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GEOMETRIC GROUPS. I 

VALERA BERESTOVSKII, CONRAD PLAUT, AND CORNELIUS STALLMAN 

ABSTRACT. We define a geometry on a group to be an abelian semigroup of 
symmetric open sets with certain properties. Examples include well-known 
structures such as invariant Riemannian metrics on Lie groups, hyperbolic 
groups, and valuations on fields. In this paper we are mostly concerned with 
geometries where the semigroup is isomorphic to the positive reals, which for 
Lie groups come from invariant Finsler metrics. We explore various aspects 
of these geometric groups, including a theory of covering groups for arcwise 
connected groups, algebraic expressions for invariant metrics and inner met- 
rics, construction of geometries with curvature bounded below, and finding 
geometrically significant curves in path homotopy classes. 

1. INTRODUCTION 

In this paper we begin a study of geometries on groups. Our definition of "ge- 
ometry" is based on the observation that the metric balls centered at the identity 
of a (left-)invariant inner metric form a semigroup ordered by inclusion. 

Definition 1.1. Let G be a topological group. A geometry on G consists of a 
basis {U. }SES for the topology of G at the identity e, where (S, +, <) is a partially 
ordered abelian semigroup, having the following properties for all s, t E S: 

Gl: Us C Ut if and only if s < t, 
G2: n US = {e}, 

sES 
G3: U US=G, 

sES 

G4: Us is symmetric (i.e., U;' = U.), and 
G5: Us * Ut = Us+t 

For subsets A, B C G, by AB we mean {xy: x E A and y E B}. The requirement 
that S be abelian will be useful for results in a later paper. Also, in the present 
paper S is always totally ordered, but requiring this condition in Definition 1.1 
seems too restrictive. The notation "+" will be used except when we are using 
an alternative operation on the reals or some subset (e.g. Example 1.6). We will 
denote simply by R+ the positive reals with its usual ordering and sum operation. 
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If Definition 1.1 is satisfied, we say that G is a geometric group (parameterized) 
over S. (We will sometimes say that {Us } is a geometry over S when in fact {Us} 
is parameterized over a subsemigroup of S. We say that a geometry on G is strong 
if the closures Us of the members of the geometry also form a semigroup; that is 
Us * Ut = Us+t Since U4t = UsUt C USUt c U8+t, it follows that the geometry is 
strong if and only if UsUt is closed. If the semigroup S is archimedean in the sense 
that for every u, v E S there exists a natural number n such that nu > v, and G 
is a locally compact, then every element of a geometry over S must have compact 
closure. It follows that any geometry over an archimedian semigroup on a locally 
compact group is a strong geometry. 

Example 1.1. Every (connected) Lie group with invariant Riemannian or Finsler 
metric is a geometric group parameterized over R+, where the geometry is the 
collection of metric balls centered at e. We will show (Proposition 3.1) that any 
geometry over R+ on a topological group corresponds to an invariant inner metric. 
It then follows from ([3]) that, conversely, every geometry over R? on a Lie group 
must come from a (possibly non-holonomic) invariant Finsler metric. 

Example 1.2. Every Banach space is an example of a strong geometry over R+ 
on a topological vector space. 

Example 1.3. In geometric group theory, the Cayley graph of a group G with 
generating set F is provided with an inner metric, where each edge is given length 
1. Let Ua = {g E G: d(e, g) ? a}, where d(e, g) denotes the length of the shortest 
edge-path joining the vertices corresponding to e and g. Then {Ua} is a geometry 
parameterized over the non-negative integers (where G has the discrete topology). 
Normally, this geometry is assumed to have curvature bounded above in some sense 
(which we will not need, and therefore will not define in this paper). 

Example 1.4. The first author proved ([5]) that any group G can be realized as 
the fundamental group of a 2-dimensional topological space X having a complete 
metric d of curvature (in the sense of Alexandrov) bounded above by 1, with the 
additional property that every pair of points is joined by a minimal curve. The 
curvature bound implies that X is locally contractible; thus we may pass to the 
universal covering X, to which the metric d can be lifted as a metric d. Then by 
identifying G with the images under the deck transformations (which are isometries 
of X) of a single point x, we induce a natural geometry on G, which can also be 
considered to have curvature < 1 (again the topology is discrete). 

Example 1.5. In [23] the second author showed that every locally compact, 
arcwise connected, metrizable group admits a geometry over R+ having curva- 
ture bounded below in a certain sense. These geometries are true generalizations 
of invariant Riemannian metrics on connected Lie groups. See also Theorem 1.8. 

Example 1.6. Let the positive reals have its usual order, and let a A b = max{a, b} 
be the algebraic operation. Then the resulting ordered semigroup is denoted by 
Rmax Note that Rmax cannot be embedded in a group because the cancellation 
laws do not apply (e.g. 1 A 3 = 2 A 3, but 1 $7 2). Also, RmaX is not archimedean (cf. 
the paragraph after Definition 1.1). Given a geometry {Ur} over Rm'x on a group 
G, each set Ur consists of the metric ball centered at e of radius r with respect to 
some invariant metric d (see Section 3). It is easy to see that this metric must be 
an ultrametric; i.e, for all x, y, z E G, d(x, y) < max{d(x, z), d(z, y)}. Conversely, 
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every invariant ultrametric on a group gives rise to a geometry over Rmax. It is 
clear that any geometry on a group G parameterized over Rmax nust consist of 
open subgroups, with the result that G is totally disconnected. In a later paper 
we will prove that every locally compact totally disconnected group admits such a 
geometry, and investigate these geometries more fully. 

Example 1.7. Valuations on fields provide interesting examples of geometries. We 
give here a very brief description of valuations on fields in order to show that every 
valuation gives rise to a geometry over R+ or Rmax; references for valuations on 
fields are [10] and [18] (our terminology differs from that of the latter). Let K be 
a field with additive identity 0 and multiplicative identity 1. A valuation 1H1 on K 
is a nonnegative real valued mapping on K satisfying the following axioms: 

1. lxl=Oifandonlyifx=O, 
2. Ixyl = Ixi lyI, and 
3. Ix+yI < Ixl+lyl. 
We assume that a valuation is non-trivial (i.e. there is some x E K such that 

lxl , {O, 1}). In the terminology of Section 3 of this paper, a valuation on K is 
equivalent to a family {Ur} of open sets satisfying conditions M1-M5, and the sets 
Ur := {x E K: Ixi < r} are the metric balls centered at 0 of radius r with respect to 
a left-invariant metric on K. The field K with the topology induced by this metric 
is a topological field. Two valuations I l ,112 on K induce the same topology if 
and only if they are equivalent, i.e. for some number c > 0, we have lxl1 = lxlj 
for all x E K. Another equivalent condition is that, setting Vi(r) = {x: lxi. < r} 
(i = 1, 2), V, (1) = V2(1). 

A valuation is non-archimedean if the following condition holds: (3') Ix + yl < 
max{IlxI lyl}. Condition (3') is equivalent to the corresponding metric being an 
ultrametric, and so from Example 1.6, we see that {Ur} must be a geometry of 
the (additive) group K over Rmax. A non-archimedean valuation on a field F can 
be extended to a (non-archimedean) valuation on any finite dimensional extension 
field E of F. 

In the equivalence class of any archimedean (i.e. not non-archimedean) valuation 
on K there is a unique valuation which defines a strong geometry over R+, on K; 
it is the geometry induced by an embedding of K in the complex numbers C with 
the usual norm. 

As a standard example, one can define on the rational numbers Q the (non- 

archimedean) p-adic valuation lv1p for any prime p by u 
= p-a, where u, v are 

p 
nonzero and not divisible by p. (We set 101 = 0.) Every nontrivial valuation on Q 
is equivalent to Ilp for some p or the usual absolute value lIoo 

Every "valuated" field K has a completion K: a valuated field containing K 
whose metric is the completion of the metric of K. For example, the completion of 
Q with I lo. is R with l'Il; the completion of Q with I* p is the field Qp of p-adic 
numbers. The closure Zp of Z in Qp is the ring of p-adic integers. The extension 
of a complete valuation on F to a finite dimensional extension E of F is uniquely 
determined. 

Every local (i.e. nondiscrete locally compact) topological field is complete rel- 
ative to any compatible valuation. As an example of such a field we can take the 
field Fq((t)) of formal power series over the finite field Fq with q elements, where 
q = ps, p a prime. Here each element x of Fq((t)) and the valuation I1 . have the 
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00 

following form: x = 0 or x= Z ot', I E Z, an E Fq, ai # 0; Ixl| = ci, O <C< 1, 
n=I 

and 101 = 0. Every local field admits at most one (up to equivalence) compatible 
valuation I.J Up to isomorphism there are only three possible cases, each of which 
corresponds to a geometry: 

(a) If is archimedean, then (K, *I) = (R, I -oo) or (C, IHIo). 
(b) If H is non-archimedean and the characteristic of K is 0, then K is a finite 

dimensional extension of Qp, for some prime p, and 1 1 is the unique extension of 

I lp 
(c) If is non-archimedean and the characteristic of K is p 0 0, then (K, HI) = 

(Fq((t)), IIj) for some q = pS and 0 < c < 1. 
If K is a valuated field, we let Vr = {x: IxI < r} and note that V := VI is 

a multiplicative semigroup of K. The set U = V - U1 is the group of units, and 
contains 1. If the valuation is non-archimedean, then V is a ring, the so-called 
valuation ring. 

More generally, one can define a valuation on a field K with values in a linearly 
ordered multiplicative group (S, *, <) with unit 1, (S is the value group) using the 
axioms (1), (2), (3'). It is interesting to note that every such group S can be 
realized as the value group for an appropriate valuated field. For such a valuation, 
the valuation ring V has the property that for any x E K\{O}, x or x-1 is in V. 
Conversely, every such ring V in a field K is a valuation ring for some valuation I - 
with value group S = K*/U. Here K* = (K\{0},.) is the (abelian) multiplicative 
group of the field K and U is the group of units of the ring V, which consists of all 
x E K such that x and x-1 are both in V. Let f: K* - K*/U be the canonical 
automorphism. One defines f(x) < f(y) if and only if xy-1 E V, 0 < x; and 

IxI = f(x), x E K*, 0I = 0. Evidently one obtains in this way a geometry on the 
additive group K. 

Example 1.8. Let Z(K) be the integer lattice in the algebra K of the real, com- 
plex, or quaternion numbers, given a Euclidean norm 1IIII such that IIabII = IIall IIbI 
and jljj1 = 1. For example, Z(R) is the integers; Z(C) is the "Gaussian integers." 
We let 1 be the real dimension of the vector space K. Then any ideal J in Z(K) is 
principal: J = (q), where q is an element in J of least norm. Since J is generated 
from the cyclic subgroup generated by q and rotations of angle 2, it is easy to see 
geometrically that the "fundamental domain" for such an ideal is an i-dimensional 
cube of side length liqll. It follows that the index I(J) = [Z(K): J] = ilqlll. For 
ljqll > 1, we can consider the ideals J(n) = (qfn) , n = 0, 1, 2, ... , where (q?) = Z(K). 
The natural inverse limit G of the finite abelian groups Z(K)/J(n) is a compact 
totally disconnected group, in fact a generalization of the p-adic integers. (Here 
the group operation is that induced by the sum, not the product, in the alge- 
bra K, so is abelian even for the quaternions.) For any z 4 0 in Z(K), we let 
deg(z) = max{n: z E J(n)}. Then deg(z) < oo since nJ(n) = {0}. We define 
deg(0) = +oo. If we let Ur = {z : f(z) < r}, where f(z) = lqll -deg(z), we obtain a 
geometry on Z(K). Alternatively, we can take a power of f(z) in the definition. If 
we take the completion of the metric corresponding to this geometry, we obtain a 
geometry on G of the type described in Example 1.6. 

It is interesting to observe the contrast between geometries over R+ and Rmax. 
The first requires a very connected (i.e. arewise and locally arewise connected) 
topology, while the second requires a totally disconnected topology. A geometry 
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over R+ corresponds to an inner metric, which for a locally compact group has the 
property that for every distinct x, y, there is a distinct point z such that d(x, y) = 
d(x, z) +d(z, y). A geometry over Rml corresponds to an ultrametric, which has the 
property that for distinct points x, y, z, the triangle inequality is never an equality. 

Note that, in the above examples, if G has finite diameter, then Ua = G for 
sufficiently large a; in general it need not be true that if r is strictly less than s, 
then Ur is a proper subset of Us. There are other types of semigroups of open 
sets on groups (and other algebraic objects) in which some of the conditions of 
Definition 1.1 have been changed or omitted, but which should also be considered 
as geometries or pseudogeometries of some sort. We will consider these in a later 
paper. 

A collection of not necessarily open sets {Us} satisfying the conditions of Defini- 
tion 1.1, except G3, for S = R+, has been called a Gleason semigroup in [14] . The 
existence of non-trivial Gleason semigroups for metrizable locally compact groups 
can be used to show the existence of non-trivial one-parameter subgroups as part 
*of a solution to Hilbert's Fifth Problem (cf. [14]). In general the sets in a Gleason 
semigroup are not open (and in fact, by Proposition 3.1, for locally compact, con- 
nected groups, they can be open only if the underlying group is arcwise connected). 
We do not know of a direct argument (and such would be interesting) that, for 
an arcwise connected locally compact, metrizable group, the simple construction of 
Gleason semigroups shown in [14] can be carried out in such a way that one obtains 
a geometry over R+ (and hence an inner metric). 

In this paper the word "group" will mean a Hausdorff topological group, and e 
always denotes the identity. A subgroup of a group is assumed to have the subspace 
topology. By "topological isomorphism" we mean a group isomorphism that is 
also a homeomorphism. At present we are concerned mainly (not exclusively) 
with arcwise connected groups, and the relation between topological properties 
and geometric ones. Since our spaces are arcwise connected, we are interested in 
geometries over R+. While a number of our present results concern locally compact 
groups, one of our goals is to remove, to whatever extent possible, the assumption 
of local compactness. This effort is necessary even for a proper study of locally 
compact groups, since the universal covering group (see Theorem 1.5) of a locally 
compact group may not be locally compact. We are further motivated by the fact 
that infinite dimensional groups (particularly transformation groups) are often not 
locally compact. Local compactness is a convenient assumption because it provides 
an invariant measure, and therefore a way to do analysis. Our goal is to use direct 
geometric methods in more general situations. 

We begin Section 2 by introducing notions of "semidiscrete" and "hemidiscrete" 
groups (Definition 2.1), and define an arcwise connected group G to be a cover of 
an arcwise connected group G if G = G/H, for some closed, normal, semidiscrete 
subgroup H. Note that the quotient map ir: G -- G may not be locally injective 
(and so ir is not a covering map in the usual sense). We prove: 

Theorem 1.1. Let G be a complete arcwise connected topological group and H 
a closed, normal semidiscrete subgroup of G. Suppose X is a simply connected, 
arcwise connected and locally arcwise connected space. If f: X -> G/H is a 
(continuous) map such that f(xo) = e, then there is a unique (continuous) lift 
f: X -+ G such that f(xo) = e and iX o f = f, where v: G -+ G/H is the natural 
projection. 
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Corollary 1.2. If f is an arcwise connected, simply connected complete cover of a 
complete group G and ir G - G is the quotient mapping, then ker(7r) is naturally 
isomorphic to ir, (G). 

By 7ri(G) we mean, as usual, homotopy equivalence classes of loops based at 
e with the usual multiplication. Since left translation is a homeomorphism, the 
fundamental group is independent (up to isomorphism) of base point even if the 
group is not arcwise connected. 

Corollary 1.3. If G is a complete group with complete arcwise connected, locally 
arcwise connected, simply connected covers G1 and G2, then G1 is topologically 
isomorphic to G2. 

Corollary 1.4. Let G be a complete group with arcwise connected, locally arcwise 
connected, complete covers G1 and G2. If G1 is simply connected, then there exists 
a cover 7r: 1 - G2. 

Corollaries 1.3 and 1.4 justify referring to a simply connected arewise and locally 
arcwise connected group 0 that covers a group G as the universal cover of G. We 
don't know to what extent local arcwise connectedness is needed in the above 
corollaries. However, it should be pointed out that S1 is covered both by R (in 
the usual way) and by the solenoid E. Recall that E, which is connected but 
not arewise connected, is the inverse limit of circles, where the connecting maps 
are multiplication by 2; the projection of E onto any of the circles can easily be 
shown to have hemidiscrete kernel. This example also demonstrates one difficulty in 
showing, in general, the existence of a universal covering group for a given arcwise 
connected group: an inverse limit of groups in this category, even with discrete 
kernels of the connecting maps, need not be arcwise connected. 

In [13], Glushkov gives a construction of the universal covering of a connected, 
locally connected, locally compact group (this paper was apparently never trans- 
lated into English). Later, Lashof also gave a different construction of the universal 
covering group of a connected, locally compact (or more generally LP-group) in 
[20]. Glushkov constructed the Lie algebra for a locally compact group in [12] and 
Lashof used a different construction of a the same object in [20]. Glushkov proved 
that the universal cover is uniquely determined by the Lie algebra, and Lashof 
proved the universal cover is independent of the particular inverse limit used in 
his construction. We give a shorter, alternative to construction of the Glushkov- 
Lashof cover for arcwise connected, metrizable locally compact groups, obtaining 
the following theorem, which adds to the Glushkov-Lashof result that the kernel of 
the cover is hemidiscrete (rather than just totally disconnected) and also part (5) 
(which we will need later). See also Definition 2.1. 

Theorem 1.5. Let G be a locally compact, arewise connected, metrizable group. 
Then there exist 

1. a simply connected Lie group L (L is either trivial or non-compact), 
2. at most countably many simply connected, compact, simple Lie groups Gi, 
3. an at most countable product RW of the reals, 
4. an epimorphism 7r: G:L x G1 x.. XRW - G such that ker 7r is hemidiscrete, 

and 
5. the projection of ker 7r onto the factor RW is the lattice Z x 2 Z x 4 Z X 
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Note that Corollary 1.3 gives a different, and in some ways more satisfactory, 
uniqueness result than those of Glushkov and Lashof. 

Rickert ([25]) stated a path lifting lemma for locally compact groups, but his 
sketchy proof is partly incorrect. Rickert's result also cannot be applied to the 
simply connected cover of a locally compact group because (as is evident from 
Theorem 1.5) it may not be locally compact. It also turns out thal; [13] contains 
many of Rickert's (later) results, including the equivalence of arcwise connectedness 
and local connectedness for locally compact, connected groups. 

In Section 3 we give a purely algebraic description of the notion of invariant 
metric and invariant inner metric on a group, which leads naturally to the above 
definition of geometric group. As we have mentioned, an invariant inner metric 
is essentially a geometry over R+. An invariant metric is essentially the same as 
a geometry over R+, except that the semigroup condition (G5) is weakened to 
Us * Ut C U8,t (which corresponds to the triangle inequality). To demonstrate the 
usefulness of this perspective we give a very simple (compared to the elsewhere 
repeated argument found in [21]) proof that a first countable group is metrizable. 
Our algebraic description also allows for the easy introduction of a quotient metric 
(or inner metric), which has the following useful property: 

Proposition 1.6. Let G be a group with invariant metric (or inner metric), and 
H be a closed normal subgroup. If ir: G -- G/H is the quotient map, then 7r is a 
weak submetry with respect to the quotient metric (or inner metric) on G/H. 

The notions of weak submetry (resp. submetry) were introduced in [3]; they 
simply mean that any open (resp. closed) metric ball B(p, r) (resp. C(p, r)) is 
mapped precisely to B(7r(p), r) (resp. C(7r(p),r)). For example, a Riemannian 
submersion is a weak submetry, and it is possible to prove that, conversely, every 
weak submetry between Riemannian manifolds is a Riemannian submersion of class 
C1 (these are unpublished results of the first author). We show in the present paper 
(Proposition 3.4) that a weak submetry preserves a lower curvature bound. We 
immediately have: 

Corollary 1.7. If G is a group with invariant inner metric of curvature > k and H 
is a closed normal subgroup of G, then the quotient metric on G/H is an invariant 
inner metric of curvature > k. 

We will not specifically use the property of curvature > k in this paper, except 
in the proof of Proposition 3.4; for further information and definitions we refer to 
[23]. We point out here that if H is compact in Proposition 1.6, then 'r is in fact a 
submetry. Also, we can use essentially the same definition to define a more general 
quotient geometry, but we won't use this idea in the present paper. 

We give an application of Corollary 1.7 in Section 3: First we show that for 
a locally compact, arcwise connected, metrizable group G, there is a surjective 
homomorphism ir': L x G1 x ... xE -+ G, where E = RW when w is finite, E = 12 
is (the natural embedding of) separable Hilbert space in RW when w is infinite, 
and 7r' is the restriction of the map 7r from Theorem 1.5. We call ir' the metric 
restriction of 7r. We prove the following theorem, which strengthens, and simplifies 
the proof of, the main existence theorem of [23]: 

Theorem 1.8. Let G be an arcwise connected, first countable, locally compact 
group, and consider the metric restriction ir' : GM = L x G1 x ... xE -- G 
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of the universal cover ir: G. -* G. If the factors of GM are given appropriately se- 
lected Riemannian metrics and GM is given the product metric, the quotient metric 
on G = GM/ ker 7r' is compatible with the topology of G, and is an invariant inner 
metric of curvature > k. 

The relevant definitions may be found in Section 3. Note that the topology on 
GM is finer than the subspace topology induced by G because the inclusion E >-* RW 
is continuous, but if E is infinite dimensional, the inclusion is not a homeomorphism 
onto its image. Nonetheless the quotient topology on GM/ ker 7r' is the same as that 
of G. This is possible because the "fundamental domain" of the mapping ir' may 
have no interior. For example, in the special case of G = T? = S1 x S1 x * * *, the 
fundamental domain is the Hilbert cube in 12, and the mapping ir' :12 -* TX can be 
considered as identifying "opposite sides" of this (compact) domain. Note also that 
since the topology on GM is finer than the induced topology, ker 1r' = ker 7r n GM is 
totally disconnected. On the other hand, 12 is not topologically isomorphic to R? 
(for example, no finite metric ball in 12 contains a 1-parameter subgroup, whereas 
every basis element of RO? does). (Recall that Anderson and Bing proved that 12 
and R? are homeomorphic in [1].) Therefore, from Corollary 1.3 and the fact that 
a closed subgroup of a complete group is complete, we obtain the following: 

Proposition 1.9. The kernel of the natural mapping ir': 12 T? is complete 
and totally disconnected but not semidiscrete. 

Thus we see that merely having a totally disconnected kernel is not sufficient 
for a continuous homomorphism to have adequate covering properties. In the next 
paragraph we will see explicitly which curves cannot be lifted in 7r'; ker 7r' is only a 
special subgroup of r, (T?) explicitly described by the metric we have constructed. 

In a compact Riemannian manifold every free homotopy class of closed curves 
contains a shortest representative, and that representative is a closed geodesic (if we 
fix a base point, the same result holds, but the shortest element is only a geodesic 
loop, with a possible break at the base point). The proof is roughly this: Due to 
the local convexity of the space, one can always find a piecewise geodesic in every 
path homotopy class. In particular, we can find a rectifiable curve in the class, 
and so by using Ascoli's theorem (and the local convexity) we can find a shortest 
curve in the class. If we suppose this shortest curve is not a closed geodesic, we 
can use local convexity a third time to shorten it, and obtain a contradiction. A 
similar claim was made in [15] for compact inner metric spaces, but the statement 
given there is not true. In Section 4 we give a simple counterexample contained 
in the plane, in which a path homotopy class has a shortest element but does not 
contain a geodesic. More importantly, we show that similar behavior occurs in 
the infinite torus T?? = S1 x x ... with a product metric, and moreover there 
are path homotopy classes containing no rectifiable curves at all. We can now see 
explicitly why 7r' does not have good covering properties: with the metric induced 
by ir' (via Theorem 1.8), it is not possible to lift non-rectifiable curves to GM, so 
path homotopy classes without rectifiable curves are not represented in ker 7r'. We 
note here that the third author has shown ([27]) using Theorem 1.8 that given any 
locally compact, metrizable, arcwise connected group G and 1-parameter subgroup 
y, one can construct an invariant inner metric of curvature bounded below such 
that 7y is rectifiable. 

Our last result in this paper is the following: 
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Theorem 1.10. Let G be an arcwise connected, locally compact, metrizable group 
equipped with a metric of the form given by Theorem 1.8. Then every path homotopy 
class based at e contains a curve of the form c(t) = y(t)w(t) = w(t)-y(t), where -y(t) 
is a geodesic and w(t) is a 1-parameter subgroup (-y(t) or w(t) may be trivial). 

2. SIMPLY CONNECTED AND UNIVERSAL COVERING GROUPS 

A net in a topological space is a subset {xa}aEA indexed on some directed 
set A (i.e., a net is a kind of generalized sequence for spaces which do not have 
a countable basis). Convergence has essentially the same meaning for nets as it 
does for sequences. A net {xa}aEA in a topological group is Cauchy if for every 
neighborhood U of e there exists an a such that for all 3> a in A, x, E U. A 
topological group is complete if every Cauchy net is convergent. Locally compact 
groups and groups admitting a metrically complete invariant metric are complete; 
every invariant metric on a complete group must be (metrically) complete. Not 
every (non-abelian) topological group can be completed as a topological group (see 
[7] for more details). If G is a topological group and A is a directed indexing set, an 
ordered family {K, I}IEA of (closed) subgroups of G is a set of closed subgroups such 
that if a <3,, then K, C Kc. Associated with an ordered family {Kcj}aEA is an 

inverse system of maps G/Kc, a G/K,3. Recall that the inverse limit Wm G/Kc, is 
the subset of the product II GIK, consisting of those elements (g,Ka)aEA such 

aEA 

that g,K, = r,,fa(gaK,a); i.e., gag,g1 E K,. If each K, is normal, then lim GIK, 
has the structure of a group. There is a natural mapping g a-> (gK,) of G into 
lim G/KcI, which is a homomorphism if each Ka is normal. The natural mapping 
is injective if and only if n Ka = {e}. For example, if G has an ordered family 

0,EA 
{Ka } such that GIKa is discrete and n Ka. = {e}, then G embeds in the totally 

aEA 
disconnected product Hl GIKa, and so is itself totally disconnected. The following 

aEA 
lemma is proved in [7] for normal subgroups; the proof of the statement below can 
be found in [27]. 

Lemma 2.1. Let G be complete and {Ka}aEA be an ordered family of subgroups 
of G such that for every open U 9 e there exists an a such that K, C U. Then the 
natural mapping i: G -+ m G/Kc, is 1-1 and onto. Thus if each Ka is normal, i 
is a topological isomorphism. 

Definition 2.1. A complete topological group H is called semidiscrete (resp. hemi- 
discrete) if every neighborhood of e in H contains an open (resp. open normal) 
subgroup. 

Clearly any discrete group is hemidiscrete, and the notions of hemidiscrete and 
semidiscrete are equivalent for abelian groups. Recall that an open subgroup of a 
topological group is automatically closed (cf. [24], p. 102). If K is an open (and 
hence closed) subgroup of a topological group H, then H/K is discrete. By the 
above comments we now immediately have: 

Lemma 2.2. A group G is semidiscrete (resp. hemidiscrete) if and only if it is 
the inverse limit of discrete G-spaces (resp. groups). 

Recall that a space X is a G-space if G acts transitively on X. If H is semidis- 
crete, then by Lemma 2.2, H can be written as an inverse limit of discrete spaces 
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and is therefore totally disconnected. Proposition 1.9 shows that the converse state- 
ment is false. On the other hand, it follows from results in [24], p. 131 that a locally 
compact totally disconnected group must be semidiscrete. The proof of the next 
lemma is easy. 

Lemma 2.3. Let G be a group. 

1. If G is semidiscrete (resp. hemidiscrete), then any closed subgroup of G is 
semidiscrete (resp. hemidiscrete). 

2. If G is semidiscrete (resp. hemidiscrete) and H is a closed normal subgroup 
of G, then G/H is semidiscrete (resp. hemidiscrete). 

3. If G is the direct product (possibly infinite) or inverse limit of semidiscrete 
(resp. hemidiscrete) groups, then G is semidiscrete (resp. hemidiscrete). 

Proposition 2.4. Suppose G is a complete group, H is a closed, central subgroup 
of G, and both H and G/H are hemidiscrete. Then G is semidiscrete. 

Proof. Let U be an open neighborhood of e in G. Since H is hemidiscrete, there is 
an open set V contained in U such that V n H is an open normal subgroup N of 
H. Since H is central, N is also normal in G. By the Third Isomorphism Theorem, 
the kernel of the natural map 7r: G/N -- G/H is isomorphic to H/N, which is a 
discrete group. Thus 7r is a local isomorphism. Since G/N is locally isomorphic to 
the hemidiscrete group G/H, G/N is semidiscrete. The proof is now complete by 
Lemmas 2.1 and 2.3. U 

Example 2.1. Let H = Z/(2) x Z/(2) x ... and G be the semidirect product of 
H by Z, with multiplication given by 

(m, (ai))(n, (bi)) = (m + n, (ai+n + bi)). 

That is, Z acts on H by translating the coordinates of each element. Then it is not 
hard to show that if h := (n, (bi)) E G is non-trivial such that bk = 0 for some k, 
then there exists a g E G such that (s, (ci)) := g-lhg satisfies Ck $ 0. It follows 
that any nontrivial subgroup of H that is normal in G must equal H. So even 
though H and G/K Z are hemidiscrete, G is not. 

Lemma 2.5. If H is a totally disconnected normal subgroup of an arcwise con- 
nected group G, then H is central. 

Proof. Let h E H and let g E G. We need to show that g-lhg = h. Since G 
is arcwise connected there is an arc 'y from e to g. Let a be the arc given by 
ao(t) = (-y(t41h-y(t). Then a is an arc from e to g-'hg that stays in H. But H 
being totally disconnected can contain no nontrivial arcs. Hence a must be the arc 
that is constantly h and we obtain that g-1hg = h. U 

Corollary 2.6. Any semidiscrete subgroup of an arcwise connected group is central 
and hemidiscrete. 

Proposition 2.7. Let A, B, C be complete arcwise connected groups and suppose 
that there are covers 71 : A -- B and 1r2: B -- C. Then 1r2 0irl A - C is a cover. 

Proof. By Corollary 2.6 ker 7ri is central and hemidiscrete for i = 1, 2. The proof is 
now complete by letting G = ker(7r2 o 7r), H = ker 7r, and K = ker 7r2 in Proposition 

2.4, and using Corollary 2.6. P 
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A closed, semidiscrete subgroup H of a Lie group G, being totally disconnected, 
is in fact discrete. This means that the quotient map G -* G/H is a covering map. 
Theorem 1.1 is a generalization of this fact. 

Proof of Theorem 1.1. By Corollary 2.6, H is hemidiscrete and central, and we can 
take open normal subgroups {Kc, } of H, which constitute a basis for the topology 
of H at e. By Lemma 2.1, H = 1mH/K,; each H/Ku is a discrete group. Since 
H is central, each KI$ is central, and hence normal in both H and G. There is a 
natural topological isomorphism, 0,: G/H -+ Q, := (G/IK)/(H/Kc,). Now let 
f,, = o, O f: X -- Q,. Since the natural miap q : G/K,J -* Qe, has discrete 
kernel, it is a covering map (cf. [24], p. 360). Since X is simply connected, arcwise 
connected and locally arcwise connected, f,e has a unique lift fa: X -- G/K, such 
that fc (xo) = K, and q, o f, = fcg. (For details on lifting maps to covers, see [22], 
Lemma 14.2.) 

Let f: X-- fJ G/Ka be defined by f(x) = (f, (X))e,EA. We first claim that 

or,a 0 f, = fc, where ra: G/K3 -* G/K,, a < 3, is the natural map. By 
uniqueness we need to show that q o 7ra,z, o f3 = fc. If f(x) = gH, then f,3(x) = 

{gK,} (equivalence class modH) and f,3(x) = g3Kp, with gplg E H. Now q, o 

1rc.' 0 fos(x) = qc(g0Kc,) = {g0Kc} = fc,(x) (since g9'g E H), and the claim is 

proved. An immediate consequence of the claim is that f(x) E l G/Ka; i.e., we 
have in fact defined a mapping f X -* m G/K,K, which is isomorphic to G, by 
Lemma 2.1. 

We next claim that ir o f = f. As in the previous paragraph, we have, for 
x E G, f(x) = gH and f(x) = (g,,Kc)aEA, where g,-'g E H for all a. Since 
f(x) E G = limG/KG, we can also write f(x) = g' = (g'K,),A; i.e., for all a, 
g, 19 E K,, C H; whence g-1g' E H, and the claim follows. 

The continuity of f and the fact that f(xo) = e are immediate from the definition. 
Uniqueness follows from the total disconnectedness of H. We proceed as in [25]. 
If g is another lift, let Z = {(g(x))-1(f(x)) x E X}. Since 7r(g(x)) = 7r(f(x)), 
Z C H. But Z is connected, so Z = {e}. E 

Proof of Corollary 1.2. We define a map r : iri(G) kerwr in the usual way: 
4([oa]) = &(1) where & is the lift of a : [0, 1] -* G (a(0) = a(1) = e) starting 
at e. It is trivial to verify that 4 is well-defined and injective. To see that 4 is a 
homomorphism, recall that, if * denotes concatenation, [a * ,3] = [a,3]. Let &, 3, a,3 
be the lifts of a, 3, and the product a/3, to G at e. Then 7r( a/3(t)(,3(t)->1(t)-1)) = 
a (t),/3(t)/3 (t) a (t)1 = e for all t. Hence the entire path a/,3(t)(i3(t)1a(t)-1) lies in 

ker 7r. Since ker 7r is totally disconnected, a/3(t) (/3(t) - 1(t) -1) = e for all t. Finally, 
it is immediate from the fact that G is arcwise connected that 4 is surjective. U 

Proof of Corollary 1.3. By applying Theorem 1.1 to the quotients ir : -j ) G 
and 7r2: G2 -- G we easily see that the lifts Pi G1 -- G2 and P2 : G2 - 61I 
respectively are continuous, surjective maps, and pj1 = P2; i.e., P1 is a homeomor- 
phism. We need to see that P1 is a homomorphism. Let g, h E G1 and consider 
the product x = pi(gh)pl(h)-'pi(g)-1 E G2. Then 7r2(X) = e, so x E ker 7r2. The 
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map r1: G1 x G, -4 G2 defined by rl((g,h) = pi(gh)pl(h)-'pi(g)1 is a continu- 
ous map from the connected space G1 x G1 into a connected subset of the totally 
disconnected subgroup ker 7r2. Since rq((e, e)) = e, P1 must be a homomorphism. U 

Proof of Corollary 1.4. Let 7ri: di - G be the given covers for i = 1, 2. Again 
we apply Theorem 1.1 and lift 7r, to a map 7r: di - G2, which as in the above 
proof is a continuous surjective homomorphism. Since 7r1 = 7r2 o ir, ker 7r is a closed 
subgroup of ker 7r1 and so is semidiscrete. U 

We now begin the construction of the simply connected cover of a locally com- 
pact, arcwise connected, metric group. 

Lemma 2.8. Let G1 and G2 be compact connected Lie groups and p: G2 -G 
be an epimorphism. Let G1 and G2 be the universal covering groups of G1, G2, 
respectively. Then G1 = S1 x ... x Sm x Rk and G2 = S1 x ... x Sn x RI, where each 
Si is a (compact) simple, simply connected Lie group, m < n and k < 1. There is 
a commutative diagram of epimorphisms 

qlI q2J 

G1 G2 

where qi is the covering map, and 1p is the natural projection of the product. 

Proof. Let p5 denote the unique lift to C1 of the map p o q2 such that jp(e) = e 
and the diagram commutes. Then jp is an epimorphism. In fact, for any a, b E G2, 
g = 15(ab)15(b)-1j(a)-1 lies in kerql, which is discrete. For any curves a(t), b(t) 
joining e to a and b, the curve g(t) = p(a(t)b(t))p(b(t))-1T(a(t))-1 joins e to g(1) 
in ker ql, hence g = g(1) = e, and it follows that j5 is a homomorphism. For any 
x E G1, we can connect x to e by a curve, project the curve to a curve y in G1. 
Since p is a fibration ([26]), we can lift a (perhaps not uniquely!) to G2, then lift it 
again to a curve a connecting e to some point y E G2. Since p o a must also be a 
lift of q, oay, it follows from uniqueness that p(y) = x. 

It is well-known that G1 and G2 are of the form G1 = SI x ... x Sm x Rk and 
G2 = S1 x * x Sn x R', where each Si, Si' is a (compact) simple, simply connected Lie 
group, and this decomposition is unique. (See, for example, [16], section II.6, and 
use the fact that a Lie algebra determines a unique simply connected (connected) Lie 
group.) Since the Euclidean factor Ri in each case is the identity component of the 
center, it follows that j5(Rt) c Rk. Likewise, if L1 := S1 x ... x Sm, L2 = S' X * x SnX 
the compactness of L2 implies that the projection of p(L2) onto the Rk factor must 
be trivial; i.e. P(L2) C L1. It follows that if PR: R k and PL: L2 -' L 
are the restrictions of p to the two factors, then p5 = PR X PL. By rewriting the 
product, if necessary, we can take PR to be the natural projection. (In fact, kerpR is 
connected by the homotopy sequence for the fibration (cf. [26]), and closed, so must 
be a Euclidean subgroup.) Now let 12 be the Lie algebra of L2. First note that we 
may write 12 = ker dpL P where P = (ker dpL)L is the ideal of elements orthogonal 
to ker dpL with respect to the Killing form (see [16], Proposition 6.1). But 12 is 
uniquely represented as s1 E *... ED sn where si is the Lie algebra of S' and Corollary 
6.3 of [16] implies that P = s8(1) ED ... E (k) and kerdpL = S8(k+l) E ... ED Sa(n) 

where a is some permutation of the numbers 1, . . . , n. Let 11 be the Lie algebra 
of L1. Then 1l = dpL(12) = 12/kerdpL = P = So(1) ED ... SE(k) and dpL is the 
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projection of the direct sum s1 ED ... ED Sn onto S.(i) E *... * , (k) . It follows now from 
uniqueness for simply connected Lie groups that m = k and that Si = S' (0f(i)) for 
i = 1,.. . ., k and some permutation r of {J(1), .. ., oa(k)}. Uniqueness also implies 
that PL is the projection of S' x * x Sn onto S' (a(1)) X ... X SI (a(k)) * 

Theorem 2.9. Let G be a compact, first countable, arcwise connected group. Then 
there is a commutative diagram 

G ;1G2 023.G Pi,i i 
ql 1 q2 1 . qi iq1 

Pl G2 P2,3 Pi-i a P' i+ 

where each G, is a compact Lie group, G, is its universal cover, qi is the covering 
map, kerpi-,i is connected, and 

1. G S1 x S2 x ... x R x R x** , where each Si is a compact, simply connected 
simple Lie group, R is the real line, and either product, or both, may be 
infinite, 

2. q is a continuous epimorphism, and ker q = Wmker qj = limr 7(G,) = x1 (G), 
where the first equality is a topological isomorphism, and ker q is hemidiscrete. 

Proof. The bottom line of the diagram follows from [4], where in fact this was proved 
for connected, locally connected groups (which is equivalent to arcwise connected- 
ness for locally compact groups). (Except for the connectedness of kerpi-,i-which 
is vital for our proof-the bottom line follows from the classical theory of com- 
pact groups.) The top line and part (1) are now a direct consequence of Lemma 
2.8. The mapping q is defined by q((9,92, )) = (ql&(1),q2&(2) ...), E Gdi 
Clearly q is a homomorphism. To prove surjectivity, let (g,... .) E ln Gi = G, gi E 

Gi. Pick gl E qj '(gi). Now suppose we have chosen gn E q;-(gn) such that 
Pn-1,n(0n) = 9n-1 for all n < i. Since the fiber of Pi,i+l is connected, it fol- 
lows from the homotopy exact sequence for the fibration that the induced map 
-x (Gi+,) )-- -rx(Gi), and hence the restriction of PF,i+l to kerqi+1 = 7r,(Gi+i), 
is surjective. Now let hil E qi-+'1(gi+i). Then k = gipi,i+1(hi+L)- E kerqi, 
so there exists a k' E kerqi+1 such that ji,if+(k') = k. Letting 9i+i = klhi+i 
it is easy to verify that Fi,i+1(?i+1) = 9i and qi+1(9i+j) = gi+,. By induction, 

we then find (g1,...) E G such that q((gl,...)) = (gi,...). It is also immedi- 
ate that kerq = bMkerqj = liirmi(Gi). There the first equality means that they 
are in fact one and the same subgroup of imiG; i.e. they are topologically iso- 
morphic. The last isomorphism lim7r,(Gi) = xIr(G) follows from the homotopy 
exact sequence for the inverse limit. In fact, we have the short exact sequence 
0 lim- 7r2(Gi) -- 7ri(G) -- 1i7r(Gi) -O 0 (cf. [8], p. 249), and since 7r2(Gi) = 0 
([17], p. 93), the desired isomorphism is obtained. (We will not explain the term 

m_ir2(Gi) here, but the unfamiliar reader should find it reasonable that it van- 
ishes, whatever it is, if every ir2(Gi) vanishes). 

The epimorphism q is continuous because of the definition of inverse limit; hence 
ker q is complete as a closed subgroup of the complete group G = m Gi. Therefore 
ker q = l ker qi is hemidiscrete. P 

Proof of Theorem 1.5. Suppose first that G is compact. Parts (1)-(4) are immedi- 
ate from Theorem 2.9. Let Z be the projection of ker q onto the factor RW. Since 
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the remaining factor of this product is compact, the projection onto RW is closed, so 
Z is a closed, totally disconnected subgroup of RW. By [9] there exists a topological 
isomorphism 4: RW - RI such that +(Z) = Z x x2Z X X. We extend b to be the 
identity on the remaining factors of G, and define the new mapping 7r: G -- G by 
tr = q o 4-1. It is easy to see that 7r has the desired property (5). 

A simple but apparently rarely stated consequence of the Gleason-Iwasawa- 
Yamabe theory of locally compact groups is that every connected locally compact 
group is covered (in the usual sense) by a product of a compact group and a Lie 
group (cf. [6], and Theorem 6, [13]). Thus the proof of the theorem is now finished 
by Proposition 2.7. U 

3. INVARIANT METRICS 

It is well known (cf. [21]) that a topological group G admits a left-invariant 
metric (with the same topology) if and only if G is (Hausdorff and) first countable. 
If d is such a metric on G, then the family {Us} of all metric balls in (G, d) of 
positive radius s centered at e E G has the following properties for all s, t E R: 

MI: Us is an open neighborhood of e, 
M2: n Us = {e}, 

sER+ 
M3: U U8 = G, 

sER+ 
M4: Us is symmetric (i.e., Us-l = Us), and 
M5: U8 * Ut C U8+t. 
Then d is determined uniquely by the formula 

(3.1) d(g, h) = inf{s > 0: h'lg E Us}. 

Conversely, if any family of sets {Us} has properties M1-M5, then formula 3.1 
defines an invariant metric d on G such that U8 is the metric ball of radius s centered 
at e. If the sets {Us} form a basis for the topology of G at e, then the topology of d 
agrees with the topology of G. Note that we allow U8 to be defined for all positive 
s even if the diameter of G is finite. 

We now argue the existence of a left invariant metric for a first countable group 
G. First, there exists a family {Us}, with s = 2' (n = 0, 1,...) satisfying M1-M4 
having the property that if SI+ *+?Sk < s, then U8l *I.Usk c Us. To see this, let {V8}, 
s = 2', n = 0, 1, ..., be a family of neighborhoods of G such thatn vf = {e}and 
V1 = G. We will construct the family {Us} by induction in n. Let U1 = V1 = G. 
Then {U1} clearly has all the desired properties except M2. Now suppose we have 
constructed a family {Us}, with s = 1, . .. , 2-n having all the desired properties 
except M2, and such that U8 C V8. Choose a symmetric Us/2 C V8/2 such that 
(US/2)2 C U8. Consider a sum si +... + sj + 2-n-1 +... + 2-n-1 < so, where 

Si E {1, ... , 2-n} for i E 0, 1,.. ., j and there are m terms 2 I1. (We can assume 
so 7& 2-n-1 because in that case the sum has one term and the argument is trivial.) 
Note that if m' is the smallest even integer > m, then s, + *+ sj + m'2-n-1 < so 
(since so > 2-n-1). We now have that 

us, ... U8j * (U2--1)n C US, ... Usj * (U2-n-1, 

C U81 ... U8j (U2-n)m'/2 c Uso8 
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by the induction hypothesis. Since every Us C Vs, M2 holds for the entire collection. 
To complete the construction of the family {Us} for s E R+, let U. = U Us, ... Usm I 
where the union is over all products U., ... U,, such that sj E {1, 1/2,... } and 
51 + * * * + Sk < s. If we now let U. = U1 = G for all s > 1, it is now straightforward 
to verify M5. 

Definition 3.1. Let G be a group. A family {Us} of sets satisfying conditions 
M1-M5 is called a metric family. The metric obtained from the formula 3.1 will be 
referred to as the associated metric. Given an invariant metric d oni G, the family 
{U.} of metric balls will be referred to as the metric family of d. 

Recall that a space (X, d) is called an inner metric space if for all x, y E X, 
d(x, y) = inf{l(c)}, where c is a curve in X joining x and y, and l(c) is the length of 
c. Inner metrics are the basis for most of metric geometry, including the geometry 
of Riemannian manifolds. If d is a complete metric, then d is an inner metric if and 
only if for each x, y E X and e > 0 there exists z E X such that d(x, z) + d(z, y) - 

d(x, y) < c, and Id(x, z) - d(x, y)/21 < e. More strongly, if we can always find a 
midpoint m between x and y (that is, d(x, m) = d(y,m) = -d(x, y)), then any pair 
of points can be joined by a minimal curve in X (i.e., a curve whose length actually 
realizes the distance). 

Proposition 3.1. Let G be a group with complete invariant metric d. Then d is 
an inner metric if and only if the associated family {Us} of d is a geometry over 
R+. If the geometry {Us } is strong, then every pair of points in G can be joined by 
a minimal curve in G. 

Proof. Suppose d is an inner metric; then we need only show that U,+t C Us Ut. 
Suppose x E U,+t; suppose s + t - d(e, x) = e > 0. Let c be a curve from e to 
x of length L < d(e, x) + e/2, and y be on c such that d(e, y) = t - e/2. Then 
d(y, x) + d(e, y) < L < d(e, x) + e/2 = s + t - e/2, so d(e, y-lx) = d(y, x) < s; that 
is, y-lx E Us, y E Ut, and yy-1x = x. 

To prove the converse, given c > 0 and x E G and letting s = d(e, x), we need 
to find y such that d(e, y) + d(y, x) - s < c, and Id(e, y) - s/21 < c. Note that 
x E Us+ = (Us/2+e/2)2. That is, there exist y, z e U1/2+,/2 such that yz = x. But 
then d(e, y) + d(y, x) < s/2 + e/2 + d(e, z) <s + c. We also have d(e, y) < s/2 + e/2 
and d(e, y) > d(e, x) - d(e, z) > s - s/2 - e/2 = s/2 - e/2. 

For the last statement, note that if the geometry is strong, then mnodifying the 
above argument allows us to always find a midpoint between e and x. U 

Note that in the above proof, completeness is only used in the second half (see 
the comments preceding Proposition 3.1). 

Definition 3.2. Let G be a group and {Us} be a metric (resp. inner metric) 
family on G, and let H be a closed, normal subgroup of G. If ir: G -* G/H is the 
quotient map, the set {V.}, where V. = 7r(U.) is called the quotient metric (resp. 
inner metric) family on the group G/H. 

It is trivial to verify that the quotient metric (resp. inner metric) family indeed 
satisfies M1-M5 (resp. G1-G5). 

Proof of Proposition 1.6. For any s > 0, x E G, 

7r(B(x, s)) = 7r(xU,) = r({xy: y E Us}) = {7r(xy): y E Us} = {7r(x)7r(y): y E Us} 
= {7r(x)z: z E Vs} = 7r(x) V. = B(7r(x), s). P 
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Proof of Theorem 1.8. We first claim that 7r' is surjective. Let x E G = 7r(a), where 
a = (xl,...,y1,...), with xl E L, xi E Gi-1 (i > 2) and (yi,...) E RW. We will 
use the usual product notation in the factors L x G1 x * * *, and addition notation in 
RW. Let y' = yi- 2-i[2iyi], where [y] is the greatest integer < y (e.g. if yi > 0, then 
y' is the "remainder" beyond the largest multiple of 2 < Yi). Then 0 < y' < 2'. 
Since the projection of ker 7r onto I' is Z x 2 Z x *.* , we can find w E keri7r of the 
form (wl,. . . y, --y'). But the element a' = (xlwi71, .. .y,.. ) E L x G1 x * x E 
has the property that a'-la = (Wi,... ,y - y') e ker 7r, so r(a') = 7r(a) = x. 

Provide L with a left invariant Riemannian metric, each Gi with a bi-invariant 
Riemannian metric so that the Z 6(Gi)2 < 00 (where 6(Gi) denotes the diameter 
of Gi), and E with the usual Hilbert space metric. Then the product metric on 
GM := L x G1 x ... x E is an inner metric of curvature > min{O, k}, where k 
is a lower sectional curvature bound for L (cf. [23]). (The product metric on a 
countable product HJ(Xi, di) of metric spaces having square summable diameters 
is given by d((x1....), (yl,...)) = Z/di(xi,yi)2.) We claim that the inclusion 
GM + G is continuous with respect to the metric topology on GM and the product 
topology on G. Let 

U = UU x ... x Un x Gn+i x ... x I1 x ... x Im x R x ... 

be a basis element at e in the topology of G. Let E > 0 be small enough that if 
Bi = Bi(e, E) denotes the metric ball in Gi centered at e of radius E, then Bi C Ui 
for all 1 < i < n and (-c, e) c I for all 1 < j < m. Since the projection onto any 
factor is distance non-increasing (with the product metric), we see that the metric 
ball B = B(e, e) in GM satisfies 

BcBl x xBn xGn+l x x ( -,)x .x(-,) xRx . cU. 

Since the inclusion GM -* G is continuous, we see that ker 7r' = ker 7r n GM is 
closed in GM. Note also that, as pointed out in the proof of Theorem 2.9, ker 7r is 
central in G, so ker xr' is central, and hence normal, in GM. 

Let G' := GM/ ker 7r' have the quotient metric (see Proposition 1.6). To conclude 
the proof we need to show that G' is topologically isomorphic to G. Consider the 
natural homomorphism q : G' -- G given by q(g ker 7r') = g ker 7r. We have already 
seen that q is surjective, and clearly q is also injective. A set in G (resp. G') is 
open if and only if its pre-image in G (resp. GM) is open. Thus it is immediate 
from the continuity of the inclusion GM e * G that X is continuous. Now consider 

B(e, e) c G'. Choose n large enough that E 6(Gi)2 < E2/3 and m large enough 
i=n+l 

that 2-m <E 2/3. Now let 7 = and consider the basis element 
3(m +n) 

Vt = Bl(e,77) x ... x Bn(er77) x Gn+l x ... x (- 7R7, ) x .. x (-71, 71) x R x ... 

where there are m copies of (-77,77). Then for any x E 7rM, 
00 00 

d(x,e)2 < n772+ E 6(Gi)2 +M7n2 + E 2-i < E2 

i=n+l i=m+l 

so 7r(V) C B(e, E). This proves that q is open, and completes the proof of the 
theorem. U 
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Restricting to GM is necessary to induce any kind of invariant inner metric R 
on G, as we will now show. The proof of the next lemma is trivial (the geometry 
forms the desired basis). Still, this formulation seems to be useful. Note that any 
locally compact group satisfies the conclusion of the lemma. 

Lemma 3.2. Let G be a group with having a geometry {Ur} over R+. Then there 
exists a basis B for the topology of G at the identity such that for every U, V E B 
there exists an n such that Un D V. 

Proposition 3.3. The group R? does not admit an invariant inner metric. 

Proof. Suppose, to the contrary, that 13 is a basis satisfying the conclusion of 
Lemma 3.2. Any open set in R? (hence any U E B) contains the set Cm - 

{(O) ... )0Xm+l1Xm+2)...): Xk E R, k > m} for large enough m. Let I be a 
bounded open interval in R. Then the open set V := 1m+1 x R x *.. has the 
property that Vn does not contain cm, and hence U, for any n. The same holds 
for any element of B contained contained in V, a contradiction. U 

Note that R? is arcwise and locally arcwise connected, and metrizable. We can 
ask: does every group satisfying the previous three conditions and the conclusion 
to Lemma 3.2 admit a geometry over R+? 

Proposition 3.4. Let X, Y be (not necessarily inner) metric spaces and suppose 
q : X -- Y is a weak submetry. If X has curvature > k for some k, then Y has 
curvature > k. 

Proof. First observe that q has the following two properties: (1) it is distance non- 
increasing and (2) for any points x, y E Y and x' E X such that O(x') = x, there is 
a point y' E X such that q(y') = y and d(x', y') is arbitrarily close to d(x, y). Let 
q E Y be arbitrary. Since X has curvature > k, then by definition ([2]) for any p E 
X, in particular for p e +-l (q), there exists an open set U such that if a, b, c, d E U, 
axk(a; b, c)?+ak(a; b, d)?+ak(a; c, d) < 2ix, where akk(X; y, z) denotes the representative 
angle in Sk of the triple (x; y, z). We can assume, without loss of generality, that U 
is an open metric ball Bx(p, r). Let V = By(q, r/3). Suppose that x, y, z, w E V. 
By the above two properties we can find first a point x' e Bx (p, r/3) such that 
+(x') = x, then points y', z', w' e U such that d(x', v') is arbitrarily close to d(x, v) 
and q(v') = v, where v = y, z, w. Now akk(X'; y', z') +?ak(X'; y', w') +?ak(XI; z', w') < 
2ir and since q is distance non-increasing, d(y', z') ? d(y, z), d(y', w') > d(y, w), 
and d(z', w') > d(z, w). Recall that the function ok (X; y, z), is monotone increasing 
as a function of d(y, z) (fixing the other two distances), and is continuous in x, y, z, 
and k. It now follows that oak(X; y, z) + ack(x; y, w) + ak(x; z, w) < 2ir + e for any 

> 0. > 

Note that in the above proof it is clear that if X has globally curvature > k (i.e. 
U = Y in the above notation), then Y also has globally curvature > k. 

4. GEODESICS AND THE FUNDAMENTAL GROUP 

We first construct a simple example of an inner metric space and a curve having 
no geodesic in some (free or based) path homotopy class. Begin with the unit 
upper half circle C in the plane; let s(0) = (cos0ir,sin07r). Join s(0) and s(1) by 
a segment in the plane. Now join s(O) and s(1/2) by a segment, and s(1/2) and 
s(1) by a segment. Next join s(O) to s(1/4), s(1/4) to s(1/2), s(1/2) to s(3/4), and 
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so on. In the end we have constucted a set S by adding infinitely many segments 
to C, and between any two points on C there are two points joined by a segment. 
We take S with the induced inner metric (that is, the distance between any two 
points is the length of the shortest path joining them). Clearly C is not a geodesic; 
a shorter path between any two points on C can always be found by moving along 
a segment instead. On the other hand, shortening C always involves changing the 
homotopy class; hence C has no shorter curve in its homotopy class. Note that 
this example is compact and finite dimensional but does not have a lower curvature 
bound (geodesics bifurcate). 

We now show that similar behavior occurs in T?? = Si with the product 
metric, where the Si have square summable diameters. Let -yi be one of the 
two unit parameterized geodesics in Si such that -yi(O) = e, and define 'y(t) = 
(-yl (t),vy2(2t),...) E T`?. Note that 'y is a 1-parameter subgroup whose image 
in T? is a topologically a circle, but -y is not a geodesic. To see this, note that 
for any t, if 2' < t, then -yi: [0, t] -+ Si is a curve whose length exceeds the 
diameter of Si. We can therefore find a shorter minimal curve ai: [0, t] -Si 
joining -yi(O) and -yi(t), which extends to a geodesic also denoted by ai. But 
then -y'(t) = (-y7(t)......yi1(2'- t),ai (t)Iyi+l(2i+lt)I...) is shorter than -y be- 
tween zy(O) and -y(t). From [23] we know that any unit geodesic /3 in T? is of the 
form (,31(kit), 32(k2t),...), where each ,3i is a unit geodesic in Si, E ki = 1, and 
dia,mS > 6 for some fixed 6 > 0. If ,3 is a geodesic loop and 7ri: T? -+ Si is the 
projection, then f3i = 7ri (,3) is a loop in Si, so, letting pi denote 7ri restricted to ,3, 
we can consider pi as a mapping from S1 onto Sl, whose degree is easily seen to be 

k;i which is bounded above by 1. In other words, the components of a geodesic diamSi' wod,tecmoet fagoei 
loop have bounded degree. A similar argument shows that the degree of qi =7ri iy 
tends to infinity as i becomes large. If H were a homotopy between ^y and f3, then 
7ri o H would give rise to a homotopy between pi and qi, which is a contradiction 
for large i. In a similar way, 'y is not null-homotopic; i.e., 'y represents a non-trivial 
homotopy class which contains no geodesic. 

We make the following additional observations, whose proofs can be found in 
[27]. 

1. Every path homotopy class based at e in T?contains a unique 1-parameter 
subgroup. 

2. There are path homotopy classes containing no rectifiable curves. 
3. The unique 1-parameter subgroup in a homotopy class in T?is the shortest 

path in the class if the class contains any rectifiable curve. 
4. Even if it is rectifiable, the unique 1-parameter subgroup in any homotopy 

class T?may not be a geodesic. In this case there are rectifiable (and hence 
shortest) curves in the class, but no geodesics. 

5. In general, even for compact Lie groups (e.g. S0(3)), there may not be a 
unique 1-parameter subgroup in a given path homotopy class. 

Note that in the universal covering group G (Theorem 1.5) of a compact, metriz- 
able, arcwise connected group G, the factor L is trivial. Since each compact Lie 
group has the property that every point lies on a 1-parameter subgroup, the same 
is true of G, and so every homotopy class based at e in G contains a (possibly non- 
rectifiable in a given metric) 1-parameter subgroup. This fact was also shown earlier 
by Rickert in [25]. Such a statement is false even for non-compact Lie groups, but 
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given a left-invariant Riemannian metric we can find (by passing to the universal 
cover) a geodesic in any homotopy class. 

Proof of Theorem 1.10. Let G = L x G1 x ... x RI be the universal covering group 
of G and 7r be the projection map. Let n represent some homotopy class based at 
e. Lift ,. to a curve i in G based at e ending at a point a. We can join e to a by a 
curve a which is a product c(t) = (f(t), &(t)) = (f(t), e)(e, &(t)) = (e, (t)) ffit), e) 
where y is a geodesic in the factor L (with the given Riemannian metric from 
Theorem 1.8) and & is a 1-parameter subgroup in the factor G1 x ... x R"'. Now 
c(t) := 7r((t)) = y(t)w(t) = w(t)y(t), where -y(t) = i(y(t), e) and w(t) = ir(e, &(t)), 
and c(t) lies in the same homotopy class as ii. Since w(t) is trivially a 1-parameter 
subgroup, we need only show that -y(t) is a geodesic. We can consider y = f(, e) as 
a curve in GM = L x G1 x ... x 12. Note that -y is a geodesic in GM with any other 
choice of metric on G1 x ... x 12, and 7r'(7) =7r(ff, e)) = y. We now factor the 
mapping 7r' in the following way. Recall that G was constructed by first covering 
G (in the usual sense-with discrete kernel) by the product group L x K, where K 
is a compact group, then by covering K with the product G1 x ... x RI. Thus we 
have 7r' = 7r2 ? ir, where r2: L x K- G has discrete kernel and 7rw: GM -) L x K 
is of the form I x 7r", where I: L -* L is the identity map and 7r": G1 x ... x 12 iS 

the restriction of the covering map for K. We put bi-invariant Riemannian metrics 
on the Gi having square summable diameters and a Euclidean metric on 12, and 
take the product metric on GM. Let L x K have the quotient geometry induced by 
7r,. We claim that 3 := 7ri () is a geodesic in L x K. Since the metric is invariant, 
we need only check that /3 has a minimal segment about e = /3(0). Suppose that 
no segment /3t of /3 from ,3(-t) to /3(t) is minimal. Let It (,3) denote the length of 
/3t. Then for all t, d(/3(-t),,3(t)) < It(,3) < 2t (the last inequality is because -K, 
is distance non-increasing). Because i7r is a weak submetry we can find a point 
xt E G x H such that d(xt,7(-t)) < 2t and 1r(xt) = 3(t). However, ker7ri is 
contained in the slice e x G1 x ... x 12, so the projection Yt of xt onto L must be 
;7(t). For small enough t, 

2t > d(xt,;7(-t)) ? d(yt7/(-t)) = d(%7(-t)7;y(t)) = 2t, 

a contradiction. (Here the second inequality is a property of the product metric 
and the second equality is because -7 is a geodesic). 

To finish the proof of the theorem, note that the quotient geometry on G induced 
from L x K by 1r2 is the same as the original geometry on G. Since ker r2 is discrete, 
1T2 is a local isometry, and -y = -7r2([) is a geodesic. a 
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