, since in this case, given x > 0 and 0 < € < x,
there exists a € A such that 0 < a < &, and if N denotes the greatest integer less than
orequal to (x—€)/a, then Na < x—¢& < (N+1)a, which implies (N+1)a < x+¢, as
in the contrary case we would have x+& < (N+1)a < x—€+a, thatis 2e <a < €.
Contradiction. Thus we have x —& < (N+1)a < x+¢, that is, [N+ 1)a—x| < €.
If the origin is not an accumulation point in A, it is an isolated point, and then
every point in A is isolated as A is a subgroup. Hence A is a closed discrete subset
of R. In fact, if limj_,.. x; = x, xx € A, then for k large enough, x; — x;;| belongs to
an arbitrarily small neighborhood of the origin. As x; — x;+| € A and the origin is
isolated, we conclude x; = x¢. Hence x € A. Accordingly, u = inf{x € A : x > 0}
is a positive element in A. We prove that A is generated by y, thatis, Z+AZ = uZ.
This will lead us to a contradiction, as A is irrational.
Let x € A be a positive element. Let n denote the greatest integer less than or
equal tox/, sothatn <x/pu <n+1.Hence 0 < x—np < U. As x—np € A, from
the very definition of it we conclude that x —nu = 0.

4.3 Lie Subgroups and Lie Subalgebras

Problem 4.3.1. Let C* be the multiplicative group of nonzero complex numbers.
(1) Prove that the map

j: C* = GL(2,R),  x+iy+— (’y‘ _§>

is a faithful representation of the Lie group C* (faithful means that j is injective).
(2) Find the Lie subalgebra Lie (j(C*)) of gl(2,R).
Solution. (1) Since C* ~ GL(1,C), this was proved in Problem 4.2.4.
2)
Lie(j(C)) = j«(T:C")

~d (P H
(G 1) s}

Problem 4.3.2. Let g be the Lie algebra of a Lie group G and &) C g a Lie subalge-
bra. Consider the distribution Z(s) ={X; : X € b}, s € G.

(1) Show that 2 is a C* distribution of the same dimension as Y. Is it involutive?

(2) Consider the 2-dimensional C* distributions
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Jd d d Jd d d Jd d
@1_<a’8_y>’ @2_<$’x8_y+8_z>’ @3_<8_y’x8_y+8_z>’
on the Heisenberg group (see Problem 4.1.6). Are they involutive?

(3) Let I (%;) be the differential ideal corresponding to Z;, i =1,2,3. If o0 =
dxAdz, B = dx+ dz Do we have o, € F(21)? And 0,3 € 9 (Ds)?

Solution. (1) The space b is a vector subspace of g. Let {X, ..., X} } be left-invariant
vector fields which are a basis of ). Then,

Q(S):<X1|S,...,Xk|s>, SEG7

is a vector subspace of T;G of dimension k. Hence & is a C* k-dimensional distri-
bution on G, because it is globally spanned by Xi,..., X;, which are left-invariant
vector fields, hence C*. Moreover, Z is involutive. In fact, X, ...,X; spans & and
h is a subalgebra, so [X;,X;] € h.
(2) The Lie algebra h of H is spanned (see Problem 4.1.6) by

d d d n d

— — X—+=.
ox’ dy’ dy 9z

Since

9 91 _, 9 9. 9]_29 9 .9 91,
ox’dy| 8x’x8y dz| ay’ 8y’x8y doz]
it follows that 2, and %5 are involutive, but 2, is not.

(3) {9/0x,0/dy,d/dz} is a basis of the (C*H)-module X(H), with dual ba-
sis {dx,dy, dz}, thus #(2,) = (dz). Hence o € .#(2,) but B & ¥ (Z1). Also
{0/0x,0/3y,x0/dy+d/dz} is a basis of X(H), with dual basis {8',62, 63}, and
we have .7 (23) = (0') = (dx). Hence @ € .#(Z3) and B & .7 (Z5).

Problem 4.3.3. Consider the set G of matrices of the form

_(* Y
g—(O 1), x,yeR, x#0.

(1) Show that G is a Lie subgroup of GL(2,R).
(2) Show that the elements of @ = g~ 'dg are left-invariant 1-forms.

(3) Since g ~ T,G = R?, we have dimg = 2, and we can choose {®w; =
dx/x, @y = dy/x} as a basis of the space of left-invariant 1-forms. Compute the
structure constants of G with respect to this basis.

(4) Prove that o satisfies the relation do+ ® A ® = 0.
REMARK. Here do denotes the matrix (da))‘j = (da);) and o \ @ denotes the wedge
product of matrices (& N a))’, = (0} A a)f)
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Solution. (1) Since

T ’ ’ -1
x Y\ [x ¥\ (" xy 4y Xy (1/x —y/x
(o 1)(0 1>_<0 1 >€G’ (o 1) _<o 1) €6
G is an abstract subgroup of GL(2,R), and as both the product and the inverse are
C* maps, G is a Lie group.
Moreover, G is a closed subgroup of GL(2,R), defined by the equations x% =

x3 — 1 =0, ¥/, being the usual coordinates of GL(2,R) C M(2,R) ~ R*. Hence G is
closed in GL(2,R) and accordingly G is a Lie subgroup of GL(2,R).

(Y
2)Ifg= (0 1), one has
_ 1 (dx d
o lge— = Y
w=g dg= X ( 0 O > '
N a b oo S
We must prove L,0g, = @,. Let s = <0 1) be arbitrarily fixed. Proceeding simi-

larly to Problem 4.1.2, we obtain Ly, = (8 2) . Thus

o= ) (9)-6 9 (9

(3) As
dx d dx d
o(2)-0 o)
X X X x
from Maurer-Cartan’s equation dw; = —3; c;ka)j A @k, we deduce
c%z = —c%l =1
4)

1[0 dxndy)
dw—;(o 0 >—a)/\a).
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Problem 4.3.4. Let S be the set of matrices of the form

cosw sinw 0 u
M(u,v,w) = —s;)nw COSW (1) :} , u,v,w € R.
0 0O 0 1

(1) Prove that S is a Lie subgroup of GL(4,R).
(2) Let 6: R? — GL(4,R), (u,v,w) — M(u,v,w). Compute

o ? o 0 o ?
“ou’ v’ “ow’
and show that o is an immersion.

(3) Prove that the tangent space to S at the identity element e € S admits the

basis
e }

Solution. (1) For all M(u,v,w) € S, one has det M(u,v,w) =1, so S C GL(4,R).
Moreover the product of two elements of S and also the inverse of any element,
belong to S, as it follows by direct computation, so that S is a subgroup of GL(4,R).
Further, S can be considered as the closed subgroup of GL(4,R) determined by the
equations

9
"o,

2
o),

9
axi

x{ :xgzcosxi, xé:—x%:sinxi, x%:xﬁ: 1

x%zx%:x? :x%:x‘f:x‘é:xézo,

x}; being the usual coordinates of GL(4,R) C M(4,R) ~ R'®. Hence by Cartan’s
criterion on closed subgroups, S is a Lie subgroup of GL(4,R).

(2) We have
b2
du  ox}’
a3 _9
“ov o ox
Ox— = —Sin W— +COS W—F —COS W—s — Sin w—s5 + i
ow dxl ox} ox? ox3  Jx}

Therefore ¢ is an immersion.

(3) The identity element of S, e = I, corresponds to u = v = w = 2kn. By (2),
T,S admits the basis in the statement.
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Problem 4.3.5. Let G = { (Z (1)) a,beR,a> o}.
(1) Prove that G admits a Lie group structure.
(2) Is G a Lie subgroup of GL(2,R)?
(3) Let u be the map defined by

G — GL(2,R), <‘b’ (1)) . (g ll’)

Is it differentiable? Is it a homomorphism of Lie groups? Is it an immersion? (cf.
Problem 4.3.3.)

Solution. (1) The map

G 2 U={(a,b)eR*:a>0}
a 0
(59 - @n

is obviously bijective. Since U is open in R, it is a 2-dimensional C** manifold and
thus there exists a unique differentiable structure on G such that dim G =2 and ¢ is
a diffeomorphism.

G is a group with the product of matrices, since given

a 0 a 0
S I ]

_( ad 0 1 _( 1/a ©
AB_(ba’—i—b’ 1)€G7 and A _(—b/a 1 €G.

Therefore G is a subgroup of GL(2,R).
The operations

then

Gx¢ 2 6 ,4 G > G
(A,B) — AB A — Al

are C*. In fact,

(po®o(px @) )((a,b),(d b)) = (ad ,bd +b'),  a,d >0,
((pO'PO(P_I)(avb):(l/av_b/a)’ a>0,

are C.

(2) G is the closed submanifold of the open subset x} >0 in GL(2,R) given
by the equations x; = 0, x5 — 1 = 0, x} being the usual coordinates of GL(2,R) C
M(2,R) ~ R*. Thus G is a Lie subgroup of GL(2,R).
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Another way to prove that G is a Lie subgroup of GL(2,R) is to observe that G
is closed in GL(2,R), as if the sequence

a, 0O
b, 1

(“” ‘“2) € GL(2,R),
an

azil

goes to

as n — oo, then it implies that a;; > 0, a;p =0, axy = 1; hence a1 > 0, and we can
apply Cartan’s criterion on closed subgroups.

(3) u can be written in local coordinates as

(yojouoe ) (a,b)=(a,b,0,1), (a,b) €U,

where  stands for the coordinate map of a local coordinate system on GL(2,R)
and j denotes the inclusion map j: u(G) — GL(2,R). As wo jouoe~'isaC”
map, U is C”. On the other hand,

a 0\ [d 0)) _ ad” 0\ _[ad bd +b
H\p 1)\ 1)) ="+ 1) =0 1

a0 a 0\ (a b\ [(d b\ [(ad ab'+b
Hip 1)"M\» 1) \o 1)lo 1)~ o 1)

hence 1 is not even a homomorphism of groups.
Finally, we have

and

rank#<a 0> =rank (youo@ ")y =2.
b 1

Hence p is an immersion.
Problem 4.3.6. Prove that s\(n,C) is an ideal of gl(n,C).

Solution. If A,B € gl(n,C), then tr[A,B] = 0, hence [A,B] € sl(n,C). Therefore
sl(n,C) is an ideal.

Problem 4.3.7. (1) Determine all the 2-dimensional Lie algebras. In fact, prove that
there is a unique non-Abelian 2-dimensional Lie algebra.

(2) Prove that the map p of the non-Abelian 2-dimensional Lie Algebra g to
End g given by e — [e,-] (that is, the adjoint representation) is a faithful represen-
tation of g.

(3) Give a basis of left-invariant vector fields on the image of p and their bracket.
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(4) Let 9 be the distribution on Aut g spanned by the left-invariant vector fields

on the image of p. Find a coordinate system (u,v,w,z) on Autg such that d/0dz,
d/du span P locally.

(5) Prove that the subgroup Gy C GL(2,R) determined by the subalgebra g is
the identity component (B > 0) of the group

o-{(¢ 9w}

(6) Prove that G can be viewed as the group Aff(R) of affine transformations of
the real line R. That is, the group of transformations

'=Bt+a,  BH#0,
where t =y/x,t' =y'/x' are the affine coordinates.

Solution. (1) Let g be a 2-dimensional Lie algebra with basis {e;,e» }. The Lie alge-
bra structure is completely determined, up to isomorphism, knowing the constants
a and b in the only bracket
[e1,ea] = aey + bes.
If a =b =0, the Lie algebra is Abelian, that is, [e,e’] =0 for all e,e’ € g.
Otherwise, permuting ¢; and e; if necessary, we can suppose b # 0, so {¢| =
(1/b)ey, €5 = (a/b)e; + e2} is a basis of g and one has

€, €5] = €.

Hence there exist, up to isomorphisms, only two 2-dimensional Lie algebras.

(2) Let g = (€}, €5) be the 2-dimensional non-Abelian Lie algebra. That the map
p is a representation follows from Jacobi’s identity. The representation is faithful
(that is, the homomorphism is injective) as we have

00
praci +ves) =y 0)

in the basis {¢}, €} }.

(3) Fixing that basis, End g can be identified to the space of 2 x 2 square matrices,
which is the Lie algebra of GL(2,R).
Let E; be the n x n-matrix with zero entries except the (i, j)th, which is 1. The

left-invariant vector field X; j associated to E; generates the 1-parameter group ((p;) '
given by
k
(x7)-

(<p;i),x = X-exp(tEj), X

i 0 ifi#j

2 _
(E}) {Ei ifi=j
j =J

Now,
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Hence .
I—HE} ifi#j

exp(tE}) = .
pUE)) {1+(ef—1)E;. ifi=j,

where I denotes the identity matrix.
As a computation shows,

: 0
Xi=xk—
J ’ax];
So, in the present case we have
J 0 0 d
X2 =xl 4, X3 =x}— 4 x5,
! 2 8x{ 2 Bx% 2 2 axé 2 8x§
and
X7, X3] = —X{.

(4) Let us reduce X? to canonical form. The functions

1,2

2

X Xy X

1 1 21 1 2
M:_Z’ V:)Cl_—z s .X27 Xz,

X2 X2

153

are coordinate functions on the neighborhood defined by x% # 0 of the identity ele-

ment /. In fact,
9 (u,v,x},x3) _ 1
d(xlxdxdxd) X3
In the new system we have
, 0 2 d d d

Xl==, X}=-u—+xi-=+3->.
L™ ou 2 “ou xZ&xi x23x%

Now, taking w = x} /x3, the functions (u,v,w,x3) are coordinate functions on the

neighborhood given by x% =0, since

In this system we have

Finally, defining z = log x% in the neighborhood x% > 0 of the identity element, we

obtain coordinate functions (u,v,w,z) in which

P 2 9
2_ Y 2_ _, % 7
Xi=g, X=-ug to
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Thus, the involutive submodule 2 corresponding to the subalgebra g is spanned by

d/du, d/dz, that is,
2 = (X{.X3)
_/92 92
T \ou'dz/’

(5) From the above results, the integral submanifolds of & are defined by

1,2 1

XoX
v:x}f—zzle, w:—ng,
A X2

where A, B denote arbitrary constants. In particular, the integral submanifold passing
through the identity element / is obtained for A = 1, B = 0, that is, it is defined by

Xl =1, xy =0.
Consequently, the subgroup Gy of Aut g defined by the subalgebra g is the (identity

component of the) one in the statement.

(6) The group G represents the transformations

x' =x, y = ax+ By.
The subgroup G admits a simple geometrical interpretation as the group of affine
transformations of the real line R (see Problem 4.1.1). In fact, dividing we obtain

' =Bt+a,

where t = y/x,t' =y’ /x' are the affine coordinates.

The group G has two components, defined by 8 > 0 and 8 < 0. The component
passing through the identity element, which is the subgroup defined from g, is the
first one.

4.4 The Exponential Map

Problem 4.4.1. Prove that, up to isomorphisms, the only 1-dimensional connected
Lie groups are S' and R.

Solution. The Lie algebra g of such a Lie group G is a real vector space of dimension
1, hence isomorphic to R. The exponential map is a homomorphism of Lie groups
if the Lie algebra is Abelian, as in the present case. Consequently, here we have that
exp is surjective since G is connected:

exp: R — G, X — exp X =expy(1).
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As Ker(exp) is a closed subgroup of R, then either Ker(exp) = 0 or Ker(exp) = aZ,
a € R. Hence either

G=R/Ker(exp)=R or G=R/aZ=~S".

Problem 4.4.2. Prove that (g _?) is not of the form e for any A € gl(2,R).

Solution. Suppose that _(2) _(1)> = e?. Then, since e = e4/2T4/2 = ¢A/2e4/2 it

would be (_S _(1)) = (eA/ 2)2. That is, the matrix would have square root, say
2
a b , with a b = -2 0 ; but a calculation shows that there is no real
c d c d 0 -1
solution.

—1

REMARK. Interestingly enough, —/ = ( 0

_?) does lie in the image of exp, as

exp (_2 g) = —I. On the other hand, the square roots of —I in GL(2,R) are

(o)

Problem 4.4.3. Let X be an element of the Lie algebra s(2,R) of the real special
linear group SL(2,R). Calculate exp X.

Solution. Since
sl(2,R)={XeM(2,R) : r X =0},

if X € 5[(2,R), it is of the form X = (‘C’ _Z), and

1 (a b\"
epr—zn!<c —a) .

n=0
It is immediate that X> = (a® + bc)l = —(det X )1, hence

—det X)" —det X)"
expX = (2 ( (Zn)!) >I+ <2 ((2n+1;!)>x

n=0

_ detX (detX)? (detX)?
_<1_ 2r 4l o )

detX (detX)?> (detX)’
+(1_ 3 s )%
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We have to consider three cases: (1) det X < 0. Then

_ |detX| |detX|> |detX|?
epr—(l—I— 2 + 1 + 6! +- )1
1 |detX| |detX|> |detX|? ¥
B N TR A TR TR
sinh/—det X
= (coshv—detX)[+ | ———— | X
( ) ( v—detX )

(2) detX =0.HenceexpX =71+ X.

(3)detX > 0. Then exp X = (cosv/det X)I + (“"‘T :te;() X.

Problem 4.4.4. With the same definitions as in Problem 4.3.1:
(1) Prove that exp is a local diffeomorphism from Lie(j(C*)) into j(C*).
(2) Which are the 1-parameter subgroups of j(C*)?

Solution. (1)

e AT O AT —1? 0y 1 0 L
P\y o)~ t 0) 20 0 —2) "3\ 0

tz l‘4 3
_54_47 ee — t—§—|—
3 12 t4
[_54_.. _i—i_m

__(cost —sint
~ \sinz  cost

) commutes with ((t) t> we have

and since </l 0

0
0 2

exp: Lie(j(C*)) — j(CY)
A -t s exp A ex 0 —t _ o [cost —sint
A p P\ 0)~ sint  cost)’
Hence exp: Lie(j(C*)) — j(C*) is alocal diffeomorphism.

(2) A 1-parameter subgroup of j(C*) is a homomorphism p from the additive
group R, considered as a Lie group, into j(C*). As there exists a bijective corre-
spondence between 1-parameter subgroups and left-invariant vector fields, that is,
elements of the Lie algebra, the 1-parameter subgroups of j(C*) are the maps

. o a —b\ 4 (cosbt —sinbt
p: R — j(CY), tHeXPf<b a>—e (sinbt cosbt>’

a,b € R. In fact, it is immediate that p (r)p(¢') = p(t +1').
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cost —sint
sin ¢ cos t

— 1"
=3

Problem 4.4.5. Let x = ( ) € SO(2). Verify the formula

with X = <(1) _(1)) € s0(2), which justifies (as many other cases) the notation

x =exptX.

Solution. One has det tX = > > 0, so the results of Problem 4.4.3 apply. On the
other hand, it is immediate that the powers of X with integer exponents from 1 on
are cyclically equal to X, —1,—X,I. Hence

sin ¢
exptX = (cost)I + TIX

2 4 3 ol
(“5*5"')”( . )X

2 t3 t4 5
f1+tX+2’( 1)+§(—X)+—1+5'X+
o N
:2_){"
n=| On

sint
As x = (cost)I + TtX, we are done.

Problem 4.4.6. Let H be the Heisenberg group (see Problem 4.1.6).
(1) Determine its Lie algebra b.
(2) Prove that the exponential map is a diffeomorphism from b onto H.

Solution. (1) The Lie algebra b of H can be identified to the tangent space at the
identity element e € H, that is,

0 ab
h= 0 0 ¢c]eMnR);,
00O
considered as a Lie subalgebra of End R3.
w M"
(2) We have exp M = anoﬁ' Since
0a b\’ (000
00 c] =1000],
000 000
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one has
0 ab 100 0 ab lOab2
expOOc:OIO—}—OOc—f—EOOc
000 000 000 “\0 0 O
lab—i—%ac
=101 c .
00 1

Clearly exp is a diffeomorphism of § onto H.

Problem 4.4.7. Find the matrices X € gl(n,R) = M(n,R) such that exptX = e'X
is a 1-parameter subgroup of

SL(n,R)={A € GL(n,R) : detA = 1}.

Solution. Applying the formula det eX = e"X, we have that if dete’* = I, then
tr(1X) = 0; that is, tr X = 0. And conversely.
Problem 4.4.8. Consider the next subgroups of the general linear group GL(n,C):

(@) U(n) = {A € M(n,C) : "AA =1}, unitary group (the t means “transpose”
and the bar indicates complex conjugation).

(b) SL(n,C) ={A € M(n,C) : detA = 1}, special linear group.

(¢)SU(n) ={A € U(n) : detA = 1}, special unitary group.

(d) O(n,C) = {A € M(n,C) : 'AA = I}, complex orthogonal group.

(e) SO(n,C) ={A € O(n,C) : det A = 1}, complex special orthogonal group.
®

O(n) =U(n) N GL(n,R) = O(n,C) N GL(n,R) = {A € GL(n,R) : AA =1},
orthogonal group.

(2) SO(n) = {A € O(n) : detA = 1}, special orthogonal group.
(h)
SL(n,R) = SL(n,C) N GL(n,R) = {A € GL(n,R) : detA = 1},
real special linear group.
Then:

(1) Prove that we have a diffeomorphism U (n) ~ SU (n) x S'.
(2) Compute the dimensions of each of the groups described above.

Solution. (1) Consider the exact sequence

det

1= SU(n) — UM =S —1,
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u 0
0 Inl>.The

map f: SU(n) x S' — U(n) given by f(A,u) = Ac(u) is clearly differentiable. We
will show that f is one-to-one, calculating its inverse. If B = Ac(u), then det B =
det o(u) = u. Hence A = B(c(det B))~!. Hence f~!(B) = (B(c(det B))~!,det B).

(2) Let V and W be neighborhoods of 0 and 7 in M(n,C) and GL(n,C) respec-
tively, such that the exponential map establishes a diffeomorphism between them.
Moreover, we can suppose (taking smaller neighborhoods if necessary) that A € V
implies A, —A,’A € V or |tr A| < 27.

(a) Suppose that A € V is such that B = e’ € WNU(n). Then we have B~! =B,
that is, e ™ = eA Hence A+ = 0, or equivalently ‘A +A = 0. Therefore, A is a
skew-hermitian matrix. Conversely, if A is a skew-hermitian matrix belonging to V,
thene? € WNU (n). Since the space of 1 x n skew-hermitian matrices has dimension
n?, it follows that dimgU (1) = n?.

(b) If A € V is such that e* € WNSL(n,C), then dete® = 1 =e". Hence tr A =
27ik, but | tr A| < 27, therefore k = 0, that is, tr A = 0, so diimgSL(n,C) =2(n* —1).

(c) For the unitary special group we can proceed as in (a) or (b). Alternatively,

considering the above diffeomorphism U (n) ~ SU(n) x S!, we obtain diimgSU (n)
2
=n"—1.

and let 6: S! — U(n) be the section of det given by o(u) = (

(d) Given A € V, reasoning as in (a) above, except that one must drop the
bars denoting complex conjugation in the corresponding matrices, we obtain that
e € WNO(n,C) if and only if A is skew-symmetric; that is, A +A = 0. Hence,
dimrO(n,C) =n(n—1).

(e) dimgSO(n,C) =n(n— 1) because SO(n,C) is open in O(n, C), since one has
SO(n,C) = Ker det, where det: O(n,C) — {+1,—1}, and the last space is discrete.

(f) and (g): Proceeding as in (d) but with open subsets V. C M(n,R), W C
GL(n,R), we have dimgO(n) = n(n — 1)/2. Proceeding as in (e), we deduce
dimpSO(n) =n(n—1)/2.

(h) Obviously dim SL(n,R) = n? — 1.

Problem 4.4.9. Compute exp t (g i)

A0 . 01
HINT: (O A) commutes with (O O)'

1 ¢
. tA
Solution. e < 0 1) .

Problem 4.4.10. Let G be an Abelian Lie group. Prove that [X,Y]| =0, for any left-
invariant vector fields X and Y .

Solution. The local flow generated by a left-invariant vector field X is given by
@/(x) = xexp tX. Moreover we know that [X,Y] is the Lie derivative of ¥ with
respect to X; hence
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1
XY= lim = (Y= 0¥ ) -
Accordingly, [X,Y] = 0if @Y, () = Yy, that is, if ¥ is invariant by ¢,; and this is

equivalent to saying (see Problem 2.4.5) that ¢, and y; commute, where y;(x) =
x exp sY denotes the local flow of Y. As G is Abelian, we have

(@10 yy)(x) = xexp sY exp X
=xexptXexpsY

= (Yyo ;) (x).

4.5 The Adjoint Representation

Problem 4.5.1. Let G be the group defined by
G={A€GL(2,R) : Ah=p?I, p>0, detA >0}.

(1) Find the explicit expression of the elements of G.
(2) Find its Lie algebra.
(3) Calculate the adjoint representation of G.

Solution. (1) Let

By imposing AA = p?I, we obtain:

2 2 2 2 2
ay+ay =ay +ay=p°, (%)
ajja +azaxp =0. (%)
From (x) we deduce
aj] = pcos «, ayy = pcos B, ay) = p sin ¢, axy = p sin B,

and then equation (xx) tells us that

0 = cos o.cos B+ sin asin f = cos(o — fB).

k
Hence f = a+ 771: k € Z. Accordingly,

A (pcosa (—1)*psin o >’

psino (—1)*!pcos o
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from which detA = (—1)*~!p2. Hence A € G if and only if k is odd, and we can
write
_(a b 232 _ 2
A= (b a) ) a + b - P )

where a = p cos a, b = p sin .. The elements of G are usually called the similarities
of the plane, as they are the product of a rotation by a homothety, both around the

origin, i.e.,
a —b\ (p 0\ fcosa —sino
b a) \0 p)\sinae cosa/’
Hence, we have

a a2
G= €EGL(2,R) :ajy—ap=ap+a=0;.
azy ax

(2) By (1), the tangent space at the identity element e is

TeGZ{XEM(Z,R) IXfZO,fZall—CZQz orf=a12+a21}

_/ 9] 9| 9
~ O\ Oxl 8x§e’ ox} .

(o060

. . ain —az
hence the Lie algebra of Gis g = { < ) € M(2,R) }

9
8x%

e e

az] ai

(3) For an arbitrary Lie group G with Lie algebra g, the adjoint representation
Ad: G — Aut g is given by

Ad, X =L.R,'X, s€G, Xeg.

For a matrix group we have
AdyX = sXs~ L.

As the group G of similarities of the plane is Abelian, the adjoint representation is
trivial; i.e.,
Ads; =idg, Vs € G.

Problem 4.5.2. The algebra H of quaternions is an algebra of dimension 4 over
the field R of real numbers. H has a basis formed by four elements e, e}, e, e3
satisfying

e§ = eo, e} = —ep, epe; = ejep = e, eiej =—ejei=¢er, (x)
where (i, j, k) is an even permutation of (1,2,3). If ¢ = Z?ZO a;je; € H, the conjugate
quaternion of q is defined by
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g = apeo — (a1e1 +azes +azes),

and the real number |q|*> = Y3 _,a? is called the norm of q. Let H* denote the

multiplicative group of nonzero quaternions.
(1) Prove that H* is a Lie group.

(2) Consider the map p that defines a correspondence from each p € H* into the
R-linear automorphism of H defined by p(p): g — p(p)q = pq, q € H. Which is
the representative matrix of p(p) with respect to the given basis of H? Compute its
determinant.

(3) Prove that p is a representation of H* on H = R*.

(4) Find the adjoint linear group of H*.

Solution. (1) To prove that H* is an abstract group is left to the reader. Given g =
apep + aje; + azer +azes € H*, applying the multiplication rules (*) we obtain

g '= iz(aoeo —aje; —ape; —aze3) = %7
4] lq]
and then, for p € H*, we have
_1 1
g = W{(aobo +a1by +axby +azbz)eo + (—aoby +aiby — axbs +azby e

+ (—aoby + a1bs + aybg — aszby ez + (—apbs — a1by + arby +a3bo)e3}.
Thus the map H* x H* — H*, (¢,p) — gp~!

(2) Let g € H, p € H*, written as in (1). Then it is easy to obtain

, 18 C=, hence H* is a Lie group.

apy —ay —ay —az\ [bo
a1 ap —az ax| | b
p(q)p - a as ap —ap b2 9

a3 —ax ap ap b3

so the above matrix is the matrix of p(q) with respect to the basis {eg,e;,e2,e3}.
We have det p(q) = |¢|*.

(3) A representation of H* on H = R* is a homomorphism from H* to the
group of automorphisms GL(4,R) of R*. Since det p(q) = |g|* # 0, p(q) is in-
vertible. Thus p sends H* to GL(4,R), and since p(¢~")p(q)p = ¢ 'qp = p we
have p(¢q)~! = p(g~"). Furthermore, we have p(qq')p = q4'p = p(q)p(¢')p. that
is p(qq') = p(g)p(q).

(4) The adjoint linear group of H* is the image of

H* — Aut Lie(H"), g — Adg,

where Lie(H*) stands for the Lie algebra of H*. We identify Lie(H*) ~ 7,H* to H
and we consider the basis {eg, e, e2,e3} of H above. Hence, the adjoint representa-
tion gives rise to a homomorphism H* — GL(4,R), ¢ — Ad,.
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We claim that the adjoint linear group of H* is the subgroup SO(3) embedded in
GL(4,R) as

A= ((1) 2), A€S0(3).

As AdgY, =R, 1, Ly Ye = (R, 1 0Ly).Y,, Y € Lie(H"), the adjoint linear group is
isomorphic to the group of matrices (qul OLq)*, q € H. Moreover, as R, and L, are
linear maps on H, we can identify (qul OLq)* to qul oLg; thatis, Ad, = qul olLy.
With the same notations as above, we note that L, = p(q). Hence, det L, = |g|*.
Similarly, it can be proved that det R, = |g|*>. Hence det Ad, = det R 1detLy =
(det R,) ! det L, = 1. Therefore, the adjoint linear group is contained in the special
linear group SL(4,R). Let (, ) denote the scalar product of vectors in R*. By using
the formula for gp~! in (1) we obtain (g, p) = |p|*Re(gp~!), where Req = (g +
q)- Then, we have

(Adyp1,Ady p2) = |Ady pa*Re(Ad, pi(Adgp2) ")
= lgpaq~'PRe(gpipy'q ")
= |p2l*Re(pip;y ")
= (p1,p2)-

It follows that Ad, is an isometry and, consequently, it belongs to O(4). Further-
>J_

more, Ad,ep = eg. Hence Ad, leaves invariant the orthogonal subspace (eq

(e1,e2,e3). Accordingly, every Ad, is a matrix of the form A above. Therefore,
Ad, € SO(3).

Moreover, the kernel of Ad is R*, the center of H*. We have H* /R+ ~ S =
{g€H : |q| = 1}. Hence H*/R* ~ §3/{+1,—1} = RP?, which is compact and
connected. Accordingly, the adjoint linear group of H* is a compact, connected
subgroup in SO(3). Hence it necessarily coincides with SO(3).

Problem 4.5.3. Let G be a Lie group and g its Lie algebra. If ad stands for the
adjoint representation of g, that is, the differential of the adjoint representation
G — Autg, s — Ad, prove:

(1) (expath)(Y):Y+I[X,Y}+;—2![X7[X,YH+-~7 X,Y eg.

2

t
(2) Adexp,X(Y):Y—i—t[X,Y]—&—E[X,[X,Y]]—i—n-, X, Y cg.

Solution. (1)

(expad tX)(Y) = (I+ad tX + %(ad 1X)*4-)(Y)
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L, rx, v)) + -

2!
t2
=YX Y]+ 5 [X XY ]+

=Y+ X, Y]+

(2) The expansion follows from the formula
Adoexp =expoad,
and (1) above.

Problem 4.5.4. Consider the Lie algebra g with a basis {e|,e;,e3} having nonvan-
ishing brackets

le1,e3] = aey +bey, |er,e3] = ce; +dey, ad —bc #0, a*+d* +2bc #£0.

(1) Compute the ideal [g,g). Is g Abelian? Is g solvable?
(2) Compute ad X for any X = X'e; +X?es + X3e3.
(3) Compute tr (adx)?. When is tr (adx)? = 0?

Solution. (1) [g,g] = (e1,e2) and [[g,9],[g,9]] = O, then g is solvable but not
Abelian.

(2)
—aX? —eX? aX'+cex?
—bX3 —dXx? bX'+dx?
0 0 0

(3) tr(ady)? = (a® +d? +2bc)(X?)?, and tr(adx )? = O only if X € [g,g].

Problem 4.5.5. Let B be the Killing form on g = s{(2,C) with the standard basis

01 00 1 0
{e=(@0) =0 0) =0 )}
(1) Find the basis for g dual to {e, f,h} with respect to B.

(2) Determine the Casimir operator Coq for the adjoint representation.

Solution. The commutation relations are

[h7e] = 2e, [h7f] =-2f, [evf] =h,

so we have
00 -2 000 2 00
ad,= |0 0 O], ady = 00 2], ad,=(0 -2 0
01 O -1 00 0O 00

Since the Killing form B is defined by B(X,Y) = tr(adx oady ), one obtains
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B(e,e) =0, B(e,f) =4, B(e,h) =0,
B(f,e) =4, B(f,f) =0, B(f,h) =0,
B(h,e) =0, B(h,f) =0, B(h,h) =8
Hence | | |
ade:Zf, ad-zze, ad :§h7
and thus

Cad:adead%f—i—adfad%e—kadhadéh.

Problem 4.5.6. With the notations and terminology in 7.4.7 (see [17]):
(1) Prove that the roots of the general linear group GL(4,C) are

(&1 — &), +(&1 — &), (&1 — &),
:|:(£2—83), :|:(£2—84), :|:(83—£4),

each with multiplicity one.

(2) Prove that the roots of the symplectic group Sp(C*,Q) are
t(g — &), i(£1+82), +2¢, +2&,

each with multiplicity one.

(3) Prove that the roots of the special orthogonal group SO(C>,B) are
(&1 — &), (&1 + &), te, £,
each with multiplicity one.
(4) Why 2g;, i = 1,2, is a root of Sp(C*, Q) but not of SO(C*,B)?
Solution. (1) Let E ; be the matrix with (i, j)th entry equal to 1 and zero elsewhere.
For A = diag(ay,...,as) € b we have
[A7E}] = [dlag ((l] ,612,03,(14),E§]
= (a,- — aj)E;-
= (&— Si’A>E§'~
Since the set {E'}, i,j € {1,...,4}, is a basis of g = gl(4,R) = M(4,C), the roots

are the ones in the statement, each with multiplicity 1.

(2) Label the basis for C* as {e},e2,e_2,e_1}. Consider Ej fori,j e {£1,+2}.
Set

Xei—e, = By —EZ7, Xey-e, = Ef —E2;,
X£1+£2:E1_2+E317 X—£1—82:E1_2+E2_17
X281 :El]a X*ZS] :E;]?

Xpe, = E2,, X 2, =E; .
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Then, for A = diag(ay,az,a_»,a_1) € b, one has
[A, Xe,—¢;] = (€ — €},A) Xe,—¢; [A X (g 1e;)) = (& +€),4) X e -
Hence the elements in h* in the statement are roots of sp(C*, Q). Now,
X (e1—e2)r Xt (61 +82) X26) » X026, }

is a basis for sp(C* Q) mod h. So the given roots are all of the roots, each with
multiplicity one.

(3) We embed SO(C*,B) into SO(C>,B) by using the map (7.4.1) for r = 2.
Since H C SO(C*,B) C SO(C?,B) via this embedding, the roots +¢; & & of ad(h)
on s0(C*, B) also occur for the adjoint action of h on g = 50(C>, B). Label the basis
of C?as {e_»,e_1,ep,e1,e2}. Consider E} fori, j€{0,41,42}. Then one can prove

that the root vectors from SO(C*, B) are

1 -2 2 -1

Xeyey=Es —E2,  Xepg =E?—E "},
_r! 2 _ 2 —1
Xepye, =E)—E2,  X.g e =E 2—E;".

Define

Xe, =E) —E°,,  Xe, =E;—E°,,
X g =E)—E;', X, =E)—E;"

Then we have Xi¢, € g, i = 1,2, and [A, X4 = £(€;,A)Xg, for A € h. As {Xig,},
i = 1,2, is a basis for g mod s0(C*, B), one concludes that the roots of so(C>, B) are
the ones in the statement, each with multiplicity one.

(4) Both sp(C*#, Q) and so(C*, B) have the same subalgebra of diagonal matrices

diag(A, 1, —u,—A) which give rise in both cases to the roots —2¢;, i = 1,2. For
instance,

A0 O O 00O00O0 0 000
Ou 0 O 000O0]]| 0 000
00 —u 0|10 0O0O0f]| 0 000
00 0 -1 1 000 —21 0 0 0

However, the nonzero skew diagonal matrices

T oo O
oOR OO
o' O
oo o>

exist in 5p((C4,.Q) and originate the roots 2¢;, i = 1,2; but those matrices do not
exist in s0(C*, B).
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4.6 Lie Groups of Transformations

Problem 4.6.1. Consider:

(a) M = (0,4m) C R, with the differentiable structure induced by the usual one
on R.

(b) S" with the usual differentiable structure as a closed submanifold of R?.

(c) Themap f: M — S', s — f(s) = (cos s,sin s).
Prove:

(1) The equivalence relation ~ in M given by s ~t if and only if f(s) = f(t),
induces on the set M /~ a structure of quotient manifold diffeomorphic to S'.

(2) The manifold M/~ cannot be obtained by the action of a group of transfor-
mations acting on M.

Solution. (1) The differentiable map f: M — R? given by f(s) = (cos s,sin s) is
differentiable and defines the map f: M — S'. Since S! is an embedded submani-
fold of R?, f is differentiable.

Furthermore f is a submersion as the rank of f at any s is equal to the rank of
the matrix (—sin s,cos s), which is equal to 1. Moreover, the associated quotient
manifold is diffeomorphic to S'. In fact, as the equivalence relation is defined by
s~tif and only if f(s) = f(¢), we have to prove that on M/~ there is a differentiable
structure such that the map #: M — M/~ is a submersion. In fact, denote by [s] the
equivalence class of s under ~. Then the map h: M/~— S', [s] = (cos s,sin s), is
clearly bijective and thus M/~ admits only one differentiable structure with which
h: M/~— S is a diffeomorphism. The following diagram

A
T\, S h
M/~

is obviously commutative, and since f is a submersion and # is a diffeomorphism
we deduce that 7 is a submersion. Consequently M/~ is a quotient manifold of M.

(2) Let us suppose that there exists a group of transformations G acting on M by
0:GxM — M, (g,5) — 0(g,s) = gs,

such that from this action we would have the previous quotient manifold. Then,
given g € G, as gs ~ s, it would be:

gs=s or s+2x, se(0,2m)
g2m)=2n (%)
gs=sor s—2m, s (2rm,4n).

Consider the continuous map 2: M — R, s — h(s) = gs —s. By (x) above, h(M) C
{—2m,0,2n}. Moreover, we know that 0 € h(M) because h(2r) = 0. But since M is
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connected and & continuous, #(M) is connected. We conclude that h(M) = 0, that is,
gs = s for all s € M. As this holds for every g € G, the associated quotient manifold
would be M, which cannot be homeomorphic to M/~, because M/~ is compact
and M is not.

Problem 4.6.2. Given R? with its usual differentiable structure, show:

(1) The additive group 7. of the integers acts on R? as a transformation group

by the action:
0: ZxR? — R?
(n,(x,y)) = 0(n(xy)=(x+ny).

(2) The quotient space R? /7 of R? by that action admits a structure of quotient
manifold.

(3) ' x R admits a structure of quotient manifold of R?, diffeomorphic to R* /7.
as above.

Solution. (1) Z acts on R? as a transformation group by the given action. In fact,
for each n, the map

6,: R> = R*,  (x,y) = 0(x,y) = (x+n,y),
is C*. Moreover,

9(n1,9(n2,()€,y))) = 6(”17()(—'—}12,_)7))
= (x+n1+na,y)

= 6(1’11 +ny, (xay))

(2) Z acts freely on R?, because if 0(n, (x,y)) = (x,y), i.e. (x+n,y) = (x,y), we
have n = 0, which is the identity element of Z.

Furthermore, the action of Z is properly discontinuous. In fact, we have to verify
the two conditions in Definition 7.4.9:

(i) Given (x0,y0) € R?, let us consider U = (xg —&,x0+ &) x R, with 0 < & < 1.
Then, if (x1,y;) € UNB6,(U), we have

Xp—€E<x1 <x9tE€, Xot+n—€<xy <xp+n-+eée,

from which |n| < 2¢, that is, n = 0.
(i) Let (x0,y0), (x1,¥1) € R, such that (xo,y0) # (x1,y1), that is, such that:

(@) yo # y1, or (b) yo = y1, x1 #xo+n, foralln € Z.

In the case (a), we have two different cases: xg = x|, and xg # x, but the solution
is the same: We only have to consider U =R X (yo—€,y0+€) and V =R x (y| —
£,y1+¢€), with0 < € < [y; —yo|/2. Since 6,(V) =V, wehave UN6,(V) =UNV =
0.

In the case (b), we have o0 = |x; —xo| & Z. We can suppose x; > xo. Thus o =
x1 —xg. Let m € Z be such that m < oo < m—+ 1, and consider the value
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0<e<min{(a—m)/2,(m+1—0o)/2}.

So, it suffices to consider U = (xg — g,x0+ &) xR, V = (x; —&,x1 + &) x R.

Let us see that U N 6,(V) = 0, for all n € Z. It is clear that the only values of n
that could give a non-empty intersection are n = —m and n = —(m+ 1).

If n=—m, thenif (x2,y2) € UNO_,,(V), we have that

Xo—E<xp<xp+E€, X1—m—E<xp <X]—m+E,

so that x; —m — € < xo+ €, hence x; —xg —m < 2¢, thus o« — m < 2€. Absurd.
If n=—(m+1)and (x2,y2) € UNBO_(41)(V), we have that

X0 — € <xp <X0+E, xi—(m+1)—e<xy<x;—(m+1)+e.

Thus xo —& <x; —(m+1)+¢€,s0x—x; +(m+1) < 2¢, hence (m+1) — o < 2¢.
Absurd.
We conclude that R?/Z admits a structure of quotient manifold of dimension 2.
(3) We shall denote by [(x,y)] the class of (x,y) under the previous action. It is
immediate that the map

TR — s!
s — f(s) = (sin 27ms,cos 27s)

is a local diffeomorphism and thus it is a submersion. Since the product of sub-
mersions is a submersion, it follows that f X idg: R2 — S! x R is a submersion.
Consider the diagram
R TR gigR
TN\ S h
R? /7

(x,y) - (f(x),y)
\ S h
n(x,y) = [(x,y)]

where h is defined by A([(x,y)]) = (f(x),y). Note that the definition makes sense as
if (x0,y0) ~ (x1,y1), we have yo = y1, x| = xo +n, and thus f(x0,y0) = f(x1,y1),
consequently / does not depend on the representative of a given equivalence class.
Furthermore 4 is one-to-one. In fact:

(a) h is injective, because if (f(x0),y0) = (f(x1),y1) then sin 27xy = sin 27x;,
cos 2mxg = cos 27xy, and yo =y, hence xo = x; +n, yo = y1, s0 [(x0,y0)] =

[((x1,y1)]-

(b) h is surjective, since ho 7 is.

Problem 4.6.3. Consider M = R? with its usual differentiable structure and let 7.
be the additive group of integer numbers. Prove:

(1) Z acts on R? as a transformation group by the C* action
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0: ZxR =R, (n,(x,y)) — (x+n(=1)"y).

(2) R?/Z is a quotient manifold.
REMARK. R?/7Z is diffeomorphic to the infinite Mébius strip (see Problem 1.1.12).

Solution. (1) 6 is an action of Z on R?, because (0, (x,y)) = (x,y) and

0 (n1,0(n2, (x,y)) = (x+ny +na, (~1)"1+72y)
= 0(n1 +na, (x,y)).

Furthermore, the action is C™. In fact, since Z is a discrete group, we only have to
prove that for each n € Z, the action 6,: R? — R2, (x,y) — (x+n,(—1)"y), is a
diffeomorphism, but this is clear.

(2) Since Z is discrete, we only have to prove that the action 6 is free and prop-
erly discontinuous.

(i) The action 6 is free, because if 0 (n, (x,y)) = (x,y), then n = 0.
(i1) The action of Z is properly discontinuous. In fact:

(a) Given (x0,y0) €R?, let U = (xo —£,x0+ &) xR, with0 < & < % Then, given
(x1,y1) € UNB,(U), one has that

Xg—€E<x1 <xp+E€, Xo+n—€<xy <xp+n-+eée,

from which n = 0.

(b) Now, let (xo,y0), (x1,y1) € R? such that (xo,yo) # (x1,y1), where ~ denotes
the equivalence relation given by the present action.

For the sake of simplicity we can assume that (xo,yo) and (x;,y1) are in the same
quadrant of R2. We have two possibilities:

(@) y1 # yo.

(B) y1 = y0, x1 # x0+2n, for all n € Z.

For the case (@), it suffices to consider U =R x (yo—&,yo+¢€) and V=R x (y; —
€,y1+¢€), with 0 < & < [y —yo|/2. For, let V* = {(x0,y0) € R? : (x0,—y0) € V}.
ThenUNB,(V)CUN(VUV*)=0.

In the case (), we can assume that x; > x¢ and we have two possibilities:

(B1) x1 — xo # n, for all n.

(B2) x1 —xo = np = an odd integer.

The case (1) admits a solution similar to that given for (b) in Problem 4.6.2 for
the case S' x R.

In the case (f3,), it suffices to consider the open balls U = B((xo,y0),€) and V =
B((x1,¥0),€), with 0 < € <min(1/2, (x; —x0)/2,y0/2). In fact, it is easily checked
that if either n = —ng or n # —nyp, the wanted intersection is empty.

Consequently R? /Z is a quotient manifold.
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Problem 4.6.4. Find the 1-parameter subgroups of GL(2,R) corresponding to

01 01
A= <_1 O> and B= (O O>'
Compute the corresponding actions on R? and their infinitesimal generators, from
the natural action of GL(2,R) on R2.

Solution. The 1-parameter subgroup of GL(n,R) corresponding to the element X €
gl(n,R) =M(n,R) isR — GL(n,R), t — e'X. Thus,

cost sint 1 ¢
el = . and e’ = )
—sint cost 01

The group {e’4} acts on R? and the orbit of the point (xo, o) is the circle with center
(0,0) and radius r = \/m_

The group {e'?} acts on R? giving as orbit of each point (xo,yo) the straight line
(x0 +1y0,Y0), which reduces to (xg,0) if yo = 0.

The infinitesimal generator of (x,y) — (xcos?+ ysinz, —xsinz+ycos?) is the
vector field

(—xsinr+ cost)i— 9 .9
* Y 3y_y8x xt?y

Jd d
T (xcost—+ysint)— + —

0 ox dt

0

and the infinitesimal generator of (x,y) — (x+1y,y) is the vector field

(x+1 )i-i-i 9 _,9
0 Yox T Oyay “ox

dt

Problem 4.6.5. Find, in terms of the vector b, the matrix A, and its eigenvalues,
when the Euclidean motion

fix— Ax+b, A€O0(3), b= (b' b D),
of R3, has a fixed point.

Solution. The equation f(x) = x for some x € R? is the same as b = (I — A)(x),
where [ stands for the identity. Thus f has a fixed point if and only if b € im(/ — A).
Then:

(1) If +1 is not an eigenvalue of A, then Ker(/ —A) = {0} and so I — A is an
automorphism of R3. In this case b € im(I —A).

(2) Suppose Au = u for some nonzero u € R3. We can assume that u is a unit
vector. Then R? = (u) @ (u)*, where (u) = {Au : A € R}; and A acts on the plane
(u)* as an isometry (in fact, from Au = u it follows that g(u,v) = g(u,Av), where
g stands for the Euclidean metric of R?; thus, as g(Au,Av) = g(u,v), g(u,v) =0
implies g(u,Av) = 0). We have b = Au+ b, b’ € (u)*, and x = o+ x’ for all
x € R3. Thus b = (I — A)(x) if and only if A = 0 and &’ = (I — A)(x'). Denote by
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A’ the restriction of A to (u)™. If 41 is not an eigenvalue of A/, we are done. In the

other case, making an orthonormal change of basis we will have A’ = <(1) (1)) or

A = (é (1)) . That is, if 41 is an eigenvalue of A, then we have

(a) If A =1, then f has no fixed points, except for b = 0.

(b) If A is a mirror symmetry, f has no fixed points except when b is orthogonal
to the plane of symmetry.

(c) If A is neither the identity nor a mirror symmetry, f has no fixed points except
when g(b,u) = 0. That is, when b is orthogonal to the rotation axis of A (in this
case).

Note that the multiplicity of the eigenvalue +1 is 3, 2 or 1, respectively, in the
cases (a), (b) and (c).

Problem 4.6.6. Let H> = {()c7 y)ER? 1y > 0} be the upper half-plane and con-
sider (x,y) € H? as 7 = x +iy € C under the identification R> ~ C. Prove that the
group of fractional linear transformations

az+b
cz+d’

—

a,b,c,d€Z, ad—bc=1,

does not act freely on H>.

HINT: Compute, for instance, the isotropy group of i.

b
Solution. The isotropy group is given by the condition azjr_d
cz

=z thatis,az+b=
cz? + dz. For example, for z =1, one has ai+b =di—c,sowehavea=d, b= —c,
hence the isotropy group of i is the group of matrices of the form (Z Z), with

a, b integers such that a*> +b*> = 1. Hence, the solutions are (a,b) = (1,0), (—1,0),
(0,1) or (0,—1), and the subgroup is not the identity.

Problem 4.6.7. (1) Prove that the map
0: R" xR — R, (a,x) — ax,

is a C* action of R* on R. Is it free?

(2) The action 0 induces the equivalence relation ~ in R defined by x ~ 'y, if
there exists a € R such that 0(a,x) =y, or equivalently, if there exists a € R™ such
that ax = y. Prove that R/R™ is not a quotient manifold of R.

Solution. (1) We have
0(1,x) =x, 0(a,0(d ,x)) =ad'x = 0(ad ,x).

Moreover, 6 is C*, as (idgo 8 o (idg+ xidr)~!)(a,t) = at is C*.
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The action 6 is not free: For x = 0 and any a € R™ we have ax = 0.

(2) If R/R* were a quotient manifold of R, then the natural map 7: R — R/
R, x — [x] should be a submersion. But R/R™ has only three points: [—1], [0] and
[1]. If it were a manifold, it would be discrete, so disconnected. Thus 7 cannot be
even continuous.

Problem 4.6.8. Show that
(x7y) = el(x7y) = (erZ’ye73t)a
defines a C* action of R on R? and find its infinitesimal generator:

Solution. We have 6y(x,y) = (x,y) and

6,6, (x,y) = (xe21*) ye=30+))
= Ut/ (x)y)a

hence 6 is a C* action of R on R2. The infinitesimal generator X is

dxe?)| 9  dye )|

X = P — - 7 —
dr |,_,0x + dr |,y 9y
0
S PR N
“ox y&y

Problem 4.6.9. Let
={g=x+yit+zj+tkeH: |¢|=1}

act on itself by right translations.
Prove that the fundamental vector fields i*,j*, kX" associated to the elements

i,j,k € H are, respectively,

9,.9.,,9 2
X= o Ty o Yo
P PR
Y= Ty T o
S22 )

ox oy Yo Tar

Solution. Identify the vector space of purely imaginary quaternions to the tangent
space T;S3. The flow generated by i* is Rexp(11) (), q € S3. Hence

. d
lq(x) = a S (xoRexp(ti))(Q)
~ 51| gt
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= x(qi)
=x{(x(q) +y(q)i+z(q)i+1(g)k)i}
=—y(q)-

Similarly we obtain

SO
i"=X.
The other cases are obtained analogously.

REMARK. The vector fields given in Problem 1.9.6 are *i,*j, *k, which are the fun-
damental vector fields with respect to left translations of S* on itself, instead of the
right action above.

Problem 4.6.10. Let G x M — M, (g,p) — g- p, be a differentiable action of a Lie
group G on a differentiable manifold M. Let ~ be the equivalence relation induced
by this action, i.e.,

p~q < dgeGsuchthatg=g-p.

LetN ={(p,q) EM XM : p~ q}. Assume that N is a closed embedded submanifold
of M x M. Prove that the map ©: N — M, w(p,q) = p, is a submersion.
REMARK. According to the Theorem of the closed graph 7.1.13, this problem proves

that the quotient manifold M /G = M/~ of a group action exists if and only if the
graph of ~ is a closed embedded submanifold of M x M.

Solution. Let (pg,qo) € N be an arbitrary point. Hence there exists g € G such that
qo =g po.Lets: M — M x M be the differentiable map o (p) = (p,g- p). This map
takes values in N and hence it induces, by virtue of the assumption, a differentiable
map 6: M — N, which is a section of 7, i.e. o0 =idy. As 6(po) = (po,q0), we
conclude that 7 is a submersion at (po,qo).

4.7 Homogeneous Spaces

Problem 4.7.1. Prove that O(n+1)/0(n) and SO(n+1)/SO(n) are homogeneous
spaces and that the sphere S" is diffeomorphic to each of them.

Solution. By means of the map

O(n) — O(n+1), A ) ,
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z z

N N

@@

T T T
(a) (b) (©)

Fig. 4.2 The sphere S viewed as the homogeneous space SO(3)/SO(2). The north pole rotates
under rotations around either the x- or the y-axis but not under rotations around the z-axis.

O(n) is a closed Lie subgroup of O(n+ 1), so that the quotient space O(n+1)/0(n),
with the usual C*™ structure, is a homogeneous space.

We will prove:

(1) There exists a C* action of O(n+ 1) (resp. SO(n+ 1)) on S™.

(2) This action is transitive.

(3) The isotropy group H,, is isomorphic to O(n) (resp. SO(n)), for some p € S”.
Now, we have:

(1) The action GL(n+1,R) x R**! — R**1 (A v) s Av, is C*, and its restric-
tion O(n+1) x R*! — R is also C*. As the action of the orthogonal group
preserves the length of vectors, the restriction O(n+ 1) x §* — R™*! takes values
in " and itis C*™.

(2) Given any pair p,q € S, there exists A € O(n+ 1) with g = Ap. For, let {¢;},
{&;} be orthonormal bases with respect to the Euclidean metric of R"*! satisfying
e1 = p, €1 = q. Then one takes as A the matrix of the change of basis, so that, in
fact, Ac O(n+1).

(3) We choose, for the sake of simplicity, p = (1,0,...,0). By definition,
H,={A€O0(n+1): Ap=p},

thus, if A = (a;;), we have a;; =1, a;1 =0, i =2,...,n. Moreover, as A € H, C
O(n+1), we have AA =1, hence p ="AAp ='Ap, so thata;; =0, i =2,...,n. Thus

but AA =1,s0'BB=1,i.e. B€ O(n). Thus, H, =~ O(n).
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Hence, one has a diffeomorphism S” ~ O(n+ 1)/O0(n). One also has S" ~
SO(n+1)/SO(n), because the above arguments are valid taking orthonormal bases
{e;} and {e;} with the same orientation, satisfying e; = p, &| = ¢, which is always
possible.

Problem 4.7.2. Prove that U(n) /U (n— 1) and SU (n)/SU (n — 1) are homogeneous
spaces and that the sphere >~ is diffeomorphic to each of them.

Solution. By means of the map

Un—1) — U(n), A

U(n—1) is a closed subgroup of U(n), and thus the quotient space U (n)/U(n— 1),
with the usual C* structure, is a homogeneous space.

Consider $?*~! as the unit sphere of C" with the usual Hermitian product (,)s
that is, (A'e;, e;) = T AT, so

sl ={(,... ) eC: Y P =1}.

The isometry group of the metric (, ) is U(n) = {A € GL(n,C) : /AA =I}. Hence,
similarly to Problem 4.7.1 we have:

(1) The map U (n) x §?"~! — §?"~1 being the restriction of the C* map GL(n,C)
xC" — C", is differentiable.

(2) The action of U (n) on $?*~! is transitive.

(3) The isotropy subgroup of p = (1,0,...,0) € $?*~! is isomorphic to U (n— 1).

Hence one has a diffeomorphism $*"~! ~ U(n)/U(n — 1), and similarly to Pro-
blem 4.7.1, one proves that $*"~! ~ SU(n)/SU (n—1).

Problem 4.7.3. Prove that S' and S* are Lie groups by two different methods: First,
from Problem 4.7.2. Then, by using the fact that S* and S* can be respectively iden-
tified to the unit complex numbers and to the unit quaternions.

Solution. From the diffeomorphisms $>*~! ~ U(n)/U(n—1) =~ SU(n)/SU(n— 1)
in Problem 4.7.2, for n = 1 one has S! ~ U(1); and for n = 2 we have S° ~ U(2)/
U(1)=SU(2). So S! and S* are Lie groups.

That S' ~ U(1) was already seen in Problem 4.2.4. As for S3, we have

S ={(xyzt) eR : P +y +2+12 =1}
={geH:[¢|=1}.

Now, given ¢,q’ € H, one can check that |¢q’| = |q| |¢|, hence if ¢,¢' € S> as above,
then gq’ € 3. Moreover, from the rules of multiplication in H (Problem 4.5.2, (1))
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we conclude that $3 is a Lie group. One can also obtain this applying Cartan’s cri-
terion on closed subgroups of a Lie group to §° C H*.

Problem 4.7.4. Let Vi.(R") denote the set of k-frames (ey,...,ex) in R" which are
orthonormal with respect to the Euclidean metric g of R". Prove:

(1) Vi(R") is a closed embedded C™ submanifold of R™ (called the Stiefel ma-
nifold of orthonormal k-frames in R").

(2) O(n)/O(n—k) is a homogeneous space diffeomorphic to Vi, (R").

Solution. (1) Let us denote by xg, i=1,...,n, j=1,...,k, the coordinate func-

tions on R"*: that is, xj-(el, ...,eg) is the ith component of e; in the standard basis

(Vi,...,va) of R". The equations defining V¢ (R") are fijj = ¥} _, xflx? —0;; =0, for
1<i<j<k

We shall now prove that the differentials of the functions f;; are linearly inde-
pendent, so concluding. For this, we first consider that the action

O(I’l) X Vk(Rn) — Vk(Rn), (A,(el,...,ek)) — (Ael,...,Aek), (*)

is transitive, since given two g-orthonormal k-bases of R", they can be completed to
two orthonormal bases of R”, and there is always a matrix A € O(n) which defines
a correspondence between them.

Moreover, since (fj; + 8;j)(e1, ..., ex) is nothing but the scalar product of ¢; and
ej, we clearly have

(ﬁj+5ij)(A~(el,...,ek)) = (ﬁj+5ij)(€],...,ek),

forall A € O(n), (e1,...,ex) € Vi(R"). Thus, it suffices to see that the differentials
of the functions fj; are linearly independent at a point (ej,...,ex) € Vi(R"). Take
the point represented by the n x k matrix whose first n rows are the identity matrix I
and the other n — k rows are zero; that is, xf-’(el ,---,ek) = Op. Then, it is immediate

that (dfij) e, ...ep) = (X +dx] )¢, .. e)- As i < j, we are done.
(2) By means of the map

O(n—k) — O(n), A rs (ﬁ 2)

O(n—k) is a closed Lie subgroup of O(n), hence the quotient space O(n)/O(n—k),
with the usual C* structure, is a homogeneous space.

We have
V(R = {(e1,--re) € (R glenes) = 8y} < (7
In particular, V; (R") = §"~! =~ O(n)/O(n — 1), as we proved in Problem 4.7.1. The

action (x) is obviously differentiable. We have seen that it is also transitive. To
determine the isotropy group of a point we choose, for the sake of simplicity, the
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point p = (ey,...,ex), where ¢; = (0,...,0,1, 0, ...,0), with 1 in the ith place.
Then, since H, = {A € O(n) : Ap = p}, a calculation similar to that in Problem
4.7.5 shows that

sz( ) AcO(n—k).

Consequently H,, is isomorphic to O(n — k) and Vi (R") is diffeomorphic to O(n)/
O(n—k).
Problem 4.7.5. Prove that O(n)/O0(k) x O(n — k) is a homogeneous space diffeo-

morphic to the C* manifold G (R") of k-planes through the origin of R", called the
(real ) Grassmann manifold of k-planes in R". Analyze the particular case G| (R").

Solution. By means of the map

0) % 0n=1) — 0. (a.8) -~ (§ p).

O(k) x O(n—k) is a closed Lie subgroup of O(n) and thus the quotient space O(n)/
O(k) x O(n— k), with the usual C™ structure, is a homogeneous space.

The map
Vi(R") — Gi(R"), p=A{ei,...,ex} — (e',..., e,

which defines a correspondence between each k-basis of R” and the k-plane it spans,
is surjective, since given a k-plane, we always can choose a g-orthonormal k-basis,
g being the Euclidean metric of R”. The map

O(n) x G¢(R") — Gi(R"), (A, (e1,...,ex)) — (Aey,...,Aet),

is C=. The action is transitive, as given two k-planes of R”, and a g-orthonormal
k-basis in each one, we can complete both bases to g-orthonormal bases of R"; but
there is always an element A € O(n) which transforms the one into the other, and
thus it transforms the k-plane generated by the initial k-basis in the k-plane generated
by the other k-basis.

In order to determine the isotropy group of a point, we choose p = (ey,...,ex),
where ¢; = (0,...,0,1,0,...,0), with 1 at the ith place. It is easy to see that the
elements of O(n) leaving p invariant are those of the form

(g 103>» A€O(k), BeOn—k).

Hence H, =~ O(k) x O(n—k) and thus G(R") =~ O(n)/O(k) x O(n—k). For k=1,
we have 1-planes, that is, straight lines through the origin of R”, and G| (R") is then
the real projective space RP"~!. We thus have

RP"' ~ G (R")
~0(n)/O(1) x O(n—1)
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~O0(n)/ZyxO0mn—1)
~S50(n)/O(n—1),

where the last equivalence follows from an argument as in Problem 4.7.1. Hence,
the real projective spaces are homogeneous spaces.

Problem 4.7.6. Show that GL(n,R) acts transitively on RP"~! and determine the
isotropy group of le1), e; = (1,0,...,0) e R

Solution. If the points p,qg € RP"~! are given by p = [A], ¢ = [u], where A, u € R”
are two nonzero vectors, then there exists A € GL(n, R) such that AL = u, as A (resp.
() can be completed to a basis vi = {4, v2,...,v,} (resp. v} = {u,v},...,v,}) of R”
and A is the isomorphism Av; = v, i = 1,...,n. The isotropy group of [e;] is the
subgroup of GL(n,R) of elements B such that B(2,0,...,0) = (u,0,...,0), that
is

byt by -+ by
0 by - by

H={B=| . | . | €GL(n,R)
0 b2n brm

So RP"~! = GL(n,R)/H. (Note that dim RP"~! = dim GL(n,R) —dimH =n—1,
as expected.)

Problem 4.7.7. The punctured Euclidean space R" — {0} is homogeneous since
GL(n,R) acts transitively on it.

(1) Determine the isotropy group H of (1,0,...,0) € R" —{0}.
(2) Is the homogeneous space GL(n,R)/H reductlve?

Solution (1) H:{((l) 2) :veRnl,BeGL(n—l,R)}.

(2) No, as we shall see giving two proofs.

St proof. The Lie algebra h of H is, as it is easily checked by using the exponential

map,
h{(g X) : veR"-l,AEg[(nl,R)}.

Suppose gl(n,R) =h@m, with [, m] Cm. Since dim h = (n 1)n, one has dimm =
n. Let El € gl(n,R) the matrix (E )k = 6h,8k], so that {E’ _, is abasis of gl(n,R).
First suppose n = 2. Then the matrix E! { can be ertten as

1 (1 0y (0 v I —v

El(o 0)=\o o) lo o) @vER
1 0 v 1 —v
Elb:<0 a)eb, E;m:(o _a>6m.

with
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By virtue of the hypothesis, we have

0 —v
[ﬁﬂmﬂ:(o Jemv

but this matrix also belongs to h, hence v = 0. Moreover, E21 belongs to h. Conse-

quently
0 —(a+1)
1 Im] __
[E27E1 } - (0 0 ) em,
and since this commutator also belongs to b, it follows that @ = —1. Summarizing,

one has F 1‘“‘ = I, € m. On the other hand, one has a decomposition

2 (0 0\ (0 v 0 —v
E1_<1 0)_(0 a)+(l —a)’ v ER,

0 v 0 —v
-0 )en a0 )em

Again from Ez1 € b we deduce that
[E1 Ez‘”] = I —a em
2541 0 1 s

and since > and [E}, Ef™] are linearly independent, one concludes that

with

m = (b, [E},E{™]),

which is impossible as in this case the matrix E?™ could not belong to m, since its

(2,1)th entry is not null.
0 v 0 —v
2 _
=) ()

For n > 3, we have
Acgl(n—1,R), ve R u=(1,0,...,0) e R,
2p (0 v m_ (0 —v
E (0 A)eb, E ( _A)em.

El = <O W), w=(0,1,...,0) e R" !,

with

As

00

belongs to h, one has that

s = (o o)
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belongs to m, and since it also belongs to b, it is the null matrix. Contradiction, for
the square matrix (#'w”) of order n — 1 never vanishes.

2" proof. Another proof, this time unified for n > 2, and which uses representation
theory, is the following. First, we identify gl(n — 1,R) with the subalgebra

{(0 ) acatn-1m}.

Then gl(n,R) decomposes as a gl(n — 1,R)-module into

gl(n,R) = {(8 (V)> : veR"—l}@g[(n—l,R)

@RE}@{(S} 8) :VGR”_I},

which is a sum of four non-isomorphic irreducible gl(n — 1, R)-modules.
Every h-submodule of gl(n,R) is in particular a gl(n — 1,R)-module, hence a
direct sum of some of the four gl(n — 1,R)-submodules above. Thus, the unique

possibility for m is
_ 1 00 . n—1
m—REIEB{(,V 0 :veR ,

but [h, m] Z m, from which we conclude that the space is not reductive.

Problem 4.7.8. The complex projective space CP", which is the set of complex lines
through the origin in the complex (n+ 1)-space C"*', is diffeomorphic to the ho-
mogeneous space SU(n+1)/S(U(n) x U(1)).

(1) Does SU (n+ 1) act effectively on CP"?

(2) Write CP" as a homogeneous space G/H such that G acts effectively on
cp™.
REMARK. We recall that the center Zyy1 of SU(n+ 1) consists of the diagonal
matrices diag(A,..., A1), A being an (n+ 1)th root of 1.

Solution. (1) The answer is no, since the isotropy group S(U(n) x U(1)) contains
the center Z, 1 of SU(n+1).

(2) Let us compute the subgroup N. A matrix

A 0 1
S—(O l)’ AeU(n), A_—detA’

belongs to N if and only if g~'sg € S(U(n) x U(1)), for all g € SU(n+ 1). Let
{v1,...,vuy1} be the standard basis of C"*! and let g € SU(n+ 1) be the matrix
given by

g(vy) = (cos a)vy+ (sin o), 41,
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g(vpg1) = —(sin 00) vy + (cos O) vy 1,
g(vi) = vi, 1<i<n, i#r,

where 1 < r < nis afixed index, and o¢ € R. Then, we must have (g_lsg)(vnﬂ) =
Uy, for some u € C*, as g~ 'sg € S(U(n) x U(1)), or equivalently, s(g(v,11)) =
1g(vny1), and expanding:
s(—(sin a)v, + (cos &t)vy41) = —(sin &)A(v,) + (cos o) Avy+1
= p(—(sin &)v, + (cos o) vy41).
Hence A = u, Av, = Av,, for all r = 1,...,n. Therefore, A = AI,, and since

1 = AdetA = A"*! we conclude that N = Z, |, which is the center of SU(n+1).
Accordingly, we can write

CP" = (SU(n+1)/Zn11)/(SU(n) x U(1)) [ Zn 1)

The group G = SU (n+ 1)/Z,+; acts effectively on CP".



Chapter 5
Fibre Bundles

5.1 Principal Bundles

Problem 5.1.1. Denote by E(F R,R) the bundle with fibre R associated to the frame
bundle FR ~ R x (R — {0}). Show that the tangent bundle T R ~ R? is isomorphic
to E(FR,R).

E~TR

Fig. 5.1 The bundle E(FR,R).

Solution. The structure group of F R is GL(1,R). Thus we have to prove that TR is
the quotient space TR = (FR x R)/GL(1,R), where GL(1,R) acts on the manifold
FR xR by

(FRxR)xGL(1,R) — FRxR

((vr),8) — (vg.87'n),
that is, on the right on F R and on the left on R (by g~!). Denoting 7: FR — R and

ng: E — R, and once fixed v € FR, one has ©t(v) = m(vg). Let [(v,7)] be the class
of (v,t) € FRx R in E. Then [(v,¢)] = [(vg,g~'t)] for all g € GL(1,R) ~ R —{0}.

P.M. Gadea, J. Mufioz Masqué, Analysis and Algebra on Differentiable Manifolds, 183
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For every v, we have vg = Av € TR ~R, and g = (1/A)t € R, A # 0. Thus,
each representative of the class [(v,)] has components with constant product for
vt =vA %t. Consequently the class is a hyperbola in (F R)z(,) x R, as one can see in
the Figure 5.1. On the other hand, for r = 0, the class of (v,7) is the pair of half-lines

' (n(v)) x {0} = (FR)zn) x {0} CFRxR.
The set of classes is thus isomorphic to R in each fibre; and the total space of classes,
E=R’>~TR.
Problem 5.1.2. (Hopf bundles) Set

S'={xeC: x| =1},
S ={(xt) eCxR: x>+ =1},
P ={(xy) eC: kP + |y =1},
s = {(x,y) eH?: x®+y)? = 1}.
The spheres S' and S* are Lie groups with respect to the multiplication induced from

C and H, respectively (see Problem 4.7.3). Let S' act on S® (resp. S* on S7) by the
formula

(r,y)-z=(xz,y2), (6ny) €S, zeS' (resp. (x,y) €8, z€5).

Let
nc: 8 — CxR, s ST — HxR,

be the maps given by

”C(x7y): (zy-f> |X|2—|y|2), (.X,y) €S37
TEH(xvy) = (ZyX, |X|2—|y|2), (X,y) €S7'
Prove:
(1) mc(8%) = $*
(2) e (S7) = s*.
(3) The induced map mc: S — S is a principal S'-bundle with respect to the
action of S' on S* defined above.

(4) The induced map my: ST — S* is a principal S3-bundle with respect to the
action of S3 on S” defined above.

(5) CP! ~ §2.

(6) HP! ~ S*.
Solution. We solve the quaternionic case (2), (4), and (6). The same formulae solve
the complex case (1), (3), and (5), too.

(2) First we check that g (S7) C %, In fact, if (x,y) € S7 we have [x|> +|y|> = 1
and then, since q1q> = ¢4 for every q1,q> € H, we have
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ez (x,9) 2 = 4yl + (el = [y1?)?
= (kP + 1?2 =1

Let (u,t) € H x R be a point in §%, such that |u|> 4> = 1. If u = 0, then r = +1, and
we have g (1,0) = (0, 1), 7 (0,1) = (0,—1). Hence we can assume u # 0. In this
case —1 <t < 1, and one has

B N IET Y T B
H D) |M|, > - )

L+t i 11—t 7
— T\ S
( 2 Jul’V 2 )E

T ((x,y) - 2) = wm(xz,y2)

and

(4) First we have

= (2yzz, xz]* — [yz?)
= (2yzzx, [x[z* — )
= (2y)€, |x|2 - |y|2)

= nH(x,y),

as zZ = |z|> = 1 for z € S°. Hence the orbit (x,y) - S is contained in the fibre

Ty (T (x,y)).
Conversely, if my(x1,y1) = Tu(x2,y2), then

y1X1 = y2¥2, (%)

1P = [y |* = | = |y (k)

As |x1|> 4 [y1]* = 1, either x; # 0 or y; # 0. Hence we can assume x; # 0. Set
Z :xflxz € H. Hence (x) implies, since |q1||g2| = |q142]| for every q1,¢> € H,

yi=2zyp ie. Yy =z (xx*)

As |)c1|2 + |yl\2 |x2|? + |y2/? = 1, we have [y1|*> = |[y2|* by (%), from which
Iv2|?|z]* = [y1]|>. If y2 = O we should have from (%) that y; = 0 and so |x;|> =
|x2]?> = 1 = |z[%. If y, # O, then |z| = 1. That is, in both cases we have |z| = 1.
Therefore, 7! = 7 and from (*x %) we deduce y, = y;z. In other words, z € S3 and
(x1,¥1) - 2= (x2,y2), thus concluding.

(6) By definition HP' is the quotient space H? — {(0,0)}/~, where (x,y) ~
(«,¥') if and only if there exists A € H* such that X' = Ax, ¥y = Ay. Moreover,
the restriction to S7 of the quotient map ¢: H? — {(0,0)} — HP! is surjective as
q(x,y) =q(x/p,y/p), with p = y/|x|> + [y|? and its fibres are the orbits of S>. Hence
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HP! ~ §7/$3 and since we have a principal S3-bundle 7y : S7 — §%, we conclude
HP! ~ 57/5% ~ 5%

Problem 5.1.3. Parametrize S° by
l i . 1 i
zlzcosiee""7 znglnEQC"’z, 0<6<m, y,ymeR

(1) Find the expression of ¢ (z1,22) under the projection map of the Hopf bundle
nc: 83 — §? given in Problem 5.1.2, in terms of that parametrization.

(2) Take as trivializing neighborhoods Uy = S* — S and U, = S* — N, where N, S
stand for the north and south pole. Determine rs' (Uy), k= 1,2.

(3) Define bundle trivializations

_ <k

fio me (Uk) — Uex U(1),  filz1,22) = (ﬂc(117Z2)7|Z—k> ; k=1,2,

and put fi p = fk|7rl(p)- Find the transition function gp1: Uy NUy — U(1) of the
bundle with respect to the given trivializations.

Solution. (1)

mc(z1,22) = (2Re(2221), 2Im(2221), 21> — |22])

= (sinBcos(yr — Y1), sinOsin(y, — y ), cos 6).
(2) It is easily seen from the definitions of the trivializing neighborhoods that
ne' (U) ={(z1,22) €S : zx #0},  k=1,2.
(3) Given
p = (sinBcos @, sinOsin@, cosB) € Uy NV, e cU(1),

we obtain, on account of the parametrization of S° and the expression for the pro-
jection map 7:

fi(z1,22) = (sin @ cos(ya — y1), sin @ sin(yn — yy),cos O, %),
SO

i 1 : 1 .
—1 o _ - o i1 ((P+OC)
fip(e l)—(COSZQe ‘7s1n29e 1>,

hence _ ‘
(frpofip)(e™) =el?Tel,

That is, the transition function for the given trivializations is

g1:U1NU, — U(1), (sin@cos @, sinBsin@, cosB) — e?.
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Problem 5.1.4. Let (P,n,M,G) be a principal fibre bundle and let g be the Lie
algebra of G. Every A € g induces a vector field A* € X(P) (called the fundamental
vector field associated with A), with flow

v, (1) = uexp(tA), uePb

The map
¢:g— X(P),  @(4)=A7,
is R-linear, injective and satisfies [A,B]* = [A*,B*], for all A,B € g.
(1) Prove that Ry - A* = (Adg—lA) , where g € G, A€ g.

(2) Calculate the expression for ¢(aX| + bX,), where X| and X, are the left-
invariant vector fields on C* given by:

0 0
Xl:xﬁ—i_y&_y’ X, =

—ya +xa—y,
and @ is the isomorphism associated to the principal fibre bundle
(c**'—{o},n,CP",C"),
where CP" stands for the complex projective space of real dimension 2n.
Solution. (1) For u € P, denote by j, the injection of G into P given by
ju: G — Y (w(u)), g — ug.

Let e be the identity element of G. It is clear that

A= i () (0)
= jur(exp(tA)'(0))
= ju*Ae'

Let i,: G — G be the automorphism of G defined by 1,(/1) = ghg~!, and consider
the composition map

G — P — P
h
whose differential at e is

Rg*.jug*I*Ae = (julgfl)*Ae

= (o (a2 9)),

*

— (Ad,14) .

u
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Hence, the vector field image R, - A* is given at u by
(Rg-A")u = Rg*A:g—l
= Rg*jug_l *Ae

_ (AdgflA)M,

SORg-A* = (Ad, 1A)".

(2) Let u',...,u*"*2 be the real coordinates on C"*! — {0} (that is, {z/ =
u?=! + iy} is the dual basis to the usual complex basis of C**!). For u =
(u' +i?, .. W i +?) € € — {0}, the map j, above is now given by
C* — nl(n(w),

x4iy = (i, P ) (x+iy)

= (u'x—uPy+i(uPx+u'y),...)

= (u'x—uPy,ux+u'y,..).
Therefore
Q= Jux
d(u'x—u?y) 9(u'x—u?y)
ox dy
= | d(Px+u'y) I(Px+u'y)
ox dy
u —u?
u? u'
u2ﬁ+1 _uin+2
u2n+2 u2n+1
Hence

(Q(sX) +1X2))u = Jur ((sX1 +1X2)e)

. d 0
= Jux <S8x+t8y)’ s,t €R,
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ulsfuzt

_ ws+u't

d 0
1o, 2N Y 2 N Y .
s—u t)aul +(u's+u z)au2+

+ (u2n+ls _ u2n+2t) + (u2n+2s_|_u2n+lt)

=(u

d

Junt2”

au2n+1

Problem 5.1.5. Let (FM,nt,M) be the bundle of linear frames over the C* n-
manifold M. If p € M and (xl,...,x”) is a coordinate system on a neighborhood
U of p, we can define the map

Fy: n'(U) — GL(n,R), 2= (g,e1,-.-,en) — (d¥'(e})).

J
on GL(n,R), are a coordinate system on n~'(U) (see Figure 5.2). If z € n~'(U),

prove that
J J
Ty (ﬁ z) :Yl (Z)Ej,

where (Y j’(z)) stands for the inverse matrix of (x’j (2))-

The functions X =xlorxand x; = x. o Fyy, where x; denote the standard coordinates

GL(n,R) FM Ux GL(n,R)

O,

——
(;
R"
Fig. 5.2 The bundle of linear frames (FM,,M) over M.
Solution. We have
d d(x'om) 9 d
w(5e],) = "5 aa, = 34, )
z q q
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but the coordinates of {¢;} with respect to the canonical basis {(9/dx'),} are pre-
cisely (x)(z)), that is,

1

(e en) 9 J x{-(Z) xn-@
Lyeees€n) = axzq""’aan : : )
12 - ()
r equivalently ¢; = '()i Thus
or equivalently e; = x; (z B q.
| _ i
EF =Y/ (2)e;. (%)
q
From (%) and (x%), it follows that 7, (5 ) = Y,»j (2)e -
V4

Problem 5.1.6. Let w: P — M be a principal G-bundle. Prove that a vector field
X € X(P) is m-projectable if and only if for every g € G, the vector field Ry - X — X
is m-vertical.

Solution. The vector field X is m-projectable if m.X, = m.X, for all u,v € n~! (p).
As G acts transitively on 77! (p), there exists g € G such that v = ug. Hence 7, X, =
7. X, means T, X, = T, X,, and taking into account that 7o R, = 7, we can rewrite
the previous equation as 7, (Rg. X, — X,s) = 0. That is,

RguXy = Xug = (Rg - X)ug — Xug
is a ;-vertical tangent vector. The converse is immediate.

Problem 5.1.7. Find the fundamental vector fields on the bundle of linear frames
FM over a C* n-manifold M.

Solution. If A is an element of the Lie algebra gl(n,R) of GL(n,R) then its value at
the identity element e of GL(n,R) is the tangent vector at e to the curve ¢4, and it
has corresponding fundamental field A* on FM, whose value at z € FM is A7, the
tangent vector to the curve ze"! in FM at z. Let {x'} be local coordinates on M with
domain U, and let {x’j} be the canonical coordinates on GL(n,R).

Then the coordinates of z are x'(z) = x'(7(z)), ¥(z), as in Problem 5.1.5. There-

fore _— )
(A*x), = hmw =0
Z 10 t 9
because 7(ze"!) = 7(z), and

. Xt (ze) —xi(z)
A* UAJ J
( xj)z 12% t
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= tlg%% { (x§(z) +1xi(zA) + ;x§(zA2) +> —xj»(Z)}
:x;(ZA)
=x(2)d],
,. N B (i 0
where A = (a}). Hence A? = x; (z)a} B_x’] Z and A™[ 1 () = djx; axj»'

Problem 5.1.8. Prove that a necessary and sufficient condition for a C* 2n-manifold
M to admit an almost tangent structure, that is, a G-structure with group

G= {(2 2) €GL(2n,R) : A€ GL(n,R)},

is that it admits a C* tensor field J of type (1,1) and rank n such that J*> = 0.

Solution. First, suppose that M admits an almost tangent structure. Let (e;), j =
1,...,2n, be a frame adapted to the G-structure. One has (e;) = (eq,eq+), 00 =
1,...,n,a* =n+1,...,2n, such that if (e;) = (e, e ) is another adapted frame,
it is related to the previous one by the formulas

ey :Ag/eﬁ +Bg, egx, eql* :Ag,eﬁ*.

Hence, we can define a linear operator J of rank n, J,: T,M — T,M, J,(A%eq +
l“*ea*) = A%eq+, where (eq,eq) denotes an adapted frame, which is well defined
because

Toe = Tp(AP ep + BP ep.)

Thus J,% = 0. Furthermore, since J,eq+ =0, (eq+) is a basis of KerJ,, and (ey) is
a basis of a vector subspace supplementary to KerJ,. That is, J,, is written in the
adapted frames as (O 0 .
I, 0

Conversely, if there exists a C* (1,1) tensor field J of rank n on M such that
J? =0, then (eq,eq+) is an adapted frame if (eq+) is a basis of KerJ, and (eq) is
a basis of a vector subspace supplementary to KerJ, (where J,, denotes the linear
operator of rank n induced by J on each tangent space 7,M), in such a way that
Jpeq = eqr and Jpeq+ = 0. Consider another adapted frame e, eq+. Then

el = Mg,eﬁ +Ng, egx, eyl = Pg,*eﬁ + Qg,*eﬁ*.
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Since Jpe, = ey<, we have
To(MPep + NP eg.) = MP ep.
5/*eﬁ + Qa/*eﬁ*

so M = Q, P =0, and the matrix of the change has the form (2 2) ,A€GL(n,R).

5.2 Connections in Bundles

Problem 5.2.1. Determine all the connections in the frame bundle F R over R.

Solution. Consider FR ~ R x GL(1,R) = R x R* with coordinates (¢,a). A con-
nection in FR is given by a “horizontal subspace” H; 4y C T{s,4) (R x R*) at each
point (t,a) € R x R*, such that H, ,) must be 1-dimensional and satisfy 7.(H; o)) =
T;R =R, where 7 stands for the projection map of F R. Thus, we can put

P
WW=<E

Moreover, H must be invariant under right translations, i.e. if b € GL(1,R) = R*,
then

d
+h(t,a) %

>, heC”(RxR").
(t,a) (t.a)

Rp(H(1.a)) = HR, (1.a)
=H; ap)

J + h(t,ab) 9 .
at (t,ab) da (t,ab)
Since Ry (t,a) = (t,ab), it is clear that
Re [ 2 )=p 2|
dal g 94 ap)

Therefore h(t,ab) = bh(t,a). Hence h(t,a) = ah(t,1). Thus calling f: R — R the
function given by f(¢) = h(z, 1), the connection is given by the distribution .7’ on

d d
FR generated by the vector ﬁeld == + S ) that is,

P P) . \
H = <al+f() a>, fECR, acR*.
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Problem 5.2.2. Let w: P =M x C* — M be the trivial principal C*-bundle over the
C*” manifold M. Prove that, in complex notation, every connection form or on P
can be written as

or =z 'dz+ ', zeC,

where @ is a complex-valued differential 1-form on M; that is, ® € A'(M,C).
Solution. Let ¢y, @, : R — C* be the homomorphisms ¢ (1) =e¢', @2(¢) = ¢'i. These
homomorphisms induce a basis {A,A;} of the Lie algebra of C*, which can be

identified to C itself by 1 — Aj, i — A,. The fundamental vector fields attached to
these vectors are:

d
Al =x

—+y= A5 =— i+x
dx y&y’ 27 9%

a_y .
For example, let us compute A}. The flow generating A7 is

vi(2) = oi(t)z

= ¢ (x+yi)
=elx+elyi
=X + i
Hence 5 5
(%) o1 t:(}xt X, 1(v) o1 t:Oyt b

Thus, by using the previous identification, @ can be written as
1 2
or=1n +n-1,

where 0!, n? are differential 1-forms on P. By imposing that o (A}) = Ay, k= 1,2,
we obtain 11/(A;) = §/. Hence by using a coordinate system (x") on M, the forms
n',n? can be written as

1 xdx+ydy
x% 4?2

2 xdy—ydx

2 4 h
dx’
x2+y2 i ’

+ fr dx,

where fhl,fh2 € C”P. We remark that

1 xdx+ydy xdy—ydx,
7z dz= 55 2.2 &
xX“+y X“+y
Hence dy d d &
2 2+y2y and = i_yz
xX“+y xX-+y
are left-invariant differential forms on C*.
Moreover, as C* is commutative, the condition R}wr = Ad_-10®r simply
means that wr is right-invariant. Accordingly, this condition holds if and only if
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the functions fhl, f}% are C*-invariant; that is, if and only if, f}}, f,? € C”M. Hence
o' = f,} dx't, 0? = f,% dx", are differential forms on M, and by setting ® = o' + 0?4,
we conclude.

Problem 5.2.3. Consider the trivial bundle w: P =M x U(1) — M. Parametrize
the fibre U(1) as exp(ia), O0<oa<2nm If(¢), j=1,...,n=dimM, are local

coordinates on M, then (¢, o) are local coordinates on P. Let p: T*M — M be the
canonical projection of the cotangent bundle. Prove:

(1) For every connection form or on P there exists a unique differential 1-form
@ on M such that or = (dot + *®) ® A, where A € u(1) is the invariant vector
field defined by the homomorphism R — U(1), t — exp (it).

(2) Every automorphism ®@: P — P can be described locally as ®(x,0) =
(¢(x),ax+y(x)), where ¢ : M — M is a diffeomorphism and v: M — R is a diffe-
rentiable map.

(3) (@~")*@r is another connection form wr: on P. Set o = (da+ n* ') ® A
and compute @'.

(4) There exists a unique diffeomorphism @: T*M — T*M such that:

(i) po®=¢op.
(i) If the differential forms ®,®' on M are related as in (3), then o = @'.
Here, @, are viewed as sections of the cotangent bundle.
(5)If ¥: P — P isanother automorphism, then (¥ o ®T="¥ o ®@. (This property
Jjustifies the exponent —1 in defining I'' in (3).)

Solution. (1) As A is a basis of u(1), it is clear that every connection form can be
written as wr = 1 ® A for some differential 1-form 1 on P. Moreover, the funda-
mental vector field associated to A is readily seen to be A* = d/da and from the
very definition of a connection form it must hold that wr(A*) = n(A*)A = A. Hence
n(d/da) = 1, and accordingly, n = do:+ f;dg’, for certain functions f; € C*P. We
now impose

R;wF:AquO(Dr, VZGU(]), (%)

that is, the second property of a connection form. As U(1) is Abelian, the adjoint
representation is trivial and hence () simply means that 1] is invariant under right
translations. As the forms da and dg/ are invariant, we conclude that 7 is invariant
if and only if the functions f; are invariant; that is, if each f; does not depend on o,
thus projecting to a function on M. Hence o = f jdqj .

(2) A diffeomorphism @: P — P is a principal bundle automorphism if @ is
equivariant; i.e. @(u-z) = @(u) -z, for all u € P, for all z=exp (i) € U(1). We
have @(x,w) = (&(x,w),0(x,w)), (x,w) € P, where {&: P — M, ¢: P — U(1)
are the components of @. By imposing the condition of equivariance, we obtain
D(x,wz) = D ((x,w)-z) = D(x,w)z; that is,

(5(x7wz)7 (p(x7 WZ)) = (é (x’ W)’ (P(x7 W)Z)'



5.2 Connections in Bundles 195

Letting w = 1, we have &(x,z) = &(x,1) and @(x,z) = @(x,1)z. Hence & factors
through 7 by means of a differentiable map ¢ : M — M as follows: £ = ¢ o &, and,
locally, we have @(x,1) = exp (iy(x)). Then,

¢(x,z) = exp (iy(x)) exp(ia)
=exp (i(oc + l//(x)))

(3) As a simple computation shows, we have

o (xv,0) = (97 (), = (wo o~ ")(x).
Thus
(@ Yor= (@) (da+r"w) A
= (da—d(yoop tom)+m* (¢ ) w)®A.
Hence o' = (¢~ ')*0—d (yoo!).

(4) Given a covector w € T M, let ® be a differential 1-form on M such that
®(x) = w. Then, from conditions (i), (ii) we obtain

= (0 o) —(d(wod™ "))
= (07 w—(d(yod™))e(,
thus proving the existence and uniqueness of P.
(5) Set o = ((D_l)*(i)r, @Orn = (‘P‘l)*wr/. Then,
or = (¥ (@) or
— (¥od) Y or.
Hence (Yo ®)om = " and (¥ o @) o = ", so that ¥ o ® and (¥ o ®) satisfy

the condition (ii) in (4). Moreover, we have

po(Pod)=(po¥)od
= (yop)od
—yo(pod)
=yo(gop)=(yog)op.

Hence the condition (i) in (4) holds.
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Problem 5.2.4. Let 7¥ = x* + iyk, 0 < k < n, be the standard coordinates on C"t1,
Prove that the 1-form

n

w = z (—yk dxk +Xk dyk) |SZn+l
k=0

is a connection form on the principal U(1)-bundle p: §?"*' — CP", where we
identify the Lie algebra of U(1) to R via the isomorphism A — A(d/da), where o
stands for the angle function on U(1).

Solution. According to the definition of a connection form we must check the fol-
lowing properties:

(1) w((l%) ) =A,forall A e R.

(2) Rzw=Ad, 100, forall g€ U(1).
As the coordinates of the point z-exp(id o) are

(¥ +iy") (z-exp(ire)) = x* cos(Aar) — y* sin(Aax) +i(xF sin(A o) + Y  cos(Aax)),

0 < k < n, we have

Hence )
o((152)) = e (1 (V)
_ xk%((yk)z L) =4,

at every point of the sphere, thus proving (1). As for (2), we first remark that the
adjoint representation is trivial since U(1) is Abelian, so (2) simply tells us that @
is invariant under right translations. In order to prove this, we note that

—ykdk + xFdyk = (02 + (5F)?)d (arctan )yc—];> ,

and that Ry, ¢i) leaves the quadratic form (x*)? 4 (y*)? invariant. Working in polar
coordinates we thus obtain

k
* kqok o kgk) 2 (2 pr y
Rexp(ai) (—y dx” +xdy ) = ((xk) +05) )Rexp((xi)d (arctan)?)

((xk)2 + (yk)z) d <arctani)—]; + Oc)
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= ((xk)2 + (yk)z) d (arctan )yc—];)

= b Kyt

5.3 Characteristic Classes

Problem 5.3.1. Consider the trivial principal bundle (R*> — {0}) x U(1) over R —
{0}. Then, for the connection with connection form described (on the open subset
R?—{(0,0,z),z > 0} of the base manifold ) by the u(1)-valued differential 1-form

Ay = (xdy — ydx), ()

i
2r(z—r)
where r* = x> +y* + 7%

(1) Calculate the curvature form F of the connection in terms of A;.

(2) Write A in spherical coordinates (1,0, @), given by
x=rsinfcos@, y=rsinOsing, z=rcosb, 0 €0,n], ¢<l0,2m),

and calculate
A=A+ ’}Fldy7

y being the U (1)-valued function on R? — z-axis defined by y(p) = e?P)i,

(3) Ay and A, furnish well-defined differential forms on Uy = S*> — S and U, =
§% — N, respectively, where N, S denote the north and south pole.

Consider the complex Hopf bundle H studied in Problems 5.1.2, 5.1.3 and take
real coordinates u', ... ,u* on C* = R*, such that

S ={(a=u' +it, 0 =’ +iu*) € C : |+ =1}

Prove that
o =i(u'di® —utdu' +iddu® — utdi?)

is a connection form on the bundle. Show that 6] ® = A and 65 ® = Ay, where Oy is
the local section associated to the trivialization on Uy, k = 1,2, (see Problem 5.1.3)
by means of or(p) = fk’l} (1), where 1 € U(1) is the identity element. That is, A| and
A are local representatives of the connection in H with connection form @.

(4) Compute the (only) Chern number of the bundle H.

REMARK. The above bundle is a particular case of a construction named in Physics
a Dirac magnetic monopole bundle. Each of the given differential forms Ay,A; is
called a gauge potential of a magnetic monopole at the origin of R3, the transfor-
mation in (2) is called a gauge transformation, and F is called the field strength.
The general construction depends on an integer n, and the bundle of the problem
corresponds ton = 1.
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Solution. (1)

F=dA,+A>,NA)

i
= ﬁ(xdy/\dz-i-ydz/\dx—&-zdx/\dy).

(2) Since y~'dy = ide, one has that
A= %(1 —cos6)do, Ay = %(—l —cos0)de.
(3) Since
u(l) ={X €ql(1,C) =C: 'X+X =0} =Ri,

one can identify u(1) with the purely imaginary complex numbers. The fundamental

vector field X* € X(S3) corresponding to X € u(1) is (see Problem 5.1.4) X o=

J1.2)+X15 (21,22) € §3. According to the parametrization
1 P i
(z1,22) = | cos Eee“’l ,sin EGeV’Z

of $ and the fibre action of S' by e®!, this action corresponds to (the same) changes
in the parameters y; and y». In fact,

j(ZIaZZ) (eai) = Reo‘i (Zl 7Z2)

— (Z]Gai,ZZCai)

= (cos l9 W1+ gin 1 0 e("’2+o‘)i) .
2 ’ 2

Now,

0 _aul J ou? 9

v dviadl oy o

+ cos ! 0 cos ?
2 Vi du!

= —Cos 16 sin 0
o 2 Vi du!

and similarly

So, we can take the vector

Xz =4 (a_wl + a—l,,2>
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_ 290 190 49 530

—a(—u W—i—u W—u ﬁ—i—u W)’
which is clearly tangent to S3, as the tangent vector to the fibre at a generic point
(z1,22) € 83, image under J(z1,20)+ Of X =ia € u(1). The vector field X* is the funda-
mental vector field corresponding to X. In fact, since the Jacobian map of the map
Toai: (21,22) = (z1€%,20€™), is given, in terms of the real coordinates u', u?, u*, u*

7u 7” 9’
by

cosa —sino 0 0

sin o cosa O 0
0 0 cosa —sino |’
0 0 sin o cos Qo

we deduce

T,

e (21,22

" . d
ai (X, >):a{—(u2(zl)cosoH—ul(zl)s1noc) EM)

(z1e® zpe)

— (u*(z1) sina —u' (z1) cos ) B

(z1e% zpe%)

— (u*(22) cos o+ u*(z2) sin ) 9

8u3 (Zl eoi ,zze"‘i)
- (u4(zz) sino — u3(Z2) cos (x) i
8M4 ai ai
(z1€%,zpe0)
J d 2
Y ELEVERFEEPYL )
( du! ou? ou’ Jut (z1e% zre%)

*
(Zl e”‘i,QeO‘i) .

Next, we consider the properties of the form . It is clearly C* and takes on S°
imaginary values, which can be identified with elements of u(1), as we have seen:
It is immediate that

. .
w<X<Z| 7Z2>) =al1c u(l)
Moreover, we have
R0 =i(u' coso — u? sina)(—sin ocdu' — cos ordu?)
€
— (u' sinot + u? cos o) (cos o du' — sin ordu?)
+ (1 cos @ — u* sin o) (sin o due® + cos o du*)
— (u?sin ot + u* cos o) (cos o du® — sin ordu*)

:w’

and also, trivially, Ad.-« ® = ®, hence
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Rzai 0 =Ad, 0.

Finally, we prove that the connection form @ has local representatives A; on U
and A, on Uj,. In fact, the local sections corresponding to the trivializations over Uy
are, respectively,

1 1 .
o1 (sinBcos @, sinOsin @, cos B) = (COS§97 sin EOe"") , 0<m,

1 . 1
0, (sinO cos @, sin O sin @, cos 6) = (cosiee‘pl, sin§6> , 0<6.

Thus, it is immediate that the section o7 is given in terms of the real coordinates

u',...,u*by

1 1 1
(u i ut) = (cosEG, 0, sin Eecosq), sin EGSiﬂ(p) )

Substituting in the expression for w in the statement we easily obtain oW = Aj.
One proceeds similarly to obtain 65 ® = A».

(4)

i
C(l)(H) = E/SZF

1
=—— [ xdyAdz+ydzAdx+zdxAdy
4w Js2

|
:—E/stmede/\d(p_—l.

Problem 5.3.2. (1) Identify SU(2) to the unit sphere S* in H and prove that there
is an isomorphism su(2) ~ H’ of the Lie algebra of SU(2) onto the vector space
of purely imaginary quaternions endowed with the Lie algebra structure given by
[a,b] = ab— ba, for a,b € H'.

(2) Any connection in the principal SU (2)-bundle P = R* x SU(2) over R* can
be expressed, by (1), in terms of an H'-valued differential 1-form on R Let g € H
arbitrarily fixed, and let

(x—q)dx

Ap () =Tm D&
2,q(x) m12—|—|x—q\2

xeH, 0<AEeR,

be an H'-valued connection form. Prove that the curvature form of Ay 4 is given by

AZdxAdx

P4l = gy

()
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Solution. (1) We first remark that (H', [, ]) is a Lie algebra as a € H' if and only if
a+a=0, and for every a,b € H’' we have

[a,b] + [a,b] = (ab — ba) + (ab — ba)
= (ab—ba) + (ba— ab)
= (ab—ba) +((=b)(=a) = (=a)(=b)) = 0.

Any quaternion can be written as

q=ap+aji+aj+azk
= (ap + a1i) + (a2 + asi)j
=2z1+22],

with the rule jz = Zj, and, hence, ¢ can be identified to the matrix

SIS
A, = .
7 <—Zz Zl) ()

In fact, for two quaternions ¢,q’, we have

/ /

1 22 1 T
Ay = = = -/1 -/2
—22 <11 2 1

1z — 27 1z +27
-2 — 7 U — 25
=Ay,
where the last equality is immediate from the expression for the product of ¢ and ¢'.
Moreover, we have

SU(2) = {A €GL(2,C) : A= (2 2) ,det A =|z1 > + 2] = 1} :

so that SU(2) can be identified to the quaternions of norm 1, which can be viewed
as the 3-sphere in H = R*. The Lie algebra of the Lie group S° (see Problem 4.7.3)
can be identified to the tangent space at the identity (1,0,0,0) € S3, that is, to the
subspace of R* orthogonal to the identity 1 € S3, which is the vector space of purely
imaginary quaternions H’. The associated matrices (**) are thus written as

ia
< _ Zz) , aeR.
—Z22 —la

Now, it is easily seen that these are exactly the matrices of su(2). Finally, it is easily
checked that the matrices



202 5 Fibre Bundles

L/i 0 1/ 01 1/0 i
BI_E(O i)’ Bz_i(lO)’ 33_5(10)'

are a basis of su(2) (remark that —2iB,, 1 < r < 3, are the Pauli matrices) such that
[B1,B>] = B3, [By,B3] = By, [B3,B1] = B>.
Similarly, by = 3i, by = 1j, b3 = 1k, is a basis of H' such that
[b1,b2] = b3, [b2,b3] = by, [b3,b1] = b2,

and we conclude. Notice that this isomorphism permits us to consider the su(2)-
valued differential forms as H’-valued differential forms.

(2) The quaternion differential is defined by
dx = d(x* +x'i+ 2%+ 2°k) = dx® + dxl i 4 do?j + Xk,
di = dx® —dx!i —dx?j — dx’k.

We also use the following properties: If ®,n are two H-valued differential forms
and f is an H-valued function, then

ofAN=0Afn. ()

Every H-valued differential form @ can be decomposed as @ = @° + @', where ©°

is an ordinary differential form and

is an H'-valued differential form. Hence, if the degree of @ is odd, then we have
oNo=0' N, as ©°No° =0, ©° Ao’ + o A ©® = 0. Therefore

Im(wA®)=(Imw)A(Imo). (1)
Setting
x—q
fl,q(x) = /'1’2_|_|x_q|27

we have A ,(x) = Im{f} ,(x)d%}, and by using () we obtain

Fl,q(x) = dAl,q(x) +A7L,q(x) AA)L,q(x)
=Im{dfy ,(x) NdE+ f 4 (x)dEN f 4(x)d5}. €3]

Moreover, taking into account that |x — g|> = (¥ — g)(x — q), we have

ax df(r—q) + (F-dr| .
TP T PR )“’x

dfy ,(x) Nndx = (
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_ dxAdy (x—gq)d¥x—g)AdE  (x—g)(¥—g)dxAdx
S ATt =g (A2 —q?)? (A2 +]x—q?)>

and by using the formula (), we obtain

_(x—q)dr(x—g)Adx _ (x—g)dEA (x—g)d¥

A2 +x—g?)? (A2 +[x—gP)?
= —frg(W)TA f 4 (x)dE.

Hence, substituting into (i), we obtain

F)L,q(x) =Im {df/l,q(x) Adx"‘fl,q(x)dj/\f/l,q(x)dx}

—Im( dxAdx |x—q2dx/\di>
A tlx—qP  (A+|x—q?)?
A%dx A dx
=Im—
(A2 +]x—q]?)?
_ AldxAdx
S (A2t x—gP)?

for it is immediate that dx A dX is purely imaginary.

Problem 5.3.3. Consider the quaternionic Hopf bundle my: S7 — S* (see Problem
5.1.2).

(1) Prove that  defined by
(o) (X) = Im (aX; — Xob),

where
(a,b) es’ = {(x,y) cEHxH: |x|2—|—\y\2: 1}

and
X = (XI;XZ) € T(aAb)S7 — T(a,b)(H X H),

is a connection in the Hopf bundle.

(2) Let N = (0,0,0,0,1) € §% § = (0,0,0,0,—1) € S*. Consider the maps
(inverse of the stereographic projections)

(Pﬁl: H — S47{(0a0707071)}7 (ps_l: H — 547 {(0707070571)}7

given by

“1(y) = 2 xk—1 (x) = 2x  1—xk
Pn xk+17xx+1)° s xi+17xx+1)°

respectively. Denoting Uy = S* — (N}, Us = S* — {S}, we construct trivializations
of my: ST — S*
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Yy TEH;II(UN) —>H><S3, Ys: ﬂﬁl(Us) —>H><S3,

by
e = (avmaeo). ). st = (ostmate). ).

Consider the sections oy,0s: H — S given by

O-N(x):ly[;](x?l)v O-S(X)ZWEI(XJ)'

Let > = x%, x € H, and y: H— {0} — $?, y(x) =r"'x.
Prove that the local expressions of @ in terms of Oy and Oy are

2 2 |
Gi&w=—1+r27 dy,  oso =157 dr.
Solution. (1) We have
1 _ -
W) (X) =5 ((aX) —Xab) — (aX) — Xab))
1 _ _ -
E(axl Xob—Xja+bX,) € H.

Since the Lie algebra of S is identified to the purely imaginary quaternions, it fol-
lows that @, ;) (X) € Ty §3. That is, @ takes its values in the Lie algebra of the Lie

group S — H.
The action of S* on S is given by R.(a,b) = (az,bz) (see Problem 5.1.2). Then

(RZ w) (a,b) (X) = O(qz,17) (RZ*X)

= W(az,bz) (X12,X22)

—_—

= = (zaXiz— ZXobz — ZX1az + 7bX>z)

[\

20 ) (X)z
—1

z O)(ub)<X)Z
(AdZ 1 oa))

On the other hand, the fundamental vector field A* corresponding to A € T; 5> is
given by A’{{Lb> = J(a,b)+A, Where

j(a,b): § - S7a z+— R:(a,b) = (az,bz).

Hence
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d

Alap) =73 . (a(1+At),b(1+At))
= (aA,bA).
We thus have
) (A(gp)) = Oap)(aA, bA)
1 - - _
=3 (@GaA — Abb — Adaa+ bbA)
= (@aa+Dbb)A
= 147
since A = —A. We have thus proved that @ is in fact a connection in the bundle

m: ST — S
(2) In order to obtain the explicit expressions of oy and o, we first suppose that
(u,v) € §7 satisfies ws(u,v) = (x,1). We then have

u
wis(iv) = (q)s@vwz— |v|2>,|7)

2via u
—(— 2 L) ).
<1+|u|2—|v|2 |u|) (1)

Then u = k € R, and after some computations one has

Denote by s the coordinate on H such that s(x) = x, x € H and by ry, r, the coordi-
nates in H x H such that | (x,y) = x, r2(x,y) = y. Then we can write

1
o= 5(?1 dr; — (dfz)rz — (dfl)rl + 72dr2).

To compute 6§ @ we substitute

1 s
ry = 5 rn = ’
V1412 1+7r2
and after a calculation we obtain
* o 1 = =
GS(D = m(é‘dS*d&"S)7

which is well defined in all of HL.
Excluding the origin we can write s = ry so that § = ry~! and we obtain by
computation
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r2

1472
A similar calculation shows that we have the formula for oy o in the statement.

cim= yldy.

Problem 5.3.4. Let [w] denote the standard generator of the group
H?(CP',Z) ~ Z; that is, Jeptw = 1, where the canonical orientation as a com-
plex manifold of CP! is considered. Prove that the Chern class of the tautological
line bundle E over CP' is equal to —[w].

Solution. Let (P = C? — {0}, p,CP',C*) be the principal bundle over CP' with
group C* corresponding to the tautological line bundle E. The differential 1-form @
on P defined by 00 ol

Z’dz"+7'dz

0047171

is a connection form on P. In fact, it takes values on the Lie algebra C of C*. More-
over, consider Wy = W, and Wy = @, for two sections oy, Oy on two intersecting
open subsets U, V of CP'. Then, if 6y = Ayyoy on UNV, thatis, Ayy € C* is the
transition function, we have

(DZ:<ZO7Z1> =

Oy = Oy ayy

on p~1(UNV); that is, as Ayy takes values in C*,

Oy = /'L[;‘l/ dAyy + /'1,5‘1/ oyiyy
= Agydiyy +Ad 2gh © @U-

The curvature form of w is
Q=do+oNw

]lz{zz +7'21) (AP A d® +dz' AdZ!)

T (@
— (2% +7'dz )/\(z0d20+zld21)}.

Denote by U the open subset of CP' defined by z° # 0, and set w = z' /z°. Then w
can be taken as a local coordinate on U. Substituting z!' = z%w into the expression
for the curvature form above, we have that

_ dwAdw
S l+ww?
The first Chern form ¢ (E, ®) can thus be written on U as
i dwAdw

E) = WA
lE @) = S Ty
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2rit

Taking polar coordinates, w = re~™", one obtains

/CPIa(E,w):/Ol </Ow(12ﬁ;)2)dr:—1,

Problem 5.3.5. (Godbillon-Vey’s exotic class for codimension 1 foliations) Let M
be a C* n-manifold, and .F a foliation of codimension 1 (that is, the leaves have
dimension n— 1) on M, defined by a nowhere vanishing global differential 1-form o,
which is integrable; that is, ® N\dw = 0. As ®(p) # 0, for all p € M, this condition
can be written as

as wanted.

do = oA o, (%)

for certain @;. Consider the differential 3-form
= =—w Ndw.

Prove:

(1) The form E defines a cohomology class [Z] € H3,(M,R).

(2) [E] is an invariant of the foliation, that is, it does not change if either .7 is
defined by @' = fw, with f € C*M nowhere vanishing or if we take another form
o] satisfying ().

Solution. (1) Taking the exterior derivative of both members of (x) we obtain 0 =
—w A dwp, from which
doy = 0Ny,

and thusd= = —owo Ao Ao A w, =0.
(2) If Z is defined by ®' = f, with f € C*M nowhere vanishing, we have

do'=df Ao+ foNo

a)’/\(wlg).

E' = - Ndo]

Hence

d
=—w ANdw —lAdah

f
= EZ —d(log|f|day),

from which [E'] = [Z].

If we choose another form, say ], satisfying (%), then from this equation and
do = o A ®] we have ® A (@) — @) = 0, that is, ®; — ®] belongs to the ideal
generated by @. Hence, the general expression for such forms @, is ®] = @ + ho,
h e C”M. Now, we have
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o] Ndo) = (o) +ho) A (do; +dh A © +ho A o)
= Adw; +d(hdo),

hence [Z"] = [Z].

Problem 5.3.6. Let (P,M,G) be a principal bundle over the C* manifold M and
r ,f connections in P, whose connection forms (resp. curvature forms) can be de-
scribed on trivializing open subsets of M by the g-valued differential 1-forms A,A
(resp. 2-forms F, f)

(1) Let I € #7(G) be a G-invariant polynomial, and consider the global 2r-forms
I(F") and I(F") (see Definitions 7.6.11 and [13]). Deduce from the Chern-Simons
Formula in Theorem 7.6.12 for the difference 1(F") — I(F"), the formula for the
particular case where G is a matrix group, I(F?) = tr (F AF), and A = 0:

tr(FAF)=dtr <(dA)/\A+§A/\A/\A). (%)

(2) Let & be the map & : R* — M(2,C),
4_:3 2 _ .1
X —ix? —x"—ix
E(x) = (x2_l-x1 x4+ix3) .
Consider on R* with the Euclidean metric the differential forms

r2 62

Al=—5——vyd Ay =yA1y M ydy = dy!
1 r2+027/ 10 2=vA1y  +ydy r2—|—c2y}/ )

where 1> = (x")? 4+ (x?)2 4+ (¥*)> + (x*)%, c € R, and
R {0} = SUQ2), v =),

identifies S*(r) with SU (2).
The form A is regular at x = 0 as it follows taking the formulas

rdr

Al=——
1 2+ 2

2

+}”2+—C2€ 1d5, deté:rz,
into account, but A, is singular at x = 0. Let N, S denote the north and south poles of
S*. Identify R* with Uy = S* —{S} and on the other hand with U = S* — {N} under
convenient stereographic projections (see [13, 10.7]). Then one can define accord-
ingly A1 on Uy and A on Uy, since the singularity of A, at the origin manifests as a
singularity at the north pole, which does not belong to U,; in such a way that A\ and
Ay are local representatives of a connection in a principal SU(2)-bundle P' over S*,
whose transition function g is .

Express the Chern number c3) (P') in terms of y~'dy, by means of the Chern-
Simons formula (x).
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REMARK. In Physics, the differential form A with local representatives as in (2) is
called an instanton potential. It solves the Euclidean Yang-Mills equation; that is,
D*F =0, where F = dA+ A NA and * stands for the Hodge star operator (see
Problem 6.11.4).

Solution. (1) As G is a matrix group, we can write F = dA + $[A,A] as F = dA +
A AA. In the particular case I(F?) = tr(F A F) we have

tr(FAF)—tr(FAF) =dQ(A,A).
Putting o« = A — A, one has
1
Q(AA) = 2/ tr (0 A(dA+1do) +aA(A+ta) A(A+ta))dr
0

22/01tr (andA+randa+aNANA+Ia NAN
+taANaNA+FanaAa)dt

:2tr(oc/\dA~+%OC/\dOH—OC/\A/\A—I—%OC/\A/\a
+%a/\aAA+%a/\a/\a)

=tr <2a/\f+ocAda+2a/\A/\oc+%a/\(x/\a).

For A = 0, this expression reduces to the formula in the statement.

(2) Let Si (resp. $*) denote the upper (resp. lower) hemisphere of $%; that is, the
subset with last coordinate > 0 (resp. < 0). Then, on account of

A =7 A4y 'y,
Fi=dA|+A| NAy, F,=dA, +Ay NA,, F :)/_le’}/,

we can write
o0 (P) = gz [ w(FAF)
1 1
= W/_gitr(Fl /\F1)+@/Sitl’(F2/\Fz)
1 2
= 8—71,'2 ./53 tr (dA] NAL+ §A1 NAL /\A1>
1 2
o /S Kt (dAz Nz + A Ay /\Ag) (by Stokes)

1 1 1
= —2/ tr (| i NAL— A1 NATANAL —Fy NAy+ —Ar NAry NAy
8m* Js3 3 3
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1
= @/Sﬁ (771dA2 NAyy+y ' Ay AA Ny

+y 'dAs Ady+ 7 1As AAL AdY

1 1
—§Y71A2/\A2/\A2V—gj/flAz/\Az/\dy

| 4 1, .
—3Y MAYAY Ay =5 A AdyAYTdy

1 1
—gyfldY/\?’flAz/\Azy— gy’ld}//\y’lAgAdy

1 _ B 1 B B
=3V YAy iy Ay sy — sy dyayTldy Ay dy

1
—dAy ANAy —Ar NAZ NAL + §A2 NAp /\A2>

_ 1 ~1 1
= o /s3tr ()/ dAr NAsy+ 7y Ay NAY NALY
+y lday Adyy L y+y 1Ay A A Ay

1 1
—gj/ilAz/\Az/\Az’}/—5’}/71A2/\A2/\d7/

| | ~1
_57/ Az/\Az/\dy—gy Ay ANdyAy “dy

1 1
- gy‘lAz NAy ANdy— gy_lAz AdyA y‘ldy

1 B 1 _ ~

-37 YAy ndy Ay Hdy— 37 "dynytdynyldy
1

dAz/\AzAz/\Az/\A2+§A2/\A2/\A2>

1
= /53 tr (dAz/\dyq/_1 - }/_lAzAdy/\ y‘ldy

1
-3 “ldyay Tty Y_ldY)

_ 1 | 1 1 —1 —1
_8_7r2/53 <d(tr(A2/\dyy ))—gtr(y dyny 'dyny 'dy)

Lo
= T han? kes).
YT '/53 tr(y dyAy 'dyAy 'dy)  (by Stokes)

REMARK. The last expression for c(y) (P") is the opposite to a certain winding
number (the topological charge), which is an element of the homotopy group
m3(SU(2)) ~ Z, associated to a map from the equator > in §* to SU(2) ~ §°. It
is important in Physics as it corresponds to a minimum of the Yang-Mills action
functional.
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5.4 Linear Connections

Problem 5.4.1. Given a linear connection V of the C* manifold M, one defines the
conjugate or opposite connection V of M by

Vx¥ =VyX+[XY],  X,Y €X(M).

(1) Prove that V is a linear connection.

(2) Compute the local components fj’h of V in terms of the components of V.
Solution. (1) Since V is a linear connection and from the expression
[fX.8Y] = felX, Y]+ f(Xe)Y —g(Y /)X,  f.geC™M,

we deduce by some computations that V satisfies the properties:

(a) Vx(Y+2)=VyY +VyZ, (b) VyxiyZ=VyZ+Vyz,
(C) §fo = fVXY, (d) ﬁfo = (Xf)Y +f§xY,
that is, 6 is a linear connection.
(2) One has §% % = ﬁf%, in terms of the local coordinates x', ..., x" and
also
IS 0 J 0 0
% ox/ 937 oxt + [3x" QXJ]
J
937 oxt
d
_ ok
~ g

That is I}§ = T;.

Problem 5.4.2. (1) Let V be a linear connection and A a tensor field of type (1,2)
on a C* manifold M. Prove that V, defined by

VxY =VxY +A(X,Y), XY € X(M),

is a linear connection of M.
(2) Let Vo and V| be two linear connections of M. Prove that

V, = (1-1)Vo+1V,

is a linear connection of M for eacht € [0, 1].
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Solution. We prove only, in both cases, that Vx fY = (X f)Y + fVxY for a linear
connection:

(1)
VxfY =VxfY +A(X,fY)
= (XS)Y + fVxY + FA(X.Y)
= (Xf)Y + fVyY.

(VoOxfY = (1 =1)(Vo)x fY +1(Vi)x fY
=(1=0)(X/ )Y +(1—1)f(Vo)xY +t(Xf)Y +1f(V1)xY
(XY + f(Vo)xY.

Problem 5.4.3. Let ¢: M — M’ be a diffeomorphism. Given a linear connection V
of M, let V' = ¢ -V be defined by

ViY' =@ (Voo ' Y'), VXY € X(M).

Prove:
(1) V' is a linear connection of M'.
(2) If @ is the flow of a vector field X € X(M) such that ¢,-V =V, Vt € R, then

LyoVy—VyoLx =Vixy, XY € X(M). *)
Solution. (1) We prove one property only: For any f € C*M’,
VifY =@ (Vo-rx0™" - (fY")
=0 (Y, le(foqo) -y
=0-{((07" - X)fop)o " Y +(fo@)Vyixo 'Y}
= (X'f)Y + [V} Y.
(2) Applying both sides of (x) to a function f € C”M, we obtain
X(Y(f) =YX (f)) = [X,Y](/),
which trivially holds. Applying now both sides of (*) to a vector field Z, one has

vayz*hn’l (VyZ Q- (Vyz))

1
= lim — (VyZ V(p, yZ) +111’1’1 (V(Pt.yz — V(DtY((Pt Z))

t—0
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.1
=Viim_ Lr—gmZ + VY (3%? (z—o: 'Z)>
=V vZ+VyLxZ
= V[X,)/]Z +VyLxZ.

As Ly and Vy are type-preserving derivations that commute with contractions, for
every tensor field 7 we have

(Lx oVy = VyoLyx)(T) = Vix yT.

Problem 5.4.4. Let M be a C* n-manifold endowed with a torsionless linear con-
nection. Prove that in a system of normal coordinates with origin p, all the Christof-
fel symbols at p vanish.

Solution. In a system of normal coordinates {xi },i=1,...,n, around p, the equa-
tions of the geodesics through p are given by x' = A'¢t, with A’ constants. These
functions must satisfy the differential equations of the geodesics, i.e.,

d>dedk .
ar g e =0 b

that now reduce to Flf (p)?Li)Lj =0, fork=1,...,n. As the connection is torsionless,
it is immediate that I}¥(p) = 0, for i, j,k=1,...,n.

5.5 Torsion and Curvature

Problem 5.5.1. Consider a linear connection of a C* manifold with components
= ri+ 2800,

where the 171< are the components of another linear connection (it is said that they
are projectively related connections), 6 is a differential 1-form, and 51’: denotes

the Kronecker delta. Calculate the difference tensor 1?;1 i~ Rﬁl P of their respective
curvature tensors fields.

Solution. Putting d; = d/ dx’/, we have
R = T3, AT+ T~ T
= 0j(I3}, +28,6k) — k(T +28,6;) + (I, + 28, 6,) (I}, +28/6;)
— (I, +28;6;) (I3, +25/6¢)
= Rj, ;s +2610;6 — 28,06; + 2I;),6; + 2T, 6, + 48,6,6;
— 25,6, — 213,06, — 45,664
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= Rj,jx +26,(0;6 — 9k6;),
from which we obtain

ﬁéljk —Rj, . =28;(;6, — k6)).

Problem 5.5.2. Let M be a C* manifold, with a linear connection having compo-
nents Fjlk with respect to a local coordinate system. Write the formulas for the
covariant derivative of the following tensor fields on M:

(1) A vector field with components X'.

(2) A differential 1-form with components 6;.

(3) A (1,1) tensor field with components J;

(4) A (0,2) tensor field with components T;;.
Moreover, prove:

(5) If the given connection is torsionless, for a vector field with components X',
one has

i i _ _yrpi

X —Xpj = =X Rojp,

where X;ijk = (X;ij);k, and R;kl are the components of the curvature tensor field of the
given connection.

(6) For a differential 1-form with components 6;, one has
0;.jk — Oikj = O-Ri i — 20:, Ty

where T]’k and Ri]-kl are, respectively, the components of the torsion and curvature
tensor fields of the given connection.

Solution. Let d; = d/dx/, where {x’} stand for local coordinates. Then:

(1) , ‘ ‘
V,,(X'9) = (9,X))0; + X'},

Hence ‘ ‘ '
X;’j = 8]~X’ +Fj’rX’.

=V;(00;)—6(V59))
=V, ((6:dx")0;) — 6(I7;0,)
— 9,6, T3}6,.

(3)

(V.d)0) = VaJdj — IV 3,0, = VI50, — I T30, = (95)0, + T30 — T30
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Hence . . ' '
Ty = QI+ TG — T
(4)
Tijsk = (V5,7)(9j,9k)
= Vo, Tk — T(I350r, k) — 7(9), It or)
= tje = I3 ok — L T
(5) We have
Xl = O (X" + T X") + XT3, — I X,
= ;X" + (T})X" + T} X" + X[ — I X,
= 0I;X' + (WI;)X" + I} X5 — X TLI + X — T X,
= 09;X' + X" (9T}, — T L) + I, X5 + L X! — XL,
and
Xii; = 00X+ X" (93, — L) + T X!+ THX5 — TiX.,
hence . . . . . . .
k= Xij = X" (T, = Ol + T — T T) = XTRyy ;.
(6)
6i:jk = (9j0; — I}0;):x = 9k (9;0; — I;6;) — I};(0,6; — I; 65) — I};(9;6, — I} 6).

Expanding this formula and the similar one for 6;;; we obtain
6i:jk — Ouxj = (9l — Okl i + I T — Tili) 0, + (T — Ii) (9, 0; — I 65)
= R0, +2T;0i.

Problem 5.5.3. Given a linear connection V of the C* manifold M, consider the

linear connection V = %(V + ?) where V denotes the conjugate connection of V
(see Problem 5.4.1). Prove:

(1) V is torsionless.
(2) If V is torsionless, then V = V=V.
Solution. (1)

To(X.Y) =VxY — VyX — [X.Y]

1 1~ 1 1~
= EVxY—l— EVXY_ EVyX— EVyX— [X,Y}

1 1 1 1 1 1
= EVxY—l— EVyX—f— E[X,Y] — EVyX— EV)(Y— E[Y,X] — [X,Y] =0.
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(2) If VxY = VyX +[X,Y], then
VxY = VyX +[X,Y] = VxY,
hence VyY = %VXY + %VXY = VyY.

Problem 5.5.4. Consider the linear connection of the half-plane y > 0 of R? defined
by the components I'y = 0, except I} = 1, with respect to the frame (e1 = d/0x,
ey = d/dy). Consider the frame

(e1=0/0dx, &, =x03/dx+yd/dy).

Compute the components of the connection and the components of the torsion tensor
with respect to this frame.

Solution. We have V;.¢; = Fl-fék, and

Vz 1=V, e =0,
Ve e =V, (xer +ye)
=(1+y)er
= (1+ye,
2,81 = Ve, +ye,€1 =0,

2,62 = Vxelerez (xe1 +y62)
=xe| +xye| +ye;p
=xyej +eé;.

Thus the nonvanishing components of V with respect to the frame (€, é;) are
1 1 52
Iy =1+, I; =xy, Ip=1,

and the only nonvanishing component of the torsion tensor is T112 =y

Problem 5.5.5. Let V be a torsionless linear connection of the C* manifold M.
Prove that

do(X,Y) = (Vxo)Y — (Vyw)X, XY €X(M), ocA'M.

Solution. By the relation between the bracket product and the exterior differential
we have:

doX,)Y)=XoY)-Yo(X)—o([X,Y])
= wa(Y) —Vy(l)(X) — (x)(VXY —VyX)
= (an))Y—(Vy()))X.
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Problem 5.5.6. Let M and N be C* manifolds with linear connections V and V',
respectively. A C” map ¢@: M — N is said to be connection-preserving if

0 (Vx¥)p = (VoY) ) - (*)

for all p € M, where XY are @-related to X', Y', respectively. Prove that if @ is
also a diffeomorphism, then:

(1) - (RX,Y)Z) =R (¢-X,9-Y)(¢-Z), where R and R’ are the curvature
tensor fields of V and V', respectively.

(2) - (T(X,Y)) =T (¢-X,0-Y), where T and T' stand for the torsion tensors
of Vand V', respectively.

Solution. (1) First, we remark (see also Problem 5.4.3) that if ¢ is a diffeomor-
phism, then the formula (x) means

@-(VxY)=Voxo-Y.

Thus,
¢ (R(X,Y)Z)= ¢ (VxVyZ—-VyVxZ -V x y|Z)
=Q- VxVyZ — Q- VyVxZ — ¢ V[X’,Y]Z
=Vox (9 VvZ) =V (¢ VxZ) = Vi 1y y0-Z
= V/(val(py([) -Z— V/(vaipX(P -Z— V/[(p-XAq)-Y](p Z
=R(¢-X,0-Y)(p-Z).
(2)

¢ (T(X,Y))=¢-(Vx¥ —VyX —[X,Y])
=¢-Vx¥ —¢-VyX —¢-[X,Y]
:Vipx(P'Y_Vip-Y(P‘X—[‘P‘X»(P'Y]
=Tep-X,p-Y].

Problem 5.5.7. If w is a differential r-form on a C* manifold M equipped with a
torsionless linear connection V, prove that

r

N (~Di(Vx,0)(Xo,.... X, ..., X,),
i=0

do(Xo,...,X,)

Xo, ..., X, € X(M), where the hat symbol denotes that the corresponding vector field
is dropped.



218 5 Fibre Bundles

HINT: If o is a differential r-form, the formula relating the bracket product and the
exterior differential is

r

(do)(Xo, ... X) = Y. (- 1) Xi(0(Xo, - ... Xi, ... X,))
i=0

3 (D) o([Xi, X)), X0 - K)o Koy X
i<j

REMARK. The more used case is that of differential 2-forms:

Solution.

i=0

72(71)1(0()(07 VXX]a 5(\17 aXr)
J<i

_2(_1)160()(07 aXla VXXj7 aXr)
J>i

:2(_1)1}(1((0(}(0, 7Xt> 7Xr))

i=0

~ Y (D)o (VxX; X0, .. Xy Xir o X))
j<i

+3¥ ()" o(VxXj Xo,- ., Xiy- . Xy X0
Jj>i

_Z XOa 7)’(\7 "aXr))

+2 D™ w(VxX; -V X Xo, ... X, Xy, Xp)
i<j

=do(Xo,...,X).

Problem 5.5.8. (1) Prove that if V is a flat connection of a connected manifold M
whose parallel transport is globally independent of curves, then there exists a C~
global field of frames on M.

(2) Prove that if V is a flat connection of a connected manifold M, then its
curvature tensor field vanishes.

Solution. (1) Let us fix a point pg € M and a basis {vi,...,v,} of T, M. Given
an arbitrary point p € M, there exists a differentiable arc y: [0,1] — M such that
7(0) = po, y(1) = p. We define X;|, = 7,(vi), i=1,...,n, where ty: Tp,,M — T,M is
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the parallel transport along y. The definition makes sense by virtue of the hypothesis
and (Xi,...,X,) is a frame as 7, is an isomorphism.

(2) According to the definition of a flat connection, given a point p € M, there
exist an open neighborhood U of p such that the parallel transport in U is in-
dependent of curves. Hence from (1) it follows that U admits a linear frame
(Xi,...,X,) invariant under parallel transport; that is, VxX; = 0, for all X € X(U).
Then R(X;, X)Xy = 0 and hence R = 0.

Problem 5.5.9. Find the (equivalent) expression of Cartan’s second equation of
structure 2 = dw + ® A\ @, that is, of Q; = dw} + a),i A (1)5?7 when one considers
transpose matrices, i.e. when the upper index denotes the column and the lower
index denotes the row of the corresponding matrix.

Solution. When one considers the transpose matrices of @ and €2, it is immediate
to see that
i i K on i qosi ik
Q) =dw;+ o Ao = doj — o A o],
that is, Q = dw — o N\ @.

REMARK. Some authors prefer to use this expression of Cartan’s second equation
of structure.

Problem 5.5.10. Find the holonomy group of
(1) The Euclidean space R".
(2) The sphere S* with its usual connection.
Moreover, prove:

(3) The holonomy group, at any point, of a connection in the principal bundle
(S2n+l ) ﬂ,CPn,Sl)

is ST
(4) The holonomy group of a connection in the principal fibre bundle

(S4n+3,7T,HPn,S3)
is either S' or 5.

Solution. (1) Let V be the usual flat connection, then Hol(V) = {0}, as the parallel
transport along any closed curve is the identity map.

(2) Let V be the usual connection. As S? is orientable, the holonomy group
Hol(V) is a subgroup of SO(2).

We shall see geometrically that Hol(V) = SO(2). Consider, with no loss of gen-
erality, any orthonormal basis {e1,e>} of TyS?, N being the north pole (0,0, 1), and
do its parallel transport along the piecewise C* curve in S2, given (see Figure 5.3
for a certain vector tangent starting as (1) at the north pole) by the half-meridian
determined by e; until the equator, then the curve along the equator by a rotation of
angle B of the equatorial plane, and then the half-meridian of return to N. The net
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Fig. 5.3 An element of the holonomy group of 2.

result of the transport is a rotation of angle 3. As 3 can take any value 8 € [0,27],
in fact Hol(V) = SO(2).

(3) Let I" be a connection in (§>'*! 7z, CP" S!). Since CP" is simply connected,
the holonomy group G = Hol(I") at a point u € S?**! coincides with the correspon-
ding restricted holonomy group Hol’(I"). Hence either G = S' or G = {1}. In
the latter case, : S?"t1 — CP" should admit a G-reduction 7: P — CP", which
should be trivial as CP" is simply connected and the reduction P is a covering.
Hence P admits a global section o: CP" — P which induces a section of 7, as
P C §?"*1_ Consequently, the bundle 7: $*"+! — CP" should be trivial; that is,
§21+1 ~ CP" x S'. This leads to a contradiction as H*(S?>"*! Z) = 0 while, by
Kiinneth’s Theorem, H?(CP" x S',7Z) = Z.

(4) As in the previous case (3), G = Hol(I") = Hol®(I"), since the quaternionic
projective space HP" is simply connected. Hence G cannot be discrete, because in
this case, since H*(§**3,Z) = 0, an argument similar to the one above applies. If
dimG = 1, then G = S!. The case dimG = 2 cannot occur by virtue of Problem
4.1.10, and dim G = 3 implies G = $3.

5.6 Geodesics

Problem 5.6.1. Let x' = x, x> =y be the usual coordinates on R?. Define a linear
connection V of R? by F/lk =0 except 1"112 = 1"211 =1

(1) Write and solve the differential equations of the geodesics.

(2) Is V complete?

(3) Find the particular geodesic ¢ with

o(0)=(2,1), G’(O):%—f—%.
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(4) Do the geodesics emanating from the origin go through all the points of the
plane?

(5) If 6 and G are geodesics with 6(0) = 6(0) and ¢'(0) = kc'(0), k € R,
prove that 6 (t) = & (kt) for all possible .

Solution. (1) The differential equations are

d’x dedy d%y

42—, =2 =0
dt2Jr dr dt ’ dr?

Now we obtain the equations of the geodesics through a given point (xo,yo); that is,
such that 6(0) = (xp,y0)-

From the second equation we have y = Az + yj.

Let A = 0. Then the solutions are

x =Bt +x, Yy =Yo. *)
d’x dx d (dx\ /dx
S5 +245 =0, thatis, o (5] /S =24, one
a T Ty <dt> dr one s

dx dx Yy .
log Pl —2Atr 4+ C, so that Fri De™*4, D # 0. Therefore the equations are

Let A # 0. Then from

D

X:ﬁ(

I—e ) 4x, y=At+y,, D#O. ()
(2) From equations (%) and (*xx) in (1), we see that V is complete, because the
geodesics are defined for 7 € (—oo, +o0).

(3) Since dy/dt = 1, the geodesic is of the type A # 0, and one has
X0 =2, yo=1, K (0)=D=1, Y(0)=A=1,

hence | 5
—21
=— 2 =t+1.
X 2e + 3 y +
(4) Suppose A = 0. Then such a geodesic is of the type x = Bt, y = 0. For A # 0

one has

D —24
x:ﬂ(lfe ", y =At.
That is,
D
=~ (1—-e%
x 2A( e )

is the family of geodesics with A # 0 emanating from the origin. The points (0,y),
y # 0, are never reached from (0,0). In fact, if x = 0, since D/2A # 0 we have
e~ » = 1, thus y = 0. Obviously, those points are not reached either from (0,0) with
a geodesic such that A = 0.

(5) Suppose A = 0. Then from 6(0) = 6(0) it follows that
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(x0)o = (x0)z,  (o)o = (v0)s;
and from 0’(0) = k6’(0) we deduce B; = kBg. Hence
o(t) = (Bst + (x0)o, (y0)o)

= (kBst + (x0)5, (¥0)5)
= o(kt).

Suppose now A # 0. Then from ¢(0) = &(0) it follows that

(x0)o = (x0)5,  (V0)o = (0)3>

and from 0’(0) = k6’(0) we deduce Ag = kAgz, Dg = kDg. Thus

o(1) = (% (1= ) 4 (x0)g, Ag + <yo>(,)

Ds kA~
_ (IZ (1 e zkAgz) + (%05, kA&t-l—(yo)a)

=o(kt).

Problem 5.6.2. Consider the linear connection V of R* = {(x',x*)} with compo-
nents 1';;‘ =0 except Fllz =1, and the curve

o(t) = (c'(r),0%(t)) = (—2e " +4,1+1).

Compute the vector field obtained by parallel transport along G of its tangent vector
at 6(0). Is y a geodesic curve?

Solution. The tangent vector to ¢ at o(f) is

d d
=222 + 2
3)(1 (F(t) 8)(72 U(t)
Let P 5
Yo =Y'(t) =—=| +Y*(t) =
o x|, 922 |,

be the requested vector field. The parallelism conditions are

doi(t) _;do/(t)
r} Y =0
@ g ’
that is 1( ) 2( )
dy (t dy-=(t
— 4 2e7'Y (1) =0 =0.
dt tee ®) ’ dt

One easily obtains that Y'! () = 2Ae " + B. For t = 0, the vector Y5(0) is, by hypoth-
esis, 6'(0). ThusA =1, B=0, and
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PR
—t
V=2 50t

Hence the curve is a geodesic.

Problem 5.6.3. Let M be a C™ manifold with two linear connections \% and V with
Christoffel symbols F ' and F]’k respectively, such that T, lk +1TI ’] = 17k + 17(‘1
(1) Have V and V the same geodesics?
(2) What intrinsic meaning has the previous condition?

HINT (to (2)): Use the difference tensor of V and V.

Solution. (1) The geodesics y(r) = (x!(¢),...,x"(r)) for V and V are given, respec-
tively, by the systems of differential equations

d2x o dxd dxk d2x < dxd dxF
—— 4Ti—— =0 and —+I},——=0, i=1,....n
drz TR dr dr and g7 Tk » E= Syeenalt
; dx/ dot dx/ dxt
We have 1'},(5 o I;w o A , from which
Sdxd dxk 1 dx/ dxk
P = Ip .
& dr 2( eI 5 dr dr
If T+ I, = [} + I\, then
cde/ Ak 1 do/ dx*
0 = — (T i -
I qr de 2( ) dr dt
1o~ =~ dod dxk
=2 TG g g
_ i d
g dr

thus V and V have the same geodesics.
(2) It is immediate that the previous condition means that the difference tensor
A =V —V is skew-symmetric.

Problem 5.6.4. Let x', x* be the usual coordinates on R?. Consider the linear con-
nection V of R? with components T'X = 0 except F 5 = 2, and the curve o(t) =
(e +5,3t+7).

(1) Compute the vector field Y5 () obtained by parallel transport along & of its
tangent vector at &(2).

(2) Is © a geodesic curve?

Result. (1) Y5, = —4e’8% +3e'2’6’%. (2) No.
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5.7 Almost Complex Manifolds

Problem 5.7.1. An almost complex structure on a C™ manifold M is a differentiable
map J: TM — TM, such that:

(a) J maps linearly T,M into T,M for all p € M.
(b) J*> = —I on each T,M, where I stands for the identity map.
Prove:

(1) If M admits an almost complex structure (it is said that M is an almost com-
plex manifold), then M has even real dimension 2n.

(2) M admits an almost complex structure if and only if the structure group of the
bundle of linear frames F M can be reduced to the real representation of the general
linear group GL(n,C), given by

p: GL(n,C) — GL(2n,R)

A+iB — (_2 ﬁ)

HINT: Let f be the linear transformation of R*"* with matrix < OI {;’) Prove that
—in

the subset
P={z€FM: f(§)=("oJo2)(§), VEER™}

of the bundle of linear frames FM over M is a GL(n,C)-structure on M. The refer-
ence 7 € FM is viewed as an isomorphism z: R*" — TroM.

Solution. (1) 7T,M admits a structure of complex vector space defining a product by
complex numbers by

(a+ib)X = aX +bJ,X, XeTM, abeR

Thus the real dimension of 7,M is even, and so it is for M.
(2) We have

p(GL(n,C)) ={A € GL(2n,R) : Af = fA}.

In fact, decomposing A in n X n blocks,

A B
(e )
and by imposing A f = fA, we obtain C = —B, D = A. And conversely.
An almost complex structure J on M is a (1,1) tensor field on M such that J? =

—1I. The subset P of the bundle of linear frames over M, described in the hint above,
determines a GL(n,C)-structure. In fact, a linear frame z at p € M is an isomorphism
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GLE2mR) M

GL(m,C)

Fig. 5.4 Linear frames adapted to an almost complex structure.

2t R — T,M (see Figure 5.4). Let us see that the acting group is GL(n, C). In fact,
given z,7' € P, with 7(z) = n(z’), we have

f=z'oJoz & zofor'=1J

Then z ! oz’ofoz’_1 oz=zloJoz=f, thatisz ' oz’ € GL(n,C).
Conversely, given a GL(n,C)-structure P on M, we consider the operator J, in
T,M such that

LX=("oJoz)(X), XEeT,M, zen '(p)CP

By the definition of frame as an isomorphism of R** on 7,M, J,X is an element of
T,M.J,X does not depend, by the definition of GL(n,C), on the element z € 7~ (p).
In fact, if 7,7/ € ©~!(p), then there exists g € GL(n,C) such that z’ = zg, and then

/ / 1—1
JX = (z ofoz )(X)
= (Zogofogflozfl) X)
= (zofoz 1) (X).
Moreover, J> :zofoz—1 ozofoz_l =TI

Problem 5.7.2. (1) Does the sphere S* admit a structure of complex manifold?
(2) And the sphere S3?

HINT: Use the stereographic projections onto the equatorial plane, and identify this
one with the complex plane C.
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x

Fig. 5.5 The map ¢ 0 ¢, ! changes the orientation.

Solution. (1) Let ¢, be the stereographic projection onto the plane z = 0 from the
north pole N = (0,0,1) € 52, and ¢, the stereographic projection onto the plane
z =0 from the south pole § = (0,0, —1) € S>. We have (see Problem 1.1.9)

a b a b
b = —\ — b = —
(pl(a7 7C) <1_C71_C>7 (pz(a7 7C) (1+C71+c>7

so the changes of coordinates are
Progy ! =@op 1 R2—{(0,0)} — R*—{(0,0)}
(a,b) a b
a — |5, 5 |-
’ PP 21 b?
Identifying the plane z = 0 with C, we can write

b a . b
) @(a,b,C)— 1+C+11+C

+i

(Pl(a’b7c):1—c 1—c

)

SO
Progy ' =@og':C—{0} — C— {0}
SR e S
To see that the changes of coordinates are holomorphic, we have to show that
they satisfy the Cauchy-Riemann equations

u_ov ou_ v
ox dy’ dy  ox’
5- A computation shows that

X y
where u(x,y) = e v(x,y) = 212



5.7 Almost Complex Manifolds 227

du _ dv du _dv
ox a9y’ dy dx’
that is, the change of coordinates is anti-holomorphic, instead of holomorphic. This
could be expected from the fact that ¢ o @ ! changes the orientation (see Fig-
ure 5.5).
In order for the equations of Cauchy-Riemann to be satisfied we have to change

the sign of one of the (real or imaginary) components of the change of coordinates.
Consider, instead of @,, the new chart y, = @, given by

a . b

be)= ——— —i—.
va2(a,b,c) e e

The map ;, is a homeomorphism of 2 — {N} on C — {0}, as it is the composition
map

—(vy B c-{p & C-{o},
where j denotes the conjugation map. The new change of coordinates is

—1 SN X . y
(Wzollll )(x+1y)*x2+y2 1x2+y27
and it is immediate that they satisfy the Cauchy-Riemann equations.

(2) §? does not admit any complex structure, because a complex manifold nec-
essarily has even real dimension (see Problem 5.7.1).

Problem 5.7.3. Consider the torus T> = S' x S! and let (x,y) be the canonical coor-
dinates (0 < x < 2w, 0 <y < 2m) on T?. The corresponding coordinate fields define
global fields denoted by d/dx, d/0dy. Let J be the almost complex structure on T?
given by

d s O d 1 d
A~ A A -
ox (1+cos”) dy dy 14cos?xdx

(1) Show that J is integrable.

(2) Find the corresponding chart of complex manifold.

Solution. (1) A necessary and sufficient condition for a complex structure J to be
integrable is that its Nijenhuis tensor N; be identically zero. Since N; is skew-

symmetric in the covariant indices, we only have to show that N; <8_’ 8_> van-
X oy

ishes. Substituting, we have

v (2 ) L2
8)6 8 8x cos’x) 1+cos?x dy

0 1

0
—_— 2 _— =
ox1 +coszx) (14cos”x) dy 0
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d d

d
(2) We must find coordinates u,v such that J=— = —, J=— = —=—. We must

du ov’ v u

have

Jd Jdud dJva Jd _Jdud Jva

ax oxdu axav ay dyau ayav *)
and applying J in (%),
d Jdud Jdva
— 2 —-— =
(L+cos )By dxdv dxdu
(%)
L 0w o
1+coslxdx dydv dydu
From (%) and (x) it follows that
Jud dvad , du d 5 \dv d
$%+$$ = (1+cos )8y av (1 +cos )8y du
(©)
o o1 wd 1 v
dydu dydv  l+4cos2xdxdv 1+cos?xdxdu’
Both equations in (¢) imply:
du 5 OV du 1 v
E_—(H—cos x)a—y, 9y~ Tfcovxox (00)

It suffices to give a particular solution of (¢¢). From the equations

du
= ~—_ 2
v=y, (I +cos™x),
one has a solution of (¢¢), given by
_a 3 1. _
u= 5% — 7 sinxcosx, V=

Problem 5.7.4. Let t: M — N be a topological covering.

(1) Prove that if N is a complex manifold, then M also is a complex manifold.
Equivalently, M has a unique structure of complex manifold such that r is a local
diffeomorphism.

(2) If M is a complex manifold, is necessarily N another one?

Solution. Let p € M. We define the chart (U,, @,) around p in the following way:
Let x = 7(p) and let U, be a neighborhood of x such that Uy is the domain of a
chart (Uy, @) and m: U — m(U) is a homeomorphism. Then we define @, = ¢y o
(m|y, ), where U, denotes the neighborhood of p homeomorphic to U, by 7. Thus
we define an atlas on M, and we have to prove that the changes of coordinates in M
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are holomorphic. Notice that dimM = dimN. Let p, ¢ € M, such that U, NU, # 0,
and let x = 7(p), y = m(q). Then we have to prove that the map

Do, ,(U,NU,) — y(U,NU,)
is holomorphic. But
D 0@, =y 0(7|u,nu,) ° (¢xo (Tlu,nu,))
= ¢yo (nly,nu,) © (Tlu,nu,) oo
=g00; ',

which is holomorphic because N is a complex manifold.

(2) It is not true in general. In fact, the map 7: > — RP? is a double covering.
S2isa complex manifold, as we have seen in Problem 5.7.2, but RP? is not, because
it is not orientable (see Problem 3.1.4), and every complex manifold is orientable.

Problem 5.7.5. Let X be a vector field on an almost complex manifold (M, J). Prove
that the following conditions are equivalent:

(1) LyJ = 0.
Q) [X,JY]=JX,Y], YeX(M).

Solution.
[X,JY] = LxJY = (LxJ)Y +JLxY = (LxJ)Y +J[X,Y].

Problem 5.7.6. Let (M, J) be an almost complex manifold. If V is a linear connec-
tion of M whose torsion tensor Ty vanishes, define the linear connection V by

= 1
VxY = VxY — 1 (Viy X +J(Vyd)X +2J(VxJ)Y).
(1) Prove that JVxJ = —(VxJ)J.

(2) Compute the torsion tensor T in terms of the Nijenhuis tensor of J.

Solution. (1)
(Vx.])J—FJVXJ = Vx.lz = V)((—I) =0.

(2)
To(X,Y) = Vx¥ — VyX — [X,Y]

=Tv(X,Y) — — (V)X — (VyxJ)Y —J(VyJ)X +J(VxJ)Y)

1
4
(Vo)X = (Vyx )Y 4+ (VyJ)JX — (VxJ)JY)

1
4
1
= _Z(VJYJX—JijX —VxJY +JV,xY
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—VyX —JVyJX +VxY +JVXJY)

:_%([JY,JXH—[X,Y]+J[JX’Y]+J[XJY])
= 1N X,Y
—Z ( ) )7

where N denotes the Nijenhuis tensor of J and we have applied (1) above in the
third equality.

Problem 5.7.7. Let (M,J) be an almost complex manifold. Prove that the torsion
tensor T and the curvature operator R(X,Y) of an almost complex linear connection
V (that is, a linear connection such that (VxJ)Y =0, X,Y € X(M)), satisfy the
following identities:

(1)
TUX,JY)—JT(JX,Y)—JT(X,JY)-T(X,Y)=—-N(X,Y),
where N denotes the Nijenhuis tensor of J.
(2)R(X,Y)oJ =JoR(X,Y).
Solution. (1)

T(JX,JY)—JT(JX,Y)—JT(X,JY)—T(X,Y)
— JVxY — IV X —[JX,JY] = JV;xY —VyX +J[JX,Y]
+VxY +JVy X +J[X,JY] = VxY + VyX + [X,Y]
= —N(X,Y).

R(X,Y)JZ=JVxVyZ—JVyVxZ—JVx y|Z
=JR(X,Y)Z.

Problem 5.7.8. Let M be a complex manifold of complex dimension n. Let {zk},
k=1,...,n, be a system of complex coordinates around a given p € M. If 7 =
XX 4iyk, let {x*,y*) be the corresponding system of real coordinates around p. Let
M, TphM, and Tp1 OM be the real tangent space at p, the holomorphic tangent space
at p, and the space of vectors of type (1,0) at p, respectively (see Definitions 7.5.9).
Prove that there exist unique C-linear isomorphisms

. h . Th 1,0
&, T,M — T, M, Y: T,M — T,"M,

with respect to the natural complex structure of each of these spaces given in 7.5.9,
such that for every system {ZF}, k = 1,...,n, we have
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J J
(Dp<8xkp>t?zk

9 10 .9 -
‘f’p<azkp>2(a)d<l8y">p’ b *

Solution. Uniqueness. An R-basis of T,M is {3/dx*|,,0/9y*|,}. As we have
d d
o N B Y
' ( dxk p> <8xk p>

_d

= 5
itis clear that {9/dx*|,} is a C-basis of T,M. Hence @, is unique. Also ¥, is unique
as {0/97"|,} is a C-basis of TphM and {1(9/9x* —i9/9y¥),} is a C-basis of Tpl"OM
(see 7.5.9).
Existence. Each X € T,M is an R-derivation X: C;M — R. Tensoring with C we
obtain a C-derivation

, k=1,...,n,
P

)
p

X®l:C;MeC — C.
As O,M C C;°M®(C, restricting X ® 1 to &,M, we obtain
X:=(X&)|gucTIM.
We define ®,: T,M — T}M by ®(X) = X. From the very definition of @, we have
Dp(X +Y) = @p(X) + Dy(Y), Dy (AX) = 2Dy (X),
forall X,Y € T,M, A € R. Moreover, we have
(JX @ 1)K = Jx X +iIx y*

= dx*|, JX +idy*|,JX

= JH(de¥|,)X +177(dyF )X

= —dyk\pX—l—id.xk|pX

=id|, X

=i(X®1)7).

Hence, @, is C-linear.
Let us compute @,(d/dx*|,). From the definition we obtain
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(2

) > (2%) = 8.
Hence _
K I R
axk|, *9z%|, 97|,
Let O: T,,1 M- T,f’M be the map given by
0,(2)=Z=Zlg,m), VZET,'M.

From its very definition it follows that @), is C-linear. Let us compute its expression
in the standard basis (cf. 7.5.9). We have

a2, (1 (2- aik),j: (; (%w%)) (2

1/ 0 d
=(z|=—=-i= x* 41 st
(2 <8xk ka)p> <+ =
Hence N
1/ d 0 ) )
O =5 —i== =8 | = —
p<2 <8xk l&yk>p> *9z%|, 97|,

Therefore, ¥, = @p* I Moreover, the isomorphisms @, and ‘¥, on each fibre extend
naturally to complex vector bundle isomorphisms (see 7.5.9)

&:TM — T"Mm, v 7'M — 7M.

We identify the bundles TM, T"M and T'°M via @ and ¥. Under the isomorphisms

® and ¥, both TM and T'°M are also holomorphic vector bundles
Finally, we remark:

(a) The election in (x) is motivated by the fact that if f is a holomorphic function
ie. df/dzF =0, then
af _of _1(af of
oxk 9k T 2 \axk oyt )
(b) The identification @ is always tacitly assumed, i.e. one always writes

9 e M2 0 i 9 e M2 9
o 0 2\ ok 18yk ane oz 2\ dxk  oyk )’



Chapter 6
Riemannian Geometry

6.1 Riemannian Manifolds

Problem 6.1.1. Let (M, g) be a Riemannian n-manifold. Prove:

(1) Given o, € TyM and an orthonormal basis {e;}, i = 1,...,n, of T)M,
and denoting by g~ the contravariant metric associated to g, one has g~' (o, B)
=X a(ei)B(ei).

(2) For X € T,M, one has g~ (o, X”) = a(X) = g(0f, X), where

. * b
b T M — TiM,  X*=g(X,"),
B T,M - M, of =g ' (a,0),

are the musical isomorphisms (named “flat” and “sharp”, respectively) associated
to g.

Solution. (1) In general, if (g;;(p)) is the matrix of g with respect to {e;}, then
(8" (p)) = (gi;(p)) " is the matrix of g~! with respect to the dual basis {e'} to {¢;}
in 7;M. In this case, (gi;(p)) = (0;;) with respect to {e;}, so
g (o B) = g ou;
= 5ij0€iﬁj

= Z%‘Bi
= 2 (x(e,-)ﬁ(e,-).

g (0, X") = g (p)oygr;(p)X*
= 5]£O£iXk

P.M. Gadea, J. Mufioz Masqué, Analysis and Algebra on Differentiable Manifolds, 233
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= o X'
= a(x),
g(of, X) = gij(p)g" (p)ouXx’
= 5jl'<Olka
= OCij
= o(X).
Problem 6.1.2. Let X| and X, be the coordinate vector fields for a set of orthogonal

coordinates on a surface. Prove that there are isothermal coordinates (also called
conformal coordinates) with the same domain of definition and the same coordinate

curves (as images) if and only if XoX; <log &> =0, where g = gi; dx' @ dx/ is the
822

metric.

Solution. We have orthogonal coordinates x!, x> with coordinate fields X; = 9 /dx',
X, = d/dx%. Since g(X1,X,) = 0, the metric is

g=gndx! ® dx! + gy d? ® dx’.

If there exist coordinates y',y? with the same coordinate curves (as images) it must

be that
ox! B ox? B ay! B dy? B

P T F A R
and thus
" NI R B )
P77 0yT T~ 9yl oxl” 2= oy?  9y? ox?’

If the coordinates are isothermal, there exists v such that
g=v(dy'ody' +d?od?).

That is, g11 = g2 = v, where g;; are the components of g in the new coordinate
system; but the change of metric is

o 3yk &yl
8ij _gklﬁﬁ’

that is,

Lty ooy
811 —gnaxl oxl 8228)61 o4l

dy! >
= (w) 811

=A(x"gn,
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82=8115532 7825352

dy? 2
= (W) 822
Z.U(xz)gzz-

~ o A(x!
Since g11 = g2, it follows that g _ (xz)
gn  p(x?)
g11 are positive, hence A > 0, and similarly g > 0. Thus A (x')/u(x?) > 0. Taking

logarithms, we have

Jd 0 g d d 1 2\

. Since g is positive definite, g1; and

Conversely, if X,X; | log &> =0, then log s _ @(x") — w(x?), for some func-

822 822

1
. g e?w)
tions ¢, y, thus E = We define

1 1
V= —=X, ) = —=X,
eq’(xl) e‘l/(x2>
d

d
and coordinates y',y? such that — =Y}, —
Y,y 8y‘ 1 3)}2

dy' = Vel dx!, dy? = VeV dx?.

The change of coordinates is possible, as the determinant of the Jacobian matrix is

=Y, or equivalently

1,2
8(x1,x2) _ 1 20,
a(y',y?) o () +y(x2)

In the new coordinates, the metric g is given by

~ ox! ox! 0x2 0x%
81 :glla_yl&—yl+g228_yla—y1
1
)
- dx! ox! 0x2 0x%
gzzigna—yZa—yz+g228—y28—y2
1
V@)

=811

b

=822

)

g12 =821 =0.
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X2

g gne¥®™)

- 1
g2 g2 e?t)
same coordinate curves (as images) as Xt ,xz.

= 1. Thus y',y? are isothermal coordinates, with the

Problem 6.1.3. Write the line element of R> — {0} in spherical coordinates, and
identify R® — {0} as a warped product.

Solution.
ds? = dx? + dy? +dz’
= (d(rsin6cos (p))2 + (d(rsin6sin (p))2 + (d(rcos 9))2
=dr? + 17 (d6* +sin® 0 dg?),
reR", 0€[0,n], ¢e€l0,2n).
We have the diffeomorphism

B0 - ' s v (W),
A%

and since for r = 1, ds® furnishes the line element on S2, we have, with the notation
as in Definition 7.6.2,
R} — {0} ~RT x, 82,

where ~ means “isometric to.”

Problem 6.1.4. (The round metric on S") Let ¢, : [—%, %" ! x [—m, 7] — R""! be
the map defined by the equations:

x! =sin@!
. i—1 . .
X = j];[lcosef sinf@', i=2,...,n )

n .
X = 1] cos 6/,
j=1

with—3<0'<%, i=2,....n; —1<0"<

Prove:

(1) im ¢, = S".

(2) The restriction of @, to (=%, %)" is a diffeomorphism onto an open subset of
the sphere.

(3) I g™ = @y ((dx')2 + -+ (dx"1)2), then

n i—1
=y ( cos? 9’) (d6)?, Vn>1,
i I

i=1 \Jj=

with TT5_ cos? 0/ = 1 for k < 1.
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Solution. (1) Let ¢, = (¢}, ..., ¢"*!) be the components of ¢,. From the very def-
inition of this map it follows that

pi=¢ ,, i=1,...,n—1
¢, =@, _,sin@" (%)
ot = @), cos0".

These formulas show, by induction on 7, that im @, = S", taking into account that

forn=1wehave ¢;(8') = (sin8',cos 8') and hence the statement holds obviously
in this case.

(2) From the formulas (%) we obtain

cos 6! 0 o -- 0
* cosBlcosf? 0 --- 0
a(xl,. ,x”) .
= * * o 0
a(6!,...,0m)
* * SRR ?:lcosej

= cos@' (cosB!cos6?)--- (Hcos@’)
j=1

Hence on the open subset (—%,%)" ! x ((—m,—Z)U(—%,Z)U(—%,7)) we have

Moreover, @, is injective on (—%,%)""! x (=7, 7), for ¢,(0) = ¢,(6), with 6 =
(0',...,6M"), 08" =(6"",...,0™) means according to (x*):

Pi(0)=@i(0"), i=1,....n—1, 6)
@y 1(6)sin0" = @) |(6')sin6"™, (1)
@p-1(0)cos 8" = ¢;_;(6")cos 6™ (19

As @' ,(0) >0, ¢ ,(0") > 0, from equations (T1)—(1 T 1) we obtain ¢ ,(0) =
@_,(0"); hence 6" = 0", and proceeding by recurrence on n, from equations (x)
we conclude that 6 = 6’.

(3) We have g(1) = (d6')? obviously. Hence the formula in (3) in the statement
holds true in the case n = 1. Assume n > 2. We have
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g™ = (dg,)’ + -+ (dop ')+ (dgp)* + (o)’
= (d@,_1)*+---+ (dg)~ )’ + (sin0"dg)_; + @} cos 6"d6")?
+ (cos 0"d@!" | — @, sin6"de")?
= (d@u_1)* 4+ (A= ))* + (d@j_y )* + (@)_1)*(d6")
= @r g ((dx!) - (")) + (@) (d6")?
=gV 4 (g 1)*(do")?

_g (Hcos 6/) (Hcos ef) o)

(by the induction hypothesis)
n i—1 ) )
=Y [ [Jcos*6’ | (d6")>.

i=1

6.2 Riemannian Connections

Problem 6.2.1. Let (M, g) be a Riemannian manifold and let V denote the Levi-
Civita connection. Prove the Koszul formula:

2¢(VxY,Z) =Xg(Y,Z)+Yg(Z,X)—Zg(X,Y)
—i—g([X,Y],Z) —g([Y,Z],X) —i—g([Z,X],Y),

X,Y,Z € X(M).

Solution. A linear connection V of (M, g) is the Levi-Civita connection if V paral-
lelizes g and is torsionless. That is:

(a) Xg(¥,Z) =g(VxY,Z)+g(Y,VxZ).
(b) Vx¥ —VyX = [X,Y].
Now, one has
Xg(Y,Z) = g(VxY,Z) +g(Y,VxZ),
Yg(Z,X)=g(VyZ,X) +g(Z,VyX),
—8(VzX,Y) —g(X,VzY).

|
=
>
=

I

Thus

Xg(Y,2)+Yg(Z,X)—Zg(X,Y)
=g(VxY,2) +g([X,Z],Y)+g([Y,Z],X) +8(Z,VyX),
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but g(Z,VyX)=g(Z,VxY)—g(Z,[X,Y]), so one has

Xg(Y,Z)+Yg(Z,X) —Zg(X,Y)+g([X,Y],Z)
—g([Y,Z},X)—I—g([Z,X],Y) = 2g(VxY,Z).

Problem 6.2.2. Let M be an n-dimensional Riemannian manifold, and Y a vector
field defined along a curve y(t) in M. The covariant derivative DY (¢)/dt of Y (¢) =
Yy is defined by

DY (1)
T VayaiY,s
where V denotes the Levi-Civita connection of the metric. If Y is glven by Y( ) =
Y(t)(9/0x") ) in local coordinates x' and y(t) is given by y(t) = (y*( (1)),
dy _ dY ( ) 9
hen —, and
M a T Tdar on "
DY(r) _ (dY'(t) 4V (t) i\ @
dr < o Theg Y05 )

where r/lk are the Christoffel symbols of V with respect to that local coordinate
frame, given by

Let U be an open neighborhood of (ug,vo) in R? with coordinates (u,v) and let
f: U — M be a C* map. Consider the two tangent vector fields d f /du and d f | dv
to the curves v = const and u = const, respectively, and let DX /du, DX /dv be the
covariant derivatives of any vector field X along these respective curves.

(1) Using the previous expression (x) for DY /dt, prove by direct computation

DJf DIf
that
ovou duodv

(2) Which property of the Levi-Civita connection does the equality in (1) corre-

spond to?

. af Jd df d
Solution. (1) We have 5 = fum 30" 9y f*%’ and
Dof . . af
b covariant derivative along ¢ — f(u,t) of EPR
Dof . o af
EPE covariant derivative along ¢ — f(¢,v) of E

of i[9 of _ i 2 iy :
Let 5 = <8x’ f),avu (axiof>,wherel,y are functions on U.
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Then:
DJf e
Fvau Vit (xf)
I , , 0
_ 2 i jak v
_(8\) +(1—}kof):u' A ) (axiof)'
Similarly:
Dar (o (2
dudv ( du e Hp axt °f)
But since
af (9
Ju =t (w"f)
0
f*oa
dxiof) [ d
du <W f)’
we have A/ = ol Of).Hence
du

oA 9*(xiof) ou'
dv  dvdu  Odu’

Thus, as F].i = 176’], the claim proceeds.

(2) The property used is that V is torsionless. The converse is immediate from

D d D Jd
the above local expressions of — of a f

Jv du 8 du v’

Problem 6.2.3. Let (M, g) be a Riemannian manifold. Prove that for X € X(M) one
has
ILxg|*> =2|VX|* +2tr (VX 0 VX) € C™M,

with respect to the extension of g to a metric on T*M & T*M, where:
(a) |Lxg| denotes the length of the Lie derivative Lxg.
(b) V denotes the Levi-Civita connection of g.

(©) |VX|> =3,8(Ve,X,VeX), where (e;) is a g-orthonormal frame on a neigh-
borhood of p € M.

@) tr(VXoVX)= Zig(VveiXX,ei).
Solution. The extension of g to a metric on the fibre bundle 7*M @ T*M is the map

(,): (T*M) @ (2°T*M) — R
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defined by

(M @M, @) =egmiud)gmiul),  ni,m, i, € TM.

Given a g-orthonormal basis {e;} at p € M, we have g(X,Y) =Y, ¢(X,e)g(Y,e;).
Hence for any 1y ® 1, € T*M ® T*M we have

(Mmem,men) 28 711, 712761)2
:Zm ei) 112(@]‘)2
L]
2
:Z((n1®n2)(ei’ej)) )
ij

so that for any 2 € T*M @ T*M one has (h,h) =3 ; (h(ei,ej))z.
In particular, the length of the Lie derivative of g with respect to a local ortho-
normal frame (¢;) in a neighborhood of p € M, is given by

|Lxg|* = Z((Lxg)(ei’ej>)2~

Hence

ILxgl* = Y ((Lxg)(eie))?

i,J

=Y (Lxgl(ei,ej) — g(Lxei,e;) — g(ei, Lxe;))?
i,j

2
=Z(X@j—g(vxei,ej)+8(Ve,-X,€j)—g(ei,Vxej)+g(€i,Ve,X))
LJ
2 (Ve X, e —|—g(e,,VeIX))

_22( V. X e)g(Ve X e)+g(V X e]) (Ver7ei))

= 22 <2g (Verag(Ver7ei)ei) +8 (Vz,jg(veix,ej)EjX7ei>>
—22( (Ve X, Ve X) +8(Vy, xX, e,))
— 2(|IVX|)* 4+ 2t (VX 0 VX).

Problem 6.2.4. Let g be a Hermitian metric on an almost complex manifold (M, J),
i.e. a Riemannian metric satisfying

g(JX,JY) =g(X,Y), X, Y €e X(M).
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We define a tensor field F of type (0,2) on M by
F(X,Y)=g(X,JY), XY €X(M).

Prove:

(1) F is skew-symmetric (thus it is a 2-form on M, called the fundamental 2-form
of the almost Hermitian manifold (M,g,J)).

(2) F is invariant by J, that is, F(JX,JY) = F(X,Y).
Suppose, moreover, that V is any linear connection such that Vg = 0. Then prove:
(3) (VxF)(¥.2) = g(¥.(Vx))2).
4) g(VxN)Y,Z)+g(Y,(VxJ)Z) =0.
Solution. (1)
F(Y,X)=g(Y,JX)
= g(JY,J?X)
— g%, X)
=—g(X,JY)
=—-F(X,Y).

F(JX,JY) = g(JX,J*Y)
= —g(JX,Y)
= —g(J?X,JY)
= g(X,JY)
= F(X,Y).

VxF(Y,Z)= (VxF)(Y,Z)+ F(VxY,Z)+ F(Y,VxZ),
Vxg(Y,JZ) = (Vxg)(Y,JZ) +g(VxY,JZ) +g(Y,VxJZ)
=g8(VxY,JZ) +g(Y,(VxJ)Z) +g(Y,JVxZ)
=F(VxY,Z)+g(Y,(VxJ)Z)+ F(Y,VxZ).
Thus, (VxF)(Y,Z) = g(Y,(VxJ)Z).
(4) Since F is skew-symmetric, Vx F is also skew-symmetric. In fact,
(VxF)(Y,Z) = VxF(Y,Z) — F(VxY,Z) — F(Y,VxZ)
= —VyF(Z,Y)+F(Z,VxY)+F(VxZ,Y)
=—(VxF)(Z,)Y).
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Thus, by (3),

g((VxJ)Y,Z) = g(Z,(VxJ)Y)
= (VxF)(Z,Y)
=—(VxF)(Y,2)
=—g(Y,(VxJ)Z).

6.3 Geodesics

Problem 6.3.1. Compute the geodesics of R? with the Euclidean metric.

Solution. Since 17,( =0 for g = dx' ®dx! + dx?> ® dx?, the differential equations of
the geodesics are reduced to

d?x!

az =
so the parametric equations of the geodesics are

xlzalt—l—b], x2:a2t+b2, a;,b; € R.

That is, the geodesics are all the straight lines of R? with that parametrization.

Problem 6.3.2. Consider M = R? — {(0,0)} with the usual metric g = dx* 4 dy?
and consider the distance function dg given by

dg:MxM — R

1
(h.9) = dilp.g)=inf [ Vel @70,

where 7y denotes a piecewise C™ curve with y(0) = p and y(1) = gq.
(1) Compute the distance between p = (—1,0) and g = (1,0).
(2) Is there a geodesic minimizing the distance between p and q?
(3) Is the topological metric space (M,dg) complete?

(4) A Riemannian manifold is said to be geodesically complete if every geodesic
¥(¢) is defined for every real value of the parameter t. Is in the present case M
geodesically complete?

(5) Find an open neighborhood U, for each point p € M, such that for all g € U,
the distance dg(p,q) be achieved by a geodesic.

Solution. (1) Let ¥, be the piecewise C* curve obtained as the union of the line
segment from (—1,0) to (0,a) and the line segment from (0,a) to (1,0). Since

dg((—l,O),(O,a)) :dg((07a)7(1a0)) =V 1+612,
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we have
dg((—170>,(1,0)><m%{2 1+az}:2,

On the other hand, as M is an open subset of R2, if dp> stands for the Euclidean
distance, we have

dg((_170)7(170)) > dRz((_LO)v(lvO))

2,

thus d,(p,q) = 2.

(2) Since M is an open subset of R?, the geodesics of M are the ones of R?
intersecting with M. There is only one geodesic yp2 in R? joining p and ¢, but
Y = Yr2 MM is not connected, and so the distance is not achieved by a geodesic.

(3) (M,d,) is not complete. It is enough to give a counterexample: the sequence
{(1/n,1/n)} ey is a Cauchy sequence in (M, d,) which is not convergent.

(4) (M,d,) is not geodesically complete, because none of the lines passing (in
IR?) through the origin is a complete geodesic for the Levi-Civita connection. In fact,
the geodesics x = at, y = bt do define, for r = 0, no point of M.

(5) Given p € M, take as U, the open ball B(p, |p|).

Problem 6.3.3. (1) Find an example of a connected Riemannian manifold (M, g) to
show that the property “Any p,q € M can be joined by a geodesic whose arc length
equals the distance d,(p,q)” (see Problem 6.3.2) does not imply that M is complete.

(2) Find an example of a connected Riemannian manifold to show that a minimal
geodesic between two points need not be unique; in fact, there may be infinitely
many.

Solution. (1) The open ball
M=B(0,1)={xeR": x| <1} C (R"g),

where g denotes the usual flat metric, and M is equipped with the inherited metric.

(2) The sphere (S", g), g being the usual metric. There exist infinitely many min-
imal geodesics joining two antipodal points.

Problem 6.3.4. Consider on R3 the metric
g = (14+22)dx® +dy? +e*dz?.

(1) Compute the Christoffel symbols of the Levi-Civita connection of the metric
g
(2) Write and solve the differential equations of the geodesics.

(3) Consider the curve y(t) with equations x =t, y =t, z = t. Obtain the parallel
transport of the vector (a,b,c) o 0,0y along y.

(4) Is y a geodesic?
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(5) Calculate two parallel vector fields defined on vy, X(t) and Y (t), such that
g(X(1),Y(2)) is constant.

(6) Are there two parallel vector fields defined on vy, Z(t) and W (t), such that
g(Z(t), W(t)) is not constant?

Solution. (1) We have

1+x> 0 0 1/(14+x*) 0 0
¢g=| o 1 0], g'= 0 1 0
0 0 ¢ 0 0 e

Taking x! = x, x> =y, ¥’ = z, the only nonvanishing Christoffel symbols are

1 X 31
Fn*m, 133*5 ()

(2) The differential equations of the geodesics are, by (*),

d?x x [dx)? d?y &z 1 [dz\?
() =0, (b)) S2=o0 X% —o
(a) dﬂ+1+ﬁ<dJ o B =0 © dﬂ+2(m>

The solutions are:
" !
. xx
a) We can write — + ——
@ x' 142

A
alently x’ = ———. We have v/1+x2dx = Adr and
V1+x2

1
=0, hence log x’ + 2 log(1+x?) =log A, or equiv-

/Adt:AtJrB
:/\/1+x2dx
:%(XN/1+X2+10g<X+ 1+x2>>.

(b) y=Ct+D.

d d 2 1 t E
(c) Let p = d—i Then we have d_It) + % = 0, from which ]—) =3 + 5 Thus

2 d
—_— = —Z, so that one has
t+E dt
z=2log(t+E)+2log F
= log(Fr + G)>.

(3) The equations of parallel transport of the vector X = (a',a?,a*) along a curve

yare VX = 0; that is,
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da’ . dv/ , .
E—i_ ]’hEa :O, l:17273.
In this case, we have the equations:
(a) da1+ X dxl —0 (b) da? 0 (©) da3+ldz3 0
a) — — = ¢c) —+-——a’ =
dr 1442 ar’ ’ dt ’ dr  2dt ’

along the curve x =t, y =t¢, z =t; that is, the previous equations are reduced to:

da' t da? da® 1 4
—t+——a' =0 b) — =0
@ 4 T1Epe =0 0 =0

Integrating we have:

(a)loga' = —% log(1+2%)+log A, thus one has a' = A/v/1+ 12, witha' (0) =a,
soa' =a/V1+12.

(b) a®> = A, with a?(0) = A; thus a®> = b.

(¢) a® = Ae /2, with a*(0) = ¢ = A; thus a® = ce /2.

(4) The curve must verify the equations of the geodesics obtained in (2). Since
x(t) =t,y(t) =t,z(t) =t, we have

d2x X dr\?

—mtal T2 70

dr 1+x> \ dt 1 +t
unless r = 0, so it is not a geodesic.

(5) We have obtained in (3) the vector field obtained by parallel transport from
(a,b,¢)(0.0,); that is, a’(t) = (a/v/1+1%,b,ce~"/?). Taking X (0) = (1,0,0), Y (0) =
(0,1,0), one obtains under parallel transport the vector fields

X(t)z(%,0,0), Y(t) = (0,1,0),

+t

that satisfy g(X(¢),Y(¢)) = 0.
(6) No. In fact, consider the vectors Z(0) = (a,b,c), W(0) = (A, u,v). Then the
vector fields Z(t), W (¢) obtained by parallel transport of the vectors along ¥, satisfy

g(Z(t),W()) = (1+t )1—1— 5 +bu+el

=al +bu+cv,

which is a constant function.

This can be obtained directly considering that V is the Levi-Civita connection of
g, and for all the Riemannian connections the parallel transport preserves the length
and the angle.
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Problem 6.3.5. Prove with an example that there exist Riemannian manifolds on
which the distance between points is bounded, that is, d(p,q) < a, for a > 0 fixed,
but on which there is a geodesic with infinite length but that does not intersect with
itself.

Solution. The flat torus 7 is endowed with the flat metric obtained from the metric
of R? by the usual identification 72 = R?/Z2. It is thus clear that the maximum
distance is \/5/2

Nevertheless, the image curve of a straight line through the origin of R? with
irrational slope is a geodesic of infinite length which does not intersect itself in 72
(see Problem 4.2.8).

Problem 6.3.6. Give an example of a Riemannian manifold diffeomorphic to R" but
such that none of its geodesics can be indefinitely extended.

Solution. The open cube (—1,1)" C R", with center at (0,...,0) € R”, is diffeo-
morphic to R” by the map
o:R" — (=1,1)", (y',...,y") — (tanhy' ... tanhy").

In fact, ¢ is one-to-one and C*, and its inverse map on each component is also C*.

Take now on (—1,1)" the flat metric, restriction of g = ¥/ | dx' ® dx’ on R".
It is obvious that none of the geodesics which are the connected open segments of
straight lines of R” in (—1, 1)" can be indefinitely extended.

Problem 6.3.7. Prove that the vertical lines x = const in the Poincaré upper half-
plane H? are complete geodesics.

LAY

oY
>
Fig. 6.1 The vertical lines of the Poincaré upper half-plane are geodesics.
Solution. We have the Riemannian manifold (M, g), where
dx? + dy?
2. Y
M={(x,y) eR*: y>0}, g:T

(see Figure 6.1). That is, g;; = (1/y*)8;; and g/ = y>8", i, j = 1,2. Taking x' = x,
x? =y, the nonvanishing Christoffel symbols are
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so the differential equations of the geodesics are

d’x  2dxdy o d2y+1 dx\? dy\? o
dr2  ydrdr dr2  y \d¢ dr)
Suppose x(0) = xg, ¥(0) = yo, dx/dr =0, dy/dr = 1; that is, one considers the
vertical line through (xo,yo). The previous equations are satisfied, and one has the

equations
Ex_ @1 (o
T dr? dt) -~

The conditions x(0) = xp, y(0) = yo, (dx/d¢)p =0, (dy/dt)o =1, determine a unique
geodesic. Integrating, we have x = Ar + B; and, from y” /y’ =y’/y, one has log y' =
log y + C or equivalently y = e“’*P_ By the previous conditions, it follows that

X = X0, )’ZYOeI/y07
which proves ¢ € (—eo, 4-o0); that is, the given geodesic is complete.

Problem 6.3.8. Consider R* with the usual flat metric g = dx> +dy?. Is the curve
y(t) given by x =13, y =13, a geodesic?

REMARK. The fact that a curve is a geodesic depends both on its shape and its
parametrization, as it is shown by the curve 6 (t) = (t,t) in R* and the curve above.

Solution. Write y(1) = (£3,£%). Then dy/dt = 3t>9/dx+3t>3/dy. As b_d in

dr dr
(R?,g), we have
Ddy d , 0 5 0
— (3" =—+3t" =
dr d¢ d< &+ dy
=6t

d

5 +6t 570,

hence ¥(t) is not a geodesic.
Another solution is as follows: Since y is a geodesic curve, one should have
|y (t)| = const, but actually |y’ (¢)| = 3v/2¢%.

6.4 The Exponential Map

Problem 6.4.1. Consider on R" with the Euclidean metric, the geodesic y(t) through
p with unit initial velocity v,, and let (ey, ..., e,) be an orthonormal frame along y
such that e; = y'(t). Compute the Fermi coordinates (x',...,x") on (R",y) relative
to (ey,...,e,) and p.
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Y

Fig. 6.2 A simple example of Fermi coordinates.

Solution. The geodesic y(¢) through p € R" with initial velocity vector v, € T,R"
is the straight line y(r) = p+1tv,. Thus

Exp,: L,R" — R”
vp = o(l)=p+vy,

2! (Expy(t) (%f'iejly(z>>> =x! (Y(f)+ E,ijej|y(t)> =1,
j= 1=

X (Expy(,) (theﬂy(t))) =, 2<i<n.
j=2

Since Exp,, is a global diffeomorphism, we have a new set of coordinates on R". The
first coordinate is the distance from the origin p along 7y and the other coordinates
are the orthogonal coordinates relative to ey, ..., e, (see Figure 6.2).

hence

Problem 6.4.2. Let M be an n-dimensional complete Riemannian manifold and let
q € M. Identify T,M with R" as a manifold by choosing an orthonormal basis at q.
Then Exp,: TyM — M is a C* map of R" onto M, mapping 0 to q.

(1) Suppose M = S", the unit sphere with its usual metric. Prove that

rank(Equ) L <n, if |X|=km, k=1,2,...,
*4q

without using Jacobi fields.

(2) Find (Expy).«x(e1) and (Expy)s«x (€2) for two orthonormal vectors ey, e, €
TXTNSZ, and X = Aey, e] € TNSz. In particular, find the values of the two above
vectors if A =0, m/2, or .

Solution. (1) The geodesic through ¢ with initial vector X, is (see Problem 6.8.4)
the great circle
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{X,e T,5:1X )=}

s
Exp,(X,)

Fig. 6.3 The Exponential map on $? at g.

. X
716) = (cos Xyl )g + (sin X, o) g
q

hence (see Figure 6.3)

Exp, (X,) = ¥(1)
— (cos |X,[)q + (sin|X,|) o2

1Xq|
We can take, without loss of generality,

g=1(0,...,0,1)=NeS§" c R"!,

Thus, the map Exp, is given by

Expy: IyS" — §"

<sin|X|X
1.

X:(Xla"'7Xn) |X| IR

(where we have simplified Xy to X) and has Jacobian matrix (Expy ). given by

Suppose |X| =km, k=1,2,..., then

sin|X| X? cos |X| sin[X]\ X1 X» sin | X]\ XX,
o ()R (o= ) =5 ) e
sin\x\> X1 X, sin |X| ( X3 ) cos|X| , ( sin[X]\ XX,
cos|X|— — 1- =% |+ cos |X|—
( x| /) X2 x| x| Ixp ™2 x| /) 1xP?
sin|X|\ X1 X, sin|X| X? cos|X|
X| - —— 1= X2
(co =5 ) EAS A
sin |[X| sin | X|
_ 1 _
|X| x|




6.4 The Exponential Map 251

tf (=1, (=DF (=1)*
22 Xj 22 XXy oo 22 X1 Xy
(EXPN)*X = (_1)k (—l)k (_1)k 5
22 X1 X 22 XoXn 22 %e
0 0
Since
1 - 1
_1)k —1k\"
det (%X,-Xj) = X2X?--. X2 (%) det | : | =0,
1 - 1

we obtain rank(Expy ).x < n. (2) We have X = (X,X2) = (1,0) = Le; € TyS?,

(Expy Ds(uiz)e, €2

(EXPN )*(R/Z)el €

Fig. 6.4 The differential of the Exponential map on S? at the north pole.

hence
cos A 0
sin A
(ExpN)*lel = 0 2
—sin A 0
In particular:
0 0
1 0 ) -1 0
(EXpN)*Oel =|0 1 ) (EXPN)*EeI = 0 -1, (EXPN)*TMI = 00 ’
00 | g 00
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hence

(EXpy)sie, (€1) = cos Ae; —sin A e3

€] if l =0

T

= ey ifA=2=

ez ifA >

—eq if A = T,

sin A

(Expy)uie, (€2) = ——e2

e if A =0

2 . i

=\ 22 if A= 5

0 if A =m,

where the vectors in parentheses ej,e; € Ty, (TyS?) (see Figure 6.4).

Problem 6.4.3. Show that if the Riemannian manifold (M, g) is complete and con-
tains a point which has no conjugate points, then M is covered by R".

Solution. Let p € M be a point without conjugate points. As M is complete, the
exponential map Exp,,: 7,M — M is everywhere defined on the tangent space and
it is surjective. Moreover, as is well known (see Definitions 7.6.5), Expr is con-
jugate to p if and only if Exp, is critical at X. Hence, by virtue of the hypothe-
sis, Exp,, has no critical point. Accordingly, Exp,, is a surjective local diffeomor-
phism. Endow T,M with the metric Expl*, g induced by Exp,,. Then it is clear that
Exp,: (T,M,Exp),g) — (M,g) is a local isometry. Since it applies each ray t +— tv
to the geodesic curve 7, one deduces that these rays are geodesics, so that the ma-
nifold 7,M is complete at 0. The result thus follows from Theorem 7.6.14.

Problem 6.4.4. Determine the cut locus of S".

Solution. All the geodesics are minimizing before distance 7. For a point p € S”,
we have that Exp is a diffeomorphism on U, = B(p,®) C T,S" and that Exp,(U,)
=8"—{—p}. Hence

Cut(p) = Exp(9U,) = {—p},

that is, the cut locus is reduced to the antipodal point.

6.5 Curvature and Ricci Tensors

Problem 6.5.1. Find the Riemann curvature tensor of the Riemannian manifold
(U,g), where U denotes the unit open disk of the plane R? and
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_ 1
1 —x2—y?

1 1—x*—y? 0
8 = 0 1_x2_y2 .

So, taking x = X, y= x2, the Christoffel symbols are

g (dx2 +dy2).

Solution. We have

L =[}=I2=-Lh=——
11 12 =121 22 =22
B=hl=npl=r3g=—2> .
11 12 =121 n=1°2 2
Therefore,
Jd d d d d d\d 0o
R .09 .. =8 R 5.9, ] 3.0
ox’ dy’ dx’ dy ox’ dy) dy’ dx
B 2
(I—x2—y2)2"
Problem 6.5.2. Consider on R> the metric
g = e¥(dx? + dy* +dz?).
d o0 d d .
Compute R 5297 9x" 92 )’ where R denotes the Riemann curvature tensor.
x dz dx dz
Solution.
e 0 0
g'l=l 0 e% 0
0 0 e=

2

So, taking x = x!, y = x?, z= x>, the only nonvanishing Christoffel symbols are

2 3 3 _ 3
My=hi=-Li=-Th=L=1

d d d d d d\ad 4
R{=— 5,5 )=¢\R|5> = |55 =
(ax’az’ax’az) g( (ax’az> az’ax) 0
Problem 6.5.3. Let (M, g) be a Riemannian n-manifold. Consider an orthonormal

basis {ey,...,e,—1,X} of T,M, p € M. Let P; be the plane section generated by e;
and X; K(P;) the sectional curvature of P;; and r the Ricci tensor. Prove that

Therefore

n—1
r(X.X) = ;K(Pi)~
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Solution. For R(X,e;)e; and R(X,e;,X,¢;) as in Definition 7.6.4, we have

R(X,e;,X,e;)

X)g(ei ei) —g(X, ei)2
(R(X7el)el7 )

( X)g(ei,ei) — g(X,ei)?

=g(R(X,e;)e;, X).

K(P) =

g(X,

On the other hand, with respect to the given orthonormal basis we have

n—1

Zg (ei, X)X, e;).

Therefore, r(X,X) = X1 K(P,).

Problem 6.5.4. Prove the following consequence of Bianchi’s second identity on a
Riemannian manifold (M, g):
ds =2divr,

where r and s denote the Ricci tensor and the scalar curvature of the Levi-Civita
connection.

Solution. Let us fix a point p € M and consider the normal coordinates with origin
p. associated to an orthonormal basis {&;} of T,M. We can get a local orthonormal
moving frame (¢;) by parallel transport of {¢;} along radial geodesics, so e;|, = &,
and Ve; = 0, along a radial geodesic; in particular, (Ve;), = 0, where V stands for
the Levi-Civita connection.

Further, recall that (R(X,Y)Z)(p), the curvature tensor field at any point p, de-
pends only on the values of the vector fields X,Y,Z at p, so that if either X, or Y,
or Z, is zero, then (R(X,Y)Z)(p) = 0.

On the other hand, since V is torsionless, the second Bianchi identity can be
written as

g((VxR)(Y,Z)W,U) +g((VyR)(Z,X)W,U) +g((VzR)(X,Y)W,U) =0,

X,Y,Z,W,U € X(M). Interchanging X and Y in the third summand and then con-
tracting all the summands with respect to X and U, we have

2{8((VaR)(Y.Z)W. i)+ g((VyR)(Z,ei)W.ei) — g((VZR)(Y, €)W, e;) } =0. (x)
For the second summand in (x) we have
2. 8((VyR)(Z,e)W, &)(p)

—Z{g (Vy(R(Z,e)W),e1) — g(R(VyZ,e;)W. &)
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—8(R(Z,Vye:)W,e;) —g(R(Z,e;)VyW,e;) } (p)
{Z{Y R(Z,e;)W,e;)) — r(VYZW)—r(Z,VYW)}(P)

_ {Y —r(VyZ,W)— (Z’VYW)}(p)
_(vyr)(z,w)( ).

Similarly, for the third summand in (%) we have
=2 8((VzR)(Y,e)W,e:)(p) = —(Vzr) (Y, W)(p).

So, at the point p we can write (x) as

255

{Z 8((VeR)(Y,Z)W. ei) + (Vyr)(Z,W) — (Vzr)(Y,W)} (p) =0. ()

Contracting (xx) with respect to ¥ and W, we obtain

2A8((VeR) (e, Z)ej i)+ (Ve,r)(Z,e) = (Vzr)(ejnej) }(p) =0,
LJ

or equivalently

{Z{g R(e;,Z)e;),e;) — g(R(Vee; Z)ej, )
—g(R(e;, Ve Z)ej,e)) — 8(R(ej,Z)V e ei) } + (div r)Z
—§{2<r(e,,ej)> —r(Vzejrej) — r(e,-,vze,-)}} (p)
- {%{ei(r(z,ei)) —¢(R(ej,2)e;,Voe)) —r(VeZ,er)}
+ (div r)Z — Zs} (»)

i

= {Z(Veir)(ez'l) + (divr)Z— ZS} (p)

= {2(divr)Z—Zs}(p)

for every p € M; thatis, ((2divr—ds)Z)(p) =0forall Z € X(M) and all p € M.
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6.6 Characteristic Classes

Problem 6.6.1. Consider the complex projective space CP' equipped with the Her-
mitian metric g = h(z) (dz® dz+ dz®dz), where

1

h(z) = A+ PP (%)

If w=1/z is the coordinate at infinity, then the metric is given by g = h(w)(dw ®
dw + dw ® dw).
Prove that the Chern class of the tangent bundle TCP" is nonzero.

Solution. Since the Chern classes of a complex vector bundle does not depend on
the particular connection chosen to define them, we choose here the canonical Her-

7]
hl —| , = ,is the
dz|, dz|,

connection with connection form and curvature form relatives to the holomorphic
moving frame d/dz, given by

mitian connection, which, for a given & defined by h(zp) =

,oh

o=h"oh=h"==d
0] 0 oz zZ,
fz:é@:a—a_)dz,

dz

respectively. Then we have, for the metric % in (x), the Chern form

c1(TCP!, @) = if)
:Lé&h(z)
21 h(z)

_L_ 22 1
=52 (4P )

1
= ——dzAdzZ
A+ P2
2
= — —dxAdy.
a(l+P2 s Y

By taking polar coordinates, it is easily seen that
/ ¢/ (TCP', @) = 2.
cp!
By Stokes” Theorem, the Chern form c¢1(TCP', @) cannot be exact. Thus the Chern

class is ¢; (TCP') =20 # 0, where & denotes the standard generator of the coho-
mology group H*(CP',Z) ~ Z; and TCP' is thus a nontrivial complex line bundle.
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Problem 6.6.2. Prove that the Pontrjagin forms of a space M of constant curvature
K vanish.

Solution. The curvature forms .QJ"- of the Levi-Civita connnection on the bundle of

orthonormal frames are given in terms of the components 6% of the canonical form
on the bundle of orthonormal frames (which is the restriction of the canonical form
on the bundle of linear frames) by

QL=KO' NG/.

Hence, by the formula on page 406, the rth Pontrjagin form, denoted here by p,, is
given, forr =1,...,dimM /4, by
1 4
* _ J1--J2r Ot r
p (pr) = WS” Ty QN N
K2

= ) AT 2 2 51111 l/2’6’1 AOIIA - AO2 A QI
r)

le~*~7]2r

where p denotes the projection map of the bundle of orthonormal frames.

The &’s vanish unless ji,..., jo, is a permutation of i, ..., iz, but then the wedge
product of 6’s has repeated factors, so p*(p,) vanishes. As p* is injective, p, also
vanishes.

Problem 6.6.3. Let M be a 4-dimensional compact oriented C* manifold. Let Q!
i,j=1,...,4, be the curvature forms of a linear connection of M, and .(N.Zj’ given by

Q= G*.Q}, the curvature forms relative to any fixed orthonormal moving frame ¢
on M. Prove that the signature T(M) can be expressed by

1 5in 5

HINT: Use Hirzebruch’s formula in Theorem 7.6.10.

Solution. To apply Hirzebruch’s Theorem, we need to compute a representative
form of the first Pontrjagin class of M; that is, of the first Pontrjagin class of the tan-
gent bundle TM. The principal GL(4,R)-bundle corresponding to TM is the frame
bundle (FM,p,M), where the given connection is defined. Now, by Weil’s Theo-
rem, the characteristic class does not depend on the chosen connection. Thus, as we
can always reduce the structure group to the orthogonal group O(4) (here, even to
SO(4), since M is oriented) or, equivalently, take a Riemannian metric on M, the
matrix of curvature 2-forms of the connection is antisymmetric, as it takes values
in the Lie algebra so(4). We shall compute the Pontrjagin form p; (M) in terms of
the curvature forms of the metric connection in two related ways, which is perhaps
instructive. The form p; (M) is given by



258 6 Riemannian Geometry
p*(p1(M)) = term of det (I - %Q) quadratic in the Q’s
= 4%2(—921 NQF— Q3 NQ - QN
—QINQ - QINQy — QI NQF)
= 4L7r2 (—%tr(!) /\Q)) .

We can also directly use the formula on page 406, as follows. Let ‘(i 1,i3) be an
ordered subset of {1,2,3,4}, (j1,j2) a permutation of (i;,i2), and 51/111»;2 the sign of
the permutation. Then

1

* _ Jii2 oil i
P (pl(M))_(zn-)zz! i1iy jl/\Q/Z
1
:@(—Qg/\gf—gmm—mAQ#—Q%AQ;
— QN - OQINQ QI NQI - QINQ3
— QN -QINQ) - QINQF - QINDT)
1

Furthermore, since for any given invariant polynomial in the curvature, the co-
rresponding differential form on the base space (see, for instance, [22, p. 295], [26,
vol. IV, L. 22]) does not depend on the chosen orthonormal moving frame, by ap-
plying Hirzebruch’s formula, we can write:

1 11~ o~
T(M):g/ﬂlpl(M):*g M@Q}/\Ql‘-’,

as stated.

Problem 6.6.4. Let g be the bi-invariant metric on SO(3). Calculate the Chern-
Simons invariant J(SO(3), g).

REMARK. For the related definitions and results, see 7.6.11.

Solution. Let X;,X>, X3 be the standard basis of 7S, that is
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From Problem 4.6.9, it follows that X1, X>, X3 are left-invariant vector fields, and as
the Lie groups S° and SO(3) have the same Lie algebra, X1, X», X3 can be considered
as left-invariant vector fields on SO(3).

We have

[X1,X2] = X3, [X2,X3] = X1, (X3, X1] = Xa.

Let (xj = —(xij ,1,j =1,2,3, be the Maurer-Cartan forms on SO(3), determined by
3y 3y — 20y.) —
05 (X;) = 01, o (X;) = i, o (X;) = 3,
so that the structure equations of the Lie group, are
doc;:oc,’;/\ocf, i,j=1,2,3. %)
The bi-invariant metric on SO(3) is given by
g=0i R0 +od @) +0d®as.

In writing these equations one has chosen a basis of the Lie algebra of SO(3) and
hence, by right translations, a frame field on the manifold SO(3). It is convenient to
choose the notation so that the equations remain invariant under a cyclic permutation
of 1,2,3. Setting 8’ = ocj?, i, j,k = cyclic permutation of 1,2,3, the invariant metric
becomes
g=0'00'+60’26°+60°26°.

The connection and curvature forms a); = —w,/ s Q; = —Qj, are determined by
Cartan’s structure equations

i il [N N PN
do' = —w; N6/, do; = -0 N0 +£;.

Comparing these equations with the structure equations () of the Lie group, one
finds

1 . 1 . )
" Qi=—"0'r06/.

;=39 i 7g

Hence

1 1 1
—TP(Q) = WIANQf— — o) Ny N o]
2 82 1<,<2}<3 872

=———0'r0°N0". Hox
I 6 )
Let us compute the total volume of SO(3) with its bi-invariant metric. We have

vol, (SO(3)) = vol, (RP?) = %Volg ($%).

Hence we only need to calculate vol, (S°). Write
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0'ANO2 A0 =pdx® Adx! Ad®.
By calculation we obtain

(0' A 6> A 60%)(X1,X>,X3) = det(0'(X;)) = —1

and
| 2 3 e
(d.?CO/\d)C1 /\dxz)(X] , Xo,X3) = —det K =3 P =—=.
8 B0 8

8 D . .
Hence p = —. By considering the standard parametrization of $3, that is
X

x¥ = sin u, x''=cosusinv, x% = cos ucos vsin w, x> = COS Ucos veos w,

withu,v € (-n/2,n/2), w € (—x, &), we compute

| 9 3 /2 5 /2 b4
/ 0 NO“NO° =8 / cos“udu / cos vdy / dw
$3 —7/2 -2 -

= 167°.

Therefore
volg (SO(3)) = 872,
and from (%) we conclude
1
J(50(3).8) = 5.

REMARK. The reader can check that the metric g is really bi-invariant by proving
that the forms 6" are also right-invariant. This readily follows from formula (x*) in
Problem 4.5.2.

6.7 Isometries

Problem 6.7.1. Let (M, g) be the Poincaré upper half-plane (see Problem 6.9.1).
We define an action of SL(2,R) on M as follows: Identifying R? with C as usual, let

z=x+1y. Given s = S) € SL(2,R), we define
__az+b
T atd

(1) Prove that SL(2,R) is a group of isometries of (M,g) (called the group of
linear fractional transformations of the Poincaré upper half-plane).
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(2) Prove that under these isometries the half-circles with center at the x-axis
are transformed either in the same type of half-circles or in vertical lines.

HINT: One can obtain an Iwasawa decomposition of SL(2,R), writing each s €
SL(2,R) as the product of a matrix of SO(2) by a diagonal matrix with determinant
equal to 1 by an upper triangular matrix with the elements of the diagonal equal
to 1.

(-tan 26, -1/cos 260)

(-tan 26,0)| (1,0) 20 e (0,n/2)

() (d)

™ 1

20 =n/2 20 e (n/2,mt)
() ()

Fig. 6.5 Variations of the image of the half-circle C.

Solution. (1) Given z = x+iy € M we have y = Im z > 0. We also have Im w > 0.
In fact,

az+b
cz+d

Imw=1Im
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A A

20 e (n,31/2) 20 =3n/2

(9) (r)

M A

26 € (3n/2,2n)
(i) ()

Fig. 6.6 Variations of the image of the half-circle C.

Imz

Mz o,
lcz+d|?

and thus w € M.
Moreover, s2(s1z) = (s251)z. In fact, putting

a b a b
§1 = c d)’ §2 = C/ dl )

(da+b'c)z+db+bd
(cda+d'c)z+cb+d'd

= <S2S1 )Z.

we have

Sz(S]Z) =

The metric g can be written on {z € C : Im z > 0} as

_1dz@dz+dz®dz
2 (Im z)2

Moreover, it is easy to compute that

dw@dw+dwdw dz®dz+dz®dz
(Im w)?2 B (Im z)?
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As the expression of g is preserved in the new coordinates, the action of s is an
isometry. Thus SL(2,R) acts on M as a group of isometries.

(2) From the Iwasawa decomposition of SL(2,R) in the Hint, we can write each
element s € SL(2,R) uniquely as a product

cos® —sin@) (A O 1 a
S_<sin9 cos@) (0 1//1) (0 1>’ A #0.
Considering the previous property s»(s1z) = (s251)z, in order to study the action

of SL(2,R) on a half-circle of M with center at the x-axis, it suffices to see the
consecutive action of the elements of the previous decomposition. The action z —
aztb by an element of the type (1 “
cz+d 01
half-circle by the vector a + 01, a € R (see Figure 6.5 (a)).

The action by an element of the type (g 1?l> , A €R—{0},is z — A2z That

i8 z +— z+a. That is, the translation of the

is, a homothety of ratio A2 € R* (see Figure 6.5 (b)).

From these results, it follows that to study the whole action it suffices to consider
the unit half-circle C with center at (0,0).

We can parametrize that half-circle as

(x,y) = (cos B,sinf), B € (0,m).

The action of an element s = ( . 0 —sind €S0(2) is
sin@  cos0O
zcos@ —sin® [ xcos20 y
zsin@ +cos®  \ 1+xsin20’ 1+xsin26 )"

The limits when y — 0, that is when x — +1, are

cos 26 0 cos 26 0
1—sin20’ ")’ 1+sin20’ ")’
respectively. So the center of the half-circle image is at the point of the x-axis with
abscissa

1 cos20
~ 7 (1—sin260— 1 —sin26) = —tan 26.
21—sin"26
Moreover, from
xcos 20 2 »? )
IR L an20) 4 =
<1+xsinze+ an > T fxsm20

one has r = 1/cos 20. The image of C is thus the half-circle of center —tan 26 and
radius 1/cos 26, if cos 26 # 0. The image of (0,1) is (0, 1) (see Figure 6.5 (c)).
Let us now see how the image of C varies as a function of 6 € [0,27].
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If 6 =0, we have the identity C — C.
For the interval 20 € (0,7/2) we obtain as images a family of half-circles of the
previous type, and (0, 1) is preserved (see Figure 6.5 (d)).

T 1—
For 20 = 5 the image is { (0, l_+x> }, so the part at the first quadrant goes
V X

to the vertical segment from (0,0) to (0,1), and the part at the second quadrant into
the vertical half-line {(0,y) : y € (1,e0)}. Thus C is transformed in the half-line
{(0,y) : y € (0,00)} (see Figure 6.5 (e)).

For the interval 20 € (7/2,7) we have the images obtained by reflection in the
y-axis of the ones corresponding to the interval (0,7/2), because cos 26 changes its
sign, but sin 20 does not (see Figure 6.5 (f)).

For 26 = 7 the image is (—x,y), that is g(C) = C by reflection on the y axis.

For the interval 20 € (m,37/2), the values of cos 20 and sin 26 change their
sign with respect to their values when 26 € (0,7/2). Therefore, changing the sign
of x, the values of xsin 20 and xcos 260 are preserved and if the value of y does not
change, we obtain that the image sets are the reflections with regard to the y-axis of
the ones corresponding to the interval (0,7/2) (see Figure 6.6 (g)).
1+x
1—x
{(0,y) : y > 0}, but obtained from C in a different way, as we can see in Fig-
ure 6.6 (h).

For the interval 20 € (37/2,2m), we have that sin 20 changes its sign with re-
spect to 20 € (0,7/2) and cos 26 preserves it. Changing x by —x, we have the
symmetric situation with respect to the y-axis (see Figure 6.6 (i)).

For 26 =27 we have (x,y) — (x,y); again the identity.

Summing up, from a half-circle of radius r with center at the x-axis we can obtain
all the half-circles with center at the x-axis and any radius, and all the vertical lines
(see Figure 6.6 (j)).

For 20 = 37/2 one has (x,y) — (O, >; that is, again the half-line

Problem 6.7.2. (1) Prove that the isometry group 1(S™) of S" with the round me-
tric, is O(n+1).

(2) Prove that the isometry group of the hyperbolic space H", equipped with
the canonical metric of negative constant curvature, is the proper Lorentz group
0. (1,n), which is the group of all linear transformations of R"*! which leave
invariant the Lorentz product ( , ) on R"™, defined by

n
(0xt ), 000 ")) = =0+ Y Xy
i=1
and which also leave each component of the hyperboloid { ,)~'(—1) invariant.

HINT: Apply Theorem 7.6.16.

Solution. (1) Let (, ) denote the Euclidean metric on R"*!. The round metric on S”
is defined by letting the embedding of S” into R"*! be isometric, i.e.,

<(p,u), (pav)>S” = <(p7u)7 (P,V)> = <M,V> *)
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for p € §" and (p,u), (p,v) € TS". The group O(n+ 1) acts on S by isometries. In
fact:

(ax(p,u),a.(p,v))sn = {(ap,au),(ap,av))sn (ae0O(n+1))
= (au,av) (by (x))
= <”7V>
={(p,u),(p,v))sr (by (x))-

Now let a € I(S™). Fix p = eg € " and the orthonormal basis {(p,e;)} for 7,5".
Let (q,é;) = a«(p,e;) € T,S" for g = a(p). Let b € O(n+1) take p to g and e; to
¢, j = 1. Since O(n+ 1) acts on S” by isometries we have b € I(S"). As moreover
b.p = ap, applying the Theorem 7.6.16, we obtaina =b € O(n+1).

(2) The proof is similar to the one in case (1), since the hyperbolic space H" is
the component

n
{(xo,xl,...,x") eR"!: f(xo)erZ(xi)z =—1,2%> 0}

of the hyperboloid { , )~!(—1).

Problem 6.7.3. Let f: (M,g) — (M',g') be an isometry of Riemannian manifolds.
Prove that f preserves the curvature tensor field and the sectional curvature.

Solution. An isometry is a diffeomorphism and an affine map for the Levi-Civita
connection, that is, f-VyxY = V}.x f-Y, where V and V'’ denote the Levi-Civita
connections of g and g, respectively. Hence, we conclude as in Problem 5.5.6, that
for the respective tensors of curvature one has

R(f-X.f-Y)fZ=f (RX.)Y)Z).
Moreover, an isometry preserves the metric by definition, that is:
§(fX.fY)=(f )X Y)of ' =g(X,¥)of". (%)

Put p' = f(p).If {X,,Y,} is a basis of the 2-plane P of T,M, then {(f.X )/, (f:Y), }
is a basis of the 2-plane P = f..P of Tp/M’. Then, taking

R(Xp,Yp)Ypa R/((f*x)p'>(f*Y)p’)(f*Y)p'

according to Definition 7.6.4, from (x) and (%) above we obtain for the sectional
curvature:

_ 8/(R/((f*x)p’a(f*Y)p/)(f*Y)p’a(f*X)p/)
gl((f*x)p’a (f*X)p/)gl((f*Y)p/a(f*Y)p’) _g,((f*X)p/7 (f*Y)p’)z

_ g(R(X,.Y,)Y,,X,) -
a g(Xp,Xp)g(Y,;,Y,,) —g(XmYp)Z =K(P).

K'(P)
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Problem 6.7.4. Let (M, g) be a Riemannian manifold.

(1) Prove that if f is an isometry of (M,g) and V denotes the Levi-Civita con-
nection, then we have

f*vejﬁzvf*l~ejf*ﬁ7 ﬁeAlM7
where (e;) stands for a local orthonormal frame.
(2) Prove that the codifferential 8, defined by

8B =—divf=—Yi,VepB, BeA*M, (*)
k

{er} being an orthonormal basis, commutes with isometries.

Solution. (1) As f is an isometry, f preserves the Levi-Civita connection; that is,
[-VxY =Vyxf-Y,sothat V, (f-X) = f'Vf’l'e,-X‘ Moreover, we recall that we

have (f*@)(X)o f~! = o(f-X) forevery € A'M, as it is readily checked. Letting
® = V,,[3, we obtain that:

(f*Ve,B)X) of ™H = (Ve,B)(f-X)
= Ve, (B(f-X)) = B(Ve, (X))
=¢;(f'BYX)of ) =B(f-Vj1.,X)

U e B - ) (Vo x) for
=V (PR = (£B) (V1 X ) for !
~{(Vyre " B) (X) for".
©)
F8B = —f*div B (by definition of div, and locally)
=S ) by
= —;iffl.e_/f*ve_,ﬁ

= —Zifflel_vffl_ejf*ﬁ (by part (1) of this problem)
- .

= —div /B
=0f"p.
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6.8 Homogeneous Riemannian Manifolds and Riemannian
Symmetric Spaces

Problem 6.8.1. Let G be a connected closed subgroup of the Lie group E(n) of all
the motions (i.e. isometries of the Euclidean metric) of R", acting transitively on
R".

Must G contain the full group of translations?

Solution. G need not contain the full group of translations, as the following coun-
terexample shows. Let n = 3, and let @, be the rotation around the z-axis through
an angle ¢. Let X;,Y;,Z, be the translations by (¢,0,0), (0,#,0) and (0,0,t), respec-
tively. Let ¥; = Z, o @;, so ¥, is a screw motion around the z-axis. Then, the group
generated by the ¥;, X;, and ¥, as ¢ varies over R, acts simply transitively on R3 but
does not contain the translation in the z-direction.

Problem 6.8.2. Consider the action of the orthogonal group O(n) on the Riemann-
ian manifold (R", g), where g denotes the Euclidean metric.

(1) Is (R",g) a homogeneous Riemannian manifold with respect to that action?

(2) Describe the possible isotropy groups H,.

Solution. (1) No, because the action is not transitive. In fact, the origin is a fixed
point (take the origin 0 as one of the points p,g of R” such that there might exist
o € O(n) with o(p) = q).

(2) Hy = O(n) and H,, are mutually conjugate subgroups isomorphic to O(n—1)
for every p # 0.

Problem 6.8.3. Define a product on
E(n)={(a,A) :aeR",AcO0(n)}

by
(a,A)-(b,B) = (a+Ab,AB).
Prove:

(1) (E(n),-) is a Lie group (in fact, this is a semidirect product of the Abelian
group (R",+) and O(n), and it is called the group of Euclidean motions or simply
the Euclidean group of R").

(2) The subgroup of translations T (n) = {(a,I) : a € R"} is a normal subgroup
of E(n).
Let E(n) act on R" by setting (a,A) -x = a+ Ax. Then:

(3) Prove that the map x — (a,A) - x is an isometry of the Euclidean metric.

(4) Compute the isotropy of a point x € R". Are all these groups isomorphic?
And conjugate in E(n)?

(5) Prove that E(n)/O(n) =~ R".
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Let p: E(n) — R" be the map p(a,A) = a. Prove:

(6) The map p is the projection map of a principal O(n)-bundle with respect to
the action of O(n) on E(n) given by (a,A)-B = (a,AB).

(7) The bundle above can be identified to the bundle of orthonormal frames over
R”™ with respect to the Euclidean metric.

Solution. (1a) Associativity:

((a,A)-(b,B)) - (c,C) = (a+Ab,AB) - (c,C)
— (a+Ab+ (AB)c, (AB)C),
(a,A)-((b,B)-(c,C)) = (a,A) - (b+Bc,BC)
= (a+A(b+Bc),A(BC))
= (

a+Ab+ (AB)c, (AB)C).
(1b) Identity element: (a,A)-(0,I) = (0,1) - (a,A) = (a,A).
(1c) Inverse element: (a,A)~! = (-A~la,A7").
We endow E(n) with the differentiable structure E(n) ~ R"” x O(n). As O(n) is

a Lie group, it follows from (1¢) and the very definition of the product law in E(n)
that E(n) is also a Lie group.

(2) We have
(a,A)- (b,I)-(a,A)" = (a+Ab,A)- (—A " a,A7")
= (a+Ab+A(-A""a),I)
= (Ab,I) € T(n).

(3) Trivial.
(4) The isotropy group E(n), of a point x € R” is defined by

E(n)y={(a,A) €E(n) : (a,A) -x=x}.

So, (a,A) € E(n), if and only if a + Ax = x, or equivalently (/ —A)x = a. In parti-
cular,

={(0,A) : A€ 0O(n)}.
For every A € O(n) we have
(x,1)-(0,A) - (x,]) "' = (I - A)x,A) € E(n),.

Hence the map y: E(n)g — E(n) is an isomorphism and all the isotropy groups
are conjugate in E(n), thus isomorphic.
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(5) We have a diffeomorphism x — (x,I) mod O(n).

(6) For every B € O(n) we have p((a,A)-B) = p(a,AB) = a. Hence (a,A) -
O(n) = p~'(a). Moreover, as (a,A)-B = (a,A) implies B = I, the O(n)-action is
free. Thus, p: E(n) — R" is a principal O(n)-bundle.

(7) Let w: €(R") — R” be the bundle of orthonormal frames over R” for the
metric g = dx! @ dx! + - 4+ dx" ® dx". Define amap ¢: E(n) — O(R") by setting

0 0
(p(a,A): <w a7..., W a) A
It is immediate that 7 o ¢ = p. Moreover, we have
¢((a,A)-B) = ¢(a,AB)
0 J
:(Wa’ o a).(AB)
0 0
:(<ax1 a? 7axn a) 'A) 'B
= (P(aaA) B

Finally, ¢(a,A) = ¢(b,B) means

0 d d
(W )‘A(W )‘B

e
This implies a = b and A = B, thus proving that ¢ is a principal bundle isomorphism.

dJ

sy o
b ox

Problem 6.8.4. As the unit sphere in R""!, §" =~ SO(n+1)/SO(n) is a symmetric
space, with symmetry { at o = (1,0,...,0) given (see Figure 6.7) by

@Ot ) e (O =t =),
For the symmetric space S", find:
(1) The involutive automorphism o of SO(n+ 1) such that
SO(n+1)g € SO(n) € SO(n+1)°,

where SO(n+ 1)° denotes the closed subgroup of SO(n+ 1) of fixed points of o,
and SO(n+1)§ its identity component.

(2) The subspace
m={X€eso(n+1): 0X=—-X}

(3) The Ad(SO(n))-invariant inner product on m.
(4) The geodesics.
(5) The isomorphism p,: m =~ T,S".
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(6) The linear isotropy action.

(7) The curvature.

Fig. 6.7 The symmetry of S? at a point o.

Solution. (1) As { = diag(1,—1,...,—1), for A € SO(n+ 1) we have (see [24,
Lemma 28, p. 315]):
o(A) =CAL
ap | —ao1 -+ —aon
e 1<i,j<
= Y ~ l7 X n.
: (aif) /
—an0

S0850(n+1)°is S(O(1) x O(n)), and SO(n+ 1) is the isotropy group 1 x SO(n) ~
SO(n).

(2) As £ = ¢!, we have 6(A) = (AL ™!, so that ¢ is conjugation by . Thus,
0. is also conjugation by § on the Lie algebra so(n+ 1). Hence

(- D)

where x denotes any column vector, regarded as an element of R". Write X < x for
the resulting correspondence between m and R”.

(3) Under X < x, the dot product x-y on R” corresponds to B(X,Y) = — % trXY =
%X -Y onm, where X - Y denotes the scalar product in R(+D? Bis thus a multiple of
the Killing form on so(n + 1) (see table on page 387). One has SO(n) C SO(n+1)
and the Killing form is Ad(SO(n + 1))-invariant. It follows from (5) below that the
corresponding metric tensor on S” is the usual one. In fact,
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0 —%\ (0 —y C i
o((70)- 0 5)) gy

(4) Let vy be a geodesic of S” starting at o. Since S” is symmetric, we have (see
[24, Prop. 31, p. 317])
¥(t) = exp(iX)o

for some X € m.
It is easily seen that

2

1——x-
Zx X+ *

3
txfg(x~x)x+~~~ *

exptX =

coslx|t  x
= X
(sin|x|t) —

[

% |

where (:) stands for an ((n+ 1) X n)-matrix which does not matter for our purpose.

Thus,

1

0
(exptX)o = (exptX)

0
X

[

= (cos |x|r)o+ (sin |x|r)

Hence 7 is the great circle parametrization

X

el

(cos|x|t)o+ (sin |x|r)

where X < x.

(5) In (3), R" is assumed to be identified with the last r coordinate space of R"*1.
Hence the canonical isomorphism identifies 7,S" with R”. Then, according to (4),
x=17'(0). But X is the initial velocity vector of the 1-parameter subgroup projecting
to 7. Hence, the isomorphism p,.: m ~ T,S" is X < x.

(6)If h= (é 2) € H=_50(n) and X € m, then

1 0\ /0 —x\ /1 O
AdX = <0 A) <x 0) (0 A—1>
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(0 —xA7!

- \Ax 0
(which is skew-symmetric since A = A~!). Thus the linear isotropy action of H on
T,S™ is, via the identifications, the usual action of SO(n) on R", i.e., (A,x) — Ax.

(7) In terms of the subspace m, we have

If x,y,z denote the corresponding vectors in R"” ~ T,,S", we obtain

X,Y]= (8 _(xiy,O_ xjy'))

(00
~\0 —A)’
where (Xl]) = (x'y/ —x/y), so

0 0 0 —'z
R(X,Y)Z = — (0 (xiijjyi)> (Z 0 )
L (0 =y 0
2 0 )\0 —(xy —x'y)
_ (0 (A2
- \4z 0 '
Thus, under the identification, R(X,Y )Z corresponds to Az, that is to (y-z)x— (x-2)y.
Hence S™ has constant curvature 1.
Problem 6.8.5. The complex projective space
CP"=U(n+1)/U(1)xU(n)=SU(n+1)/S(U(1) xU(n))

is a compact simply connected Hermitian symmetric space of dimension 2n. Find:
(1) The involutive automorphism & of U(n+ 1) such that

Un+1)¢ cU1)xU(n) CU(n+1)°,

U(n+1)¢ being the closed subgroup of U(n+ 1) of fixed points of 6 and U(n+1)3
its identity component.

(2) The subspace
m={Xcun+1): oX=-X}

(3) The Ad(U(1) x U (n))-invariant inner product on m.

(4) The linear isotropy action.
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Moreover, prove that:

(5) The scalar multiplication by i on C" =~ m gives a corresponding complex
structure Jo on m, which is Ad(U (1) x U (n))-invariant, and so determines an almost
complex structure J on CP" making it a Kiihler manifold.

(6) CP" has thus constant holomorphic sectional curvature.

Solution. (1) Let { = diag(—1,1,...,1). The conjugation 6: A — {A{~!is an
involutive automorphism of U(n + 1) whose fixed point set is U(1) x U(n), thus
having

SWU)xUn) =Un+1)3
(n+1)°

(1) x U(n).

(2) The (—1)-eigenspace m of o, consists of all the elements in u(n+ 1) of the

cU
U

_ Iz
form X = <g Ox ) , where x is an n X 1 complex matrix.

(3) The inner product B(X,Y) = —1 tr XY = 1X -Y is a multiple of the Killing
form on u(n+ 1) (see table on page 387), and hence itis Ad(U (1) x U (n))-invariant.
Because of the factor %, Bl corresponds under the identification m = C” to the real
part of the natural Hermitian product x - ¥ in C".

(4) We have

. 0 —%\ 0 —(e194x)
Ad e 0 (x 0 ) o (eieAx 0 ) *
0 A

The linear isotropy action of U(1) x U(n) on m = C" thus corresponds to the action
of U(1) x U(n) on C" given by (¢!, A)x =e 1A x.
(5) Scalar multiplication by i in C" = m gives a complex structure Jy on m:

I
m=Cr = m

0 —% 0 i%
x 0 ix 0 )’

which is Ad(U (n) x U(1))-invariant. In fact, by (x) above we have with the usual
notations, for any X € m,

, _ 0  —'ie 19Ax)
ToAd o gy X = (ieieAx 0
0 A

=Ad eif 0 JoX.
0 A
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Therefore (see [24, Prop. 43, p. 325]), Jo determines an almost complex structure J
on CP" making it a Kéhler manifold.

(6) (a) As U(n) acts transitively on the complex lines in C" (i.e. the holomor-
phic planes in T,(CP")), from () it follows that for 6 = 0, the action of the linear
isotropy group is transitive on complex lines.

(b) Let 0 € CP" be the point corresponding to (1,0,...,0) € C"**!. The ho-
lomorphic sectional curvature is constant on T,(CP"), so by homogeneity it is
constant everywhere. In fact, multiplying B by 4, we have B(X,Y) = —2tr XY.
Let e1,e; € m correspond to elements of the natural basis of C* = m. From (a)
above, an arbitrary tangent plane on CP" has sectional curvature K(e1,Y), where
Y = cos0Je; +sin 0 er. We have

0 —1 0 i 0
el ! , Jey = ! ; e = (1)

Thus, we deduce (see [24, Remark, p. 319]):

B(le1,Y],|e1,Y
K(e1,Y) = (le1,Y],[e1,Y]) i
B(el,el)B(Y,Y)—B(el,Y)
1
ZRB(COSG[&,JE]] sin B [eg,ey], cos O [e1,Je;] +sinb [ey, e])
1
= —(1+3cos’0).
4
Hence |
S<K< 1.
4

Taking 8 =0, so Y = Je|, shows that CP" has constant holomorphic sectional cur-
vature 1.

Problem 6.8.6. Let G = O(p,q+ 1) and H = O(p,q). Show that the homogeneous
space M = G/H is symmetric and can be represented as the hyperquadric

0= {xz (xl,...,x”“’“) € RpHatl .

(x1)2 4o (xp)2 _ (xp+l)2 _ (xp+q+1)2 -1 } ]
HINT: Show that the map

O(p,g+1) — O(p,g+1)
a — Cal!
where  is the matrix § = <_Ip+" 0> in the canonical basis of RPT4F1, is an

0 1
involutive automorphism (i.e. 6> = id) of O(p,q+1).
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Solution. Since {~! = ¢, the map o is an involutive automorphism of O(p,q + l)
The closed subgroup of O(p,q+ 1) of fixed points of ¢ is G° = O(p,q+ 1)°
O(p,q), and thus

SO(p,q) = O(p,q+1)§
(p,q)
(pg+1)°
(,9),

where O(p,q+1)§ denotes the identity component of O(p,q+1)°. Hence M = G/
H is a symmetric space.
The map

n N

0]
o
=0

¢: 0(p,g+1)/0(p,q) — Q
a-0(p,q) — ax
where a € O(p,q+1) and xo = (0,...,0, 1), is a diffeomorphism of M with the orbit

of xp under O(p, g+ 1), which is the hyperquadric Q, since O(p,q + 1) is the group
of linear transformations leaving invariant the quadratic form

P ptg+1
a0 =Y ()= X @)
i=1 j=p+1

Problem 6.8.7. Find the involutive automorphism of SL(n,R) making the homoge-
neous space SL(n,R)/SO(n) into an affine symmetric space. Write the decomposi-
tion involving the corresponding Lie algebras.

Solution. The usual definition O(n) = {a € GL(n,R) : ‘aa = I'} suggests us to take
the involutive automorphism & given by

o:SL(m,R) — SL(n,R)
b — p7!

for, then, the closed subgroup of SL(n,R) of fixed points of o,
SL(n,R)® ={b e SL(n,R) : 6(b) =b} =80(n),
and its identity component SL(n,R)§ satisty
SL(n,R)§ =SO(n) = SL(n,R)°,

so SL(n,R)/SO(n) is an affine symmetric space.
As for the Lie algebras, the differential

o,: sl(n,R) — sl(n,R), 0. X =X,

induces the decomposition in (+1)-eigenspaces
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s5l(n,R) = 044 D O
={Xesl(n,R): o X=X}®{X esl(n,R): 0.X =—-X}
— o(n) & sym(n,R),

where sym(n,R) denotes the subset of traceless symmetric matrices in gl(n,R).

6.9 Spaces of Constant Curvature

Problem 6.9.1. Prove, using Cartan’s structure equations, that the Poincaré upper
half-plane, that is, the 2-dimensional manifold

M:{()c,y)EJRZ:y>O}7

with the Riemannian metric

_ dx? + dy?
v

has constant curvature K = —1.

Solution. The orthonormal moving frame (X; = yd/dx, X, = yd/dy) has dual
moving coframe (8! = dx/y, 6% = dy/y). The first structure equation is df' =
—@) N 62, that is,

1 1
—SdyAdy=—a) A —dy,
y? y

hence

The second structure equation is d@) = K0' A 82, for certain differentiable real
valued function K; that is,

1 1 1

S dyAdx=K-dxA—dy;

y y y
thus K = —1.

Problem 6.9.2. Let a be any positive real number and let M be the subset of R"
such that x" > 0. Prove, using Cartan’s structure equations, that the Riemannian
metric on M given by g;;(x) = (a®/(x")*)§;; has constant curvature K = —1/a>.

HINT: Take as connection forms
~i 1 ~j i
(J)jZ 2(5,,,'9 _5nj9 )7

where 8' = adx' /x", fori,j=1,...,n.
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Solution. The frame

G(Xlx 0 Xx”&)

a x0T a oxn

is an orthonormal moving frame, with dual moving coframe

< dx! ~ dx”
(Glzax—n,...,O":a—>.

xn
The forms @' in the hint satisfy the conditions d®' = — @} A 6/ and o+ @/ =0.In
fact,
6 = - dy" A d
INCOE

1 . . .
— = — (Budx/ — 8, dx) A =,
I X X

and the other condition is obvious. Thus, the forms (T)} must be the connection forms
relative to 0, since these are determined uniquely by the first structure equation. The
second structure equation is

OF — A0 | iAok
Q) =dw;+ o N 0;

= (848~ 5,,06) +3 (8004 — 840 A L (8467~ 5,6Y)

= _a_12 <2 5nk5nk> NI
k

1 o~ =,
=——0'A0.
)

Problem 6.9.3. Let (M,g) be a Riemannian manifold of constant curvature K. We
define a metric g on M x M by

§<(Xlayl)7(X27Y2)) = g(XhXZ) opry +g(Yl7Y2) Opry,

where pr and pr, denote the projection map onto the first and the second factor,
respectively. Is (M x M, g) a space of constant curvature?

Solution. Let (U,x!,... x") and (V,x"*!, ... x*") be coordinate systems on the first
and second factor of M x M, respectively. Hence, (U x V,x!,... ,xz") is a coordinate
system of M x M. If g = (g;;(x)) on U and g = (gi4n,j+x(y)) on V, then g has matrix

(gAB(X,y»:(gijé)C) gw,?m(y))’ AB=1,...2n
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Computing the Christoffel symbols

~ 1 _.p (9gpB  d€pc IgBC
iy =-g"? — AB,C,D=1,....2
BC ZgA < axc + 8}(3 &xD ) y Dy ) , 21,

it is easy to see that all of them vanish except perhaps I:j‘}((x, y) = F]’k(x) and

I:;’jf: i (BY) = l"j’k(y) Therefore, as one can easily compute, all the components

of the curvature tensor field
_dlgy Il
0x€ oxP

Rpcp

+TEeTsh — TipTie
vanish except perhaps
ﬁ;‘kl (x,y) = R;kl (x), Ri‘i’;,mn,lﬂ(xay) = R;’kl »)-
Now, if (M x M, g) is a space of constant curvature, say K , we have
Riy = K(8{gji— gu8))-
Hence, by the considerations above we deduce that, in particular,
0=Rj}%,; =Keyy

Hence (M x M, g) does not have constant curvature except when K=0.

Problem 6.9.4. Prove that a Riemannian manifold of constant curvature K is an
Einstein manifold.

Solution. Let g denote the Riemannian metric, r the Ricci tensor and (e¢;), i =
1,...,n, alocal orthonormal frame. Given any X,Y € X(M), one has

M=

r(X,Y) = 2 8(R(e,Y)X,ei)

Xijg(R(ei, erej,e;)
1

|
M= 1§

<
.
Il

XTY*Ryju
I

[l
0
M=

B

I
M=

XIY*K (86 — Sudji)
i kel
— K(n—1)g(X.Y).

Problem 6.9.5. Prove that a 3-dimensional Einstein manifold (M,g) is a space of
constant curvature.
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Solution. Suppose r = Ag. Choose any plane P € T,M, and any orthonormal basis
{e1,ez,e3} for T,M such that P = (e;,ez). Denote by P;; the plane spanned by e;
and e; for i # j, so that P;; = Pj;. Then

r(ei,ei) = Y K(P)),
J#i

where K(P;;) stands for the sectional curvature determined by P;;. Thus we have
r(er,e1) +r(e2,e2) —r(e3, e3) = 2K(P).

As r(e;,e;) = A we obtain K(P) = 1. As P is arbitrary, we conclude.

6.10 Left-invariant Metrics on Lie Groups

Problem 6.10.1. Find, using Cartan’s structure equations, the Levi-Civita connec-
tion, the Riemann curvature tensor, the Ricci tensor, and the scalar curvature of the
Heisenberg group H (see Problem 4.1.6) equipped with the left-invariant metric

g = dx? 4+ dz% + (dy — xdz)%.
Solution. The moving coframe
(él =dux, 6> =dz, 63 = dyfxdz) , (%)

is dual to the orthonormal moving frame

d d d d
G_(Xl_g’xz_a—z+xa_y’X3_a—y)

(see Problem 4.1.6).
The Levi-Civita connection forms E); relative to o satisfy Cartan’s first structure
equation

do' = —a; N6/, (%)
From () we have d8' = d6% =0, d63 = —' A 62. Thus (x*) reduces to
0=—@ Adz— @3 A (dy —xdz),
0= —&? Adx— @5 A (dy — xdz),
—dxAdz = —@; Adx — @3 Ndz.

The third equation is satisfied taking 513 = —%dz, 67)23 = %dx, and we have from the
other equations that
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~ 1 ~ 1
0=—0, Adz— Zdz A (dy —xdz), Oz—a)lz/\dx—&—idx/\(dy—xdz),

which are satisfied if (7)21 = %(dy —xdz). Since the forms 6! determine uniquely a
set of connection forms (T)}, we have that

~1_ las ~1_ 1z ~2 151

a)zzie, (03:59, 0y =—=z0",
ie. !
0 —(dyf)CdZ) EdZ
i 1
(0)) = [ —=(dy —xdz) 0 —de
1 1
—=d —dx 0
2™ 2

From Cartan’s second structure equation Q; = d(T); + o} A (7);‘ we obtain the curva-
ture forms relative to o:

~ 1 1 1
Ql = —de/\dz-i- EdZ/\ —dx

2
3., -
=—-0'"7A062
FRAKAR
~ 1
93:§(dyfxdz)/\ ——dx
1~ =~
=-6'76°
4 i

~ 1 1
Q= —E(dy—xdz) A Edz

Hence, from
Q =RL,6' 762+ R} 30" A G° +RL67 163,
Ql =R};,0" A0+ R}30" A0 + R 6% A 03,
02— R2,0' NP+ R38O+ Ry 07 1 6,
we deduce that the nonvanishing components of the Riemann curvature tensor are

3 1
Ri212 = I Ri313 = Ra3p3 = 1

The Ricci tensor r;; = ¥ Ry has thus components

ryg =ryp=—rz= —1/2.
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1 0 O
Finally, since g! = [ 0 14x> x |, the scalar curvature is given by
0 x 1

N 1
s=g"rij= —§(1+x2).

Problem 6.10.2. Let G be the Lie group defined by

G_{C (}) € GL(n, R):veR”l,t>0},

for an integer n > 1, where v denotes a column vector and I is the (n—1) x (n—1)
identity matrix.

(1) Prove that the Lie algebra g of G consists of matrices of the form ((3 2) ,

veR"™ teR
0 0\ . (00
Ei—(ei 0), i<n, En—(o I),

(2) Let
where {e;} is the usual orthonormal basis of R"~. Fix the left-invariant metric g
on G so that {E;} is an orthonormal basis for g.

Prove that this metric is not bi-invariant on G considering that adg; is not skew-
symmetric for j < n.

(3) Prove that (G, g) is a space of negative constant sectional curvature.

Solution. (1)

0 0 00 1 /0 O 1 0 O
exp <v tl>_[+ (v tI)JFZ(tv t21>+§(t2v t31>Jr

1 0
l2 2 ’%
<1+ BTt >v <1+r+ +3'+ )1

1 0
o (w e’I) cG.

Let e denote the identity element of G. It is easily checked that

gETeG:<O O), veR"™! teR.

v tl

0 0 0 0 ..
el=| (o 0)-(¢ o) =0 ij<n
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wai=[(0 9.6 9] 9~

Hence for i, j < n, one has
g(adg, En, Ej) + g(En,adg, Ej) = —6;;.

(3) Let V be the Levi-Civita connection of g. Then, as g is left-invariant, the
Koszul formula for V is reduced to

g(VXY7Z) = %(g([X,Y],Z) —g([Y,Z],X) —l—g([Z,X],Y)),

X,Y,Z € g. Thus for i, j < n and for all k,
VEE; = 0;jEn, VgE, = —E;, Vi, Er =0.
Hence the sectional curvature is
K(Ei, Ej) = ¢(R(E;, E})E}, E;)

=8(VeVE,Ej = Vg VEE; = Vg, £ Ej, Ei)

o 7g(EiaEi):713 i,j<n
| —e(EnE)=—1, i<n,j=n,

and (G, g) is in fact a space of constant sectional curvature —1.

Problem 6.10.3. Let H be the Heisenberg group (see Problem 4.1.6).

(1) Compute the left-invariant Riemannian metric g on H built with the dual
basis to the basis of left-invariant vector fields

Jd d d 0
%—{E, a—y7x(9—y+a—z}

(2) Find the Levi-Civita connection V of g.

(3) Is (H,g) a space of constant curvature?

Solution. (1) If {Bi,B2,B3} is a basis of left-invariant 1-forms on H, then g =
2?:1 Biz is a left-invariant metric. The dual basis to a basis of left-invariant vec-
tor fields, is a basis of left-invariant 1-forms. The dual basis {1, 5,,83} of £ is
easily computed to be

{B1 = dx, Bp = dy—xdz, B3 = dz}.
Therefore, the left-invariant metric on H is

g =dx? + (dy —xdz)* +dz’.
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(2) The Levi-Civita connection of g is given by
28(VxY,Z) = g([X,Y],2) - ¢([Y,Z],X) +5([Z,X].Y), X,Y,Zeg.
Now, since {X,X>,X3} is a basis of b, to determine V we only have to know Vx.X;.
The nonzero brackets [X;, X;], for i, j = 1,2,3, are [X;,X3] = —[X3,X;1] = X>.
Hence, g(Vx, X1,X;) =0,i=1,2,3,s0 Vx, X; =0;
g(Vx, X2,X1) =0, g(Vx,X2,X)=0, 2g(Vx,X2,X3)=-1,
thus Vy, Xo = —%X3. So, as V is torsionless, it follows that Vy, X; = —%X3;
g(Vx, X3,X1) =0, 2¢(Vx,X3,X2) =1, g(Vx,X3,X3)=0,
therefore Vy, X3 = 3X>, and Vy, X; = —3X3;
8(Vx, X, X)) =0, i=1,2,3, so VxX,=0;
28(V, X3, X1) =1, g(Vx,X3,X) =0, g(Vx,X3,X3)=0,
and so Vy, X3 = %Xl, and Vx, Xo = —%Xl;
g(Vx, X3,X;)) =0, i=1,2,3, so VxX3=0.

(3) Since {X1,X»,X3} is an orthonormal basis of fj, {Xi|,,X>|,} is an orthonor-
mal basis of a plane P C T,H and {Xi|,,X3|,} is an orthonormal basis of a plane
P’ C T,H. The sectional curvatures K(P) and K(P') are thus

K(P) =R(X1,X>,X1,X)(p)

1
=8(Vx, Vi X2 = Vi, Vi, X2 = Vi, x,1 X2, X1)(p) = 7,

and K(P') = —1. Hence (H,g) is not a space of constant curvature.

Problem 6.10.4. (1) Let G be a compact Lie group equipped with a bi-invariant
metric g and g its Lie algebra. If X and Y are left-invariant vector fields on G and
V is the Levi-Civita connection of g, prove that VxY = %[X, Y.

(2) Compute R(X,Y)Z, X,Y,Z € g.
(3) Show that the sectional curvature of g is non-negative.

HINT (fo (1) and (3)): If a metric is bi-invariant, each adx, X € g, is skew-symme-
tric with respect to g (see [25, p. 114]).

Solution. (1) By the result quoted in the hint, the Koszul formula is reduced to

§(VxY,2) = 3 (6([X.Y],Z) + ¢(adz¥,X) + g(adz X, V)

= J&(X.7).2).
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That is, we have VxY = 1[X,Y].
(2) From (1) one has for the curvature:

R(X,Y)Z=VxVyZ—-VyVxZ—-Vx yZ

1 1 1
= Z[Xa [YaZ]] - Z[Yv [sz]] - EHva]vz}
i (smrz)-jxnz
—%[[X,Y], 7] (by Jacobi identity).

(3) Let X,Y € g be orthonormal. Then, again by the result in the hint, we have
for the sectional curvature at e, hence at all points:

K(X,Y)=g(R(X,Y)Y,X)

g([[X,Y],Y],X)
(ady [X, Y], X)

——g([X,Y],ady X)

o9 .M— o9 .MH

(X, Y], [X,Y])

4>|~4>|~

X, Y] > 0.
Problem 6.10.5. Consider the Lie group

10
G_{(x y) : x,yER,y>O}.

1) Prove that its Lie algebra is g = (yd/dx,yd/dy).
2) Write the left-invariant metric on G built with the dual basis to that in (1).

4
5

)

(2)

(3) Determine the Levi-Civita connection V of g.
(4) Is (G, g) a space of constant curvature?

(5) P

rove (without using (4)) that (G,g) is an Einstein manifold.

Solution. (1) G is a Lie group with the product of matrices and with only one chart:

10
I A M B

where U denotes the open subset {(x7 y) € R?:y> 0} of R?, hence dimG = 2.
Thus dimg = 2 and so, to prove that g is generated by X; = yd/dx, Xp = yd/dy,
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we shall only have to prove that X, X, are linearly independent and left-invariant.
They are linearly independent, as y > 0. To prove that they are left-invariant vector
fields, we have to prove that for all A € G, one has

(La).5(Xilg) = Xilsp s forall BeG, i=1,2. (%)
10 1 0 1 0 . .
LetA = <a b)’ B= <X0 yo)' AsAB = <a + by byo) , the right-hand side of

(%) is

J J
Xi|ap =Dbyo el Xa|ap = byo 8_y

AB AB

To determine the left-hand side of (x), we compute the Jacobian of L using the
diagram

G — G

with
10 Ly 1 0
Xy a-+bx by
o] d
@oLyop”!
———— (a+bx,by).

(x,y)

It follows that the Jacobian of @ oLy o @~ ! is (8 2), hence

(La)«s Xi|g = (8 2) <y6))

(2) The dual basis {B;, B2} to {X;, Xz} is {B1 = dx/y, B> = dy/y}. Therefore, the
left-invariant metric on G we are looking for is g = (1/y?)(dx? + dy?).

(3) From the formula for the Levi-Civita connection of a left-invariant metric g
on a Lie group and from
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[X1,X1] = [X2,X3] =0, X1,X0] = —[X2,X1] = — X1,
we have:
g(Vx, X1,X1) =0, 2g(Vx, X1,X2) = 2; thus Vx, X1 = Xp;

28(Vx, X2,X1) = =2, g(Vx, X2,X2) = 0; so Vx, X = —X;. As V is torsionless,
one has Vyx,X; = 0;

g(szXz,Xl) = g(VX2X2,X2) = 0; that is, VX2X2 =0.
(4)
R(X1,X2,X1,X2) = g(Vx, Vi, X2 — Vx, Vi, Xo — Vi, x,1X2,X1)
= —g(Xl,Xl) =—1.
Thus G is a space of constant curvature —1.
(5) Let X,Y € X(G), X = fiX1+ foXo, Y = mX; + hpX;. Thus,
r(X,Y) = R(X1,Y,X1,X) +R(X2,Y,X3,X)

= R(X1,ha X2, X1, 2X2) + R(X2, 1 X1, X2, f1X1)
= (fil1 + f2h2)R(X1, X2, X1, X2)
= —(fil1 + f2h2)

Therefore, G is an Einstein manifold.

REMARK. In Problem 6.9.4 it has been proved that every Riemannian manifold
(M, g) of dimension n and constant curvature K is an Einstein manifold, with Ricci
tensor #(X,Y) = K(n—1)g(X,Y). Here we have a verification of this formula in this
example.

Problem 6.10.6. Let G be a Lie group and I' a discrete subgroup of G which acts
on the left on G. Denote by I'\G the quotient space of right cosets

NG={rg:geaGy.
Compute the de Rham cohomology of the compact quotient I'\H of the Heisenberg
group H (see Problem 4.1.6) by the discrete subgroup

1
I= 0
0

O = =

Z
y|,xyz€Z
1

REMARK. A nilmanifold is a manifold which is a quotient of a nilpotent Lie group.

Solution. We know (see Problem 6.10.3) that {dx,dy,dz —xdy} is a basis for the
left-invariant differential 1-forms on H. In particular, they are preserved by I', and
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so they descend to 1-forms ¢, 3,y on the nilmanifold I'\H, that is, if 7t denotes the
canonical projection map 7n: H — I'\H,

Tt o = dx, B = dy, 'y =dz —xdy. (%)

From (x) we have
doo=dp =0, dy=—aAp. (%)

In fact, for instance we have n*(do.) = d(n* ) = 0. Moreover,
d(@AB) =d(aAy) =d(BAY) =

By virtue of Nomizu’s Theorem 7.6.19, from (xx) we deduce that the de Rham
cohomology groups are

Hag(M\H,R) = ([1]),
Hip(T'\H,R) = ([ot], [B]),
Hgg(T\H,R) = (e A Y], [BAY],
Hap(T\H,R) = ([e A\ B AY]).-

Notice that a2 A 3 is closed but also exact. As for a A B Ay = —dyAY, itis not exact.

6.11 Gradient, Divergence, Codifferential, Curl, Laplacian, and
Hodge Star Operator on Riemannian Manifolds

Problem 6.11.1. Let (M,g) be a Riemannian manifold, T,M the tangent space at
p € M and T;M its dual space. The musical isomorphisms b and § are defined (see
Problem 6.1.1) by

i T,M — T;M, X — X', X'(Y)=g(X,Y),

and its inverse @ — ¢, respectively. The gradient of a function f € C M is defined
as

grad f = (df)*.
(1) Prove that g(grad f,X) =X f, X € X(M).
Given local coordinates {x'}:
(2) Compute (9 /dx')’.
(3) Calculate (dx')*.
(4) Write grad f in local coordinates.

(5) Verify that in the particular case of R® equipped with the Euclidean metric,
we recover the classical expression of grad f.
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Solution. (1) g(gradf,X) = g((df)} X) = df(X) = Xf.

(2) Since
IN (9 N_ (2 2
oxi ) \9xi ) T8\ 0xi" 0x
= 8ij
0
— oo dik [ 2
*glkdx (8)(])7
we have

9\’
(ﬁ) = gadt.

=55 = gix(dxb)?, since b and 4 are inverse maps. So we

(3) From (2) we have e

obtain

d

ﬁ.

(def)f = g/

grad f = (df)*

C(af )
—(w“)
_Of v
—ﬁ(dx)
idf 9
& oxi o

(5) In this case,

af d
gradfzza—;ﬁ.

Problem 6.11.2. Let M be a C* manifold equipped with a linear connection V. Let
{X1,..., X} be a basis of T,M, and {®",...,®"} its dual basis. The divergence of
Z € X(M) is defined by '
(div Z)(p) = o (Vy,2).
(1) Prove that (div Z)(p) does not depend on the chosen basis.

(2) Show that the divergence of a C* field on R3 is the same as the definition
given in Advanced Calculus.

Solution. (1) Given another basis {)? = aé-X,}, its dual basis is given by {@/ =

bl@'}, so that blal = alb, = §]. Thus,
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~j ) i
&' (V5,2) = b} (V 1, 2)
_ hyJ i
= d'bj 0/ (Vx,2)
= 5ihwi(VXhZ)
= (Di(VXl.Z).

(2) Given the basis {(9/dx"),} of T,R?, its dual basis is {dx/|,}, i =1,2,3,
and we have for Z = Z'd/dx’ € X(IR?), since the Christoffel symbols of the flat
connection on R3 vanish, that

oo (3 62)
i, 2 ) 2
-3 %)

Problem 6.11.3. Let (M, g) be a Riemannian manifold, and let:
(a) V be the Levi-Civita connection of g.
(b) grad f be the gradient of the function f € C™M.

(c) div X be the divergence (see the previous problem ) of the vector field X €
X(M). For a local field of orthonormal frames (e;), i = 1,...,n, we have divX =
N g(VB,‘Xa ei)-

(d) HY be the Hessian of f € C*M, defined as the second covariant differential
V(V), that is,

HI(X,Y)=XYf—(VxY)f,  X,Y € X(M).
(e) Af bethe Laplacian of f € C”M, defined by
Af =divgradf.

Moreover, suppose dimM = 3. Then:

Prove the following formulas for f,h € C°M, X,Y € X(M):
1) grad(fh) = fgradh+ hgrad f.

2)div(fX)=Xf+ fdivX.

3)H!" = fH" 4 hHf +-df ® dh +dh @ df.

4) A(fh) = fAh+hAf+2g(grad f, gradh).

AAAA
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Solution. (1)
g(grad fh,X) = X (fh)
= (Xf)h+ fXh

= g(grad f,X)h+ g(gradh,X) f
= g(hgrad f + fgradh,X).

div(fX) zg Ve X, ei)
_Zg eif)X + VX, e)
= Zg X,el- €if+fzg(vejxvei)

=Xf+fdivX.

H/™(X,Y) = XY fh— (VxY)fh
=X((Yf)h+ fYh) = ((VxY)f)h— f(VxY)h
= (XY f)h+ (Y f)(Xh)+ (X f)(Yh)
+fXYh—((VxY)f)h— f(VxY)h
= (fH"+hH! +df @ dh+dh@df)(X,Y).

A fh = div grad fh
=div(f gradh+ hgrad f)
= (gradh)f+ fAh+ (grad f)h+hAf
= fAh+hAf+2g(grad f,gradh).

Problem 6.11.4. Consider on R" the metric g = ¥!" | dx' ® dx' and the volume ele-
ment @ = dx' A--- Adx".

(1) Prove that given a form S of degree k there is only one form x Qy, of degree
n—k, such that

() (X1, Xni) © = QAXI A AXD_,
(2) The Hodge star operator

> AFRT — AR
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is defined by the previous formula. Prove that this operator satisfies the following
equalities:

%2 = (71)]‘("—/‘) = (71)k(n—k)*

)

, QN (*Oy) = Op A (*£2).
(3) The codifferential §: A¥R" — A¥=IR" is defined by
5 = (=1)" D e d,
Prove that § satisfies 8> = 0.
(4) The Laplacian A: AKR" — AKR" is defined by
A= (d+8)*=dés+48d.
Prove that if f € C*R", then Af = —3" d>f/d(x))%

Solution. (1) We only have to prove the above properties for a basis of the exte-
rior algebra. Let {Xj,...,X,} be an orthonormal basis of vector fields on R”" and
{@',...,0"} its dual basis. Consider multi-indexes i; < --- < ig, ji < -+ < jnu_ik-
We have

{%(8 A ANO)}(Xj) o, X O =0T A AOKAGT A AOIK (o)

which vanishes if (jj,..., j,—x) is not the complement of (iy,...,i) in (1,2,...,n).
Denoting by (ji, ..., ja—k) such ordered complement, we have

*(Oil /\---/\6”’) = sgn(ih...,ik,jl,...7j,,_k)6/1 AN QInk (00)
(where sgn denotes the sign of a permutation). In fact, from (¢) above we deduce
{%(8 A ANO)VNXj, o, X )O = Sg0(ity iy 1y k) O
(2) From (¢0) above we have
*{x (O A ANOKYY = w{sgn(if,... ik, f1y s ini) O A AOIEY
=8gn(i1, .oyl f1s- oy Jnk)*(87 A A QIK)
=SEN(i1, .y iky j1s- s Jnk) - SE(J1s - fuks il s ik) BT A A O

k(k

. . 1 . . —k)(n—k+1
(Y S - 0ot

O AN Bk

(= DA=R gl AL A Bk,

From +2 = (— 1)Kk it follows that = (—1)K* K4~ ‘and thus ' = (— 1)K %4,
Consider € = 0% A--- A Qi and 6, = 871 A --- A k. Then

0 if {it,..oyik} # {toeens i}

O N\ (%) =
k ( k) {w if {il,...,ik}:{j17'”ajk}‘
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Proceed similarly for O A (x€2).
(3) 62 = xdhxdx = (—1)*k= D=k, 42« — 0, since d = 0.
(4) Since 8 f =0 for f € C*R", we have A f = ddf, hence

Af=24df
= —&dxdf

= —*d*g—f.dxi

Jxi
=—*d(—l)"*lg—f.dxl/\---Ad/);i/\--~/\dx”
dxi

82f'

Problem 6.11.5. Let {1,dx,dy,dx Ady} be the standard basis of A*R?. Consider
R? equipped with the usual flat metric, and let « denote the Hodge star operator.
Compute x1, xdx, xdy, x(dx Ady).

Solution. dx Ady, dy, —dx and 1, respectively.
Problem 6.11.6. A differential 2-form F on R* is said to be autodual if
*F =F,

where % stands for the Hodge star operator. Prove that the curvature 2-form (x) in
Problem 5.3.2 is autodual.

REMARK. A curvature form F satisfying xF = F is called an instanton. The instan-
tons described in Problem 5.3.2 are called the Belavin-Polyakov-Schwartz-Tyupkin
instantons.

Solution. The Hodge star operator on the 2-forms on the Euclidean space R* ~ H
is easily seen to be defined from

*(dxt Adn?) = dn A d?, *(d® Adon) = doe! Adx?,
*d! Ad) = —d Adxt,  x(d Ade?) = —dx! Ade,
*(dx! Adx?) = dn® Adx®, *(dod Adx?) = dx! Adx?

Thus, the basis of autodual 2-forms is

{de' Ad? +d Ade?, drf Ade® —d? Ade?, de Ade? e Adx
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Now, due to the identification R* = H, one has
dxAdi = (dx' +dx?i+dj+dx*k) A (dx! —d?i—dn’j — dx* k)
= —2{(dx' Adx® + dx® Adx*)i+ (dx! Ado® — do® Adxt)j
+ (dx' Ado* 4 da® Adod k]

Problem 6.11.7. Define on R? equipped with the usual flat metric g:
(a) divX = div X’ = —8X° = xd+ X", X € X(R%).
(b) curl X = (%dX")%.

Prove the formulas:
(1) curl grad f = 0.
) diveurl X = 0.
) Aw = —(graddiv o + curl curl ©f)’, @ € A'R.
) curl(fX) = (grad f) x X + f curl X, where x denotes the usual vector product

(2
(3
(4
in R3.
(5) div(fX) = (grad f) - X + fdiv X.
(6)
(x(curl X)°)(Y,Z) = g(VyX,Z) —g(VzX,Y).
(7) Prove that curl X coincides with its classical expression and then
div(X xY)=X-curl Y + (curl X) - ¥,
where the dot denotes the usual scalar product in R3.
Solution. (1)
curl grad f = curl(df)*

= (xd((df)"))"
= (xddf)* = 0.

div curl X = div(xdX’)*
= div((*dX’)")’
= —§%dX’
= wdxxdX’
= (=1)26"2sddx’ = 0.
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o= (dé6+d6d)w
=d(—div o)+ ddw
= —ddiv 0 — xd*dw
~((ddiv )"’ — xd((xd(0*)")?)
~(graddiv )’ — xd(curl o)’

= —(graddiv ©* + curl curl @*)’.

curl(fX) = (xd(fX"))*

= (*(df AX’ + fdX"))*

= (x(df AX"))* + feurl X
= (grad f) x X + fcurl X,

since

ox2 ox3 ox! ax3 ox! ox2
af af 0
*(aIXZasz‘) o
=grad f x X.

div(fX) = div(fX)’
=—5(fX)
= xdx(fX)’
= *d(f(xX"))
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= x(df A(*X) + fd(xX))
= %(X" A (xdf)) + frdxX’
= x((xdf) AX") + fdiv X.

S(Em

f 3 Of 1.5
((a— 2 nde = S5 di! ndy

af )/\(X/dxj))

dx! A
((a—f )dx‘Addex*) —gradf-X.

Now,

*((*df) /\X

(6)
(x(curl X)°)(Y,Z) = (x*dX) (Y, Z)
= (dX°)(v,2)
=YX"(2)-ZzX"(Y) - X"([Y,Z])
=Yg(X,Z) - Zg(X.Y) — g(X,VyZ) +g(X,VzY)
=g(VyX,Z) —g(VzX.Y).

0
curl X = curl (Xiﬁ>

= (xd(X;dx'))*
= (x{ (gxz‘dx%%dﬁ) Adx! 4 )

il
8X1 8X2 A A
8x1
X, 0dX FIEI !
oxl  ox2
2\ 0 (% ax) 2
T 8x1 ox!  ox3 ) Jx?

0X3
ox2
(2%
ox! 8x3

295
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From this, the formula

div(iXxY)=X-curl Y + (curl X) - Y
follows.

Problem 6.11.8. Ler ¢ and g be conformally equivalent metrics on the C* n-
manifold M, that is, such that g = e/ g, f € C*M. Find the relation between:

(1) ﬁxY and VxY, where Vand V denote, respectively, the Levi-Civita connec-
tions of g and g, and XY € X(M).

(2) divg X and divy X, X € X(M).

Solution. (1) The Levi-Civita connection of g is given by the Koszul formula 7.6.3.
Thus,

262 g(VxY,Z) = Xe¥ g(V,Z) + Ve g(2,X) — Ze¥ g(X,Y)
+€2fg([X,Y],Z) - ezfg([YaZ]vX) +62fg([Z,X],Y)
=2 {g(VxY,2) + (X )g(Y.Z) + (Y /)&(Z,X) — (Zf)g(X,Y)}.

Hence _
VxY =VxY +(Xf)Y + (Y f)X —g(X,Y) grad f.

(2) Let (E;) be a local g-orthonormal frame. Then the frame (e /E;) is a g-or-
thonormal local frame and we have locally, by definition of divergence and by (1):

diveX =Y & (ﬁe, pX.e ! E,»)
=3¢ g (VeX,E)
= Zg(VE,.XEi)
Z (VEX,E)+ (Eif)8(X, Ei) + (X )8(Ei, Ei) — (Eif )g(Ei, X))

= divy X +nX f.

Problem 6.11.9. Prove that the Laplacian A = 6d +dd and the Hodge star operator
* on an oriented Riemannian manifold commute:

Ax = xA.

REMARK. We recall that the codifferential 8, defined as the opposite of the diver-
gence, satisfies 5o = (—1)"*+tD+dww for o € AXM".
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Solution. Suppose dimM = n and @ € A*M, then

Axw = (8d+dd)rw
1)k dydx o + (—1)"FF ) dad s
l)n(n k)H*d*d*aH—( l)n(n—k+l)+1+k(n—k)d*dw’
*Aw=*(8d+dd)w
(=124 dadw + (1) D dwdx o

*
(— 1)kt H=Rk gy de + (— 1) EHDH s dx d .

(
(=
(=

Now, (_1)n(n7k)+l — (_1)712*711{4’1 — (_1)n+nk+l — (_1>n(k+1)+l7 and on the other

hand
(_l)n(n7k+1)+l+k(n7k) _ (_l)lfk _ (_l)nk+l+nk7k.

Hence Ax = xA.

Problem 6.11.10. Prove that a parallel differential form on a Riemannian manifold
(M, g) is harmonic.

Solution. Let ot € A*M be parallel; that is, if V stands for the Levi-Civita connection
of g, we have Vo = 0.
Therefore « is closed. In fact, if o € A”"M, one has in general

,
do(Xo,..., X 2 an )Xo, Xy, X)), Xj € X(M).

Moreover, o is coclosed (6 = 0). In fact, we have in general

(6ct)p(vi,...,ver) = (=diva),(vi,...,ve—1)
= —Z(Ve[a)(ei,vl,...,v,_l),

where {¢;} is an orthonormal basis for T,M, and vi,...,v,_; € T,M. Since Aot =
(ddé + 8d)cx, we conclude.

Problem 6.11.11. If the Riemannian n-manifold M is compact, prove:

(1) The codifferential & is adjoint of the differential d with respect to the inner
product of integration, that is:

/‘ (Sa,ﬁ>w:/ (a,df) o, o,BeA™, re{0,...,n},
Jm M

where @ denotes the volume form on the Riemannian manifold.

(2) The Laplacian A = dd + 8d on M is self-adjoint with respect to the inner
product of integration, that is:

/<Aa,ﬁ>w=/<a,A[3>w, o, BeEAM, refo,...,n).
JM M
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Solution. (1) We have

0:/ d(arxp) (by Stokes” Theorem)
M
:/M(da/\*ﬁ+(—1)’a/\d*ﬂ)

:/ doc/\*ﬁ—/ aAx6f (by definition of J).
M M

By the definition of inner product of integration, we conclude.
(2) By (1) above,

/ (Ao, B — / ((d§+ 8d)er, B
JM JM
= [ (60.5B) + (doaB))o
~ [ (e.a8p) +(e.888))0 = [ (c.2B)o.
M M

Problem 6.11.12. Prove that if a compact Riemannian n-manifold M admits a me-
tric of constant positive curvature, then

Hjr(M,R) =0, r=1,....n—1.

HINT: Use: (1) Weitzenbick’s formula for the Laplacian on a Riemannian manifold
(M,{,)) of constant sectional curvature c.

(2) The formula
/ Afo=0, feCM,
M

which follows from (2) in Problem 6.11.11, taking o« = f and B to be a constant
function.

Solution. Integrating the two members of Weitzenbock’s formula, we have in gen-
eral:

1
/(Ama}w:/ (—Aa|2+Voc|2+r(n—r)c|a|2> o, oeA'M,
M M\ 2

where o stands for the volume form on (M, g).
Let o be the harmonic representative of a class in H),(M,R). Then Ao = 0.
Moreover, by (2) in the hint, [;,Al|*> = 0. Hence

0= /M(|Va|2+r(n— nelal)o.

If r# 0,n, from ¢ > 0, it follows that oo = 0. Thus H),(M,R) =0,r=1,...,n—1.
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Problem 6.11.13. Let o and B be n-forms on a compact oriented Riemannian n-

manéfold M Such that
/ /
M M

Prove that o and B differ by an exact form.
HINT: Use:
(1) Hodge’s decomposition Theorem 7.6.21.
(2) Stokes’ Theorem 7.3.6.

Solution. Denote here the degree r of a differential form by the subindex r. By
Hodge’s decomposition Theorem, each r-form @, over such a manifold is decom-
posed in a unique way as

o, =dw,—1 + 6wr+l +6,,
where 6, is harmonic. In our case, the decomposition is reduced to
(X—ﬁ =dw, 1+ 6,.

Applying Stokes’ Theorem we have

0:/ o—p
M
[ donrs [ 0= [ on
JM JM JM

As the n-form 6, is harmonic and each cohomology class has a unique harmonic
representative, from [, 6, = 0 it follows that 6, = 0. Thus ot — § = d®,_1.

6.12 Affine, Killing, Conformal, Projective, Jacobi, and
Harmonic Vector Fields

Problem 6.12.1. Find a non-affine projective vector field X on R3.

HINT: Let V be the Levi-Civita connection of the Euclidean metric of R>. The vec-
tor field X is projective if

(LxV)(Y,Z) = 6(Y)Z+6(2)Y, Y, ZeX(R), )
for some differential 1-form 6 € A'R3, where
(LxV)(Y,Z) = [X,VyZ] = Vx yZ - Vy[X,Z].

Moreover one has d(div X) = (dimR3 4 1) = 46.
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Solution. Let

d
+2z(x+y+2)5

d
+2(x+y+2)=— P

d
X=2x(x+y+2)=— e

ox

Then

0= %d(divX)
=2(dx+ dy+ dz).

Because of the symmetry of the vector field X and the differential form 0, it suffices

0
to prove the formula (x) for a couple of coordinate vector fields, for example —

ox

and i We have
dy

dJd\ d d 0 d d
e(a)a—y”@—y)aza—y“w

and

dy
) )
= —V% ( 2x$+(—2x—4y—2z)a——2za—z>
0 )
25 +28

Problem 6.12.2. Prove that the vector field X = x'd /dx' on R* with the Euclidean
metric is affine but not Killing. Is X a vector field of homotheties?

Solution.

Lyg = ini_ (dxj ®dxj)
i

3 (e(e5e) pereree(55)

=2g.

Hence X = x'd/dx' is not Killing (see Figure 6.8).

Note that X is a conformal vector field, with the function 2 € C*R", such that
Lxg =2hg,equal to 1, i.e. it is a constant function. It is said that a conformal vector
field with & = const is a vector field of homotheties.

Let us see if X is affine. As the Levi-Civita connection is torsionless and the
curvature vanishes, the condition is VyVX =0, Y € X(R"). Now, as
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Fig. 6.8 A non-Killing affine vector field on R3.

VyX = Y(xi)% =Y,

we have VX = I, hence any covariant derivative under V of VX vanishes. Thus X is
affine.

Problem 6.12.3. Let (M, g) be a Riemannian manifold. Prove that X € X(M) is a
Killing vector field if and only if Lyg = 0.

Solution. X is a Killing vector field if ¢;g = g for every ¢, where ¢, is the local
1-parameter group generated by X. Hence

. 8- 0’8
Lxg=lim =—=
X8 t—0 1

=0.

Conversely, assume Lxg = 0. For any tensor field K we know (see Proposition
7.2.10) that

¢ (LxK) = — (% (o 'K))

Hence, by virtue of the hypothesis, we have

1=s

0=} (Lxg) = — <% ((p,*g)>”,

and consequently ¢;"g does not depend on ¢. Therefore ¢;g = @58 = g.

Problem 6.12.4. Show that the set of Killing vector fields of the Euclidean metric
g = dx? 4 dy? + dz? on R3 is the real Lie algebra generated by the vector fields
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d d d d d d d 0 d

%’ 8_y’ 8_1’ Xg—y—y$7 _y(9z 8_y’ Zﬁ_xa_z'

Solution. Let X = A9 /dx’, where A is a function of x' = x, x> =y and x* = z.
Then one has

S fon oAl L,
_ OAT L OAY L j
Lx(s;—uﬁz,1 < -7t axj) dr' @ d/.
If X is Killing, that is Lxyg = 0, we deduce:
PYR dA? a3
(1) W:O, (2) WZO’ (3) WZO,
oAl 9A? EYREEVE: YRV R
W Fetom =0 O ator=0 © 55+52=0

From (1), (2) and (3) it follows that ! = A1 (x*,x%), 12 = A%(x!,x%), and A° =
A3(x!,x?). Thus, from (4) and (5) one has

924! 924!
oo oo
from which
M =a 23+ b3+ +d.
Similarly,

A =ax' P+ b +ox! + o, 13 = a3x' P + bax! + 3 + ds.
On account of (4), (5) and (6) above these formulae reduce to
A= —cox +oix +d, A= —c3 +oox! +do, A= —cixl + 3+ ds.

Hence the generators are indeed the ones in the statement. By using the property
Lix y) = [Lx,Ly] (see Problem 2.4.2), it is easily checked that {X : Lxg =0} is a
Lie algebra.

Problem 6.12.5. Calculate the divergence of a Killing vector field on a Riemannian
manifold.

Solution. Let (M, g) be a Riemannian manifold with Levi-Civita connection V and
let X € X(M) be a Killing vector field. Since Lyg =0, Vg =0, and V is torsionless,
we have for any Y, Z € X(M):

0= (Lxg)(Y,Z)
=Xg(Y,Z) —g(LxY,Z) — g(Y,LxZ)
=Xg(¥,Z2) —g([X,Y],.2) —g(¥,[X,Z])
=g(VyX,Z2)+g(Y,VzX).
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Hence, for any p € M, and any orthonormal basis {e;} of T,M, one has
(divX)(p) = X &(VeX,e1) =0,
i

that is, div X = 0.

Problem 6.12.6. Prove that a vector field X on a Riemannian manifold (M,g) is
Killing if and only if the Kostant operator A defined by

Ax = Lx — Vx,
where V stands for the Levi-Civita connection of g, satisfies
g(AxY,Z)+g(Y,AxZ) =0, Y.Z € X(M).
REMARK. Notice that as V is torsionless, AxY = —VyX.

Solution. As Vxg = 0 for all X € X(M), the condition Lxg = 0 is equivalent to
Axg = 0. Since Ay is the difference of two derivations of the algebra of tensor fields
that commute with contractions, one has

Ax(g(Y,2)) = (Axg)(Y,Z) + g(AxY,Z) + g(Y,AxZ), Y, ZeX(M).
On the other hand,
Axf=Lxf-Vxf=Xf-Xf=0, feCM,
thus Ax (g(Y,Z)) = 0. Hence (Axg)(Y,Z) = 0 if and only if
8(AxY,Z) +g(Y,AxZ) =0,
as wanted.

Problem 6.12.7. Consider R? equipped with the metric g = dx* + dy>.
(1) Show that the vector field

X = (ax—by)d /dx+ (bx+ay)d/dy, a,beR,

is a conformal vector field.
(2) Let R® — {0} with the usual metric and let @ denote the volume form. Write

Lyw, Y € X(R? —{0}), in cylindrical coordinates.
Solution. (1)

L dx® dx+ dy® dy)

(ax—by)%-‘r(bx—&-ay)a% (
= d(ax —by) ® dx+ dx®d(ax — by) +d(bx+ay) ® dy+ dy@d(bx +ay)
=2ag.
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(2) One has
x=pcosO, y=psin0, =2z

Hence, the volume form is @ = dxA dyAdz=pdp A dO A dz. Let

9 P d
Y _F%JFG%JFH&—Z,

where F', G, H are functions of p, 6, and z. Therefore,
1
Lyo =Ly (d(p?) AdO A d2)
M (F2Lp?) rndona +d(p?)Ad 2 o) nd
=2 ap” 2T dp 26 ‘

)
2 —_

+d(p )AdeAd(H8Zz>}
_(F9F 3G oH\
“\p dp 90 9z )

Problem 6.12.8. Consider the 1-parameter group @, t € R, of automorphisms of
R? defined by the equations

x(tf) =xcost+ysint, y(t) = —xsint+ycos 1.

(1) Compute the infinitesimal generator X of @;.
(2) If g =dx*+dy? and @ = dx A dy, find the vector field Y on R?> —{(0,0)}
defined by
gV, Y)=1, g(X,Y)=0, o(X,Y) >0,
and prove that [X,Y] =0.
(3) Calculate Lxg, Lyg, Lx o, and Ly .
(4) Compute the first integrals of X and Y.

(5) Prove that in a certain neighborhood of any point different from the origin
there is a local coordinate system (u,v) such that X = d/du, Y = d/dv.

Solution. (1) Since dfl(tt) =y(¢) and dﬁ—(tt) = —x(t), we obtain
d 0
X=y— —x—.
Yox x&y

(2) The vector field

d d

Y= —— +—=2
VaZ4+yr0x  \/x24y2 0y
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is a unit vector field with respect to g, which is normal to the circles with center
the origin, so g(X,Y) = 0. Moreover @(X,Y) = /x> +y2 > 0if (x,y) # (0,0). It is
easily checked that [X,Y] = 0.

(3) Letp = +/x2+y?. Then:

Lxg:Lyaifxa@(dx@)dx%-dy@dy) =0.
X 'y

Lyg=Ly, o (dx®@dc+dy®dy)
p dx pa
2
:F(yzdx@)dx—xy(dx@dy—&-dy@dx)+x2dy®dy).
Lyo=L , ,(dx®@dy—dy®dx)=0.
Yox xa_v

Lyo=L (dx®@dy—dy®dx) =

0.y 0
9x TP Jy

‘DI‘(

X
P

(4) The first integrals of X and Y are, respectively, f(u'), where u! = x> +y? and
F(v), where v! = y/x.

d d d
(5) By (4), wehave X = A 3 5. Y= Ho If moreover X = —, we would have

du
d d 1
Xu=1= ?L&—ul, thus 3_u1 =T Let us compute A. One has
v v
A =Xy
(2 2
dx ~dy)x
2
y
- 1
= _(1 + (vl)z)v
. du 1 1 . .
that is = fm, so u = —arctany' = —0 (in polar coordinates). Hence
v
0
u = —arctan(y/x). Similarly, if ¥ = 3, Ve have Yv=1= /.ta—vl. Let us calculate
v u
d 1 1
(. We have u = Yu' =2p =2v/u!. Thus a—uvl =0 =oU and v = Vu!. That is,

V= VBT

Problem 6.12.9. Find two linearly independent harmonic vector fields on the 2-
torus T? with its usual embedding in R? as a surface of revolution.

Solution. Let us see if there exist f(¢,0)d/d ¢ and h(@, 0)d /96 harmonic, ¢ and
0 being the parameters of the usual parametrization
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x=(a+bcos@p)cosb, y=(a+bcos®)sinb, z=bsing,

©,0 €[0,2n], and f(¢, 0), h(@, 0) functions of these parameters. Such vector fields
would obviously be linearly independent. If j: 72 — R3 denotes the usual embed-
ding, the metric is

JH(dx? 4 dy? +dz?) = b*d@* + (a+bcos @) 2d6?.

If M is compact, as in our case, in order for a vector field Z to be harmonic (see
Definition 7.6.20) it suffices to have dZ’ = 0, 62" = 0.

Putting X = f(o, 9)%, Y =h(op, 9)88_6 , one has

X =b’f(@,0)dp, Y’ = (a+bcos)’h(p,0)do.

Thus, from 5
ax’ =% 40 ndg =0
ae (p )
we have f = f(¢). Suppose similarly 2 = h(¢). Then
d b 2h
ayr = IUaxbeosolh(®) 4 g g
e
implies
A
he) = (a+bcosp)?
Hence, for
d A d
X=flp)—, Y=— "%
f("’)aq)’ (a+bcos@)? 90’ )

we have dX” = dY” = 0.
To compute §X” = —div X? and 8Y” = —div Y’ we use the formula, valid for
any oriented manifold M,

Lyo= (leZ)(!J, Ze%(M),

where @ denotes the volume element on M, which in our case is

0 =1/811822— 8}, dp Ad6 = b(a+bcos@)dp AdB.

Applying moreover the general formula
Lz (fdoAdO) = (Zf)do AdO + fd(Ze) AdO + fdo Ad(Z0),
FE€C™M,toX and Y in (%), we obtain

(divX)d(p/\dOsz b(a+bcosp)dp NdO

(®) 35
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— (—f(q))bz sin@ + b(a + bcos <p)%((p‘p)> dp Ade,

(divY)doAnde=L__ 4 5
J

(a+bcos )2 90

b(a+bcos@)dp Ad6 = 0.

Hence, 8Y” = 0. And 86X’ = 0 if

d d
f((p)bsin(p+(a+bcos(p)% = %(f((p)(a—kbcosgo)) =
that is, if 3
Flo)= a+bcos’

In this case, AX” = (d8 + 8d)X” =0, AY’ = (d§ + 8d)Y* =0, that is X” and ¥ are
harmonic forms, and

B d A d

T a+bcosg I’ r= (a+bcos@)? 96

satisfy the conditions in the statement.

Notice that in order to compute §X” and 8Y” we can instead use the definition
divZ = tr VZ and thus the Christoffel symbols of g, as follows. Taking x' = ¢,
x2 =0, since

(P 0 o (1/b? 0
£= 1o (a+bcos@)? )’ £ =1o 1/(a+bcose)?)’

we deduce that the non-vanishing Christoffel symbols are

bsin @

1 .
1312:B(a+b003¢)31H¢7 F122:F221:*m~

Let us calculate X and 8Y:

85X’ = —divx’
=—divX

(0) i
a+bcos(p 99 8(p a+bCOS(p 36

o f
_ _bsing
N a—i—bcosq)

: L2 _pl
since I} =I7 =1, =0.



308 6 Riemannian Geometry

oY’ = —divY
o 19
— oV g -2
g< b3 Grregr 00 baw)
e R )
S\ e o9 (a+bcos®)? 90’ a+bcosp 0
:07

since 1"112 = 1322 = 0. That is, we obtain the same expressions as above.

Problem 6.12.10. Let (M, g) be a Riemannian manifold. Prove that if X € X(M) is
Killing and Y € X(M) is harmonic, then g(X,Y) is a harmonic function.

HINT: Apply the following results:
(1) If Z € X(M) is Killing, then:

g(r V2Z,W) = —r(Z,W), W eX(M),

where r denotes the Ricci tensor.

(2) Z € X(M) is harmonic if and only if g(tt V2Z,W) = r(Z,W).

(3) Let K be a symmetric (i.e. self-adjoint) transformation of an inner product
space (E,(,)), and let L be skew-symmetric. Then we have (K,L) = 0.

Solution. Let (¢;) be an orthonormal frame on a neighborhood of the point p € M.
Then if V denotes the Levi-Civita connection of g, we have

(Ag(X,Y))(p) = (6dg(X,Y))(p)
=—(divd(X,Y))(p)

= =3 ((Vadg(X. 1)) (e) (7)

= i{Vei(dg(X,Y)(Ei)) —(dg(X,Y))(Ve,er) } ()

= —i{Veieig(X,Y) — (Ve,e1)g(X,Y) }H(p)

= —i{eig(ve,.x,Y) +eig(X,VeY) = g(Vy, e X, Y)
—gl(X V9.6 }(P)

= =2 {8(Ve Ve X.Y) +8(Ve X, Vo) +5(Ve X, VoY)
+<;(X7 VeVe) = 8(Vv, X, Y) = 8(X, Vv, .Y) } (p)

= S 28(Ve X Ve +8((Ve Ve~ Vi )X.Y)
48X, (Vo Ve~ Ve, e} )

= {—2¢(VX,VY) —g(tr V2X,Y) — g(X,r V’Y)} (p)
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= {=2e(VX,VY) —r(X,Y) +r(X,Y) }(p)
= (=28(VX,VY))(p)-

Now, since X is Killing, VX is skew-symmetric, i.e.,
g(VzX,W)+g(Z,VwX) =0
(see Problem 6.12.5) and as Y is harmonic, VY is symmetric, i.e.,
8(VzY,W) =g(Z,VwY),
each one with respect to g. Hence
g(VzX,VwY) = —¢(Z,Vy,yX) = —g(VwY,VzX),
for Z,W € X(M), and we conclude that
Ag(X,Y)=0.

Problem 6.12.11. Determine the Jacobi fields on R" with the Euclidean metric g.

Fig. 6.9 Some simple Jacobi fields.

Solution. The geodesics of (R”,g) are the straight lines parametrized as in Pro-
blem 6.3.1. Since the curvature vanishes, the Jacobi equation is reduced to

X

dar?

The Jacobi fields along a straight line 7y are the fields of the form X =tY + Z, where
Y and Z are constant vector fields along y (see Figure 6.9).

Problem 6.12.12. Let

o(u,v) = (ucos v, usinv, f(u))

be a parametric surface of revolution in R, and let
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0
Yv‘(p(u,v) = a_ ol )

Prove:
(1) Y, is a Jacobi field along meridians.
(2) If g denotes the metric and s the arc length, then

&[v|
dS2 = _K|YV|’
where K stands for the Gauss curvature.
) flf//
HINT: For such a surface of revolution one has K = ——————.
face el W1+ (7P

Fig. 6.10 A Jacobi field on a surface of revolution.

Solution. (1) The vector fields Y and ¥’ in the torsionless case of Definition 7.6.13

are here Y = i and

av
e e
du/ 10u T+ (f'(u))2 ou’
We must prove that
VYIVV,Y + VyV),/y’ — Vy/Vy’)/l — V[Y,y’] ’yl =0.

Now, since V is torsionless we have Vyy’' — Vy/Y = [¥,7']; but it is immediate that
in the present case [Y,y’] = 0. On the other hand V,/y" =0, as ¥’ is the tangent
vector field to a geodesic curve. So we are done.

(2) We have |Y,| = u. Moreover, the Gauss curvature of a surface of revolution is
given by the expression in the hint, with f/ = df/du.
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The arc length s(«) along the meridian is given, since v is constant, by

99 9¢

0
= [ (rwra

and thus

Fl_

ds? ~ ds?
_d_ 1

ds 1+ (/1)
dud 1
~ ds du 1+ ()2
1 _flfl/

VI (14 ()2)
= —Ku
= —K|Y,|.

Notice that the lengths for the vector field Y, are larger where the distance be-
tween the given geodesics (the meridians) grows, and are lower where that distance
decreases (see Figure 6.10).

Problem 6.12.13. Let (M, g) be an n-dimensional space of constant curvature c. Let
7. X1,...,Xn—1 be an orthonormal frame invariant by parallelism along a geodesic
Y with unit tangent vector field 7y.

Prove that the vector fields

(1) Yﬁ S’% Y, = Sin(\/Es)Xia Zi= COS(\/ES)Xiv
2) 7, 57, Y; = sinh(v/—c$)X;, Z; = cosh(v/—cs$)X;,
@ v s X, sXi

i=1,...,n—1, where s denotes the arc length, are a basis of the space of Jacobi
vector fields along the geodesic, for ¢ > 0 in case (1), ¢ < 0 in case (2), and ¢ =0
in case (3).

Solution. That such y and s7 are Jacobi fields is a general fact for Riemannian man-
ifolds, and its proof is immediate from the Jacobi equation

ViViY +R(Y,7)7=0.

In cases (1) and (2), since (M, g) is a space of constant curvature ¢, we have



312 6 Riemannian Geometry

R(Y:,7)7=c(8(1, 7)Y — g(7:Y:)7)
=cY;.

In case (1) we have on the other hand,

V,; VY = —csin(y/c5)Xi + v/ccos(v/es) ViX;
+\/ccos(v/es)ViX; +sin(/c5) V4V, X; (%)
= —cY,. (as X; is parallel)

Hence Jacobi’s equation for a torsionless connexion,
VyVi¥i+R(Y;, 7)1 =0,

is satisfied, as wanted. The proof for Z; (and ¥;, Z; in the case (2)) is similar.
The case (3) is trivially true as R = 0 for ¢ = 0.

Problem 6.12.14. Determine the conjugate points and their orders for a point on
an n-sphere of constant curvature c.

Solution. From Problem 6.12.13, it follows that the only point conjugate to the point
corresponding to s = 0 along a geodesic ¥(s) is the point corresponding to s = 7t/+/c,
with order n — 1, as a basis of the Jacobi fields vanishing at s = 0 and s = 7/+/c is
given by the vector fields ¥; = sin(y/c s)X;.

Problem 6.12.15. Show that if M has nonpositive sectional curvature, then there
are no conjugate points.

Solution. Let Y be a Jacobi vector field along a geodesic ¥(¢). From Jacobi’s equa-
tion
Vy/vy’Y +R(Y, ’}//)’)// =0,

we obtain by virtue of the hypothesis that

g(VyV, YY) =g(R(Y.Y)Y.Y)
= —R(’)/,,Y’ ’)//)Y) > O’

from which d
2

38V YY) =g(VyVyX .Y ) +[Vyy |7 >0. *)

The function g(V,/Y,Y) is thus monotonically increasing (strictly if V¥ # 0). If
Y (0) = Y(to) = O for certain o > 0, then g(V,Y,Y) also vanishes at these points,
hence it must vanish along the interval [0,#]. Thus, we have ¥ (0) = (V,,Y)(0) =0
by (%), so that Y vanishes identically, as Y is a solution of a second-order differential

equation.

Problem 6.12.16. Prove that the multiplicity of two points p and q conjugate along
a geodesic vy in a manifold M is less than the dimension of the manifold.
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Solution. Let dim M = n. Then the Jacobi vector fields vanishing on a given point
p € M constitute a space of dimension n, but (r —#;)7, where p = ¥(1), is a Jacobi
vector field vanishing at p but not at g.

6.13 Submanifolds. Second Fundamental Form

Problem 6.13.1. Prove:
(1) Every strictly conformal map is an immersion.

(2) If M is connected, then a strictly conformal map
[+ (M,g) — (M.3)

of ratio A transforms the Levi-Civita connection V of g into the Levi-Civita con-
nection V of g, if and only if A = const and the second fundamental form of the
immersed submanifold f(M) vanishes.

(3)If A =1, that is, f is an isometry, and the second fundamental form of f(M)
vanishes, then if R and R stand for the Riemann curvature tensors of M and M,
respectively, one has f.R = E\f(M).

Solution. (1) Let X € 7,M such that f,X = 0. Then

0=3(f:X,f:X) = 2A(p)g(X,X).

As A(p) > O for all p € M, we have X = 0; that is, Ker f., =0 for all p € M.

(2) As M is connected, we only need to prove that A is locally constant. Thus
we can assume that f is a diffeomorphism from M onto a submanifold f(M) of M.
Denoting by X the vector field image f-X on f(M) of X € X(M), we have that
X — X isan isomorphism. Hence if f transforms V into V, it follows that

Xg(V.Z) =g(VxV.2) +3(Y,VxZ)
=Ag(VxY,Z)+ Ag(Y,VxZ)
= AXg(Y,Z).

On the other hand,

Xg(Y,Z) = XAg(Y,Z)
— (XA)g(¥,Z) + AXg(Y,Z).
Hence XA =0 for all X. As M is connected, we deduce that A is a constant function.

Furthermore, as 777 = Vyx7, it follows that 777 is tangent to the submanifold
f (M), thus the second fundamental form of f(M) vanishes.
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Conversely, if we define on f(M) the connection V by VYY = VxY, and prove
that V parallelizes the metric of f(M) and has no torsion, then it will coincide with
the Levi-Civita connection of the metric on f(M). Let k be the constant function A.
One has:

@)

Yg(?, Z) = X(kg(Y, Z))
=k{g(VxY,Z)+g(Y,VxZ)}
=2(VxY,Z)+2(Y,VxZ)
=3(Vx?.,2)+8(Y,Vx2)

(ii)

V¥ —VyX — [X,Y] = VxY — VyX — [X,Y]

=Ty(X,Y) =0.

(3) Since f is an isometry, it transforms the Riemann curvature tensor of M into
the one of f(M) (see Problem 6.7.3); but this one coincides with the restriction in
f(M) of the Riemann curvature tensor of M, as the second fundamental form of
(M) vanishes.

Problem 6.13.2. Let M be an n-dimensionai (n = 3), totally umbilical submanifold
of a 2m-dimensional complex space form (M, g,J) of holomorphic sectional curva-
ture ¢ # 0. Prove that M is one of the following submanifolds:

(1) A complex space form holomorphically immersed in Masa totally geodesic
submanifold.

(2) A real space form (i.e. a—not necessarily simply connected—space of con-
stant curvature) immersed in M as a totally real and totally geodesic submanifold.

(3) A real space form immersed in Masa totally real submanifold with nonvan-
ishing parallel mean curvature vector.

HINT. See Definitions 7.6.26 and Theorem 7.6.27.

Solution. As M is a totally umbilical submanifold, with the usual notations we have
o(X,Y)=g(X,Y)E&, X,Y e X(M).
Thus the covariant derivative appearing in Codazzi’s equation
(?Xa) (Y,Z) = Vi (a(Y,Z)) — a(VxY, Z) — a(Y,VxZ),
reduces to

(Vxa) (r.2) = (v, 2)Vi¢,
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so Codazzi’s equation is written as
VR(X,Y)Z =g(Y,Z)Vx& —g(X,Z)Vy¢. ()

Since dimM > 3, for each X € X(M) one can choose a unit vector field Y € X(M)
orthogonal to X and JX. For such a Y, from (x) one has

VR(X,Y)Y = V5E.

On the other hand, since M has constant holomorphic sectional curvature ¢ # 0, we
have

R(X,Y)Z= z{g(Y,Z)X —g(X,2)Y +g(JY,Z)JX —g(JX,Z)JY +2g(X,JY)JZ},

from which we deduce ﬁ(X, Y)Y = 73X, s0 1/175(X7 Y)Y =0, hence
ViE=0, VXecX(M).

From (x) we then obtain

VR(X,Y)Z=0, X.,Y,Z€X(M).

Thus, by Proposition 7.6.27, M is either a complex or a totally real submanifold of
M. If M is a complex submanifold, then M is minimal, hence totally geodesic in M.
Therefore, from Gauss’s equation

R(X,Y,ZW)=R(X,Y,Z,W)+g(a(X,Z),a(Y,W)) —g((a(Y,Z), (X, W)),

we obtain

R(X,Y,Z,W)=R(X,Y,Z,W).

That is, M is a complex space form of constant holomorphic sectional curvature c.
If M is a totally real submanifold, from Gauss’s equation and from o/(X,Y) =
g(X,Y)E, it follows that

ROGY,ZW) = (5 +8(6,6)) (80X, 2)g(¥,W) — g(X,W),8(¥.2)),
that is, M is a real space form of constant (ordinary) sectional curvature §+g(&,&).
Problem 6.13.3. Consider the flat torus T?> = R? /T defined by the lattice
I' =7Zvi ®Zv,, vi=(—m,m), vy=(0,2m).
(1) Prove that
Sf(u,v) = (cos ucos v, cos usin v, sin ucos v, sin usin v)

foru,v € (0,27, is an isometric embedding of T? in the unit sphere S° of R*.
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(2) Prove that the total embedded curvature of f(T?) in S3 is a constant.
HINT: Use the generalized Gauss Theorema Egregium 7.6.23.

Solution. (1) We have f(u,v) € §3 since | f(u,v)| = 1. Moreover, f(u,v) = f(u’,v")
if and only if (u’,v") — (u,v) € I'. In fact, the previous equality is equivalent to

sin(u+v) =sin(u’ +v'), )
sin(u—v) =sin(u’ —v'), ()
cos(u+v) = cos(u’ +v'), (%%)
cos(u—v) =cos(u’ —v'). (1)

From (%), (x«), and from (%), (1), we obtain
w v =ut+v+2kiw, uw —v =u—v+2km, ki,ky € Z,
respectively, from which
w=u+hn, vV =v+hmn, hi,hy € Z.
Now,
Flu4him,v+hym) = (=1)"+"2(cos ucos v, cos usin v, sin ucos v, sin usin v).
So, f(u,v) = f(u’,v') if and only if hy + hy = 2h, thus
(uy)~@W'pyv) & u—u=kr, v —v=_2h—k)x.
Hence

(u' V') = (u,v) + (km,(2h — k) )
= (u,v) +k(x,—7) +h(0,27)
= (u,v) +kvi + hv,.

On the other hand, f is an immersion, as the rank of the Jacobian matrix

—sinucosv —cosusinvy
—sinusinvy COS 14 COS V
cosucosv —sinusinvy
CoS u sin v sin u cos v

is equal to 2, as it is easily seen.

Let j be the inclusion of S3 in R*. Then the metric induced on T2 by the embed-
ding f, if g denotes the Euclidean metric on R, is f*j*g = f*g.

If (x,y,z,t) denote the coordinates on R*, then the Euclidean metric is

g=d? +dy?* +d? +dr?
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and the metric induced on 72 is du® + dv?. Hence f: T? — f(T?) C % is an iso-
metric embedding, since, as we have seen, it is an isometric immersion, and as T2
is compact, it is homeomorphic to its image with the induced topology of S°.

(2) The generalized Gauss Theorema Egregium applies in our case to M = f(T?)
and M = $3. Now, since M = S3 has constant curvature equal to 1, one has K(P) = 1.
And as the metric on f(T?) is flat, we have K(P) = 0. So the equation

K(P) = K(P)—detL,

where L stands for the Weingarten map, is reduced to det L = —1. Hence the total
embedded curvature is equal to —1.

Problem 6.13.4. Let M be a Riemannian n-manifold endowed with the metric
g=gd@dd +g,d"®@d", i, j=12,...,n—1,

with the condition dg;j/dx" = 0. Show that any geodesic in the hypersurface x" =
const is a geodesic in M.

Solution. The metric given on M induces the metric
g=gdd'd,  ij=1,....,n—1,

on the given hypersurface S. The geodesics in the hypersurface S are the curves
having differential equations

4%y LT de/ dok
2 " Rdr dr
where I:Jlk are the Christoffel symbols of g. We have to prove that the functions

xt=x1(t),...,.x" 1 = x""1(), ¥" = const, satisfy the differential equations

0, ijk=1,....n—1,

d?x - dx/ dok
— A+ ——=
dr2 /M dr de
where l"j’k are the Christoffel symbols of the Levi-Civita connection of g. Consider
2.n
x

0, ijk=1,...n,

=0.

first the case i = n in the equation of the geodesics. As x" = const, we have
On the other hand, one has I"]’,z =0for j,k=1,...,n—1, as

ds?

g= 8ij ,

and moreover dg;;/dx" = 0 by hypothesis. So, by virtue of the condition x" = const,
the functions defining the geodesics of § satisfy the case i = n of the equation of the
geodesics of M.
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Consider now the casesi=1,...,n—1.Fori,j,k=1,...,n— 1, we have
i1
L= 58" (g1t owj—8gjws),  1=1....n—1,

as gin = 0; that is, FJ’k = fj’k Finally, if k = n (equivalently, j = n), one has

i1
T}'n = Eg k(gkj,n +gkn,j - gjn,k) =0,
by the hypotheses. We conclude that the geodesics in S are also geodesics in M.

Problem 6.13.5. Let M| and M; be two hypersurfaces of R" and y a common geo-
desic curve which is not a geodesic of R". Prove that M| and M, are tangent along

Y
Solution. Consider the Gauss’s equations
VyY = VLY +IF(X,Y), i=1,2,

where V denotes the Levi-Civita connection of the flat metric on R”, V? the Levi-
Civita connection of the metric on the hypersurface M;, and II' the second funda-
mental form of the hypersurface M,.

Since V’)'/, Y =0,i=1,2, we have that 6;,7/' is normal to both M; and M. So, at
any p € Y we have

T,R" = T,M;®V,y = T,M & VY,

hence T,M| = T,M,.

6.14 Surfaces in IR>

Problem 6.14.1. Let
x: U=(0,m) x (0,21) C R> — R?
be the parametrization of S* given by
x(0,¢) = (sinBcos @, sinOsin@, cosH).

(1) Find the equation of the loxodromic curves (that is, the curves meeting the
meridians at a constant angle) in the coordinate neighborhood V = x(U).
(2) Prove that a new parametrization of the coordinate neighborhood V is given

by
y(u,v) = (sech ucos v, sech usin v, tanh u).
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Find the expression of the metric on S? in terms of the coordinates u,v, and conclude
thaty~': V C §? — R? is a conformal map transforming the meridians and paral-
lels of S? into straight lines of the plane. This map is called the Mercator projection.

(3) Consider a triangle on the unit sphere S* whose sides are segments of loxo-
dromic curves without any of the poles. Prove that the sum of the internal angles of
such a triangle is 7.

Solution. (1) The metric inherited on S? from the Euclidean metric on R? is given
by g = d6* +sin” 6 dp>. A loxodromic curve 6 (r) can be taken as the image under
x of a curve (8(¢), () in the plane O¢. At the point x(60, ¢) where the curve meets
the meridian ¢ = const at the angle, say, 8 we thus have

8(xe, 0'(1))

osB = llo)]
_ g%, 0 "(1)xe + @' (1)xp)
o))
9/

\/ 672 +sin® 0 @2

From this one easily obtains tan> B = sin? 8 ¢’2/6'2. Thus
0'/sin@ = £cotf ¢’

Integrating, we obtain the equation of the loxodromic curves
0
log tan 5= tcotB(@+A).

The integration constant A is determined when a point in the curve is given.

(2) It is immediate that the image points belong to $2. The metric inherited from
the Euclidean metric on R? is now

sech? u(du® + dv?).

The map y is a diffeomorphism which is clearly conformal. The meridians and par-
allels are the images of the coordinate lines v = const and u = const, respectively.

The fact that the Mercator projection y~ ! is conformal has been useful in cartog-
raphy, since the angles are preserved.

(3) Under the Mercator projection the meridians are transformed into parallel
straight lines of the plane. As the Mercator projection is conformal, the loxodromic
curves are also transformed into straight lines. So, the asked sum is the same as that
for a plane triangle.

Problem 6.14.2. Prove that if two families of geodesics on a surface of R> are cut
at a constant angle, the surface is developable.
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Solution. Consider those families as local coordinate curves (u,v), and let X,,, X, be
the respective coordinate vector fields. Thus [X,,X,] =0 and Vx X, = Vx X, =0,
where V denotes the Levi-Civita connection of the metric g on the surface, inherited
from the Euclidean metric on R3. Hence Vy, X, = Vx, X,. As |X,|,|X,| are constant,
it follows by the hypothesis of constant angle, say 3, that one has

g(Xu7XV) = |Xu‘ |X\)| COSB = const.

Thus,
g(quXu,Xv) +8(Xu7 VX“XV) = g(Xm VXuXv) =0.
Similarly g(X,, Vx,X,) =0. So V is flat, thus the Gauss curvature is zero, hence the
surface is developable.
Problem 6.14.3. Consider a surface of revolution around the z-axis in R3, the vector
d d
field X = ya— —xa— tangent to the parallels of the surface, and a unit vector field
X y

Y on that surface. Show that if g(X,Y) = const, where g denotes the metric on the
surface, inherited from the Euclidean metric on R3, then Y is invariant by X, that is,
LxY =0.

Solution. We have
(Lxg)(X,Y)—l—g([X,X],Y)—i—g(X,[X,Y]) =0,

but Lyg = 0 since X is the infinitesimal generator of the group of rotations; so that
we have g(X,[X,Y]) = 0. On the other hand, as g(¥,Y) = 1, one has

that is, g(Y¥,[X,Y]) = 0. Therefore, [X,Y] = LxY = 0.
Problem 6.14.4. Consider the following surfaces in R3:

(a) The catenoid C with parametric equations
x=cosocoshf3, y=sinacoshf, z=2,, o €(0,2n), PBeER;

that is, the surface of revolution obtained rotating the curve x = cosh z around the
Z-axis.

(b) The helicoid H with parametric equations
X=ucosv, y=usinv, z=y, u,veR,

generated by one straight line parallel to the plane xy that intersects with the z-axis
and the helix x = cost, y=sint, z =t (see Figure 6.11).

Let g = dx?> 4+ dy?* +dz? be the Euclidean metric of R and denote by i: C — R?
and j: H — R3 the respective inclusion maps.

(1) Compute i*g and j*g.
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(2) Prove that (C,i*g) and (H, j*g) are locally isometric. Are they isometric?

Fig. 6.11 The catenoid (left). The helicoid (right).

Solution. (1)
i*g = cosh® B(do® +dB?), jig = du? + (1 +u?)dv>.

(2) The coefficient 1 + u? of dv? in j*g suggests that we try the change u =
sinh B, v = B, which is only a local isometry. There is a global isometry of the
catenoid with the open submanifold of the helicoid corresponding to any interval
ve (2kn,2(k+1)r), k € Z.

Problem 6.14.5. Let S be a surface of R® with the metric induced from that of R>.
Say if the following statements are true or not:

(1) The geodesics of S are the intersections of S with the planes of R, and
conversely.

(2) The geodesics of S are obtained intersecting S with some chosen planes.

Solution. (1) No. For example, the geodesics of S are only obtained when the plane
goes through the origin.
(2) No. For example, the helices in the cylinder are not obtained in such a way.

Problem 6.14.6. Prove that there is no Riemannian metric on the torus T?> = S' x §!
with Gauss curvature either K > 0 in all points or K < 0 in all points.

HINT: Use the Gauss-Bonnet theorem.

Solution. The Gauss-Bonnet theorem establishes that for a connected, compact and
oriented 2-dimensional Riemannian manifold, one has

/MK =2my (M),



322 6 Riemannian Geometry

where (M) denotes the Euler characteristic of M. On the torus, since x (M) =0,
we have jMK = 0, and thus it follows that it is not possible either to be K > 0 for
allpe T?, or K < Oforall p € T?.

Problem 6.14.7. Determine the volume form for the Riemannian metric induced
by the Euclidean metric on R3 on the unit sphere S* in R3, in terms of spherical
coordinates (p,8, ) with p = 1. Compute the volume vol (S?).

Solution. The sphere S? with radius p = 1 can be parametrized as
x=sinfcos@, y=sin@sing, z=cosH, 0 €[0,n], ¢€][0,2x].

Hence, the metric induced on S2 by the metric dx? + dy2 + dz? of R? is dO? +
sin? @ dg>. The volume element is

o = y/det(g;)d6 Adp = sin6dO A do,

and
vol(Sz):/ 0]
SZ

:/ sin6d Ado
SZ

2 T
:/ </ sin0d9> dg = 4r.
0 0

Problem 6.14.8. Compute the volume form for the Riemannian metric induced by
the Euclidean metric of R on the torus T? on R? obtained by rotating a circle with
radius a and center (b,0,0), b > a > 0, around the z-axis. Determine the volume
vol (T?).

Solution. 72 can be parametrized as
x=(b+acosa)cosf, y=(b+acosa)sinf, z=asina,

o € [0,27] and B € [0,27]. Hence, the metric induced by the metric dx? 4 dy? + dz?
on R? is g = a’do® + (b +acos or)*dB?, the volume form is

W =1/811822 —g%z daAdB =a(b+acosa)daNdp,

and the volume is
vol(T?) = | @
T2

:a/2(b+acosa)doc/\dﬁ
T

2n 21w
=a / / (b+acoso)dordp = 4m’ab.
0 0



6.14 Surfaces in IR? 323

Problem 6.14.9. (1) Consider the flat torus T> = R* /72.
Prove that the map induced on T? by the map ®@: R?> — R* defined by

1
D(x,y) = E(cos 27x, sin 27x, cos 21y, sin 21y),

is an isometric embedding of T? in R*.
(2) Let ¥: R — R* be the map
lP(x’y,z) = (XZ _y2’ Xy, Xz, yZ)

Since ¥ (—x, —y, —z) = ¥(x,y,2), by restricting ¥ to the sphere S> C R? and passing
to the quotient, ¥ induces a map from the projective plane RP? = §? /~ into R*.
Prove that this map is an embedding.

(3) Compute the length of the circles z = const on S> with respect to the metric
g=Y" (&' @dx' +d’ @de® +dr’ @ d’ +dx* @ dx?) | 2.

(4) Prove that (§%,g), where g is the metric in (3), is not isometric to S* with the
standard round metric. (Actually, it is not even homothetic.)

Solution. (1) Let 7: R?> — T2 denote the quotient map. Since
D(x+m,y+n)=O(x,y), m,n € 7,

the map
(2 T? —>R4, q)(p):(p(Q)v qufl(p%

is well defined. Since @ o7 = @ and 7: R*> — T2 is a local diffeomorphism, ¢ is
C*. Moreover,

rank @, = rank @,

—2msin 27X 0
2mcos 2mx 0
= rank . =2.
0 —2msin 2wy
0 2mcos 2wy

Hence ¢ is an immersion. Let us see that it is isometric. We have, putting R* =
3 .
{(x! 2, 2%, x4 )

" (dx' @dx' +dx’ @ dx® +dr’ @ dr’ + di* @ di?) = di® + dy”.

From the compactness of 77 it follows that ¢ is an embedding. Hence, ¢ is an
isometric embedding.

(2) As ¥(p) = ¥(—p), the restriction of ¥ (again denoted by ¥) to the unit
sphere with center the origin of R? induces a map y: RP? — R* with y(p) =
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¥ (p), where j denotes the class of p in RP2. Let us see that ¥ (hence ) is an
immersion. We have

2x =2y O
0
w=|"
z 0 x
0 z vy

Hence rank ¥, # 3 implies x =y = 0. Given any X € T<070i1)S2, then X =(a,b,0)
and if ¥, X = +'(0,0,a,b) = 0 then X = 0. Thus, if j: S*> — R3 denotes the inclusion
map, then ¥ o j is an immersion.

The tangent bundle TRP? can be defined as the set

TRP?>={((¢.Y),(—q,~Y)), g€ $*, Y € T,5*}

endowed with the differentiable structure inherited from the usual one of 7.S2. Thus,
from the diagram

RrRP2 — Y, R4
HT T‘P
@2 I g3
we conclude that y is an immersion.
On the other hand, v is injective, as it follows from calculation, due to the con-

dition x> 4y 4z = 1. From the compactness of RP?, it follows that y is an em-
bedding.

(3) Consider the parametrization of the sphere
x=cos6fcos o, y=cosOsing@, z=sin0,

—m/2<0< /2, 0< ¢ <2
As a simple computation shows, we have

g= ((2xdx—2ydy)2+(xdy+ydx)2+ (xdz+zdx)2+(ydz+zdy)2)|sz
3 3
= <1 -3 sin?26 sin22(p) de’ + 3 cos® @sin 20sin 49 dO dg
+cos? 0(1+3cos? Bsin’2¢)de>.

The length with respect to g of the circle C defined by 8 = 6 is

2
I,(C) = cos 90/ \/1 +3cos? B sin® 2@ do.
0

Making the change of variables
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we obtain /,(C) in terms of an elliptic integral of the second kind:

/2
lg(C):coseo\/1+3coszeo/ 1 — ksin?zdt,
—n/2

where
V3cos 6o

\/1+3cos? 6,

(4) The explicit expression of the Gauss curvature K = K (0, ¢) obtained by using
the formula for the Gauss curvature of an abstract parametrized surface in page 416
is rather long, but, as a simple computation shows, K is not constant. In fact, we
have

K(g,O) = —2cos (%)2—&-9005 <§)4—3cos (§)8+3c0s (%)10 = g_;

K(E E) _ 1973

k=

474) " 2048’
K(f E)__16067107
4°3) 48234496

This proves that g is not isometric to the round metric.

6.15 Pseudo-Riemannian Manifolds

Problem 6.15.1. Consider M = R?> — {0} equipped with the metric

_ dx®dy+dy®dx
N x24y? )

The multiplication by any nonzero real scalar is an isometry of M. Consider, in
particular, the following isometry: A(x,y) = (2x,2y). The group I’ = {A" : n € Z}
generated by A acts properly discontinuously. Hence T = M /T is a Lorentz surface.
Topologically, T is the closed ring 1 < r < 2 with the points of the boundary identi-
fied by A. Consequently T is a torus, named the Clifton-Pohl torus; in particular it
is compact.

(1) Show that T is not complete. According to [24, p. 202], it suffices to prove
that M is not complete. For this, prove that the curve

o(t)= (%,O)

(2) Find a group of eight isometries and anti-isometries of M.

is a geodesic.
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(3) Prove that s — (tan s, 1) is a geodesic, and deduce that every null geodesic
of M and T is incomplete.

(4) Prove that X = xd /dx+yd/dy is a Killing vector field on M.

(5) If o(s) = (x(s),y(s)) is a geodesic, then if r* = x> +y?, prove that xy/r* and
(xy+yx)/r* are constant.

(6) Show that the curve B: s — (s,1/s) is a pregeodesic of finite length on [1, o).
(A pregeodesic is a curve that becomes a geodesic by a reparametrization.)

REMARK. This example shows that for pseudo-Riemannian manifolds compactness
does not imply completeness.

Solution. (1) We have

1
_ 0 x24+y? 1 0  x+)°
8= 1 0 ) 8 - 2 +y2 0 )
2 142
x“+y
so the only nonvanishing Christoffel symbols are
1 2x 2 2y
I = *)ﬁyw 2= *)ﬁyb

and the differential equations of the geodesics are

?x 2 [dx 2_0 2y 2y [dy 2_0

dr2 x2+4y2\dt) 7 di2 x2+4y2\dt) 7
which are easily seen to be satisfied by the given curve. The given geodesic is not
defined for r = 1, hence M is not complete.

2)

(x,y) = (x,y); (x7y) = (—x,—y); (x,y) = (_x7y);
(x,y) = (x,=y)s (x,y) = (3x): (x,y) = (=y,x);
(x’y) = (y’ —X); (x,y) = (—_)77 _x)'
(3) We have
2sin s 2tan s 1

cos’s tan?s+ 1 costs
and the other equation of geodesics is trivially satisfied, for y = 1. The geodesic is in-
complete because it is not defined for £+ 7 /2. The null curves are the ones satisfying
dx! dx/ 2 dx dy
=0, = 1,2, that is,
Siigs s I B ¥y ds ds

or y = const. Due to the symrnetry 1n X and y of the equations of geodesics, we can
X 2xx

= (0, which are the curves x = const

suppose y = const. Then the only equation is T ST so log x = log A(x> + 1),
X x

thus arctanx = As+ B, that is x = tan(As + B). As the geodesic s — (tan(As+B), 1)
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is a model for the null geodesics, it follows that these are incomplete for M. So they
are also incomplete for 7.

)
Lxg= anﬁ>a} e (dx® dy+ dy® dx) =0.
(5) ; 1
I fy Eg(c ) = const.
As for (xy+yx)/r?, we have on account of the differential equations of the geodesics:
d 1
ds (xy;!;yx) P (XS)"' +x25€y + xyz)'i +y3)'c' — 2xyy2 — 2xyx2)
1, 32907 52xi? 22007 32k 2 2
= F(x ) +x ) y+xy P +y 2 —2xyy” —2xyx ) =0.
(6) We have

dy / @ _ x/y// 7x//y/
dr’ dx? x'3 '
From the equations of the geodesics given in (1) it follows that
'y =x"y") (2 +y%) = 20y (" — ).
Hence s
d-y dy / dy
2—|y—— *
meed =27 ((E-x). ®
which are the equations of the geodesics for any parameter. The condition (x) is

satisfied if y = 1/x, as it is easily seen.
The tangent vector along the curve is

_ 9

hence

Since 1+s% > 1 for s > 0, we obtain

/"" V2ds _/°° V2s72ds
1 1
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Problem 6.15.2. Consider on R® the scalar product

() =dd @dP+d @dx' +d? @ di* + di* @ d® + d° @ dn® + dx® @ dx,
and the tensor of type (1,1) given by

_ 9 1, 9 » 0 30 4, 9 s 0 6
—ﬁé@dx—&-W@dx—ﬁ@)dx—ﬁ(@dx—i-ﬁ@dx—ﬁ@dx.

J

1) Let W = ( — . Calculate W ={veR0 : v 1L W)
(9 i
X/ i=2,...6

J

(3) Do we have dimW +dimW+ = 6 in (1) and (2)?

d d
4) LetU<l.> andV<l.> . Prove that JX =X, X € U and
IX /1o Ox' [ i34

JX=-XXeV.
(5) Calculate a vector X ¢ U UV such that (JX,JX) = 0.

Solution. (1) Wt = (9/9x).
(2) Wt =(d/dx*,0/dx*).
(3) Yes.
(4) Immediate.
(5) Take for instance X = (1,0, 1,0,0,+/2). Then

(X,9X) = ((1,0,-1,0,-v2,0), (1,0,-1,0,~v2,0) ) =0.

Problem 6.15.3. Consider the pseudo-Euclidean space R}, that is, R" with the pse-
udo-Euclidean metric of signature (k,n —k):

k n
g=-—Ydi@di+ Y dred. (*)
i=1 i=k+1
Compute the isometry group 1(R}) of R}. For this prove:

(1) The linear isometries of R} (i.e. the isometries of R} which belong to
GL(n,R)) form a subgroup O(k,n — k) of I(R}).

(2) The set T (n) of all translations of R} is an Abelian subgroup of 1(R}) and
it is isomorphic to R" (under vector addition) via T, < x.

(3) Each isometry @ of R} has a unique expression as T, oA, with x € R} and
A€ O(k,n—k).

(4) The composition law in I(R}) is

(te0A)(1y0B) = Ty ay0AB.
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HINT (to (3)): Suppose first ¢(0) = 0.

Solution. (1) The group O(k,n — k) of linear isometries of R} can be viewed as the
subgroup of matrices of GL(n,R) which preserve the scalar product

k n
<v,w):—2v’w’+ 2 viw', v,we R"
i=1 i=k+1

(2) Given xo € R}, from (x) one has that the translation 7, sending each v € R} to
v—+Xxo is an isometry. It is clear that 7'(n) is an Abelian subgroup of /(IR}) isomorphic
to R”".

(3) If @(0) = 0, then the differential ¢,y at O is a linear isometry, hence it
corresponds under the canonical linear isometry ToR} ~ R} to a linear isometry
A: R} — R}. But then A,y = ¢ and thus ¢ = A by Theorem 7.6.16.

Now, if ¢ € I(R}), let x = ¢(0) € R}. Thus (7_, 0 ¢)(0) =0, so that by the above
results, T_, o ¢ equals some A € O(k,n— k). Hence ¢ = 7,0 A.

If 7,0A = 1, 0B, then x = (7,0A4)(0) = (7,0B)(0) =y, hence also A = B.

(4) Immediate.
Problem 6.15.4. (1) Find the Exponential map for R}.
(2) Is Exp,,, for p € R}, a diffeomorphism?

(3) Is Exp,, an isometry when TR} has the metric induced by the canonical
diffeomorphism T,R} ~ R} ?

Solution. (1) The geodesic y(t) through p with initial velocity vector v, € T,R} is
the straight line y(¢r) = p +v. Thus

Exp,: T,Ry — R}
vp — y(l)=p+v.

(2) Yes, as Exp, is the composition of the canonical diffeomorphism 7,R} ~ R}
and the translation 7,: x — x+ p.

(3) Yes, since both maps T,R} ~ R} and 7, are isometries.
Problem 6.15.5. Consider the open submanifold
M={(x,y) €R* : x+y>0}
of the 2-dimensional Minkowski space

(Rzag = dxz 7dy2)a

equipped with the inherited metric g
Lorentz manifold.

M, with which M is a flat simply connected
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(1) Prove that (M,g|y) is a non-complete G-homogeneous pseudo-Riemannian
manifold, where G is the non-Abelian group G = R x R with product

(u,v) (' V') = (u+u'e™, v+v'),
under the action
(u,v) - (x,y) = (xcoshv+ysinh v+ u, x sinh v+y cosh v —u). (%)

(2) Does act G freely on M?
(3) Can we identify M and G?

Solution. (1) (i) It is immediate that (M, g) is non-complete, since its geodesics are
the restrictions of the geodesics of (R?,g) to M, and these are the straight lines.

(ii) On the other hand, G acts on M: Writing (x,y’) = (u,v) - (x,y), we have
x'+y" =e"(x+y) > 0, hence (x’,y") € M.

(iil) The action is transitive: Given two points (x1,y1), (x2,y2) € M, there exists
(u,v) € G such that (u,v) - (x1,y1) = (x2,2). In fact, take the parallels to the straight
line x4y = 0 through (x1,y;) and (x2,y2), and let (x},y]) and (x},y)) be, respecti-
vely, the points of intersection with the branch of the hyperbola x* — y? = 1 passing
through (1,0). Then it suffices to consider the composition of three transformations:
The first one from (xy,y1) to (x},y}), of type (u1,0); the second one from (x,y}) to
(x5,»5) along the branch of hyperbola (with u = 0); and the third one from (x},y})
to (x2,y2), again of type (u2,0).

(2) If (u,v) - (x,y) = (x,y), it is clear that we must have u = v =0.

(3) Yes, as the action (x) of G on M is simply transitive (that is, transitive and
free, see Definition 7.4.10 and Theorem 7.4.12).

Problem 6.15.6. Find, using Cartan’s structure equations, the Gauss curvature of
R? endowed with the pseudo-Riemannian metric

4
g = — (cosh®2ydx* — dy?), 0+#ccR.
c

Solution. We have the orthonormal moving frame on R?:

o (1 2 VE),

2 cosh2yox' 2 2

That is, g(X;,X;) = &, i = 1,2, with &g = 41, & = —1if ¢ >0, and & = —1,
& = +1if ¢ <O0. Its dual moving coframe is

cosh 2ydx, 6% =
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Let 6; = &6’ (no sum) and let (T); be the connection forms relative to 0. Then @;j =
8@; (no sum) is the only set of differential 1-forms satisfying the first structure

equation
CT)ijﬁLCT)j,’:O, d(-)i:fZE)ij/\(ejQ,-).
J
We only have to calculate ;. From
d(£1 él) = 81dé]
= (81 )zdél

4
= ——sinh 2y dy A dx

Vel

= —¢£ (7)12 A Széz

= —(7)12 NE (82)2 (ﬁ dy>

- 2
=—WpAE <—dy ;
Vel

one obtains that @, = 2¢&; sinh 2ydx.
The Gauss curvature of the pseudo-Riemannian manifold (R?, g) is the differen-
tiable real valued function K defined by d@;, = K6 A 6,; that is, by

2 2
4e1cosh 2ydy A dx = €1&,K—=—cosh 2y dx A —=dy.

Vel Vel

Thus, (R?,g) has constant Gauss curvature K = ¢, because

X &lc] c if g=—1(c>0)
= — cl =
: “lel=c if =1 (c<0).

Problem 6.15.7. Prove that the half-space
H= {(xl,xz,x3,x4) eER*: x> 0}
endowed with the pseudo-Riemannian metric

lddedd +dd@dd —dd @dd —det o dd?
K (x1)2 )

0#K€eR,

has constant curvature —K.

Solution. Applying Koszul’s formula 7.6.3 to ¢; = d/dx', i = 1,2,3,4, we obtain,
on account of [e;,e;] = 0, for instance for V, e;:
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2g(Ve e1,e;) =2e18(e1,e;) —eigler,er)

-2 (‘ (x?>3> % (‘%)

268
- K(x1)3’
. 1 .. .
from which V. e; = — el Similarly one obtains:
X
1
Velel = 7V€282 = V63e3 = V84e4 = 7;61;
1
VeleZ = Vezel = _—162,
X
1
Vele3 = Ve3el = __163)
X
1
Vele4 = V€4el = _;e47

V32€3 = Ve3€2 = V6264 = Ve462 = Ve3e4 = Ve4€3 =0.

Thus
1
—R(e1,e2)ex = R(e1,e3)es = R(ey,es)es = Gz
1 1
R(ez,e3)e3 = R(ea,eq)eq = Wez, R(e3,eq)es = W€3~
So
—Ri212 = R1313 = Ri414 = Ro323 = Rogps = —R3a34 = CE

Finally, the sectional curvature has values
Ki2 = K13 = Kj4 = K33 = Koy = K34 = —K.

Problem 6.15.8. Let M be a pseudo-Riemannian manifold of dimension n > 2.
Show, using Cartan’s structure equations, that if there exist local coordinates x'
on a neighborhood of each x € M in which the metric is given by

-dxi dxi
g= G OW 4 i=1,..n KER,

<1 + Iie,-(xi)2>2’

then (M, g) has constant curvature K.



6.15 Pseudo-Riemannian Manifolds 333

Solution. Let r(x) = (&(x')*)!"/? and A(x) = —log(1 + (K /4)r?). Then (eA%)

is an orthonormal moving frame, that is,

g(eAa Ai): g if j=i
xS o 0 if j#£i,

whose dual moving coframe is (6" = e dx'). Therefore,

dé' = eAdA A dX
AaA dx/ A dx!
oxJ
o A .
:9]/\a—dxl
dx/

J i J
EO/\(ajdx ,sjaidx>.

Let 6} denote the term in parentheses. One has

w,j—si(T)j
dA ., 0A
8,ﬁdj€*8jﬁdx
- EI)jiv

. . . 0
hence a);- are the connection forms relative to (eA—. . The second structure

dxi

equation is thus
Qij = d&v),'j + ZEk(lv)jk A (T),'k

82A %A

i 08 j
8ka]dxk/\dx 8JaxkaxiMAm
JA | . JdA JA JdA
. J . b
+ §k & (s, S — & dxk> A <£l S —a M) :

Now, since

0A K _; K,
W“E&x/(HZr)’

the three summands at the right hand side can be written, respectively, as:

28 + 57 (—5ei8u) + e S et
1

dx A do,
(1+§r2)2
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(l + grz)(_gei&k) + geixigekx"

—VYe; dif A do
and
k k ik
7 EEX X" ; T EiEkX i X
ELEE dx/ Adx' — g€, Adx
X (o i 0 -
J

dx' Adx/
= KS,'éi /\Sjéj
= Kéi/\ éj.

Problem 6.15.9. Consider R* as a spacetime with coordinates p, @,y and t, where
the first three are the usual spherical coordinates on R3, equipped with the metric

—1
g=— (1 - 2;)") de? + <1 — 2/’)") dp? + p?(dy? +sin’ yde?),
Oy<r, 0<o<2m.

Prove, using Cartan’s structure equations, that g is a solution (except at the singu-
larity p = 0) of the empty space Einstein field equations

1
r— Esg:O.

REMARK. This solution, found by Schwarzschild, was the first one known to such
field equations, and it is sometimes called Schwarzschild’s “black hole” metric.

Solution.

1 0 1 dJ
5= ooy X‘*—psinw%)’

is an orthonormal moving frame, that is,

g(Xlaxl):El:_lv g(XhXi):gi:L i:25374a
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with dual moving coframe

1 1
~ 2 2 ~ 2 2 - ~
(el - (1—7’") dr, 6 = (1—7’") dp, 85 = pdy, 64:psinwd(p>.

The first structure equation,

Z @ A ( 8]

J

gives us the nonvanishing connection forms relative to o:

1
- - m - - 2m\ 2
012 = —y] :pdt, (0232—(0322—(1—?) dy,

1
- ~ 2m\ ? . ~ -
g =—Wy=—|1— o sinyde, 34 = —y3 = —cos yde.
The second structure equation
-éij = d(?)ij +Z£k(5jk A (T)ik,
k

furnishes the nonvanishing curvature 2-forms relative to o

- - dma ~ ~ IR

9122—92121)—’?91/\92, Qi3 =3 =——=6'16%,

Quu=—0y=—226'06%  Qn=—-0p=-26206,
p p

. - o a ~ ~ 2masy s

gy = —Qyp = —%92/\94, Q34 = —Qy3 = p—n3193/\94.

From the equations

Qij= Y Rijub A0, rij= Ruij,
k<l k

one obtains that the Ricci tensor r vanishes. In fact:

r12 = Riik2 = R3132 + Ra142 = 0,

2m  m  m
122 = Rpopo = Ri212 + R332 + Ranan = s =

The remaining calculations for the components 7;; ij> i # J, or rj, are similar.
Since the scalar curvature is given by s = g"r;; j, empty space Einstein’s field
equations are automatically satisfied.
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Problem 6.15.10. (1) Let V be an (n+ 1)-dimensional vector space, and V* its
dual space. We shall write x+ o,y + B,. .., to denote the elements of V &V*. On
the space V &V* there exists a natural nondegenerate bilinear form { , ) given by

@+am+ﬁ>=%&ﬂﬁ+ﬁu»

and an involutive linear automorphism Jo given by

The subgroup of the automorphisms group GL(V & V*) of V & V* preserving both
(,) and Jy can be identified to the automorphisms group GL(V) of V. In fact, if
A€ GL(V), weput A(x+ o) =Ax+o-A~ L.

Let us introduce on

(Vev)y={x+aeVaV': x+o,x+a)=oa(x) >0}

the equivalence relation ~ defined by x+ o, ~ ax+bo. if 0 < a,b € R, and define
the paracomplex projective space P(V @ V*) by

PVaV)=VaV)y/~.

Let 1 denote the natural projection w: (VO V*), — P(VOV*). Ifa,b € RT, we
have A(ax +ba) = aAx+b(o-A~"), and so we can define an action of GL(V) on
P(V@®V*) in such a way that

A(r(x+a)) = n(A(x+ @), A€ GL(V).

Then the identity component GLy(V) of GL(V) acts transitively on the pseudosphere
invVevs

S={x+oe VeV )y : x+o,x+a)=o(x)=1}.

Prove that P(V ®V*) is a homogeneous space under the action of the group GLy(V),
forn>1.

(2) We have a principal bundle t: S — P(V &V*) with group R™. The subgroup
{al € GLy(V') :a > 0} of GLy(V) acts transitively on the fibres. The quotient of S by
that action is P(V ®V*). Consider S equipped with the pseudo-Riemannian metric
inherited from that of V ®V*. Then, as GLy(V) acts on V ®V* by isometries, and
preserves S, it also acts on S by isometries.

Now, consider the formula

(2,72) = (Z" 7", Z € Tyuy oy PV O V), (*)
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where Z"" € T, oS is orthogonal to the fibre and satisfies 7, Z" = Z. Show that this
construction induces on P(V ®V*) a pseudo-Riemannian metric g such that 7t is a
pseudo-Riemannian submersion.

(3) The group G =R x R" acts on (VOV*), by
(a,b)(x+ ) = ax+ b, (a,b) e Rt xR,

P(V @ V™) is the quotient space of this action. Let Jy be the almost product structure
(that is, an automorphism such that J; = I) defined on (V ®V*). by

Jo(v,w) = (v, —w), (v, ®) € Teyqa(VEV) 4.

Prove that Jy passes to the quotient and gives an almost product structure J
(a (1,1) tensor field with J*> =1I) on P(V ©V*) such that this manifold has a
para-Hermitian structure with the metric in (2) and J (that is, we have g(JX,Y)+
g(X,JY) =0, where X,Y,€ X(V®V*)).

(4) Consider a basis {e,...,e,} of V, and the dual basis {e°,...,e"} of V*. We
can consider the ey, k =0, ... ,n, as coordinates on V* and the ¢* as coordinates on
V. Let Uy be the open subset of P(V ®&V*) given by

Uy ={n(x+a): ex) >0,e () >0}.
Let (x',y"), i=1,...,n, be coordinates on U] given by

e'(x)

O(x)’ yi(n(x+a)):

x’(n(x—i— o)) =

(%)

Prove that the metric in terms of these coordinates on U(;L has the expression

1

721+ ()

. . . . 1 xiyj . . . .
dr' @dy' +dy' @ dx' — —— (' @d +d¥' @ dy') ;,
{ i7j2:41 1 + <)C,y>

where (x,y) = ¥ x'y'.

(5) Compute the almost product structure J on P(V & V*) in terms of the coordi-
nates (x',y").
REMARK. Since the metric admits locally that expression, it is said that the manifold
(P(V@V*),g,J) is a para-Kéhler manifold (that is, the Levi-Civita connection of g
parallelizes J) of constant paraholomorphic sectional curvature (equal to 4), which

is an analog of the holomorphic sectional curvature.
For such a space, the curvature tensor field R satisfies

R(X,Y)Z =g(X,Z)Y —g(Y,Z)X +g(X,JZ)JY — g(Y,JZ)JX +2¢(X,JY)JZ.

Solution. (1) Let x+ o be an arbitrarily fixed element of S. Then, for each y+ 3 € S,
there exists an element A € GLy(V') such that A(y+ 8) = x+ o. For, given a linearly
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independent set of elements yj,...,y, of V such that B(y;) = 0, then {y,y1,...,yu}
is a basis of V. Similarly, if we have a linearly independent set of elements x1, ..., x,
of V such that a(x;) = 0, then {x,xi,...,x,} is a basis of V. Take A such that Ay = x,
Ay,' = X;. Then

B-AHX) =By =1=0alx), (B-AT)(x)=B0i)=0=alx),

and hence 8 -A~! = o. Taking two bases with the same orientation we have A €
GLy(V) as desired.

(2) Denote by n and v the natural vector fields on V & V* whose values at x + o
are Nyyo = x+ o and vy, = x — ¢. Then one has w.n = m,v = 0. In fact, n,; o
is the vector tangent at t = 0 to the curve t — x+ o +#(x+ ) and Vyyq is the
vector tangent to the curve t — x+ o +t(x—a). As t((1+1)(x+ a)) =n(x+ o)
and T((14+1)x+ (1 — 1)) = n(x+ ) for small ¢z, the claim follows. Thus Ker 7,
is spanned by n and v. The vector v is tangent to the fibre and n is normal to S in
V @ V*. The process given in the statement of lifting a vector Z to such a vector
7" has a unique solution if and only if the subspace orthogonal to the fibres has
dimension equal to 2n or, equivalently, if and only if the restriction of () to the
subspace spanned by v, and n, is nondegenerate; but, indeed

(n,n) (m,v) _ 1 0
(v,n) (v,v) 0 —1)°

Consequently, we have the desired structure on P(V @& V*), which makes 7 a pseudo-
Riemannian submersion.

(3) We have
(Joo(a,b)s —(a,b)soJp)(v,®) = Jo(av,b®) — (a,b).(v,—») = 0.

Hence, Jy passes to the quotient, giving an almost product structure J, which is
easily seen to be para-Hermitian.

(4) After computation we have

J [" %

— = —¢;(0)e®(x)x+ €% (x) = ,
dx m(x+or) de xta

2 |" :

= =—é'(x)ep(a)a+ep(or) =— .
9 (e dei,iq

From this, on account of (%), one has

a | 9 |
(3%

)= %e(’(x)eo(a)(&f —ei(@)e! (x)).

n(x+a) "yl m(x+ar)
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Now, from (**) we deduce

1 ; yix/
0 - - . J(y) — 2
e’ (x)eo(r) T o) ei(a)e!(x) TS 0]
hence
a" o _;(5‘._ Yoo )
ox' T(x+0) "Iyl T(x+a) 2(1+(x,y) Y1+ (/)"
Similarly,
h h h h
il_ , i =0, i, , i =0.
ax 71'()(+OC) 8}(-/ 717(X+OC) ay n(x+0£) ay/ TE(X+(X)

Hence the metric on P(V & V*) has on U the expression given in the statement.

(5) We have
h
n(x+a)>

h
n(x+a)>

d

ox!

Tt J 0
=JOo | 57
n(xta) ox’

(2
T oxd

_ 9
ox' ﬂ(er(X)’

and similarly

9 __ 2

ayi w(x+a) ayi w(x+a)
Hence P 5

J - = dxi - = d i.

ox! @ dy! oy

Problem 6.15.11. The oscillator group G is the simply connected 4-dimensional Lie
group corresponding to the Lie algebra L with non-null Lie brackets

[62763} =eq, [62764] =e3, [63764] = —e3.
G can be realized as R* with the group operation 7 = x -y given by

1
d=xt4yt 4 3 (¥ (—y*sinx* +y? cos x*) — x* (—y* cos x* + y? sin x*)),
2 =x>+y*cos x* +y sinx?,
2=x fyzsinx4+y3cosx4,

& =xt 4yt
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Consider on L the family of Lorentz inner products given by
<a,b> =€a1by —a1bs + arby + azbz — asby + €agby, —1<e<O.

Find the explicit expression of the family of corresponding left-invariant Lorentz
metrics on G.

Solution. In general, if g denote a left-invariant metric on G, e the identity element
of G and s an arbitrary element of G, one has
d
w(3])
€> axj e

0 0 0
ge(w e>:gs(Ls*<W
0 0 )

. OxJ
__(t
- ( LS*gSLS*) (axi 87 ax/

that is,
—1 —1
8s = th* 8eLy, -

In the present case we have

Lo = <‘9Zl.>
N ) o

1

2 4 3

1 —1(?sinx*+x3cosx?) J(x*cosx* —xPsinxt) 0
o cos x* sin x* 0
o —sinx* cos x* of’

0 0 0 1

so after computation we deduce
(8e)x = tL;*I (gs)eL;kl
€ E—xS — g—xz -1
2 2
g e(x%)? { ex’x’ B x_3
| 2 4 4 2
a ex? extx®  e(x?)? x?
2 4 FEEEY
X’ x?
-3 2 €

Problem 6.15.12. Let
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Prove:

(1) G is a closed subgroup of GL(3,R).

(2) G does not admit a pseudo-Riemannian bi-invariant metric.
HINT (to (2)): Show that g = A 0 ® w1, where @, = da/a, is the general expression
of a bi-invariant metric; but such a metric g is singular.

Solution. (1) We have

1/a 0 0\ [1/d 0 0 1/ad 0 0
0 ab 0 d bv|= 0 ad ab+b|eG (%)
0 01 0 0 1 0 0 1
and |
1/a 0 0\ a 0 0
0 ab =10 l/a —b/a| €qG.
0 01 0 0 1
Therefore, G is an abstract subgroup of GL(3,R).
1/a, 0 O
If a sequence in G of matrices 0 a, b, | goesasn — oo tothe matrix

0 0 1

aip apz a3
A= |ay ax a3 | €GL(3,R),
asy dsz ass

computing the limit we have

ap=ap=ay =a3 =ax =0, ax =1, r}i_lgl/an:an, lim a, = a»,

n—oo

and thus aj; >0, axp >0, ajjaz =1, so one has aj; > 0, ax; > 0, then A € G.
Hence, G is a closed subgroup of GL(3,R).

(2) Suppose

I/x 00 l/a 0 0
X=10 x y], A= 0 a b
0 01 0 01
The equations of translations are
X=ax X=ax
Ly = _ s Ry = -
{y:ay—f—b {y:bx—i—y.

A basis of left-invariant 1-forms is {®; = dx/x, @ = dy/x}. In fact,

dx dx dy d
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A basis of right-invariant differential 1-forms is

{(D] =, :xa)z—ya)l}.

In fact,
dr dx
RZ(D}—T:—:(D],
X X
dy dx
Ry =2 —§— = dy—Ldx= @
X X X

Hence, the most general form of a left-invariant symmetric bilinear (0,2) tensor is
E=A0 R0 + U0 QW+ W) +vw® w, A,u,veR.
Suppose g is also right-invariant. Since

dy
Rijon = —
A2 E
_ bdx+dy

ax

b 1
=-m+ —n,
a a

we would have
" b 1 b 1
Rig=A01 @0 +U 0 R E(D1+;w2 + ;(014‘;(02 ® 0

b 1 b 1
tr(-o+-m; )@ (-0 +-w ).
a a a a
If Rjg =g forall A € G, we necessarily have y =v =0, thus g =21 @1 @ o, is

the most general expression of the bi-invariant metric. But it is singular.

Problem 6.15.13. Let M be the pseudo-Euclidean space with metric g =Y, £dx' ®
dxi, & = +1, and let

be the Laplacian on M.
Prove that the Laplace equation Af =0, f € C°M, has solution [ = y(Q),
where
Alog|Q|+B  ifn=2
v(Q)= A

2 4B ifn>2,
IR

and Q = %Z?=1 &(x! —xf))z, in any neighborhood in which €2 does not vanish and
has constant sign.
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Solution. If » = 2, one has

2 32
Ay(Q)=-Y g——(Alog|Q|+B
W(@) = - X (log|2|+ B)

2 0 &(x' —xb)
S A—— "0/
izZle x|
2 Q- (¥ —xi)g(x —xb)
—_A 0/ 0
2
20 —-20Q
=-A o7 =0.
For n > 3, we have
n 82 A
Ay(Q) = +B
Vi) ; ’3(x‘)2<|9|5(n2> )
n 22 1 & ] 2_%—“
= ARG [ RO )

AL —xh) H{ e —xh) } + (j;% i &j(x! _xé')g) 2 (£1)
—A(-2 4+ 1)(—nQ7T'Q+nQ72) =0 if Q>0
N {—A(—g +1)(nQ7'Q—-nQ"3)=0 if 2<0.
Problem 6.15.14. Let (R?,g) be the pseudo-Riemannian manifold with
g= %(coshzydxz —dy?).

Calculate the Laplacian A on functions f € C*R2.

Solution. The nonvanishing Christoffel symbols are

1
I, =tanhy, I;}= 5 sinh 2.
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Now applying the usual formula (valid in every local coordinate system)

Afz—gij< AR af)

oxioxi Y oxk

we deduce 2 2 5
__ef_ L oF If 9f
Af = (coshzy 2 9y tanh y 8y) .

4
Problem 6.15.15. Let x: [a,b] X (—8,0) — M be a variation of a segment y(u) =
x(u,0) of a geodesic on a Riemannian manifold (M,g). For each v € (—6,0), let
L.(v) be the length of the longitudinal curve u — x(u,v). L, is a real valued func-
tion, where Ly(0) denotes the length of the given segment y of the geodesic.
Compute the second variation of arc length, L) (0), by the usual formula and also
directly from Ly, in the following cases (equipped with the respective usual metrics):

(1) In 8%, x(u,v) = (cos vcos u, cos vsinu, sinv), 0 < u < 7.
(2) InR?, x(u,v) = (ucoshv, v), —1<u<l.

~ (u, vu) if uelo,1]
(3) InR?, x(u,v) = {(u, v(2—u) ifuell2].

Fig. 6.12 The variation vector field on 7.

Solution. (1) The ends of x(u,v) are x(0,v) = (cos v,0,sin v) and x(7,v) = (—cos v,
0,sinv), for v € (—38,98). For v = 0 we have the curve

v : x(u,0) = (cos u, sin u, 0), o<u<m,
with origin (1,0,0) and end (—1,0,0). For v = — we have the curve
x(u,—0) = (cos § cosu, cos §sin u, —sind),

with origin (cos 8,0, —sind) and end (—cos d,0,—sind); for v =6,



6.15 Pseudo-Riemannian Manifolds 345
x(u,6) = (cos d cos u,cos §sin u,sin ).

The curve x(u,0) is a segment of a geodesic. The length of x(u,v), for a given v, is

Li(v) = ./Ozr\/ (xy(,v))?du?

T
:/ cos vdu
0

=Tcos V.
The length of yis L,(0) = m. The second variation of the arc on x is

d’L
L"(0)= —
( ) dV2 v:0

= (—mcos v)y—o

= —7'[,

where L =L,.
Since ¥ is a geodesic, it must be L'(0) = 0. In fact, we have
L'(0) = (dL/dv),—o
= (—msinv),—o = 0.

As for Synge’s formula (see page 416), since S is a space of constant curvature 1,
one has

g(R(V, 7/)‘/7 '}’/) =gV, yl)g(va Y/) gV, V)g(% ')//),
where V denotes the variation vector field V (u) = (dx/dv),—o, given by

V(u) = (—sin vcos u, —sin vsin u, cos v),—o = (0,0, 1),
(see Figure 6.12) and ¥’ (1) = (— sin u,cos u,0), thus ¢ = |y’| = 1. Therefore

gV.v)=1, gy, v)=1,  g(V.Y)=0, gRV,Y)V.Y)=-1.

We have V/ = (0,0,0), thus g(V'*,V’%) = 0. On the other hand, the transverse ac-
celeration vector field A(u«) on 7y is given by

9 o
A(u) = 372 . (cos vcos u, cos vsin u, sin v)
-

= (—cos vcos u, —cos vsin u, —sin v),—g

= (—cos u, —sinu, 0),

from which g(y’,A) =0 and L"(0) = — [y’ du = —m; that is, the same result as
before.

(2) The ends of x(u,v) are
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x(—1,v) = (—cosh v, v), x(1,v) = (cosh v,v).
One has v € (—§,8). For v = 0 we have the curve in R?
v: x(u,0) = (u,0), —1<u<l,
which is obviously a segment of a geodesic. For v = —& we have the curve
x(u,—8) = (ucoshd,—9),
with origin (—coshd,—38) and end (cosh §,—0). For v = 8, we have the curve
x(u,6) = (ucoshd,d),

with origin (—cosh,0) and end (cosh 8, 8). The length of x(u,v) is

1
Li(v)= / (cosh?v) 3 du
~1
= 2coshv.
The length of y is L,(0) = 2. The second variation of the arc on x is

&L
dv? V=0

= (2coshv),—p = 2.

L// (0)

As 7is a geodesic, it must be L'(0). In fact, we have
L'(0) = (2sinh v),—o = 0.

As for Synge’s formula, we have ¢ = |y’| = 1 and R = 0 as M = R? with its usual
metric. Moreover

d
=3, i (ucoshv,v)

= (usinh v, 1),—9 = (0, 1),

V(u)

and thus V' = (0,0), so that V' = (0,0). We have

2
J x(u,v)

)
v, o

= (ucosh v,0),—g = (u,0),

A(u)

so that one has g(y’,A) = u. Hence L"(0) = [g(7',A)]" | = 2, as before.
(3) For v = 0 we have the curve
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7: x(u,0) = (4,0), u € [0,2],

which is a segment of a geodesic. For v = —§, we have the curve
-6 if 0,1
x(u,—0) = (u, —0u) 1 u€el0,1]
(u,—0(2—u)) if uell,2],

and for v = § the symmetric one with respect to the u-axis. The length of x(u,v) is

1 2
L(v) = / (1 +v2)%du+/ (142) 2 du
0 1
=2v1+12.
The length of y is L,(0) = 2. The second variation of the arc on x is

d’L
dv?
d
dv

L//(O) —

v=0

(2 Y ):2.
v=0 142

As 7is a geodesic, it must be L'(0) = 0. In fact,

2
L'(0)= <V2) = 0.
I+v-/ =0

As for Synge’s formula, we have ¢ = |y’| = 1. Furthermore, one has R = 0, and

_ 9 = 0w if uel0,1]
Yoo v=0 (e )_{(072—14) if uel(l,2].

pro J O ifueo]
1 0,-1) if uell,2).

;o fon-o=0 ifuefo]
g(v’y){(o,—l)-(l,())zo if uell,2).

Thus V' =V';

32

Vi =1, A= 25
8( ) 5.2

oy {00 e
oY TN (0,00 i welt,2).

Hence, L (0) = [ du = 2, as before.
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Problem 6.15.16. Let M be an embedded submanifold of the paracomplex projec-
tive space P(V ®V*) (see Problem 6.15.10), such that the metric inherited on M
from g is nondegenerate, and denote by A" the normal bundle N = U,cy ),

where N}, = (TPM)l, which exists by the nondegeneracy of the induced metric.
Such a submanifold is said to be totally umbilical if there exists & € I' ./ such that

a(X,Y)=g(X.Y)E, XY € X(M),

where 0/(X,Y) is the second fundamental form and & is called the normal curvature
vector field. Then, for such a submanifold:

(1) Find the expression of Codazzi’s equation.
(2) Find the expression of Ricci’s equation.

(3) Prove, applying Gauss’s equation, that if J(TM) C A, then
RX.Y,Z,W) = (1+g(&.8))(s(X,2)g(Y,W) — g(X,W)g(Y.Z)).

Solution. (1) If V denotes the Levi-Civita connection of any pseudo-Riemannian
submanifold M, we have

VyY = 1VyY, a(X,Y)=vVyY,  Ap=—1Vxn, Vin =vVxn,

where X,Y € X(M); n € ' 4"; T and v denote the “tangential part” and the “normal

part”, respectively; V is the Levi-Civita connection of P(V ®V*); V- denotes the
connection induced in .4; and

g(AnXaY) :g(a(XaY)vn)
Codazzi’s equation is written in general as

“VR(X,Y)Z = (?Xa) (v,2) - (%a) (X,Z),

where §xa is defined by
(Vxa)(Y,Z) = Vi(a(Y,2)) — a(VxY,Z) — a(Y,Vx2).

If the pseudo-Riemannian manifold M is moreover totally umbilical, then the previ-
ous equation reduces to

(Vxa)(Y.Z) = Vi (3(Y.2)E) — g(VxY, Z)E — (¥, VxZ)&
=X(g(Y,2))& +28(Y,Z)Vx& —g(VxY,Z)E — ((Y,VxZ))&
= g(Y,Z)V)%é + (ng)(Y,Z)

:g(sz)V)%é'
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Hence, on account of the expression for the curvature of P(V @& V*) in the remark in
Problem 6.15.10, we have for Codazzi’s equation

~VvR(X,Y)Z = —v(g(X,2)Y —g(Y,2)X
+8(X,JZ)JY — g(Y,JZ)JX +28(X,JY)JZ)

= —g(X,JZ)WWJIY +g(Y,JZ)vIX +2g¢(X,JY)vJZ
That is,
g(X,TIZ)IY — (Y, tJZ)vIX +2g(X,TIY WIZ = g(Y,Z)Vyx & — g(X,Z)VyE.

(2) Let Ry. be the curvature tensor field of the connection V* in .#". Then,
Ricci’s equation is is

VR(X,Y)N =Ry. (X,Y)N — at(ApX,Y) + o(AnY,X), X, Y €X(M), ne.N.
As
g(AnXaY) :g(a(XaY)»n)
=g(X,Y)g(&,n),

we have ApX = g(&,1)X and a(ApX,Y) = g(&,n)g(X,Y)&. Hence, Ricci’s equa-
tion reduces to _
VR(X7 Y)n = RVL (X7 Y)n .

(4) If J(TM) C ., direct application of Gauss’s equation gives us
R(X,Y,Z,W)=R(X,Y,Z,W)+g(a(X,Z),a(Y,W)) — g((e(Y,Z), (X, W))
=8(X,2)g(Y,W) —g(X,W)g(Y,Z) —g(X,JZ)g(Y,JW)
+8(X,JW)g(Y,JZ) —2g(X,JY)g(Z,JW)
+8(X,Z)g(Y,W)g(S,8) —8(Y,Z)g(X, W)g(S. &)
= (1+8(£,8))(s(X,2)g(Y. W) —g(X,W)g(Y,Z)),

as wanted.



Chapter 7
Some Definitions and Theorems

7.1 Chapter 1. Differentiable Manifolds

Definitions 7.1.1. A locally Euclidean space is a topological space M such that each
point has a neighborhood homeomorphic to an open subset of the Euclidean space
R”. If ¢ is a homeomorphism of a connected open set U C M onto an open subset of
R", then U is called a coordinate neighborhood; ¢ is called a coordinate map; the
functions x' = t’ o ¢, where ¢’ denotes the ith canonical coordinate function on R”,
are called the coordinate functions; and the pair (U, ) (or the set (U,x',...,x"))
is called a coordinate system or a (local) chart. An atlas </ of class C* on a lo-
cally Euclidean space M is a collection of coordinate systems {(Uy, @) : ¢ € A}
satisfying the following two properties:

(1) UgeaUa =M.
(2) (;)(XO(pE1 is C* for all o, 8 € A.

A differentiable structure (or maximal atlas) % on a locally Euclidean space M
is an atlas & = {(Uqy, @) : & € A} of class C, satisfying the above two properties
(1) and (2) and moreover the condition:

(3) The collection .% is maximal with respect to (2); that is, if (U, @) is a coor-
dinate system such that ¢ o ¢, ! and @y 0 @~ ! are C*, then (U, ¢) € Z.

A topological manifold of dimension n is a Hausdorff, second countable, locally
Euclidean space of dimension n. A differentiable manifold of class C= of dimension
n (or simply differentiable manifold of dimension n, or C* manifold, or n-manifold)
is a pair (M, %) consisting of a topological manifold M of dimension n, together
with a differentiable structure .% of class C* on M.

The differentiable manifold (M,.# ) is usually denoted by M, with the under-
standing that when one speaks of “the differentiable manifold” M one is considering
the locally Euclidean space M with some given differentiable structure ..

Let M and N be differentiable manifolds, of respective dimensions m and n. A
map @: M — N is said to be C* provided that for every coordinate system (U, )
on M and (V, y) on N, the composite map yo ®o @~ is C*.
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© Springer Science+Business Media B.V. 2001, First softcover printing 2009



352 7 Some Definitions and Theorems

A diffeomorphism @: M — N is a bijective C* map such that the inverse map
@~ is also C*.

The tangent space T,M to M at p € M is the space of real derivations of the local
algebra C7M of germs of C* functions at p, i.e. the R-linear functions X : C;M —
R such that

X(fg) =X\ )g(p)+f(P)Xs,  [f.g€CiM.

Let C”M denote the algebra of differentiable functions of class C* on M. The
differential map @, of the C* map @: M — N is the map

D.p: T,M — Ty )N, (@X)(f)=X(fo®),  feCN.

Definitions 7.1.2. The stereographic projection from the north pole N = (0, ...,
0,1) (resp. south pole S = (0,...,0,—1)) of the sphere

n+1
St = {(x],...,x”“) eRML: Z()c")2 = l}
i=1
onto the equatorial plane x**! = 0 is the map sending p € S" — {N} (resp. p €
§" —{S}) to the point where the straight line through N (resp. S) and p intersects the
plane x"*! = 0.

The inverse of the stereographic projection is the map from x"*! =0 to " — {N}
(resp. p € S" — {S}) sending the point ¢ in the plane x"*! = 0 to the point where the
straight line through g and N (resp. S) intersects S".

Other stereographic projections can be defined. For instance, that defined as
above but for the sphere

st — {(xlj.”’er-l ERrH—l . Z(Xi)2+(xn+l_l)2: 1}7

i=1

from the north pole N = (0,...,0,2) onto the plane x"*!

defined analogously to the previous case.

= 0. The inverse map is

Definitions 7.1.3. Let ®: M — N be a C* map. A point p € M is said to be a
critical point of @ if @.: T,M — Tp(,)N is not surjective. Let f € C”M. A point
p € M is called a critical point of f if fi, = 0. If we choose a coordinate system
(U,x',...,x") around p € M, this means that

d 0
==L m=0

The real number f(p) is then called a critical value of f. A critical point is called

nondegenerate if the matrix
2% f
dxiox/ ()
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is non-singular. The nondegeneracy does not depend on the choice of coordinate
system.

If p is a critical point of f, then the Hessian H' of f at p is a bilinear function on
T,M defined as follows. If v,w € T,M and X € X (M) satisfies X, = v, then

H (v,w) = w(Xf).

Definitions 7.1.4. Let S be a subset of R”. Then S has measure zero if for every
€ > 0, there is a covering of S by a countable number of open cubes C;,C,, ... such
that the Euclidean volume ¥ | vol (G;) < €.

A subset S of a differentiable n-manifold M has measure zero if there exists a
countable open covering Uy, Us, ... of S and charts ¢;: U; — R" such that ¢;(UNS)
has measure zero in R".

Theorem 7.1.5. (Sard’s Theorem) Let @: M — N be a C” map. Then the set of
critical values of ®@ has measure zero.

Definitions 7.1.6. Let @: M — N be a C* map. Then:
(1) @ is an immersion if @, is injective for each p € M.
(2) The pair (M, ®) is a submanifold of N if @ is a one-to-one immersion. If

the inclusion map of M in N is a one-to-one immersion, then it is said that M is a
submanifold of N.

(3) D is an embedding if @ is a one-to-one immersion which is also a homeo-
morphism into; that is, the induced map ®@: M — ®(M) is open when @ (M) is
endowed with the topology inherited from that of N.

(4) @ is an submersion if @, is surjective for all p € M.

Definition 7.1.7. Let @: M — N be a C* map, with dim M = m, dim N = n, and
let pe M. If (U, @), (V, y) are coordinate systems around p and @(p), respectively,
and @(U) C V, then one has a corresponding expression for @ in local coordinates,
ie.,

D=yodog ' pU) — (V).
The rank of @ at p is defined to be the rank of @, ,, which is equal to the rank of
the Jacobian matrix

9 i
(a){j((p(p))>, i=1,...,n, j=1,....m,

of the map

expressing @ in local coordinates.
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Theorem 7.1.8. (Theorem of the Rank) Let @: M — N be a C* map, with dim M
=m, dim N = n, and rank @ = r at every point of M. If p € M, then there ex-
ist coordinate systems (U, @), (V,y) as above such that ¢(p) = (0,...,0) € R™,
w(®(p)) = (0,...,0) €R", and @ = yo Do~ is given by

Moreover we can assume @(U) = C2(0), (V) = C(0), with the same €, where
C?(0) denotes the cubic neighborhood centered at 0 € R" of edge 2¢.

Theorem 7.1.9. (Inverse Map Theorem) Let

f= U R
be a C” map defined on an open subset U C R". Given a point xyg € U, assume

A(fY, . "M

AT, 0 70

Then there exists an open neighborhood V.C U of xy such that:

(i) f(V) is an open subset of R".

(ii) f: V — f(V) is one-to-one.

(iii) f~': f(V) = VisC™.
Theorem 7.1.10. (Implicit Map Theorem) Denote the coordinates on R" x R™ by
(x',...x" ', ..., y™). Let U C R" x R™ be an open subset, and let

f= MU —R"
be a C* map. Given a point (xy,yo) € U, assume:
(i) f(x0,y0) =0.
(ii)
If s ™)
CICTNS )
Then, there exist an open neighborhood V of xo in R" and an open neighborhood W

of yo in R™ such that V. x W C U, and there exists a unique C” map g: V — R™,
such that for each (x,y) € V X W:

(x0,y0) # 0.

fxy)=0 & y=g).

Theorem 7.1.11. (Implicit Map Theorem for Submersions) Consider a surjective
submersion w: M — N. Then, for every q € imm, the fibre 1~ '(q) is a closed sub-
manifold in M and diim 1! (g) = dim M — dim N.

Definition 7.1.12. Let ~ be an equivalence relation in M, and let 7: M — M/~ be
the quotient map. Endow M/~ with the quotient topology 7, i.e.



7.1 Chapter 1. Differentiable Manifolds 355
Uet & n! (U) is open in the topology of M.

The quotient manifold of M modulo ~ is said to exist if there is a (necessarily
unique) differentiable manifold structure on M/~ such that 7 is a submersion.

The following criterion is often used to construct quotient manifolds:

Theorem 7.1.13. (Theorem of the Closed Graph) Let ~ be an equivalence relation
in M and let N C M x M be the graph of ~; that is,

N={(p,qg) EMxM : p~gq}.

The quotient manifold M/~ exists if and only if the following two conditions hold
true:

(1) N is a closed embedded submanifold of M x M.

(2) The restriction t: N — M to N of the canonical projectionpr): M XM — M
onto the first factor, is a submersion.

Definitions 7.1.14. Let M be a differentiable n-manifold with differentiable struc-
ture .%. Let
™ = |J T,M.
pEM

There is a natural projection 7: TM — M, given by n(v) = p for any v € T,M. Let
(U,0) = (U,x',...,x") € Z.Define ¢: n' (U) — R*" by

o) = (( om)(v),..., (" o m)(v),dx! (v),.....,d¥" (v)),

for all v € £~ 1(U). Then the collection of such (7~ !(U),®) determines on TM a
differentiable structure .7 with which TM is called the tangent bundle over M.

A vector field along a curve v: [a,b] — M in the differentiable manifold M is a
C”map X : [a,b] — TM satisfying roX = v. A vector field X on M is a C* section
X:M — TM.If f € C7U, then X f is the function on U whose value at p € M is
X, f. The vector fields on M are usually identified to the derivations of C* functions,
that is to the R-linear maps X : C*M — C*M such that X(fg) = (Xf)g + f(Xg).
The (C*M)-module of vector fields on M is denoted by X(M).

If X and Y are vector fields on M, the Lie bracket [X,Y] of X and Y is the vector
field on M defined by

X, Y],(f) =X, (Y ) = Yp(Xf), pEM.

Let X € X(M). A C” curve yin M is said to be an integral curve of X if

) = Xy(1g)-
fo

Definitions 7.1.15. A vector field is said to be complete if each of its maximal inte-
gral curves is defined on the entire real line R.

d
dr

Y(t0) =% (
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The flow or 1-parameter group of a complete vector field X on M is the map

O:MxR — M
(pvt) = (pl(p)a

where t — @,(p) is the maximal integral curve of X with initial point p.

Definitions 7.1.16. Let @: M — N be a C* map. The vector fields X,Y € X(M)
are said to be @-related if

@*XPZY@([,), peEM.

Let @: M — N be a diffeomorphism. Given X € X(M), the vector field image @ -X
of X is defined by

(@-X) =, (Xp1(,))

That is, @ - X is a shortening for the section @, o X o ®@~! of TN.

7.2 Chapter 2. Tensor Fields. Differential Forms

Definitions 7.2.1. Let & = (E, , M) be a locally trivial bundle with fibre F over M.
A chart on & is a pair (U, ¥) consisting of an open subset U C M and a diffeomor-
phism ¥: 77! (U) — U x F such that pr; o ¥ = m, where pr;: U x F — U is the
first projection map. ¥ is called a trivialization of & over U.

Let V be real vector space of finite dimension n and let & = (E, 7, M) be a locally
trivial bundle of fibre V. A structure of vector bundle on & is given by a family
o = {(Ug,We)} of charts on & satisfying:

(1) Uq is an open covering of the base space M.

(2) For each pair (o, B) such that Uy, NUp # 0, one has

(lPﬁolP(;l) (p,v):(p,gﬁa(x)v), (va)E<UamUﬁ)XV7

where g, is a C* map from Uy NUp to the group GL(V) of automorphisms of V.
(3) If &7’ D &7 is a family of charts on & satisfying the properties (1), (2) above,
then &' = & .
Suchabundle & = (E,n,M, <), or simply & = (E, w, M), is called a (real) vector
bundle of rank n. The C* maps go5: M — GL(V) are called the changes of charts
of the atlas <7

Proposition 7.2.2. The changes of charts of a vector bundle have the property
(called the cocycle condition)

8ay(P)gys(P) =8ap(P),  PEULNUgNUy.

Definition 7.2.3. Two vector bundles of rank n are said to be equivalent if they are
isomorphic and have the same base space B.
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One has the following converse to Proposition 7.2.2:

Theorem 7.2.4. Let % = {Uy} be an open covering of a differentiable manifold M
and let V be a finite-dimensional real vector space. Let go5: M — GL(V), Ug N
Ug # 0, be a family of C* maps satisfying the cocycle condition (7.2.2). Then there
exists a real vector bundle & = (E,n,M, /), unique up to equivalence, such that
the maps gqp are the changes of charts of the atlas </ .

Definition 7.2.5. The family (Uq,g4p) is said to be a GL(V)-valued cocycle on M
subordinated to the open covering 7% .

Definitions 7.2.6. Let .7,"(M) be the set of tensor fields of type (7,s) on a differen-
tiable manifold M and write 7 (M) = &7 _(7,"(M). A derivation D of 7 (M) is a
map of 7 (M) into itself satisfying:

(1) D is linear and satisfies

Dx(®Th)=DxT1 T +T1 ®DxTh,X € X(M), N, € T (M).

(2) Dy is type-preserving: Dx (7, (M)) C Z,"(M).

S

(3) Dy commutes with every contraction of a tensor field.

Let A"M be the space of differential forms of degree r on the n-manifold M, that
is, skew-symmetric covariant tensor fields of degree r. With respect to the exterior
product, A*M = @7_,A"M is an algebra over R. A derivation (resp. anti-derivation)
of A*M is a linear map of A*M into itself satisfying

D(w) A@) =Dy Ay + oy ADwy, W, €A'M
(resp.
D(wy Awn) =Dy Aoy + (—1)"w; ADawy, 0 EA'M, wmeAM.)

A derivation or anti-derivation D of A*M is said to be of degree k if it maps A"M
into A" tKM for every r.

Theorem 7.2.7. (Exterior differentiation) There exists a unique antiderivation
d: A*M — A*M
of degree +1 such that:

(1)d>=0.
(2) Whenever f € C°M = A°M, df is the differential of f.
Definitions 7.2.8. Fix a vector field X on M and let ¢, be the local 1-parameter

group of transformations associated with X. Let Y be another vector field on M. The
Lie derivative of Y with respect to X at p € M is the vector (LxY ), defined by
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(‘Pf*erwp)) :

The Lie derivative of a differential form @ with respect to X at p is defined by

Yp— @uY 1 d
_1; o (p) - =
(LxY), = lim t dt

t=0

O — @ Dy, (p) d
(Lx @), Pt t dt

(‘Pz*%r<p>) .
=0

The Lie derivative of a tensor field T of type (r,s) with respect to X at p is defined
by

(LxT)p == i

dt ((PY'T)p7

t=0

where the dot denotes, for an arbitrary diffeomorphism @ of M,

D (X1® X260 ®--®6)
—0.X @00 -X,0(@ )0 ®--2(@ ),

X, € X(M), 6; A'M.
In particular, the action of @ on a differential form 6 € A!'M is given by

(@-6)y =0 110 (D7), = ((qu)*e)p’ peEM.

For each X € X(M), the interior product with respect to X is the unique anti-
derivation of degree —1 defined by ix f =0, f € C*M, and ix6 = 6(X), 0 € AlM.

Theorem 7.2.9. Let X € X(M). Then:
(1) Lxf=Xf, feC°M.
(2) LxyY = [X,Y], Y € X(M).
(3) Lx maps A*M to A*M, and it is a derivation which commutes with the exte-
rior differentiation d.
(4) On A*M, we have
Ly =ixod+doiy,

where ix denotes the interior product with respect to X.

Proposition 7.2.10. Let ¢; a local 1-parameter group of local transformations gen-
erated by a vector field X on M. For any tensor field T on M, we have

oo (01 = 5 (0 T)),zs‘

Definitions 7.2.11. Let m, n be integers, 1 < m < n. An m-dimensional distribution
2 on an n-dimensional manifold M is a choice of an m-dimensional subspace 2,
of T,M for each p € M. 7 is C* if for each p € M there are a neighborhood U of p
and m vector fields X, ..., X, on U which span & at each point in U. A vector field
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is said to belong to (or lie in) the distribution &, if X, € &), for each p € M. Then
one writes X € 2. A C* distribution is called involutive (or completely integrable)
if [X,Y] € 2 whenever X and Y are vector fields lying in 2.

A submanifold (N, y) of M is an integral manifold of a distribution 2 on M if

l//*(TqN) :Qw(q% geEN.

Definitions 7.2.12. Let & be an r-dimensional C* distribution on M. A differential
s-form  is said to annihilate 9 if, for each p € M,

®p(vi,...,vs) =0 whenever vi,...,vs € 7).

A differential form @ € A*M is said to annihilate & if each of the homogeneous
parts of @ annihilates Z. Let

I (2)={ow € A*M : ® annihilates Z}.

A function f € C”M is said to be a first integral of & if df annihilates 2. An
ideal .# C A*M is called a differential ideal if it is closed under exterior differenti-
ation d; thatis,d.¥ C .¥.

Proposition 7.2.13. A C* distribution 9 on M is involutive if and only if the ideal
J(2) is a differential ideal.

Theorem 7.2.14. (Frobenius’ Theorem) Let 9 be an m-dimensional, involutive, C*
distribution on M. Let p € M. Then through p there passes a unique maximal con-
nected integral manifold of 2, and every connected integral manifold of 2 through
p is contained in the maximal one.

Definitions 7.2.15. In the conditions of Theorem 7.2.14 it is said that the involutive
distribution & is a foliation, M is said to be a foliated manifold, the unique max-
imal connected integral manifold of & through each point is called a leave of the
foliation, and the foliation is said to be of codimension n — m.

Definitions 7.2.16. Let T*M be the cotangent bundle over a differentiable manifold
M of dimension n and let 7: T*M — M be the natural projection. The canonical
1-form ¥ on T*M is defined by

Yo(X)=0(rX), ©ecT'M, XecT,T*M.

An almost symplectic manifold is a differentiable manifold M endowed with a non-
degenerate differential 2-form £2. In this case, dim M = 2n, and
1)
u QN .<.n ANQ
n!
is a volume form on M, called the standard volume form associated with Q. A

symplectic manifold is an almost symplectic manifold whose corresponding 2-form
is closed: d©2 = 0.



360 7 Some Definitions and Theorems

Theorem 7.2.17. (Darboux’s Theorem) If (M,) is a symplectic manifold of di-
mension 2n, then for every p € M there exists a chart (U,x',....x" y',..., y") cen-
tered at p such that
n
Qly =) dx' Ady',

i=1

7.3 Chapter 3. Integration on Manifolds

Definitions 7.3.1. Let V be a real vector space of dimension n. An orientation of V
is a choice of component of A"V — {0}.

A connected differentiable manifold M of dimension # is said to be orientable if
it is possible to choose in a consistent way an orientation on 7,;M for each p € M.
More precisely, let O be the “O-section” of the exterior n-bundle A”M*; that is,

0= J{0oeA"T;M}.
PEM

Then since A"T;M — {0} has exactly two components, it follows that A"T*M — O
has at most two components. It is said that M is orientable if A"T*M — O has two
components; and if M is orientable, an orientation is a choice of one of the two
components of A"T*M — O. It is said that M is non-orientable if A"T*M — O is
connected.

Let M and N be two orientable differentiable n-manifolds, and let @: M — N be
a differentiable map. It is said that @ preserves orientations or that it is orientation-
preserving if @,: T,M — Tg(,)N is an isomorphism for every p € M, and the in-
duced map @*: A"T*N — A"T*M maps the component A"T*M — O determining
the orientation of N into the component A"T*M — O determining the orientation
of M. Equivalently, @ is orientation-preserving if @, sends oriented bases of the
tangent spaces to M to oriented bases of the tangent spaces to N.

Proposition 7.3.2. Let M be a connected differentiable manifold of dimension n.
Then the following are equivalent:

(1) M is orientable.
(2) There is a collection € = {(U, @)} of coordinate systems on M such that

O
M = U U and det(ng> >0 on UNV
.p)es Y

whenever (U,x',....x") and (V,y',....y") belong to €.
(3) There is a nowhere-vanishing differential n-form on M.

Theorem 7.3.3. (Stokes” Theorem I) Let ¢ be an r-chain in M, and let ® be a C*
(r — 1)-form defined on a neighborhood of the image of c. Then
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/ a):/dw.
dc c

Theorem 7.3.4. (Green’s Theorem) Let o(t) = (x(¢)),y(¢)), t € [a,b] be a sim-
ple, closed, plane curve. Suppose that G is positively oriented (that is, G| (qp) is
orientation-preserving) and let D denote the bounded closed connected domain
whose boundary is . Let f = f(x,y) and g = g(x,y) be real functions with con-
tinuous partial derivatives d f /dx, df/dy, dg/dx, dg/dy on D. Then

dg Jdf dy
dxdy = dr.
/ (8x 8y) / (f +gdt
Definition 7.3.5. Let M be a differentiable manifold. A subset D C M is said to be

a regular domain if for every p € dD there exists a chart (U, @) = (U,x!',...,x")
centered at p such that

oUND)={xep(U) : x">0}.

Theorem 7.3.6. (Stokes’ Theorem II) Let D be a regular domain in an oriented
n-dimensional manifold M, and let  be a differential (n — 1)-form on M such that

supp(®) N D is compact. Then
/ do = .
D oD

Definitions 7.3.7. A differential r-form o on M is said to be closed if doe = 0. It
is called exact if there is an (r — 1)-form f8 such that o = d3. Since d*> = 0, every
exact form is closed. The quotient space of closed r-forms modulo the space of exact
r-forms is called the rth de Rham cohomology group of M:

H)r(M,R) = {closed r-forms} /{exact r-forms}.

If ®: M — N is differentiable, then @*: A*N — A*M transforms closed (resp.
exact) forms into closed (resp. exact) forms. Hence @ induces a linear map

@": Hyg(N,R) — Hap(M,R).

7.4 Chapter 4. Lie Groups

Definitions 7.4.1. A Lie group G is a differentiable manifold endowed with a group
structure such that the map G x G — G, (s,t) — st~ is C=.

Let G and H be Lie groups. A map @: G — H is a homomorphism of Lie groups
if it is a group homomorphism and a C* map of differentiable manifolds. @ is said
to be an isomorphism if it is moreover a diffeomorphism. Let G and H be two
Lie groups and consider a homomorphism of G into the abstract group of auto-
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morphisms of H, p: G — Aut H. The semidirect product H X, G of H and G with
respect to p is the product manifold H x G, endowed with the Lie group structure
given by

(h,g)(H,g)=(hp(g)l,88"),  (hg) ' =(pgHh g™,

forh, €H, g,g €G.
A Lie algebra over R is a real vector space g together with a bilinear operator
[,]: g xg — g (called the bracker) such that for all x,y,z € g:
(1) [X,Y] =-1]7,X] (anti-commutativity).
(2) [IX,Y],Z) +Y,Z],X]+[[Z,X],Y] =0 (Jacobi identity).
Let g and b be Lie algebras. A map ¢: g — b is a homomorphism of Lie algebras
if it is linear and preserves brackets. ¢ is said to be an isomorphism if it is moreover
one-to-one and surjective.

The Lie algebra of the Lie group G is the Lie algebra g of left-invariant vector
fields on G. There exists an isomorphism of vector spaces

g — TG, X X..

In other words, a left-invariant vector field is completely determined by its value
at the identity. Let g and h be two Lie algebras and let p: g — Endbh be a homo-
morphism such that every operator p(Y), Y € g, is a derivation of §j. The semidirect
product h ®p g of h and g with respect to p is the direct sum vector space b @ g,
endowed with the Lie algebra structure given by the bracket

[(X7Y)7(X/’Y/)] = ([X7X/]+p(Y)X/_p(YI)X>[Y>Y/])7
forX,X'eh, Y, Y €g.

Theorem 7.4.2. (Cartan’s criterion on closed subgroups) Let G be a Lie group, and
let H be a closed abstract subgroup of G. Then H has a unique manifold structure
which makes H into a Lie subgroup of G.

Definitions 7.4.3. A Lie group G acts on itself on the left by inner automorphisms:
1:GxG — G, 1(s,) = sts~ 1 = 15(r).

The map s — 1|7, is, under the identification as vector spaces of 7,G with the
Lie algebra g of G, a homomorphism of G into the group of automorphisms Autg
of the vector space g, called the adjoint representation of G and denoted by

Ad: G — Autg.

The differential map of Ad, denoted by ad, is a homomorphism of g into the Lie
algebra End g of endomorphisms of the vector space g, called the adjoint represen-
tation of the Lie algebra g. One has



7.4 Chapter 4. Lie Groups 363
adyY = [X,Y], X,Y €g.
Definitions 7.4.4. Suppose n = 2r is even. Let sy denote the r X r matrix

1

1

with 1 in the skew diagonal and O elsewhere. Set

_ 0 S0 _ 0 S0
n=(as) (5 8)
and define the bilinear forms

B(z,w) = (z,J+w), Q(z,w) = (z,J-w), z,we C".

The form B, with B(z,w) = z'w? +--- +z*"w!, is nondegenerate and symmetric.
The form €2, with

Q(Z7W) _ _Z1W2r . _err+1 +Zr+lwr+ . +22rw17
is nondegenerate and skew-symmetric.

Proposition 7.4.5. Let SO((CZ’,B) be the Lie group of complex matrices preser-
ving the bilinear form B and having determinant 1. The Lie algebra so(C*,B) of
SO(C?" | B) consists of all matrices

a b
A= ; ,
c —S80 aso

where a € gl(r,C), and b,c are r X r matrices such that
'h = —sobsg, ¢ = —spcsg

(that is, b and c are skew-symmetric around the skew diagonal ).

Let Sp(C?", Q) be the Lie group of complex matrices preserving the bilinear form
Q. The Lie algebra sp(C*", Q) of Sp(C*", Q) consists of all matrices

a b
A: ( t >’
c —S80 aso

where a € gl(r,C), b,c are r X r matrices such that 'b = sobs, 'c = socso (that is, b
and ¢ are symmetric around the skew diagonal).

Suppose now 1 = 2r+ 1. One then embeds the group SO(C?", B) into the group
SO(C*¥+! B), for r > 2, by
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a b a 0
d — [0 1
¢ c O

and one considers the symmetric bilinear form

(7.4.1)

O™

B(z,w) = z W), z,we C".
i+ j=n+1

One can write this form as B(x,y) = (x,Sy), where the n X n symmetric matrix S has
block form

0 0 S0
010
S0 0 0

Writing the elements of M(n,C) in the same block form one has the following de-
scription (see [17]) of the Lie algebra of the complex orthogonal group in this case:

Proposition 7.4.6. The Lie algebra s0(C*+! B) of SO(C**+! B) consists of all

matrices
a w b

A=lu O ~wo |,
I3 1
cC —Sou —Soaso
where a € gl(r,C), b,c are r X r matrices such that
b = —sobsy, e = —spcsg

(that is, b and c are skew-symmetric around the skew diagonal), w is an r X 1 matrix
(column vector), and u is a 1 X r matrix (row vector).

Definitions 7.4.7. A forus is a Lie group T isomorphic to C* x --- x C* (r times).
The integer r is called the rank of T. If G is a Lie group, then a torus T C G is
maximal if it is not contained in any larger torus of G. Let G be one of the following
classical Lie groups of rank n:

GL(n,C), SL(n+1,C), Sp(C*", Q), SO(C*",B), SO(C***! B),

and let g be its Lie algebra. The rank of any of such groups G is the rank of any
maximal subgroup. The subgroup H of diagonal matrices in G is a maximal torus
of rank n, and we denote its Lie algebra by . Fix a basis for the dual h* of h as
follows:

(1) Let G = GL(n,C). Define the linear functional & on h by
<€i,A> =aj, A:diag(al,...,an).

Then {e,...,&,} is a basis for h*.
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(2) Let G = SL(n+ 1,C). Then b consists of all diagonal traceless matrices.
Define ¢; as in (1) as a linear functional on the space of diagonal matrices for i =
1,...,n+ 1. The restriction of & to b is then an element of h*, again denoted as &;.
The elements of h* can be written uniquely as

n+1 n+1
Z Ai&', l,‘ S (C, Z A,' =0.
i=1

i=1

The functionals

& —

n+1(£l+"'+£ﬂ+l)7 i:17"'7n7

are a basis for h*.

(3) Let G be Sp(C**,Q) or SO(C?",B). Define the linear functionals & on b
by (g,A) = a; for A = diag(ay,...,an,—dn,...,—a;) € h and i = 1,...,n. Then
{€1,...,&,} is a basis for h*.

(4) Let G = SO(C*'*! B). Define the linear functionals & on h by (g,A) = a;
for A = diag(ay,...,a,,0,—ay,...,—a;) €handi=1,...,n. Then {g},...,&} isa
basis for h*.

For o € h* let

ge={X€g:[AX]={(a,A)X, Ach}.

If oo # 0 and g # 0 then « is said to be a root and g, is said to be a root space.
if o is a root then a nonzero element of g, is said to be a root vector for o. The
set @ of roots is said to be the root system of g. It depends on a choice of maximal
torus, so one writes @ = (g, h) to make the choice explicit.

Theorem 7.4.8. Let G be one of the groups in Definitions 7.4.7 and let H C G be a
maximal torus. Let \y and g be the corresponding Lie algebras, and let @ = (g,b)
be the set of roots of hon g. If oo € @ then dim gy = 1 and

g=ho zgw

ocd

Definitions 7.4.9. The action of a Lie group G on a connected differentiable mani-
fold M is said to be effective if gp = p for all p € M, implies g = e, the identity
element of G.

The action of a Lie group G on a connected differentiable manifold M is said to
be free if gp = p, for a point p € M, implies g = e.

The action of a Lie group G on a connected differentiable manifold M is said to
be transitive if for each two points p,q € M, there exists g € G such that gp = g.

The action of a Lie group G on a connected differentiable manifold M is said to
be properly discontinuous if the two following conditions hold:

(1) each point p € M has a neighborhood U such that U Ng(U) is empty unless
g=e.
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(2) any two points p, p’ € M which are not equivalent have neighborhoods U, U’
respectively such that U Ng(U’) is empty for all g € G.

Conditions (1), (2) together imply that M /G is a Hausdorff manifold of the same
dimension as M.

Definition 7.4.10. A Lie group G is said to act simply transitively on a manifold M
if the action is transitive and free.

Theorem 7.4.11. Let H be a closed subgroup of a Lie group G. Then the quotient
manifold G/H exists.

Theorem 7.4.12. Let G x M — M, (s,p) — sp, be a transitive action of the Lie
group G on the differentiable manifold M on the left. Let p € M, and let H be the
isotropy group at p. Define a map

®: G/H— M, D(sH) = sp.
Then @ is a diffeomorphism.

Proposition 7.4.13. Let G/H be a homogeneous space, and let N be the maximal
normal subgroup of G contained in H. Notice that N is a closed subgroup. Then
G' = G/N acts on G/H with isotropy subgroup H' = H/N and G’ acts effectively
on G/H=G'/H'.

Definition 7.4.14. A homogeneous space G/H is said to be reductive if there exists
an Ad(H )-invariant direct sum complement vector space m to the Lie algebra § of
the isotropy group H at a point.

7.5 Chapter 5. Fibre Bundles

Definitions 7.5.1. A C* principal fibre bundle (or simply a principal bundle) is a
quadruple (P, w,M, G) where P, M are differentiable manifolds, G is a Lie group
and 7 is a surjective submersion from P to M such that:

(1) G acts differentiably and freely on the right on P,
PxG — P

For g € G, one also writes R, : P — P for the map Rou = ug.

(2) M is the quotient space of P by equivalence under G, so that for p € M, G
acts simply transitively on 771 (p).

(3) P is locally trivial; that is, for any p € M, there is an open neighborhood U of
pandaC” map @y : 7~ (U) — G such that @y commutes with R, for every g € G
and the map 7! (U) — U x G given by p — (n(p), @y (p)) is a diffeomorphism.
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P is called the bundle space, m the projection map, M the base space, and G
the structure group. For p € M, m~'(p) is called the fibre over p. Each fibre is
diffeomorphic to G via the map j,: G — n~!(n(u)) C P, defined by j,(g) = Rqu.

Let G be a Lie group acting on a differentiable manifold M on the right. Each
element A € g induces a vector field A* € X(M), corresponding to the action of
the 1-parameter group a; = exp tA on M. A* is called the fundamental vector field
corresponding to A.

Given a differentiable n-manifold M, a linear frame z at a point p is an ordered
basis (Xi,...,X,) of the tangent space T,M. The set FM of all linear frames at all
points of M is a principal bundle called the bundle of linear frames over M, with
projection map 7 sending each ordered basis of 7,M to the point p, and with group
GL(n,R) acting on FM on the right.

There exists a natural R"-valued differential 1-form 6 on FM called the canoni-
cal form on the bundle of linear frames, defined by

0(X)=z"!(n.X), zen Y (p), peM, XecT.(FM),

where the linear frame z is viewed as an isomorphism z: R" — T,M.
A G-structure on a differentiable n-manifold M is a principal subbundle of the
bundle of linear frames FM whose structure group is a Lie subgroup G C GL(n,R).

Definition 7.5.2. Let (P, ,M,G) be a principal bundle, and let F be a manifold on
which G acts on the left. The fibre bundle associated to (P,t,M,G) with fibre F
is defined as follows. Let us consider the right action of G on the product P x F
defined by (u, f)g = (ug,g~'f), where p € P, f € F, g € G. The quotient space
E = (P x F)/G under equivalence by G, is the bundle space of the associated fibre
bundle.

The structure is as follows: The projection map ng: E — M is defined by
g ((u, f)G) = n(p). If p € M, take a neighborhood U of p as in 7.5.1 (3), with
@y : ' (U) — G. Then we have Wy : n; ' (U) — F given by ¥y ((u,f)G) =
@y (u) f, so that 7tz ' (U) is diffeomorphic to the product U x F.

Definitions 7.5.3. Let (P,7,M,G) a principal bundle. Denote by V,, the subspace
of T,P of vectors tangent to the fibre through u € P. A connection I" in P is an
assignment of a subspace H, of T,P to each u € P such that:

(1) T,P=V,®H,.

(2) Hug = R*gHuy
u € P, g € G. The subspaces V, and H, are respectively called the vertical and the
horizontal subspace of T, P. We denote by v and & respectively the projections of
T,P onto V,, and H,,.

Given the connection I', it defines a differential 1-form w on P, called the con-
nection form of I", which takes values in the Lie algebra g of G and satisfies:

(1) w(A*)=A, Aeg.

(2)Rzw=Ad, 100, forallgeq.
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Given a g-valued 1-form on P satisfying the two conditions above, there is a
unique connection I" in P whose connection form is ®.

The horizontal lift of X € X(M) is the unique vector field X € X(P) which is
horizontal and projects onto X, that is, n*le’ = Xn(u), forall u € P.

Let p be a representation of G in a finite-dimensional real vector space V. Let o
be a V-valued r-form on P such that Ry o0 = p(g "), g € G. The form Do defined
by

(Da)(Xl,...,Xr+1) = ((da) Oh)(le"'aXrJrl)
= dOC(hX],...,thJr]),

for Xi,...,X,+1 € T, P, is called the exterior covariant derivative of o and D is called
the exterior covariant differentiation.
The curvature form of the connection form  is defined by 2 = D®.

Definition 7.5.4. A connection in the fibre bundle of linear frames FM over the
manifold M is called a linear connection of M.

Definition 7.5.5. A differentiable manifold M is called parallelizable if there exists
a linear connection V of M for which parallel transport is locally independent of
curves. Such a V is called a flat connection.

Definition 7.5.6. Let M be a C* manifold. The normal coordinate system associated
with a linear frame z = (Xi,...,X,): R" — T,M is defined by (x',...,x") =z"o
Exp~!, on a neighborhood of p € M on which the Exponential map is invertible.

Definition 7.5.7. An almost complex structure on a differentiable manifold M is a
differentiable map J: TM — TM, such that:

(1) J maps linearly 7,,M into T,M for all p € M.
2) J?> = —I on each T,M, where I stands for the identity map.
p y map

Definitions 7.5.8. A complex manifold M is defined similarly to a differentiable ma-
nifold, but taking homeomorphisms from open subsets of M to C" instead of R”, and
the changes of charts ¢, o Pg ! being holomorphic functions on C”. The number 7 is
called the complex dimension of M and one writes dim M = n. The maximal set of
charts is now called a complex structure. A complex manifold is a differentiable ma-
nifold, as it follows from the identification C" = R?" obtained taking z* = x* 4 iy%,
for x*,y* € R.

A complex manifold admits an almost complex structure J, taking the linear map

Jp at any p € M defined by
d d d d
J”(W)_&_ykp’ J”(&_yk)__ﬁ

where z¥ = xf 4-iy* are the coordinate functions in a chart (U, @) around p. The
tensor field J does not depend on the chosen coordinates by virtue of the following

b

p

k
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result: A map f of an open subset of C" into C" preserves the standard almost
complex structures of C" and C™ (i.e. f, oJ =Jo f,), if and only if f is holomorphic.
The tensor field J is called the almost complex structure of the complex manifold
M.

Let M be a complex manifold with dimcM = n and let g be a Riemannian metric
on M as a differentiable manifold. If g and the almost complex structure J of M
satisfy

gp (v Jpw) = gp(v,w), pEM, vweT,M,

then g is said to be a Hermitian metric and (M, J, g) is called a Hermitian manifold.
The tensor field F on such a manifold defined at any p € M by

Fy(v,w) = gp(v,Jpw), vweT,M,

is called the fundamental (or Kdhler) form of the Hermitian metric g. A Kdhler
manifold is a Hermitian manifold whose K#hler form is closed: dF = 0. It can be
proved that this is equivalent to VJ = 0, where V denotes the Levi-Civita connection
of g.

Definitions 7.5.9. Let M be a connected complex manifold of complex dimension
n. Given p € M, three definitions are usually considered of tangent space to M at p,
of real dimension 2n:

T,M: The real tangent space at p. M has the underlying structure of a 2n-
dimensional differentiable manifold, and 7,M refers to the tangent space of this
underlying real structure, that is, to the space of real derivations of C;"M .

A basis of T,M can be exhibited as follows: let z!,...,7" be local complex coor-
dinates near p and let zX = x* +1y*, k=1,...,n; then x',...,x",y!,...,y" are real

coordinates near p and
a }
-— k=1,...,n
k ) 9 )
{ dx »
is a basis of T,M over R.
The linear map J, converts T, M into a complex space with dim¢7,M = n by the

definition

J

" Ok
p O

(a+ib)X =aX +bJ,X, XeT,M, a+ibeC.

TlflM : The holomorphic tangent space at p, which is the complex vector space of
all complex derivations of the local algebra &, M of germs of holomorphic functions
at p; that is, the C-complex functions Z: &,M — C such that

Z(fg) = (Zf)e(p) + f(p)Zg,  f.8€ OpM.

With z!,..., 7" as above,
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is a basis of T,f’M over C, where by definition

d i
8_zk p(f)_a—ac(")’

for any holomorphic function f defined near p.

Tp] OM: The space of vectors of type (1,0), which is the complex subspace of the
complexification TyM = T,M @ C defined by the (+i)-eigenspace of the complex-

ification of J. Then, Tp1 M is spanned by the elements of the form X —i/X, where
X € T,M. That is, with ZF and xk,yk as above, since

Ip(9/9x), = (3/0y")p.  1p(9/3y")p =—(9/0:),,

a basis of Tp1 O is given by

1/d .0
{5 (W—]a—yk>p7 k—17,n}

Note that every element Z € T;/M can be written as
Z=X+i1Y=X®1+Y®i, X, Yy eT,M.

Let
™M= JT,M, T'M=]T)M, TYM=]T,"M,
PEM PEM PEM

be the bundles defined fibrewise. 7" M has the obvious structure of a holomorphic
vector bundle and it is called the holomorphic vector bundle of M.

7.6 Chapter 6. Riemannian Geometry

Definitions 7.6.1. Let V be a vector space of dimension n with a nondegenerate
symmetric bilinear form. It is said that V has signature (k,n — k) if, expressing the
form as a sum of squares, there are k negative squares and n — k positive squares.

A metric tensor g on a differentiable manifold M is a symmetric nondegenerate
(0,2) tensor field on M of constant signature. A (pseudo)-Riemannian manifold is a
pair (M, g) of a differentiable manifold M and a metric tensor g on M. If there is no
danger of confussion, one simply writes M.

Let ¢',...,¢" be the canonical coordinates on R”, and let ¢ be a coordinate map
with domain U C M, such that x' =t/ 0 @. If ¢ is a conformal map from U onto
R”", with respect to the usual metric of R”, it is said that the coordinate system
(U,x',...,x") is isothermal or conformal (hence it is also orthogonal).
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Definition 7.6.2. Let (M, g1), (M>,g2) be pseudo-Riemannian manifolds, and let f
be a C~ function on the manifold M;. The warped product M = My x y M> is the
product manifold M| x M, equipped with the metric

g=mg +(fom) e,
where m;: M — M;, i = 1,2, denote the projection maps.

Theorem 7.6.3. (Koszul’s formula for the Levi-Civita connection) The only tor-
sionless metric connection V on a (pseudo)-Riemannian manifold (M,g) is given

by

2¢(VxY,Z2) =Xg(Y,Z)+Yg(Z,X)—Zg(X,Y)
+g([X7Y},Z) —g([Y7Z]7X) +g([Z7X],Y).

Definitions 7.6.4. Let R denote the curvature tensor field of a linear connection V
of a differentiable manifold M. Given X),,Y,,Z, € T,M, one defines R(X,,Y,)Z, by

R(X,,Y,)Zy = Vx,VyZ—Vy,VxZ Vs y Z,

where X,Y,Z are vector fields on M whose values at p are respectively X,,Y),Z,.
Similarly, if (M, g) is a (pseudo)-Riemannian manifold, one defines, given the vector
fields X,Y,Z,W € X(M),

R(XP’YP’ZIHWP) = g(R(ZpaWp)Yanp)-

Definitions 7.6.5. Let N be a submanifold of M, and v(N) its normal bundle. The
exponential map of M gives, by restriction, a map Exp: v(N) — M, which is a
diffeomorphism on a neighborhood of the zero section. For p € N, let v,(N) be the
fibre of v(N) over p. Then g € v,(N) is a focal point of N if Exp, is singular at g.
If p is the ray from O to ¢ in v, (N), then Exp (q) is called a focal point of N along
p, which is a geodesic perpendicular to N. When N is a single point, say p, so that
v(N) = T,M, then a focal point is called a conjugate point to p. The order of a focal
point is the dimension of the linear space annihilated by Exp,.

A minimal segment is a geodesic segment which minimizes arc length between
its ends. A minimal point q of p along a geodesic 7y is a point on 7y such that the
segment of y from p to g is minimal but no larger segment from p is minimal. The
set of all minimal points of p is called the minimum (or cut) locus of p.

Proposition 7.6.6. Let N be the subset of the total space TM of the tangent bundle
over M, such that if (p,X) € N then Exp,X is defined, and define the map
Exp: N — M by Exp(p,X) = Exp,X. Then N is an open set and Exp is C* on N.
Let TMy be the zero section of TM, that is, TMy = {(p,0) e TM : pe M} C TM;
then there exists an open subset N in TM such that TMy C NCN. Let ®: N —
M x M be defined by ®(p,X) = (p,Exp,X). Then @ is C* and ®, is non-singular
and surjective at all points of T M.
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Definition 7.6.7. Let y be a C* curve in the n-manifold M that is an injective map
on the open interval / C R. Let ey, ..., e, be vector fields on 7 that are independent
at each () and with e, (t) = ¥/ (t) forallt € I. Let {6',...,6"} be the basis dual to
{ei,...,en} for each r. By the Proposition 7.6.6, there exists a neighborhood V of
T My such that the map @ is a diffeomorphism of V onto a neighborhood Uy, of the
diagonal in M x M. Let

U={(p,X)eV :p=v(), 6"(X)=0 for some r € }.

Then ¥ = @|y is a one-to-one C* map of the submanifold U into M x M. More-
over, ¥, is non-singular at each point of U, so that ¥ is an embedding of U into
M x M. The map 1" = pr, o ‘¥ then gives a one-to-one C™ map of U onto an open
neighborhood W of the image set y(I). Define Fermi coordinates x' on g € W by
letting Y~'(q) = (y(t),Y) in W and x'(q) = 0/(Y) fori=1,...,n—1 and x"(q) =1.

More special types of Fermi coordinates can be defined by taking ey, ..., e, to be
parallel along a geodesic, and in the Riemannian case, one can take an orthonormal
parallel basis along a geodesic.

Definition 7.6.8. Let A = d§ + 6d be the Laplacian on a Riemannian manifold
(M, g). The elements of

H ={weA'™M : Aw =0}
are called the harmonic r-forms on M.

Definition 7.6.9. Let M be a Riemannian 4n-manifold. The Hodge star operator de-
composes the space of harmonic forms H%" on M into subspaces H>" with eigenval-
ues £1. The Hirzebruch signature is defined by

©(M) = dim H?" — dim H*".
This signature equals the usual topological signature.

Theorem 7.6.10. (Hirzebruch’s Signature Formula (for dimension 4)) The signa-
ture T(M) of a 4-dimensional compact oriented differentiable manifold M is related
to its first Pontrjagin form p\(M) by

w) = 5 [ pron)

Definition 7.6.11. Let (M, g) be a 3-dimensional compact orientable Riemannian
manifold. Let Q2 = (Q;) denote the curvature form of the Levi-Civita connection V,
and consider the closed form TP;(Q) on the bundle & (M) of positively-oriented
orthonormal frames on M given by

1 ! i i Loy, 2, 3

ETPl(Q) =32 Y wj/\Qj—@wz AW Aoy,

T 1<i<j<3
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where a); and .Qj- denote, respectively, the connection forms and the curvature forms
of the linear connection V.

The differential form 17 P; (Q) gives rise to a Chern-Simons invariant J(M,g) €
R/Z as follows: Since such an M is globally parallelizable, a section s: M —
0+ (M) exist. The integral

0= STA(Q)

is a real number, and for another section s’ the difference I(s) —I(s") is an integer.
The invariant J(M, g) is defined to be I(s) mod 1.

LetI', T be two connections in a principal bundle P = (P,M,G). On a trivializing
neighborhood, any such I" can be described by a g-valued differential 1-form A and
the corresponding curvature by

1
F=dA+[A.A]

Then, if I € .#"(G) denotes a G-invariant polynomial on g, it can be proved that
the differential 2r-form I(F") does not depend on the particular trivialization of P.
Hence, the various locally defined differential forms I(F") fit together to yield a
differential 2-form on M, again denoted by I(F"), which is closed.

Let A, F be the connection form and the curvature form corresponding to T.
Then consider the connection 1-form

A =A+tA-A), t€]0,1],

with corresponding curvature form
1
Ft = dAt + E[AhAt]~

One has the following transgression formula, sometimes called Chern-Simons for-
mula:

Theorem 7.6.12. _ _
I(F")—I(F") = dQ(A,A),

where Q(A,A) is defined by

0(A,A) = r/OIII(A—X,F,,...,F,) dr.

Definitions 7.6.13. Given a linear connection V of a differentiable manifold M and
a geodesic y on M, a Jacobi field along ¥ is a vector field Y along v satisfying

V]//VY’Y + VY'(T(Ya 7/)) +R(Ya yl)y, = 07

where T denotes the torsion tensor of V.
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Theorem 7.6.14. Let M,N be pseudo-Riemannian manifolds, with N connected,
and let ®: M — N be a local isometry. Suppose that given any geodesic y: [0,1] —
N and a point p € M such that ®(p) = y(0), there exists a lift y: [0,1] — M of y
through @ such that ¥(0) = p. Then @ is a pseudo-Riemannian covering map.

Definition 7.6.15. Let (P,7,M,G) a principal bundle. The holonomy group (resp.
restricted holonomy group) of the connection I'" in P with reference point p € M
is the group Holy(p) (resp. Hol,(p)) consisting of diffeomorphisms of the fiber
7~ !(p) onto itself obtained under parallel tranport along closed curves (resp. closed
curves homotopic to zero) starting and ending at p. Since the holonomy groups
at two points of a manifold are conjugate subgroups of G, we shall write simply
Hol(I") or Hol’(I") for a given manifold M and I' as above.

Theorem 7.6.16. Let @,W: M — N be isometries of pseudo-Riemannian mani-
folds. If M is connected and @, , =¥, at some point p € M, then ® =P,

Definition 7.6.17. An affine symmetric space is a triple (G,H, o) consisting of a
Lie group G, a closed subgroup H of G, and an involutive automorphism ¢ (that is,
02 =id) of G such that

G§ CHCG°,
where G° denotes the closed subgroup of G consisting of all the elements left fixed

by o, and G§ stands for the identity component of G°.

Definition 7.6.18. A Riemannian manifold of constant sectional curvature is called
a (real) space form.

Theorem 7.6.19. (Nomizu’s Theorem on the cohomology of nilmanifolds) Let G be
a connected nilpotent Lie group with discrete subgroup I" such that the space of left
cosets I'\G is compact. Then there is a natural isomorphism of cohomology groups

H"(g) ~ Hgr(I'\G,R),
where H*(g) denotes the cohomology of the Lie algebra g of G.

Definition 7.6.20. A vector field X on a Riemannian manifold (M, g) is harmonic if
the differential form dual with respect to the metric, X b, defined at each p € M by
XZ(Y) =gp(Xp,Yp), Y € X(M), is harmonic.

Theorem 7.6.21. (Hodge Decomposition Theorem) For each integer r with 0 <
r < n, the space H" defined in 7.6.8 is finite-dimensional, and we have the following
direct sum decompositions of A"M:
A™M =AA'M)SH"
=dS(A"M)© 8d(A"M) ©HP =d(A"™'M)® §(A™'M) o HP.

Consequently, the equation Aw = a has a solution @ € A"M if and only if the
differential r-form a is orthogonal to the space of harmonic r-forms.
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Corollary 7.6.22. (Corollary of Green’s Theorem) Let M be a compact Riemannian
manifold. Then

/Afa)g:0, fecem.
M

Theorem 7.6.23. (Generalized Gauss’s Theorema Egregium) Let M be a hypersur-
face of a Riemannian manifold M, let P be a subspace of dimension 2 of T,M,
p €M, and let K(P), K(P) be the sectional curvature of P in M and M, respecti-
vely; then

K(P) = K(P)—det L,

where L is the Weingarten map.

Remark 7.6.24. When M is 3-dimensional, the above theorem shows that the deter-
minant of L is independent of the embedding (i.e. independent of L) and depends
only on the Riemannian structure of M and M.

Definition 7.6.25. A C= map @: (M,g) — (M,g) between Riemannian mani-
folds is said to be a strictly conformal map of ratio A if there exists a strictly
positive function A € C”M such that, for all p € M and X,Y € T,M, it satisfies
g(d)*xa ¢*Y) = l(p)g(X,Y).

Definitions 7.6.26. Let (M, g, J) be an almost Hermitian manifold with metric g and
almost complex structure J. An isometrically immersed real submanifold M of M
is said to be a complex submanifold (resp. a totally real submanifold) of M if each
tangent space to M is mapped into itself (resp. into the subspace normal with respect
to g) by the almost complex structure J.

Let @ be an isometric immersion of the Riemannian manifold M into the Rie-
mannian manifold M. Then M is said to be an invariant submanifold of M if for all
X,Y € TM, the map R(®P. X, D.Y), where R denotes the Riemann curvature tensor
on M, leaves the tangent space to @ (M) invariant.

A Kihler manifold is called a complex space form if it has constant holomorphic
sectional curvature.

Theorem 7.6.27. An invariant submanifold M of a complex manifold M is either a
complex or a totally real submanifold. If M is a complex submanifold, then it is a
minimal submanifold.

Theorem 7.6.28. Let x;: U C R? — §; and x,: U C R? — S, be two parametri-
zations of the surfaces Sy, in R3. If the metrics inherited on S and S» by the usual
metric of R are proportional with constant of proportionality p > 0, then the map
X3 oxf1 2 x1(U) — S, is locally conformal.

Definition 7.6.29. A pseudo-Riemannian submanifold N of a pseudo-Riemannian
manifold (M, g) is a submanifold such that the metric tensor inherited by g on N is
non-degenerate.
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Chapter 1

e Stereographic projection o (from either the north pole or the south pole) of the
sphere 8"((0,...,0), 1) with center (0,...,0) € R**! and radius 1 onto the equatorial
hyperplane:

Uy ow, R”

1
1 +1 X x
(.o — (l—x"+1"”’l—x"+1>

Us — R”
1
(.o ( al X )

1+xn+1 e 1_|_xn+l

where

i=1
Uy={(" ... .xhest vt £1}
Us={(',...x" " es .t £_1}

ntl
St = {(xl,...,x"H) eR™! . 2()(’)2 = 1}

e Inverse map oy, ! of the stereographic projection from the north pole of the sphere
§"((0,...,0),1) onto the equatorial hyperplane:

2y1 2yn |y|21) |y|2: n (yi)2
YR+ R+ [y 1) =

o,;1<y1,...,y">(

e Stereographic projection oy from the north pole of §*((0,...,0,r),r) € R**! with
center (0,...,0,r) € R*"! and radius r onto the hyperplane x**! = 0 tangent to the
south pole:

P.M. Gadea, J. Mufioz Masqué, Analysis and Algebra on Differentiable Manifolds, 377
© Springer Science+Business Media B.V. 2001, First softcover printing 2009
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R LA SR

GN()CI,...,xn+1) = (

e Inverse map o, ! of the stereographic projection from the north pole of the sphere
§™((0,...,0,r),r) onto the hyperplane x**! = 0:

4r%y! 4r2y" 2r|y|2
Ar+1y[27 7 42+ |y 4r2 - |y)?

2rx! 2rx" )

O'Nl(yl,...,y”):(

o Differential of a map @: M — N between differentiable manifolds at p € M, in
terms of coordinate systems (U,x!,...,x™) and (V,y!,...,y") around p and ®@(p):

d ~d(y/od) d
P (ﬁ P) N

B (p) a—yj
e A diffeomorphism between R” and the open cube (—1,1)" C R™:

o:R"— (—1,1)", (x',...,x") — (tanhx',... tanh x")

e Usual local coordinates (x!,...,x",y!,...,y") of the tangent bundle (TM, 7, M) on
a coordinate neighborhood 7! (U) of TM over a coordinate neighborhood U for a
coordinate system (U, x!,...,x") around p € M:

(L)
= ((x1 on)(v),...,()H’orc)(v),dyl(v), ... 7dy”(v)) , veT,M
e A property of the bracket of vector fields (f,g € C°M; X,Y € X(M)):
[fX,8Y] = felX, Y]+ f(Xg)Y —g(Y f)X
e Jacobi identity for vector fields:
(X, Y], 21+ [[v, 2], X] + [[Z,X],Y] = 0

e A parallelization of S by unit vectors fields:

d ) ) )
Xp: —yaﬁ—x&—y—ta—z—ﬁ—ZE
v (0,0, 0 aY
r=\ Tt oy e e )
Z, = —ti— i+ i-F 9
r=\ o fay ez ),
e Image vector field @-X € X(N) of X € X(M) by the diffeomorphism @: M — N:

(@-X), = . (Xq)fl(,,)) . peEN
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e A nonvanishing vector field on the sphere §>'+1:

1 a

d
2n+2
W +..._xn

2n+1
ax2n+l +x

p

)
X, = x> —

dx! p+x

&x2n+2

p p

(pes®={(xyzn) eR 124y 422+ = 1})

Chapter 2

e Nijenhuis torsion of two (1, 1) tensor fields A, B:
S(X,Y) = [AX,BY]+ [BX,AY] +AB[X,Y] + BAX,Y]
—A[X,BY] —A[BX,Y] — B[X,AY] — B[AX Y]
e Nijenhuis tensor of a (1,1) tensor field J:
N(X,Y) = [JX,JY] —J[JX,Y] —J[X,JY] +J*[X,Y]

; ' I
oo o
=0 gxl Tk gxl T gxk T gy

e Kulkarni-Nomizu product of two symmetric (0,2) tensors &, k:

(h-k)(X,Y,Z,W) =h(X,Z)k(Y,W)
+h(Y,W)k(X,Z)—h(X,W)k(Y,Z) —h(Y,Z)k(X,W)
e Exterior or “wedge” or “Grassmann” product of differential forms:
(eAB)p=0pABp, pEM, acA'M, BeA'M
(ap ABp) (X1, ..., Xigs)

1
= W z (sgnc) aP(XG(1)7 s ?XG(T))ﬂP(XU<r+1)7 s 7XG(F+S))
T 0EG, 4y
= Y (sgn o) 0p(Xs(1), -+ Xo(r) ) Bp KXo (r+1)s -+ X (r15) )
0EG 1

o(l)<--<o(r)
o(r+l)<-<o(r+s)

X;eT,M, i=1,...,r+s
anB=(-1)"BAc, aeEA'™M, BeAM

o Exterior differential d: A*M — A*M:
(1) If f € C*M, then df € A'M is the usual differential of f
(2) d is a linear map such that d(A"M) C A™"'M
B)d(aAB)=daAB+(—1)*e*qAdB (o homogeneous)
4)d>=0
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e Relation between the bracket product of vector fields and the exterior differential
of a differential 1-form:

(do)(X,Y) = X(o(Y)) =Y (0(X)) — o((X,Y])

e Relation between the bracket product of vector fields and the exterior differential
of a differential r-form:

r

(do)(Xo,....X,) = 2. (- 1) Xi(0(Xo, ..., Xi,....X,))
i=0

+ Y (DY o([X, X)), Xos e Xy X, X))

O<l<]<r

e Induced (or pull-back of a) differential form ®@*0 of 8 = f;dy' for @: M — N (in
terms of local coordinates (x',...,x™), (»',...,y") on M, N, respectively):

I(y' o @) I(y' o @)
Toxt T ot | (A4
D0 = : : : :a<yo@)f,dx/
. . . axj
I o®@) IV o®@) | \fa
ax™m ax™M

e Basis of differential 1-forms {u* = /,ledxl } dual to the basis of vector fields
{e;=A]0/0xT}:

(1) ='(2)"!
e Some formulas for the Lie derivative:

Lxf=Xf, feCM

1
(LxY)p = lim — (Yp - (p,*Y(p71<p)) , @, = local flow of X

t—0t
LyY = [X,Y]
Ly(o(X,.... X)) = (Lyo)(Xi,....X,)

,
+ z (l)(Xl,...,Xl;l,[Y,Xi],X,;H,...,Xr)

(IxT)(0',...,0" Y1,....Y,) =X (T (0',..., 0", 11,....Y,))

T (0',... . Lye',..., 0" 11,.... )
i=1
s

YT (0,...,0"1,...,LxY;,....Y,)
i=1

Ly(T1®T) = (LxT1) @ Ta + T1 @ (Lx T2)
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Lixy) = [Lx,Ly]
Lyd=dLyx
X,Y,X;,Y; € X(M); w,0' € A*M; T,T; € TI'M)
e Interior product:
(l'x(x))(Xl,...,Xr,]):(D(X,X],...,erl), wcEA™M
ix(aAB) = (ixa) AB+(—1)aAixB, o€A™M, BeAM
Lyxw =ixdo+dixw
[Lx,iy] = ix y]

e Canonical 1-form ¥ and canonical symplectic form €2 on the cotangent bundle
(T*M,n,M):

Do(X) = 0(m.X), weTM, XeT,T°M
ﬁ:pidqi, Q=d% =dp; A\ dqi
((¢',..., 4", p1,...,pn) = local coordinates on T*M)

e Hamilton equations:
ig/(Qoo)+dHoo =0.

(HeC(T*M) and o: (a,b) — T*M a C* curve with tangent vector ¢”).

Chapter 3

e Divergence of a vector field X on an oriented manifold M with fixed volume
element :
(divX)ow=Lxw

/w:/dw
dc c

/ w:/dw
oD D
(see 7.3.6)

e Green’s Theorem: X a vector field on an oriented compact manifold M with a fixed
volume element m:

o Stokes’ Theorem I:

(see 7.3.3)
e Stokes’ Theorem I1I:

/M (divX)®=0
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Chapter 4

SOME USUAL LIE GROUPS

e General linear group:
GL(n,C)={A e M(n,C) : detA # 0}
e Special linear group:
SL(n,C)={A € GL(n,C) : detA=1}
o Unitary group:
Un)={AeM(n,C): AA=1}
(t = transpose; bar = complex conjugation; / = identity matrix)
e Special unitary group:
SUn)={A€U(n):detA=1}
e Complex orthogonal group:
O(n,C)={AeM(n,C):"AA=1}
e Complex special orthogonal group:
S0(n,C)={A€0(n,C) : detA=1}
e Symplectic group over C:
Sp(n,C)={A € GL(n,C) : AQA =Q}

(Q =Yp  dfAdeth = <OI g’) = symplectic 2-form on Rz")

e Real general linear group:
GL(n,R)={A e M(n,R) : detA # 0}

e Real special linear group:

SL(n,R) = SL(n,C) N GL(n,R) ={A € GL(n,R) : detA =1}
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e Orthogonal group:
O(n) =U(n) N GL(n,R)
= 0(n,C) N GL(n,R)
={AeGL(n,R): AA=1}
e Special orthogonal group:
SO(n)={A€0(n) : detA=1}

e Lorentz group:

. (I O (L O
otk = {acainm (8 2 )a- (30}

e Symplectic group over R:
Sp(n,R) ={A € GL(n,R) : AQA = Q}
e Quaternionic linear group:
GL(n,H) = {A: H" — H" : A is right H-linear and invertible }
e Quaternionic special linear group:
SL(n,H) ={A € GL(n,H) : detA =1}
e Symplectic group:

Sp(n) =Sp(n,C)NSU(2n)

= {(g _/?) € GL(n,H) C GL(2n,C) : RA=1,'AQA = Q}
={A+jBeGL(nH) : (A+jB)(A+jB) =1}
= {A+jB preserving the symplectic inner product { , ) on H"}
(H=C+jC; (uv)=%,5q", u=(p',....p"),v=(q",....q") € H")

e Sp(n)Sp(1): Let V be a 4n-dimensional real vector space. A quaternionic structure
on V is a 3-dimensional space of EndV given by

O0=RJi+RJ;+RJ3, J,% =—1, h=hl, IJ=-NiJi, k,l=1,2,3.
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Let
SQQ)={J=ai/i+arhh+a3s€Q :ai+a;+aj=1}.

A Euclidean metric g on V is called Hermitian with respect to Q if g(JX,JY) =
g(X,Y), for J € $(Q), X,Y € V. The pair (Q, g) is called a quaternionic Hermitian
structure. Then, for V' as a right module over H:

Sp(n)Sp(1) = Aut(Q,g) = {9 € GL(V) : ¢ preserves (Q,g)}.

REMARK. For other groups, as U(p,q), SU (p,q), SO(p,q), Sp(p,q), SO*(2n), SU*(2n) (group of
complex matrices isomorphic to SL(n,H)), see tables beginning on page 389.

MISCELLANEOUS

e Euler angles (of rotations around the x, y, z-axes):

50(3) = {g((pa 97 ll/) :RZ((p)R}(G)RZ(W)v O g (pa W < 277:7 0 g 6 < ﬂv}v

cos¢p —sing O 1 0 0
R.(p)= | sing coso 0], Ry(0)=10 cosf —sinb
0 0 1 0 sin6 cos 0

SOME PROPERTIES OF SOME USUAL LIE GROUPS

Group dim Type Group dim Type
GL(n,C) | 2n? cn Oo(n,C) |n(n—1) 2cc
SL(n,C) |2(n*—1) cn, sc SO(n,C) | n(n—1) cn
GL(n,R) | n? 2cc O(n) n(n—1)/2 2cc, cp
SL(n,R) |n*—1 cn S0(n) |n(n—1)/2 cn, cp
Un) |n? en,ep || SO(p,q) | (p+a)(p+q—1)/2 | 2cc(+)
SU(n) |n*—1 en, sc, cp || Sp(n,C) | 2(2n* +n) cn
SU(p,q) | (p+¢)*—1]cn Sp(n) n(2n+1) cn, sc, cp
SU*(2n) | 2(2n*—1) |en Sp(p.q) | (p+9)2(p+q)+1) | en
SO*(2n) |2n(n—1) |cn Sp(n,R) | n(2n+1) cn

cn = connected; sc = simply connected; 2 cc = 2 connected components; c¢p = compact;
(x)0<p<p+q
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SIMPLY CONNECTED COMPACT SIMPLE LIE GROUPS

G dim G |rank G | (%)
SU (n) -1 [n—1 |n>2
Spin(2n+1) | 2n* +n | n n=2
Sp(n) 2 +n|n n>=3
Spin(2n) 2n> —n|n nz=4
G2 14 2

Fy 52 4

Es 78 6

E; 133 7

Eg 248 8

(*) To avoid repetitions

POINCARE POLYNOMIALS OF THE COMPACT SIMPLE LIE GROUPS

Pa,(t) = Psu(urn)(t) = (1+2)(1+27) - (14211
P8, (1) = Pso@nrt)(t) = (L) (1417) - (1447
Pe,(t) = Pspiy (1) = (1+)(1+17) - (141471

P, (1) = Pson (1) = (L+2)(1+17) - (1427 (1 41472)

e, (1) = (1+27) (1 +1')

pr (1) = (L+2) (1) (L1P) (147

P () = (1+2)A+2) A+ A+ A+ (1 +17)

pE, (1) = (1 +2)A+"A+5) A+ A +2) 1 +27) (1 +1)

A+ A+ A+ A+2A+3) A+ A +4) (1 +15)

PEg (1)



386 8 Some Formulas and Tables

CENTER OF SOME USUAL LIE GROUPS

G Z(G) G Z(G)
U(n) {e*™b]1: 0 eR/Z} ~ S' || Sp(n) {1}
SU(n) {ol : @"=1} =7, SO(2n,R), n> 1| {£l}
SO(2n+ 1,R) | {I} SO(2,R) SO(2,R)

ISOMORPHISMS OF Spin(n) WITH SOME CLASSICAL GROUPS

Spin(2) | U(1) Spin(5) | Sp(2)
Spin(3) | SU(2) Spin(6) | SU (4)
Spin(4) | SU(2) x SU(2)

UNIMODULAR 3-DIMENSIONAL LIE ALGEBRAS
AND THEIR CORRESPONDING LIE GROUPS

le2,e3] = Ajer,

[63,6‘1] :;112327

le1,e2] = Aze3

Signs of A1, 43,43 | Associated Lie group | Description
+,+,+ SU(2) or SO(3) compact, simple
+,+,— SL(2,R)or O(1,2) | noncompact,simple
+,+,0 E(2) (%) | solvable

+,—,0 E(1,1) () | solvable

+,0,0 Heisenberg group nilpotent

0,0,0 ReERE&R Abelian

(*) group of rigid motions of Euclidean 2-space

(#+) group of rigid motions of Minkowski 2-space, which is a semidirect product of subgroups

isomorphic to R@® R and R, where each 7 € R acts on R@® R by the matrix (

e 0
0 e

MAURER-CARTAN EQUATION

do(X,Y)=

—o([X,Y]),

weg,X,Yeg

d6' = —3 4 ¢y 6/ N 6"

({6} = a basis of left-invariant differential 1-forms on the Lie group G with Lie
algebra g; Cj»k = structure constants with respect to that basis of differential forms)
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KILLING FORM B FOR SOME LIE ALGEBRAS g

B(X,Y)=tr(adycady), X,Yeg

g| BX,Y)
(n,R
sl(n,R

n

gl(n,R)
[(n,R)

)
s0(n,C)| (n—2
)

sp(n,F)

n
e
—~

)
(n=2)tr XY
2n+2)tr(XY) (F=R,C)

so(n
(n,F

LIE ALGEBRAS OF SOME LIE GROUPS (NONVANISHING BRACKETS)
e Two-dimensional solvable non-Abelian Lie algebra with basis {X,Y }:
X, Y] =X
e Special orthogonal so(3) with basis {X,Y,Z}:
X.Y|=z, [v.Z]=X, [Z.X]=Y
e Lie algebra f) with basis {X,Y,Z} of the Heisenberg group:
X,Y]=2Z

e Lie algebra with basis {X,Y1,...,Y¥,_1 } of the solvable Lie group which acts sim-
ply transitively on the real hyperbolic space RH":

XY =Y
e Lie algebra with basis {X,Y1,Z;,..., Y4—1,Z,—1, W} of the solvable Lie group

which acts simply transitively on the complex hyperbolic space CH":

1 1
[X7Yl]:§Ylv [szl]zzzla [X,W}:W, [ZHY]]:(SI]W

THE EXPONENTIAL MAP
e Product of exponentials:

exptX -expty = 1+t(X+Y)+§[X,Y]f%([[X,Y],X]+[[Y,X],Y]) +-e-
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o Differential of the exponential map of a Lie group G with Lie algebra g (X € g;
e = identity element of G):

1— efadX

EXPix = (Lepr)*e o ad X

SOME ISOMORPHISMS OF CLASSICAL LIE ALGEBRAS

su(2) ~ s50(3) ~ sp(1) sl(2,R) ~ su(l,1) ~ s0(2,1) ~ sp(1,R)
50(5) ~ 5p(2) 50(3,2) ~ sp(2,R)

s50(4) = sp(1) x sp(1) s0(4,1) ~sp(1,1)

su(4) ~ 50(6) 50(4) ~ 50(3) x 50(3)

sl(4,R) ~ 50(3,3) su*(4) ~ 50(5,1)

su(2,2) ~ 50(4,2) su(3,1) ~ s0*(6)

50" (8) ~ 50(6,2) s0(3,1) ~s((2,C)

50(2,2) ~sl(2,R) =~ sl(2,R)  s0*(4) =su(2) xsl(2,R)

SYSTEMS OF SIMPLE ROOTS FOR THE SIMPLE LIE ALGEBRAS OVER C

a, m=1)|{e—¢€41,i=1,...,n}

b, (n=2){e—€ir1,6n,i=1,....n—1}

¢, (n=23)|{e—€i41,280,i=1,...,n—1}

o, (nz24)|{e—¢€t1,8-1+6&,i=1,....n—1}

b {e1—&,2e1+&+&}

4 {e1—1e¥ e85 —e4,00—83)}

¢6 {e1+e—1e® e +e, 01—, i=1,...,4}
¢7 {e1+es—3e® e +e,e01—g,i=1,...,5}
eg {e1+e—1e® e +e,e01—g,i=1,...,6}

e =g +--+e)
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REAL FORMS OF THE CLASSICAL SIMPLE LIE ALGEBRAS OVER C
AND THEIR CORRESPONDING SIMPLE LIE GROUPS

sl(n,C) (~ay_1,n>1)

su(n) = {Ae€gl(n,C):A+A=0,rA=0}
SU(n) = {A€GL(n,C): AA=1,detA=1}
sl(n,R) = {Aegl(n,R) : trA=0}
SL(n,R) = {A<GL(n,R):detA=1}
A A, -
su(p.q) = { _ €gl(p+4,C) : A1 €gl(p,C), A1 +'A; =0,
A, Aj
Az € g[(q,(C), Az +IA3 =0,trA; +trA3 =0,
Ar arbitrary}, ptg=n,p=q
SU(p.q) = {A€SL(p+4,C): Q(Az) =Q(2) = —21Z1 = — 5%
+ Zp+12Zp+1 +"'+"'Zp+qu+q}7 (p+q:n, p 2‘1)
-1, 0

= A€SL(p+4.C) : AL, , A=1,,=
0 1,

(pseudo-unitary groups if ¢ # 0; SU(n) if¢g=0)

Al A _

s (2n) = ) e gi2n,C) Ay, Ay € gl(n,C), tr A +tr Ay =0
—A, A

SU*(2n) = {A€SL(2n,C) : At=1A, T: C*" — C*",

T (117"-7Z2n) - (Zn+17---722)177217---772n)}

SL(n,C)® = SL(n,C) as areal Lie group

s0(2n+1,C) (~by,n>1)

so2n+1) = {Aegl2n+1,R): A+'A=0}

SO2n+1) = {AeGL2n+1,R):'AA=1}
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Al A
{ cgl(p+4¢,R) : A1 € gl(p,R), A3 € gl(¢,R),
{Az Az

A+ A =0,A3+ %43 =0, Ay arbitrary},
ptg=2n+l,p>q
[AESLp+aR) : QAN = 0(x) = =+~
et b (pra =211, p > q)

= {A €SL(p+q,R) : ‘Al, ;A = I/J,q}

SO(2n+1,C) as areal Lie group

sp(n,C) (~epyn>=1)
Ay Ar _
sp(n) = {A: €gl(2n,C) : A+A=0, rA =0,
Az A
A€ gl(n,C), Ay = o, Ay = A3},
(sp(n) =sp(n,C)Nsu(2n))
Sp(n) = Sp(n,C)NSU(2n)
Ay Ar
sp(n,R) = € gl2n,R) : A; € gl(n,R), Ay ="Ay, A3 =3
Az A
Sp(n,R) = {Ae€GL2n,R) : E(Ax) = E(x)
=X AXp1 F X2 AXpi2 4+ X AXop }
={AeGL(n,R) : AQA = Q}
Ay A Az An
Ap  Ap Ay An
sp(p.q) = { _ i} _ | €912(p+9),C)
A3 Au An —An
Ay —Au —Ap  Ap
Ai1,A13 € gl(p,C), A2,A14 € M(px q,C), A1y +'A; =0,
Ay 44y =0,A13 ="A13, Az = 7\24}
Sp(p,q) = {A €Sp(p+4,C) Al gpgA=1lpgpg = diag(—l,,,lq,—l,,,lq)}

Sp(n,C)F =

(Sp(p)if g =0, Sp(n) = Sp(n,C)NU(2n),
Sp(p,q) =Sp(p+4¢,C)NU(2p,2q))

Sp(n,C) as areal Lie group
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s0(2n,C) (~0p—1,n21)
s0(2n) = {A€gl(2n,R):A+A =0}
Al Ay .
50(]77‘]) = { Eg[(p+q7R) : Al Eg[(]LR), Al +AI :07
A, Az
A, arbitrary, Az € gl(q,R), A3+43=0 }, p+qg=2n,p>q
SO(p,q) p+q=2n,p>qasSO(p,q), p+q=2n+1,p>q
Al Ay
s0%(2n) = { 7 e gi2n,©) 1 Ar,Ay € gl(n,C),
—Ay Ay
Ar+A1 =0, 45 = A |
SO*(2n) = {A€S0(2n,C) : Q(Az) = 0(z) = —21Zns1 + Zut1 21
—22Zn+2 tZnt2Z2 + - — ZuZon t+ ZZnZn}
0 I\ - 0 I
={A€S0(2n,C): A A=
-1, O -1, O
50(2n,C)® as SO(2n+1,C)F

LIE GROUPS G FOR THE SIMPLE LIE ALGEBRAS g OVER C AND THEIR
COMPACT REAL FORMS U

g G U Z(0) (%) | dim U

a, (n=1)|SL(n+1,C) |SU(n+1) |Z, n?+2n

by (n>2) | SO(2n+1,C) | SO2n+1) | Zy 2n* +n

¢ (n=3) | Sp(n,C) Sp(n) Zy 2n% +n

2, (n>4)|50(2n,C) SO(2n) Z4 (n odd) 2n> —n
Zr+Z, (neven)

» GY G, Zy 14

fa Ef Fy Z 52

¢ ES Eq Zs3 78

e7 Ef E; Zs 133

es E§ Eg Z 248

(%) U = universal covering group of U
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SOME USUAL HOMOGENEOUS SPACES

e Sphere:
§"~0(m+1)/0(n) = SO(n+1)/S0(n), n>1

S 2 U(n41)/U(n) = SU(n+1)/SU(n), n>1
o Real Grassmann manifold of k-planes in R":
Gr(R") ~ O(n)/O(k) x O(n — k)
e Real projective space:
RP" ~ G(R"!) ~ O(n+1)/0(1) x O(n) = SO(n+1)/0(n)
e Real Stiefel manifold of k-tuples of orthonormal vectors in R":
Vi(R") ~ O(n)/O(n— k)
e Complex projective n-space:

CP'=U(n+1)/U(1)xU(n)
~SU(n+1)/S(U(1) xU(n))
~ (SU(n+1)/Zp11)/(SWU(1) x U (1)) Zn+1)
(Zp+1 = center(SU (n+1)))

e Quaternionic projective space:

HP" =~ Sp(n+1)/Sp(1) x Sp(n)

COMPACT CONNECTED LIE GROUPS G ACTING EFFECTIVELY AND
TRANSITIVELY ON SOME SPHERE

Sphere G Isotropy
s SO(n) S0(n—1)
§2=11 U(n) Un—1)

SU(n) SU(n—1)

§*=1|Sp(n)Sp(1)|Sp(n—1)Sp(1)

Sp(m)U(1) | Sp(n—1)U(1)
Sp(n) | Spn—1)

56 Gy SU(3)

s’ Spin(7) G,

S5 | Spin(9) Spin(7)




8 Some Formulas and Tables

SOME INCLUSIONS OF LIE GROUPS,
AND THEIR HOMOGENEOUS SPACES

F; D Spin(9) D Spin(8) O Spin(7) D G, D SUB3) D 3 O 1
(Respective dimensions: 52, 36, 28,21, 14,8, 3, 1)
CayP? ~ F,/ Spin(9) (Cayley projective plane)
S8 ~ Spin(9)/Spin(8), 7 ~ Spin(8)/Spin(7), S® =~ G,/SU(3)
3~ SU(3)/83, S ~Spin(9)/Spin(7), V»(R7) ~ G,/S?

SOME MORE HOMOGENEOUS SPACES

Spin(8)/G, ~ 57 x §7, Spin(7)/G, ~ §7

ALGEBRA H OF QUATERNIONS
Basis: {eg, e, e2,e3} satisfying
2 _ 2 _ e — o . — . —
ey=ey, e;=—ey, epe;=eieg=e; eej=—eje;=e;

((i, j,k) = even permutation of (1,2,3))

Conjugate quaternion of g = Z?:o aje; € H, and relation with the product:

q = apeo —aje; —aze; —ases, 7192 = 4241
Norm |g|? and inverse g~ of ¢:

- _ 1 q
qq9 = 2,.3=0a,.2 eR, q = W(floeo —aje| —azer —aze3) = W

393

ALGEBRA O OF (THE USUAL) OCTONIONS, MULTIPLICATION TABLE, AND

SOME ASSOCIATED SPACES
O={x=z+uecCaC3:
(z4u)(d+v)=(zZ — (u,v) +2v+Zu+uxv,

(,) : C* — C3 the usual Hermitian product,

(u,vxw) =det(u,v,w), a,f €C, u,v,we (C3}

Conjugate, trace and norm of x = z4u € O:

X=Z—u, t(x) =x+x€R, n(x) =xi=|z* + uf? e R
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€0 e] [59) (] é4 es €q ey
ey | e €] [59) (] é4 ées (4 ey
€1 | e ey —€e3 —ep —€5 —é4 ey €q
ey | e es €0 €] —€¢ —€7 —€é4 —é;5
ez | e3 ey —eq ey —€7 —€¢4 és5 é4
€4 | é4 (] €q ey €0 el (%) es
€5 | é5 é4 ey e —€1 ey —e3 —e€p
€q | 6 —€7 eq4 —€5 —€) e3 —e €]
e7|er —ép €5 —e4 —é€3 e —ep o

ST ={xc0:nx)=1}
SS={xcO:nkx)=1,1(x)=0}
SB={xe0x0:nx)+n(y) =1}

Spin(7) = Aut(0,{, , }),  {xyz}t=(P)z
Gy={peSpin(7): o(1)=1}, 1e§’

Chapter 5

e Hopf bundles ¢ : §* € C? — §? and 7y : §7 € H? — S*:
7(x,y) = (2%, x> = [y*)

e Fundamental vector fields on the bundle of linear frames FM over M:

0

A7 = x(2)a; o

Z

(A=(a}) € M(n,R); 2= (X1,...,Xy) € FM; x'(2) = x'(m(2)): x)(2) = d¥'(X)))

e Connection form @ on a principal bundle P(M,G) in terms of forms w; = 0/ @,
with local sections o;, defined on open subsets U; of M:

w;j :Ad‘lf,’;l a)i+9ij onUlﬂUj

({Ui} = open covering of M; ;;(UiNU;) — G = transition functions; 6;; = g-
valued 1-form y;;0; 6 = canonical 1-form on G: 6(X) =X)

e Exterior covariant derivative D¢ of a tensorial 1-form of type Ad G with respect to
a connection in the principal bundle P with connection form w (X,Y € T,P, u € P):

D(P(X,Y) :d(p(XaY)+ [(p(X),(D(Y)] + [(i)(X),(p(Y)]
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e Cartan’s structure equation (principal bundle).

o the connection form of a connection in a principal G-bundle P, with curvature
form Q; ® = ©' ®e;, Q = Q' Re;, {e;} basis of g; cj.k structure constants with
respect to {e; }:

do(X,Y)=—[oX),0)]+Q(X,Y), X YETP, ucPk

do = —[w,0]+Q (simplified expression)
do'=- o’ No* + Q'
Jj<k

o Structure constants of GL(n,R) with respect to the standard basis {E;} of gl(n,R)
(also for C): ‘
ij',kl = 5ir5/f o — 6 51'1 515'

e Cartan structure equation (vector bundle).
E(M,F",GL(n,F),P), F =R or C, a vector bundle associated to the principal
fibre bundle P; {E;}, i,j=1,...,n, is a basis of gl(n,F); © = o/ ®E; and Q =

Qi’ RFE ; the connection form and the curvature form of a connection in P:

da)}::—w,’;/\wj?—kﬁj, i,j=1,...,n

LINEAR CONNECTIONS

e Canonical 1-form 6 on the frame bundle (FM,m,M):
0(X)=z"(mX), 6 =Ydx

(X € T,(FM), z € FM, {xﬂxj.}, i=1,...,n=dim M, local coordinates on FM;
Y =(x)™h
e Components (or Christoffel symbols) 17k of a linear connection V of M with con-
nection form o = a); ®Eij; o =(X,...,X,) asection of FM over an open subset U
of M; oy = 6*w (which is a gl(n,R)-valued 1-form on U). Then:

oy =T d/ @ Ef

Also, for local coordinate functions (xi )onM,

I
Vaog~lige

0.

e Connection form o of a linear connection with Christoffel symbols I7k in terms

of the local coordinates (xi,x',i) on FM:

ol =Y (dx’;+r,§lx§dxm), ik lm=1,... n=dimM
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e Structure equations (frame bundle).

V a linear connection of M, with connection form @, torsion form © = (@),
and curvature form € = (j); 6 the canonical 1-form on FM; X,Y € T.(TM);
i,j,k=1,....n=dim M:

do(X,)Y)=—(0(X)-6(Y)—w(Y)-0(X))+0O(X,Y)
do(X,Y) =—[oX),oY)]+Q(X,Y)
do' = —wine’+6'

P G .
doj = —op AN oj +Q;
e Covariant differentiation Vx (7 (M) = algebra of tensor fields on M):

(1) Vx: I (M) — 7 (M) is a type-preserving derivation.
(2) Vx commutes with every contraction.

(3) Vxf=Xf, feC M.

(4) Vxiy =Vx+Vy, XY € X(M).

(5) Vx(fK) = (Xf)K+fVxK, K€ .TM).

e Covariant derivative of a (0, r) tensor field ¥:

(VyP) (X, X)) =V (P (X X))~ S WK1, VyXi. . X))

i=1

e Relation between exterior differential and covariant derivative for a differential
r-form o:

da(Xo, ..., X,) = S o(= 1) (Vx.c)(Xo, ..., X, ..., X,)
e Second covariant derivative:

(VZS)X’Y = vays — VVXYs

e Torsion tensor and curvature tensor field of a linear connection in terms of covari-
ant differentiation:

T(X,Y) = VxY¥ — VyX — [X,Y]
R(X,Y)Z=VxVyZ—-VyVxZ—-VxyZ

e Torsion tensor and curvature tensor field:
i i i
ik =T —I;

R(ei,ej)ek = Rliijel
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Rijy = Ol 9111, +17 Ty — TG0,

Rij;+R +RY =0
R(X,Y)Z=—R(Y,X)Z
R(X,Y)Z+R(Y,Z)X +R(Z,X)Y =0

e Bianchi identities:

(Isty GRX,Y)Z=OG{T(TX,Y),Z2)+(VxT)(Y,2)}

XYZ XYZ

(Ist, T=0) SR(X,Y)Z=0
XYZ

(2nd) S {(VxR)(Y,Z)+R(T(X,Y),Z)} =0

(2nd, T =0) & (VxR)(Y,Z) =0

e Covariant and double covariant derivative of tensor fields for a linear connection

Fj’k, with torsion tensor T}k and curvature tensor field Rj.,d:

Vector field with components X':
X} = X!+ X"
Differential 1-form with components w;:

— . PRp— r
wj;i = 00; — I;; 0

O jic — O = Rijp 0 + 2T 03y
(1,1) tensor field with components J%:
Ti = O+ T 0% — I,
(0,2) tensor field with components 7;;:
Tijk = 0Tk — I Tk — L Tjr

(r,s) tensor field with components K,
’ JieeJs

A )
il...ir _ j]js ia il...l...ir ll Iy
Ky =i+ 2 (121 K ) )y (17% /1.-.m...js)
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A Ricci identity:

r . .. . .
..y ip.. lr _ ‘l dp—1lpt1--lr plp
ViViK; g = ViViKG T = Z Jue-ds Ry

o 11 iy i1 iy
z J1edo—1Jjo+1-- ]AR]O'kl 5}1 JTkl

e Components of the torsion and curvature forms. o = (Xi,... ,_X,,) a moving frame
on an open subset U of M. T (X, Xy) = T;; Xi, R(Xx, X;)X; = R}, X;, the torsion and

curvature tensors of a linear connection of M. Define 7~"/?k, E§k1 € C*(FM) by

o~ . 1~ .
0'= z lekej /\ek = ETj{kej/\eka = _Tkj

i<k

) - 1~ =i pi
Q= TR0 N0' = R0 N0 Ry =R
k<l

Then

o Ty = T, O Ry = Rjy
° Cartan’s structure equations (moving frame). _

(X17 .,X,) a moving frame defined on an open subset U of M; 8' = 6*0',
a) = 0" o;. Then:

. e 1~ o~
de’:—w;AeeriTj’kefAek

- o1~ ~
dat = —af Aok + 5Ii"j,d@’m 6!
e Structure equations (geodesic polar coordinates).

{e1,...,ex} abasis of T,M, p € M; x' normal coordinates defined by {e;} on a
normal coordinate neighborhood U of p; (Xi,...,X,) the moving frame defined on
U by parallel transport of {ej,...,e,} along geodesic rays from p. Let F map an
open set of R"*! into U by x'(F(t;a',...,a")) = ta'. Define f',B", B by F*6' =
fidt + B, F*(T); = ;’ where 8 = 6*0', (TJJ’ = O'*a);-, and B’ does not depend on

dz. Then fi(t;al, Lodh) =d [3]’ does not depend on dt¢; and we have (structure
equations):

dp! ap:

P —ad vl =Ry,

with initial data B¥(r;a*,da’),—o = 0 = B/ (1;a*,da’),—g
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e Differential equations of geodesics (i, j,k =1,...,n = dim M):
d%x! ; dx/ dxk _0

a2z TR A T

e Covariant derivative on a vector bundle (E,w,M) over M. ('E = (C*M)-module
of C* sections of E):

V:X(M)xTE - T'E, (X,s) — Vs
Vixinys = fVxs+hVys, fheC™M, XY e X(M)
Vx(s+1) = Vxs+ Vxi, s,t eT'E
Vx(fs)=(Xf)s+ fVxs

REDUCTIVE HOMOGENEOUS SPACES

M = G/H a homogeneous reductive space. G (with Lie algebra g) acts transitively
and effectively on M. Reductive decomposition:

g=hom, Ad(H)m C m.

Isotropy representation A : H — Aut(T,M), A(h) = (Lj)+0, 0 € G/H the origin.

Let P be a G-invariant K-structure over the reductive homogeneous space M =
G/H with reductive decomposition as above. There is a one-to-one correspondence
between the set of G-invariant connections in P and the set of linear maps Ay, : m —
£ such that Ay (X) = A(X) for X € h and

An(AdyX) = Ady ) (Am(X)), Xem, heH.

e Torsion tensor and curvature operator at 0 € G/H for the invariant connection
corresponding to Ay, (X,Y € m):

TX,Y)o=AnX)Y —An(Y)X - [X,Y]|m
R(X,Y)o = [Am(X), Am (Y)] = A ([X,¥]m) = A([X,Y]y)
e Curvature form Q of the canonical invariant connection @ on G/H:

1
QXY)=-5XYly, XYem

e Torsion tensor and curvature tensor field at o € G/H of the canonical connection
V(An =0), (X,Y,Z € m):

T(X,Y)o=—-[X,Y]|m
(R(X,Y)Z), = —[[X,Y]y,Z]
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VT =0
VR=0

e Unique torsionless G-invariant connection on G/H with the same geodesics as the
canonical connection:

1
An(X)Y = S[XY]m,  XYem

ALMOST COMPLEX MANIFOLDS
e Canonical complex structure of R?" induced from that of C":
R2n N R2n

(xl’...’xn,yl,”"yn) = (ylﬁ"'7yn77x17"'57‘xn)

Matrix with respect to the natural basis of R*":

(0
w=(5 8)

e Real representation of the general linear group:
GL(n,C) — GL(2n,R)

. A —B
A+1B — (B A>

e V vector space with complex structure J; V¢ =V ®@g C complexified space of V;
again J the extension of J to V¢. Eigenspaces of J in V¢:
V0 ={zeVve:Jz=iZ} ={X-iJX : X €V}
VOl=(7ecVe:JZ=—iZ}={X+iJX: X €V}

e Standard almost complex structure J on C" = R>*. Defined by

d d d d

Ixk ok ET
e Cauchy-Riemann equations:
f:UcCC"={z! =x'+iy'} - C" = {wk = u* +v*} holomorphic:

duk vk duk ok

oxl oyl gyl ol
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o Torsion of an almost complex structure J:
N(X,Y)=[JX,JY]-J[JX,Y]-J[X,JY] - [X,Y]

e Basis of T,,I’OM and T,?’IM for a complex manifold M:

9 (9 9\ 9 _1(d .0

azk 2\ axk  ayk )’ 9zt 2\ axk oyt
',...,7" ¥ = x* +iy* = complex local coordinate functions; and dzF = dx* +idy*,
dzF = dx* —idyk)

e Holomorphic vector field on a complex manifold of complex dimension n:

d

Z:fka_zk’

f* a holomorphic function (f =0), k=1,....n

e Cartan structure equations (almost complex linear connection).

C(M) the bundle of complex linear frames on an almost complex manifold M of
real dimension 2n; 6 the canonical form on C(M) = restriction of 8 on FM to C(M);
@ = connection form of an almost complex linear connection with torsion form ©
and curvature form €2; @ and €2 are valued on the subalgebra gl(n,C) of gl(2n,R).
Set

% = 0% +i0"% @* =% +iO"* g =1,....n

1//;3’C = a)g+ia)rf‘+ﬁ, lPB"‘ :Qg+i.(2,f‘+ﬁ, o,B=1,....n

(o = (¢p%) and @ = (P*) are C"-valued; ¥ = (l[lg) and ¥ = ('Pﬂa) with values

in gl(n,C), as the Lie algebra of n x n complex matrices). Then, besides the real

structure equations we can write:
d(p"‘:—l//gmpﬁ—i—cb“, o=1,..

N}

dy/g:—w)‘f‘/\wg—i—‘f’ﬁa, a,f=1,....n

SOME PROPERTIES OF SPHERES

st §2 83 5 85 s6 57 §(x)
n y n
y n n n 'y n

n

Lie group

Parallelizable

=E SRS

n
Almost complex y n n n y n

y=yes,n=no, (x)n>7
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Chapter 6

e Musical isomorphisms associated to a metric g on M:

br T,M — TyM, X’(=5(X)) =g(X,")
B T,M = TM, o (=t(0) =g (e)

e Arc length L(0) of a differentiable curve 6 = x;, a < t < b, in a Riemannian

n-manifold (M, g) ((x',...,x") local coordinates):
b i dx
L(o) = 1) dt jj————dt
(©)= [ Vetar, s o
e Energy of acurve 0 [a,b] — M in (M, g):
1 b
E(o) =5 [ lo'()Pas
2 Ja
e Poincaré upper half-plane:
1
M:{(x,y)€R2:y>O}, dszz)ﬁ(dxz%-dyz)

e Koszul formula for the Levi-Civita connection:

28(VxY,Z) =Xg(Y,Z) +Yg(Z,X) - Zg(X,Y)
+g([X7Y]aZ) 7g([sz]7X)+g([va]aY)

e Christoffel symbols:

1y (dg;  degn  dgik
Tie= 28 ( oxk — dxi ox!

e Geodesic through p € §” (with the round metric) with initial velocity vector v €
1,8
v

¥(t) = (cos |vlr)p+ (sin|v]r) v
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RIEMANN CURVATURE TENSOR

e Riemann curvature tensor (g;; = g(e;, ¢;); (e;) a local frame):
R(X,Y,Z,W)=g(R(Z,W)Y,X)
g(RX,Y)Z,W)=—g(R(X,Y)W,Z)=—g(R(Y,X)Z,W)
g(R(X,Y)Z,W)=g(R(Z,W)X,Y)
Riji = R(ei,ej,ex,e) = g(R(ex,er)ej,ei) = gihR?kl
Ryiij = —Rikij = —Ruij
Ryij = Riju
Ryiij+Riijk +Rijki =0

e Metric and Riemann curvature tensor near the origin p, xi( p) =0, of normal coor-
dinates (x’) (letting Rikjl,r = aRikﬂ/8x’):

1 1
8ij = 6ij — §Rikj1xkxl - yRikjl,rxkxlxr

1 4
t35 (—6Rikjirs + 3 R Ry i) XX o -

o V(P8 Peu  Pei g
U= 2 \ xidx! ~ 9xigxk  oxiox! | dxioxk

e Sectional curvature for a plane P C T,M:

R(X,Y,X,Y)

KP) = (X X)s0Y) s X0

X,Y basis of P
K(P)=R(X,Y,X,Y), XY orthonormal basis

e Ricci tensor ((e;) = a local orthonormal frame):
r(X,Y) = trace of the map Z — R(Z,X)Y of T,M

r(X,Y)=Y,8(R(e;,X)Y,e;) = Y;R(e;, X, e;,Y)

_ _ pk
rij = > Ricje = Rjy;
k
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e Scalar curvature:
s =grj=g'r(ese;) ((e) alocal frame)

5= r(eie;) ((ei) a local orthonormal frame)

e Weyl conformal curvature tensor for a Riemannian n-manifold (M, g):

W(X,Y)Z=R(X,Y)Z+L(Y,Z)X — L(X,2)Y +g(Y,Z)L'X — g(X,Z)L'Y

s . _
(L001) ==L ) 4 e s LX) L))
i i 1 i i i i s i i
it = Ry = - (rjx] = 1ju & + 8 jkry — g jure) + Cn=2) (gjk6; —816%)

e Weyl projective curvature tensor (n > 1):

. . 1 . .
Pl = Rjg — = (rxdi —rj1&)

KAHLER MANIFOLDS

e Hermitian metric on an almost complex manifold (M, J):
(X, JY) =g(X,Y),
§=12g,pdz" dz?
e (M,g,J) an almost Hermitian manifold. Holomorphic sectional curvature:
H(X)=g(R(X,JX)X,JX), XeM, [X|=1, peM
e Fundamental 2-form of a Hermitian metric:
F(X,Y)=g(X,JY), F=-2ig,5d:* ndZf
e Kihler metric:

9op _ 9845 98ap _ Igay
dzr dz¢ 77 9P

e Curvature components:

o
o __81}37
67

Rgys = 07
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828053 _2 gfagocé agﬁr
7Y 978

e Ricci form:
p(X.,Y)=r(X,JY),

p=-2i "o dz% A dZﬁ

o Structure equations (bundle of unitary frames).

U(M) = bundle of unitary frames; 6 = canonical form on U(M); @ = (a);),
i,j=1,...,2n = connection form on U(M) defining the Levi-Civita connection
of the Kihler manifold M; 2 = curvature form (@ and €2 with values in the real

representation of u(n)). Setting (for o, 3 = 1,...,n)

% =0%+i0"""  yf=of +iog, s, ¥ =QF +iQ)

n+>
we have
of ~olff. ofy--opt. of——ob.  ofiy-of,
Q= Q=9 9 =-0n =
Hence

‘l/a:_‘l_/g» lPﬁa :_1;1013
e Riemann curvature tensor and curvature form on the bundle of unitary frames
U(M), of a Kéhler manifold (M, g) of constant holomorphic sectional curvature c:

(&
Ko = 5 (8apss +8a5%5)

¥y = g ((p"‘mbﬁ + 805 2, 07N q‘ﬂ)
Y

e Bochner curvature tensor for a Kihler manifold (M, g,J) of real dimension n:

B(X,Y,Z,W)=R(X,Y,Z,W)—L(X,W)g(Y,Z) —L(X,Z)g(Y,W)
+L(Y,Z)g(X,W) — L(Y,W)g(X,Z) + L(JX,W)g(JY,Z)
—L(JX,Z)g(JY,W)+L(JY,Z)g(JX,W) — L(JY,W)g(JX,Z)
—2L(JX,Y)g(JZ,W)—2L(JZ,W)g(JX,Y)

(L(va) = nj_4”(X,Y)+mg(X,Y))
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CHARACTERISTIC FORMS

e rth Chern class ¢,(E) of a complex vector bundle E over the differentiable ma-
nifold M in terms of the curvature form components £2; of a connection in the co-
rresponding principal bundle (P,p,M,GL(n,C)). Represented by the Chern form
o, € AT M:

(o) = CU" st it p..p i
PG = ir %) ir

(27i)rrt T
where one sums over all ordered subsets (ij,...,i,) of (1,...,n) and all permutations
(j1,---,jr) of (i1,...,i,) and where &'/ denotes the sign of the permutation.

I...lp
e rth Pontrjagin class p,(E) of a real vector bundle E over the differentiable mani-
fold M in terms of the curvature form components €2} of a connection in the corres-
ponding principal bundle (P, p,M,GL(n,R)). Represented by the Pontrjagin form
B, € A*"M:

1 o :
* — J1--J2r I r
P(Be) = Gy Ot S N N
where one sums over all the ordered subsets (iy,.. ., i) of 2r elements of (1,...,n)
and all permutations (ji,..., jar) of (i1,...,i;).

e Euler class e(E) of an oriented real vector bundle E of rank 2r (with a fibre metric)
over the differentiable manifold M in terms of the curvature form components €2 ]’ of
a connection in the corresponding principal bundle (P, p,M,SO(2r)). Represented
by y € A’ M:

(—1)" i i
= —_— & Q‘1 /\._'/\QAZI"fl
2r g, Z 1121 250 i
2ty T '

P ()

HOMOGENEOUS RIEMANNIAN MANIFOLDS

om: (M,3) — (M,g) a Riemannian submersion; X,Y orthonormal vector fields on
M with horizontal lifts X ,Y; Z" = vertical lift of Z € X(M). Sectional curvature:

~ - 3
Ku(X,Y) =Ky (X,Y)+ 1 |[X,Y]"?

e Levi-Civita connection of (M = G/H, g) reductive homogeneous; g = h & m re-
ductive decomposition; { , ) an Ad (H )-invariant nondegenerate symmetric bilinear
formonm ((X,Y) = g,(X,Y), X,Y € m, m = T,M):

Am(X)Y = %[x,y]m +UX,Y),

U: m x m — m defined by

2U(X,Y),Z) ={[Z,X]m,Y) +{(X,[Z,Y]m), XY Zecm
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e M = (G/H,g) anaturally reductive homogeneous Riemannian manifold (U = 0).
Levi-Civita connection and Riemann curvature tensor at o (X,Y € m):

Am(X)Y = %[va]m

go(R(va)YvX) = <[X7Y]mv[X7Y}m>_<[[X’Y]h’Y]’X>

B

e M = (G/H,g) a normal homogeneous Riemannian manifold (There exists an
Ad(G)-invariant scalar product (, ) on g such that (, )y is nondegenerate); m the
orthogonal complement to b for (, ); X,Y € m. Sectional curvature:

g<R(X’Y)Y7X)h = <[X7Y]m7[X7Y]m>m+<[X7Y]h7 [X7Y]h>b

-

CURVATURE AND KILLING VECTOR FIELDS

e (M,g) Riemannian manifold; X,Y,Z, Killing vector fields; Levi-Civita connec-
tion:
Zg(VXYaZ) = g([X,Y],Z) +g([sz]7Y) +g(Xa [YaZ])

e (M = G/H,g) Riemannian homogeneous; g = h +p; X, Y, Killing vector fields in
p; p = T,M; Levi-Civita connection and curvature at o:
1
(VxY), = —E[X7Y]p +UX,Y)

So(ROCY)Y,X) = =3 [X Vo = 5 (X, X, V]l Y)

S Xl X) + U TP — U (X, X),U(Y,¥))

RIEMANNIAN SYMMETRIC SPACES

M:(G/vaﬂc)7 h:(G*O)Jm m:((f*o),, ng)@m
[b.blCh,  AdH)mCm,  [mm]Ch

e Curvature tensor field (X,Y,Z € m):
R(XvY)Z: _[[XaYLZ]

e Ricci tensor for G/H Hermitian symmetric with G semisimple and effective on
G/H, and H compact, in terms of the Killing form B of g:

1
rX.Y)=-3BX.Y), XYem
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IRREDUCIBLE RIEMANNIAN SYMMETRIC SPACES OF TYPE I AND III

Compact Noncompact rank dim
Al SU(n)/SO(n) SL(n,R)/SO(n) n—1 (r1)(i2)
All SU(2n)/Sp(n) SU*(2n)/Sp(n) n—1 2n%—n—1
ATIL (%) % % min(p,q) | 2pq (+*)
BDI(x) % % min(p,q) | pq

DI () | SO(2n)/U(n) SO*(2n) /U (n) [1n] n(n—1)
Cl(x) |Sp(n)/U(n) Sp(n,R) /U (n) n n(n+1)
cu % % min(p,q) | 4pq  (xx)
El (e ",5p(4)) (¢§,5p(4)) 6 42

ElI (eg78,5u(6) +su(2)) | (e2,5u(6) +su(2)) |4 40
EII(x) | (eg”®,50(10) +R) (eg™,50(10)+R) |2 32

EIV | (7% f4) (620, 4) 2 26

EV (7%, 5u(8)) (¢7,5u(8)) 7 70

EVI (e5'32,50(12) +5u(2)) | (¢5°,50(12) +5u(2)) | 4 64
EVIL(#) | (53,6 +R) (e7%,¢6+R) 3 54
EVIIL | (eg*8,50(16)) (e8,50(16)) 8 128
EIX (g2, e7 +5u(2)) (eg?*,e7 +5u(2)) 4 112

Fl (1;%2,5p(3) +5u(2)) | (F}.5p(3) +5u(2)) |4 28

FII (74 %.50(9)) (f*",50(9)) 1 16

G (05" 5u(2) +5u(2)) | (g3.5u(2) +su(2)) |2 8

(*) Hermitian symmetric (for BD I, only if g = 2)
(x) (P < q)-

REMARK. The superindices for the exceptional simple Lie algebras denote the signature of the
corresponding Killing form B, where the signature is defined here as the number of positive val-
ues minus the number of negative values when B is expressed in diagonal form (see [18]): eg4:
—78,—26,—14,2,6; e7: —133,—25,-5,7; eg: —248,—-24,8; §4: —52,-20,4; go: —14,2.
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SYMMETRIC SPACES G/H OF CLASSICAL TYPE WITH

NONCOMPACT ISOTROPY GROUP !

409

G =SL(n,C) G =SL(n,R) G=SU(p,q)
SL(p,C) SL(p,R) SU (k,k + h)
xSL(q,C) xC x SL(g,R) xR xSU(p—kn—k—h)xU(1)
SL(n,R) 50(p,q) 50(p,q)
50(n,C) Sp(n/2,R) Sp(p/2,4/2)
SU(p,q) Sp(n/2,C) xR SO*(n) (%)
Sp(n/2,C) Sp(n,R) (%)
SU*(n) SL(n,C) xR (%)
G =SU*(n) G =50(n,C) G =S50(p,q)
SU*(p) SO(p,C) SO(k, k+ h)
x SU*(g) x R xS0(q,C) ()| xSO(p—k;n—k—h)  (+%)
Sp(p/2,4/2) S0(n—2)xC SO(p—2,q) xU(1)
SO*(n) SO(p,q) SO(p—1,q—1) xR
SL(n,C) x U(1) SL(n/2,C)xC SU(p/2,q/2) xU(1)
SO*(n) SL(n/2,R) xR (%)
SO*(n/2,C) 50(n/2,C) ()
SU(p,q)xU(1) | 8O0(n—2)xU(1) ()
G = Sp(n,C) G =Sp(n,R) G =5Sp(p,q)
SL(n,C) x C Sp(p,R) x Sp(q,R) | Sp(k,k+h)
xSp(p—k,n—k—h)
Sp(n,R) SU(p,q) xU(1) | SU(p,q) xU(1)
Sp(p,C) xSp(q,C) | SL(n,R) x R
Sp(p,q) Sp(n/2,C)
SU* () xR ()
Sp(n/2,C)

(x) p=qg=n/2, (t)p=1lorp,g>2, (xx)k+h>2,n—k—h>2, ({)p=2,9=n—2

! The isotropy groups for each group G are listed under it. In all cases but for Sp(n,C) and Sp(n, R),
the expression of the first listed isotropy group has been broken in two lines.
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SPACES OF CONSTANT (ORDINARY OR HOLOMORPHIC) CURVATURE
e Riemann curvature tensor for constant curvature c:
R(X.Y,ZW) = c(g(X. Z)g(Y,W) — (X, W)g(Y.Z))
e Metric of nonzero constant curvature 1/r on
M={E" . ) eR™ () 4+ ()t =)

~r{r+ 20D (E(dy)?) — (Zy'dy)?
£ (r+ 302 ’

e Riemann curvature tensor for constant holomorphic curvature c:

Y=t

RXY.ZW) = T {g(X.2)g(Y, W) — g(X.W)g(V,2)
+8(X,JZ)g(Y,IJW) — g(X,JW)g(Y,JZ) +2g(X,JY)g(Z,JW)}

o Fubini-Study metric of positive constant holomorphic sectional curvature ¢ on the
complex projective space CP":

4 (1+34)(3ddF) — (3 dh) (B dF)
T c (1+ X 7k7)2

e Bergman metric of negative constant holomorphic sectional curvature ¢ on the
open unit ball {(z!,...,2") € C" : $2kz* < 1} (cf. [16, p. 73]):

4 (13 (zdtdh) + (ZFdF) ()
c (1 _zzkzk)z

e Metric of negative constant holomorphic sectional curvature ¢ on the Siegel do-
main
D={(z=x+ipu',....u") eC" : y—F7 utd* >0} :

_ 1 = k -k k 1-k

+2i (de it —az Y i) +4 (Rt ) (Ttait) |

LEFT-INVARIANT METRICS ON LIE GROUPS

e Koszul formula for the Levi-Civita connection of a left-invariant metric g on a Lie
group G with Lie algebra g (X,Y,Z € g):

Zg(VXYaZ) Zg([X,Y],Z) —g([Y,ZLX)-l—g([ZJ(LY)
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e [evi-Civita connection, curvature tensor field, and sectional curvature for a com-
pact Lie group G with a bi-invariant metric g (X,Y,Z, left-invariant vector fields):

VyY = %[X,Y}
RX,Y)Z= —%[[X Y], Z]
K((X,Y)) = %g([X,Y} [X,Y]), X,Y here orthonormal

BASIC DIFFERENTIAL OPERATORS

e The gradient:
af d
gradf = z dxi Oxi

e Divergence of X € X(M) with respect to a linear connection V of M:
(div X)(p) = 6/(V.,2)

({ei},{6'} = dual bases for T,M and TyM, p e M;i=1,...,n = dim M)

e Divergence of X = X9 /dx’ with respect to (the Levi-Civita connection of) a me-
tric tensor g:
1 dy/det(gji)X!

det(g ;) ox'

e Divergence of a (0, r) tensor o on (M, g):
(dive)p(vi,...,vr) = D (Ve, &) (€31, V1)
i
(V = Levi-Civita connection; v; € T,M; {e;} = orthonormal basis for ,M, peM)

e The Hessian:
HI(X,Y) =XY [~ (VxY)f

e Trace of the second covariant derivative:

{r V2X = (Ve,.Ve,. ~Vy, ) X

e The Laplacian and the Laplacian on functions:

2
A=ds+8d, Afgij( 9°f Fkaf>

oxioxi U gxk
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e Weitzenbock’s formula for the Laplacian A on (M, g) (n = dim M; {e;} = ortho-
normal basis of T,M):

1
g(Aa, o) = —A|a\2+ Va|* +g(pa, ), a€A™M,

r
z elav])a)(vla V] 17617Vj+17 7Vr)
1j=1

M:

where pg (vi,...,v,) =
i

Case of (M, g) of constant sectional curvature c:
1
g(A0, ) = SAJof* + [Vaf* + r(n—r)c|of’

eFor f,he C”M, X,Y € X(M):

(1) grad(fh) = fgradh+ hgrad f

(2)  div(fX)=Xf+fdivX

(3) H/M"=fH"+hH/ +df ®dh+dhedf

(4)  A(fh) = fAh+hAf +2g(grad f, grad h)

(5) curl(gradf) =0

(6) curlX =da, where o is the 1-form dual metric to X

e Hodge’s star operator x: A"M — A"""M, 0 < r < n, on an oriented pseudo-
Riemannian n-manifold (w, = volume form):

anxB =g (e, B) g,
N (*Bp) = Bp A (xarp) o, B EA;M, pPEM
*2 _ (_1)r(n—r)7 *—1 _ (_1)r(n—r)*

CONFORMAL CHANGES OF RIEMANNIAN METRICS

og=¢lg fECT(M,g). dimM =n, |[df|* =g~ (df,df):

Levi-Civita connection:
VxY = VxY +df(X)Y +df(Y)X —g(X,Y)grad f
Riemann curvature tensor (- = Kulkarni-Nomizu product):
~ : : 1
R=e* (R—g-(Hf —df@df+ 5|df“g>)
Ricci tensor:

F=r—(n—2)H —df@df)+ (Af — (n—2)|df?))g
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Scalar curvature:
§=e Y (s+20n—1D)Af—(n—2)(n—1)|df?|)

(3,1) Weyl tensor:

W=w

Volume element:
_ anf
w; =¢e" w,

Codifferential on r-forms:
Soo=e" (§a— (n—2)ignaror)

Hodge’s operator on r-forms (for oriented M):

n—2r)

SOME GEOMETRIC VECTOR FIELDS

o Affine X € X(M) with respect to a linear connection V of M:

(va)(Y,Z):O, Y,ZG%(M)
(VyVX)Z=R(Y,X)Z (if V is torsionless)

(LxV)(Y,Z) = [X,VyZ] = Vix )Z— Vy[X,Z]; (VyVX)Z = VyVzX —Vy,;X)

e Projective X € X(M) with respect to a linear connection V of M:
(LxV)(Y,Z)=0(Y)Z+0(2)Y, Y,ZcX(M), 6cA'M
e Jacobi equation along a geodesic :

Vy VY + Vo (T(Y, 7)) +R(Y, Y)Y =0

VOLUMES OF SPHERES AND BALLS

e Volume of the sphere with the round metric, and volume of the closed unit ball
B! =B(0,1) e R™*!:

2n.n+1

(n— 1! (4m)" "
. 7'( vol (B"*1) =

2n—1)1 n+1

SZn-H) — vol (Sn)

vol ( ., vol (§2") =
RIEMANNIAN SUBMANIFOLDS

M < M an immersion; X,Y,Z,W € X(M), & e x(M)*, V, V = Levi-Civita con-
nections.
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e Gauss’s formula:
VyY = VyY +a(X,Y)
where Vy¥ =1VyY,  a(X,Y)=uvVyY

(7 = tangential part, ¥ = normal part; & = second fundamental form of M for the
given immersion)

e Weingarten’s formula: N
VX% - —A(!;X—FV)%é
where
_A::erﬁ)(g) V)%§:V€X€7 g(Aéan):g(a(XaY)7g)
Vi X(M) x 2(M)* — X(M)* (the normal connection)

VW =uVxW, X € X(M), W € X(M)*
e Gauss’s equation:
E(X,Y,Z,W) :R(X,Y,Z,W) +g(06(Z,Y),OC(W,X)) *g(OC(W,Y),(X(Z,Y))

e Codazzi’s equation:
VRyyZ = (?xa) (v,2) - (ﬁya) (X,2)

where N
(Vx(x) (Y,Z) = Vi (a(Y,2)) — a(VxY,Z) — a(Y,VxZ)

e Ricci’s equation:
I/ﬁxyé = R)%Yé - (ASX,Y) —o (X,AgY)

e Mean curvature normal:
r

1
n=- Z(H‘Ai)éi

iz
(M = n-dimensional Riemannian manifold isometrically immersed in an (n+ r)-
dimensional Riemannian manifold N; {&;,...,&,} = orthonormal basis in (7,M)";
Ai=Ag)
e Riemann curvature tensor on a complex submanifold M of a Kihler manifold
(M 8,J) (o0 = second fundamental form; R = Riemann curvature tensor of M, X €

X(M)):

R(X,JX,X,JX) =R(X,JX,X,JX) —2g(0(X,X),00(X, X))
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HYPERSURFACES IN R"*H!

M hypersurface in R"*!; XY, Z € X(M); & field of unit normal vectors defined lo-
cally, or globally if this is the case; V/ = covariant differentiation in R A=A e=
symmetric transformation of each 7T,M corresponding to the symmetric bilinear
function & on T,M x T,M defined by ot(X,Y) = h(X,Y)&.

e Gauss’s formula for hypersurfaces:

VyY =VxY +h(X,Y)E

e Weingarten’s formula for hypersurfaces:

Vié = —AX
e Gauss’s equation for hypersurfaces:

R(X,Y)Z = g(AY,Z)AX — g(AX,Z)AY
e Codazzi’s equation for hypersurfaces:
(VxA)Y = (VyA)X
SURFACES

e Gauss-Bonnet’s formula for a compact surface M:

(M)—i/ w—i/Kw
AM) =27 S % = o Jy ™

(x (M) = Euler characteristic; s = scalar curvature; K = Gauss curvature)
e A parametrization of $* = {(x,y,z) € R® : ¥* +)* + 22 = 1}:

x=sinfcos @, y=sinfsing, z=cos0, 0<o<n, 0<p<2r
e A parametrization of the torus 72 (with R > r, 6,¢ € [0,2x]):
x=(rcos 0+R)cos ¢, y=(rcos @+R)sing@, z=rsinb.
e Gauss curvature K of an abstract parametrized surface with metric

g=Edi’ +2Fdudv+Gd’? = Edu®du+Fdu®dv+Fdv@du+Gdv®dv,

| E F G
Eu Fu Gu

K=—
_ F2)2
4(EG—F?) E, F, G,

- 2\/EéfF2 {<\/CI?G_F;2>L¢ <\/Pl%>v}

(here a subindex u, v, denotes the derivative with respect to that variable)
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PSEUDO-RIEMANNIAN MANIFOLDS

e Normal coordinates for a pseudo-Riemannian n-manifold (M, g). On a neighbor-
hood of the origin p € M:

(1) gij(p) = dijej, & = £1
(2) Geodesics through p: y' =d't,i=1,...,n, a' = const
(3) Christoffel symbols: F]’k(p) =0

e Cartan’s structure equations (for a pseudo-Riemannian metric).

o6 = (X;) an orthonormal moving frame; & = g(X;,X;) = +1; (5’) dual moving
coframe; 8/ = 6*6', with @ = (') the canonical form on the bundle of orthonormal
frames; cT); =0o* w;'-, with w} the connection forms; 6; = &;0', ;)= e@}; £~2,-j = sif);:

d@:—z&),-jA(sﬁj), 5ij+(5ij:0
J

da)ij = —Zekwjk N @y + Qij
k
(in the expression €;0;, no sum in j; in the expression sk(T)jk, no sum in k)

e Metric of constant curvature c. There exist coordinate functions x' on a neighbor-
hood of p € M such that:

dxi dxi
g:&7 gl::tl

(1—§si (xf)2)2

e Pseudo-Riemannian metric of constant curvature ¢ in normal coordinates x* with
origin ¢, at p # q:

g§= (ﬂ + sin’ (r/ec) ((gu')q - xixj)) dx' dx/

er? ecr? er?

(signature of g = (&1,...,&), & = £1; (gij)q = &6ij; xi = (ij) px'5 € = xix' [ |xix'| if
xix' # 0 and e = 0 if x;x' # 0; r = \/ex;x’)

e First variation formula for a piecewise C* curve segment o: [a,b] — M with
constant speed ¢ > 0 and sign &:

£ b k
L'0)= - {—/a g(0",V)du— ;g(AG'(ui),V(Mi))+ [g(leV)]z}

(V = V(u) = variation vector field; u; < --- < u; breaks of ¢ and its variation;
A0’ (ui) = o' (u") — o' (u;"))

e Synge’s formula for the second variation of the arc of a geodesic segment
o [a,b] — M of speed ¢ > 0 and sign &:
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€
L// 0 _—
0=

(V'+ = component of V'’ perpendicular to y; A = tranverse acceleration vector field)

a

[ (v v alvo o o+ el )l |

e Einstein’s field equations:
1
—Zso=T
r—5s8

(g = metric tensor; r = Ricci tensor; s = scalar curvature; T = stress-energy tensor)
e Schwarzschild’s metric:

2 2m\ !
g=— (1 - :) di? + <1 - :) dR® + R*(d6* +sin2 0 dg?),
0<O<rm 0<o<2m

e Kerr’s metric for a fast rotating planet (cylindrically symmetric gravitational field;
a = angular momentum):

2Mr (dt — asin? 0.dg)’
r24a%cos? @

dr?
2, 2.2 2
+ (r* +a*cos”0) (d@ +—r2—2Mr—|—a2)

g=—dr’+ (r2 +a2) sin? @ dg? +

e de Sitter’s metric on $*:

where R = radius of $%;
1
o, = ﬁ(ydz—zderxdtftdx),
1
oy = r—z(zdx—xdz—&-ydt—tdy),
1
o, = r_2(xdy—ydx+zdt—tdz).

e Robertson-Walker’s metric:
dx? +dy? + dz?

k 2
<1+Z(x2+y2+zz)>

g=—dr*+f2(1)

(3-dimensional space is fully isotropic; f(¢) = (increasing) distance between two
neighboring galaxies in space; k = —1,0,41)
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symplectic over C, Sp(n,C), 382 measure zero, 29, 30, 353
symplectic over R, Sp(n,R), 383 Mercator projection, 319
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connection form, 395 Mobius strip



434

as a quotient manifold under a transforma-
tion group, 170
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rigid...of Minkowski 2-space, 386
moving frame
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Riemann curvature tensor, 407
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paracomplex
constant...sectional curvature, 337
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differential form, 297
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parallelizable
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Riemannian
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as a symmetric space, 269
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vector field, 60, 379
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inverse map, 377, 378
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Stokes
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moving frame, 398
principal bundle, 394
pseudo-Riemannian, 330, 332, 334, 416
vector bundle with group GL(n,F), 395
submanifold, 353
embedded, 38
submersion, 46, 47, 53, 167, 174, 353
Implicit Map Theorem, 354
Riemannian, 406
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of revolution, 44, 305, 309, 310, 320
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affine, 275, 374
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group, 409
Ricci tensor, 407
Riemannian, 407
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group, 383
group over C, 382
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manifold, 359
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tangent bundle, 53, 55, 355
as an associated bundle, 183
flow, 68
from a cocycle, 78
orientability, 113
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over $2, 56
tangent plane to a surface at a point, 58, 59
tangent space, 352
tautological bundle
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tensor algebra, 357
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exterior covariant derivative, 394
Theorem
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149, 151, 177, 362
Chern-Simons formula, 373
Corollary of Green, 375
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de Rham cohomology, 125
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isometric embedding in R%, 323
parametrization, 415
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