CLASSICAL GEOMETRIES ARISING
IN FEEDBACK EQUIVALENCE

Robert B. Gardner!? and George R. Wilkens?

Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599-3250
and The Fields Institute for Research in Mathematical Sciences, Waterloo, Ontario N2L 575

Department of Mathematics, University of Hawaii at Manoa, Honolulu, HI 96822
and The Fields Institute for Research in Mathematical Sciences, Waterloo, Ontario N2L 575

Abstract

The equivalence problem for control systems
under non-linear feedback is recast as a prob-
lem involving the determination of the invari-
ants of submanifolds in the tangent bundle of
state space under fiber preserving transforma-
tions. This leads to a fiber geometry described
by the invariants of submanifolds under the gen-
eral linear group, which is the classical subject
of centro-affine geometry. Unfortunately, the in-
variants of this geometry were known only in low
dimensions and the fundamental theorem of such
submanifolds needed to be established. Applying
the solution to the fiber geometry induced by n-
states and (n —1)-controls leads in a surprisingly
simply way to the solution of the equivalence
problem on the whole total space. In particular,
mysterious results on the existence of feedback
invariant pseudo-Riemannian geometries uncov-
ered in earlier work [3], [7] is clearly explained
with a precise geometric meaning. Similar anal-
ysis of the general scalar control problem has also
been worked out and required a solution of the
fundamental theorem of curves in centro-affine
n-space, and again gives a solution to the equiv-
alence problem on the total space, which will not
be described in this note. The original solution of
the equivalence problem for n-states and (n—1)-
controls, due to Robert Bryant and the first au-
thor, was sufficently complicated that a complete
proof was never published, although an outline
exists in [1]. This approach had the disadvan-
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tage that the meanings of the various invariants
uncovered were not visible. The new ideas make
these results accessable and in this case lead to
the Finsler geometry of a generalized variational
problem arrising from the variational problem of
time optimal control along control trajectories
[2].

1. Introduction

A control system

dzx

E:f(x,u) with z€R"™ and uweR™

is equivalent to its associated Pfaffian system
I = {dx — fdt}.

The problem under consideration is the deter-
mination and interpretation of a complete set of
invariants of such a system under feedback trans-
formations, which are the diffeomorphisms of the
form

(I)(tv Z, u) = (ta ¢($)7 Qﬁ(fﬁ» u)),

preserving integral curves of the associated Pfaf-
fian system.

As such we can view the control system as
the submanifold of the tangent space of the state
space T'(R") defined by

V:R"xR"™ — T(R"),

where



Now, if we fix a fiber over z € R" and re-
strict the mapping V' to define

Ve : R™ — T, (R") @ R",

where V,,(u) = f(x,u), then a feedback transfor-
mation T = ¢(z) satisfies

dz _dr 9z _ 0%
dt  dt Ox ' Oz’

This means that the action induced on the
fiber is 0z /0x, which is an arbitrary member
of the general linear group since ¢ was an arbi-
trary diffeomorphism. Thus the fiber geometry
is the study of invariants of submanifolds under
the general linear group, i.e. the venerable sub-
ject of centro-affine geometry.

The basic idea and battle plan now is to un-
derstand the fiber geometry, in particular using
the fundamental theorems characterizing sub-
manifolds of given dimensions up to general lin-
ear transformations, and then to investigate the
evolution of this fiber geometry over the the en-
tire state space.

The problem which occurs is that although
recognized as a classical geometry since mini-
mally the nineteen-thirties, the only published
results were for curves and surfaces in the centro-
affine plane or space [5], [6], or for curves in affine
unimodular n-space [4].

2. The Fiber Geometry of Control Systems

of n-States and (n-1)-Controls

We restrict the above discussion to m =
n — 1, and choose a frame (eq, €1, ...,€,) on R"
defined for each point (x,u) in the fiber over x

by
dr = Z We;.
i=0

As the reader will see shortly, the first leg will
have special meaning, which motivates the cu-
rious range of indicies. In particular, given an
integral curve v : R — R"™ x R™ of the original
control system,

m
fdt =~"dx = Zv*w%u
i=0

choosing ey = f results in the normalizations

v =dt, v'wl=0,...,7'w™=0.

Next let us change notation to reflect this
choice by defining 1-forms ¢ and n',...,n™ by
the equation

dx = ¢eg + Z nN%eq.
a=1

In particular we note that

{dz} ={o,n',...,0"},

and

{dx — fdt} = {¢ —dt,n",...,n™}.

Now if we define I = {n',...,n™} then a dif-
feomorphism ®(t, z,u) is a feedback equivalence
if and only if

O*I =1 and ®*¢p€ ¢+ I.

This follows because these two conditons along
with the characterization of {dx} and {dx — fdt}
immediately above, are equivalent to ® preserv-
ing states and integral curves.

The basic problem is to choose frames and
coframes such that they are simultaneously a-
dapted to both the centro-affine geometry of the
fiber and the feedback geometry of the control
System.

If we restrict the consideration to the centro-
affine geometry of a hypersurface

Y : M,, — R™",

then the hypersurface is called non-conical if Y
is normal at every point. This occurs in the
fiber geometry of a control-affine system pre-
cisely when the control system has non-zero drift.
Now given an affine frame (e, . .., e,,) at the ori-
gin, we have the structure equations

m m
L — Jo . Jo_ k J
de; = E wie; and dw; = E w; Awy.
3=0 k=0



If we now adapt the family of frames so that
eo =Y and (eq,...,e,) are tangent, then it fol-
lows immediately that w) = 0 and differentia-
tion of this normalization and Cartan’s lemma
guarentees the existence of a symmetric matrix
of functions (hag) satisfying

m
wgzz:hagwg, (1 <a<m).
p=1

If we package this information in the symmetric
quadratic differential form

m
Ilop = Z hagwg @woﬁ,
a,B=1

then we have the analog of the Blaschke form in
affine geometry.

The admissible action on this symmetric
tensor (heg) includes conjugation and hence may
be normalized in the usual ways. Let us restrict
to the negative definite case, since this involves
the simplest notation. Under this hypothesis we
may normalize

hag = _5046'

Integrability conditions then imply that

Where the symbol (C) is symmetric in all three
indicies. The resulting cubic form

m
Poa = Z Cg,ng Owi O w]
a,B,y=1

is the analog of the Pick cubic form in affine ge-
ometry.

Now let us introduce a matrix notation to
compactify the information in the normalized
structure equations. Thus define

N _ L
0= (wf), = ,(2-'0), A=_(2+'D)
w = (w§), e:t(el,...,em),

so that

(2)- (4 o122

Differentiation of this last set of equations gives
0 w
d < —tw ®4 A>

(0 w A 0 w
T\ —tw D+ A —tw P+ A

and hence
do=wAP+wAA with '® = —.

Now this last set of equations determines &
uniquely. This is seen by using an algebraic the-
orem similar to that used to prove the character-
ization of the Levi-Civita connection in Rieman-
nian geometry.

3. Evolution of the Fiber Geometry
across the State Space

Next we extend the choice of n-frames to the
principal SO(m, R) bundle over the image of V'
in T(R"™) where the group SO(m, R) is the sta-
bilizer of the Blaschke form normalized as above.
Thus we have frames

(eo(z,u),e1(x,u,S),...,en(x,u,sS))

withz € R",u € R™, S € SO(m, R), m = n—1.
As above these have dual 1-forms

(¢(x’ u7 S)’ nl(x7 u7 S)’ A 7,’7m(x7 u7 S))
which satisfy dx = ¢eg + > neq.

On each fiber we have complementary forms

(ut, ..., u™) satisfying

de e\ 0 I e
fiber e — _t,u @—FA e )

and from the representation of the exterior der-
ivatives restricted to the fibers we have

dfibeT(¢v77) = (d)? 77) A <—(t)lu, (I)—/:A> '



As a consequence the full exterior derivative
has the form

d(¢;m) = (¢,1) A <9u @iA>

+ terms quadratic in the states.

We note that the terms quadratic in the states
are precisely the terms quadratic in ¢, 7. Now a
careful absorption argument can be used to es-
tablish the existence of a unique extension of the
1-forms p, A in such a way that the extensions
absorb all the forms quadratic in the base and a
extension of the 1-forms ® is uniquely forced by
requiring that the structure equations

dp=-nA'pw and dp=¢Ap+nA(®+A),
with '® = —®, be satisfied.

These equations and the resulting integra-
bility conditions obtained by differentiation re-
sult in the structure equations of the Finsler
Geometry associated to the general variational
problem

0 ¢ =0,
n=0
with integrand ¢ restricted to integral curves of
n = 0, which are just the integral curves of the
original control system. Thus the integrand ¢ is
the generalization of the Cartan form [1, p.52] in
the usual calculus of variations corresponding to
the problem of time optimal control.

In summary this analysis shows the geomet-
ric meaning of the vanishing of invariants discov-
ered by ad hoc methods in our past work [1], [7]
and in particular give a geometric explaination
of the existence of feedback invariant pseudo-
riemannian metrics which have closed loop time
optimal trajectories as geodesics [3], [7]. If the
Blaschke form is just non-singular instead of pos-
itive definite, then everything goes through in the
context of pseudo-Riemannian geometry. The
complete details of the computations outlined
here will appear elsewhere (see [8] for the low-
est dimensional example).
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