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will take place from September �� to September ��� �			 at the Centre de
Recerca Matem
atica �CRM� in Bellaterra� This is the �rst activity of a three
months period devoted by the CRM to Di
erential Geometry� and which is
coordinated by Marcel Nicolau�

The Advanced Course is organized in two lecture series that will be de�
livered by professors Rolf Schneider and R�emi Langevin both very well known
speciallists in this area�

We thank the lecturers for their e
ort in the preparation of these notes
and for having them on time to assure that the volume will be ready at the
beginning of the course�

The course is complemented with problems sessions and invited conferences
by X� Gual� M� Santander� E� Garc��a�Barroso and L� M� Cruz�Orive� whom we
thank for their collaboration� This volume also contains abstracts of these
lectures�

We want express our gratitude to prof� M� Castellet director of the CRM
as well as to the sta
 of the Center� Mrs� Consol Roca and Mrs� Maria Juli
a
who helped us in the organization of this course�

We hope that this course will be pro�table to all the participants and that
all of us will remember these days with great pleasure�
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Introduction to Integral Geometry

R� Langevin

�



� Introduction

In ���� Bu�on published his Essai d�arithm�etique morale �Bu�� where he
describes the needle experiment�

Figure �� Bu�on�s calculation

The 	rst paragraph of the essai is�
La mesure des choses incertaines est ici mon objet� je vais tacher de don�

ner quelques r�egles pour estimer les rapports de vraisemblance� les degr�es de
probabilit�e� le poids des t�emoignages� l�in�uence des hasards� l�inconv�enient
des risques� et juger en m�eme temps de la valeur r�eelle de nos craintes et
de nos esp�erances� After some considerations about a game called 
franc�
carreau�� where the players gamble on the position of a coin thrown on a
tiling 
entirely in a tile or accross some division line� � Bu�on proves that�
when a needle is thrown 
at random� on the boards of a parquet� if the
length of the needle is equal to the width of the boards� the probability it
will lay across two boards is ���� He admits without the slightest doubt
that the right probability measure on the space of positions of the needle is
the measure �

�� jdx � d�j which we shall consider below�
The appearance of the number � hides a circle� The physicist Paul

Langevin described in ���� a way to visualise a proof of Bu�on�s result�
Let us throw thousands of needles and move them using only transla�

tions parallel to the boards or perpendicular to them with length an integer
multiple of the width of the board� As all relative positions 
angle� distance
of the needles to the lines boundary of the boards� are equally likely� we can
rearrange the needles along a very large circle as in 	g�� having essentially

�



Figure �� Needles and rearranged needles

the same amount� say N� of needles above any point of the circle� The total
amount of needles is close to N�L� where L is the length of the circle and
the number of needles crossing the lines is close to

N�
number of intersection points of the lines with the circle�

that is �N�D� where D is the diameter of the circle� The required probability
is then �N�D�N�L � �

� �
A hundred years will be needed to clarify the notion of probability in�

volved� Before coming to that� let us give a conventional proof con	rming
Bu�on�s result� Locate the position of the needle on the �oor by the po�
sition of its tip and the angle of the needle with the direction of the lines�
Using as before translations parallel to the boards� or multiple of the width
of the boards� we can suppose that our needle has its tip on the vertical
segment AB of 	g �� We assume that AB has length �� Call x the distance
between the tip of the needle and A�

Therefore the set of all possible positions of the needle is �AB��S�� 
or
rather lR�ZZ � S��� The needle meets the line LB if x� sin� � � and LA if
x� sin� � ��

The ratio between the dashed area and the area of the rectangle ��� ������ ��
is ����

�
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Figure �� Localization of the needle
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Figure �� Area in ��� ��� ��� ��� of the needles crossing a line

� The birth of the notion of geometric mea�

sure

��� Cauchy and Crofton

In ����� in a communication to the French Academy of Sciences� Cauchy
noticed that the length of a convex curve is the average of the lengths
of the orthogonal projection of the convex curve on all lines through the
origin� More generally� for any recti	able planar curve C� denote by m
C�L�
the 
absolute length� of the orthogonal projection of C on the line L� the
length of the projection counted with multiplicity� In modern language�

m
C�L� �

Z
card
p��
y�dy� � y � L

Then�

�



Theorem ����� Cauchy formula 	Cau
Z ���

���
m
C�L��d� � �
length of C�

Cauchy�s proof amounted to prove the formula for a segment� and then
approximate any curve by inscribed polygons�

l j cos� j

�

c

Figure �� Measure of the lines orthogonal to a given direction and intersect�
ing a segment

From Cauchy�s communication to the french academy in ���� �Cau�� to
Crofton�s m�emoire 
����� �Cro� �� years where needed to clarify the notion
of a measure on the set of a�ne lines� Let us quote Crofton� The expression
�at random� has in common language a very clear and de
nite meaning� one
which cannot be better conveyed than by Mr Wilson�s expression �according
to no law���� There is always a direct reference to the assemblage of things
to which it belongs and from which we take� and not till then� we can proceed
to sum up the favorable cases���� But there are several classes or questions
in which the totality of cases is not merely in
nite� but of an inconceivable
nature���We can thus continually suppose variations of the experiment� each
variation giving a new in
nity of cases� 
then Crofton justi	es the choice

�



of the measure on the plane�� What means� an in
nity of lines drawn at
random on the plane� what is the nature of this aggregate� First� since any
direction is as likely as the others� as many of the lines are parallel to any
direction as to any other� As this in
nite system of parallels is drawn at
random� they are as thickly disposed along any part of the perpendicular as
along any other���

Crofton did found the right answer as we will see in next section� Nev�
ertheless� at the turn of the century the choice of a measure on a continuum
was not obvious� because there were too many possibilities�

��� Bertrand�s paradoxes

Let us give three di�erent answers proposed by the probabilist Bertrand to
the same problem of elementary geometry� At that point� integral geometry
was close to desappear� The question is 
see pictures below�� what is the
probability for a chord of a circle taken at random to be longer than the
side of an equilateral inscribed circle� The three di�erent answers Bertrand
proposes will come from three di�erent ways to choose the chord�

�� Chose an arbitrary point A on the circle� Using the rotational symetry
of the picture we can forget about A and choose now another point B on
the circle� endowed with arc length measure�

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

����������������
����������������
����������������
����������������

A

B

Figure �� Probability ���

The chord is then longer than the side of the inscribed equilateral triangle
with probability ����

�



�� Chose at random the a�ne line supporting the chord� The rotational
symetry of the picture allows us to forget about the direction of the line�

Figure �� Probability ���

As cos
���� � ��� the probability is now ����
�� Chose at random the middle of the chord in the disc 
the measure is

the Lebesgue measure on the disc�� We ignore chords through the origin�
as they form a set of measure zero�

Then the probability is ����
Poincar�e will take integral geometry out of this dead end� For him� 
see

for example his book published in ���� �Poin�� the most interesting measure
is the one which is invariant under the group of a�ne isometries of the
plane� Only isometries preserving the origin are allowed by presentations
�� and ��� In �� translations also act on the set of a�ne lines and preserve
our measure� It was also Crofton�s answer�

�
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Figure �� Probability ���
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� The euclidean plane

��� Geometric measures on sets of lines

We will start with the Euclidean geometry of the plane� The group of
Euclidean motions M acts on the points of lR�� It leaves invariant the
Lebesgue measure dx � dy� It acts also on the set of a�ne lines of the
plane A
�� ��� The oriented lines through the origin of lR� form a circle� as
any oriented half�line cuts the unit circle in a point� This correspondence
de	nes the topology of the set of oriented lines through the origin� The set
of unoriented lines is the quotient of this 	rst circle by the relation x � �x
We denote this set by G
�� ��� We can visualize the latter identifying a line

distinct from the x�axis� with its intersection 
di�erent from the origin�
with the circle tangent at the origin to the x�axis of next picture�

cercle des droites vectorielles

cercle des droites vectorielles
non orientées

orientées
cercle des droites vectorielles

cercle des droites vectorielles
non orientées

orientées

Figure �� Oriented and non�oriented directions�

A non�oriented a�ne line corresponds to each point t of a direction D�
just take �t to be the perpendicular through t to D� Using oriented direc�
tions we would get oriented a�ne lines A�
�� ��� In that case we consider
an oriented direction D� and the a�ne line perpendicular to a point t � D�


which can be identi	es with its coordinate on the oriented line D��� Let �
be the oriented angle of the x�axis and D�� We see that the oriented a�ne
grassmannian A�
�� �� is a cylinder S� � lR on which natural coordinates
are � and t�

Figure ��� coordinates on the set of oriented lines�

From the angular measure jd�j on the unit circle and the Lebesgue mea�

�



sure jdtj on the line D� we get a measure jd� � dtj on the set of oriented
a�ne lines� This measure is invariant by a rotation of center the origin� A
translation of vector v moves the line 
�� t� to the line 
�� t� � ei�jv �� it
also leaves invariant the measure jd� � dtj� As an exercise� let us represent
on the cylinder S�� lR the oriented a�ne lines through the extremity O� of
the vector v on the picture below�

Figure ��� Oriented lines through the origin and through another point�

We will call the family of lines through a point� or the family of lines
parallel to a given direction a linear pencil� The equation of a line of a linear
pencil is a linear combination of the equations of any two di�erent lines of
the family�

Remark� The oriented a�ne lines through the point m � 
a� b� are
the intersection of the cylinder x� � y� � � with the plane of equation
z � ax�by� Parallel lines are the intersection of the cylinder with a vertical
plane through the origin�

The projection 
forgetting the orientation� of A� on A de	nes the mea�
sure� still denoted jd� � dtj� on A�
�� ��� this projection also permits us
to recognize that A
�� �� is the M obius band obtained from the rectangle
��� �� � lR identifying 
�� t� with 
���t�� the next picture shows the set of
lines corresponding to the small rectangle ���� �����t�� t���

��



Figure ��� The M obius band�

��� The Gauss map

During this section� curves will be of class C�� An essential tool in the
study of hypersurfaces of lRn and 	rst planar curves� is the Gauss map �
which to each point m of an oriented curve C associates its oriented normal�
N
m� � R���
T 
m�� where T 
m� is the oriented unit tangent at m to the
curve�

� � C � S�

The jacobian k
m� of � at a point m � C is called the curvature of
C at that point� Notice that we can de	ne a Gauss map with value in
P�� forgetting the orientation of N
m�� Notice also that the tangent map
T � C 	� S� mapping a point m � C to the oriented unit tangent to C at
m� has the same jacobian k
m�� We will use the map C 	� A�
�� �� the
paragraph 
envelopes� of next section�

Remark� Let m � C be a noncritical point of the Gauss map� Then
the point m is a nondegenerate critical point of the orthogonal projection
of C on the oriented line L
x� de	ned by N
x��

Proof� Locally C has the equation y � f
x� where x is a coordinate
on the line generated by T 
x� and y a coordinate on the line L
x�� We

��
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Figure ��� The Gauss map�

can choose the euclidean coordinates x� y such that f
�� � �� We also have
f �
�� � �� The curvature k
m� is in that case just � �f�
��� If the curvature
is nonzero� the orthogonal projection of C on L has the nondegenerate
hessian f�
��� �

For a direction L� denote by �
C�L� the number of critical points of the
orthogonal projection of C on L� The change of variable theorem implies
then that there exists a neighbourhood v of m such thatZ

v

jk
m�jdm �

Z
Pn��

j�j
v� L�dL

The result holds globally on C�

Theorem ����� Z
C

jk
m�jdm �

Z
Pn��

j�j
C�L�dL

Proof� The proof relies on Sard�s theorem� The set ! of critical values
of � is of zero measure� Its inverse image ���
!� is the union of critical
points of �� where k � �� and of noncritical points of � with image in 	�
the latter form a set of measure zero� The complement of ���
!� is an
enumerable union of open sets of C� Discarding at most an enumerable set
of points if necessary� we get an enumerable union

S
i
Ui� of open set of

C where the restriction of � is a di�eomorphism on its image� Using the
change of variable theorem and summing on i we get�Z

C

jk
m�jdm �

ZS
i
�Ui�

jk
m�jdm �
X
i


�
Ui� �

Z
Pn��

j�j
C�L�dL

��



�

We can also count �most� of critical points with a sign� Assign to the
non degenerate critical points of the orthogonal projection of the oriented
curve C on the oriented line L� the sign 

m� � 
���index�m�� When the
two unit vectors contained in L are non degenerate values of the Gauss map�
we can� at each point m such that �
m� 
 L orient the line L using the
normal N
m� to de	ne 

m�� Thus we get�

�
C�L� �
X

��m��L




m��

Theorem ����� If one of the integralsZ
C

jk
m�jdm �

Z
Pn��

j�j
C�L�dL

is 
nite� then� Z
C

k
m�dm �

Z
Pn��

�
C�L�dL

To prove this last theorem� is is enough to track the signs in the proof
of the preceeding one�

A classical theorem for embedded closed planar curve states that�

Theorem �����

j
Z
C

k
m�dmj � ��

It is a consequence of the following fact that we will explain below�

�
C�L� � � � degree
Gauss map� � ��

when C is a simple closed curve� and when �
C�L� makes sense�
As a corollary we get the inequality�Z

C

jk
m�jdm � ��

��� Volume of the tube around a curve

We will use the previous de	nitions to compute the volume of a small tubular
neighbourhood of a closed planar curve C� and the volume of the thickening
on one side of the curve�

��



Let C� be the curve

C� � fC
t� � �N
t�g
The tubular neibourhood of C

Tubr
C� � fmjd
m�C� � rg
is the union

Tubr
c� � f��r���rC�g
The tubular neighbourhood lemma tells us that for r small enough the

map�

t� �� 	� fC
t� � �N
t�g

is di�eomorphism� Let us also de	ne the thickening 
on the side of N� of C�

Thr
C� � f�����rC�g
The volume of Thr
C� is the integral�

vol�Thr
C�� �

Z
����r

vol
C� �

The projection� �counted with multiplicity� of the curve C� on a line L is
obtained� modifying the projection of C on intervals of length � with one
extremity a critical value of the orthogonal projection of C on L�

c

mc

C
C�

LI�c�

Figure ��� Thickening of a curve�

To give a formula suppose 	rst that the orthogonal projection �L on L
is a Morse function� that is� has only non degenerate critical points� which

��



all have di�erent images� Then a critical value c � L is the image of one
critical point mc � C� The normal N
m� is parallel to L and allows us to
de	ne the interval I
c� � �c� c� �N
m��� The projection of C on L de	nes
a function 
with integer values� on L�

�
C�L�
y� � 
 ���L 
y�

Depending on the local position of C � N
m� and the line orthogonal to L
in c� we de	ne a sign



c� � 

mc� � ��

this generically makes sense� as the critical value c will� for almost every
line� be the image of a unique critical point� see section ��� for more precise
statements�� Then�



c� � �� if C is locally not on the side of N
m��

�� if C is locally on the side of N
m�

Remark� To change the orientation of N will change the sign of 

c��

Proposition ����� The function �
C� � L� is equal� when �L is a Morse
function� to

�
C� � L� � �
C�L� �
X
c



c� � � � �I�c�

In the formula the summation is over all critical values c of �L� and �I�c�
is the characteristic function of the interval I
c��

Observe that the degree of the Gauss map � can be computed using any
generic line L� that is� here� any line such that the projection �L is a Morse
function� This degree is X

c



c�

We now also that the set of non�generic lines is of measure �� We know
that� depending of the orientation of the curve� this degree is ��� The
proof follows from the de	nition of the function �
C�L� See 	g� Rewrite
Cauchy�s formula for C� using the functions ��

� � length
C� � �
Z
L�P�

Z
L

�
C� � L�

Using the proposition� the remark on the degree of �� and permuting the
order of integration 
this makes sense when the curve is compact smooth
arc� one gets the�

��



Theorem �����

vol
Thr
C�� � r � length
C� � 
���ind� � � � r�

and� using also the previous remark� we get the corollary�

Corollary ����� for r small enough�

vol
Tubr
C�� � �r � length
C�

In the section higher dimensional convex bodies� we will generalise
this proof to higher dimensions�

��



� Two dimensional convex bodies and trans�

lations

��� Envelopes

We mentioned in the previous section the Gauss map �� If we retain not
only the normal 
or tangent direction at a point m but the oriented a�ne
tangent line we get a map C 	� A
�� ��� Conversely� to a smooth one�
parameter family of a�ne lines� corresponds in general a curve� which is the
envelope of this family of lines� Let Dt � fa
t�x � b
t�y � c
t� � �g be a
smooth family of lines where a
t�� b
t�� c
t� are smooth functions of t� The
lines Dt and Dt�h have an intersection in the plane if they are not parallel�
When h goes to zero this intersection point may have a limit m
t�� Let us
give a su�cient condition for the points m
t� to exist� and belong to a curve
C which admits the tangent Dt at the point m
t��

Theorem ����� Let Dt be a smooth family of lines of equations a
t�x �
b
t�y � c
t� � �� 
x� y� � lR�� If for all t � ��� ��� the determinant

det

�
a
t� b
t�
a�
t� b�
t�

�
is di�erent from zero� the family envolves a curve

C� that is� the curve is the union of the points� m
t� � Dt 
 D�
t� where

D�
t is the a�ne line of equation a�
t�x � b�
t�y � c�
t� � �� Moreover if the

determinant det

�� a
t� b
t� c
t�
a�
t� b�
t� c�t
a��
t� b��
t� c��
t�

�A is also di�erent from zero�

the curve is smooth at m
t� and the tangent to C at m
t� is Dt�

We will note D��
t the line of equation a��
t�x � b��
t�y � c��
t� � ��

Proof� Let us 	nd the intersection point of Dt and Dt�h� We need to
solve the linear system�

a
t�x� b
t�y � c
t� � �
a
t� h�x� b
t� h�y � c
t� h� � �

A 	rst order Taylor expansion of the second equation gives�

a
t�x� b
t�y � c
t� � �

a
t� � a�t�h� o
h��x � 
b
t� � b�
t�h� o
h��y � 
c
t� � c�
t�h� o
h�� � �

This is equivalent to the system�
a
t�x� b
t�y � c
t� � �
�a�
t�h� o
h��x� �b�
t�h� o
h��y � �c�
t�h� o
h�� � �

��



If the determinant det

�
a
t� b
t�
a�
t� b�
t�

�
�� �� the limit of the solution�

when h goes to zero� is the solution m
t� of the system�
a
t�x� b
t�y � c
t� � �
a�
t�x� b�
t�y � c�
t� � �


we shall refer to that system as 
"���

The condition det

�� a
t� b
t� c
t�
a�
t� b�
t� c�t
a��
t� b��
t� c��
t�

�A �� � guarantees that the

three lines D�D� and D�� do not belong to the same linear pencil� Up to
terms negligible compared with h the point m
t�h� is the point Dt
D�

t�h�
which show that the limit of the line containing the chord m
t��m
t� h� is
Dt� See next picture �

D�
t�h

D� � D�
t

Dt�h

Dt �D�
t�h

Dt � D

D�� � D��
t

Mt

Mt�h

Figure ��� A non degenerate piece of envelope

Linear pencils are in that sense 
degenerate� envelopes�

��� Support functions and h�erissons

The name h�erisson 
french word for hedge hog� has been chosen because the
skin of this animal cannot fold to much without inconvenience because of its
spikes� We will call h�erisson the envelope of a family of lines parametrised

��



by their direction� In fact our de	nition gives oriented a�ne lines� as we can
orient Du by R���
u�� More precisely� each lines of the family Du� u � S�

admits the equation�

Du � fmj � mju �� h
u�g
where u is a unit vector� and h
u� a real function� The system
"�which gives
the points of the envelope becomes�

� mju �� h
u�

� mjR���
u� �� 
dh�du�
u�

and has automatically a non zero determinant�
Let Q be a compact convex body� We can de	ne a function h
u� by �

h
u� � sup�� mju ��m � Q�

The line Du of equation � mju �� h
u� is the support line of Q in the
oriented direction u�
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Figure ��� support function

It touches Q and Q stays on one side of Du� The convex body Q is the
intersection of the half spaces � mju �� h
u��
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exercise check that the tangents to an hyperbola and the two asymp�
totes do not satisfy the conditions Dt smooth and

det

�� a
t� b
t� c
t�
a�
t� b�
t� c�t
a��
t� b��
t� c��
t�

�A �� �

Proposition ����� When �Q is a smooth curve of nowhere zero curvature�
it is the envelope of the family Du� The radius of curvature of �Q at the
point where Du is tangent to the curve is h
u� � h��
u�� where h is the sup�
port function de
ning the family Du� Conversely a bounded smooth support
function h such that h � h�� is everywhere strictly positive has an envelope
which is the boundary of a compact convex body�

In a generalized sense the boundary �Q can always be seen as the envelope
of the family Du� The condition 
"� is always satis	ed� At a point where
�Q has a right and a left tangent which are di�erent� the family Du contains
an arc in the pencil of line through that point�

Proof� When it is di�erent from zero� the curvature of the boundary
�Q� with the 
conterclockwise� boundary orientation� is positive� Let us
compute the radius of curvature of a h�erisson� and prove that� if it is always
positive� the h�erisson is the boundary of a smooth convex body� with ev�
erywhere positive curvature� The caracteristic point m
u� � 
Du 
D�
u��
satis	es the equations�

� mju �� h
u��� mjR���
u� �� h�
u�

Let � be the angle 

�� ��� u�� The rotation R� sends the vector 
�� �� to u
and 
�� �� to R���
u�� The two equations are equivalent to�

R��
m� � 
h
u�� h�
u��

The solution is then�
m
u� � R�
h
u�� h

�
u��

Therefore� the derivative of the map G � u 	� m
u� is�

R�����
h
u�� h
�
u�� �R�
h

�
u�� h��
u��

Here we identify the derivative with respect to u � S� and the derivative
with respect to �� This vector is just R�����
h
u� � h��
u��� Of course the
tangent to the envelope is� at least when h � h�� �� �� the line Du� The
map G is the inverse of the Gauss map �� and we have just proved that its
jacobian is h
u� � h��
u�� The radius of curvature � of the envelope is then�

�
u� �
�

k
m
u��
� h
u� � h��
u�

��



The envelope is locally convex and closed� therefore it is the boundary of a
compact convex body� Conversely� the condition k � � implies that there is
only one point m
u� on �Q satisfying�

� m
u�ju �� h
u� � sup � mju ��m � Q

Moreover� the Gauss map is invertible because k �� �� Therefore the tan�
gents to the envelope can be parametrised by u � S�� Observe that Du is
orthogonal to u� The limits

lim�������Du 
Du��

and
lim�������Du 
Du��

exist because Q is convex� The point m
u� has to be equal to both�

lim�������Du 
Du��

and
lim�������Du 
Du��

as� if any of these limits were di�erent� the tangent at that point would also
be Du� which is impossible� as � is a bijection� �

Remark� Using standard arguments in singularity theory� one can check
that for a generic support function h� a plane h�erisson will have only non
degenerate cusps 
where R
u� � �� R�
u� �� ���

As an example the h�erisson de	ned by the support function h
�� � cos��
is pictured below

��� Minkowski sum and mixed volumes

The intersection of a compact convex body with one of its support lines Du

has to be convex� that is has to be a segment� Let us de	ne the Minkowski
sum of two convex bodies Q� and Q� by�

Q� �Q� � fm� �m�jm� � Q��m� � Q�g
One veri	es that the support line of Q��Q� orthogonal to the vector u � S�

has the equation�
� mju �� h�
u� � h�
u�

where Q� � Q� are the support functions of Q� and Q�� In other words�
h� � h� is the support function of Q� �Q�� Of course scalar multiplication

homothety� is compatible with the Minkowski sum�

�Q � ��Q� ��Q when �� � �� � �� �� � �� �� � �

��



�

x� �

Figure ��� cos ��

Remark� When the two convex bodies have at every point of their
boundary� a strictly positive curvature� the boundary of Q� �Q� is the set
of points fm�
u� �m�
u�� u � S�g�
Proposition ����� The volume of the Minkowski sum �Q� � �Q� is an
homegeneous polynomial in � and ��

vol
�Q� � �Q�� � ��volQ� � 
� � ��V 
Q�� Q�� � ��volQ�

Proof� We will compute the area of a convex body Q in terms of its
support function h� Mixing the support function h and the arc length ds of
the boundary �Q one gets 
see 	g �

vol
Q� �

Z
�Q

hds

An unambiguous � but heavier notation would be�

vol
Q� �
�

�

Z
�Q

h
N
c
s��ds

��



Figure ��� Minkowski sum of a triangle and a convex body of smooth bound�
ary

where c � S�lenght��Q� � �Q is a parametrisation by arc length of �Q� and

N
c
s�� is the exterior normal at c
s� � �Q� We have computed in terms of
the support function the ratio between the arc length and the length swept
by the normal�

ds

du
� R
u� � jjac
G�j � h
u� � h��
u�

Here R
u� denotes the radius of curvature of the envelope of the lines �
mju �� h
u� at the caracteristic point m
u�� We get�

vol
Q� �
�

�

Z
S�
h
h� h���du

Recalling that the support function of the Minkowski sum of �Q���Q� is�
h� � h� 
h� and h� being the support functions of Q� and Q��� we get �

vol
�Q� � �Q�� �
�

�

Z
S�

�h� � �h���
�h� � �h�� � 
�h� � �h��

���du

�
�

�

Z
S�

�h��
�h� � �h���� �

�

�

Z
S�

�h��
�h� � �h�����

�
�

�

Z
S�

�h��
�h� � �h���� �

�

�

Z
S�

�h��
�h� � �h��� �

The 	rst two integrals are respectively ��vol
Q�� and ��vol
Q��� The
sum of the two last ones is �� times an integral mixing the two support
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Figure ��� Area of a convex body in terms of the support function

functions and the two radii of curvature� This integral V 
Q�� Q�� is called
the mixed volume of Q� and Q�� �

We 
see� the mixed volume on 	g Minkowski sum of a triangle and a
convex of smooth boundary above� It has also interesting interpretations in
algebraic geometry see �Tei���

��� Inequalities

Inequalities between functions of length� volume� mixed volume of convex
bodies is a very rich topic� including isoperimetric inequalities� The inter�
ested reader can consult �Bo�Fe�� �Schnei� for example�
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� Grassmann manifolds

��� De�nition of vectorial and a	ne Grassmann man

ifolds

Let us now show that the set G
n� p�� called Grassmann manifold� of vecto�
rial subspaces of dimension p of lRn has a natural structure of a 
n� p� � p��
dimensional manifold� Consider a p�dimensional subspace h� of lRn� Let
us denote by h�� its othogonal subspace 
h�� has dimension n�p�� Any p�
dimensional subspace h of lRn transverse to h�� is the graph of a linear
map Lh from h� to h�� � and any such graph is a p�dimensional subspace
transverse to h�� � Chosing bases in h� and h�� the matrix of that map is
a p � 
n � p� matrix� This procedure de	nes a chart of G
n� p�� Using all
the p�dimensional subspaces of lRn� we get an atlas of G
n� p�� It is� in fact�
enough to consider the 
np � p�dimensional coordinate subspaces to get an
atlas�

h�o

ho

L
�x�
h

x

�x�Lx
h
�

Figure ��� A chart of G
n�p�

Remark� The Grassmann manifold G
n� ��� that is the set of lines of
lRn� is the projective space lPn��� It is the quotient of the sphere Sn�� by
the antipodal map� q 	� 
�q�� The Grassmann manifold G
n� n� �� is also
di�eomorphic to lPn�� as you can see using the correspondance between a
plane and its orthogonal line� Using the same di�eomorphism we can see
that the hyperplanes containing a given line form a lPn�� 
 lPn��� After
de	ning a riemannian metric onG
n� �� we shall see that the di�eomorphism
G
n� ��� G
n� n� �� is also an isometry�

��



Using the action of the group of linear isometries on G
n� p� we will
prove that the Grassmann manifolds are compact�

Lemma ����� The Group O
n� of linear isometries of lRn is compact�

Proof� The product Sn � Sn � ��� � Sn 
n times� is compact � The
set of orthonormal bases of lRn is a closed subset of Sn � Sn � ��� � Sn�
de	ned by the equations � uijuj �� �� It can be identi	ed with the linear
map which sends the canonical basis 
e�� e�� ���� en� to the orthogonal basis

u�� u�� ���� un�� The group O
n� is therefore a compact set� �

Theorem ����� The Grassmann manifold G
n� p� is homeomorphic to the
quotient�

SO
n��SO
p�� SO
n� p�

Proof� Let us 	rst prove that the two sets are the same� The image
by an element g of O
n� of the p 	rst vectors 
e�� e�� ���� ep� of the canonical
basis generate a p�dimensional subspace h of lRn� Let us call

Ep � O
n�� G
n� p�

this map� Let us now consider two isometries� g� � O
p� and g� � O
n�p��
They determine an isometry 
g� � g�� � O
n�� The image of g � 
g� �
g�� is again h� A subspace h of dimension p admits an orthogonal basis

u�� u�� ���� up�� the orthogonal h

� admits an orthogonal basis 
u�p���� ���� un�
and the basis 
u�� ���� un� is the image by a linear map of the form g�
g��g��
of the canonical basis 
e�� ���� en�� Therefore� the kernel of the map Ep is
the subgroup �
g� � g��� � O
n�� This proves the set equality G
n� p� �
O
n���O
p� � O
n � p��� To prove that the topologies coincide� one needs
essentially to prove that the map from an orthogonal system 
u�� ���� up� to
the linear subset h it generates is continuous� This is easy� lengthy and
boring� therefore we 
leave that proof to the reader�� �

Remark� Equally exciting is to prove that the topology on G
n� p�
obtained using the Haussdor� distance on the intersections of p�dimensional
subspaces with the closed unit ball 
or with the unit sphere� is again the
same as the manifold topology�

Remark� The orthogonality in lRn provides a di�eomorphism between
G
n� p� and G
n� 
n � p��� This di�eomorphism is an isometry for the rie�
mannian metrics invariant by the action of the isometries we de	ne below�

The set A
n� p� of a�ne p�dimensional subspaces form a 	ber space

over G
n� 
n � p�� with 	ber lR�n�p�� The 	bration map associates to a
p�dimensional a�ne subspace H of lRn its orthogonal complement h�� The
intersection H 
 h� gives the isomorphism between the 	ber and lRn�

��



��� Metrics and measures

The group of linear isometries of lRn acts on G
n� p�� It is natural to look
for a metric on G
n� p� which is invariant by this action� To do that� 	rst
observe that our charts

flinearmaps h 	� h�g

give also the tangent space in h to G
n� p�� The euclidean metric of lRn

allows us to choose an orthogonal basis in h and in h�� Let us put on the

p� 
n� p�� matrix space the natural euclidean norm�

jMj� �
X


squares of the coefficients�

This de	nes on G
n� p� a riemannian metric invariant by the action of the
linear isometries� We leave as an exercise for the reader to check that the
covering map from S�n��� to G
n� �� is a local isometry�

The volume measure associated to this riemannian metric is also invari�
ant by the group of linear isometries�

Remark� The previous results can be rephrased in terms of homo�
geneous spaces� One then observes that the measure de	ned above is a
quotient of the Haar measure on O
n�� and that the metric we de	ned on
G
n� p� is such that the projection O
n�� G
n� p� is a riemannian submer�
sion� �Sa��

��



� The Gauss map and what can be done in

higher dimensions and codimensions

��� The Gauss map and the principal curvatures

We consider 	rst the case of an embedded hypersurface M of lRn� It is then
oriented 
the normal vector N
m� at m � M points out of the bounded
component of lRn nM�� we can de	ne the Gauss map�

� � M � Sn���m 	� N
m�

We will also consider a projective Gauss map� also denoted by � when there
will be no ambiguity� using the line L
m� normal at m to M �

� � M � lPn���m 	� L
m�

Its critical values are images under the natural projection of the critical
values of the 
spherical� Gauss map and the critical points of both Gauss
maps are the same� The Gauss �or Gauss�Kronecker� curvature K
m� at
m �M is the jacobian at m of the 
spherical� Gauss map� The eigenvalues
of d�
m�� k�� k�� ���� kn�� 
there may be repetitions� are called the principal
curvatures of M in m� To each corresponds an eigenvector ei � and these
eigenvectors can be chosen to form an orthonormal basis�

On a neighbouhood of a point where the principal direction are non
zero and all di�erent� the vector 	elds de	ned by the eigenvectors can be
integrated� giving lines of curvature� Geometrically� following a line of cur�
vature the tangent hyperplane only rolls� In general it undergoes a mixture
of pitch and rolling� On a surface embedded in lR�� on a domain where the
Gaussian curvature is strictly negative� the tangent plane only pitches along
the asymptotic curves 
curves which are everywhere tangent to vectors v
such that � d�
v�jv �� ���

The second fundamental form II
m� is de	ned by�

II
m�
v� �� d�
m�
v�jv �
It can be diagonalised in an orthonormal basis� precisely the one we have
chosen before to diagonalise d� � The symmetric functions of curvature are
the coe�cients of the polynomial

det�Id� td�
m�� �
Y


� � k�t�
� � k�t����
� � kn��t� �

n��X
�

	i
m�ti

When possible� we shall drop the point m in 	i
m��
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Remark� Consider an i�dimensional subspaces h 
 TmM � In a neigh�
bourhood of the point m the intersection M 
 
h�L
m�� is an hypersurface
of h�L
m�� Denote by K
m�h� the Gauss�Kronecker curvature of this last
hypersurface� oriented by N
m��

Proposition �����

	i
m� � const �
Z
G�TmM	i�

K
m�h�

where G
TmM� i� is the Grassmann manifold of i�dimensional subspaces
h 
 TmM and const is a constant depending only on dimensions�

The proof amounts to compare the integral of the proposition with a trace
of �i
�� acting on the exterior algebra

Vi
TmM��

folklore�� �Lan����
We can locally write an equation for M �

xn � f
x�� x�� ���� xn���

choosing the 	rst 
n��� coordinates to be on axes generated by the vectors ei
and the last on the axis generated by the normal N
m�� Then the Hessian
of f at m is a diagonal matrix with entries k�� k�� ���� kn��� This proves the�

Proposition ����� The point m is a degenerate critical point of the or�
thogonal projection of M on the line L
m� generated by the normal N
m�
if and only if m is a critical point of the projective Gauss map�

Corollary ����� The set of lines L � lPn�� such that the projection pL on
L admits degenerated critical points is of zero measure�

Proof� By Sard theorem� those lines� which are critical values of the
projective Gauss map� form a set of measure zero� �

Generalzing the result of subsection The Gauss map about plane
curves to hypersurfaces in lRn� in particular surfaces in lR� amounts again
to replace the computation of a curvature integral by a count of critical
points� First suppose that M is an oriented hypersurface of lRn� The Gauss
map sends m � M to N
m�� the projective Gauss map sends m to the
non�oriented normal L
m� � lPn��� Let us observe that� even if M is not
orientable� then the projective Gauss map and the absolute value jK
m�j
of the Gauss�Kronecker curvature still make sense�

De�nition ����� LetL�
M�L� be the number of critical points of the or�
thogonal projection pL of M onto L� The notation emphazizes the zero
dimensionality of the counting of critical points�

��




Often in the litterature the notation j�j
M�L� is used�� If the manifold M
is oriented� we can compute the index of each critical point of the orthogonal
projection on the line Lz generated and oriented by a vector z � Sn�� � Let
us de	ne again�

L�� 
M�N� �
X

mcritical


���index�m�

If the dimension of M is even� the previous sum does not depend on the
orientation of L� and indeed can also be de	ned without assuming that M
is orientable�

The proof of the Exchange theorem of section � can be copied to get
the�

Theorem ����� Exchange theorem in codimension �Z
M

jK
m�jdm �

Z
lPn��

L�
M�L�dL

When the previous integrals converge� and if either M is oriented� or M
is even dimensional� an analogous equality � keeping track of signs� holds�

Theorem �����Z
M

K
m�dm �

Z
Pn

L�� 
M�L�dL � �
M�

��� Lipschitz
Killing curvature

Suppose now that M is a submanifold of codimension p � � of lRN � The
dimension of M is n� We denote by N 
M� the normal bundle of M and by
N 
m� its 	ber� 
TmM�� 
 TmM � We can either

� De	ne a generalised Gauss map from the unit normal bundle N �
M�
of M to SN�� by �
m� v� � w� Denote by K
m� v� its jacobian at the
point 
m� v� � N �
M�� This makes sense as the unit normal bundle
has a natural metric� induced by its embedding in T lRN � which makes
the bundle projection a riemannian submersion�

#g jfiber� restriction of the ambient euclidean metric

#g jhorizontal space� pull back of the metric of M

We also de	ne the projective normal bundle PN 
M� as the quotient
of N �
M� by the antipodal map on each 	ber� we denote by PN 
m�
the 	ber of this bundle�

��



��The Lipschitz�Killing curvature of M at m is�

K
m� � ���

Z
N��m�

K
m� v�

When the dimension of M is even K
m� v� � K
m� 
�v�� so we can
write�

K
m� �

Z
lPN �m�

K
m� v�

��The absolute curvature of M at m is�

jKj
m� �

Z
lPN �m�

jK
m� v�j

Notice that in general jKj
m� �� jK
m�j�
� Consider� for each v � N �
m� the orthogonal projection pm	v of a
neighbourhood of m on the subspace TmM � lR �v� At m we can com�
pute the Gauss�Kronecker curvature of the hypersurface pm	v 
neigh�
bourhood of m�� Let us call it also K
m� v�� The Lipschitz�Killing
curvature and the absolute curvature are then obtained by the same
formula as above�

K
m� � ���

Z
N��m�

K
m� v�

and�

jKj
m� �

Z
lPN �m�

jK
m� v�j

Proposition ����� The two de
nitions of K
m� v� given above coincide�

Proof� Let us take a point 
m� v� of the unit normal bundle� If K
m� v� ��
�� locally� the inverse image by the Gauss map of

lR � v � TmM

is an n�dimensional submanifold V � N �
M� transverse at 
m� v� to the 	ber
N �
m�� Observe that if 
x�w� is a point of V � the vector w is orthogonal
to pm	v
TxM� at pm	v
x�� Let J
x�w� be the jacobian of the projection of
Tx	wV onto the horizontal space H� Almost by de	nition of the horizontal
space it is also the jacobian of the restriction to Tm	vV of the di�erential of
the projection of the 	ber bundle N �
M� onto its base space M � Using the
splittings �

Tm	vN �
M� � H� Tm	v
N �
m��

��



lRN � TmM �N 
m�

the linear map dG
m� v� has the matrix��

dG
m� v�jH� 
��
� Id

�
Therefore� using the 	rst de	nition of K
m� v��

K
m� v� � det
dG
m� v�jH
As

GjV
x�w� � w � �
pm	v
x��

One has� using the second de	nition of K
m� v�� which uses the projection
pm� v
M� �

J
m� v�K
m� v� � detd
GjV 
m� v�� � J
m� v��det
dGjH�
�

An exchange theorem can now be stated in any dimension and codimen�
sion�

Theorem ����� General exchange theoremZ
M

jKj
m�jdm �

Z
lPn��

L�
M�L�dL

Proof� Use the change of variable theorem for the map

G � N �
M�� SN���

the 	rst de	nition of the Lipschitz�Killing curvature� and use Sard�s theorem
as before� �

Example
Let C be a curve in lR�� We will use the Frenet frame 
T�N�B�� T 
m�

unit tangent vector to C in m given by the orientation� N
m� � dT
ds and

B
m� � T 
m� � N
m�� Let � be the angle between a vector v � N 
m�
and the principal normal N
m� in the normal plane oriented by the base
N
m�� B
m�� then K
m� v� � k
m� � cos�� where k
m� is the curvature of
C at m� This proves�

Proposition ����� For a space curve C 
 lR�� the absolute curvature sat�
is
es�

jKj
m� � �k
m�

Remark� Using our second viewpoint we can also associate to each projec�
tion pm	v
M� a second fundamental form IIm	v �

��



��� Total curvature of submanifolds

As in the previous section� M is an n�dimensional submanifold of codimen�
sion p of lRN �

De�nition ����� The total curvature of M is �

L�
M� �
�

�jlPN��j
Z
M

jKj

The constant is chosen in a way that round spheres ! contained in an a�ne
p�space of lRN satisfy L�
!� � �� extending the choice L�
point� � ��which
one may view as the starting point of integral geometry$

Theorem ����� Exchange theorem

L�
M� �
�

�jlPN��j
Z
lPN��

L�
M�L� �
�

�jlPN��j
Z
M

jKj

where L�
M�L� is the number of critical points of the orthogonal projection
of M on L�

Remark� %From now on the notation L�
M�L� is more convenient than
the usual one� j�j
M�L��as it will give a nicer form to the reproductibility
property of the p�length functional 
see chapter Blaschke formulas and
kinematic formulas��

Proof� It reduces to an application to the generalised Gauss map�

� � lPN 
M�� lPN��

of the coarea formula�Z
lPN��



���
L� �

Z
lPN �M�

jjac�j

A point m � M is a critical point of the orthogonal projection pL on the
line L if and only if L is contained in the normal space at m to M � that
is� if and only if L � lP
N 
m��� This shows that the number 
���
L� is
just the number L�
M�L�� Finally observe that for almost all lines L� the
orthogonal projection on L is a Morse function 
see �Mi���� which implies
that

L�
M�L� � 

critical values of pL�

�

In particular� for curves and surfaces immersed in lR� we get�

��



Proposition ����� Let C be a curve in lR�� then�

L�
C� �
�

�jlP�j
Z
lP�

L�
C�L�

This formula is usually written as�Z
C

k �
�

�

Z
lP�

j�j
C�L�

Proposition ����� Let M be a surface immersed in lR�� then�

L�
M� �
�

�jlP�j
Z
lP�

L�
M�L� �
�

�jlP�j
Z
M

jKj

This formula is usually written as �Z
M

jKj �
Z
lP�

j�j
M�L�

��



� Integral geometry and topology

The development of this chapter of integral geometry really started in �����
although Fenchel�s results �Fe��

R
C jkj � �� were already proved in �����

��� Integral geometry of polyhedral surfaces in lR�

The proof of a polyhedral Gauss�Bonnet theorem is easier that the proof
of a smooth one� so we will start this chapter by Bancho��s proof of the
Gauss�Bonnet theorem for polyedral surfaces� �Ban��� Let us 	rst de	ne a
polyhedral surface of lR�� The basic pieces are closed plane triangles� Any
triangle has in its boundary three edges and three vertices� Triangles� edges
and vertices will be called simplices� A polyhedral surface is a union of
triangles 	i satisfying the following properties�

�� The interiors of the 	i are disjoint�

�� The union of the 	i is connected� and homeomorphic to a closed sur�
face�

�� The intersection of two triangles is a simplex�

As the triangles are usual euclidean triangles� given a vertex v � 	 we
de	ne the segment e
v� 	� as the image of the edge of 	 opposite to v by
the homotethy of center v and ratio ����

The link of v is the union�

L
v� � �e
v� 	�� v � 	

If q edges contain the vertex v� the planes containing an edge which contains
v form q projective lines inlP�� Let us call C� 
for critical� or C
v� the union
of the projective lines de	ned previously� Any plane through v not belonging
to C cuts L
v� in a 	nite number of points� If all the triangles containing
the vertex v are in the same plane� for a plane P � P� n C one has



L
v� 
 P � � �

The number 
L
v� 
 P � is always even� It is natural to mesure how �non�
trivial� the plane P is with respect to v by�

�
v� P � � 
������� 

L
v� 
 P ��

We can now de	ne the extrinsic curvature of v as the integral�

k
v� �

Z
P�

�
v� P �dP

��



Intrinsically� that is inside the polyhedral surface M � �	i� at each vertex
we can compute the intrinsic curvature k
v� as the di�erence of �� with the
sum of the angles in v of the triangles which contain v�

k
v� � �� �
X
i

�
i� v�� v � fi

The ambiguity between the two de	nitions we gave of k
v� desappears with
the following theorem�

Theorem 	���� theorema egregium
 �remarkable theorem in latin�
The intrinsic and the extrinsic way of computing k
v� give the same

result�

Proof� Let us compute the measure of the planes which intersect one
side e of L
v�� In P� the length of the arc formed by the planes through v�
intersecting e and orthogonal to the plane containing v and e is the angle �
of the triangle containing v and e at e� The measure of the planes through
v that intersect e is then ��e� In 	g below we draw the corresponding set
of oriented planes in S��

Figure ��� Oriented planes intersecting e as vectors in S�

Summing on all the edges of L
v� we get �Z
P�



L
v� 
 P �� � � �
X

e�L�v�

�e

��



or � Z
P�

�
v� P � � �� �
X

�e

which is the relation we sought after between the extrinsic integral
R
P�
�
v� P �

and the intrinsic defect or excess of angle 
compared to a point of the eu�
clidean �at plane�� �� �Pe�L�v� �e �

We can now prove the polyhedral version of the Gauss�Bonnet theorem�

Theorem 	���� �Polyhedral Gauss
Bonnet theorem�
Let M be a polyhedral surface embedded �or immersed� in lR� then its

total curvature satis
es� X
v vertex of M

k
v� � �� � �
M�

Proof� Every triangle 
face of M� has three edges� and� as M is a
surface� every edge belongs to two faces� Let consider the set D of all pairs
e � f of an edge contained in a face� There is a map between D and the set
F of all faces and a map between D and the set E of all edges�

���

D

���

F E

Figure ��� diagramme

By the 	rst map� a face has three inverse images� the pairs formed by
one edge of the face and the face itself� By the second an edge has two
inverse images� the pairs formed by the edge and one of the two faces which
contain it� Then�


D � � � 
F � � � 
E

��



Let us denote the set of vertex of M by V � The sum
P
V k
v� is ��
VM

minus the sum of all the angles of the faces of M � It is then equal to
�
V � � � 

F�� Adding � � ��� � 
F � � � 
E �� we get�

�� � 

F� � �� � 

E� � ��
V �
X
V

k
v�

The 	rst term is �� � �
M�� �

��� Critical points and Gauss curvature
 Chern and
Lasho��s theorem

Generalzing the result of subsection The Gauss map about plane curves
we have proved in section The Gauss map and what can be done
in higher dimensions an exchange theorem for hypersurfaces in lRn� in
particular surfaces in lR��

The theorem of Chern and Lasho� is now a natural application of the
exchange theorem �Ch�La� �

Theorem 	���� The total curvature
R
M
jK
m�jdm of a surface of genus g

embedded or immersed in lR�is bigger or equal to ��
�g���� More generally�
if M is a compact hypersurface immersed in lRn� one has�Z

M

jK
m�jdm � vol
Pn�� �
X

i��	


	n��

�i
M�

Where the numbers �i are the Betti numbers of M �

First we need a lemma�

Lemma 	���� For almost any line L �that is except for a measure zero set
in Pn���� the orthogonal projection of M on L is a Morse function�

To prove the lemma the reader will need to check that the hessian of a local
equation of M as a graph of a function from the tangent plane at m to
the normal line at m coincides with the second fundamental form of M in
M � Degenerated critical points of the projection on a line are then critical
points of the Gauss map� and the critical values in Pn�� of the Gauss map
form a subset of measure zero�

To prove the theorem we need only to integrate on Pn�� the Morse
inequality �Mil���

L�
M�L� �
X

i��	


	n��

�i
M�

When M is a surface
P

i��	


	n�� �i
M� � �g � ��

��



��� Total curvature of closed curves and knots

The 	rst result in this line is Fenchel�s theorem�

Theorem 	���� The total curvature of a closed curve C immersed in lR�

satis
es� Z
C

jkj � ��

In ����� independently� Fary� Fenchel and Milnor proved that 
more topol�
ogy implies more geometry�� �Far� �Fe�� �Mil�� �

Theorem 	���� If the curve C is knotted �that is embedded and not the
boudary of an embedded disc� then its total curvature satis
es�Z

C

jkj � ��

The proof of the 	rst theorem and of the large inequality
R
C jkj � ��

are a consequence of an easy topological argument�

Lemma 	���� The orthogonal projection pL on the line L of an immersed
curve C satis
es� if C is not in a plane orthogonal to L�

L�
C�L� � �

If moreover C is knotted� and the projection pL is a Morse function� then�

LO
C�L� � �

Proof� For all lines L 
except one if the curve is planar� the projection
pL has at least one maximum and one minimum� so L�
C�L� � �� Let us
now suppose that there exist a direction L such that pL is a Morse function
and such that L�
C�L� � �� Let a and b be the minimal and maximal values
of the function pL� let ma and mb be the corresponding critical points of
pL � Any plane Pt orthogonal to L in a � t � b intersects the curve C
transversly in exactly two points� Let It be the segment joining the two
points C 
 Pt� The union �

xa �
�

a�t�b

It � xb

is an embedded disc with boundary C� and C cannot then be knotted� �

��
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��

�c�

�b�

�a�

L

Figure ��� La projection sur une droite g�en�erique d�une courbe nou�ee a plus
de deux points critiques

��� More theorems involving the topology of an im

mersion or of an embedding

the next question concerns embeddings of surfaces in lR�� Does the topol�
ogy of the embedding force 
more geometry�� In particular do topological
conditions imply a lower bound for the total curvature of a submanifold�
The answer is often yes�

Let us state a result of this type about tori in lR��
We will add a point 
at in	nity� to lR� to get the compacti	cation S��

Naturally an embedding in lR� can then be considered simultaneously as an
embedding in S�� In lR� a torus of revolution bounds a thick torus S��D��
Completing lR� with a point a in	nity� the same torus bounds two thick
tori�

To obtain an example analytically � one can see the sphere S� as the
unit sphere of lC� 
we write jz�� j � jz�� j � � the equation of S��� Then the
equation jz�� j � jz�� j � ��� de	nes a torus which bounds the two thick tori�

jz�j � ��� and jz�j � ���

We will call this torus the Cli�ord torus�

��



Figure ��� A torus of revolution bounding to thick tori in S�

We will here de	ne a torus embedded in S� as unknotted if it bounds to
solid tori� One can prove this implies the existence of an isotopy with the
Cli�ord torus�

Recall also that� if cutting a three dimensional manifold N with bound�
ary a torus T by an embedded disc with boundary a circle contained in T �
one get a three dimensional ball B�� N is a thick torus D� � S��

Figure ��� From a ball to a thick torus�

Theorem 	���� 	La�Ro�
� Let T be a torus embedded in lR�� If T is knot�
ted� then Z

T

jK
m�jdm � ���

Recall that Chern�Lasho��s theorem proves that for any immersed torus
one has� Z

T

jK
m�jdm � ��

Using the exchange theorem� we need to prove the following inequality�

��



Lemma 	���� If there exist a generic direction L such that the number
of critical points L�
T� L� of the orthogonal projection of T on L satis
es
L�
T� L� � � then T is not knotted�

Proof� Suppose there exists a direction L such that L�
T� L� is � or ��
To get indices in IN� let us 	x the orientation of L� The proof is easier
when L�
T� L� is �� Let Tt be the set 
pL�

��
��� t�� Suppose that the
four critical values are a � b � c � d� and the corresponding critical points
ma�mb�mc�md�

Elementary Morse theory �Mil�� shows that

�� For a � t � b� Tt is homeomorphic to a disc� The boundary p��L 
t� of
Tt is a circle�

�� For b � t � c� Tt is homeomorphic to a cylinder� The boundary p��L 
t�
of Tt is then two circles�

�� For c � t � d� Tt is homeomorphic to a torus minus a disc� The
boundary of Tt is again a circle�

There is no critical value of pL between b and c� therefore the interior
of Tc n Tb is the product of p��L 
t�� b � t � c by an interval� that is union of
two cylinders C� and C�� In the closure of C� we can choose a monotonous
arc ��
for the projection on L�� joining mb to mc� and in the same way an
arc �� in C�� The union of these two arcs is a closed curve � such that its
orthogonal projection on L has two critical points�

We recalled 
case �� that the intersection of T with the plane Ptb � t � c
orthogonal to L at the point t is the union of two disjoint circles Ct	� and
Ct	�� In the plane Pt one� at least� is innermost and therefore bounds a disc
D��

We can then construct in Tt an embedded arc ct joining the two curves
Ct	� and Ct	� and meeting them only at its end points� It is convenient
to start at the critical point mb and conctruct in each of the connected
components of Tt nTb which are cylinders a monotonous 
for the orthogonal
projection pL on L� arc joining mb to respectively Ct	� and Ct	�� Then the
curve ct� union of those two arcs� intersect each plane P� b � � � t in two
points� At each level� those two points can be joined by an 
horizontal� arc
contained in the component of S�nT which does not containD�� Therefore �
when t goes from b to c� the arc ct sweeps a discD� 
see picture 
construction
of discs in the complement of T�� �

The boundary ofD� and the boundary ofD� intersect in one point� Both
boundary curves then are non zero in H�
T �� So if we cut the component
of S� n T along D� we get a ball B�� proving that the component was a

��



solid torus S� �D�� Cutting the other component of S� n T along D� we
get another ball B� proving that the second component of S� n T is also a
solid torus�

We need now to 	nd similar discs in the two components of S� n T
with the weaker hypothesis L�
T� L� � �� Now the Morse function pL
has six critical points m��m�� ���m	� With no loss of generality we can
suppose that the critical values are �� �� ���� �� The intersection Pi���� 
 T
is a disjoint union of closed curves embedded in T � Let n
i � ���� be the
number of connected components of the intersection Pi���� 
 T � There are
two possibilities for the sequence n
i � ����� � � i � �� 
�� �� �� �� �� and

�� �� �� �� ���

Let us 	rst consider the case 
�� �� �� �� ��� Let C � P����� 
 T � Since
the middle section C is a simple closed curve on T � it separates T into two
connected components� A and B� One � say is A � T n open disc� and the
other B � D� an open disc� Suppose that the level P����� is contained in
A� and denote by Ca and Cb the two connected components of P����� 
 T �
Let �� be an arc from a point of P����� to C intersecting Ca which satis	es�

pL� � ����
t� � �� � � ��� � t � � � ���� Similarly let �� be an arc joining
P����� to C and intersecting Cb� Let � be the union � � �� � ��� See 	g
below

As in the easy case L�
T� L� � �� we can construct two embedded discs�
the interior of which meet just one component of S� n T � In the plane
P������ one� at least� of the curves Ca and Cb bounds a disc D�� Suppose
then Ca � �D�� This disc is contained in one of the components of S� n T �
The curve �� following the same proof as in the case L�
T� L� � �� bounds
a disc D� contained in the other component of S� n T �

Again� the boundary of D� and the boundary of D� intersect in one
point� Both then are non zero in H�
T �� So if we cut the component of
S� n T along D� we get a ball B�� proving that the component was a solid
torus� Cutting the other component of S� nT along D� we get another ball
B� proving that the second component of S� n T is also a solid torus�

Let us now consider the case 
�� �� �� �� ��� Let A be the part of T above
P����� and B be the part below� If B were to contain only critical points of
index �� A would contain two critical points of index � and one of index �� to
guarantee the connectedness of T � Then T would be a sphere� Therefore�we
know that B contains a point of index �� As P����� 
 T is three closed
curves� B has to contain two critical points of index � 
one is m��� B has
two connected components� If A were not connected� it would contain one
critical point of index � at most� and inspection will show that T would be
one or two spheres� Therefore we know that A is connected and contains
two critical points of index ��

��



Ca

P�����

P�����

P�����

�� ��

Figure ��� Construction of discs in the complement of T �

Let Ca� Cb� Cc be the three components of P����� 
 T � labelled so that
Ca and Cb do not bound a disc in B� Ca and Cb are then both generators
of ��
T �� Let P be the one point compacti	cation of P������ One of the
circles Ca� Cb� say Ca� bounds a disc D� in P whose interior does not meet
Cb � Cc� Then the connected component of S� n T containing D� is a solid
torus� As before we can construct an arc � such that the restriction of pL
to � has only two critical points� and which meets Ca and Cb in one point�
It bounds a disc D� which contains an embedded arc joining Ca to Cb in P
meeting Ca and Cb only at its endpoints� The disc D� is then contained in
the other component of S� nT � bounds the nontrivial curve � on T � so that
the other component is also a solid torus� proving that T is unknotted� �

In a similar way we can prove the

Theorem 	���� Let S be a surface of genus �� and suppose that one of the
Morse projection pL has six critical points on S� then it is unknotted which

��



means that it is isotopic to the surface of 
g below�

��pts�

Figure ��� Standard embedding of a surface of genus two

The proof can be found in �La�Ro�� �

��� The equality case� tight immersions

The theory of tight immersions started whith N�H�Kuiper�s article �Kui��
in ����� It was followed by many others� Good references are also �Kui��
�Kui���

When g � �� we see that the total curvature of a sphere satis	es�Z
M

jKj � ��

Gauss�Bonnet�s theorem implies that�Z
M

K � ��

Therefore� when the total curvature of the sphereM is ��� the Gaussian
curvature has to be everywhere nonnegative� which implies that M is the
boundary of a convex body�

��



De�nition 	���� Tight immersions are immersions which achieve equality
in the theorem of Chern and Lasho��Z

M

jKj � ��
�g � ��

where g is the genus of the oriented surface M �

To avoid heavy notation we will denote by M the surface and its image
by the immersion� To feel more comfortable the reader may suppose M is
embedded� Let us denote H
M� the convex hull of M �

H
M� � f��m� � ��m� � �i � � � �� � �� � �g

Let us call the convex envelope of M the boundary �H
M� of the convex
hull of M �

Let z � S� be a unit vector� and let pz be the orthogonal projection of
M on the oriented line Lz generated by z�

De�nition 	���� The topset Top
M� z� of M in the direction z is the in�
tersection of M with the plane of equation�

� zjm �� maxM 
� zjm ��

Of course we can start with curves in lR��
In that case� tight closed curves are just convex closed curves� A fancy

proof of that give half of the idea that will be used for surfaces�

A�rmation
The top set of a tight curve C is connected�

proof
First notice that �
For almost every z � S�� the topset Top
C� z� is a point� the only m � C

where N
m� � z� If that is not the case the function j�j
C� z� would be � �
for a non zero measure set of S� providing� using the exchange theorem�a
contradiction�

If Top
Z� z� is not connected� then one can 	nd two disjoint open inter�
vals of 	nite length on the curve� each containing points of this topset� Let
A �� m� z for m � Top
C� z�� The values of � �jz � on the four extremities
of the two intervals are less than A � 
� 
 � �� Let tilt z by a very smalle
angle �� For � small enough� we get a direction z� such that

A� 


�
� mjz� �� A�




�
for m � Top
C� z��

��



Therefore the functions � mjz� � have at least two local maxima� one in
each of the intervals we just de	ned� and then� �j
C� z�� � ��

Let us now come back to surfaces and discriminate the indices of the
critical points of a projection pz�

De�nition 	����

��
z� � 
fcritical points of index � of pzg
��	�
z� � 
fcritical points of index � or � of pzg

��
z� � 
fcritical points of index � of pzg
When we need to specify the surface M � or nonzero measure subset v of a
surface where we count critical points we write�

��	�
M� z���	�
v� z�� ��
M� z� or ��
v� z�

When a point m �M has positive curvature� the Gauss map is a di�eo�
morphism from a neighbourhood v of m on its image �
v� 
 S�� Moreover�Z

��v�

��	�
v� �

Z
v

K �

Z
v

jKj

Similarly we get in a small enough neighbourhood of a point of negative
curvature� Z

��v�

��
v� � �
Z
v

K �

Z
v

jKj

Remark� As by hypothesis M is tight� one has�

�

�

Z
S�
��	�
z� �

Z
M

K �

Z
v

jKj � ��

where if K � ��K� � K� if K � ��K� � � and�

�

�

Z
S�
��
z� � ��g

Proof� Rephrasing the theorem of Chern and Lasho� one gets�

�

�

Z
S�
��	�
z� �

Z
M

K�

and�
�

�

Z
S�
��
z� �

Z
M

K�

��



where if K � ��K� � �K� if K � ��K� � �
We know that the projection pz should have at least a maximum and

a minimum� which have to belong to the convex envelope �H 
M�� There
cannot exist more that two critical points of pz where the Gauss curvature
is positive� otherwise� Z

S�
��	�
z� � ��

which will contradict tightness�
It follows that the point m � M where K � � must belong to the

intersection of the envelope of M and M as�Z
�H �M�

jKj � ��

At a point m of �H 
M� the Gauss curvature has to be nonnegative � as
it is a maximum of the function pN�m�� �

Lemma 	���� For almost every z � S�� the topset Top
M� z� is a point�
the only m �M where N
m� � z

Proof� If that is not the case the function ��	�
z� would be � � for a non
zero measure set of S� providing� using the exchange theorem�a contradic�
tion� �

Lemma 	���� Let Top
M� z� be the topset of the immersed surface in the
direction z� and let h be the maximum of the orthogonal projection pz on
the oriented axis de
ned by z �h � pz
Top
M� z���

Let W be a compact �isolated� subset of the topset in the direction z of
an immersion of a compact surface M �that is a piece of Top
M� z� which
admits an open neighbourhood U such that� for a positive 


sup�Upz � h� �


Then we can follow the piece W in U when we move z� in a neighbourhood
of z� More precisely there exists a neighbourhood v
z� of z � S� such that
for almost any z� � v
z�

��
v
z�� z� � �

Proof� The function pz
m� is continuous onM�S�� so if we chosem � U �
there exists a neigbourhood v
z� 
 S� such that� for z� � v
z�

jpz
m�� pz�
m�j � 


��



in particular for m � W

p�z
m� � pz
m�� 
 � h� 


and for m � �U

pz�
m� � pz
m� � 
 � h� �
� 
 � h� �


This implies that the point in U where pz� takes its maximum value does
not belong to the boundary� but to the interior� The conclusion follows now
from the fact that for almost all z � S� all critical points of pz are non
degenerate� �

Corollary 	���� Any topset Top
M� z� of a tight immersed surface is con�
nected�

The next step of the proof is motivated by the idea that in some sense a
topset of a tight immersion has to be tight� in fact a point� a disc bounded
by a plane convex curve or a planar domain bounded by convex curves�

To prove such a result it is natural to consider the topset of a topset

toptopset��

Let Top
M� z�� be the topset of the immersion M in the direction z��
It is contained in a plane orthogonal to z�� We can construct the toptopset
Top

Top
M� z��z���

Lemma 	���	 If M is a tight immersed surface� then the toptopset associ�
ated to two orthogonal vectors 
z�� z��� Top

Top
M� z��z�� is connected�

Proof� Let again h be the value pz�
Top
M� z�� and let h� be the value
pz�
Top
Top
M� z��� z����

Suppose that Top

Top
M� z��z�� is the union of two disjoint closed sets
W� and W�� Chose two open neigbourhoods U� 
 M and U� 
 M of W�

and W� in M � with disjoint closure�
If a point m � �Ui is in Top
M� z��� it satis	es pz�
m� � h� As

Top
Top
M� z��� z�� is closed in the open set U��U� it does not contain any
point of �U� � �U�� so a point m of �Ui 
 Top
M� z�� satis	es pz�
m� � h��
This implies that the function pz� does not take the value h on the any of
the closed sets

�Ui 
 fmjpz�
m� � h�g

see picture below�

Hence the function pz� achieves on 
�U� � �U�� 
 fmjpz�
m� � h�g a
maximal value� strictly smaller than h� that we will note h� �
� 
 � �

��



Z�

Z�

M

W�

W�

Figure ��� Toptopset� pz� and pz�

Let us now tilt the z� � axis of a very small angle � � � � ��� in the
direction z�� We observe that the function pz� where z � z�cos� � z�sin��
has for small enough � two local maxima� We chose � small enough to have�
for any m �M � jpz
m�� pz�
m�j � 
�

Let us now study the function pz on the open set�

U�i � fmjpz�
m� � h�g 
 Ui
and on its closure U

�
i �

A�rmation The function pz takes its maximal value on U
�
i in the

interior U�i �
Let us now take a point m � �U�i 
 fmjpz�
m� � h�g� we have�

pz
m� � pz�
m� � 
 � 
h� �
� 
 � h� �


The value of pz at a point w � Top
Top
M� z��� z�� is cos�h � sin�h� 
as
pz�
w� � h and pz�
w� � h��� Then for a pointm � �U�i 
fmjpz�
m� � h�g
we have� as pz�
m� � h� and pz�
m� � h�

pz
m� � pz
w�

Hence the restriction to �U�i of pz takes its maximal values at the points
of W� �W�� Take again a point w � Wi� we can construct a di�erential

��



Z�

U�

Z�

M

U�

Figure ��� A toptopset is connected�

curve c
t�� c
O� � w��t � ��� �� c
t� � U
�
i starting at w tangent to z� �� we

can suppose dc
dt 
�� � z�� The curve is normal at w to Top
Top
M� z��� z��

and tangent to the plane containing Top
M� z�� � As
dpz� �c�

dt � �� we can
compute�

dpz
c�

dt
� 
sin�� � � � 
cos�� � � � sin� � �

As the curve c
t� goes from w � c
�� to the interior of U
�
i 
which is also

the interior of U�i �� and as the function pz is strictly increasing along that
curve� the function pz has in U�i values which are greater than the maximal

value pz
w� achieved on �U
�
i � Therefore the restriction of pz to U�i has a

topset in the interior of U�i 
for i������ This implies that�

��
z� � � and��	� � �

and again contradicts tightness� �

Corollary 	���� For any tight immersion of a surface in lR� the topset in
any top plane contains its convex envelope �the boundary of its convex hull�
in this plane�

Using local maxima of the restriction to Top
M� z�� of pz� we prove the
same way the�

��



Corollary 	���� The topset Top
M� z�� is either a point� a convex closed
curve or a planar domain with boundary convex closed curves�

When the topset Top
M� z�� is not a point let call top ��cycle the outer
convex curve in �Top
M� z��� If the topset is a disc� we will say that the
top�cycle is simple

Lemma 	����� Let M be a tight surface and U 
M a topological disc� we
denote by M n U the complement of U in M � Suppose that the boundary
C � �U is a top ��cycle associated to the topset Top
M� z��� Then either
U or M nU is the plane interior Int
conv
C�� of the plane disc bounded by
C�

Proof� Let us suppose U is a topological disc� If U is Int
conv
C��� then�Z
U

jKj � �

If not� for z� or �z�� U has a topset contained in its interior� providing
an open set of direction z such that Top
U� z� is a point contained in the
interior of U � Then� Z

U

jKj � �

Replacing U by the plane disc of boundary C will then decrease stricly the
total curvature of M 
the new immersion is a priori only C� but we can
smooth it increasing as little as we want the total curvature � of less than
�
�

R
U
jKj� and keep the contradiction� even in the smooth frame�� �

We have proved the�

Theorem 	����� An immersed tight orientable surface is obtained from the
boundary N of a convex body by replacing a 
nite �� �� number of convex
plane discs by surfaces of negative curvature contained in the convex hull of
N of boundary the convex plane curves boundary of the previous discs�

Remark� A torus of revolution is a tight embedded torus�
One can also construct immersed and non embedded tight tori� �Lan��

the idea is to construct a ruled surface 
with double points� spanned by seg�
ments the extremities of which belong to two plane convex curves situated
in parallele planes� The end points of the segments are chosen using the
two Gauss maps of the curves to spin them properly�

With more topology one can prove that the projective plane and the
Klein bottle do not admit tight immersion in lR�� �Kui���
RemorseWe have not said much about polyhedral surfaces� An important
di�erence with smooth surfaces is the fact tightness is not equivalent to the
two piece property�

��



b� The revolution torus T is tight

a� Example of a tight genus � surface

contact locus

of the tight

surface V

with a plane tangent

context curve

critical locus of the projection ofV on the sheet of paper

to V along a close

hidden part of the

critical locus of the

projection on the

sheet of paper

the contact locus

of the torus

with one of its

tangent plane is a circle

Figure ��� A tight embedded surface�
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De�nition 	����� A compact subset A in lRN satis
es the two piece prop�
erty if any a�ne hyperplane separates A in at most two connected compo�
nents�

A good reference to start the study of polyhedral surfaces is Bancho��s
article �Ban���

��



� Higher dimensional convex bodies and re�

lated matters

��� Support function

As in the case of lR� let us consider a function H � S�n��� � lR� To such a
map corresponds a family 
parametrised by S�n���� of hyperplanes of lRn�

u 	� h � fxj � xju �� H
u�g

We have observed in part � 
Prop ������ that a support function on S�

de	nes the boundary of a convex body if 
h� � h�� is everywhere strictly
positive� A�D� Alexandrov �Alex� observed that� if a support function H �
Sn�� � lR satis	es det�hessian
H� � Id � H � � � then the hyperplanes
of equation � mju �� H
u� envelope the boundary of a convex body�
Alexandrov also observed that� even if this condition is not satis	ed� the
envelope associated toH is well�de	ned and keeps some properties of convex
bodies� The study of such envelopes is the topic of ����

The Minkowski sum of convex bodies is de	ned as in the dimension �
case�

Q� �Q� � fm� �m�jm� � Q��m� � Q�g
In the same way as in the plane case� the mixed volumes V 
p�Q�� q� Q��� p�
q � n appear as coe�cients of the homogeneous polynomial vol
�Q���Q���

Theorem ����� Let Q� and Q� be two compact convex bodies of lRn� The
volume of the convex body 
�Q� � �Q�� is an homogeneous polynomial of
weight n in � and ��

vol
�Q� � �Q�� �

� �nvolQ���
n���V 
n��� Q�� �� Q��������

p�qV 
p�Q�� q� Q��������
nvolQ�

Proof� We need� as before to observe that the support function of the
Minkowski sum is the sum of the support functions of the convex bodies
�Q� and �Q�� and to use the formula�

volQ �

Z
Sn��

H � det�Hess
H� � Id �H �

where again H is the support function of Q� �

��



��� Quermassintegrals and Steiner�s formula

A particular case is the case where the second convex body is the unit ball
B
�� ��� The Minkowski sum Q� rB
�� �� is the thickened convex set�

Qr � fxjd
x�Q� � rg

There are two ways to compute volQr�

Proposition ����� vol
Qr� is a polynomial in r� the coe�cients of which
are the symmetric functions of curvature de
ned in the previous paragraph�

vol
Qr� � volQ�

n��X
p��

rp��

p� �

Z
�Q

	p

Proof� Let us consider the map �t from �Q to �Qt de	ned by�

�t � m 	� m� tN
m�� � � t � r

which� for a 	xed t� maps �Q to �Qt� The reader can check that Tm�Q and
Tm�tN�m��Qt are parallel� We can compute the jacobian jdet
d�t��

jdet
d�t�j � jdetId� td�
m�j �
n��X
p��

	pt
p

Integrating on �Q� and for � � t � r� one gets�

volQr � volQ�

n��X
p��

rp��

p� �

Z
�Q

	p

�

To state a second way of computing volQr we need 	rst to de	ne the
Quermassintegrales of the compact convex body Q�

De�nition �����

Mp��
Q� �

Z
G�n	n���p�

vol
ph
Q��

where ph is the orthogonal projection on the �n���p��dimensional space h�

In particular M� is the volume of �Q� By convention Mn is ��

��



Theorem ����� Steiner�s formula

volQr � volQ�
n��X
p��


np���Mp��
Q� � rp��

Proof� The proof uses induction on the dimension� The convex Qr is the
union of Q and the parallel hypersurfaces �Qt� � � � t� � r� Therefore�

volQr � volQ�

Z r

�

vol
�Qt��dt�

Let us compute vol
�Qt�� using Cauchy�s formula�

vol
�Qt�� �
n� �

�n��

Z
G�n	n���

vol
ph
�Qt��

where �n�� is the volume of the unit 
n����sphere� and h is a hyperplane
of lRn� The projection ph
�Qt�� is the Minkowski sum of the projection
ph
�Q� and the ball B
�� t�� of radius t� in h� Therefore by the induction
hypothesis it is a polynomial in t��

vol
ph
�Qt��� � vol
ph�Q� �

n��X
p��


n��p�� �Mp��
ph�Q�tp���

Integrating the constant term� for � � t� � r will give the coe�cient of r
in Steiner�s formula� To get the other terms we proceed with the induction�
Let hq 
 hq�� 
 ��� 
 h� 
 h� 
 lRn be a �ag of nested subspaces of
codimension 
q��������� of lRn� The projection phq satis	es�

phq � phq � phq�� � ��� � ph� � ph�
We call �af space the set of hq 
 hq�� 
 ��� 
 h� 
 h� 
 lRn� The natural
map hq 
 hq�� 
 ��� 
 h� 
 h� 
 lRn 	� hi� � � i � q de	nes � for each i�
a 	bration of total space the �ag space and base the Grassmann manifold
G
n� n � i�� These 	brations endowed with natural metrics we shall not
explicit in general inherit measures invariant by the action of the group of
isometries which can be locally decomposed in the product of a measure
on the 	ber and a measure on the base� This justi	es our frequent use of
Fubini�s theorem� in particular when a given �ag space admits two di�erent
projections on two di�erent Grassmann manifolds� Integrating on the �ag
space

F
n� n� �� ���n� q� � flRn � h� � h� � hn�qg

��



we get �

const �
Z
F�n	n��	


n�q�

vol
phq 
�Q�� �

Z
G�n	n�q�

vol
phq 
Q�� � Mq

�

Remark� Identifying the coe�cient of rp in the two expressions of
volQr� we get an equality between a quermassintegrale and an integral of a
symmetric function of curvature on �Q�

��� Orthogonal projections
 polar varieties
 and p
length
of an n
dimensional submanifold of lRn

In this paragraph we shall modify the de	nition of Quermassintegrale so
that it can be extended to any submanifold� and will also carry a sign
information�

De�nition ����� Let &h be the set of critical points of the orthogonal pro�
jection ph of M on h� and let �h � ph
&h� be the critical locus of ph� We
shall call &h a polar variety �

It is not in general a manifold but is one almost everywhere for almost every
h�

�h

h

�h

Figure ��� The polar curve &h and its projection �h

In this paragraph we shall often use the word generically which means�

up to a suitably chosen measure zero set�� the measure should be natural�
and the choice is often part of a nontrivial theorem involving sometimes
a computation in a jet space� A theorem of Thom �Th�� �Th�� implies

��



that generically 
for almost every h� �h is almost everywhere a 
dim
h��
���submanifold of h if dim
M� � dim
h� � �� If dim
M� � dim
h� �
� then �h is just ph
M� and has generically the same dimension as M �
Moreover generically the projection of &h on �h is one�to�one and a local
di�eomorphism�

Polar varieties will appear again in the study of foliations and of complex
singularities�

Instead of proving the a�rmation� we shall justify it� by describing &h

and its projection �h� in a neighbourhood of a point m where M is not
�at�

Proposition ����� Let h be a linear subspace of lRN of dimension n and
let Mn 
 lRN be an n�dimensional submanifold� Let m be a critical point of
the orthogonal projection ph on h� Let H be the a�ne subspace orthogonal
to h and containing m� Let v be a unit vector contained in 
TmM��
h and
w be a unit vector contained in TmM 
 h� � Then� if IIm	v
w� is di�erent
from zero� the polar variety &h is transverse to TmM 
 h��
Proof� Choose a local parametrisation ' of M such that

�'

�t�

m� � w � 
h� 
 TmM��

�'

�ti

m� � 
lRw��for i � �

Then at m�

det�ph

�'

�t�
�� ph


�'

�t�
�� ���� ph


�'

�tn
��
m� � �

The derivative at m of that determinant is di�erent from ��

�

�t�
det�ph


�'

�t�
�� ph


�'

�t�
�� ���� ph


�'

�tn
��
m� �

� det�ph

��'

�t��
�� ph


�'

�t�
�� ���� ph


�'

�tn
��
m��

�
X
i��

det�ph

�'

�t�
�� ���� ph


��'


�ti��
�� ���� ph


�'

�tn
��

So�
�

�t�
det�ph


�'

�t�
�� ph


�'

�t�
�� ���� ph


�'

�tn
�� �

� det�ph

��'


�t���
�� ph


�'

�t�
�� ���� ph


�'

�tn
��

��



as we have chosen the coordinates such that ph

�

�t�

�
m� � �� It is not

di�cult now to check that the component of ph

��

��t���

� on w is non zero if

and only if IIm	v
w� is non zero�

In a similar way� when h is p�dimensional we have the�

Proposition ����� Let h be a linear subspace of lRN of dimension p � n
and let Mn 
 lRN be an n�dimensional submanifold� Let m be a critical
point of the orthogonal projection ph on h� Let H be the a�ne subspace
orthogonal to h and containing m� Let v be a unit vector contained in

TmM�� 
 h � Then� if IIm	v j TmM 
 h� is non degenerate� the polar
variety &h is transverse to TmM 
 h��
Proof� As the second fundamental form IIm	v j TmM 
 h� is symmetric
we can choose a basis 
b�� ���� bn�p��� of TmM 
 h� made of eigenvectors�
The polar variety &h is the intersection of the polar varieties &hj where the
n�dimensional spaces hj are generated by h and all the vectors of the base

b�� ���� bn�p��� except bj � Then we can apply the previous proposition to
the projections phj � �

De�nition ����� The p�length of M� Lp
M� is�

Lp
M� � C
N�n� p�

Z
G�N	p���

j�hjdh

where j�hj denotes the volume of �h �when p � O� �h is a 
nite set and j�h
is the number of points 

�h� of �h�� The constant C
N�n� p� is chosen so
that if M is the boundary of an 
�tubular neighbourhood of a p�dimensional
submanifold C of lRN � then�

lim��OLp
M� � jCj

If tM denotes an homothetic image of M by an homothety of ratio t � �
then�

Lp
tM� � tpLp
M�

This motivates the choice of the constant �

�jlPN��j
occuring in the de	nition

of L�� since a sphere of any dimension 
� �� satis	es j�Lj � � for every line
L � G
N� �� � lPN��� and in particular so does a small sphere of radius 

centred at a point p�

The functional L� has been applied to measure the ability of an algae to
house little mobile marine animals 
see �Ja�La��� As an exercise� the reader

��



may check the value of the constant in the de	nition of L� when M is a
surface in lR� �

L�
M� �
�

��

Z
G��	��

j�hj

Hint� Compare the projections of a round cylinder and of its axis on the
plane h � G
�� ��

In section � we will show that the functionals Lp satisfy a linear kine�
matic formula relating them to the functional L��

�

��� Tubes ���

The main tool to add a sign information to the varieties �h is d�Ocagne�s
theorem� Let M be an oriented surface of lR� and let h be a plane� Let
m be a critical point of the orthogonal projection of M on h such that
IIm
w� �� �� where w is a unit vector generating h�� Then we have seen
in the previous subsection that the projection ph
&h 
 v
m�� of the critical
points of ph jM contained in a neighbourhood v
m� of m form an oriented
curve �h in a neighbourhood of ph
m��

Theorem ����� d�Ocagne�s theorem The Gauss curvature of the sur�
face M at m is related to the normal curvature IIm
w� in the direction w
and the curvature k�h of �h at ph
m� by�

K
m� � IIm
w� � k�h
ph
m��

Proof� First recall that the orientation of M imposes the choice of
the normal vector N
m� used in the de	nition of the Gauss map and of
the second fundamental form� This normal vector N
m� belongs to h� and
therefore is normal to �h at ph
m�� de	ne the orientation of �h� The vector
N
m� is also normal at m to the curve C � M 

h�� lRN
m��� Meusnier�s
theorem implies in particular that the curvature at m of the curve C is
IIm
w�� We will now compute d�
m� using at the target the orthogonal
basis 
w� e�� where e is a unit vector tangent to �h at ph
m�� and at the
source the basis
not orthogonal but of determinant one � 
w� 
�� where 
 is
a tangent vector to &h at m such that ph

� � e� The matrix of d�
m� is��

IIm
w� �
� d#�
ph
m��

�
where #� is the Gauss map associated to �h� Therefore�

K
m� � det

�
IIm
w� 
��

� d#�
ph
m��

�

��



�

Remark� Suppose m is a point of negative Gauss curvature K
m� � ��
If h� is an asymptotic direction of TmM � then IIm
w� � � and the critical
curve �h will have a cusp at ph
m�� As the curvature goes to in	nity when
a point approches a cuspidal point� this agrees with d�Ocagne�s theorem�

+
-

+ +

-

�h

�b�

N�m�

N�m�

m

M � �h� 	 IRN�m�

�a�
�h

M
N�m�

�

�c�

N�m�

�h

p�m�

N�m�

N�m�

Figure ��� �h with a sign

The generalisation of this theorem to higher dimension hypersurfaces
Mn�� 
 lRn is straigtforward� The subspace h is now p�dimensional� �h
has generically dimension p��� and the intersection C � M 
 
h�� lRN
m��
is now an hypersurface of the 
n�p����dimensional a�ne space 
containing
the point m � M�� 
h� � lRN
m��� At m� C is oriented by N
m�� so we

��



can compute the Gauss�Kronecker curvature K
C�N
m��M� of C at m�
As �h is also oriented by N
m� at ph
m�� the Gauss�Kronecker curvature
K
�h� N
m�� ph
m�� is also well�de	ned�

Recall that in the previous paragraph we showed that if the restriction to

h�� lRN
m�� of the second fundamental form IIm is non degenerate� that
is if K
C�N
m��m� is di�erent from zero� then &h is� in a neighbourhood
of m� transverse to h��

Theorem ����� Let h be a p�dimensional subspace of lRn and M an hy�
persurface� If K
C�N
m��m� is di�erent from zero� then �

K
m� � K
C�N
m��m� �K
�h� N
m�� ph
m��

Proof� Use at the target an orthonormal basis


e�� e�� ���� en�p� 
�� ���� 
p����

split between h� and Tph�m��h� and at the source the basis of determinant
one� 
e�� ���� en�p� ��� ���� �p��� where �j is a vector tangent to &h at m
satisfying ph
�j� � 
j � and repeat the previous computation� �

That way we can see �h as a weighted variety 
or a chain�� weighting
generically the points � � �h with the sign 

�� de	ned below�

De�nition �����



�� � sign�K
C�N
m��m��

where m is the �generically unique� point in �h which projects on � and
where C � 
h� � lRN
m�� 
M is the oriented �vertical� intersection con�
sidered above�

We need now to de	ne the sign 

�� when M is of codimension higher than
one� Each generic projection on a p�dimensional space h determines two
varieties &h and �h� At a generic point � � �h a normal line � is well�
de	ned� When the dimension of C � M 
 
h� � �� is even� the sign of the
Gauss�Kronecker curvature of the orthogonal projection of C on TmC � �
does not depend on the choice of the unit vector generating the line �� So
we can still de	ne



�� � sign
K
C�m� ���

when the dimension dim
C� � n� p� � is even�
A d�Ocagne theorem will still be valid� for generic h and m � &h� when

the dimension of M 
and �h� will also be even�

K
M�m� �� � K
C�m� �� �K
�h� ph
m�� ��

��



In particular� when h is a line L� �L is generically 	nite and 

�� is well
de	ned if M is even dimensional� or if M is an oriented hypersurface� Then�



�� � sign
K
M�m�L�� or sign
K
M�m�N
m���

In the 	rst case it coincides with 
���index�m�� where the index is the
Morse index of the critical point m of the Morse function pL 
its parity does
not depend on the orientation of L� as dim
M� is even��

De�nition ����� We will call ��h the chain obtained by considering along
�h the almost everywhere de
ned weight 

��

De�nition ����� We will call j ��h jthe integral�

j ��h j�
Z
�h



��d�

D�Ocagne�s theorem implies that the sign 

�� behaves nicely through
compositions of projections� Let us consider a �ag h� 
 h� 
 ��� 
 hk of
nested linear subspaces of lRN such that dim
hk� � dim
M�� Let m � &h
be a critical point of ph� such that K
M 
 
h�� � lRN
m�� is not zero�
Let �� � ph�
m�� �� � ph�
m�� ���� �k � phk
m�� Suppose also that the
projection of �hi�� on �hi is such that the curvature K
�hi�� 
 �
hi�

� 

hi�� � lRN
m��� N
m�� is non zero at �i��� Then we can de	ne the sign�



i� �� i� � sign
K
�hi�� 
 �
hi�
� 
 hi�� � lRN
m��� N
m���

Similarly� projecting �j on �i for j � i� we can de	ne an index

De�nition �����



hj � hi� � 

j� i� � sign
K
�hj 
 �
hi�
� 
 hj � lRN
m��� N
m���

Proposition ����	 The signs 

j� i� multiply in a nice way�



j� i� � 

j� l� � 

l� i� if j � l � i

and in particular�



�� �

pY
n��




i� �� i�

We can now apply Steiner�s method to compute the volume of Tubr
M�� and
Thr
M� when M is of codimension �� replacing the Quermassintegrales by
the signed lengths j ��h j� This is what we have already done for plane curves
in �� Let us prove a theorem for compact surfaces in lR�� Its generalisation
to Mn 
 lRN is natural but cumbersome�

��



Theorem ����� The volume of the thickening Thr
M� of the compact ori�
ented surface M immersed in lR� is�

volThr
M� � r�vol
�M� � r
�

��

Z
G��	��

j �h j ��

�
r�
Z
lP�

j �L j

Proof� To prove the formula� we have to compare two functions on the
plane h de	ned using the vertical 
orthogonal to h� a�ne lines Ly through
points y � h�

�h	�
y� � 

Ly 
M�

�h	t
y� � 

Ly 
Mt�

where Mt is the surface�

Mt � fm� tN
m��m �Mg
Let us also denote by �h	t the critical locus of the orthogonal projection of
Mt on h� and by ��h	t the corresponding weighted curve�

The discontinuity locus of �h	� is contained in the curve �h� the distri�
bution derivative of �h	� is ��h � In the same way� the distribution derivative
of �h	t is �

�
h	t�

Lemma ����� For a given h� the di�erence �h	t � �h	� is�

�h	t � �h	� �

Z t

�

j ��h	t j

Proof� �of the lemma� The curve �h	t is parallel to �h�

�h	t � f� � tN
m�� � � �hg
where m is the 
generically unique� point of &h which projects on � � �h�
For almost every h� almost every � the curve �h is smooth in a neighbour�
hood of �� Then so is �h	t in a neighbourhood of � � tN
m�� the vector
N
m� � N
�� is orthogonal to all the curves �h	� � � � � � t at the point
� � �N
m��

It is clear that� out of the union of the curves �h	� � � � � � t� the
functions �h	� and �h	t are equal� In a neighbourhood of a small smooth
arc �� of �h	t� itself of the form �� � f�� tN
��� � � � 
 �hg� we can take
a patch of the form�

f�� � � �N
��� �� � � � tN
��� � � �g
On this patch the di�erence 
�h	t�t� ��h	t is � � 

��� The area of the patch

is
R t�t�
t

j�h	�j� Then the functions �h	t and �h	� may have di�erent values

��



Figure ���
R j ��h	t j

in y � h� y �� �h� y �� �h	t only if y belongs to some curve �h	�� � � � � t�
more precisely� if y is not a center of curvature of �h� then�

�h	t
y�� �h	� �
X
a�A



a�

where A is the set�

A � fa � h j y � a� �aN
ma�� �a � t� ph
ma� � a � �h

�

Let ph	L be the projection of the curve �h on a line L 
 h� We get a
function �h	L	� de	ned by�

�h	L	� �
X

u�p��
h�l

�z�



z�

Cauchy�s formula implies that�

j ��h j�
Z
lP�

�h	L	OdL

As the same is true for the curves ��h	t� we need now to compare the functions
�h	L	t and �h	L	�

��



L

�h

Figure ��� critical points of ph	L

Notice that the projection of the cusp of �h is not critical for the pro�
jection pL � M � L� as the tangent to �h at that point is not orthogonal to
L� We can compute the integral on L �Z

L


�h	l	t � �h	L	�� � t�
X

critical points of pL



h� L�
z�� � 

��

where we de	ne the sign 
h	L using the curve �h oriented by ph
N
m�� �
N
m� � N
��� D�Ocagne�s theorem proves that this integral is�Z

L


�h	l	t � �h	L	�� � t�
X

critical points of pl



z��

We can now perform the same induction as for convex bodies to get�

volThr
M� � r�vol
M� �
�

�
r

Z
G��	��

j �h j ��

�
r�
Z
lP�

j �L j�

and integrating from �r to �r

volTubr
M� � �r�vol
M� �
�

�
r�
Z
lP�

j �L j

this formula gives the 
usual� one�

volTubr
M� � �rvol
M� �
��

�
� �
M�

��



as j �L j� �
M�L� � �
M�� �

The universal constants in the general formulas are more complicated�
but we can conclude that� up to universal constants depending only on the
dimensions involved� the volume of Tubr
M� and of Thr
M� when M is
an oriented hypersurface� are polynomials in r whose coe�cients are the
oriented p�lengthes L�p 
M� �

R
G�N	p���

j ��h j�

��� The localization of the p
lenghts Lp

In ���� H�Weyl �Wey� has computed the volume of the tube Tubr
M� in
another way� proving of course it is a polynomial in r� the coe�cients of
which are integrals on M of functions that can be computed from the cur�
vature tensor� From the previous result we get equalities between Weyl�s
integrals of curvature and the oriented p�lengths�

A natural question is� is it possible to 
localize� the 
non�oriented� p�
lengths Lp
M��

The answer is positive� Let us 	rst de	ne the function h�
m� on a surface
M 
 lR�� In the chapter The Gauss map and what can be done in
higher dimensions� we expressed the symmetric functions of curvature
	i
m� of an hypersurface as integrals of Gauss curvature of properly chose
sections� Now de	ne�

De�nition �����

h�
m� �
�

vollP�

Z
lP��TmM�

jk
m� l�j

Where lP�
TmM� � G
TmM� �� � flines in TmMg� and j k
m� l� j is the
absolute value of the curvature at m of the curve M 
 
l � L
m���

For future calculations it is useful to introduce the following notation�
Let p � E � B be a riemannian 	bration and V 
 E a submanifold trans�
verse to the 	bers F 
y� � p��
y�� y � B� Let H � fH
x�g be the horizontal
plane 	eld of the 	bration�

The normal bundle N � M is endowed with a metric turning it into a
riemannian 	bration� At x � N� TxN is the orthogonal sum tx
N 
Fp�x��
V 
x� where V 
x� is a subspace transverse to the 	bers of complementary
dimension as H
x�� Denote by JacpH�x� the jacobian of the orthogonal
projection of V 
x� to H
x�� Then the coarea formula 
�Bu�Za� � yields�Z

N

jJacpH�x�jdx �

Z
B

jF 
y� 
N jdy

��



and more generally� if
� � M � E

is an immersion transverse to the 	bers� N � �
M�� then�Z
M

jJac�jjJacpH�x�jdx �

Z
B

jF 
y� 
N jdy�

Now we can 
localize� L�
M��

Proposition ����� For M a surface in lR��

L�
M� �
�

�

Z
M

h�

Proof� Let � � E � E
�� ��� G
�� �� � G be the tautological line bundle�
E � fl � G�m � lg�

De	ne also the projective tangent bundle ofM � lP�
M��
S
m�M lP
TmM��

Let � � lP�
M�� E be the map�

�
m� l� � 
h � l�� ph
m��

where ph is the orthogonal projection on the plane h� and let �
lP�
M�� �
N � We have just recalled that�Z

G

j�hj �
Z
lP��M�

jJac�jjJacpHj�

so we compute the jacobians� Let l be a line through m in TmM � L
m� 

TmM denotes the line normal to M at m� h � l� the subspace of lR�

orthogonal to l and W the orthogonal to L
m� in h� see next picture� We
choose a basis of T�m	l�
lP�
M�� as follows�

�Uf is a unit vector tangent to the circle 	ber of lP�
M� at m
�U� is a horizontal lift of a unit vector tangent to the polar curve &h at

m�
�Ul is a horizontal lift of a unit vector tangent to 
l� L
m�� 
M at m�
Also� let U� be a horizontal lift 
in E� of a unit vector tangent to the

critical locus �h at y � ph
m��
The volume of the parallelepiped generated by the 	rst three vectors is

jcos�j� where � is the angle between Tm&h and h�
The image d�
U�� is the vector �cos� � U� � The vectors d�
Uf � and

d�
Ul� are projected by the di�erential d� of the projection � � E
�� �� �
G
�� �� on two orthogonal vectors of T���m�G
�� ��� the 	rst unitary and the
second of norm jk
m� l�j�

��



Hence
jJac�
m�jjJacpHj � jk
m� l�j�

and the proposition follows by integrating over the 	bers of lP�
M��
Remark� A di�erent proof of the proposition can be found in �La�Shi�

based on a Meusnier�s formula�
�

�h
h

L

L�m� �h

m

L�m�

Figure ��� Localization of L�m�

More generally we can de	ne the functions hi
m� on an hypersurface
M 
 lRn� Let h be an i�dimensional subspace of TmM � and L
m� be the
normal line to M at m� Denote by jKj
x� h� the absolute value of the
Gauss�Kronecker curvature at m of the hypersurface M 
 
h � L
m�� of
h� L
m��

De�nition �����

hi
m� �
�

volG
n� �� i�

Z
G�TmM	i�

jKj
m�h�dh�

where again G
TmM� i� is the set of i�dimensional subspaces of TmM �

The next proposition is now natural�

��



Proposition ����� The functions hn�i
m� localize the i�length Li
M�� more
precisely� Z

M

hn�i
m� � const � Li
M��

where the constant const depends only on dimensions�

The proof can be found in �La�Ro���
The de	nitions of the function hi
m� in higher codimensions can also be

found in �La�Ro���

��



	 Blaschke
s formulas and kinematic formulas

It is not by chance that the name 
integral geometry� was used 
and prob�
ably invented by� Blaschke��Bla�� One essential tool will now be a measure
on the group of a�ne isometries invariant by left and right composition by
an element of the group� Choosing an origin � of the euclidean plane we
can write the group of a�ne isometries as the semidirect product�

G � lR�j � SO
��

The invariant measure is then dg � jdv�d�j� where dv is the volume of lR��
and � the angle of the rotation� The existence of such an invariant volume
on a Lie group is a more general phenomenon� see �Sa���

��� Poincar�e�s formulas

The 	rst directly generalises Cauchy�s�

Theorem ����� Poincar�e�s formula Let C� and C� be two compact arcs�
then� Z

G


C� 
 C�� � �length
C�� � length
C��

Proof� Let us consider the map

' � C� � C� � S� � G


m��m�� �� 	� 
translationm� 	� m�� �R�

to compute the jacobian the choice of the origin is irrelevant� so we can
choose m�� and see that it is� jsin�j� the angle at m� of 
translationm� 	�
m�� �R�
C�� and C�� The coarea formula gives�Z

G


C� 
 C�� �

Z
C�	C�	S�

jsin�j

Integrating the left term on S� give the theorem� �

Remark� We can reformulate that proof� saying that the kinematic
density satis	es locally

jdgj � jsin�jds� � ds� � d�j

where � is the angle at a point P � C� 
 g
C�� of the two curves�
In the same vein is the�

��



Theorem ����� Let �� � � � � be the angle at an intersection point of
the oriented curves C� and C�� Then�Z

G

X
C�
C�

j�j � ��length
C�� � length
C��

the only di�erence with the previous proof is that we need to computeR �
�
j�j � jsin�jd��

��� Blaschke formulas

As usual in this book we will presentonly the simplest cases of the the�
ory� A comprehensive reference is Santal(o�s book �Sa�� � Blaschke formulas
compute averages of Euler characteristics of intersections of a compact do�
main with boundary of lR� and the image of another by all the isometries�
The �miracle� is that averaging the Euler characteristic of the intersection
D� 
 D� of two such domains on all a�ne isometries� the result can be
calculated using only integrals de	ned separately using D� and D�� Let
us attribute weight zero to area� weight one to length and weight two to
integrals of curvature along curves� Just observe that the weight is related
to their place in the formula giving the volume of a tube or in Steiner�s
formula� As often it is easier to prove 	rst a formula �with no sign�� So� let
us 	rst prove a formula for the total curvature of the boundary of a domain�

de�nition The total curvature of an arc piecewise of class C� is�

T 
C� �

Z
C

jkj�
X

j�ij

where the angles �i at the corners are oriented� de	ned by the oriented
tangents to the two curves�

Then one has the �

Theorem �����Z
G
T �
D� 
 g �D�� �

Z
G
T �
D� 
 g �D�� �

� ���vol
D��T �
D�� � length
�D��length
�D�� � T �
D��vol
D���

Proof� Let us 	rst compute�

I� �

Z
G
�

Z
��D�
gD��

jkj�dg

��



The map g 	� g�� is an isometry of G� So the integral I� is equal to�

I� �

Z
G
�

Z
��gD�
D��

jkj�dg

The integral I� is split into two pieces� one taking care of pieces of �
D� 

gD�� images of arcs of �D�� the other taking care of pieces of �
D� 
D��
images of arcs of �D�� For the 	rst piece we use the second expression of
I�� for the second piece� the 	rst expression� The measure of the set of
isometries which send an in	nitesimal arc ds of �D� centered in m� � �D�

into D� is ��vol
D��� In the same way� the measure of the set of isometries
which send an in	nitesimal arc ds of �D� centered in m� � �D� into D� is
��vol
D��

We then get

I� � ���

Z
�D�

jkj � vol
D�� � vol
D�� �
Z
�D�

jkj�

The angles of �
D� 
D�� are of two kinds�
the angles �b� b � B between an arc of �D� and an arc of g
�D�� � and

the angles �ji � j � �� � of �D� or g
�D�� 
here all angles are between ��
and ��� Let

I� �

Z
G

X
i�I�

j��i j

I� �

Z
G

X
i�I�

j��i j

I� �

Z
G

X
b�B

j�bj

Inverting as above the orders of integration we get�

I� � I� � ���
X
i�I�

j��i j � vol
D�� � vol
D�� �
X
i�I�

j��i j�

Summing with I� we get �

I� � I� � I� � ���T �
D�� � vol
D�� � vol
D�� � T �
D���

The integral I� is an avatar of Poincar�e�s formula 
proved in previous sub�
section� for all the pairs of curves� one contained in �D� and the other in
�D�� We conclude that�

I� � ��length
�D�� � length
�D��

��



�

Taking care of the signs of the curvature and the angles in the previous
formula we get�

Theorem ����� �Blaschke�s formula� The following weighted homoge�
neous formula holds�Z

G
�
D� 
 g �D�� �

Z
G
�
D� 
 g �D�� �

� ���vol
D���
D�� � length
�D��length
�D�� � �
D��vol
D���

Proof� The Gauss�Bonnet theorem for a compact domain D of lR� with
boundary a piecewise C� boundary is�

�
D� �

Z
�D

k �
X

�i

where the sign of the curvature is de	ned using the boundary orientation
of �D and where �i are exterior angles at corner points counted with the
appropriate sign� see do Carmo�s book �dCa��

Let us compute 	rst� exactly as in the previous theorem�

I� �

Z
G
�

Z
�D�
gD�

k�dg

We then get

I� � ���

Z
�D�

k � vol
D�� � vol
D�� �
Z
�D�

k�

As in the previous theorem� consider� the angles �b� b � B between an arc
of �D� and an arc of g
�D�� � and the angles �ji � j � �� � of �D� or g
�D��

again all angles are between �� and ��� Let

I� �

Z
G

X
i�I�

��i

I� �

Z
G

X
i�I�

��i

I� �

Z
G

X
b�B

�b

��



��

��

��

��

��

Figure ��� Gauss�Bonnet for a planar domain with boundary
and corner�

Exactly as above we get�

I� � I� � ���
X
i�I�

��i � vol
D�� � vol
D�� �
X
i�I�

��i �

Summing with I� we get �

I� � I� � I� � ����
D�� � vol
D�� � vol
D�� � �
D���

Now observe that if we take care simultaneously of the sign of the angles �b
and of the orientation 

F � of the frame F made of the tangent vectors to
�D� and �D� we get to compute�Z

G

X
C�
C�

� � 


F � � ��lenth
C�� � length
C��

Notice that the density jsin�jds� � ds� � d� coincide with the di�erential
form sin�ds� � ds� � d�� The integral above is equal to the integral of
theorem ����� as �

F � � j�j�

��



We conclude that�

I� � ��length
�D�� � length
�D��

�
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Figure ��� Blaschke formula

��� Linear kinematic formulas
 variation of a functional

In ����� at the beginning of his book �multidimensional variation� �Vi�
Vitushkin proposes the following general construction� Let M be a compact
submanifold of lRn� The intersections of M with almost all a�ne subspaces
are also submanifolds� More precisely� the intersection of M with an a�ne
subspace of dimension N �p achieves its maximal dimension n�p�N and
is a transverse intersection on an open subset of A
N�N � p� if 
n� p � N �
It is void on another open subset of A
N�N � p�� the other cases form a
subset of measure zero of A
N�N � p�� Consider any functional F de	ned
on submanifolds of euclidean space like

� The Euler characteristic �
M�

� The total curvature L�
M�

��



� The number of connected components of M � N 
M�

Then intersecting M with a�ne subspaces H such that the dimension of
M 
H is p� and averaging we get�

De�nition ����� The variation Fp of the functional F is the integral�Z
A�N	N�p�

F 
M 
H�

We can now state a theorem relating the variation of the total curvature
and integrals of functions locally de	ned on the manifold�

Theorem ����� let M be a compact connected smooth �at least C�� n�
dimensional submanifold of lRN � then�


L��p
M� � const � Lp
M�

Notice that�

L��n
M� � Ln
M� � vol
M�

The variations of the Euler characteristic are linked to the symmetric
functions of curvature 	i� the key result is Gauss�Bonnet�s formula�

�
M� �
�

volSn

Z
M

K

when M is an n�dimensional hypersurface� We have observed that Weyl�s
formula computing the volume of the tube Tubr
M� implies that�

L�p 
M� � const �
Z
M

	n�p

The following reproductibility formulas are equivalent to Chern�s linear Kine�
matic formulas�

Theorem ����� �Reproductibility formulas� Let M be a compact connected
smooth �at least C�� n�dimensional submanifold of lRN � then�

L�p 
M� � const�L�� �p
M�

For n � dim
M�� for i � n� 
L�� �n
M� � vol
M�

The pth variation of L� is the integral
R
A�N	N�p�

R
M
H 	n�p� so we get

��



Theorem ����� �Chern�s linear kinematic formulas�Z
M

	i � const �
Z
A�N	N�p�

Z
M
H

	p

In this form the name 
reproductibility� given to that property of the sym�
metric functions of curvature becomes clear� Chern was asking if this was
a characteristic property of those functions� The theorem concerning the
p�length function and the fact they are integrals of the locally de	ned func�
tions hn�p proves that the functions hn�p also are reproductible�

Proof� 
of the reproductibility formulas�
Let GA
N� p � �� �� be the �ag space of all couples L 
 h� h a 
p � ��

dimensional vector subspace of lRN and L an a�ne subspace in h� Let H
be the a�ne subspace of lRN �

H � L� h�

Lemma ����� If the line L is transverse to �h� the intersection L 
 �h is
the set of critical values of the orthogonal projection of 
M 
H� on L�

Proof� A critical point � of the projection of 
M
H on L is a critical point
of the projection of M on h� as L cannot belong to the image ph
Tm
M� of
the tangent space to M at m by ph�

Conversely� the projection of the tangent space Tm
M� is orthogonal in
h to 
Tm
M�� 
 h and is the tangent space at � to �h when �h is smooth�
If L is transverse to �h then�

pn
Tm
M 
H�� � ph
h
� � 
Tm
M� 
 h��� � f�g

which implies that
ph
Tm
M 
H�� � f�g

�

Observe now that the �ag space GA
N� p��� �� can be identi	ed with the
�ag space AG
N�N�p� �� of vectorial lines contained in a�ne 
N�p��spaces�

By de	nition

Lp
M� � const �
Z
G�n	p��

j�hj

Using Cauchy�s formula for �h we get�

Lp
M� � const �
Z
GA�N	p��	��



�h 
 L�

��



Using the lemma and the previous identi	cation between �ag spaces we get�

Lp
m� � const �
Z
AG�N	N�p	��



�L
M 
H��

Integrating on the 	bers of the 	bration

AG
N�N � p� ��� A
N�N � p�

we get the desired equality� �

To get the result concerning signed length it is enough to observe that
the sign 

�� is precisely the sign of the Gauss�Kronecker curvature of the
projection of M 
 h on 
TmM 
 H� � L� This last sign is also equal to

���index�m�� where index
m� is the Morse index of the projection ofM
H
on the line L � oriented by N
m�� if M is an odd dimensional codimension
one submanifold�

As an exercise� juggling with �ag spaces� the reader can prove that a
variation of one of the previous variations is a variation� that is�

Proposition ����� For i � p� one has�

Lp
M� � const �
Z
A�N	N�p�i�

Li
M 
H�

L�p 
M� � const �
Z
A�N	N�p�i�

L�i 
M 
H�

��� General kinematic formulas

We have described a natural path leading from Blaschke�s formula to Chern�s
kinematic formulas� Consider two objects in lRn� move the second� integrate
some curvature function on the intersection� and average on G� The result
is a weighted homogeneous polynomial in curvatures integrals on the two
initial objects�

Theorem ����� Chern�s kinematic formulas 	Che
 � If one of the integrals
is absolutely convergent� then both following integrals are 
nite and equal�Z

G
L�i 
M� 
 g
M�� �

X
p�q�i

const � L�p 
M�� � L�q 
M��

As before const replaces constants depending only on dimensions�

The reader who needs the constants will 	nd them in Santal(o�s book �Sa���

��



��� Pohl�s
 Bancho�
Pohl�s formulas and other formu

las involving linking numbers

The ancestor of the linking number is the index iC
m� of a point m with
respect to an oriented closed plane curve C� When the curve is also simple
the isoperimetric inequality is�

L� � ��A � �

where L is the length of the curve and A is the area it bounds� Equality
holds if and only if the curve is a circle�

For non simple closed curves we have 
�Po�� �Ba�Po��

Theorem �����

L� � ��

Z
lR�


iC
x��
� � �

Equality holds for a circle� or a multiple circle �a circle traversed several
times or several co�incident circles each traversed in the same direction any
number of times��

This can be generalized to higher dimensions� For example let C be a
closed space curve� then the linking numbers of a�ne lines with the curve
also satisfy an analogous inequality �Ba�Po�

Theorem �����

L� � �

Z
A��	��

link
C�D� � �

Equality holds here only for C a circle� which may be multiple�

Kinematic�like formulas using the linking number of two curves can also
be obtained and have been applied to obtain a better estimate of the os�
motic pressure of a solution of circle�shaped molecules as a function of the
concentration �Po��� �Edw��� �Edw��� �Del�� �Dup� �

��



�� Integral geometry of foliations

A foliation F of a manifoldM is a partition ofM by connected submanifolds
called leaves in a way such that locally the connected components of the
intersection of a leaf with open sets of a suitable family� the distinguished
charts� have a product structure� See �Ca�Li� for a rigorous de	nition and
basic properties of foliations� another more riemannian viewpoint can be
found in �To�� a very complete reference is �Go��

c

a

K�F �	��������


b

K�F �	������
 K�F �	���
�

p
�����


Figure ��� A few examples of foliations

We will soon need to relax a little the de	nition� accepting a singular lo�
cus !� a strati	ed set of codimension bigger than one� The foliated manifold
in this case is M n!�

Many results will still be valid if we suppose only the existence of a p�

��



plane 	eld� dropping the integrability condition� 
a plane 	eld P is integrable
if there exists a foliation such that it is tangent to it��

���� Codimension � foliations of a domain of lRn���

Let W 
 lRn be an open subset� and let F be a codimension � orientable
foliation of W � As F is orientable� a unit normal N
m� is de	ned at each
point m �W �

Symmetric functions of curvature associated to a foliation
As� through every point m of the foliated space there is a leaf Lm of

FF � The symmetric functions of curvature of the leaf Lm at the point m
are de	ned by�

detId� t
d��
m� �
X

ti � 	�i �
This de	nes the functions 	�i on W � The 	rst result about the integralsR
	�i was obtained by D� Asimov �

Theorem ������ 	Asi
 Let F be an oriented codimension � foliation of
the �at torus Tn��� The integrals of the symmetric functions of curvature
satisfy� Z

Tn��

	�i � O� i � �

Proof� Note N
m� the unit vector normal in m to the leaf of F
through m� de	ned by the orientation of F � 
The torus T is the quotient
lRn���ZZn�� or lRn���) for an 
n����dimensional lattice )��

The covering lRn�� is naturally foliated� Let #m be a point of lRn�� of
image m� #F be the covering foliation� and #Lm be the leaf of the covering
foliation through #m� There exists a fundamental domain W 
 lRn��� 
the
unit cube for the 
square� torus lRn���ZZn��� of the covering projection
lRn�� � T � So we can identify the normal at m to Lm and the normal at
#m � lRn�� to #Lm � Consider the map

m 	� m� tN
m�

When t is small enough this map is a di�eomorphism� Its di�erential com�
puted using an orthonormal basis split between TmF and TmF� is��

t � d�
m� � Id O
�

�
Its jacobian is

det
Id� t
d��
m�� �
X

ti � 	i

��



The integral� Z
T

det
Id� t
d��
m� �

Z
T

� �
X

	�i t
i

is equal to the volume of the torus� Therefore the integrals of the coe�cients
of the monomials ti� � � i � n are all zero� �

Asimov� and after Brito Langevin and Rosenberg computed integrals of
curvature associated to foliations of compact manifolds of constant curva�
ture using carefully chosen di�erential forms��B�L�R��

Here we will prove 	rst euclidean results and sketch their extensions to
constant curvature spaces using again an exchange theorem�

Contacts with a�ne hyperplanes and the exchange theorem
Let H be an a�ne hyperplane of lRn��� The trace FjH of F on H is

generically a foliation of 
W 
H� with only isolated singularities� We call
this 	nite set of singular points !
FjH��

In fact generically those singularities are hyperbolic�
When the ambient space is the plane the singularities are of one of the

two following types � center or saddle� We attribute signs to those singular
points�



saddle� � �� and 

center� � ��

Figure ��� Center and saddle�

When the foliation is of codimension one and transversely oriented� The
normals N to the leaves de	ne a vector 	eld with an isolated singularity at
m� The sign 

m� is�



m� � 
���indexN �m�

��



De�nition ������ The number j�j
F � H� is the number of singular points
of FjH �

When j�j
F � H� is 
nite�and the singularities are all hyperbolic� the num�
ber ��
F � H� is�

��
F � H� �
X

m�
�FjH�



m�

Remark� A singular point m of FjH is a point where the leaf Lm is
tangent to H � We can also locally project Lm on the normal in m to H

and to Lm�� We get a function which is in general a Morse function� for
which the Morse index of m satis	es�


���Morse index of m � 

m��

The sign 

m� is� when the dimension of the leaves of F is even� the sign of
the Gauss curvature of Lm at m�

We will call the integral
R
W
jKj 
or R

W
jkj when W is of dimension ��

the total curvature of F �

Theorem ������ foliated exchange theorem�Z
W

jKj �
Z
A��	��

j�j
F � H�

Moreover� if one of the previous integrals are 
nite�Z
W

K �

Z
A��	��

��
F � H�

To prove this theorem� we will de	ne the polar curves of the foliation
and a foliated Gauss map�

Polar curves
The critical points of the orthogonal projection of a leaf L of F on a line

� are in general isolated on L�

De�nition ������ The closure of the union of those critical points �

&
F ��� �
�
L

crit
p�jL�

is generically almost everywhere a smooth curve �it may have singular points��

Proposition ������ 	Th�
 Generically the polar curve &
F ��� is trans�
verse to ��

��



Remark� When &
F � TmF�� is tangent to TmF the Gauss curvature of
the leaf Lm is zero� as� in that case� the di�erential of the Gauss map of the
leaf Lm restricted to Tm&
F � TmF�� is zero�

To prove the foliated exchange theorem we need to introduce a foliated
Gauss map with values in A
�� ���
De�nition ������

�F
m� � the affine plane tangent at m to F
Proof� To compute the jacobian of the foliated Gauss map �F at

a point m � W we will use� when &
F � TmF� is transverse to TmF � in
the domain� the frame u�� u�� ���� un� u�� u�� ���� un orthogonal basis of TmF �
un unit vector tangent at m to &
F � TmF�� In A
�� �� we use at �F
m�
the frame v�� v�� v�� where v�� v� form an orthogonal basis of the horizontal
space at �F 
m� of the riemannian 	ber bundle A
�� ��� lP�� and where v�
is a unit vector tangent to the 	ber of A
�� �� � lP�� In these bases� the
matrix of d�F is� �

d�F jLm �
� jcos�j

�
where � is the angle between Tm&F and TmF�

As the volume of the parallelogram determined by the frame u�� u�� un
is also jcos�j � and as the map d�F jLm is just the Gauss�Kronecker map of
the leaf Lm� the jacobian we are looking for is just jKj�

On one hand� when &
F � TmF� is tangent to TmF the Gauss�Kronecker
curvature K is zero� On the other hand using a frame split between TmF
and TmF� we see that at such a point the matrix of d�F is��

d�
m� �
� �

�
where in the formula d� is the Gauss map of the leaf Lm� As the rank of
d�
m� is one the point m is critical for �F � by Sard�s theorem the measure
of the images by �F of these points is zero� �

Let us 	rst give some applications of the foliated exchange theorem in
dimension �� We note jkj
m� the absolute value of the curvature of the leaf
Lm of F through m�

Theorem �����	 	La�Le�
 Let D � lR� be the unit disc and F be an ori�
entable foliation with isolated singularities� tangent to �D� Then�Z

D

jkj � �� � �

the minimal value is achieved by the foliation �a� of the next picture�

��



Tx�m�x�

�l

N�x�

TxF

L

Figure ��� Computation of the jacobian of �F �

Proof� Let us choose an orientation of F � that induces an orientation
of �D n sing
F�� Among the singularities of F on �D let A be those where
the orientation of �D changes� The set A � a�� a�� ���� a�n is 	nite and has
an even number of points� Let Ge be the set of lines which meet D� do not
meet A� and cut A in two subsets containing an even number of points� let
Go be the similar set of lines cutting A in two subsets of odd cardinality�
the formula of Cauchy and Crofton implies that the sum of the measures of
Ge and Go is �� 
the length of �D�� If a line L is in Ge� then� if it contains
no singularity of F � j�j
F � L� � � 
see next picture�

Using the exchange theorem� we get the inequality�Z
D

jkj � measure
Ge� � �� �measure
Go�

��



c

a

K�F �	��������


b

K�F �	������
 K�F �	���
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Figure ��� � exemples of foliations of the disc

In order to 	nish the proof we need a lemma�

Lemma ������ for any 
nite subset A of the unit circle �D the measure
of the set Go of lines cutting A in two odd subsets satis
es�

measure
Go� � �

�

Remark� When A � fa��ag is made of two opposite points�
measure
Go� � �� when A � �� measure
Go� � �� when A is the union

of the vertices of a regular �n�gon� measure
Go� goes to � when n goes to
in	nity�

��



The proof of the lemma is elementary but technical and can be found in
�La�Le�� �

Let now D 
 lR� be a domain homeomorphic to a disc and with a
piecewise C� boundary �D�

De�nition ������ The internal distance d
m��m�� of two points m� and
m� is�

d
m��m�� �

� infflength
��j� � �a� b�� D a regular curve � �
a� � m�� �
b� � m�

where length
�� is the length of the curve �

We get that way a metric on D� In fact the assumptions made on D
imply that given the two end points� there exists exactly one minimizing
curve joining them� Such a curve will be called a geodesic of D�

De�nition ������� The diameter of D is de
ned as�

d � supfd
m��m��jm� � D�m� � Dg

yx

Figure ��� Diameter of a topological disc�

Theorem ������� 	La�Po
 Let F be a foliation �by curves� of D� tangent to
�D� with isolated singularities of positive index� not necessarily orientable�
Then� Z

D

jKj � length
�D�� �d

��



De�nition ������� The index of an isolated singularity m of a non�orien�
table foliation of the plane is a half integer �
m� � �

�ZZ which is half of the
degree of the map

'� � S�
m�� lP�

associating to a point q of a small enough circle centered at m the direction
of the line TqF � �if the singularity is orientable� the index is the usual one��

Proof� Let us 	rst show that we can eliminate the case when F has a
singularity of index one� studying only the case whereF has two singularities
of index �

� � which are of sunset type 
see next picture��
All singularities can be substituted by a source�sink or a sunset singu�

larity without increasing the total curvature of the foliation by more than
a given 
� This can be done by considering on the boundary of a small disc
Dr of radius r an homotopy between the 
angle� function determined by F
and the 
angle� function of one of the models of the next picture�

Figure ��� Source�sink and sunset�

A source�sink can be replaced by two sunsets using the modi	cation
indicated in the next 	gure�

Let P and Q be two sunsets of F � and � be a geodesic of D joining P to
Q� We need to estimate the number of contact points of F with an a�ne
line L� All lines� but a measure zero set� meet the disc D in a 	nite number
of segments�

Let �a� b� be a connected component of L 
 D such that �a� b� 
 � � ��
Then �a� b� divides D into two discs� one of them containing P and Q�In

��



Figure ��� Transformation of a source�sink into two sunsets�

the other disc� F is orientable� and therefore there is at least one point of
contact between F and the segment �a� b�� See next 	gure�

Let n
L� be the number of segments of L 
D in which L meets �� and
c
L� the number of segments of D 
 L which do not� Then we have�

j�j
F � L� � c
L�

Cauchy�s formula yields�Z
A��	��


f
components ofL 
Dg � �

�

Z
A��	��


fL 
 �Dg � length
�D�

Applying Cauchy�Crofton�s formula to the arc � we get length
�� �
�
�

R
A��	�� 

L 
 ��� Then we have�

length
�D� �

Z
A��	��

n
L� � c
L� �

Z
A��	��



L 
 �� �
Z
A��	��

c
L��

Using the exchange theorem and the inequality on j�j
F � L� we get�

length
��� � � � length
�� �
Z
A

�� ��j�j
F � L� � � � length
�� �

Z
D

jkj

�

��



L

Figure ��� forced

With the same techniques� one can obtain inequalities for foliations of
a compact �at annulus� and for foliations of a disc extending a given line
	eld de	ned on the boundary� In the second case a sort of 
length� of the
envelope of the one parameter family of a�ne lines de	ned by the boundary
condition will play a role �La�Po��

When a foliation achieves equality in the inequality of the previous the�
orem� we call it tight�

When the disc D is not convex we can show there do not exists tight
foliations tangent to �D with singulaties of positive index� This comes from
the fact that if P � �D is a point of in�exion� and a regular point of F �
then there is an open set of a�ne lines which have more than one contact
point with F in a neighbourhood of P � But we can exhibit a sequence Fn
of foliations of D satisfying the hypothesis of our theorem such that�

limn��

Z
D

jkj � length
�D�� �d

We can think of the limit of this sequence of foliations as a foliation all
leaves of which have corners along �D� in order to force on �D all the
critical points of the orthogonal projections of the leaves on lines� see next
picture�

��



P

Q

P Q

Figure ��� A tight singular foliation F � a non�singular foliation Fn close to
F �

���� Codimension one foliations of spaces of constant
curvature�

When the foliated space is a domain W in Sn or lHn� one can also prove an
exchange theorem� replacing Gauss�Kronecker curvature by the determinant
of the second fundamental form 
that we will still denote by K� obtained
from the normal vector given by the orientation 
in an orthonormal basis��
and replacing the euclidean a�ne hyperplanes by codimension one totally
geodesic subspaces H � A� The form of the theorem is the same for W 

lHn��� W 
 lRn��� W 
 Sn��� In each case the set A admits a measure
invariant by the action of the isometries of the space �Sa�� p��� and ����

In dimension �� we can chose 
locally in the case of S�� coordinates

r� ��� r � lR�� � � lP� on a neighbourhood of a geodesic ��� Chose a point
m � ��� the geodesics rays through m form a circle S�� identifying them
with their unit tangent vectors at m� A geodesic � of lH� or lR� which does
not contain m is orthogonal to exactly one geodesic ray starting at m and
intersects it at a point q� This is true for all geodesics of S� di�erent from
the 
equator� conjugated to m� and not containing m� This de	nes the
coordinates �
��� r
�� � d
m� q��

The measures are�

� m � jdr � d�j if W 
 lR�

� m � jcosr � dr � d�j if W 
 S�

� m � jcoshr � dr � d�j if W 
 lH�

��



We have seen the 	rst measure in the chapter the euclidean plane�
for the other two� see �Sa��� The 
natural� formulas for the measures on the
set A of totally geodesic hypersurfaces in lRn��� Sn�� and lHn�� can also
be found in �Sa�� �

Theorem ������ Z
W

jKj �
Z
A
j�j
F � H�

Proof� We need to replace the orthogonal projections on lines� A
geodesic L de	nes a one�parameter family� called a pencil PL of totally
geodesic hypersurfaces� those orthogonal to it� In lHn�� a pencil is a folia�
tion and de	nes a projection on the geodesic L� In Sn�� a pencil de	nes a
foliation of Sn�� n Sn and a projection of Sn�� n Sn on lP��

De�nition ������ The polar curve &P is the closure of the set of points
where a hypersurface of the pencil P is tangent to the foliation�

Remark� As in the euclidean case� &P is� for almost all P � almost
everywhere a smooth curve�

De�nition ������ The foliated Gauss map �F � W � A associates to a
point m � W the totally geodesic hypersurface tangent at m to the leaf Lm
of F through m�

The computation of the jacobian of �F is the same as in the euclidean
case� observing that the totally geodesic hypersurfaces orthogonal to the
geodesic L
m� through m orthogonal to Lm� and the totally geodesic hy�
persurfaces through m� form two submanifolds of A othogonal in A for the
natural riemannian metric of A� �

The following theorem is now a consequence of the fact that the inter�
section of a foliation of S� with a generic totally geodesic S� has at least
two singular points�

Theorem ������ Let F be a foliation of S� having a 
nite number of sin�
gularities� then Z

S�
jKj � ���

Using the Poincar�e�Hopf theorem on all the generic S��s we prove also the
following theorem�

Theorem ������ If one of the previous integrals is 
nite�then�Z
S�
K � ���

��



foliations of hyperbolic surfaces� Let us now state a theorem for fo�
liations with only saddle�like singularities of compact surfaces of constant
curvature 
��� �La�Le��� It is similar to the result of La� Ro� in the sense
that it translates in terms of total curvature a topological property of those
foliations�

Theorem ������ Let M be a compact surface without boundary endowed
with a hyperbolic metric �that is a metric of constant curvature ����� and F
a foliation the only singularities of which are saddles� The total curvature
of F satis
es� Z

M

jkj � 
��Log�� �Log��j�
M�j

Remark�

� We will give below examples of foliations which achieve the minimal
value given by the theorem�

� If all the saddles have an even number of separatrices 
in particular if
F is orientable�� one can show that the total curvature of F satis	es�Z

M

jKj � �Log� � j�
M�j

� It is hopeless to look for a generalisation to all surfaces� see �La�Le��

We will need a few facts from hyperbolic geometry� The hyperbolic plane
lH� is identi	ed with the interior of the unit disc 
Poincar�e�s model�� The
boundary S� of this disc is the circle at in
nity of lH�� The geodesics of
lH� are the arcs of circles orthogonal to S� contained in lH�� Recall that
by analogy with the notation A
�� �� used for the set of a�ne lines of lR�we
denote by A the set of all geodesics of lH�� It has a measure invariant by
the action of the hyperbolic isometries�

Two distinct points m and m� of lH� are 
joined� by a unique geodesic�
it is also the case if m and m� are in S�� in that case we say that the points
are the points at in
nity of the geodesic� Three distinct points of S� de	ne
that way an asymptotic triangle and all asymptotic triangles are isometric

there is a global isometry of lH� sending one on the other�� An asymptotic
triangle has� as one can check using the Gauss�Bonnet theorem� area ��

Let p � lH� �M be the universal covering map� If the restriction of p to
the interior of an asymptotic triangle is injective� we will also call its image
in M an asymptotic triangle�

In order to get foliations minimising total curvature� we need 	rst to
construct a foliation Fa on an asymptotic triangle T 
see next picture�

��



Let b be the center of symmetry of T � The foliation Fa has just one
singularity� at b� a three prong saddle� The separatrices starting at b are
geodesic rays joining b to the points at in	nity of T � they intersect in b in
equal angles 
equal to ������ To get Fa just 	ll each sector with geodesically
convex curves� in such a way that the boundary of T is the union of three
leaves� If the projection p is injective on T � we can project Fa on M � see
next picture

�
�
�

�
��

�
��

Figure ��� 
Standard� foliation of an asymptotic triangle�

The total curvature of that foliation of the asymptotic triangle is �Log��
Log�� as we will see below� Let now M be a closed orientable hyperbolic
surface of genus g� Choose onM a family of �g�� compact disjoint geodesics
slicingM into g pairs of pants 
each pair of pants is topologically a disc with

Figure ��� How to 	t an asymptotic triangle on a hyperbolic pair of pants�

��



two holes�� Choose in each pair of pants three disjoint geodesics spiraling
towards the boundary 
see the picture above��

We can then 	ll the surfaces with copies of the model foliation con�
structed above� achieving the lower bound given by the theorem� Using
Whitehead transformations we can split the saddles with more than two
separatrices into three prong saddles without increasing the curvature by
more than 
� see picture below and �F�L�P� for a carefull construction�

Figure ��� A Whitehead transformation

As the singularities of H are all saddles� one cannot 	nd in HWhitehead
discs� that is discs with boundary made either of a 	nite number of arcs of
leaves� or of a 	nite number of arcs of leaves and one arc transverse to F �

Figure ��� Whitehead discs�
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We can also� without increasing the total curvature by more than 
�
brake all the saddle connections� The foliation F of M lifts to a foliation H
of lH��

A�rmation We can associate to each saddle s of H a set of geodesics As

of measure bigger or equal to 
�Log���Log��� and an injection of As in lH�

sending each geodesic to a point where it is tangent to H� Moreover the
respective images Bs 
 lH� and Bs� 
 lH� of the sets of geodesics As and
As� associated to di�erent saddles are disjoint�

The fact that F has �j�
M�j saddles� and a carefull application of the
foliated exchange theorem will end the proof of our result about hyperbolic
surfaces�

Lemma �����	 Any half�leaf � of H which does not end at a saddle goes
to a point of the circle at in
nity S�

Proof� First observe that the behaviour at in	nity of the half leaves of
H does not change if we change F by an isotopy 
if #� is an homeomor�
phism of lH� lifting of a homeomorphism of M isotopic to the identity� then
sup

m�lH� �d
m� #�
m��� is 	nite�� This proves the lemma if the half leaf p
��
of F is compact or spirals towards a compact leaf� a compact leaf of F
cannot be null�homotopic in M � as it cannot bound a disc� and then is

free�homotopic to a closed geodesic�

If the closure p
�� does not contain a compact leaf� we can choose a leaf
�� � p
�� and a closed curve c transverse to F and intersecting ��� The curve
C meets � in	nitely many times� as it cannot bound a foliated disc� it is
also homotopically not null�homotopic� so its lift to lH� will stay at bounded
distance from the closed geodesic in the same free homotopy class� As the
foliation H of lH� does not admit Whitehead discs� the half�leaf � meets a
component of p��
C� in at most one point� The intersection in lH� � S�
of the sequence of nested half�spaces which � enters 
see next picture� is
exactly one point of S�� because it cannot contain any point of lH�� as the
distance between two di�erent lifts of C is bounded below 
it cannot contain
two points of S� without containing the geodesic joining them�� �

Remark� Two separatrices � and �� starting at the same saddle s of H
converge to distinct points of S��

Proof� This is true when the union p
�� � p
��� meets at least twice
a closed simple curve C transverse to the foliation F � as� again� H has no
Whitehead discs� so any component p��
C� meeting � or �� separates the
points at in	nity of � and ��� If such a curve C does not exist� then p
��
and p
��� spiral towards compact leaves �� and ��� of F � If � and �� where
isotopic� the compact leaves �� and ��� should also be� as two geodesics
which have compact projections cannot share a point at in	nity if they do

��



not coincide� If ����
�
� the union of two arcs starting at s of respectively p
��

and p
��� � with an arc transverse to F joining their endpoints� will bound a
Whitehead disc� providing a contradiction� If �� and ��� were distinct� they
should bound an anulus� This annulus cannot contain singularities of F
because the singulaties of F � all saddles� will give to the anulus a negative
Euler characteristic�

Looking at the same time at H and F the reader will check that the
only remaining possibility is that p
�� and p
��� are spiraling toward the
same leaf of F � on the same side� which again will allow the construction of
a Whitehead disc�

�

So we can associate to each saddle of H three points of S� which de	ne
an asymptotic triangle �s 
see next picture��
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Figure ��� Asymptotic triangle associated to a saddle s

We will call the three geodesics joining these points at in	nity the asymp�
totes of s� Two asymptotes starting at distinct saddles cannot intersect in
lH� 
as it will force an intersection of some of the separatrices�� so the
asymptotic triangles associated to distinct saddles have disjoint interiors�

Fix now a geodesic L of lH� which does not contain any saddle of FH � is
not asymptotic to any separatrix of H� and is not tangent to any separatrix

��



of H 
these conditions are generic��

De�nition ������ Given a generic geodesic L� the couple 
s�D�� s a saddle
of H � and D one of its three asymptotes � is called Ladmissible if it satis
es
the following conditions �

�s �� D
�s and �s are on the same side of D
�L does not intersect D and separates s from D

To each L�admissible couple 
s�D� we will associate a compact domain
Ts	D see picture below��

D

L

Figure ��� The domain Ts	d�

The two separatrices starting at s and asymptotic to D cut lH� into two
domains� We will call Ds	D the closure of the one which does not contain the
points at in	nity of L� Let us callH�
L� s� the closed half plane of boundary
L which contains s� and Ts	D the connected component of H�
L� s� 
Ds	D

which contains s� The domain Ts	D is compact and homeomorphic to a disc

see picture above��
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If 
s�D� and 
s�� D�� are two L�admissible couples� only the four following
situations are possible�

�Ts	D is contained in Ts�	D�

�Ts�	D� is contained in Ts	D
�Ts	D and Ts�	D� are disjoint
�Ts	D and Ts�	D� have disjoint interiors and s � s�

In particular the situation of the next picture is impossible�
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Figure ��� Impossible position of the two domains Ts	d and T�s
�� d���

Lemma ������ For any L�admissible couple 
s�D�� the collections of arcs
L 
 Ts	D is tangent to H at at least one point�

Proof� The compacity of Ts	D and the fact that the set of saddles of H is
discrete implies that Ts	D can contain at most a 	nite number of domains
Ts�	D� � It is then enough to prove the lemma for a minimal 
for the inclusion�
domain Ts	D 
see next picture��

If the lemma is false� Ts	D is a disc which does not contain in its interior
any singularity ofH and the boundary of which is made alternatively of arcs
of leaves of H and arcs transverse to H� Moreover� the de	nition of an L�
admissible couple implies that� in a neighbourhood of s the third separatrix
starting at s 
the one which is not asymptotic to D� is not contained in
Ts	D 
see next picture�
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Figure ��� A domain Ts	d which is not minimal�

The only possibility for Ts	D is to be a 
rectangle� 
see picture above��
The arc of the leaf between the points � and � on the above picture belongs
to one of the separatrices starting at s and asymptotic to D� say the one
which contains the point �� Let us now consider the arc of separatrix joining
� to �� this arc does not meet the segment of L of extremities � and �� and�
with this segment� bounds a Whitehead disc� providing a contradiction� �

We will call strongly L�admissible a couple 
s�D� if it is L�admissible
and if L meets �s 
and then the two sides of �s di�erent from D�� Then�
given L� a saddle s cannot belong to more than one couple strongly L�
admissible� and the domains Ts	D corresponding to di�erent couples strongly
L�admissible are disjoint�

To a saddle s of H let us now associate the set As of geodesics L such
that there exists an asymptote D of s such that the couple 
s�D� is strongly
L�admissible� We obtain the required injection is � As � lH� associating
to a geodesic L one of the points of L 
 Ts	D where L is tangent to H 
see
lemma ��� We can choose the injection is in an equivariant way� that is�
if 	 is an automorphism of the universal covering lH� � M � and 	� the
induced transformation on the set of geodesics A� then� for all saddles s of
H� i
�s� �	� � 	 � is � Let us call Bs the image is
As� 
 lH�� As� for a 	xed
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Figure ��� position of the third separatrix

L� the domains Ts	D corresponding to distinct strongly L�admissible couples
are disjoint� we have� Bs
Bs� � � if s �� s�� To prove the a�rmation stated
above� we need now to check the inequality m
As� � 
�Log�� �Log��� Let
us 	rst proof a lemma of hyperbolic geometry�

Lemma ������� Let � � � � � be the angle between two geodesic rays
starting at a point s � lH� and asymptotic to a geodesic D �see picture
below�� and let f
�� be the measure of the set of geodesics which do not
intersect D but separate D and s� Then�

a�f
�� � ��Log sin
����
b�if � � � � �� � � � � � and � � � � � are three angles such that

�� � � � � ��� then

f
�� � f
�� � f
�� � �Log�� �Log�

Proof� a� As f
�� � � it is enough to prove that f �
�� � �cotg
�����
Let h
�� be the 
hyperbolic� distance between s and D� the quantity f �
�� �
d� is equal to the measure of the set of geodesics intersecting a geodesic
segment of in	nitesimal length dh � h�
�� �d� with an angle bigger or equal
to ���� This measure is proportional to dh and the coe�cient 
�cos
�����
can be computed using the 
euclidean� formula� tangent to the hyperbolic
one if the origin is in dh� Then f �
�� � �cos
���� � h�
��� Hyperbolic
trigonometry provides the formula cosh
h
�� � �

sin���� 
see for example

�Thu�� formula �������� After checking that h�
�� � ��� sin
����� we get
the required formula f �
�� � �cotg
�����
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b� Triples 
�� �� �� of angles between � and � parametrise the vertices
of an asymptotic triangle� For example� if the point s is on the boundary
of the triangle� one of the angles� say � � �� and

f
�� � f
�� � f
�� � ��Log�sin
��� � sin

� � ����� � �Log
��sin��

Then�
f
�� � f
�� � f
�� � �Log� � �Log�� �Log�

If the point s tends to a vertex of the asymptotic triangle� then one of the
angles goes to � and f
�� � f
�� � f
�� goes to ��� to prove assertion

b� it is enough to check that the only extremum of f
�� � f
�� � f
�� in
the triangle is achieved when s is a center of symmetry and � � � � � �
����� This is true� as the di�erential of the function f
�� � f
�� � f
�� is
�cotg
���� � d� is zero only if cotg
���� � cotg
���� � cotg
����� that is if
� � � � � � ���� �

�

�
S

�

Figure ��� The only extremum of f
�� � f
�� � f
��

Coming back to a saddle s of H� two cases are possible�
�s belongs to the asymptotic triangle �s 
or to its boundary�� then the

previous lemma implies that�

m
As� � �Log�� �Log�

�s is exterior to �s 
see next picture� then the couple 
s�Di�� 
i � �� �� is
strongly L�admissible for m�almost all geodesics L which does not intersect
Di and separating the point t � ��s 
see picture below� from Di�
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Figure ��� Outside of the asymptotic triangle �s�

Then

m
As� � f
�� � f
�� � f
�� � f
�� � f
�� � �Log�� �Log�

We proved the a�rmation� Let us now deduce the theorem from the a�r�
mation� For each saddle si of F we choose a lift si in lH�� Recall that the
number of 
three prong� saddles of F is h � ��
M�� Let B be the disjoint
union of the sets Bsi � As for any automorphism 	 of the covering� we have�
	B � �hi��A
si the sets B and 	B are disjoint if 	 �� Id� and this implies
that the restriction to B of the covering projection p is injective�

Suppose 	rst there exists a neighbourhood U of B such that the restric�
tion of p to U is also injective� Then the total curvature of F is bigger
than or equal to

Ph
i��m
Asi � � � � j�
M�j � 
�Log� � �Log��� If such a

neighbourhood U would exist� the theorem would be proven�
In general it is impossible to 	nd the neighbourhood U of B� but we

will construct� for each small 
 � �� subsets A�
sisuch that m
Asi nA�

si� goes
to � with 
� and such that we can 	nd an open neighbourhood U � of the
corresponding set B� to which the restriction of p is injective� The foliated
exchange theorem implies that the theorem is a consequence of the existence
of the sets A�

si �
Let us 	x 
 � � and let L be a geodesic of Asi � There exists then an

asymptote D of si such that the couple 
si� D� is strongly L�admissible�
From s let us consider the geodesic ray orthogonal to D� It intersects D

���



at a point t� The geodesic D� is orthogonal to that ray at a point situated
between s and t� at distance 
 from t 
see the picture below��
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Figure ��� construction of A�

We can suppose that D� is transverse to the two separatrices starting at
si and asymptotic to D and de	ne as with s� D and L a compact domain
T �si	D� � Ds	D 
 H�

s	D 
shaded on previous picture�� Let n be the number
of saddles contained in T �si	D� � we can choose a neighbourhood v� of the
boundary �T �si	D� of the domain T �si	D� � such that the total curvature of Hjv�
is bounded by 
�

We keep in A�
si a geodesic L � Asi if and only if�

i� L does not intersect D� and separates si from D�

ii� the distance from L to each saddle s � T �si	D� is at least 
�n
iii� L is transverse to H in the neighbourhood v� of �T

�
si	D�

The exchange theorem and the de	nition of v� show that the measure
m
Asi nA�

si� goes to zero with 
� Let B�
si 
 Bsi be the image of A�

si in lH��
and let B� � �hi��B�

si �
To 	nish the proof we will show that for 	xed 
� i and j� the distance

from B�
si to the union of the conjugates of B�

sj is strictly positive 
if i � j we
use only conjugation of the covering di�erent from the identity�� Let then
Q � B�

si and Q� � B�
sj be such that Q and 	Q� are very close 
supposing

again that 	 is not the identity if i � j�� The condition 
iii� above implies
that 	Q� is in T �si	D 
see next picture��

The asymptotic triangle associated to the saddle 	sj is then on the side
of D which does not contain si 
the analogous condition interverting the
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Figure ��� Position of B�
si and B�

sj �

roles of si and sj may also happen�� The geodesic L� tangent to H at 	Q�

should then meet D and D��
One cannot de	ne a reasonable metric on the set of all geodesics of lR�

or lH�� Two geodesics intersecting with a small angle should be close� Then
it is impossible to separate parallel geodesics 
lR�� or asymptotic geodesics

geodesics with one point at in	nity in common� in the lH� case�� But it is
possible to de	ne a distance on the set of geodesics which intersect a given
compact K 
 lH� by�

dK
L�L�� � sup�
infx�L
K	y�L�
Kd
x� y� � angle
L�L���
if L 
 L� 
K � � 
just forget the angle term if L 
 L� � ��

� angle
L�L�� if L 
 L� � m � K

The geodesics L and L� constructed above satisfy dK
L�L�� � � � � taking
K � T �si	D� � where � does not depend on Q�Q� and 	� If L and L� do not
intersect� or intersect far from K� they cannot be close in K and satisfy the
required conditions� Otherwise � as our conditions 
ii� guarantees L does
not pass by to close to the saddles� this implies the distance between Q and
	Q� is bounded below by a positive constant independent of Q� Q� and 	�
We use the following fact� given � � � and a compact K 
 M containing

���



no saddle of F � there exist � � � such that� if two geodesics L� and L�
tangent to H at two points a� and a� belonging to p��
K� intersect at an
angle bigger than �� then the distance between a� and a� is at least ��

In �La�Le��� the reader can 	nd an application of the foliated exchange
theorem to pairs of orthogonal foliations of S��

���� Tight foliations

We have seen that the foliated exchange theorem and some topological anal�
ysis of the foliation provide inequalities� Do there exist foliations achieving
the equality case� We had called tight such foliations� An example of a
positive result is the following�

Theorem ������ Let A be a plane annulus limited by two convex curves
C� of length �� and C� of length ��� We suppose that C� is the �inner�
one �Cauchy�Crofton�s formula implies that �� � ���� Then the leaves of
the tight foliation of the annulus �tangent to the boundary� are either closed
convex curves isotopic in A to C� �and C�� or locally convex curves spi�
raling towards convex curves isotopic to C�� �see picture below�� the total
curvature of the foliation is� in that case�Z

A

jkj � �� � ��

Proof� Using Cauchy�Crofton�s formula� we know that the set B of
a�ne lines intersecting C� and not intersecting C� has measure �� � ���
Such a line L intersect the annulus in a segment I � The foliation F is not
transverse to the interior of I � otherwise the boundary of C� and I would
form a Whitehead disc for F � which is impossible as F has no singularity�
Then

j�j
F �L� � �

so the total curvature of F is bigger or equal than the measure of B� The
equality is achieved for the foliations described in the theorem� as they
satisfy�

L � B � j�j
F �L� � �

L �� B � j�j
F �L� � �

�

In �Lan��� the reader will 	nd a study of tight 
in their isotopy class�
foliations of the torus T ��

Let us now consider the same question for 
nonsingular� foliations of S��

Theorem ������ Their does not exist any tight foliation of the sphere S��
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Figure ��� Tight foliation of a plane annulus with convex boundary curves�

Proof� We have seen before that the total curvature of a foliation F of
S� satis	es� Z

S�
jKj � ���

because for a generic totally geodesic sphere ! 
 S� one has j�j
F �!� � ��
We have also seen that Z

S�
K � ���

If a foliation F of S� satisfy
R
S�
jKj � R

S�
K� then the curvature function

should satisfy K � �� In S� the intrinsic curvature Ke of an embedded
surface satisfy Ke � K�� 
one can perform the computation using the ex�
ponential map 
see �Spi� �� Novikov�s theorem states that the foliation has a
Reeb component 
�Ca�Li� � with boundary a torus leaf L� The Gauss�Bonnet
theorem applied to L states that

R
L
Ke � �� Then

R
L
K � �vol
L� � � so

the leaf has a point of negative 
extrinsic� curvature K� contradicting the
hypothesis�

The theorem will then be proved if we can show that�

inf

Z
S�
jKj � ���

���



Let us consider the singular foliation P of S� de	ned by a pencil of geodesic
��spheres� It has a one dimensional singular locus� a geodesic circle C� The
trace of P on a geodesic sphere ! transverse to C is a foliation with two
singular points of index � 
of type sink�source��

The next object we need is the model Reeb foliation of the thick torus
D� � S�� To obtain it we will construct a foliation of D� � lR invariant by
unit translations in lR 
we can visualise D�� lR as a vertical thick cylinder��
In the vertical band ���� ��� lR of the 
x� z��plane consider a convex curve
asymptotic to both sides of the band�

The equation z � tg
����x� should provide such a curve� by revolution
around the z�axis we obtain a convex surface asymptotic to the boundary
of the cylinder 
on the z � �� side� Translating it vertically� we foliate
the thick cylinder� By construction the foliation is invariant by vertical
translation and then gives a foliation of the thick torus T � 
D��lR�
���ZZ��

see picture below�

Figure ��� Reeb component�

We will now shadow the foliation P by non singular ones� introducing a
very thin Reeb component in a tubular neighbourhood of C�

To construct the foliation in a tubular neigbourhood Tub�r
C� of radius
�r of C� we will 	rst construct a model in the cylinder D�

�r � lR� invariant
by vertical translations�
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Figure ��� A piece of a thin Reeb component and how the other leaves wrap
around it�

In the cylinder D�
r � lR just put a Reeb component de	ned as above�

In the anulus D�
�r n D�

r � seen as a subset of the 
x� y� � plane� consider a
curve entering� normally to the boundary� into D�

�r and spiraling towards
the circle �D�

r 
see picture below��
The product of that curve by the vertical line is a surface of lR� entering

normally the cylinderD�
r�lR and spiraling toward the inner cylinderD�

r�lR�
By rotation around the z�axis we foliate the set 
D�

�r nD�
r�� lR� So we get

the desired foliation of the thick cylinder D�
r � lR�

The quotient by the vertical translations by vectors of lenth �� is a
foliation ofD�

�r�S�� Let us now mapD�
�r�S� to the tubular neighbourhood

of 
geodesic� radius �r of C� mapping isometrically S� on C and using the
exponential map to map the discs D�

�r centered on points 
�� �� z� � S� onto
totally geodesic discs normal to C� We obtain a foliation Fr which 	ts with
PjS�nTub�r�C�� The reader will now believe that �
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Figure ��� Horizontal section of the foliation 
D�
�r nD�

r�� lR�

�the geodesic spheres ! satisfy j�j
Fr�!� � � if ! intersects C with not
too small an angle�

�There exists a uniform bound� independent of r� for the number j�j
Fr�!�
when it is 	nite�

As the measure of the geodesic spheres which intersect C with an angle
smaller than 
 goes to zero with 
� we proved� using the foliated exchange
theorem� that �

limr��

Z
S�
jKj � ���

where jKj is the curvature function de	ned by the leaves of Fr� �

Foliations of codimension higher than one and diverging inte

grals�

We will present here without proofs particular cases of the results of
�La�Ni��

Theorem ������ Let F be a smooth foliation by curves of a domain W 

lR�� Let CH be the contact set �in general a curve� of F and the a�ne
hyperplane H�

CH � fm � W jTmF 
 Hg

���



Then Z
W

jkj � const

Z
A��	��

Z
CH

jsin�j

Where at a smooth point m � CH � � is the angle between CH and the leaf
of F through m�

���



�� Integral geometry in spheres

The results of this paragraph come from �La�Ro��� When C is a submanifold
of dimension p of SN �we shall use the notation jCj for the p�volume of C �
We sometimes for aesthetic reasons shall use the notation Lp
M��

���� The spherical formula of Cauchy and Crofton

We shall prove it for surfaces M � S�� the proof for hypersurfaces of Sn is
identical� The proof for higher codimension submanifolds is more technical�
see �Sa�� �La�Ro��� We denote by L�
M� the area of the surface M 
 S��

Theorem ������

L�
M� �
�

�

Z
G��	��

jM 
 ljdl�

where l is a geodesic circle of S� which we can think of as a ��plane through
the origin of lR�� jM 
 lj is the number of points of M 
 l�
Proof� Denote by P 
E� the projective space of vectorial lines of the
vector space E� From the restriction to M of the tangent bundle to S� we
construct the 	ber bundle lP
TS�jM � replacing the 	bers lR� by projective
planes lP�� Denote by lPm
TS�jM � its 	ber above the point m �M � it is a
riemannian 	ber bundle on M � Consider the map

� � lP
TS�jM �� G
�� ��� �
m�L� � l

where l is the geodesic circle whose tangent at m is L � lP
TmM��
Write the tangent space to G
�� �� at l� as an orthogonal sum�

Tl�G
�� �� � Tl�fljm � lg � Tl�fl�!l�	mg�
where !l�	m is the geodesic ��sphere orthogonal to l� at m�

Write T�m	L�
lP
TS
�jM � � V �H � where V is the tangent space to the

	ber and H � V�� Then d� is given by the matrix��
Id �
� pL�

�
�

where pL� is the orthogonal projection of TmM to Tm
!l	m� � L�� Then�Z
L�lPm�TS�jM �

jJac
d��j �
Z
lP�

jcos
angle
L�� TmM��j � �

���



Since Z
G��	��

j
����
l�j �
Z
G��	��

jl 
M j�

we have� Z
G��	��

jl 
M j � �jM j � �L�
M�

�

���� Flags

A �ag in a vector space is a nested sequence of subspaces


h� 
 h� 
 ��� 
 hk�

We call it complete if it contains a subspace in each dimension�
Let us denote by j�j
M�F� the number of contact points of the subman�

ifold M and the codimension one foliation F � The notion makes sense even
if the foliation admits a singular locus� as far as it is of codimension higher
than one�

In S� a complete �ag is just a pair !� 
 !�� where 	� is a pair of
antipodal points 
x��x�� intersection of S� with a vectorial line and !� a
geodesic circle intersection of S� with a vectorial plane�

In S� a complete �ag is a a sequence

!� 
 !� 
 !�

of spheres� intersection of S� with vectorial subspaces of lR� of dimension
������ Replacing ����� by �������k and lR� by lRk��� we get the de	nition of
a complete �ag of Sk�

De�nition ������ We denote by Dk the set of complete �ags of Sk

We start with curves C 
 S� to give the �avour of the proofs� although
the signi	cant results start in S�� We can de	ne the total number of contact
points of a curve C with the foliations associated to a complete �ag ��

Geom
C��� � 

C 
 !�� � j�j
C�F
!��

In Bourbaki style� the 	rst number would be the number of contact points
of 
C 
!�� with the point foliation of !�� We can now de	ne�

De�nition ������

Geom
C� �
�

vol
C��
Z
D�

Geom
C���

���



The number Geom
C��� plays the same role as the total number of
critical points of the orthogonal projection of the curve on a line in plane
geometry� Let us 	rst construct a sequence of foliations by curves in S�

associated to a complete �ag �� which will better and better follow the
foliations F� of !� by points and the foliation F
!�� of S

��

F�

I� I�

X X

F�

Figure ��� Foliation close to a pencil�

Chose a point x � !� and delete from S� a small disc B
x� 
� of radius

 centered at x� The circle !� is divided in two arcs of length �� �� and
�� by the two antipodal points 
x��x� of !O Now follow� starting near
x� �� with very thin nested arcs with boudary on the boundary of the
small disc up to the 
�x� � !�� Then continue the construction of the
foliation with arcs� the left side of which will sneak along �� from 
�x� to
x and the right part of which will sweep half of the sphere !� by curves
mostly equal to arcs 
geodesic arcs� of the foliation F
!��� The last leaf
is !� 
 
complement of the small disc�� Proceed symetrically to 	ll up the
other half of !�� We shall call F� the foliations associated to �� Do not ask
the author what exactly means 
 in the construction$

Observe that the foliation we have constructed is a product foliation by
intervals of S� n B
x� 
�� This gives a di�eomorphism sending S� n B
x� 
�
to the plane� the leaves of the foliation to the horizontal a�ne lines and C
to another closed curve�

As the projection of this image curve on the vertical has at least two
critical points� we know that C has at least two points of contact with the
foliation�

���



Corollary ������ Any closed curve in S� satis
es�

Geom
C� � �

In the sphere S�� !� 
 !� 
 !� allows us to de	ne a pencil of circles
F
!�� in !�� the circles of !� which contain !� In the same way !� 
 !� 

S� allows us to de	ne a pencil of ��dimensional geodesic spheres F
!��� the
geodesic spheres which contain !��

We de	ne�

De�nition ������

Geom
M��� � 

M 
!�� � j�j

M 
 !���F
!��� � j�j
M�F
!���

and�

Geom
M� �
�

vol
C��
Z
C�

Geom
M���

Let us now construct the foliations F� approximating the foliations de�
	ned by the complete �ag �� The point x is disjoint from M and we choose

 such that the ball B
x� 
� does not meet M � Let H� and H� be the hemi�
spheres of !� bounded by !�� Let F�

� be the one dimensional foliation of
!� n 
B
x� 
� 
 !�� de	ned above� The trace on !� of F� will be F�

� � Each
leaf � of F�

� 
more precisely� each leaf � of F�
� � together with an arc 
we

choose one of length � � � 
� on �B
x� 
� 
 !� joining the extremities of
�� bounds a disc in !� Let D
�� be the �small� one� there will be only
one ambiguous case� when � is an arc of 	�� Starting with the small arcs
� emerging near x which sneak along �� we obtain discs D
�� which are
thin �at tongues� Now in�ate those to obtain thin glove 	ngers following
��� When the discs D
�� spead over H�� in�ating them slightly provides
thin pancakes� foliating a thickening of H�� Next step 	lls one of the half
spheres � say B� of boundary !�� in�ating the last pancake of the previous
step dissimetrically� One of the sides will sweep B� following the pencil of
geodesic spheres F
!��� the other side will just move slightly � We are in
fact sweeping the ball B� exactly as we swept a disc of S�� bounded by a
geodesic circle !� � We proceed symmetrically to 	ll the other half of S��
The foliations F�

� we have constructed prove the following lemma�

Lemma ������ For any �ag � in general position with respect to M � there
exists a sequence of foliations F�

� by discs of S� nB
x� 
� such that�

lim���j�j
M�F�
� � � Geom
M���

Moreover the foliations F�
� are product foliations de
ning a di�eomorphism

'� � S
� nB
x� 
�� lR�

���



Proof� The reader should to check that the contact points of F�
� and M �

for 
 small enough� correspond to points counted in Geom
M���� �

Morse theory applied to the lR�valued function de	ned by the foliation
F�
� implies that

j�j
M�F�
� � � �g � ��

so we get�using the considerations of the chapter Integral geometry and
topology the theorem �

Theorem ������ Let M be a surface embedded in S�� then

Geom
M� � �g � �

If M is a knotted torus� then

Geom
M� � �

and if M is a knotted �oriented� surface of genus g then�

Geom
M� � �g � �

Instead of integrating Geom
M��� we could have integrated separately
the di�erent terms



M 
 !��� j�j

M 
 !���F
!���� j�j
M�F
!����

Integrating on C� a geometric term which depends only on one of the con�
stituents of the complete �ags � just multiply by a constant depending only
on dimensions the corresponding integral on the set of geodesic k�spheres
of S��

We can now recognize spherical versions of the p�lengths de	ned in sec�
tion higher dimensional convex bodies and related matters�

Lp
M� � C
N�n� p�

Z
G�N	p���

j�hjdh

where j�hj denotes the volume of �h 
when p � O� �h is a 	nite set and j�hj
is the number of points 

�h� of �h�� Recall that� in the euuclidean case�
the constant C
N�n� p� has been chosen so that if M is the boundary of an

�tubular neighbourhood in a 
n����dimensional space h of a p�dimensional
submanifold C of h� then�

lim��OLp
M� � jCj
First observe that the set of antipodal pairs in S� is the Grassmann

manifold G
�� ��� the set of geodesic circles is G
�� �� and the set of geodesic
spheres is G
�� ���

���



The reader will easily believe that the integral�Z
G��	��



M 
 !��

is proportional to the area of M � De	ne in S��

De�nition �����	

L�
M� �
�

�

Z
G��	��



!� 
M�

To unify notations we will note�

j!� 
M j � 

!� 
M�

A pencil F
!�� of geodesic ��spheres of axis a geodesic circle !� de	nes
a projection pF�
�� of S� n !� on the set fleaves of
F
!���g which is a
circle� Restricted to M n 
M 
!�� this projection has in general a discrete
critical locus �
� and a 	nite number of critical values j�
� j� De	ne�
De�nition ������

L�
M� �
�

�volG
�� ��

Z
G��	��

j�
� j

As the function pF�
�� is generically a Morse function on M n 
M 
 !��
the number j�
� j is generically equal to the number j�j
M�F
!���� So the
integral of the last term of Geom
M��� is proportional to L�
M��

To de	ne the ��lenth L�
M�� projectM on a geodesic sphere !� following
the geodesic arcs orthogonal to it� These arcs are contained in the geodesic
circles containing the two points hbot
S� � 
x��x� where h is the subspace
of lR� such that h 
 S� � !�� We say that the points 
x��x� � hbot 
 S�

are conjugate to !�� The arcs are of the form !� n 
x��x�� 
x��x� 
 !��
Loosing only a measure zero set of spheres�we can suppose that none of the
conjugate points x��x to geodesic spheres !� are on M � Denote by p
�

this projection on !� and by �
� its critical locus�

De�nition ������

L�
M� �
�

��

Z
G��	��

j�
� j

It is also true� but less straitforward to prove� that the integral of the mid�
dle term of Geom
M��� is proportional to L�
M�� This last result is a
consequence of the following kinematic�type formula�

���



Theorem ������� Let M be a surface in S� Then�

L�
M� �
�

�

Z
G��	��

L�
M 
 !�

where ! runs over the set of all geodesic ��spheres of S��

Proof� First observe that the constant is obtained considering small
spheres of geodesic radius t� Then L�
St� � �t and

R
G��	�� Lo
St
!� � ��t�

Recall that by de	nition

L�
M� �
�

���

Z
G��	��

j�
j�

The Cauchy�Crofton formula in S� says�

j�
j � �

�

Z
G��	��

j�
 
 lj

where l runs over the set of geodesic circles in !�
The inverse image of the orthogonal projection onto ! of the geodesic

circle l is a sphere !l� the points of �
 
 l are the critical points of the
orthogonal projection of !l 
M onto l� The reader is invited to compare
this argument with the argument proving the linear reproductibility formula
in section Blashke�s formulas and kinematic formulas� Hence�

L�
M� �
�

���

Z
G��	��

Z
G��	��

j�
 
 lj � �

���

Z
D��	�	��

j�j
!l 
M�F
l���

where F
l� is the 
singular� foliation of the ��sphere !l by geodesic circles
orthogonal to l� Here D � D
�� �� �� is the space of �ags 
!� l��! � l� The
�ag space D 	bers over G
�� �� and over G
�� ��� so using Fubini�s theorem
for both 	brations� we get�

L�
M� �
�

���

Z
G��	��

��L�
! 
M� �

Z
G��	��

L�
! 
M�

�

Gathering our results we can express Geom
M� in terms of the p�lengths
or of integrals of the functions hi�

Theorem ������� 	La�Ro�
 Let M be a compact surface in S�� then�

Geom
M� � ��L�
M� � ���L�
M� � ���volG
�� ��L�
M�

Geom
M� �

Z
M

��� � ��h� �
�

�
volG
�� ��jKj�

���



���� Functions hi

In this subsection we construct functions on M the integral of which are
the spherical p�lengths Lp
M� analogous to the euclidean p�lengths de	ned
in section higher dimensional convex bodies and related matter and
de	ne the functions which localize them�

Let !p�� be a 
p����dimensional geodesic sphere of SN � it is the inter�
section of a 
p��� plane h� of lRn�� with Sn� The intersection 
h��

� 
 SN
is called the 
geodesic� sphere conjugate to !p��� we denote it by !�p���
The set of geodesic spheres of dimension 
N�p��� containing the 
N�p���
gedesic sphere !�p�� foliate SN n!�p��� Moreover each leaf of the foliations
meets !p�� in two antipodal points� The foliation then de	nes a projection
p
p�� of SN n!�p�� on lPp��� Consider the restriction of this projection to
M n 
M 
 !�p����

De�nition ������ The polar variety &
p�� is the closure of the set of crit�
ical point of the restriction p
p�� jMn�M

�

p��
��

The critical locus �
p�� is the closure of the inverse image by the covering
map

� � Sp�� � lPp��

of the critical locus of p
p�� jMn�M

�
p��

��

To de	ne the p�lenth we need just to integrate the p�volume j�
p�� j of �
p�� �

De�nition ������

Lp
M� � const �
Z
G�N��	p���

j�
p�� j

where the constant depends only on the dimensions involved and is chosen
in such a way that�

limr��Lp
Tubr
M�� � p� volume
M�

if M is p�dimensional�

When M is of codimension � the functions hi
m� are de	ned exactly as
in the euclidean case using the second fundamental form of M 
 Sn� The
numbers jk
m�h�j are absolute values of the determinant of the restriction
of this second fundamental form to h 
 TmM � expressed in an orthonormal
basis�
Remark� The inverse image 
expm���
M� 
 TmS

n has atm � 
expm���
M�
the same fundamental form as M 
 Sn at m �M �

We can know state a localization theorem�

���



Theorem ������ Let M be a codimension � submanifold of Sn� The func�
tions hn�i
m� localize the i�lenghts Li
M�� more precisely�Z

M

hn���i � const � Li
M�

The proof is technical�

���



�� The space of spheres

Let L be the Lorentz quadratic form de	ned on the n�dimensional space E
by�

L
x�� x�� ���� xn� � 
x��
� � 
x��

� � ���� 
xn�
�

We will call light cone the isotropic cone of L� We note also L the associated
bilinear form� and call L�orthogonal vectors a� b such that L
a� b� � ��

Let us prove that the set S of oriented 
n � ���spheres of the sphere
Sn�� admits a bijection with the set of points of the quadric ) of equation
L � ��

The points at � of the light cone form two 
n����dimensional spheres�
We retain the 
positive� one S��� that is the points at � of the light cone
in the upper half space xn � ��

De�nition ������ A vector of E is called space�like if L�v���� It is called
time�like if L
v� � �� A line is called space�like �resp time�like� if it contains
a space�like �resp time�like� vector�

Any space�like line L intersects the quadric ) in exactly two points� The
hyperplane orthogonal 
for the Lorentz quadratic form� to a space�like line L

notation LL��� intersects the light cone transversly and therefore intersects
its positive sphere at� in a sphere !L� This gives a correspondance between
the set S of oriented 
n����dimensional spheres of Sn�� and the quadric )�

Proposition ������ Let c be a path in )� If at each point c�t� of the path�
the tangent vector v�t� satis
es�

L
v� � �� 
space� like curve��

the corresponding family of spheres !t admits an envelope�
if

L
v� � �� 
time� like curve��

at any point of the path� the spheres !tare nested�

Proof� As c
t� belongs to )� that is satis	es L
c
t�� � �� one has
L
c
t�� v� � �� The condition for a ��parameter family of spheres to admit
an envelope is that the L�orthogonal space car
t� to the plane generated by
c
t� and v
t� intersects the light cone� The intersection of car
t� with the
sphere S�� is a caracteristic circle of the envelope� that is the limit

limh��!t 
 !t�h

As c
t� and v
t� are L�orthogonal� it is equivalent to L
v
t�� � � �

���



Let us also observe that L � �� endowed with the restriction to each
tangent space of the quadratic form L� restriction which is positive de	�
nite� is a model of H � the hyperbolic space� Each sphere ! of Sn�� is the

boundary at in	nity� of a totally geodesic subspace h of H �

Let G be the group of linear isomorphisms of Rn leaving L invariant� Its
restriction to H is the group of isometries of the hyperbolic space H � To
chose a point z in H determines a metric on the sphere Sn��� This metric
is the projection on Sn��� sphere at in	nity of H � of the metric on Tz
H�
using the geodesic rays of origin z�

Di�erent choices of the point z determine conformally equivalent metrics
on the sphere Sn��� The sphere does not even admit a measure invariant
by the conformal group� Fortunately the sets of spheres of Sn�� do� In
particular� ) is endowed with a measure m invariant by G� That measure
can also be seen as the measure� invariant by the isometries of H � de	ned on
the set of totally geodesic hyperplanes of H � Let us project the sphere Sn��

stereographically on an a�ne space lRn��� There� a sphere ! is located with
its center x�� x�� ���� xn�� and its radius r� the measure m is expressed by�

m � j���
rn����dx� � dx� � ��� � dxn�� � drj

Remark� Let 
v�� v�� ���� vn��� be n� � vectors of Tv�)� The volume of
the parallelepiped constructed on these vectors is

jdet
v�� v�� v�� ���� vn���j �
p

� det
L
vi� vj��

Remark� This measure can also be seen as a measure on the set of
hyperplanes of the hyperbolic space lH which is invariant by the action of
the hyperbolic isometries �Sa���

���� Spheres of dimension �

We will start with spheres of dimension � in S�� and study their positions
with respect to a 
torus� T made of � distinct points� An oriented sphere
	 disjoint from T bounds an interval I� We will say that 	 is trivial if I
contains two points of T � Informally we may say that the small enough
spheres will all be trivial�

Proposition ������ The torus T which minimises the measure of the set
of non trivial spheres is the torus made of the four vertices of a square �or
its image by the conformal group of the circle��

���



X

X

∆

∆

a

b

Figure ��� a nontrivial 
a�� and a trivial 
b� ��sphere

The domain Z of S formed by the non trivial spheres is bounded by
segments of light rays formed by the spheres containing one of the four
points of T �

As the only conformal invariant of a set of four points is their cross�ratio�
The measure m
Z� is a function of this cross�ratio�

Proof� The proof of the proposition is a computation� Using the stere�
ographic projection of S� on lR the measure on S � fpairsofpointsofS�g
is �

�y�x�� jdx � dyj� Without loss of generality� we can suppose that the four

points of the 
torus� T are f� � � � � � zg� We will make the computation
of the measure of 
half� of the points of Z� that is f� � x � �� � � y � zg�
supposing z � �� The other cases are analogous� One hasm
Zz� � m
f� �
x � �� � � y � zg� �m
f� � x � �� z � y ��g�� One has �

m
f� � x � �� � � y � zg��
Z
��y�z

Z
�infty�x��

�


y � x��
jdx�dyj� log
z��

In the same way we compute�

m
f� � x � �� z � y ��g� � log
z�� log
z � ��

The minimum of m
Zz� is achieved for z � �� m
Z�� � �log
��� This
correspond to the 
square� torus T � feik���g�

���



�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

��

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

��

Figure ��� the set of non�trivial ��spheres

�

���� The circles of S�

The set of circles of S� is identi	ed with the points of the ��dimensional
quadric L � � � lR��
The circle two piece property

De�nition ������ A top circle C 
 S� for a closed subset A 
 S� is a
circle intersecting A� bounding two discs D� and D� such that the closure
of one � say D� contains A� and the interior of D� is disjoint from A�

We will call the intersection C 
 A of a top circle with A a topset of A�

De�nition ������ A simple closed curve of S� has the circle two piece
property � if it is divided by any circle in at most two connected components�

Proposition ������ A simple closed curve satisfying the circle two piece
property is a �round� circle�
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The result is clear as� for any other simple closed curve� rotating through
the tangency point an osculating circle with generic contact with the curve
will give circles which contradict the circle two piece property� The circle
two piece property is also meaningful for ��dimensional submanifolds with
smooth boundary of S��

Remark� Notice that if a curve C does not satisfy the circle two piece
property� one can 	nd a top circle intersecting it in at least two connected
components� Suppose that a disc D� intersects C in two components� Let
us call D� the interior of the complement of D�� Chose a point a in D� nC�
The circles of the pencil generated by a and �D� � ordered from �D� by the
inclusion of the discs they bound� starting with D�� have a 	rst tangency
with C� That circle Ct is tangent to C in at least a point b� and the
intersection Ct 
 C still has at least two components� It is the boundary
of a disc Dt containing D�� Consider now the pencil of the circles tangent
to Ct at b ordered from Ct using as before the inclusion of discs that they
bound� One of them is a top circle� and the corresponding topset has two
connected components at least�

Proposition ������ The only ��dimensional manifolds W with smooth
boundary of S� having the circle two piece property are obtained by removing
from S� a 
nite number of disjoint closed discs Di with boundary �round�
circles�

Lemma ������ The top sets of a closed set A satisfying the circle two
piece property are connected � that is they are either a point or an arc of
the corresponding top circle� Conversely if all the topsets of a closed set are
connected� then it satis
es the circle two piece property�

Proof� Consider a sequence of increasing discs Di
� converging to the

disc D� of boundary C such that A 
 D�� If all the intersections A
Di
� of

A whith the complement of Di
� in ! are void or connected the intersections

�Di
� 
 A are also void or connected and would converge to at most one

interval or a point of C� contradicting the hypothesis that the topset in
C is not connected� If a circle cuts A in more than two pieces� a disc D�

of boundary C will intersect the closed set A in at least two connected
components� We can decrease D� � keeping two connected components in

D
t
� till its boundary is a top circle 
	rst reduce one component of A 
 D

t
�

to a point p or an interval containing a point p� then proceed using circles
tangent at p�� Therefore �Dt

� provide the top circle intersecting a in two
connected components� �

Proof� 
of the proposition� If the boundary of W is not a union of cir�
cles� then � consider one component of �W which is not a circle� Performing
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a suitable inversion� this component can be seen as the outer boundary com�
ponent of W 
 lR�� Some circle bounding a disc in lR� containing W will
be tangent to the outer component of �W de	ning a non�connected topset�
The previous lemma provides a contradiction� The conditions of the propo�
sition are su�cient because any circle C tranverse to �W intersects each
circle �Di in zero or two points� Then C and the discs Di it crosses form
a necklace the complement of which has two open connected components
which are the components of W n C 
W � �

���� Spheres of dimension two

They form a ��dimensional manifold� We observed that time�like curves in
S correspond to nested spheres� space�like curves to spheres enveloping a
canal surface� A limit case is the family of osculating spheres to a surfaceM
of R�� along a line of curvature�The corresponding curve of S is everywhere
tangent to the light cone�

���� The spherical two
piece property

De�nition ������ A closed surface M 
 S� satis
es the sperical two piece
property� S�T�P�P� if for any sphere ! the di�erence M n 
M 
 !� has at
most two connected components� Such a surface is called taut

In ���� T�Bancho� proved the following theorem�

Theorem ������ 	Ban�
 A surface embedded in S� satisfying the spherical
two piece property is either a embedded round sphere or a Dupin cyclide�
that is the conformal image of a torus of revolution of �complex� equation

jz�j � a� jz�j � b� a� � b� � �� 
z�� z�� � lC�

Remark� The Dupin cyclides are in two di�erent ways the envelopes of
one dimensional families of spheres tangent to three spheres bounding three
disjoint balls�

The proof of this theorem is analogous to the proof of Kuiper�s result
about tight immersions� One needs to consider spherical topsets and top
spheres�

De�nition ������ A sphere ! is a top sphere if it bounds two balls B� and
B� such that�

�the interior of say� B� does not meet M
�both B� and B� do meet M �
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We can weaken that de	nition�

De�nition ������ A sphere ! is said to be a local topsphere of M at m �
M if m belongs to ! 
 M and if m has a neighbourhood U 
 M which
is contained in one� say B� of the balls B� and B� of boundary !� If the
neighbourhood U 
 M can be chosen to intersect ! only in m then we say
that the sphere ! is a strict local topsphere�

Proposition ������ A surfaceM 
 S� has the spherical two piece property
if and only if every local topsphere is a topsphere�

Proof� Suppose it is not the case� then there exists a point q � int
B���
For a sphere !� tangent to M at m� but bounding a closed ball B�� which
strictly contains B�� It is a strict local topsphere of M at m� and the

intersection B
�
�
M has at least two connected components� one reduced to

m� and one containing q� A third sphere !�� tangent in p to !�� very close
to !�� and contained in B�� contradicts the spherical two piece property� �

At a point m� we can consider the pencil of spheres tangent to M at m
which� with the point m is a circle P
m�� The support spheres of M form�
if M is not a 
round� sphere an interval of this pencil� Let us call !�
M�m�
and !�
M�m� the boundary spheres of this interval� Applying this con�
struction to nested neighbourhoods Ui 
M � i � IN such that 
i�INUi � m

we get spheres !�
i 
M�m� and !�i 
M�m� which converge to the two osculat�

ing spheres of M at m� !�
M�m� and !�
M�m�� We can also de	ne them
using a stereographic projection of center di�erent from m and the principal
curvatures of stereo
M� at stereo
m�� This last observation implies that�
when !�
M�m� and !�
M�m� are di�erent� the intersection !�
M�m�
M
is tangent to a line L�
m� 
 TmM and the intersection !�
M�m�
M is tan�
gent to a line L�
m� 
 TmM � We call these directions principal directions�
A point where !�
M�m� � !�
M�m� is called an umbilic�

Lemma ������ If M is a taut smooth surface of S� then !�
M�m� and
!�
M�m� coincide with !�
M�m� and !�
M�m��

Proof� The interval of P
m� containing the point sphere m and bounded
by !�
M�m� and !�
M�m� is in that case equal to the set of topspheres�
�

We are ready to prove the�

Theorem �����	 A smooth taut surface embedded in S� is either a �round�
sphere or a smooth torus

Proof�
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First notice that a 
round� circle of S� has the spherical two piece prop�
erty�

IfM has an umbilicm� then it 
lies� between identical spheres !�
M�m�
� !�
M�m�� and is therefore a sphere� If it does not have any umbilical
point� then there exist two transverse line 	elds on M � L�
m� and L�
m��
As M is embedded in S� it is orientable� and therefore is a torus� �

Proposition ������ A Dupin cyclide is taut�

Proof� The envelope of a time like curve in ) is a canal surface� union of
the caracteristic circles of the family� The directions tangent to this family
of circles are principal directions� A Dupin cyclide is in two di�erent ways
a canal surface� and therefore admits two transverse foliations by circles

tangent to the principal directions�� The components of M n ! are the
union of plaques of these two foliations� The circle two piece property
applied to the leaves of the two foliations imply that they are cut in at most
two intervals� and can match in at most two connected components� �

Then an essential lemma is�

Lemma ������ A spherical top set of a taut embedded torus M satis
es
the circle two piece property�

Proof� As before B� is the ball of boundary a topsphere ! which contains
M in its closure and B� the other ball of boundary !� If the topset does
not satisfy the two piece property�in the topsphere ! we can 	nd a circle C
which is a topcircle of !
M such that the intersection C
�!
M � C
M
is not connected� As before the intersection M 
 ! is contained in D�� a
disc of boundary C� and the other disc D� of boundary C does not meet
M 
 !� Choose a and c on di�erent components of C 
M and b and d in
di�erent components of C n 
C 
M�� so that these points are in cyclic order
on C� Let � be a geosdesic arc from b to d in D� and V a neighbourhood of
� in S� disjoint from M � Turning ! around C we get a family !t� We chose
the rotation sign to leave � out of the component� but chose the rotation
small enough to garantee the existence of a continuous family of paths �t

joining a to c in !t 
 V 
Bt
� obtained by continuity from B��� Then the

points a and c will be in di�erent components of Bt
�
M �as there is no path

connecting a and c in M 
 C � M 
 ! 
 !t� and as any path in the union
of the hemispheres !t containing the arcs �t joining a and b should cross
V � Therefore� for t small enough� 
with the right sign�� !t cuts M in at
least three connected components� 
This last argument is quite analogous
to Kuiper�s for tight surfaces�� �

Proposition ������� If M is a taut torus in S� then for any topsphere !�
! 
M is a point or a circle�
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Proof� We know by the previous proposition that the top set satis�
	es the circle two piece property� It cannot be ! as M is a torus� nor
contain interior points� which would be umbilical points of M � and im�
ply again the equality M � !� The topset could apriori also be ! n
fnon finite family of round discsg� The boundary of those discs can�
not bound a disc in M without contradicting tautness 
consider a Poncelet
pencil of spheres containing !�� but then these boundary curves would be
disjoint simple closed curves on M � three disjoint simple curves on a torus
always disconnect it into more than two pieces� so M 
 int
B�� would have
at least two components� Moving ! slightly into B� provides a sphere !�

bounding a ball B�� such thatM
B�� has at least two connected components�
The only possibilities left are a point and a circle� �

The interval of topspheres tangent at m � M to the taut torus M is
bounded by the two osculating spheres at m� !� and !�� Let us consider
a sphere ! tangent at m to M close to !� which is not a topsphere� It
intersects M in a neighbourhood of m into two transverse arcs crossing at
m the tangents of which are form a very acute angle and are close to the
principal direction L� 
 TmM � Suppose that the intersection !�
M is the
point m� Choose a neighbourhood U 
 S� of m such that the intersection
M 
 U is a small disc� For non topsphere !t tangent to M at m close
enough to !� the intersection !t 
M is contained in U � As� at m there
are four arcs of !t 
M with distinct tangents� we can 	nd two points p
and q in !t 
M such that any path from p to q in Dt

� passes through m�
Choose in U 
 !� a very small circle 	 centered at m� such that that the
small disc �
it bounds does not contain any of the points p and q� In the
pencil of spheres containing !� �and following by continuity the ball B��
some interval of spheres !� starting at !�will be such that B

�
� contains p

and q but does not contain m � For � small enough and with the right sign�
!� does not satisfy the two piece property� Then we can conclude that
the osculating spheres intersect a taut torus M in circles� Those circles are
necessarily lines of curvature� so M is a Dupin cyclide �Dar� � This ends the
proof of the theorem giving the list of taut surfaces in S��

���� Intersection of surfaces and curves of the sphere
S� with spheres

Let us now show that we can associate to a closed surface or a closed curve
of S� a subset of S the measure of which is a conformal invariant of the
surface or curve�

Let M be a compact surface embedded in S�� There exists a radius 


depending on M� such that any sphere ! 
 S� of radius smaller than 
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either does not meet M or meets M in a point or a closed curve bounding
a disc in M � Then the measure of the set of nontrivial spheres� that is the
spheres which meet M in more than one curve� or in a curve which is not
the boundary of a disc in M � is a conformal invariant� A smaller conformal
invariant is the measure of the spheres which intersection with M contains
a nontrivial component in the homology of M �

De�nition ������

nt
M� � measurefnon trivial spheres forMg

ntop
M� � measuref	 intersecting M non trivially in H�
M�g
Let � be a compact closed curve embedded in S�� There exists a radius


 
depending on �� such that any sphere ! 
 S� of radius smaller than 

either does not meet � or meets it in one or two points� Then the measure
of the set of nontrivial spheres for � � here spheres which meet � in at least
four points� is a conformal invariant of the curve � We can de	ne�

De�nition ������

nt
�� � measurefnon trivial spheres for �g

NT 
�� �

Z
S


� 
!� ���

where �� is the function equal to � when � � � and equal to � when � � �

���� Conjectures

� conjecture There exists a positive constant � such that� when the
closed embedded curve � 
 S� is knotted�

nt
�� � �

� conjecture There exists a positive constant � such that� when the
closed embedded surface M 
 S� is not a sphere�

nt
M� � �

� The Willmore conjecture The following ��form on a surfaceM em�
bedded or immersed in S� is invariant by the action of the conformal
group on S��

dw � 
k� � k��
� � dv
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where k� and k� are the principal curvatures and dv the area form of
M �

The integral on M of this form�

W 
M� �

Z
M

dw

is then a conformal invariant of the immersed surface� Looking 	rst
at revolution tori of equation

jz�j � a� jz�j � b� a� � b� � �� 
z�� z�� � lC�

Conjecture �Wil�� �Wil�� When M is a torus�

W 
M� � ���

The value of W 
M� can be interpreted as an area in the quadric )
�Bry� � ViewM as embeddedd in lR�� Consider at each point ofm �M
the sphere !b
m�� tangent at m to M � and with mean curvature the
mean curvature of M in M �

Remark�First observe that this is a conformal property� equivalent
to impose that the intersection curves of M and !b
m� intersect at
right angles in m� There may be an inequality linking W 
M� and the
measure of the spheres with non trivial intersection with M � Proof�
We can write local equations of M and !b
m� in the neighbourhood
of m� using axis tangent to the principal directions of M at m and to
the normal to M at m 
k� and k� are the principal curvatures of M
at m� �

z �
�

�
�k�x

� � k�y
�� � higher order

z �
�

�
�
k� � k�

�
x� �

k� � k�
�

y�� � higher order

The equation of the intersection is

k� � k�
�

x� �
k� � k�

�
y� � higher order � �

proving that the projection of the intersection M 
 !b
m� on the
tangent plane is� in the neighbourhood of m� two curves intersecting
at m with right angles�
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This de	nes a map �bM � )� The image of this map is a surface
which is space�like 
that is the tangent plane to it� in every point�
contains only space�like non�zero vectors��

The measure of the image of this map is then again W 
M��

This conjecture has proved to be particulary rich in connection with
other problems see �Wil�� �Wil�� �Li�Ya��

Theorem ������ Let M be a two dimensional �at torus in lR� with
lattice generated by f
�� ��� 
x� y�g where � � x � �

� and
p
�� x� �

y � � � then Z
M

jH�j � ���

������ Conformal structures on tori�

First recall the possible conformal structures on a torus� �Bri�Kno�
and �Jo�Si��

Let � be a complex number with positive imaginary part� and let &�
be the lattice in lC consisting of all complex numbers n�m�� where m
and n are integers� Then lC�&� has the structure of a one�dimensional
complex manifold� As a topological manifold� lC�&� is homeomorphic
to S� � S�� We are interested in the possible conformal structures�
Then 
z�� z�� and 
az�� az�� a � lC�� de	ne the same conformal struc�
ture� Chosing the proper orientation we may also chose between 
�� ��
and 
�� ��� Brieskorn and Kn orrer�s book contains also an algebraic
geometry interpretation� they prove that all complex tori can be in�
terpreted as a cubics� One can prove 
see �Jo�Si� p����� that the space
of moduli describing the conformal structures on a torus is a quotient
of�

D � f�� j�j � �� jRe�j � ���g
identifying the corresponding sides by the maps z � z��� z � ���z�
Allowing the reversing orientation conformal map z � ���z one re�
duces the modulus to�

f�� j�j � �� � � Re� � ���g
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������ Conformal volume�

De�nition ������ Let M be a surface or a curve embedded in S��
De
ne

V olconf
M� � supg�Mvol
g
M��

where M is� as before the M�obius group of conformal di�eomorphisms
of S��

Proposition ������ � The conformal length of a curve in at least
��� the length of a geodesic circle�

� The conformal area of a surface is at least ��� the area of a
geodesic sphere�

� The conformal area of an immersed surface admitting double
points is at least ���

� The conformal area of an immersed surface admitting triple points
is at least ����

Let proj be the steoreographic projection with 
south pole� a point
m of M � The maps 
proj��� �HR �proj� when R�� expand� up to
cover almost all the sphere� any small neigbourhood of m� and expand
the small arc or disc of M contained in that neighbourhood up to a
curve or surface very close to a geodesic circle or sphere�

Proposition ������ If M is a minimal tori embeddededin S� then
vol
M� � V olconf
M�

We use again the relation between the extrinsinc Gaussian curvature
Kext and the intrinsic Gaussian curvature Kint of a surface in S��
Kint � ��Kext and the fact that in R�or S�� the ��form 
k��k��

�dv
and its integral on M are conformally invariant� Denote also HS the
mean curvature of this surface M � S��

Let proj be again a stereographic projection� Denote by H and K
the mean curvature and Gauss curvature of proj
M� � lR�� and by k�
and k� its principal curvatures� Then the quantityZ

proj�M�


k� � k��
�dv �

Z
proj�M�

H� �K

is equal to�Z
M


HS�
� �Kext �

Z
M


HS�
� �Kint � � � V ol
M�
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as M is minimal and is a torus� Using again the fact M is a torus
and Gauss Bonnet theorem� one gets that

R
proj�M�

H� is a conformal

invariant� and therefore thatZ
proj�M�

H� �

Z
g�M�

H�
S � vol
g
M���g �M

Then
V olconf
M� � vol
M�

The other inequality is immediate�

The study of the 	rst eigenvalue of the Laplacian onM �Li�Ya�� implies
the inequality�

Proposition ������ A �at torus with lattice generated by f
�� ��� 
x� y�g
where � � x � �

� and
p
�� x� � y � � satis
es�

V olconf
M� � ���

The theorem now follows directly from the inequality�
R
M H�

S � � �R
M

� � vol
M� applied to a sequence of embedding the volume of
which approximates the conformal volume�

� M�obius energy The author thanks D�Rolfsen for pointing out the
reference �F�H�W� to him� Recently M�F�Freedman� Z�X�He and Z�Wang
using an previous work of O�Hara� ��� de	ned the M obius energy of a
recti	able curve embedded in lR� by�

E
�� �

Z Z
�	�n�

�

j�
v�� �
u�j� �
�

�distlR�
�
v�� �
u����

where � is the diagonal of the product � � �� Separately the integral
of the two fractions would diverge� but the sum converges� They prove
that this function is invariant by the M obius group�

Let c
���� be the crossing number of the knot type ��� 
the in	mum
of the number of crossings of the projection of the knot � � ��� on a
plane� when � describes the isotopy class�

Theorem ������ 	F�H�W
 The energy E
�� of a simple closed curve
� 
 lR� satis
es the inequality�

E
�� � ��c
���� � �

The equality E
�� � � is achieved only when the curve is a �plane�
round� circle�
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K��KK�K� k��K�K�

Figure ��� Possible generic contacts of a sphere and a foliation�

Conjecture The M obius energy and the measure of the set of spheres
intersecting the curve � in at least four points are linked by inequal�
ities� One may have to take a multiplicity involving the number of
intersection points into account�

���� Conformal integral geometry of foliations�

Curiously� the 	rst result of conformal integral geometry �La�Ni�� was ob�
tained for codimension one foliations of lR� or S��

Let now F be a codimension � foliation of a domainW 
 lR�� The num�
ber N�
!� of negative contact points of ! with F is the number of saddle
tangencies of ! and F � It is clear that the number N�
!� is conformally
well�de	ned�

A measure on the set S of spheres of lR�� considered as a subset of the
set of spheres of S� is constructed in the chapter The space of spheres�
Using that measure we have the

Theorem ���	�� Let F be a smoothe foliation of a domain W 
 lR�� Then

�

�

Z
W

jk� � k�j� �
Z
S
N�
!�dm
!�

where ki are the principal curvatures of the leaves�

Remark� We could have stated the theorem in S� as the form jk��k�j�dv�
where dv is the volume element of W � is a conformal invariant�
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�� Complex integral geometry

The n�dimensional complex space lCn has a natural hermitian structure� and
an associated scalar product�

� ujv �e� Re
� ujv ��

The n�dimensional complex space lCn endowed with the quadratic form
jvj� � Re
� vjv � is just a euclidean space of dimension �n� But� among
the real euclidean planes� some have an extra property� they are globally
invariant by multiplication by complex numbers� The complex integral ge�
ometry will deal with those particular real planes� the complex lines� To
compensate the relatively few partial datas given by the projections on the
complex lines and complex subspaces only� and by the section by the a�ne
complex subspaces only� we need to suppose that the submanifolds studied
have some extra structure� So in this chapter the submanifolds are local
images of lCp by a locally de	ned holomorphic map�

���� Critical points of projections on complex lines

The orthogonal projection of lCn onto a complex line of lCn is a holomorphic
map�

Many interesting consequences can be deduced from the properties of
the complex curve C of equation y � ax� in a neighbourhood of the origin�

The tangent space to C at 
�� �� is the x�line and the normal space at

�� �� is the y�line� Let D� be the oriented real line of the y complex line
making the angle � with the oriented real axis� The orthogonal projection
C� of C on the sum �

E� � 
x complex line��D�

has equation �
z � Re
ei��x�� �

z being the real coordinate on D� determined by the euclidean structure of
lC� and the orientation cf D���
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N�

y	x� on TmM�N�

p���

p���

projection of the curve projection of the curve

N�

y	x� on TmM�N�

Figure ��� Saddle and turned saddle

Performing the change of variable x� � ei����x� we see that the projec�
tions C� are all isometric� more precisely that C� is deduced from C� 
of
equation z � Re
x�� by a rotation with a vertical axis and angle �����

A section of C� by the vertical plane F� containing the real line �� of
the x�complex line has the equation�

z � Re
a���e�i�� �j a j ��cos 
��� �a�

where �a is the argument of a� therefore the maximal and minimal values
of the curvature in 
�� �� of those curves are opposite and of absolute value
�� j a j � This implies that at 
����� C� has zero mean curvature and Gaussian
curvature � j a j� �

Remark� The projections of the complex curve of equation z � axn

on the ��spaces E� are obtained from the projection on E� by rotations of
angle ���n� As curvatures depend only on ��jets at the point where they
are computed� we have proved the following proposition�

Proposition ������ Let C be a holomorphic curve of lC� then the orthogo�
nal projections of C on the ��spaces E� � Tm�D�� where Tm is the complex
line tangent at m to C and where D� is a real line normal to C in m� have
all the same Gaussian curvature at m and have all zero mean curvature at
m�

���� Complex Gauss map and critical points�

The normal space N
m� of C at m is a complex line� This allows us to
de	ne a map � lC of C to lCP� by � lC
m� � N
m�� At the point 
����� the
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Fubini�Study metric of lCP� is the euclidean metric of the chart given by the
map x�y�

Let K
��m� be the gaussian curvature of the projection M� of M on
the space E� � TmM ���

The Lipschitz�Killing curvature at m� K
m�� of an even dimensional
submanifoldM of RN is� up to a constant depending only on the dimensions
involved� equal to the integral on the projective space on 
real� lines of the
normal space� of K
��m� �

K
m� � const

Z
lPN�m�

K
��m�

where const indicates a constant depending only on the dimensions involved�

Proposition ������ The jacobian of the complex Gauss map satis
es �

j det D� lC
m� j�� �K
��m� � const K
m�

where const is a universal constant�

Proof� It is enough to prove the proposition for the curve C of equation
y � ax� at the origin as the numbers we shall compute depend only on
��jets� Let m
x� be the point 
x� x��� The complex normal line is generated
by the vector 
��a*x� ��� therefore� using the map x�y� the di�erential of the
complex Gaussmap is ��a�J� where J is conjugation�

One gets j det D� lC
�� j� � j a j� � �

Let us now see what the counterpart of the existence of a complex Gauss
map is when one looks at projections on complex lines� We will note �LlC
the orthogonal projection on the complex line LlC� Let C be a holomorphic
local parametrisation of the curve C� The di�erential D
�LlC

�C� is a linear

complex map which implies that its real rank 
as a real linear map� can be
only � or �� This implies that a point is a critical point of �llC�C if and only
if it is a critical point of �D �C� where D is a real line contained in LlC � �

Corollary ������ Let j � j 
C�D� denote the number of critical points of
the orthogonal projection of C on the real line D and j � j 
C�LlC� be the
number of critical points of the projection of C on the complex line LlC� For
every real line D contained in a complex line LlC one has�

j � j 
C�D� �j � j 
C�LlC��
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Remark� The critical values of the projection of a complex curve on
a real ��plane which is not a complex line may contain arcs� A nice study
of this critical locus for a family of planes containing a complex line in
the neighbourhood of non degenerate critical value of the projection on the
complex line can be found in the book by Arnold� Gusein�Zade et Varchenko
�A�G�V� p� ������ see 	g� I���

Figure ��� Projection of the complex curve y � x� on a real plane which is
close to the complex y�axis

���� Polar curves�

We have already met polar varieties &h and �h respectively the critical
points and the critical locus of the orthogonal projection of a submanifold
on the subspace h� They are equally important in the complex frame� 
see
for example Teissier �Tei��� Slightly more generally� a polar variety is always

the closure of� the set of points where an incidence relation between the
tangent subspaces to a certain object and a 	xed subspace satisfy a given
incidence relation� Let us now give the examples we shall use later�

De�nition ������ Let F be the foliation de
ned by an algebraic ��form of
lC� � � � P�dx �Q�dy� The tangent plane at a point 
x� y� to the leaf of the
foliation through 
x� y� is the kernel of �� when P and Q are not both zero�
Let L be a complex line� The polar curve &L
F� is de
ned by�

&L
F� � f
x� y� j �
x� y�
L� � � and � �� �g�
Observe the choice of upper indices� to be consistent with the previous
chapters we need to de	ne�
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De�nition ������

&�L��
F� � f
x� y� j � �� � and pL� jL�x�y�
has a critical point at 
x� y�g�

Here L�x	y� is the leaf of F trough the regular point 
x� y��

Of course� it is the curve &L
F�
As in the real case�the name polar curve comes from the fact it is gener�

ically a curve except for a set of lines of measure zero� Again� we shall
extensively use generic properties� In the algebraic context the measure
zero bad set we should avoid is often a closed algebraic subset�Except for
degenerate cases which we ignore� &L is an algebraic curve whose equation
is P�a�Q�b � �� where 
a� b� is a vector generating L�

A particular case is when F is the level foliation of a polynomial f �
lCn � lC� The intersection of the polar curve &L
F� with a nonsingular level
f � � of the polynomial is the set of critical points &L
f � ���

Theorem ������ Exchange theorem� Let V be an open piece of a holo�
morphic curve� its total curvature satis
es�Z

V

j K j� const�

Z
lClP���

j � j 
V� L��

Proof� The theorem is a consequence of the exchange theorem proved
before for codimension p submanifolds of lRN � and of the corollary about
numbers of critical points of the projection on real or complex lines proved
above� �

A global consequence is the �

Proposition ������ Let f be a polynomial of two complex variables of de�
gree d� The total curvature of the algebraic curve C of equation f � � is less
than of equal to d
d� ���

Proof� Let F be the foliation de	ned by the levels of the polynomial
f� To each generic complex line L is associated a polar curve &L which has
degree less than or equal to d � �� By Bezout�s theorem the intersection
&L 
 C has at most d�
d � �� points� these points are precisely the critical
points of the projection of the curve on the complex line L� One deduces
now the proposition from the exchange theorem� �

���� Isolated singularities

We shall show that when a sequence of smooth objects tends towards a
singular one a distribution of curvature with support on the singular locus

���



often arises naturally� The singularity will appear as a condensation at a
point of the behaviour of compact submanifolds�

Let us 	rst give a real algebraic example� The plane curve C of equation�

x� � y� � �

is the limit of the family of curves C� of equations�

x� � y� � ��

Let us consider the total curvature of the arc of C� contained in a small
ball centered at the singular point�

Proposition ������ The following limit �

lim
����

lim
����

Z
C�
B�

j k j

exists and is equal to �

c

�

L� �
L�

c�

c

�B�
c�

Figure ��� One dimension�faithfull picture and one codimension�faithfull
one of C�

We shall show that such a phenomenon always occurs when one studies
a sequence of levels of a complex polynomial having an isolated singularity
or more generally of a polynomial map to lCp having an isolated singularity
such that the zero level is a complete intersection� Let us 	rst recall the
topological and algebraic facts we will need� The study in the neighbour�
hood B
�� �� of an isolated singularity of the topology of the level f � � of
a complex hypersurface has been done by Milnor �Mil�� �
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Theorem ������ 	Mil�
 � Let � be an isolated singularity of the complex
polynomial f � lCn�� � lC� Then for � small enough and � �chosen after ��
small enough� the intersection B� 
 
f � �� of the level f � � with the ball
of radius � has the homotopy type of a wedge of � spheres of real dimension
n�

Following Teissier we shall pose ��n��� � �
f�� The notation is justi	ed by
the following theorem �

Theorem ������ 	Tei�
 or 	Tei�
� There exists a measure zero analytic
closed set of the Grassmann manifold Gn��	� such that� if H � Gn��	in�i�
the Milnor number �
fjH� takes the generic value ��i� independently of H�

Let us 	rst consider the case of a polynomial f � lCn�� � lC The levels
of f form a foliation F � At each regular point m of F � TmF is the tangent
hyperplane to the level of f throughm� Let us now 	x a 
vectorial� complex
hyperplane h�

De�nition ������ The polar curve &h is the closure of the set of regular
points m such that TmF � h �here we identify the a�ne space TmF and
the vector subspace which is parallel to it��

Proposition ������ 	Le�
 p� ��� and 	Tei�
 p� ��� �the polynomial f does
not need to have in this proposition isolated singularities�� The polar curve
&h is contained in an algebraic curve &�h more precisely� if ! is the singular
locus of f� one has �

&h � &�hn!�
Proof� when the singularity is isolated It is enough to choose a base

e�� � � � � en of h The equations of &h are in this case �

df
e�� � df
e�� � � � � � df
en� � ��

�

The following theorem about the total curvature is now a mere transla�
tion of the previous one� using the complex exchange theorem � �Lan���

Theorem ������ 	Lan�
�Let f � lCn�� � lC be a polynomial�

lim
����

lim
����

Z
lC�
B�

j K j� const 
���n
�n�� � �n�

where K is the Lipschitz�Killing curvature of the level C� and const a pos�
itive constant�
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Remark� The 	rst study of the curvature of levels f � � of the polyno�
mial f near an isolated singular point is done in the thesis of L� Ness �Ne��
She shows in particular that the curvature of the levels is unbounded in the
neighbourhood of the singularity�

Using more information about the polar curves than just the intersection
number &h �C� we can give a more precise description of how the curvature
of C� concentrates near the singular point� The geometric picture is that of
concentrations of curvature near the vertices of regular polygons inscribed
on circles whose radian are fractional powers of �� The precise statement
for non irreducible curves and the analysis of the phenomenon in terms of
the contact of the branches of the generic polar curves and C� was done by
Teissier �Tei��� after previous results in the irreducible case by the author
�Lan���

The seminal example is f � x� � y�� Let us consider the polar curves
&a	b � fdf
a� b� � �g� Their equation is �ax� � �by � �� The intersection
points of C� and &a	b satisfy ��

x� � y� � �
�ax� � �by � ��

Their absciss therefore satis	es � x� � 
�a��b��x� � �� The three in�
tersection points of the polar curve and C� have abscissas close to �

p
�

and ordinate of principal term 
�a��b�x�� This is true� provided � is small
enough� for any point of lCP� di�erent from 
�� b�� Notice 	rst that the cubic
root of � is much larger than the square root of �� which is the order of the
distance of the origin to the curve C�� In other words with a lens of strength

������� one sees two parallel lines at 	nite distance from the origin �

Figure� lim��
�
� 
C��

as the lines ax� by cut C� at points of ordinate of principal part 
����� for
all generic values of 
a� b�� With a weaker lens of strength 
������ one sees
three branch points �

���



lim
������
C�� �

� �
� �

�
Each branch point of order two carries a distribution of gaussian curvature
of total mass ���� One can� applying the Gauss Bonnet theorem to the
surface C� 
 B

�

�
� � O�� �

�
��� � for a suitably small positive �� check that

its total curvature is very close to ��� This property is true because this
ball contains exactly one point of intersection with the polar curves &a	b for

a� b� not in a neighbourhood shrinking with �� of the non generic direction

�� b� of lCP��

Remark also that the Gauss Bonnet theorem applied to C� 
B

�� ��� �
implies that the total curvature of this intersection� for a suitably small
positive � is very close to ���

The previous calculations prove that the picture of the real levels of
x��y� should look much more acute than usually drawn� as the turn should
occur in a very small neighbourhood of the cubic root of �� Rescaling we
see a parabola� See 	gure below�

Figure ��� x� � y� at two di�erent scales

The general case needs more lenses� the strenth of which are determined
using a theorem of Smith and Merle �Sm� et �Me�� See �Tei���

Let us now give an intuitive justi	cation of this multiscale phenomenon
of concentration of curvature� For that consider a family of branches &qa	b
of the polar curves &a	b � fmj � gradf
m� 
 lR
a� b� � � 
a� b� � A where
A is the complement of small open discs centered on non generic�directions
of lCP� with a given contact order with C� which is larger than one� Among
those non�generic directions are the lines L such that the polar curve &L
has L� among its tangents at zero� See �Tei���
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A�rmation� Any complete complex curve� the complex Gauss image of
which is contained in A should cross all the curves &qa	b� 
a� b� � A provided
it crosses one of them close enough to the origin�

Proof� The condition 
a� b� � A implies that the angle of the curve and the
polar branches is bounded away from �� since in a small enough neighbour�
hood of the origin the tangent space to &qa	b� 
a� b� � A� is very close to the
set of non generic directions� The curve C� through a point close enough
from the origin has then to cross the family of branches� and this implies the
Gauss image of the intersection of C� with the family of branches contains
A�

The existence of a positive bound to the angle between the branches
considered above of the polar curves and C� implies also that the size of the
piece of intersection should be of the order of the 
transverse size� of the
family of branches 
the transverse distance makes sense in the neighbour�
hood of a 	rst intersection point of the curve with one of the branches of
the polar curves considered above�� See 	g� x� � y� at two di�erent scales�

Let us 	nally observe that� in the non�irreducible case� part of the curva�
ture of C� may be spread over a ball of radius C�
����m� for m large enough�
and C a large enough constant� For example m is the multiplicity at � of
C�� if the polynomial f is homogeneous�

The study of P�Rouill�e �Rou� of the geometry of a neighbourhood of an
isolated complex singularity of a foliation by level curves of a polynomial
f � lC� � lC goes beyond integral geometry as he can even describe the shape
of the renormalisation of f � � at a concentration of curvature�

Let us now consider a surjective polynomial map f � lCn�p� � lCp� The
levels of f form a singular foliation of lCn�p with singular locus !�

De�nition �����	 The polar variety &h is the closure of the set of regular
points m such that TmF 
 h�

Proposition ������ There exists an algebraic variety &�h such that �

&
h
� &�hn!�

Proof� when the singularity is isolated and the intersection is complete
� Let u be a vector of lCp� The equation � f j u ��� � j u � de	nes
a hypersurface which contains the level f � �� The level f � � is the
intersection of the hypersurfaces � f j u ��� � j u � where u takes all
values in lCpn�� The set of hyperplanes tangent at m to the hypersurfaces
containing TmF � Let us associate to each polynomial � f j u � with value
in lC a polar curve &
� f j u �� h��

���



The previous remark shows that the polar variety &h is the closure of
the intersection of the union of the polar curves &
� f j u �� h� with the
set of regular points of the foliation F � Let us choose coordinates on lCn�p

and lCp� and let J be the jacobian matrix �

J �

�BB�
�f�
�f�

� � � �f�
�zn�p

�fp
�z�

� � � �fp
�zn�p

�CCA
Let e�� � � � � en�p�� be a basis of h� As the function � f j u � can be

written in the matrix form e*u�
�B�
f�
�
�
fn

�CA � the equations of &
� f j u �� h� are �

� �� e*u�J j e� ��� e*u�J j e� �� � � � �� e*u�J j en�p�� � �

or �


�� e*u�J�*e� � e*u�J�*e� � � � � � e*u�J�*en�p���
The regular point m belongs to &h if and only if there exists a vector u

satisfying 
"�� This amounts to say that the system of vectors of lCp �

g� � J�*e�� g� � J�*e�� � � � � gn�p�� � J�*en�p��

is of rank smaller or equal to 
p � ��� The equations of &h are obtained
by equating to zero the set of determinants which guarantees this rank
condition�

The points of &h 
 �
f � ��n!� are exactly the critical points of the
restriction to the smooth part of the leaf f � � of the orthogonal projection
ph� on the complex line h�� �

Milnor�s codimension � results were generalised by Hamm �Ha� and
Giusti and Henry �G�H� for complete intersections�

Let now f � lCn�� � lCp be a surjective algebraic map such that the
origin is an isolated singular point of f and such that the level 
f � �� is a
complete intersection� We will denote by C� the level variety 
f � ��� Let
us state the algebraic results that we will need�

Theorem ������ 	Ha
� For � small enough and � �� � �chosen after ��
small enough� the manifold with boundary 
C� 
B�� has the homotopy type
of a wedge of � spheres of real dimension n�
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Theorem ������� 	G�H
� There exists a measure zero analytical closed set
�i of the Grassmann manifold Gn�p	i�p�� such that� if

H � Gn�p	i�p��n�i� the Milnor number �
fjH� takes the generic value

��i�� independently of H�

Generalising the codimension � case� see �Tei��� Greuel �Gre� and L+e �Le��
independently proved �

Theorem ������� The intersection multiplicity at � of the complete inter�
section and a generic polar variety &h satis
es �

lim
����

lim
����



C� 
B� 
 &h� � 
C��&h� � �n�� � �n�

The following theorem about the total curvature is now a mere translation�
using an exchange theorem in codimension p� of the previous one� extending
the codimension � result of �Lan���

Theorem ������� 	Lan�
�Let f � lCn�� � lCp be a polynomial such that the
level f � � is a complete intersection� then�

lim
����

lim
����

Z
lC�
B�

j K j� const 
���n
�n�� � �n�

where K is the Lipschitz�Killing curvature of the level C� and const a pos�
itive constant depending only on dimensions�

Remark� The study of other symmetric functions of curvature � in the
codimension � case� was started by Gri�ths �Gr�� and continued by Kennedy
�Ke� and Loeser �Lo��

Remark��integral geometry in lClPn� In this paragraph f will be a
homogeneous polynomial map from lCn�� to lC of degree greater or equal to
two having only isolated singular points in lClPn� Using a pencil of projective
lines� one can de	ne polar curves 
see the chapter spheres and the chapter
foliation for the construction of the curves of contact of a foliation with a
pencil�� Then adding the previous result� 
there f � lCn � lC�

lim
����

lim
����

Z
C�
B�

j K j� const 
���n
�n � �n���

with Bezout�s theorem one gets a geometric proof of Laumon�s results �Lau�
�Lan���

Proposition �������

degree
C�� � �d
d� ���n�� �
X

msingular


�n � �n���
m�
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Integral geometry � measure theoretic

approach and stochastic applications

Rolf Schneider

Preface

Integral geometry� as it is understood here� deals with the computation and
application of geometric mean values with respect to invariant measures�
In the following� I want to give an introduction to the integral geometry
of polyconvex sets 
i�e�� 	nite unions of compact convex sets� in Euclidean
spaces� The invariant or Haar measures that occur will therefore be those
on the groups of translations� rotations� or rigid motions of Euclidean space�
and on the a�ne Grassmannians of k�dimensional a�ne subspaces� How�
ever� it is also in a di�erent sense that invariant measures will play a central
role� namely in the form of 	nitely additive functions on polyconvex sets�
Such functions have been called additive functionals or valuations in the
literature� and their motion invariant specializations� now called intrinsic
volumes� have played an essential role in Hadwiger�s ��� and later work 
e�g��
���� on integral geometry� More recently� the importance of these functionals
for integral geometry has been rediscovered by Rota ��� and Klain�Rota ����
who called them -measures� and emphasized their role in certain parts of
geometric probability� We will� more generally� deal with local versions of
the intrinsic volumes� the curvature measures� and derive integral�geometric
results for them� This is the third aspect of the measure theoretic approach
mentioned in the title� A particular feature of this approach is the essential
role that uniqueness results for invariant measures play in the proofs�

As prerequisites� we assume some familiarity with basic facts from mea�
sure and integration theory� We will also have to use some notions and
results from the geometry of convex bodies� These are intuitive and easy to
grasp� and we will apply them without proof� In order to understand the ap�
plications to stochastic geometry that we intend to explain� the knowledge
of fundamental notions from probability theory will be su�cient�
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The material is taken from di�erent sources� essentially from the lecture
notes on 
Integralgeometrie� ��� and 
Stochastische Geometrie� ���� both
written together with Wolfgang Weil� Another source is the fourth chapter
of the book ��� on convex bodies�
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� Introduction

It will be one aim of the following lectures to develop some integral geometric
formulae for sets in Euclidean space and to show how they can be applied
in parts of stochastic geometry� In particular� I want to emphasize the role
that integral geometry can play in the theoretical foundations of stereology�
By stereology one understands a collection of procedures which are used
to estimate certain parameters of real materials by means of measurements
in small probes and plane sections� Stereology is applied in biology and
medicine as well as in material sciences 
e�g�� metallography� mineralogy��

Since much of the motivation for the later theoretical investigations
comes from these practical procedures� let me 	rst explain the underlying
ideas by two typical examples�

In geology� one may be interested in determining the volume proportion
of some mineral in a rock� Thus one assumes that for the material in ques�
tion there is a well�de	ned parameter� traditionally denoted by VV � that
speci	es the volume of the investigated mineral per unit volume of the total
material� In order to determine this speci	c volume VV � one will 	rst take
a probe of the material 
at random�� As a second step� Delesse 
����� pro�
posed to produce a 
polished� plane section of the probe� possibly again 
at
random�� and to determine the speci	c area AA of the investigated mineral
in that section� On the basis of heuristic arguments� Delesse asserted that

VV � AA�

or rather that the measured value AA is a good estimate for the unknown
parameter VV �

A second example is taken from medicine� One may be interested in the
gas exchange of a mammal lung� and this depends on the alveolar surface
of the lung� To measure this speci	c area� denoted by SV � only a small
probe of the lung tissue will be available� and usually only a thin slice can
be observed under the microscope� Tomkeie� 
����� proposed to determine
the speci	c boundary length LA of the tissue in the section and then to
estimate the unknown speci	c area SV by means of the formula

SV �
�

�
LA�

again supported by heuristic arguments�
Scientists working in practice have developed similar formulae� The so�

called -fundamental equations of stereology� are

VV � AA� SV �
�

�
LA� MV � ���A�
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Here M denotes the integral of the mean curvature� and � is the Euler
characteristic�

It is evident that such heuristic procedures are implicitly based on many
tacit assumptions� A theoretical justi	cation has to begin by analyzing these
assumptions� it has to provide suitable models and must 	nally lead to ex�
actly proven formulae of the type used in practice� The 	rst assumption is
that the parameter of the material to be determined� like volume or surface
area per unit volume� exists and can be estimated with su�cient accuracy
from taking randomly placed probes and averaging� A solid foundation and
justi	cation can be achieved if the material under investigation is modelled
as the realization of a random set� Taking a probe at random can then be
modelled as follows� We 	x a shape for the probe or -observation window��
say a compact convex set K with positive volume� Inside K we observe a
realization Z
�� of our random set Z� We assume that for the intersection
Z
�� 
K we are able to measure a geometric functional � of interest� like
volume or surface area� Instead of placing K in a random position� one
assumes that the random set Z has a suitable invariance property� meaning
that Z and its image under any translation or rigid motion are stochastically
equivalent� Under suitable model assumptions� the mathematical expecta�
tion E �
Z 
 K� will exist� and the measured value �
Z
�� 
 K� can be
considered as an unbiased estimator� If the model is such that the random
set Z has a well�de	ned ��density� the next question is then how this is
related to the local expectation E �
Z 
 K�� depending on the test body
K� Similar considerations will be necessary to justify the determination of
parameters from randomly placed lower�dimensional sections�

This program� of which we have merely given a rough sketch� will obvi�
ously require the development of

� a theory of random sets with suitable invariance properties� admitting
densities of geometric functionals� like volume� surface area� Euler
characteristic�

� a theory of mean values of geometric functionals� evaluated at inter�
sections of 	xed and moving geometric objects�

� Elementary mean value formulae

We begin with the second part of the program� the development of mean
value formulae for 	xed and moving geometric objects� By 
moving� we
mean here that the geometric objects� which are in Euclidean space� un�
dergo translations or rigid motions� The mean values will be taken with
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respect to invariant measures on the groups of translations or rigid mo�
tions� The present section is still part of the introduction and will discuss
a few elementary examples of such mean value formulae�

We work in n�dimensional Euclidean space Rn 
n � ��� The subsets
of Rn which will later 
in dimensions two and three� be used to model
real material� should not be too complicated� in order that functionals like
surface area or Euler characteristic are de	ned 
locally�� It is su�cient for
practical applications to consider only sets which can locally be represented
as 	nite unions of convex bodies 
non�empty� compact convex sets�� We
begin by considering only convex bodies� it will later be easy to extend the
results to more general sets of the type just described� By Kn we denote
the set of convex bodies in Rn �

The following is a basic example of the type of questions that we will
have to answer� Let K�M � Kn be two convex bodies� Let M undergo
translations� that is� we consider M � t for t � Rn � What is the mean value
of the volume of K 
 
M � t�� taken over all t with K 
 
M � t� �� �� The
mean value here refers to the invariant measure on the translation group�
which can be identi	ed with the Lebesgue measure � on R

n � For convex
bodies K� we write Vn
K� � �
K� for the volume� Thus we are asking for
the mean value R

Rn
Vn
K 
 
M � t�� d�
t�R

Rn
�
K 
 
M � t�� d�
t�

� 
��

Note that �
K �� � � for a non�empty convex body K � and �
�� � �� so that
the denominator is indeed the total measure of all translation vectors t for
which K 
 
M � t� �� �� Thus we have to determine integrals of the typeZ

Rn

�
K 
 
M � t�� d�
t�

for di�erent functionals �� Extensions of this problem will be our main
concern in these lectures�

It is not di�cult to determine the numerator in 
��� Denoting the indi�
cator function of a set A 
 R

n by �A� we have

Vn
K 
 
M � t�� �

Z
Rn

�K
�M�t�
x� d�
x�

and

�K
�M�t�
x� � �K
x��M�t
x�
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with

�M�t
x� � � � x �M � t � t �M� � x � �M��x
t� � ��

Here we have denoted by

M� �� fy � R
n � �y �Mg

the set obtained from M by re�ection in the origin� Now Fubini�s theorem
gives Z

Rn

Vn
K 
 
M � t�� d�
t�

�

Z
Rn

Z
Rn

�K
�M�t�
x� d�
x� d�
t�

�

Z
Rn

Z
Rn

�K
x��M��x
t� d�
t� d�
x�

�

Z
Rn

�K
x�Vn
M
� � x� d�
x�

� Vn
M
��

Z
Rn

�K
x� d�
x�

and hence

Z
Rn

Vn
K 
 
M � t�� d�
t� � Vn
K�Vn
M�� 
��

Note that we have used the invariance of the volume under translations
and re�ections�

The denominator in 
�� is of a di�erent type� We have

�
K 
 
M � t�� � � � K 
 
M � t� �� �
� � k � K �m �M � k � m� t

� t � k �m with k � K�m �M

� t � K �M�

� �K�M�
t� � �
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and hence

�
Z
Rn

�
K 
 
M � t�� d�
t� � Vn
K �M��� 
��

Convex geometry tells us that

Vn
K �M�� �

nX
i��

�
n

i

�
V 
K� � � � �K� 	z 


i

�M�� � � � �M�� 	z 

n�i

��

where the function V � 
Kn�n � R is the so�called mixed volume� The
essential observation for us is here that the obtained expression cannot be
simpli	ed further� In particular� there is no separation of the roles of K and
M on the right�hand side� as it occurred in 
��� Such a separation is only
achieved if we integrate� not only over the translations of M as in 
��� but
over all rigid motions of M � This will be one of the fundamental results of
integral geometry to be obtained later�

For the moment� however� we stay with the translation group alone�
The idea leading to 
�� can be extended� to give a 	rst general formula of
translative integral geometry�

When we talk of a measure on a locally compact space E� we always
mean a non�negative� countably additive� extended real�valued function on
the 	�algebra B
E� of Borel sets of E� Such a measure is called locally 
nite
if it is 	nite on compact sets�

��� Theorem� Let � be a locally 
nite measure on R
n � and let A�B �

B
Rn �� Then Z
Rn

�
A 
 
B � t�� d�
t� � �
A��
B�� 
��

Proof� Using Fubini�s theorem� we obtainZ
Rn

�
A 
 
B � t�� d�
t�

�

Z
Rn

Z
Rn

�A
�B�t�
x� d�
x� d�
t�

�

Z
Rn

Z
Rn

�A
x��B�t
x� d�
t� d�
x�
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�

Z
Rn

�A
x�

Z
Rn

�B��x
t� d�
t� d�
x�

�

Z
Rn

�A
x��
B
� � x� d�
x�

� �
A��
B��

This can be used to obtain a counterpart to the translative integral formula

��� with volume replaced by surface area� First we have to explain what we
mean by the surface area of a general convex body� which need not satisfy
any smoothness assumptions� For that purpose� let us 	rst recall the notion
of the p�dimensional Hausdor� measure� for p � ��

We equip Rn with the usual scalar product h�� �i and the induced norm
k � k� For a subset G 
 R

n � the diameter is de	ned by

D
G� �� supfkx� yk � x� y � Gg�

Now for an arbitrary subset M and for � � � one de	nes

Hp
�
M� ��

�p��

�p&
� � p
� �

inf

�
�X
i��

D
Gi�
p � 
Gi�i�N sequence of open sets

with D
Gi� � � and M 

��
i��

Gi

�
�

The limit

Hp
M� �� lim
����

Hp
�
M� � sup

���
Hp
�
M�

exists in R�f�g and is called the p�dimensional 
outer� Hausdor� measure
of M � The restriction of Hp to the 	�algebra B
Rn � of Borel sets is a
measure� One can show that Hn
A� � �
A� for A � B
Rn ��

Now the surface area of a convex body K � Kn with interior points is
de	ned by

Hn��
�K� �� �Vn��
K��

where � denotes the boundary� The notation �Vn�� is chosen with respect
to later developments� For K � Kn without interior points� we de	ne
Vn��
K� �� Hn��
K�� This is zero if K is of dimension less than n� ��
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��� Theorem� Let K�M � Kn be convex bodies with interior points� ThenZ
Rn

Vn��
K 
 
M � t�� d�
t� � Vn��
K�Vn
M� � Vn
K�Vn��
M�� 
��

Proof� The boundary of the intersection K 
 
M � t� consists of two parts�

�
K 
 
M � t�� � ��K 
 
M � t�� � �K 
 
�M � t���

The intersection of the two sets on the right satis	es

��K 
 
M � t�� 
 �K 
 
�M � t�� 
 �K 
 
�M � t��

We de	ne

�
A� �� Hn��
�K 
 A� for A � B
Rn ��

Then � is a 	nite measure on Rn � From 
�� 
with A � �K and B � �M�
we get Z

Rn

Hn��
�K 
 
�M � t�� d�
t� � Hn��
�K��
�M� � ��

Since the integrand is nonnegative� it follows that

Hn��
�K 
 
�M � t�� � � for ��almost all t�

that is� for all t � Rn nN � with some set N satisfying �
N� � �� Hence� for
all t � R

n nN we have

Hn��
�
K 
 
M � t�� � Hn��
�K 
 
M � t�� �Hn��
K 
 
�M � t���

��

Using 
�� with A � �K and B �M � we further obtainZ
Rn

Hn��
�K 
 
M � t�� d�
t� � Hn��
�K��
M��

Moreover� Z
Rn

Hn��
K 
 
�M � t�� d�
t�
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�

Z
Rn

Hn��

K � t� 
 �M� d�
t�

�

Z
Rn

Hn��
�M 
 
K � t�� d�
t�

� Hn��
�M��
K��

Here we have used the facts that Hn�� is translation invariant and that the
Lebesgue measure is invariant under the inversion t 	� �t� Finally we have
used 
�� again�

Since equation 
�� holds for all t � Rn nN and since the null set N can
be neglected in the integration� we deduce thatZ
Rn

Hn��
�
K 
 
M � t�� d�
t� � Hn��
�K��
M� �Hn��
�M��
K��

This is precisely the assertion 
���

Instead of intersecting a 	xed convex body with a translated one� we now
brie�y consider the intersections with a translated hyperplane� We param�
eterize hyperplanes in the form

H
u� �� �� fx � Rn � hx� ui � �g
with a unit vector u � R

n and a real number � � R� Thus u is one of the
two unit normal vectors of the 
unoriented� hyperplane H
u� ���

For a convex body K � Kn� Fubini�s theorem immediately givesZ
R

Vn��
K 
H
u� ��� d� � Vn
K��

Can we obtain the surface area of a convex body K � Kn with interior
points in a similar way� that is� by a formula of typeZ

Rn

Hn��
�K 
H
u� ��� d� � cnVn��
K�

with some constant cn� Simple examples 
balls and cubes in R� � show that
such a formula does not hold with a constant independent of K� However�
we shall later see thatZ

Sn��

Z
Rn

Hn��
�K 
H
u� ��� d� d	
u� � cnVn��
K� 
��
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does hold with a constant cn� Here the outer integration is over the unit
sphere Sn�� with respect to the rotation invariant measure 	�

Both integrations in 
�� together can be interpreted as one integration
over the space of hyperplanes� with respect to a rigid motion invariant mea�
sure on that space� Thus we have now two examples for the simplifying
e�ect in obtaining mean values when the integrations are performed with
respect to motion invariant measures� This observation will be considerably
elaborated in the following�

� Invariant measures of Euclidean geometry

Integral geometry is based on the notion of invariant measure� Here invari�
ance refers to a group operation and thus to a homogeneous space� Invariant
measures on homogeneous spaces are also known as Haar measures� We do
not presuppose here any knowledge of the theory of Haar measure� In the
present section� we give an elementary introduction to the invariant mea�
sures on the groups and homogeneous spaces that are used in the integral
geometry of Euclidean space�

A topological group is a group G together with a topology on G such
that the map from G � G to G de	ned by 
x� y� 	� xy and the map from
G to G de	ned by x 	� x�� are continuous� Let G be a group and X a
non�empty set� An operation of G on X is a map � � G�X � X satisfying

�
g� �
g�� x�� � �
gg�� x�� �
e� x� � x

for all g� g� � G� the unit element e of G and all x � X � One also says
that G operates on X � by means of �� For �
g� x� one usually writes gx�
provided that the operation is clear from the context� The group G operates
transitively on X if for any x� y � X there exists g � G so that y � gx� If
G is a topological group� X is a topological space� and the operation � is
continuous� one says that G operates continuously on X �

The following situation often occurs� X is a nonempty set and G is a
group of transformations 
bijective mappings onto itself� of X � with the
composition as group multiplication� the operation of G on X is given by

g� x� 	� gx �� image of x under g� When transformation groups occur in
the following� multiplication and operation are always understood in this
sense�

We consider three groups of bijective a�ne maps of Rn onto itself� the
translation group Tn� the rotation group SOn� and the rigid motion group
Gn� The translations t � Tn are the maps of the form t � tx with x � R

n �
where tx
y� �� y�x for y � R

n � The mapping � � x 	� tx is an isomorphism

���



of the additive group Rn onto Tn� Hence� we can identify Tn with Rn � which
we shall often do tacitly� In particular� Tn carries the topology inherited
from R

n via � � Since tx�ty � tx�y and t
��
x � t�x� composition and inversion

are continuous� hence Tn is a topological group� In view of the topological
properties of Rn we can thus state the following�

��� Theorem� The translation group Tn is an abelian� locally compact
topological group with countable base� The operation of Tn on Rn is contin�
uous�

The elements of the rotation group SOn are the linear mappings � � Rn �
R
n that preserve scalar product and orientation� they are called �proper�

rotations� With respect to the standard 
orthonormal� basis of Rn � every
rotation � is represented by an orthogonal matrixM
�� with determinant ��
The mapping � � � 	� M
�� is an isomorphism of the group SOn onto the
group SO
n� of orthogonal 
n� n��matrices with determinant � under matrix
multiplication� If we identify an 
n� n��matrix with the n��tuple of its entries


in lexicographic order� say�� we can consider SO
n� as a subset of Rn
�

� This
set is bounded� since the rows of an orthogonal matrix are normalized� and
it is closed in R

n� � hence compact� The mappings 
M�N� 	� MN and
M 	� M�� are continuous� and so is the mapping 
M�x� 	� Mx 
where
x is considered as an 
n� ���matrix� from SO
n� � R

n into Rn � Using the
mapping ��� to transfer the topology from SO
n� to SOn� we thus obtain
the following�

��� Theorem� The rotation group SOn is a compact topological group with
countable base� The operation of SOn on R

n is continuous�

The elements of the motion group Gn are the a�ne maps g � Rn � R
n

that preserve distances between points and the orientation� they are called
�rigid� motions� Every rigid motion g � Gn can be represented uniquely as
the composition of a rotation � and a translation tx� that is� g � tx � �� or
gy � �y � x for y � R

n � The mapping

� � R
n � SOn � Gn


x� �� 	� tx � �
is bijective� We use it to transfer the topology from R

n �SOn to Gn� Using
Theorems ��� and ���� it is then easy to show the following�

��� Theorem� Gn is a locally compact topological group with countable
base� Its operation on R

n is continuous�

���



After these topological groups� we now consider the homogeneous spaces
that will play a role in the following� Let q � f�� � � � � ng� let Lnq be the
set of all q�dimensional linear subspaces of Rn � and let Enq be the set of
all q�dimensional a�ne subspaces of Rn � The natural operation of SOn on
Lnq is given by 
�� L� 	� �L �� image of L under �� Similarly� the natural
operation of Gn on Enq is given by 
g� E� 	� gE �� image of E under g� We
introduce suitable topologies on Lnq and Enq � For this� let Lq � Lnq be 	xed

and let L�q be its orthogonal complement� The mappings

�q � SOn � Lnq
� �Lq

and

�q � L�q � SOn � Enq

x� �� 	� �
Lq � x�

are surjective 
but not injective�� We endow Lnq with the 	nest topology
for which �q is continuous� and Enq with the 	nest topology for which �q
is continuous� Thus a subset A � Enq � for example� is open if and only if
���q 
A� is open� It is an elementary task to prove the following�

��� Theorem� Lnq is compact and has a countable base� the map �q is
open� and the operation of SOn on Lnq is continuous and transitive�

��� Theorem� Enq is locally compact and has a countable base� the map �q
is open� and the operation of Gn on Enq is continuous and transitive�

It should be remarked that the topologies on Lnq and Enq � as well as the
invariant measures on these spaces to be introduced below� do not depend
on the special choice of the subspace Lq� This follows easily from the fact
that SOn operates transitively on Lnq � and Gn operates transitively on Enq �

The topological spaces Lnq are called Grassmann manifolds� a common
notation for Lnq is G
n� q�� The spaces Enq are also called a�ne Grassman�
nians�

Occasionally� we have talked of homogeneous spaces� it seems� therefore�
appropriate here to give the general de	nition� If G is a topological group�
a homogeneous G�space is� by de	nition� a pair 
X���� where X is a topo�
logical space and � is a transitive continuous operation of G on X with the
additional property that the map �
�� p� is open for p � X � In this sense�
Lnq is a homogeneous SOn�space 
with respect to the standard operation��
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and Enq is a homogeneous Gn�space� Also with the standard operations� Rn

is a homogeneous Tn�space and Gn�space� and the unit sphere

Sn�� �� fx � Rn � kxk � �g

is a homogeneous SOn�space�
We shall now introduce invariant measures on the groups and homo�

geneous spaces considered� We begin with some general de	nitions and
remarks� All topological spaces occurring here are locally compact and sec�
ond countable� By a Borel measure � on X we understand a measure on the
	�algebra B
X� of Borel sets of X satisfying �
K� � � for every compact
set K 
 X � Every such measure is regular� Instead of -Borel measure�
we often say -measure� for short� The notion -measurable�� without extra
speci	cation� means -Borel measurable��

Let the topological group G operate continuously on the space X � A
measure � on X is called G�invariant 
or brie�y invariant� if G is clear from
the context� if

�
gA� � �
A� for all A � B
X� and all g � G�

This de	nition makes sense� for each g � G� the mapping x 	� gx is a
homeomorphism� hence A � B
X� implies gA � B
X�� Invariant regular
Borel measures on locally compact homogeneous spaces are called Haar
measures� if they are not identically zero�

From basic measure theory� we assume familiarity with Lebesgue mea�
sure on R

n � in particular with the following result� Here we use the unit
cube Cn �� ��� ��n for normalization�

��� Theorem and De�nition� There is a unique translation invariant
measure � on B
Rn � satisfying �
Cn� � �� It is called the Lebesgue measure�

It is easy to see that � is also rotation invariant 
SOn�invariant�� If � � SOn

and if one de	nes �
A� �� �
�A� for A � B
Rn �� then � is a translation
invariant measure on B
Rn �� By Theorem ���� � � c� with c � �
Cn�� The
unit ball Bn satis	es c�
Bn� � �
Bn� � �
�Bn� � �
Bn�� hence c � ��

Since the Lebesgue measure � is thus rigid motion invariant� it is the
Haar measure on the homogeneous Gn�space R

n � normalized in a special
way�

We mention the special value

�n �� �
Bn� �
�
n
�

&
� � n
� �
�

���



which will play a role in many later formulae� We put �� �� ��
The Haar measure on the homogeneous SOn�space S

n��� the unit sphere�
is easily derived from the Lebesgue measure� For A � B
Sn��� we de	ne

+A �� f�x � Rn � x � A� � � � � �g�
A standard argument shows that +A � B
Rn�� hence we can de	ne 	
A� ��
n�
 +A�� This yields a 	nite measure 	 on B
Sn��� for which

	
Sn��� �� �n � n�n �
��

n
�

&
n� �
�

The rotation invariance of � implies the rotation invariance of 	� We call
	� with the normalization speci	ed above� the spherical Lebesgue measure�
Up to a constant factor� 	 is the only rotation invariant Borel measure on
B
Sn���� This follows from Corollary ���� below�

Our next aim is the introduction of an invariant measure on the rotation
group SOn� For a measure on a group� several notions of invariance are
natural� A topological group G operates on itself by means of the mapping

g� x� 	� gx 
multiplication in G�� The corresponding invariance on G is
called left invariance� More generally� for g � G and A 
 G we write

gA �� fga � a � Ag� Ag �� fag � a � Ag� A�� �� fa�� � a � Ag�
If A � B
G�� then also gA� Ag� A�� are Borel sets� A measure � on G is
called left invariant if �
gA� � �
A�� and right invariant if �
Ag� � �
A��
for all A � B
G� and all g � G� The measure � is inversion invariant if
�
A��� � �
A� for all A � B
G�� If � has all three invariance properties� it
is just called invariant�

With these de	nitions we connect two general remarks� Let � be a
left invariant measure on the topological group G� Then each measurable
function f � � on G satis	esZ

G

f
ag� d�
g� �

Z
G

f
g� d�
g� 
��

for all a � G� This follows immediately from the de	nition of the integral�
Vice versa� if 
�� holds for all measurable functions f � �� then the left
invariance of � is obtained by applying 
�� to indicator functions� Similarly�
the right invariance of � is equivalent toZ

G

f
ga� d�
g� �

Z
G

f
g� d�
g� 
��
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for a � G� and the inversion invariance of � is equivalent toZ
G

f
g��� d�
g� �

Z
G

f
g� d�
g�� 
���

in each case for all measurable functions f � ��
The following theorem on invariant measures on compact groups will be

needed for the rotation group only� but can be proved without additional
e�ort in a more general setting�

��	 Theorem� Every left invariant Borel measure on a compact group with
countable base is invariant�

Proof� Let � be a left invariant Borel measure on the group G satisfying the
assumptions� Since it is 	nite on compact sets� we may assume �
G� � ��
without loss of generality� For measurable functions f � � on G and for
x � G we haveZ

f
y��x� d�
y� �

Z
f

x��y���� d�
y� �

Z
f
y��� d�
y�� 
���

Here the integrations extend over all of G� similar conventions will be
adopted in the following� Fubini�s theorem givesZ

f
y��� d�
y� �

Z Z
f
y��x� d�
y� d�
x�

�

Z Z
f
y��x� d�
x� d�
y� �

Z
f
x� d�
x��

Hence� the measure � is inversion invariant� Using this fact and 
���� we
get for x � G that Z

f
yx� d�
y� �

Z
f
y��x� d�
y�

�

Z
f
y��� d�
y� �

Z
f
y� d�
y��

which shows that � is also right invariant�

Concerning the application of Fubini�s theorem here and later� we remark
the following� All topological spaces occurring in our considerations are lo�
cally compact and second countable� thus they are 	�compact� Moreover�
all the measures that occur are 	nite on compact sets� Therefore� all mea�
sure spaces under consideration are 	�	nite� so that Fubini�s theorem can
be applied in its usual form�
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The following uniqueness result for invariant measures makes special
assumptions� but in this form it is su�cient for our purposes and is easy to
prove�

��� Theorem� Let G be a locally compact group with a countable base� let
� �� � be an invariant and � a left invariant Borel measure on G� Then
� � c� with a constant c � ��

Proof� For measurable functions f� g � � on G we haveZ
f d�

Z
g d� �

Z Z
f
xy�g
y� d�
x� d�
y�

�

Z Z
f
xy�g
y� d�
y� d�
x� �

Z Z
f
y�g
x��y� d�
y� d�
x�

�

Z
f
y�

Z
g
x��y� d�
x� d�
y� �

Z
g d�

Z
f d��

Here we have used� besides Fubini�s theorem� the right and inversion invari�
ance of � and the left invariance of ��

Since � �� �� there is a compact set A� 
 G with �
A�� � �� For
arbitrary A � B
G� we put f �� �A� and g �� �A and obtain �
A���
A� �
�
A��
A��� hence � � c� with c �� �
A����
A���

The notation �A used here for the indicator function of a set A will also be
employed in the following�

Now we turn to the existence of some invariant measures� First we de�
scribe a direct construction of the invariant measure on the rotation group�
without recourse to the general theory of Haar measure�

��� Theorem� On the rotation group SOn� there is an invariant measure
� with �
SOn� � ��

Proof� By LIn we denote the set of linearly independent n�tuples of vec�
tors from the unit sphere Sn��� We de	ne a map � � LIn � SOn in
the following way� Let 
x�� � � � � xn� � LIn� By Gram�Schmidt orthonor�
malization� we transform 
x�� � � � � xn� into the n�tuple 
z�� � � � � zn�� then we
denote by 
z�� � � � � zn� the positively oriented n�tuple for which zi �� zi for
i � �� � � � � n�� and zn �� �zn� If 
e�� � � � � en� denotes the standard basis of
R
n � there is a unique rotation � � SOn satisfying �ei � zi for i � �� � � � � n�

We de	ne �
x�� � � � � xn� �� ��

���



Explicitly� we have zi � yi�kyik with y� � x� and

yk � xk �
k��X
j��

hxk � yji yj
kyjk� � k � �� � � � � n�

From this representation� the following is evident� If � � SOn is a rota�
tion and if the n�tuple 
x�� � � � � xn� � LIn is transformed into 
z�� � � � � zn�
and then into 
z�� � � � � zn�� then the n�tuple 
�x�� � � � � �xn� is transformed
into 
�z�� � � � � �zn� and subsequently into 
�z�� � � � � �zn�� Thus we have
�
�x�� � � � � �xn� � ��
x�� � � � � xn��

For 
x�� � � � � xn� � 
Sn���n n LIn we de	ne �
x�� � � � � xn� �� id� For the
product measure

	�n �� 	 � � � � � 	� 	z 

n

�

the set 
Sn���n n LIn has measure zero� hence for any � � SOn the equal�
ity �
�x�� � � � � �xn� � ��
x�� � � � � xn� holds 	�n�almost everywhere� The
mapping � � 
Sn���n � SOn is measurable� since LIn is open and � is
continuous on LIn and constant on 
Sn���n n LIn�

Now we de	ne � as the image measure of 	�n under �� thus � � �
	�n��
Then � is a 	nite measure on SOn� and for � � SOn and measurable f � �
we obtain Z

SOn

f
��� d�
��

�

Z
�Sn���n

f
��
x�� � � � � xn�� d	
�n
x�� � � � � xn�

�

Z
�Sn���n

f
�
�x�� � � � � �xn�� d	
�n
x�� � � � � xn�

�

Z
Sn��

� � �
Z

Sn��

f
�
�x�� � � � � �xn�� d	
x�� � � � d	
xn�

�

Z
Sn��

� � �
Z

Sn��

f
�
x�� � � � � xn�� d	
x�� � � � d	
xn�

�

Z
SOn

f
�� d�
���

���



Here we have used the rotation invariance of the spherical Lebesgue measure�
We have proved that the measure � is left invariant and thus invariant� by
Theorem ���� The measure � �� ���
SOn� is invariant and normalized�

From now on� � will always denote the normalized invariant measure on
SOn�
Now we turn to the motion group Gn� Since it is not compact� an invariant
measure � on Gn cannot be 	nite� In order to normalize �� we specify the
compact set A� �� �
Cn � SOn� and require that �
A�� � ��

���� Theorem� On the motion group Gn� there is an invariant measure
� with �
A�� � �� Up to a constant factor� it is the only left invariant
measure on Gn�

Proof� We de	ne � as the image measure of the product measure � � �
under the homeomorphism � � Rn � SOn � Gn de	ned by 
��� Then � is
a Borel measure on Gn with �
�
Cn � SOn�� � �
Cn��
SOn� � ��

To show the left invariance of �� let f � � be a measurable function on
Gn and let g� � Gn� With g� � �
t�� ��� we haveZ

Gn

f
g�g� d�
g�

�

Z
SOn

Z
Rn

f
�
t�� ����
t� ��� d�
t� d�
��

�

Z
SOn

Z
Rn

f
�
t� � ��t� ����� d�
t� d�
��

�

Z
SOn

Z
Rn

f
�
t� ��� d�
t� d�
��

�

Z
Gn

f
g� d�
g��

where we have used the motion invariance of � and the left invariance of ��
Hence� � is left invariant� Similarly� the right invariance of � implies viaZ

Gn

f
gg�� d�
g� �

Z
SOn

Z
Rn

f
�
t� �t�� ����� d�
t� d�
��

�

Z
SOn

Z
Rn

f
�
t� ��� d�
t� d�
�� �

Z
Gn

f
g� d�
g�

���



the right invariance of �� The inversion invariance of � is obtained fromZ
Gn

f
g��� d�
g� �

Z
SOn

Z
Rn

f
�
����t� ����� d�
t� d�
��

�

Z
SOn

Z
Rn

f
�
t� ��� d�
t� d�
�� �

Z
Gn

f
g� d�
g��

where the inversion invariance of � was used�
The uniqueness assertion is a special case of Theorem ����

Having constructed invariant measures on the groups SOn and Gn� we next
turn to the introduction of invariant measures on the homogeneous spaces
Lnq and Enq � First we prove a formula of integral�geometric type� extending
Theorem ���� which will be useful for obtaining uniqueness results�

���� Theorem� Suppose that the compact group G operates continuously
and transitively on the Hausdor� space X� and that G and X have countable
bases� Let � be an invariant measure on G with �
G� � �� let � �� � be a
G�invariant Borel measure on X and � an arbitrary Borel measure on X�
Then Z

G

�
A 
 gB� d�
g� � �
A��
B���
X�

for all A�B � B
X��

Proof� If � denotes the operation of G on X and if x � X � the mapping
�
�� x� � G � X is continuous and surjective� hence X is compact� There�
fore� the Borel measures � and � are 	nite� Let A�B � B
X� and g � G be
given� then

�
A 
 gB� �

Z
X

�A
gB d�
x� �

Z
X

�A
x��B
g
��x� d�
x��

Fubini�s theorem yieldsZ
G

�
A 
 gB� d�
g� �

Z
X

�A
x�

Z
G

�B
g
��x� d�
g� d�
x�� 
���

The integral
R
G

�B
g
��x� d�
g� does not depend on x� since for y � X there
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exists #g � G with y � #gx and� therefore�Z
G

�B
g
��y� d�
g� �

Z
G

�B

#g
��g���x� d�
g� �

Z
G

�B
g
��x� d�
g��

Hence we obtain

�
X�

Z
G

�B
g
��x� d�
g� �

Z
X

�B
g
��x� d�
g� d�
x�

�

Z
G

Z
X

�B
g
��x� d�
x� d�
g� �

Z
G

�
gB� d�
g� � �
B��

Inserting this into 
���� we complete the proof�

���� Corollary� Suppose that the compact group G operates continuously
and transitively on the Hausdor� space X and that G and X have countable
bases� Let � be an invariant measure on G with �
G� � ��

Then there exists a unique G�invariant measure � on X with �
X� � ��
It can be de
ned by

�
B� �� �
fg � G � gx� � Bg�� B � B
X��

with arbitrary x� � X�

Proof� Let � be a G�invariant measure on X with �
X� � �� We choose
x� � X and let � be the Dirac measure on X concentrated in x�� Theorem
���� with A �� fx�g gives

�
B� � �
fg � G � g��x� � Bg�
for B � B
X�� Thus � is unique� Vice versa� if � is de	ned in this way� it is
clear that it is a G�invariant normalized measure�

Now we turn to invariant measures on the space Lnq of q�dimensional linear
subspaces and on the space Enq of q�dimensional a�ne subspaces� By an
invariant measure on Lnq we understand an SOn�invariant measure on Lnq �
and an invariant measure on Enq is de	ned as a Gn�invariant measure on Enq �

���� Theorem� On Lnq there is a unique invariant measure �q� normalized
by �q
Lnq � � ��

This is just a special case of Corollary ����� We also notice that �q is the
image measure of � under the map �q de	ned by 
���
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���� Theorem� On Enq there is an invariant measure �q� It is unique up
to a constant factor�

Proof� We recall that we have chosen a subspace Lq � Lnq and de	ned the

map �q � L
�
q � SOn � Enq by 
��� Let ��n�q� be Lebesgue measure on L�q �

We de	ne

�q �� �q
�
�n�q� � ��� 
���

so that �q is the image measure of the product measure ��n�q� � � under
the map �q � If A 
 Enq is compact� the sets

�q
fx � L�q � kxk � kg � SOn�� k � N�
constitute an open covering of A� hence A is included in one of these sets�
It follows that �q
A� ���

By the de	nition of �q � integrals with respect to �q can be expressed in
the following way� For a nonnegative measurable function f on Enq �Z

Enq

f d�q �

Z
SOn

Z
L�q

f
�
Lq � x�� d��n�q�
x� d�
��

�

Z
SOn

Z
��Lq��

f
�Lq � y� d��n�q�
y� d�
���

Since the invariant measure �q on Lnq is the image measure under the map
�q � this can be written asZ

Enq

f d�q �

Z
Lnq

Z
L�

f
L� y� d��n�q�
y� d�q
L�� 
���

From this representation we infer that �q does not depend on the choice of
the subspace Lq�

To show the invariance of �q � let g � �
x� �� � G and let f � � be a
measurable function on Enq � Denoting by . the orthogonal projection onto

L�q � we haveZ
Enq

f
gE� d�q
E�

�

Z
SOn

Z
L�q

f
g�
Lq � y�� d��n�q�
y� d�
��

���



�

Z
SOn

Z
L�q

f
��
Lq � y �.
������x��� d��n�q�
y� d�
��

�

Z
SOn

Z
L�q

f
��
Lq � y�� d��n�q�
y� d�
��

�

Z
SOn

Z
L�q

f
�
Lq � y�� d��n�q�
y� d�
��

�

Z
Enq

f
E� d�q
E��

where we have used the invariance properties of ��n�q� and �� This shows
the invariance of �q �

To prove the uniqueness 
up to a factor�� we assume that � is another
invariant Borel measure on Enq � Let #Lnq 
respectively #Enq � be the open set of

all L � Lnq 
respectively E � Enq � that intersect L�q in precisely one point�
The mapping

�q � L�q � #Lnq � #Enq

x� L� 	� L� x

is a homeomorphism� For 	xed B � B
 #Lnq � and arbitrary A � B
L�q � we

de	ne �
A� �� �
�q
A � B��� Then � is a Borel measure on L�q � which is

invariant under the translations of L�q into itself� Theorem ��� implies that

�
A� � ��n�q�
A��
B� with a constant �
B� � �� Hence we have

�
�q
A�B�� � ��n�q�
A��
B�

for arbitrary A � B
L�q � and B � B
 #Lnq �� Obviously this equation de	nes

a 	nite measure � on B
 #Lnq �� and ���q 
�� � ��n�q� � �� For a measurable

function f � � on #Enq we obtainZ
�Enq

f d� �

Z
�Lnq

Z
L�q

f
L� x� d��n�q�
x� d�
L�

�

Z
�Lnq

Z
L�

f
L� y� d��n�q�
y� d�
L� 
���

���



with a measure � on #Lnq de	ned by d�
L��d�
L� � D
L�q � L
����� where

D
L�q � L
�� is the absolute determinant of the orthogonal projection from

L�q onto L��
Now let B � B
Lnq � and

B� �� fL� y � L � B� y � L� 
 Bng�
By �
B� �� �
B�� we de	ne a rotation invariant 	nite measure � on Lnq �
According to Theorem ���� it is a multiple of �q � On the other hand� 
���

gives �
B�� � �n�q�
B� for B 
 #Lnq � Hence� there is a constant c with

�
B� � c�q
B� for all Borel sets B 
 #Lnq � From 
��� and 
��� we deduce

that �
A� � c�q
A� for all Borel sets A 
 #Enq � Since �q does not depend on

the choice of the subspace Lq � Lnq � it is easy to see that � � c�q �

By its de	nition� the measure �q comes with a particular normalization�
We want to determine the measure of all q��ats meeting the unit ball Bn�
Since

fE � Enq � E 
 Bn �� �g � �q

B
n 
 L�q �� SOn��

we get

�q
fE � Enq � E 
 Bn �� �g� � �n�q�

For r � � we have

�q
fE � Enq � E 
 rBn �� �g� � rn�q�n�q �

� Additive functionals

Beside special Haar measures� another type of invariant measures that we
will use are 	nitely additive measures on certain systems of subsets of Eu�
clidean space�

We begin with some general de	nitions� Let � be a function on a family
S of sets with values in some abelian group� The function � is called additive
or a valuation if

�
K � L� � �
K 
 L� � �
K� � �
L� 
���

holds whenever K�L � S are sets such that also K �L � S and K 
L � S�
If � � S� one also assumes that �
�� � �� We say that the system S is

�stable 
intersection stable� if K�L � S implies K 
 L � S � f�g� In

���



this case� we denote by U
S� the system of all 	nite unions of sets in S

including the empty set�� The system U
S� is closed under 	nite unions
and intersections and thus is a lattice�

Now let � be an additive function on S� One may ask whether it has an
extension to an additive function on the lattice U
S�� Suppose that such
an extension exists� and denote it also by �� Then for K�� � � � �Km � U
S�
the formula

�
K� � � � � �Km� �

mX
r��


���r��
X

i������ir

�
Ki� 
 � � � 
Kir� 
���

holds� For m � �� this is just the equation 
��� de	ning additivity� The
general case of 
��� is easily obtained by induction� This formula is called
the inclusion�exclusion principle�

Formula 
��� shows that an additive extension from the 
�stable sys�
tem S to the generated lattice U
S�� if it exists� is uniquely determined�
Conversely� however� one cannot just use 
��� for the de	nition of such
an extension� since the representation of an element of U
S� in the form
K� � � � � �Km with Ki � S is in general not unique� Hence� the existence
of an additive extension� if there is one� must be proved in a di�erent way�

We will write 
��� in a more concise form� For m � N� let S
m� denote
the set of all non�empty subsets of f�� � � � �mg� For v � S
m�� let jvj ��
card v� If K�� � � � �Km are given� we write

Kv �� Ki� 
 � � � 
Kim for v � fi�� � � � � irg � S
m��

With these conventions� the inclusion�exclusion principle 
��� can be written
in the form

�
K� � � � � �Km� �
X

v�S�m�


���jvj���
Kv�� 
���

Of considerable importance in the following is the lattice U
Kn� gener�
ated by the 
�stable family Kn � f�g� Thus the system U
Kn� consists of
all subsets of Rn that can be represented as 	nite unions of convex bodies�
We call such sets polyconvex 
following Klain�Rota ���� who in turn followed
E� de Giorgi�� Hadwiger ��� used for U
Kn� the name -Konvexring�� which
has been translated 
perhaps not so luckily� into convex ring�

The simplest non�zero valuation on Kn is given by �
K� � � for all
K � Kn� We show that it has an additive extension to U
Kn��

��� Theorem� There is a unique valuation � on the convex ring U
Kn�
satisfying

�
K� � � for K � Kn�

���



Proof� The proof uses induction with respect to the dimension� For n � ��
the existence is trivial� Suppose that n � � and the existence has been
proved in Euclidean spaces of dimension n � �� We choose a unit vector
u � Rn and de	ne

�
K� ��
X
��R



�
K 
H
u� ���� lim

�
�
�
K 
H
u� ���

�

���

for K � U
Kn�� On the right�hand side� � denotes the additive function
that exists by the induction hypothesis in spaces of dimension n � �� It is
obvious that �
K� � � for K � Kn� If K � K� � � � � �Km with Ki � Kn�
then the inclusion�exclusion principle gives

�
K 
H
u� ��� �
X

v�S�m�


���jvj���
Kv 
H
u� ����

since � is additive on the polyconvex sets in H
u� ��� Now the function
� 	� �
Kv 
H
u� ��� is the indicator function of a compact interval� hence
it is clear that the limit in 
��� exists for every � � R and is non�zero only for
	nitely many values of �� Thus � is well�de	ned on U
Kn�� It follows from

��� and the induction hypothesis that � is additive on U
Kn�� This proves
the existence of �� The uniqueness is clear from the inclusion�exclusion
principle�

The function � is called the Euler characteristic� It coincides� on U
Kn��
with the Euler characteristic as de	ned in algebraic topology�

Another simple example of a valuation on U
Kn� is given by the indicator
function� For K � U
Kn�� let

�K
x� ��

�
� for x � K�

� for x � Rn nK�
For K�L � U
Kn� we trivially have

�K�L
x� � �K
L
x� � �K
x� � �K
x�

for x � Rn � Hence� the mapping

� � U
Kn� � V

K 	� �K

is an additive function on U
Kn� with values in the vector space V of 	nite
linear combinations of indicator functions of polyconvex sets� SinceK 	� �K

���



is additive� for K � U
Kn� with K � K��� � ��Km� Ki � Kn� the inclusion�
exclusion principle gives

�K �
X

v�S�m�


���jvj���Kv
�

Thus V consists of all linear combinations of indicator functions of convex
bodies�

We will now prove a general extension theorem for valuations on Kn�
which is due to Groemer ���� We endow the set Kn of convex bodies with
the Hausdor� metric �� which is de	ned by

�
K�L� �� maxfmax
x�K

min
y�L

kx� yk� max
x�L

min
y�K

kx� ykg
� minf
 � � � K 
 L� 
Bn� L 
 K � 
Bng�

and with the induced topology� A general extension theorem holds for con�
tinuous valuations with values in a topological vector space� This theorem
will imply Theorem ���� but the short proof of the latter is of independent
interest�

��� Theorem� Let X be a topological vector space� and let � � Kn � X
be a continuous additive mapping� Then � has an additive extension to the
convex ring U
Kn��

Proof� An essential part of the proof is the following

Proposition� The equality

mX
i��

�i�Ki
� �

with m � N� �i � R� Ki � Kn implies

mX
i��

�i�
Ki� � ��

Assume this proposition were false� Then there is a smallest numberm � N�
necessarilym � �� for which there exist numbers ��� � � � � �m � R and convex
bodies K�� � � � �Km � Kn such that

mX
i��

�i�Ki
� �� 
���

���



but
mX
i��

�i�
Ki� �� a �� �� 
���

Let H 
 R
n be a hyperplane with K� 
 intH�� where H�� H� are the two

closed halfspaces bounded by H � By 
��� we have

mX
i��

�i�Ki
H� � ��
mX
i��

�i�Ki
H � ��

Since K� 
 H� � � and K� 
 H � �� each of these two sums has at most
m�� non�zero summands� From the mimimality of m 
and from �
�� � ��
we get

mX
i��

�i�
Ki 
H�� � ��

mX
i��

�i�
Ki 
H� � ��

The additivity of � on Kn yields

mX
i��

�i�
Ki 
H�� � a� 
���

whereas 
��� gives

mX
i��

�i�Ki
H� � �� 
���

A standard separation theorem for convex bodies implies the existence of a
sequence 
Hj�j�N of hyperplanes with K� 
 intH�

j for j � N and

K� �

��
j��

H�
j �

If the argument that has led us from 
���� 
��� to 
���� 
��� is applied
k�times� we obtain

mX
i��

�i�

��Ki 

k�
j��

H�
j

�A � a�

For k �� this yields

mX
i��

�i�
Ki 
K�� � a� 
���

���



since

lim
k��

Ki 

k�
j��

H�
j � Ki 
K�

in the sense of the Hausdor� metric 
if Ki
K� �� �� otherwise use �
�� � ��
and � is continuous� Equality 
��� implies

mX
i��

�i�Ki
K� � �� 
���

The procedure leading from 
��� and 
��� to 
��� and 
��� can be
repeated� replacing the bodies Ki and K� by Ki 
 K� and K�� then by
Ki 
K� 
K� and K�� and so on� Finally one obtains

mX
i��

�i�K�
���
Km
� �

and

mX
i��

�i�
K� 
 � � � 
Km� � a


because of Ki 
 K� 
 � � � 
 Km � K� 
 � � � 
 Km�� Now a �� � impliesPm
i�� �i �� � and hence �K�
���
Km

� � by the 	rst relation� but this yields
�
K� 
 � � � 
 Km� � �� contradicting the second relation� This completes
the proof of the proposition�
Now we consider the real vector space V of all 	nite linear combinations of
indicator functions of elements of Kn� For K � U
Kn� we have �K � V � as
noted earlier� For 	xed f � V we choose a representation

f �

mX
i��

�i�Ki

with m � N� �i � R� Ki � Kn and de	ne

#�
f� ��
mX
i��

�i�
Ki��

The proposition proved above shows that this de	nition is possible� since
the right�hand side does not depend on the special representation chosen

���



for f � Evidently� #� � V � X is a linear map satisfying #�
�K� � �
K� for
K � Kn� We can now extend � from Kn to U
Kn� by de	ning

�
K� �� #�
�K� for K � U
Kn��

By the linearity of #� and the additivity of the map K 	� �K we obtain� for
K�M � U
Kn��

�
K �M� � �
K 
M� � #�
�K�M � � #�
�K
M �

� #�
�K�M � �K
M �

� #�
�K � �M �

� #�
�K� � #�
�M �

� �
K� � �
M��

Thus � is additive on U
Kn��

� Local parallel sets and curvature measures

One of our aims will be to compute integrals such as

I
K�M� ��

Z
Gn

�
K 
 gM� d�
g� 
���

for convex bodies K�M � Kn� where � is the invariant measure on the
motion group Gn� thus I
K�M� is the total Haar measure of the set of rigid
motions which bring M into a hitting position with K� We get a 	rst hint
to what the result will involve if we choose forM a ball �Bn of radius � � ��
In that case�

I
K� �Bn� �

Z
Rn

�
K 
 
�Bn � t�� d�
t� � Vn
K � �Bn��

as obtained in Section �� The set K � �Bn is known as the outer parallel
set of K at distance �� It can also be represented as

K � �Bn � fx � Rn � d
K�x� � �g�
where

d
K�x� �� minfkx� yk � y � Kg
is the distance of x from K� A fundamental result in the geometry of
convex bodies� the Steiner formula� says that the volume Vn
K � �Bn� of

���



the parallel body� as a function of the parameter �� is a polynomial of degree
n� thus

Vn
K � �Bn� �

nX
i��

�n�i�n�iVi
K�� 
���

The reason for introducing the normalizing factors �n�i will become clear
later in this section� The coe�cients V�
K�� � � � � Vn
K� appearing in 
���
de	ne important functionals of K� We have just seen that they inevitably
appear when we want to compute the integral I
K� �Bn�� As it turns out�
also the general integral I
K�M� given by 
��� can be expressed in terms
of these functionals alone� evaluated for the bodies K and M �

In the present section� a more general version of the Steiner formula

��� will be obtained� Namely� we replace the parallel body K � �Bn by a
local version of it� The polynomial expansion generalizing 
��� then de	nes
a series of measures on Rn � the curvature measures of the convex body K�
These measures will appear in very general versions of the kinematic formula
of integral geometry�

We need a simple device from convex geometry� LetK � Kn be a convex
body� For x � R

n � there is a unique point p
K�x� in K nearest to x� that
is�

kp
K�x�� xk � minfky � xk � y � Kg � d
K�x��

This de	nes a continuous map p
K� �� � Rn � K� which is called the nearest�
point map of K� or the metric projection onto K� Also the map

p � Kn � R
n � R

n �


K�x� 	� p
K�x�

is continuous�
Now for K � Kn� a Borel set A � B
Rn � and a number � � �� we de	ne

the local parallel set of 
K�A� at distance � by

M�
K�A� �� fx � Rn � d
K�x� � �� p
K�x� � Ag�

This is a Borel set� since p
K� �� is continuous� We can� therefore� de	ne

��
K�A� �� �
M�
K�A�� for A � B
Rn��

In other words� ��
K� �� is the image measure of the Lebesgue measure�
restricted to the parallel body K� � K��Bn� under the nearest point map

���



of K� In particular� ��
K� �� is a 	nite measure on B
Rn �� We call it the
local parallel volume of K at distance ��

This measure is concentrated on K� that is� ��
K�A� � ��
K�A 
K��
We 	rst prove some fundamental properties of the mapping �� � Kn �

B
Rn � � R� In the following�
w� denotes weak convergence of 	nite mea�

sures�

��� Theorem� Let 
Kj�j�N be a sequence in Kn satisfying Kj � K for
j ��� Then

��
Kj � �� w� ��
K� �� for j ��� 
���

for every � � ��

Proof� By a well�known characterization of weak convergence� we have to
show that

lim inf
j��

��
Kj � A� � ��
K�A� 
���

for every open set A� and

lim
j��

��
Kj �R
n � � ��
K�R

n �� 
���

Let A 
 R
n be open� Let x � M�
K�A� be a point with d
K�x� � ��

Since � is continuous� we have p
Kj � x� � p
K�x� and d
Kj � x� � d
K�x�
for j � �� Hence� for all su�ciently large j we deduce that p
Kj � x� � A
and d
Kj � x� � �� hence x �M�
Kj � A�� Thus we have

M�
K�A� n �K� 
 lim inf
j��

M�
Kj � A�

and� therefore�

��
K�A� � �
M�
K�A� n �K��

� �

�
lim inf
j��

M�
Kj � A�

�
� lim inf

j��
�
M�
Kj � A��

� lim inf
j��

��
Kj � A��

which proves 
���� The relation 
��� follows from standard results of convex
geometry�

���



��� Theorem� For any Borel set A � B
Rn � and any � � �� the function
��
�� A� � Kn � R is measurable�

Proof� For an open set A� the preceding proof shows that the function
��
�� A� is lower semicontinuous� hence it is measurable�

Denote by A the system of all sets A � B
Rn � for which ��
�� A� is
measurable� We show that A is a Dynkin system� For A�� A� � A with
A� 
 A� we have M�
K�A�� 
M�
K�A�� and

M�
K�A� nA�� � M�
K�A�� nM�
K�A���

hence

��
K�A� nA�� � ��
K�A��� ��
K�A��

for all K � Kn� which shows that A� n A� � A� If 
Aj�j�N is a disjoint
sequence in A� then

��

��K� ��
j��

Aj

�A �

�X
j��

��
K�Aj�

for K � Kn� since ��
K� �� is a measure� It follows that
S�
j�� Aj � A� Thus

A is a Dynkin system� Since it contains the open sets� it also contains the
	�algebra generated by the open sets and thus all Borel sets� as asserted�

��� Theorem� For any Borel set A � B
Rn� and for � � �� the function
��
�� A� � Kn � R is additive�

Proof� Let K�L � Kn be convex bodies with K �L � Kn� Let x � Rn � and
put y �� p
K � L� x�� We assume y � K� without loss of generality� Then

p
K � L� x� � p
K�x�� 
���

Let z �� p
L� x�� Since K � L is convex� there is a point a � �z� y� 
the
segment with endpoints z and y� with a � K 
 L� From y � p
K � L� x� it
follows that ky � xk � kz � xk and hence ka� xk � kz � xk� From a � L
and the de	nition of z we conclude that a � z and thus z � K 
 L� This
shows that

p
K 
 L� x� � p
L� x�� 
���

For K � � Kn� let ��
K
�� A� �� be the indicator function of the local parallel

set M�
K
�� A�� From 
��� and 
��� it follows that

��
K � L�A� x� � ��
K�A� x�� ��
K 
 L�A� x� � ��
L�A� x��

���



Since x was arbitrary� this yields

��
K � L�A� �� � ��
K 
 L�A� �� � ��
K�A� �� � ��
L�A� ���
Integrating this equation with the Lebesgue measure� we obtain

��
K � L�A� � ��
K 
 L�A� � ��
K�A� � ��
L�A��

which shows that ��
�� A� is additive on Kn�

We will now explicitly compute the local parallel volume in the case of a
convex polytope� For this� we need some elementary facts about polytopes�
which we will use without proof�

A polyhedral set in Rn is a set which can be represented as the intersec�
tion of 	nitely many closed halfspaces� A bounded non�empty polyhedral
set is called a convex polytope or brie�y a polytope� Let P be a polytope�
If H is a supporting hyperplane of P � then P 
 H is again a polytope�
The set F �� P 
 H is called a face of P � and an m�face if dim F � m�
m � f�� � � � � n� �g� If dim P � n� we consider P as an n�face of itself� By
Fm
P � we denote the set of all m�faces of P � For F � Fm
P � we de	ne

�F 
B� �� ��m�
B 
 F � for B � B
Rn��
where ��m� denotes m�dimensional Lebesgue measure� For F � Fm
P ��
m � f�� � � � � n� �g and a point x � relintF 
the relative interior of F �� let
N
P� F � be the normal cone of P at F � this is the cone of outer normal
vectors of supporting hyperplanes to P at x� It does not depend upon the
choice of x� The number

�
F� P � ��
��n�m�
N
P� F � 
 Bn�

�n�m

is called the external angle of P at its face F � We also put �
P� P � � � and
�
F� P � � � if either F � � or F is not a face of P �

Now let a polytope P � a Borel set A � B
Rn � and a number � � � be
given� For x � Rn � the nearest point p
P� x� lies in the relative interior of a
unique face of P � Therefore�

M�
P�A� �

n�
m��

�
F�Fm�P �

�
P� 
 p
P� ����
A 
 relintF �

�

���

is a disjoint decomposition of the local parallel setM�
P�A�� It follows from
the properties of the nearest point map that

P� 
 p
P� ����
A 
 relintF � 
���

���



� 
A 
 relintF �� 
N
P� F � 
 �Bn�� 
���

where � denotes direct sum� An application of Fubini�s theorem gives

�
P� 
 p
P� ����
A 
 relintF ��

� ��m�
A 
 F ���n�m�
N
P� F � 
 �Bn�

� ��m�
A 
 F ��n�m�n�m�
F� P ��

Together with 
���� this yields

��
P�A� �

nX
m��

�n�m�n�m
X

F�Fm�P �

��m�
A 
 F ��
F� P ��

Hence� if we de	ne a measure 'm
P� �� on B
Rn� by

'm
P� �� ��
X

F�Fm�P �

�
F� P ��F �

then

��
P�A� �

nX
m��

�n�m�n�m'm
P�A��

This gives the desired polynomial expansion of the local parallel volume in
the case of polytopes� The following theorem extends this result to general
convex bodies�

��� Theorem� 
Local Steiner formula� For every convex body K � Kn�
there exist 
nite measures '�
K� ��� � � � �'n
K� �� on B
Rn� such that the
local parallel volume satis
es

��
K�A� �
nX
j��

�n�j�n�j'j
K�A�

for all A � B
Rn � and all � � ��

Proof� If P is a polytope� we have seen above that

��
P�A� �

nX
j��

�n�j�n�j'j
P�A� 
���

���



with

'j
P� �� �
X

F�Fj�P �

�
F� P ��F � 
���

Now let K � Kn be an arbitrary convex body� As one knows from convex
geometry� there is a sequence 
Pi�i�N of polytopes converging to K in the
Hausdor� metric� In 
���� we replace P by Pi and � by each of the numbers
�� � � � � n� �� The resulting system of linear equations�

�k
P�A� �

nX
j��

kn�j�n�j'j
Pi� A�� k � �� � � � � n� ��

can be solved for the -unknowns� �n�j'j
Pi� A� 
it has a Vandermonde
determinant�� which yields representations

'j
Pi� A� �

n��X
k��

�jk�k
Pi� A�� j � �� � � � � n�

Here the coe�cients �jk do not depend on Pi or A� thus we have

'j
Pi� �� �
n��X
k��

�jk�k
Pi� �� for i � N�

By Theorem ���� for each 	xed � � � the measures ��
Pi� �� converge weakly
to ��
K� ��� Hence� if we de	ne a 	nite signed measure by

'j
K� �� ��
n��X
k��

�jk�k
K� ���

then the measures 'j
Pi� �� converge� for i � �� weakly to the signed
measure 'j
K� �� 
j � �� � � � � n�� It follows that the latter is nonnegative�
and it also follows that

��
K� �� �
nX
j��

�n�j�n�j'j
K� ���

using 
��� and weak convergence�

One calls 'j
K� �� the jth curvature measure of the body K � Kn� The
reason for this name becomes clear if one considers a convex body K whose

���



boundary is a regular hypersurface of class C�� In that case� the local
parallel volume can be computed by di�erential�geometric means� and one
obtains for j � �� � � � � n� � the representation

'j
K�A� �

�
n
j

�
n�n�j

Z
A
�K

Hn���j dS�

Here Hk denotes the kth normalized elementary symmetric function of the
principal curvatures of �K� and dS is the volume form on �K� Thus the
curvature measures are 
up to constant factors� inde	nite integrals of cur�
vature functions� and they replace the latter in the non�smooth case�

For j � n� we simply have

'n
K�A� � �
K 
 A� for A � B
Rn ��
as follows immediately from the de	nition of the local parallel set and the
local Steiner formula� For a general convex body K it is clear that the
measures '�
K� ��� � � � �'n��
K� �� are concentrated on �K� since ��
K�A��
�
K 
A� depends only on A 
 �K�

For polytopes P � we have the explicit representation 
��� of the curva�
ture measures� The external angle appearing in it does not depend on the
dimension of the surrounding space� as follows easily from Fubini�s theorem�
In other words� if dimP � n� it makes no di�erence if the external angle
�
F� P � is computed in R

n or in the a�ne hull of P � This independence
of dimension extends to the curvature measures 'j
P� �� and then� by ap�
proximation and weak convergence� to the curvature measures 'j
K� �� of
arbitrary convex bodies�

We mention without proof that for arbitrary convex bodies K the mea�
sures '�
K� �� and 'n��
K� �� have simple intuitive interpretations� Namely�
if dimK �� n� �� then

'n��
K�A� �
�

�
Hn��
A 
 �K��

For dimK � n � �� one trivially has 'n��
K�A� � Hn��
A 
 �K�� The
measure '� is the normalized area of the spherical image� Let 	
K�A� 

Sn�� denote the set of all outer unit normal vectors ofK at points of A
�K�
then

'�
K�A� �
�

n�n
Hn��
	
K�A���

We can use the relation

'j
K� �� �
n��X
k��

�jk�k
K� ��� 
���

���



which was obtained in the proof of Theorem ���� to transfer properties of the
local parallel volumes ��
K� �� to the curvature measures 'j
K� ��� In this
way Theorems ���� ���� ���� together with some easily obtained additional
properties of the local parallel volumes� yield a series of properties of the
curvature measures� which we list in the following theorem�

��� Theorem� Let j � f�� � � � � ng�

a� 'j
K� �� depends weakly continuously on K� that is� Ki � K implies the

weak convergence 'j
Ki� �� w� 'j
K� �� for i���

b� For every A � B
Rn�� the function 'j
�� A� is measurable on Kn�

c� 'j is motion covariant� that is�

'j
gK� gA� � 'j
K�A�

for every rigid motion g � Gn and all K � Kn and A � B
Rn ��

d� 'j is homogeneous of degree j� that is�

'j
�K��A� � �j'
K�A�

for every � � � and all K � Kn and A � B
Rn��

e� 'j is de
ned locally� that is� for every open set A 
 R

n and all convex
bodies K�M � Kn with K 
 A � M 
 A� one has

'j
K�B� � 'j
M�B�

for every Borel set B 
 A�

f� 'j
�� A� is additive for every A � B
Rn �� that is�

'j
K � L�A� � 'j
K 
 L�A� � 'j
K�A� � 'j
L�A�

holds for all convex bodies K�L � Kn with K � L � Kn�

The 	nal property� together with Theorem ���� has the important conse�
quence that the curvature measures have an additive extension to polycon�
vex sets� This means that one can de	ne signed measures on the convex ring
U
Kn� in the following way� Let K � U
Kn� and choose a representation
K �

Sm
i��Ki with m � N and Ki � Kn� Then

'j
K� �� ��
X

v�S�m�


���jvj��'j
Kv� ��

does not depend on the special choice of the representation� in particular�
this is consistent with the already de	ned value 'j
K� �� for convex K�

���



This follows from Theorem ���� since the weak convergence of curvature
measures can be interpreted as convergence in the vector space of 	nite
signed measures� on a suitable compact subset of Rn � with respect to a
suitable topology�

We have now everything at hand to formulate a central result of integral
geometry� This is the principal kinematic formula� in a version for curvature
measures on the convex ring� Let K�M � U
Kn� be polyconvex sets� let
A�B � B
Rn� be Borel sets� and let j � f�� � � � � ng� ThenZ

Gn

'j
K 
 gM�A 
 gB� d�
g� �

nX
k�j

�njk'j
K�A�'n�j�k
M�B�

holds� with certain explicit constants �njk �
We will indicate a proof of this result in Section �� Before that� however�

we will prove a global version of this formula in a di�erent way� The method
of proof is of independent interest and leads to further results for which no
other access is known�

The global result refers to the total measures

Vj
K� �� 'j
K�R
n �� j � �� � � � � n�

The number Vj is called the jth intrinsic volume of K� These important
functionals are de	ned by the classical Steiner formula

Vn
K � �Bn� �

nX
j��

�n�j�n�jVj
K��

of which Theorem ��� is the local generalization� As a function on Kn� each
intrinsic volume Vj is continuous� additive and rigid motion invariant� In
the next section we shall prove that the intrinsic volumes are essentially
characterized by these properties�

The additive extensions of the intrinsic volumes to the convex ring
U
Kn� will be denoted by the same symbols� In the following cases� they
have simple intuitive interpretations� It is clear that

Vn
K� � �
K� for K � U
Kn��

since this holds true for convex bodies K and both functions� Vn and �� are
additive on U
Kn�� It also remains true for polyconvex sets that

�Vn��
K� � Hn��
�K�

���



if K is the closure of its interior� but this requires an extra proof� Finally�

V�
K� � �
K� for K � U
Kn��

so that V� is nothing but the Euler characteristic� For a convex polytope P
we have

V�
P � � '�
P�R
n � �

X
F�F��P �

�
F� P � � ��

since the normal cones N
P� F � of P at its vertices F cover Rn and have
pairwise no common interior points� By additivity� the equation V�
K� �
�
K� extends from Kn to U
Kn��

� Hadwiger
s characterization theorem

The jth intrinsic volume Vj � Kn � R is an additive� continuous and rigid
motion invariant function� A celebrated theorem due to Hadwiger 
see ����
says that any function on Kn with these properties is a linear combination
of the intrinsic volumes V�� � � � � Vn� This result can be used to prove some
formulae of the integral geometry of convex bodies in a very elegant way�
Whereas Hadwiger�s original proof was quite long� one has now a shorter
proof due to Klain ���� We will present his proof here� except that at one
point we take a certain analytical result for granted�

The crucial step for a proof of the characterization theorem is the fol�
lowing result�

��� Theorem� Suppose that � � Kn � R is an additive� continuous� motion
invariant function satisfying �
K� � � whenever either dimK � n or K is
a unit cube� Then � � ��

Proof� The proof proceeds by induction with respect to the dimension� For
n � �� there is nothing to prove� If n � �� � vanishes on 
closed� segments
of unit length� hence on segments of length ��k for k � N and therefore on
segments of rational length� By continuity� � vanishes on all segments and
thus on K��

Now let n � � and suppose that the assertion has been proved in di�
mensions less than n� Let H 
 R

n be a hyperplane and I a closed seg�
ment of length �� orthogonal to H � For convex bodies K 
 H de	ne
�
K� �� �
K � I�� Clearly � has� relative to H � the properties of � in the
Theorem� hence the induction hypothesis yields � � �� For 	xed K 
 H �
we thus have �
K� I� � �� and a similar argument as used above for n � �

���



shows that �
K � S� � � for any closed segment S orthogonal to H � Thus
� vanishes on right convex cylinders�

Let K 
 H again be a convex body and let S � conv f�� sg be a segment
not parallel to H � If m � N is su�ciently large� the cylinder Z �� K �mS
can be cut by a hyperplane H � orthogonal to S so that the two closed
halfspaces H�� H� bounded by H � satisfy K 
 H� and K � ms 
 H��
Then Z �� �
Z 
H�� �ms� � 
Z 
H�� is a right cylinder� and we deduce
that m�
K � S� � �
Z� � �
Z� � �� Thus � vanishes on arbitrary convex
cylinders�

By Theorem ���� the continuous additive function � has an additive
extension to the convex ring� this extension is also denoted by �� It follows
that

�

�
k�
i��

Ki

�
�

kX
i��

�
Ki�

whenever K�� � � � �Kk are convex bodies such that dim 
Ki 
 Kj� � n for
i �� j�

Let P be a polytope and S a segment� The sum P � S has a decompo�
sition P �S �

Sk
i�� Pi� where P� � P � the polytope Pi is a convex cylinder

for i � �� and dim 
Pi 
Pj� � n for i �� j� It follows that �
P �S� � �
P ��
By induction� we obtain �
P �Z� � �
P � if Z is a 	nite sum of segments�
By continuity� �
K�Z� � �
K� for arbitrary convex bodies K and zonoids
Z� that is� limits of sums of segments�

Now we have to use an analytic result� for which we do not give a proof�
Let K be a centrally symmetric convex body which is su�ciently smooth

say� its support function is of class C��� Then there exist zonoids Z�� Z�
so that K � Z� � Z� 
this can be seem from Section ��� in ���� especially
Theorem ������� We conclude that �
K� � �
K � Z�� � �
Z�� � �� Since
every centrally symmetric convex body K can be approximated by bodies
which are centrally symmetric and su�ciently smooth in the above sense� it
follows from the continuity of � that �
K� � � for all centrally symmetric
convex bodies�

Now let � be a simplex� say � � conv f�� v�� � � � � vng� without loss of
generality� Let v �� v� � � � � � vn and �� �� conv fv� v � v�� � � � � v � vng�
then �� � ��� v� The vectors v�� � � � � vn span a parallelotope P � It is the
union of ���� and the part of P lying between the hyperplanes spanned
by v�� � � � � vn and v � v�� � � � � v � vn� respectively� The latter� say Q� is a
centrally symmetric polytope� and �
Q� ��
Q are of dimension n��� We
deduce that � � �
P � � �
����
Q���
���� thus �
��� � �
��� If the
dimension n is even� then �� is obtained from � by a proper rigid motion�
and the motion invariance of � yields �
�� � �� If the dimension n � �

���



is odd� we decompose � as follows� Let z be the centre of the inscribed
ball of �� and let pi be the point where this ball touches the facet Fi of �

i � �� � � � � n� ��� For i �� j� let Qij be the convex hull of the face Fi 
 Fj
and the points z� pi� pj � The polytope Qij is invariant under re�ection in the
hyperplane spanned by Fi 
 Fj and z� If Q�� � � � � Qm are the polytopes Qij

for � � c � j � n�� in any order� then P �
Sm
r��Qr and dim 
Qr
Qs� � n

for r �� s� Since �Qr is the image of Qr under a proper rigid motion� we
have �
��� �

P
�
�Qr� �

P
�
Qr� � �
��� Thus �
�� � � for every

simplex ��
Decomposing a polytope P into simplices� we obtain �
P � � �� The

continuity of � now implies �
K� � � for all convex bodies K� This 	nishes
the induction and hence the proof of Theorem ����

Hadwiger�s characterization theorem is now an easy consequence�

��� Theorem� Suppose that � � Kn � R is an additive� continuous� motion
invariant function� Then there are constants c�� � � � � cn so that

�
K� �
nX
i��

ciVi
K�

for all K � Kn�

Proof� We use induction on the dimension� For n � � the assertion is trivial�
Suppose that n � � and the assertion has been proved in dimensions less
than n� Let H 
 R

n be a hyperplane� The restriction of � to the convex
bodies lying in H is additive� continuous and invariant under motions of
H into itself� By the induction hypothesis� there are constants c�� � � � � cn��
so that �
K� �

Pn��
i�� ciVi
K� holds for convex bodies K 
 H 
note that

the intrinsic volumes do not depend on the dimension of the surrounding
space�� By the motion invariance of � and Vi� this holds for all K � Kn of
dimension less than n� It follows that the function �� de	ned by

��
K� �� �
K��
nX
i��

ciVi
K�

for K � Kn� where cn is chosen so that �� vanishes at a 	xed unit cube�
satis	es the assumptions of Theorem ���� Hence �� � �� which completes
the proof of Theorem ����

The late Gian�Carlo Rota� in a Colloquium Lecture at the Annual Meeting
of the AMS in ����� called Hadwiger�s characterization theorem the -Main

���



Theorem of Geometric Probability�� The reason is that it can be used
to derive kinematic formulae of integral geometry� which can in turn be
interpreted in terms of geometric hitting probabilities� We shall see this� in
more elaborate versions� in the next two sections�

� Kinematic and Crofton formulae

Our aim in this section will be to compute the integralsZ
Gn

Vj
K 
 gM� d�
g�

and Z
En
k

Vj
K 
E� d�k
E�

for convex bodies K�M � where Vj is an intrinsic volume� For that� we use
Hadwiger�s characterization theorem� From this result� we 	rst deduce a
more general kinematic formula� involving a functional on convex bodies
that need not have any invariance property�

	�� Theorem� If � � Kn � R is an additive continuous function� thenZ
Gn

�
K 
 gM� d�
g� �
nX

k��

�n�k
K�Vk
M� 
���

for K�M � Kn� where the coe�cients �n�k
K� are given by

�n�k
K� �

Z
En
k

�
K 
 E� d�k
E�� 
���

Proof� In order that the integral in 
��� makes sense� we 	rst have to
show that for given convex bodies K�M the function g 	� �
K 
 gM� is
��integrable� Let Gn
K�M� denote the set of all rigid motions g � Gn

for which K and gM touch� that is� K 
 gM �� � but K and gM can be
separated weakly by a hyperplane� Using the map � from 
��� it is easy to
see that �
t� �� � Gn
K�M� holds if and only if t � �
K � �M�� hence

�
Gn
K�M�� �

Z
SOn

Z
Rn

�Gn�K	M�
�
t� ��� d�
t� d�
��

���



�

Z
SOn

�
�
K � �M�� d�
�� � ��

On Gn n Gn
K�M�� the map g 	� �
K 
 gM� is continuous� Since the
continuous function � is bounded on the compact set fK � � Kn � K � 
 Kg�
it follows that the integral in 
��� is well�de	ned and 	nite�

Now we 	x a convex body K � Kn and de	ne

�
M� ��

Z
Gn

�
K 
 gM� d�
g� for M � Kn�

Then � � Kn � R is obviously additive and motion invariant� It follows
from the bounded convergence theorem that � is continuous� Theorem ���
yields the existence of constants c�
K�� � � � � cn
K� so that

�
M� �

nX
k��

ck
K�Vn�k
M�

for all M � Kn� The constants depend� of course� on the given body K�
and we have now to determine them�

Suppose 	rst that � � k � n � � and let Lk � Lnk � We choose a k�
dimensional cube W 
 Lk with � � W and ��k�
W � � �� For r � � we
have

�
rW � �

Z
Gn

�
K 
 grW � d�
g� �

nX
i��

�n�i
K�Vi
rW ��

The intrinsic volumes have the easily established properties

Vi
rW � �

�������
� for i � k�

rk for i � k�

riVi
W � for i � k�

This yields

�
rW � � �n�k
K�rk � o
rk��� 
���

for r ��� On the other hand�

�
rW � �

Z
Gn

�
K 
 grW � d�
g�

���



�

Z
SOn

Z
Rn

�
K 
 
�rW � x�� d�
x� d�
��

�

Z
SOn

Z
�L�

k

Z
�Lk

�
K 
 
�rW � x� � x��� d�
�k�
x��

d��n�k�
x�� d�
���

For 	xed � � SOn and x� � L�k we put

X �� fx� � �Lk � K 
 
�rW � x� � x�� � K 
 
�Lk � x��g�
Y �� fx� � �Lk � � �� K 
 
�rW � x� � x�� �� K 
 
�Lk � x��g�

Then Z
�Lk

�
K 
 
�rW � x� � x��� d�
�k�
x��

� �
K 
 
�Lk � x���

Z
X

d��k�
x��

�

Z
Y

�
K 
 
�rW � x� � x��� d�
�k�
x���

For r ��� we get Z
X

d��k�
x�� � rk �O
rk����

Since � is bounded on compact sets�Z
Y

�
K 
 
�rW � x� � x��� d�
�k�
x�� � O
rk����

We deduce that

�
rW � � rk
Z

SOn

Z
�L�

k

�
K 
 
�Lk � x��� d�
�n�k�
x�� d�
�� �O
rk���

� rk
Z

SOn

Z
L�
k

�
K 
 �
Lk � x��� d�
�n�k�
x�� d�
�� �O
rk���

� rk
Z
En
k

�
K 
 E� d�k
E� �O
rk����

���



If we compare this with 
��� and let r tend to in	nity� we obtain the asserted
formula 
��� for the coe�cients�

In the cases k � � and k � n� simpler versions of the proof� with
the obvious changes� give the same result� This completes the proof of
Theorem ����

In Theorem ���� we can choose for � the intrinsic volume Vj and getZ
Gn

Vj
K 
 gM� d�
g� �

nX
k��

Vj	n�k
K�Vk
M�

with

Vj	n�k
K� �

Z
En
k

Vj
K 
E� d�k
E��

By

�
K� ��

Z
En
k

Vj
K 
 E� d�k
E� for K � Kn

we again de	ne a functional � � Kn � R which is additive� continuous and
motion invariant� This is proved similarly as above� Hadwiger�s characteri�
zation theorem yields a representation

�
K� �
nX
r��

crVr
K��

Here only one coe�cient is non�zero� In fact� from

�
K� �

Z
Ln
k

Z
L�

Vj
K 
 
L� y�� d��n�k�
y� d�k
L�

one sees that � has the homogeneity property

�
�K� � �n�k�j�
K�

for � � �� Since Vk is homogeneous of degree k� we deduce that cr � � for
r �� n� k � j� Thus we have obtainedZ

En
k

Vj
K 
 E� d�k
E� � �njkVn�j�k
K�

���



with some constant �njk � In order to determine this constant� we choose
for K the unit ball Bn� For 
 � �� the Steiner formula gives

nX
j��


n�j�n�jVj
B
n� � Vn
B

n � 
Bn� � 
� � 
�n�n �

nX
j��


n�j
�
n

j

�
�n�

hence

Vj
B
n� �

�
n
j

�
�n

�n�j
for j � �� � � � � n�

Choosing L � Lnk � we obtain

�njkVn�j�k
B
n� �

Z
En
k

Vj
B
n 
E� d�k
E�

�

Z
SOn

Z
L�

Vj
B
n 
 �
L� x�� d��n�k�
x� d�
��

�

Z
L�
Bn


�� kxk��j��Vj
Bn 
 L� d��n�k�
x�

�

�
k
j

�
�k

�k�j

Z
L�
Bn


�� kxk��j�� d��n�k�
x��

Introducing polar coordinates� the latter integral is transformed into a Beta
integral� and one obtainsZ

L�
Bn


�� kxk��j�� d��n�k�
x�

� 
n� k��n�k

�Z
�


�� r��j��rn�k�� dr

�
�

�

n� k��n�k

�Z
�


�� t�j��t
n�k��

� dt

�
�

�

n� k��n�kB

�
j � �

�
�
n� k

�

�
�

�

�

n� k��n�k

&
 j��� �&
n�k� �

&
n�j�k��� �
�

�n�j�k
�j

�
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Altogether this yields

�njk �

�
k
j

�
�k�n�j�k

Vn�j�k
Bn��k�j�k
�

�
k
j

�
�k�n�j�k�
n
k�j

�
�n�j

�

This can be put in still a di�erent form by using the identity

n$�n � �n�
n��
� &

�
n� �

�

�
�

We collect what we have obtained�

	�� Theorem� Let K�M � Kn be convex bodies and let j � f�� � � � � ng�
Then the principal kinematic formulaZ

Gn

Vj
K 
 gM� d�
g� �

nX
k�j

�njkVn�j�k
K�Vk
M�

holds� For k � f�� � � � � n� �g and j � k the Crofton formulaZ
En
k

Vj
K 
 E� d�k
E� � �njkVn�j�k
K�

holds� The coe�cients are given by

�njk �

�
k
j

�
�k�n�j�k�
n
k�j

�
�j�n

�
&
k��� �&
n�j�k��� �

&
 j��� �&
n��� �
�

Finally� the results are easily extended to polyconvex sets� Let K � U
Kn��
We choose a representation

K �

m�
i��

Ki

with convex bodies K�� � � � �Km� Since Vn�j�k is additive on U
Kn�� the
inclusion�exclusion principle gives

Vn�j�k
K� �
X

v�S�m�


���jvj��Vn�j�k
Kv��

���



Now let M � Kn be a convex body� Since the principal kinematic formula
holds for convex bodies� we obtainZ

Gn

Vj
K 
 gM� d�
g�

�

Z
Gn

Vj

�
m�
i��


Ki 
 gM�

�
d�
g�

�

Z
Gn

X
v�S�m�


���jvj��Vj
Kv 
 gM� d�
g�

�
X

v�S�m�


���jvj��
nX
k�j

�njkVn�j�k
Kv�Vk
M�

�

nX
k�j

�njkVn�j�k
K�Vk
M��

Hence� the kinematic formula holds for K � U
Kn� and M � Kn� In a
similar way� it can now be extended to K � U
Kn� and M � U
Kn�� An
analogous extension is possible for the Crofton formula�

� Extension to random sets

It has been announced in the introduction that we want to use integral�
geometric results to give a theoretical foundation for some formulae used
in stereology� To achieve this goal� we shall now extend the kinematic and
Crofton formulae to certain random sets�

First we have to explain what one understands by a closed random set
in R

n � Let F denote the system of all closed subsets of Rn � For A 
 R
n

one writes

FA �� fF � F � F 
 A �� �g�
FA �� fF � F � F 
 A � �g�

The system

fFG � G 
 R
n openg � fFC � C 
 R

n compactg

is a subbasis of a topology on F � this topology is called the topology of closed
convergence� By B
F� we denote the corresponding 	�algebra of Borel sets�

���



Now a random closed set in Rn � brie�y a RACS� is de	ned as a random
variable with values in F � More precisely� a RACS is a measurable map
Z � /� F from some probability space 
/�A�P� into the measurable space

F �B
F��� For � � /� the closed set Z
�� is called a realisation of Z� The
image measure PZ �� Z
P� of the probability measure P under the map Z
is called the distribution of Z� Thus� this is a measure on B
F�� and for
A � B
F� one has

PZ
A� � P
Z��
A�� � P
f� � / � Z
�� � Ag� �� P
Z � A��

which is the probability that Z has a realization in the prescribed set A�
The random closed set Z is called stationary if for each vector t � Rn the

random closed sets Z and Z� t have the same distribution� in other words�
if the distribution of Z is invariant under translations� If the distribution
of Z is invariant under rotations� then Z is called isotropic�

For a measurable nonnegative or P�integrable function f � / � R� the
expectation is

Ef ��

Z
�

f dP�

We will often have a random closed set Z � / � F and a measurable
function f � F � R� If the expectation of f � Z exists� it is given by

Ef
Z� ��

Z
�

f � Z dP �

Z
F

f dPZ �

by the transformation formula for integrals�
For our envisaged applications� we have to restrict the admitted random

closed sets� The extended convex ring is de	ned by

LU
Kn� �� fF 
 R
n � F 
K � U
Kn� for K � Kng�

The elements of LU
Kn� will also be called locally polyconvex sets� Thus a
locally polyconvex set has the property that its intersection with any convex
body is a 	nite union of convex bodies�

IfM � U
Kn� is a non�empty polyconvex set� there are a number m � N

and convex bodies K�� � � � �Km � Kn such that M � K� � � � � �Km� The
smallest number m with this property will be denoted as N
M�� We also
put N
�� � �� This de	nes a function N � U
Kn� � N� � which can be
shown to be measurable� Now we are in a position to de	ne the random
closed sets which will be admitted in the following�

���



De�nition� A standard random set in R
n is a closed random set Z in Rn

with the following properties�

a� The realizations of Z are locally polyconvex�

b� Z is stationary�

c� Z satis	es the integrability condition

E�N�Z
Cn � ���

Here� as before� Cn �� ��� ��n is the unit cube in Rn �

For a standard random set� one can de	ne a volume density� a surface area
density and� more generally� the density of the jth intrinsic volume� Let
Z be a standard random set� We choose a -test body� 
or -observation
window�� K � Kn with Vn
K� � �� For a given realization Z
��� the
intersection Z
�� 
 K is polyconvex� hence the 
additively extended� jth
intrinsic volume Vj
Z
�� 
K� is de	ned� One can show that the function
� 	� Vj
Z
�� 
K� is measurable� hence it de	nes a real random variable�
Its expectation�

EVj 
Z 
K��

depends on both� the random set Z and the test body K� However� we shall
see that the limit

Vj
Z� �� lim
r��

EVj 
Z 
 rK�

Vn
rK�

exists and is independent of K� This number Vj
Z� is called the density of
the jth intrinsic volume of the random set Z�

The existence proof for the limit� which is a bit technical� is preceded
by two lemmas� Recall that Cn is the unit cube given by

Cn �� fx � 
x�� � � � � xn� � Rn � � � xi � � for i � �� � � � � ng�
The set

��Cn �� fx � 
x�� � � � � xn� � Cn � max
��i�n

xi � �g

is called the right upper boundary of Cn� It is polyconvex� We need the set

Cn
� �� Cn n ��Cn

as a -fundamental domain�� the space Rn can be represented as a disjoint
union of translates of Cn

� �

R
n �

�
z�Zn


Cn
� � z��

���



We write Zn as a sequence 
zi�i�N 
in any order� and put

Ci �� Cn � zi� ��Ci �� ��Cn � zi�

The set Cn
� belongs to U
Pn

r��� the class of all 	nite unions of relatively
open convex polytopes� Below we shall use the fact that every additive
functional on the class of polytopes has an additive extension to U
Pn

r���
We do not give a proof here� but refer to ����

��� Lemma� If � � U
Kn�� R is an additive function and K � U
Kn� is
a polyconvex set� then

�
K� �
X
i�N

��
K 
 Ci�� �
K 
 ��Ci��

Proof� Let K � U
Kn�� For a polytope P � Kn we de	ne

�
P � �� �
K 
 P ��

Then � is an additive functional on convex polytopes and hence has a unique
extension to an additive function on U
Pn

r��� also denoted by �� Without
loss of generality we may assume that

K 
 Q ��
m�
i��


Cn
� � zi�

and that Q is convex 
where Q denotes the closure of Q�� Then

�
K� � �
K 
Q� � �
Q� � �
Q�

�
X
i�N

�
Cn
� � zi�

�
X
i�N

��
Ci�� �
��Ci��

�
X
i�N

��
K 
 Ci�� �
K 
 ��Ci���

Here we have used the additivity of � on U
Pn
r�� and the fact that �
P � � �

for all convex polytopes P with K 
 P � ��

We call a function � � U
Kn� � R conditionally bounded if� for each K � �
Kn� the function � is bounded on the set fK � Kn � K 
 K �g� When � is

���



translation invariant and additive� it is su�cient for this to assume that �
is bounded on the set fK � Kn � K 
 Cng�

��� Lemma� Let the function � � U
Kn� � R be translation invariant�
additive and conditionally bounded� Then

lim
r��

�
rK�

Vn
rK�
� �
Cn�� �
��Cn�

for every K � Kn with Vn
K� � ��

Proof� Let K � Kn and � � intK� without loss of generality� For z � R
n

we put

�
K� z� �� �
K 
 
Cn � z��� �
K 
 
��Cn � z��� 
���

Lemma ��� shows that

�
rK� �
X
z�Zn

�
rK� z� for r � ��

De	ne

Z�
r �� fz � Z

n � 
Cn � z� 
 rK �� �� Cn � z �
 rKg
and

Z�
r �� fz � Zn � Cn � z 
 rKg�

Then

lim
r��

jZ�
r j

Vn
rK�
� �� lim

r��

jZ�
r j

Vn
rK�
� �� 
���

where jAj denotes the number of elements of a set A� The limit relations
follow from the fact that one easily shows the existence of numbers r� �
s� t � � such that

z � Z�
r � Cn � z 
 
r � s�K n 
r � s�K�


r � t�K 

�
z�Z�

r


Cn � z�

for r � r��
By assumption�

j�
rK� z�j � j�
rK � z� ��j � b

���



with some constant b independent of z�K and r� This gives

�

Vn
rK�

������
X
z�Z�

r

�
rK� z�

������ � b
jZ�

r j
Vn
rK�

� � for r ���

From this we deduce

lim
r��

�
rK�

Vn
rK�
� lim

r��

�

Vn
rK�

X
z�Zn

�
rK� z�

� lim
r��

�

Vn
rK�

X
z�Z�

r

�
rK� z�

� ��
Cn�� �
��Cn�� lim
r��

jZ�
r j

Vn
rK�

� �
Cn�� �
��Cn��

We are now in a position to prove the existence of the densities of intrinsic
volumes for standard random sets�

��� Theorem� For a standard random set Z and for j � f�� � � � � ng� the
limit

Vj
Z� �� lim
r��

EVj 
Z 
 rK�

Vn
rK�

exists� and it satis
es

Vj
Z� � E �Vj 
Z 
 Cn�� Vj
Z 
 ��Cn���

Hence� Vj
Z� is independent of K�

Proof� Let K � Kn and Vn
K� � �� Without loss of generality� we can
assume that K 
 Cn� For given � � /� there is a representation

Z
�� 
K �

NK����
i��

Ki
�� with Ki
�� � Kn�

where NK
�� �� N
Z
�� 
K�� By the inclusion�exclusion principle�

Vj
Z
�� 
K�

���



�

NK���X
k��


���k��
X

��i������ik�NK���

Vj
Ki�
�� 
 � � � 
Kik
����

hence� by the monotoneity of the intrinsic volumes�

E jVj 
Z 
K�j � Vj
C
n�E

NKX
k��

�
NK

k

�
� Vj
C

n�E�N�Z
K�

� Vj
C
n�E�N�Z
Cn ��

since N
Z
��
K� � N
Z
��
Cn�� By assumption� the right�hand side is
	nite� hence Vj
Z 
K� is integrable� For a polyconvex set M � U
Kn�� the
integrability of Vj
Z 
M� then follows from additivity� using the inclusion�
exclusion principle again� This shows that all expectations appearing in
the theorem exist and are 	nite� Therefore� we can de	ne a functional
� � U
Kn�� R by

�
M� �� EVj 
Z 
M� for M � U
Kn��

Then � is additive� translation invariant 
as follows from the stationarity
of Z� and conditionally bounded 
as follows from the last estimate above��
Now the assertion of the theorem follows from Lemma ����

After these preliminaries� we are now able to answer questions of the fol�
lowing kind� Suppose that the realisations Z
�� of a closed standard set
Z can be observed in a -window�� that is� in a compact convex set K with
Vn
K� � ��

By -observation� we mean that� in principle� the values Vj
Z
��
K� can
be measured� We want to use the values Vj
Z
�� 
K��Vn
K� to estimate
the densities Vj
Z�� But in general� Vj
Z
K��Vn
K� will depend onK and
thus will not be an unbiased estimator for Vj
Z�� To control the error� we
would have to determine the expectation of Vj
Z 
K�� If Z is an isotropic
standard random set� this can be achieved by means of integral geometry�
From the obtained set of expectations� one can then also derive unbiased
estimators for the densities of the intrinsic volumes�

The next theorem extends the principal kinematic formula to isotropic
standard random sets�

��� Theorem� Let Z be an isotropic standard random set in Rn � let K � Kn

���



and j � f�� � � � � ng� Then

EVj 
Z 
K� �

nX
k�j

�njkVk
K�Vn�j�k
Z��


The coe�cients are those of Theorem �����

Proof� First we denote that the function

R
n � SOn �/ � R


x� �� �� 	� Vj
Z
�� 
K 
 
�Bn � z��

is integrable with respect to the product measure ����P� Since E�N�Z
Cn �

��� this follows as in the proof of Theorem ���� if we additionally assume
that K 
 Cn� For general K � Kn it then follows fromZ Z Z

jVj
Z
�� 
K 
 
Cn � z� 
 
�Bn � x��j d�
x�d�
��dP
��

�

Z Z Z
jVj
Z
�� 
 
K � z� 
 Cn 
 
�Bn � x� z��j d�
x�d�
��dP
��

�

Z Z Z
jVj
Z
�� 
 
K � z� 
 Cn 
 
�Bn � x��j d�
x�d�
��dP
��

��
and the inclusion�exclusion formula�

For � � SOn� x � R
n and r � � we deduce from the motion invariance

of Vj and the stationarity and isotropy of Z that

EVj 
Z 
K 
 
�rBn � x��

� EVj 
�
��
Z � x� 
 ���
K � x� 
 rBn�

� EVj 
Z 
 ���
K � x� 
 rBn��

From Fubini�s theorem 
and the invariance properties of � and �� we get

E

Z
SOn

Z
Rn

Vj
Z 
K 
 
�rBn � x�� d�
x� d�
��

� E

Z
SOn

Z
Rn

Vj
Z 
 
�K � x� 
 rBn� d�
x� d�
���

We apply the principal kinematic formula 
Theorem ���� to both sides and
obtain

nX
k�j

�njkEVk 
Z 
K�Vn�j�k
rB
n� �

nX
k�j

�njkV 
K�EVn�j�k 
Z 
 rBn��

���



Now we divide both sides by Vn
rB
n� and let r tend to in	nity� Because of

Vm
rBn� � rmVm
Bn� and �njj � �� the left side tends to

EVj 
Z 
K�

and by Theorem ���� the right side tends to

nX
k�j

�njkVk
K�Vn�j�k
Z��

This completes the proof�

The special cases

EVn 
Z 
K� � Vn��
K�Vn
Z��

EVn�� 
Z 
K� � Vn��
K�Vn
Z� � Vn
K�Vn��
Z�

of Theorem ��� can be obtained without the assumption of isotropy� since
corresponding translative integral�geometric formulae are available�

Now we interpret Theorem ���� As one application� it describes the
error which is made if the measured value Vj
Z
�� 
K��Vn
K� is used as
an estimator for the density Vj
Z�� Writing the formula of Theorem ��� in
the form

EVj 
Z 
K�

Vn
K�
� Vj
Z� �

�

Vn
K�

n��X
k�j

�njkVj
K�Vn�j�k
Z��

we see that the mean error tends to � for increasing windows K� thus the
estimator

Vj
Z
�� 
K��Vn
K�

is asymptotically unbiased� However� one can also obtain an unbiased esti�
mator� The system of equations given by Theorem ����

EVj 
Z 
K� �

nX
k�j

�njkVk
K�Vn�j�k
Z�� j � �� � � � � n�

can be solved for V�
Z�� � � � � Vn
Z�� since the coe�cient matrix is triangular�
This yields formulae of the form

Vi
Z� � E

�
nX

m��

�nim
K�Vm
Z 
K�

�
� i � �� � � � � n�

���



hence

nX
m��

�nim
K�Vm
Z 
K�

is an unbiased estimator for Vi
Z�� As an example� we write down the two�
dimensional case� using the notations A�L� � for area� perimeter and Euler
characteristic� respectively�

A
Z� � E
A
Z 
K�

A
K�
�

L
Z� � E



L
Z 
K�

A
K�
� L
K�A
Z 
K�

A
K��

�
�

�
Z� � E



�
Z 
K�

A
K�
� �

��

L
K�L
Z 
K�

A
K��

�

�
�

��

L
K��

A
K��
� �

A
K��

�
A
Z 
K�

�
�

Theorem ��� also immediately yields a Crofton formula for random sets�
If we talk of a standard random set Z in some a�ne subspace E� the sta�
tionarity and isotropy of Z refer to E� and densities of intrinsic volumes
have to be computed in E�

��� Theorem� Let Z be an isotropic standard random set in Rn � let E � Enk
be a k�dimensional �at� where k � f�� � � � � n � �g� and let j � f�� � � � � kg�
Then Z 
 E is an isotropic standard random set in E� and

Vj
Z 
 E� � �njkVn�j�k
Z��

Proof� We omit the 
not di�cult� proof that Z 
 E is� with respect to
E� again an isotropic standard random set� For that reason� the density
Vj
Z 
 E� exists� Now let K � Kn� K 
 E and Vk
K� � �� Theorem ���
yields

EVj 
Z 
K� �

kX
m�j

�njmVm
K�Vn�j�m
Z�� 
���

where only terms with m � k appear since Vm
K� � � for m � k� Since Z
is stationary� we can assume that � � E and hence rK 
 E for r � �� In

���� we replace K by rK and divide the equation by Vk
rK�� For r ���

���



the left side tends to Vj
Z 
 E�� since Vj
Z 
 rK� � Vj
Z 
 E 
 rK� 
and
the intrinsic volumes do not depend on the dimension of the surrounding
space�� The right side tends to �njkVn�j�k
Z��

The implications of this theorem are clear� After Theorem ���� we had
seen how the densities Vj
Z� of an isotropic standard random set admit
asymptotically unbiased or even unbiased estimators� If Z is observed in
a k�dimensional section Z 
 E� then we can obtain estimators for Vj
Z 

E�� Theorem ��� tells us that these are at the same time 
asymptotically�
unbiased estimators for the densities �njkVn�j�k
Z��

As an example� we consider the practically relevant case where n � � and
k � �� We deal with the three�dimensional densities V 
volume�� S 
surface
area�� M 
integral of mean curvature� and with the two�dimensional densi�
ties A 
area�� L 
boundary length�� � 
Euler characteristic�� The equations
of Theorem ��� now read

V 
Z� � A
Z 
 E�� 
���

S
Z� �
�

�
L
Z 
 E�� 
���

M
Z� � ���
Z 
 E�� 
���

These equations� 	nally� provide an exact theoretic foundation for the -fun�
damental equations of stereology�� which are traditionally written in the
form

VV � AA�

SV �
�

�
LA�

MV � ���A�

Concluding we can say that Theorems ��� and ��� provide theoretical
justi	cations for some practical procedures of stereology� at least in those
cases where it is reasonable to model probes of real materials by realisations
of isotropic standard random sets� From the practical point of view� the con�
sideration of only locally polyconvex sets does not seem very restrictive� Of
the invariance properties� stationarity is always unrealistic� requiring un�
bounded sets� but it may well be satis	ed approximately at close range�
The most critical assumption is that of isotropy� For that reason� the ap�
plicability of motion invariant stereology is limited� and translative integral
geometry is under investigation�

���



	 The kinematic formula for curvature mea�

sures

We shall now prove the local version of the principal kinematic formula�
that is� the equation Z

Gn

'j
K 
 gM�A 
 gB� d�
g� 
���

�

nX
k�j

�njk'j
K�A�'n�j�k
M�B�

for the curvature measures 'i� It holds for polyconvex sets K�M � U
Kn�
and Borel sets A�B � B
Rn �� As for the global version� involving the
intrinsic volumes Vi� it is su�cient to prove 
��� for convex bodies K�M �
Kn� since the general case of polyconvex sets is then easily obtained� using
additivity and the inclusion�exclusion principle�

For the proof of 
���� we 	rst consider the case where K and M are
n�dimensional convex polytopes� We also consider only translations instead
of rigid motions� thus we have to investigate the integral

I ��

Z
Rn

'j
K 
 
M � x�� A 
 
B � x�� d�
x��

By 
���� the jth curvature measure of a polytope P is given by

'j
P� �� �
X

F�Fj�P �

�
F� P ��F �

It follows that

I �

Z
Rn

X
F ��Fj�K
�M�x��

�
F ��K 
 
M � x���F � 
A 
 
B � x�� d�
x�� 
���

The faces F � � Fj
K 
 
M � x�� are precisely the j�dimensional sets of the
form F � � F 
 
G�x� with a face F � Fk
K� and a face G � Fi
M�� where
k� i � fj� � � � � ng� In computing the integral 
���� only those translation
vectors x need to be considered for which a pair F�G with F 
 
G� x� �� �
also satis	es relintF 
 relint 
G � x� �� �� since the remaining vectors x
make up a set of Lebesgue measure zero� Moreover� the pairs F�G for
which k �� i � n or which are in special position� do not contribute to the
integral� since for them we have

�
fx � Rn � F 
 
G� x� �� �g� � �
F �G�� � ��

���



In the remaining cases� we have dimF � � dimF � dimG � n and hence
k � i � n� j� Therefore� we obtain

I �

nX
k�j

X
F�Fk�K�

X
G�Fn�j�k�M�Z

Rn

�
F 
 
G� x��K 
 
M � x���F
�G�x�
A 
 
B � x�� d�
x��

In the integrand� we may assume that relintF 
 relint 
G � x� �� �� and in
this case the external angle

�
F 
 
G� x��K 
 
M � x�� �� �
F�G�K�M�

does not depend on x� Putting

J
F�G� ��

Z
Rn

�F
�G�x�
A 
 
B � x�� d�
x��

we thus have

I �

nX
k�j

X
F�Fk�K�

X
G�Fn�j�k�M�

�
F�G�K�M�J
F�G��

To compute the integral J
F�G� for given faces F � Fk
K� and G �
Fn�j�k
M�� we decompose the space Rn in a way adapted to these faces�
We may assume that

� � L� �� a� F 
 a� G�

where a� denotes the a�ne hull� Let

L� �� L�� 
 a� F� L� �� L�� 
 a� G�

and let ��j�� ��k�j�� ��n�k� denote the Lebesgue measures on L�� L�� L�� re�
spectively� With respect to the direct sum decomposition Rn � L��L��L��
every x � Rn has a unique decomposition x � x��x��x� with xi � Li for
i � �� �� �� Writing

A� �� A 
 F� B� �� B 
G�
we get

J
F�G� � �F�G�

Z
L�

Z
L�

Z
L�

�F
�G�x��x��x��
A
� 
 
B� � x� � x� � x��

���



d��j�
x�� d�
�k�j�
x�� d�

�n�k�
x���

Here the factor �F�G� is an absolute determinant� de	ned by

d�
x� � �F�G� d��j�
x�� d�
�k�j�
x�� d�

�n�k�
x���

It can be described as follows� in a more general version� Let L�L� 
 R
n

be two linear subspaces� We choose an orthonormal basis of L 
 L� and
extend it to an orthonormal basis of L and also to an orthonormal basis of
L�� Let P denote the parallelepiped that is spanned by the vectors obtained
in this way� We de	ne �L�L�� �� Vn
P �� Then �L�L�� depends only on the
subspaces L and L�� If L � L� �� R

n � then �L�L�� � �� We extend this
de	nition to faces F�G of polytopes by putting �F�G� �� �L�L��� where L
and L� are the linear subspaces which are translates of the a�ne hulls of F
and G� respectively�

To compute now the inner integral over L�� we observe that


A� 
 
B� � x� � x� � x���� x� � 
A� � x�� 
 
B� � x� � x�� 
 L�

and hence Z
L�

�F
�G�x��x��x��
A
� 
 
B� � x� � x� � x��� d�

�j�
x��

�

Z
L�

��j�

A� � x�� 
 
B� � x� � x��� d�
�j�
x��

� ��j�

A� � x�� 
 L����j�

B� � x�� 
 L���
where we have used Theorem ���� The integrations over L� and L� now
require only Fubini�s theorem� and we getZ

L�

��j�

A� � x�� 
 L�� d��k�j�
x�� � ��j� � ��k�j�
A�� � �F 
A��

Z
L�

��j�

B� � x�� 
 L�� d��n�k�
x�� � ��j� � ��n�k�
B�� � �G
B��

Together this yields

J
F�G� � �F�G��F 
A��G
B��

Inserting this in the integral I � we end up with the following translative
integral�geometric formula for polytopes�

���



��� Theorem� If K�M � Kn are polytopes and A�B � B
Rn� are Borel
sets� then for j � f�� � � � � ng�Z

Gn

'j
K 
 
M � x�� A 
 
B � x�� d�
x�

�

nX
k�j

X
F�Fk�K�

X
G�Fn�j�k�M�

�
F�G�K�M��F�G��F 
A��G
B��

The kinematic formula at which we are aiming requires� for polytopes� the
computation ofZ

Gn

'j
K 
 gM�A 
 gB� d�
g�

�

Z
SOn

Z
Gn

'j
K 
 
�M � x�� A 
 
�B � x�� d�
x� d�
��

�

nX
k�j

X
F�Fk�K�

X
G�Fn�j�k�M�

�F 
A��G
B�

Z
SOn

�
F� �G�K� �M��F� �G� d�
���

Here we have used the fact that ��G
�B� � �G
B�� The summands with
k � j or k � n are easily determined� since for k � j we getX

F�Fk�K�

X
G�Fn�j�k�M�

�
F�G�K�M��F�G��F � �G

�
X

F�Fj�K�

�
F�M�K�M��F�M ��F � �M

�
X

F�Fj�K�

�
F�K��F � �M

� 'j
K� ��� 'n
M� ���
and similarly for k � n�X

F�Fk�K�

X
G�Fn�j�k�M�

�
F�G�K�M��F�G��F � �G

� 'n
K� ��� 'j
M� ���

���



The remaining integrals over the rotation group are determined in the
following theorem�

��� Theorem� Let K�M � Kn be polytopes� let j � f�� � � � � n � �g� k �
fj � �� � � � � n� �g� F � Fk
K� and G � Fn�j�k
M�� ThenZ

SOn

�
F� �G�K� �M��F� �G� d�
�� � �njk�
F�K��
G�M��

where �njk is as in Theorem ����

Proof� In order to avoid di�cult direct computations� we will give a proof
based on the uniqueness of spherical Lebesgue measures� This is possible
since external angles are de	ned in terms of such measures�

By de	nition�

�
F� �G�K� �M� � �
F 
 
�G� x��K 
 
�M � x��

with suitable x � R
n � As before� let N
P� F � denote the normal cone of a

polytope P in a relatively interior point of its face F � From the de	nition
of the external angle we get

�
F� �G�K� �M� �
	�L�
N
K 
 
�M � x�� F 
 
�G� x�� 
 Sn���

	�L�
L 
 Sn��� �

where L � Lnn�j is the orthogonal space of F 

�G�x� 
i�e�� the orthogonal
complement of the linear subspace parallel to the a�ne hull of F 
 
�G �
x��� For a linear subspace L 
 R

n � we have denoted by 	�L� the spherical
Lebesgue measure on L 
 Sn���

A general property of normal cones of convex bodies gives

N
K 
 
�M � x�� F 
 
�G� x�� � N
K�F � � �N
M�G��

Therefore� we have to evaluate the integralZ
SOn

	�L���L��

N
K�F � � �N
M�G�� 
 Sn����F� �G� d�
���

where L� is the orthogonal space of F and L� is the orthogonal space of G�
More generally� we de	ne the integral

I
A�B� ��

Z
SOn

	�L���L��
C
A� � �C
B�� 
 Sn����F� �G� d�
��

���



for arbitrary Borel sets A 
 L� 
 Sn�� and B 
 L� 
 Sn��� where

C
A� �� f�x � x � A� � � �g

denotes the cone spanned by A� Concerning the measurability of the inte�
grand� we give the following hints for a proof� The function � 	� �F� �G� is
continuous� hence measurable� Let U denote the set of all rotations � � SOn

for which L� and �L� are not in special position� Then it can be shown
that �
SOn n U� � �� For � � U we have

dimL� � dimL� � 
n� k� � 
k � j� � n� j � n�

hence the sum L� � �L� is direct� From this one can deduce that C
A� �
�C
B� is a Borel set 
in general� the sum of two Borel sets need not be
a Borel set�� For di�erent � � U � the sets C
A� � �C
B� are connected
by linear transformations� All this together is su�cient to show that the
mapping

� 	� 	�L���L��

C
A� � �C
B�� 
 Sn���
is measurable on U �

For 	xed B � B
L� 
 Sn��� we now de	ne

�
A� �� I
A�B� for A � B
L� 
 Sn����

If
S�
i�� Ai is a disjoint union of sets Ai � B
L� 
 Sn���� then�
C

�
��
i��

Ai

�
� �C
B�

�

 Sn�� �

��
i��



C
Ai� � �C
B�� 
 Sn���

for � � U � and this union is disjoint up to a set of 	�L���L���measure zero�
We deduce that

	�L���L��

��
C

�
��
i��

Ai

�
� �C
B�

�

 Sn��

�

�

�X
i��

	�L���L��

C
Ai� � �C
B�� 
 Sn���

for � � U and thus

�

�
��
i��

Ai

�
�

�X
i��

�
Ai��

���



by the theorem of monotone convergence� It follows that � is a 	nite mea�
sure on L� 
 Sn��� Let � � SOn
L�� be a rotation mapping the subspace
L� into itself� Then

C
�A� � �C
B� � �
C
A� � ����C
B��

and

�F� �G� � ��F� �G� � �F� ����G��

hence

�
�A�

�

Z
SOn

	�L���L��

C
�A� � �C
B�� 
 Sn����F� �G� d�
��

�

Z
SOn

	�L���
���L��

C
A� � ����C
B�� 
 Sn����F� ����G� d�
��

� �
A��

Since spherical Lebesgue measure is uniquely determined� up to a factor� by
its rotation invariance 
and 	niteness�� the measure � must be a constant
multiple of 	�L��� Analogously we deduce that for 	xed A � B
L� 
 Sn���
the measure I
A� �� must be a constant multiple of 	�L��� Both results
together yield that

I
A�B� � �
L�� L��	
�L��
A�	�L��
B�

for all A � B
L� 
 Sn���� B � B
L� 
 Sn���� here �
L�� L�� is a constant
depending only on L� and L�� If we choose A � L� 
Sn��� B � L� 
 Sn��
and observe the invariance properties of the functional I following from its
de	nition� we see that �
L�� L�� depends only on the dimensions n� j� k�
Therefore� there is a constant �njk so that

I
A�B� � �njk	
�L��
A�	�L��
B��

In particular� this shows that

I
N
K�F � 
 Sn��� N
M�G� 
 Sn���� � �njk�
F�K��
G�M��

This is the assertion of Theorem ���� except that it remains to show that
�njk � �njk �

���



Collecting the results obtained so far� we have proved the following kine�
matic formula for polytopes K�M � Kn�Z

Gn

'j
K 
 gM�A 
 gB� d�
g�

�
nX
k�j

�njk
X

F�Fk�K�

X
G�Fn�j�k�M�

�
F�K��
G�M��F 
A��G
B�

�

nX
k�j

�njk'k
K�A�'n�j�k
M�B��

If we choose A � B � R
n � the obtained formula must coincide with that

of Theorem ���� for all polytopes K�M � This shows that �njk � �njk and
thus completes the proof of Theorem ����

For arbitrary convex bodies K�M � the general kinematic formula 
��� is
now obtained by approximation� using the weak continuity of the curva�
ture measures� An extension to polyconvex sets K�M is easily achieved by
additivity� as in the case of Theorem ����

Also the Crofton formula of Theorem ��� has a local counterpart� We
collect both results in the following theorem�

��� Theorem� Let K�M 
 UKn be polyconvex sets� let j � f�� � � � � ng� and
let A�B � B
Rn � be Borel sets� Then the principal kinematic formulaZ

Gn

'j
K 
 gM�A 
 gB� d�
G� 
���

�

nX
k�j

�njk'j
K�A�'n�j�k
M�B�

holds� For k � f�� � � � � n� �g and j � k the Crofton formulaZ
En
k

'j
K 
 E�A 
 E� d�k
E� � �njk'n�j�k
K�A� 
���

holds� In both cases� the coe�cients �njk are those given in Theorem ����

Proof� It remains to prove formula 
���� Here we can assume that K is
a convex body� since the general case is then obtained by additivity� We

���



deduce 
��� from 
���� by a similar but simpler argument as used in the
proof of Theorem ����

Let Lk � Lnk be a 	xed subspace� then �k � �k
�
�n�k����� as in Section

�� Let W be a unit cube in Lk� Let A � B
Rn�� By 
��� we have

J ��

Z
Gn

'j
Lk 
 gK�W 
 gA� d�
g�

�

nX
m�j

�njm'm
Lk�W �'n�j�m
K�A�

with

'm
Lk�W � �

�
�Lk
W � � � for m � k�

� for m �� k�

hence

J � �njk'n�j�k
K�A��

On the other hand�

J �

Z
SOn

Z
Rn

'j
Lk 
 
�K � x��W 
 
�A� x�� d�
x� d�
��

�

Z
SOn

Z
L�
k

Z
Lk

'j
Lk 
 
�K � x� � x���W 
 
�A� x� � x���

d��k�
x�� d�
�n�k�
x�� d�
���

For the computation of the inner integral� we put

'j
Lk 
 
�K � x��� �� �� �� �A� x� �� A��

Then Z
Lk

'j
Lk 
 
�K � x� � x���W 
 
�A� x� � x��� d�
�k�
x��

�

Z
Lk

�

W � x�� 
 A�� d��k�
x��

� �
A����k�
W �

���



� 'j
Lk 
 
�K � x��� Lk 
 
�A� x����

where Theorem ��� was used� This yields

J �

Z
SOn

Z
L�
k

'j
Lk 
 
�K � x��� Lk 
 
�A� x��� d�
�n�k�
x�� d�
��

�

Z
SOn

Z
L�
k

'j
K 
 �
Lk � x�� A 
 �
Lk � x�� d��n�k�
x� d�
��

�

Z
En
k

'j
K 
 E�A 
E� d�k
E��

where we have used the rigid motion covariance of the curvature measures
as well as the inversion invariance of the measures ��n�k� and �� The two
representations obtained for J together prove the assertion�
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Stereology� Integral Geometry

�under the Microscope�

Luis M� Cruz
Orive

Stereology can be regarded as geometric sampling� It is a blend of in�
tegral geometry� geometric probability� and statistics� to serve the scientist
who wants to estimate geometric measures associated with a solid object

e�g� an organ� a tumor� a rock� a sausage����� or with the internal mi�
crostructure of it� Actually� the classical Bu�on�s needle problem 
�����
already contains much of the art and spirit of stereology� We propose a
brief� lively review of the state�of�the�art in stereology�

Luis M� Cruz Orive
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Concentration multi��echelles de courbure dans

des �bres de Milnor

Evelia Garc��a Barroso

Nous �etudions le comportement asymptotique de la courbure de la 	bre de
Milnor

C
��� � f��
�� 
B� 
 C�

d�un germe de courbe plane r�eduite 
C� �� 
 
C�� �� d�e	ni par une �equation
f
x� y� � � lorsque 
 et � tendent vers �� Il s�agit de la courbure de Lipschitz�
Killing associ�ee (a la m�etrique induite sur C
�� par celle de C�� On connait
d�ej(a� gr+ace au travail de Langevin ��� la valeur limite de l�int�egrale de cette
courbure �

Lim�	���	j�j���

Z
C����

jKjdv � ��
����
C� � ����
C���

o(u ���� est le nombre de Milnor en � de la singularit�e C
�� � C et ����

sa multiplicit�e en � diminu�ee de �� Il faut souligner que le terme de droite
ne d�epend que de la topologie du plongement dans C� du germe de courbe
plane r�eduite 
C� ��� D�apr(es ���� le nombre ����
C� �����
C� est le nombre
d�intersection (a l�origine de C avec une de ses courbes polaires relatives
g�en�eriques� qui sont d�e	nies par les �equations

�f

�y
� �

�f

�x
� ��

C�est aussi le nombre des points d�intersection 
transverses� d�une telle
courbe polaire avec une 	bre de Milnor f
x� y� � � � � qui tendent vers
� avec �� Ce r�esultat est donc au fond de la nature d�un r�esultat de th�eorie
de l�intersection� c�est (a dire que l�on compte des points� ou le degr�e de
cycles� sans se pr�eoccuper de leur position�
Nous allons obtenir une information plus pr�ecise sur la g�eom�etrie de la
	bre de Milnor en essayant de localiser les r�egions de C
�� o(u se concentre
asymptotiquement la courbure� et ce faisant mettre en �evidence le fait que la
concentration de courbure est un ph�enom(ene multi��echelles � la courbure se

���



concentre dans les intersections avec C
�� de boules� dont les centres �Qq	l
��

peuvent +etre d�ecrits� mais surtout dont les rayons sont de la forme j�j��Q�
o(u les �
Q� sont des nombres rationnels dont la collection ne d�epend que
de la topologie du plongement dans C� du germe de courbe plane r�eduite

C� ��� Il nous semble int�eressant que cette description multi��echelles elle
m+eme ne d�epende que de la topologie�
Lorsque le germe C est analytiquement irr�eductible en �� i�e�� est une branche�
la donn�ee des exposants �
Q�� qui sont alors en nombre �egal (a celui des ex�
posants de Puiseux� et celle de la quantit�e de courbure qui se concentre
dans les boules de rayon �
Q� permettent de d�eterminer les exposants ca�
ract�eristiques de Puiseux de C� et l�on peut donc dire que le comportement
asymptotique de la courbure de la 	bre de Milnor permet de d�eterminer la
classe d��equisingularit�e de la 	bre limite singuli(ere� Le cas r�eductible est plus
compliqu�e� en particulier parce qu�une partie de la courbure reste 
di�use��
comme dans le cas extr+eme de xn � yn � �� o(u il n�y a pas de concentra�
tion de courbure dans des boules de centre di��erent de l�origine 
et donc
d�ependant de ��� Nous savons mesurer quelle est la partie di�use�
Notre technique de preuve est bas�ee sur l�analyse du contact avec les branches
de C des di��erentes branches des courbes polaires g�en�eriques qui a �et�e faite
dans ���� ����
L�id�ee heuristique part du fait que par d�e	nition de la courbe polaire �f

�y �

� �f�x � �� ses points d�intersection avec C
�� sont les points de C
�� o(u
la tangente a la direction correspondant au param(etre � � Pour prouver le
th�eor(eme de Langevin� on compte le nombre de ces points et on applique
la formule d��echange� Nous observons que ces points ont r�epartis sur les
di��erentes branches de la courbe polaire� et si le contact avec C en � d�une
de ces branches est fort� elle varie peu lorsque l�on varie le param(etre � et par
cons�equent ses points d�intersection avec C
�� bougent peu� ce qui signi	e
que beaucoup de courbure se concentre au voisinage de ces points� Rappelons
que le vocable branche d�esigne un germe analytiquement irr�eductible de
courbe� et en particulier une composante irr�eductible d�un germe de courbe�
Cette travail est fait en collaboration avec Bernard Teissier et va (a para+1tre
dans Commentarii Mathematici Helvetici�
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Total curvatures and Euler�Poincar�e

characteristic� Stereological estimation

Xim�o Gual
Arnau

� Introduction

Chern and Lashof de	ned the total absolute curvatures of immersed sub�
manifolds in the euclidean space by integration� on the submanifold� the
absolute value of certain local curvatures� Their work� which relates the
theory of total curvatures with Morse theory of critical points of functions
de	ned over the submanifold� has been extended for immersions into spaces
of constant curvature 
in particular the sphere� and for holomorphic immer�
sions into complex projective spaces�

On the other hand� using techniques of Integral Geometry� which gener�
alize the Quermassintegrale of convex sets� Santal�o introduced some global
de	nitions of total absolute curvatures for compact manifolds immersed in
a euclidean space and he showed that one of these curvatures coincides with
the Chern�Lashof�s curvature� However we have not found in the literature
a generalization of these tecniques for immersions in the sphere�

Moreover� the concepts used to de	ne the total absolute curvatures from
the Integral Geometry viewpoint 
Santal�o�s approach� and those used to
obtain a local interpretation of these curvatures 
Chern�Lashof�s approach�
are similar to the ideas presented by several authors in Stereology to esti�
mate the Euler�Poincar�e characteristic for n�dimensional sets in Rn � These
ideas have been adapted from the de	nition of the Euler�Poincar�e char�
acteristic given by Hadwiger and allow to de	ne the Euler number of an
n�dimensional set in terms of what happens in an 
n � ���dimensional
plane that sweeps through the set� However� these ideas have not been ap�
plied to obtain the Euler number of domains which are not n�dimensional
sets in Rn � for instance� domains in a surface of R� �
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� Total absolute curvature of plane curves and

Euler�Poincar�e characteristic of plane do�

mains

In this 	rst section we summarize some wellknown results refered to curves
and domains in R� � Firstly� we remember the de	nition of the total absolute
curvature of a plane curve given in Integral geometry� Afterwards� we give a
characterization of this de	nition from the theory of critical points of height
functions and we prove that this de	nition coincides with the de	nition of
total abolute curvature given in Classical Di�erential Geometry�

In the second part of this section we adapt the preceding concepts to
obtain the Euler number of a plane domain� This method to obtain the
Euler�Poincar�e characteristic of a plane domain has been used in di�erent
stereological applications�

� Total absolute curvature of curves in the

sphere and Euler�Poincar�e characteristic of

domains in the sphere

We 	rst particularize some results of ��� to spherical curves� In particular�
we de	ne three di�erent total absolute curvatures for spherical curves in
terms of what happens in a circle 
geodesic� or small circle that sweeps
through the curve� Afterwards we prove that local versions of these total
absolute curvatures allow us to obtain the di�erent total absolute curvatures
studied in Di�erential Geometry and Topology for curves in spheres�

Secondly� we consider two methods to de	ne the Euler�Poincar�e charac�
teristic of a domain with boundary in the sphere� With the 	rst method
we consider geodesics that sweeps through the domain and in the second
method we use parallel small circles which are tangent to the boundary of
the domain�

� A stereological version of the Euler�Poincar�e

characteristic for domains in a surface

Here we adapt the theory of critical points of functions to height functions
in R� to obtain the Euler�Poincar�e characteristic of a domain with boundary
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in a surface of R� � ���� In such a manner that the results exposed in the
preceding sections for plane and spheric domains are particular cases of the
formulae presented in this section�

Finally� we will give a geometrical interpretation of these formulas which
can be considered as a stereological version of the Gauss�Bonnet formula�
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A geometrical meaning for Action from

Integral Geometry in Space�Time

Mariano Santander

The talk aims to introduce some elementary results on Integral Geometry
in space�time� These are presented from a point of view which includes in
a natural way the geometries of homogeneous space�times as well as the
classical riemannian geometries of constant curvature� It will be organized
by merging two only apparently disparate threads� one belongs to Physics
while the other comes from Geometry�

Action is the most important single quantity in Classical Mechanics�
Absolute time and space�length� the two other basic quantities have a clear
geometrical interpretation in terms of the 
degenerate� time metric and
space metric in classical physics� However� Action appears as an apparently
rather ad�hoc concept without any known geometrical meaning� I will also
give a brief glimpse to the seminal role of action in Quantum Mechanics
2through Feynmann�s formulation2� and I will comment how quantum
mechanics points to the relative actions for closed space�time paths as the
important quantities�

The second thread comes from geometry� Starting from the prehistory
and history of non�euclidean geometry I will comment how the study of
the three classical geometries of constant curvature could 
or better should�
be considered as only a part of a more comprehensive and symmetrical
scheme� where they are nine two dimensional real geometries� The six re�
maining geometries turns out to provide the right geometrical language to
discuss the six possible kinematics of an homogeneous space�time with con�
stant space�time curvature and either non�relativistic 
with absolute time�
or relativistic 
without absolute time�� This scheme is better couched in
terms of the Lie groups and algebras of these geometries� As an example
of this approach having a clear direct relevance for Integral geometry� two
mutually dual Gauss�Bonnet like identities will be presented which a�ord a
direct derivation of trigonometry for these nine geometries in a single run�
This common frame� which historically 	rst appeared as the Cayley0Klein
theory of �projective metrics� was also considered by Poincar�e� It includes
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the 
nine� geometries with a quadratic metric 
either riemannian� degener�
ate or pseudoriemannian� and constant curvature 
either positive� zero or
negative� in a surprisingly symmetrical arrangement� which suggests rela�
tionships between di�erent geometries 
as a most important duality� and
allows many properties to be studied for all the nine geometries simultane�
ously�

The 	rst thread contributes to the whole picture as� �Action is essential
in classical mechanics� Classical Mechanics can be recasted as a geometric
theory� yet Action has no a known geometrical meaning�� The second one
tells us� �Study and classi
cation of possible two�dimensional geometries
turns out to furnish the actual observed space�time structure� whether in a
rather rough approximation �the galilean geometry of classical physics�� or
as in more re
ned and accurate ones �as the Lorentz�Minkowski geometry
of relativistic physics��� The third part of the talk will merge these two
threads together� providing a the geometrical interpretation for Action in
terms of Integral geometry in space�time�

The three classical space geometries 
spherical� euclidean and hyper�
bolic� have a compact isotopy subgroup of rotations 
in �d SO
��� around a
point� This leads to a 
nite total measure of the sets of lines through a point
and underlies most elementary integral geometry results as the Cauchy�
Crofton formula for the length of a curve in euclidean plane by integrating
the intersection counting with straight lines�Z

N�
l�dl � �L��

In contradistinction� the geometries which describe space�time have a
non�compact isotopy subgroup of �rotations� around an event 
or space�time
point�� physically these are inertial transformations� and in � � � dimen�
sions� the isotopy subgroup is SO
�� ��� The non�compact nature of inertial
transformations should hold if one wants space�time to be causal� a basic
requirement deeply involved in all physical theories� Therefore the total
measure of space�time time�like lines through an event is in	nite� At a 	rst
sight this precludes extension of Cauchy�Crofton and similar relations from

locally� euclidean spaces to space�time� which is either locally galilean or
locally lorentzian�

However� and this will be the main result presented in the talk� this
is not so� The loss of a 
nite total measure for the set of lines through a
point is accompanied by the existence of a time orientation which allows a
classi	cation of time�like lines into future and past� and which is invariant
under the kinematical group� In the �at space�times 2the Galilei space�
time of classical mechanics and the Lorentz�Minkowski space�time of special
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relativity2� this suggests to modify the euclidean intersection counting and
to replace it by an oriented intersection counting� this is also invariant under
the kinematical group�

Let us consider a closed time�like curve 
a circuit in space�time� & as
two possible future�pointing paths� say &� and &�� These paths go from an
initial event A to a 	nal one B� Now two natural questions are�

� 	rst� are the integrals Z
N�
l�dl

of the oriented intersection numbers with &� taken over the space�time of
all time�like lines well de	ned� and�

� second� if they are� what is their meaning�

Both in classical and in the relativistic case these integrals are well de�
	ned� even if

R
dl� diverges� and also in both cases� they are proportional

to the di�erence of actions for a particle going from A to B along the two
paths &� and &�� This could be expected in the relativistic case� where the
action for a free particle is just the Lorentz�Minkowski length of the parti�
cle worldline� but comes as a surprising result in classical physics� There�
fore this gives an unexpected interpretation for Action in terms of Integral
Geometry in Space�time� As usually happens with mathematics in�and
physics� the right mathematics strongly suggests the quantities which are
the physically important ones� in this case even the fundamental impor�
tance of relative actions� as opossed to the unobservable action along an
open path� is clearly captured� The interpretation does not circunscribe to
the free case� but is also valid for particles in any potential� this however
will not be discussed here�

A general reference explaining in a descriptive� yet authoritative way
the role of Action and space�time in Physics as well as in Mathematics is
the book by Yu� I� Manin� Mathematics and Physics� Birkhauser� Boston�

������ This book makes a very stimulating reading� The talk is based
mainly on the following papers�

M� A� del Olmo� M� Santander� Action and Integral Geometry� Journal
of Physics A� Math� Gen�� ��� L�������� 
������

M� A� del Olmo� M� Santander� A study of the action from kinematical
integral geometry point of view� Journal of Geometry and Physics� 	� ����
���� 
������

D� Alarcos� M� A� del Olmo� M� Santander� Procs of the XIX Interna�
tional Colloquium on Group Theoretical Mhetods in Physics� Salamanca�
����� Anales de F�1sica Monograf�1as� �
II�� �������� 
������
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