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Introduction. We are concerned in this paper with the behavior in the 
large of the geodesic lines on a class of surfaces of revolution. The central 
theme is the number and the distribution of the double points of these geo- 
desics, and one of the main theorems establishes a "zoning" of the surfaces 
in a manner dictated by this distribution. A second theorem sets up a classi- 
fication of admissible surfaces on the basis of the number of the double points 
of its geodesic lines. 

An admissible surface S is formed by revolving about Oy a curve which 
rises monotonically from the origin to infinity as  x increases, and which 
possesses a continuously turning tangent (save possibly a t  certain exceptional 
points). On every geodesic of S there is a point P, the "point of symmetry," 
which is nearest to the vertex of S, and a t  which the curve is tangent to a 
parallel of S. The two branches of the geodesic proceed in either direction 
from P, and spiral symmetrically in opposite senses around the axis of S 
toward infinity. Under special conditions the two branches may fail to inter- 
sect one another. More generally, however, they cut each other repeatedly 
in a sequence of double points, which may conveniently be numbered by 
starting with the one nearest the vertex. We may thus speak of the "first 
double point," the "second double point;" and so on. This sequence may be 
finite or infinite, but if it is finite for one geodesic of S i t  is finite for all. The  
above discussion is of course not meant to apply to the meridians of S,whose 
special nature is perfectly clear. 

A discrete sequence of parallels, PI, Pz, . , can be found on S dividing 
i t  into a corresponding sequence of '(zones," 21, 2 2 ,  . . . . The first zone Z1 
is the portion of S containing the vertex and bounded by (but not including) 
the parallel P I .  The nth zone Z,, for n >  1, is the portion of S bounded by 
P,-1 and P,, including the points of the former parallel, but not those of the 
latter. In the case of a surface whose generating curve is tangent to Ox a t  0, 
it is shown that every point of the nth zone is the l s t ,  2nd, . . . , (n-1)th 
double point of certain geodesics of S,but is a double point of higher order of 
no geodesic of S. In the case of Z1 this is taken to mean that no point of this 
first zone, or "cap," is the double point of any geodesic of S. In the case of a 
generatrix not tangent to the x-axis this conclusion appears in a suitably 
modified form. The zones may be finite or infinite in number; and in particu- 
lar the cap may extend over the whole of S. 
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The results sketched here are developed in the first three sections of the 
paper. 

$4 is devoted to a classification of admissible surfaces in accordance with 
the number of the double points of their geodesics. Either every geodesic 
of S (the meridians always excepted) has infinitely many double points ("cy- 
lindrical surface," or "surface of the first kind"), or else each geodesic has but 
a finite number of them ("surface of the second kind"). Surfaces of the second 
kind are in turn of one of two types: either there is an upper bound to the 
number of double points on any geodesic of S ("conical surface"), or else i t  
is possible to find geodesics the number of whose double points is arbitrarily 
large (('semi-cylindrical surface"). The existence of this latter class of surfaces 
seems not to have been specifically remarked before.,Appropriate analytic 
criteria are set up to distinguish between the several classes. 

In $5 a small class of examples is adduced. While these are somewhat arti- 
ficial in nature, they serve very well to illustrate the material, and furnish 
counterexamples to the converses of several of the earlier theorems. 

In $6 i t  is indicated briefly that  the condition of a continuously turning 
tangent for the generating curve can in large measure be relaxed without in 
any  way impairing the validity of our conclusions. 

The  zoning property appears first to have been established for the para- 
boloid of revolution in a paper by the author and Leon Recht ( A theorem con- 
cerning the geodesics on a paraboloid of revolution, Bull. Amer. Math. Soc. vol. 
47 (1941)). However, a kind of first zone, or cap, was discussed by Cohn- 
Vossen for surfaces of a somewhat more general nature (Totalkrummung und 
geodatische Linien auf einfachzusammenhangenden ofenen vollstandigen 
Flachen, Rec. Math. (Mat. Sbornik) N.S. vol. 43 (1936)). 

1. The nature of the geodesics. Let Sbe the surface obtained by revolving 
the curve y =f (x) around the y-axis. We shall suppose that : 

1. f(x) is continuous and single-valued for x2O. 
2. f(x) has everywhere a continuous derivative, including a finite right 

derivative a t  x =0. 
3. f'(x) is everywhere positive except possibly a t  x =0 ,  where i t m a y  van- 

ish. 
As coordinates of a point P (not the vertex) of S we choose x,  the per- 

pendicular distance of P from the axis of S, and 8, the angle which the half- 
plane determined by P and the axis makes with some fixed half-plane con- 
taining the axis. The quantity x is essentially positive, and the sign of 8 is 
determined by a suitable convention. The coordinate network is thus the 
orthogonal system composed of the, semi-meridians 8 =const. and the parallels 
x =const. 

If we write p(x) = (1 +fJ2(x))l/2, the differential equation of the geodesics 
of S becomes (cf. Darboux, The'orie des surfaces, vol. 3) 

(1.1) , de/dx = tp(x)/x(x2 - t2)l12, 
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where t is a parameter which may assume any real value. Corresponding to  
t = O  are the semi-meridians 8 =const. These need concern us no further, so 
that  we may assume t # O .  The totality of extremals can be written in the form 

A fixed positive value of t in (1.2) yields one branch of a geodesic, the corre- 
sponding negative value the other branch. The two meet a t  x =t, 8 =81, the 
"point of symmetry" of the geodesic, and the curve is tangent to the parallel 
of S which passes through this point. I t  is clear from (1.2) that  the two 
branches of the extremal are symmetric with respect to the plane containing 
the point of symmetry and the axis of S-the "plane of symmetry." Moreover, 
8 increases or decreases monotonically with x according as t is positive or  
negative. Accordingly the geodesics may possess no singularities other than 
double points, and these must lie in the plane of symmetry. 

If we fix I tl , (1.2) represents a one-parameter family of geodesics, each 
tangent a t  its point of symmetry to the parallel x = I tl .These curves are all 
congruent, so that  we may single out  for study any representative member, 
say that  for which 81 =0,  and call i t  the "geodesic (t)." Moreover, owing to the 
symmetry of the curve, we may confine our attention to that  branch for which 
t>O. We have thus as  the object of our investigation the equation 

Roughly speaking, 8 is the amount by which the geodesic (t) winds around 
the axis of S between its point of symmetry and its intersection with the 
parallel x. 

2. The functions 8(x, t) and O*(x). We introduce a function O(x, t) whose 
domain of definition is the sector of the (x, t)-plane bounded by the lines t = O  
and t =x ,  and with the origin deleted. I t  is defined as follows: 

0(x, t) = t for x > 0 and 0 < t < x, 

(2. lb) 0(x, X) = 0 for x > 0, 

(2 .1c) 0(x, 0) = ~(O)a/2  for x > 0. 

LEMMA2.1. 8(x, t) is continuous throughout its domain. 

This is most readily seen if we cast the integral of the definition in the 
form 

0(x, t) = (0 < t < x) 

by means of the substitution z =wt. I t  is evident on the basis of well known 
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theorems concerning generalized integrals that  O(x, t) is continuous, as  de- 
fined, for 0 < t  <x  and for x = t  (ZO). The  proof of its continuity fort = O  (x#O) 
can be sketched as  follows: 

Choose any xl>O, and an as  yet unspecified positive number E. Let 6t be 
less than 6, and write 

Denoting by A the upper bound of p(x) in 0 S x  Sxl ,  then we have 0 5J 
I A (arcsec(x1/6t) -arcsec(~/dt)). No matter what fixed value is given to E,  6t-
can be taken so small as to make the right member of this inequality vanish- 
ingly small. In the integral I, the argument of p is confined to the interval 
6t s x  5E ,  and,  for some between 6t and E ,  I=p(S.)arcsec €/at. One can now 
adjust E SO that  p({), which is continuous a t  the origin, differs by an arbi- 
trarily small amount from p(0), and then take 6t so small that  arcsec(E/bt) 
approximates as closely as is desired to  7r/2. Thus, for any x1>0, $(XI, 6t) 
approaches p(0)7r/2 as 6t tends to  zero. To  complete the proof i t  is merely nec- 
essary to  remark tha t  { O(xl+ 6x, Gt) -O(x1, 0 ) )  = (O(xl+ 6x, 6t) -O(xl, 6t) 1 
+ {$(XI, 6t) -O(xl, 0) ) , and to observe that  for any 6t>0 the first expression 
in braces on the right-hand side tends to zero with ax, in accordance with 
known theorems on integrals. 

For a fixed positive value of x, O(x, t) is a continuous function of t in the 
interval o s t s x ,  and consequently must attain its upper bound a t  some 
point (possibly of course a t  several points) of this interval. The value of this 
upper bound we denote by O*(x), and we set as a matter of definition 
8*(0) =p(O)a/2. The  geometric significance of this new function can be 
brought out in the following way. Let r(Q) denote the line segment dropped 
from the point Q of S normal to the axis of S. As Q traces the geodesic (t) 
from its point of symmetry to  its intersection with parallel x ,  r(Q) undergoes 
a rotation O(x, t). For a t  least one geodesic (t) the amount of this rotation 
must be an absolute maximum; and this maximal rotation is O*(x). 

LEMMA2.2. O*(x) is  continuous and nondecreasing for 0 6 x  < m. 

I t  is apparent from the defining equations (2.1) that ,  for a given t, O(x, t) 
increases or remains constant as x increases. Consequently its upper bound in 
0 5t 5 x  cannot decrease when x increases. Tha t  lim,,oO*(x) =p(O)a/2 was 
implied in the proof of the preceding lemma. The proof that  O*(x) is continu- 
ous a t  the interior points of its domain is a perfectly straightforward one, and 
need not be given here. 

As x becomes infinite O*(x) may itself become infinite, or i t  may approach 
a finite limit. The discussion of the conditions which govern these important 
alternatives will be reserved for a later section, in order not to interrupt the 
continuity of the present line of investigation. 



19461 GEODESICS ON SURFACES OF REVOLUTION 419 

3. The zones. Let Q be a double point of the geodesic (t). That  portion 
of the complete geodesic lying between the parallel through Q and the parallel 
through its point of symmetry P we call a "geodesic loop." Q is the "vertex" 
of the loop, and by its '(order" we mean the total number of its double points, 
Q included. Since P and Q lie in the plane of symmetry, their angular coordi- 
nates, which are 0 and B(x, t) respectively, differ by a multiple of n. This mul- 
tiple is precisely the order of the loop, since each increase of e ( ~ ,  t) by the 
value n marks another intersection of the plane of symmetry by the two 
branches of the geodesic, that  is, another double point. We have established 

LEMMA3.1. A necessary and suficient condition that the vertex of a geodesic 
loop of order k lie on the parallel x is that, for some t, 0 <t <x, we shall have 
e(x, t) =KT. 

O(x, t) as  a continuous function of t must assume in the interval 0 s t  s x  
every value between its lower bound zero (for t=x )  and its upper bound 
O*(x). From this follows 

LEMMA3.2. If k is a positive integer or zero, and if knSO*(x) < (k+l )n ,  
then every point of the parallel x i s  tlze vertex of at  least one loop of each of the 
orders 1, 2, . , k, but is the vertex of no loop of higher order. 

Let N denote the smallest integer greater than p(0)/2. N must be a t  least 
equal to unity, for p(x) >= 1. By definition e*(0) =p(O)n/2, and accordingly 

Since P ( x ) increases continuously, there exists a strictly increasing sequence 
of positive values of x, f1, fz, . , each f, being the smallest number with 
the property 

This sequence is infinite if lim,,,8*(x) " a,. If, on the other hand, limZ,,8*(x) 
= X  < w , the sequence ends with the term 4.~-.~+1, ;1/1 being the integer de- 
fined by the inequalities n M  <X $n(M+l ) .  

The sequence (5,) determines a sequence of parallels x = 41, x = fz, . . . , 
which divide S into "zones." The first zone is characterized by the inequality 
0 5 x  < E l ,  the nth zone ( n >  1) by SX<En.  I t  follows from (3.1), (3.2) and 
themonotonicity of 8*(x) that,  for every point of the nth zone (n = 1,2 ,3 ,  . . . ), 
(N+n -2)n 5 e*(x) < (N+n  -1)n. An applicatioq of Lemma 3.2 then yields 

THEOREM1. There exists a sequence of parallels x = El, x = fz, . . . dividing 
S into zones, as  described above. Every point of the nth zone is the vertex of at 
least one loop of each of the orders 1, 2, . . . , N + n  -2 (where N is the smallest 
integer greater than p(0)/2), but is the vertex of no loop of higher order. 

In the important case for which f'(0) =0, we have p(0) = 1, and likewise 
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N = l .  The theorem just proved indicates that  no point of the first zone- 
which in this case we call the "cap" of S-can be a double point of any geodes- 
ic of S. 

4. The number of windings and the index. Surfaces of the sort under dis- 
cussion fall into two classes. On a "surface of the first kind" every geodesic 
winds an infinite number of times around the axis, while on a "surface of the 
second kind" each geodesic makes but a finite number of turns. No inter- 
mediate case is possible. Surfaces of the first kind we shall sometimes call 
"cylindrical," since with respect to the number of windings the geodesics of 
such a surface behave as do those on a circular cylinder. 

Illustrative of these surfaces of the first kind is the paraboloid of revolu- 
tion. As an example of a surface of the second kind we may cite the cone, 
to be specific let us say the cone generated by revolving the line y =mx 
about Oy. I t  is then a simple matter to show that  (1+m2)112/4 furnishes an 
upper bound for the number of turns which the geodesics of S may make 
about its axis. Surfaces of the second kind having the property that  the num- 
ber of windings of their geodesics possesses an upper bound we accordingly 
call "conical." On the other hand, i t  is an interesting fact that  there exist 
admissible surfaces of the second kind for which no such bound exists, tha t  
is, on which one can find geodesics the number of whose windings is arbi- 
trarily large. Such surfaces we call "semi-cylindrical," since, in common with 
the cylindrical surfaces, they possess infinitely many zones. 

In this section we propose to demonstrate these facts and to set up various 
analytic criteria. 

THEOREM2. S i s  of the j i r s t  or second k ind  according a s  

diverges or converges. 

For J converges or diverges with 

and this integral represents the total number of windings of the geodesic (t), 
tha t  is, the limit of O(x,  t) as x approaches infinity. 

We assume henceforth that  J exists, and define the "index" 4(t) of the 
geodesic ( t )  as follows: 

Pm 

(4.2a) +(t) = t J  p(e)da/e(n2 - t2)lI2 for t > 0, 
t 

LEMMA4.1. 4(t) is continuous for 0 5 t < co . 
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That  4 ( t ) is continuous for t >0 becomes clear when the integral is written 
in the form 

Sl* w(w2 

p(wt)dw 

- 1)lI2 

by means of the substitution z =wt. T o  demonstrate its continuity a t  t =0 ,  
we write 

The  second of the latter pair of terms tends to zero with t ,  while the former 
tends to p(O)n/2,  as follows from Lemma 2.1. 

The index +(t)  represents the total angle of turn made by either branch 
of the geodesic ( t )around the axis of S.Thus a surface is conical or cylindrical 
according as its index function is bounded or unbounded. 

In  the discussion of the conditions which determine the boundedness or 
the unboundedness of 4 ( t ) , four functions (two of them very closely related) 
play a prominent role. They are 

LEMMA4.2. The functions a ( t ) ,  /?( t ) ,  y ( t ) ,  and 6( t )  are continuous for 
O S t < w , a n d  

The latter part of the lemma is proved by replacing z by z2+t in the in- 
tegral for 6(t ) . The continuity of the four functions for t>O is evident, and 
we need only show that  a ( t ) ,  /?( t ) ,  and y ( t )  approach p(0) as  t tends to zero. 
If we observe that 

1 tlll 

dz = ,.'(r2 + t ) ,  0 < 7 < t1I2, 

the desired result follows upon letting t approach zero. A similar proof applies 
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for y( t ) .  To take care of /?(t),we choose a positive number E ,  and write 

~ ( 2 )  P ( Z )  d Z  
act) = t J e + t J  -dz= t p ( ~ ) J t e $  + t J e  - ( t  < T < e), 

t t z2 z2  

Because of continuity considerations we may take E SO that  p ( ~ )  IS ar--p(O) ' 

bitrarily small for any T < E .Allowing t to  tend to zero, the last pair of terms 
become vanishingly small, and we conclude P(t) -+p(O). 

LEMMA4.3. There exist positive constants cl, c2, c3, and c4 such that, for t 2 0 ,  

(4.5) Giff(t)+ ~2@(2t)  + ~4@(2t).5 $(t) s ~ ~ f f ( t )  

We may write 4 ( t )= I1+I2, 

In the interval t S x  _l2t (t  >0)  

and consequently 

or, making use of (4.3d) and Lemma 4.2, 

For the second integral we have a t  once 

On the other hand, we may write 

z
I 2  = tJ2:"" dz. 

Z 2  ( z 2  - t211 1 2  

The second factor of the integrand is a monotonically decreasing function 
of z in 2t 52 < a,,and is bounded in that  interval by 2/3lI2. Thus 

mailto:~4@(2t)
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Combining (4.6), (4.7a), and (4.7b) we obtain 

a(t)/3'I2+ P(2t)/2 $ +(t) 2'I2a(t) + p(2t)/3lI2. 

A simple numerical calculation shows tha t  these inequalities subsist for t =0. 
An immediate consequence of Lemma 4.3 is 

LEMMA 4.4. A necessary and suficient condition that d ( t )  be bounded in 
0 S t  < oo i s  that a ( t )  and P(t) be bounded in the same interval. 

LEMMA4.5. The boundedness of a ( t )  i n  0 $ t  < oo implies that of P(t). 

Let us suppose tha t  for t>=Owe have a 5 A / 2 ,  so that ,  by Lemma 4.2, 
6(t)$A.  Now i t  is clear that  

and thus, for all t 20, 

This inequality continues to  hold if we replace t by 2".t (n=1, 2, . . . ): 

Adding corresponding sides for n =1, 2, . . . , k gives 

and, upon letting k increase without limit, we find tha t  P(t) $2A. 

THEOREM3. A surface of the second kind i s  conical or semi-cylindrical ac- 
cording as a ( t )  (or 6 ( t ) )  i s  or i s  not bounded as t-+ a. 

This is a direct consequence of Lemmas 4.2, 4.4, and 4.5. 

THEOREM4. A necessary condition that a surface of the second kind be conical 
i s  that 

be bounded as t-+ oo . 
For the first inequality of (4.8) shows tha t  6(t )5y ( t ) ,and the rest follows 

from Theorem 3. 



424 D. P. LING [May 

In  practice this test is frequently decisive, and i t  has the advantage of 
being easily applied. I t  should be remarked how severely i t  restricts the class 
of functions y(x) which give rise to conical surfaces, for i t  implies that  the 
mean value of y(x) over the interval t S x  S2t must be bounded as t-+ a,. 
Even though y itself may be unbounded, i t  must still possess in this sense the 
asymptotic quality of a constant. 

From Theorems 3 and 4 follow 

THEOREM The surface S is conical if y(x) is bounded. 5A. 

THEOREM A surface of the second kind i s  semi-cylindrical if5B. 
lim inf,,, y(x) = a,. 

In  the case of the important subclass of admissible surfaces for which 
f'(x)-and consequently y(x)-increases monotonically, the criteria become 
particularly simple: 

THEOREM6A. A surface of monotonically increasing y(x) is: 
(a) conical if y(x) i s  bounded; 
(b) semi-cylindrical if J exists and y(x) +oo ; 
(c) cylindrical if J fails to exist. 

These are merely restatements of Theorems 5A, 5B, and 2 respectively 
Somewhat more generally we have the following theorem. 

THEOREM then S is:6B. Iffor x large y(x)-xu, 
(a) cylindrical for CY 2 1; 
(b) semi-cylindrical for 0 <CY <1; 
(c) conical for a <0. 

5. Illustrative examples. Surfaces of monotonically increasing y(x) are 
easily exemplified by virtue of Theorem 6. In this section we shall introduce 
a special class of surfaces of non-monotonic p(x), which serve very well to  
illuminate much of the foregoing material. 

Let h, and d, (n =1, 2, 3, . . ) be positive numbers subject for the pres- 
sent only to the conditions dn2-2n-+0 (d, <22n) and h,-+ co. We take for y(x) 
the continuous function whose ordinate maintains the constant value 2 except 
over the intervals 2 2 n S ~ 5 2 2 n + 2 d n  (n= 1, 2, 3, . . . ). Over the first half of 
the nth of these exceptional intervals it rises linearly from 2 to 2+hn, while 
over the second half i t  drops linearly back to 2. Analytically 

(5. la) ~ ( x )  = 2 + (h,/d,)(x - 22n) for 22n5 x S 22n+ d,, 

(5. lb) ~ ( x )  = 2 - (h,/d,)(x - 22n- 2dn) for 22n+ d, 5 x 5 22n+ 2d,, 

( 5 . 1 ~ )  ,u(x) = 2 e elsewhere. 

The  generating curve itself may be described as a sequence of line segments 
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of slope 3112 connected by S-shaped arcs whose central portions become in- 
creasingly steep. This surface we shall call S(h,, d,). 

THEOREM7A. The surface S(h,, d,) is of the jirst kind if the quantities 
hndn2-4n are bounded away from zero. 

Taking the lower limit of the integral J as unity, we have 

(5.2) l = J  -P\Y/ . P\*J -
dz. 

1 z2 N - t - ,=I Z2 

Denoting the sum in the final term by SN, we obtain the following inequality 
by integrating over only the first half of each of the exceptional intervals. 
(We remark that  p(z) -2 is different from zero only over these intervals.) 

Now for x>O, log(1 f x )  >x-x2/2, and 

Since by hypothesis dn2-2n+0, the factor in braces of this last expression is 
greater say than 114 for n large. If, then, the sequence hndn2-4n is bounded 
away from zero, limNhr,,sN = , and J fails to exist. 

THEOREM is of the second kind if the quantities 7B. The surface S(h,, d,) 
h,dn2-3n are bounded. 

Using the representation (5.2), i t  is easily verified that  

This latter sum clearly has a limit as  N-+a provided the condition of the 
hypothesis holds, and thus J exists. 
k 


THEOREM8A. The surface S(hn, d,) is conical if the quantities h,2dn2-2n are 
bounded. 

Since, as we assumed a t  the outset, limn,,hn= a ,  the condition of the 
hypothesis implies that  the sequence hndn2-3n is bounded, so that  by the pre- 
ceding theorem J exists. We shall now show that  6(t) is bounded. First i t  
should be remarked that,  for any value of t, the range of integration of 
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contains points of a t  most one of the exceptional intervals. If no point of such 
an interval occurs in the range, p(x) maintains the constant value 2, and 
6(t) =4. In the contrary case we may suppose that  the range contains the nth 
interval in its entirety. I t  can be verified that  this assumption involves no 
loss of generality. Then, since t >22(n-'), 

On the other hand, the integral over the first half of its range is greater than 
that  over the second half, for a t  the two points of equal ,u the denominator in 
the first half is less than in the second. Consequently 

6(t) < 4 +- dz. 

By direct evaluation of this integral we find 

Thus, under the given conditions, 6(t) is bounded and S conical (Theorem 
3B). 

COROLLARY.The converse of Theorem 5A fails to hold. 

For the condition of Theorem 8A can be met (in a multiplicity of ways) 
with unbounded h,'s, that  is, with p(x) unbounded. 

THEOREM is semi-cylindrical if the sequence 8B. The surface S(h,, d,) 
hnd,2-3n is bounded, but h,2dn2-2n is not. 

Here J exists, and the surface is of the second kind. Starting with (5.3), 
a laborious calculation, not reproduced here, yields 

where A and B are constants independent of n. Thus, under the given condi- 
tions, 6(t) is unbounded, and the surface semi-cylindrical (Theorem 3B). 

This furnishes us with an example of a surface of semi-cylindrical type for 
which lim inf,,,p(x) is not infinite. 

THEOREM9. The converse of Lemma 4.5 fails to hold. 

T o  show this, let S be such that  the sequence h,dn2-2n (and consequently 
hnd,2-3n) is bounded, while h,2d,2-2n is not. By Theorem 8B, S i s  semi-cylindri- 
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call and a(t) is unbounded (Theorem 3A). Now i t  is not difficult to  show that,  
under the given conditions, P(t) is bounded provided the quantities /3(22n) are 
bounded. Over the nth exceptional interval p(x) S2+hn ,  and 

Given, then, that  hndn2-2n is less than some positive ~ L f o r  all-n, we conclude 
that  

" 1 8 
p(2'") 5 2 + ~ A C  2 + - A .-=  

0 22k 3 

Thus P(t) is bounded, while a(t) is not. 
6. The case of discontinuous fl(x). For the sake of simplicity, we have 

assumed up to the present that  ff(x)  is everywhere continuous. In this section 
we shall show that  this restriction can to a large extent be relaxed without 
invalidating the results of $§I to 4. We replace the conditions of $1 by the 
following: 

1. f(x) is continuous and single-valued for x2-0. 
2 . f '(x) is continuous except on a discrete sequence of points x =al,  x =al, 

with 0 <a1 <a2 < . . . . At each of these points the left and right derivatives 
exist, but are different. 

3. f'(x) is everywhere positive except possibly a t  x=O, where i t  may 
vanish. 

On S,  the surface formed by revolving y =f (x) about Oy, the parallels 
x=al ,  x = a z , .  . . are composed of singular points. These are the "parallels 
of division," and the regions between consecutive parallels of division we 
shall call "regions of regularity." The function p(x) is continuous throughout 
any region of regularity, but  changes abruptly in value when a parallel of di- 
vision is crossed. With this in mind, we can again define the "geodesic (t)" 
as  the union of the two branches (1.2) with parameters t equal in magnitude 
but opposite in sign. When we do so, all the remarks of $1 remain valid. 

If P1and P2 are nearby points of the same region of regularity, then i t  is 
well known that the arc of the geodesic (t) joining them furnishes the shortest 
path between them. This is, however, by no means so obvious when these 
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points are separated by a parallel of division. The  following lemma demon- 
strates tha t  this is, in fact, the case. 

LEMMA6.1. Let PI and PZbe nearby points on opposite sides of a parallel 
of division, and let PIP^] denote the geodesic arc, as dejined above, which joins 
them. Then [P1P2]is the shortest path joining them. 

The  proof will merely be sketched. I t  is a t  once evident that  those portions 
of the shortest path from P1 to PZwhich lie in the two separate regions of 
regularity must be geodesic arcs. I t  is thus a question of showing that  the 
minimal path is obtained by preserving the value of the parameter t across 
the parallel of division. 

Let Po be an arbitrary point of the parallel of division, determined by  
some parameter, say 00. The parameters tl and tz of the geodesic arcs [P~PO] 
and [P~PZ]are functions of 00. From the differential element of S,  ds2=p2dx2 
+x2d02, we find that  the differential of arc along a geodesic of S is given by 

This enables us to set up the expression L ,  the sum of the arc lengths [P~PO] 
and [P~PZ].Differentiating this expression with respect to 60 and setting the 
derivative equal to zero, we find that  L has an  extremum only for tl=tz. On 
geometrical grounds, this must be a minimum of L. 

Passing to the results of $2, the definition and the continuity of 0(x, t) 
are handled exactly as  in the simpler case. Lemma 2.1 requires that  p(x) be 
continuous near x=O; but  this remains true since we have postulated a1>0. 
For the rest, i t  is only necessary that  p(x) be positive, bounded and in- 
tegrable. Once more 0*(x) appears as  a continuous nondecreasing function 
of x, and the zoning phenomenon reemerges with the results of $3 unchanged. 

Likewise, the conclusions of $4 carry through as before, for the continuity 
of p(x) is required only a t  the origin. 

Thus the whole theory exposed in this paper remains true for the more 
general type of surfaces considered in this section. 

A final brief remark is in order concerning surfaces for which fl(%) has an  
infinite discontinuity. This can come about in one of two ways. The  generat- 
ing curve may have a vertical asymptote for some finite x, in which case S 
is obviously cylindrical. Otherwise, the slope a t  the origin may be infinite. 
If p(x) increases monotonically to  infinity as x decreases to zero, there exists, 
for any arbitrarily large positive number A ,  a value 5 of x so small that ,  for 
x<5,  p(x)>A. Then, for x < (  and t<x ,  we have 

Z dz x 
e(x ,  t )  = t = A arcsec -. 

t 



19461 GEODESICS ON SURFACES OF REVOLUTION 429 

By choosing t sufficiently small, we can make 9 ( x ,  t) > A .  As a moving point 
P traces the geodesic (t) from the point x to its point of symmetry, the radius 
vector r (P)  rotates around the axis of S,and the amount of this rotation can 
be made arbitrarily large by taking t small enough. I t  is obvious that  here 
the zoning property disappears entirely. 




