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Introduction: Nonlinear Partial Differential
Equations and Exact Solutions

Exact solutions: history, classical symmetry methods, extensions

One of the crucial problems in the theory of partial differential equations (PDEs) at
its early stages in the eighteenth and nineteenth century was finding and studying
classes of important equations that were integrable in closed form and, in particu-
lar, possessed explicit solutions. It seems that the first general type of explicit solu-
tions were traveling waves in d’Alembert’s formula for the linear wave equation. The
method of separation of variables was developed by Fourier in the study of heat con-
duction problems, and was later generalized and extended by Sturm and Liouville in
the 1830s. Many famous mathematicians, such as Euler, Lagrange, Liouville, Sturm,
Laplace, Darboux, Bäcklund, Lie, Jacobi, Boussinesq, Goursat, and others developed
various techniques for obtaining explicit solutions of a variety of linear and nonlinear
models from physics and mechanics. Their methods included a number of particular
transformations, symmetries, expansions, separation of variables, etc. Similarity so-
lutions appeared in the works by Weierstrass around 1870, and by Bolzman around
1890. After the Blasius construction (1908) of the exact self-similar solution for the
two-dimensional (2D) boundary layer equations proposed by Prandtl in 1904, simi-
larity solutions of linear and nonlinear boundary-value problems became more com-
mon in the literature. General principles for finding solutions of systems of ODEs
and PDEs by symmetry reductions date back to the famous Lie papers [389]–[393]
published in the 1880s and 1890s.

In the first half of the twentieth century, the basic priorities in PDE theory were
re-evaluated in light of the influence of mathematical physics. As a result of this,
and possibly in view of the essential progress achieved in existence-uniqueness-
regularity theory for classes of PDEs of different types, explicit solutions gradually
began to lose their exceptional role. At that time, many results and techniques on
explicit integration were forgotten. On the other hand, in the 1930s, and especially
in the 1940s and 1950s, exact solutions and similarity reductions returned to the
scene in the asymptotic and singularity analysis of difficult practical problems of gas
and hydrodynamics which appeared in many fundamental technological, industrial,
and military areas in different countries. In the 1930s, the first basic ideas and re-
sults in this area were due to von Mises, von Kármán, Bechert, Guderley, Sedov (in
the 1940s), and others, who applied scaling and similarity techniques to the study
of complicated nonlinear models and singularity phenomena. These gas and hydro-
dynamic models included systems of several nonlinear PDEs, for many of which a
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xii Exact Solutions and Invariant Subspaces

rigorous mathematical analysis remains elusive, even now. The exact similarity so-
lutions were the only possible way to detect crucial features of nonstationary and
singular evolution, such as focusing of spherical waves in gas dynamics and shock-
wave phenomena. In light of this, it was no accident that the gas dynamic and hydro-
dynamic equations became the first applications of new general ideas and methods of
the group analysis of the PDEs, which Ovsiannikov began to develop in the 1950s.
On the basis of Lie groups, he proposed a general approach to invariant and par-
tially invariant solutions of nonlinear PDEs. A notion of group-invariant solutions,
including special cases of traveling waves and similarity patterns, was emphasized
by Birkhoff on the basis of hydrodynamic problems in the 1940s.

In the second half of the twentieth century, the increase of interest in exact so-
lutions and exactly solvable models was two-fold. Firstly, the applied areas related
to modern physics, mechanics and technology induced more and more complicated
models dealing with systems of nonlinear PDEs. In this context, it is worth mention-
ing the new theory of weak solutions of nonlinear degenerate porous medium equa-
tions initiated in the 1950s (uniqueness approaches dated back to classical Holm-
gren’s method, 1901), and self-focusing in nonlinear optics described by blow-up
solutions of the nonlinear Schrödinger equation in the beginning of the 1960s. Sec-
ondly, the effective development in the 1960s and 1970s of the method for the exact
integration of nonlinear PDEs, such as the inverse scattering method and Lax pairs
introduced an exceptional class of fully integrable evolution equations possessing
countable sets of exact solutions, such as N-solitons.

It seems that the beginning of the twenty-first century may be characterized in a
manner similar to the 1950s. At that time, the complexity of many nonlinear PDE
models of principal interest rose so high that one could not expect a mathematically
rigorous existence-regularity theory to be created soon. For instance, there are many
fundamental open problems in the theory of higher-order multi-dimensional quasilin-
ear thin film equations, higher-order KdV-type PDEs with nonlinear dispersion pos-
sessing compacton, peakon and cuspon-type solutions, quasilinear degenerate wave
equations and systems including equations of general relativity. Modern PDE theory
proposes a number of new canonical higher-order models, to which many classical
techniques do not apply in principle. In these and other difficult areas of general
PDE theory, exact solutions will continue to play a determining role and often serve
as basic patterns, exhibiting the correct classes of existence, regularity, uniqueness
and specific asymptotics.

The classical method for detecting similarity reductions and associated explicit
solutions of various classes of PDEs is the Lie group method of infinitesimal trans-
formations. These approaches and related extensions are explained in a series of
monographs by L.V. Ovsiannikov, N.H. Ibragimov, G.W. Bluman and J.D. Cole,
P.J. Olver, G.W. Bluman and S. Kumei amongst others. We refer to the “CRC Hand-
book of Lie Group Analysis of Differential Equations” [10] containing a large list of
results and references on this subject.

Over the years, many generalizations of the concept of symmetry groups of non-
linear PDEs have been proposed. The first of these go back to Lie himself (con-
tact transformations), to E. Cartan (dynamical symmetries, 1910), and to E. Noether
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Introduction xiii

(generalized symmetries, 1918). Other ideas that appeared in this period are dis-
cussed in Anderson–Kamran–Olver [11]. Many generalizations can be viewed as
extensions of the classical semi-inverse method in Continuum Mechanics, which has
a natural counterpart in symmetry methods (as was first noted by G. Birkhoff in the
1950s).

During the last fifty years, when more nonlinear models and applied PDEs began
to attract the attention of mathematicians, many other fruitful attempts were made to
extend the classical apparatus of Lie group symmetries for PDEs. A significant num-
ber of new classes of such generalized symmetries and corresponding exact solutions
were found. Not pretending to completeness, precise statements, and the correct char-
acterization of such ideas, we include in this list the following (specific power tools
for integrable equations are not mentioned):

- the method of nonclassical symmetries (invariant surface conditions);
- the method of partially invariant solutions;
- the Bäcklund transformation method;
- the Baker–Hirota bilinear method;
- the direct and modified method;
- the conditional and generalized conditional symmetry method;
- the non-local symmetry method;
- the truncated Painlevé approach;
- the weak symmetries method;
- the side conditions method;
- the method of linear invariant subspaces for nonlinear operators;
- the method of linear determining equations;
- the method of B-determining equations;
- the nonlinear separation method;
- the functional separation method;
- the method of symmetry-preserving constraints;
- the symmetry-enhancing method;
- the differential constraint method.

We will present descriptions and references concerning most of the methods that are
related to the techniques used in our analysis (some of the others can be traced out
through use of the Index).

Most of the above methods can be reformulated by using the technicalities of the
method of differential constraints. Such ideas initially appeared in the theory of first-
order PDEs. In particular, Lagrange used differential constraints to determine total
integrals of nonlinear equations with two independent variables

F(x, y, u, ux , uy) = 0.

Monge and Ampère proposed the technique of first integrals for solving the second-
order PDEs

F(x, y, u, ux , uy, ux x , uxy, uyy) = 0,

and in 1870, Darboux extended this approach by introducing an extra second-order
PDE which is in involution with the original equation (this is what is now called
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xiv Exact Solutions and Invariant Subspaces

a differential constraint). The history of this analysis and the detailed description
of Darboux’s method are given in Goursat [260] and Forsyth [196]. General theory
of related overdetermined systems is due to many famous names, such as Riquier,
Cartan, Ritt, and Spencer, as explained in Pommaret [468].

Systematic approaches to differential constraints, related symmetry and Lie group
methods were proposed by Birkhoff in the 1940s (hydrodynamics and fluid dynam-
ics) and by Yanenko in the 1960s (gas dynamics). A formal description of the method
is not difficult: consider a PDE for solutions u = u(x, t), with independent variables
(x, t) ∈ IR × IR+, where t denotes the time-variable. Given a sufficiently smooth
function F(·), consider the evolution PDE

F[u] ≡ F(u, Du, D2u, ...) = 0, (0.1)

where Du = {ux , ut }, D2u = {ux x, uxt , utt }, etc. denote vectors of partial deriva-
tives of arbitrary fixed finite orders. To find particular exact solutions consider, in-
stead of the single PDE (0.1), a system of two (or possibly more) equations{

F1[u] = 0,
�[u] = 0,

(0.2)

where the second equation plays the role of an extra differential constraint. As usual,
one can take F1 = F in the first equation, but, in general, these operators can be
different under the hypothesis that the consistency of the system implies that such
functions u(x, t) also satisfy the original equation (0.1). For example, if F[u] =
F1[u]− F2[u], the following system may be considered:{

F1[u] = �[u],
�[u] = F2[u],

with an unknown operator � to be determined from the consistency condition.
The key ingredient of the differential constraint analysis is to find such suitable

operator pairs {F1,�} in (0.2). This is a difficult problem. Indeed, the consistency
condition of the system leads to a PDE for �, which may be much more complicated
than the original one (0.1) for u (to say nothing about PDEs in the multi-dimensional
Euclidean space, where x ∈ IRN ). Nevertheless, there exists an essential advantage
of this constraint analysis: one needs to find a particular solution of the compatibility
equation.∗ In the methods listed above, the choice of suitable constraint operators
was heavily affected by applying new additional ideas, including some results of
classical group-invariant analysis and extensions, or those from neighboring areas of
the theory and applications of the PDEs under consideration.

In sufficiently general settings (that do not deal with hard consistency of the PDEs
for �) the scheme for the differential constraint method looks like using a practically
random choice of consistent constraint operators �. In a natural sense, such a proce-
dure does not essentially differ from trial and error dealing with a priori prescribed
classes of functions {u(x, t, α)} (α is a parameter, possibly functional) to be substi-
tuted into the PDE (0.1) to check whether some of the functions by chance satisfy it.

∗ We do not mention the second important aspect of the method: how to find the solutions, corresponding
to a consistent pair {F1,�}; this can also be extremely difficult.
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The differential constraint may determine the possible class of solutions {u(x, t, α)},
and, in many cases, this makes the procedure of seeking exact solutions algorithmic,
rather than the trivial, random substitution of functions.

It is worth mentioning what is meant here by exact solutions. Indeed, the best
opportunity is to detect the explicit solutions expressed in terms of elementary or, at
least, known functions of mathematical physics (Euler’s Gamma, Beta, elliptic, etc.),
in terms of quadratures, and so on. But this is not always the case, even for simple
semilinear PDEs. Therefore, exact solutions will mean those that can be obtained
from some ODEs or, in general, from PDEs of lower order than the original PDE
(0.1). For instance, such an extension of the notion of exact solutions was proposed
by A.A. Dorodnitsyn in the middle of the 1960s.

In particular, our goal is to find a reduction of the PDEs to a finite number of ODEs
representing a dynamical system.

Three-fold role of exact solutions: existence-uniqueness-asymptotics

Exact solutions of nonlinear models have always played a special role in the theory
of nonlinear evolution equations. For difficult quasilinear PDEs or systems, exact
solutions can often be the only possibility to formally describe the actual behavior
of general, more arbitrary solutions. Furthermore, exact solutions are often crucial
for developing general existence-uniqueness and asymptotic theory. There are many
remarkable examples of important nonlinear models where an appropriate exact so-
lution simultaneously reveals an optimal description of:

(i) local and global existence functional classes;

(ii) uniqueness classes; and,

(iii) classes of correct generic asymptotic behavior.

Actually, (iii) is well understood in rigorous or, more often, formal asymptotic anal-
ysis of nonlinear PDEs. The first two conclusions (i) and (ii) are harder to see and
difficult to prove, even for reasonably simple evolution PDEs. Moreover, the par-
ticular space-time structure of such solutions may also detect useful features of the
new methods and tools, which are necessary for studying general solutions. In the
theory of parabolic reaction-diffusion equations, there exist seminal examples where
the exact solutions determine the correct rescaled variables obtained via nonlinear
transformations, in terms of which the Maximum Principle can be applied to extend
regularity properties of these particular solutions to more general ones.

More and more often, modern theory of evolution PDEs deals with classes of
extremely difficult, strongly nonlinear, higher-order equations with degenerate and
singular coefficients. In particular, for at least twenty five years, a permanent source
of such models is thin film theory, generating various fourth, sixth and higher-order
thin film equations with non-monotone and non-divergent operators (essential parts
of Chapters 3 and 6 are devoted to such equations). Bearing in mind the multi-
dimensional setting in IRN for N ≥ 2, it is unlikely that a rigorous, mathemat-
ically closed existence-uniqueness-regularity and singularity (blow-up) theory for
these equations in different free-boundary settings will be developed soon. New ex-
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xvi Exact Solutions and Invariant Subspaces

act solutions of thin film models will continue to supply us with a new regularity
information that will be used to correct the existing methods in order to create a
more general theory.

Linear invariant subspaces for nonlinear operators

As a key idea, we seek exact solutions of (0.1) on linear n-dimensional subspaces
which in many cases are invariant under the nonlinear operators of the models. A
formal general scheme for the approach is easy, though, as often happens, its abstract
mathematical formulation leads to rather obscure explanations.

We define a subspace in terms of the linear span denoted by

Wn = L{ f1(x), ..., fn(x)},
with n unknown linearly independent basis functions { f j (x)}. For instance, these
functions are picked to be solutions of a given linear PDE

P[ f ] = 0, (0.3)

where P = P(Dx ) is the annihilator of subspace Wn , in the sense that there holds
P : Wn → {0}. Then (0.1) is replaced by a system{

F[u] = 0,
�[u] ∈ Wn,

(0.4)

where � is another unknown function (or, in general, a nonlinear operator). Using the
annihilator (0.3), the second condition in (0.4) is written as a differential constraint

P[�[u]] = 0.

Here the main difficulty appears: how to choose consistent pairs of operators � and
P . We next can look for solutions in the form of finite expansions

�[u(x, t)] = C1(t) f1(x)+ ...+ Cn(t) fn(x) ∈ Wn for t ∈ IR, (0.5)

with unknown coefficients {C j (t)}.
Finally, as the crucial step, assuming that the inverse �−1 exists, we demand the

subspace Wn be invariant under the superposition of operators,

F ◦�−1 : Wn → Wn . (0.6)

Then the operator F ◦�−1 is said to preserve or admit the subspace Wn . Substituting
the expansion (0.5) into the PDE (0.1), most plausibly, leads to a low-dimensional
reduction of the original PDE restricted to this invariant subspace.

In the case of first-order (in t) evolution PDEs with independent variables x and t ,

ut = F[u] ≡ F(u, ux , ux x , ...), (0.7)

taking the identity � = I in (0.5), it follows that if Wn is invariant under F , then

F[u] = 	1(C1, ...,Cn) f1 + ...+	n(C1, ...,Cn) fn ∈ Wn for u ∈ Wn, (0.8)

where {	 j } denote the expansion coefficients of F[u] on Wn . Hence, (0.7) restricted
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Introduction xvii

to the invariant subspace Wn is the n-dimensional dynamical system (DS) for the
expansion coefficients {C j (t)} in (0.5),{C ′1 = 	1(C1, ...,Cn),

... ... ...
C ′n = 	n(C1, ...,Cn).

(0.9)

For n = 1, 2, or 3, such DSs can often be studied on the phase-plane, or, at least,
admit asymptotic analysis of some of their generic, stable orbits.

We will give several examples for which the above approach represents an easy
way to predict such a linear structure of exact solutions. For instance, let us observe
that, under the same invariance conditions, the second-order evolution equation

utt = F[u] ≡ F(u, ux , ux x , ...)

admits solutions (0.5), where � = I , with a harder 2nth-order DS,{C ′′1 = 	1(C1, ...,Cn),
... ... ...

C ′′n = 	n(C1, ...,Cn).

As a principal feature, this book can be viewed as a practical guide that introduces
a number of techniques for constructing exact solutions of various nonlinear PDEs
in IRN for arbitrary dimensions N ≥ 1. Indeed, several such exact solutions can
be obtained by other techniques including differential constraints which have been
successfully developed algorithmically on the basis of computer symbolic manip-
ulation techniques. Nevertheless, some other solutions, especially those of higher-
order equations in IRN , will be difficult to detect by such “purely computational”
approaches. The ideas of linear invariant subspaces can play a decisive role in ex-
plaining such a geometric origin of invariant manifolds, the corresponding exact so-
lutions, and extensions to other PDEs.

Examples: classic fundamental solutions belong to invariant subspaces

For linear homogeneous PDEs, the three-fold existence-uniqueness-asymptotics na-
ture (i)–(iii) of exact solutions is straightforward in view of the classical concept of
fundamental solutions of linear operators and convolution representations of general
solutions. It is remarkable and surprising that, for a number of classical linear and
quasilinear models, the fundamental solutions are associated with linear subspaces
invariant under nonlinear operators.

The heat equation and linear subspace for its fundamental solution

Consider the canonical heat equation (HE)

ut = 
u in IRN × IR+
(

 =∑N

i=1
∂2

∂x2
i

)
. (0.10)

Its fundamental solution denoted by b(x, t) is given by the Gaussian kernel,

b(x, t) = (4π t
)− N

2 e−
|x |2
4t , (0.11)
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xviii Exact Solutions and Invariant Subspaces

and takes Dirac’s delta δ(x) as initial data,

lim t→0+ b(x, t) = δ(x), (0.12)

where the convergence is understood in the sense of distributions.
As is well known in parabolic theory (see e.g., Friedman [205]), the structure of

the Gaussian kernel in (0.11) illustrates Tikhonov’s uniqueness (1935) [552] and local
existence functional class of measurable functions,

U = {v(x) : ∃ A > 0 and a > 0, such that |v(x)| ≤ Aea|x |2 in IRN
}
.

Then the Cauchy problem for the HE with initial data u0(x) ∈ U has a unique
solution that is local in time and is given by the convolution

u(x, t) = b(·, t) ∗ u0 ≡
(
4π t

)− N
2

∫
IRN

e−
|x−y|2

4t u0(y) dy. (0.13)

By checking the convergence of the integral, it is easy to see that this formula guaran-
tees the existence and uniqueness of the solution locally in time, at least for all t < a

4 .
In order to make the solution global in time, another growth condition should be im-
posed on the initial data, e.g., assuming that |u0(x)| ≤ Aea|x |2−ε

, with an arbitrarily
small constant ε > 0. In this case, the integral in (0.13) is finite for all t > 0.

The explicit formula (0.13) also determines the asymptotic behavior as t →∞ of
global solutions. Namely, if initial data are integrable, u0 ∈ L1(IRN ), and have unit
mass,

∫
u0(x) dx = 1, as the fundamental solution does in (0.12), then

u(x, t) ≈ b(x, t) for t � 1. (0.14)

It is convenient to express this asymptotic convergence in the rescaled sense by using
the time-scaling factor t N/2 as in (0.11). Then (0.14) reads

t
N
2
∣∣u(x, t)− b(x, t)

∣∣→ 0 as t →∞ (0.15)

uniformly on expanding sets {|x | ≤ c
√

t}, where c > 0 is an arbitrary constant.

Invariant subspaces. The exponential structure of the fundamental solutions (0.11)
suggests introducing the logarithmic variable

v(x, t) = ln b(x, t) ≡ − N
2 ln(4π t)− 1

4t |x |2,
where the right-hand side belongs to the 2D subspace W2 that is given by the span

W2 = L{1, |x |2}. (0.16)

The new function v = ln u satisfies the semilinear parabolic equation

vt = 
v + |∇v|2 ≡ F[v], (0.17)

that contains the quadratic Hamilton–Jacobi operator |∇v|2. Thus, the logarithmic
change of variables leads to the nonlinear operator F in (0.17) that obviously pre-
serves the subspace W2. Substituting into (0.17) an arbitrary function

v(x, t) = C0(t)+ C1(t)|x |2 ∈ W2 for t ≥ 0, (0.18)
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we find by calculating 
|x |2 = 2N and |∇|x |2|2 = 4|x |2 that

C ′0 + C ′1|x |2 = F
[
C0 + C1|x |2

] ≡ 2NC1 + 4C2
1 |x |2.

This yields the dynamical system {
C ′0 = 2NC1,

C ′1 = 4C2
1 ,

(0.19)

which is easily integrated. The second equation implies that C1(t) = − 1
4t up to

translations in t . Therefore, C ′0 = − N
2t , and this gives the fundamental solution (0.11)

in terms of the original variable u = ev .
This analysis admits some easy and immediate extensions. Firstly, it is evident that

the operator in (0.17) admits the (N+1)-dimensional invariant subspace

WN+1 = L{1, x2
1 , ..., x2

N } �⇒ v(x, t) = C0(t)+C1(t)x
2
1+...+CN (t)x2

N . (0.20)

The DS then becomes (N+1)-dimensional,{
C ′0 = 2

∑
(i) Ci ,

C ′j = 4C2
j , j = 1, ..., N,

which can also be integrated. Secondly, one can consider the general invariant sub-
space of arbitrary quadratic polynomials

WM = L{1, xi , xi x j , i, j,= 1, ..., N} (0.21)

of dimension M = N2+3N+2
2 , where the expansion contains more coefficients gen-

erating an M-dimensional DS. Clearly, using the orthogonal transformations and
translations, the exact solutions on the subspace (0.21) reduce to those on (0.20). But
this is not the case for the corresponding second-order hyperbolic equation

vt t = 
v + |∇v|2
for which the family of solutions on the subspaces (0.21) and (0.20) differ essentially.
In the corresponding DS, we have the second-order derivatives C ′′j , and hence, both
{C j (0)} and {C ′j (0)} should be prescribed as initial data, so, for the subspace (0.21),
it is a 2M-dimensional DS.

The porous medium equation and linear subspace for its fundamental solution

For quasilinear parabolic equations for which convolution and eigenfunction expan-
sion techniques are not applicable the determining features (i)–(iii) of exact solutions
are not straightforward and demand different and difficult nonlinear mathematics.
Consider the classic porous medium equation (PME)

ut = 
um in IRN × IR+, (0.22)

where m > 1 is a fixed exponent. By the Maximum Principle, the PME possesses
nonnegative solutions u(x, t), so that um makes sense for any non-integer value of
m. The advanced theory of such degenerate parabolic equations that admit weak
(generalized) solutions can be found in a number of monographs on parabolic PDEs;
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xx Exact Solutions and Invariant Subspaces

see [148, 206, 245]. For m = 1, (0.22) reduces to the heat equation (0.10), so the
PME can be viewed as its nonlinear extension.

Let us see if the quasilinear PME inherits some distinctive evolution properties
available for the HE, and, especially, whether it admits a kind of fundamental solu-
tion to be understood, of course, in a different nonlinear way. The answer is yes, and
the PME has the famous Zel’dovich–Kompaneetz–Barenblatt (ZKB, 1950) source-
type self-similar solution that is again denoted by b(x, t),

b(x, t) = t−kN f (y), y = x
tk , where k = 1

N(m−1)+2 . (0.23)

The rescaled profile f (y) is given explicitly,

f (y) = [A0(a2 − |y|2)+
] 1

m−1 , with the constant A0 = k(m−1)
2m , (0.24)

where (·)+ denotes the positive part max{(·), 0}. The constant a > 0 characterizes
the preserved total mass of the solution. We want b(x, t) to initially take Dirac’s
delta, as shown in (0.12). Direct computations yield the unique value of a = a(m)
(see e.g., [509, p. 21]),

1 =
∫

IRN
f (y) dy ≡ N ωN

∫ a

0
zN−1[A0(a2 − z2)

] 1
m−1 dz

�⇒ a
2

m−1+N = π− N
2 A

− 1
m−1

0
�( m

m−1+ N
2 )

�( m
m−1 )

, (0.25)

where � is Euler’s Gamma function, and ωN = 2πN/2

N�(N/2) denotes the volume of the

unit ball in IRN .
Returning to the rescaled fundamental profile (0.24), it follows that, unlike (0.11)

for the heat equation, b(x, t) is compactly supported in x for any t > 0. This is a
striking property of the finite propagation for the quasilinear degenerate parabolic
equation (0.22). At the free-boundary (interface), where |y| = a, the profile f (y)
has finite regularity, and f m−1(y) is just Lipschitz continuous.

Thus, it seems that the solutions of the HE and the PME correspond to entirely
different functional settings. Nevertheless, a striking continuity with respect to the
exponent m can be observed when passing to the limit as m → 1+ in (0.24). Then,
using that, in (0.25), the ratio of Gamma functions is equal to

( m
m−1

)N/2 + ..., it is
easy to conclude that, uniformly in y,

f (y)→ (
4π
)− N

2 e−
|y|2

4 as m → 1+,

where, on the right-hand side, there appears the rescaled Gaussian kernel of the fun-
damental solution (0.11). This means a continuous “branching” at m = 1+ of the
solution (0.24) from the fundamental solution (0.11) of the linear HE. Once more,
this asserts using the term fundamental solution of the nonlinear PME.

It turns out that, in PME theory, the ZKB solution plays a similar three-fold role
(i)–(iii). Firstly, the inverse parabolic profile of the rescaled kernel f (y) in (0.24)
determines the class of uniqueness and local existence,

U = {v(x) ≥ 0 : ∃ A > 0 such that v(x) ≤ A(1+ |x |2) 1
m−1 in IR N

}
.
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It follows by comparison with the following separate variables blow-up solution:

u∗(x, t) = C∗|x | 2
m−1 (T − t)−

1
m−1 , with C∗ =

[ k(m−1)
2m

] 1
m−1 ,

that the weak solution exists, at least for all t < T ∼ A1−m . For global exis-
tence it suffices to restrict the growth rate at infinity, e.g., by assuming that u0(x) =
O
(|x | 2

m−1−ε
)

as x →∞ for some arbitrarily small ε > 0.
Secondly, in a similar manner, for nonnegative initial data u0 ∈ L1(IR N ) with unit

mass,
∫

u0(x) dx = 1, (0.14) holds. The asymptotic convergence (0.14) is again to
be understood in the rescaled sense (0.15) with the time factor tkN , instead of t N/2.
Note that k = 1

2 for m = 1. The convergence is uniform on compact sets {|x | ≤ c tk},
c > 0, corresponding to the new similarity variable y in (0.23).

Invariant subspaces. Though the ZKB-solution (0.23) is a classical example of self-
similar solutions induced by a group of scaling transformations, let us now interpret it
in terms of the same invariant subspace (0.16). The rescaled inverse parabolic profile
(0.24) suggests using the new dependent variable

v = um−1,

which is known as the pressure in the theory of filtration of liquids and gases in
porous media. Most of the regularity results for the PME are formulated in terms of

the pressure. Substituting u = v
1

m−1 into the PME yields the pressure equation

vt = v
v + 1
m−1 |∇v|2 ≡ F[v]. (0.26)

Similar to the transformed HE (0.17), the quadratic operator F in (0.26) preserves
the subspace (0.16). Plugging (0.18) yields a slightly different dynamical system for
the expansion coefficients, {

C ′0 = 2NC0C1,

C ′1 = 2
(m−1)k C2

1 .

As in (0.19), the second equation is integrated independently, determining (0.23).
We easily reveal the dynamics on other extended subspaces of F in (0.26): the

subspace (0.20) remains invariant, leading to the (N+1)-dimensional DS{
C ′0 = 2C0

∑
(i) Ci ,

C ′j = 2C j
∑

(i) Ci + 4
m−1 C2

j , j = 1, ..., N.

On the invariant subspace of arbitrary quadratic polynomials (0.21), the PME be-
comes an M-dimensional DS which is again reduced to that on the subspace (0.20)
via rotations and translations. The quasilinear degenerate hyperbolic equation

vt t = v
v + 1
m−1 |∇v|2

restricted to WM becomes a 2Mth-order DS.

Elementary extensions to higher-order equations. We formally combine operators
in (0.17) and (0.26), add extra operators, and create a fourth-order parabolic equation

vt = F[v] ≡ −α
2v + β
v + γ v
v + δ|∇v|2 + µv + ν, (0.27)

with six arbitrary constants denoted by Greek letters. Such PDEs belong to the class
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of Kuramoto–Sivashinsky equations from flame propagation theory that will be stud-
ied in the subsequent chapters. Obviously, the fourth-order term−α
2v vanishes on
the invariant subspace (0.21), so (0.27) on WM is an M-dimensional DS. The corre-
sponding hyperbolic PDE is a Boussinesq-type equation from water-wave theory,

vt t = −α
2v + β
v + γ v
v + δ|∇v|2 + µv + ν,

which becomes a 2Mth-order DS on the same invariant subspace WM .

Models, targets, prerequisites

On nonlinear models and PDEs to be considered

The underlying idea of invariant subspaces for nonlinear operators applies here to a
large variety of nonlinear PDEs from many areas of mathematics, mechanics, and
physics. Exact solutions on invariant subspaces arise in many quasilinear equations
and various free-boundary problems from different applications. In this book, we
will deal with various PDEs and models that exhibit some common nonlinear invari-
ant features. Beyond this “invariant essence,” many of the models have nothing in
common and often belong to completely disjoint areas of mathematics.

We begin Chapter 1 with some history and present those classical and more recent
examples of interesting solutions on invariant subspaces that were constructed in
the twentieth century. In the rest of the book, we develop several techniques for
constructing exact solutions that describe singularity behavior for various nonlinear
PDEs, including (see Index for details and precise references)

- reaction-diffusion-absorption PDEs and combustion models;
- parabolic and hyperbolic PDEs with the p-Laplacian operators;
- gas dynamics models, including the Kármán–Fal’kovich–Guderley equation;
- fourth, sixth, and 2mth-order thin film equations;
- fourth-order Riabouchinsky–Proudman–Johnson equations;
- free-boundary problems for the Navier–Stokes equations in IR2;
- Kuramoto–Sivashinsky equations and extensions;
- KdV-type equations with blow-up, nonlinear dispersion PDEs with compactons;
- higher-order extensions of the Rosenau–Hyman equation;
- modifications of the Fuchssteiner–Fokas–Camassa–Holm equations;
- Green–Naghdi equations;
- Harry Dym-type equations;
- quasilinear pseudo-parabolic (magma) equations;
- quasilinear wave equations and dispersive Boussinesq models;
- Zabolotskaya–Khokhlov-type equations;
- Zakharov–Kuznetsov equation with nonlinear dispersion;
- quasilinear parabolic, hyperbolic, and KdV-type systems;
- Maxwell equations from nonlinear optics;
- Monge-Ampère-type equations of second and higher orders;
- logarithmic Gauss curvature equations;
- non-integrable PDEs admitting bilinear Baker–Hirota representations; etc.
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In some cases, using exact solutions, we will describe interesting evolution proper-
ties that are related to singularity blow-up or extinction phenomena, finite interface
propagation and regularity, with the special attention to oscillatory, changing sign
behavior of weak solutions near interfaces. For several PDEs, this leads to many
mathematical open problems, which we state when necessary. Most of the results are
published for the first time.

Main problems and targets

There exist two main fundamental problems in invariant subspace theory:

• Problem I, F �→ {Wn}: Given a nonlinear operator F, which invariant subspaces
Wn does it preserve?

• Problem II, Wn �→ {F}: Given a subspace Wn, which nonlinear operators F
admit it?

In addition, there are a number of other practical questions, e.g.,

• Which operators F admit higher-dimensional invariant subspaces as further ex-
tensions of the basic, simple invariant subspaces?

• Is there a well-defined procedure to detect invariant subspaces and their maximal
dimensions (i.e., maximal dynamical systems that are restrictions of the PDE to the
subspace)?

Problem I is fundamental, and is key for the existence of lower-dimensional reduc-
tions of the PDEs. For arbitrary operators F , this does not admit a complete solution,
but we will successfully study Problem I for many particular classes of nonlinear
differential and discrete operators.

On the contrary, Problem II admits a complete algorithmic solution. It was solved
for N = 1, i.e., for ordinary differential operators, by the second author of the book
[544, 545] in terms of Lie–Bäcklund symmetries of linear ODEs. For general opera-
tors in IRN , Problem II was solved in Kamran–Milson–Olver [312] by introducing
a new approach to the annihilating differential operators. Nevertheless, as often hap-
pens in mathematics, a complete algorithmic solution does not assume easy practical
applications of the results. It is said in [312, p. 316] that (for operators in IRN ) “The
formulae for the affine annihilators and annihilators are often extremely complicated,
even for relatively simple subspaces.” Bearing in mind the practical aspects of cal-
culations, the geometric concepts of invariant subspaces will continue to play an
important role.

The general problem of finding invariant subspaces for wide classes of nonlinear
operators in IR N is not completely solved here. We suspect that such a problem can-
not be tackled with sufficient generality. Nevertheless, for quadratic and polynomial
operators in IR, we present a complete classification of some types of invariant sub-
spaces. We also introduce examples of invariant subspaces and exact solutions for
classes of multi-dimensional quasilinear operators in IRN .
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Partially invariant subspaces: invariant sets

Another related direction of our analysis is the construction of invariant sets M ⊂
Wn on a linear subspace Wn for operator F . This simply means that Wn is partially
invariant, i.e., F[Wn] �⊆ Wn , but, for some part M of Wn ,

F[M] ⊆ Wn . (0.28)

The principal difference from the invariant subspaces for which F : Wn → Wn is
that condition (0.28) leads to an overdetermined DS for the expansion coefficients
{C j (t)} in (0.5).

Let us illustrate this for equation (0.7), assuming that Wn is not invariant under F
in the sense of (0.6) with � = I . Suppose, for instance, that F maps Wn onto an
(n+s)-dimensional subspace, so that s new functions appear in the expansion

F : Wn → Wn+s = L{ f1, ..., fn, fn+1, ..., fn+s },
and, instead of (0.8),

F[u] = 	1(·) f1 + ...+	n(·) fn

+	n+1(·) fn+1 + ...+	n+s(·) fn+s ∈ Wn+s .

This leads to the same DS (0.9) accompanied by s extra algebraic conditions{
	n+1(C1, ...,Cn) = 0,

... ... ...
	n+s(C1, ...,Cn) = 0.

Such overdetermined DSs are not always consistent and are hard to study. The proof
of the existence of the corresponding solutions on M becomes more involved, though
we present a number of nonlinear evolution PDEs for which such overdetermined
DSs are consistent.

Partial invariance as a manifestation of “partial integrability”

We discuss the principal link to integrable equations which admit countable sets
of exact N-soliton and other solutions. We illustrate this by starting with the most
classical integrable Korteweg–de Vries (KdV) equation

ut + 6uux + ux x x = 0, (0.29)

which has been known since the 1870s and was first derived by J. Boussinesq. Fol-
lowing the standard scheme for integrable PDEs (see Newell [436, Ch. 4]), we apply
the change u = wx , yielding the potential KdV equation

wt + 3(wx)
2 +wx x x = 0.

Next, setting

w = 2(ln |v|)x = 2vx
v , so that u = 2(ln |v|)x x , (0.30)

reduces it to the homogeneous quadratic equation

F∗[v] ≡ vvxt − vxvt + vvx x x x − 4vxvx x x + 3(vx x)
2 = 0. (0.31)
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As a final step, the Baker–Hirota bilinear method † [284] is applied to derive a count-
able set of N-solitons {vk(x, t)}, such that each solution vk(x, t) of (0.31) belongs
to a linear subspace of exponential functions. We will use various linear subspaces
to illustrate finite-dimensional dynamics, which exist for equation (0.31) and related
models and correspond to well-known soliton-type solutions.

1-soliton on subspace Wexp
2 . This is the simplest travelling wave (TW) given by a

single exponent,

v1(x, t) = 1+ eθ1(x,t), where θ1(x, t) = p1x − p3
1t (0.32)

and p1 �= 0 is a constant. Clearly, in this case, the 2D linear subspace (a module)

W exp
2 = L{1, ep1x } (0.33)

is invariant under the quadratic operator F∗ in (0.31). Indeed, as usual, looking for
solutions of (0.31) on W exp

2 ,

v(x, t) = C1(t)+ C2(t)ep1 x , (0.34)

and plugging it into (0.31) yields a single term, (C1C ′2−C2C ′1+ p3
1C1C2)ep1x = 0,

since the coefficient of the highest-degree exponential e2p1x vanishes, as the integra-
bility demands. Therefore, the PDE (0.31) on W exp

2 reduces to the single ODE (an
underdetermined DS)

C1C ′2 − C2C ′1 = −p3
1C1C2 �⇒ (C2

C1

)′ = −p3
1

C2
C1

, (0.35)

so, on integration, C2(t) = AC1(t)e−p3
1 t , where A is a constant. Here, C1(t) �= 0

is an arbitrary smooth function that is eliminated by the differential change (0.30).
Thus, up to an arbitrary multiplier C1(t), (0.34) represents the 1-soliton solution
(0.32) belonging to the invariant subspace W exp

2 . Notice that exact solutions (0.34)
on W exp

2 can satisfy various PDEs involving operator F∗, e.g.,

αvt t + βvt = F∗[v]+ µv + ν + σvx x + ρ
[
vvx x − (vx )

2
]

+ ε(vvx x x − vxvx x )+ λ
[
vvx x x x − (vx x)

2
]+ ... ,

(0.36)

with some linear and nonlinear operators preserving the subspace (0.33).

2-soliton on Wexp
4 . The 2-solitons are composed of three exponential patterns

v2(x, t) = 1+ eθ1 + eθ2 + C4eθ1+θ2, (0.37)

where, as in (0.32), θ1 = p1x− p3
1t , θ2 = p2x− p3

2t , and p1 �= p2. In soliton theory
[436, p. 123], applying the Baker–Hirota differential operator to (0.31) yields

C4 =
( p1−p2

p1+p2

)2
.

As above, we can interpret (0.37) by using the linear subspace (module)

W exp
4 = L{1, ep1x , ep2x , e(p1+p2)x}.

† The bilinear differential operator in (0.31), transformations, such as (0.30), hierarchies of the KdV and
KP equations, hyperelliptic representation of periodic solitons, etc., were introduced by H.F. Baker in
1903, [22]; see details in Athorne–Eilbeck–Enolskii [20, p. 275].
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For instance, if W exp
4 = L{1, ex , e2x , e3x} (this assumes more nonlinear interaction

between terms than for the standard 2-soliton; see below), looking for

v(x, t) = C1(t)+ C2(t)ex + C3(t)e2x + C4(t)e3x (0.38)

and substituting into (0.31) yields(
C1C ′2 − C2C ′1 + C1C2

)
ex + 2

(
C1C ′3 − C3C ′1 + 8C1C3

)
e2x

+ [C2C ′3 − C3C ′2 + 3
(
C1C ′4 − C4C ′1

)+ C2C3 + 81C1C4
]
e3x

+ 2
(
C2C ′4 − C4C ′2 + 8C2C4

)
e4x + (C3C ′4 − C4C ′3 + C3C4

)
e5x = 0.

(0.39)

Hence, for the given module W exp
4 , there exists another module W̃ exp

5 such that

F∗ : W exp
4 → W̃ exp

5 = L{ex , e2x , e3x , e4x , e5x}
(the coefficients of 1 and e6x vanish). Equating the five coefficients in (0.39) to zero
yields the overdetermined system of five equations for four functions

C1C ′2 − C2C ′1 = −C1C2,
C1C ′3 − C3C ′1 = −8C1C3,
C2C ′3 − C3C ′2 + 3

(
C1C ′4 − C4C ′1

)+ C2C3 + 81C1C4 = 0,
C2C ′4 − C4C ′2 = −8C2C4,
C3C ′4 − C4C ′3 = −C3C4.

(0.40)

According to (0.28), the last two ODEs (projections onto e4x and e5x ) determine an
invariant set M on W exp

4 , in the sense that F[u] ∈ W exp
4 for all u ∈ M . Hence, the

module W exp
4 is partially invariant. Writing all the ODEs (0.40), excluding the third

one, in the form of (0.35) and integrating gives

C2(t) = AC1(t)e−t , C3(t) = BC1(t)e−8t , and C4(t) = DC1(t)e−9t ,

where, as above, C1(t) is arbitrary, and A, B , and D are constants. Plugging these
expressions into the long third ODE in (0.40), rewritten in the form of

C2
2

(C3
C2

)′ + 3C2
1

(C4
C1

)′ + C2C3 + 81C1C4 = 0,

we obtain a single relation between constants, AB = 9D. This gives two exact
solutions of 2-soliton type

v(x, t) = 1± (ex−t + 9be2(x−4t)
)+ be3(x−3t) (b ∈ IR).

A similar interpretation of general N-soliton solutions means that, for the inte-
grable equation (0.31),

∃ solutions on partially invariant modules W exp
n for arbitrarily large n.

In this sense, the fully integrable equations represent an exceptional limit case of evo-
lution PDEs that possess exact solutions belonging to an infinite number of invariant
sets on linear exponential subspaces (modules) of arbitrarily large dimension.

The invariance under the nonlinear operators can be treated as a kind of a partial
integrability property (cf. “...remnants of integrability” [192, p. 573]), in the sense
that we describe classes of nonlinear non-integrable PDEs for which only a finite
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number of invariant subspaces Wn , or sets with exact solutions, can be detected.
In fact, for any arbitrarily large l, there exists a family of nonlinear non-integrable
PDEs possessing at least l different types of solutions (looking like “N-solitons”) on
linear invariant subspaces Wn , or on sets, with n large enough (see Section 1.5.2).
Such PDEs may be treated as intermediate, i.e., between general equations with no
invariant properties at all, and the rather thin class of fully integrable PDEs.

Trigonometric subspace Wtr
3 : TWs. We next try solutions

v(x, t) = C1 + C2 cos γ x + C3 sin γ x ∈ W tr
3 = L{1, cos γ x, sin γ x}, (0.41)

where γ ∈ IR is a parameter. W tr
3 is invariant under F∗, so that restricting the PDE

(0.31) to W tr
3 yields three ODEs

C2C ′3 − C3C ′2 + 4γ 3
(
C2

2 + C2
3

) = 0,
C1C ′3 − C3C ′1 + γ 3C1C2 = 0,
C2C ′1 − C1C ′2 + γ 3C1C3 = 0.

The matrix of this first-order DS is singular and nontrivial solutions are possible for
C1(t) ≡ 0. This gives the TW

v(x, t) = sin(γ x + 4γ 3t).

In terms of the original function u = 2(ln |v|)x x , such solutions describe moving
blow-up singularities with the following behavior near the poles:‡

u(x, t) ∼ 1
(x−x0(t))2 , where x0(t) = −4γ 2t + constant. (0.42)

A slight modification of the KdV equation (0.31) produces another interesting
evolution on W tr

3 . For instance,

v(x, t) = 1+ cos(x + t) ≡ 2 cos2
[1

2 (x + t)
]

satisfies F∗[v] = 4.

This function, being extended by zero in {(x, t) : 1
2 |x + t| ≥ π

2 }, becomes a
smooth compacton. Such compact structures entered nonlinear dispersion theory in
the 1980s. We will discuss their mathematical well-posedness in Chapters 3–7.

Polynomial subspace Wp
4 : second rational solution. Similarly, equation (0.31) can

be considered on the polynomial subspace such as

W p
4 = L{1, x, x2, x3}, i.e., v(x, t) = C1(t)+C2(t)x+C3(t)x

2+C4(t)x
3, (0.43)

which leads to a similar DS. Solving it yields

v(x, t) = 36t + b2x + 3bx2 + 3x3 (b ∈ IR),

which, by (0.30), gives the second rational solution u2(x, t) of the KdV equation
with the singular behavior (0.42) near poles

(
these are known since 1978, see survey

[407]; the first rational solution is elementary, u1(x, t) = − 2
x2

)
.

‡ The study of the Schrödinger operator with the inverse square potential U(x) ∼ (x − x0)
−2 goes

back to Hardy (1920), [280] (Hardy’s inequality for embeddings of functional L2 spaces with singular
weights) and Friedrichs (1935), [208].
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Polynomial-trigonometric subspace W4
p,t: positons. Consider next the subspace

W p,t
4 = L{1, x, cos x, sin x}, composed of basis functions of subspaces in (0.43) and

(0.41). Plugging the expansion on W p,t
4 into equation (0.31) gives the solutions

v(x, t) = C1(t)+ C2(t)x + C3(t) cos x + C4(t) sin x, where
C1C ′2 − C2C ′1 + C3C ′4 − C4C ′3 + 2

(
C2

3 + C2
4

) = 0,
C3C ′1 − C1C ′3 + C1C4 − 3C2C3 = 0,
C1C ′4 − C4C ′1 + C1C3 + 3C2C4 = 0,
C2C ′4 − C4C ′2 + C2C3 = 0,
C3C ′2 − C2C ′3 + C2C4 = 0.

The first three ODEs are projections of the PDE onto 1, cos x , and sin x respectively,
while the last two represent the expansion coefficients of x cos x and x sin x that do
not belong to W p,t

4 . Similar to (0.40), this DS yields two solutions

v(x, t) = ±(3t + x)+ sin(x + t),

which are indeed the positon solutions of the KdV equation. Such positons, or har-
monic breathers, have been recognized since the 1980s, [16, 418]. They exhibit the
same type (0.42) of singularity (for continuous integrable models, all known positons
have singularities), but a different behavior as x → ∞. Similarly, the polynomial-
exponential subspace W p,e

4 = L{1, x, cosh x, sinh x} leads to the negatons, that were
first constructed in 1996, [485].

Exponential-trigonometric subspace W4
e,t: complexitons. We now look for so-

lutions of (0.31) on the trigonometric-exponential subspace,

v(x, t) = C1(t) cos x + C2(t) sin x + C3(t)ex + C4(t)e−x .

Substituting yields five ODEs being the projections of (0.31) onto 1, ex sin x , ex cos x ,
e−x cos x , and e−x sin x respectively,

−C2C ′1 + C1C ′2 + 2C4C ′3 − 2C3C ′4 + 4
(
C2

1 + C2
2

)+ 16C3C4 = 0,
−C3C ′1 − C3C ′2 + (C1 + C2)C ′3 − 4C2C3 = 0,
−C3C ′1 + C3C ′2 + (C1 − C2)C ′3 − 4C1C3 = 0,
C4C ′1 + C4C ′2 − (C1 + C2)C ′4 − 4C1C4 = 0,
−C4C ′1 + C4C ′2 + (C1 − C2)C ′4 − 4C2C4 = 0.

These are easily integrated by adding and subtracting two pairs of similar ODEs.
Besides TWs, we obtain one more solution

v(x, t) = cos(x − 2t)+ sinh(x + 2t), (0.44)

which is determined up to an arbitrary smooth multiplier C(t). This is precisely
the complexiton solution that was constructed rather recently, [405]. Concerning a
perturbed equation, note that v(x, t) = sin(x − 4t) solves F∗[v] = 8, and v(x, t) =
cos(x − 2t)+ cosh(x + 2t) (cf. (0.44)) satisfies the equation F∗[v] = 12.

We have illustrated all types of known elementary soliton-type solutions of (0.31).
All these solutions of the KdV equation can be constructed by the Wronskian method
for integrable equations; a modern description is given in [407]. Similar DS reduc-
tions are also key for classes of non-integrable PDEs, though, of course, the consis-
tency of DSs can be tricky and will be established in a few cases.
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Sign-invariants for second-order parabolic equations (Chapter 8)

We also aim to emphasize a new interesting aspect of our exact solutions. It turns out
that, for second-order parabolic equations, many solutions on invariant subspaces
Wn may induce so-called sign-invariants, which are nonlinear differential operators
H[u] = H (x, u, Du, D2u, ...) preserving both their signs on evolution orbits. For
the Cauchy problem in IRN × IR+ with initial data u0(x), this means that

H[u0(x)] ≤ 0 (≥ 0) in IRN �⇒ H[u(x, t)] ≤ 0 (≥ 0) in IRN for t > 0. (0.45)

Such partial differential inequalities are naturally associated with different barrier
techniques in the theory of parabolic equations, where the Maximal Principle applies
to control the operator signs on evolution orbits. Barrier approaches are the corner-
stone of regularity and asymptotic theory of linear and nonlinear parabolic PDEs.
For instance, classical Schauder and Bernstein estimates, as well as the Nash–Moser
technique, are based on the Maximum Principle and use barrier analysis of parabolic

In (0.45), the sign-invariant H preserves both signs, ≥ 0 and ≤ 0, on solutions of
the parabolic PDE. The connection with invariant subspaces Wn is as follows:

H[u] = 0 on Wn (or on a set M ⊂ Wn). (0.46)

Vice versa, the equality (0.46) can be used to determine the corresponding sign-
invariant H[u]. We will show how to reconstruct such operators H by means of the
structure of the invariant (or partially invariant) subspaces Wn . Of course, (0.46) is
then a differential constraint generating solutions on Wn . It is important that, un-
like just the constraint (0.46), the partial differential inequalities (0.45) characterize
evolution properties of wider classes of solutions than simply those on Wn .

Discrete operators: applications to moving mesh methods and lattices (Chapter 9)

We will also deal with discrete nonlinear operators F for which we prove some re-
sults on the existence of linear invariant subspaces Wn and construct exact solutions
of some discrete equations. As a further application, we describe invariant aspects of
moving mesh methods (MMMs), which have become a powerful tool of numerical
solutions of nonlinear PDEs possessing blow-up and other evolution singularities.
We also introduce exact solutions on invariant subspaces for some anharmonic lat-
tices associated with different evolution PDEs.

Prerequisites: a GUIDE on models, nonlinear PDEs, and solutions

The book is meant for advanced graduate level students and does not assume a
knowledge of the fundamentals of the mathematical theory of PDEs and functional
analysis, except the basics of the Maximum Principle for second-order parabolic
equations in the theory of sign-invariants in Chapter 8 (though we have included nec-
essary preliminary information). The knowledge of some standard aspects of ODE
theory would be useful for performing some analytical manipulations and phase-
plane diagrams. Sometimes our discussions around exact solutions on invariant sub-
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spaces include specific aspects of PDE theory. These parts can be omitted without
causing any future confusion.

We hope that the present methods for parabolic, hyperbolic, KdV-type, and nonlin-
ear dispersion PDEs, as well as discrete equations, will be useful for the readers with
a mathematical background that is not necessarily applied or pure. We expect that
several aspects of our analysis can be fruitful for researchers and students specializ-
ing in mechanics, physics, engineering, and those working with nonlinear PDEs.
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CHAPTER 1

Linear Invariant Subspaces in Quasilinear
Equations: Basic Examples and Models

We begin this chapter with a few well-known and even classical examples of exact solutions
of various nonlinear PDEs of mathematical physics with quadratic or cubic nonlinearities. We
will treat these solutions from the point of view of the linear subspaces invariant under appro-
priate nonlinear operators. Indeed, ideas of low-dimensional reductions of evolution equations
restricted to linear subspaces or manifolds have been known for a long time. Certainly there
are other interesting solutions of a similar invariant nature, which we are not aware of. It would
be interesting to detect more examples which date back to the first half of the twentieth and,
hopefully, to the nineteenth century.

The rest of the chapter is devoted to further examples, in which we introduce empirical tools
to study general properties of invariant subspaces, spaces of the corresponding nonlinear or-
dinary differential operators, and exact solutions. More systematic and advanced mathematics
is developed in Chapter 2.

1.1 History: first examples of solutions on invariant subspaces

1.1.1 Five models from gas dynamics

Example 1.1 (Ovsiannikov solutions) In 1948, L.V. Ovsiannikov [455] showed
that the study of spatial transonic flows of ideal polythropic gas leads to the following
quasilinear elliptic-hyperbolic equation∗ in IR3:


u ≡ ux x + uyy = [(u − 1)2]zz ≡ F[u], (1.1)

where u = u(x, y, z) is the reduced projection of the flow velocity on the z-axis.
Equation (1.1) is hyperbolic in the domain {(x, y, z) ∈ IR3 : u(x, y, z) > 1} and is
elliptic in {u < 1}. Ovsiannikov detected its exact solutions in the following form:

u(x, y, z) = 1+ u0(x, y)+ u1(x, y)z + 1
12 u2(x, y)z2. (1.2)

Substituting this expression into (1.1) and equating the coefficients of 1, z, and z2

(projections onto these functions) to zero yields that the functions u0(x, y), u1(x, y),
and u2(x, y) satisfy the following system of elliptic PDEs in IR2:{


u0 = 1
3 u2u0 + 2u2

1,

u1 = u2u1,

u2 = u2

2.
(1.3)

Actually, existence of such solutions as (1.2), (1.3) reflects the straightforward fact

∗ We put boxes around the main PDEs possessing solutions on invariant subspaces.
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2 Exact Solutions and Invariant Subspaces

that the linear subspace defined by the span W3 = L{1, z, z2} is invariant under the
nonlinear operator F in (1.1), in the sense that

for any u ∈ W3, F[u] ∈ W3 (or F[W3] ⊆ W3).

This invariance of W3 under F is understood, as in standard linear algebra.
Of course, the system of three PDEs (1.3) is not easy to study in general, but it

is a low-dimensional system for three functions defined in IR2, unlike the original
PDE (1.1) that is posed in IR3. Moreover, the last equation for u2 is independent of
the others and can be studied separately.† Once this has been solved and a suitable
function u2(x, y) has been determined, the rest of (1.3) yields a system of linear
elliptic PDEs for u0 and u1 that can be studied by standard techniques.

This class of Ovsiannikov’s solutions, as well as applied problems of analytical
fluid mechanics [29] and other important applications in combustion theory [594],
stimulated mathematical interests to such canonical semilinear elliptic PDEs


u = f (u), (1.4)

with a given nonlinear function f (u). The typical power nonlinearity is f (u) = ±u p ,
with the exponent p > 1, or f (u) = |u|p−1u for solutions u of changing sign. In
elliptic theory, two classes of problems were most popular:

(i) the Dirichlet problem in a bounded domain � ⊂ IR N , with u = 0 on the boundary
∂�, and

(ii) the problem in the whole space IR N .

In the former case, for f (u) = −u p , the famous Sobolev critical exponent occurs

pS = N+2
N−2 for N ≥ 3 (pS = ∞ for N = 1, or 2).

The global and local properties of solutions are completely different in the subcrit-
ical, p < pS , and the supercritical, p > pS , ranges. In the critical case, p = pS ,
there exists the explicit Loewner–Nirenberg solution [400]

u(x) =
[

N(N−2)λ
2

N−2

N(N−2)+λ
4

N−2 |x |2

](N−2)/2
,

where λ > 0 is arbitrary. The questions of existence, nonexistence, and multiplicity
of solutions for equation (1.4) have been actively studied in general elliptic theory
during the last forty years. We refer to classical papers [331, 464] and to Mitidieri–
Pohozaev [425] for history, references, and a systematic treatment of the nonexis-
tence problem via the nonlinear capacity approach.

Example 1.2 (Von Mises solutions) Consider the potential equation of the 1D flow
of a compressible gas

�t t + 2�x�xt + a�x x + b�t�x x + c(�x)
2�x x = 0, (1.5)

where a, b, and c are constants. R. von Mises introduced the following class of exact

† L.V. Ovsiannikov was the supervisor, who proposed the equation 
u = u2 in a bounded domain to
S.I. Pohozaev in 1958 [467], that led to “Pohozaev’s Identities” (1965) [464] in elliptic theory.
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1 Linear Invariant Subspaces: Examples 3

solutions of (1.5) (this is mentioned in Titov [553], we have not succeeded in tracing
out the original von Mises work):

�(x, t) = C1(t)+ C2(t)x + C3(t)x
2. (1.6)

Plugging (1.6) into (1.5) yields an ODE system for the expansion coefficients {Ci },
C ′′1 = −2C2C ′2 − 2aC3 − 2bC3C ′1 − 2cC2

2C3,

C ′′2 = −4(C2C3)
′ − 2bC3C ′2 − 8cC2C2

3 ,

C ′′3 = −2(4+ b)C3C ′3 − 8cC3
3 .

(1.7)

Similar to the example above, the finite expansion (1.6) indicates that the oper-
ator on the left-hand side of (1.5) composed of linear, quadratic, and cubic terms
preserves the 3D subspace

W3 = L{1, x, x2}.
The last equation for C3 in (1.7) can be solved independently in terms of Jacobi
elliptic functions.

In view of differential manipulations with expansion coefficients in square prod-
ucts on the right-hand side of (1.7), it is relevant to call W3 an invariant module,
which in Algebra [373, Ch. III] is used as a generalization of linear vector spaces
with a field replaced by a ring; see Section 2.8. For simplicity, we sometimes keep
using the term subspace if no confusion is likely.

Example 1.3 (Guderley solutions) Consider the potential equation for transonic
flow written as

�yy + N−1
y �y = (γ + 1)�x�x x in {x > 0, y > 0}, (1.8)

where N = 1 or 2 and γ = cp
cv

> 1 is the fixed constant, called the adiabatic
exponent. From Guderley’s book [267, p. 65]: “The solution of the exact potential
equation of the flow in the throat of DE LAVAL nozzle has been obtained by MEYER

[422] in the form of a series expansion. We shall show that the first term of this expan-
sion represents the exact solution of the equation for transonic flow.” K.G. Guderley
presented two explicit solutions of (1.8),

�(x, y) = c
2 x2 + c2

2 (γ + 1)xy2 + c3

24 (γ + 1)2y4 for N = 1,

�(x, y) = c
2 x2 + c2

4 (γ + 1)xy2 + c3

64 (γ + 1)2y4 for N = 2;

see [267, p. 66, 69] (we keep the original notation).
These explicit Guderley’s solutions belong to the subspace W3 = L{1, x, x2}

which is invariant under the quadratic operator F[�] = �x�x x given on the right-
hand side of (1.8). In addition, Guderley described properties of solutions

�(x, y) = x3 f (y)

belonging to the 1D invariant subspace L{x3} of F . “The exponent of x could then be
chosen such that the powers of x would cancel out from the equation,” [267, p. 69].
Such solutions were also studied by H. Görtler [259].

These results altogether are expressed by saying that operator F admits the 4D
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invariant subspace
W4 = L{1, x, x2, x3}

with exact solutions

�(x, y) = C1(y)+ C2(y)x + C3(y)x2 + C4(y)x3

governed by the eighth-order DS
C ′′1 + N−1

y C ′1 = 2(γ + 1)C2C3,

C ′′2 + N−1
y C ′2 = 2(γ + 1)

(
2C2

3 + 3C2C4
)
,

C ′′3 + N−1
y C ′3 = 18(γ + 1)C3C4,

C ′′4 + N−1
y C ′4 = 18(γ + 1)C2

4 .

Guderley’s solutions correspond to C4(y) ≡ 0. The last equation is the radial version
of the quadratic elliptic PDE (1.4) with f (u) = 18(γ + 1)u2.

Example 1.4 (Titov’s solutions) It was shown by S.S. Titov [555] that the same
quadratic operator F[�] = �x�x x admits another 3D subspace

W3 = L{1, x
3
2 , x3

}
.

This gives Titov’s solutions of (1.8)

�(x, y) = C1(y)+ C2(y)x
3
2 + C3(y)x3 ∈ W3,

where the coefficients of the expansion satisfy the following ODE system:
C ′′1 + N−1

y C ′1 = 9
8 (γ + 1)C2

2 ,

C ′′2 + N−1
y C ′2 = 45

4 (γ + 1)C2C3,

C ′′3 + N−1
y C ′3 = 18(γ + 1)C2

3 .

Example 1.5 (Ryzhov–Shefter solutions) The Lin–Reissner–Tsien (LRT) equa-
tion

−ϕxϕx x + ϕyy + ϕzz − 2ϕxt = 0 in IR3 × IR (1.9)

was discovered in 1948 [395] as a model for oscillation of a thin profile in transonic
flow. O.S. Ryzhov and G.M. Shefter derived this equation later “...for the investiga-
tion of nonstationary processes in the vicinity of the surface of transition through the
speed of sound in Laval nozzles when the dimensions and form of the critical cross
section change with time sufficiently rapidly,” [505, p. 939]. In cylindrical coordi-
nates {

z = r cosϑ,
y = r sin ϑ,

(1.9) takes the form

−ϕxϕx x + ϕrr + 1
r ϕr + 1

r2 ϕϑϑ − 2ϕxt = 0, (1.10)

and admits the following exact Ryzhov–Shefter solutions, 1959 (we keep the original
notation from [505]):

ϕ = λ(t)x + 1
2 A(t)[x −
(t)]2 + h1(ϑ, t)[x −
(t)]r2 + h2(ϑ, t)r4. (1.11)

© 2007 by Taylor & Francis Group, LLC



1 Linear Invariant Subspaces: Examples 5

The expansion coefficients solve the following PDE system:
λt + 1

2 Aλ = A
t ,

2At + A2 = h1ϑϑ + 4h1,
2h1t + h1 A = h2ϑϑ + 16h2.

As shown in Example 1.3, solutions (1.11) are associated with the invariant sub-
space W3 = L{1, x, x2} of the operator ϕxϕx x . There exists its 4D invariant exten-
sion W4 = L{1, x, x2, x3}. There are other more detailed invariant interpretations.
For instance, taking the subspace W6 = L{1, x, r2, x2, xr2, r4} and hence solutions

ϕ(x, r, ϑ, t) = C1 + C2x + C3x2 + C4r2 + C5xr2 + C6r4

yields the following system of PDEs for the coefficients {Ci (ϑ, t)}:
2C2C3 = 4C4 + C4ϑϑ − 2C2t ,
4C2

3 = 4C5 + C5ϑϑ − 4C3t ,
2C3C5 = 16C6 + C6ϑϑ − 2C5t ,
C1ϑϑ = 0, C2ϑϑ = 0, C3ϑϑ = 0.

(1.12)

Solutions (1.11) then correspond to

C1 = 1
2 A
2, C2 = λ− A
, C3 = 1

2 A, C4 = −h1
, C5 = h1, C6 = h2.

The general solution of (1.12) is as follows:

C1 = a1(t)ϑ + b1(t), C2 = a2(t)ϑ + b2(t), C3 = a3(t)ϑ + b3(t),

C4 = K1 cos 2ϑ + K2 sin 2ϑ + αϑ2 + βϑ + γ,
C5 = K̃1 cos 2ϑ + K̃2 sin 2ϑ + α̃ϑ2 + β̃ϑ + γ̃ ,
C6 = (µ1 + ν1ϑ) cos 2ϑ + (µ2 + ν2ϑ) sin 2ϑ,

where K1,2(t), K̃1,2(t) are arbitrary functions, and other coefficients α(t), β(t), ...
are expressed by functions {ai (t), bi (t)} by substituting into the PDE (1.10). Other
PDE systems occur by studying (1.10) on the 3D invariant subspace L{1, r2, r4}.

1.1.2 Nonlinear wave equation

Example 1.6 (Quadratic wave equation) Ovsiannikov [456, p. 286] performed a
classification of group-invariant solutions of the following system:{

uy = vx ,
uux = vy,

which also describes transonic gas flows. This is equivalent to the quadratic wave
equation uyy = (uux)x , or, replacing y �→ t ,

utt = F[u] ≡ 1
2 (u

2)x x in IR × IR. (1.13)

Olver and Rosenau introduced the following explicit solution of (1.13):

u(x, t) = αt2 + at + b ±√2α x, where α > 0, (1.14)
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that is “...not obtainable by partial invariance by appending the second order side
condition

utt = 2α, (1.15)

where α is a constant,” [448, p. 112].
These solutions belong to the 3D invariant subspace W3 = L{1, x, x2} preserved

by operator F in (1.13). Plugging

u(x, t) = C1(t)+ C2(t)x + C3(t)x
2 ∈ W3 (1.16)

into the PDE yields the following DS:
C ′′1 = C2

2 + 2C1C3,
C ′′2 = 6C2C3,

C ′′3 = 6C2
3 .

(1.17)

The solutions (1.14) then correspond to the particular case C3(t) ≡ 0, where the
second ODE is C ′′2 = 0. Choosing C2(t) = ±

√
2α yields C ′′1 = 2α, whence come

solutions (1.14). On the other hand, taking C2(t) = αt (α �= 0) leads to the new
polynomial solution

u(x, t) = α2

12 t4 + at + b + αtx .

Fixing now a nontrivial solution C3(t) = 1
t2 of (1.17) yields Euler’s ODE for C2,

t2C ′′2 = 6C2 �⇒ C2(t) = At3 + B
t2 , (1.18)

where A and B are arbitrary constants of integration. Finally, solving the first ODE
yields a more general family of solutions on W3 (D, E ∈ IR),

u(x, t) = A2t8

54 + ABt3

2 + B2

4t2 + Dt2 + E
t +

(
At3 + B

t2

)
x + 1

t2 x2.

For α = 0 in the side condition (1.15), the explicit solution [448, p. 112] is

u(x, t) = ±(t + a)
√

x + b,

which, after translation, belongs to the 1D invariant subspace W1 = L{√x}. The
dynamics on W1 with solutions u(x, t) = C(t)

√
x is described by the ODE

C ′′ = 0.

1.1.3 Quadratic Boussinesq-type equations

Example 1.7 (Olver–Rosenau solution) In 1986, Olver and Rosenau [448] consid-
ered the following Boussinesq-type equation:

utt = F[u] ≡ ux x + β(u2)x x + γ ux xt t in IR × IR, (1.19)

which was introduced by Boussinesq in 1871 [74] for studying long waves in shallow
water. This equation also describes longitudinal waves in solid rods with effects of
lateral inertia included. In [448], the following Olver–Rosenau solution of (1.19) was
constructed:

u(x, t) = − 1
2β + 3γ

2βt2 + 1
2βt2 x2, (1.20)
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where parameters of translations in x and t are not included. Therefore, this is a
two-parameter family of solutions.

Such a simple solution initiated a discussion on general invariant group origins of
exact solutions. Written in the form of

u(x, t) = − 1
2β + ϕ(t)ψ(x), with ϕ(t) = 1

2βt2 and ψ(x) = x2 + 3γ,

the solution looks like a standard affine version of a separable solution
(
i.e., becom-

ing separable after shifting in u by − 1
2β

)
, and hence is expected to be obtained by

local group approaches dealing with groups of scaling or other non-classical meth-
ods. Nevertheless, it was proved that ”...the entire two-parameter family could not
have come from a single local group,” [448, p. 111].

Concerning the invariant subspace treatment of (1.20), it is easy to observe the
subspace W2 = L{1, x2} that is invariant under the quadratic operator F in (1.19).
As done in Example 1.6, we take solutions (1.16) on the extended subspace W3, and,
on substitution into the PDE, obtain the system

C ′′1 = 2C3 + 2βC2
2 + 4βC1C3 + 2γC ′′3 ,

C ′′2 = 12βC2C3,

C ′′3 = 12βC2
3 .

As far as explicit solutions are concerned, the last equation gives

C3(t) = 1
2βt2 .

Substituting into the second ODE yields Euler’s equation (1.18). Finally, the follow-
ing solutions of the Boussinesq-type equation (1.19) are obtained:

u(x, t) = − 1
2β + βA2t8

27 + β ABt3 + ( 3γ
2β + βB2

2

) 1
t2

+ Dt2 + E
t +

(
At3 + B

t2

)
x + 1

2βt2 x2.

Bearing in mind translations in x and t , this is a six-parameter family of solutions
which, for A = B = D = E = 0, gives the Olver–Rosenau solution (1.20).

1.1.4 Examples from reaction-diffusion-absorption theory

We next turn the attention to nonlinear reaction-diffusion-absorption PDEs which
have given a record number of various exact solutions, including those on invariant
subspaces. The basic nonlinear diffusion operator in such parabolic equations was
already derived by J. Boussinesq [77] , who, in 1904, studied non-stationary flows of
soil water under the presence of free surface, and derived the PDE

ut = γ (uux)x . (1.21)

Here, γ = k
m is a positive constant, where k is the filtration coefficient and m is the

porosity of soil. The function u = u(x, t) is the pressure of the ground water. Here,
(1.21) is the quadratic porous medium equation (PME). Boussinesq also derived the
exact solution of the PME (1.21) in separate variables

u(x, t) = X (x)T (t).

© 2007 by Taylor & Francis Group, LLC
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u(x, t)

t1

t2

t3

t4

x

0 < t1 < t2 < t3 < t4

0
l−l

Figure 1.1 Evolution described by the Boussinesq solution (1.22).

Plugging into (1.21) yields two independent ODEs for functions T (t) and X (x),

T ′
T 2 = γ (X X ′)′

X = −λ,

where λ > 0 is the parameter of separation. Solving the first equation leads to the
so-called Boussinesq solution

u(x, t) = X (x)
λt , (1.22)

where X ≥ 0 is a solution of the ODE

γ (X X ′)′ = −λX.

Solving this ODE on a bounded interval x ∈ (−l, l) with the zero Dirichlet boundary
conditions

X (−l) = X (l) = 0

yields the Boussinesq ordered regime that describes the time decay of solutions of
the initial-boundary value problem for the PME on a bounded interval. See Figure
1.1. The fact that the Boussinesq solution (1.22) is asymptotically stable and that the
corresponding decay rate O

( 1
t

)
for t � 1 is correct for general solutions of the PME

for arbitrary bounded initial data u(x, 0) = u0(x) ≥ 0 was proved much later in the
1970s; see details and references in [245, Ch. 2].

For the PME in the whole space, i.e., for x ∈ IR (the Cauchy problem), the fa-
mous Zel’dovich–Kompaneetz–Barenblatt (ZKB) solution is key for stability analy-

and refer to a great amount of literature in [245] concerning the foundation of PME
theory.

More complicated spatio-temporal patterns can occur for the PME with extra low-
order operators, such as reaction or absorption ones. There are many models of this

© 2007 by Taylor & Francis Group, LLC

sis as t → ∞. We have discussed the ZKB solution in the Introduction (see (0.23))
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type. For instance, the PME with a nonlinear convection term

ut = γ (uux)x + βuux ,

also known as the diffusion-convection Boussinesq equation, occurs in the various
fields of petroleum technology and ground water hydrology. Let us begin with an-
other example, where the interesting exact solutions on invariant subspaces arise.

Example 1.8 (PME with absorption: Kersner’s solution) Consider the exact so-
lution constructed by R. Kersner in the middle of the 1970s; see references in [333,
334]. At that time, Kersner was a PhD student supervised by A.S. Kalashnikov, who
performed in the 1960s-70s the pioneering research of localization-extinction phe-
nomena for nonlinear degenerate parabolic PDEs, including equations from diffusion-
absorption theory. Key results are reflected in his fundamental survey [309]. Among
Kalashnikov’s other PDE models, there is a famous diffusion-absorption equation
with the critical absorption exponent

vt =
(
vσ vx

)
x − v1−σ , (1.23)

where σ > 0 is a parameter. In filtration theory, according to G.I. Barenblatt, absorp-
tion power-like terms−v p describe the phenomenon of seepage on a permeable bed.
The Cauchy problem for equation (1.23) admits weak nonnegative compactly sup-
ported solutions. The first explicit localized solutions of such diffusion-absorption
equations were constructed by L.K. Martinson and K.B. Pavlov in 1972; see details
and references in [509, p. 21].

Let us derive explicit solution of (1.23) using the invariant subspaces. Introducing
the pressure variable from filtration theory, u = vσ , yields a PDE with the quadratic
differential operator and a constant sink,

ut = F[u] ≡ uux x + 1
σ (ux )

2 − σ. (1.24)

Clearly, operator F[u] preserves the 2D subspace W2 = L{1, x2}, since

F[C1 + C2x2] = 2C1C2 − σ + 2
(
1+ 2

σ

)
C2

2 x2 ∈ W2.

Therefore, (1.24) admits solutions

u(x, t) = C1(t)+ C2(t)x
2, (1.25)

with the expansion coefficients C1(t) and C2(t) satisfying the dynamical system{
C ′1 = 2C1C2 − σ,

C ′2 = 2
(
1+ 2

σ

)
C2

2 .
(1.26)

Integrating the uncoupled second ODE and substituting

C2(t) = − σ
2(σ+2)t

into the first equation yields Kersner’s solution (1976)

u(x, t) = [A0t−
σ

σ+2 − σ(σ+2)
2(σ+1) t − σ

2(σ+2)t x2
]
+ ,

where A0 is an arbitrary constant. Despite its elementary structure, the solution is

© 2007 by Taylor & Francis Group, LLC
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u(x, t)

t1

t2

t3t4
x

0 < t1 < t2 < t3 < t4 < T

0

Figure 1.2 Finite-time extinction for the PME with absorption (1.23) described by Kersner’s
solutions (1.25); T is the extinction time, so u(x, T ) ≡ 0.

not group-invariant if A0 �= 0. The positive part [·]+ determines weak solutions of
(1.24) with finite interfaces, so they describe interesting and principal phenomena of
non-Darcy interface propagation with turning points, extinction patterns, quenching,
etc. Figure 1.2 shows this unusual extinction behavior. Similar explicit solutions also
exist for the multi-dimensional PME with absorption in IRN× IR+ (Martinson, 1979,
[414])

ut = ∇ · (uσ∇u)− u1−σ ,

Example 1.9 (Oron–Rosenau solution) In 1986, A. Oron and P. Rosenau consid-
ered the following fast diffusion equation with absorption [453]:

vt = (
√
v )x x −

√
v, (1.27)

which, in plasma physics, describes energy diffusion in a strong magnetic field in the
presence of energy sinks due to plasma radiation. It was shown that (1.27) admits the
Oron–Rosenau solution

v(x, t) = B2(x)
(
C0
∫ dx

B2(x)
− t
)2
, (1.28)

where C0 is a constant and B(x) satisfies the ODE

B ′′ + 2B2 − B = 0.

Bearing in mind the idea of invariant subspaces, we derive the quadratic version
of (1.27) by setting v = u2, to obtain the PDE

F[u] ≡ 2uut = ux x − u. (1.29)

© 2007 by Taylor & Francis Group, LLC

and for other extended PME-type models, see [509, p. 103].
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In the space of smooth functions of the time-variable t , operator F in (1.29) admits
the 2D subspace

W2 = L{1, t}.
Since

F[C1 + C2t] = 2C1C2 + 2C2
2 t ∈ W2,

there exist the corresponding solutions

u(x, t) = C1(x)+ C2(x)t ∈ W2. (1.30)

On substitution into (1.29), we obtain the following fourth-order DS:{
C ′′1 − C1 = 2C1C2,

C ′′2 − C2 = 2C2
2 .

Since C2C ′′1 = C1C ′′2 , on integration, we have

C2C ′1 = C1C ′2 + C0,

with a constant C0. Integrating again yields

C1(x) = C0C2(x)
∫ dx

C2
2 (x)

,

which yields the solution (1.28) with B = −C2.

Example 1.10 (Dyson–Newman solution) In 1980, W.I. Newman [437] consid-
ered the following quasilinear parabolic equation:

ut = F[u] ≡ 1
2 (uux)x + u(1− u). (1.31)

It is a quasilinear extension of the Kolmogorov–Petrovskii–Piskunov–Fisher (KPPF)
equation of population genetics,

ut = 1
2 ux x + u(1− u),

which, since the 1930s, induced several fundamental directions in mathematical the-
ory of nonlinear parabolic PDEs. The original KPP-paper (1937) [353] contains a
number of famous mathematical ideas and results.

As stated in [437], using the idea from a personal communication with F. Dyson
(1978), Newman looked for solutions composed of the hyperbolic cosine. To be pre-
cise, in terms of invariant subspaces, solutions take the form

u(x, t) = C1(t)+ C2(t) cosh x, (1.32)

belonging to the subspace W2 = L{1, cosh x} which is invariant under the quadratic
operator F in (1.31). Then the expansion coefficients satisfy the DS{

C ′1 = −C2
1 − 1

2 C2
2 + C1,

C ′2 = − 3
2 C1C2 + C2.

(1.33)

Unlike a simpler quadratic DS (1.26), system (1.33) cannot be solved explicitly,
but is integrated in quadratures, giving interesting properties of finite-front propa-
gation and evolution to traveling waves in such nonlinear media. In particular, this

© 2007 by Taylor & Francis Group, LLC
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u(x, t)
t1

t2

t3

1

x

t1 < t2 < t3

0

Figure 1.3 Formation of a traveling wave in the quasilinear model (1.31) described by Dyson–
Newman’s solution (1.32).

Dyson–Newman’s solution propagates for t � 1 with the asymptotic speed 1
2 . See

Figure 1.3. There are other applications of such solutions in the theory of reaction-
absorption PDEs; see [509, p. 106] and references therein.

Example 1.11 (Blow-up: Galaktionov’s solution) The semilinear heat equation

ut = F[u] ≡ ux x + (ux)
2 + u2 (u > 0), (1.34)

decisive role in blow-up combustion problems. This is the only semilinear reaction-
diffusion equation of the second order that generates the regional blow-up (S-regime)
for which bell-shaped solutions blow up on spatial intervals of the length 2π , [509,
p. 294]. The change u = ln v transforms (1.34) into a semilinear heat equation,

vt = vx x + v ln2 v, (1.35)

where the reaction term, q(v) = v ln2 v, is “almost” linear as v → +∞, but, never-
theless, satisfies the Osgood criterion of blow-up,∫∞ ds

q(s) <∞.

Therefore, solutions of (1.35) with sufficiently large initial data blow-up in finite time
creating unusual localized blow-up patterns. Mathematical analysis of such blow-up
localization phenomena uses specific stability techniques from singular perturbation

Operator F[u] in (1.34) preserves the 2D subspace W2 = L{1, cos x} [232, 217].
Thus, for arbitrary C1 and C2,

F[C1 + C2 cos x] = C2
1 + C2

2 + (2C1 − 1)C2 cos x ∈ W2.

This gives the exact solutions of (1.34) of the form

u(x, t) = C1(t)+ C2(t) cos x, (1.36)

© 2007 by Taylor & Francis Group, LLC

which was introduced to PDE theory in 1979 (see [245, Ch. 9] for history), plays a

theory and exact solutions; see details in books [509, Ch. 4] and [245, Ch. 9].
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u(x, t)

t1

t2

t3
t4

−1

x

0 < t1 < t2 < t3 < t4 < T

0 π−π 2π−2π

Figure 1.4 Non-monotone blow-up evolution of the invariant solutions (1.36), (1.37).

where the coefficients C1(t) and C2(t) satisfy the DS{
C ′1 = C2

1 + C2
2 ,

C ′2 = (2C1 − 1)C2.
(1.37)

This is not integrated explicitly and is studied on the phase-plane. In Figure 1.4 the
non-monotone with time behavior of such explicit solutions is shown. These describe
two singularities: the initial collapse of Dirac’s delta-type initial data posed at points
±2πk, and finite-time blow-up afterwards. It is curious that this exact 2π-periodic
(in x) Galaktionov’s solution (1.36), (1.37) [217, 232] is not localized and blow-up
globally as t → T− at any point x ∈ IR. The blow-up rate is strikingly non-uniform
[245, p. 242]: as t → T−, at maxima x = 0 and minima points x = ±π , respectively,

u(0, t) = 1
T−t (1+ o(1))→ +∞ and

u(±π, t) = 1
2 | ln(T − t)|(1 + o(1))→+∞.

Nevertheless, the intersection comparison with such exact solutions guarantees that
any bell-shaped blow-up solution of (1.34) is spatially effectively localized as t →
T− on intervals of length 2π , [245, p. 258].

Example 1.12 (Parabolic system: King’s first solution) The following system of
two second-order PDEs: {

vt = (wvx − vwx )x ,
wt = vx x ,

(1.38)

© 2007 by Taylor & Francis Group, LLC
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is a simple model for the solid-state diffusion of a substitutional impurity by a va-
cancy mechanism; see King [340] and references therein. In this paper, among other
results on explicit and similarity solutions, it was shown that (1.38) admits exact
polynomial King’s first solution

v(x, t) = C1(t)+ C2(t)x + C3(t)x2 + C4(t)x3,

w(x, t) = D1(t)+ D2(t)x + D3(t)x2 + D4(t)x3,

where the expansion coefficients solve the DS
C ′1 = 2(D1C3 − C1 D3),
C ′2 = 2(D2C3 − C2 D3)+ 6(D1C4 − C1 D4),
C ′3 = 6(D2C4 − C2 D4),
C ′4 = 4(D3C4 − C3 D4),
D′1 = 2C3, D′2 = 6C4, D′3 = 0, D′4 = 0.

Here, operators in the right-hand sides of (1.38) preserve the 4D subspace W4 =
L{1, x, x2, x3}. For the operator F1[v,w] = (wvx − vwx )x from the first equation,
this means that F1 : W4 × W4 → W4.

The second polynomial expansion detected in [340] is as follows:

v(x, t) = C1(t)+ C2(t)x + C3(t)x2 + C4(t)x3 + C5(t)x4,
w(x, t) = D1(t)+ D2(t)x + D3(t)x2,

with the resulting DS 

C ′1 = 2(D1C3 − C1 D3),
C ′2 = 2(D2C3 − C2 D3)+ 6D1C4,
C ′3 = 6D2C4 + 12D1C5,
C ′4 = 4D3C4 + 12D2C5,
C ′5 = 10D3C5, D′1 = 2C3,
D′2 = 6C4, D′3 = 12C5.

Note that components v and w belong to different subspaces,

v ∈ W5 = L{1, x, x2, x3, x4}, w ∈ W3 = L{1, x, x2}, so F1 : W5 × W3 → W5.

Example 1.13 (Fast diffusion equation: King’s second solution) The following
construction is also due to King [342]. Using in the fast diffusion equation

vt =
(
v− 3

2 vx
)

x

the pressure transformation u = v−3/2 reduces it to the equation with quadratic
nonlinearities

ut = F[u] ≡ uux x − 2
3 (ux)

2. (1.39)

This possesses exact King’s second solution

u(x, t) = C1(t)+ C2(t)x + C3(t)x
2 + C4(t)x

3.

© 2007 by Taylor & Francis Group, LLC
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Plugging this into the PDE yields the DS
C ′1 = 2C3C1 − 2

3 C2
2 ,

C ′2 = 6C1C4 − 2
3 C2C3,

C ′3 = 2C2C4 − 2
3 C2

3 ,
C ′4 = 0.

This means that the quadratic operator F in (1.39) admits the 4D subspace

W4 = L{1, x, x2, x3} (
and F : W4 → W3 = L{1, x, x2}).

The final two examples represent some remarkable invariant subspaces of the max-
imal dimension (a crucial theoretical aspect to be studied in the next chapter).

Example 1.14 (Reaction-diffusion equation: 5D polynomial subspace) Consider
now the quasilinear equation with the negative exponent σ = − 4

3 , corresponding to
the case of fast diffusion and a specific superlinear reaction term:

vt =
(
v− 4

3 vx
)

x + v
7
3 . (1.40)

Using the pressure transformation u = v−4/3 yields the quadratic PDE

ut = F[u] ≡ uux x − 3
4 (ux )

2 − 4
3 . (1.41)

It was shown in Galaktionov [220] that operator F preserves the 5D subspace

W5 = L{1, x, x2, x3, x4},
so (1.41) admits the solution

u(x, t) = C1(t)+ C2(t)x + C3(t)x2 + C4(t)x3 + C5(t)x4,

with the coefficients {Ci (t)} satisfying the DS
C ′1 = 2C1C3 − 3

4 C2
2 − 4

3 ,
C ′2 = 6C1C4 − C2C3,

C ′3 = 12C1C5 + 3
2 C2C4 − C2

3 ,
C ′4 = 6C2C5 − C3C5,

C ′5= 2C3C5 − 3
4 C2

4 .

This fifth-order DS is not easy to study, but some particular features of such exact
solutions can be obtained and used for comparison with general solutions of (1.40).
The equation (1.40) admits single point blow-up, and the exact solutions describe
interesting generic blow-up patterns.

Example 1.15 (Reaction-absorption equation: 5D trigonometric subspace) Con-
sider an equation with the same fast diffusion and a different absorption term,

vt =
(
v−

4
3 vx
)

x − v−
1
3 . (1.42)

The pressure transformation u = v−4/3 now yields the quadratic PDE

ut = F[u] ≡ uux x − 3
4 (ux)

2 + 4
3 u2. (1.43)
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Here, F admits the 5D subspace spanned by trigonometric functions,

W5 = L{1, cos(λx), sin(λx), cos( λx
2 ), sin( λx

2 )
}
, where λ = 4√

3
.

Therefore, the PDE (1.43) has exact solutions on W5 [220]

u(x, t) = C1 + C2 cos(λx)+ C3 sin(λx)+ C4 cos( λx
2 )+ C5 sin( λx

2 ),

where the coefficients {Ci (t)} solve the DS
C ′1 = 4

3 C2
1 − 4

(
C2

2 + C2
3

)− 1
2 C2

3 ,

C ′2 = − 8
3 C1C2 + 1

2

(
C2

4 − C2
5

)
,

C ′3 = − 8
3 C1C3 + C4C5,

C ′4 = 4
3 C1C4 − 4(C3C5 + C2C4),

C ′5 = 4
3 C1C5 − 4(C2C5 − C3C4).

This DS is more difficult, though some key asymptotic properties of orbits can be
detected that describe interface and extinction phenomena for (1.42).

1.2 Basic ideas: invariant subspaces and generalized separation of variables

1.2.1 Invariant subspaces

Following the above examples, consider a general first-order evolution PDE

ut = F[u], (1.44)

where F is a kth-order ordinary differential operator,

F[u] ≡ F
(
x, u, ux , ..., Dk

x u
)
.

Here, F(·) is a given sufficiently smooth function and Dx denotes ∂
∂x .

Let { fi (x), i = 1, ..., n} be a finite set of n ≥ 1 linearly independent functions,
and let Wn denote their linear span,

Wn = L{ f1(x), ... , fn(x)}.
Wn is an n-dimensional linear subspace consisting of their linear combinations with
real coefficients,

u =
n∑

i=1
Ci fi , for any vector C = {Ci } ∈ IRn.

The subspace Wn is said to be invariant under the given operator F if

F[Wn] ⊆ Wn,

and then F is said to preserve or admit Wn . As in linear algebra, this means

F
[ n∑

i=1
Ci fi (x)

] = n∑
i=1

	i (C1, ... ,Cn) fi (x) for any C ∈ IRn,

where {	i} are the expansion coefficients of F[u] ∈ Wn in the basis { fi }.
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It follows that if the linear subspace Wn is invariant under F, then equation (1.44)
has solutions of the form

u(x, t) =
n∑

i=1
Ci (t) fi (x), (1.45)

where the coefficients {Ci (t)} satisfy the dynamical system

C ′i (t) = 	i (C1(t), ... ,Cn(t)), i = 1, ..., n.

The PDE (1.44), which is an infinite-dimensional DS, being restricted to the invariant
subspace Wn becomes an n-dimensional dynamical system.

1.2.2 First extension: second-order hyperbolic equations

A first extension is obvious: for the second-order evolution PDE

utt = F[u], (1.46)

there exist solutions (1.45) governed by the 2nth-order DS

C ′′i (t) = 	i (C1(t), ... ,Cn(t)), i = 1, ..., n. (1.47)

There are other easy generalizations to higher-order PDEs. For instance, if operator
P is a linear annihilator of the subspace Wn , i.e., P : Wn → {0}, then, for arbitrary
operators F1, the PDE

utt = F[u]+ (P[u]) F1[u]

on Wn reduces to the same DS (1.47).

1.2.3 Second extension: invariant subspaces for delay-PDEs

If, for a given operator F , an invariant subspace Wn has been detected, one can find
other types of equations of differential, integral, or functional types, which can be
restricted to Wn . Another simple extension is to consider the functional delay-PDE
corresponding to (1.44),

ut (t) = F[u(t − 1)], (1.48)

where the right-hand side is defined for the solution u(·, t − 1) with the 1-retarded
time-argument. The discrete evolution mechanism of such equations is well-suited
for various applications. Differential delay models appear in population genetics,
bioscience problems, control theory, electrical networks with lossless transmission
lines, etc.; see Remarks. Theory of functional delay-ODEs, to say nothing of the
delay-PDEs, is not as advanced as that of standard differential equations. In partic-
ular, the questions of symmetries, constraints, reductions, and exact solutions are
less developed, and, in many cases, it is not clear how to translate related notions to
non-local-in-time functional operators.

In the present case, we arrive at the same invariant conclusion: if F : Wn → Wn ,
then (1.48) admits exact solutions (1.45) for which the expansion coefficients solve
the following system of delay-ODEs:

C ′i (t) = 	i (C1(t − 1), ... ,Cn(t − 1)), i = 1, ..., n.
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Delay-ODEs are infinite-dimensional DSs, which are difficult to study, but are sim-
pler than delay-PDEs (1.48).

1.2.4 Generalized separation of variables: first simple example

Let us present next an example explaining some features of the main problem of
determining invariant subspaces for a given nonlinear operator. Consider the standard
quadratic ordinary differential operator from reaction-diffusion theory

F[u] = α(ux x )
2 + βuux x + γ (ux)

2 + δu2, (1.49)

with arbitrary real parameters α, β, γ , and δ. Such operators occur in several appli-
cations that will be discussed later on. Consider a 2D subspace

W2 = L{1, f (x)}, (1.50)

where the first basic function is constant 1, and the set {1, f (x)} is assumed to be
linearly independent. Obviously, the simplest 1D subspace W1 = L{1} is invariant
under F , since

F[1] = δ ∈ W1.

Therefore, we need to determine a single second function f (x) from the invariance
condition

F[W2] ⊆ W2. (1.51)

Substituting into (1.49)

u = C1 + C2 f ∈ W2,

where C1 and C2 are arbitrary constants, yields

F[u](x) = δC2
1 + 2δC1C2 f (x)+ βC1C2 f ′′(x)+ C2

2 F[ f ](x).

The first two terms belong to W2. Consider the last two terms. Since C1C2 and C2
2

are independent, (1.51) is valid iff there exist parameters µ1,2 and ν1,2 such that f
satisfies the following overdetermined system of ODEs:{

f ′′ = µ1 + ν1 f,
F[ f ] = µ2 + ν2 f.

(1.52)

The second equation implies that Ŵ1 = L{ f } is also invariant if such an f exists for
µ2 = 0 (and ν2 �= 0). If µ2ν2 �= 0, then F : Ŵ1 → W2 and, in a natural sense, the
element f generates the 2D invariant subspace (1.50).

This procedure of determining admissible basis functions f (x) from an overde-
termined system of ODEs with several free parameters is called the generalized sep-
aration of variables (GSV). In the present case, the GSV can be performed easily,
since the first equation is linear and, clearly, for various values of parameters, there
are six types of functions,

f (x) ∈ {x, x2, cos λx, sin λx, coshλx, sinh λx}, with λ = constant �= 0. (1.53)

Substituting each of the functions f into the second equation in (1.52), we obtain the
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set (a linear subspace) of quadratic operators preserving subspace (1.50). We do not
do this here; however, we do present the results of more general computations in the
next section.

For 3D and multi-dimensional subspaces, the GSV leads to complicated overde-
termined systems of ODEs that do not admit a simple treatment. Even for a general
2D subspace L{ f1, f2} with two unknown basis functions, the GSV becomes essen-
tially more involved. In our further study of invariant subspaces in Chapter 2, we will
use another approach associated with Lie–Bäcklund symmetries of linear ODEs, and
will return to the general theory of GSV in Section 7.3.

The above GSV reveals typical basis functions (1.53) of the invariant subspaces
(1.50) for quadratic operators. These are:

(i) polynomial,
(ii) trigonometric, and
(iii) exponential subspaces,

which will be studied later on.

On related aspects of finite commutative rings. Consider the operator F in (1.49)
in the linear space K of real analytic functions of the single variable x . The quadratic
polynomial structure of (1.49) suggests introducing the commutative product

u ∗ v = αux xvx x + β
2

(
uvx x + vux x

)+ γ uxvx + δuv (1.54)

for any u, v ∈ K . In this case, K becomes a commutative ring with the product
(1.54), which is not associative in general.

It is interesting to interpret nilpotents and idempotents of this ring. To this end, for
instance, consider the corresponding hyperbolic PDE (1.46). Then a nilpotent ε(x)
satisfying

ε ∗ ε = 0, i.e., F[ε] = 0,

is indeed a stationary solution of (1.46). On the other hand, any idempotent e(x)
satisfying

e ∗ e = e, i.e., F[e] = e,

is associated with the separate variables solution

u(x, t) = ϕ(t)e(x), where ϕ′′(t) = ϕ2(t).

For instance, the blow-up function ϕ(t) = 6(T − t)−2 can be chosen.
We are now looking for 2D subrings A of K , and will describe where a link to

overdetermined systems of ODEs is coming from. Assume that, in a subring A, there
exists a generating element p such that p and p∗p are linearly independent. Actually,
it can be shown that this is the case for any subring; see references in Remarks. This
implies that p satisfies the system of two ODEs{

p ∗ (p ∗ p) = µ1 + ν1(p ∗ p),
(p ∗ p) ∗ (p ∗ p) = µ2 + ν2(p ∗ p),

with four free parameters, as above. It is a system of two fourth-order nonlinear
ODEs for p, which is difficult to study for general quadratic operators F .
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1.3 More examples: polynomial subspaces

In the last three sections we present further examples of PDEs with quadratic, cubic,
and other polynomial operators preserving linear subspaces of various dimensions.
These results are introductory to more advanced theory developed in the subsequent
chapters.

1.3.1 Classification and first examples of polynomial subspaces

We study second-order (k = 2) quadratic and cubic operators admitting subspaces
that are composed of polynomials of the fixed order n,

Wn = L{1, x, ..., xn−1}, with n ≥ 2. (1.55)

Operators preserving such a given subspace form a linear space. In the next proposi-
tions, the bases of such linear spaces of nonlinear operators are described.

Proposition 1.16 Subspace (1.55) is invariant under the general quadratic operator
of the second order

F[u] = b6(ux x)
2 + b5uxux x + b4uux x + b3(ux )

2 + b2uux + b1u2 (1.56)

only in the following four cases:

(i) n = 2 with a 5D space spanned by operators

F1[u] = (ux x)
2, F2[u] = ux ux x ,

F3[u] = uux x , F4[u] = (ux )
2, F5[u] = uux ,

i.e., b1 = 0 in (1.56);

(ii) n = 3 with a 4D space spanned by

F1[u] = (ux x)
2, F2[u] = ux ux x , F3[u] = uux x , F4[u] = (ux)

2,

i.e., b1 = b2 = 0;

(iii) n = 4 with a 3D space spanned by

F1[u] = (ux x)
2, F2[u] = uxux x , F3[u] = uux x − 2

3 (ux)
2,

i.e., b1 = b2 = 0 and b3 = − 2
3 b4;

(iv) n = 5 with a 2D space spanned by

F1[u] = (ux x)
2 and F2[u] = uux x − 3

4 (ux)
2,

i.e., b1 = b2 = b5 = 0 and b3 = − 3
4 b4.

For n ≥ 6, no nontrivial operators (1.56) preserving subspace (1.55) exist.

Proof. For n ≤ 5, the proof is straightforward by plugging the finite sum expansion

u = C1 + C2x + ...+ Cn xn−1

into operator (1.56) and equating the coefficients of the expansion of F[u], corre-
sponding to higher-degree terms xl with l ≥ n, to zero. Any computer codes on
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algebraic manipulations in Maple, Matematica, MatLab, or Reduce, etc., are suit-
able for this analysis. The last negative statement for n ≥ 6 will follow from a more
general result to be proved in Section 2.2 (Theorem 2.8).

A similar approach applies to other propositions presented below for various op-
erators and subspaces.

Proposition 1.17 Subspace (1.55) is invariant under the general cubic operator of
the second order

F[u] = b10(ux x)
3 + b9(ux x)

2ux + b8(ux x)
2u + b7ux x(ux )

2

+ b6ux xuxu + b5ux xu2 + b4(ux)
3 + b3(ux)

2u + b2uxu2 + b1u3 (1.57)

only for the following three cases:

(i) n = 2 with an 8D space spanned by

F1[u] = (ux x)
3, F2[u] = ux (ux x)

2, F3[u] = u(ux x)
2,

F4[u] = (ux )
2ux x , F5[u] = uuxux x , F6[u] = u2ux x ,

F7[u] = (ux)
3, F8[u] = u(ux)

2;
(ii) n = 3 with a 6D space spanned by

F1[u] = (ux x)
3, F2[u] = ux (ux x)

2,
F3[u] = u(ux x)

2, F4[u] = (ux )
2ux x ,

F5[u] = ux [2uux x − (ux)
2], F6[u] = u[2uux x − (ux)

2];
(iii) n = 4 with a 2D space spanned by

F1[u] = (ux x)
3 and F2[u] = ux x

[
uux x − 2

3 (ux)
2
]
.

For n ≥ 5, no nontrivial cubic operators (1.57) preserving subspace (1.55) exist.

Example 1.18 (Quadratic PDEs) As an illustration of case (iii) in Proposition 1.16,
we consider a fully nonlinear PDE

ut = α(ux x )
2 + βuxux x + γ

[
uux x − 2

3 (ux)
2
]
. (1.58)

Nonlinearities (ux x)
2 and (ux x)

3 are typical for the dual porous medium equations
in filtration theory; see references in [49]. In this case, (1.58) has solutions

u(x, t) = C1(t)+ C2(t)x + C3(t)x
2 + C4(t)x

3,
C ′1 = 2γC1C3 − 2

3 γC2
2 + 2βC2C3 + 4αC2

3 ,

C ′2 = 6γC1C4 + 6βC2C4 − 2
3 γC2C3 + 4βC2

3 + 24αC3C4,

C ′3 = 2γC2C4 − 2
3 γC2

3 + 18βC3C4 + 36αC2
4 ,

C ′4 = 18βC2
4 .

The last equation with β > 0 and C4(0) > 0 implies finite-time blow-up,

C4(t) = C4(0)
1−18βC4(0)t

→ +∞ as t → T−, (1.59)

where T = [18βC4(0)]−1. If C4(0) < 0, then

C4(t) = − |C4(0)|
1+18β|C4(0)|t → 0 as t →+∞
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is well-defined for all t > 0. For the delay-PDE (1.48), the corresponding delay-ODE

C ′4(t) = 18βC2
4(t − 1) (1.60)

always has global solutions, and, for β > 0 and C4(0) > 0, instead of blow-up
(1.59), a super-exponential growth occurs

C4(t) ∼ 2 ln 2
9β 2te2t

for t � 1. (1.61)

For the “hyperbolic” PDE (it is actually hyperbolic in {αux x + βux + γ u > 0})
utt = α(ux x)

2 + βuxux x + γ
[
uux x − 2

3 (ux )
2
]
,

the eighth-order DS with the same right-hand sides appears. Adding any linear dif-
ferential operator with constant coefficients to the right-hand side of the PDE does
not affect the invariant property. For example, similar solutions on W4 exist for the
following fourth-order semilinear hyperbolic PDE:

utt = −ux x x x + uux x x + α(ux x)
2 + βux ux x + γ

[
uux x − 2

3 (ux )
2
]
.

Example 1.19 (Cubic hyperbolic equation) It follows from Proposition 1.17(ii)
that the quasilinear cubic hyperbolic PDE

utt = u2ux x − 1
2 u(ux)

2 on W3

has the solutions
u(x, t) = C1(t)+ C2(t)x + C3(t)x

2, (1.62)

where the equivalent DS takes the form

C ′′i =
(
2C1C3 − 1

2 C2
2

)
Ci , i = 1, 2, 3.

In the next example, the quadratic operator includes derivatives in t .

Example 1.20 (Gibbons–Tsarev equation) Consider the PDE in IR × IR

utt = Fβ [u]+ µu + ν, where Fβ [u] = ux ut x − βut ux x . (1.63)

For β = 1, µ = 0, and ν = 1, this is the Gibbons–Tsarev (GT) equation [252]

utt = F1[u]+ 1 ≡ uxut x − ut ux x + 1 (1.64)

from the theory of Benney moment equations (a system of hydrodynamic type).
Equation (1.64) is Galilean invariant; see extra details in Example 1.23.

For Fβ , the basic subspace (an invariant module), admitted for any β, is indeed
W3 = L{1, x, x2}, and looking for the solution (1.62) of (1.63) yields{ C ′′1 = C2C ′2 − 2βC ′1C3 + µC1 + ν,

C ′′2 = 2(1− β)C ′2C3 + 2C2C ′3 + µC2,
C ′′3 = 2(2− β)C3C ′3 + µC3.

Concerning extensions of the basic subspace, operator Fβ admits

W4 = L{1, x, x2, x3} for β = 3
2 and Ŵ3 = L{1, x2, x4} for β = 4

3 .
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Consider the first case of β = 3
2 , where

u = C1 + C2x + C3x2 + C4x3 ∈ W4 �⇒ (1.65)

F3
2
[u] = 3

(
C3C ′4 − C4C ′3

)
x3 + (3C2C ′4 − 6C4C ′2 + C3C ′3

)
x2

+ (2C2C ′3 − 9C4C ′1 − C3C ′2
)
x − 3C3C ′1 + C2C ′2.

For the second case β = 4
3 , choosing the PDE

utt = uxut x − 4
3 ut ux x + 1,

we find solutions from the second invariant subspace,

u(x, t) = C1(t)+ C2(t)x
2 + C3(t)x

4 ∈ Ŵ3, (1.66)
C ′′1 = − 8

3 C2C ′1 + 1,

C ′′2 = 4
3 C2C ′2 − 16C3C ′1,

C ′′3 = −8C3C ′2 + 16
3 C2C ′3.

It is curious that, unlike in most of the previous cases, for β = 4
3 , the full subspace

of the fourth-order polynomials

Ŵ5 = L{1, x, x2, x3, x4}
is not invariant under F4/3[u]. The computations are easy:

u = C1 + C2x + C3x2 + C4x3 + C5x4 ∈ Ŵ5 �⇒
F4

3
[u] = 4

(
C4C ′5 − C5C ′4

)
x5 + 1

3

(
16C3C ′5 − 24C5C ′3 + 3C4C ′4

)
x4

+ 2
3

(
6C2C ′5 − 18C5C ′2 + 5C3C ′4 − 3C4C ′3

)
x3

+ 1
3

(−48C5C ′1 + 9C2C ′4 − 15C4C ′2 + 4C3C ′3
)
x2

+ 2
3

(−12C4C ′1 + 3C2C ′3 − C3C ′2
)
x + 1

3

(−8C3C ′1 + 3C2C ′2
)
.

The projection onto x5 is 4(C4C ′5 − C5C ′4) �= 0 in general, so no invariance of Ŵ5

exists. A unified approach to ∂
∂t -dependent operators is developed Section 2.7.

Example 1.21 (Chaplygin gas equation) The following system in IR × IR:{
ρt + ρx ux + ρux x = 0,

ut + 1
2 (ux )

2 = λ
ρ2 ,

(1.67)

consists of the equation of continuity for the density ρ(x, t), and Euler’s force equa-
tion for an ideal fluid of zero vorticity with the velocity potential u(x, t), in which
the pressure P is related to the density by

P = − 2λ
ρ , where λ = constant �= 0.

Expressing ρ from the first equation in (1.67) and substituting into the second yields
the Chaplygin gas equation (1904) [103](

1√
ut+ 1

2 (ux )2

)
t
+
(

ux√
ut+ 1

2 (ux )2

)
x
= 0. (1.68)
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Its solutions are expressed via those of the linear wave equations Xtt = Xss ; see
[80]. On differentiation, we obtain from (1.68) a PDE with quadratic operators,

F[u] ≡ utt + 2uxuxt − 2ux xut = 0. (1.69)

The basic polynomial subspace for F (a module) is still W3 = L{1, x, x2}, so that,
for the solution (1.62) of (1.69), there occurs the DS{C ′′1 = −2C2C ′2 + 4C3C ′1,

C ′′2 = −4C2C ′3,
C ′′3 = −4C3C ′3.

For C3(t) = 1
4t

Similarly to the previous example, for the more general equation

Fαβ [u] ≡ utt + αux uxt + βux xut = 0, (1.70)

operator Fαβ admits

W4 = L{1, x, x2, x3}, if 3α + 2β = 0;
Ŵ3 = L{1, x2, x4}, if 4α + 3β = 0.

In the first case, 3α + 2β = 0, for solutions (1.65) of (1.70), the DS is
C ′′1 = α(3C3C ′1 − C2C ′2),
C ′′2 = α(9C4C ′1 + C3C ′2 − 2C2C ′3),
C ′′3 = α(6C4C ′2 − C3C ′3 − 3C2C ′4),
C ′′4 = 3α(C4C ′3 − C3C ′4).

In the second case, 4α + 3β = 0, the DS for solutions (1.66) takes the form
C ′′1 = 8

3 αC2C ′1,
C ′′2 = 4

3 α(12C3C ′1 − C2C ′2),
C ′′3 = 8

3 α(3C3C ′2 − 2C2C ′3).
Concerning other subspaces, we take the trigonometric subspace

u(x, t) = C1(t)+ C2(t) cos x + C3(t) sin x,

and find that equation (1.70) with β = −α (this is true for (1.69)) admits such
solutions with the DS {C ′′1 = −α

(
C2C ′2 + C3C ′3

)
,

C ′′2 = −αC2C ′1,
C ′′3 = −αC3C ′1.

Example 1.22 (Born–Infeld equations) Consider now the Born–Infeld (BI) equa-
tions in IR × IR ρt +

(√
ρ2c2+a2

c2+(ux )2

)
x
= 0,

ut + ρc2
√

c2+(ux )2

ρ2c2+a2 = 0,
(1.71)

which were introduced in 1934 as a nonlinear correction to the linear Maxwell equa-
tions for electromagnetism, [73]. At the limit c → ∞ (c is the speed of light), this
relativistic Born–Infeld model reduces to the above non-relativistic Chaplygin gas
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equation with λ = 1
2 a2. The BI equations belong to the family of 6×6 systems of

hyperbolic conservation laws, together with two solenoidal constraints on the mag-
netic field and electric displacements; see [80] and [266] for details on physics and
mathematics. Excluding ρ from the system (1.71) yields a single PDE(

ut√
c4+c2(ux )2−(ut )2

)
t
+ c2

(
ux√

c4+c2(ux )2−(ut )2

)
x
= 0,

which gives a cubic polynomial equation for u(x, t),

c2
[
c2 + (ux)

2
]
utt + c2

[
c4 + (c2 − 1)(ux)

2 − (ut )
2
]
ux x − (c2 − 1)utux uxt = 0.

In particular, exact solutions exist on L{1, x}, i.e., u(x, t) = C1(t)+ C2(t)x .

Example 1.23 (Galilean invariant PDEs) Another similar quadratic operator oc-
curs in general Galilean invariant PDEs

F[u] ≡ ux xut − ux ut x = G[u] ≡ G(u, ux , ux x , ...), (1.72)

where G[u] is an arbitrary (possibly elliptic) operator. This equation is invariant
under the Galilean transformation of the reference frame,

x �→ x + vt for any v = constant. (1.73)

So, if u(x, t) is a solution of (1.72), u(x + vt, t) is also a solution. Galilean transfor-
mations and invariance under generalized Galilean algebras play an important role in
the analysis of various PDEs, and especially in many physical and mechanical mod-
els; see Remarks for references. Furthermore, besides (1.73), equation (1.72) admits
a stronger symmetry generating an exceptionally wide class of solutions: if u(x, t) is
a solution of (1.72), then

u(x + f (t), t) is a solution for any C1-function f (t). (1.74)

Without extra hypotheses (say, symmetry), the Cauchy problem for (1.72) makes no
sense, since by (1.74) for given initial data, it admits an infinite-dimensional set of
solutions. Equations such as (1.72) are fully nonlinear PDEs with unknown concepts
of proper solutions and local regularity properties. Exact solutions may help to clarify
some evolution characteristics and possible singularities of such PDEs. Operator F
is related to the remarkable operator Frem[u] = uux x − (ux )

2 to be studied later on;

2D invariant modules of F , such as L{1, cos γ x} and L{1, cosh γ x} for any γ �= 0.
Consider the Galilean invariant equation with the porous medium operator on the

right-hand side (for convenience, the original equation was divided by ux x )

ut − 1
uxx

uxut x = (uux)x in IR × IR+. (1.75)

The invariant subspace for both left and right-hand sides is W3 = L{1, x, x2}. Bear-
ing in mind the translational nonuniqueness, we take the symmetric expression

u(x, t) = C1(t)+ C2(t)x
2,
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which, similar to the ZKB solution, may be expected to exhibit the properties of the
source-type pattern for (1.75), and obtain the DS{

C ′1 = 2C1C2,

C ′2 = −6C2
2 .

Integrating yields the following compactly supported solution:

u(x, t) = [A(T − t)
1
3 − 1

6(T−t) x2
]
+ ≡ (T − t)

1
3
(
A − 1

6 y2
)
+, (1.76)

where y = x/(T − t)2/3 is the spatial rescaled variable and A > 0 is a constant. The
positive part in (1.76) formally mimics a typical finite propagation property for the
PME and needs a special setting of a free boundary problem (FBP). We will deal with
several problems like that for more mathematically reliable PDEs. Hence, (1.76) is
a self-similar solution of (1.75), exhibiting another nonlinear phenomenon, such as
the finite-time extinction: u(x, t) vanishes identically as t → T−.

Stability analysis of these unusual singular patterns uses the corresponding rescaled
solution given by

u(x, t) = (T − t)
1
3 v(y, τ ) with τ = − ln(T − t),

satisfies the following rescaled PDE:

vτ − vy
vyy

(
vτ y + 2

3 vyy y + 1
3 vy

) = (vvy)y − 2
3 vy y + 1

3 v. (1.77)

The profile g(y) = (A − 1
6 y2)+ that is obtained in (1.76) from the exact solution

may be treated as a “weak” stationary solution of (1.77), possibly, in an FBP frame-
work, which is not known. For general rescaled solutions, the passage to the limit
τ → ∞ in (1.77) is an OPEN PROBLEM (recall that the general well-posedness of
such problems is also obscure). Local regularity and any potential or gradient prop-
erties of such flows are unknown. Inserting other operators on the right-hand side
of (1.75) may yield a different type of solutions on invariant subspaces, including
trigonometric or exponential ones, leading to non-similarity solutions (see further
examples below for better justifies models).

1.3.2 General polynomial operators

Let ν = {ν1, ..., νK } ∈ IRK for 2 ≤ K ≤ n−1 be a row (a multiindex) of nonnegative
integers of fixed length M = |ν| = ν1 + ...+ νK ≥ 2. The corresponding primitive
monomial operator is given by

Fν[u] =∏K
j=1

(
D j

x u
)ν j . (1.78)

We next define the polynomial operator with arbitrary constants aν ∈ IR,

F[u] =∑(|ν|=M) aν Fν[u]. (1.79)

Proposition 1.24 (i) Each operator (1.78) and, hence (1.79), admits the subspace
Wn in (1.55) if∑K

j=1(n − 1− j)ν j ≤ n − 1 for all ν such that {|ν| = M}. (1.80)
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(ii) If (1.80) is not valid for ν from some subset N ⊂ IRK and∑
(ν∈N )(n − 1− j)ν j = n,

then Wn is invariant under the extra condition∑
(ν∈N ) aν

∏
( j )

[
(n − 1)(n − 2)...(n − j)

]ν j = 0. (1.81)

Proof. Fix an arbitrary

u = C1 + C2x + ...+ Cn xn−1 ∈ Wn .

(i) Taking into account the higher-degree terms only, due to (1.80)‡,

Fν[xn−1] ∼ xρ ∈ Wn, with ρ =∑(n − 1− j)ν j .

(ii) For any ν ∈ N , we need to control the coefficient of xn in each monomial,

Fν [...+ Cn xn−1] = ...+ C M
n
∏

( j )

[
(n − 1)(n − 2)...(n − j)

]ν j xn.

Summing up over all ν ∈ N yields that the condition (1.81) cancels the term with
xn in F[u].

Remark 1.25 (Extensions) It is not difficult to extend the result in (ii) to the case∑
(ν∈N1)

(n − 1− j)ν j = n + 1 for some N1 ⊂ IR K .

Then F[u] will contain terms with xn+1 having the common multipliers C M
n , and

the next lower-order term on L{xn} with the common multiplies Cn−1C M−1
n . There-

fore, we will need two hypotheses that guarantee that Wn is still invariant. The first
hypothesis is similar to (1.81), and the second one is slightly more complicated but
still easy to derive in general. This analysis can be continued to include three or more
hypotheses on the operator.

We finish with the following application to more general equations.

Remark 1.26 (Polynomial PDEs) Now let ν = ‖νi, j ‖ be a K×K matrix of non-
negative integers, with 2 ≤ K ≤ n−1, and let the corresponding monomial

Fν[u] =∏(i, j )(Di
t D j

x u)νi, j

be defined in the space of sufficiently smooth functions u = u(x, t) of two indepen-
dent variables x and t . The polynomial operator is then

F[u] =∑(ν) aν(t)Fν [u].

Assume that, similar to (1.80),∑
(i, j )(n − 1− j)νi, j ≤ n − 1 for all ν.

Then the PDE
F[u] = L[u]+ f (x, t) on Wn,

‡ Here, “∼” means equality up to a non-zero constant multiplier.
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where f (·, t) ∈ Wn for all t and L is a linear operator

L =∑ bi, j (x, t) Di
t D j

x ,

with bi, j (·, t) ∈ W j+1 for 1 ≤ i, j ≤ K and t ∈ IR, reduces to an ODE system.

1.3.3 One-dimensional polynomial subspaces

The 1D invariant subspaces are easy to deal with. For instance, consider the second-
order operator of nonlinear diffusion

F2[u] = (k(u)ux)x , with k(u) = αu p + βu2(p+1), (1.82)

where p �= −1 is a constant. In this case, (1.82) admits the 1D subspace

W1 = L{xµ}, with µ = 1
p+1 (x > 0) (1.83)

(and L{ex } if p = −1), since the first term (αu pux)x , corresponding to αu p , van-
ishes. We will plug this operator into some PDEs.

Example 1.27 (Parabolic, KdV, and Cahn–Hilliard PDEs) First, we add to F2 a
general first-order operator preserving subspace (1.83),

ut = F2[u]+ γ u +∑( j≥0) a j u j (ux )
−µ( j−1)

µ−1 (µ �= 1).

Then there exists the solution

u(x, t) = C(t)xµ, (1.84)

where C(t) satisfies the ODE

C ′ = βµ(µ+ 1)C2p+3 + γC +∑ a jµ
−µ( j−1)

µ−1 C
µ− j
µ−1 .

For p = − 1
2 , i.e., µ = 2, we introduce a third-order KdV-type equation (odd-order

nonlinear PDEs are the subject of Chapter 4)

ut = ux x x +
[(

α√
u
+ βu

)
ux
]

x + γ u + δuux x ,

where the ODE takes the form C ′ = 2(3β+ δ)C2+ γC . For the fourth-order Cahn–
Hilliard equation (see Section 3.1 for details), we take µ = 3 for p = − 2

3 , so

ut = −ux x x x +
[(
αu−

2
3 + βu

2
3
)
ux
]

x

+ γ u + δuxux x + εuux x x + ...
(1.85)

admits solutions (1.84) with µ = 3.

Example 1.28 (Thin film models) In a similar fashion, the fourth-order thin film
operator (see Section 3.1)

F4[u] = −[(αu p + βuq)ux x x]x , where q = 4(p+1)
3 ,

preserves subspace (1.83) with µ = 3
p+1 . Hence, the thin film equation (TFE)

ut = F4[u]+ γ u + δu5(ux )
− 4µ

µ−1 (p �= 2)
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has the solution (1.84) with the ODE

C ′ = −µ(µ2 − 1)(µ− 2)βCq+1 + γC + δµ
− 4µ

µ−1 C
µ−5
µ−1 .

1.3.4 Operators of the same total order: criterion of invariance

Quadratic case. Fix a natural k ≥ 1, and consider a general quadratic operator of
the following form:

F[u] =∑(i+ j=k) ai, j Di
x u D j

x u, (1.86)

where the coefficients satisfy ai, j = a j,i for all {i, j ≥ 0 : i + j = k}. The total
differential order of each monomial is equal to k. Note that, for polynomial invariant
subspaces, it is actually suffices to consider operators of the form (1.86); see Section
2.6 for more details and references. The particular case k = 4 is associated with thin
film operators

F[u] = −uux x x x + βuxux x x + γ (ux x)
2 (α, β ∈ IR),

which will be systematically studied in Chapter 3. The symmetric form of this oper-
ator is as follows:

F[u] = − 1
2 uux x x x + 1

2 βuxux x x + γ (ux x)
2 + 1

2 βux x xux − 1
2 ux x x xu.

Taking first u from the standard polynomial subspace,

u =∑n−1
µ=0 Cµxµ ∈ Wn = L{1, x, ..., xn−1}, (1.87)

substituting into (1.86), and introducing the notation σ i
µ = µ(µ − 1)...(µ− i + 1),

we obtain
F[u] =∑(i, j ) ai, j

(∑
(µ) Cµxµ

)(i)(∑
(ν) Cνxν

)( j )

=∑(i, j ) ai, j
(∑

(µ) Cµσ
i
µxµ−i

)(∑
(ν) Cνσ

j
ν xν− j

)
=∑(µ,ν) CµCν

(∑
(i, j ) ai, j σ

i
µσ

j
ν

)
xµ+ν−k .

Since constants {Cµ} are independent, we conclude that F : Wn → Wn iff∑
(i+ j=k) ai, j σ

i
µσ

j
ν = 0 for all µ ≤ ν such that µ+ ν − k > n − 1. (1.88)

Similarly, choosing any polynomial subspace with “gaps”,

u =∑(µ∈N ) Cµxµ ∈ Wn, (1.89)

where the summation is performed over some subset of nonnegative integers N , the
invariance condition in (1.88) must be valid for all µ + ν − k �∈ N . Dealing with
invariant subspaces for quadratic operators (1.86) pose a number of interesting math-
ematical problems. Later on, we perform a detailed study of operators like (1.86) on

general operators), and some other subspaces.

Cubic case. Consider the cubic operators from thin film theory (Chapter 3)

F[u] =∑(i+ j+l=k) ai, j,l Di
x u D j

x u Dl
x u, (1.90)
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polynomial (Section 2.6.4), exponential (see Example 1.49, and Section 7.1 for more
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where {ai, j,l} are elements of an absolutely symmetric tensor of rank 3 (symmetric
relative to any pair of indices). Substituting (1.87) yields

F[u] =∑(µ,ν,ω) CµCνCω

(∑
(i, j,l) ai, j,l σ

i
µσ

j
ν σ

l
ω

)
xµ+ν+ω−k .

Therefore, the invariance criterion of Wn is∑
(i, j,l) ai, j,l σ

i
µσ

j
ν σ

l
ω = 0 for all µ ≤ ν ≤ ω, µ+ ν + ω − k > n − 1. (1.91)

Similar conditions occur for quartic, quintic and higher-degree operators.

1.4 Examples: trigonometric subspaces

1.4.1 Some classification results and examples

We next move to quadratic and cubic operators preserving

W3 = L{1, cos x, sin x}. (1.92)

This 3D subspace and its 5D extensions induce finite Fourier expansions of solutions
of several nonlinear PDEs. For such subspaces, typical computations are more in-
volved than those for the polynomial expansions. We restrict our attention to the two
most important cases n = 3 and n = 5. The general results in Section 2.2 will be
devoted to subspaces of arbitrary dimensions.

Proposition 1.29 Subspace (1.92) is invariant under the quadratic operator (1.56)
iff the coefficients {b j } satisfy the linear system{

b4 = b6 + b1 − b3,
b5 = b2.

The set of such operators is a 4D linear space spanned by

F1[u] = ux x(ux x + u), F2[u] = ux(ux x + u),
F3[u] = u(ux x + u), F4[u] = (ux )

2 + u2.

Proposition 1.30 Subspace (1.92) is invariant under the cubic operator (1.57) iff{
b1 = 1

2 (b5 + b7 − b10), b2 = 1
2 b6,

b3 = 1
2 (−b5 + 3b7 + 2b8 − 3b10), b4 = b9 − 1

2 b6.

The set of such operators is a 6D linear space spanned by

F1[u] = ux x [(ux x)
2 + (ux)

2], F2[u] = ux [(ux x)
2 + (ux)

2],
F3[u] = u[(ux x)

2 + (ux)
2], F4[u] = ux x [2uux x − (ux )

2 + u2],
F5[u] = ux [2uux x − (ux)

2 + u2], F6[u] = u[2uux x − (ux )
2 + u2].

Next, consider the 5D trigonometric subspace

W5 = L{1, cos x, sin x, cos 2x, sin 2x}. (1.93)

Proposition 1.31 Subspace (1.93) is invariant under the quadratic operator (1.56)
iff the coefficients {b j } satisfy{ b2 − 2b5 = 0, b2 − 4b5 = 0,

b1 − 4b3 − 4b4 + 16b6 = 0,
2b1 − 4b3 − 5b4 + 8b6 = 0.
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The set of such operators is a 2D linear space spanned by

F1[u] = uux x − 3
4 (ux )

2 + u2 and F2[u] = (ux x + 4u)2.

Proposition 1.32 No nontrivial cubic operators (1.57) admit subspace (1.93).

Proof. Subspace (1.93) is invariant under (1.57) iff

b2 = b4 = b6 = b9 = 0, b3 = 4b7, b5 = b8 − 9b5 + 8b7 = 0,
b10 − b1 + 3b7 = 0, −3b1 + b5 + 8b7 = 0,

15b1 − 5b5 − 44b7 = 0, 21b1 − 4b5 − 64b7 = 0.

This system admits the trivial solution only.

Some examples of PDEs with standard basic trigonometric subspaces have been
studied in Section 1.1. Let us consider another example motivated by the structure of
the quadratic operator of the GT equation from Example 1.20.

Example 1.33 (Periodic solutions of the Gibbons–Tsarev equation) Similar to
Example 1.20, the quadratic operator of the GT equation (1.64) is convenient to
consider on the module (1.92). Hence, there exist exact solutions

u(x, t) = C1(t)+ C2(t) cos x + C3(t) sin x,{C ′′1 = C2C ′2 + C3C ′3 + 1,
C ′′2 = C ′1C2,
C ′′3 = C ′1C3.

Further extensions of trigonometric subspaces are possible for a three-parameter
family of such quadratic operators,

F[u] = uxut x − βut ux x + γ uut x x + δuut (β, γ, δ ∈ IR). (1.94)

Proposition 1.34 The only operator (1.94) associated with the 5D module (1.93) is
as follows:

F[u] = uxut x − 2
3 ut ux x − 2

3 uut x x − 4
3 uut . (1.95)

Proof. We begin with the necessity. Using the subspace of cos-functions,

u = C1 + C2 cos x + C3 cos 2x ∈ W3,

we give the results of final calculations, keeping only the suspicious terms that may
not belong to W3,

F[u] = [4 sin2 2x + (4β − 4γ + δ) cos2 2x
]
C3C ′3

+ [(4β − γ + δ) cos x cos 2x + 2 sin x sin 2x
]
C3C ′2

+ [(β − 4γ + δ) cos x cos 2x + 2 sin x sin 2x
]
C2C ′3 + ... .

These three terms belong to W5 for arbitrary values C2,3 and C ′2,3 iff{ 4β − 4γ + δ = 4,
4β − γ + δ = 2,
β − 4γ + δ = 2,

from which come β = −γ = 2
3 and δ = − 4

3 yielding operator (1.95).
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To see the sufficiency, we write down the operator (1.95) in the form

F[u] = − 2
3

[
uux x − 3

4 (ux)
2 + u2

]
t .

The operator in square brackets, up to scaling x �→
√

3
2 x , coincides with the operator

in Example 1.15 and admits the subspace (1.93), so the same subspace is available
for F , where W5 becomes a module.

Example 1.35 (Fast diffusion equation) Consider the following quasilinear fast
diffusion equation with source and absorption:

vt =
(
v− 4

3 vx
)

x − 3
4 v− 1

3 − 3
2 av − 3

2 bv
5
3 , (1.96)

where a and b are constants. Setting u = v−2/3 (notice that u is not the standard
pressure) yields a PDE with a cubic operator,

ut = u2ux x − 1
2 u(ux)

2 + 1
2 u3 + au + b.

It follows from Proposition 1.30 (see operator F6 therein) that (1.96) has solutions

v(x, t) = [C1(t)+ C2(t) cos x + C3(t) sin x
]− 3

2 , (1.97)
C ′1 = 1

2 C1(C2
1 − C2

2 − C2
3 )+ aC1 + b,

C ′2 = 1
2 C2(C2

1 − C2
2 − C2

3 )+ aC2,

C ′3 = 1
2 C3(C2

1 − C2
2 − C2

3 )+ aC3.

These solutions can be derived by using a quadratic representation of (1.96). Setting
u = v−4/3 (the correct pressure transformation) yields a family of solutions on the

Example 1.36 (Riabouchinsky–Proudman–Johnson (RPJ) equation) Consider
the RPJ equation [488, 473]

ux xt = εux x x x − uux x x + uxux x , (1.98)

with the third-order quadratic operator F[u] = −uux x x + ux ux x . This PDE arises
in the so-called Berman problem and is derived from the Navier–Stokes equations
in IR2 describing the unsteady plane flow of a viscous incompressible fluid confined
between parallel walls. In this case, ε = 1

Re , where Re is the Reynolds number. The
stationary solutions of (1.98) were studied by A.S. Berman in 1953, [43].

Equation (1.98) can be integrated once to reveal the special quadratic operator

uxt = εux x x −
[
uux x − (ux)

2
]+ g(t),

where g(t) is an arbitrary smooth function of integration related to the fluid pressure.
We will refer to

Frem[u] = uux x − (ux)
2 (1.99)

as the remarkable operator, in view of its outstanding invariant properties that will
be used a few times later on. Namely, Frem admits the 3D subspace

W3 = L{1, cos γ x, sin γ x} for any γ �= 0. (1.100)
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5D subspace (1.93) that includes those given by (1.97); cf. Example 1.15.
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Using this subspace (1.100) gives

u(x, t) = C1(t)+ C2(t) cos γ x + C3(t) sin γ x,

with the following system of an algebraic and two differential equations:
g = −γ 2

(
C2

2 + C2
3

)
,

C ′2 = −εγ 2C2 − γC1C3,

C ′3 = −εγ 2C3 + γC1C2.

Concerning polynomial subspaces, for the third-order quadratic operator in (1.98),
the basic subspace is 4D, W4 = L{1, x, x2, x3}. The 5D, W5 = L{1, x, x2, x3, x4},
is available for the modified operator

F[u] = −uux x x + 1
2 uxux x : W5 → W5.

Example 1.37 (Partial invariance in time-dependent cases) Let us return to the
original RPJ equation (1.98). Clearly, the operator there preserves the subspace of
linear functions W lin

2 = L{1, x}, as well as the trigonometric subspace (1.100) for
arbitrary γ ∈ IR. These two properties make it possible to construct solutions of
(1.98) of the following form:

u(x, t) = C1(t)+ C2(t)x + C3(t) cos(γ (t)x)+ C4(t) sin(γ (t)x), (1.101)

where now γ (t) is a function to be determined. Such solutions admit simple invariant
motivations; see also Remarks on relations to positons of integrable PDEs. Here, the
basis functions depend on the independent variable t , so a proper setting includes
partially invariant modules to be treated in the next chapter, Section 2.8.

Now, using a natural scaling idea, we consider the whole differential operator

F̂[u] = ux xt − F[u] ≡ ux xt + uux x x − uxux x , (1.102)

which is defined in the space of smooth functions u = u(x, t) of both independent
variables. First, we get rid of the γ (t)-dependence in the spatial variable in (1.101)
by introducing the new independent variable

x̂ = γ (t)x .

Then (1.102) reads

F̂[u] = γ γ ′ x̂ux̂ x̂ x̂ + 2γ γ ′ux̂ x̂ + γ 2ux̂ x̂t − γ 3(ux̂ux̂ x̂ − uux̂ x̂ x̂ ),

while the exact solutions (1.101) take the form

u(x̂, t) = C1 + C2
γ x̂ + C3 cos x̂ + C4 sin x̂ . (1.103)

Second, for convenience, let us introduce the new function v by

u = v + C2
γ x̂,

so that
F̂[u] �→ F̂ [v] = γ

(
γ ′ + γC2

)
x̂v x̂ x̂ x̂ + γ

(
2γ ′ − γC2

)
v x̂ x̂

+ γ 2
[
v x̂ x̂ t − γ (v x̂v x̂ x̂ − vv x̂ x̂ x̂)

]
.
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F̂ [v] preserves the standard trigonometric subspace

Ŵ3 = L{1, cos x̂, sin x̂}, if γ ′ + γC2 = 0, (1.104)

and the following action of the operator is obtained:

F̂[v] = 3γ γ ′v x̂ x̂ + γ 2v x̂ x̂ t − γ 3(v x̂v x̂ x̂ − vv x̂ x̂ x̂). (1.105)

Actually, Ŵ3 is invariant under all three operators on the right-hand side of (1.105).
This is seen from the identity in the original independent variables,

F̂[u] = [−(C3γ
2
)′ − C1C4γ

3 + C2C3γ
2
]

cos γ x

+ [−(C4γ
2
)′ + C1C3γ

3 + C2C4γ
2
]

sin γ x

+ γ 2
(
γ ′ + γC2

)(
C3x sin γ x − C4x cos γ x

)
,

(1.106)

where the last bad term not belonging to the subspace vanishes by (1.104).
Using the expansion (1.106), we obtain for solutions (1.101) of (1.98) three ODEs

for five coefficients 
C ′3 = −εγ 2C3 + 3C2C3 − γC1C4,

C ′4 = −εγ 2C4 + 3C2C4 + γC1C3,
γ ′ = −C2γ.

(1.107)

This undetermined DS allows us to control the pressure and pose suitable boundary
conditions. For instance, the homogeneous Dirichlet conditions,

u(±1, t) = 0 for t > 0,

imply by (1.101) that

C1 = −C3 cos γ and C2 = −C4 sin γ.

Plunging these into (1.107) yields a well-posed DS for three coefficients,
C ′3 = −εγ 2C3 + (γ cos γ − 3 sin γ )C3C4,

C ′4 = −εγ 2C4 − 3C2
4 sin γ − γC2

3 cos γ,
γ ′ = γ sin γC4.

Similar computations can be performed for hyperbolic functions cosh(γ (t)x) and
sinh(γ (t)x) in (1.101); see further examples below.

1.4.2 Non-local models from Navier–Stokes equations in IR2

Example 1.38 (Nonstationary von Kármán solutions) Consider the Navier–Stokes
equations in IR2 

ut + uux + vuy = − 1
ρ px + ν(ux x + uyy),

vt + uvx + vvy = − 1
ρ py + ν(vx x + vyy),

ux + vy = 0,

(1.108)

where (u, v) = u is the velocity field, p is the pressure, ρ > 0 is the constant density,
and ν > 0 is the constant kinematic viscosity. We are looking for solutions

u = ∫ x
0 f (z, t) dz, v = −y f (x, t), and p = h(x, t). (1.109)
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The structure of such solutions corresponds to a nonstationary plane version of the
von Kármán solutions [327], which have been applied to various problems of fluid

Plugging (1.109) into (1.108) yields a semilinear non-local parabolic equation for
the function f (x, t), replaced now by u = u(x, t):

ut = ux x − u2 + ux
∫ x

0 u(z, t) dz. (1.110)

Consider for (1.110) a free-boundary problem on (0, s(t)) × IR+ with the symme-
try condition at the origin, ux (0, t) = 0, and the following conditions at the free
boundary x = s(t):

ux (s(t), t) = 0, s′ = − ∫ s
0 u(z, t) dz.

the same approach, after time-dependent scaling, as shown in (1.104), we obtain
solutions of the type (1.101), with γ (t) = π

s(t) ,

u(x, t) = C1(t)+ C2(t) cos
(
πx
s(t)

)
,

C ′1 = −C2
1 − C2

2 ,

C ′2 = −2C1C2 − (πs )
2C2,

s′ = −sC1.

Example 1.39 (General solutions on W2) In connection with the previous exam-
ple, let us perform more general invariant analysis of the Navier–Stokes equations
(1.108). The spatial structure of von Kármán solutions (1.109) expresses the fact that
(1.108) can posses solutions on the 2D subspace

u, v, p ∈ W2 = L{1, y},
which is not invariant under all the nonlinear operators. So, we set{ u = C1(x, t)+ C2(x, t)y,

v = D1(x, t)+ D2(x, t)y,
p = E1(x, t)+ E2(x, t)y.

Substituting into (1.108) yields the following system of eight equations (projections
of the three PDEs onto the vectors 1, y, and y2 respectively) for six coefficients:

C1t + C1C1x + D1C2 = − 1
ρ E1x + νC1x x ,

C2t + (C1C2)x + C2 D2 = − 1
ρ E2x + νC2x x ,

C2C2x = 0,
D1t + C1 D1x + D1 D2 = − 1

ρ E2 + νD1x x ,

D2t + C2 D1x + C1 D2x + D2
2 = νD2x x ,

C2 D2x = 0,
C1x + D2 = 0,
C2x = 0.

The shortest equations imply that

either C2 = 0, or C2x = 0 and D2x = 0.
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dynamics; see [42] and references in [13, Ch. 7].

For derivation, references, and further mathematical results, see [245, Ch. 9]. Using
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Consider for instance the first case. The second equation then yields that E2 = E2(t)
is arbitrary. Next, plugging

C1 = −
∫

D2 dx

from the seventh equation into the previous one (with C2 = 0), we obtain the in-
dependent governing equation of the type (1.110) for the coefficient D2. Solving a
suitable FBP for this parabolic equation yields D2(x, t), and then the fourth equation
becomes a linear parabolic PDE for D1 with an arbitrary function E2(t). Finally, the
first equation can be treated as an ODE for E1(x, t) with a parameter t .

Example 1.40 (Polynomial subspace) The following non-local semilinear heat equa-
tion on (0, 1)× IR+ is also associated with the Navier–Stokes equations in IR2:

ut = ux x + β(ux)
2 + u2 − µux

∫ x
0 u(z, t) dz − (1+ µ)

∫ 1
0 u2(z, t) dz.

For µ = 3
2 , it admits solutions on the subspace of quadratic polynomials,

u(x, t) = C1(t)+ C2(t)x + C3(t)x
2,

C ′1 = − 3
2 C2

1 − 5
2

(
C1C2 + 2

3 C1C3
)+ (β − 5

6

)
C2

2 − 5
4 C2C3 − 1

2 C2
3 + 2C3,

C ′2 = − 1
2 C1C2 + 4βC2C3,

C ′3 = −C1C3 + 1
4 C2

2 + 4βC2
3 .

1.4.3 Criterion of invariance for polynomial operators

Consider a general quadratic operator of the form

F[u] =∑(i, j ) ai, j Di
x u D j

x u, (1.111)

where a = ‖ai, j ‖ (i, j = 0, ..., k) is a given constant real symmetric (k+1)×(k+1)
matrix. By P , we denote the corresponding polynomial,

P(X,Y ) =∑ ai, j X i Y j , so F[u] = P(Dx , Dy)u(x, t)u(y, t)
∣∣
y=x . (1.112)

Consider the function

u =∑(µ∈N )

[
Cµ cos(µx)+ Dµ sin(µx)

]
, (1.113)

where N is a subset of nonnegative integers. If N = {0, 1, ..., n}, then u belongs to
the standard trigonometric subspace W2n+1 = L{1, cos x, sin x, ..., cos(nx), sin(nx)}.
Differentiating in each term and performing simple manipulations, we find the action

F[u] =∑(µ,ν)

{∑
(i, j ) ai, j µ

iν j
[
Cµ cos(µx + π

2 i)+ Dµ sin(µx + π
2 i)
]

× [Cν cos(νx + π
2 j)+ Dν sin(νx + π

2 j)
]} = 1

2

∑
(µ,ν)

{∑
(i, j ) ai, j

×
(

CµCνµ
iν j
[
cos((µ+ ν)x + π

2 (i + j))+ cos((µ− ν)x + π
2 (i − j))

]
+CµDν(µ

iν j + νiµ j )
[
sin((µ+ ν)x + π

2 (i + j))− sin((µ− ν)x + π
2 (i − j))

]
+ DµDνµ

iν j
[
cos((µ− ν)x + π

2 (i − j))− cos((µ+ ν)x + π
2 (i + j))

])}
.
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In the second sum with CµDν , we obtained two similar terms with CµDν and Cν Dµ,
and in the latter, we changed the summation (µ, ν) �→ (ν, µ) to get a single term.
The first term with CµCν has the coefficient

1
2

∑
(i+ j is even) ai, j µ

iν j
[
(−1)

i+ j
2 cos((µ+ ν)x)+ (−1)

i− j
2 cos((µ− ν)x)

]
+ 1

2

∑
(i+ j is odd) ai, j µ

iν j
[
(−1)

i+ j+1
2 sin((µ+ ν)x)+ (−1)

i− j+1
2 cos((µ− ν)x)

]
.

Since all the products CµCν , CµDν , and DµDν (latter two generate similar sums)
are linearly independent, taking into account cos and sin functions of (µ + ν)x , we
obtain first two groups of invariance conditions:∑

(i+ j is even) ai, j µ
iν j (−1)

i+ j
2 = 0,

∑
(i+ j is odd) ai, j µ

iν j (−1)
i+ j+1

2 = 0
(1.114)

for any µ, ν ∈ N with µ ≤ ν, such that µ+ ν �∈ N .
Similarly, the terms with cos and sin of the argument (µ − ν)x yield two more

groups of invariance conditions (1.114) in which, everywhere in both sums, i + j
should be replaced by i − j . These apply for ν − µ �∈ N , µ ≤ ν. For the standard
subspace W2n+1 without “gaps”, these two groups of conditions do not appear.

For operators (1.86) with fixed i + j = k and the subspace W2n+1, the invariance
conditions (1.114) are simplified and involve the polynomial (1.112),

P(µ, ν) = 0 for all µ ≤ ν such that µ+ ν > n. (1.115)

We will study such linear systems on the coefficients {ai, j } in Section 1.5.2 devoted
to exponential subspaces.

Similar invariance analysis can be performed for the cubic operators (1.90) with
analogous trigonometric manipulations and conclusions.

1.5 Examples: exponential subspaces

1.5.1 Classification and examples

We begin with the 3D subspace

W3 = L{1, ex , e−x }. (1.116)

Proposition 1.41 Subspace (1.116) is invariant under operator (1.56) iff{
b1 + b2 + b3 + b4 + b5 + b6 = 0,
b1 − b2 + b3 + b4 − b5 + b6 = 0.

The set of such operators is a 4D linear space spanned by

F1[u] = u(ux x − u), F2[u] = ux (ux x − u),
F3[u] = u(ux x − u), F4[u] = (ux )

2 − u2.

Example 1.42 (Blow-up for fast diffusion equation with source) The quasilinear
fast diffusion equation with a quadratic reaction term

vt =
( 1
v vx

)
x + v2 in IR × IR+ (1.117)

admits blow-up solutions for sufficiently large initial functions v0(x) > 0. By the
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pressure transformation u = 1
v , (1.117) reduces to the quadratic PDE

ut = Frem[u]− 1 ≡ uux x − (ux)
2 − 1. (1.118)

By Proposition 1.41, the remarkable operator Frem in (1.118) (note that Frem equals
to F3− F4) preserves subspace (1.116) or, which is the same, the subspace of hyper-
bolic functions

W3 = L{1, cosh x, sinh x}. (1.119)

Studying the evolution of the symmetric in x functions yields the solutions of (1.117)

u(x, t) = C1(t)+ C2(t) cosh x ∈ W2 = L{1, cosh x},{
C ′1 = C2

2 − 1,
C ′2 = C1C2.

(1.120)

The DS admits the first integral

C2
2 − C2

1 − 2 ln |C2| = constant,

and can be integrated in quadratures. The exact blow-up asymptotics of the DS
(1.120) describe some interesting features of localized, single point blow-up patterns
for the original PDE (1.117).

It is curious that “trigonometric” Proposition 1.29 also yields solutions

u(x, t) = C1(t)+ C2(t) cos x ∈ W2 = L{1, cos x},
where the DS is slightly different,{

C ′1 = −C2
2 − 1,

C ′2 = −C1C2.

Such solutions describe distinct features of blow-up of 2π-periodic solutions.

We now introduce the exponential analog of Example 1.37.

Example 1.43 (Partially invariant module). Consider the ∂
∂t -dependent operator

F̂[u] = ut − Frem[u] ≡ ut −
[
uux x − (ux )

2
]

for u = u(x, t) given by

u(x, t) = C1(t)+ C2(t)x + C3(t)eγ (t)x . (1.121)

This case of “time-dependent” subspaces admits a natural invariant treatment after
scaling x̂ = γ (t)x , as shown in Example 1.37. We omit further related computations.
In the original variables, the expansion is

F̂[u] = C ′1 + C2
2 + C ′2x + (C ′3 − C1C3γ

2 + 2C2C3γ
)
eγ x

+C3
(
γ ′ − C2γ

2
)

xeγ x .

For instance, for the semilinear Kuramoto–Sivashinsky-typeequation (see Section 3.8
for details)

ut = −ux x x x + uux x − (ux)
2 + αu + β,
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looking for solutions in the form (1.121) leads to the following DS:
C ′1 = −C2

2 + αC1 + β,
C ′2 = αC2,

C ′3 = γC3(γC1 − 2C2)+ (α − γ 4)C3,

γ ′ = C2γ
2.

The second ODE gives C2(t) = eαt if α �= 0, and C2(t) = 1 if α = 0. Substituting
C2(t) into the last equation, we obtain two functions γ (t) for which such solutions
exist,

γ (t) =
{
α(eαT − eαt)−1 for α �= 0,

1
T−t for α = 0,

where T is a fixed blow-up time of the solution.

Omitting straightforward analysis of cubic operators (1.57) admitting (1.116),
consider the 5D exponential subspace

W5 = L{1, ex , e−x , e2x , e−2x}. (1.122)

Proposition 1.44 Subspace (1.122) is invariant under (1.56) iff
16b6 + 8b5 + 4b4 + 4b3 + 2b2 + b1 = 0,
16b6 − 8b5 + 4b4 + 4b3 − 2b2 + b1 = 0,
8b6 + 6b5 + 5b4 + 4b3 + 3b2 + 2b1 = 0,
8b6 − 6b5 + 5b4 − 4b3 − 3b2 + 2b1 = 0.

The set of such operators is a 2D linear space spanned by

F1[u] = uux x − 3
4 (ux )

2 − u2 and F2[u] = (ux x − 4u)2.

Proposition 1.45 No nontrivial cubic operators (1.57) admit the subspace (1.122).

The proof is the same as that of Proposition 1.32. A full classification of 5D in-
variant subspaces for quadratic second-order operators will be the main subject of
Theorem 2.22.

Example 1.46 In a similar manner, the operator of the GT equation (1.64) is associ-
ated with the hyperbolic subspace (1.119). The extension to subspace (1.122) for the
operator family (1.94) is performed as in Proposition 1.34.

1.5.2 General polynomial operators

We now deal with the general quadratic kth-order operators (1.111) with the polyno-
mial (1.112).

Set p1 = 0 and fix other n − 1 real exponents, introducing the set

� = {pi , i = 1, ..., n}, where pi �= p j for i �= j.

Consider the n-dimensional linear subspace

Wn = L{epi x , i = 1, ..., n}, and denote

�′ = {pm + pl : pm, pl ∈ �, pm + pl �∈ �}. (1.123)
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Proposition 1.47 Subspace (1.123) is invariant under the operator (1.111) iff

P(pm, pl) = 0 for all pairs (pm, pl) such that pm + pl ∈ �′. (1.124)

Proof. Taking arbitrary
u =∑(i) Ci epi x ∈ Wn (1.125)

and plugging into (1.111) yields

F[u] =∑(i, j )
∑

(m,l) ai, j pi
m p j

l CmCl e(pm+pl )x

≡ ∑
(m,l) P(pm, pl)CmCle(pm+pl )x .

(1.126)

Since {Ci } are independent, it follows from (1.126) that the coefficients of e(pm+pl )x

must vanish for any pm + pl ∈ �′.
Dealing with invariant subspaces, in this proof, we do not take into account a pos-

sible correlation of similar terms in (1.126) that can give rise to cancellation of some
of the terms. Actually, for arbitrary values of expansion coefficients {Ci } involved,
this is not possible. Assuming existence of some algebraic relations between expan-
sion coefficients {Ci }, meaning partial invariance of Wn , this topic will be under
scrutiny in Section 7.1. Evidently, the linear system (1.124) on coefficients {ai, j }
means existence of an infinite number of quadratic (non-integrable) PDEs with solu-
tions on exponential subspaces Wn of arbitrary finite dimension n (e.g., soliton-type
solutions).

Corollary 1.48 Given an arbitrarily large integer l > 1, there exists a polynomial
operator (1.111) of the order k large enough, admitting at least l exponential invari-
ant subspaces Wn, (1.123), of any dimension n = 1, 2, ..., l.

The corresponding first-order evolution PDEs

ut = F[u] ≡∑(i, j ) ai, j Di
x u D j

x u on Wn (1.127)

are n-dimensional DSs. The second-order PDEs, utt = F[u] on Wn , are 2nth-order
DSs. Such classes of PDEs can be treated as intermediate relative to known inte-
grable equations admitting infinitely many (partially) invariant subspaces.

Let us return to systems (1.124). The general operator (1.111) contains (k+1)(k+2)
2

free coefficients {ai, j }. So the system (1.124) cannot have more than (k+1)(k+2)
2 − 1

linearly independent equations to generate such nontrivial operators. The total num-
ber of elements in �′ (its cardinal number) satisfies !�′ ≤ (k+1)(k+2)

2 − 1. In an
example below, we illustrate solvability of such systems in a particular setting.

Example 1.49 (Operators with monomials of the same total order) Consider op-
erators (1.86) that contain

[ k
2

]+ 1 unknown coefficients {ai, j }. Without loss of gen-
erality, we assume that k is even and ! �′ = s = k

2 . By (pl1, pm1), ..., (pls , pms ),
we denote the pairs of exponents such that pl j + pm j ∈ �′ for all j = 1, ..., s. The
system (1.124) is then composed of precisely s equations,

a0,k
1
2

(
pk

l j
+ pk

m j

)+ a1,k−1
1
2

(
pk−1

l j
pm j + pl j pk−1

m j

)+ ...

+ a k
2 ,

k
2

p
k
2
l j

p
k
2
m j = 0 for j = 1, ..., s.

(1.128)
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(If k is odd, the last term is replaced by a k−1
2 , k+1

2
p

k−1
2

l j
p

k+1
2

m j , and the analysis is sim-

ilar.) Dividing each equation in (1.128) by pk
l j

and denoting r j = pm j
pl j

yields the

equivalent system

a0,k
(
1+ rk

j

)+ a1,k−1
(
r j + rk−1

j

)+ ...

+ a k
2−1, k

2+1

(
r

k
2−1
j + r

k
2+1
j

)+ 2a k
2 ,

k
2

r
k
2
j = 0.

(1.129)

For mutually distinct ratios {r j }, we then obtain a unique operator (1.86), up to a
scalar factor. It is not very difficult to solve the system (1.129),

al,k−l = (−1)lσl
(
r1, ..., rs ,

1
r1
, ..., 1

rs

)
for l = 0, ..., k

2 − 1;
a k

2 ,
k
2
= 1

2 (−1)
k
2 σ k

2
(·) for l = 0.

(1.130)

Here, σl(·) are the elementary symmetric function of 2s = k arguments,

σl(y1, ..., y2s) =∑(1≤i1<...<il≤2s) yi1 ...yil (σ0(·) = 1).

For instance, for k = 4, the unique thin film operator (1.86) has the form

ux x x xu − (r1 + r2 + 1
r1
+ 1

r2

)
ux x xux + 1

2

(
r1r2 + 2+ r1

r2
+ r2

r1
+ 1

r1r2

)
(ux x)

2.

For the space W3 = L{1, ex , e2x }, i.e., p1 = 0, p2 = 1, and p3 = 2, we have
two pares of exponents, (1, 2) and (2, 2), generating �′ = {3, 4}. Hence, we obtain
r1 = 2 and r2 = 1, and the operator

F[u] = ux x x xu − 9
2 ux x xux + 7

2 (ux x)
2.

The corresponding parabolic and hyperbolic PDEs,

ut = F[u] and utt = F[u],

have finite-dimensional dynamics on W3. An ODE reduction exists for the fifth-order
nonlinear dispersion PDE ut = (F[u])x . We will study such models in Section 4.2.

Example 1.50 (TFEs) Consider a fourth-order equation from thin film theory (see
more on such degenerate parabolic models in Section 3.1),

ut = F[u] ≡ −uux x x x + αux ux x x + β(ux x)
2 + γ uux x . (1.131)

Let � = {0, 1, 2, 3}, so the PDE is restricted to the subspace

W4 = L{1, ex , e2x , e3x }, (1.132)

and let us look for a solution in the form of expansion

u(x, t) = C1(t)+ C2(t)e
x + C3(t)e

2x + C4(t)e
3x . (1.133)

Since 1 + 2 = 3, the structure of this solution corresponds to the 2-solitons. The
polynomial of operator F in (1.131) is

P = − 1
2

(
X4 + Y 4

)+ α
2

(
XY 3 + X3Y

)+ βX2Y 2 + γ
2

(
X2 + Y 2

)
,
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�′ = {4, 5, 6}, so, by Proposition 1.47, subspace (1.132) is invariant under F iff

P(1, 3) = P(2, 3) = P(3, 3) = 0.

This yields a linear system for parameters,{ 15α + 9β + 5γ = 41,
78α + 72β + 13γ = 97,
9α + 9β + γ = 9.

This has a unique solution, so that there exists a single thin film operator

F[u] = −uux x x x + 10 uxux x x − 74
9 (ux x)

2 − 7uux x

preserving (1.132). The PDE (1.131) on W4 then reduces to the fourth-order DS
C ′1 = 0,
C ′2 = 2P(0, 1)C1C2,

C ′3 = 2P(1, 1)C2
2 + 2P(0, 2)C1C3,

C ′4 = 2P(0, 3)C1C4 + 2P(1, 2)C2C3,

that can be solved explicitly. We may take C1 = 1 from the first ODE, and, from
the second, C2(t) = A2e2P(0,1)t, with the constant A2 = C2(0). The rest of the
ODEs can be explicitly solved step by step. The resulting exact solution (1.133)
is not always composed of elementary solitonic exponential terms, such as epx+ωt .
For instance, linear (and quadratic) polynomials in t appear in the resonance case
P(0, 2) = 2P(0, 1). For solutions not having the 2-soliton structure, e.g.,

u(x, t) = C1(t)+ C2(t)ex + C3(t)e2x + C4(t)e4x ,

where �′ = {3, 5, 6, 8}, we need four conditions of invariance of the corresponding
subspace

P(1, 2) = P(1, 4) = P(2, 4) = P(4, 4) = 0.

The maximal number of such invariance conditions of general exponential spaces
W4 is six for the case where no correlation between products of exponential terms in
(1.126) is available.

Example 1.51 (5D subspaces) Consider a general second-order PDE

utt = F[u] =∑(i, j ) ai, j Di
x u D j

x u

on W5

u(x, t) = C1(t)+ C2(t)ex + C3(t)e−x + C4(t)e
1
3 x + C5(t)e2x .

Then � = {−1, 0, 1
3 , 1, 2

}
and �′ = {−2,− 2

3 ,
2
3 ,

4
3 ,

7
3 , 3, 4

}
, with seven conditions

P(−1,−1) = P(−1, 1
3 ) = P( 1

3 ,
1
3 ) = P(1, 1

3 ) = P( 1
3 , 2) = P(1, 2) = P(2, 2) =

0. The DS is 
C ′′1 = P(0, 0)C2

1 + 2P(1,−1)C2C3,
C ′′2 = 2P(0, 1)C1C2 + 2P(−1, 2)C3C5,
C ′′3 = 2P(0,−1)C1C3,

C ′′4 = 2P(0, 1
3 )C1C4,

C ′′5 = 2P(0, 2)C1C5 + P(1, 1)C2
2 .
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For solutions on the general subspace (1.123), the maximal number of invariant
conditions in (1.124) is n(n−1)

2 (recall that p1 = 0 is fixed a priori). For proper oper-
ators F with higher-degree polynomials, there exist subspaces of higher dimension,
and hence, solutions via DSs can be constructed for corresponding evolution PDEs.

On exponential-trigonometric subspaces. If complex exponents p j = a j + i b j ,
b j �= 0, are involved in (1.123), this gives the exact solutions for a system of PDEs
stated for the real and imaginary parts of u = U + iV ,{

Ut = F[U ]− F[V ],
Vt = 2P[U, V ].

(1.134)

The real case V = 0 yields the single PDE Ut = F[U ]. Since

ep j x = ea j x(cos b j x + i sin b j x),

the expansion on Wn consists of exponential-trigonometric functions, and algebraic
manipulations become more technical.

On quadratic ∂
∂t -dependent operators. Consider more general operators that in-

clude differentiating in t ,

F[u] =∑(i, j,r,s) ai, j,r,s
(
Di

x Dr
t u
)(

D j
x Ds

t u
)
, (1.135)

where, for each pair of fixed {r, s}, the real matrix ‖ai, j,r,s‖ is symmetric relative to
indices {i, j}. Such operators occur in the theory of fully integrable and other equa-

n is similar,

F[u] =∑(m,l)

(∑
(r,s)

∑
(i, j ) ai, j,r,s pi

m p j
l C(r)

m C(s)
l

)
e(pm+pl )x ,

where the internal sum can be viewed as the action of the polynomial operator

Fr,s [u] ≡ Pr,s (pm, pl)C
(r)
m C(s)

l .

Assuming that all the derivatives {C(r)
m } are arbitrary, the subspace (module) Wn is

invariant if all terms like that vanish for any pm + pl ∈ �′, so that Proposition 1.47
remains valid. We postpone analysis of such solutions until Section 7.1, where using
partially invariant linear subspaces will provide us with more flexibility.

On cubic and other operators. Consider cubic operators with polynomials

F[u] =∑(i, j,k) ai, j,k Di
xu D j

x u Dk
x u, P(X,Y, Z) =∑ ai, j,k Xi Y j Zk, (1.136)

where {ai, j,k} is an absolutely symmetric (i.e., relative to any pair of indices) tensor
of rank 3. In this case, the analogy of formula (1.126) includes all triple products
forming the terms e(pm+pl+ps)x , with invariance conditions

P(pm, pl, ps) = 0, if pm + pl + ps ∈ �′.

The approach is extended to polynomial operators of higher algebraic degree.
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1.5.3 On a relation between exponential and polynomial subspaces

Consider a class of PDEs possessing solutions of the form

ū(x, t) = C(t)eϕ(t)x , (1.137)

with two expansion coefficients C(t) > 0 and ϕ(t). The basic nonlinearity is now

g(u) = u ln u (u > 0), �⇒ g(ū) = (C ln C) eϕx + (Cϕ) xeϕx .

The time-derivative also satisfies ut : L{eϕx } → L{eϕx , xeϕx}. Moreover, differen-
tial operators Dk

x (ln u) with any k ≥ 2 are annihilators of the subspace L{eϕx } for
any ϕ. Therefore, solutions (1.137) are available for the PDEs

ut =∑( j≥1) D j
x
[
a j u ln u + b j (ln u)x

]+ a0u ln u, with the DS (1.138){
ϕ′ =∑( j≥0) a jϕ

j+1,

C ′ =∑( j≥0) a jϕ
j ( j + ln C)C.

Setting u = ev in (1.138) (so, in view of (1.137), v̄ = ln C + ϕx) yields a PDE with
the leading polynomial operator,

vt = e−v
∑

( j≥1) a j D j
x (ev v)+ e−v

∑
( j≥1) b j D j+1

x v + a0v.

The right-hand side admits the subspace of linear functions L{1, x}, from whence
come the equivalent solutions

v̄(x, t) = C1(t)+ C2(t)x

(the second term vanishes).

Example 1.52 (Cahn–Hilliard-type equation) The following parabolic PDE:

ut = −ux x x x +
[(
α ln u + β

u + γ
)
ux
]

x + δu ln u (1.139)

admits solutions (1.137), where{
ϕ′ = δϕ + αϕ3,
C ′ = [−ϕ4 + (α ln C + αC + γC)ϕ2 + δ ln C]C.

Hence,
ϕ(t) = eδt [αδ (A − e2δt)]− 1

2 for δ �= 0,

and
ϕ(t) = [2α(−t)]− 1

2 for δ = 0.

1.5.4 On subspaces of irrational functions: dipole-type solutions

The quadratic operator from PME theory

F2[u] = uux x + γ (ux )
2, where γ �= −1, (1.140)

admits a simple 2D subspace (here x > 0)

W2 = L{xα, x2}, with α = 1
1+γ . (1.141)
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The origin of such a remarkable subspace is the well-known Barenblatt–Zel’dovich
(BZ) dipole solution (1957) [28] of the PME

vt = (vσ vx )x in IR+ × IR+ and v(0, t) ≡ 0 (σ > 0).

The pressure variable u = vσ then solves ut = F2[u] containing operator (1.140)
with γ = 1

σ = 1) and is in-
duced by a group of scalings. The explicit integrability of the resulting ODE follows
from the conservation law of the first moment of solutions of the PME, meaning that∫∞

0 xv(x, t) dx is preserved with time if it is finite at t = 0. See more details on
such solutions in Section 3.6 devoted to higher-order diffusion equations. Consider
another related example.

Example 1.53 (Quadratic wave equation) The quasilinear quadratic “forced” (an
extra term µu on the right-hand side) and “damped” (the friction term βut on the
left-hand side with β > 0) wave equation

utt + βut = (uux)x + µu ≡ F2[u]+ µu (γ = 1) (1.142)

admits exact dipole-type solutions on the subspace (1.141),

u(x, t) = C1(t)
√

x + C2(t)x
2,{

C ′′1 + βC ′1 = 15
4 C1C2 + µC1,

C ′′2 + βC ′2 = 6C2
2 + µC2.

These solutions are not connected with a scaling group, leaving (1.142) invariant.

1.5.5 Another special subspace

Various non-standard invariant subspaces will be studied in the next chapter, but we
present a simple example here.

Example 1.54 (Quasilinear wave equation with source) The hyperbolic PDE

utt = uxux x + u2 (ux ≥ 0) (1.143)

admits solutions

u(x, t) = C1(t)+ C2(t) f (x) ∈ L{1, f (x)},
where f satisfies the ODE for elliptic functions

f ′ f ′′ + f 2 = µ f + ν,

with arbitrary fixed parameters µ and ν. The DS is (see applications in Section 5.2){
C ′′1 = C2

1 + νC2
2 ,

C ′′2 = µC2
2 + 2C1C2.

1.5.6 On reduction to quadratic equations

It is no accident that the main classification results on invariant subspaces are as-
sociated with evolution equations having quadratic or cubic nonlinearities. First of
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all, the majority of the nonlinear PDEs of mathematical physics fall into this class.
Secondly, it will be shown in Section 2.2 that, in several important cases, linear in-
variant subspaces of the maximal dimension appear precisely for quadratic operators
only. Therefore, it is important to specify classes of nonlinear evolution PDEs (say,
of parabolic type) which can be reduced to those having quadratic operators.

Here, we consider a class of 1D quasilinear heat or reaction-diffusion equations

ut = k(u)ux x + q(u), (1.144)

which are widely used in many areas of mechanics, combustion theory, and biology.
Let us perform a smooth change

u = g(v)

and describe those PDEs (1.144) which can be reduced to equations with quadratic
operators. It is not difficult to see that, up to a linear change, there exist three types
of such equations:

(I) ut = un

µun+ν ux x + δun+κ+λu−n

µun+ν u,

(II) ut = eu

µeu+ν ux x + δeu+κ+λe−u

µeu+ν ,

(III) ut = 1
µ ln u+ν ux x + δ ln2 u+κ ln u+λ

µ ln u+ν u,

where µ and ν are constants satisfying µ2 + ν2 �= 0 and n �= 0. In the first PDE (I),
the change u = v1/n reduces it to

(I) (µv + ν)vt = vvx x +
( 1

n − 1
)
(vx )

2 + n(δv2 + κv + λ),

where the quadratic operator also arises on the left-hand side. This class of PDEs will
be more systematically used in Chapter 7 dealing with partially invariant subspaces.

In the second equation (II), the change is logarithmic, u = ln v, where v solves

(II) (µv + ν)vt = vvx x − (vx )
2 + δv2 + κv + λ.

In the third PDE (III), we use the exponential transformation u = ev , yielding

(III) (µv + ν)vt = vx x + (vx )
2 + δv2 + κv + λ.

For µ = 0, the left-hand sides become linear and the exact solutions of these three
types of quadratic PDEs can be found by using invariant subspaces.

Example 1.55 (Semilinear cubic heat equation) Consider equation (I) with pa-
rameters µ = 1, ν = κ = 0, and n = −1,

ut = ux x + δu + λu3.

Setting u = v1/n = 1
v yields the following quadratic PDE (see Section 7.4.1):

vvt = vvx x − 2(vx )
2 − δv2 − λ.

Remarks and comments on the literature

§ 1.1. In all chapters we consider various quasilinear second-order parabolic PDEs. Such
models occur in diffusion and combustion theory; see descriptions and earlier references in
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the classic book [594]. Modern filtration theory goes back to the beginning of the twentieth
century to works by N.Ye. Zhukovskii, who is better known for his fundamental research in
aerodynamics, hydrodynamics, and ODE theory (on his non-oscillation test in 1892, see [226,
p. 19]). His contribution to “theory of ground waters” is explained in Kochina’s paper [350].
Parabolic PDE models in filtration theory of liquids and gases in porous media were already
derived by Leibenzon in the 1920s and 1930s [378], by Richard’s (1931) [489], and Muskat
(1937) [429]. More information on parabolic PDEs, systems, and various aspects of existence-
uniqueness and blow-up singularity theory can be found in [9, 148, 149, 164, 205, 206, 226,
245, 403, 509, 530, 533, 578].

§ 1.2. First systematic studies of invariant subspaces for nonlinear operators were performed
in [217, 220, 232], where some earlier references can be found. Theory and applications of
functional differential equations (Section 1.2.3) are available in many books; see e.g., [276,
351]. Concerning Lie-group symmetry analysis for delay-differential equations, see [549].

General aspects of the GSV for evolution PDEs (Section 1.2.4) were developed in [238]
(a similar term “nonlinear separation of variables” was suggested in [445]). Finite rings were
used in [555], where a full description of 2D commutative subrings for the product

u ∗ v = (uv)x x ,

associated with the PME operator in

ut = (u2)x x ,

was given. This reiterated the well-known solutions, including the dipole Barenblatt–Zel’dovich

L{√x, x2}
(i.e., (1.141) for γ = 1) of the operator (u2)x x .

For linear differential operators, the problem of characterizing those operators that leave a
given finite-dimensional subspace of polynomials invariant has been known as the general-
ized Bochner problem [67]. Some partial solutions have connections with Burnside’s theorem
on polynomial generator representations of endomorphisms of an irreducible module for Lie
algebra. Differential operators (i.e., Schrödinger operators) preserving a finite-dimensional
subspace Wn of a given space of smooth functions are said to be partially (or quasi-exactly)
solvable. See basic ideas in Turbiner [563], [188], references in [312], and discussion in the
more recent paper [257]. In mathematical physics, there are several self-adjoint 1D operators
admitted countable sets of polynomial (monomial) eigenfunctions; e.g. the classic second-
order self-adjoint one

F2 = D2
x − 1

2 x Dx in IR,

with eigenfunctions being Hermite polynomials, or its higher-order non-self-adjoint analogies

F2m = (−1)m+1 D2m
x − 1

2m x Dx in IR for any m = 2, 3, ...

for which polynomial eigenfunctions are known to be complete and closed in a weighted L2-
space [163] (in fact, any order, 2m �→ k ≥ 3, fits, with more delicate topology for odd k).
In general, the problem on finite-dimensional invariant subspaces for such linear operators,
especially for operators in IRN , is known as intractable.

§ 1.3–1.5. Several results are given in [239]. Galilean invariant PDEs in Example 1.23 were
introduced in [213], symmetries of some nonlinear heat conduction models were studied in
[112]; see also references therein. (The mathematics of such fully nonlinear models, including
existence and nonuniqueness is not clear, so some conclusions there are not justified.) Exact
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solutions of (1.64) on 3D polynomial and exponential subspaces were obtained in [323] by
detecting the so-called defining equations and linear differential constraints. Exact solutions
on invariant subspaces for the quasilinear heat equation with source and convection,

ut = (D(u)ux )x + P(u)ux + Q(u),

were studied in [476]; see also [481, p. 145] for extensions. Proposition 1.24 was proved
in [553]. The exact solutions of some particular equations, such as (1.85) and (1.139), were
derived in [246] via nonclassical symmetries. It is well known that, for b = 0, equation (1.96)
admits a five-parameter Lie group of transformations and several explicit invariant solutions;
see [150] and [228]. Solutions in Example 1.36 were constructed in [220]. See [160, 159]
for some other applications of invariant subspaces to parabolic PDEs. Solutions in Example
1.37 were studied in detail in [346], where further information on the Berman problem can be
found. Solutions on subspaces of the mixed polynomial-trigonometric or exponential type (cf.

L{1, x, cos x, sin x}, or L{1, x, cosh x, sinh x}

or KP equations; see Remarks to Section 4.1.
Derivation of 1D non-local parabolic models in Example 1.38 (and partially in Example

1.40) from the Navier–Stokes equations in IR2 can be found in [13, Ch. 7]. Solutions in Exam-
ple 1.38 were constructed in [475] (blow-up singularities were rigorously described in [244]).
Example 1.40 is given in [220].

Solutions (1.121) in Example 1.43 were detected in [110] by using a linear ordinary differ-
ential constraint with coefficients, depending on t (no other new exact solutions of quadratic
parabolic PDEs were obtained there by this approach). For evolution PDEs (1.127) with gen-
eral quadratic operators (1.111), some solutions on exponential partially invariant subspaces
were obtained in [397]; see further extensions and references in Section 7.1.

Notice another classical quadratic Prandtl’s equation occurring in Prandtl’s boundary layer
theory (proposed in 1904, [470]; the first exact similarity solution in IR2 is due to Blasius
(1908) [63]) for incompressible fluids,

ψyyy + ψxψyy − ψyψxy − ψyt + uux +Ut = 0, (1.145)

where ψ = ψ(x, y, t) is the stream function and U(x, t) is the given external far-field (at
y = ∞) velocity distribution; see further mathematical details in Oleinik–Samokhin [444].
This PDE has the same quadratic operator as that in the Gibbons–Tsarev equation (1.64).
Exact solutions of (1.145) are studied in [402], where further references can be found. Another
quadratic operator arises in the symmetric regularized long wave equation

utt + ux x + uuxt + ux ut + ux xt t = 0;
see exact solutions in [180] constructed by an interesting algebraic method using some linear
polynomial structures.

Some other solutions on invariant subspaces can be explained by using various differential

utt = (ux )
mux x + f (u),

appear in applications to gas dynamics and shallow water wave theory; see [18], where group
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constraints and determining equations; see [322, 447, 592] and [13, Ch. 3]. More general

properties are studied, and Chapter 5 for more results.

quasilinear wave models (cf. (1.143)),

are typical for the positons or the negatons solutions of the integrable PDEs, such as the KdV

(1.101))



CHAPTER 2

Invariant Subspaces and Modules:
Mathematics in One Dimension

This chapter is devoted to mathematical theory of invariant subspaces for ordinary differen-
tial operators. We establish a general representation of operators preserving a given linear
subspace (the Main Theorem), and prove other properties that are necessary for further ap-
plication to nonlinear PDEs in the subsequent chapters. In particular, we obtain the sharp
estimate of the dimension of linear subspaces invariant under a nonlinear operator of a given
differential order (the Theorem on maximal dimension).

2.1 Main Theorem on invariant subspaces

There exist two main problems in the context of invariant subspaces:

Problem I, F �→ {Wn}: given operator F, find all invariant subspaces Wn , and

Problem II, Wn �→ {F}: given invariant subspace Wn, find all operators F .

In this section, Problem II is studied. We assume that the subspace

Wn = L{ f1(x), ..., fn(x)} (2.1)

is defined as the space of solutions of a linear nth-order ODE,

L[y] ≡ y(n) + a1(x)y(n−1) + ... + an−1(x)y′ + an(x)y = 0, (2.2)

for which the functions { fi (x)} form a fundamental set of solutions, an FSS; see
e.g., [132, 434]. Let Fn−1(Wn) (or simply Fn−1) denote the whole set of differential
operators

F[y] = F(x, y, y′, ... , y(k)) (2.3)

of the order k not greater than n − 1, leaving the subspace (2.1), i.e., equation (2.2),
invariant. The function F(·) in (2.3) is assumed to be smooth enough. The invariance
condition of the subspace Wn with respect to F takes the form

L[F[y]]
∣∣
L[y]=0 ≡ 0. (2.4)

We will use first integrals of the equation (2.2) (i.e., expressions that are constant
on solutions). There exists the following set of first integrals:

Ii [y] = αi,1(x)y(n−1) + ... + αi,n−1(x)y′ + αi,n(x)y for i = 1, ..., n, (2.5)

where the coefficients αi,1(x), ... , αi,n(x) are defined recursively by

αi,1 = gi , αi,2 = a1gi − (αi,1)
′, ... , αi,n = an−1gi − (αi,n−1)

′ (2.6)

via an arbitrary FSS {gi (x)} of the equation that is conjugated (adjoint) to (2.2).
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We now present a general description of Fn−1(Wn). This result is referred to as
the Main Theorem on invariant subspaces.

Theorem 2.1 (“Main Theorem”) The set Fn−1(Wn) consists of all operators of the
form

F[y] =∑n
i=1 Ai (I1, ... , In) fi (x), (2.7)

where Ai (I1, ... , In) for i = 1, ..., n are arbitrary smooth functions of the complete
set of first integrals of equation (2.2).

Proof. Consider the invariance condition (2.4),

Dn F + a1(x)Dn−1 F + ... + an−1(x)DF + an(x)F = 0, (2.8)

where D is the operator of the full derivative by virtue of equation (2.2), i.e.,

D = d
dx

∣∣
(2.2)= ∂

∂x + y ′ ∂
∂y + ... + y(n−1) ∂

∂y(n−2)

−[a1 y(n−1) + ... + an−1 y ′ + an y
]

∂
∂y(n−1) .

(2.9)

In the extended space of variables {x, y, y′, ... , y(n−1)}, we introduce the new vari-
ables {x̃, I1, ... , In} by formulae

x̃ = x and Ii = Ii (x, y, y′, ... , y(n−1)) for i = 1, ... , n.

Then operator D in (2.9) takes the form D̃ = ∂/∂ x̃ , and the invariance condition
(2.8) is transformed into

D̃n F + a1(x̃)D̃n−1 F + ... + an−1(x)D̃F + an(x̃)F = 0. (2.10)

The general solution of (2.10) is given by the FSS { fi (x)} of (2.2),

F = A1(I1, ... , In) f1(x̃)+ ... + An(I1, ... , In) fn(x̃),

where Ai (I1, ... , In) for i = 1, ..., n are arbitrary sufficiently smooth functions. In
the original variables, this is the equality (2.7).

Remark 2.2 Condition (2.4) is actually the invariance criterion for equation (2.2)
with respect to the Lie-Bäcklund operator X = F[y] ∂

∂y , and, therefore, all the results
can be interpreted in terms of symmetries of linear ODEs; see more details in [12,
297, 446] and [10, Ch. 5].

Remark 2.3 If the FSS { fi (x)} is known, the FSS {gi (x)} of the conjugate equation
can be obtained without integrating by the standard formulae

gi = (−1)n+i W [ f1, ... , fi−1, fi+1, ... , fn]
W [ f1, ... , fn] for i = 1, ... , n, (2.11)

where

W [h1, . . . , hl ] =

∣∣∣∣∣∣∣∣∣
h1 h2 . . . hl

h′1 h′2 . . . h′l
. . . . . . . . . . . .

h(l−1)
1 h(l−1)

2 . . . h(l−1)
l

∣∣∣∣∣∣∣∣∣
denotes the Wronskian of the given functions {h1, ... , hl}.
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Remark 2.4 (Application to PDEs) For the first integrals (2.5) constructed by the
FSS (2.11), the following duality condition holds: for all i, j = 1, ..., n,

Ii [g j ] = δi j =
{

1 for i = j,
0 for i �= j,

(
δi j is Kronecker’s delta

)
. (2.12)

Therefore, given the evolution PDE

ut = F[u]

with the operator F defined by (2.7) via first integrals {Ii } satisfying (2.12), setting

u(x, t) =∑n
i=1 Ci (t) fi (x)

leads to the DS
C ′i = Ai(C1, ...,Cn), i = 1, ..., n.

The right-hand sides of these ODEs are precisely the coefficients in the operator
representation (2.7).

Theorem 2.1 is illustrated by a few examples, where we take gi = fi if the conju-
gate operator L∗ coincides with L or −L.

Example 2.5 (2D subspace) Choose the 2D subspace W2 = L{ex , e−x } with the
ODE

y′′ − y = 0.

This equation coincides with its conjugate, so we set g1 = f1 = ex , g2 = f2 = e−x .
By (2.7), all the operators F admitting W2 are

F[y] = A1(I1, I2)ex + A2(I1, I2)e−x , (2.13)

where first integrals are I1 = (y′ − y)ex and I2 = (y′ + y)e−x .

We can use this expression for describing operators satisfying some additional
conditions. For instance, we now find all the operators that do not depend explicitly
on x (these are especially important in applications). To this end, we use the notation

Ak
i = ∂ Ak

∂ Ii
, Ak

i j = ∂2 Ak

∂ Ii ∂ I j
, ... .

The translation-invariant operators satisfy

∂F
∂x ≡ 0, or (2.14)(

I1 A1
1 − I2 A1

2 + A1)ex + (I1 A2
1 − I2 A2

2 − A2)e−x ≡ 0.

Equating the coefficients of ex and e−x to zero, and solving the resulting system
yields A1 = I2 B1(I1 I2) and A2 = I1 B2(I1 I2), so that by (2.13),

F[y] = (y′ + y)B1(J )+ (y′ − y)B2(J ),

where J = I1 I2 = (y ′)2 − y2 and B1(J ) and B2(J ) are arbitrary functions. Some
particular cases are as follows:

F1[y] = 1
y′−y , F2[y] = 1

y′+y , F3[y] = (y′ − y)(y ′ + y)2,

F4[y] = y ′
[
(y ′)2 − y2

]
, and F5[y] = y

[
(y ′)2 − y2

]
.
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These operators yield a number of evolution PDEs with solutions on W2,

u(x, t) = C1(t)ex + C2(t)e−x ; (2.15)

for example, the following reaction-diffusion equations:

ut = ux x + 1
ux+u , ut = ux x + u[(ux)

2 − u2], ut = [(ux)
2 − u2]ux x ,

etc. (Similarly, hyperbolic PDEs with utt = ... can be treated.) Clearly, W2 is invari-
ant under the linear operator ux x . For the non-polynomial operator F[u] = 1

ux+u in
the first equation, W2 is invariant, since

F
[
C1ex + C2e−x

] = 1
2C1

e−x ∈ W2 (C1 �= 0).

Therefore, solutions (2.15) generate the DS C ′1 = C1, C ′2 = C2 + 1
2C1

.

Example 2.6 (3D subspace) Consider W3 = L{1, ex , e−x } defined by the ODE

y ′′′ − y ′ = 0.

Up to the sign, this equation coincides with its conjugate, so that we take the follow-
ing functions g1 = f1 = 1, g2 = f2 = ex , and g3 = f3 = e−x . By Theorem 2.1, the
general representation of operators F preserving W3 is

F[y] = A1(I1, I2, I3)+ A2(I1, I2, I3)ex + A3(I1, I2, I3)e−x , (2.16)

where A1, A2, and A3 are arbitrary smooth functions of the first integrals

I1 = y ′′ − y, I2 = (y′′ − y ′)ex , and I3 = (y′′ + y ′)e−x .

As above, let us detect the translational invariant operators F satisfying (2.14). This
leads to a system for functions A1, A2, and A3,

I2 A1
2 − I3 A1

3 = 0, I2 A2
2 − I3 A2

3 + A2 = 0, I2 A3
2 − I3 A3

3 − A3 = 0.

Solving it and using (2.16) yields

F[y] = B1(J1, J2)+ (y′′ + y ′)B2(J1, J2)+ (y′′ − y ′)B3(J1, J2),

where J1 = I1 = y ′′ − y, J2 = I2 I3 = (y ′′)2 − (y′)2, and B1(J1, J2), B2(J1, J2),
and B3(J1, J2) are arbitrary functions.

If, in addition to (2.14), we assume that F is of the first order, i.e.,
∂F
∂ y′′ ≡ 0,

we obtain the 4D linear space of operators spanned by

F1[y] = (y′)2 − y2, F2[y] = y ′, F3[y] = y, and F4[y] = 1.

These operators make it possible to construct evolution PDEs with solutions on W3,

u(x, t) = C1(t)+ C2(t)ex + C3(t)e−x .

In particular, this is the case for the semilinear heat equation with absorption

ut = ux x + (ux)
2 − u2.
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Example 2.7 (Radial geometry) Consider the following ODE for the subspace:

y ′′ = β−1
x y ′, where β �= 0, 1. (2.17)

This representation is related to the radial Laplace operator


N = d2

dx2 + N−1
x

d
dx

for the (non-integer and, possibly, negative) dimension N = 2 − β. Here x > 0
denotes the radial space variable. The FSS of (2.17) is

f1(x) = 1 and f2(x) = xβ.

By (2.11), we readily find that, up to a constant factor, the FSS of the conjugate
equation is

g1(x) = x and g2(x) = x1−β.

Then Theorem 2.1 implies that the linear space of nonlinear operators admitting
W2 = L{1, xβ} has the form

F[y] = A1(I1, I2)+ A2(I1, I2)x
β,

with arbitrary functions A1 and A2 of the first integrals

I1 = xy ′ − βy and I2 = x1−β y ′.

The translation-invariant operators satisfying (2.14) are spanned by

F1[y] = (y′) β
β−1 , F2[y] = y, and F3[y] = 1.

The operator F1 generates the following semilinear higher-order PDEs (m ≥ 2):

ut = ∂mu
∂xm + λ(ux )

m
m−1 (ux > 0), (2.18)

where λ is a constant. The operator on the right-hand side has the invariant subspace
W2 = L{1, xm}, and hence, (2.18) admits solutions

u = C1(t)+ C2(t)x
m .

Substituting into the PDE yields C ′1+C ′2xm = m! C2+λ(mC2)
m

m−1 xm, which leads
to the following dynamical system:{

C ′1 = m! C2,

C ′2 = λ (mC2)
m

m−1 .

It is solved explicitly and gives the solutions of (2.18) of the form

u(x, t) = (m−1)m−1

mm

[ m!
λ(m−2)

1
(a1−λt)m−2 + xm

(a1−λt)m−1 + a2
]

for m �= 2,

u(x, t) = 1
4

[− 2
λ ln |a1 − λt| + x2

a1−λt + a2
]

for m = 2,

where a1 and a2 are arbitrary constants. Note that the change x = x̃1/β transforms
(2.17) into a simpler equation, yx̃ x̃ = 0.
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2.2 The optimal estimate on dimension of invariant subspaces

We consider the question of the maximal dimension of invariant subspaces for non-
linear operators of a fixed differential order. This is an important, crucial aspect of
Problem I: F �→ {Wn}. It is especially key for applications, since this establishes the
maximally possible order of dynamical systems as restrictions of the PDEs.

In all the previous examples, the dimensions of invariant subspaces were less than
or equal to three for the first-order operators, and less than or equal to five for the
second-order ones. The following theorem establishes the maximal dimension of
invariant subspaces for arbitrary kth-order nonlinear ordinary differential operators.

Theorem 2.8 (“Theorem on maximal dimension”) If a linear subspace Wn is in-
variant under a nonlinear ordinary differential operator (2.3) of the order k, then

n ≤ 2k + 1. (2.19)

Proof. Arguing by contradiction, assume that there exists an invariant subspace Wn

of (2.3), and (2.19) is not valid, i.e., n ≥ 2k + 2. Let us show that F is then a linear
operator. Let Wn be defined by the linear ODE

y(n) = a1y(n−1) + ... + an−1 y ′ + an y. (2.20)

By the condition (2.4), the following identity must be true on solutions of (2.20):

Dn F ≡ a1 Dn−1 F + ... + an−1 DF + an F, (2.21)

where D denotes the operator of the total derivative in x . For convenience, perform-
ing algebraic manipulations with the function F(·), the following notation is used:

y j = y( j ) for all j ≥ 0 (y0 = y), and Fy j = ∂F
∂y j

.

Then (2.20) reads yn = a1yn−1+ ...+ an y0. Differentiating F(x, y0, y1, ..., yk), and
keeping leading linear and quadratic terms yields

DF = yk+1 Fyk + ... , D2 F = yk+2 Fyk + (yk+1)
2 Fyk yk + ... ,

D3 F = yk+3 Fyk + 3yk+1 yk+2 Fyk yk + ... ,

D4 F = yk+4 Fyk +
[
4yk+1 yk+3 + 3(yk+2)

2
]
Fyk yk + ... ,

etc. By induction, after any p ≥ 4 steps, we find

D p F = yk+p Fyk +
[∑[ p

2 ]−1
i=1 Ci

p yk+p−i yk+i

+ νC
[ p

2 ]
p yk+p−[ p

2 ]yk+[ p
2 ]

]
Fyk yk + ... ,

(2.22)

where
[ p

2

]
denotes the integer part, Ci

p for i = 1, ...,
[ p

2

]
are binomial coefficients,

and ν = 1
2 for p even, ν = 1 for odd. Here, we separate the first linear term that

contains the highest-order derivative yk+p . The sum in square brackets in (2.22) is
composed of the quadratic (in higher-order derivatives) summands that exhibit the
maximal total order of both the derivatives: (k + p − i) + (k + i) = 2k + p. For
p = n, keeping in (2.22) only the quadratic terms, containing at least one derivative
of the order not less than n − 1, gives

Dn F = [∑k+1
i=1 αi yk+n−i yk+i

]
Fyk yk + ... , (2.23)
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where αi = Ci
n for i = 1, ..., k, αk+1 = Ck+1

n if n > 2k + 2, and αk+1 = 1
2 Ck+1

n if
n = 2k+2. Here, we do not display the linear term. The total order of the summands
in the square brackets is equal to 2k + n. By (2.20), all the derivatives yk+n−i for
i = 1, 2, ..., k can be linearly expressed in terms of yn−1, ..., y0. Keeping in the
square brackets in (2.23) the terms containing yn−1, we find

Dn F = [∑k
i=1 α̃i yk+i + αk+1 y2k+1

]
yn−1 Fyk yk + ... , (2.24)

where α̃i = αiχi and χi are expressed via a1, ..., an and their derivatives. There
exists a single quadratic term in (2.24) of the maximal total order 2k + n, namely,

αk+1 y2k+1 yn−1 Fyk yk .

It is easy to see that such terms do not appear in the derivatives D p F with p < n. In
order for (2.21) to be valid, we should then set

Fyk yk = 0. (2.25)

Taking into account (2.25), we derive similar to (2.23) that

Dn F = [∑k+1
i=1 βi yk+n−i yk−1+i

]
Fyk yk−1 + ... ,

where βi are some positive coefficients. In the summands, containing at least one
derivative of the order not less than n − 1, the total order of the derivatives is now
2k + n − 1. Excluding, as above, the derivatives yk+n−i for i = 1, 2, ..., k by using
(2.20) yields the unique quadratic term of the maximal total order

βk+1 yn−1 y2k Fyk yk−1 .

Such summands do not appear in any other derivative D p F for p < n. Equating this
coefficient to zero implies

Fyk yk−1 = 0.

Assume that the equalities

Fyk yk = Fyk yk−1 = ... = Fyk yk−( j−1) = 0

have been proved, i.e., Fyk depends on the arguments x, y0, ..., yk− j only. Similarly
to the above calculus,

Dn F = [∑k+1
i=1 γi yk+n−i yk− j+i

]
Fyk yk− j + ... , (2.26)

where γi > 0 and the total order of the quadratic summands relative to higher deriva-
tives is 2k + n − j . Expressing yk+n− j again in terms of yn−1, ..., y0 yields that, in
(2.26), there exists the unique quadratic summand of the total order 2k + n − j ,

γk+1 yn−1 y2k+1− j Fyk yk− j .

No other derivatives D p F with p < k produce such a term. Hence,

Fyk yk− j = 0. (2.27)

By induction, it follows that (2.27) holds for all j = 0, 1, ..., k, i.e.,

F[y] = fk(x)yk + F̃(x, y0, ... , yk−1).
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Since the summand fk(x)yk generates the terms in (2.21) that are linear in y0, ...,
yn−1, the above conclusions based on the analysis of the quadratic terms can literally
be repeated for operator F̃(x, y0, ... , yk−1), replacing k by k − 1 in all instances.
This yields

F̃[y] = fk−1(x)yk−1 + ˜̃F(x, y0, ... , yk−2).

Acting in a similar fashion yields that the function F(x, y0, y1, ... , yk) is linear rel-
ative to all the arguments yi for i = k, ..., 0. Hence,

F[y] = fk(x)yk + ...+ f0(x)y0 + f (x),

completing the proof.

For arbitrary k, there exist nonlinear quadratic operators admitting invariant sub-
spaces of the maximal dimension 2k + 1 as the following example shows.

Example 2.9 (Subspace of maximal dimension) The kth-order quadratic operator

F[y] = (y(k))2 (2.28)

admits the (2k+1)th-dimensional subspace

W2k+1 = L{1, x, ... , x2k}.
In the next three remarks, we comment on some aspects of our analysis.

Remark 2.10 Let operator F be admitted by the linear ODE (2.2) that defines the
invariant subspace (2.1). Let

F[y] =∑(i) Fi [y],

where the sum is finite or infinite, and each Fi [y] = Fi (x, y, y′, ..., y(ki )) is a homo-
geneous polynomial in y, y ′, ..., and y(ki ) of degree i . In this case, every operator Fi

is also admitted by this ODE.
This directly follows from the invariance criterion (2.4) that is written down as∑

(i)

(
L[Fi [y]]

∣∣
L[y]=0

) ≡ 0.

Hence, in view of the homogenuity of all the summands, this splits into the system

L[Fi [y]]
∣∣
L[y]=0 ≡ 0 for all i .

Remark 2.11 Any change of variables

y = α(x)ỹ, x̃ = β(x), (2.29)

where α(x), β(x) are given functions, transforms any homogeneous polynomial in
y, y ′, ..., y(k) into a homogeneous polynomial of the same degree in ỹ, ỹ ′, ..., ỹ(k).

Two operators F[y] = F(x, y, y′, ..., y(k)) and F̃[ỹ] = F̃ (̃x, ỹ, ỹ′, ..., ỹ(k)) are
called equivalent, if there exists the change of variables (2.29) such that

F̃[ỹ] = 1
α(x) F[y]. (2.30)

If operator F preserves the given subspace

Wn = L{ f1(x), ... , fn(x)},
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then the equivalent operator F̃ admits the invariant subspace

W̃n = L{ f̃1(̃x), ... , f̃n (̃x)},
where f̃i (̃x) = fi (x (̃x))/α(x (̃x)) for all i = 1, ... , n.

Remark 2.12 Subspace Wn , invariant under the operator F[y], is also invariant un-
der F̃[y] = F[y + f ], with any function f (x) ∈ Wn .

Example 2.13 (Exponential W̃2k+1) The change of variables

x = ex̃ , y = e2kx̃ ỹ,

transforms (2.28) into the following quadratic operator

F̃[ỹ] = e−2kx̃
[(

e−x̃ d
dx̃

)k(e2kx̃ ỹ
)]2

.

The invariant subspace is now of the exponential type rather than polynomial,

W̃2k+1 = L{e−2kx̃ , ..., e−x̃ , 1
}
.

Note that F̃[ỹ] is a translation-invariant operator.

2.3 First-order operators with subspaces of maximal dimension

In view of Theorem 2.8, for nonlinear first-order operators, the dimension of invariant
subspaces cannot exceed three. We now describe all first-order operators

F[y] = F(x, y, p), where p = y′, (2.31)

admitting 3D subspaces given by the linear ODEs

y′′′ = a1(x)y′′ + a2(x)y′ + a3(x)y, (2.32)

with sufficiently arbitrary coefficients ak(x) for k = 1, 2, 3. The invariance criterion
(2.4) then takes the form

D3 F − (a1 D2 F + a2 DF + a3 F
) ≡ 0, (2.33)

where D is the operator of the full derivative via (2.32),

D = ∂
∂x + y ′ ∂

∂y + y ′′ ∂
∂y′ +

[
a1(x)y′′ + a2(x)y′ + a3(x)y

]
∂

∂y′′ .

Lemma 2.14 Any operator (2.31) preserving 3D subspaces can be represented in
the following form:

F[y] = F2[y]+ F1[y]+ F0[y], where (2.34)

F2[y] = Lp2 + Myp + Ny2, F1[y] = Rp + Sy, F0[y] = f, (2.35)

and L, M, N, R, S, and f are arbitrary functions of x .

Proof. It is easy to check that the left-hand side of identity (2.33) is a third-degree

polynomial in the variable y ′′, while the coefficient of (y′′)3 is ∂3 F
∂p3 . Equating this

coefficient to zero and solving the resulting equation implies

F(x, y, p) = A2(x, y)p2 + A1(x, y)p + A0(x, y), (2.36)
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where A2(x, y), A1(x, y), and A0(x, y) are some functions. Rewriting the coeffi-
cients of (y′′)s for s = 2, 1, and 0 by using (2.36), we obtain polynomials in p with
coefficients, depending only on x and y. Equating the coefficients of the leading
powers of p in these polynomials to zero yields

∂ A2
∂y = 0, ∂2 A1

∂y2 = 0, ∂3 A0
∂y3 = 0.

In view of (2.36), this completes the proof.

From the representation (2.34) by using Remark 2.10, we see that this operator is

ODE. Note that the admissibility of F0 implies that f (x) ∈ W3. In what follows, we
consider all operators up to such trivial summands, and up to multiplication by an
arbitrary non-zero number.

Let us consider the quadratic operator F2[y] in (2.35).

Lemma 2.15 Any operator F2[y] admitting a 3D subspace is equivalent to

F[y] = (y′)2 + Ny2, where N = −1, 0, or 1. (2.37)

The 3D subspace invariant with respect to operator (2.37) is given by the ODE

y ′′′ + Ny ′ = 0 (2.38)

and has the form

W3 = L{1, e−x , ex} = L{1, cosh x, sinh x} for N = −1; (2.39)

W3 = L{1, x, x2} for N = 0; and (2.40)

W3 = L{1, cos x, sin x} for N = 1. (2.41)

Proof. Let us use the first transformation in (2.29). By (2.30), operator F2 reads

F̃[ỹ] = 1
α(x) F2

(
x, α ỹ, (α ỹ)′

) = Lα(ỹ ′)2

+ (2Lα′ + Mα)ỹ ỹ ′ + 1
α

[
L(α′)2 + Mαα′ + Nα2

]
ỹ2.

(2.42)

Consider the following two cases: (i) L(x) �= 0, and (ii) L(x) ≡ 0, M(x) �= 0. In
the former case of (i), choosing α(x) from the condition

α′ = − M(x)
2L(x) α, (2.43)

the operator (2.42) is reduced to

F̃[ỹ] = αL(ỹ ′x )2 + α
(
N − M2

4L

)
ỹ2, (2.44)

where the sign of α is picked so that α(x)L(x) > 0.
Similarly, in the latter case of (ii), α(x) is chosen from the conditionα′ = − N(x)

M(x) α.
Then operator (2.42) takes the form

F̃[ỹ] = αM ỹ ỹ′x . (2.45)

Let us apply the second transformation in (2.29). Since d
dx = β ′(x) d

dx̃ , by choos-
ing β from the condition

β ′(x) = [L(x)α(x)
]− 1

2 (2.46)
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in the case of (2.44), and from β ′ = [M(x)α(x)]−1 in the case of (2.45), we derive,
respectively, that ˜̃F[ỹ(̃x)] = (ỹ ′̃x)2 + Ñ (̃x)ỹ2, (2.47)

where Ñ (̃x) = α(x)
[
N(x)− M(x)2

4L(x)

]
, and

˜̃F[ỹ(̃x)] = ỹ ỹ ′̃x . (2.48)

Assume now that, for the operator F2, there exists a 3D subspace. Then the equiv-
alent operators (2.47) and (2.48) must have the same property. A direct checking
via the invariance condition (2.33) shows that, in the case of (2.47), this is possible
only for Ñ = const. The subspace is then defined by an equation of the form (2.38),
while, in the case of (2.48), 3D subspaces do not exist. It remains to note that, if
Ñ = const �= 0, (2.47) is reduced by extensions along x̃ to the form (2.37) with
|N | = 1.

The proof implies that the first operator in (2.35) can preserve 3D subspaces iff

L(x) �= 0 (2.49)

and Ñ (̃x) = α(x)
[
N(x)− M2(x)

4L(x)

] = const. In view of (2.43), after differentiating in
x , one can rewrite down the last condition in terms of the coefficients of the operator
only. Namely,

d
dx

[
N(x)− M2(x)

4L(x)

] ≡ M(x)
2L(x)

[
N(x)− M2(x)

4L(x)

]
. (2.50)

Conditions (2.49) and (2.50) make it possible to determine at once, by the coeffi-
cients of operator F2, whether it admits 3D subspaces or not. The functions α(x) and
β(x) defining the variable change (2.29) are found from equations (2.43) and (2.46),
respectively. This gives the following straightforward consequence for operators with
constant coefficients.

Lemma 2.16 Up to a constant multiplier, there exist exactly two translation-invariant
quadratic operators F2 in (2.35) that preserve 3D subspaces,

F[y] = (y′)2 + Ny2 and (2.51)

F[y] = (y′ + Cy)2, (2.52)

where C �= 0 and N are arbitrary constants. By the change of variables

y = e−C x ỹ and x̃ = e
C
2 x , (2.53)

operator (2.52) is transformed into (2.51) with N = 0.

Note that the 3D subspace of the operator F̃[ỹ] = (ỹ ′̃x)2 has the form W̃3 =
L{1, x̃, x̃2

W3 = e−C xL{1, e
C
2 x , eC x

} = L{1, e−C
2 x , e−C x

}
.

Let us now consider the linear summand F1[y] in (2.34). By Lemma 2.15, it suf-
fices to describe all such operators for which equation (2.38) is invariant. The invari-
ance criterion implies the following result.
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Lemma 2.17 The linear operator F1 in (2.35) is admitted by equation (2.38) iff

R(x) ∈ W3 and S(x) = −R′(x)+ C,

where C is an arbitrary constant.

Combining Lemmas 2.14, 2.15, and 2.17 gives the complete description of opera-
tors (2.31) preserving 3D subspaces.

Theorem 2.18 Any nonlinear first-order operator (2.31) admitting 3D subspaces is
reduced by transformations (2.29), (2.30) to the form

F[y] = (y′)2 + Ny2 + R(x)y ′ + [C − R′(x)]y, (2.54)

where N = −1, 0 or 1, R(x) satisfies (2.38), and C is a constant. The corresponding
3D subspaces are defined by equation (2.38) and are given by (2.39)–(2.41).

Following Remark 2.12, let us replace y by y + f with a function f (x) ∈ W3 to
obtain, up to trivial summands f̃ (x) ∈ W3, the operator

F̃[y] = (y′)2 + Ny2 + [R(x)+ 2 f ′]y′ + [S(x)+ 2N f ]y, (2.55)

where S(x) = −R(x)′ +C . Note that R(x) ∈ W3 implies that S(x) ∈ W3. If N �= 0,
setting f (x) = − S(x)

2N , we see that the coefficient of y vanishes, and the coefficient
of y ′ becomes constant. Consequently, in this case, the operator (2.54) is reduced to

F[y] = (y′)2 + Ny2 + Ry ′,
where N = ±1 and R = const. If N = 0, the coefficients of operator (2.54) are

R(x) = −C1x2 + C2x + C3 and S(x) = −R(x)′ + C = −2C1x + C4,

where C1, ... ,C4 are constants. Putting f (x) = − 1
2

( 1
2 C2x2 + C3x

)
into (2.55)

implies that operator (2.54) is reduced to

F[y] = (y′)2 + R1x2y ′ + (−2R1x + R2)y

with constants R1 and R2.
Since subspaces W3, which are invariant under operators (2.51) and (2.52), are

also invariant with respect to any linear operators with constant coefficients, Lemma
2.16 implies the following result.

Theorem 2.19 The set of nonlinear translation-invariant first-order operators that
admit 3D subspaces, up to a constant multiplier, is exhausted by

F[y] = (y′)2 + Ny2 + Ry ′ + Sy and (2.56)

F[y] = (y′ + y)2 + Ry ′ + Sy, (2.57)

where N, R, S, and C are arbitrary constants.

As follows from Lemma 2.16, the quadratic parts of operators (2.57) and (2.56)
for N = 0 are related by the change of variables (2.53). It is easy to check, however,
that this is not valid for full operators containing linear terms. Indeed, by the change
(2.53), the operator (2.57) for R �= 0 is reduced to

F̃[ỹ] = C2

4

(
ỹ ′x̃
)2 + RC

2 x̃ ỹ ′x̃ + (S − RC)ỹ,
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depending explicitly on x̃ .

2.4 Second-order operators with subspaces of maximal dimension

We now study subspaces of maximal dimension for nonlinear operators

F[y] = F(x, y, p, q), where p = y′ and q = y ′′. (2.58)

By Theorem 2.8, the dimension cannot exceed five, so we will deal with 5D linear
subspaces given by the ODEs

y(5) = a1(x)y(4) + a2(x)y′′′ + a3(x)y′′ + a4(x)y′ + a5(x)y. (2.59)

In this case, the invariance criterion leads to a result similar to Lemma 2.14.

Lemma 2.20 Any operator (2.58) preserving a 5D subspace can be represented in
the form of

F[y] = F2[y]+ F1[y]+ F0[y], where

F2[y] = b2,2q2 + b1,2 pq + b0,2yq + b1,1 p2 + b0,1yp + b0,0y2,

F1[y] = b2q + b1 p + b0 y, and F0[y] = b,

where bi, j and bi for i, j = 0, 1, and 2, and b are functions of x .

Proof. This result is based on analyzing the condition of invariance of equation (2.59)
under the operator (2.58). In this case, the condition takes the form

D5 F − (a1 D4 F + a2 D3 F + a3 D2 F + a4 DF + a5 F
) ≡ 0, where (2.60)

D = ∂
∂x + y1

∂
∂y + y2

∂
∂y1
+ y3

∂
∂y2
+ y4

∂
∂y3

+ [a1(x)y4 + ... + a4(x)y1 + a5(x)y
]

∂
∂y4

.

As above, we have set

yk = dk y
dxk for k = 1, 2, ... .

The left-hand side of the identity (2.60) is a polynomial in the variables y3 and y4,
with coefficients that should be equal to zero. Consider the resulting conclusions that
have been obtained by using the package Reduce [282] for analytic manipulations.

Coefficients of y3y2
4 and y2

3 y4 lead to conditions

Fy2 y2 y2 = Fy1 y2 y2 = 0, (2.61)

where the lower indices of F denote the corresponding partial derivatives.
In view of (2.61), the coefficient of y2

4 implies the equation, which by differentiat-
ing in y1 takes the form

2Fy1 y1 y2 + 3Fyy2 y2 = 0.

Simultaneously, the coefficient of y3
3 yields

3Fy1 y1 y2 + 2Fyy2 y2 = 0.

These equalities imply
Fyy2 y2 = 0 and (2.62)
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Fy1 y1 y2 = 0. (2.63)

It follows from (2.61) and (2.62) that Fy2 y2 = C(x), and hence, F has the form

F = 1
2 Cy2

2 + φ(x, y, y1)y2 + ψ(x, y, y1). (2.64)

Later on, we suppose that C is a constant, since the general case C = C(x) is reduced
to the constant case by the change (2.29).

Using (2.64), the condition of vanishing the coefficient of y2
4 is

10(φy1 + a1C) = 3a1C, from whence come

φy1 ≡ Fy1 y2 = − 7
10 a1C (2.65)

and Fyy1 y2 = 0. (2.66)

Then the coefficient of y3y4 leads to

−60a′1C + 20Fy1 y1 + 30Fyy2 − 5a2
1C + 24a2C = 0,

which, on differentiation in y1 and y, implies, respectively, that

Fy1 y1 y1 = 0 and 2Fyy1 y1 + 3Fyyy2 = 0. (2.67)

The coefficient of y2
3 , on differentiation in y1, yields 5Fyy1 y1+4Fyyy2 = 0 that, by

the previous equality, means

Fyy1 y1 = Fyyy2 = 0. (2.68)

By differentiating in y, the same coefficient implies that

Fyyy1 = 0. (2.69)

Finally, consider the coefficient of y4. Equating it to zero and differentiating in y
twice the resulting relation, we find that

Fyyyy y1 + Fxyyy = 0.

Differentiating next in y1 and using (2.69) yields

Fyyyy = Fxyyy = 0. (2.70)

We now apply the above results for defining the coefficients in (2.64). It follows
from (2.63), (2.66), and (2.68) that the function φ is linear in y and y1,

φ = φ1(x)y1 + φ2(x)y + φ3(x).

Similarly, (2.67)–(2.70) imply that function ψ takes the form

ψ = C1 y3 + ψ̃(x, y, y1),

where C1 = constant, and ψ̃ is a second-degree polynomial in y and y1. Hence, the
right-hand side of (2.64) is a sum of homogeneous polynomials of the zero, first,
and second degree in variables y, y1, y2, and of the third-degree polynomial C1 y3.
Each of those polynomials determines a differential operator, and, clearly, equation
(2.59) is invariant with respect to any of them, and, in particular, with respect to
F̃ = C1 y3 (see Remark 2.10). However, this is possible, provided that C1 = 0, since,
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by Theorem 2.8, a nonlinear operator of the zero order cannot preserve a subspace
of dimension exceeding one. This completes the proof.

Likewise, for the case of a first-order operator, we shall carry out further analysis
by studying the quadratic operators

F[y] = b2,2q2 + b1,2 pq + b0,2yq + b1,1 p2 + b0,1yp + b0,0y2, (2.71)

restricting ourselves to the case of constant coefficients,

bi, j = constant for i, j = 0, 1, 2. (2.72)

In this case, the following result holds:

Lemma 2.21 If equation (2.59) is invariant under the operator (2.71), (2.72), then
the coefficients of the equation do not depend on x .

Proof. In (2.71), let b22 = C
2 and C2 + b2

12 + b2
02 �= 0. We deduce from (2.65) that

b12 = − 7
10 a1C, (2.73)

and, hence, it suffices to consider the following two cases:

Case (i): C = 2, a1 = − 5
7 b12 = constant, and

Case (ii): C = 0, b12 = 0.

Let us again concentrate on the invariance condition (2.60). In case of (i), equating
the coefficients of y3 y4, y2 y4, y1y4, and yy4 to zero, we have

−5a2
1 + 24a2 + 15b02 + 20b11 = 0,

20a′2 − 7a3
1 − 14a1a2 + 20a1b02 + 10a1b11 + 100a3 + 75b01 = 0,

2a′2b12 + a2
1b02 + a1b01 + 2a2b02 + 20a4 + 10b00 = 0,

a′2b02 + 10a5 = 0.

From these equalities, we derive successively that the coefficients a2, ..., a5 are con-
stant, and, moreover, it turns out that a5 = 0.

In the second case of (ii), equating the coefficients of y3y4, y2y4, y1 y4, and y2
3 to

zero yields

3b02 + 4b11 = 0, 4a1b02 + 2a1b11 + 15b01 = 0,

a′1(5b02 + 2b11)+ a2
1b02 + a1b01 + 2a2b02 + 10b00 = 0,

−2a1b02 − 3a1b11 + 5b01 = 0.

(2.74)

The first equation gives b11 = − 3
4 b02, and the second and fourth equation then take,

respectively, the form

a1b02 + 6b01 = 0 and a1b02 + 20b01 = 0,

whence comes a1b02 = b01 = 0. Since, in this case, b02 does not vanish (we con-
sider second-order operators), it follows that a1 = 0, and then the third equation of
the system (2.74) yields a2 = const. By these conditions, studying the coefficients
of y1y3, y1y2, and yy2 implies that a3 = 0, a4 = constant, and a5 = 0, which
completes the proof.
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The next theorem gives a full description of operators (2.71), (2.72) preserving
5D subspaces. All operators are shown up to scaling in x and multiplication by an
arbitrary non-zero number. In cases of (1)–(3) below, where the same subspace is
invariant under arbitrary linear combinations

F[y] = C1 F1[y]+ C2 F2[y], where C1,C2 = constant, (2.75)

of linearly independent operators F1 and F2, only these basis operators are given.
In all the cases, the corresponding invariant subspaces and (in parentheses) their
defining equations (2.59) are indicated.

Theorem 2.22 The set of operators (2.71) with constant coefficients preserving 5D
subspaces is exhausted by:

(1) F1[y] = y ′′y − 3
4 (y′)2, F2[y] = (y′′)2, with the subspace

W5 = L{1, x, x2, x3, x4} (
y(5) = 0

);
(2) F1[y] = y ′′y − 3

4 (y′)2 + y2, F2[y] = (y′′ + 4y
)2
, with

W5 = L{1, cos x, sin x, cos 2x, sin 2x} (
y(5) = −5y ′′′ − 4y ′

);
(3) F1[y] = y ′′y − 3

4 (y′)2 − y2, F2[y] = (y′′ − 4y
)2
, with

W5 = L{1, cosh x, sinh x, cosh 2x, cosh 2x} (
y(5) = 5y ′′′ − 4y ′

);
(4) F[y] = (y′′ − 7

2 y ′ + 3y
)2
, with

W5 = L{1, e
1
2 x , ex , e

3
2 x , e2x

} (
4y(5) = 20y(4) − 35y ′′′ + 25y ′′ − 6y ′

);
(5) F[y] = (5y′′ − 27

2 y ′ + 7y
)(

y ′′ − 3
2 y ′ − y

)
, with

W5 = L{1, e− 1
2 x , e

1
2 x , ex , e2x

} (
4y(5) = 12y(4) − 7y ′′′ − 3y ′′ + 2y ′

);
(6) F[y] = (y′′ − 5y ′ + 6y)(y ′′ − 2y ′ − 3y), with

W5 = L{1, e−x , ex , e2x , e3x
} (

y(5) = 5y(4) − 5y ′′′ − 5y ′′ + 6y ′
)
.

Note that operators F2
k = 2 and x̃ �→ − 1

2 x̃ . The equivalence transformation for operators F1 in (1) and
F1 in (3) is y = x2 ỹ, x̃ = ln x , i.e., α = x2 and β = ln x in Remark 2.11.

Proof. We consider in greater detail cases (i) and (ii) that appeared in the proof of
Lemma 2.21.

Case (i): C = 2, a1 = − 5
7 b12. Then, as has been shown above, a5 = 0. Consider

two possibilities: b12 �= 0 and b12 = 0.

(i.1) In the subcase where b12 �= 0, using the scaling in x implies b12 = −7. The first
coefficient on the right-hand side of (2.59) is then a1 = 5.

Equating the coefficients of y3y4, y2
3 , y2y4, y1 y4, y2 y3, y1y3, y2

2 , y1y2, and y2
1 to

zero in the identity (2.60) (the rest of the coefficients vanish in view of the assumed
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hypotheses), we obtain the system

15b02 + 20b11 + 24a2 − 125 = 0,
−10b02 − 15b11 + 5b01 − 37a2 + 4a3 = 0,

20b02 + 10b11 + 15b01 − 14a2 + 20a3 − 175 = 0,
(2a2 + 25)b02 + 5b01 + 10b00 + 20a4 = 0,

7a2b02 + 4a2b11 − 50b01 + 20b00 − 35a2 − 116a3 + 10a4 = 0,
(5a2 + 3a3)b02 + 2a2b01 − 40b00 − 95a4 = 0,

10a3b02 + 8a3b11 − 3a2b01 − 30b00 − 35a3 − 35a4 = 0,
5(a3 + 3a4)b02 + 10a4b11 + 3a3b01 − 6a2b00 − 35a4 = 0,

5a4b02 + 5a4b01 − 2a3b00 = 0.

Using the first four equations yields the expressions for the coefficients of operator
(2.71), with b22 = C

2 , in terms of the coefficients of (2.59),

b02 = 1
35 (−124a2 − 32a3 − 675),

b11 = 1
35 (51a2 + 24a3 + 725), b01 = 1

35 (164a2 − 20a3 + 825),

b00 = 1
175(124a2

2 + 32a2a3 + 1815a2 + 450a3 − 350a4 + 6375).

(2.76)

The fifth equation then implies the following:

a4 = − 1
25

(
4a2

2 + 95a2 + 30a3 + 375
)
. (2.77)

Using these conditions, we reduce the remaining four equations to

428a2
2 + 276a2a3 + 5415a2 + 32a2

3 + 1875a3 + 175a4 + 17000 = 0,

1236a2
2 + 964a2a3 + 13365a2 + 128a2

3 + 4875a3 − 875a4 + 38250 = 0,

372a3
2 + 96a2

2a3 + 5445a2
2 + 1670a2a3 + 2325a2a4

+ 19125a2 + 550a2
3 + 600a3a4 + 2250a3 + 10250a4 = 0,

124a2
2a3 + 32a2a2

3 + 1815a2a3 − 500a2a4

+ 450a2
3 + 300a3a4 + 6375a3 − 1875a4 = 0.

Resolving the first three equations with respect to the quadratic terms yields:

a2
2 = 5

36 (−93a2 + 2a3 − 275),

a2a3 = 5
36 (30a2 − 41a3 + 125),

a2
3 = 5

36 (−165a2 − 46a3 − 875).

(2.78)

It is not difficult to check that, in view of these relations, the last equation becomes
the identity. From the first equation of system (2.78), it follows that

a3 = 1
2

( 36
5 a2

2 + 93a2 + 275
)
, (2.79)

and the second and third equations then take the form

144a3
2 + 2680a2

2 + 15925a2 + 30625 = 0 and (2.80)

1296a4
2 + 33480a3

2 + 317525a2
2 + 1310750a2+ 1990625 = 0. (2.81)

The roots of the cubic equation (2.80) are

− 35
4 , − 175

36 , and − 5,
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simultaneously satisfying equation (2.81).
For each of the obtained values of a2, using the formulae (2.79), (2.77), and (2.76),

we determine the rest of the coefficients,

a2 = − 35
4 , a3 = 25

4 , a4 = − 3
2 ,

b02 = 6, b11 = 49
4 , b01 = −21, b00 = 9; (2.82)

a2 = − 175
36 , a3 = 125

36 , a4 = − 725
162 ,

b02 = − 110
21 , b11 = 1345

84 , b01 = − 25
21 , b00 = 9950

567 ;
(2.83)

a2 = −5, a3 = −5, a4 = 6,

b02 = 3, b11 = 10, b01 = 3, b00 = −18.
(2.84)

Collections of the coefficients (2.82) and (2.84) correspond, respectively, to items (4)
and (6) in the statement of the theorem, while (2.83) corresponds to item (5) up to
scaling in x .

(i.2) In the subcase where b12 = 0, from (2.73), it follows that a1 = 0. Equating the
coefficients of y3 y4, y2y4, y1y4, y2

3 , y2y3, y1y3, y2
2 , y2

1 , and y1y2 in (2.60) to zero
(the rest of the coefficients are identically zero), we find

24a2 + 15b02 + 20b11 = 0, 4a3 + 3b01 = 0,

a2b02 + 10a4 + 5b00 = 0, 4a3 + 5b01 = 0,

7a2b02 + 4a2b11 + 10a4 + 20b00 = 0, 2a2b01 + 3a3b02 = 0,

−3a2b01 + 10a3b02 + 8a3b11 = 0, −2a3b00 + 5a4b01 = 0,

−6a2b00 + 3a3b01 + 15a4b02 + 10a4b11 = 0.

The second and the fourth equations yield a3 = b01 = 0, so the system is simplified
and has the form

24a2 + 15b02 + 20b11 = 0,

a2b02 + 10a4 + 5b00 = 0,

7a2b02 + 4a2b11 + 10a4 + 20b00 = 0,

−6a2b00 + 15a4b02 + 10a4b11 = 0.

Taking b11 and b00 from the first two equations and plugging into the rest of them, a
single additional condition is obtained a4 = − 4

25 a2
2 . The final solution of the original

system is then written as

b11 = − 3
5 a2 − 3

4 b02, b00 = − 1
5 a2b02 + 4

25 a2
2, a4 = − 4

25 a2
2,

with arbitrary parameters a2 and b02. Further analysis of these equations leads to
those operators (2.75) from (1)–(3) of the theorem that are singled out by the condi-
tion C2 �= 0.

Case (ii): If C = 0, b12 = 0, b02 �= 0, then a1 = a3 = a5 = 0. See the proof of
Lemma 2.21. Studying the coefficient of y2y4 in (2.60) yields b01 = 0, while van-
ishing the coefficients of y3y4, y1y4, and y2y3, y1y2 (other coefficients are cancelled
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by the above conditions) leads to the system

3b02 + 4b11 = 0, a2b02 + 5b00 = 0,

7a2b02 + 4a2b11 + 20b00 = 0, −6a2b00 + 15a4b02 + 10a4b11 = 0.

The solutions of this system are

b11 = − 3
4 b02, b00 = − 1

5 a2b02, a4 = − 4
25 a2

2

that lead to the last case of operators (2.75) with C2 = 0. The theorem is proved.

Notice that the description of all translation-invariant second-order operators that
preserve 5D subspaces is made by adding arbitrary linear operators of the second
order with constant coefficients.

By Theorem 2.22, it is easy to reconstruct a large number of quasilinear and fully
nonlinear heat and wave equations composed of linear combinations of operators,

ut = F[u] and utt = F[u], (2.85)

exhibiting interesting finite-dimensional evolution on the corresponding invariant
subspaces. Various singularity formation phenomena, such as quenching, extinction,
blow-up, and propagation of finite interfaces, can be traced out by using such ex-
act solutions. We postpone more detailed singularity analysis until the next chapter,
where we begin the study of invariant subspaces and solutions of fourth-order thin
film equations with similar quadratic DSs.

2.5 First and second-order quadratic operators with subspaces of lower
dimensions

In this section, we consider quadratic operators

F[y] = b11(y′)2 + 2b10y ′y + b00y2 and (2.86)

F[y] = b22(y′′)2 + 2b21y ′′y ′ + 2b20y ′′y + b11(y′)2 + 2b10y ′y + b00y2 (2.87)

that admit invariant subspaces of the dimension which is less than maximal. The
coefficients of the operators, as well as the equations of invariant subspaces

y(n) = rn−1 y(n−1) + ...+ r1 y ′ + r0 y

(notice the change in notation), are assumed to be constant. Such operators are
plugged into a number of nonlinear evolution PDEs of different types, including
reaction-diffusion, combustion, flame propagation, Boussinesq equations of water
wave interaction, and others, which typically take the evolution form (2.85). Notice
that many partial differential operators in IRN reduce to ordinary differential opera-
tors in radial geometry, so that they also fall into the scope of the present analysis.

2.5.1 First-order operators

We begin with the operators (2.86). Omitting most of technical calculus details ob-
tained by Reduce, let us present the final results. For completeness, the 3D subspaces
are also included.
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2D subspaces. Subspaces W2 are defined by the ODE

y ′′ = r1 y ′ + r0 y.

The invariance condition for (2.86) gives the following two cases:

Case I: r0 = 0, i.e.,

y ′′ − r1 y ′ = 0, so that

W2 = L{1, x} if r1 = 0, or W2 = L{1, er1x } if r1 �= 0. (2.88)

This equation (and the corresponding subspace) is invariant under a 2D linear space
of operators spanned by

F1[y] = y(y′ − r1 y) and F2[y] = y ′(y′ − r1 y). (2.89)

For r1 �= 0, one can choose another basis, such as

F2[y]+ r1 F1[y] = (y′)2 − r2
1 y2 and F2[y]− r1 F1[y] = (y′ − r1 y)2.

Case II: r0 = − 2
9 r2

1 �= 0. Then, up to scaling in x , the ODE and the subspace are

y ′′ − 3y ′ + 2y = 0 and W2 = L{ex , e2x }. (2.90)

The 1D space of operators is spanned by

F[y] = (y′ − 2y)2. (2.91)

3D subspaces. These are given by

y′′′ = r2 y ′′ + r1 y ′ + r0 y.

There are two cases:

Case I: r0 = r2 = 0, i.e.,

y ′′′ − r1 y ′ = 0.

Up to scaling, we can consider r1 = 0, ±1 and obtain the subspaces

W3 = L{1, x, x2} (r1 = 0),

W3 = L{1, cos x, sin x} (r1 = −1),

W3 = L{1, cosh x, sinh x} (r1 = 1).

The basis of operators is

F[y] = (y′)2 − r1 y2. (2.92)

Case II: r0 = 0 and r1 = − 2
9 r2

2 �= 0. As above, we set r2 = 3, r1 = −2 to obtain

y ′′′ − 3y ′′ + 2y ′ = 0 and W3 = L{1, ex , e2x}.
The basis is

F[y] = (y′ − 2y)2. (2.93)

It is easy to reduce operator (2.93) to (2.92) with r1 = 0 (see Lemma 2.15).
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2.5.2 Second-order operators

Consider now the operators (2.87).

2D subspaces. The ODE for W2 is

y′′ = r1 y ′ + r0 y.

For arbitrary r1 and r0, there exists the basis

F1[y] = y(y′′ − r1 y ′ − r0 y), F2[y] = y ′(y′′ − r1 y ′ − r0 y),

and F3[y] = y ′′(y′′ − r1 y ′ − r0 y),
(2.94)

composed of trivial operators annihilating W2. The subspace of operators is extended
in two cases:

Case I: r0 = 0. The ODE is
y ′′ − r1 y ′ = 0,

and the subspaces are as shown in (2.88). In addition to (2.94), two operators are
included:

F4[y] = y ′(y′ − r1 y) and F5[y] = y(y′ − r1 y).

As above, for r1 �= 0, we can choose the basis

F4[y]+ r1 F5[y] = (y′)2 − r2
1 y2 and F4[y]− r1 F5[y] = (y′ − r1 y)2.

Case II: r0 = − 2
9r2

1 �= 0 (r1 = 3, r0 = −2), i.e., (2.90) holds. The additional
operator is (2.91). Denoting f [y] = y′ − 2y, we can write down the above ODE and
the operator as follows:

f ′ − f = 0 and F4[y] = ( f [y])2.

3D subspaces. Such subspaces W3 are given by

y ′′′ = r2 y ′′ + r1 y ′ + r0 y.

There are two cases:

Case I: r0 = 0, i.e.,
y ′′′ − r2 y ′′ − r1 y ′ = 0.

For arbitrary r2 and r1, there exist three linear independent operators

F1[y] = y(y′′ − r2 y ′ − r1 y), F2[y] = y ′(y′′ − r2 y ′ − r1 y),

and F3[y] = y ′′(y′′ − r2 y ′ − r1 y).

The extensions are:

(i) If r2 = 0, then F4[y] = (y′)2 − r1 y2;
(ii) If r2 = 3 and r1 = −2, the extension is given by F4[y] = (y′ − 2y)2.
These results are similar to those given above. The next case is new.

Case II: r0 �= 0. There exists a family of invariant subspaces given by the ODE with
the parameter α ∈ IR:

f ′ − f ≡ y′′′ − αy ′′ + (3α − 7)y′ − 2(α − 3)y = 0, where
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f [y] = y′′ + (1− α)y′ + 2(α − 3)y.

The corresponding subspaces are:

α �= 4, 5 : W3 = L{ex , e2x , e(α−3)x},
α = 4 : W3 = L{ex , xex , e2x },
α = 5 : W3 = L{ex , e2x , xe2x}.

For any α ∈ IR, the following operator is admitted:

F1[y] = ( f [y])2 = [y′′ + (1− α)y′ + 2(α − 3)y]2.

The space of operators is extended for:

(i) If α = 2, then the additional operator is

F2[y] = (y′′ − y ′ − 2y)(y ′ − 5y)+ 2[(y′)2 − yy ′ − 2y2];
(ii) If α = 6, then F2[y] = (y′′ − 5y ′ + 6y)(y ′ − 3y); and
(iii) If α = 7, then F2[y] = (y′′ − 5y ′ + 4y)2.
The case α = 3 coincides with case I(ii).

4D subspaces. Invariant subspaces W4 are given by the ODE

y(4) − r3 y ′′′ − r2 y ′′ − r1 y ′ − r0 y = 0.

There are several cases:

Case I: r0 = 0.

I.1. r1 = r3 = 0. For any r2 ∈ IR, there exists the operator F1[y] = (y′′)2 − r2(y′)2.
For r2 = 0, there exist additional operators

F2[y] = y ′y ′′ and F3[y] = yy ′′ − 2
3 (y′)2.

I.2. A one-parameter family of invariant subspaces is given by

f ′′ − f ′ ≡ y(4) − αy ′′′ + (3α − 7)y′′ − 2(α − 3)y′ = 0, (2.95)

where f [y] = y′′ + (1− α)y′ + 2(α− 3)y. For any α ∈ IR, there exists the operator

F1[y] = ( f [y])2 = [y′′ + (1− α)y′ + 2(α − 3)y]2.

The invariant subspaces are:

α �= 3, 4, 5 : W4 = L{1, ex , e2x , e(α−3)x},
α = 3 : W4 = L{1, x, ex , e2x},
α = 4 : W4 = L{1, ex , xex , e2x },
α = 5 : W4 = L{1, ex , e2x , xe2x}.

Extra extensions are available in the following cases:

(i) If α = 2, there exist

F2[y] = (y′′ − y ′ − 2y)(y ′′ − 3y ′ + 2y), F3[y] = (y′′ − y ′ − 2y)(y ′ − 2y);
(ii) If α = 6, then F2[y] = (y′′ − 5y ′ + 6y)(y ′ − 3y); and
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(iii) If α = 7, then F2[y] = (y′′ − 5y ′ + 4y)2.

The above cases partially coincide with similar ones above. The next case, as well as
others below, are new.

(iv) If α = 1, then F2[y] = (y′′ − y ′)2 − 4(y′ − y)2.

I.3. Another one-parameter family of subspaces given by

y(4) − y ′′′ − βy ′′ + βy ′ = 0
(
β �= 1

4 , 4
)

is invariant under the operator F[y] = (y′′ − y ′)2 − β(y ′ − y)2. The corresponding
subspaces are given by

β �= 0, 1 : W4 = L{1, ex , e
√
βx , e−

√
βx
}
,

β = 0 : W4 = L{1, x, x2, ex },
β = 1 : W4 = L{1, ex , xex , e−x }.

For β = 1
4 and β = 4, this yields equation (2.95) with α = 2 (up to scaling x �→ 2x)

and α = 1, respectively. We also obtain one of the operators admitted by (2.95).

I.4. The one-parameter family of subspaces given by

y(4) − 2y ′′′ + (γ + 1)y′′ − γ y′ = 0
(
γ �= −2, 2

9

)
admits the operator F[y] = (y′′ − 2y ′ + y)(y ′′ − y ′)+ γ (y ′ − y)2. For γ = 2

9 and
γ = −2, these yield equation (2.95) with α = 6 (up to scaling x �→ 3x) and α = 2
respectively, and one of the admitted operators. Subspaces are

γ �= 0, 1
4 : W4 = L{1, ex , e

1
2 (1−

√
1−4γ )x , e

1
2 (1+

√
1−4γ )x

}
,

γ = 0 : W4 = L{1, x, ex , xex},
γ = 1

4 : W4 = L{1, ex , e
x
2 , xe

x
2 }.

Case II: r0 �= 0. The only subspace W4 and the operator are given by

f ′′ − 3 f ′ + 2 f ≡ y(4) − 10y ′′′ + 35y ′′ − 50y ′ + 24y = 0,

F[y] = (y′′ − 7y ′ + 12y)2 ≡ ( f [y])2.

The ODE is easily integrated and yields W4 = L{ex , e2x , e3x , e4x}.
5D subspaces. This case corresponds to the maximal dimension of invariant sub-
spaces admitted by nonlinear quadratic second-order differential operators studied
in the previous section. For completeness, we now briefly comment on these conclu-
sions using a slightly different representation of the results. As a new feature, some
lower-dimensional invariant subspaces from W5 are also presented. This study of lin-
ear invariant manifolds on invariant subspaces is important for future applications to
nonlinear evolution PDEs. In general, such questions are not straightforward at all.

Subspaces W5 are given by the ODE

y(5) − r4y(4) − r3 y ′′′ − r2 y ′′ − r1 y ′ − r0 y = 0.

Invariant subspaces are known to occur only if r0 = 0. There are six cases that have
already been indicated in Theorem 2.22. We present these up to scaling in x .
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Cases (1)–(3). The ODE is y(5) − 5ry′′′ + 4r2 y ′ = 0, where, up to scaling, we set
r = 0, ±1 and obtain the subspaces

W5 = L{1, x, x2, x3, x4} (r = 0),

W5 = L{1, cos x, sin x, cos 2x, sin 2x} (r = −1),

W5 = L{1, cosh x, sinh x, cosh 2x, sinh 2x} (r = 1).

The basis of operators is F1[y] = yy ′′ − 3
4 (y′)2 − ry2 and F2[y] = (y′′ − 4ry)2.

Case (4). The ODE is

f ′′′ − 3 f ′′ + 2 f ′ ≡ y(5) − 10y(4) + 35y ′′′ − 50y ′′ + 24y ′ = 0,

where f [y] = y′′ − 7y ′ + 12y and W5 = L{1, ex , e2x , e3x , e4x}. The operator is
F[y] = (y′′ − 7y ′ + 12y)2 ≡ ( f [y])2. Note that the subspace L{e3x , e4x} is the
kernel (the null-set) of F .

There exist other lower-dimensional subspaces from W5, such as

W4 = L{ex , e2x , e3x , e4x} and W3 = L{e2x , e3x , e4x },
as well as the 2D ones W2 = L{e3x , e4x } and W ′

2 = L{e2x , e4x}. Such subspaces are
easily found by the change

x̃ = e−x , ỹ = e−4x y, implying that F̃[ỹ] = e−4x F[y] = (ỹx̃ x̃ )
2.

Therefore, the subspaces W5, W4, W3, W2, and W ′
2 are transformed into W̃5 =

L{1, x̃, x̃2, x̃3, x̃4}, W̃4 = L{1, x̃, x̃2, x̃3}, W̃3 = L{1, x̃, x̃2}, W̃2 = L{1, x̃}, and
W̃ ′

2 = L{1, x̃2}, respectively.

Case (5). The ODE and the subspace are

y(5) − 6y(4) + 7y ′′′ + 6y ′′ − 8y ′ = 0 and W5 = L{1, e−x , ex , e2x , e4x},
with the operator F[y] = (5y ′′ − 27y ′ + 28y)(y ′′ − 3y ′ − 4y). Here, the kernel is
ker F = L{1, e−x , e4x}. It is easy to see that W4 = L{1, e−x , ex , e4x} ⊂ W5 is also
invariant.

Case (6). The ODE and the subspace are

y(5) − 5y(4) + 5y ′′′ + 5y ′′ − 6y ′ = 0 and W5 = L{1, e−x , ex , e2x , e3x }.
The operator is F[y] = (y′′−5y ′+6y)(y ′′−2y ′−3y). Then ker F = L{1, e−x , e3x}
and W4 = L{1, ex , e2x , e3x} ⊂ W5 is invariant.

This completes the classification of invariant subspaces for the nonlinear second-
order operators, since the subspaces of the dimension higher than five can be pre-
served by linear differential operators only (Section 2.2).

2.6 Operators preserving polynomial subspaces

In this section, we study ordinary differential operators preserving polynomial sub-
spaces. Our goal is a complete description of the whole set of such operators, as well
as of subsets of operators of a given order and translation-invariant operators.
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2.6.1 Main Theorem for polynomial subspaces

From now on, we concentrate on subspaces of the polynomial type,

Wn = L{1, x, ... , xn−1}, (2.96)

defined by the simplest linear ODE

y(n) = 0. (2.97)

As explained in Section 2.1, we introduce the first integrals via solutions gi of the
conjugate equation (−1)nz(n) = 0. Choosing gi(x) = fi (x) = xi−1 for i = 1, ..., n
yields the complete set of first integrals in the form of

Ii =
i∑

j=1
(−1) j−1 (i−1)!

(i− j )! xi− j y(n− j ) for i = 1, ..., n. (2.98)

Therefore, Theorem 2.1 reads as follows:

Theorem 2.23 The set Fn−1 of nonlinear operators F preserving the polynomial
subspace (2.96) is generated by the operators

F[y] =∑n
i=1 Ai (I1, ... , In)xi−1, (2.99)

where Ai (I1, ... , In), i = 1, ..., n, are any smooth functions of first integrals (2.98).

As was mentioned above, every operator (2.3) preserving subspace (2.1) defines
a Lie-Bäcklund symmetry operator X = F[y] ∂

∂y of the corresponding linear ODE
(2.2). The whole set Fn−1 of such operators forms an infinite-dimensional Lie alge-
bra completely described by Theorem 2.1. In its turn, Theorem 2.23 provides us with
all Lie-Bäcklund symmetries for equation (2.97) that were found in [12].

Along with the algebra Fn−1, we consider its linear subspaces Fm with m ≤ n−2,
consisting of operators (2.3) of the order not greater than m. Operators of the order
not greater than n − 2 give a linear space Fn−2. We call these the operators or
symmetries of submaximal order. One purpose of this section is to obtain a general
representation for the sets Fm , with m ≤ n − 2, in the case of the subspace (2.96)
(equation (2.97)). In particular, we prove that the dimension of the linear space Fn−2
of the operators of submaximal order is expressed as

dimFn−2 = Cn
2n−1 (2.100)

via the binomial coefficient Ck
n = n!

k!(n−k)! .
For n = 3, this has been actually shown by Lie [393], who found that the maximal

dimension of the algebra of contact symmetries on the plane cannot exceed C3
5 = 10,

and that this maximal value is attained on the equation y ′′′ = 0. A generalization of
this result for arbitrary ODEs of the order n = 4 was obtained in [298]. This, together
with Theorem 2.24, proved below, makes plausible the following conjecture (this is
an OPEN PROBLEM).

Conjecture 2.1 For any nth-order ODEs (linear or not), the maximal dimension of
the linear space Fn−2 of symmetries of submaximal order is equal to Cn

2n−1.
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Bearing in mind applications to PDEs, we also consider the subspace F̂n−1 ⊂
Fn−1 of translation-invariant quadratic operators and give its complete description.
Finally, we perform a description of all the translation-invariant operators preserving
(2.96).

symmetry operators, or simply symmetries of these ODEs.

2.6.2 Operators of submaximal and lower orders

A symmetry operator (2.3) for (2.2) is defined by the invariance condition (2.4),

L[F[y]]
∣∣
L[y]=0 ≡ 0. (2.101)

We will assume that the function F in (2.3) is analytic and is represented by a
convergent power series in variables y, y ′, ... , y(n−1), with coefficients depending
on x . Considering this series as an infinite sum of homogeneous polynomials in
y, y ′, ... , y(n−1), and using the fact that the ODE (2.2) is linear, we obtain from
(2.101) that every such homogeneous polynomial defines a symmetry as well (see
Remark 2.10). Hence, we can suppose beforehand that operators (2.3) have the ho-
mogeneous form

F[y] =
∑

i0+ ...+in−1=k

βi0, ... ,in−1(x) yi0(y′)i1 · ... ·(y(n−1))in−1 ,

where k = 0, 1, 2, ... and 0 ≤ i0, ..., in−1 ≤ k. Using (2.5), one can express y
and its derivatives as linear homogeneous functions of I1, ... , In , thus obtaining the
representation

F[y] =
∑

i1+ ...+in=k

γi1, ... ,in (x) (I1)
i1 · ... ·(In)

in , (2.102)

where, in accordance with Theorem 2.1, the coefficients γi1, ... ,in (x) are linear com-
binations of the fundamental set of solutions { fi (x)}.

Let us return to the equation (2.97). Symmetries of the order n− 2 are singled out
by the condition

∂F
∂y(n−1) ≡

∑n
i=1 xi−1 ∂F

∂ Ii
= 0, (2.103)

where F is considered as a function of x, I1, ... , In . The first integrals of the corre-
sponding characteristic system are

x and Ji = x Ii − Ii+1 for i = 1, ..., n − 1,

and therefore, the general expression for F is given by F = F̃(x, J1, ... , Jn−1) with
an arbitrary function F̃ . Passing in (2.102) from Ii , i = 1, ..., n, to the new variables

J0 = I1, Ji = x Ii − Ii+1 (i = 1, ..., n − 1),

so that I1 = J0 and Ii+1 = xi J0 −∑i
j=1 xi− j J j , we obtain

F[y] =
∑

i1+ ...+in−1=k

δi1, ... ,in−1(x) (J1)
i1 · ... ·(Jn−1)

in−1 , (2.104)
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where we have taken into account that F does not depend on J0.
Notice that δi1, ... ,in−1(x) and (J1)

i1 · ... ·(Jn−1)
in−1 are some polynomials in x of

degrees si1, ... ,in−1 and k respectively, with coefficients, depending on Ii , with i =
1, ..., n. The leading term of x in (2.104) can be written as

xs+k
∑

i1+ ...+in−1=k

Ci1, ... ,in−1 (I1)
i1 · ... ·(In−1)

in−1 ,

where Ci1, ... ,in−1 are some constants, and s = max si1, ... ,in−1 . It follows from (2.99)
that s+ k ≤ n− 1, providing us with estimates si1, ... ,in−1 ≤ n− 1− k for k ≤ n− 1.
By Theorem 2.23, every monomial

x i0 (J1)
i1 · ... ·(Jn−1)

in−1 , (2.105)

with i0, ... , in−1 ≥ 0 and i0 + ... + in−1 ≤ n − 1, defines a symmetry of the ODE
(2.97). Therefore, Fn−2 is a linear span of these monomials. Calculating the number
of operators (2.105) yields

Theorem 2.24 The linear space Fn−2 of symmetry operators of submaximal order
for equation (2.97) is spanned by the operators (2.105), and (2.100) holds.

Remark 2.25 The theorem remains valid without the analyticity assumption on F .
Indeed, applying the condition (2.103) to the general representation (2.99) yields∑n

i=1

(∑n
j=1 Ai

j x
j−1
)
xi−1 ≡ 0, where Ai

j = ∂ Ai
∂ I j

.

Equating the coefficients of the different powers of x to zero gives the system∑
(i+ j=k) Ai

j = 0 for k = 2, ..., 2n, (2.106)

that leads to the necessary result.

In the next examples, we apply Theorems 2.23 and 2.24 to the cases n = 2 and 3.

Example 2.26 (n = 2) For n = 2, equation (2.97) is

y ′′ = 0, (2.107)

and, for the spaces F1 and F0, we obtain the following results:

(i) The whole Lie-Bäcklund algebra F1 of the equation (2.107) is generated by op-
erators

F[y] = A1(I1, I2)+ A2(I1, I2)x, (2.108)

where A1 and A2 are arbitrary functions of the first integrals I1 = y ′ and I2 =
xy′ − y.

(ii) The linear space F0 is 3D spanned by operators xi0(J1)
i1 (i0, i1 ≥ 0, i0+i1 ≤ 1),

or, explicitly,
1, x, J1, (2.109)

where J1 = x I1 − I2 = y. The operators (2.109) define a 3D subalgebra of the
algebra of Lie point symmetries of equation (2.107).

Illustrating Remark 2.25 above, note that, in this case, system (2.106) reads

A1
1 = 0, A1

2 + A2
1 = 0, A2

1 = 0.
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Its solutions are A1 = C1 − C3 I2 and A2 = C1 + C3 I2, that after substitution into
(2.108) yield F[y] = C1 + C2x + C3(x I1 − I2). This coincides with (2.109).

Example 2.27 (n = 3) For n = 3, equation (2.97) is

y ′′′ = 0, (2.110)

and, for the spaces F2 and F1, Theorems 2.23 and 2.24 yield the following.

(i) The whole Lie-Bäcklund algebra F2 of the equation (2.110) is generated by

F[y] = A1(I1, I2, I3)+ A2(I1, I2, I3)x + A3(I1, I2, I3)x
2,

where A1, A2, and A3 are arbitrary functions of the first integrals

I1 = y ′′, I2 = xy ′′ − y ′, and I3 = x2 y ′′ − 2xy ′ + 2y. (2.111)

(ii) The subspace F1 (coinciding with the subalgebra of contact symmetries) is 10D
spanned by the operators xi0(J1)

i1 (J2)
i2 (i0, i1, i2 ≥ 0, i0 + i1 + i2 ≤ 2), or,

1, x, x2, J1, x J1, J2, x J2, (J1)
2, J1 J2, (J2)

2, where (2.112)

J1 = x I1 − I2 = y ′ and J2 = x I2 − I3 = xy ′ − 2y. (2.113)

Plugging the last expressions into (2.112) yields a basis of the well-known 10D al-
gebra of contact symmetries of (2.110) described by Lie in [393].

Using a general representation of the operators F ∈ Fn−2 given by Theorem 2.24,
and successively applying conditions ∂F/∂y(p) = 0 with p = n − 2, n − 3, ... , 1,
one can obtain a complete description of the linear spaces Fn−1−k for arbitrary k =
1, ..., n − 1. The result is expressed in terms of differences defined recursively by

J k
i = x J k−1

i − J k−1
i+1 for i = 1, ..., n − k, (2.114)

with J 0
i = Ii for i = 1, ..., n, and J 1

i = Ji for i = 1, ..., n − 1. Taking into account
that J k

i for i = 1, ..., n − k are polynomials in x of the degree k with coefficients,
linearly depending on I1, ... , In , we arrive at the following theorem which includes
Theorem 2.24 as a special case.

Theorem 2.28 The linear space Fn−1−k , 1 ≤ k ≤ n − 1, of symmetry operators of
the order not greater than n − 1− k for equation (2.97) is spanned by the operators

xi0 (J k
1 )

i1 · ... ·(J k
n−k)

in−k ,

where i0, i1, ... , in−k are nonnegative integers satisfying the condition i0 + k(i1 +
... + in−k) ≤ n − 1.

Example 2.29 (n = 4) Let n = 4, so equation (2.97) is

y(4) = 0. (2.115)

Theorems 2.24 and 2.28 yield the following conclusions:

(i) (k = 1) The subspace F2 of the operators of submaximal order is 35D spanned
by the operators

x i0(J1)
i1(J2)

i2 (J3)
i3 for i0, i1, i2, i3 ≥ 0, i0 + i1 + i2 + i3 ≤ 3,
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where Ji = x Ii − Ii+1 for i = 1, 2, and 3, and the first integrals are written as

I1 = y ′′′, I2 = xy ′′′ − y ′′, I3 = x2y ′′′ − 2xy ′′ + 2y ′,

and I4 = x3y ′′′ − 3x2y ′′ + 6xy ′ − 6y.
(2.116)

Substituting (2.116) into the expressions for Ji , one obtains

J1 = y ′′, J2 = xy ′′ − 2y ′, and J3 = x2y ′′ − 4xy ′ + 6y. (2.117)

(ii) (k = 2) Space F1, corresponding to the algebra of point symmetries, is spanned
by xi0(K1)

i1(K2)
i2 , i0, i1, i2 ≥ 0, i0 + 2(i1 + i2) ≤ 3, or, explicitly,

1, x, x2, x3, K1, x K1, K2, x K2,

where K1 = x J1− J2 = 2y ′ and K2 = x J2− J3 = 2xy ′−6y. (Here we set J 2
1 = K1

and J 2
2 = K2.)

(iii) (k = 3) Space F0 is spanned by x i0(L1)
i1 , i0, i1 ≥ 0, i0 + 3i1 ≤ 3, or

1, x, x2, x3, L1,

where L1 = x K1 − K2 = 6y. (We denote J 3
1 = L1.)

Example 2.30 (n ≥ 4) The subspace F1 = Fn−1−(n−2) (k = n − 2) for equation
(2.97) with n ≥ 4, coinciding with the algebra of point symmetries, is spanned by
operators

x i0 (J n−2
1 )i1 (J n−2

2 )i2 , i0, i1, i2 ≥ 0, i0 + (n − 2)(i1 + i2) ≤ n − 1, or

1, x, . . . , xn−1, J n−2
1 , x J n−2

1 , J n−2
2 , x J n−2

2 . (2.118)

Then, for the expressions J k
i , k = 0, ..., n − 1, the following representation holds:

J k
i = k! xi+k

(
x−1−k y(n−i−k)

)(i−1) for i = 1, ..., n − k, (2.119)

and, therefore, one obtains

J n−2
1 = (n − 2)! xn−1(x1−n y ′) = (n − 2)! y ′ and

J n−2
2 = (n − 2)! xn(x1−n y)′ = (n − 2)! [xy′ + (1− n)y].

Plugging into (2.118) yields the well-known (n+4)-dimensional algebra of Lie point
symmetries of (2.97) with n ≥ 4, [374].

2.6.3 Translation-invariant operators

In the context of applications to evolution PDEs, it makes sense to obtain a descrip-
tion of operators admitted by the equation (2.97) which do not depend explicitly on
x . We denote by F̂n−1 the linear subspace of such translation-invariant operators
of orders not greater than n − 1. In this case, F̂n−1 is a subalgebra of the symme-
try algebra Fn−1. Using the representation (2.99) for the operators F ∈ Fn−1, the
translation-invariant operators are singled out by the condition (2.14), i.e.,

∂F
∂x ≡ 0.
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Example 2.31 (n = 2) Let us start with the case n = 2, i.e., with the ODE y ′′ = 0.
Applying condition (2.14) to operator (2.108) yields the identity

(I1 A1
2 + A2)+ x I1 A2

2 = 0,

where Ak
i ≡ ∂ Ak/∂ Ii , so that I1 A1

2 = −A2 and A2
2 = 0. This system has the general

solution A2 = I1 A(I1), A1 = −I2 A(I1)+ B(I1) with arbitrary functions A(I1) and
B(I1). Plugging these expressions into (2.108) yields

F[y] = (x I1 − I2)A(I1)+ B(I1) = y A(y ′)+ B(y ′).

Example 2.32 (n = 3) Acting in a similar way in the case n = 3 with the ODE
y ′′′ = 0, one obtains the following general description of operators F belonging to
F̂2:

F[y] = (y′)2 A( Î1, Î2)+ y ′B( Î1, Î2)+ C( Î1, Î2),

where A, B , and C are arbitrary functions of the expressions Î1 = I1 and Î2 =
I1 I3−(I2)

2 via the first integrals (2.111) which imply Î1 = y ′′ and Î2 ∼ 2yy ′′−(y′)2.

Generalizing these examples yields the following result.

Theorem 2.33 The set F̂n−1 of translation-invariant operators admitted by the equa-
tion (2.97) is generated by

F[y] =∑n
i=1 αi ( Î1, ... , În−1)(y(n−2))i−1,

where αi are arbitrary functions of the homogeneous polynomials

Î1 = I1, Î2 = I1 I3 − (I2)
2,

Îk = (I1)
k−1 Ik+1 − (I2)

k −∑k−2
i=1 Ci

k Îk−i (I2)
i , 3 ≤ k ≤ n − 1,

(2.120)

of the first integrals (2.98).

Proof. We apply condition (2.14) to operator (2.99). Using that ∂ I1/∂x = 0 and
∂ Ik/∂x = (k − 1)Ik−1 for k = 2, ..., n yields the identity

n−1∑
i=1

[ n∑
k=2

(k − 1)Ik−1 Ai
k + i Ai+1

]
xi−1 +

[ n∑
k=2

(k − 1)Ik−1 An
k

]
xn−1 ≡ 0,

which is reduced to the following system of linear equations:

X Ai = −i Ai+1 (i = 1, ..., n − 1), X An = 0 (2.121)

with X ≡ ∑n
k=2(k − 1)Ik−1∂/∂ Ik . One can verify that, for functions (2.120), the

relations X Îi = 0 (i = 1, ..., n − 1) hold, while X (I2/I1) = 1, and, hence, in
variables

ti = Îi (i = 1, ..., n − 1) and tn = I2
I1
,

the operator X is transformed into ∂/∂ tn . The system (2.121) is then rewritten as
∂ Ai/∂ tn = −i Ai+1 (i = 1, ..., n − 1), ∂ An/∂ tn = 0, or, in the equivalent form,

Ak = (−1)k−1

(k−1)!
∂k−1 A1

∂tnk−1 (k = 2, ..., n), ∂n A1

∂tnn = 0.
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This provides us with general expressions for Ak ,

Ak = (−1)k−1∑n
i=k Ck−1

i−1 (tn)i−k α̃i (t1, ... , tn−1) (k = 1, ..., n),

with arbitrary functions α̃i (i = 1, ..., n). Substituting these into (2.99) yields

F[y] =∑n
k=1

∑n
i=k Ck−1

i−1 (−x)k−1(tn)i−k α̃i

= ∑n
i=1

[∑i
k=1 Ck−1

i−1 (−x)k−1(tn)i−k
]̃
αi

=∑n
i=1(tn − x)i−1α̃i =∑n

i=1(x I1 − I2)
i−1αi ,

where αi = α̃i/(−I1)
i−1. Since x I1 − I2 = y(n−2), this completes the proof.

Applying Theorem 2.33 to the case n = 4 leads to

Example 2.34 (n = 4) For equation (2.115), y(4) = 0, the set F̂3 consists of opera-
tors

F[y] =∑4
i=1(y′′)i−1αi ( Î1, Î2, Î3),

where αi (·) are arbitrary functions of the homogeneous polynomials

Î1 = I1, Î2 = I1 I3 − (I2)
2 and Î3 = (I1)

2 I4 − (I2)
3 − 3 Î2 I2.

Substituting the expressions (2.116) for I1, I2, and I3 yields

Î1 = y ′′′, Î2 = 2y ′y ′′′ − (y′′)2, and Î3 = −6y(y′′′)2 + 6y ′y ′′y ′′′ − 2(y′′)3.

2.6.4 Translation-invariant quadratic operators

We return to the study of quadratic operators and present a more detailed description
of operators admitting polynomial subspaces. Namely, we study the special class
F̂q

n−1 ⊂ F̂n−1 of translation-invariant quadratic operators preserving the subspace
(2.96) (the ODE (2.97)). For exponential subspaces, a related problem was solved
earlier in Section 1.5.2 (Example 1.49). We will again use the notation yi = y(i).

Let Q be the linear span of all the monomials yi y j for i, j = 0, ..., n − 1. In what
follows, we represent Q as a direct sum of the form

Q = ⊕n−1
k=0 Qn−1−k , (2.122)

where Qn−1−k denotes a linear space of quadratic operators of the order n − 1 − k,
with the basis that is constructed below. The linear space F̂q

n−1 ⊂ Q will then be
expressed in terms of Qn−1−k ’s.

Theorem 2.28 and representation (2.102) imply that the set Fq
n−1−k of all quadratic

operators of the order not greater than n − 1 − k admitted by the equation (2.97) is
generated by

F =∑n−1−2k
i0=0

(
xi0
∑n−k

(i, j=1,i≤ j ) αi0,i, j J k
i J k

j

)
, (2.123)

where αi0,i, j are arbitrary constants and k satisfies the inequality

0 ≤ k ≤ n−1
2 . (2.124)

The subset F̂q
n−1−k ⊂ Fq

n−1−k of translation-invariant operators is singled out from
(2.123) by the condition (2.14).
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The construction of the basis of Qn−1−k is fulfilled in a few steps.

Step 1. We start with a particular case of operators of the form

F =∑n−k
(i, j=1,i≤ j ) αi, j J k

i J k
j . (2.125)

Here, instead of (2.124), we assume that 0 ≤ k ≤ n−1. In this case, the invariance of
the subspace (2.96) can be violated, since the definition of J k

i
that the right-hand side of (2.125) is a polynomial of x of the degree 2k, whose
coefficients depend on first integrals of the equation (2.97). Therefore, the operator
(2.125) maps Wn given by (2.96) onto W2k+1 = L{1, ..., x2k}, so that there is no
invariance for k > n−1

2 . Nevertheless, at the first step, we construct all the operators
of the form (2.125) that are translation-invariant. The linear space of such operators
is denoted by Q2k

n−i−k .
From (2.119), the following identities are obtained:

∂ J k
1

∂x = 0 and
∂ J k

i
∂x = (i − 1)J k

i−1 for i = 2, ..., n − k. (2.126)

Then (2.114) and (2.126) imply that it suffices to consider operators (2.125) with
i + j = s, 2 ≤ s ≤ 2(n − k) that can be written as

F =
{∑[ s

2 ]
i=1 αi J k

i J k
s−i for s = 2, ..., n − k + 1,∑[ s

2 ]
i=s−n+k αi J k

i J k
s−i for s = n − k + 2, ..., 2(n − k).

Condition (2.114) leads to the system of linear homogeneous equations for the co-
efficients {αi }. It can be shown that a nontrivial solution exists only for even s that
belong to the first interval, i.e., in the case of the operators

F2k
s
2
=∑ s

2
i=1 αi J k

i J k
s−i for even s ∈ {2, ..., n − k + 1}. (2.127)

Applying (2.119) and (2.126) to (2.127) yields (for s ≥ 4) the identity

0 = ∂
∂x F2k

s
2
=∑ s

2
i=1 αi

[
(i − 1)J k

i−1 J k
s−i + (s − i − 1)J k

i J k
s−i−1

]
= ∑ s

2
i=1

[
iαi + (s − i − 1)αi

]
J k

i J k
s−i−1 +

( s
2 − 1

)
α s

2
J k

s
2

J k
s
2−1.

This gives the following system for the coefficients:{
αi+1 = − s−i−1

i αi for i = 1, ..., s
2 − 2 (s ≥ 6),

α s
2
= − s

2(s−2) α s
2−1.

Setting α1 = 1 yields

αi = (−1)i−1Ci−1
s−2 for i = 1, ..., s

2 − 1,

α s
2
= (−1)

s
2−1C

s
2−2
s−3 .

Substituting these expressions into (2.127) and taking into account the obvious case
s = 2, we obtain a basis of Q2k

n−1−k ,

F2k
1 = (J k

1 )
2,

F2k
s
2
=∑ s

2−1
i=1 (−1)i−1Ci−1

s−2 J k
i J k

s−i + (−1)
s
2−1C

s
2−2
s−3

(
J k

s
2

)2
,

(2.128)
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where s ∈ {4, ..., n − k + 1} is even.

Step 2. Operators (2.128) provide us with a part of the basis of the linear space
Qn−1−k . The rest of the basis can be constructed as follows. Note that, for k = n−1,
the only operator that remains in (2.128) is F2(n−1)

1 = (J n−1
1 )2. Let k ≤ n − 2.

Replacing k by k + 1 in (2.128) leads to the (n − 2− k)th-order operators F2k+2
s
2

for

even s ∈ {2, ..., n − k}. Using operator D of the total derivative in x , we introduce
the following (n − 1− k)th-order operators:

F2k+1
s
2

= DF2k+2
s
2

for even s ∈ {2, ..., n − k}. (2.129)

From (2.119), one can derive that

D J k+1
i = (k + 1)J k

i for i = 1, ..., n − k − 1.

Applying this allows us to rewrite (2.129) in terms of {J k
i } and {J k+1

i } as

F2k+1
1 = DF2k+2

1 = 2(k + 1)J k+1
1 J k

1 ,

F2k+1
s
2

= DF2k+2
s
2

= (k + 1)
[∑ s

2−1
i=1 (−1)i−1Ci−1

s−2

(
J k

i J k+1
s−i

+ J k+1
i J k

s−i

)+ 2(−1)
s
2−1C

s
2−2
s−3 J k+1

s
2

J k
s
2

] (2.130)

for even s ∈ {2, ..., n−k}. Operators (2.130) map Wn onto W2k+2 = L{1, ..., x2k+1}.
Let Q2k+1

n−1−k denote the linear envelope of these operators.
Notice that the set of operators (2.128) and (2.130) is linearly independent and that

every operator F ∈ F̂q
n−1−k is represented as a linear combination of these operators

and operators of less orders. (This is readily seen from the explicit representation
of the operators given below.) The subspace Qn−1−k is then defined as the linear
span of the operators (2.128) and (2.130). Obviously, the representation Qn−1−k =
Q2k

n−1−k ⊕ Q2k+1
n−1−k holds.

Step 3. In order to obtain the explicit representation of the operators (2.128), we
use the formulae (2.119). It follows that

J k
i = (−1)i−1(i + k − 1)! yn−i−k + ... for i = 1, ..., n − k,

whereby “...” we denote the x-dependent summands that are mutually cancelled by
plugging into (2.128). Substituting these expressions into (2.128) yields

F2k
1 ∼ (yn−1−k)

2, F2k
s
2
∼∑ s

2−1
i=1 (−1)s−i−1Ck

i+k−1

×Ck
s−i+k−1 yn−i−k yn−s+i−k + 1

2 (−1)
s
2−1(Ck

s
2+k−1

)2(
yn− s

2−k
)2 (2.131)

for even s ∈ {4, ..., n − k + 1}. Using (2.129) (or (2.130)) yields

F2k+1
1 ∼ yn−1−k yn−2−k,

F2k+1
s
2

∼ Ck+1
s−1+k yn−1−k yn−s−k +∑ s

2−1
i=1 (−1)s−i−1

× (Ck+1
i+k Ck+1

s−i+k − Ck+1
i+1+k Ck+1

s−i−1+k

)
yn−i−k−1 yn−s+i−k

(2.132)

for even s ∈ {2, ..., n − k}. Leaving in (2.131) and (2.132) only the terms containing
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the leading order derivative yn−1−k yields

F2k
s
2
∼ yn−1−k yn−s+1−k + ... for even s ∈ {2, ..., n − k + 1}, and

F2k+1
s
2

∼ yn−1−k yn−s−k + ... for even s ∈ {2, ..., n − k}.
Here, all the monomials of the form yn−1−k yn−i−k for i = 1, ..., n − k are avail-
able and moreover each of these appear in a single operator only. Hence, opera-
tors (2.131), and (2.132) are linearly independent, and their envelope Qn−1−k con-
tains all the operators of the order n − 1 − k up to adding lower order opera-
tors. The dimensions of the subspaces are given by the following integer parts:
dim Q2k

n−1−k =
[n−1−k

2

]
and dim Q2k+1

n−1−k =
[ n−k

2

]
. Hence,

dim Qn−1−k = dim Q2k
n−1−k + dim Q2k+1

n−1−k = n − k.

For Q′ = ⊕n−1
k=0 Qn−1−k , we have

dim Q′ =∑n−1
k=0(n − k) = n(n+1)

2 = dim Q.

Therefore, Q′ = Q, completing the construction of the representation (2.122).
Noting that subspace (2.96) is invariant with respect to F ∈ Qr

n−1−k (r = 2k or

r = 2k + 1) iff r ≤ n − 1 and that all such operators form the set F̂q
n−1, we arrive at

the following result.

Theorem 2.35 The linear space F̂q
n−1 of translation-invariant quadratic operators of

the order not greater than n − 1, which preserve subspace (2.96), is represented as:

(i) F̂q
n−1 = Qn−1

n−1
2
⊕
(
⊕

n−3
2

k=0 Qn−1−k

)
, dim F̂q

n−1 = 3n2+4n+9
8 for odd n,

and

(ii) F̂q
n−1 = ⊕

n−2
2

k=0 Qn−1−k , dim F̂q
n−1 = n(3n+2)

8 for even n.

It is seen that the set of translation-invariant quadratic operators of the order k,
which preserve the polynomial subspace (2.96) of the maximal dimension n = 2k+1,
coincides with the subspace Q2k

k . Setting n = 2k + 1 in (2.131) yields

Theorem 2.36 The basis of the linear subspace Q2k
k of translation-invariant kth-

order operators preserving the polynomial subspace of the maximal dimension n =
2k + 1 is given by

F2k
1 ∼ (yk)

2, F2k
s
2
∼∑ s

2−1
i=1 (−1)s−i−1Ck

i+k−1Ck
s−i+k−1 yk+1−i yk+1−s+i

+ 1
2 (−1)

s
2−1(Ck

s
2+k−1

)2(
yk+1− s

2

)2 (2.133)

for even s ∈ {4, ..., k + 2}. The dimension is dim Q2k
k = [ k+2

2

]
.

Example 2.37 (n = 5) For n = 5, the subspace and its equation are

W5 = L{1, ..., x4} and y5 = 0. (2.134)

Applying (2.128), (2.131), and (2.130), we obtain Table 2.1, where the boldface sub-

spaces Qj
i are composed of operators admitted by the ODE in (2.134). Second-order

© 2007 by Taylor & Francis Group, LLC



2 Invariant Subspaces: Mathematics in 1D 83

Table 2.1 Quadratic operators for W5 = L{1, ..., x4} (y5 = 0)

Basis of operators F[W5]

Q0 Q8
0 F8

1 = (J 4
1 )

2 ∼ (y0)
2 W9 = L{1, ..., x8}

Q1
Q7

1 F7
1 = DF8

1 ∼ y1y0 W8 = L{1, ..., x7}

Q6
1

F6
1 = (J 3

1 )
2 ∼ (y1)

2 W7 = L{1, ..., x6}

Q2

Q5
2 F5

1 = DF6
1 ∼ y2y1 W6 = L{1, ..., x5}

Q4
2

F4
1 = (J 2

1 )
2 ∼ (y2)

2,

F4
2 = J 2

1 J 2
3 − (J 2

2 )
2 ∼ 4y2y0 − 3(y1)

2 W5 = L{1, ..., x4}

Q3

Q3
3

F3
1 = DF4

1 ∼ y3y2,

F3
2 = DF4

2 ∼ 2y3y0 − y2y1
W4 = L{1, ..., x3}

Q2
3

F2
1 = (J 1

1 )
2 ∼ (y3)

2,

F2
2 = J 1

1 J 1
3 − (J 1

2 )
2 ∼ 3y3y1 − 2(y2)

2 W3 = L{1, ..., x2}

Q4

Q1
4

F1
1 = DF2

1 ∼ y4y3,

F1
2 = DF2

2 ∼ 3y4y1 − y3y2
W2 = L{1, x}

Q0
4

F0
1 = (J 0

1 )
2 ∼ (y4)

2,

F0
2 = J 0

1 J 0
3 − (J 0

2 )
2 ∼ 2y4y2 − (y3)

2,

F0
3 = J 0

1 J 0
5 − 4J 0

2 J 0
4 + 3(J 0

3 )
2

∼ 2y4y0 − 2y3y1 + (y2)
2

W1 = L{1}

operators preserving the subspace (2.134) (it is of the maximal dimension for such
operators) form the subspace Q4

2.

Remark 2.38 If F[Wn] = Wk for k < n, the evolution equation

ut = F[u]

admits exact solutions on Wn ,

u(x, t) =∑n−1
i=0 Ci (t)xi ,

where the corresponding DS contains n − k trivial equations

C ′i = 0 for i = k + 1, ..., n.

For an illustration, see Example 1.13.
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Table 2.2 Quadratic operators for W4 = L{1, ..., x3} (y4 = 0)

Basis of operators F[W4]

Q0 Q6
0 F6

1 = (J 3
1 )

2 ∼ (y0)
2 W7 = L{1, ..., x6}

Q1

Q5
1 F5

1 = DF6
1 ∼ y1y0 W6 = L{1, ..., x5}

Q4
1

F4
1 = (J 2

1 )
2 ∼ (y1)

2 W5 = L{1, ..., x4}

Q2

Q3
2 F3

1 = DF4
1 ∼ y2y1 W4 = L{1, ..., x3}

Q2
2

F2
1 = (J 1

1 )
2 ∼ (y2)

2,

F2
2 = J 1

1 J 1
3 − (J 1

2 )
2 ∼ 3y2y0 − 2(y1)

2 W3 = L{1, x, x2}

Q3

Q1
3

F1
1 = DF2

1 ∼ y3 y2,

F1
2 = DF2

2 ∼ 3y3y0 − y2 y1
W2 = L{1, x}

Q0
3

F0
1 = (J 0

1 )
2 ∼ (y3)

2,

F0
2 = J 0

1 J 0
3 − (J 0

2 )
2 ∼ 2y3y1 − (y2)

2 W1 = L{1}

Using Table 2.1, it is easy to obtain a similar description of the set of quadratic op-
erators for the subspace (2.96) (equation (2.97)) with any n < 5. Denote expressions
(2.119), related to the equation (2.97), by J n,k

i [y] for i = 1, ..., n − k. Let J n+1,k
i [y]

for i = 1, ..., n + 1 − k be analogous expressions for the equation yn+1 = 0. It
directly follows from (2.119) that the first n− k of those are obtained from {J n,k

i [y]}
by the change y �→ y1, i.e., J n+1,k

i [y] = J n,k
i [y1] for i = 1, ..., n − k, and that only

the last one, J n+1,k
n+1−k[y] = k!xn+1(x−1−n y)(n−k), contains y0.

Example 2.39 (n = 4) This observation makes it possible, starting from the basis of
operators for equation yn+1 = 0, to obtain a similar basis for equation (2.97). To this
end, it is necessary to delete operators that contain y0 and to perform the substitution
yi �→ yi−1 in the operators that are left. Doing so, from Table 2.1, we obtain Table
2.2 that represents the set of operators, corresponding to the equation

y4 = 0. (2.135)

Remark 2.40 We make some comments concerning the set F of operators admitted
by a given linear ODE L[y] = 0.

1). If F1, F2 ∈ F , then F1 F2 ∈ F , with the standard definition of the superposition,
(F1 F2)[y] = F1[F2[y]].
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2). Let L have constant coefficients. Then:
(i) The operator D of the total derivative in x belongs to F ;
(ii) If F ∈ F , both DF and F D belong to F and have the order that is larger by one
than the order of F ; and
(iii) If F[y] is a homogeneous polynomial of y and its derivatives, then DF[y] and
F D[y] are homogeneous polynomials of the same degree.

Using these remarks, it is possible to obtain a basis of the linear space F̂q
n−1 of

translation-invariant operators admitted by the ODE (2.97), starting with the opera-
tors of the lowest orders that form the basis of Qn−1

n−1
2

for odd n and Q n
2

for even n.

For example, in the case of the equation (2.134), the basis of Q4
2,

F4
1 [y] ∼ (y2)

2 and F4
2 [y] ∼ y2y0 + ...

(only the leading-order terms are indicated), and operators

F4
1 D[y] ∼ (y3)

2, DF4
1 [y] ∼ y3 y2, F4

2 D[y] ∼ y3y1 + ..., DF4
2 [y] ∼ y3y0 + ... ,

F4
1 D2[y] ∼ (y4)

2, DF4
1 D[y] ∼ y4y3 + ... , D2 F4

1 [y] ∼ y4 y2 + ... ,

DF4
2 D[y] ∼ y4y1 + ... , D2 F4

2 [y] ∼ y4y0 + ...

form a basis of F̂q
4 .

In the case of the equation (2.135), the basis of Q2,

F2
1 [y] ∼ (y2)

2, F3
1 [y] ∼ y2y1, and F2

2 [y] ∼ y2y0 + ... ,

and the additional operators

F2
1 D[y] ∼ (y3)

2, DF2
1 [y] ∼ y3 y2, F2

2 D[y] ∼ y3y1 + ... , DF2
2 [y] ∼ y3y0 + ... ,

form a basis in F̂q
3 . In general, such bases differ from those in Tables 2.1 and 2.2.

2.7 Extensions to ∂
∂t -dependent operators

Here, we describe a generalization of the main results to operators, including the
time derivative ut ,

F[u] = F(x, u, u1, ..., uk, ut , u1,t , ..., uk,t ), where ui = ∂ i u
∂xi (2.136)

and u0 = u. Such applications are associated with the GT equation in Example 1.20
having the quadratic operator of the form

F1[u] = uxut x − ut ux x , (2.137)

and with several other models.
For a given set of functions f1(x), ..., fn(x) that form a fundamental set of solu-

tions of the ODE (2.2), we consider the set of their linear combinations,

Wn =
{∑n

i=1 Ci (t) fi (x)
}
, (2.138)

which is actually a module [373, Ch. III]. Without fear of confusion, we also keep the
notation (2.1) for modules. The coefficients {Ci (t)}, as well as functions { fi (x)}, are
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assumed to be sufficiently smooth. The module (2.138) is supposed to be a collection
of solutions of the linear equation

L[u] ≡ un +∑n
i=1 ai (x)un−i = 0 (2.139)

for u = u(x, t). The condition for Wn to be invariant with respect to operator F ,
F[Wn] ⊆ Wn , has the form of the identity

L[F[u]] ≡ 0 for every solution of (2.139). (2.140)

We use the notation Fn−1(Wn) for the set of operators (2.136) with k ≤ n − 1 that
leave the module (2.138) (or equation (2.139)) invariant. The formulation of the Main
Theorem that describes this module and its proof are similar to those of Theorem 2.1.

2.7.1 Main Theorem

Theorem 2.41 (“Main Theorem”) The set Fn−1(Wn) of operators (2.136) that
leave module (2.138) invariant is given by

F[u] =∑n
i=1 Ai (I [u], I [ut ]) fi (x), (2.141)

where I [u] = (I1[u], ... , In[u]) is the complete set of first integrals of the ODE
(2.139) and Ai for i = 1, ..., n are arbitrary smooth functions.

Proof. The invariance condition (2.140) is written down as

Dn F + ...+ an−1(x)DF + an(x)F = 0, with

D = ∂
∂x +

∑n−2
i=0 ui+1

∂
∂ui
− (∑n

i=1 ai un−i
)

∂
∂un−1

+ ∑n−2
i=0 ui+1,t

∂
∂ui,t

− (∑n
i=1 ai un−i,t

)
∂

∂un−1,t
.

(2.142)

Note that I [ut ] is a complete set of first integrals of the equation L[ut ] = 0. There-
fore, DIi [u] = 0 and DIi [ut ] = 0 for all i = 1, ..., n. Passing from (x, u, u1, ...,
un−1, ut , u1,t , ..., un−1,t ) to the new variables

x̃ = x, Ii = Ii [u], and Ji = Ii [ut ] for i = 1, ..., n,

we transform D into D̃ = ∂
∂ x̃ and equation (2.139) into

D̃n F̃ +∑n
i=1 ai(x)D̃n−i F̃ = 0.

Then the general solution is

F̃[u] =∑n
i=1 Ai (I1, ..., In, J1, ..., Jn) fi (x̃),

where Ai are arbitrary functions. Returning to the original variables yields (2.141)
that completes the proof.

Remark 2.42 If operators (2.136) also contain higher-order derivatives ∂ i u
∂t i for i =

2, ...,m, instead of (2.141), we find

F[u] =∑n
i=1 Ai

(
I [u], I [ut ], ..., I [ ∂

mu
∂tm ]

)
fi (x). (2.143)
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Remark 2.43 If t = (t1, ..., tp) ∈ IR p , we set in (2.143)

ut = {uti }, I [ut ] = {I [uti ]};
utt = {uti t j }, I [utt ] = {I [uti t j ]} (i, j = 1, ..., p); etc.

2.7.2 Theorem on the maximal dimension

Theorem 2.8 is also extended to operators (2.136).

Theorem 2.44 (“Theorem on maximal dimension”) If the module (2.138) is in-
variant under the operator (2.136) or its generalizations in Remarks 2.42, 2.43, and
the operator is nonlinear, then (2.19) holds.

Proof. As in the proof of Theorem 2.8, it is convenient to use slightly different equa-
tions of the Wn ,

un = a1un−1 + ...+ an−1u1 + anu, (2.144)

and the corresponding invariance condition,

Dn F ≡ a1 Dn−1 F + ...+ an−1 DF + an F on (2.144), (2.145)

where D is the operator of the total derivative in x . We replace

ut �→ v, so that u j,t �→ v j .

Arguing by contradiction, let n ≥ 2k + 2. Following the lines of the proof of
Theorem 2.8, for functions F(x, u, u1, ..., uk, v, v1, ..., vk), we find the formula that
is similar to (2.22),

D p F = uk+p Fuk + vk+p Fvk +
[∑[ p

2 ]−1
i=1 Ci

p uk+p−i uk+i

+ νC
[ p

2 ]
p uk+p−[ p

2 ]uk+[ p
2 ]

]
Fukuk +

[∑[ p
2 ]−1

i=1 Ci
p vk+p−i vk+i

+ νC
[ p

2 ]
p vk+p−[ p

2 ]vk+[ p
2 ]

]
Fvkvk +

[∑p−1
i=1 Ci

p uk+p−ivk+i
]
Fukvk + ... ,

(2.146)

where we keep the linear terms containing higher-order derivatives of the order k+ p,
and also the quadratic terms of the total order 2k + p.

Applying the arguments used in the proof of Theorem 2.8 first to F as a function
of the variables u, u1, ..., uk , and second of v, v1, ..., vk , immediately gives

Fui u j = 0 and Fvi v j = 0 for all i, j = 0, 1, ..., k.

Therefore, omitting the linear terms, (2.146) takes the form

D p F = [∑p−1
i=1 Ci

p uk+p−ivk+i
]
Fukvk + ... . (2.147)

For n ≥ 2k+ 2, we select in the square brackets in (2.147) the derivatives in u of the
order not less than n − 1, so

Dn F = (∑k+1
i=1 αi uk+n−i vk+i

)
Fukvk + ... . (2.148)

Using the linear equation (2.144) of Wn , we express all the derivatives uk+n−i for
i = 1, 2, ..., k in terms of un−1, ..., u. Then (2.148) will contain a single quadratic
term with un−1v2k+1, i.e., Ck+1

n un−1v2k+1 Fukvk , that has the maximal total order
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2k + p. Such terms cannot appear in the derivatives D p F for p < n. Hence, in
order to satisfy the invariance condition, (2.145) we need Fukvk = 0. Taking this into
account, similar to (2.148), we find

Dn F = [∑k+1
i=1 βi uk+n−ivk−1+i

]
Fukvk−1 + ... ,

where βi > 0. All the indicated summands have the total order of the derivatives
2k + n − 1. Excluding the derivatives uk+n−i for i = 1, 2, ..., k gives the unique
quadratic term with un−1v2k , namely

βk+1un−1v2k Fukvk−1 ,

which verifies the maximal total order 2k + n − 1 (such summands cannot occur in
D p F for p < n). Equating this coefficient to zero yields Fukvk−1 = 0. Assuming
next that

Fukvk = Fukvk−1 = ... = Fukvk−( j−1) = 0,

we obtain

Dn F = [∑k+1
i=1 γi uk+n−i vk− j+i

]
Fukvk− j + ... , where γi > 0.

Hence, Fukvk− j = 0 for any j = 0, 1, ..., k. Since the variables u and v are equivalent,
by a similarity argument, this implies that Fuk− j vk = 0 for j = 0, 1, ..., k.

It follows that

F[y] = fk(x)uk + gk(x)vk + F̃(x, u, ... , uk−1, v, ..., vk−1).

Repeating the same speculations for the function F̃ yields

F̃ = fk−1(x)uk−1 + gk(x)vk−1 + ˜̃F(x, u, ... , uk−2, v, ..., vk−2),

etc. Finally,
F =∑k

i=1

[
fi (x)ui + gi (x)vi

]+ h(x),

i.e., F[u] is a linear operator.

2.7.3 Examples

Example 2.45 (W3 for the operator (2.137)) According to Theorem 2.44, the op-
erator (2.137) from the GT equation can admit Wn of dimension n not exceeding
five. The analysis of the invariance conditions implies that the maximal dimension is
in fact three. Up to scalings in x , all 3D modules are described by the equation

u′′′ + au′ = 0, with a = −1, 0, and 1,

and have the form

W3 = L{1, ex , e−x }, W3 = L{1, x, x2}, and W3 = L{1, cos x, sin x}.
Symmetric restrictions of operators. Given a ∂

∂t -dependent operator (2.136), we
introduce its symmetric restriction

F̂[u] = F(x, u, u1, ..., uk, u, u1, ..., uk), (2.149)
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which is obtained from (2.136) by replacing ut �→ u. For example, the GT-operator
(2.137) has the symmetric restriction

F̂1[u] = (ux)
2 − uux x ≡ −Frem[u],

where the remarkable operator (1.99) appears. The relation between operators and
their symmetric restrictions is as follows:

Proposition 2.46 If the module (2.138) is invariant under the operator (2.136), then
it is invariant under its symmetric restriction (2.149).

In general, nonlinear operators can have linear symmetric restrictions, or even the
null-restriction F̂ = 0.

Example 2.47 (Quadratic operators with polynomial W3, W4, and W5) Let
us describe all the quadratic operators with constant coefficients of the second order
in x and of the first order in t (as in (2.137)), preserving polynomial modules of
dimensions 3, 4, and 5. Analyzing the invariance conditions yields the following
bases of the linear space of such operators:

(i) W3 = L{1, x, x2}:
F1[u] = (ux x)

2, F2[u] = (ut x x)
2, F3[u] = ux xut x x ;

F4[u] = ux ux x , F5[u] = ut xut x x, F6[u] = ut xux x , F7[u] = uxut x x ;
F8[u] = uux x, F9[u] = ut ut x x, F10[u] = ut ux x , F11[u] = uut x x ;

F12[u] = (ux )
2, F13[u] = (ut x)

2, F14[u] = ux ut x ;
F15[u] = uut x − ut ux .

The underlined operators are the symmetric restrictions of the next ones. The last
operator, F15, has the null-projection, i.e., F̂15 = 0.

(ii) In a similar fashion, for W4 = L{1, x, x2, x3}:
F1[u] = (ux x)

2, F2[u] = (ut x x)
2, F3[u] = ux xut x x, F4[u] = ut xut x x ;

F5[u] = ux ux x , F6[u] = uxut x x, F7[u] = ut xux x ;
F8[u] = uux x − 2

3 (ux)
2, F9[u] = ut ut x x − 2

3 (ut x)
2,

F10[u] = ut ux x − 2
3 uxut x , F11[u] = uut x x − 2

3 uxut x .

(iii) For the 5D subspace W5 = L{1, x, x2, x3, x4}, we find the following operators:

F1[u] = (ux x)
2, F2[u] = (ut x x)

2, F3[u] = ux xut x x ;
F4[u] = uux x − 3

4 (ux)
2, F5[u] = ut ut x x − 3

4 (ut x)
2,

F6[u] = uut x x + ut ux x − 3
2 uxut x ; F7[u] = ux ut x x − ut xux x .

Note that F̂7 = 0. As an illustration, let us present the computations concerning the
last three operators for functions

u = C1 + C2x + C3x2 + C4x3 + C5x4 ∈ W5.
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The following holds:

F5[u] = 12(C4C ′5 − C ′4C5)x4 + 16(C3C ′5 − C ′3C5)x3 + 6(2C2C ′5
− 2C ′2C5 + C3C ′4 − C ′3C4)x2 + 6(C2C ′4 − C ′2C4)x + 2(C2C ′3 − C ′2C3);

F6[u] = 1
4

[
8C ′3C ′5 − 3

(
C ′4
)2]x4 + (6C ′2C ′5 − C ′3C ′4

)
x3 + 1

2

[
24C ′1C ′5

+ 3C ′2C ′4 − 2
(
C ′3
)2]

x2 + (6C ′1C ′4 − C ′2C ′3
)
x + 4C ′1C ′3 − 3

4

(
C ′2
)2;

F7[u] = 1
2

(
4C3C ′5 + 4C ′3C5 − 3C4C ′4

)
x4 + (6C2C ′5 + 6C ′2C5 − C3C ′4

−C ′3C4
)
x3 + 1

2

(
24C1C ′5 + 24C ′1C5 + 3C2C ′4 + 3C ′2C4 − 4C3C ′3

)
x2

+ 2
(
6C1C ′4 + 6C ′1C4 − C2C ′3 − C ′2C3

)
x + 4C1C ′3 + 4C ′1C3 − 3C2C ′2.

By these expressions, the PDEs Fk[u] = g ∈ W5 reduce to ODE systems.

2.7.4 Operators F : Wn → W̃m

It is convenient to use the class of ∂
∂t -dependent operators (2.136) to describe the

next generalization, where we move away from the notion of invariant modules, but
keep the main mathematical tools and results.

Consider two different modules, Wn and W̃m , given by two different ODEs, written
in the form of

Wn =
{∑n

i=1 αi (t) fi (x)
}
, un =∑n

j=1 a j (x)un− j ;
W̃m =

{
u =∑m

i=1 βi (t) f̃i (x)
}
, um =∑m

j=1 b j (x)um− j ,
(2.150)

where u j = ∂ j u
∂x j . We are looking for operators F : Wn → W̃m and denote by

Fn−1(Wn, W̃m) the whole set of such operators. In the case where Wn = W̃m , we
return to the concept of invariant modules. If F ∈ Fn−1(Wn, W̃m ), then

for any u =∑n
i=1 Ci (t) fi (x), F[u] =∑m

i=1 	i (C1, ...,Cn,C ′1, ...,C ′n) f̃i (x).

In particular, the PDE
F[u] = 0 on Wn

is equivalent to the system of ODEs{
	1(C1, ...,Cn,C ′1, ...,C ′n) = 0,

... ... ...
	m(C1, ...,Cn,C ′1, ...,C ′n) = 0.

The necessary and sufficient condition for operator F to map any solution of the
first ODE, L[u] = 0, in (2.150) into a solution of the second one, L̃[u] = 0, is

L̃[F[u]]
∣∣
L[u]=0 ≡ 0,

which looks similar to (2.4). By the same analysis, we arrive at the following result,
where the same notation, as in Theorem 2.41, is kept.

Theorem 2.48 (“Main Theorem”) The set Fn−1(Wn, W̃m) consists of operators

F[u] =∑m
i=1 Ai (I [u], I [ut ]) f̃i (x),
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where I [u] = (I1[u], ... , In[u]) is the complete set of first integrals of the first ODE
in (2.150), Ai for i = 1, ...,m are any smooth functions, and { f̃1(x), ..., f̃m(x)} is a
fundamental set of solutions of the second ODE in (2.150).

Remarks 2.42 and 2.43 are also applied to mappings Wn → W̃m .

Theorem 2.49 (“Theorem on maximal dimension”) Let F : Wn → W̃m , where
m ≤ n, be a nonlinear operator (2.136) of the differential order k. Then n ≤ 2k + 1.

Proof. Let m = n and Wn and W̃n be prescribed by the linear equations

un = a1un−1 + ...+ an−1u1 + anu, (2.151)

un = b1un−1 + ...+ bn−1u1 + bnu,

respectively. Then, for F , the following holds:

Dn F ≡ b1 Dn−1 F + ...+ bn−1 DF + bn F on (2.151),

where D is the operator of the full derivative in x . The result of the theorem follows
from the arguments that have been used in the proof of Theorem 2.44.

In the case of m < n, W̃m can be extended to W̃n by adding n − m arbitrary
functions to the basis that form, together with { f̃i (x), i = 1, ...,m}, a linearly inde-
pendent set. Then F : Wn → W̃n and the previous argument works.

Corollary 2.50 A nonlinear kth-order differential operator F : Wn → W̃m , where
n ≥ 2k + 2, can exist only if m > n.

These results are valid in the cases indicated in Remarks 2.42 and 2.43, as well as
for the operators that do not contain derivatives in t .

In the following example, we consider the operator (1.94),

F[u] = ux ut x − βut ux x + γ uut x x + δuut .

For some particular choices of the coefficients, we find 3D modules W3 and W̃3 such
that F : W3 �→ W̃3.

Example 2.51 (W̃3 �=W3) Let γ = β �= 0 and δ = 0, i.e.,

F[u] = uxut x + β(uut x x − ut ux x).

There exist two cases:

1. The modules are given by

W3 = L{1, x, ln x} (
u′′′ = − 2

x u′′
)
,

W̃3 = F[W3] = L{1, 1
x ,

1
x2

} (
u′′′ = − 6

x u′′ − 6
x2 u′

)
,

and the action of the operator is

F[C1 + C2x + C3 ln x] = C2C ′2
+ [(C2C3)

′ + β
(
C3C ′2 − C2C ′3

)] 1
x +

[
C3C ′3 + β

(
C3C ′1 − C1C ′3

)] 1
x2 .

As an application, taking the PDE

F[u] ≡ ux ut x + β(uut x x − ut ux x) = 1
2 ,
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we find the exact solution

u(x, t) = C1(t)+ C2(t)x + C3(t) ln x,
C2C ′2 = 1

2 ,

(C2C3)
′ + β

(
C3C ′2 − C2C ′3

) = 0,
C3C ′3 + β

(
C3C ′1 − C1C ′3

) = 0.

The first equation of this DS yields C2(t) =
√

t , and the rest of equations are also
explicitly integrated, so, for β �= 0, 1, the solutions are

u(x, t) = 1
β (k2 − µ ln t)k1tµ +√t x + k1tµ ln x,

where µ = β+1
2(β−1) , and k1,2 are arbitrary constants.

2. The module and its image are given by

W3 = L{1, ln x, ln2 x} (
u′′′ = − 3

x u′′ − 1
x2 u′

)
,

W̃3 = F[W3] = L{ 1
x2 ,

ln x
x2 , ln2 x

x2

} (
u′′′ = − 9

x u′′ − 19
x2 u′ − 8

x3 u
)
.

The action is
F[C1 + C2 ln x + C3 ln2 x] = [C2C ′2 + β

(
2C1C ′3 − 2C3C ′1 − C1C ′2 + C2C ′1

)] 1
x2

+ 2
[
(C2C3)

′ + β
(
C2C ′3 − C3C ′2 − C1C ′3 + C3C ′1

)] ln x
x2

+ [4C3C ′3 + β
(
C3C ′2 − C2C ′3

)] ln2 x
x2 .

Example 2.52 (W̃3 =W3) Let β = −γ = 2
3 and δ = − 4

3 , i.e.,

F[u] = uxut x − 2
3 ut ux x − 2

3 uut x x − 4
3 uut . (2.152)

There are two cases:

1. The module and action of the operator are

W3 = L{1, cos 2x, sin 2x} (u′′′ = −4u′),

F[C1 + C2 cos 2x + C3 sin 2x] = 4(C2C ′2 + C3C ′3)
− 4

3 C1C ′1 + 4
3 (C1C2)

′ cos 2x + 4
3 (C1C2)

′ sin 2x .

2. The module and the action are
W3 = L{1, cos x, cos 2x} (

u′′′ = 3 cot x u′′ − (1+ 3 cot2 x)u′
)
,

F[C1 + C2 cos x + C3 cos 2x] = (2C2
3 + 1

4 C2
2 − 2

3 C2
1

)′
+ 2

[
C2
(
C3 − 1

3 C1
)]′ cos x + ( 4

3 C1C3 − 1
4 C2

2

)′ cos 2x .

2.8 SUMMARY: Basic types of equations and solutions

For the reader’s convenience, we present here a summary of equations, solutions, and
main schemes of our analysis to be used later on for constructing exact solutions in
the subsequent chapters. Almost all models and PDEs to be studied therein fall into
the scope of the following classification:
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Here, we use the notation C = (C1, ...,Cn)
T ∈ IRn for constant vectors, and

C(t) = (C1(t), ...,Cn(t))T for sufficiently smooth vector-functions. For all the
equations, we are looking for solutions in the standard form

u(x, t) =∑n
i=1 Ci (t) fi (x), (2.153)

where the functional set { fi (x)} is linearly independent.

2.8.1 Invariant and partially invariant subspaces

• Invariant subspaces. Consider the equation

l[u] = F[u]. (2.154)

Here, l is a linear operator that depends on t and includes only derivatives in t , while
F is a nonlinear operator that depends on x and includes only derivatives in x . A
linear subspace is

Wn =
{∑n

i=1 Ci fi (x) : C = (C1, ...,Cn)
T ∈ IRn

}
. (2.155)

If Wn is invariant with respect to F , i.e., F[Wn] ⊆ Wn , or, which is the same,

F
[∑n

i=1 Ci fi (x)
] =∑n

i=1 	i [C] fi (x) for any C,

where 	i [C] = 	i (C1, ...,Cn) are some algebraic functions, then (2.154) possesses
solutions (2.153) with the coefficients satisfying the dynamical system

l[Ci (t)] = 	i [C(t)], i = 1, ..., n. (2.156)

This is the most frequently occurring instance throughout this text.

• Partially invariant subspaces. For the subspace (2.155), there exists an (invariant)
set M ⊂ Wn that is defined by a system of algebraic equations

χk[C] = 0 for k = 1, ..., r,

such that F[M] ⊂ Wn . Solutions (2.153) are determined by{
l[Ci (t)] = 	i [C(t)], i = 1, ..., n,

χk[C(t)] = 0, k = 1, ..., r.

Example 2.53 The operator

F[u] = ux x + (ux )
2 + u2 − 1

admits the invariant subspace W3 = L{1, cos x, sin x}. It is checked that, for any
constants {Ci },

F[C1 + C2 cos x + C3 sin x] = C2
1 + C2

2 + C2
3 − 1

+ (2C1 − 1)C2 cos x + (2C1 − 1)C3 sin x ∈ W3.

The subspace W2 = L{cos x, sin x} is partially invariant with respect to F :

F[C1 cos x + C2 sin x] = C2
1 + C2

2 − 1− C1 cos x − C2 sin x ∈ W2

iff C2
1 + C2

2 = 1.
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Example 2.54 For the operator

F[u] = ux x + 1
2

(
1− 1

u

)
(ux)

2 + 2
(
1+ 1

u

)
,

there exists the partially invariant subspace W2 = L{1, x2}:
F[C1 + C2x2] = 2C1 + 2C2

2 + 2(C1C2+1)
C1+C2x2 ∈ W2 iff C1C2 = −1.

2.8.2 Invariant and partially invariant modules

• Invariant modules. The equation takes the form

F∗[u] = 0, (2.157)

where F∗ is a nonlinear operator that depends on x and t and includes derivatives in
these variables. The set of linear combinations

Wn =
{∑n

i=1 Ci (t) fi (x)
}

(2.158)

is a module, [373, Ch. III]. If Wn is invariant with respect to F∗, F∗[Wn] ⊆ Wn , or

F∗
[∑n

i=1 Ci (t) fi (x)
] =∑n

i=1 	i [C(t)] fi (x) for any C(t),

where 	i [C(t)] = 	i (t,C(t),C′(t), ...) are some differential operators, then, for
solutions (2.153) of equation (2.157), there occurs the system

	i [C(t)] = 0, i = 1, ..., n. (2.159)

If the module Wn is invariant with respect to operator F∗, the PDE
∂q u
∂t q = F∗[u],

where q is greater than the maximal order of the time derivatives that are available
in F∗, possesses solutions (2.153) with coefficients that solve the DS

C(q)
i (t) = 	i [C(t)], i = 1, ..., n.

• Partially invariant modules. If there exists a set M ⊂ Wn that is defined by

χk[C(t)] = 0 for k = 1, ..., r,

such that F[M] ⊂ Wn , then, instead of (2.159), solutions (2.153) are obtained from
the system {

	i [C(t)] = 0, i = 1, ..., n,
χk[C(t)] = 0, k = 1, ..., r,

with 	i [C] = 	i (t,C(t),C′(t), ...) and χk[C] = χk(t,C(t),C′(t), ...) being dif-
ferential operators.

Example 2.55 For the operator

F[u] = uxtux − 3
2 ux xut ,

there exists the invariant module W4 = L{1, x, x2, x3}:
F[C1 + C2x + C3x2 + C4x3] = C2C ′2 − 3C3C ′1 +

(
2C2C ′3 − C3C ′2 − 9C4C ′1

)
x

+ (3C2C ′4 − 5C3C ′3 − 6C4C ′2
)
x2 + (3C3C ′4 − 3C4C ′3

)
x3 ∈ W4.
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Example 2.56 For the operator

F[u] = uxt ux − ux xut , (2.160)

there exists the partially invariant module W3 = L{1, ex , xex}:
F[C1 + C2ex + C3xex ] = −(C2 + 2C3)C ′1ex

−C3C ′1xex + (C2 + C3)C ′3e2x ∈ W3

iff (C2 + C3)C ′3 = 0.

2.8.3 Further generalizations

• As above, consider the equation (2.157) and the module (2.158). Let there exist
another module

W̃m =
{∑m

i=1 C̃i (t) f̃i (x)
}
,

with basis { f̃i (x)} and expansion coefficients {C̃i (t)}. If F[Wn] ⊆ W̃m , i.e., for any
C(t), there exist differential operators 	i [C(t)] ≡ 	i (t,C(t),C′(t), ...), such that

F∗
[∑n

i=1 Ci (t) fi (x)
] =∑m

i=1 	i [C(t)] f̃i (x),

then, for solutions (2.153), there occurs the system

	i [C(t)] = 0, i = 1, ...,m.

• If there exists a set M ⊂ Wn that is defined by

χk[C(t)] = 0 for k = 1, ..., r,

such that F[M] ⊂ W̃n , then, for the coefficients of solutions (2.153), there occurs
the system {

	i [C(t)] = 0, i = 1, ...,m,
χk[C(t)] = 0, k = 1, ..., r.

• Another straightforward generalization is achieved when the bases of modules Wn

and W̃m are functions of both independent variables x and t , i.e.,

Wn =
{∑n

i=1 Ci (t) fi (x, t)
}

and W̃m =
{∑m

i=1 C̃i (t) f̃i (x, t)
}
.

The variables x and t can also be vectors, x = (x1, ..., xµ) and t = (t1, ..., tν).

Example 2.57 For the operator (2.160), there exist the modules

W3 = L{ex , e−x , e3x} and W̃3 = L{1, e2x, e4x }, such that

F[C1ex + C2e−x + C3e3x ]
= −2(C1C2)

′ex − [3(C2C3)
′ + C2C ′3 + 9C3C ′2

]
e2x

+ [3(C1C3)
′ − C1C ′3 − 9C3C ′1

]
e4x ∈ W̃3.

Example 2.58 For the operator

F[u] = ux xt + uux x x − uxux x

W3 = L{x, cos(γ (t)x), sin(γ (t)x)} and

W̃4 = L{cos(γ (t)x), sin(γ (t)x), x cos(γ (t)x), x sin(γ (t)x)},
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where γ (t) is a smooth function. In this case,

F[C1x + C2 cos(γ x)+ C3 sin(γ x)]
= [

γ 2C1C2 − (C2γ
2)′
]

cos(γ x)+ [γ 2C1C3 − (C3γ
2)′
]

sin(γ x)

+ γ 2(γ ′ + γC1) x[C2 sin(γ x)− C3 cos(γ x)] ∈ W̃4.

Notice that, at the same time, W3 can be considered as a partially invariant module:

F[W3] ⊆ W3 iff C1 = − γ ′
γ .

Remarks and comments on the literature

§ 2.1. We follow [541, 544]. A survey on some results connected with applications of invariant
subspaces to evolution PDEs is given in [546]. Extended surveys on this and other methods of
reduction of differential equations can be found in [127, 312, 445].

§ 2.2. A general scheme for main proofs is explained in [543]; see [544, 545] for the statements
of the results and discussion.

§ 2.3–2.4. Concerning these results, see [545].

§ 2.6. We follow [547]. A detailed analysis of the structure of the set of polynomial operators,
preserving polynomial subspaces, based on the notion of deficiency, is fulfilled in [257]. The
description of translation-invariant quadratic operators presented in Section 2.6.4 is similar to
that given in [257, Sect. 6].

Open problems

• Given an arbitrary subspace (2.1), describe the set F̂n−1 of translation-invariant
operators preserving Wn . [In Section 2.6.3, this is done for polynomial subspaces.
The whole set of operators (2.3) preserving Wn is given by Theorem 2.1.]

• Perform a general description of the set of translation-invariant homogeneous
polynomial operators of a given degree p ≥ 3 that preserve the polynomial subspace
(2.96). [For quadratic operators, see Theorem 2.35 and [257, Sect. 6].]

• The same problem for quadratic and higher-degree operators preserving sub-
spaces of trigonometric and exponential types. [For quadratic operators with expo-

sitions 1.29–1.32, 1.41, 1.44, and 1.45.]

• Prove that a nonlinear differential operator (2.3) preserving a subspace of the
maximal dimension is necessarily quadratic. [In Sections 2.3 and 2.4 this was proved
for operators of the first and second order.]

• Perform a full description of second-order operators (2.3) preserving invariant
subspaces of the maximal dimension. [For translation-invariant operators, see Sec-
tion 2.4.]

• Perform the previous description for operators of orders greater than two.

• See Conjecture 2.1 in Section 2.6.1.
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CHAPTER 3

Parabolic Equations in One Dimension: Thin
Film, Kuramoto-Sivashinsky, and Magma

Models

In the following three chapters, we use invariant subspaces for various higher-order opera-
tors and PDEs in one space dimension. More attention is now paid to models of physical
importance and evolution properties of the exact solutions. In the current chapter, we will deal
mainly with quasilinear parabolic PDEs, including the well-known thin film and Kuramoto–
Sivashinsky models. We also consider the lesser known magma equation, generating an in-
teresting family of formally pseudo-parabolic models. These classes of PDEs are associated
with different areas of mechanics and physics. Using the exact solutions makes it possible to
detect new and unusual properties of nonlinear models. Mathematical existence, uniqueness,
and regularity theory of many higher-order PDEs to be studied is still a ways from being com-
plete. Their solutions on finite-dimensional invariant subspaces yield an exceptional oppor-
tunity for describing key evolution aspects of such problems, including singularity formation
phenomena of blow-up and extinction. Whenever possible and reasonable, we discuss some
mathematical aspects of these nonlinear problems slightly more rigorously, and state, when it
seems necessary and interesting, OPEN PROBLEMS.

For most 1D higher-order ordinary differential operators, the results on invariant subspaces
can be extracted from the Main Theorem in Section 2.1 and from other results of Chapter 2.
Nevertheless, dealing with simple polynomial or trigonometric subspaces for typical fourth or
higher-order operators, sometimes we include direct simple calculations which help to reveal
some additional features of the associated PDEs of parabolic type. Such an easy geometric
analysis often gives straightforward extensions of the models, admitting invariant subspaces,
and thus avoiding the use of technical manipulations via the Main Theorem.

3.1 Thin film models and solutions on polynomial subspaces

We first deal with a class of quasilinear fourth and higher-order operators, which,
since the 1980s, began to play a determining role in the theory of nonlinear degen-
erate parabolic PDEs. It is not an exaggeration to say that nowadays higher-order
nonlinear degenerate thin film equations are of the same fundamental importance as
the second-order porous medium equations used in the 1950s-80s.

3.1.1 Typical quasilinear models from thin film theory

Fourth-order thin film equations. Thin film flows correspond to the case where the
size of the flow domain in one direction is essentially smaller in comparison with that
in the other directions. This enables to derive simplified models from the Navier–

© 2007 by Taylor & Francis Group, LLC



98 Exact Solutions and Invariant Subspaces

Stokes equations. Namely, coupling to boundary conditions on the fluid-substrate
interface and fluid surface yields a single scalar equation for the fluid height. The
quasilinear parabolic fourth-order thin film equation (TFE)

ut = −
(
unux x x

)
x , with a fixed exponent n �= 0, (3.1)

is key in thin film theory. For n = 0, this is the well-known linear bi-harmonic
equation

ut = −ux x x x . (3.2)

The connection and certain similarities between (3.1) and (3.2) will be important in
what follows.

The quasilinear TFE (3.1) with n = 3, as well as

(h3)y = −3
(
h3hx x x

)
x , (3.3)

arise from Reynolds’ equation for Stokes’ flow

ut = (un px)x , or ut = ∇x · (un∇x p) (n = 3). (3.4)

This describes slow sliding or spreading of thin Newtonian liquid drops (film) over
a horizontal surface in the presence of high surface tension. Here, u = u(x, t) ≥ 0
denotes the height of the droplet, and p = p(x, t) stands for the pressure of the
fluid. For n = 3, this is precisely Reynolds’ equation from lubrication theory. It also
applies to the case n = 2, where the fluid is able to “slip” over the solid.

The case n = 1 corresponds to flows in a porous medium or in a Hele–Shaw
cell which is formed by two immiscible fluids that are separated by a thin interface
with thickness 2u. The dependence of p upon u (and its spatial derivatives) is of
importance in establishing the force driving the spreading of the droplet. The fourth-
order TFE (3.1) corresponds to capillary driven flow of a thin droplet of thickness
u(x, t), so that, under suitable rescaling, the pressure is

p = −ux x . (3.5)

Equation (3.3) corresponds to steady capillary-gravity driven flows down a substrate
at an angle α to the horizontal in a special (x, y)-geometry.∗

Illustrating a typical derivation of thin film models, consider a Hele–Shaw flow
between two parallel plates separated by a fixed distance h0. This is governed by two
PDEs, {

conservation of mass: ut + (uv)x = 0, and

Darcy’s law: v = − h2
0

12µ px ,
(3.6)

where v is the average velocity of the fluid in the film, µ is the fluid viscosity, and p
is the pressure. If the flow is governed by the surface tension, then

px = −γ κ ≡ −γ ux x

(cf. (3.5)), where γ is the surface tension and κ is the curvature of the surface. Substi-
tuting px into the second equation in (3.6) and the resulting v into the first equation

∗ As usual, we put extra references on this subject in the Remarks.
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yields the PDE

ut + γ h2
0

12µ(uux x x)x = 0.

This is (3.1) with n = 1, where the constant is scaled out. The case n = 2 represents
Navier-slip-dominated Stokes flows of thin film. Then the analog of (3.3) has the
form

(h2)y = −2
(
h2hx x x

)
x .

Taking into account other monomial differential terms occurring after differenti-
ating in the fourth-order operators in the above models, let us introduce generalized
TFEs comprising a family of homogeneous operators

ut = F[u] ≡ −[unux x x + βun−1ux ux x + γ un−2(ux )
3]

x , (3.7)

where β and γ are constants. These PDEs share the scaling and homogenuity prop-
erties of the standard TFE, which is important for our invariant subspace analysis.

More models containing other terms and operators appear in lubrication theory,
where the long-wave unstable lubrication equations take the form

ut = −
(
unux x x

)
x −

(
umux

)
x , with n > 0, m > 0. (3.8)

In general, the lubrication approximation that describes the motion of long-wave
unstable thin films deals with equations of the same type (3.4) for which the homo-
geneous nonlinearity un (with typically n = 3) is replaced by a perturbed function
un + βuk with β > 0 and k ∈ (0, 3). This corresponds to classes of slip boundary
conditions, while the above case, β = 0, reflects the no-slip conditions. Furthermore,
instead of (3.5), the pressure p in the thin film is given by

p = −ux x + G(u),

where the term G(u) describes forces exerted on the film, e.g., hydrostatic body
forces or intermolecular forces due to van der Waals interaction. Such models lead
to a more general class of the fourth-order parabolic PDEs, such as

ut = −( f (u)ux x x)x − (g(u)ux)x (3.9)

with given functions f and g, or to extended models containing other terms. As was
mentioned, a typical nonlinearity in the main higher-order term is

f (u) = αun + βuk

with an extra exponent k > 0 and positive constants α and β. Such PDEs also occur
as stable and unstable Cahn–Hilliard models in phase transition, fluid interfaces,
and rupture of thin films. They can describe thin jets in Hele–Shaw cells and fluid
droplets hanging from a ceiling. In the semilinear case, n = 0, these equations are of
the modified Kuramoto–Sivashinsky type that describe flame propagation and several
other phenomena, such as solidification of a hyper-cooled melt.

More lower-order terms enter the Benney equation that describes the nonlinear
dynamics of the interface of 2D liquid films flowing on a fixed inclined plane,

ht + 2R
3 (h3)x + ε

[( 8R2

15 h6 − 2R
3 cot θ h3

)
hx +% h3hx x x

]
x = 0, (3.10)
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where R is the unit-order Reynolds number of the flow driven by gravity, σ is the
rescaled Weber number (related to surface tension σ ), θ is the angle of plane inclina-
tion to the horizontal, and ε = d

λ & 1, with d being the average thickness of the film
and λ the wavelength of the characteristic interfacial disturbances.

Another class of TFEs in 1D includes a two-parameter family of models, such as

ut = −
(
un(us)x x x

)
x + (lower-order terms), (3.11)

where n and s are some fixed exponents. We will deal with some of these PDEs
which can be reduced to quadratic or cubic representations.

Concerning multi-dimensional TFEs with non-power nonlinearities, as a typical
example, consider the PDE

ht +∇ ·
[(−G h3 + B M h2

2P(1+B h)2

)∇h
]+ S ∇ · (h3∇
h) = 0 (3.12)

that describes, in the dimensionless form, the dynamics of a film in IR3 subject to the
actions of thermocapillary, capillary, and gravity forces. Here, G, M , P , B , and S
are the gravity, Marangoni, Prandtl, Biot, and inverse capillary numbers respectively.

Another important related fourth-order model with similar operators in IR2 or IR3

is the Cahn–Hilliard equation applied in the study of phase separations in cooling
binary solutions, such as alloys, glasses, and polymer mixtures, where the pattern
formation phenomena occur,

ut = −∇ · ( f (u)∇
u + g(u)∇u) in IRN × IR+ .

Here, f (u) and g(u) are given coefficients which are typically quadratic or cubic
functions. Here, u measures the difference in mass fractions of the two components
of the alloy.

The 1D TFE (3.1) and other similar models exhibit some exceptional mathemat-
ical properties. In particular, some free-boundary problems (FBPs) for (3.1) admit
nonnegative solutions, which is a natural and desirable property for thin film ap-
plications. Recall that, typically, u(x, t) measures the height of the film and is not
intended to change sign (at least, significantly). Mathematical theory of such fourth
and higher-order TFEs has been originated in the pioneering work by Bernis and
Friedman [44], who developed new ideas, techniques, and initiated further system-
atic mathematical study of weak solutions of the higher-order quasilinear degenerate
parabolic PDEs. Further references are put into the Remarks.

Sixth-order thin film equations. Thin film theory generates other higher-order non-
linear PDEs. For instance, another pressure dependence in (3.4) given by

p = ux x x x

corresponds to the case where an elastic plate covers the droplet surface. This leads
to the sixth-order parabolic equation

ut =
(
unux x x x x

)
x + (lower-order terms). (3.13)

According to Landau–Lifshitz [372], m = −ux x is the bending moment on the over-
laying plate, and % = ux x x is the shearing force. As in the fourth-order case, n = 3
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corresponds to Newtonian viscous fluids that do not slip along the substrate, while
n = 2 is associated with the Navier-slip dominated case. In addition, n = 3 arises in
a model of the oxidation of silicon in semiconductor devices. The parameter n = 1
corresponds to thin film flows in a Hele–Shaw cell. The linear counterpart of this
TFE for n = 0 is the tri-harmonic equation

ut = ux x x x x x.

Setting n = 1 gives the leading quadratic operator to be considered later on,

ut = (uux x x x x)x + (lower-order terms).

On free-boundary conditions. For one-dimensional TFEs, the free-boundary con-
ditions at the interface x = s(t), where u(s(t), t) = 0, are of principal importance.
For the fourth-order PDE (3.1), the most physically relevant are the zero contact
angle and zero-flux (mass conservation) conditions, i.e.,

u = ux = unux x x = 0 at x = s(t). (3.14)

These make sense also for n = 0, i.e., for the bi-harmonic equation (3.2). In general,
for the fourth-order TFEs, these three conditions on the a priori unknown free bound-
ary (together with standard Dirichlet or Neumann ones at fixed boundary points and
given initial data) are expected to be sufficient to specify a solution. A rigorous proof
of uniqueness (to be discussed later) is always a difficult mathematical problem, re-
maining open for many FBPs.

Other types of free-boundary conditions can also be considered, e.g., those of the
one-phase Florin type

ux = S[u] at x = s(t),

where the operator S may depend on other derivatives of u at the interface. For the
heat equation, ut = ux x , the case S[u] = constant gives Florin’s boundary condition
which has been known since the 1950s, [190]. See [454] for details.

In both cases, it is important to derive the dynamic interface equation representing
the dependence of the interface speed s′(t) on the corresponding interface “slopes”
that are determined in terms of the derivatives ux , ux x ,... at x = s(t). For instance,
for the zero-flux Stefan FBP with conditions

u = unux x x = 0 and ux = S[u] at x = s(t),

for sufficiently smooth solutions, we have, by differentiating, that
d
dt u(s(t), t) = uxs′ + ut = 0,

yielding the following formal Stefan-type free-boundary condition, which is the in-
terface equation:

s′ = − 1
ux

ut ≡ − 1
S[u] (u

nux x x)x
∣∣
u=0 .

Here, the right-hand side may contain an indeterminacy (if, say, S[u] = 0 on the in-
terface). Existence of such a limit as x → s(t) is very difficult to justify for general
weak solutions. Using particular explicit solutions, we reveal the structure of dy-
namic interface equations and discuss related mathematical aspects. In some cases,
we will need more general free-boundary conditions for some exact solutions.
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For the sixth-order TFEs, such as (3.13), a standard FBP setting includes four
free-boundary conditions

u = ux = ux x = unux x x x x = 0 at x = s(t), (3.15)

meaning zero-height, zero contact angle, zero-curvature, and zero-flux. Some other
conditions of Stefan–Florin’s type can also be introduced to treat solutions on invari-
ant subspaces.

2mth-order thin film equations in IR and IR N . The 2mth-order 1D TFEs for n = 1
take the form

ut = (−1)m+1 Dx
(
u D2m−1

x u
)+ (lower-order terms), (3.16)

where Dx = ∂
∂x , and, as usual, by lower-order terms, we mean operators of lower

differential order. The sign multiplier (−1)m+1 in front of the higher-order operator
guarantees that, for any m = 1, 2, ..., the PDE is of parabolic type in the positivity
domain {u > 0} of the solution. This ensures local existence and regularity properties
of strictly positive classical solutions that sometimes can be extended to compactly
supported solutions by using special types of regularization; see Remarks. A full
mathematical theory of such PDEs concerning existence, uniqueness, and differential
properties of weak, strong, or maximal solutions of the Cauchy problem, or FBPs is
still not fully justified, especially for higher orders where m ≥ 3.

All of the above models admit a natural formulation in the N-dimensional geom-
etry. For instance, (3.16) in IR N × IR+ reads

ut = (−1)m+1∇ · (u∇
m−1u)+ (lower-order terms).

Free-boundary conditions should also be adapted to this 2mth-order, N-dimensional
case and should include m+1 conditions on the free-boundary surface.

3.1.2 Quadratic models: polynomial subspaces

As usual, for construction of solutions on linear invariant subspaces, we need to
rewrite the PDE in a form having principle algebraically homogeneous polynomial
operators, or, even better, including a quadratic or a cubic one. The thin film operator
F in (3.1) is already quadratic for n = 1 and is cubic for n = 2. Some other thin film-
type models can be reduced to quadratic PDEs. For instance, consider the quasilinear
fourth-order TFE of the type (3.11), with n = 1,

vt = −(v(vs)x x x)x .

Setting u = vs yields a homogeneous quadratic operator in the PDE

ut = −s
(
uux x x x + 1

s uxux x x
)
.

Let us next introduce a more general class of quadratic operators in the TFE

ut = F[u] ≡ −uux x x x + βuxux x x + γ (ux x)
2. (3.17)
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In (3.17), we include three quadratic primitive monomial operators F1,2,3 with simi-
lar actions on elementary polynomials, i.e., for any monomial xl (l ≥ 4),

Fj [x
l] = c jl x M(l), where M(l) = 2l − 4

for j = 1, 2, or 3 with constants c jl �= 0. We then write Fj [xl] ∼ x M(l). Obviously
(this is a general principle), for any M(l) ≤ l, the polynomial subspace Wl−1 =
L{1, x, ..., xl−1} is invariant under Fj . Adding other quadratic terms with M(l) less
than 2l−4, such as uxux x x x , ux xux x x (M = 2l−5 for both), ux xux x x x , (ux x x)

2 (M =
2l−6), etc., will not affect the dimension of polynomial subspaces, although this can
change other aspects of mapping. The first result is straightforward and establishes
the dimension of the basic invariant subspace that exists for arbitrary β and γ .

Proposition 3.1 Operator F in (3.17) preserves the 5D subspace

W5 = L{1, x, x2, x3, x4}. (3.18)

Proof. Indeed, it suffices to check mappings of the higher-degree term, F[xl] ∼
x2l−4. For invariance, one needs 2l − 4 ≤ l, which yields l ≤ 4.

For solutions on W5,

u(x, t) = C1(t)+ C2(t)x + C3(t)x
2 + C4(t)x

3 + C5(t)x
4,

the TFE (3.17) is a fifth-order DS
C ′1 = −24C1C5 + 6βC2C4 + 4γC2

3 ,
C ′2 = 24(β − 1)C2C5 + 12(β + 2γ )C3C4,

C ′3 = 24(2β + 2γ − 1)C3C5 + 18(β + 2γ )C2
4 ,

C ′4 = 24(4β + 6γ − 1)C4C5,

C ′5 = 24(4β + 6γ − 1)C2
5 .

The last ODE is solved independently, and then the rest of the equations become
linear and give the explicit solutions.

The next question is about possible extensions of the basic subspace (3.18). These
and further results can be extracted from Section 2.6.4. We present direct proofs in
view of their simplicity.

Proposition 3.2 Operator F in (3.17) preserves the following subspaces:

(i) W6 = L{1, x, x2, x3, x4, x5}, if 15β + 20γ = 6;
(ii) W7 = L{1, x, x2, x3, x4, x5, x6}, if 4β + 5γ = 2;
(iii) W8 = L{1, x, x2, x3, x4, x5, x6, x7}, if β = 16

7 , γ = − 10
7 ;

(iv) W9 = L{1, x, x2, x3, x4, x5, x6, x7, x8}, if β = 5
2 , γ = − 45

28 .

(v) F does not admit the 10D subspace

W10 = L{1, x, x2, x3, x4, x5, x6, x7, x8, x9},
or polynomial subspaces of higher dimension.

Proof. (i) For arbitrary parameters β and γ , F : W6 → W7, and the given invariance
condition ensures vanishing the coefficient of x6 in the expansion of F[u] for any
u ∈ W6.
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(ii) Similarly, F : W7 → W9, and the prescribed condition guarantees that the coef-
ficients of x7 and x8 simultaneously vanish.

(iii) In this case, one needs to check the invariance conditions implying vanishing the
coefficients of x8, x9, and x10. For functions u = C1+...+C6x5+C7x6+C8x7 ∈ W8,
the following holds:

F[u] = ...+ [180(4β + 5γ − 2)C2
7 + 30(49β + 56γ − 32)C6C8

]
x8

+ 60(35β + 42γ − 20)C7C8x9 + 42(35β + 42γ − 20)C2
8 x10.

In view of the independence of the terms C2
7 and C6C8 in the first square bracket,

this leads to the following linear system for coefficients β and γ :{ 4β + 5γ = 2,
49β + 56γ = 32,
35β + 42γ = 20.

The system has a unique solution indicated in (iii).

(iv) The result is straightforward for even polynomials u = C1 + C3x2 + C5x4 +
C7x6 + C9x8 ∈ W9 for which

F[u] = ...+ 24(124β + 140γ − 85)C7C9x10 + 112(24β + 28γ − 15)C2
9 x12,

so that, for invariance, we need{
124β + 140γ = 85,
24β + 28γ = 15.

This yields the operator in (iv). For arbitrary u ∈ W9, we use Reduce.

(v) The negative conclusion follows from Theorem 2.8 on the maximal dimension,
since the optimal estimate (2.19) yields

n ≤ (2k + 1)
∣∣
k=4 = 9, (3.19)

where n is the dimension of the invariant subspace Wn of the kth-order operator.

As an illustration of the proof of (v), it is not difficult to check that plugging
u = C1 + C2x + ...+ C8x7 + C9x8 + C10x9 ∈ W10 leads to an inconsistent linear
system for the parameters {β, γ }.
Operators preserving subspaces of maximal dimension. According to Theorem
2.8, the maximal dimension of subspaces satisfies (3.19), i.e., it is nine for arbitrary
nonlinear fourth-order operators. Proposition 3.2(iv) shows a single such operator
from the family (3.17). Clearly, the maximal dimension is achieved for the quadratic
fourth-order fully nonlinear operator

Fm1[u] = (ux x x x)
2, (3.20)

which has the minimal degree M(l) = 2l−8, and admits subspace W9 in Proposition
3.2. Concerning general quadratic fourth-order operators (here u′ = ux )

F[u] = α1(u(4))2 + α2u′′′u(4) + α3u′′u(4) + α4u′u(4) + α5uu(4)

+ α6(u′′′)2 + α7u′′u′′′ + α8u′u′′′ + α9uu′′′

+ α10(u′′)2 + α11u′u′′ + α12uu′′ + α13(u′)2 + α14uu′ + α15u2,

(3.21)
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where α2
1 + ...+ α2

5 �= 0, the following complete classification result holds:

Proposition 3.3 There exist precisely three linearly independent operators from the
family (3.21) preserving subspace W9 in Proposition 3.2. These are (3.20) and

Fm2[u] = −uu(4) + 5
2 u′u′′′ − 45

28 (u
′′)2,

Fm3[u] = u′′u(4) − 5
6 (u

′′′)2.

The same operators follow from the general formulae in Theorem 2.36. Fm2 is
given in Proposition 3.2(iv), and Fm3 is the only new one. As in classification of
second-order operators in Section 2.4, the ODE

u(9) = 0 that defines W9.

is invariant under the 3D operator space spanned by {Fm1, Fm2, Fm3}.
Example 3.4 (Fourth-order p-Laplacian operator) The dimension of polyno-
mial subspaces may also increase for the higher-order p-Laplacian operators. For
instance, parabolic PDEs

ut = −∇ ·
(
un |∇
u|l∇
u

)
(3.22)

appear in thin film flows in the capillary-driven case (the pressure is p = 
u), in
which the viscosity of the spreading liquid is temperature-dependent; see Remarks.
Setting n = 0 and l = 1, consider the 1D operator

F[u] = −[(ux x x)
2
]

x .

Since here M(l) = 2l − 7, this admits W8 from Proposition 3.2(iii).

3.1.3 Cubic operators

In the next example, consider the cubic operators from (3.7) with n = 2,

F[u] = −[u2ux x x + βuuxux x + γ (ux)
3]

x , (3.23)

where each monomial operator has M(l) = 3l − 4. Then the basic subspace for
any β and γ is W3 = L{1, x, x2} (l = 3l − 4, i.e., l = 2), on which the principal
fourth-order operator in (3.23) annuls identically. This becomes nontrivial on some
extended subspaces.

Proposition 3.5 Operator (3.23) preserves the following subspaces:

(i) W4 = L{1, x, x2, x3}, if 6β + 9γ = −2;
(ii) W even

3 = L{1, x2, x4}, if β = − 3
2 , γ = 3

4 .

(iii) W5 = L{1, x, x2, x3, x4} is not invariant for any β and γ ∈ IR.

(3.24)

Proof is straightforward. In (iii), we derive an inconsistent linear system for β, γ .
The monomial F[u] = (ux x x x)

3 satisfies, in our notation, F[xl] ∼ x3l−12 and has
W7 = L{1, x, ..., x6}. Most plausibly, this seven is the maximal dimension that is
achieved by cubic operators of this type.
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3.2 Applications to extinction, blow-up, free-boundary problems, and
interface equations

We begin with a simple quadratic TFE using the basic polynomial subspace W4. It
reveals some interesting evolution properties of such models, which are not easy to
justify rigorously for more general classes of solutions.

3.2.1 Invariant subspace and exact solutions

We introduce a quadratic TFE with the constant negative absorption term,

ut = −(uux x x)x − 1. (3.25)

It is common to have thin film models in the divergent form, so the mass conserva-
tion holds. On the other hand, under some circumstances, TFEs may contain non-
divergent operators. For instance, source-like terms may be relevant for a monolayer
film in coexistence with vapor due to the well-studied phenomena of adsorption (in-
teraction of gases and liquids with solid surfaces) and condensation; see [83] and
[559] for more recent references. Homogeneous nucleation phenomena are natural
in phase transition theory (see Lifshitz–Pitaevskii [394]), and condensation of liquid
droplets from a supersaturated vapor is an example. Absorption terms can occur in
view of the evaporation phenomenon, or due to the permeability of the surface. Such
general non-divergent TFEs are derived in [451]; see also Remarks.

Evaporation and condensation phenomena have been a subject of research and
debate for more than a century. Classical nucleation theory dates back to Laplace’s
work (1806) on surface energy and tension, to Thompson’s (Lord Kelvin) theory es-
tablishing the Thompson formula (1870) for the dependence of the critical radius r of
a droplet on the vapor pressure p, the famous condensation theory by Hertz (1882)
and Knudsen (1915), Becker–Döring’s equations of nucleation (1935), Zel’dovich–
Frenkel’s equation (1942), Lifschitz–Slyozov’s theory of coarsening (1961), and
other ideas and results. Papers [518, 394] contain detailed overviews of the history.

Equation (3.25) represents a formal mathematical model explaining key features
of extinction phenomena in Stefan–Florin FBPs for thin film equations. For the
second-order PMEs, similar absorption models are

ut = (uσ ux)x − u p, with σ > 0 and p > −(σ + 1), (3.26)

where p = 0 gives the constant absorption −1. These models exhibit interfaces,
finite-time extinction, and quenching in the strong absorption range p < 1, and are
key for general existence, uniqueness, interface propagation, and asymptotic theory;
see references and results in [245, Ch. 4, 5] and [226, Sect. 7.11].

For (3.25), a compactly supported nonnegative continuous initial function u0(x)
is taken. Then, formally, in the Cauchy problem, we want the constant absorption
term to act only in the positivity domain {u > 0}, since otherwise, the solution will
immediately take negative values. This implies that, instead of −1 everywhere, one
needs to have the absorption term −1χ{u>0}(x), where χA(x) is the characteristic
function of the set A ∈ IR, so χA(x) = 1 if x ∈ A, and zero otherwise. Then the
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Heaviside function should be put into the right-hand side of (3.25) instead of −1,

H (u) =
{

1 if u > 0,
0 if u ≤ 0,

representing a strong discontinuous nonlinearity. We keep the use of the term −1 in
the equation, since this cannot affect the construction of the explicit solutions. For
FBPs, the Heaviside function is not necessary. (By regular approximations, this can
be avoided in the CP as well; see below, though solutions are of changing sign.)

According to Proposition 3.1, restricting our attention to symmetric in x functions,
consider the solutions

u(x, t) = C1(t)+ C2(t)x
2 + C3(t)x

4 ∈ W3 = L{1, x2, x4}. (3.27)

Substituting into (3.25) yields a simple DS
C ′1 = −24C1C3 − 1,
C ′2 = −72C2C3,

C ′3 = −120C2
3 .

(3.28)

The last ODE is integrated independently, C3(t) = 1
120t , and the first two equations

then become linear and give the explicit solutions

u(x, t) = (A0t− 1
5 − 5

6 t − E0 t− 3
5 x2 + 1

120t x4
)
+, (3.29)

where A0 > 0 and E0 ≥ 0 are arbitrary constants, and (·)+ denotes the positive
part. For these sufficiently smooth Lipschitz continuous in x solutions (3.29), the
zero-flux condition is valid,

u = uux x x = 0 at x = s(t), (3.30)

but ux �= 0 at the interface in general. The zero contact angle condition fails, and
hence, there occurs another FBP to be specified next. The zero contact angle version
of the FBP is considered later on in Example 3.10.

3.2.2 Free-boundary setting

It is easy to identify the dynamic free boundary equation governing propagation of
the interface. Since exact solutions u(x, t) are smooth functions (excluding t = 0
and the extinction time t = T to be studied separately), differentiating gives

u(s(t), t) = 0 �⇒ uxs′ + ut = 0 �⇒ s′ = − 1
ux

ut . (3.31)

From (3.25), using that, for sufficiently smooth C4-solutions, uux x x x = 0 on the
interface, we infer that, at x = s(t), ut = −uxux x x − 1, and this determines the
regularity dynamic interface equation

s′ = S[u] ≡ ux x x + 1
ux

at x = s(t) for t ∈ (0, T ). (3.32)

The interface operator S[u] on the right-hand side is of the third order and consists
of two interface operators. The second operator is non-positive, since ux ≤ 0 at the
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right-hand interface, while the first one is positive, since

ux x x(s(t), t) = 1
5 t s(t) > 0, provided that s(t) > 0.

This leads to a competition between terms of different signs in the interface equation
(3.32), and makes it possible to observe a complicated non-monotone behavior of
interfaces, which can have turning points to be studied below.

Apparently, equation (3.32) holds for any smooth solution u(x, t) satisfying two
free-boundary conditions (3.30), so it is just a manifestation of sufficient regularity
of solutions. We are still short of a third condition to create a well-posed FBP, which
is assumed to admit a unique solution (given, of course, by (3.29)).

Let us now specify the actual governing dynamic interface equation generating
exact solutions (3.27). First of all, C3(t) = 1

120t = 1
4! ux x x x , which yields the fol-

lowing time-parameterization on the invariant subspace:

t = 1
5uxxxx

.

Next, calculating the interface position s(t) from (3.27) in terms of the expansion
coefficients yields

s(t) = R(C1(t),C2(t),C3(t)) for t ∈ (0, T ), (3.33)

where R is an irrational function which is obtained from the bi-quadratic equation
C1 + C2 R2 + C3 R4 = 0. Differentiating (3.33) and using the DS (3.28), we finally
arrive at the governing interface equation of the form

s′ = R̃(C1(t),C2(t),C3(t)), where t = 1
5uxxxx

. (3.34)

The interface operator R̃ is now of the fourth order, so it differs from the already
known regularity equation (3.32). On the other hand, two equalities, (3.32) and
(3.34), imply a stationary Neumann-type condition on the interface,

ux x x + 1
ux
= R̃(C1(t),C2(t),C3(t))

∣∣
t=1/5uxxxx

at x = s(t), (3.35)

which can replace the dynamic condition (3.34).
Thus we have posed the FBP, which can be locally analyzed by using the von

Mises transformation (x, t, u) �→ (u, t, X), where, close to the interface,

X (u(x, t), t) ≡ x .

Then X satisfies a quasilinear fourth-order PDE degenerated at the interface, which,
in the new variables, is fixed at the origin,

x = s(t) ⇐⇒ u = 0.

Therefore, two boundary conditions are given at u = 0:

(i) (3.32) that fixes a class of sufficiently smooth solutions, and

(ii) (3.34) or (3.35) (both should be rewritten in terms of the new variables).

Such FBPs are difficult from a mathematical point of view. It is worth recalling the
fundamental results in linear theory, where the well-posedness of boundary-value
problems are governed by the Lopatinskii–Shapiro conditions [401]. It is important
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to characterize necessary general conditions for the arising nonlinear FBPs, to ensure
existence of a unique local-in-time solution for small u > 0 constructed by semi-
group methods of parabolic PDE theory. In general, these are OPEN PROBLEMS. We
postpone an example of such an analysis for a simpler, but more physically relevant
FBP with the zero contact angle condition, as in (3.14).

More on second-order PME with absorption: interface equation. The mathemat-
ics of such FBPs for the TFE are difficult, but, relative to some key features, are
similar to those for the second-order parabolic PDEs which are much better under-
stood. This counterpart of (3.25) is the PME with absorption (3.26) having p = 0
and σ = 1,

ut = (uux)x − 1. (3.36)

For the Cauchy problem, or, which is the same, for the maximal solutions constructed
by regular approximations (see [226, Ch. 7] for details), the derivation of the free-
boundary condition as the analogy of (3.32) is similar and leads to the dynamic
equation with the first-order operator S,

s′ = S[u] ≡ −ux + 1
ux

at x = s(t) for t ∈ (0, T ). (3.37)

It is known (see examples in [226, Sect. 7.11]) that (3.37) holds almost everywhere
(a.e.) for any weak solution of the Cauchy problem for (3.36) with bounded nonnega-
tive compactly supported initial data. The proof relies on the Maximum Principle and
intersection comparison arguments based on Sturm’s Theorem on zero sets, [226,
Ch. 7], so we do not need the von Mises transformation creating a non-standard
parabolic problem with dynamic boundary conditions. There are other well-posed
FBPs for (3.36) with various higher-order dynamic free-boundary conditions that
differ from (3.37). Typical existence and regularity properties of such non-maximal
solutions are also driven by Sturmian intersection comparison arguments. Such gen-
eral FBP theory is developed in [226, Ch. 8]. All of these MP and the intersection
comparison techniques fail for higher-order TFEs.

3.2.3 Initial Dirac’s mass

We now begin to describe evolution properties of exact solutions on W3 that, actually,
do not critically depend on the particular FBP setting that was revealed above.

It follows that explicit solutions (3.29) create a singular short-time behavior as
t → 0+ that reflects the initial singularity phenomenon, i.e., blow-up at t = 0+. We
choose special values A0 = 1 and E0 = 1√

30
for which (3.29) takes the form

u(x, t) = [− 5
6 t + t−

1
5 f0(y)

]
+, where f0(y) = (1− 1√

120
y2
)2

(3.38)

and y = x/t1/5. It is important that the profile f0(y) itself satisfies the zero contact
angle condition at its interface point, i.e.,

f0(y0) = f ′0(y0) = 0 at y0 = (120)
1
4 .
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u(x, t)
t ≈ 0+

t ≈ 1−
xx00

t0

Figure 3.1 Evolution properties of solutions (3.38): (i) Dirac’s delta for t ≈ 0+, (ii) interface
turning point at t = t0, and (iii) extinction as t → 1− .

This is the rescaled similarity profile of the pure quadratic TFE

ut = −(uux x x)x , with the similarity solution u(x, t) = t− 1
5 f0
( x

t1/5

)
that has been recognized since the 1980s, [531]. Taking into account the spatial hump
concentrated near the origin inside the interval {|y| ≤ y0}, solution (3.38) satisfies a
remarkable initial condition given by a measure: as t → 0+,

u(x, t)→ M0δ(x), with M0 = 2
∫ y0

0 f0(y) dy = 16
15 (120)

1
4 ,

where δ(x) is Dirac’s delta concentrated at x = 0. Figure 3.1 for t ≈ 0+ illustrates
such a singular initial blow-up behavior.

3.2.4 Extinction patterns

Thus, explicit solutions (3.29) are generated by measures as initial data. As t > 0
increases, the phenomenon of finite-time extinction occurs. Setting A0 = 5

6 now for
convenience, (3.29) gives at the origin x = 0 the following behavior:

supx u(x, t) ≡ u(0, t) = 5
6

(
t− 1

5 − t
)
.

Hence, u(x, t) vanishes at the extinction time T = 1, so that u(x, t) ≡ 0 for all t ≥ 1.
The extinction and blow-up behavior are the main singularity formation phenomena
in nonlinear PDEs, especially in reaction-diffusion-absorption theory. There exists a
large amount of mathematical literature on these subjects, representing a practically
complete understanding of second-order parabolic PDEs; see key references in [245,
509]. For higher-order diffusion equations, the results are rare, and many types of
singularity patterns are not well-described and await rigorous treatment.
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Using (3.29) with A0 = 5
6 , we will describe the finite-time extinction as t → 1−

for the given FBP by using the corresponding rescaled independent variables

ξ = x√
1−t

and τ = − ln(1− t)→+∞ as t → 1−. (3.39)

Then, rescaling solution (3.29) yields, up to exponentially smaller terms,

u(x, t) = e−τ
(
1− E0ξ

2 + 1
120 e−τ ξ4)

+ + ... . (3.40)

For any constant E0 > 0, we obtain a pattern which is expected to be asymptotically
stable in the rescaled sense, meaning simply that

eτu(x, t)→ (
1− E0ξ

2
)
+ ≡ g(ξ) as t → 1. (3.41)

Indeed, this illustrates stability of self-similar solutions of (3.25) of the form

us(x, t) = (1− t)g(ξ), ξ = x√
1−t

, where (3.42)

−(gg′′′)′ − 1
2 g′ξ + g − 1 = 0, (3.43)

and g also satisfies the corresponding free-boundary conditions. Therefore, using
explicit solutions (3.29) implies that the self-similar behavior is stable, at least on
the subspace W3, where almost all solutions (excluding those with E0 = 0 to be
analyzed below) asymptotically take the form of the self-similar ones.

The extension of stability analysis beyond the invariant subspace is a difficult
OPEN PROBLEM, which has the following asymptotic setting: Given a general so-
lution u(x, t) of the FBP with extinction at t = 1 and x = 0, the rescaled function
v(ξ, τ ) = (1− t)u(x, t), x = ξ

√
1− t , satisfies the non-stationary rescaled PDE

vτ = −(vvξξξ )ξ − 1
2 vξ ξ + v − 1, (3.44)

with the operator from (3.43). Thus, we arrive at the asymptotic stabilization problem
as τ → +∞. For the second-order PDEs, such as (3.36), the asymptotic extinction
behavior is well understood and proved rigorously (see [245, Ch. 5]), where the
analysis uses the MP, comparison, and intersection comparison approaches that do
not apply to higher-order models.

3.2.5 On interface turning points

The interfaces of the explicit solution (3.38) are not monotone with time. The posi-
tion of the right-hand interface is

s(t) = (120)
1
4 t

1
5
[
1− ( 5

6

) 1
2 t

3
5
] 1

2 ,

so that s(0) = s(T ) = 0, where T = ( 6
5

) 5
6 , and s(t) attains its maximum at

t0 =
( 24

125

) 5
6 .

At the moment t = t0 ∈ (0, T ), the solution has the turning point of the interface at
x = x0 = s(t0). Therefore, close to the maximum point of s(t), the interface has a
specific quadratic behavior

s(t)− x0 = −a1(t − t0)
2 + ... , with some a1 > 0. (3.45)
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As we have seen, the turning point occurs due to the presence of two terms of differ-
ent signs in the regularity interface equation (3.32). This is a delicate phenomenon
in FBP theory. Even for the second-order PMEs with absorption, such as (3.36),
there are some mathematical open questions concerning the whole countable family
of different turning patterns. For instance, it is known that, for (3.36), the turning
kth pattern takes spatial shape related to the kth-order Hermite polynomial being
the eigenfunction of the corresponding linearized operator [241]. We are going to
develop a similar “spectral theory” for the TFE and detect corresponding kth-order
polynomials.

Solution (3.38) gives an extremely rare opportunity to explicitly study the turning
asymptotic pattern, which it is convenient to describe in coordinates that are rescaled
about the point (x0, t0) by setting

y = x0 − x ≥ 0, ζ = y
t0−t ≥ 0, and τ = − ln(t0 − t). (3.46)

In view of the turning point characterization (3.45), using Taylor’s expansion, it is
not difficult to obtain from (3.38) that, for small y > 0 and τ � 1,

u(x, t) = [c0 y + e−2τ (−c1 + c2ζ + c3e−τ ζ 2 + c4e−2τ ζ 3 + ...
)]
+, (3.47)

where ck denote some fixed constants with c0,1 > 0. Solving approximately the
equation u(x, t) = 0 yields the interface position y0(τ ) = c1

c0
e−2τ + ... , coinciding

with (3.45) if a1 = c1
c0

. The first linear term in (3.47) is the asymptotic trace of the
stationary profile G(y), about which the turning effect occurs via a certain focusing
phenomenon. Hence, G solves the stationary TFE

−(GG′′′)′ − 1 = 0, G(y) = a0y + a1 y2 + a2 y3 + ... as y → 0+, (3.48)

where the expansion corresponds to the necessary free-boundary conditions at y =
0. Thus, a2 = − 1

6a0
(a0 = c0), meaning that s′(t0) = 0 by (3.32). The explicit

formula (3.47) is the asymptotic expansion about the stationary profile G(y), so we
set u(y, t) = G(y)+ Y (y, t) to get the linearized PDE

Yt = −(G(y)Yyyy)y − (Y G′′′(y))y − (Y Yyyy)y, (3.49)

where the inhomogeneous term −(GGyyy)y − 1 has vanished due to (3.48) and the
coefficients are G(y) = a0y + ... and G′′′(y) = 6a2 + ... as y → 0. Let us write
(3.49) in terms of the new spatial rescaled variable

Y (y, t) = e−2τw(η, τ ), where η = y√
t0−t

, (3.50)

that is associated with the already known behavior (3.47), to obtain the following
exponentially perturbed equation:

wτ = Bw − e−
τ
2 6a2wξ − e−3τ (wwηηη)η + ... , (3.51)

where B is the linear degenerate fourth-order operator

Bw = −a0(ηwηηη)η − 1
2 wηη + 2w. (3.52)

This operator is not symmetric and most plausibly does not admit a self-adjoint ex-
tension in any weighted L2-spaces. In general, the spectral properties of such non-
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self-adjoint operators are difficult. Let us determine the point spectrum of the special
extension. Notice first that solutions of the eigenvalue equation

Bψ = λψ

exhibit the following generic exponential growth near the infinite singular point:

ψ(η) ∼ eµη as η→+∞, with µ = (2a0)
− 1

3
( 1

2 ± i
√

3
2

)
.

Therefore, a proper functional setting for B involves the weighted space L2
ρ with

the exponential weight ρ(η) = e−bη, where b ∈ (0, 1
2 (2a0)

−1/3
)

is a constant. It
turns out that B possesses the real point spectrum in spaces of functions that are
sufficiently smooth at η = 0 (e.g., such as H 4

ρ ),

σp(B) = {λk = − k
2 + 2, k = 0, 1, 2, ...

}
,

and each eigenfunction ψk(η) is a kth-degree polynomial

ψk(η) = bk
[
ηk + 2k(k−1)(k−2)2

3 a0η
k−1 + ...

]
,

where bk are some normalization constants. In a proper setting, the resolvent of
B is compact in L2

ρ (see Remarks for extra details), so the whole spectrum σ(B)

can be made discrete. These polynomials are complete and closed in L2
ρ(IR); see

Kolmogorov–Fomin [352, p. 431]. So, studying (3.51), eigenfunction expansions
can be used. To this end, let us introduce the adjoint operator

B∗v = −a0(ηv
′)′′′ + 1

2 v ′η + 5
2 v

with the same spectrum and find the bi-orthogonal (in L2(IR)) set {ψ∗k } of eigenfunc-
tions satisfying, after normalization, 〈ψi , ψ

∗
j 〉 = δi j . Then, in L2

ρ , we can look for
solutions of (3.51) in the form of

w(η, τ ) =∑(k≥0) ck(τ )ψk(η), where ck(τ ) = 〈w(·, τ ), ψ∗k 〉,
and study the DS for the expansion coefficients {ck(τ )} that describes the asymptotic
behavior. It follows that the turning patterns satisfying the rescaled equation (3.51)
correspond to the evolution on the stable and center manifolds that are tangent to
the corresponding subspaces of B, i.e., as τ → ∞, w(η, τ ) ∼ eλkτψk(η), with
λk ∈ σp(B) for some k ≥ 4, so λk ≤ 0. In particular, according to the scaling (3.50),
taking k = 4 with λ4 = 0 gives the asymptotic behavior for the first turning pattern
(most probably, generic)

Y (y, t) ∼ e−2τψ4(η)+ ... , where ψ4(η) = b4
(
η4 + 32a0η

)
is the corresponding eigenfunction. This determines the behavior on sets defined
as y = O(

√
t0 − t) to be matched with the behavior (3.47) on smaller sets in the

variable ζ in (3.46), i.e., for y = O(t0 − t), to get a global structure of this first
turning pattern. A rigorous justification of such asymptotic and matching analysis is
OPEN for higher-order TFEs. The exact solutions remain the only tool to test such a
curious singularity formation phenomenon.
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u(x, t)
t = 1

s+(t)s−(t)

x

t > 1

t < 1

0

Figure 3.2 The exact solution (3.29) with A0 = 5
6 , E0 < 0: (i) quenching at t = 1, and (ii)

two interfaces appear for t > 1.

3.2.6 Quenching patterns

Take A0 = 5
6 again, and now fix an arbitrary E0 ≥ 0 in (3.29), giving the single point

quenching, where the strictly positive solution first touches the singularity zero level
{u = 0} at t = 1, as shown in Figure 3.2. If E0 < 0 for the asymptotic description of
quenching, we still can use the same rescaled variables (3.39) to observe convergence
(3.41), where the self-similar profile is now strictly positive,

g(ξ) = 1+ |E0|ξ2.

The asymptotic quenching phenomenon is described by the same rescaled equation
(3.44) with, plausibly, a generic stabilization to the similarity profile; proof is an
OPEN PROBLEM. After quenching, for t > 1, two interfaces appear with the non-
Lipschitz behavior

s±(t) = ± 1√|E0|
√

t − 1+ ... as t → 1+, (3.53)

so that a smooth flow, corresponding to the uniformly parabolic TFE for t < 1, is re-
placed by the FBP for the degenerate equation for t > 1, with a quenching transition
at t = 1−. In general, the questions of solution extensions beyond singular quench-
ing remain OPEN. For similar second-order equations, such as (3.36), this determines
extensions of order-preserving semigroups for various types of singularities, [226,
Sect. 6.2].

A different quenching pattern occurs for E0 = 0 in (3.29), and a distinct spatial
rescaled variable η is necessary for describing the limit t → 1−,

eτu(x, t)→ 1+ 1
120 η2, where η = x

(1−t)1/4 . (3.54)
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Then we introduce another rescaled function, v(η, τ ) = eτu(x, t), that is defined
according to (3.54) and satisfies the following equation:

vτ = − 1
4 vηη + v − 1− e−τ (vvηηη)η. (3.55)

Unlike the rescaled parabolic PDE (3.44), the thin film operator now reduces to a
fourth-order perturbation that is exponentially small as τ →∞. This gives a singular
perturbation problem for the linear autonomous Hamilton–Jacobi equation

vτ = − 1
4 vηη + v − 1. (3.56)

The convergence as τ → ∞ of some classes of solutions of (3.55) and (3.56) rep-
resents an interesting OPEN PROBLEM; though such behavior is not expected to be
generic, unlike the above similarity with E0 < 0. For PMEs with absorption (3.36)
for which, in (3.55), the fourth-order operator is replaced by the diffusion one (vvη)η,
such behavior is proved to be stable; see results in [245, Ch. 5].

After quenching at t = 1, the interfaces also exhibit a different behavior (cf.
(3.53))

s±(t) = ±
[
120(t − 1)

] 1
4 + ... as t → 1+.

We expect that it is not generic and corresponds to very flat initial data u(x, 1−)
created by such a peculiar unstable quenching.

3.2.7 On extinction patterns with zero contact angle, the Cauchy problem

In the case of the standard FBP having conditions as in (3.14), it seems that the
present TFE with absorption does not possess exact solutions on invariant subspaces
(for other parameters, such solutions do exist; see Example 3.10 below). On the other
hand, self-similar solutions of the form (3.42) may be introduced, where g(ξ) is an
even positive solution of the ODE (3.43) on some interval ξ ∈ (0, ξ0) with conditions

g(ξ0) = g′(ξ0) = (gg′′′)(ξ0) = 0, and g′(0) = g′′′(0) = 0, (3.57)

corresponding to the symmetry at the origin ξ = 0. The behavior close to the interface
at ξ = ξ0 is

g(ξ) = (ξ0 − ξ)2√2| ln(ξ0 − ξ)| + C + ... (C ∈ IR).

Existence (or nonexistence) of such g(ξ) leads to two-parameter, {ξ0,C}, shooting
to satisfy two symmetry conditions at ξ = 0 and remains an OPEN PROBLEM.

In the Cauchy problem for such degenerate PDEs to be discussed systematically
later on, solutions typically are of changing sign, so the PDE and the similarity ODE
are modified as follows:

ut = −(|u|ux x x)x − sign u �⇒ −(|g|g′′′)′ − 1
2 g′ξ + g − sign g = 0. (3.58)

Then, (3.57) are also valid at interfaces, but the solutions g(ξ) are smoother and are
oscillatory with a different behavior (corresponding to (|g|g′′′)′ + sign g = 0)

g(ξ) = (ξ0 − ξ)2ϕ(s), s = ln(ξ0 − ξ), as ξ → ξ−0 ,

where the oscillatory component ϕ(s) is a periodic solution of a nonlinear ODE.
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Figure 3.3 Similarity extinction profiles satisfying the ODE (3.58) with the conditions (3.57);
six profiles (a) and oscillations near the interface for the second profile (b).

Details will be presented in Section 3.7. Figure 3.3(a) shows six similarity profiles
for ξ > 0. In (b), these numerical results reveal the oscillatory character of solutions
near interfaces, an intriguing part of our future analysis.

Example 3.6 (TFE with cubic operator) Take the unique operator from Proposi-
tion 3.5(ii) and consider the TFE with constant absorption

ut = −
[
u2ux x x − 3

2 uuxux x + 3
4 (ux)

3
]

x − 1.

Taking the subspace of even fourth degree polynomials yields solutions

u(x, t) = C1(t)+ C2(t)x
2 + C3(t)x

4,
C ′1 = 3C1C2

2 − 24C2
1C3 − 1,

C ′2 = −9(C2
2 + 2C1C3)C2,

C ′3 = 30(4C1C3 − C2
2 )C3.

This DS is more difficult and explicit solutions do not exist. A simpler system occurs
by setting C2(t) ≡ 0, which corresponds to the subspace W2 = L{1, x4}, but it is
not clear whether the resulting extinction behavior is generic. The asymptotics of
extinction as t → T− is easy to detect, since, on any bounded orbit of the above DS,

C1(t) = T − t + O
(
(T − t)2

)
,

while C2,3(t) remain almost constant for t ≈ T . This gives the necessary asymptotics
of the extinction (or quenching for positive solutions) behavior. The corresponding
rescaled equations can be formulated in a similar fashion. Other features of the FBPs
can also be described, though some of the computations are not explicit or easy.

3.2.8 Quartic operators: applications to extinction and blow-up

As a new application, consider the fourth-order TFE with source or absorption

vt = −
(
vnvx x x

)
x + g(v). (3.59)
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Introducing the new independent variable

v = uµ, where µ = 3
n , (3.60)

splits the thin film operator into five primitive monomials of the algebraic homoge-
nuity four,

ut = −
[
u3ux x x x + (4µ− 1)u2uxux x x

+ 3(µ− 1)u2(ux x)
2 + 3(µ− 1)(2µ− 1)u(ux)

2ux x

+µ(µ− 1)(µ− 2)(ux)
4
]+ n

3 u1−µg(uµ).

(3.61)

Assume that the last zero-order term is a linear function, i.e.,

n
3 u1−µg(uµ) = a + bu. (3.62)

Then polynomial subspaces will depend on the differential operator in (3.61). Firstly,
this admits the trivial subspace of linear functions W2 = L{1, x}, which does not
provide us with interesting solutions. In particular, these are traveling waves that are
unbounded as x → ∞. We are interested in solutions of typical bell-shaped forms
localized on a bounded interval in x . Secondly, extensions of W2 are possible in the
following cases:

Proposition 3.7 The operator given in (3.61) and (3.62) preserves W3 = L{1, x, x2}
iff n = 3, n = 6, or n = −2.

Proof. Plugging u = C1+C2x +C3x2 ∈ W3 into the quartic operator yields that the
terms on L{x3, x4} vanish iff

4(µ− 1)[3+ 6(2µ− 1)+ 4µ(µ− 2)] = 0,

which yields either µ = 1 or 4µ2 + 4µ− 3 = 0, i.e., µ = 1
2 or µ = − 3

2 .

Example 3.8 (Extinction behavior) Let us choose a = −1 and b = 0 in (3.62),
giving a constant absorption term in (3.61).

Case n = 3 (µ = 1). This is quite simple, since the resulting PDE

ut = F4[u]− 1 ≡ −u3ux x x x − 3u2uxux x x − 1 (3.63)

does not contain lower differential terms, so that, being restricted to W3, it is equiv-
alent to the linear ODE

ut = −1. (3.64)

Curiously, this trivial evolution on W3 describes the actual general phenomenon of
asymptotic degeneracy of the PDEs near extinction. To show this, consider nonnega-
tive and even in x (symmetric) solutions on W2 = L{1, x2}. Noticing that the general
solution of (3.64) is

u(x, t) = h(x)− t,

where h(x) is arbitrary (initial data), we choose the parabolic profile h(x) = T−d x2

with positive constants T and d . Next, bearing in mind the FBP, take the positive part
to obtain the following pattern near the extinction time T :

u(x, t) = (T − t − d x2
)
+ ≡ (T − t)g(ξ) = (T − t)

(
1− d ξ2

)
+, (3.65)
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where ξ denotes the spatial rescaled variable x/
√

T − t . For general even bell-
shaped solutions of (3.63), this asymptotic behavior on W2 suggests introducing the
rescaled solution

u(x, t) = (T − t)w(ξ, τ ), τ = − ln(T − t), (3.66)

satisfying a typical singular (exponentially) perturbed equation,

wτ = − 1
2 wξξ + w − 1+ e−2τ F4[w]. (3.67)

Such PDEs occurred before for a number of the TFEs with absorption. Therefore,
we expect that, as τ → ∞, bounded orbits {w(·, τ )} converge to stationary profiles
g, solving the linear ODE

− 1
2 g′ξ + g − 1 = 0,

that gives precisely the parabolic profiles g(ξ) in (3.65). In this sense, solutions on
the invariant subspace can detect the correct generic asymptotic behavior of extinc-
tion. As usual, a rigorous passage to the limit in (3.67) represents a difficult OPEN

PROBLEM.

Case n = 6 (µ = 1
2 ). In this case, the diffusion-absorption equation takes the form

ut = −
[
u3ux x x x + u2ux ux x x − 3

2 u2(ux x)
2 + 3

8 (ux)
4
]− 1.

We have the following exact symmetric solutions on W2:

u(x, t) = [C1(t)+ C3(t)x2
]
+ , (3.68){

C ′1 = 6C2
1 C2

3 − 1,
C ′3 = 12C1C3

3 .

We cannot solve the system explicitly and will compute the generic asymptotic be-
havior of orbits near the extinction time, as t → T−. This yields C1(t) = T − t + ...
and C3(t) → −d < 0, so that the behavior (3.65) remains valid asymptotically.
Using the same rescaled variables (3.66) makes it possible to formulate the corre-
sponding singular perturbed problem (3.67) for which the exact solutions on W3 are
expected to describe the generic asymptotic behavior. This is an OPEN PROBLEM.

Example 3.9 (Blow-up) Case n = −2 (µ = − 3
2 ). In (3.59), we take

g(v) = − 3
2 av

5
3 − 3

2 bv,

so, again choosing a = −1 and b = 0 yields the TFE with source

vt = −
( 1
v2 vx x x

)
x + 3

2 v
5
3 . (3.69)

The reaction term ∼ v5/3 is superlinear for v � 1, so that blow-up is guaranteed for
solutions of (3.69) with sufficiently large positive initial data v0(x).

Setting v = u−3/2 yields quartic nonlinearities in the PDE

ut = −
[
u3ux x x x − 7u2uxux x x − 15

2 u2(ux x)
2

+ 30 u(ux)
2ux x − 105

8 (ux)
4
]− 1.

(3.70)
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Figure 3.4 Single point blow-up described by positive exact solutions of (3.69) on W3.

The blow-up behavior for (3.69) is equivalent to the quenching for (3.70). We look
for nonnegative solutions (3.68) and obtain the DS for expansion coefficients{

C ′1 = 30C2
1C2

3 − 1,
C ′3 = −180C1C3

3 .

Let T > 0 be the finite quenching time of a fixed bounded orbit. Then the DS gives
as t → T− the behavior C1(t) = T − t + ... and C3(t) → d > 0. This yields the
blow-up behavior on W3, as t → T−,

v(x, t) = u− 3
2 (x, t) ≈ (T − t)− 3

2
(
1+ d ξ2

)− 3
2 , ξ = x√

T−t
. (3.71)

These exact solutions are strictly positive, so that these are classical smooth solutions
of the TFE (3.69) on IR × (0, T ).

The blow-up evolution is shown in Figure 3.4. By (3.71), there occurs the single
point blow-up as x = 0 only. Letting t → T− yields the final-time profile

v(x, T−) = d−
3
2 |x |−3(1+ o(1)) for x ≈ 0.

As shown in the previous example, these exact solutions asymptotically converge as
t → T− to the sufficiently smooth profiles given by the ODE ut = −1. This implies
that the blow-up patterns (3.71) are described as t → T− by the ODE

vt = 3
2 v

5
3 .

This is easily seen from the equations (3.69), written for the rescaled function v(x, t) =
(T − t)−3/2w(ξ, τ ) with the same spatial rescaling ξ = x/

√
T − t . The equation for
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w contains a singular exponentially small perturbation as τ →∞,

wτ = − 1
2 wξξ − 3

2 w + 3
2 w

5
3 − e−2τ

(
w−2wξξξ

)
ξ
.

The phenomenon of such an asymptotic degeneracy of these TFEs near blow-up is
an OPEN PROBLEM.

3.3 Exact solutions with zero contact angle

Let us return to exact solutions satisfying the more physically meaningful zero con-
tact angle condition in (3.14). We again begin by studying the extinction phenomenon
for the TFE with absorption, which is as a manifestation of an “evaporation” thin film
phenomenon; see Section 3.2.

Example 3.10 (Singularities and interfaces) We consider the TFE with a strong
non-Lipschitz absorption term,

vt = −(vvx x x)x −√v, (3.72)

and now impose the zero contact angle condition, so, at each interface,

v = vx = vvx x x = 0 at x = s(t). (3.73)

Setting v = u2 yields an equation with the cubic operator,

ut = − 1
2 u(u2)x x x x − ux(u2)x x x − 1

2 ≡ F3[u]− 1
2 , (3.74)

exhibiting the following invariant property.

Proposition 3.11 Operator F3 in (3.74) admits the subspace W3 = L{1, x, x2}.
Taking u = C1 + C2x + C3x2 yields

F3[u] = −12(C1C3 + C2
2 )C3 − 60C2C2

3 x − 60C3
3 x2 ∈ W3. (3.75)

For simplicity, setting C2(t) ≡ 0 (meaning even and symmetric in x patterns) gives
the following solutions of the original PDE (3.72) on W2 = L{1, x2}:

v(x, t) = u2(x, t) ≡ [C1(t)+ C3(t)x2
]2
+, (3.76)

which, clearly, satisfy all three free-boundary conditions (3.73). In this case, (3.75)
implies {

C ′1 = −12C1C2
3 − 1

2 ,

C ′3 = −60C3
3 .

(3.77)

The last ODE is solved,

C3(t) = ± 1√
120

1√
t

for t > 0, (3.78)

and, from the first,

C1(t) = A0t− 1
10 − 5

11 t, where A0 = constant. (3.79)
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Quenching and dynamic interface equation. Consider first the plus sign in (3.78),
where, for convenience, setting A0 = 5

11 in (3.79) yields

u(x, t) = [ 5
11 t−

1
10
(
1− t

11
10
)+ 1√

120
1√
t

x2
]
+. (3.80)

This solution is strictly positive for all t ∈ (0, 1), and vanishes for the first time at
t = 1 at the point x = 0 that describes the quenching phenomenon. After quenching,
for t > 1, two interfaces x = ±s(t) appear, where

s(t) = R(t) ≡
√

5
√

120
11 t

2
5
(
t

11
10 − 1

)
. (3.81)

At the initial moment of time t = 1+, the interface is not Lipschitz continuous,

s(t) = (30)
1
4
√

t − 1+ ... ,

and this poses a problem of a post quenching behavior of the extension of the solution
after this evolution singularity occurred at t = 1.

In order to derive the regularity interface equation, we use the same elementary
formulae (3.31) and calculate ut from (3.74) for the solution (3.80). We obtain the
following two-term expression:

s′ = S[u] ≡ 6uxux x + 1
2ux

at x = s(t) for t > 1. (3.82)

Recall that, by construction, our solution already satisfies the necessary three free-
boundary conditions (3.73). Let us detect other interface equations by the time-
parameterization t = 1

30
1

(uxx )2 that follows from (3.80). Then (3.81) yields

s′ = R′(t) ≡ R′
( 1

30
1

(uxx )2

)
. (3.83)

This equation is again of the second order, but is different from (3.82). Equating the
right-hand sides of (3.82) and (3.83) yields a stationary second-order Neumann-type
free-boundary condition

6uxux x + 1
2ux

= R′
( 1

30
1

(uxx )2

)
at x = s(t) for t > 1.

Towards local well-posedness of the FBP. Let us present some arguments justify-
ing local existence/uniqueness of the FBP. We use the von Mises transformation by
introducing the dependent variable

X = X (u, t), so X (u(x, t), t) ≡ x, (3.84)

which is assumed to be well-defined in a neighborhood of the interface posed now
at u = 0, at least for sufficiently small t > 0. Initial data at t = 0 are taken in the
bell-shaped form u0(x) = [C1(0)+C3(0)x2]+, where C1(0) > 0 and C3(0) < 0 are
given constants, being initial data for the DS (3.77). This determines the unique so-
lution on the invariant subspace with the known properties of extinction and singular
interfaces. In terms of the new function (3.84), initial data are smooth,

X0(u) =
√

C1(0)−u
|C3(0)| for small u ≥ 0. (3.85)

Assuming that X (u, t) is strictly monotone decreasing at least for small u > 0, and
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calculating derivatives yields

ut = − Xt
Xu

, ux = 1
Xu

, ux x = − Xuu
(Xu)3 , ux x x = − Xuuu

(Xu)4 + 3(Xuu)
2

(Xu)5 , ... .

On substitution into (3.74), the following PDE for X is derived:

Xt = H (X) ≡ −u2
[

Xuuuu
(Xu )4 − 10Xuu Xuuu

(Xu)5 + 15(Xuu)
3

(Xu)6

]
− u

[
6Xuuu
(Xu )4 − 21(Xuu)

2

(Xu)5

]
− 6Xuu

(Xu)4 + 1
2 Xu .

(3.86)

Consider the principal fourth-order term in (3.86). Firstly, it follows that we need
to deal with solutions satisfying Xu(0, t) �= 0 (and finite) at the origin to exclude
gradient singularities, so it we check that the initial function (3.85) satisfies this
inequality of transversality. Secondly, (3.86) is degenerated at the boundary point
u = 0, and the quadratic rate of degeneracy, O(u2), in the higher-order term makes
it possible to pose some standard boundary conditions at u = 0.

The actual construction of the solution is as follows. The following decomposition
of the solution is needed:

X = X̂ + X̃ , where X̂ ∈ Span{1, u} and X̃ = X − X̂ . (3.87)

Projecting equation (3.86) onto Ŵ2 = Span{1, u} yields the ODE–PDE system:{
X̂t = Ĥ(X),
X̃t = H̃(X),

(3.88)

where Ĥ and H̃ denote projections of H onto the corresponding subspaces. The first
equation is a two-dimensional dynamical system, and the second equation is then a
parabolic PDE with the principal degenerate operator

B = −u2 D4
u . (3.89)

This linear operator is symmetric in the weighted space L2
ρ((0, δ)), with a small

δ > 0 and ρ = u−2. By classical theory of symmetric ordinary differential operators
(see Naimark [432]), estimating the solutions of the eigenvalue equation

Bψ = ±iψ for u ≈ 0

gives four types of asymptotics ψ1(u) = O(1), ψ2(u) = O(u) (both contain loga-
rithmic factors in higher-order terms), ψ3(u) = O(u2), and ψ4(u) = O(u3), where
ψ3,4 ∈ L2

ρ and ψ1,2 �∈ L2
ρ . Therefore, the deficiency indices of B are (2,2), so that,

any pair of self-adjoint Dirichlet boundary conditions at u = 1 gives a self-adjoint
extension. We need to take the unique Friedrichs self-adjoint extension of B with a
discrete spectrum, compact resolvent, and a complete, closed eigenfunction set. As
usual, this extension is induced by the Dirichlet conditions at the singular endpoint
u = 0, i.e., w(0) = w′(0) = 0 for functions from the domain D(B). According
to the representation (3.87), the parabolic problem for solutions X̃ is well-posed,
provided that the transversality condition Xu(0, t) �= 0, as well as suitable (free-
boundary) conditions at u = 0, hold. Actually, the second equation in (3.88), after
dividing by u2, reduces to the PDE with the non-degenerate principal operator D4

u ,
and the solution X̃ ∈ D(B) can be constructed by eigenfunction expansion, where
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the boundary conditions are key (see below). Note that, in view of analyticity of the
coefficients of both equations, this gives a unique local analytic solution,

X (u, t) =∑(k, j≥0) ck, j uk t j ,

which can be constructed independently by substitution into (3.86) (convergence
needs special involved majorant-type estimates).

Thus free-boundary conditions are crucial for local existence of smooth solutions.
The dynamic interface equation (3.82) now reads

Xt = − 6Xuu
(Xu)4 + 1

2 Xu at u = 0. (3.90)

Writing (3.86) in the form of

− u2 Xuuuu
(Xu )4 + ... = Xt + 6Xuu

(Xu)4 − 1
2 Xu,

in view of (3.90), the right-hand side is always zero at the boundary u = 0. It is
precisely this that makes it possible to construct a unique local solution by semigroup
theory based on the spectral properties of the linear degenerate operator (3.89).

Hence, the initial-boundary value problem for (3.86) in a small neighborhood of
u = 0, t = 0 falls into the scope of the theory of higher-order parabolic PDEs; see
[164, 205, 550]. For simplicity, we impose a pair of standard Dirichlet or Neumann
boundary conditions at some fixed point u = u1 > 0, small enough where there are
no degeneracy and singularity. Once X̃ has been obtained, the DS for X̂ in (3.88)
gives the whole solution. The construction is local in u and t , and fails if extra de-
generacy points appear in an arbitrarily small neighborhood of the origin u = 0. This
would mean a new type of singularity which might affect the required regularity and
the interface equation.

Extinction: singular perturbation problem. The extinction phenomenon corre-
sponds to the minus sign in (3.78), so the explicit solution is

u(x, t) = [ 5
11 t− 1

10
(
1− t

11
10
)− 1√

120
1√
t

x2
]
+. (3.91)

This solution has two interfaces for t ∈ (0, 1) that coincide at the extinction time
t = 1. The interface equations (3.82) or (3.83) remain the same. One can extract
from (3.91) the asymptotic extinction pattern as t → 1−,

u(x, t) = e−τ
( 1

2 − 1√
120

y2
)
+ + O

(
e−2τ

)
, (3.92)

with rescaled variables y = x/
√

1− t and τ = − ln(1 − t) → +∞. Therefore,
asymptotic extinction theory uses the rescaled function u(x, t) = e−τw(y, τ ), where
w satisfies a singular perturbed first-order PDE,

wτ = − 1
2 wy y +w − 1

2 + e−τ F3[w] for τ � 1. (3.93)

For general solutions, the passage to the limit τ → +∞ in (3.93) and stabilization
to the stationary rescaled profile g(y) = ( 1

2 − 1√
120

y2
)
+ given in (3.92) are diffi-

cult OPEN PROBLEMS. Translating (3.92) to the original solution v(x, t) of the TFE
(3.72), on the invariant subspace W2, the following extinction behavior holds:

v(x, t) = (1− t)2
[( 1

2 − 1√
120

1
1−t x2

)2
+ + O(1− t)

]
as t → 1−. (3.94)
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On self-similar extinction behavior. In addition, the TFE (3.72) admits standard
similarity structures

vs(x, t) = (1− t)2g(z), z = x
(1−t)3/4 , (3.95)

where, on substitution, g ≥ 0 solves the ODE

−(gg′′′)′ − 3
4 g′z + 2g −√g = 0 for z ∈ (0, z0),

g(z0) = g′(z0) = (gg′′′)(z0) = 0, g′(0) = g′′′(0) = 0,
(3.96)

with free-boundary conditions at some z = z0 > 0 and symmetry ones at the origin
z = 0. Then the ODE gives that, close to the interface,

g(z) = C(z0 − z)2 + C1(z0 − z)3 + ... , with C > 0 and 12C1 = 3
2 z0 − 1√

C
.

The space-time structure (3.95) is different from the behavior detected in (3.94) by
exact solutions on the invariant subspace. Comparing the rescaled variables y in
(3.92) and z in (3.95) yields that the self-similar extinction occurs on smaller sets
z = O(1), i.e.,

|x | ∼ (1− t)
3
4 & (1− t)

1
2 as t → 1−,

where the last sets are attributed to the rescaled variable y = x/
√

1− t = O(1).
Unlike the above case of explicit solutions, the ODE (3.96) for zero contact angle
profiles g(z) is difficult and existence/uniqueness (or nonexistence) are OPEN PROB-
LEMS.

We claim that a stable (generic) extinction behavior is given by the exact solution
patterns, such as (3.94), so the asymptotic self-similar behavior given by (3.95) is
expected to be unstable. This is an OPEN PROBLEM.

Oscillatory solutions of the Cauchy problem. The CP for the TFE with absorption
(3.72) demands another setting for solutions of changing sign. It is known that, for
n ∈ (0, 3

2

)
, generalized strong (i.e., sufficiently regular) solutions u(x, t) of the TFE

vt = −
(|v|nvx x x

)
x in IR × IR+

with bounded compactly supported initial data v0(x) should be oscillatory near in-
terfaces in order to exhibit the maximal regularity. More precisely, such solutions
behave near the left-hand interface x = s(t) as

v(x, t) ∼ (x − s(t))
3
n ϕ(ln(x − s(t))) as x → s+(t), (3.97)

where ϕ(s) denotes the oscillatory component and is typically a periodic changing
sign solution of a fourth-order ODE. Explanations are postponed until Section 3.7,
and here we discuss this phenomenon for the TFE with strong absorption (3.72).

First, in order to keep the parabolicity and absorption features, (3.72) is written as

vt = −(|v|vx x x)x − |v|− 1
2 v in IR × IR+. (3.98)

Second, as usual, we first detect the oscillatory component for the TW solutions

v(x, t) = f (y), y = x − λt, with the ODE

−λ f ′ = −(| f | f ′′′)′ − | f |− 1
2 f.

(3.99)
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Figure 3.5 (a) Oscillatory and non-oscillatory behavior (3.101) close to the interface at y = 0,
and (b) convergence to the stable periodic orbit of the ODE (3.102).

Assume that f (y) has the interface at y = 0, with the trivial extension f (y) ≡ 0
for y < 0, and exhibits the “maximally regularity”, i.e., the best which is admitted
by this ODE. Then expressions like (3.97) with n = 1 are no longer true, i.e., the
strong absorption term is seriously involved in the oscillatory behavior. The leading
changing sign asymptotics are governed by the two-term ODE

(| f | f ′′′)′ + | f |− 1
2 f = 0 for y > 0, f (0) = 0, (3.100)

which is (3.99) with λ = 0. Hence, v = f (x) is just a stationary solution of (3.98).
The TW speed λ �= 0 then enters the next expansion term, and this induces an inter-
esting dynamic interface equation, which the interested reader may derive as usual
(though the expansion is not easy). Instead of (3.97), with n = 1, we set

f (y) = y
8
3 ϕ(s), s = ln y, (3.101)

and, substituting into (3.100), derive the following ODE for ϕ(s):

H [ϕ] ≡ [|ϕ|(ϕ′′′ + 5ϕ′′ + 22
3 ϕ′ + 80

27 ϕ
)]′

+ 7
3 |ϕ|

(
ϕ′′′ + 5ϕ′′ + 22

3 ϕ′ + 80
27 ϕ

)+ |ϕ|− 1
2 ϕ = 0.

(3.102)

We call ϕ(s) in (3.101) the oscillatory component of f (y). It turns out that (3.102)
admits a periodic solution of changing sign, and (3.101) then yields the oscillatory
behavior near the interface at y = 0; see Figure 3.5(a), the bold line. Figure 3.5(b)
shows convergence to this unique asymptotically stable periodic solution of (3.102)
for various initial data posed at s = 0. If the ODE (3.102) admits a positive equilib-
rium ϕ(s) ≡ ϕ0 > 0 (actually, it does not), then (3.101) gives the non-oscillatory
behavior close to the interface at y = 0; see Figure 3.5(a), the dashed line.

According to (3.101), the periodic ϕ(s) gives the oscillatory behavior of solutions
of the maximal regularity at interfaces for the TFE with absorption (3.98). A rigor-
ous justification that the formulae (3.101) and (3.102) correctly describe a generic
structure of multiple zeros of solutions v(x, t) of the PDE is a hard OPEN PROBLEM.

Concerning similarity oscillatory extinction patterns satisfying the ODE (3.96)
(with modified coefficients from (3.98)), numerical experiments show that such g �=
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0 is nonexistent, i.e., the generic extinction behavior in the CP is not self-similar, as
in the FBP studied above.

Example 3.12 (Stabilization in the TFE) Consider the TFE (3.8) from lubrication
theory with an unstable, backward parabolic diffusion term,

vt = −(vvx x x)x − (
√
v vx )x .

As shown in the previous example, we perform the change v = u2 and obtain a PDE
with the same cubic operator F3 in (3.74) plus a quadratic term,

ut = − 1
2 u(u2)x x x x − ux (u2)x x x − 1

2 (u
2)x x − (ux )

2. (3.103)

Clearly, the quadratic operator admits subspace W3, and hence, by Proposition 3.11,
there exist solutions (3.76) on W2 driven by the DS{

C ′1 = −12C1C2
3 − 2C1C3,

C ′3 = −60C3
3 − 10C2

3 .

Integrating the second ODE yields− 1
C3
+6 ln

∣∣6+ 1
C3

∣∣ = −10 t →−∞ as t →∞.
Therefore, for any initial values C3(0) < 0 and C1(0) > 0, corresponding to bell-
shaped compactly initial data u0(x), the following holds: C3(t)→ − 1

6 as t →+∞.
Once C3(t) is known, one can find C1(t) from the first equation, showing that C1(t)
stabilizes to a constant B > 0 as t →∞. Plugging these expansions into (3.76), we
obtain the following asymptotic pattern:

u(x, t) = (B − 1
6 x2

)
+ + O

(
e−

5
3 t ) as t →+∞,

with the uniform convergence on bounded intervals in x . These exact solutions de-
scribe exponentially fast stabilization to a single profile from the family of stationary
solutions of (3.103) that are parameterized by a constant B > 0. Then, λ2 = − 5

3 in
the exponential term is the first negative eigenvalue from the point (discrete) spec-
trum of the linear operator that appears in (3.103) after linearization about the sta-
tionary profile (B − 1

6 x2)+.

3.4 Extinction behavior for sixth-order thin film equations

Example 3.13 (Extinction, quenching, ... ) A Stefan–Florin FBP and the CP can
be posed for the sixth-order TFE with absorption

ut = (uux x x x x)x − 1, (3.104)

where the invariant subspace is W7 = L{1, x, x2, ..., x6} on which the PDE is a
seventh-order DS. Then, as shown in Section 3.2, we can describe the initial singu-
larity via Dirac’s mass, finite-time extinction, quenching and interface turning point
patterns, and can develop local existence-uniqueness approach to the FBP based on
the von Mises transformation (Example 3.10). For the sixth-order PDE (3.104), four
free-boundary conditions should be posed. The Cauchy problem exhibits special os-
cillatory patterns to be briefly discussed.
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Example 3.14 (Zero contact angle conditions) To get four conditions (3.15), an-
other model is needed. Taking a sixth-order TFE with strong absorption,

vt = (vvx x x x x)x − v
2
3 ,

we set v = u3 and obtain a quartic operator F4 in the PDE

ut = F4[u]− 1
3 , where F4[u] = 1

3

(
u D6

x u3 + 3ux D5
x u3
)
. (3.105)

Similar to Proposition 3.11, F4 admits W3 = L{1, x, x2}, so there exists solution

v(x, t) = u3(x, t) = [C1(t)+ C3(t)x2
]3
+ (C2 = 0), (3.106)

satisfying all four free-boundary conditions

v = vx = vx x = vvx x x x x = 0 at the interface x = s(t).

The expansion coefficients solve the DS{
C ′1 = 1

3 6! C1C3
3 − 1

3 ,

C ′3 = 1
3 7! C4

3 .

The second ODE yields C3(t) = −
( 1

7! t

)1/3
< 0 for t > 0, which results in, e.g.,

u(x, t) = [ 7
22 t− 1

21
(
1− t

22
21
)− 1

(7!t)1/3 x2
]
+. (3.107)

In rescaled variables, the extinction pattern as t → 1− has the asymptotic structure

u(x, t) = e−τ
[ 1

3 − 1
(7!)1/3 y2

]
+ + O(e−2τ ), y = x√

1−t
, τ = − ln(1− t).

This agrees with the singular perturbed problem for the original rescaled solution v
given by (3.106), i.e., v(x, t) = e−3τw(y, τ ), where w solves

wτ = − 1
2 wy y + 3w − w

2
3 + e−τ (wwyyyyy)y for τ � 1.

The problem of passing to the limit τ → +∞ in this PDE is OPEN.
Concerning the dynamic interface equation, formulae (3.31), together with the

PDE (3.105), yield three interface operators on the right-hand side,

s′ = S[u] ≡ − 60(ux)
2ux x x − 90ux(ux x)

2 + 1
3

1
ux

(3.108)

(the first operator vanishes identically for u ∈ W3). Other free-boundary conditions
can be derived from the DS by using the parameterization via (3.107), t = − 8

7! (uxx)3 .

In the local von Mises variable X = X (u, t), the free-boundary condition (3.108)
(and others) is necessary for the well-posedness of the corresponding problem for a
degenerate sixth-order symmetric linear differential operator. The analysis is simi-
lar to that shown in Example 3.10, but the mathematics and computations become
technically more involved.

On oscillatory solutions of the Cauchy problem. Consider the PDE extended to
{v < 0} in the parabolic manner,

vt = (|v|vx x x x x)x − |v|− 1
3 v in IR × IR+. (3.109)
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TW analysis is the same, as in Example 3.10, and, instead of (3.99), the ODE is

−λ f ′ = (| f | f (5))′ − | f |− 1
3 f. Similarly, we neglect the left-hand side (or just set

λ = 0),

(| f | f (5))′ − | f |− 1
3 f = 0 for y > 0, f (0) = 0.

The oscillatory behavior exhibits a smoother envelope than in (3.101),

f (y) = y
9
2 ϕ(s), with s = ln y,

where the oscillatory component ϕ solves a sixth-order autonomous ODE which
describes the changing sign character of solutions of (3.109). Later on, we will show
a number of such ODEs that admit changing sign periodic solutions with oscillatory
behavior, as shown in Figure 3.5(a). Such TW profiles satisfy at the interface at y = 0

f ′(0) = f ′′(0) = f ′′′(0) = f (4)(0) = 0,

and are smoother than O(y3) behavior given by (3.106) for the FBP.

Example 3.15 (Stabilization) Let us briefly consider stabilization in the lubrication
equation with an unstable diffusion perturbation,

vt =
(
vvx x x x x

)
x −

(
v

1
3 vx
)

x .

As we have seen, setting v = u3 yields the quartic operator F4 in the PDE

ut = 1
3

(
u D6

xu3 + 3ux D5
xu3
)− [uux x + 3(ux)

2
]
. (3.110)

We obtain solutions (3.106) on W2 = L{1, x2} with a slightly different DS{
C ′1 = 1

3 6! C1C3
3 − 2C1C3,

C ′3 = 1
3 7! C4

3 − 14C2
3 .

Taking initial values C3(0) < 0 and C1(0) > 0 yields C3(t) → − 1
2
√

30
and the

following stabilization of solutions on W2:

u(x, t) = (B − 1
2
√

30
x2
)
+ + O

(
e−14t/

√
30
)

as t →∞.

This shows that exact solutions on W2 belong to the stable manifold of unstable
stationary solutions of (3.110), and that stabilization is exponentially fast.

3.5 Quadratic models: trigonometric and exponential subspaces

3.5.1 Blow-up and stability on W3 for fourth-order TFEs

Consider thin film operators with an extra zero-order quadratic term,

ut = F[u] ≡ −uux x x x + βuxux x x + γ (ux x)
2 + δu2, (3.111)

where δ �= 0, so that F cannot preserve a nontrivial polynomial subspace.

Proposition 3.16 Operator F in (3.111) preserves:
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(i) W3 = L{1, cos x, sin x}, provided that

δ = 1− β − γ ; (3.112)

(ii) W3 = L{1, cosh x, sinh x}, provided that the same condition (3.112) holds;
(iii) W5 = L{1, cos x, sin x, cos 2x, sin 2x}, provided that{

10β + 8γ + 2δ = 17,
16β + 16γ + δ = 16.

(3.113)

In the case of (i), which will be analyzed later on in greater detail, we find that the
TFE (3.111) possesses solutions

u(x, t) = C1(t)+ C2(t) cos x + C3(t) sin x,{
C ′1 = δC2

1 − β
(
C2

2 + C2
3

)
,

C ′2,3 = (2δ − 1)C1C2,3.
(3.114)

In the case of (iii) where (3.113) holds, there exist even solutions

u(x, t) = C1(t)+ C2(t) cos x + C3(t) cos 2x,
C ′1 = δC2

1 + 1
2 (δ + γ − β − 1)C2

2 − 16βC2
3 ,

C ′2 = (2δ − 1)C1C2 − 10βC2C3,

C ′3 = (2δ − 16)C1C3 + 1
2 (δ + γ + β − 1)C2

2 .

It is not difficult to derive the DS on the full subspace W5 in (iii). A typical example
of the operator preserving W5 is (set δ = 1 in (3.113))

F[u] = −uux x x x + 15
4 uxux x x − 45

16 (ux x)
2 + u2.

Example 3.17 (Regional blow-up: stability on W3) We next consider the TFE
with source

ut = F[u] ≡ −(uux x x)x + 2u2. (3.115)

Let us see how the source term 2u2 affects evolution properties of the solutions. As a
physical motivation of the model, let us mention that such a reaction term in the TFE
can be associated with a condensation of the film substance from the surrounding
space (see the beginning of Section 3.2). The equation (3.115) is parabolic in the
positivity domain {u > 0}, so, in general, we have to deal with nonnegative solutions
(by taking the positive part, as usual) of the corresponding FBPs, with the functional
setting as used in Sections 3.2 and 3.3. These well-posedness phenomena are not
essential for the current stability analysis on the invariant subspace W3.

Consider solutions on W3 = L{1, cos x, sin x}, i.e.,

u(x, t) = C1(t)+ C2(t) cos x + C3(t) sin x . (3.116)

The corresponding DS (3.114) is{C ′1 = 2C2
1 + C2

2 + C2
3 ,

C ′2 = 3C1C2,
C ′3 = 3C1C3.

(3.117)
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First of all, the DS (3.117) admits solutions for which C1 = C2 and C3 = 0. Hence,
C1 satisfies the single ODE

C ′1 = 3C2
1 �⇒ C1(t) = 1

3
1

T−t , (3.118)

where T > 0 is the blow-up time of the explicit solution

uS(x, t) = 1
3

1
T−t (1+ cos x) ≡ 2

3
1

T−t cos2( x
2 ). (3.119)

Taking the central wave of cos2( x
2 ) and setting uS = 0 for |x | ≥ π yields a localized

blow-up solution satisfying, as t → T−,

uS(x, t)→∞ on the interval {|x | < π} and uS(±π, t) = 0.

The measure of this localization domain LS = 2π is called the fundamental length
of the regional blow-up. Note that (3.119) is a smooth solution satisfying conditions
(3.14) of zero contact angle and zero-flux on the stationary interfaces at x = ±π ,
with n = 1. The local well-posedness of this FBP can be checked via the von Mises
transformation, as done in Example 3.10, but we cannot guarantee that such a local
unique construction can be extended up to the blow-up time, i.e., the solution will
remain strictly monotone near the interfaces. Recall that the existence of the simi-
larity solution (3.119) was interpreted as the result of invariance of the 1D subspace
W+

1 = L{2
3 cos2( x

2 )} under the quadratic operator in (3.115). Another subspace is
W−

1 = L{2
3 sin2( x

2 )}. In the CP, solutions are oscillatory; see Section 3.7.
Returning to the DS on W3, let us emphasize another important aspect of evolution

on W3. We will show that all the blow-up orbits on W3 asymptotically converge to
the above similarity solution uS on W1; that means its asymptotic stability on W3.

Proposition 3.18 Let blow-up happen in the DS (3.117), i.e., C1(t) → +∞ as
t → T− < ∞. Then there exists a constant translational parameter a such that,
uniformly in x ∈ IR,

(T − t)u(x, t)→ 2
3 cos2( x+a

2 ) as t → T . (3.120)

Proof. Multiplying the second and the third ODE in (3.117) by C3 and C2, respec-
tively, and subtracting, one obtains(C3

C2

)′ = 0 �⇒ ∃ B ∈ IR such that C3 = BC2.

By (3.116), this gives a in (3.120), but we need to study the DS

C ′1 = 2C2
1 + (1+ B2)C2

2 , C ′2 = 3C1C2. (3.121)

Setting C2 = C1 P in the equivalent first-order ODE yields

dC2
dC1

= 3C1C2
2C2

1+(1+B2)C2
2

�⇒ C1
dP
dC1

= P−(1+B2)P3

2+(1+B2)P2 .

This is easily explicitly integrated, but, for our purpose, it suffices to note that∫ [2+(1+B2)P2] dP
P−(1+B2)P3 = ∫ dC1

C1
= ln C1 →∞

as t → T−. In this case, the denominator on the left-hand side tends to zero so
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P2 → 1
1+B2 and P → 1√

1+B2

(
or, which is similar, → − 1√

1+B2
; both equilibria

± 1√
1+B2

are stable
)
. Summing up, we have that, as t → T ,

u(x, t) ≈ C1

(
1+ 1√

1+B2
cos x + B√

1+B2
sin x

)
. (3.122)

Substituting C2 = C1 P ≈ C1√
1+B2

into the first equation in (3.121), we conclude

that C ′1 ≈ 3C2
1 , and hence,

C1(t) = 1
3

1
T−t (1+ o(1))

as in (3.118). Finally, (3.122) implies that (3.120) holds with tan a = −B .

Thus, a symmetrization of the orbits of the DS occurs near the blow-up time, and
solutions (3.116) converge as t → T− to the separate variables pattern (3.119) up
to translation in space. In the general treatment of such a stability, introducing the
rescaled function

u(x, t) = 1
T−t v(x, τ ), where τ = − ln(T − t)→+∞,

yields the fourth-order rescaled PDE

vτ = F∗[v] ≡ −(vvx x x)x + 2v2 − v. (3.123)

The asymptotic stability means that the rescaled solution tends to the similarity pro-
file, i.e., setting for simplicity a = 0,

v(x, τ )→ g(x) = 2
3 cos2( x

2 ) as τ →∞,

where g(x) is indeed a stationary solution of (3.123) satisfying

−(gg′′′)′ + 2g2 − g = 0.

In rescaled variables, the stability of the blow-up solution reduces to the standard
stabilization to stationary solutions in equation (3.123). For the fourth-order TFEs,
this problem is OPEN. For the related second-order parabolic PME

vτ = (vvx )x + 2v2 − v, (3.124)

such stability of blow-up similarity solutions and stabilization results are well known

key. (3.124) is a gradient system in L2-metric (multiplication by (v2)τ and integra-
tion over IR yields a Lyapunov function), while any potential and gradient properties
for (3.123) are unknown. Also, it is easy to show that the linearized operator

F ′∗[g] = − 1
3 (1+ cos x) d4

dx4 + 1
3 sin x d3

dx3 − 1
3 sin x d

dx +
( 1

3 + cos x
)
I

with the Dirichlet boundary conditions at x = ±π is not symmetric in L2
ρ(−π, π)

for any weight ρ ≥ 0, and hence, does not admit a self-adjoin extension. The point
spectrum of F ′∗[g] is UNKNOWN. We expect that some useful estimates of the spec-
trum can be obtained, at least, by a hybrid analytic-numerical approach to guarantee
linearized stability of the similarity profile g. As usual in blow-up stability problems,
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the positive eigenvalue λ = 1 with the eigenfunction g, which directly follows from
the PDE (3.123), must be excluded, since it corresponds to the shifting of the blow-
up time T that is fixed by scaling. Eigenvalue λ = 0 is related to shifting in x , and
this unstable mode can be forbidden by, say, symmetry about the origin.

On single point blow-up patterns on exponential W3. For the invariant subspace
W3 = L{1, cosh x, sinh x}, the DS (3.117) remains the same, but the blow-up behav-
ior is completely different. Namely, from the DS (3.121) with B = 0, we have

C2 = −C1 + 3
1
3 AC

1
3
1 + ... as C1 →+∞ (A > 0).

Estimating C1,2(t), this gives the blow-up behavior on W3 as t → T−,

u(x, t) = (T − t)− 1
3
(
A − 1

6
x2

(T−t)2/3 + ...
) = (T − t)− 1

3 g(ξ)+ ...

for small |x | > 0, where ξ = x/(T − t)1/3 is the rescaled spatial variable and
g(ξ) = (A − 1

6ξ
2) is the limit rescaled profile. Taking the positive part for proper

FBP setting, we observe two symmetric interfaces

s±(t) = ±
√

6A(T − t)
1
3 + ...

that collapse at the origin at t = T−. Such blow-up patterns with a lower blow-up
rate O((T − t)−1/3) are expected to be evolutionary unstable (an OPEN PROBLEM);
cf. the stable rate ∼ O((T − t)−1) in (3.120).

3.5.2 Sixth-order model with blow-up

It is easy to propose such a model, e.g.,

ut = (uux x x x x)x + 2u2,

with the same subspace W3 = L{1, cos x, sin x} and the same DS (3.117). As in Ex-
ample 3.17, there exist localized blow-up solutions on W2, and the similarity separate
variables solution is stable on W3. Note that W3 = L{1, cosh x, sinh x} is invariant
for the operator with absorption F[u] = (uux x x x x)x − 2u2.

3.5.3 Partially invariant subspaces (modules) for quadratic operators

These results have a counterpart in the class of quadratic second-order operators;
see Example 1.43. Let us introduce the following one-parameter family of quadratic
fourth-order operators:

Fβ [u] = −uux x x x + β(ux x)
2 + (1− β)uxux x x (β ∈ IR), (3.125)

which will be used later on in other applications.

Proposition 3.19 For any constant γ �= 0, operator (3.125) admits

W+
3 = L{1, cosh γ x, sinh γ x} and W−

3 = L{1, cos γ x, sin γ x}. (3.126)
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Recall that, for second-order operators in Section 1.4, similar different trigono-
metric and exponential subspaces occurred for the unique remarkable operator

F1[u] = uux x − (ux)
2
(= Frem[u]

)
. (3.127)

Its natural fourth-order analogy corresponds to β = 1 in (3.125),

F1[u] = −uux x x x + (ux x)
2. (3.128)

Using exponential functions. Continuing to detect other invariant properties, us-
ing Proposition 3.19, consider the following differential operator for functions u =
u(x, t) of two independent variables:

F̂[u] = ut − Fβ [u].

We choose solutions in the form of

u(x, t) = C1(t)+ C2(t)x + C3(t)eγ (t)x, (3.129)

with a function γ (t) to be specified. Our analysis here is similar to that shown in
Example 1.37, so for functions (3.129) we find

F̂[u] = C ′1 + C ′2x + [C ′3 + γ 4C1C3 − (1− β)γ 3C2C3
]
eγ x

+ (γ ′ + γ 4C2
)
C3xeγ x .

Then the ODE γ ′ = −γ 4C2 is a characterization of an invariant set M in the linear
subspace (a partially invariant module) W3, so that F̂ : M → W3.

Example 3.20 The fourth-order PDE

ut = −uux x x x + β(ux x)
2 + (1− β)uxux x x + µu + ν

admits solutions (3.129), where the coefficients satisfy the DS
C ′1 = µC1 + ν,
C ′2 = µC2,

C ′3 = −γ 4C1C3 + (1− β)γ 3C2C3 + µC3,

γ ′ = −γ 4C2.

The second and the fourth ODEs give all possible functions γ (t).

Using trigonometric functions. According to Proposition 3.19, we now deal with
operator (3.128). Then, the fifth-order operator

F̃ [u] = d
dx F1[u] ≡ −uux x x x x − uxux x x x + 2ux xux x x (3.130)

also preserves 3D trigonometric subspaces in (3.126) for arbitrary γ �= 0. The extra
differentiation in (3.130) is necessary to create a single ODE for γ (t). Recall that,
similarly, in Example 1.36 we used the quadratic operator of the RPJ equation as the
derivative of (3.127). Such invariant properties of the corresponding operator

F̂[u] = ut − F̃[u]

are listed in the following example.
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Example 3.21 The sixth-order semilinear parabolic equation

ut = εux x x x x x − uux x x x x − ux ux x x x + 2ux xux x x + µu + ν

possesses exact solutions

u(x, t) = C1(t)+ C2(t)x + C3(t) cos(γ (t)x)+ C4(t) sin(γ (t)x),
C ′1 = µC1 + ν,
C ′2 = µC2,

C ′3 = −εγ 6C3 − γ 5C1C4 − γ 4C2C3 + µC3,

C ′4 = −εγ 6C4 + γ 5C1C3 − γ 4C2C4 + µC4,

γ ′ = −γ 5C2.

3.6 2mth-order thin film operators and equations

We describe basic subspaces and extensions for 2mth-order TFEs, such as (3.16).

3.6.1 Basic polynomial subspaces

Consider the standard higher-order quadratic thin film operator

F[u] = (−1)m+1 Dx
(
u D2m−1

x u
)
.

Since M(l) = 2l − 2m, i.e., F[xl] ∼ x2l−2m , equating 2l − 2m = l yields the
following basic subspace:

W2m+1 = L{1, x, x2, ..., x2m}. (3.131)

This makes it possible to study various singularity formation phenomena, such as
finite time extinction, quenching, turning points, interface dynamics, etc., for the
corresponding TFE with absorption

ut = (−1)m+1 Dx
(
u D2m−1

x u
)− 1.

The corresponding exact solutions are given by

u(x, t) = [C1(t)+ C2(t)x + C3(t)x2 + ...+ C2m+1(t)x2m
]
+ ,

where {Ci (t)} solve a DS. These nonnegative functions are weak solutions of FBPs
with Stefan–Florin free-boundary conditions, which can be detected in a manner
similar to above lower-order models (cf. a simpler derivation below).

Example 3.22 (Cubic TFE) In the cubic equation

ut = F[u] ≡ (−1)m+1 D2m
x

(
au3 + bu2 + cu

)
the operator admits the basic subspace Wm+1 = L{1, x, x2, ..., xm}. Free-boundary
and asymptotic analysis of the extinction and quenching behavior in the correspond-
ing absorption model

ut = F[u]− 1 on Wm+1,

are similar to the fourth-order models in Section 3.2.
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3.6.2 Solutions with zero contact angle conditions

In order to obtain solutions v(x, t) satisfying m + 1 free-boundary conditions at the
interface, including m − 1 generalized zero contact angle conditions and a zero-flux
condition, i.e.,

v = vx = ... = Dm−1
x v = vD2m−1

x v = 0 at x = s(t), (3.132)

we need to introduce models with specific algebraic and invariant properties. As
above, we consider two types of such equations.

Example 3.23 (Strong absorption) The first model is the 2mth-order TFE with
strong absorption

vt = (−1)m+1 Dx
(
vD2m−1

x v
)− v

m−1
m . (3.133)

Setting v = um yields the operator Fm+1 of the algebraic homogenuity m + 1,

ut = Fm+1[u]− 1
m ≡ (−1)m+1

( 1
m u D2m

x um + ux D2m−1
x um

)− 1
m . (3.134)

Fm+1 admits W3 = L{1, x, x2}, and hence, the FBP (3.133), (3.132) has solutions

v(x, t) = um(x, t) = [C1(t)+ C3(t)x2
]m
+ , (3.135){C ′1 = (−1)m+1 (2m)!

m C1Cm
3 − 1

m ,

C ′3 = (−1)m+1 (2m+1)!
m Cm+1

3 .

The dynamic interface equation is readily derived from (3.134),

s′ = − 1
ux

ut = S[u] ≡ (−1)m D2m−1
x um + 1

mux
at x = s(t).

This equation is the main regularity condition for solvability of the degenerate PDE,
written in terms of the von Mises variable X = X (u, t) near the interface. The manip-
ulations become more technical for large m than those performed before for lower-
order equations. Exact solutions (3.135) describe singular phenomena of quenching,
extinction, and others.

On the Cauchy problem. For solutions of changing sign that exhibit the maximal
regularity, we consider the TFE with absorption

vt = (−1)m+1 Dx
(|v|D2m−1

x v
) − |v|− 1

m v in IR × IR+. (3.136)

As in Example 3.10, we use the TWs v(x, t) = f (x − λt) satisfying the ODE

−λ f ′ = (−1)m+1(| f | f (2m−1))′ − | f |− 1
m f,

or, neglecting the non-stationary, λ-dependent term for small f ,

(−1)m+1(| f | f (2m−1))′ − | f |− 1
m f = 0 for y > 0, f (0) = 0.

This gives the following oscillatory structure of solutions:

f (y) = yγ ϕ(s), s = ln y, where γ = 2m2

m+1 , (3.137)

which applies to many higher-order ODEs. Here the oscillatory component ϕ(s)
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solves a 2mth-order autonomous ODE. Such ODEs will be shown to admit oscil-
latory, periodic solutions that describe different types of multiple zeros of solutions
of the PDE (3.136); see Figure 3.5(a) as an illustration. The exponent γ in the enve-
lope in (3.137) is such that

γ > 2m − 2, so that f (y) = o(y2m−2) as y → 0.

Hence, maximal regularity solutions satisfy on the interface the conditions

f ′(0) = ... = f (2m−2)(0) = 0,

and are smoother than those of the FBP, which are O(ym), as (3.132) suggests.

Example 3.24 (Backward diffusion perturbation) The second model includes a
special divergent second-order operator generating an extra instability feature of the
thin film flow,

vt = (−1)m+1 Dx
(
vD2m−1

x v
) − (v 1

m vx
)

x , or

ut = (−1)m+1
( 1

m u D2m
x um + ux D2m−1

x um
)− [uux x + m(ux)

2
]

for v = um . For solutions (3.135), the following DS is obtained:{C ′1 = (−1)m+1 (2m)!
m C1Cm

3 − 2C1C3,

C ′3 = (−1)m+1 (2m+1)!
m Cm+1

3 − 2(2m + 1)C2
3 .

It follows from the second ODE that, given an initial value C3(0) < 0, the following
holds: C3(t)→ −a = −[(2m−1)!]−1/(m−1) as t →∞. This means the exponential
stabilization to unstable stationary solutions,

u(x, t) = (B − ax2)+ + O(e−γmt ), with γm = (m − 1)(2m + 1)a,

where B > 0 is a constant, depending on the initial data.

3.6.3 Extensions of polynomial subspaces

Consider a generalization of the thin film operator,

F[u] = (−1)m+1
(
u D2m

x u + βux D2m−1
x u

)
(β ∈ IR). (3.138)

Here we keep two monomial operators of the same total differential order, where
i + j = k, with k = 2m; cf. the general quadratic operator (1.86). The next result is
proved directly.

Proposition 3.25 Operator (3.138) preserves the following extensions of the sub-
space (3.131):

W2m+2 = L{1, x, ..., x2m, x2m+1} iff β = β1 = − 2
2m+1 ; (3.139)

W2m+3 = L{1, x, ..., x2m, x2m+1, x2m+2} iff β = β2 = − 3
2m+2 . (3.140)

Further extensions of polynomial subspaces are not possible for operator (3.138),
but can be obtained for other similar operators containing extra monomials of the
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same exponent M(l) with more free parameters β, γ , etc. (see (3.142) below). Con-
structing the corresponding exact solutions leads to higher-order DSs. In the case of
(3.140), the DS is simplified if we take only even polynomials by introducing

W even
m+2 = L{1, x2, ..., x2m, x2m+2} (3.141)

that is also invariant under operator (3.138) for β = β2. Such subspaces are sufficient
for studying most singularity, free boundary, and asymptotic phenomena for the TFE
with symmetric initial data. Using subspaces of even functions, we formulate the
following pretty general observation that is convenient for future computations and
was observed before in particular cases.

Proposition 3.26 If subspace (3.141) is invariant under a polynomial quadratic op-
erator with constant coefficients (again, in each monomial, i + j = k = 2m)

F[u] = (−1)m+1
(
u D2m

x u + βux D2m−1
x u + γ ux x D2m−2

x u + ...
)

(3.142)

for some β = β̃2 depending on γ and other parameters. Then subspace in (3.140) is
also invariant under F .

Proof. Indeed, taking

u = C1 + C3x2 + ...+ C2m+1x2m + C2m+3x2m+2 (3.143)

and controlling the higher-degree term only yields

F[u] = (β − β̃2)Am(C2m+3)
2x2m+4 + ... , (3.144)

where Am �= 0 is a constant. The second (omitted) term contains x2m+2 ∈ W even
m+2.

Hence, always F[u] ∈ W even
m+2 iff β = β̃2. Taking now u from subspace (3.140),

u = C2m+3x2m+2 + C2m+2x2m+1 + ... , where C2m+3 �= 0

(C2m+3 = 0 is easy), and performing the translation x �→ x − a gives

u = C2m+3x2m+2 + [C2m+2 − (2m + 2)aC2m+3
]
x2m+1 + [·]x2m + ... .

Choose now a such that C2m+2 − (2m + 2)aC2m+3 = 0 to vanish the second co-
efficient. Then we get that the last two terms contain x2m+2 and x2m as in (3.143).
Hence, the argument for even degree polynomials applies, so the term with x2m+3

does not appear in F[u].

Similarly, a more general result holds, which applies to arbitrary quadratic opera-
tors with monomials of the same total order such as (1.86).

Lemma 3.27 If operator (3.142) admits W (1)
2m+2 = L{1, x, ..., x2m−1, x2m, x2m+2}

(a subspace with “1-gap”), then it admits W2m+3 = L{1, x, ..., x2m, x2m+1, x2m+2}
(the full subspace).

Remark 3.28 (Open problem: gap completing) The result is true for the “2-gap”
subspace W (2)

2m+1 = L{1, x, ..., x2m−3, x2m−2, x2m, x2m+2}. As an OPEN PROBLEM,
taking the “(m+1)-gap” subspace of even polynomials (3.141), we conjecture that if
F : W even

m+2 → W even
m+2, then F : W2m+3 → W2m+3. (For cubic operators, this is not

true; see Proposition 3.5.) Invariant subspaces with more general distribution of gaps
are also unclear.
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3.6.4 Subspaces of irrational functions: dipole-type solutions

The origin of such subspaces and exact solutions is the quadratic PME

ut = F[u] ≡ (u2)x x in IR × IR+, (3.145)

possessing the self-similar dipole Barenblatt–Zel’dovich solution [28]

u(x, t) = t− 5
8 x

1
2 1

12

(
A − t− 3

8 x
3
2
)
+ for x ≥ 0 (A > 0), (3.146)

which is extended for x < 0 as an odd function. The solution has the fixed point at
x = 0, where u(0, t) ≡ 0, and the graph of u(x, t) has a typical dipole form in x . The
corresponding initial function at t = 0 is proportional to δ′(x), the weak derivative
of Dirac’s delta. Actually, this is a solution on the subspace

W2 = L{x
1
2 , x2}

that is invariant under the quadratic operator F in (3.145). At the same time, it is a
standard similarity solution induced by a group of scaling transformations.

Let us show that such subspaces and solutions exist for higher-order parabolic
PDEs. Consider the 2mth-order quadratic operator

F[u] = (−1)m+1 D2m
x

(
u2
)
. (3.147)

Proposition 3.29 Operator (3.147) preserves the (m+1)-dimensional subspace

Wm+1 = L{x
1
2 , x

3
2 , ..., x

2m−3
2 , x

2m−1
2 , x2m}.

Proof. It follows that, for any u ∈ Wm+1,

u2 ∈ L{x, x2, ..., x2m−1, x2m+ 1
2 , ..., x2m+ 2m−1

2 , x4m},
which yields D2m

x (u2) ∈ Wm+1.

Example 3.30 The fourth-order equation

ut = −(u2)x x x x

is parabolic in the positivity domain {u > 0}. The corresponding solutions are

u(x, t) = C1(t)x
1
2 + C2(t)x

3
2 + C3(t)x

4 ∈ W3 for t ≥ 0,
C ′1 = − 945

8 C1C3,

C ′2 = − 3465
8 C2C3,

C ′3 = −1680 C2
3 .

Solving the DS yields the explicit formula

u(x, t) = (At− 9
128 x

1
2 + Bt− 33

128 x
3
2 + 1

1680 t x4
)
+. (3.148)

For different values of A and B , (3.148) describes a dipole-like singularity at t = 0,
extinction/quenching phenomena, and the interface propagation. A proper setting of
the corresponding Stefan–Florin FBP with positive solutions can be also revealed.
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3.6.5 Trigonometric subspace

A typical example is the following TFE with source possessing blow-up solutions:

ut = F[u] ≡ (−1)m+1 Dx
(
u D2m−1

x u
)+ 2u2. (3.149)

Proposition 3.31 Operator F in (3.149) admits W3 = L{1, cos x, sin x}.
Equation (3.149) on W3 is a third-order DS that describes blow-up of 2π-periodic

solutions. As shown in Example 3.17, the 2D restrictions L{1, cos x} and L{1, sin x}
are also invariant and generate simpler DSs on which blow-up similarity solutions
are asymptotically stable.

3.7 Oscillatory, changing sign behavior in the Cauchy problem

For a moment we digress from invariant subspaces for TFEs and discuss some as-
pects concerning general solutions of changing sign of the Cauchy problem.

Source-type solutions of the TFE. Consider the signed 2mth-order TFE with the
higher-order term only,

ut = (−1)m+1 Dx
(|u|n D2m−1

x u
)

in IR × IR+, (3.150)

where n > 0 is a parameter. The fundamental source-type solution has the similarity
form

b(x, t) = t−βg(ξ), ξ = x
tβ
, where β = 1

n+2m

and, on integration once, g solves the (2m − 1)th-order ODE

(−1)m+1|g|ng(2m−1) + βgξ = 0 in IR. (3.151)

The unit mass condition is also imposed∫
g(ξ) dξ = 1 (3.152)

and can always be achieved by scaling. Another usual normalization condition is
g(0) = 1 that will be used sometimes later on. For the Cauchy problem, we are
looking for solutions of the maximal regularity, which can be admitted by the ODE
(3.151). We pose m − 1 symmetry boundary conditions at the origin,

g′(0) = g′′′(0) = ... = g(2m−3)(0) = 0 (g(0) > 0). (3.153)

For m = 2, rigorous mathematical results on existence and uniqueness for the prob-
lem (3.151), (3.152) are known for n ∈ (0, 1]; see [174] where Bernis–McLeod
approach [47] was used. For other n and m ≥ 3, we rely on analytic-numerical
evidence to be presented.

Let g be supported on the interval [−ξ0, ξ0]. We can also use normalization ξ0 = 1
instead of (3.152). At the right-hand interface, for ξ ≈ ξ−0 , we then introduce the
oscillatory component ϕ by

g(ξ) = (ξ0 − ξ)γ ϕ(s), s = ln(ξ0 − ξ), where γ = 2m−1
n . (3.154)

Setting
ξ = ξ0 − es for s & −1
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and omitting the exponentially small non-autonomous perturbation yields that ϕ(s)
satisfies

P2m−1[ϕ] = c0|ϕ|−nϕ in IR, where c0 = βξ0(−1)m+1. (3.155)

Here, {Pk[ϕ], k ≥ 0} denote operators that are constructed by the iteration

Pk+1[ϕ] = (Pk[ϕ])′ + (γ − k)Pk[ϕ] for k = 0, 1, ... , P0[ϕ] = ϕ. (3.156)

For instance, for m = 2
(
γ = 3

n

)
and m = 3

(
γ = 5

n

)
, respectively,

P3[ϕ] = ϕ ′′′ + 3(γ − 1)ϕ′′ + (3γ 2 − 6γ + 2)ϕ′

+ γ (γ − 1)(γ − 2)ϕ and

P5[ϕ] = ϕ(5) + 5(γ − 2)ϕ(4) + 5(2γ 2 − 8γ + 7)ϕ′′′

+ 5(γ − 2)(2γ 2 − 8γ + 5)ϕ′′ + (5γ 4 − 40γ 3 + 105γ 2

− 100γ + 24)ϕ′ + γ (γ − 1)(γ − 2)(γ − 3)(γ − 4)ϕ.

(3.157)

Traveling waves. For TWs u(x, t) = f (y), with y = x − λt , the ODE is easier

(−1)m+1| f |n f (2m−1) + λ f = 0 for y > 0, f (0) = 0, (3.158)

where the left-hand interface is at y = 0. The oscillatory component is given by

f (y) = yγ ϕ(s), s = ln y, where γ = 2m−1
n , (3.159)

where ϕ solves the ODE (3.155) with c0 = (−1)mλ.

As before, we are mainly interested in periodic solutions ϕ(s) of ODEs (3.155),
which, according to (3.154), determine typical (and sometimes generic) oscillatory
behavior of solutions near interfaces, as shown in Figure 3.5(a). Existence and mul-
tiplicity of periodic solutions of dynamical systems in IRn is a classical area of appli-
cations of topological and geometric methods of nonlinear analysis, such as rotations
of vector fields and index-degree theory; see Krasnosel’skii–Zabreiko [355, Sect. 13,
14]. Another mathematical direction is classical branching theory; see Vainberg–
Trenogin [565, Ch. 6]. In our case, an n-branching approach may be effective, since
for n = 0, the unique solution of the problem (3.151), (3.152) is indeed the rescaled
kernel of the fundamental solution. A mathematical justification of such a branching
is a hard OPEN PROBLEM. We also refer to [569, 399, 336] as a guide to modern
theory of periodic solutions of higher-order nonlinear ODEs. In general, for large
m, equations (3.155) are difficult to study, and especially as the main concern is the
number of their different periodic solutions, as well as the identification of the most
stable solution that describes a general structure and complexity of multiple zeros of
solutions near interfaces. We will also rely on careful numerical evidence on exis-
tence, uniqueness and stability of periodic solutions. It is natural to begin recalling
the properties of the linear PDE (3.150) with n = 0, which explain the oscillatory
patterns in the quasilinear case for small n > 0.

Oscillations in the linear equations. For n = 0 in (3.150), the linear polyharmonic
PDE is obtained,

ut = (−1)m+1 D2m
x u in IR × IR+,
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whose oscillatory properties are described by its fundamental solution

b(x, t) = t−
1

2m g(ξ), ξ = x

t1/2m
, (3.160)

where g is the unique exponentially decaying solution of the ODE

(−1)m+1g(2m) + 1
2m g′ξ + 1

2m g = 0 in IR,
∫

g = 1. (3.161)

See Eidelman’s classic book [164, Ch. 1] for the existence and sharp estimates of
fundamental solutions of higher-order linear parabolic operators. By substituting, it
is not hard to check that the behavior as ξ →+∞ of solutions of (3.161) is given by

g(ξ) ∼ ξ−µeaξα
, with α = 2m

2m−1 and µ = m−1
2m−1 , (3.162)

where a is the root with the maximal Re a < 0 of the characteristic equation

(−1)m(αa)2m−1 = 1
2m . (3.163)

Estimating the number of complex conjugate pairs of roots, a, and their real parts
yields the following useful conclusion.

Proposition 3.32 (i) The asymptotic representation (3.162) of the rescaled kernel
g(ξ) of the fundamental solution (3.160) can be represented in terms of a quasi-
periodic function containing not more than ([·] denotes the integer part)[m

2

]
fundamental frequencies. (3.164)

(ii) There exists a constant D > 0 such that

|g(ξ)| ≤ De−d |ξ |α in IR, where d = 2m−1
(2m)α

∣∣ cos
( mπ

2m−1

)∣∣.
It follows from (3.164) that the total asymptotic linear bundle of exponentially

decaying solutions (3.162) satisfies

the bundle is m-dimensional. (3.165)

For m odd, this includes the 1D non-oscillatory bundle, corresponding to the real
negative root of (3.163)

a0 = − 2m−1
(2m)α .

Oscillatory periodic patterns for m = 2 and a heteroclinic bifurcation. Let us
begin with the simplest case, m = 2, where the third-order ODE (3.155) takes the
form (here c0 = −1 and γ = 3

n )

P3[ϕ] ≡ ϕ ′′′ + 3(γ − 1)ϕ′′ + (3γ 2 − 6γ + 2)ϕ′

+ γ (γ − 1)(γ − 2)ϕ = − ϕ
|ϕ|n .

(3.166)

Numerical experiments (Figure 3.6) show that (3.166) admits a unique stable peri-
odic solution for all n ∈ (0, nh), where

nh = 1.758665... (m = 2)

is a critical heteroclinic bifurcation exponent.

The exponent nh plays an important role and shows the precise parameter range
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Figure 3.6 Stable periodic behavior of (3.166), m = 2, for n = 1 (a) and n = 3
2 (b).

of n for which all the ODE profiles near interfaces are oscillatory (this may also be
key for the corresponding PDE). Numerical results reveal a non-local heteroclinic
bifurcation at n = nh associated with two unstable equilibria of (3.166)

ϕ± = ±
[− 1

γ (γ−1)(γ−2)

] 1
n for n ∈ ( 3

2 , 3
)
.

Note that (3.159) with ϕ(s) ≡ ϕ+ yields a non-oscillatory behavior; see the dashed
line in Figure 3.5(a). Figure 3.7 shows a typical “heteroclinic” deformation of peri-
odic patterns as n → n−h , where, in order to reveal the widest periodic pattern (the
bold line), we need to take n = 1.758664976837300 (where not all the 15 decimals
are reliable). This is a standard scenario of homoclinic-heteroclinic bifurcations of
periodic solutions in ODEs; see Perko [460, Ch. 4]. A rigorous justification of such
bifurcations is difficult and is an OPEN PROBLEM, especially for higher-order equa-
tions with m = 4, 6, ... to be considered below.

For n > nh, the behavior of solutions of the ODE (3.166) becomes exponentially
unstable and oscillatory or changing sign patterns are not observed. It is likely that
precisely above n = nh, the ODE (and, to some extent, the corresponding PDE) loses
its natural similarities with the linear equation for n = 0, i.e., some local properties
of solutions dramatically change at n = nh.

m ≥ 3: unstable periodic behavior for odd m and stable for even. In numerical
experiments, we have observed a single stable oscillatory behavior for even m ≥ 2
and an unstable orbit for odd m. Figure 3.8(a) shows solutions of the ODE (3.155) for
m = 3 and stability of equilibria ϕ±. In this case, the unstable periodic solution lies
in between those two stable flows of orbits tending to ϕ+ and ϕ− as (b) explains. It
turns out that such an unstable periodic solution exists until the “heteroclinic” value

n̂h = 1.909... (m = 3).

In view of its unstability, the corresponding analytical and numerical techniques be-
come more involved; see [175] for extra details.

For m = 4, i.e., for the eighth-order TFE, the solutions ϕ(s) approach a stable
periodic pattern; see Figure 3.9. The periodic solution is easily detected above the
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Figure 3.7 Formation of a heteroclinic connection ϕ+ �→ ϕ− for (3.166) as n → n−h .
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Figure 3.8 Solutions of (3.155) for m = 3 and n = 1: stability of constant equilib-
ria ϕ± (a) and the unstable periodic behavior in between (b), ϕ(0) = 0.04, ϕ′′(0) =
−0.0176896526588... .

first critical exponent n1 = 7
6 until the corresponding heteroclinic bifurcation at

nh = 1.215053... (m = 4); (3.167)

see Figure 3.10. For n > nh, the behavior becomes more and more unstable. Smaller
values of n are discussed below.

For m = 5, the unstable periodic behavior is shown in Figure 3.11. Cauchy data
for the periodic motion are: ϕ(0) = 10−7, ϕ′′(0) = 4.838491256× 10−7 for n = 1
in Figure (a). In Figure (b), we have ϕ ′′(0) = 1.942533642× 10−6 for n = 9

8 . The
rest of the derivatives in both Figures (a) and (b) are equal to zero, ϕ′(0) = ϕ ′′′(0) =
... = ϕ(8)(0) = 0.

According to these results checked numerically for several even and odd m, let us
state the following:
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Figure 3.9 Stable periodic behavior in the ODE (3.155), m = 4, for n = 1 (a) and n = 7
6 (b).
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Figure 3.10 (a) Periodic structures of (3.155), m = 4, for n close to n−h in (3.167); (b) de-
scribes formation of a heteroclinic connection (the wave moves to the right as n increases).
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Figure 3.11 Unstable periodic behavior in (3.155), m = 5, for n = 1 (a) and n = 9
8 (b).
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Conjecture 3.1 (“On periodic solutions”) For any n ∈ (0, 1], the ODE (3.155)
admits a stable periodic solution for even m = 2, 4, ... and an unstable one for for
odd m = 3, 5, ... .

Thus, for even m, stable periodic solutions, existence of which for small n > 0
can be associated with continuity in n, persist for all n ∈ (0, 1]. Moreover, based on
numerical evidence, we also claim that they still exist for

n ∈ (1, nh), with some nh ∈
( 2m−1

2m−2 ,
2m−1
2m−3

) = (n1, n2),

where n = nh is a heteroclinic bifurcation point for the corresponding (2m-1)th-
order ODE, as explained above. Such a non-oscillatory character of interfaces for
n > nh suggests that, somewhere in this parameter range, sign-preserving proper-
ties of special classes of solutions may exist leading to nonnegative solutions of the
Cauchy problem for sufficiently large n. This needs extra investigation and is an
OPEN PROBLEM.

Extra scaling as n→ 0. The above figures show that the oscillatory behavior is not
directly detectable for small n > 0 and is numerically invisible if n < 1

2 . To revealing
the limit oscillatory behavior as n → 0, where solutions of changing sign are of the
order

max |ϕ(s)| ∼ A(n) ≡ ( n
2m−1

) 2m−1
n for small n > 0,

an extra rescaling in equation (3.155) is necessary,

ϕ(s) = Aψ(η), η = s
a , where a(n) = A

n
2m−1 = n

2m−1 . (3.168)

Then, for small n > 0, function ψ(η) solves the ODE with Euler’s differential oper-
ator, which can be written in the form of

e−η(ψeη)(2m−1) − c0
ψ
|ψ |n = 0 (3.169)

(as usual, all higher-order perturbations have been omitted). This is an easier ODE
than the original one (3.155), and contains the binomial coefficients. It turns out that
(3.169) possesses similar periodic orbits.

Numerical analysis gives solid evidence of the existence of stable periodic motion
for m = 2 in Figure 3.12, and for m = 4 in Figure 3.13, where the ODEs have the
form

m = 2 : ψ ′′′ + 3ψ ′′ + 3ψ ′ + ψ + ψ
|ψ |n = 0, and

ψ(7) + 7ψ(6) + 21ψ(5) + 35ψ(4) + 35ψ ′′′ + 21ψ ′′ + 7ψ ′ + ψ + ψ
|ψ |n = 0

for m = 4 (we take c0 = −1). Already for n = 0.1 in Figure 3.13(a), oscillations are
extremely small, since, by (3.168),

max |ϕ| ∼ 10−130 (n = 0.1, m = 4).

For n = 0.03 in (b), max |ϕ| ∼ 10−460.
For m = 3, the corresponding rescaled ODE

m = 3 : ψ(5) + 5ψ(4) + 10ψ ′′′ + 10ψ ′′ + 5ψ ′ + ψ − ψ
|ψ |n = 0 (3.170)

admits an unstable periodic solution for small n > 0; see Figure 3.14(a) for n = 1
2
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Figure 3.12 Stable periodic behavior of (3.169), m = 2, for n = 1
2 (a) and n = 0.16 (b).
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Figure 3.13 Oscillatory solutions of (3.169), m = 4, for n = 0.1 (a) and n = 0.03 (b).

(the Cauchy data to reveal the periodic motion are ϕ(0) = 2 × 10−5, ϕ ′′(0) =
−9.9850972244× 10−5, other derivatives are equal to zero). Figure 3.14(b) shows
the case n = 0.2, where ϕ(0) = 5 × 10−10, ϕ′′(0) = −1.4296767× 10−9, and the
periodic behavior is still not clearly seen. More details on such solutions and passage
to the limit n → 0+ can be found in [175].
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Figure 3.14 Unstable periodic behavior for (3.170) for n = 1
2 (a) and n = 0.2 (b).
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Figure 3.15 Similarity profiles g(ξ) satisfying (3.151), m = 2, for n = 1 and n = 0. The
dashed lines denote the first FBP profiles, g1(ζ ) and g2(ζ ).

On existence of the fundamental similarity solution: dimension of linear bun-
dles. For m = 2, existence and uniqueness of the fundamental profile g satisfying
(3.151) are proved for n ∈ (0, 1), [174, Sect. 9]. For m ≥ 3, such results are un-
known. For using a shooting strategy from the interface point ξ = ξ0 in (3.154)
(where, e.g., ξ0 = 1 is fixed by scaling invariance of the ODE) to the origin to match
m − 1 symmetry conditions, one needs to have an (m-1)-parametric stability bundle
about the periodic solution ϕ(s). According to (3.165) for n = 0, by continuity in
n, this bundle is expected to be precisely (m-1)-dimensional for small n > 0. Recall
that ξ0 = 1, i.e., one parameter is fixed. This shows existence of g(ξ), in view of
extremely good matching topology of the oscillatory bundle. Uniqueness is OPEN.
For n ∈ (0, nh), we need to check the spectrum (the number of eigenvalues with
positive real parts) of the singular, non self-adjoint linearized operator with periodic
coefficients in equation (3.155),

P2m−1[ϕ]− (1− n)c0|ϕ|−n I.

This is an OPEN PROBLEM.
In Figure 3.15, we present similarity profiles of the CP given by the ODE (3.151),

m = 2, for n = 1 and, for comparison, the fundamental rescaled kernel for n = 0.
Corresponding Cauchy data are g(0) = 1 and g′′(0) = −0.3696375... for n = 1, and
g′′(0) = −0.337989123... for n = 0. Here, g1,2(ζ ) are the first similarity profiles of
the zero contact angle, zero-flux FBP.

On negative exponents n. By continuity in n → 0, it can be expected that oscilla-
tory behavior of solutions of the Cauchy problem for TFEs persists for n < 0. The
representation (3.159) suits this case with the interface at y = +∞, where the oscil-
latory component ϕ solves the same ODE (3.155). Unlike in the case where n > 0,
for n < 0, the changing sign character of such solutions is difficult to detect, since
the ODEs involved exhibit extra blow-up singularities in finite y or s. This is easily
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seen from (3.158), written in the form of

f (2m−1) = c0| f ||n| f
(
c0 = λ(−1)m

)
,

where the right-hand side is now superlinear for f � 1, and, hence, there exists
monotone or oscillatory (always if c0 < 0) blow-up in finite y. Moreover, typi-
cally an oscillatory behavior is not available, so that solutions of changing sign are
constructed by asymptotic expansion as n → 0− and extension in n; such WKBJ
asymptotics are explained in [174, Sect. 7.6] for the TFEs with n → 0+.

3.8 Invariant subspaces in Kuramoto-Sivashinsky type models

The Kuramoto–Sivashinsky (KS) equation

ut = −ux x x x − ux x + (ux)
2 (3.171)

is a semilinear fourth-order parabolic PDE with a quadratic Hamilton–Jacobi term
(ux)

2. It was originally introduced as a model that describes flame front propaga-
tion in turbulent flows of gaseous combustible mixtures [526], and later it found
other applications in many areas of physics, including 2D turbulence; see Remarks.
The modified Kuramoto–Sivashinsky (mKS) equation contains an extra second-order
quadratic operator,

ut = F[u] ≡ −ux x x x − ux x + (1− λ)(ux )
2 + λ(ux x)

2, (3.172)

where λ ∈ [0, 1] is a constant (λ = 0 leads to (3.171)), and describes dynamical
properties of hyper-cooled melt.

Example 3.33 (Instability) Let us begin with simple instability phenomena for the
mKS equation, which occur on the invariant subspace of periodic functions.

Proposition 3.34 For any λ ∈ (0, 1), the quadratic operator in (3.172) admits sub-

space W3 = L{1, cos γ x, sin γ x}, where γ =
√

1−λ
λ .

Consider solutions in the subspace of cos-functions,

u(x, t) = C1(t)+ C2(t) cos γ x,{
C ′1 = 1

λ (1− λ)2C2
2 ,

C ′2 = 1
λ2 (1− λ)(2λ− 1)C2.

It follows from the second ODE that λ > 1
2 leads to the exponential instability, while

for λ = 1
2 it follows that C1(t) = O(t) for t � 1. On the other hand, for λ < 1

2 ,
C2(t) is exponentially small as t → ∞, and C1(t) is bounded, thus describing the
stability of the origin.

Let us introduce two models, exhibiting finite-time singularities.

Example 3.35 (Blow-up) Consider the KS equation with source

ut = −ux x x x + (ux)
2 + u2, (3.173)
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where the reaction term u2 is added, and the linear second-order term−ux x (not im-
portant for blow-up solutions) is ignored. Invariant subspaces of first-order quadratic
operators, such as (ux)

2 + u2 in (3.173), have been described in Section 1.4. Take
W3 = L{1, cos x, sin x} on which the solutions u = C1 + C2 cos x + C3 sin x are
driven by the DS { C ′1 = C2

1 + C2
2 + C2

3 ,
C ′2 = 2C1C2 − C2,
C ′3 = 2C1C3 − C3.

(3.174)

This quadratic system is similar to those studied for the TFEs in Example 3.17.
Though the last two ODEs contain extra linear terms, the proof of Proposition 3.18
remains unchanged. This gives a typical stability result on the subspace W3, where
all the blow-up solutions converge to the similarity pattern belonging to the 1D sub-
spaces W±

1 . It is curious that the whole linear operator −ux x x x − ux x from (3.171)
vanishes identically on W3, the resulting DS does not contain any linear terms on
the right-hand side, simplifying stability analysis. The precise asymptotic behavior
as t → T for the DS (3.174) gives important properties of blow-up of 2π-periodic
solutions of (3.173); see references in the Remarks.

Example 3.36 (Extinction) In order to exhibit extinction phenomena, let us choose
the KS equation with absorption

ut = −ux x x x + (ux x)
2 − 1. (3.175)

We restrict our attention to a lower-dimensional subspace W3 = L{1, x2, x4} (which
is extended to W5 by adding extra basic functions x and x3), and consider the evolu-
tion of the solutions u(x, t) = C1(t)+ C2(t)x2 + C3(t)x4 with the DS

C ′1 = 4C2
2 − 24C3 − 1,

C ′2 = 48C2C3,

C ′3 = 144C2
3 .

This system can be integrated and studied in a manner similar to that considered
in Section 3.2. The positive solutions satisfy the corresponding FBP which can be
studied by the von Mises transformation (see Example 3.10). The related singularity
formation phenomena for the uniformly parabolic PDE (3.175) are not as interesting
as those for the degenerate TFEs. On the other hand, the presence in the PDE of
the non-Lipschitz absorption term −1, which is actually |u|p−1u for p = 0 (the
Heaviside function), makes the problem rather consistent, especially in the Cauchy
problem to be discussed next.

Finite propagation and oscillatory patterns in the Cauchy problem. Considering
(3.175) in IR × IR+, we face the question of the maximal regularity of solutions at
the interfaces. We present the signed version of this PDE for solutions of changing
sign,

ut = −ux x x x + (ux x)
2 − sign u.

As for TFEs with absorption, using the TWs u(x, t) = f (y), y = x − λt , yields

−λ f ′ = − f (4) + ( f ′′)2 − sign f for y > 0, f (0) = 0.
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Figure 3.16 The stable periodic behavior in (3.177).

Using our TFE experience, we keep two leading terms,

f (4) + sign f = 0,

so the oscillatory component ϕ in the solution representation

f (y) = y4ϕ(s), where s = ln y, (3.176)

satisfies the autonomous fourth-order ODE

ϕ(4) + 10ϕ′′′ + 35ϕ′′ + 50ϕ′ + 24ϕ + signϕ = 0. (3.177)

Existence and uniqueness of periodic solutions are OPEN.

Conjecture 3.2 The ODE (3.177) has a unique nontrivial periodic solution ϕ(s)
which is asymptotically stable as s →+∞.

Figure 3.16 shows this stable periodic motion obtained for different initial data. We
expect that, according to (3.176), such TW patterns describe the generic behavior of
solutions near interfaces in the CP.

Example 3.37 (Blow-up and interfaces in a quasilinear KS-type equation) Fi-
nally, let us present a simple quasilinear KS-type equation, which allows us to de-
scribe some crucial nonlinear phenomena by using simple mathematical tools. Con-
sider the following quasilinear fourth-order parabolic equation:

ut = F[u] ≡ u(−ux x x x + u), (3.178)

which is initially formulated for nonnegative solutions. Clearly, the quadratic opera-
tor F preserves

W5 = L{1, cos x, sin x, cosh x, sinh x},
with simple blow-up dynamics. We restrict our attention to blow-up solutions in
separate variables

u(x, t) = 1
T−t θ(x), (3.179)
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where θ solves the linear ODE

−θ(4) + θ = 1. (3.180)

Zero contact angle FBP. Let us pose for (3.178) the FBP with the zero contact angle,

u = ux = ux x = 0 at the interface at x = s(t), (3.181)

and bounded compactly supported initial data u0(x) ≥ 0. The well-posedness of this

by exploiting a regularization in the degenerate term −uux x x x , e.g., by replacing

u �→ ε + |u| (ε > 0),

in the PDE (3.178) and studying the convergence of the sequence {uε(x, t)} of so-
lutions of such uniformly parabolic equations. (It is likely that more “singular” as
ε → 0+ approximation is necessary to catch this FBP; such hard questions are not
discussed here and we refer to [44], where the dependence of solutions of TFEs on
approximations of the degenerate coefficient was studied first.) Further references
are given in the Remarks. The correspondence of the regularization to prescribed
free-boundary conditions is a difficult asymptotic problem that, in general, is OPEN

for most degenerate parabolic PDEs, including the present one. The analytic regular-
ization

u �→ √
ε2 + u2

is expected to induce, as ε → 0, the solutions of the Cauchy problem; see below.
Thus, looking for even solutions of the ODE (3.180),

θ(x) = 1+ C1 cos x + C2 cosh x ∈ W5,

and assuming that x0 > 0 is the corresponding interface point, where (3.181) are
valid, we obtain the algebraic system{ 1+ C1 cos x0 + C2 cosh x0 = 0,

−C1 sin x0 + C2 sinh x0 = 0,
−C1 cos x0 + C2 cosh x0 = 0.

(3.182)

The last two equations give a single transcendental equation for x0,

tan x0 = tanh x0,

that possesses a countable set of roots {x0k} such that

x0k = π
(
k + 1

4

)+ ... for k � 1.

Solving the rest of equations in (3.182) yields the sequence of solutions

θk(x) = 1− 1
2 cos x0k

cos x − 1
2 cosh x0k

cosh x for |x | < x0k .

These functions are strictly positive on (−x0k, x0k), which is easily seen for k � 1,
and the oscillatory patterns satisfy

θk(x)→ θ±∞(x) ≡ 1+ (−1)k√
2

cos x > 0 as k →∞ (3.183)

uniformly on compact subsets (θ+ corresponds to even k and θ− to odd). There
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exists a countable set {uk(x, t)} of standing wave blow-up solutions (3.179) of the
FBP localized in bounded intervals (−x0k, x0k).

On solutions of the Cauchy problem. Consider now the signed PDE

ut = |u|(−ux x x x + u) in IR × IR+, (3.184)

with bounded compactly supported initial data u0(x) in IR. Then the separate-variable
solutions (3.179) yield the ODE

−θ(4) + θ = sign θ. (3.185)

Evidently, there exist strictly positive solutions θ±∞(x) given in (3.183), but we are
interested in compactly supported patterns.

It follows from (3.185) that, in the positivity and negativity domains respectively,
the profiles are

θ±(x) = ±1+ C±1 cos x + C±2 sin x + C±3 cosh x + C±4 sinh x .

Despite such a simple form of profiles, the matching assumes four conditions of
continuity (here [·] denote the jumps of functions at zeros)

[θ ] = [θ ′] = [θ ′′] = [θ ′′′] = 0,

so that the construction of changing sign solutions of the FBP leads to algebraic
problems for the eight expansion coefficients {C±k } at each zero point x = x0k . This
is an OPEN PROBLEM that can be tackled numerically.

The existence of changing sign solutions of the ODE (3.185) for both the FBP
and the CP problems is connected with general oscillatory properties of solutions of
the PDE (3.184). It is convenient to describe the oscillatory character of solutions by
TWs u(x, t) = f (x − λt), so

−λ f ′ = −| f | f (4) in IR,

where we omit | f | f that is smaller near interfaces. Integrating once yields

f ′′′ = λ sign f ln | f | for y > 0, f (0) = 0.

We next introduce the oscillatory component ϕ,

f (y) = y3ϕ(ln y) �⇒ ϕ′′′ + 6ϕ′′ + 11ϕ′ + 6ϕ = 3λs + λ signϕ ln |ϕ|. (3.186)

For λ < 0, there exists the positive solution ϕ(s) = 1
2 λs + ... for s & −1. By

transformation in (3.186), this gives non-oscillatory behavior at the interface,

f (y) = 1
2 λy3 ln y + ... > 0 as y → 0, (3.187)

which corresponds well to the free-boundary conditions (3.181). Oscillatory patterns
in the CP need extra study.

Oscillatory component. As usual, we introduce the family of PDEs

ut = −|u|nux x x x , with parameter n ∈ (0, 1). (3.188)

Dividing by |u|n and setting v = |u|−nu yields a divergent quasilinear equation,
1

1−n vt = �[v] ≡ −(|v|σ v)x x x x , with σ = n
1−n > 0. (3.189)
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Figure 3.17 Solutions of the ODE (3.191) with n = 1
2 in the stabilization case λ = 1 (a) and

in the oscillatory case λ = −1 (b).

The operator �[v] is monotone in the topology of the Hilbert space H−4(IR). Ex-
istence and uniqueness of weak continuous solutions are based on general theory of

tions, it is not difficult to check that, for a special class of sufficiently regular (strong)
weak solutions {u(x, t)}, there exists a limit as n → 0+, establishing a homotopic
(non-singular) connection with the linear bi-harmonic PDE (3.2) in IR × IR+. The
uniform convergence of strong solutions as n → 0+ is an important property that
will be used later on. For (3.188), the TWs satisfy

| f |n f (4) = λ f ′ for y > 0, f (0) = 0,

so that, instead of the change (3.186),

f (y) = yγ ϕ(s), s = ln y, with γ = 3
n , where (3.190)

ϕ(4) + 2(2γ − 3)ϕ′′′ + (6γ 2 − 18γ + 11)ϕ′′ + 2(2γ 3 − 9γ 2

+ 11γ − 3)ϕ′ + γ (γ − 1)(γ − 2)(γ − 3)ϕ = λ
|ϕ|n (ϕ′ + γ ϕ).

(3.191)

This ODE has two equilibria

±ϕ0 = ±
[

λ
(γ−1)(γ−2)(γ−3)

] 1
n . (3.192)

They exist in the parameter ranges n ∈ (1, 3
2

)
and n > 3 if λ < 0, and for n ∈ (0, 1)

and n ∈ ( 3
2 , 3

)
if λ > 0.

Figure 3.17 shows different behavior of solutions in the case of n = 1
2 for λ > 0

(convergence to the positive constant equilibria (3.192); no traces of stable or unsta-
ble periodic patterns were observed) and for λ < 0 (oscillatory). Periodic patterns
ϕ(s) persist for larger n, including n = 1.1; see Figure 3.18. Further increasing n, a
few oscillations appear followed by fast divergence of the solution ϕ(s), according
to the linear unstable exponential bundle.

Subcritical bifurcation. Numerically, the constant equilibrium ϕ0 of (3.191) be-
comes asymptotically stable for n > nst, where

nst = 1.287...
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Figure 3.18 Convergence to stable periodic solutions of the ODE (3.191), λ = −1, with
various Cauchy data at s = 0 for n = 0.9 (a) and n = 1.1, n = 1.12755 (b).
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Figure 3.19 Behavior as n → n−st of solutions of the ODE (3.191), with λ = −1.

and as n → n−st , the stable periodic solution becomes nonexistent, as shown in Figure
3.19. Therefore, for n > nst, the TW profiles are no longer oscillatory near such
interfaces (only a finite number of zeros is available). Such non-oscillatory behavior
becomes more and dominant for larger n > 3

2 , so that, possibly, the Cauchy problem
can be posed in the class of nonnegative solutions; an OPEN PROBLEM.

Extra scaling for small n > 0. As usual, to see the oscillatory patterns for small
n > 0, an extra scaling in (3.191) with λ = −1 is performed by setting

ϕ(s) = Aψ(η), η = s
a , where a = n

3 and A = ( n
3

) 3
n .

This leads to the simplified equation with a linear binomial operator,

ψ(4) + 4ψ ′′′ + 6ψ ′′ + 4ψ ′ + ψ = − 1
|ψ |n (ψ ′ + ψ), (3.193)

where we omit terms of the order O(n). In Figure 3.20, a stable periodic behavior
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Figure 3.20 Stable periodic behavior for (3.193) for n = 0.3 (a) and n = 0.2 (b).

of the ODE (3.193) is shown. For n = 0.2, the periodic solution is very small,
max |ϕ| ∼ 10−22.

Comparison with the linear PDE. In view of the continuity at n = 0+, consider the
PDE (3.2) that admits TWs with the profiles satisfying

λ f = f ′′′ �⇒ f (y) = eµy, where µ3 = λ.

We are interested in the behavior as y → −∞ which is the left-hand “interface”
for solutions of the linear equation. Then, taking λ > 0 gives the only possible non-
oscillatory exponential behavior

f (y) ∼ eλ
1/3 y as y → −∞.

On the contrary, for λ < 0, oscillatory patterns are obtained,

f (y) ∼ e
1
2 |λ|1/3 y cos

(√3
2 |λ|

1
3 y + A0

)
, where A0 = constant. (3.194)

This is in qualitative agreement with the properties of the nonlinear ODE (3.191) for
n ∈ (0, 1]. It is curious that the period of linear oscillations in (3.194),

T
∣∣
n=0 = 4π√

3
= 7.26... (λ = −1) ,

is comparable with the nonlinear ones in Figure 3.17(b), for n = 1
2 , T

∣∣
n= 1

2
≈ 1.3.

The fundamental solution of the bi-harmonic equation (3.2),

b(x, t) = t− 1
4 F(ζ ), ζ = x

t1/4 ,

corresponds to the case λ > 0 at y = +∞. The rescaled kernel F is the unique radial
solution of the ODE problem

−F (4) + 1
4 ζ F ′ + 1

4 F = 0 in IR,
∫

F = 1.

Then F = F(|ζ |) has exponential decay and oscillates as |ζ | → ∞; general es-
timates on fundamental solutions can be found in Eidelman [164, p. 115]. More
precisely, using standard asymptotic expansion yields the following behavior of the
kernel as ζ →+∞:

F(ζ ) ∼ ζ− 1
3 eaζ 4/3

, with complex a satisfying a3 = 1
4

( 3
4

)3
, Re a < 0.
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There exist two complex conjugate roots for exponentially decaying profiles

a± = − 3
8 4− 1

3 (1± i
√

3) ≡ −c1 ± ic2.

This yields the following oscillatory behavior as ζ →+∞:

F(ζ ) ∼ ζ−
1
3 e−c1ζ

4/3[
A1 cos

(
c2ζ

4
3
)+ A2 sin

(
c2ζ

4
3
)]
, (3.195)

where A1 and A2 are constants. The algebraic factor ζ−1/3 is obtained by the WKBJ-
type technique. This is a periodic behavior with a single fundamental frequency. We
have seen numerically that such a stable periodic structure is inherited in the behavior
(3.190) for all n ∈ (0, nh).

Example 3.38 (Finite propagation and changing sign behavior in higher-order
semilinear models) As we have seen, finite propagation and oscillatory solutions of
the CP can be obtained in any semilinear parabolic models by adding a non-Lipschitz
absorption-like term, e.g., (see [227] for properties and ε-regularization)

ut = F[u] ≡ (−1)m+1 D2m
x u − |u|p−1u, with p ∈ (−1, 1). (3.196)

For TWs, there occurs the ODE

−λ f ′ = F[ f ] for y > 0, f (0) = 0,

which, close to the finite interface, becomes asymptotically stationary,

(−1)m+1 f (2m) − | f |p−1 f = 0 �⇒ f (y) = yγ ϕ(ln y), (3.197)

where γ = 2m
1−p > 0. For any m ≥ 2, such ODEs have oscillatory solutions; see Sec-

tion 3.7. Note that (3.196) also describes the phenomenon of finite-time extinction
proved by energy estimates based on Saint–Venant’s principle; see [524] and survey
in [240]. The range p ≤ −1 corresponds to nonexistence, [227].

Similarly, equations of Cahn–Hilliard type with mass conservation

ut = F[u] ≡ (−1)m+1 D2m
x u − D2k

x

(|u|p−1u
)

for 1 ≤ k < m,

can also admit finite propagation. Solutions of changing sign (for k ≤ m − 2) are
given by (3.197) with 2m �→ 2(m−k). Depending on m and k, the periodic behavior
of ϕ(s) can be stable or unstable, as in the examples discussed above.

3.9 Quasilinear pseudo-parabolic models: the magma equation

A typical pseudo-parabolic model to be studied is

ut =
(
unut

)
x x + (lower-order terms) (u ≥ 0), (3.198)

where n ∈ IR is a fixed exponent. Such PDEs arise in mathematical modeling of the
segregation and migration of magma in the mantle of the Earth, [519, 420]. The full
model, called the magma equation, is

ut =
[(
(unut )x − 1

)
ul
]

x , (3.199)
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with two parameters n and l. Setting l = 0 gives the principal operator in (3.198).
Such PDEs belong to the class of pseudo-parabolic equations that may enjoy some
properties of standard parabolic flows. Examples include the linear analogy

ut − ux xt = ux x ,

and the regularized PBBM equation (see Example 4.45)

ut − ux xt = uux + εux x (ε > 0).

The advantage of such pseudo-parabolic PDEs is that applying the inverse operator
(I − D2

x )
−1 with positive integrable kernel yields non-local equations with compact

operators, which can be studied by nonlinear integral operators theory.
Standard theory does not apply to quasilinear PDEs, such as (3.198), which, in

addition, are degenerate at the singular set {u = 0}. Mathematical theory of such de-
generate PDEs with nonnegative solutions (or, possibly, solutions of changing sign)
is unavailable. As usual, we will use solutions on invariant subspaces for formal de-
tecting some evolution singularities.

Example 3.39 (Quenching, interfaces, and the Cauchy problem) Consider the
PDE (3.198) for n = 1 with a constant absorption,

ut = F[u] ≡ (uut )x x − 1,

bearing in mind the phenomenon of finite-time extinction. F is associated with sub-
space (module) W2 = L{1, x2}, so there exist exact solutions

u(x, t) = C1(t)+ C2(t)x
2,{

C ′1 = 2(C1C2)
′ − 1,

C ′2 = 12C2C ′2.
We take, e.g., C2 = 1

12 (any constant C2 fits), and the first equation is then integrated,

u(x, t) = 6
5 (T − t)+ 1

12 x2, (3.200)

where T > 0 is the finite quenching time. For t < T , the solution is strictly positive.
At t = T−, the solution touches the singularity level {u = 0}. We readily derive the
asymptotic extinction behavior as t → T ,

u(x, t) = (T − t)g0(ξ), ξ = x√
T−t

, where g0(ξ) = 6
5 + 1

12 ξ2. (3.201)

Hence, (3.201) belongs to the class of self-similar solutions us(x, t) = (T − t)g(ξ),
where g (and g0) solves the following third-order ODE:[

g
( 1

2 g′ξ − g
)]′′ − 1

2 g′ξ + g − 1 = 0.

These solutions on W2 explicitly describe the quenching behavior for this degen-
erate quasilinear PDE. A rigorous stability analysis of such quenching is OPEN (it
is likely that it is not generic or robust at all). In the rescaled sense, this assumes,
introducing the rescaled function u(x, t) = (T − t)v(ξ, τ ), with τ = − ln(T − t), to
study the third-order rescaled PDE

vτ =
[
v
( 1

2 vξ ξ − v + vτ
)]

ξξ
− 1

2 vξ ξ + v − 1.
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This means, passing to the limit τ →∞, that, for a class of positive, symmetric, and,
say, convex initial data (recall the parabolic shapes, 6

5 T + 1
12 x2, of initial functions

in W2), the convergence takes place,

v(ξ, τ )→ g0(ξ) as τ →∞ (i.e., as t → T−).

Interface propagation. For t > T , the problem admits a suitable setting in the
class of nonnegative solutions in an FBP framework. It follows from (3.200) that the
right-hand interface is located at

s(t) = 6
√

2
5

√
t − T for t > T .

For such solutions ux = x
6 , so that, at u = 0 in (3.200), − 6

5 (t − T ) + 3(ux)
2 = 0.

Plugging this into the expression for s′ yields the dynamic interface equation

s′ = 6√
10

1√
t−T

≡ 6
5ux

at x = s(t). (3.202)

On the Cauchy problem: oscillatory and non-oscillatory patterns. Let us for-
mally detect the maximal regularity that can be attributed to the CP. To keep pseudo-
parabolicity and extinction properties, consider the signed equation for n = 1,

ut = (|u|ut )x x − sign u. (3.203)

Substituting the TWs u(x, t) = f (y), with y = x − λt , yields the ODE −λ f ′ =
−λ(| f | f ′)′′ − sign f. Studying the right-hand interface, and hence, using the reflec-
tion y �→ −y, we keep the leading two terms on the right-hand side,

λ(| f | f ′)′′ − sign f = 0 for y > 0, f (0) = 0. (3.204)

It follows that the behavior near the interface at y = 0 is given by

f (y) = y
3
2 ϕ(s), with s = ln y,

where the oscillatory component ϕ(s) solves a third-order ODE. Such ODEs were
studied earlier in the TFE applications; see (3.166). Therefore, ϕ(s) is oscillatory
and changes sign for λ < 0, and is non-oscillatory for λ > 0. Such TW properties
are expected to make sense in the CP for (3.203). Its well-posedness is OPEN. Note
that the same ODE (3.204) occurs for the signed nonlinear dispersion equation (see
Section 4.3 for details)

ut = ±(|u|ux)x x − sign u.

Secondly, for the original model (3.198) without strong absorption

ut =
(|u|nut

)
x x (n > 0),

the same TW analysis leads to the ODE (| f |n f ′)′ = f for y > 0, which always
admits the strictly positive (non-oscillatory) solution

f (y) = [ n2

2(n+2)

] 1
n y

2
n .

The regularity at the interface y = 0 increases without bound as n → 0+ when
approaching the linear PDE.
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Example 3.40 (Sixth-order PDE) Consider a higher-order pseudo-parabolic model,
such as

ut =
(|u|nut

)
x x x x x x. (3.205)

The TW profiles satisfy

(| f |n f ′)(5) = f for y > 0, f (0) = 0.

For n ∈ (0, 1), there exists a strictly positive, non-oscillatory solution f (y) = c0y
6
n ,

where c0 > 0 is a constant.

Example 3.41 (Single point blow-up) Consider next a pseudo-parabolic PDE with
an extra reaction term,

vt =
(
vnvt

)
x x + v

2−n
2 , (3.206)

where, for n < 0, the source term is superlinear for v � 1 and may create finite-time
blow-up singularities. In order to deal with polynomial subspaces, set

v = uµ, with µ = 2
n ,

to get a cubic PDE of the form

ut = u2ux xt + 2(µ+ 1)uuxuxt

+ (µ+ 1)
[
uux x + µ(ux)

2
]
ut + 1

µ ≡ F3[u]+ 1
µ .

(3.207)

Proposition 3.42 F3 in (3.207) admits subspace W3 = L{1, x, x2} iff

2µ2 + 7µ+ 6 = 0 ⇐⇒ µ = −2, or µ = − 3
2 . (3.208)

Substituting into (3.207) u(x, t) = C1(t)+C2(t)x2 yields that (3.208) annuls the
term on L{x4}. This gives{C ′1 = 2(µ+ 1)C1C2C ′1 + 2C2

1C ′2 + 1
µ,

C ′2 = 2(µ+ 3)C1C2C ′2 + 2(µ+ 1)(2µ+ 1)C2
2C ′1.

(3.209)

Thus, such solutions exist in two cases, where (3.206) is

vt =
(
v−1vt

)
x x + v

3
2 for n = −1 (µ = −1);

vt =
(
v− 4

3 vt
)

x x + v
5
3 for n = − 4

3 (µ = − 3
2 ).

For both PDEs, we detect from the DS (3.209) the generic (on W3) extinction behav-
ior for the function u(x, t), which is equivalent to blow-up for v(x, t). For smooth
bounded orbits of the DS, the first equation near extinction time T reads C ′1 =
− 1
|µ| + ... , and the second equation yields C2(t) → d > 0, from which we ob-

tain the asymptotic pattern

u(x, t) = (T − t) 1
|µ| + d x2 + ... = (T − t)

( 1
|µ| + d ξ2

)+ ... as t → T−,

with the spatial rescaled variable ξ = x/
√

T − t . In terms of the original solution
v = u2/n of the initial PDE (3.206), this yields the following single point blow-up
behavior as t → T− for n = −1 or n = − 4

3 :

w(ξ, τ ) ≡ (T − t)− 2
n v(x, t)→ g(ξ) ≡ ( 1

|µ| + d ξ2
) 2

n (3.210)
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uniformly in ξ ∈ IR. As happened before to other blow-up models, such behavior
corresponds to a delicate case of a singular perturbed first-order Hamilton–Jacobi
equation. To reveal this singular limit, we write down the perturbed PDE for the
rescaled function w(ξ, τ ) as follows:

wτ = − 1
2 wξξ + 2

n w +w
2−n

2 + e−τ
[
w2
(
wτ − 2

n w + 1
2 wξξ

)]
ξξ
. (3.211)

This is an exponential perturbation of the Hamilton–Jacobi equation wτ = − 1
2 wξξ+

2
n w + w

2−n
2 that possesses g(ξ) in (3.210) as a stationary solution. There is a large

amount of mathematical literature devoted to infinite-dimensional singular perturbed
DSs associated with blow-up and extinction phenomena for reaction-diffusion PDEs;
see [245, Ch. 5, 9–11]. These well-developed techniques do not apply to the per-
turbed PDE (3.211) for which establishing uniform boundedness and compactness
of the rescaled orbits in suitable metrics are also OPEN.

Remarks and comments on the literature

In many occasions we put references concerning specific models, equations, and applications
alongside corresponding examples. Other references are given below.

§ 3.1. Earlier references on the derivation of the fourth-order TFE can be found in [263, 531],
where the first analysis of some self-similar solutions was performed for n = 1. Source-
type (ZKB) similarity solutions for arbitrary n were studied in [48] for N = 1 and [185]
for the equation in IR N . More information on similarity and other solutions can be found
in [46, 45, 78]; see also a discussion of the TFE in the afterword of Barenblatt [25]. Thin
film equations admit nonnegative solutions constructed by special parabolic approximations
of the degenerate nonlinear coefficients; see the pioneering paper [44], various extensions in
[264, 167, 376, 576], and the references therein. For estimates of not necessarily nonnegative
solutions in IRN , see [265] and the bibliography therein.

The family (3.7) of generalized TFEs was studied in [345], where further references and
physical motivation can be found. The equation (3.3) was derived and studied in [155]; see
[529] for a parallel development. Equation (3.8) with m = n = 3 has been used to describe
bubble motion in a capillary tube and the Rayleigh–Taylor instability in a thin film [279]. For
more information on the modeling and physics of thin liquid films, we refer to survey papers
[430, 451, 34]; see also references in [431]. See [53]–[55], [293] for more general PDEs, such
as (3.9). The doubly nonlinear equation

ut = −(un |ux x x |l ux x x )x

describes, for n = l+3, the surface tension-driven spreading of a power-law fluid and, for n =
1, a power-law fluid in a Hele–Shaw cell; see [345], survey [451], and mathematics in [14].
The exponent l is determined by rheological characteristics of the liquid, so l = 0 corresponds
to a Newtonian liquid, while l �= 0 appears for “power-law” (Ostwald–de Waele) liquids,
called shear-thinning if l > 0. For such liquids, a typical sample relation of the viscosity η
and the shear rate γ̇ is of the form η ∼ γ̇−l/(l+1).

Concerning the Benney equation (3.10) [39] and models of falling liquid films, see [452].
Notice earlier experimental findings of P.L. and S.P. Kapitza [315] in 1949 related to travel-
ing waves in such models. On Marangoni instability in thin film models (3.12), see [450].
Semilinear Cahn–Hilliard equations were introduced in [92]; see [438] and references therein.
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3 Thin Film, Kuramoto-Sivashinsky, and Magma Models 161

The sixth-order thin film equation (3.13) was introduced in [338, 339] in the case of n = 3,
and describes the spreading of a thin viscous fluid under the driving force of an elastica or
light plate. In addition, [338, 339] treat a more general form of this equation (now allowing
for a reaction at the usual solid interface), which is shown to arise in the industrial application
of the isolation oxidation of silicon. Analysis for a finite length elastica or plate is given in
[176], whilst a numerical scheme with subsequent parameter investigation of the more general
system is derived in [177]. Delicate aspects of unusual similarity solutions and asymptotics
can be found in [189]. Some particular features of the 2mth-order PDEs (3.16) were already
considered in [531], where the n-small and waiting-time solutions were noted. Doubly non-
linear equations, such as (3.22), which are relevant to capillary driven flows of thin film of
power-law fluids, were derived in [345, 513]. Extra absorption terms in TFEs (see (3.25)) or
the source terms are to model effects of evaporation (certain permeability of the surface may
also be taken into account) or condensation, [451]. Actually, evaporation phenomena of thin
films are well known for binary solutions (see references in [261]), which probably hardly
apply to thin films on flat surfaces. The Florin problem for the fourth-order TFE with the con-
stant non-zero angle ux = C at the interfaces, which is a lubrication model related to Darcy
flow in a Hele–Shaw cell, was studied in [454].

Discussing other related higher-order models, note that similarity solutions of the equation
with a monotone operator in H−2,

ut = −(|u|m−1u)x x x x ,

were studied in [47], where, for m > 1, solutions were proved to be compactly supported and
oscillatory (changing sign) near the interfaces. Other lubrication-type PDEs

ut = −(unux x )x x and ut = −|u|nux x x x (n < 0)

were introduced in [52]. The fourth-order parabolic equation

ut = −(u(ln u)x x )x x

arises in the context of interface fluctuations in spin systems and semiconductor theory; see
mathematics and references in [64, 307]. The sixth-order PDEs

ut = (un |ux x x x x |m−1ux x x x x)x and ut = {u[ 1
u (u(ln u)x x )x x + 1

2 ((ln u)x x )
2]x }x

are obtained, respectively, for power-law fluids spreading on a horizontal substrate [345] and
as a generalized quantum drift-diffusion model for semiconductors, [146, 307]. Critical expo-
nents and asymptotic and singularity phenomena for the eighth-order TFE

ut = −(unux x x x x x x)x

are discussed in [189]. Various aspects concerning oscillatory solutions of the Cauchy problem
for TFEs can be found in [174, 175], where further references are given.

Higher-order parabolic PDEs also occur in curve shortening flows for curves in two di-
mensions, whose normal velocity Vn is given by the Laplacian of its curvature; see [91]. The
corresponding equation Vn ≡ Nt = −κss (s is the arclength) for curves y = u(x, t) on the
{x, y}-plane, can be written as (see [82])

ut = −
[

1√
1+(ux )2

(
uxx√

1+(ux )2

)
x

]
x
.

The hierarchy of such models of arbitrary order (the third-order PDE belongs to the KdV fam-
ily) goes back to Mullins [428], who proposed classical theory of thermal grooving. Arbitrary
order integrable models Vn = Dl

sκ were analyzed in [82]. Other fourth-order parabolic PDEs
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appear [116] in blow-up analysis of the curve evolution of an immersed plane curve according
to the H−1 gradient flow.

Exact solutions on invariant subspaces exist for some non-local parabolic equations related
to the b–l model of the propagation of turbulent bursts from a horizontally uniform layer (see
model statement in [26] and [25, p. 291]),

bt = l(t)
b
3
2 − k b

1
2

l2(t)
in IR N × IR+,

where k > 0 is a fixed constant, and l(t) > 0 is the measure of the support of a nonnegative
bounded solution, l(t) = meas supp b(·, t) ≡ meas {x ∈ IRN : b(x, t) > 0}. A class of
such equations with invariant subspaces was studied in [224]. Another invariant subspace is
available in the b–ε model of turbulence motion based on the ideas of A.N. Kolmogorov and
L. Prandtl: {

bt = α( b2

ε bx )x − ε,

εt = β( b2

ε εx )x − γ ε2

b ,

where α, β, and γ are positive constants. Here b(x, t) ≥ 0 denotes the turbulent energy
density, and ε(x, t) ≥ 0 is the dissipation rate of turbulent energy. See [27, 26] and [56] for
physical justification and further references. For α = β, the finite-time extinction behavior
can happen on a polynomial subspace invariant under quadratic operators [224].

§ 3.2. Some details concerning spectra, compact resolvent, and sectorial properties of linear
operators like (3.52) can be found in [163]. Note that, as a rule, rescaled higher-order parabolic
PDEs contain non-symmetric and non-potential operators. The spectral theory in [163, 87] of
similar (but not precisely the same) operators appears in the study of asymptotic blow-up and
global behavior for semilinear 2mth-order parabolic equations

ut = −(−
)mu ± |u|p−1u.

[424]. On oscillatory and other features of the CP for the fourth-order TFEs, see [174].

§ 3.4, 3.5. Proposition 3.7 is taken from [343] (transformation (3.60) was first used in [531]
for formal perturbation analysis for small n), where Proposition 3.29 was used for m = 2.
Various results on the FBP and the CP for the sixth-order TFEs are available in [175].

§ 3.6, 3.7. Basic properties of oscillatory solutions of the CP for TFEs of various orders with
more detailed description are given in [174, 175]; see also [227].

§ 3.8. The KS-type equations are used as a description of the fluctuations of the position of
flame front [202, 203], the motion of fluid on a vertical wall, and chemical reactions with
spatially uniform oscillations on a homogeneous medium. Similar models also occur in solid-
ification, [201]; see survey [411]. The mKS equation (3.172) is a model for the dynamics of a
hyper-cooled melt [514]. A more general class of such models was introduced and discussed
in [289]. Blow-up in the mKS equations was studied in [50].

§ 3.9. In the magma equation (3.199), u(x, t) ≥ 0 measures the volume fraction of liquid
phase [519]. The exponents n and l describe permeability and effective viscosity characteriz-
ing the rate of matrix compaction and distension on u. Similar pseudo-parabolic PDEs occur
in modeling of thin film flows for poroviscous droplets over a planar substrate [347].

Open problems

• These are formulated throughout the chapter in Section 3.2, Examples 3.8–3.10,
3.14, 3.17, Remark 3.28, Section 3.7, and Examples 3.36, 3.37, 3.39, and 3.41.

© 2007 by Taylor & Francis Group, LLC

§ 3.3. The original von Mises transformation (see Example 3.10) was introduced in 1927,



CHAPTER 4

Odd-Order One-Dimensional Equations:
Korteweg-de Vries, Compacton, Nonlinear

Dispersion, and Harry Dym Models

In this chapter, we continue to describe applications of invariant subspaces to nonlinear PDEs
in one dimension, and, unlike the previous chapter, concentrate on nonlinear evolution equa-
tions of odd orders. These models include the famous KdV, nonlinear dispersion, and Harry
Dym-type equations, as well as their higher-order generalizations. Using exact solutions, we
establish interesting similarities between classes of even and odd-order evolution PDEs and
study singularity formation, interface propagation, and oscillatory, changing sign properties of
solutions.

4.1 Blow-up and localization for KdV-type equations

In 1895, Korteweg and de Vries introduced the famous third-order KdV equation of
shallow water waves

vt = vx x x + 2vvx in IR × IR (4.1)

and its explicit soliton

v(x, t) = 3
2 cosh2[ 1

2 (x+t)]
, (4.2)

which is the traveling wave solution moving to the left with unit velocity.∗ This and
other multi-soliton solutions play a determining role in general water waves theory
and theory of integrable PDEs. By scaling x �→ λx , t �→ λ3t , and v �→ Cv, (4.1)
reduces to vt = vx x x + 2Cλ2vvx and takes standard forms

vt = vx x x + vvx for C = 1
2λ2 , or

vt = vx x x + 6vvx for C = 3
λ2 .

Setting v = ux in (4.1) and integrating once gives the potential KdV equation

ut = ux x x + (ux)
2. (4.3)

Then the soliton (4.2) is transformed into the front moving traveling wave, which is
reconstructed from (4.2) by the inverse transformation

u(x, t) = ∫ x
−∞ v(z, t) dz.

∗ It has long been recognized that both the KdV equation and its soliton solution were derived earlier by
Boussinesq in 1872 [75], so the abbreviation BKdV can be used for (4.1).
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4.1.1 Quadratic operators and invariant subspaces

Consider a third-order PDE with a more general quadratic operator associated with
that in (4.3),

ut = F[u] = αux x x + β(ux)
2 + γ u2. (4.4)

Let us begin with trigonometric subspaces for such simple quadratic operators al-
ready studied in Section 1.4.

Proposition 4.1 Operator F in (4.4) admits W3 = L{1, cos x, sin x} if β = γ .

Looking for the solutions

u(x, t) = C1(t)+ C2(t) cos x + C3(t) sin x ∈ W3 for t ∈ IR

yields that the PDE (4.4) on W3 is equivalent to the DS{C ′1 = β(C2
1 + C2

2 + C2
3 ),

C ′2 = −αC3 + 2βC1C2,
C ′3 = αC2 + 2βC1C3.

These exact periodic solutions admit a soliton-traveling wave representation,

u(x, t) = C1(t)+ C2(t) cos(x ± t)+ C3(t) sin(x ± t), (4.5)

with a similar DS for the coefficients. Such moving 2π-periodic soliton-like solutions
may blow-up in finite time. There exist 2D invariant reductions of such periodic
moving waves.

Proposition 4.2 If β = γ and α = ±1 in (4.4), then there exist exact solutions

u(x, t) = C1(t)+ C2(t) cos(x ∓ t).

4.1.2 Applications to blow-up

Example 4.3 (Blow-up and localization) Consider the KdV equation with source

ut = ux x x + (ux )
2 + u2. (4.6)

Here, α = β = γ = 1, so by Proposition 4.2 there exist solutions on

W−
2 = L{1, cos(x − t)},

i.e.,
u(x, t) = C1(t)+ C2(t) cos(x − t), (4.7){

C ′1 = C2
1 + C2

2 ,
C ′2 = 2C1C2.

(4.8)

According to (4.7), the DS describes the time-deformation of a moving 2π-periodic
soliton. An explicit self-similar solution in separate variables appears for C1 = C2,
yielding the single ODE C ′1 = 2C2

1 , and the solution on W̃1 = L{cos2[ 1
2 (x − t)]}

given by
u(x, t) = 1

T−t cos2[ 1
2 (x − t)], (4.9)
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4 Korteweg-de Vries and Harry Dym Models 165

where T > 0 is the finite blow-up time. This is a blow-up soliton solution moving to
the right with constant unit speed and blowing up as t → T− everywhere, excluding
the points xk = T + π(2k + 1), k = 0,±1, ..., where u(x, T−) = 0. It is easy to
detect the following localization property of these blow-up solutions:

u(xk, t) = 1
4 (T − t)+ ...→ 0 as t → T,

so that the solution remains bounded at all points x = xk and tends to infinity at any
other x ∈ IR. Notice that (4.9) is a classical analytic periodic solution of the non-
degenerate PDE (4.6) on IR× (0, T ). To monitor a one-hump wave of such solutions
on {|x − t| < π}, a proper FBP should be posed. This will be discussed later for
degenerate third-order operators.

Returning to the quadratic DS (4.8) (cf. Proposition 3.18 for more general DSs),
we easily solve it explicitly and obtain the following solutions:

u(x, t) = 1
T−t cos2[ 1

2 (x − t)]+ 1
T1−t sin2[ 1

2 (x − t)].

It follows that, for T1 > T > 0, they asymptotically converge to the separate vari-
ables solution (4.9), in the sense that the rescaled function satisfies

w(x, t) ≡ (T − t)u(x, t)→ cos2[ 1
2 (x − T )] as t → T . (4.10)

The general asymptotic stability of this localized blow-up pattern leads to the study
of the rescaled PDE for w(x, t),

wτ = F∗[w] ≡ wx x x + (wx)
2 + w2 − w, where τ = − ln(T − t),

and proving convergence (4.10) (up to translation in x) for periodic initial data. Sta-
bility analysis demands a sharp upper bound for the rescaled orbit {w(·, τ )}, which
remains an OPEN PROBLEM for general initial data. Similar conclusions apply to
higher odd-order PDEs, such as

ut = D2m+1
x u + (ux)

2 + u2, m = 2, ... ,

for which blow-up stability problems are OPEN.

4.2 Compactons and shocks waves in higher-order quadratic nonlinear
dispersion models

In the next sections we study exact solutions of a number of quasilinear degenerate
odd-order PDEs which have many applications and still rather poor mathematical
understanding.

4.2.1 Compactons on 3D trigonometric subspace

As a typical simple example, consider the fifth-order quadratic operator,

F5[u] = α(u2)x x x x x + β(u2)x x x + γ (u2)x . (4.11)

Proposition 4.4 Operator (4.11) admits W3 = L{1, cos x, sin x} iff

16α − 4β + γ = 0. (4.12)
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Example 4.5 (Dynamics on W3 around compactons in quadratic models) Con-
sider the quintic nonlinear dispersion equation

ut = α(u2)x x x x x + β(u2)x x x + γ (u2)x in IR × IR. (4.13)

For α = 0, β = γ = 1, this is the third-order Rosenau–Hyman (RH) equation

ut = (u2)x x x + (u2)x , (4.14)

which models the effect of nonlinear dispersion in the pattern formation in liquid
drops [496]. It is the K (2, 2) equation from the general K (m, n) family of nonlinear
dispersion equations

ut = (un)x x x + (um)x (u ≥ 0), (4.15)

that also models phenomena of compact pattern formation, [491, 492]. Such PDEs
appear in curve motion and shortening flows [494]. The K (m, n) equation (4.15)
with n > 1 is degenerated at u = 0, and therefore may exhibit finite speed of prop-
agation and admit solutions with finite interfaces. Rigorously speaking, these ques-
tions, especially for degenerate higher-order models, lead to several OPEN PROB-
LEMS to be discussed.

The crucial advantage of the RH equation (4.14) is that it possesses explicit moving
compactly supported soliton-type solutions, called compactons [496]:

u(x, t) =
{ − 4λ

3 cos2[ 1
4 (x − λt)], if |x − λt| ≤ 2π,

0, if |x − λt| > 2π,
(4.16)

where, for λ < 0, the solution is nonnegative; see Figure 4.1. These are the TW
patterns with two interfaces moving to the left. Taking λ > 0 yields the negative
compacton moving to the right.

For the fifth-order PDE (4.13), compacton solutions were first constructed in [147],
where the more general K (m, n, p) family of PDEs

ut + β1(u
m)x + β2(u

n)x x x + β3 D5
x (u

p) = 0 (m, n, p > 1),

was introduced. Some of these equations will be treated later on. Equation (4.13) is
also associated with the family Q(l,m, n) of more general quintic evolution PDEs
with nonlinear dispersion,

ut + a(um+1)x + ω
[
u(un)x x

]
x + δ

[
u(ul)x x x x

]
x = 0, (4.17)

possessing multi-hump, compact solitary solutions [499].
Using first the particular quadratic model (4.13), we will discuss the dynamic in-

terface equations and a general mathematical meaning of compactons. The first im-
portant question is to establish which kind of FBPs or the Cauchy problem such
compactons may be solutions of. In addition, as usual, our goal is to show that there
exist extra explicit finite-dimensional dynamics on invariant subspaces around those
compactons. These results can be extended to general odd-order quadratic dispersive
PDEs, such as

ut =∑(k) αk D2k+1
x (u2).
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u(x, t)

t1t2t3

t1 < t2 = 0 < t3

x

0

λλ

2π−2π

Figure 4.1 Moving compacton (4.16) with λ < 0 of the RH equation (4.14).

Let us return to the fifth-order PDE (4.13) and, assuming (4.12), look for exact
solutions on W3,

u(x, t) = C1(t)+ C2(t) cos x + C3(t) sin x, (4.18){C ′1 = 0,
C ′2 = µC1C3,
C ′3 = −µC1C2,

(4.19)

where µ = 2(α−β+γ ) �= 0. In this case, from the first ODE, C1(t) = A, a constant,
and the last two yield

C2
2 + C2

3 = B2,

where B �= 0 is a constant of integration. This gives the explicit solutions

u(x, t) = A + B cos(x + µAt). (4.20)

In the particular case A = B , denoting µA = −λ, and assuming that λ
µ < 0, we

obtain a nonnegative traveling wave solution

u(x, t) = − 2λ
µ cos2[ 1

2 (x − λt)]. (4.21)

Choosing the one-hump profile on the moving interval |x − λt| ≤ π and setting
u(x, t) = 0 for |x − λt| > π yields a compacton, which is similar to (4.16) in
Figure 4.1. Appropriate FBP setting for such solutions of the higher-order PDE will
be studied in Section 4.2.3.

It turns out that there exists an intriguing similarity between compacton patterns in
nonlinear dispersion media and localized blow-up structures in dissipative reaction-
combustion models that were studied in the previous chapters.

Example 4.6 (Comparison of compactons and regional blow-up) Explicit TW
compactons also exist for the nonlinear dispersion KdV-type equations with arbitrary
power nonlinearities (formulae will be given shortly)

vt = (vn+1)x x x + γ (vn+1)x , with n > 0 and γ = (n+1)2

n2 (v ≥ 0), (4.22)
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where the parameter γ > 0 is chosen for convenience and can be scaled out. This is
the K (1+ n, 1 + n) model, [496].

Combustion model: regional blow-up. Firstly, we compare such compactons with
blow-up solutions of the following parabolic reaction-diffusion equation:

vt = (vn+1)x x + γ vn+1. (4.23)

In (4.22), the right-hand side is the derivative Dx of that in (4.23). Mathematically,
these equations belong to entirely different types of PDEs.

In the mid 1970s, Kurdyumov, with his former PhD students, Mikhailov and
Zmitrenko, (see [510]) discovered the phenomenon of heat and combustion local-
ization by studying properties of the following Zmitrenko–Kurdyumov solution of
the equation (4.23):

vS(x, t) = (T − t)−
1
n f (x), (4.24)

where T > 0 is the blow-up time, and f satisfies the ODE

1
n f = ( f n+1)′′ + γ f n+1 for x ∈ IR. (4.25)

It turned out that (4.25) possesses the explicit compactly supported solution

f (x) =
{ [ n

(n+1)(n+2) cos2( x
2 )
] 1

n , if |x | ≤ π,

0, if |x | > π.
(4.26)

The striking regional blow-up (the so-called S-regime of blow-up, [510]) described
by the solution (4.24), (4.26) is as follows: vS(x, t)→∞ as t → T− for all |x | < π
only and vS(x, t) ≡ 0 otherwise. This is the localization phenomenon on the interval
{|x | < π} of the length 2π that is called the fundamental length of such a diffusive
and combustion medium. Notice that (4.24) is a standard continuous weak solution
of the PDE (4.23) on IR × (0, T ).

Regional blow-up in a quasilinear wave equation. Secondly, a similar exact solu-
tion exists for the quasilinear hyperbolic equation

vt t = (vn+1)x x + γ vn+1, where

vS(x, t) = (T − t)− 2
n f̃ (x) �⇒ 2

n

( 2
n + 1

)
f̃ = ( f̃ n+1)′′ + γ f̃ n+1. (4.27)

Here f is given by a scaled function (4.26), f̃ (x) = [2(n+2)
n

]1/n
f (x).

Compactons. Thirdly, returning to the compactons of (4.22) of the TW structure

vc(x, t) = f (y), y = x − λt, (4.28)

we find that f satisfies the ODE

−λ f ′ = ( f n+1)′′′ + γ ( f n+1)′,

which gives, on integration once,

−λ f = ( f n+1)′′ + γ f n+1 + D, (4.29)

where D ∈ IR is the constant of integration. Setting D = 0 yields that the blow-up
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ODE (4.25) and the compacton equation (4.29) coincide, provided that

−λ = 1
n

(
or −λ = 2

n

( 2
n + 1

)
to match (4.27)

)
.

This yields the compacton solution (4.28) with the same compactly supported profile
(4.26) with translation x �→ y = x − λt . Therefore, the blow-up solutions (4.24),
(4.27) and the compacton solution (4.28) are essentially of a similar mathematical
(both the ODE and PDE) nature, and, possibly, more than that. This reflects a certain
universality principle of compact structure formation in nonlinear evolution PDEs.

On dynamics on invariant subspaces. The quasilinear heat equation (4.23) admits
further restriction to the standard invariant subspace that we will briefly discuss. The
pressure transformation u = vn in (4.23) yields

ut = F[u] ≡ (n + 1)
[
uux x + 1

n (ux)
2
]+ nγ u2.

Operator F is known to preserve the 2D subspace W2 = L{1, cos x}, so there exist
exact solutions

uS(x, t) = C1(t)+ C2(t) cos x, (4.30){
C ′1 = (n+1)2

n C2
1 + n+1

n C2
2 ,

C ′2 = (n+1)(n+2)
n C1C2.

This DS can be integrated in quadratures, so (4.30) describes some exceptional evolu-
tion and blow-up properties. Following [218] (or [509, p. 32]), where a detailed anal-
ysis and proofs can be found, we comment that, as t → 0+, the solution takes Dirac’s
delta as the initial function; see Figure 4.2. Next, the solution amplitude u(0, t) de-
creases for some t ∈ (0, t3), and, after that, the solution starts to increase, and finally
blows up and approaches as t → T− the separate variables solution (4.24). Hence,
the interfaces s±(t) of the compactly supported blow-up solution (4.30) converge to
±π respectively, as explained in Figure 4.2.

A similar invariant subspace analysis applies to the compacton equation (4.22),
but only for n = 1, where the general solution (4.20) is not that consistent. It seems
that, for n �= 1, interesting invariant subspaces do not exist. Further interpretation is
performed by using partially invariant subspaces. We explain this in Section 7.2.

Example 4.7 (Higher-order signed PDEs: compactons and regional blow-up) A
similar, but not explicit, compacton–regional blow-up universality is available for the
quintic signed nonlinear dispersion PDEs, such as

vt = α
(|v|nv)x x x x x + β

(|v|nv)x x x + γ
(|v|nv)x (n > 0), (4.31)

and its parabolic reaction-diffusion counterpart (α < 0 for parabolicity)

vt = α
(|v|nv)x x x x + β

(|v|nv)x x + γ |v|nv.
Both equations are written for oscillatory solutions of changing sign; see more details
in Section 4.3. Compactons (4.28) for (4.31) and the blow-up pattern (4.24) are then
governed by the same quasilinear degenerate ODE

−λ f = α
(| f |n f

)(4) + β
(| f |n f

)′′ + γ | f |n f, with λ = − 1
n < 0.
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uS(x, t)

t1 ≈ 0

t2

t3

t4

t5

t6 ≈ T

x

0 π−π s−(t4) s+(t4)

Figure 4.2 Non-monotone evolution of the blow-up solution (4.30); 0 < t1 < ... < t6 < T .

For instance, consider two equations

ut = −
(|u|nu

)
x x x x x +

(|u|nu
)

x (dispersive: compactons), and

ut = −
(|u|nu

)
x x x x + |u|nu (parabolic: blow-up).

(4.32)

Then the compacton for the first PDE is (4.28) and the localized blow-up pattern for
the second is (4.24), where f = f (y) solves

−(| f |n f )(4) + | f |n f = 1
n f in IR.

Recall that, for the CP, similar to TFEs (Section 3.7), we are interested in solutions
of maximal regularity with the following behavior:

f (y) ∼ (y0 − y)
4
n ϕ(ln(y0 − y))

near the interface at y = y−0 , with, say, a bounded, periodic oscillatory component
ϕ(s). Figure 3.5(a) illustrates such oscillatory behavior. After the natural change, this
gives the ODE with a non-Lipschitz nonlinearity,

F = | f |n f �⇒ F (4) = F − 1
n

∣∣F∣∣− n
n+1 F in IR. (4.33)

Unlike the second-order case (4.26), for the CP, an explicit compactly supported so-
lution f is not available. Proving existence and multiplicity results for such higher-
order ODEs is a difficult OPEN PROBLEM to be tackled numerically. First, the sim-
plest geometric patterns, F1(y) in 1D for various n > 0, are presented in Figure 4.3.
Notice the clear oscillatory behavior of solutions close to interfaces. This is a key
feature for the CP that was studied in Section 3.7 for TFEs, and will be continued
and extended to odd-order PDEs.

As a rule, such localized profiles F (or f ) are not unique. Three patterns denoted
by F1, F2, and F3 for n = 1, which exhibit a clear “approximate geometric order,”
are shown in Figure 4.4. Each Fk has precisely k dominant maxima (in view of
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Figure 4.3 Compactly supported solutions of (4.33) for various n > 0.

the oscillatory behavior near interfaces, this Sturmian property is rigorously true
for the second-order ODEs only). In general, we expect many different solutions
Fσ with a multiindex σ of arbitrary length that characterizes oscillatory behavior
of the pattern about equilibria F± = ±n−(n+1)/n and F0 = 0. Some countable
sequences of such blow-up-compacton patterns {Fk, k ≥ 1} can be attributed to
Lusternik–Schnirel’man classic variational category (genus) theory from the 1930s;
see Krasnosel’skii–Zabreiko [355, Ch. 8]). It is important that the ODE (4.33) is
variational.

Figure 4.5 shows a complicated multi-hump pattern, Fσ , with the multiindex

σ = {−8,+4,−10,+8,−2, 2,−8, 2,−2}.
Here, the first number“-8” reflects the first eight intersections with F− = −1, fol-
lowed by “+4”, i.e., four intersections with F+ = +1, next “-10” means ten inter-
sections with -1, etc. The number of intersections with F0 = 0 is given without the
sign, such as “2”, that occurs two times in this multiindex. We omit mentioning the
unique, transversal intersection with zero, i.e., “1”, everywhere in this sequence. It
seems that equation (4.33) admits compactly supported solutions Fσ (y) of arbitrary
“chaotic” complexity, corresponding to any suitable finite multiindex σ . A precise
meaning of similar chaotic orbits for fourth-order ODEs (though of a different, non-
oscillatory type close to interfaces as F → 0; this destroys a standard homotopy-like
approach to such orbits) is explained in [459, p. 198]. For the above nonlinear dis-
persion equation in (4.32), this is a compacton moving with the velocity λ = −1.

Similar standing blow-up patterns exist for the hyperbolic PDE

utt = −
(|u|nu

)
x x x x + |u|nu (hyperbolic: blow-up),

where the only change in (4.33) is in the multiplier 1
n �→ 2

n

( 2
n + 1

)
. Therefore, as

formerly, (4.28) and (4.24) give countable spectra of both moving compactons for
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Figure 4.4 Three solutions of (4.33) for n = 1.
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Figure 4.5 A complicated compacton pattern of the ODE (4.33) for n = 1.

nonlinear dispersion PDEs and standing localized blow-up patterns in parabolic and
hyperbolic problems.

4.2.2 On shock and rarefaction waves in PDEs with nonlinear dispersion

As a key feature of quasilinear odd-order PDEs, it is important to note that suffi-
ciently smooth profiles and evolution behavior exhibited by compactons and other
solutions to be described are not generic for many such equations (excluding some
special, “integrable” ones). This is in striking contrast with even-order quasilinear
parabolic PDEs, which, according to classical theory, exhibit a strong internal reg-
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ularity and the solutions are always, at least, continuous and sufficiently smooth at
any regular point (cf. TFEs in Chapter 3).

For first-order PDEs that are known as conservation laws, such as the Euler equa-
tion originated from gas-dynamics

ut + uux = 0, (4.34)

discontinuous shocks have been recognized for more than a century. General theory
of discontinuous entropy solutions of one-dimensional PDEs like (4.34) is due to
Oleinik [441] developed in the 1950s; see Smoller [530, Part III] for names, results,
references and amazing history of conservation laws. Among other important prop-
erties, one of the key features is that, in the most general case, the entropy solutions
are obtained by regularization, i.e., at the limit as ε → 0+ of the family of smooth
solutions {uε} of uniformly parabolic Burgers’ equation

ut + uux = εux x . (4.35)

The first such ideas were due to Hopf (1950) and Burgers (1948).
Discontinuous solutions can occur for higher-order PDEs from compacton theory,

though a suitable entropy-like approach is extremely difficult to develop along the
lines of that for conservation laws. This is a principal OPEN PROBLEM. Due to highly
oscillatory properties of solutions (see oscillatory asymptotics of the Airy function
and other fundamental kernels in the next section), formation of shock waves cannot
be described by exact solutions on simple invariant subspaces. We briefly discuss
third or fifth-order PDEs with quadratic leading-order operators

ut = (uux )x x, or ut + (uux)x x x x = 0. (4.36)

Consider two basic Riemann’s problems for PDEs (4.36). First, this is the formation
of the stationary shock wave S−(x) = −sign x (it is entropy for (4.34)),

S−(x) =
{

1 for x < 0,
−1 for x > 0,

(4.37)

from smooth solutions in finite time, as t → T−. This phenomenon is described by
the similarity solution

us(x, t) = g(z), where z = x
(T−t)1/3 , or z = x

(T−t)1/5 , (4.38)

and g solves the following ODEs obtained on substitution into (4.36):

(gg′)′′ = 1
3 g′z, or (gg′)(4) = − 1

5 g′z, with f (±∞) = ∓1. (4.39)

For these higher-order ODEs, existence and uniqueness problems are not easily stud-
ied analytically and are OPEN. Numerically, we have evidence that, in each case,
such a smooth odd profile g is unique. Figure 4.6 shows the profiles G = g2(z) for
z < 0. For z > 0, g(z) is extended anti-symmetrically to get the odd function. Such
similarity profiles g(z) describe formation of shocks, i.e.,

us(x, t)→ S−(x) as t → T−

for any x ∈ IR, uniformly in IR \ (δ, δ), with a δ > 0 small, and in L1
loc(IR). It is
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Figure 4.6 The shock wave similarity profile g(z) satisfying ODEs (4.39).

curious that, for the third-order case, in view of asymptotics of Airy functions given
in (4.139), the total variation of us(x, t) for any t < T is infinite. The same is true
for the fifth-order case. This strongly differs from the finite variation approach for
first-order PDEs (4.34) that is key in scalar conservation laws theory, [441].

Using the reflection symmetry u �→ −u, t �→ −t of PDEs (4.36) implies that the
same similarity solutions defined for t > 0,

us(x, t) = g(z), with z = x
t1/3 , or z = x

t1/5 , (4.40)

describe the collapse of the non-entropy shock S+(x) = sign x , posed as initial data.
Then (4.40) plays the role of the rarefaction wave that, for the conservation law
(4.34), has the simpler similarity piece-wise continuous form

us(x, t) = g( x
t ) =

{−1 for x < −t,
x
t for |x | < t,
1 for x > t .

This means that S+(x) is not an entropy shock. The same classification of stationary
shocks S±(x) as solutions of two Riemann’s problems applies to similar PDEs of
arbitrary (2m+1)th order,

ut = (−1)m+1 D2m
x (uux) for m = 1, 2, ... . (4.41)

For instance, consider parabolic ODE ε-approximations {uε(x)} of the stationary
shock S−(x) for (4.41),

(−1)m+1 D2m
x (uux)+ (−1)mεD2m+2

x u = 0.

Integrating 2m times with zero constants, we obtain the problem

uux = εux x , with u(±∞) = ∓1.

This is precisely the correct entropy approximation (4.35) (with ut = 0) for the
first-order conservation law, and the approximating sequence is as follows:

uε(x) = 1−ex/ε

1+ex/ε = tanh x
2ε → S−(x) as ε → 0+,

with pointwise and L1(IR) convergence. Notice that, unlike the above similarity so-
lutions, such approximating profiles are strictly monotone and are not oscillatory
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about∓1 as x →±∞ (this is related to the chosen special type of parabolic approx-
imation). Therefore, for the corresponding (2m+1)th-order ODEs, the shock S−(x)
is admissible in Gel’fand’s sense (1963), or G-admissible, while S+(x) is not.

Later on, using invariant subspace techniques for odd-order PDEs, we will not pay
the attention to the possible appearance of proper entropy shocks as solutions that
are obtained via regular parabolic approximations. As we have seen, other similarity
solutions are needed to revealing such singular phenomena.

4.2.3 On interface equations for compactons

Due to the degeneracy of the higher-order operators at u = 0, compacton (4.21) has
finite interfaces. Similar to parabolic problems for TFEs (cf. Example 3.10), these
explicit solutions help to identify the interface equation.

Example 4.8 (Interface equation) Let us begin with a slightly rescaled RH equa-
tion (4.14),

ut = (u2)x x x + 4(u2)x ≡
[
(u2)x x + 4 u2

]
x . (4.42)

Then (4.12) holds and the explicit traveling wave solution is obtained,

u(x, t) = f (y) ≡ −λ
3 sin2( y

2 ), where y = x − λt, (4.43)

where, in order to have a nonnegative solution, it is assumed that λ < 0, i.e., the TW
moves to the left. The compacton consists of the single hump for y ∈ (0, 2π). For
the sin2-wave in (4.43), the left-hand interface is fixed at the origin y = 0. We then
naturally pose the free-boundary condition of a zero contact angle type from thin
film theory (Section 3.1),

u = ux = 0 at the interface x = s(t). (4.44)

For regular solutions, (4.44) implies the zero-flux condition for PDE (4.42), i.e.,

(u2)x x + 4u2 = 0 at x = s(t).

In a standard manner, a formal dynamic interface equation is derived by differentiat-
ing u(s(t), t) = 0 and using the PDE (4.42), so that

s′ = S[u] ≡ − 1
ux

ut = −6ux x at x = s(t). (4.45)

As usual, this is not an independent free-boundary condition, and is just a mani-
festation of the regularity, so (4.45) is true for any smooth solutions (not necessarily
with the zero contact angle condition, i.e., remains valid for Stefan–Florin FBPs with
ux = S[u] �= 0).

Let us detect other conditions for such sufficiently regular solutions. Now using
either the explicit solution (4.43) or the ODE for f (this is necessary to do if explicit
solutions are not available), that is

−λ f ′ = ( f 2)′′′ + 4( f 2)′, (4.46)

we obtain the following expansion for small y > 0:

u(x, t) = f (y) = By2 + Cy4 + ... , (4.47)
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with B = 1
2 ux x(0, t) and C = 1

4! ux x x x(0, t). The first coefficient is then given by
B = − 1

12 λ = 6ux x coinciding with (4.45). Recall that s′ = λ for the TWs. The
second coefficient satisfies

−λC = 60BC + 4B2,

which yields the desired second interface equation

s′ = S[u] ≡ −30 ux x − 4!
uxxxx

(ux x)
2 at x = s(t). (4.48)

Using (4.45) reduces the dynamic condition (4.48) to a “stationary” higher-order
Neumann-type condition

ux x = −ux x x x at x = s(t).

These are interface free-boundary conditions which should be satisfied in order to
generate a (unique) sufficiently regular solution. A rigorous justification needs the
von Mises transformation for the new function u = v2 with the transversal interface
slope, vx �= 0 at x = s(t). This leads to a third-order degenerate PDE for X =
X (v, t) with the boundary condition (4.45) at the origin v = 0, which is necessary for
the correct functional setting of the corresponding degenerate operator. This problem
is locally well-posed, provided that vx �= 0 at v = 0. Some features are similar to
those in parabolic Example 3.10, though the proof is not easy. There are several
OPEN PROBLEMS in such an approach.

4.2.4 On proper solutions by parabolic approximations

Compactons initiate further intriguing aspects of nonlinear PDE theory. Here, we
face another principal question which remains OPEN for such weak solutions of wide
classes of degenerate nonlinear dispersion models. Namely, it is key to identify the
problem for solutions (4.43). If these are solutions of the Cauchy problem (so that
the free-boundary conditions do not need to be posed explicitly), it is expected that
(4.43) can be obtained by smooth approximations,

u(x, t) = limε→0+ uε(x, t), (4.49)

via, say, regular analytic parabolic flows. For instance, using the family {uε, ε > 0}
of analytic solutions of the uniformly parabolic PDEs

ut = −εux x x x + (u2)x x x + 4(u2)x , (4.50)

with the same compactly supported initial data u0(x). On the other hand, a sixth-
order regularization

ut = εux x x x x x + (u2)x x x + 4(u2)x (4.51)

may be applied. Do both ε-approximations lead to the same solution defined by
(4.49)? [See a partial answer for TWs below.] For some good solutions of (4.50),
e.g., those having a finite number of zeros that are uniformly transversal for all small
ε > 0, the passage ε → 0 is rather straightforward (each isolated transversal zero
is localized, stable in ε and hence, cannot spoil the limit ε → 0). The principal
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question is how to deal with generic highly oscillatory solutions uε(x, t). This leads
to the general problem of multiple zeros structure for solutions of the degenerate
PDE (4.42) and other models. This is a part of the Sturmian zero set analysis, which
was initiated by Sturm in 1836 [538] for the 1D second-order parabolic equations
(e.g., for the heat equation); see history, modern developments, and many applica-
tions in [226, Ch. 1]. Notice that, for the semilinear KdV equation (4.1), the parabolic
regularization, as in (4.50), has been recognized since the 1960s (Temam) to be an
effective approach to nonlinear PDEs; see [396, Ch. 3].

Passing to the limit ε → 0+ in the regularized PDEs (4.50), (4.51) and similar
equations represent a hard OPEN PROBLEM. Existence of a (unique) solution of the
CP now becomes a delicate ε-asymptotic problem. This is a common unavoidable
feature of many higher-order nonlinear degenerate and singular PDEs considered in
this and other chapters. As an illustration, consider this asymptotic problem for the
PDE (4.50) understood in the weak form∫

u0χ dx − ∫∫ uεχt = −ε
∫∫

uεχx x x x +
∫∫

(uε)
2χx x − 4

∫∫
(uε)

2χx , (4.52)

where χ ∈ C∞0 is a test (cut-off) function. In general, the weak form of equations
is not necessarily the best way for proper setting of many nonlinear problems. For
instance, the weak approach fails for not fully divergent operators as for the THEs
in Chapter 3 (though they are divergent in (4.50)). In these cases, we need to study
directly the limit of the smooth family {uε} as ε → 0, which gives a number of OPEN

PROBLEMS, especially for higher-order quasilinear nonlinear dispersion (or elliptic)
operators; see Remarks for further comments.

Passage to the limit ε → 0 in the integral identity (4.52) assumes the study of a
couple of singular integrals. For compactly supported u0(x) given by (4.43),

u0(x) = −λ
3 sin2( x

2 ) for x ∈ [0, 2π], (4.53)

there are far field integrals for |x | � 1, which are extremely small via the exponential
tails of the fundamental solution of the parabolic operator ∂

∂t + εD4
x ,

uε(x, t) ∼ exp
{
a|x | 4

3 /(εt)
1
3
}
,

with some complex constant a such that Re a < 0. Other harder integrals describe
the behavior in domains with the resonance interaction between two higher-order
terms in (4.50). For x ≈ 0, we use scaling

u(x, t) = ε
2
3 v(y, τ ), y = x

ε1/3 , τ = t
ε1/3 ,

where v(y, τ ) now solves the uniformly parabolic equation

vτ = −vyyyy + (v2)yyy + 4ε
2
3 (v2)y . (4.54)

The initial function is calculated from (4.53) as follows:

v0(y) ≡ −λ
3 ε−

2
3 sin2( 1

2 ε
1
3 y
)→− λ

12 y2 as y → 0+. (4.55)

Since τ → +∞ as ε → 0+, this fixes the asymptotic problem for the parabolic
PDE (4.54) with O(y2) initial data on bounded intervals. It is not very difficult to
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justify that, by parabolic theory, this CP for (4.54) is well-posed and admits a unique
global solution. This is the principal fact testifying that the sequence {uε} cannot
have non-small, O(1)-oscillations as ε → 0. In this case, the limit (4.49) gives a
unique (proper) solution of the Cauchy problem.

Let us demonstrate that the O(y2) behavior in (4.55) does not generate large, un-
bounded asymptotics as τ → +∞, which can affect the corresponding singular
integral in (4.52) and the limit (4.49). To this end, as a formal estimate, let us com-
pare v(x, τ ) with the standard similarity solution of (4.54) (without the last term
negligible for ε & 1)

v∗(y, τ ) = τ− 1
4 g(z), with z = y

τ 1/4 ,

where g satisfies the ODE

−g′′′ + 1
4 gz + (g2)′′ = 0, g(+∞) = 0.

Then g(z) ∼ eaz4/3
, with Re a = − 3

8 4−1/3 < 0, has exponential decay as z →+∞,
while for z & −1, it has a cubic growth of the form

g(z) ∼ 1
120 (−z)3 + ... as z →−∞.

It then follows that such a nontrivial solution occurs from more singular initial data

v∗(y, τ ) ∼ 1
τ y3 as τ → 0+.

For O(y2) data, the asymptotic behavior is less singular and the influence in the
integral identity of such an internal layer near the origin is negligible as ε → 0.

This analysis indicates how ε-asymptotic theory penetrates into the existence and
uniqueness construction of proper solutions. For more general, non-inverse bell-
shaped initial data, we can have many internal singular layers (possibly an uncount-
able set?), which should be taken into account. In general settings, the passage ε → 0
is very difficult and remains OPEN for most regularized PDEs considered later on.

On the other hand, for TWs, this asymptotic analysis is not hard and deals with
standard matched asymptotic expansions. Figure 4.7 shows the (non-monotone) con-
vergence as ε → 0 of the TW profiles satisfying the third-order ODE

−λ f = −ε f ′′′ + ( f 2)′′ + 4 f 2. (4.56)

Returning to our particular ODE approach, in order to detect maximal regular-
ity solutions of the Cauchy problem that may be inherited from the analytic ε-
regularization, it follows that expansion (4.47) yields the most smooth solutions of
the ODE (4.46) at the interface point. This is easily proved for these second-order
equations. Therefore, we claim (which may be obvious) that compactons (4.43) are
smooth solutions of the Cauchy problem for (4.42) and can be obtained without a
priori specified free-boundary conditions. A rigorous proof is not easy. The dynamic
interface equation then follows from the PDE for X = X (v, t) as explained above.
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4.2.5 Local behavior near interfaces for the K (2, 2) equation

Consider the quadratic PDE, keeping the leading differential term,

ut = (u2)x x x in IR × IR+, (4.57)

with given compactly supported initial data u0. Let us first study the TW solutions
of the form (4.43) satisfying, after integrating once, a simple ODE

−λ f ′ = ( f 2)′′′ �⇒ ( f 2)′′ + λ f = 0. (4.58)

These second-order nonlinear Emden–Fowler-type equations, introduced and studied
by Emden (1907) [168] and Fowler (1914) [200], seem to be the most famous and
well-studied ODEs in the twentieth century. We use in (4.58) the following standard
change that follows from a group of scalings,

f (y) = y2ϕ(s), s = ln y,

where ϕ solves the autonomous ODE

(ϕ2)′′ + 7(ϕ2)′ + 12ϕ2 + λϕ = 0 in IR. (4.59)

For λ �= 0, there exists the nontrivial constant profile

ϕ(s) ≡ ϕ0 = − λ
12 . (4.60)

For λ < 0, this solution is positive and actually leads to the existence of the explicit
nonnegative compacton (4.43). For λ > 0, (4.60) is negative and the ODE (4.58)
has the obvious negative solution that is obtained by reflection f �→ − f , λ �→ −λ.
By linearization, the constant solution (4.60) of (4.59) turns out to be asymptotically
exponentially (O(e−s)) stable as s →+∞, and is unstable as s →−∞; see Figure
4.8. The phase-plane of (4.59) shows that no other changing sign solutions exist.
Thus the TW profiles are non-oscillatory for equation (4.57), though strictly positive
solutions close to interfaces are possible for λ < 0 only.
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Figure 4.8 Asymptotic stability as s → +∞ of the constant solution (4.60) of (4.59) for
λ = −1 (a) and λ = 1 (b).

This is an ODE analysis of the local structure of moving TWs near interfaces. The
corresponding PDE result, after proving the existence of a proper solution u(x, t) of
the Cauchy problem for (4.57) (e.g., by the analytic regularization similar to that in
(4.50)), assumes establishing that the generic behavior at the interfaces is governed
by TWs. This is a difficult OPEN asymptotic problem that is typical for nonlinear
rescaled evolution PDEs, which is briefly and formally discussed below. Namely,
given a proper solution u(x, t), the TW rescaling is performed as follows:

u(x, t) = v(y, t), y = x − λt,

so v solves the rescaled equation with the same ODE operator

vt = (v2)yyy + λvy . (4.61)

For convenience, we study the behavior of the solution at the initial moment t = 0,
when the interface is at the origin, s(0) = 0, assuming that there exists the finite
speed of propagation λ = s′(0), i.e., the interface is a sufficiently smooth curve at
t = 0−. Proving such a regularity of interfaces is a hard OPEN PROBLEM. Then
the solution of (4.61) is rescaled according to the invariant group of scalings by
introducing the family of functions

wµ(z, τ ) = 1
µ2 v(µz, µτ), with parameter µ > 0, (4.62)

where wµ solves the same equation (4.61),

(wµ)τ = [(wµ)
2]zzz + λ(wµ)z, with data w(z, 0) = 1

µ2 v0(µz). (4.63)

Then the limit µ → 0, describing, according to (4.62), the behavior of v(y, t) for
(y, t) ≈ (0, 0−), is equivalent to the passage to the limit τ → +∞, z → ∞ in
(4.63), i.e., studying the asymptotic behavior of its solutions. Here, convergence of
initial data wµ(z, 0) as µ→ 0 determines the necessary speed λ. Had we proved the
stabilization to a nontrivial stationary profile, we would have established the behavior
of general solutions governed by the TWs given by (4.58). The equation (4.63) is not
a gradient system, i.e., it does not admit a Lyapunov function, so passing to the limit
as τ →+∞ is an OPEN PROBLEM.
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4.2.6 The signed K (2, 2) equation: TWs and oscillatory solutions

We now explain the origin of the signed versions of nonlinear dispersion PDEs that
have already been used in Examples 4.6 and 4.7. Mathematically, this is related to
another approach for checking the evolution properties of the compacton (4.43) and
oscillatory properties of general solutions via the n-continuity (homotopy) construc-
tion. Instead of (4.57), consider the following PDE:

ut = (|u|u)x x x . (4.64)

For smooth nonnegative solutions, these PDEs coincide. The mathematical advan-
tage of (4.64) is that it admits a connection to the linear equation via the family on
the signed nonlinear dispersion equations

ut = (|u|nu)x x x, with parameter n ≥ 0. (4.65)

Namely, at n = 0, the standard linear dispersion equation occurs,

ut = ux x x, (4.66)

exhibiting the well-known local and global evolution properties. Its fundamental so-
lution via Airy’s function is described in Example 4.27. We say that the PDEs (4.64)
and (4.66) belong to the same “homotopy class,” if wide sets of solutions (with, say,
stable transversal zeros only) of both can be continuously (in n) deformed to each
other. Therefore, both quadratic (4.64) and linear (4.66) equations should exhibit
similar local oscillatory properties of solutions.

This approach assumes the change of all the models, where in the PDEs and ODEs
we replace

u2 �→ |u|u, ϕ2 �→ |ϕ|ϕ, um �→ |u|m−1u, ... . (4.67)

For nonnegative compactons this does not matter. Using such monotone nonlinear-
ities in PDEs with nonlinear dispersion makes sense from a physical point of view,
[495]. Furthermore, for the parabolic equations of any order, including the TFEs in
Section 3.1, the only well-posed extension of quadratic models to solutions of chang-
ing sign assumes transformations (4.67), so the correct setting of PDEs is

ut = (|u|u)x x , ut = −(|u|u)x x x x x , ut = (|u|u)x x x x x x, etc.

Indeed, equations with non-monotone nonlinearities, such as (cf. (4.57))

ut = (u2)x x , or ut = −(u2)x x x x,

are backward parabolic in the negativity domain {u < 0} and are not well-posed.
This motivates introducing the signed K (m, n) (sK (m, n)) equation

ut = (|u|n−1u)x x x + (|u|m−1u)x ,

so that, for proper construction of solutions of the Cauchy problem, it is natural to
use a homotopy connection as n,m → 1 (n �→ n + 1 later on for convenience) to
the linear PDE

ut = ux x x + ux in IR × IR,

with well-known evolution and oscillatory properties of solutions.
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Traveling waves. Constructing TW solutions of (4.65) yields the second-order ODE

(| f |n f )′′ + λ f = 0 for y > 0, f (0) = 0, (4.68)

which is easy to study by setting F = | f |n f , so that

F ′′ = −λ
∣∣F∣∣− n

n+1 F for y > 0, F(0) = 0.

Hence, the following behavior near interfaces occurs:

F(y) = ±[− λn2

2(n+1)(n+2)

] n+1
n y

2(n+1)
n for λ < 0.

For λ > 0, it follows that F(y) ≡ 0, meaning nonexistence of finite TW-interfaces.
In this case, the ODE (4.68) admits arbitrarily small periodic solutions f (y) in IR,
which, formally, have interfaces at y = ±∞ and are not decaying as y →∞.

On regularization: convergence for the TWs. We will now slightly touch on the
regularization problem, and, following (4.50), consider the parabolic PDE

ut = −εux x x x +
(|u|nu

)
x x x .

Unlike (4.68), the TWs now solve the third-order singular perturbed ODE

−ε f ′′′ + (| f |n f
)′′ + λ f = 0. (4.69)

Rigorous principles of singular perturbation methods for differential equations were
established by Tikhonov in the 1940s and 50s. Boundary layer phenomena are ex-
plained in well-known monographs by Vasil’eva and Butuzov, O’Malley, Kevorkian
and Cole, Lomov, and others.

Let us briefly comment on the passage to the limit ε → 0 in (4.69). To study the
behavior near the interface as y → 0+, the standard change in (4.68) is used,

f (y) = yγ ϕ(s), s = ln y, where γ = 2
n . (4.70)

Plugging (4.70) into (4.68) and denoting � = |ϕ|nϕ gives

Gn[�] ≡ �′′ + 3n+4
n �′ + 2(n+1)(n+2)

n2 �+ λ
∣∣�∣∣− n

n+1 � = 0. (4.71)

Applying the same change (4.70) in (4.69) we obtain the non-autonomous ODE

ϕ′′′ + 3(γ − 1)ϕ′′ + (3γ 2 − 6γ + 2)ϕ′

+ γ (γ − 1)(γ − 2)ϕ = 1
ε e3s Gn[|ϕ|nϕ].

(4.72)

Introducing the new independent variable

s �→ s + 1
3 ln ε, (4.73)

we get rid of the ε-dependence on the right-hand side of (4.72). The behavior as
ε → 0 can be studied by matching methods from ODE theory. It follows that, since
the right-hand side in (4.72) becomes unbounded as ε → 0, good solutions must
approach the generic behavior of the ODE (4.71), formally corresponding to ε = 0.

Similarly, for the sixth-order regularization as in (4.51),

ut = εux x x x x x + (|u|nu)x x x �⇒ ε f (5) + (| f |n f
)′′ + λ f = 0.
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Figure 4.9 Oscillatory behavior of solutions of (4.75) for large y > 0.

Then the oscillatory component ϕ solves the ODE (operator P5 is as in (3.157))

P5[ϕ] ≡ ϕ(5) + ... = 1
ε e5s Gn[|ϕ|nϕ],

where, instead of (4.73), the translation s �→ s + 1
5 ln ε applies. As ε → 0, the

convergence of bounded solutions to those of the ODE (4.71) is observed.

Solutions of changing sign. We describe these by constructing the fundamental sim-
ilarity solution of (4.65),

u(x, t) = t−
1

n+3 f
(
x/t

1
n+3
) �⇒ (| f |n f )′′ + 1

n+3 f y = 0,
∫

f = 1. (4.74)

Setting F = | f |n f yields

F ′′ + 1
n+3

∣∣F∣∣− n
n+1 Fy = 0. (4.75)

For n = 0, this is the ODE problem for the Airy function Ai(y) as the kernel of
the fundamental solution of the linear operator in (4.66). For n > 0, assuming that
supp f = [y0,∞) with some y0 < 0, we have that, close to the finite left-hand
interface, as y → y+0 , the behavior is non-oscillatory (see Figure 3.5(a))

f (y) = [ n2

2(n+1)(n+2)(n+3)

] 1
n+1 (y − y0)

2
n (1+ o(1)) .

For y � 1, the behavior is different and f (y) does not have a finite interface. In Fig-
ure 4.9, we present a typical oscillatory behavior of the function F(y) = (| f |n f )(y)
for n = 1 to be compared with similar oscillations of the Airy function for n = 0.

4.3 Higher-order PDEs: interface equations and oscillatory solutions

Example 4.9 (Fifth-order PDE with nonlinear dispersion) Let us return to higher-
order degenerate PDEs, e.g.,

ut = (u2)x x x x x − 16(u2)x , (4.76)
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with the corresponding compacton

u(x, t) = f (y) ≡ λ
15 sin2( 1

2 y
)
, where y = x − λt . (4.77)

Here, λ > 0, so that the TW moves to the right. These solutions satisfy the zero
contact angle condition (4.44) (notice that the condition ux x x = 0 holds for any even
f (y)), but the flux in not zero,

(u2)x x x x − 16u2 = 6(ux x)
2 = λ

15 at x = s(t). (4.78)

This is the first sign that compacton (4.77) is not a solution of the Cauchy problem.
For this smooth case, the dynamic interface equation is standard,

s′ = S[u] ≡ − 1
ux

ut = −10 ux x x x at x = s(t). (4.79)

We expect that the zero contact angle conditions (4.44) plus the Florin-type condi-
tion (4.78) (with λ = s′(t)) comprise a locally well-posed FBP for (4.76) generating
compactons with profiles (4.77). Hence, (4.79) will serve as a regularity solvability
criterion for the degenerate equation that is obtained via the von Mises transforma-
tion X = X (v, t) with u = v2. The problem of the well-posedness is OPEN.

4.3.1 On the Cauchy problem

Concerning the correct setting for the Cauchy problem, we continue to study the
ODE for TW profiles f ,

−λ f ′ = ( f 2)(5) − 16( f 2)′. (4.80)

Let us show that the quadratic behavior as y → 0 as in (4.47), which remains true for
the current compactons, does not provide us with the maximal regularity exhibited
by the fifth-order ODE (4.80). To this end, consider the PDE with the leading higher-
order term only,

ut = (u2)x x x x x in IR × IR+. (4.81)

For TWs, the following ODE is obtained on integration:

−λ f = ( f 2)(4) for y > 0, f (0) = 0.

For λ < 0, it admits the positive solution

f (y) = − λ
1680 y4, (4.82)

which is smoother at the interface y = 0 than (4.77) for the FBP. Set

f (y) = y4ϕ(s), where s = ln y, (4.83)

where ϕ solves the following fourth-order autonomous ODE:

(ϕ2)(4) + 26(ϕ2)′′′ + 251(ϕ2)′′ + 1066(ϕ2)′ + 1680ϕ2 + λϕ = 0. (4.84)

For any λ �= 0, there exists the constant equilibrium

ϕ(s) ≡ − λ
1680 , (4.85)

which for λ < 0 is positive and leads to (4.82). In Figure 4.10 we show the behavior
of solutions of the ODE (4.84), so that (4.85) is asymptotically stable as s → +∞
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Figure 4.10 Non-oscillatory solutions of the ODE (4.84) for λ = −1 (a) and λ = 1 (b).

for both λ > 0 and λ < 0, with exponential convergence of the order O(e−s). The
lower left-hand corner of Figure 4.10(a) and the upper one in (b) show that the trivial
“equilibria” ϕ = 0 is highly unstable. Moreover, it seems that most of solutions of
(4.84) cannot change sign at all, unlike a number of other higher-order TFEs; cf.
Figure 3.8(a) and (b).

We expect that Figure 4.10 describes the generic non-oscillatory behavior near
interfaces of some classes of solutions of the PDEs, such as (4.76) in IR × IR, i.e.,
moving TWs exhibit the following behavior of the maximal regularity:

f (y) = O(y4) as y → 0. (4.86)

Then the compactly supported function (4.77) is not a solution of the CP.

Example 4.10 (Signed fifth-order PDE: solutions of changing sign) We now de-
scribe the oscillatory interface behavior for the signed fifth-order nonlinear disper-
sion PDE with parameter n > 0,

ut = (|u|nu)x x x x x in IR × IR+. (4.87)

Oscillatory properties for the linear PDE. As usual, the advantage of the signed
PDE (unlike (4.81)) is that it admits the formal passage to the limit n → 0 as a
connection to the linear dispersion equation

ut = ux x x x x in IR × IR+. (4.88)

Using TW solutions of (4.88) gives

−λ f = f (4),

so that setting f (y) = eµy yields µ4 = −λ < 0 for λ > 0. The generic decaying
behavior is oscillatory at the left-hand interface as y →−∞,

f (y) ∼ exp
{
λ

1
4

y√
2

}[
A cos

(
λ

1
4

y√
2

)+ B sin
(
λ

1
4

y√
2

)]
. (4.89)

For λ < 0, the only decaying (integrable at y = −∞) solution is non-oscillatory,

f (y) ∼ exp
{|λ| 1

4 y
}

as y →−∞.

In addition, there are bounded, non-integrable solutions.
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Alternatively, the fundamental solution of the corresponding linear operator ∂
∂t −

D5
x in (4.88) is

b(x, t) = t−
1
5 g(ξ), with ξ = x

t1/5 ,

where g is a unique solution of the ODE problem

g(5) + 1
5 (gξ)

′ = 0 in IR,
∫

g = 1. (4.90)

Then g(ξ) ∼ eaξ5/4
as ξ →+∞, with a4 = − 1

5

( 4
5

)4, so that the behavior is oscilla-
tory of the type

g(ξ) ∼ ξ− 3
8 exp

{−a0ξ
5
4
}[

A sin
(
a0ξ

5
4
)+ B cos

(
a0ξ

5
4
)]
,

where a0 = 4
5
√

2
5−1/4. As ξ → −∞, g(ξ) has stronger, not absolutely integrable

on (−∞, 0), oscillations,

g(ξ) ∼ |ξ |− 3
8
[
A sin

(
a0|ξ | 5

4
)+ B cos

(
a0|ξ | 5

4
)]
.

As a rule, in order to compare such oscillatory patterns with those for the quasilin-
ear model, we always formally mean that the left-hand interface for (4.88) is situated
at x = −∞, and not at a finite x , as for the degenerate PDE (4.87). Notice that,
for (4.88), there exists a single fundamental frequency of the linear periodic motion
and, most probably, this remains valid for (4.87) for small n > 0. In other words,
we claim that equations (4.87) and (4.88) belong to the same homotopy class, and,
in the CP, the solutions are then expected to be equally oscillatory to encourage their
maximal regularity at interfaces.

Thus, by such a continuity in n, similar oscillatory properties are expected to be
preserved in the quasilinear model (4.87), at least for sufficiently small n > 0. This
helps to detect the maximal regularity of solutions and define proper solutions of
the CP as those with the increasing regularity as n → 0, i.e., approaching C∞ (and
analytic) regularity of the rescaled kernel in (4.90) for the linear PDE (4.88).

Oscillatory solutions for n > 0. The TW profiles for (4.87) solve the ODE

−λ f = (| f |n f
)(4) for y > 0, f (0) = 0. (4.91)

In Section 3.7, equations, such as (4.91), occurred in various aspects of thin film
theory. In order to detect the character of sign changes of such solutions, we introduce
the oscillatory components ϕ for (4.91) by setting

f (y) = yγ ϕ(s), s = ln y, where γ = 4
n . (4.92)

Then F = |ϕ|nϕ satisfies the ODE with the operator P4[F] given by (3.156),

F (4) + 2(2µ− 3)F ′′′ + (6µ2 − 18µ+ 11)F ′′ + 2(2µ3 − 9µ2

+ 11µ− 3)F ′ + µ(µ− 1)(µ− 2)(µ− 3)F + λ
∣∣F∣∣− n

n+1 F = 0,
(4.93)

where µ = 4(n+1)
n > 4. According to (4.92), the oscillatory character of TW so-

lutions near interfaces depends on the availability of periodic solutions of the ODE
(4.93). Existence, nonexistence, multiplicity, and stability of periodic solutions of
such higher-order equations are difficult OPEN questions of general ODE theory.
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Figure 4.11 Convergence to stable periodic solutions of (4.93) with λ = 1 for n = 2 (a) and
n = 4 (b).

Stable periodic solutions for positive TW speeds. For λ > 0, solutions of the
ODE (4.93) are oscillatory; see Figure 4.11. A single stable periodic motion was
always detected that agrees with a similar result for n = 0. As usual, the oscillation
amplitude becomes extremely small as n approaches zero, so we need extra scaling.

Limit n→ 0. This scaling is

F(s) = ( n
4

) 4
n �(η), where η = 4s

n , (4.94)

where � solves a simpler limit ODE (λ = 1),

�(4) + 4�′′′ + 6�′′ + 4�′ +�+ ∣∣�∣∣− n
n+1 � = 0. (4.95)

The stable oscillatory patterns for this equation are shown in Figure 4.12. For n =
0.2 in Figure 4.12(a), by scaling (4.94), the oscillatory component is estimated as
follows:

max |ϕ(s)| ∼ 3 · 10−4
( n

4

) 4
n ∼ 3 · 10−30,

while
max |ϕ(s)| ∼ 10−93 for n = 0.08 in (b).

Limit n→∞. Then µ → 4, so the original ODE (4.93) approaches the following
equation with discontinuous nonlinearity:

F (4)∞ + 10F ′′′∞ + 35F ′′∞ + 50F ′∞ + 24F∞ + sign F∞ = 0, (4.96)

which also admits a stable periodic solution, as shown in Figure 4.13. The same ODE
(4.96) occurred for a KS-type equation in Example 3.36, see Figure 3.16.

Unstable non-periodic behavior for negative speeds. For λ < 0, two constant
equilibria are asymptotically stable, and numerically we find an unstable oscillatory
behavior in between; see Figure 4.14 for n = 1.3. This is a decaying behavior, which
reminds us the asymptotics in the linear case n = 0, but cannot be extended to the
interface at s = −∞.

This regularity and oscillatory ODE analysis again confirms that compactons (4.77)
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Figure 4.12 Stable periodic oscillations in the ODE (4.95) for n = 0.2 (a) and n = 0.08 (b).
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are not maximal regularity solutions of the Cauchy problem for (4.76) and solve the
FBP specified above. This conclusion is true for similar (2m+1)th-order PDEs with
m ≥ 2.

4.3.2 Fast moving 2π-periodic solutions

Example 4.11 Consider a PDE similar to (4.13) with a linear perturbation on the
right-hand side, where parameters satisfy 16α − 4β + γ = 0,

ut = α(u2)x x x x x + β(u2)x x x + γ (u2)x + δu + ε in IR × IR. (4.97)

Consider solutions (4.18) on W3. Then the DS (4.19) slightly changes,{C ′1 = δC1 + ε,
C ′2 = δC2 + µC1C3,
C ′3 = δC3 − µC1C2,

(4.98)

where µ = 6(β − 5α). This gives the following explicit 2π-periodic solutions:

(i) If δ = 0, the solutions exhibit a quadratic propagation with time,

u(x, t) = εt + A + B cos
[
x + µ

(
ε
2 t2 + At + D

)]
(A, B, D ∈ IR); (4.99)

(ii) If δ > 0, the propagation is exponentially fast,

u(x, t) = eδt
{− ε

δ e−δt + A + B cos
[
x + µ

( A
δ eδt − ε

δ t + D
)]}

. (4.100)

4.3.3 5D trigonometric subspaces

We begin with the fifth-order PDE (4.13) with α = 1,

ut = F[u] ≡ (u2)x x x x x + β(u2)x x x + γ (u2)x . (4.101)

Proposition 4.12 The only operator F in (4.101) preserving the 5D subspace

W5 = L{1, cos x, sin x, cos 2x, sin 2x} (4.102)

is as follows:

F[u] = (u2)x x x x x + 25(u2)x x x + 144(u2)x . (4.103)

The algebraic manipulations yield the following invariance condition of W5:{
9β − γ = 81,
16β − γ = 256,

from which β = 25, γ = 144, and (4.103) follows.

Example 4.13 (Quintic PDE on W5) The quintic nonlinear dispersion equation
(4.101), (4.103) possesses the solutions

u(x, t) = C1(t)+ C2(t) cos x + C3(t) sin x + C4(t) cos 2x + C5(t) sin 2x,
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C ′1 = 0,
C ′2 = 120(C2C5 − C3C4 + 2C1C3),
C ′3 = −120(C2C4 + C3C5 + 2C1C2),
C ′4 = 120(2C1C5 + C2C3),

C ′5 = 60(C2
3 − C2

2 − 4C1C4).

(4.104)

The nonnegative compacton [147, p. 4734] exists for λ < 0,

uc(x, t) = − λ
105 cos4

[ 1
2 (x − λt)

]
. (4.105)

This corresponds to the following explicit solution of the DS (4.104):

C1(t) = − λ
280 , C2(t) = − λ

210 cos λt, C3(t) = − λ
210 sin λt,

C4(t) = − λ
840 cos 2λt, C5(t) = − λ

840 sin 2λt .

The DS (4.104) describes a finite-dimensional evolution near the compacton, and
possibly may detect its stability on the subspace W5. The ODE analysis here is harder
than that on W3 in Example 3.17. According to (4.86), the compacton (4.105) satis-
fies the condition of the maximal regularity, so it is a solution of the CP.

It is easy to extend the above invariant analysis to the 7th-order PDE

ut = F[u] ≡ D7
x (u

2)+ βD5
x (u

2)+ γ (u2)x x x + δ(u2)x , (4.106)

though such PDEs are still of no use in applications related to nonlinear dispersion
phenomena, [495]. It follows from Proposition 4.12, that F admits W5, if

β = 25, γ = 144, and δ = 0.

This operator is unique up to a multiple of (4.103).

4.3.4 7D trigonometric subspace

Take

W7 = L{1, cos x, sin x, cos 2x, sin 2x, cos 3x, sin 3x}. (4.107)

Proposition 4.14 The only operator F in (4.106) preserving (4.107) is

F[u] = D7
x (u

2)+ 77D5
x(u

2)+ 1876(u2)x x x + 14400(u2)x . (4.108)

The invariance condition of W7 is the linear system{ 256β − 16γ + δ = 4096,
1296β − 36γ + δ = 46656,
625β − 25γ + δ = 15625,

which yields operator (4.108).

Example 4.15 (7th-order PDE on W7) The PDE (4.106), (4.108) on (4.107) is

u(x, t) = C1+C2 cos x +C3 sin x +C4 cos 2x+C5 sin 2x +C6 cos 3x+C7 sin 3x,
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C ′1 = 0,
C ′2 = 12600(C4C7 − C5C6 − C3C4 + C2C5 + 2C1C3),
C ′3 = −12600(C4C6 + C5C7 + C2C4 + C3C5 + 2C1C2),
C ′4 = 16128(C2C7 − C3C6 + 2C1C5 + C2C3),

C ′5 = −8064(2C2C6 + 2C3C7 + 4C1C4 + C2
2 − C2

3 ),
C ′6 = 9072(2C1C7 + C3C4 + C2C5),
C ′7 = −9072(2C1C6 + C2C4 − C3C5).

Concerning compactons, the following result holds:

Proposition 4.16 The only compacton admitted by (4.106) on W7 occurs for

ut = D7
x (u

2)+ 56D5
x(u

2)+ 784(u2)x x x + 2304(u2)x , (4.109)

and it is stationary (λ = 0),

u(x, t) = A sin3 x, where A = constant > 0. (4.110)

Namely, substituting u(x, t) = A sin3(x − λt) into (4.106) yields λ = 0 and
the coefficients indicated in the PDE (4.109). Then W7 is not invariant. Despite its
sufficient regularity at the interfaces (O(x3) as x → 0+), (4.110) is governed by a
special FBP with the zero contact angle conditions and interface equations, and is
not a solution of the Cauchy problem. According to our conclusions in Example 4.9,
the Cauchy problem needs another maximal regularity, which is given by the TWs
f (x − λt), so that, on integration, keeping the leading term,

−λ f = ( f 2)(6).

Then, instead of (4.83), the asymptotics behavior as y → 0 is

f (y) = y6ϕ(s), where s = ln y, (4.111)

where the component ϕ satisfies a sixth-order ODE. As usual, for λ < 0, there exists
the simple explicit solution

f (y) = −λ 6!
12! y6 > 0 for y > 0.

Hence, the maximal regularity is f (y) = O(y6) as y → 0, which is much smoother
than O(y3) (here, y = x) given by (4.110).

On oscillatory patterns in the CP. The oscillatory behavior near interfaces occurs
for the signed seventh-order PDE

ut = D7
x

(|u|nu
)

in IR × IR (n > 0). (4.112)

This has the natural connection as n → 0+ with the linear dispersion equation

ut = ux x x x x x x ,

whose fundamental solution is oscillatory at both interfaces x = ±∞.
For (4.112), the TW profiles f (y) solve the ODE(| f |n f

)(6) = −λ f for y > 0, f (0) = 0.
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Figure 4.15 Stable periodic behavior for (4.114), λ = 1, n = 5 (a), and n = 500 (b).

Instead of (4.111), the oscillatory component ϕ is introduced as follows:

f (y) = yµϕ(s), s = ln y, with µ = 6
n . (4.113)

Setting |ϕ|nϕ = F yields a sixth-order ODE (similar odd-order equations occurred
in thin film analysis in Section 3.7)

P6[F]+ λ
∣∣F∣∣− n

n+1 F = 0, with exponent γ = 6(n+1)
n , (4.114)

where the linear operator P6 is defined by the recursion (3.156). The stable periodic
behavior for (4.114), λ = 1, which creates changing sign TW patterns by (4.113), is
shown in Figure 4.15, where the part (b) corresponds to n = 500 and changes a little
for larger values of n. Then γ → 6, so the ODE admits the limit n → +∞, where
the discontinuous nonlinearity sign F occurs.

In order to see periodic oscillations for smaller n (actually, there is a numerical
difficulty already for n ≤ 4), we perform the scaling

F(s) = ( n
6

) 6
n �(η), where η = 6s

n , (4.115)

to get in the limit the following simplified ODE with the binomial linear operator:

�(6) + 6�(5) + 15�(4) + 20�′′′ + 15�′′ + 6�′ +�

≡ e−η(eη�)(6) = −λ
∣∣�∣∣− n

n+1 �.
(4.116)

Figure 4.16 shows the stable periodic behavior for (4.116) with λ = 1. According to
scaling (4.115), the oscillatory component ϕ(s) gets extremely small,

max |ϕ| ∼ 5× 10−10 for n = 0.5, and max |ϕ| ∼ 2× 10−111 for n = 0.1.

For λ < 0, periodic solutions of (4.114) are unstable; see Figure 4.17 for n = 15
that is obtained by shooting from s = 0 with prescribed Cauchy data.

4.3.5 Cubic and higher-degree operators

Example 4.17 (Cubic operators) Consider the following cubic operator:

F[u] = D5
x (u

3)+ β(u3)x x x + γ (u3)x . (4.117)
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Figure 4.16 Periodic behavior for (4.116), λ = 1, n = 0.5 (a), and n = 0.1 (b).
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Figure 4.17 Unstable periodic behavior of the ODE (4.114), λ = −1, for n = 15. Cauchy
data are F(0) = 10−4, F ′(0) = F ′′′(0) = 0, F ′′(0) = −5.0680839826093907... × 10−4 .

Proposition 4.18 Operator (4.117) admits W3 = L{1, cos x, sin x} iff β = 13 and
γ = 36.

Hence, the PDE

ut = D5
x (u

3)+ 13(u3)x x x + 36(u3)x (4.118)

admits exact solutions (4.18) with the DS
C ′1 = 0,
C ′2 = 18

(
4C2

1 + C2
2 + C2

3

)
C3,

C ′3 = −18
(
4C2

1 + C2
2 + C2

3

)
C2.

There exist two first integrals

C1 = A and C2
2 + C2

3 = B.

Then the DS provides us with explicit TW solutions

u(x, t) = D1 + D2 cos(x − λt)+ D3 sin(x − λt),
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where Dk are arbitrary constants and

λ = −18
(
4D2

1 + D2
2 + D2

3

)
< 0.

Choosing D3 = 0 and D1 = D2 yields the compacton (obtained in [147] by a
different approach)

uc(x, t) =
√
− 2λ

45 cos2[ 1
2 (x − λt)] for |x − λt| < π. (4.119)

According to the maximal regularity of the TW profiles satisfying

−λ f = ( f 3)(4) for y > 0, f (0) = 0,

we see that, for any uniformly bounded oscillatory component ϕ(s),

f (y) = y2ϕ(ln y) = O(y2) as y → 0.

Since (4.119) exhibits precisely this maximal regularity at the interfaces, it can be
considered as a solution of the Cauchy problem for (4.118). As usual, this does not
mean positivity-like features of general solutions of (4.118). The function F = ϕ3(s)
satisfies the ODE (4.93) with n = 2 (i.e., µ = 6), so that the generic behavior is
oscillatory for λ > 0 and is described by a stable periodic orbit ϕ(s).

Example 4.19 (Fifth-degree operators) Consider operators of the algebraic ho-
mogenuity five,

F[u] = D5
x (u

5)+ β(u5)x x x + γ (u5)x . (4.120)

Proposition 4.20 (i) Operator (4.120) admits W2 = L{cos x, sin x} iff β = 34,
γ = 225; and (ii) does not preserve W3 = L{1, cos x, sin x}.

In (ii), the invariance condition consists of fourteen nonlinear algebraic equations
for β and γ which are not consistent. The corresponding PDE on W2,

ut = D5
x (u

5)+ 34(u5)x x x + 225(u5)x , (4.121)

possesses solutions

u(x, t) = C1(t) cos x + C2(t) sin x,{
C ′1 = 120

(
C2

1 + C2
2

)2
C2,

C ′2 = −120
(
C2

1 + C2
2

)2
C1.

Using the first integral

C2
1 + C2

2 = A,

this leads to the TW solutions

u(x, t) = D1 cos(x − λt)+ D2 sin(x − λt)

that depend on two arbitrary constants D1,2, with

λ = −120
(
D2

1 + D2
2

)2
< 0.
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Setting D2 = 0 gives a formal compacton (cf. [147])

uc(x, t) =
{ (− λ

120

) 1
4 cos(x − λt) for |x − λt| ≤ π

2 ,

0 for |x − λt| > π
2 .

(4.122)

It is curious that this simple Lipschitz continuous function is a solution of the max-
imal regularity and satisfies the Cauchy problem. Using TWs for the leading-order
operator in (4.121), we have the ODE

−λ f = ( f 5)(4) for y > 0, f (0) = 0, (4.123)

which has a linear envelope,

f (y) = y ϕ(s), s = ln y. (4.124)

The oscillatory component ϕ(s) is obtained from the fourth-order ODE (4.93) with
n = 4 (µ = 5). In general, solutions are oscillatory near interfaces. Hence, by
(4.124), the Lipschitz continuity of solution (4.122) is the best regularity provided
by the equation (4.123).

Example 4.21 (Q(2,2,2)-family) We now analyze a couple of operators from the
family Q(2, 2, 2) of equations (4.17) and study the corresponding PDEs on

W3 = L{1, cos x, sin x}.
First, it is easy to see that the third-order operator

F3[u] = [u(u2)x x
]

x + β(u3)x

does not admit W3 (but it does W2 = L{cos x, sin x} for β = 4). Consider next the
fifth-order cubic operator

F5[u] = [u(u2)x x x x
]

x + β
[
u(u2)x x

]
x + γ (u3)x . (4.125)

Proposition 4.22 (i) Operator (4.125) admits W3 iff β = 5 and γ = 4, and
(ii) does not admit W5 given in (4.102).

The corresponding evolution PDE

ut =
[
u(u2)x x x x

]
x + 5

[
u(u2)x x

]
x + 4(u3)x

possesses exact solutions (4.18), with the DS
C ′1 = 0,
C ′2 = 2

(
2C2

1 + C2
2 + C2

3

)
C3,

C ′3 = −2
(
2C2

1 + C2
2 + C2

3

)
C2.

It follows that C1 = A and C2
2 + C2

3 = B , and the general solution is given by the
TWs

u(x, t) = D1 + D2 cos(x − λt)+ D3 sin(x − λt),

where D1,2,3 = constant, and

λ = −2
(
2D2

1 + D2
2 + D2

3

)
< 0.
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The compacton is obtained for D3 = 0 and D1 = D2,

uc(x, t) =
√
− 2λ

3 cos2[ 1
2 (x − λt)] for |x − λt| ≤ π. (4.126)

By checking the maximal regularity of TWs via the leading term of the PDE, we
obtain, on integration

−λ = ( f 2)(4) for y > 0, f (0) = 0.

The similarity structure of multiple zeros at y = 0 is then given by

f (y) = y2ϕ(s), where s = ln y, (4.127)

and this confirms that the non-oscillatory (λ < 0) compacton (4.126), exhibiting the
same regularity at the interfaces, solves the Cauchy problem. As usual, the generic
structure of multiple zeros for λ > 0 at interfaces depends on the behavior of the
oscillatory component ϕ(s) for s = ln y & −1. Numerically, we did not see reliable
periodic oscillations. For the signed Q(2, 2, 2) equation,

ut = [u(|u|u)x x x x]x �⇒ −λ = (| f | f )(4),
oscillatory solutions (4.127) do exist (see Example 4.10).

4.3.6 Exponential subspaces

For odd-order PDEs (4.97), dealing with exponential subspaces is easier.

Proposition 4.23 The quadratic operator with constant coefficients

F[u] =∑(i≥0) αi Di
x (u

2) (4.128)

preserves the following subspaces:

W2 = L{1, ex}, if
∑

2iαi = 0; (4.129)

W3 = L{1, ex , e−x }, if
∑

2iαi = 0 and
∑

(−2)iαi = 0. (4.130)

The result is straightforward by taking

u = C1 + C2ex + C3e−x (4.131)

(C3 = 0 for the subspace in (4.129)) and differentiating the equality

u2 = C2
1 + 2C2C3 + 2C1C2ex + 2C1C3e−x + C2

2 e2x + C2
3 e−2x .

Example 4.24 Equation (4.97), where

16α + 4β + γ = 0

(two conditions in (4.130) coincide for all odd or even derivatives) admits solutions
(4.131) with an easily derived DS for the expansion coefficients.

The order of the operator (4.128) can be arbitrary, so infinite-order equations can
be considered. Such PDEs are well known in the mathematical literature; see Dubin-
skii [156].
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Example 4.25 (“Hyperbolic” PDE of infinite order) Consider the PDE,

utt = sin(αDx )u2 + u − 1,

where α is a constant, and the linear operator sin(αDx ) on the right-hand side is
formally defined by

sin(αDx ) =∑(i≥0)
(−1)i

(2i+1)!(αDx )
2i+1.

Looking for solutions on W2 with

u(x, t) = C1(t)+ C2(t)ex , (4.132)

the invariance condition (4.129) reads

sin 2α = 0,

so we take α = π
2 . Then, substituting into the equation yields

C ′′1 + C ′′2 ex = 2C1C2
[∑ (−1)i

(2i+1)!

(
π
2

)2i+1]ex + C1(t)+ C2(t)ex − 1,

and, since the sum in square brackets equals sin
(
π
2

) = 1, this gives the DS{
C ′′1 = C1 − 1,
C ′′2 = 2C1C2 + C2.

Then C1(t) = 1+ A cosh t and C2 solves a hyperbolic Mathieu equation,

C ′′2 − (3+ 2A cosh t)C2 = 0.

Example 4.26 (“Reaction-diffusion” equation of infinite order) The PDE

ut = sin(αDx )u2 + βu2,

where |β| ≤ 1, admits solutions (4.132) if

sin 2α + β = 0.

4.4 Compactons and interfaces for singular mKdV-type equations

4.4.1 Preliminaries: Airy function, integral equation, and smooth solutions

Example 4.27 (FBP-compactons for mKdV-type equations) We now study some
compacton-like solutions that are not associated with invariant subspaces or sets, but
are simple and important for a general understanding of FBPs, the Cauchy problem,
and finite propagation. Consider the mKdV-type PDE

ut + umux + ux x x = 0, with parameter m ≥ 0, (4.133)

which at this time is formulated for nonnegative solutions. For m = 1, (4.133) is
the KdV equation, and m = 2 yields the modified KdV (mKdV) equation. For m =
1
2 , (4.133) describes ion-acoustic waves in a cold-ion plasma with non-isothermal
electrons, [517]; see Remarks for further applications and references. For such PDEs,
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basic computations are simple and sometimes explicit. To be precise, looking for
standard TWs

u(x, t) = f (y), with y = x − λt, λ > 0, (4.134)

yields the ODE
−λ f ′ + f m f ′ + f ′′′ = 0 ( f ≥ 0),

so, on integration two times, bearing in mind the compacton with f ′ = 0 at f = 0,

( f ′)2 = A f + λ f 2 − 2
(m+1)(m+2) f m+2, (4.135)

where A > 0 is an arbitrary constant. In this case, for any m > 0, there exists a
periodic solution f (y). In particular, for m = 2, choosing A = 1

3

√
2λ3/2 yields the

case of explicit integration (see [360] and [494])

u(x, t) = 2
3

√
2λ

cos2[ 1
2

√
λ(x−λt)]

1− 2
3 cos2[ 1

2

√
λ(x−λt)]

.

Setting u = 0 for 1
2

√
λ|x − λt| ≥ π

2 , one obtains a (formal) compacton-like solu-
tion, which is localized in the interval of length 2π/

√
λ. This and similar solutions

given by the ODE (4.135) for any m ≥ 0 are solutions of the FBP, so zero contact
angle free-boundary conditions (4.44) are necessary to support such a compacton
evolution. The dynamic interface equation is determined as in Example 4.8.

Let us present a further comment on this important issue to be dealt with later on:
Such compacton-like solutions of semilinear PDEs with a regular lower-order non-
linear term umux for m > 0 are not solutions of the Cauchy problem. The equation
(4.133) in IR × IR+ describes processes with infinite propagation. To see this, set
m = 0 (then the above compacton persists to exist if λ < 1) and consider the linear
equation

ut + ux x x = 0 in IR × IR+, (4.136)

where the convection term ux is eliminated by using the moving frame x �→ x − t .
For initial data u0(x) with exponential decay at infinity, the unique solution of the
Cauchy problem for (4.136) is given by the convolution

u(x, t) = b(·, t) ∗ u0, (4.137)

where b(x, t) is the fundamental solution of the operator ∂
∂t + D3

x ,

b(x, t) = t− 1
3 g(ξ), ξ = x

t1/3 , (4.138)

and g satisfying
∫

g = 1 solves the linear ODE

g′′′ − 1
3 (gξ)

′ = 0 �⇒ g′′ − 1
3 gξ = 0.

The unique solution g is given by the Airy function Ai(ξ) and has the following
behavior (see [4, p. 363] for details; recall the reflection x �→ −x for PDE (4.66)):

g(ξ) ∼
{

ξ− 1
4 e−a0ξ

3/2
as ξ →+∞,

|ξ |− 1
4 cos

(
a0|ξ | 3

2 + A
)

as ξ →−∞,
(4.139)

where a0 = 2
9

√
3 and A is a constant. Then (4.137) means that, for any compactly
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supported data u0(x) �≡ 0, the solution u(x, t) is not compactly supported for arbi-
trarily small t > 0.

Similarly, (4.137) implies that PDEs, such as (4.133) in IR × IR+ with the regular
nonlinear term for m ≥ 0, cannot admit nontrivial compactly supported solutions
of the Cauchy problem. For sufficiently smooth solutions at t = 0 (i.e., for good
initial data decaying fast enough at infinity), (4.133) can be written in the equivalent
integral form

u(x, t) = M[u] ≡ b(t) ∗ u0 −
∫ t

0 b(t − s) ∗ (|u|mux)(s) ds,

= b(t) ∗ u0 − 1
m+1

∫ t
0 (t − s)−

2
3
∫

IR g′
( x−y
(t−s)1/3

)
(|u|mu)(y, s) dy.

(4.140)

Here, for solutions of changing sign, um is replaced by |u|m . Integration by parts
on the right-hand side of (4.140) needs extra estimates on the behavior of u(x, t)
as x → ±∞. For compactly supported u0(x), we may expect that such behavior is
similar to that shown in (4.139). A unique solution of (4.140) is constructed via the
simple iteration

un+1 = M[un] for n = 0, 1, ... , u0 is given, (4.141)

by using the fact that the integral operator M is a contraction in suitable functional
spaces. In view of the slow decay of the Airy function in (4.139) as ξ → −∞,
functional settings are rather tricky; details can be found in [179]. Semigroup ap-
proaches and Banach’s Contraction Principle are effective tools to prove existence
and uniqueness for the Cauchy problem; see [403, Ch. 7] for several advanced ap-
plications. Concerning the behavior of small enough solutions as x → ±∞, we
observe that, in iteration (4.141), the regular term |u|mux for any m ≥ 0 does not af-
fect the “essence” of asymptotics in the fundamental kernel (4.139). For compactly
supported u0, solution u(x, t) of (4.140) will exhibit similar asymptotic decay as
x →∞ for arbitrarily small t > 0.

Explicit FBP-compactons via simple ODEs can be constructed for other semilin-
ear PDEs of KdV-type. For instance, the fifth-order KdV-type equation

ut + 5
3 (2u + u4)+ 5u2ux x x + ux x x x x = 0

possesses the explicit solution with λ = 1 [360]

u(x, t) = B
cos2[ 1

2 (x−t)]

1− 2
3 cos2[ 1

2 (x−t)]
, (4.142)

where B = 4
3 . Another KdV-type equation

ut + 1
10 u4ux + (ux)

3 + u2ux x x + ux x x x x = 0

admits the solution (4.142) with [570]

B = 2
3

√
10.

All these and other similar solutions need a proper FBP setting. We agree with argu-
ments of Rosenau’s critics of such compactons [494, p. 202], which were sometimes
wrongly treated as solutions of the Cauchy problem in IR × IR+.
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4.4.2 Finite propagation and oscillatory solutions

Example 4.28 (Finite propagation for m ∈ (−1,0)) Thus, in order to have finite
propagation, we need a singular lower-order term with exponents

m < 0.

For solutions of changing sign, we take the signed mKdV-type equation,

ut − |u|mux + ux x x = 0 in IR × IR+ (4.143)

(recall the sign change in the second term to ensure a suitable finite propagation).
In general, existence of a solution for m ∈ (−1, 0) can be seen from the inte-

gral equation (4.140) analyzed by Schauder’s Theorem in a proper functional setting
(M is assumed to be compact and map a convex set into itself). It is principal that
uniqueness cannot follow from the integral equation, since M is not a contraction for
the non-Lipschitz nonlinearity |u|mu, where m + 1 ∈ (0, 1). This is an OPEN PROB-
LEM. As usual, uniqueness is associated with the approximation (ε-regularization)
approach as in Section 4.2.4. For second-order parabolic PDEs with singular non-
linear coefficients, this leads to notions of maximal or minimal proper solutions (see
[226, Ch. 7]).

As above, we reveal the interface behavior by using TWs (4.134) satisfying

λ f = f ′′ − 1
m+1 | f |m f for y > 0, f (0) = 0 (4.144)

(for simplicity, A = 0 in (4.135)). Let us begin by studying the crucial stationary
case λ = 0, where the ODE is simpler,

f ′′ − 1
m+1 | f |m f = 0 for y > 0, f (0) = 0.

This possesses the positive non-oscillatory solution

f (y) = ϕ0 yγ , where γ = 2
|m| > 0 and

ϕ0 =
[2(m+1)(m+2)

m2

] 1
m ,

(4.145)

which describes the behavior also near interfaces for λ �= 0; see further asymptotic
expansions below. The function (4.145) being extended by 0 for y ≤ 0 is at least
C [γ ]−1 at y = 0, and the smoothness increases as m → 0−, since γ = 2

|m| →
+∞. Notice also that such solutions satisfy u ∈ C2

x for all m ∈ (−1, 0), which
seems difficult to prove for general weak solutions by the integral equation (4.140)
or otherwise. These regularity problems are OPEN.

It is interesting to estimate the rate of divergence as m → 0− of the interface
x = s(t) of solutions u(x, t). For compactly supported u0, using estimates in (4.139)
yields, for small fixed t > 0, that

u(x, t) ∼ b(x, t) ∼ t− 1
3
( |x |

t1/3

)− 1
4 as x →−∞.

Consider the expansion for m ≈ 0−,

|u|m = 1+ m ln |u| + ... ,
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which is violated for the solution u(x, t) almost everywhere (a.e.) in domains, where

|m ln |u| | ∼ |m| | ln |b(x, t)| | � 1.

This characterizes the approximate position of the interface of u(x, t) (indeed, if this
is not true a.e., then u can be again approximated by b). Thus, for the interface, the
following approximate equation holds:

ln |b(s(t), t)| ≡ − 1
3 ln t − 1

4 ln
( |s(t)|

t1/3

) ∼ − 1
|m| .

Resolving gives the exponential estimate of the interface position

s(t) ∼ −e
4
|m| as m → 0−.

Example 4.29 (Finite propagation and interface equation for m ∈ (−2,−1])
Let us now return to the original mKdV equation (we take A = 0)

ut + |u|mux + ux x x = 0 �⇒ λ f = f ′′ + 1
m+1 | f |m f. (4.146)

Then, for m ∈ (−2,−1), there exists the positive solution

f (y) = [2|m+1|(2+m)
m2

] 1
m y

2
|m| (1+ o(1)) as y → 0,

for which the interface equation is computed. For

m ≤ −2,

such a local TW profile does not exist. For the corresponding second-order diffusion-
convection equations

ut + umux − ux x = 0 (u ≥ 0), (4.147)

with m ≤ −2, this means nonexistence of a nontrivial solution u(x, t) �≡ 0 for any
compactly supported data u0 ≥ 0; see [226, Sect. 7.5]. For the third and higher-
order evolution PDEs with singular coefficients, similar nonexistence conclusions
are unknown and represent an OPEN PROBLEM.

Taking into consideration the λ f term in (4.146) yields that, close to the interface
as y → 0+,

f (y) = Cyγ + λ C
(γ+1)(γ+2) yγ+2 + ... , (4.148)

where
γ = 2

|m| and Cm = − 2(m+1)(m+2)
m2 > 0.

The expansion (4.148) determines the corresponding pressure-like variable

v = u|m|,
which, for TW profiles, exhibits the analytic-looking expansion

f |m|(y) = C |m|y2 + λ |m|C |m|
(γ+1)(γ+2) y4 + ... . (4.149)

Recalling the TW structure (4.134), this gives the following system of interface equa-
tions at x = s(t), consisting of stationary and dynamic ones:{

(u|m|)x x = 2C |m|,
s′ = λ = (γ+1)(γ+2)

24|m|C |m| D4
x (u

|m|). (4.150)
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For singular second-order parabolic equations, including (4.147), such interface sys-
tems are rigorously justified by the Sturmian intersection comparison with TW so-
lutions; see examples in [226, Sect. 7.11]. For A �= 0 in (4.135), the expansion like
(4.149) contains more terms, so an interface system, such as (4.150), may also in-
clude more equations for m ≈ −1−; cf. parabolic examples in [226, Sect. 8.5].

In the critical case m = −1, the expansion takes the form (for A = 0)

f (y) = −y2 ln y − 1
2 y2 ln(− ln y)− 1

12 λy4 ln y + ... , (4.151)

so that the interface system is formulated in terms of another pressure variable

v = Q(u) ≡
√

2u
| ln u| + ... as u → 0.

Then Q( f ) = y2 + ... and this implies the first stationary interface equation

[Q(u)]x x = 2 at x = s(t).

Expansion (4.151) then gives the second stationary equation, and the third equation
containing λ that is dynamic. The justification of the interface system (4.150) for
general solutions and the identification of the problem (an FBP, or the Cauchy prob-
lem) remain OPEN. The non-oscillatory property of the ODE (4.146) at interfaces
suggests that solutions with the behavior (4.148) and (4.151) solve the CP.

Example 4.30 (Solutions of changing sign) Finite interface oscillatory solutions
can be obtained in a KdV-type equation with a lower-order absorption-like term,

ut + uux + ux x x + |u|−nu = 0 in IR × IR+, with n > 0.

The TWs solve
−λ f ′ + f f ′ + f ′′′ + | f |−n f = 0.

Near the interface at y = 0, keeping two leading terms yields

f ′′′ + | f |−n f = 0 for y > 0, f (0) = 0.

Introducing the oscillatory component

f (y) = yγ ϕ(s), where s = ln y, (4.152)

where γ = 3
n , gives the following ODE:

P3[ϕ] = − ϕ
|ϕ|n . (4.153)

This is precisely equation (3.166) that occurred in thin film study in Section 3.7,
where a stable periodic orbit of changing sign was detected for n ∈ (0, nh).

Example 4.31 (Self-similar blow-up in (2k+1)th-order PDEs) Neglecting the con-
vective term uux , consider a general (2k+1)th-order equation with a source,

ut = (−1)k+1 D2k+1
x u + |u|p−1u in IR × (0, T ) (k = 1, 2, ...),

where p > 1. Blow-up similarity solutions are given by

u(x, t) = (T − t)−
1

p−1 f
( x
(T−t)1/(2k+1)

)
, where f solves

(−1)k+1 f (2k+1) − 1
2k+1 f ′y − 1

p−1 f + | f |p−1 f = 0.
(4.154)
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Figure 4.18 The first blow-up patterns of (4.154), p = 3, for k = 1 and k = 2.

The first blow-up patterns are calculated numerically and are shown in Figure 4.18
for p = 3 in the third, k = 1, and fifth-order, k = 2, cases. Notice the oscillatory tail
as y → −∞, which for k = 1 corresponds to the Airy function (4.139). The decay
as y → +∞ is exponentially fast, non-oscillatory for k = 1, and oscillatory for any
k ≥ 2. Existence and multiplicity of solutions for (4.154) in IR are OPEN PROBLEMS

and are more difficult in higher-order cases (k ≥ 2). It is curious that blow-up is
not single point. For instance, for k = 1, using expansions in (4.139), we find that,
roughly speaking,

u(x, T−) =
{

0 for x > 0,
±∞ for x < 0,

where “±∞” means unbounded oscillatory behavior. Namely, at every fixed point
x0 < 0, the final-time profile is unbounded for p < 13 (we expect that such solutions
exist for p > 1 below the bifurcation point p0 = 4),

u(x, t) ∼ (T − t)−
1

p−1
∣∣ x0
(T−t)1/3

∣∣− 1
4 cos(...) = (T − t)

p−13
12(p−1) |x0|− 1

4 cos(...).

Example 4.32 (Oscillatory solutions in higher-order mKdV equations) Oscilla-
tory, changing sign solutions at finite interfaces are achieved in higher-order mKdV-
type models, such as the fifth-order one

ut +
(|u|−nu

)
x + ux x x x x = 0 (n > 0).

Then TWs satisfy −λ f ′ + (| f |−n f )′ + f (5) = 0, so that, close to interfaces,

f (4) + | f |−n f = 0 for y > 0, f (0) = 0,

using representation (4.152) with γ = 4
n . A periodic oscillatory behavior for ODEs

like (4.153), with P3 �→ P4, was studied in Example 4.10.
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4.5 On compactons in IR N for nonlinear dispersion equations

Invariant subspaces for operators in IR N will be systematically studied in Chapter
6, including compact moving structures. Here we present a few examples of com-
pactons in IR N , whose construction is based on the known 1D analysis. For com-
pactons, this study is continued in Section 6.7. Many problems of existence, unique-
ness, and asymptotics for the PDEs in this section are OPEN.

Example 4.33 (KP equation with nonlinear dispersion) Consider the PDE[
ut + uux + (u2)x x x

]
x+
⊥u = 0, (4.155)

which is the Kadomtsev–Petviashvili equation in IRN× IR with nonlinear dispersion.
Here X = (x, x ′) is the spatial variable, with x ∈ IR and x ′ = (x2, ..., xN ) ∈ IRN−1.
The Laplacian 
⊥ takes into account the variable x ′. This equation in IR3 × IR was
introduced by Rosenau and Hyman [496, p. 567] to demonstrate multi-dimensional
compactons of special and unusual structure. These are treated below by using invari-
ant subspaces. We continue to call such solutions compactons, though their supports
are not bounded or of finite measure, but their solutions exhibit special types of finite
propagation.

Consider solutions on the trigonometric subspace W3 = L{1, cos γ x, sin γ x},
u(X, t) = C1(x

′, t)+ C2(x
′, t) cos γ x + C3(x

′, t) sin γ x, (4.156)

with a constant γ to be determined. Plugging (4.156) into the PDE (4.155) yields the
following expansion on W5 = W3 ⊕ L{cos 2γ x, sin 2γ x}:


⊥C1 +
[
γ
(
C3t + γ (2γ 2 − 1)C1C2

)+
⊥C2
]

cos γ x

− [γ (C2t − γ (2γ 2 − 1)C1C3
)+
⊥C3

]
sin γ x

+ γ 2(8γ 2 − 1)
(
C2

2 − C2
3

)
cos 2γ x + 2γ 2(8γ 2 − 1)C2C3 sin 2γ x = 0.

The last two terms (projections onto cos 2γ x and sin 2γ x) simultaneously vanish if

γ = 1
2
√

2
. (4.157)

Then the restriction of (4.155) to W3 is a system of three equations for expansion
coefficients {C1,C2,C3},


⊥C1 = 0,

C2t + 3
8
√

2
C1C3 − 2

√
2 
⊥C3 = 0,

C3t − 3
8
√

2
C1C2 + 2

√
2
⊥C2 = 0.

(4.158)

Hence, C1(x ′, t) is an arbitrary solution of the Laplace equation in the variable x ′,
and the last two PDEs give a linear system for {C2,C3} that is not studied in detail.
Note though that choosing a constant function C1(x ′, t) ≡ A yields a linear fourth-
order hyperbolic PDE for C3,

C3t t + 8
2⊥C3 − 3A
2 
⊥C3 + 9A2

128 C3 = 0,

which e.g., possesses explicit solutions on simple polynomial subspaces.
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We restrict ourselves to self-similar solutions of the system (4.158) by using the
rescaled variables

C1 = 1
t U, C2 = 1

t V , C3 = 1
t W, ξ = x ′√

t
, τ = ln t . (4.159)

Then (4.158) reduces to{
Vτ − 1

2 ∇ξ V · ξ − V + 3
8
√

2
U W − 2

√
2
ξ W = 0,

Wτ − 1
2 ∇ξ W · ξ −W − 3

8
√

2
U V + 2

√
2
ξ V = 0,

(4.160)

with an arbitrary function U = U(ξ) satisfying Laplace’s equation. Taking again the
constant function U = A, and looking for solutions as radial TWs,

V = f (s) and W = g(s), where s = 1
2 |ξ |2 − λτ, (4.161)

where λ > 0 is a constant, gives the following system for { f, g}:{
λ f ′ + 1

2 f ′|ξ |2 + f − 3
8
√

2
Ag + 2

√
2
[
g′′|ξ |2 + (N − 1)g′

] = 0,

λg′ + 1
2 g′|ξ |2 + g + 3

8
√

2
A f − 2

√
2
[

f ′′|ξ |2 + (N − 1) f ′
] = 0.

(4.162)

Projecting equations of (4.162) onto |ξ |2 and 1, we obtain two standard systems{ 1
2 f ′ + 2

√
2 g′′ = 0,

1
2 g′ − 2

√
2 f ′′ = 0,

{
λ f ′ + f − 3

8
√

2
Ag + 2

√
2(N − 1)g′ = 0,

λg′ + g + 3
8
√

2
A f − 2

√
2(N − 1) f ′ = 0.

(4.163)

The first system yields a single ODE for f , f ′′′ + 1
32 f ′ = 0, which results in

f (s) = B cos(as) and g(s) = C sin(as), where a = 1
4
√

2
, (4.164)

and B, C ∈ IR. Substituting these functions into the second system in (4.163) and
projecting each equation onto cos as and sin as yields two linear algebraic equalities{

B + 2
√

2(N − 1)Ca = 0,
λBa + 3

8
√

2
AC = 0,

{
λCa + 3

8
√

2
AB = 0,

C + 2
√

2(N − 1)Ba = 0.
(4.165)

From the first system, we find A = 1
3 (N − 1)λ and C = − 2

N−1 B . Substituting into
the second equation of the second system yields

− 2
N−1 + N−1

2 = 0 �⇒ (N − 1)2 = 4, i.e., N = 3.

Then the first equation implies C = −B . Notice that there is another formal hypo-
thetical dimension N = −1 corresponding to the “unstable” radial Laplacian


r = r2 Dr
( 1

r2 Dr
) ≡ D2

r − 2
r Dr ,

which occurs in some problems of plasma physics.
Thus, the overdetermined system (4.162) is consistent in the 3D geometry only,

N = 3, and the solution is

C1 = A = 2λ
3 , f (s) = B cos

( s
4
√

2

)
, and g(s) = −B sin

( s
4
√

2

)
, (4.166)

where B ∈ IR is arbitrary. Substituting into (4.156) gives solutions on W3,

u(X, t) = 2λ
3t + B

t cos
[
γ x + γ

2

( 1
2t |x ′|2 − λ ln t

)]
.
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The compacton is achieved at B = 2λ
3 and takes the form

uc(X, t) = 4λ
3t cos2

[ 1
4
√

2

(
x + 1

4t |x ′|2 − λ
2 ln t

)]
, (4.167)

where uc = 0 if the absolute value of the argument of cos is larger than π
2 .

In order to illustrate this type of finite propagation for the compacton (4.167),
consider the corresponding linear PDE (for simplicity, with x ′ = y ∈ IR)

ut x + uyy = 0 in IR2 × IR+. (4.168)

In particular, let us study its similarity solutions

u(x, y, t) = 1√
1+t

f (x, η), η = y√
1+t

�⇒ fηη = 1
2 ( fxη)η.

This PDE is easily integrated (the fundamental solution belongs to the same family).
For instance, there are solutions

u(x, y, t) = 1√
1+t

ψ
(
x + 1

4(1+t) y2
)
, (4.169)

where ψ(s) is an arbitrary C∞ function supported on the interval [−1, 1]. Solu-
tion (4.169) has the support localized between two paraboloids; cf. (4.167). In other
words, linear equation (4.168) supports this kind of finite propagation, and such typi-
cal support shapes are reflected by the nonlinear PDE (4.155). As in Example 4.8, we
can use the TWs to check that such compactons are solutions of the Cauchy problem
and do not need an FBP setting.

Example 4.34 (Sixth-order PDE with nonlinear dispersion) For higher-order ex-
tensions, we will use our 1D analysis in Example 4.5. Consider the sixth-order PDE
composed in a similar manner,

[ut − α(u2)x x x x x − β(u2)x x x − γ (u2)x ]x +
⊥u = 0 (4.170)

in IR N × IR. The quadratic fifth-order operator admits W3 = L{1, cos x, sin x} if
16α − 4β + γ = 0, and there exist solutions

u(X, t) = C1(x
′, t) + C2(x

′, t) cos x + C3(x
′, t) sin x . (4.171)

Substituting into (4.170) yields a similar system (here µ = 6(β − 5α)){

⊥C1 = 0,
C2t − µC1C3 −
⊥C3 = 0,
C3t + µC1C2 +
⊥C2 = 0.

(4.172)

There exist similarity solutions (4.159), (4.161). For N = 3, the explicit solutions
are given, instead of (4.166), by

C1 = A = − λ
2µ, f (s) = B cos

( s
2

)
, and g(s) = −B sin

( s
2

)
.

The compacton solution takes place for B = A = − λ
2µ ,

uc(X, t) = − λ
µt cos2

[1
2

(
x + 1

4t |x ′|2 − λ
2 ln t

)]
. (4.173)

Its support is unbounded and lies between two paraboloids in IR3,

supp uc(X, t) = {4t
(
λ
2 ln t − π − x

) ≤ |x ′|2 ≤ 4t
(
λ
2 ln t + π − x

)}
.
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v = λ
2t

x = λ
2 ln t − π

x = λ
2 ln t + π

x

x ′

0

Figure 4.19 The support of compacton (4.173) moves to the right with the speed v = λ
2t .

This is shown in Figure 4.19, where, for convenience, we treat x ′ as a single variable.
As in Example 4.8, we show that C1-compactons (4.173) are not sufficiently smooth
at {u = 0} to satisfy the Cauchy problem, and need a standard FBP zero contact
angle setting. In order to obtain C3-compactons, as in (4.105), we need a PDE with
the operator (4.103) for which manipulations with the expansion coefficients include
five PDEs in the resulting difficult system, such as (4.172).

Example 4.35 (Zakharov–Kuznetsov PDE with nonlinear dispersion) In plasma
physics, in the presence of strong magnetic fields, the evolution of the ion density in
a strongly magnetized ion-acoustic plasma is described by the Zakharov–Kuznetsov
(ZaK) equation [591]

ut + uux + ux x x + uxyy = 0 in IR2 × IR, (4.174)

where a magnetic field is directed along the x-axis. This, together with the KP equa-
tion, is one of the best known 2D generalization of the KdV equation that describes
two-dimensional modulations of solitons. Note that the KP equation is limited by
the assumption of weak two-dimensionality; see details and references in [527]. But,
unlike the KP equation, (4.174) is not integrable by the inverse scattering transform
method.

Consider the higher-order ZaK-type equation with nonlinear dispersion,

ut −
[
α(u2)x x x x x + β(u2)x x x + γ (u2)x

]+
⊥ux = 0 (4.175)

in IR N × IR, and study it on W3 = L{1, cos x, sin x} in the case where

16α − 4β + γ = 0.
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The corresponding solutions have the same form as (4.171) and are driven by the DS
(4.172), where the first equation is replaced by the stationary one,

C1t = 0.

Taking the constant function C1(x ′, t) ≡ A gives the linear system{
C2t − ρ C3 +
⊥C3 = 0,

C3t + ρ C2 −
⊥C2 = 0,

where ρ = µA = 6(β − 5α)A. This is reduced to a linear fourth-order hyperbolic
equation,

C3t t = −
2⊥C3 + 2ρ
⊥C3 − ρ2C3.

In particular, for N = 2, denoting x ′ = y yields the solution

C3(y, t) = B sin[κ(y − λt)],

where κ > 0 depends on the TW speed λ �= 0 as follows: κ2 − κλ + ρ = 0.
Determining a similar coefficient C2(y, t), we find the solution

u(x, y, t) = A + B cos[κ(y − λt)− x],

where setting A = B yields the TW compacton

uc(x, y, t) = 2A cos2[ 1
2 (κy − x − κλt)].

Its support is a moving strip in the {x, y}-plane,

|κy − x − κλt| ≤ π.

For the third-order PDE (4.175) with α = 0, such a compacton seems to be a solution
of the Cauchy problem by the same reasons detailed in Example 4.33, while, for the
fifth-order case with α �= 0, a standard FBP setting is necessary to support it.

Example 4.36 (N = 2) Let us now demonstrate slightly different type of compacton
solutions for quadratic PDEs. Without loss of generality, consider the simplest KP-
type equation[

ut − (uux x)x − (u2)x
]

x +
⊥u = 0 in IR N × IR+. (4.176)

Manipulations remain the same and lead to similar systems also for the fifth-order
operators introduced above. Since the quadratic operator in (4.176) admits subspace
W3, looking for solutions (4.171) yields the PDE system (4.172) with µ = 1. We
now do not use the similarity scaling, as in (4.159), and set

C1 = 1√
t

U, C2 = 1√
t

V , C3 = 1√
t

W, ξ = 1√
t

x ′, τ = ln t,

to get a non-autonomous PDE system,{
Vτ − 1

2 ∇ξ V · ξ − 1
2 V − e

τ
2 U W −
⊥W = 0,

Wτ − 1
2 ∇ξ W · ξ − 1

2 W + e
τ
2 U V +
⊥V = 0,

where, as usual, U = A. Looking for solutions (4.161) with

s = 1
2 |ξ |2 − λe

τ
2 ,
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we obtain the following ODE system:{
f ′(−λ

2 )e
τ
2 − 1

2 f ′|ξ |2 − 1
2 f − e

τ
2 Ag − [g′′|ξ |2 + (N − 1)g′

] = 0,

g′(−λ
2 )e

τ
2 − 1

2 g′|ξ |2 − 1
2 g + e

τ
2 A f + [ f ′′|ξ |2 + (N − 1) f ′

] = 0.
(4.177)

Unlike in all the previous examples, this consists of three independent systems as
“projections” onto e

τ
2 , |ξ |2, and 1:{ λ

2 f ′ + Ag = 0,
−λ

2 g′ + A f = 0,

{ 1
2 f ′ + g′′ = 0,
− 1

2 g′ + f ′′ = 0,

{− 1
2 f − (N − 1)g′ = 0,

− 1
2 g′ + (N − 1) f ′ = 0.

From the second system, f ′′′ + 1
4 f ′ = 0, so that (4.164) holds with a = 1

2 . The first
system yields A = −λ

4 and C2 = B2, i.e., C = ±B . Taking as usual C = −B and
substituting into the third one, one obtains

− 1
2 + N−1

2 = 0 �⇒ N = 2.

Similarly, for C = B we get − 1
2 − N−1

2 = 0, i.e., another hypothetical dimension
N = 0 for which the radial Laplacian is (again appears in plasma physics)


r = r Dr
( 1

r Dr
) ≡ D2

r − 1
r Dr .

Finally, the system (4.177) is consistent for N = 2 only with the solution

U = A = −λ
4 , f (s) = B cos

( s
2

)
, and g(s) = −B sin

( s
2

)
.

This yields a family of solutions of equation (4.176),

u(X, t) = 1√
t

[−λ
4 + B cos

(
x + 1

4t |x ′|2 − λ
2

√
t
)]
,

where B is arbitrary. Setting B = −λ
4 leads to the compacton

uc(X, t) = − λ
2
√

t
cos2

[1
2

(
x + 1

4t |x ′|2 − λ
2

√
t
)] ≥ 0 for λ < 0, (4.178)

where, as usual, we set uc = 0 for arguments of cos2, | 12 (·)| ≥ π
2 . The regularity

of uc is sufficient to satisfy the Cauchy problem for equation (4.176). For higher-
order PDEs of the type (4.170), such C1-compactons uc need an FBP setting. The
C3 compactons as in (4.105) demand 5D subspaces for which the explicit integration
of the corresponding PDE systems is unknown.

Example 4.37 (Cubic PDE) Consider a cubic PDE of the KP-type (cf. (4.155))[
ut − (u(u2)x x)x − 4(u3)x

]
x + uyy = 0 in IR2 × IR+, (4.179)

where the operator is chosen to admit W2 = L{cos x, sin x}. On W2, i.e., for

u(x, y, t) = C1(y, t) cos x + C2(y, t) sin x,

equation (4.179) reduces to the PDE system in IR × IR+,{
C1t − 2C2

(
C2

1 + C2
2

)− C2yy = 0,

C2t + 2C1
(
C2

1 + C2
2

)+ C1yy = 0.
(4.180)

In an analogous way, looking for similarity solutions of (4.180) in the form of

C1 = 1√
t

f (s), C2 = 1√
t

g(s), where s = 1
4t y2 + λτ and τ = ln t,
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yields the compacton solution for λ < 0, with interfaces as moving parabolas,

uc(x, y, t) =
√
− λ

2t cos
(
x + 1

4t y2 − λ ln t
)
,

where uc = 0 in {|x + 1
4t y2−λ ln t| ≥ π

2 }. Comparing with the TWs shows that this
Lipschitz continuous function can be a solution of the Cauchy problem.

4.6 “Tautological” equations and peakons

4.6.1 Trigonometric subspaces

We next consider another class of third and higher odd-order PDEs.

Example 4.38 (Rosenau equation) Consider the quasilinear degenerate Rosenau
equation [491]

ut + ux xt = 3uux +
[
uux x + 1

2 (ux)
2
]

x ≡ F3[u] in IR × IR; (4.181)

see references, applications, and results in [449] and Remarks. We begin with some
evolution aspects of the dynamics on the invariant subspace for a more general PDE
with two parameters

ut + ux xt = 3uux + αuux x x + βuxux x ≡ F[u] in IR × IR. (4.182)

In (4.181), α = 1 and β = 2. This family was also introduced in [491].

Proposition 4.39 Operator F in (4.182) admits W3 = L{1, cos γ x, sin γ x} if

γ 2 = 3
α+β > 0. (4.183)

As usual, for the opposite sign in (4.183), the subspaces of exponential or hyper-
bolic functions are used. Describing the dynamics on W3, and assuming that (4.183)
holds, we obtain for (4.182) solutions

u(x, t) = C1(t)+ C2(t) cos γ x + C3(t) sin γ x,
C ′1 = 0,
(1− γ 2)C ′2 = (3γ − αγ 3)C1C3,

(1− γ 2)C ′3 = −(3γ − αγ 3)C1C2.

There exist three different cases:

Case 1: γ 2 �= 1. Denoting

ρ = γ (αγ 2−3)
1−γ 2

and integrating the DS yields

u(x, t) = A + B cos(x − ρAt) (A, B ∈ IR).

Setting A = B and ρA = λ determines the compacton solution

uc(x, t) = 2λ
ρ cos2[ 1

2 (x − λt)], (4.184)

that is localized in the support |x−λt| ≤ π moving with constant speed. The analogy
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with the results in Example 4.8 suggests that these compactons are solutions of the
Cauchy problem.

Case 2: γ 2 = 1. Hence,
α + β = 3,

and if α �= 3 (this is true for (4.181)), then the DS takes a simpler form C ′1 = 0,
C1C3 = C1C2 = 0. Therefore, C1(t) ≡ 0, so we can choose arbitrary functions
C2(t) and C3(t) to obtain the following dynamics on such invariant subspaces.

Proposition 4.40 For any α ∈ IR, the equation

ut + ux xt = 3uux + αuux x x + (3− α)ux ux x ≡ Fα[u] (4.185)

holds true on the subspace W2 = L{cos x, sin x} that is invariant under Fα .

The result is obvious if (4.185) is written in the form

(u + ux x)t = αu(u + ux x)x + (3− α)ux (u + ux x).

Observe that the linear operator

L = I + d2

dx2 (4.186)

is the annihilating operator of the subspace W2, i.e., L : W2 → {0}. We call
such PDEs, whose right and left-hand sides are composed of annihilating opera-
tors of a given subspace, the tautological equations (on prescribed subspaces). As
far as evolution properties are concerned, this implies that (4.185) admits an infinite-
dimensional set of 2π-periodic solutions

u(x, t) = C2(t) cos x + C3(t) sin x, (4.187)

where C2,3(t) are arbitrary C1-smooth functions. So, given initial data

u0(x) = a cos x + b sin x ∈ W2,

the Cauchy problem, or the 2π-periodic initial-boundary value problem, for (4.185)
has an infinite-dimensional set of smooth solutions (4.187), where C2(0) = a and
C3(0) = b. Therefore, the equation on W2 (or in some neighborhood of W2) is not a
well-posed evolution PDE in the space of bounded periodic functions.

Let us next consider non-smooth solutions on W2, which, possibly, make sense for
such third-order PDEs. For instance, consider the following traveling wave solution:

u1(x, t) = λ sin |x − λt|,
where λ ∈ IR is the speed of propagation of the weak shock wave at x = λt being the
point of discontinuity of the derivative ux . Extending u1(x, t) from {|x − λt| ≤ π}
symmetrically yields a π-periodic structure. More general π-periodic solutions of
this type have the form

uN (x, t) =∑N
i=1 pi(t) sin |x − qi (t)|,

where {pi , qi } are smooth functions still remaining arbitrary.
According to PDE theory, evolution properties of such solutions (periodic mul-

tipeakons; see further interpretations below) should be checked in the π-periodic
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setting in the domain (−π
2 ,

π
2 )× IR with periodic boundary conditions by using the

integral form of the PDE. Writing (4.181) as

L[ut ] = L[uux ]+ [u2 − 1
2 (ux )

2
]

x

and applying L−1 with the kernel

ω(s) = 1
2 sin |s| in

(−π
2 ,

π
2

)
,

we formally obtain the integro-differential equation

ut = uux +
[
ω ∗ (u2 − 1

2 (ux )
2
)]

x . (4.188)

Integration by parts, which is used for deriving (4.188), assumes certain “regularity”
of solutions. This includes Rankine–Hugoniot, as well as some other “entropy-type”,
conditions at weak shocks. It would be interesting (an OPEN PROBLEM) to detect if
such solutions can be obtained via a fourth-order parabolic regularization,

ut + ux xt = F[u]− εux x x x (ε > 0), (4.189)

by passing to the limit ε → 0. What if the sixth-order regularization ... + εux x x x x x

on the right-hand side of (4.189) applies?
Evolution properties of singularities of periodic multipeakons for (4.188) or (4.189)

were less well studied in the literature. Another famous model with true multi-
peakons is considered in the next subsection.

Case 3: α = 3. Then, if β = 0, the DS reduces to C ′1 = 0, so the general solution of
(4.182) is

u(x, t) = A + C2(t) cos x + C3(t) sin x,

with arbitrary functions C2,3(t) and any constant A ∈ IR.

Example 4.41 (Tautological PDEs) Using the annihilating operator (4.186), it is
easy to construct many equations that are tautological on W2. For instance, any fully
nonlinear equations∑

(i) ai(u, ux , ...)Di
t L[u] =∑( j ) b j (u, ux , ...)D j

x L[u],

with arbitrary coefficients {ai (·)} and {b j (·)}, are tautological. In particular, the fol-
lowing fourth-order PDE:

ut + ux xt = 3uux + uux x x + 2uxux x + (I + D2
x )[|u|(u + ux x)] (4.190)

is tautological on W2. In view of the analysis of higher-order degenerate TFEs (Ex-
ample 3.10) and KdV equations (Example 4.8), correct evolution setting of com-
pactly supported solutions is difficult to justify. For instance, in the integral repre-
sentation for (4.190) via convolution with the kernel ω, we obtain the degenerate
parabolic PDE (here it remains parabolic in {u < 0})

ut = |u| ux x + |u| u + uux +
[
ω ∗ (u2 − 1

2 (ux )
2
)]

x , (4.191)

containing an extra non-local (compact) perturbation. Such parabolic PDEs naturally
admit solutions that are non-smooth at the singularity level {u = 0}, though standard
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peakons are unlikely. Solutions of (4.191) may blow-up in finite time. Questions of
existence and uniqueness are OPEN, as well as the regularization by adding−εux x x x .

Example 4.42 Returning to the original models, recall that, for non-tautological
PDEs with the annihilating operator (4.185), e.g.,

ut + εux xt = Fα[u], with ε �= 1,

looking for solutions (4.187) on W2 yields the DS C ′1 = C ′2 = 0, so a stationary
peakon solution

u(x, t) = A sin |x |
can still be constructed. The fact that it is a proper weak solution should be checked
by using the corresponding non-local integral equation or by parabolic ε-regularization.
These are is OPEN PROBLEMS for such PDEs.

4.6.2 Exponential subspaces: the FFCH equation

Example 4.43 (The FFCH equation) We begin with another famous completely
integrable shallow water model of a similar form,

ut − ux xt = −3uux + 2uxux x + uux x x ≡ F3[u] in IR × IR. (4.192)

This is the Fuchssteiner–Fokas–Camassa–Holm (FFCH) equation, which arises as
an asymptotic model that describes the wave dynamics at the free surface of fluids
under gravity. It is derived from Euler equations for inviscid fluids under the long
wave asymptotics of shallow water behavior (where the function u is the height of
the water above a flat bottom); see Remarks.

We comment on some evolution aspects of such PDEs restricted to invariant sub-
spaces of the operator F3, and consider a three-parameter family of such equations

ut − ux xt = αuux + βuxux x + γ uux x x ≡ F[u] in IR × IR. (4.193)

Proposition 4.44 Equation (4.193) is tautological on W2 = L{ex , e−x } if

α + β + γ = 0. (4.194)

The annihilating operator of W2 is now L = I − d2

dx2 , and

F3[u] = (αux + γ ux x x)L[u]+ (α + β)ux x(L[u])x + (α + β + γ )ux xux x x .

Hence, any function
u(x, t) = C1(t)e

x + C2(t)e
−x (4.195)

is a solution of (4.193) for arbitrary smooth coefficients C1,2(t), i.e., for initial data
u0 ∈ W2, the Cauchy problem admits an infinite-dimensional set of solutions (4.195)
satisfying u(x, 0) = u0(x). These solutions are unbounded in x with exponential
growth as x → ±∞, so this non-uniqueness happens in the class of exponentially
growing functions.

Another feature of equation (4.193), (4.194) is that the subspace W2 makes it pos-
sible to construct, by gluing two opposite exponents, Lipschitz continuous solutions
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admitting the discontinuous derivatives ux , and having exponential decay as x →∞.
Such an elementary solitary wave, called peakon for the FFCH equation, is

u(x, t) = λe−|x−λt |, (4.196)

where λ ∈ IR is the traveling wave speed. The N-solitons, which are multipeakons
discovered for (4.192) for any N ≥ 1 in [94], adopt the form

u(x, t) =∑(1≤i≤N) pi (t)e−|x−qi (t)| (4.197)

with 2N functions {qi(t), pi (t)}, which are the canonical coordinates {qi} and mo-
ments {pi}, satisfying a DS to be presented. Function (4.197) has a cusp (a peak)
at each x = qi (t), and u(·, t) ∈ W2 on any x-interval of C1-regularity. As usual,
in nonlinear PDE theory, dealing with odd-order equations admitting shock wave
or weaker singularities, special Rankine-Hugoniot-type and entropy conditions (see
mentioning Oleinik’s E-condition for scalar conservation laws in Remarks) should
be specified to detect proper unique (weak) solutions. This is achieved by writing the
equation in the conservative integral form

ut = −uux −
[
ω ∗ (u2 + 1

2 (ux )
2
)]

x , (4.198)

where ω(s) = 1
2 e−|s| > 0 in IR is the kernel of the linear operator

(
I − d2

dx2

)−1 in

L2(IR). The integral representation (4.198) of the original third-order PDE correctly
describes the propagation of weak shocks (peaks) and makes it possible to establish
the global existence of a unique weak solution; see Remarks.

In particular, using the integro-differential equation (4.198) for the N-soliton so-
lutions (4.197) yields that these are governed by the Hamiltonian ODEs{

q̇i = ∂HA
∂pi

,

ṗi = − ∂HA
∂qi

,
(4.199)

with the Hamiltonian

HA(pi , qi ) = 1
2

∑N
i, j=1 pi p j e−|qi−q j | . (4.200)

This makes it possible to describe general evolution properties of such Lipschitz
continuous multipeakons [94] which turn out to be generic in view of their orbital
stability (see key references in the Remarks).

Similar results on the invariant subspace W2 apply to the generalized FFCH equa-
tion [211]

ut − ux xt = αux x x − β(3uux − 2uxux x − uux x x)

+ γ
[
(u − ux x)(u2 − (ux)

2)
]

x .

The set of tautological PDEs on W2 is wide. Fixing an arbitrary linear differential
operator M with constant coefficients and a nonlinear operator A(u, ux , ...), consider

ut − ux xt = M[u]− β(3uux − 2uxux x − uux x x)+ γ {L[u]A(u, ux, ...)}x .
For higher-order PDEs, a suitable definition of proper weak solutions with weak
shocks (constructed either via suitable integral equations inheriting correct Rankine–
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Hugoniot and entropy conditions, or by regular parabolic approximations) becomes
much more delicate and generates many mathematical OPEN PROBLEMS.

4.6.3 Other related models

Example 4.45 (The PBBM equation) Consider the famous Peregrine–Benjamin–
Bona–Mahoney (PBBM) equation [461, 38]

ut − ux xt = uux in IR × IR, (4.201)

also known as the regularized long-wave equation. This is derived from the KdV
equation written in the form

ut + ux x x = uux

by formally justifying that ut + ux ≈ 0, and hence, replacing ux x x by −ux xt . Equa-
tion (4.201) also admits the integral representation

ut = 1
2

(
ω ∗ u2

)
x

(
ω(s) = 1

2 e−|s|
)
, (4.202)

where the derivation imposes the continuity condition of u(x, t). Since ω′(s) is dis-
continuous at s = 0, (4.202) may admit solutions that are only Lipschitz continuous
in x , similar to peakons. The regularized PBBM equation

ut − ux xt = uux + ε(I − D2
x)ux x (ε > 0), (4.203)

reduces to a uniformly parabolic equation with non-local perturbation,

ut = εux x + 1
2

(
ω ∗ u2

)
x , (4.204)

and admits smooth classical solutions. It would be interesting to describe the passage
to the limit ε → 0 in both PDEs (4.203) and (4.204); these are OPEN PROBLEMS.

Example 4.46 The non-tautological PDE on W2,

ut − εux xt = F3[u], with ε �= 1,

with the general operator (4.193), (4.194) still admits a stationary 1-peakon

u(x, t) = A e−|x |,
with unknown evolution properties; an OPEN PROBLEM.

Example 4.47 (Higher-order tautological PDEs) Consider, for instance,

ut − D6
x ut = F[u] ≡∑(i, j ) ai, j Di

x u D j
x u, (4.205)

with the quadratic operator and polynomial P(X,Y ) defined as in (1.112), e.g.,

F[u] = αu D7
x u + βux D6

x u + γ ux x D5
x u + ... .

The subspace W2 = L{ex , e−x } is tautological for the operator in (4.205) iff

P(1, 1) = P(−1,−1) = P(1,−1) = 0.

Therefore, one can define the peakon (4.196) and corresponding multipeakon solu-
tions. Determining the kernel of (I − D6

x )
−1 by the inverse Fourier transform,

ω(s) = F−1
( 1

1+ξ6

) ≡ 1
π

∫∞
0

cos ξs dξ
1+ξ6 ,
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uc(x, t)

t1 t2 = 0 t3

t1 < 0 < t3

x

λλ

π
2

0
−π

2

Figure 4.20 Compacton-peakon solution (4.206).

which is an exponentially decaying oscillatory function, we write down (4.205) for
solutions u(·, t) ∈ H 6(IR) in the integral form

ut = ω ∗ F[u] for t > 0.

The evolution consistency of peakon solutions will depend on special divergent prop-
erties of the operator F and leads to many difficult OPEN PROBLEMS.

Example 4.48 (Compacton-peakon) We return to the PDE (4.182) and perform
the shifting in x by ±π

2 of the increasing and decreasing branches of the compacton
solution(4.184) to create a formal compacton-peakon solution

uc(x, t) = 2λ
ρ cos2

{ [ 1
2 (x − λt)+ π

4

]
for λt ≤ x ≤ λt + π

2 ,[1
2 (x − λt)− π

4

]
for λt − π

2 ≤ x < λt,
(4.206)

which is shown in Figure 4.20. The evolution consistency is OPEN. It would be in-
teresting to create other, possibly higher-order, models with guaranteed patterns like
that in the CP, or FBP settings.

Example 4.49 (Nonlinear dispersion, finite propagation, and oscillatory solu-
tions) We now check a possible character of finite interfaces for the fifth-order PDE.
As a formal extension of our previous study of solutions of changing sign, consider
the following nonlinear dispersion PDE:

ut − ux xt =
(|u|nu

)
x x x x x x x (n > 0). (4.207)

Similar to the compacton analysis, we describe finite interfaces in the CP by using
the TWs u(x, t) = f (x − λt), where f satisfies

−λ f ′ + λ f ′′′ = (| f |n f
)(7)

.

Keeping the leading terms near the interface at y = 0, and integrating three times,
yields the fourth-order ODE(| f |n f

)(4) = λ f for y > 0, f (0) = 0.

The oscillatory behavior close to the interface for λ < 0 was studied before (cf.
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(4.91)) with the oscillatory component satisfying (4.93). Since the exponent there
was γ = 4

n →+∞ as n → 0+, such f (y) can be arbitrarily smooth at the interface
at y = 0 for small n > 0. We expect that such behavior close to interfaces plays a
role for more general solutions of the PDE (4.207).

Example 4.50 (Hunter–Saxton equation) Neglecting the first term on the right-
hand side of (4.192) gives

ut − ux xt = 2uxux x + uux x x ≡ F3[u] in IR × IR. (4.208)

This is a modification of the Hunter–Saxton equation

ux xt + 2uxux x + uux x x = 0, (4.209)

which was proposed as a model for the asymptotic behavior of neumatic fluids crys-
tals [294] and belongs to the Dym hierarchy of integrable PDEs, [358]. Equation
(4.209) is tautological on the subspace of linear functions

W2 = L{1, x}.
Instead of (4.197), the N-soliton solution takes the form

u(x, t) =∑(1≤i≤N) pi (t)|x − qi (t)|, with
∑

(1≤i≤N) pi(t) = 0, (4.210)

where the constraint is imposed to guarantee that the function (4.210) is uniformly
bounded. The DS is (4.199) with the Hamiltonian

HA(pi , qi ) = 1
2

∑
(i, j ) pi p j |qi − q j |.

A unique solution is obtained by using an integro-differential equation imposing a
correct propagation mechanism of weak singularities; see Remarks.

Concerning more general invariant settings, let us point out that the quadratic op-
erator F3 in (4.208) is now associated with the subspace W4 = L{1, x, x2, x3} of
cubic polynomials. This gives the exact solutions

u(x, t) = C1(t)+ C2(t)x + C3(t)x
2 + C4(t)x

3,
C ′1 = 4C2C3 + 6C1C4 + 84C3C4,

C ′2 = 18C2C4 + 8C2
3 + 252C2

4 ,
C ′3 = 42C3C4,

C ′4 = 42C2
4 .

It follows from the last ODE that C4(t) = 1
42 (T − t)−1 blows up. This determines

the same blow-up rate as t → T− of all the other coefficients. The multipeakons on
W4 can be taken, e.g., in the form of

u(x, t) =∑(1≤i≤N)

(
pi |x − qi |3 + ri |x − qi |2 + si |x − qi |

)
,

with necessary constraints for functions {pi , qi , ri , si } that guarantee the uniform
boundedness of these solutions. Existence of multipeakons as proper solutions of the
Cauchy problem for (4.208) is an OPEN PROBLEM.

Example 4.51 (Schwarzian KdV equation) Some special annihilating properties
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are exhibited by the operator of the (2+1)-dimensional integrable generalization of
the Schwarzian KdV (SKdV) equation [557]

ut = F∗[u] ≡ − 1
4 ux xy + ux uxy

2u

+ uxx uy
4u − (ux )

2uy

2u2 + ux
8 D−1

x

[ (ux )
2

u2

]
y,

(4.211)

where D−1
x f denotes

∫
f dx . F∗ annihilates the 1D subspace L{ f (x)} for arbitrary

C2-functions f , i.e., F∗[C f ] = 0 for any constant C . This gives a wide family of
separable stationary solutions u(x, y, t) = g(y) f (x) for any C1-function g, includ-
ing localized compactons, see [484]; justification is OPEN.

Example 4.52 (Green–Naghdi equations) Continuing a review of water wave mod-
els with invariant subspaces, consider the Green–Naghdi (GN) equations{

ηt + (uη)x = 0,

ut + uux + gηx = 1
3η

[
η2((ηux)t + u(ηux)x)

]
x ,

(4.212)

which determine an approximate system of the full water problem, modeling sur-
face wave propagation on an inviscid and incompressible gravity flow, [262]. Here
u is the mean horizontal velocity, η is the surface disturbance, and g is the gravity
acceleration. Invariant solutions of (4.212) are discussed in [21]. The last operator
in (4.212) is quartic, so higher-dimensional subspaces are unlikely. It is curious that
nontrivial dynamics for the GN equations already occur on the elementary subspace
of linear functions W2 = L{1, x}, where the solutions are

η(x, t) = C1(t)+ C2(t)x, u(x, t) = D1(t)+ D2(t)x,
C ′1 = −C1 D2 − C2 D1,
C ′2 = −2C2 D2,

D′1 = −D1 D2 − gC2 − 2
1−C2

2
C1C2 D2

2 ,

D′2 = − 1+C2
2

1−C2
2

D2
2 .

On W2, peakon solutions,

η(x, t) = p(t)|x − q(t)| and u(x, t) = r(t)|x − s(t)|,
can be formally defined with unclear evolution properties; an OPEN PROBLEM.

Example 4.53 (The CDDD equation) Longitudinal strain waves in isotropic cylin-
drical compressible elastic rods embedded in a viscoelastic medium can be described
by higher-order models containing nonlinear dispersive operators. Consider a gener-
alization of the combined dissipative double-dispersive (CDDD) equation (see, e.g.,
[469])

utt = αux x x x + βux xt t + γ (u2)x x x xt + δ(u2)x xt + ε(u2)t . (4.213)

The quadratic operator F[u] in this PDE preserves W3 = L{1, cos x, sin x} of 2π-
periodic solutions iff

16γ − 4δ + ε = 0,

and (4.213) on W3 is then a sixth-order DS possessing blow-up solutions.
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Figure 4.21 Stability of periodic solutions of (4.215) with λ = −1.

Example 4.54 (On a model with finite interfaces) The phenomenon of finite prop-
agation in such models demands a proper monotone extension of nonlinearity u2 for
negative u < 0, as in the following signed PDE (here, β = δ = ε = 0 and γ = −1
for well-posedness):

utt = −
(|u|nu

)
x x x xt (n > 0).

TW solutions u(x, t) = f (x − λt) give the ODE

λ2 f ′′ = λ(| f |n f )(5).

Integrating twice yields the third-order problem(| f |n f
)′′′ − λ f = 0 for y > 0, f (0) = 0,

which appeared for TFEs; see Section 3.7. Namely, the behavior near interface at
y = 0 needs introduction of the oscillatory component ϕ by

f (y) = y
3
n ϕ(s), where s = ln y, (4.214)

where � = |ϕ|nϕ solves the third-order ODE

�′′′ + 3(µ− 1)�′′ + (3µ2 − 6µ+ 2)�′

+µ(µ− 1)(µ− 2)�− λ
∣∣�∣∣− n

n+1 � = 0, with µ = 3(n+1)
n .

(4.215)

Transformation (4.214) shows that the regularity at the interface y = 0 improves as
n → 0+. The ODE for �(s) with λ < 0 is similar to that given in (3.166) with known
oscillatory properties (recall the difference between γ = 3

n therein, and µ above).
Therefore, solutions of (4.215), with λ = −1, are oscillatory for all n ∈ (0,∞); see
Figure 4.21.

For λ > 0, numerical unstable periodic solutions of (4.215) were not detected. To
confirm this negative conclusion, using the idea of continuity (homotopy) at n = 0+,
we take the linear equation

utt = −ux x x xt,

which is the well-posed bi-harmonic PDE in terms of ut (see (3.2)). For TWs, the
ODE is

f ′′′ − λ f = 0 �⇒ f (y) = eµy, where µ3 = λ.

As above, the solutions are oscillatory at the left-hand interface y = −∞ for λ = −1
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roots are µ± = 1

2 ± i
√

3
2

)
and are not for λ = 1 (the only root is µ0 = 1). The

fundamental solution is always oscillatory, since λ < 0 for it by symmetry.

4.6.4 Quasilinear third-order remarkable operator

Recall the definition of the remarkable second-order operator

Frem[u] = uux x − (ux )
2,

which exhibits special invariant properties and has been used in the study of the
RPJ equation in Example 1.36. In order to obtain a similar third-order remarkable
operator, we take the derivative of Frem,

F[u] = d
dx

[
uux x − (ux)

2
] = uux x x − ux ux x ,

which occurred in several models studied before.

Example 4.55 The quasilinear third-order PDE

ut = uux x x − uxux x + µu + ν

possesses solutions

u(x, t) = C1(t)+ C2(t)x + C3(t) cos(γ (t)x)+ C4(t) sin(γ (t)x), (4.216)
C ′1 = µC1 + ν, C ′2 = µC2,

C ′3 = −γ 3C1C4 + γ 2C2C3 + µC3,

C ′4 = γ 3C1C3 + γ 2C2C4 + µC4,

γ ′ = −γ 3C2.

4.7 Subspaces, singularities, and oscillatory solutions of Harry Dym-type
equations

4.7.1 PDEs and invariant subspaces

Consider the following third-order PDE:

vt = vnvx x x , (4.217)

where n ∈ IR is a parameter. This equation is posed for nonnegative solutions and,
as usual, vn will be replaced by |v|n for oscillatory solutions of changing sign. For
n = 3, (4.217) gives the Harry Dym (HD) equation

vt = v3vx x x ,

which is one of the most exotic soliton equations. It is associated with the classical
string problem and is linearizable by the inverse spectral transform method; see de-
tails and references in [128]. Setting v = − 1√

1+q
yields another form of the Harry

Dym equation
qt =

( 2√
1+q

)
x x x ,

which, on the complex plane, is relevant to several physical problems, such as the
Hele–Shaw problem, the Saffmane–Taylor problem of the motion of the interface of
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two fluids with different viscosities, and the chiral dynamics of closed curves on the
plane.

Let us find those PDEs (4.217) that admit exact solutions on polynomial sub-
spaces. The case n = 1 is excluded, where the quadratic operator

F[v] = vvx x x

preserves the obvious 4D subspace

W4 = L{1, x, x2, x3}.
This is suitable for PDEs, such as

vt = vvx x x + βvxvx x + µv + ν,

which, on W4, reduces to a 4D DS that can describe, e.g., finite-time extinction and
interface propagation in various FBPs.

Looking for other cases, we introduce the “pressure” for the PDE (4.217),

v = uµ, with exponent µ = 2
n .

This yields the following equation with a homogeneous cubic operator:

ut = F[u] ≡ u2ux x x + 3(µ− 1)uuxux x + (µ− 1)(µ− 2)(ux)
3. (4.218)

The basic subspace for F is trivial, W2 = L{1, x}. Substituting u = x2 yields that F
in (4.218) preserves the extended 3D subspace

W3 = L{1, x, x2}, if 12(µ− 1)+ 8(µ− 1)(µ− 2) = 0, (4.219)

i.e., for µ = 1 (n = 2, the trivial case: u = v and vx x x = 0 on W3) and for µ = 1
2

(n = 4) that gives some applications and extensions.

Example 4.56 (Extinction and interfaces) Consider the Harry Dym-type equation
with absorption

vt = v4vx x x − 1
v (v ≥ 0). (4.220)

The absorption term is unbounded and singular at v → 0+, so that the first question
of PDE theory is to check if (4.220) can admit any nontrivial compactly supported
solution, i.e., a solution v(x, t) �≡ 0. This is not an easy question, even for the second-
order PME with absorption

vt = (vn)x x − 1
v p , with n > 0, (4.221)

though the criterion for the existence is known: p < n. It is proved that, for p ≥ n,
any FBP with v = 0 on the interface has the trivial unique proper solution v(x, t) =
lim vε(x, t) ≡ 0 (i.e., v is the limit of a family {vε} of smooth global solutions of
the regularized non-singular equations), regardless of any nontrivial initial or regular
boundary data. In particular, the heat equation with absorption

vt = vx x − 1
v

belongs to the nonexistence range, so, for compactly supported initial data v0 ≥ 0,
the unique maximal solution is trivial, v(x, t) ≡ 0. Hence, the same is true for all
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other non-maximal solutions of any FBPs. For parabolic PDEs, such as (4.221), the
existence-nonexistence criterion is proved by the Sturmian intersection comparison
with TWs, [226, Ch. 7-9]. For higher-order equations, these are OPEN PROBLEMS.

Let us show that, regardless of such a singular absorption term − 1
v , equation

(4.220) admits nontrivial exact solutions and we will pose the corresponding FBP.
Setting v = √u

(
µ = 1

2

)
yields the PDE

ut = u2ux x x − 3
2 uuxux x + 3

4 (ux)
3 − 2 (4.222)

that possesses solutions u ∈ W3,

u(x, t) = v2(x, t) = C1(t)+ C2(t)x + C3(t)x2, (4.223)
C ′1 = −3C1C2C3 + 3

4 C3
2 − 2,

C ′2 = −6C1C2
3 + 3

2 C2
2 C3,

C ′3 = 0.

Setting C3(t) ≡ 1 gives the opportunity to study the quenching phenomenon, where
the classical analytic strictly positive solution vanishes as t → T− at some x0 ∈ IR.
Vice versa, C3(t) ≡ −1 describes the single point extinction, when the solution
vanishes identically as t → T−.

We consider the extinction phenomenon with C3 = −1 using typical asymptotic
arguments from thin film analysis (Section 3.2 and 3.10). We need an FBP setting
where the quenching description is similar. We do not solve the DS in (4.223) ex-
plicitly and take orbits such that C1(t) = 2(T − t)+ ... and C2(t) = b(T − t)+ ...
(b ∈ IR) as t → T−. This gives the pattern

u(x, t) = [2(T − t)+ b(T − t)x − x2]
+ + ... ≡ e−τ

(
2+ be−

τ
2 ξ − ξ2)

+ + ... ,

where ξ = x/
√

T − t and τ = − ln(T − t) are the standard blow-up rescaled
variables, as in (3.39). In view of (4.223), this shows that, for the original equation
(4.220), the rescaled solution satisfies

v(x, t) = √T − t w(ξ, τ )→ g(ξ) = √(2− ξ2)+ as τ →∞, (4.224)

where w solves a singular perturbed PDE of the form

wτ = − 1
2 wξξ + 1

2 w − 1
w + e− 3

2 τw4wξξξ for τ � 1. (4.225)

Then g(ξ) is a stationary solution of the limit equation

− 1
2 g′ξ + 1

2 g − 1
g = 0,

which is (4.225) at τ = +∞. A rigorous passage to the limit τ →+∞ in (4.225) to
prove convergence (4.224) for a class of the FBP solutions with extinction at t = T is
a difficult OPEN PROBLEM. Notice that (4.220) admits similarity solutions (existence
or nonexistence is OPEN)

vs(x, t) = √T − t g(z), z = x
T−t �⇒ g4g′′′ − g′z + 1

2 z − 1
g = 0.

As usual, using the positive part (·)+ in the solutions means an FBP. The dynamic
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interface equation is obtained from (4.222) for any smooth solutions,

s′ = − 1
ux

ut = S[u] ≡ − 3
4 (ux )

2 + 2
ux

at x = s(t).

The governing interface equation for (4.223) is stationary, ux x = −2 at x = s(t).
New HD-type models appear by adding other operators to the right-hand side,

preserving the invariant subspace. For instance, consider

vt = v4vx x x + (v3)x x − 1
v ,

where setting v = √u yields the PDE with an extra quadratic operator,

ut = u2ux x x − 3
2 uux ux x + 3

4 (ux )
3 + 3

[
uux x + 1

2 (ux)
2
]− 2,

that preserves W3 in (4.219). This has similar exact solutions and interfaces, and
exhibits typical singularity phenomena of extinction, quenching, and finite interfaces.

4.7.2 On the maximal regularity, oscillatory behavior, and the Cauchy problem

We use the TWs to check the maximal regularity for PDE (4.220), written now in the
signed form for solutions of changing sign,

vt = |v|4vx x x − v
|v |2 . (4.226)

Substituting the TW solution v(x, t) = f (x − λt) yields

−λ f ′ = | f |4 f ′′′ − f
| f |2 for y > 0, f (0) = 0,

so that
f (y) = √y ϕ(s), where s = ln y, (4.227)

with the following ODE for the oscillatory component ϕ:

ϕ′′′ − 3
2 ϕ′′ + ( λ

|ϕ|4 − 1
4

)
ϕ′ + ( 3

8 ϕ + λ
2|ϕ|4 − 1

|ϕ|6
)
ϕ = 0. (4.228)

For any λ ∈ IR, there exist constant solutions±ϕ0, where

3ϕ6
0 + 4λϕ2

0 − 8 = 0.

It is not difficult to show that these constant equilibria are unstable for both λ = ±1.
Numerically, solutions of (4.228) are non-oscillatory and of constant sign (this is
associated with the strong singularity as ϕ → 0 of the coefficients in (4.228)).

The TW solutions (4.227) have the Hölder continuity exponent 1
2 attained at the in-

terface y = 0 which coincides with that given by the square root v = √u in (4.223).
These solutions are expected to exhibit the maximal regularity for PDE (4.226), so
(4.223) is assumed to correspond to the Cauchy problem. The non-changing sign
properties of ϕ(s) imply a possibility of constructing more general nonnegative so-
lutions of the Cauchy problem for PDE (4.220).

Let us briefly discuss a curious interface equation for the critical case n = 2,

vt = v2vx x x .
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We again use the TWs v(x, t) = f (x − λt) for deriving the interface equation, so

−λ f ′ = f 2 f ′′′,

and, on integration,
λ
f = f ′′.

Hence, for λ < 0, the behavior close to the interface at y = 0 is not oscillatory,

f (y) = y
√

2|λ|| ln y| + ... as y → 0+.

This asymptotic behavior can be used for deriving the dynamic interface equation,
as in Example 4.29. The formal analysis is easier, since the speed, λ, enters the first
expansion term; the proof is difficult and is an OPEN PROBLEM.

4.7.3 On the fundamental solution

As usual, the existence of nonnegative solutions does not mean positivity preserving
property in the Cauchy problem. For FBPs, the positivity can be enforced by free-
boundary conditions, as for the TFEs in Section 3.2.

Consider now the Cauchy problem for the signed HD-type equation (4.217) for
n ∈ (0, 1),

vt = |v|nvx x x in IR × IR+. (4.229)

We study finite propagation and oscillatory properties of its fundamental solution

b(x, t) = tαg(ξ), ξ = x
tβ
, with α = − 1

3−2n < 0, β = 1−n
3−2n > 0, (4.230)

where g solves the following ODE problem:

A[g] ≡ |g|ng′′′ + βg′ξ − αg = 0 in IR, 1
1−n

∫∞
−∞ |g|−ng dξ = 1. (4.231)

Solutions (4.230) are induced by the conservation law

d
dt

∫∞
−∞ |v|−nv dξ = 0, (4.232)

which follows from the PDE (4.229), provided that the integral converges. For n = 0,
(4.230) is the fundamental solution (4.138) of the operator in the linear PDE

vt = vx x x in IR × IR+. (4.233)

The normalization in (4.231) then becomes the standard condition of convergence to
the δ-function as t → 0+, ∫∞

−∞ g dξ = 1.

By (4.139) (recall the reflection x �→ −x), the kernel g(ξ) is oscillatory as ξ →+∞
and is not as ξ → −∞, with different asymptotics at these infinite interfaces.

We are going to detect similar oscillatory properties in the nonlinear case n ∈(
0, 3

2

)
. The ODE (4.231) is integrated once by the conservation law, so

g′′ + 1
3−2n |g|−ngξ = 0. (4.234)

Similar to solutions (4.74) of the signed K (2, 2) equation in Section 4.2.6, the fun-
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Figure 4.22 Oscillations for ξ � 1 of solutions of (4.234) with n = 0, 1
2 , and 1.

damental kernel g(ξ) is compactly supported on [ξ0,∞), ξ0 < 0, with positive ex-
pansion at the left-end interface,

g(ξ) = [ n2|ξ0|
2(2−n)(3−2n)

] 1
n (ξ − ξ0)

2
n + ... as ξ → ξ+0 .

The behavior as ξ → +∞ is oscillatory and can be compared with that for the Airy
function in (4.139); see Figure 4.22.

4.7.4 Oscillatory solutions of higher-order Harry Dym-type equations

Similar phenomena take place for higher-order Harry Dym-type equations, such as

ut = |u|nux x x x x .

For instance, introducing the oscillatory component into the TW-equation yields

−λ f ′ = | f |n f (5), f (y) = yγ ϕ(ln y) �⇒ P5[ϕ] = −λϕ′+γ ϕ
|ϕ|n , (4.235)

where γ = 4
n and the linear operator P5 is as defined in Section 3.7, (3.157). There

exists a stable periodic solution ϕ(s) for λ > 0, at least for n ∈ (0, 1]; see Figure
4.23(a). We observed numerically the periodic behavior for all n ∈ (0, nh), where

nh = 1.08...

is a homoclinic bifurcation of periodic solutions, as shown in Figure 4.24. For λ < 0,
a standard 1D shooting does not detect an unstable periodic solution. Figure 4.23(b)
shows a non-monotone separatrix behavior between flows of stabilization to two
constant equilibria±ϕ0 (this needs extra study).
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Figure 4.23 Solutions of (4.235) for n = 1, λ = 1 (a) and n = 0.9, λ = −1 (b).
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Figure 4.24 Deformation as n → n−h of periodic solutions of the ODE in (4.235) with λ = 1.

Cauchy data are ϕ(0) = 10−3 and ϕ′(0) = ϕ(4)(0) = 0.

Remarks and comments on the literature

There are many excellent books on fundamental mathematical techniques and discoveries re-
lated to the KdV equation and other integrable PDEs; see e.g., Newell [436], Remoissenet
[487], and Ablowitz–Clarkson [2] for further references. We present below many classic and
recent references, including surveys on these subjects. Concerning other questions, which are
not directly related to integrability issues, such as existence, uniqueness, and regularity theory
for semilinear odd-order PDEs, these have been developed for at least forty years. We refer
to Lions [396, Ch. 3] for first results and key papers, and to Faminskii [179] for further ref-
erences. Semigroup approaches to the Cauchy problem for the KdV equation (4.1) were first
developed in papers by Kato and Faminskii–Kruzhkov in 1979 and 1980.

Soliton and KdV equation theory is one of most amazing scientific subjects relative to their
physical origin, applications, history, and discoveries during its mathematical development.
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The importance of solitary waves was emphasized by John Scott Russell’s experimental obser-
vations of waves in August of 1834 in the Union (Edinburgh–Glasgow) canal, [503]. Further
study were due to Airy (1845) [5] and Stokes (1847) [536]. See [511] and [2] for historical
details. The KdV equation (4.1) appeared in 1895, [354], though Boussinesq studied it earlier
in 1872 [75] and found the explicit cosh−2 formula for its solitary-wave solution. The KdV
equation describes the evolution of weakly nonlinear and weakly dispersive waves in such
physical contexts as plasma physics, ion-acoustic waves, stratified internal and atmospheric
waves, etc. The term soliton is due to Zabusky and Kruskal [590], who, solving the KdV
equation numerically, made the discovery on the elasticity of interaction of its solutions. The
explicit form of N-soliton solutions for the KdV equation was obtained by the Baker–Hirota
bilinear method [22, 284]; see historical details in surveys in [2, 95, 250], in papers [3, 387]
and comments below. The integrable modified KdV (mKdV) equation

ut = ux x x + 2u2ux ,

is connected with the KdV equation (4.1) by the Miura transformation [426]

v = u2 +√−3 ux .

The history of various soliton-type solutions for the KdV and other integrable PDEs is
amazing. In 1903, Baker [22] derived the KdV hierarchy, including the fifth-order KdV equa-
tion

ut + ux x x x x + 30 u2ux + 20 ux ux x + 10 uux x x = 0 in IR × IR,

as well as the Kadomtsev–Petviashvili (KP) equation [308]

(ut + 6uux + ux x x)x = uyy in IR2 × IR.

The latter describes asymptotically weakly nonlinear and weakly dispersive long waves and is
obtained, in the weakly 2D limit, from the full water wave equations, where the surface ten-
sion is large. It also occurs for weak amplitude ion acoustic waves in an unmagnetized plasma.
Among Baker’s other results, there are the bilinear differential operator D (see (7.30)), maps
and transformations, which are referred to as Baker–Hirota transformations [20, p. 275], as-
sociated differential transformations (including, what we used to call, Cole–Hopf’s transfor-
mation), giving the bilinear form of the equations and hence explicit forms of hyperelliptic,
periodic multi-soliton solutions for a variety of integrable PDEs, etc.† A detailed survey on
re-evaluation of the role of Baker’s hyperelliptic sigma function and other results in mod-
ern soliton theory is available in [415]; see also comments in [165] and [86] for a review of
the earlier part of Baker’s theory. Actually, Baker derived the key differential identity of the
hyperelliptic functions of arbitrary genus g (for odd, 2g+1, or even 2g+2, degree of the poly-
nomial f (x) of the corresponding hyperelliptic curve y2 = f (x)) [22], which led to KdV
hierarchy and the KP equations of higher orders, but, explicitly, Baker presented these for the
genus g = 3 only. The curves of (2g+1) degree correspond to the KdV hierarchy, and the
ones of (2g+2) are associated with the KP equation. The list of PDEs for Baker’s ℘ function
also includes the Boussinesq equation; see [19]. In the 19th century, the development of the-
ory of hyperelliptic functions as generalizations of elliptic functions, as well as general alge-
braic and Abelian functions, was due to Weierstrass, Riemann, Abel, Klein, Jacobi, Poincaré,
Burkhardt, Krazer, Königsberger, Kovalevskaya, Hermite, Goursat, Appel, Tikhomandritskii,

† “Surprisingly, even in the 19th century, there appeared most of the tools and objects in soliton theories,”
[417, p. 4322]. “It is not generally known that Baker solved a number of nonlinear integrable partial
differential equations... ,” [165].
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Brioschi, Frobenius, Stickelberger, Picard, Burnside, Kiepert, Bolza, and many other famous
mathematicians.

A direct relation of hyperelliptic functions to the KdV-type equations is seen from the defi-
nition of the classical Weierstrass ℘-function of genus g = 1, satisfying the ODE

(℘′(z))2 = 4℘3(z)− g2℘(z)− g3, (4.236)

where the constants g2,3 are called the invariants of ℘. One can derive from (4.236) other
ODEs for ℘, e.g.,

℘′′(z) = 6℘2(z)− 1
2 g2 and ℘′′′(z) = 12℘′(z)℘ (z),

where, after scaling, the latter is the stationary KdV equation. The first deep addition theorems
for such elliptic functions date back to 1849, [573].

Applications of Baker’s (or Baker–Akhiezer’s) functions for algebro-geometric, finite-gap
and elliptic solutions of fully discretized KP and 2D Toda equations are given in [357]. Several
facts from the modern finite-gap integration method of completely integrable PDEs, where
Baker–Akhiezer functions are key (see e.g., [35]), were discovered by Drach as early as 1918–
1919, [153, 154]. Drach also derived the stationary KdV hierarchy;‡ see [35, p. 84], a detailed
survey in [250], and [311]. Earlier, in 1897, Drach was known for his general classification of
PDE systems by reducing these to a first or second-order systems in one independent variable.
The integrability of the associated linear spectral problem for the fundamental 	-function

	′′ − u	 = λ	

goes back to Ermakov (1880) [170], and is equivalent to the integrability of Ermakov–Drach’s
equation

ψ ′′ − (u + λ)ψ = −µ2

ψ3 .

Concerning elliptic solutions of the stationary KdV hierarchy, or, equivalently, elliptic finite-

band potentials, q, for the linear Schrödinger operator L = d2

dx2 + q(x), the famous finite-gap
example of the Lamé potential

q(x) = −s(s + 1)℘ (x + ω3), s = 1, 2, ... ,

with fundamental half periods ω1 ∈ IR and ω3 ∈ iIR, found by Hermite and Halphen in the
1870s and 1880s, remained the only explicit potential for almost a century; see [35, p. 81,
p. 259], [250, Sect. 2.8], and [36, Sect. 4.2]. For another well-known example of integrable
PDEs, which can be solved in terms of linear problems with spectral parameters on an elliptic
curve, such as the Krichever–Novikov (KN) equation [356]

ut = 1
4 ux x x + 3[1−(uxx)

2]
8ux

− 3
2 ℘(2u)(ux )

3, (4.237)

related linear spectral problems for third-order operators were studied by Halphen in 1884,
[36, p. 302]. Particular degenerate cases of (4.237) are mapped to the Schwarzian KdV (SKdV)
equation

zt
zx
= 1

4 {z, x} ≡ 1
4

[
zxxx
zx
− 3

2
(zxx )

2

(zx )2

]
,

with the Schwarzian derivative on the right-hand side. Notice that this equation is quadratic

‡ “It appears he was the first to make the explicit connection between completely integrable systems and
spectral theory,” [250, p. 288]. ”It is amazing that this remarkable work containing the constructions
rediscovered in connection with the study of the KdV equation by Dubrovin, Its, Matveev, Gel’fand,
Dikii is referred to very early in the modern literature,” [35, p. 85].
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(bilinear). Baker’s functions associated to the Lax equations, which determine the KP hierar-
chy of several variables, were studied in [377], where earlier references are given.

Exact solutions of the mKdV equation via Weierstrass σ and ℘-functions for the case of
genus one and via Baker’s hyperelliptic sigma functions for genus two were described in [417],
where hyperelliptic solutions for arbitrary genus were also constructed by using Weierstrass
al-function. Papers [86, 36] (here Kleinian functions are used as logarithmic derivatives of the
hyperelliptic σ -ones) and [415]–[417] contain detailed explanations concerning the signifi-
cance of hyperelliptic function theory from the nineteenth century, and especially of Baker’s
functions, for modern soliton theory. “...Miura transformation is a connection between the
worlds of ℘ and the al. I think that the researchers in the 19th century might have implicitly
already recognized these facts,” [417, p. 4332].

A detailed overview of elliptic algebro-geometric solutions of the KdV and Ablowitz–
Kaup–Newell–Segur (AKNS) hierarchies of integrable PDEs is available in [250], where spe-
cial attention is paid to classical Floquet, Hermite, and Picard theories. In particular, it was
emphasized there that the questions of stationary Lax equations [P, L] = 0 on commuting or-
dinary differential expressions (P, L) (the Lax pair) were raised by Floquet in 1879, and again
considered by Wallenberg in 1903 and Schur in 1905. The criterion for commutativity of dif-
ferential operators was established by Burchnall and Chaundy in the 1920s, and got further
development later, including the work by Baker in 1928, simplifying these results; see also

by H.F. Baker “Abelian Functions–Abel’s Theorem and the Allied Theory Including the The-
ory of the Theta Functions”, Cambridge, 1897... ,” [109, p. 112]. This book was republished
by Cambridge Univ. Press in 1995.

§ 4.1. Many exact solutions of various related nonlinear PDEs can be found by singularity
analysis; see [137]. Moving periodic soliton-like solutions (4.5) were introduced in [232, 217].
Exact solutions on invariant subspaces and sets for semilinear third-order PDEs are given in
[593]; see also [268] for a more recent work on the Lie point symmetries classification of the
KdV-type equations

ut = ux x x + F(x, t, u, ux , ux x ).

§ 4.2. Various families of quasilinear third-order KdV-type equations can be found in [128],
where further references concerning such PDEs and their exact solutions can be found. Higher-
order generalized KdV equations are of increasing interest; see e.g., the quintic KdV equation
in [296] and [583], where the seventh-order PDEs are studied. For the K (2, 2) equation (4.14),
the compacton solutions were constructed in [491]. More general B(m, k) equations

ut + a(um )x = µ(uk)x x x

also admit simple semi-compacton solutions [498], as well as the K q(m, ω) nonlinear disper-
sion equation (another nonlinear extension of the KdV) [491]

ut + (um )x + [u1−ω(uωux )x ]x = 0.

Setting m = 2 and ω = 1
2 yields a typical quadratic PDE

ut + (u2)x + uux x x + 2ux ux x = 0

possessing solutions on standard trigonometric-exponential subspaces. Combining the K (m, n)
and B(m, k) equations gives the dispersive-dissipativity entity DD(k,m, n) [493]

ut + a(um )x + (un)x x x = µ(uk)x x

that can also admit solutions on invariant subspaces for some values of parameters.

© 2007 by Taylor & Francis Group, LLC

[109, p. 87]. “Theta solutions of the Sin-Gordon equation ... can be seen in Ch.11 of the book



230 Exact Solutions and Invariant Subspaces

Concerning the interface and approximation problems posed in Example 4.8 and others,
for a class of degenerate third-order PDEs, a detailed approach concerning ODE analytic ap-
proximations of various non-smooth patterns (e.g., compactons or peakons) was performed in
[388], establishing that some of these solutions can be approached by approximating analytic
profiles. Among other things, this analysis reveals that, for higher-order PDEs and ODEs, such
an approach can be practically intractable. Ideas of maximal regularity and homotopy families
of PDEs help to detect correct classes of solutions of the Cauchy problem. For higher-order
degenerate PDEs, such solutions are often of changing sign, which sometimes contradicts
physical meaning and motivations of the models, but is a non-avoidable feature. Various FBPs
can be dealt by von Mises transformations locally, near singularities, though the complexity
of computations and analysis increase dramatically with the order of PDEs involved.

Concerning the ε-regularization aspects of proper (weak) solutions in Section 4.2.4, note
that such difficulty occurs for semilinear higher-order parabolic PDEs with non-smooth coef-
ficients, e.g.,

ut = −ux x x x − |u|p−1u, where p ∈ (−1, 1). (4.238)

Since the strong absorption term−|u|p−1u is not Lipschitz continuous at u = 0 for p < 1 and
even singular or discontinuous for p ≤ 0, for construction of proper solutions, the following
analytic ε-regularization is natural [227]

|u|p−1u �→ (ε2 + u2)
p−1

2 u (ε > 0).

This gives the necessary smooth family {uε(x, t)} of classical solutions. Equation (4.238)
admits compactly supported solutions of changing sign. For p ≤ −1, the limit ε → 0 implies
nonexistence of a proper solution, which is actually u ≡ 0, meaning that the limit proper
semigroup is discontinuous at t = 0; see further examples in [226, Ch. 7 and 10].

§ 4.3. The Florin FBP for the heat equation in IRN (introduced by Florin in 1951) includes
the free-boundary conditions of the form

u = 0 and ∂u
∂n = −1;

see [190] and references in [226, Ch. 8]. The FBP setting for the fifth-order equation (4.76)
uses a second-order Florin-type condition. Third and higher odd-order evolution PDEs also
appear in the hierarchy of surface evolution equations [428, 82]

Vn ≡Nt = B Dl
sκ,

where Vn is the local normal velocity of the surface, κ is the curvature of the surface, and s is
the arclength. The case l = 3 governs long frontal waves in the quasigeostrophic approxima-
tion [471]. Concerning the relation between many integrable PDEs and the motion of curves
on the plane in the various Klein geometries, see [120] and references therein.

§ 4.4. There is a large amount of literature devoted to existence, uniqueness, and asymptotic
behavior for the KdV and KP-type equations; see [381, 69, 179]. Delicate structures of blow-
up similarity solutions of the mKdV equation (4.133) with m ≥ 4 are described in [70].

§ 4.5. This study will be continued in Section 6.7, where further references are given. Com-
pactons of the type (4.178) was first detected by Rosenau [494, p. 197].

§ 4.6. Equation (4.181) can be considered as an integrable modification of the PBBM equation
(4.201) (reduced to it by omitting the last two terms on the right-hand side). It was shown that
(4.181) admits solitary-wave solutions with compact support. On the other hand, (4.181) is
the nonlinear dispersive counterpart of the KdV equation (4.1) and forms the first member of
the bi-Hamiltonian hierarchy; see an explicit algorithm in [449] based on the bi-Hamiltonian
representation of the classically integrable systems.
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Equation (4.192) was originally obtained by Fuchssteiner [209] by the method of recur-
sion operators. As was first noticed by Fuchssteiner and Fokas in [212], it is a bi-Hamiltonian
generalization of the KdV equation with infinitely many conservation laws and is formally
integrable. It was subsequently derived via physical principles in [94], where its further new
remarkable properties were established (see details on the derivation of the FFCH equation as
a shallow water model in [306]). With the omission of the last two terms (formally, of higher
quadratic asymptotic order for small solutions), (4.192) turns into the PBBM equation (4.201)
which is not known to be integrable. This PDE also happens to be another (together with
(4.181)) first member of the bi-Hamiltonian hierarchy of the KdV equation [449]. A principal
feature of (4.192), observed first in [94], is that it admits soliton solutions with sharp corners.
The resulting solutions, consisting of a collection of peaked waves, were called multipeakons
in [94]. An algorithm for constructing solutions of the shallow water equation (4.192) by
the inverse scattering technique and a Liouville transformation using the link with the KdV
equation is explained in [96] (construction of N-soliton, cuspon, and soliton-cuspon solutions
leads to difficult algebraic equations that can be studied numerically, [184]). A full classifica-
tion of weak discontinuities (including various types of cuspons and stumpons) admitted by
the traveling wave solutions u(x, t) = ϕ(x−ct) of the FFCH equations is performed in [379].
Conservation laws are studied in [380].

Concerning uniqueness for PDEs, the most well-known example is the heat equation

ut = ux x ,

where the famous Tikhonov–Täklind uniqueness class was obtained in the 1930s [552, 548].
Uniqueness of the solution of the Cauchy problem takes place in the class

{|u(x, t)| ≤ e|x | h(|x |)},
with any positive increasing function h(s) satisfying Osgood’s criterion∫∞ ds

h(s) = ∞.

We refer to results and the literature in [443], where a detailed analysis of uniqueness classes
is performed for the second and higher-order parabolic PDEs and systems by energy estimates
based on Saint-Venant’s principle.

As far as singularity formation phenomena in integrable PDEs (e.g., formation and exis-
tence of soliton solutions with non-analytic singularities) are concerned, it seems that the first
example was proposed in [300] (see also [568]), where the following equation:

uxt +
[

uxx
(1+(ux)2)3/2

]
x x
= 0 (4.239)

was derived as a model of nonlinear transverse oscillations of elastic beams. Due to the
gradient-dependent nonlinearity, this equation can admit cuspons, i.e., weak solutions hav-
ing cusps, where ux = ∞, which propagate with finite speed. In particular, it was shown in
[300] that there exist such traveling wave solutions

u(x, t) = g(η), with η = x ± λt,

where g solves a nonlinear ODE with the following behavior at the cusp at η = 0:

g(η) =
√

2
λ − ( 2

λ )
1
4
√|η|(1+ o(1)) as η→ 0 (λ > 0).

These solutions are Hölder continuous with exponent 1
2 . We refer also to cusp structures re-

vealed by N-soliton solutions of (4.192), corresponding to completely integrable Hamilto-
nian ODEs, in [94, 6, 31] and [449]. This model and the singularity formation study answer
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Whitham’s suggestion [575] to find mathematical PDEs for shallow water waves that include
the wave breaking phenomena.

Analysis of the bi-Hamiltonian structure of the FFCH and Hunter–Saxton equations can be
found in [211, 335].

An advanced theory of local solvability of the FFCH equation can be found in [387] (the
regularization term εux x x xt is used, local existence and blow-up in Sobolev spaces Hs for
s > 3

2 , and some results for s ≤ 3
2 ), [134] and references in [136] (using Kato’s semigroup

approach to (4.198), local and global H1-theory, and uniqueness), [579] (parabolic regulariza-
tion εux x in (4.198), global H1-theory for arbitrary data, with no uniqueness, recovering an
analogy of Oleinik’s entropy “E-condition” for shocks [441]), [364] (existence, uniqueness,
and blow-up for initial-boundary value problems). See details on the propagation of weak sin-
gularities in [135] and on the orbital stability of multipeakons in [136]. In general, the FFCH
(4.192) and similar PDEs belong to the class of the third-order quasilinear pseudo-KdV-type
equations and their “pseudo” nature, via the integral representations with positive compact ker-
nels, such as in (4.198), ensures solvability and uniqueness (cf. the PBBM equation (4.201)
which has smoother solutions than the conservation law ut = uux ).

The PBBM equation, written in the form of

ut + ux + 6uux − ux xt = 0

possesses a family of solitary wave solutions

u(x, t) = 2α2

1−4α2 sech2[α(x − λt)],

where λ = 1
1−4α2 . The PDE is not integrable, so their interaction is not elastic.

Well-developed mathematical theory of the FFCH equation (4.192) shows that it is precisely
the PDE exhibiting all the desired properties of integrability, breaking of waves, and existence
of solitons. The simpler Whitham equation (1967) [575] with a linear non-local term

ut + uux +
∫

IR k0(x − ξ)ux (ξ, t) dξ = 0,,

where the kernel is given by

k0(x) = 1
2π

∫ √ tan ξ
ξ eiξ x dξ,

though admitting the effect of breaking of waves, does not have a soliton interaction of its
traveling waves; see references in [136]. The corresponding generalized PDE with the extra
fifth-order term ux x x x x is globally well-posed for any H1-data in the appropriate Bourgain
function space X1, [283]. Higher-dimensional versions of various shallow water equations,
further extensions, history, and references on more abstract frameworks are available in [290].

There exists another integrable PDE from the family (4.193), (4.194), the Degasperis–
Procesi equation

ut − ux xt = −4uux + 3ux ux x + uux x x ;
see [145] and early references therein (no other integrable equations exist in this family, which
was introduced in [491]). On existence, uniqueness (of entropy weak solutions in L1 ∩ BV ),
parabolic ε-regularization, Oleinik’s entropy estimate and generalized PDEs, see [131].

It is curious that the whole three-parameter family of such PDEs indicated in Proposition
4.44 admits the single peakon solution (4.196). Restricting our attention to the one-parameter
family of equations introduced in [145],

ut − ux xt = Fβ [u] ≡ −(1+ β)uux + βux ux x + uux x x , (4.240)
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there exist the multipeakon solutions (4.197), where, for β �= 3, 2, the functions {qi , pi } are
not canonical variables, and the corresponding DS takes a similar form{

q̇i = ∂HA
∂pi

,

ṗi = −(β − 1) ∂HA
∂qi

,

with the same “Hamiltonian” (4.200) (the canonical Hamiltonian form exists only in the spe-
cial cases β = 3 and 2). This example shows the principal fact that integrability is not a nec-
essary condition for the existence of countable families of N-solitons for arbitrary N , though,
clearly, for β = 3, 2, explicit formulae for {qi (t), pi (t)} can be found by inverse scattering
techniques that describe the peakon interactions more clearly and in greater detail.

The Fornberg–Whitham (FW) equation

ut − ux xt = uux x x − uux + 3ux ux x − ux

that describes qualitative behavior of wave-breaking [574], contains the quadratic operator
from (4.240) with β = 3, so scaling x �→ 2x leads to

8ut − 2ux xt = F3[u]− 4ux . (4.241)

Looking for the 1-peakon solution

u(x, t) = C1(t)e
x + C2(t)e

−x ∈ W2,

and bearing in mind that F3 = 0 on W2, we obtain linear ODEs for the coefficients and the

general solution of (4.241) u(x, t) = Aex− 2
3 t + Be−(x− 2

3 t), where A and B are arbitrary
constants. This gives the well-known 1-peakon pattern [195]

u(x, t) = Ae−|x− 2
3 t |,

which, unlike the above tautological PDEs on W2, has the fixed wave speed λ = 2
3 .

For the Hunter–Saxton equation (4.209), its reduction to a finite-dimensional completely
integrable Hamiltonian system with phase space, consisting of piecewise linear solutions
(4.210), was first discussed in [295]; see also references given in [32]. Another more gen-
eral water wave equation takes the form [575]

ηt + ηx x x + 6ηηx + ε( 19
10 ηx x x x x + 10ηηx x x + 23ηxηx x − 6η2ηx ) = 0 (4.242)

(terms of the order O(ε2) are omitted), where y = η(x, t) denotes the position of the free
surface of a body of water, considered as an inviscid incompressible fluid, lying above a hor-
izontal flat bottom. This PDE is associated with the generalized FFCH equation (generalized
integrable KdV equation)

ut + ux x x + 6uux − 19
10 ε(ux xt + 2uux x x + 4ux ux x ) = 0, (4.243)

in the sense that the function

η = u + ε( 7
5 u2 + 1

5 ux x − 4
5 ux D−1

x u)

(D−1
x is integration in x) solves (4.242); see [193] for other examples and related references

therein. The generalized SKdV equation (4.211) admits a wide range of moving blow-up and
soliton-like solutions, depending on two arbitrary functions [247].

Further references and some mathematics on the Green–Naghdi equations (4.212) can be
found in [386]. Concerning higher-order PDEs, we mention the Kawahara equation (1972)

ut + uux + αux x − ux x x x x = 0
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that describes propagation of long waves under ice cover in finite depth liquids and gravity
waves on liquid surfaces with surface tension. The Kawamoto equation [330]

ut = u5ux x x x x + 5 u4ux ux x x x + 10 u5ux x ux x x

has higher-degree algebraic terms, as well as Lax’s seventh-order KdV equation

ut + [35u4 + 70(u2ux x + u(ux )
2)+ 7(2uux x x x + 3(ux x )

2 + 4ux ux x x )+ ux x x x x x]x = 0,

and the seventh-order Sawada–Kotara equation

ut + [63u4 + 63(2u2ux x + u(ux )
2)+ 21(uux x x x + (ux x )

2 + ux ux x x)+ ux x x x x x]x = 0.

One and two-soliton solutions of the standard form, which can be also derived by Baker–
Hirota-type methods of the multi-parameter family of equations

ut + r1u + r2ux x + r3ux x x + r4(ux )
2 + r5uux

+ r6uux x + r7u2 + r8u2ux + r9u3 + r10u4 = 0
(4.244)

were constructed in [595] by using a modification of the dressing method that was originally
developed for application to completely integrable nonlinear PDEs.

In connection with solutions (4.216) in Example 4.55, notice that similar mixed subspaces
appear for the positon and negaton solutions of the KdV equation, ut + 6uux + ux x x = 0,
which, in terms of the function v = 2(ln u)x x for the bilinear representation, take the form

v(x, t) = sin(px + p3t)− p(x + 3p2t) ∈ L{1, x, cos px, sin px},
v(x, t) = sinh(px − p3t)+ p(x − 3p2t) ∈ L{1, x, cosh px, sinh px},

respectively, where p �= 0. Positon solutions of the KdV equation (soliton-positon interaction)
have been recognized since the 1970s as solutions with inverse square singularities and slow
decay at infinity. See first results on rational solutions induced by polynomials obtained in
1978 by Ablowitz and Satsuma, Adler and Moser (see survey [407]) and Bordag and Matveev
[72]; [16] (one-positon solution was studied by a variant of the inverse scattering method), and
[418]. On two and higher-order positons, see [419, 407]. Negatons were obtained in [485].
Both types of solutions belong to the class of generalized Wronskian solutions of the bilinear
KdV equation (i.e., (0.31) of the Introduction) introduced in [204, 418]. This approach is a
generalization of the Wronskian representation of multi-solitons invented by Satsuma [515].
According to Matveev’s Wronskian formula, positons correspond to choosing eigenfunctions
with positive eigenvalues of the Schrödinger spectral problem. For the sine–Gordon equation

ux x − utt = sin u,

positons were constructed by Beutler [60]. These solutions, belonging to a combination of
polynomial and trigonometric/exponential subspaces, exist for other integrable 1D and 2D
PDEs; see [125].

§ 4.7. Further references on the Dym hierarchy of integrable PDEs are available in [6] and
[30], where the acoustic scattering theory is developed.

Open problems

• These have been formulated throughout the chapter in Examples 4.3, 4.7, Section
4.2.2, Example 4.8, Sections 4.2.4 and 4.2.5, Examples 4.9, 4.28, 4.29, 4.31, Section
4.5, Examples 4.38, 4.41, 4.43, 4.45–4.48, 4.50–4.52, 4.56, and in Section 4.7.2.
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CHAPTER 5

Quasilinear Wave and Boussinesq Models in
One Dimension. Systems of Nonlinear

Equations

This chapter completes the description of exact solutions on invariant subspaces of 1D non-
linear evolution equations. We consider quasilinear wave and Boussinesq models. In the last
section we study systems of evolution PDEs of various types.

5.1 Blow-up in nonlinear wave equations on invariant subspaces

5.1.1 Basic quasilinear wave models

We consider quasilinear PDEs which are second-order in the time variable, i.e., con-
tain the derivative utt . This class includes the well-known second and higher-order
PDEs of hyperbolic type, which provide us with interesting new examples of forma-
tion of evolution singularities. There are many applications of quasilinear hyperbolic
equations possessing exact and explicit solutions. We present a few of equations
below and include more references in the Remarks. In particular, Zabusky [589] pro-
posed to use the hyperbolic equation

utt = k(ux)ux x

as a model for the dynamics of nonlinear strings. In this context, it is worth mention-
ing the standard derivation of the vibrating string equation by Newton’s Second Law
for a homogeneous thin string. Under the assumption that Hook’s Law applies, this
yields, in the dimensionless form, the quasilinear PDE

utt =
[ ux√

1+(ux )2

]
x .

For small deviations from equilibrium, where (ux)
2 & 1, we arrive at the canonical

linear wave equation
utt = ux x .

As another example, wave operators appear from equations for steady transonic
gas flow (here t = y is the vertical coordinate){

ut = vx ,
vt + uux = 0,

so, replacing u �→ −u, and excluding v yields the quadratic wave equation

utt = (uux)x . (5.1)
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It is of hyperbolic type in the positivity domain of the solution {u > 0}. More general
quasilinear wave models come from the 1D gas dynamics equations{

ρt + (ρv)x = 0,

vt + vvx + 1
ρ px = 0,

where the pressure p = p(ρ) is a given monotone increasing function of the density.
Introducing the stream function ψ(x, t) such that

ρ = ψx , ρv = −ψt ,

and using the independent variables {ψ, t}, where u(ψ, t) = 1
ρ , we find that u(ψ, t)

satisfies the hyperbolic PDE

utt =
[ 1

u2 p′
( 1

u

)
uψ

]
ψ
.

In applications, we will study more general quasilinear wave equations, such as

utt = (ψ(u)ux )x + (lower-order terms),

utt = (ψ(ux ))x + (lower-order terms),

with different types of coefficients ψ(s), arising in nonlinear wave theory. Similar
to other evolution models, the hyperbolic PDEs can create evolution singularities,
exhibiting different asymptotic patterns.

5.1.2 Stability of blow-up on invariant subspaces

Example 5.1 (Blow-up, localization, stability) Let us begin with the following
quadratic wave equation with source (a force term):

utt = F[u] ≡ (uux)x + 2u2 ≡ uux x + (ux )
2 + 2u2, (5.2)

where F is a typical second-order operator from Section 1.4. In the positivity domain
{(x, t) ∈ IR2 : u > 0}, equation (5.2) is of hyperbolic type, where the Cauchy prob-
lem can be posed and, by the Cauchy–Kovalevskaya Theorem, there exists a unique
local analytic solution in some neighborhood of any point of strict hyperbolicity. On
the other hand, in the negativity domain, {(x, t) ∈ IR2 : u < 0}, (5.2) is of elliptic
type, where a boundary-value problem is natural. In general, (5.2) is a quasilinear
elliptic-hyperbolic equation for which existence-uniqueness theory is not well devel-
oped. Exact solutions may help us to understand its singularities and main difficulties
of the analysis.

We begin by describing blow-up properties of solutions

u(x, t) = C1(t)+ C2(t) cos x (5.3)

of (5.2), which belong to the subspace W2 = L{1, cos x} that is invariant under the
quadratic operator F . The corresponding DS takes the form{

C ′′1 = 2C2
1 + C2

2 ,
C ′′2 = 3C1C2.

(5.4)

Consider 1D invariant subspaces from W2. First of all, it is W1 = L{1} on which
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u(t) = C1(t) is obtained from (5.3) for C2(t) ≡ 0, and the DS (5.4) reduces to

C ′′1 = 2C2
1 . (5.5)

This is the simplest solution of the PDE, which does not depend on the space variable
x . Integrating (5.5) once via multiplying by C ′1 yields that all the blow-up solutions
have the following behavior close to the blow-up time T :

C1(t) = 3
(T−t)2 (1+ o(1)) as t → T−.

Other invariant subspaces appear in symmetric cases C2 = ±C1 in (5.3) that give

W+
1 = L{2 cos2( x

2 )
}

and W−
1 = L{2 sin2( x

2 )
}
.

In both cases, setting C2 = ±C1 in the DS (5.4) yields another ODE (cf. (5.5))

C ′′1 = 3C2
1 �⇒ C1(t) = 2

(T−t)2 (1+ o(1)) as t → T−.

Choosing the explicit solution C1(t) = 2(T − t)−2 leads to the 2π-periodic separate
variables similarity solution of the PDE on W+

1 ,

uS(x, t) = 1
(T−t)2 4 cos2( x

2 ).

Next, noting that uS(xk, t) ≡ 0 at points xk = (2k + 1)π , we take the one-hump

uS(x, t) =
{ 1

(T−t)2 4 cos2( x
2 ) for |x | ≤ π,

0 for |x | > π,
(5.6)

which is a localized standing wave (a kind of blow-up standing compacton); see
Figure 5.1. It exhibits regional blow-up in the interval (−π, π). Then L = 2π is the
fundamental length.

The compactly supported function (5.6) is a standard weak solution of the Cauchy
problem for (5.2) in IR× (0, T ) with corresponding initial data uS(x, 0), (uS)t (x, 0).
This is easy to check via multiplying the equation by a smooth test function and
integrating by parts. Of course, this does not mean that, for general initial data, the
quasilinear hyperbolic equation (5.2) admits sufficiently smooth nonnegative solu-
tions (actually, solutions may change sign and discontinuous shock waves may ap-
pear). In fact, we claim that the standing wave solution (5.6) with zero-flux and zero
contact angle conditions is an exceptional one, so there are many other moving pat-
terns which propagate with shock waves (for instance, via TWs).

Nevertheless, the separate variables solution (5.6) is expected to describe a stable
generic blow-up behavior of this model. In a general setting, taking an arbitrary so-
lution u(x, t) (say, symmetric in x) blowing up at t = T , stability analysis assumes
showing stabilization of the rescaled function as τ = − ln(T − t)→+∞,

w(x, τ ) = (T − t)2u(x, t)→ g(x) = 4 cos2( x
2 ), (5.7)

where g is the similarity profile given in (5.6). The rescaled equation for w is

wττ + 5wτ = A[w] ≡ F[w]− 6w = (wwx )x + 2w2 − 6w. (5.8)

The passage to the limit τ →∞ to establish (5.7) for a certain class of solutions is a
hard OPEN PROBLEM.
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u(x, t)

t1

t2

t3

x

t1 < t2 < t3 < T

0

π−π

Figure 5.1 Regional blow-up exhibited by the solution (5.6) on the interval (−π, π).

A comment on linear stability. Notice that even the linearized setting is not easy for
such hyperbolic PDEs and leads to OPEN PROBLEMS of spectral theory of quadratic
pencils of linear operators. We perform some preliminary computations which will
help us later on to perform stability analysis on W2. Using the linearization in (5.8)
about the stationary similarity profile, we set w(x, τ ) = g(x)+ Y (x, τ ). This yields
the following linear hyperbolic equation:

Yττ + 5Yτ = A′[g]Y, (5.9)

where the second-order linearized operator A′[g] has the symmetric form

A′[g]Y = (gY )′′ + (4g − 6)Y ≡ 1
g (g

2Y ′)′ + [g′′ + 2(2g − 3)]Y. (5.10)

As usual, looking for separate variables solutions of (5.9),

Yk(x, τ ) = eλkτψk(x)

yields the spectral problem

A′[g]ψk = µkψk, where µk = λ2
k + 5λk . (5.11)

Here {µk} and {ψk} are eigenvalues and eigenfunctions of the linear operator A′[g],
but actually we deal with the simple quadratic pencil (λ2 + 5λ)I − A′[g] of self-
adjoint operators.

According to classical theory of linear singular ordinary differential operators
[432], A′[g] admits a self-adjoint extension in the weighted space L2

ρ((−π, π))

with the positive weight ρ = g(x) ≡ 4 cos2( x
2 ). Let us take the unique minimal

Friedrichs self-adjoint extension of the symmetric operator (5.10) that corresponds
to zero Dirichlet boundary conditions at regular end-points; see Birman–Solomjak
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[62] for details. We then need to know its real point spectrum. Comparing nonlin-
ear and linearized operators in (5.8) and (5.10), one can find two first successive
eigenvalues and eigenfunctions:

µ0 = 6 with ψ0 = g(x), and µ1 = 0 with ψ1 = g′(x),

where g(x) > 0 and g′(x) has precisely a single zero at x = 0 in (−π, π). Using the
relation between µk and λk , we obtain the following eigenvalues of the pencil:

λ1 = 1, λ2 = 0, λ3 = −5, and λ4 = −6. (5.12)

By Sturm’s Theorem, other eigenfunctions (if any) ψk(x) with k ≥ 2 have k zeros
and must correspond to eigenvalues µk < µ1 = 0. Solving the quadratic equations
λ2

k + 5λk − µk = 0 yields, for any k ≥ 2, eigenvalues λk with negative real parts.
It is worth mentioning that the linear ODE (5.11) for µk < −3 exhibits oscillatory
behavior near the singular endpoint x = ±π , so the spectrum of A′[g] is not discrete
and contains a continuous counterpart belonging to the stable half of the complex
plane. Indeed, this makes the linearized problem more difficult, as it includes integral
terms in eigenfunction expansions over the continuous spectrum, which reflects the
strong nonlinear degeneracy of the original PDE.

We have detected a single eigenvalue λ1 = 1, corresponding to an unstable mode.
It should be excluded from stability analysis, since it corresponds to the shifting
of the blow-up time T (see computation below), which is fixed via rescaling (5.7).
Therefore, g is exponentially asymptotically stable in the linear approximation. For
many sufficiently smooth nonlinear evolution PDEs, and especially for parabolic
ones, it is known that linear stability for the linearized equations implies that the
nonlinear stability is true for the full PDE. This is called the principle of linearized
stability; see Lunardi [403, Ch. 9]. For the degenerate quasilinear hyperbolic equa-
tion (5.8), such questions are OPEN and, bearing in mind complicated spectral prop-
erties of the corresponding quadratic pencil, are difficult to prove.

Linear stability on W2 for the DS (5.4). Let us perform blow-up stability analysis
on the subspace W2. There exists a direct sum decomposition of W2 into the two 1D
invariant subspaces,

W2 = W1 ⊕ W+
1 , or W2 = W+

1 ⊕ W−
1 , (5.13)

with clear and simple blow-up behavior on each of them. What kind of stable blow-
up evolution can be detected on the wider subspace W2? For simpler quasilinear
parabolic PDEs, we managed to prove stability of self-similar blow-up evolution
on W±

1 (see Example 3.17). Unlike the parabolic case, for the hyperbolic PDE, the
quadratic DS (5.4) is of fourth order and we cannot perform such a complete global
stability analysis. We again restrict ourselves to a linearized stability study.

For linear stability analysis, we introduce the rescaled blow-up variables

C1,2(t) = 1
(T−t)2 ϕ1,2(τ ), with τ = − ln(T − t)→ +∞, (5.14)

and obtain the DS {
ϕ′′1 = −5ϕ′1 + 2ϕ2

1 + ϕ2
2 − 6ϕ1,

ϕ′′2 = −5ϕ′2 + 3ϕ1ϕ2 − 6ϕ2.
(5.15)
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The blow-up solution on W+
1 given by C1(t) = C2(t) = 2(T − t)2 corresponds to

the equilibrium (ϕ1, ϕ2) = (2, 2). Linearizing (5.15) about (2, 2) by setting

ϕ1,2 = 2+ Y1,2

yields the linearized system{
Y ′′1 = −5Y ′1 + 2Y1 + 4Y2,
Y ′′2 = −5Y ′2 + 6Y1.

(5.16)

In variables Z = (Y1,Y ′1,Y2,Y ′2)T , it is written as the DS

Z ′ = AZ , with the 4× 4 matrix A =


0 1 0 0
2 −5 4 0
0 0 0 1
6 0 0 −5

 .

It is not surprising that the non-symmetric matrix A has four real eigenvalues λ1 = 1,
λ2 = −1, λ3 = −4, and λ4 = −6, where the first and the last one are the same, as
in the point spectrum (5.12) of the quadratic pencil. Hence, (2, 2) is a hyperbolic
equilibrium of the nonlinear system (5.15) and we can apply the Hartman–Grobman
Theorem [460, p. 118] to classify this stationary point. Of course, it is a saddle and
has a 1D unstable manifold which is tangent to the unstable subspace for λ = 1 of
the linearized DS.

This unstable manifold should not be taken into account if the blow-up time T is
fixed by scaling (5.14). Indeed, we perform a small change in T , setting T ′ = T + ε,
to obtain that C1(t) ∼ (T − t)−2. In terms of the time-variable τ = − ln(T − t), this
is transformed into

1
(T ′−t)2 = 1

(T−t)2

(
1+ ε 1

T−t

)−2

= 1
(T−t)2

(
1− 2ε 1

T−t + ...
) = 1

(T−t)2

(
1− 2εeτ + ...

)
(here t ≈ T− is fixed and we expand relative to the small parameter ε). Then the
factor 1

(T−t)2 is scaled out by transformation (5.14), so that the remaining term
1 − 2εeτ + ... describes a typical unstable behavior according to the mode with
the eigenvalue λ = 1. Excluding the local 1D unstable manifold yields the following
rescaled stability result.

Proposition 5.2 Let the blow-up time T be fixed in rescaling (5.14). Then, for such
orbits, the equilibrium (2, 2) for the DS (5.15) is a stable node and, hence, is asymp-
totically stable.

This implies that, in the rescaled sense for the full DS (5.4), the evolution on
subspaces W±

1 is locally asymptotically stable. Thus, any solution on W2 being in a
sufficiently small neighborhood of W±

1 takes the form (5.6) of the similarity solution
near the blow-up time.

Global analysis of orbits of the fourth-order DS (5.15) is a difficult OPEN PROB-
LEM. We expect that a certain stability result remains true for the sixth-order DS that
describes blow-up evolution for the hyperbolic PDE (5.2) on the subspace W3 =
L{1, cos x, sin x}.
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Example 5.3 (Generalized Boussinesq equation with source) The blow-up dy-
namics (including local stability) do not essentially change if we add some extra lin-
ear terms to the quadratic operator F , leaving W2 invariant. For instance, the stability
conclusions remain the same for a generalized Boussinesq equation with source of
the form

utt = −ux x x x + βux x + (uux)x + γ u2.

Example 5.4 (Improved Boussinesq equation) Consider a quadratic perturbation
of the improved Boussinesq equation

utt − αutt x x = βux x + (uux)x + 2u2 (α �= −1), (5.17)

which admits solutions (5.3), with the DS{
C ′′1 = 2C2

1 + C2
2 ,

C ′′2 = 3
1+α C1C2 − β

1+α C2.

Asymptotic and stability analysis is performed in a similar fashion. The extra linear
term in the second ODE does not affect the asymptotics of blow-up and is scaled out
in stability study.

5.2 Breathers in quasilinear wave equations and blow-up models

Example 5.5 (Breathers) In typical applications, breathers are periodic solutions of
nonlinear hyperbolic models.

Classical breather. It has been recognized since the 1950s that the integrable sine-
Gordon (sG) equation in 1D

utt = ux x − sin u (5.18)

admits [520] explicit periodic solutions, called breathers (two-soliton solutions)

u(x, t) = 4 tan−1
[ 1
ω

√
1− ω2 sech

(√
1− ω2 x sin ωt

)] (
ω ∈ (0, 1)

)
.

In the differential geometry of pseudo-spherical surfaces of constant Gaussian cur-
vature K = −ρ−2, the study of (5.18) goes back to Edmond Bour (1862), Bon-
net (1867), and Enneper (1868), [169], and the PDE is sometimes called the En-
neper equation; see historical aspects in [521]. Detailed investigations of various
forms of (5.18), including superposition behavior of its solutions, were performed
by Bäcklund, Bianchi, Darboux and others, and “this work ... was essentially com-
plete by the turn of the century... ,” [521, p. 1535]. The name sine-Gordon is asso-
ciated with further exploitation of this equation as a 1D model of meson theory of
nuclear forces developed in the 1960s, when this name has become customary (in
1967, G.L. Lamb used (5.18) for the study of propagation of ultrashort light pulses).

Existence and nonexistence of periodic solutions of the general Klein–Gordon
(KG) equation

utt = ux x − g(u),
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with an arbitrary nonlinearity g(u) on the right-hand side, is an important problem,
in view of various physical applications in electromagnetizm, nonlinear optics, and
quantum field theory. We refer to Segur–Kruskal [522], where an asymptotic ap-
proach to nonexistence of periodic solutions of the φ4 model

utt = ux x − 2u + 3u2 − u3

was proposed. Existence, nonexistence, and multiplicity of periodic solutions of non-
linear hyperbolic equations is an important direction of general PDE theory. We re-
fer to Mitidieri–Pohozaev [425, Ch. 8], where a large amount of related existence-
nonexistence results and further references are available.

More recent applications of breathers are associated with lattice theory that leads
to discrete models. These models can involve many unit cells on the microscopic
level and occur in the mathematical modeling of many physical processes, from
chemical reaction theory and optics, to biology and acoustics. The discrete sine-
Gordon (dsG) equation (or the Frenkel–Kontorova (FK) model from dislocation the-
ory of plastic deformation in crystals, 1938) is an infinite-dimensional DS

φ′′n = φn+1 − 2φn + φn−1 − sinφn, n ∈ Z,

which, unlike its continuum counterpart (5.18), is not integrable, but is known to
admit periodic solutions. In Section 9.5, we present further discussion of lattices and
exact solutions on invariant subspaces for such discrete operators.

Compact breathers and localized blow-up patterns. Various lattices for the sG
and more general KG equations are widely studied nowadays. Rosenau and Schochet
[500] introduced anharmonic lattices, corresponding to the quasilinear anharmonic
KG equation

utt + u = 3(ux)
2ux x + u3 ≡ [(ux)

3
]

x + u3. (5.19)

The operator on the right-hand side is variational and is a Frechet derivative of the
following (Lagrangian) potential:

�(u) = − 1
4

∫
(ux)

4 dx + 1
4

∫
u4 dx for u ∈ W 1,4(IR) ∩ L4(IR).

For us, equation (5.19) has particular interest, since it admits a compact breather
solution in separable variables [500]

uc(x, t) = ϕ(t) f (x), (5.20)

where these two functions solve the ODEs

ϕ ′′ = ϕ3 − ϕ and 3( f ′)2 f ′′ + f 3 − f = 0.

The first ODE for ϕ(t) admits a periodic solution, while the second equation for f (x)
has a compactly supported weak solution with finite interfaces yielding the compact
breather. Furthermore, the ODE for ϕ(t) admits blow-up solutions, so (5.20) then
presents localized patterns of regional blow-up (an S-regime).

It is curious that the spatial part f (x) of the compact breather (5.20) is the same
as in blow-up analysis of the quasilinear parabolic p-Laplacian equation

ut = 3(ux)
2ux x + u3. (5.21)
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These heat-type models are intensively studied in Section 6.4. The similarity blow-up
solution of the S-regime takes the form

uS(x, t) = 1√
T−t

f (x), (5.22)

where T > 0 is blow-up time and f (x) satisfies the same ODE

3( f ′)2 f ′′ + f 3 − 1
2 f = 0 (5.23)

(the constant 1
2 is replaced by 1 via scaling in f ). Such localized blow-up structures

for the gradient-dependent diffusion have been studied from the beginning of the
1980s; see details and references in [509, Ch. 4]. The compactly supported solution
of (5.23) is expressed in terms of the incomplete Euler Beta function B , and, in
particular, the measure of the support is [216]

LS = 2
1
2 3

1
4 π, (5.24)

which is called the fundamental length of this nonlinear medium with diffusion and
reaction mechanisms. A fundamental character of the length (5.24) is supported
mathematically: if x = s(t) is the right-hand interface of an arbitrary blow-up so-
lution u(x, t) ≥ 0 of (5.21) with compactly supported initial data u0(x) having the
right-hand interface at s(0), then the localization holds, i.e.,

s(t) ≤ s(0)+ LS for all t ∈ [0, T ).

The proof is based on the Sturmian intersection comparison argument with the stand-
ing wave solution (5.22); details are given in [509, p. 245].

For the corresponding wave equation (5.19), any estimates of the blow-up inter-
face propagation are OPEN PROBLEMS. There is also another fundamental difference
between the above parabolic (5.21) and hyperbolic (5.19) PDEs with the same cubic
operator. While the Cauchy problem for the parabolic equation is well-posed and
there exists a unique weak local-in-time solution for any integrable compactly sup-
ported data u0 (see [148, 309]), the hyperbolic PDE (5.19), admitting, possibly, an
infinite number of shock wave discontinuities, needs a delicate adaptation to such
nonlinearities of extensions of nonlinear semigroups (e.g., along the lines of Bres-
san’s approach to 1D systems of conservation laws [81]).

The anharmonic lattices are obtained by a discretization of the PDE and admit a
Hamiltonian representation. In Section 9.5, we study some lattices with breather so-
lutions, which are “almost” compact (solutions cannot be compactly supported on a
lattice, but the rate of spatial decay is super-exponential, which is typical for implicit
difference schemes for degenerate quasilinear operators of the PME or p-Laplacian
type). In the continuum limit, such discrete breathers correspond to compact ones for
the PDE (5.19), which are periodic solutions in separable variables.

Example 5.6 (Blow-up patterns and compact breathers for quadratic opera-
tors) Consider the following quadratic p-Laplacian operator in IRN :

F2[u] = ∇ · (|∇u|∇u)+ u2, (5.25)
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which is also variational with the potential

�(u) = − 1
3

∫ |∇u|3 dx + 1
3

∫
u3 dx for u ∈ W 1,3(IR N ) ∩ L3(IRN ).

Invariant subspaces for operators in IRN are systematically studied in Chapter 6.
Here, we borrow a simple result from Section 6.1.3 (Proposition 6.9): the operator
(5.25) is associated with the 2D subspace

W2 = L{1, f (x)}, (5.26)

where f is a solution of the following elliptic equation:

F2[ f ]− f ≡ ∇ · (|∇ f |∇ f )+ f 2 − f = 0 in IRN . (5.27)

Namely, for any C1 ∈ IR and C2 ≥ 0,

F2[C1 + C2 f ] = C2
1 + 2C1C2 f + C2

2 F2[ f ]

≡ C2
1 + (C2

2 + 2C1C2) f ∈ W2.
(5.28)

In particular, this means that F2 admits an invariant cone, K+ = {C1,2 ≥ 0}.
Compactly supported continuous weak (i.e., understood in the sense of distribu-

tions) solutions of (5.27) have been recognized since the beginning of the 1980s
[216]; see details in Example 6.52. The equation (5.27) admits a nonnegative radi-
ally symmetric compactly supported solution f (x) in any dimension N ≥ 1, [229].

Using this invariant subspace, consider first the blow-up behavior in the corre-
sponding parabolic equation

ut = F2[u] in IRN × IR+. (5.29)

Then, substituting
uS(x, t) = C1(t)+ C2(t) f (x) (5.30)

into the PDE, in view of (5.28), yields the DS{
C ′1 = C2

1 ,

C ′2 = C2
2 + 2C1C2,

where C2(t) is assumed to be nonnegative. The first ODE gives C1(t) = − 1
t , and,

integrating the second equation with C2 > 0 yields the explicit blow-up pattern

u(x, t) = − 1
t + T

(T−t)t f (x), (5.31)

where T > 0 is the blow-up time. Turning a blind eye to the behavior of this solution
at the initial moment of time t = 0 (see Example 6.52 for explanations), we observe
the regional blow-up as t → T−, where the solution (5.31) blows up only inside the
support of f (x), i.e., for any x in the positivity domain { f > 0}.

Consider next the corresponding hyperbolic PDE with an extra linear term on the
right-hand side necessary to create a breather solution,

utt = F2[u]− u in IRN × IR. (5.32)

Using solutions (5.30) yields a more difficult 4D DS (with C2 ≥ 0){
C ′′1 = C2

1 − C1,

C ′′2 = C2
2 + (2C1 − 1)C2.

(5.33)
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Figure 5.2 Periodic patterns in breather ODEs (5.33) and (5.34).

The standard breather solution is obtained for C1(t) ≡ 0, where a slightly different
PDE appears,

utt = ∇ · (|∇u|∇u)+ |u|u − u.

Here C2 may change sign and satisfies a single ODE

C ′′2 = |C2|C2 − C2 (5.34)

that possesses periodic solutions via Jacobi’s elliptic functions; see Figure 5.2.
In the full DS (5.33), we initially find a solution C̃1(t), and next consider the

second ODE with a given linear force (2C̃1(t)− 1)C2. Recall the hypothesis C2 ≥ 0
which may essentially affect dynamics on this invariant subspace.

Example 5.7 (Breathers and blow-up in higher-order p-Laplacian PDEs) Con-
sider the fourth-order p-Laplacian operator with source

F2[u] = −
(|
u|
u)+ u2 (
or with u2 �→ |u|u),

which has the potential

�(u) = − 1
3

∫ |
u|3 dx + 1
3

∫
u3 dx for u ∈ W 2,3(IRN ) ∩ L3(IRN ).

The above analysis is similar, where f solves a more complicated (variational) ellip-
tic equation

F2[ f ]− f ≡ −
(|
 f |
 f )+ f 2 − f = 0 in IRN (or f 2 �→ | f | f ). (5.35)

In particular, such compactly supported f (x) generate compact breather solutions
uc(x, t) = C2(t) f (x) of the corresponding hyperbolic PDE (5.32), as well as local-
ized blow-up patters uS(x, t) = (T − t)−1 f (x) of the parabolic equation (5.29). The
same DSs occur on the invariant cone in subspace (5.26).

Restricted to radial solutions, (5.35) is a difficult fourth-order nonlinear ODE that
admit oscillatory solutions near finite interfaces for the CP; see Example 5.9. For
this ODE, existence is checked numerically. The profile (a) in Figure 5.3 is the first
solution f1(x) of the ODE (5.35) in 1D. To underline a universality character of
formation of compact and localized structures, for comparison, we include curves (b)
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Figure 5.3 Compactly supported solutions of (5.35), N = 1 (a) and (5.36) (b).

that are first two compactly supported profiles f1(x) and f2(x) of the non-variational
ODE

−(| f ′′′| f ′′′)′ + f 2 − f = 0 in IR. (5.36)

This appears in constructing blow-up patterns for the reaction-diffusion PDE with a
non-potential p-Laplacian,

ut = −(|ux x x |ux x x)x + u2
(
or breathers for ut = −(|ux x x|ux x x)x + u2 − u

)
.

In both ODEs, replacing f 2 �→ | f | f does not make any essential change in the
solutions, in view of smallness of their oscillatory tail. Proof of existence, unique-
ness of a bell-shaped solution, and overall multiplicity (typically countable sets for
variational equations, as in the next example) are OPEN PROBLEMS.

Example 5.8 (Higher-order porous medium-type operators) Consider now equa-
tions containing PME-type operators with the parameter n > 0,

utt + u = −
2(|u|nu)+ |u|nu (hyperbolic: breathers),

ut = −
2(|u|nu)+ |u|nu (parabolic: blow-up).

The solutions in separate variables have the same form,

u(x, t) = C2(t) f (x), C ′′2 = 1
n |C2|nC2 − C2, or C2(t) = (T − t)−

1
n , (5.37)

where a compactly supported f solves the following elliptic (variational) equation:

−
2(| f |n f )+ | f |n f − 1
n f = 0 in IRN . (5.38)

For N = 1, such ODEs occurred earlier in compacton theory; see Example 4.7,
where some profiles { fk(x)} were constructed numerically (such countable sets are
associated with the variational setting).

Thus, formulae (5.37) and (5.38) give countable spectra of both compact breathers
and localized blow-up patterns.

Example 5.9 (p-Laplacian: oscillatory solutions in parabolic models) As in Ex-
ample 3.37, we take the 1D parabolic equation with the parameter n > 0,

ut = F[u] ≡ −(|ux x |nux x
)

x x in IR × IR+ , (5.39)
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where F is a monotone monotone in L2(IR), i.e., integrating by parts yields∫
(F[u]− F[v])(u − v) dx = − ∫ (|ux x |nux x − |vx x |nvx x)(ux x − vx x

)
dx ≤ 0

for all smooth compactly supported function u, v ∈ C∞0 (IR). For parabolic PDEs
with monotone operators, there exists powerful existence-uniqueness theory of weak
solutions; see [396, Ch. 2]. In order to understand the oscillatory nature of such

of distributions, and consider sufficiently regular weak solutions that have a limit as
n → 0+, meaning a connection with the linear bi-harmonic PDE

ut = −ux x x x in IR × IR+.

This has the oscillatory fundamental solution with the asymptotics (3.195).
Let us describe oscillatory properties of solutions of the quasilinear equation (5.39)

by studying its fundamental solution

b(x, t) = t−β F(ζ ), ζ = x
tβ
, where β = 1

3n+4

and F satisfies the ODE that is obtained after integration,(|F ′′|n F ′′
)′ = βζ F in IR. (5.40)

In Figure 5.4(a), we present a compactly supported similarity profile F(ζ ) for n = 1,
normalized so that F(0) = 1 and F ′(0) = 0 by symmetry. It is constructed by
shooting from ζ = 0 and corresponds to F ′′(0) = −0.3938136507879... . In (b), the
oscillatory character of F near the interface at ζ = ζ0 is shown and will be studied
in detail next. We also specify in (b) a few zero contact angle FBP profiles F1, ...,
F5, corresponding to smooth touching the ζ -axis (a correct setting of this FBP is not
straightforward). In general, in view of changing sign behavior of F(ζ ) as ζ → ζ−0 ,
there exists a sequence of FBP profiles {Fk(ζ )} such that the solution of the CP
satisfies

F(ζ ) = limk→∞ Fk(ζ )

uniformly. The proof is straightforward for n = 0, i.e., for the linear equation (5.40),
and is OPEN and difficult for n > 0. Notice that, by construction, each Fk(ζ ) has
precisely k − 1 zeros inside the support for ζ > 0, which is a kind of Sturm’s
property for higher-order ODEs that is not associated with the Maximum Principle.

Assuming that F is compactly supported on some interval [−ζ0, ζ0], let us intro-
duce the oscillatory component by setting

F(ζ ) = (ζ0 − ζ )γ ϕ(s), s = ln(ζ0 − ζ ), where γ = 3+2n
n , (5.41)

so that we are looking for oscillatory behavior, as in Figure 3.5(a). Omitting expo-
nentially small perturbations, we obtain the ODE for ϕ(s),

(n + 1)
∣∣ϕ′′ + (2γ − 1)ϕ′ + γ (γ − 1)ϕ

∣∣n [ϕ′′′ + 3(γ − 1)ϕ′′

+ (3γ 2 − 6γ + 2)ϕ′ + γ (γ − 1)(γ − 2)ϕ
] = −βζ0ϕ.

(5.42)

The oscillatory character of solutions is shown in Figure 5.5 for ζ0 = (3n+4)(n+1).
The stable periodic solution gets smaller if n continues to decrease. For n = 0.8, the
periodic orbit is already of the order 10−6, while for n = 0.5, the oscillations are of
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Figure 5.4 The CP similarity profile satisfying (5.40), n = 1; Fk denote FBP profiles.
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Figure 5.5 Periodic behavior for (5.42) with n = 1 (a) and n = 0.8 (b).

the order 10−9. For larger n ≥ 2, the stable oscillatory periodic patterns are shown
in Figure 5.6.

On the other hand, using TWs u(x, t) = f (y), with y = x − λt in the PDE (5.39)
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Figure 5.6 Stable periodic behavior for (5.42) with n = 2 (a) and n = 2, 3, 4, 5, 6, 7, 8 (b)
(the amplitude is monotone increasing with n).
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yields the ODE

λ f ′ = (| f ′′|n f ′′
)′′ for y > 0, f (0) = 0,

where the interface is now at y = 0+. Setting as in (5.41)

f (y) = yγ ϕ(s), where s = ln y,

yields precisely the ODE (5.42), with λ = −βζ0. Therefore, Figures 5.5 and 5.6 also
show the oscillatory character of TW solutions for any λ < 0. For λ > 0, (5.42)
admits a positive constant solution, e.g., for n = 1, it is

ϕ(s) ≡ λ
2400 . (5.43)

The constant solutions for λ > 0, such as (5.43), are stable. As shown in Example
4.54, on the basis of the linear PDE for n = 0, we claimed that a periodic solution
ϕ(s) for λ > 0 does not exist.

Example 5.10 (On degenerate hyperbolic models: finite propagation and oscil-
latory behavior) Here, we review some hyperbolic PDEs with possible oscillatory
behavior near finite interfaces.

Fourth and sixth-order PDEs. The TWs for the fourth-order wave equation

utt = −
(|ux x |nux x

)
x x , with n > 0, (5.44)

are governed by the second-order Hamiltonian ODE λ2 f = −| f ′′|n f ′′ that does
not admit solutions decaying to zero. This indicates that the propagation via smooth
TWs is infinite and solutions are oscillatory at infinity (as for n = 0).

Consider next a similar sixth-order hyperbolic PDE,

utt =
(|ux x |nux x

)
x x x x , with parameter n > 0, (5.45)

for which sufficiently smooth TW profiles solve the fourth-order ODE

λ2 f = (| f ′′|n f ′′
)′′ for y > 0, f (0) = 0. (5.46)

Solutions of the maximal regularity with a finite interface at y = 0 are given by

f (y) = yγ ϕ(s), s = ln y, where γ = 2(n+2)
n , (5.47)

with e.g., ϕ(s) ≡ ϕ0 (for n = 1, we have f ∈ C5 and f (5) is Lipschitz continuous at
y = 0). The oscillatory component ϕ solves the same fourth-order ODE, as appeared
in Example 4.10 (with ϕ �→ ϕ′′), where no periodic changing sign solutions were
shown to exist.

Linear PDEs: fundamental solutions and TWs. To confirm the non-oscillatory
character of solutions of (5.44) and (5.45), it is useful to apply the continuous con-
nection as n → 0 with the corresponding linear hyperbolic equations (cf. Example

utt = −ux x x x in IR × IR+, (5.48)

with the fundamental solution b(x, t) = √t g(y), with y = x/
√

t , where

g(4) + 1
4 g′′y2 + 1

4 g′y − 1
4 g = 0 �⇒ g(y) = 1

2π

∫∞
0

sin z cos(
√

zy)
z3/2 dz.
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It follows that g(y) is not compactly supported (the oscillatory part is given by
g(y) ∼ cos( 1

2 y2) as y → ∞), so there is not finite propagation for (5.48) and

with n = 0 describing flexural oscillations of an elastic beam,

utt = ux x x x x x , (5.49)

the oscillatory and infinite propagation properties are seen from its fundamental so-
lution

b(x, t) = t
2
3 g(y), y = x/t

1
3 , where g(y) = 1

3π

∫∞
0

sin z cos(z1/3 y)
z5/3 dz.

Let us next study TWs, solving

f (4) − λ2 f = 0, with the characteristic equation µ4 = λ2 > 0,

so the decaying solutions are not oscillatory near the left-hand infinite interface at
y = −∞, which become the linear counterparts of those in (5.47) with the con-
stant ϕ0. In addition, there exist non-decaying oscillatory solutions like f (y) =
cos(

√|λ|y) (similar ones are admitted by (5.46)). The TW analysis also confirms
that linear hyperbolic PDEs, such as (5.48), (5.49), and others do not allow finite
propagation, unlike the canonical second-order model utt = ux x .

Remark 5.11 Finite propagation with λ = ±1 exists in higher-order hyperbolic
PDEs, such as

utt t t = ux x x x, etc.

(strong estimates are obtained by multiplication by ut in L2). Odd-order linear dis-
persion equations utt t = ux x x , etc. admit TW propagation with λ = −1 only.

More higher-order models. Consider TWs for a similar sixth-order PDE

utt =
(|ux x x |nux x x

)
x x x , where(| f ′′′|n f ′′′

)′ − λ2 f = 0 for y > 0, f (0) = 0.

This ODE admits the strictly positive solution

f (y) = ϕ0 yγ , with a ϕ0 > 0 and γ = 3n+4
n ,

so there exists a class of non-oscillatory TW and other solutions. The ODE for the
component ϕ(s), with s = ln y, is

f (y) = yγ ϕ(s) �⇒ P4[ϕ] = 1
n+1

ϕ
|P3[ϕ]|n , (5.50)

where the operators P4 and P3 are given in (4.93) and (3.166) respectively. Figure
5.7 shows a decaying unstable behavior for (5.50), n = 1, which is not periodic, so
cannot be extended to the interface at s = −∞ (y = 0).

Thus, oscillatory interfaces occur for, at least, eighth-order hyperbolic models,

utt = −
(|ux x x x|nux x x x

)
x x x x,

(
or utt = −

(|ux x |nux x
)

x x x x x x

)
.

Recall the fruitful change v = ux x x x . Then the linear PDE for n = 0 has the TW
equation of sixth order,

utt = −ux x x x x x x x �⇒ f (6) + λ2 f = 0,

© 2007 by Taylor & Francis Group, LLC

solutions are oscillatory (cf. similar conclusions for (5.44)). Analogously, for (5.45)
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Figure 5.7 Unstable decaying behavior for ODE (5.50) for n = 1. Cauchy data are ϕ(0) =
10−6, ϕ′(0) = ϕ′′′(0) = 0, ϕ′′(0) = 0.000252638746... .

with the characteristic polynomial µ6 + λ2 = 0, confirming that the interface at
y = −∞ is oscillatory, and remains oscillatory for small n > 0 by continuity; on
passing to the limit n → 0, see [174, Sect. 7.6].

Example 5.12 (Finite propagation in singular dispersive Boussinesq equations)
Let us next briefly discuss finite propagation in semilinear hyperbolic models. First,
consider the semilinear wave equation with a strong absorption (force) term,

utt = (−1)m+1 D2m
x u − |u|p−1u, with p < 1.

Studying TWs near finite interfaces leads to the ODE

(−1)m+1 f (2m) − | f |p−1 f = 0 �⇒ f (y) = yγ ϕ(ln y), γ = 2m
1−p . (5.51)

Stable and unstable periodic behavior of ϕ(s) appears in TFE theory; see Section
3.7. As p → 1−, i.e., approaching the linear equation, the smoothness of TWs at
the interface point y = 0 increases (to C∞ at p = 1). This mimics analytic TWs for
p = 1, where no finite propagation is available.

For conservative Boussinesq-type models

utt = (−1)m+1 D2m
x u − D2k

x (|u|p−1u), 1 ≤ k < m,

(for m = 2, k = 1, it is the signed B(1, p) dispersive Boussinesq equation, [496]),
we have finite interfaces for TWs for k < m (see explicit nonnegative compactons
in [581] for m = 2, k = 1) and solutions of changing sign for k ≤ m − 2 with the
behavior (5.51), where 2m is replaced by 2(m − k).

Example 5.13 (A breather on invariant subspace for a cubic operator) Consider
now another cubic wave equation

utt = F[u] ≡ 2u2ux x − u(ux)
2 + u3. (5.52)

Such hyperbolic PDEs describe short-wave excitations of a nonlinear model, where
each atom in a 1D lattice interacts with its neighbors by anharmonic forces, [349].
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Note that operator F is not potential in L2. The 2π-periodic breather is given by

u∗(x, t) = C(t) cos x, where C ′′ = −C3. (5.53)

Clearly, the ODE for C(t) has periodic solutions. Taking a single hump of cos x in
(5.53) gives a solution of the Dirichlet problem for (5.52), where

u
(±π

2 , t
) = 0 for t ≥ 0,

so, unlike the compact breather (5.20), this is not a solution of the Cauchy prob-
lem. The operator in (5.52) has the advantage to admit the 3D subspace W3 =
L{1, cos x, sin x}; see Proposition 1.30, operator F6. Therefore, there exist exact so-
lutions on its 2D restriction W2 = L{1, cos x},

u(x, t) = C1(t)+ C2(t) cos x, (5.54){
C ′′1 = (C2

1 − C2
2 )C1,

C ′′2 = (C2
1 − C2

2 )C2.

This DS exhibits a finite-dimensional evolution around the breather (5.53) that de-
scribes the periodic motion on the 1D invariant subspace W1 = L{cos x}, with
C1(t) ≡ 0 in (5.54).

5.3 Quenching and interface phenomena, compactons

5.3.1 Basic singularity phenomena and stability

Example 5.14 (Quenching, stability, and interfaces) In order to describe singu-
lar quenching phenomena in quasilinear hyperbolic models, we introduce a simple
equation combining the wave operator from (5.1) and a constant absorption term.
This leads to a quadratic wave equation with absorption

utt = (uux )x − 1. (5.55)

We take smooth bounded initial functions u(x, 0) ≥ a0 > 0 and ut (x, 0), and, by
classical theory of hyperbolic PDEs [550, Ch. 16], we obtain a local-in-time smooth
positive solution u(x, t) of the Cauchy problem for (5.55). In view of the constant
negative absorption term−1, we may expect that there exists a finite time T such that
u(x, t) first touches the singular zero level {u = 0} and ceases to exist as a classical
solution. Without loss of generality, we assume that this happens the first time at
the origin x = 0, i.e., u(0, T ) = 0. Finally, the main (actually rather restrictive)
assumption is that the classical solution without shock waves exists on (0, T ) (or, at
least, shocks waves stay away from the extinction point x = 0).

As usual, we are interested in describing the formation of the quenching singu-
larity as x → 0 and t → T− by using solutions on a polynomial subspace of the
quadratic operator in (5.55). We choose the simplest subspace W2 = L{1, x2}, so

u(x, t) = C1(t)+ C2(t)x
2 ∈ W2,{

C ′′1 = 2C1C2 − 1,
C ′′2 = 6C2

2 .
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Choosing the positive function C2(t) = t−2 from the second ODE, and integrating
the first equation yields the following solution:

u(x, t) = 1
t − 1

3 t2 ln t + 1
t2 x2. (5.56)

It is interesting first to analyze the initial singularity as t → 0+, where

u(x, t) = 1
t + η2 + ... , with the rescaled variable η = x

t .

This shows that initial functions for such solutions are entirely singular:

u(x, 0) ≡ +∞ and ut (x, 0) ≡ −∞ in IR.

Nevertheless, such initial data give rise to a local positive analytic solution with the
given quadratic growth as x →∞.

Consider next the quenching phenomenon at the moment t = T > 1 such that

1
T = 1

3 T 2 ln T .

Then, for all t < T , (5.56) is a smooth strictly positive solution of (5.55), and, as
t → T−, the solution exhibits the following asymptotics:

u(x, t) = a1(T − t)+ a2x2 + ... ≡ (T − t)
(
a1 + a2ξ

2
)+ ... , (5.57)

where a1 and a2 are positive constants, depending on T . Here ξ is the quenching
rescaled spatial variable

ξ = x√
T−t

. (5.58)

Asymptotics (5.57) of the solutions shows a regular approach to the singularity point.
In rescaled variables, there exists the limit as t → T− of the rescaled function,

v(ξ, τ ) ≡ (T − t)−1u(x, t)→ g(ξ) ≡ a1 + a2ξ
2. (5.59)

A general asymptotic stability problem is OPEN. Let us present some comments. By
differentiating of u = e−τ v(ξ, τ ), ut = vτ − v + 1

2 vξ ξ , (uux)x = e−τ (vvξ )ξ , etc.,
we derive a singular perturbed PDE,

vττ + vτξ ξ − vτ + 1
4 vξξ ξ

2 − 1
4 vξ ξ = e−2τ (vvξ )ξ − e−τ , (5.60)

where the second-order quadratic operator gives, on the right-hand side, an exponen-
tially small perturbation as τ → ∞. The profile g given in (5.59) satisfies the limit
(i.e., at τ = +∞) stationary ODE

C[g] ≡ 1
4 g′′ξ2 − 1

4 g′ξ = 0.

On linear stability. The problem of the passage to the limit τ → ∞ in (5.60) re-
mains OPEN. We briefly discuss the linear stability setting using similarities with that
in Example 5.1. Linearization in (5.60) about the stationary profile by setting

v(ξ, τ ) = g(ξ)+ Y (ξ, τ )

leads to the following equation:

Yττ + Yτξ ξ − Yτ + 1
4 Yξξ ξ

2 − 1
4 Yξ ξ

= e−2τ
[
(gYξ )ξ + (Y g′)ξ

]− e−τ + e−2τ (Y Yξ )ξ .
(5.61)
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In the first step of linearized analysis, we neglect both linear and nonlinear exponen-
tially small perturbations on the right-hand side. Then, using the standard method of
separation of variables for linear homogeneous PDEs and looking for

Y (ξ, τ ) = eλτψ(ξ) (5.62)

yields the following eigenvalue problem for the quadratic pencil of linear operators:{
λ2 I + λB+C

}
[ψ] ≡ λ2ψ + λ(ψ ′ξ − ψ)+ 1

4 ψ ′′ξ2 − 1
4 ψ ′ξ = 0. (5.63)

Spectral theory of linear polynomial pencils is an important and classical area of
differential operators theory; see Markus [412].

In general, for pencils of non-self-adjoint operators, even in the ordinary differ-
ential setting, the problem of discreteness of the spectrum, as well as completeness
and closure of the eigenfunction sets, are often difficult. In the present case, we use
a special advantage associated with the blow-up character of scaling variables. Since
the coefficients of operators in (5.63) are unbounded as ξ → ∞, the functional set-
ting plays a key role. For such operators, a right setting is available in the weighted
L2
ρ(IR) space with the exponential weight ρ(ξ) = e−ξ2

. Since the operators are
not self-adjoint, we are not obliged to be very determined in choosing a particular
weight. As often happens in blow-up rescaled problems, our pencil generates some
polynomial eigenfunctions.

Proposition 5.15 The quadratic pencil (5.63) in L2
ρ(IR) has the discrete spectrum,

consisting of two series of real eigenvalues

λ+k = − 1
2 (k − 2) and λ−k = − 1

2 k for k = 0, 1, 2, ... , (5.64)

with eigenfunctions ψk(ξ) being kth-order polynomials.

The eigenvalues λ±k in (5.64) are obtained by plugging ψk(ξ) = ξ k+... into (5.63).
We thus observe from (5.64) that, in the symmetric setting, there exist just two bad
modes:
(i) k = 0 with λ+0 = 1, corresponding to the instability via perturbations of the
blow-up time, and
(ii) k = 1 with λ+1 = 1

2 , corresponding to the shifting in x of the quenching point.
Both modes are excluded by fixing the time T and the point x = 0 of quenching in
rescaled variables (5.58), (5.59). Since the polynomials are complete in any suitable
weighted L p-spaces, [352, p. 431], this gives certain evidence about the linear stabil-
ity of the stationary profile g; though we should take into account that the constants
a1 and a2 in (5.59) are arbitrary and depend on the initial data (this corresponds to
the centre subspace behavior with λ±k = 0 for k = 2 and 0). The extension of the
linear stability to the nonlinear one is a difficult OPEN PROBLEM.

On related blow-up problems on multiple zeros. It is curious that polynomial
eigenfunctions of such pencils describe various pattern formation of multiple zeros
in x of solution u(x, t) of the linear wave equation

utt = ux x in IR × IR− . (5.65)

Namely, if a multiple zero occurs at the point (0, 0), we perform the blow-up scaling
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near this point (see [231])

u(x, t) = Y (ξ, τ ), with ξ = x
(−t) , τ = − ln(−t),

Yττ + Yτ + 2Yξτ ξ = A[Y ] ≡ (1− ξ2)Yξξ − 2Yξ ξ.

Looking for solutions in separate variables (5.62) yields the eigenvalue problem for
a quadratic pencil,

{(λ2 + λ)I + 2λξ Dξ −A}[ψ] = 0, with eigenvalues

λ+k = −k and λ−k = −k − 1 for k ≥ 0,

and eigenfunctions ψk(ξ) being kth-order polynomials. Again, in view of complete-
ness and closure of the eigenfunction set � = {ψk} in weighted L2 spaces, these
eigenfunctions give a full countable set of different patterns of multiple zeros at
(0, 0) for the wave equation (5.65),

uk(x, t) = (−t)−λ±k ψk
( x
(−t)

) (
λ±k < 0

)
.

Therefore, each multiple zero of kth order is formed as t → 0− by k zero curves
focusing at x = 0 with the behavior

x j (t) = ξ j (−t), where ψk(ξ j ) = 0.

For the linear parabolic heat equation

ut = ux x ,

a similar classification of multiple zeros with the heat kernel rescaled variable ξ =
x/
√−t leads to the classic eigenvalue problem, where � = {ψk} consists of Hermite

polynomials. These computations were first performed by Sturm (1836), [538], and
initiated deep mathematical theory in relation to both PDEs and ODEs; see survey
and references in [226, Ch. 1].

For hyperbolic equations, zero set theory is less developed. Similar quadratic pen-
cils with the same spectrum occur [231] in the study of a different blow-up phe-
nomenon for the semilinear wave equation with a nonlinear force term,

utt = 
u + |u|p−1u (p > 1).

Interface propagation. For t > T , solution (5.56) takes negative values. To continue
to deal with nonnegative solutions, one needs another FBP framework by introducing
free-boundary conditions at the interfaces. Take now a simpler solution

u(x, t) = − 1
3 t2 ln t + 1

t2 x2, (5.66)

with the positive interface at

s(t) = 1√
3

t2
√

ln t for t > T = 1. (5.67)

The dynamic interface equation is derived by using TWs u(x, t) = f (y), with y =
x − λt , satisfying the ODE λ2 f ′′ = ( f f ′)′ − 1, so that, for regular solutions,

(s′)2 = λ2 = 1
f ′′ [( f ′)2 − 1] ≡ 1

uxx
[(ux )

2 − 1] at x = s(t). (5.68)
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Noticing that (5.68) holds for any regular solution (so it is a manifestation of regu-
larity), we derive the actual dynamic equation by calculating ux x = 2

t2 from (5.66),

hence, t =
√

2
uxx

. Differentiating (5.67) yields

s′ = 2√
3 uxx

[(
ln 2

uxx

)1/2 + 1
2

(
ln 2

uxx

)−1/2]
.

This interface equation seems to be sufficient for the second-order PDE (5.55) to
admit a local unique solution via the von Mises transformation (the analysis can be
affected by possible formations of shock waves nearby). This is an OPEN PROBLEM.
We will give further details of such a construction in the next model dealing with
zero contact angle free-boundary conditions.

5.3.2 Zero contact angle and oscillatory solutions

Example 5.16 (Zero contact angle solutions) In order to create exact solutions
with the zero contact angle at the interfaces, another modification of quasilinear wave
equations is necessary. Consider the PDE with special left and right-hand sides

v
(√

v
)

t t = (vvx )x + αv + βv
3
2 in IR × IR+ (5.69)

for nonnegative solutions v ≥ 0. This equation looks awkward, but by setting v = u2

we obtain a simpler quadratic equation,

utt = (u2)x x + 4(ux)
2 + α + βu

that possesses solutions u = C1 + C2x + C3x2 on the subspace L{1, x, x2}. Obvi-
ously, then v(x, t) = u2(x, t) satisfies the zero contact angle condition

v = vx = 0 at interfaces x = s(t). (5.70)

To illustrate the behavior of such interfaces, set α = 0 and β = 1, to get the PDE

utt = (u2)x x + 4(ux)
2 + u

possessing solutions
u(x, t) = C1(t)+ C3(t)x

2, (5.71){
C ′′1 = 4C1C3 + C1,

C ′′3 = 28C2
3 + C3.

Choosing the equilibrium C3 = − 1
28 from the second ODE and substituting into the

first equation yields C ′′1 = 6
7 C1, which gives, e.g., C1(t) = cosh

√
6
7 t . The exact

solution of the original equation (5.69) with α = 0 and β = 1 takes the form

v(x, t) = (cosh
√

6
7 t − 1

28 x2
)2
+, (5.72)

which has exponentially expanding interfaces with the zero contact angle

s±(t) = ±R(t) ≡ ±
√

28 cosh
√

6
7 t for t > 0. (5.73)
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The regularity criterion at interfaces is obtained from the identity d2

dt2 u(s(t), t) = 0,
yielding

uxs′′ + 2uxt s
′ + ux x(s

′)2 + utt = 0 at x = s(t). (5.74)

The interface equation for the particular solutions (5.71), (5.72) is of stationary,
Florin type,

ux x = 1
28 at x = s(t).

In view of two already available free-boundary conditions (5.70), other dynamic
interface equations look like regularity conditions. Introducing the von Mises trans-
formation near the interface

X = X (u, t),

and assuming that it applies locally, by computations similar to those in Example
3.10, we arrive at the following second-order hyperbolic equation:

Xtt − 1
(Xu )2

(
2Xu Xtu − Xuu Xt

) = 2u Xuu
(Xu )2 − 6

Xu
− u Xu . (5.75)

We next impose the transversality assumption at the interface, Xu �= 0 at u = 0, and
then the local solvability and uniqueness of a sufficiently smooth solution depend

on the spectral properties of the linear operator B = u d2

du2 . It is self-adjoint in the

weighted space L2
ρ(0, 1), ρ = 1

u , has a compact resolvent, a discrete spectrum, and a
complete, closed set of eigenfunctions. We refer to Naimark’s monograph [432]. For
the solvability of (5.75) by the semigroup approach and existence of a local regular
solution, one needs to impose the conditions that this PDE is valid at u = 0, i.e.,

(Xu)
2 Xtt − (2Xu Xtu − Xuu Xt ) = −6Xu,

which is the identity (5.74), written in terms of the von Mises variable X . As a
consequence and an OPEN PROBLEM, it is believed that the compactly supported
function (5.72) is a unique solution of the CP for the original equation (5.69).

Principles of formation of quenching patterns remain similar for higher-order wave
equations with extra linear operators, e.g., for the Boussinesq-type equation

utt = −ux x x x + (uux)x − 1. (5.76)

Questions of interface propagation becomes more delicate, as is usual for higher-
order equations; cf. examples in Section 3.2. The fourth-order linear operator ux x x x

vanishes on W2, and hence, will not affect the asymptotics of the singular extinction
patterns.

On maximal regularity of oscillatory solutions. For solutions of changing sign in
the CP, we consider the signed PDE with absorption

utt = −ux x x x − sign u in IR × IR,

where we omit the quadratic term that is negligible near interfaces. The TWs satisfy

λ2 f ′′ = − f (4) − sign f, (5.77)

or, neglecting the left-hand side, which is smaller as f → 0, we have a simple ODE

f (4) + sign f = 0 for y > 0, f (0) = 0, so
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f (y) = y4ϕ(s), with s = ln y, (5.78)

where the oscillatory component ϕ solves

ϕ(4) + 10ϕ′′′ + 35ϕ′′ + 50ϕ′ + 24ϕ + signϕ = 0.

This is precisely the ODE (4.96) for a KS-type equation in Example 3.36, and for
a fifth-order nonlinear dispersion equation in Example 4.10. This indicates a uni-
versality feature of formation of oscillatory patterns for nonlinear PDEs of different
types. The stable periodic solution ϕ(s) (the bold line) is shown in Figure 3.16 (see
also Figure 4.13(b)). Therefore, the TWs (5.78) are oscillatory near interfaces. The
λ-dependent right-hand side in (5.77) determines the next expansion term in (5.78),
which states the dynamic interface equations for the CP (cf. Example 4.29).

5.3.3 Compactons in higher-order nonlinear dispersive Boussinesq equations

We now describe the dynamics of 2π-periodic solutions of the sixth-order dispersive
Boussinesq equation B(m, n, k)

utt − ux x + α(um)x x + β(un)x x x x + γ (uk)x x x x x x = 0. (5.79)

Taking m = n = k = 2 yields

utt − ux x + α(u2)x x + β(u2)x x x x + γ (u2)x x x x x x = 0, (5.80)

where the quadratic operator admits W3 = L{1, cos x, sin x} iff−α+4β−16γ = 0.
Hence, (5.80) restricted to W2 possesses solutions

u(x, t) = C1(t)+ C2(t) cos x + C3(t) sin x,{C ′′1 = 0,
C ′′2 = −(µC1 + 1)C2,
C ′′3 = −(µC1 + 1)C3,

where µ = 2(β − α − γ ). Compactons are obtained for constant C1(t) ≡ A, so
denoting λ2 = µA+ 1 > 0, we obtain u(x, t) = A+ B cos(x − λt). Setting A = B
yields the compacton

uc(x, t) = 2(λ2−1)
2(β−α−γ ) cos2[ 1

2 (x − λt)], (5.81)

which is localized on {|x − λt| < π} and moves with constant speed λ > 0, as in
Figure 4.1. The dynamic equation of the interfaces at s(t) = λt ± π is derived from
the PDE, as above, showing that compactons need an FBP setting.

Including the term δu2 into (5.80) leads to blow-up behavior on W3. If C1(t) is
not constant, the dynamics of such periodic solutions are more complicated.

Oscillatory solutions of maximal regularity. The actual maximal regularity of so-
lutions differs from the C1 presented by (5.81). Consider the corresponding family
of hyperbolic PDEs of the type (5.80), keeping only the main term

utt − ux x =
(|u|nu

)
x x x x x x (n > 0).
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The TWs satisfy, after integrating twice,

(λ2 − 1) f = (| f |n f )(4).

Therefore, for λ �= ±1, the behavior near the interface at y = 0 is given by

f (y) = y
4
n ϕ(s), with s = ln y, (5.82)

where F = |ϕ|nϕ satisfies an ODE of the form (4.93) from nonlinear dispersion KdV
analysis (Example 4.10). Hence, there exists a periodic orbit ϕ(s) if |λ| < 1 (TWs
are oscillatory) and no such ϕ for |λ| > 1 (non-oscillatory TW interfaces). The same
is true for n = 0.

For n = 1 in (5.82), we have the behavior f (y) = O(y4) as y → 0, so the one-
hump compacton (5.81), exhibiting less regularity ∼ O(y2), is not a solution of the
Cauchy problem in IR × IR. The formula (5.82) gives a first approximation of mul-
tiple zeros behavior for such quasilinear hyperbolic equations and can be treated as
a nonlinear counterpart of the linear operator pencil properties detected in Example
5.14. A classification of multiple zeros assumes solving a difficult nonlinear eigen-
value OPEN PROBLEM, which was studied for the second-order quasilinear parabolic
equations and linear 2mth-order PDEs, [226, pp. 29–34].

5.3.4 On the modified Zabolotskaya–Khokhlov equation

The dissipative Zabolotskaya–Khokhlov (ZK) equation

utt = −ux x x − (uux )x (5.83)

arises in the theory of acoustic signals propagating through stratified media and has
other applications, [587, 588, 363]. Actually, (5.83) is a stationary version of the
following full PDE which is also known as the 3D Burgers equation:

uxt + (uux)x + νux x x +
⊥u = 0, (5.84)

where ν is a constant and 
⊥u denotes uyy . Therefore, in (5.83), u = u(x, y) with
y replaced by t . For ν = 0, (5.84) gives the dispersionless Kadomtsev–Petviashvili
equation

uxt + (uux)x + uyy = 0.

The ZK equation (5.83) contains a single quadratic operator of the PME type,
with known polynomial or other subspaces that do not produce interesting singularity
phenomena. Consider a modification of the ZK equation by adding an extra lower-
order term

utt = −ux x x − (uux)x − 2u2.

The quadratic operator F[u] = (uux)x+2u2 admits the basic trigonometric subspace
W3 = L{1, cos, sin x}, on which the solutions can be written as

u(x, t) = C1(t)+ C2(t) cos(x + γ (t)), (5.85)
C ′′1 = −2C2

1 − C2
2 ,

C ′′2 =
[
(γ ′)2 − 3C1

]
C2,

γ ′′ = − 2C ′2
C2

γ ′ − 1.

(5.86)
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According to representation (5.85), the speed of propagation of such 2π-periodic
waves is not constant (as in Example 4.3 for some extended KdV equations), and de-
pends on the solutions under consideration. If solutions blow-up, the speed remains
bounded, which follows from the last ODE in (5.86). Finite interfaces and oscillatory
solutions can occur for PDEs with singular lower-order terms such as

utt = −ux x x − (|u|p−1ux)x , or utt = −ux x x − |u|p−1u,

where p < 1. These give OPEN PROBLEMS on existence, uniqueness and regularity.

5.4 Invariant subspaces in systems of nonlinear evolution equations

5.4.1 Main Theorem on invariant subspaces

Here we extend main results on linear subspaces (Section 2.1) to systems of evolution
PDEs with vector-valued solutions U = (u1, ..., un)

T . In this case, we deal with
symmetries of systems of linear ODEs

dy
dx = P(x)y, (5.87)

where x ∈ IR is the independent variable, y = (y1, ... , yn)
T is a vector function,

and P(x) is a given n × n square matrix. Denote

F(x,y) = (F1(x,y), ... , Fn(x,y)
)T and ∂

∂y =
(

∂
∂y1

, ... , ∂
∂yn

)T
.

All symmetries of system (5.87) are point and given by the operators

X = (F(x,y))T ∂
∂y

≡ F1(x, y1, ... , yn)
∂

∂y1
+ ... + Fn(x, y1, ... , yn)

∂
∂yn

,
(5.88)

with coefficients that are obtained from the invariance criterion

DF(x,y) = P(x)F(x,y).

Here, D is the operator of differentiation via system (5.87), i.e.,

D ≡ d
dx

∣∣
(5.87) = ∂

∂x + (P(x)y)T ∂
∂y

≡ ∂
∂x + (P1(x)y) ∂

∂y1
+ ... + (Pn(x)y) ∂

∂yn
,

where P1(x), ... , Pn(x) denote rows of the matrix P(x).
Let � be an n × n fundamental matrix of solutions of system (5.87), i.e., the

matrix, whose n columns are linearly independent solutions of this system. Let 	 be
the fundamental matrix of the adjoint system

dz
dx = −(P(x))T z,

where z = (z1, ... , zn)
T . According to ODE theory [132, Ch. 3], the product 	T �

is a constant matrix and the components I1, ... , In of the column

I = 	T y (5.89)

give a system of independent integrals of system (5.87). Similarly to the study of
single equations in Section 2.1, the following result is obtained.
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Theorem 5.17 (“Main Theorem”) The full algebra of symmetries of (5.87) is given
by Lie-Bäcklund operators (5.88) with coefficients

F(x,y) = � A(I),

where A(I) = (A1(I1, ..., In), ..., An(I1, ..., In))
T is a column of n arbitrary smooth

functions.

The fundamental matrix of the adjoint equation can be chosen as follows:

	 = (�−1)T .

Then the product (	)T � = E is the identity matrix and integrals (5.89) are

I = �−1y. (5.90)

5.4.2 Examples: applications of the Main Theorem

We begin with simple examples illustrating Theorem 5.17.

Example 5.18 Consider the following system of ODEs:

dy1
dx = y2,

dy2
dx = −y1. (5.91)

Its fundamental matrix takes the form

� =
[

cos x sin x
− sin x cos x

]
�⇒ �−1 = �T =

[
cos x − sin x
sin x cos x

]
,

and we find the integrals by formula (5.90),

I1 = y1 cos x − y2 sin x and I2 = y1 sin x + y2 cos x . (5.92)

According to Theorem 5.17, the full algebra of symmetries of system (5.91) is given
by operators

X = F1(x, y1, y2)
∂

∂y1
+ F2(x, y1, y2)

∂
∂y2

, where

F1 = A1(I1, I2) cos x + A2(I1, I2) sin x,

F2 = −A1(I1, I2) sin x + A2(I1, I2) cos x,
(5.93)

and A(1) and A(2) are arbitrary smooth functions of integrals (5.92).
Let us determine the symmetries that are independent of x , i.e., satisfying

∂F1
∂x = ∂F2

∂x = 0.

This yields the system {
I2 A1

1 − I1 A1
2 = A2,

I2 A2
1 − I1 A2

2 = −A1,

which determines A1 and A2. Plugging these into (5.93), we obtain[
F1
F2

]
=
[

y1
y2

]
B1(I )+

[
y2
−y1

]
B2(I ),

where I = (y1)
2 + (y2)

2 and B1(I ), B2(I ) are arbitrary smooth functions.
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Example 5.19 (Reaction-diffusion system) Consider the system{
ut = ux x + vB(u2 + v2),
vt = vx x − u B(u2 + v2),

(5.94)

where B is an arbitrary function. Using the result of the previous example yields that
the operator on the right-hand side admits W2 = L{f1, f2}, where

f1 =
[

cos x
− sin x

]
and f2 =

[
sin x
cos x

]
.

This makes it possible to look for solutions[
u
v

]
= C1(t)

[
cos x
− sin x

]
+ C2(t)

[
sin x
cos x

]
. (5.95)

Substituting (5.95) into (5.94) yields

C ′1f1 + C ′2f2 = −C1f1 − C2f2 + (−C1f2 + C2f1)B(C2
1 + C2

2 ), or{
C ′1 = −C1 + C2 B

(
C2

1 + C2
2

)
,

C ′2 = −C2 − C1 B
(
C2

1 + C2
2

)
.

Solving this DS and using (5.95) gives[
u
v

]
= D1e−t

[
cos(x + t̄ + D2)

− sin(x + t̄ + D2)

]
, where t̄ =

t∫
t0

B(D2
1e−2s) ds,

where D1 and D2 are arbitrary constants. This solution is invariant under the operator
X = ∂

∂x − u ∂
∂v + v ∂

∂u .

Example 5.20 (Nonlinear Schrödinger equation) The following system of second-
order PDEs: {

ut = −vx x − ν v(u2 + v2),
vt = ux x + ν u(u2 + v2),

is the real form of the cubic nonlinear Schrödinger (NLS) equation∗
izt + zx x + ν |z|z = 0, (5.96)

where z = u + iv and u, v are real-valued functions. It is straightforward that the
operator on the right-hand side admits W2 = L{f1, f2}, where

f1 =
[

cos x
sin x

]
and f2 =

[− sin x
cos x

]
.

Therefore, we look for solutions[
u
v

]
= C1(t)

[
cos x
sin x

]
+ C2(t)

[− sin x
cos x

]
. (5.97)

∗ Its derivation goes back to Da Rios, 1906.
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Plugging this expression into (5.96) gives

C ′1f1 + C ′2f2 = −C1f2 − C2f1 + ν(C1f2 − C2f1)
(
C2

1 + C2
2

)
, or{

C ′1 = C2 − νC2
(
C2

1 + C2
2

)
,

C ′2 = −C1 + νC1
(
C2

1 + C2
2

)
.

Solving the DS and substituting into (5.97) yields the explicit solution[
u
v

]
= C1

[
cos(x + (D2

1ν − 1)t + D2)

sin(x + (D2
1ν − 1)t + D2)

]
,

where D1 and D2 are arbitrary constants. Indeed, this is the traveling wave

z = u + iv = D1ei[x+(D2
1ν−1)t+D2].

The fourth-order NLS equation from nonlinear optics and quantum mechanics izt +
zx x x x + 2zx x + ν |z|2z = 0 (see physics and references in Ablowitz–Segur [4])
possesses the same solution since zx x x x + zx x = 0 on W2.

5.4.3 Invariant subspaces for quadratic systems

Further examples use simple invariant subspaces introduced in Sections 1.3–1.5 for
the case of real-valued operators. In general, systems of nonlinear PDEs do not enjoy
such a variety of subspaces of higher dimensions, but some results admit straightfor-
ward extensions. In what follows, we do not concentrate on establishing the opti-
mal results on maximal dimensions of subspaces, a full classification of quadratic
translation-invariant operators and other related delicate topics, but mainly just ex-
plain how some of the subspaces and solutions can be constructed.

On the one hand, in order to use our previous results for vector-valued operators
F, we may deal with vector sets defined in terms of the “span” of given linearly
independent real-valued functions

Wn,m = L{ f1, ..., fn} ≡ {C1 f1 + ...+Cn fn : C1, ...,Cn ∈ IRm},
which is calculated over IRm . Then we will look for solutions

U(x, t) = C1(t) f1(x)+ ...+Cn(t) fn(x) (5.98)

for some vector-functions C1(t), ..., Cn(t) ∈ IRm for any t ≥ 0. Wn,m has di-
mension mn and (5.98) means that each component belongs to the scalar subspace
Wn = Wn,1. We will use basic subspaces from Sections 1.3–1.5. We begin with
some introductory examples of semilinear systems, and, as above, will discuss sys-
tems of two PDEs taking m = 2. Extensions of most of the results to larger m are
straightforward. Here and later on, a, b, c,..., a1,2, b1,2, c1,2,..., and various Greek let-
ters α, β, γ, ... with or without subscripts denote different real constants or constant
vectors in IRm when necessary.

On the other hand, the majority of the results can be obtained by seeking invariant
subspaces for standard real valued operators. We will use both approaches.
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Example 5.21 (Semilinear systems) Consider the following system of semilinear
heat equations:{

ut = F1[u, v] ≡ a1ux x + b1(ux )
2 + c1(vx)

2 + d1u + e1v + f1,

vt = F2[u, v] ≡ a2vx x + b2(ux )
2 + c2(vx )

2 + d2u + e2v + f2.

Invariant analysis is obvious, since each equation contains the quadratic operators
preserving the polynomial subspace

W3 = L{1, x, x2}, (5.99)

in the sense that F1,2 : W3 × W3 → W3. Looking for both components on W3,

u(x, t) = C1(t)+ C2(t)x + C3(t)x2,
v(x, t) = D1(t)+ D2(t)x + D3(t)x2,

(5.100)

yields a nonlinear DS for these six expansion coefficients,

C ′1 = 2a1C3 + b1C2
2 + c1 D2

2 + d1C1 + e1 D1 + f1,
C ′2 = 4b1C2C3 + 4c1 D2 D3 + d1C2 + e1 D2,

C ′3 = 4b1C2
3 + 4c1 D2

3 + d1C3 + e1 D3,

D′1 = 2a2D2 + b2C2
2 + c2 D2

2 + d2C1 + e2 D1 + f2,
D′2 = 4b2C2C3 + 4c2 D2 D3 + d2C2 + e2 D2,

D′3 = 4b2C2
3 + 4c2 D2

3 + d2C3 + e2 D3.

Subspace (5.99) remains invariant for 1D operators in a system with extra quadratic
terms γ1,2uxvx added to both equations. Other linear operators with the subspace
(5.99) can be put into equations. In further examples we will omit linear terms and
operators and mainly deal with quadratic nonlinearities. For the corresponding sys-
tem of hyperbolic PDEs {

utt = F1[u, v],
vt t = F2[u, v],

the DS for solutions (5.100) takes the same form with d
dt replaced by d2

dt2 on the
left-hand side, so the DS is now of twelfth order.

Example 5.22 (Trigonometric subspaces) In order to use trigonometric and expo-
nential subspaces, we need other semilinear quadratic models, e.g.,{

ut = F1[u, v] ≡ ux x + b1(vx )
2 + c1v

2,

vt = F2[u, v] ≡ vx x + b2(ux)
2 + c2u2.

(5.101)

The quadratic operators on the right-hand side are not coupled, and therefore, we can
use the subspace

W2 = L{1, cos x}, (5.102)

or its 3D extension W3 = L{1, cos x, sin x}. Plugging

u(x, t) = C1(t)+ C2(t) cos x, v(x, t) = D1(t)+ D2(t) cos x (5.103)

into (5.101) yields the following invariance conditions and the DS:

b1 = c1 and b2 = c2,
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C ′1 = b1C2 D2 + b1 D2

1,
C ′2 = −C2 + 2b1 D1 D2,

D′1 = b2C2 D2 + b2C2
1 ,

D′2 = −D2 + 2b2C1C2.

(5.104)

In the opposite case,
b1 = −c1 and b2 = −c2,

we use the subspaces composed of exponential functions, W2 = L{1, cosh x}, with
some obvious changes in the DS. Second-order derivatives D2

x in these PDEs can be
replaced by any 2mth-order ones. Hyperbolic systems can also be treated similarly.

Example 5.23 (KdV-type systems) Integrable systems of coupled KdV-type equa-
tions have been intensively studied from the beginning of the 1980s. First examples
include the Hirota–Satsuma equations [288]{

ut = ux x x + uux + vvx ,
vt = −2vx x x − uvx ,

possessing multi-soliton solutions (constructed by reduction to the bilinear form by
setting u = 2(ln f )x x and v = g

f ) and an infinite number of conservation laws; and
the Ito equations [302] {

ut = ux x x + 3uux + 3vvx ,
vt = vux + uvx ,

again possessing infinitely many conservation laws and a recursion operator.
Consider a system of the third-order equations of the KdV-type with quadratic

operators from the previous example,{
ut = F1[u, v] ≡ ux x x + b1(vx )

2 + c1v
2,

vt = F2[u, v] ≡ vx x x + b2(ux )
2 + c2u2.

Then, unlike (5.103), the solutions are periodic moving with the constant speed 1,

u(x, t) = C1 + C2 cos(x − t), v(x, t) = D1 + D2 cos(x − t).

The DS is (5.104), where−C2 is excluded from the second equation, and−D2 from
the last one. Solutions exist for systems of semilinear (2m+1)th-order PDEs.

Example 5.24 (Quasilinear systems) The system with homogeneous quadratic op-
erators {

ut = F1[u, v] ≡ a1(vux )x + b1(vx )
2,

vt = F2[u, v] ≡ a2(uvx )x + b2(ux)
2,

possesses solutions on W2 = L{1, x2},
u(x, t) = C1(t)+ C2(t)x

2, v(x, t) = D1(t)+ D2(t)x
2,

C ′1 = 2a1C2 D1,

C ′2 = 6a1C2 D2 + 4b2
1 D2

2 ,
D′1 = 2a2C1 D2,

D′2 = 6a2C2 D2 + 4b2C2
2 .
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One can construct more general solutions on the subspace (5.99).

Example 5.25 For some higher-order quasilinear equations, other polynomial sub-
spaces can be used. For instance, the subspace W4 = L{1, x, x2, x3} is suitable for
the third-order PDEs{

ut = a1(vux x)x + b1(uux x)x + (lower-order terms),
vt = a2(uvx x)x + b2(vvx x )x + (lower-order terms),

where the lower-order (differential) terms are assumed to admit W4.

Using systems of that type, we introduce an example of a higher-dimensional sub-
space. A more general analysis will be presented later on.

Example 5.26 (Extended polynomial subspace) Consider{
ut = F1[u, v] ≡ a1(vux )x + b1uxvx ,
vt = F2[u, v] ≡ a2(uvx )x + b2uxvx .

(5.105)

Let us look for components on W4 = L{1, x, x2, x3} and set

u(x, t) = C1(t)+ C2(t)x + C3(t)x2 + C4(t)x3,
v(x, t) = D1(t)+ D2(t)x + D3(t)x2 + D4(t)x3.

(5.106)

In general, quadratic operators in (5.105) do not leave W4 invariant and map it onto
W5 containing the extra vector x4. Substituting (5.106) into (5.105) yields that the
coefficient of x4 vanishes identically in both equations, provided that

a1
b1
= a2

b2
= − 3

5 .

This is the invariance condition of the subspace W4, under which (5.105) on W4
reduces to an eighth-order DS for the coefficients {Ci , Di }.

Let us show that further extensions of the polynomial subspace W4 is not possi-
ble. Unlike in the case of a single equation with quadratic nonlinearities (see Exam-

W5 = L{1, x, x2, x3, x4} = W4 ⊕ L{x4}
cannot be invariant. Indeed, the quadratic operators map W5 onto the extended sub-
space W7 = W5 ⊕ L{x5, x6}. Therefore, for functions

u = C1 + C2x + C3x2 + C4x3 + C5x4,
v = D1 + D2x + D3x2 + D4x3 + D5x4,

too many invariant conditions are obtained. The first equation in (5.105) gives

6
[
2(2a1 + b1)C5 D4 + (3a1 + 2b1)C4 D5

]
x5 + 4(7a1 + 4b1)C5 D5x6 ≡ 0,

from which we get three conditions 2a1+b1 = 0, 3a1+2b1 = 0, and 7a1+4b1 = 0,
so a1 = b1 = 0. Similarly, a2 and b2 are annulled by the second equation,

6
[
2(2a2 + b2)C4 D5 + (3a2 + 2b2)C5 D4

]
x5 + 4(7a2 + 4b2)C5 D5x6 ≡ 0.

There is another version of extending invariant subspaces for systems, where the
components are taken from different subspaces; see King’s solutions in Example
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1.12. These systems are supposed to contain different operators in PDEs for each
component, unlike a completely symmetric equations (5.105).

Example 5.27 Take u(x, t) and v(x, t) from different subspaces,

u(x, t) = C1(t)+ C2(t)x + C3(t)x2 + C4(t)x3 + C5(t)x4 ∈ W5,
v(x, t) = D1(t)+ D2(t)x + D3(t)x2 ∈ W3.

It is easy to reconstruct a number of operators supporting these subspaces in the
corresponding component equations,{

ut = a1vux x x x + b1vux x + c1uvx x + d1ux x(vx )
2 + e1(v

3)x x + ... ,

vt = a2(vu)x x x x + b2vx x + c2ux x + d2(vx )
2 + (v3)x x x x + ... .

Example 5.28 More-dimensional subspaces appear for higher-order systems. For
instance, the coupled quasilinear third-order equations{

ut = a1(vux x)x + b1ux xvx ,
vt = a2(uvx x)x + b2ux xvx ,

possess solutions on W5 = L{1, x, x2, x3, x4}, provided that
a1
b1
= a2

b2
= − 2

3 .

Example 5.29 (Trigonometric subspaces) We will look for solutions of system{
ut = F1[u, v] ≡ a1(vux )x + b1uxvx + c1uv,

vt = F2[u, v] ≡ a2(uvx )x + b2uxvx + c2uv,

on the subspace (5.102). Substituting solutions (5.103) into the system yields the
invariance condition 2a1 + b1 = c1, 2a2 + b2 = c2, and the DS

C ′1 = (a1 + b1)C2 D2 + c1C1 D1,
C ′2 = −a1C2 D1 + c1(C2 D1 + C1 D2),
D′1 = (a2 + b2)C2 D2 + c2C1 D1,
D′2 = −a2C1 D2 + c2(C2 D1 + C1 D2).

Extensions of this example to systems of third and higher-order PDEs are similar to
those for polynomial subspaces.

Example 5.30 Combining semilinear and quasilinear equations, a special invari-
ance condition appears. The first PDE in the parabolic system{

ut = ux x + b1(uxvx + uv),
vt = αvvx x + β(vx )

2 + γ v2 + δu,

suggests using the subspace W2 = L{1, cos x}, i.e., solutions (5.103). The quadratic
operator in the second equation admits this subspace if γ − α − β = 0, and the
coefficients of solutions (5.103) satisfy the DS

C ′1 = b1(C1 D1 + C2 D2),
C ′2 = −C2 + b1(C1 D2 + D1C2),

D′1 = βC2 D2 + γ D2
1 + b2(C1 D1 + C2 D2)+ δC1,

D′2 = −αD1C2 + 2γ D1 D2 + b2(D1C2 + C1 D2)+ δC2.
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5.4.4 On restricted invariance: reductions to real-valued operators

For systems, consisting of similar quadratic or cubic PDEs for u and v, there is also
the possibility to use some restricted invariant properties, assuming that the com-
ponents are algebraically related to each other. In this case, we can directly use the
results of classification of real-valued operators from Chapters 1 and 2. The follow-
ing simple computations illustrate such an approach.

Example 5.31 Consider the following system
(
m = 2, U = (u, v)T

)
of hyperbolic

PDEs with general quadratic and linear operators:

Ut t = F[U] ≡ a1uux x + a2(ux)
2 + a3u2 + b1vux x + b2vx ux

+b3uv + c1vvx x + c2(vx )
2 + c3v

2 + aux x + bu + cvx x + dv + e,
(5.107)

containing fourteen parameters from IR2 denoted, as usual, by the boldface Latin
letters, i.e., 28 arbitrary scalar parameters altogether. Looking for solutions of the
PDEs (5.107) in the form

v = Au + B, (5.108)

where A and B are two extra scalar unknowns, yields two quadratic PDEs for u

utt = Pi1uux x + Pi2(ux)
2 + Pi3u2 + Pi4ux x + Pi5u + Pi6, i = 1, 2, (5.109)

with twelve constants {Pij }, depending on all the parameters. For instance,

P11 = a11 + b11 A + c11 A2, P21 = 1
A

(
a12 + b12 A + c12 A2

)
, etc.

Solutions (5.108) exist, provided that the following six conditions hold:

P1 j = P2 j for j = 1, 2, ..., 6.

This system is consistent, since the total number of parameters including A and B is

28+ 2 = 30.

Thus, we can use the usual subspaces Wn from Chapters 1 and 2 for a single quadratic
equation, such as (5.109), to obtain exact solutions for the system of PDEs (5.107).
This corresponds to restricted invariance analysis, since the invariance conditions are
checked for u ∈ Wn on the affine manifold (5.108) in terms of v.

5.4.5 On extensions of basic invariant subspaces

Extensions of invariant subspaces are restricted by the following result, which is
formulated for m = 2:

Theorem 5.32 (“Theorem on maximal dimension”) Let F[u, v] be a nonlinear
ordinary differential operator of the order k that admits the invariant subspace Wn ,
i.e., F : Wn ×Wn → Wn . Then n ≤ 2k + 1.

The proof is contained in the proof of Theorem 2.44.

Extending polynomial subspaces. We now use the scalar form of operators for
a more systematic extension analysis concerning the following quadratic operator

© 2007 by Taylor & Francis Group, LLC



5 Quasilinear Wave and Boussinesq Models. Systems 269

defined for the vector function U = (u, v)T :

F[u, v] = αux xv + βuxvx + γ uvx x , (5.110)

where α, β, and γ are scalar parameters. Clearly, W3 = L{1, x, x2} is invariant, and
next we formulate the conditions of its extensions.

Proposition 5.33 Operator (5.110) preserves:

(i) W4 = L{1, x, x2, x3} iff 2α + 3β + 2γ = 0; and

(ii) W5 = L{1, x, x2, x3, x4} iff 3α + 4β + 3γ = 0.

(iii) F �= 0 does not admit polynomial subspaces of dimension six or more.

Proof. By easy computations of F[u], the above hypotheses annul all terms contain-
ing: (i) x4, and (ii) x5 and x6. (iii) For n = 6, there is a direct proof by taking the
expansion on W6,

U = C1 +C2x +C3x2 +C4x3 +C5x4 +C6x5

with six coefficients Ci = (C1i ,C2i )
T ∈ IR2, the terms with x6, x7, and x8 are

annulled iff {α, β, γ } satisfy the linear system{
20α + 15β + 6γ = 0, 3α + 4β + 3γ = 0, 6α + 15β + 20γ = 0,
3α + 5β + 5γ = 0, 5α + 5β + 3γ = 0, 4α + 5β + 4γ = 0.

The first three equations annul the terms with C16C24x6, C15C25x6, and C14C26x6,
while the last three annul the terms with C15C26x7, C16C25x7, and C16C26x8, re-
spectively. The first three equations have the trivial solution only.

For arbitrary n ≥ 6, the negative result follows from Theorem 5.32.

Extending trigonometric subspaces. For this type of subspaces, consider operators
with an extra reaction term,

F[u, v] = αux xv + βuxvx + γ uvx x + δuv. (5.111)

Proposition 5.34 Operator (5.111) preserves:

(i) W3 = L{1, cos x, sin x} iff α + β + γ − δ = 0;
(ii) W5 = L{1, cos x, sin x, cos 2x, sin 2x}

for α = 2, β = −3, γ = 2, and δ = 4, where the operator is

F[u, v] = 2ux xv − 3uxvx + 2uvx x + 4uv.

(iii) F �= 0 does not admit trigonometric subspaces of more than five dimensions.

Proof. (i) is straightforward by substituting

U = C1 +C2 cos x +C3 sin x ∈ W3

and observing that the invariance condition annuls the terms with cos 2x and sin 2x
that contain four members having C21C22, C21C32, C22C31, and C31C32.
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(ii) Taking the cos-expansion U = C1+C2 cos x+C3 cos 2x yields the following
homogeneous linear system: { 4α + 4β + 4γ = δ,

α + 2β + 4γ = δ,
4α + 2β + γ = δ,

where the first equation annuls the terms, containing C13C23 cos 4x . Two other linear
equations, written in the form of−α−4γ+δ = 2β and−4α−γ+δ = 2β, guarantee
that the terms [

(−α − 4γ + δ) cos x cos 2x + 2β sin x sin 2x
]
C12C23

+ [(−4α − γ + δ) cos x cos 2x + 2β sin x sin 2x
]
C22C13

belong to L{cos x}. Using Reduce shows that the whole subspace W5 is invariant.
(iii) See Theorem 5.32.

Remark 5.35 (Open problem: gap completing) In the proof of (ii), the cos-expan-
sion correctly determines the operator. We conjecture that this is the case for any
suitable quadratic operator F , such as (1.86) with, say, even k ≡ i + j . Namely, if
F preserves the invariant cos-subspace, it does the full cos/sin-subspace. (For poly-
nomial subspaces, see a related conjecture in Remark 3.28.) Most of problems of
“non-uniform” distributions of gaps are also OPEN.

Remark 5.36 (Symmetric restriction) Another approach to nonexistence in (iii) is
based on using the symmetric restriction of F (cf. Section 2.7.3),

F̂[u] = F[u, u] = (α + γ )uux x + β(ux)
2 + δu2.

Hence, if F admits Wn , then F̂ �= 0 (and is not linear) must also admit Wn . Hence
n > 2k + 1 is impossible by Theorem 2.8 on maximal dimension. This proof does
not cover the case of the null projection, α = −γ and β = δ = 0.

Example 5.37 The following system of Boussinesq-type equations:

Ut t = −Ux x x x + aUx x +
(
2vux x − 3vx ux + 2uvx x + 4uv

) [ α
β

]
admits exacts solutions

U(x, t) = C1(t)+C2(t) cos x +C3(t) sin x +C4(t) cos 2x +C5(t) sin 2x,

where ten coefficients {Cij , i = 1, 2, j = 1, 2, 3, 4, 5} solve a 20D DS.

Extending exponential subspaces. As in Sections 1.3–1.5, the exponential sub-
space for (5.111) is W3 = L{1, ex , e−x } with the straightforward invariance con-
dition α + β + γ + δ = 0. The analysis of the corresponding extended 5D subspace
W5 = L{1, ex , e−x , e2x , e−2x} is performed in a similar fashion. Some other exam-
ples of systems with invariant subspaces will be presented in the next chapter, where
operators in IRN are studied.
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5 Quasilinear Wave and Boussinesq Models. Systems 271

Remarks and comments on the literature

§ 5.1–5.3. Another area of applications, where various quasilinear wave PDEs appear, is theory
of relativity and gravitational instantons dealing with models

vx x + vyy = (ψ(v))t t ,

where ψ(v) is a nonlinear coefficient. Setting u = ψ(v), in the case where ψ ′ ≥ 0, yields a
quasilinear wave equation in IR2 × IR. In particular, the exponential coefficient ψ(v) = ev

leads to the “heavenly” equation (a continuous version utt = (eu)x x of the Toda lattice). This
plays a role in the theory of gravitational instantons and describes self-dual Einstein spaces
with Euclidean signature and a rotational Killing vector, area preserving diffeomorphisms, and
is a completely integrable system; see references in [413] and new exact analytical solutions
therein. The integrable Plebański second heavenly equation

vt x + vzy + vx xvyy − (vxy)
2 = 0 in IR3 × IR (5.112)

is descriptive of self-dual Einstein spaces with Ricci-flat metrics, [463]. More precisely, the
Einstein field equations that govern self-dual gravitational fields are known to be reduced to
single scalar-valued equations which are the first and second heavenly equations. Equation
(5.112) belongs to the M-A-type and admits solutions on polynomial subspaces (see Example
6.55), v = C1+C2x+C3x2, where the coefficients {Ck(y, z, t)} satisfy a PDE system which
can be simplified on other subspaces.

The classical Boussinesq equation

utt = −ux x x x + ux x − (u2)x x (5.113)

first appeared in 1871 [74, p. 258]. It arises in many physical applications, such as propagation
of long waves in shallow water, 1D nonlinear lattice-waves, vibration in nonlinear strings, and
ion sound waves in plasma; see a survey in [127], where various exact solutions and related
references are presented. The improved Boussinesq equation (5.17) (without the quadratic
perturbation 2u2) is a model of vibrations in elastic rods and of DNA dynamics; see references
in [127, Sect. 6]. N-soliton solutions of (5.113) were given by Hirota† [285]; see also [320] for
other solutions that describe, for instance, an elastic soliton-breather interaction. Boussinesq
equations, such as (5.113), admit interacting soliton solutions creating finite-time singularities;
see [68], where earlier references are traced back to the beginning of the 1980s.

For the quasilinear hyperbolic-elliptic PDEs similar to those in Section 5.1, some evolution
properties of solutions on various invariant subspaces and the corresponding DSs were studied
in [162, 161]. The results of the group classification of such PDEs can be found in [10, Ch. 12],
[299] for PDEs

utt = f (x, ux )ux x + g(x, ux ),

and in [366] for utt = ux x + F(x, t, u, ux ), where a detailed list of references can be found.
The quadratic wave equation (5.1),

utt = (uux )x ,

which arises in different other physical contexts (e.g., longitudinal wave propagation on a
moving threadline and electromagnetic transmission), possesses interesting exact solutions. In
[199], where conditional symmetries of (5.1) were studied, the following solution was derived:

u(x, t) = f (x − 1
2 t2)+ t2,

† The first exact soliton-type solutions of the Boussinesq equation were constructed by Baker in 1903
[22] via hyperelliptic ℘ function of genus two; see [19].
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with f solving the ODE ( f f ′)′ = 2− f ′. This ansatz was originally proposed in 1949, [558],
for the nonlinear wave equation utt = ux x + β(u2)x x that arises in transonic gas flows. A
general Klein–Gordon equation, utt = ux x + g(u), admits the solution

u(x, t) = f (y), y = x2 − t2, with the ODE ( f ′ y)′ + 1
4 g( f ) = 0.

In the canonical form uxt = g(u), the solution is u(x, t) = f (xt), where ( f ′ y)′ = g( f ). In
[89], potential symmetries were used to show that (5.1) possesses implicit solutions

x2 = ut2 + C( t
u )4/5, t2 = x2

u + C( x
u2 )

8/7 (C = constant).

There is a large amount of mathematical literature devoted to blow-up singularities in semi-
linear and quasilinear wave equations. Let us mention the classical papers [305, 328, 332] and
more recent, general results and surveys in [8, 90, 255, 382].

Compactons and compact breathers for the modified improved Boussinesq equation

utt = hux xt t + σ ′(ux )ux x + V ′(u)
(and more realistic PDEs with damping mechanism, +νux xt ) are studied in [506], where
further references are given. Here, h = 0 leads to a nonlinear Klein–Gordon equation also
admitting compact structures.

In Section 5.3.3, sixth-order Boussinesq-type equations are considered, and the results are
easily extended to similar quadratic models of arbitrary order 2m. Dispersive fourth-order
Boussinesq equations, called B(m, n), i.e., (5.79) with γ = 0, were considered in [496] and
studied in [581], where explicit TW compactons were constructed.

Various results on exact solutions, classical and nonclassical symmetry reductions of the
ZK equation (5.83), and earlier references are given in [129], where, on p. 390 and p. 405,
solutions on the subspace L{1, x, x2} are considered.

§ 5.4. Parabolic systems of quasilinear PDEs occur in combustion theory [594, 33], in chemi-
cal reaction theory [187], in fluid mechanics [528], and many other areas of application. Exact
solutions on invariant subspaces for a number of systems of nonlinear PDEs were consid-
ered in [217, 232, 110, 113], where further references can be found. A systematic analysis of
invariant subspaces for general systems of two second-order parabolic PDEs{

ut = f (u, v, ux , vx )ux x + g(u, v, ux , vx ),
vt = p(u, v, ux , vx )vx x + q(u, v, ux , vx ),

was performed in [477]. A Lie group classification for systems of reaction-diffusion equations
is available in [10, p. 171]. Explicit solutions for a particular quadratic system from the class
in Example 5.31 were constructed in [111], where the standard trigonometric and exponential
subspaces were used. For systems with first-order convection terms (not considered here) some
new non-Lie group-invariant exact solutions were obtained in [114].

Concerning integrable KdV-type systems (i.e., possessing infinitely many generalized sym-
metries), notice earlier examples introduced by Fuchssteiner [210]; see a general classification
in [197, 198, 562] and references therein. Some of the KdV-type systems and various exten-
sions possess exact solutions on standard basic invariant subspaces. Soliton solutions of more
general vector KdV and Ito equations were constructed in [287] by reduction to bilinear forms.
Explicit multi-soliton solutions exist for a number of sypersymmetric integrable equations,
which are systems of coupled equations for u(x, t) (a bosonic field) and ξ(x, t) (a fermionic
field). One of the supersymmetric KdV equations is the Manin–Radul super KdV equation{

ut = −ux x x − 6uux + 3ξξx x ,

ξt = −ξx x x − 3ξx u − 3ξux .

© 2007 by Taylor & Francis Group, LLC



5 Quasilinear Wave and Boussinesq Models. Systems 273

This system, which was introduced by Manin and Radul in 1985 [410] (who also proposed
a supersymmetric extension to the whole KP hierarchy), is integrable and, for ξ = 0, yields
the KdV equation. Earlier Kupershmidt’s super KdV-version [361] is not invariant under a
space supersymmetric transformation. For several supersymmetric systems, the Baker–Hirota
bilinear method applies and soliton solutions can be constructed; see references and results in
[101, 251], though existence of higher-order N-solitons is not guaranteed. For systems of two
semilinear equations with rather general cubic nonlinearities, the system{

ut = ux x − 2u2v + 2ku,
vt = −vx x + 2uv2 − 2kv,

(5.114)

where k is a constant, is the only one admitting infinite-dimensional prolongation Lie algebras
[7]. See [512] and references therein for a complete classification of two-component homo-
geneous polynomial symmetry-integrable systems (i.e., admitting a generalized symmetry of
infinitely many orders). System (5.114), also emerging in the gauge gravity formulation, ad-
mits a Lax pair and Bäcklund transformation, and affords soliton-like solutions that are called
dissipatons; see references in [7]. Note also the Thirring equations, [551] representing the
most famous solvable field theory model,{−iux + 2v + 2|v|2u = 0,

−ivt + 2u + 2|u|2v = 0,

possess exact solitons constructed by using Baker’s hyperelliptic functions generated by even
hyperelliptic curves (similar to the KP equation; recall that the KdV one needs odd curves, [22,
415]); see results and earlier references in [166]. Baker’s hyperelliptic functions associated
with algebraic curves of genus two were used in [126] to construct traveling wave periodic
and quasi-periodic solutions of two coupled nonlinear Schrödinger equations{

iut + ux x + (κuu∗ + χvv∗)u = 0,
ivt + vx x + (χuu∗ + ρvv∗)v = 0,

in the case where κ = χ = ρ, corresponding to the integrable Manakov system [409].
A large number of parabolic systems admitting second and third-order differential con-

straints were introduced in [324], where some of the examples deal with linear invariant sub-
spaces. A classification of first-order differential constraints and substitutions was performed
in an earlier paper by Kaptsov [318]. For systems, determining exact solutions via known dif-
ferential constraints is often a difficult problem. Consider [318] the reaction-diffusion system{

ut = ux x + µ(u − v)+ ν(u − v)eu+v − e2(u+v),
vt = d vx x + ν(u − v)eu+v − µ(u − v)− 2de2(u+v),

(5.115)

where d is constant (d = Le, the Lewis number in reaction-diffusion theory, [383]). The
functions µ(u − v) and ν(u − v) are arbitrary. The system is compatible with two differential
constraints ux = vx = eu+v , which on integration imply the following solutions:

u(x, t) = 1
2 [C1(t)− ln(2x + C2(t))], v(x, t) = 1

2 [−C1(t)− ln(2x + C2(t))],

so u − v = C1(t), as the structure of the system suggests. Plugging into (5.115) yields the
DS C ′1 = 2µ(C1), C ′2 = −2ν(C1). One may observe a direct similarity of nonlinearities in
(5.115) and that of the hyperbolic Tzitzéica equation (sometimes also called the Mikhailov–
Dodd–Boullough equation) utt − ux x = eu + e2u , or of the corresponding elliptic nonlinear
Poisson equation, utt+ux x = eu+e2u , describing vortical structure in inviscid fluid, where u
is the stream function; see [29]. Both PDEs admit Lie–Bäcklund symmetries [10, p. 205] and
possess extra solutions on 1D subspaces; see the generalized separation of variables (GSV)
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method in [316] and [13, Ch. 5]. Application of the GSV to the corresponding parabolic PDE
ut = ux x + eu − e2u gives a simple traveling wave solution u(x, t) = − 1

2 ln[
√

2(x −√2 t)].
A classical example of quadratic systems is the completely anisotropic XY Z Landau–

Lifshitz (LL) equations [369], [371, p. 417]

St = S × Sx x + S × J S, (5.116)

where × denotes the vector product in IR3, S = (S1, S2, S3)
T (x, t) is a vector-function, and

J = diag {j1, j2, j3} is a constant diagonal 3×3 matrix. The scalar form of (5.116) contains
quadratic operators, { S1t = S2S3x x − S3S2x x + ( j3 − j2)S2S3,

S2t = S3S1x x − S1S3x x + ( j1 − j3)S1S3,
S3t = S1S2x x − S2S1x x + ( j2 − j1)S1S2.

This model was derived for magnetic crystals as a modification of the Hamiltonian Heisenberg
spin equation St = S× Sss, S2 = 1 (t is time, s is the arc length) from solid state physics. The
LL equations describe perturbations propagating in a direction orthogonal to the anisotropy
axis in a ferromagnet (the anisotropy parameters satisfy j1 < j2 < j3), and has since been
identified as a soliton-bearing system possessing 1, 2, and N-soliton solutions constructed by
the Baker–Hirota method; see references in [539, 507] and [35, p. 218] for finite-gap peri-
odic solutions. Existence, uniqueness, and regularity results (solutions are smooth, except, at
most, finitely many points) for equations such as (5.116) have been studied in a number of
papers; see [106] and [105], where the Maximum Principle and comparison aspects for the LL
equations are pointed out. Some exceptional symmetries exist for the radially symmetric LL
equations for the N-dimensional magnetic spin system with an external magnetic field

Zt = Z ×
N Z + Z × H,

where 
N denotes the radial Laplacian in IR N , and H = (0, 0, h)T is a constant vector. For
instance, there exist exact solutions

Z = c(r)(k2 cos k sin m, k2 sin k sin m, k1 cos m)T ,

where k1,2 are constants, c(r) is an arbitrary function, and k = k(r, t), m = m(r, t) satisfy{ sin m
c kt = 
N m + 2c′

c mr − sin m cos m (kr )
2 − h sin m

c ,
sin m

c mt = −
N k − 2c′
c kr − 2 cos m

sin m mr kr .
(5.117)

This system generates a number of explicit solutions, including those with blow-up, [398]. In
the case where N = 2 and h = 0, there exist blow-up similarity solutions [269]

Z(r, t) = 1√
T−t

f (y), y = x
(T−t)1/4 , f (y) = − 1

y2 ( 1
4 , cos y4

4 , sin y4

4 )T

(similar solutions can be derived from system (5.117)), and the following global non-scaling
invariant solutions:

Z(r, t) = 1
CϕC (t) (cos r2

4ϕC (t) , sin r2

4ϕC (t) ,Ct)T , with ϕC (t) =
√

1
C2 + t2

(C = ∞ yields similarity solutions), [270]. Some of these solutions can be associated with
invariant subspaces or sets.

Open problems

• In particular, these appeared in Examples 5.1, 5.5, 5.7, 5.9, 5.14, 5.16, Sections
5.3.3, 5.3.4, and in Remark 5.35.
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CHAPTER 6

Applications to Nonlinear Partial Differential
Equations in IRN

We present invariant subspace methods and results that are applied to nonlinear second and
higher-order differential operators in IRN . The analysis of invariant conditions is now associ-
ated with systems of nonlinear elliptic PDEs, and results of the generality and completeness
achieved earlier for N = 1 in the three previous chapters are difficult to obtain. Nevertheless,
we give a number of examples of invariant subspaces in radial and non-radial geometry in
IR N , especially when dealing with polynomial and trigonometric functions.

6.1 Second-order operators and some higher-order extensions

6.1.1 Basic polynomial subspaces

As in 1D geometry, we begin with a class of quadratic second-order operators admit-
ting polynomial subspaces. Consider a family of operators given by

F[u] = α(
u)2 + βu
u + γ |∇u|2 in IRN , (6.1)

where, as usual, α, β, and γ are arbitrary parameters. Here x = (x1, x2, ..., xN )T is
a vector in IRN . Obviously, F preserves the subspace of linear functions

W lin
N = L{x1, ..., xN }. (6.2)

This defines a simple map F : W lin
N → L{1}. The next observation is also easy.

Proposition 6.1 Operator (6.1) preserves:
(i) the 2D subspace of radial functions

W r
2 = L{1, |x |2}; (6.3)

(ii) the (N+1)-dimensional subspace of diagonal quadratic forms

W q
N+1 = L{1, x2

1 , ..., x2
N

}; (6.4)

(iii) the subspace of arbitrary quadratic forms

W q
n = L{1, xi x j , 1 ≤ i, j ≤ N} (

n = 1+ N(N+1)
2

); and (6.5)

(vi) the direct sum of subspaces (6.2) and (6.5),

W q
n ⊕ W lin

N . (6.6)

Let us perform basic computations for the general case (6.6).
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Example 6.2 Consider the quasilinear PDE with the operator (6.1),

utt = F[u] ≡ α(
u)2 + βu
u + γ |∇u|2 in IR N × IR+, (6.7)

which is formally hyperbolic in the domain {α
u + βu > 0}. Using subspace (6.6),
let us look for solutions

u(x, t) = C(t) +D(t)x + xT A(t)x, (6.8)

where C(t) is a function, DT (t) = (d1(t), ..., dN (t))T ∈ IRN , and A(t) = ‖ai, j (t)‖
is an N × N symmetric matrix with elements ai, j (t) = a j,i (t) for all i, j . Then,


u = 2
∑

(i) ai,i ≡ 2 (tr A),

and substituting (6.8) into (6.7), after some manipulations, we obtain the DS{C ′′ = 4α (trA)2 + 2β (tr A)C + γ |D|2,
D′′ = 2β (tr A)D+ 4γDA,
A′′ = 2β (tr A) A + 4γ A2.

(6.9)

In general, (6.9) is a difficult DS even in lower-dimensional cases N = 3 or 2; see
references and related results in Remarks.

Example 6.3 (Quadratic wave equation) The PDE

utt = ∇ · (u∇u)+ a + bu in IR2 × IR

is hyperbolic in {u > 0} and admits solutions

u(x, t) = C(t)+ a1,1(t)x
2
1 + 2a1,2(t)x1x2 + a2,2(t)x

2
2 ∈ W q

4 . (6.10)

The corresponding DS is eighth-order,
C ′′ = 2(a1,1 + a2,2)C + a + bC,
a′′1,1 = 6a2

1,1 + 2a1,1a2,2 + 4a2
1,2 + ba1,1,

a′′1,2 = 6(a1,1 + a2,2)a1,2 + ba1,2,

a′′2,2 = 4a2
1,2 + 2a1,1a2,2 + 6a2

2,2 + ba2,2,

(6.11)

so the set of solutions is 8D. Setting a1,2(t) ≡ 0 gives a sixth-order DS for {C, a1,1, a2,2}
and a 6D manifold of solutions

u(x, t) = C(t)+ a1,1(t)x
2
1 + a2,2(t)x

2
2 ∈ W q

3 = L{1, x2
1 , x2

2 }.
Therefore, W q

4 contains new solutions, which cannot be obtained from those on W q
3

despite the fact that the quadratic form in (6.10) is diagonalizable by an orthogonal
transformation in IR2. Clearly, this reflects the fact that, for hyperbolic (second-order
in t) PDEs, non-diagonal terms in solutions can occur evolutionarily, even if initial
data u(x, 0) was given by a diagonal quadratic form. For parabolic (first-order in t)
PDEs, initially diagonal forms remain diagonal for all times.

Example 6.4 (PME-type equations) Next, consider solutions on W q
N+1 of a quasi-

linear parabolic equation. The pressure transformation u = vσ , σ �= 0, in the PME
with extra reaction-absorption terms

vt = ∇ · (vσ∇v)+ αv1−σ + βv (v > 0)
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yields the PDE with quadratic operators

ut = F[u] ≡ u
u + 1
σ |∇u|2 + σα + σβu.

We use the subspace (6.4) and take

u(x, t) = C(t)+∑(i) ai,i (t) x2
i ,

where ai,i (t) for i = 1, 2, ..., N are the only non-zero diagonal terms of the matrix
A(t). This gives the following (N+1)-dimensional DS:{

C ′ = 2 (tr A)C + σα + σβC,
a′i,i = 2 (tr A) ai,i + 4

σ a2
i,i + σβai,i .

(6.12)

For equal coefficients a1,1 = ... = aN,N = a, i.e., for radially symmetric solutions

u(r, t) = C(t) + a(t)r2 (r = |x |)
on the subspace (6.3), the DS (6.12) reduces to a simple explicitly solvable system{

C ′ = 2NaC + σα + σβC,
a′ = 2(N + 2

σ )a2 + σβa.

Example 6.5 (Ernst equation from general relativity) To illustrate application to
systems, consider the nonstationary version of the Ernst equation{

ft = f 
 f − |∇ f |2 + |∇g|2,
gt = f 
g − 2∇ f · ∇g.

(6.13)

For time-independent functions in IR3, setting E = f + ig yields the stationary Ernst
equation

(Re E)
E = ∇E · ∇E
that describe stationary axisymmetric space-times in general relativity, [171]. Using
the polynomial subspace (6.4) yields solutions of (6.13)

f (x, t) = C0(t)+∑N
i=1 Ci (t)x2

i , g(x, t) = D0(t)+∑N
i=1 Di (t)x2

i ,

where the expansion coefficients solve the DS{
C ′0 = 2

(∑
Ck
)
C0, C ′i = 2

(∑
Ck
)
Ci + 4

(
D2

i − C2
i

)
,

D′0 = 2
(∑

Dk
)
C0, D′i = 2

(∑
Dk
)
Ci − 8Ci Di .

In radial setting for solutions

f (x, t) = C0(t)+ C(t)|x |2, g(x, t) = D0(t)+ D(t)|x |2,
using 
|x |2 = 2N , we obtain a simpler DS,{

C ′0 = 2NC0C, C ′ = 4D2 + 2(N − 2)C2,
D′0 = 2NC0 D, D′ = 2(N − 4)C D.

Example 6.6 These polynomial subspaces can be used for another class of second-
order parabolic equations. Consider the following homogeneous quadratic PDE:

vvt = αv
v + β|∇v|2 + γ v2 in IRN × IR+,
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where, unlike many previous examples, the left-hand side is also quadratic. By the
exponential change v = eu, this PDE reduces to the standard form

ut = α
u + (α + β)|∇u|2 + γ,

containing the quadratic Hamilton–Jacobi operator from the class (6.1). By Proposi-
tion 6.1, we can construct various solutions on the subspaces listed therein.

6.1.2 Two quadratic water wave models

Example 6.7 (Benney–Luke equation for water waves) The isotropic Benney–
Luke (BL) equation in IR3 × IR

utt −
u + µ(a
2u − b
utt)+ ε[ut
u + (|∇u|2)t ] = 0, (6.14)

which describes the evolution of long water waves with small amplitude, was derived
in [40] as an approximation of the full water wave problem. The original model
includes ε = µ, a = 1

6 , and b = 1
2 in the absence of surface tension (in general,

a and b are positive constants satisfying a − b = σ − 1
3 , where σ is the Bond

number proportional to the coefficient of surface tension). In appropriate limits, the
BL equation (6.14) can be reduced to the KdV and the KP equation; see details and
references in [458]. Both the quadratic and the linear operators in (6.14) preserve
the polynomial subspace (6.4) for N = 3 (or the more general one (6.5)), so the
restriction to W q

4 yields an eighth-order DS (or higher-order for W q
n ).

Let us point out another reduction of (6.14) describing interesting mathematical
features. In 1D, neglecting the linear terms gives the quadratic model

utt + ε(ut ux x + 2uxuxt ) = 0. (6.15)

In the domain {εut < 0}, it is formally hyperbolic, for which an FBP can be posed,
exhibiting the free boundaries on the set {ut = 0}, where the PDE is degenerate. We
discuss the interface propagation by using the elementary exact solutions

u(x, t) = C1(t)+ C2(t)x
2,{

C ′′1 = −2εC2C ′1,
C ′′2 = −10εC2C ′2.

Taking ε = −1, consider a particular explicit solution of the form

u(x, t) = −t
3
5 − 1

5t x2 for t > 0. (6.16)

It follows that ut = 0 on the curve s(t) = √3 t4/5, so that (6.16) is a solution of an
FBP in {x > s(t)} with the following free-boundary conditions:

ut = 0 and u = 8
5

( 2
5uxx

) 3
5 at x = s(t).

These are easily derived from (6.16) by differentiating, with the t-parameterization
t = − 2

5
1

uxx
. Similar to FBPs for the TFEs in Example 3.10, one way to justify the

well-posedness of such FBPs is by using the von Mises transformation X = X (z, t),
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z = ut > 0, in a neighborhood of the interface. This is a hard OPEN PROBLEM for
a singular non-local-in-time PDE with a non-local Neumann-type condition at the
origin z = 0.

Example 6.8 (Boussinesq system) Consider the Boussinesq system that generates
the BL equation in Example 6.7,{ (

I − µ
2 


)
ηt = −
�− ε∇ · (η∇�)+ 2µ

3 
2�,

−(I − µ
2 


)
�t = η − µσ
η + ε

2 |∇�|2, (6.17)

where η is the surface elevation with the velocity potential on the free surface

ξ = φ
∣∣
z=h0+η

= �− µ
2 
�+ O(µ2, µε);

see details in [458, pp. 481–483]. The system (6.17) is close to that derived by
Boussinesq in 1877 [76, p. 314]. It is not difficult to find the DS reduction of (6.17),
e.g., on the subspace (6.4). Both PDEs in (6.17) are degenerate at the interface sur-
face {∇� = 0} on which certain free-boundary conditions should be posed. Solvabil-
ity analysis, even in 1D, becomes more involved than that for (6.15); cf. the FFCH
equation in Example 4.43.

6.1.3 Invariant subspaces driven by elliptic equations

Linear elliptic equations. Consider other types of subspaces governed by linear
elliptic PDEs for fully nonlinear second-order operators

F[u] = α(
u)2 + βu
u + εu2 in IRN . (6.18)

Proposition 6.9 Operator (6.18) admits W2 = L{1, f (x)}, where f satisfies the
linear elliptic equation


 f + µ f = 0 in IR N , with αµ2 − βµ+ ε = 0. (6.19)

Proof. Setting u = C1 + C2 f ∈ W2 yields

F[u] = εC2
1 + (2ε f + β
 f )C1C2 + F[ f ]C2

2 ,

where 
 f = −µ f ∈ W2 and F[ f ] = (αµ2 − βµ+ ε) f 2 = 0 by (6.19).

Here, 
 can be replaced by any homogeneous higher-order operator,

L =∑(|σ |≥1) aσ (x)Dσ (e.g., L = 
m for m ≥ 2).

Example 6.10 (Semilinear wave equation) Consider a fourth-order semilinear wave
equation with nonlinearities from the Boussinesq PDEs,

utt = a
2u + b
u + βu
u + εu2 + cu + d. (6.20)

It admits solutions
u(x, t) = C1(t)+ C2(t) f (x), (6.21)

where f solves the linear elliptic PDE

β
 f + ε f = 0 in IRN .
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So 
 f = − ε
β f and 
2 f = ( εβ )2 f , and expansion coefficients satisfy the DS{

C ′′1 = εC2
1 + cC1 + d,

C ′′2 = εC1C2 +
[
a
(
ε
β

)2 − b ε
γ + c

]
C2.

Example 6.11 (Quasilinear heat equation) Consider the following quasilinear
parabolic equation with exponential nonlinearities:

vt = β∇ · (ev∇v)+ e−v (εe2v + cev + d).

By the pressure-type change u = ev , it reduces to the quadratic PDE

ut = βu
u + εu2 + cu + d.

There exist solutions (6.21), where f satisfies (6.19) with µ = ε
β , and the DS is{

C ′1 = εC2
1 + cC1 + d,

C ′2 = εC1C2 + cC2.

Example 6.12 (Fourth-order diffusion equation) Keeping the same exponential
nonlinearities, let us introduce a fourth-order parabolic PDE (we write principal op-
erators only)

vt = α
∇ · (ev∇v) + β∇ · (ev∇v)+ εev + ... ,

which on substitution u = ev yields

ut = αu
2u + βu
u + εu2 + ... .

For solutions (6.21), f solves (6.19).

Nonlinear elliptic systems. We consider families of quadratic evolution PDEs for
which it is convenient to deal with subspaces defined on the functions of the time-
variable t . This leads to systems of elliptic PDEs. Let us study two main cases, cor-
responding to parabolic and hyperbolic PDEs. The proofs are elementary and have
applications to a number of classical models. We begin by describing the polynomial
subspaces.

Proposition 6.13 The following holds:

(i) F[u] = uut admits W2 = L{1, t};
(ii) F[u] = uutt admits W3 = L{1, t, t2};
(iii) F[u] = ut utt admits W4 = L{1, t, t2, t3}.

Example 6.14 (2mth-order parabolic equation) This construction is associated
with the Oron–Rosenau solutions in Example 1.9. Consider a quasilinear parabolic
equation,

vt = L[
√
v]+ p(x) (v ≥ 0), (6.22)

where L is a linear 2mth-order elliptic operator with coefficients independent of t ,
and p(x) is a given function. Setting v = u2 yields

uut = 1
2 L[u]+ 1

2 p. (6.23)
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By Proposition 6.13(i), there exist solutions

u(x, t) = C1(x)+ C2(x)t ∈ W2. (6.24)

Substituting this into (6.23) yields a system of elliptic PDEs in IRN ,{
C1C2 = 1

2 L[C1]+ 1
2 p,

C2
2 = 1

2 L[C2].

For instance, the fast diffusion equation with reaction or absorption terms

vt = 
(
√
v)+ δ

√
v + p

possesses solutions v = u2, where u is given by (6.24) with the elliptic system{
C1C2 = 1

2 (
C1 + δC1 + p),

C2
2 = 1

2 (
C2 + δC2).

Example 6.15 (Hyperbolic equation) It follows from Proposition 6.13(ii) that the
hyperbolic PDE

uutt + µut = L[u]+ p(x)

has solutions

u(x, t) = C1(x)+ C2(x)t + C3(x)t
2 ∈ W3,

2C1C3 + µC2 = L[C1]+ p,

2C2C3 + 2µC3 = L[C2],

2C2
3 = L[C3].

(6.25)

For instance, such solutions exist for the quasilinear hyperbolic (in {u > 0}) equation
with damping,

uutt + µut = 
u + p(x) (L = 
).

Note also that W3 is admitted by the operator (uut )t . Therefore, setting v = u2

(v ≥ 0) in the quasilinear hyperbolic PDE yields

vt t = L[
√
v]+ p(x) �⇒ 2(uut)t = L[

√
u]+ p,

possessing solutions on W3.

Example 6.16 Using Proposition 6.13(iii), consider the PDE

ut utt = L[u]+ p(x),

possessing solutions on W4,

u(x, t) = C1(x)+ C2(x)t + C3(x)t
2 + C4(x)t

3, (6.26)
2C2C3 = L[C1]+ p,
4C2

2 + 6C2C4 = L[C2],
18C3C4 = L[C2],
18C2

4 = L[C4].
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Example 6.17 (Forced quasilinear wave equation) It is not difficult to extend
this approach to other classes of PDEs. For instance, setting v = u3 in the forced
quasilinear wave equation yields a cubic equation,

vt t = ∇ ·
(
v− 2

3∇v
) + µv

1
3 + ν �⇒ (u2ut )t = 
u + µ

3 u + ν
3 .

Since the operator on the left-hand side admits W2 = L{1, t}, there exist solutions
(6.24) with the coefficients satisfying the elliptic system{

2C1C2
2 = 
C1 + µ

3 C1 + ν
3 ,

2C3
2 = 
C2 + µ

3 C2.

We next consider trigonometric, exponential, and other subspaces.

Proposition 6.18 The following holds:

(i) F[u] = uut − u2 admits W2 = L{1, et };
(ii) F[u] = uutt − u2 admits W3 = L{1, et , e−t };
(iii) F[u] = uutt + u2 admits W3 = L{1, cos t, sin t};

(iv) F[u] = ut utt − u2 admits W4 = L{1, ϕ(t)}, where ϕ′ϕ′′ = ϕ2.

Concerning case (ii), see more general Proposition 4.23.

Example 6.19 Consider the PDE (6.22) with an extra linear term,

vt = L[
√
v]+ p(x)+ 2v,

so that v = u2 yields

F[u] ≡ uut − u2 = 1
2 L[u]+ 1

2 p.

Using Proposition 6.18(i) yields the exact solutions

u(x, t) = C1(x)+ C2(x)et ,{−C2
1 = 1

2 L[C1]+ 1
2 p,

−C1C2 = 1
2 L[C2].

Example 6.20 As a new second-order PDE, consider

vt t = L[
√
v]+ p(x)+ 4v.

Setting v = u2 again yields

F[u] ≡ (uut )t − 2u2 = 1
2 L[u]+ 1

2 p.

This operator F admits the exponential subspace W3 in (ii), so there exists

u(x, t) = C1(x)+ C2(x)et + C3(x)e−t ,
−2C2

1 − 4C2C3 = 1
2 L[C1]+ 1

2 p,
−3C1C2 = 1

2 L[C2],
−3C1C3 = 1

2 L[C3].
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6.1.4 Models from transonic gas dynamics

Quadratic operators are common in this area.

Example 6.21 (KFG equation) The Kármán–Fal’kovich–Guderley (KFG) equa-
tion of transonic gas flows, [395, 504, 267],

ut utt = 
u in IRN × IR, (6.27)

possesses exact solutions (6.26). Then p = 0 and L = 
 in the system (6.25). The
invariance of W4 remains valid for linear perturbations of the PDE. For instance,
solutions (6.26) also satisfy the PDE

µutt t + ut utt + αut = 
u in IRN × IR

that describe transonic flows around a thin body with effects of viscosity and heat
conductivity, for which the velocity of the gas is close to the local speed of sound,
[504]. The expansion coefficients then satisfy{

6µC4 + 2C2C3 + αC2 = 
C1, 4C2
3 + 6C2C4 + 2αC3 = 
C2,

18C3C4 + 3αC4 = 
C3, 18C2
4 = 
C4.

Example 6.22 (LRT equation) Next, consider the Lin–Reissner–Tsien (LRT) equa-
tion [395]

2uxt + uxux x = uyy in IR2 × IR, (6.28)

which plays an important role as a simplified equation of gas motion at sonic ve-
locities in a channel (nozzle) with the plane geometry. It is derived by the so-called
transonic expansion using small deviations from unity of the actual Mach number of
the flow; see also [504, 133] and further comments below.

First of all, using the invariant subspace W4 = L{1, x, x2, x3} of uxux x (a mod-
ule), we find

u(x, y, t) = C1(y, t)+ C2(y, t)x + C3(y, t)x2 + C4(y, t)x3, (6.29)

where the coefficients satisfy the PDE system
C2t = 1

2 C1yy − C2C3,

C3t = 1
4 C2yy − C2

3 − 3
2 C2C4,

C4t = 1
6 C3yy − 3C3C4,

0 = C4yy − 18C2
4 .

As happened a few times before, the last ODE is independent of the others and
represents a classical semilinear elliptic equation from combustion theory (t is a
parameter). Once C4(y, t) is known, the rest of the equations can be solved step by
step, as with usual ODEs for C3, C2, and C1.

Secondly, concerning simpler reductions of the LRT equation, there exist solutions
of (6.28) on W7 = L{1, x, x2, y, y2, xy, xy2},

u(x, y, t) = C1 + C2x + C3x2 + C4 y + C5 y2 + C6xy + C7xy2, (6.30)
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C ′2 = −C2C3 + C5,

C ′3 = −C2
3 + 1

2 C7,
C ′6 = −C3C6,
C ′7 = −C3C7.

The same low-dimensional reductions apply to the complete version of the LRT
equation

2uxt −
[
K − (γ + 1)ux

]
ux x = uyy, (6.31)

where γ is the adiabatic exponent of the gas and K ∼ 1 − M2∞, with the Mach
number M∞ = U

a∞ , a∞ and U being the characteristic velocity of sound and the
velocity of main flow in the channel respectively. The viscosity version of the LRT
equation [504]

2uxt − µux x x + ux ux x = 
u (6.32)

also possesses such exact solutions.
The Ryzhov–Khristianovitch equations (or “short waves” equations) [504] be-

long to the same class of models,{
uy − 2vt − 2(v − x)vx − 2kv = 0,
vy + ux = 0,

where (u, v) is the velocity field, and k = 0 or 1 for plane or axisymmetric waves
respectively. In the potential form with u = wy , v = −wx , the system reduces to the
single equation

2wt x − 2(x +wx)wx x + 2kwx +wyy = 0 in IR2 × IR, (6.33)

possessing solutions (6.29) and (6.30) with similar DSs.

Example 6.23 (Full model of potential flows) Finally, we treat the full model of
potential transonic flow, where the shock waves (if any) remain weak, the flow vor-
ticity is low, and hence, the velocity potential � can be introduced by{

u = �x ,
v = �y .

The PDE for � follows from the equations of motion and continuity (see Guderley
[267, p. 7] and [133])

�t t + 2�x�xt + 2�y�yt =
[
a2 − (�x )

2
]
�x x

−2 �x�y�xy +
[
a2 − (�y)

2
]
�yy,

(6.34)

where the velocity of sound a is determined by the equation of the conservation of
energy

�t + 1
2 |∇�|2 + 1

γ−1 a2 = 1
2 U2 + 1

γ−1 a2∞. (6.35)

In particular, the complete LRT equation (6.31) is derived from this system by ex-
pansion of the potential � under the assumptions that M∞ ≈ 1 in a special {x, y}-
geometry corresponding, e.g., to the plane or circular (where uyy is replaced by
uyy + uzz) Laval nozzle, [133, 267].
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Consider the full system and substitute a2 from (6.35),

a2 = a2∗ − (γ − 1)�t − γ−1
2 |∇�|2, with a2∗ = a2∞ + γ−1

2 U2,

into (6.34). In this case, the resulting quadratic and cubic operators on the left- and
right-hand sides admit W4 = L{1, x2, xy, y2} (for simplicity, we do not include the
subspace of linear functions L{x, y} that gives new solutions),

�(x, y, t) = C1(t)+ C2(t)x
2 + C3(t)xy + C4(t)y2,

C ′′1 + 2(γ − 1)(C2 + C4)C ′1 = 2a2∗(C2 + C4),

C ′′2 + 2[(γ + 3)C2 + (γ − 1)C4]C ′2 + 2C3C ′3 = −4(γ + 1)C3
2

− (γ + 3)C2C2
3 − 4(γ − 1)C2

2C4 − (γ + 1)C2
3 C4,

C ′′3 + 4C3C ′2 + 2(γ + 1)(C2 + C4)C ′3 + 4C3C ′4
= −4(γ + 1)

(
C2

2 + C2
4

)
C3 − 8γC2C3C4 − 2C3

3 ,

C ′′4 + 2C3C ′3 + 2[(γ − 1)C2 + (γ + 3)C4]C ′4 = −(γ + 1)C2C2
3

− 4(γ − 1)C2C2
4 − (γ + 3)C2

3C4 − 4(γ + 1)C3
4 .

6.1.5 Maxwell equations in nonlinear optics

We consider the model [254], consisting of Maxwell equations coupled to a sin-
gle Lorentz oscillator governing the polarization field P, in which the oscillator is
driven by the electric field E. Assuming a transverse plane wave propagating along
the z-axis with E = (E(z, t), 0, 0)T , displacement current D = (D(z, t), 0, 0)T ,
polarization P = (P(z, t), 0, 0)T all along the x-axis, and the magnetic field induc-
tion B = (0, B(z, t), 0)T along the y-axis, Faraday’s law and the Ampère equation,
together with the Lorentz oscillator equation, can be written as{ Bt + Ez = 0,

Dt + Bz = 0,
Ptt + P − αE = 0.

(6.36)

Here the displacement current

D = E + 1
2k+1 E2k+1, with k = 1 or 2,

depends in a nonlinear manner on the electric field. The coupling parameter α in the
Lorentz equation ensures that the polarization oscillations are driven by the electric
field E . In view of the first PDE in (6.36), introducing the potential u = u(z, t) by{

B = uz,
E = −ut ,

reduces the system to two PDEs{ [−ut − 1
2k+1 (ut )

2k+1
]

t + uzz = 0,

Ptt + P + αut = 0.
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Finally, applying operator d2

dt2 + I to the first equation and using the second yields
the following quasilinear wave equation in IR × IR+ [572]:

Fk [u] ≡ ( d2

dt2 + I
)[(

1+ (ut )
2k
)
utt
] = ( d2

dt2 + I
)
uzz − αutt . (6.37)

For k = 1, the quadratic operator F1[u] admits L{1, t, t2}, so (6.37) possesses

u(z, t) = C1(z)+ C2(z)t + C3(z)t
2,

C ′′1 = 2(1+ C2
2 )C3 + 2αC3,

C ′′2 = 8C2C2
3 ,

C ′′3 = 8C3
3 .

6.2 Extended invariant subspaces for second-order operators

6.2.1 Fourth-degree radial polynomial subspaces

Let us return to general quadratic operators (6.1) and first look for an extension of
the standard polynomial subspaces listed in Proposition 6.1. Consider the following
simple extension result in the class of radially symmetric functions.

Proposition 6.24 Operator (6.1) preserves the 3D subspace

W r
3 = L{1, |x |2, |x |4} iff γ = − N+2

4 β. (6.38)

Proof. Setting

u = C1 + C2|x |2 + C3|x |4 (6.39)

and using equalities 
|x |2 = 2N , 
|x |4 = 4(N + 2)|x |2, we find that

F[u] = 	1 +	2|x |2 +	3|x |4 + 4C2
3[(N + 2)β + 4γ ]|x |6, (6.40)

so always F[u] ∈ W r
3 iff (N + 2)β + 4γ = 0. The expansion coefficients are

	1 = 2βNC1C2 + 4αN2C2
2 ,

	2 = 4β(N + 2)C1C3 + 16αN(N + 2)C2C3 + β(N − 2)C2
2 ,

	3 = 2βNC2C3 + 16α(N + 2)2C2
3 .

Example 6.25 (Blow-up for fast diffusion equation with source) Consider posi-
tive solutions of the following fast diffusion equation with source:

vt = ∇ ·
(
v−

4
N+2∇v

) + bv
N+6
N+2 + cv, (6.41)

where b > 0 and c > 0 are constants. Using the pressure transformation u = v−
4

N+2

yields the quasilinear heat equation with absorption

ut = u
u − N+2
4 |∇u|2 − 4

N+2 (b + cu), (6.42)
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where the quadratic operator admits the subspace in (6.38). Hence, there exist solu-
tions (6.39), where the expansion coefficients solve the DS

C ′1 = 	1 − 4
N+2 (b + c C1),

C ′2 = 	2 − 4
N+2 c C2,

C ′3 = 	3 − 4
N+2 c C3.

The quenching behavior for (6.42), where u → 0 as t → T−, is equivalent to blow-
up for the original PDE (6.41). The asymptotic setting is similar to that for the TFE
in Section 3.2 and is easier. Let b = 1 and c = 0 in (6.41). Estimating

C1(t) = 4
N+2 (T − t)+ ... as t → T−

from the first ODE, and taking any orbit such that C2(t)→ a0 > 0 and C3(t)→ a1
as t → T , we obtain the following blow-up pattern for (6.41):

v(x, t) = (T − t)− N+2
4
[ 4

N+2

(
1+ a0|ξ |2 + a1e−τ |ξ |4 + ...

)]− N+2
4 , (6.43)

where ξ = r/
√

T − t and τ = − ln(T − t) are the new variables. According to
(6.43), let us introduce the rescaled function

v(x, t) = (T − t)−
N+2

4 w(ξ, τ )

satisfying the singular perturbed first-order PDE

wτ = − 1
2 wξξ − N+2

4 w +w
N+6
N+2 + e−τ∇ · (w− 4

N+2∇w
)
. (6.44)

The passage to the limit as τ → ∞ in (6.44) uses specific stability techniques; see
[245, Ch. 5]. Recalling that {u = 0} = {v = +∞} for nonnegative solutions u(x, t),
the extinction behavior as t → T− of compactly supported solutions of (6.42) de-
scribes the evolution and finite-time focusing of the burnt zone {v = +∞} of blow-
up solutions v(x, t), which are now the minimal proper solutions of (6.41) uniquely
constructed by a monotone approximation (a truncation) of the PDE. FBP theory for
such blow-up solutions is developed for the second-order parabolic problems, [226,
Ch. 5]. Notice an interesting feature: the blow-up interfaces r = s(t) are not C2

smooth for t > 0 and s′(t) is not more than Lipschitz continuous, [226, p. 140].

We next perform an extension of the invariant subspace (6.38).

Proposition 6.26 If the condition in (6.38) holds, operator (6.1) admits

L{W q
n , |x |4}, (6.45)

where W q
n is the subspace (6.5) with general quadratic forms in IR N .

Proof. Take an arbitrary function on the subspace (6.45),

u(x, t) = C(t)+ x T A(t) x + G(t)|x |4, so (6.46)


u = 2(tr A)+ 4(N + 2)G|x |2, |∇u|2 = 4
∑

(l)

(∑
( j ) al, j x j + 2G|x |2xl

)2
,

F[u] = 4α(tr A)2 + 2β (tr A)C + 4(N + 2)
[
4α (tr A)+ βC

]
G|x |2

+ 2β(tr A)xT A x + 4γ xT A2x + 2
[
8α(N + 2)2G + β (tr A)

]
G|x |4 + S.
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Here, S denotes the fourth and sixth-degree polynomials,

S = 4[β(N + 2)+ 4γ ]
(|x |2x T A x + G|x |6)G,

which, in general, do not belong to the subspace. S vanishes due to the condition in
(6.38).

Example 6.27 (Hyperbolic equation) The formally hyperbolic equation

utt = F[u] ≡ α(
u)2 + βu
u − N+2
4 β|∇u|2 in IRN × IR

on the subspace (6.45) reduces to the DS for the coefficients of expansion (6.46),
C ′ = 4α(tr A)2 + 2β(tr A)C,

A′ = 2β(tr A)A − (N + 2)A2 + 4(N + 2)
[
4α(tr A)+ βC

]
IN ,

G′ = 16α(N + 2)2G2 + 2βG(tr A).

In the case of diagonal quadratic forms as in (6.4), the computations are easier and
subspace L{W q

N+1, |x |4} remains invariant. In fact, this is the generic case, since,
by an orthogonal transformation x �→ Px (
 and |∇(·)|2 are invariant), x T A x is
reduced to a diagonal form, while the canonical form |x |2, and hence |x |4, remain
unchanged. On the other hand, it seems that, in this case, we cannot add linear func-
tions (6.2) to the invariant subspace. Indeed, translations in IR N split |x |4 into a
number of terms, including a cubic form, such as

∑
bi, j x2

i x j , which is not invariant.
More general quartic forms, such as

∑
bi, j x2

i x2
j , do not also lead to invariant sub-

spaces (unless they reduce to radial function |x |4 for bi, j = 1). Recall in this context
that the actual dimension of the spaces of exact solutions is determined by the order
of the corresponding DS for the expansion coefficients, i.e., depends on the evolution
order (the highest time-derivative) of the PDE.

Example 6.28 (On non-symmetric blow-up) Using solutions (6.46) makes it pos-
sible to describe non-symmetric blow-up and non-radial blow-up interfaces for (6.41)
with b = 1 and c = 0. The simpler case G(t) ≡ 0 has been studied in detail, [226,
p. 152]. As a result, it was shown that blow-up analytic interfaces in general are not
the proper ones for minimal solutions that have finite regularity. For general blow-up
solutions, a fully developed mathematical regularity theory of singular interfaces is
still absent. It would be interesting to extend some of the results on non-symmetric
blow-up interfaces in the corresponding wave PDEs, such as

utt = u
u − N+2
4 |∇u|2 − 4

N+2 (b + cu),

using similar exact solutions. These give several OPEN PROBLEMS.

6.2.2 Logarithmic perturbation of quadratic polynomials

Here, a special example of non-autonomous quadratic operators and ODEs governing
the invariant subspaces is considered.

Critical fast diffusion equation and invariant subspace. We begin with a parabolic
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PDE in a radially symmetric case,

ut = F[u]+�[u] in IRN × IR+, (6.47)

where F is the quadratic operator

F[u] = u
u − N
2 |∇u|2 ≡ u

(
urr + N−1

r ur
)− N

2 (ur )
2, with r = |x | > 0,

and � is a linear lower-order operator, including a convection-like term,

�[v] = β(x · ∇v) + γ v ≡ βrvr + γ v.

The quasilinear operator F occurs in the fast diffusion equation with another critical
exponent

vt = ∇ ·
(
v−

2
N ∇v

)
in IRN × IR+ (N ≥ 3). (6.48)

This is a famous equation in diffusion theory. The asymptotic behavior of its positive
L1-solutions is complicated and inherits certain features of similarity solutions for
the diffusivity coefficient vσ of the first (σ > − 2

N ) and the second kind (σ < − 2
N ).

This represents an important example of the matched asymptotics; see details, ref-
erences, and discussion in [245, Ch. 5]. The pressure transformation v−2/N = u
reduces (6.48) to

ut = F[u] ≡ u
u − N
2 |∇u|2.

It turns out that, in the so-called outer region (i.e., sufficiently remote from the origin
x = 0), the asymptotic behavior of finite mass solutions can be described by special
orbits belonging to a peculiar subspace W2 = L{|x |2, |x |2 ln |x |} invariant under F .
Such radial self-similar solutions are

v(x, t) = 1
N−2

|x |2
t ln

( |x |
atγ
) ∈ W2, with γ = N

2(N−2) ,

where a > 0 is arbitrary. The solutions are positively defined in {|x | > atγ } and
correctly describe the outer asymptotic behavior governed by a singular perturbation
of a first-order conservation law. This is a key feature of such a matched asymptotic
structure.

The outer behavior shows that the evolution on the invariant subspace W2 is stable,
in the sense that it attracts a wide set of other general non-invariant orbits, [245,
Theorem 6.3]. The internal structure of W2 plays a role. In particular, it is important
that

W2 = L{|x |2} ⊕ L{|x |2 ln |x |},
where the first 1D subspace is also invariant under F , while the second one is not.
Moreover, in rigorous mathematical analysis of the asymptotic behavior, it is proved
that, in the outer region, evolution orbits move towards the second (non-invariant)
subspace.

Let us now state a simple invariant property of operators F and �.

Proposition 6.29 Both operators F and � admit subspace W2 = L{r2, r2 ln r}
given by the linear homogeneous elliptic PDE with non-constant coefficients


u − (N + 2) x ·∇u
|x |2 + 4 u

|x |2 ≡ urr − 3 ur
r + 4 u

r2 = 0.
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We derive the corresponding exact solutions of the general evolution PDE

P( ∂
∂t )[u] = F[u]+�[u], (6.49)

where P( ∂
∂t ) is a linear polynomial operator with coefficients, depending on t only.

Corollary 6.30 The PDE (6.49) on W2 with u(x, t) = C1(t)|x |2 + C2(t)|x |2 ln |x |
is the DS {

P[C1] = (2− N)C1C2 − N
2 C2

2 + (2β + γ )C1 + βC2,

P[C2] = (2− N)C2
2 + (2β + γ )C2.

In particular, for (6.47), the following holds:{
C ′1 = (2− N)C1C2 − N

2 C2
2 + (2β + γ )C1 + βC2,

C ′2 = (2− N)C2
2 + (2β + γ )C2.

In the case of the hyperbolic Boussinesq-type equation

utt = F[u]+�[u],

the DS is of fourth order with C ′1,2 replaced by C ′′1,2.

Reduction to the autonomous operator and ODE. For convenience, replacing r
by x and u by y as in Section 2.1, yields the quadratic operator

F[y] = y
(
y′′ + N−1

x y ′
)− N

2 (y′)2,

while the subspace W2 is given by Euler’s ODE

y ′′ − 3y′
x + 4y

x2 = 0.

Both are not autonomous relative to the space variable x . Observing that, on W2, the
operator F is equivalent to the first-order one

F[y] ≡ − N
2 (y′)2 + 3

x yy ′ − 4
x2 y2,

we use the transformation

y = e2x̃ ỹ ≡ x2 ỹ, x = ex̃ ,

yielding the autonomous quadratic operator

F̃[ỹ] = 1
x2 F[y] = ỹ ỹ′′ − N

2 (ỹ′)2 + (2− N)ỹ ỹ′.

Then the invariant subspace consists of linear functions,

ỹ ∈ W̃2 = e−2x̃L{x2, x2 ln x} = L{1, x̃
}
.

This operator and the corresponding subspace are described in Section 2.5.2.
It is easy to present a more general set of fully nonlinear second-order operators

preserving subspace W2, e.g.,

F̃[ỹ] = G(ỹ, ỹ′, ỹ ′′)+ α(ỹ ′)2 + β ỹ ỹ′,

where G is an arbitrary function satisfying G(a, b, 0) ≡ 0.
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6.2.3 Polynomial-exponential subspaces

Example 6.31 (Quasilinear heat equation) Consider the quasilinear heat equation
with absorption or source

vt = (vσ vx )x − γ vσ+1, where γ = 4(σ+1)
σ 2 (σ �= 0). (6.50)

Let σ > −1, i.e., γ > 0. In this case, as shown in Section 1.5, there exist solutions
on the 3D exponential subspace

vσ ∈ W3 = L{1, cosh 2x, sinh 2x} (6.51)

(for γ < 0, a subspace of trigonometric functions occurs). By the transformation{
x = ln r,
vσ = 1

r2 uσ ,

(6.50) reduces to the quasilinear purely diffusive equation in radial geometry,

ut = ∇r ·
(
uσ∇r u

) ≡ 1
r N−1

(
r N−1uσur

)
r in IR N × IR+, (6.52)

with dimension N = − 2(σ+2)
σ which is not necessarily an integer and is negative

for σ > 0. It follows from (6.51) that (6.52) admits exact solutions on the following
subspace:

uσ ≡ r2vσ ∈ Ŵ3 = L{r2, r2 cosh(2 ln r), r2 sinh(2 ln r)
}
.

Similar to Example 1.15, for σ = − 4
3 , there exists the 5D subspace

Ŵ5 = L{r2, r2 cosh(2 ln r), r2 sinh(2 ln r), r2 cosh(4 ln r), r2 sinh(4 ln r)
}
.

6.2.4 Singular subspaces for the critical diffusion exponent

Proposition 6.32 The quadratic diffusion operator

F∗[u] = u
u + γ∗|∇u|2, with γ∗ = − N−4
2(N−3) , N �= 3,

admits the subspace
Ws = L{|x |2, |x |4−N , |x |6−2N

}
. (6.53)

The subspace Ws is 3D, except in the case of N = 2, where it is 1D with γ∗ = −1,
corresponding to the remarkable operator to be studied in detail in the next section.
For N = 1, we have γ∗ = − 3

4 , and Ws = L{x, x2, x3} is indeed a subspace of
the more general 5D one, W5 = L{1, x, x2, x3, x4}, described in Example 1.14. For
N ≥ 4, the subspace contains a singular function at the origin, e.g.,

Ws = L{1, |x |2, |x |−2
}

for N = 4. (6.54)

Example 6.33 (Fast diffusion equation) Consider the PDE

vt = ∇ ·
(
v−

2(N−3)
N−4 ∇v

)
for N > 4.

The pressure u = v−
2(N−3)

N−4 satisfies the equation ut = F∗[u]. Therefore, there exist
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solutions on the subspace (6.53),

u(x, t) = C1(t)r
2 + C2(t)r

4−N + C3(t)r
6−2N ,

C ′1 = 2(N−2)2

N−3 C2
1 ,

C ′2 = 2(N−2)2

N−3 C1C2,

C ′3 = (N − 2)2
[
2C1C3 − N−4

2(N−3) C2
2

]
.

Similarly, exact solutions u = vσ∗ ∈ W3 exist for the hyperbolic PDE

v1−σ∗(vσ∗)t t = ∇ · (vσ∗∇v), with σ∗ = 1
γ∗ .

Example 6.34 (Quenching on a sphere) The quasilinear degenerate heat equation
with constant absorption

ut = u
u − 1 in IR4 × IR+
has solutions on the subspace (6.54),

u(x, t) = C1(t)r
2 + C2(t)+ C3(t)r

−2, (6.55){ C ′1 = 8C2
1 ,

C ′2 = 8C1C2 − 1,
C ′3 = 8C1C3.

Integrating yields the explicit solution

u(x, t) = − 1
8t |x |2 + B

t − 1
2 t + A

8t |x |−2 (A, B ∈ IR).

Here, u(x, t) is always unbounded at the origin x = 0, showing that such singular
solutions can be global in time. Taking positive initial data Ck(0) > 0, due to the
absorption term −1 in the second ODE, the solution may vanish in finite time, as
t → T−, at some point r = r0 > 0. This is quenching on a sphere {|x | = r0} (not a
standard single point quenching), which is a subject of asymptotic singularity theory
for the PME-type equations, [245, Ch. 5]. Here we detect such behavior via explicit
formulae; see Figure 6.1. For t > T , an FBP appears with two moving interfaces at
r = s±(t).

In a similar manner, extinction phenomenon on W3 can be described for the de-
generate quadratic wave equation with absorption

utt = u
u − 1 in IR4 × IR+.

6.2.5 On a cubic operator in IRN

Proposition 6.35 The cubic operator in IRN

F[u] = u2
u − N
2 u|∇u|2 admits W r

2 = L{1, |x |2}.
Example 6.36 (Fast diffusion equation in IR N ) Setting v = u− N+2

2 (v is not the
pressure!) in the fast diffusion equation with critical exponents

vt = ∇ ·
(
v−

4
N+2∇v

)− N+2
2

(
av + bv

N+4
N+2
)

(6.56)
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u(x, t)

r = |x |

t1

0

t2

t4

T

r0

s−(t) s+(t)

t1 < t2 < T < t4

Figure 6.1 Quenching at t = T of positive solutions (6.55). For t > T , there appear two
interfaces and an FBP should be properly posed.

yields the PDE
ut = F[u]+ au + b.

There exist solutions v(x, t) = [C1(t)+ C2(t)|x |2
]− N+2

2 of (6.56), where{
C ′1 = 2NC2

1 C2 + aC1 + b,
C ′2 = 2NC1C2

2 + aC2,

which are not new. By the true pressure transformation v = u− N+2
4 , (6.56) reduces

to a quadratic PDE, which, in general, possesses a wider class of exact solutions on
W r

3 = L{1, |x |2, |x |4}, where Proposition 6.24 applies.

6.3 On the remarkable operator in IR2

Consider the following remarkable quadratic operator:

Frem[u] = u
u − |∇u|2 on the plane (x, y) ∈ IR2, (6.57)

which, according to (6.38), has the critical parameter γ = − N+2
4 = −1. The corre-

sponding quadratic parabolic equation

ut = u
u − |∇u|2 (6.58)

is transformed into the fast diffusion PDE by the pressure change v = 1
u ,

vt = ∇ ·
( 1
v ∇v

) ≡ 
 ln |v|. (6.59)
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This PDE arises as a model for long van der Waals interactions in thin films of
a fluid spreading on a solid surface if fourth-order effects are neglected [249, 54]
(cf. Section 3.1). It also represents (see [278] and, e.g., [577]) the evolution of the
conformally equivalent metric gi, j

(
ds2 = v(dx2+dy2)

)
under the Ricci flow which

evolves a general metric ds2 = gi, j dxidy j by its Ricci curvature Ri, j by the PDE

∂
∂t gi, j = −2Ri, j . (6.60)

In the present case, the conformal metric gi, j = v Ii, j has scalar curvature R =
− 1

v 
 ln v and Ri, j = 1
2 Rgi, j , where R(x, t) satisfies the semilinear heat equation

Rt = 
R + R2, (6.61)

which admit solutions blowing-up as t → T− < ∞. As a principal feature, note
that (6.60) is a system of second-order nonlinear parabolic equations which obey the
Maximum Principle (similar to (6.61)). In Hamilton [278], it was established that,
for a given compact 3D manifold with initially positive Ricci curvature, after scal-
ing, the Ricci flow (6.60) evolves to a metric of positive constant curvature (so the
manifold is diffeomorphic to the sphere S3). A crucial part of Hamilton’s analysis
is proving that solutions R(x, t) > 0 of (6.61), after scaling, form a symmetric in x
blow-up singularity as t → T . The phenomenon of symmetrization close to blow-up
time is a fundamental property of many nonlinear evolution PDEs. In the previous
chapters, this has been checked for a number of parabolic equations admitting ex-
act solution on invariant subspaces. New refined estimates of solutions of equations
(6.60) and (6.61) (and, implicitly, (6.58) and (6.59)), including a monotonicity for-
mula [97, p. 254], are a core of Perel’man’s approach to the Poincaré Conjecture (a
closed connected 3D manifold is homeomorphic to S3; see [97] for history, refer-
ences, and recent development).

It is known [10, Sect. 10.7] that the symmetry Lie algebra of equation (6.59) con-
tains an infinite-dimensional subalgebra generated by operators

X = ξ1
∂
∂x + ξ2

∂
∂y − 2ξ1x v ∂

∂v , (6.62)

where ξ1(x, y) and ξ2(x, y) are arbitrary harmonic conjugate functions, i.e., satisfy-
ing the Cauchy–Riemann conditions

ξ1x = ξ2y, ξ1y = −ξ2x .

The existence of this algebra is connected with the invariance of equation (6.59) with
respect to the transformation

x̄ = η(x, y), ȳ = δ(x, y), v̄ = v
(ηx )2+(ηy)2 , (6.63)

where η and δ are arbitrary independent harmonic conjugate functions,

δx = ηy, δy = −ηx (δxηy − δyηx �= 0). (6.64)

The first two formulae (6.63) define a group of conformal transformations of the
(x, y)-plane. Imposing in addition the conditions

δx = ξ1

ξ2
1+ξ2

2
, δy = ξ2

ξ2
1+ξ2

2
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yields that, in the variables (6.63), the operator (6.62) takes the form X̄ = ∂/∂ ȳ
which corresponds to translations in ȳ.

Hence, for equation (6.58), we obtain the transformation

x̄ = η(x, y), ȳ = δ(x, y), ū = [(ηx)
2 + (ηy)

2
]
u, (6.65)

leaving this equation invariant. Applying the transformation (6.65) to a solution u =
f (x, y, t) of (6.58) yields an infinite family of solutions,

u(x, y, t) = 1
(ηx )2+(ηy)2 f (η(x, y), δ(x, y), t), (6.66)

containing a pair of harmonic conjugate functions. In particular, taking solution u =
f (x, t) independent of y, i.e., satisfying the 1D equation

ut = uux x − (ux)
2,

yields the solution

u(x, y, t) = 1
(ηx )2+(ηy)2 f (η(x, y), t) (6.67)

of the 2D equation (6.58).
Thus, operator (6.57) is “doubly critical”, since, in addition to the property in

Proposition 6.24, the associated parabolic (and also elliptic) PDE admits an infinite-
dimensional Lie algebra of symmetries. This is a rare situation for nonlinear equa-
tions that allows us to discuss new aspects concerning the structure of invariant sub-
spaces and nonlinear separation of variables.

6.3.1 Polynomial subspaces

Proposition 6.37 Operator (6.57) preserves the 9D subspace

W9 = L{1, x, y, x2, xy, y2, xr2, yr2, r4
} (

r2 = x2 + y2
)
. (6.68)

This subspace has larger dimension than most other quadratic operators studied so
far. Subspace (6.68) is an extension for N = 2 of that given in Proposition 6.26.

Example 6.38 (Fast diffusion equation and remarkable operators) The fast dif-
fusion equation with a quadratic reaction-absorption term

vt = ∇ ·
( 1
v ∇v

) − av2 − bv (6.69)

by the pressure change v = 1
u reduces to

ut = Frem[u]+ a + bu in IR2 × IR+. (6.70)

There exist solutions, which are more general than (6.46),

u(x, t) = C + d1x + d2y + a1x2 + a2xy + a3y2 + e1xr2 + e2 yr2 + Gr4, (6.71)
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where the expansion coefficients satisfy the DS

C ′ = [2(a1 + a3)+ b]C − d2
1 − d2

2 + a,
d ′1 = [2(a3 − a1)+ b]d1 − 2a2d2 + 8Ce1,
d ′2 = [2(a1 − a3)+ b]d2 − 2a2d1 + 8Ce2,

a′1 = [2(a3 − a1)+ b]a1 − a2
2 + 2d1e1 − 2d2e2 + 16CG,

a′2 = [−2(a1 + a3)+ b]a2 + 4d2e1 + 4d1e2,

a′3 = [2(a1 − a3)+ b]a3 − a2
2 − 2d1e1 + 2d2e2 + 16CG,

e′1 = [2(a3 − a1)+ b]e1 − 2a2e2 + 8Gd1,
e′2 = [2(a1 − a3)+ b]e2 − 2a2e1 + 8Gd2,

G′ = [2(a1 + a3)+ b]G − e2
1 − e2

2.

(6.72)

Let us return to equation (6.58). Note that the following three types of transfor-
mations, which are particular cases of (6.65), do not change the form of the solution
under consideration affecting only the coefficients of the expansion (6.71):
(i) translations in x and in y;
(ii) rotations in the (x, y)-plane; and
(iii) the inversion

x̄ = 1
r2 x, ȳ = 1

r2 y, ū = 1
r4 u. (6.73)

The full subspace W9 contains the invariant subspace W4 = L{1, x2, y2, r2} on
which the DS (6.72) is simplified (we set a = b = 0 and also d1 = d2 = a2 =
e1 = e2 = 0), so the general solution

u(x, y, t) = C(t)+ a1(t)x
2 + a3(t)y2 + G(t)r4

will contain four arbitrary constants. Applying to this solution the above transforma-
tions in the (x, y)-plane, inversion and translations in x̄ and ȳ, we find, at most, a
nine-parametric family of solutions (6.71) on the subspace W9.

Remark 6.39 Equation (6.70) with non-zero parameters a or b is not invariant under
the inversion (6.73) and is mapped into

ūt = Frem[ū]+ ar̄4 + bū,

where the “inhomogeneous” term ar̄4 belongs to the subspace (6.68), with the new
variables {x̄, ȳ}.
Example 6.40 (Quasilinear wave equation) Consider the corresponding quasilin-
ear wave equation

utt = Frem[u]+ a + bu. (6.74)

Looking for solutions (6.71) on W9, we obtain the DS (6.72) with the second-order

derivatives d2

dt2 on the left-hand side. Similarly, (6.73) maps this equation into that
with the right-hand side in W9,

ūt t = Frem[ū]+ ar̄4 + bū.

Example 6.41 (Pseudo-hyperbolic PDEs) The following equation which is for-
mally pseudo-hyperbolic in {u > 0}:

(I −
)utt ≡ utt −
utt = u
u − |∇u|2 (6.75)
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is a dispersion model that describes the propagation of long 2D waves [337]. Being
restricted to (6.68), this PDE reduces to an 18D DS. A similar reduction exists for
higher-order pseudo-hyperbolic PDEs, such as

(I −
)utt = −α
2u + u
u − |∇u|2 + β
u + γ u + δ. (6.76)

6.3.2 The GSV and other invariant subspaces

The remarkable operator (6.57) makes it possible to clarify interesting relations be-
tween the extended polynomial subspace and others. In general, determining invari-
ant subspaces is equivalent to a hard problem of the generalized separation of vari-
ables (GSV), which in the present remarkable case admits a special treatment. We
consider the parabolic equation (6.70). The same analysis applies to the hyperbolic
PDE (6.74).

Let us apply transformation (6.65) to the equation (6.58) to obtain another equa-
tion

ūt = Frem[ū]+ a
[
(ηx )

2 + (ηy)
2
]+ bū. (6.77)

We then impose the condition

(ηx)
2 + (ηy)

2 ∈ W̄9 = L{1, x̄, ȳ, x̄2, x̄ ȳ, ȳ2, x̄ r̄2, ȳr̄2, r̄4} (
r̄2 = x̄2 + ȳ2).

Therefore, for η(x, y), we obtain the following multi-parameter first-order PDE (a
nonlinear eigenvalue problem): to find parameters {p1, ..., p9} and η �≡ 0 such that

(ηx)
2 + (ηy)

2 = p1 + p2x̄ + p3 ȳ + p4x̄2 + p5x̄ ȳ + p6 ȳ2

+ p7x̄r̄2 + p8 ȳr̄2 + p9r̄4.
(6.78)

Then (6.77) will have solutions on W9. For instance, take

η(x, y) = ex cos y = x̄, so that δ(x, y) = −ex sin y = ȳ (6.79)

by (6.64). Then (ηx )
2 + (ηy)

2 = e2x = x̄2 + ȳ2 = r̄2 and ū = e2xu. The solutions
of (6.77) on W̄9 are

ū = C1 + C2 x̄ + C3 ȳ + C4 x̄2 + C5 x̄ ȳ + C6 ȳ2 + C7 x̄ r̄2 + C8 ȳr̄2 + C9r̄4.

In the original variables, this gives

e2xu = C1 + C2ex cos y − C3ex sin y

+C4e2x cos2 y − C5e2x cos y sin y + C6e2x sin2 y

+C7e3x cos y − C8e3x sin y + C9e4x .

Combining similar terms, we finally obtain

u = 1
2 (C4 + C6)+ C1e−2x + C9e2x + (C2e−x + C7ex) cos y

− (C3e−x + C8ex) sin y + 1
2 (C4 − C6) cos 2y + 1

2 C5 sin 2y,

or, which is the same, passing to the hyperbolic functions and renaming the expan-
sion coefficients,

u = C̃1 + C̃2 cosh 2x + C̃3 sinh 2x + C̃8 cos 2y + C̃9 sin 2y

+ (C̃4 cosh x + C̃5 sinh x) cos y + (C̃6 cosh x + C̃7 sinh x) sin y.
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Therefore, the polynomial subspace is transformed into the new exponential-trigonometric
invariant subspace.

Proposition 6.42 Operator (6.57) preserves the following subspaces:

W4 = L{1, cosh 2x, cos 2y, cosh x cos y} and (6.80)

W9 = L{1, cosh 2x, sinh 2x, cos 2y, sin 2y,

cosh x cos y, sinh x cos y, cosh x sin y, sin x sin y
}
.

(6.81)

Of course, (6.80) is a subspace of (6.81) to functions that are even in both x and y.
Note that Frem maps even functions into even, so that the subspace of even function
from W9 is also invariant. The above calculus of invariant transformations illustrate
how the lower-dimensional invariant subspace W4 can be extended to W9.

Are there other interesting solutions of the nonlinear eigenvalue problem (6.78)
rather than (6.79)? This is an OPEN PROBLEM.

Example 6.43 (Fast diffusion equation) The equation (6.70) admits exact solutions
on the subspace (6.80),

u(x, t) = C1 + C2 cosh 2x + C3 cos 2y + C4 cosh x cos y, (6.82)
C ′1 = 4

(
C2

2 − C2
3

)+ a + bC1,

C ′2 = 4
(
C1C2 − 1

8 C2
4

)+ bC2,

C ′3 = 4
( 1

8 C2
4 − C1C3

)+ bC3,
C ′4 = 4C4(C2 − C3)+ bC4.

(6.83)

For a < 0, (6.69) admits positive blowing up patterns, so that solutions (6.82), (6.83)
can be used for detecting a fine structure of blow-up singularities for the case of this
critical fast diffusion operator.

Example 6.44 The fourth-order pseudo-hyperbolic equation (6.76) can be restricted
to subspaces (6.80), or (6.81).

6.3.3 An application to systems

As in Section 5.4, the above results can be used for generating various systems of
PDEs reduced to DSs on invariant subspaces.

Example 6.45 Let us first present a formal, but exceptional application of the oper-
ator (6.57) in the following hyperbolic system in IR2 × IR:

Ut t = −A
2U+ B
U+ CF[U]+ DU+ E, (6.84)

where U = (u1, ..., um)T , A > 0, B , C , D are m ×m matrices, E ∈ IRm , and

F[U] = (Frem(u1), ..., Frem(um))T .

The right-hand side in (6.84) preserves subspace (6.81), provided that E ∈ W9, so
system (6.84) restricted to W9 is an 18mth-order DS.
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Example 6.46 (Parabolic system) The parabolic system for m = 2 with remark-
able operators,{

ut = a1 Frem[u]+ b1
u + c1
v + d1u + e1v + f1,

vt = a2 Frem[v]+ b2
u + c2
v + d2u + e2v + f2,

where f1,2 ∈ W9, being restricted to W9, is an 18th-order DS. Setting u = 1
U and

v = 1
V for positive solutions recovers a system with remarkable elliptic operators

given in (6.59), admitting an infinite-dimensional Lie group of symmetries,{
Ut = a1
 ln U + b1
U − 2b1

|∇U |2
U − c1U2


( 1
V

)− d1U − e1
U 2

V − f1U2,

Vt = a2
 ln V − b2V 2

( 1

U

)+ c2
V − 2c2
|∇V |2

V − d2
V 2

U − e2V − f2V 2.

6.3.4 On partial invariant modules

Let us briefly describe invariant modules related to Frem that, in the 1D case, were
studied in Examples 1.37 and 1.43. Consider the PDE operator

F̂[u] = ut − (u
u − |∇u|2) in IR2 × IR+,

and solutions of the form

u(x, t) = C1(t)+ C2(t)x + C3(t)eγ (t)xey, (6.85)

where γ (t) is a function. For a constant γ , the module with given basic functions
is not invariant under Frem, though it is composed of the invariant modules of lin-
ear functions L{1, x, y} and the exponential function W2 = L{1, eγ xey}. For any
function (6.85), the following holds:

F̂[u] = C ′1 + C2
2 + C ′2x + [C ′3 − (γ 2 + 1)C1C3 + 2γC2C3

]
eγ x ey

+ [γ ′ − (γ 2 + 1)C2
]
C3xeγ xey,

so that we need the condition

γ ′ = (γ 2 + 1)C2,

which deletes the last term and keeps the subspace invariant (see more details in
Example 1.37).

Example 6.47 (Parabolic equation) The fourth-order semilinear parabolic PDE

ut = −
2u + (u + α)
u − |∇u|2 + µu + ν

admits solutions (6.85) with the DS
C ′1 = −C2

2 + µC1 + ν,
C ′2 = µC2,

C ′3 = (γ 2 + 1)C1C3 − 2γC2C3 +
[−(γ 2 + 1)2 + α(γ 2 + 1)+ µ

]
C3,

γ ′ = (γ 2 + 1)C2.

If µ �= 0, the second ODE yields C2(t) = eµt , and the last implies

γ (t) = tan
( 1
µ eµt + constant

)
.
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For µ = 0, it follows that C2 = 1 and γ2(t) = tan t .

Similar more general solutions can be taken in the form of

u(x, y, t) = C1(t)+ C2(t)x + C3(t)y + C4(t)eγ1(t)xeγ2(t)y (6.86)

with two unknown functions γ1,2(t). The invariance property is checked similarly.
Let us present final computations for a slightly modified model.

Example 6.48 (2mth-order parabolic equation) A higher-order PDE

ut = (−1)m+1
mu + (u + α)
u − |∇u|2 + µu + ν

admits solutions (6.86), where the following DS occurs:

C ′1 = −C2
2 − C2

3 + µC1 + ν,
C ′2 = µC2,
C ′3 = µC2,

C ′4 = (γ 2
1 + γ 2

2 )C1C4 − 2γ1C2C4 − 2γ2C3C4

+[(−1)m+1(γ 2
1 + γ 2

2 )m + α(γ 2
1 + γ 2

2 )+ µ
]
C4,

γ ′1 =
(
γ 2

1 + γ 2
2

)
C2,

γ ′2 =
(
γ 2

1 + γ 2
2

)
C3.

Solving independently the ODEs for coefficients {C2,C3, γ1, γ2} yields expressions
for γ1,2(t) similar to those given above.

6.4 On second-order p-Laplacian operators

Here, we describe specific subspaces that are admitted by operators in IR N with
gradient-dependent nonlinearities.

Example 6.49 (p-Laplacian operator) Consider the following quasilinear parabolic
p-Laplacian equation with extra nonlinear and linear terms:

vt = ∇ · (|∇v|σ∇v)+ av
1

σ+1 + bv (v ≥ 0), (6.87)

where σ > −1, σ �= 0, is a fixed exponent. Equations with such nonlinearities
describe filtration in non-Newtonian dilatable (for σ > 0) and pseudo-plastic (for
σ ∈ (−1, 0)) fluids, and also occur in solid fuel combustion theory (see details in
[444] and in the Remarks to Section 8.5).

In radial geometry, for solutions v = v(r, t) with r = |x | ≥ 0, (6.87) becomes

vt = |vr |σ
[
(σ + 1)vrr + N−1

r vr
]+ av

1
σ+1 + bv.

By the transformation v = u
σ+1
σ (similar to the PMEs, u is called the pressure in

filtration theory), we obtain

ut = F[u]+ A + Bu, (6.88)

where F is the quasilinear operator

F[u] = µ|ur |σ
{
(σ + 1)

[
uurr + 1

σ (ur )
2
]+ N−1

r uur
}
, (6.89)
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with constants µ = ( σ+1
σ )σ , A = aσ

σ+1 , and B = bσ
σ+1 . Though (6.89) is not a

quadratic or a cubic operator, it has the following invariant property.

Proposition 6.50 Operator (6.89) preserves the 2D subspace

W r
2 = L{1, rγ }, where γ = σ+2

σ+1 .

Proof. Taking an arbitrary function from W r
2,

u(x, t) = C1(t)+ C2(t)r
γ , (6.90)

yields
F[u] = αC1C2|C2|σ + β|C2|σ+2rγ ∈ W r

2,

where α = µγ σ+1 N and β = µγ σ+1
(
N + γ + γ

σ

)
.

The regularity properties of solutions given by the pressure (6.90) well correspond
to the known typical smoothness of weak solutions of the p-Laplacian equations. In
particular, the Hölder continuity in r of the function rγ in (6.90) is optimal, at least
for N = 1, and in radial geometry for bell-shaped solutions (i.e., for those without
holes in the support). In the theory of quasilinear degenerate PDEs, this is proved by
Bernstein’s method; see DiBenedetto [148] and Kalashnikov [309].

Equation (6.88) restricted to W r
2 is equivalent to the DS{

C ′1 = αC1C2|C2|σ + BC1 + A,

C ′2 = β|C2|σ+2 + BC2.

Let us integrate this system. Assuming for definiteness that C2 ≤ 0 (this corresponds
to finite-time extinction to be considered below) and setting C2 ≡ −C with C ≥ 0,
we arrive at {

C ′1 = −αC1Cσ+1 + BC1 + A,

C ′ = −βCσ+2 + BC.
(6.91)

The second ODE is independent and is integrated explicitly,

Cσ+1(t) = B
[
β + H0e−B(σ+1)t]−1

,

where H0 is an arbitrary constant. In this case, from the first ODE in (6.91),

C1(t) = − A
B(σ+1) eBt

(
βeB(σ+1) + H0

)−λ
E(t), (6.92)

where the function E is given by the integral related to Euler’s Beta function

E(t) = ∫ zδ(β + H0z)λ dz, (6.93)

with z = e−B(σ+1)t , λ = α
β(σ+1) ≡ N

(σ+1)(Nσ+σ+2) , and δ = − σ [N(σ+1)+σ+2]
(σ+1)(Nσ+σ+2) . The

special case H0 = 0 yields the constant function

C2 = −C = −( B
β

) 1
σ+1 , with B > 0.

Then (6.92) implies

C1(t) =
[
H1eB(1−α

β )t − A
] [

B
(
1− α

β

)]−1
,

where H1 is a constant of integration. Another explicit elementary solution exists
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for A = B = 0. This solution on W r
2 yields precisely the fundamental, instantaneous

point-source (or source-type) solution of the p-Laplacian equation ut = F[u], which
is similar to the ZKB solution for the PME; see [509, p. 84] and history therein.

Example 6.51 (Interface equation and finite-time extinction) Consider nonnega-
tive solutions of the p-Laplacian equation with absorption

vt = ∇ ·
(|∇v|σ∇v

)− v
1

σ+1 in IR N × IR+, (6.94)

where σ > 0. This PDE describes processes with the finite propagation, i.e., with
interfaces (free boundaries) similar to the PME. In addition, due to the presence
of the strong absorption term −v p with the exponent p = p∗ = 1

σ+1 < 1, any
bounded solution has finite extinction time T and v(x, t) → 0 as t → T− for any
x ∈ IRN . Furthermore, the critical absorption exponent p∗ = 1

σ+1 in (6.94) is known
to generate the following phenomena:
(i) the finite interface propagation no longer obeys the standard Darcy law (see [226,
Ch. 7]), and
(ii) the singular extinction behavior of the solution as t → T− becomes special and
differs from those which occur for p above and below the critical exponent p∗ (see
details in [245, Ch. 4]).

Let us show that solutions on W r
2 correctly describe both critical phenomena. Us-

ing (6.90) leads to the following explicit solutions:

v(x, t) ≡ u
σ+1
σ (x, t) = [C1(t)− C(t)|x |γ ] σ+1

σ+ , (6.95)

where the coefficients are given by

C1(t) = σ
(σ+1)(1+λ)(T

1+λ − t1+λ) and C(t) = [β(σ + 1)t]−
λ

σ+1 . (6.96)

Here, T > 0 is the finite extinction time and λ is as in (6.93).

Interface equation. It follows from (6.95) that

r = s(t) = [C1(t)
C(t)

] σ+1
σ+2

is the interfaces of the solution. Let us derive the corresponding dynamic interface
equation. As usual, differentiating the identity for the pressure u(s(t), t) ≡ 0 implies
ur (s, t)s′ + ut = 0, which yields

s′(t) = − 1
ur (s(t),t)

ut (s(t), t), (6.97)

provided that both derivatives involved exist and the limit as r → s−(t) makes
sense. For the explicit solution (6.95), formula (6.97) is obviously valid. In order
to simplify the right-hand side, we calculate ut from the pressure equation (6.88),
(6.89) with A = − σ

σ+1 , B = 0, so passing to the limit as r → s− yields

ut =
(
σ+1
σ

)σ+1|ur |σ+2 − σ
σ+1 at r = s(t).

Substituting into (6.97) determines the following dynamic interface equation:

s′(t) = S[u] ≡ −(σ+1
σ

)σ+1|ur |σ+1 + σ
σ+1

1
ur

at r = s(t), (6.98)
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consisting of two terms. The standard Darcy law for the pure p-Laplacian equation
contains the first term only, so, in this case, the strong absorption essentially changes
the local interface propagation. Using the whole family of exact solutions on W r

2
makes it possible to extend (6.98) to general radial monotone solutions of (6.94) by
using the geometric Sturmian argument of intersection comparison, [226, Ch. 7].

Extinction behavior. This is also easily detected from the explicit solution (6.95).
Calculating the asymptotics of C1(t) in (6.96) yields, as t → T−,

v(x, t) = [ σ
σ+1 (T − t)

(
1− |ξ |γ

aγ
0

)] σ+1
σ+ + ... , ξ = x/(T − t)

σ+1
σ+2 , (6.99)

where a0 > 0 is a constant and ξ is the rescaled spatial variable. It is important that
the extinction behavior (6.99) is not self-similar, since the similarity rescaled variable
for (6.94) is different, η = x/(T − t). By the Sturmian intersection comparison, the
asymptotic extinction behavior (6.99) holds true for general solutions, [245, Ch. 4].

Example 6.52 (Regional blow-up) We next consider a combustion problem and
describe a blow-up behavior for the p-Laplacian equation with source

ut = ∇ · (|∇u|∇u)+ u2 in IR N × IR+. (6.100)

The operator on the right-hand side is quadratic and we use Proposition 6.9 to derive
exact solutions on a 2D subspace,

u(x, t) = T
(T−t)t

[− T−t
T + f (x)

] ∈ L{1, f (x)}, (6.101)

where T > 0 is the blow-up time and f is a solution of the following quasilinear
elliptic PDE (the same as in Example 5.6):

∇ · (|∇ f |∇ f )+ f 2 − f = 0 in IRN (6.102)

that admits weak compactly supported solutions. For N = 1, there exists a nonneg-
ative profile f (x) given by the incomplete Euler Beta function such that [216]

f (x) > 0 on the interval
{|x | < 1

2 LS = 2
1
3 3− 1

2 π
}
.

Existence of a radial weak solution f ≥ 0 in any dimension N > 1 was proved
in [229] (the proof, in the case of regional blow-up, is the same as for the porous
medium operator in [509, p. 183]; the structure of single point blow-up similarity
patterns is completely different). It is reasonable to expect that any nonnegative com-
pactly supported weak solution of (6.102) is radially symmetric relative to a point in
IRN . Such a result should involve the moving plane method via Aleksandrov’s Re-
flection Principle; see [245, p. 51].

Given a suitable nonnegative solution (6.101), we have the phenomenon of local-
ization of blow-up (regional blow-up), where, as t → T−,

u(x, t)→+∞ for any x inside supp f ,

and u(x, t)→− 1
T for all x ∈ IRN \ supp f , as shown in Figure 6.2.

It is curious that the solution (6.101) exhibits an extremely singular behavior at
the initial moment of time t = 0. Passing to the limit t → 0+ yields the following
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u(x, t)

t2

t3

0 < t1 < t2 < t3 < t4 < T
t1t4

0 xLS−LS

Figure 6.2 Regional blow-up of solutions (6.101) on the interval [−LS, LS].

initial function for such solutions:

u(x, 0+) =
{−∞, if f (x) < 1,
+∞, if f (x) > 1,

1
T , if f (x) = 1.

These initial data are unbounded almost everywhere in IRN , but generate a bounded
weak solution that exists in IRN × (0, T ). Such a phenomenon is portrayed in Figure
6.2 (see the steep profile for t = t1 ≈ 0). This is an exceptional situation. Obviously,
such a local solvability of (6.100) for initial data u0 �∈ L∞loc(�) for any arbitrarily
small domain � ⊂ IRN is not a generic property of this PDE.

Using functions f (x) from Example 5.7, similar blow-up patterns can be con-
structed for higher-order reaction-diffusion PDEs, such as

ut = −(|ux x |ux x)x x + u2 and ut = −(|ux x x|ux x x)x + u2.

6.5 Invariant subspaces for operators of Monge–Ampère type

6.5.1 Second-order equations

For a given function u ∈ C2(IRN ), let D2u be the corresponding N × N Hessian
matrix ‖uxi x j ‖. Parabolic Monge–Ampère (M-A) equations

ut = g
(
detD2u

)+ h(x, u, Dx u) in IRN × IR+ (6.103)

play an important role in various geometric problems and applications, such as log-
arithmic Gauss and Hessian curvature flows, the Minkowski problem (1897), the
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Weyl problem, the Calabi conjecture in complex geometry, and many others. See
references and basic mathematical results in [550, Ch. 14,15], [253, Ch. 17], and
[272]. For increasing functions g(s), equation (6.103) is parabolic if D2u(·, t) re-
mains positively definite for t > 0, assuming that D2u0 > 0 for initial data u0. For
a class of lower-order operators h(·) satisfying necessary growth estimates, typical
monotone increasing, concave nonlinearities g in the principal operator are

g(s) = ln s, g(s) = − 1
s , and g(s) = s

1
N for s > 0,

for which the global-in-time solvability is known. For other g(s) functions with a
faster growth as s →∞, local-in-time solutions existing by standard parabolic the-
ory (see e.g., the classic book [365, p. 320]) may blow-up in finite time. This gives
special asymptotic patterns, which sometimes are also of interest for geometric ap-
plications.

We will verify a few types of singularity formation phenomena occurring on linear
subspaces admitted by such Monge–Ampère operators. We discuss our basic exam-
ples in the 2D case N = 2 with independent variables {x, y}, so

F2[u] = detD2u ≡ ux xuyy − (uxy)
2. (6.104)

Example 6.53 (Motion with constant speed) In the subspace of convex parabolic
surfaces

u(x, y, t) = C1(t)+ C2(t)x
2 + C3(t)y2 ∈ W3 = L{1, x2, y2}, (6.105)

with C2 > 0, C3 > 0, the parabolic flow with an arbitrary g,

ut = g(F2[u]),

is globally well-defined by the DS{
C ′1 = g(4C2C3),
C ′2 = 0, C ′3 = 0.

So C2,3(t) ≡ C2,3(0), from which we obtain the solution

u(x, y, t) = C1(0)+ g(4C2(0)C3(0))t + C2(0)x2 + C3(0)y2

corresponding to the motion of the surface with constant speed. For the hyperbolic
M-A equation

utt = g(F2[u]),

the DS is of sixth order (it is of eighth order if L{xy} is included into the subspace){
C ′′1 = g(4C2C3),
C ′′2 = 0, C ′′3 = 0.

Initial data ut (x, 0) are important to keep u(x, y, t) convex and the equation hyper-
bolic. Otherwise, if D2u(·, t) loses its positivity, the PDE becomes of elliptic type
and possibly loses evolution setting as the Cauchy problem.

Example 6.54 (Blow-up via PME-term) Adding a standard quasilinear quadratic
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operator from PME theory to the right-hand side,

ut = g
(
detD2u

)+ u
u, (6.106)

for the same polynomial solutions (6.105), we obtain the DS{C ′1 = g(4C2C3)+ 2C1(C2 + C3),
C ′2 = 2C2(C2 + C3),
C ′3 = 2C3(C2 + C3).

From the last two ODEs, it follows that C3 = AC2, with a constant A > 0, so
C ′2 = 2(1+ A)C2

2 , which yields finite-time blow-up of C1,2,3(t) with the rate

C2(t) = 1
2(1+A)

1
T−t .

This blow-up is induced by the quadratic operator on the right-hand side of (6.106),
so, in this sense, the M-A operator is weaker on such polynomial profiles.

Example 6.55 (Blow-up in quadratic equations) We next consider the parabolic
equation with g(s) = s,

ut = F2[u] ≡ ux xuyy − (uxy)
2. (6.107)

The basic subspace for F2 consists of arbitrary fourth-degree polynomials,

W15 = L{xαyβ, 0 ≤ α + β ≤ 4}. (6.108)

For simplicity, consider solutions on a smaller subspace W6,

u(x, y, t) = C1 + C2x2 + C3 y2 + C4x2y2 + C5x4 + C6 y4, (6.109)

C ′1 = 4C2C3,
C ′2 = 24C3C5 + 4C2C4,
C ′3 = 4C3C4 + 24C2C6,

C ′4 = −12C2
4 + 144C5C6,

C ′5 = 24C4C5,
C ′6 = 24C4C6.

(6.110)

The last two ODEs yield C6 = AC5, with A > 0. Then we obtain two independent
equations for {C4,C5}, {

C ′4 = −12C2
4 + 144AC2

5,
C ′5 = 24C4C5,

which are integrated in quadratures. The phase-plane of the first-order ODE
dC5
dC4

= 2C4C5
12AC2

5−C2
4

(6.111)

is given in Figure 6.2, which shows that all positive orbits blow-up in finite time and
approach the explicit solution C5 = 1

2
√

A
C4, corresponding to coefficients

C4(t) = 1
24

1
T−t ,

C5(t) = 1
48
√

A
1

T−t ,

C6(t) =
√

A
48

1
T−t .

(6.112)
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C4

C5 C5 = 1
2
√

A
C4

C5 = 1
2
√

3A
C4

0

Figure 6.3 The phase-plane of (6.111): stability of the explicit solution (6.112).

The rest of the coefficients can also be calculated explicitly from the first three ODEs
(6.110), and these are also singular as t → T−. In the class of fourth-degree polyno-
mials (6.109), the solution of the parabolic M-A equation (6.107) is essentially local
in time, u(x, y, t)→∞ as t → T−. This blow-up is connected with the exceeding
growth of convex initial data at infinity.

The blow-up phenomenon can also be detected for the hyperbolic equation

utt = ux xuyy − (uxy)
2,

where the DS with the right-hand sides from (6.110) is of twelfth order and, as is
usual for such quadratic systems, the blow-up rate is now∼ (T − t)−2. For the whole
subspace (6.108), the DS is of thirties order and cannot be reduced for arbitrary initial
data, unlike the parabolic case.

Example 6.56 (Higher-order regularization) Consider a fourth-order parabolic
regularization of the above M-A equation,

ut = ux xuyy − (uxy)
2 − u
2u (u > 0).

Then the last three ODEs of the DS (6.110) take the form{C ′4 = −20C2
4 + 144C5C6 − 24C4(C5 + C6),

C ′5 = 8(2C4 − 3C5 − 3C6)C5,
C ′6 = 8(2C4 − 3C5 − 3C6)C6.

Again C6 = AC5 from the last two ODEs, so the blow-up behavior (or a global one
due to the fourth-order regularization) can be studied on the {C4,C5}-plane.

Example 6.57 (Extinction for a parabolic equation) We next consider the extinc-
tion phenomenon for the M-A equation associated with the nonlinearity g(s) = − 1

s ,
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where an extra linear multiplier u is included,

ut = − u
detD2u

. (6.113)

For solutions (6.105), the DS takes the form
C ′1 = − C1

4C2C3
,

C ′2 = − 1
4C3

,

C ′3 = − 1
4C2

.

Integrating yields the following solutions:

u(x, y, t) = √T − t
(
B +

√
1

2A x2 +
√

A
2 y2

)
, (6.114)

where A and B are arbitrary positive constants. These separate variables solutions
vanish as t → T−, and represent a singular extinction pattern. Let us describe the
corresponding asymptotic problem for more general solutions having extinction at
the same moment t = T . Introducing the rescaled function according to (6.114),

u(x, t) = √T − t v(x, y, τ ), τ = − ln(T − t)→+∞, (6.115)

yields the rescaled PDE
vτ = − v

detD2v
+ 1

2 v. (6.116)

Typical second-order Hessian operators are known to be potential and the corre-
sponding smooth parabolic flows are gradient systems. For M-A PDEs, these ideas
go back to Bernstein (1910) [51]; see also Reilly [486], and [462] for a particular
case. For (6.116), the Lyapunov functional is given by

�(v) = − 1
3

∫
v detD2v + 2

∫
v.

Here, we assume integration over a bounded domain � ⊂ IR2 with suitable boundary
conditions on ∂�, so the manipulations make sense. For the problem in IRN , extra
conditions at infinity are necessary, as well as suitable changing of the functional.
Using (6.116) then yields

d
dτ �(v) = − ∫ vτ

(
detD2v − 2

) ≡ − ∫ v(detD2v−2)2

2detD2v
≤ 0. (6.117)

On the other hand, this is equivalent to an L2-bound of the time-derivative vτ ,∫∞ dτ
∫ 2detD2v

v (vτ )
2 <∞, (6.118)

which shows that the ω-limit set of the rescaled orbit satisfying (6.116) consists of
stationary points only. A rigorous application of gradient systems theory for (6.116)
also demands some delicate estimates of the rescaled orbits; e.g., to prove that v(·, τ )
is uniformly bounded and bounded from below for τ � 1. This is not easy for scaling
(6.115), which is singular as t → T− (τ →+∞). These problems are OPEN.

Example 6.58 (Extinction for a hyperbolic equation) The corresponding hyper-
bolic M-A equation

utt = − u
detD2u

© 2007 by Taylor & Francis Group, LLC



6 Applications to Nonlinear PDEs in IR N 309

admits solutions
u(x, y, t) = C1(t)

(
1+ Ax2 + By2

)
,

where A, B > 0 are constants and C1 satisfies the ODE C ′′1 = − 1
4AB

1
C1

. It admits
solutions vanishing in finite time with the generic behavior

C1(t) = (T − t)− 1
4AB (T − t) ln(T − t)+ ... as t → T−.

This represents an asymptotic separate variables extinction pattern that describes a
stable extinction behavior on W3. A stability theory is absent and OPEN.

Example 6.59 (Blow-up) For the parabolic M-A equation

ut = u
√

detD2u in IR2 × IR+, (6.119)

the solutions (6.105) lead to the DS{C ′1 = 2C1
√

C2C3,
C ′2 = 2C2

√
C2C3,

C ′3 = 2C3
√

C2C3.

This gives blow-up solutions in separate variables,

u(x, y, t) = 1
2
√

AB
1

T−t

(
1+ Ax2 + By2

)→∞ as t → T−,

where A, B > 0. For the corresponding hyperbolic M-A equation

utt = u
√

detD2u in IR2 × IR+,

there are the following blow-up solutions in separate variables:

u(x, y, t) = C1(t)
(
1+ Ax2 + By2

)
, with C ′′1 = 2

√
AB C2

1 .

The DS for the coefficients {C1,C2,C3} shows that this pattern is stable on W3 (the
analysis is similar to that for hyperbolic equations in Example 5.1). The generic
blow-up behavior on the subspace W3 (in general, stability is OPEN) is given by

C1(t) ∼ 3√
AB

1
(T−t)2 as t → T−.

Example 6.60 The logarithmic Gauss curvature flow in terms of the support func-
tion (see [122]) is described by the M-A-type equation

ut =
√

1+ |x |2 ln
(
detD2u

)+ h in IRN × IR+,

where h is given. Depending on the initial uniformly convex hypersurfaces, this PDE
is known to admit either a local solution, corresponding to shrinking to a point in fi-
nite time or a global solution that describes the uniform convergence to an expanding
sphere.

Consider a simpler related version of this M-A-type equation

ut = (1+ |x |2)g(detD2u
)

in IRN × IR+

and pose the same question of the blow-up or global existence of solutions. Taking
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solutions on the subspace of second-degree polynomials,

u(x, t) = C0(t)+ C1(t)x
2
1 + ...+ CN (t)x2

N ,

their dynamics are governed by the DS

C ′k = g
(
2N C1...CN

)
for k = 0, 1, ..., N .

It follows that blow-up solutions appear iff Osgood’s criterion holds∫∞ ds
/

g(sN ) <∞.

If the integral diverges, the flow is globally defined in t . For the hyperbolic PDE

utt = (1+ |x |2)g(detD2u
)

in IRN × IR+,

taking the solutions in separate variables

u(x, t) = C1(t)
(
1+ A1x2

1 + ...+ AN x2
N

)
yields the ODE

C ′′1 = g
(
2N A1...AN C N

1

)
,

so blow-up occurs via another Osgood criterion∫∞ ds
/√∫

g(sN )ds <∞.

Example 6.61 Finally, consider the following PDE (see Remarks for a motivation
for such models):

ut = F2[u] ≡ detD2u − u2 in IR2 × IR+. (6.120)

In order to describe main aspects of blow-up for such M-A equations, we present an
invariant analysis of (6.120) in radial geometry with the spatial variable r = |x |, so

ut = F2[u] ≡ 1
r ur urr − u2 in IR+ × IR+. (6.121)

The origin, r = 0, is a regular point of the operator on the right-hand side. Indeed, by
L’Hospital’s rule, for strictly convex C2-solutions, 1

r ur urr → (urr )
2 > 0 as r → 0.

Consider solutions satisfying

u < 0, ur > 0, and urr > 0, (6.122)

on which the equation is uniformly parabolic. Let us construct exact solutions

u(r, t) = C1(t)+ C2(t) f (r) ∈ L{1, f }, (6.123)

with some unknown function f . Plugging (6.123) into (6.121), and assuming that f
solves the ODE problem

1
r f ′ f ′′ = f 2, f < 0 for r ∈ (0, r0), f ′(0) = 0, f (r0) = 0, (6.124)

(where L{1, f } is invariant under F2) yields the DS{
C ′1 = −C2

1 ,
C ′2 = −2C1C2.
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This gives blow-up solutions

u(r, t) = − 1
T−t + A

(T−t)2 f (r), with A > 0. (6.125)

These solutions have singularity at the degeneracy point r = r0, where urr = 0 by
(6.124), so solutions are not strictly convex. The PDE is degenerate and loses its uni-
form parabolicity. It follows that, for solutions (6.123) defined for all r > 0, the point
r = r0 is the only point of degeneracy (urr > 0 for all r �= r0). Nevertheless, the
strong Maximum Principle for urr does not apply, and this singularity point persists
until the blow-up time t = T . Introducing the rescaled function

u(r, t) = 1
(T−t)2 v(r, τ ), where τ = 1

T−t ,

gives the rescaled equation with an O( 1
τ )-perturbation,

vτ = 1
r vrvrr − v2 − 2

τ v. (6.126)

Notice that, for solutions v(r, τ ) of (6.126), the “waiting time” of the singularity at
r = r0 is infinite. Exact solutions (6.125) show the convergence as τ →∞,

v(r, τ ) ≡ − 1
τ + A f (r)→ A f (r).

The passage to the limit in the general equation (6.126) is an OPEN PROBLEM.
In addition, (6.121) admits separate variables solutions with a weaker blow-up rate

ū(r, t) = 1
T−t f̄ (r),

where f̄ solves the ODE
1
r f̄ ′ f̄ ′′ = f̄ 2 + f̄ for r ∈ (0, r0), f̄ ′(0) = 0, f̄ (r0) = 0;

u(r, t) = C1(t)+ C2(t) f̄ (r),{
C ′1 = −C2

1 ,

C ′2 = −2C1C2 + C2
2 .

The regularity convexity assumption, f̄ ′′ > 0, determines another singularity point
r = r̄0 > 0 such that f̄ (r̄0) = −1 with different boundary conditions that give such
a blow-up solution. The rescaled solution now takes the form

u(r, t) = 1
T−t w(r, s), where s = − ln(T − t),

and satisfies the autonomous, unperturbed PDE with a potential operator

ws = 1
r wrwrr − w2 −w.

A Lyapunov function is obtained by multiplying by rws in L2 with suitable bound-
ary conditions. The passage to the limit as s → ∞ demonstrates that, for general
solutions, w(r, s)→ ḡ(r).

For the M-A equation with absorption

ut = 1
r ur urr + u2 (u < 0)
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in the class (6.122), the generic decay behavior is expected to be described by the
separable solution

u(r, t) = 1
T+t f̃ (r), where 1

r f̃ ′ f̃ ′′ + f̃ 2 = − f̃

and f̃ (0) ∈ (−1, 0). Hence, the equation is degenerate at some point r0, at which
f̃ (r0) = 0. It is easy to construct solutions on the subspace L{1, f̃ }.

The above subspaces can be used for studying singularity formation phenomena
for hyperbolic M-A models in radial geometry,

utt = 1
r ur urr ± u2.

6.5.2 On higher-order Monge–Ampère-type equations

We discuss some types of higher-order M-A equations admitting invariant subspaces.
Existence, uniqueness, and regularity theory of such PDEs is not well developed, ex-
cluding a few particular cases; see Remarks.

Example 6.62 (Fourth-order Hessian equations) In order to formulate fourth-
order Hessian equations in IR2, let us write down the fourth differential of a C4-
function u = u(x, y) as a quartic form

d4u = ux x x xdx4 + 4ux x xydx3dy + 6ux xyydx2dy2 + 4uxyyydxdy3 + uyyyydy4.

This gives the catalecticant determinant

F4[u] = detD4u ≡ det

[ ux x x x ux x xy ux xyy

ux x xy ux xyy uxyyy

ux xyy uxyyy uyyyy

]
,

which plays an important role in the theory of quartic forms. For instance, each such
form in two variables can be expressed via a sum of three fourth powers of linear
forms and via two powers, provided that det D4u = 0; see [281].

We will use F4[u] for construction of some geometric flows. Clearly, F4 preserves
the subspace of fourth-degree polynomials W7 = L{1, x2, xy, y2, x4, x2y2, y4} and
F4 : W7 → L{1}. Therefore, the flow ut = F4[u] is global on W7. The basic invariant
subspace of sixth-degree polynomials is

W = L{xαyβ, 0 ≤ α + β ≤ 6}, (6.127)

on which blow-up may happen via a cubic DS. Singular patterns also exist for other
fourth-order M-A-type models that are constructed in accordance to their second-
order counterparts.

Example 6.63 (Extinction and blow-up) Equation

ut = − u
detD4u

in IR2 × IR+

admits solutions on W4,

u(x, y, t) = C1(t)+ C2(t)x
4 + C3(t)x

2y2 + C4(t)y4.
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Then |D4u| = 64(36C2C3C4 − C3
3 ). The corresponding fourth-order DS yields so-

lutions in separate variables

u(x, y, t) = C1(t)
(
1+ Ax4 + Bx2y2 + Cy4

)
, (6.128)

where A, B , and C are positive constants satisfying γ = 64(36ABC − B3) > 0 by
the convexity assumption on initial data. Here C1 solves the ODE C ′1 = − 1

γC2
1
. This

gives finite-time extinction with the rate

C1(t) =
[ 3
γ (T − t)

] 1
3 → 0 as t → T−.

Vice versa,

ut = u
√

detD4u in IR2 × IR+

admits solutions (6.128) driven by the ODE C ′1 =
√
γ C5/2

1 with blow-up,

C1(t) =
[ 3
√
γ

2 (T − t)
]− 2

3 →+∞ as t → T−.

Similar singularity phenomena are traced for the corresponding hyperbolic M-A
flows on these subspaces. A number of typical conclusions for the second-order Hes-
sian flows can be extended to this fourth-order, as well as higher-order, though the
well-posedness of such parabolic or hyperbolic PDEs in classes of “convex” func-
tions is a difficult OPEN PROBLEM.

Example 6.64 (Sixth-order equations) Similarly, one can define the sixth-order
operator of the M-A-type by

detD6u = det


u60 u51 u42 u33
u51 u42 u33 u24
u42 u33 u24 u15
u33 u24 u15 u06

 , (6.129)

where ui j = uxi y j . The basic subspace is W = L{xαyβ, 0 ≤ α+β ≤ 8}. The above
similar “parabolic” and “hyperbolic” models admitting extinction and blow-up can
be studied on this invariant subspace, though, as for |D4u|, many basic questions
concerning convexity and potential properties of such operators are OPEN and un-
clear (see Remarks).

Example 6.65 Consider the fourth-order PDE

F4[u] ≡ 

(
detD2u

)− 1
N+2 = 0, (6.130)

where 
 denotes the Laplacian with respect to the Blaschke metric

G = (detD2u
)− 1

N+2
∑

uxi x j dxidx j .

For a locally strongly convex function u(x) defining a hypersurface

M : xN+1 = f (x) for x ∈ IRN ,

equation (6.130) occurs in the theory of affine maximal hypersurfaces; see [385] for
basics of affine differential geometry and [384] for recent results. For many years,
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this theory was driven by various versions of so-called affine Bernstein conjectures,
including Chern’s and Calabi’s conjecture. A typical result says that, in the class of
complete hypersurfaces, M must be an elliptic paraboloid [384] (cf. the Jörgens–
Calabi–Pogorelov results for the inhomogeneous M-A equation detD2u = 1 in IR N ;
see Remarks). The corresponding fourth-order parabolic flows

ut = F4[u]+ (lower-order terms)

can be locally well-defined on the classes of convex functions. In particular, a related
modified equation

ut = 

(
detD2u

)+ (lower-order terms) in IR2 × IR+

(for simplicity, 
 is the Laplacian in IRN ) can be restricted to the subspace (6.127),
and the DS determines the blow-up or global evolution of convex surfaces in IR2.

Example 6.66 (mth-order equations) Consider a general mth-order fully nonlin-
ear equation of the M-A-type in IR2 × IR+ (m ≥ 2)

ut =∑(|µ|=|ν|=m) aµ,ν Dµ
x u Dν

x u + (lower-order terms), (6.131)

where µ and ν are multi-indices, and the matrix ‖aµ,ν‖ satisfies a positivity-type as-
sumption for local existence (see Remarks). This equation admits a finite-dimensional
restriction on the polynomial subspace W = L{xαyβ, 0 ≤ α + β ≤ 2m}, with a
typical blow-up dynamics of convex solutions driven by a quadratic DS.

Example 6.67 (Third-order equation) We finish our list of M-A-type models with
a related third-order PDE, written in the following evolution-looking form:

utt t = F[u] ≡ (ut x x)
2 − utt xux x x . (6.132)

This is known as one of the associativity equations in 2D field theory [157]. On the
other hand, it is a parameterized form of the M-A-type equation

vx x xvyyy − vx xyvxyy = 1,

as the compatibility condition for a PDE system (a reduction of the Gauss–Codazzi
equations) governing hypersurfaces M2 ⊂ A3 with a flat centroaffine metric, where
x and y are the asymptotic coordinates on M2, [182]. An abundance of explicit so-
lutions of (6.132) is available in [157]; see also the table in [182, p. 41].

The quadratic operator F in (6.132) admits the 5D subspace (now a module) W5 =
L{1, x, x2, x3, x4}, so that the PDE restricted to W5 with solutions

u(x, t) = C1(t)+ C2(t)x + C3(t)x
2 + C4(t)x

3 + C5(t)x
4 (6.133)

is equivalent to the following fifteenth-order DS:
C ′′′1 = −6C4C ′′2 + 4(C ′3)2,
C ′′′2 = −24C5C ′′2 − 12C4C ′′3 + 24C ′3C ′4,
C ′′′3 = −48C5C ′′3 − 18C4C ′′4 + 36(C ′4)2 + 48C ′3C ′5,
C ′′′4 = −72C5C ′′4 − 24C4C ′′5 + 144C ′4C ′5,
C ′′′5 = −96C5C ′′5 + 144(C ′5)2.
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This is a difficult DS in general, but some explicit solutions can be found on 2D
and 3D partially invariant subspaces from W5. The majority of the solutions in [157]
belong to such classes. In addition, looking for solutions on another module

u(x, t) = C1(x)+ C2(x)et ∈ L{1, et } (6.134)

yields a simpler sixth-order DS of the form{
C ′2C ′′′1 = −C2,

C ′2C ′′′2 = (C ′′2 )2.

The second ODE is integrated, providing us with two types of solutions, e.g.,

(i) C2(x) = x and C1(x) = − 1
24 x4, which is contained in (6.133), and

(ii) C2(x) = ex + 1, C1(x) = e−x − 1
6 x3 that is not available in (6.133).

6.6 Higher-order thin film operators

6.6.1 Basic polynomial subspaces

Let us return to the fourth-order quadratic thin film operator in IRN

F[u] = −∇ · (u∇
u) ≡ −u
2u − ∇u · ∇
u. (6.135)

In the statement below, i, j, k, l and α, β, γ, δ are various nonnegative integers.

Proposition 6.68 Operator (6.135) preserves the following subspaces:

W r
1 = L{|x |4}, W r

2 = L{1, |x |4}, W r
3 = L{1, |x |2, |x |4}; (6.136)

W f
n = L{1, x2

i x2
j , 1 ≤ i, j ≤ N}; (6.137)

W q,f = L{1, xi x j , x2
i x2

j , 1 ≤ i, j ≤ N}; (6.138)

W̄ f = L{1, xα
i xβ

j , 1 ≤ i, j ≤ N, 1 ≤ α+β ≤4
}; (6.139)

W̃ f = L{1, xα
i xβ

j xγ
k xδ

l , 1 ≤ i, j, k, l ≤ N, 1 ≤ α+β+γ+δ ≤4
}
. (6.140)

Proof. In the radial case, calculations are straightforward. Setting u = C1+C2|x |2+
C3|x |4 shows that W r

3 is invariant,

F[u] = −8(N + 2)
[
NC1C3 + (N + 2)C2C3|x |2 + (N + 4)C2

3 |x |4
]
.

Then the straight line W r
1: C1 = C2 = 0 and the plane W r

2: C2 = 0 in W r
3 are also

invariant. For the subspace (6.138), take

u = C +∑ ai, j xi x j +∑ bi, j x2
i x2

j ≡ C + xT Ax + (x2)T Bx2,

where x2 denotes
(
x2

1 , ..., x2
N

)T . Writing the quartic form as∑
bi, j x2

i x2
j =

∑
(i) bi,i x4

i +
∑

(i �= j ) bi, j x2
i x2

j , (6.141)

and differentiating, we obtain


u = 2(tr A)+ 4
∑

(l,i) bi,l (2δil + 1)x2
i , 
2u = 8

[
2(tr B)+ sum B

]
,
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where sum B denotes
∑

(i, j ) bi, j . Hence,

F[u] = −(C +∑ ai, j xi x j +∑ bi, j x2
i x2

j

)

2u

− 16
∑

(m, j,l) bm,l(2δml + 1)
[
am, j x j xm + 2bm, j x2

m x2
j

]
belongs to W q,f. Choosing A = 0 yields that (6.137) is invariant. For the subspace
(6.139) of fourth-order polynomials, for arbitrary

u =∑(i, j,α,β) Ci, j,α,β xα
i xβ

j ,

the operator (6.135) maps this polynomial into another polynomial of the degree not
exceeding max{2(α + β) − 4} = 4, provided that α + β ≤ 4. The same argument
applies to the most general subspace (6.140).

Example 6.69 (Dispersive Boussinesq equations) Another area of application of
polynomial subspaces is connected with the family of 2D dispersive Boussinesq
equations denoted by B(m, n, k, p) (see [580]),

(um)t t + α(un)x x + β(uk)x x x x + γ (u p)yyyy = 0.

Then the quadratic operators of B(1, 1, 2, 2) or B(1, 2, 2, 2) equations admit basic
polynomial subspaces on which the PDE reduces to a DS.

Similar basic subspaces exist for higher-order thin film operators.

Proposition 6.70 For any m ≥ 2, the thin film operator

F[u] = (−1)m+1∇ · (u∇
m−1u) in IRN

admits the subspaces
WN+1 = L{1, x2m

1 , ..., x2m
N }; (6.142)

Wn = L{1, xm
i xm

j }; (6.143)

W̄ = L{1, xα
i xβ

j , 1 ≤ α+β ≤ 2m
};

W̃ = L{1, xα1
i1

xα2
i2

...xα2m
i2m

, 1 ≤ α1+...+α2m ≤ 2m
}
.

Example 6.71 (Non-symmetric extinction and interface equation) The TFE with
the constant absorption,

ut = (−1)m+1∇ · (u∇
m−1u)− 1, (6.144)

admits solutions on the subspace (6.142),

u(x, t) = C(t)+ a1,1(t)x2m
1 + ...+ aN,N (t)x2m

N , (6.145)

where the expansion coefficients solve the DS
C ′ = (−1)m+1(2m)! (tr A)C − 1,
a′1,1 = (−1)m+1(2m)!

[
(tr A)+ 2ma1,1

]
a1,1,

... ... ...
a′N,N = (−1)m+1(2m)!

[
(tr A)+ 2maN,N

]
aN,N .

(6.146)

Here, tr A = ∑
ai,i is the trace of the diagonal N × N matrix A(t). These exact
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solutions correspond to a special FBP for equation (6.144) and describe the non-
symmetric finite-time extinction. The asymptotic behavior near the extinction time,
as t → T−, is easy to obtain from (6.146),

u(x, t) = (T − t)
(
1− b1ξ

2m
1 − ...− bN ξ2m

N

)
+ + ... , ξ = x

(T−t)1/2m , (6.147)

where bi = −ai,i (T ) > 0 for i = 1, ..., N . Rescaling the PDE (6.144) according to
(6.147) by introducing the rescaled function

u(x, t) = (T − t)w(ξ, τ ), where τ = − ln(T − t),

yields a difficult singular perturbed PDE

wτ = − 1
2m ∇w · ξ + w − 1+ (−1)m+1e−τ∇ · (w∇
m−1w).

The pattern (6.147) is not expected to describe a stable generic extinction behavior
for the TFE (6.144) (an OPEN PROBLEM), except in the porous medium case, m = 1,
where it was proved to be stable, [245, Ch. 5].

The FBP generating extinction asymptotics (6.147) is obtained in the usual way.
Differentiating u(x, t) = 0 on the interface yields the normal interface velocity V⊥
in the outward direction

V⊥ = 1
|∇u| ut ≡ 1

|∇u|
(
C ′ − a′1,1x2

1 − ...− a′N,N x2
N

)
, (6.148)

which is satisfied by any sufficiently smooth solution. In order to get the dynamic
interface equation for solutions (6.145), we use the time-parameterization 
mu =
(2m)! tr A(t), and substitute this t = t (
mu) into (6.148). The unique solvability of
such FBPs is a hard OPEN PROBLEM to be discussed in a simpler example.

On the subspace (6.143) with solutions

u(x, t) = C(t)+ (xm)T A(t) xm (
xm = (xm

1 , ..., xm
N )T ),

the DS becomes more complicated. For instance, for m = 2, using calculations at
the beginning of this section, we have{

C ′ = −[12(tr A)+ 8 sum A]C − 1,
A′ = −[12(tr A)+ 8 sum A]A − 32A2 − 64 diag A2,

where sum A =∑(i, j ) ai, j and diag A2 is the diagonal matrix diag{a2
1,1, ..., a2

N,N }.

6.6.2 On solutions with zero contact angle at interfaces

The above exact solutions do not have zero contact angle, and correspond to less
physically motivated Stefan–Florin FBPs. As in the 1D problems in Section 3.3, we
show how to construct zero contact angle solutions for two TFE problems.

Example 6.72 (Extinction for TFE with absorption) Consider the PDE

vt = −∇ · (v∇
v) −√v in IRN × IR+. (6.149)

Setting v = u2 yields the cubic equation

ut = − 1
2 u
2u2 −∇u · ∇
u2 − 1

2 ≡ F3[u]− 1
2 . (6.150)
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For the main application, it suffices to use the following result, which is not optimal,
as is known from the general representation of such subspaces in Section 6.1.

Proposition 6.73 The cubic operator F3 admits WN+1 = L{1, x2
1 , ..., x2

N }.
For solutions with the diagonal matrix A(t), we perform as in (6.141),

u(x, t) = C(t) + a1(t)x2
1 + ...+ aN (t)x2

N ∈ WN+1, so

u2(x, t) = C2 + 2C
∑

(i) ai x2
i +

∑
(i) a2

i x4
i +

∑
(i �= j ) aia j x2

i x2
j ,

(6.151)

and the following holds:


u = 2(tr A), 
u2 = 4(tr A)C + 4
∑

ai a j (2δi j + 1)x2
j ,


2u2 = 8
∑

ai a j (2δi j + 1) ≡ 8(tr A)2 + 16
∑

a2
i ,

(6.152)

where δi j is Kronecker’s delta. Substituting (6.151) into (6.150) yields the DS{
C ′ = −4[(tr A)2 + 2

∑
a2

i ] C − 1
2 ,

a′k = −4[(tr A)2 + 2
∑

a2
i ] ak − 16(tr A)a2

k − 32a3
k ,

(6.153)

for all k = 1, 2, ..., N . Since v = u2, the corresponding solutions of the original
equation (6.149)

v(x, t) = [C(t)+ a1(t)x2
1 + ...+ aN (t)x2

N

]2
+

satisfy the zero contact angle and the zero-flux conditions

v = ∇v = v ∂
∂n 
v = 0 at the interface, (6.154)

where n denotes the unit outward normal to the given smooth interface. We next
characterize the extinction phenomenon. We fix bounded initial values for the ex-
pansion coefficients C(0) > 0 and ak(0) < 0 for all k. Hence, the initial function

v0(x) =
[
C(0)+ a1(0)x2

1 + ...+ aN (0)x2
2

]2
+

is compactly supported. It follows from (6.153) that C(t) vanishes in finite time
with the asymptotics C(t) = 1

2 (T − t) + O((T − t)2) as t → T−, while all ak(t)
are assumed to have finite negative limits, ak(t) → −νk < 0. This gives the non-
symmetric asymptotic extinction pattern

u(x, t) = e−τ
( 1

2 − ν1ξ
2
1 − ...− νN ξ2

N

)
+ + O

(
e−2τ

)
, (6.155)

where ξ = x/
√

T − t and τ = − ln(T − t). As usual, this suggests introducing
the rescaled function u(x, t) = e−τw(ξ, τ ), where w solves a singular perturbed
first-order PDE of the form

wτ = − 1
2 ∇w · ξ + w − 1

2 + e−τ F3[w]. (6.156)

The function g(ξ) = 1
2 − ν1ξ

2
1 − ...− νN ξ2

N derived in (6.155) is a non-symmetric
stationary solution of the limit (τ = ∞) equation (6.156). A rigorous passage to the
limit τ →∞ in this equation is a difficult OPEN PROBLEM. Our solutions on WN+1
show that existence of the limit is plausible. In a similar fashion, solutions (6.151)
describe non-symmetric quenching of strictly positive analytic solutions as t → T−,
with the rescaled equation (6.156) and the same FBP that appears for t > T .
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The dynamic interface equation for this Stefan–Florin FBP is given by (6.148).
Since v already satisfies three free-boundary conditions (6.154), we do not need any
extra ones, so (6.148) plays the role of the regularity condition. Unlike the 1D case
in Example 3.10, in non-radial geometry, the von Mises transformation with x1 re-
placed by u (this applies to some typical geometries), X = X (u, x2, ..., xN , t), still
transforms the free boundary onto the hyperplane {u = 0}, but leads to more compli-
cated higher-order Neumann-like boundary constraints for the PDE satisfied by X .
Local existence and uniqueness for such problems are OPEN.

Example 6.74 (Stabilization) Consider the TFE with the unstable second-order
diffusion operator

vt = −∇ · (v∇
v) −∇ · (√v ∇v) in IR N × IR+. (6.157)

Then u = √v solves the following cubic equation:

ut = − 1
2 u
2u2 −∇u · ∇
u2 − u
u − 2|∇u|2.

Apparently, the second-order quadratic operator therein admits the subspace in Propo-
sition 6.73, so there exist exact solutions (6.151) with the governing DS{

C ′ = −( 1
2 
2u2 +
u

)
C,

a′k = −
( 1

2 
2u2 +
u
)
ak − 8(1+
u)a2

k − 32a3
k .

(6.158)

This system describes stability (stabilization) or instability of stationary solutions of
(6.157). It is easy to find the symmetric stationary solution for which

a1 = ... = ak = a = − 1
2(N+2) < 0. (6.159)

By the first ODE in (6.158), C(t) stabilizes exponentially fast to a constant B > 0,

u(x, t) = [B − 1
2(N+2) |x |2

]
+ + O(e−γ t ) as t →∞.

For non-symmetric stationary solutions, a complicated algebraic system occurs that
can have solutions other than the symmetric one (6.159). For instance, in IR2, there
exists the solution of changing sign with a1 = 1

18 and a2 = − 2
9 , where a1+a2 = − 1

6 .
In this case, at the stationary point, C(t) converges to zero, and the solution exhibits
the following large time behavior:

u(x, t) = (e− 8
9 t + 1

18 x2
1 − 2

9 x2
2 + ...

)
+ .

This means stabilization to an unbounded stationary solution, with the free boundary
composed of two intersecting straight lines. Stability problems are OPEN.

Example 6.75 (2mth-order TFEs) Consider two 2mth-order TFEs

vt = (−1)m+1∇ · (v∇
m−1v)− v
m−1

m ,

vt = (−1)m+1∇ · (v∇
m−1v)−∇ · (v 1
m∇vz

)
.

Transformation v = um yields

ut = (−1)m+1
( 1

m u
mum +∇u · ∇
m−1um
)− 1

m ≡ Fm+1[u]− 1
m ,

ut = Fm+1[u]− (u
u + m|∇u|2),
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where the operator Fm+1 satisfies Proposition 6.73. Therefore, solutions (6.151) can
be constructed, where, in deriving the DS, 
mum = (2m)!

∑
am

i . It follows that
solutions of the original equations

v(x, t) = [C(t)+ a1(t)x2
1 + ...+ aN (t)x2

N

]m
+

satisfy the zero contact angle condition, as well as the zero-flux one,

∇v = ... = ∂m−1

∂nm−1 v = v ∂
∂n
m−1v = 0 at the interface.

The first model describes finite-time extinction or quenching with a singular per-
turbed rescaled first-order PDE (an OPEN PROBLEM), while the second PDE is suit-
able for studying stabilization to stationary solutions (also hard and OPEN).

Example 6.76 As a further generalization of the TFEs, for a fixed parameter n �= 0,
let us introduce another pair of 2mth-order equations in IRN × IR+,

vt = (−1)m+1∇ · (v
m−1vn
)− v

m−n
m ,

vt = (−1)m+1∇ · (v
m−1vn
)−∇ · (v n

m∇v
)
.

We use the transformation v = uµ with µ = m
n to get

ut = (−1)m+1
( n

m u
mum +∇u · ∇
m−1um
)− n

m ≡ Fm+1[u]− n
m ,

ut = Fm+1[u]− (u
u + m
n |∇u|2),

where the operator Fm+1 admits the subspace from Proposition 6.73. Thus, we can
proceed as usual, using the same formulae in describing singular phenomena.

6.6.3 Blow-up and extinction for n = − 6
N+2

Interesting singularity phenomena can be described by using radially symmetric
functions from the subspace

W2 = L{1, |x |2}. (6.160)

Our basic model is the TFE with source (for n < 0) or absorption (for n > 0),

vt = −∇ ·
(
vn∇
v

) − 3
n v

3−n
3 in IRN × IR+. (6.161)

Setting v = uµ, with µ = 3
n , yields a PDE with a quartic operator which can be

analyzed in a manner similar to Proposition 3.7. Then the last reaction-absorption
term in (6.161) reduces to −1, and we obtain the PDE

ut = − 1
µ u1−µ∇ · (u3∇
uµ

)− 1 ≡ F4[u]− 1. (6.162)

Using the radial form of the operator,

F4[u] = − 1
µ u1−µ 1

r N−1

[
r N−1u3

( 1
r N−1 [r N−1(uµ)′r ]′r

)′
r

]′
r ,

we arrive at the following conclusion:

Proposition 6.77 Operator F4 in (6.162) admits subspace (6.160) iff

(µ− 1)
(
4µ2 + 4Nµ+ N2 − 4

) = 0,
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i.e., in the following three cases:
(i) n = 3 (µ = 1);
(ii) n = − 6

N−2 for N �= 2
(
µ = − N−2

2

)
; and

(iii) n = − 6
N+2

(
µ = − N+2

2

)
.

Example 6.78 (Single point blow-up and extinction) Take n = − 6
N+2 and con-

sider the TFE with source

vt = −∇ ·
(
v−

6
N+2∇
v

)+ N+2
2 v

N+4
N+2 . (6.163)

The corresponding exact solutions are

v(x, t) = u
3
n (x, t) = [C1(t)+ C2(t)|x |2

]− N+2
2 ,{

C ′1 = aC2
1C2

2 − 1,
C ′2 = −bC1C3

2 ,
(6.164)

where a = 2N(N + 2)(N + 4),

b = 12(N + 2)(N + 4), so that

a − b = 2(N + 2)(N + 4)(N − 6) > 0 for N > 6.
Figure 6.4 shows the phase-plane of the equivalent first-order ODE

dC2
dC1

= bC1C3
2

1−aC2
1 C2

2
(6.165)

in the case N > 6. We show there the infinity-cline (the dashed line) and the separa-
trix (the bold-face curve) with the equations

C2 = 1√
a

1
C 1 and C2 = 1√

a−b
1

C1
, (6.166)

respectively. The separatrix separates two classes of orbits with different evolution.
These are:
(I) The positive orbits {C1(t),C2(t)} below the separatrix which end up the evolution
at finite points on the C2-axis. This means blow-up of the exact solutions.
(II) Neglecting 1 in the denominator in (6.165) yields for C1 � 1,

dC2
dC1

= − b
a

C2
C1
+ ... �⇒ C2 = DC

− b
a

1 + ... , where b
a = 6

N , (6.167)

where D > 0 is a constant. Then

aC2
1 C2

2 ∼ C
2(1− b

a )

1 � 1 for C1 � 1,

provided that a > b, i.e., N > 6. This gives monotone decreasing orbits above the
separatrix, which actually describe the extinction of small solutions in the pure TFE
(6.163) without the source term. Let us present some details.

(I) Single point blow-up. According to Figure 6.4, for all positive initial values
{C1(0),C2(0)} below the separatrix, C1(t) vanishes in finite time with the behavior

C1(t) = T − t + ... as t → T−,

while C2(t) has a finite limit, C2(t) → ν > 0 as t → T−. Then u(x, t) is strictly

© 2007 by Taylor & Francis Group, LLC



322 Exact Solutions and Invariant Subspaces

C1

C2

(I)

(II)

(III)

Blow-up

0

Extinction

Separatrix

Figure 6.4 The phase-plane of (6.165) for N > 6: blow-up (I) and extinction (II) orbits.

positive in IRN×(0, T ), and hence, is a smooth solution of the TFE (and moreover is
analytic by classical theory of uniformly parabolic PDEs with analytic coefficients).
Translating this behavior to the original function v(x, t) yields the following blow-up
behavior of the exact solutions:

v(x, t) = [C1(t)+ C2(t)|x |2
]− N+2

2 ≈ (T − t + ν|x |2)− N+2
2

= (T − t)− N+2
2
(
1+ ν|ξ |2)− N+2

2 ≡ (T − t)− N+2
2 g(ξ),

(6.168)

where ξ = x/
√

T − t is the corresponding spatial rescaled variable. As usual, ac-
cording to these asymptotics, we introduce the rescaled function

v(x, t) = (T − t)−
N+2

2 w(ξ, τ ), where τ = − ln(T − t),

which satisfies a singular perturbed Hamilton–Jacobi equation of the form

wτ = − 1
2 ∇w · ξ − N+2

2 w + N+2
2 w

N+4
N+2 − e−2τ∇ · (w− 6

N+2∇
w
)
.

Passage to the limit τ → ∞ to get the rescaled stationary profile g(ξ) given in
(6.168) for a class of solutions is an OPEN PROBLEM.

It follows from (6.168) that the final-time profile for these single point blow-up
solutions is as follows:

v(x, t)→ v(x, T−) = (ν|x |2)− N+2
2 as t → T−.

(II) Generic finite or infinite-time extinction. On the other hand, if positive initial
values {C1(0),C2(0)} lie above the separatrix in Figure 6.4, the ODE (6.165) yields
(6.167) as C1 →+∞. Then the first equation from the DS (6.164) implies

C ′1 = a D2Cγ
1 + ... , with γ = 2

(
1− 6

N

)
. (6.169)
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If γ > 1, i.e., N > 12, C1(t) blows up in finite time with the behavior

C1(t) =
[
(γ − 1)a D2(T − t)

]− N
N−12 (1+ o(1)).

In terms of the original solution v(x, t), we obtain the finite-time extinction pattern

v(x, t) ≈ (T − t)
N(N+2)
2(N−12)

(
ν1 + ν2|ζ |2

)− N+2
2 , ζ = x(T − t)

N+6
2(N−12) , (6.170)

where ν1,2 > 0 are some constants. This extinction is due to the singular character of
the higher-order diffusion operator, where the negative exponent n = − 6

N+2 mimics
a very fast diffusion with non-zero flux at x = ∞. This phenomenon is common for
the second-order quasilinear fast-diffusion equations (see Remarks), but, for higher-
order TFEs, it is not well understood and creates many OPEN PROBLEMS.

If γ = 1 in (6.169), i.e., N = 12, we have

C1(t) ∼ ea D2t for t � 1,

and obtain exponentially decaying patterns v(x, t) ∼ e−7a D2t as t → +∞. For
γ < 1, i.e., N ∈ (6, 12),

C1(t) ∼ t
N

12−N �⇒ v(x, t) ∼ t−
N(N+2)
2(12−N) as t →∞,

so the solution v(x, t) has infinite-time extinction with a power-like decay.

(III) Separatrix behavior for N > 6. This new, most probable, unstable behav-
ior corresponds to the separatrix in (6.166). Then from the second ODE in (6.164),

C2(t) =
√

a−b
b

1
t , and finally we find the following new explicit solution of the TFE

(6.163):

v(x, t) = t− N+2
2
( 6

N−6 + 1
6

√
N−6

2(N+2)(N+4) |ξ |2
)− N+2

2 , where ξ = x
t .

6.6.4 On some extensions of polynomial subspaces

Quadratic operators. Extended subspaces that are composed of higher-degree poly-
nomials exist for more general operators of the thin film type, such as

F[u] = αu
2u + β∇u · ∇
u + γ (
u)2, (6.171)

which is considered in radial geometry in IRN .

Proposition 6.79 Operator (6.171) preserves the following subspaces:

(i) W r
4 = L{1, |x |2, |x |4, |x |6} iff

2(N + 2)α + 12β + 3(N + 4)γ = 0; (6.172)

(ii) W r
5 = L{1, |x |2, |x |4, |x |6, |x |8} iff (6.173){

(N + 4)(3N + 14)α + 4(5N + 26)β + 4(N + 4)(N + 6)γ = 0,

3(N + 4)α + 24β + 4(N + 6)γ = 0,
(6.174)

i.e., for α = 2(N−2)
N+4 β and γ = − 3(N+2)

2(N+6)β.
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Proof. (i) The condition in (6.172) annuls the terms containing |x |8 in F[u]. (ii)
(6.174) annuls all terms in F[u] containing |x |10 and |x |12.

It is easy to check that (6.171) does not preserve the 6D subspace

W r
6 = L{1, |x |2, |x |4, |x |6, |x |8, |x |10}

unless α = β = γ = 0. Using W r
6 yields the terms containing |x |12, |x |14, |x |16 and,

for annulling it, we obtain a homogeneous system of linear algebraic equations for
α, β, and γ that has a trivial solution only.

Example 6.80 Consider the fourth-order quasilinear parabolic PDE

ut = αu
2u + β∇u · ∇
u + γ (
u)2

for which the condition in (6.172) holds. Using subspace (6.172) with

u(x, t) = C1(t)+ C2(t)|x |2 + C3(t)|x |4 + C4(t)|x |6
yields the following DS:

C ′1 = 8αN(N + 2)C1C3 + 4γ N2C2
2 ,

C ′2 = 8(N + 2)(Nα + 2β + 2Nγ )C2C3 + 24α(N + 2)(N + 4)C1C4,

C ′3 = 8(N + 2)
[
Nα + 4β + 2(N + 2)γ

]
C2

3+ 24(N + 4)
[
(N + 2)α + 2β + Nγ

]
C2C4,

C ′4 = 8
[
4α(N + 2)(N + 3)+ 6β(3N + 10)+ 6γ (N + 2)(N + 4)

]
C3C4.

These solutions can be used for detecting interface equations for the corresponding
FBPs, and for revealing various quenching and extinction patterns (OPEN PROB-
LEMS).

On a cubic operator in IRN . As an example of another type, consider a cubic oper-
ator of the form

F[u] = −
2l(au3 + bu2 + cu) for l = 1, 2, ... . (6.175)

Proposition 6.81 Operator (6.175) admits W r
l+1 = L{1, r2, ..., r2l}.

In particular, solutions on W r
l+1 describe the fine structure of singularity formation

for the quasilinear parabolic equation with absorption

ut = −
2l(u3)− 1,

where a suitable FBP should be posed.

6.6.5 On remarkable thin film operators in IR2

In the second-order case in Section 6.3, we have studied the remarkable operator
(6.57), exhibiting a variety of invariant properties. Such related remarkable operators
exist in thin film theory.

First remarkable operator. Let us begin with special properties of the following
thin film operator:

F1[u] = −u
2u − (
u)2 + 2∇u · ∇
u for (x, y) ∈ IR2. (6.176)
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This is a 2D version of the special operator (3.125) with β = −1. According to
Proposition 3.19, we expect that (6.176) still inherits extended invariant properties of
the 1D operator, so that invariant subspaces can be composed of both trigonometric
and hyperbolic functions.

Proposition 6.82 Operator (6.176) admits

W4 = L{1, cosh 2x, cos 2y, cosh x cos y}.
Proof. The following holds:

u = C1 + C2 cosh 2x + C3 cos 2y + C4 cosh x cos y �⇒ (6.177)

F1[u] = −32
(
C2

2 + C2
3

)− 16C1C2 cosh 2x

−16C1C3 cos 2y − 16(C2 + C3)C4 cosh x cos y.
(6.178)

Example 6.83 (TFE with absorption) Exact solutions (6.177) of the TFE

ut = −u
2u − (
u)2 + 2∇u · ∇
u − 1 in IR2 × IR+
describe extinction or quenching phenomena. The DS follows from (6.178).

Second remarkable operator. The thin film operator

F2[u] = −u
2u + (
u)2

is associated with the same second-order one (6.57), but in a different manner. To be
precise, there exist solutions (6.86) associated with invariant modules for

F̂2[u] = ut − F2[u].

Example 6.84 Consider the fourth-order parabolic PDE

ut = α[−u
2u + (
u)2]+ β(u
u − |∇u|2) in IR2 × IR+.

Then there exist solutions (6.86), where the DS takes the form

C ′1 = −β
(
C2

2 + C2
3 ),

C ′2 = C ′3 = 0,

C ′4 =
[−α

(
γ 2

1 + γ 2
2

)2 + β
(
γ 2

1 + γ 2
2

)]
C1C4 − 2β(γ1C2 + γ2C3)C4,

γ ′1 = −α
(
γ 2

1 + γ 2
2

)2
C2 + β

(
γ 2

1 + γ 2
2

)
C2,

γ ′2 = −α
(
γ 2

1 + γ 2
2

)2
C3 + β

(
γ 2

1 + γ 2
2

)
C3.

(6.179)

The DS for γ1,2 is integrated in quadratures, but solutions are not explicit.

Example 6.85 (2mth-order remarkable operators) For higher-order operators,
similar invariant properties in IR2 are exhibited by

F2[u] = −u
2mu + (
mu)2 and F2[u] = u
2m−1u − |∇
m−1u|2,
which, for any m = 1, 2, ..., are elliptic in the positivity domain of u. Parabolic PDEs
with such operators generate the DSs, such as (6.179). The resulting solutions are
convenient for studying the interface propagation in FBPs, as well as for describing
quenching and extinction singularity formation phenomena.
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6.7 Moving compact structures in nonlinear dispersion equations

Continuing the study of compactons in IR N that was began in Section 4.5, we extend
the above results to PDEs of nonlinear dispersion types. Let F[u] be a higher-order
operator admitting the subspace of quadratic and linear functions,

W2N+1 = L{1, x2
1 , ..., x2

N , x1, ..., xN
}
, (6.180)

e.g., F = F3 given in (6.150). Let F̂[u] be a simpler operator admitting W2N+1, for
instance,

F̂[u] = γ u with a constant γ �= 0.

Looking for compact structures moving in the x1-directions, consider the PDE

ut =
(
F[u]+ F̂[u]

)
x1
, (6.181)

where the “inhomogeneous” lower-order term with F̂ is necessary to initiate such
a drift. For the operator in (6.150), this is a fifth-order nonlinear dispersion equa-
tion, while choosing the second-order operator (6.1) yields a third-order PDE similar
to those studied in Section 4.2 in 1D. In general, F can be composed from vari-
ous second and higher-order operators admitting the necessary subspace. Using the
2mth-order operator from Proposition 6.70 needs another subspace

Ŵ = L{1, x2m
1 , ..., x2m

N , x2m−1
1 , ..., x2m−1

N , ...
}
.

For the subspace (6.180), we look for solutions

u(x, t) = C(t)+ a1(t)x
2
1 + ...+ aN (t)x2

N + d1(t)x1 + ...+ dN (t)xN , (6.182)

and obtain a standard DS for expansion coefficients. Note that the differentiation Dx1

on the right-hand side of (6.181) implies that

a′1 = a′2 = ... = a′N = 0,

d ′2 = ... = d ′N = 0.

This suggests that solutions (6.182) can describe dynamics around the radial TW
compactons moving in the x1-direction,

uc(x, t) = f (y), where y =
√
(x1 − λt)2 + x2

2 + ...+ x2
N . (6.183)

Plugging (6.183) into (6.181), and integrating once in y with the zero constant of
integration, yields the radial ODE for f ,

−λ f = F[ f ]+ F̂[ f ], (6.184)

where 
, 
2 and other differential forms in F and F̂ are calculated in radial y-
geometry. Equation (6.184) possesses stationary, independent of t solutions (6.182).
More complicated dynamics on W2N+1 or Ŵ (not necessarily associated with TWs)
and compact patterns exist for the corresponding second-order PDE

utt =
(
F[u]+ F̂[u]

)
x1
.
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Example 6.86 (Compacton TWs in IR N ) For instance, take F = F3 as in (6.150)
and the simplest F̂[u] = γ u, i.e., the PDE

ut =
(− 1

2 u
2u2 − ∇u · ∇
u2 + γ u
)

x1
. (6.185)

Looking for solutions moving in the x1-direction (cf. (6.151)),

u(x, t) = C + a1(x1 − λt)2 + a2x2
2 + ...+ aN x2

N ,

(6.153), we obtain the following projection of the PDE onto 2(x1 − λt):

−λa1 = − 1
2 (


2u2)a1 − 16(tr A)a2
1 − 32a3

1 + γ a1.

Assuming for simplicity that a1 = a2 = ... = aN = a (obviously, there exist other
not that symmetric solutions) yields by (6.152)


2u2 = 8(tr A)2 + 16
∑

a2
i = 8N(N + 2)a2, so

γ + λ = 4N(N + 2)a2 + 16Na2 + 32a2 = 4(N + 2)(N + 4)a2.

This gives the explicit moving compacton for λ > −γ ,

uc(x, t) = [B − 1
2

√
γ+λ

(N+2)(N+4)

(
(x1 − λt)2 + x2

2 + ...+ x2
N

)]
+,

where B = C(0) > 0. Thus, solutions on the invariant subspace (6.182) can describe
more complicated non-radial dynamics around the TW uc(x, t).

As in the TFE model (6.150) and in Example 6.74, the transformation of such
nonnegative solutions on W2N+1 (or on Ŵ ) into solutions with a zero contact angle
on interfaces is done by setting v = u2, so that (6.181) reads

vt = 2
√
v
(
F[
√
v]+ F̂[

√
v]
)

x1
. (6.186)

In view of our analysis of oscillatory behavior of compacton equations in Sections
4.2 and 4.3, such solutions of the (2m+1)th-order PDE (6.186) on polynomial invari-
ant subspaces Ŵ satisfy the Cauchy problem for m = 1 only, while for m ≥ 2, these
need a suitable FBP setting.

For the CN (m, a + b) equation that describes the sedimentation of particles in a
dilute dispersion (see [494] for further references and applications)

vt + (vm)x + 1
b

[
va(
vb)

]
x1
= 0 (v ≥ 0),

there exist almost explicit TWs (6.183) in IR × IR3 for m = a = 1 + b and m = 2,
a + b = 3; see [497]. For such third-order PDEs, these solutions do not belong to
polynomial invariant subspaces.

6.8 From invariant polynomial subspaces in IRN to invariant trigonometric
subspaces in IRN−1

In this section, we deal with trigonometric subspaces in the multi-dimensional case.
We show that, using simple polynomial subspaces for quadratic operators in IRN
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substituting into (6.185), and using the right-hand side of the first equation in the DS
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in spherical coordinates, it is possible to generate various trigonometric subspaces
for classes of nonlinear operators in IRN−1. Actually, excluding a few examples,
trigonometric subspaces in IRN for N ≥ 2 have not been treated before in a sys-
tematic manner, and their existence was associated with rather technical algebraic
manipulations. Now, we link such trigonometric subspaces with simpler polynomial
ones for quadratic second and higher-order operators.

6.8.1 Second-order operators

Operators in IR2. We begin with a simple example. Consider the quadratic hyper-
bolic PDE

utt = F[u] ≡ u
u + γ |∇u|2 in IR2 × IR. (6.187)

By Proposition 6.1(ii), there exist solutions given by a general quadratic form (the
free coefficient C(t) ≡ 0)

u(x, t) = x T A(t)x ≡ a1,1(t)x
2
1 + 2a1,2(t)x1x2 + a2,2(t)x

2
2 ,

ordinates on the plane {
x1 = r cos θ,
x2 = r sin θ,

(6.188)

gives the finite trigonometric expansion

u(x, t) = r2
(
a1,1 cos2 θ + 2a1,2 cos θ sin θ + a2,2 sin2 θ

)
≡ r2(C1 + C2 cos 2θ + C3 sin 2θ),

where C1 = 1
2 (a1,1 + a2,2), C2 = 1

2 (a1,1 − a2,2), and C3 = a1,2. Therefore,

u(x, t) = r2U(θ, t), where U(θ, t) ∈ W3 = L{1, cos 2θ, sin 2θ} (6.189)

belongs to a standard trigonometric subspace for ordinary differential operators; cf.
Proposition 1.29. Let us derive a PDE for the function U by using that


 = 
r + 1
r2 
σ , (6.190)

where 
r is the radial part of the Laplacian in IR2, and 
σ is the Laplace–Beltrami
operator on the circle S1,


r = ∂2

∂r2 + 1
r

∂
∂r and 
σ = ∂2

∂θ2 .

By the polar representation of the gradient{
ux1 = ur cos θ + uθ

sin θ
r ,

ux2 = ur sin θ − uθ
cos θ

r ,
(6.191)

it is easy to see that |∇u|2 = (ur )
2 + 1

r2 (uθ )
2. Substituting (6.189) into the original

equation (6.187) yields the following hyperbolic PDE:

Utt = F̂[U ] ≡ UUθθ + γ (Uθ )
2 + 4(1+ γ )U2,
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where the expansion coefficients satisfy a DS; see (6.11). Introducing the polar co-
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so the standard operator F̂ preserving the subspace W3 in (6.189) is detected.

Operators in IR3 and IR N . Similarly, for such second-order parabolic or hyperbolic
PDEs in IR N , using the spherical coordinates in N-dimensional geometry explains
how the polynomial subspaces, such as (6.5) or (6.4), generate the multi-dimensional
trigonometric subspaces spanned by the cos, sin, and the products of such functions
of all the N-1 spherical angles. An example of such subspaces has been considered
in Proposition 6.42 for the remarkable quadratic operator. Let us present another
example in IR3, showing how the trigonometric subspaces in IR2 can be constructed
for more general operators.

Example 6.87 (Deriving PME with source) Consider the quadratic PME

ut = 
(u2) in IR3 × IR+ , (6.192)

for which the main computations are quite simple. On the 6D polynomial subspace
(6.5), exact solutions are

u(x, t) = a1,1x2
1 + a2,2x2

2 + a3,3x2
3 + 2a1,2x1x2 + 2a1,3x1x3 + 2a2,3x2x3. (6.193)

Introducing the spherical coordinates in IR3 with two angles σ = {θ, ϑ},{ x1 = r sinϑ cos θ,
x2 = r sinϑ sin θ,
x3 = r cosϑ,

(6.194)

and plugging into (6.193) yields

u(x, t) = r2U(σ, t) ≡ r2(a1,1 sin2 ϑ cos2 θ

+ a2,2 sin2 ϑ sin2 θ + a3,3 cos2 ϑ + 2a1,2 sin2 ϑ sin θ cos θ

+ 2a1,3 sin ϑ cosϑ cos θ + 2a2,3 sin ϑ cosϑ sin θ).

Here U belongs to the 8D trigonometric subspace

W tr
8 = L{1, cos 2θ, sin 2θ, cos 2ϑ, sin 2ϑ cos θ,

sin 2ϑ sin θ, cos 2ϑ cos 2θ, sin 2θ cos 2ϑ}.
Let us next derive the corresponding equation with a quadratic operator preserv-

ing such a subspace. Using (6.190) with the Laplace–Beltrami operator on the unit
sphere S2 in IR3


σ = 1
sinϑ

∂
∂ϑ

(
sin ϑ ∂

∂ϑ

)+ 1
sin2 ϑ

∂2

∂θ2 . (6.195)

Substituting u = r2U into (6.192) gives

r2Ut = r2
σU2 +U2
rr4,

which yields the following PME with source:

Ut = 
σU2 + 20 U2 in S2 × IR+.

This PDE generates blow-up, so exact solutions describe interesting features of such
localized patterns. The blow-up is regional here and these solutions explain proper-
ties of a non-symmetric, non-radial singular behavior.
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6.8.2 Higher-order operators

Space IR2. We begin with the quadratic thin film equation

ut = F[u] ≡ −∇ · (u∇
u) in IR2 × IR+.

Taking the polynomial subspace as in (6.137) yields solutions

u(x, t) = (x2)T A(t)x2 ≡ a1,1(t)x
4
1 + 2a1,2(t)x

2
1 x2

2 + a2,2(t)x
4
2 .

In polar coordinates (6.188), this gives the trigonometric expansion

u(x, t) = r4
(
a1,1 cos4 θ + 2a1,2 cos2 θ sin2 θ + a2,2 sin4 θ

)
≡ r4(C1 + C2 cos 2θ + C3 cos 4θ) ≡ r4U(θ, t),

(6.196)

so U ∈ W3 = L{1, cos 2θ, cos 4θ}. Using formulae (6.190) and (6.191) yields the
following quadratic PDE for the function U in (6.196):

Utt = −UUθθθθ − UθUθθθ − 28 UUθθ − 16 (Uθ )
2 − 192 U2,

with a more general quadratic operator than those in Proposition 3.16. Using other
polynomial subspaces in Proposition 6.68 leads to extended trigonometric ones.

Example 6.88 (2mth-order equations) This approach applies to higher-order op-
erators. For instance, consider the 2mth-order quadratic wave equation

utt = (−1)m+1
m(u2) in IR2 × IR, (6.197)

which is hyperbolic in the positivity domain {u > 0}. As in Proposition 6.70, we
take the polynomial solutions

u(x, t) =∑(i+ j=m) ai, j (t) x2i
1 x2 j

2 .

In polar coordinates, this yields the trigonometric expansion

u = r2mU ≡ r2m ∑ ai, j (t) cos2i θ sin2 j θ,

so that U belongs to the trigonometric subspace

L{1, cos 2θ, cos 4θ, ..., cos 2mθ}.
The operator preserving this subspace is obtained by plugging u = r2mU into the
PDE (6.197),

Utt = Fm [U ] ≡ 1
r2m (−1)m+1

(

r + 1

r2 
σ

)m
(r4mU2).

For instance, for m = 3,

F3[U ] = 
3
σ (U

2)+ 308 
2
σ (U

2)+ 30016 
σ(U
2)+ 921600 U2,

with the trigonometric subspace

W4 = L{1, cos 2θ, cos 4θ, cos 6θ}.
This subspace can be extended to 7D by adding necessary sin functions.
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Space IRN . As in the second-order case, polynomial subspaces for operators in IRN

detect the trigonometric ones in IR N−1. Consider an example in IR3.

Example 6.89 The fourth-order equation which is parabolic in {u > 0},
ut = −
2(u2) in IR3 × IR+, (6.198)

admits polynomial solutions

u(x, t) =∑(i+ j+k=2) ai, j,k(t) x2i
1 x2 j

2 x2k
3 (6.199)

u = r4U ≡ r4∑ ai, j,k(sin ϑ cos θ)2i (sinϑ sin θ)2 j cos2k ϑ,

where U belongs to the subspace

L{cos(2iθ) cos(2 jϑ), 0 ≤ i, j ≤ 2}.
Substituting u = r4U into (6.198) gives a quadratic equation for U(σ, t),

Ut = −
2
σ (U

2)− 114 
σ(U2)− 3024 U2,

where 
σ is the Laplace–Beltrami operator (6.195).

Remarks and comments on the literature

As has been mentioned, the general theory of annihilating operators and annihilators of finite-
dimensional invariant modules in IRN was developed in [312]. “The formulae for the affine
annihilators and annihilators are often extremely complicated, even for relatively simple sub-
spaces” [312, p. 316], so general results are often difficult to apply in practice.

§ 6.1. Some of the results are taken from [220] and [239]. For the PME, polynomial exact
solutions were obtained in [342], where the resulting DS was carefully studied. A general the-
orem on finite-dimensional subspaces of analytic functions of several variables was obtained in
[312] (similar to the Main Theorem in Section 2.1 in 1D), where a complete description of the
set of operators preserving a given subspace was obtained. The Ernst equation (6.13) in Exam-
ple 6.5 is connected with the sdYM equation; see [1] and comments below. Non-symmetric
blow-up and extinction on multi-dimensional polynomial subspaces for the quasilinear heat
equation

ut = ∇ · (uσ∇u) ± u1−σ

(as well as for (6.41)) were studied in [235]. On group classification of semilinear and quasi-
linear heat equations in IRN × IR+, see [10, pp. 144-163], [121] for

ut = ux x + uyy + F(t, x, y, u, ux , uy),

and references therein for more recent results.
Concerning general matrix equations, such as (6.9), note that the quadratic first-order and

related second-order cubic equations

A′ = A2 + B and A′′ = 2A3 + B A+ AB,

where B is a constant matrix, are integrable and indeed solvable [84, 301]. A related matrix
equation

A′ = −(tr A)A+ (adj A)A+ AT A (adj A = (det A)A−1) (6.200)
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(cf. subspace (6.142)). Using in (6.199) the spherical coordinates (6.194) yields
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appears [102] in the process of reduction of the self-dual Yang–Mills (sdYM) equations (a
system of equations for Lie algebra-valued functions on C4). In IR3, introducing simple fac-
torization, (6.200) can be transformed into a quadratic system [1]

ω′1 = ω2ω3 − ω1(ω2 + ω3)+ τ2,

ω′2 = ω3ω1 − ω2(ω3 + ω1)+ τ2,

ω′3 = ω1ω2 − ω3(ω1 + ω2)+ τ2,

(6.201)

where τ2 = τ2
1 + τ2

2 + τ2
3 and {

τ ′1 = −τ1(ω2 + ω3),
τ ′2 = −τ2(ω3 + ω1),
τ ′3 = −τ3(ω1 + ω2).

For τ = 0, (6.201) is the classical Darboux–Halphen system derived by Darboux (1878) in the
analysis of triple orthogonal surfaces [140], and later solved by Halphen (1881) [277] using
linearization in terms of Fuchsian differential equations with three regular singular points. In
the case where τ = 0, the function y = −2(ω1 + ω2 + ω3) satisfies the Chazy equation

y′′′ = 2yy′′ − 3(y′)2,

which is explicitly solved in terms of solutions of a linear hypergeometric equation [104].
Given a solution y(t), the three distinct roots ω1(t), ω2(t), and ω3(t) of the cubic equation

ω3 + 1
2 yω2 + 1

2 y′ω + 1
12 y′′ = 0

solve the Darboux–Halphen system (6.201) with τ = 0. See [1] for a survey, multiple refer-
ences, and many reductions of the sdYM equations to integrable PDEs.

It seems that second-order quadratic equations for A in (6.9) occurring in the hyperbolic
case are not solvable even in the class of diagonal matrices. The first-order equations, such as
given in (6.12), are indeed solvable.

Proposition 6.13 and related examples were taken from [239]. Such solutions were first
observed in [453] for diffusion-absorption equations in IR (see also [435], where the pseudo-
symmetries were used), and further extensions to parabolic and wave PDEs were developed in
[341] (Example 6.17 deals with a slight modification of an equation from this paper). Example
6.19 explains the invariant subspace essence of particular exact solutions in 1D with L =
D2

x + α I that were constructed in [325, p. 1409], by determining a third-order differential
constraint.

Exact solutions of the LRT equation (6.28) were studied in a number of papers; see [504,
505] and further references in [133, 267]. Invariant and partially invariant solutions were con-
sidered in [567, 566]. Local and global (for small initial data) existence results can be proved
for the viscosity LRT equation (6.32), [375]. A group classification and some exact solutions
of (6.33) are presented in [10, p. 301].

Notice a quadratic system from binormal flow

Xt = Xs ×Xss ≡ Xt×Xtt
(s ′)3

for curves {X(·, t), t > 0} in IR3, which are parameterized by the arclength s. This equation
of the evolution of isolated vortexes in an inviscid liquids was proposed by Da Rios in 1906,
whose study established the first geometric link between soliton theory and the motion of
inextensible curves. Nowadays this equation is used as an approximate model for a vortex tube
of infinitesimal cross section X(·, t) described by Euler equations; see details and references
in [275], where similarity solutions were constructed.

§ 6.2. Proposition 6.24 is taken from [220]; see also [343]. The subspace in Proposition 6.29
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and the corresponding exact solutions play the key role in asymptotic analysis of the critical
fast diffusion equation as explained in [245, Sect. 6]. The transformation in Example 6.31 is
given in [343], where further extensions are available. Subspace (6.53) in Proposition 6.32
was obtained in [439] by using a nonclassical symmetry approach. In [439, p. 130], a 3D non-
polynomial subspace (governed by an ODE with non-constant coefficients) was detected for
the 1D operator F[u] = uux x − 3

4 (ux )
2, which is studied and applied throughout this book.

§ 6.3. The results, transformations and reductions around (6.62)–(6.67) are taken from [540,
542]. In the representation of the results, we have used several ideas from [343]. The subspace
(6.80) was constructed in [220, 232]. For equation

vt = 
 ln v,

a solution similar to that in Example 6.47 was constructed in [323] by deriving an invari-
ant manifold via a pair of vector fields not belonging to the algebra of symmetries of the
equation. A similar technique was applied there to obtain some solutions on the 6D subspace
L{1, x, y, x2, xy, y2}. Solutions of the type (6.86) of equation (6.58) were obtained in [325]
by compatible differential constraints.

Polynomial subspaces are also typical for quadratic operators in IR2 that appeared in the
Gibbons–Tsarev (1.63) and Prandtl (1.145) equations. A similar operator is available in the
(2+1)-dimensional integrable breaking soliton equation [93]

uxt = −ux x xy + 4ux uxy + 2uyux x in IR2 × IR, (6.202)

which describes the interaction of a Riemann wave along the y-axis and a long wave along the
x-axis. See its N-solitons and algebro-geometric solutions in [248], where further details can
be found. Clearly, (6.202) possesses low-dimensional solutions on the 2D subspace,

u(x, y, t) = C1(x, t)+ C2(x, t)y ∈ W2 = L{1, y},{
C1xt − 4C1x C2x − 2C2C1x x + C2x x x = 0,
C2xt − 4(C2x )

2 − 2C2C2x x = 0.

This is an alternative invariant treatment of solutions in [584], which correspond to the simple
choice C2 = C2(t) is arbitrary (the first ODE is then integrated). Similar solutions on W2
exist for other PDEs, such as (6.202), and are not necessarily integrable.

These PDEs suggest a general quasilinear quadratic operator with the parameter β,

F[u] = ux uxy + βuyux x in IR2.

Apparently, for any β, the basic subspace is W7 = L{1, x, y, x2, xy, y2, x2 y}, while, for
β = −2, there exists the extended

W8 = L{1, x, y, x2, xy, y2, x2 y, x2 y2}.
The value β = 1

2 occurs in the potential Calogero–Bogoyavlenskij–Schiff equation

uxt + 1
4 ux x xz + ux uxz + 1

2 uzux x = 0,

and in a two-directional generalization of the potential KP equation

uxt + 1
4 ux x xz + ux uxz + 1

2 uzux x + 1
4 D−1

x (uzzz) = 0.

This is an integrable PDE possessing N-soliton solutions. See references and results in [586],
where the technology of solving the related cubic trilinear equation for τ , given by u = 2τx

τ
(unlike the KdV equation that is reduced to a quadratic bilinear one) by Baker–Hirota-type
differential operators is explained.
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For existence, uniqueness, and regularity for the odd-order PDEs, such as KdV, KP, and
ZaK-type equations, see [381, 69, 179] and references therein.

§ 6.4. We follow [234]. Example 6.52 was used in [220, 232].

§ 6.5. The origin of fully nonlinear M-A equations dates back to Monge’s paper [427] in
1781, where Monge proposed a civil-engineering problem of moving a mass of earth from one
configuration to another in the most economical way. This problem has been further studied
by Appel [15] and Kantorovich [313, 314]; see references and a survey in [186].

The parabolic M-A equation associated with (6.113),

−ut detD2u = f in QT = �× (0, T ),

where � ⊂ IRN is a bounded smooth domain, was first introduced in [359]; see recent related
references in [274] and more general models like that in [516]. Note the pioneering paper by
Hamilton [278] on the evolution of a metric in direction of its Ricci curvature. Conditions of
the global unique solvability of the M-A equation associated with (6.119),

ut = (detD2u)
1
N + g in QT ,

were obtained by Ivochkina and Ladyzhenskaya [303]. This model corresponds to special
curvature flows. Potential properties of Hessian operators are described in [561]. Parabolic
M-A equations as gradient flows, and the related questions of the asymptotic behavior of
solutions, were studied, e.g., in [123, 516], where further references concerning various types
of Gaussian flows can be found. The classical Gauss curvature flow describes the deformation
of a convex compact surface % : z = u(x, y, t) in IR3 by its Gauss curvature and is governed
by the PDE

ut = detD2u
(1+|∇u|2)3/2 , (6.203)

which is uniformly parabolic on strictly convex solutions. Singularity formation phenomena
for (6.203) appear if the initial surface % has flat sides, where the curvature becomes zero
and the equation degenerate. This leads to an FBP for (6.203) with the unknown domain of
singularity, {(x, y) : u(x, y, t) = 0}, and specific regularity properties; see [143, 144] and
references therein. Alternatively, finite-time formation of non-smooth free boundaries with
flat parts is a typical phenomenon for blow-up solutions of the reaction-diffusion PDEs (see
the first equation in (6.207) below) via extended semigroup theory. In 1D, optimal regularity
of such C1,1-interfaces is well understood [226, Ch. 5]. For N > 1, the regularity problem
remains essentially OPEN; see some estimates and examples in [226, p. 151]. As a formal
extension, note that a nontrivial (u(x, t) �≡ 0) proper convex solution exists for such PDEs
with an arbitrarily strong (as u → 0) absorption term, e.g.,

ut = detD2u
(1+|∇u|2)3/2 − e1/u,

where a similar FBP occurs. Therefore, the parabolic operator of the Gauss curvature flow
is extremely powerful, in the sense that it prevents a complete extinction (i.e., u(x, t) ≡ 0
for arbitrarily small t > 0; this can happen for many other parabolic PDEs). For any initial
data with flat sides, {(x, y) : u0(x, y) = 0} �= ∅, this proper solution of the FBP can be
constructed by regular approximations of the equations and initial data by replacing e1/u �→
min{u

ε , e1/u}, with ε > 0, (a uniformly Lipschitz continuous approximation), and u0 �→ u0+
ε. Uniform a priori estimates for {uε} are obtained by local (near the interface) comparison
with 1D TW solutions or other radial sub- and super-solutions, [226, Ch. 7].

Concerning other nonlinearities, the elliptic M-A equation

(det D2u)
1

N+2 = − 1
u , u < 0, D2u > 0 in �, u = 0 on ∂�, (6.204)
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where � is a bounded convex domain in IRN , was derived by Loewner–Nirenberg [400] in the
study of the metric of the form− 1

u D2u (u is then treated as a section of a certain line bundle),
and was proved to admit a unique C∞ solution; see [108] and earlier references therein. The
general Hessian equation has the form

Sk(D2u) = (−u)p , u < 0 in �, u = 0 on ∂�, (6.205)

where � is a ball in IR N , N ≥ 3, and Sk is given by the elementary symmetric function

Sk(D2u) =∑(1≤i1<...<ik≤n) λi1 ...λik ,

with {λi } being the eigenvalues of the Hessian D2u (so k = 1 and k = n correspond to
the Laplace and the M-A operators, respectively). (6.205) is known to exhibit the critical
exponents

γ (k) = (N+2)k
(N−2k)+ ,

such that no smooth solution u < 0 exists for p ≥ γ (k), and a negative radial solution exists
for p ∈ (0, γ (k)); see [561] (nonexistence is proved by a Pohozaev-type inequality) and [117]
for extensions. For k = 1, γ (1) = N+2

N−2 is the critical Sobolev exponent. The nonexistence
result for the elliptic equation


u + u p = 0

is associated with Pohozaev’s classic inequality [464]. The exponents γ (k) above are to be
compared with the critical ones

γ (k) = N+2k
(N−2k)+ for elliptic PDEs − (−
)ku + |u|p−1u = 0,

where the existence-nonexistence results are proved by higher-order Pohozaev’s inequalities
[465] applied to general quasilinear 2kth-order PDEs.

This suggests generalized second-order M-A parabolic flows (or others with the elliptic
operator as in (6.203))

ut = (detD2u)m ± (−u)p, (6.206)

with some exponents m > 0 and p ∈ IR, that generate OPEN PROBLEMS concerning local
existence of convex solutions, free-boundary (degeneracy set) propagation, extinction, and
blow-up singularity patterns, etc. In a radial setting, where (6.206) reduces to a 1D quasilinear
parabolic PDE, the interface equations and their regularity, moduli of continuity of proper so-
lutions, waiting time phenomena, etc., are characterized by Sturmian intersection comparison
techniques, [226, Ch. 7]. For N > 1, the majority of the problems are OPEN, and particular
exact solutions might be key. Such models are natural counterparts of the PME with reac-
tion/absorption, and of thin film (or Cahn–Hilliard-type, n = 0) models,

ut = 
um ± u p and ut = −∇ · (|u|n∇
u) ±
|u|p−1u, (6.207)

that were studied throughout this chapter; cf. Example 6.61.
Basic properties of hyperbolic M-A equations are explained in [550, Ch. 16]. Quadratic

polynomials p(x) occur in the celebrated result of the theory of elliptic M-A PDEs, establish-
ing that any convex solution of the elliptic M-A equation

detD2u = 1 in IRN

is u(x) = p(x). This result is due to Jörgens (1954) for N = 2, Calabi (1958) for N = 3 ,4,
and 5 and to Pogorelov (1978) for any N ≥ 2 (see also [108] for a more general result). The
same conclusion holds for the Hessian quotient equation

Sk(D2u) = 1 for u(x) ≤ A(1+ |x|2) strictly convex,
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with any 1 ≤ k < N [24]. Similarly, if u(x, t) is a smooth solution of the parabolic PDE

−ut detD2u = 1 in IR N × IR+ ,

where u is convex in x , nonincreasing with t , and ut is bounded away from 0 and −∞, then
u(x, t) = Ct + p(x); see [273] for the results and a survey.

Fourth and higher-order M-A PDEs have been less well studied, though some of the equa-
tions correspond to classical geometric problems, and several general results have been es-
tablished. We refer to [585] (existence for mth-order elliptic M-A equations with the prin-
ciple operators in (6.131), where a Riemann–Hilbert factorization condition appears), [560]
(W1,p-regularity estimates for fourth-order M-A equations and establishing an analogy of the
Jörgens–Calabi–Pogorelov result for such PDEs), and [384] (homogeneous fourth-order PDEs
for affine maximal hypersurfaces), where further references are given.

The homogeneous equation |D4u| = 0 is a direct sum of two identical copies of the second-
order M-A equation (see [181])

vx x vyy − (vxy)
2 = 0. (6.208)

Similarly, the sixth-order equation |D6u| = 0 with the operator (6.129) decouples into three
copies of (6.208), [181]. Possibly, this means that some problems with such higher-order M-A
operators are associated with the second-order ones. In particular, the inhomogeneous equa-
tions |D4u| = 1, |D6u| = 1 might be handled by reduction to second-order equations, and
a result associated with the Jörgens–Calabi–Pogorelov theorem might be expected (though
some basics of such PDEs remain obscure).

§ 6.6, 6.7. Invariant subspaces (6.136) were obtained in [59], where it was shown that (i) the
4D extension with an extra singular component,

W r
4 = W r

4 ⊕ L{r2−N },
is also invariant, and (ii) the multi-dimensional subspace (6.139) in IR2 was found. This paper
contains a detailed description of interesting evolution properties of such solutions on invariant
subspaces, especially, in 2D. Example 6.76 is also based on the idea formulated in [59] for the
operator with m = 2 in IR2.

Concerning Example 6.78, extinction was studied for the fast diffusion equation

vt = ∇ · (v−σ∇v) in IRN × IR+ for N ≥ 3.

It is known that extinction happens for σ > 2
N [37], and, in the critical Sobolev case σ =

4
N+2 , the asymptotic behavior is driven by solutions in separate variables [230]; see [245,
Ch. 6] for more details about critical exponents for such PDEs.

§ 6.8. For the second-order operators, the idea of using the polar coordinates on the plane for
reducing the PME ut = 
um to the reaction-diffusion equation

ut = (um)x x + γ um

is due to King [342].

Open problems

• These are formulated in Examples 6.7 and 6.28, Section 6.3.2, Examples 6.57–
6.59, 6.61, 6.63, 6.64, 6.69, 6.71, 6.72, 6.74, 6.75, and 6.78.
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CHAPTER 7

Partially Invariant Subspaces, Invariant Sets,
and Generalized Separation of Variables

Here we more systematically apply the concept of partially invariant subspaces (invariant sets).
In general, partial invariance of Wn reduces the PDE to an overdetermined dynamical system
that may be inconsistent. We study a few classes of nonlinear operators for which such DSs
admit nontrivial solutions. Sometimes these exact solutions are easier to obtain by differential
constraints approach, or by sign-invariants which are the subject of Chapter 8.

Recall that, given an operator F , a set M ⊆ Wn is said to be invariant on the linear
subspace Wn , and then Wn is partially invariant if

F[M] ⊆ Wn .

7.1 Partial invariance for polynomial operators

7.1.1 Basic ideas and examples

Let us begin with an extension of the results on invariant subspaces in Section 1.5.2,
where we considered general quadratic operators

F[u] =∑(i, j ) ai, j Di
x u D j

x u, (7.1)

with the real symmetric matrix ‖ai, j‖ and the corresponding polynomial

P(X,Y ) =∑(i, j ) ai, j X i Y j .

We are looking for ODE reductions of PDEs with the operator (7.1) on the subspace

Wn = L{epk x , k = 1, ..., n}, where, for convenience, p1 = 0.

Let � = {p1, ..., pn} denote the set of all the exponents. Such finite-dimensional
subspaces are natural for N-soliton solutions of many integrable PDEs, including
the KdV, Harry Dym, and Boussinesq equations (see Section 4.1). Here we construct
exact solutions of non-integrable PDEs.

Consider the first-order (in time) quadratic PDE

ut = F[u] ≡∑(i, j ) ai, j Di
x u D j

x u. (7.2)

Let us look for solutions

u(x, t) =∑(k) Ck(t)epk x ∈ Wn for any t ≥ 0.
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Plugging into (7.1) yields

F[u] =∑(i, j )

(∑
(m,l) ai, j pi

m p j
l CmCle(pm+pl )x

)
≡∑(m,l) P(pm, pl)CmCl e(pm+pl )x .

(7.3)

Introducing, as before, the set

�′ = {pm + pl : pm, pl ∈ �, pm + pl �∈ �},
and denoting by n′ ≥ 1 its cardinal number, we need n′ conditions to guarantee that
F[u] ∈ Wn , where Wn then becomes invariant. Here it is assumed that there exists
at least one term e(pm+pl )x in (7.3) with pm + pl ∈ �′ that is obtained by two or
more multiplications of elementary exponential factors (a nontrivial correlation be-
tween exponential factors occurs). This gives the corresponding invariant conditions
depending not only on P , but also on expansion coefficients {C j }, unlike in the case
of invariant subspaces in Section 1.5. So � satisfies the following property:

∃ pairs {pm, pl} �= {pm′, pl′ } such that pm + pl = pm′ + pl′ ∈ �′.
Let us begin by using simple examples.

Example 7.1 (4D subspace) Set p1 = 0 < p2 < p3, where 2 p2 �= p3, p4 =
1
2 (p2 + p3), and look for solutions

u(x, t) = C1(t)+ C2(t)e
p2 x + C3(t)e

p3x + C4(t)e
p4x . (7.4)

Then �′ = {2 p2, p2+ p4, p2+ p3 = 2 p4, p3+ p4, 2 p3} and n′ = 5. Four invariance
conditions are the same as for invariant subspaces,

P(p2, p2) = P(p2, p4) = P(p3, p4) = P(p3, p3) = 0. (7.5)

The (p2+p3)-one fails to be like that and contains two different terms

2P(p2, p3)C2C3 + P(p4, p4)C
2
4 = 0, (7.6)

since the exponential e(p2+p3)x = e2p4x occurs twice in bilinear products. We next
add to (7.6) the usual ODEs on W4,

C ′1 = P(0, 0)C2
1 ,

C ′2 = 2P(0, p2)C1C2,
C ′3 = 2P(0, p3)C1C3,
C ′4 = 2P(0, p4)C1C4.

(7.7)

The system (7.7), (7.6) is overdetermined and we need to check its consistency. The
first ODE is independent and determines

C1(t) = − 1
P(0,0) t−1, if P(0, 0) �= 0, (7.8)

and, from the other equations,

Ck(t) = Akt−ρk , with ρk = 2P(0,pk)
P(0,0) for k = 2, 3, 4,

where constants {Ak} are initial data for the DS at t = 1. Plugging these functions
into the algebraic equation (7.6) yields

2P(p2, p3)A2 A3t−(ρ2+ρ3) + P(p4, p4)A2
4 t−2ρ4 = 0,
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from which we get ρ2 + ρ3 = 2ρ4, i.e., an extra condition on the operator follows,

P(0, p2)+ P(0, p3) = 2P(0, p4). (7.9)

For initial data {Ak}, this gives

2P(p2, p3)A2 A3 + P(p4, p4)A2
4 = 0. (7.10)

Thus, under the assumptions (7.5) and (7.9) on F[u], the overdetermined DS admits
a two-parameter (A2 and A3 are arbitrary) family of explicit solutions, which are not
exponential functions in both variables x and t . If P(0, 0) = 0, we take C1(t) = 1,
and the solutions are composed of purely exponential terms as for solitons.

Example 7.2 (Second-order PDEs) Keeping the same notation, for the second-
order evolution equation

utt = F[u] ≡∑(i, j ) ai, j Di
xu D j

x u, (7.11)

under the same invariance conditions on F , a harder higher-order DS occurs,
C ′′1 = P(0, 0)C2

1 ,
C ′′2 = 2P(0, p2)C1C2,
C ′′3 = 2P(0, p3)C1C3,
C ′′4 = 2P(0, p4)C1C4,

(7.12)

with the same algebraic relation (7.6). Let us again derive the necessary consistency
conditions. We begin with the simpler case, P(0, 0) = 0. Then, taking, e.g., C1(t) =
1 yields, for all P(0, pk) > 0,

Ck(t) = Akeρk t , where ρk = ±√2P(0, pk) for k = 2, 3, 4,

so substituting into (7.6) gives (cf. (7.10))

ρ2 + ρ3 = 2ρ4 and 2P(p2, p3)A2 A3 + P(p4, p4)A2
4 = 0.

If P(0, pk) < 0, we may choose Ck(t) = Ak sin ρk t , with ρk = √2|P(0, pk)|, and
solutions exist for ρ2 = ρ3 = ρ4. Similarly, for C1(t) = t , the solutions of

C ′′k = 2P(0, pk)tCk

are given by Airy functions.
If P(0, 0) �= 0, the first ODE in (7.12) admits a particular solution

C1(t) = 6
P(0,0) (±t)−2,

where the factor (−t) corresponds to blow-up as t → 0−. Then the rest of the func-
tions are chosen as follows:

Ck(t) = Ak(±t)ρk , where ρ2
k − ρk = 12P(0,pk)

P(0,0) for k = 2, 3, 4

are assumed to be real. Plugging into (7.6) yields (7.10) and

ρ2 + ρ3 = 2ρ4.
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Example 7.3 (Another 4D subspace) Let us return to the first-order PDE (7.2) and
apply another expansion on W4 with more correlations in the bilinear product,

u(x, t) = C1(t)+ C2(t)ex + C3(t)e2x + C4(t)e
3
2 x , (7.13)

where �′ = { 5
2 , 3, 7

2 , 4
}

and n′ = 4, so that there are three invariance conditions,
P(1, 3

2 ) = P(2, 3
2 ) = P(2, 2) = 0, plus the algebraic equation

2P(1, 2)C2C3 + P( 3
2 ,

3
2 )C

2
4 = 0. (7.14)

The DS on this W4 is modified,
C ′1 = P(0, 0)C2

1 ,
C ′2 = 2P(0, 1)C1C2,

C ′3 = 2P(0, 2)C1C3 + P(1, 1)C2
2 ,

C ′4 = 2P(0, 3
2 )C1C4.

(7.15)

Let P(0, 0) �= 0. In this case, C1(t) is given by (7.8) and

Ck(t) = Akt−ρk for k = 2, 4, where ρ2 = 2P(0,1)
P(0,0) and ρ4 = 2P(0, 3

2 )

P(0,0) ,

so the ODE for C3 takes the form

C ′3 = − 2P(0,2)
P(0,0) t−1 C3 + P(1, 1)A2

2 t−2ρ2 .

Hence,
C3(t) = A3t−ρ3 ,

where
ρ3 = 2ρ2 − 1 and − ρ3 A3 = − 2P(0,2)

P(0,0) A3 + P(1, 1)A2
2.

Plugging into the algebraic equation (7.14), we obtain extra conditions on the oper-
ator and initial data,

ρ2 + ρ3 = 2ρ4 and 2P(1, 2)A2 A3 + P( 3
2 ,

3
2 )A2

4 = 0.

If P(0, 0) = 0 and C1(t) = 1, then

C2(t) = A2e2P(0,1)t and C4(t) = A4e2P(0, 3
2 )t .

Therefore,
C3(t) = P(1,1)

2[2P(0,1)−P(0,2)] A2
2e4P(0,1)t .

Hence, (7.14) yields

3P(0, 1) = 2P(0, 3
2 ) and 2P(1,1)P(1,2)

2[2P(0,1)−P(0,2)] A3
2 + P( 3

2 ,
3
2 )A2

4 = 0.

Example 7.4 (5D subspace) Consider another expansion on W5,

u(x, t) = C1(t)+ C2(t)ex + C3(t)e2x + C4(t)e
5
2 x + C5(t)e3x , (7.16)

where �′ = { 7
2 , 4, 9

2 , 5, 11
2 , 6

}
and n′ = 6, so six invariance conditions are obtained.

The first four are standard,

P(1, 5
2 ) = P(2, 5

2 ) = P(3, 5
2 ) = P(3, 3) = 0, (7.17)
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and the later two are equations of partial invariance

2P(1, 3)C2C5 + P(2, 2)C2
3 = 0 and 2P(2, 3)C3C5 + P( 5

2 ,
5
2 )C

2
4 = 0. (7.18)

For the first-order PDE (7.2), the DS takes the form
C ′1 = P(0, 0)C2

1 ,
C ′2 = 2P(0, 1)C1C2,

C ′3 = P(1, 1)C2
2 + 2P(0, 2)C1C3,

C ′4 = 2P(0, 5
2 )C1C4.

C ′5 = 2P(0, 3)C1C5 + 2P(1, 2)C2C3,

(7.19)

There are two cases:

Case I: P(0, 0) = 0, where C1(t) = 1, and hence,

Ck(t) = Akeρk t for k = 2, 4, where ρ2 = 2P(0, 1), ρ4 = 2P(0, 5
2 ). (7.20)

Then the algebraic equations (7.18) take the form{
2P(1, 3)A2eρ2t C5 + P(2, 2)C2

3 = 0,
2P(1, 3)C3C5 + P( 5

2 ,
5
2 )A2

4e2ρ4t = 0,

so that both C3 and C5 are exponential functions

C3,5(t) = A3,5 eρ3,5t ,

where ρ3 = 1
3 (2ρ4 + ρ2) and ρ5 = 1

3 (4ρ4 − ρ2), and

A3
3 =

P( 5
2 ,

5
2 )P(1,3)

P(2,3)P(2,2) A2 A2
4 and A5 = − P(2,2)A2

3
2P(1,3)A2

.

The functions C3,5(t) satisfy the corresponding ODEs in (7.19), provided that ρ3 =
2ρ2 and ρ5 = ρ2+ ρ3 plus two conditions on the initial data {Ak}. On the whole, we
then obtain a linear system for the coefficients {ρk, k = 2, 3, 4, 5},

2ρ2 − ρ3 = 0,
ρ2 + ρ3 − ρ5 = 0,
ρ2 − 3ρ3 + 2ρ4 = 0,
ρ2 + 3ρ5 − 4ρ4 = 0,

(7.21)

which has a singular 4×4 matrix and hence nontrivial solutions

(ρ2, ρ3, ρ4, ρ5)
T = t

(
1, 2, 5

2 , 3
)T

, where t ∈ IR.

Case II: P(0, 0) �= 0. Then, instead of the exponential functions,

Ck(t) = Aktρk for k = 1, ..., 5, (7.22)

where ρ1 = −1 (instead of ρ1 = 0, as in the previous case), and the rest of the ex-
ponents are the same as above. Since the linear system (7.21) is consistent, solutions
on W5 exist.

Example 7.5 (Quadratic thin film operators) Consider the general fourth-order
thin film operator with ten real parameters,

F[u] = α1uux x x x + α2uxux x x + α3ux xux x x + α4(ux x x)
2

+ α5uux x + α6ux ux x + α7(ux x)
2 + α8uux + α9(ux )

2 + α10u2.
(7.23)
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The polynomial is

P(X,Y ) = 1
2 α1(X4 + Y 4)+ 1

2 α2(XY 3 + X3Y )+ 1
2 α3(X2Y 3

+ X3Y 2)+ α4 X3Y 3 + 1
2 α5(X2 + Y 2)+ 1

2 α6(XY 2 + X2Y )

+ α7 X2Y 2 + 1
2 α8(X + Y )+ α9 XY + α10.

(7.24)

For solutions (7.16), we have four conditions (7.17) and three linearly independent
consistency relations from (7.21). Hence, there exists at least a three-parameter fam-
ily of TFEs (7.2), (7.23) with such solutions.

Example 7.6 In a similar fashion, for the hyperbolic PDE (7.11), looking for solu-
tions (7.16), in Case I we obtain from the second-order ODEs (7.19) (with C ′′k = ...)
the exponential expressions (7.20) with

ρ2 = [2P(0, 1)]1/2 and ρ4 =
[
2P(0, 5

2 )
] 1

2 .

By (7.18), C3,5(t) are then the same exponential functions, the linear system (7.21)
is also the same, and substituting into the DS gives the consistency conditions on the
initial data. Calculations in Case II remain the same, and the only difference is that
ρ1 = −2 in (7.22).

Example 7.7 (Another 5D subspace) Consider equation (7.2) on another W5,

u(x, t) = C1(t)+ C2(t)ex + C3(t)e−x + C4(t)e
1
3 x + C5(t)e−

1
3 x , (7.25)

where �′ = {−2,− 4
3 ,− 2

3 ,
2
3 ,

4
3 , 2

}
and n′ = 6. In this case, we obtain

P(−1,−1) = P(−1,− 1
3 ) = P(1, 1

3 ) = P(1, 1) = 0

and two algebraic equations

P( 1
3 ,

1
3 )C

2
4 + 2P(1,− 1

3 )C2C5 = 0,

P(− 1
3 ,− 1

3 )C
2
5 + 2P(−1, 1

3 )C3C4 = 0,
(7.26)

with the DS
C ′1 = P(0, 0)C2

1 + 2P(1,−1)C2C3 + 2P( 1
3 ,− 1

3 )C4C5,
C ′2 = 2P(0, 1)C1C2,
C ′3 = 2P(0,−1)C1C3,

C ′4 = 2P(0, 1
3 )C1C4,

C ′5 = 2P(0,− 1
3 )C1C5.

(7.27)

From the last four ODEs,

Ck = AkCρk
2 for k = 3, 4, 5,

with ρk calculated as above,

ρ3 = P(0,−1)
P(0,1) , ρ4 = P(0, 1

3 )

P(0,1) , and ρ5 = P(0,− 1
3 )

P(0,1) .

Then the algebraic equations (7.26) are valid, provided that

ρ4 = 1
3 (ρ3 + 2) and ρ5 = 1

3 (2ρ3 + 1),
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and a DS for the remaining two coefficients C1,2 is obtained,{
C ′1 = P(0, 0)C2

1 +
[
2P(1,−1)A3 + 2P( 1

3 ,− 1
3 )A4 A5

]
C1+ρ3

2 ,

C ′2 = 2P(0, 1)C1C2.

This can be integrated in quadratures and possesses blow-up solutions. For the thin
film operator (7.23), we obtain six extra conditions that imply existence of a four-
parameter family of TFEs possessing such exact solutions.

For the second-order PDE (7.11), the DS (7.27) with C ′′k = ... admit, in general,
either exponential particular solutions Ck(t) = Akeρk t with ρ1 = 0, or the algebraic
ones (7.22), where ρ1 = −2. If P(0, 1) = P(0,−1) = P(0, 1

3 ) = P(0,− 1
3 ), there

exist solutions Ck(t) = AkC2(t) for k = 3, 4, 5, where C1(t) and C2(t) solve a DS,
and (7.26) give two extra conditions on {Ak}.

7.1.2 On further extensions

1. ∂
∂t -dependent operators. We considered such operators in Sections 1.5.2 (see

tially invariant modules), a similar computational analysis can be performed, though
the overdetermined DSs become more cumbersome and difficult. We must admit that
there is a higher probability to obtain purely, in both x and t variables, exponential
solutions that sometimes can be more efficiently manipulated by using Baker–Hirota
derivatives and bilinear operators, or by other methods from theory of integrable
PDEs.

Example 7.8 (PDE with nonstationary part from the KdV equation) Let us be-
gin with the following rather artificial PDE:

uxut − uuxt = F[u], (7.28)

where the quadratic left-hand side has been borrowed from the bilinear form of the
KdV equation (0.31) in the Introduction. Here F[u] is the general operator (7.1).
First, consider the expansion (7.4) with the same assumptions on the exponents. Not
specifying the DS, we claim that the only possible solutions are exponential ones,

Ck(t) = Akeρk t for all k = 1, 2, 3, 4, (7.29)

where {ρk} satisfies a number of conditions associated with the values of the poly-
nomial P at pk . One can think this rigid exponential solution structure as being as-
sociated with the specific form of the left-hand side of (7.28), which is a full Baker–
Hirota derivative−2Du · ut , defined as, [22, 284]:

Dv ·w = d
dz v(x + z)w(x − z)

∣∣
z=0 = vxw − vwx . (7.30)

Therefore, the Baker–Hirota method applies ensuring that the right solutions are sup-
posed to be of exponential soliton-type only.

Furthermore, for the PDE with the first term only on the left-hand side

uxut = F[u], (7.31)
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the conclusion remains the same: the overdetermined DS has the exponential solu-
tions (7.29) only. The exponential character of solutions is true generic for sets on
W5. For instance, using expansion (7.16) in (7.31) yields an overdetermined DS,
consisting of eleven equations,

3C4C ′4 = P(3, 3)C2
4 ,

3C4C ′5 + 5
2 C5C ′4 = 2P(3, 5

2 )C4C5,

2C3C ′5 + 5
2 C5C ′3 = 2P(2, 5

2 )C3C5,

C2C ′5 + 5
2 C5C ′2 = 2P(1, 5

2 )C1C5,

2C3C ′3 + 3C4C ′2 + C2C ′4 = 2P(1, 3)C2C4 + P(2, 2)C2
3 ,

2C3C ′4 + 3C4C ′3 + 5
2 C5C ′5 = 2P(2, 3)C3C4 + P( 5

2 ,
5
2 )C

2
5 ,

0 = P(0, 0)C2
1 ,

C2C ′1 = 2P(0, 1)C1C2,

2C3C ′1 + C2C ′2 = P(1, 1)C2
2 + 2P(0, 3)C1C3,

3C4C ′1 + C2C ′3 = 2P(0, 3)C1C4 + 2P(1, 2)C2C3,
5
2 C5C ′1 = 2P(0, 5

2 )C1C5.

This system is solved, giving exponential solutions (7.29). The same holds for the
related second-order PDE

ux utt = F[u].

Example 7.9 Consider the expansion (7.13) for PDE (7.31). Then, using the same
action formula for both quadratic operators therein, we derive the DS, consisting of
eight equations, where the invariance conditions, such as (7.14), also become ODEs
(cf. (7.15)),

0 = P(0, 0)C2
1 , 2C3C ′3 = P(2, 2)C2

3 ,

C2C ′3 + 2C3C ′2 + 3
2 C4C ′4 = 2P(1, 2)C2C3 + P( 3

2 ,
3
2 )C

2
4 ,

C2C ′2 + 2C3C ′1 = 2P(0, 2)C1C3 + P(1, 1)C2
2 ,

3
2 C4C ′2 + C2C ′4 = 2P(1, 3

2 )C1C4, C2C ′1 = 2P(0, 1)C1C2,
3
2 C4C ′3 + 2C3C ′4 = 2P(2, 3

2 )C3C4,
3
2 C4C ′1 = 2P(0, 3

2 )C1C4.

It is easy to check that this DS has exponential solutions.

2. Complex exponents. Taking pk = ak + ibk with bk �= 0 yields quadratic sys-

subspaces.

struction becomes more technical and can be performed for classes of operators and
linear subspaces by using codes for computer-supported algebraic manipulations.

7.2 Quadratic Kuramoto–Sivashinsky equations

We now study partially invariant subspaces for another family of quadratic fourth-
order operators

F[u] = uut + αuux + βuux x + γ (ux )
2

+ δuux x x x + εux ux x x + µ(ux x)
2 + νuux x x .
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The corresponding PDE
F[u] = 0 (7.32)

can be treated as a generalized Kuramoto–Sivashinsky equation; see Section 3.8. Our
goal is to describe the partially invariant trigonometric subspace

W3 = L{1, cos x, sin x},
and find all consistent overdetermined DSs and the corresponding exact solutions.
This can be done analytically, though it leads to technical difficulties. The approach
applies to more general PDEs

F[u] = L[u] ≡∑(k≤2m) ak Dk
x u,

where L is a linear 2mth-order elliptic operator with constant coefficients {ak}.
We look for the following solutions on W3 for any t ≥ 0:

u(x, t) = C1(t)+ C2(t) cos x + C3(t) sin x .

Denote for convenience

s = ε − γ + µ, p = β − δ − ε + γ − µ, q = α − ν, r = ε − γ.

Substituting into (7.32) yields the following overdetermined DS:
C1C ′1 + C2C ′2 − (p + r)C2

2 + qC2C3 − rC2
3 = 0,

C2C ′1 + C1C ′2 − (p + s)C1C2 + qC1C3 = 0,
C3C ′1 + C1C ′3 − qC1C2 − (p + s)C1C3 = 0,
C2C ′2 − C3C ′3 − pC2

2 + 2qC2C3 + pC2
3 = 0,

C3C ′2 + C2C ′3 − qC2
2 − 2 pC2C3 + qC2

3 = 0,

(7.33)

where the equations are projections of F[u] = 0 onto 1, cos x , sin x , 1
2 cos 2x , and

1
2 sin 2x respectively. Assuming that

C2
1 − C2

2 �= 0 and C2
2 + C2

3 �= 0,

we take C ′1 and C ′2 from the first two equations of (7.33) and C ′2 and C ′3 from the last
two, and obtain the system 

C ′1 = sC1,
C ′2 = pC2 − qC3,
C ′3 = qC2 + pC3,

sC2
1 = r

(
C2

2 + C2
3

)
.

(7.34)

Solving the first three equations of (7.34) yields

C1(t) = D1est ,
C2(t) = ept (D2 cos qt − D3 sin qt),
C3(t) = ept (D2 sin qt + D3 cos qt),

(7.35)

where D1, D2, and D3 are arbitrary constants. Substituting these functions into the
last algebraic equation in (7.34) gives the following equality:

s D2
1e2st = re2pt

(
D2

2 + D2
3

)
. (7.36)

Analyzing (7.36) yields the following:
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Proposition 7.10 There exist three cases:
(i) s = r = 0, i.e.,

ε = γ and µ = 0.

Then the explicit solution of (7.32) is

u(x, t) = D1 + ept [D2 cos(x − qt)+ D3 sin(x − qt)],

where D1, D2, and D3 are arbitrary.
(ii) r = 0 and s �= 0. Then

u(x, t) = ept [D2 cos(x − qt)+ D3 sin(x − qt)],

where D2 and D3 are arbitrary.
(iii) r �= 0 and s �= 0. Then (7.36) is equivalent to two conditions

s = p and s D2
1 = r

(
D2

2 + D2
3

)
.

and the solution takes the form

u(x, t) = ept [D1 + D2 cos(x − qt)+ D3 sin(x − qt)].

The only reasonable compacton-like solution exists in (iii), where we set D1 =
D2 = 1

2 and D3 = 0 to get

uc(x, t) = ept cos2[ 1
2 (x − qt)]. (7.37)

This implies the extra condition s = r , so solution (7.37) exists for s = p = r �= 0,
or, in the original notation,

β = δ + 2(ε − γ ) and µ = 0.

We do not check if, being extended by zero in {|x − qt| ≥ π}, (7.37) will be a
solution of the Cauchy problem (most probably not, for such PDEs). In any case,
the compacton (7.37) localized in the domain {|x − qt| < π} with the exponentially
varying amplitude is a solution of an FBP with necessary free-boundary conditions,
including the zero contact angle one. Usually, a correct setting of such FBPs is a
difficult OPEN PROBLEM that was discussed in Section 3.2 for some TFEs.

7.3 Method of generalized separation of variables

In this section, another extension of notions and techniques related to (partially) in-
variant subspaces is presented.

7.3.1 The general scheme for GSV

Consider a class of evolution PDEs of the form

T [u] = F[u], (7.38)

where T = T ( ∂
∂t ) and F = F( ∂

∂x ) are some nonlinear differential operators, in
most applications, of the polynomial type. The method of generalized separation of
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variables (GSV) consists of looking for solutions in the form of finite sums

u = U(x, t) ≡∑n
i=1 ai (t) fi (x) = a(t)fT (x), (7.39)

where unknown sufficiently smooth vector functions a(t) = (a1(t), ..., an(t)) and
f(x) = ( f1(x), ..., fn(x)) are assumed to have linearly independent components.
The mathematical basis of the GSV is as follows. By Ai [a(t)] = Ai (a(t),a′(t), ...)
and Bi [f(x)] = Bi (f(x), f ′(x), ...) we denote some differential operators.

Lemma 7.11 Let for functions (7.39)

T [U ] =∑m
i=1 Ai [a(t)] f̃i (x),

F[U ] =∑k
i=1 Bi [f(x)]ãi(t),

(7.40)

where the sets { f̃i (x)} and {ãi(t)} are linearly independent. Then, equation (7.38)
on solutions (7.39) reduces to two systems

(I) (A1[a(t)], ..., Am [a(t)]) = (ã1(t), ..., ãk(t))C,

(II) (B1[f(x)], ..., Bk[f(x)]) = ( f̃1(x), ..., f̃m(x))CT ,
(7.41)

where C = ‖C j
i ‖ is a constant k ×m matrix.

Proof. Plugging (7.39) into (7.38) yields∑m
i=1 Ai [a(t)] f̃i (x) =∑k

j=1 B j [f(x)]ã j(t).

Differentiating in t leads to the system∑m
i=1(Ai [a(t)])(p) f̃i (x) =∑k

j=1 B j [f(x)]ã
(p)
j (t) for p = 0, ..., k − 1,

or, in the matrix form,

A[a(t)]f̃T (x) = α(t)BT [f(x)], (7.42)

where A[a(t)] = ‖A(p)
i [a(t)]‖ and α(t) = ‖ã(p)

j (t)‖ are matrices, and we denote

f̃ = ( f̃1, ..., f̃m), B = (B̃1, ..., B̃k). Since the set (ã1(t), ..., ãk(t)) is linearly in-
dependent, the corresponding Wronskian detα(t) is non-zero, so there exists the
inverse matrix α−1(t), [132, Ch. III]. Multiplying (7.42) by α−1(t) yields

α−1(t)A[a(t)] f̃T (x) = BT [f(x)].

On differentiation in t , we find that

d
dt

(
α−1(t)A[a(t)]

)
f̃T (x) = 0. (7.43)

Since ( f̃1(x), ..., f̃m(x)) is also a linearly independent set, it follows from (7.43)
that α−1 A = C must be a constant matrix. Hence, A[a(t)] = α(t)C and B[f(x)] =
f̃(x)CT . That completes the proof.

It follows from this proof that the GSV does not assume any specific form of the
solutions such as (7.39), and deals with operator equalities (7.40) only.
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7.3.2 The GSV in application: systems (I) and (II)

Example 7.12 (GSV for a parabolic equation) Consider the operator

F[u] = αuux x + β(ux)
2 + γ u2 + εuux + µux + νu + δ. (7.44)

Let T [u] = uut , so that (7.38) is a quasilinear parabolic equation of the reaction-
diffusion-absorption type. Fix n = 2 and look for solutions

u = U(x, t) = g(x)+ f (x)a(t),

where a(t) �≡ constant and f (x) and g(x) are linearly independent. In this case,
(7.40) reads

T [U ] = aa′ f 2 + a′ f g,

F[U ] = a2
[
α f f ′′ + β( f ′)2 + γ f 2 + ε f f ′

]
+ a

[
α(g f ′′ + f g′′)+ 2β f ′g′ + 2γ f g + ε( f g)′ + µ f ′ + ν f

]
+ [αgg′′ + β(g′)2 + γ g2 + εgg′ + µg′ + νg + δ

]
.

According to Lemma 7.11, the PDE T [U ] = F[U ] reduces to two systems

(I)

{
aa′ = c1a2 + c2a + c3,

a′ = c̃1a2 + c̃2a + c̃3,

and

(II)


α f f ′′ + β( f ′)2 + γ f 2 + ε f f ′ = c1 f 2 + c̃1 f g,

α(g f ′′ + f g′′)+ 2β f ′g′ + 2γ f g + ε( f g)′ + µ f ′ + ν f = c2 f 2 + c̃2 f g,

αgg′′ + β(g′)2 + γ g2 + εgg′ + µg′ + νg + δ = c3 f 2 + c̃3 f g.

Here ci and c̃i are some constants (elements of the 2×3 matrix C). It is worth men-
tioning that the GSV analysis can be naturally associated with a partially invariant
module, W2 = L{1, a(t)}, for the given operators, that establishes links with the
previous context.

Concerning the first system (I), it is not difficult to show that, up to translations
and scalings, there exist just two essentially different cases

a(t) = t and a(t) = et .

For other T [u] operators to be studied, more sophisticated functions can appear.
The second overdetermined system (II) is more difficult to handle, but it admits a
complete classification. Later on, we study various overdetermined systems that are
particular cases of (II).

Before introducing other parabolic and hyperbolic examples, it is worth discussing
some common aspects of such systems. In the general case, where T is an arbitrary
quadratic homogeneous differential operator such that T [1] = 0 (i.e., b00 = 0),

T [u] =∑(i, j, i+ j �=0) bi, j Di
t u D j

t u, (7.45)

the following holds:

T [g(x)+ f (x)a(t)] = A1[a(t)] f 2(x)+ A2[a(t)] f (x)g(x).
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Here A1[a] = T [a] and A2[a] = T [a + 1]− T [a]. Then system (I) takes the form

(I)

{
A1[a] = c1a2 + c2a + c3,

A2[a] = c̃1a2 + c̃2a + c̃3.

The following two cases are mainly treated later on:

1)

{
A1[a] = Aa2,
A2[a] = Ba,

and 2)

{
A1[a] = Ãa,
A2[a] = B̃,

with various constants A, B and Ã, B̃. The overdetermined system (II) remains
practically the same in both cases and admits a unified treatment.

7.4 Generalized separation and partially invariant modules

Here a slightly different version of the GSV is used. We present another case of clas-
sification of overdetermined DSs occurring in the analysis of nonlinear inhomoge-
neous PDEs for which invariant subspaces or sets are not prescribed by polynomial,
trigonometric, or exponential functions. For convenience, unlike (7.44), for F[u] we
now denote a purely quadratic second-order operator,

F[u] = αuux x + β(ux)
2 + γ u2 + εuux , (7.46)

and introduce linear terms separately. Here T [u] is still given by (7.45), and we set

A[u] = T [u]− F[u]. (7.47)

In fact, F can be taken in the general form (7.1), though, as will be shown, for 2mth-
order ordinary differential operators F with m ≥ 2, the solvability and consistency
analysis of overdetermined systems become illusive.

Again, for convenience of notation, we use symmetric bilinear forms of quadratic
operators (7.45) and (7.46),

T [a, b] = T [a + b]− T [a]− T [b],

F[ f, g] = F[ f + g]− F[ f ]− F[g],
(7.48)

and the corresponding polynomials, so that F[u] = 1
2 F[u, u] and T [u] = 1

2 T [u, u].
Let us next introduce two linear operators (in the previous GSV analysis Q[u] was
included into F)

P(Dt )[u] = ∑
bk Dk

t u and Q(Dx )[u] =∑ dl Dl
x u,

with real constant coefficients {bk} and {dl}. Denote, for convenience,

R = Q(Dx )− P(Dt ). (7.49)

Consider a quadratic inhomogeneous PDE of the form

A[u] = R[u]+ p, (7.50)

where p = p(x, t) is a given function. As a new example, this includes the following
hyperbolic equation:

uutt = αuux x + β(ux)
2 + γ u2 + εuux + µux + νu + δ.
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7.4.1 Partially invariant 2D modules

According to the GSV method, we study properties of the operator (7.47) on

W2 = L{1, a(t)}, (7.51)

with a smooth function a(t) to be determined.

1. Partial invariance. We first establish a formal existence of a set M ⊂ W2, such
that, for any u(x, t) = g(x)+ f (x) a(t) (i.e., u(x, t) ∈ M for any x ∈ IR),

A[g + f a] ∈ W2. (7.52)

This leads to the system 1) in Section 7.3.2.

Lemma 7.13 Let a(t) satisfy the system{
T [a] = Aa2,
T [a, 1] = Ba,

(7.53)

where A and B are some constants. Then there exists the invariant set

MA = {u = g + f a ∈ W2 : f satisfies F[ f ] = A f 2}. (7.54)

Proof. By (7.48),

T [g + f a] = f 2T [a]+ g f T [a, 1],

F[g + f a] = F[g]+ F[g, f ]a + F[ f ] a2,
(7.55)

so that

A[g + f a] ≡ −F[g]+ {Bg f − F[g, f ]}a + {A f 2 − F[ f ]}a2. (7.56)

Hence, (7.52) is valid for all v ∈ MA .

It follows from (7.55) that (7.52) holds in a more general case, where

T [a] = A2a2 + A1a + A0 and T [a, 1] = B2a2 + B1a + B0.

In Lemma 7.13, we set A1 = A0 = B2 = B0 = 0. It follows from (7.45) that a(t)
can be taken in the exponential form

a(t) = eλt , with a constant λ ∈ IR. (7.57)

Then (7.53) holds with

A =∑(i, j, i �= j ) bi, j λ
iλ j , where B =∑( j �=0) b0, jλ

j +∑(i �=0) bi,0λ
i .

2. PDEs on partially invariant modules. Lemma 7.13 gives a family {MA, A ∈ IR}
of sets which are invariant on W2 under the operator (7.47). Let us now show that the
PDE (7.50) can be restricted to such sets MA . We assume that

P(Dt )[a(t)] = 0, so a ∈ ker P . (7.58)

The case of an arbitrary eigenfunction, P[a(t)] = ρa(t) for some constant ρ ∈ IR,
is treated in a similar fashion.
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Proposition 7.14 Let a(t) satisfy (7.53) and (7.58). Then, equation (7.50) on MA ,
with p ∈ W2,

A[u] = R[u]+ p for u = g + f a ∈ MA, (7.59)

is equivalent to the system {
F[g] = −Q[g]− p,

F[g, f ]− Bg f = −Q[ f ].
(7.60)

Proof. It follows from (7.49) that

R[g + f a] = Q[g]+ Q[ f ]a.

Hence, (7.60) is a consequence of (7.59) and (7.56).

In the case of (7.57), denoting by P̄(λ) the polynomial of P , the following holds:

P[eλt ] = ρeλt , with ρ = P̄(λ).

7.4.2 Existence of solutions via partial invariance

Let us now formulate a class of problems (7.59) having a nontrivial solution on MA .
Consider the case where Q(Dx ) is a first-order linear operator,

Q(Dx )[u] = c0u + c1ux , where c0, c1 ∈ IR, and p(x) ≡ δ ∈ IR. (7.61)

Let σ ∈ IR be a real root of

βσ 2 − c1σ + δ = 0 (c2
1 ≥ 4βδ). (7.62)

Below D, D1, D2, ... denote different arbitrary constants. The type of the solution
u(x, t) of (7.59) on MA differs in the cases where A �= 0 and A = 0.

1. Case A �= 0.

Theorem 7.15 Assume that (7.53) holds, where

A = B �= 0. (7.63)

Then, if
β = −2α �= 0, ε = − αc0

2ασ+c1
, A = γ (3ασ+c1)

2ασ+c1
�= 0, (7.64)

where 2ασ + c1 �= 0, problem (7.59) has the nontrivial solution

u(x, t) = g(x)+ f (x) a(t). (7.65)

The functions {g, f } in (7.65) are determined as follows:
(i) If c2

0 > 4σγ (2ασ + c1), then

g(x) = − (2ασ+c1)
γ

µ1 D1eµ2x+µ2 D2eµ1x

D1eµ2x+D2eµ1x − c0
γ , f (x) = De(µ1+µ2)x

D1eµ2x+D2eµ1x , (7.66)

where µ1 and µ2 are different (real) roots of

(2ασ + c1)µ
2 + c0µ+ σγ = 0; (7.67)

(ii) If c2
0 = 4σγ (2ασ + c1), then (7.67) has a unique root µ and

g(x) = − (2ασ+c1)
γ

(
µ− D2

D1+D2x

)− c0
γ , f (x) = Deµx

D1+D2x ; (7.68)

© 2007 by Taylor & Francis Group, LLC



352 Exact Solutions and Invariant Subspaces

(iii) If c2
0 < 4σγ (2ασ + c1), then

g(x) = − (2ασ+c1)
γ [ν2 tan(ν2(x + D1))+ ν1]− c0

γ ,

f (x) = Deν1x

cos(ν2(x+D1))
,

(7.69)

where µ = ν1 ± iν2 are complex roots of (7.67).

Proof. We rewrite the equation of MA in (7.54) as

α f f ′′ + β( f ′)2 + ε f f ′ = (A − γ ) f 2. (7.70)

Equations (7.60) can be written as follows:

αgg′′ + β(g′)2 + γ g2 + εgg′ + c0g + c1g′ + δ = 0, (7.71)

α(g f ′′ + f g′′)+ 2βg′ f ′ + ε(g f )′ + c0 f + c1 f ′ − (A − 2γ )g f = 0. (7.72)

Here we use that, by (7.48),

F[g, f ] ≡ α(g f ′′ + f g′′)+ 2βg′ f ′ + ε(g f )′ + 2γ g f . (7.73)

We now show that, under the above hypotheses, the overdetermined system (7.70)–
(7.72) has a nontrivial solution {g(x), f (x)}. Substituting g′′ and f ′′ from (7.70) and
(7.71) into (7.72) yields

β(g f ′ − f g′)2 = c1 f (g f ′ − f g′)− δ f 2, so (7.74)

g′ = f ′
f g − σ, (7.75)

where σ = σ± = 1
2β

(
c1 ±

√
c2

1 − 4βδ
)

from (7.62). By (7.75),

g′′ = f ′′
f g − σ f ′

f . (7.76)

Substituting (7.75) and (7.76) into (7.71) and using (7.70) implies

Ag = [(α + 2β)σ − c1] f ′
f + (εσ − c0). (7.77)

Thus, in general, problem (7.70)–(7.72) is equivalent to the overdetermined system
(7.70), (7.75), and (7.77). Let us next derive the identity satisfied by f (x), which is
precisely a criterion for solvability of our equation on the invariant set.

Since A �= 0, (7.75) can be rewritten as (Ag) f ′ − f (Ag)′ = σ A f, so substituting
Ag from (7.77) yields

[(α + 2β)σ − c1]
( f ′

f

)2 + (εσ − c0)
f ′
f − [(α + 2β)σ − c1]

( f ′
f

)′ = σ A. (7.78)

Since α �= 0, it follows from (7.70) that( f ′
f

)′ = −α+β
α

( f ′
f

)2 − ε
α

f ′
f + A−γ

α , (7.79)

and, therefore, (7.78) implies that f (x) must satisfy the identity

[(α + 2β)σ − c1]β+2α
α

( f ′
f

)2 + (εσ − c0)
f ′
f

− [(α + 2β)σ − c1]
[− ε

α

( f ′
f

)+ A−γ
α

] ≡ σ A.
(7.80)

© 2007 by Taylor & Francis Group, LLC



7 Partially Invariant Subspaces and GSV 353

Assume that
f ′
f �≡ constant (7.81)

(exponential f (x) = eµx will be discussed last). Then, (7.80) is valid iff

[(α + 2β)σ − c1](β + 2α) = 0,

εσ − c0 + ε
α [(α + 2β)σ − c1] = 0,

[(α + 2β)σ − c1] γ−A
α = σ A.

(7.82)

We may suppose that (α + 2β)σ − c1 �= 0. (If not, this yields c1 = c0 = δ =
0 and g(x) ≡ 0, and hence, u(x, t) = f (x)a(t) is a simple solution in separate
variables.) Hence, from the first condition in (7.82), we obtain (7.64), while the rest
of conditions are equivalent to the last two hypotheses in (7.64). Here it is assumed
that 2ασ + c1 �= 0; see comment below.

Finally, we need to determine the functions f (x) and g(x). Equation (7.70) with
β = −2α is equivalent to (cf. (7.79))( f ′

f

)′ = ( f ′
f

)2 − ε
α

f ′
f + A−γ

α ,

that can easily be integrated. This yields the functions f (x) in (7.66), (7.68), and
(7.69), and g(x) follows from (7.77). This completes the proof.

Concerning exponential functions, if (7.81) is not valid and

f (x) = eµx , with a µ �= 0,

it follows from (7.75) and (7.77) that there exists the solution

u(x, t) = σ
µ + D1eµxa(t),

[(α + 2β)σ − c1]µ2 + (εσ − c0)µ− σ A = 0,

(α + β)µ2 + εµ+ γ − A = 0.

Here α, β, and A are arbitrary constants.
If 2ασ + c1 = 0 (c1 �= 0), it follows from (7.82) and (7.62) that explicit solutions

exist in the case where

β = −2α �= 0, γ = c0 = δ = 0
(
σ = c1

β

)
.

Here A �= 0 is arbitrary. It follows from (7.70) that Y = 1
f solves a linear second-

order ODE, αY ′′ + εY ′ + AY = 0, and (7.77) yields

g = c1
2A

f ′
f + εc1

βA .

2. Case A = 0. Solutions u(x, t) ∈ M0 with A = 0 have another form.

Theorem 7.16 Assume that (7.53) with A = B = 0 holds. Then, there exists the
nontrivial solution (7.65) in the following cases:

(i) α + 2β �= 0, β �= 0, c1 �= 0, δ = (α+β)c2
1

(α+2β)2 , c0 = εc1
α+2β , (7.83)
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provided that µ satisfies the following two equations (cf. (7.80) and (7.70)):
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with functions Y = ln | f | and g given by

αY ′′ + (α + β)(Y ′)2 + εY ′ + γ = 0,

g(x) = −σ f (x)
∫ dx

f (x) + D f (x); (7.84)

(ii) α = −2β, β �= 0, c0 = εσ, c1 = 0, δ �= 0,

Y = ln | f | solves the ODE αY ′′ + α
2 (Y

′)2+εY ′ +γ = 0, and g is defined by (7.84);

(iii) β = 0, α �= 0, c2
1 = αδ �= 0, c0 = εδ

c1
,

and f (x) satisfies the linear ODE α f ′′ + ε f ′ + γ f = 0, g being given by (7.84).

Proof. Setting A = 0 in (7.77), and assuming that (7.81) holds, we find that a
nontrivial solution exists iff c1 = (α + 2β)σ and c0 = εσ, where σ is given by
(7.62). A simple analysis of this algebraic system for the parameters and (7.62) leads
to the above conclusions. ODEs for f (x) follow from (7.70) with A = 0, while
(7.84) is equivalent to (7.75).

Let us now present a more detailed analysis of such solutions of particular PDEs.

Example 7.17 (Quadratic parabolic PDE) We begin with a parabolic model and
first use Theorem 7.15. In view of (7.64), without loss of generality, set α = 1 and
β = −2. The equation (7.50), (7.61) with P(Dt ) = 0 reads

uut = uux x − 2(ux)
2 + γ u2 + εuux + c0u + c1ux + δ. (7.85)

Transformation v = 1
u gives a semilinear heat equation from combustion theory,

vt = vx x + (ε + c1v)vx − (γ v + c0v
2 + δv3). (7.86)

It follows from (7.53) that a(t) �≡ 0 satisfies

a′ = Aa �⇒ a(t) = eAt (A �= 0).

Then T [a, 1] ≡ a′ = Aa, and, therefore, (7.63) is valid. It follows from Theorem
7.15 that, under the last two hypotheses in (7.64), equation (7.85) possesses solutions

u(x, t) = g(x)+ f (x)eAt , (7.87)

where the coefficients f and g are given in (7.66), (7.68), or (7.69). These solutions
coincide with soliton-type solutions of a similar PDE constructed by Kawahara and
Tanaka [329] and Carriello and Tabor [100] by Baker–Hirota-type techniques and
related Penlevé-type analysis.

Example 7.18 (Hyperbolic equation) Consider now a quadratic hyperbolic PDE,

uutt = uux x − 2(ux)
2 + γ u2 + εuux + c0u + c1ux + δ. (7.88)

Setting v = 1
u yields

vt t − 2
v (vt )

2 = vx x + (ε + c1v)vx − (γ v + c0v
2 + δv3).

It follows from (7.53) that a(t) �≡ constant satisfies

a′′ = Aa. (7.89)
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Since, in this case, T [a, 1] = a′′, we have by (7.89) that (7.63) holds. By Theorem
7.15, the type of the explicit solution (7.65) depends on the sign of the parameter A
given in (7.64):

A = γ (3σ+c1)
2σ+c1

, so that

u(x, t) = g(x)+ f (x)
(
D3e

√
At + D4e−

√
At
)

for A > 0,

u(x, t) = g(x)+ f (x)
[
D3 sin

(|A| 1
2 t
)+ D4 cos

(|A| 1
2 t
)]

for A < 0.

If A = 0, by Theorem 7.16, we study the general PDE

uutt = αuux x + β(ux)
2 + γ u2 + εuux + c0u + c1ux + δ.

It follows from (7.89) with A = 0 that a(t) = t , and hence,

u(x, t) = g(x)+ f (x) t ∈ M0.

Then, in the case of (7.83), the ODE for f in (7.84) can easily be integrated. For
instance, in the simplest case α + β = 0 (where δ = 0), we find

f (x) = exp
{

D1e−εx/α − γ
ε x + D2

}
.

For arbitrary D1 and D2, the integral in (7.84) cannot be calculated explicitly.

Example 7.19 Consider the operator

T [u] = u(utt + 2ωut ),

′′ + 2ωa′ = Aa,
and, in particular,

a(t) = t e−ωt , if A = −ω2.

potheses (7.64) with A = −ω2, there exists a solution of the problem (7.59),

u(x, t) = g(x)+ f (x) t e−ωt ,

where g(x) and f (x) are given by (7.66), (7.68), or (7.69).

7.4.3 On quasilinear hyperbolic PDEs for A �= B

In what follows, unlike Theorems 7.15 and 7.16, assume that

A �= B. (7.90)

This condition is valid for the following hyperbolic PDE with the left-hand side of
the KFG equation (6.27):

ut utt = αuux x + β(ux)
2 + γ u2 + εuux + c0u + c1ux + δ, (7.91)

which will be used in future illustrations of the main results. Then B = 0. Suppose
that α �= 0.

As in Theorem 7.15, consider a general equation. It follows from (7.54), (7.60),
and (7.90) that functions g and f satisfy (7.70), (7.71) and

α(g f ′′ + f g′′)+ 2βg′ f ′ + ε(g f )′ + c0 f + c1 f ′ − (B − 2γ )g f = 0. (7.92)
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where ω �= 0. Then, the ODE for a(t) (see (7.53)) has the form a

One can see that (7.63) is valid. It then follows from Theorem 7.15 that, under hy-
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The only difference with (7.72) is the last term, where B �= A. In this case, using the

β(g f ′ − f g′)2 = c1 f (g f ′ − f g′)− [δ − (A − B)g2] f 2. (7.93)

Hence, instead of (7.75), for β �= 0,

g′ = f ′
f g − 1

2β (c1 + R̂), where R̂ = ±
√

c2
1 − 4βδ + 4β(A− B)g2. (7.94)

Let us next derive a condition of solvability of the equation on MA . Substituting
g′ and g′′ from (7.94) into (7.71) and using (7.70) yields

f ′
f ≡ z = {(A − B)αc1g + [A(α + 2β)− B(α + β)]g R̂

+ (c0β − εc1
2

)
R̂ − ε

2 R̂2
} [αc1

2 R̂ + 2(A− B)αβg2 + α+2β
2 R̂2

]−1
,

(7.95)

where the expression in the last square bracket is assumed to be non-zero. Let( f ′
f

)
(x) �≡ constant and g(x) �≡ constant. (7.96)

It follows from (7.70) that

z′ ≡ ( f ′
f )′ = 1

α [A− γ − (α + β)z2 − εz]. (7.97)

By substituting into (7.94) g′ = gzz′ with gz and z from (7.95), we arrive at the
following solvability criterion:

zg − 1
α [A − γ − (α + β)z2 − εz](z′g)−1 ≡ c1

2β + 1
2β R̂, (7.98)

which, together with (7.95), must be the identity for all suitable F ∈ IR.

1. Existence for the rational case. Let us begin with a simple case where the irra-
tional function in (7.94) does not appear, i.e.,

c2
1 = 4βδ and R̂ = σg, σ = ± 2

√
β(A − B), β �= 0. (7.99)

Then (7.95) is equivalent to

g = [αc1
2β z + n2

] [
n1 − σ(α+β)

β z
]−1

, (7.100)

where n1 = A+ σ 2(α+β)
4β2 − εσ

2β and n2 = εc1
2β − ασc1

4β2 −c0. Plugging (7.100) into (7.98)
must yield the identity. One can verify that it is true iff a certain cubic polynomial is
trivial, [αc1σ(α+β)

2β2

]
z3 + . . . ≡ 0 for all z ∈ IR.

Finally, we obtain from (7.95) that the identity holds, if

α + β = c0 = c1 = δ = 0 and ε2 = βA2

A−B . (7.101)

These are the existence conditions of a nontrivial solution u(x, t) on MA ((7.101)
corresponds to the case for which both square brackets in (7.100) vanish).

Proposition 7.20 Under hypotheses (7.90) and (7.101), system (7.70), (7.71), and
(7.92) admits a nontrivial solution {g, f }.
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same technique as in the proof of Theorem 7.15, we derive that (cf. (7.74))
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Example 7.21 If (7.101) holds, equation (7.91) with α = −β = 1 has the form

ut utt = uux x − (ux)
2 + γ u2 + εuux . (7.102)

Transformation v = ln |u| yields

vt
[
vt t + (vt )

2
] = vx x + γ + εvx .

By Proposition 7.20, there exist solutions (7.65), where a(t) satisfies

T [a] ≡ a′a′′ = Aa2, with A = −ε2 �= 0. (7.103)

Recall that B = 0. In particular, the simplest function is a(t) = e−ε2/3t . It then
follows from (7.70) that Y = ln | f |, and g(x) are given by

Y ′′ + εY ′ + (γ + ε2) = 0 and g′ = Y ′ ± ε; (7.104)

u(x, t) = D exp
{− ε2+γ

ε x + D1e−εx
} [

D2eεx + a(t)
]
. (7.105)

2. Linear Case: β = 0. From (7.94), we get two subcases:

2.1. Nonexistence with c1 �= 0. Then, instead of (7.94),

g′ = zg + 1
c1

[(A − B)g2 − δ], with z = f ′
f .

z = −[2(A − B)2αg3 + ε(A − B)c1g2 + (2A− B)c2
1g

− 2(A − B)αδg + c0c2
1 − εδc1

] [
c1
(
3(A− B)αg2 − δα + c2

1

)]−1
.

(7.106)

zg − 1
α

(
A − γ − αz2 − εz

)
(z′g)−1 ≡ − (A−B)

c1
g2 + δ

c1
for g ∈ IR. (7.107)

Substituting z(g) and z′g(g) from (7.106), we infer that (7.107) is the identity if a
certain eighth-order polynomial satisfies

α3(A − B)5g8 + . . . ≡ 0 for all g ∈ IR.

Since α �= 0 by the assumption, a nontrivial solution exists in the case of A = B
only, which has been studied before.

2.2. Existence. Suppose now that

β = c1 = 0. (7.108)

Then (7.93) implies
g2 ≡ g2

0 = δ
A−B > 0. (7.109)

In this case, functions {g0, f } solve the following system:

α f ′′ + ε f ′ + (γ − A) f = 0, g2
0 = δ

A−B , γ g2
0 + c0g0 + δ = 0. (7.110)

It is easily seen that such a constant solution g0 of (7.110) exists if

c2
0 ≥ 4γ δ and γ δ

A−B ± c0

√
δ

A−B + δ = 0. (7.111)
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see (7.94) and (7.99). This yields the following solution:

Therefore, we derive similarly that (cf. (7.95))

Finally, we obtain the following solvability criterion (cf. (7.98)):
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Proposition 7.22 Under hypotheses (7.90), (7.108), (7.109), and (7.111), system
(7.70), (7.71), and (7.92) has a nontrivial solution {g0, f }.
Example 7.23 For parameters (7.108), the equation (7.91) takes the form

ut utt = αuux x + γ u2 + εuux + c0u + δ.

In view of Proposition 7.22, it possesses the solution

u(x, t) = g0 + f (x)a(t),

where a(t) solves (7.103), the constant A is given by (7.111) (here B = 0), and

|g0| =
√

δ
A . From (7.110), it follows that if G ≡ ε2 − 4α(γ − A) > 0, then f (x) =

D1eµ1x +D2eµ2 x , where µ1 and µ2 are different roots of αµ2+εµ+ (γ − A) = 0.
Hence,

f (x) = (D1x + D2)e−εx/2α, if G = 0,

f (x) = D1eν1x cos[ν2(x + D2)], if G < 0,

where ν1 = − ε
2α and ν2 = 1

2α

√
4α(γ − A)− ε2.

3. General case. Let

β �= 0 and c2
1 �= 4βδ, (7.112)

i.e., (7.94) contains an irrational function. Substituting (7.95) into (7.98) and making
simplifications yields a linear combination of functions

1, g, g2, ... , g6, R̂, g R̂, ... , g6 R̂, (7.113)

which must be identically zero. This gives fourteen algebraic equations for the pa-
rameters. In particular, from this system the following result is obtained.

3.1. Existence. Two existence cases are derived.

Proposition 7.24 Let (7.90) and (7.112) hold. Then, system (7.70), (7.71), and
(7.92) possesses a nontrivial solution {g, f } with constant f (x) ≡ f0 if

β = α(γ−B)
B−2γ (B �= 2γ ), c0 = c1 = ε = 0, δ �= 0, A = γ �= 0, (7.114)

where γ δ > 0 if β < 0.

Note that (7.114) is the sufficient condition for identity (7.98) to be valid with
f = f0. Using (7.95) gives z = 0, and plugging this into (7.97) yields A = γ .
Other conditions in (7.114) follow from (7.95) with z = 0, if we look for a nontrivial
function g(x) �≡ constant, such that all rational and irrational terms on the right-
hand side of (7.95) are linearly independent. This yields c0 = c1 = ε = 0 and
A(α+ 2β)− B(α+β) = 0. A more general solution {g, f0} is given in the example
below.

Example 7.25 Under hypotheses (7.114) with B = 0 (where α = −2β), (7.91) is

ut utt = −2βuux x + β(ux)
2 + γ u2 + δ. (7.115)
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Then, system (7.70), (7.71), (7.92) reduces to
−2 f f ′′ + ( f 2)′ = 0,

−2βgg′′ + β(g2)′ + γ g2 + δ = 0,

−2β(g f ′′ + g′′ f )+ 2βg′ f ′ + 2γ g f = 0.

(7.116)

As has been shown above, this system is compatible iff f (x) ≡ f0. In this case,
(7.115) admits the solution u(x, t) = g(x) + f0a(t), where a′a′′ = γ a2. It then
follows from (7.116) with f = f0 that g(x) has the form (D �= 0 is arbitrary):

g(x) =
√

δ
γ sin

(√− γ
β x + D

)
, γ δ > 0, γβ < 0,

g(x) = D exp
{√ γ

β x
}+ δ

4γ D exp
{−√ γ

β x
}
, γβ > 0.

Proposition 7.26 Let (7.90) and (7.112) hold. Then, system (7.70), (7.71), (7.92)
admits nontrivial solution {g0, eµx } with g0 �= 0, µ �= 0, provided that

(α + β)µ2 + εµ− (A − γ ) = 0, γ g2
0 + c0g0 + δ = 0,

[αµ2 + εµ− (B − 2γ )]g0 + c0 + c1µ = 0.

Assume that (7.96) is not valid and

g(x) = emx , f (x) = enx , where m �= n.

It follows from (7.70), (7.71), and (7.93) that this solution exists if c0 = c1 = δ = 0,
and

(α + β)n2 + εn + γ − A = 0,
(α + β)m2 + εm + γ = 0,

β(m − n)2 = A − B.

For equation (7.102), from (7.53), we have B = 0, and the above solution is included
into (7.105).

3.2. Nonexistence. We consider the last case where (7.96) holds. Then, as above,
(7.98) is equivalent to the identity on the linear span of the functions (7.113). The
final result (obtained via computer supported symbolic manipulations) can be stated
as follows: under assumptions (7.90), (7.96) and (7.112), (7.98) is not the identity.
This means nonexistence of solutions {g, f } satisfying (7.96).

7.4.4 On quadratic operators with linear properties

This linear case is connected with the system 2) in Section 7.3.2. Previously, we have
studied the case where the operator T in (7.45) satisfied

T [u] ∈ W3 = L{1, a, a2} for all u ∈ W2 = L{1, a}.
Let us now show that if a(t) is such that

T [u] ∈ W2 for all u ∈ W2, (7.117)

then, in some particular cases, there exist explicit solutions that differ from those
given above. Under hypothesis (7.117), the equation (7.50) on an invariant set has a
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different form than (7.60). In particular, it follows from (7.55) that (7.117) is valid,

T [a] = Ãa, T [a, 1] = B̃, (7.118)

where Ã �= 0 and B̃ are some constants. In this case, the first expression in (7.55)
reads T [g + f a] = Ã f 2a + B̃g f. Hence, instead of (7.56),

A[g + f a] = B̃g f − F[g]+ ( Ã f 2 − F[g, f ])a − F[ f ]a2.

Therefore, there exists the set M0, given by (7.54), and the equation (7.59) has the{
F[g]− B̃g f = −Q[g]− p,

F[g, f ]− Ã f 2 = −Q[ f ].
(7.119)

Observe that (7.117) holds if (cf. (7.118))

T [a] = A1a + A0 and T [a, 1] = B1a + B0. (7.120)

In fact, below the case A0 = B1 = 0 is considered.

Theorem 7.27 Let (7.61) be valid. Let (7.118) with Ã = B̃ �= 0 hold. Then the
problem (7.59) admits the following solutions:

(i) for 2α + β = γ = 0, εσ − c0 �= 0, αc0 = ε(βσ − c1), with σ in (7.62),

u(x, t) = D1e−x/n1

1−n2 D1e−x/n1

[
D2 − σn1

D1
ex/n1 + σn2x + a(t)

]
, (7.121)

where n1 = σ(α+2β)−c1
εσ−c0

and n2 = Ã
εσ−c0

;
(ii) for 2α + β = ε = γ = c0 = 0,

u(x, t) = 1
nx+D1

[
D2 − σ

( 1
2 nx2 + D1x

)+ a(t)
]
, n = Ã

σ(α+2β)−c1
. (7.122)

Proof. By using the same technique as in the proof of Theorem 7.15, we obtain
(7.75) and, instead of (7.77),

[(α + 2β)σ − c1] f ′
f + (εσ − c0)+ Ã f = 0. (7.123)

The above solution follows from the solvability of (7.123), together with the equation
0

α f f ′′ + β( f ′)2 + ε f f ′ + γ f 2 = 0. (7.124)

Having a solution f (x) of (7.123), (7.124), the function g(x) is calculated from
(7.75).

Example 7.28 (Parabolic PDE) Consider equation (7.85). Under the hypotheses
of Theorem 7.27, there exist explicit solutions (7.121) or (7.122) with a(t) = Ãt .
These solutions are different from those given in Example 7.17.

Example 7.29 (Hyperbolic PDE) Under the same hypotheses, equation (7.88) has
explicit solutions (7.121) or (7.122) with a(t) = 1

2 Ãt2 + Dt , where D is arbitrary.

In addition to the case of (7.117), consider a(t) such that

T [u] ∈ W1 = L{1} on W2.
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of the set M , F[ f ] = 0 (see (7.54)), yielding

provided that (cf. (7.53))

form (cf. (7.60))
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It follows from (7.55) that this is true if

T [a] = Ā, T [a, 1] = B̄,

where Ā and B̄ are constants. For instance, for the operator T [u] = ut utt , there exists

a(t) = 2
3 (2 Ā)

1
2 t

3
2 , provided that Ā > 0 and B̄ = 0. The corresponding equation on

M0 {
F[g]− Ā f 2 − B̄g f = −Q[g]− p,
F[g, f ] = −Q[ f ].

β(g f ′ − f g′)2 = c1 f (g f ′ − f g′)− f 2(δ − B̄g f − Ā f 2). (7.125)

In general, both existence and nonexistence are OPEN PROBLEMS. For β = c1 = 0,
where (7.125) takes the most simple form, a nontrivial solution does not exist.

Example 7.30 (On higher-order PDEs: dispersive Boussinesq equation) Con-
sider the fourth-order hyperbolic B(1, 1

2 ) equation [496]

vt t − vx x −
(√

v
)

x x − vx x x x = 0

that is formulated for nonnegative solutions. In general, such equations may admit
solutions of changing sign; see Example 5.12. Setting v = u2 yields

T [u] ≡ uutt + (ut )
2 = −uux x x x − 4uxux x x

− 3(ux x)
2 + uux x + (ux)

2 + ux x .
(7.126)

According to the GSV in Section 7.3.1, looking for solutions u = g+ f a(t) yields a
standard system (I) for a(t) that is easily solved, giving t or et as usual. In contrast,
system (II) for f , g becomes essentially more involved than for the above second-
order cases. A complete consistency analysis is not straightforward. Moreover, for
such higher-order PDEs (7.126), looking for solutions on a trigonometric subspace,

u(x, t) = C1(t)+ C2(t) cos(λx)+ C3(t) sin(λx) (λ ∈ IR)

yields an overdetermined DS that allows only traveling wave compactons (similar to
those in [581]), with no exact dynamics around, as was shown in several examples
in Section 7.1. In other words, for higher-order operators F[u] and multi-term ∂

∂t -
dependent operator T [u], the GSV becomes complicated and can provide us with
new exact solutions for some exceptional PDEs only.

7.4.5 On some other extensions

1. Partially invariant modules W3. In general, the operator (7.47) admits invariant
sets on the 3D subspace W3 = L{1, a(t), b(t)}, where the functions 1, a(t), and b(t)
are linearly independent. If b2(t) = a(t), for instance,

a(t) = eλt and b(t) = e
λt
2 for some λ �= 0 (7.127)

(this is reminiscent of soliton-type solutions), we find a family of sets M on W3 such
that, for any u = g(x)+ f (x)a(t)+ h(x)b(t) ∈ M , A[g + f a + hb] ∈ W3. In this
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has the form (cf. (7.119))

Then, as in the proof of Theorem 7.15, we derive the equation (cf. (7.74) and (7.93))
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case,

T [F + f a + hb] = f 2T [a]+ h2T [b]+ g f T [a, 1]

+ ghT [b, 1]+ f hT [a, b], F[g + f a + hb] = F[g]+ F[g, f ]a + F[g, h]b

+ F[ f ]a2 + F[h]b2 + F[ f, h]ab.

Using (7.127) yields the following result.

Lemma 7.31 Under hypothesis (7.127), there exists the set on W3

MA =
{
u = g + f a + hb : F[ f ] = A1 f 2, F[ f, h] = A2 f h

}
,

where A1 =∑ ai, j λ
i+ j and A2 =∑ ai, j (2−i + 2− j )λi+ j .

Equation (7.50) can easily be stated on MA ⊂ W3 with A = (A1, A2). The gen-
eral problem of the existence and nonexistence of solutions on MA is OPEN. Some
examples given above can be treated as the existence result on the set MA ⊂ W3. For
instance, Example 7.29 shows that the PDE under consideration admits the explicit
solution which formally satisfies u(x, t) ∈ MA ⊂ W3 = L{1, t, t2}. By translation
in time t → t + 1 in Example 7.19, we obtain a solution u(x, t) ∈ MA ⊂ W̃3 =
L{1, e−ωt , t e−ωt }.
2. N-dimensional operators. Such sets M can be constructed for elliptic operators
in the N-dimensional space, e.g., for

F[u] = αu
u + β|∇u|2 + γ u2 + εu(∇u · d) (d ∈ IRN ),

as well as for others from Chapter 6. The problem of the existence and nonexistence
of solutions on M becomes more difficult.

3. Operators with cubic nonlinearities. In general, a similar invariant analysis can
be done for operators of higher algebraic homogenuity. For instance, as in Sec-
tion 1.5, we can consider cubic operators

A[u] = T [u]− F[u] ≡∑ bi, j,k Di
t u D j

t u Dk
t u −∑ ai, j,k Di

x u D j
x u Dk

x u

(or use a combination of quadratic and cubic operators). Then, e.g., for exponential
functions a(t) = eλt with a λ �= 0, A[u] ∈ L{1, a, a2, a3} for u = g+ f a ∈ W2. In-
variant sets M ⊂ W2 are defined so that A[M] ⊆ L{1, a}. This yields two equations
for coefficients {g(x), f (x)}, which determine M with a harder consistency analysis.

7.5 Evolutionary invariant sets for higher-order equations

In this section, we use the notion of evolutionary invariant sets which are associ-
ated with a prescribed nonlinear PDE. Using a particular class of such equations, the
actual relation between evolutionary invariance and the standard concept of partial
invariance (invariant sets on linear modules) is shown. More general and sophisti-
cated classes of such problems will be introduced in Chapter 8.

Consider a 1D ((1+1)-dimensional) mth-order evolution PDE

ut = F[u] ≡ F(x, u, u1, ..., um) in Q = IR × [0, 1], (7.128)

where ui = Di
x u. Suppose that F ∈ C∞(IRm+2), and solutions of (7.128) are as-

sumed to be smooth, u ∈ C∞(Q).
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7.5.1 Scaling order, index and evolutionary invariant sets

Simple exact solutions presented here admit other treatments to be discussed later
on. Currently, we apply a version explaining connection with the most well-known
group-invariant solutions that are admitted by many scaling invariant PDEs.

1. Group of scalings, order, and index. Consider a simple Lie group of scaling
transformations

x∗ = eεx, t∗ = eµεt, (7.129)

where µ ∈ IR \ {0} is a fixed constant, with the infinitesimal generator

X = x ∂
∂x + µt ∂

∂t . (7.130)

Then, equation (7.128) is invariant under (7.129) if operator F satisfies the following
homogenuity condition: for any s > 0,

F
(
sx, u, 1

s u1, ...,
1

sm um
) ≡ ( 1

s

)µ
F(x, u, u1, ..., um). (7.131)

From the invariance equation Xu = 0, it follows that (7.128) admits self-similar
solutions, depending on a single variable (the invariant of the group):

u(x, t) = θ(ξ), ξ = x
t1/µ . (7.132)

On the set of invariant solutions (7.132), the PDE (7.128) reduces to the following
ODE for θ(ξ):

F
(
ξ, θ, θ ′, ..., θ (m)

)+ 1
µ θ ′ξ = 0.

Then, µ = µ(F) is said to be the scaling order of the operator F . For the operator
with power-like nonlinearities in derivatives

F[u] = φ(u)xβ*m
j=1(u j )

α j , (7.133)

where φ is a smooth function, the scaling order is µ(F) =∑m
j=1 jα j − β.

Consider a more general evolution PDE

ut = F[u] ≡∑I
i=1 Fi [u], (7.134)

where each operator Fi is of the form (7.128) with the scaling orders µi �= µ j for all
i �= j . We call I = I (F) the scaling index of the operator F .

2. Evolution invariance and algebraic differentiation. If I > 1, (7.134) does not
admit any Lie group (7.129). In this case, we begin our analysis by introducing the
set of functions

M0 =
{
v ∈ C∞(IR) : vx = 1

x H (v)
}
, (7.135)

where H is an unknown C∞-function. As a standard practice, M0 is said to be evo-
lutionary invariant for PDE (7.134) if

u(·, 0) ∈ M0 �⇒ u(·, t) ∈ M0 for t ∈ (0, 1]. (7.136)

The contact, first-order structure of the equality

ux = 1
x H (u) (7.137)
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(a differential constraint) includes the scaling invariant (7.132). This is seen by in-
tegration. The simple differential structure of M0 makes it possible to introduce the
following algebraic differentiation in the set, that reduces the PDE on M0 to a system
of ODEs.

Lemma 7.32 Let u ∈ M0. Then,

uk = 1
xk Gk[H ], k = 1, 2, ... , (7.138)

where the ordinary differential operators Gk satisfy the recursion relation: for any
H (u) ∈ C∞,

Gk+1[H ] = H d
du Gk[H ]− kGk[H ] for k = 1, 2, ... , G1[H ] = H.

Proof. Differentiating (7.138) yields

uk+1 = − k
xk+1 Gk[H ]+ 1

xk
d

du Gk[H ]u1 ≡ 1
xk+1 Gk+1[H ],

since u1 = 1
x H (u) by the definition (7.135).

We present below a few of the quasilinear polynomial differential operators Gk ,
which are sufficient to deal with PDEs up to the fifth order:

G2[H ] = H (H ′ − 1),

G3[H ] = H G ′2 − 2G2 = H [(H H ′)′ − 3H ′ + 2],

G4[H ] = H G ′3 − 3G3 = H [(H (H H ′)′)′ − 6(H H ′)′ + 11H ′ − 6],

G5[H ] = H [(H (H (H H ′)′)′)′ − 10(H (H H ′)′)′

+ 35(H H ′)′ − 50H ′ + 24].

(7.139)

4. Evolutionary invariant sets. Using the rule (7.138) and the scaling properties
(7.131) with µ = µi of operators Fi , we find that, on M0,

F[u] =∑I
i=1 Fi

(
x, u, 1

x G1, ...,
1

xm Gm
)

≡∑I
i=1 x−µi Fi (1, u, G1, ..., Gm) ≡∑I

i=1 x−µi H Ci[H ],
(7.140)

where, for convenience, we introduce the operators

Ci [H ] = 1
H Fi (1, u, G1[H ], ..., Gm[H ]) for i = 1, ..., I.

The main result is as follows:

Theorem 7.33 The set M0 is evolutionary invariant iff the function H (u) satisfies
the ODE system

H d
du Ci [H ] = µi Ci [H ], i = 1, ..., I, (7.141)

and then solutions u(x, t) on M0 take the form

v ≡ ∫ u
1

dz
H(z) = ln x + D(t). (7.142)

Here, D(t) solves the ODE

D′ =∑I
i=1 di eµi D, where di = Ci [H ]

∣∣
u=1. (7.143)
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The ODE (7.143) is always integrated in quadratures and is the PDE (7.134) re-
stricted to the set M0.

Proof. In view of (7.142),
ut = H (u)D′(t). (7.144)

Substituting (7.144) into (7.134) and using (7.140) yields

D′(t) =∑I
i=1 x−µi Ci [H (u)] ≡ R(x, t). (7.145)

Therefore, R(x, t) does not depend on x , which results in

Rx =∑I
i=1

{
H d

du Ci [H ]− µi Ci [H ]
}
x−(µi+1) ≡ 0.

Since functions {x−(µi+1)} are linearly independent in IRI , we obtain the system
(7.141), meaning that

d
dv Ci [H ] ≡ H d

du Ci [H ] = µi Ci [H ], so Ci [H ] = di e
µi v . (7.146)

Plugging the functions (7.146) with v = ln x+D given by (7.142) into (7.145) yields
the ODE (7.143).

5. Group of scalings for I = 1. In the case I (F) = 1, for which the group of
scalings exists, one can solve (7.143) explicitly. Set µ1 = µ and d1 = d , so

D′ = deµD �⇒ D(t) = − 1
µ ln t + constant.

Substituting this into (7.142) yields∫ u(x,t)
1

dz
H(z) = ln

( x
t1/µ

)+ constant,

i.e., u(x, t) depends on the single scaling group invariant as in (7.132).

Remark 7.34 (On extensions) As an extension of the evolutionary invariant set
(7.137), it makes sense to consider

ux = 1
x H (u)+ G(u), (7.147)

with two unknown functions H and G. The ODE conditions on all the coefficients
(slightly harder than (7.138)) can be obtained. The main difficulty is that (7.147) can-
not be integrated explicitly in general. A convenient integrable case (see Remarks)
corresponds to the Bernoulli equation vx = 1

x v + vn for v = H (u). Then again a
single function H appears in (7.147). Are there other cases (an OPEN PROBLEM)?

7.5.2 Back to invariant subspaces: equivalent formulation

We now comment on other equivalent (and sometimes simpler) forms of such exact

u(x, t) = U(ξ), ξ = ln x + D(t), (7.148)

for solutions of (7.134). Differentiating (7.148) yields, as in the previous case,

u1 = x−1U ′(ξ) ≡ x−1 P1[U ],
u2 = x−2{U ′′(ξ)− U ′(ξ)} ≡ x−1 P2[U ],

... ... ...
uk = x−k{(Pk−1[U ])′ − (k − 1)Pk−1[U ]} ≡ x−k Pk[U ],
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where Pk[U ] = Gk[U ′] given in (7.139). Substituting into the PDE (7.134) yields

U ′D′ =∑I
i=1 Fi (x,U, x−1 P1[U ], ..., x−m Pm [U ])

≡ ∑
x−µi Fi (1,U, P1[U ], ..., Pm[U ]), or

D′ =∑I
i=i x−µi 1

U ′ F̃i [U ], where F̃i [U ] = Fi (1,U, P1[U ], ..., Pm[U ]). (7.149)

Differentiating the last equality in x leads to

0 =∑ x−µi−1
{( 1

U ′ F̃[U ]
)′ − µi

1
U ′ F̃ [U ]

}
.

Therefore, U satisfies I conditions( 1
U ′ F̃[U ]

)′ = µi
1

U ′ F̃[U ], so on integration 1
U ′ F̃[U ] = di eµi ξ , (7.150)

where di are arbitrary constants. Finally, the ODE (7.149) takes the form

D′ =∑I
i=1 di eµi D. (7.151)

Determining U(ξ) from (7.150) and D(t) from (7.151) yields the exact solutions
(7.148) of the equation (7.134).

Another representation of solutions (7.148) is as follows:

u(x, t) = V (ζ ), ζ = xs(t), (7.152)

where ζ = eξ and s(t) = eD(t). Then, instead of (7.150) and (7.151), we find

1̃
V ′ F̃i [V ] = diζ

µi+1, where F̃i [V ] = ζµi Fi (ζ, V , V ′, ..., V (m))

and
s′ =∑I

i=1 di sµi+1.

Both the representations are equivalent. Notice that the second form (7.152) is con-
nected with the invariant subspace L{x}.
Example 7.35 (General quasilinear heat equation) As a generalization to be also
treated later on, consider a parabolic PDE of reaction-diffusion type,

ut = F2[u] ≡ [φ(u)ux x + ψ(u)(ux )
2
]+ f (u) (7.153)

that contains three functions φ(u) ≥ 0, ψ(u), and f (u). Bearing in mind an arbitrary
smooth change u = R(v), which leaves the structure of the PDE (7.153) invariant,
we are going to find solutions in the separable form

u = e(x)g(t) (7.154)

that are associated with the 1D subspace L{e} with an unknown function e. Plugging
(7.154) into (7.153) and dividing by eg yields

g′
g = φ e′′

e + uψ
( e′

e

)2 + e
u . (7.155)

Denote
e′(x)
e(x) = h(x) �⇒ e′′

e − (e′)2

e2 = h′ and e′′
e = h′ + h2.

Then (7.155) reads

g′
g = φ(h′ + h2)+ uψh2 + e

u = h′ + (φ + uψ)h2 + e
u . (7.156)
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Differentiating in x vanishes the left-hand side, so

φh′′ + [φ′u + 2(φ + uψ)]hh′ + (k + uψ)′uh3 + ( e
u

)′
uh = 0. (7.157)

As in the GSV, it follows from (7.157) that h(x) must satisfy, for some constants α1,
α2, and α3, the ODE

h′′ = α1h3 + α2h + α3hh′. (7.158)

Then (7.157) reduces to the following system:{
(φ + uψ)+ α1φ = 0,
( e

u )
′u + α2φ = 0,

φ′u + 2(φ + uψ)+ α3φ = 0.
(7.159)

We will integrate it later on.

7.5.3 Second-order parabolic PDEs

Let us return to the original treatment of PDEs via evolutionary invariant sets (7.135).

Example 7.36 (Quasilinear heat equation, continued) Consider again equation
(7.153). The scaling orders of two operators in (7.153) are µ1 = 2 and µ2 = 0, so
that the scaling index is I (F2) = 2. Substituting the differential rule (7.138), one can
calculate that, on M0,

F2[u] = H
{ 1

x2 [φ(H ′ − 1)+ ψH ]+ f
H

} ≡ H
{
C1[H ]+ 1

x2 C2[H ]
}
. (7.160)

By Theorem 7.33, the invariant conditions (7.141) take the form

H
( f

H

)′ = 0, H [φ(H ′ − 1)+ ψh]′ = 2[φ(H ′ − 1)+ ψH ], or (7.161){
f = νH,

H H ′′ − 2H ′ + 2+ φ′
φ H (H ′ − 1)+ ψ

φ H (H ′ − 2)+ ψ ′
φ H 2 = 0,

(7.162)

where ν ∈ IR is a constant. The equation (7.153) on M0 reduces to the following
ODE for the function D(t) in the exact solution (7.142):

D′ = d1 + d2e2D,

where d1 = ( f
H )(1) = ν and d2 = [φ(H ′ − 1) + ψH ](1). Notice that (7.161) is a

system of two equations with four arbitrary unknown functions φ, ψ , f , and H .

Example 7.37 (Radial N-dimensional equations) Consider the quasilinear heat
equation in IRN

ut = [φ(u)
u + ψ(u)|∇u|2]+ f (u).

In the radial case, where x > 0 is the radial spatial variable and 
u = ux x+ N−1
x ux ,

|∇u|2 = (ux)
2, this PDE has the same scaling orders as (7.153). Then, in (7.160),

C1[H ] = φ(H ′ + N − 2)+ ψH.

Therefore, the second equation in (7.162) is replaced by the following one:

H H ′′ − 2H ′ − 2(N − 2)+ φ′
φ H (H ′ + N − 2)

+ ψ
φ H (H ′ − 2)+ ψ ′

φ H 2 = 0.
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Example 7.38 (Equations with gradient-dependent diffusivity) Consider a gen-
eralization of the p-Laplacian equations studied in Section 6.4,

ut = φ(u)(ux )
αux x + f (u)(ux )

β ≡ F1[u]+ F2[u]. (7.163)

Here, µ1 = α + 2 and µ2 = β. If α + 2 = β, then (7.163) is invariant under the
scaling group (7.129). Let α + 2 �= β. In this case, on M0,

F1[u]+ F2[u] = H
( 1

xα+2 φH α(H ′ − 1)+ 1
xβ H β−1 f

)
,

and the invariant conditions are

H [φH α(H ′ − 1)]′ = (α + 2)φH α(H ′ − 1), H (H β−1 f )′ = βH β−1 f, (7.164)

or, which is the same,

H H ′′ + α(H ′)2 − 2(α + 1)H ′ + (α + 2)+ φ′
φ H (H ′ − 1) = 0,

H f ′ + [(β − 1)H ′ − β] f = 0.

The ODE for D(t) is
D′ = d1e(α+2)D + d2eβD,

with constants d1 = [φH α(H ′ − 1)](1) and d2 = (H β−1 f )(1).

Example 7.39 (Fully nonlinear parabolic PDEs) Consider the equation

ut = φ(u)(ux )
α(ux x)

γ + f (u)(ux )
β ≡ F1[u]+ F2[u].

The term (ux x)
γ is typical for the dual porous medium equation, which was dis-

cussed in Example 1.18. Then µ1 = α + 2γ and µ2 = β, and we assume that
µ1 �= µ2, so that I = 2. On M0,

F1[u]+ F2[u] = H
( 1

xα+2 γφH α+γ−1(H ′ − 1)γ + 1
xβ H β−1 f

)
.

Therefore, in the invariant conditions (7.164), the first equation is replaced by

H [φH α+γ−1(H ′ − 1)γ ]′ = (α + 2γ )φH α+γ−1(H ′ − 1)γ ,

and the ODE for D(t) becomes

D′ = d1e(α+2γ )D + d2eβH , with d1 = [φH α+γ−1(H ′ − 1)γ ](1).

7.5.4 Fourth-order generalized thin film equations

Example 7.40 Consider a general fourth-order PDE

ut = F4[u] ≡ q(u)ux x x + ρ(u)ux x x x + F2[u], (7.165)

where F2 is the second-order operator given in (7.153). In Section 3.1, we dealt with
a number of such nonlinear thin film models possessing various exact solutions. The
analysis of (7.165) is similar to that for the second-order PDE (7.153). The third and
fourth-order term in (7.165) have the scaling orders µ3 = 3 and µ4 = 4, respectively,
and I (F4) = 3. Hence, on M0, we add two extra terms to the right-hand side of
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(7.160),
F4[u] = F2[u]+ H

( 1
x3 qC3[H ]

)+ H
( 1

x4 ρC4[H ]
)
,

C3[H ] = 1
H G3[H ], C4[H ] = 1

H G4[H ],
where G3,4 are given in (7.139). In this case, we add two equations to the system
(7.162),

H (qC3)
′ = 3qC3 and H (ρC4)

′ = 4ρC4. (7.166)

The ODE for D(t) takes the form

H ′ = d1 + d2e2H + d3e3H + d4e4H ,

where d3 = (qC3[H ])(1) and d4 = (ρC4[H ])(1). The TFE (7.165) contains five
arbitrary functions {φ,ψ, f, q, ρ}, so, together with H , four ODEs (7.162), (7.166)
for six functions are obtained. Hence, such solutions exist for PDEs (7.165) with two
arbitrary coefficients (say, ρ(u) and q(u) of the higher-order operators).

7.5.5 Extensions

1. Other evolutionary invariant sets. In Section 1.4, we revealed several evolution
PDEs, in particular, of type (7.153) that possessed solutions on the trigonometric
subspace W = L{cos x}, or on the exponential subspace W = L{cosh x}. These
solutions can be obtained by constructing sets of a different structure,

M1 =
{
u : ux = tan x H (u)

}
.

The algebraic differentiation in M1 is different from that in M0. Setting

w(x) = 1
cos2 x

,

we obtain

u2 ≡ ux x = wH (H ′ + 1)− H H ′ ≡ H (wP21 +P20).

Denoting
Q[H ] = H [(H H ′)′ + 3H ′ + 2]

yields
u4 = H (w2P42 +wP41 +P40), where

P42 = 3Q+ (HQ)′ ((·)′ = d
du ),

P41 = −2Q− (HQ)′ − (H H ′)′ − (H (H H ′)′)′,
P40 = (H (H H ′)′)′.

In particular, the even derivatives u2k belong to a (k+1)-dimensional subspace,

u2k ∈ L{1, w, ..., wk}.
Example 7.41 (Thin film-type equations) Consider the fourth-order PDE

ut = F4[u] ≡ ρ(u)ux x x x + φ(u)ux x + ψ(u)(ux )
2. (7.167)

Since for u ∈ M1,
(ux)

2 = wH 2 − H 2,
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it follows that, on M1,

F4[u] = H
[
w2(ρP42)+w(ρP41 + φP21 + ψH )

+ ρP40 + φP20 − ψH
] ≡ H (w2�2 +w�1 +�0) ∈ L{1, w,w2}. (7.168)

The index of F4 (the number of linearly independent terms in (7.168)) is equal to 3.
Integrating ux = tan x H (u) yields

v ≡ ∫ u
1

dz
H(z) = − ln cos x + D(t) (cos x > 0).

Substituting this expression into (7.167) and using (7.168), we obtain

D′(t) = w2(x)�2 + w(x)�1 +�0. (7.169)

In view of the linear independence, functions �2(v), �1(v), and �0(v) must be
exponential and equal to d2e4v , d1e2v , and d0, respectively. This yields the system of
three equations for H ,

H�′2 = 4�2, H�′1 = 2�1, and H�′0 = 0. (7.170)

Then (7.169) becomes
H ′ = d2e4H + d1e2H + d0,

with the coefficients d2 = �2|u=1, d1 = �1|u=1, and d0 = �0|u=1. Here (7.170)
is a system of three ODEs for four arbitrary functions {φ,ψ, ρ, H }. Hence, such
solutions exist for a family of equations (7.167) with a single arbitrary coefficient,
e.g., ρ(u). Adding another thin film-type monomial, κ(u)uxux x x , to the right-hand
side does not change the scaling index, since on M1,

u1u3 ∈ L{1, w,w2}.
Hence, no extra ODE is added to the system (7.170). A similar analysis is performed
for the sets given by the constraint

ux = tanh x H (u).

On more general approaches. We now clarify the origin of all the evolutionary
invariant sets studied above; cf. Example 7.35. Namely, consider the set

M : ux = g(x)H (u), (7.171)

and determine all possible functions g and H that guarantee the invariance in time.
Of course, integrating this constraint yields the following exact solution:

u(x, t) = U(e(x)+ D(t)),

with three unknown functions e, D, and U . Such solution structures, which we have
revealed above in particular cases, in general, are related to Stäckel’s form (1893)
and generalized separation of variables; see Remarks to Section 8.4.

We now borrow the following result from Section 8.3 (cf. identity (8.50)): (7.171)
is evolutionary invariant under the flow induced by the quasilinear heat equation

ut = (k(u)ux)x + f (u), provided that (7.172)
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F1 ≡ g′′(x)k H + g3(x) H 2(k H )′′

+ g(x)( f ′H − f H ′)+ gg′(x)(3k′H 2 + 2k H H ′) ≡ 0.
(7.173)

The right-hand side of (7.173) belongs to the subspace

W = L{g′′, g3, g, gg′
}

(7.174)

and so, if it is 4D, we obtain four ODEs for three functions {k, f, H }, which are not
expected to admit any interesting solution.

3D reduction. The next step is to consider an extra reduction of the subspace (7.174)
by choosing g(x) such that, for some constants α1,2,3, (7.158) holds. Assuming that
L{g3, g, gg′} is 3D yields the following system for three functions:{ H (k H )′′ + α1k = 0,

f ′H − f H ′ + α2k H = 0,
3k ′H + 2k H ′ + α3k = 0.

(7.175)

It is not difficult to characterize the whole family of such equations (7.172). Setting
k H = P , we derive from the first two equations

H H ′ = −α1
2

( P
P ′′
)′

and
( f

H

)′ = α2
α1

P ′′.

Integrating the first one,

H 2 = −α1
( P

P ′′
)+ A (A ∈ IR)

and substituting this H = H (P) and k = P
H(p) into the third equation in (7.175)

yields an autonomous third-order ODE for the single function P(u),

P P ′′′ = 2α3
α1

(P ′′)2
√
−α1

( P
P ′′
)+ A − 5P ′P ′′

(for A = 0, this can be reduced to a first-order equation).
Thus, in general, we obtain a four-parametric family of PDEs (7.172) possessing

such explicit solutions.
The algebraic differentiation on the set (7.171) depends on g and is not as perfect

as in the case where g(x) = 1
x . For instance,

ux x = g2 H H ′ + g′H,

ux x x = g3[α1 H + H (H H ′)′]+ g(α2 H )+ gg′(3H H ′ + α3 H ),

etc. It is not difficult to derive the ODE governing the evolution on M for an arbitrary
admissible g(x). It follows from (7.171) that the function

v(x, t) = G(u) ≡ ∫ du
H(u) =

∫ x
0 g(y) dy + D(t) solves (7.176)

vt = k(u)vx x + (k H )′(u)(vx )
2 + ( f

H

)
(u).

Since vx = g(x) and vx x = g′(x), setting x = 0 yields v(0, t) ≡ G(u(0, t)) = D(t),
and so u(0, t) = G−1(v(0, t)), from which comes the following ODE for D(t):

D′ = k(G−1(D))g′(0)+ (k H )′(G−1(D))g2(0)+ ( f
H

)
(G−1(D)). (7.177)

2D reductions. It is now easy to obtain from (7.158) further reductions leading to
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some specific functions g,

α1 = α2 = 0, α3 = −2 �⇒ g(x) = 1
x ,

α1 = α3 = 0, α2 = −1 �⇒ g(x) = cos x,
α1 = α3 = 0, α2 = 1 �⇒ g(x) = cosh x .

(7.178)

The most transparent degenerate case is

α1 = α2 = α3 = 0 �⇒ g(x) = x . (7.179)

These cases will play a role for constructing sign-invariants for quasilinear parabolic
PDEs which is the main subject of the next chapter.

7.5.6 Evolutionary invariant sets for hyperbolic PDEs

Consider the set (7.171) for the second-order hyperbolic equation

utt = (k(u)ux)x + f (u). (7.180)

Equating uxtt given by (7.171) and (7.180), we obtain the invariance condition (cf.
(7.173))

F2 ≡ −gH ′′(ut )
2 + g′′k H + g3(k ′′H 3 + 2k′H 2H ′ + k H 2H ′′)

+ g( f ′H − f H ′)+ gg′(2k H H ′ + 3k′H 2) ≡ 0.
(7.181)

If this identity is true, performing the same change (7.176) yields the PDE

vt t + H ′(u)(vt )
2 = k(u)vx x + (k H )′(u)(vx )

2 + ( f
H

)
(u),

so that, exactly as in (7.177), we obtain the ODE

D′′ + H ′(G−1(D))(D′)2 = k(G−1(D))g′(0)
+ (k H )′(G−1(D))g2(0)+ ( f

H

)
(G−1(D)).

There is an essential difference with the parabolic case that is related to the first
term on the right-hand side of (7.181), so that one needs H to be a linear function,

H ′′ = 0.

The rest of the analysis is equally based on the dimension of the linear space (7.174).
In particular,

g(x) = 1
x �⇒ W = L{ 1

x ,
1
x3

}
,

and (7.181) yields two ODEs for the coefficients{
f ′H − f H ′ = 0,

k′′H 2 + 2k′H H ′ − 2k H ′ − 3k ′H + 2k = 0.

The first ODE implies
f (u) = µH (u).

In particular, choosing a linear function

H (u) = αu

yields, for k(u), second-order Euler’s equation

α2u2k ′′ + α(2α − 3)uk′ + 2(1− α)k = 0.
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For α = 1, we have
u2k ′′ − uk ′ = 0,

which yields the following hyperbolic equation:

utt = F[u] ≡ [(a1 + a2u2
)
ux
]

x + µu

with the solution u(x, t) = C(t)x on the invariant subspace L{x} of F , where

C ′′ = 2a2C3 + µC.

For α = 2, k satisfies
2u2k ′′ + uk ′ − k = 0,

giving the PDE

utt = F[u] ≡ [(a1u + a2√
u

)
ux
]

x + 2µu

with exact solutions u(x, t) = C(t)x2, where

C ′′ = 6a1C2 + 2µC.

In the case where
H (u) = 1,

we find k ′′ − 3k′ + 2k = 0, and hence, the equation

utt = F[u] ≡ [(a1eu + a2e2u
)
ux
]

x + µ,

which admits the solution u(x, t) = ln x + D(t), where

D′′ = 2a2e2D + µ.

Similarly, it is easy to consider other cases from (7.178). In the degenerate case
(7.179), where W = L{x, x3}, there occur two ODEs{

2k H H ′ + 3k ′H 2 + f ′H − f H ′ = 0,

k ′′H + 2k′H ′ = 0,

so taking H (u) = u yields the PDE

utt =
[(

a2 − a1
u

)
ux
]

x − 2a2u ln u + a1 + a3u

possessing the solution u(x, t) = C(t)ex2/2, where

C ′′ = −2a2C ln C + (a2 + a3)C.

7.6 A separation technique for the porous medium equation in IRN

In this last section, we discuss a specific version of separation of variables. We deal
with the N-dimensional PME

vt = 
vm in IRN × IR+ (v ≥ 0), (7.182)
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which, by the pressure transformation u = m
m−1 vm−1, reduces to the quadratic form

ut = Fm [u] ≡ (m − 1)u
u + |∇u|2. (7.183)

The PME has m > 1, but the fast diffusion range m ∈ (0, 1) is also included, as well
as m = 0, corresponding to

vt = F0[v] ≡ 
 ln v.

The pressure equation (7.183) with m = 0 is obtained by setting u = − 1
v . Recall

also the PDE with the exponential nonlinearity

vt = 
ev ,

which reduces to a similar quadratic pressure-like equation

ut = u
u, where v = ln u.

According to Section 6.1, basic subspaces for the operator Fm consist of either
linear, W lin = L{1, xi , i = 1, ..., N}, or quadratic functions, W q = L{1, xi x j }. On
each of the subspaces or on its sum, the PDE (7.183) reduces to finite-dimensional
DSs which can be integrated in quadratures (Section 6.1). We will use these sub-
spaces in what follows.

7.6.1 A separation problem

Let us look for solutions in the following form:

u(x, t) = [ f (x, t)]p + g(x, t) ( f > 0), (7.184)

where f and g are two unknown functions from the above spaces of linear or quadratic
functions, and p �= 0, 1 is a parameter. Plugging into (7.183) yields a three-term ex-
pansion

f p−1 p
{− ft + (m − 1)

[
g
g + 1

p f 
g
]+ 2∇ f · ∇g

+ (m − 1)(p − 1)g |∇ f |2
f

}+ {−gt + (m − 1)g
g

+ |∇g|2}+ f 2p−1 p
{
(m − 1)
 f + (mp − m + 1) |∇ f |2

f

} = 0.

(7.185)

This will be treated as a formal linear combination (with coefficients, depending on
x and t as parameters) of three vectors f p−1, 1, and f 2p−1. Assuming that

f (x, t), g(x, t) ∈ L{1, xi , xi x j } for all t ≥ 0 (7.186)

yields, in general, three PDEs on { f, g} if p �= 1
2 ,

− ft + (m − 1)
[
g
g + 1

p f 
g
]+ 2∇ f · ∇g

+ (m − 1)(p − 1)g |∇ f |2
f = 0, −gt + (m − 1)g
g + |∇g|2 = 0,

(m − 1)
 f + (mp − m + 1) |∇ f |2
f = 0.

(7.187)

The case p = 1
2 (where f 2p−1 = 1) is special when the system contains two
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equations,{
− ft + (m − 1)[g
 f + 2 f 
g]+ 2∇ f · ∇g − 1

2 (m − 1)g |∇ f |2
f = 0,

−gt + (m − 1)g
g + |∇g|2 + 1
2

[
(m − 1)
 f + 1

2 (2− m) |∇ f |2
f

] = 0.

Roughly speaking, we are dealing with a kind of GSV on the set (a module) of
linear combinations W2 = L{1,√ f (x, t)}. In fact, we are already familiar with some
other representations of solutions, such as (7.184), given by extended fourth-order
polynomial subspaces studied in Section 6.2. By Proposition 6.24, for the operator
(7.183), such a subspace exists if

m = N−2
N+2 .

In terms of representation (7.184), this gives the integer p = 2. The same p = 2
applies to the case m = 0, corresponding to the remarkable operator

Frem[u] = u
u − |∇u|2 in IR2. (7.188)

As was shown in Section 6.3, this admits subspaces of fourth-degree polynomials
and many others. It will be shown that p = 1

2 also makes sense for (7.188).

Nonlinear separation problem in the class of general quadratic forms. Consider
the most important and promising case of p = 1

2 , where (7.185) can be written in
the form of

1
[− ft + (m − 1)g
 f + 2(m − 1) f 
g + 2∇ f · ∇g

]
+√ f

[−2gt + (m − 1)
 f + 2(m − 1)g
g + 2|∇g|2]+ J = 0.
(7.189)

Here, J denotes two extra singular terms, which should satisfy the following prob-
lem of nonlinear separation (in other words, a “nonlinear eigenvalue problem”):

J ≡ −(m − 1)g |∇ f |2
2 f + (2− m) |∇ f |2

2
√

f
= λ1 + λ2

√
f , (7.190)

where λ1,2 are some constants or suitable functions.
Consider the problem (7.190) separately and independently of the PDE and its

symmetries. Let f = f (x) be a general quadratic form in IRN . Using an orthogonal
transformation, we reduce it to the diagonal form,

f =∑ ai x2
i .

Let us see if this can solve the eigenvalue problem (7.190). Thus

|∇ f |2 = 4
∑

a2
i x2

i ,

so that, to resolve the singularities in the main first term in (7.190), there must exist
a constant a such that

a2
i = aai for all i = 1, ..., N.

This gives two possibilities: either

Case (i): ai = 0 for some i , or

Case (ii): ai = a �= 0 for all i .
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We exclude case (i) that, as will be shown, leads to solutions belonging to lower-
dimensional subspaces in IRN , and corresponds to the same analysis in IR K with
some K < N , where we take

f = a
∑K

i=1 x2
i .

Case (ii) implies that f (x) should be canonical, with the matrix being the multiple
of the identity one, i.e., a I . In this case,

|∇ f |2
2 f = 2a and |∇ f |2

2
√

f
= 2a

√
f , (7.191)

and this solves the separation problem (7.190).
Therefore, bearing in mind translations in x , we can take f (x, t) in the form of

f (x, t) = a(t)
∑

(xi − ϕi (t))2 �⇒ 
 f = 2Na, (7.192)

and, in view of (7.191), we obtain from (7.189) the following system of PDEs:{ ft = (m − 1)g
 f − 2a(m − 1)g + 2(m − 1) f 
g + 2∇ f · ∇g,

2gt = (m − 1)
 f + 2a(2− m)+ 2(m − 1)g
g + 2|∇g|2. (7.193)

The case where p �= 1
2 for quadratic function f(x, t). Using formulae (7.191) and

(7.192) in the last equation in (7.187) yields another critical value of p,

2a
[
(m − 1)N + 2(mp − m + 1)

] = 0,

i.e.,

p = (m−1)(2−N)
2m .

Hence, as for p = 1
2 , there occur two equations{ ft = (m − 1)[g
g+ 2 f 
g]+ 2∇ f · ∇g − 2a(m − 1)g,

gt = (m − 1)g
g + |∇g|2 + a[(m − 1)N − m + 2].

This system is analyzed similarly to that for p = 1
2 , which we now begin to investi-

gate in detail.

7.6.2 Linear functions g(x, t)

Let us now return to p = 1
2 and consider the first simpler case, assuming that g ∈

W lin, i.e.,

g(x, t) = A(t)+C(t)x ≡ A(t)+∑Ci (t)xi .

Then 
g = 0, |∇g|2 = |C|2, and system (7.193) takes a simpler form
a′
∑

(xi − ϕi )
2 − 2a

∑
ϕ′i (xi − ϕi )

= (m − 1)(N − 1)2a
(
A +∑Ci xi

)+ 4a
∑

Ci (xi − ϕi ),

2
(
A′ +∑C ′i xi

) = 2a(N − 2)(m − 1)+ 2|C|2.
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Equating the coefficients of monomials x2
i , xi , and 1 in both sides of the equations

yields the following system of ODEs:

a′ = 0,

ϕ′ = −βC,

ϕ · ϕ′ = (β − 2)A− 2C · ϕ,
C′ = 0,

A′ = (β − 1)a + |C|2,

(7.194)

where β = 2+ (m − 1)(N − 1). From the first, fourth, and second ODEs,

a(t) ≡ a0, C(t) ≡ C0, ϕ(t) = Vt, with V = −βC0,

and the last equation gives

A(t) = [(β − 1)a0 + |C0|2
]
t . (7.195)

Finally, the third ODE in (7.194) implies that either

a0 = |C0|2 �⇒ A(t) = β|C0|2t, (7.196)

or β = 1, i.e.,
m = N−2

N−1 .

Assuming that m > 1, and denoting |V|2 =∑ V 2
i yields the solution

u(x, t) = 1
β

[|V|√∑(xi − Vi t)2 − (∑ Vi xi − |V|2t
)]
+ , (7.197)

where, as is usual for the PME, the positive part gives the weak solution with free
boundaries. This solution is strictly positive and, hence, is a smooth analytic function
everywhere in IRN × IR+, except the unbounded segment of the straight line in IRN

�t : x = Vs, with s ≥ t

(we are assuming that Vi > 0), on which u = 0, and u(x, t) is Lipschitz continuous
in a neighborhood of the free boundary �t . This interface has the cusp end-point
moving linearly with time,

xcusp(t) = Vt, (7.198)

so the interface is not a smooth surface for all t > 0. In Figure 7.1 we present level
sets of this exact solution in IR2.

Let us next briefly consider two easy extensions of such solutions, exhibiting other
evolution properties.

Example 7.42 (Cusp localization) Consider the PME with a linear absorption,

vt = 
vm − v, m > 1. (7.199)

Then, setting v = e−tw yields

wt = e−(m−1)t
wm .

Changing the time-variable

s = 1
m−1

[
1− e−(m−1)t

]
: IR+ →

(
0, 1

m−1

)
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x2

x1

{u = 0}

x2 = V2
V1

x1

Vt

�t

0

Figure 7.1 The “razor blade” described by the explicit solution (7.197) in IR2.

returns us to the original PME
ws = 
wm

that possesses the above explicit cusp solution (7.197). Hence, its spatial structure
remains the same, but the asymptotic behavior of this space-time pattern is different.
Since t = +∞ corresponds to the finite s = 1

m−1 , it follows that

v(x, t) ≈ e−tw
(
x, 1

m−1

)
for t � 1,

so, for the model (7.199), the cusp is localized and propagates through the finite
distance 1

m−1 |V| during the whole time of evolution t ∈ IR+.

Example 7.43 (Single point and conical singularities) Let us add a nonlinear re-
action or strong absorption term to the right-hand side of (7.182),

vt = 
vm + µv2−m .

The pressure u will then solve the quadratic equation with an extra constant term,

ut = (m − 1)u
u + |∇u|2 + µm.

Let us see how this affects explicit solutions with p = 1
2 . Solving the separation

problem (7.190), we then add an extra single term into the second equation in (7.193),
so it has the form

2gt = (same terms)+ 2µm.

This affects the last ODE in (7.194) only,

A′ = (β − 1)a + |C|2 + µm.
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Therefore, instead of (7.195),

A(t) = [(β − 1)a0 + |C0|2 + µm
]
t,

so that the third ODE in (7.194) yields another relation between a0 and C0,

a0 = |C0|2 − µm
β−1 > 0.

Finally, this gives the same function A(t), as in (7.196).
Thus we obtain the explicit solution

u(x, t) = 1
β

[√|V|2 − ε0
√∑

(xi − Vi t)2 − (∑ Vi xi − |V|2t
)]
+, (7.200)

where

ε0 = µmβ2

β−1 ,

and we have to assume that |V|2 > ε0. Though this solution looks similar to (7.197)
for the pure PME, it exhibits other evolution and interface properties.

Strong absorption: a single point singularity. Here, ε0 < 0 in (7.200), so this ex-
plicit solution has the unique point of singularity xcusp(t) = Vt , at which u(Vt, t) =
0. As above, this cusp point moves linearly with time.

Reaction: a conical singularity. Here, ε0 > 0, and hence, the support of the solution
(7.200) is a conical surface Kt in IRN composed of straight lines with the parametric
equations

xi − Vi t = di s,

where d ∈ IRN satisfies (|V|2 − ε0
)|d|2 =∑ Vi Vj di d j .

Kt has the vertex at the moving point (7.198). In IR2, the cone Kt is the interior of
halves of two straight lines intersecting at xcusp(t) = Vt; see Figure 7.2.

7.6.3 Quadratic functions g(x, t)

Here, g is treated as a general quadratic polynomial. We have already fixed the canon-
ical structure of f in (7.192) that is necessary for resolving the separation problem
(7.190). From the first equation in (7.193), it is easy to see that the quadratic form of
g is then also diagonal and canonical. This reminds us of the well-known fact from
linear algebra saying that there exists an orthogonal transformation that simultane-
ously reduces a given quadratic form in IRN to the diagonal kind, and the second,
positive one, to the canonical kind.

Thus, take a general quadratic polynomial, which it is convenient to write down in
a form similar to (7.192),

g(x, t) = b(t)
∑

(xi − ψi (t))2 + A(t).
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x2

x1

{u = 0}

x2 = V2
V1

x1

Vt
�t

0

Figure 7.2 Moving triangular support described by the solution (7.200) of the PME with
source in IR2.

Substituting both expressions for f and g into (7.193) yields two equalities

−2a
∑

(xi − ϕi )ϕ
′
i + a′

∑
(xi − ϕi )

2 = 2a(m − 1)(N − 1)
[
b
∑

(xi − ψi )
2 + A

]
+ 4(m − 1)Nab

∑
(xi − ϕi )

2 + 8ab
∑

(xi − ϕi )(xi − ψi ),

− 2b
∑

(xi − ψi )ψ
′
i + b′

∑
(xi − ψi )

2 + A′

= (β − 1)a + 2b2(β + m − 1)
∑

(xi − ψi )
2 + 2(m − 1)N Ab.

Projecting both equations onto 1, xi , and x2
i respectively, we obtain the overdeter-

mined system

2aϕ · ϕ ′ + a′|ϕ|2 = 2a(m − 1)(N − 1)A

+ 2ab(m − 1)(N − 1)a|ψ|2 + 4(m − 1)Nab|ϕ|2 + 8abϕ · ψ,

ϕ′ + a′
a ϕ = 2b(m − 1)(N − 1)ψ + 4(m − 1)Nbϕ + 4b(ϕ + ψ),

a′ = 2[(m − 1)(N − 1)+ 2(β + m − 1)]ab,

2bψ · ψ ′ + b′|ψ|2 + A′ = (β − 1)a

+ 2b2(β + m − 1)|ψ|2 + 2(m − 1)N Ab,

ψ ′ + b′
b ψ = 2b(β + m − 1)ψ,

b′ = 2b2(β + m − 1).

(7.201)

The last ODE is independent of the others, so we need to consider two cases:
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Degenerate exponential case: β + m − 1 = 0. Assume that

β + m − 1 ≡ (m − 1)N + 2 = 0,

i.e.,
m = N−2

N .

Then m ∈ (0, 1) for N ≥ 3 and m = 0 for N = 2, i.e., we deal with the fast
diffusion equation (7.182) rather than the PME for m > 1. The value m∗ = N−2

N is
a well-known important critical exponent in the theory of the fast diffusion equation
(7.182). In particular, finite-time extinction of L1-solutions occurs precisely in the
range m ∈ (0,m∗), N ≥ 3, [37]. The critical m = m∗ corresponds to the unusual
asymptotic behavior for t � 1 in the Cauchy problem for (7.182); see [245, Ch. 6]
for further details concerning other critical issues of this exponent.

Then we take
b(t) ≡ b0 �= 0.

The third ODE in (7.201) implies that

a(t) = a0eµt , with µ = 2(m − 1)(N − 1)b0 = − 4(N−1)
N b0.

The fifth equation reads ψ ′ = 0, so ψ = constant, and we set

ψ(t) ≡ 0 (7.202)

by translation. The second ODE gives

ϕ(t) = ϕ0eνt , with ν = 4[(m − 1)N + 1]b0 − µ = − 4
N b0.

From the first equation in (7.201) we find

A(t) = − N
4(N−1) e2νt(µ+ 2ν + 8b0)|ϕ0|2. (7.203)

The fourth ODE for A now has the form

A′ = −4b0 A − N−2
N a0eµt , (7.204)

and we want (7.203) to satisfy it. There are two possibilities.

Subcase I: N = 2, i.e., m = 0. Since −4b0 = 2ν, (7.203) solves the ODE (7.204),
and the exact solution is obtained. This determines another invariant property of the
remarkable operator (7.188) in IR2 besides those in Section 6.3.

Subcase II: N = 3, i.e., m = 1
3 . If N �= 2, we need

2ν = µ, or 2
(− 4

N b0
) = − 4(N−1)

N b0,

which yields the only dimension
N = 3.

Substituting (7.203) into (7.204) yields the consistency condition

a0 = 4b2
0|ϕ0|2.

The corresponding explicit solution of the PME (7.182) in IR3 × IR+ with m = 1
3 is
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as follows:
u(x, t) =

√
4b0|ϕ0|2e− 8

3 b0t ∑(xi − ϕi0e− 4
3 b0t)2

+ b0|x |2 − 1
2 b0|ϕ0|2e− 8

3 b0t .

Algebraic case: β + m − 1 �= 0. The last equation in (7.201) yields

b(t) = c0t−1, where c0 = − 1
2(β+m−1) .

Similarly, from the fifth ODE, ψ ′i = 0, so (7.202) holds. The third equation yields

a(t) = a0tρ1 , where ρ1 = − (m−1)(3N−1)+4
(m−1)N+2 .

We now use the second ODE of (7.201) to get that

ϕ′i + ρ1t−1ϕi = 4[(m − 1)N + 1]c0t−1ϕi .

Integrating this linear first-order ODE gives

ϕi (t) = ϕi0tρ2 , where ρ2 = (m−1)(N−1)+2
(m−1)N+2 .

Next, let us determine A from the first equation,

A(t) = ρ3|ϕ0|2t2ρ2−1, where ρ3 = 1
2[(m−1)N+2] . (7.205)

Finally, consider the fourth ODE that takes the form

A′ = 2(m − 1)Nc0t−1 A + [(m − 1)N − m + 2]a0tρ1 , (7.206)

which is assumed to possess solution (7.205), i.e., on substitution,

(2ρ2 − 1)ρ3|ϕ0|2t2ρ2−2

= 2(m − 1)Nc0ρ3|ϕ0|2t2ρ2−2 + [(m − 1)N − m + 2]a0tρ1 .
(7.207)

Subcase I: (m − 1)N − m + 2 = 0, i.e.,

m = N−2
N−1 . (7.208)

Then (7.205) always solves (7.206).

Subcase II: (m − 1)N − m + 2 �= 0. One needs

ρ1 = 2ρ2 − 2 �⇒ m = 3N−7
3(N−1) ,

as well as the following relation between constants that is obtained from (7.207):

a0 =
[ 3(N−1)

2(N−3)

]2 |ϕ0|2 (N ≥ 4).

In both subcases, the corresponding explicit solutions of the PME (7.182) for m =
N−2
N−1 and m = 3N−7

3(N−1) are given by

u(x, t) = √a0tρ1
∑

(xi − ϕi0tρ2)2 + c0
t |x |2 + ρ3|ϕ0|2t2ρ2−1,

with the corresponding hypotheses on the parameters.

On solutions in IRK . Using a lower-dimensional quadratic form

f (x, t) = a(t)
∑K

i=1(xi − ϕi (t))2, with some K < N, (7.209)
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7 Partially Invariant Subspaces and GSV 383

in the separation problem (7.190) will lead to g(x, t) containing extra linear terms

g(x, t) = b(t)
∑K

i=1(xi − ψi (t))2 +∑N
i=K+1 Ci (t)xi + A(t). (7.210)

The principal calculations for deriving the corresponding ODE system (7.201), the
results, and formulae remain the same, with N replaced by K . Moreover, the ODEs
for extra coefficients Ci immediately imply that Ci = 0 for all i ≥ K +1. Therefore,
explicit solutions with functions (7.209) and (7.210) truly belong to IR K and this
representation cannot supply us with new solutions.

Remarks and comments on the literature

The current notion of invariant sets on linear subspaces Wn (partial invariance) was introduced
in [239], where various applications to PDEs with quadratic and cubic operators can be found
(we have reflected some of the applications in this chapter).

§ 7.1. Solutions (7.4) were obtained in [397], where the solution structure (7.25) was also
proposed for a nonlinear second-order parabolic PDE.

§ 7.2. Quasilinear KS-type models were considered in [570], where some usual compactons
(7.37) with p = 0, were constructed.

§ 7.3. We use a slightly different version of the GSV introduced in [238], some other results
are taken from [239]. By the transformation

v = c wx
w ,

equation (7.86) reduces to a PDE with cubic nonlinearities, to which Baker–Hirota transfor-
mations apply, [100, 329]. Solutions (7.87) of equation (7.86) were also obtained by another
approach based on evolutionary invariant sets, [317].

§ 7.5. We mainly follow [225]. Notice that the orbits of ODEs (7.143) satisfy the comparison
principle, so that, for all the PDEs under consideration, the flows on sets M0 are ordered
with respect to initial data. This is a natural property for the second-order parabolic equations
(in view of the Maximum Principle), but is rather surprising for higher-order PDEs, though
possibly it just reflects a simple geometric structure of these sets. The solution structure (7.139)
corresponds to the functional separation of variables; see Remarks to Section 8.4 for history
and references.

Further applications of evolutionary invariant sets to TFEs were given in [478], where the
extension of (7.132) in the form of the Bernoulli ODE

ux = 1
x u + un

was used (note that almost all explicit solutions therein admit polynomial representation on
partially invariant subspaces); see also [479] for further extensions concerning sets (7.147).
There exist attempts to treat general sets

ux = G(x, t, u)

which often lead to complicated calculus; see [440] and Section 8.3 for parabolic equations.
Applications to the KdV-type equations

ut = ux x x + ψ(u)ux (7.211)

and to more general quasilinear ones, can be found in [223]. For (7.211), the ODE for H is

H(H H ′)′′ − 6H H ′′ − 3(H ′)2 + 9H ′ − 6 = 0, where ψ(u) = exp
{∫ u

1
dz

H(z)

}
. (7.212)
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It is curious that (7.212) admits two linear solutions, (i) H1(u) = u, i.e., the KdV equation,
ut = ux x x + uux , and (ii) H2(u) = 2u, corresponding to

ut = ux x x +√u ux ,

possessing the explicit blow-up solution

u(x, t) = x2

(−t)2 .

Therefore, the KdV equation plays the role of a “limit” one (for u � 1) in the family of PDEs
(7.211) admitting M0; see details in [223]. Let us point out another KdV-type equation

ut = ux x x + ln u ux ,

that admits explicit solutions
u(x, t) = eC1(t)+C2(t)x

on a simple linear subspace with {
C ′1 = C1C2 + C3

2 ,

C ′2 = C2
2 .

§ 7.6. Exact solutions (7.197) in IR2 and IR3 were constructed in [57] by the direct similarity
reduction (in IR2)

u(x, t) = ar f (θ), where (7.213){
r2 = x2

1 + (x2 − V t)2,

θ = tan−1 x1
x2−V t .

The resulting ODE for f admits the explicit solution

f (θ) = 1
2 (1− cos θ).

Similar solutions were constructed [58] for the fourth-order TFE

ut = −∇ · (un∇
u) in IR2 × IR+, (7.214)

but, in this case, the ODE for f in (7.213) cannot be solved explicitly for n = 3. This con-
firms the general conclusion that the solution structure (7.184) does not apply to higher-order
PDEs. Substituting this into (7.214) with n = 1 (or n = 2) leads to the analysis on linear
subspaces of dimension larger than two that makes the PDE system more overdetermined and
the consistency much more suspicious.

The form of solutions (7.184), (7.186) was proposed by the authors of [501] (see earlier
references therein), where systems (7.187) and that for p = 1

2 were derived and partially ana-
lyzed (our more complete analysis is different). Exact solutions with the quadratic g(x, t) for
N = 2, m = 0 can be found in [502] (other solutions in IRN constructed therein for which
functions f and g are quadratic on 2D subspaces only, represent the same case). Some solu-
tions in the case of (7.208) were detected in [501] by a sophisticated computational approach;
as we have shown, other solutions there with quadratic forms in IR K for all dimensions K < N
are of the same nature and are not new.

Open problems

• In particular, some open problems are given in Sections 7.2, 7.4.4, 7.4.5, and
7.5.1.
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CHAPTER 8

Sign-Invariants for Second-Order Parabolic
Equations and Exact Solutions

We underline a new important aspect of invariant subspaces for nonlinear operators. Our goal
is to show that, for second-order parabolic PDEs, proper families of exact solutions may define
the so-called sign-invariants (SIs) of parabolic flows, which are nonlinear operators preserving
their signs, “≥” and “≤,” on evolution orbits. Vice versa, the known SIs may specify the cor-
responding exact solutions. We will mainly concentrate on the related backward problem: by
constructing sign-invariants describe subspaces or sets of the corresponding solutions. Many
SIs are generated by differential constraints, which thus preserve their signs. This is an impor-
tant (and not always well understood) feature of differential constraints for parabolic equations
obeying the Maximum Principle.

Our basic model is a quasilinear heat equation of the general form

ut = F[u] ≡ ∇ · (k(u)∇u)+ f (u) in IRN × IR+, (8.1)

where k(u) ≥ 0 and f (u) are given smooth functions. We will consider the Cauchy
problem for (8.1) with given sufficiently smooth initial data u(x, 0) = u0(x) in IRN ,
and assume that there exists a unique sufficiently smooth solution u = u(x, t), at
least locally in time.

We say that the first-order operator H[u] = H (x, u,∇u, ut) is a sign-invariant
(SI) of the equation (8.1) if, for any solution u(x, t), the following holds:

(1) H[u(x, 0)] ≥ 0 in IRN �⇒ H[u(x, t)] ≥ 0 in IRN for t > 0,

(2) H[u(x, 0)] ≤ 0 in IRN �⇒ H[u(x, t)] ≤ 0 in IRN for t > 0,

i.e., both signs of H[u] are preserved in evolution. Such an evolution invariance of
signs is controlled by the Maximum Principle (MP). Since, by definition, any sign-
invariant H[u] is also the zero-invariant, i.e.,

H[u(x, 0)] = 0 in IRN �⇒ H[u(x, t)] = 0 in IRN for t > 0, (8.2)

this makes it possible to construct exact solutions of equations (8.1) if we know how
to integrate the first-order PDE in (8.2). We will derive finite and, in some cases,
infinite-dimensional sets of equations (8.1) possessing solutions that are expressed
in terms of dynamical systems or algebraic relations. It turns out that these solutions
often belong to some linear invariant subspaces or sets.

Using these connections with SIs, a number of higher-order PDEs admitting sim-
ilar subspaces and solutions will be found. In view of the lack of the MP, we then
lose the SI properties, but the rest of the analysis, including exact solutions, remains
valid.
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386 Exact Solutions and Invariant Subspaces

8.1 Quasilinear models, definitions, and first examples

Thus, in order to avoid posing suitable boundary conditions, which are not essential
in the present context, we consider the Cauchy problem with smooth initial data

u(x, 0) = u0(x) in IRN , (8.3)

and assume that there exists a unique local-in-time solution u(x, t). According to
classical parabolic theory, this requires some extra hypotheses on the coefficients of
(8.1) and on the class of initial functions u0.

8.1.1 On weak and proper solutions

We illustrate our main results by taking quasilinear heat equations (8.1), which are
widely used in applications in diffusion, combustion, and filtration theory. Since we
are going to use the MP, let us be more specific about the nonlinear coefficients
of the PDEs under consideration. The functions k(u) and f (u) are assumed to be
sufficiently smooth. For solvability of parabolic PDEs, we impose the parabolicity
condition

k(u) ≥ 0.

For k(u) ≡ 1, there occurs the semilinear heat equation

ut = F1[u] ≡ 
u + f (u) in IR N × IR+, (8.4)

where 
 is the Laplace operator in IRN . For smooth functions f (u), the Cauchy
problem for such equations admits a unique classical solution. Even for uniformly
parabolic equations, for non-Lipschitz or singular absorption terms, such as

f (u) = − u p, with the exponent p ∈ (−1, 1) (8.5)

(we have dealt with models like that before, especially for f (u) = −1 for p = 0), the
nonnegative solutions may exhibit finite interfaces and need smooth approximations
as weak or maximal/minimal proper solutions. Furthermore, we do not hesitate to
consider degenerate PDEs (8.1) with k(0) = 0, e.g., the PME, where k(u) = uσ

with a fixed exponent σ > 0. For the PME, weak solutions u(x, t) of the Cauchy
problem can be compactly supported and are not smooth at the interfaces, where
u = 0, and the PDE is degenerate. See basics of PME theory in [245, Ch. 2]. In this
case, to justify manipulations with derivatives, we impose a conventional assumption
that we actually deal with regular approximations of weak solutions. We assume that
the weak solution u(x, t) is determined as the limit of a sequence {un} of smooth
solutions,

u(x, t) = lim un(x, t) as n →∞.

Here, each solution un(x, t) solves a regularized uniformly parabolic PDE (8.1) with
the heat conduction coefficient k(u) replaced by its strictly positive approximation
kn(u) satisfying kn(u) ≥ 1

n > 0 for all u, and kn → k as n → ∞ uniformly on
bounded u-intervals. For instance,

kn(u) =
√

k2(u)+ 1
n2 .
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8 Sign-Invariants and Exact Solutions 387

For non-smooth absorption terms (8.5), the uniformly Lipschitz (analytic) approxi-
mation

fn(u) =
( 1

n2 + u2
) p−1

2 u

is also used. If necessary, initial data are replaced by bounded smoother truncations
u0n(x)→ u0(x) as n →∞ uniformly on compact subsets.

The PDE for un(x, t) is uniformly parabolic with smooth coefficients, so un(x, t)
is regular enough for our manipulations. The approximation (regularization) tech-
niques lie in the heart of modern theory of quasilinear singular parabolic PDEs of
arbitrary order; see references in [226, Sect. 6.2]

8.1.2 Maximum Principle and first examples of sign-invariants

The MP is the cornerstone of classical theory of second order parabolic PDEs, as ex-
plained in many well-known books and monographs, [148, 164, 205, 472, 530]. The
MP and various order-preserving comparison techniques and results are associated
with the fact that the Laplacian 
u has definite signs “≥” or “≤” at an extremum in
x for C2

x smooth solutions u(x, t). For instance, as a typical simple application of the
MP for equations (8.1) and (8.4) with smooth coefficients and f (0) = 0, we have
the comparison with the trivial solutions u = 0, i.e.,

u0(x) ≥ 0 (≤ 0) in IRN �⇒ u(x, t) ≥ 0 (≤ 0) in IRN for t > 0. (8.6)

This is the evolution invariance of the sign of the solutions u(x, t). On the other
hand, a slightly modified comparison implies that the monotonicity with time prop-
erty holds

ut (x, 0) ≥ 0 (≤ 0) in IRN �⇒ ut (x, t) ≥ 0 (≤ 0) in IRN for t > 0. (8.7)

This is the invariance with time of the sign of the derivative ut (in fact, this represents
a first simple SI). Bearing in mind necessary hypotheses on the coefficients and initial
data, here the MP in the following form is used. Let a smooth function J (x, t) satisfy
a linear parabolic PDE

Jt =M[J ] ≡ A
J +B · ∇ J + C J in IRN × IR+, (8.8)

where A ≥ 0, B = (B1, ..., BN ), and C are given bounded coefficients, depending
on x , t , and possibly u (the dot “·” denotes the scalar product in IRN ). Then,

J (x, 0) ≥ 0 (≤ 0) in IRN �⇒ J (x, t) ≥ 0 (≤ 0) in IRN for t > 0.

As above, a rigorous proof uses suitable hypotheses on the coefficients of (8.8) and
also on the behavior of J (x, t) as |x | → ∞.

Therefore, property (8.6) follows immediately from the MP, since equations (8.1)
and (8.4) have been already written down in the form of (8.8) for the function J = u.
To show (8.7), one needs to differentiate the PDE with respect to t to obtain (8.8) for
J = ut , assuming, as usual, that the regularity of all the functions and coefficients is
enough for such manipulations. For instance, differentiating (8.1) yields, for J = ut ,

Jt = k(u)
J + 2∇k(u) · ∇ J + [
k(u)+ f ′(u)]J, (8.9)
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which is precisely (8.8) with A = k(u), B = 2∇k(u), and C = 
k(u)+ f ′(u).
In addition, since the first xi -derivative J = uxi for any i = 1, 2, ..., N satisfies the

same equation (8.9), the MP also implies the following space monotonicity property
(cf. (8.7)):

(u0)xi ≥ 0 (≤ 0) in IRN �⇒ uxi (x, t) ≥ 0 (≤ 0) in IR N for t > 0.

This means the evolution invariance of the sign of uxi . We next consider examples
of more complicated and practical SIs.

8.1.3 First-order sign-invariants

We turn to the general problem of finding first-order SIs for a general fully nonlinear
parabolic PDE of the form

P[u] ≡ ut − L(x, u,∇u,
u) = 0 in IRN × IR+, (8.10)

where L(x, u, p, q) is a given C∞-function satisfying the parabolicity condition

L ′q (x, u, p, q) ≥ 0 in IRN × IR × IR N × IR. (8.11)

As above, consider the Cauchy problem for (8.10) with initial data (8.3). For conve-
nience, let us introduce the set of proper initial functions and solutions of (8.10),

ωP = {u0(x) ∈ C2 : ∃ a unique solution u(x, t) ∈ C∞},
�P = {u ∈ C2 : u(x, t) solves (8.10) with u0 ∈ ωP }.

Consider a general nonlinear first-order Hamilton–Jacobi operator of the form

H[u] ≡ H (x, u,∇u, ut), (8.12)

where H (x, u, p, q) is a C∞-function. We will study the sign of H[u] on the evolu-
tion orbits from �P . Therefore, consider the reduced operator

HP [u] ≡ H (x, u,∇u, L(x, u,∇u,
u)) in �P ,

where ut is replaced by L(x, u,∇u,
u) via (8.10). This gives the following sets:

S+H,P =
{
v(x) ∈ C2 : HP [v] ≥ 0 in IRN

} ∩ ωP , (8.13)

S−H,P =
{
v(x) ∈ C2 : HP [v] ≤ 0 in IRN

} ∩ ωP . (8.14)

Definition 8.1 The first-order operator (8.12) is said to be a sign-invariant of the
equation (8.10) if both signs of H are preserved with time,

∀ u0 ∈ S+H,P (S−H,P ) �⇒ u(·, t) ∈ S+H,P (S−H,P ) for t > 0. (8.15)

If the sign of the operator (8.12) on evolution orbits {u(x, t), t > 0}, i.e., the
inequality

HP [u(x, t)] ≥ 0 (or ≤ 0) in IRN for t > 0,

is known, integrating it yields estimates for solutions of the nonlinear parabolic PDE
(8.10). Very often such estimates are an important part of general parabolic theory,
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where the structural properties of possible operators H[u] play a key role. In sub-
sequent sections, we present special approaches to finding nontrivial pairs of the
operators {P,H} such that (8.15) holds.

8.1.4 Sign-invariants, zero-invariants, exact solution, and differential constraints

Using (8.13) and (8.14), it is natural to introduce the set

S0
H,P = S+H,P ∩ S−H,P =

{
v(x) ∈ C∞ : HP [v] = 0 in IRN

} ∩ ωP .

It follows from (8.15) that any SI (8.12) also becomes a zero-invariant of (8.10),
in the sense that the set S0

H,P is evolutionary invariant under the flow generated by
(8.10), i.e.,

∀ u0 ∈ S0
H,P �⇒ u(·, t) ∈ S0

H,P for t > 0.

This implies that the parabolic equation (8.10) restricted to the invariant set S0
H,P is

equivalent to the Hamilton–Jacobi equation

H (x, u,∇u, ut) = 0, with u(·, t) ∈ S0
H,P for t > 0. (8.16)

It is easier to solve the first-order equation (8.16) than the second-order parabolic
PDE (8.10), and, in some cases, this can be done explicitly. In several cases, such
exact solutions can be treated from the point of view of linear finite-dimensional
subspaces that are (partially) invariant under certain nonlinear operators.

In terms of zero-invariants, (8.16) represents a differential constraint associated
with the nonlinear PDE (8.10). In general, the problem of determining differential
constraints (in our case, the function H (·)) is reduced to a complicated nonlinear
PDE for H (a compatibility condition), depending on the operator L. This problem
cannot be solved even in simpler particular cases. We find several examples, show-
ing how to find a first-order differential constraint. In this analysis, we use some
known approaches via the MP coming from qualitative theory of nonlinear parabolic
PDEs. In particular, we essentially use results from the theory of blow-up solutions
of quasilinear heat equations, which was the origin of a number of new ideas and
techniques.

8.2 Sign-invariants of the form ut − ψ(u)

Let us apply such SIs to general fully nonlinear parabolic PDEs

P[u] ≡ ut − L(u, |∇u|,
u) = 0 in IRN × IR+, (8.17)

where L(u, p, q) is smooth and satisfies the parabolicity condition like (8.11). There-
fore, we may assume that there exists a smooth function +0(u, p, s) such that

L(u, p, +0(u, p, s)) ≡ s for (u, p, s) ∈ IR × IR+ × IR. (8.18)

We will look for SIs of (8.17) of the form

H[u] ≡ ut − ψ(u), (8.19)
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where ψ(u) is a smooth unknown function. Set

L−1(u, p) = +0(u, p, ψ(u)), (8.20)

and denote Lu(u, p, q) = ∂L
∂u and L p(u, p, q) = ∂L

∂p , ..., where the argument q is
replaced by +0(u, p, ψ(u)).

Theorem 8.1 Operator (8.19) is a sign-invariant of the equation (8.17) if ψ satisfies
the following identity for (u, p) ∈ IR × IR+:

F(u, p) = (Lu − ψ ′)ψ + L pψ
′ p + Lq(ψ

′′ p2 + ψ ′L−1) ≡ 0. (8.21)

Proof. Setting J = ut − ψ(u) yields, on differentiation,

Jt = utt − ψ ′ut . (8.22)

Calculating utt from (8.17) implies

utt = Luut + L p(∇u · ∇ut )
1
|∇u| + Lq
ut . (8.23)

Since ut = J + ψ(u), J solves a linear parabolic PDE of the form

Jt =M[J ]+ F , (8.24)

where M is an elliptic operator as in (8.8) with A = Lq and coefficients B and C
from (8.23). By the MP, it follows from (8.24) that (8.19) is an SI if (8.21) holds.

Assuming a one-sided partial differential inequality for F , say,

F(u, p) = (Lu − ψ ′)ψ + L pψ
′ p + Lq (ψ

′′ p2 + ψ ′L−1) ≥ 0, (8.25)

the MP guarantees that precisely the sign “≥” is only preserved for the operator
(8.19), i.e.,

ut − ψ(u) ≥ 0 for t > 0 in IRN , (8.26)

provided that the same inequality holds for the initial data at t = 0. In classical
parabolic theory, such one-sided inequalities are typically associated with the bar-
rier techniques. Of course, if only a one-sided estimate is necessary, this essentially
widens the set of possible solutions {ψ} of the partial differential inequality (PDI)
(8.25) and gives other estimates by integrating the PDI (8.26). The one-sided ap-
proach is not associated with exact solutions, and will not be considered in this
text. One-sided estimates have a range of important applications in blow-up theory
of reaction-diffusion PDEs; different applications are described in [509, Ch. 7] and
[245, Ch. 10].

Let us return to the main identity (8.21) that is a nonlinear PDE for ψ , which is
difficult to analyze for general operators L in (8.17). Our study is now restricted to
the class of quasilinear heat equations.

8.2.1 Quasilinear heat equations and higher-order extensions

As the first application of Theorem 8.1, consider quasilinear equations (8.1) for
which (8.21) reduces to a system of two ODEs.
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Corollary 8.2 Operator (8.19) is a sign-invariant of equation (8.1) iff ψ(u) satisfies
the ODE system [ (kψ)′

k

]′ = 0, k′ψ2 − f 2
( kψ

f

)′ = 0. (8.27)

Proof. By (8.1), L(u, p, q) = kq + k ′ p2 + f, so that

L−1 = 1
k (ψ − f − k′ p2), L p = 2k ′ p, Lq = k,

and Lu =
[
k′′ − (k′)2

k

]
p2 + f ′ + k′

k (ψ − f ).
(8.28)

Plugging (8.28) into (8.21) yields

F(u, p) = k
[ (kψ)′

k

]′
p2 + 1

k

[
k′ψ2 − f 2

( kψ
f

)′]
.

Since the variables u and p are independent, identity (8.21) is valid, provided that
(8.27) holds.

The system of ODEs (8.27) for two unknowns {ψ, f } can be easily integrated.
This yields the following family of equations.

Example 8.3 (Invariant subspaces: blow-up) Let ϕ(u) be an arbitrary smooth
function such that the inverse ϕ−1 exists. Denote k(u) = ϕ ′(u) ≥ 0. Solving (8.27)
gives the quasilinear heat equation

ut = 
ϕ(u)+ aϕ(u)+b
ϕ′(u) + [aϕ(u)+ b]c, (8.29)

where a2 + b2 �= 0. By (8.19), the PDE (8.29) admits the following SI:

H[u] ≡ ut − aϕ(u)+b
ϕ′(u) ≡ H (u, ut). (8.30)

The ordinary differential operator (8.30) is also a zero-invariant of the PDE (8.29).
This means that if, for a solution u(x, t),

H (u, ut) ≡ 
ϕ(u)+ [aϕ(u)+ b]c = 0 in IRN for t = 0, (8.31)

then
H (u, ut) = 0 in IRN for t > 0. (8.32)

Equation (8.32), (8.30) is integrated as a standard ODE (ϕ(u))′t = aϕ(u) + b. This
yields the following exact solutions u(x, t) of (8.29).

(i) If a �= 0, then
ϕ(u(x, t)) = 1

a [ρ(x)eat − b], (8.33)

where ρ(x) is an arbitrary solution of the linear elliptic PDE


ρ + acρ = 0 in IRN . (8.34)

(ii) If a = 0 (b �= 0), then

ϕ(u(x, t)) = ρ(x)+ bt, where 
ρ + bc = 0 in IRN .

Besides such exact solutions, the SI (8.31) makes it possible to estimate more solu-
tions by using the inequality

ut − aϕ(u)+b
ϕ′(u) ≥ 0 (or ≤ 0) for t ≥ 0.
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u(x, t)

π
2−π

2 π−π s+(t2)s−(t2)

t1 t2 t3

t1 < t2 < t3

x0

Figure 8.1 Stabilizing blow-up interfaces of the solution (8.36) of the PDE (8.35).

Blow-up interfaces. In the fast-diffusion case ϕ(u) = −u−m , m > 0, with a = b =
c = 1 and N = 1, we obtain from (8.29) the 1D equation

ut = −(u−m)x x + 1
m (u − um+1)+ 1− u−m . (8.35)

According to (8.33), taking ρ(x) = cos x yields the explicit 2π-periodic solution

u(x, t) = (1− et cos x)−
1
m , (8.36)

with blow-up interfaces propagating as follows:

s±(t) = ± cos−1(e−t )→±(π2 )
∓ as t →∞.

Such unusual blow-up behavior is illustrated in Figure 8.1. The FBP with blow-
up interfaces and their dynamic equations are rigorously justified by the Sturmian
intersection comparison approach, [226, Ch. 7].
Invariant subspaces. It is easy to interpret these exact solutions in terms of invariant
subspaces. Consider the case a �= 0. Using in (8.29) the Kirchhoff-type transforma-
tion v = aϕ(u)+ b yields the following quasilinear equation:

vt = F[v] ≡ �(v)(
v + acv)+ av, (8.37)

with the coefficient �(v) = ϕ ′(ϕ−1( v−b
a )). Let us introduce the subspace

W = {ρ(x) : ρ solves (8.34)}. (8.38)

The existence of explicit solutions (8.33) is then a straightforward consequence of
the fact that W is invariant under F , i.e., F[W ] ⊆ W, so this falls into the scope of
Chapters 1 and 2. Notice that dim W = ∞ if N > 1, and dim W = 2 if N = 1.
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Substituting in (8.37) yields

v(x, t) = C(t)ρ(x) ∈ W �⇒ C ′ = aC, (8.39)

which gives the solutions (8.33). For ϕ(u) = uσ+1 in (8.29), there occurs the PME
or the fast diffusion equation with reaction-absorption,

ut = 
uσ+1 + a
σ+1 u + b

σ+1 u
−σ + acuσ+1 + bc (σ �= 0,−1).

For ϕ(u) = tan u, we find the parabolic equation

ut = (tan u)x x + (a tan u + b)(c+ cos2 u). (8.40)

Example 8.4 The quasilinear heat equation (8.40) with a = c = 1 and b = 0 admits
the SI

H[u] = ut − 1
2 sin 2u.

It is also a zero-invariant, from which we obtain the explicit solution

u(x, t) = tan−1(et cos x).

The existence of such a solution becomes trivial if we set v = tan−1 u, which yields
solution v(x, t) = et cos x of the PDE (cf. (8.37))

vt = (1+ v2)(vx x + v)+ v.

The analogy with the invariant subspace (8.38) reveals many extensions of such
exact solutions to hyperbolic and higher-order PDEs, though, of course, any connec-
tion with SIs is then lost.

Example 8.5 (Hyperbolic equations) The hyperbolic PDE

vt t = F[v] ≡ �(v)(
v + acv)+ av

admits the same solutions (8.39) with the ODE C ′′ = aC .

Example 8.6 (Higher-order PDEs) The fourth-order parabolic equation

vt = F[v] ≡ �(v)(−
2v − ac
v)+ av,

with an arbitrary function �(v), has solutions (8.39). One can extend the list of PDEs
with operators preserving such linear subspaces.

Example 8.7 In a similar fashion, the fourth-order quasilinear hyperbolic PDE

vt t t t = (1+ v2)(vx x x x − v)+ v

admits explicit solutions

v(x, t) = et+x + e−(t+x) + cos(x − t).

For convenience, we combine some generalizations in the following statement.
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Proposition 8.8 Let Q(Dx ) (Dx = ∇x in IR N ) be a linear differential operator with
constant coefficients, and ϕ(u) be a smooth increasing function. The equation

ut = Q(Dx )[ϕ(u)]+ aϕ(u)+b
ϕ′(u) + d (8.41)

with constants a �= 0, b, and d such that

ad = Q(Dx )[b], (8.42)

admits explicit solution (8.33), where ρ(x) solves

Q(Dx )[ρ] = 0 in IRN .

Proof. If a �= 0, setting aϕ(u)+ b = v yields

vt = ϕ′(u)
{

Q(Dx )[v]+ ad − Q(Dx )[b]
}+ av.

In view of (8.42), the solution is v(x, t) = ρ(x)eat .

If a = 0 in (8.41), setting v = ϕ(u) gives

vt = ϕ′(u){Q(Dx )[v]+ d} + b.

Hence, under the hypothesis Q(Dx )1 = 0 (see (8.42) with a = 0), it admits the
solution v(x, t) = ρ(x)+ bt , where ρ solves 
ρ + d = 0 in IRN .

Example 8.9 Taking in (8.41) the operator

Q(Dx )[w] = 
w + α(∇w · n)+ βw

with ad = βb, Proposition 8.8 yields exact solutions of the following quasilinear
heat equation with a nonlinear convective term:

ut = 
ϕ(u)+ α(∇ϕ(u) · n)+ aϕ(u)+b
ϕ′(u) + βϕ(u)+ d.

Extensions to 2mth-order quasilinear parabolic PDEs are straightforward, but then
operator (8.30) is not an SI for any m ≥ 2, and remains a zero-invariant.

Example 8.10 As a next extension of the same idea, we introduce the following
equation with two linear operators Qi (Dx ), and arbitrary functions �i (u):

ut = �1(u)Q1(Dx )[ϕ(u)]+�2(u)Q2(Dx )[ϕ(u)]+ aϕ(u)+b
ϕ′(u) ,

where Q1(Dx )[1] = Q2(Dx)[1] = 0. There exist exact solutions (8.33), with a �= 0,
and (8.27), with a = 0, if ρ(x) solves a system in IR N ,{

Q1(Dx )[ρ] = 0,
Q2(Dx )[ρ] = 0.

8.3 Stationary sign-invariants of the form H (r, u, ur)

Consider the SIs which do not contain the time-derivative ut . Important examples of
such SIs come from blow-up theory; see Remarks. Consider the general 1D parabolic
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equation in radial geometry

P[u] ≡ ut − L(r, u, ur , urr ) = 0, (8.43)

where r > 0 denotes |x |, and L(r, u, p, q) satisfies the parabolicity condition (8.11).
We take the SI in the general form

H[u] = H (r, u, ur), (8.44)

where smooth H (r, u, p) satisfies Hp > 0. By H ∗(r, u, s) we denote the inverse
function such that

H (r, u, H ∗(r, u, s)) ≡ s for (r, u, s) ∈ IR+ × IR × IR.

We will set h(r, u) = H ∗(r, u, 0) and use other notations from the previous sec-
tion. In particular, in the functions L, H , and their derivatives Lr , Lu ,..., Hr , Hu ,...,
variables p and q are replaced by h(r, u) and hr + huh respectively.

Theorem 8.11 Operator (8.44) is a sign-invariant of the equation (8.43) if H satis-
fies the following identity for all (r, u) ∈ IR+ × IR:

F(r, u) = −hu L + Lr + Luh + L p(hr + huh)

+ Lq
[
hrr + 2hruh + huuh2 + huhr + (hu)

2h
] ≡ 0.

(8.45)

Proof. Let J = H (r, u, ur), so ur = H ∗(r, u, J ) and J satisfies

Jt = Huut + Hputr . (8.46)

By (8.43), ut = L and hence,

utr = Lr + Lu H ∗ + L purr + Lq urrr . (8.47)

Let us derive for J a linear parabolic PDE of the form (8.24). Since the coefficient
F in this equation is eventually derived by the standard linearization of the equation
about J = 0, this allows us to calculate the derivatives in (8.46) and (8.47) from the
equality ur = h(r, u). In this case,

urr = hr + huh and urrr = hrr + 2hruh + huuh2 + huhr + (hu)
2h.

Substituting into (8.46) yields (8.24) with F = 0 given by (8.45). By the MP, this
completes the proof.

8.3.1 Quasilinear heat equations

Consider the equation (8.1) with k = ϕ′, which, for radial solutions u = u(r, t) using
the radial Laplacian in IRN , is written as

ut = (k(u)ur )r + N−1
r k(u)ur + f (u). (8.48)

We take the SI (8.44) in the semilinear form

H[u] = ur − g(r)�(u), (8.49)
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where g(r) and �(u) are unknown functions. Identity (8.45) then becomes simpler,

F(r, u) = g3(r)[�2(k�)′′]
+ g(r)g′(r)[3k ′�2 + 2k��′]+ g(r)( f ′�− f �′)

+ g′′(r)k�+ N−1
r

[
g2(r)k ′�2 + (g′(r)− g(r)

r

)
k�
] ≡ 0.

(8.50)

In general, the right-hand side belongs to a 6D subspace. For N = 1, the last term
vanishes. We studied a similar identity and obtained special invariant sets and exact
solutions in Section 7.5 by using the ODE (7.158) for g (in order to match the results,
g should be replaced by −g here). In the present more difficult case of dimensions
N > 1, we restrict our attention to the three most interesting cases:

(I) g(r) = r , (II) g(r) = 1
r , and (III) g(r) = r1−N in dimension N ≥ 3.

(I) g(r) = r .

Proposition 8.12 Operator

H[u] = ur − r�(u)

is a sign-invariant of (8.48) if �̄(u) = k(u)�(u) �≡ 0 satisfies the system{
I1(u) ≡ �̄′′ = 0,

I2(u) ≡ k′
k

(
N + f

�̄

)+ (2 ln |�̄| + f
�̄

)′ = 0.
(8.51)

Proof. Identity (8.50) with g(r) = r reads F(r, u) = r3 �̄2

k2 I1 + r 1
k I2, and system

(8.51) follows.

The first ODE in (8.51) implies that �̄(u) = au + b is linear, and solving the
second equation for f (u) yields PDEs possessing blow-up exact solutions.

Example 8.13 (Focusing blow-up interfaces) Consider the PDE

ut = 
ϕ(u)− (au + b)
[
N + 2a

ϕ′(u)G(u)
]
, (8.52)

where ϕ(u) is arbitrary, ϕ′(u) ≥ 0, and a �= 0. Set

G(u) = ∫ ϕ′(u) du
au+b ,

assuming that the inverse function G−1 exists. In the class of radially symmetric
solutions u = u(r, t), with r = |x |, this equation admits the following SI:

H[u] ≡ ur − r au+b
ϕ′(u) . (8.53)

The semilinear operator (8.53) is also a zero-invariant of (8.52), so H[u(r, t)] = 0
for t > 0, provided that H[u0] = 0. This implies that (G(u))r − r = 0 holds,
and integrating yields G(u) = C1(t) + 1

2 r2. Plugging into (8.52) gives the explicit
solution

G(u(x, t)) = 1
2 |x |2 − e−2at . (8.54)

Setting a = 1 and b = 0, and assuming that ϕ satisfies Osgood’s criterion∫∞ ϕ′(u)
u du <∞,
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u(r, t)

s(t1)s(t3) s(t2)

t1t2t3

r = |x |

t1 < t2 < t3

0

Figure 8.2 Blow-up solution (8.55) with focusing singular interface.

we obtain the blow-up solution

u(r, t) = G−1( 1
2 |x |2 − e−2t). (8.55)

This has the blow-up interface (surface) focusing at the origin in infinite time,

|x | = s(t) ≡ √2 e−t → 0 as t →∞,

as shown in Figure 8.2.

Partially invariant 2D subspace. Let us present an invariant interpretation of such
solutions. Setting G(u) = v in (8.52) yields

vt = F[v] ≡ �(v)(
v − N) + a(|∇v|2 − 2v), (8.56)

where �(v) = ϕ′(G−1(v)). Consider (8.56) on the 2D subspace W2 = L{1, |x |2},
v(x, t) = C1(t)+ C2(t) |x |2.

Obviously, W2 is not invariant under the operator F , since

F[v] = �(v)N(2C2 − 1)+ a
[
2C2|x |2(2C2 − 1)− 2C1

]
, (8.57)

so F[W2] �⊆ W2. But it follows from (8.57) that F admits the invariant set (i.e., W2
is partially invariant)

M = {C1 + C2|x |2 : C2 = 1
2

}
.

Indeed, F[M] ⊆ W2, and more precisely, F[M] ⊆ W1 = L{1}. Therefore, as in
several examples in Chapter 7, the PDE (8.56) on M is reduced to an overdetermined
DS, which has a solution. Then, setting C2 = 1

2 in (8.57), i.e., looking for the solution

v(x, t) = C1(t)+ 1
2 |x |2,
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yields F[v] = −2aC1. Hence, (8.56) on M becomes an elementary linear ODE,

C ′1 = −2aC1,

which yields the solution (8.54). Setting in (8.52) ϕ(u) = u2, a = b = 1, and
G(u) = 2[u − ln(1+ u)] yields the PDE

ut = 
u2 + 2(1+u)
u ln(1+ u)− (N + 2)(1+ u).

If ϕ(u) = ln(1+ u2), a = 1, and b = 0, the PDE is

ut = 
 ln(1+ u2)− 2(1+ u2) tan−1 u − Nu.

Example 8.14 (Fourth-order parabolic equation) We easily extend this simple
partial invariance analysis to higher-order PDEs, e.g., to the quasilinear equation

vt = �(v)[−
2v + 4N(N + 2)]+ α
[
(
v)2 − 8(N + 2)2v

]
possessing the solution on a set from L{1, |x |4},

v(x, t) = 1
2 |x |4 + e−8(N+2)2αt .

Indeed, since 
|x |4 = 4(N + 2)|x |2 and 
2|x |4 = 8N(N + 2), the first term in
the equation vanishes, while, in the second term, we observe cancellation of both the
|x |4-projections.

Example 8.15 (Quasilinear KdV-type PDE) The following third-order nonlinear
dispersion equation:

vt = �(v)(vx x x − 6)+ α(vxvx x − 18v)

admits the solution on M ⊂ L{1, x3},
v(x, t) = x3 + e−18αt .

It is easy to reconstruct other higher-order models, including two and more nonlinear
terms annihilating on suitable sets M ⊂ W .

(II) g(r) = 1
r .

Proposition 8.16 Operator

H[u] = ur − 1
r �(u) (8.58)

is a sign-invariant of the equation (8.48) iff �(u) �≡ 0 satisfies the system

I1(u) ≡ f ′�− f �′ = 0, (8.59)

I2(u) ≡ �(k�)′′ + (N − 4)k′�− 2k�′ − 2(N − 2)k = 0. (8.60)

Proof. Setting g(r) = 1
r in (8.50) yields F(r, u) = 1

r I1(u)+ �(u)
r3 I2(u).

The first ODE in the system (8.59), (8.60) implies that

f (u) = λ�(u) (8.61)
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for some constant λ. The next second-order ODE (8.60) for �(u) cannot be solved
explicitly in general. We will show how to construct explicit solutions of (8.48) by
using the fact that, under hypotheses (8.61) and (8.60), the operator (8.58) is a zero-
invariant of the above quasilinear heat equation.

Example 8.17 Consider (8.48) with f (u) given by (8.61),

ut = k(u)
(
urr + N−1

r ur
)+ k ′(u)(ur )

2 + λ�(u). (8.62)

Using the zero-invariance of the operator (8.58) means that, for t > 0,

ur − 1
r �(u) = 0 �⇒ v ≡ ∫ u dz

�(z) = ln r + C1(t). (8.63)

It follows from (8.62) that v(r, t) solves

vt = k(u)
(
vrr + N−1

r vr
)+ (k�)′u(vr )

2 + λ.

Substituting v(r, t) from (8.63) yields

C ′1 = 1
r2 G(v)+ λ, where G(v) = (k�)′u(u)+ (N − 2)k(u). (8.64)

Equation (8.60) implies that there exists a constant d ∈ IR such that

G(v) = d e2v . (8.65)

Indeed, it follows from (8.63) that u′v = �(u), and (8.64) yields

G′v = �(k�)′′uu + (N − 2)k ′�.

Therefore, by (8.60), G′v = 2G, so (8.65) holds. Finally, by (8.64), C ′1 = d e2C1+λ,
so, on integration,

C1(t) = 1
2 ln

(
λe2λt

1−de2λt

)
. (8.66)

By (8.63), this determines the explicit solution of (8.62).
Consider some particular cases:

(i) In the case of the semilinear heat equation with k(u) ≡ 1 in (8.62),

ut = 
u + λ�(u),

the SI has the form H[u] = ur − 1
r �(u), where �(u) solves the following nonlinear

ODE (cf. (8.60)):
��′′ − 2�′ − 2(N − 2) = 0.

The corresponding explicit solution is again given by (8.63) and (8.66).

(ii) For N = 2, (8.60) can be rewritten as �(k�)′′ − 2(k�)′ = 0. Setting k� = 	 ,
and hence, � = 2	′

	′′ , from (8.62) with λ = 1, we obtain the quasilinear equation

ut = 1
r

[
r
(
		′′
2	′

)
(u) ur

]
r + 2

(
	′
	′′
)
(u)

admitting the sign and zero-invariant H[u] = ur − 2
r

	′(u)
	′′(u) . The corresponding ex-

plicit solution is 	 ′(u(r, t)) = C1(t)r2, where C1(t) satisfies

C ′1 = 2C1(C1 + 1).
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(iii) For the function
�(u) = (2− N)u (N �= 2), (8.67)

which simplifies the ODE (8.60), k(u) has to satisfy (2 − N)(ku)′′ = (4 − N)k ′.
Integrating yields the heat conduction coefficients k(u) = a + b u

2
2−N , i.e., the PDE

ut = ∇ ·
[(

a + bu
2

N−2
)∇u

]+ (2− N)u.

(iv) Trying in (8.60) the constant function �(u) ≡ γ �= 0 yields a linear ODE for

k(u), γ 2k ′′ + (N − 4)γ k′ − 2(N − 2)k = 0. Hence, k(u) = ae
2−N
γ u + be 

2
γ u , which

yields the PDE with γ = 1,

ut = ∇ ·
[(

ae(2−N)u + be2u
)∇u

]+ 1.

(v) Finally, trying in (8.60) the linear function (cf. (8.67)) �(u) = γ u, γ �= 0, yields
the second-order Euler ODE

u2k ′′ + (2+ N−4
γ

)
uk′ − 

2(γ+N−2)
γ 2 k = 0. (8.68)

Here, setting k(u) = uρ determines the characteristic equation

ρ2 + (1+ N−4
γ

)
ρ − 

2(γ+N−2)
γ 2 = 0.

Therefore, ρ1 = 2
γ and ρ2 = −1 − N−2

γ . If γ �= −N , ρ1 �= ρ2, and the general
solution of (8.68) has the form k(u) = auρ1 + buρ2, i.e., the PDE with γ = 1,

ut = ∇ · [(au2 + bu1−N )∇u]+ u.

If γ = −N , the general solution is k(u) = u− 2N (a ln u + b), giving the following
parabolic equation:

ut = ∇ ·
(
u− 2

N ln u ∇u
)− Nu.

It follows from (8.63) with �(u) = γ u that, in both cases, the explicit solution is
u(r, t) = rγ eγ C1(t), where C1(t) solves

C ′1 =
{

a(N + γ )e2C1 + λ for γ �= −N,

−a Ne2C1 + λ for γ = −N.

(III) g(r) = r1−N . In this case, (8.50) implies that

F(r, u) = r3(1−N)�2(k�)′′

− 2(N − 1)r1−2N �(k�)′ + r1−N ( f ′�− f �′).

By Theorem 8.11, H[u] = ur − r1−N�(u) (N ≥ 3) is an SI of (8.48) if{
(k�)′ = 0,
f ′�− f �′ = 0.

This yields quasilinear heat equations, which have been considered in Section 8.2 in
a more general setting; cf. (8.29).
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In the 1D case N = 1, there exists another trivial choice g(r) ≡ 1, where the SI
(8.49) has the form

H[u] = ur −�(u).

Then (8.50) implies that f solves the ODE

�2(k�)′′ + f ′�− f �′ = 0.

Integrating once yields f (u) = [a − (k�)′]�. Using the operator H[u] gives the
standard traveling wave solutions u = θ(x − λt).

8.4 Sign-invariants of the form ut − m(u)(ux)
2 − M(u)

In this section, we find more general SIs and explicit solutions of quasilinear heat
equations with various nonlinearities, including the following two models:

ut = ux x + d u
(
2
√

ln u + 1√
ln u

)+ u(2 ln u + 1),

ut = (
√

u )x x +
( 1

tan−1
√

u
+ 1

)
(1+ 4

√
u tan−1√u )(1+ u). (8.69)

As in Section 8.2, consider first the general nonlinear parabolic PDE

P[u] ≡ ut − L(u, ux , ux x) = 0 in IR N × IR+, (8.70)

where the function L(u, p, q) satisfies (8.11). Set (cf. (8.19))

H[u] = ut − ψ(u, ux ), (8.71)

where ψ(u, p) is a smooth function. Assume that +0(u, p, s) is well defined by
(8.18). Let L−1(u, p) denote the function (8.20). In the notation of Section 8.2, the
following result is derived.

Theorem 8.18 Operator (8.71) is a sign-invariant of the equation (8.70) if ψ(u, p)
satisfies the identity (cf. (8.21))

F(u, p) = (Lu − ψu)ψ + (L pψu − Luψp)p

+ Lq
[
ψuu p2 + 2ψup L−1 p + ψpp(L−1)2 + ψu L−1

] ≡ 0.
(8.72)

Proof. This is the same as in Section 8.2. By calculating Jt from a slightly different
formula than (8.22),

Jt = utt − ψuut − ψpuxt ,

utt from (8.70), and also ut x and ut x x by differentiating J = ut − ψ , we derive a
PDE such as (8.24). We also use the identities, following from (8.18),

Lu + Lq (+0)u ≡ 0, L p + Lq (+0)p ≡ 0, and Lq(+0)s ≡ 1.

This completes the proof.

Let us solve the nonlinear PDE (8.72) for ψ(u, p) in some particular cases.
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8.4.1 Quasilinear heat equations

Consider the 1D quasilinear equation (8.1). Without loss of generality, we may take
it in the form of

P[u] ≡ ut − [ϕ(u)ux x + f (u)] = 0, (8.73)

with a smooth function ϕ(u) ≥ 0. The equation (8.1) is reduced to (8.73) by the
transformation û = ∫ u k(s) ds. Set

H[u] ≡ ut −
[
m(u)(ux)

2 + M(u)
]
, (8.74)

where m(u) and M(u) are smooth unknown functions.

Corollary 8.19 Operator (8.74) is a sign-invariant of equation (8.73) if the functions
m(u) and M(u) satisfy the following system of ODEs:

I1(u) ≡ m ′′ϕ + 4mm′ − m2 ϕ′
ϕ + 2m3

ϕ = 0, (8.75)

I2(u) ≡ ϕM ′′ + 4m′M − m f ′
− 5m′ f + 4m2

ϕ (M − f )+ m ϕ′
ϕ f = 0,

(8.76)

I3(u) ≡ f ′M − f M ′ + 2m
ϕ (M − f )2 + M ϕ′

ϕ (M − f ) = 0. (8.77)

Proof. ODEs (8.75)–(8.77) follow from the identity

F(u, p) ≡ I1 p4 + I2 p2 + I3,

which is easily derived from (8.72).

We now reduce system (8.75)–(8.77) to a single equation. Let us introduce the
new function v(x, t) by setting

u = E(v), (8.78)

where E is a monotone solution of the ODE

E ′′ = m(E)
ϕ(E) (E ′)2. (8.79)

In terms of v, (8.73) has the form

P̃[v] ≡ vt −
[
ϕ(E)vx x + ϕ(E) E ′′

E ′ (vx )
2 + f (E)

E ′
]
, (8.80)

and the SI (8.74) becomes

H̃[v] ≡ vt −
[
E ′m(E)(vx )

2 + M(E)
E ′
]
. (8.81)

It follows from (8.79) that the coefficients of (vx )
2 in (8.80) and (8.81) coincide, and

(8.75) implies that these are linear functions of v. By differentiating,

(E ′m(E))′′vv ≡ (E ′)3

ϕ(E) I1(E) = 0.

Thus setting

ϕ(E) E ′′
E ′ = E ′m(E) = av + b, (8.82)

where a and b are arbitrary constants, and

ϕ(E(v)) = ϕ̃(v), f (E(v))
E ′(v) = f̃ (v), M(E(v))

E ′(v) = M̃(v), (8.83)
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yields the following parabolic PDE:

P̃[v] ≡ vt −
[
ϕ̃(v)vx x + (av + b)(vx)

2 + f̃ (v)
] = 0, with (8.84)

H̃[v] = vt −
[
(av + b)(vx)

2 + M̃(v)
]
. (8.85)

Denoting for convenience

G(v) = f̃ (v)−M̃(v)
ϕ̃(v)

, (8.86)

equations (8.76) and (8.77) are translated into

M̃ ′′ − (av + b)G′ − 5aG = 0, (8.87)

G′M̃ − GM̃ ′ + 2(av + b)G2 = 0, (8.88)

respectively. The last ODE (8.88) can be integrated to give

M̃(v) = 2P(v)G(v), (8.89)

where P(v) is a quadratic polynomial

P(v) = 1
2 av2 + bv + c. (8.90)

Substituting (8.90) into (8.87) yields the following linear hypergeometric ODE for
the function G in (8.86):

(av2 + 2bv + 2c)G′′ + 3(av + b)G′ − 3aG = 0, (8.91)

which plays a key role in the further construction of sign and zero-invariants for
our parabolic problem. We call (8.91) the generating equation, since actually, by
formulae (8.86) and (8.83), it generates the coefficients in the parabolic PDE (8.80)
and operator (8.81). In particular, (8.84) and (8.85) imply the following result.

Proposition 8.20 Under the given notation, the sign-invariant of (8.84) is

H̃∗[v] = vx x + G(v), (8.92)

where G is an arbitrary solution of the ODE (8.91).

Unfortunately (8.91) cannot be solved explicitly in general. Below we use its par-
ticular solutions.

8.4.2 Exact solutions

Since, by Proposition 8.20, operator (8.92) is a zero-invariant of (8.84) with G satis-
fying (8.91), it is seen that, for an arbitrary solution v(x, t) of (8.84),

vx x + G(v) = 0 for x ∈ IR, t > 0, (8.93)

if the same is valid for t = 0. Of course, operator (8.85) is also a zero-invariant, i.e.,
in view of (8.86) and (8.89),

vt = P ′(v)(vx )
2 + 2P(v)G(v) for t > 0. (8.94)

Then (8.93) and (8.94) yield exact solutions of the PDE (8.84). Let a given solution
G(v) of (8.91) be well-defined in a neighborhood of v = 1. Set

Y (v) = ∫ v
1 G(η) dη .
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It follows from (8.91) that Y solves the linear ODE

B[Y ] ≡ 2PY ′′′ + 3P ′Y ′′ − 3P ′′Y ′ = 0. (8.95)

Multiplying (8.93) by vx , and integrating over (0, x) yields

(vx )
2 = 2[B(t)− Y (v)], (8.96)

where B(t) is a smooth function to be determined later.

Theorem 8.21 Let G be a solution of (8.91) such that Y (v) exists. Then the quasi-
linear equation (8.84) admits the explicit solution v(x, t) given by∫ v(x,t)

1

dz√
B(t)−Y (z)

= √2 x + C(t), (8.97)

where the functions B(t) and C(t) satisfy the dynamical system{
B ′ = 4a B2 + α1 B + α2,
C ′ = α3

√
B + α4

1√
B
,

(8.98)

α1 = 4P(1)G′(1)+ 2P ′(1)G(1), α2 = 2P(1)G2(1),
α3 = 2P ′(1), α4 = 2P(1)G(1).

Proof. Integrating (8.96) again yields (8.97). Differentiating (8.97) with respect to t
and x implies

vt = 1
2

√
S(t, v) B ′(t)

∫ v
1

dz
[S(t,z)]3/2 + C ′(t)

√
S(t, v) ,

vx = √2 [S(t, v) , where S(t, v) = B(t)− Y (v).
(8.99)

Plugging (8.96) and (8.99) into (8.94), we obtain the identity with respect to v and t ,
which are treated here as the independent variables,

1
2 B ′(t)

∫ v

1

dz
[S(t,z)]3/2 + C ′(t) ≡ 2P ′(v)

√
S(t, v)+ 2P(v)G(v)√

S(t,v)
. (8.100)

Setting v = 1 yields the second ODE in (8.98). Then, differentiating (8.100) with
respect to v, and multiplying by S3/2 gives

B ′(t)−2PG2

2S = 2P ′′S + 2PG′ + P ′G. (8.101)

It follows from the first ODE (8.98) that (8.101) is valid identically for v = 1.
Differentiating (8.101) again and using equation (8.91) yields( B ′(t)−2PG2

2S

)′
v
= 2P ′′G.

Finally, the identity holds,

2a B2 − 1
2 B ′ + J1[v]B + J2[v] ≡ 0, where (8.102)

J1[v] = 2PY ′′ + P ′Y ′ − 4P ′′Y, and
J2[v] = −2PY Y ′′ + P(Y ′)2 − PY Y ′ + 2P ′′Y 2.

It is easy to see that, by (8.95), J ′1 = B[Y ] = 0 and J ′2 = −YB[Y ] = 0. Hence,
J1 and J2 are constants, J1[v] ≡ J1(1) and J2[v] ≡ J2(1). Then (8.102) is exactly
equation (8.98) for B(t). This completes the proof.

We next describe solutions, corresponding to some particular G satisfying (8.91).
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Example 8.22 (Quasilinear parabolic PDEs) For any fixed a, b ∈ IR , the hyper-
geometric equation (8.91) has the linear solution

G(v) = P ′(v) = av + b.

Then (8.93) has the form

vx x + av + b = 0 for x ∈ IR, t > 0. (8.103)

Let a > 0. Integrating (8.103) yields

v(x, t) = − b
a + C1(t) cos(λx)+ C2(t) sin(λx), (8.104)

where λ = √a. Substituting (8.104) into the Hamilton–Jacobi PDE (8.94),

vt = (av + b)
[
(vx)

2 + (av2 + 2bv + 2c)
]
,

we derive the following cubic DS for the coefficients {C1, C2}:{
C ′1 = [a2(C2

1 + C2
2 )+ 2ac]C1,

C ′2 = [a2(C2
1 + C2

2 )+ 2ac]C2, 
(8.105)

possessing blow-up solutions. This determines exact solutions (8.104) of the follow-
ing quasilinear heat equation (cf. (8.84)):

vt = D[v] ≡ ϕ̃(v)vx x + (av + b)(vx)
2

+ (av + b)
[
ϕ̃(v)+ av2 + 2bv + 2c

]
,

(8.106)

where ϕ̃(v) ≡ ϕ(E(v)) ≥ 0 is arbitrary. For solutions u(x, t) = E(v(x, t)), where
E is given by (8.82), there occurs the PDE

ut = ϕ(u)ux x + [a E−1(u)+ b]

× [ϕ(u)+ a(E−1(u))2 + 2bE−1(u)+ 2c
]

E ′(E−1(u)),

which can easily be rewritten in the divergent form (8.1).

Example 8.23 (Semilinear heat equations) Consider

ut = ux x + αR(u)+β
R′(u) , (8.107)

where R(u) satisfies the following nonlinear ODE:

R′ = exp
{− a R2

2 − bR − c
}
. (8.108)

The SI is
H[u] = ut − (a R + b)R′(ux)

2 − αR(u)+β
R′(u) , (8.109)

which is also a zero-invariant of (8.107). To calculate the corresponding solutions,
we set u = E(v) in (8.107), where E(v) = R−1(v), to derive

vt = F[v] ≡ vx x + (av + b)(vx)
2 + αv + β. (8.110)

Obviously, operator F admits the 2D subspace of linear functions W2 = L{1, x}.
Hence, the solutions of (8.110) are

v(x, t) = C1(t)+ C2(t)x ∈ W2,
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{
C ′1 = aC1C2

2 + bC2
2 + αC1 + β,

C ′2 = aC3
2 + αC2,

where the DS can be integrated. Adding the term −vx x x x to the right-hand side of
(8.110) gives a fourth-order parabolic PDE, which admits the same explicit solutions
but, of course, makes the SI (8.109) nonexistent.

Example 8.24 Setting ϕ̃(u) ≡ 1, b = 0 in (8.106) yields

ut = ux x + a2 R3(u)+a(2c+1)R(u)
R′(u) ,

where R(u) is given by (8.108) with a �= 0 and b = 0. It admits the SI

H[u] = ut − a RR′(ux)
2 − a2 R3+2acR

R′ .

In order to find explicit solutions, setting u = R−1(v) gives

vt = F1[v] ≡ vx x + av(vx )
2 + a2v3 + a(2c+ 1)v. (8.111)

Assume that a > 0, and set λ = √
a. Operator F1 of this PDE admits the 1D

subspace W1 = L{cos(λx)}. Thus, setting v(x, t) = C(t) cos(λx) ∈ W1 yields

C ′ = a2C3 + 2acC.

If a < 0, the subspace is W1 = L{cosh(λx)}, with λ = √|a|.
As we have shown in Chapter 1, operator F1 in (8.111) admits a more general 2D

subspace
W2 = L{cos(λx), sin(λx)}, (8.112)

that does not give new exact solutions of (8.111) because of its translational invari-
ance with respect to x . For higher-order evolution PDEs, e.g., for the hyperbolic one

vt t = F1[v], (8.113)

using subspace (8.112) yields new solutions via

v(x, t) = C1(t) cos(λx)+ C2(t) sin(λx) ∈ W2,{
C ′′1 = [a2(C2

1 + C2
2 )+ 2ac]C1,

C ′′2 = [a2(C2
1 + C2

2 )+ 2ac]C2.

Example 8.25 (Fourth-order KS-type equation) There are easy extensions to
higher-order PDEs (the SIs are lost). For instance, the fourth-order semilinear KS-
type equation with cubic nonlinearities

vt = −vx x x x + α
[
v(vx )

2 + v3
]+ βv

admits the explicit solution

v(x, t) = C(t) cos x, with C ′ = αC3 + (β − 1)C.

Example 8.26 (KdV-type equation) The third-order PDE with the same cubic non-
linearities

vt = vx x x + α
[
v(vx )

2 + v3
]+ βv
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has the periodic soliton-type solution

v(x, t) = C(t) cos(x − t), where C ′ = αC3 + βC.

Example 8.27 (Quasilinear heat equations) Let us return to SIs for the quasilinear
parabolic PDEs. In this example, we consider the generating equation (8.91) in the
case where a = c = 0 and b = 1. Then,

2vG′′ + 3G′ = 0 �⇒ G(v) = α√
v
+ β, (8.114)

where α �= 0 and β are free constants. It follows from (8.86), (8.89), and (8.114) that
the corresponding PDE (8.84) is

vt = ϕ̃(v)vx x + (vx )
2 + ( α√

v
+ β

)
[ϕ̃(v)+ 2v]. (8.115)

Exact solutions of (8.115) have been given in Theorem 8.21. The corresponding
original equation (8.73) for u = E(v) is now

ut = ϕ(u)ux x +
[

α√
E−1(u)

+ β
][
ϕ(u)+ 2E−1(u)

]
E ′(E−1(u)). (8.116)

In the case where ϕ̃ = 1, setting v = ln u yields the semilinear heat equation

ut = ux x + u
(

α√
ln u
+ β

)
(1+ 2 ln u), (8.117)

possessing the above solutions u = ev . For α = 1 and β = 0, we find

ut = F2[u] ≡ ux x + u
( 1√

ln u
+ 2
√

ln u
)
, (8.118)

which admits the following SI:

H[u] = ut − 1
u (ux )

2 − 2u
√

ln u. (8.119)

Since (8.119) is also a zero-invariant of (8.118), we obtain solutions u(x, t) = ev(x,t),
where v(x, t) solves the algebraic equation

t
√

t −√v(x, t)− 1
3

√
[t −√v(x, t) ]3 = 1

2 x . (8.120)

For α = 0, (8.117) gives the well-known equation reduced to the PDE

ut = ux x + u ln u,

possessing a 4D symmetry Lie algebra [10, p. 135]; see also Example 9.9 for more
details. For α �= 0, (8.117) does not have any extra group symmetries.

Example 8.28 (On higher-order extensions) It is easy to derive higher-order mod-
els possessing precisely the same exact solutions, though some PDEs can be rather
artificial. The simple rules of construction are as follows. For instance, using the
zero-invariant (8.119) in the PDE (8.118) yields that, for exact solutions, ux x =
(ux )

2

u − u√
ln u

, and, on differentiation,

ux x x = F3[u] ≡ 2ux uxx
u − (ux )

3

u2 − ux√
ln u
+ ux

ln u .
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Obviously, the third-order PDE

ut = ψ(u, ...)(ux x x − F3[u])+ F2[u],

where ψ(u, ...) is an arbitrary function, admits the same solutions u = ev given by
(8.120). One can reconstruct other, less artificial versions of such PDEs. Similarly,
calculating ux x x x denoted again by F3[u] yields a fourth-order PDE, etc.

Example 8.29 (Quasilinear parabolic PDEs) We return to quasilinear heat equa-
tions and determine other exact solutions and SIs. Recall that function E given by
(8.78) (it transforms (8.116) into (8.73), and eventually into (8.1) with N = 1) is
determined from (8.79) and (8.82), so

E ′′ = E ′
ϕ(E) . (8.121)

Consider first the coefficient
ϕ(u) = 1

2u . (8.122)

Then (8.121) yields
E ′′ = 2E E ′, (8.123)

and there exist two possibilities.

(i) Take E(v) = tan v. Substituting E into (8.116) yields

ut = 1
2u ux x +

(
α√

tan−1 u
+ β

)( 1
2u + 2 tan−1 u

)
(1+ u2).

Here, setting u2 = U , we arrive at

Ut = (
√

U )x x +
(

α
tan−1

√
U
+ β

)(
1+ 4

√
U tan−1

√
U
)
(1+U), (8.124)

which has solutions
U(x, t) = tan2 v(x, t),

where v(x, t) is given in Theorem 8.21. The equation (8.69) is (8.124), with α =
β = 1.

(ii) Take another solution of the ODE (8.123), E(v) = − e2v+1
e2v−1

. Setting u2 = U in
(8.116) yields

Ut = (
√

U )x x +
[
α
( 1

2 ln
√

U−1√
U+1

)− 1
2 + β

](
1+ 2

√
U ln

√
U−1√
U+1

)
(U − 1),

which admits solutions U(x, t) = E2(v(x, t)).

(iii) If we take, for instance,
ϕ(u) = cos2 u, (8.125)

then (8.121) admits the solution E(v) = sin−1 ev . Then (8.116) has the form

ut = cos2 u ux x +
(

α√
ln sin u

+ β
)(

cos2 u + 2 ln sin u
)

tan u.

Setting tan u = U yields the quasilinear heat equation

Ut =
(
tan−1 U

)
x x +

[
α
(
ln U√

1+U 2

)− 1
2 + β

][
1+ 2(1+U2) ln U√

1+U 2

]
U,
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which has the solution U(x, t) = ev(x,t)√
1−e2v(x,t)

, with v(x, t) given in Theorem 8.21.

It is easy to find other coefficients ϕ(u) such that (8.121) admits a simple function
E(v) determining solutions of the corresponding quasilinear equation (8.116).

(iv) For instance, for ϕ(u) =
√

1+u2

u , E(v) = e2v−1
2ev , and U = √1+ u2, we find

Ut =
(√

U2 − 1
)

x x +
[
α
(
ln
(
U +√U2 − 1

))− 1
2 + β

]
× [U + 2

√
U2 − 1 ln

(
U +√U2 − 1

)]
,

possessing the solution U(x, t) = e2v(x,t)+1
2ev(x,t)

.

(v) In the case where ϕ(u) = 1
cos u , E(v) = 2 sin−1 ev√

1+e2v
, and U = sin u, we have

Ut =
(
sin−1 U

)
x x +

[
α
(
ln U

1+
√

1−U 2

)− 1
2 + β

](
1+ 2

√
1−U2 ln U

1+
√

1−U 2

)
U

with the solution U(x, t) = 2ev(x,t)

e2v(x,t)+1
.

Example 8.30 Consider now the last case a = 1 and b = c = 0, so (8.91) is

v2G′′ + 3vG′ − 3G = 0,

with the general solution G(v) = αv + βv−3. From (8.86) and (8.89), we have, by
Theorem 8.21, that the parabolic equation (8.84),

vt = ϕ̃(v)vx x + v(vx )
2 + (αv + β 1

v3 )[ϕ̃(v)+ v2],

possesses such exact solutions. Setting v = R(u), where R solves (8.108) (R is the
inverse function to E given by (8.79)), yields the quasilinear heat equation

ut = ϕ(u)ux x + (αR4+β)(ϕ(u)+R2)
R3 R′ .

In the case where ϕ(u) ≡ 1, α = 0, and β = 1, this reduces to

ut = ux x + 1+R2(u)
R3(u)R′(u) ,

where R(u) is given by (8.108) with a = 1, b = c = 0, and the SI is H[u] =
ut − RR′(ux )

2 − 1
R R′ . In particular, there exists the solution

R(u(x, t)) =
√

4t2−x2

2t .

If ϕ(u) ≡ 1 and α = β = 1, we arrive at the PDE

ut = ux x + (R4(u)+1)(1+R2(u))
R3(u)R′(u) ,

where R is given above, with the SI

H[u] = ut − RR′(ux )
2 − R4+1

R R′

and the solution
R(u(x, t)) =

√
sin 4t+sin 2x

cos 4t .
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In the particular quasilinear case of (8.122), setting u2 = U yields

Ut =
(√

U
)

x x + (αR4+β)(1+2
√

U R2)
R3 R′

(here R = R(
√

U)), which admits solutions U(x, t) = E2(v(x, t)), where v is given
in Theorem 8.21. In the case of (8.125), setting tan u = U gives

Ut = (tan−1 U)x x + (αR4+β)[1+(1+U 2)R2]
R3 R′ ,

with R = R(tan−1 U), and the solution is U(x, t) = tan E(v(x, t)).

8.5 General first-order Hamilton–Jacobi sign-invariants

In this section, we perform a more general and detailed analysis of first-order SIs for
the quasilinear heat equation

ut = ψ(u)ux x + q(u) in IR × IR+, (8.126)

where ψ(u) ≥ 0 and q(u) are given smooth functions. For convenience, let us per-
form a smooth transformation u = �(v) to obtain the PDE

vt = ϕ(v)vx x + m(v)(vx )
2 + f (v), (8.127)

with ϕ(v) ≥ 0. We will deal with a more general (than in Section 8.4) quadratic
Hamilton–Jacobi operator of the form

H[v] = vt − H [v] ≡ vt −
[
m(v)(vx )

2 + s(v)vx + M(v)
]
, (8.128)

with three free coefficients m, s, and M . Without loss of generality, in (8.128), we set
the coefficient of (vx )

2 to be equal to m(v), which is the same function, as in (8.127).
In terms of the original solutions u(x, t), the SI has a similar form

H̃[u] = ut −
[
h2(u)(ux)

2 + h1(u)ux + h0(u)
]
.

Our goal is to show that more general SIs (8.127) provide us with extra exact solu-
tions and yield other possibilities to derive estimates of solutions.

It is convenient to perform basic calculations for the new coefficients

g(v) = − s(v)
ϕ(v) and G(v) = f (v)−M(v)

ϕ(v) . (8.129)

As in the previous section, P(v) is the quadratic polynomial (8.90), P(v) = 1
2 av2+

bv + c. We next state the first main result on the existence of the SI.

Theorem 8.31 Operator (8.128) is a sign-invariant of the PDE (8.127) if the coeffi-
cients g(v) and G(v) satisfy the following system of ODEs:

2Pg′′ + 3P ′g′ − 8P ′′g = 0, (8.130)

2PG′′ + 3P ′G′ − 3P ′′G = 2
3 (Pg2)′, (8.131)

and other coefficients are given by

m = P ′, s′ = 2
3 (2P ′g + Pg′), and M = 2PG. (8.132)
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The linear ODEs (8.130) and (8.131) are of the hypergeometric type. The second
equation is non-homogeneous and its right-hand side depends on the solutions of
the first equation. Theses are the generating equations, which determine the class of
parabolic PDEs under consideration. As the next step, let us find the representation
of the corresponding exact solutions, since by Theorem 8.31, the operator (8.128) is
also a zero-invariant of (8.127), i.e.,

H[v] = 0 for all t > 0, if H[v] = 0 for t = 0.

For fixed constants B and C , let v = V (x ; B,C) be the solution of the Cauchy
problem for the ODE

vx x + g(v)vx + G(v) = 0 for x > 0, with v(0) = B, v ′(0) = C. (8.133)

We assume that this ODE is locally well-posed for arbitrary B,C ∈ IR. The equation
(8.133) is associated with the PDE (8.127) and with the corresponding Hamilton–
Jacobi equation

H[v] = 0, (8.134)

in the sense that, altogether, these three equations are linearly dependent. Clearly,
the stationary, time-independent equation (8.133) reduces to a first-order one and
sometimes can be integrated in quadratures. We will present such examples below.
The simpler case g = 0, for which (8.133) is always integrated in quadratures, was
studied in the previous section, where a different general structure of exact solutions
is derived. Finite-dimensional dynamics of exact solutions is as follows:

Theorem 8.32 Under hypotheses of Theorem 8.31, the set of solutions {v(x, t) =
V (x ; B(t),C(t))} via zero-invariance of operator (8.128) is governed by the follow-
ing second-order dynamical system for coefficients B(t) and C(t):

B ′ = P ′(B)C2 + s(B)C + 2P(B)G(B),

C ′ = P ′′(B)C3 + [s′(B)− 2P ′(B)g(B)]C2

+ [2P(B)G′(B)− s(B)g(B)]C − s(B)G(B).

(8.135)

The stationary equation (8.133) defines an evolutionary invariant set M of the
parabolic flow induced by (8.127), in the sense that

v(·, 0) ∈ M �⇒ v(·, t) ∈ M for t > 0.

The DS (8.135) is the parabolic PDE (8.127) restricted to the set M .

8.5.1 Proofs of main theorems

Proposition 8.33 Operator (8.128) is a sign-invariant of the equation (8.127) iff the
coefficients satisfy the system

m′′ = 0, (8.136)

I1(v) ≡ s′′ − 4m′g − g′m = 0, (8.137)

I2(v) ≡ M ′′ − 2gs′ − 5m′G − mG′ + 2mg2 = 0, (8.138)

I3(v) ≡ −3s′G + g′M + 4mgG = 0, (8.139)

© 2007 by Taylor & Francis Group, LLC



412 Exact Solutions and Invariant Subspaces

I4(v) ≡ −
( M

G

)′ + 2m = 0. (8.140)

Proof. Set, as usual, J = H[v]. Differentiating this equality with respect to t ,

Jt = vt t − (H [v])t ,

substituting the second derivative vt t  from (8.127) differentiated in t , and evaluating
other lower-order ones, vt , vt x  and vt x x , we arrive at the parabolic PDE

Jt = M[J ]+ F , (8.141)

where M is a linear second-order operator that is elliptic in the parabolicity domain
of (8.127). By (8.136)–(8.140), the lower-order term is trivial,

F = ϕ
[
m ′′(vx )

4 + I1(vx )
3 + I2(vx )

2 + I3vx + I4G2] ≡ 0. (8.142)

Hence, J solves the homogeneous linear parabolic PDE

Jt = M[J ],

and the result follows from the MP. If F �≡ 0 in (8.141), then obviously at least one
sign of (8.128) cannot be preserved with time on the corresponding set of solutions
(the proof is by direct constructing suitable initial data).

Remark 8.34 Consider the identity (8.142) as a fourth-order algebraic equation for
vx , meaning that the set {1, vx , (vx )

2, (vx )
3, (vx )

4} is linearly dependent. Therefore,
there exists the representation vx = R(v) and, on integration, this kind of zero-
invariance gives ∫ dv

R(v) = x + C(t).

Plugging into (8.127) gives the elementary ODE C ′ = constant, which leads to the
standard traveling wave solution v(x, t) = θ(x − λt). Therefore, in order to obtain
a nontrivial result in the proof, we must assume that all the five terms in (8.142) are
linearly independent and this gives the five ODEs (8.136)–(8.140).

Proof of Theorem 8.31. Equation (8.136) defines linear functions m(v) = av+b ≡
P ′(v); cf. the first equation (8.132). It follows from (8.140) that

M
G = 2

∫ 
m(v) dv ≡ 2P(v); (8.143)

cf. the third equation (8.132). Substituting M from (8.143) into (8.139) yields

3s′ − 4P ′g − 2Pg′ = 0, (8.144)

and the second equation (8.132) follows. The system of ODEs (8.137), (8.144) gives
the first generating equation (8.130). Finally, the second one, (8.131), is the result of
substituting M from (8.143) and s′ from (8.144) into (8.138).

Proof of Theorem 8.32. Setting x = 0 in (8.134) and in vxt = (H [v])x , and using
(8.133), (8.132) yields the DS (8.135).

8.5.2 P(v) is linear polynomial: exact solutions

General structure of SIs. Here, we study the SIs in the linear case a = 0, where
the quadratic polynomial is P(v) = bv + c with b �= 0. Set c = 0, corresponding
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to translation. Moreover, it follows from the generating ODEs (8.130) and (8.131)
that the constant b does not play any role in the analysis, so we set b = 1. Therefore,
consider (8.130) and (8.131) with the linear function

P(v) = v. (8.145)

The first equation (8.130) is then easily integrated:

g(v) = µ 1√
v
+ ν (v > 0), (8.146)

with arbitrary constants µ and ν.
Let us begin with a simpler case ν �= 0 and consider the critical case ν = 0 later

on. Substituting (8.146) into the right-hand side of (8.131) yields

G(v) = α 1√
v
+ β + K1

√
v + K2v, (8.147)

where K1 = 2
3 µν and K2 = 2

9 ν2. Next, using the general solutions (8.146) and
(8.147) of the generating ODEs, we will study the structure of the evolutionary in-
variant set given by the stationary equation (8.133) and the DS (8.135).

Linearization of the stationary equation. This consists of a few steps.

(i) Set
v = 1

w2 (8.148)

in the ODE

vx x +
(
µ 1√

v
+ ν

)
vx + α 1√

v
+ β + K1

√
v + K2v = 0 �⇒

wwx x − 3(wx)
2 + (µw + ν)wwx

− K2
2 w2 − K1

2 w3 − β
2 w

4 − α
2 w

5 = 0.
(8.149)

(ii) Set
w = zx , (8.150)

so that (8.149) reads

zx zx x x − 3(zx x)
2 + (µzx + ν)zx zx x

− K2
2 (zx )

2 − K1
2 (zx)

3 − β
2 (zx)

4 − α
2 (zx )

5 = 0.
(8.151)

(iii) We now introduce the inverse function with respect to the space variable

x = 	(y, t) ≡ z−1(y, t), (8.152)

so that z(	(y, t), t) ≡ y, and

zx = 1
	y

, zx x = − 	yy

(	y)3 , zx x x = − 	yyy

(	y)4 + 3 (	yy)
2

(	y)5 .

Plugging these derivatives into (8.151) yields

	yyy + (µ+ ν	y)	yy + K2
2 (	y)

3 + K1
2 (	y)

2 + β
2 	y + α

2 = 0.

(iv) Let
	y = V . (8.153)
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Then V solves

Vyy + (µ+ νV )Vy + K2
2 V 3 + K1

2 V 2 + β
2 V + α

2 = 0. (8.154)

(v) Finally, let us apply the transformation (used in hyperelliptic function theory
since the nineteenth century)

V = κ
ρy
ρ (8.155)

to obtain an equation with cubic nonlinearities,

ρ2
(
ρyyy + µρyy + β

2 ρy + α
2κ ρ

)
+ (νκ − 3)

[
ρρyρyy + 1

9 (νκ − 6)(ρy)
3 + µ

3 ρ(ρy)
2
] = 0.

Therefore, choosing in (8.155)
κ = 3

ν (8.156)

gives the linear ODE

ρyyy + µρyy + β
2 ρy + αν

6 ρ = 0. (8.157)

The characteristic equation is derived by substituting ρ = eλy ,

λ3 + µλ2 + 1
2 βλ+ 1

6 αν = 0. (8.158)

At last, the general solution takes the form

ρ(y) = H1ρ1(y)+ H2ρ2(y)+ H3ρ3(y),

where ρ1, ρ2, and ρ3 are linearly independent solutions of the ODE (8.157). In view
of the representation (8.155) of the solution V , we may set H1 = 1. The trivial
choice H1 = 0 leads to a significant simplification of the solution. We write the
general solution of (8.157) in the form of

ρ(y) = ρ1(y)+ H2ρ2(y)+ H3ρ3(y). (8.159)

Linearization of (8.127). Consider (8.128), where the coefficients are constructed
from (8.132) with the functions (8.145)–(8.147). This yields

m(v) = 1, s(v) = 2µ
√
v + 4

3 νv + K3, M(v) = 2vG(v),

where K3 is a free constant. The rest of the coefficients of the quasilinear equation
(8.127) are obtained from (8.129),

ϕ(v) = − s(v)
g(v) = −

2µ
√
v+ 4

3 νv+K3
µ√
v
+ν

and f (v) = [ϕ(v)+ 2v]G(v). (8.160)

Substituting G(v) from (8.133) into (8.127) yields the PDE

vt = −2vvx x + v2
x +

(
K3 − 2

3 νv
)
vx , (8.161)

which is backward parabolic (recall that v > 0 by (8.146)). We now apply transfor-
mations (i)–(v) to (8.161). The first one, (8.148), yields

wt = −2
( 1
w2 wx

)
x +

(
K3w + 2ν

3w

)
x . (8.162)

The properties of the famous quasilinear parabolic PDE,

wt =
( 1
w2 wx

)
x ,
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have been known for a long time. In 1951, Storm [537] reduced it to the linear heat
equation by the transformation, (8.150) and (8.152). Moreover, the same can be done
for (8.162), [194] (the linear convection term K3wx is easily eliminated). See [128]
on more general approaches to linearizations of the PDEs. Let us present the corre-
sponding simple calculation for (8.162). Integrating it over (0, x) yields

∂
∂t

[∫ x
0 w(s, t)ds + ∫ t

0

(− 2wx
w2 + K3w + 2ν

3w

)
(0, τ ) dτ

]
= − 2wx

w2 + K3w + 2
3

ν
w .

Let z denote the function in the square brackets on the left-hand side, so that (8.150)
holds. In this case, z solves

zt = − 2zxx
(zx )2 + K3zx + 2

3
ν
zx
. (8.163)

Next, (8.152) with 	 = 	(y, t)
(
hence, zt = −	t

	y

)
reduces (8.163) to

	t = −2	yy − K3 − 2
3 ν(	y)

2.

It follows from (8.153) that V (y, t) = 	y(y, t) solves Burgers’ equation

Vt = −2Vyy − 4
3 νV Vy . (8.164)

One can easily check that transformation (8.155) with coefficient (8.156) reduces
(8.164) to the heat equation

ρt = −2ρyy + N0(t)ρ, (8.165)

with a function N0(t) to be determined via the consistency condition with (8.157).
Substituting the general solution (8.159) into (8.165) gives a linear DS for the

coefficient H2(t) and H3(t).

Example 8.35 Let α = − 6
ν , β = 2 and µ = −1 in (8.147). The characteristic

equation (8.158) has the form (λ−1)(λ2+1) = 0, which yields the general solution

ρ(y, t) = ey + H2(t) cos y + H3(t) sin y. (8.166)

Plugging (8.166) into (8.165) implies N0(t) ≡ 2 and gives the linear DS{
H ′

2 = 4H2,

H ′
3 = 4H3.

Therefore, from (8.155), we obtain the explicit solution of both (8.154) and (8.164)

V (y, t) = 3
ν

ey+e4t (−A sin y+B cos y)
ey+e4t (A cos y+B sin y)

,

where A and B are arbitrary constants, to be transformed by (iv)–(i) into the solution
of the corresponding PDE (8.127).

Example 8.36 Set now α = 0, β = 8, and µ = −5 in (8.147). In this case, from
(8.159),

ρ(y, t) = 1+ H2ey + H3e4y,

and substituting into (8.165) yields N0 = 0 and the solution

V (y, t) = 3
ν

Aey−2t+4Be4y−32t

1+Aey−2t+Be4y−32t .
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8.5.3 The linear critical case

Let ν = 0. Then the final transformation (8.155) with the coefficient (8.156) does
not make sense, and, as a result, the exact solutions are not of the exponential-
trigonometric soliton-type structure. Recall that (8.145)–(8.147) and (8.160) imply
SIs and exact solutions of the following quasilinear heat equation:

vt = −
(
2v + K3

µ

√
v
)
vx x + (vx )

2 − K3
µ

√
v
(

α√
v
+ β

)
. (8.167)

For ν = 0, integrating the stationary ODE yields

vx x + µ√
v
vx + α√

v
+ β = 0 �⇒ vx = (α + β

√
v)Y (v), (8.168)

with Y (v) to be determined. We then obtain the first-order ODE
√
v(α + β

√
v) dY

dv = − 1
2Y (βY 2 + 2µY + 2). (8.169)

There exist two cases:

(i) β �= 0. Let

q2 = 2β−µ2

β2 > 0, and set p = µ
β .

Integrating the ODE (8.169) yields

R(Y ) ≡ 1
2β ln[(Y + p)2 + q2]− µ

qβ2 tan−1
(Y+p

q

)
= − 1

β ln(α + β
√
v)+ E ≡ η(v),

where E = E(t) is the constant of integration. It then follows from (8.168) that

vx = (α + β
√
v)R−1(η(v)), (8.170)

and hence, solutions v = v(x, t) of (8.167) are given by the quadrature∫ v(x,t)

0

dz
(α+β

√
z)R−1(η(z))

= x + H (t), (8.171)

with H = H (t) being yet a free function. Differentiating (8.171) in t yields

vt = (α + β
√
v)R−1(η)

[
H ′(t)− E ′(t)

∫ v

0

( 1
R−1(η(z))

)′
η

dz
(α+β

√
z)

]
. (8.172)

Plugging the derivatives (8.170) and (8.172) into the corresponding Hamilton–Jacobi
PDE

vt = (vx )
2 + (2µ

√
v + K3)vx + 2α

√
v + 2βv,

yields the identity

H ′(t)− E ′(t)
∫ v

0 (·) = (α + β
√
v)R−1(η(v))

+ 2µ
√
v + K3 + 2

√
v

R−1(η(v))
,

(8.173)

where the integral on the left-hand side is the same as in (8.172). This identity should
hold for all t ∈ IR and v > 0. Setting v = 0 in (8.173) yields the first ODE

H ′(t) = αR−1(E(t)− 1
β lnα

) + K3. (8.174)
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Without loss of generality, we are assuming that α > 0. Otherwise, if α = 0, we
integrate in (8.171) from the limit 1. Differentiating (8.173) with respect to v, one
can check that this gives the identity if E ′(t) = 1, which is the second ODE.

(ii) β = 0. This case is easier. Integrating (8.169) yields

vx = αR−1(η(v)), η(v) = − 1
α

√
v + E(t), where

R(Y ) = 1
2µ

[
Y − 1

µ ln(µY + 1)
] 

and Y (v) = 1
α vx .

Therefore, instead of (8.171), we obtain solutions of (8.167) in the form of∫ v(x,t)

0

dz
R−1(η(z))

= αx + H (t). (8.175)

In a similar fashion, the following DS is derived (cf. (8.174)):

H ′(t) = α2 R−1(E(t))+ αK3, where E ′(t) = 1. (8.176)

Theorem 8.37 Under the given hypotheses, the exact solutions (8.171) or (8.175)
of the PDE (8.167) are governed by the ODE (8.174) or (8.176) with E(t) = t .

8.5.4 The degenerate case

1. We now consider the simplest case of the fully degenerate quadratic polynomial
(8.90), where a = b = 0, and

P(v) = c �= 0.

Then P ′′ = P ′ = 0 and the first generating ODE (8.130) yields g′′ = 0, which gives
us g = dv + h, d �= 0. Setting h = 0 by translation gives g(v) = dv. From (8.131),
we get G ′′(v) = 2

3 d2v, and hence,

G(v) = 1
9 d2v3 + K1v + K2, (8.177)

with arbitrary constants K1 and K2. It then follows from (8.132) that

m(v) = 0, s(v) = 2
3 cdv + K , and M(v) = 2cG(v), (8.178)

where K is arbitrary. Finally, from (8.129), we derive the following class of quasi-
linear heat equations:

vt = − 1
dv

( 2
3 cdv + K

)
vx x + 1

dv

( 4
3 cdv − K

)
G(v), (8.179)

which admit the SI

H[v] = vt −
( 2

3 cdv + K
)
vx − 2cG(v).

2. The construction of exact solutions of (8.179) is also easier than in the previous
case. The corresponding stationary ODE

vx x + dvvx + 1
9 d2v3 + K1v + K2 = 0 (8.180)

is linearized by the transformation

v = 3
d

ρx
ρ . (8.181)
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This yields the linear-third order ODE

ρx x x + K1ρx + 1
3 d K2ρ = 0, (8.182)

which results in the linear representation (8.159) of the general solution.

3. Substituting G(v) (as given in (8.177)) from (8.180) into (8.179) yields the classi-
cal Burgers equation

vt = −2cvx x −
( 4

3 cdv − K
)
vx ,

which, by (8.181), reduces to the linear heat equation with lower-order terms

ρt = −2cρx x + Kρx + N0(t)ρ. (8.183)

The rest of the analysis of the consistent system (8.182), (8.183) is similar.

Example 8.38 Setting K1 = −1 and K2 = 0 in (8.182) gives the solution

ρ = 1+ H2ex + H3e−x

of the linearized stationary ODE. Substituting into (8.183) yields N0 = 0 and the
explicit solution of (8.179),

v(x, t) = 3
d

Aex+(K−2c)t−Be−x−(K+2c)t

1+Aex+(K−2c)t+Be−x−(K+2c)t .

Example 8.39 Now let K1 = 0 and d K2 = −3. Then,

ρ = ex + e− x
2
(
H2 sin

√
3x
2 + H3 cos

√
3x
2

)
.

Substituting into the heat equation (8.183) implies that N0 = 2c − K , and that the
coefficients H2(t) and H3(t) solve the linear DS{

H ′
2 = 3

(
c − K

2

)
H2 −

√
3
(
c + K

2

)
H3,

H ′
3 =

√
3
(
c + 1

2

)
H2 + 3

(
c − 1

2

)
H3,

which is easily integrated. In particular, for K = −2c, we have the solution of (8.179)

v = 3
2d

2ex+e6ct− x
2 [(A

√
3−B) cos

√
3x
2 −(B

√
3+A) sin

√
3x
2 ]

ex+e6ct− x
2 (A sin

√
3x
2 +B cos

√
3x
2 )

.

8.5.5 P(v) is a quadratic polynomial

Finally, we study the most interesting case a �= 0, where (8.90) is a quadratic poly-
nomial.

1. Single-term polynomial. Consider first the case of the single-term quadratic poly-
nomial

P(v) = 1
2 av2, with a �= 0 (i.e., b = c = 0). (8.184)

Then the generating equations (8.130) and (8.131) are solved explicitly,

g(v) = µv2 + ν
v4 and G(v) = α

v3 + βv + 1
16

(
µ2v5 − ν2

v7

)
, (8.185)

where G0(v) = α
v3 + βv is the general solution of (8.131).
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Let us begin with the structure of exact solutions in the case where α = β = 0 in
(8.185). The stationary ODE (8.133),

vx x + 1
v4 (µv6 + ν)vx + 1

16v7 (µv6 − ν)(µv6 + ν) = 0,

can then be integrated in quadratures. Introducing the new function Y by

vx = 1
16

µv6−ν
v3 Y (v), (8.186)

gives the first-order ODE

vY dY
dv = −µv6+ν

µv6−ν
(Y + 4)(3Y + 4). (8.187)

Integrating yields

Y = R−1(η(v)), where η(v) = v2

(µv6−ν)2/3 E, (8.188)

E is a free constant and R−1 is the inverse function to

R(Y ) = Y+4
(3Y+4)1/3 . (8.189)

Integrating (8.186) with Y from (8.188) gives the following solutions v(x, t):

16
∫ v(x,t)

1

z3

µz6−ν
dz

R−1(η(z))
= x + H. (8.190)

Here, E = E(t) and H = H (t) are some smooth functions to be determined by sub-
stituting (8.190) into the corresponding Hamilton–Jacobi PDE with the coefficients
calculated by (8.132),

H[v] ≡ vt −
[
av(vx )

2 + ( 1
2 aµv4 + K

)
vx + a

16

(
µ2v7 − ν2

v5

)] = 0. (8.191)

Using (8.129), (8.184), and (8.185) yields the quasilinear heat equation

vt = −v4
1
2 aµv4+K

µv6+ν
vx x + av(vx )

2

+ 1
16v5 (µv6 − ν)

( 1
2 aµv6 + aν − K v2

)
.

(8.192)

Theorem 8.40 The parabolic PDE (8.192) admits the sign-invariant (8.191) and
solutions (8.190), where the functions E(t) in (8.188) and H (t) satisfy the DS{

H ′ = 1
16 a(µ− ν)gE (t)+ 1

2 aµ+ K + a(µ+ν)
gE (t) ,

E ′ = 1
2 aµνE + 1

128a E4,
(8.193)

where gE (t) = R−1(E(t)(µ− ν)−2/3).

Proof. We follow the same lines, as in the linear critical case. Calculating derivative
vt from (8.190),

vt = µv6−ν
v3 R−1(η(v))

[ 1
16 H ′ − E ′

∫ v
1

z5

(µz6−ν)5/3

( 1
R−1(η(z))

)′
η

dz
]
,

and substituting into (8.191), together with vx from (8.186), we derive the identity

1
16 H ′ − E ′

∫ v
1 (·) = 1

16

[
a
16

µv6−ν
v2 R−1 + 1

2 aµv4 + K + a µv6+ν
v2

1
R−1

]
. (8.194)
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Here, setting v = 1 yields the first ODE (8.193). Differentiating (8.194) with respect
to v and using (8.188) implies the following ODE:

vY dY
dv = −

2(2µv6+ν)Y 2
[

Y+ 
4(2µv6−ν)

2µv6+ν

]
(Y+4)

(µv6−ν)Y 2−
[

256γ v6

µv6+ν
+16(µv6+ν)

] , with γ = −  E
′

2aE . (8.195)

Let us compare ODEs (8.195) and (8.187), which must admit a common solution
given by (8.188) and (8.189). The right-hand sides of both equations (8.195) and
(8.187) coincide if Y = Y (v) solves the cubic algebraic equation

Y 3 + 12Y 2 + [16+ 
64v6(4γ+µν)
(µv6−ν)2

]
(3Y + 4) = 0 . (8.196)

On the other hand, expressions (8.188) and (8.189) can be written in the form of the
following cubic equation:

Y 3 + 12Y 2 + [16− E3v6

(µv6−ν)2

]
(3Y + 4) = 0 . (8.197)

The last coefficients of the term (3Y + 4) of (8.196) and (8.197) coincide if 256γ =
−64µν − E3, from which comes the second ODE in (8.193).

2. A solution for general polynomial. Consider another solution of the generating
ODEs. We again assume that a �= 0, and, by translation, take the quadratic polyno-
mial in the most general form

P(v) = 1
2 (av

2 + 2c), (8.198)

where c �= 0. Then the system (8.130), (8.131) has the general solution

g(v) = 1
4 (2av2 + c) and

G(v) = 1
64 (a

2v5 + 2acv3)+ αG0(v) + βv,

where α and β are arbitrary constants, and G0(v) denotes the second solution of the
homogeneous equation (8.131) such that G0(v) and v are linearly independent.

Let us restrict ourselves to the quadrature case

α = 0 and β = 3
256 c2.

Then, setting in the corresponding stationary equation (cf. (8.186))

vx = 1
192 (2av3 + 3cv)Y (v) (8.199)

yields the ODE

Y dY
dv = − 6av2+3c

2av3+3cv
(Y + 4)(Y + 12), so (8.200)

Y = R−1(η(v)), η(v) = E
144 (2av3 + 3cv)2, R(Y ) = Y+4

(Y+12)3 . (8.201)

Integrating (8.199) yields the following solutions:

192
∫ v(x,t)

1
1

2az3+3cz
dz

R−1(η(z))
= x + H. (8.202)

The Hamilton–Jacobi PDE is now
H[v] ≡ vt −

[
av(vx)

2 + 1
4 (a2v4 + 2acv2 + K )vx

+ 1
256 (av

2 + 2c)(4a2v5 + 8acv3 + 3c2v)
] = 0.

(8.203)
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The quasilinear heat equation takes the following (rather awkward) form:

vt = − a2v4+2acv2+K
2av2+c

vx x + av(vx )
2

+ 1
256

a2v4+3acv2+2c2−K
2av2+c

(4a2v5 + 8acv3 + 3c2v),

(8.204)

where a, c, and K are arbitrary constants.

Theorem 8.41 PDE (8.204) admits the sign-invariant (8.203) and solutions (8.202),
where the coefficients E(t) in (8.201) and H (t) satisfy the DS{

H ′ = a
192 (2a + 3c)gE(t)+ 1

4 (a
2 + 2ac+ K )+ 3(a+2c)(2a+c)

4gE (t) ,

E ′ = − a
128 − 3

64 c3 E,
(8.205)

with gE (t) = R−1( 1
144 E(t)(2a + 3c)2).

Proof. Calculating vt from (8.202), and substituting both derivatives vx and vt into
(8.203) (where setting v = 1 in the identity gives the first ODE (8.205)), after differ-
entiating in v, we obtain

Y dY
dv = −

2av(4av2+3c)Y 2
(

Y+12 4av2+5c
4av2+3c

)
(Y+12)

av2(2av2+3c)Y 2+ 12288γ
2av2+c

−144(av2+2c)(2av2+c)
,

where γ = − E ′
2E . It admits solution (8.201) satisfying (8.200) if 1

E − 256γ
a + 6c3

a = 0,
from which comes the second ODE in (8.205).

Due to Theorem 8.32, the DS (8.135) is always given explicitly in all the cases
(as well as in other cases of sets described by the stationary equation (8.133)). In the
case of (8.198), the corresponding solutions v(x, t), in general, do not have explicit
quadrature representation, excluding the cases considered.

8.5.6 Interpretation via invariant subspaces and sets

It is not often easy to interpret some of the obtained solutions by using the current
ideology of linear subspaces that are (partially) invariant under nonlinear operators.
As usual, such interpretations help to reconstruct extensions to higher-order PDEs,
avoiding technical manipulations.

Example 8.42 (Semilinear equation) Consider the simplest quasilinear case. Fix
a = 1 in (8.184) and set µ = ν = 0 in (8.185) ( i.e., g(v) ≡ 0) and α = 1, β = 0
in (8.185) (i.e., G(v) = 1

v3 ). Next, from (8.132), take m(v) = v, s(v) = 0, and

M(v) = 1
v , and finally find from (8.129) that ϕ(v) = 1 and f (v) = 1+v2

v3 . We then
obtain the following semilinear heat equation:

vt = vx x + v(vx )
2 + 1+v2

v3 (8.206)

that possesses the explicit solution of the typical self-similar form

v∗(x, t) =
√

2t − 1
2t x2 . (8.207)
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422 Exact Solutions and Invariant Subspaces

But (8.207) is not self-similar, in the sense that it cannot be constructed by symmetry
group analysis. In view of (8.207), we introduce V = v2, so that

Vt = F1[V ]+ F2[V ] ≡ [Vx x − 1
2V (Vx)

2 + 2
V

]+ [ 1
2 (Vx)

2 + 2
]
. (8.208)

The corresponding explicit solution is

V∗(x, t) ≡ (v∗)2 = 2t − 1
2t x2 ∈ W2 = L{1, x2}, (8.209)

for all t > 0, where the 2D subspace W2 is invariant under the second Hamilton–
Jacobi operator F2 in (8.208), but not under the operator F1. Indeed, we have, for
V = C1 + C2x2 ∈ W2,

F2[V ] = 2+ 2C2
2 x2 ∈ W2 and F1[V ] = 2(C1C2+1)

C1+C2x2 .

We next introduce the following set on W2:

M = {V = C1 + C2x2 : F1[V ] = 0, i.e., C1C2 + 1 = 0
}
,

which is invariant on W2 under the full operator F1 + F2 in (8.208). Substituting
V (x, t) = C1(t) + C2(t)x2, implies that (8.208) on M is the overdetermined DS,
which gives (8.209), 

C ′1 = 2,
C ′2 = 2C2

2 ,
C1C2 + 1 = 0.

Example 8.43 (Higher-order PDEs) As the first obvious extension, note that the
explicit solution (8.209) satisfies any of the PDEs of arbitrary order

Vt = ψ(V , Vx , Vx x, ...)F1[V ]+ F2[V ], (8.210)

with an arbitrary function ψ(·). For a more subtle example, consider the following
fourth-order parabolic PDE:

Vt =
[−Vx x x x + 1

6V (Vx x)
2 − 24

V

]+ [ 1
6 (Vx x)

2 + 24
]
. (8.211)

Then, introducing a similar set, M ⊂ W2, and looking for solutions V∗(x, t) =
C1(t)+ C2(t)x4 on W2 = L{1, x4} yields the consistent overdetermined DS,

C ′1 = 24,
C ′2 = 24C2

2 ,
C1C2 + 1 = 0,

i.e., C1(t) = 24t and C2(t) = − 1
24t , from which comes the solution of (8.211),

V∗(x, t) = 24t − 1
24t x4.

Example 8.44 (Semilinear heat equation) Setting again a = 1 and µ = ν = 0,
we now take α = β = 1, i.e., according to (8.185), G(v) = v + 1

v3 . Then v and

V = v2 solve the equations

vt = vx x + v(vx )
2 + (1+ v2)

(
v + 1

v3

) �⇒
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Vt =
[
Vx x − 1

2V (Vx)
2 + 2

V + 2V
]+ [ 1

2 (Vx )
2 + 2V 2 + 2

]
, (8.212)

with the explicit solution

V∗(x, t) = tan 4t + 1
cos 4t sin 2x ∈ W̃2 = L{1, sin 2x}, (8.213)

where W̃2 is invariant under the second operator F2 in (8.212). The set M ⊂ W̃2 on
which the first operator vanishes, F1[V ] = 0 on M , takes the form

M = {V = C1 + C2 sin 2x : C2
1 − C2

2 + 1 = 0
}
.

Plugging V = C1(t)+ C2(t) sin 2x ∈ W̃2 into (8.212) gives the overdetermined DS
C ′1 = 2(C2

1 + C2
2 )+ 2,

C ′2 = 4C1C2,

C2
1 − C2

2 + 1 = 0,
(8.214)

which generates the nontrivial solution (8.213).

Example 8.45 (Fourth-order parabolic equation) Clearly, (8.213) solves the gen-
eral equation (8.210) with operators F1,2 from (8.212). Exactly the same solution
(8.213) with the same DS (8.214) occurs for the fourth-order PDE

Vt = − 1
4 Vx x x x − 1

2V (Vx)
2 + 2

V + 2V + 1
2 (Vx)

2 + 2V 2 + 2,

since Vx x = − 1
4 Vx x x x on W̃2.

Remarks and comments on the literature

The ideas and methodology of differential constraints are classical in PDE theory and initially
appeared for first-order equations. Lagrange applied differential constraints to determine total
integrals of nonlinear equations with two independent variables,

F(x, y, u, ux , uy) = 0.

Darboux extended this technique to the second-order PDEs [139], which previously had been
studied by Monge and Ampère by means of first integrals. A full history of the early years of
differential substitution and constraint approaches can be found in Goursat [260] and Forsyth
[196]. See also a survey in Kaptsov [326] devoted to some generalizations of the classical
Darboux method. Differential constraints are known to lead to difficult systems of PDEs.
A general theory of such overdetermined systems was developed by Riquier, Cartan, Ritt,
Spencer, and others; see Pommaret [468] for a detailed survey.

Some modern versions of differential constraint approaches are related to the classical semi-
inverse method that is well known in Continuum Mechanics and more applied areas; see a
survey paper by Nemény [433]. The link between the semi-inverse method and symmetries of
PDEs was first noted by Birkhoff [61] in application to hydrodynamic problems. In particular,
Birkhoff introduced the concept of equations, written in separate form, i.e., in the form of a
linear combination ∑m

i=1 ,i (χ)�i (µ),

where the coefficients ,i (χ) depend on the set of variables χ = {χ1, ..., χs} and functions of
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424 Exact Solutions and Invariant Subspaces

these variables, whereas �i (µ) depend on different variables µ = {µ1, ..., µr } and functions
of these variables. Reducing PDEs to such separate forms makes the method successful. See
further comments in the survey in [474]. Later on, in the 1960s, a systematic approach to
differential constraints in gas dynamics was proposed by Yanenko [582], which is reflected in
the book [525]; see also other applications and references in [13].

In this chapter, we use the basic notions of SIs introduced in [219], where a number of
presented results can be found.

§ 8.1. Let us mention again that, in many fundamental problems for quasilinear parabolic
PDEs, deriving suitable one-sided estimates (or SIs) plays a key role for the existence, unique-
ness, regularity, and different asymptotic results. This is explained in many books; see [33,
205, 245, 509, 530, 533, 550].

§ 8.2. We follow [219] and use SIs proposed in [215]; see more references in [509, Ch. 5].
Corollary 8.2 can be found in [215] and [509, p. 303]. Kirchhoff’s transformations in heat
conduction theory have been used since 1894, [348].

We mention again that some ideas of the SIs had the origin in blow-up singularity analysis
of combustion reaction-diffusion PDEs. The first concept of SI analysis is associated with the
notion of the ψ-criticality of solutions of parabolic equations playing an important role in
blow-up theory; see details and references in [509, Ch. 5]. In general settings, we deal with
PDIs of the type

H[u] ≡ ut −ψ(x, t, u,∇u) ≥ 0 in IR N for t > 0, (8.215)

with a priori unknown functions ψ(x, t, u,∇u) to be determined from the invariance condi-
tion. According to (8.215), the zero-criticality of the solution u(x, t), i.e., the ψ-criticality with
ψ(·) ≡ 0, implies that ut ≥ 0 holds for t > 0 if ut (x, 0) ≥ 0 initially. In combustion prob-
lems, the last inequality is known to characterize initial temperature of the critical ignition.
Therefore, (8.215) is a natural extension of the critical property, such as the ψ-criticality with
respect to a given function ψ . General ψ-critical conditions (8.215) of solutions of parabolic
PDEs were introduced in [215]; see extended results and references in [509, Ch. 5]. Estimates
of the type (8.215) with different functions ψ have been used in several problems for quasi-
linear heat equations (8.1), such as heat localization and blow-up behavior, [509, Ch. 5, 7]. A
similar idea to derive estimates of the type (8.215) with ψ = ψ(u) for some class of quasi-
linear heat equations was used in [533], where the applications to blow-up problems are also
given. For the semilinear heat equation (8.4), the ψ-criticality (8.215) with ψ = δ f (u), δ =
constant, has been employed in [207].

§ 8.3. The main results are taken from [219]. Function g(r) = r in the SI (8.49) was introduced
in [207], two other cases, g(r) = 1

r and g(r) = r1−N , were established in [219].
This concept of SI analysis uses the idea by Friedman and McLeod [207]. In the study

of single point blow-up for semilinear heat equations (8.4) with nonlinearities f (u) = eu

(the Frank–Kamenetskii equation or solid fuel model, [594]) and f (u) = u p , they proposed
deriving the so-called gradient estimate by using a sign-type analysis of the following first-
order operator for radial solutions u = u(r, t), r = |x|:

H∗[u] ≡ ur + r �(u) for t > 0. (8.216)

A suitable choice of the function � provides us with an optimal estimate for blow-up solu-
tions and depends on f . For quasilinear PDEs (8.1), the SI operator takes the form H∗[u] =
k(u)ur + r �(u). A crucial problem is then to choose an optimal function �(u) satisfying a
nonlinear ordinary differential inequality, depending on the coefficients k(u) and f (u) of the
parabolic equation (8.1). Various generalizations of this approach to quasilinear heat equations
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8 Sign-Invariants and Exact Solutions 425

(8.1) was performed in [233, 243]; see [245, Sect. 10.4], where the most general computations
are presented.

This approach has been extended [233] to PDEs with the p-Laplace operator

ut = ∇ · (|∇u|σ∇u) + f (u), (8.217)

where the corresponding SIs are H∗[u] ≡ |ur |σ ur + r �(u).
There exists a direct relation between the results on SIs and a geometric Sturmian theory of

nonlinear 1D parabolic equations, [226, Ch. 7]. Geometric theory of such PDEs uses the fact
that proper, complete (i.e., sufficiently dense in a natural geometric sense) sets B of particular
exact solutions can determine a property of the B-convexity/concavity that is defined with
respect to the given functional set B. This property is then preserved with time and reduces to
the time-invariance of the sign of a certain nonlinear operator (actually, it is a SI) on evolution
orbits generated by the parabolic equation.

For second-order parabolic equations, some results on generalized conditional symmetries
can be translated to sign invariants; see e.g., [476] and [481], where exact solutions are con-
structed for equations ut = ∇ · (B(u)∇u)+ A(x, u).

§ 8.4. The main results are obtained in [219]. Examples 8.22, 8.23 and 8.24 represent rather
elementary equations possessing solutions on invariant subspaces or on sets of lower dimen-
sions 1, 2, or 3. Various extensions of similar differential constraints to parabolic PDEs with
non-constant coefficients, extra convection, and gradient diffusivity terms in Sections 8.1–8.4
can be found in [474], together with a quality survey on the relation between semi-inverse
methods and symmetries of PDEs.

The 1D invariant subspaces correspond to the functional separation of variables, where the
additively separable solutions

u(x, t) = φ(A(x)+ B(t))

are studied. Necessary and sufficient conditions for such a general additive separation of a
PDE were obtained in [310], being an extension of the classical Stäckel form (1893) [534].
For this separation technique, the results by Steuerwald (1936) [535] have been found ef-
fective for finding standing waves. See applications to the sine-Gordon (Enneper) equation,
ut x = sin u, in [521], where solutions of the form u(x, t) = F( f1(t) f2(x)) were described.
Such a structure of solutions was earlier derived by Seeger (1953) by integrating Darboux’s
equation (1894) [142] for Enneper surfaces (pseudo-spherical surfaces with at least one set of
planar lines of curvature), and was shown to belong to the manifold of solutions obtained by
Steuerwald [535]; see [521].

This functional separation of variables was applied in [316] (see also [13, Ch. 5]) to the 2D
equation of vortex structures of an inviscid fluid,


u ≡ ux x + uyy = F(u), (8.218)

where u is stream function and F(u) is given (equation (8.218) was derived by H. Lamb
[368]; see [29]). According to this method of generalized separation of variables (GSV), it
was shown [316] that (8.218) admits nontrivial solutions

u(x, y) = h( f (x) + g(y)), (8.219)

where h, f , and g are some unknown functions to be determined (cf. another application in
[423]) iff the right-hand side F takes one of the following five forms:

Aeu + Be−2u, Au ln u + Bu, A sin u + B(sin u ln | tan u
4 | + 2 sin u

2 ),
A sinh u + B(sinh u ln | tanh u

4 | + 2 sinh u
2 ),

A sinh u + B(sinh u tan−1 eu/4 + 2 cosh u
2 ),
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where A and B are constants. All these Kaptsov’s solutions of the equation (8.218) are given
by explicit formulae. Two equations from this list, the Tzitzéica equation,∗


u = eu − e−2u , (8.220)

and the Bonnet equation [71], 
u = sin u, are well known and exhibit special symmetry
properties and solutions; see [10, Sect. 12.3], [321] for N-soliton solutions of (8.220) and
also a survey in [138]. Two Lax pairs of (8.220) are known, and the first one was found by
Tzitzéica himself in 1908, and the second pair by Mikhailov seventy years later, [138, p. 2094].
Similar separation results for (8.218) were also obtained in [423], where more general aspects
of this functional separation are presented and applied to hyperbolic and elliptic PDEs (in
Riemannian and pseudo-Riemannian spaces) with the right-hand side F = F(x, y, u).

Setting in (8.219) f = ln f̂ and g = ln ĝ yields

u(x, y) = h(ln( f̂ (x)ĝ(y))) ≡ ĥ( f̂ (x)ĝ(y)),

exhibiting a typical structure of 1D subspaces with unknown basic functions, so the solutions
of this type are naturally associated with invariant subspaces or sets. On the other hand, dif-
ferentiating in x yields the typical SI structure ux = f ′(x)H(u) studied in Section 8.3. As a
next step, for solutions on 2D subspaces u(x, y) = h( f1(x)+ f2(x)g(y)), the corresponding
differential constraint takes the form ux = g(x)h(y)H(u) (cf. [474]), or, which is the same,
[ ux

g(x)H(u) ]x = 0. One can modify such a constraint to include solutions on three or more-
dimensional subspaces, though computations then become much more technical and possibly
unbearable.

Similar ideas apply to the Grad–Shafranov equation that describes axisymmetric steady
flows of an inviscid fluid [29]

ux x + urr + 1
r ur = r2G(u)+ F(u),

where F and G are arbitrary functions; see [317, 322, 421]. This approach gives a similar
classification for the semilinear Klein–Gordon equation,

utt − ux x = F(u),

(see also [319] where the differential constraints applied) and can be extended to the semi-
linear and quasilinear heat equations ut − ϕ(u)ux x  = F(u); see a general classification in
[482]. In [173], this method was applied to generalized p-Laplacian equations with source,
ut = (ϕ(u)(ux )

n)x+F(u), occurring in the theory of turbulent diffusion and non-Newtonian,
dilatable, or pseudo-plastic fluids. In [172], the GSV was used for general quasilinear wave
equations

utt = (ϕ(u)ux )x + F(u).

The algorithm of the GSV-method admits a generalization, where the derivative ux is included
in the separation formula (cf. (8.219)) f (u, ux ) = a(t)+b(x); see [597] (and earlier results in
[118]) applied to second-order parabolic PDEs ut = A(u, ux )ux x + B(u, ux ), and [596] for
the KdV-type equations ut = ux x x + A(u, ux )ux x + B(u, ux ). See also [479, 483, 480] for
a generalization of separation techniques applied to PDEs ut = (D(u)ux )x + B(x)Q(u) and

∗ This equation was found by Romanian geometer Georges Tzitzéica in 1907, [564]. It is used in the field
of geometry and is concerned with surfaces, on which the total curvature at each point is proportional
to the fourth power of the distance from a fixed point to the tangent plane. He established its invariance
under a Bäcklund transformation, and also constructed, in 1910, a linear representation of solutions
incorporating a spectral parameter, which was rediscovered in the soliton theory seventy years later.
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other equations. Paper [598] contains a complete classification of the nonlinear wave equations
in IR2 × IR,

utt = A(u)ux x + B(u)uyy + C(u, ux , uy),

admitting solutions f (u) = X (x) + Y (y)+ T (t).
In particular, the GSV approach easily gives the solution in Example 8.24. On the other

hand, the GSV cannot detect elementary solutions in Examples 8.22 and 8.23 dealing with
subspaces of dimensions three and two respectively. A generalization of the GSV method of
[316] to two and higher-dimensional subspaces seems to be an interesting and challenging
problem. The main difficulty is to check whether in 2D, the method would lead to such a
simple, closed algorithm of separation as it does in 1D.

Some of the solutions on invariant subspaces and sets can be obtained by constructing
suitable differential constraints of higher order. See [325], where, in addition, a new family of
exact solutions was constructed for the fast diffusion equation

ut = (u− 1
2 ux )x ,

by using a third-order nonlinear differential constraint. The solutions are

u(x, t) = − 2X ′(x)T ′(t)
[X (x)+T (t)]2 , where

(X ′)3 = (c0 + c1 X + c2 X2 + c3 X3)2,

(T ′)3 = A(c0 − c1T + c2T 2 − c3T 3)2

(X are T are expressed in terms of the Weierstrass function ℘) and ci and A are constants.
Another special parabolic equation,

vt = vxx
vx+(vx )2 ,

admits the exact solution v = v(x, t) given implicitly by

− 1
8 [ln | sinh(3v + 2x)| − ln | cos(v + 2x)|] = t,

which was constructed in [66] by using nonclassical potential symmetries. Notice another
implicitly given solution of the equation of superslow diffusion,

ut = (e−1/uux )x , where u = − 1
ln v , v = 1

2t (c
2 − w2)+,

and |x| = [2+ ln(2t)]w + (c − w) ln(c − w)− (c +w) ln(c + w)

(e−1/u is associated with the famous Arrhenius law in thermodynamics; here c > 0 is a
constant). This solution is key in asymptotic theory of superslow diffusion, [245, Ch. 3].

Let us briefly focus on another, rather unusual applications of SIs. Consider the Aronson–
Bénilan semiconvexity estimate [17] for weak nonnegative solutions of the PME

ut = 
um in IR N × IR+.

This plays a key role in general PME theory (see details and references in [245, Ch. 2]), and
has the form


um−1 ≥ −C
t , where C = (m−1)N

m[N(m−1)+2] .

It can be treated as the ψ-criticality (8.215). Since 
um−1 ≡ m−1
mu (ut − mum−2|∇u|2),

the above estimate is exactly (8.215) with the function ψ , depending on the time-variable t ,
ψ(t, u, |∇u|) = mum−2|∇u|2 − m

m−1
c0
t u.

§ 8.5. We mainly follow [236]. In [480], similar Hamilton–Jacobi SIs and solutions were
obtained for the quasilinear heat equation with lower-order reaction-convection x-dependent
terms, ut = (D(u)ux )x + Q(x, u)ux + P(x, u).
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Equations (8.126) have a wide field of applications in combustion theory, plasma physics,
biophysics, and mechanics of porous media. Such quasilinear evolution PDEs are popular
in group-theoretical, classical, and nonclassical methods of finding exact solutions, which
are responsible for different nonlinear phenomena. There are many directions of mathemat-
ical theory of the quasilinear heat equations concerning existence, uniqueness, regularity,
asymptotics, and other aspects of the qualitative properties of the solutions. See surveys in
[245, 509]. Construction of appropriate one-sided SIs (barrier techniques) plays a fundamen-
tal role in qualitative theory of nonlinear parabolic PDEs. For instance, classical interior regu-
larity bounds of Bernstein or similar type in the theory of parabolic equations are derived via
upper bounds on the term ξ(x)[(ρ(v))x ]2 (ξ ∈ C∞0 is a cut-off function, ρ depends on the
coefficients of the PDE), satisfying a parabolic differential inequality. See Oleinik–Kruzhkov
[442].

A general description of explicit solutions from Section 8.5.2 was performed in [130] and
here we present a couple of examples, showing some links with the SIs. In the particular case,
K = 0 and c = − 3

2 , where (8.179) is the semilinear heat equation

vt = vx x − 2G(v), (8.221)

the evolutionary invariant set governed by the corresponding stationary ODE was introduced
in [317]. These explicit solutions have a strong exponential-type nature and have been con-
structed in [100, 329] by the Penlevé expansion (computationally related to the Baker–Hirota
bilinear method). A complete analysis of the types of such explicit solutions of (8.221) with
the cubic function (8.177) can be found in [130]. A general classification of exact solutions
from [130] applies to the quasilinear equation (8.179). Here, we have considered a few il-
lustrative examples only. In addition, let us mention [595], where one- (a traveling wave) and
two-soliton solutions of the third-order non-integrable PDEs with various nonlinear terms (see
(4.244) in Chapter 4) were obtained by a variant of the classical dressing method.

SIs and the corresponding solutions of parabolic PDEs with the p-Laplacian operator

ut = ∇ · (|∇u|σ∇u)+ f (u) in IRN × IR+ (8.222)

are described in [237]. Such types of diffusion-like operators appear, for instance, in the theory
of non-Newtonian liquids and in some turbulence problems; see Barenblatt [25] and references
therein. Such models are common in combustion problems related to solid fuels. SIs were also
detected in [237] for parabolic PDEs with a general gradient-dependent nonlinearity,

ut = h(|∇u|)
u + f (u). (8.223)

Such nonlinearities are used in mean curvature flow equations related to differential geome-
try, and to problems of motion of closed hypersurfaces in IRN by its mean curvature, [79,
107]. These PDEs are important in phase transition phenomena, [271]. The 1D equation
(8.222) corresponds to h(p) = (σ + 1)pσ in (8.223). A typical example is

ut = uxx
1+(ux )2 − 1

u in IR × IR+,

which describes, after a surface parameterization, the evolution of cylindrically symmetric
hypersurfaces moving by mean curvature in IR3, [178, 532]. Notice also generalized Burgers’
equation (see [362] and extensions in [115])

ut + uux = ± ν 1−(ux )
2

[1+(ux )2]2 ux x ,

which contains a gradient nonlinearity and describes strongly nonlinear processes governing
high-amplitude and gradient phenomena. For small gradients |ux | & 1, this leads to Burgers’
equation ut + uux = νux x introduced by I.M. Burgers in 1948.

© 2007 by Taylor & Francis Group, LLC



CHAPTER 9

Invariant Subspaces for Discrete Operators,
Moving Mesh Methods, and Lattices

In this chapter, we apply basic techniques of linear invariant subspaces and sets to nonlinear
discrete operators and equations. Symmetry analysis of finite-difference equations is a clas-
sical subject of group theory; see Handbook of Group Analysis [10, Ch. 17] for key results
and references. Concerning general theory of difference equations and literature, we refer to
Lakshmikantham–Trigiante [367].

Our main goal concerns finite-dimensional reductions of nonlinear difference equations by
using the methodology and the experience that were gained when dealing with invariant sub-
spaces for differential operators. As in the continuous case, we formulate the Main Theorem,
which establishes a general representation of the pth-order nonlinear difference operators ad-
mitting a given finite-dimensional invariant subspace. This solves the backward problem of
invariant subspaces. Some aspects of the forward problem are also considered. We describe
subspaces for quadratic first and some higher-order operators.

We next apply these results to moving mesh methods (MMMs) for nonlinear parabolic and
hyperbolic PDEs. It is shown that there exist special approximations of differential opera-
tors, which preserve finite-dimensional evolution on 2D subspaces. This guarantees that the
MMMs under consideration may preserve not only some of the group-invariant solutions (this
is the subject of classical Lie symmetry analysis), but also exact solutions on invariant sub-
spaces. For second-order parabolic PDEs, such exact solutions can be used for comparison,
for establishing various asymptotic results, and in stabilization analysis.

In the final section, we present examples of exact solutions of lattice dynamical systems as
discrete counterparts of parabolic, compacton, and thin film PDEs. In particular, we discuss
periodic breathers on anharmonic lattices and detect oscillatory, changing sign behavior for
higher-order parabolic models.

9.1 Backward problem of invariant subspaces for discrete operators

Let Z = {0,±1,±2, ...} be the set of integers, and let V be a linear space of real-
valued functions defined on Z. Given a function u : Z→ IR, the notation ui = u(i),
i ∈ Z, is used. Fix a natural p and consider a nonlinear difference operator F : V →
V given by

F[u]i ≡ φ(ui , ui+1, ..., ui+p, i), i ∈ Z, (9.1)

where φ : IR p+1 × Z→ IR is a real-valued function. Therefore, (9.1) is a pth-order
difference operator. Given a function g ∈ V , we study the difference equation

F[u] = g on Z, (9.2)
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which is an infinite system of nonlinear algebraic equations with solutions u ∈ V .
Using techniques of linear invariant subspaces, we will describe equations (9.2),
which can be reduced to finite systems of algebraic equations.

Usual finite-difference approximations of nonlinear ODEs and PDEs lead to sys-
tems such as (9.2). The order p of the difference operator then depends on the order
of the approximation of the differential operators. For instance, p = 2 corresponds
to a symmetric three-point approximation of the second derivative,

ux x ∼ 1
h2

(
ui − 2ui+1 + ui+2

)
,

where h > 0 is a constant step of the discretization (ui denotes the value of u at the
i th point of the grid). We have p = 2 also for a three-point symmetric approximation
of the first derivative ux of the form 1

2h

(
ui+2 − ui

)
.

The preliminaries of our invariant approach to discrete operators is the same as
in Section 2.1. In what follows, we are looking for solutions of (9.2) belonging to a
linear n-dimensional subspace Wn ⊂ V given by the span

Wn = L{ f1, f2, ..., fn} (9.3)

of linearly independent functions f j ∈ V , j = 1, ..., n. Suppose that this set of
functions represents a fundamental set of solutions [367, Ch. 2] of a linear difference
equation of the nth-order with the linear operator L : V → V ,

L[u]i ≡∑n
k=0 ak(i)ui+k = 0, i ∈ Z, (9.4)

where ak ∈ V for k = 0, 1, ..., n with an(i) �= 0 and a0(i) �= 0 on Z.
We say that a function I (ui , ui+1, ..., ui+n−1, i) : IRN ×Z→ IR is a first integral

of the linear equation (9.4) if, for any solution u of (9.4),

I (ui , ui+1, ..., ui+n−1, i) ≡ constant on Z.

The notation I [u]i and I [u] are also used. Linear first integrals I [u] of the nth-order
are defined by linear functions,

I [u]i ≡ I (ui , ui+1, ..., ui+n−1, i) =∑n−1
k=0 lk(i)ui+k , i ∈ Z, (9.5)

where lk ∈ V for k = 0, 1, ..., n with ln−1(i) �= 0 on Z. Suppose that the nth-order
equation (9.4) admits n linearly independent first integrals I1[u], ..., In[u].

As usual, subspace (9.3) is said to be invariant under the operator F if

F[Wn] ⊆ Wn .

We next state the Main Theorem on the backward problem (Problem II in our classi-
fication in Section 2.1) of invariant subspaces for nonlinear operators: given a linear
subspace Wn , describe the set of all the nonlinear difference operators admitting Wn .

Theorem 9.1 (“Main Theorem”) Operator F in (9.1) with p ≤ n − 1 admits the
subspace (9.3) iff F has the form

F[u] =∑n
j=1 A j (I1[u], ..., In[u]) f j , (9.6)

where A j : IRn → IR for j = 1, ..., n are arbitrary functions.
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We assume that p ≤ n − 1, since, by (9.4) with an(i) �= 0, ui+n is expressed
in terms of ui+n−1, ..., ui . Clearly, for any operator (9.1) restricted to Wn , all the
higher-order variables ui+k with k ≥ n are excluded by means of the subspace equa-
tion (9.4). The set of operators admitting a given subspace is a linear space. In a way
similar to that applied in the continuous differential case in Section 2.1, these oper-
ators can be considered as the generators of the higher-order symmetries of linear
discrete equations. Theorem 9.1 then gives a complete description of such symme-
tries.

The first application of the theorem concerns problems (9.2) with F preserving a
subspace Wn and g ∈ Wn . In this case, every such equation on the subspace Wn , i.e.,
on the set of functions

u =∑n
i=1 Ci fi , (9.7)

reduces to a finite-dimensional system of algebraic equations for coefficients {Ci }.
Plugging (9.7) into (9.2) and (9.6) and using the linear properties of the functionals
{Ii [u]} in (9.5), we obtain the following

Corollary 9.2 Let

g =∑n
k=1 αk fk ∈ Wn,

where αk for k = 1, ..., n are constants. Given an operator F of the form (9.6),
equation (9.2), restricted to the subspace Wn of functions (9.7), is equivalent to the
system of n algebraic equations for coefficients {C1, ...,Cn}:

A j (	1, ..., 	n) = α j , j = 1, ..., n, where (9.8)

	i (C1, ...,Cn) =∑n
m=1 Cm Ii [ fm], i = 1, ..., n. (9.9)

As a second application, consider an infinite-dimensional DS

du
dt = F[u], (9.10)

with solutions u(x, t) : Z × IR → IR. If F admits the subspace (9.3) and is repre-
sented in the form (9.6), equation (9.10) possesses solutions (9.7) with C j , depending
on t and satisfying the DS

d
dt C j = A j (	1, ..., 	n), j = 1, ..., n.

A similar reduction exists in the completely discrete case where the continuous
derivative d

dt is replaced by the corresponding discrete approximation. A similar
finite-dimensional reduction exists for higher-order equations

P( d
dt )u = F[u], (9.11)

where P is an arbitrary linear polynomial
(
e.g., P( d

dt ) = d2

dt2

)
. Equation (9.11) can

be considered as a discrete model for the nonlinear PDE

P( ∂
∂t )u = F0[u],

where F is a discrete approximation of a nonlinear differential operator F0.
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9.1.1 Proof of Theorem 9.1

The proof is straightforward and has a natural extension to other types of nonlinear
integro-differential-difference operators.

Proof. The sufficiency is obvious. Let us prove the necessity. The invariance of the
subspace (9.3) means that, for any u ∈ Wn ,

F[u] =∑n
j=1 Ã j (u) f j ,

where the coefficients Ã j for j = 1, ..., n are constant for any given u. Note that
every u ∈ Wn , being a solution of (9.4), can be uniquely represented by the values
of the linearly independent first integrals (9.5) {Ik[u], k = 1, ..., n}. Hence, one can
write Ã j (u) ≡ A j (I1, ..., In), which completes the proof.

9.1.2 First integrals and operators for n = 2

We begin with n = 2, i.e., consider second-order linear difference equations (9.4),

L[u]i ≡ ai ui+2 + bi ui+1 + ci ui = 0. (9.12)

Introducing the standard formal scalar product in V ,

(u, v) =∑(k∈Z) ukvk ,

the adjoint operator M[v] satisfying

(L[u], v) = (u, M[v]) for any u, v ∈ V

gives the adjoint (conjugate) equation

M[v]i ≡ civi + bi−1vi−1 + ai−2vi−2 = 0. (9.13)

Proposition 9.3 Any function of the form

I [u]i = ai−1vi−1ui+1 − civi ui , (9.14)

where v is a solution of the adjoint equation (9.13), is the first integral of (9.12).

Proof. For functions (9.14), the condition

I [u]i = I [u]i+1 in {u ∈ V : L[u] = 0}
reduces to ui+1 M[v]i+1 = 0, which completes the proof.

Example 9.4 Consider the linear equation

L[u]i ≡ ui+2 − 1
4 ui = 0 (9.15)

(ai = 1, bi = 0, and ci = − 1
4 ). The characteristic equation is λ2 − 1

4 = 0, from
which we get the following subspace W2 of solutions of (9.15):

W2 = L{2−i , (−2)−i
}
. (9.16)

The adjoint equation takes the form M[v]i ≡ − 1
4 vi + vi−2 = 0 and possesses two
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linearly independent solutions v1,i = 2i and v2,i = (−2)i . By Proposition 9.3, there
exist two linearly independent first integrals of (9.15),

I1[u]i = 2i
(
ui+1 + 1

2 ui
)

and I2[u]i = (−2)i
(
ui+1 − 1

2 ui
)
.

It follows from Theorem 9.1 that the family of all the first-order nonlinear operators
admitting the 2D subspace (9.16) is given by

F[u]i = A1(I1[u]i , I2[u]i )2−i + A2(I1[u]i , I2[u]i)(−2)−i ,

where A1, A2 : IR2 → IR are arbitrary functions. Due to Corollary 9.2, for any
g ∈ W2, equation F[u] = g is equivalent to a system of two algebraic equations.

For applications, it is important to derive all the autonomous operators admitting
W2, i.e., those that do not depend on the independent variable i ∈ Z. Denoting
2i (ui+1 + 1

2 ui ) = a and (−2)i(ui+1 − 1
2 ui ) = b, we infer that such operators,

which are invariant under translation i → i + 1, satisfy

[A1(2a,−2b)− 2A1(a, b)]2−i−1

+ [A2(2a,−2b)+ 2A2(a, b)](−2)−i−1 = 0

for all i ∈ Z and a, b ∈ IR. In view of the linear independence of the functions,

A1(2a,−2b) = 2A1(a, b) and A2(2a,−2b) = −2A2(a, b) (9.17)

for all a, b ∈ IR. Thus the autonomous operators have the form

F[u]i = A1
(
ui+1 + 1

2 ui , ui+1 − 1
2 ui

)+ A2
(
ui+1 + 1

2 ui , ui+1 − 1
2 ui

)
,

where A1 and A2 are arbitrary functions satisfying (9.17). For instance, the operators

F1[u]i = (ui+1+ 1
2 ui )

3

(ui+1− 1
2 ui )2 and F2[u]i = (ui+1+ 1

2 ui )
2

(ui+1− 1
2 ui )

admit W2. A more general operator preserving W2 is given by

F[u]i = C1 F1[u]i + C2 F2[u]i + L̃[u]i ,

where C1 and C2 are constants, and L̃ is any linear operator admitting W2.

9.2 On the forward problem of invariant subspaces

As in the differential case in Chapter 2, the general forward Problem I of invariant
subspaces: given a nonlinear finite-order difference operator, determine all the linear
subspaces that it admits, remains OPEN.

In this section, as a key example, we illustrate the forward problem for the simplest
quadratic first-order operator

F[u]i = (ui+1 − ui )
2. (9.18)

The forward problem for the corresponding differential Hamilton–Jacobi operator

F0[u] = (ux)
2

((9.18) is its difference approximation [ 1
h (ui+1−ui )]2 with h = 1) has been solved;
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see Section 2.2. To be precise, up to translations in x , the operator (9.18) admits: (i)
the 1D subspaces W1 = L{x2} and W1 = L{1}, (ii) 2D subspaces W2 = L{1, x} and
W2 = L{1, x2}, given by the ODEs

ux x = 0 and ux x = 1
x ux ,

and (iii) a single 3D subspace W3 = L{1, x, x2} (ux x x = 0).
For convenience, step by step, we give a classification of the invariant subspaces

Wn for the discrete operator (9.18) with n ≤ 2, n = 3, and n ≥ 4 respectively.

Case I: n ≤ 2.

Theorem 9.5 Operator (9.18) admits Wn with n ≤ 2 given by the linear equation
with constant coefficients

L[u]i ≡ ui+1 − Bui − Cui−1 = 0 (B,C ∈ IR), (9.19)

in the following four cases only:

(i) B = C = 0 (equation ui+1 = 0), W0 = {0};
(ii) B = 1, C = 0 (ui+1 − ui = 0), W1 = L{1};
(iii) B = 0, C = 1 (ui+1 − ui−1 = 0), W2 = L{1, (−1)i};
(iv) B = 2, C = −1 (ui+1 − 2ui + ui−1 = 0), W2 = L{1, i}.

The subspace in (iii) containing 2-periodic functions is not available in the classi-
fication of the differential operators.

Proof. Consider the invariance criterion L[F[u]] = 0 if L[u] = 0, or

(ui+2 − ui+1)
2 − B(ui+1 − ui )

2 − C(ui − ui−1)
2 ≡ 0

on solutions of (9.19). Using (9.19) to eliminate ui+1 and ui+2, and taking into ac-
count that u2

i , ui ui−1, and u2
i−1 are linearly independent, we arrive at the system{

(B2 + C − B)2 = B(B − 1)2 + C,
C(B2 + C − B)(B − 1) = C[B(B − 1)− 1],
C2(B − 1)2 = C(BC + 1).

(9.20)

Consider two cases:

1. Case C = 0. The first equation yields B(B − 1)3 = 0, so B = 0 or 1.

2. Case C �= 0. Then, substituting C from the second equation (9.20), C = −B(B−
2)− 1

B−1 (B �= 1), yields the following two equations for B:{ (
B − 1

B−1

)2 − B(B − 1)2 = −B(B − 2)− 1
B−1 ,

−[(B − 1)2 − B]
[
B(B − 2)+ 1

B−1

] = 1,

that are reduced to B2(B − 2)(B2 − 4B + 5) = 0 and B2(B − 2)2(B − 1) = 0, so
either B = 2, C = −1, or B = 0, C = 1.

Case II: n = 3. A similar result holds.

Theorem 9.6 Operator (9.18) admits a 3D subspace W3 given by

L[u]i ≡ ui+3 − Bui+2 − Cui+1 − Dui = 0 iff
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(i) B = 3, C = −3, D = 1, W3 = L{1, i, i2};
(ii) B = C = 0, D = 1, W3 = L{1, cos 2π i

3 , sin 2π i
3

}
; and

(iii) B = C = 1, D = −1, W3 = L{1, i, (−1)i }.
Case III: n ≥ 4. Finally, consider linear subspaces given by equations

L[u]i ≡ ui+n −∑n−1
k=0 akui+k = 0, n ≥ 4 (ak ∈ IR). (9.21)

Theorem 9.7 The only subspaces Wn with n ≥ 4 invariant under (9.18) are

(i) ui+n = ui+n−1 + ui+1 − ui , Wn = L{1, i, e2π iI/(n−1), ..., e2π iI(n−2)/(n−1)
}
; and

(ii) ui+n = ui , Wn = L{1, e2π iI/n, ..., e2π iI(n−1)/n
}
, where I2 = −1.

A real-valued representation of these subspaces is straightforward.

Proof. Consider the invariance criterion: for any solutions of (9.21),

(ui+n+1 − ui+n)
2 =∑n−1

k=0 ak(ui+k+1 − ui+k)
2. (9.22)

We exclude the variables
ui+n+1 =∑n−1

k=0 akui+k+1 = an−1ui+n +∑n−1
k=1 ak−1ui+k

= ∑n−1
k=1(an−1ak + ak−1)ui+k + an−1a0ui ,

and ui+n given by (9.21), so that

ui+n+1 − ui+n =∑n−1
k=1[(an−1 − 1)ak + ak−1]ui+k + (an−1 − 1)a0ui ,

ui+n − ui+n−1 = (an−1 − 1)ui+n−1 +∑n−2
k=1 akui+k + a0ui .

For convenience, setting
β = an−1 − 1, (9.23)

and substituting the representations given above into (9.22) yields[∑n−1
k=1(βak + ak−1)ui+k

]2 + 2βa0ui
∑n−1

k=1(βak + ak−1)ui+k

+ β2a2
0u2

i = an−1
[(
βui+n−1 +∑n−2

k=1 akui+k
)2

+ 2a0ui
(
βui+n−1 +∑n−2

k=1 akui+k
)+ a2

0u2
i

]
+ an−2(ui+n−1 − ui+n−2)

2 + an−3(ui+n−2 − ui+n−3)
2

+ ...+ a1(ui+2 − ui+1)
2 + a0(ui+1 − ui )

2.

(9.24)

Equating the coefficients of the factors um
i in both sides for m = 0, 1, and 2, respec-

tively, we obtain the following. The equation corresponding to u0
i has the form[∑n−1

k=1(βak + ak−1)ui+k
]2 = an−1

(
βui+n−1 +∑n−2

k=1 akui+k
)2

+ an−2(ui+n−1 − ui+n−2)
2 + ...+ a1(ui+2 − ui+1)

2 + a0u2
i+1.

(9.25)

The equation for ui is

a0β
∑n−1

k=1(βak + ak−1)ui+k

= a0
[
an−1

(
βui+n−1 +∑n−2

k=1 akui+k
)− ui+1

]
.

(9.26)

Since a0 �= 0, analyzing the coefficients in (9.26) we obtain:
(i) for ui+n−1,

β[(β − 1)an−1 + an−2] = 0; (9.27)
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(ii) for ui+k with 2 ≤ k ≤ n − 2,

β(βak + ak−1) = an−1ak ; (9.28)

and (iii) for ui+1,
β(βa1 + a0) = an−1a1 − 1. (9.29)

Finally, considering the coefficients of u2
i in (9.24) yields

β2a0 = an−1a0 + 1. (9.30)

I. If β = 0, i.e., an−1 = 1, the system (9.27)–(9.30) takes the form

ak = 0 for 2 ≤ k ≤ n − 2, a1 = 1, a0 = −1

(where (9.25) becomes the identity), and we arrive at the case (i) of the theorem.
The subspace is determined from the characteristic equation λn = λn−1 + λ − 1,
so that λ = 1 or λn−1 = 1, i.e., denoting I2 = −1, we have λk = e2πkI/(n−1) for
k = 1, 2, ..., n − 2, and λn−1 = λn = 1.

II. Let β �= 0, i.e., an−1 �= 1. Then the system (9.27)–(9.30) reads

(β − 1)an−1 + an−2 = 0, (β2 − an−1)ak + βak−1 = 0, k = 2, ..., n − 2,

(β2 − an−1)a1 + βa0 = −1, (β2 − an−1)a0 = 1.

Denoting
α = β2 − an−1 = β2 − β − 1, (9.31)

we obtain the solution

a0 = 1
α (α �= 0), a1 = −α+β

α2 , ak =
(−β

α

)k−1
a1, (9.32)

where k = 2, ..., n − 2 and an−2 = 1− β2, since an−1 = 1+ β by (9.23).
Consider (9.25). The coefficient of u2

i+1 is (βa1+a2)
2 = an−1a2

1+a1+a0, which
yields, by (9.23) and (9.32), [β(α+β)−α]2 = (1+β)(α+β)2−βα2. Substituting
α from (9.31) yields β2(β + 1)(β − 2)(β2 − β + 1) = 0. If β = −1, then α = 1 by
(9.31) that gives the subspace in (ii).

If β = 2, then α = 1 and an−1 = 1 + β = 3, a0 = 1, a1 = −3 and
ak = −3(−2)k−1 for k = 2, ..., n − 2. Then the last equation in (9.32) implies
that (−2)n−3 = 1 holds, which results in n = 3, contradicting the assumption. This
completes the proof.

It is obvious that if ui+n = ui as in (ii), then

F[u]i+n = F[u]i (9.33)

for any operator F that does not depend explicitly on i . The linear subspace Wn given
in (ii) is invariant under such an arbitrary operator.

On the maximal dimension of invariant subspaces. In the differential case, the or-
der p of a nonlinear ordinary differential operator F is known to satisfy the following
estimate (Theorem 2.8)

n ≤ 2 p + 1, (9.34)

where n is the maximal dimension of an invariant subspace. If n > 2 p + 1, F is a
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linear operator. It follows from Theorem 9.7 that this is not the case for the discrete
operators, where the maximal dimension n can be arbitrarily large, even for the first-
order quadratic operator (9.18). Actually, this again emphasizes the obvious fact that
the set of difference operators is wider than that of the differential ones. Each pth-
order differential operator

F0[u] = F(u, ux , ux x , ..., D p
x u)

can be obtained from a one-parameter family of the difference operators

Fh [u] = F(u, ux , ux x , ..., D p
x u),

where the arguments are discrete approximations of the derivatives, for instance,

ux = 1
2h

(
ui+1 − ui−1

)
, ux x = 1

h2

(
ui−1 − 2ui + ui+1

)
, ... . (9.35)

This is understood in the sense of a formal limit, F0 = lim Fh as h → 0. Without
fear of confusion, we will use the same notation for derivatives in continuous and
discrete cases.

Example 9.8 (5D subspace) The discrete second-order quadratic operator

Fh [u] = uux x − 3
4 (ux )

2,

with the derivative approximations (9.35), admits the same 5D subspace as the dif-
ferential operator F0[u] (Example 1.14)

W5 = L{1, x, x2, x3, x4}.
Both continuous and discrete parabolic equations, ut = F0[u] and ut = Fh [u] on
W5, reduce to the fifth-order DS for the coefficients {Ck(t)} of the solution

u(x, t) =∑4
k=0 Ck(t)xk .

Similarly, the hyperbolic second-order equations, utt = F0[u] and utt = Fh [u] on
W5, reduce to tenth-order DSs.

9.3 Invariant subspaces for finite-difference operators

We perform a more detailed analysis of linear subspaces that are invariant under op-
erators, corresponding to finite-difference approximations of differential operators,
with polynomial nonlinearities. As a result, a certain structural stability of invari-
ant subspaces and sets of nonlinear differential operators of reaction-diffusion type,
with respect to their spatial discretization, is established, and lower-dimensional re-
ductions of the finite-difference solutions on the invariant subspaces are constructed.

We study invariant properties and exact solutions of finite-difference schemes for
nonlinear evolution PDEs

ut = F[u] in IRN × IR+, (9.36)

where F is an ordinary differential (elliptic) operator with polynomial-like nonlin-
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earities. We illustrate the results using the quasilinear parabolic equations from non-
linear diffusion and combustion theory with operators

F[u] ≡ ϕ(u)ux x + ψ(u)(ux )
2 + f (u), (9.37)

where ϕ, ψ , and f are given sufficiently smooth functions, and ϕ ≥ 0 (the parabol-
icity condition).

One of the basic tools of solving the PDE (9.36) numerically is the method of
finite differences. Consider first the case of discretization in both the spatial and
time-variables. Using a given uniform time-grid, Tτ = {nτ : n = 0, 1, ...} with the
fixed, sufficiently small step τ > 0, and an infinite uniform space-grid, Xh = {x =
kh : k = 0,±1, ...} with the fixed small step h > 0, we replace (9.36), (9.37) by the
following implicit finite-difference equation

ut = Fh [u] ≡ ϕ(u)ux x + ψ(u)(ux )
2 + f (u) (9.38)

for (x, t) ∈ Qhτ = Xh × Tτ . We again keep the same notation, ut , for discrete and
continuous derivatives. As usual, u = u(x, t) belongs to the space of grid functions
on Qhτ , and the derivatives denote

ut = 1
τ

[
u(x, t + τ )− u(x, t)

]
,

ux = 1
2h

[
u(x + h, t) − u(x − h, t)

]
,

ux x = 1
h2

[
u(x + h, t) + u(x − h, t) − 2u(x, t)

]
,

(9.39)

so that Fh [u] = F[u] with the derivatives replaced by those given in (9.39). We
consider the Cauchy problem on Xh with prescribed initial data, so we do not need
boundary conditions. The PDE is then replaced by a discrete, infinite-dimensional
DS. In the case of the spatial discretization only (the method of lines), there occurs
the continuous time-derivative on the left-hand side of (9.38) that is a continuous DS.

In the construction of the finite-difference approximation of the problem, the el-
liptic differential operator F0 : C2(IR) → C(IR) is replaced by the corresponding
finite-difference operator Fh : V → V , where V = {u : Xh → IR} denotes the
space of grid functions on Xh . The type of discretization depends on the properties
of the differential model, which it is necessary to preserve. Namely, these may be
conservation laws (conservation of the mass, or of the first moment, corresponding
to the diffusion operator, or other higher-order moments), preservation of a fixed
symmetry or scaling invariance of the equation, etc. In what follows, a standard and,
sometimes, non-divergent type of discretization is chosen in order to preserve the
invariant subspace property of the discretized nonlinear operator and the PDE.

We will establish that the finite-difference approximation may preserve the prop-
erty of the nonlinear operator F to admit a subspace. We show that, in some cases, if
F admits a finite-dimensional linear subspace W , such that F[W ] ⊆ W , the approx-
imating operator Fh can also have a subspace Wh ⊂ V (i.e., Fh[Wh ] ⊆ Wh) of the
same dimension and with similar basis functions. In the discretized problem, there
is also a reduction of the dimension, which gives solutions on the lower-dimensional
subspaces. The same effect is proved to be true for the partially discretized equation
(9.38) with the continuous derivative ut , so that (9.38) is a system of nonlinear ODEs.
In the discrete case, the space V is infinite-dimensional (as well as in the differential
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case), so by the exact solutions we mean those that can be expressed in terms of a
finite-dimensional discrete or continuous DS.

In some cases, discrete operators may admit invariant sets on linear subspaces
for which the exact solutions are obtained from overdetermined DSs. We show that
reductions to lower-order systems via invariant subspaces and sets exist under the
standard approximations of the differential operator F on the uniform constant grid,
provided that F admits an invariant subspace. Since for parabolic problems, the stan-
dard comparison theorem upon initial data is true for the implicit schemes such as
(9.38), [509, Ch. 7] (or for the corresponding DSs approximation), particular solu-
tions on subspaces or on sets can be used to estimate more general solutions. This
makes it possible to describe the asymptotic behavior and attractors for equations
(9.38).

9.3.1 First examples

We begin with a special example, exhibiting some common features of the group-
invariant and invariant subspace solutions.

Example 9.9 (Semilinear heat equation) Consider the parabolic PDE

vt = vx x + v ln v,

which admits a four-parameter Lie group of symmetries with operators [10, p. 135]

X1 = ∂
∂t , X2 = ∂

∂x , X3 = 2et ∂
∂x − et xv ∂

∂v , X4 = etv ∂
∂v ,

and, therefore, has a wide class of invariant solutions. There is a simple invariant
subspace interpretation of those solutions generated by the symmetry ε0 X2 + X3
with a constant ε0, [10, p. 140]. The pressure-like function u = ln v satisfies

ut = F0[u] ≡ ux x + (ux)
2 + u. (9.40)

The quadratic operator F admits a simple subspace W2 = L{1, x2}, so that, for

u(x, t) = C1(t)+ C2(t)x
2, (9.41)

the following holds: F0[u] = C1 + 2C2+
(
C2+ 4C2

2

)
x2 ∈ W2. Plugging (9.41) into

(9.40) yields a nonlinear DS {
C ′1 = C1 + 2C2,

C ′2 = C2 + 4C2
2 .

(9.42)

This is easily solved explicitly and gives exact solutions; see precise expressions
in [10, p. 140]. The standard finite-difference scheme actually given by (9.40) with
discrete derivatives also admits solutions (9.41), with a similar action of the operator
and the same DS.

Example 9.10 The corresponding N-dimensional PDE

vt = 
v + v ln v
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by the same transformation v = eu is reduced to

ut = F0[u] ≡ 
u + |∇u|2 + u in IRN × IR+. (9.43)

This quadratic PDE possesses the solutions

u(x, t) = C0(t)+∑N
k=1 Ck(t)x2

k (9.44)

on the subspace WN+1 = L{1, x2
1 , ..., x2

N } that is easily seen to be also admitted by
the operator of the corresponding scheme on a uniform grid Xh ,

ut = Fh [u] ≡ 
hu + |∇hu|2 + u, (9.45)

with the standard discrete approximations


hu =∑N
k=1 uxk xk and |∇hu|2 =∑N

k=1(uxk )
2. (9.46)

Substituting (9.44) into (9.45) yields the system{
C ′0 = C0 + 2

∑
(i) Ci ,

C ′k = Ck + 4C2
k , k = 1, ..., N.

The DS for solutions (9.44) of the parabolic PDE (9.43) is the same with the differ-
ence derivatives d

dt .

Remark 9.11 (Hyperbolic PDEs) Invariant reductions to lower-order systems exist
for discretized hyperbolic equations

utt = Fh [u]

with the quadratic operators from (9.40) or (9.45), and for other operators to be
considered. Observe that, in the case of higher-order time-derivatives, the set of so-
lutions on the 3D subspace W3 = L{1, x, x2} contains new nontrivial solutions (for
the parabolic case (9.40) such a generalization reveals nothing new).

Example 9.12 (Semilinear heat equation with blow-up) Consider the semilinear
PDE from Example 1.11,

vt = vx x + v ln2 v.

Setting v = eu yields the PDE possessing blow-up solutions,

ut = F[u] ≡ ux x + (ux )
2 + u2, (9.47)

with the quadratic operator F preserving the subspace W2 = L{1, cos x}.
Let us state an analogy of the invariant property for equation (9.47), where all the

derivatives are discrete.

Proposition 9.13 The discrete operator F in (9.47) admits

W h
2 = L{1, cos(λx)}, where λ = 1

h sin−1 h (0 < h ≤ 1). (9.48)

Proof. Using simple formulae

(cos(λx))x = −l sin λx and (cos(λx))x x = −m cosλx, (9.49)
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where l = 1
h sin(λh) and m = 4

h2 sin2( λh
2 ), we find that, for any u = C1 +

C2 cos(λx) ∈ W h
2 ,

F[u] = (mC2 + 2C1C2) cos(λx)+ [cos2(λx)+ l2 sin2(λx)
]
C2

2 + C2
1 .

Then F[u] ∈ W h
2 implies l2 = 1, so, without loss of generality, we set l = 1, which

yields λ = 1
h sin−1 h, while m = 2/(1+√1− h2).

Hence, there exist the following solutions of (9.47) in the discrete case:

u(x, t) = C1(t)+ C2(t) cos(λx), (9.50){
C ′1 = C2

1 + C2
2 ,

C ′2 = mC2 + 2C1C2.

If h → 0, then λ, m → 1 and, more precisely, λ(h) = 1 + 1
6 h2 + O(h4), so that

subspace (9.48) coincides with W2 = L{1, cos x} at h = 0.

Remark 9.14 (KS-type equations) Similar solutions on W h
2 exist for the discretized

fourth-order Kuramoto–Sivashinsky type equation

ut = −ux x x x + F[u].

Example 9.15 (The PME) Consider the PME with lower-order terms

vt = (vσ vx)x + vσ+1 + av1−σ + bv,

where σ �= 0,−1 and a and b are given constants. The pressure function u = vσ

solves
ut = F[u] ≡ uux x + 1

σ (ux)
2 + σu2 + σa + σbu. (9.51)

The quadratic operator F is known to admit the 2D subspaces (see Section 1.4)

W2 =
{L{1, cos(λx)}, if σ > −1,

L{1, cosh(λx)}, if σ < −1,

where λ = σ/
√|σ + 1|. Consider, for instance, the case of σ > −1, where there

exist solutions (9.50), with the DS{
C ′1 = σC2

1 + σ
σ+1 C2

2 + σbC1 + σa,

C ′2 = σ(σ+2)
σ+1 C1C2 + σbC2.

(9.52)

Let (9.51) now be a standard finite-difference scheme. Similarly to the previous
example, we establish the following:

Proposition 9.16 The discrete operator F in (9.51) has the subspace

W h
2 = L{1, cos(λx)}, if l2 + mσ − σ 2 = 0, (9.53)

where m and l are as given in (9.49).

For σ > −1, on the subspace (9.53), i.e., for functions (9.50) restricted to Xh , the
PDE (9.51) is equivalent to the following DS:{

C ′1 = σC2
1 + l2

σ C2
2 + σbC1 + σa,

C ′2 = (2σ − m)C1C2 + σbC2.
(9.54)
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Setting k = cos(λh), let us write down the algebraic equation in (9.53) in the form

k2 + 2σk + σ 2h2 − 2σ − 1 = 0.

It is easy to clarify for which σ and h this equation possesses roots k ∈ [−1, 1].
Avoiding a detailed analysis, we indicate, for example, that, for σ ∈ (− 1

1+h , 0
) ∪(

0, 4
h2

)
, there exists the root k = −σ +

√
(σ + 1)2 − σ 2h2, and, for the correspond-

ing λ = 1
h cos−1 k, one obtains that

λ(h) = σ√
σ+1

+ σ 3(σ+4)
24(σ+1)5/2 h2 + O(h4) for small h > 0. (9.55)

This means convergence as h → 0 to the solution (9.50), with the DS (9.52), of the
PDE (9.51). There are other branches of λ(h) that do not have a differential analogy.
Subspaces of the hyperbolic cosh(λx) function are studied in a similar fashion.

Example 9.17 (Quasilinear heat equations) Let ϕ(v) be an arbitrary smooth mono-
tone function with ϕ−1 inverse. Consider the PDE from Example 8.3,

vt = (ϕ(v))x x + aϕ(v)+b
ϕ′(v) + [aϕ(v)+ b]c.

Setting u = aϕ(v)+ b yields

ut = F[u] ≡ �(u)(ux x + acu)+ au, (9.56)

where �(u) = ϕ ′(ϕ−1( 1
a (u− b))). Operator F was shown to admit the 2D subspace

W2 = L{ρ1(x), ρ2(x)}, (9.57)

where ρ1 and ρ2 are arbitrary linearly independent solutions of ρ′′ +acρ = 0. There-
fore, (9.56) possesses exact solutions

u(x, t) = C1(t)ρ1(x)+ C2(t)ρ2(x), where C ′1 = aC1, C ′2 = aC2. (9.58)

It is easy to see that the same construction applies to the discrete equation (9.56),
and there exist exact solutions (9.58) with ρ satisfying the same linear difference
equation. Finally, we obtain a discrete linear DS.

9.3.2 N-dimensional quasilinear operators

Let us present further examples of subspaces for discretized nonlinear operators in
IRN . We borrow some samples of such differential operators from Section 6.1 and
Proposition 6.1 therein.

Example 9.18 (Non-symmetric blow-up and extinction) Consider positive solu-
tions of the PME with an extra lower-order term

vt = ∇ · (vσ∇v) + δv1−σ in IRN × IR+, (9.59)

where σ �= 0 is a fixed constant. Here, δ = 1 corresponds to the source term, gen-
erating for σ < 0 non-symmetric blow-up solutions. For δ = −1, (9.59) becomes a
quasilinear heat equation with absorption that, for σ > 0, describes non-symmetric
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finite-time extinction phenomena; see [235] for details. The pressure function u = vσ

solves
ut = F0[u] ≡ u
u + 1

σ |∇u|2 + σδ.

Operator F preserves the (N+1)-dimensional subspace

WN+1 = L{1, x2
1 , ..., x2

N

}
. (9.60)

The same subspace is admitted by the discrete approximation of F0 in the PDE

ut = Fh[u] ≡ u
hu + 1
σ |∇hu|2 + σδ,

with difference operators from (9.46). This implies that, for solutions (9.44),{
C ′0 = 2C0M + σδ, M =∑N

i=1 Ci ,

C ′k = 2Ck M + 4
σ C2

k , k = 1, 2, ..., N.
(9.61)

Due to the subspace (9.60), the DS (9.61) coincides with the DS in the differential
case.

Example 9.19 (Blow-up for exponential PDEs) Consider the quasilinear heat equa-
tion with exponential nonlinearities,

vt = 
ev + ev + ae−v + b.

Setting u = ev yields the quadratic PDE

ut = F[u] ≡ u
u + u2 + a + bu. (9.62)

F admits the subspace (see Proposition 6.9)

W2 = L{1, f (x)}, (9.63)

where f is a solution of the linear elliptic equation


 f + f = 0 in IRN . (9.64)

Therefore, substituting u(x, t) = C1(t)+ C2(t) f (x) leads to the DS{
C ′1 = C2

1 + bC1 + a,
C ′2 = C1C2 + bC2,

(9.65)

that can be solved explicitly. The corresponding discretized equation

ut = Fh[u] ≡ u
hu + u2 + a + bu

possesses the same solutions on the subspace (9.63), provided that f solves the linear
discrete equation 
h f + f = 0. The discrete system for expansion coefficients
coincides with (9.65).

Example 9.20 (On quasilinear hyperbolic PDEs) Consider the evolution PDE

utt = F[u] ≡ u
u + u2 + a + bu. (9.66)

Fixing an arbitrary finite number n of linearly independent solutions f1, ..., fn of
(9.64) (n = 2 if N = 1) yields the subspace

Wn+1 = L{1, f1, ..., fn}. (9.67)
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Plugging u(x, t) = C0(t)+ C1(t) f1 + ...+ Cn(t) fn gives the DS{
C ′′0 = C2

0 + bC0 + a,
C ′′k = C0Ck + bCk,

for k = 1, ..., n. Similar solutions exist for the corresponding discrete equation.
For the parabolic problem (9.62), last ODEs of the DS are

C ′k = Ck(b + C0) �⇒ Ck(t)
Cl (t)

= constant

for all k, l = 1, ..., n. Hence, the solutions on the extended subspace (9.67) coincide
with those on the 2D subspace (9.63), where f is a linear combination of f1, ..., fn .
This is not the case for the hyperbolic PDE (9.66).

Example 9.21 (Fast diffusion) Consider the PDE

vt = ∇ ·
(
v−

4
N+2∇v

)+ bv
N+6
N+2 + cv

in IR N × IR+ with N ≥ 2. The pressure variable u = v−
4

N+2 satisfies

ut = F0[u]− 4
N+2 b − 4

N+2 cu, where F0[u] = u
u − N+2
4 |∇u|2.

In Example 6.25, we have shown that F admits W3 = L{1, |x |2, |x |4}, and have
constructed the corresponding solutions. Consider now the discretized radially sym-
metric operator

Fh [u] = u
(
urr + N−1

r ur
)− N+2

4 (ur )
2, where r = |x |, (9.68)

that is defined in the space of functions on the uniform grid X+h = Xh∩{r > 0}, with
the standard approximation of the derivatives ur and urr . The subspace of functions
restricted to X+h is then invariant under the operator (9.68). Hence,

u = C1 + C2r2 + C3r4 �⇒ (9.69)

Fh [u] = 2NC1C2 + 4(N − 1)C1C3h + 2C1C3h2

+ {4(N + 2)C1C3 + (N − 2)C2
2 − 12C2C3h

+ [2C2C3 − 4(N + 2)C2
3

]
h2
}
r2

+ [2NC2C3 − 4(N + 5)C2
3 h + 2C2

3 h2
]
r4 ∈ W3.

Therefore, the discrete equation admits solutions (9.69), which, for h, τ = 0, coin-
cide with the corresponding differential ones.

9.3.3 Five-dimensional invariant subspaces for N = 1

1. Polynomial subspaces. We begin with the 1D quasilinear heat equation from
Example 1.14,

vt =
(
v−

4
3 vx
)

x + av
7
3 + bv.

The pressure function u = v− 4
3 satisfies the quadratic PDE

ut = F[u] ≡ uux x − 3
4 (ux)

2 − 4
3 a − 4

3 bu. (9.70)
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F is known to preserve the 5D subspace, W5 = L{1, x, x2, x3, x4}, so that (9.70)
possesses solutions

u(x, t) = C1(t)+ C2(t)x + C3(t)x
2 + C4(t)x

3 + C5(t)x
4, (9.71)

C ′1 = 2C1C3 − 3
4 C2

2 − 4
3 a − 4

3 bC1 ≡ 	1,

C ′2 = 6C1C4 − C2C3 − 4
3 bC2 ≡ 	2,

C ′3 = 12C1C5 + 3
2 C2C4 − C2

3 − 4
3 bC3 ≡ 	3,

C ′4 = 6C2C5 − C3C4 − 4
3 bC4 ≡ 	4,

C ′5 = 2C3C5 − 3
4 C2

4 − 4
3 bC5 ≡ 	5.

(9.72)

For the corresponding discretized equation (9.70), the same subspace is obtained.

Proposition 9.22 The discrete operator F in (9.70) admits W5.

Proof. Substituting (9.71) restricted to Xh into (9.70) and using formulae

(x)x = 1, (x2)x = 2x, (x3)x = 3x2 + h2, (x4)x = 4x3 + 4xh2, (9.73)

we find that (9.70) has exact solutions (9.71), where the coefficients solve the DS
C ′1 = 	1 + (2C1C5 − 3

2 C2C4)h2 − 3
4 C2

4 h4,

C ′2 = 	2 − (4C2C5 + 3C3C4)h2 − 6C4C5h4,

C ′3 = 	3 − (10C3C5 + 9
2 C2

4 )h
2 − 12C2

5h4,

C ′4 = 	4 − 22C4C5h2,

C ′5 = 	5 − 22C2
5h2.

(9.74)

Passing to the limit as h, τ → 0 in (9.74) yields the DS (9.72).

Example 9.23 (Extended polynomial subspaces) All the polynomial subspaces
remain to exist for discrete higher-order operators. For instance, Proposition 3.2 es-
tablished that the fourth-order quadratic thin film equation (TFE)

ut = F[u] ≡ −uux x x x + βuxux x x ,

where the basic subspace is known to be W5 = L{1, x, x2, x3, x4}, and admits solu-
tions on the extended subspaces

W6 = L{1, x, x2, x3, x4, x5}, if β = 2
5 ,

W7 = L{1, x, x2, x3, x4, x5, x6}, if β = 1
2 .

The same subspaces can be used for the discretized operator, F[u], with any standard
approximation of the derivatives, and lead to similar discrete DSs.

2. Trigonometric subspaces. Next consider the quasilinear heat equation with ab-
sorption from Example 1.15,

vt =
(
v− 4

3 vx
)

x − v− 1
3 .

The pressure transformation u = v− 4
3 reduces it to

ut = F0[u] ≡ uux x − 3
4 (ux )

2 + 4
3 u2, (9.75)
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where the quadratic operator F admits

W5 = L
{
1, cos(λx), sin(λx), cos( λx

2 ), sin( λx
2 )
}
, with λ = 4√

3
. (9.76)

Hence, (9.75) has solutions

u = C1 + C2 cos(λx)+ C3 sin(λx)+ C4 cos( λx
2 )+ C5 sin( λx

2 ). (9.77)

The DS is given in Example 1.15.
Unlike in the case of polynomial subspaces, for trigonometric ones, the invariance

of the nonlinear operator is no longer true for the discretization taken in the same
form as in (9.75). For preserving the subspace in the discrete case, we consider a
slightly different approximation of the operator,

ut = Fh [u] ≡ uux x + α(ux )
2 + βu2, (9.78)

where the parameters α and β depend on h, and conclude as follows:

Proposition 9.24 Operator Fh in (9.78) admits subspace (9.76) if the constants
α, β and λ satisfy the system{

m
[
1+ α cos2( λh

2 )
] = β,

m
{
1+ 4 cos2( λh

4 )[1+ α cos( λh
2 )]
} = β

(9.79)

(here m = 4
h2 sin2( λh

2 ) as in (9.49)).

In the case of the quasilinear heat operator (cf. (9.75) with σ = − 4
3 ),

Fh [u] = uux x + 1
σ (ux )

2 − σu2,

i.e., we still fix α = 1
σ and β = −σ with some σ = σ(h), (9.79) gives the following

asymptotic values of the parameters σ and λ for which the 5D subspace (9.76) exists:
as h → 0,

σ = − 4
3 + 68

27 h2 + O(h4) and λ2 = 16
3 + 32

27 h2 + O(h4).

For h = 0, we obtain the differential case σ = − 4
3 , λ = 4√

3
, and subspace (9.76).

Finally, let us present the discrete DS for the coefficients of the solution (9.77) of
the discrete equation (9.78). Under the hypotheses of Proposition 9.24, this is

C ′1 = βC2
1 + γ1

(
C2

2 + C2
3

)+ γ2
(
C2

4 + C2
5

)
,

C ′2 = γ3C1C2 + γ4
(
C2

4 − C2
5

)
,

C ′3 = γ3C1C3 + 2γ4C4C5,
C ′4 = γ5C1C4 + γ6(C2C4 + C3C5),
C ′5 = γ5C1C5 − γ6(C2C5 − C3C4),

where the coefficient {γi } are

γ1 = β − 4ρ1, γ2,4 = 1
2 (β ± αρ1 − 4ρ2), γ3 = 2(β − 2ρ1),

γ5 = 2(βh2 − 2ρ2), γ6 = 2
h2 α sin( λh

2 ) sin(λh),
(9.80)

with ρ1 = 1
h2 sin2( λh

2 ) = m
4 and ρ2 = 1

h2 sin2( λh
4 ). For h = 0, coefficients (9.80)

determine those in the differential system.
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Example 9.25 (The TFE) It follows from Proposition 3.16 that the TFE

ut = F0[u] ≡ −uux x x x + 15
22 uxux x x + 56

11 u2

admits solutions on W5 = L{1, cos x, sin x, cos 2x, sin 2x}. In order to keep this
subspace invariant in the discretized case, the operator is chosen to contain two pa-
rameters, depending on h,

ut = Fh [u] ≡ −uux x x x + βuxux x x + δu2,

where β → 15
22 and δ → 56

11 as h → 0. The corresponding discrete DS also converges
to the continuous one.

9.3.4 Exact solutions on partially invariant subspaces

Example 9.26 (Quasilinear heat equations) We take solutions from Example 8.13,
and consider the PDE

vt = (ϕ(v))x x − (av + b)
[
1+ 2a

ϕ′(v)G(v)
]
, where G(v) = ∫ v ϕ′(z) dz

az+b .

Then the function u = G(v) solves

ut = F[u] ≡ �(u)(ux x − 1)+ a[(ux)
2 − 2u], (9.81)

with �(u) = ϕ′(G−1(u)). Consider (9.81) on the subspace W2 = L{1, x2} which is
not invariant under F . Setting u = C1 + C2x2 ∈ W2 yields

F[u] = �(u)(2C2 − 1)+ a
[
2C2(2C2 − 1)x2 − 2C1

]
,

so that F[u] �∈ W2 for all u ∈ W2. We have shown that, for F , W2 is partially
invariant and there exists the invariant set (an affine subspace in W2),

M = {u = C1 + C2x2 : C2 = 1
2

}
, such that F[M] ⊆ W2.

On M , (9.81) reduces to an overdetermined DS which is consistent. Substituting into
(9.81) yields the solution

u(x, t) = C1(t)+ 1
2 x2 ∈ M, where C ′1 = −2aC1. (9.82)

The same analysis applies to the discrete equation (9.81), since the discrete oper-
ator F admits the set M . Therefore, there exists the solution (9.82) on M , with the
coefficient C1(t) satisfying the discrete linear equation C ′1 = −2aC1 in Tτ .

The results on partially invariant polynomial subspaces are easy to extend to higher-
order PDEs similar to those in Example 8.7 and Proposition 8.8. In the next PDE
associated with Example 8.44, the conclusion for the discrete equation is not so
straightforward, since we deal with trigonometric subspaces for which the consis-
tency of overdetermined DSs is not easy to check.

Example 9.27 (Semilinear parabolic model) Consider the PDE

ut = F1[u]+ F2[u] ≡ [ux x − 1
2
(ux )

2

u + 2
u + 2u

]+ [1
2 (ux)

2 + 2u2 + 2
]
. (9.83)
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For convenience, we briefly repeat the argument from Example 8.44. Subspace W2 =
L{1, sin 2x} is invariant under F2 and, for any

u(x, t) = C1(t)+ C2(t) sin 2x, (9.84)

F2[u] = 2
(
C2

1 + C2
2

) + 2 + 4C1C2 sin 2x ∈ W2, but W2 is not invariant under F1,
where

F1[u] = 2(C2
1−C2

2+1)
C1+C2 sin 2x for u ∈ W2. (9.85)

There exists the set M on W2 (a hyperbola in the variables {C1,C2}),
M = {u = C1 + C2 sin 2x : C2

1 − C2
2 + 1 = 0

}
(9.86)

on which F1[u] = 0. Plugging (9.84) into (9.83) yields the overdetermined DS
C ′1 = 2

(
C2

1 + C2
2

)+ 2,
C ′2 = 4C1C2,

C2
1 − C2

2 + 1 = 0,
(9.87)

which yields the solution of (9.83), u(x, t) = tan 4t + 1
cos 4t sin 2x ∈ M.

Consider the corresponding discretized equation

ut = Fh[u] ≡ F1h[u]+ F2h[u] (9.88)

on the subspace W h
2 = L{1, sin(λx)}. Operator F2h is as shown in (9.83), and

F1h[u] = αux x − 1
2u (ux )

2 + 2
u + 2u,

where α(h)→ 1 (and λ(h)→ 2) as h → 0.

Proposition 9.28 (i) W h
2 is invariant under F2h iff

1
h sin(λh) = 2. (9.89)

(ii) If, in addition, α = cos2( λh
2 ), then Fh [M] ⊆ W h

2 .

Since F1h [u] = 0 on M and, as in the differential case,

F2h[u] = 2
(
C2

1 + C2
2

)+ 2+ 4C1C2 sin(λx),

(9.88) on M is equivalent to the overdetermined discrete system (9.87), where the
continuous derivatives (·)′ are replaced by discrete ones. It can be shown that, unlike
in the differential case, for both the implicit and explicit finite-difference schemes,
the discrete dynamical system does not have a solution satisfying C2

1 − C2
2 + 1 = 0

on Tτ , so our result is negative. On the other hand, if the time is not discretized,
system (9.87) gives the exact solutions of ut = Fh [u]. Similarly, we can analyze
invariant sets and consistency of the DSs for discretized higher-order PDEs studied
in Examples 8.43–8.45.

9.4 Invariant properties of moving mesh operators and applications

The moving mesh methods (MMMs) are known to be an efficient approach to solving
the nonlinear evolution PDEs where the solutions exhibit essentially non-stationary
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and singular behavior, such as blow-up, extinction, or quenching. We will describe
some basics of MMM theory and refer to [293, 292, 99] for general principles and
applications.

We apply the results on invariant subspaces for discrete operators to some MMMs
for typical parabolic or hyperbolic PDEs. We show that, for a class of nonlinear 1D
evolution equations, the MMMs may preserve linear invariant subspaces of nonlinear
differential operators under a special approximation of the spatial gradient operator.
The corresponding discrete evolution on such subspaces may coincide with that for
fixed meshes, and even with the continuous ones, regardless of the fast deformation
of the moving mesh.

9.4.1 Introduction: MMMs and invariant subspaces

We deal with a general nonlinear evolution PDE

ut = F[u], x ∈ S ⊆ IR, t > 0, (9.90)

where F[u] = F
(
u, ux , ..., Dk

x u
)
, F ∈ C∞ is an kth-order ordinary differential

operator, and S is an interval. Assume that, being endowed with suitable boundary
conditions on the lateral boundary of Q = S × IR+ (if S �= IR), the equation (9.90)
defines a smooth flow for bounded initial data u0. For S = IR, we mean the Cauchy
problem with a given initial function u0(x).

The MMMs approximate (9.90) on a moving mesh (MM) � = {x = Xi (t), i ∈
I, t > 0} ⊂ Q, I = {1, 2, ..., K }, with a priori unknown curves x = Xi (t), depend-
ing on the solution u(x, t) under consideration. Using identity

d
dt u(Xi , t) = ut (Xi , t)+ ux (Xi , t)X ′i ,

the differential equation for U = {Ui (t) = u(Xi (t), t)} reads

U ′
i − ux (Xi , t)X ′i = F[u(Xi , t)], t > 0; i ∈ I.

Discretizing this equation yields a dynamical system,

U ′
i − [DhU ]i X ′i = Fh [U ] for t > 0, (9.91)

where Fh is a suitable approximation of the nonlinear operator F , and Dh approxi-
mates the gradient operator Dx = d

dx . The evolution equations for the moving mesh
� are added to (9.91), and these, all together, give a finite-dimensional DS for the
functions {Ui (t), i ∈ I }. Such approaches make it possible to eventually concentrate
the MM close to crucial singularities of the solutions. Giving such advantages in
computing the singular behavior, the extra linear discrete gradient operator Dh that
appears in (9.91) may strongly change the discrete PDE.

Even for semilinear second-order parabolic PDEs, equation (9.91) no longer obeys
the Maximum Principle (MP). On the contrary, if X ′i (t) ≡ 0 for all i , i.e., the mesh is
fixed (stationary), the MP holds, provided that the approximation Fh preserves such
a positivity property. Therefore, moving meshes may destroy the positivity or mono-
tonicity features of solutions that are expected to be inherited by the discrete equation
from the original parabolic PDE. Mathematical analysis of MMMs is harder than for
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the corresponding explicit or implicit difference schemes with stationary meshes.
This includes the questions of convergence of MMMs and their asymptotic behav-
ior. Comparison of solutions of MMMs for parabolic PDEs becomes a complicated
procedure, because the solutions are defined on the distinct MMs, depending on so-
lutions that are unknown a priori.

We will study the principal question of invariant linear subspaces generated by
the MM operators (MMOs). It was shown in the previous section how to choose a
linear subspace W that is invariant under a discrete nonlinear operator Fh . In con-
trast, for typical DSs (9.91) occurring for the MMMs, extra work should be done.
We will need to prove the necessary and sufficient condition for the gradient approx-
imation Dh to preserve the invariance of a given subspace W . This guarantees that
the invariant MMO admits the same subspace and, moreover, the discrete dynamics
on W coincides with the differential one, regardless of the structure of the MM.

For parabolic PDEs, we establish the necessary and sufficient conditions for the
positivity of the solutions (the weak MP), and also prove comparison of solutions
of MMMs. As a general conclusion, for typical semilinear parabolic PDEs, these
important properties remain valid if the MM does not move too fast.

We will also consider invariant MMOs for higher-order evolution PDEs,

Dm
t u = F[u] ≡ F

(
u, ut , ..., Dm−1

t u, ux , ..., Dk
x u
)
, (9.92)

where m ≥ 2 and m ≥ k. In particular, we consider the second-order hyperbolic
PDEs

utt = F(u, ux , ux x).

9.4.2 Invariant subspaces for differential and discrete operators

For convenience, we list below a number of already known differential and corre-
sponding discrete quadratic operators preserving invariant subspaces.

1. Invariant subspaces of differential operators. Let us state the main invariance
hypothesis on the nonlinear operator F .

Hypothesis (Inv). The operator F admits a 2D subspace W2 = L{1, f (x)}, where f
is a given smooth function, i.e.,

F[W2] ⊆ W2. (9.93)

Under hypothesis (Inv), the PDE (9.90) on W2 is equivalent to a nonlinear second-
order DS. In view of (9.93), for any u = C1 + C2 f ∈ W2,

F[C1 + C2 f ] = 	1(C1,C2)+	2(C1,C2) f ∈ W2. (9.94)

Substituting (9.94) into (9.90) yields the DS{
C ′1 = 	1(C1,C2),
C ′2 = 	2(C1,C2).

(9.95)

The following basic examples of operators and invariant subspaces are taken from
Sections 1.3–1.5 and 3.1.
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(i) Quadratic operators with 2D subspaces:

F1[u] = ux x + (ux)
2 + u, W2 = L{1, x2}, (9.96)

F2[u] = ux x + (ux)
2 + u2, W2 = L{1, cos x}, (9.97)

F3[u] = uux x + 1
σ (ux )

2 + αu + β, W2 = L{1, x2}, (9.98)

F4[u] = uux x + 1
σ (ux)

2 + σu2, W2 = L{1, cos(λx)}, λ = σ√
σ+1

, (9.99)

F5[u] = −ux x x x − (ux)
2 + u2, W2 = L{1, cosh x}, (9.100)

F6[u] = −uux x x x + αux ux x x + β(ux x)
2 + γ u + δ, W2 = L{1, x4}. (9.101)

The operators F1 – F4 correspond to the semilinear and quasilinear second-order
parabolic PDEs of reaction-diffusion type, where F3 and F4 contain the differential
operator uux x+ 1

σ (ux)
2 of the porous medium (σ > 0) or fast diffusion (σ < 0) type.

The operator F5 reproduces a fourth-order parabolic equation, which is a Kuramoto–
Sivashinsky-type PDE with the extra lower-order source term u2 (see Section 3.8),
while F6 occurs in TFE theory (Section 3.1). PDEs

utt = F3[u]+ γ ux x x x + δ ux x and utt = F4[u]+ γ ux x x x + δ ux x

are Boussinesq-type equations from water wave theory (Section 5.3). We next discuss
their exact solutions in greater detail.

Example 9.29 (PME with source) The quasilinear heat equation with a source,

ut = F4[u] ≡ uux x + 1
σ (ux)

2 + σu2, σ > 0, (9.102)

plays a key role in the study of localization of blow-up in combustion, [509, Ch. 4].
The quadratic operator F4 admits subspace W2 given in (9.99), so that this PDE has
the solutions

u(x, t) = C1(t)+ C2(t) cos(λx) ∈ W2, (9.103){
C ′1 = σC2

1 + σ
σ+1 C2

2 ,

C ′2 = σ(σ+2)
(σ+1) C1C2.

(9.104)

Such solutions describe localization and blow-up phenomena. In particular, the Stur-
mian intersection comparison with such solutions establishes [509, p. 249] that the
interface s(t) of any weak solution u(x, t) ≥ 0 of (9.102) with the connected com-
pact support satisfies the localization estimate

|s(t)− s(0)| ≤ 1
2 LS = π

√
σ+1
σ for any t ∈ [0, T )

(LS is the fundamental length), where T is the blow-up time of the solution. If
C1(t) ≡ C2(t) in (9.104), we obtain the ODE C ′1 = α C2

2 with α = σ(σ+2)
σ+1 . Hence,

C1(t) = [α(T − t)]−1, and this gives the separable solution

u(x, t) = 1
α(T−t) 2 cos2( λx

2 ) ≥ 0. (9.105)

Therefore, subspace W2 contains the 1D manifold (with the parameter T ∈ IR) of
similarity solutions (9.105). It is important that these solutions are asymptotically
stable; see the stability analysis of blow-up dynamics in Example 3.17.
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Example 9.30 (Quasilinear hyperbolic equation) The PDE

utt = F4[u] ≡ (uux)x + u2,

which is hyperbolic in the positivity domain {u > 0}, admits solutions

u(x, t) = C1(t)+ C2(t) cos
( x√

2

) ∈ W2 = L{1, cos
( x√

2

)}
,{

C ′′1 = C1 + 1
2 C2

2 ,

C ′′2 = 3
2 C1C2.

For C1 = C2, we find the ODE C ′′1 = 3
2 C2

1 , which is integrated in quadratures
with the solutions given by elliptic functions. Taking C1(t) = 4(T − t)−2 gives the
separable blow-up solution

u(x, t) = 4
(T−t)2

[
1+ cos

( x√
2

)]
.

Its asymptotic stability on W2 can be checked, as done in Example 5.1.

(ii) Five and more-dimensional subspaces exist for special quadratic operators:

F7[u] = uux x − 3
4 (ux )

2, with W5 = L{1, x, x2, x3, x4}
(notice that (9.101) also admits W5), and

F8[u] = uux x − 3
4 (ux )

2 + 4
3 u2,

with W5 given in (9.76). Note that F7 also admits 2D subspacesL{1, x2} andL{1, x4}.
Operator

F9[u] = uux x − 2
3 (ux )

2

admits W2 = L{1, x3}, which is extended to the 4D W4 = L{1, x, x2, x3}; see
Example 1.13. Fourth-order thin film operators from Section 3.1 are the origin of
many invariant subspaces. For instance, in the previous section we have used

F10[u] = −uux x x x + 2
5 uxux x x ,

admitting W6 = L{1, x, x2, x3, x4, x5} and the 2D restrictionsL{1, x5} andL{1, x4}.
Operator

F11[u] = −uux x x x + 1
2 uxux x x

admits W7 = L{1, x, x2, x3, x4, x5, x6}, as well as L{1, x6} and L{1, x4}.
2. Discrete operators. In Section 9.3, we have shown that invariant subspaces can be
preserved and are stable with respect to standard discretizations of operators on fixed
meshes. In other words, the corresponding discrete operators, Fkh , with sufficiently
small steps of uniform discretization h > 0 can admit subspaces with the basis
functions being O(h)-perturbations of those for differential operators. For the 2D
subspace, W2 = L{1, f (x)}, this implies that

Fh [C1 + C2 f ] ≡ 	1h(C1,C2)+	2h(C1,C2) f ∈ W2, (9.106)

so that the discrete equation on a fixed mesh,

Ut = Fh [U ],
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has the solutions U(x, t) = C1(t)+C2(t) f (x) on W2 with the coefficients satisfying
a DS, which is similar to (9.95),{

C ′1 = 	1h(C1,C2),
C ′2 = 	2h(C1,C2).

(9.107)

By approximation, 	1h and 	2h converge as h → 0 to the coefficients of the DS
(9.95).

Temporarily assuming that the mesh is fixed and uniform, with a given h > 0, we
introduce the natural approximations of the spatial derivatives

ux = 1
2h

(
Ui+1 −Ui−1

)
, ux x = 1

h2

(
Ui+1 + Ui−1 − 2Ui

)
, ... . (9.108)

Substituting those into operators F1 – F11 yields the corresponding discrete operators
F1h – F11h . As was shown in the previous section, the polynomial invariant subspaces
then remain the same for discrete operators. Concerning trigonometric and exponen-
tial subspaces, operator F2h in (9.97) admits

W2h = L{1, cos(λx)}, with 1
h2 sin2(λh) = 1, (9.109)

and F4h in (9.99) admits the same subspace as in (9.109), where λ satisfies

4
h2 sin2( λh

2 )
[
1+ 1

σ cos2( λh
2 )
] = σ. (9.110)

The exponential subspace

L{1, cosh(λx)}, with λ = λ(h), (9.111)

exists for the fourth-order operator F5h in (9.100), etc.

Example 9.31 Consider the discrete equation (9.102). On W2h given by (9.109),
it reduces to the DS (9.54), with a = b = 0, for the coefficients {C1,C2} of the
expansion (9.103). For h & 1, the parameter λ(h) of the basis function satisfies
(9.55), so that λ(h) → σ√

σ+1
as h → 0+, and, in the limit, the discrete DS (9.54)

coincides with the continuous system (9.104).

For standard approximations of derivatives (9.108), subspaces (9.109), (9.111) can
be invariant on uniform fixed meshes only. In order to preserve this invariance on
non-uniform MMs, different approximations have to be used.

Invariance of moving mesh operators. We are going to show that invariant sub-
spaces can be preserved by MM operators. Consider a general MMM for (9.90).
Assume that, given initial data u0, we approximate the evolution orbit {u(t), t > 0}
by the approximate solution U(t) = {Ui (t), i ∈ I }, I = {1, 2, ..., K }, defined on
the finite moving mesh �(U) = {Xi (t), i ∈ I ; t > 0}. Here, U satisfies the moving
mesh equation (MME)[

Bh[U ]
]

i = U ′
i − [DhU ]i X ′i − Fh [U ] = 0, (9.112)

where Bh is the moving mesh operator (MMO) defined at the internal points i ∈
Im = {2, ..., K − 1} ⊂ I . Assume that suitable initial data are prescribed at t = 0,
and boundary conditions are given on the lateral boundary �(U) of �(U), i ∈ Im (if
S �= IR), so that the solution U is well-defined locally in time on �(U). For a fixed
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τ ≥ 0, we denote �τ(U) = �(U) ∩ {t = τ }. By ∂�(U) we denote the parabolic
boundary of �(U), i.e., that part of the boundary where initial and boundary data
are prescribed.

We will study the invariant properties of the MMO Bh. We do not take into ac-
count the mechanism of generation of the moving mesh �(U), which is crucial for
construction of MMMs, [293, 292, 99]; see also applications to blow-up problems
in [88, 87]. We construct MMEs with an arbitrary MMs �(U), which possess so-
lutions on the subspaces of the discrete nonlinear operators Fh . A special choice of
MMs can improve invariant properties of the MMMs. There are examples, for which
the requirement of optimal approximations of invariant subspaces (forming a stable
attractor of the given flow) plays an important role in the correct description of evolu-
tion properties of PDEs. Moreover, this may be the decisive principle of construction
of the corresponding MMOs.

We restrict our attention to the problem of invariant subspaces of the MMO (9.112).
We will deal with 2D subspaces introduced above.

Theorem 9.32 Assume that, given moving mesh �(U), the discrete operator Fh on
�(U) admits the 2D subspace W2h = L{1, f (x)}, with a smooth function f . Let the
discrete gradient operator satisfy

[Dh f (X)]i = f ′(Xi ) on �(U). (9.113)

Then Bh : W2h → W2h and the MME (9.112) on �(U) is equivalent to a nonlinear
2D dynamical system that coincides with (9.107) for the corresponding fixed mesh.

For instance, we can use the following discrete gradient operator satisfying (9.113):

[DhU ]i = Ui+1−Ui−1
f (Xi+1)− f (Xi−1)

f ′(Xi ). (9.114)

On the mesh satisfying |Xi+1 − Xi−1| = O(h), it approximates du
dx , with at least

order O(h).

Proof of Theorem 9.32. We are looking for a solution of (9.112) in the form of

Ui = U(Xi (t), t) = C1(t)+ C2(t) f (Xi (t)) ∈ W2h . (9.115)

Plugging (9.115) into (9.112) yields

C ′1 + C ′2 f (Xi )+ C2
{

f ′(Xi )− [Dh f (X)]i
}

X ′i
= Fh [C1 + C2 f (X) ∈ W2h .

(9.116)

In view of (9.113), the term depending on X ′i on the left-hand side of (9.116) van-
ishes, and, due to (9.106), the DS (9.107) is obtained.

We consider evolution PDEs with the above nonlinear operators, F1 – F11, and
show how to construct suitable discretizations Fh of the operators to get solutions of
the MMEs on the invariant subspaces.

9.4.3 Invariant subspace L{1, xm}
We have presented a number of such subspaces with m = 2, 3, or 4.
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Semilinear operator F1. Consider the PDE (9.40) with the operator (9.96). The
corresponding MME (9.112) has the form

U ′
i − [DhU ]i X ′i = F1h[U ] ≡ UX X + (UX )2 +Ui on �(U), (9.117)

with the approximation F1h to be determined later. In view of (9.114) with the func-
tion f (x) = x2, the gradient operator is

[DhU ]i = Ui+1−Ui−1

X2
i+1−X2

i−1
2Xi , (9.118)

so [Dh X2]i = 2Xi by (9.113). Consider the discrete operator F1h admitting W2 if
the discrete derivatives are given by

UX = DhU and UX X = dh DhU, (9.119)

where dh denotes the standard symmetric gradient approximation,

dhU = Ui+1−Ui−1
Xi+1−Xi−1

, so that dh Dh X2 = 2. (9.120)

Finally, given the mesh function U = C1(t)+ C2(t)X2 ∈ W2, the following holds:

F1h [U ] = C1 + 2C1 + C2(1+ 4C2)X2 ∈ W2, (9.121)

so that equation (9.117) on W2 is the DS (9.42). Hence, the discrete evolution on W2
coincides with the differential one induced by the PDE (9.40) on W2.

On conditionally invariant MMOs. Observe that, in general, the natural approx-
imation UX X = D2

hU does not satisfy the second condition in (9.120). One can
calculate that [

D2
h X2

]
i = 4Xi

Xi+1+Xi−1
,

and, therefore, taking the condition D2
h X2 = 2 as one of the generating conditions of

the MMs, we arrive at Xi = 1
2 (Xi+1+Xi−1), i.e., the MM has to be uniform. Hence,

on any uniform MM �(U), the MME (9.117) with UX X = D2
hU admits solutions

on W2. This MME is conditionally invariant, i.e., not for every MM. On the other
hand, the invariance of the standard approximation UX X = d2

h U implies that[
dhdh X2

]
i ≡ Xi+2−Xi−2

Xi+1−Xi−1
= 2,

which is true for uniform MMs �(U). Finally, the invariant MMO in (9.117) leaves
the extended subspace W3 = L{1, x, x2} invariant on any uniform mesh, since
the discrete gradient operator correctly differentiates the linear function x on such
meshes, [Dh X ]i = 2Xi

Xi+1−Xi−1
= 1.

Porous medium operators F3, F7, and F9. Consider the PDE

ut = uux x + 1
σ (ux)

2 + αu + β on W2 = L{1, x2}. (9.122)

Using (9.118) and (9.119), we introduce the MME on �(V )

U ′
i − [DhU ]i X ′i = F3h [U ] ≡ Ui dh DhU + 1

σ (DhU)2 + αUi + β,

which admits solutions U = C1(t) + C2(t)X2. The expansion coefficients {C1,C2}

© 2007 by Taylor & Francis Group, LLC



456 Exact Solutions and Invariant Subspaces

solve the same DS as in the differential case,{
C ′1 = 2C1C2 + αC1 + β,

C ′2 = 2(σ+2)
σ C2

2 + αC2.

The invariance result is true for the extension W3 on any uniform mesh. The subspace
W2 remains invariant if we add any linear differential operator L[u] = γ ux x + δux :
W2 → W2 to the right-hand side of (9.122).

The fourth-order operator F6. For the quadratic operator (9.101), the invariant
approximation of the gradient operator is

[DhU ]i = Ui+1−Ui−1

X4
i+1−X4

i−1
3X3

i .

Then the discrete DS is the same as for the PDE ut = F6[u] on W2. Exact solutions
of both the continuous and discrete DS are u = C1 + C2x4 and U = C1 + C2 X4,
where {

C ′1 = −24C1C2 + γC1 + δ,

C ′2 = (−24+ 96α + 144β)C2
2 + γC2.

Any operator F6 + L, for any linear higher-order operator L with constant coeffi-
cients, admits the same subspace. This also applies to other higher-order operators
on polynomial subspaces.

9.4.4 Invariant subspace L{1, cos x}
Unlike the polynomials, the trigonometric (and exponential) functions need special
discrete approximations.

Semilinear operator F2. The MME, corresponding to the evolution PDE

ut = ux x + (ux )
2 + u2 on W2 = L{1, cos x}, (9.123)

has the form

U ′
i − [DhU ]i X ′i = F2h[U ] ≡ UX X + (UX )2 +U2

i on �(U), (9.124)

where, by (9.114),

[DhU ]i = Ui+1−Ui−1
cos(Xi+1)−cos(Xi−1)

(− sin(Xi )). (9.125)

Then [Dh cos X ]i = − sin(Xi ) by (9.113), and we choose UX = DhU . In order to
keep invariant properties of the second derivative, we take the approximation

UX X = Dh DhU, with [DhU ]i = Ui+1−Ui−1
sin(Xi+1)−sin(Xi−1)

cos(Xi ). (9.126)

Therefore, [Dh Dh cos X ]i = − cos(Xi ). Finally, the invariant MMO (9.124) pre-
serves the continuous evolution on W2. For the solutions

U = C1(t)+ C2(t) cos X ∈ W2, (9.127)

the DS is the same as for PDE (9.123),{
C ′1 = C2

1 + C2
2 ,

C ′2 = −C2 + 2C1C2.
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The DS is not explicitly solved, but is easily studied on the phase-plane. The equation
(9.123) describes regional blow-up, where the blow-up sets of bell-shaped solutions
have measure 2π ; see [245, Ch. 9]. On any uniform MM,

[Dh sin X ]i = cos Xi and [Dh cos X ]i = − sin Xi ,

so that the operator F2h with UX = DhU and UX X = D2
hU admits the extended

subspace W3 = L{1, cos x, sin x}.
Quasilinear operators F4 and F5. As the next example, consider the equation
(9.90), (9.99) in the case where F4 admits W2 = L{1, cos x}, so that

λ = σ√
σ+1

= 1, i.e., σ = σ± = 1
2 (1±

√
5)

(note that −σ− is the Golden Mean). The MME on �(U) is

U ′
i − [DhU ]i X ′i = F4h [U ] ≡ Ui Dh DhU + 1

σ (DhU)2 + σU2
i ,

where the derivatives are given in (9.125) and (9.126). This MME exactly reproduces
the continuous solutions (9.127) and the corresponding DS is{

C ′1 = σC2
1 + 1

σ C2
2 ,

C ′2 = (2σ − 1)C1C2.

On uniform MMs, the MMO approximates the corresponding extended subspace
W3 = L{1, cos x, sin x}. A similar analysis applies to the Kuramoto–Sivashinsky
equation, ut = F5[u], and to many other PDEs in Section 3.1 on trigonometric
subspaces.

9.4.5 Higher-order evolution equations

We describe invariant properties of the equation (9.92). Setting

D j
t u = v j for j = 1, ...,m − 1,

reduces it to the system of PDEs{ ut = v1,
(v j )t = v j+1, j = 1, ...,m − 2,
(vm−1)t = F

(
u, v1, ..., vm−1, ux , ..., Dk

x u
)
.

Introducing the variable W = (u, v1, ..., vm−1)
T ∈ IRm yields the DS

Wt = F̃[W ], t > 0.

The corresponding MME for W takes the standard form in IRm similar to (9.112),

W ′
i − [Dh W ]i X ′i = F̃h [W ].

By checking the invariant property of the gradient operator, we see that Theorem
9.32 is true, and the gradient approximation (9.114) preserves invariance of W2.

Example 9.33 (Boussinesq-type PDE) Consider the PDE with operator F3,

utt = uux x + 1
σ (ux)

2 + αu + β.
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It is equivalent to the system {
ut = v,
vt = F3[u]+ αu + β,

and the corresponding MME is{
U ′

i − [DhU ]i X ′i = Vi ,

V ′i − [Dh V ]i X ′i = F3h[U ]+ αUi + β.

We define the gradient operator by (9.118), and then, by Theorem 9.32, the MMO
admits the subspace W2 = L{1, x2}.

9.4.6 Positivity and comparison

In order to use solutions on invariant subspaces, we first need to establish the Max-
imum Principle aspects of the MMMs for the second-order parabolic PDEs. Let us
begin with the positivity property.

Weak Maximum Principle. We return to the MMO (9.112) and consider second-
order equations of parabolic type, assuming a natural three-point approximation of
the nonlinear operator F , so

[Fh[U ]]i = Fh(Ui−1,Ui ,Ui+1, i, X).

Theorem 9.34 Let U(t) ≥ 0 on ∂�(U). Then the inequality{
[DhU ]i X ′i + Fh [U ]

}∣∣
Ui=0 ≥ 0 (9.128)

for all i ∈ Im = {2, ..., K − 1} and U j ≥ 0 for i �= j , t > 0, is necessary and
sufficient for the positivity of U (t) with arbitrary nonnegative data on ∂�(U).

Proof. It follows from (9.112) that, at any instant, when Ui = 0 at an internal point
of �(U), we have to have U ′

i ≥ 0, which gives the desired result.

This applies to other homogeneous boundary conditions, including Neumann’s,

UX = 0 on the lateral boundary of �(U).

The criterion in the theorem can easily be checked for invariant or standard MMOs.

Example 9.35 (Semilinear parabolic PDEs) Consider

ut = ux x + g(x, t, u, ux),

where g satisfies g(x, t, 0, ux) ≡ 0. We take the standard MME on the MM �(U),

U ′
i − [DhU ]i X ′i = UX X + g(Xi , t,Ui ,UX ).

The difference operators are

UX ≡ [DhU ]i = Ui+1−Ui−1
hi+hi−1

and UX X = 2
hi+hi−1

(Ui+1−Ui
hi

− Ui−Ui−1
hi−1

)
,

where hi = Xi+1 − Xi > 0. Then the condition (9.128) reads
Ui+1−Ui−1

hi+hi−1
X ′i + 2

hi+hi−1

(Ui+1
hi
+ Ui−1

hi−1

) ≥ 0, or

Ui+1
(
X ′i + 2

hi

)+Ui−1
( 2

hi−1
− X ′i

) ≥ 0
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for any Ui±1 ≥ 0. This gives the criterion of the (internal) positivity of the solution

− 2
hi
≤ X ′i ≤ 2

hi−1
for i ∈ Im , t > 0.

Both inequalities are valid if

|X ′i (t)| ≤ 2 min
{ 1

hi
, 1

hi−1

}
for i ∈ Im , t > 0, (9.129)

i.e., if the MM does not move very fast. Thus any MM moving sufficiently slow
preserves positivity of the solution just as the stationary mesh does. This is a nat-
ural continuity property of discrete parabolic operators that describe a transitional
behavior from fixed meshes to the MMs.

Comparison principle. This is a consequence of the positivity result.

Theorem 9.36 Let U and W be two solutions of the MME with �(U) = �(W ). Let
U ≥ W on ∂�. The inequality{

[Dh(U −W )]i X ′i + Fh[U ]− Fh[W ]
}∣∣

Ui=Wi
≥ 0 (9.130)

for all i ∈ Im and U j ≥ W j for i �= j , t > 0, is necessary and sufficient for the
comparison U ≥ W in � for arbitrary ordered data on ∂�.

Proof is straightforward, and the result is equivalent to the positivity of the differ-
ence U − W ≥ 0 in � satisfying a linearized MME. Since the proof is essentially
of the interior nature, comparison is true for the homogeneous Neumann conditions
or monotone nonlinear Neumann conditions preserving ordering of solutions on the
lateral boundary.

Example 9.37 Consider the semilinear heat equation

ut = ux x + g(x, t, u).

Taking the standard MME as given in Example 9.35, one obtains that (9.129) guar-
antees comparison of solutions of this MME on any such coinciding MMs.

On asymptotic properties of MMEs. The standard comparison of different solu-
tions U and W assumes that the corresponding MMs, �(U) and �(W ), coincide.
Since the MMs depend on the solutions, this makes the comparison a delicate mat-
ter. Using invariant MMOs makes such a comparison not only possible, but also is
an effective way to study asymptotic properties of discrete equations. By invariant
MMOs, we actually compare general solutions with exact solutions taken on the
same MMs. The main conclusion directly follows from the invariance Theorem 9.32
and the comparison Theorem 9.36.

Theorem 9.38 Let the hypotheses of Theorem 9.32 hold. Fix a solution U on �(U)
and an exact invariant solution W (t) ∈ W2h for t ≥ 0 such that

U ≥ W (U ≤ W ) on ∂�(U).

Assume that the hypothesis (9.130) is true for solutions that are defined on the same
MM � = �(U). Then,

U ≥ W (U ≤ W ) in �(U).
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Example 9.39 (Comparison and asymptotic behavior) Consider the semilinear
equation (9.40). Let U be a discrete solution of the MME on an MM �(U),

U ′
i − [DhU ]i X ′i = UX X + (UX )2 + Ui ,

with the gradient approximation Dh given in (9.118), and invariant approximations
(9.119) of the derivatives UX and UX X . The quadratic operator F1h on the right-hand
side admits the same subspace as in (9.96), with the basis function f (X) = X2. Let
W (t) ∈ W2 be an exact solution. By Theorem 9.32, this solution satisfies the same
MME on the MM �(U). The comparison condition then reduces to

(Ui+1 −Wi+1)
[

i X ′i + 1

Hi hi
+ 1

2Hi
(UX + WX )

]
+ (Ui−1 − Wi−1)

[−
i X ′i + 1
Hi hi−1

− 1
2Hi

(UX +WX )
] ≥ 0

for all Ui±1 ≥ Wi±1, where


i = f ′(Xi )
f (Xi+1)− f (Xi−1)

,

hi = Xi+1 − Xi , and Hi = 1
2 (hi + hi−1). This gives the following condition of

comparison:

|Hi
i X ′i (t)| ≤ min
{ 1

hi
, 1

hi−1

}− 1
2 sup�t

(|UX +WX |),
i.e., if, for sufficiently regular solutions with bounded derivatives UX and WX , the
MM does not move faster than O

( 1
h

)
(similar to the positivity (9.129)).

The above comparison is true for any solution on W2. Choose the solution

W (x, t) = C1(t)+ C2(t)x
2 ∈ W2,

where the coefficients {C1,C2} satisfy the DS (9.42). Assume that U ≥ W on the
lateral boundary of �(U), so that

U(X, 0) ≥ W (X, 0) ≡ C1(0)+ C2(0)X2 in �0(U).

Then, by comparison,

U(X, t) ≥ W (X, t) ≡ C1(t)+ C2(t)X2 in �(U),

provided that the MM satisfies the above comparison condition. A similar estimate
from below is also proved. Finally, solving the DS (9.42), we obtain the exact asymp-
totic behavior as t →∞ of a wide class of solutions of this invariant MME. In this
case, as t → ∞, the discrete solutions converge to the principle separable solution,
as in the easy continuous case of the parabolic PDE, [509, p. 93].

More examples on the comparison with solutions on invariant subspaces and asymp-
totic behavior can be constructed for parabolic PDEs and invariant approximations
of other quadratic operators given above.

9.5 Applications to anharmonic lattices

In this section, we present examples of exact solutions of nonlinear lattices. The
dynamics of such discrete systems have been extensively studied since the 1950s,
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starting with the celebrated work of Fermi–Pasta–Ulam [183]. In fact, the soliton
concept appeared for the first time in the context of nonlinear lattices, before becom-
ing widely used in many areas of physics and mechanics; see a history review in
Remoissenet [487]. Another classical example is the Toda lattice

u′′n = eun−1−un − eun−un+1 .

It was introduced by M. Toda in 1967 and had an earlier geometric origin detected by
Darboux (1887) via iterations of, in modern terminology, Laplace–Darboux transfor-
mations, [141]. The Toda lattice was used to describe anharmonic oscillations in a
1D crystal lattice. This is known to be an integrable Hamiltonian system admitting a
Lax pair, N-soliton solutions given by Hirota’s expression, etc.; see Toda [556]. The
related discrete sine-Gordon (FK) model was discussed in Example 5.5.

Lattice dynamical systems occur in a variety of applications, where the spatial
structure has a discrete character. These apply in chemical reaction theory, cellular
neural networks, image processing, and pattern recognition, in different areas of ma-
terial science, in electrical engineering in laser physics, etc. Discrete breathers, i.e.,
time-periodic patterns of lattice dynamics with spatially localized oscillations, are
supported by many nonlinear lattices, and occur in several physical models, such as
dynamical properties of crystals, Josephson junction arrays, DNA denaturation, vi-
bration dynamics of ionic crystals, etc. See [304] for further references and a survey
on mathematical results in this area of lattice theory.

Example 9.40 (Parabolic quadratic equation) Consider a quadratic operator, which
was studied in Example 5.6 in the differential case,

F2[u] = 2|ux |ux x + u2
n. (9.131)

In computations, we use the following symmetric expressions for discrete derivatives
(later on, we often set h = 1):

ux = 1
2h

(
un+1 − un−1

)
, ux x = (ux)x ≡ 1

h2

(
un−1 − 2un + un+1

)
,

ux x x = (ux x)x ≡ 1
2h2

(−un−2 + 2un−1 − 2un+1 + un+2
)
,

ux x x x = (ux x x)x , ux x x x x = (ux x x x)x , etc.
(9.132)

The results can easily be recalculated for other derivative approximations. Some ap-
proaches are extended to uniform lattices in IRN , e.g., for the operator

F2[u] = 2|∇u|
u + u2
n,

with natural definitions of the discrete gradient and the Laplacian operators.
The discrete operator F2 in (9.131) is associated with the 2D subspace

W2 = L{1, f (x)}, with fn = f (n), (9.133)

where f solves the equation
F2[ f ]− fn = 0. (9.134)

Consider the corresponding discrete parabolic equation

u′n = F2[u]. (9.135)
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Plugging the expression

un(t) = C1(t)+ C2(t) fn ∈ W2, with C2 ≥ 0 (9.136)

(in fact, the cone, K+ = {C1,2 ≥ 0} ⊂ W2, is invariant under F2) into (9.135) yields
the same DS as in the differential case,{

C ′1 = C2
1 ,

C ′2 = C2
2 + 2C1C2.

Setting C1(t) ≡ 0 yields C ′2 = C2
2 and the separate variable solution

un(t) = 1
T−t fn,

where T > 0 is the blow-up time. Such separation of variables in finite-difference
equations is well known in blow-up theory; see [509, p. 491] and references therein.
Choosing a nontrivial C1(t) from the first ODE, C1(t) = − 1

t , we obtain more inter-
esting blow-up solutions on such a uniform grid,

un(t) = − 1
t + T

(T−t)t fn .

On infinite propagation in the lattice. It is easy to see that implicit schemes such
as (9.135), with operator (9.131), cannot describe processes with finite propagation.
For the stationary (“elliptic”) equation (9.134), this means that fn = f (n) is not
compactly supported, unlike in the differential case in Example 5.6. The asymptotic
decay of the monotone fast decreasing solution { fn > 0} for large n is easy to obtain
from the following asymptotic representation of (9.134):

fn = F2[ f ] = f 2
n−1(1+ O( fn)) for n � 1,

where we have used sharp estimates fx = 1
2 ( fn+1 − fn−1) ≈ − 1

2 fn−1 and fx x =
fn−1 − 2 fn + fn+1 ≈ fn−1. Hence, for some constants c∗ ∈ (0, 1) and C > 0,

fn ∼ C(c∗)2n
as n →∞.

We thus observe a fast double-exponential decay of the function f (n).
Concerning the discrete parabolic equation with a gradient dependent diffusion

(we omit the quadratic term u2
n that is negligible on such decay asymptotics)

u′n = |un+1 − un−1|(un−1 + un+1 − 2un), (9.137)

assuming that the initial data {u0n} are compactly supported, we find that, for small
t > 0 as n →∞, the sharp asymptotic form of the equation is given by

u′n = u2
n−1(1+ O(un)). (9.138)

Let n0 > 0 be the interface point of u0n , so that u0n0 = 0 and c0 = u0n0−1 > 0. In
this case, (9.137) at n = n0 yields that

un0(t) = c0t (1+ o(1)) as t → 0. (9.139)

Further iterations of the equation (9.138) leads to the following asymptotic behavior
as k = n − n0 →∞:

un0+k(t) =
[
6
∏k

i=0(2
i+2 − 1)−2k−i ]

c2k

0 t2k+1 + ... . (9.140)
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Therefore, the formula

un0+k(t) ∼ e2k ln t → 0

gives the sharp asymptotic rate of convergence of the solution as t → 0 to compactly
supported initial data u0n . This has an easy relation to asymptotics (1.61) of the delay
ODE (1.60).

Example 9.41 (Oscillatory behavior near “interfaces”) Consider the higher-order
parabolic lattice (9.135) with the operator

F2[u] = −(|ux x |ux x)x x + u2,

which uses the central differences as in (9.132). This model is associated with the
differential analogy in Example 5.7 (for n = 1), where we have detected a specific
oscillatory behavior of weak solutions near interfaces. Apparently, there occur the
same subspace and a DS on W2, where f solves (9.134).

Studying the decay behavior for n � 1, we have, instead of (9.138), the following
asymptotic equation for small solutions:

u′n = −|un−2|un−2. (9.141)

Posing, similar to (9.139), the positive conditions at two “boundary” points

un0(t) = c0t, un0+1(t) = d0t as t → 0 (0 < d0 < c0),

we obtain from (9.141) the following asymptotic behavior as t → 0:

un0+2(t) = − c2
0
3 t3 < 0, un0+3(t) = − d2

0
3 t3 < 0,

un0+4(t) =
( c2

0
3

)2 1
7 t7 > 0, un0+5(t) =

( d2
0
3

)2 1
7 t7 > 0,

un0+6(t) = −
( c2

0
3

)2·2( 1
7

)2 1
15 t15 < 0, un0+7(t) = −

( d2
0
3

)2·2( 1
7

)2 1
15 t15 < 0,

etc. This shows a clear oscillatory structure of solutions, and, writing the general for-
mula as in (9.140) (with 2k �→ 2k/2), we will observe a rescaled 2-periodic behavior
as n →∞. This is a discrete analogy of solutions of changing sign in the differential
counterpart in Example 5.7.

Example 9.42 (Quadratic hyperbolic equation) Consider the hyperbolic lattice
with the second-order operator (9.131),

u′′n = F2[u]− un .

Using the subspace (9.133), we obtain solutions (9.136) with the DS{
C ′′1 = C2

1 − C1,

C ′′2 = C2
2 + 2C1C2 − C2

(C2 ≥ 0). The analysis of infinite propagation with compactly supported initial data
{u0n, u1n} is performed in a similar fashion, where the governing equation is

u′′n = u2
n−1(1+ O(un)) for n � 1,

that admits asymptotics as in (9.140).
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Example 9.43 (Cubic hyperbolic equation) The next lattice is associated with the
PDE (5.52) possessing exact solutions on the invariant subspace

W3 = L{1, cos(λx), sin(λx)}, with λ > 0.

We now take the corresponding lattice in the form of

u′′n = F3[u] ≡ u2
n(un−1 + un+1 − 2un)− α un

( un+1−un−1
2

)2 + βu3
n. (9.142)

Proposition 9.44 The discrete operator F3 in (9.142) preserves W3 if

α = 1
1+cosλ and β = 1− cos λ (λ �= π(2k + 1)).

Therefore, the dynamics on W2 is as follows:

un(t) = C1(t)+ C2(t) cos(λn)+ C3(t) sin(λn),

C ′′i = (1− cos λ)Ci (C2
1 − C2

2 − C2
3 ), i = 1, 2, 3.

For convenience, we present the results of calculations for the general discrete
cubic operator in Proposition 1.17. Here λ = 1.

Proposition 9.45 The discrete operator (1.57) admits W3 = L{1, cos x, sin x} if

b1 = 1
2

(
b5 Q1 + b7 R2

1 Q1 − b10 Q3
1

)
, b2 = 1

2 b6 Q1,

b3 = 1
2R2

1

(−b5 Q1 + 3b7 R2
1 Q1 + 2b8 Q2

1 − 3b10Q3
1

)
,

b4 = 1
R2

1

(
b7 Q2

1 − 1
2 b6 Q1

)
,

where R1 = 1
h sin h (= sin 1 for h = 1) and Q1 = 4

h2 sin2( h
2 ) (= 4 sin2( 1

2 )).

Example 9.46 (5th-order PDE from compacton theory) Consider the nonlinear
dispersion lattice from compacton theory in Section 4.3 (equation (4.97), α = 1)

ut = F5[u]+ δu + ε ≡ (u2)x x x x x + β(u2)x x x + γ (u2)x + δu + ε. (9.143)

We will first study it on the same subspace, W3, as in Proposition 9.45. For con-
venience of passing to the limit, we introduce the mesh parameter h > 0 in the
definition of discrete operators in (9.132). Then the following results hold:

(i) W3 is invariant if

Q2
2 − Q2β + γ = 0, where now Qλ = 4

h2 sin2( λh
2 ). (9.144)

Therefore, Q2 → 4 as h → 0, so, in the limit, the invariance condition (9.144)
coincides with the differential one (4.12) with α = 1.

(ii) The DS for the lattice (9.143) on W3 is (4.98) with the coefficients µ = 2R1(Q2−
Q1)(β − Q2 − Q1) (we again use the step h), where Rλ = 1

h sin(λh). Hence, µ→
6(β − 5) as h → 0 as in (4.98). The exact solutions are the same as in (4.99) and
(4.100), so these are not presented here.

Concerning 5D subspaces, let us mention that, as in Example 4.13, the discrete
equation (9.143) possesses solutions

un(t) = C1(t)+ C2(t) cos n + C3(t) sin n + C4(t) cos 2n + C5(t) sin 2n,
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provided that γ = Q3 Q4 and β = Q3+Q4 (here Q3 → 9 and Q4 → 16 as h → 0),
and the DS for δ = ε = 0 is

C ′1 = 0,
C ′2 = µ(C2C5 − C3C4 + 2C1C3),
C ′3 = −µ(C2C4 + C3C5 + 2C1C2),
C ′4 = 2ν(2C1C5 + C2C3),

C ′5 = ν
(
C2

3 − C2
2 − 4C1C4

)
.

The coefficients µ and ν satisfy µ = (Q1 − Q3)(Q1 − Q4) → 120 and ν =
(Q2 − Q3)(Q2 − Q4) → 60 as h → 0, so in the limit h = 0, we obtain the
DS (4.104) for the continuous PDE. The dynamical evolution properties of such
solutions on W5 are quite similar in both continuous and discrete cases, so one can
observe the discrete TW (4.105).

Example 9.47 (4th-order PDE from thin film theory) In this last example, we
consider the lattice counterpart of the thin film PDE in Example 3.17,

ut = −uux x x x − uxux x x + βu2.

Then L{1, cos x, sin x} is invariant if β = Q1(Q1 + R2
1) → 2 as h → 0, and for

solutions
un(t) = C1(t)+ C2(t) cos n + C3(t) sin n,

we obtain the DS (cf. (3.117) for h = 0){
C ′1 = Q1

[(
Q1 + R2

1

)
C2

1 + R2
1C2

2 + R2
1C2

3

]
,

C ′2 = µC1C2, C ′3 = µC1C3,
(9.145)

where µ = Q1(Q2
1 + 2R2

1) → 3. For C1 = C2 and C3 = 0, we have the ODE
C ′1 = µC2

1 and the following localized blow-up pattern on this lattice:

un(t) = 2
µ(T−t) cos2( n

2 ).

Remark 9.48 1. (Other approximations) Using another discrete derivative ux , in-
stead of (9.132), slightly changes the coefficients of the resulting DSs according to
the easy rule

ux = 1
h

(
un+1 − un

) �⇒ (sin λx)x = Rλ cos x − h
2 Qλ sin x .

2. (Exponential functions) For subspaces composed of exponential or hyperbolic
functions, the calculations yield

(eλx)x = Qλeλx , where Qλ = 1
2h

(
eλh − e−λh

)
.

3. (Polynomial subspaces) These were especially important for a number of PDE
examples in the previous chapters. All the computations are easily translated to the
discrete case using the rule

(xn)x = 1
2h

[
(x + h)n − (x − h)n

] = 1
2

∑n
k=1 Ck

n

[
1+ (−1)k

]
xn−khk−1.

Of course, this affects the coefficients of the DSs.
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Remarks and comments on the literature

There are many classical texts on difference equations; see references in [367, p. 34, p. 72].
Concerning applications of Lie group theory to difference equations, see lists of references in
[151, 152, 490].

§ 9.1, 9.2. The main results are taken from [242].

§ 9.3. Some of the results were published in [221]. There exists a group-invariant finite-
difference scheme for (9.40), which admits explicit solutions, and then the corresponding
space grid depends on the time variable (and on the solution itself); see [23]. Some solutions
in this section can be justified by generalized conditional symmetries, [119].

It has been known for a long time that, for a number of fully integrable PDEs, there exist
techniques of their discretization without destroying integrability, where the discrete equations
admit N-soliton solutions that are obtained by similar methods over linear spaces of exponen-
tial functions. The idea of such discretization techniques was proposed by Hirota in 1973; see
[286], where the extra references can be found. Algebro-geometric and elliptic solutions of the
fully discretized KP and 2D Toda equations were constructed in [357] by using Baker func-
tions. One can expect that, for non-integrable PDEs possessing one and two-soliton solutions
similar to those in Section 8.5 and in [100, 329, 595], there exist discretizations preserving
such exact solutions constructed by similar manipulations with exponential functions.

§ 9.4. The main results are available in [222]. The basics of MMM theory are given in [88,
293, 292, 99, 98], some applications to blow-up solutions of higher-order parabolic PDEs can
be found in [87].

§ 9.5. Discrete “almost compact” breathers of lattices associated with cubic PDEs were studied
in [500]. More recent references on exact TW, and other solutions of lattice differential equa-
tions can be found in [291]. References to main results and applications of lattice dynamical
systems in chemical reaction theory, image processing, pattern recognition, material sciences,
and biology are given in [124]. The most well-studied exact solutions of lattice parabolic PDEs
are TWs; see a more recent survey [408] and also [404], where non-local models were treated.
Concerning integrable cases, complexiton-type exact solutions of the Toda lattice were con-
structed in [406]. Notice a relation of embedded solitons in dynamical lattices [258] to typical
invariant subspaces and sets.

For higher-order linear and nonlinear PDEs, using various approximating discrete dynam-
ical systems via Saint-Venant’s principle (originally formulated by A.-J.-C. Barré de Saint-
Venant in linear elasticity theory in 1855 [508]) is an effective tool for existence, uniqueness,
and asymptotic analysis. This discrete approach leads to concepts of energy solutions, and can
be applied in general singular nonlinear cases. We refer to the fundamental Oleinik–Radkevich
paper [443]; see also a survey on more recent results and applications in [240].

Open problems

• The general forward Problem I of invariant subspaces (and several other related
aspects): given a nonlinear finite-order difference operator, determine all the linear
subspaces which it admits; see Section 9.2.
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J. Math. Phys., 40 (1999), 2092–2106.
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[172] P.G. Estévez and C.-Z. Qu, Separation of variables in nonlinear wave equations with
variable wave speed, Theoret. Math. Phys., 133 (2002), 1490–1497.
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[327] Th. von Kármán, Ueber laminare und turbulente Reibung, ZAMM, 1 (1921), 233–252.
[328] T. Kato, Blow-up of solutions of some nonlinear hyperbolic equations, Commun. Pure

Appl. Math., 33 (1980), 501–505.
[329] T. Kawahara and M. Tanaka, Interactions of travelling fronts: an exact solution of a

nonlinear diffusion equation, Phys. Lett. A, 97 (1983), 311–314.
[330] S. Kawamoto, An exact transformation from the Harry Dym equation to the modified

KdV equation, J. Phys. Soc. Japan, 54 (1985), 2055–2056.
[331] J.B. Keller, On solutions of 
u = f (u), Commun. Pure Appl. Math., 10 (1957), 503–

510.
[332] J.B. Keller, On solutions of nonlinear wave equations, Commun. Pure Appl. Math., 10

(1957), 523–530.
[333] R. Kersner, On the behaviour of temperature fronts in media with non-linear heat con-

ductivity under absorption, Moscow Univ. Math. Bull., 33 (1978), 35–41.
[334] R. Kersner, Some properties of generalized solutions of quasilinear degenerate para-

bolic equations, Acta Math. Acad. Sci. Hungar., 32 (1978), 301–330.
[335] B. Khesin and G. Misiolek, Euler equations on homogeneous spaces and Virasoro

orbits, Adv. Math., 176 (2003), 116–144.
[336] I.T. Kiguradze and T. Kusano, Periodic solutions of nonautonomous ordinary differ-

ential equations of higher order, Differ. Equat., 35 (1999), 71–77.
[337] K.Y. Kim, R.O. Reid, and R.E. Whitaker, On an open radiational boundary condition

for weakly dispersive tsunami waves, J. Comput. Phys., 76 (1988), 327–348.
[338] J.R. King, Mathematical Aspects of Semiconductor Process Modelling, PhD Thesis,

© 2007 by Taylor & Francis Group, LLC



482 Exact Solutions and Invariant Subspaces

University of Oxford, Oxford, 1986.
[339] J.R. King, The isolation oxidation of silicon: the reaction-controlled case, SIAM

J. Appl. Math., 49 (1989), 1064–1080.
[340] J.R. King, Mathematical analysis of a model for substitutional diffusion, Proc. Roy.

Soc. London Ser. A, 430 (1990), 377–404.
[341] J.R. King, Some non-self-similar solutions to a nonlinear diffusion equation, J. Phys.

A, 25 (1992), 4861–4868.
[342] J.R. King, Exact multidimensional solutions to some nonlinear diffusion equations,

Quart. J. Mech. Appl. Math., 46 (1993), 419–436.
[343] J.R. King, Exact polynomial solutions to some nonlinear diffusion equations, Phys. D,

64 (1993), 35–65.
[344] J.R. King, Self-similar behaviour for the fast diffusion equation of fast nonlinear dif-

fusion, Phil. Trans. Roy. Soc. London Ser. A, 343 (1993), 337–375.
[345] J.R. King, Two generalisations of the thin film equation, Math. Comput. Modelling, 34

(2001), 737–756.
[346] J.R. King and J.M. Oliver, Thin-film modelling of poroviscous free surface flows,

European J. Appl. Math., 15 (2005), 1–35.
[347] J.R. King and S.M. Cox, Asymptotic analysis of the steady-state and time-dependent

Berman problem, J. Engrg. Math., 39 (2001), 87–130.
[348] G. Kirchhoff, Vorlesungen über die Theorie der Warme, Barth, Leipzig, 1894.
[349] Y. Kivshar, Compactons in discrete lattices, Nonlinear Coherent. Struct. Phys. Biol.,

329 (1994), 255–258.
[350] P.Ya. Kochina, The Zhukovskii function and some problems in filtration theory,

J. Appl. Math. Mech., 61 (1997), 153–155.
[351] V. Kolmanovskii and A. Myshkis, Applied Theory of Functional-Differential Equa-

tions, Kluwer Acad. Publ. Group, Dordrecht, 1992.
[352] A.N. Kolmogorov and S.V. Fomin, Elements of the Theory of Functions and Func-

tional Analysis, Fourth edition, revised, Nauka, Moscow, 1976.
[353] A.N. Kolmogorov, I.G. Petrovskii, and N.S. Piskunov, Study of the diffusion equation

with growth of the quantity of matter and its application to a biological problem, Byull.
Moskov. Gos. Univ., Sect. A, 1 (1937), 1–26. English. transl.: [457], pp. 105–130.

[354] D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a
rectangular channel, and on a new type of long stationary waves, Phil. Mag., 39, No. 5
(1895), 422–442.

[355] M.A. Krasnosel’skii and P.P. Zabreiko, Geometrical Methods of Nonlinear Analysis,
Springer-Verlag, Berlin/Tokyo, 1984.

[356] I.M. Krichever and S.P. Novikov, Holomorphic vector bundles over Riemann surfaces
and the Kadomtsev-Petviashvili equation. I, Funct. Anal. Appl., 12 (1978), 276–286.

[357] I. Krichever, P. Wiegmann, and A. Zabrodin, Elliptic solutions to difference non-linear
equations and related many-body problems, Commun. Math. Phys., 193 (1998), 373–
396.

[358] M. Kruskal, Nonlinear wave equations, In: Dynamical Systems, Theory and Applica-
tions, Rencontres, Battelle Res. Inst., Seattle, Wash., 1974) , J. Moser Ed., Lect. Notes
in Phys., Vol. 38, Springer, Berlin, 1975, pp. 310–354.

[359] N.V. Krylov, Sequences of convex functions, and estimates of the maximum of the
solution of a parabolic equation, Siberian Math. J., 17 (1976), 226–236.

[360] C.N. Kumar and P.K. Panigrahi, Compacton-like solutions for modified KdV and other
nonlinear equations, 23 April 1999, REVTeX electr. manuscr.

[361] B.A. Kupershmidt, A super Korteweg-de Vries equation: an integrable system, Phys.

© 2007 by Taylor & Francis Group, LLC



References 483

Lett. A, 102 (1984), 213–215.
[362] A. Kurganov, D. Levy, and P. Rosenau, On Burgers-type equations with nonmonotonic

dissipative fluxes, Commun. Pure Appl. Math., 51 (1998), 443–473.
[363] V.P. Kuznetsov, Equations of nonlinear acoustics, Soviet Phys. Acoustics, 16 (1970),

467–470.
[364] K.-H. Kwek, H. Gao, W. Zhang, and C. Qu, An initial boundary value problem of

Camassa-Holm equation, J. Math. Phys., 41 (2000), 8279–8285.
[365] O.A. Ladyzhenskaya, V.A. Solonnikov, and N.N. Ural’tseva, Linear and Quasilinear

Equations of Parabolic Type, Amer. Math. Soc., Providence, R.I., 1967.
[366] V. Lahno and R. Zhdanov, Group classification of nonlinear wave equation, J. Math.

Phys., 46 (2005), 053301-1–37.
[367] V. Lakshmikantham and D. Trigiante, Theory of Difference Equations: Numerical

Methods and Applications, Second Edition, Marcel Dekker, Inc., New York, 2002.
[368] H. Lamb, Hydrodynamics, Sixth Edition (First Edition, 1879), Cambridge Univ. Press,

Cambridge, 1932.
[369] L.D. Landau and E.M. Lifshitz, On the theory of the dispersion of magnetic permeabil-

ity in ferromagnetic bodies, Soviet J. Phys., 8 (1935), 153 (Reproduces in: Collected
Papers of L.D. Landau, Pergamon Press, New York, 1965, pp. 101–114.)

[370] L.D. Landau and E.M. Lifshitz, Fluid Mechanics, Pergamon Press, London, 1959.
[371] L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media, Pergamon

Press, Oxford/Paris, 1960.
[372] L.D. Landau and E.M. Lifshitz, Theory of Elasticity, Third Edition, Pergamon Press,

Oxford, 1986.
[373] S. Lang, Algebra, Addison-Wesley Publ. Comp., Reading/Tokyo, 1984.
[374] M.Ya. Lankerovich, Ordinary differential equations admitting a group of maximal di-

mension, Dinamika Sploshn. Sredy, 37 (1978), 133–138 (in Russian).
[375] N. Larkin, On the problem of transonic gas dynamics, Mat. Cont., 15 (1998), 169–

186.
[376] R.S. Laugesen and M.C. Pugh, Energy levels of steady states for thin-film-type equa-

tions, J. Differ. Equat., 182 (2002), 377–415.
[377] M.H. Lee, Pseudodifferential operators of several variables and Baker functions,

Lett. Math. Phys., 60 (2002), 1–8.
[378] L.S. Leibenzon, Motion of Natural Fluids and Gases in a Porous Medium, GITTL,

Moscow–Leningrad, 1947.
[379] J. Lenells, Travelling wave solutions of the Camassa–Holm equation, J. Differ. Equat.,

217 (2005), 393–430.
[380] J. Lenells, Conservation laws of the Camassa–Holm equation, J. Phys. A, 38 (2005),

869–880.
[381] J. Levandosky, Smoothing properties of nonlinear dispersive equations in two spatial

dimensions, J. Differ. Equat., 175 (2001), 275–352.
[382] H.A. Levine, The role of critical exponents in blow-up problems, SIAM Rev., 32

(1990), 262–288.
[383] B. Lewis and G. Elbe, On the theory of flame propagation, J. Chem. Phys., 2 (1934),

537–546.
[384] A.-M. Li and F. Jia, A Bernstein property of affine maximal hypersurfaces, Ann.

Global Anal. Geom., 23 (2003), 359–372.
[385] A.M. Li, U. Simon, and G.S. Zhao, Global Affine Differential Geometry of Hypersur-

faces, Walter De Gruyter, Berlin, 1993.
[386] Yi.A. Li, Linear stability of solitary waves of the Green-Naghdi equations, Commun.

© 2007 by Taylor & Francis Group, LLC



484 Exact Solutions and Invariant Subspaces

Pure Appl. Math., 54 (2001), 501–536.
[387] Yi.A. Li and P.J. Olver, Well-posedness and blow-up solutions for an integrable non-

linearly dispersive model wave equations, J. Differ. Equat., 162 (2000), 27–63.
[388] Y.A. Li and P.J. Olver, Convergence of solitary-wave solutions in a perturbed bi-

Hamiltonian dynamical system. I, II, Discrete Contin. Dynam. Systems, 3 (1997), 419–
432; 4 (1998), 159–191.
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partielles du type parabolique, Nova Acta Regalis Societatis Scientiarum Uppsaliensis
(4), 10, No. 3 (1936), 3–55.

[549] J. Tanthanuch and S.V. Meleshko, On definition of an admitted Lie group for functional
differential equations, Commun. Nonlinear Sci. Numer. Simul., 9 (2004), 117–125.

[550] M.E. Taylor, Partial Differential Equations III. Nonlinear Equations, Springer-Verlag,

© 2007 by Taylor & Francis Group, LLC



References 491

New York, 1996.
[551] W.E. Thirring, A soluble relativistic field theory, Ann. Physics, 3 (1958), 91–112.
[552] A.N. Tikhonov, Uniqueness theorem for the equation of heat conduction, Mat. Sb., 42

(1935), 199–215.
[553] S.S. Titov, On solutions of nonlinear partial differential equations of the form of a

simple variable, Chisl. Met. Mech. Sploshnoi Sredy, 8 (1977), 586–599 (in Russian).
[554] S.S. Titov, On transonic gas flow around thin bodies, in: Analytical Methods in Con-

tinues Medium Mechanics, ed. A.F. Sidorov, Sverdlovsk, 1979, p. 65 (in Russian).
[555] S.S. Titov, A method of finite-dimensional rings to solve nonlinear equations of math-

ematical physics, in: Aerodynamics of Plane and Axis-Symmetric Flows of Liquids,
Saratov University, Saratov, 1988, 104–109 (in Russian).

[556] M. Toda, Theory of Nonlinear Lattices, Springer, Berlin, 1989.
[557] K. Toda and S.-J. Yu, The investigation into the Schwarz-Korteweg-de Vries equation

and the Schwarz derivative in (2+1) dimensions, J. Math. Phys., 41 (2000), 4747–4751.
[558] S. Tomotika and T. Tamada, Studies on two-dimensional transonic flows of compress-

ible fluid.–Part I, Quart. Appl. Math., 7 (1949), 381–397.
[559] R.A. Trasca, M.W. Cole, and R.D. Diehl, Systematic model behavior of adsorption on

flat surfaces, Phys. Rev. E, 68, 041605 (2003).
[560] N.S. Trudinger and X. Wang, Bernstein-Jörgens theorem for a fourth order partial

differential equation, J. Partial Differ. Equat., 15 (2002), 78–88.
[561] K. Tso, Remarks on critical exponents for Hessian operators, Ann. Inst. H. Poincaré,
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