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Thisis a survey of the main results on multivariate polynomial interpolation in the last
twenty-five years, a period of time when the subject experienced its most rapid devel opment.
The problem is considered from two different points of view: the construction of data points
which allow unique interpolation for given interpolation spaces as well as the converse. In
addition, one section is devoted to error formulas and another to connections with computer
algebra. An extensive list of references is also included.
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1. Introduction

Interpolation is the problem of constructing a function p belonging to a (simple)
finite dimensional linear space from a given set of data. Usually, the interpolation data
are obtained by sampling another (more difficult) function and, in that case, it is said
that p interpolates f, in the sense that both functions coincide on that data set. The
simplest context to study here is interpolation by univariate polynomials. Therefore
it is no surprise that interpolation by univariate polynomias is a very classical topic.
However, interpolation by polynomials of several variables is much more intricate and
is a subject which is currently an active area of research. In this paper we want to
describe some recent developments in polynomia interpolation, especially those which
lead to the construction of the interpolating polynomial, rather than verification of its
mere existence.

Let us denote by = = (&1,...,&y) any point of R? and by M? the space of all
d-variate polynomias with real coefficients. The subspace of polynomias of tota
degree at most n, denoted by MN¢, is formed by polynomials

px)= > aar”, (1.1)

d,n
aENy

* Partialy supported by DGES Spain, PB 96-0730.
** Partially supported by DGES Spain, PB 96-0730 and Programa Europa CAI-DGA, Zaragoza, Spain.

0 J.C. Baltzer AG, Science Publishers



378 M. Gasca, T. Sauer / Polynomial interpolation

where Ng'” is the set of dl (integer lattice) points o = (aa,...,q), oy > 0, i =
1,...,d, with |a| = ag+---+ a4 < n. In addition, the coefficients a,, o € N&", are
real constants and 2 = &5 - - - £5¢. We al'so use the notation H%" := N3 \ Ng" .,

This survey will be mainly concerned with the problem of finding a polynomial
p € N% such that the values of p and/or some of its derivatives are prescribed real
numbers at points x4, . . ., .y of R%. When derivatives are not interpolated, the problem
is referred to as the Lagrange interpolation problem and can be stated in the following
form:

e Given a finite number of points x4, ..., 2y, Some real constants y,...,yy and a
subspace V' of MN¢, find a polynomial p € V, such that

p(z;)=vy;, j=1,...,N. (1.2)

The interpolation points z; are also called nodes and V' is the interpolation space.

1.1. The univariate case

There is a well-developed and extensive classical theory of univariate Lagrange
polynomia interpolation. In this context the Hermite interpolation problem arises as a
limiting case when some of the interpolation points coalesce, giving rise to derivatives
of consecutive orders. The Lagrange problem with N different nodes z; € R or
the Hermite problem, with m; derivatives of consecutive orders 0,1,...,m; — 1 a
each node z; and N = ), m;, dways have a unique solution in the space I'I}V_l of
univariate polynomials of degree not greater than N — 1.

If there are some “gaps’ in the order of the derivatives at some interpolation
point, the problem is called a Birkhoff interpolation problem. In the univariate case,
this problem has awell developed theory, see [77] for conditions ensuring its solvabil-
ity. Multivariate Birkhoff interpolation will enter our discussion only in a periphera
manner. The book [78] is the best source of information about this subject.

Returning to the univariate Lagrange interpolation problem, we recall that the
Lagrange formula

N
p(x) = yili(x), (L3
i=1
where
N Xr — .%'j .
L) =] —*% i=1....N, (1.4)
( J
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explicitly provides the solution of the problem. Alternatively, a recursive form is ob-
tained from the Newton formula, which makes use of divided differences. Specificaly,
we have that

N i—1
p(z) = Zf[ml, A H(m — xj), (15)
i=1 j=1

where the divided difference f[z;,...,zx], j < k, is recursively defined by the equa-
tions
[l = f(z)),
]: f[x_]1 !xk—l] B f[xj+l1'-- ’xk]
T — T '

(1.6)

flzj, .. xp

An important advantage of the Newton formula is that it can be easily extended to
include the Hermite case.
Let us aso mention the Neville-Aitken formula

_ (z —z)pa(z) — (z — zN)pa(z)
p(l‘) - 1
TN — 1

(1.7

where p1, pp solve the interpolation problems a the nodes zo,...,xy and
L1y, TN-1, respectlvely

These formulas suggest a strategy of constructing the interpolating polynomial at
N nodes from the solutions of some interpolation problems depending on fewer data.
The Lagrange formula uses the solutions of N interpolation problems, each of them
with only one interpolation point. The Newton formula, written in the form

N-1 i—1 N-—-1
p) = flon...xd [[@ —2) + flew, o an] [] @ = 2p), (18)
i=1 j=1 J=1

tells us what has to be added to the solution of the problem with the N — 1 points
x1,...,2xN_1 to get the solution of the problem with the N points x4, ...,z x. Findly,
the Neville-Aitken formula tells us how this solution can be obtained by combining
the solutions of the two problems corresponding to the data points zo,...,xy and
x1,...,xN_1. A genera interpolation formula including all these cases can be found
in [46], where an application to bivariate problems is also given.

1.2. The multivariate case is a more difficult problem

Definition 1.1. Let V' be an N-dimensional linear space of continuous functions. The
Lagrange interpolation problem (1.2), for the points z1, ..., zny € RY, is called poised
in V if, for any given data y1,...,yn € R, there exists a function f € V such that
f(xz;) = y;, j = 1,...,N. When the Lagrange interpolation problem for any N
distinct points in R¢ is poised in V, then V is called a Haar space of order N.
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Haar spaces exist in abundance for d = 1. The situation for d > 1 isdramaticaly
different. In fact, in this case there are no Haar spaces of dimension greater than 1. For
refinements of this important result see [31,76,81], and for useful concepts related to
the poisedness of interpolation problems, for example aimost regularity and singularity,
see [7§].

In particular, whenever P is a finite dimensional space of polynomials in d
variables of dimension N > 1, there always exist nodes x1,...,zy and a nontrivia
polynomia p € P such that p(z;) =0, j = 1,..., N. Consequently, deciding if the
interpolation problem (1.2) is poised for P is difficult.

On the other hand, if we alow in the definition of a Haar space of order IV,
where N is the number of interpolation points, that V' may have dimension greater
than N, then their existence is ensured for any d. For example, in this sense, the space
of polynomials of total degree at most N — 1 on R¢, which we denote by N4, ,, isa
Haar space of order N. To seethis, let z1,...,xny beany N distinct pointsin R<. For
each point z; we choose a hyperplane H; (identified with its defining affine function)
containing x;, but not x;, j # 4. Then the polynomial

p= Zy@ H 7 (xz) (1.9)

J#z

belongs to M4, _; and satisfies (1.2). However, for d > 1, the Haar space of order N
of least dimension is yet to be determined and only known for a few special cases.

So far we have only considered Lagrange interpolation. The meaning of Hermite
interpolation in the multivariate case is richer in variety and depth. Before addressing
this problem, it is convenient to establish some notation for the differential operators
which will appear in the paper. For a = (ag,...,a4) € N¢ we denote by D° the
differential operator

o ol f ()
D f(z) = 7@50““ r=(,...,8),
and, for a polynomia p given asin (1.1), we write
pD)= > anD" (1.10)
aeNg'N

for the associated differential operator. If v is a point in R¢, we denote by D, the
directional derivative operator, which corresponds to the linear polynomia p(x) =
v-z, z € R where - denotes the Euclidean product in R?. Likewise, the repested
directional derivative with respect to v, denoted by D}, corresponds to the polynomial
p(z) = (v-2)", x € R

The idea of Hermite interpolation is clear in the univariate case, namely, when
some of the interpolation points coalesce, the interpolating polynomials converge to the
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Hermite interpolation polynomial which interpolates function values and derivatives.
In general this does not hold true in two and more variables. Specifically, we consider
the problem of interpolating f and its gradient at two distinct points z1,z, € R2
This problem is the limit of the Lagrange interpolation problem at the six points z;,
x; + hei, ; + hez, 7 = 1,2, which is poised with respect to M3 for al h # 0 and
amost al choices of x1, 2. However, the origina Hermite interpolation problem is
never poised in I'I%, for any choice of x4, x».

An interpolation problem is called singular for a given space if the problem is
not poised for any set of nodes (note that Lagrange interpolation problems are never
singular). The Hermite problem above is singular in I'I%. Many results related to
regularity, amost regularity and singularity of interpolation problems can be found in
[6,73,78,108].

There is no general agreement in the multivariate case on the definition of “Her-
mite interpolation”, see also theorem 6.1 and the discussion there. However, it is very
common to associate this name with problems whose data are function evaluations and
derivatives at the same points, especialy those which are of the type

D°f(z;), aeNI% i=1,...,N. (1.11)

That is, there are (% +%) interpolation data associated to the point ;. When the number
q; isthe samefor each z; we call this problem a uniform Hermite interpolation problem.

Very few books on numerical analysis include a section on multivariate inter-
polation. Curioudly, three texts of the 1960s [3,64,69] do treat the subject, always
inspired by the classical book by Steffensen [111], but more recent books ignore it,
with the exception of [67]. See also [24] in the context of the finite element approach.
Multivariate interpolation is only briefly mentioned in classical texts on approximation
theory, for example, [31,76]. However, there are at least two monographs [6,78] and
severa surveys, [7,9,44,50,72,110] among others, devoted totally or partialy to the
subject.

2. Congruction of sets of interpolation points

Since the poisedness of multivariate polynomial interpolation depends on the
geometric structure of the points at which one interpolates, there has been interest in
identifying points and polynomial subspaces, for example M¢, for which interpolation
is poised. This problem has important applications in the context of finite element
analysis where the construction of polynomial interpolants with good approximation
order is crucia. We review in this section the best-known techniques for choosing
interpolation points.

2.1. Interpolation by tensor product

Tensor product interpolation is the oldest method of extending the univariate
theory. The interpolation points and space are obtained by tensor products of the uni-
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variate ones. The Lagrange formula and the Newton formula with divided differences
are easily extended to this problem, as can be found in [3,64,69].

2.2. Interpolation space M¢: from regular grids to natural lattices and pencils of
hyperplanes

In this subsection we focus on various methods to choose points z1, . . . , zx in R¢
such that the interpolation problem with respect to these points is poised in M¢ and,
moreover, the Lagrange formula can be easily constructed. Clearly, this requires that
N =dmng = ("19.

The first and most natural approach to choose such interpolation nodes is the
triangular grid of the unit smplex formed by the points in (1/n)Ng'". In the bivariate
case, this configuration has aready been discussed in [4,111] and in classical textbooks
on numerical analysis, for example in [64,69]. These books also dea with the more
general case of arrays formed by points (z;,y;), 0 < @ +j < n, where {z;},{y;},
1,7 =0,...,n, aetwo seats of n+ 1 digtinct points. A Newton formula with bivariate
(tensor product) divided differences is provided for this case. The bivariate array
is triangular when x; and y; are ordered and uniformly spaced, and in this case a
Lagrange formula for the interpolating polynomial is given in [69]. Note that this
situation considers the “lower left” triangle in a rectangular grid and therefore still
allows for the application of tensor product methods.

The triangular case appeared later in [98], where the notion of principal lattices,
affinely equivalent to the triangular sets, was introduced. It was this paper which ap-
parently motivated the construction in [23], written by Chung and Yao. Their approach
is based on the idea of taking the intersections of hyperplanes as interpolation nodes,
so that products of affine functions can be used to find the interpolation polynomial
explicitly, which guarantees poisedness. According to [23], aset of N = (1) points
X = {z1,...,zn} in R? satisfies the GC (Geometric Characterization) condition if
for each point x; there exist hyperplanes G;;, | = 1,2,...,n, such that x; is not on
any of these hyperplanes, and al the other points of X' lie on at least one of them.
Equivaently, we have that

zie| JGuej#£i ij=12... N (2.1)
1=1
In this case, the solution of the Lagrange interpolation problem is given explicitly by

N n G
= ; Y 2.2
D 2; f(x )jHl G (22)

where G';(-) = 0 is the defining equation of G;;.

In general, it isdifficult to decideif agiven set of points satisfies the GC condition,
even for R?. However, there are several well-known interesting specia cases. For
example, let 79,71, ...,r,11 ben + 2 straight lines in R? such that any two of them,
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Figure 1. A 3-pencils-lattice of order 2 (six interpolation points e) in R? with three finite centers
C1,C, Cs.

ri, 74, iNtersect at exactly one point z;; and these points have the property that x;; #
zp < {i,j} #{k,1}. Thentheset X = {z;;: 0 < i < j <n+ 1} sdisfies the GC
condition and formula (2.2) reads as

n  n+l n+1
p=>_ > f [] Tk(xz) (23)
=0 j=i+1 k;éZJ J

The set X is caled a natural lattice of order n in [23].

Other examples of sets with the GC condition are provided in [71]. To this end,
we recall that a pencil of order n in R¢ is a family of n + 1 hyperplanes which either
al intersect in an affine subspace of codimension 2 or are al paralel. The intersection
(in the projective sense) of the hyperplanes of a pencil is called its center. We consider
d+ 1 pencils of order n in R¢ with centers C1, . . ., C,441 not contained in a hyperplane
of the d-dimensional projective space P¢, with the additional condition that there exist
("*d) points, each of them lying precisely on d+ 1 hyperplanes, one from each pencil.
In [71], the set of these points is called a (d + 1)-pencils-lattice of order n. Some
examples of these lattices and a method of constructing them can be found in [71,96],
see also figure 1.
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When d of the d + 1 pencils in R? have pairwise orthogonal hyperplanes and the
remaining one has a finite center, Lee and Phillips [70] called this lattice a geometric
mesh. For z = (£1,...,¢&) € R and ¢ area number different from 0, 1 and —1, the
standard geometric mesh generated by x and ¢ is the set

{20: 20 € R, 20 = (¢°3€1,. .., ¢%€0) }, (2.4)
where
a:(al,...,ad)eNg, O <+~ <ag<n. (2.5)

The (d + 1)-pencils-lattices of order n in R% with d + 1 infinite centers are called
in [70] regular meshes, and are, obvioudly, the principal lattices of [98]. They appear
as the limits of (d + 1)-pencils-lattices when al the centers tend to infinity in such a
way that they uniquely determine the infinite plane in P,

As suggested by figure 1, one can show in genera that every (d + 1)-pencils-
lattice satisfies the GC condition. Hence the Lagrange interpolation problem defined
by such a lattice is poised in M¢ and a Lagrange formula is available.

Busch [13] considered an extended version of the GC condition to deal with
Hermite interpolation problems in R? which he refers to as the HGC condition. Let
S = {x1,...,x)} be aset of M distinct points of R¢. We associate to each z; a
positive integer m; and assume there exists n satisfying

(n;%l) :i”;(midlm)

We say that the HGC condition is satisfied if for each i (1 < i < M) there exist
n; =n —m; + 1 hyperplanes Gji, . .., Giy, such that

nj
ziel) Grej#i ij=1...,M (2.6)
k=1

The associated Hermite problem has all derivatives of orders up to m; — 1 (that
is, ("™ '"%) derivatives) as interpolation data at ;.

The most interesting example of a set satisfying this condition arises from the
extension of the concept of natural lattice of order n in R?. Specifically, in the bivariate
case, the set consists of the intersection points of n + 2 lines such that the intersection
of any two of them reduces to one point (we do not assume that different choices
give different points). When three or more of the lines intersect at the same point, the
associated interpolation problem becomes a Hermite problem.

It should be noted here that the explicit expression of the Lagrange formula for
HGC lattices is quite complicated, see [73]. In fact, the examples given by Busch can
be obtained alternatively from the Newton approach, which we shall describe below.

We should also mention that the Lagrange formula of the interpolating polynomial
is used in the finite element method. In this context, any interested reader should
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be familiar with [24,25]. Moreover, the papers [72,73] contain additional important
references for this subject.

2.3. Choosing nodes and space

A special case of Bézout's theorem states that two planar curves of degree m
and n, with no common component, intersect at exactly mn real or complex points,
counting multiplicities [114]. This classica result is the basis of a decomposition
method for the multivariate interpolation problem, which has been used by many
authors, for example Guenter and Roetman in [59] (see adso [73]). The idea is to
decompose an interpolation problem in M¢ into two simpler problems, one in M2-1
and the other in ngfl. If the two corresponding smaller problems are poised, then
the initial problem is poised. To implement this procedure requires some conditions
on the geometry of the points.

This idea was one of the motivations of Gasca and Maeztu in [47] for the ex-
tension of the univariate Newton interpolation formula to bivariate problems. One of
the original features of that paper was to determine each interpolation point as the
intersection of two straight lines and use the equations of the lines as factors in abasis
of M2, similarly to the univariate basis

1, x—xz, (x —zo)(x—21), ..., (x —zo)(x —21) - (x — Tp_1). 2.7)

An important property of this univariate basis is that the interpolation conditions give

rise to atriangular system, and this also happens in the bivariate case in [47]. Another

feature of [47] is that Hermite problems are solved as easily as Lagrange problems, as

happens in the univariate Newton formula. We recall some of these observations here.
Asin [15,44,47], an interpolation system in R? is a set

{(’I“i,’l“ij,xij): (i,5) € I}, (2.8)
where I is a lexicographically ordered index set
I={(@j): j=0,...,my i=0,...,n}, (2.9)

and r;, r;; are straight lines with exactly one intersection point z;;. Again, we use the
notation r;, ;; to represent either the straight lines or the affine functions that (up to a
constant factor) give rise to the equations of the lines. It should be noted that repetitions
of lines (and also of points) are accepted with the only condition (mentioned above)
that the line r;, for any given i, intersects the lines r;;. The interpolation system (2.8)
is associated to an interpolation problem, whose interpolation data are defined by the
linear functionals

tii 1~Sij
Lijf = Dy} Dpig'f(xij): (2.10)

where ¢;; (respectively s;;) is the number of lines in the list

TOy Ty« oy Tie1, T30y Tils - - - Tij—1 (2.11)
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which contain z;; and coincide (respectively do not coincide) with r;, and where p;, p;;
are vectors in the directions of the lines r;, r;;. The directional derivatives in (2.10)
are evaluated at the intersection point z;;. In the smplest case, t;; = s;; = 0 for al
(4, 7), only evaluations of f appear as data and the problem is a Lagrange interpolation
problem, but in specia cases it is an Hermite or even Hermite-Birkhoff (in the sense
of gaps in the order of the derivatives) interpolation problem.

In this method the interpolation space is spanned by the polynomials

Gij =ror1- - ri—ariorii - Tij—1,  (4,7) € 1, (2.12)

(as usua, empty products due to negative subindices are taken as 1) and with this
basis, a natural extension of the univariate one in (2.7), the interpolation conditions
give rise to a triangular linear system which can be easily and recursively solved. In
fact, as proved in [47], for (k,1),(7,j) € I one has

Lij¢i; #0, (2.14)

with the lexicographica order.

Therefore, with this method the interpolation space is associated to the geometric
distribution of the interpolation points adong straight lines. A simple argument shows
that the interpolation space, spanned by the polynomials (2.12), is M2 if and only if
there are n + 1 data on the line rg, n on r1 and so on. Observe that this distribution
is the one suggested above as a consequence of Bézout's theorem and that the Gasca—
Maeztu method provides a Newton formula for it. This configuration of points was
called DH-sets by Chui and Lai in [22]. In the same paper DH-sets in R* were defined
similarly using hyperplanes.

Coming back to the GC condition mentioned in the preceding subsection, one
observes that all the known examples of sets satisfying this condition (see [23]) are DH-
sets. In fact it was conjectured in [47] that the GC condition with ("5?) points in R?
implies that n + 1 points are collinear. The conjecture has been proved affirmatively
up to n = 4 by Busch in [14] but it remains unproved (although highly probable) in
general. On the contrary, it isvery easy to find (see [47]) DH-sets which do not satisfy
the GC condition. In summary, accepting the conjecture as true, as it is at least for
natural lattices, principal lattices, 3-pencils lattices, etc. in R?, sets satisfying the GC
condition would be a subclass of DH-sets. This subclass has very simple Lagrange
formulas but the solution can aso be easily found with the Newton approach of [47].
For the remaining DH-sets, which do not satisfy the GC condition, the problem is
solved by this Newton formula because they do not have a simple Lagrange formula
We remark in passing that there is a certain confusion in the literature between the
GC condition and the notion of natura lattices. As we have mentioned, there are sets
with the GC condition which are not natura lattices, but which are DH-sets.

The triangularity of the matrix of the linear system of the interpolation problem
obtained with the Gasca—Maeztu method in [47] was used in [48] to compute bivariate
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Vandermonde and confluent Vandermonde determinants. These determinants were aso
computed in a different form in [22].

Except for DH-sets, for which the interpolation space is M2, the space spanned
by (2.12) does not have an dternative characterization. One of the cases when that
happens is when the lines r; are al parallel to one of the coordinate axes, the lines r;;
parallel to the other axis, and the index set (2.9) satisfies

mo = - = My. (2.15)
In that case the polynomia space is spanned by the monomials
i), j=0,...,miy i=0,...,n, (2.16)

whose set of exponents (4, j) forms what is called alower set. That is, if (i, ) belongs
to the set, then so too does (k,1) with £ < i and | < j. Werner [115] worked with
these sets and they are frequently used in [78,94]. Lower sets are aso important in
the problem of minimal degree interpolation, see the next section and also [104].

An interesting interpolation problem which generalizes the above setup was given
in [80] and has been analyzed in more detail in [53]. In these papers areversible system
is defined as an interpolation system (2.8), (2.9) which satisfies (2.15) and the following
conditions:

1. For each j, r;; does not depend on ¢, that is, ;; = 1“3. for any 1.
2. If x; = x4 for (I, 5), (4, 5) both in I, then the lines r;, ; are coincident.
3. If @y, = ay for (4, k), (¢,1) both in I, then the lines r, 7] are coincident.

The name “reversible system” stems from the fact that the interpolation problem is
symmetric in r; and 1“3., that is, the interpolation system remains the same if their roles
are interchanged.

In this case the interpolation data (2.10) associated to the interpolation system
become

Lijf = DZj.ij’;f (uij), (2.17)

and the interpolation space is spanned by the polynomials (see (2.12)):

i—1 j—1
¢ =[[r]lr% J4=0....mi i=0,....n, (2.18)
(=0 k=0

as a generaization of (2.16). In [53] the poisedness of the problem is proved and
moreover the minimality of the total degree of the interpolation space as well as
formulas for the interpolation error (see sections 3 and 4 below) are studied there.
Recall that the idea of the Aitken—Neville scheme is to combine the solutions
of two simpler but similar problems to obtain the solution of the initial problem: it
was developed independently by Aitken [1] and Neville [97] to avoid the explicit use
of divided differences for Lagrange interpolation. Here the emphasis is put on the
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similarity of the two smaller problems, in contrast to the preceding decomposition.
An extension of the Aitken—Neville formula to bivariate interpolation was obtained
by Thacher and Milne in [113]. For example, consider an interpolation problem
with ten interpolation points, namely those of the principal lattice S = NZ°, and
the interpolation space M3. The solution pg of this problem is obtained in [113]
from the solutions pg,, i = 1,2,3, in I'I% of three interpolation problems on principal
lattices S; C S with six points each: S = N22, S, = {(i,j): (i,7) € S, > O},
S3={(:,7): (i,7) € S, j > O}. Therefore, one has

ps = lips, + lops, + l3ps,, (2.19)

where [;, i = 1, 2,3, are appropriately chosen affine polynomials. In fact, in this case
these polynomials are the barycentric coordinates relative to the simplex (0, 0), (3,0),
(©,3).

In [45] Gasca and Lebron gave a genera framework for this type of decompo-
sition that in practice can only be done for sets with specia structures, in particular,
principal lattices and rectangular grids, see aso [51,60]. For the application of some
of these ideas in building interpolating wavelets see [90].

Let us adso mention that computational issues for these interpolation schemes
have been studied in [16,17,74,100].

3. Construction of interpolation spaces

In this section, we start with interpolation points and identify linear spaces of
polynomials with which we can interpolate at these points. This idea was pursued by
Kronecker [68] as early as 1865. Here we will focus on recent activities concerning
this problem.

3.1. Leadt interpolation

Except for the work on Grobner bases, which will be presented in section 6,
little effort has been put into the construction of interpolation spaces for arbitrary
interpolation nodes until recently.

In 1990, de Boor and Ron [39] constructed, for a given set of nodes, an interesting
space of polynomials with which one can interpolate. We recall their construction now.
To this end, we let R denote the algebra of formal power series with real coefficients.
We introduce the map \: R — M¢ which associates to each power series its nonzero
homogeneous term of minimal degree. For f = ZaeNg fax®, this map is defined by
Setting

A0 = min (i pu= ¥ fas® 20}, (3D

|lal=n
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Note that for any functional ¥ € N’ there exists a formal power series fy € R such
that, for any p € I, one has

0(p) = (p(D)fs)(0)-
For example, for z € R¢, the point evaluation 6, is represented by f,(y) = V.

Definition 3.1. Let X = {z1,...,zx} C R? be a finite set of distinct nodes. The
least interpolation space P;(X) is defined as

N
PyX) = {A(f): F=Y ajfe;. a5 € R}. (3.2)
j=1

The space P;(X) has the following properties.

Theorem 3.2 [39,41]. For any finite set of distinct points X’ = {x1,...,zn}, Pi(X) is
an interpolation space which is degree reducing. That is, for any ¢ € N the interpolant
p € Pi(X), defined by p(x;) = q(x;), stisfies degp < degg.

The issue of an algorithmic construction of P; has been considered in [33,40],
introducing and using the technique of Gauss elimination by segments. We will com-
pare this technique to work in computational algebra in section 6. We aso remark
that the least interpolation approach can be extended to “ideal interpolation schemes’
[5], which might aso be understood as a very reasonable multivariate notion of Her-
mite interpolation. These perspectives again are strongly connected to the algebra of
polynomial ideals.

3.2. Minimal degree interpolation

Motivated by the properties of the least interpolant stated in theorem 3.2, we
consider the following definition.

Definition 3.3. Let X ={x1,...,zn} C R% be afinite set of distinct nodes. A linear
space P(X) c M% is called aminimal degree interpolation space with respect to X if
it is a degree reducing interpolation space.

The name “minimal degree interpolation space” stems from the fact that, setting
n = min{k: k € No, P C M{}, there exists no subspace of M¢_, which alows
unique interpolation. To see this, choose the Lagrange basis /1, . . ., £,y for P, defined
by ¢;(xr) = ok, j,k = 1,..., N. Then one of these basis polynomials, say /1, must
be of degree n. However, the assumption that there exists some subspace of M<_;
which allows unique interpolation implies the existence of a polynomia ¢ € I'szl
which satisfies g(x;) = 61; and therefore the interpolant with respect to ¢ in P is /1.
But then deg ¢, > deg ¢, which contradicts the degree reduction property of P.
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For a given set X of nodes there usually exists a multitude of minimal degree
interpolation spaces with one (important) exception: for a given set X of nodes the
minimal degree interpolation space P(X) is unique if and only if P(X) = N¢ for
some n € Np. We now introduce the notion of a Newton basis for an interpolation
space.

Definition 3.4 [104]. A set of polynomias {p,: a € I C N¢} is caled a Newton
basis with respect to the set X’ of distinct interpolation nodes if X' can be indexed as
X ={z4 « € I} such that

(1) for any «, 8 € I with |3| < |af, one has

Pa(zp) = 00,8 (3.3)
(2) for any n € Ny there is a decomposition
N¢ = span{pa: |a| <n} @ {ge N g(Xx)=0}. (3.4)

These graded Newton bases alow an agorithmic approach to multivariate poly-
nomial interpolation and a recursive construction of the solution of the problem. More-
over, the concept of a Newton basis is actually equivalent to minimal degree interpo-
lation.

Theorem 3.5 [104]. A subspace P C N? has a Newton basis with respect to X’ if
and only if it isaminimal degree interpolation space with respect to X'.

This enables us to resolve the question of uniqueness of minimal degree interpo-
lation spaces: let P C M¢ be aminimal degree interpolation space with respect to the
node set X and let p,, o € I, be a Newton basis for P. Then the set of polynomials

{Pa+a: @ €1, go €N\ ga(X) =0}

is another Newton basis with respect to X' and any Newton basis can be obtained in
this way. Hence, the Newton basis and the minimal degree interpolation space P are
unique if and only if M2 N{q: ¢(X) = 0} = {0}. Observe that the concept of Newton
basis given in this section is different from that of subsection 2.3, where, instead of
(3.3) and (3.4), only (2.13) and (2.14) were assumed.

4, Remainder formulas

Remainder formulas for polynomial interpolation give explicit representations for
the interpolation error. Let L,, denote the interpolation operator

L,:C(R%) — nd, (4.1)
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defined by
. n+d
Lafa) = f@) j=1i.., ( ' )

where we assume that the nodes x; € R? make the interpolation problem poised. In
this section we study multivariate generalizations of the formula

@) = Lof@) = fla,ao,.... .ol [[ @ — )
j=0

= i T —Tj (1) Z0,---,Tn '
<j1;[0( y)>/Rf OM(t | zo, ..., xzy)dt,  (42)

where f € C"*Y(R) and M(- | zo, ..., ,) denotes the B-spline with knots xo, . . ., z,,,
normalized such that

1
(n+ 1)1
Formula (4.2) also holds for repeated nodes. In particular, in the case that 2o = --- =
Zn, (4.2) yields an error formula for the Taylor polynomial T, f,

/M(t | zo, ..., xn) Ot =
R

f(@) = Tof(z) = (& — zo)"** / FON@ME | 2o, o) dt. (43)
R
For the multivariate case d > 1, we use the simplex spline, introduced by
Micchelli, cf. [85,86,89]. Recall that the simplex spline M(- | zo, ..., x,) with knots
x0, ..., T, € R% is defined as the distribution which satisfies

/f(t)M(t | 2o, ..., xp)dt = /f(uoxo + o Fupey)du,  f € C(Rd), (4.9
R4 Ay

where

n
N, = {u: u = (uo,...,upn), uj =0, Zuj :1}
j=0

is the standard n-simplex. Following the notation introduced in [86], we are pleased
to write

/ fi= /df(t)M(t | zo,...,x,)dt. (4.5)
R
[0, xn
We remark that distributions of the form
[xO;wan;ylv--’yn]f:: / Dyl"'Dynf’ xo,...,xn,yl,...,ynGRd,
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are caled a multivariate divided difference in [35]; see also [85,86] where it has
been pointed out how these distributions provide generalizations of univariate divided
differences (see aso [58, p. 671] for another possibility, based on an observation by
Jacobi going back to 1835).

With this notation at hand and the distributional properties of the simplex spline,
the multivariate remainder formula for the Taylor polynomia becomes

f(@) — T f(2) = / DMLf, ape € RY 6)

Note that this representation is in essence a univariate formula since it is combined
directly from univariate Taylor polynomials along the line segment [xo, x], cf. [107].
Let us now consider different remainder formulas for Lagrange interpolation.

4.1. Multipoint Taylor expansions and Ciarlet’s formula

We begin with an observation by Ciarlet, which has first been stated in [26]
and has later been extended in [25]. This remainder formula is based on using the
error representation (4.6) for the Taylor polynomial T, f. Indeed, let z1, ..., zn € RY,
N = (”*d) be nodes which allow unique polynomial interpolation of degree n. Then,
there exist unique Lagrange fundamental polynomials p;, j = 1,..., N, of degree n,
such that p;(vx) = 6jk, 7,k = 1,..., N. Moreover, fix x € R¢ and Iet T, f denote the
Taylor polynomial of order n at x. Choosing x = x; in (4.6), we have

1)) = Tof (@) + / D, f
[z,2,..,x]

and since T}, and L, are projections on M¢ we conclude that

Lyf= Z f(xj)p; = ZT J(@j)p; + ij / D;L;r—la:
[x;,2

ﬂw+2m /.mﬂf
j [z,2,...,.x]

Hence, evauating at x, and noting that T, f(x) = f(x), we obtain that

N
_ . n+1
f@) =~ Lof@ = > pi@) [ DrLs, @7
J=1 [z,2,..7]
which is Ciarlet’s error formula

For later comparison, let us make some remarks on thisformula. First, the number
of terms in this sum always equals the number of interpolation points, independently
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of the number of variables. This shows that Ciarlet’'s formula is not a straightforward
generdization of (4.2) since this formula consists of only one term. Moreover, the
splines appearing in Ciarlet’s formula are essentially univariate B-splines and the inte-
gration is aways over line segments only. Hence, the function f under consideration
has to be smooth on a domain which is star-shaped with respect to the interpolation
points.

4.2. The Newton approach and its remainder formula

More than twenty years after the appearance of Ciarlet’'s formula, which became
an essential tool in the analysis of finite elements[24], a different approach to remainder
formulas was developed in [107]. This method is based on a multivariate Newton
approach. Let us describe the setup. Suppose that distinct points z1,...,zxy € RY,
N = (”}‘d), are given which admit unique polynomial interpolation of total degree at
most n. The first step is the construction of the Newton fundamental polynomials p,,,
a € NI™ (see definition 3.4),

pa(mﬁ) = 6a,ﬁa ‘ﬁ’ < ‘a’1

where {z,: a € Ng'"}, is are-ordering of the points x1,...,zy. The construction of
these polynomials and the re-ordering of the points can be effectively done by a Gram—
Schmidt procedure, see [103]. The dua functionals with respect to this basis are the
finite difference functionals which we define recursively, for z € R? and f € C(R9),
as

Mo[z] f = f(z),
e[zl f = A1 flx] — Z Me—1lzalfra(z), k>1

aEHd'k

Theorem 4.1 [107]. For any poised interpolation problem in M<¢ we have that

Lnf= Z )‘|a\[xa]fpa (4.8)
aeNg’n
and
f*Lnf = )\nJrl[’]f- (49)

Because of equation (4.9), a remainder formula is obtained by finding a repre-
sentation for the finite difference A\, 1[-] f in terms of derivatives of f. This has been
done in [107] and to state the result we introduce a new concept. By a path v of
length n we mean a vector

p= (1o, n), 1 €NG, sl =34, 5=0,...,m,
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of integer points (of increasing length). We dencte the set of al paths of length n
by A,,. Associated to any such path i € A, is a set of interpolation points

X, = {xuj c R%: j:O,...,n},
an nth order homogeneous differential operator

D) =D

H Tpn = Tpp g

..D

Tpy —Tug

and a number

n—1
Ty = H pﬂj (xﬂj-q-l)'
=0

With this notation at hand, we can state, for z € R and f € C"1(R?), the following
result from [107], see aso [36],

f@) = Luf@ = Y p@my [ Dios, DL, (4.10)
HEAn [Xpu.a]

Let us compare this formula (4.10) with formula (4.7). First, we note that for
d = 1 the above (4.10) becomes (4.2) and is different from (4.7). For d > 2, however,
the situation changes. The number of terms in the sum in (4.10) is

12[ (d —1+ j>

J=0 d

which exceeds N, the number of terms in (4.7). On the other hand, (4.10) contains
("1%71) terms which depend on the point = and this number of terms is certainly
less than N. Another difference between these two formulas is that (4.10) contains
integration over “truly” d-dimensional domains provided that the convex hull of X,
has nonzero d-dimensional volume for some path p:, a property satisfied by any generic
selection of points.

Therefore, we see that these two remainder formulas are structurally different and
provide us with aternative ways to describe the error in polynomial interpolation. We
remark that formula (4.10) was used in [28] to prove the convergence of trust region
agorithms for unconstrained derivative-free optimization.

It is possible to extend these results to minima degree interpolation, but the
resulting formulas are intricate. We refer the interested reader to [104].

4.3. An error formula for interpolation on natural lattices

So far, we have considered remainder formulas which apply to any distinct points
which admit polynomial interpolation. In this and the next subsection we present two
results which pertain to restricted sets of interpolation points.
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The first one is an elegant formula for the error in natura lattice interpolation
which has been derived by de Boor [35,37]. The setup hereis a set H of n + d hyper-
planes in R? which are in general position, that is, any d hyperplanes H, ..., Hy € H
intersect in exactly one point and any two different selections of d hyperplanes intersect
in different points.

We define

Hy={K: KCH,#K =k}, k=1,...,d (4.11)

Since the hyperplanes are in general position we conclude that, for every K € Hy
there exists a point 2, defined by
T = ﬂ H.

Note that zxc ¢ H\K, that is,
H(zx) #£0, H e H\K.

Here we again identify the hyperplane H with the affine function H € I‘I‘f such that
r € H < H(z) = 0. It has been proved in [23] that the points zx, K € Hy,
form a natural lattice and hence alow unique interpolation from M<. The Lagrange
representation of the interpolant takes the simple form

H
Lnf: Z f(x/C) H H(mlC)’

KeHg HeH\K

which becomes (2.3) in the bivariate case.
Since the hyperplanes are in genera position, for any K € H,_1 there exists a
line L defined as
L = ﬂ H.

HeK

Let v be a vector of Euclidean length 1 in the direction of the line Lx. Moreover,
note that for any H € H \ K the line L intersects H in the point zxuqmy. This leads
us to introduce, for K € H,4_1, the set of n + 1 points

Xi:={LxNH: HeH\K}.
Likewise, we define the polynomial
H

re= 1 o —wor

K€ Hg 1. (4.12)

Note that this polynomial is independent of how we normalize the affine polynomials
H associated with its hyperplane. Moreover, the denominator appearing in (4.12) is
nonzero due to the assumption that the hyperplanes in H are in general position. We
also observe that pi(x7) =0for al X € Hy_1 and J € Hy.
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With this notation at hand, de Boor’s error representation for the Chung—Yao
interpolant takes the form

foLf= 3w [ Dy (4.13

KeHqg-1 [ Xx]

Note that formula (4.13) uses only directiona derivatives along the lines L formed by
the intersection of d— 1 hyperplanes from H. Moreover, if x € Ly forsome K € Hy_1
then we obtain the univariate remainder formula. For general points x € R4, however,
the domains of al the integrals in (4.13) are non-degenerate triangles. The number of
terms in the sum on the right-hand side of (4.13) isnow ("), which equals dim %3
and which isless than in (4.10). We aso remark that the polynomials py, K € Hy_1,

form an H-basis (cf. [93]) for the idedl
{pe N plzx) =0, K € Ha}.

More on these algebraic aspects later. For an application of (4.13) in a specid case
see [109].

4.4. The error in reversible system interpolation

The next error representation formula to be considered is for interpolation by
reversible systems as described in subsection 2.3. To this end, we analyze the un-
derlying geometry in more detail. Let p;, p; and ;,7; denote vectors of Euclidean
norm 1 which are parallel and perpendicular to the lines r;, r;», respectively. We define
M =max{i+ j: (i,7) € I} and, by choosing arbitrary additional lines, we extend our
system of straight lines to ro, ..., 41 and rg, ..., 79, 41. This then provides poly-
nomials ¢;; for any 0 < 7,5 < M + 1. Next, we consider paths o = (uo, - - -, fir+1)
such that po, ..., pk € I, pry1 & 1 and, for al j, i1 = pj +e1 Or pjp1 = pj + ea.
We denote the totality of al such paths (of length at most M + 1) by A* and note that
#\* < 2M+1, To each such path ;. € A* we define directions

) ) if Hj+1 = (l +1, l/)!,u] = (l! l/)! -
77](/‘) T {n;/ If ,U’j+l — (l’ l/ + 1);,“/] — (l, l/), — 0; e ,k’

and

) )P if Hj+1 = (l +1, l,)uuj = (l1l,)1 .
P](H) T {p;/ if [l = (l,l, + 1)’ pi = (l, l/), = 0, e ,k.

We write 6,, for the accumulated angles between these two systems of lines,

k
0= TG - pj ),
=0
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and obtain the formula

.
ponp= Y e /. Doy D] (4.14)

BEN*

This formula is another instance of a phenomenon known from classical geometry
which states: “there is no distance between lines’. That is, the only geometrical
guantity describing the relation between the linesistheir angle of intersection. Because
of this property, (4.14) also holds true for the corresponding Hermite interpolation
problem.

We adso remark that the two formulas (4.13) and (4.14) have a rather simple
form and give rise to remainder estimates which strongly mimic the univariate case.
However, one should bear in mind that these two situations use the strong assumption
that the Lagrange fundamental polynomials can be factored into a product of affine
polynomials.

5. Kergin interpolation

The interpolation schemes considered so far have one important property in com-
mon: the dimension of the interpolation spaces coincides with the number of interpola-
tion conditions. A different approach has been taken by Kergin [66], who constructed,
for given nodes xo, ..., z, € RY an interpolant of degree n. This interpolant be-
comes unique because of additional interpolation constraints. Precisely, we have the
following result.

Theorem 5.1 (Kergin). For any points o, ...,z, € R? there is a unique mapping
P:C™R%) — N¢ with the property that for any f € C™(R?), any constant coefficient
homogeneous differential operator ¢(D), ¢ € N<, and any subset J C {O,...,n},

#J = degq + 1, there exists a point = in the convex hull [z;: j € J] such that
(¢(D)Pf)(x) = (¢(D)f) (). (5.1)

Due to the complexity of this condition it is not surprising that the main part
of [66] consists of showing the existence of the above interpolation operator, which was
done in a non-constructive way. This issue was resolved constructively by Micchelli
[86], see also [87]. It turns out that Kergin interpolation can actually be considered
an extension of the approach (1.9). Indeed, substitution of the univariate Hermite—
Genocchi formula

flxo,. . 0] = ™, fe "),

[zo,-..vzn]
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which expresses the divided difference as a B-spline integra, into the Newton for-
mula (1.5) alows us to represent the interpolation polynomia L., f as

n

j-1
Lf@=3 [ /OT[e-). ccr,
j k=0

7=0z0,.2;]

which can be rewritten in a “fancy” way as

Lofx)=>_ / Dy—y Doy o f, x€R (5.2)
IO, 2;]

Now, formula (5.2) aready gives the Kergin interpolant P with the above properties
by simply replacing the qualifier “z € R” by “z € R,

Theorem 5.2 (Micchelli [86]). The Kergin interpolant P is given as

n

PI@ =Y [ DicgrDasyif sl (53

and the error of interpolation takes the form

(f — Ph)x) = / Dyosy---Danfr @€R%L (5.4)
nl

[z,zo,....x

For more information on Kergin interpolation we particularly recommend the
monograph [6] and the references therein.

6. Algebraic aspects

Thereisastrong connection between polynomial interpolation in several variables
and the theory of polynomial ideals, which has actually led to paraldism in the
development of results. In this section we want to describe the main ideas and relate
them.

We first recall some terminology from algebraic geometry. Instead of finite sets
of points we now speak of zero dimensional varieties. To explain this notion, let K be
an infinite field. For any finite set of polynomials, 7 C I1, we define an algebraic
variety V(F) by setting

V(F) = {x eK: F(zx) = (f(x) fe f) = O}.

Conversely, we can associate to any set V' c K¢ a set Z(V) of polynomials, defined
by
W) = {pe n: p(x):O,xGV}. (6.1
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Note that Z(V') is an idedl, i.e, it is closed under addition and multiplication by T1.
Moreover, if #// < oo, then we aready know what to do in order to find Z(V): we
find a minimal degree interpolation space with respect to V' and, writing py for the
interpolation polynomia with respect to f € I, we have that

TV)={f—ps: f €N} (62)

Clearly, any polynomia on the right-hand side of (6.2) vanishes at V' and any poly-
nomia in f € Z(V) can be written that way — in which case even p; = 0. Note,
however, that it is crucial here that V' is a minimal degree interpolation space. But
we can also use this procedure to construct a basis for the ideal. For this purpose we
recall that a finite set 7 C IN of polynomials is called a basis for an ideal Z C I if

I=<f>=<f:fef>={2¢ff: ¢feﬂ,fef}. (6.3)

feF

Recall that finiteness does not imply any restriction here since Hilbert’s Basissatz tells
us that any polynomia idea has a finite basis. Now, the construction for an idea
basis by interpolation works as follows. we start with any basis of I, i.e., a countable
set { fj: j € No} of polynomias and an initial basis 7_1 = () for the ideal. For any
J € No, wecheck if ¢; == f;j—py, = 0o0rif g; € (F;-1). If the answer is“no” in both
cases, we set F; = F;_1 U{q;}, otherwise we continue with 7; = F;_;. Since the
sequence (F;), j € No, isan increasing sequence of ideals and since polynomial rings
are Noetherian, this process has to terminate after a finite number of steps, yielding
even a minimal basis for the ideal Z(V).

This ssimple construction immediately shows that there must be an intimate re-
lation between polynomial interpolation and the construction of ideal bases. Indeed,
there has been a paralel development of ideas in computer algebra on the one hand
and in numerical analysis (in particular, the theory of multivariate polynomial interpo-
lation), where both sides have been unaware of each other. In the remainder of this
section we want to show and connect some of these approaches. For a more detailed
exposition see aso [93].

6.1. The setup — ideal interpolation schemes

A generd interpolation scheme is given by a finite set © C M’ of continuous
linear functionals, defined on the algebra of polynomials. To exclude trivia degenerate
cases, we demand © to be linearly independent, i.e.,

Y cod(p)=0 VpeN <« ¢y=0, VeO.
Je0

Following Birkhoff [5], we call ® an ideal interpolation scheme if the set of all
homogeneous solutions of the interpolation problem,

ker©@ = {f eM: O(f) = (¥(f): ¥ € ®) =0} A,
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isan ided in M. These interpolation schemes can be characterized completely in the
following way, cf. [41,82].

Theorem 6.1. A finite set © C M’ is an idea interpolation scheme if and only if ©
can be represented as

O(f) = {(gx(D)f)(x)): k=0,....,m;—1,j=1,...,n}, fell,
where the polynomia spaces
Q; =pa{qji. k=0,....m; =1} CcN, j=1,...,n,

are closed under differentiation, i.e., ¢(D)Q; C Q;, g € IN.

In view of this result, the notion of “ideal interpolation scheme’ is a very rea
sonable generalization of the univariate Hermite interpolation scheme, in particular,
since, for d > 1, m-fold (common) zeros of (finite sets of) polynomias correspond to
m-dimensiona spaces of polynomias which are closed under differentiation, cf. [57].
For example, atriple zero of f € I a a point o € R? could either mean that

of _of B
8—51(5130) =——(z0)=0

&2
or that there exists a nonzero y € R? such that

f(wo) = Dy f(x0) = D} f(x0) = 0.

Conversdly, if Z is a zero dimensional ided, i.e., if the associated variety is finite,
then there aways exists a set © of dual functionals which may, however, be defined
in a field extension of K — this corresponds to the fact that polynomias with real
coefficients (like p(xz) = 22 + 1) might have complex zeros. And again, the spaces
of “local” differential conditions from theorem 6.1 are the natural generalization of
the multiplicity of such a zero. We want to emphasize once more that in two and
more variables multiplicity of a polynomia zero is a structured quantity and not just
a matter of counting, cf. [57,84].

Now, suppose that we are given a zero dimensiona idea Z, then there exists a
finite set © of linearly independent dua functionals such that

I={pen: @) =0}

f(zo) =

These dua functionals define an idea interpolation scheme and any two interpolation
spaces Py, P> C M (clearly, dimP; = dim P, = #0) are equivalent modulo Z, in the
sense that for each polynomial p € P; there exists ¢ € P, such that p — ¢ € 7 and
reciprocally. More precisely, given any data y € K©, the affine space of all solutions
of the interpolation problem ©(p) = y is given by p* + 7, where p* is any polynomial
satisfying ©(p*) = .
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6.2. Gaussian €limination on the Vandermonde matrix

The straightforward approach to finding a solution of the interpolation problem
Op) =y, yeK®, (6.4)

istoview it asalinear system and to determine (formally) bi-infinite coefficient vectors
c = (ca € K: a € NJ) such that

Y ca®(x¥) = [0(2%): @ € Nfle=1y. (6.5)

aENg

The matrix Vo = [O(z%): a € Ng] in equation (6.5) is called the Vandermonde matrix
with respect to ©. Since the functionals in © were assumed to be linearly independent,
we know that rank Vg = #0, hence there exist #0 linearly independent column vectors
from Vo. In other words, there exists aset A ¢ N¢, #4 = #0, such that

rank[©(z%): a € A] =#O.

Consequently, any such set A yields an interpolation space, namely the one spanned
by {z%: « € A}. Usudly, however, this set A is far from being unique, which raises
the question about a good choice of A. This selection can be “automated” by using an
appropriate version of Gaussian elimination as proposed in [12,82], see dlso [92]. The
idea is to eliminate column-by-column, processing the multi-indices with respect to
some term order <. Recall that a term order is atotal ordering on Nd which has 0 as
minimal element and is compatible with addition in N&. In the process of elimination
it can happen that a zero column, say with index «, is produced, that is, there exist
coefficients c3, 8 < o, ¢, = 1, such that

0= c50(a") = e( > ng‘)‘).

Bl BRa

This means that the polynomial
p(x) = Z cpx

B=a

belongs to Z. But even more is true: recording these “unwanted” (in terms of poly-
nomia interpolation) polynomials in a proper way yields a Grobner basis (see [93]
for details) for the ideal Z. And in fact, the god in [12,82] was not to compute the
interpolation polynomials but the Grobner basis for ideal Z = ker © which is implic-
itly defined by ©. This approach and the connection to Grobner bases has also been
mentioned in [104]. Moreover, it is worthwhile to note that, though this approach
formally performs elimination on an infinite matrix, it aways works on a finite matrix
only: as shown in [105] the set A of multi-indices constructed above aways satisfies

AcC {aeNg |o] <H#HO - 1}.
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A different approach towards elimination “by segments’ in the Vandermonde matrix
has been taken in [40], collecting all monomials of the same total degree into one
object and mutualy orthogonalizing them to obtain uniqueness. The result of this
eimination process is then the least interpolation space described above. We will,
however, omit the technical details of this intricate method which is also described
in [33] from the linear algebra point of view.

6.3. Choosing the right representer by reduction

We now turn back to the problem of choosing a“good” solution for the interpola-
tion problem O(p) = y, where y € K® is some given data vector. As mentioned before,
any two solutions p, p’ of this problem differ exactly by an element from Z = ker © and
thus belong to the same equivalence class modulo Z. Hence, the problem of finding a
“good” interpolation polynomial is equivalent to finding a “good” representer for this
equivalence class.

One way of obtaining this representer is in fact motivated by the univariate case:
let xq,...,x, be (for the sake of simplicity) distinct pointsin R and let p € N be any
polynomial which satisfies

p(zj)=vy;, j=0,...,n,

for some given data y;, j = 0,...,n. Of course, the “standard” interpolation poly-
nomial would be the unique one of degree n which can be obtained from p “alge-
braicaly” by division with remainder. Indeed, if we write p in the form p = qw + r,
w=(r—x0) - (xr—x,), degr < deg w = n+1, then r is the desired polynomial and
can be abtained by performing the Euclidean agorithm. But we can also interpret the
above division in a dightly different way which allows for generalization to the mul-
tivariate case; the fact that the remainder polynomia r has degree n is equivalent to
the property that no multiple of the leading term z"+1 of w divides any homogeneous
term of » any longer. Such a polynomial is called reduced.

Reduction is now the key to the multivariate case, where a division agorithm,
straightforwardly extending the univariate Euclidean algorithm, can be defined to divide
by a finite family of polynomials, cf. [29, p. 63ff.] for an excellent introduction. The
idea is to use some term order and try to cancel leading terms of a given polynomial
by a monomial multiple of the leading term of some polynomia from the finite set
of divisors to end up with a reduced remainder polynomia. Since in some steps
of the algorithm there can be more than one divisor whose leading term divides the
homogeneous target term, there can (and often will) be ambiguities due to which even
the remainder may no longer be unique. There is, however, an important case where
the reduced remainder is unique, namely if the divisors form a Grobner basis of the
ideal they generate. Recall that a finite set P of polynomials is a Grobner basis for
the ideal (P) if any polynomia f € (P) can be written as

f = ZQpp’

peEP
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where the degree (i.e., the <-maxima power with respect to a given term order <)
of any term in the sum on the right-hand side does not exceed the degree (in the
same sense) of p. If the term order based notion of degree is replaced by the tota
degree, then the basis with the respective property is called an H-basis. H-bases have
been introduced by Macaulay as early as 1916 [79], while Grobner bases have been
brought up by Buchberger in his doctoral thesis in 1965, cf. [9,11]. Actuadly, the
first major application of Grobner bases was to compute a unique representer for each
equivalence class modulo the ideal Z, in order to generate a “multiplication table”
modulo Z, that is, to describe the action of multiplication by a given polynomial
f € N as an automorphism on the equivalence class. As shown in [106] the idea of
reduction can aso be carried over to the grading by total degree, yielding a constructive
approach to H-bases. For the details and more facts about H-bases, Grobner bases and
their applications, the reader is once more referred to [93].

6.4. Normal form interpolation

One can use the algebraic technique of reduction to generate interpolation spaces:
associated to each equivalence class modulo ker ©, hence associated to any family of
solutions of an ideal interpolation scheme © with respect to a given right-hand side y,
there is a “standard” element of this equivalence class, i.e., a “standard” interpolant,
which can be obtained by the reduction process. This representer is often caled
the normal form modulo Z = ker®. It can be shown that the set of al norma
forms is a #O-dimensional linear subspace of M which admits unique interpolation.
Moreover, acting on I, reduction and interpolation are the same operation. The “free
parameter” in this process is the notion of degree; if the degree is chosen to be based
on a term order, then one enters the Grobner basis environment and generates an
interpolation space which is generated by #©@ monomials which are <-minimal, where
< is again the underlying term order. Moreover, as shown in [105], this approach
can actualy be interpreted as term order least interpolation using single monomials
instead of homogeneous terms. In the total degree setting, on the other hand, the least
interpolation space can be obtained by a properly chosen reduction process where one
then deals with H-bases. Conversely, if the set © of dual functionals is given, then the
Gaussian elimination techniques on the Vandermonde matrix yield, as a by-product, a
Grobner basis or an H-basis, respectively, depending on the elimination technique to
be used.

Summarizing, we can say that the strong dudity between interpolation and the
generation of “good” bases for zero dimensional ideals nicely connects ideas from both
numerical analysis and computer algebra and allows the application of methods and
techniques from one field in the other.
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7.  Final remarks
7.1. Software for polynomial interpolation

Besides the theoretical study of multivariate polynomial interpolation thereis still
the problem of how to compute interpolation polynomials in anumericaly efficient and
stable way. Of course, the first way to do so is the “naive” one, which first generates
the Vandermonde matrix

(290 j=0,...,N,a € A], #A=N +1,

and then applies a “standard solver” like the famous LAPACK [2] to it. Unfortunately,
Vandermonde matrices are known to be rather ill-conditioned and a “blind” application
of linear algebra cannot be expected to produce good results. This phenomenon, inci-
dentally, becomes more and more apparent as the number of variables increases, which
is, for example, the case in optimization problems, cf. [28]. From this perspective, it
might be useful to have software available which makes use of the structural properties
of polynomial interpolation to obtain algorithms with better numerical properties.

Right now there are, to our knowledge, two different packages which are
freely available on the Internet and which correspond to two “competing” approaches
to multivariate interpolation. The first one is a set of mfiles (MATLAB com-
mand files) developed by de Boor on the basis of the computational treatment of
least interpolation in [40], which can be downloaded via anonymous ftp from
ftp://ftp.cs.w sc.edu/ Approx. Theinterested reader isaso referred to [38]
where also some important details of the implementation are provided.

The other software isMPI, a C++ class library by Sauer based on the Newton ap-
proach from [107], which can be obtained fromht t p: / / www. mi . uni - er | angen.
de/ " sauer/interpol . Theclasslibrary includes atemplated classpol ynom al
(i.e, it is possible to use coefficients of arbitrary type which supports the basic field
operations) with the basic linear space operations and point evaluation. Interpolation
polynomials are easily generated by submitting two arrays containing the nodes and
the values to be interpolated there, and can be manipulated in various ways. For
example, it is possible to add further interpolation points without having to compute
the interpolation polynomia from scratch every time, an ability which is one of the
very handy properties of any Newton-like scheme. Some numerical experiences with
MPI are described in [103], details on the Horner scheme used in this software and
its surprisingly good numerical properties are given in [100].

We will not try to make any comparison between these two packages since they
are designed for completely different purposes and work in very different environments.
An obvious fact, however, is that the MATLAB-routines are easier to handle and
therefore are much more suitable for the casual user who is mainly interested in
interactively experimenting with polynomial interpolation without having to write and
compile a program. On the other hand, the C++ routines in MPI are much more
trimmed for efficiency, but in order to apply them clearly a certain background in
programming is needed to use classes in an appropriate way.
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Thefinal question, however, isif polynomia interpolation is a reasonable method
in practice at dl. It iswell known from the univariate case that interpolation polynomi-
as often oscillate up to a point which renders them useless — this is one of the reasons
why spline functions are much more useful for the interpolation of large data sets. On
the other hand, it is the degree of the polynomia which causes the oscillations (and
aso the difficulties emerging from roundoff errors, cf. [100]), so that in higher dimen-
sions polynomial interpolation may be a reasonable tool for a “moderate” number of
nodes. To date, very little can be said on the usefulness of polynomia interpolation
in serious applications, so that we can only invite people to try the available routines
and to report their experiences.

7.2. The bibliography

Below we present a sdlection of over one hundred references which, in our
opinion, is very representative of the development of the subject in the last 25 years,
especialy in the constructive approaches which have been mentioned in the preceding
sections.

The list in some cases includes old papers which are related to the recent ones,
and can be used as a source of further references of the different authors. For readers
interested in multivariate polynomial interpolation we recommend, for example, to
enlarge the bibliography cited here of de Boor, Ciarlet, Gasca, Goldman, Hakopian,
Le Méhauté, R. Lorentz, Phillips, Sauer, and respective coauthors, who summarize the
different approaches in different countries.
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