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GEOMETRIC ASPECTS OF REDUCTION OF ORDER 

JAMES SHERRING AND GEOFF PRINCE 

ABSTRACT.Using the differential geometry of vectorfields and forms we rein- 
terpret and extend the traditional idea of an integrating factor for a first order 
differential equation with symmetry. In particular, we provide a simple and 
manifestly geometric approach to reduction of order via symmetry for ordi- 
nary differential equations which largely obviates the necessity for canonical 
coordinates and the associated quotient manifolds. In so doing, some new re- 
sults which generalise the class of Lie group actions which can be used to solve 
ordinary differential equations are developed. 

"Reduction of order via symmetry" for ordinary differential equations has a 
more or less standard meaning. It involves, in any particular case, the intro- 
duction of canonical coordinates tailored to the symmetry group which then 
enables an explicit presentation of a reduced differential equation on an appro- 
priate quotient manifold. In the case of a single first order equation there is 
an alternative: an integrating factor can be constructed from the symmetry and 
this converts the equation to an exact one. Common wisdom has it that the 
technique cannot be used except in this case. 

It is our aim here to provide the generalisation of the integrating factor ap- 
proach. To achieve this we cast the first order result into a geometric form 
using differential forms and geometric notions of symmetry and Frobenius in- 
tegrability; the path to the general result then becomes clear. A coordinate-free 
approach has both aesthetic and practical advantages. First of all, the final 
theory, while local like its canonical coordinate counterpart, does not have to 
be concerned with the paraphernalia of coordinate charts to nearly the same 
extent. Moreover, the theory in geometric notation is as straightforward as 
its appearance. Secondly, most specific calculations can be performed in the 
coordinates in which the problem was originally posed, a big advantage for al- 
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gebraic computing. And the geometric theory considerably broadens the class 
of one-parameter local Lie group actions that can be involved in the process of 
integrating systems of ordinary differential equations of arbitrary order. 

In $11 we present Lie's integrating factor result and give it a geometric formu- 
lation that is fairly easily generalised. In 5111 we look at second order equations 
and present our "integrating factor" result, namely the construction of first in- 
tegrals and hence solutions from generators of local one-parameter groups and 
a certain 2-form which characterises the differential equation. Basic technical 
definitions appear in the fourth section before we develop some general results 
about Frobenius integrable forms and their symmetries. You may find it helpful 
to read these definitions at the outset. In the fifth section we return to differen- 
tial equations and use the results of §IV to obtain a very general result about the 
reduction of an arbitrary system of ordinary differential equations. We show 
that the classical theorem concerning reduction of order by solvable subalgebras 
of point symmetries is a special case of this result. Finally we present some con- 
nections with the classical theory of canonical coordinates and quotients. 

We have purposely begun this paper with the familiar cases of first and second 
order equations; we take the view that the results will be more accessible if they 
are presented from the bottom up. It is our hope that you will come away 
with a new and usable technique for solving particular problems as well as an 
understanding of our attempts at a formal theory. 

Finally, we cite the following sources: Olver [ l ]  is a seminal work on Lie 
groups and differential equations, Vaisman [2] contains the material on foliated 
exterior derivatives that we use, we have used the notation and terminology 
on the Frobenius theorem from Crampin and Pirani [3] and last, and probably 
most importantly, Cartan [4-51 has inspired many of our ideas. It is a great 
pity that these works by one of the founders of the theory have not appeared in 
English. 

11. FIRSTORDER ORDINARY DIFFERENTIAL EQUATIONS 

The correspondence between symmetries and integrating factors for explicit 
first order ordinary differential equations is well known. In particular, consider 
the first order equation 

defined on some open subset U of R ~ ,where F is nowhere zero. This can be 
written as the total differential equation 

Then suppose this equation has a nowhere zero symmetry 

in the sense of Lie, with P and Q functions on U . That is, V is a vectorfield 
on U which is the infinitesimal generator of a one-parameter transformation 
group on U which takes solutions of (2-1) into other solutions. 
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The well-known result is that an integrating factor making the total differen- 
tial equation exact is given by 

1
I =  

Q - P F '  
The generalisation of this result to higher order cases is clumsy without some 

differential geometry, so it is appropriate to introduce it here. We work as usual 
on some smooth, constant dimensional, second countable, Hausdorff manifold, 
and assume all functions, vectorfields and differential forms which we use are 
also smooth. The total differential equation becomes a 1-form 

which is a cross section of T*U , that is, o E A' U . The characteristic vector- 
field of w is 

d d
l -=-+F- ;

d x  dy 
this is a vectorfield tangent to the solution curves, and the normalisation con- 
dition that T(x) = 1 is equivalent to requiring that the solution curves be 
parameterised by x . The Pfaffian equation " w = 0 " (which is interpreted as 
w = 0 on solutions) is then given meaning as determining the congruence of 
curves on U whose tangent vectorfield l- satisfies TJ w = 0. The infinitesimal 
criterion for V to be a symmetry of (2-1) in terms of the Lie derivative is 
then Pvr= ill- for some il E U (functions or 0-forms on U )  or dually 
that T V w  = Xw. An integrating factor for w in this setting is a nowhere zero 
multiplying function I so that the exterior derivative d ( I o )  is zero. Geomet- 
rically, I is given by ( VJ a)-' (or equivalently (ivw)-' or ( V ,o)-' ) so that 
provided VJ w is nonzero everywhere on some open U' c U , then 

By virtue of the converse of the Poincare Lemma which states a closed form is 
exact in any starlike region, we have the representation 

for some locally defined f . This function f is known as a diferential invari-
ant or first integral of the differential equation and has constant value on any 
particular solution curve on any starlike open subset of U'. For example, take 
the very simple equation 

defined on U = { (x ,  y)  E R~ : x # 0) with the Pfaffian 1-form o = dy -
y l x  d x  on U , and consider the infinitesimal generator 

of rotations about the origin. Now T V w  = -:w so V is a symmetry of (2-2) 
and so provides an integrating factor. Thus the expression 

o - x d y - y d x  
VJ CO x 2+y2 
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is locally exact, and upon integration we find 

where 8 is the polar angle artan(y/x) . We may choose our branch of artan 
consistently so that 8 is well defined on some subset of U ,but were we to try 
to integrate 

x d y  -y d x  

x 2+y2 


on the whole of R ~ \ { o )  (which is not starlike) then we would have the usual 

problems with defining 6'. The first integral 8 implies that the general solution 
to (2-2) is y = mx on U for m E R . 

We conclude this section with a proof of the integrating factor result in its 
most general formulation. 

Theorem 2.1. Let 8 be a Frobenius integrable l-form which is nowhere zero on 
some open subset U of a manifold M . Then I is an integrating factor for 8 if 
and only if I = (XJ 8)-I for some symmetry vectorjield X on U with XJ 8 # 0 
on U .  
Proof. Suppose that 2 x 8  = p 8  (this is what we mean by symmetry in this 
context). Then we have on U 

as 19 A 19 = 0 by degree and dB A 8 = 0 by Frobenius integrability. Conversely, 
suppose I is an integrating factor for 6' so d(I8)  = 0 .  Then there exists a 
nonunique X on U such that I = (XJ 8)-' with XJ 6' # 0 everywhere by 
virtue of 8 and I being nowhere zero. Using the relationship between Lie 
derivative, exterior derivative and the interior product we have 

and combined with the product rule for the Lie derivative 

the symmetry condition is thus satisfied with 

Note that the Frobenius integrability of a l-form 6' implies the existence 
of some l-form c-r: such that dB = cr A 8 .  So if V is a vectorfield such that 
VJ 19 = 0 then P v 8  = (VJ a)€' and so V is automatically a trivial symmetry 
of 8 .  Every Frobenius integrable l-form locally has an integrating factor, and 
by Theorem 2.1 it thus has a symmetry X ,not in its kernel. For any vectorfield 
Y nowhere in the kernel of 8 we can find some factor J such that JY differs 
from X only by some vectorfield in the kernel of 8 ,  so JY is necessarily a 
symmetry of 6' . The factor J is called a symmetrising factor. The problem of 
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finding an integrating factor for 8 is thus equivalent to finding a symmetrising 
factor for some Y nowhere in the kernel of 8 . This emphasizes the point that it 
is formally no easier to find all generalised symmetries of a differential equation 
than it is to solve the equation, however, geometrical insight may provide us 
with symmetries rather than solutions. 

When we approach equations of order greater than one, it is no longer possible 
to solve the equation (just using symmetry techniques) with the aid of a single 
symmetry. In the case of a variational problem and a variational symmetry we 
may use Noether's theorem to construct a first integral, but otherwise the best 
we can do is to reduce the order of the equation by one. The use of canonical 
coordinates to effect this reduction is well understood, see Olver [I] for example. 
However, the generalisation of the integrating factor method is not well known 
and the presentation of the reduction process outlined here is new. 

If we consider an explicit second order differential equation 

then the geometrical setting we use is some open subset U of the first order 
jet bundle J'  (R, R) with coordinates x ,y and p = 2. The characteristic 
vectorfield for (3-l), or the tangent vectorfield to the solution curves lifted from 
J0(R,R) to U ,is r = ,&+p +F ,and this has a dual distribution spanned 
by the contact form 8 = d y  -p d x  and the force form 4 = dp - F d x  . The 
2-form R = 8 A 4 on U is then a characterising form for (3-1). 

The problem is to find two linearly independent combinations of 8 and 4 
over U which are closed 1-forms, thus providing two first integrals and an 
implicit general solution. (Note that we are now regarding the space A' U of 
1-forms (which, remember, are fields) as a module, denoted P ( U ), over the 
smooth functions /\OU ,  this is an idea we will use throughout this paper. In 
particular, if we require a set of vectorfields or forms to be linearly depen-
dent over U then this is equivalent to requiring the vectors (or forms) of 
those fields to be pointwise linearly dependent everywhere.) However, if we can 
manage to find linear combinations which are Frobenius integrable rather than 
closed then we have reduced the problem to the first order case. It is elementary 
to see that any such combination can be expressed as V JR for some vector-
field V on U ,  and the following results tell us that in particular we can use 
symmetry vectorfields, that is vectorfields V with TvT= Ar ,or equivalently, 
2 V R= AR. 

Proposition 3.1. If V is a vectorfield whose span with r is two dimensional on 
U then the l form V JR is Frobenius integrable ifand only i f  V and r are in 
involution. 
Proof. The kernel of V JR is spanned by V and T ,  and a form is Frobenius 
integrable if and only if its kernel is of maximal dimension and in involution. 

Corollary 3.2. If V is a nontrivial symmetry of (3-1) then V JR is Frobenius 
integrable. 
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Corollary 3.3. If V and W are symmetries of (3-1) which commute and whose 
span with T is three dimensional then the two forms 

VJ and 
WJ R 

WJ VJ R VJ WJ R 
are closed and locally provide a complete set of twofunctionally independent first 
integrals. 
Proof. We have that VJ R is Frobenius integrable, and to show that W is 
a symmetry of VJ R it suffices to note that W is a symmetry of V and 
T and hence of the distribution spanned by V and T ,  which is the kernel 
of VJ R . Thus (WAVJ R)-' provides an integrating factor for VJ R and 
likewise (VJ WJ R)-' provides an integrating factor for WJ R . Now the two 
closed forms are linearly independent over U and so their integration yields 
functionally independent first integrals on U . 

The two first integrals of this corollary, together with x ,provide a coordinate 
chart which straightens out the integral curves of T .  

The following corollary shows how a symmetry and an "almost symmetry" 
provide us with one closed form w1 and a second form w2 which is closed 
modulo w1, that is d o 2  = 0 mod w1 or locally o1= d y and w2 = dy2 + 
yo dyl  . (The integration of a form closed modulo other closed forms is as 
easy as integrating a closed form. In fact it involves one less quadrature; see 
Sherring [6] for a computer algebra program.) 

Corollary 3.4. If V is a symmetry of (3-l), W is a symmetry of span({V, T)) 
and V , W and T are linearly independent everywhere then 

w1 = 
VJ R 

WJ VJ R 

is closed, while 

is closed modulo o1. These two forms locally provide a complete set of two 
functionallx independent first integrals, w1 = dyl  and w2 = dy2 - W(y2)dy . 
By putting ^W = W - W(y2)V we then have the two commuting symmetries V 
and ^W which provide y and y2 via Corollary 3.3. 
Proof. That w1 is closed follows from the preceding argument, and suppose 
that locally w1 = d y l  . To see that w2 is closed modulo w1 we consider the 
foliation F of M by the distribution kerwl (meaning that the leaves of the 
foliation are given by the integral manifolds with ker w1 as their tangent space). 
Now V ,  T and a = WJ R all restrict to leaves of the foliation since V and 
T are tangent to the leaves and W is in the kernel of a .  Denote by VL , TL 
and a~ their restrictions to some leaf L of F.Then a~ is now Frobenius 
integrable on L and thus 

~JL 

VLJ OL 

is closed on L ,but this is just the restriction of 02to L . The decomposition 
of the exterior derivative can be written as d = d l  +dl  with the restriction of d l  
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to L being the exterior derivative on L and d l  being characterised on 0-forms 
f E U by d lf = W(f ) w l  . Now the converse of the Poincare Lemma holds 
on each leaf L of F so that d lw2= 0 implies that o2= d ly i  for some y i  
on each leaf, and by smoothness we must have y; as the restriction of some 
function defined locally on the base manifold. Thus w2 = dly2 = dy2-81y2 = 
dy2 - W(y2)dyl  . 

This result could alternatively have been proved using the divisibility of a 
Frobenius integrable form by one of its characterising 1-forms. It is easy to 
see that locally we have o1= dyl  and o2= dy2 - w(y2)dy1with W(yl)  = 
v(y2)= 1 and V(yl)= 0 .  

In particular, these results hold for the prolongations of point symmetries V 
and W of (2-1) from J O ( R ,R) to U which satisfy [V , W] = a V for some 
a E A0 JO(R, R) . (A point vectorfield is one defined on the base, J O ( R ,R) ; 
it can be prolonged to a vectorfield on a higher order jet bundle, see Olver [I]  
for the prolongation formulae.) That is, a solvable algebra of point symme-
tries satisfying the dimensional requirement provide a complete reduction to 
quadratures. We remind the reader that an n-dimensional (Lie) algebra is solv-
able if it has a chain of n - 1 subalgebras, each of 1 dimension less than the 
previous, such that each element of the algebra is a symmetry of the next lower-
dimensional one (in the usual terminology, each subalgebra is an ideal of the 
next higher-dimensional one). 

A good example is provided by Olver [I ,  p. 1471with the second order equa-
tion 

(3-2) x2y" + ( Y ' ) ~ x= y'y 

which we represent on U = {(x,y ,p )  : x # 0) c J1(R,  R) . Putting f = 
p(y -px) /x2 then we have = & +p% +f 6 , R = (dy-p d x )A (dp-f d x )  . 
This has the scaling point symmetry X = x& + y &  on the base manifold 
n(U) = {(x,  y)  E J O ( R ,R) : x # 0) , whose prolongation to U takes the same 
form and which we also denote by X . 

Proposition (3-1) suggests we can relax our search for a second symmetry 
of by looking instead for a symmetry of span({r, X) )  , which is an easier 
condition to satisfy. We have in particular Z = p &  with the commutator 
relations given by 

so that PZspan({I-, X)) = span({T, X)) . Now {X , Z , T) are not linearly 
independent on the whole of U so we restrict ourselves to U' = { ( x ,y ,p )  E 
J1(R,  R) : x # 0 ,  p # 0 ,  x p  # y)  thus excluding the solutions y = klx and 
y = k2 for kl , k2 E R which satisfy (3-2) on all of R ~ .We then have the two 

and 
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with d o 1  = 0 and d o 2  = 0 mod o l .  This yields o1= dyl and 02= 
dy2-Z(y2)dy1 with 

Y 1 - Y-;+loglpl 

and 
y I X  d z  
--- where A =y2  = log 1x1 + 1 he-''. 

yo/xo AeZ+ = 
This integral is defined on each connected component of U' , but there is no 
guarantee that it can be smoothly extended to all of U . Note that Z -z(y2)x 
is a symmetry but incredibly hard to find compared to Z . Actually, the given 
expressions for y and y2 are representatives of their equivalence classes: y is 
determined by X and Z up to the addition of an arbitrary constant, and y2 is 
determined up to addition of an arbitrary smooth function of y . The general 
solution is given implicitly by treating y and y 2  as constants (of integration); 
eliminating p between them to give y as a function of x then gives the explicit 
solutions. 

It is worth seeing how the approach here relates to Olver's method. To make 
the pass to the quotient transparent we introduce new canonical coordinate 
functions for U' , namely 

The coordinate representations of T , X and Z then become 

Denoting the quotient manifold of U' by the group action of X as Q ,  it 
has the global coordinates ( u ,  w) . The condition for a vectorfield V on U' 
to pass to Q is that TXV be some multiple of X . r does not pass to Q ,  
however we can always find a multiple of r which does, in this case, we use 
T = weuT. Z passes to the quotient, and so does [ Z ,  TI = -w(l  + uw)X. 

On the quotient manifold Q , T and Z become 

respectively with [Ẑ , F] = 0 .  Olver passes to the quotient and then looks for 
a symmetry of the reduced differential equation F ,  this is the vectorfield 2. 
A first integral follows by the first order integrating factor result, this integral 
is just y 1  on Q .  Once we have identified that Z is the unique vectorfield 
projecting to Ẑ  with no X component we can do away with the technique of 
passing to the quotient manifold to look for a symmetry of F by simply looking 
for symmetries of both r and its symmetries together. This largely obviates 
the necessity for canonical coordinates. 

One last comment about this example that will be useful later: our emphasis 
here is on the simple form XJ R , we regard the Pfaffian equation " XJ R = 0 " 





442 JAMES SHERRING AND GEOFF PRINCE 

constraint l-form for R (or zero). Clearly if 1-formfactors are invariant under 
X then T x R  = AR for some A and so X is a symmetry of R .  Conversely 
if T x R  = AR for some A then 0 = T x ( Y 1  R) = ( T x Y ) ~R for Y E kern  
implying TxY E ker R and X is a symmetry of ker R . 
Proposition 4.2. If XJ R # 0 everywhere on M then XJ R is locally simple i f  
and only if R is locally simple. 

Proof. Since ker(X~R) 2 span({X) U ker R) then XJ R # 0 ensures that the 
condition ker(X~R) has maximal dimension is equivalent to ker R having 
maximal dimension. 

Proposition 4.2 is trivial for the second order equations of $111,but we do 
need it for systems of equations. 

Proposition 4.3. If R is a p-form, and X1, . .. , Xk are vectorfields linearly 
independent everywhere with XiJ R # 0 everywhere and k 5 p then X1J X 2 ~.. . 
J X k ~R is locally simple i f  and only i f  R is locally simple. 

Proposition 4.4. If R is a locally simple p-form on an m-dimensional manifold 
M and X1, . .. ,Xk are linearly independent vectorfields satisfiing XiJ R # 0 
everywhere and k 5 p then X 1 ~X 2 ~...J X k ~R is Frobenius integrable if and 
only if span((X1 , .. . , Xk)U ker R) is Frobenius integrable. 

Proposition 4.5. If R is Frobenius integrable and X is a symmetry of R with 
XJ R # 0 everywhere then XJ R is Frobenius integrable. 

Proof. We have X as a symmetry of kern and the Lie bracket is closed on 
ker R so the Lie bracket is also closed on span({X)uker R) = ker(X1R) which 
is then Frobenius integrable by definition. 

Proposition 4.6. If R is Frobenius integrable and {XI, ... ,Xk) is a basis for 
a k-dimensional algebra of linearly independent symmetries of R satisfying 
xi^ R # 0 everywhere then X 1 ~XZJ ...J X k ~R is Frobenius integrable. 

Proposition 4.6 is a generalisation of Corollary 3.2. 

Proposition 4.7. Let R be a k-form on a manifold M ,  and span({X1, ... ,Xk)) 
be a k-dimensional distribution on open U & M satisfying X,J R # 0 every-
where on U . Further suppose that ~pan({X,+~, ... , Xk) u ker R) is Frobenius 
integrablefor some j < k and that Xi is a symmetry of span({X,+l, ... , Xk)U 
kerR) for i =  1,  ... ,j.  Put 

so that { o l, ... ,o k )  is dual to {XI, ... , Xk). Then d o 1  = 0 ; d o 2  = 0 
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mod o1; ... ;d o J  = 0 mod o1, ... , o J - I  so that locally 

for some y , ... , yJ E A0 T*U . Also the system { o J f l, .. . ,o k )  is Frobenius 
integrable modulo dy , . .. ,dyJ and locally R = yo dy A dy2 A . . . A dyJ A 
o J + l  A . . . A okfor some yo E T*U . Each y i  is uniquely defined up to the 
addition of an arbitrary function of y , ... , yi-l  

Proof. ~ p a n ( { X ~ + ~, ... ,Xk) U ker R) is Frobenius integrable with symmetry 
Xj , so span({Xj, ... , Xk) U ker R)  is Frobenius integrable and recursively 
span({Xi, ... ,Xk) U ker R)  is Frobenius integrable for i = 1, .. . ,j . Then 
a1 is Frobenius integrable and has symmetry X1 so o1is closed, and locally 
o1= dyl for some y 1  E A0 T*U . Consider the foliation F1of U by ker o1. 
Restricting a2 to the leaves L1 of 9,'(which are spanned by X2, ... ,Xk and 
ker Q ) then a2has Frobenius integrable kernel span({X3, ... ,Xk)uker R) on 
L1 and symmetry X2 SO o2is closed on each leaf of F1. We can decompose 
the exterior derivative d on U into d = dl  + dl where d l  is the foliated 
exterior derivative on leaves of F1,and where dl is characterised on O-forms 
by dlf = X l ( f ) o l .  So we have d l o 2  = 0 and d o 2  = 0 mod o l . Now the 
converse of Poincare's Lemma holds on leaves of & so d l o 2  = 0 implies 
locally o2= dly2 and using the decomposition d = dl + dl  we have o2= 

dy - dly = dy2-xl ( y 2 )  dy l . Likewise, foliating U by ker o1A o2we have 
the decomposition d = d2+d2 where d2 is the foliated exterior derivative on 
leaves of F2, and where d2 is characterised on O-forms by d2f = Xl (f)ol+ 
X2(f)02. Thus we have d203= 0 implying d o 3  = 0 mod o1,o2and locally 
o3= dy3 -X2(y3)02- X1(y3)01. Clearly the process is inductive, and then 
the proof is complete. 

Proposition 4.7 is the generalisation of Corollary 3.4. This result would usu-
ally be used with a full set of symmetries, in which case it says that a basis for 
X(U) consisting of T and symmetries, produces a dual basis containing the 
Cartan invariant l-forms, or basic forms as they are sometimes called. These 
forms are precisely the pullbacks by the natural projection of l-forms on the 
quotient manifold of M by the group action of T. 

Here we present the results of the last section as they apply to ordinary 
differential equations. The generalisation to systems of equations and to partial 
differential equations is indicated, although the focus is on ordinary differential 
equations. We begin by setting up the notation for an nth order ordinary 
differential equation. 

Definition. Let x ,  ya ,  ya(l) ,. .. ,ya(n-l) for a = 1 ,  .. . , m be natural coor-
dinates on the (n - 1)th jet bundle Jn-'(R, Rm). Put a? = dya - ya(l)d x  , 
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a?J = dya(j-'1 - ya(j) d x  . Then { o f ,  . .. ,o~,) ,"l_,  is the natural basis for the 
contact forms on J n - I  (R,Rm), which are the forms on J n - I  (R , Rm) which 
are zero on curves or surfaces lifted from J O ( R ,  Rm) . They give meaning to 
the derivative coordinates, such as ya(') := (ya)' as being the derivative of ya . 
Let fa E Jn- l (R ,  Rm) then put a; = dya("-l) - fa d x  . Then the o; 'S are 
the natural force forms for the system of m nth order differential equations 

on J n - I  (R,  Rm) . Put 

meaning the mn-fold wedge product, then R is the natural characterising form 
for (5-I), 

Then T is an nth order diflerential equationjeld, it is the characteristic vector- 
field of (5-l), tangent to the lifted solution curves and represents differentiation 
along the solution curves. It is the vectorfield in the kernel of R normalised by 
TJd x  = 1 . We can rewrite (5-1) as a Pfaffian equation " R = 0 ". 

We remark in passing that any volume form 6 on J n - I  (R,  Rm) provides a 
characterising form TJ6 for (5-1) as this is just some nonzero multiple of R . 
Indeed, the generalisation to partial differential equations involves the interior 
product of such a volume form with all of the characteristic vectorfields of the 
equation. 

A symmetry of (5-1) is any map of J O ( R ,  Rm) into itself which permutes 
the solution curves of (5-1). In particular, a one-parameter group action on 
J n - I  (R,  Rm) ,generated by a vectorfield X ,with the property 2 X r  = AT will 
permute the integral curves of r and hence, by projection, the solution curves 
on J O ( R ,  Rm) . Such a vectorfield is also called a symmetry, and this is the 
standard idea that we use. The group action is said to be projectable if the 
action on the base is that of a one-parameter group and X is also said to 
be projectable; however in general this will not occur. Projectable symmetries 
are known as point symmetries and we usually begin with the action on the 
base and prolong it to J n - I  (R,  Rm) . The prolongation formulae require that 
the prolonged action preserve the contact structure. Proposition 4.1 guarantees 
that a symmetry X satisfies 2 x R  = %2 and vice versa. 

It is appropriate to now discuss the traditional notion of symmetry of a 
differential equation. Classically, an nth order (partial) differential equation 
for r unknowns in s variables is a function F (or system of functions) on 
the nth jet space Jn(Rr  ,RS), the solutions being the projection to JO(R', RS) 
of r-dimensional submanifolds of Jn(Rr  ,RS) in the zero hypersurface of F . 
A symmetry of this differential equation is a transformation on JO(R', RS) 
which maps solution surfaces to other solution surfaces. A vectorfield V on 
Jn(Rr,RS) is then a symmetry of the differential equation "F = 0 " if and only 
if it is tangent to the zero set of F on Jn(Rr, RS), which means the group 
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action which V generates will map this zero set into itself; and this is equiv-
alent to V(F) = 0 whenever F = 0 .  An explicit differential equation has all 
nth order derivatives specified explicitly in terms of at most (n - 1)th order 
derivatives, such a differential equation has the advantage of a nice geometrical 
setting on the (n - 1)th jet space Jn-l(Rr ,RS). Here, we have the r total 
derivative operators of differentiation on solution surfaces existing as vector-
fields, these form a Frobenius integrable distribution (provided the equations 
are consistent) tangent to solution surfaces. The differential equation is then 
specified by the characteristic vectorfields T1, ... , Tr or by a single Frobenius 
integrable differential form SZ which is zero on the solution surfaces. A gen-
eral solution to the differential equation is then provided by finding all the first 
integrals. It can then be shown that symmetries of the differential equation are 
just the symmetries of SZ . 

The following results are essentially corollaries of some of the propositions 
in §IV in the case where SZ corresponds to an nth order equation field T .  

Proposition 5.1. Let X1, .. . ,Xmnform an abelian algebra of symmetries of 
(5-1) on U J n - I  (R,Rm), which together with T form a basisfor X(U) . Then 
take { a 0 ,o1, ... , om")  to be the basisfor A' U dual to {T, X1, ... , Xmn). 
Then we have d o i  = 0 for i = 1 ,  ... , mn and locally o1= dyi such that the 
y i  's form a complete set of functionally independent invariantsfor (5-1) and thus 
constitute a general solution. 

Corollary 5.2. If (5-1) has an mn-dimensional abelian algebra of symmetries 
then the diferential equation is reduced to quadratures. 

Proposition 5.3. Let {XI, ... , Xmn)form an ordered basis for a solvable alge-
bra of symmetries of (5-1) on U Jn- ' (R ,  R m ) ,which together with T form 
a basis for X(U) . Take { a 0 ,o l ,  .. . ,om")  to be the basis for A'  U dual 
to {T, X I ,  ... ,Xmn).  Then d o 1  = 0 ;  d o 2  = O m o d o l ;  ...; d o m n= 0 
mod o l ,  . .. , 1 so that locally o1= d y l ,  o2= d o 2  - X1(y2)dy1;. . .  ; 

-- d ymn mod y1 , ... , ymn-'  for somefunctions y 1  , .. . , y mn E A0 U . Lo-

cally SZ = yOdylr\ dy2 r\ . . . A  dymnfor some function yo E A0 U .  Each yi  
is uniquely defined up to the addition of an arbitrary function of y , ... , y ~ - l  

and these constitute a general solution to (5-1). 

Corollary 5.4. If (5-1) has an mn-dimensional solvable algebra of linearly inde-
pendent symmetries then the diferential equation is reduced to quadratures. 

This corollary is a generalisation of the classical result that an nth order 
system of m differential equations, with an mn-dimensional solvable algebra 
of point symmetries whose nth prolongation has mn-dimensional orbits, is re-
duced to quadratures. Clearly the condition on the dimension of the orbits of 
the prolonged algebra is equivalent to requiring that our mn prolonged sym-
metries are everywhere linearly independent, or that they can be used to form 
a basis for the module of vectorfields. 

The next result to give is the most general result for the reduction of a dif-
ferential equation, not necessarily using symmetries. 

Proposition 5.5. If span({X1, ... , Xmn)) is a mn-dimensional distribution on 
an open U c M satisfying X,J SZ # 0 everywhere on U and 

span({Xj+1, - , Xmn ,r ) )  
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is Frobenius integrablefor some j < m n  with Xi a symmetry of 

s~an({Xi+l,.- .  7 Xmn , r ) )  

for i = 1 , .. . , j , then put 

CT1 = X2JX3J ...J XmnJR ,  

a 2  = xlJX ~ J...J X m n ~R ,  

so that { o l, ... ,om")  is dual to {X1, . .. ,Xmn). 
Then dm1 = 0 ,  dm2 = Omod o1;... ; d o J  = Omod o l ,  ... , oJ-I so that 

locally 

for some y1 , ... , yJ  E T*U ,which are then first integrals of ( 5 - 1 ) .  Each y i  
is uniquely defined up to the addition of an arbitrary function of y , ... , ?i- 1 

So far we have only considered the situation where we have no more symme-
tries than needed to perform the reduction, but if we have any extra symmetries 
these can be used to find first integrals of ( 5 - 1 )  without integration. 

Proposition 5.6. Suppose we have integrable distribution L3 with T E L3, and 
two symmetries X and Y of L3 which themselves are not in L3 which we can 
write as Y = a X  + j3Z for some Z E L3. Then a is a (possibly trivial) first 
integral of ( 5 - 1 ) .  
Proof. We need only note that by assumption, [ Y ,  TI = - T ( a ) X + Z ,  for some-
Z E L3, must also be in 9 so T ( a )= 0 .  

The obvious corollary of this is when we have an over supply of point sym-
metries, or even when the linear independence condition fails. 

Corollary 5.7. Suppose we have independent symmetries K1, ... ,XJ of (5-I) ,  
and an additional symmetry Y given by Y = aaXa+ D r .  Then the aa 's are 
(possibly trivial)first integrals of (5-1). 
Proof. As above, noting that [Y, T ]= -T(aa)Xa+ET must be a multiple of T 
implies T ( a a )= 0 .  

Actually resolving the vectorfield Y into components with respect to X and 
T might not be straightforward, however with the use of R we can find these 
components easily when we have an overabundance of symmetries. If we have 
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vectorfields {X1 , ... , X,,) satisfying the hypothesis of Proposition 5.5 with 
corresponding first integral y ' and {Y , X2, . . . ,X,,) also satisfying the hy- 
pothesis then we have Y = ax1+pZ  for some Z E span({X2, .. . ,X,, ,T)) . 
Then, by Proposition 5.6, a is a first integral of (5-1). It is simple to check that 
a is the ratio 

YJ X2J X3J ...J XmnJ Q 
'(") = X1JX2Jx3J. ..J X,,J *' 

the important thing here is that both these terms are integrating factors for the 
Frobenius integrable form a' of Proposition 5.5 and thus we have a generalisa- 
tion of the old result that the ratio of any two integrating factors for a first order 
differential equation gives a first integral of that equation. Cartan [4] gives a 
variety of similar ways of producing first integrals. 

As an example of the results in this section, we look at one of the famous 
dynamical systems with symmetry, the Kepler problem. The calculations given 
are rather abridged for the sake of brevity, and we refer the reader to [7] for 
full details. 

For simplicity we consider the planar problem in polar coordinates ( r ,  8 ) .  
The pair of second order equations is 

with the second order equation field 

and the associated locally simple 4-form is 

The problem has exactly three point symmetries, namely, 

d d d 2 8
X I = - ,  x2=- and X3=t -+ - r -

d t d e  ' d t  3 d r  
which form a solvable (but not nilpotent) algebra with commutators 

[ X l , X 2 ] = 0 ,  [ X 2 , X 3 ] = 0  and [X1,X3]=X1. 

In addition, the field 
1 dz=--

r4&'2i. d i  

is a symmetry of the integrable distribution L 3  = span({r, Xl ,X2, xi1?))  
where xi1)is the first prolongation of X3. On using the reduction of order 
algorithm of Proposition 5.5 we obtain the four l-forms 
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w and w2 are closed and integrate locally to y = 3 log(h) and y = h 2 ~  
where h = r28 and E = $(i2+ h2/r2)- p/r  are the first integrals of an- 
gular momentum and energy respectively. a3 and a4 are closed modulo 
dy and dy and can be locally 'integrated to first integrals y3 and y4 rep-
resenting initial values of 6' and t respectively. We can then use the local 
basis {dt ,  d y l ,  dy2, dy3, dy4) toc~mputeadualbasis {T,Wl, W2, X2, XI) 
where Wl and W2 are nonpoint symmetries of r given by Wl = Z -z (y 4, x1-
Z(y3)x2 and W2 = xi1) X $ ' ) ( ~ ~ ) X ~ .- In this way we have a canonical reduc- 
tion of order for the Kepler problem, the integrals y 1  and y2 relating to the 
intrinsic geometry of the conic sections, and the integrals y3 and y 4  relating 
to initial spatial and temporal conditions. 

VI. CANONICALCOORDINATES 

In this section we make the connection with the traditional canonical coor- 
dinate method reduction of order of an ordinary differential equation using a 
point symmetry. We give a generalisation of the method for arbitrary symme- 
tries which although follows easily from the point symmetry method, we believe 
it to be new. This provides a practical use for such symmetries in general; they 
usually appear only in the limited context of Noether's theorem. In the classi- 
cal approach, we consider an implicit nth order equation on the nth jet bundle 
J n ( R ,  R) ,assumed totally nondegenerate, as 

A solution of this equation is any subset of the zero set of F :  Uo = {p E 
J n ( R, R) : F(p)  = 0) on which the nth order contact structure is zero: by 
dimension the solutions must be curves. 

Suppose we have a point symmetry V of (6-I), that is a vectorfield V on 
JO(R ,  R) whose prolongation V(n) to J n ( R ,  R) is a symmetry of (6-1). The 
usual technique is to find the invariants of V and V(') ,  and use these to con- 
struct a full set of invariants of V("). We say ( is a jth order invariant of V 
if c E J j ( R ,  R) and V(j)(c)= 0 .  Clearly a jth order invariant is also a 
( j+ 1)th order invariant (as usual we omit reference to the projection which is 
necessary when lifting an object from one jet space to a higher order one in the 
natural manner). The reduction is then performed by re-expressing F in terms 
of the invariants of V ,and this becomes the reduced diferential equation. 

Defining the total derivative operator 

it is well known that if ( and c are jth order invariants of a symmetry V 
then Dx(c)/Dx(() is a ( j+ 1)th order invariant. Following Lie, we find a 
zeroth order invariant u and a first order invariant z for V.  We define 
z(O) = z and z(j) = D,(~(j-~))lD,(u) for j = 1 ,  . . . , n so that we have the 
interpretation z(j) = dnz/duj. The classical result is that when we re-express 
F in terms of u , z , z' , . . . , z("-') , (6-1) becomes an (n - 1)th order equation 
for z(u) . Once we have solved this equation, the solution to (6-1) is given by 
integrating a related first order equation found by inverting the transformation 
to the invariants of V . 
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In keeping with the theme of the paper, we choose to work with differen-
tial forms on the lower order jet space, so we assume that the differential 
equation can be written explicitly in the form F ( x  ,y , ... ,y(n)) = y(n)  -
f ( x ,y , .. . ,y("-')) = 0 so that we are back in the scenario of (5-1) with 
m = 1 . We make the identification by using the map T : Uo-+ Jn- ' (R,  R) 
with z(y@))= f (x ,y , ... ,y(n-l)) . 

To use canonical coordinates for the symmetry V on Jn-'(R, R) we will 
express the Pfaffian equations for (5-1) in terms of the nth order invariants for 
V . The invariants of Proposition (6-1) can be defined by using r instead of 
D, , this will give the same invariants except that the z("-') defined using I-
will be the pushforward from J n ( R ,R) by the map T of the z ( ~ - ' )defined 
using Dx . Denote this by f = I-(z("-~))/I-(u). f is still an invariant of V ,but 
it is functionally dependent on u , z , z('), ... , z ( ~ - ~ )and so we might write 

A A 

f = f ( u ,  Z, d l ) ,  . .. , z ( ~ - ~ ) ) .  

Proposition 6.1. Suppose u and z are functionally independent zeroth order 
and j r s t  order invariants respectively of the point symmetry V , that is V(u) = 
v( ')(z)  = 0 ,  and assume that T(z) and I-(u) are nowhere zero. Put z(O)= z 
and z(j)= r (z ( j - l ) ) / r (u )for j = 1 ,  ... ,n - 2 .  Then u ,  z ,  z ( ' ) ,  ... , Z(n-2) 

provide a complete set of functionally independent (n - 1)th order invariants for 
v .  
Proof. We use induction: assume [V(n-l) ,I-] = AI- and suppose that z(J)  is 
an invariant of V . To see that z(j+') is an invariant of V we use the quotient 
rule, 

hence v ( ~ - ' ) ( z ( ~ ) )= 0 for j = 0 ,  ... ,n - 2 .  

To see the functional independence, we note how I- acting on a function 
effectively increases the order of derivatives which it depends on by one. Be-
cause u is a zeroth order invariant with no y' dependence and u and z are 
functionally independent, z must have nowhere zero y' dependence, and so 
T(u) and I-(z) will have nowhere zero y" dependence. From here the result 
follows by induction. 

The condition that T(z) and T(u) are nowhere zero is often overlooked, yet 
failure of an invariant to satisfy this condition on an open region U is not a 
problem, it is a bonus! We then have a first integral z or u on U , this is itself 
a reduced equation in the original coordinates. 

Otherwise putting OJ = dz(j)- z(j+l)du for j = 1, ... , n - 2 and On-' = 
d z("-') -fd u we have n - 1 independent 1-forms which clearly satisfy T_rOJ = 
0 and VJ O j  = 0 and so 

for some a: t. J " - ~ ( R ,R ) .  The OJ for j = 1 ,  ... ,n - 2 form a natural 
contact structure and with the force form O n - I  we have the reduced differential 
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equation 

The solutions of (6-2) are related to those of (5-1) by an auxiliary first order 
equation, but a better connection with our theory is that the n - 1 first integrals 
of (6-2) are also first integrals of (5-I), leaving us short by one. If we have some 
function s so that V(n)(s) is nowhere zero then the 1-form ds  - r ( s ) d x  is 
Frobenius integrable modulo the n - 1 first integrals of (6-2) and thus gives us 
the last one. 

We now consider the extension of this method for an arbitrary symme- 
try of (5-l),that is, we consider the case where V is no longer a point sym- 
metry, but we still have [V,  r ]  = AT for some A .  Suppose we also know 
two invariants u and z of V ,  these need not be first order invariants- 
indeed this has no meaning as V is not the prolongation of a base vectorfield. 
We may still construct other invariants as per Proposition 6.1, but we are no 
longer guaranteed their independence. As before we put z(O) = z and z(j) = 
T(z(j-l)) /r(u) but this time we stop when we have u , z , z(l), ... , z ( ~ - ' )func-
tionally independent but u , z , z(') , . . . , z ( ~ )functionally dependent so that 
z ( ~ )= We then have the differential equation for g(u , z , z( l ) ,... , z ( ~ - ~ ) ) .  
z ( u ) ,  

The k first integrals of (6-3) are also first integrals of (5-1) as before. In the 
event that k < n -1 ,we need another invariant of V to proceed. If we have the 
invariant w of V which is functionally independent of u , z , z(') , ... , Z(k- 1) 

then once again we put w(O) = w and w(j) = T(w(j-l))/T(u) and this time 
we stop when we have u , w , w('), . . . , w('-'), Z ,  z ( l ) ,  ... , z ( ~ - ~ )function-
ally independent but u , w ,w('), ... , w('-'), Z ,  d l ) ,  .. . , z ( ~ - ~ )functionally 
dependent so that w(') = Weh ( u ,  w ,  w( ' ) ,  ... ,w(l-l) ; z , z(l), . . . , z ( ~ - ~ ) ) .  
then have the differential equation for w(u) , 

Although this equation is not necessarily integrable in its own right, it is inte- 
grable once we have the solution of (6-3). In terms of the Pfaffians, the wedge 
of the k Pfaffians is Frobenius integrable, while the I-form given by the wedge 
of the 1 Pfaffians for (6-4) is integrable modulo the k Pfaffians of (6-3). We 
continue in this way until we have n - 1 Pfaffian forms in a chain of integrabil- 
ity. XJ R is then given by some multiple of the wedge of these n - 1 Pfaffians, 
thus giving interpretation of XJ R = 0 as a reduced differential equation. 

We have not restricted ourselves to one-dimensional equations: if r is an 
nth order equation field for a system of m equations, then this method works 
equally well; it might even be possible to reduce the system to a single (mn- 1)th 
order equation! It is also possible to perform such a reduction using canonical 
coordinates if V is not a symmetry of r but if the distribution span({r, V}) 
is integrable. Proposition 6.1 still holds, but we will omit the details of this. 

If we look for canonical coordinates for a two dimensional solvable algebra of 
symmetries, say V and X with [V,  XI = A V  then we first find the invariants 
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for V as above, then look for the invariants of X . We can find coordinates 
a ,  b ,cJ so that X(b) = 1 and V(b) = X(a)  = V(cj) = X(cj) = 0 and we 
can express (6-1) in terms of the invariants of both V and X with a reduction 
of order of 2. If we consider a reduction by a full mn-dimensional solvable 
algebra and we find the invariant for this full algebra, it will be precisely the 
first integral y1  found using Proposition 5.3. Actually, the reduction process of 
§V is ideally suited to finding the canonical coordinates, should this be desired. 

We end this section with a discussion of the more formal traditional notion 
of a "reduced differential equation". In the literature this term usually refers to 
a differential equation on a quotient manifold. This reduction is performed on 
some initial equation by passing to the quotient of the original host manifold by 
a symmetry group action and using the corresponding differential invariants to 
produce a canonical coordinate representation of the equation. In our treatment 
of reduction of order these ideas are not in evidence and the reader may well ask 
in what sense our locally simple p-forms represent the usual reduced differential 
equations on the quotient. We made the claims in the example of $111that a 
multiple of the second order ordinary differential equation field r always passes 
to the quotient and similarly that XJ R is a multiple of a form pulled back from 
the quotient. These two objects constitute the reduced differential equation of 
our theory. Importantly for our reduction of order algorithm we never need to 
pass to the quotient, the entire process can be carried out on the host manifold in 
an essentially coordinate free manner. However, for the sake of completeness, 
we give the following theorem. 

Theorem 6.3. Let T be an nth order equationfield on an open U C J n - I  (R ,Rm) 
and R be a corresponding locally simple mn-form. Let X be a symmetry of 
r and hence of R (by Proposition 4.1), nowhere zero on U ,  and let Q be 
the quotient of U by the one-parameter group generated by X ,  with projection 
R :  U + Q .  Then 

(i) there exists y E A' U such that yT passes to Q. 
(ii) there exists a E A' U such that ~ ( X J  ~ * aQ) = where a E Am"-' Q .  

(iii) ker(a) = span({~c,(yT))) and hence a is Frobenius integrable and so 
locally simple. 

Proof. (i) A vectorfield W passes to Q if and only if TxW = pX for some 
p , however we have T x T  = AT by assumption. So we look for a multiple y r  
of r so that T x ( y r )  = 0 (nontrivial multiples of X are not possible). We find 
that y must satisfy X(y) +yil = 0 .  If we attempt a solution y = (TJ o ) - I  for 
some appropriate l-form o we find a necessary and sufficient condition for the 
existence of y and hence o is that TJ Txo= 0 ,  that is, Txois a constraint 
form for T .  We can always find such forms: for example, if g E A' U is 
a differential invariant of X so that X(g)  = 0 ,  with T(g) # 0 on U then 
o = d g  satisfies the requirement and so = T/T(g) passes to the quotient. 

(ii) A form j? on U is the pullback of a form a on Q if and only if 
XJ j? = 0 and XJ d p  = 0 ,  or equivalently, ThXP= 0 for all h E A' U . Now 
for j? = ~ ( X J  = 0 is automatically satisfied and we R)  , the condition XJ j? 
need only be concerned with XJ d ( a X ~  SZ) = 0 or Tx(aXJ  R)  = 0 .  

Given that TxSZ= XSZ by assumption, we find that a necessary and sufficient 
condition on a is X(a)+Xa = 0 .  Attempting a solution a = ...J Zmn- 1XJ Z 1 ~  
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J SZ for some appropriate vectorfields Z1, ... ,Z,,-l we find a sufficient con-
dition for the existence of the Z j  's, and hence a ,  is that 

This condition is satisfied if -ZxZj = 0 for each Z j  so an obvious choice is 
Z j  = where X(vj)  = 0 ,  and once again we recognise canonical coordinates. 

(iii) To see that a has a one-dimensional kernel spanned by the projection 
A 

of a multiple of T to Q ,  consider ^W E kera : W = n, W for some W on 
A 

U and so 0 = ̂ WJ a implies 0 = ~ * ( W Ja) = n*(n, WJ a) = WJ n*a . Hence 
W is in the kernel of XJ Q which by assumption is span({X, T)) . But this 
distribution passes to the quotient as span({F)) and hence a is Frobenius 
integrable and locally simple since its kernel is one dimensional. 

It is clear from this theorem that the Pfaffian equation "a  = 0 "  on Q 
is precisely the usual reduced differential equation arising from reduction by 
the symmetry X ,  and as a consequence we also identify the Pfaffian equation 
"XJ SZ = 0 "  as the reduced differential equation (even though it has a two-
dimensional kernel). 

XI. CONCLUSION 

We hope to have demonstrated to you that this geometric reduction of or-
der technique is elegant, computationally simple and more powerful than the 
traditional approach. Apart from our original intention to generalise the inte-
grating factor result our main efforts have been computational and there is no 
doubt that algorithmically the technique and its computer algebraic implemen-
tation are a radical improvement over the current ones. The theory, combined 
with a symmetry determination program such as DIMSYM [14] and an exterior 
calculus package such as EXCALC [15], makes child's play of many problems 
(see [6-81). On the theory side, however, we have only scratched the surface as 
even a cursory glance at [I], for example, shows. We earnestly hope that our 
small contribution will awaken an interest in the pioneering work of E. Cartan 
amongst the many experts and practitioners in the group theory of differential 
equations. 

Since the submission of this article, our attention has been brought to the 
work of others currently exploring some of the ideas contained here. Basarab-
Honvath [12] has worked on giving a geometrical description of Lie's general-
isation of Jacobi's multiplier, and has given analogues of several results con-
tained here such as Proposition 5.3 using changes of coordinates rather than 
modulo-closed forms. Duzhin and Lychagin [13] construct a basis of (almost 
basic) 1-forms using Cartan's techniques 14, 51 to find first integrals, with some 
emphasis on distributions arising from PDE's. This generalisation is remarked 
upon here in §Vbut is not emphasised as this only covers completely determined 
systems of PDE's. 

We would Like to thank Peter Basarab-Honvath for providing references [9, 
10, 111. In [9], Lie gives o1and o2of Corollary 3.4 where 
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d x  dy dp1 
02=-- 1 P ~ ( x , Y , P ) .A 

zv 5v rt" 
He also goes on to give the obvious generalisation for a pfaffian equation in 
four variables with three symmetries. It is most unfortunate that this work has 
not been translated into English, as both Lie's and Cartan's works contain many 
gems yet to be realised. Cohen [lo, pp. 124-1741 and Dickson [1 1, pp. 341-342, 
354-3561 give this result without proof, with only Dickson referencing Lie [9, 
pp. 453-4561. 
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