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thank for their collaboration. This volume also contains abstracts of these
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Introduction to Integral Geometry

R. Langevin



1 Introduction

In 1777 Buffon published his Essai d’arithmétique morale [Bu], where he
describes the needle experiment.
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[

Figure 1: Buffon’s calculation

The first paragraph of the essai is:

La mesure des choses incertaines est ici mon objet: je vais tacher de don-
ner quelques regles pour estimer les rapports de vraisemblance, les degrés de
probabilité, le poids des témoignages, l'influence des hasards, l'inconvénient
des risques, et juger en méme temps de la valeur réelle de nos craintes et
de nos espérances. After some considerations about a game called “franc-
carreau”, where the players gamble on the position of a coin thrown on a
tiling (entirely in a tile or accross some division line) , Buffon proves that,
when a needle is thrown “at random” on the boards of a parquet, if the
length of the needle is equal to the width of the boards, the probability it
will lay across two boards is 2/mw. He admits without the slightest doubt
that the right probability measure on the space of positions of the needle is
the measure 5-|dz A df| which we shall consider below.

The appearance of the number 7 hides a circle. The physicist Paul
Langevin described in 1908 a way to visualise a proof of Buffon’s result.

Let us throw thousands of needles and move them using only transla-
tions parallel to the boards or perpendicular to them with length an integer
multiple of the width of the board. As all relative positions (angle, distance
of the needles to the lines boundary of the boards) are equally likely, we can
rearrange the needles along a very large circle as in fig.2 having essentially



Figure 2: Needles and rearranged needles

the same amount, say N, of needles above any point of the circle. The total
amount of needles is close to N.L, where L is the length of the circle and
the number of needles crossing the lines is close to

N.(number of intersection points of the lines with the circle)

that is 2N.D, where D is the diameter of the circle. The required probability
is then 2N.D/N.L = 2.

A hundred years will be needed to clarify the notion of probability in-
volved. Before coming to that, let us give a conventional proof confirming
Buffon’s result. Locate the position of the needle on the floor by the po-
sition of its tip and the angle of the needle with the direction of the lines.
Using as before translations parallel to the boards, or multiple of the width
of the boards, we can suppose that our needle has its tip on the vertical
segment AB of fig 3. We assume that AB has length 1. Call x the distance
between the tip of the needle and A.

Therefore the set of all possible positions of the needle is [AB[.S', (or
rather IR/Z - S). The needle meets the line Lp if x + sinf > 1 and L, if
x + sinf < 0.

The ratio between the dashed area and the area of the rectangle ]0, 1].[0, 7|
is 2/7.
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Figure 3: Localization of the needle
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Figure 4: Area in [0, 1] x [0, 27] of the needles crossing a line

2 The birth of the notion of geometric mea-
sure

2.1 Cauchy and Crofton

In 1832, in a communication to the French Academy of Sciences, Cauchy
noticed that the length of a convex curve is the average of the lengths
of the orthogonal projection of the convex curve on all lines through the
origin. More generally, for any rectifiable planar curve C, denote by m(C,L)
the “absolute length” of the orthogonal projection of C on the line L, the
length of the projection counted with multiplicity. In modern language:

m(C,L) = / card(p™ (y)dy) 5y € L

Then:



Theorem 2.1.1 Cauchy formula [Cau]

w/2
/ m(C, Ly)df = 2(lengthof C)

—m2

Cauchy’s proof amounted to prove the formula for a segment, and then
approximate any curve by inscribed polygons.
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Figure 5: Measure of the lines orthogonal to a given direction and intersect-
ing a segment

From Cauchy’s communication to the french academy in 1832 [Cau], to
Crofton’s mémoire (1868) [Cro] 36 years where needed to clarify the notion
of a measure on the set of affine lines. Let us quote Crofton: The expression
“at random” has in common language a very clear and definite meaning; one
which cannot be better conveyed than by Mr Wilson’s expression “according
to no law”... There is always a direct reference to the assemblage of things
to which it belongs and from which we take, and not till then, we can proceed
to sum up the favorable cases,... But there are several classes or questions
in which the totality of cases is not merely infinite, but of an inconceivable
nature... We can thus continually suppose variations of the experiment, each
variation giving a new infinity of cases. (then Crofton justifies the choice



of the measure on the plane). What means: an infinity of lines drawn at
random on the plane, what is the nature of this aggregate? First, since any
direction is as likely as the others, as many of the lines are parallel to any
direction as to any other. As this infinite system of parallels is drawn at
random, they are as thickly disposed along any part of the perpendicular as
along any other...

Crofton did found the right answer as we will see in next section. Nev-
ertheless, at the turn of the century the choice of a measure on a continuum
was not obvious, because there were too many possibilities.

2.2 Bertrand’s paradoxes

Let us give three different answers proposed by the probabilist Bertrand to
the same problem of elementary geometry. At that point, integral geometry
was close to desappear. The question is (see pictures below): what is the
probability for a chord of a circle taken at random to be longer than the
side of an equilateral inscribed circle? The three different answers Bertrand
proposes will come from three different ways to choose the chord.

1) Chose an arbitrary point A on the circle. Using the rotational symetry
of the picture we can forget about A and choose now another point B on
the circle, endowed with arc length measure.

A
}

B AN
Figure 6: Probability 1/3

The chord is then longer than the side of the inscribed equilateral triangle
with probability 1/3.



2) Chose at random the affine line supporting the chord. The rotational
symetry of the picture allows us to forget about the direction of the line.

Figure 7: Probability 1/2

As cos(m/3) = 1/2 the probability is now 1/2.

3) Chose at random the middle of the chord in the disc (the measure is
the Lebesgue measure on the disc). We ignore chords through the origin,
as they form a set of measure zero.

Then the probability is 1/4.

Poincaré will take integral geometry out of this dead end. For him, (see
for example his book published in 1912 [Poin], the most interesting measure
is the one which is invariant under the group of affine isometries of the
plane. Only isometries preserving the origin are allowed by presentations
1) and 3). In 2) translations also act on the set of affine lines and preserve
our measure. It was also Crofton’s answer.



Figure 8: Probability 1/4



3 The euclidean plane

3.1 Geometric measures on sets of lines

We will start with the Euclidean geometry of the plane. The group of
Euclidean motions M acts on the points of IR?. It leaves invariant the
Lebesgue measure dx A dy. It acts also on the set of affine lines of the
plane A(2,1). The oriented lines through the origin of R? form a circle, as
any oriented half-line cuts the unit circle in a point. This correspondence
defines the topology of the set of oriented lines through the origin. The set
of unoriented lines is the quotient of this first circle by the relation z ~ —z
We denote this set by G(2,1). We can visualize the latter identifying a line
(distinct from the x-axis) with its intersection (different from the origin)
with the circle tangent at the origin to the x-axis of next picture.

cercle des droites vectorielles
non orientées

cercle des droites vectorielles
orientées

Figure 9: Oriented and non-oriented directions.

A non-oriented affine line corresponds to each point t of a direction D;
just take A; to be the perpendicular through t to D. Using oriented direc-
tions we would get oriented affine lines A1 (2,1). In that case we consider
an oriented direction DT and the affine line perpendicular to a point ¢t € DT
(which can be identifies with its coordinate on the oriented line D). Let 6
be the oriented angle of the x-axis and DT. We see that the oriented affine
grassmannian A1 (2,1) is a cylinder S' x R on which natural coordinates
are 6 and t.

Figure 10: coordinates on the set of oriented lines.

From the angular measure |df| on the unit circle and the Lebesgue mea-



sure |dt| on the line D, we get a measure |df A dt| on the set of oriented
affine lines. This measure is invariant by a rotation of center the origin. A
translation of vector v moves the line (6,t) to the line (6,t+ < e®|v >; it
also leaves invariant the measure |df A dt|. As an exercise, let us represent
on the cylinder S' x IR the oriented affine lines through the extremity O’ of
the vector v on the picture below.

Figure 11: Oriented lines through the origin and through another point.

We will call the family of lines through a point, or the family of lines
parallel to a given direction a linear pencil. The equation of a line of a linear
pencil is a linear combination of the equations of any two different lines of

the family.
Remark: The oriented affine lines through the point m = (a,b) are
the intersection of the cylinder 2 + y> = 1 with the plane of equation

z = ax +by. Parallel lines are the intersection of the cylinder with a vertical
plane through the origin.

The projection (forgetting the orientation) of A" on A defines the mea-
sure, still denoted |df A dt|, on AT (2,1). this projection also permits us
to recognize that A(2,1) is the Mdbius band obtained from the rectangle
[0,7] x R identifying (0,¢) with (7, —t). the next picture shows the set of
lines corresponding to the small rectangle [0, 62].[t1, t2].
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Figure 12: The Mobius band.

3.2 The Gauss map

During this section, curves will be of class C*. An essential tool in the
study of hypersurfaces of IR" and first planar curves, is the Gauss map v
which to each point m of an oriented curve C' associates its oriented normal,
N(m) = Ry/2(T(m)) where T'(m) is the oriented unit tangent at m to the
curve.

v:C — St

The jacobian k(m) of v at a point m € C is called the curvature of
C' at that point. Notice that we can define a Gauss map with value in
Py, forgetting the orientation of N(m). Notice also that the tangent map
T : C +— S mapping a point m € C to the oriented unit tangent to C' at
m, has the same jacobian k(m). We will use the map C — AT(2,1) the
paragraph “envelopes” of next section.

Remark: Let m € C be a noncritical point of the Gauss map. Then
the point m is a nondegenerate critical point of the orthogonal projection
of C on the oriented line L(z) defined by N(z).

Proof: Locally C has the equation y = f(z) where z is a coordinate
on the line generated by T'(z) and y a coordinate on the line L(z). We

11



Figure 13: The Gauss map.

can choose the euclidean coordinates x,y such that f(0) = 0. We also have
f'(0) = 0. The curvature k(m) is in that case just 2 f7(0). If the curvature
is nonzero, the orthogonal projection of C' on L has the nondegenerate
hessian f”(0). o

For a direction L, denote by p(C, L) the number of critical points of the
orthogonal projection of C' on L. The change of variable theorem implies
then that there exists a neighbourhood v of m such that

Jmlam = [ . Dy
The result holds globally on C'.

Theorem 3.2.1

[ lemlam = [ e Dy

Proof: The proof relies on Sard’s theorem. The set ¥ of critical values
of v is of zero measure. Its inverse image v (X) is the union of critical
points of v, where k& = 0, and of noncritical points of v with image in o,
the latter form a set of measure zero. The complement of v~(¥) is an
enumerable union of open sets of C. Discarding at most an enumerable set
of points if necessary, we get an enumerable union |J,(U;) of open set of
C' where the restriction of v is a diffeomorphism on its image. Using the
change of variable theorem and summing on i we get:

/C ()] dm = /inn midm = 3005 = /P e Dy

12
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We can also count "most” of critical points with a sign. Assign to the

non degenerate critical points of the orthogonal projection of the oriented

curve C on the oriented line L the sign e(m) = (—1)"?#(™) When the

two unit vectors contained in L are non degenerate values of the Gauss map,

we can, at each point m such that y(m) C L orient the line L using the
normal N(m) to define e(m). Thus we get:

We.n) = 5 (e(m))
y(m)EL

Theorem 3.2.2 If one of the integrals

[ temiam = [ e Dy

is finite, then:

/Ck(m)dm:/Pn_l,u(C,L)dL

To prove this last theorem, is is enough to track the signs in the proof
of the preceeding one.
A classical theorem for embedded closed planar curve states that:

Theorem 3.2.3
|/ k(m)dm| = 2rn
c
It is a consequence of the following fact that we will explain below:
w(C, L) =2 - degree(Gauss map) = £2

when C is a simple closed curve, and when u(C, L) makes sense.
As a corollary we get the inequality:

/ |k(m)|dm > 2x
c

3.3 Volume of the tube around a curve

We will use the previous definitions to compute the volume of a small tubular
neighbourhood of a closed planar curve C', and the volume of the thickening
on one side of the curve.

13



Let C, be the curve
C, = {C(t) + TN (D)}
The tubular neibourhood of C
Tuby(C) = {mld(m,C) <r}

is the union
Tub,(¢) = {U_r<r<,Cr}

The tubular neighbourhood lemma tells us that for r small enough the
map:

(t,7) = {C(t) + TN ()}
is diffeomorphism. Let us also define the thickening (on the side of N) of C":
Th?"(c) = {UOSTSTCT}
The volume of Th,(C) is the integral:
vol[Thy (C)] = / vol(C)
0<r<r

The projection, ”counted with multiplicity” of the curve C on a line L is
obtained, modifying the projection of C' on intervals of length 7 with one
extremity a critical value of the orthogonal projection of C' on L.

mc

> “ Ve

S 1(e) L

m
Figure 14: Thickening of a curve.

To give a formula suppose first that the orthogonal projection 7y, on L
is a Morse function, that is, has only non degenerate critical points, which

14



all have different images. Then a critical value ¢ € L is the image of one
critical point m. € C. The normal N(m) is parallel to L and allows us to
define the interval I(c) = [¢,c + T7N(m)]. The projection of C on L defines
a function (with integer values) on L:

e(C,L)(y) =t (y)

Depending on the local position of C', N(m) and the line orthogonal to L
in ¢, we define a sign
e(c) = e(m,) = £1

(this generically makes sense, as the critical value ¢ will, for almost every
line, be the image of a unique critical point; see section 7.3 for more precise
statements). Then:

e(c) = +1if Cislocally not onthe sideof N (m),
—1if Cislocallyonthe side of N(m)

Remark: To change the orientation of N will change the sign of €(c).

Proposition 3.3.1 The function p(Cr, L) is equal, when 71, is a Morse
function, to

0(Cr, L) = o(C,L) + Y e(c) -2+ 1y

In the formula the summation is over all critical values c of wp,, and 1p()
is the characteristic function of the interval I(c).

Observe that the degree of the Gauss map ~ can be computed using any
generic line L, that is, here, any line such that the projection 77, is a Morse
function. This degree is

> elo)

We now also that the set of non-generic lines is of measure 0. We know
that, depending of the orientation of the curve, this degree is £1. The
proof follows from the definition of the function ¢(C, L) See fig. Rewrite
Cauchy’s formula for C; using the functions ¢:

2-tength(C,) = [ [ w(Cri)
LeP; JL

Using the proposition, the remark on the degree of v, and permuting the
order of integration (this makes sense when the curve is compact smooth
arc) one gets the:

15



Theorem 3.3.2
vol (Th,(C)) = r - length(C) 4+ (=1)"% - 7. p?
and, using also the previous remark, we get the corollary:
Corollary 3.3.3 for r small enough,
vol (Tub-(C)) = 2r - length(C)

In the section higher dimensional convex bodies, we will generalise
this proof to higher dimensions.

16



4 Two dimensional convex bodies and trans-
lations

4.1 Envelopes

We mentioned in the previous section the Gauss map ~. If we retain not
only the normal (or tangent direction at a point m but the oriented affine
tangent line we get a map C — A(2,1). Conversely, to a smooth one-
parameter family of affine lines, corresponds in general a curve, which is the
envelope of this family of lines. Let Dy = {a(t)x + b(t)y + c(t) = 0} be a
smooth family of lines where a(t),b(t), ¢(t) are smooth functions of t. The
lines Dy and Dy, p, have an intersection in the plane if they are not parallel.
When h goes to zero this intersection point may have a limit m(t). Let us
give a sufficient condition for the points m(t) to exist, and belong to a curve
C which admits the tangent D; at the point m(t).

Theorem 4.1.1 Let D; be a smooth family of lines of equations a(t)x +

b(t)y + c(t) = 0; (z,y) € R*. If for all t € [a,(], the determinant

det( c?'((?) Ii)’((tt)) > is different from zero, the family envolves a curve

C, that is, the curve is the union of the points: m(t) = Dy N D}, where

Dj is the affine line of equation o' (t)x + b'(t)y + ¢'(t) = 0. Moreover if the
a(t) b(t) c(t)

determinant det | a'(¢) b'(t) c't is also different from zero,
all(t) b”(t) C”(t)

the curve is smooth at m(t) and the tangent to C' at m(t) is Dy.

We will note Dy the line of equation a"(t)z + b"(t)y + ¢"'(t) = 0.
Proof: Let us find the intersection point of D; and Dy, p. We need to
solve the linear system:

a(t)r +b(t)y +c(t) =0
a(t +h)z +b(t +h)y +c(t+h) =0

A first order Taylor expansion of the second equation gives:

a(t)r +b(t)y+c(t) =0
(a(t) + a't)h + o(h))x + (b(t) + b’ (t)h + o(h))y + (c(t) + ' (t)h + o(h)) =0

This is equivalent to the system:

a(t)r +b(t)y +c(t) =0
[a'(t)h + o(h)]z + [b'(t)h + o(h)]y + [¢'()h + o(h)] =0

17



a'(t) b'(t)
when h goes to zero, is the solution m(t) of the system:
a(t)r +b(t)y +c(t) =0
a(t)x+b(t)y+(t)=0
(we shall refer to that system as (¥*)).
a(t) b(t) e(t)
The condition det [ a'(t) b'(¢) c't # 0 guarantees that the
a"(t) b (t) d'(t)
three lines D, D" and D" do not belong to the same linear pencil. Up to
terms negligible compared with A the point m(t + h) is the point D; N D;_,,
which show that the limit of the line containing the chord m(t), m(t + h) is
Dy; See next picture O

If the determinant det ( a(?) b(t) ) # 0, the limit of the solution,

Figure 15: A non degenerate piece of envelope

Linear pencils are in that sense “degenerate” envelopes.

4.2 Support functions and hérissons

The name hérisson (french word for hedge hog) has been chosen because the
skin of this animal cannot fold to much without inconvenience because of its
spikes. We will call hérisson the envelope of a family of lines parametrised

18



by their direction. In fact our definition gives oriented affine lines, as we can
orient Dy, by R;/>(u). More precisely, each lines of the family Dy, u € S 1
admits the equation:

D, = {m| < m|u >= h(u)}

where u is a unit vector, and h(u) a real function. The system(*)which gives
the points of the envelope becomes:

< mju >= h(u)

< m| Ry (u) >= (dh/du)(w)

and has automatically a non zero determinant.
Let Q be a compact convex body. We can define a function h(u) by :

h(u) = sup[< m|u >;m € Q]

The line D, of equation < m|u >= h(u) is the support line of @) in the
oriented direction w.

Figure 16: support function

It touches @) and @ stays on one side of D,. The convex body @ is the
intersection of the half spaces < m|u >< h(u).
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exercise check that the tangents to an hyperbola and the two asymp-
totes do not satisfy the conditions D; smooth and

a(t) b(t) c(t)
det [ a'(t) b'(t) c't #0
aII (t) bll(t) cII (t)

Proposition 4.2.1 When 0Q) is a smooth curve of nowhere zero curvature,
it is the envelope of the family D,. The radius of curvature of 0Q at the
point where Dy, is tangent to the curve is h(u) + h'"(u), where h is the sup-
port function defining the family D,,. Conversely a bounded smooth support
function h such that h + h'' is everywhere strictly positive has an envelope
which is the boundary of a compact convex body.

In a generalized sense the boundary 9@ can always be seen as the envelope
of the family D,. The condition (*) is always satisfied. At a point where
0@ has a right and a left tangent which are different, the family D,, contains
an arc in the pencil of line through that point.

Proof: When it is different from zero, the curvature of the boundary
0Q), with the (conterclockwise) boundary orientation, is positive. Let us
compute the radius of curvature of a hérisson, and prove that, if it is always
positive, the hérisson is the boundary of a smooth convex body, with ev-
erywhere positive curvature. The caracteristic point m(u) = (D, N D'(u))
satisfies the equations:

< mlu >= h(u); < m|Ry o (u) >= h'(u)
Let 0 be the angle ((0,1),u). The rotation Ry sends the vector (1,0) to u
and (0,1) to Rr/2(u). The two equations are equivalent to:
R_g(m) = (h(u), h'(u))
The solution is then:
m(u) = Ro(h(u), h'(u))
Therefore, the derivative of the map G : u — m(u) is:
Rgr/2(h(u), b (u)) + R (I (u), h" (u))

Here we identify the derivative with respect to u € S and the derivative
with respect to #. This vector is just Rg;,/2(h(u) + h'"(u)). Of course the
tangent to the envelope is, at least when h + b # 0, the line D,. The
map G is the inverse of the Gauss map -, and we have just proved that its
jacobian is h(u) + h'(u). The radius of curvature p of the envelope is then:

pu) = () h(u) + " (u)

20



The envelope is locally convex and closed, therefore it is the boundary of a
compact convex body. Conversely, the condition k£ > 0 implies that there is
only one point m(u) on 9Q) satisfying:

< m(u)|lu >= h(u) = sup < mlu >;m € Q

Moreover, the Gauss map is invertible because k # 0. Therefore the tan-
gents to the envelope can be parametrised by u € S'. Observe that D, is
orthogonal to u. The limits

lim6%0;5>0Du N Du+6
and
lim6%0;5>0Du N Du+6

exist because @ is convex. The point m(u) has to be equal to both:
lim6%0;5>0Du N Du+6

and
lim6%0;5<0Du N Du+6

as, if any of these limits were different, the tangent at that point would also
be D,, which is impossible, as 7 is a bijection. m|
Remark: Using standard arguments in singularity theory, one can check
that for a generic support function h, a plane hérisson will have only non
degenerate cusps (where R(u) = 0, R'(u) # 0).
As an example the hérisson defined by the support function i(0) = cos36
is pictured below

4.3 Minkowski sum and mixed volumes

The intersection of a compact convex body with one of its support lines D,,
has to be convex, that is has to be a segment. Let us define the Minkowski
sum of two convex bodies 1 and @2 by:

Q1+ Q2 = {m1 + ma|m1 € Q1,m2 € @2}

One verifies that the support line of 1 + @ orthogonal to the vector u € S*
has the equation:
< m|u >= hl(u) + hQ(U)

where (1 + ()2 are the support functions of @1 and (2. In other words,
hi + hs is the support function of @; + Q2. Of course scalar multiplication
(homothety) is compatible with the Minkowski sum:

AQ:A1Q+A2Q when Al-f-)\g :A,Al ZO,A2 20

21



Figure 17: cos 36

Remark: When the two convex bodies have at every point of their
boundary, a strictly positive curvature, the boundary of Q; + Q> is the set
of points {m1(u) + ma(u),u € S'}.

Proposition 4.3.1 The volume of the Minkowski sum AQ1 + uQ2 is an
homegeneous polynomial in X and p:

vol(AQ1 + pQ2) = Nvol Q1 + (X - )V (Q1, Q2) + p*vol Q2

Proof: We will compute the area of a convex body @ in terms of its
support function h. Mixing the support function h and the arc length ds of
the boundary 0Q one gets (see fig )

vol(Q) = /E)Q hds

An unambiguous , but heavier notation would be:

vol(Q) = = /BQ h(N(c(s))ds



Figure 18: Minkowski sum of a triangle and a convex body of smooth bound-
ary

where ¢ : Sllenght(é)Q) — 0@ is a parametrisation by arc length of 0Q), and

N(c(s)) is the exterior normal at ¢(s) € Q. We have computed in terms of
the support function the ratio between the arc length and the length swept
by the normal:

Z—Z = R(u) = |jac(G)| = h(u) + h" (u)

Here R(u) denotes the radius of curvature of the envelope of the lines <
m|u >= h(u) at the caracteristic point m(u). We get:

vol(Q) = % /S1 h(h + 1'")du

Recalling that the support function of the Minkowski sum of AQ; + uQ- is:
hi + hs (hy and hs being the support functions of @; and Q-2), we get :

vol(AQ1 + 1Q2) = % /51 (Ah1 + pho)[(Ahy 4+ pha) + (Mg + ,uhg)"]du

1 1
=5 [ OO+ 30 5 [ o) ot + )+
St St

1 1
= / (V) (et + ) + 3 / (1) (\br + AR
St St

The first two integrals are respectively A2vol(Q1) and p?vol(Q2). The
sum of the two last ones is Au times an integral mixing the two support
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Figure 19: Area of a convex body in terms of the support function

functions and the two radii of curvature. This integral V(Q1,Q2) is called
the mized volume of Q1 and Qs. a

We “see” the mixed volume on fig Minkowski sum of a triangle and a
convez of smooth boundary above. It has also interesting interpretations in
algebraic geometry see [Teid].

4.4 Inequalities

Inequalities between functions of length, volume, mixed volume of convex
bodies is a very rich topic, including isoperimetric inequalities. The inter-
ested reader can consult [Bo-Fe], [Schnei] for example.
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5 Grassmann manifolds

5.1 Definition of vectorial and affine Grassmann man-
ifolds

Let us now show that the set G(n, p), called Grassmann manifold, of vecto-
rial subspaces of dimension p of R™ has a natural structure of a (n — p) - p)-
dimensional manifold. Consider a p-dimensional subspace hy of IR™. Let
us denote by hg its othogonal subspace (hy has dimension n-p). Any p-
dimensional subspace h of IR transverse to hg is the graph of a linear
map Ly, from hg to ha , and any such graph is a p-dimensional subspace
transverse to hi. Chosing bases in ho and hg the matrix of that map is
a p X (n — p) matrix. This procedure defines a chart of G(n,p). Using all
the p-dimensional subspaces of R", we get an atlas of G(n,p). It is, in fact,
enough to consider the (;) p-dimensional coordinate subspaces to get an
atlas.

o

Figure 20: A chart of G(n,p)

Remark: The Grassmann manifold G(n,1), that is the set of lines of
IR", is the projective space IP,,_;. It is the quotient of the sphere S™~! by
the antipodal map, ¢ — (—¢). The Grassmann manifold G(n,n — 1) is also
diffeomorphic to IP,_; as you can see using the correspondance between a
plane and its orthogonal line. Using the same diffeomorphism we can see
that the hyperplanes containing a given line form a IP,,_o C P,,_;. After
defining a riemannian metric on G(n, 1) we shall see that the diffeomorphism
G(n,1) = G(n,n — 1) is also an isometry.
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Using the action of the group of linear isometries on G(n,p) we will
prove that the Grassmann manifolds are compact.

Lemma 5.1.1 The Group O(n) of linear isometries of R"™ is compact.

Proof: The product S™ x S™ x ... x S™ (n times) is compact . The
set of orthonormal bases of R" is a closed subset of S x S™ x ... x S",
defined by the equations < u;|u; >= 0. It can be identified with the linear
map which sends the canonical basis (ey, €2, ...,e,) to the orthogonal basis
(u1,u2,...,up). The group O(n) is therefore a compact set. a

Theorem 5.1.2 The Grassmann manifold G(n,p) is homeomorphic to the
quotient:

50(n)/S0(p) x SO(n —p)

Proof: Let us first prove that the two sets are the same. The image
by an element g of O(n) of the p first vectors (e1, es, ..., ep) of the canonical
basis generate a p-dimensional subspace h of R". Let us call

E,:0(n) - G(n,p)

this map. Let us now consider two isometries, g1 € O(p) and g» € O(n —p).
They determine an isometry (g1 ® ¢g2) € O(n). The image of g o (g1 @
g2) is again h. A subspace h of dimension p admits an orthogonal basis
(u1,uz, ..., up); the orthogonal k' admits an orthogonal basis (u(p41), .-, tn)
and the basis (uy, ..., u,,) is the image by a linear map of the form go (g1 ®g2)
of the canonical basis (eq,...,e,). Therefore, the kernel of the map E, is
the subgroup [(g1 ® g2)] € O(n). This proves the set equality G(n,p) =
O(n)/[0(p) x O(n — p)]. To prove that the topologies coincide, one needs
essentially to prove that the map from an orthogonal system (u1, ..., up) to
the linear subset h it generates is continuous. This is easy, lengthy and
boring, therefore we “leave that proof to the reader”. O

Remark: Equally exciting is to prove that the topology on G(n,p)
obtained using the Haussdorff distance on the intersections of p-dimensional
subspaces with the closed unit ball (or with the unit sphere) is again the
same as the manifold topology.

Remark: The orthogonality in IR" provides a diffeomorphism between
G(n,p) and G(n, (n — p)). This diffeomorphism is an isometry for the rie-
mannian metrics invariant by the action of the isometries we define below.

The set A(n,p) of affine p-dimensional subspaces form a fiber space
over G(n, (n — p)) with fiber R, The fibration map associates to a
p-dimensional affine subspace H of IR" its orthogonal complement h*. The
intersection H N h* gives the isomorphism between the fiber and IR".
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5.2 Metrics and measures

The group of linear isometries of IR" acts on G(n,p). It is natural to look
for a metric on G(n,p) which is invariant by this action. To do that, first
observe that our charts

{linear maps h — h*}

give also the tangent space in h to G(n,p). The euclidean metric of R"
allows us to choose an orthogonal basis in h and in . Let us put on the
(p x (n — p)) matrix space the natural euclidean norm:

IM|? = Z(squares of the coef ficients)

This defines on G(n,p) a riemannian metric invariant by the action of the
linear isometries. We leave as an exercise for the reader to check that the
covering map from S~ to G(n,1) is a local isometry.

The volume measure associated to this riemannian metric is also invari-
ant by the group of linear isometries.

Remark: The previous results can be rephrased in terms of homo-
geneous spaces. One then observes that the measure defined above is a
quotient of the Haar measure on O(n), and that the metric we defined on
G(n,p) is such that the projection O(n) — G(n,p) is a riemannian submer-
sion. [Sa2]
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6 The Gauss map and what can be done in
higher dimensions and codimensions

6.1 The Gauss map and the principal curvatures

We consider first the case of an embedded hypersurface M of IR". It is then
oriented (the normal vector N(m) at m € M points out of the bounded
component of R" \ M), we can define the Gauss map:

y:M — S" " m s N(m)

We will also consider a projective Gauss map, also denoted by v when there
will be no ambiguity, using the line L(m) normal at m to M:

y: M —>P,_1,m— L(m)

Its critical values are images under the natural projection of the critical
values of the (spherical) Gauss map and the critical points of both Gauss
maps are the same. The Gauss (or Gauss-Kronecker) curvature K(m) at
m € M is the jacobian at m of the (spherical) Gauss map. The eigenvalues
of dy(m): ki, ks, ..., kn—1 (there may be repetitions) are called the principal
curvatures of M in m. To each corresponds an eigenvector e; , and these
eigenvectors can be chosen to form an orthonormal basis.

On a neighbouhood of a point where the principal direction are non
zero and all different, the vector fields defined by the eigenvectors can be
integrated, giving lines of curvature. Geometrically, following a line of cur-
vature the tangent hyperplane only rolls. In general it undergoes a mixture
of pitch and rolling. On a surface embedded in R, on a domain where the
Gaussian curvature is strictly negative, the tangent plane only pitches along
the asymptotic curves (curves which are everywhere tangent to vectors v
such that < dy(v)|v >=0).

The second fundamental form II(m) is defined by:

II(m)(v) =< dy(m)(v)|v >

It can be diagonalised in an orthonormal basis, precisely the one we have
chosen before to diagonalise dy . The symmetric functions of curvature are
the coefficients of the polynomial

n—1
det[Id + tdy(m)] = [[(1 + k1t) (1 + kat)eo.(L+ knat) = Y oi(m)t!
0
When possible, we shall drop the point m in o;(m).

28



Remark: Consider an i-dimensional subspaces h C T}, M. In a neigh-
bourhood of the point m the intersection M N (h&® L(m)) is an hypersurface
of h@® L(m). Denote by K (m, h) the Gauss-Kronecker curvature of this last
hypersurface, oriented by N(m).

Proposition 6.1.1

o;(m) = const - / K(m,h)
G(Tm M, i)

where G(T,,,M,i) is the Grassmann manifold of i-dimensional subspaces
h C TyyM and const is a constant depending only on dimensions.

The proof amounts to compare the integral of the proposition with a trace
of A¥(y) acting on the exterior algebra A"(T},, M).(“folklore”, [Lan5]).
We can locally write an equation for M:

Ip = f(mlam% "'7mn71)

choosing the first (n-1) coordinates to be on axes generated by the vectors e;
and the last on the axis generated by the normal N(m). Then the Hessian
of f at m is a diagonal matrix with entries ki, ks, ..., k,—1. This proves the:

Proposition 6.1.2 The point m is a degenerate critical point of the or-
thogonal projection of M on the line L(m) generated by the normal N(m)
if and only if m is a critical point of the projective Gauss map.

Corollary 6.1.3 The set of lines L € IP,,_1 such that the projection pr, on
L admits degenerated critical points is of zero measure.

Proof: By Sard theorem, those lines, which are critical values of the
projective Gauss map, form a set of measure zero. O

Generalzing the result of subsection The Gauss map about plane
curves to hypersurfaces in R"™, in particular surfaces in IR> amounts again
to replace the computation of a curvature integral by a count of critical
points. First suppose that M is an oriented hypersurface of IR". The Gauss
map sends m € M to N(m), the projective Gauss map sends m to the
non-oriented normal L(m) € IP,_;. Let us observe that, even if M is not
orientable, then the projective Gauss map and the absolute value |K(m)|
of the Gauss-Kronecker curvature still make sense.

Definition 6.1.4 LetLo(M, L) be the number of critical points of the or-
thogonal projection pr, of M onto L. The notation emphazizes the zero
dimensionality of the counting of critical points.
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(Often in the litterature the notation |u|(M, L) is used). If the manifold M
is oriented, we can compute the index of each critical point of the orthogonal
projection on the line L, generated and oriented by a vector z € S*1 . Let
us define again:
L0+(M, N) — Z (_1)indez(m)
m critical

If the dimension of M is even, the previous sum does not depend on the
orientation of L, and indeed can also be defined without assuming that M
is orientable.

The proof of the Exchange theorem of section 3 can be copied to get
the:

Theorem 6.1.5 Ezxchange theorem in codimension 1

/M | K (m)|dm = /Pn 1 Lo(M, L)dL

When the previous integrals converge, and if either M is oriented, or M
is even dimensional, an analogous equality , keeping track of signs, holds.

Theorem 6.1.6

/ K(m)dm :/ L§(M,L)dL = x(M)
M P,

6.2 Lipschitz-Killing curvature

Suppose now that M is a submanifold of codimension p > 1 of RY. The
dimension of M is n. We denote by A/(M) the normal bundle of M and by
N (m) its fiber: (T}, M)+ C T,, M. We can either

e Define a generalised Gauss map from the unit normal bundle N (M)
of M to SN—1 by v(m,v) = w. Denote by K (m,v) its jacobian at the
point (m,v) € N*(M). This makes sense as the unit normal bundle
has a natural metric, induced by its embedding in T]RN, which makes
the bundle projection a riemannian submersion:

§ | fiver= restriction of the ambient euclidean metric

G |horizontal space = pull back of the metric of M

We also define the projective normal bundle PN (M) as the quotient
of N*(M) by the antipodal map on each fiber; we denote by PA (m)
the fiber of this bundle.
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1)The Lipschitz-Killing curvature of M at m is:

K(m):1/2/ K(m,v)

Ni(m)

When the dimension of M is even K (m,v) = K(m,(—v)) so we can

write:
K(m) = / K(m,v)
PN (m)

2)The absolute curvature of M at m is:

K |(m) = /uw( 1m0

Notice that in general |K|(m) # |K(m)|.

e Consider, for each v € N''(m) the orthogonal projection py,, of a
neighbourhood of m on the subspace T, M @R -v. At m we can com-
pute the Gauss-Kronecker curvature of the hypersurface pp, , (neigh-
bourhood of m). Let us call it also K(m,v). The Lipschitz-Killing
curvature and the absolute curvature are then obtained by the same
formula as above:

K(m):1/2/ K(m,v)

Ni(m)

and:

K |(m) = /IPN( 1m0

Proposition 6.2.1 The two definitions of K(m,v) given above coincide.

Proof: Let us take a point (m,v) of the unit normal bundle. If K (m,v) #
0, locally, the inverse image by the Gauss map of

R-veT,M

is an n-dimensional submanifold V € Nt (M) transverse at (m, v) to the fiber
N1t(m). Observe that if (z,w) is a point of V), the vector w is orthogonal
t0 Pmw(TeM) at ppmy(x). Let J(z,w) be the jacobian of the projection of
T,V onto the horizontal space #. Almost by definition of the horizontal
space it is also the jacobian of the restriction to T}y, of the differential of
the projection of the fiber bundle A"} (M) onto its base space M. Using the
splittings :
TN (M) = H ® T o (N ()
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RN =T,,M & N'(m)
the linear map dG(m,v) has the matrix:

< idG(m,v)lH) (?C)l >

Therefore, using the first definition of K (m,v):
K(m,v) = det(dG(m,v)|y

As
Gly(z,w) = w = ¥(pm,o(z))

One has, using the second definition of K (m,v), which uses the projection
pm,v(M) :

J(m,v)K (m,v) = detd(G|y(m,v)) = J(m,v).det(dG|y)

O
An exchange theorem can now be stated in any dimension and codimen-
sion:

Theorem 6.2.2 General exchange theorem

/M |K|(m)|dm:/lpn 1L0(M,L)dL

Proof: Use the change of variable theorem for the map
G:NY (M) — SN,

the first definition of the Lipschitz-Killing curvature, and use Sard’s theorem
as before. ad

Example

Let C be a curve in R?. We will use the Frenet frame (T, N, B), T(m)
unit tangent vector to C' in m given by the orientation, N(m) = % and
B(m) = T(m) A N(m). Let 6 be the angle between a vector v € N(m)
and the principal normal N(m) in the normal plane oriented by the base
N(m),B(m). then K(m,v) = k(m) - cosf, where k(m) is the curvature of
C' at m. This proves:

Proposition 6.2.3 For a space curve C C IR?, the absolute curvature sat-
isfies:
|K|(m) = 2k(m)

Remark: Using our second viewpoint we can also associate to each projec-
tion ppm,» (M) a second fundamental form I, ,.
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6.3 Total curvature of submanifolds

As in the previous section, M is an n-dimensional submanifold of codimen-
sion p of RN.

Definition 6.3.1 The total curvature of M is :

1
Lo(M) = ——— K
o(M) 2|PN,1|/M' |

The constant is chosen in a way that round spheres ¥ contained in an affine
p-space of R" satisfy Lo (X) = 1, extending the choice Lo(point) = 1,which
one may view as the starting point of integral geometry!

Theorem 6.3.2 Ezchange theorem

1 1
L) = 51py 1 Jipy P00 B = app ) /1%

where Lo(M, L) is the number of critical points of the orthogonal projection
of M on L.

Remark: ;From now on the notation Ly(M, L) is more convenient than
the usual one: |u|(M, L),as it will give a nicer form to the reproductibility
property of the p-length functional (see chapter Blaschke formulas and
kinematic formulas).

Proof: It reduces to an application to the generalised Gauss map:

v:PN(M) - Pn_y

of the coarea formula:

/ = /IPN(M) jacy]

A point m € M is a critical point of the orthogonal projection pr on the
line L if and only if L is contained in the normal space at m to M, that
is, if and only if L € IP(NV(m)). This shows that the number §y~1(L) is
just the number Lo(M, L). Finally observe that for almost all lines L, the
orthogonal projection on L is a Morse function (see [Mi2]), which implies
that

Lo(M, L) = t(critical values of py,)

In particular, for curves and surfaces immersed in IR* we get:
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Proposition 6.3.3 Let C be a curve in IR®, then:

1
Lo(C) = W/PZ Lo(C, L)

This formula is usually written as:

[ k=3 [ mic.n)

Proposition 6.3.4 Let M be a surface immersed in IR®, then:

1 1
Lo(M) = g /lpz LM, D)= g /M K|

This formula is usually written as :

[ ki= [ mor
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7 Integral geometry and topology

The development of this chapter of integral geometry really started in 1949,
although Fenchel’s results [Fel] [, |k| > 27 were already proved in 1929.

7.1 Integral geometry of polyhedral surfaces in R?

The proof of a polyhedral Gauss-Bonnet theorem is easier that the proof
of a smooth one, so we will start this chapter by Banchoff’s proof of the
Gauss-Bonnet theorem for polyedral surfaces, [Banl]. Let us first define a
polyhedral surface of IR®. The basic pieces are closed plane triangles. Any
triangle has in its boundary three edges and three vertices. Triangles, edges
and vertices will be called simplices. A polyhedral surface is a union of
triangles o; satisfying the following properties:

1. The interiors of the o; are disjoint.

2. The union of the o; is connected, and homeomorphic to a closed sur-
face.

3. The intersection of two triangles is a simplex.

As the triangles are usual euclidean triangles, given a vertex v € o we
define the segment e(v,0) as the image of the edge of o opposite to v by
the homotethy of center v and ratio 1/2.

The link of v is the union:

L(v) = Ue(v,0);v €0

If q edges contain the vertex v, the planes containing an edge which contains
v form q projective lines inlP5. Let us call C, (for critical) or C(v) the union
of the projective lines defined previously. Any plane through v not belonging
to C cuts L£(v) in a finite number of points. If all the triangles containing
the vertex v are in the same plane, for a plane P € P, \ C one has

H(L(v) N P) =2

The number (£(v) N P) is always even. It is natural to mesure how ”non-
trivial” the plane P is with respect to v by:

¢(v, P) = (1/2)[2 — 4(L(v) N P)]

We can now define the eztrinsic curvature of v as the integral:

k(v) = ; ¢(v, P)dP
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Intrinsically, that is inside the polyhedral surface M = Ug;, at each vertex
we can compute the intrinsic curvature k(v) as the difference of 27 with the
sum of the angles in v of the triangles which contain v.

k(v) =2m — Za(i,v);v € fi

i

The ambiguity between the two definitions we gave of k(v) desappears with
the following theorem:

Theorem 7.1.1 theorema egregium, (remarkable theorem in latin)
The intrinsic and the extrinsic way of computing k(v) give the same
result.

Proof: Let us compute the measure of the planes which intersect one
side e of L(v). In P» the length of the arc formed by the planes through v,
intersecting e and orthogonal to the plane containing v and e is the angle «
of the triangle containing v and e at e. The measure of the planes through
v that intersect e is then 2a.. In fig below we draw the corresponding set
of oriented planes in S2.

Figure 21: Oriented planes intersecting e as vectors in S2

Summing on all the edges of L(v) we get :

L@ NP =2 Y a

Py e€L(v)
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or :

(v, P) = 2w — Zae
P>

which is the relation we sought after between the extrinsic integral [ Py ¢(v, P)
and the intrinsic defect or excess of angle (compared to a point of the eu-
clidean flat plane): 2m — 37 () e ad

We can now prove the polyhedral version of the Gauss-Bonnet theorem:

Theorem 7.1.2 (Polyhedral Gauss-Bonnet theorem)
Let M be a polyhedral surface embedded (or immersed) in IR® then its
total curvature satisfies:

S k() = 27 - x(M)

vvertex of M

Proof: Every triangle (face of M) has three edges, and, as M is a
surface, every edge belongs to two faces. Let consider the set D of all pairs
e € f of an edge contained in a face. There is a map between D and the set
F of all faces and a map between D and the set £ of all edges.

Figure 22: diagramme
By the first map, a face has three inverse images: the pairs formed by
one edge of the face and the face itself. By the second an edge has two

inverse images: the pairs formed by the edge and one of the two faces which

contain it. Then:
fD =3-4F =2-4€
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Let us denote the set of vertex of M by V. The sum },, k(v) is 2rfVM
minus the sum of all the angles of the faces of M. It is then equal to
28V — - (§F). Adding 0 = #w[3 - §F — 2 - §&], we get:

2m - (1) — 2m - () + 278V = > k(v)
v
The first term is 27 - x(M). |

7.2 Critical points and Gauss curvature, Chern and
Lashoff’s theorem

Generalzing the result of subsection The Gauss map about plane curves
we have proved in section The Gauss map and what can be done
in higher dimensions an exchange theorem for hypersurfaces in R", in
particular surfaces in R

The theorem of Chern and Lashoff is now a natural application of the
exchange theorem [Ch-La] :

Theorem 7.2.1 The total curvature fM | K (m)|dm of a surface of genus g

embedded or immersed in R>is bigger or equal to 27(2g9+2). More generally,
if M is a compact hypersurface immersed in IR", one has:

[ > v Y g0

yeee—1
Where the numbers [3; are the Betti numbers of M.
First we need a lemma:

Lemma 7.2.2 For almost any line L (that is except for a measure zero set
in P,_1), the orthogonal projection of M on L is a Morse function.

To prove the lemma the reader will need to check that the hessian of a local
equation of M as a graph of a function from the tangent plane at m to
the normal line at m coincides with the second fundamental form of M in
M. Degenerated critical points of the projection on a line are then critical
points of the Gauss map, and the critical values in P,,_; of the Gauss map
form a subset of measure zero.

To prove the theorem we need only to integrate on P,_; the Morse
inequality [Mil2]:

Lo(M,L)> Y pi(M)
i=1,...,n—1
When M is a surface >, _, | Bi(M) =2g+2.
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7.3 Total curvature of closed curves and knots

The first result in this line is Fenchel’s theorem.

Theorem 7.3.1 The total curvature of a closed curve C immersed in R®

satisfies:
JACESE
c

In 1949, independently, Fary, Fenchel and Milnor proved that “more topol-
ogy implies more geometry”. [Far] [Fe2] [Mill] .

Theorem 7.3.2 If the curve C is knotted (that is embedded and not the
boudary of an embedded disc) then its total curvature satisfies:

/ |k| > 4m
C

The proof of the first theorem and of the large inequality fc |k| > 4x
are a consequence of an easy topological argument.

Lemma 7.3.3 The orthogonal projection py, on the line L of an immersed
curve C satisfies, if C' is not in a plane orthogonal to L:

LO(Cv L) Z 2
If moreover C is knotted, and the projection pr, is a Morse function, then:
Lo (Ca L) > 4

Proof: For all lines L (except one if the curve is planar) the projection
pr, has at least one maximum and one minimum, so Lo(C, L) > 2. Let us
now suppose that there exist a direction L such that py, is a Morse function
and such that Lo(C, L) = 2. Let a and b be the minimal and maximal values
of the function pr; let m, and m; be the corresponding critical points of
pr - Any plane P, orthogonal to L in a < t < b intersects the curve C
transversly in exactly two points. Let I; be the segment joining the two
points C'N P;. The union :

x, U U IL; Uxy
a<t<b

is an embedded disc with boundary C, and C' cannot then be knotted. O
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Figure 23: La projection sur une droite générique d’une courbe nouée a plus
de deux points critiques

7.4 More theorems involving the topology of an im-
mersion or of an embedding

the next question concerns embeddings of surfaces in R?: Does the topol-
ogy of the embedding force “more geometry”? In particular do topological
conditions imply a lower bound for the total curvature of a submanifold?
The answer is often yes.

Let us state a result of this type about tori in IR,

We will add a point “at infinity” to IR® to get the compactification S°.
Naturally an embedding in IR® can then be considered simultaneously as an
embedding in S3. In IR? a torus of revolution bounds a thick torus S* x D2.
Completing IR* with a point a infinity, the same torus bounds two thick
tori.

To obtain an example analytically , one can see the sphere S* as the
unit sphere of €* (we write |27| + |23| = 1 the equation of S). Then the
equation |z7| = |23] = 1/2 defines a torus which bounds the two thick tori:

|z1] < 1/2and|z| < 1/2

We will call this torus the Clifford torus.
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Figure 24: A torus of revolution bounding to thick tori in S®

We will here define a torus embedded in S® as unknotted if it bounds to
solid tori. One can prove this implies the existence of an isotopy with the
Clifford torus.

Recall also that, if cutting a three dimensional manifold N with bound-
ary a torus 7' by an embedded disc with boundary a circle contained in 7',
one get a three dimensional ball B3, N is a thick torus D? x S,

Figure 25: From a ball to a thick torus.

Theorem 7.4.1 [La-Ro1]. Let T be a torus embedded in R*. If T is knot-
ted, then

/ | K (m)|dm > 167
T

Recall that Chern-Lashoff’s theorem proves that for any immersed torus
one has:

/ | K (m)|dm > 8r
T

Using the exchange theorem, we need to prove the following inequality:
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Lemma 7.4.2 If there exist a generic direction L such that the number
of critical points Lo(T, L) of the orthogonal projection of T on L satisfies
Lo(T,L) < 6 then T is not knotted.

Proof: Suppose there exists a direction L such that Lo(T, L) is 4 or 6.
To get indices in IN, let us fix the orientation of L. The proof is easier
when Lo(T,L) is 4. Let T} be the set (pr)~'(—oc,t]. Suppose that the
four critical values are a < b < ¢ < d, and the corresponding critical points
Mg, Mp, M, Mq-

Elementary Morse theory [Mil2] shows that

1. For a < t < b, T} is homeomorphic to a disc. The boundary pzl(t) of
T; is a circle.

2. For b < t < ¢, T} is homeomorphic to a cylinder. The boundary p; " (t)
of T} is then two circles.

3. For ¢ < t < d, Ty is homeomorphic to a torus minus a disc. The
boundary of T} is again a circle.

There is no critical value of p; between b and ¢, therefore the interior
of T, \ T} is the product of pil(t), b < t < ¢ by an interval, that is union of
two cylinders C; and Cy. In the closure of C; we can choose a monotonous
arc aq (for the projection on L), joining my to m., and in the same way an
arc a in Co. The union of these two arcs is a closed curve « such that its
orthogonal projection on L has two critical points.

We recalled (case 2) that the intersection of T' with the plane Pib < ¢ < ¢
orthogonal to L at the point ¢ is the union of two disjoint circles Cy; and
Ct2. In the plane P; one, at least, is innermost and therefore bounds a disc
D;.

We can then construct in 73 an embedded arc ¢; joining the two curves
C:1 and Cip and meeting them only at its end points. It is convenient
to start at the critical point m; and conctruct in each of the connected
components of T \ T, which are cylinders a monotonous (for the orthogonal
projection pr, on L) arc joining my to respectively Cy1 and Cyo. Then the
curve ¢, union of those two arcs, intersect each plane P-b < 7 < t in two
points. At each level, those two points can be joined by an “horizontal” arc
contained in the component of $*\7T" which does not contain D;. Therefore ,
when t goes from b to ¢, the arc ¢; sweeps a disc Ds (see picture “construction
of discs in the complement of T7) .

The boundary of D; and the boundary of D, intersect in one point. Both
boundary curves then are non zero in H; (T'). So if we cut the component
of S\ T along D; we get a ball B3, proving that the component was a
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solid torus S* x D2. Cutting the other component of S® \ T along D? we
get another ball B® proving that the second component of S®\ T is also a
solid torus.

We need now to find similar discs in the two components of S®\ T
with the weaker hypothesis Lo(T,L) = 6. Now the Morse function py,
has six critical points my,ms,..,mg. With no loss of generality we can
suppose that the critical values are 1,2,...,6. The intersection Pj i, N T
is a disjoint union of closed curves embedded in T'. Let n(i + 1/2) be the
number of connected components of the intersection P/ NT. There are
two possibilities for the sequence n(i + 1/2),1 < i < 5: (1,2,1,2,1) and
(1,2,3,2,1).

Let us first consider the case (1,2,1,2,1). Let C = P34/ NT. Since
the middle section C' is a simple closed curve on T, it separates T into two
connected components: A and B. One , say is A = T \ open disc, and the
other B = D? an open disc. Suppose that the level Py 12 is contained in
A, and denote by C, and C} the two connected components of P, 1/, N7
Let a1 be an arc from a point of P/, to C intersecting C, which satisfies:
(pr)oa1)'(t) <0,14+1/2 <t <3+ 1/2. Similarly let a2 be an arc joining
Py 13 to C and intersecting Cy. Let a be the union o = a; U as. See fig
below

As in the easy case Lo(T, L) = 4, we can construct two embedded discs,
the interior of which meet just one component of S®\ T. In the plane
Py1)2, one, at least, of the curves €, and Cj bounds a disc D;. Suppose
then C, = 0D;. This disc is contained in one of the components of S3\ T.
The curve «, following the same proof as in the case Ly(T, L) = 4, bounds
a disc D» contained in the other component of S3 \T.

Again, the boundary of D; and the boundary of D- intersect in one
point. Both then are non zero in H;(T). So if we cut the component of
S3\ T along D; we get a ball B3, proving that the component was a solid
torus. Cutting the other component of $®\ T along D? we get another ball
B? proving that the second component of S® \ T is also a solid torus.

Let us now consider the case (1,2,3,2,1). Let A be the part of T above
P3,1/2 and B be the part below. If B were to contain only critical points of
index 0, A would contain two critical points of index 1 and one of index 2, to
guarantee the connectedness of T. Then T would be a sphere. Therefore,we
know that B contains a point of index 1. As P35 N T is three closed
curves, B has to contain two critical points of index 0 (one is m;). B has
two connected components. If A were not connected, it would contain one
critical point of index 1 at most, and inspection will show that 7" would be
one or two spheres. Therefore we know that A is connected and contains
two critical points of index 1.
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Pyi1y2

: P1+1{2 ) //'

Figure 26: Construction of discs in the complement of T'.

Let Cy,Cp, Ce be the three components of P31/, N T, labelled so that
C, and Cp do not bound a disc in B. C, and C} are then both generators
of w1 (T). Let P be the one point compactification of Ps,;/,. One of the
circles C,, Cy, say C,, bounds a disc D; in P whose interior does not meet
Cp U C.. Then the connected component of S\ T' containing D; is a solid
torus. As before we can construct an arc « such that the restriction of py,
to a has only two critical points, and which meets C, and Cj in one point.
It bounds a disc Ds which contains an embedded arc joining C, to Cp in P
meeting C, and C} only at its endpoints. The disc D5 is then contained in
the other component of S3\ T, bounds the nontrivial curve a on T, so that
the other component is also a solid torus, proving that T is unknotted. O

In a similar way we can prove the

Theorem 7.4.3 Let S be a surface of genus 2, and suppose that one of the
Morse projection pr, has siz critical points on S, then it is unknotted which
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means that it is isotopic to the surface of fig below.

Q (6pt)
T

Figure 27: Standard embedding of a surface of genus two

The proof can be found in [La-Rol] .

7.5 The equality case: tight immersions

The theory of tight immersions started whith N.H.Kuiper’s article [Kuil]
in 1960. It was followed by many others. Good references are also [Kui2]
[Kui3].

When g = 0, we see that the total curvature of a sphere satisfies:

[ 1] 2 am
M

Gauss-Bonnet’s theorem implies that:

/K:47r
M

Therefore, when the total curvature of the sphere M is 47, the Gaussian
curvature has to be everywhere nonnegative, which implies that M is the
boundary of a convex body.
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Definition 7.5.1 Tight immersions are immersions which achieve equality
in the theorem of Chern and Lashoff:

/ |K| = 27(29 + 2)
M

where g is the genus of the oriented surface M.

To avoid heavy notation we will denote by M the surface and its image
by the immersion. To feel more comfortable the reader may suppose M is
embedded. Let us denote #H (M) the convex hull of M:

H(M) = {Aim1 +Xama; A >0 M + A2 =1}

Let us call the convex envelope of M the boundary OH (M) of the convex
hull of M.

Let z € S? be a unit vector, and let p, be the orthogonal projection of
M on the oriented line L, generated by z.

Definition 7.5.2 The topset Top(M,z) of M in the direction z is the in-
tersection of M with the plane of equation:

< zlm >=mazp (< z|m >)

Of course we can start with curves in IR?.
In that case, tight closed curves are just convex closed curves. A fancy
proof of that give half of the idea that will be used for surfaces.

Affirmation
The top set of a tight curve C' is connected.

proof

First notice that :

For almost every z € S!, the topset T'op(C, 2) is a point, the only m € C
where N(m) = z. If that is not the case the function |u|(C, z) would be > 3
for a non zero measure set of S' providing, using the exchange theorem,a
contradiction.

If Top(Z, z) is not connected, then one can find two disjoint open inter-
vals of finite length on the curve, each containing points of this topset. Let
A=<m,z form € Top(C, z). The values of < -|z > on the four extremities
of the two intervals are less than A — ¢, € > 0. Let tilt z by a very smalle
angle 3. For 8 small enough, we get a direction 2z’ such that

A-— % <m|Z >< A+ %form € Top(C, z).
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Therefore the functions < m|z’ > have at least two local maxima, one in
each of the intervals we just defined, and then, u|(C, z") > 3.

Let us now come back to surfaces and discriminate the indices of the
critical points of a projection p..

Definition 7.5.3
w2 (z) = t{critical points of index 2 of p,}
po.2(z) = t{critical points of index 0or2of p.}
w1 (2) = t{critical points of index 1of p,}

When we need to specify the surface M, or nonzero measure subset v of a
surface where we count critical points we write:

/'LO,Q(Ma Z) /1’0,2(7}7 Z)a,“’l (M7 Z) or (’U,Z)

When a point m € M has positive curvature, the Gauss map is a diffeo-
morphism from a neighbourhood v of m on its image y(v) C S%. Moreover:

AmmdwleZLWI

Similarly we get in a small enough neighbourhood of a point of negative

curvature:
[ mw=-[x= [
v(v) v v

Remark: As by hypothesis M is tight, one has:

1
5/ /1072(2):/K:/|K|:47T
S2 M v

where if K > 0; K™ = K, if K <0; K™ =0 and:

1
—/ pi(2) = 4mg
2 Jgo

Proof: Rephrasing the theorem of Chern and Lashoff one gets:

%/SZ po,2(2) :/MK+
o

47
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whereif K < 0; K~ =-K,if K>0;K~ =0

We know that the projection p. should have at least a maximum and
a minimum, which have to belong to the convex envelope OH (M). There
cannot exist more that two critical points of p, where the Gauss curvature

is positive, otherwise:
/ fo,2(z) > 4m
SZ

which will contradict tightness.
It follows that the point m € M where K > 0 must belong to the
intersection of the envelope of M and M as:

/ |K| = 4n
DH (M)

At a point m of 0H (M) the Gauss curvature has to be nonnegative , as
it is a maximum of the function py (). a

Lemma 7.5.4 For almost every z € S%, the topset Top(M,z) is a point,
the only m € M where N(m) = z

Proof: If that is not the case the function pg 2(z) would be > 3 for a non
zero measure set of S? providing, using the exchange theorem,a contradic-
tion. O

Lemma 7.5.5 Let Top(M, z) be the topset of the immersed surface in the
direction z, and let h be the maximum of the orthogonal projection p, on
the oriented axis defined by z (h = p.(Top(M, z)).

Let W be a compact “isolated” subset of the topset in the direction z of
an immersion of a compact surface M ,that is a piece of Top(M,z) which
admits an open neighbourhood U such that, for a positive €

suppup. > h — 3e

Then we can follow the piece W in U when we move z' in a neighbourhood
of z. More precisely there exists a neighbourhood v(z) of z € S? such that
for almost any 2z’ € v(z)

pa(v(z),2) > 1

Proof: The function p,(m) is continuous on M x S2, so if we chose m € U,
there exists a neigbourhood v(z) C S? such that, for 2z’ € v(z)

|pz(m) — Dz (m)| <e€
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in particular for m € W
p.(m) 2 p(m) —e=h—e
and for m € OU
py(m) <p.;(m)+e<h—3e+e=h—2¢

This implies that the point in U where p./ takes its maximum value does
not belong to the boundary, but to the interior. The conclusion follows now
from the fact that for almost all z € S? all critical points of p, are non
degenerate. a

Corollary 7.5.6 Any topset Top(M, z) of a tight immersed surface is con-
nected.

The next step of the proof is motivated by the idea that in some sense a
topset of a tight immersion has to be tight, in fact a point, a disc bounded
by a plane convex curve or a planar domain bounded by convex curves.

To prove such a result it is natural to consider the topset of a topset
(toptopset).

Let Top(M,z;) be the topset of the immersion M in the direction z;.
It is contained in a plane orthogonal to z;. We can construct the toptopset
Top((Top(M, z1)z2).

Lemma 7.5.7 If M is a tight immersed surface, then the toptopset associ-
ated to two orthogonal vectors (z1,22), Top((Top(M, z1)z2) is connected.

Proof: Let again h be the value p,, (T'op(M, z;) and let h* be the value
Dz (TOp(TOp(M, Zl))z2))‘

Suppose that Top((Top(M, z1)z2) is the union of two disjoint closed sets
Wy and W5. Chose two open neigbourhoods U; C M and Uy, C M of W,
and W5 in M, with disjoint closure.

If a point m € 9OU; is in Top(M,z), it satisfies p,,(m) = h. As
Top(Top(M, z1), z2) is closed in the open set U; UUs it does not contain any
point of AU U QUs, so a point m of dU; NTop(M, z1) satisfies p.,(m) < h*.
This implies that the function p,, does not take the value h on the any of
the closed sets

OU; N {mlp-,(m) > h*}

(see picture below)
Hence the function p,, achieves on (0U; U dUs) N {m|p.,(m) > h*} a
maximal value, strictly smaller than h, that we will note h — 3¢;e > 0
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Zy

Figure 28: Toptopset, p., and p.,

Let us now tilt the z; — axis of a very small angle 0 < n < 7/2 in the
direction z5. We observe that the function p,, where z = z1cosn + zasinng,
has for small enough 7 two local maxima. We chose 7 small enough to have,
for any m € M, |p,(m) — p,, (m)| < e.

Let us now study the function p, on the open set:

U; = {mlp.,(m) > "} N,

and on its closure U:.

Affirmation The function p, takes its maximal value on U: in the
interior U

Let us now take a point m € 9U} N {m|p.,(m) > h*}, we have:

pz(m) <py(m)+e<(h—3e+e=h—2¢

The value of p, at a point w € Top(Top(M, z1), z2) is cosnh + sinnh* (as
Dz, (w) = h and p,,(w) = h*). Then for a point m € U N{m|p.,(m) > h*}
we have, as p,,(m) < h* and p,, (m) < h:

p:(m) < p.(w)
Hence the restriction to OU;* of p, takes its maximal values at the points

of W1 U W,. Take again a point w € W;, we can construct a differential
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Figure 29: A toptopset is connected.

curve ¢(t),c(0) = w,Vt € [0,1] ¢(t) € U, starting at w tangent to zy ); we

can suppose %(0) = 2. The curve is normal at w to Top(Top(M, z1), 22)
and tangent to the plane containing Top(M,z1) . As dpz;t(c) =1, we can
compute:
d
p;t(c) = (sinn) - 1 + (cosn) - 0 = sinn > 0

As the curve ¢(t) goes from w = ¢(0) to the interior of U, (which is also
the interior of U}), and as the function p, is strictly increasing along that
curve, the function p, has in U values which are greater than the maximal
value p.(w) achieved on 8U;. Therefore the restriction of p, to U has a
topset in the interior of U} (for i=1,2). This implies that:

2(z) > 2and pao > 3
and again contradicts tightness. m|

Corollary 7.5.8 For any tight immersion of a surface in R> the topset in
any top plane contains its convex envelope (the boundary of its convez hull)
in this plane.

Using local maxima of the restriction to Top(M, z1) of p,, we prove the
same way the:
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Corollary 7.5.9 The topset Top(M, z1) is either a point, a convex closed
curve or a planar domain with boundary convex closed curves.

When the topset Top(M, z1) is not a point let call top 1-cycle the outer
convex curve in 0Top(M, z1). If the topset is a disc, we will say that the
top-cycle is simple

Lemma 7.5.10 Let M be a tight surface and U C M a topological disc; we
denote by M \ U the complement of U in M. Suppose that the boundary
C = 90U is a top 1-cycle associated to the topset Top(M,z1). Then either
U or M\ U is the plane interior Int(conv(C)) of the plane disc bounded by
C.

Proof: Let us suppose U is a topological disc. If U is Int(conv(C)), then:

/|K|=o
U

If not, for z; or —z;, U has a topset contained in its interior, providing
an open set of direction z such that Top(U, z) is a point contained in the

interior of U. Then:
/ |K|>0
U

Replacing U by the plane disc of boundary C' will then decrease stricly the

total curvature of M (the new immersion is a priori only C! but we can

smooth it increasing as little as we want the total curvature , of less than

% fU | K|, and keep the contradiction, even in the smooth frame). a
We have proved the:

Theorem 7.5.11 An immersed tight orientable surface is obtained from the
boundary N of a convex body by replacing a finite (> 2) number of convex
plane discs by surfaces of negative curvature contained in the convex hull of
N of boundary the convez plane curves boundary of the previous discs.

Remark: A torus of revolution is a tight embedded torus.

One can also construct immersed and non embedded tight tori. [Lan5]
the idea is to construct a ruled surface (with double points) spanned by seg-
ments the extremities of which belong to two plane convex curves situated
in parallele planes. The end points of the segments are chosen using the
two Gauss maps of the curves to spin them properly.

With more topology one can prove that the projective plane and the
Klein bottle do not admit tight immersion in IR®. [Kuil].

Remorse We have not said much about polyhedral surfaces. An important
difference with smooth surfaces is the fact tightness is not equivalent to the
two piece property.
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Figure 30: A tight embedded surface.
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Definition 7.5.12 A compact subset A in RN satisfies the two piece prop-
erty if any affine hyperplane separates A in at most two connected compo-
nents.

A good reference to start the study of polyhedral surfaces is Banchoff’s
article [Banl].
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8 Higher dimensional convex bodies and re-
lated matters

8.1 Support function

As in the case of R? let us consider a function H : $(*~1) — R. To such a
map corresponds a family (parametrised by S("~1)) of hyperplanes of R":

u— h={z| <zlu>=H(u)}

We have observed in part 4 (Prop 4.2.1) that a support function on S?!
defines the boundary of a convex body if (b’ + h”) is everywhere strictly
positive. A.D. Alexandrov [Alex] observed that, if a support function H :
Sl — IR satisfies det[hessian(H) + Id - H] > 0 then the hyperplanes
of equation < m|u >= H(u) envelope the boundary of a convex body.
Alexandrov also observed that, even if this condition is not satisfied, the
envelope associated to H is well-defined and keeps some properties of convex
bodies. The study of such envelopes is the topic of [3].

The Minkowski sum of convex bodies is defined as in the dimension 2
case:

Q1+ Q2 = {m1 + ma|m1 € Q1,m2 € Q2}

In the same way as in the plane case, the mixed volumes V (p, Q1,q, Q2),p+
q = n appear as coefficients of the homogeneous polynomial vol (AQ1 + 1Q2).

Theorem 8.1.1 Let Q1 and Q> be two compact convex bodies of IR". The
volume of the convex body (AQ1 + uQ2) is an homogeneous polynomial of
weight n in A\ and p:

0l(AQ1 + iQs) =
= )\nUOlQ1+>\n_1'[j,V(TL—1, Qh 17 Q2)++>\puqv(p7 Ql: q, Q2)++:U’nUOZQ2

Proof: We need, as before to observe that the support function of the
Minkowski sum is the sum of the support functions of the convex bodies
AQ1 and p@2, and to use the formula:

vol@ = H - det[Hess(H) + Id - H|
S’n*l

where again H is the support function of Q. a
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8.2 Quermassintegrals and Steiner’s formula

A particular case is the case where the second convex body is the unit ball
B(0,1). The Minkowski sum @ + rB(0, 1) is the thickened convex set:

Qr = {zld(z,Q) <r}
There are two ways to compute volQ,.

Proposition 8.2.1 vol(Q,) is a polynomial in r, the coefficients of which
are the symmetric functions of curvature defined in the previous paragraph:

n—1 P
UOl(Q)—UolQ-l-Z +1/

p+1

Proof: Let us consider the map ¢; from 0Q to 0Q; defined by:
dr:m—=>m+tNm),0<t<r

which, for a fixed t, maps 0Q to dQ;. The reader can check that T},0Q and

TN (m)0Q¢ are parallel. We can compute the jacobian |det(d¢;):

|det(dy)| = |detId + tdy(m)| = Z opt?

Integrating on 9Q), and for 0 <t < r, one gets:

noloptl
volQr—volQ+2p+l/

O
To state a second way of computing vol@, we need first to define the
Quermassintegrales of the compact convex body Q.

Definition 8.2.2

Myt (Q) = / vl (pn (@)

G(n,n—1—p)
where pp, is the orthogonal projection on the (n-1-p)-dimensional space h.

In particular M; is the volume of Q). By convention M,, is 2.
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Theorem 8.2.3 Steiner’s formula
n—1
volQr = volQ + > (1) Mpir (Q) - v+
p=0

Proof: The proof uses induction on the dimension. The convex @, is the
union of ) and the parallel hypersurfaces 0Q¢,,0 < t; < r. Therefore:

volQ, = volQ + / vol (0Qy, )dty
0

Let us compute vol(0Q:, ) using Cauchy’s formula:

n—1

wol(0Qu) =T [ wollpn(9Qu)

where wy,_2 is the volume of the unit (n-2)-sphere, and h is a hyperplane
of R". The projection pp(0Qy,) is the Minkowski sum of the projection
pr(0Q) and the ball B(0,t1) of radius ¢; in h. Therefore by the induction
hypothesis it is a polynomial in #;:

n—2

vol(pr(0Qs,)) = vol(prdQ) + > (i) Mpy1 (pndQ)Ey ™

p=0

Integrating the constant term, for 0 < ¢; < r will give the coefficient of r
in Steiner’s formula. To get the other terms we proceed with the induction.
Let hy C hy_1 C ... C ha C hy C R"™ be a flag of nested subspaces of
codimension (q,...,2,1) of R". The projection py, satisfies:

Phy = Phy ©Phy_q © +-. O Phsy © Phy

We call flaf space the set of hy C hg—1 C ... C ho C hy C R™. The natural
map hy C hy—1 C ... Chy Chy CR"— hy;1 < i < g defines , for each i,
a fibration of total space the flag space and base the Grassmann manifold
G(n,n —i). These fibrations endowed with natural metrics we shall not
explicit in general inherit measures invariant by the action of the group of
isometries which can be locally decomposed in the product of a measure
on the fiber and a measure on the base. This justifies our frequent use of
Fubini’s theorem, in particular when a given flag space admits two different
projections on two different Grassmann manifolds. Integrating on the flag
space
Fn,n—1,.m—q)={R"Dhi Dhs D hp_q}
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we get :

const - / vol(phq 0Q)) = / ”Ol(phq @)) = M,
F(n,n—1,..n—q) G(n,n—q)

O

Remark: Identifying the coefficient of rP in the two expressions of

vol@,, we get an equality between a quermassintegrale and an integral of a
symmetric function of curvature on 9Q).

8.3 Orthogonal projections, polar varieties, and p-length
of an n-dimensional submanifold of IR"

In this paragraph we shall modify the definition of Quermassintegrale so
that it can be extended to any submanifold, and will also carry a sign
information.

Definition 8.3.1 Let I'y, be the set of critical points of the orthogonal pro-
jection pn, of M on h, and let v, = pp(Ty) be the critical locus of py. We
shall call T'y, a polar variety .

It is not in general a manifold but is one almost everywhere for almost every

h.
Tn i \Tg

L Yh

T\T

<h

Figure 31: The polar curve I';, and its projection vy,

In this paragraph we shall often use the word generically which means:
“up to a suitably chosen measure zero set”, the measure should be natural,
and the choice is often part of a nontrivial theorem involving sometimes
a computation in a jet space. A theorem of Thom [Thl] [Th2] implies
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that generically (for almost every h) +; is almost everywhere a (dim(h)-
1)-submanifold of h if dim(M) > dim(h) — 1. If dim(M) < dim(h) —
1 then v, is just pp(M) and has generically the same dimension as M.
Moreover generically the projection of I'y, on v is one-to-one and a local
diffeomorphism.

Polar varieties will appear again in the study of foliations and of complex
singularities.

Instead of proving the affirmation, we shall justify it, by describing I'p,
(and its projection 7,) in a neighbourhood of a point m where M is not
flat.

Proposition 8.3.2 Let h be a linear subspace of RY of dimension n and
let M™ C RN be an n-dimensional submanifold. Let m be a critical point of
the orthogonal projection pp on h. Let H be the affine subspace orthogonal
to h and containing m. Let v be a unit vector contained in (T, M)*Nh and
w be a unit vector contained in Ty M NhY . Then, if Iy, ,(w) is different
from zero, the polar variety T, is transverse to T, M N h*.

Proof: Choose a local parametrisation ® of M such that

0®

0% (m) =w e (h* ﬂTmM),g(m) € (Rw)* fori > 1

oty
Then at m,

detlpn () () n (o] m) =0

The derivative at m of that determinant is different from 0:

0 0P 0P 0P
6_tld6t[ph(6_tl)’ph(6_t2)""’ph(a_tn)](m) =

G (G () +
+ 2 detlpn (G, a5 35)s o ()]

i>1 ¢

= det[pp(

So:
0 0P o o

c’)_tldet[ph(a_ﬁ)’ph(c‘)_tz)’ ---aph(a_tn)] =

= det[ph((gth),ph(g—z), ...,ph(gTq))]

n
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as we have chosen the coordinates such that ph(g—fi)(m) = 0. It is not

difficult now to check that the component of ph((g:—jg on w is non zero if
and only if IT,, ,(w) is non zero.

In a similar way, when h is p-dimensional we have the:

Proposition 8.3.3 Let h be a linear subspace of RN of dimension p < n
and let M" C RY be an n-dimensional submanifold. Let m be a critical
point of the orthogonal projection pn, on h. Let H be the affine subspace
orthogonal to h and containing m. Let v be a unit vector contained in
(TM)*- N h . Then, if Iy | TM N h* is non degenerate, the polar
variety 'y, s transverse to T, M N ht.

Proof: As the second fundamental form ITp, , | T, M N h* is symmetric
we can choose a basis (b1, ...,bp_py1) of T, M N h't made of eigenvectors.
The polar variety I'y, is the intersection of the polar varieties I'y; where the
n-dimensional spaces h; are generated by h and all the vectors of the base
(b1, ..., bp—p+1) except b;. Then we can apply the previous proposition to
the projections py,;. O

Definition 8.3.4 The p-length of M, L,(M) is:

L,(M) = C(N,n,p) / vl dh
G(N,p+1)

where |y,| denotes the volume of v, (when p = O, vy, is a finite set and |y
is the number of points §(vy) of yi). The constant C(N,n,p) is chosen so
that if M is the boundary of an e-tubular neighbourhood of a p-dimensional
submanifold C' of RY, then:

limeoLy(M) = |C]|

If t M denotes an homothetic image of M by an homothety of ratio ¢t > 0
then:
Ly(tM) = t" Ly (M)

This motivates the choice of the constant lepl ‘ occuring in the definition
N-1

of Lo, since a sphere of any dimension (> 1) satisfies |7y, | = 2 for every line
L € G(N,1) = Py_4, and in particular so does a small sphere of radius e
centred at a point p.

The functional L, has been applied to measure the ability of an algae to
house little mobile marine animals (see [Ja-La]). As an exercise, the reader
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may check the value of the constant in the definition of L; when M is a

surface in R? : )
Lon= [l
w2 G(3,1)

Hint: Compare the projections of a round cylinder and of its axis on the
plane h € G(3,2)
In section 8 we will show that the functionals L, satisfy a linear kine-
matic formula relating them to the functional Lg.
O

8.4 Tubes (2)

The main tool to add a sign information to the varieties v, is d’Ocagne’s
theorem. Let M be an oriented surface of R® and let h be a plane. Let
m be a critical point of the orthogonal projection of M on h such that
II,,(w) # 0, where w is a unit vector generating h-. Then we have seen
in the previous subsection that the projection py (T, Nv(m)) of the critical
points of pp, |ar contained in a neighbourhood v(m) of m form an oriented
curve 7, in a neighbourhood of pp,(m).

Theorem 8.4.1 d’Ocagne’s theorem The Gauss curvature of the sur-
face M at m is related to the normal curvature I, (w) in the direction w
and the curvature k-, of v, at pp(m) by:

K(m) = Im(w) - kv, (pn(m))

Proof: First recall that the orientation of M imposes the choice of
the normal vector N(m) used in the definition of the Gauss map and of
the second fundamental form. This normal vector N (m) belongs to h, and
therefore is normal to v, at py,(m), define the orientation of ;. The vector
N(m) is also normal at m to the curve C' = M N (ht ®IRN(m)). Meusnier’s
theorem implies in particular that the curvature at m of the curve C is
I, (w). We will now compute dy(m) using at the target the orthogonal
basis (w,e), where e is a unit vector tangent to ~, at pp(m), and at the
source the basis(not orthogonal but of determinant one ) (w,€), where € is
a tangent vector to I'j, at m such that pp(e) = e. The matrix of dy(m) is:

(" ey )

where 7 is the Gauss map associated to 7. Therefore:

oy TIn(w) ©
K(m) = det< « d5(pn(m)) >
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O

Remark: Suppose m is a point of negative Gauss curvature K(m) < 0.

If At is an asymptotic direction of T}, M, then II,,(w) = 0 and the critical

curve 7, will have a cusp at pp(m). As the curvature goes to infinity when
a point approches a cuspidal point, this agrees with d’Ocagne’s theorem.

Figure 32: v, with a sign

The generalisation of this theorem to higher dimension hypersurfaces
M™ ! C IR" is straigtforward. The subspace h is now p-dimensional, -y
has generically dimension p-1, and the intersection C' = M N (h* ©RN (m))
is now an hypersurface of the (n-p+1)-dimensional affine space (containing
the point m € M), (h* ® RN(m)). At m, C is oriented by N(m), so we
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can compute the Gauss-Kronecker curvature K(C,N(m), M) of C' at m.
As vy, is also oriented by N(m) at pp(m), the Gauss-Kronecker curvature
K (v, N(m),pr(m)) is also well-defined.

Recall that in the previous paragraph we showed that if the restriction to
(h* ®IRN(m)) of the second fundamental form I1,, is non degenerate, that
is if K(C, N(m),m) is different from zero, then T'p, is, in a neighbourhood
of m, transverse to h'.

Theorem 8.4.2 Let h be a p-dimensional subspace of R" and M an hy-
persurface. If K(C,N(m),m) is different from zero, then :

K(m) = K(C)N(m))m) ) K('Yh; N(m)vph(m))
Proof: Use at the target an orthonormal basis

(61, €a, ...,en,p, €1y eeny 6p,1),

split between A and Ty, (m)Vn, and at the source the basis of determinant
one: (ei,...,ep—p,®1,...,ap—1) where a; is a vector tangent to I's, at m
satisfying pn(c;) = €;, and repeat the previous computation. a

That way we can see v, as a weighted variety (or a chain), weighting
generically the points w € 7, with the sign e(w) defined below:

Definition 8.4.3
e(w) = sign[K (C, N(m), m)]

where m is the (generically unique) point in vy which projects on w and
where C' = (ht @ RN (m)) N M is the oriented “vertical” intersection con-
sidered above.

We need now to define the sign ¢(w) when M is of codimension higher than
one. Each generic projection on a p-dimensional space h determines two
varieties ['y, and 7,. At a generic point w € 7, a normal line v is well-
defined. When the dimension of C' = M N (h* @ v) is even, the sign of the
Gauss-Kronecker curvature of the orthogonal projection of C' on 7,,C & v
does not depend on the choice of the unit vector generating the line v. So

we can still define
e(w) = sign(K(C,m, v))

when the dimension dim(C) =n —p+ 1 is even.
A d’Ocagne theorem will still be valid, for generic h and m € 'y, when
the dimension of M (and ~;) will also be even:

K(M;m;’/) :K(Cvmvy)'K(’Yh;ph(m))V)
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In particular, when h is a line L, vz, is generically finite and e(w) is well
defined if M is even dimensional, or if M is an oriented hypersurface. Then:

e(w) = sign(K(M,m, L)) or sign(K (M, m, N(m)))

In the first case it coincides with (—1)4¢*(™) where the index is the
Morse index of the critical point m of the Morse function py, (its parity does
not depend on the orientation of L, as dim (M) is even).

Definition 8.4.4 We will call fy,'f the chain obtained by considering along
~p, the almost everywhere defined weight €(w)

Definition 8.4.5 We will call | ;" |the integral:

s / (w)dw
Yh

D’Ocagne’s theorem implies that the sign e(w) behaves nicely through
compositions of projections. Let us consider a flag hy C hy C ... C hy of
nested linear subspaces of R such that dim(hy) < dim(M). Let m € T
be a critical point of pp, such that K(M N (hi ® RN(m)) is not zero.
Let w1 = pp,(m),ws = ppy(M),...,wr = pr,(m). Suppose also that the
projection of y4,,, on v, is such that the curvature K(vj,,, N [(h:)* N
hit1 @ RN (m)], N(m)) is non zero at w;11. Then we can define the sign:

(i +1,3) = sign(K (n,y, 0 [(hi)* N hiy1 ® RN (m)], N(m)))
Similarly, projecting y; on v; for j > ¢, we can define an index

Definition 8.4.6
e(hj, hi) = €(j, i) = sign(K (ya; N [(hs)* N h; ® BN (m)], N(m)))
Proposition 8.4.7 The signs €(j,1) multiply in a nice way:
€(g,i) = €(j, 1) - e(la)if j <1<

and in particular:
P

e(w) = H (e(i +1,4)

n—1

We can now apply Steiner’s method to compute the volume of T'ub,. (M), and
Th.(M) when M is of codimension 1, replacing the Quermassintegrales by
the signed lengths | v, |. This is what we have already done for plane curves
in 3. Let us prove a theorem for compact surfaces in IR®. Its generalisation
to M™ c R" is natural but cumbersome.
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Theorem 8.4.8 The volume of the thickening Th,.(M) of the compact ori-
ented surface M immersed in R® is:

1 1
volTh, (M) = rlvol(OM _+_7-_/ Y +—T2/ i
(M) = rfvol(0M) +ro— G(372)| | +3 RI |

Proof: To prove the formula, we have to compare two functions on the
plane h defined using the vertical (orthogonal to k) affine lines L, through
points y € h:

eno(y) = #(Ly N M)

ont(y) = 4(Ly N M)

where M; is the surface:
My ={m+tN(m),m € M}

Let us also denote by 7, the critical locus of the orthogonal projection of
M, on h, and by fy,f’t the corresponding weighted curve.

The discontinuity locus of ¢, ¢ is contained in the curve v, the distri-
bution derivative of @y, ¢ is 7,'1'. In the same way, the distribution derivative

fo At
of ¢ 1S Yp 4

Lemma 8.4.9 For a given h, the difference pp .+ — pp,o i5:

t
Ph,t — Pho = / | 7;& |
0

Proof: (of the lemma) The curve v, is parallel to y:
Yot = {w +tN(m),w € 4}

where m is the (generically unique) point of I'j, which projects on w € ;.
For almost every h, almost every w the curve 7, is smooth in a neighbour-
hood of w. Then so is 74, in a neighbourhood of w + tN(m); the vector
N(m) = N(w) is orthogonal to all the curves 7,0 < 7 < t at the point
w+ TN (m).

It is clear that, out of the union of the curves v, ,,0 < 7 < ¢, the
functions ¢p,0 and ¢+ are equal. In a neighbourhood of a small smooth
arc oy of yp ¢, itself of the form a3 = {w+tN(w),w € a C v}, we can take
a patch of the form:

{w1 +60 - Nw),w; =w+tN(w),w € a}
On this patch the difference (¢n ¢4+, — @nt is 2-€(w). The area of the patch
is fttﬂl |Yh,0]- Then the functions ¢ and ¢p,0 may have different values
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Figure 33: [ | %T,t |

iny € h,y ¢ vy ¢ yne only if y belongs to some curve vy,,0 < 6 < &;
more precisely, if y is not a center of curvature of vy, then:

oni(y) —ono =Y €(a)

a€A
where A is the set:
A= {aE h |y :a+TaN(ma),Ta < tvph(ma) =a €Y

O
Let pp,r be the projection of the curve v, on a line L C h. We get a
function ¢, 1,0 defined by:

$h,L,0 = Z €(2)

uep; 3 (2)

Cauchy’s formula implies that:
| v |=/ #n,L,0dL
h P,

As the same is true for the curves 'y:[t, we need now to compare the functions
@n,z.t and @n.r.0
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Yh

Figure 34: critical points of ps, .

Notice that the projection of the cusp of v is not critical for the pro-
jection pr, : M — L, as the tangent to =, at that point is not orthogonal to
L. We can compute the integral on L :

[@rui—pia =t ¥ b D@ w)
L critical pointsof pr,

where we define the sign € 1, using the curve 7, oriented by pp(N(m)) =
N(m) = N(w); D’Ocagne’s theorem proves that this integral is:

[ G- =t ¥ e
L critical pointsof p;

We can now perform the same induction as for convex bodies to get:

™

1 1
volTh,.(M) = rlvol (M) + —7“/ | 7h | +—7°2/ | vz ]
G(3,2) 3 Jp,

and integrating from —r to +r

1
volTub,. (M) = 2r[vol (M) + —1“2/ | ye |
3 P,

this formula gives the “usual” one:

volTub,(M) = 2rvol(M) + 437{ - x(M)
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as |y |= (M, L) = x(M). O

The universal constants in the general formulas are more complicated,
but we can conclude that, up to universal constants depending only on the
dimensions involved, the volume of T'ub.(M) and of Th, (M) when M is
an oriented hypersurface, are polynomials in r whose coefficients are the
oriented p-lengthes L7 (M) =[5y 11y | Sl

8.5 The localization of the p-lenghts L,

In 1939 H.Weyl [Wey] has computed the volume of the tube Tub,(M) in
another way, proving of course it is a polynomial in r, the coefficients of
which are integrals on M of functions that can be computed from the cur-
vature tensor. From the previous result we get equalities between Weyl’s
integrals of curvature and the oriented p-lengths.

A natural question is: is it possible to “localize” the (non-oriented) p-
lengths L, (M)?

The answer is positive. Let us first define the function h(m) on a surface
M C R®. In the chapter The Gauss map and what can be done in
higher dimensions) we expressed the symmetric functions of curvature
o;(m) of an hypersurface as integrals of Gauss curvature of properly chose
sections. Now define:

Definition 8.5.1
1
k(m,l
vol Py /lPl(TmM) (. D)

Where Py (TywM) = G(Tju M, 1) = {lines in T, M}, and | k(m,l) | is the
absolute value of the curvature at m of the curve M N (I ® L(m)).

hl (m) =

For future calculations it is useful to introduce the following notation.
Let p : E — B be a riemannian fibration and V' C E a submanifold trans-
verse to the fibers F'(y) = p~'(y), y € B. Let H = {#H(z)} be the horizontal
plane field of the fibration.

The normal bundle N — M is endowed with a metric turning it into a
riemannian fibration. At z € N, TN is the orthogonal sum ¢, (N N Fj,,) @
V(xz) where V(z) is a subspace transverse to the fibers of complementary
dimension as H(z). Denote by Jacpy,) the jacobian of the orthogonal
projection of V(z) to H(z). Then the coarea formula ([Bu-Za] ) yields:

| Vacougaldz = [ 1F ()0 Niay
N B
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and more generally, if
op: M —FE

is an immersion transverse to the fibers, N = ¢(M), then:

/ | Jacs|| Jacpsye|dz = / [F(y) N Ndy.
M B

Now we can “localize” Li(M).

Proposition 8.5.2 For M a surface in R®,

Lon=2[ n

Proof: Letn: E = E(3,2) - G(3,2) = G be the tautological line bundle,
E={leGmel}.
Define also the projective tangent bundle of M: Py (M) =]
Let ¢ : IP; (M) — E be the map:

¢(m,1) = (h=1*,pr(m))

where py, is the orthogonal projection on the plane h, and let ¢(IPq(M)) =
N. We have just recalled that:

/ ] = / \Tac|| Jacpy).
G P, (M)

so we compute the jacobians. Let [ be a line through m in T;, M |, L(m) C
T,,M denotes the line normal to M at m, h = [+ the subspace of R
orthogonal to I and W the orthogonal to L(m) in h; see next picture. We
choose a basis of T, ) (IP1 (1)) as follows:

-Uy is a unit vector tangent to the circle fiber of IP1 (M) at m

-Ur is a horizontal lift of a unit vector tangent to the polar curve I'y, at

ment P(TnM).

-U; is a horizontal lift of a unit vector tangent to (I ® L(m)) N M at m.

Also, let U, be a horizontal lift (in E) of a unit vector tangent to the
critical locus v, at y = pr(m).

The volume of the parallelepiped generated by the first three vectors is
|cosB|, where € is the angle between T,,,I'y, and h.

The image d¢(Ur) is the vector *cosf - U,. The vectors dp(Uy) and
d¢(U;) are projected by the differential dr of the projection 7 : E(3,2) —
G(3,2) on two orthogonal vectors of T74(,,,)G (3, 2), the first unitary and the
second of norm |k(m,1)].

69



Hence
| Jacp(m)||Jacpy| = |k(m,1)],

and the proposition follows by integrating over the fibers of [Py (M).
Remark: A different proof of the proposition can be found in [La-Shi]

based on a Meusnier’s formula.
O

Figure 35: Localization of Lim)

More generally we can define the functions h;(m) on an hypersurface
M C R"™. Let h be an i-dimensional subspace of T,,M, and L(m) be the
normal line to M at m. Denote by |K|(z,h) the absolute value of the
Gauss-Kronecker curvature at m of the hypersurface M N (h & L(m)) of
h & L(m).
Definition 8.5.3
1
hi =— K h)dh
) = ST o, g VI I

where again G(T,, M, 1) is the set of i-dimensional subspaces of T, M.

The next proposition is now natural:
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Proposition 8.5.4 The functions h,—;(m) localize the i-length L;(M); more
precisely,

/ hpn—i(m) = const - L;(M),
M
where the constant const depends only on dimensions.

The proof can be found in [La-Ro2].
The definitions of the function h;(m) in higher codimensions can also be
found in [La-Ro2].
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9 Blaschke’s formulas and kinematic formulas

It is not by chance that the name “integral geometry” was used (and prob-
ably invented by) Blaschke.[Bla]. One essential tool will now be a measure
on the group of affine isometries invariant by left and right composition by
an element of the group. Choosing an origin 0 of the euclidean plane we
can write the group of affine isometries as the semidirect product:

G =R?| x SO(2)

The invariant measure is then dg = |dv A df|, where dv is the volume of R?,
and @ the angle of the rotation. The existence of such an invariant volume
on a Lie group is a more general phenomenon; see [Sa2].

9.1 Poincaré’s formulas

The first directly generalises Cauchy’s:

Theorem 9.1.1 Poincaré’s formula Let C; and Cy be two compact arcs,
then:

/ $1(C1 N Cy) = 4length(Ch) - length(Cs)

g

Proof: Let us consider the map
(I)101X02X51—>g

(my,ma,0) — (translation m; — msy) o Ry

to compute the jacobian the choice of the origin is irrelevant, so we can
choose m1, and see that it is: |sing|, the angle at my of (translationm; —
ma) o Ry(C1) and Cs. The coarea formula gives:

/ H(C) N Cy) = / Ising
G C1xCax St

Integrating the left term on S! give the theorem. a
Remark: We can reformulate that proof, saying that the kinematic
density satisfies locally

|dg| = |sinB|dsy A dsa A d)

where 6 is the angle at a point P € Cy N g(Cs) of the two curves.
In the same vein is the:
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Theorem 9.1.2 Let —m < 6 < 7 be the angle at an intersection point of
the oriented curves C; and Cy. Then:

/ Z |6] = 2wlength(Ch) - length(Cy)
g

C1NCs

the only difference with the previous proof is that we need to compute
J5 101 - |sind]|d6.

9.2 Blaschke formulas

As usual in this book we will presentonly the simplest cases of the the-
ory. A comprehensive reference is Santald’s book [Sa2] . Blaschke formulas
compute averages of Euler characteristics of intersections of a compact do-
main with boundary of IR? and the image of another by all the isometries.
The "miracle” is that averaging the Euler characteristic of the intersection
Dy N Dy of two such domains on all affine isometries, the result can be
calculated using only integrals defined separately using D; and Ds. Let
us attribute weight zero to area, weight one to length and weight two to
integrals of curvature along curves. Just observe that the weight is related
to their place in the formula giving the volume of a tube or in Steiner’s
formula. As often it is easier to prove first a formula ”with no sign”. So, let
us first prove a formula for the total curvature of the boundary of a domain:
definition The total curvature of an arc piecewise of class C€ is:

ﬂm=LW+ZM|

where the angles 6; at the corners are oriented, defined by the oriented
tangents to the two curves.
Then one has the :

Theorem 9.2.1
/T@(Dl ﬂg-Dg) :/Ta(DZH.g'Dl) =
g g

= 2r[vol(D1)T 8(D2) + length(dD1)length(0D2) + TO(D1)vol(Ds)]

Proof: Let us first compute:

n=[1f kg
G J8(D1ngD»2)
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The map g — g~ ' is an isometry of G. So the integral I; is equal to:

n=[1 kg
G J8(9gD1ND2)

The integral I; is split into two pieces: one taking care of pieces of 9(Dy N
gD>) images of arcs of D1, the other taking care of pieces of (D1 N Dy)
images of arcs of 0D,. For the first piece we use the second expression of
I, for the second piece, the first expression. The measure of the set of
isometries which send an infinitesimal arc ds of 0D; centered in m, € 9D,
into D is 27vol(D-). In the same way, the measure of the set of isometries
which send an infinitesimal arc ds of D> centered in ms € 8D5 into Dy is
2mvol(Dy)
We then get

I = 27r[/ |k| - vol(D2) 4+ vol(Dy) - / |k|]
8D1 8D2
The angles of (D N D) are of two kinds:
the angles 0,b € B between an arc of 0D, and an arc of g(0D;) , and
the angles 67,7 = 1,2 of dD; or g(0D>) (here all angles are between —

and 7). Let
L[ 36}
gieh
L[> e
gielz
= [ 36
Y beB

Inverting as above the orders of integration we get:

I + I = 2x[Y_ |0;] - vol(D3) + vol(Dy) - Y _ [67]]

ich i€l
Summing with I; we get :
Il + I2 + .[3 = 27T[T6(D1) . UOl(D2) + UOl(Dl) . Ta(Dz)]

The integral I is an avatar of Poincaré’s formula (proved in previous sub-
section) for all the pairs of curves, one contained in 9D; and the other in
0D5y. We conclude that:

I, = 2nlength(0D,) - length(0D>)
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O
Taking care of the signs of the curvature and the angles in the previous
formula we get:

Theorem 9.2.2 (Blaschke’s formula) The following weighted homoge-
neous formula holds:

[ xing-p2) = [ x(Dang-Dy) =
g g
= 2n[vol(D1)x(D2) + length(0D;)length(0Ds) + x(D1)vol (D))

Proof: The Gauss-Bonnet theorem for a compact domain D of R? with
boundary a piecewise C? boundary is:

X(D):/aDk +) 6

where the sign of the curvature is defined using the boundary orientation
of D and where 6; are exterior angles at corner points counted with the
appropriate sign; see do Carmo’s book [dCal.

Let us compute first, exactly as in the previous theorem:

nz/v Kdg
G JOD1NgD>

We then get
Lo=2q[[  k-vol(Ds) + vol(Dy) / K
BDl BDZ

As in the previous theorem, consider: the angles 6,b € B between an arc
of dD; and an arc of g(0D>) , and the angles 67,5 = 1,2 of dD; or g(dD-)
(again all angles are between —m and 7). Let

L= ot
2[}21

i€l
Iy :/203

gie[z
L :/ > 0

9beB
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Figure 36: Gauss-Bonnet for a planar domain with boundary(and corner)

Exactly as above we get:

IL+1I5= 271'[2 0; - vol(Ds) + vol(Dy) - Z 6?]

i€l i€l

Summing with I; we get :
L+ 1+ I3 = 27?[X(D1) . UOl(DQ) + UOl(D1) . X(DQ)]

Now observe that if we take care simultaneously of the sign of the angles 6,
and of the orientation €(F) of the frame F' made of the tangent vectors to
0D, and 0Dy we get to compute:

/ Z 0 - (e(F) = 2wlenth(Cy) - length(Cs)
CxeNate

Notice that the density |sinf|ds; - dss - df coincide with the differential
form sinfds, A ds2 A df. The integral above is equal to the integral of
theorem 8.1.2 as fe(F') = |6].
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We conclude that:

I, = 2wlength(0D,) - length(0D>)

Dy

Figure 37: Blaschke formula

9.3 Linear kinematic formulas, variation of a functional

In 1950, at the beginning of his book ”multidimensional variation” [Vi]
Vitushkin proposes the following general construction: Let M be a compact
submanifold of IR". The intersections of M with almost all affine subspaces
are also submanifolds. More precisely, the intersection of M with an affine
subspace of dimension N — p achieves its maximal dimension n+p— N and
is a transverse intersection on an open subset of A(N,N —p) if (n+p > N.
It is void on another open subset of A(N, N — p). the other cases form a
subset of measure zero of A(N, N — p). Consider any functional F' defined
on submanifolds of euclidean space like

e The Euler characteristic x(M)
e The total curvature Lo(M)
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e The number of connected components of M : A (M)

Then intersecting M with affine subspaces H such that the dimension of
M N H is p, and averaging we get:

Definition 9.3.1 The variation F), of the functional F' is the integral:

/ F(MNH)
A(N,N—p)

We can now state a theorem relating the variation of the total curvature
and integrals of functions locally defined on the manifold:

Theorem 9.3.2 let M be a compact connected smooth (at least C?) n-
dimensional submanifold of RY ; then:

(Lo)p(M) = const - L,(M)

Notice that:
(Lo)n(M) = L, (M) = vol(M)

The variations of the Euler characteristic are linked to the symmetric
functions of curvature g;, the key result is Gauss-Bonnet’s formula:

2
X(M) = volS™ /MK

when M is an n-dimensional hypersurface. We have observed that Weyl’s
formula computing the volume of the tube T'ub,(M) implies that:

L;‘(M) = const / On—p
M

The following reproductibility formulas are equivalent to Chern’s linear Kine-
matic formulas.

Theorem 9.3.3 (Reproductibility formulas) Let M be a compact connected
smooth (at least C?) n-dimensional submanifold of R ; then:

L} (M) = const.Lg ), (M)

For n = dim(M), for i =n, (L{),.(M) = vol (M)

The pth variation of Ly is the integral fA(N N—p) Jasam On—p» SO We get
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Theorem 9.3.4 (Chern’s linear kinematic formulas)

/ o; = const - / / op
M A(N,N—p) JMnH

In this form the name “reproductibility” given to that property of the sym-
metric functions of curvature becomes clear. Chern was asking if this was
a characteristic property of those functions. The theorem concerning the
p-length function and the fact they are integrals of the locally defined func-
tions h,,_, proves that the functions h,_, also are reproductible.

Proof: (of the reproductibility formulas)

Let GA(N,p + 1,1) be the flag space of all couples L C h; h a (p+ 1)
dimensional vector subspace of RY and L an affine subspace in h. Let H
be the affine subspace of RYN:

H=Laoh"

Lemma 9.3.5 If the line L is transverse to vy, the intersection L N~y is
the set of critical values of the orthogonal projection of (M N H) on L.

Proof: A critical point w of the projection of (MNH on L is a critical point
of the projection of M on h, as L cannot belong to the image pp, (T, (M) of
the tangent space to M at m by pp,.-

Conversely, the projection of the tangent space T, (M) is orthogonal in
h to (T (M)) N h and is the tangent space at w to 7, when ~; is smooth.
If L is transverse to v then:

Pu(Tn (M N H)) = pp(h* + (T (M) 0 h)7) = {0}
which implies that
ph(Tm(M N H)) = {0}

O

Observe now that the flag space GA(N,p+1, 1) can be identified with the

flag space AG(N, N —p, 1) of vectorial lines contained in affine (N-p)-spaces.
By definition

L,(M) = const - / [7a
G(n,p+1

Using Cauchy’s formula for -, we get:

L,(M) = const - / f(yn N L)
GA(N,p+1,1)
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Using the lemma and the previous identification between flag spaces we get:

L,(m) = const - /Ag(N N t(yo (M N H))

Integrating on the fibers of the fibration

we get the desired equality. O

To get the result concerning signed length it is enough to observe that
the sign e(w) is precisely the sign of the Gauss-Kronecker curvature of the
projection of M N h on (T;, M N H) + L. This last sign is also equal to
(—1)indez(m) where index(m) is the Morse index of the projection of M NH
on the line L , oriented by N(m), if M is an odd dimensional codimension
one submanifold.

As an exercise, juggling with flag spaces, the reader can prove that a
variation of one of the previous variations is a variation, that is:

Proposition 9.3.6 Fori < p, one has:

Lp(M):const-/ L;(MnNH)

A(N,N—p+i)

L;‘(M):const-/ LIf(MNH)
A(N,N—p+i)

9.4 General kinematic formulas

We have described a natural path leading from Blaschke’s formula to Chern’s
kinematic formulas: Consider two objects in IR", move the second, integrate
some curvature function on the intersection, and average on G. The result
is a weighted homogeneous polynomial in curvatures integrals on the two
initial objects.

Theorem 9.4.1 Chern’s kinematic formulas [Che] . If one of the integrals
is absolutely convergent, then both following integrals are finite and equal:

/L;r(Mmg(M2) = Y const- LI (M) L} (M)
g

p+q=i
As before const replaces constants depending only on dimensions.

The reader who needs the constants will find them in Santalo’s book [Sa2].
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9.5 Pohl’s, Banchoff-Pohl’s formulas and other formu-
las involving linking numbers
The ancestor of the linking number is the index i (m) of a point m with

respect to an oriented closed plane curve C. When the curve is also simple
the isoperimetric inequality is:

L? —47A >0

where L is the length of the curve and A is the area it bounds. Equality
holds if and only if the curve is a circle.
For non simple closed curves we have ([Pol] [Ba-Pol)

Theorem 9.5.1
L? —4rm /R2 (ic(z))* >0

Equality holds for a circle, or a multiple circle (a circle traversed several
times or several coincident circles each traversed in the same direction any
number of times).

This can be generalized to higher dimensions. For example let C be a
closed space curve, then the linking numbers of affine lines with the curve
also satisfy an analogous inequality [Ba-Po]

Theorem 9.5.2
L? — 2/ link(C,D) >0
A(3,1)
Equality holds here only for C a circle, which may be multiple.

Kinematic-like formulas using the linking number of two curves can also
be obtained and have been applied to obtain a better estimate of the os-
motic pressure of a solution of circle-shaped molecules as a function of the
concentration [Po2], [Edwl], [Edw2], [Del], [Dup] .
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10 Integral geometry of foliations

A foliation F of a manifold M is a partition of M by connected submanifolds
called leaves in a way such that locally the connected components of the
intersection of a leaf with open sets of a suitable family, the distinguished
charts, have a product structure. See [Ca-Li] for a rigorous definition and
basic properties of foliations; another more riemannian viewpoint can be
found in [To], a very complete reference is [Go].

a
K(F)=2r—4~2,28

C
K(F)=27~6,28 K(F)=27+8—8/2~2,97
Figure 38: A few examples of foliations

We will soon need to relax a little the definition, accepting a singular lo-
cus X, a stratified set of codimension bigger than one. The foliated manifold
in this case is M \ X.

Many results will still be valid if we suppose only the existence of a p-
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plane field, dropping the integrability condition, (a plane field P is integrable
if there exists a foliation such that it is tangent to it).

10.1 Codimension 1 foliations of a domain of IR""'.

Let W C R™ be an open subset, and let F be a codimension 1 orientable
foliation of W. As F is orientable, a unit normal N(m) is defined at each
point m € W.

Symmetric functions of curvature associated to a foliation

As, through every point m of the foliated space there is a leaf L,, of
FF. The symmetric functions of curvature of the leaf L,, at the point m
are defined by:

detId + t(dy)(m) =t

Thls defines the functions a on W. The first result about the integrals
[ o was obtained by D. Asimov :

Theorem 10.1.1 [Asi] Let F be an oriented codimension 1 foliation of
the flat torus T™'. The integrals of the symmetric functions of curvature

satisfy:
/ of =0,i>1
Tn+1

Proof: Note N(m) the unit vector normal in m to the leaf of F
through m, defined by the orientation of F. (The torus T is the quotient
R™= /72" or R™*! /A for an (n+1)-dimensional lattice A).

The covering R™"! is naturally foliated. Let m be a point of R"™" of
image m, F be the covering foliation, and L,, be the leaf of the covering
foliation through . There exists a fundamental domain W C IR"**, (the
unit cube for the “square” torus IR""'/Z"*') of the covering projection
R"™ — T. So we can identify the normal at m to L,, and the normal at
m e R"™ to L,, . Consider the map

m+— m+ tN(m)

When ¢ is small enough this map is a diffeomorphism. Its differential com-
puted using an orthonormal basis split between T}, F and T, F* is

t-dy(m)+ Id @)
1
Its jacobian is
det(Id +t(dy)(m)) = Y _t'- o
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The integral:

e m) = O'+l
/Tdt(Id+t(d'y)( ) /TI+Z 4

is equal to the volume of the torus. Therefore the integrals of the coefficients
of the monomials ¢*,1 < i < n are all zero. a
Asimov, and after Brito Langevin and Rosenberg computed integrals of
curvature associated to foliations of compact manifolds of constant curva-
ture using carefully chosen differential forms.[B-L-R}.
Here we will prove first euclidean results and sketch their extensions to
constant curvature spaces using again an exchange theorem.

Contacts with affine hyperplanes and the exchange theorem

Let H be an affine hyperplane of R™™!. The trace Flm of F on H is
generically a foliation of (W N H) with only isolated singularities. We call
this finite set of singular points X(F| ).

In fact generically those singularities are hyperbolic.

When the ambient space is the plane the singularities are of one of the
two following types : center or saddle. We attribute signs to those singular
points:

e(saddle) = —1 and e(center) = +1

Y.
~7

Figure 39: Center and saddle.

When the foliation is of codimension one and transversely oriented, The
normals N to the leaves define a vector field with an isolated singularity at
m. The sign e(m) is:

e(m) — (_l)indeacN(m)
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Definition 10.1.2 The number |u|(F, H) is the number of singular points
Of -7:|H .

When |p|(F, H) is finite,and the singularities are all hyperbolic, the num-
ber ut(F,H) is:

pH(FH) = ) e(m)

me X(Flu)

Remark: A singular point m of F|g is a point where the leaf L,, is
tangent to H. We can also locally project L,, on the normal in m to H
(and to L,,). We get a function which is in general a Morse function, for
which the Morse index of m satisfies:

(_I)Morse indezofm _ e(m)

The sign €(m) is, when the dimension of the leaves of F is even, the sign of
the Gauss curvature of L,, at m.

We will call the integral [, |K| (or [i, |k| when W is of dimension 2)
the total curvature of F.

Theorem 10.1.3 foliated exchange theorem.

/ K| = / | (F, H)
w A(3,2)

Moreover, if one of the previous integrals are finite:

[ k=] weEm
w A(3,2)

To prove this theorem, we will define the polar curves of the foliation
and a foliated Gauss map.

Polar curves
The critical points of the orthogonal projection of a leaf L of F on a line
A are in general isolated on L.

Definition 10.1.4 The closure of the union of those critical points :
N(F,A) = Jerit(pals)
L

is generically almost everywhere a smooth curve (it may have singular points).

Proposition 10.1.5 [Th2] Generically the polar curve T'(F,A) is trans-
verse to A+
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Remark: When ['(F,T,,F1') is tangent to T}, F the Gauss curvature of
the leaf L,, is zero, as, in that case, the differential of the Gauss map of the
leaf L., restricted to T, ['(F, T}, F*) is zero.

To prove the foliated exchange theorem we need to introduce a foliated
Gauss map with values in A(3,2):

Definition 10.1.6
v#(m) = the af fine plane tangent at m to F

Proof: To compute the jacobian of the foliated Gauss map yr at
a point m € W we will use, when I'(F, T F* is transverse to T, F, in
the domain, the frame wy,us, ..., up, U1, Uz, ..., 4, orthogonal basis of T,,,F,
u, unit vector tangent at m to I'(F, T F-. In A(3,2) we use at vr(m)
the frame vy, vs, v3, where vy, vy form an orthogonal basis of the horizontal
space at yz(m) of the riemannian fiber bundle A(3,2) — P2, and where v3
is a unit vector tangent to the fiber of A(3,2) — Py. In these bases, the

matrix of dyr is:
dyFlL., 0
* |cosd|

where ¢ is the angle between T,,,['+ and T,F+

As the volume of the parallelogram determined by the frame wuq, us, up
is also |cosd| , and as the map dyr|r,, is just the Gauss-Kronecker map of
the leaf L,,, the jacobian we are looking for is just |K]|.

On one hand, when I'(F, T,,Ftis tangent to T, F the Gauss-Kronecker
curvature K is zero. On the other hand using a frame split between T, F
and T,,,F* we see that at such a point the matrix of dyr is:

e

where in the formula dvy is the Gauss map of the leaf L,,. As the rank of
dv(m) is one the point m is critical for vz, by Sard’s theorem the measure
of the images by yx of these points is zero. |

Let us first give some applications of the foliated exchange theorem in
dimension 2. We note |k|(m) the absolute value of the curvature of the leaf
Ly, of F through m.

Theorem 10.1.7 [La-Le2] Let D € R® be the unit disc and F be an ori-
entable foliation with isolated singularities, tangent to 0D. Then:

/|k|247r—2
D

the minimal value is achieved by the foliation (a) of the next picture.
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Figure 40: Computation of the jacobian of vr.

Proof: Let us choose an orientation of F; that induces an orientation
of OD \ sing(F). Among the singularities of F on 9D let A be those where
the orientation of 0D changes. The set A = ay,as, ..., asy, is finite and has
an even number of points. Let G, be the set of lines which meet D, do not
meet A, and cut A in two subsets containing an even number of points; let
G, be the similar set of lines cutting A in two subsets of odd cardinality.
the formula of Cauchy and Crofton implies that the sum of the measures of
G. and G, is 27 (the length of D). If a line L is in G, then, if it contains
no singularity of F, |u|(F, L) > 1 (see next picture)

Using the exchange theorem, we get the inequality:

/ |k| > measure(G.) = 2w — measure(G,)
D
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a
K(F)=2m—4~2,28

&
K(F)=27~6,28 K(F)=2m+8-8v2~2,97

Figure 41: 3 exemples of foliations of the disc

In order to finish the proof we need a lemma:

Lemma 10.1.8 for any finite subset A of the unit circle 0D the measure
of the set G, of lines cutting A in two odd subsets satisfies:

measure(G,) < 4

O
Remark: When A = {a, —a} is made of two opposite points,
measure(G,) = 4, when A = 0, measure(G,) = 0, when A is the union
of the vertices of a regular 2n-gon, measure(G,) goes to © when n goes to
infinity.
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The proof of the lemma is elementary but technical and can be found in
[La-Le2] .

Let now D C R? be a domain homeomorphic to a disc and with a
piecewise C2 boundary 9D.

Definition 10.1.9 The internal distance d(my,mz) of two points my and
mo 1S:
d(ml,mg) =

= inf{length(y)|y: [a,b] = D a regular curve ,y(a) = m, v(b) = ma
where length(vy) is the length of the curve vy

We get that way a metric on D. In fact the assumptions made on D
imply that given the two end points, there exists exactly one minimizing
curve joining them. Such a curve will be called a geodesic of D.

Definition 10.1.10 The diameter of D is defined as:

d = sup{d(my,ma)|mi € D,ms € D}

Figure 42: Diameter of a topological disc.

Theorem 10.1.11 [La-Po] Let F be a foliation (by curves) of D, tangent to
0D, with isolated singularities of positive index, not necessarily orientable.
Then:

/ K| > length(8D) — 2d
D
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Definition 10.1.12 The index of an isolated singularity m of a non-orien-
table foliation of the plane is a half integer «(m) € %Z which is half of the
degree of the map

P, : SE (m) — P,

associating to a point q of a small enough circle centered at m the direction
of the line T,F, (if the singularity is orientable, the index is the usual one).

Proof: Let us first show that we can eliminate the case when F has a
singularity of index one, studying only the case where F has two singularities
of index 1. which are of sunset type (see next picture).

All singularities can be substituted by a source/sink or a sunset singu-
larity without increasing the total curvature of the foliation by more than
a given e. This can be done by considering on the boundary of a small disc
D, of radius r an homotopy between the “angle” function determined by F

and the “angle” function of one of the models of the next picture.

Figure 43: Source/sink and sunset.

A source/sink can be replaced by two sunsets using the modification
indicated in the next figure:

Let P and @ be two sunsets of F, and v be a geodesic of D joining P to
(). We need to estimate the number of contact points of F with an affine
line L. All lines, but a measure zero set, meet the disc D in a finite number
of segments.

Let [a,b] be a connected component of L N D such that [a,b] Ny = 0.
Then [a,b] divides D into two discs, one of them containing P and @.In
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\

Figure 44: Transformation of a source/sink into two sunsets.

the other disc, F is orientable, and therefore there is at least one point of
contact between F and the segment [a, b]. See next figure:

Let n(L) be the number of segments of L N D in which L meets 7, and
¢(L) the number of segments of D N L which do not. Then we have:

|ul(F, L) = (L)

Cauchy’s formula yields:

/ #{(componentsof LN D} = 1 / t{LN oD} =length(0D)
A(2,1) 2 Jaey

Applying Cauchy-Crofton’s formula to the arc v we get length(y) =
5 fA(2,1) #(L N ~y). Then we have:

length(OD) = /
A2,1)

n(L) + o(L) = /

A(2,1)

ﬁ(Lrw)+/ c(L).

A(2,1)

Using the exchange theorem and the inequality on |u|(F, L) we get:

length(0vy) < 2-length(y) + / (2, D)|p|(F,L) = 2-length(y) +/ ||
A D

O
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Figure 45: forced

With the same techniques, one can obtain inequalities for foliations of
a compact flat annulus, and for foliations of a disc extending a given line
field defined on the boundary. In the second case a sort of “length” of the
envelope of the one parameter family of affine lines defined by the boundary
condition will play a role [La-Po.

When a foliation achieves equality in the inequality of the previous the-
orem, we call it tight.

When the disc D is not convex we can show there do not exists tight
foliations tangent to D with singulaties of positive index. This comes from
the fact that if P € dD is a point of inflexion, and a regular point of F,
then there is an open set of affine lines which have more than one contact
point with F in a neighbourhood of P. But we can exhibit a sequence F,
of foliations of D satisfying the hypothesis of our theorem such that:

limnﬁm/ |k| = length(0D) — 2d
D

We can think of the limit of this sequence of foliations as a foliation all
leaves of which have corners along 0D, in order to force on 0D all the
critical points of the orthogonal projections of the leaves on lines; see next
picture.
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Figure 46: A tight singular foliation F; a non-singular foliation F,, close to

F.

10.2 Codimension one foliations of spaces of constant
curvature.

When the foliated space is a domain W in S™ or IH", one can also prove an
exchange theorem, replacing Gauss-Kronecker curvature by the determinant
of the second fundamental form (that we will still denote by K') obtained
from the normal vector given by the orientation (in an orthonormal basis),
and replacing the euclidean affine hyperplanes by codimension one totally
geodesic subspaces H € A. The form of the theorem is the same for W C
H"™, W c R™™, W c S™*1. In each case the set A admits a measure
invariant by the action of the isometries of the space [Sa2] p.28 and 307.

In dimension 2, we can chose (locally in the case of S?) coordinates
(r,8);r € R™,6 € IP; on a neighbourhood of a geodesic 7. Chose a point
m € 7; the geodesics rays through m form a circle S', identifying them
with their unit tangent vectors at m. A geodesic v of H? or IR” which does
not contain m is orthogonal to exactly one geodesic ray starting at m and
intersects it at a point ¢g. This is true for all geodesics of S? different from
the “equator” conjugated to m, and not containing m. This defines the
coordinates 6(v),r(y) = d(m,q).

The measures are:

o m = |dr Adf| if W C R?
e m = |cosr-dr ANd| if W C S?
o m = |coshr - dr A df| if W C H?
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We have seen the first measure in the chapter the euclidean plane;
for the other two, see [Sa2]. The (natural) formulas for the measures on the
set A of totally geodesic hypersurfaces in R"™", §7=! and H""! can also

be found in [Sa2] .
[ 1K= [ el
w A

Proof: We need to replace the orthogonal projections on lines. A
geodesic £ defines a one-parameter family, called a pencil P, of totally
geodesic hypersurfaces: those orthogonal to it. In H""! a pencil is a folia-
tion and defines a projection on the geodesic £. In S™*! a pencil defines a
foliation of S™*1\ S™ and a projection of S"*1\ S™ on IP;.

Theorem 10.2.1

Definition 10.2.2 The polar curve I'p is the closure of the set of points
where a hypersurface of the pencil P is tangent to the foliation.

Remark: As in the euclidean case, I'p is, for almost all P, almost
everywhere a smooth curve.

Definition 10.2.3 The foliated Gauss map vr : W — A associates to a

point m € W the totally geodesic hypersurface tangent at m to the leaf Ly,
of F through m.

The computation of the jacobian of yx is the same as in the euclidean
case, observing that the totally geodesic hypersurfaces orthogonal to the
geodesic £(m) through m orthogonal to L,,, and the totally geodesic hy-
persurfaces through m, form two submanifolds of A othogonal in A for the
natural riemannian metric of A. O

The following theorem is now a consequence of the fact that the inter-
section of a foliation of S® with a generic totally geodesic S? has at least
two singular points.

Theorem 10.2.4 Let F be a foliation of S* having a finite number of sin-

gularities, then
/ |K| > 27°
S3

Using the Poincaré-Hopf theorem on all the generic S?’s we prove also the
following theorem:

Theorem 10.2.5 If one of the previous integrals is finite,then:

K = 272
5‘3
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foliations of hyperbolic surfaces. Let us now state a theorem for fo-
liations with only saddle-like singularities of compact surfaces of constant
curvature (-1) [La-Lel]. It is similar to the result of La — Rol in the sense
that it translates in terms of total curvature a topological property of those
foliations.

Theorem 10.2.6 Let M be a compact surface without boundary endowed
with a hyperbolic metric (that is a metric of constant curvature (-1)) and F
a foliation the only singularities of which are saddles. The total curvature
of F satisfies:

| 1K1 (122092 — 6Log3) (1)
M
Remark:

e We will give below examples of foliations which achieve the minimal
value given by the theorem.

e If all the saddles have an even number of separatrices (in particular if
F is orientable), one can show that the total curvature of F satisfies:

/M K| > 4Log2 - | (M)

e It is hopeless to look for a generalisation to all surfaces; see [La-Lel]

We will need a few facts from hyperbolic geometry. The hyperbolic plane
H? is identified with the interior of the unit disc (Poincaré’s model). The
boundary Ss of this disc is the circle at infinity of H?. The geodesics of
H? are the arcs of circles orthogonal to S contained in IH?. Recall that
by analogy with the notation A(3, 1) used for the set of affine lines of IR*we
denote by A the set of all geodesics of H2. It has a measure invariant by
the action of the hyperbolic isometries.

Two distinet points m and m’ of H? are “joined” by a unique geodesic;
it is also the case if m and m' are in S.; in that case we say that the points
are the points at infinity of the geodesic. Three distinct points of S, define
that way an asymptotic triangle and all asymptotic triangles are isometric
(there is a global isometry of H> sending one on the other). An asymptotic
triangle has, as one can check using the Gauss-Bonnet theorem, area 7.

Let p : H? — M be the universal covering map. If the restriction of p to
the interior of an asymptotic triangle is injective, we will also call its image
in M an asymptotic triangle.

In order to get foliations minimising total curvature, we need first to
construct a foliation F, on an asymptotic triangle 7 (see next picture)
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Let b be the center of symmetry of 7. The foliation F, has just one
singularity, at b, a three prong saddle. The separatrices starting at b are
geodesic rays joining b to the points at infinity of 7; they intersect in b in
equal angles (equal to 27/3). To get F, just fill each sector with geodesically
convex curves, in such a way that the boundary of 7 is the union of three
leaves. If the projection p is injective on 7, we can project F, on M; see
next picture

Figure 47: “Standard” foliation of an asymptotic triangle.
The total curvature of that foliation of the asymptotic triangle is 2Log2-
Log3) as we will see below. Let now M be a closed orientable hyperbolic

surface of genus g. Choose on M a family of 3g—3 compact disjoint geodesics
slicing M into g pairs of pants (each pair of pants is topologically a disc with

Figure 48: How to fit an asymptotic triangle on a hyperbolic pair of pants.
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two holes). Choose in each pair of pants three disjoint geodesics spiraling
towards the boundary (see the picture above).

We can then fill the surfaces with copies of the model foliation con-
structed above, achieving the lower bound given by the theorem. Using
Whitehead transformations we can split the saddles with more than two
separatrices into three prong saddles without increasing the curvature by
more than e, see picture below and [F-L-P] for a carefull construction.

Figure 49: A Whitehead transformation

As the singularities of H are all saddles, one cannot find in H Whitehead
discs, that is discs with boundary made either of a finite number of arcs of
leaves, or of a finite number of arcs of leaves and one arc transverse to F.

T ITrt T T

Figure 50: Whitehead discs.

97



We can also, without increasing the total curvature by more than e,

brake all the saddle connections. The foliation F of M lifts to a foliation H
of H”.
Affirmation We can associate to each saddle s of H a set of geodesics A,
of measure bigger or equal to (6Log2-3Log3), and an injection of A, in H?
sending each geodesic to a point where it is tangent to 7. Moreover the
respective images B, C H? and B, C IH? of the sets of geodesics A, and
A, associated to different saddles are disjoint.

The fact that F has 2|x(M)| saddles, and a carefull application of the
foliated exchange theorem will end the proof of our result about hyperbolic
surfaces.

Lemma 10.2.7 Any half-leaf 6 of H which does not end at a saddle goes
to a point of the circle at infinity S
Proof: First observe that the behaviour at infinity of the half leaves of
‘H does not change if we change F by an isotopy (if ¢ is an homeomor-
phism of H? lifting of a homeomorphism of M isotopic to the identity, then
sup, 2 [d(m, $(m))] is finite). This proves the lemma if the half leaf p(d)
of F is compact or spirals towards a compact leaf: a compact leaf of F
cannot be null-homotopic in M , as it cannot bound a disc, and then is
(free)homotopic to a closed geodesic.

If the closure B(d) does not contain a compact leaf, we can choose a leaf
01 € B(9) and a closed curve ¢ transverse to F and intersecting d;. The curve
C meets § infinitely many times, as it cannot bound a foliated disc, it is
also homotopically not null-homotopic, so its lift to IH? will stay at bounded
distance from the closed geodesic in the same free homotopy class. As the
foliation H of H? does not admit Whitehead discs, the half-leaf § meets a
component of p~1(C) in at most one point. The intersection in H? U S
of the sequence of nested half-spaces which ¢ enters (see next picture) is
exactly one point of Ss, because it cannot contain any point of IH?, as the
distance between two different lifts of C' is bounded below (it cannot contain
two points of S, without containing the geodesic joining them). |

Remark: Two separatrices d and ¢’ starting at the same saddle s of H
converge to distinct points of S.

Proof: This is true when the union p(d) U p(¢') meets at least twice
a closed simple curve C transverse to the foliation F, as, again, H has no
Whitehead discs, so any component p~!(C) meeting & or §' separates the
points at infinity of 6 and ¢’. If such a curve C' does not exist, then p(J)
and p(d') spiral towards compact leaves dp and oy of F. If 6 and ¢’ where
isotopic, the compact leaves &y and § should also be, as two geodesics
which have compact projections cannot share a point at infinity if they do
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not coincide. If dp=4d;, the union of two arcs starting at s of respectively p(d)
and p(¢') , with an arc transverse to F joining their endpoints, will bound a
Whitehead disc, providing a contradiction. If §p and dj were distinct, they
should bound an anulus. This annulus cannot contain singularities of F
because the singulaties of F, all saddles, will give to the anulus a negative
Euler characteristic.

Looking at the same time at ‘H and F the reader will check that the
only remaining possibility is that p(d) and p(é') are spiraling toward the
same leaf of F, on the same side, which again will allow the construction of
a Whitehead disc.

O

So we can associate to each saddle of H three points of S,, which define
an asymptotic triangle A (see next picture).

S/

Figure 51: Asymptotic triangle associated to a saddle s

We will call the three geodesics joining these points at infinity the asymp-
totes of s. Two asymptotes starting at distinct saddles cannot intersect in
H? (as it will force an intersection of some of the separatrices), so the
asymptotic triangles associated to distinct saddles have disjoint interiors.

Fix now a geodesic £ of IH? which does not contain any saddle of FH, is
not asymptotic to any separatrix of 7, and is not tangent to any separatrix
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of H (these conditions are generic).

Definition 10.2.8 Given a generic geodesic L, the couple (s, D), s a saddle
of H , and D one of its three asymptotes , is called Ladmissible if it satisfies
the following conditions :

-s¢ D

-s and Ag are on the same side of D

-L does not intersect D and separates s from D

To each L-admissible couple (s, D) we will associate a compact domain
Ts.p see picture below).

Figure 52: The domain T5 4.

The two separatrices starting at s and asymptotic to D cut H? into two
domains. We will call D, p the closure of the one which does not contain the
points at infinity of £. Let us call H¥ (L, s) the closed half plane of boundary
L which contains s, and Ts p the connected component of H*(L,s) N Dy p
which contains s. The domain T p is compact and homeomorphic to a disc
(see picture above).
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If (s, D) and (s', D') are two L-admissible couples, only the four following
situations are possible:

-Ts,p is contained in Ts pr

-Ty,pr is contained in Ty p

-Ts,p and Ty pr are disjoint

-Ts p and Ty pr have disjoint interiors and s = s’

In particular the situation of the next picture is impossible.

S

/ —/’\“‘ N 4 L

\

/ \
U

Figure 53: Impossible position of the two domains T 4 and Ts’, d'].

Lemma 10.2.9 For any L-admissible couple (s, D), the collections of arcs
LNTs p is tangent to H at at least one point.

Proof: The compacity of Ts p and the fact that the set of saddles of H is
discrete implies that T p can contain at most a finite number of domains
Ty pr. It is then enough to prove the lemma for a minimal (for the inclusion)
domain T, p (see next picture).

If the lemma is false, T p is a disc which does not contain in its interior
any singularity of H and the boundary of which is made alternatively of arcs
of leaves of H and arcs transverse to 4. Moreover, the definition of an L-
admissible couple implies that, in a neighbourhood of s the third separatrix
starting at s (the one which is not asymptotic to D) is not contained in
Ts.p (see next picture)
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Figure 54: A domain T 4 which is not minimal.

The only possibility for Ts p is to be a “rectangle” (see picture above).
The arc of the leaf between the points 2 and 3 on the above picture belongs
to one of the separatrices starting at s and asymptotic to D, say the one
which contains the point 1. Let us now consider the arc of separatrix joining
1 to 2. this arc does not meet the segment of £ of extremities 1 and 2, and,
with this segment, bounds a Whitehead disc, providing a contradiction. O

We will call strongly L-admissible a couple (s, D) if it is L-admissible
and if £ meets A; (and then the two sides of Ay different from D). Then,
given £, a saddle s cannot belong to more than one couple strongly L-
admissible, and the domains 7’5 p corresponding to different couples strongly
L-admissible are disjoint.

To a saddle s of H let us now associate the set As of geodesics £ such
that there exists an asymptote D of s such that the couple (s, D) is strongly
L-admissible. We obtain the required injection i, : Ay, — H? associating
to a geodesic £ one of the points of £LN T, p where £ is tangent to H (see
lemma 2). We can choose the injection is in an equivariant way, that is,
if o is an automorphism of the universal covering H? — M, and o* the
induced transformation on the set of geodesics A, then, for all saddles s of
M, iq(s)00* = 00i, . Let us call By the image is(As) C H?. As, for a fixed
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L

1 2 3 4 2 1 4 3

Figure 55: position of the third separatrix

L, the domains T p corresponding to distinct strongly L-admissible couples
are disjoint, we have: B;N By = () if s # s'. To prove the affirmation stated
above, we need now to check the inequality m(A4,) > (6Log2 — 3Log3). Let
us first proof a lemma of hyperbolic geometry.

Lemma 10.2.10 Let 0 < a < m be the angle between two geodesic rays
starting at a point s € H® and asymptotic to a geodesic D (see picture
below), and let f(a) be the measure of the set of geodesics which do not
intersect D but separate D and s. Then:

a)f(a) = —2Log sin(a/2)

b)if0 <a<m 0< B <7mand 0 <y <7 are three angles such that
a+ B+ =2nm, then

f(a) + f(B) + f(v) = 6Log2 — 3Log3

Proof: a) As f(m) =0 it is enough to prove that f'(a) = —cotg(a/2).
Let h(«) be the (hyperbolic) distance between s and D, the quantity f'(«) -
da is equal to the measure of the set of geodesics intersecting a geodesic
segment of infinitesimal length dh = h'(a) - da with an angle bigger or equal
to a/2. This measure is proportional to dh and the coefficient (2cos(a/2),
can be computed using the “euclidean” formula, tangent to the hyperbolic
one if the origin is in dh. Then f'(a) = 2cos(a/2) - h'(«). Hyperbolic
trigonometry provides the formula cosh(h(a) = W (see for example
[Thu2] formula 2.6.12). After checking that h'(a) = 1/2sin(a/2), we get
the required formula f'(a) = —cotg(a/2).
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b) Triples (a, 8,7) of angles between 0 and 7 parametrise the vertices
of an asymptotic triangle. For example, if the point s is on the boundary
of the triangle, one of the angles, say v = m, and

fla) + f(B) + f(v) = —2Log[sin(a2) - sin((m — «)2)] = 2Log(2/sinc)

Then:
fl@) + f(B) + f(v) > 2Log2 > 6Log2 — 3Log3

If the point s tends to a vertex of the asymptotic triangle, then one of the
angles goes to 0 and f(a) + f(B) + f(v) goes to +00. to prove assertion
(b) it is enough to check that the only extremum of f(a) + f(8) + f(v) in
the triangle is achieved when s is a center of symmetry and a = 8 = v =
27/3. This is true, as the differential of the function f(a)+ f(8) + f(7) is
—cotg(a/2) - da is zero only if cotg(a/2) = cotg(8/2) = cotg(y/2), that is if
a=pF=vy=1x/3 O

Figure 56: The only extremum of f(a)+ f(8) + f(v)

Coming back to a saddle s of H, two cases are possible:
-s belongs to the asymptotic triangle A, (or to its boundary), then the
previous lemma implies that:

m(As) > 6Log2 — 3Log3

-5 is exterior to Ay (see next picture) then the couple (s, D;), (i = 1,2) is
strongly L-admissible for m-almost all geodesics £ which does not intersect
D; and separating the point ¢ € 9 (see picture below) from D;.
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Figure 57: Outside of the asymptotic triangle ;.

Then

m(As) > f(e) + f(B) = f(a) + f(B) + f(7) = 6Log2 — 3Log3

We proved the affirmation. Let us now deduce the theorem from the affir-
mation. For each saddle 5; of F we choose a lift s; in H?. Recall that the
number of (three prong) saddles of F is h = 2x(M). Let B be the disjoint
union of the sets Bg,. As for any automorphism o of the covering, we have:
oB = U"_| A, the sets B and 0B are disjoint if o # Id, and this implies
that the restriction to B of the covering projection p is injective.

Suppose first there exists a neighbourhood U of B such that the restric-
tion of p to U is also injective. Then the total curvature of F is bigger
than or equal to 2?21 m(A4s,) > 2 |x(M)] - (6Log2 — 3Log3). If such a
neighbourhood U would exist, the theorem would be proven.

In general it is impossible to find the neighbourhood U of B, but we
will construct, for each small € > 0, subsets A§ such that m(A;, \ Af,) goes
to 0 with €, and such that we can find an open neighbourhood U*® of the
corresponding set B¢ to which the restriction of p is injective. The foliated
exchange theorem implies that the theorem is a consequence of the existence
of the sets Af..

Let us fix € > 0 and let £ be a geodesic of A;,. There exists then an
asymptote D of s; such that the couple (s;, D) is strongly L-admissible.
From s let us consider the geodesic ray orthogonal to D. It intersects D
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at a point ¢. The geodesic D’ is orthogonal to that ray at a point situated
between s and ¢, at distance € from ¢ (see the picture below).

Figure 58: construction of A€

We can suppose that D’ is transverse to the two separatrices starting at
s; and asymptotic to D and define as with s, D and £ a compact domain
T, p = DspN H;:D (shaded on previous picture). Let n be the number
of saddles contained in T}, p,, ; we can choose a neighbourhood ve of the
boundary 9T, p,, of the domain T¥, p,/, such that the total curvature of H|,,
is bounded by e.

We keep in A§, a geodesic £ € Ag,if and only if:

i) £ does not intersect D' and separates s; from D’

ii) the distance from £ to each saddle s € T, p,, is at least €/n

iii) £ is transverse to H in the neighbourhood v, of 9T, p,

The exchange theorem and the definition of v, show that the measure
m(As, \ AS) goes to zero with . Let BS, C By, be the image of AS in IH?,
and let B€ = Ul (B¢ .

To finish the proof we will show that for fixed €, ¢ and j, the distance
from Bg, to the union of the conjugates of B;, is strictly positive (ifi = j we
use only conjugation of the covering different from the identity). Let then
Q € B§, and Q' € Bg, be such that @ and 0@’ are very close (supposing
again that o is not the identity if ¢ = j). The condition (iii) above implies
that 0@ is in Ty, j, (see next picture).

The asymptotic triangle associated to the saddle os; is then on the side
of D which does not contain s; (the analogous condition interverting the
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Figure 59: Position of B;, and B;. .

roles of s; and s; may also happen). The geodesic £’ tangent to H at ¢@Q’
should then meet D and D'.

One cannot define a reasonable metric on the set of all geodesics of IR?
or H?. Two geodesics intersecting with a small angle should be close. Then
it is impossible to separate parallel geodesics (IR?) or asymptotic geodesics
(geodesics with one point at infinity in common, in the H> case). But it is
possible to define a distance on the set of geodesics which intersect a given
compact K C H? by:

dx (L, L") = sup[(infeecni yecnxd(z,y); angle(L, L')]
if LN L' NK =0 (just forget the angle term if LN L' = 0)
=angle(L,LYif LNL =me K

The geodesics £ and £’ constructed above satisfy dg (£, L") > n > 0 taking
K =T;, pi, where n does not depend on @, Q" and o. If £ and £’ do not
intersect, or intersect far from K, they cannot be close in K and satisfy the
required conditions. Otherwise , as our conditions (ii) guarantees £ does
not pass by to close to the saddles, this implies the distance between @ and
o@' is bounded below by a positive constant independent of @), Q' and o.
We use the following fact: given § > 0 and a compact K C M containing
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no saddle of F, there exist a > 0 such that, if two geodesics £; and Ls
tangent to H at two points a; and as belonging to p~!(K) intersect at an
angle bigger than 6, then the distance between a; and a» is at least a.

In [La-Lel], the reader can find an application of the foliated exchange
theorem to pairs of orthogonal foliations of S2.

10.3 Tight foliations

We have seen that the foliated exchange theorem and some topological anal-
ysis of the foliation provide inequalities. Do there exist foliations achieving
the equality case? We had called tight such foliations. An example of a
positive result is the following;:

Theorem 10.3.1 Let A be a plane annulus limited by two convex curves
C1 of length 61 and Cs of length §>. We suppose that Cy is the “inner”
one (Cauchy-Crofton’s formula implies that §, > d2). Then the leaves of
the tight foliation of the annulus (tangent to the boundary) are either closed
convezx curves isotopic in A to Cy (and C2) or locally convexr curves spi-
raling towards convex curves isotopic to Cy. (see picture below). the total
curvature of the foliation is, in that case:

/|k|:61—62
A

Proof: Using Cauchy-Crofton’s formula, we know that the set B of
affine lines intersecting C; and not intersecting C3 has measure §; — ds.
Such a line £ intersect the annulus in a segment I. The foliation F is not
transverse to the interior of I, otherwise the boundary of C; and I would
form a Whitehead disc for F, which is impossible as F has no singularity.
Then

Hl(F,£) > 1

so the total curvature of F is bigger or equal than the measure of B. The
equality is achieved for the foliations described in the theorem, as they
satisfy:
LeB=|u|(F,L)=1
LEB=|pl(F,L)=0
O
In [Lan2], the reader will find a study of tight (in their isotopy class)

foliations of the torus T'2.
Let us now consider the same question for (nonsingular) foliations of S®.

Theorem 10.3.2 Their does not exist any tight foliation of the sphere S3.
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Figure 60: Tight foliation of a plane annulus with convex boundary curves.

Proof: We have seen before that the total curvature of a foliation F of
S3 satisfies:
/ |K| > 272
SB

because for a generic totally geodesic sphere ¥ C S one has |u|(F,Z) > 2.
We have also seen that
K = 2r?
S3
If a foliation F of S? satisfy [¢s |[K| = [4s K, then the curvature function
should satisfy K > 0. In S? the intrinsic curvature K, of an embedded
surface satisfy K, = K + 1 (one can perform the computation using the ex-
ponential map (see [Spi] ). Novikov’s theorem states that the foliation has a
Reeb component ([Ca-Li] ) with boundary a torus leaf L. The Gauss-Bonnet
theorem applied to L states that [, K. = 0. Then [, K = —vol(L) < 0 so
the leaf has a point of negative (extrinsic) curvature K, contradicting the
hypothesis.
The theorem will then be proved if we can show that:

mf/ |K| = 2n°
S3
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Let us consider the singular foliation P of S® defined by a pencil of geodesic
2-spheres. It has a one dimensional singular locus: a geodesic circle C'. The
trace of P on a geodesic sphere ¥ transverse to C is a foliation with two
singular points of index 1 (of type sink/source).

The next object we need is the model Reeb foliation of the thick torus
D? x S'. To obtain it we will construct a foliation of D? x IR invariant by
unit translations in IR (we can visualise D? x IR as a vertical thick cylinder).
In the vertical band [—1,1] x IR of the (z, z) — plane consider a convex curve
asymptotic to both sides of the band.

The equation z = tg(m/2)z? should provide such a curve. by revolution
around the z — axis we obtain a convex surface asymptotic to the boundary
of the cylinder (on the z — 400 side. Translating it vertically, we foliate
the thick cylinder. By construction the foliation is invariant by vertical
translation and then gives a foliation of the thick torus T = (D*xIR/ (27 -7Z).
(see picture below)

7

- ~u
AN
. N
/ \v o
1 !
\ i
\ /
N /

Figure 61: Reeb component.

We will now shadow the foliation P by non singular ones, introducing a
very thin Reeb component in a tubular neighbourhood of C.

To construct the foliation in a tubular neighourhood Tube,(C) of radius
2r of C, we will first construct a model in the cylinder D3, x IR, invariant
by vertical translations.
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Figure 62: A piece of a thin Reeb component and how the other leaves wrap
around it.

In the cylinder D? x IR just put a Reeb component defined as above.
In the anulus D32, \ D?, seen as a subset of the (z,y) — plane, consider a
curve entering, normally to the boundary, into D3, and spiraling towards
the circle dD? (see picture below).

The product of that curve by the vertical line is a surface of IR® entering
normally the cylinder D? xIR and spiraling toward the inner cylinder D2 x R.
By rotation around the z-axis we foliate the set (D3, \ D?) x IR. So we get
the desired foliation of the thick cylinder D? x IR.

The quotient by the vertical translations by vectors of lenth 27 is a
foliation of D3,.x S!. Let us now map D3, xS! to the tubular neighbourhood
of (geodesic) radius 2r of C, mapping isometrically S* on C' and using the
exponential map to map the discs D3, centered on points (0,0, z) € S! onto
totally geodesic discs normal to C. We obtain a foliation F, which fits with
P| 58\ Tubs, (c)- The reader will now believe that :
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Q
Figure 63: Horizontal section of the foliation (D3, \ D?) x RR.

-the geodesic spheres ¥ satisfy |u|(F,, ¥) = 2 if ¥ intersects C' with not
too small an angle.

-There exists a uniform bound, independent of r, for the number |u|(F;, ¥)
when it is finite.

As the measure of the geodesic spheres which intersect C' with an angle
smaller than e goes to zero with €, we proved, using the foliated exchange
theorem, that :

lim, o / |K| = 2n?
S3

where | K| is the curvature function defined by the leaves of F,. i

Foliations of codimension higher than one and diverging inte-
grals.

We will present here without proofs particular cases of the results of
[La-Ni].

Theorem 10.3.3 Let F be a smooth foliation by curves of a domain W C
R®. Let Cy be the contact set (in general a curve) of F and the affine
hyperplane H :

Ca={meW|T,F C H}
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Then

/ |k|:const/ / |sine]
w A(3,1) /Cx

Where at a smooth point m € Cr, ¢ is the angle between Cg and the leaf
of F through m.
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11 Integral geometry in spheres

The results of this paragraph come from [La-Ro2]. When C'is a submanifold
of dimension p of SV we shall use the notation |C| for the p-volume of C .
We sometimes for aesthetic reasons shall use the notation L,(M).

11.1 The spherical formula of Cauchy and Crofton

We shall prove it for surfaces M € S®, the proof for hypersurfaces of S™ is
identical. The proof for higher codimension submanifolds is more technical;
see [Sa2] [La-Ro2]. We denote by L2(M) the area of the surface M C S®.

Theorem 11.1.1

1
Lo(M) = _/(;(4 , Jnia

™

where [ is a geodesic circle of S® which we can think of as a 2-plane through
the origin of R*; |M N1| is the number of points of M N 1.

Proof: Denote by P(E) the projective space of vectorial lines of the
vector space E. From the restriction to M of the tangent bundle to S* we
construct the fiber bundle IP(T'S?|5) replacing the fibers IR® by projective
planes IP5. Denote by IP,,,(T'S3|5r) its fiber above the point m € M; it is a
riemannian fiber bundle on M. Consider the map

¢ : P(TS%|y) — G(4,2), ¢(m,L) =1

where [ is the geodesic circle whose tangent at m is L € P(T,, M).
Write the tangent space to G(4,2) at lp as an orthogonal sum:

TZOG(47 2) = Tlo{”m € l} D Tlo{lJ-Elo,m})

where ¥, ,, is the geodesic 2-sphere orthogonal to [y at m.
Write T(m,L)(]P(TS3|M) =V @& H, where V is the tangent space to the
fiber and H = VL. Then d¢ is given by the matrix:

Id *
0 PrL ’
where py. is the orthogonal projection of T, M to Tp,(¥,m) = L. Then:

/ |Jac(dg)]| :/ |cos(angle(L*, Ty M))| =
LelP,.(TS3| ) P,
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Since

/ |<¢>*1<l>|=/ 1 M),
G(4,2) G(4,2)

/ LN M| = 7| M| = Ly (M)
G(4,2)

we have:

11.2 Flags

A flag in a vector space is a nested sequence of subspaces
(h1 C hy C ... C hy)

We call it complete if it contains a subspace in each dimension.

Let us denote by |u|(M, F) the number of contact points of the subman-
ifold M and the codimension one foliation F. The notion makes sense even
if the foliation admits a singular locus, as far as it is of codimension higher
than one.

In S? a complete flag is just a pair ¥y C ¥;, where oy is a pair of
antipodal points (z, —), intersection of S? with a vectorial line and ¥; a
geodesic circle intersection of S? with a vectorial plane.

In S% a complete flag is a a sequence

Yo C X1 CXs

of spheres, intersection of S® with vectorial subspaces of IR* of dimension
1,2,3. Replacing 1,2,3 by 1,2,...k and R?* by RF™!, we get the definition of
a complete flag of S*.

Definition 11.2.1 We denote by Dy, the set of complete flags of S*

We start with curves C C S? to give the flavour of the proofs, although
the significant results start in S. We can define the total number of contact
points of a curve C' with the foliations associated to a complete flag A:

Geom(C,A) = §(C NXy) + |u|(C, F(Xo)

In Bourbaki style, the first number would be the number of contact points
of (C'N %) with the point foliation of ¥;. We can now define:

Definition 11.2.2
1

Geom(C) = w0l(Ca) o, Geom(C, A)
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The number Geom/(C,A) plays the same role as the total number of
critical points of the orthogonal projection of the curve on a line in plane
geometry. Let us first construct a sequence of foliations by curves in S?
associated to a complete flag A, which will better and better follow the
foliations Fy of ¥ by points and the foliation F(Zg) of S2.

I I,

X X
Figure 64: Foliation close to a pencil.

Chose a point z € ¥y and delete from S? a small disc B(z,¢) of radius
e centered at z. The circle ¥; is divided in two arcs of length 7, ; and
d2 by the two antipodal points (z,—z) of ¥o Now follow, starting near
x, 01 with very thin nested arcs with boudary on the boundary of the
small disc up to the (—x) € Xy. Then continue the construction of the
foliation with arcs, the left side of which will sneak along ¢; from (—z) to
x and the right part of which will sweep half of the sphere X5 by curves
mostly equal to arcs (geodesic arcs) of the foliation F(Xy). The last leaf
is 1 N (complement of the small disc). Proceed symetrically to fill up the
other half of ¥5. We shall call F, the foliations associated to A. Do not ask
the author what exactly means € in the construction!

Observe that the foliation we have constructed is a product foliation by
intervals of S? \ B(z,€). This gives a diffeomorphism sending S? \ B(z,€)
to the plane, the leaves of the foliation to the horizontal affine lines and C'
to another closed curve.

As the projection of this image curve on the vertical has at least two
critical points, we know that C has at least two points of contact with the
foliation.

116



Corollary 11.2.3 Any closed curve in S? satisfies:
Geom/(C) > 2

In the sphere S?, ¥y C ¥; C I, allows us to define a pencil of circles
F(Xp) in Xy: the circles of o which contain Yo In the same way X; C s C
53 allows us to define a pencil of 2-dimensional geodesic spheres F(%1): the
geodesic spheres which contain .

We define:

Definition 11.2.4
Geom(M,A) = (M N Eq) + |p|(M N E2), F(Xo)) + [p|(M, F (1))

and: )
Geom(M) = 2ol G) Je, Geom(M, A)

Let us now construct the foliations F,. approximating the foliations de-
fined by the complete flag A. The point z is disjoint from M and we choose
e such that the ball B(x,¢) does not meet M. Let H; and Hs be the hemi-
spheres of ¥5 bounded by ¥;. Let F? be the one dimensional foliation of
Y5 \ (B(z,€) N X2) defined above. The trace on Xo of F, will be 2. Each
leaf @ of F2 (more precisely, each leaf a of F?2, together with an arc (we
choose one of length < 7 - €) on 0B(z,€) N Xy joining the extremities of
a) bounds a disc in ¥y Let D(a) be the ”small” one; there will be only
one ambiguous case: when « is an arc of o;. Starting with the small arcs
a emerging near z which sneak along d; we obtain discs D(«a) which are
thin flat tongues. Now inflate those to obtain thin glove fingers following
01. When the discs D(«) spead over Hy, inflating them slightly provides
thin pancakes, foliating a thickening of H;. Next step fills one of the half
spheres , say By of boundary X, inflating the last pancake of the previous
step dissimetrically. One of the sides will sweep B; following the pencil of
geodesic spheres F(X;), the other side will just move slightly . We are in
fact sweeping the ball B; exactly as we swept a disc of S2, bounded by a
geodesic circle ¥; . We proceed symmetrically to fill the other half of S3.
The foliations F? we have constructed prove the following lemma:

Lemma 11.2.5 For any flag A in general position with respect to M, there
ezists a sequence of foliations F?3 by discs of S® \ B(z,€) such that:

lime_so|lp|(M, F2) = Geom (M, A)
Moreover the foliations F° are product foliations defining a diffeomorphism

€

®,: S*\ B(z,¢) - R®
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Proof: The reader should to check that the contact points of F2 and M,
for € small enough, correspond to points counted in Geomn (M, A). a
Morse theory applied to the IR-valued function defined by the foliation
F? implies that
|l (M, F2) > 29 +2,
so we get,using the considerations of the chapter Integral geometry and
topology the theorem :

Theorem 11.2.6 Let M be a surface embedded in S>, then
Geom(M) > 2g+2
If M is a knotted torus, then
Geom(M) > 8
and if M is a knotted (oriented) surface of genus g then:
Geom(M) > 2g+4

Instead of integrating Geom (M, A) we could have integrated separately
the different terms

HM N X)), |pl((MNX2), F(Zo)), |ul(M, F(E1)).

Integrating on Cs a geometric term which depends only on one of the con-
stituents of the complete flags A just multiply by a constant depending only
on dimensions the corresponding integral on the set of geodesic k-spheres
of S3.

We can now recognize spherical versions of the p-lengths defined in sec-
tion higher dimensional convex bodies and related matters:

L(M) = CNonp) [ puldn
G(N,p+1)
where |y;,| denotes the volume of v, (when p = O, 3, is a finite set and |7yy|
is the number of points f(7ys) of ). Recall that, in the euuclidean case,
the constant C'(N,n,p) has been chosen so that if M is the boundary of an

e-tubular neighbourhood in a (n+1)-dimensional space h of a p-dimensional
submanifold C' of h, then:

limeoLy(M) = |C]|

First observe that the set of antipodal pairs in S® is the Grassmann
manifold G(4, 1), the set of geodesic circles is G(4,2) and the set of geodesic
spheres is G(4, 3).
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The reader will easily believe that the integral:

/ S(M NSy
G(4,2)

is proportional to the area of M. Define in S°:

Definition 11.2.7

Ly(M) = 1/g(4 , e 030

m
To unify notations we will note:
Z1 N M| =8 NM)

A pencil F(2;) of geodesic 2-spheres of axis a geodesic circle ¥; defines
a projection pr(s,) of S*\ ¥; on the set {leaves of (F(X1))} which is a
circle. Restricted to M \ (M N %) this projection has in general a discrete
critical locus s, and a finite number of critical values |ys, |. Define:

Definition 11.2.8

1
Lo(M) = 5——=——=
o(M) 2v0lG(4,2) /G(472) =

As the function pr(s,) is generically a Morse function on M \ (M N %)
the number |ys,| is generically equal to the number |p|(M, F(X;1)). So the
integral of the last term of Geom (M, A) is proportional to Lo (M).

To define the 1-lenth Lq (M), project M on a geodesic sphere X5 following
the geodesic arcs orthogonal to it. These arcs are contained in the geodesic
circles containing the two points h***NS® = (z, —z) where h is the subspace
of R* such that h N S® = ¥,. We say that the points (z, —z) = h** N §3
are conjugate to Xy. The arcs are of the form ¥, \ (z, —z); (z, —z) C %;.
Loosing only a measure zero set of spheres,we can suppose that none of the
conjugate points x, —z to geodesic spheres ¥y are on M. Denote by px,
this projection on ¥ and by ~sx, its critical locus.

Definition 11.2.9 )
™ Ja(4

It is also true, but less straitforward to prove, that the integral of the mid-
dle term of Geom(M,A) is proportional to Li(M). This last result is a
consequence of the following kinematic-type formula:

|722 |
3)

)
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Theorem 11.2.10 Let M be a surface in S® Then:

Li(M) = = /G<4 , LoD

™

where ¥ runs over the set of all geodesic 2-spheres of S°.

Proof:  First observe that the constant is obtained considering small
spheres of geodesic radius ¢. Then L;(S;) = 4t and fG(4 ) Lo(S:NX) = 4mt.
Recall that by definition

1
nn =g [ el

The Cauchy-Crofton formula in S? says:

1
Iys| = 3 lvs N
G(3,2)

where [ runs over the set of geodesic circles in X.

The inverse image of the orthogonal projection onto ¥ of the geodesic
circle [ is a sphere ¥;. the points of 7= N[ are the critical points of the
orthogonal projection of ¥; N M onto l. The reader is invited to compare
this argument with the argument proving the linear reproductibility formula
in section Blashke’s formulas and kinematic formulas. Hence:

1 1
Ly(M) = —2/ / Y (S0 M, 7 (1),
472 Jas) Jas,2) 472 Jp(4,3,2)

where F (1) is the (singular) foliation of the 2-sphere ¥; by geodesic circles
orthogonal to I. Here D = D(4,3,2) is the space of flags (£,1),% D I. The
flag space D fibers over G(4,3) and over G(4,2), so using Fubini’s theorem
for both fibrations, we get:

1
Li(M) = —2/ AwLo(S N M) :/ Lo(X N M)
47° Jq(4,3) G(4,3)

O

Gathering our results we can express Geom (M) in terms of the p-lengths
or of integrals of the functions h;.

Theorem 11.2.11 [La-Ro2] Let M be a compact surface in S®; then:
Geom(M) = w?La(M) + 473 Ly (M) + 27200l G(4,2) Lo(M)

Geom(M) = / [ + 27hy + gvolG(4,2)|K|]
M
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11.3 Functions h;

In this subsection we construct functions on M the integral of which are
the spherical p-lengths L, (M) analogous to the euclidean p-lengths defined
in section higher dimensional convex bodies and related matter and
define the functions which localize them.

Let ¥,11 be a (p+1)-dimensional geodesic sphere of SV; it is the inter-
section of a (p+2) plane h; of R™™! with S™. The intersection (h;)* N SN
is called the (geodesic) sphere conjugate to ¥,11; we denote it by Yo
The set of geodesic spheres of dimension (N-p-1) containing the (N-p-2)
gedesic sphere X7 . foliate SN\ ¥ +1- Moreover each leaf of the foliations
meets ¥,41 in two antipodal points. The foliation then defines a projection
ps,,, of SN\ Y511 on Py, Consider the restriction of this projection to
M\ (MNX5,,).

Definition 11.3.1 The polar variety I's, ,, is the closure of the set of crit-
ical point of the restriction px,_, |M\(MQE;H).
The critical locus 7ys,,,, is the closure of the inverse image by the covering
map
7 Pt jprtt

of the critical locus of ps, ., |M\(Mm2;;+1)-

To define the p-lenth we need just to integrate the p-volume |ys,,, | of v, ,, .

Definition 11.3.2

L,(M) = const - / Y5 pin |
G(N+1,p+2)

where the constant depends only on the dimensions involved and is chosen
in such a way that:

limy_oLp(Tub.(M)) = p — volume(M)
if M is p-dimensional.

When M is of codimension 1 the functions h;(m) are defined exactly as
in the euclidean case using the second fundamental form of M C S™. The
numbers |k(m, h)| are absolute values of the determinant of the restriction
of this second fundamental form to h C T,,, M, expressed in an orthonormal
basis.

Remark: The inverse image (expy,) ' (M) C T}, S™ has at m € (expp,) " (M)
the same fundamental form as M C S™ at m € M.
We can know state a localization theorem:
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Theorem 11.3.3 Let M be a codimension 1 submanifold of S™. The func-
tions hn—i(m) localize the i-lenghts L;(M); more precisely:

/ hpn_1-; = const - L;(M)
M

The proof is technical.
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12 The space of spheres

Let L be the Lorentz quadratic form defined on the n-dimensional space E
by:
L(z1, %2, 2n) = (21)% + (22)* + ... — (z,,)?

We will call light cone the isotropic cone of L. We note also L the associated
bilinear form, and call L-orthogonal vectors a, b such that L(a,b) = 0.

Let us prove that the set S of oriented (n — 3)-spheres of the sphere
S"=2 admits a bijection with the set of points of the quadric A of equation
L=1.

The points at oo of the light cone form two (n-2)-dimensional spheres.
We retain the “positive” one S, that is the points at oo of the light cone
in the upper half space z,, > 0.

Definition 12.0.4 A vector of E is called space-like if L(v);0. It is called
time-like if L(v) < 0. A line is called space-like (resp time-like) if it contains
a space-like (resp time-like) vector.

Any space-like line L intersects the quadric A in exactly two points. The
hyperplane orthogonal (for the Lorentz quadratic form) to a space-like line L
(notation LL1), intersects the light cone transversly and therefore intersects
its positive sphere at oo in a sphere ¥1,. This gives a correspondance between
the set S of oriented (n-3)-dimensional spheres of S”~2 and the quadric A.

Proposition 12.0.5 Let ¢ be a path in A. If at each point c(t) of the path,
the tangent vector v(t) satisfies:

L(v) > 0, (space — like curve),

the corresponding family of spheres X admits an envelope;

if
L(v) <0, (time — like curve),

at any point of the path, the spheres ¥ are nested.

Proof: As c(t) belongs to A, that is satisfies L(c(t)) = 1, one has
L(c(t),v) = 0. The condition for a 1-parameter family of spheres to admit
an envelope is that the L-orthogonal space car(t) to the plane generated by
c(t) and v(t) intersects the light cone. The intersection of car(t) with the
sphere S2_ is a caracteristic circle of the envelope, that is the limit

limp—0X: N Bign

As c(t) and v(t) are L-orthogonal, it is equivalent to L(v(t)) > 0 O
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Let us also observe that L = —1 endowed with the restriction to each
tangent space of the quadratic form L, restriction which is positive defi-
nite, is a model of H, the hyperbolic space. Each sphere ¥ of S”~2 is the
“boundary at infinity” of a totally geodesic subspace h of H.

Let G be the group of linear isomorphisms of R" leaving L invariant. Its
restriction to H is the group of isometries of the hyperbolic space H. To
chose a point z in H determines a metric on the sphere S®~2. This metric
is the projection on S™~2, sphere at infinity of H, of the metric on T (H)
using the geodesic rays of origin z.

Different choices of the point z determine conformally equivalent metrics
on the sphere S"~2. The sphere does not even admit a measure invariant
by the conformal group. Fortunately the sets of spheres of S®~2 do. In
particular, A is endowed with a measure m invariant by G. That measure
can also be seen as the measure, invariant by the isometries of H, defined on
the set of totally geodesic hyperplanes of H. Let us project the sphere S™ 2
stereographically on an affine space R"2. There, a sphere ¥ is located with
its center x1, s, ..., tp—2 and its radius r. the measure m is expressed by:

m = |[1/(r" H]dzy Adxa A ... Adz, o Adr|

Remark: Let (vq,vs,...,v5—1) be n — 1 vectors of T, A. The volume of
the parallelepiped constructed on these vectors is

|det(vo, v1,v2, ...,vp_1)| = \/( — det(L(vi,vj))

Remark: This measure can also be seen as a measure on the set of
hyperplanes of the hyperbolic space H which is invariant by the action of
the hyperbolic isometries [Sa2].

12.1 Spheres of dimension 0

We will start with spheres of dimension 0 in S, and study their positions
with respect to a “torus” T made of 4 distinct points. An oriented sphere
o disjoint from 7" bounds an interval I. We will say that o is trivial if I
contains two points of 7. Informally we may say that the small enough
spheres will all be trivial.

Proposition 12.1.1 The torus T which minimises the measure of the set
of mon trivial spheres is the torus made of the four vertices of a square (or
its image by the conformal group of the circle).
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Figure 65: a nontrivial (a), and a trivial (b) 0-sphere

The domain Z of S formed by the non trivial spheres is bounded by
segments of light rays formed by the spheres containing one of the four
points of T'.

As the only conformal invariant of a set of four points is their cross-ratio,
The measure m(Z) is a function of this cross-ratio.

Proof: The proof of the proposition is a computation. Using the stere-
ographic projection of S! on IR the measure on S = {\/—DVIZ{\/Z)\I_IIZ{S‘X’}
ﬁwx A dy|. Without loss of generality, we can suppose that the four
points of the “torus” T are {c0, 0,1, z}. We will make the computation
of the measure of “half” of the points of Z, that is {00 < 2 < 0;1 <y < 2z},
supposing z > 1. The other cases are analogous. One has m(Z,) = m({o0 <
r<0l<y<z})+m({0<z<1l;2<y<oo}). One has:

is

m{oo <z <0;l1<y< z}):/ / #|dm/\dy|:log(z).
1<y<z J—infty<e<o (¥ —)?
In the same way we compute:
m{0<z<1l;2<y<oo}) =log(z) —log(z — 1)
The minimum of m(Z,) is achieved for z = 2, m(Z2) = 2log(2). This

correspond to the “square” torus T = {e?7/2},
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Figure 66: the set of non-trivial O-spheres

12.2 The circles of S?

The set of circles of S? is identified with the points of the 3-dimensional
quadric L = 1 € R*.
The circle two piece property

Definition 12.2.1 A top circle C C S? for a closed subset A C S? is a
circle interseiting A, bounding two discs Dy and Dy such that the closure
of one , say Dy contains A, and the interior of D5 is disjoint from A.

We will call the intersection C'N A of a top circle with A a topset of A.

Definition 12.2.2 A simple closed curve of S% has the circle two piece
property , if it is divided by any circle in at most two connected components.

Proposition 12.2.3 A simple closed curve satisfying the circle two piece
property is a (round) circle.
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The result is clear as, for any other simple closed curve, rotating through
the tangency point an osculating circle with generic contact with the curve
will give circles which contradict the circle two piece property. The circle
two piece property is also meaningful for 2-dimensional submanifolds with
smooth boundary of S2.

Remark: Notice that if a curve C does not satisfy the circle two piece
property, one can find a top circle intersecting it in at least two connected
components. Suppose that a disc D; intersects C' in two components. Let
us call D» the interior of the complement of D;. Chose a point a in D, \ C.
The circles of the pencil generated by a and dD; , ordered from 0D; by the
inclusion of the discs they bound, starting with D;, have a first tangency
with C'. That circle C; is tangent to C' in at least a point b, and the
intersection Cy N C' still has at least two components. It is the boundary
of a disc D; containing D;. Consider now the pencil of the circles tangent
to C¢ at b ordered from C} using as before the inclusion of discs that they
bound. One of them is a top circle, and the corresponding topset has two
connected components at least.

Proposition 12.2.4 The only 2-dimensional manifolds W with smooth
boundary of S? having the circle two piece property are obtained by removing
from S?% a finite number of disjoint closed discs D; with boundary (round)
circles.

Lemma 12.2.5 The top sets of a closed set A satisfying the circle two
piece property are connected , that is they are either a point or an arc of
the corresponding top circle. Conversely if all the topsets of a closed set are
connected, then it satisfies the circle two piece property.

Proof: Consider a sequence of increasing discs D! converging to the
disc Dy of boundary C such that A C D;. If all the intersections AN D} of
A whith the complement of D? in ¥ are void or connected the intersections
ODi N A are also void or connected and would converge to at most one
interval or a point of C, contradicting the hypothesis that the topset in
C' is not connected. If a circle cuts A in more than two pieces, a disc D»
of boundary C will intersect the closed set A in at least two connected
components. We can decrease D- , keeping two connected components in
D, till its boundary is a top circle (first reduce one component of 4 N D,
to a point p or an interval containing a point p, then proceed using circles
tangent at p). Therefore D} provide the top circle intersecting a in two
connected components. a

Proof: (of the proposition) If the boundary of W is not a union of cir-
cles, then , consider one component of W which is not a circle. Performing
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a suitable inversion, this component can be seen as the outer boundary com-
ponent of W C IR?>. Some circle bounding a disc in IR? containing W will
be tangent to the outer component of W defining a non-connected topset.
The previous lemma, provides a contradiction. The conditions of the propo-
sition are sufficient because any circle C' tranverse to W intersects each
circle 9D; in zero or two points. Then C and the discs D; it crosses form
a necklace the complement of which has two open connected components
which are the components of W\ CNW. O

12.3 Spheres of dimension two

They form a 4-dimensional manifold. We observed that time-like curves in
S correspond to nested spheres, space-like curves to spheres enveloping a
canal surface. A limit case is the family of osculating spheres to a surface M
of R3, along a line of curvature.The corresponding curve of S is everywhere
tangent to the light cone.

12.4 The spherical two-piece property

Definition 12.4.1 A closed surface M C S® satisfies the sperical two piece
property, S.T.P.P. if for any sphere ¥ the difference M \ (M N X) has at
most two connected components. Such a surface is called taut

In 1970 T.Banchoff proved the following theorem:

Theorem 12.4.2 [Ban2] A surface embedded in S® satisfying the spherical
two piece property is either a embedded round sphere or a Dupin cyclide,
that is the conformal image of a torus of revolution of (complex) equation

|21] = a, 2] = bja® +b° = 1;(21,20) €€°

Remark: The Dupin cyclides are in two different ways the envelopes of
one dimensional families of spheres tangent to three spheres bounding three
disjoint balls.

The proof of this theorem is analogous to the proof of Kuiper’s result
about tight immersions. One needs to consider spherical topsets and top
spheres.

Definition 12.4.3 A sphere ¥ is a top sphere if it bounds two balls By and
By such that:

-the interior of say, Bs does not meet M

-both By and By do meet M.
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We can weaken that definition:

Definition 12.4.4 A sphere ¥ is said to be a local topsphere of M at m €
M if m belongs to XN M and if m has a neighbourhood U C M which
is contained in one, say By of the balls By and Bs of boundary X. If the
neighbourhood U C M can be chosen to intersect ¥ only in m then we say
that the sphere Y is a strict local topsphere.

Proposition 12.4.5 A surface M C S® has the spherical two piece property
if and only if every local topsphere is a topsphere.

Proof: Suppose it is not the case, then there exists a point g € int(Bs).
For a sphere ¥’ tangent to M at m, but bounding a closed ball B which
strictly contains By. It is a strict local topsphere of M at m, and the
intersection PIQ N M has at least two connected components, one reduced to
m, and one containing g. A third sphere X" tangent in p to X', very close
to X} and contained in Bj contradicts the spherical two piece property. O

At a point m, we can consider the pencil of spheres tangent to M at m
which, with the point m is a circle P(m). The support spheres of M form,
if M is not a (round) sphere an interval of this pencil. Let us call ¥+ (M, m)
and X7 (M,m) the boundary spheres of this interval. Applying this con-
struction to nested neighbourhoods U; C M;i € IN such that NewUi =m
we get spheres X (M, m) and ¥; (M, m) which converge to the two osculat-
ing spheres of M at m: Xy (M,m) and X2(M,m). We can also define them
using a stereographic projection of center different from m and the principal
curvatures of stereo(M) at stereo(m). This last observation implies that,
when X (M, m) and ¥5(M,m) are different, the intersection ¥, (M, m)N M
is tangent to a line Ly (m) C T}, M and the intersection X2 (M, m)NM is tan-
gent to a line Lo(m) C T,, M. We call these directions principal directions.
A point where X1 (M, m) = Xo(M,m) is called an umbilic.

Lemma 12.4.6 If M is a taut smooth surface of S* then X (M,m) and
Y7 (M,m) coincide with X1 (M, m) and Xo(M,m).

Proof: The interval of P(m) containing the point sphere m and bounded
by ¥; (M, m) and ¥5(M,m) is in that case equal to the set of topspheres.
O

We are ready to prove the:

Theorem 12.4.7 A smooth taut surface embedded in S is either a (round)
sphere or a smooth torus

Proof:
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First notice that a (round) circle of S? has the spherical two piece prop-
erty.

If M has an umbilic m, then it “lies” between identical spheres ¥4 (M, m)
= Yo(M,m), and is therefore a sphere. If it does not have any umbilical
point, then there exist two transverse line fields on M, L;(m) and Lo(m).
As M is embedded in S? it is orientable, and therefore is a torus. O

Proposition 12.4.8 A Dupin cyclide is taut.

Proof: The envelope of a time like curve in A is a canal surface, union of
the caracteristic circles of the family. The directions tangent to this family
of circles are principal directions. A Dupin cyclide is in two different ways
a canal surface, and therefore admits two transverse foliations by circles
(tangent to the principal directions). The components of M \ ¥ are the
union of plaques of these two foliations. The circle two piece property
applied to the leaves of the two foliations imply that they are cut in at most
two intervals, and can match in at most two connected components. a
Then an essential lemma, is:

Lemma 12.4.9 A spherical top set of a taut embedded torus M satisfies
the circle two piece property.

Proof: As before By is the ball of boundary a topsphere Y. which contains
M in its closure and B> the other ball of boundary X. If the topset does
not satisfy the two piece property,in the topsphere ¥ we can find a circle C
which is a topcircle of ¥N M such that the intersection CNOXNM = CNM
is not connected. As before the intersection M N ¥ is contained in D, a
disc of boundary C, and the other disc D> of boundary C' does not meet
M N Y. Choose a and ¢ on different components of C' N M and b and d in
different components of C'\ (C'N M), so that these points are in cyclic order
on C. Let v be a geosdesic arc from b to d in D, and V' a neighbourhood of
7 in S? disjoint from M. Turning ¥ around C we get a family ¥¢. We chose
the rotation sign to leave v out of the component, but chose the rotation
small enough to garantee the existence of a continuous family of paths ~
joining a to ¢ in X' NV (B! obtained by continuity from Bj). Then the
points a and ¢ will be in different components of BN M ,as there is no path
connecting @ and cin M NC = M NY¥ N Xt and as any path in the union
of the hemispheres X! containing the arcs 7* joining a and b should cross
V. Therefore, for t small enough, (with the right sign), X! cuts M in at
least three connected components. (This last argument is quite analogous
to Kuiper’s for tight surfaces). O

Proposition 12.4.10 If M is a taut torus in S° then for any topsphere 3,
YN M 1is a point or a circle.
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Proof:  We know by the previous proposition that the top set satis-
fies the circle two piece property. It cannot be ¥ as M is a torus, nor
contain interior points, which would be umbilical points of M, and im-
ply again the equality M = X. The topset could apriori also be ¥ \
{non finite family of round discs}. The boundary of those discs can-
not bound a disc in M without contradicting tautness (consider a Poncelet
pencil of spheres containing X), but then these boundary curves would be
disjoint simple closed curves on M ; three disjoint simple curves on a torus
always disconnect it into more than two pieces, so M Nint(B;) would have
at least two components. Moving ¥ slightly into B; provides a sphere ¥’
bounding a ball B} such that M ﬂ?ll has at least two connected components.
The only possibilities left are a point and a circle. |

The interval of topspheres tangent at m € M to the taut torus M is
bounded by the two osculating spheres at m, ¥; and ¥,. Let us consider
a sphere ¥ tangent at m to M close to ¥; which is not a topsphere. It
intersects M in a neighbourhood of m into two transverse arcs crossing at
m the tangents of which are form a very acute angle and are close to the
principal direction Ly C T, M. Suppose that the intersection X1 N M is the
point m. Choose a neighbourhood U C S? of m such that the intersection
M N U is a small disc. For non topsphere ! tangent to M at m close
enough to ¥; the intersection $! N M is contained in U. As, at m there
are four arcs of ¥ N M with distinct tangents, we can find two points p
and ¢ in ¥' N M such that any path from p to ¢ in D! passes through m.
Choose in U N ¥y a very small circle o centered at m, such that that the
small disc d,it bounds does not contain any of the points p and ¢. In the
pencil of spheres containing ¥; ,and following by continuity the ball By,
some interval of spheres X7 starting at ¥;will be such that PI contains p
and ¢ but does not contain m . For 7 small enough and with the right sign,
37 does not satisfy the two piece property. Then we can conclude that
the osculating spheres intersect a taut torus M in circles. Those circles are
necessarily lines of curvature, so M is a Dupin cyclide [Dar] . This ends the
proof of the theorem giving the list of taut surfaces in S3.

12.5 Intersection of surfaces and curves of the sphere
S3 with spheres

Let us now show that we can associate to a closed surface or a closed curve
of S% a subset of S the measure of which is a conformal invariant of the
surface or curve.

Let M be a compact surface embedded in S3. There exists a radius e
(depending on M) such that any sphere ¥ C S?® of radius smaller than e
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either does not meet M or meets M in a point or a closed curve bounding
a disc in M. Then the measure of the set of nontrivial spheres, that is the
spheres which meet M in more than one curve, or in a curve which is not
the boundary of a disc in M, is a conformal invariant. A smaller conformal
invariant is the measure of the spheres which intersection with M contains
a nontrivial component in the homology of M.

Definition 12.5.1
nt(M) = measure{non trivial spheres for M}

ntop(M) = measure{c intersecting M non trivially in H' (M)}

Let v be a compact closed curve embedded in S3. There exists a radius
¢ (depending on ) such that any sphere ¥ C S? of radius smaller than e
either does not meet v or meets it in one or two points. Then the measure
of the set of nontrivial spheres for v , here spheres which meet v in at least
four points, is a conformal invariant of the curve v We can define:

Definition 12.5.2

nt(y) = measure{non trivial spheres for v}

NT(y) = /S (tyns—2)*

where @1 is the function equal to p when ¢ > 0 and equal to 0 when ¢ <0

12.6 Conjectures

e conjecture There exists a positive constant « such that, when the
closed embedded curve v C S® is knotted,

nt(y) > «

e conjecture There exists a positive constant 8 such that, when the
closed embedded surface M C S? is not a sphere,

nt(M) >

e The Willmore conjecture The following 2-form on a surface M em-
bedded or immersed in S® is invariant by the action of the conformal
group on S*:

dw = (kl — k2)2 -dv
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where k; and ks are the principal curvatures and dv the area form of
M.

The integral on M of this form:

W(M) = /M dw

is then a conformal invariant of the immersed surface. Looking first
at revolution tori of equation

|z1] = a,|22| = bya® + b = 1; (21, 20) eq?

Conjecture [Will] [Wil2] When M is a torus:

W(M) > 2xn?
The value of W (M) can be interpreted as an area in the quadric A
[Bry] . View M as embeddedd in IR®. Consider at each point of m € M
the sphere ¥y(m), tangent at m to M, and with mean curvature the
mean curvature of M in M.

Remark:First observe that this is a conformal property, equivalent
to impose that the intersection curves of M and X,(m) intersect at
right angles in m. There may be an inequality linking W (M) and the
measure of the spheres with non trivial intersection with M. Proof:
We can write local equations of M and X,(m) in the neighbourhood
of m, using axis tangent to the principal directions of M at m and to
the normal to M at m (k; and ks are the principal curvatures of M
at m) :

1
z= §[k1m2 + kay?] + higher order

1.k +k ki +k
z:§[ 1; 2% + 1;_ 2y2]+higher0rder

The equation of the intersection is

ko—Fki o ki —
5 Tt

k
2 y> + higher order =0

proving that the projection of the intersection M N ¥;(m) on the
tangent plane is, in the neighbourhood of m, two curves intersecting
at m with right angles.
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This defines a map M — A. The image of this map is a surface
which is space-like (that is the tangent plane to it, in every point,
contains only space-like non-zero vectors).

The measure of the image of this map is then again W (M).

This conjecture has proved to be particulary rich in connection with
other problems see [Will] [Wil2] [Li-Yal.

Theorem 12.6.1 Let M be a two dimensional flat torus in R> with
lattice generated by {(0,1), (z,y)} where 0 < z < % and V1 —22 <

y <1, then
/ |H?| > 2n?
M

12.6.1 Conformal structures on tori.

First recall the possible conformal structures on a torus. [Bri-Kno]
and [Jo-Si].

Let w be a complex number with positive imaginary part, and let T,
be the lattice in € consisting of all complex numbers n + mw, where m
and n are integers. Then C/I', has the structure of a one-dimensional
complex manifold. As a topological manifold, C/T,, is homeomorphic
to S x S1. We are interested in the possible conformal structures.
Then (z1,29) and (az1,azs,a € C*) define the same conformal struc-
ture. Chosing the proper orientation we may also chose between (1, w)
and (1,w). Brieskorn and Kndrrer’s book contains also an algebraic
geometry interpretation; they prove that all complex tori can be in-
terpreted as a cubics. One can prove (see [Jo-Si] p.273) that the space
of moduli describing the conformal structures on a torus is a quotient
of:
D= {w, ] > 1, [Rew| < 1/2}

identifying the corresponding sides by the maps z - z+1, z — —1/z.

Allowing the reversing orientation conformal map z — —1/Z one re-
duces the modulus to:

{w, Jw| >1,0 < Rew < 1/2}
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12.6.2 Conformal volume.

Definition 12.6.2 Let M be a surface or a curve embedded in S®.
Define
Volconf(M) = supge muol(g(M))

where M is, as before the Mébius group of conformal diffeomorphisms

of S3.

Proposition 12.6.3 — The conformal length of a curve in at least
2w, the length of a geodesic circle.

— The conformal area of a surface is at least 4w, the area of a
geodesic sphere.

— The conformal area of an immersed surface admitting double
points is at least 8.

— The conformal area of an immersed surface admitting triple points
1s at least 127.

Let proj be the steoreographic projection with “south pole” a point
m of M. The maps (proj) ! e Hg e proj, when R — co expand, up to
cover almost all the sphere, any small neigbourhood of m, and expand
the small arc or disc of M contained in that neighbourhood up to a
curve or surface very close to a geodesic circle or sphere.

Proposition 12.6.4 If M is a minimal tori embeddededin S* then
vol (M) = Volconf(M)

We use again the relation between the extrinsinc Gaussian curvature
K.,; and the intrinsic Gaussian curvature K;,; of a surface in S®:
Kint = 1+ Ky and the fact that in R%or S®, the 2-form (ky — k2)2dv
and its integral on M are conformally invariant. Denote also Hg the
mean curvature of this surface M € S3.

Let proj be again a stereographic projection. Denote by H and K
the mean curvature and Gauss curvature of proj(M) € IR*, and by k;
and k- its principal curvatures. Then the quantity

/ (kl—k2)2d’U:/ H2—K
proj(M) proj(M)

is equal to:

/(HS)2_K€It:/ (HS)2_Kint+1:VOl(M)
M M
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as M is minimal and is a torus. Using again the fact M is a torus
and Gauss Bonnet theorem, one gets that [ . H?is a conformal
‘ ) proj(M)

invariant, and therefore that

/ H2:/ HZ 4+ vol(g(M),Yg € M
proj(M) 9(M)

Then
Volconf(M) < vol(M)

The other inequality is immediate.

The study of the first eigenvalue of the Laplacian on M [Li-Ya], implies
the inequality:

Proposition 12.6.5 A flat torus with lattice generated by {(1,0), (z,y)}
where 0 < x < % and V1 — 22 <y <1 satisfies:

Volconf(M) > 27*

The theorem now follows directly from the inequality: [, HZ +1 >
fM 1 = wvol(M) applied to a sequence of embedding the volume of
which approximates the conformal volume.

Mobius energy The author thanks D.Rolfsen for pointing out the
reference [F-H-W] to him. Recently M.F.Freedman, Z-X.He and Z.Wang
using an previous work of O’Hara, [5] defined the Mdbius energy of a
rectifiable curve embedded in IR® by:

1 1
B = / /W\A H(0) =7 @)F  [istgs(1(0), 7 ()P

where A is the diagonal of the product  x . Separately the integral
of the two fractions would diverge, but the sum converges. They prove
that this function is invariant by the Mébius group.

Let ¢([v]) be the crossing number of the knot type [v] (the infimum
of the number of crossings of the projection of the knot v € [y] on a
plane, when - describes the isotopy class.

Theorem 12.6.6 [F-H-W] The energy E(v) of a simple closed curve
v C R? satisfies the inequality:

E(y) 2 2me([]) + 4

The equality E(y) = 4 is achieved only when the curve is a (plane,
round) circle.
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K<K> k<K<K K1 <K

Figure 67: Possible generic contacts of a sphere and a foliation.

Conjecture The Mdobius energy and the measure of the set of spheres
intersecting the curve = in at least four points are linked by inequal-
ities. One may have to take a multiplicity involving the number of
intersection points into account.

12.7 Conformal integral geometry of foliations.

Curiously, the first result of conformal integral geometry [La-Ni], was ob-
tained for codimension one foliations of IR* or S°.

Let now F be a codimension 1 foliation of a domain W C R®. The num-
ber N~ (X) of negative contact points of ¥ with F is the number of saddle
tangencies of ¥ and F. It is clear that the number N~ (X) is conformally
well-defined.

A measure on the set S of spheres of IR?, considered as a subset of the
set of spheres of S? is constructed in the chapter The space of spheres.
Using that measure we have the

Theorem 12.7.1 Let F be a smoothe foliation of a domain W C IR*. Then

5 =k = [ N ©)m)

where k; are the principal curvatures of the leaves.

Remark: We could have stated the theorem in S® as the form |k — k2 [>dv,
where dv is the volume element of W, is a conformal invariant.
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13 Complex integral geometry

The n-dimensional complex space €™ has a natural hermitian structure, and
an associated scalar product:

< ulv >e=Re(< ulv >)

The n-dimensional complex space C" endowed with the quadratic form
|v]? = Re(< v|v > is just a euclidean space of dimension 2n. But, among
the real euclidean planes, some have an extra property: they are globally
invariant by multiplication by complex numbers. The complex integral ge-
ometry will deal with those particular real planes: the complex lines. To
compensate the relatively few partial datas given by the projections on the
complex lines and complex subspaces only, and by the section by the affine
complex subspaces only, we need to suppose that the submanifolds studied
have some extra structure. So in this chapter the submanifolds are local
images of C? by a locally defined holomorphic map.

13.1 Critical points of projections on complex lines

The orthogonal projection of €™ onto a complex line of €™ is a holomorphic
map.

Many interesting consequences can be deduced from the properties of
the complex curve C of equation y = az? in a neighbourhood of the origin.

The tangent space to C' at (0,0) is the z-line and the normal space at
(0,0) is the y-line. Let Dy be the oriented real line of the y complex line
making the angle # with the oriented real axis. The orthogonal projection
Cy of C on the sum :

Ey = (z complex line) ® Dy

has equation : .
z = Re(e® 2?) |

z being the real coordinate on Dy determined by the euclidean structure of
€? and the orientation cf Dy,
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Ui
projection of the curve projection of the curve

y=x2 ON T, M+Np y=x2 ON T, M+ Ny

Figure 68: Saddle and turned saddle
Performing the change of variable ' = e?/2.z, we see that the projec-
tions Cy are all isometric, more precisely that Cy is deduced from Cy (of
equation z = Re(z?) by a rotation with a vertical axis and angle —6/2.

A section of Cy by the vertical plane F, containing the real line A, of
the z-complex line has the equation:

z = Re(ap®.€™) =| a | pcos (2¢ + ©a)

where ¢, is the argument of a, therefore the maximal and minimal values
of the curvature in (0,0) of those curves are opposite and of absolute value
2. | a | . This implies that at (0.0), Cp has zero mean curvature and Gaussian
curvature 4 | a |% .

Remark: The projections of the complex curve of equation z = ax™
on the 3-spaces Ejy are obtained from the projection on Ey by rotations of
angle —6/n. As curvatures depend only on 2-jets at the point where they
are computed, we have proved the following proposition:

Proposition 13.1.1 Let C be a holomorphic curve of €* then the orthogo-
nal projections of C' on the 3-spaces Eg = Ty, + Dy, where T, is the complex
line tangent at m to C and where Dy is a real line normal to C in m, have
all the same Gaussian curvature at m and have all zero mean curvature at
m.

13.2 Complex Gauss map and critical points.

The normal space N(m) of C at m is a complex line. This allows us to
define a map yg of C' to CPy by yp(m) = N(m). At the point (1,0), the
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Fubini-Study metric of CP; is the euclidean metric of the chart given by the
map z/y.

Let K(A,m) be the gaussian curvature of the projection Ma of M on
the space Ea = T,, M & A.

The Lipschitz-Killing curvature at m, K(m), of an even dimensional
submanifold M of RY is, up to a constant depending only on the dimensions
involved, equal to the integral on the projective space on (real) lines of the
normal space, of K (A, m) :

K(m) = const/ K(A,m)
IPN(m)

where const indicates a constant depending only on the dimensions involved.

Proposition 13.2.1 The jacobian of the complex Gauss map satisfies :

| det Dyg(m) |?= —K(A,m) = const K(m)

where const is a universal constant.

Proof: It is enough to prove the proposition for the curve C' of equation
y = ax? at the origin as the numbers we shall compute depend only on
2-jets. Let m(x) be the point (z,z?). The complex normal line is generated
by the vector (—2aZ, 1), therefore, using the map z/y, the differential of the
complex Gaussmap is —2a.J, where J is conjugation.

One gets | det Dyp(0) |=4 | a 2. m|

Let us now see what the counterpart of the existence of a complex Gauss
map is when one looks at projections on complex lines. We will note 7
the orthogonal projection on the complex line L. Let C be a holomorphic
local parametrisation of the curve C. The differential D(M(D .C) is a linear

complex map which implies that its real rank (as a real linear map) can be
only 0 or 2. This implies that a point is a critical point of m.C" if and only
if it is a critical point of 7p.C, where D is a real line contained in Lg — .

Corollary 13.2.2 Let | 1 | (C, D) denote the number of critical points of
the orthogonal projection of C' on the real line D and | p | (C, Lg) be the
number of critical points of the projection of C on the complex line Lg. For
every real line D contained in a complex line Ly one has:

| w1 (C,D) =| u | (C, Lg).
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Remark: The critical values of the projection of a complex curve on
a real 2-plane which is not a complex line may contain arcs. A nice study
of this critical locus for a family of planes containing a complex line in
the neighbourhood of non degenerate critical value of the projection on the
complex line can be found in the book by Arnold, Gusein-Zade et Varchenko
[A-G-V] p. 20-21, see fig. 1.2.

Figure 69: Projection of the complex curve y = 2% on a real plane which is
close to the complex y-axis

13.3 Polar curves.

We have already met polar varieties I'y, and <, respectively the critical
points and the critical locus of the orthogonal projection of a submanifold
on the subspace h. They are equally important in the complex frame; (see
for example Teissier [Tei2]. Slightly more generally, a polar variety is always
(the closure of) the set of points where an incidence relation between the
tangent subspaces to a certain object and a fixed subspace satisfy a given
incidence relation. Let us now give the examples we shall use later.

Definition 13.3.1 Let F be the foliation defined by an algebraic 1-form of
€* :w = P.dz + Q.dy. The tangent plane at a point (z,y) to the leaf of the
foliation through (x,y) is the kernel of w, when P and Q are not both zero.
Let L be a complex line. The polar curve T'(F) is defined by:

I (F) = {(z,y) |w(z,y)(L) = 0 and w # 0}.

Observe the choice of upper indices; to be consistent with the previous
chapters we need to define:
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Definition 13.3.2

Lipoy(F) ={(z,y) |w #0 and pp1|r, ,, has a critical point at (z,y)}.
Here L(, ) is the leaf of F trough the regular point (z,y).

Of course, it is the curve I'L(F)

As in the real case,the name polar curve comes from the fact it is gener-
ically a curve except for a set of lines of measure zero. Again, we shall
extensively use generic properties. In the algebraic context the measure
zero bad set we should avoid is often a closed algebraic subset.Except for
degenerate cases which we ignore, I'y, is an algebraic curve whose equation
is P.a+ Q.b =0, where (a,b) is a vector generating L.

A particular case is when F is the level foliation of a polynomial f :
C" — C. The intersection of the polar curve I', (F) with a nonsingular level
f = X of the polynomial is the set of critical points I'r,(f = A).

Theorem 13.3.3 Exchange theorem. Let V' be an open piece of a holo-
morphic curve, its total curvature satisfies:

K :const./ wl (V,L).
/V| | L, 110D

Proof: The theorem is a consequence of the exchange theorem proved

before for codimension p submanifolds of R", and of the corollary about

numbers of critical points of the projection on real or complex lines proved

above. m|
A global consequence is the :

Proposition 13.3.4 Let f be a polynomial of two complex variables of de-
gree d. The total curvature of the algebraic curve C of equation f = 0 is less
than of equal to d(d —1).

Proof: Let F be the foliation defined by the levels of the polynomial
f- To each generic complex line L is associated a polar curve I';, which has
degree less than or equal to d — 1. By Bezout’s theorem the intersection
', N C has at most d.(d — 1) points; these points are precisely the critical
points of the projection of the curve on the complex line L. One deduces
now the proposition from the exchange theorem. O

13.4 Isolated singularities

We shall show that when a sequence of smooth objects tends towards a
singular one a distribution of curvature with support on the singular locus
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often arises naturally. The singularity will appear as a condensation at a
point of the behaviour of compact submanifolds.
Let us first give a real algebraic example. The plane curve C of equation:

2 +y*=0
is the limit of the family of curves C) of equations:
2t +y? =\

Let us consider the total curvature of the arc of C) contained in a small
ball centered at the singular point.

Proposition 13.4.1 The following limit :

lim lim | & |

e—=>0 A—>0 CA\NB.
C
Cc
)

c
0B-

exists and is equal to w

Figure 70: One dimension-faithfull picture and one codimension-faithfull
one of C)

We shall show that such a phenomenon always occurs when one studies
a sequence of levels of a complex polynomial having an isolated singularity
or more generally of a polynomial map to C” having an isolated singularity
such that the zero level is a complete intersection. Let us first recall the
topological and algebraic facts we will need. The study in the neighbour-
hood B(0,¢) of an isolated singularity of the topology of the level f = A of
a complex hypersurface has been done by Milnor [Mil3] .
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Theorem 13.4.2 [Mil3] . Let 0 be an isolated singularity of the complex
polynomial f : €' — €. Then for € small enough and \ (chosen after ¢)
small enough, the intersection B: N (f = \) of the level f = \ with the ball
of radius € has the homotopy type of a wedge of i spheres of real dimension
n.

Following Teissier we shall pose u("*%) = u(f). The notation is justified by
the following theorem :

Theorem 13.4.3 [Teil] or [Tei2]. There exists a measure zero analytic
closed set of the Grassmann manifold Gpi11 such that, if H € Gpi1,:\%,
the Milnor number u(fq) takes the generic value pD independently of H.

Let us first consider the case of a polynomial f :C"*' — @ The levels
of f form a foliation F. At each regular point m of F, T),,F is the tangent
hyperplane to the level of f through m. Let us now fix a (vectorial) complex
hyperplane h.

Definition 13.4.4 The polar curve T is the closure of the set of reqular
points m such that T,,F = h (here we identify the affine space T,,F and
the vector subspace which is parallel to it).

Proposition 13.4.5 [Le2] p. 263 and [Tei2] p. 269 (the polynomial f does
not need to have in this proposition isolated singularities). The polar curve
T" is contained in an algebraic curve T'™® more precisely, if ¥ is the singular
locus of f, one has :

T = T3,
Proof: when the singularity is isolated It is enough to choose a base
e1,--,en of h The equations of I'* are in this case :
df (e1) = df (e2) = --- = df (en) = 0.

O
The following theorem about the total curvature is now a mere transla-
tion of the previous one, using the complex exchange theorem , [Lanl]:

Theorem 13.4.6 [Lani].Let f :C"*" — € be a polynomial.

lim i K |= const (—1)"(u"* + "
%0 2% C.nB. | K |= const (=1)" (1 1)

where K is the Lipschitz-Killing curvature of the level C and const a pos-
itive constant.
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Remark: The first study of the curvature of levels f = X of the polyno-
mial f near an isolated singular point is done in the thesis of L. Ness [Ne].
She shows in particular that the curvature of the levels is unbounded in the
neighbourhood of the singularity.

Using more information about the polar curves than just the intersection
number I'* - Cy we can give a more precise description of how the curvature
of C\ concentrates near the singular point. The geometric picture is that of
concentrations of curvature near the vertices of regular polygons inscribed
on circles whose radian are fractional powers of A. The precise statement
for non irreducible curves and the analysis of the phenomenon in terms of
the contact of the branches of the generic polar curves and Cy was done by
Teissier [Tei3], after previous results in the irreducible case by the author
[Land].

The seminal example is f = 2* — y2. Let us consider the polar curves
Loy = {df(a,b) = 0}. Their equation is 3az® — 2by = 0. The intersection
points of C'y and I'; , satisfy :

22 —y?=A
3ax? — 2by = 0.

Their absciss therefore satisfies : z3 — (3a/2b)?z* = X. The three in-
tersection points of the polar curve and C have abscissas close to 3v/A
and ordinate of principal term (3a/2b)x2. This is true, provided X is small
enough, for any point of CP; different from (0, b). Notice first that the cubic
root of \ is much larger than the square root of A\, which is the order of the
distance of the origin to the curve C'y. In other words with a lens of strength
(A\)~1/2, one sees two parallel lines at finite distance from the origin :

Figure. limA~2 (Cy)
as the lines az + by cut C'\ at points of ordinate of principal part (X\)*/? for
all generic values of (a,b). With a weaker lens of strength (\)!/3, one sees
three branch points :
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Each branch point of order two carries a distribution of gaussian curvature
of total mass —27. One can, applying the Gauss Bonnet theorem to the
surface Cy N B((A%,0), X317 for a suitably small positive 7, check that
its total curvature is very close to 2. This property is true because this
ball contains exactly one point of intersection with the polar curves I, ; for
(a,b) not in a neighbourhood shrinking with A, of the non generic direction
(0,b) of CP;.

Remark also that the Gauss Bonnet theorem applied to Cx N B((0,0),e
implies that the total curvature of this intersection, for a suitably small
positive ¢ is very close to 6.

The previous calculations prove that the picture of the real levels of
22 —y? should look much more acute than usually drawn, as the turn should
occur in a very small neighbourhood of the cubic root of A. Rescaling we
see a parabola. See figure below.

Figure 71: 23 = y? at two different scales

The general case needs more lenses, the strenth of which are determined
using a theorem of Smith and Merle [Sm] et [Me]. See [Tei3].

Let us now give an intuitive justification of this multiscale phenomenon
of concentration of curvature. For that consider a family of branches I‘ib
of the polar curves I'y , = {m| < gradf(m) C R(a,b) =0 (a,b) € A where
A is the complement of small open discs centered on non generic-directions
of CP; with a given contact order with Cy which is larger than one. Among
those non-generic directions are the lines L such that the polar curve I'g,
has L+ among its tangents at zero. See [Tei2].
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Affirmation. Any complete complex curve, the complex Gauss image of
which is contained in A should cross all the curves Fgﬁb, (a,b) € A provided
it crosses one of them close enough to the origin.

Proof. The condition (a,b) € A implies that the angle of the curve and the
polar branches is bounded away from 0, since in a small enough neighbour-
hood of the origin the tangent space to ngb, (a,b) € A, is very close to the
set of non generic directions. The curve C through a point close enough
from the origin has then to cross the family of branches, and this implies the
Gauss image of the intersection of C with the family of branches contains
A.

The existence of a positive bound to the angle between the branches
considered above of the polar curves and C' implies also that the size of the
piece of intersection should be of the order of the “transverse size” of the
family of branches (the transverse distance makes sense in the neighbour-
hood of a first intersection point of the curve with one of the branches of
the polar curves considered above). See fig. z° = y? at two different scales.

Let us finally observe that, in the non-irreducible case, part of the curva-
ture of Cy may be spread over a ball of radius C.(\)*/™, for m large enough,
and C a large enough constant. For example m is the multiplicity at 0 of
Co, if the polynomial f is homogeneous.

The study of P.Rouillé [Rou] of the geometry of a neighbourhood of an
isolated complex singularity of a foliation by level curves of a polynomial
f :€? - € goes beyond integral geometry as he can even describe the shape
of the renormalisation of f = A at a concentration of curvature.

Let us now consider a surjective polynomial map f : C" P~ — CP. The
levels of f form a singular foliation of € with singular locus X.

Definition 13.4.7 The polar variety T" is the closure of the set of reqular
points m such that T, F C h.

Proposition 13.4.8 There exists an algebraic variety T’ such that :
T =Th\3.

Proof: when the singularity is isolated and the intersection is complete

Let u be a vector of C”. The equation < f | u >=< A | u > defines
a hypersurface which contains the level f = A. The level f = X is the
intersection of the hypersurfaces < f | u >=< A | u > where u takes all
values in C\0. The set of hyperplanes tangent at m to the hypersurfaces
containing T, F. Let us associate to each polynomial < f | u > with value
inC a polar curve I'(< f | u >, h).
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The previous remark shows that the polar variety I'* is the closure of
the intersection of the union of the polar curves I'(< f | uw >, h) with the
set of regular points of the foliation F. Let us choose coordinates on €™
and €?, and let J be the jacobian matrix :

oh o
J= 8f1 8Zn+p
ofp ... O
621 6Zn+p
Let e1,---,entp—1 be a basis of h. As the function < f | u > can be
fi
written in the matrix form @. | ° |, the equations of I'(< f | u >, h) are :
fn
0=<u.J|e >=<u.J|eg>= -+ =<.J|enrp1>.
or :
(*) E.J.él == E.J.é2 = = E.J.éner,l.

The regular point m belongs to I'" if and only if there exists a vector u
satisfying (*). This amounts to say that the system of vectors of C? :

g1 =J.ey, go = Jea, -+, Intp—1 = J.én+p_1

is of rank smaller or equal to (p — 1). The equations of I'* are obtained
by equating to zero the set of determinants which guarantees this rank
condition.

The points of " N [(f = A)\X] are exactly the critical points of the
restriction to the smooth part of the leaf f = A of the orthogonal projection
pp+ on the complex line ht. a

Milnor’s codimension 1 results were generalised by Hamm [Ha] and
Giusti and Henry [G-H] for complete intersections.

Let now f : €""' — C? be a surjective algebraic map such that the
origin is an isolated singular point of f and such that the level (f =0) is a
complete intersection. We will denote by C) the level variety (f = A). Let
us state the algebraic results that we will need.

Theorem 13.4.9 [Ha]. For ¢ small enough and X\ # 0 (chosen after ¢)
small enough, the manifold with boundary (Cx N B:) has the homotopy type
of a wedge of . spheres of real dimension n.
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Theorem 13.4.10 [G-H]. There exists a measure zero analytical closed set
v; of the Grassmann manifold G4 p iyp—1 Such that, if

H € Guypitp—1\i, the Milnor number u(fg) takes the generic value
pD | independently of H.

Generalising the codimension 1 case, see [Teil], Greuel [Gre] and Lé [Le2]
independently proved :

Theorem 13.4.11 The intersection multiplicity at 0 of the complete inter-
section and a generic polar variety I'" satisfies :

lim lim $(Cx N B.NTh) = (Co.Ty) = ™t + p.

e >0 A=—>0 (CxABNLw) = (Colw) =i + 1

The following theorem about the total curvature is now a mere translation,
using an exchange theorem in codimension p, of the previous one, extending
the codimension 1 result of [Lanl]:

Theorem 13.4.12 [Lan5].Let f :C""" — % be a polynomial such that the
level f =0 is a complete intersection, then:

lim i K |= t (=)™ (p" Tt 4 pn

L . | K |= const (=1)"(u""" +p")
where K is the Lipschitz-Killing curvature of the level Cy and const a pos-
itive constant depending only on dimensions.

Remark: The study of other symmetric functions of curvature , in the
codimension 1 case, was started by Griffiths [Gr], and continued by Kennedy
[Ke] and Loeser [Lo].

Remark:(integral geometry in CIP,) In this paragraph f will be a
homogeneous polynomial map from €' to© of degree greater or equal to
two having only isolated singular points in CIP,,. Using a pencil of projective
lines, one can define polar curves (see the chapter spheres and the chapter
foliation for the construction of the curves of contact of a foliation with a
pencil). Then adding the previous result: (there f :C" — C)

lim i K|= t (=)™ (p™ 4+ pm!
N . | K |= const (=1)"(u" +p"")

with Bezout’s theorem one gets a geometric proof of Laumon’s results [Lau]
[Lan6]:

Proposition 13.4.13
degree(C*) = [d(d - D" — S (" + u")(m)

m singular
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Integral geometry — measure theoretic
approach and stochastic applications

Rolf Schneider

Preface

Integral geometry, as it is understood here, deals with the computation and
application of geometric mean values with respect to invariant measures.
In the following, I want to give an introduction to the integral geometry
of polyconvex sets (i.e., finite unions of compact convex sets) in Euclidean
spaces. The invariant or Haar measures that occur will therefore be those
on the groups of translations, rotations, or rigid motions of Euclidean space,
and on the affine Grassmannians of k-dimensional affine subspaces. How-
ever, it is also in a different sense that invariant measures will play a central
role, namely in the form of finitely additive functions on polyconvex sets.
Such functions have been called additive functionals or valuations in the
literature, and their motion invariant specializations, now called intrinsic
volumes, have played an essential role in Hadwiger’s [2] and later work (e.g.,
[8]) on integral geometry. More recently, the importance of these functionals
for integral geometry has been rediscovered by Rota [5] and Klain-Rota [4],
who called them ‘measures’ and emphasized their role in certain parts of
geometric probability. We will, more generally, deal with local versions of
the intrinsic volumes, the curvature measures, and derive integral-geometric
results for them. This is the third aspect of the measure theoretic approach
mentioned in the title. A particular feature of this approach is the essential
role that uniqueness results for invariant measures play in the proofs.

As prerequisites, we assume some familiarity with basic facts from mea-
sure and integration theory. We will also have to use some notions and
results from the geometry of convex bodies. These are intuitive and easy to
grasp, and we will apply them without proof. In order to understand the ap-
plications to stochastic geometry that we intend to explain, the knowledge
of fundamental notions from probability theory will be sufficient.

159



The material is taken from different sources, essentially from the lecture
notes on “Integralgeometrie” [8] and “Stochastische Geometrie” [9], both
written together with Wolfgang Weil. Another source is the fourth chapter

of the book [7] on convex bodies.
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1 Introduction

It will be one aim of the following lectures to develop some integral geometric
formulae for sets in Euclidean space and to show how they can be applied
in parts of stochastic geometry. In particular, I want to emphasize the role
that integral geometry can play in the theoretical foundations of stereology.
By stereology one understands a collection of procedures which are used
to estimate certain parameters of real materials by means of measurements
in small probes and plane sections. Stereology is applied in biology and
medicine as well as in material sciences (e.g., metallography, mineralogy).

Since much of the motivation for the later theoretical investigations
comes from these practical procedures, let me first explain the underlying
ideas by two typical examples.

In geology, one may be interested in determining the volume proportion
of some mineral in a rock. Thus one assumes that for the material in ques-
tion there is a well-defined parameter, traditionally denoted by V3, that
specifies the volume of the investigated mineral per unit volume of the total
material. In order to determine this specific volume Vi, one will first take
a probe of the material “at random”. As a second step, Delesse (1847) pro-
posed to produce a (polished) plane section of the probe, possibly again “at
random”, and to determine the specific area A 4 of the investigated mineral
in that section. On the basis of heuristic arguments, Delesse asserted that

VV = AA;

or rather that the measured value A4 is a good estimate for the unknown
parameter Vi .

A second example is taken from medicine. One may be interested in the
gas exchange of a mammal lung, and this depends on the alveolar surface
of the lung. To measure this specific area, denoted by Sy, only a small
probe of the lung tissue will be available, and usually only a thin slice can
be observed under the microscope. Tomkeieff (1945) proposed to determine
the specific boundary length L4 of the tissue in the section and then to
estimate the unknown specific area Sy by means of the formula

4
SV = _LA7
™

again supported by heuristic arguments.

Scientists working in practice have developed similar formulae. The so-
called ‘fundamental equations of stereology’ are

4
VV = AA7 SV = ;LAy MV = 2’n'XA-
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Here M denotes the integral of the mean curvature, and x is the Euler
characteristic.

It is evident that such heuristic procedures are implicitly based on many
tacit assumptions. A theoretical justification has to begin by analyzing these
assumptions, it has to provide suitable models and must finally lead to ex-
actly proven formulae of the type used in practice. The first assumption is
that the parameter of the material to be determined, like volume or surface
area per unit volume, exists and can be estimated with sufficient accuracy
from taking randomly placed probes and averaging. A solid foundation and
justification can be achieved if the material under investigation is modelled
as the realization of a random set. Taking a probe at random can then be
modelled as follows. We fix a shape for the probe or ‘observation window’,
say a compact convex set K with positive volume. Inside K we observe a
realization Z(w) of our random set Z. We assume that for the intersection
Z(w) N K we are able to measure a geometric functional ¢ of interest, like
volume or surface area. Instead of placing K in a random position, one
assumes that the random set Z has a suitable invariance property, meaning
that Z and its image under any translation or rigid motion are stochastically
equivalent. Under suitable model assumptions, the mathematical expecta-
tion Ep(Z N K) will exist, and the measured value ¢(Z(w) N K) can be
considered as an unbiased estimator. If the model is such that the random
set Z has a well-defined ¢-density, the next question is then how this is
related to the local expectation E¢(Z N K), depending on the test body
K. Similar considerations will be necessary to justify the determination of
parameters from randomly placed lower-dimensional sections.

This program, of which we have merely given a rough sketch, will obvi-
ously require the development of

e a theory of random sets with suitable invariance properties, admitting
densities of geometric functionals, like volume, surface area, Euler
characteristic,

e a theory of mean values of geometric functionals, evaluated at inter-
sections of fixed and moving geometric objects.

2 Elementary mean value formulae

We begin with the second part of the program, the development of mean
value formulae for fixed and moving geometric objects. By “moving” we
mean here that the geometric objects, which are in Euclidean space, un-
dergo translations or rigid motions. The mean values will be taken with
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respect to invariant measures on the groups of translations or rigid mo-
tions. The present section is still part of the introduction and will discuss
a few elementary examples of such mean value formulae.

We work in n-dimensional Euclidean space R” (n > 2). The subsets
of R® which will later (in dimensions two and three) be used to model
real material, should not be too complicated, in order that functionals like
surface area or Euler characteristic are defined (locally). It is sufficient for
practical applications to consider only sets which can locally be represented
as finite unions of convex bodies (non-empty, compact convex sets). We
begin by considering only convex bodies; it will later be easy to extend the
results to more general sets of the type just described. By K™ we denote
the set of convex bodies in R”.

The following is a basic example of the type of questions that we will
have to answer. Let K, M € K™ be two convex bodies. Let M undergo
translations, that is, we consider M + ¢ for ¢ € R®. What is the mean value
of the volume of K N (M + t), taken over all ¢t with K N (M +t) # (7 The
mean value here refers to the invariant measure on the translation group,
which can be identified with the Lebesgue measure A on R™. For convex
bodies K, we write V,,(K) = A(K) for the volume. Thus we are asking for
the mean value

Jon Va(EK N (M +t)) dX(t)
Jon X(K O (M +t)) dA(t)

(1)

Note that y(K') = 1 for a non-empty convex body K’ and x(#) = 0, so that
the denominator is indeed the total measure of all translation vectors ¢ for
which K N (M +t) # 0. Thus we have to determine integrals of the type

/ o(K O (M + 1)) dA(t)

R™

for different functionals ¢. FExtensions of this problem will be our main
concern in these lectures.

It is not difficult to determine the numerator in (1). Denoting the indi-
cator function of a set A C R" by 14, we have

V(KO (M +1)) = / Licnatn (2) dA(2)
J

and

1n(m+t) (7) = 1k (2)1ar4e(2)
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with
Iysi(z)=1 & zeM4+t & teM "+ & 1yg,(t)=1.
Here we have denoted by
M*={yeR":—yec M}

the set obtained from M by reflection in the origin. Now Fubini’s theorem
gives

/ V(K 0 (M + 1)) dA(t)

Rn

- / / Licrur o) () dA () dA(E)

RnR»
- / / L (@) Lag--42(8) dA() dA(2)
RnR»
_ / L ()Viy (M* + ) dA(x)
J
— Vv, (M*) / 1 () d\(x)
g,
and hence
/ V(K 0 (M 4+ 1)) dA(t) = Vi (K )V (M). @)

R~

Note that we have used the invariance of the volume under translations
and reflections.
The denominator in (1) is of a different type. We have

XKN(M+t)=1 & KnM+t)#0
& Jdke KdmeM:k=m+t
& t=k-—-mwithke KkmeM
& teK+ M*
& 1gam(t) =1
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and hence

—/X(Km (M + 1)) dA(t) = V(K + M*). (3)
.

Convex geometry tells us that

n
V(K + M%) =Y <T,L>V(K,...,K,M*,...,M*),

y 1 N—
=0 i n—i
where the function V' : (K™)" — R is the so-called mized volume. The
essential observation for us is here that the obtained expression cannot be
simplified further. In particular, there is no separation of the roles of K and
M on the right-hand side, as it occurred in (2). Such a separation is only
achieved if we integrate, not only over the translations of M as in (3), but
over all rigid motions of M. This will be one of the fundamental results of
integral geometry to be obtained later.

For the moment, however, we stay with the translation group alone.
The idea leading to (2) can be extended, to give a first general formula of
translative integral geometry.

When we talk of a measure on a locally compact space E, we always
mean a non-negative, countably additive, extended real-valued function on
the o-algebra B(FE) of Borel sets of E. Such a measure is called locally finite
if it is finite on compact sets.

2.1 Theorem. Let a be a locally finite measure on R, and let A,B €
B(R™). Then

/a(A (B + 1)) dA(t) = a(AA(B). @)

R~

Proof. Using Fubini’s theorem, we obtain

/a(A N (B + 1)) d\(®)

J
= [ [ anisrn () daa)ax
R"R»
- / / 14(0) 151 () dA(t) da(a)

R™R™
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= [14@) [ 16120 X0 da)

R™ R™

:/lA(m))\(B* + z) da(zx)
B

= a(A)\(B).
[ |

This can be used to obtain a counterpart to the translative integral formula
(2), with volume replaced by surface area. First we have to explain what we
mean by the surface area of a general convex body, which need not satisfy
any smoothness assumptions. For that purpose, let us first recall the notion
of the p-dimensional Hausdorff measure, for p > 0.

We equip R" with the usual scalar product (-,-) and the induced norm
|| - |]- For a subset G C R", the diameter is defined by

D(G) :=sup{llz —y|| : z,y € G}.
Now for an arbitrary subset M and for § > 0 one defines

wp/2
HE(M) = 2T+ 1nf ZD : (G})ien sequence of open sets

with D(Gl) <dand M C U Gl} .

i=1
The limit

P — p p
HP(M) := lim 5 (M )-3‘;187‘[5(]\4)

exists in RU{oo} and is called the p-dimensional (outer) Hausdorff measure
of M. The restriction of H? to the o-algebra B(R™) of Borel sets is a
measure. One can show that H"(A) = A(4) for A € B(R™).

Now the surface area of a convex body K € K™ with interior points is
defined by

H"(OK) =: 2V, 1 (K),

where 0 denotes the boundary. The notation 2V, _; is chosen with respect
to later developments. For K € K" without interior points, we define
Vp—1(K) := H"~1(K). This is zero if K is of dimension less than n — 1.
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2.2 Theorem. Let K, M € K" be convex bodies with interior points. Then

[ Vara (K 0+ 0) dN®) = Vo (VM) + Va(K)Voma OD). (3
Bn
Proof. The boundary of the intersection K N (M + t) consists of two parts:
I(KN(M+1t)=[0KN(M+t)]U[KN(OM +1)].
The intersection of the two sets on the right satisfies
PKN(M+t)]N[KN(@OM+t)] COKN(OM+t).
We define
a(A) :=H""HOKNA) for Ac B(R").

Then « is a finite measure on R". From (4) (with A = 0K and B = 0M)
we get

/ H LY OK N (OM +t)) dA(t) = H™ HOK)N(OM) = 0.
B

Since the integrand is nonnegative, it follows that
H"HOK N (OM +1)) =0 for A-almost all ¢,

that is, for all ¢ € R* \ N, with some set N satisfying A(N) = 0. Hence, for
all t € R \ N we have

HHOK N (M +1t)) =H" Y OK N (M +1t)) +H" 1K N (OM +1t)).
(6)

Using (4) with A = 0K and B = M, we further obtain

/’H"—l(aK N (M +t))d\(t) = H"H(OK)A(M).

Rn

Moreover,

/ H=L(K N (DM + 1)) dA(¢)

R~
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= /H’H((K—t) NOM)dA(t)
Bn

_ /anl(aM N (K + 1)) dA(t)
i

= H""H(OM)A(K).

Here we have used the facts that H" ! is translation invariant and that the
Lebesgue measure is invariant under the inversion ¢t — —t. Finally we have
used (4) again.

Since equation (6) holds for all ¢t € R* \ N and since the null set N can
be neglected in the integration, we deduce that

/’H”’l(a(K N (M +t))d\(t) = H" H(OK)ANM) + H" H(OM)N(K).
B

This is precisely the assertion (5). |

Instead of intersecting a fixed convex body with a translated one, we now
briefly consider the intersections with a translated hyperplane. We param-
eterize hyperplanes in the form

H(u,7):={z e R* : {x,u) =7}

with a unit vector v € R” and a real number 7 € R. Thus wu is one of the
two unit normal vectors of the (unoriented) hyperplane H (u, 7).
For a convex body K € K", Fubini’s theorem immediately gives

/Vn_l(K N H(u, 7)) dr = Vy (K).
R

Can we obtain the surface area of a convex body K € K" with interior
points in a similar way, that is, by a formula of type

/H”*Q(aK N H(u,7))dr = ¢,V 1 (K)

R™

with some constant ¢,,? Simple examples (balls and cubes in R?*) show that
such a formula does not hold with a constant independent of K. However,
we shall later see that

/7—[”72(8[( N H(u,7))dr do(u) = ¢y Vi1 (K) (7)
Sn—1Rn
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does hold with a constant ¢,,. Here the outer integration is over the unit
sphere S” ! with respect to the rotation invariant measure o.

Both integrations in (7) together can be interpreted as one integration
over the space of hyperplanes, with respect to a rigid motion invariant mea-
sure on that space. Thus we have now two examples for the simplifying
effect in obtaining mean values when the integrations are performed with
respect to motion invariant measures. This observation will be considerably
elaborated in the following.

3 Invariant measures of Euclidean geometry

Integral geometry is based on the notion of invariant measure. Here invari-
ance refers to a group operation and thus to a homogeneous space. Invariant
measures on homogeneous spaces are also known as Haar measures. We do
not presuppose here any knowledge of the theory of Haar measure. In the
present section, we give an elementary introduction to the invariant mea-
sures on the groups and homogeneous spaces that are used in the integral
geometry of Euclidean space.

A topological group is a group G together with a topology on G such
that the map from G x G to G defined by (x,y) — xy and the map from
G to G defined by z — z~! are continuous. Let G be a group and X a
non-empty set. An operation of G on X is amap ¢ : G x X — X satisfying

o(g,0(g', 7)) = p(gg',x),  le,x) =2

for all g,g’ € G, the unit element e of G and all z € X. One also says
that G operates on X, by means of . For ¢(g,z) one usually writes gz,
provided that the operation is clear from the context. The group G operates
transitively on X if for any z,y € X there exists g € G so that y = gz. If
G is a topological group, X is a topological space, and the operation ¢ is
continuous, one says that G operates continuously on X.

The following situation often occurs: X is a nonempty set and G is a
group of transformations (bijective mappings onto itself) of X, with the
composition as group multiplication; the operation of G on X is given by
(g,x) = gz := image of = under g. When transformation groups occur in
the following, multiplication and operation are always understood in this
sense.

We consider three groups of bijective affine maps of R" onto itself, the
translation group T,, the rotation group SO, and the rigid motion group
G . The translations t € T, are the maps of the form ¢t = ¢, with z € R",
where t,(y) := y+x for y € R*. The mapping 7 :  — ¢, is an isomorphism
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of the additive group R™ onto T;,. Hence, we can identify T}, with R™, which
we shall often do tacitly. In particular, T;, carries the topology inherited
from R™ via 7. Since t,ot, = t,4, and t;l =t_,, composition and inversion
are continuous, hence T}, is a topological group. In view of the topological
properties of R™ we can thus state the following.

3.1 Theorem. The translation group T, is an abelian, locally compact
topological group with countable base. The operation of T, on R™ is contin-
wOUS.

The elements of the rotation group SO,, are the linear mappings ¢ : R —
R™ that preserve scalar product and orientation; they are called (proper)
rotations. With respect to the standard (orthonormal) basis of R", every
rotation ¢ is represented by an orthogonal matrix M (¢#) with determinant 1.
The mapping p : 9 — M (¥) is an isomorphism of the group SO,, onto the
group SO(n) of orthogonal (n,n)-matrices with determinant 1 under matrix
multiplication. If we identify an (n,n)-matrix with the n?-tuple of its entries
(in lexicographic order, say), we can consider SO(n) as a subset of R"". This
set is bounded, sir;ce the rows of an orthogonal matrix are normalized, and
it is closed in R™ , hence compact. The mappings (M,N) — MN and
M +— M~! are continuous, and so is the mapping (M,z) ~ Mz (where
x is considered as an (n, 1)-matrix) from SO(n) x R* into R". Using the
mapping p~! to transfer the topology from SO(n) to SO,,, we thus obtain
the following.

3.2 Theorem. The rotation group SO, is a compact topological group with
countable base. The operation of SO, on R™ is continuous.

The elements of the motion group G, are the affine maps g : R* — R”
that preserve distances between points and the orientation; they are called
(rigid) motions. Every rigid motion g € GG, can be represented uniquely as
the composition of a rotation ¥ and a translation t,, that is, g = t, o ¥, or
gy = Uy + x for y € R®. The mapping

v: R*xS0, — G,
(z,9) = tyod

is bijective. We use it to transfer the topology from R” x SO,, to G,,. Using
Theorems 3.1 and 3.2, it is then easy to show the following.

3.3 Theorem. G, is a locally compact topological group with countable
base. Its operation on R™ is continuous.
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After these topological groups, we now consider the homogeneous spaces
that will play a role in the following. Let ¢ € {0,...,n}, let £i be the
set of all g-dimensional linear subspaces of R", and let &' be the set of
all g-dimensional affine subspaces of R"™. The natural operation of SO, on
Ly is given by (¥, L) = 9L := image of L under oJ. Similarly, the natural
operation of G, on ' is given by (g, E) = gE := image of E under g. We
introduce suitable topologies on L7 and 7. For this, let L, € L} be fixed
and let L, be its orthogonal complement. The mappings

B,: SO, — Lr
9 9L,

and
Vg qu xS0, — &L
(z,9) = (L, + z)

are surjective (but not injective). We endow L}’ with the finest topology
for which 3, is continuous, and &' with the finest topology for which ~,
is continuous. Thus a subset A € £, for example, is open if and only if
7;1(A) is open. It is an elementary task to prove the following.

3.4 Theorem. Ly is compact and has a countable base, the map 3, is

open, and the operation of SOy on Ly is continuous and transitive.

3.5 Theorem. &' is locally compact and has a countable base, the map v,
is open, and the operation of G,, on £ is continuous and transitive.

It should be remarked that the topologies on Lj and £, as well as the
invariant measures on these spaces to be introduced below, do not depend
on the special choice of the subspace L,. This follows easily from the fact
that SO,, operates transitively on £y, and G,, operates transitively on &'

The topological spaces £ are called Grassmann manifolds; a common
notation for £j is G(n,q). The spaces £ are also called affine Grassman-
nians.

Occasionally, we have talked of homogeneous spaces; it seems, therefore,
appropriate here to give the general definition. If G is a topological group,
a homogeneous G-space is, by definition, a pair (X, ¢), where X is a topo-
logical space and ¢ is a transitive continuous operation of G on X with the
additional property that the map ¢(-,p) is open for p € X. In this sense,
L7 is a homogeneous SO,-space (with respect to the standard operation),
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and £ is a homogeneous G,,-space. Also with the standard operations, R"
is a homogeneous T;,-space and G,-space, and the unit sphere

gn-l.— {z e R" : ||z|| = 1}

is a homogeneous SO,,-space.

We shall now introduce invariant measures on the groups and homo-
geneous spaces considered. We begin with some general definitions and
remarks. All topological spaces occurring here are locally compact and sec-
ond countable. By a Borel measure p on X we understand a measure on the
o-algebra B(X) of Borel sets of X satisfying p(K) < oo for every compact
set K C X. Every such measure is regular. Instead of ‘Borel measure’
we often say ‘measure’ for short. The notion ‘measurable’, without extra
specification, means ‘Borel measurable’.

Let the topological group GG operate continuously on the space X. A
measure p on X is called G-invariant (or briefly invariant, if G is clear from
the context) if

p(gA) = p(A) forall A€ B(X) and all g € G.

This definition makes sense: for each g € G, the mapping z — gz is a
homeomorphism, hence A € B(X) implies gA € B(X). Invariant regular
Borel measures on locally compact homogeneous spaces are called Haar
measures, if they are not identically zero.

From basic measure theory, we assume familiarity with Lebesgue mea-
sure on R™, in particular with the following result. Here we use the unit
cube C™ := [0, 1] for normalization.

3.6 Theorem and Definition. There is a unique translation invariant
measure A on B(R™) satisfying A\(C™) = 1. It is called the Lebesgue measure.

It is easy to see that A is also rotation invariant (SOy-invariant). If § € SO,,
and if one defines p(A4) := A(JA) for A € B(R"), then p is a translation
invariant measure on B(R"). By Theorem 3.6, p = ¢\ with ¢ = p(C™). The
unit ball B" satisfies ¢c\(B") = p(B"™) = A(YB™) = A\(B™), hence ¢ = 1.

Since the Lebesgue measure \ is thus rigid motion invariant, it is the
Haar measure on the homogeneous G,,-space R, normalized in a special
way.

We mention the special value

Kn = A(B") =
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which will play a role in many later formulae. We put &g := 1.
The Haar measure on the homogeneous SO,,-space S™ 1, the unit sphere,
is easily derived from the Lebesgue measure. For A € B(S"~!) we define

A={azeR" :ze 4, 0<a<1}.

A standard argument shows that A € B(R"), hence we can define o(A) :=
nA(A). This yields a finite measure o on B(S™~!) for which

o(S" ) = w, = nk, =

wl: M‘:
~

(

The rotation invariance of A implies the rotation invariance of 0. We call
o, with the normalization specified above, the spherical Lebesgue measure.
Up to a constant factor, o is the only rotation invariant Borel measure on
B(S™1). This follows from Corollary 3.12 below.

Our next aim is the introduction of an invariant measure on the rotation
group SO,. For a measure on a group, several notions of invariance are
natural. A topological group G operates on itself by means of the mapping
(g,z) — gz (multiplication in G). The corresponding invariance on G is
called left invariance. More generally, for g € G and A C G we write

gA:={ga:ac A}, Ag:={ag:ac A}, A *':={a':ac A}

If A € B(G), then also gA, Ag, A~! are Borel sets. A measure p on G is
called left invariant if p(gA) = p(A), and right invariant if p(Ag) = p(A),
for all A € B(G) and all g € G. The measure p is inversion invariant if
p(A71) = p(A) for all A € B(G). If p has all three invariance properties, it
is just called invariant.

With these definitions we connect two general remarks. Let p be a
left invariant measure on the topological group G. Then each measurable
function f > 0 on G satisfies

/fagdp /f ) dplg (8)

for all @ € GG. This follows immediately from the definition of the integral.
Vice versa, if (8) holds for all measurable functions f > 0, then the left
invariance of p is obtained by applying (8) to indicator functions. Similarly,
the right invariance of p is equivalent to

/fgadp /f ) dplg (9)
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for a € G, and the inversion invariance of p is equivalent to

/f 1) dp(g /f ) dp(g (10)

in each case for all measurable functions f > 0.

The following theorem on invariant measures on compact groups will be
needed for the rotation group only, but can be proved without additional
effort in a more general setting.

3.7 Theorem. FEvery left invariant Borel measure on a compact group with
countable base is invariant.

Proof. Let v be a left invariant Borel measure on the group G satisfying the
assumptions. Since it is finite on compact sets, we may assume v(G) = 1,
without loss of generality. For measurable functions f > 0 on G and for
x € G we have

/fylzrdy /fa:y ) dv(y /f “Hdv(y (11)

Here the integrations extend over all of (; similar conventions will be
adopted in the following. Fubini’s theorem gives

[ o) = [ [ 1) avw dvie)
//fylzrdu dv(y /f dv(z

Hence, the measure v is inversion invariant. Using this fact and (11), we

get for z € G that
/fya:dl/ /fyla:du)

:/f(y—l)du(y) :/f(y) dv(y)

which shows that v is also right invariant. |

Concerning the application of Fubini’s theorem here and later, we remark
the following. All topological spaces occurring in our considerations are lo-
cally compact and second countable, thus they are o-compact. Moreover,
all the measures that occur are finite on compact sets. Therefore, all mea-
sure spaces under consideration are o-finite, so that Fubini’s theorem can
be applied in its usual form.
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The following uniqueness result for invariant measures makes special
assumptions, but in this form it is sufficient for our purposes and is easy to
prove.

3.8 Theorem. Let G be a locally compact group with a countable base, let
v # 0 be an invariant and p a left invariant Borel measure on G. Then
u = cv with a constant ¢ > 0.

Proof. For measurable functions f,g > 0 on G we have

/de/gdu = //f(wy)g(y) dv(z) dp(y)

= [ [ s duty) avie) = [ [ 1wig(ay) duty) dv(o)

= [ 1) [y avta)duty) = [gav [ fan.

Here we have used, besides Fubini’s theorem, the right and inversion invari-
ance of v and the left invariance of u.

Since v # 0, there is a compact set A9 C G with v(4p) > 0. For
arbitrary A € B(G) we put f := 14, and g := 14 and obtain v(Ag)u(A) =
v(A)u(Ap), hence p = cv with ¢ := u(A4p)/v(4op).

The notation 14 used here for the indicator function of a set A will also be
employed in the following.

Now we turn to the existence of some invariant measures. First we de-
scribe a direct construction of the invariant measure on the rotation group,
without recourse to the general theory of Haar measure.

3.9 Theorem. On the rotation group SO,, there is an invariant measure
v with v(SO,,) = 1.

Proof. By LI, we denote the set of linearly independent n-tuples of vec-
tors from the unit sphere S"!. We define a map ¢ : LI, — SO, in
the following way. Let (z1,...,z,) € LI,. By Gram-Schmidt orthonor-
malization, we transform (1, ...,z,) into the n-tuple (z1,...,2,); then we
denote by (z1,...,Z,) the positively oriented n-tuple for which z; := z; for
i=1,...,n—1and Z, := xz,. If (e1,...,e,) denotes the standard basis of
R™, there is a unique rotation ¥ € SO, satisfying ¥e; =Z; fori =1,...,n.
We define ¥ (z1,...,x,) := 9.

175



Explicitly, we have z; = y;/||y;|| with y1 = x; and

k—
Zwk,y] s |2, k=2,...,n.
=1

From this representation, the following is evident. If p € SO, is a rota-

tion and if the n-tuple (z1,...,2,) € LI, is transformed into (z1,...,25)
and then into (Z1,...,Z,), then the n-tuple (pz1,..., pry,) is transformed
into (pz1,...,pz,) and subsequently into (pZi,...,pZ,). Thus we have

¢(pm17 v :Pl'n) = p¢(m17 v 7mn)'
For (z1,...,z,) € (S"™1)"\ LI, we define ¢)(x1,...,7,) :=id. For the
product measure

the set (S"~1)" \ LI,, has measure zero; hence for any p € SO,, the equal-
ity ¢¥(px1,...,pxrs) = pt(x1,...,2,) holds 0®"-almost everywhere. The
mapping ¥ : (S"~1)" — SO, is measurable, since LI, is open and 1 is
continuous on LI, and constant on (S"~1)"\ LI,.

Now we define ¥ as the image measure of 0®" under 1, thus 7 = 1 (a®").
Then 7 is a finite measure on SO,,, and for p € SO,, and measurable f > 0

we obtain
| #omdno)
SO,

= / Flp(zy, ... z,))do®™ (xy, ..., Tp)
(Snfl)n

- / F@(pts, ., pra)) do® (z1, ... 20)
(Sn—l)’n

= [ [ 1@ ) o) do(an)
Lo

= / / FW(zy,...,zn))do(zy) - do(zy)
Sn-1 gn-1

:/f(ﬂ)dﬁﬂ

SO,
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Here we have used the rotation invariance of the spherical Lebesgue measure.
We have proved that the measure 7 is left invariant and thus invariant, by
Theorem 3.7. The measure v := 7/7(S0,,) is invariant and normalized. Hl

From now on, v will always denote the normalized invariant measure on
SO,.

Now we turn to the motion group G,,. Since it is not compact, an invariant
measure p on (7, cannot be finite. In order to normalize i, we specify the
compact set Ag := y(C™ x SO,,) and require that pu(A4y) = 1.

3.10 Theorem. On the motion group G, there is an invariant measure
u with u(Ag) = 1. Up to a constant factor, it is the only left invariant
measure on G.,.

Proof. We define p as the image measure of the product measure A ® v
under the homeomorphism v : R® x SO,, — G, defined by (3). Then pu is
a Borel measure on G, with u(v(C™ x SO,)) = AM(C™)v(S0,) =1

To show the left invariance of u, let f > 0 be a measurable function on
G, and let ¢’ € G,,. With ¢’ = v(t',9") we have

/ f(g'g) dulg)
Gn

- / / FO(E, 94 (t, 9)) dA(E) d(9)
_ / / FOUE + 9't,9"9)) dA(E) dv(9)

= [ [ st aeao

where we have used the motion invariance of A and the left invariance of v.
Hence, p is left invariant. Similarly, the right invariance of v implies via

/fgg dulg //f (t+ 9t 99')) dA(E) du ()

SO, R»

//f (t,9)) dA(t) dv(V /f ) dp(g

SO, R»
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the right invariance of p. The inversion invariance of p is obtained from

/ fadu) = [ [ £o(-07 007 are) dv(w)

SO, R»

//f (t,9)) dA(t) dv (v /f ) du(g

SO, R™

where the inversion invariance of v was used.
The uniqueness assertion is a special case of Theorem 3.8. [ |

Having constructed invariant measures on the groups SO,, and G,,, we next
turn to the introduction of invariant measures on the homogeneous spaces
Ly and £F. First we prove a formula of integral-geometric type, extending
Theorem 2.1, which will be useful for obtaining uniqueness results.

3.11 Theorem. Suppose that the compact group G operates continuously
and transitively on the Hausdorff space X, and that G and X have countable
bases. Let v be an invariant measure on G with v(G) =1, let p # 0 be a
G-invariant Borel measure on X and o an arbitrary Borel measure on X.
Then

/ (AN gB)dv(g) = a(A)p(B)/p(X)
G

for all A, B € B(X).

Proof. If ¢ denotes the operation of G on X and if z € X, the mapping
o(,z) : G — X is continuous and surjective, hence X is compact. There-
fore, the Borel measures « and p are finite. Let A, B € B(X) and g € G be
given, then

a(AN gB) = /ngB do(z) = /lA(m)lB(g_lw) do().

X X

Fubini’s theorem yields

[atangmravig = [1a@) [ 16l 0 drg)daw). (2)
G

G X

The integral [ 15(g9 'z)dv(g) does not depend on z, since for y € X there
G
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exists § € G with y = gz and, therefore,

/ 15(g7"y) dv(g) = / 15((5"9)""2) du(g) = / 15(g™"2) dv(g).

G G G

Hence we obtain

Inserting this into (12), we complete the proof. |

3.12 Corollary. Suppose that the compact group G operates continuously
and transitively on the Hausdorff space X and that G and X have countable
bases. Let v be an invariant measure on G with v(G) = 1.

Then there exists a unique G-invariant measure p on X with p(X) = 1.
It can be defined by

p(B) :=v({g € G : gxy € B}), B € B(X),

with arbitrary xo € X.

Proof. Let p be a G-invariant measure on X with p(X) = 1. We choose
zg € X and let a be the Dirac measure on X concentrated in xy. Theorem
3.11 with A := {x¢} gives

p(B) =v({g € G:g "o € B})

for B € B(X). Thus p is unique. Vice versa, if p is defined in this way, it is
clear that it is a G-invariant normalized measure.

Now we turn to invariant measures on the space £y of ¢g-dimensional linear
subspaces and on the space £ of g-dimensional affine subspaces. By an
invariant measure on Ly we understand an SO,-invariant measure on L,
and an invariant measure on £ is defined as a G,-invariant measure on /.

3.13 Theorem. On L there is a unique invariant measure v,, normalized
by v (L7) = 1.

This is just a special case of Corollary 3.12. We also notice that v, is the
image measure of v under the map 3, defined by (3).
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3.14 Theorem. On & there is an invariant measure ji,. It is unique up
to a constant factor.

Proof. We recall that we have chosen a subspace L, € Ly and defined the
map v, : Li x SO, — & by (3). Let A("=9) be Lebesgue measure on L.
We define

tg =M\ @), (13)

so that p, is the image measure of the product measure A=9 @y under
the map ~,. If A C £ is compact, the sets

w({z € Lf :|lofl <k} x SO.), ke,

constitute an open covering of A, hence A is included in one of these sets.
It follows that u,(A) < co.

By the definition of p,, integrals with respect to p, can be expressed in
the following way. For a nonnegative measurable function f on &7,

[ran = [ [ 10w, +a)ax=o @ anp)
J

S0. Lt

/ / F(pLy +y) AN () du(p).
S0n (

n (pLg)*

Since the invariant measure v, on £y is the image measure under the map
B¢, this can be written as

/ fduy = / / F(Z+ ) A9 () du (L), (14)
5; C;L Lt

From this representation we infer that p, does not depend on the choice of
the subspace L.

To show the invariance of pg, let ¢ = v(z,9) € G and let f > 0 be a
measurable function on £'. Denoting by II the orthogonal projection onto
Ly, we have

/ F(9F) dyy(B)
J

- / / Fgp(Ly +y)) dA=9 () dv(p)

SOn Lt

180



- / / FOp(Ly +y + (o0 2))) dA" 9 (y) dv(p)
SO, L;—

_ / / FIp(Ly + 1)) dX"=D (3) d(p)

SO. L}

- / /f(p(Lquy))dA(”"’)(y) dv(p)

SOn L}

- / F(B) dpy(B),
gn

where we have used the invariance properties of A(»~% and v. This shows
the invariance of p,.

To prove the uniqueness (up to a factor), we assume that 7 is another
invariant Borel measure on £;'. Let ﬁ;‘ (respectively c‘j;‘) be the open set of

all L € L7 (respectively E € &) that intersect L in precisely one point.
The mapping
g : LqL xLy - &

(z,L) +— L+x

is a homeomorphism. For fixed B € B(L?) and arbitrary A € B(L}) we
define n(A) := 7(6,(A x B)). Then 5 is a Borel measure on L, which is
invariant under the translations of qu into itself. Theorem 3.6 implies that

n(A) = A"~ 9 (A)a(B) with a constant a(B) > 0. Hence we have
7(8,(A x B)) = A"~ (A)a(B)

for arbitrary A € B(L;) and B € B(ENZ}) Obviously this equation defines
a finite measure « on B(ﬁg), and 6, (1) = M=% © o. For a measurable
function f >0 on g’g‘ we obtain

/fdr = //f(L+a:)d>\("_4)(x)da(L)

£ Lr Ly

/ / F(L + ) dA9 () dg(L) (15)

N
Lr L

n
q

181



with a measure ¢ on ﬁ;‘ defined by dp(L)/da(L) = D(Lg,L+)"!, where
D(L;, L") is the absolute determinant of the orthogonal projection from
Lj onto L*.

Now let B € B(L}}) and

B':={L+y:LeB,yclLtnB"}.

By B(B) := 7(B') we define a rotation invariant finite measure 8 on L}'.
According to Theorem 3.13 it is a multiple of v;. On the other hand, (15)
gives 7(B') = kp_qp(B) for B C ENQ Hence, there is a constant ¢ with
©(B) = cvy(B) for all Borel sets B C ﬁ;‘ From (15) and (14) we deduce
that 7(A) = cpqy(A) for all Borel sets A C g’g‘ Since 4 does not depend on
the choice of the subspace L, € Ly, it is easy to see that 7 = cp,. [ |

By its definition, the measure p, comes with a particular normalization.
We want to determine the measure of all ¢-flats meeting the unit ball B™.
Since

{E€& :ENB" £ 0} =v((B"NL;) x SO,),
we get
p({E € & : ENB™ # 0}) = knq.
For r > 0 we have

pe({E €& : ENrB™ #0}) = 1" Ykp_q.

4 Additive functionals

Beside special Haar measures, another type of invariant measures that we
will use are finitely additive measures on certain systems of subsets of Eu-
clidean space.

We begin with some general definitions. Let ¢ be a function on a family
S of sets with values in some abelian group. The function ¢ is called additive
or a valuation if

P(KUL)+p(KNL)=p(K)+ L) (16)

holds whenever K, L € § are sets such that also KUL € Sand KNL € S.
If § € S, one also assumes that p(f) = 0. We say that the system S is
N-stable (intersection stable) if K,L € S implies K N L € SU{0}. In
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this case, we denote by U(S) the system of all finite unions of sets in S
(including the empty set). The system U(S) is closed under finite unions
and intersections and thus is a lattice.

Now let ¢ be an additive function on §. One may ask whether it has an
extension to an additive function on the lattice U(S). Suppose that such
an extension exists, and denote it also by . Then for K;,...,K,, € U(S)
the formula

m
P UK =3 (- Y p(K,n--nK,)  (17)
r=1 i <<ty
holds. For m = 2, this is just the equation (16) defining additivity. The
general case of (17) is easily obtained by induction. This formula is called
the inclusion-exclusion principle.

Formula (17) shows that an additive extension from the N-stable sys-
tem S to the generated lattice U(S), if it exists, is uniquely determined.
Conversely, however, one cannot just use (17) for the definition of such
an extension, since the representation of an element of U(S) in the form
Ky U---UK,, with K; € § is in general not unique. Hence, the existence
of an additive extension, if there is one, must be proved in a different way.

We will write (17) in a more concise form. For m € N, let S(m) denote
the set of all non-empty subsets of {1,...,m}. For v € S(m), let |v| :=
cardv. If Ky,..., K,, are given, we write

K, =K;n---nK;, for v = {i1,...,ir} € S(m).

With these conventions, the inclusion-exclusion principle (17) can be written
in the form

p(ELU-UKp) = Y (=) o(K,). (18)
veS(m)

Of considerable importance in the following is the lattice U(K™) gener-
ated by the N-stable family K™ U {#}. Thus the system U(K™) consists of
all subsets of R™ that can be represented as finite unions of convex bodies.
We call such sets polyconvez (following Klain-Rota [4], who in turn followed
E. de Giorgi). Hadwiger [2] used for U(K™) the name ‘Konvexring’, which
has been translated (perhaps not so luckily) into convez ring.

The simplest non-zero valuation on K™ is given by x(K) = 1 for all
K € K". We show that it has an additive extension to U (K™).

4.1 Theorem. There is a unique valuation x on the convex ring U(K™)
satisfying

x(K)=1 for K € K™.
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Proof. The proof uses induction with respect to the dimension. For n = 0,
the existence is trivial. Suppose that n > 0 and the existence has been
proved in Euclidean spaces of dimension n — 1. We choose a unit vector
u € R and define

E) =3 {X(Kﬂﬂ(u,k)) i (K 1 H(u, 1) (19)
AER

for K € U(K™). On the right-hand side, x denotes the additive function
that exists by the induction hypothesis in spaces of dimension n — 1. It is
obvious that y(K) =1for K e K". f K = K1 U---U K, with K; € K",
then the inclusion-exclusion principle gives

X(ENHw,\) = Y (~D)M'x (K, N H(u,\),
vES(m)

since x is additive on the polyconvex sets in H(u,A). Now the function
A = x(Ky N H(u, A)) is the indicator function of a compact interval, hence
it is clear that the limit in (19) exists for every A € R and is non-zero only for
finitely many values of A\. Thus yx is well-defined on U (K™). It follows from
(19) and the induction hypothesis that x is additive on U(K™). This proves
the existence of y. The uniqueness is clear from the inclusion-exclusion
principle. |

The function x is called the Fuler characteristic. It coincides, on U(K™),
with the Euler characteristic as defined in algebraic topology.

Another simple example of a valuation on U (K™) is given by the indicator
function. For K € U(K™), let

1g(z) :=
x(@) 0 forzeR"\K.

{ 1 forz €K,
For K,L € U(K") we trivially have
1xurn(z) + 1xnn(z) = 1k (z) + 1k (2)
for z € R™. Hence, the mapping
p: UK — V
K — 1k
is an additive function on U (K™) with values in the vector space V' of finite

linear combinations of indicator functions of polyconvex sets. Since K — 1x
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is additive, for K € U(K™) with K = K;U---UK,,, K; € K™, the inclusion-
exclusion principle gives

= Y (DM,

veES(m)

Thus V' consists of all linear combinations of indicator functions of convex
bodies.

We will now prove a general extension theorem for valuations on K",
which is due to Groemer [1]. We endow the set X" of convex bodies with
the Hausdorff metric §, which is defined by

O0(K,L) = max{maxmin|lz—yl|, maxmin[lz — y||}
= min{e>0: K CL+eB", L C K +eB"},
and with the induced topology. A general extension theorem holds for con-
tinuous valuations with values in a topological vector space. This theorem
will imply Theorem 4.1, but the short proof of the latter is of independent

interest.

4.2 Theorem. Let X be a topological vector space, and let p : K™ — X
be a continuous additive mapping. Then ¢ has an additive extension to the
convez ring U (K™).

Proof. An essential part of the proof is the following

ProprosITION. The equality
m
Z OéilKl- =0
i=1
with m € N, a; € R, K; € K™ implies
Z CKZQO(KZ) = 0
i=1

Assume this proposition were false. Then there is a smallest number m € N,
necessarily m > 2, for which there exist numbers ay, . .., a;, € R and convex
bodies Ky, ..., K,, € K™ such that

m
ZailKi = 0, (20)
i=1
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but
> aip(K;) =:a #0. (21)
i=1

Let H C R™ be a hyperplane with K; C int HT, where H*, H™ are the two
closed halfspaces bounded by H. By (20) we have

m m
E ailKimH* :0, E OéilKimHZO.
i=1 i=1

Since K1 NH~ = () and Ky N H = (, each of these two sums has at most
m — 1 non-zero summands. From the mimimality of m (and from ¢()) = 0)
we get

m m
Zaiap(Kir‘lH_) =0, Zaigo(KiﬂH) =0.

i=1 i=1

The additivity of ¢ on K™ yields

m
Zaicp(l(i N H+) =a, (22)
i=1
whereas (20) gives
> ailg,npe = 0. (23)
i=1

A standard separation theorem for convex bodies implies the existence of a
sequence (H;)jen of hyperplanes with K; C int H; for j € N and

K= ﬁ HY.
j=1

If the argument that has led us from (20), (21) to (23), (22) is applied
k-times, we obtain

m k
Zaiga KzﬂﬂH]"‘ =a.
i=1 j=1

For k — oo this yields

> aip(K;NKy) = a, (24)

i=1
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since

k
im K; =K,
Jim K0 (VHf = Kin kK

j=1

in the sense of the Hausdorff metric (if K;NK; # (), otherwise use () = 0)
and ¢ is continuous. Equality (20) implies

ZailKiﬂIﬁ =0. (25)
i=1

The procedure leading from (20) and (21) to (25) and (24) can be
repeated, replacing the bodies K; and K; by K; N K; and K, then by
K;NK;NK, and K3, and so on. Finally one obtains

ZailKlm...me = 0
i=1
and
Zaigo(Kl N---NKy,)=a
i=1

(because of K; NK1N---NK, = KiN---NK,). Nowa # 0 implies
S a; # 0 and hence 1k,n..nKk,, = 0 by the first relation, but this yields
(K1 N---NKp) =0, contradicting the second relation. This completes
the proof of the proposition.

Now we consider the real vector space V of all finite linear combinations of
indicator functions of elements of K". For K € U(K™) we have 1x € V, as
noted earlier. For fixed f € V we choose a representation

[= Z a;lg;
i=1
with m € N, a; € R, K; € K™ and define
B(f) =) cip(K;).
i=1

The proposition proved above shows that this definition is possible, since
the right-hand side does not depend on the special representation chosen
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for f. Evidently, ¢ : V' — X is a linear map satisfying ¢(1x) = ¢(K) for
K € K". We can now extend ¢ from K" to U(K"™) by defining

o(K) = ¢(1k) for K € U(K"™).

By the linearity of ¢ and the additivity of the map K +— 1k we obtain, for
K,M e U(K"),

(,O(KUM)-FQP(KHM) = 1KUM)+LP(1KHM)
lxum + 1xnnm)

&(
&(
o1k + 1)
&(
(

1k) +¢(1nm)
= p(K) +o(M).
Thus ¢ is additive on U(K™). |

5 Local parallel sets and curvature measures

One of our aims will be to compute integrals such as

I(K, M) = / X(K 1 gM) du(g) (26)
Gn

for convex bodies K,M € K", where p is the invariant measure on the
motion group G,,; thus I (K, M) is the total Haar measure of the set of rigid
motions which bring M into a hitting position with K. We get a first hint
to what the result will involve if we choose for M a ball pB™ of radius p > 0.
In that case,

(K, pB") = [ XK 0 (pB" + ) d\(O) = Va(K +pB"),
RTL

as obtained in Section 2. The set K + pB™ is known as the outer parallel
set of K at distance p. It can also be represented as

K+ pB" ={z e R* : d(K, z) < p},
where
d(K,2) = min{|lz = yl| : y € K}
is the distance of z from K. A fundamental result in the geometry of

convex bodies, the Steiner formula, says that the volume V,,(K + pB™) of
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the parallel body, as a function of the parameter p, is a polynomial of degree
n, thus

Vo(K + pB™) = Z pniiﬁn—iVi(K)- (27)
i=0

The reason for introducing the normalizing factors &,_; will become clear
later in this section. The coefficients V5 (K), ..., V,(K) appearing in (27)
define important functionals of K. We have just seen that they inevitably
appear when we want to compute the integral I(K, pB™). As it turns out,
also the general integral I(K, M) given by (26) can be expressed in terms
of these functionals alone, evaluated for the bodies K and M.

In the present section, a more general version of the Steiner formula
(27) will be obtained. Namely, we replace the parallel body K + pB™ by a
local version of it. The polynomial expansion generalizing (27) then defines
a series of measures on R, the curvature measures of the convex body K.
These measures will appear in very general versions of the kinematic formula
of integral geometry.

We need a simple device from convex geometry. Let K € K™ be a convex
body. For z € R", there is a unique point p(K,z) in K nearest to x, that
is,

Ip(K, 2) — zf| = min{|ly — z[| : y € K} = d(K, z).

This defines a continuous map p(K,-) : R* — K, which is called the nearest-
point map of K, or the metric projection onto K. Also the map

p: K" xR* — R"™,
(K,z)  — p(K,z)

is continuous.
Now for K € K", a Borel set A € B(R") and a number p > 0, we define
the local parallel set of (K, A) at distance p by

M,(K,A) ={zeR" :d(K,z) <p, p(K,z) € A}.
This is a Borel set, since p(K, -) is continuous. We can, therefore, define
po(K,A) :== AN M,(K,A)) for Ae BR").

In other words, p,(K,-) is the image measure of the Lebesgue measure,
restricted to the parallel body K, = K + pB", under the nearest point map
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of K. In particular, p,(K,-) is a finite measure on B(R™). We call it the
local parallel volume of K at distance p.
This measure is concentrated on K, that is, pu,(K,A) = p,(K, AN K).
We first prove some fundamental properties of the mapping p, : K™ x

B(R") — R. In the following, < denotes weak convergence of finite mea-
sures.

5.1 Theorem. Let (K;)jen be a sequence in K™ satisfying K; — K for
j — o0o. Then

,up(Kja') E)Np(Kv) fOT‘j — 00, (28)
for every p > 0.

Proof. By a well-known characterization of weak convergence, we have to
show that

j—o0
for every open set A, and
lim g1, (K, RY) = 1, (K, R"). (30)
j—oo
Let A C R™ be open. Let x € M,(K,A) be a point with d(K,z) <
Since p is continuous, we have p(K;,z) — p(K,z) and d(K;,z) — d(K,x)

for j — oo. Hence, for all sufficiently large j we deduce that p(Kj,z) € A
and d(Kj,z) < p, hence z € M,(K;,A). Thus we have

M,(K,A)\ 0K, C liminf M,(K;, A)
j—o0

and, therefore,

po(K,A) = MM,y(K, A) \ 0K,)
< A <lim inf Mp(Kj,A)>
j—oo
< liminf MM, (K, A))

j—o0

lim inf p, (K, A),

J— 00

which proves (29). The relation (30) follows from standard results of convex
geometry. [ |
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5.2 Theorem. For any Borel set A € B(R™) and any p > 0, the function
(-, A) : K™ — R is measurable.

Proof. For an open set A, the preceding proof shows that the function
ty(-, A) is lower semicontinuous, hence it is measurable.

Denote by A the system of all sets A € B(R"™) for which u,(-, A) is
measurable. We show that A is a Dynkin system. For A;, A> € A with
Ay C Ay we have M,(K,As) C M,(K, A1) and

MP(K) Al \AQ) = MP(Ka Al) \ MP(Ka A2);
hence
tp (K, Ar \ Az) = pp (K, Ar) — pp (K, Az)

for all K € K", which shows that 4; \ Ay € A. If (4;)jen is a disjoint
sequence in 4, then

o | K U As | =X (K, 4)
j=1 j=1

for K € K™, since p, (K, -) is a measure. It follows that U;’;l Aj; € A. Thus
A is a Dynkin system. Since it contains the open sets, it also contains the
o-algebra generated by the open sets and thus all Borel sets, as asserted. ll

5.3 Theorem. For any Borel set A € B(R™) and for p > 0, the function
(-, A) : K™ — R is additive.

Proof. Let K, L € K™ be convex bodies with K UL € K™. Let x € R”, and
put y := p(K U L,z). We assume y € K, without loss of generality. Then
p(KUL,l‘):p(K,:L‘). (31)

Let z := p(L,z). Since K U L is convex, there is a point a € [z,y] (the
segment with endpoints z and y) with a € KN L. From y = p(K U L, ) it
follows that ||y — z|| < ||z — z|| and hence |ja — z|| < ||z — z||. From a € L
and the definition of z we conclude that a = z and thus z € K N L. This
shows that

p(KNL,z)=p(L,x). (32)

For K' € K™, let 1,(K’, A, ) be the indicator function of the local parallel
set M,(K', A). From (31) and (32) it follows that

1,(KUL,A,z) =1,(K,A,z), 1,(KNL,Az)=1,(L, A, z).
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Since z was arbitrary, this yields
1,(KULA-)+1,(KNL,A,-)=1,(K,A,-)+1,(L,A4,-).
Integrating this equation with the Lebesgue measure, we obtain
pp(K UL, A) + pp (K N L, A) = pp (K, A) + (L, A),
which shows that p,(-, A) is additive on ™. |

We will now explicitly compute the local parallel volume in the case of a
convex polytope. For this, we need some elementary facts about polytopes,
which we will use without proof.

A polyhedral setin R" is a set which can be represented as the intersec-
tion of finitely many closed halfspaces. A bounded non-empty polyhedral
set is called a convex polytope or briefly a polytope. Let P be a polytope.
If H is a supporting hyperplane of P, then P N H is again a polytope.
The set F := PN H is called a face of P, and an m-face if dim F = m,
m € {0,...,n —1}. If dim P = n, we consider P as an n-face of itself. By
Fm(P) we denote the set of all m-faces of P. For F' € F,,(P) we define

Ar(B) :=A™(BNF) for B € B(R™),

where A(™) denotes m-dimensional Lebesgue measure. For F € F,,(P),
m € {0,...,n — 1} and a point z € relint F' (the relative interior of F'), let
N(P, F) be the normal cone of P at F'; this is the cone of outer normal
vectors of supporting hyperplanes to P at z. It does not depend upon the
choice of . The number

An=m)(N(P, F)n B")

Kn—m

v(F, P) :=

is called the external angle of P at its face F. We also put v(P, P) = 1 and
v(F, P) = 0 if either F = or F is not a face of P.

Now let a polytope P, a Borel set A € B(R") and a number p > 0 be
given. For & € R", the nearest point p(P,z) lies in the relative interior of a
unique face of P. Therefore,

M, (P, A) = Lnj U [Bnp(P) (ANrelint F)] (33)
m=0 FeF,,(P)

is a disjoint decomposition of the local parallel set M, (P, A). It follows from
the properties of the nearest point map that

P,Np(P,-)~ ' (ANrelint F) (34)
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= (ANrelint F') @ (N(P,F) N pB"), (35)
where @ denotes direct sum. An application of Fubini’s theorem gives

AP, N p(P,-)~ (A Nrelint F))
= A"(ANF)A ™ (N(P, F) N pB")
= A (ANF)p" "y (F, P).

Together with (33), this yields
n
= P hnem Y A™M(ANF)y(F,P).
m=0 FEFm(P)

Hence, if we define a measure ®,,,(P,-) on B(R") b
Ou(P)i= Y WE P,
FeFn(P)

then

,Ufp(P: A) = Z pn_m"én—mq)m(Pa A)

m=0

This gives the desired polynomial expansion of the local parallel volume in
the case of polytopes. The following theorem extends this result to general
convex bodies.

5.4 Theorem. (Local Steiner formula) For every convex body K € K",

there exist finite measures ®o(K,-),...,®,(K,-) on B(R™) such that the
local parallel volume satisfies

Zp "Ik i®;(K, A)

for all A € B(R™) and all p > 0.

Proof. If P is a polytope, we have seen above that

Zp Tin®;(P; A) (36)
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with

®;(P)= > (FPAr (37)
FeF;(P)

Now let K € K™ be an arbitrary convex body. As one knows from convex
geometry, there is a sequence (F;);en of polytopes converging to K in the
Hausdorff metric. In (36), we replace P by P; and p by each of the numbers
1,...,n 4+ 1. The resulting system of linear equations,

pe(PA) =Y K"k, j®5(PLA),  k=1,...,n+]1,
j=0

can be solved for the ‘unknowns’ k,_;®;(P;, A) (it has a Vandermonde
determinant), which yields representations

n+1
‘I’j(Pi,A)ZZajkuk(Pi,A), j=0,...,n.
k=1

Here the coefficients o, do not depend on P; or A, thus we have
n+1
®;(P;,-) = Z ik (P, ) fori € N.
k=1
By Theorem 5.1, for each fixed p > 0 the measures u,(FP;, ) converge weakly
to u,(K,-). Hence, if we define a finite signed measure by
n+1

(I)j(K, ) = Z ajk,“fk(Ka ')7
k=1

then the measures ®;(P;,-) converge, for i — oo, weakly to the signed
measure ®;(K,-) (j = 0,...,n). It follows that the latter is nonnegative,
and it also follows that

n
H’P(Ka ) = Z pnijlin—jq)j (K7 ')7
=0

using (36) and weak convergence. |

One calls ®;(K,-) the jth curvature measure of the body K € K™. The
reason for this name becomes clear if one considers a convex body K whose
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boundary is a regular hypersurface of class C?. In that case, the local
parallel volume can be computed by differential-geometric means, and one
obtains for j = 0,...,n — 1 the representation
(5)
o;(K,A) = m / Hp_1_;dS.
ANOK

Here Hj denotes the kth normalized elementary symmetric function of the
principal curvatures of K, and dS is the volume form on 0K. Thus the
curvature measures are (up to constant factors) indefinite integrals of cur-
vature functions, and they replace the latter in the non-smooth case.

For j = n, we simply have

3,(K,A) = NKNA)  for Ae B[R,

as follows immediately from the definition of the local parallel set and the
local Steiner formula. For a general convex body K it is clear that the
measures & (K, -),. .., ®p_1 (K, ) are concentrated on 0K, since p, (K, A)—
A(K N A) depends only on AN oK.

For polytopes P, we have the explicit representation (37) of the curva-
ture measures. The external angle appearing in it does not depend on the
dimension of the surrounding space, as follows easily from Fubini’s theorem.
In other words, if dim P < n, it makes no difference if the external angle
v(F, P) is computed in R™ or in the affine hull of P. This independence
of dimension extends to the curvature measures ®;(P,-) and then, by ap-
proximation and weak convergence, to the curvature measures ®;(K,-) of
arbitrary convex bodies.

We mention without proof that for arbitrary convex bodies K the mea-
sures o (K, -) and ®,,_1 (K, -) have simple intuitive interpretations. Namely,
if dim K #n — 1, then

3, (K,A) = %HH(A NoK).

For dim K = n — 1, one trivially has ®,_; (K, A) = H""'(ANJK). The
measure Py is the normalized area of the spherical image. Let o(K,A) C
Sm~1 denote the set of all outer unit normal vectors of K at points of ANOK,
then

Bo(K, 4) = —H"(o(K, 4)).

nkp
We can use the relation
n+1
(I)j(Ka ) = Zajkuk(Ka ')7 (38)
k=1
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which was obtained in the proof of Theorem 5.4, to transfer properties of the
local parallel volumes p, (K, -) to the curvature measures ®;(k,-). In this
way Theorems 5.1, 5.2, 5.3, together with some easily obtained additional
properties of the local parallel volumes, yield a series of properties of the
curvature measures, which we list in the following theorem.

5.5 Theorem. Let j € {0,...,n}.

(a) ®;(K,-) depends weakly continuously on K, that is, K; — K implies the
weak convergence ®;(K;,) = ®;(K,-) for i — occ.

(b) For every A € B(R™), the function ®;(-, A) is measurable on K.

(c) ®; is motion covariant, that is,

(I)](gKagA) = (I)j(Ka A)

for every rigid motion g € G, and all K € K™ and A € B(R").
(d) ®; is homogeneous of degree j, that is,

®;(aK,al) = o/ (K, A)

for every a > 0 and all K € K" and A € B(R").
(e) ®; is defined locally, that is, for every open set A C R™ and all convex
bodies K, M € K™ with KN A= MnN A, one has

®;(K,B) = ®;(M,B)

for every Borel set B C A.
(f) ®;(-, A) is additive for every A € B(R™), that is,

®;(KUL,A)+Q;(KNL,A)=2;(K,A) +®,;(L,A)
holds for all convez bodies K,L € K™ with K UL € K".

The final property, together with Theorem 4.2, has the important conse-
quence that the curvature measures have an additive extension to polycon-
vex sets. This means that one can define signed measures on the convex ring
U(K™) in the following way. Let K € U(K") and choose a representation
K =%, K; withm € N and K; € K". Then

(b]'(Ka ) = Z (_1)‘1)'71(}3'(}{0) )
veES(m)
does not depend on the special choice of the representation; in particular,

this is consistent with the already defined value ®;(K,-) for convex K.
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This follows from Theorem 4.2, since the weak convergence of curvature
measures can be interpreted as convergence in the vector space of finite
signed measures, on a suitable compact subset of R", with respect to a
suitable topology.

We have now everything at hand to formulate a central result of integral
geometry. This is the principal kinematic formula, in a version for curvature
measures on the convex ring. Let K, M € U(K™) be polyconvex sets, let
A, B € B(R™) be Borel sets, and let j € {0,...,n}. Then

/<I> (KNgM,ANgB)du(g) Zan]kq) (K, A)®pyj—r (M, B)
G k=i

holds, with certain explicit constants ap ;.

We will indicate a proof of this result in Section 9. Before that, however,
we will prove a global version of this formula in a different way. The method
of proof is of independent interest and leads to further results for which no
other access is known.

The global result refers to the total measures

Vi(K) = &;(K,R"), j=0,...,n.

The number V; is called the jth intrinsic volume of K. These important
functionals are defined by the classical Steiner formula

n
V(K +pB™) =Y p" ki Vi(K),
7=0

of which Theorem 5.4 is the local generalization. As a function on K", each
intrinsic volume Vj is continuous, additive and rigid motion invariant. In
the next section we shall prove that the intrinsic volumes are essentially
characterized by these properties.

The additive extensions of the intrinsic volumes to the convex ring
U(K™) will be denoted by the same symbols. In the following cases, they
have simple intuitive interpretations. It is clear that

Vo(K) = MK)  for K € UKK™),

since this holds true for convex bodies K and both functions, V,, and A, are
additive on U(K™). It also remains true for polyconvex sets that

2V,—1(K) = H" 1 (OK)
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if K is the closure of its interior, but this requires an extra proof. Finally,
Vo (K) = x(K) for K € U(K™),

so that V4 is nothing but the Euler characteristic. For a convex polytope P
we have

Vo(P)=&(P,R") = Y  ~(F,P)=1,
FeFo(P)

since the normal cones N (P, F') of P at its vertices F' cover R” and have
pairwise no common interior points. By additivity, the equation Vp(K) =
x(K) extends from K™ to U(K™).

6 Hadwiger’s characterization theorem

The jth intrinsic volume V; : K™ — R is an additive, continuous and rigid
motion invariant function. A celebrated theorem due to Hadwiger (see [2])
says that any function on K™ with these properties is a linear combination
of the intrinsic volumes Vj,...,V,,. This result can be used to prove some
formulae of the integral geometry of convex bodies in a very elegant way.
Whereas Hadwiger’s original proof was quite long, one has now a shorter
proof due to Klain [3]. We will present his proof here, except that at one
point we take a certain analytical result for granted.

The crucial step for a proof of the characterization theorem is the fol-
lowing result.

6.1 Theorem. Suppose that ) : K™ — R is an additive, continuous, motion
invariant function satisfying 1(K) = 0 whenever either dim K < n or K is
a unit cube. Then ¢ = 0.

Proof. The proof proceeds by induction with respect to the dimension. For
n = 0, there is nothing to prove. If n = 1, ¢ vanishes on (closed) segments
of unit length, hence on segments of length 1/k for k € N and therefore on
segments of rational length. By continuity, ¢ vanishes on all segments and
thus on K!.

Now let n > 1 and suppose that the assertion has been proved in di-
mensions less than n. Let H C R™ be a hyperplane and I a closed seg-
ment of length 1, orthogonal to H. For convex bodies K C H define
o(K) := (K +I). Clearly ¢ has, relative to H, the properties of ¢ in the
Theorem, hence the induction hypothesis yields ¢ = 0. For fixed K C H,
we thus have ¢(K +I) = 0, and a similar argument as used above for n = 1
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shows that (K + S) = 0 for any closed segment S orthogonal to H. Thus
1 vanishes on right convex cylinders.

Let K C H again be a convex body and let S = conv {0, s} be a segment
not parallel to H. If m € N is sufficiently large, the cylinder Z := K + mS
can be cut by a hyperplane H' orthogonal to S so that the two closed
halfspaces H—, Ht bounded by H' satisfy K C H~ and K + ms C HT.
Then Z := [(ZNH~)+ms]U(ZNHY) is a right cylinder, and we deduce
that mu(K + S) = w(Z) = u(Z) = 0. Thus ¢ vanishes on arbitrary convex
cylinders.

By Theorem 4.2, the continuous additive function 3 has an additive
extension to the convex ring; this extension is also denoted by . It follows
that

k k
¥ (U m) = Zwm)

whenever K, ..., K} are convex bodies such that dim (K; N K;) < n for
i # 7.

Let P be a polytope and S a segment. The sum P + S has a decompo-
sition P+ S = Ule P;, where P, = P, the polytope P; is a convex cylinder
for i > 1, and dim (P; N P;) < n for i # j. It follows that ¢(P + S) = ¢(P).
By induction, we obtain (P + Z) = ¢(P) if Z is a finite sum of segments.
By continuity, (K + Z) = ¢(K) for arbitrary convex bodies K and zonoids
Z, that is, limits of sums of segments.

Now we have to use an analytic result, for which we do not give a proof.
Let K be a centrally symmetric convex body which is sufficiently smooth
(say, its support function is of class C'*). Then there exist zonoids Z;, Z»
so that K + Z; = Z, (this can be seem from Section 3.5 in [7], especially
Theorem 3.5.3). We conclude that ¢(K) = (K + Z1) = (Z2) = 0. Since
every centrally symmetric convex body K can be approximated by bodies
which are centrally symmetric and sufficiently smooth in the above sense, it
follows from the continuity of ¢ that ¢(K) = 0 for all centrally symmetric
convex bodies.

Now let A be a simplex, say A = conv {0,vy,...,v,}, without loss of
generality. Let v := v; + --- + v, and A’ := conv {v,v —v1,...,v — v, },
then A’ = —A +v. The vectors vy, ...,v, span a parallelotope P. It is the
union of A, A’ and the part of P lying between the hyperplanes spanned
by vi,...,v, and v — vy, ...,v — v,, respectively. The latter, say @, is a
centrally symmetric polytope, and ANQ, A’'NQ are of dimension n—1. We
deduce that 0 = (P) = ¢¥(A) +¢(Q) +(A’), thus (—A) = ¢(A). If the
dimension n is even, then —A is obtained from A by a proper rigid motion,
and the motion invariance of ¢ yields ¥(A) = 0. If the dimension n > 1
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is odd, we decompose A as follows. Let z be the centre of the inscribed
ball of A, and let p; be the point where this ball touches the facet F; of A
(t=1,...,n+1). For i # j, let Q;; be the convex hull of the face F; N F;
and the points z, p;, pj. The polytope @;; is invariant under reflection in the
hyperplane spanned by F; N F; and z. If Q1,...,Qy are the polytopes @;;
for1 < ¢ < j <n+1linanyorder, then P =J", @, and dim (Q,NQ,) < n
for r # s. Since —(@Q), is the image of @), under a proper rigid motion, we
have $(—A) = S v(-Q,) = X 9(Q,) = ¢(A). Thus ¢(A) = 0 for every
simplex A.

Decomposing a polytope P into simplices, we obtain ¢(P) = 0. The
continuity of 1) now implies ¥ (K) = 0 for all convex bodies K. This finishes
the induction and hence the proof of Theorem 6.1. |

Hadwiger’s characterization theorem is now an easy consequence.

6.2 Theorem. Suppose that ) : K™ — R is an additive, continuous, motion
invariant function. Then there are constants cy,...,c, So that

for all K € K™.

Proof. We use induction on the dimension. For n = 0 the assertion is trivial.
Suppose that n > 0 and the assertion has been proved in dimensions less
than n. Let H C R™ be a hyperplane. The restriction of ¢/ to the convex
bodies lying in H is additive, continuous and invariant under motions of
H into itself. By the induction hypothesis, there are constants cg,...,c, 1
so that ¥(K) = Z?;J ¢;V;(K) holds for convex bodies K C H (note that
the intrinsic volumes do not depend on the dimension of the surrounding
space). By the motion invariance of ¢ and V;, this holds for all K € K™ of
dimension less than n. It follows that the function ¢’ defined by

W(K) = p(K) =Y e;Vi(K)
=0

for K € K™, where ¢, is chosen so that 1’ vanishes at a fixed unit cube,
satisfies the assumptions of Theorem 6.1. Hence ¢’ = 0, which completes
the proof of Theorem 6.2. |

The late Gian-Carlo Rota, in a Colloquium Lecture at the Annual Meeting
of the AMS in 1997, called Hadwiger’s characterization theorem the ‘Main
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Theorem of Geometric Probability’. The reason is that it can be used
to derive kinematic formulae of integral geometry, which can in turn be
interpreted in terms of geometric hitting probabilities. We shall see this, in
more elaborate versions, in the next two sections.

7 Kinematic and Crofton formulae

Our aim in this section will be to compute the integrals

[ Vit 0 g3 dute)
Gn

and
[ Vit 0 By due ()
ér

for convex bodies K, M, where V; is an intrinsic volume. For that, we use
Hadwiger’s characterization theorem. From this result, we first deduce a
more general kinematic formula, involving a functional on convex bodies
that need not have any invariance property.

7.1 Theorem. If ¢ : K™ — R is an additive continuous function, then

/ P(K N gM) dp(g) = S pn_i(K)Vie(M) (39)
G k=0

for K, M € K™, where the coefficients @, (K) are given by

oni(K) = / (K N E) dug (). (40)

&

Proof. In order that the integral in (39) makes sense, we first have to
show that for given convex bodies K, M the function g — @(K NgM) is
p-integrable. Let G, (K, M) denote the set of all rigid motions g € G,
for which K and gM touch, that is, K N gM # () but K and gM can be
separated weakly by a hyperplane. Using the map v from (3), it is easy to
see that y(¢,9) € G, (K, M) holds if and only if t € (K — 9¥M); hence

(Gl M) = / / 1e, (1¢.00 (7 (£, 9)) dA(H) d(9)
SO, R»
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= / AO(K — 9M)) dv(¥) = 0.

SOn

On G, \ G,(K,M), the map g — @(K N gM) is continuous. Since the
continuous function ¢ is bounded on the compact set {K’ € K™ : K' C K},
it follows that the integral in (39) is well-defined and finite.

Now we fix a convex body K € K™ and define

(M) = /@(KﬂgM) du(g) for M € K".
Gn

Then ¢ : K™ — R is obviously additive and motion invariant. It follows
from the bounded convergence theorem that ¢ is continuous. Theorem 6.2
yields the existence of constants co(K),...,c,(K) so that

Y(M) =" ex(K) Vi (M)
k=0

for all M € K™. The constants depend, of course, on the given body K,
and we have now to determine them.

Suppose first that 1 < k < n —1 and let Ly € L}}. We choose a k-
dimensional cube W C Ly with 0 € W and A®) (W) = 1. For r > 1 we
have

VW) = [ @K g du(g) = Y- ons(EIVW).
G =1

The intrinsic volumes have the easily established properties
0 for i > k,
Vi(rW) =< rk for i = k,
riVi(W) fori < k.
This yields
Y(rW) = i (K)r* +o(r* ™) (41)
for r — co. On the other hand,

bW) = /wanwmmw
Gp
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= / /(p(K N WrW + x)) d\(z) dv(9)
SO, R™
_ / / / oK O (9rTV + 21 + 22)) AA® ()
SOn 9L} 9L1
AR (1) du (9).
For fixed ¥ € SO,, and z;, € LkL we put

X = {:L‘Q eV, : KN (197‘W + 1 +1‘2) =Kn (’lQLk +£L‘1)},
Y {xz619Lk:@#Kﬂ(ﬁrW#-m+a:2)7éKﬂ(19Lk+x1)}.

Then
/ O(K N (0rW + 21 + 22)) dAP) ()
19Lk

= (K N 0Lk + 1)) / A ()
X

+ / oK N (01T + 21 + 22)) DD (2,).
Y

For r — o0, we get

/ dAF) (z5) = r* + O(rF1).
be

Since ¢ is bounded on compact sets,

/(p(K N WrW + z; + x2)) ANk (2) = O(r*1).
Y
We deduce that

VW) = o / / o(K N 0Lk + 1)) A (21) du(9) + O
SO 9L+

= b O(K NO(Ly, 4 1)) dAN™9) (21) dv(9) + O(rF 1)
1/

_ /(p(K N E) du (E) + O(rF=).

&
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If we compare this with (41) and let r tend to infinity, we obtain the asserted
formula (40) for the coefficients.

In the cases k = 0 and k£ = n, simpler versions of the proof, with
the obvious changes, give the same result. This completes the proof of
Theorem 7.1. |

In Theorem 7.1, we can choose for ¢ the intrinsic volume V; and get
n

[ Vit R gh dutg) = 3 Ve (V)

a. k=0

with

Vin w(K) = / V(K N E) dyy (E).
&y

(K = /Vj(K NE)duy(E)  for K € K™
&

we again define a functional ¢ : ™ — R which is additive, continuous and
motion invariant. This is proved similarly as above. Hadwiger’s characteri-
zation theorem yields a representation

B(K) =3 eV (K).
r=0
Here only one coefficient is non-zero. In fact, from
0k) = [ [V N @+ ) X D) du()
Lt
one sees that ¢) has the homogeneity property
P(aK) = o™ FHp(K)

for a > 0. Since V}, is homogeneous of degree k, we deduce that ¢, = 0 for
r #n — k + j. Thus we have obtained

/Vj(K N E) duy(E) = anjiVatj—k (K)

&
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with some constant ay,ji. In order to determine this constant, we choose
for K the unit ball B". For € > 0, the Steiner formula gives

D €k jVi(B") = Va(B" +€B") = (1+€)"kp =y " <n> Ko
7j=0 j=0 J
hence
(})fin
V;(B™) = -2 forj=0,...,n
Rn—j
Choosing L € L}, we obtain
anitVossa(B") = [ Vi(B" 1 E) dyu(B)
Er
= / / Vi(B" NI(L + z)) dA" M) () dv ()
SO, L+
= [ A=l e D e Y
LinB~

K .
- / (1 (|22 ) (z).
]LLmB"

Introducing polar coordinates, the latter integral is transformed into a Beta
integral, and one obtains

/ (1~ [[z][2)772 dA") (z)

L+nB»
1
— Iin k/ J/Q”kldr
0
1
1 no
=3 I{,nk/l—t/2t > dt
0
= g (= k)hn- 2 :
1 T(E2)r( ) Kntj—k
=—(n—k)kn_r = I,
2 F(ﬂfkﬂ) Kj
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Altogether this yields

(L (o L s
Varjok(BMkr—jki (") kns;

Anjk =

This can be put in still a different form by using the identity

no 1
nlk, = Mt T (n;— ) .

We collect what we have obtained.

7.2 Theorem. Let K,M € K™ be convex bodies and let j € {0,...,n}.
Then the principal kinematic formula

/ V(K N gM) dilg) = 3 cngiVis s (E)Vi (M)
Gn k=j

holds. For k € {1,...,n — 1} and j < k the Crofton formula

/VJ(K NE)dui(E) = anji Vatj—i(K)
&r

holds. The coefficients are given by

(I;)/q,k/q,n_i_j_k NG (nﬂ;ﬂ)

)0
(2;)mimn— D(EEHT()

Anjk =

Finally, the results are easily extended to polyconvex sets. Let K € U(K™).
We choose a representation

with convex bodies Ki,...,Ky,,. Since V,4,_j is additive on U(K"™), the
inclusion-exclusion principle gives

Vatj—r(K) = Z (_l)lv‘_lvn-i-j—k(Kv)-
veS(m)
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Now let M € K™ be a convex body. Since the principal kinematic formula
holds for convex bodies, we obtain

[ Vit 09 dute)
Gn

= /Vj (U(ngM)> dp(g)
G i=1

= > (~)MTVHK, ngM)du(g)

G veS(m)
- Z (—1)'”‘71Zanjkvn+jfk(Kv)Vk(M)
vES(m) k=j

n
= Z njk Vit j—i () Vi (M).
k=j

Hence, the kinematic formula holds for K € U(K™) and M € K. In a
similar way, it can now be extended to K € U(K"™) and M € U(K"™). An
analogous extension is possible for the Crofton formula.

8 Extension to random sets

It has been announced in the introduction that we want to use integral-
geometric results to give a theoretical foundation for some formulae used
in stereology. To achieve this goal, we shall now extend the kinematic and
Crofton formulae to certain random sets.

First we have to explain what one understands by a closed random set
in R". Let F denote the system of all closed subsets of R”. For A C R"
one writes

Fa = {FeF:FnA#0},
FA = {[FeF:FnA=0}

The system
{Fa:G C R open} U{F:C C R" compact}

is a subbasis of a topology on F; this topology is called the topology of closed
convergence. By B(F) we denote the corresponding o-algebra of Borel sets.
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Now a random closed set in R", briefly a RACS, is defined as a random
variable with values in F. More precisely, a RACS is a measurable map
Z : Q) — F from some probability space (2, .4, P) into the measurable space
(F,B(F)). For w € Q, the closed set Z(w) is called a realisation of Z. The
image measure Pz := Z(P) of the probability measure P under the map Z
is called the distribution of Z. Thus, this is a measure on B(F), and for
A € B(F) one has

Pz(A) =P(Z 1(A4) =P{w € Q: Z(w) € A}) = P(Z € A),

which is the probability that Z has a realization in the prescribed set A.
The random closed set Z is called stationary if for each vector t € R™ the
random closed sets Z and Z + t have the same distribution, in other words,
if the distribution of Z is invariant under translations. If the distribution
of Z is invariant under rotations, then Z is called isotropic.
For a measurable nonnegative or P-integrable function f : @ — R, the
expectation is

Ef ::Q/fd]P’.

We will often have a random closed set Z : @ — F and a measurable
function f : F — R. If the expectation of f o Z exists, it is given by

Ef(Z) ::Q/foZd]P:!deF’Z,

by the transformation formula for integrals.
For our envisaged applications, we have to restrict the admitted random
closed sets. The extended convex ring is defined by

LUKK™) = {F CR": FNK € UK") for K € K"}.

The elements of LU (K™) will also be called locally polyconvex sets. Thus a
locally polyconvex set has the property that its intersection with any convex
body is a finite union of convex bodies.

If M € U(K"™) is a non-empty polyconvex set, there are a number m € N
and convex bodies Ky,..., K, € K" such that M = K; U---U K,,. The
smallest number m with this property will be denoted as N(M). We also
put N(@) = 0. This defines a function N : U(K") — Ny, which can be
shown to be measurable. Now we are in a position to define the random
closed sets which will be admitted in the following.

208



Definition. A standard random set in R" is a closed random set Z in R"
with the following properties:

(a) The realizations of Z are locally polyconvex,

(b) Z is stationary,

(¢c) Z satisfies the integrability condition

E2N(ZNC") < .

Here, as before, C™ := [0, 1]™ is the unit cube in R™.

For a standard random set, one can define a volume density, a surface area
density and, more generally, the density of the jth intrinsic volume. Let
Z be a standard random set. We choose a ‘test body’ (or ‘observation
window’) K € K™ with V,,(K) > 0. For a given realization Z(w), the
intersection Z(w) N K is polyconvex, hence the (additively extended) jth
intrinsic volume V;(Z(w) N K) is defined. One can show that the function
w = V;(Z(w) N K) is measurable, hence it defines a real random variable.
Its expectation,

BV, (Z N K),

depends on both, the random set Z and the test body K. However, we shall
see that the limit

T2 = lim EV;(ZNrK)
r—oo V. (rK)

exists and is independent of K. This number V;(Z) is called the density of
the jth intrinsic volume of the random set Z.

The existence proof for the limit, which is a bit technical, is preceded
by two lemmas. Recall that C" is the unit cube given by

cn ;:{Qj:(gyl,_“,.’ljn)E]Rn OSZUZSI forizl,...,n}.
The set

orC™ :={x = (21,...,2,) €EC™: 112%)(”;51» =1}

is called the right upper boundary of C™. It is polyconvex. We need the set
Cr.=cr\otcm

as a ‘fundamental domain’; the space R can be represented as a disjoint
union of translates of C§:

R* = ] (C§ +2).

zZEL™
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We write Z™ as a sequence (2;);en (in any order) and put
C; :=C™ + z;, 6+Cl =atC" + Zi-

The set Cf' belongs to U(P}), the class of all finite unions of relatively
open convex polytopes. Below we shall use the fact that every additive
functional on the class of polytopes has an additive extension to U(PX,).
We do not give a proof here, but refer to [6].

8.1 Lemma. If ¢ : U(K™) — R is an additive function and K € U(K™) is
a polyconver set, then

P(K) =Y [p(KNCy) - p(KNd*Cy)]
ieN
Proof. Let K € U(K"). For a polytope P € K" we define
W(P) i= p(K N P).

Then ¢ is an additive functional on convex polytopes and hence has a unique
extension to an additive function on U(PJ)), also denoted by 1. Without
loss of generality we may assume that

KcQ:=]JCh+2)
i=1

and that @ is convex (where @ denotes the closure of Q). Then

e(K) = o(KNQ)=14(Q)=v¢(Q)

= > 0(CF +2)
ieEN

= > W(C) — (0T C)]
ieEN

= ) [p(KNCi)—o(KNdtCy)l.
€N

Here we have used the additivity of ¢ on U(P}},) and the fact that ¢(P) =0
for all convex polytopes P with K NP = (). [ |

We call a function ¢ : U(K™) — R conditionally bounded if, for each K’ €
K™, the function ¢ is bounded on the set {K € K™ : K C K'}. When ¢ is
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translation invariant and additive, it is sufficient for this to assume that ¢
is bounded on the set {K € K" : K C C"}.

8.2 Lemma. Let the function ¢ : U(K™) — R be translation invariant,
additive and conditionally bounded. Then

p(rK)

fin G my 40 — 07"

for every K € K™ with V,(K) > 0.

Proof. Let K € K™ and 0 € int K, without loss of generality. For z € R
we put

0(K,z) = (KN (C™+2)) — (K N (0TC™ + 2)). (42)
Lemma 8.1 shows that

p(rK) = Z p(rK,z) for r > 0.

Z€Zn
Define
Z}={z€Z": (C"+2)NrK #0, C" + 2 ¢ rK}
and
Z2={2€7Z":C"+ 2 CrK}.
Then
1 2
Jim, VJ(Z;«;() =0, Jlim V,l(Z;.f'() =1 (43)

where |A| denotes the number of elements of a set A. The limit relations
follow from the fact that one easily shows the existence of numbers rq >
s,t > 0 such that

2€7Z = C"+zC(r+s)K\(r—s)kK,
(r—tK C U(C’"+z)

2E€Z2

for r > rg.
By assumption,

lp(rK, 2)| = |p(rK — z,0)| < b

211



with some constant b independent of z, K and r. This gives
1 |Zy]

— K < f .
VoK) Z(p(r ,2) _an(rK) =0 or r — 00
2€Z}

From this we deduce

o(rK) . 1
im = lim ———— rK,z
roe Vi (rK ) r 500 V(1K) gz;"”( )
. 1
= Jm R Zzep Pk, 2)

= [p(C") = p(0*C™)] lim Vi(vff'f )

= p(C") —p(@FCm).

We are now in a position to prove the existence of the densities of intrinsic
volumes for standard random sets.

8.3 Theorem. For a standard random set Z and for j € {0,...,n}, the
limat

= o v EVi(ZNrK)
S A

exists, and it satisfies
V,(2) =BV, (2N C") - V(2N o))
Hence, V;(Z) is independent of K.

Proof. Let K € K™ and V,,(K) > 0. Without loss of generality, we can
assume that K C C"™. For given w € (), there is a representation

NK(w)
Zw)nK= ] Kiw) with K;(w) € K",

i=1
where Nk (w) := N(Z(w) N K). By the inclusion-exclusion principle,

Vi(Z(w) N K)
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Ng (w)
= > (D! 3 Vi (Ki, (@) N -0 K (w)),
k=1

1<i1 << SNK(LO)

hence, by the monotoneity of the intrinsic volumes,

Nk NK

s 0K < veney ()
< V(CmEN R

< V(EmERMIEY),

since N(Z(w)NK) < N(Z(w)NC™). By assumption, the right-hand side is
finite, hence V;(Z N K) is integrable. For a polyconvex set M € U(K"), the
integrability of V;(Z N M) then follows from additivity, using the inclusion-
exclusion principle again. This shows that all expectations appearing in
the theorem exist and are finite. Therefore, we can define a functional
p:UK™) - R by

(M) :=EV;(ZN M) for M € U(K™).

Then ¢ is additive, translation invariant (as follows from the stationarity
of Z) and conditionally bounded (as follows from the last estimate above).
Now the assertion of the theorem follows from Lemma 8.2. [

After these preliminaries, we are now able to answer questions of the fol-
lowing kind. Suppose that the realisations Z(w) of a closed standard set
Z can be observed in a ‘window’, that is, in a compact convex set K with
Vo (K) > 0.

By ‘observation’ we mean that, in principle, the values V;(Z(w)NK) can
be measured. We want to use the values V;(Z(w) N K)/V,(K) to estimate
the densities V;(Z). But in general, V;(ZNK)/V,(K) will depend on K and
thus will not be an unbiased estimator for V;(Z). To control the error, we
would have to determine the expectation of V;(Z N K). If Z is an isotropic
standard random set, this can be achieved by means of integral geometry.
From the obtained set of expectations, one can then also derive unbiased
estimators for the densities of the intrinsic volumes.

The next theorem extends the principal kinematic formula to isotropic
standard random sets.

8.4 Theorem. Let Z be an isotropic standard random set in R, let K € K™
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and j € {0,...,n}. Then
ZﬁK Zan]kvk n+] k( )

(The coefficients are those of Theorem 7.2.)

Proof. First we denote that the function
R*” x SO, xQ — R
(z,9,w) = Vi(Z(w)Nn KN (YB™+ z))
is integrable with respect to the product measure A@v®P. Since E2N(Z20C™)
< 00, this follows as in the proof of Theorem 8.3, if we additionally assume
that K C C™. For general K € K™ it then follows from

/// Vi(Z(w) N K N (C™ + 2) N (9B + 2))] dA(2)dv(9)dP(w)
_ /// Vi(Z(w) N (K = 2) N O™ N (9B + 2 — 2))| dA(2)dv(9)dP(w)
_ /// Vi(Z(w) N (K = 2) N C™ N (9B™ + 2))| d\(z)dv(9) dP(w)

and the inclusion-exclusion formula.
For ¢ € SO,, r € R* and r > 0 we deduce from the motion invariance
of V; and the stationarity and isotropy of Z that

EV;(ZN KN (WrB" + x))
=EV;(9Z —z) N9~ (K —z) NrB™)
=EV;(Zn9~ ' (K —z)NnrB").
From Fubini’s theorem (and the invariance properties of A and v) we get
E / / Vi(Z N K 0 (9rB" + 2)) d\(x) dv(0)
50, R

=K Vi(ZN (WK + x) NrB™) dA\(z) dv(9).
11

We apply the principal kinematic formula (Theorem 7.2) to both sides and
obtain

Zan]k]EVk(Zr‘lK)Vnﬂ k(rB") ZamkV YEVpy ik (Z 0 rB").
k=j

214



Now we divide both sides by V,,(rB™) and let r tend to infinity. Because of
Vi (rB™) = r™Vy,(B™) and a,j; = 1, the left side tends to

EV;(ZNK)

and by Theorem 8.3, the right side tends to
Zamka n+y k(Z).

This completes the proof. [ |

The special cases

EV,(ZNK) = V, 1(K)Vn(2),
EVp 1 (ZNK) = Vai(K)Vp(Z) + Vo (K)Vu_1(Z)

of Theorem 8.4 can be obtained without the assumption of isotropy, since
corresponding translative integral-geometric formulae are available.

Now we interpret Theorem 8.4. As one application, it describes the
error which is made if the measured value V;(Z(w) N K)/V,(K) is used as
an estimator for the density V;(Z). Writing the formula of Theorem 8.4 in
the form

W Zamkv Vs (2),

<|

we see that the mean error tends to 0 for increasing windows K, thus the
estimator

Vi(Z(w) N K)/Va(K)

is asymptotically unbiased. However, one can also obtain an unbiased esti-
mator. The system of equations given by Theorem 8.4,

ZﬁK Zan]kvk n+.7 k( ) jZO,...,TL,

can be solved for V5(Z), ..., V,(Z2), since the coefficient matrix is triangular.
This yields formulae of the form

(Zﬂmm ZﬁK)) ’iZO,...,n,



hence
> Baim(K)Vm(Z N K)
m=0

is an unbiased estimator for V;(Z). As an example, we write down the two-
dimensional case, using the notations A, L, x for area, perimeter and Euler
characteristic, respectively:

Az) = E%,
o - o[t sz
(% ZEQZ - A(;W) A(Zn K)] |

Theorem 8.4 also immediately yields a Crofton formula for random sets.
If we talk of a standard random set Z in some affine subspace F, the sta-
tionarity and isotropy of Z refer to E, and densities of intrinsic volumes
have to be computed in FE.

8.5 Theorem. Let Z be an isotropic standard random set in R, let E € &}
be a k-dimensional flat, where k € {1,...,n — 1}, and let j € {0,...,k}.
Then Z N E 1is an isotropic standard random set in E, and

Vi(ZNE) = anjiVaij1(2).
Proof. We omit the (not difficult) proof that Z N E is, with respect to
E, again an isotropic standard random set. For that reason, the density

V;(Z N E) exists. Now let K € K", K C E and Vj(K) > 0. Theorem 8.4
yields

k
EV; (ZNK)= Z anjmvm(K)vnﬁjfm(Z): (44)

where only terms with m < k appear since V;,,(K) = 0 for m > k. Since Z
is stationary, we can assume that 0 € E and hence rK C E for r > 0. In
(44), we replace K by rK and divide the equation by Vi (rK). For r — oo,
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the left side tends to V;(Z N E), since V;(ZNrK) =V;(ZNENrK) (and
the intrinsic volumes do not depend on the dimension of the surrounding
space). The right side tends to apjiVatj—i(Z). [ |

The implications of this theorem are clear. After Theorem 8.4, we had
seen how the densities V;(Z) of an isotropic standard random set admit
asymptotically unbiased or even unbiased estimators. If Z is observed in
a k-dimensional section Z N E, then we can obtain estimators for V;(Z N
E). Theorem 8.5 tells us that these are at the same time (asymptotically)
unbiased estimators for the densities anjkvnﬂ-,k(Z )

As an example, we consider the practically relevant case where n = 3 and

k = 2. We deal with the three-dimensional densities V" (volume), S (surface
area), M (integral of mean curvature) and with the two-dimensional densi-
ties A (area), L (boundary length), ¥ (Euler characteristic). The equations

of Theorem 8.5 now read

V(Z) = A(ZNE), (45)
5(z) = %Z(ZHE), (46)
M(Z) = 2mx(ZNE). (47)

These equations, finally, provide an exact theoretic foundation for the ‘fun-
damental equations of stereology’, which are traditionally written in the
form

VV = AA;
4

SV = _LA7
™

MV = 27TXA-

Concluding we can say that Theorems 8.4 and 8.5 provide theoretical
justifications for some practical procedures of stereology, at least in those
cases where it is reasonable to model probes of real materials by realisations
of isotropic standard random sets. From the practical point of view, the con-
sideration of only locally polyconvex sets does not seem very restrictive. Of
the invariance properties, stationarity is always unrealistic, requiring un-
bounded sets, but it may well be satisfied approximately at close range.
The most critical assumption is that of isotropy. For that reason, the ap-
plicability of motion invariant stereology is limited, and translative integral
geometry is under investigation.
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9 The kinematic formula for curvature mea-
sures

We shall now prove the local version of the principal kinematic formula,
that is, the equation

[ #: g AngB) duto (48)
Gn

n
= anju®; (K, A) @, i(M, B)
k=j

for the curvature measures ®;. It holds for polyconvex sets K, M € U(K™)
and Borel sets A, B € B(R"). As for the global version, involving the
intrinsic volumes V;, it is sufficient to prove (48) for convex bodies K, M €
K", since the general case of polyconvex sets is then easily obtained, using
additivity and the inclusion-exclusion principle.

For the proof of (48), we first consider the case where K and M are
n-dimensional convex polytopes. We also consider only translations instead
of rigid motions, thus we have to investigate the integral

= /qw( A (M +2), AN (B + 7)) d\().
RTL
By (37), the jth curvature measure of a polytope P is given by
®;(P)= > (FP)Ap.
FeF;(P)

It follows that

I= > Y(F' KN (M + 2))A\p (AN (B + ) d\(z).  (49)
rn F'€F;(KN(M+z))

The faces F' € F;(K N (M + z)) are precisely the j-dimensional sets of the
form F' = FN (G +z) with a face F' € F(K) and a face G € F;(M), where
k,i € {j,...,n}. In computing the integral (49), only those translation
vectors = need to be considered for which a pair F,G with FN (G +z) # 0
also satisfies relint F' N relint (G + x) # 0, since the remaining vectors z
make up a set of Lebesgue measure zero. Moreover, the pairs F,G for
which k # i < n or which are in special position, do not contribute to the
integral, since for them we have

Mz eR" :FN(G+z)#0}) =\NF+G*)=0.
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In the remaining cases, we have dim F' = dim F' + dim G — n and hence
k + i =n+ j. Therefore, we obtain

-y Yy ¥

kej FEFW(K) GEFnts—1(M)
/7(F N(G +2), K N (M +2)Arn(esa) (AN (B + 2)) dA(z).
R’ﬂ.

In the integrand, we may assume that relint F' Nrelint (G + ) # (), and in
this case the external angle

VEFN(G+z), KN (M + ) =:v(F,G,K,M)
does not depend on x. Putting
HEG) = [ Arnarn (AN (B + ) d\(),
RTL
we thus have
=Y Y. (F.G.K M)IFG).
k=j FEF,(K) GEFn4j—r(M)

To compute the integral J(F,G) for given faces F € Fi(K) and G €
Frntj—r(M), we decompose the space R” in a way adapted to these faces.
We may assume that

0€ L, :=aff FNnaff G,
where aff denotes the affine hull. Let
Ly:=Linaff F,  L3:= L naffG,

and let A& X(E=3) X\("=k) denote the Lebesgue measures on Ly, Ly, L3, re-
spectively. With respect to the direct sum decomposition R* = Ly G Lo® L3,
every ¢ € R" has a unique decomposition = = 1 + x2 + x3 with z; € L; for
1 =1,2,3. Writing

A = ANF, B':=BnQG,

we get

JFG) = [F.Q] / / / Ain(Giortegien (AN (B + 21+ + 3)

Lz Lo L,
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dAD (1) dNF=I) (25) dAF) (25).
Here the factor [F, (] is an absolute determinant, defined by
d\(z) = [F, G)dAD (z1) dAF9) (25) dA™H) (25).

It can be described as follows, in a more general version. Let L,L' C R"
be two linear subspaces. We choose an orthonormal basis of L N L' and
extend it to an orthonormal basis of L and also to an orthonormal basis of
L'. Let P denote the parallelepiped that is spanned by the vectors obtained
in this way. We define [L, L] := V,,(P). Then [L, L'] depends only on the
subspaces L and L'. If L + L' # R", then [L,L'] = 0. We extend this
definition to faces F,G of polytopes by putting [F,G] := [L,L'], where L
and L' are the linear subspaces which are translates of the affine hulls of F'
and G, respectively.
To compute now the inner integral over L, we observe that

(ANB' +ax1+22+23)) —20= (A" —22)N(B' + a1 +23) C L4

and hence
/ Abn(Gotostoatan) (AT N (B! + 21 + 22+ 23)) dAD) (21)
Ly
_ /W') (A" = 22) N (B + 25 + 1)) D (1)
Ly
= 2D (A" = 22) NL)AD ((B' + z3) N Ly),

where we have used Theorem 2.1. The integrations over L, and L3 now
require only Fubini’s theorem, and we get

/A(]’)((AI — ) N Ly) dAED () A9 @ AE=9) (A7) = Ap(A),
Ls

/ AD((B' +23) N L) dA* ) (z5) = AU @ A""H(B') = Aa(B).
L3

Together this yields
J(F,G) = [F,GIAr(A)AG(B).

Inserting this in the integral I, we end up with the following translative
integral-geometric formula for polytopes.
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9.1 Theorem. If K, M € K™ are polytopes and A,B € B(R™) are Borel
sets, then for j € {0,...,n},

/<I>j(Km (M +2), AN (B + 1)) d\(z)
Gn

i > > WF.G,K,M)F,G\r(A)Aa(B).

k=j FEFk(K) GE]:"Jrj,k(M)

The kinematic formula at which we are aiming requires, for polytopes, the
computation of

[ #0594 gB) duto
G
- / / ;(K N (OM +z), AN (0B + 2)) dA(x) dv(9)
SO, G,

=> > Yo Ar(A)Aa(B)

k=j FeFi(K) GEFntj—1(M)
/7(F,19G,K,19M)[F,19G]dl/(19).
SO,

Here we have used the fact that Ayg(9B) = Ag(B). The summands with
k = j or k = n are easily determined, since for k = j we get

> Y (FG K M)FG\r @\
FEFL(K) GEFntj—k(M)

= Z Y(F, M, K, M)[F, M]Ar ® Ay
FeF;(K)

Z ’y(F,K)AF QR A
FeF;(K)
= (I>j(K> ) ® (ﬁn(M) ');

and similarly for k£ = n,

> > A(FG K M)F,G\r ® \a
FEFk(K) GE]:"+J',1¢(M

=®,(K,) @ ®;(M,-).
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The remaining integrals over the rotation group are determined in the
following theorem.

9.2 Theorem. Let K,M € K™ be polytopes, let j € {0,...,n — 2}, k €
{+1,....,n -1}, F € Fi(K) and G € Fryj—r(M). Then

/ V(E, 0G, K, 9M)[F,9G] dv(9) = anjy(F, K)1(G, M),

SOn

where au,ji 15 as in Theorem 7.2.

Proof. In order to avoid difficult direct computations, we will give a proof
based on the uniqueness of spherical Lebesgue measures. This is possible
since external angles are defined in terms of such measures.

By definition,

Y(F,9G, K, 9M) = y(F N (VG + z), K N (IM + z))

with suitable z € R". As before, let N(P, F') denote the normal cone of a
polytope P in a relatively interior point of its face F'. From the definition
of the external angle we get

o M(N(K N (M +z), FN (WG + z)) NS

Y(F,9G, K, M) = D LAST) ,

where L € £}, is the orthogonal space of F'N(JG +z) (i.e., the orthogonal
complement of the linear subspace parallel to the affine hull of F' N (9G +
x)). For a linear subspace L C R", we have denoted by o) the spherical
Lebesgue measure on L N S™~ 1.

A general property of normal cones of convex bodies gives

NENWM+2),FN (G +2)) = N(K,F) + 9N (M, Q).
Therefore, we have to evaluate the integral

/ o L) (N (K, F) + 9N (M, G)) N S"~H[F, 9G] dv(9),

SOn

where L; is the orthogonal space of F' and L, is the orthogonal space of G.
More generally, we define the integral

(A, B) = / I H9L2) (0 4) + 9C(B)) N S [F, 9G] dv ()
SO,
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for arbitrary Borel sets A C L1 C S™ ! and B C L C S™ !, where
CA) ={ax:z€ A, a>0}

denotes the cone spanned by A. Concerning the measurability of the inte-
grand, we give the following hints for a proof. The function ¢ — [F, 9G] is
continuous, hence measurable. Let U denote the set of all rotations ¢ € SO,
for which L, and 9L, are not in special position. Then it can be shown
that (SO, \ U) = 0. For ¥ € U we have

dimL; +dimLy=(n—k)+ (k—j)=n—j <mn,

hence the sum L; + 9Ly is direct. From this one can deduce that C'(A4) +
9C(B) is a Borel set (in general, the sum of two Borel sets need not be
a Borel set). For different ¢ € U, the sets C(A) + 9C(B) are connected
by linear transformations. All this together is sufficient to show that the

mapping
9 oLt ((C(A) +9C(B)) NS 1)

is measurable on U.
For fixed B € B(L, N S™!) we now define

©(A) := I(A, B) for A € B(L; nS™1Y).
If ;2 A; is a disjoint union of sets 4; € B(L; N S™ 1), then
( (U A; ) +9C(B ) ns™' = J((C(4;) +9C(B))nS™)
i=1

for ¥ € U, and this union is disjoint up to a set of o(*1+?L2)_measure zero.
We deduce that

gl tolz) (( (U A) +9C(B > msnl>

= fj o (C(A)) +9C(B)) N S™)

for ¥ € U and thus



by the theorem of monotone convergence. It follows that ¢ is a finite mea-
sure on Ly N .S™ 1. Let p € SO,(L;) be a rotation mapping the subspace
L, into itself. Then

C(pA) +9C(B) = p(C(4) + p~'9C(B))

and
[F,9G) = [pF, 9G] = [F, p~ 9G],
hence
p(pA)
- / o012 (C(pA) + 9C(B)) N S™1)[F, 9G] dv ()
SO,
N / o Brte 0B (C(A) + p~10C(B)) N S"H[F, p~ 9G] dv(¥)
SOy,
= p(4).

Since spherical Lebesgue measure is uniquely determined, up to a factor, by
its rotation invariance (and finiteness), the measure ¢ must be a constant
multiple of o(*1). Analogously we deduce that for fixed A € B(L; N S™~1)
the measure I(A,-) must be a constant multiple of o(Z2). Both results
together yield that

I(A,B) = a(Ly, Ly)o ") (4)o'F2) (B)

for all A € B(Li nS™ Y, B € B(LyNS™1); here a(Ly, L») is a constant
depending only on L; and Ls. If we choose A = Ly NS™ !, B=Ly,NS"!
and observe the invariance properties of the functional I following from its
definition, we see that «(Lj, Ls) depends only on the dimensions n, j, k.
Therefore, there is a constant 3, so that

I(A,B) = Bpjrot) (4) 0L (B).
In particular, this shows that
I(N(K,F)nS™ * N(M,G) N S™ 1)) = Bujiy(F, K)y(G, M).
This is the assertion of Theorem 9.2, except that it remains to show that

ﬁnjk = Qnjk-
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Collecting the results obtained so far, we have proved the following kine-
matic formula for polytopes K, M € K™:

/ ®;(K NngM,AngB)du(g)
Gn

oy

FEF(K) GEFnii_1(M)
= Bajn®r(K, A)®ny ;-1 (M, B).
k=j

If we choose A = B = R", the obtained formula must coincide with that
of Theorem 7.2, for all polytopes K, M. This shows that By;r = an;; and
thus completes the proof of Theorem 9.2. |

For arbitrary convex bodies K, M, the general kinematic formula (48) is
now obtained by approximation, using the weak continuity of the curva-
ture measures. An extension to polyconvex sets K, M is easily achieved by
additivity, as in the case of Theorem 7.2.

Also the Crofton formula of Theorem 7.2 has a local counterpart. We
collect both results in the following theorem.

9.3 Theorem. Let K, M C UK™ be polyconvez sets, let j € {0,...,n}, and
let A, B € B(R™) be Borel sets. Then the principal kinematic formula

/ &;(K N gM, AN gB) du(G) (50)
Gn

= 0k ®(K, A1 (M, B)

k=3
holds. For k € {1,...,n — 1} and j < k the Crofton formula
/<I>]-(K NE,ANE)duy(E) = anjr®rnyj—i(K,A) (51)
e
holds. In both cases, the coefficients au,ji, are those given in Theorem 7.2.
Proof. It remains to prove formula (51). Here we can assume that K is

a convex body, since the general case is then obtained by additivity. We
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deduce (51) from (50), by a similar but simpler argument as used in the
proof of Theorem 7.1.

Let Ly, € L} be a fixed subspace; then py = vy (A% @), as in Section
3. Let W be a unit cube in L. Let A € B(R"). By (50) we have

J = / ®;(Li NgK,WngA)du(g)
Gn

= Z anjm(}m(Lkaw)q)n+j*m(K’ A)
m=j

with

hence
J = Oénjkq)n-i-j—k(K, A)
On the other hand,

J = //<I>j(Lkﬂ(19K+m),Wﬂ(19A+x))d/\(x)d1/(19)
SO, R

SOn Lé— Lk

AP () dANF) (21) dv ().
For the computation of the inner integral, we put

Q; (LN (WK +x1),-) = ¢, VA+z, = A
Then

/q>j(Lk N WK + 21 4 22), W N (9A + 21 + 22)) dAP) (25)

Ly

= /(p((W —23) N A dAP) (z5)
Ly
= (AP (W)
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= (bj(Lk N (19K + ml),Lk N (’1914 + 1‘1)),

where Theorem 2.1 was used. This yields

J = //f1>j(Lk0(0K+x1),Lkﬁ(19A+a:1))d>\(""“)(:n1)du(19)
SOnLt

/ / ®;(KNI(Ly + ), ANI(Ly + 2)) AN (z) dv(0)
SOnLt

= /q>j(KnE,AmE)duk(E),

er

where we have used the rigid motion covariance of the curvature measures
as well as the inversion invariance of the measures A(*~%) and v. The two
representations obtained for J together prove the assertion. [ |
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Stereology: Integral Geometry
‘under the Microscope’

Luis M. Cruz-Orive

Stereology can be regarded as geometric sampling. It is a blend of in-
tegral geometry, geometric probability, and statistics, to serve the scientist
who wants to estimate geometric measures associated with a solid object
(e.g. an organ, a tumor, a rock, a sausage...), or with the internal mi-
crostructure of it. Actually, the classical Buffon’s needle problem (1777)
already contains much of the art and spirit of stereology. We propose a
brief, lively review of the state-of-the-art in stereology.
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Concentration multi-échelles de courbure dans
des fibres de Milnor

Evelia Garcia Barroso

Nous étudions le comportement asymptotique de la courbure de la fibre de
Milnor
C(Ne=f"'(N)NB.C C?

d’un germe de courbe plane réduite (C,0) C (C?,0) défini par une équation
f(z,y) = 0lorsque € et A tendent vers 0. Il s’agit de la courbure de Lipschitz-
Killing associée a la métrique induite sur C'(\) par celle de C%. On connait
déja, grace au travail de Langevin [3] la valeur limite de I'intégrale de cette
courbure :

Lime,Ho,u«e/( |K|dv = 2a(u® (C) + p(C)),
(X

€

oit u(? est le nombre de Milnor en 0 de la singularité C(0) = C et p)
sa multiplicité en 0 diminuée de 1. Il faut souligner que le terme de droite
ne dépend que de la topologie du plongement dans C? du germe de courbe
plane réduite (C,0). D’apres [4], le nombre p() (C) + u(V)(C) est le nombre
d’intersection & l’origine de C avec une de ses courbes polaires relatives
génériques, qui sont définies par les équations

g + Tﬁ =0.

dy ox
C’est aussi le nombre des points d’intersection (transverses) d’une telle
courbe polaire avec une fibre de Milnor f(z,y) — A = 0 qui tendent vers
0 avec A. Ce résultat est donc au fond de la nature d’un résultat de théorie
de lintersection, c’est a dire que l'on compte des points, ou le degré de
cycles, sans se préoccuper de leur position.
Nous allons obtenir une information plus précise sur la géométrie de la
fibre de Milnor en essayant de localiser les régions de C'(\) ou se concentre
asymptotiquement la courbure, et ce faisant mettre en évidence le fait que la
concentration de courbure est un phénomene multi-échelles : la courbure se
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concentre dans les intersections avec C'(A) de boules, dont les centres f;?l(/\)

peuvent étre décrits, mais surtout dont les rayons sont de la forme |\[?(?)
ou les p(Q) sont des nombres rationnels dont la collection ne dépend que
de la topologie du plongement dans C? du germe de courbe plane réduite
(C,0). Il nous semble intéressant que cette description multi-échelles elle
méme ne dépende que de la topologie.

Lorsque le germe C' est analytiquement irréductible en 0, i.e., est une branche,
la donnée des exposants p(Q), qui sont alors en nombre égal a celui des ex-
posants de Puiseux, et celle de la quantité de courbure qui se concentre
dans les boules de rayon p(Q)) permettent de déterminer les exposants ca-
ractéristiques de Puiseux de C, et 'on peut donc dire que le comportement
asymptotique de la courbure de la fibre de Milnor permet de déterminer la
classe d’équisingularité de la fibre limite singuliere. Le cas réductible est plus
compliqué, en particulier parce qu’une partie de la courbure reste “diffuse”,
comme dans le cas extréme de z” + y™ = 0, ou il n’y a pas de concentra-
tion de courbure dans des boules de centre différent de l'origine (et donc
dépendant de \). Nous savons mesurer quelle est la partie diffuse.

Notre technique de preuve est basée sur I’analyse du contact avec les branches
de C' des différentes branches des courbes polaires génériques qui a été faite
dans [1], [2].

L’idée heuristique part du fait que par définition de la courbe polaire g—i +
7% = 0, ses points d’intersection avec C'(\) sont les points de C'()\) ou
la tangente a la direction correspondant au parametre 7. Pour prouver le
théoreme de Langevin, on compte le nombre de ces points et on applique
la formule d’échange. Nous observons que ces points ont répartis sur les
différentes branches de la courbe polaire, et si le contact avec C' en 0 d’une
de ces branches est fort, elle varie peu lorsque I’on varie le parametre 7 et par
conséquent ses points d’intersection avec C'(\) bougent peu, ce qui signifie
que beaucoup de courbure se concentre au voisinage de ces points. Rappelons
que le vocable branche désigne un germe analytiquement irréductible de
courbe, et en particulier une composante irréductible d’'un germe de courbe.
Cette travail est fait en collaboration avec Bernard Teissier et va & paraitre
dans Commentarii Mathematici Helvetici.
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Total curvatures and Euler-Poincaré
characteristic: Stereological estimation

Xim6 Gual-Arnau

1 Introduction

Chern and Lashof defined the total absolute curvatures of immersed sub-
manifolds in the euclidean space by integration, on the submanifold, the
absolute value of certain local curvatures. Their work, which relates the
theory of total curvatures with Morse theory of critical points of functions
defined over the submanifold, has been extended for immersions into spaces
of constant curvature (in particular the sphere) and for holomorphic immer-
sions into complex projective spaces.

On the other hand, using techniques of Integral Geometry, which gener-
alize the Quermassintegrale of convex sets, Santalé introduced some global
definitions of total absolute curvatures for compact manifolds immersed in
a euclidean space and he showed that one of these curvatures coincides with
the Chern-Lashof’s curvature. However we have not found in the literature
a generalization of these tecniques for immersions in the sphere.

Moreover, the concepts used to define the total absolute curvatures from
the Integral Geometry viewpoint (Santalé’s approach) and those used to
obtain a local interpretation of these curvatures (Chern-Lashof’s approach)
are similar to the ideas presented by several authors in Stereology to esti-
mate the Euler-Poincaré characteristic for n—dimensional sets in R™”. These
ideas have been adapted from the definition of the Euler-Poincaré char-
acteristic given by Hadwiger and allow to define the Euler number of an
n—dimensional set in terms of what happens in an (n — 1)—dimensional
plane that sweeps through the set. However, these ideas have not been ap-
plied to obtain the Euler number of domains which are not n—dimensional
sets in R?, for instance, domains in a surface of R3.
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2 Total absolute curvature of plane curves and
Euler-Poincaré characteristic of plane do-
mains

In this first section we summarize some wellknown results refered to curves
and domains in R2. Firstly, we remember the definition of the total absolute
curvature of a plane curve given in Integral geometry. Afterwards, we give a
characterization of this definition from the theory of critical points of height
functions and we prove that this definition coincides with the definition of
total abolute curvature given in Classical Differential Geometry.

In the second part of this section we adapt the preceding concepts to
obtain the Euler number of a plane domain. This method to obtain the
Euler-Poincaré characteristic of a plane domain has been used in different
stereological applications.

3 Total absolute curvature of curves in the
sphere and Euler-Poincaré characteristic of
domains in the sphere

We first particularize some results of [1] to spherical curves. In particular,
we define three different total absolute curvatures for spherical curves in
terms of what happens in a circle (geodesic) or small circle that sweeps
through the curve. Afterwards we prove that local versions of these total
absolute curvatures allow us to obtain the different total absolute curvatures
studied in Differential Geometry and Topology for curves in spheres.

Secondly, we consider two methods to define the Euler-Poincaré charac-
teristic of a domain with boundary in the sphere. With the first method
we consider geodesics that sweeps through the domain and in the second
method we use parallel small circles which are tangent to the boundary of
the domain.

4 A stereological version of the Euler-Poincaré
characteristic for domains in a surface

Here we adapt the theory of critical points of functions to height functions
in R? to obtain the Euler-Poincaré characteristic of a domain with boundary
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in a surface of R?, [2]. In such a manner that the results exposed in the
preceding sections for plane and spheric domains are particular cases of the
formulae presented in this section.

Finally, we will give a geometrical interpretation of these formulas which
can be considered as a stereological version of the Gauss-Bonnet formula.
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A geometrical meaning for Action from
Integral Geometry in Space-Time

Mariano Santander

The talk aims to introduce some elementary results on Integral Geometry
in space-time. These are presented from a point of view which includes in
a natural way the geometries of homogeneous space-times as well as the
classical riemannian geometries of constant curvature. It will be organized
by merging two only apparently disparate threads: one belongs to Physics
while the other comes from Geometry.

Action is the most important single quantity in Classical Mechanics.
Absolute time and space-length, the two other basic quantities have a clear
geometrical interpretation in terms of the (degenerate) time metric and
space metric in classical physics. However, Action appears as an apparently
rather ad-hoc concept without any known geometrical meaning. I will also
give a brief glimpse to the seminal role of action in Quantum Mechanics
—through Feynmann’s formulation—, and I will comment how quantum
mechanics points to the relative actions for closed space-time paths as the
important quantities.

The second thread comes from geometry. Starting from the prehistory
and history of non-euclidean geometry I will comment how the study of
the three classical geometries of constant curvature could (or better should)
be considered as only a part of a more comprehensive and symmetrical
scheme, where they are nine two dimensional real geometries. The six re-
maining geometries turns out to provide the right geometrical language to
discuss the six possible kinematics of an homogeneous space-time with con-
stant space-time curvature and either non-relativistic (with absolute time)
or relativistic (without absolute time). This scheme is better couched in
terms of the Lie groups and algebras of these geometries. As an example
of this approach having a clear direct relevance for Integral geometry, two
mutually dual Gauss-Bonnet like identities will be presented which afford a
direct derivation of trigonometry for these nine geometries in a single run.
This common frame, which historically first appeared as the Cayley—Klein
theory of 'projective metrics’ was also considered by Poincaré. It includes
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the (nine) geometries with a quadratic metric (either riemannian, degener-
ate or pseudoriemannian) and constant curvature (either positive, zero or
negative) in a surprisingly symmetrical arrangement, which suggests rela-
tionships between different geometries (as a most important duality) and
allows many properties to be studied for all the nine geometries simultane-
ously.

The first thread contributes to the whole picture as: “Action is essential
in classical mechanics, Classical Mechanics can be recasted as a geometric
theory, yet Action has no a known geometrical meaning”. The second one
tells us: “Study and classification of possible two-dimensional geometries
turns out to furnish the actual observed space-time structure, whether in a
rather rough approzimation (the galilean geometry of classical physics), or
as in more refined and accurate ones (as the Lorentz-Minkowski geometry
of relativistic physics)”. The third part of the talk will merge these two
threads together, providing a the geometrical interpretation for Action in
terms of Integral geometry in space-time.

The three classical space geometries (spherical, euclidean and hyper-
bolic) have a compact isotopy subgroup of rotations (in 2d SO(2)) around a
point. This leads to a finite total measure of the sets of lines through a point
and underlies most elementary integral geometry results as the Cauchy-
Crofton formula for the length of a curve in euclidean plane by integrating
the intersection counting with straight lines:

/Np(l)dl =2Lr.

In contradistinction, the geometries which describe space-time have a
non-compact isotopy subgroup of 'rotations’ around an event (or space-time
point); physically these are inertial transformations, and in 1 4+ 1 dimen-
sions, the isotopy subgroup is SO(1,1). The non-compact nature of inertial
transformations should hold if one wants space-time to be causal, a basic
requirement deeply involved in all physical theories. Therefore the total
measure of space-time time-like lines through an event is infinite. At a first
sight this precludes extension of Cauchy-Crofton and similar relations from
(locally) euclidean spaces to space-time, which is either locally galilean or
locally lorentzian.

However, and this will be the main result presented in the talk, this
is not so. The loss of a finite total measure for the set of lines through a
point is accompanied by the existence of a time orientation which allows a
classification of time-like lines into future and past, and which is invariant
under the kinematical group. In the flat space-times —the Galilei space-
time of classical mechanics and the Lorentz-Minkowski space-time of special
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relativity—, this suggests to modify the euclidean intersection counting and
to replace it by an oriented intersection counting; this is also invariant under
the kinematical group.

Let us consider a closed time-like curve (a circuit in space-time) I' as
two possible future-pointing paths, say I'y and I's. These paths go from an
initial event A to a final one B. Now two natural questions are:

e first, are the integrals
/ Nr(D)dl

of the oriented intersection numbers with I', taken over the space-time of
all time-like lines well defined? and,

e second, if they are, what is their meaning?

Both in classical and in the relativistic case these integrals are well de-
fined, even if [ dlp diverges, and also in both cases, they are proportional
to the difference of actions for a particle going from A to B along the two
paths I'y and I's. This could be expected in the relativistic case, where the
action for a free particle is just the Lorentz-Minkowski length of the parti-
cle worldline, but comes as a surprising result in classical physics. There-
fore this gives an unexpected interpretation for Action in terms of Integral
Geometry in Space-time. As usually happens with mathematics in/and
physics, the right mathematics strongly suggests the quantities which are
the physically important ones; in this case even the fundamental impor-
tance of relative actions, as opossed to the unobservable action along an
open path, is clearly captured. The interpretation does not circunscribe to
the free case, but is also valid for particles in any potential; this however
will not be discussed here.

A general reference explaining in a descriptive, yet authoritative way
the role of Action and space-time in Physics as well as in Mathematics is
the book by Yu. I. Manin, Mathematics and Physics, Birkhauser, Boston,
(1981). This book makes a very stimulating reading. The talk is based
mainly on the following papers:

M. A. del Olmo, M. Santander, Action and Integral Geometry, Journal
of Physics A: Math. Gen., 22, L763-767, (1989).

M. A. del Olmo, M. Santander, A study of the action from kinematical
integral geometry point of view, Journal of Geometry and Physics, 7, 171-
189, (1990).

D. Alarcos, M. A. del Olmo, M. Santander, Procs of the XIX Interna-
tional Colloguium on Group Theoretical Mhetods in Physics, Salamanca,
1992, Anales de Fisica Monografias, 1(II), 405-408, (1993).
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F. J. Herranz, R. Ortega, M. Santander Trigonometry of Homogeneous
symmetric spaces I: The Trigonometry of the nine Cayley—Klein planes and
space-time trigonometry, in preparation.
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