Geometry and Group Theory

ABSTRACT

In this course, we develop the basic notions of Manifolds and Geometry, with applications
in physics, and also we develop the basic notions of the theory of Lie Groups, and their

applications in physics.
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The material in this course is intended to be more or less self contained. However, here
is a list of some books and other reference sources that may be helpful for some parts of

the course:

1. J.G. Hocking and G.S. Young, Topology, (Addison-Wesley, 1961). This is a very
mathematical book on topological spaces, point-set topology, and some more advanced

topics in algebraic topology. (Not for the faint-hearted!)

2. T. Eguchi, P.B. Gilkey and A.J. Hanson. Gravitation, Gauge Theories and Differen-
tial Geometry, Physics Reports, 66, 213 (1980). This is a very readable exposition of
the basic ideas, aimed at physicists. Some portions of this course are based fairly ex-
tensively on this article. It also has the merit that it is freely available for downloading
from the web, as a PDF file. Go to http://www.slac.stanford.edu/spires/hep/, type

“find a gilkey and a hanson”, and follow the link to Science Direct for this article.

3. H. Georgi, Lie Algebras and Particle Physics, Perseus Books Group; 2nd edition
(September 1, 1999). This is quite a useful introduction to some of the basics of Lie
algebras and Lie groups, written by a physicist for physicists. It is a bit idiosyncratic

in its coverage, but what it does cover is explained reasonably well.

4. R. Gilmore, Lie Groups Lie Algebras and Some of Their Applications, John Wiley &
Sons, Inc (1974). A more complete treatment of the subject. Quite helpful, especially

as a reference work.



1 Manifolds

One of the most fundamental constructs in geometry is the notion of a Manifold. A manifold
is, in colloquial language, the arena where things happen. Familiar examples are the three-
dimensional space that we inhabit and experience in everyday life; the surface of ball,
viewed as a two-dimensional closed surface on which, for example, an ant may walk; and
the four-dimensional Minkowski spacetime that is the arena where special relativity may
be formulated. In order to give a reasonably precise description of a manifold, it is helpful
first to give a few rather formal definitions. It is not the intention in this course to make
everything too formal and rigorous, so we shall try to strike a balance between formality
and practical utility as we proceed. In particular, if things seem to be getting too abstract
and rigourous at any stage, there is no need to panic, because it will probably just be a
brief interlude before returning to a more intuitive and informal discussion.

In this spirit, let us begin with some formal definitions.

1.1 Some set-theoretic concepts

A set is a collection of objects, or elements; typically, for us, these objects will be points in
a manifold. A set U is a subset of a set V if every element of U is also an element of V. If
there exist elements in V' that are not in the subset U, then U is called a proper subset of
V.

If U is a subset of V' then the complement of U in V| denoted by V — U, is the set of
all elements of V' that are not in U. If U is a subset but not a proper subset, then V — U
contains no elements at all. This set containing no elements is called the empty set, and is
denoted by (). By definition, therefore, () is a subset of every set.

The notion of the complement can be extended to define the difference of sets V and U,

even when U is not a subset of V. Thus we have
VN\U={z:ze€Vandzx¢U}. (1.1)

If U is a subset of V' then this reduces to the complement defined previously.
Two sets U and V' are equal, U =V, if every element of V' is an element of U, and vice
versa. This is equivalent to the statement that U is a subset of V' and V is a subset of U.
From two sets U and V' we can form the union, denoted by U U V', which is the set of
all elements that are in U or in V. The intersection, denoted by U NV, is the set of all
elements that are in U and in V. The two sets U and V are said to be disjoint if UNV = (),

i.e. they have no elements in common.



Some straightforwardly-established properties are:

AUB=BUA, ANB=BNA,
AUBUC)=(AUB)UC, AN(BNC)=(ANB)NC, (1.2)
AU(BNC)=(AUB)N(AUC), AN(BUC)=(ANB)U(ANC).

If A and B are subsets of C, then

C—-A)=A, C—-(C—-B)=B8B,
A\B)=ANB,
AUB)=(C—-A)n(C-B),

¢~
A—(
¢~
C—(ANB)=(C-A)U(C-B). (1.3)

1.2 Topological Spaces

Before being able to define a manifold, we need to introduce the notion of a topological
space. This can be defined as a point set S, with open subsets O;, for which the following

properties hold:

1. The union of any number of open subsets is an open set.
2. The intersection of a finite number of open subsets is an open set.

3. Both S itself, and the empty set (), are open.

It will be observed that the notion of an open set is rather important here. Essentially,
a set X is open if every point = inside X has points round it that are also in X. In other
words, every point in an open set has the property that you can wiggle it around a little
and it is still inside X. Consider, for example, the set of all real numbers r in the interval
0 < r < 1. This is called an open interval, and is denoted by (0, 1). As its name implies, the
open interval defines an open set. Indeed, we can see that for any real number r satisfying
0 < r < 1, we can always find real numbers bigger than r, and smaller than r that still
themselves lie in the open interval (0,1). By contrast, the interval 0 < r < 1 is not open;
the point r = 1 lies inside the set, but if it is wiggled to the right by any amount, no matter
how tiny, it takes us to a point with r > 1, which is not inside the set.

Given the collection {O;} of open subsets of S, we can define the notion of the limit

point of a subset, as follows. A point p is a limit point of a subset X of S provided that



every open set containing p also contains a point in X that is distinct from p. This definition
yields a topology for .S, and with this topology, S is called a Topological Space.

Some further concepts need to be introduced. First, we define a basis for the topology
of S as some subset of all possible open sets in S, such that by taking intersections and
unions of the members of the subset, we can generate all possible open subsets in S. An
open cover {U;} of S is a collection of open sets such that every point p in S is contained in
at least one of the U;. The topological space S is said to be compact if every open covering
{U;} has a finite sub-collection {U;,,---,U;,} that also covers S.

Finally, we may define the notion of a Hausdorff Space. The topological space S is said
to obey the Hausdorff axiom, and hence to be an Hausdorff Space, if, for any pair of distinct
points p; and py in S, there exist disjoints open sets O; amd O3, each containing just one
of the two points. In other words, for any distinct pair of points p; and p2, we can find a
small open set around each point such that the two open sets do not overlap.!

We are now in a position to move on to the definition of a manifold.

1.3 Manifolds

Before giving a formal definition of a manifold, it is useful to introduce what we will recognise
shortly as some very simple basic examples. First of all, consider the real line, running from
minus to plus infinity. Slightly more precisely, we consider the open interval (—oo, c0), i.e.
the set of points x such that —co < z < co. We denote this by the symbol R (the letter
R representing the real numbers). In fact R is the prototype example of a manifold; it is a
one-dimensional topological space parameterised by the points on the real line.

A simple extension of the above is to consider the n-dimensional space consisting of n
copies of the real line. We denote this by IR". A familiar example is three-dimensional
Euclidean space, with Cartesian coordinates (z,y, z). Thus our familiar three-dimensional
space can be called the 3-manifold R3.

We can now give a formal definition of a smooth n-manifold, with a smooth atlas of

charts, as

1. A topological space S

2. An open cover {U;}, which are known as patches

!The great mathematician and geometer Michael Atiyah gave a nice colloquial definition: “A topological
space is Hausdorff if the points can be housed off.” One should imagine this being spoken in a rather plummy

English accent, in which the word “off” is pronounced “orff.”



3. A set (called an atlas) of maps ¢; : U; — IR"™ called charts, which define a 1-1 relation

between points in U; and points in an open ball in IR", such that

4. If two patches Uy and U, intersect, then both ¢ o ¢y Land o 0 ¢1_1 are smooth maps
from IR™ to IR™.

The set-up described here will be referred to as an n-dimensional manifold M. Some-
times we shall use a superscript or subscript n, and write M" or M,,.

What does all this mean? The idea is the following. We consider a topological space S,
and divide it up into patches. We choose enough patches so that the whole of S is covered,
with overlaps between neighbouring patches. In any patch, say U;, we can establish a rule,
known as a mapping, between points in the patch and points in some open connected region
(called an open ball) in IR”. This mapping will be chosen such that it is 1-1 (one to one),
meaning that there is a unique invertible relation that associates to each point in U; a
unique point in the open ball in IR", and vice versa. We denote this mapping by ¢;. This

is the notion of choosing coordinates on the patch U;. See Figure 1.

1 9, L R

Figure 1: The map ¢; takes points in U; into an open ball in R"

Now consider another patch Us, which has some overlap with U;. For points in Uy we
make another mapping, denoted by ¢9, which again gives a 1-1 association with points in an
open ball in R"™. Now, consider points in the topological space S that lie in the intersection
of Uy and Us. For such points, we have therefore got two different rules for mapping into a
copy of R™: we have the mapping ¢, and the mapping ¢o. We are therefore in a position
to go back and forth between the two copies of IR™. Note that we can do this because each
of ¢1 and ¢ was, by definition, an invertible map.

We can start from a point in the open ball in the second copy of IR", and then apply
the inverse of the mapping ¢, which we denote by ¢, 1 to take us back to a point in the

patch Us that is also in U;. Then, we apply the map ¢; to take us forward to the open ball



in the first copy of IR". The composition of these two operations is denoted by ¢1 o ¢y L
Alternatively, we can go in the other order and start from a point in the open ball of the
first copy of R™ that maps back using qbfl to a point in U; that is also in U. Then, we
apply ¢2 to take us into the second copy of R™. Going in this direction, the whole procedure
is therefore denoted by ¢ o gf)fl. See Figure 2.

Figure 2: ¢ o qbfl maps IR” into R™ for points in the intersection U; N Us

Whichever way we go, the net effect is that we are mapping between a point in one copy of

IR™ and a point in another copy of IR". Suppose that we choose coordinates (z', 22, .-, z™)

L &2 ... 2") on the second copy. Collectively, we can

on the first copy, and coordinates (&
denote these by z¢, and &', where 1 < i < n. In the first case, the composition ¢; o (o3 1
is therefore giving us an expression for the z as functions of the #7. In the second case,
¢g 0 gbl_l is giviong us &' as functions of the z7.

So far, we have discussed this just for a specific point that lies in the intersection of Uy
and Us. But since we are dealing with open sets, we can always wiggle the point around
somewhat, and thus consider an open set of points within the intersection U; N Us. Thus
our functions z* = z¢(#/) and #' = #%(27) can be considered for a range of z* and & values.
This allows us to ask the question of whether the functions are smooth or not; in other
words, are the z’ differentiable functions of the 77, and vice versa? Thus we are led to
the notion of a Differentiable Manifold, as being a manifold where the coordinates covering
any pair of overlapping patches are smooth, differentiable functions of one another. One
can, of course, consider different degrees of differentiability; in practice, we shall tend to
assume that everything is C'> differentiable, meaning that we can differentiate infinitely
many times.

The functions that describe how the z? depend on the &7, or how the #' depend on the

a7, are called the transition functions in the overlap region.

Two atlases are said to be compatible if, wherever there are overlaps, the transition



functions are smooth.

It is worth emphasising at this point that all this talk about multiple patches is not
purely academic. The reason why we have been emphasising this issue is that in general we
need more than one coordinate patch to cover the whole manifold. To illustrate this point,

it is helpful to consider some examples.

1.3.1 The circle; S!

We have already met the example of the real line itself, as the one-dimensional manifold
R. This manifold can be covered by a single coordinate patch, namely we just use the
coordinate x, —oco < x < 0.

There is another example of a one-dimensional manifold that we can consider, namely
the circle, denoted by S'. We can think of the circle as a real line interval, where the
right-hand end of the line is identified with the left-hand end. Thus, for the unit circle, we
can take a coodinate interval 0 < 6 < 2w, with the rule that the point 6 = 27 is identified
with the point § = 0. However, 6 is not a good coordinate everywhere on the circle, because
it has a discontinuity where it suddently jumps from 27 to 0. To cover the circle properly,
we need to use (at least) two coordinate patches.

To see how this works, it is convenient to think of the standard unit circle z? + y? =
1 centred on the origin in the (z,y) plane, and to consider the standard polar angular
coordinate # running counter-clockwise around the circle. However, we shall only use 6 to
describe points on the circle corresponding to 0 < 6 < 27. Call this patch, or set of points,
U;. Introduce also another angular coordinate, called 5, which starts from 6 = 0 (more
precisely, we shall consider only 6 > 0, not allowing 6=0 itself) over on the left-hand side
at 0 = 7, and runs around counter-clockwise until it (almost) returns to its starting point
as 0 approaches 2. We shall use 6 only in the interval 0 < 6 < 2. This patch of S* will be
called Us. Thus we have the patch Uy, which covers all points on S! except (z,y) = (1,0),
and the patch Us, which covers all points on S' except (z,y) = (—1,0). The intersection
of Uy and Uj therefore comprises all points on S' except for the two just mentioned. It
therefore comprises two disconnected open intervals, one consisting of points on S that lie
above the x axis, and the other comprising points on S that lie below the z axis. We may
denote these two intervals by (U N Usz)4+ and (U; N Usz)— respectively. See Figure 3.

The map ¢, from points in U; into R is very simple: we have chosen just to use 6,
lying in the open interval 0 < 8 < 2x. For Us, we have the map ¢» into the open interval

0 < 6 < 27 in IR. The relation between the two coordinates in the overlap region defines



0=2m
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Figure 3: The coordinates 6 and 0 cover the two patches of S*

the transition functions. Since we have an overlap region comprising two disconnected open
intervals, we have to define the transition functions in each interval. This can be done easily

by inspection, and we have

(UlmU2)+: 0 0+m
0—.

(Ul N UQ)_ : é (1.4)

It is obvious, in this example, that the transition functions are infinitely differentiable.

1.3.2 The 2-sphere; S?

For a second example, consider the 2-sphere, denoted by S2. We can think of this as the
surface of the unit ball in Euclidean 3-space. Thus, if we introduce coordinates (z,y, z) on

Euclidean 3-space IR?, we define S? as the surface
2?4y 2 =1. (1.5)
We can think of using the spherical polar coordinates (8, ¢) on S?, defined in the standard
way:
x =sinf cos ¢, y =sinf sin ¢, z =cosb. (1.6)
However, these coordinates break down at the north pole N, and at the south pole S, since

at these points § = 0 and 6 = 7 there is no unique assignment of a value of ¢. Instead, we

can introduce stereographic coordinates, and define two charts:



For a point P on the sphere, take the straight line in IR3 that starts at the north pole N,
passes through P, and then intersects the z = 0 plane at (x,y) . A simple geometric calcula-
tion shows that if the point P has spherical polar coordinates (6, ¢), then the corresponding

point of intersection in the z = 0 plane is at
T = cot %9 cos @, y = cot %49 sin ¢ . (1.7)

This mapping from points in S? into points in IR? works well except for the point N itself:
the north pole gets mapped out to infinity in the (z,y) plane. Let us call U_ the patch of
S? comprising all points except the north pole N.

We can get a well-defined mapping for a second patch Uy, consisting of all points in
S? except the south pole S, by making an analogous stereographic mapping from the south
pole instead. A simple geometric calculation shows that the straight line in IR? joining the

south pole to the point on S? parameterised by (6, ¢) intersects the z = 0 plane at
0 cos o, 7 = tan %49 sin ¢ . (1.8)

Thus we have a mapping given by (1.7) from U_ into IR?, with coordinates (x,%), and a
mapping given by (1.8) from U, into IR?, with coordinates (%, 7).

In the intersection U_ NU., which comprises all points in S? except the north and south
poles, we can look at the relation between the corresponding coordinates. From (1.7) and

(1.8), a simple calculation shows that we have
(1.9)

Conversely, we may express the untilded coordinates in terms of the tilded coordinates,

finding

z Y

r=—5">=, = == -
72 1 2 Y 72 1+ 2

(1.10)

It is easy to see that these transition functions defining the relations between the tilded and
the untilded coordinates are infinitely differentiable, provided that z? + 3?2 is not equal to
zero or infinity.

The construction we have just described has provided us with an atlas comprising two
charts. Clearly there was nothing particularly special about the way we chose to do this,
except that we made sure that our atlas was big enough to provide a complete covering of
S2. We could, for example, add some more charts by repeating the previous discussion for
pairs of charts obtained by stereographic projection from (z,y,z) = (1,0,0) and (—1,0,0),

and from (0,1,0) and (0,—1,0) as well. We would then in total have a collection of six

10



charts in our atlas. A crucial point, though, which was appreciated even in the early days

of map-making, is that you cannot cover the whole of S? with a single chart.

1.3.3 Incompatible Atlases

It is not necessarily the case that the charts in one atlas are compatible with the charts
in another atlas. A simple example illustrating this can be given by considering the one-
dimensional manifold IR. We have already noted that this can be covered by a single chart.
Let us take z to represent the real numbers on the interval —oco < z < co. We can choose
a chart given by the mapping

o rT=z. (1.11)

We can also choose another chart, defined by the mapping
b i=23. (1.12)

Over the reals, each mapping gives a 1-1 relation between points z in the original manifold
IR, and points in the copies of IR coordinatised by x or Z respectively. However, these two
charts are not compatible everywhere, since we have the relation # = 2!/3, which is not

differentiable at x = 0.

1.3.4 Non-Hausdorff manifolds

In practice we shall not be concerned with non-Hausdorff manifolds, but is is useful to give
an example of one, since this will illustrate that they are rather bizarre, and hence do not
usually arise in situations of physical interest.

Consider the following one-dimensional manifold. We take the real lines y = 0 and y = 1
in the (z,y) plane IR2. Thus we have the lines (x,0) and (z,1). Now, we identify the two
lines for all points > 0. Thus we have a one-dimensional manifold consisting of two lines
for < 0, which join together to make one line for x > 0. Now, consider the two points
(0,0) and (0,1). These two points are distinct, since we are only making the identification
of (z,0) and (x, 1) for points where z is strictly positive. However, any open neighbourhood
of (0,0) necessarily intersects any open neighbourhood of (0, 1), since slightly to the right
of x = 0 for any z, no matter how small, the two lines are identified. Thus, in Atiyah’s
words, the points (0,0) and (0, 1) cannot be “housed off” into separate disjoint subsets.

The only one-dimensional Hausdorff manifolds are IR and S*.

11



1.3.5 Compact vs. non-compact manifolds

When discussing topological spaces, we gave the definition of a compact topological space
S as one for which every open covering {U;} has a finite sub-collection {U;,,---,U;, } that
also covers S. The key point in this definition is the word “every.” To illustrate this, let us
consider as examples the two simple one-dimensional manifolds that we have encountered;
R and S'. As we shall see, IR is non-compact, whilst S' is compact.

First, consider IR. Of course we can actually just use a single open set to over the whole
manifold in this case, since if it is parameterised by the real number z, we just need to take
the single open set —oo < z < co. Clearly if we took this as our open covering U then there
exists a finite sub-collection (namely U itself — no one said the sub-collection has to be a
proper sub-collection) which also covers R.

However, we can instead choose another open covering as follows. Let U; be the open
set defined by j — % <z<jg+ % Thus U; describes an open interval of length just less
than 2. Clearly {U;} for all integers j provides us with an open covering for IR, since each
adjacent pair U; and U1 overlap. However, it is impossible to choose a finite subset of the
Uj that still provides an open cover of R. By exhibiting an open covering for which a finite
sub-collection does not provide an open covering of the manifold, we have proved that IR is
not compact. A manifold that is not compact is called, not surprisingly, non-compact.

Now, consider instead the manifold S'. We saw in section (1.3.1) that we can cover S!
with a minimum of two open sets. We could, of course, use more, for example by covering
the circumference of the circle in short little sections of overlapping open sets. However, no
matter how short we take the intervals, they must always have a non-zero length, and so
after laying a finite number around the circle, we will have covered it all. We could choose
an infinity of open sets that covered S, for example by choosing intervals of length 1 (in
the sense 0 < z < 1) distributed around the circumference according to the rule that each
sucessive interval starts at a point where the angle # has advanced by % relative to the start
of the previous interval. Since the circumference of the circle is traversed by advancing 6
by 27, it follows from the fact that 7 is transcendental that none of these unit intervals will
exactly overlap another. However, it will be the case that we can choose a finite subset of
these open intervals that is already sufficient to provide an open cover.

No matter what one tries, one will always find that a finite collection of any infinite
number of open sets covering S! will suffice to provide an open cover. Thus the manifold
S is compact.

Of the other examples that we have met so far, all the manifolds IR™ are non-compact,

12



and the manifold S? is compact.

1.3.6 Functions on manifolds

A real function f on a manifold M is a mapping
fiM—TR (1.13)

that gives a real number for each point p in M. If for some open set U in M we have a

coordinate chart ¢ such that U is mapped by ¢ into R™, then we have a mapping
foo l:R" - R. (1.14)

If the coordinates in IR™ are called z‘, then the mapping (1.14) can be written simply as
f(z). In colloquial language we can say that f(z?) represents the value of f at the point
in M specified by the coordinates z*. In other words, now that it is understood that we
may well need different coordinate patches to cover different regions of the manifold, we
can usually just think of the chosen coordinates in some patch as being “coordinates on the
manifold,” and proceed without explicitly reciting the full rigmarole about the mapping ¢
from M into IR™.

The function f(z?) is called a smooth function if it is a differentiable function of the

coordinates z* in the patch where they are valid.

1.3.7 Orientable manifolds

A manifold is said to be orientable if it admits an atlas such that in all overlapping regions

between charts, the Jacobian of the relation between the coordinate systems satisfies

>0. (1.15)

1.4 Tangent vectors

We now turn to a discussion of vectors, and tensors, on manifolds.

We should begin this discussion by forgetting certain things about vectors that we
learned in kindergarten. There, the concept of a vector was introduced through the notion
of the position vector, which was an arrow joining a point A to some other point B in
three-dimensional Euclidean space. This is fine if one is only going to talk about Euclidean
space in Cartesian coordinates, but it is not a valid way describing a vector in general. If

the space is curved, such as the sphere, or even if it is flat but described in non-cartesian
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coordinates, such as Euclidean 3-space described in spherical polar coordinates, the notion
of a vector as a line joining two distant points A and B breaks down. What we can do is
take the infinitesimal limit of this notion, and consider the line joining two points A and
A+ 0A. In fact what this means is that we think of the tangent plane at a point in the
space, and imagine vectors in terms of infinitesimal displacements in this plane.

To make the thinking a bit more concrete, consider a 2-sphere, such as the surface of
the earth. A line drawn between Ney York and Los Angeles is not a vector; for example,
it would not make sense to consider the “sum” of the line from New York to Los Angeles
and the line from Los Angeles to Tokyo, and expect it to satisfy any meaningful addition
rules. However, we can place a small flat sheet on the surface of the earth at any desired
point, and draw very short arrows in the plane of the sheet; these are tangent vectors at
that particular point on the earth.

The concept of a vector as an infinitesimal displacement makes it sound very like the
derivative operator, and indeed this is exactly what a vector is. Suppose we consider some
patch U in the manifold M, for which we introduce local coordinates x' in the usual way.
Now consider a path passing through U, which may therefore be described by specifying
the values of the coordinates of points along the path. We can do this be introducing a
parameter A that increases monotonically along the path, and so points in M along the
path are specified by

x=z'(\). (1.16)

Consider now a smooth function f defined on M. The values of f at points along the
path are therefore given by f(x()\)). By the chain rule, we shall have
df of dx'(\)
dx Z ot d\

8f dzt(\)
ox'  d\

(1.17)

Note that here, and throughout this course, we shall be using the Einstein summation
convention, as is done in the second line, in which the summation over an index that
appears exactly twice is understood.

We may define the directed derivative operator along the path by

d
1.18
d b ( )

V

which is a map taking smooth functions to R:

df

foVf= (1.19)
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This obeys the linearity property
V(f+9)=Vi+Vyg (1.20)

for any pair of smooth functions f and g, and also the Leibnitz property

V(fg)=Vfg+f(Vg). (1.21)

Such a map is called a tangent vector at the point p where the evaluation is made.
If we have two different tangent vectors at the point p (corresponding to directional
derivatives along two different curves that intersect at p), let us call them V' = d/d\ and

V= d/ d), then linearity means that we shall have
VAV f=VI+Vf. (1.22)

We can also multiply tangent vectors by constants and they are again tangent vectors. Thus
the space of tangent vectors at a point p € M is a vector space, which is called the Tangent
Space at p, and denoted by T),(M). Its dimension is n, the dimension of the manifold M.
This can be seen by considering Taylor’s theorem in the local coordinate system z':

of
oxt

fl@) = flap) +h =5+, (1.23)

)

where h* = 2* — T,

and x; denotes the coordinates corresponding to the point p. Therefore

if we define A
dz’

Vi=Vat = 1.24
. dx’ ( )
then we shall have
Vf= Vi / (1.25)
- oxt’ '

and so we can take 0/0x' as a basis for the vector space of tangent vectors at the point
p. This shows that the dimension of the tangent vector space is equal to the number of
coordinates z*, which is in turn equal to the dimension n of the manifold M. In order to

abbreviate the writing, we shall commonly write

0
0; = e (1.26)
to denote the tangent vector basis.
To summarise, we can write the tangent vector V' = d/d\ as
V=V, (1.27)
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where V' are the components of the vector V with respect to the basis 9;;

_ dzt(\)

V’i
d\

(1.28)

(Of course here we are using the Einstein summation convention that any dummy index,
which occurs twice in a term, is understood to be summed over the range of the index.)
Notice that there is another significant change in viewpoint here in comparison to the
“kindergarten” notion of a vector. We make a clear distinction betwen the vector itself,
which is the geometrical object V' defined quite independently of any coordinate system by
(1.18), and its components V*, which are coordinate-dependent.? Indeed, if we imagine now
changing to a different set of coordinates z’ " in the space, related to the original ones by

= i(acj ), then we can use the chain rule to convert between the two bases:

V=V 9 :VjailZ 0 =y 0

o7 dxi o't ozt (1.29)

In the last step we are, by definition, taking V"’ " to be the components of the vector V with
respect to the primed coordinate basis. Thus we have the rule

. /i .
_ 0

= 1.

which tells us how to transform the components of the vector V' between the primed and
the unprimed coordinate system. This is the fundamental defining rule for how a vector
must transform under arbitrary coordinate transformations. Such transformations are called
General Coordinate Transformations.

Let us return to the point alluded to previously, about the vector as a linear differential
operator. We have indeed been writing vectors as derivative operators, so let’s see why that
is very natural. Suppose we have a smooth function f defined on M. As we discussed before,
we can view this, in a particular patch, as being a function f(x%) of the local coordinates
we are using in that patch. It is also convenient to suppress the ¢ index on the coordinates

i

z' in the argument here, and just write f(x). Now, if we wish to evaluate f at a nearby

point 2! + £, where ¢* is infinitesimal, we can just make a Taylor expansion:

f@+&=f@)+0 fla)+--, (1.31)

2However, it sometimes becomes cumbersome to use the longer form of words “the vector whose com-

ponents are V*” and so we shall sometimes slip into the way of speaking of “the vector V*.” One should
remember, however, that this is a slightly sloppy way of speaking, and the more precise distinction between

the vector and its components should always be borne in mind.
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and we can neglect the higher terms since £ is assumed to be infinitesimal. Thus we see

that the change in f is given by

0f(z) = fla+&) — flz) =€ 0, f(x), (1.32)

and that the operator that is implementing the translation of f(z) is exactly what we earlier

called a vector field,

& oy, (1.33)

where

or' = (' 4+ &) —a' = €. (1.34)

Having defined T,(M), the tangent space at the point p € M, we can then define the

so-called “tangent bundle” as the space of all possible tangent vectors at all possible points:
T(M) =Upem T(M) . (1.35)

This space is a manifold of dimension 2n, since to specify a point in it one must specify the
n coordinates of M and also an n-dimensional set of basis tangent vectors at that point.
It is sometimes called the “velocity space,” since it is described by a specification of the

positions and the “velocities” 9/0x".

1.4.1 Non-coordinate bases for the tangent space

In the discussion above, we have noted that d; = 9/0z" forms a basis for the tangent space
T,(M) at a point p in M. This is called a coordinate basis. We can choose to use different
bases; any choice of n basis vectors that span the vector space is equally valid. Thus we
may introduce quantities E,’, where 1 < a < n (and, as usual, 1 < i < n), and take our n
basis vectors to be

E,=FE, 9. (1.36)

As long as we have det(F,’) #=, this basis will span the tangent space. Note that E,* need
not be the same at each point in M; we can allow it to depend upon the local coordinates
i

€T

E,=E,' (z) 0;. (1.37)

A common terminology is to refer to £, as the inverse vielbein (we shall meet the vielbein
itself a little later). The coordinate index ¢ is commonly also called a world index, while the

index a is commonly called a tangent space indez.
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In addition to the general coordinate transformations 2 — 2" = 2/*(z) that we discussed
previously, we can also now make transformations on the tangent space index. In other
words, we can make transformations from one choice of non-coordinate basis F,* to another,

say F','. This transformation can itself be different at different points in M:
E, — E' = A () Ey . (1.38)

Note that if we have a vector V = V*?9;, where V' are its components in the coordinate
basis J;, we can also write it as

V=V"E,, (1.39)

where V¢ denotes the tangent-space components of V' with respect to the basis F,. Since V'
itself is independent of the coice of basis, it follows that the components V¢ must transform

in the inverse fashion to the transformation (1.38) of E,, which we write as
Ve =V = A% () VP, (1.40)

where

A% AL =62, (1.41)

It is straightforward to see that (1.38) and (1.40), together with (1.41), implies that V' given
in (1.39) is invariant under these local tangent-space transformations. In matrix notation,
we can associate A% with the matrix A, whose rowss are labelled by a, and columns by b.
Then from (1.41) we have that A, corresponds to the inverse, A~'. If we view the set of
n basis vectors F, as a row vector denoted by &, and the set of tangent-space components

V@ as a column vector denoted by V, then (1.38) and (1.40) can be written as

=N, V=AV. (1.42)

1.5 Co-vectors

We have so far met the concept of vectors V', which can be expanded in a coordinate basis
0; or a general tangent-space basis F,: V = V?9; = V® E,. For every vector space X, there

exists the notion of its dual space X*, which is the space of linear maps
X*: X —-R. (1.43)

What this means is that if V' is any vector in X, and w is any co-vector in X*, then there

exists a rule for making a real number from V and w. We introduce the notation
wlV)eR (1.44)
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to denote this rule. The operation is linear, and so we have

WU+V) = (wU)+ (wlV),
(WAV) = Xw|V), (1.45)
where U and V are any two vectors, and A is any real number.
Just as one expands vectors with respect to some basis E,, namely V = V¢ E,, so one

expands co-vectors with respect to a dual basis, which we shall denote by e®. Thus we write

w = w, €. By definition, the basis and its dual satisfy
(| Ep) = 0y . (1.46)
From the linearity of the mapping from X to X*, we therefore have that

@lV) = (wae'|V"By)
= W VP (Y Ep) =w, VP
= w, V. (1.47)

Note that under the change of basis E* given in (1.38), it follows that the dual basis e*

must transform inversely, namely

a

e — et =AY e, (1.48)

so that the defining property (1.46) is preserved for the primed basis and its dual. Corre-
spondingly, the invariance of w itself under the change of basis requires that its components
w, transform as

Wa — W'y = A wp . (1.49)

At every point p in the manifold M we define the cotangent space T,;(M) as the dual of
the tangent space T),(M). The cotangent bundle T*(M) is then defined as the space of all

possible co-vectors at all possible points:
T*(M) = Upem T;(M) . (1.50)

Like the tangent bundle T'(M), the cotangent bundle has dimension 2n, since the manifold
M is n-dimensional and there are n linearly independent co-vectors at each point.

An example of a co-vector is the differential of a function. Suppose f(z) is a function
on M. Its differential, df, is called a differential 1-form. It is also variously known as the

differential, the exterior derivative, or the gradient, of f. It is defined by
(flv) =V (1.51)
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for any vector V. Recall that V f is the directional derivative of f along the vector V. If we
work in a coordinate basis then the basis for tangent vectors is 9; = 9/9x*. Correspondingly,

the dual basis for co-vectors is dz!. By definition, therefore, we have
(dz'|9;) = 0" (1.52)

This all makes sense, and fits with our intuitive notion of taking the coordinate differential

of f, namely

df = 0;f da* (1.53)
as can be seen by a simple calculation:

{dfIV) Vi=V'of

= <8Zf d{L‘Z’VJ 8J> = 8Zf V3<dx’]83> = &f Vj (5;
= OfV°. (1.54)

In a coordinate basis, a general co-vector or 1-form w is expressed as
w = w;dx’. (1.55)

As with a vector, the geometrical object w itself is independent of any specific choice of
coordinates, whilst its components w; will change when one changes coordinate frame. We
can calculate how this happens by implementing a change of coordinate system, z* — 2’ t=

x! i(acj ), and applying the chain rule for differentiation:

oz’

w = w;dxt=w; .
oz

W) dz'? (1.56)

where in the second line this is simply the definition of what we mean by the components
of w in the primed frame. Thus we read off

, ox
W, = — W
J 8x/]

i - (1.57)
This may be compared with the transformation rule (1.30) for the components of a vector.

Of course, if we form the scalar quantity (w|V) then we have
(WV) = w; VI{da'[0;) = wi VI 65 = w; V', (1.58)

and it is an immediate consequence of (1.30), (1.57) and the chain rule that this is inde-

pendent of the choice of coordinates, as befits a scalar quantity:

P y 02 A :
AV = e gV eV S e Ve = V7 (1.59)
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1.6 An interlude on vector spaces and tensor products

For the sake of completeness, and by way of introduction to the next section, it is perhaps
useful to pause here and define a couple of widely-used and important concepts.

Let us begin with the idea of a Vector Space. A vector space X is a set that is closed under
finite vector addition and under scalar multiplication. In the general case, the elements are
members of a field® F', in which case X is called a vector space over F. For now, at least,
our interest lies in vector spaces over the real numbers.

The prototype example of a vector space is IR, with every element represented by an
n-tuplet of real numbers (aj,ag,- -, a,), where the rule of vector addition is achieved by

adding component-wise:
(a1,a2,...,an) + (b1,b2,...,by) = (a1 + b1,a2 + ba, ..., an + by), (1.60)
and scalar multiplication, for example by the real number r, is component-wise:
r(ai,az,...,an) = (rai,rag,...,ray). (1.61)

In general, for any elements A, B and C in the vector space X, and any scalars r and
s in the field F', one has the rules:
Commutativity: A+B=B+ A,
Associativity of vector addition: (A+B)+C=A+(B+(C),
Additive identity: 0+A=A4+0=A,
Additive inverse: A+ (—A) =0,
Associativity of scalar multiplication: 7 (sA) = (rs) A,
Distributivity of scalar sums: (r+s)A=rA+sA,
Distributivity of vector sums: r(A+B)=rA+rB,
Identity for scalar multiplication: 1A=A. (1.62)
Now, let us turn to tensor products. The Tensor Product of two vector spaces X and

Y, denoted by X ® Y, is again a vector space. It obeys a distributive law, in the sense that

if X, Y and Z are vector spaces, then

XoYeZ)2(XeY)e(X®2Z). (1.63)

3 A Field is any set of elements that satisfies axioms of addition and multiplication, and is a commutative

division algebra. Examples of fields are the real numbers R, the complex numbers €, and the rational
numbers. By contrast, the integers are not a field, since division of integers by integers does not give the

integers.
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If elements of the vector spaces X and Y are denoted by = and y respectively, then the
tensor-product vector space X ® Y is spanned by elements of the form x ® y. The following

rules are satisfied:

(1 +22)Qy = T1QY+12Qy,
xR W1+y2) = QY1+ TRy,
AMrey) = Ar)ey=z2 (\y), (1.64)

where A is any scalar. Note that 0 ® y =2 ® 0 = 0.
If o; is a basis of vectors for X, and 3; is a basis of vectors for Y, then o; ® 3; for all
(i,7) gives a basis for X ® Y. In other words, we can expand any vectors x and y in the

vector spaces X and Y in the forms
T=> oy, y=> v, (1.65)
i J
and we can expand any vector z in the tensor-product vector space Z = X ® Y as
Z:ZZZ']' Cli®ﬂj. (166)
i,J
Note that if the dimensions of the vector spaces X and Y are p and ¢, i.e. one needs
a set of p basis vectors for X, and a set of ¢ basis vectors for Y, then the tensor product

X ®Y has dimension pg. For example, if we take the tensor product R? ® IR?, we get a

tensor product vector space of dimension pq that is actually just IRP9.

1.7 Tensors

Having introduced the notion of vectors and co-vectors, it is now straightforward to make
the generalisation to tensors of arbitrary rank. By this is meant geometrical objects which
live in a tensor product space, involving, say, p factors of the tangent space T),(M), and ¢
factors of the cotangent space T);(M). Such a tensor is said to be of type (p,q), and to have
rank (p+q). Suppose T is such a tensor. We can then express it in terms of its components

in a coordinate basis as
T=T"";.;0,®0,®  ®0 ®d’ @dx” @ - ®dz. (1.67)

With the standard philosophy that the tensor T itself is a geometrical object which exists
independently of any choice of frame, we therefore see by comparing with its expansion in

a primed coordinate frame,
T=T""; ;8,00,0 08 cd”ed” e o d"", (1.68)
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where of course 9, = 9/0z’ ‘. that the components will transform according to the rule

o' 9x'" b oxte
. . = e — ... _ 10Fp
J1Jq 8xk1 axkq Hx!t Ozl

T ooty - (1.69)

In other words, there is a factor of the type ‘g%: for each vector index, just like the trans-

azt
' 7

formation for V¥ in (1.30), and a factor of the type

for each co-vector index, just like
in the transformation of w; in (1.57).

One can view (1.69) as the defining property of a tensor, or, more precisely, the defining
property of a general-coordinate tensor, i.e. a tensor with respect to general coordinate
transformations. Namely, we can say that T is a type (p, ¢) tensor under general-coordinate
transformations if and only if its components 7%, ...; transform like (1.69) under general
coordinate transformations.

It is obvious that iif 7" and U are two tensors of type (p,q), then T+ U is also a tensor
of type (p,q). One proves this by the standard technique of showing that the components
of T'+ U transform in the proper way under general coordinate transformations.

It is rather obvious that we can take arbitrary products of tensors and thereby obtain
new tensors. For example, if V' is a (1,0) tensor (i.e. a vector), and if w is a (0,1) tensor

(i.e. a co-vector, or 1-form), then W =V ® w is a tensor of type (1, 1), with components
Wi =Viw,. (1.70)

It is clear from the transformation rules (1.30) and (1.57) for V* and w; that the components
W, transform in the proper way, namely as in (1.69) with p = ¢ = 1. This product is called
the Outer Product of V' and w. This terminology signifies that no index contractions are
being made, and so the rank of the product tensor is equal to the sum of the ranks of the
two tensor factors. In general, we can take the outer product of two tensor of types (p,q)
and p’, ¢'), thereby obtaining a tensor of type (p +p’',q+ ¢').

Note that the Kronecker delta symbol 5;- is nothing but the set of components of a very
specific tensor § of type (1, 1). It is known as an invariant tensor, since it takes the identical
form in any coordinate frame. Thus if we take the standard definition of the Kronecker delta

in a particular coordinate frame, namely

=1, ifi=j, 8i=0, ifi#tj, (1.71)

and then compute the components of § in another coordinate frame, under the assumption

that it is a tensor, then from (1.69) we obtain

; or'" ozt ox' -
v ¢k _ st
05 =0 R Y % (1.72)
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and so it has the same numerical set of components in all coordinate frames.

Another operation that takes tensors into tensors is called Contraction. We can illustrate
this with a tensor of type (2,2); the generalisation to the arbitrary case is immediate.
Suppose T is of type (2,2), with components T%,. We can form a tensor of type (1,1) by

contracting, for example, the first upper index and the first lower index:
ngETijig. (173)

(Recall that as always, the summation convnetion is operating here, and so the repeated 7
index is understood to be summed over 1 < ¢ < n.) The proof that X7, so defined is indeed
a tensor is to verify that it transforms properly under general coordinate transformations:

oz’ 9z 9zP Ox4

X/jﬁ = T/ij‘g — Tmn .
z pq ox™ Oxn Y’ ax/é

_ pmn s oz dxt _ dx'’ Ot
PATm gan gyt T 0zm o't
ox' 9z9

Note that the crucial point is that the transformation matrices for the upper and lower ¢
indices are inverses of one another, and so in the second line we just obtain the Kronecker
delta 07, that implements the contraction of indices on the unprimed tensor 7", giving
back X",. It is clear that the same thing will happen for a contraction of an upper and a
lower index in any tensor.

A common example of an index contraction, and one which we have in fact already
encountered, is in the formation of the so-called Inner Product. If V is a vector and w is a

co-vector or 1-form, then their inner product is given by
(WV) =w; VT, (1.75)

as in (1.58. This can be viewed as taking the index contraction on their outer product
Wi, = Viw; defined as in (1.70): W% = V'w;. Not surprisingly, since this produces a
tensor of type (0,0) (otherwise known as a scalar), it is invariant under general coordinate
transformations, as we saw earlier.

Note that one can also perform the operations of symmetrisation or antisymmetrisation
of a tensor, and this yields another tensor for which these properties are preserved under
general coordinate transformations. For example, if T;; is a general 2-index tensor we can

define its symmetric and antisymmetric parts:
Sij = 5(Tij + Tji) , Ay = 3(Ty; — Ty), (1.76)
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and that T;; = S;; + A;j. It is easy to see that S;; and A;; are both tensors, and that S;;
is symmetric in all coordinate frames, and A;; is antisymmetric in all coordinate frames.
It is useful to have a notation indicating a symmetrisation or antisymmetrisation over sets
indices. This is done by the use of round or square brackets, respectively. Thus we can

rewrite (1.76) as
Sij = Tuj) = 5(Tij + Tji), Ay =Ty = 5(Tij — Tij) - (1.77)

More generally, symmetrisation and antisymmetrisation over n indices is defined by

1
Tiiii = — (T},..4, + even permutations + odd permutations ),
( 1 n) n' 1 n
1
Ty i) = ] (TZIZ” + even permutations — odd permutations) . (1.78)

We shall see later that totally antisymmetric tensors of type (0,p) play an especially
important role in geometry. They are the p-index generalisation of the co-vector or 1-form,

and are known as p-forms.

1.8 The Metric Tensor

At this point, we introduce an additional structure on the manifold M, namely the notion
of a metric. As its name implies, this is a way of measuring distances in M. It should be
emphasised from the outset that there is no unique way of doing this, although very often it
may be the case that there is a natural preferred choice of metric (up to scaling), suggested
by the symmetries of the problem.

Mathematically, we may simply define the metric as a smooth assignment to the tangent
space at each point of the manifold a real inner product, or bilinear form, which is linear
over functions. We shall also require that this bilinear form be symmetric. Thus if U and

V are any vectors, then a metric ¢ is a bilinear map from U and V into the reals
gUV)eR, (1.79)
with the following properties
g(U,V)=g(V.U),  gAUnV)=AugU,V), (1.80)

where A and p are arbitrary real numbers. We shall also demand that the metric g be

non-degenerate, which means that if
g(U,V)=0 (1.81)
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for all V', then it must be that U = 0.
Stated in more prosaic terms, the definitions above amount to saying that we have a
real type (0,2) symmetric tensor, with components g;;, with the non-degeneracy condition

that det(g;;) # 0. In terms of components, we have
gU V) =g U'V7. (1.82)

Since g;; is symmetric, it will have real eigenvalues; in general it will have s positive eigen-
values and t negative eigenvalues. Since we are requiring that det(g;;) > 0, it follows that
s and t will be the same for all points in the coordinate patch, since for an eignevalue to
change sign it would have to pass through zero at some point, which would then give a
vanishing determinant. The signature of the metric is defined to be s —¢t. The two cases
that commonly arise are when ¢t = 0 and so s = n = dimM, and s =n—1,¢t = 1. In
the former case the associated geometry is called Riemannian Geometry. In the latter, (or
indeed in any case where s and ¢ are both non-vanishing), the associated geoetry is called
Pseudo-Riemannian. The situation where ¢ = 1 arises in physics in special and general
relativity, with the negative eigenvalue being associated with the time direction.

Probably the most familiar example of a metric is the rule for measuring distances in
Euclidean space. If we have two infinitesimally-separated points in IR? with coordinates
and 2’ + dx', then, as we know from the work of Pythagoras, the square of the distance ds

between the points can be written as
ds® = 6;; dx" da? . (1.83)

In this case the metric tensor g has components g;; = d;;. Of course this instantly generalises
to an arbitrary dimension.

If we use speherical polar coordinates (6, ¢) on the 2-sphere, then the standard metric,
namely the one induced on the unit S? via its embedding in IR? that we discussed earlier,
is

ds® = db? + sin? 0 d¢p? | (1.84)
as is easily established by elementary geometry. It can also be dervived by direct substitution

into (1.83) of the expressions
z! =sinf cos ¢, 22 =sinf sin ¢, 23 = cos 0 (1.85)

giving the Cartesian coordinates in IR? of points on the unit sphere.
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Viewing g;; as a symmetric n X n matrix, whose determinant is assumed to be non-
zero, we can take its inverse, obtaining another symmetric tensor whose components we
shall denote by ¢g*/. The statement that this corresponds to the inverse of the matrix with
components g;; is therefore that

9ij 9" = 6", (1.86)

which is just the component form of the matrix equation gg~"

= 1. It is easy to verify
that ¢7* is indeed a tensor, by verifying that with gij and 52 transforming in their known
tensorial ways, equation (1.86) transforms tensorially provided that g/* transforms in the
standard way for a tensor of type (2,0).

It is now obvious that if U and V' are two vectors, then the quantity g;; U ©VJ transforms
as a scalar, i.e. it is invariant under general coordinate transformations. This quantity is
known as the inner product of the two vectors U and V.

Note that another way of viewing this is that we can think of g;; as “lowering the

index”

on U’ or on V*, so that we are then contracting the upper and the lower index on
the components of a vector and a 1-form or co-vector, respectively. This then makes contact
with the notion of the inner product of a vector and a 1-form, which we defined in (1.7).
Because g;; is invertible, we do not “lose information” by lowering the index; we can always
raise it back up again with the inverse metric ¢/, getting back to where we started, by
virtue of equation (1.86). Because of this fact, it is conventional to use the same symbol
for the quantity with the index lowered using g;;, or raised using g% . Thus for example, we

define
V; = Gij Vj N VVZ = gij Wj . (187)

It is obvious from the properties of tensors discussed in section (1.7) that if V' is a vector with
components V', then the downstairs components V; = 9ij V7 transform as the components
of a co-vector. More generally, if any indices on the comonents of any tensor are lowered or
raised using the metric tensor or its inverse, one gets the compoents of a tensor again.

Note that if we are in the Riemannian case, where the eigenvalues of g;; are all positive,
then we must have that

gi; V'V >0, (1.88)

with equality achieved if and only if V? = 0. By contrast, in the pseudo-Riemannian case
where there is one or more time directions, the inner product g;; ViVJ can in general have

either sign, and there can exist so-called null vectors for which g;; ViVI =0, with V? £ 0.
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1.9 Covariant differentiation

A familiar concept in Cartesian tensor analysis is that if one acts on the components of
any tensor field with the partial derivatives 9; = 9/0z", one gets the componets of another
tensor field, with an additional index.* However, this property as it stands is very specific
to the case of Cartesian tensors. The crucial point is that in Cartesian tensor analysis one
does not allow general coordinate transformations between coordinate frames, but rather,
one restricts to a very special subset, namely transformations with constant coefficients,

namely

at— a2 = M a7, (1.89)

where M ij are constants.

In order to retain the useful property of having a derivative operator that maps tensor
fields into tensor fields in the case of arbitrary coordinate transformations, it will be neces-
sary to introduce a new type of derivative, called the Covariant Derivative. To introduce
this, let us begin by seeing what goes wrong if we just try to act with the partial derivative.

Suppose V' is a vector under general coordinate transformations (so it transforms as in

(1.30)). Let us consider the quantity

(1.90)

Is this a tensor? To test it, we calculate W’ ij, to see if it is the proper tensorial transform

of W*;. We get:

. ov” oxt 0 ,02"
"o _ _ - k
Whi= ozl ozl 8x£<8xk )
92t 9" vk out 0%z’ -
927 Ok 9xt T 97 Ozt Ok ’
oxt ox't . 9zt 9%
= 0 9k T 507 alonk (1.91)

So the answer is no; the first term by itself would have been fine, but the second term
here has spoiled the general coordinate transformation behaviour. Of course there is no
mystery behind what we are seeing here; the second term has arisen because the derivative
operator has not only landed on the vector V¥ giving us what we want, but it has also
landed on the transformation matrix dz’* /0x¥. This problem was avoided in the case of
the Cartesian tensors, because we only required that they transform nicely under constant

transformations (1.89).

4We now use “tensor” as a generic term, which can include the particular cases of a scalar, and a vector.
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Now, we shall define the covariant derivative V; of a vector V' as follows:
V,Vi=o; Vi T V. (1.92)

They are defined to have precisely the correct transformation properties under general

coordinate transformations that ensure that the quantity
T, =V,; V" (1.93)

does transform like a tensor under general coordinate transformations. The crucial point
here is that Fijk itself is mot a tensor. It is called a Connection, in fact.

We may also impose on the quantities Fijk the symmetry condition
rijk — rikj 7 (1.94)

and usually this is done. It will be assumed that (1.94) holds in all our subsequent discus-
sions, unless otherwise specified.
First, let us see how we would like Fijk to transform, and then, we shall show how to

construct such an object. By definition, we want it to be such that

1t L ; ) )
gﬁk a&”,j Ve VE= ViV = v T v (1.95)
T

Wrtiting out the two sides here, we get the requirement that

oz’ Oz b ok m ox' or' PR A
Ok D' (0VE 4T e V) = D' 0 (G V") + 1k g V
ozt 9z o A VLB,
“ 0w 00m V" i pataen VT g (99

The required equality of the left-hand side of the top line and the right-hand side of the

bottom line for all vectors V™ allows us to deduce that we must have

oz dxt oz’ ozt 9%
9z ggd - T gam T 9z Ozt dxm (1.97)
Multiplying this by dz™/dz'" then gives us the result that
- ox'" 9zt 9x™ _, ox™ ozt 9%2" (1.98)

Ok 9z o™ ™ 9x'™ g 9zl Oxm
This dog’s breakfast is the required transformation rule for I jk- Notice that the first term
on the right-hand side is the “ordinary” type of tensor transformation rule. The presence

of the second term shows that I' jk is not in fact a tensor, because it doesn’t transform like

one.
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The above calculation is quite messy, but hopefully the essential point comes across
clearly; the purpose of the ugly second term in the transformation rule for Fijk is precisely
to remove the ugly extra term that we encountered which prevented 0; V' from being a
tensor.

Luckily, it is quite easy to provide an explicit construction for a suitable quantity Fijk
that has the right transformation properties. First, we need to note that we should like
to define a covariant derivative for any tensor, and that it should satisfy Leibnitz’s rule
for the differentiation of products. Now the need for the covariant derivative arise because
the transformation of the components of a vector or a tensor from one coordinate frame
to another involves non-constant transformation matrices of the form 9z’ /0z7. Therefore
on a scalar, which doesn’t have any indices, the covariant derivative must be just the same
thing as the usual partial derivative. Combining this fact with the Leibnitz rule, we can

work out what the covariant derivative of a vector with a downstairs index must be:
o, (Vi) = (; VHU; + V' 0, Uy, usual Leibnitz rule,
= V;(V'U;) = (V; VYU, + V'V, U, covariant Leibnitz rule, (1.99)
= (V4T VR U+ VIV, U;, from definition of V; V?.
Comparing the top line with the bottom line, the two 0; V' terms cancel, leaving
Vio; Ui =ViV;U + T, VFU;. (1.100)
Changing the labelling of dummy indices to
Vi, Ui =ViV;U +T%, ViU, (1.101)
we see that if this is to be true for all possible vectors V' then we must have
VUi =08;U; —T%,Uy. (1.102)

This gives us what we wanted to know, namely how the covariant derivative acts on vectors
with downstairs indices.

It is straightforward to show, with similar techniques to the one we just used, that the
covariant derivative of an arbitrary tensor with p upstairs indices and ¢ downstairs indices
is given by using the two rules (1.92) and (1.102) for each index; (1.92) for each upstairs

index, and (1.102) for each downstairs index. Thus we have

e g
V; T ]pk1~~~kq = ;7" ka'l"'kq + T, T2 kal"'kq + T2, 791593 ]pkl...kq + .-
; ) ¢ ¢
FL72 5 TP g — Doy TP P gy — Tty TP oy higobey — =

—Fzz‘kq lemjpkl---kqflf' (1.103)
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Note that a trivial case is when we apply the covariant derivative to a scalar. Since this
has no indices of either type, it follows that the covariant derivative is exactly the same as
the ordinary partial derivative:

Vif =0;f, (1.104)
for any scalar function f. Commonly, we may write V;f rather than the more fundamental
but identical expression 9; f, simply for the sake of uniformity of appearance in equations.

Now, recall that in section 1.8 we introduced the notion of the metric tensor g;;. Cal-

culating its covariant derivative using (1.102) for each downstairs index, we find
Vi 9ij = 9k 9ij — Thi g5 — T'xj gic (1.105)

We can now give an explicit construction of the connection Fijk. We do this by making
the additional requirement that we should like the metric tensor to be covariantly constant,
Vi gi; = 0. This is a very useful property to have, since it means, for example, that if we

look at the scalar product V¢ W7 gij of two vectors, we shall have
Vi(VIW gi) = (Ve VYWY g + VI (Vi W) gij (1.106)

Remembering our rule that we shall in fact freely write W7 gij as Wj;, and so on, it should
be clear that life would become a nightmare if the metric could not be taken freely through
the covariant derivative!

Luckily, it turns out that all the things we have been asking for are possible. We can
find a connection Fijk that is symmetric in jk, gives us a covariant derivative that satisfies
the Leibnitz rule, and for which Vj g;; = 0. We can find it just by juggling around the
indices in equation (1.105). To do this, we write out V}, g;; = 0 using (1.105) three times,
with different labellings of the indices:

O 9i5 — Torigej — T'hj gie = 0,
O gej — Tk gy — Thij gre = 0, (1.107)
0 gik — i g — T e gie =0,

Now, add the last two equations and subtract the first one from this. Since we are requiring

Fijk to be symmetric in jk, we therefore get
0; 9kj + 8]‘ Jik — Ok gij — QFZZ‘]‘ gre = 0. (1.108)

Multiplying this by the inverse metric ¢*™, we immediately obtain the following expression

for I, (after finally relabelling indices for convenience):
I = 39" (05 9o + Ok g0 — Ou gjn) - (1.109)
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This is known as the Christoffel Connection, or sometimes the Affine Connection.

It is a rather simple matter to check that I' ;5 defined by (1.109) does indeed have the
required transformation property (1.98) under general coordinate transformations. Actu-
ally, there is really no need to check this point, since it is logically guaranteed from the
way we constructed it that it must have this property. So we leave it as an “exercise to
the reader,” to verify by direct computation. The principle should be clear enough; one
simply uses the expression for I' ;. given in (1.109) to calculate I ‘ jk in terms of 9; and g,
(which can be expressed in terms of J; and g;; using their standard tensorial transformation
properties). It then turns out that F’ijk is related to I'j; by (1.98).

Notice that Fijk is zero if the metric components g;; are all constants. This explains
why we never see the need for I' jk if we only look at Cartesian tensors, for which the metric
is just d;;. But as soon as we consider any more general situation, where the components of
the metric tensor are functions of the coordinates, the Christoffel connection will become
non-vanishing. Note that this does not necessarily mean that the metric has to be one
on a curved space (such as the 2-sphere that we met earlier); even a flat metric written
in “curvilinear coordinates” will have a non-vanishing Christoffel connection. As a simple

example, suppose we take the metric on the plane,
ds* = dz* + dy? (1.110)
and write it in polar coordinates (r,6) defined by
x=rcosf, y=rsinf. (1.111)
It is easy to see that (1.110) becomes
ds® = dr* + 2 dp*. (1.112)

If we label the (r,0) coordinates as (z',z?) then in the metric ds? = g;; dz’ da’ we shall

Lo i o (1.113)
9ij = 0 T2 5 g’ = 0 r_2 . .

Using (1.109), simple algebra leads to the following results:

have

My =0, Iy =

I%7=0, TI'p==, T?%»=0. (1.114)

The covariant derivative allows us to obtain a new general-coordinate tensor by applying

it to any tensor field. Since the metric is, by construction, covariantly constant, we can freely
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take it through covariant derivatives as and when we wish. Since the covariant derivative
is tensorial, it follows that any contraction of indices, performed with the metric tensor or
its inverse if the two contracted indices are both vector-like or both co-vector-like, will also
be a tensor.

For example, if V is a vector, with components V*, then the quantity V; V? is a scalar.

Recalling that V;f (or equivalently 0;f) transforms as the components of a co-vector,
it follows that V'V, f is a scalar, where, of course, V' is defined by V' = g% V;. In fact
this second-order differential operator is very important, and since it arises frequently it is

customary to use a special symbol to denote it:
Of = V'V, f (1.115)

for any scalar f. Since it clearly reduces to the traditional Laplace operator if one specialises
to IR™ with Cartesian coordinates, it is, not surprisingly, called the Laplacian. It is the
natural generalisation of the Cartesian-space Laplacian, which, unlike g%/ 0;0;, always maps
a scalar into another scalar, in any manifold with any metric and choice of local coordinate
system. Explicitly, written out using the affine connection, it can be written, when acting
on f, as
970;0; f —g" T ;00 f . (1.116)
It is evident looking at the expression (1.109) for the affine connection that in general
it can be quite tiresome to calculate Fijk, especially if the dimension n is large, since there
are so many components to evaluate. In certain cases, and in fact the calculation of the
scalar Laplacian is one of them, the task can be greatly simplified because only a specific

contracted subset of the Fijk are needed, namely
gIT (1.117)
as can be seen from (1.116). From (1.109) we have

9Ty = 597 ¢ (0 965 + 05 9ie — Dr gij)

= g™ B gy — 2aM g O,
= 97950 g™ — 14" 4 0y g5,

= —0,0ig" — 39" 9" 0y gij ,

= —0 g™ — 19" 97 Ougy; . (1.118)

Note that in getting to the third line, we have use that g** guj = 5;‘7, which is constant, and
50 (95 9™) 9o + 9" (9; gej) = 0.
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Now we use one further trick, which is to note that as a matrix expression, g% 9, 9ij 18

just tr(g~! 9, g). But for any symmetric matrix we can write®
detg = e'rloes (1.119)

and so

Oy detg = (detg)tr(g™' O g). (1.120)

Thus we have

1
— g, 1.121
7 NG ( )

where we use the symbol g here to mean the determinant of the metric g;;.

%gzj Oy gij =

Putting all this together, we have

97V 0; f =97 0,0 f +(9:97)0; f + 9" % (9 v9)0; £, (1.122)
after making some convenient relabellings of dummy indices. Now we can see that all the
terms on the right-hand side assemble together very nicely, giving us the following simple
expression for the Laplacian:

Of =ViVif=—a(\ag" 9, f). (1.123)
V9
This general expression gives us the Laplacian in an arbitrary coordinate system, for an
arbitrary metric.
As a first example, suppose we choose to use polar coordinates (r,|theta) in the plane

IR2, for which the metric will be ds? = dr? 4+ r?d#*. From (1.113) we instantly see that the

determinant of the metric is g = 72, so plugging into (1.123) we get

PV f = ~o(rgiarr),

2
%%(r%) +%%. (1.124)
This can be recognised as the standard expression for the Laplacian in two-dimensional falt
space, written in polar coordinates.

As a slightly less trivial example, consider Euclidean 3-space, written in terms of spher-
ical polar coordinates (7,6, ). These, of course, are related to the Cartesian coordinates
(X,Y,Z) by

X =rsinf cos ¢, Y =17 sinf sin ¢, Z =cosf. (1.125)

®Prove by diagonalising the matrix, so that g — diag(A1, A2, ..., An). This means that detg = JJRRYE

) log A; .
while et*1088 — 2 ;108 i, and so the result is proven.
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The metric, written in terms of the spherical polar coordinates, is therefore
ds? = dr? +r?d6? + r? sin® 0 do? . (1.126)
The determinant is given by g = r* sin? # and so from (1.123) we get that the Laplacian is

10/ /,00\ 171 8, 0\ 1 8%
r2 E(TQ E) * r2 [sinﬁ o0 (sm@ %) * sin? 6 W} ' (1.127)

Again, we can recognise the familiar three-dimensional Laplacian, written in spherical polar

coordinates.
We close this discussion of the covariant derivative with a few further remarks. First, a
matter of notation. A fairly widespread abbreviated notation for indicating partial differ-

entiation and covariant differentiation is as follows:
Vij=0;Vi, Vi =V;V;. (1.128)

In this example, we have chosen the case of a co-vector, but obviously the same comma and
semicolon notation can be used for any type of tensor.

One other remark concerns applications of the covariant derivative. We introduced it by
demanding the existence of a generalisation of the partial derivative that had the property
of mapping tensors into tensors. In fact it essentially replaces the partial derivative in all
situations where one is generalising from Cartesian tensor analysis to general-coordinate
tensor analysis. In other words, if one has a tensorial equation in the context of Cartesian
tensor analysis, and one wants to know how to generalise it to a tensorial equation in the
general-coordinate tensor case, the rule can be more or less universally stated as “replace

b

0; by V; everywhere.” Or, in the notation mentioned in the previous paragraph, “replace
commas by semicolons.” In particular, one can easily show that this is always the correct
rule to follow if one wants to convert a tensorial equation in flat Euclidean space from one
written using Cartesian coordinates to one written using arbitrary curvilinear coordinates.
There can be certain subtleties that sometimes arise if one wants to generalise a tensorial
equation written in flat space to a tensorial equation for an arbitrary curved space, and we

shall be discussing these shortly. But to a good approximation, the rule of “comma goes to

semicolon” is a pretty reliable one.

1.10 The Riemann curvature tensor

Since the covariant derivative maps tensors into tensors, it follows also that if we compute

the commutator of two covariant derivatives, namely
[Vi, VJ] = VZV] — VJVZ , (1129)
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then this operator will also map tensors into tensors. Ostensibly this is a second-order
differential operator, but in fact it is actually a purely algebraic operator, with no derivatives
at all. This may seems surprising at first sight, but recalling that in the case of Euclidean
space written in Cartesian coordinates it is the same as [0;, 0;], which is identically zero
since partial derivatives commute, it is not so remarkable after all. In fact, the commutator
[Vi, V] is an object that characterises the curvature of the metric g;; (or more precisely, of
the connection I' jk)- In fact, it gives rise to the so-called Riemann tensor.

First, let us look at [V;, V;] acting on scalars. From the expression (1.102) for the

covariant derivative acting on a co-vector we have that
ViV, f=V.0;f =00,0;f —T%;0nf. (1.130)

From this it follows that
Vi, Vjlf = —(T%; —T%) o f (1.131)

since partial derivatives commute. Recalling that we also imposed the symmetry condition

Fkij = iji, it therefore follows that
Vi, Vjlf =0. (1.132)

Things are different if we instead consider acting on a vector with [V;, V;]. Now, we
have

ViV;VF =9,V VF 4+ T%, v,V -1, v, vk (1.133)

and so on calculating the commutator the symmetry of I‘kij in 77 implies the last term will

drop out, leaving
Vi, ViIVF = 0,(0; + %, V) + TFy 9,V + T V™) — (i > j) (1.134)
which, after distributing the derivatives yields
Vi, VVE = (8:T% ), — 0;T% +TF T, — TF,, T, V™. (1.135)

We see that as promised, there are no derivative terms at all left acting on the components
VE of the vector V. Although it is not manifest, we know from general arguments that the

quantity in brackets multiplying V* here must be a tensor, and we can rewrite (1.135) as
Vi, ViIVE = RFyi VY, (1.136)
where we have defined the Riemann tensor
Riike = 0kl — O ki + Tl T — Ty T (1.137)
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One could laboriously verify that the quantity Rijkg is indeed a tensor, by evaluating
it in a primed coordinate system and using the known transformation properties of 9; and
Fijk, but there really is no need to do so, since as remarked above, we know from our
construction that it must be a tensor.

The Riemann tensor has several symmetry properties, most of which are slightly non-
obvious, but can be proven by simply grinding out the algebra. First of all, there is a

symmetry that is trivial to see, just by inspection of the definition (1.137):
Ripe=—R'ju.. (1.138)
The non-obvious ones are the cyclic identity
Rljke+ Rlpgj + Rlyjr, = 0, (1.139)
and two symmetries that follow after lowering the first index with the metric:
Rijre = —Rjire Rijre = Rypij » (1.140)

where R;jre = gim R™jre. There is also a differential identity satisfied by the Riemann
tensor, namely

ViR ko + ViR jom + ViR i = 0. (1.141)

This is called the Bianchi identity.

Whereas the antisymmetry in the last index-pair in (1.138) is obvious merely from
the definition (1.137), the other symmetries and identities follow only after one uses the
expression (1.109) for Fijk. Note that the Riemann tensor would have fewer symmetries
if we did not impose the condition (1.94) on Fijk. We shall not give details here, since it
would be a bit of a diversion from the main thread of the development. Noter that using
the definition of total antuisymmetrisation in (1.78), the cyclic identity (1.139) and Bianchi
identity (1.141) can be written as

Ri[ﬂd] =0, v[mRiU\ké} =0. (1.142)

In writing the Bianchi identity in this way we have introduced another piece of standard
notation, namely that indices enclosed by vertical lines, such as |j| in the above, are omitted
from the antisymmetrisation.

The Riemann tensor characterises the curvature of the metric g;;. To see how this works,
first let us consider the case of flat Euclidean space, with the metric g;; = d;;. Obviously

the Riemann tensor vanishes for this metric, since it is constructed (see eqn (1.137)) from
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the affine connection I‘ijk and its first derivatives, and the affine connection is itself zero
since it is constructed (see eqn (1.109)) from the first derivatives of the components of the
metric.

What about flat Euclidean space written in some other coordinate system, such as
polar coordinates on IR?? We saw earlier that the components of the affine connection are
now non-zero (see eqn (1.114)), so one might think that the Riemann tensor now has the
possibility to be non-zero. However, the crucial point is that the Riemann tensor is a tensor,
which means that if its components vanish in any coordinate frame then they vanish in all
coordinate frames. This is an immediate consequence of the linearlity of the transformation
of the components of any tensor field; see equation (1.69). One could instead demonstrate
explicitly that the Riemann tensor vanishes by thrashing out the calculation of substituting
the affine connection (1.114) into (1.137), but aside from being educational there is no point,
since the general argument about the linearity of the tensor transformation already proves
it must vansih.

In fact it can be shown that conversely, if the Riemann tensor of a metric g;; vanishes
then locally, at least, there always exists a general coordinate transformation z! — 2/ C=
/" (27) that puts it in the form 9i; = ij-

By contrast, suppose we now consider the metric ds> = df? + sin® 6 d¢? on the unit

2-sphere. Taking the coordinates to be 2! = 6, 22 = ¢, we have

Lo g Lo (1.143)
Gii = s gr = . .
Y 0 sin26 0 =Ly

Simple algebra using (1.109) leads to the following results for the comonents of the Christof-

fel connection:

'y =0, Ir'y=o0, 'y, = —sinf cosb,

%, =0, T?y=cotf, T2=0. (1.144)

From the symmetries of the Riemann tensor given above, it follows that in two dimensions

there is only one independent component, and one easily finds that this is given by
Rl = sin?4. (1.145)

For the 2-sphere, therefore, with its standard metric, we find that the Riemann tensor is

non-zero; the metric has curvature.
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1.10.1 The meaning of curvature

We have introduced the curvature tensor Rijkg as the thing that arises when taking the
commutator of covariant derivatives acting on a vector or tensor. It is instructive also to
examine what it means from a more geometrical standpoint. To do this, we first need to
introduce the notion of parallel transport. Suppose we have a curve in the manifold M,
parameterised by z° = z°(\), where \ increases monotonically along the path. Suppose
that at some point along the path we have a vector V, with components V*? in the local
coordinate system we are using. We now wish to carry this vector along the curve, by
parallel transport. The easiest way of seeing what this means is by thinking first about
the case of Euclidean space, with a Cartesian coordinate system. Parallel transport means
picking up the vector as if it were a little arrow, and carrying it along the path keeping it
parallel to its original orientation at all times. In other words, the components of V will
remain unchanged along the path, and so

dv'? B

dA

0. (1.146)

Note that another way of writing this, using the chain rule, is

‘ili;ajvi =0. (1.147)

Now let us consider the generalisation of this concept of parallel transport to an arbi-
trary manifold. What will be the analogue of (1.146) and (1.147)? Clearly (1.146) and
(1.147) wouldn’t make sense in general, since they are not tensorial equations. (They don’t
transform like vectors under general coordinate transformations, for the usual reason that
the transformation matrix used in expressing 9V’ "= 9a /0x7 VI will get differentiated by
the d/d\.) It is immediately clear what we should do; replace the 0; in (1.147) by V;; this is

in fact the only possible change that can give us a covariantly-transforming equation. Thus

we write the parallel-transport equation as

DV' _dad _ . da L i
D = ax ViV =gy @V AT V) =0. (1.148)

One can easily see that if one is in Euclidean space, and one transforms from Cartesian
coordinates to an arbitrary coordinate system, then the equation (1.148) is derivable from
(1.147). When one is in a general curved space, rather than Euclidean space, it is necessary
to define what one means by parallel transport. The expression in (1.148) provides that

definition. It is in fact the only possible covariant equation one could write down, that is
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constructed purely from first derivatives of the vector field, and that specialises properly to
the Euclidean space case.

Having defined parallel transport, let us look at what happens if we parallel transport
a vector around an infinitesimal closed curve C' in M, starting and finishing at the point
' = 0. At some point z‘(\) along the path, it therefore follows from (1.148) that an

infinitesimal further displacement éx' along it will result in the following change in V*:
SV = —T () VF(x) 627 | (1.149)

Since the entire closed curve is itself infinitesimal in size, we can evaluate V(z) and I' j ()
in terms of their expressions at the origin of the curve, by using Taylor’s theorem up to first

order in z*:

Vi(z) Vi(0) + 27 9;V(0) = VI(0) — 27 T71.(0) VF(0) + O(a?),

Djp() = T'(0) + 2 0" j1,(0) + O(2?) . (1.150)

We want to see how the vector is changed after it has been carried all the way around the
closed infinitesimal curve C by parallel transport. We evaluate this by integrating around
the curve:

AV = 7{}5&/@‘ _ —jérijk(x) VF () da? (1.151)

Using the expressions in (1.150), and working just up to linear order in z*, we therefore find
AV = —T%,.(0) VF(0) f{ dr? — [9yTj5(0) — T;,,,(0) T™ % (0)] V*(0) j{xf dz’ .  (1.152)
C

The first term is zero, because dz’ is an exact differential, and so it is equal to the
difference between z* at the start and the finish of the curve. But since the curve is closed,
the start and finish are the same point and hence the integral gives zero.

For the remaining term in (1.152), we may note that the integral is antisymmetric in ¢
and j, since we have

j{ 2 da? :j{ d(z* %) —j{ 2/ dat (1.153)
C C C
and the first term on the right-hand side is zero because d(z‘z7) is an exact differential.

Thus we may rewrite (1.152) as
AV = Lo — ;T — T T™ g, + T4y T i VP 7{# da’ (1.154)

where we have suppressed the (0) arguments on the connection and vector. Comparing with
the expression (1.137) for the Riemann tensor, we see that, after some index reorganisation

we have

AV = LR, VI 7( 2F dat . (1.155)
C
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The integral §. zF dx’ just gives the area element of the infinitesimal loop. Think, for
example, of an infinitesimal loop taken to be a rectangle in the (z,y) plane, with its four

vertices at

(z,y) = (0,0), (Az,0), (Az,Ay), (0,Ay). (1.156)

If we define AAY = §, 2% dz?, then it is easy to see that

AAY = AAZ =, AAZ = —AA% = Az Ay, (1.157)

l'= 2 and 22 = y. Thus AAY is the area element of the loop, with its indices

where x
indicating the plane in which the loop lies. The upshot from (1.155) is that after parallel-
transporting a vector V' around an infinitesimal closed loop spanned by the area element

A A% the components of the vector are changed by an amount AV, given by

AV = IR, VI AARE (1.158)
Thus the Riemann tensor characterises the way in which vectors are modified by parallel
transport around closed curves. In particular, if the space is flat, there will be no change.

1.10.2 The Ricci tensor, Ricci scalar and Weyl tensor

By contracting indices on the Riemann tensor, one can form tensors of lower rank, namely

2 and 0. First, by taking one contraction, we form the Ricci tensor
Ry = R"y; . (1.159)

It follows from the prevsiously-discussed symmetries of the Riemann tensor that the Ricci
tensor is symmetric, i.e. R;; = Rj;.
A further contraction of the Ricci tensor, performed with the use of the inverse metric,

yields the Ricci scalar

R=g"Ry;. (1.160)

It follows from the Bianchi identity (1.141) that the divergence of the Ricci tensor is related

to the gradient of the Ricci scalar:

V'R;j = iV,R. (1.161)

In several contexts, most notably in general relativity, another tensor that plays a very

important role is the Einstein tensor, whose definition is
Gij = Rij — %Rgij . (1.162)
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Note that from (1.161) it follows that
VG =0. (1.163)

This fact that the Einstein tensor is conserved is very crucial in general relativity.
Another important notion is a special type of metric called an Finstein metric. An

Einstein metric is defined to be one whose Ricci tensor satisfies

where A is a constant. Note that if the dimension n is greater than 2, we can prove that A
must be a constant, if we merely begin by assuming that (1.164) holds for some function A.

The proof is as follows: Taking the divergence of (1.164), and using (1.161), we find that
sViR=V;\. (1.165)
On the other hand, contracting (1.164) with g”/ we obtain
R=n\. (1.166)
Combining the two equations gives
(n—2)V;A=0, (1.167)

and hence A must be a constant if n > 2. Einstein metrics are of considerable importance
in physics and mathematics, and we shall encounter them frequently later in the course.
Since they are obtained by contracting indcies on the Riemann tensor, the information
contained in the Ricci tensor or Ricci scalar is in general less than that contained in the full
Riemann tensor; the mapping is non-reversible and one cannot reconstruct the Riemann
tensor from the Ricci tensor. In fact the “extra” information that is contained in the
Riemann tensor but not in the Ricci tensor is characterised by a tensor called the Weyl

tensor, defined in n dimensions by

1

=D =2) R (6}, gje— 01 gjk) -

(1.168)
The Weyl tensor has the property, as can easily be verified from (1.168), that the contraction

. ‘ 1 . . ‘ ‘
C'ike = R'jpe— 5 (R'k gje— R'0 gji + Rjo 0 — Rji 0p) +

C’ijik is zero.
Although it naturally arises as a (1,3) tensor, the expression for the Weyl tensor in

terms of the Riemann tensor looks a little more elegant if we write it with the upper index
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lowered, to give

1
(Rik gje—Riv gji+Rje gi — Rk gie) + ( ] R (g gje—9ie 9jik) -

Cuspe = Rijee—3—5 D2
(1.169)

-2
One can show by a lengthy but straightforward calculation that the Weyl tensor Cijkg
is conformally invariant, in the following sense. Suppose we have two metrics, g;; and g;;,

which are related to one another by what is called a conformal transformation:
Gij = X gij . (1.170)

Here, the factor 2 is allowed to depend arbitrarily on the coordinates. After some algebra,
involving first calculating the relation between the affine connections Fijk and T jk for the
two metrics using (1.109), and then the relation between the two Riemann tensors Rijkg

and Eijkg using (1.137), one eventually finds that the two Weyl tensors are identical,

Clire = Cline - (1.171)

1.10.3 Index-free notation: Torsion and curvature

It may not have escaped the reader’s attention that the discussion in the last few sections
has become somewhat more “index oriented” than in the earlier parts of these lecture notes.
This is largely because when it comes to doing practical calculations, the use of indices, and
explicit coordinate frames, generally makes things easier. However, it is perhaps worthwhile
to look at a couple of topics we have already covered from a more geometrical and abstract
standpoint. If nothing else, this may help anyone who wants to look at textbooks or papers
that adopt an abstract approach.

Let us begin with the covariant derivative. We can define a connection V at a point p
in the manifold M as a rule that assigns to each vector field X a differential operator Vx

which maps a vector field Y to another vector field VxY, with the following properties:
Tensor in X: VixygvZ = fVxZ+gVyZ,
Linear in Y: Vx(@Y + 7)) =aVxY + VxZ,

Leibnitz: Vx(fY)=X(f)Y + fVxY, (1.172)
where X, Y and Z are vector fields, f and g are functions on M, and « and 3 are constants.
We can say that VxY is the covariant derivative of Y along the direction of X. In more
familiar index notation, then if we give the vector VxY the name W, ie. W = VxY, then

we shall have

Wi=XIV,Y". (1.173)

43



Of course once we write it out in components, the first property in (1.172), namely that
VxY is tensorial in X, is obvious, since if we multiply X* by a function in (1.173), clearly
the expression is simply multiplied by that function. The point about being “tensorial” in
X, which is not a priori obvious in the abstract definition, and thus needs to be stated as
one of the defining properties, is the following. We have seen repreatedly that the thing
that can stop something transforming as a tensor is if a derivative lands on a transformation
matrix 9z’ /dz'’ or dz'' /827 when one transforms from one coordinate frame to another.
The statement that VyxY = fVxY is sufficient to ensure that we will not run into any
trouble from the transformation matrix applied to the vector X getting differentiated when
we change coordinates.

We now define the torsion tensor T' by
T(X,Y)=VxY -VyX - [X,Y], (1.174)

where X and Y are arbitrary vector fields, and the bracket [X, Y] is simply the commutator
of vector fields, giving another vector. If we act with this vector on a function f in the
usual way (recall that a vector V' acting on a function f returns another function, namely
V f = V%0, f, which is the directed derivative of f along V'), we have

(X, Y]f = X(Vf)-Y(X[), (1.175)
where X (Y f) just means the directed derivative of Y f along X. If we define W = [X,Y],
then in components we have

Wi=X10;Y"—YI0;X". (1.176)

One easily verifies by explicitly changing to a new coordinate system that ¢ indeed trans-
forms in the proper manner for the components of a vector. (This exercise was on the first
problem sheet.)

Returning now to the definition of the torsion tensor 7" in (1.174), we can check that

this is indeed tensorial in X and Y, namely
T(fX,Y)=fT(X,)Y), (1.177)
and similarly in Y, for any function f. For example, we have
T(fX,Y) = VixY —Vy(fX)-[fX,Y],
= fVxY - fVy X - X(Vyf)—fXY+fYX+Y(f)X,
= f(T(X,Y) = XY(f) + XY(f),

= fT(X,Y). (1.178)
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Obviously, the calculation for T'(X, fY') proceeds identically.
Note that T'(X,Y) itself is a vector. Writing out (1.174) in terms of components, we see
that it gives

T(X,Y)]' = XIV,Y'—YIV,; X'~ XI0;Y' + Y99, X",
= XV(O;Y' +T'YF) — VI (0; X + T X*) — X0,V + Y70, X",
= (D — T, XY*. (1.179)
We may define the components of the torsion tensor by
T(X,Y)) =T X'Y* (1.180)
for any vector fields X and Y, and so we have
Tk = (T, — T%;). (1.181)

It is of course, from its definition (1.174), antisymmetric in its lower indices j and k, as we
see in (1.181). If we make our usual assumption that I'j; will be symmetric in its lower
indices then the torsion vanishes, Tijk = 0. With a more general choice of connection,
the torsion can be non-zero. Note that despite looking like a differential operator, the
calculations above show that T'(X,Y) is actually purely algebraic.

The abstract way of defining the Riemman tensor is rather similar. Given arbitrary

vector fields X, Y and Z we define
R(X,Y)Z =[Vx,Vy|Z — V[ny}Z, (1.182)

where, of course, [Vx,Vy]Z just means Vx(VyZ) — Vy(VxZ). Again, one can verify
from the previous definitions that R(X,Y)Z is tensorial in X, Y and Z, which we could

summarise in the single equation
R(fX,g9Y)(hZ) = fghR(X,Y)Z (1.183)

for any functions f, g and h. This property again means that despite superficial appearances,
R(X,Y)Z defined in (1.182) is not a differential operator, but is purely algebraic. Note that
R(X,Y)Z itself is a vector. If we define

[R(X,Y)Z)' = R\ iy Z2X*Y* (1.184)

then a straightforward calculation from (1.182) shows that R';x is precisely given by the

same expression (1.137) that we obtained previously.
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1.11 Differential Forms
1.11.1 Definition of a p-form

We have already remarked that totally-antisymmetric co-tensors a particularly important
role in mathematics and physics. Recall that when we expand any co-tensor w of type (0, p)

in a coordinate basis, we shall have
W= wiy.q, dz @ - @ da'? (1.185)

If wj,...;,, should happen to be totally antisymmetric in its indices, then we can choose to

antisymmetrise the basis itself. Thus, for the two-index case, we define
de' Ada? = do' @ da? — da? @ dat (1.186)
for the three-index case, we define

dr' Adzd ANda® = dit @ da? @ daF + dad @ da® @ dat + daF @ dat @ dad
—dr' ® do* ® da? — da? ® dr' @ do* — da* ® da? @ dat (1.187)

and so on. In general we shall have

de" A~ ANdz'? = da™ @ -+ ® da' + even permutations

—odd permutations. (1.188)

From its definition, we see that the wedge product is antisymmetric, and so, for example,
dz' Adx? = —da? N da' (1.189)

Suppose that A is a rank-p totally antisymmetric co-tensor. Then using the definition

above we can write

1 4 4
A= aAil'”iP dz" N Ndx' . (1190)

Such a co-tensor is called a p-form. Suppose that analogously, B is a ¢-form. It is straight-

forward to see, using the definitions above, that we must have
ANB=(-1)P"BAA. (1.191)

Note that a scalar field is a O-form, and a co-vector field is a 1-form.
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1.11.2 Exterior derivative

We now define the ezterior derivative, which acts on a p-form field and produces from it a

(p + 1)-form. Acting on a O-form field f, it gives the 1-form defined by
df = (df|V) =V (1.192)

where V is any vector, and as usual V f just means V%9, f. Acting on a p-form A, expanded

as in (1.190), the exterior derivative is defined by

1 . .
dA = vl (dAil---ip) ANdz' A---dx' . (1.193)
p!
Note that, as we have already observed in section 1.5, the definition (1.192) is equivalent to
the component equation

df = 0;f dz*. (1.194)
Likewise, we can re-express the definition (1.193) as

1

dA = = (0;4i,...3,) dx? Adx™ A - Adate (1.195)
D:

Since dA is a (p + 1)-form, which we can expand in terms of its components as

1

dA = T (dA)ji-jpia

dz?t A - A dadert (1.196)
we see, by comparing with (1.195), that the components of dA are given by

(dA)jy gy = (P +1) Oy Ay i) (1.197)

where the square brackets, denoting total antisymmetrisation, were defined in (1.78).

It is straightforward to check, by performing the standard arbitrary change of coor-
dinates from z? to #/* = 2/*(27), that the components of the (p + 1)-form dA do indeed
transform in the correct way for the components of a co-tensor of rank (p + 1). In other
words, the “undesirable” terms that arise when one simply takes the partial derivatives
of the components of a general tensor all miraculously cancel out when one looks at the
special case of the totally-antisymmetrised partial derivatives of the components of a totally-
antisymmetric rank-p co-tensor.

Two very important properties of the exterior derivative are the following. First, is
easily seen from the definitions that if A is a p-form and B is a g-form, then the following
Leibnitz rule holds:

d(ANB)=dANB+ (-1)?» ANdB. (1.198)
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Secondly, it is also easy to see from the definition of d that if it acts twice, it automatically
gives zero, i.e.

d>=0. (1.199)

This just follows from (1.195), which shows that d is an antisymmetric derivative, while on
the other hand partial derivatives commute. For example, if we apply d twice to a scalar

function f, we get
d*f = d(0;f da') = 9;0, f da? A da’ = O;0; f da? A da’ (1.200)

where, in the last step, we have placed the antisymmetrisation brackets around the ¢ and j
indices just to emphasise that this antisymmetry is being enforced by the contraction onto
the wedge product da’ Adz®. It is now manifest that d? f = 0, since obviously 0;0;f = 0;0;f.
Similarly, if A is a 1-form then applying d twice gives

d*A = d(9;A; d? A da') = 0x0; A; da® A da? A dat = 0y0; Ay da® Adad Adx', (1.201)

and again the fact that the partial derivatives commute immediately implies that we must
have d?A = 0.
It is worth remarking that in three dimensions, using Cartesian coordinates on R?, the

statement d?f = 0 is probably more familiar as the statement that
curlgrad f =0, (1.202)
ie. VxV f = 0: Recall that if one writes out the three components of this equation, it says
0:0,f — 0y0uf =0, 8,0.f —0.0,f =0,  0.0,f —0,0.f =0,  (1.203)

which is just the statement J;0;f = 0. In fact a bit later, after we have introduced the
further concept of Hodge dualisation, we shall be able to give a more precise comparison
between the notation of differential forms and three-dimensional Cartesian tensor analysis.

There is another remark that can be made now, although we shall have much more to
say about the matter later on. We have noted that d?> = 0 when acting on any differential
form of any degree. This means that if B is the p-form given by B = dA, where A is any
(p — 1)-form, then we shall have that dB = 0. Any differential form w that satisfies dw = 0
is called a closed form. Any differential form B that is written as B = dA is called an exact
form. Thus we have the statement that any exact form is closed. What about the converse?
Suppose we have a closed differential p-form w, i.e. it satisfies dw = 0. Can we necessarily

write it as w = dv, for some (p — 1)-form v? Tha answer is that locally, we can always find
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a (p — 1)-form v that gives w = dv. However, it might be that the 1-form v is singular
somewhere on the manifold M, even though w is completely non-singular.

If the manifold is IR™, meaning that it is topologically trivial, then the local differential
equations that one would solve in order to find the v whose exterior derivative produces the
closed p-form w will have a globally-defined non-singular solution (if w is non-singular), and
so we can say that in this case all closed forms are exact. But if the manifold has non-trivial
topology, such as, for example, the 2-sphere, then not all closed forms are exact. This is an
extremely important topic in differential geometry, and it is one to which we shall return

in due course.

1.12 Integration, and Stokes’ Theorem

Integration over manifolds is a natural generalisation of the familiar idea of integration.

The most basic integral we could consider is the one-dimensional integral

fo
/f df = fo— f1 = [f122, (1.204)

where fi and fo denote the values of the function f at the begining and end of the integration
range. The expression (1.204) is known as the fundamental theorem of calculus. In the
language of differential forms, we can view (1.204) as the integration of the 1-form df over
the 1-dimensional manifold that is the line interval along which the integration is performed.
If we call this manifold M, then its endpoints, at 1 and x9, correspond to the boundary
of M. The boundary of any manifold is a manifold of one dimension less (for example the
2-sphere can be thought of as the boudary of the unit ball in IR*). Thus in our example,
the boundary of the 1-dimensional manifold of the line interval consists of the two points,
x1 and x9; these are of dimension zero. In general, we denote the boundary of a manifold
M by OM.

The one-dimensional integral (1.204) can then be written as

/ af=[ 7. (1.205)
M oM

The “integral” on the right-hand side here is a bit degenerate, since it is an integral over
the zero-dimensional manifold consisting of just the two endpoints of the line interval. A
zero-dimensional integral is nothing but the difference of the values of the “integrand” at

the points on the 0-manifold;

| =1 =n-h. (1.206)
oM
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The reason for writing the integral in the somewhat esoteric way (1.205) is that it admits an
immediate generalisation to the much more interesting case of integration of p-forms over
p-manifolds.

Just as a 1-form, such as the differential df, can be integrated over a 1-manifold, so a
p-form is integrated over a p-dimensional manifold. This is perfectly reasonable, since a
p-form A is written as

1

A= E Ai1---ip d.’Eil VANKIERIVAY d.’Eip N (1207)

which involves a p-fold tensor product of coordinate differentials. The evaluation of the inte-
gral of A over a p-dimensional manifold M proceeds just like traditional multi-dimensional
integrals. For example, if we have a 2-form A = a(x,y)dx A dy, and we wish to integrate it

over a 2-manifold M that is spanned by the local coordinates x and y, then we would just

T2 Y2
/ A:/ dx/ dy a(z,y), (1.208)
M 1 Y1

where the limits on the x and y integrals are such that the integration is over the entire

have

2-volume of the manifold M.
If we have a p-form A that is exact, that is to say that it can be expressed as A = dw,
where w is some (p — 1)-form, then a very important theorem, called Stokes’ theorem, says

that

/M dw = /aMw. (1.209)

In order for this to be valid, w must be a smooth (p — 1)-form on the manifold M over
which the integration is performed. Note that (1.209 is a generalisation of our previous 1-
dimensional integral in (1.205). The proof of Stokes’ theorem is very analogous to the way
Stokes’ theorem and the divergence theorem are proved in 3-dimensional vector calculus.
Essentially, one breaks the integration region up into little hypercubes, and shows that the
“volume integral” over each hypercube can be turned into an integral over its boundary
surface. We shall not pause to prove Stokes’ theorem (1.209), but we shall take a look
presently at special cases that reduce to the familiar Stokes’ and diverence theorems of
vector calculus.

First, a few remarks:

1. If M is an m-manifold without boundary (such as the surface of a sphere), then
OM = (), and it follows that for any ezact n-form o, we must have [,, o0 = 0. This

follows from Stokes’ theorem. Suppose that the exact form o is written as o = da,
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where « is some (n — 1)-form. Then using (1.209) we shall have

/Maz/Mda:/aMa:O, (1.210)

where the last step follows from the fact that we are supposing M has no boundary;

oM = .

2. Just as the exterior derivative d has the property that d?> = 0, so manifolds have the
“dual” property that 0% = 0, i.e. the boundary of a boundary is zero. We prove this
by taking w to be an arbitrary (n — 2)-form, and applying Stokes’ theorem twice:

0:/ d*w = dw:/ w. (1.211)
M oM o02M

(The initial 0 of course comes from the fact that d?w vanishes identically.) Since
(1.211) is true for any (n — 2)-form w, it follows that M must be zero for any M.
This is clearly a reasonable result. For example, we take the boundary of the unit

ball in IR?, and we get S?. And sure enough, S? has no boundary.

As one would expect and hope, the integration of an n-form over an m-manifold is
independent of the choice of coordinates that one uses. It may, of course, be convenient in
practice to choose a specific coordinate system, but crucially, we will get the same answer
if we change to any other coordinate system. Suppose we choose local coordinates z* on an

n-manifold M, and integrate the n-form®
w=fdx' Ndz* A Nda" (1.212)

over M. Under a change of coordinates z' — z'* = 2/ i(:):j ), we shall therefore have

oxt  Ox? ox™

_ 141 ri2 Jin
w o= [ s g e A A N da
8561 8:62 ox"™ .. .
= fomgga agmt '  Nda* A A da™ (1.213)
where 172 is defined to be +1 if (iy,i2,...,4,) is an even permutation of (1,2,...,n),

—1if it is an odd permutation, and 0 if it is no permuation at all (meaning that at least
two index values must be equal). With a bit of thought, one can recognise that

1 2 n
ox* Ox ox inigein _ oz
ox'™ 9z’ dal™ oz’

, (1.214)

5Note that any n-form in n dimensions must simply be of the form of a function times the wedge product

of all the coordinate differentials.
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means the Jacobian of the transformation from the 2% to the z’ coordinates,

ox
where ‘ Erd

i.e.

ox oz’
57| = det (&C,j) . (1.215)

This accords with what one knows from elementary mathematics, namely that if one changes

variables in a multi-dimensional integral, one must multiply the integrand by the Jacobian
of the transformation. If the reader is in doubt about the steps above, it is well worthwhile
to look explicitly at the case of a 2-dimensional integral of a 2-form. Thus one has
ox , Oz dy ., Oy .,
/fdx/\dy = /f(—xdx +—dy) A (@d@« +8—y,dy)

_ Ox Oy 0% Oy 4o p gy
— /f(ax/ T, 2 ) da' ndy' (1.216)

So we see that the antisymmetry of the wedge product automatically handles the Jacobian
transformation when changing variables.

Integration over a manifold probes properties that go beyond just the local structure in
a neighbourhood. A very simple illustration is provided by the following example. Suppose
we have a circle, S', for which we set up a local coordinate , with 0 < § < 2r. We already
saw in section 1.3.1 that this coordinate is cannot be well-defined everywhere on S'; here,
we have omitted the point § = 0 (which is identified with § = 2. However, suppose for
a moment we mistakenly thought that 6 was well-defined everywhere on S!, meaning that
§ was a well-defined function on S'. We could quickly discover the mistake by applying

Stokes’ theorem and encountering the following contradiction:

27:/ d@:/ 0-0. (1.217)
St 0s1

On the left-hand side, we present the standard integration around the unit-radius circle; in
the middle step we have used Stokes’ theorem to convert the integral of df around S! into
an integral of # over the boundary of S'; on the right-hand side we have used the fact that
S1 has no boundary, and therefore this integral vanishes.

The mistake in the above sequence of steps was, of course, in the application of Stokes’
theorem. The point is that # is not a well-defined smooth function on S'; it undergoes a
discontinuous jump from 27 to 0 as one rotates anticlockwise and passes the point (z,y) =
(1,0) on the circle. Thus 6 is not a smooth O-form, and so Stokes’ theorem cannot be
used. Note that when we write df, we are really using a bit of a short-hand. What is
meant is the 1-form that is expressed locally as w = df when 0 < 6 < 27, i.e. in the

patch called U; in section 1.3.1. To cover the patch of S! that include (x,y) = (1,0) (but

52



excludes (z,y) = (—1,0)), i.e. the patch called Uy in 1.3.1, we can use the coordinate 6.
The globally-defined 1-form can be written as w = df in that patch. Note that everywhere
in the overlap region U; N Us, the two expressions df and df for the 1-form agree. The
essential point to note here is that there exists a globally-defined 1-form w, but there exists
no globally-defined 0-form whose exterior derivative gives w. Thus w is a closed 1-form that
is not exact. It is in fact the volume form on S'; its integral over S! gives the 1-dimensional
“yolume” of the unit circle; i.e. 27.

To see this using Stokes’ theorem, we can do the following. Divide the unit circle into
two hemispheres (or, perhaps, we should say “hemicircles,”), namely the H; defined by
points on 22 + y? = 1 in R? with 2 < 0, and H, defined by points with = > 0. In other
words, Hj is the left-hand half of the circle, and Hsy is the right-hand half. On H; we can
use 0 as coordinate, since H; lies entirely within the patch U, whilst on Hy we can use 0

as coordinate, since Hs lies entirely within the patch Us. Then we may calculate as follows:

/w:/w+ w:/dﬂ—i— df
S1 Hy Ho H, Hy

= / 0+ 0
OH, OHo

= T+ 0 =+ =2r. (1.218)

Note that our applications of Stokes’ theorem are completely valid here, since in each of
the patches where we are using it, w ia written as the exterior derivative of a function that
is well-defined and non-singular within that patch.

As another example, consider the 2-form
w=sinfdi Ado (1.219)

on S2, where we use spherical polar coordinates 6, ¢) in a patch (excluding the north and
south poles, as discussed in section 1.3.2). This is another example of a form that exists
everywhere, but which cannot be written globally as a the exterior derivative of a globally-

defined 1-form. Obviously, we could write it locally as w = dv, where
v=—cosfdo, (1.220)

but this is singular at § = 0 and 6 = , since at these points (the north and south poles)
the 1-form d¢ is ill-defined, since the cicle parameterised by ¢ has shrunk to zero radius at
the poles. Note, however, that because d?> = 0 when applied to any p-form, we can always

add df to v, where f is any function, and the exterior derivative of the modified v will again
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give w. Thus, we may define the two 1-forms
vy =vtdp=(—cosf+1)do. (1.221)

These are well-defined within the patches called Uy in section 1.3.2 respectively. Thus v
is well-defined at the north pole, # = 0, since the coefficient of d¢ vanishes there. However,
it is ill-defined at the south pole, § = 7, because the coefficient of d¢ does not vanish there.
Thus v, is well-defined everywhere in the patch U,. The situation for v_ is similar, except
that it is well-defined everywhere in U_ (the sphere minus the north pole).

With these preliminaries, we can now see what happens if we apply (or misapply) Stokes’
theorem. First, the naive misapplication: If we just say w = dv, and mistakenly assume

v = —cos 0 d¢ is globally-defined on S? we get

47:/ sianH/\d¢:/ W= dy:/ y=0, (1.222)
S2 S2 S2 052

where in the last step we have used that S? has no boundary. Now, let’s see how we can
instead use Stokes’ theorem correctly, by being careful about where the various 1-forms are
well-defined. To do this, introduce the notation Hy to denote the northern and southern

hemispheres of S?. Now we can write

/w: / w—i—/ w:/ dy+—|—/ dv_
52 Hy H_ Hy H_

= / vy + v_ = vy —I—/ v_
OH ., OH_ st (—S51)

= / d¢ + / (—do) =27+ 2w = 47 (1.223)
St (=S1)

Here, we have split the volume integral over S? into the sum over the two hemispheres,
and in each case we have replaced the volume-form w by its expression as the exterior
derivative of a 1-form that is globally-defined within that hemisphere. Now, we we apply
Stokes’ theorem, we convert the volume integrals over hemispheres into integrals around
their boundaries (i.e. the equatorial circle). We must be careful about the orientations
of the circles; we have that OH, is the positively-oriented equatorial circle, but OH_ has
the opposite orientation. Thus, when we put the two contributions together, we correctly

recover the 2-dimensional “volume” of the unit S2.

1.13 The Levi-Civita Tensor and Hodge Dualisation
1.13.1 The Levi-Civita Tensor

The totally-antisymmetric tensor €;;, in 3-dimensional Cartesian tensor calculus is a familiar

object. It is defined by saying that &;; is +1, —1 or 0 depending on whether ijk is an
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even permutation of 123, an odd permutation, or no permutation at all (such as 112).
We already introduced an analogous n-dimensional totally-antisymmetric object """ in
equation (1.213). However, we must be careful; this object is not a tensor under general
coordinate transformations.

Let us, first of all define ¢;;...;,, with downstairs indices. We shall say

Eiqerin — :|:1, 0, (1.224)
where we have +1 if {i; ...,i,} is an even permutation of the numerically-ordered index
values {1,...,n}, we have —1 if it is an odd permutation, and we have 0 if it is no permu-

tation at all. We define ¢;,...;, to have these values in all coordinate frames. Is it a tensor?
The answer is no, and we can prove this by showing that it does not transform as a tensor.
Suppose it did, and so we start in a coordinate frame x* with the components being 41 and

0, as defined above. We could then work out its components in a primed frame, giving

Ozt OxJn
/
Eip iy, — W T &C—/Zn €41 jn - (1225)
But the right-hand side can be recognised as giving
Ox
% Eqqeevip (1226)

where % is the Jacobian of the transformation, i.e. the determinant of the transformation

matrix dz7 /0x'". This follows from the identity that

for any n x n matrix. (Check it for n = 2, if you doubt it.) Since (1.226) is not simply equal
to €4,...i,,, We see that ¢;,...;,, defined to be =1 and 0 in all frames, does not transform as a
tensor. Instead, it is what is called a Tensor Density.

A quantity with components Hj,..;, is said to be a tensor density of weight w if it

transforms as ' '
Iy ‘8:1:’ w gt Oz
I L B

i1ip
under general coordinate transformations. Of course ordinary tensors, for which w = 0, are

(1.228)

the special case of tensor densities of weight 0.

-1
% , we see from (1.226) that ¢;,..;, transforms as a tensor

: o)
Noting that |5

density of weight 1 under general coordinate transformations, namely

, ox'| Oz ol
§ 9

ol g e

ivin = | 9y (1.229)
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!

Furthermore, it is indeed an invariant tensor density, i.e. ; .,

= €j,--i,; it takes the same
numerical values in all coordinate frames.

We can make an honest tensor by multiplying €;,...;,, by a scalar density of weight —1.
Such an object can be built from the metric tensor. Consider taking the determinant of the
inverse metric. Since we have already introduced the notation that g = det(g;;), it follows
that we shall have det(¢¥) = 1/g. Thus we may write
rie %giljl g e i €y - (1.230)

(Again, if this is not obvious to you, check it for the case n = 2.) Changing to a primed

coordinate system, and recalling that ¢;,...;,, is an invariant tensor, we therefore have

L1 i Vindn
? = E g Eirin Ej1--Jn
/i1 10 1J1 1J
n! g Oxk1 Oxkn Ozl Oln ~'7In TILTIn
or' 121
ox’

-2
This shows that ¢’ = g; i.e. that g is a scalar density of weight —2. Hence /|g| is a

oz
scalar density of weight —1, and so we may define the tensor

€i1eip =/ ’g‘ Egpeevin - (1232)

We shall universally use the notation ¢;,...;, for the honest tensor, and ¢;,..;, for the tensor
density whose components are +1,0. The totally-antisymmetric tensor €;,..;, is called the
Levi-Civita tensor.

Some further remarks are in order at this point. First, we shall always define €;,...;, to be
+1 if its indices are an even permutation of the numerically-ordered index values 1,...,n,
to be —1 for an odd permutation, and 0 for no permutation. For the tensor density with

upstairs indices, we define them to be numerically given by
glin = (—1)bey (1.233)

where ¢ is the number of negative eigenvalues of the metric g;;. The typical cases will be
t = 0 if we are doing Riemannian geometry, and ¢t = 1 in special or general relativity.

The second remark is to note that 1" is not given by raising the indices on &;,..;,
using inverse metrics. This is the one and only exception to the otherwise universal rule

that when we use the same symbol on a tensor with upstairs indices and a tensor with
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downstairs indices, the former is related to the latter by raising the indices with inverse
metrics.

The third remark is that £ is a tensor density of weight —1. Thus we have tensors
€i,..:, and €1 related to the corresponding tensor-densities by

ipin = \l9lEigein, €170 = L givin (1.234)
9]
Note that €17 s obtained by raising the indices on e;..;,, with inverse metrics. This
accords with our second remark above.

The fourth remark is that if the number of negative eigenvalues ¢ of the metric is odd,
then the determinant g is negative. This is why we have written 1/]g| in the definitions of
the totally-antisymmetric tensors ¢;,..;, and €=, If we know we are in a situation where
t = 0 (or more generally ¢t =even), we typically just write /g. If on the other hand we know
we are in a situation where ¢ = 1 (or more generally ¢t =odd), we typically write \/—g.

There are some very important identities that are satisfied by the product of two Levi-

Civita tensors. Firstly, one can establish that
€€y, =nl(=1)T e (1.235)

where as usual t is the number of negative eigenvalues of the metric, and we have defined

iy _ gl sinl
5]-1“_;; = 6[].1 e 5jn] i (1.236)
Note that for any antisymmetric tensor A;,...;, we have
Aiyoviy 010 = Ay - (1.237)

It is quite easy to prove (1.235) by enumerating the possible sets of choices for the index
values on the left-hand side and on the right-hand side, and verifying that the two expres-
sions agree. Of course one need not very every single possible set of index assignments,
since both the left-hand side and the right-hand side are manifestly totally antisymmetric
in the 7 indices, and in the j indices. In fact this means one really only has to check one
case, which could be, for example, {i1,...,i,} = {1,...,n} and {j1,...,dn} = {1,...,ny.
With a little thought, it can be seen that once the two sides are shown to agree for this set
of index choices, they must agree for any possible set of index choices.

It is also useful to record the expression one gets if one contracts p of the indices on a

pair of Levi-Civita tensors. The answer is

Eil""iqkl"'kp €rojokiohy = p' q' (—]_)t 6;13‘; , (1238)
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where we have defined ¢ = n — p in n dimensions. The proof is again just a matter of
enumerating inequivalent special cases, and checking the equality of the two sides of the
equation for each such case. Again, if one spends enough time thinking about it, one
eventually sees that it is almost trivially obvious. Note that (1.235) is just the special case
of (1.238) when p = 0.

As an example, in three dimensions with positive-definite metric signature, we have

€E € = 60,0 = 5300,08 + 5]0% 61 + 65 0L,80 — 30k 61 — 588,65 — 556760,
I e = 200, = 5150 — 5163 (1.239)

These, or at least the second identity, should be very familiar from Cartesian tensor analysis.

1.13.2 The Hodge dual

Suppose we have a p-form w in n dimensions. It is easy to count the number N,, of inde-
pendent components wj,...;, in a general such p-form: the antisymmetry implies that the
answer is
n!

Ny, = m . (1.240)
For example, for a O-form we have Ny = 1, and for a 1-form we have N; = n. These are
exactly what one expects for a scalar and a co-vector. For a 2-form we have Ny = %n(n —1),
which again is exactly what one expects for a 2-index antisymmetric tensor (it is just like
counting the independent components of a general n x n antisymmetric matrix).

It will be noticed from (1.240) that we have
N, = No_p, (1.241)

i.e. the number of independent components of a p forms is the same as the number of
independent components of an (n — p)-form in n dimensions. This suggests the possibility
that there could exist a 1-1 mapping between p-forms and (n—p)-forms, and indeed precisely
such a mapping exists. It is called Hodge Duality, and it is implemented by means of the
Levi-Civita tensor.

Suppose a p-form w expanded in a coordinate basis in the usual way, as

1 , ,
W= H Wiy ey AT N A d' (1.242)

We can define a Hodge dual basis for ¢ = n — p forms, as

‘ ‘ 1 o .
#(da't Ao Nda'?) = =€y, Tt A (1.243)
q
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We can then read off the Hodge dual of w, namely

1 - , ,
kW = plq! gy Wigeoiy AT A dT (1.244)

Comparing with the standard definition of a g-form, we can therefore read off the compo-
nents of the g-form *w, whose expansion is

1 . .
kw = P (kW) jy g A7t N - A da?e (1.245)

Thus from (1.244) we read off

1 o
(*w)j-jy = ] iy P Wi - (1.246)

Equation (1.246) gives the mapping from the p-form w to its Hodge dual, the ¢ =n —p
form *w. It was said earlier that this is a 1-1 mapping,and so we must be able to invert
it. This is easily done, by making use of the identity (1.238) for the contraction of two
Levi-Civita tensors on some of their indices. Thus, taking the Hodge dual of the Hodge

dual of w, making use of the basic defining equation (1.246), we shall have

p|—q' Eil...ipjl Ja €j1--jq 1 P Wy kp

(~1yp
plq!

(—1)patt ky-k

= W plq! 5Z-11...Z-pp Wk -kp

(—1)PH ;g - (1.247)

(**w)il...ip =

Jija gkakp

€ir--vip Jrevda Whiekyp

In getting to the second line, the shifting of the block of ¢ indices (j; - - - j,) through the
block of p indices (ki ---kp) on the second Levi-Civita tensor has given rise to the (—1)P9
factor, since each interchange of an index pair produces a minus sign. In getting to the
third line, we have used the identity (1.238). In getting to the fourth line, we have used the
basic property (1.237) of the multi-index Kronecker delta tensor. The upshot, therefore, is

that applying the Hodge dual operation twice to a p-form w in n dimensions, we get
wrw = (—1)PIT (1.248)

where ¢ = n — p, and where t is the number of time directions (i.e. the number of negative
eigenvalues of the metric tensor).
In cases where pg+t is even, we shall have that «xw = w, which means that the operator

x itself has eigenvalues 1. If the dimension n is even, say n = 2m, an m-form w is mapped
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into another m-form by the Hodge * operator, and so if m? + t is even, we can make =+
eigenstates under *, defined by

wy = 3 (wEw). (1.249)

these have the property that
*wy = twy, (1.250)

and they are known as self-dual or anti-self-dual forms respectively. This possibility there-
fore arises in Riemannian geometry (i.e. ¢ = 0) in dimensions n = 4,8,12,.... In pseudo-
Riemannian geometry with a single time dimension (i.e. ¢ = 1), (anti)-self-duality is instead
possible in dimensions n = 2,6, 10, .. ..

The Hodge dual provides a nice way of taking the inner product of two p-forms. Suppose
we have two p-forms, A and B in an n-dimensional manifold M. Defining ¢ = n — p as

usual, we shall have

*xANB = (p!)lz q! €irig? 7P Ajy oy By da' Ao Ada't Ada® A N dat
- (2;)12); €i1---iqj1mjp Ajy gy Breyookey ghiakikp qol A da? Ao A da™
_ (297)2); Cireig ™ Ajygy Byt €00\ flgl dat A da® A A da”
_ % Aoy Byt 00K
_ %Ail...z-p B figlde! Ada® - A da” (1.251)

Thus we can write

1 L
*ANB = _|Ai1---ip B *]1, (1252)
p:

where

1

*1 = ] Girvin dz't A Nda' = \/|g| dat AdxP A Ada™. (1.253)

Note that =1, which is the Hodge dual of the constant 1, calculated using the standard rule
(1.243) applied to a 0-form, is the volume form. For example, in Cartesian coordinates on
Euclidean 2-space, where the metric is just ds?> = dz? + dy?, we would have x1 = dx A dy,
whilst in polar coordinates, where the metric is ds? = dr? + r2df?, we would have x1 =
rdr A df. Thus equation (1.252) shows that *A A B is equal to 1/p! times the volume form,
multiplied by the inner product

|A- B| = Ajy..q, BV (1.254)
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of the two p-forms A and B. The inner product is manifestly symmetric under the exchange

of A and B, and so we have
(ANB=+BAA=~|A.B|. (1.255)
p!

Of course if the metric has all positive eigenvalues (i.e. ¢ = 0), then the inner product is

positive semi-definite, in the sense that
|[A-Al >0, (1.256)

with equality if and only if A = 0.

1.14 The 6 Operator and the Laplacian
1.14.1 The adjoint operator §; covariant divergence

Let A and B be two p-forms. We may define the quantity (A, B) by
(4, B) z/ “AAB, (1.257)
M

where, by (1.255), the integrand is the n-form proportional to the volume form times the
inner product of A and B. Like the unintegrated inner product, it is the case that if the

metric has all positive eigenvalues, then (A, B) is positive semi-definite, in the sense that
(A,A) >0, (1.258)

with equality if and only if A vanishes everywhere in M. Note that from (1.255) we also
have that
(A,B) = (B,A). (1.259)

Suppose now we have a p-form w and (p — 1)-form v. Using the definition (1.257) we
may form the quantity (w,dv). Let us assume that the n-manifold M has no boundary. By

using Stokes’ theorem, we can perform the following manipulation:

(w,dv) = /M*w/\dV:(—l)q /Md(*w/\y)—(—l)q /Md*w/\y
= (—1)¢ /BM*w/\V—(—l)q /Md*w/\y

= (—1)9t! / dxw AN v = (—1)Prtett / *(xdxw) A\ v
M M
= (=P (xdrw, v) (1.260)
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where as usual we have defined ¢ = n — p. Thus it is natural to define the adjoint of the
exterior derivative, which is called §, to be such that for any p-form w and any (p — 1)-form
v, we shall have

(w,dv) = (dw,v), (1.261)

with
5 = (—1PPF P wdx = (—1)" adx (1.262)

Of course from (1.259) we shall also have
(v, dw) = (dv,w). (1.263)
Note that using (1.262) and (1.248) we can immediately see that ¢ has the property that
2 =0 (1.264)

when acting on any p-form.

We know that d maps a p-form w to a (p + 1)-form, and that the Hodge dual * maps a
p-form to an (n— p)-form in n dimensions. It is easy to see, therefore, that the operator *dx
applied to a p-form gives a (p — 1)-form. What is the object *dxw? It is actually related to
something very simple, namely the divergence of w, with components kakil---ipfy To show
this is straightforward, although a little lengthy. For the sake of completeness, we shall
give the derivation here. Those steps in the argument that are analogous to ones that have
already been spelt out in previous derivations will be performed this time without further

comment. We shall have

1 . )
w = =W, dT A ANda'?
p:
1 i1-ip g1 i
W= '—q'whmip €j1 g Pdadt A Adade
plq!
1 - , ‘
dxw = ﬁak(wil”'ip Ejl...jq“”'“’)d;ck ANdzIt Ao Adade,
plq!
W = e O iy €, ) gy I
plgl(p— 1)1 F e Sda bty
1 o e .
= T O ey gy T At
Com o N
B mak(w“ K Eil"'ipjl"'jq)Efl"'épfl S dCC ! /\ tee /\ d.’E p—1
(=1)P i .
= = O gl i) ey I A At
(=1)P i .
B ma’“(wll P91 Eir-vipigg vty I A A A dat
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—1)ra 1 . .
= o q(' (p)— NIr O (W™ \/19]) €y ipn-4q 6[1...51771]6]1 Jadgt Ao Adatr

(1.265)

where the only new type of manipulation so far is to replace the Levi-Civita tensor €;,...;,, by
Vgl €., take the Levi-Civita tensor density &;,..;, outside the partial derivative (which
can be done since it has constant components £1 and 0), and then restore it to the Levi-
Civita tensor by dividing out by +/]g| once it is outside the partial derivative. It is helpful
at this point to define the object

o 1 o
V" = —— O(y/|g| W), (1.266)

Vdl

which we will shortly be able to turn into something recognisable. Continuing to the next

step that follows on from the last line in (1.265), we can write

*xdxw = % Ykil,,,l-p eil'“ipjl“,jq €0yt WP dg A - date
% Vhipoiy ST dat A datot
=y Y. N
(p—1)r - Pk
= % Vg, dz® A datrr (1.267)
Now, we have
YF oty Y gy ey

1
- ﬁ ak( V ’g‘ whm mp_1) Gtrm1 " Glp_1mp_1
= (Vk wkm1~~~mp—1)gélm1 o 'gfp,l mp—1

= VFwre,..0 (1.268)

p—1)

where the step of passing to the third line involves using results derived in section 1.9, and
the symmetry of I' jk in its two lower indices. (A special case, for a 2-index antisymmetric
tensor, was on Problem Sheet 2.)

Finally, we are approaching the bottom line, namely that we have found

(_1)pq+p+t+1
(p—1)!

In other words, we have shown that the components of the (p — 1)-form *d*w are given by’

kdrw = kakil---z’p_l dz™ A--- Ada'et, (1.269)

(4w )iy, = (—1PTPTFIG G (1.270)

"Note that although this derivation may have seemed like a bit of a long song and dance, much of this
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Comparing this with (1.262), we see that for any p-form w, we shall have

(6w)iy iy = =V Whiy iy - (1.271)

1.14.2 The Laplacian

We have already met the covariant Laplacian operator that acts on scalars. Here, we give

the generalisation to a Laplacian operator that acts on p-forms of any rank. It is defined by
A=dd+dd. (1.272)

Since d maps p-forms to (p + 1)-forms, and § maps p-forms to (p — 1)-forms, we see that
each of the two terms in A maps a p-form back into a p-form, and thus so does A itself.
If we apply A to a scalar f, then, noting that §f = 0 (since 6 f would be a (—1)-form,

which doesn’t exist), we shall have
Af =ddf = —-V'V,f. (1.273)

Thus when acting on scalars, A is the negative of what one commonly calls the Laplacian
in more elementary contexts. It is actually rather natural to include the minus sign in the
definition, because A = —V'V; is then a positive operator when acting on scalars, in the
case that the metric has all positive eigenvalues.

In fact, more generally, we can see that A defined by (1.272) is a positive operator
operator when acting on any p-form, in the case that the metric has all positive eigenvalues
(i.e. t = 0). To see this, let w be an arbitrary p-form, and assume that M is a compact

n-manifold equipped with a positive-definite metric. Then we shall have
(WAW) = (v, déw) + (w, ddw) = (dw, dw) + (dw, dw) . (1.274)

As noted previously, we have (A, A) > 0, with equality if and only if A = 0, and so we
conclude that

(w,Aw) >0, (1.275)

was because, for pedagodgic reasons, all the logical steps have been spelt out. Additionally, we presented
rather carefully the mechanism by which the partial derivative turned into a covariant divergence. We
could have short-circuited quite a few of those steps by making the following argument: We know that the
exterior derivative d maps a p-form to a (p + 1)-form, and we know that the Hodge * maps a p-form to
an (n — p)-form. Therefore we know that *d+w must be a (p — 1)-form, and therefore that it must be an
honest tensorial object. Thus, as soon as we saw the J appear in the expression for d+w), we know on the
grounds of covariance, that we must be able to replace the partial derivative by a covariant one, since the
answer must be covariant, so what else could it be? All we are doing by replacing 9; by Vi is making a
“hidden” non-manifest covariance into an explicit manifest covariance. If we allow ourselves to make that

replacement, we more quickly end up at the same conclusion.
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with equality if and only if Aw = 0. A p-form w that satisfies Aw = 0 is called an harmonic
p-form. Furthermore, (1.274) shows that Aw = 0 if and only if

dw =0, ow=0. (1.276)

We already met the notion of a closed p-form w, as being one for which dw = 0. We can
also introduce the notion of a co-closed p-form w, as being one for which édw = 0. Thus we
have seen that on a manifold without boundary, equipped with a positive-definite metric,
a p-form is harmonic if and only if it is both closed and co-closed.

We have already seen that when acting on scalars f (i.e. O-forms), the Laplacian operator
is given by

Af =-0Of, (1.277)

where we define

O=v'v,. (1.278)

It is straightforward to evaluate the Laplacian acting on forms of higher degree, by making
use of the expressions (1.197) and (1.271) for the components of dw and dw. For example,

acting on a 1-form V', and on a 2-form w, one finds

(AV);, = -OVi+ Ry, V7,
(Aw)yj = —Owij — 2Ripje ™ + Rip 0 + Rjpwit. (1.279)

Note that the curvatures arise because terms in the expression for A give rise to commutators

of covariant derivatives.

1.15 Spin connection and curvature 2-forms

When we introduced the notations of the covariant derivative, in section 1.9, and the Rie-
mann tensor, in section 1.10, this was done in the framework of a choice of coordinate
basis. We have already discussed the idea of using a non-coordinate basis for the tangent
and co-tangent frames, and here we return to this, in order to introduce a different way of
defining the connection and curvature. It is, in the end, equivalent to the coordinate-basis
description, but it various has advantages, including (relative) computational simplicity.
We begin by “taking the square root” of the metric g;;, by introducing a vielbein, which

is a basis of 1-forms e® = ef dz', with the components e having the property

Gij = Nab €5 6?- . (1.280)
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Here the indices a are local-Lorentz indices, or tangent-space indices, and 7, is a “flat”
metric, with constant components. The language of “local-Lorentz” indices stems from
the situation when the metric g;; has Minkowskian signature (which is (=, +,4+,...,+) in
sensible conventions). The signature of 74, must be the same as that of g;;, so if we are

working in general relativity with Minkowskian signature we will have
Nay = diag (—1,1,1,...,1) . (1.281)

If, on the other hand, we are working in a space with Euclidean signature (4,+,...,+),

then 7,4, will just equal the Kronecker delta, 14, = 645, Or in other words
ey = diag (1,1,1,...,1) . (1.282)

Of course the choice of vielbeins e® as the square root of the metric in (1.280) is to some
extent arbitrary. Specifically, we could, given a particular choice of vielbein e®, perform an

orthogonal-type transformation to get another equally-valid vielbein €’“, given by
e = A% el | (1.283)
where A%, is a matrix satisfying the (pseudo)orthogonality condition
Nab A% A4 = Nea - (1.284)

Note that A%, can be coordinate dependent. If the n-dimensional manifold has a Euclidean-
signature metric then 7 = 1 and (1.284) is literally the orthogonality condition AT A = 1.
Thus in this case the arbitrariness in the choice of vielbein is precisely the freedom to
make local O(n) rotations in the tangent space, where O(n) denotes the group of n x n
orthogonal matrices. If the metric signature is Minkowskian, then instead (1.284) is the
condition for A to be an O(1,n — 1) matrix; in other words, one then has the freedom
to perform local Lorentz transformations in the tangent space. We shall typically use the
words “local Lorentz transformation” regardless of whether we are working with metrics of
Minkowskian or Euclidean signature.

The vielbein e® is a local-Lorentz vector-valued 1-form. That is, it is a 1-form carrying
in addition a local-Lorentz vector index. It transforms covariantly under local-Lorentz
transformations, i.e. in the manner given in equation (1.283). It is natural, at this point,
to introduce the general notion of local-Lorentz tensor-valued p-forms. Thus we could
consider the object V@9, ., . which is a p-form carrying in addition r upstairs local-

Lorentz indices and s downstairs local-Lorentz indices. By definition, under local-Lorentz
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transformations, it transforms as

1a1--a
AL arbl...bs —V Tb

1bs — Aalcl T AarCr Ab1d1 T Absds VCI.“Cle---ds ) (1285)

where we define

A® = nae @ A, (1.286)

The transformation in (1.285) is exactly like an old-fashioned Lorentz transformation of
a Lorentz tensor V@ %, ;. except that here A%, can be position-dependent, and also
Varar, b, is also a p-form.

What happens if we take the exterior derivative of the local-Lorentz tensor-valued p-
form V@19 .7 Obviously, for reasons that are now very familiar, we do not get a local-
Lorentz tensor-valued (p + 1)-form, because the when we test its transformation under the
appropriate analogue of (1.285), we run into trouble from the exterior derivative landing on
the local-Lorentz transformation matrix. To illustrate the point, while avoiding the clutter
of large numbers of indices, consider the case of a local-Lorentz vector-valued p-form, V.
It transforms as

V=AY V. (1.287)

Now check the transformation of dV¢:
dV' = d(A% V) = A% dVP + dA% A V. (1.288)

The second term has spoilt the covariant transformation law.

The remedy, as in our previous discussion of the covariant derivative, is to introduce a
modified “covariant exterior derivative.” Note that the covariance we are speaking of here
is local-Lorentz covariance. To do this, we introduce the spin connection, or connection

1-forms, w%, = w%%; dz*, and the torsion 2-forms 7% = %T“ij dz' A da?, by defining
T% = de® + w A e’ . (1.289)

We shall require by definition that T transform covariantly as a local-Lorentz vector-valued

2-form, and we shall deduce the necessary transformation rule of w%, accordingly. Thus we

shall have

T = A%T?=A%de® + A% wP, A e
= de'" + WYy A ¢’ = d(A%, eb) + ' AN e

= A%deb 4+ dA% A e + W' A AP el (1.290)
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Equating the first and the last lines gives, after an index relabelling,
A% de® + A% Wb A e = A% deb + dA% A e + W'y A AP e, (1.291)
from which we can read off that
A% Wb = dA%, + W' AL, (1.292)

Multiplying by A4¢ to remove the A factor on the right-hand side, we have, after a further
relabelling of indices,

w/ab _ Aac ch Abd . dAaC Abc ) (1.293)

Noting that from (1.284) and (1.286) we have A%. Ay¢ = 6, which in the obvious matrix

notation reads A A~ = 1, we can write (1.293) in a matrix notation as

W =AwAt—dAATE. (1.294)
Equivalently, this can be written as

W =AwAT HAdATE, (1.295)

or, back in indices,

W = A% w g AT+ A% AN (1.296)

This is the transformation rule that we shall use, telling us how the spin connection trans-
forms under local-Lorentz transformations. As we would expect, it does not transform
covariant under local-Lorentz transformations, owing to the presence of the second term.
This is exactly what is needed in order to ensure that the torsion T% does transform covari-
antly.

The notion of a Lorentz-covariant exterior derivative, which we shall call D, can now
be extended to the general case of the Lorentz tensor-valued p-form V@ %, ., that we

introduced earlier. Thus we define

Dval"'a’"bl,,,bs = dval.“arbl...bs + walc /\ VCCLQ"'arbl.“bS + . + warc /\ Val...arflcbl.“bs
—wy AV by — = W, AV b e (1.297)

The pattern here should now be very familiar; there is one spin-connection term to co-

variantise each of the local-Lorentz indices on V%, . It is now just a straightfoward

exercise to verify that DV %, as defined here does indeed transform covariantly under

local-Lorentz transformations. In other words, we have
D/V/almarbl...bs = Aalcl s AaTCT Abldl s Absds Dvcl"'crdl...ds . (1.298)
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In order to prove this, it is helpful to look just at a simple case of a Lorentz tensor-valued
p-form V%, in order to avoid getting bogged down in a morass of indices. It is obvious,
once one has checked for V%, that the proof will go in just the same way if there are more
indices.
In fact, one can avoid the need for indices at all by writing the V%, example in a matrix
notation. We note first that
V'Y = A AG VEy, (1.299)

which translates into V/ = AVA~! in matrix notation. Next, we rewrite DV%, in matrix

notation. Thus
DV = dVi%h +w? AV —w% AV,

= AV + W' AV = (—1DP VAW, (1.300)
and in this latter form it can be re-expressed in the obvious matrix notation as

DV =dV+wAV —(-1)PV Aw. (1.301)
Following a few simple steps, and using (1.295), one easily shows that

DV = dVI+J AV — (=1)PV' A
= ADV)AT!, (1.302)

which establishes the covariance of the transformation.

Next, we define the curvature 2-forms ©%,, via the equation
O% = dw® + W A W% . (1.303)

It is straightforward to show, by the same techniques as we used above, that in the obvious

matrix notation, in which (1.303) is written as
O=dv+wAw, (1.304)
then 2 transforms covariantly under local-Lorentz transformations, wviz.
@ =A0A". (1.305)

To summarise, the vielbein, spin-connection, torsion and curvature forms transform under

local-Lorentz transformations as

¢ = Ae, W =AwATP+AdATT,
T = AT, 0 =A0A". (1.306)
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The covariant exterior derivative D will commute nicely with the process of contracting
tangent-space indices with 74, provided we require that the local-Lorentz metric 7, be

Lorentz-covariantly constant, Dn,, = 0. From (1.297), we therefore have
Dnab = dnab - wca Tleb — wcb Nac = 0. (1307)

Since we are taking the components of 7y, to be literally constants, it follows from this

equation, which is known as the equation of metric compatibility, that
Wah = —Whg » (1.308)

where wgp, is, by definition, w®, with the upper index lowered using 7.: Wap = Mac WCb-
With this imposed, it is now the case that we can take covariant exterior derivatives of
products, and freely move the local-Lorentz metric tensor 7, through the derivative. This
means that we get the same answer if we differentiate the product and then contract some
indices, or if instead we contract the indices and then differentiate. This is the analogue of
our requirement that V;g;, = 0 in the previous coordinate-basis discussion of the covariant
derivative.

In addition to the requirement of metric compatibiilty we usually also choose a torsion-
free spin-connection, meaning that we demand that the torsion 2-forms 7'* defined by (1.289)
vanish. In fact equation (1.289), together with the metric-compatibility condition (1.308),

now determine w®, uniquely. In other words, the two conditions
de® = —w A e, Wah = —Wpa (1.309)

have a unique solution. It can be given as follows. Let us say that, as a definition of the

coefficients ¢,.*, the exterior derivatives of the vielbeins e are given by

de® = —%cbca e’ Ae (1.310)

where the structure functions cp.® are, by definition, antisymmetric in bc. Then the solution
for wyy is given by

Wab = %(Cabc + Cach — Cbca) e’ ) (1311)
where cgpe = Neq cap?. It is easy to check by direct substitution that this indeed solves the
two conditions (1.309).

The procedure, then, for calculating the curvature 2-forms for a metric g;; with vielebeins

e® is the following. We write down a choice of vielbein, and by taking the exterior derivative
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we read off the coefficients ¢,.* in (1.310). Using these, we calculate the spin connection
using (1.311). Then, we substitute into (1.303), to calculate the curvature 2-forms.
Each curvature 2-form ©%, has, as its components, a tensor that is antisymmetric in

two coordinate indices. This is in fact the Riemann tensor, defined by
©% = $R%;; dz’ A da? . (1.312)

We may always use the vielbein e, which is a non-degenerate n x n matrix in n dimensions,
to convert between coordinate indices ¢ and tangent-space indices a. For this purpose we

also need the inverse of the vielbein, denoted by E‘, and satisfying the defining properties
Elet =6,  Eieb=6p. (1.313)

Then we may define Riemann tensor components entirely within the tangent-frame basis,
as follows:

Rabcd = Eé Eé Rabij . (1314)
In terms of R%,.q, it is easily seen from the various definitions that we have
0% = 1R%qe Net (1.315)

From the Riemann tensor Rg.q two further tensors can be defined, as we did in the

earlier coordinate-basis discussion, namely the Ricci tensor R, and the Ricci scalar R:
Rap = Raeh R=n"Rgy . (1.316)

We again find that the Riemann tensor and Ricci tensor have the following symmetries,

which can be proved straightforwardly from the definitions above:

Rabcd = _Rbacd = _Rabdc = Rcdab ;
Rabcd + Racdb + Radbc =0 ) (1317)
Rab = Rba .

1.15.1 Relation to the coordinate-basis connection and curvature

As we mentioned above, the spin connection w?, and the curvature 2-forms ©%, are really
giving an equivalent description of the connection and curvature that we introduced in the
eralier coordinate-basis discussion. To make this more precise, we may define a covariant
derivative D; that is covariant with respect to both general coordinate transformations and

local-Lorentz transformations. Acting on the vielbein, for example, we shall have
DZ'G? = 81-6?- + w“bi 6? - Fkij 6% . (1318)
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The extension of this definition to arbitrary Lorentz-valued general coordinate tensors
should be obvious; it is just the appropriate combination of w®, terms to covariantise each
local-Lorentz index as in (1.297), and Fijk terms to covariantise each coordinate index, as
in (1.103).

The vielbein and its inverse can be used to map invertibly between coordinate indices
and local-Lorentz indices. We would therefore like to have the property that D;e} = 0, so
that these mappings will commute with covariant differentiation. This is in fact possible,
and by requiring that D;ef = 0 we can obtain a relation between the spin connection w®,

and the affine connection I''j;. Thus, from (1.318) we find that D;ef = 0 implies

0§ +whyi e —Tfef =0. (1.319)

Multiplying by 7, €f, and symmetrising in kj gives
Oigjk — T4 g0 — Tk gje = 0, (1.320)

which is the same as we saw from (1.105) when we required V;j;; = 0. If we again multiply

(1.319) by 7qc €, but this time antisymmetrise in ij, we obtain
T =21y (1.321)

where T, is the torsion tensor defined by (1.289), with the upper local-Lorentz index
converted to a coordinate index using the inverse vielbein: Tijk =E T%;,. We see that
(1.321) agrees with our previous coordinate-index result in (1.181).

Comparing the curvatures obtained by the two approaches is a slightly involved calcu-

lation. Multiplying (1.319) by an inverse vielbein, one can easily see that

I = Ef 0ie§ + Ef w"; €. (1.322)

Substituting this into the expression (1.137) for the components of the Riemann tensor R’ ke
in a coordinate basis, and then converting the first two indices to local-Lorentz indices using

R = e Ei R! jk¢, one can, with some perseverance, show that is equal to the expression

for R%y, that came from (1.304) and (1.312).

2 Lie Groups and Algebras

2.1 Definition of a Group

Let us begin by defining a group. A group is a set A with the following additional structure:
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1. A law of composition such that for each pair of elements a; and as, we get a third

element denoted by a; o as.

2. The law of composition must be associative, i.e.

ay © (CL2 @) ag) == (a1 @) CLQ) oas. (21)

3. There must exist a unit element e, such that for any element a we have

eoa=aoe=a. (2.2)

4. For every element a in A, there must exist an inverse element a~! such that

aoat=aloa=e. (2.3)

Some examples illustrating cases where there is a group structure, and where there isn’t,

are the following:

(a) The set of integers, Z, with addition as the law of composition, form a group. The

identity element is 0, and the inverse of the integer n is the integer —n:

n+0 = 0+n=n,

n+(—n) = (—n)+n=0. (2.4)

(b) The set of integers, with multiplication as the law of composition, do not form a group.
An identity element exists ((i.e. 1), but the inverse of the integer n is 1/n, which is

not a member of the set of integers Z.

(c) The two integers {1, —1} form a group under multiplication. This is called the group
Zs.

(d) The set R of all real numbers —oo < r < oo forms a group under addition.

(e) The set IR does not form a group under multiplication, since although the identity
element exists (i.e. 1), not every element of IR has an inverse; the inverse of 0 does

not exist.

(f) Theset IR of all positive real numbers 0 < r < oo forms a group under multiplication.
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In all the examples (a), (c), (d) and (f) of groups, we have the feature that aob=boa
for any elements a and b. If all group elements satisfy this commutativity property, the
group is said to be abelian. If there exist group elements for which a o b # b o a, the group
is said to be non-abelian.

An example of a non-abelian group is the set of all real n x n matrices with non-vanishing
determinant, where the law of composition is matrix multiplication. The condition of non-
vanishing determinant ensures that every group element a has an inverse (the usual matrix
inverse a~!). However, matrix multiplication is non-commutative, and so in general ab # ba.

In our examples above, we have included discrete groups, where the number of elements
is finite (as in case (c¢), where the group Zs has two elements) or infinite (as in case (a),
where the group Z has a countable infinity of elements). We have also given an example of
continuous groups, namely R in case (d), and R* in case (f).

A finite group is said to be of order n if it has n elements. For example Zs is of order 2,
while the group Z of integers under addition is of (countable) infinite order. All continuous
groups are of uncountable infinite order. A useful way of characterising the “size” of a
continuous group is by means of its dimension. The dimension of a continuous group is the
number of independent continuous functions, or coordinates, that are needed in order to
parameterise all the group elements. For example, for the group IR of real numbers under
addition, we need the single real parameter x, where —co < = < 0.

One can form higher-dimension groups by taking tensor products of lower-dimension
groups. For example, R" (the n-fold tensor product of R) is a group of dimension n, since
we need n real parameters xz;, one for each copy of RR.

Note that we can also have groups for fields other than just the real numbers. For
example, consider C, the group of complex numbers under addition. To parameterise a
point in € we need one complex number z, which we can write as z = z + iy in terms of
two real numbers x and y. Thus we would say that € has complex dimension 1, and hence
real dimension 2.

In this course, we shall be principally interested in continuous groups. In fact, we shall be

interested in continuous groups with some extra structure, which are known as Lie groups.

2.2 Lie Groups

A Lie group of real dimension n is a set G that

1. Is a continuous group
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2. Is an n-dimensional differentiable manifold

In other words, a Lie group is a continuous group in which the elements g in some patch
can be parameterised by a set of n real numbers, or coordinates. In the overlap region
between two patches, the first set of coordinates must be differentiable functions of the
second set, and vice versa. This is exactly the notion of a differentiable manifold as we
encountered earlier in these lectures.

The group combination law, and the taking of the inverse, should be smooth operations,

ie.

(a) The coordinates of the product ¢’ = gg’ of two group elements g and ¢’ should be
differentiable functions of the coordinates of g and ¢’, provided that all three elements

g, ¢ and ¢” lie in a patch where a common set of coordinates can be used.

(b) The coordinates of g~! should be differentiable functions of the coordinates of g,

1

whenever g and g~ are covered by the same coordinate patch.

As in our earlier discussion of differentiable manifolds, we will encounter examples of
Lie groups where more than one coordinate patch is needed in order to cover the whole
group. In fact, this is the case in general; only in exceptional cases, such as IR", can one
use a single coordinate patch to cover the entire group.

A simple example of a Lie group where more than one coordinate patch is required is
provided by the group U(1) of all unit-modulus complex numbers. Obviously, such numbers
g form a group under multiplication (since if g; and go have unit modulus, then so does
g192). We can view the elements g as points on the unit circle 22 + y? = 1 in the complex
plane, where z = x+1iy. This shows that the group U(1) of unit-modulus complex numbers
is isomorphic to the circle, S'. That is to say, there exists a 1-1 map between elements of
U(1) and elements of S*, which preserves the group combination law.

Locally, therefore, we can parameterise U(1) by means of a coordinate 6, by writing
group elements g as

g=-¢e"?, 0<6<2r. (2.5)

We now get into all the familiar issues that we encoutered in our earlier discussion of
manifolds; we cannot use @ to cover all of S, since it suffers a discontinuous jump from 2
to 0 as one crosses the point (x,y) = (1, 0) on the circle. Asin section 1.3.1, we can introduce
a second coordinate § that starts from § = 0 at (z,y) = (—1,0), and cover S* in patches

using 0 for all points except (x,y) = (1,0), and @ for all points except (z,y) = (—1,0). Since,
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as in (1.4), we have § = 6 + 7 in the upper semicircular overlap (z > 0), and § = § — 7 in

the lower semicircular overlap (x < 0), it follows that we have
el = —et? (2.6)

in the entire overlap region. One easily verifies that all the conditions of differentiablity,
etc., are satisfied.

It will be useful at this stage to enumerate examples of some of the most common
groups that one encounters in physics and mathematics. Before doing so, we give one
further definition:

A subgroup H of a group G is a subset of GG for which the following properties hold:

1. The identity element e of G is contained in H

2. If hy and ho are any elements of H, then hy o hsy is an element of H, where o is the

group composition law of G.

3. If h belongs to H, then so does h™!, where A~ means the inverse of h according to

the group inverse law of G.
If H is a subgroup of G, this is denoted by

HCG. (2.7)

2.2.1 General linear group, GL(n,IR)

Let M(n,IR) denote the set of all real n x n matrices with non-vanishing determinant. As
we have already remarked, these matrices form a group under multiplication, which is called
the General linear group. The requirement of non-vanishing determinant ensures that each
matrix A has an inverse, A~!. Clearly, the requirement of non-vanishing determinant is

compatible with the group combination law, since if det A # 0 and det B # 0 then
det(AB) = (det A)(det B) # 0. (2.8)

The dimension of GL(n,R) is equal to the number of independent components of a general

n X n real matrix, namely n?

. Obviously, the requirement of non-vanishing determinant
places a restriction on the parameters, but since it is in the form of an inequality (det A # 0)
rather than an equality, it does not reduce the number of parameters needed to characterise

a general such matrix.
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One can also consider the complex analogue, GL(n,C), of n xn complex matrices of non-
vanishing determinant. Now, we need n? complex parameters to specify a general GL(n,C)

2

matrix, and so this group has complex dimension n?, implying real dimension 2n2.

2.2.2 Special linear group, SL(n,R)

Many of the groups that arise in physics and mathematics are subgroups of GL(n,IR) or
GL(n,C). The simplest example is the Special linear group, SL(n,R). This is defined to
be the set of all real n x n matrices A with unit determinant, det A = 1. Obviously this is
a subgroup of GL(n,R). It is also obvious that the requirement det A = 1 is compatible
with the group combination law (matrix multiplication), since if A and B are any two real

matrices with unit determinant, we have
det(AB) = (det A)(det B) = 1. (2.9)

The condition det A = 1 imposes 1 real equation on the n? parameters of a GL(,IR)
matrix, and so we have

dimSL(n,R) =n? — 1. (2.10)

In a similar manner, we can define SL(n,C), as the subgroup of GL(n,C) comprising

all n X n complex matrices with unit determinant. This will have real dimension
dimSL(n,C) = 2n? — 2, (2.11)

since the condition det A = 1 now imposes one complex equation, or in other words 2 real

equations, on the 2n? real parameters of GL(n,C).

2.2.3 Orthogonal group, O(n,R)

These groups are very important in physics, since, amongst other things, they describe
rotations in n-dimensional Euclidean space. O(n,R) is defined as the subgroup of GL(n,R)

comprising all real n x n matrices A for which
AAT =1, (2.12)

where AT denotes the transpose of the matrix A. Obviously these have non-vanishing

determinant, since

det(AAT) = (det A)(det AT) = (det A)*> =det1=1, (2.13)
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and hence det A = £1. Furthermore, it is obvious that the orthogonality condition (2.12)
is compatible with the group multiplication law, since if A and B are orthogonal matrices,
then so is (AB):

(AB)(AB)T = ABBT AT = AAT =1. (2.14)

Furthermore, if A is orthogonal then so is A™!, and so the inverse also belongs to the subset.
Usually, unless specified otherwise, it is assumed that the orthogonal groups are com-

posed of real orthogonal matrices, and so O(n,R) is commonly written simply as O(n).
The dimension of O(n,R) can be calculated by counting the number of independent

equations that the orthogonality condition
AAT —1=0 (2.15)
imposes on a general n x n real matrix. Since AA” is a symmetric matrix,
(AATYT = (ATYT AT = AAT | (2.16)

it follows that (2.15) contains the same number of independent equations as there are in an

n X n symmetric matrix, namely in(n + 1). Therefore we have
dimO(n,R) =n? —in(n+1)=inn - 1). (2.17)

Note that we can also consider the subgroup SO(n,R) of O(n,R) comprising all n x n
orthogonal matrices with unit determinant. We saw above that the orthogonality condition
implied 0A = +1, and so now we are restricting to the subset of orthogonal matrices A for
which det A = +1. Obviously this is compatible with the group multiplication law, and the
group inverse. Since there are no additional continuous equations involved in imposing the

restriction det A = +1, the dimension of SO(n,IR) is the same as the dimension of O(n, R):
dimSO(n,R) = jn(n—1). (2.18)

Note that SO(n,IR) is a subgroup of SL(n,R), but O(n,R) is not.

2.2.4 Unitary group, U(n)

The unitary group U(n) is defined as the subgroup of GL(n,C) comprising all complex n xn
matrices A that are unitary:

AAT =1, (2.19)

where AT = (AT)* is the hermitean conjugate of A (i.e. the complex conjugate of the

transpose). Again, one easily checks that the unitary condition is conpatible with the
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matrix multiplication law of group combination, and with the inverse. By counting the
number of independent equations implied by the restriction (2.19), one straightforwardly

sees that the real dimension of U(n) is given by
dimU (n) = n?. (2.20)

Note that the case n = 1 corresponds to complex numbers of unit modulus; we already

met the group U(1) in our earlier discussion.

2.2.5 Special unitary group, SU(n)
Un) matrices A satisfy AAT = 1, and so
det(AAT) = (det A)(det AT)* = (det A)(det A)* = |det A> =1, (2.21)

meaning that det A is a complex number of unit modulus. If we impose the further restric-
tion

det A =1, (2.22)

this says that the phase of the complex number is 0, and therefore it imposes 1 further
real condition on the components of the U(n) matrix. Since the condition det A = 1 is
obviously compatible with the law of multiplication and the group inverse, we see that the
group of special unitary n X n matrices, denoted by SU(n), is a subgroup of U(n) with real
dimension given by

dimSU (n) =n? — 1. (2.23)

2.2.6 Some properties of SU(2)

We have already seen in detail for the ablian group U(1) how it is isomorphic to the circle,
S1. The general U(1) group element g is written as g = e, where 6 is the coordinate on
51, and all the usual caveats about needing to cover S! in patches apply.

Now, let us look at a slightly more complicated example, namely the non-abelian group
SU(2). For many purposes SU(2) is a very useful example to study, because it encapsulates
many of the generic features of any non-abelian Lie group. For now, we shall focus in
particular on the global structure of the SU(2) group manifold. As we shall see, it is
isomorphic to the 3-sphere S3.

To begin, consider the group U(2) of unitary 2 x 2 matrices, whose elements we may

A= o b 2.24
_<c d)’ (2:24)
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where

G- .

In other words the complex numbers (a, b, ¢,

ST

) are subject to the conditions
ad +bb=1, ce+dd=1, ac+bd=0. (2.26)

The first two equations are real, and so each imposes 1 real condition on the 4 complex
numbers. The third equation is complex, and so it imposes 2 further real conditions, making
4 real conditions in total. Thus we are leaft with 8 — 4 = 4 real numbers characterising the
general U(2) matrix, in accordance with our earlier counting.

Now we impose the further condition det A = 1, in order to restrict to the subgroup

SU(2). This implies the further condition
ad —bc=1. (2.27)

(This is only one additional real condition, since the previous U(2) conditions already
ensured that det A must have unit modulus.) Thus SU(2) has dimension 8 —4 — 1 = 3.

Multiplying (2.27) by ¢, and using (2.26), we can easily see that
c=-b, d=a, (2.28)

and in fact that these two equations, together with (2.27), imply the three equations in
(2.26). The upshot, therefore, is that we have parameterised the most general SU(2) matrix

a— (! 2.29
_<—b a)’ (2:29)

aa+bb=1. (2.30)

in the form

where

Thus A is written in terms of the two complex numbers a and b, subject to the single real
constraint (2.30).
If we now write a = 21 +ixo and b = x3 + ixy in terms of the four real numbers

(1,9, x3,24), we see that the constraint (2.30) is
el aliai=1. (2.31)
This can be interpreted as the the restriction of the coordinates (x1, x2, x3,24) on R? to the

unit 3-sphere. Since we have established a 1-1 mapping between points in S® and points
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in SU(2), and the mapping is clearly compatible with the group combination rule (matrix

multiplication), we have therefore shown that SU(2) and S% are isomorphic,
SU(2) = 53, (2.32)

Having seen the isomorphisms U(1) & S* and SU(2) = S3, one might wonder whether
any of the other Lie groups are isomorphic to spheres. In fact one can show that S* and S°
are the only spheres that are isomorphic to group manifolds. We shall return to this point

later.

2.3 The Classical Groups

At this point, it is appropriate to give a complete description of all the so-called Classical Lie
groups. To do so, recall from section (1.4.1) that we introduced the notion of a set of basis
vectors F; on a vector space. (We shall use indices i, 7, ... here to label the basis vectors,
rather than a,b,... as in section (1.4.1).) We may now define the various classical groups
in terms of transformations between bases for an n-dimensional vector space V', together

with possible additional structure imposed on the vector space.

2.3.1 The General Linear Group

This group requires the least structure, and is defined purely in terms of transformations

of the vector space itself. Thus we may define a new basis E/, related to E; by
El = A’ E;, (2.33)

for some set of n? quantities A;7, which may be thought of as the components of an n x n
matrix A with rows labelled by ¢ and columns labelled by j.

In order that the change of basis be non-singular, so that we can invert to get E;
expressed in terms of E}, it must be that det A # 0. Thus we define GL(n,IR) as the
group of all real n X n matrices with non-vanishing determinant; it is the group of arbitrary
non-singular changes of basis for a real n-dimensional vector space.

In a similar fashion, we can define GL(n,C), comprising n X n complex matrices A
with det A # 0, as the group of arbitrary non-singular transformations of an n-dimensional

complex vector space.

2.3.2 The Special Linear Group

To define the special linear groups, we form the n-fold antisymmetric tensor product of

the vector space V. To do this we proceed in a manner analogous to our discussion of
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differential p-forms, and take the tensor product of p copies of V', and then perform a total

antisymmetrisation over the indices labelling the basis vectors:

EiyN---NEy, = E; ®---& E;, + even permutations — odd permutations .

P

Then, we define ) as the n—-fold antisymmetric product:
Q= NEoN---NEy.
This is called the volume element of the vector space. Clearly we can write this as

1 ..
0= 551”2'%" E,NEi, N---NE;

n

where we define 12

"™ = 41, and conversely
E,NEy, N N---NE;, =¢€iipi, 2,

where we also define e1..,, = +1.

If we again perform a linear transformation to a new basis E!, given by

Bl = A/ E;
then the quantity €2 transforms to
Q/ _ 1 1112+ +0n El E/ El
— m 13 'il /\ i2 /\ A /\ 'in
= E ghzin Ailjl Ai2]2 cee Ain]]Ejl A Ej2 VANCEIAN Ejn
— E 611@2 in Ailjl AZ.2]2 . Ain]] 5j1j2---jn Q7
— (et A)Q.

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

We may therefore define the subsets of GL(n,R) or GL(n,C) matrices that preserve the

volume element (), i.e. for which

QO = (det A)Q =Q,

(2.40)

by imposing the requirement that det A = 1. Thus we have the groups SL(n,IR) and

SL(n,C) of volume-preserving linear transformations on the n-dimensional real or complex

vectore space.
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2.3.3 Metrics on Vector Spaces

The remaining classical groups are defined by introducing an additional structure on the
vector space V', namely a metric. This is closely analogous to our discussion of metrics in
differential geometry, with the main difference here being that we do not necessarily insist
on having a symmetric metric.

We define a metric on the vector space V as a function on V' which provides a rule for

associating a number f to each pair of vectors u and v in V:

(u,v) = f. (2.41)

If V is a real vector space then f is real, whilst if v is a complex vector space then f is in
general complex.

The metric is required to satisfy the following properties:

(u,v+w) = (u,v)+ (u,w),
(u—l—’u,w) - (u7w) + (v,w) )
(u,Av) = A(u,v), (2.42)

for any vectors (u,v,w), and for any number A. In the case of a real vector space, A is real,

whilst for a complex vector space A is complex. There is one further condition, which takes

one of two possible forms. We have either Bilinear Metrics or Sesquilinear Metrics, which
satisfy one or other of the folliwing two conditions:

Bilinear metrics: Au,v) = A(u,v), (2.43)

Sesquilinear metrics: Au,v) = X (u,v). (2.44)

Note that the possibility of a sesquilinear metric arises only in the case of a complex vector

space, whilst bilinear metrics can arise either for real or complex vector spaces.

The components of the metric, with respect to a basis F;, are defined by

For any pair of vectore u and v, expanded in terms of components as u = u*FE;, v = v'E;,

we have
Bilinear: (u,v) = (u'E;, v Ej) = u'? (B, Ej) = giju'v? (2.46)
Sesquilinear: (u,v) = (uiEi,vjEj) = '’ (F;, E;) = gijaivj , (2.47)
(2.48)
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Under a change of basis E, = A;7 E; we have 9i; = (B, E}) = (A*Ey, A;*E,) and hence

Bilinear:  g;; = AF A g (2.49)
Sesquilinear: g, = AR A g (2.50)
We can now define subgroups of GL(n,IR) or GL(n,C) matrices by choosing a metric

structure on the vector space V, and requiring that the GL(n) matrices leave the metric g;;

invariant.® Thus we have metric-preserving subgroups if

Bilinear: Alk Ajé 9ke = Gij » (2.51)

Sesquilinear: Ak Ajz Gkt = Gij - (2.52)

We must verify that GL(n) matrices subject to these conditions do indeed form a group;
namely that products of such matrices also satisfy the metric-preserving condition, and that

the inverse of any such matrix also satisfies the condition. For example, for the bilinear

case, if we suppose that A and B satisfy (2.51), then we shall have
(AB)* (AB);* gre = A" Bn" A" By gie
= A" Ajn 9mn
9ij » (2.53)
which proves that (AB) satisfies (2.51) too. Multiplying (2.51) by (A™1),,* (A71),7 gives
Imn = (A_l)mi (A_l)nj 9ij » (2.54)

which shows that A~! also satisfies (2.51). The proofs for the sequilinear case are almost
identical.

We can now classify all the possible metric-preserving groups by classifying all the
possible canonical forms for non-singular metrics g;;. In other words, we want to enumerate
all the genuinely inequivalent possible choices for g;;, modding out by equivalences such as

mere relabellings of indices, or whatever.

2.3.4 Canonical Forms for Bilinear Metrics

In the bilinear case we can write an arbitrary metric as a sum of its symmetric and anti-

symmetric parts:

9i5 = 9Gj) + 9jij) » (2.55)

8We shall adopt the convention that when we refer simply to GL(n), we mean in general that this could
be GL(n,R) or GL(n,C).
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where, as usual, we use the notation
965 = 3(9ij + 953) » 9ij] = 5(9i5 — 95i) - (2.56)

We can then discuss the symmetric and antisymmetric parts separately.
For the symmetric part, we note that under a change of basis E} = S;/ E;, the metric
transforms to

g;j = Szk Sje ke , (2.57)

and for a symmetric g;; one can always find a choice of S;/ that diagonalises ggj. By rescaling
the new basis vectors, we can then make these diagonal entries equal to +1 or —1. Thus in

general we can assume that we have

1

9j) = : (2.58)

-1
where there are p entries +1 on the upper part of the diagonal, and ¢ entries —1 on the
remaining lower part of the diagonal, where p + ¢ = n. For much of the time, we shall be
concerned with the case where p = n and ¢ = 0, so that g;; = d;;.
If g;; is antisymmetric, then in order to be non-singular it must be that the dimension

n is even. To see this, suppose g7 = —g, and take the determinant:
det g7 = det(—g) = det(—1) det g = (—1)" det g. (2.59)

But from the properties of the determinant we have det g7 = det g, and thus we conclude
that if detg # 0 we must have (—1)" = 1, and hence n must be even, n = 2m. By an
appropriate change of basis the antisymmetric matrix can be cast into a block-diagonal

form:

0 M
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By rescaling the new basis vectors, we can choose A\; = 1 for all i, giving

0 1
-1 0

0 1
-1 0

Thus gj;;) has m eigenvalues +1, and m eigenvalues —1.
Alternatively, by permuting the basis elements the antisymmetric metric can be cast

into the anti-diagonal form

9lij) = : (2.62)

-1
2.3.5 Canonical Forms for Sesquilinear Metrics

These arise only for complex vector spaces. We can write a general sesquilinear metric as a

sum of its Hermitean and anti-Hermitean parts:

(H) , (AH)

9ij = 9i; "+ 9 (2.63)
where
H _ AH _
oD =g+ 3, 0 = g — gi0) - (2.64)

However, since multiplication of an anti-Hermitean matrix by i gives an Hermitean matrix,
there is effectively no distinction to be made between the two cases, and therefore we may
assume without loss of generality that the metric is Hermitean. By change of basis, such a

matrix can be diagonalised, and after rescaling its diagonal entries can be made to be +1.

86



Thus we may take the sesquilinear metric g;; to have the canonical form

1

gij = N (265)

-1
where there are p entries +1 in the upper diagonal, and ¢ entries —1 in the remaining lower

part of the diagonal, where p + ¢ = n. Commonly, we shall be concerned with the case

where ¢ = 0, and hence g;; = d;;.

2.3.6 The Metric-Preserving Groups

Having established the canonical forms of the possible non-degenerate metrics on the vector
spaces, we see that there are three classes of examples of metric-preserving groups. These

are:

Metric Group Notation

Bilinear Symmetric Orthogonal | O(p,¢;R), O(p, ¢;C)
n=p-+gq

Bilinear Antisymmetric | Symplectic | Sp(2m;IR), Sp(2m;C)

n=2m

Sesquilinear Symmetric | Unitary Ul(p,q;C)

n=p+q

We shall now describe each of these three classes of metric-preserving groups.

Orthogonal Groups:

The bilinear symmetric metric has the form (2.58). If we consider the case p =n, ¢ =0,

forn which g;; = d;;, the metric-preserving condition is
AR A 5 =64, (2.66)

which in matrix language reads

AAT =1. (2.67)

This is just the condition for orthogonal matrices that we discussed previously. When the

matrices are real, we abbreviate the general notation O(n, 0;IR) to simply O(n). The group
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O(n) is called the the compact form of the orthogonal group in n dimensions. This means, as
we shall discuss later, that the group manifold has finite volume. The various possibilities
O(p,q;R) with p and ¢ both non-zero correspond to different non-compact forms of the
orthogonal group in n = p + ¢ dimensions. Again, when we are talking about the real
case we usually omit the IR, and just call it O(p,q). The non-compact forms have group
manifolds of infinite volume.

As well as the ¢ = 0 compact form, for which O(n) is just the rotation group in n
dimensions, the case when p = n — 1, ¢ = 1 also arises commonly in physics; this is the
Lorentz group in n dimensions, which is the group of symmetries of Minkowski spacetime
in special relativity. Thus, the usual four-dimensional Lorentz group is O(3,1).

We saw already, by counting the number of conditions implied by (2.67), that O(n) has
dimension n(n — 1). The counting is identical for all the non-compact forms. For the
complex case, there is just a doubling of the real dimension, since every component that

was previously real can now be complex. Thus we have

Dim(O(p,¢;R)) = 4n(n—1),
Dim(O(p,q;C)) = n(n—1), (2.68)

where n = p + q.

For all the orthogonal groups one can see by taking the determinant of the defining
equation (2.51) that det A = +1 for all matrices. Once can always impose the further
condition det A = +1, yielding the special orthogonal groups SO(p, ¢;IR) and SO(p, ¢;C)
as subgroups of O(p,¢;IR) and O(p, ¢;C) respectively. They have the same dimensions as
the orthogonal groups, since no continuous parameters are lost when one imposes the sign

choice det A = +1.

Symplectic Groups:

For these, the canonical form of the metric is given by (2.62), with the matrices satisfying
Ai* A gre = gij - (2.69)

Since the left-hand side is automatically antisymmetric for any A (and so, of course, is

1

the right-hand side), it follows that this equation imposes 5n(n — 1) constraints on the n?

components of an arbitrary matrix A. Thus we have the real dimensions

Dim(Sp(n;R)) = Zn(n+1),
Dim(Sp(n;C)) = n(n+1), (2.70)
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where n = 2m. The symplectic groups as defined here are all non-compact.

One can also impose a unit-determinant condition, giving subgroups SSp(n;R) and
SSp(n;C) of Sp(n;R) and Sp(n;C) respectively. Again, since the Sp(n;IR) and Sp(n;C)
matrices already satisfied det A = =£1, the imposition of the unit-determinant condition
implies no loss of continuous parameters, and so the dimensions of SSp(n; R) and SSp(n;C)

are again $n(n + 1) and n(n + 1) respectively.

Unitary Groups:

The canonical form of the sesquilinear symmetric metric is given by (2.65). If we consider

the case p = n, ¢ = 0, then g;; = d;;, and the metric-preserving condition (2.52) just becomes
AR A S =04, (2.71)

which in matrix notation reads AAT = 1. By complex conjugating, this becomes
AAT =1, (2.72)

which is just the unitary condition that we met previously when describing the matrices
U(n). This is the compact form of the unitary group; the more general possibilities U (p, ¢;C)
(which we usually just write as U(p, q¢) with p+¢ = n are non-compact forms of U(n). They

all have real dimension given by
Dim(U(p, q)) = n?, (2.73)

where n = p + ¢, as we discussed previously for U(n).
One can impose the unit-determinant condition, yielding the subgroup SU(p,q) of
U(p,q), which has
Dim(SU(p,q)) = n* — 1, n=p+q. (2.74)

We close this section with a few further remarks:

(1) We have considered groups defined for vector spaces over the real numbers and the
complex numbers. One can also consider vector spaces over the field of quaternionic
numbers.? Some of the multiplication operations must be handled with care, since
quaternion multiplication is itself non-commutative. Groups based on quaternion-

valued matrices can be defined.

9These are ordered pairs of complex numbers, generalising the description of complex numbers as ordered
pairs of real numbers. See my lecture notes for 615 Mathematical Methods, for a detailed discussion of the

four division algebras; real numbers, complex numbers, quaternions and octonions.
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(2) Once can consider matrices that are both unitary and symplectic. Thus we may define

the so-called Unitary-symplectic group USp(2m) of matrices that are simultaneously

in U(2m) and Sp(2m;C):

USp(2m) = U(2m) N Sp(2m;C). (2.75)

(3) Some of the classical groups of low dimension are isomorphic, or homomorphic.'?

Some examples are:

Dimension 3:

Dimension 6:

Dimension 10:

Dimension 15:

2.4 Lie Algebras

2.4.1 Introduction

SU(2) = SO(3) = USp(2)
SU(1,1) = SO(2,1) = Sp(2,;R) = SL(2,R)

SO(4) = SU(2) x SU(2)
SO(3,1) = SL(2;T)
S0(2,2) = SL(2;R) x SL(2;R)

SO(5) 2 USp(4)
S0(3,2) = Sp(4; R)

SO(6) = SU(4)
S0(4,2) = SU(2,2)
SO(3,3) = SL(4,R) . (2.76)

So far, we have been looking at the structure of the entire set of matrices that form a group

under multiplication. For many purposes, it is not necessry to study the entire group—it is

sufficient to look at the elements in the neighbourhood of the identity.

The local structure of the group can be probed by looking at elements of the form

g=1+¢€X, (2.77)

0Two groups are homomorphic if there is a mapping between them that preserves the group combination

law, but the mapping is not 1-1.
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where || << 1, and so we can work just to order e. The object X is called a generator
of the group. The local structure in the neighbourhood of the identity is called the Lie
Algebra.

Commonly, we denote a Lie group by the symbol G, and its associated Lie algebra by

The elements of the full group can be obtained by exponentiating the generators of the
Lie algebra. For a compact group (where the group manifold has a finite volume), one

usually takes the generators to be Heritean matrices,
X, =X, a=1,...,dimG. (2.78)
The group elements can then be obtained by exponentiation:
g=-exp(ia® X,). (2.79)

Here, the quantities a® are parameters, which can be thought of as coordinates on the group
manifold.
Let us consider the example of the group SU(2). The three algebra generators can be

taken to be the Pauli matrices,

0 1 0 —i 1 0
01—<1 O), JQ—(i O), U3—<O _1>. (2.80)

We can write the SU(2) group elements as
g=-exp(ia®a,). (2.81)

Writing a® = an®, where n® is a unit 3-vector, n®n® = 1, we can use the multiplication
algenra of the Pauli matrices,

0a0p = Ogp 1+ 1€gpe 0 (2.82)
to show that

2 n? nb (5ab 1+ i€ UC)

(@%0,)? = a*(n0,)? =a
= a?n®nbiyl1=a?1, (2.83)

and hence, using the definition of the exponential

o0
1
expX = Y — X", (2.84)
m=0
we get
g=-exp(ia®o,) =1cosa+in*o, sina. (2.85)
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Comparing with our previous parameterisation of SU(2) matrices in equation (2.29), where

the compex numbers a and b were subject to the constraint |a|? + |b|> = 1 in (2.30), we have

a=cosa+inssina, b= (ng+in;) sina. (2.86)

2.4.2 Structure Constants
Consider the group elements
A=A B =M, (2.87)
obtained by exponentiating the a’th and b’th generators with parameter A\. Then
ABA-1B~1 — idXa dAX,,—iAXa —iAX,
= (1+iAX, — sA2X2 + - ) (L+1iAX, — $A2XE + 1) ¥
(1—iAX, — 2N°X2 4+ (1 —iAX, — N2 X7 + )
= 1-XN[X,, Xy + O\, (2.88)

where [X,, X3] is the commutator, [X,, Xp] = X, Xp — X3 X,. Since ABA™! B~ must also

be an element of the group, we must be able to write it as
ABA! B71 = A Xe (2.89)
for some constants 3¢. If we take A — 0, we have
1M [X,, Xp) =1 +18°X,, (2.90)
and so 3¢ is of order A2. We may write
B = —fa' A, (2.91)

since (¢ denotes a set of constants that depend upon the choice of generators X, and Xj.

Thus we have

[Xa, Xp] =1 fapXe. (2.92)

The constants f,;,¢ are called the structure constants of the Lie algebra.
The structure constants f,;¢ have the following important properties. Firstly, since

[Xa, Xp] = —[Xp, X4, we must have antisymmetry on the first two indices,

fa® = —foa"- (2.93)
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Secondly, we may observe that the generators obey the Jacobi Identity:
[Xa, [Xp, Xc]] + [ X, [Xe, Xa]] + [Xe, [Xa, Xp]] = 0. (2.94)

This is obvious from the matrix representation; one just has to write out the total of
12 terms, and see that there is a pairwise cancellation. It is also true from the abstract
definition of generators, as a consequence of the associativity of the group multiplication
law. Thus, one can derive the Jacobi identity from expanding out

M Xa ( A X ei)\Xc) ( A Xa (ei/\Xb) A Xe (2'95)

to order \3. Substituting [X,, Xp] = i f.p°X. into the Jacobi identity (2.94), we get

fbcd fade + fcad fbde + fabd fcde =0. (296)

This is also commonly referred to as the Jacobi identity.
Let us consider the example of the Lie Algebra of SU(2), which, as we have seen, is
generated by the the three Pauli matrices o, given in (2.80). Specifically, we shall choose a

normalisattion where we take as our SU(2) generators
Xo=130,. (2.97)

From elementary computations, summarised in the multiplication rules (2.82), it follows
that
(X, Xp] = i€ape Xe, (2.98)

(There is no distinction between upstairs and downstairs indices in this case.) Comparing

with (2.92), we see that the structure constants for SU(2) are then given by

fabC = €abc - (299)

In our SU(2) example, we do not need to distinguish between upstairs and downstairs
indices on the structure constants. In general, the indices are raised and lowered using the

so-called Cartan-Killing Metric. It may be defined as follows:!!

gab = =% fac” foa® - (2.100)

" Commonly, the Cartan-Killing metric is defined to be (—2) times the one defined here. This is only a

matter of convention, and it is not important, as long as one is consistent in one’s choice. The advantage
of the convention we are choosing is that the metric is positive definite (all positive eigenvalues) for a
compact group. The normalising factor is chosen so that for SU(2), with fus° = €qbe, we shall have gqp =
*%Eacd €bde = %eacd €bed = Oab, SO that indeed we can, as stated above, avoid the distinction between up and
down indices in this case. It should be emphasised also that the Cartan-Killing metric is completely distinct
from the metrics on the vector spaces that we discussed previously when giving the classification of classical

groups.
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It is obviously symmetric in a and b. (Note that this is constructed from the structure
constants in their “natural” up and down positions.) Upstairs indices may be lowered using
the Cartan-Killing metric, and, assuming its inverse ¢ exists, indices may also be raised.

Using the Cartan-Killing metric, we may lower the upstairs index on the structure constants
fab©, giving
fabc = Ged fabd' (2101)

One can show, using the Jacobi identity (2.96), that fu. is totally antisymmetric in its
indices. From its definition it is clearly antisymmetric in ab, so it remains only to show it

is antisymmetric in one other pair, say a and c. This is shown by the following calculation:

~2fape = —2fu" gac = fur® fae! fos®
= —fa fed fes®
= foe faa® for®+ fea® foa’ fof©
= faa foe® for® = fae® fof® foa’
= fad foe" fo® = fad” foe fos©
= —fad Fr? foc® = Fad feor® foct
= —20ae foc* = —2fpca - (2.102)

Thus we see that fqp. = — fepa, Which was to be proved. We can, of course, express the total

antisymmetry of the structure constants in the equation
Jabe = f[abc] : (2103)

2.4.3 Simple and Semi-Simple Lie Algebras

First, we define the notion of an Invariant Subalgebra. Let Y be any generator in a Lie

algebra G. This has an invariant subalgebra H if, for every generator X in H,
(X,Y] =X, (2.104)

where X’ is another generator in H, for any Y in G. Note that X’ can be zero. Obviously
the entire Lie algebra G fulfils the requirements for being an invariant subalgebra, and so
it is useful to define a Proper Invariant Subalgebra as an invariant subalgbra that is strictly
smaller than G itself.

We may now define a Simple Lie Algebra, as being a Lie algbera that has no proper

invariant subalgebras.
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A special case of an invariant subalgebra is an Abelian Invariant Subalgebra. If X is an
element of an abelian invariant subalgebra, If Y is any element in the full algebra G, then

there is an abelian invariant subalgebra H if, for every generator X in H,
[X,Y]=0 (2.105)

for all Y in G. Each such generator X corresponds to a U(1) factor (or in the non-compact
case an IR factor) in the Lie algebra G. If X, for some given value of a, is such an abelian

generator then it follows from [X,, Xp] =1 f4¢ X that

fat=0 for all b and c. (2.106)

In this case it follows that the Cartan-Killing metric

Jab = _%facd fbdC (2107)

has a zero eigenvalue, since we shall have g,;, = 0 for all b. Thus if g,; has p zero eigenvalues
then there are p abelian invariant factors U(1) or IR in the Lie algebra. Note that if there
are any such factors we shall have det(gq, = 0, and so the metric is not invertible.

A Lie algebra with no abelian invariant subalgebras is called a Semi-Simple Lie Algebra.

At the level of the Lie group, we may say that a semi-simple Lie group has no U(1) or
R factors. A simple Lie group is not a product of subgroups.

A consequence of the above is that when discussing the classification of Lie groups we

may concentrate on the simple Lie groups.

2.4.4 Properties of the Lie Algebra Generators

Here, we re-examine the defining conditions for our classification of Lie groups, but now
at the infinitesimal level of the Lie algebra. Recall that we encountered three classes of
metric-preserving classical groups, corresonding to having a bilinear symmetric, bilinear
antisymmetric, or sequilinear symmetric metric on the vector space on which the matrices
act.

To avoid the risk of confusion with the Cartan-Killing metric, let us for now use the
symbol G;; to denote the invariant metric on the vector space. Thus for the bilinear metrics,

we had that the matrices A;/ acting on the vector space preserve G;; according to
AP A Gr=Gy; . (2.108)

In matrix notation, this reads

AGAT =@G. (2.109)
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For the Lie algebra, we can express A via exponentiation of the Lie algebra generators X,
as

A= X (2.110)

For generators close to the identity we can take the coefficients a® to be very small, and

work only to linear order in a®. Thus we may write
A=1+4+ia"X,, (2.111)

neglecting the higher-order terms from expanding the exponential in a Taylor series. The

metric-preserving condition (2.109) becomes
(1+ia*X,)G(A+ia X;) =G, (2.112)
which, to linear order in « gives
G+ia" (X, G+GX)=aG, (2.113)
and hence
X, G+GXI'=0. (2.114)

In the case of a bilinear symmetric metric, and choosing the compact form where it has all

positive eigenvalues, the canonical form was just G = 1, and hence (2.114) becomes just
X,=-XxI, (2.115)

i.e. that X, is antisymmetric. This, then, is the condition on the generators of O(n) or
SO(n). Since we are taking the generators to be Hermitean, this means they are imaginary.
For bilinear antisymmetric metrics, the canonical form for G is given in (2.62). With
this choice for G, the equations (2.114) give the conditions on the generators X, for Sp(2m).
Finally, for sequilinear symmetric metrics, the metric-preserving condition (2.71) reads,
in matrix notation,

AGAT =@. (2.116)
In the infinesimal form for generators A = ¢'®" Xa close to the identity, this becomes
X,G-GX]=0. (2.117)

The canonical form for G is is given in (2.65). For the compact case (i.e. SU(n)), we have

G =1, and then (2.117) becomes simply

X, =X], (2.118)

a

i.e. X, is Hermitean. (Recall that this is what saw in our SU(2) example discussed previ-

ously.)
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2.5 Roots and Weights
2.5.1 Notation

We have been thinking of the generators X, as being matrices, but we can instead think of
them as linear operators acting on states (as in quantum mechanics). We can then consider

the matrix elements [X,];; of the generators X, defined by
[Xalij = (il Xal7) (2.119)
in a Dirac Bra and Ket notation, where the states are normalised such that
(il7) = di; - (2.120)
An arbitrary state |¥) can be expressed as a linear combination of states |i):
W) = a; li). (2.121)
i
The expansion coefficients a; can be read off by multiplying by (j:
GIW) =3 ai (li) = 3 ai 0 = a5, (2.122)
i i

whence we have

W) = Z i) (i|¥) . (2.123)

Since this is true for any state |U), we have the Completeness Relation
> iy (i = 1. (2.124)
i
We can now calculate the action of X, on |i), obtaining

Xali) = > 13) (1 Xali) = 3 1) [Xalji - (2.125)

This shows that the states |j) can be thought of as row vectors, with the matrix [X,];;

associated with the linear operator X, acting by matrix multiplication from the right.

2.5.2 The Example of SU(2)

Here, we shall review some basic results about the construction of the representations of
the SU(2) algebra. This will probably be very familiar from quantum mechanics. The
purpose of doing this is that the procedures used for studying SU(2) will generalise to any

Lie algebra, as we shall see in subsequent sections.
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We saw in 2.4.2 that the structure constants of SU(2) are given by fu,¢ = €ape- Thus if

we call the generators J,, with a = 1,2, 3, then we shall have
[J1,J2] =1J3, [J2, J3] =11, [J3, Ji] =1Js. (2.126)

These are, of course, just the familiar commutation relations of the angular momentum
generators in quantum mechanics.

Suppose we have an N-dimensional irreducible representation of SU(2). (This is what is
known in quantum mechanics as a spin-(2/N 4 1) representation.) Since the operators J, are
Hermitean, we can choose a basis of states in the representation such that .J3 is diagonal.!?

Since the number N of states in the representation is finite, and they are all, by construc-
tion, eigenstates of J3, it follows that there must exist a state with the largest eigenvalue,
say A. Let us denote this state by |\, &), where we have introduced « as an additional index

which will label distinct states having the same eigenvalue ), in case it should turn out that

there is a degeneracy. By definition, we shal have
J3 A ) = A\ a). (2.127)
We can always orthonormalise these states so that
(A alX\, B) =dap - (2.128)

We now define

e = % (1 i), (2.129)

From (2.126), it follows that we shall have the commutation relations
[J3, J+] = £J4, [y, J_]=J3. (2.130)

On a state |p), with eigenvalue p, i.e. J3|u) = p|p), we have

J3Ji |y = [Ja, ] |p) + Jx |pm)
= J4 [p) + pds [
= (pE1)|p). (2.131)

As will be familiar from quantum mechanics, the operators J4 are called raising and lowering

operators, since they increase or decrease the J3 eigenvalue.

2We cannot, of course, simultaneously have J; or J» being diagonal, since J; and Jo do not commute
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Since we are assuming |\, &) has the highest possible eigenvalue in the N-dimensional

representation, it follows that we must have

Jy ’)‘704> =0,

(2.132)

since if it were non-vanishing, it would by virtue of (2.131) have the larger eigenvalue A+ 1,

which is impossible.

We know from (2.131) that J_ |\, «) is a state with J3 eigenvalue A — 1, and so we may

write

J- ‘)‘70‘> = N)\(Oé) ’)‘ - 1,0é> )
for some constant Ny(«). The Hermitean conjugate of (2.133) is given by
(N alJy = Ny(a) (A —1,q].

(Recall that J; and Jy are Hermitean, so J = J+.) We therefore have

NAB)NA(@) (A =1L, BIA = L,a) = (A BT - |\ a)
= ABI4 J- A @)
= (A B3 [A )
= AN BIA )

— Adag.

It then follows from (2.128) that we can choose
(A—=1,8A—1,a) =03,
and that we can choose N)(«) to be real, independent of «, and given by
N)\(Oé) = N)\ = \/X
Note that we shall also have
T —1a) = —JiJ ha) = —— e, T ] M)
+ ) - Ny +J=1N - Ny +5 = )
1

1
= A =—A|A

= N)\’)\,Oé>.

Note also that Ji raises or lowers the J3 eigenvalue without changing a.
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Proceeding by considering J_ |\ — 1, «), the same argument as above shows that there

are orthonormal states |\ — 1, «) satisfying
J_A=1,a) = Nx_1 |A—2,a), Jr A =2,a) = Nyx_1 [A—1,a), (2.139)
for certain real constants N)_;. Continuing, we shall have
J_IAN=k,a)=Ny_ [A—k—1,a), JrA=k—=1,a) = Nx_ [N —k,a). (2.140)
The constants IV, are determined as follows:
Nip = NipgQA—kald—Fkp)
= (\—kalJy J_]A—k,f)
= A=k of[Jr, JJA=Fk,B) + (AN—Fk, o J- T |A =k, )

= A—ka|J3AN=kB) +Ni_p 1 A—k+1LaA—k+1,5)
= A—k+Ni - (2.141)

Thus we have
N = ),
N)%fl_N)% = )\_17
N>2\—2_N>2\—1 = )‘_27

N} ,— N}, = A—k. (2.142)
Thus by adding these, we get

Ni, = (k+DA—3k(k+1)
= Lk+1)2A—k). (2.143)

Eventually, if we act sufficiently many times with J_, we must reach a state (or states)
in the representation with the lowest possible eigenvalue under J3. (This must be the case,
since we have assumed there are only a finite number of states in the representation.) Thus

for some integer n, it must be that we have a state (or states) |\ — n,a) such that
J_|A—n,a) =0, (2.144)
and therefore Ny_,, = 0. It follows from (2.143) that
A=1in. (2.145)
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Since n is an integer, we see that the highest J3 eigenvalue A is an integer or half-integer,
and that all the other states in the representation have Js eigenvalues p that are likewise
either all integers or all half-integers. These J3 eigenvalues lie in integer steps between +%n
and —%n. The highest eigenvalue A = %n is usually called the Spin, and denoted by j.
There are in total (2j + 1) eigenvalues in the range between j and —j.

Since the raising and lowering operators change the J; eigenvalue without changing «,
it follows that different values of a correspond to disjoint and independent representations
of SU(2). For a so-called Irreducible Representation, there is just one «, and so we don’t
need to carry around the a label any more.

We normally denote the full set of states in an irreducible representation of SU(2) by
|m, j), where j is the spin that labels the representation, and m is the J3 eigenvalue of each
state;

J3|m, jy =m|m,j). (2.146)
We have seen that m can take integer-spaced values in the interval
—j<m<j. (2.147)

The total number of states in the spin-j representation is therefore (25 + 1).

To use the terminology that we shall be using for the more general discussion of repre-
sentations for arbitrary Lie algebras, we call |j, j) the Highest Weight State in the irreducible
representation, and the state |m, j) is said to have weight m.

The states |m, j) can be shown to be orthogonal, in the sense that
(m,jlm’, i’y =0, unless m = m’ and j = 5. (2.148)

The orthogonality for different values of m is easy to see. We just sandwich Js in the inner

product, and use the facts that
Jy|m', i)y =m!|m’, j'), (m, j|J3 =m (m,j|. (2.149)

(The second equation follows just from Hermitean conjugation of Js|m,j) = m|m,j),
noting that J3 itself is Hermitean.) Thus we can evaluate (2.148) two ways, depending on

whether we act with J3 to the left or the right, leading to
(m —m') (m, jlm', ') = 0. (2.150)

This immediately shows that (m,j|m/,j’) = 0if m # m/.
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It remains to prove that (m,jlm,j’) = 0 unless j = j'. Without loss of generaliity, we

may assume j’ > j, and consider

Gy gl I 15+ 1,5") = Naci (5.,415,5) (2.151)

where N)_j can be read off from (2.143). Being careful about the meaning of the symbols,

we see that A = 5/ and A — k = j + 1, which then implies that
Nip=3k+1)2A—k) =3 - NG +i+1). (2.152)

This is manifestly non-zero (since J’ > j, and both j and j" are non-negative). On the other

hand the left-hand side of (2.151) is clearly zero, since (3, j| J— is the Hermitean conjugate

of J4 |7,7), which is obviously zero since |j,j) is the highest-weight state. Therefore we
conclude from (2.151) that

(4:4l3,5") = 0. (2.153)

By analogous calculations, making repeated applications of J, and J_ operators, we

can similarly show that

(m, jlm,j') =0 (2.154)

for all values of m, which is what we wanted to establish.'® Having established the orthog-

onality of the states, we can now normalise them so that they satisfy

<m7j|m/7j,> = 5mm/ 5]]/ . (2155)

2.5.3 Arbitrary Simple Lie Algebras

Consider an arbitrary compact simple Lie algebra G. Suppose we have matrices X, in some
particular representation D of G, which generate the algebra, [X,, Xp] =1 f;p¢X.. We can

normalise the generators so that

tr(X] Xp) = Mgy, (2.156)

13There is in fact a much simpler proof of the orthogonality (2.154), which follows by inserting the
Hermitean operator J2 = J,J,. This operator (the “total angular momentum,” in the language of quantum

mechanics) has the property JZ|m,j) = 5(j + 1) |m, 5), and hence we have
(m, g J* [m, §) = GG + 1) (m, jlm, j') = j' (' +1) (m, jlm, j')
by acting either to the right or the left. Thus we have
(' =G +35+1) (m, jlm, j') =0,
which shows (2.154) when j # j'. The reason why we have not used ths proof is that it does not generalise

to the case of arbitrary Lie groups, unlike the proof we have presented earlier.
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for some positive constant A.

We can divide the generators X, into two categories:

1) A maximal set of m mutually-commuting Hermitean generators that can be simulta-
neously diagonalised. These are denoted by H;, and they are called the generators of

the Cartan Subalgebra. They are the generalisation of J3 in the SU(2) algebra.

2) The remaining generators are organised into raising and lowering operators denoted
by Eg&, where the subscript & on a given such generator Ez denotes an m-component
vector label for that generator, whose significance will be explained below. The gen-

erators Fz are the generalisation of Jy in the SU(2) case.

A decomposition of this type can always be made. Having organised the generators in

this fashion, we will have the following structure of commutation relations:

[H;,H;] =0, [H;, Eg] = o; Eg,
[EtiaEE] :N&’EE&+E7 lf&#_ﬂa

[E&,E,&] = Zai Hz . (2157)

Since the basis and normalisation of the Cartan generators is not yet specified, we can

arrange things so that

tI‘(HZ‘Hj) = k‘D 5ij 5 (2158)

where kp is some constant that depends upon the representation D.

The meaning of the vector subscript @ on a generator Egz is now apparent. Because
of the way we have organised them, the generators Ez are all eigenstates with respect to
all m of the Cartan generators H;, in the sense given on the top line of (2.157): Each
commutator [H;, E], for each value of the index i labelling the Cartan generators, gives a
constant multiple of E5 itself. That constant is called «;, and the set of these eigenvalues, or
weights, is assembled into an m-component vector @ that is used as a label for the particular
generator Fg:

a=(a1,09,...,0m). (2.159)

The total set of generators therefore comprise the m Cartan generators H;, and the re-
maining ones Fz, where the vector label @ on each such generator indicates the eigenvalues,
or weights, of that particular generator under the Cartan generators.

The meanings of the other commutation relations in (2.157) are as follows. Firstly,

the relations [H;, H;] = 0 obviously just say that the Cartan generators commute amongst
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themselves. The commutation relation for [Fg, Eﬁ] shows that if one picks any two of the
raising and lowering operators, EFz and Ez, then their commutator will in general produce
another generator whose eigenvalues under the Cartan generators are @ + 5 This can be

easily understood, by writing out the Jacobi identity:

0 = [H[Es Egll + [Ea, [Eg Hi]l + [E, [Hi, Eg]]
= [H;,[Es, Egll — [Eg, [Hi, E5]] — [[Hi, Eal, Ej]
= [Hi,[Ea Egl] — Bi [Ea, E5] — i [Ea, Eg]. (2.160)
Hence we have
[H;, [Eg, E5l] = (i + 5) [Ea, Eg]] - (2.161)

The constant /\/077 5in the commutation relation (2.157) is dependent on how the generators
are normalised. Note that it might be that for a given pair of generators Ez and E 5 that
their commutator vanishes, in which case ./\/&7 5 will be zero. The calculation in (2.160) and
(2.161) shows that if their commutator is non-vanishing, then the weights of the resulting
generator E i will be @ + H . This should make clear why it is that we can think of the
generators Fz as raising or lowering operators; when one commutes Fz with any other
generator Fz one gets another generator whose weight is the original ﬁ boosted by the
addition of @. Whether we call a given Ey a raising operator or a lowering operator will
depend upon the way in which we classify the weights & as being positive or negative. We
shall explain this in detail later.

There is one exception to the above, and that is if one considers the commutator of
generator Ez with its “negative,” namely E_g. The calculation in (2.160) and (2.161) is
still valid, and it now shows that [Eg, F_z| will have zero weights under all the Cartan
generators. This means in fact that [Ez, E_z] will be a linear combination of the Cartan
generators themselves. As it turns out, the coefficients in this sum over Cartan generators
are as given in the final line of (2.157).

Before proceeding with the general discussion, let us return briefly to our earlier example
of SU(2), to see how it fits in this general framework. We organised the generators J;
satisfying (2.126), into the combinations Ji and J3 as in (2.129), and found that they

satisfied (2.130). Casting this into our general framework, we shall have
Hi=Jy, FEi=J,, FE_=J_. (2.162)

Note that since we have just one Cartan generator in this case, our vectors & labelling

the raising and lowering generators E5 are just 1-component objects, i.e. numbers. The
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generators satisfy
[H1, 7] = B, [Hi, E_1] = —E_1, [Er, E_1] = Hy, (2.163)

which can be compared with the general set-up in (2.157). One should be careful to under-
stand the notation here. We call the Cartan generator Hp, with its “1” subscript simply
indicating that it is the first (and only!) Cartan generator of SU(2). The “1” subscript
on Fp, on the other hand, denotes that E; has weight 1 under the Cartan generator. The
lowering operator E_; has subscript —1 because it has weight —1 under the Cartan gen-
erator. In this SU(2) example the algebra is so small (only three generators in total) that
we aren’t seeing any of the [Eg, Eﬁ] ~E; 5 type commutation relations, because we don’t
have enough generators to play with. As we proceed, we shall look at more complicated
examples that have more “beef.”

To proceed, it will be useful to look at how the generators act on states in a represen-
tation. Suppose we denote some representation of a Lie algebra G by D. Since the Cartan
generators H; commute, we can organise the states so that each one is simultaneously an
eigenvector under each Cartan generator. Let us represent a state in the representation by
|iZ, D), satisfying

H; |fi, D) = p; |fi. D). (2.164)
What we have done here is to label the state by its weights i under the Cartan generators.
The vector [i is, not surprisingly, called the weight vector of the state.

First, we shall consider a very particular representation, called the adjoint representa-
tion. Every algebra has an adjoint representation; its dimension (i.e. the number of states
in the representation) is just equal to the dimension of the algebra itself. In fact we can
simply use the straucture constants f,;, themselves to construct a matrices of the adjoint
representation. Let Y, be a matrix whose components are (Y, )¢, where b labels rows and

c labels columns, given by

(Ya)bc = ifacb . (2.165)

Evaluating the matrix commutator, we shall have

[Ya, Yol = (Ya)% (¥5)% — (Y3)% (Ya)“a
= —fae" fod® + foe© fad"
= —Jae" fod® = foe© faa®
= fae* fa°
= —fap® fed”
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= i fat (V)% (2.166)
and so we have
Yo, Vo] =1 fap“ Ye. (2.167)

(We used the Jacobi identity (2.96) in getting from the 3’rd to the 4’th line above.)

We can look at this also at the level of the states. In the adjoint representation we can
associate a state with each generator X, of the Lie algebra G, and denote it by |X,), for
a=1,...,dim G. With the generators normalised as in (2.156), we define the states |X,)
such that

(Xo| Xp) = A1 tr(X1X3) = s - (2.168)

From the discussion above, we see that the matrix elements of the generators will then be
given by
(Xa| Xp| Xe) = =i fap” (2.169)

where we have normalised the states so that (X,|X3) = ;. Using the completeness relation

| X¢) (Xc| = 1, we then have

Xa’Xb> = ‘XC> <Xc’Xa’Xb>
= |XC>(Ya)Cb

= ‘Xc> (ifabc)
= [[Xa, X3)), (2.170)

since [Xg, Xp] =1 fap® Xc. Thus we have
Xo | Xp) = [[Xa, Xp]) - (2.171)

Of the total of n =dim G states in the adjoint representation, we know that m =rank G

of them, which we can denote by |H;), will have zero weights:
H;|Hj) = [[H;, Hj]) = 0. (2.172)

The remaining n — m states will all be associated with the raising and lowering generators

Eg, and so we denote these by |Ez). They therefore satisfy
H;|Ez) = |[Hi, Eg]) = ai |Eg) - (2.173)

Note that the raising and lowering generators are not Hermitean, and in fact the Her-

mitean conjugate of a raising generator gives a lowering generator, and vice versa. (Recall
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that in the SU(2) example we had Jl = Jo, since Jy = (J; £iJ2)/V?2, and J; and Js

themselves are Hermitean.) To see this, consider
[Hi, Es]' = (HiEs)' — (Eq H)'
~ B H] - ]

— ELH,— H,E.

— —[H;, EL) (2.174)
and so we have from [H;, Ez] = a; Ez that
[Hi, EL] = —a; EL. (2.175)
It is therefore natural to write
EL=FE_ 4. (2.176)

As usual, we normalise the states to have unit length, and so we shall have

<EO7|E§> = 50775 = 50¢1/@1 5@2/@2 T 5Oémﬁm )
(Hi|H}) = 6. (2.177)

We shall return in a moment to considering the states in an arbitrary representation
D of the Lie algebra G. Before doing so, let us just recapitulate that in the discussion
above, we have considered specifically the states |H;) and |Eg) of the n-dimensional adjoint

representation. They satisfy the eigenvalue equations
Hi|H;) =0,  H;|Ez)=0a;|Eg). (2.178)

For a general representation, the eigenvalues of the various states with respect to the Car-
tan generators H; are called the weights of the states. In the special case of the adjoint
representation that we have been considering, the weights are called the roots. Thus we say

that |Eg) has the root vector a.

2.5.4 Arbitrary irreducible representation

Now let us return to considering an arbitrary irreducible representation D of the Lie algebra
G. The state |ji, D) satisfies

and i is called the weight vector of the state. By a standard manipulation that is precisely

analogous to the one we performed for SU(2), we see that the generator Ez acts as a raising
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or lowering operator on this state:
H; Eglii,D) = [H;, Eg]|ii, D)+ Eg H;|fi, D)
= azE&|ﬁ7D>+MlEo7|ﬁ7D>

= (wi+ ) Eg|fi, D). (2.180)
Of course we shall also have
H; E_g|it, D) = (pi — i) E_g |fi, D) . (2.181)

Thus, as with SU(2) we then define |fi £ @, D) as the states with weights (7 + &), and
write

Eigli, D) = Naglfi +d, D). (2.182)

The N.gj are constants to be determined. As usual, the states will all be normalised to
unit length.

Now, in the adjoint representation, the state |Ez) has weight &, i.e. H; |Ez) = o |Eg).
Therefore E_g5|Ez) has weight zero, and so it must be a linear combination of the zero-
weight states |H; ):

E_z|Eg) = ci|H;). (2.183)

We can determine the constants c¢; by noting that
<H]’ E*& ‘Eo?> =C; <HJ‘HZ> =C; 5ij =Cj. (2184)
Thus we have

¢j = (Hj|E_g|Ez) = (Ea| Es|Hj)
= (Ea|[Ea, Hj|) = —(Ea| [Hj, Eal)
= —o;(EalBg) = —ay. (2.185)

Since by definition E_z |Ez) = | [E_g, Egz]), we have proved that
|[E-a. Egl) = —aq |Hi), (2.186)

and hence that
[Ea, E_g| = o Hi, (2.187)

which we had asserted previously in (2.157).
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Now, let us return again to the consideration of an arbitrary representation D of the

Lie algebra G. Consider

<ﬁ7 D| [Eﬁa Ef&] |ﬁ7 D>

a; (fi, D|Hi|fi, D)

= 04l <ﬁ7D‘ﬁ7D>

= a-jfi. (2.188)
On the other hand, we have
(7, D|[Es, E_g] |, D) = (i, D| Fs E—g|fi, D) — {fi, D| B_g Ex |fi, D)
= |N_aal®> — INaal, (2.189)
(see (2.182)), and so we have
a-ji=|N_gz*—|Nal* (2.190)

We also have

N_ap = (i—a,D|E_glfi, D)
= (ii—d,D|EL|i, D)
= (i, D|Es|ji — a, D)
= Napa, (2.191)
and so (2.190) gives
|Naji-al” = INagl*=a- i (2.192)

Since we are assuming that the representation D is finite dimensional, it must be that
if we apply E5 or E_g repeatedly we must eventually get zero, since each application adds
or subtracts @ to the weight fi. (This is the direct analogue of the argument for SU(2) that
repeated application of J; or J_ on a finite-dimensional state must eventually give zero.)

Suppose, then, that for some non-negative integers p and ¢, we have that
[+paD)£0,  |i-qd,D)+0, (2.193)

but that
Eslfi+pd D) =0, E_gli-qd,D)=0. (2.194)

It therefore follows from (2.182) that

Najpa =0, N_gpqa=0, (2.195)



and then using (2.191) the second of these equations implies
&ji—(g+1)a =0 (2.196)

Now we can solve for the coefficients Ng 7, by following a strategy that is again precisely

analogous to the one we used for SU(2). From (2.192) we can write

|Najrp-nal’—0 = a-(i+pad),
INajirp-2al” — WNagrp-val® = @ (@+@@-1)a),
INaal> = [Nagsal” = a-(i+ a),
\Naj-al® — [Nagl> = a-fi,
\Naj—gal® = [Naj-(g-nal® = a-(i—(g—1)a),
0 |Najgal? = @ (i-qd). (2.197)
Adding up all these equations gives
0 = (p+q+D)a-ji+3a°pp+1)—q(g+1)]
= (p+q+D[a-i+3d%(p-q), (2.198)
and hence we conclude that
2% - i
= -0, (2.199)

In particular, note that the right-hand side is an integer or half-integer.

One can straightfowardly obtain explicit expressions for all the Ng ; from the above
equations, but actually we shall not need them. The main result, which will be of very
great importance, is (2.199).

First, we apply the general result (2.199) to the special case of the adjoint representation.
This is especially important because the weights i are the roots of the algebra. We shall
in general denote roots by early letters in the Greek alphabet, usually & and 5 Since
H; |Eg> =0 |Eg>, it follows from (2.199) that

2a -
agﬂ = _(p_Q) =m, (2200)

a
where we have simply defined the integer m = ¢ — p. On the other hand, we could equally
well have applied E, ; repeatedly to |Ez), rather than applying E.gz repeatedly to \Eﬁ~>,
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and so we must also have

20;—5 — @ =)=, (2:201)
Multiplying (2.200) and (2.201) gives
cos? 0 = Lmm’, (2.202)
where .
cosf = \2\\5\ , (2.203)

and 6 is the angle between the root vectors @ and 5 Since m and m’ are integers, we have

the very important result that only certain very special angles are possible:

mm/ 0
0 90°
1| 60°, 120°
2 | 450, 135°
3 30°, 150°
4 0°, 180°

An implicit assumption in the discussion above was that for each root vector & there
is a unique operator FE5z. In other words, we have been implicitly assuming that every
generator has a different root vector. This is easily proved, by supposing that there could
exist two independent generators Ey and EZ with the same root vector @, and deriving a
contradiction. Thus we begin by supposing that there exist independent states |Egz) and
|EZ) satisfying

H;|Ez) = o; |Eg), H; |EL) = o; |EL) . (2.204)
As usual, we can always choose our two hypothetically independent states so that

(EL|Eg) = 0. (2.205)

(If they were not orthogonal, we could define an orthogonal pair by the standard procedure
of taking linear combinations — this is sometimes called Gram-Schmidt orthogonalisation.)
Repeated application of Eygz to |E%) shows, using (2.199), that

2a-a

== —(p—q)=2. (2.206)

However, we can furthermore show that E_g|EL) = 0, and hence that ¢ = 0. To see

this, we note that it must be a zero-weight state (since @ — & = 0), and so
E_g|Ef) = ¢ |Hj) (2:207)
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for some constants ¢;. Therefore we have

¢ = (Hi|E_5|Ef)
= (B3| Es|H))
= (Ejl[Ea, Hi])
= —a; (EG|Eg)
= 0, (2.208)

where the last step follows from the orthogonality (2.205). Thus we have proved that ¢ = 0,
and so (2.206) gives
2= —p, (2.209)

which is a contradiction since by definition p is non-negative. Hence we conclude that there

is only one generator with any given value for its root vector.

2.5.5 SU(3) as an example

It will be helpful at this stage to consider an example in detail. After SU(2), which, as we
have seen, is not complicated enough to illustrate all the features of the general situation,
the next simplest example is SU(3). The algebra has dimension 8, and it can be represented
by 3 x 3 Hermitean traceless matrices. A convenient basis is the set of so-called Gell-Mann

matrices Ag, which are an SU(3) generalisation of the Pauli matrices of SU(2). They are

given by
01 0 0 -1 0
AN = 1 0 01, =1 0 0],
0 0 0 0 0 0
0 01 0 0 —i
Ay = 0 0 0], Ad=(0 0 0],
1 0 0 i 0 O
0 0 0 0 0 O
g = 00 1], M=10 0 —i],
01 0 0 i O
1 0 0 1 0 O
1
A3 = 0 -1 0/, d=—=|0 1 0 |. 2.210
3 8 \/g ( )
0 0 O 0 0 -2

By inspection, we can see that these provide a basis of Hermitian traceless 3 x 3 matrices.

The two written on the bottom line, A3 and Ag, are diagonal, and so they obviously commute
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with each other. In fact these are the maximal set of mutually-commuting Hermitian
matrices, and so we can take them to define the Cartan subalgebra.
Defining generators T, = %)\a, we obtain the SU(3) algebra with a canonical normali-

sation of the structure constants,
[To, Ty =1fapTe . (2.211)

Obviously, we can work out all the f,;,¢ if we wish, simply by slogging out the evaluation of

all the commutators. Note that the T, have been normalised so that
tr(T,T}) = $6ap - (2.212)

It should also be noted that 77, 75 and T3 generate an SU(2) subalgebra. This is obvious
from the fact that A1, Ao and A3 are just of the form

Ao = (J“ 0) , (2.213)

0 1

where o, are the 2 x 2 Pauli matrices. Note also that the pair (A4, \5) are very similar to
the pair (A1, A2), except for their non-zero entries being in the 13 and 31 positions in the
matrix, rather than 12 and 21. Likewise the pair (A5, \g) are also similar, excet that they
have their non-zero entries instead in the 23 and 32 positions in the matrix.

As we already indicated, we shall take the Cartan subalgebra generators H; to be
H, =1T3, Hy=1T3. (2.214)

Since there are two of them, SU(3) has rank 2.

The Gell-Mann matrices provide a 3-dimensional representation of SU(3). As we know
from our earlier discussion, we can just think of the group SU(3) in terms of 3 x 3 special
unitary matrices acting on a 3-dimensional vector space, which, at the infinitesimal level,
becomes Hermitian traceless matrices acting on the vector space. We can also view the
vectors in the vector space as states.

A convenient basis of vectors for the 3-dimensional representation of SU(3) is therefore

simply
1 0 0
Vi=|[0], Vo=|(1]1], Vs=1|[0]. (2.215)
0 0 1

Their eigenvalues under Hy and Hy can be read off by inspection, since H; and Hy are

diagonal. Thus the eigenvalues under (Hy, Hs) for the vectors Vi, V2 and V3 are

Vii (gke). Var (k). Var (0.-). (2.216)



We can write the states corresponding to Vi, V5 and V3 as

Vi=|

[N

i) Ve=l-ggm), V=10,-50), (2.217)
where we are labelling the states by their weights under (Hp, Hz). This three-dimensional
representation is called the 3 of SU(3). It can also be called the Defining Representation,
since it is the basic representation arising from the definition of the SU(3) algebra in terms
of Hermitean traceless matrices acting on a three-dimensional complex vector space.

We can plot the weights of the states in the 3 of SU(3) on the plane, with axes cor-
responding to the weights under H; and Hj respectively. The result, called the Weight
Diagram for the 3 representation, is depicted in Figure 4 below.

H,

Figure 4: The weight diagram for the 3 representation of SU(3)

We have already seen from the general discussion that the raising and lowering operators

FE5 must take us between states in a representation. Thus we are led to define

010
Bio = 5(Ti+il)=2510 0 0],
000
000
Eop = 5(Mi—iT)=2511 0 0/,
000
00 1
E, s = %(Tg—l—iﬂ): 00 0],
. 00 0



0 0 0
E, 5 = %(Tg—iﬂ): 00 0f,
e 10 0
0 0 0
E, ;5 = %(Tg,—l—in;): 00 1],
22 00 0
0 0 0
E, 5 = %(Tg,—in;): 0 0 0 (2.218)
2 01 0

The action of these matrices on the three basis vectors V; defined in (2.215) is easily

seen by inspection. For example, we have

Eo1gVi= 5 Va. (2.219)

The reason for writing it with the (—1,0) 2-vector subscript is therefore clear; it has taken

a state with weight i = (%, ﬁ) into a state with weight (—%, 2—\1/5) We know in general
that

Eg|fi) = Naj|ii + d), (2.220)
and so in this case we can deduce that the operator E_; o has weight & = (—%, 2—\1/5) —

(3, 2—\1/5) = (—1,0). One can similarly check for all the other combinations defined in (2.218)
that the subscript label is simply the root vector @ associated with that particular raising
or lowering operator.

What we have now achieved is to reorganise the original 8 generators T, of SU(3) into
two Cartan generators H;, and the 6 raising and lowering operator combinations Fgz in

(2.218). One can also directly verify by slogging out the commutators that these satisfy
[H;, Eg] = oi E . (2.221)
The six vectors @ are the six root vectors of the SU(3) algebra. They are given by
a=(1,0), (-1,0), (3.3v3), (-3 -3v3), (-4iv3), (3.-3Vv3). (2.222)

They can be plotted in a weight diagram too. Since we are talking here of the adjoint
representation, for which the weights of the E5 are called the roots, the resulting weight
diagram in this case is called the Root Diagram for SU(3). It is depicted in Figure 5 below.
As can be seen, the six roots lie at the vertices of a regular hexagon. Note, in particular,

that the angles between adjacent roots are all 60°. This is consistent with our findings from
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Figure 5: The root diagram for SU(3)

equation (2.202), which led to the discrete list of possible angles between root vectors given
in the table below (2.202).

Note that the adjoint representation, being eight-dimensional, can also be denoted as
the 8 of SU(3). We could plot all eight weight vectors in a weight diagram too. It will,
obviously, consist of the six points in the root diagram shown in Figure 5, together with
two extra points sitting at the origin, corresponding to the zero-weight vectors of the two

Cartan states |H;) and |Ha).

2.5.6 Simple Roots

To begin, we introduce the notion of ordering weight vectors. To do this, we first define

positive and negative weight vectors.

o A weight vector fi = (u1, 2, .., im) is said to be positive if its first non-zero compo-
nent, working from the left, is positive. This is written i > 0. Similarly, /i is said to
be negative, written as i < 0, if its first non-zero component, working from the left,

is negative. If all its components are zero, ji has zero weight.

This definition might seem somewhat arbitrary, and indeed it is. For example, there is
no pre-ordained or unique choice of what order to write the Cartan generators in. If we
chose a different ordering for them, then this would amount to shuffling around the order of

the components in all the weight vectors. What was a positive weight vector for one choice
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of labelling of the Cartan generators could be a negative weight vector for another choice of
labelling. One could also perform redefinitions of the Cartan generators that amounted to
more than just rr-ordering them. One could make any non-singular redefinition involving
taking linear combinations of the original set of Cartan generators, with real coefficients,
and get another equally valid set.

It is true, therefore, that the definition of positivity and negativity of weight vectors is
in that sense arbitrary. The point is, though, that in the end it doesn’t matter. Although
the specifics of which weight vectors may be positive, and which negative, can change under
a change of basis for the Cartan generators, all the statements and theorems we are going
to use will work equally well for any choice. The only important thing is that one must fix
on a basis and then stick with it.

If ii and ¥ are two weight vectors, then we say that i > v if fi — 7/ is positive. Note that
if i > v, and U > X, then it follows that i > X. This is easily proven from the definition of
positivity.

We are now in a position to define the highest weight in a finite-dimensional represen-
tation, as the weight that is greater than the weights of any of the other states in the
representation. As in the case of SU(2), there is in general a unique highest-weight state
in the representation. Starting from this state, the entire set of states in the representation
can be built up, by acting with the lowering and raising operators Fg.

Now that we have defined the notion of positivity and negativity of weights, we are final
in a position to define which amongst the E5 are raising operators, and which are lowering
operators. Recalling that the roots vectors @ are just the weights of the non-zero weight

states in the adjoint representation, we define:
e 5 is a raising operator if @ is positive, and Eg is a lowering operator if @ is negative.

Since, as we saw, E; = F_g, and since obviously if & is positive then —@& is negative, it
follows that the full set of root vectors splits into equal-sized subsets of positive root vectors
and negative root vectors. For every positive root vector @, there is an equal and opposite
negative root vector —a.

Note that if we act with E5 on the highest-weight state in a representation, then we
shall necessarily get zero if & is positive. This follows from the fact that, as we saw earlier,
acting with Ez on a state |{i) with weight /i gives a state proportional to |+ &) with weight
i+ a. Therefore if a > 0 it follows that [+ & > fi, so if |{i) was already the highest-weight

state in the representation, then | + &) cannot exist.
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Next, we define the notion of a simple root:

e A simple root is a positive root that cannot be written as the sum of two positive

roots.

The simple roots determine the entire structure of the group.
An important theorem that we can easily prove is that if & and H are ant two simple
roots, then H — @ is not a root. The proof is as follows:

If 5 — @ were a positive root, then from the identity
F=a+(F-a (2.223)

we would have that B can be written as the sum of two positive roots, which contradicts
the fact that 5 is a simple root. Conversely, if 5 — @ were a negative root, then from the
identity

—,

a=p+(@-0) (2.224)

we would have that & can be written as the sum of two positive roots, which contradicts
the fact that & is a simple root. If 5 — & is neither a positive root nor a negative root, then
it is not a root at all. This completes the theorem.

Having established that 3 — @ is not a root if roots @ and 5 are simple roots, it follows
that we must have

E_z|E:) =0. (2.225)
Now recall the master formula (2.199), i.e.

2

Q1

E——-a). (2.226)

where the states |u + pd) and |u — gd@) exist but |u+ (p+ 1)d@) and |u — (¢ + 1)d&) do not,
where p and ¢ are non-negative integers. Applying this to the state |Eg> in the adjoint

representation, so i = 3, we have from (2.225) that ¢ = 0, and hence

= —p, (2.227)

for any pair of simple roots @ and 5

Knowing the integer p for each pair of simple roots & and 5 determines the angles
between all the simple roots, and the relative lengths of the simple roots. Recall once again
that p is the integer that tells us how many times we can commute Fz with Eg before we

get zero.
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We can, of course, interchange the roles of & and B in the above discussion. If the state

|G+ p/ @) exists, but |3+ (p' + 1) @) does not, then we shall have

-

24 -
a-b__y (2.228)
32
Multiplying (2.225) by (2.228), we find that
il P
cosh =—L1/pp, ‘T: =, 2.229
: &~V (2:229)
where 6 is the angle between @ and 5 Note that we have
T ) =
§§9<7T, ie. a-p4<0. (2.230)

(We cannot have § = 7, because that would imply 5 was a positive multiple of —@, which
is impossible if @ and 5 are both positive. In fact from (2.229), the allowed angles between

a pair of simple roots are

s 27 3 5%8
= — — — — 2.231
0 27 3 9 4 9 6 9 ( 3 )
or, in degrees,
6 =90°, 120°, 1359, 150°. (2.232)

We can prove that the simple roots have the following properties:

(1) The simple roots of a Lie algebra are linearly independent.

To see this, label the simple roots by @,. Note that a here is an index that labels each
simple root; let us suppose there are N of them. Suppose that the simple roots were

linearly dependent. Then, for some coefficients ¢,, we would have the relation

N
D ada=0. (2.233)
a=1

Now, in general some of the constants ¢, will be positive, and some will be negative.

Divide the summation into two separate sums over these cases, and define

y= Z Cq Qg 7= Z (_Ca) Ay . (2.234)

a with cq>0 a with cq<0

Equation (2.233) is now expressed as

(2.235)

<y
Il
8y
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Now clearly, from the construction, § and Z" are both positive, since they are each the

sum of positive (in fact simple) roots with positive coefficients. From (2.235) we get

P=q-Z. (2.236)
Since we have shown above that & - H < 0 for any pair of simple roots, its follows that
/- Z < 0. Thus from (2.236) we obtain a contradiction, since %2 > 0, with equality if
and only if = 0, which it clearly cannot be. The conclusion is that the supposition
(2.233) of a linear dependence among the simple roots is false. Hence, we have proved

that the simple roots must all be linearly independent.

Any positive root ¥ can be written as a sum of simple roots d,, with non-negative

integer coefficients kq, i.e. 7 =3, kg dq.

If ¥ is itself simple, the statement is obviously true. If 4 is not simple, then it must
be possible to split it as ¥ = 1 + 42, where 4 and 7, are positive roots. (Recall
that the simple roots are those positive roots that cannot be written as the sum of
positive roots. Therefore, by definition, any positive root that is not simple must be
expressible as a sum of positive roots.) If either 4} or 4 is not simple, then split them
again. Continuing iteratively, one must eventually end up with ¥ decomposed as a

sum over simple roots, with non-negative integer coefficients.

The number of simple roots is m =rank G

To prove this, we first note that since the simple roots are m-component vectors (the
weights of the corresponding root generator under the m Cartan generators H;), there
can be at most m of them. This is an immediate consequence of Property 1 above,

where we showed that the simple roots are all linearly independent.

Suppose, now, that there were less than m simple roots. We could then choose a basis
for the Cartan generators so that all the simple roots had a 0 as their first component,
ie. @ = (0,ag,...,qy,) for every simple root @. It would then follow that the first
component of every root vector would be zero, since they are all expressible as sums

over simple roots. In other words, we would have that
[H1, E5] =0 (2.237)

for every raising or lowering operator Ey. Of course we also have [Hy, H;] = 0 for
all 2. The conclusion would then be that H; would commute with every generator in

the Lie algebra G. In other words, H; would be a generator of an abelian invariant
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subalgebra. But at the outset of our discussion of the classification, we agreed to
exclude such cases, and only classify the simple Lie algebras. Therefore, we conclude
that for a simple Lie algebra G, the number of simple roots is equal to rank G, i.e. it

is equal to the number of Cartan generators.

Let us see now in more detail how we express the positive roots as sums of simple roots.
In the process, we shall see how one builds up the entire Lie algebra from the knowledge of
the simple roots.

Our task, then, is to discover which vectors
¥=> kgd (2.238)
a

are positive root vectors in the algebra, where & are the simple roots, and kg are non-
negative integers.'* The of all the positive roots, together with their negatives, form what

is called the Root System of the Lie algebra G. It is useful to define
k=Y kg, (2.239)
a

which is called the level number of the particular root 4 that is constructed in (2.238). We
can then in turn consider roots at level 1, level 2, level 3, and so on.

First, we note that the roots at level 1 are just the simple roots themselves, since it
must be that all the k5 are zero except for one of them, which equals 1.

At k = 2, there would appear to be two possibilties. We could satisfy (2.239) with k£ = 2
either by having all k5 = 0 except for one simple root, say &, for which kg, = 2. Or, we
could satisfy it by having all k5 = 0 except for two different simple roots, say d@; and ds
with k5, = ks, = 1. The first of these possibilities does not arise; in other words, there is
never a positive root given by 2d;, where @y is a simple root. The proof is easy. To get a

state with weight 2d; in the adjoint representation, we would build it as Eg, |Eg, ). But
Eé‘l’E&1> = ‘[E&17E&1]> = 07 (2240)

since any generator commutes with itself.
At k = 2 we are left, therefore, with the possibility that we make a state Eg,|Fs,),

where @7 and ds are two different simple roots. We now use the master formula

S = —(p—q) (2.241)

MHopefully by now it will be completely clear what is meant by equation (2.238). We are using & as a

generic vector label to denote the set of all simple roots.
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(see (2.200)). Recall that we showed previously that if &; and @ are simple roots, then
dlg — @y is not a root. Therefore ¢ = 0 in (2.241). If @ - A2 < 0 (i.e. it is strictly less then

zero), then @; + da must be a root, since (2.241) therefore implies that p > 0, and hence
p>1. (2.242)

Recall the significance of p; we know from the construction of the master formula that
alg + p dy is a root, but ds + (p+ 1)d; is not. Without further knowledge about the details
of the algebra we don’t know in this case, where we are supposing that @ - @y < 0, whether
p=1or p>1, but we do know that p is at least 1, and so we know that ds + @; is a root.
If in fact p > 1, then we would have that ds 4+ 2@; is a root also. Of course the knowledge
of the details of the algebra that we need in order to make a definite statement about the
value of p is to know exactly what @; - @ is equal to, and what a2 is equal to.

For k > 3 the process of building up the root system obviously gets more and more
complicated. Suppose we have found all the roots up to and including level £ = n. A vector
¥+ a at level k = n+ 1 is obtained by acting on a state at level kK = n having root vector v
with the simple root generator E5z. Is this new vector ¥ + @ a root vector? Again, we use
the master formula, to get

2a -5
L =—(p—q). (2.243)

Qy

Unlike at level 2, we no longer know in general that ¢ = 0, since 7 is not simple. But we can
determine ¢ by looking at all the roots we have built up so far at levels k¥ < n. Knowing ¢,
and knowing the value of @ - 4, we will therefore be able to calculate p. If p > 0 (strictly),
then we will know that ¥ + & is a root.

Proceeding in this way, we can build up all the roots at the level £k = n 4+ 1, and then
pass on to the next level, Kk = n + 2. We continue this process until all the roots have been
found. The endpoint of the process is when one has reached some level number at which
one fails to find any further roots. The procedure terminates here, and teh task is complete.

It should be clear from this discussion that the key to everything is the master formula
(2.200). The only information we need to know is the lengths of the simple roots, and the
angles between the simple roots. Everything else then follows mechanically, and the entire
root system can be worked out. Note that we do not even need to know the basis for the
Cartan generators; i.e. we do not need to know the specific components of the simple root

vectors. Only the lengths, and the angles, are important.

122



Let us return to our SU(3) example at this point. We had the list (2.222) of the six
root vectors, which we can write more succinctly as
a=(£1,0), +(1,3v3), £, -1v3). (2.244)

Using the rule that a root is positive if its first non-zero component, working from the left,

is positive, we see that the three positive roots are
(170)7 (%7%\/§)7 (%7_%\/5) (2245)

We know that since SU(3) has rank 2 (there are 2 Cartan generators), it must have 2
simple roots. This example is sufficiently elementary that we can spot the simple roots by
inspection; they are

a1 =(3,5V3),  dy=(5,—3V3). (2.246)

Clearly the third positive root is given by

&y + ds = (1,0). (2.247)
From (2.246) we see that
al=as=1, a -da=—35. (2.248)

This means that the angle between the two simple roots is 120°.

Of course in this SU(3) example we had the advantage of already having constructed
the algebra, and so we already knew the entire root system. As a practice for what we shall
be doing later, when we come at an algebra “from the other end” and start out knowing
only the properties of its simple roots, let us pretend for SU(3) that we know only the
information given in (2.248).

We now try to build the entire SU(3) root system, using the procedure outlined above.
Thus at level £ = 1 we have the two simple roots @1 and ds. At level 2, we can only consider
4 = @i + ds. Is this a root? We plug into the master formula (2.241), knowing that ¢ = 0,
and we get, using the results in (2.248), that

2‘%%0‘2 - 1= —p, (2.249)
and hence ds + @ is a root, but ds + 2@ is not. We could run the argument round the

other way, exchanging the roles of @7 and @s, and thereby deduce that a7 + 2ds is not a

root either. Thus we have already learnt that for SU(3) we have roots:
Level k =1: ap, Qs
Level £ =2 a1+ s

Level k =3:  Nothing (2.250)
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Once one has found no vectors at all at a given level, the process terminates; all the positive

roots have been found.

2.5.7 Dynkin Diagrams

We have seen that once the lengths of the simple roots are known, and the angles between
them, then the entire root system can be determined. Once the root system is known, the

entire Lie algebra is known,

[H;,H;] =0, [H;, Eg] = a; Eg
[E(ia E—&] = a;H;, [E(%Eg] = NO_Z’_‘EO_ZJ’,_" (2251)

where & # g1

It is useful, therefore, to have a compact way of summarising all the necessary informa-
tion about the lengths and angles for the simple roots. This can be done in what is called
a Dynkin Diagram. Recall that the angles 8 between simple roots satisfy %w <60 <7, and

that 6 can only take the discrete values
0= 90°, 120, 1359, 150°. (2.252)

As we saw above, in the case of SU(3) the angle between its two simple roots is 120°.
In a Dynkin diagram, each simple root is represented by a circle. The angle between
two simple roots is indicated by the number of lines joining the two roots, according to the

rule

0 =90° No lines
0 = 120° One line
6 = 135° Two lines
6 = 150° Three lines . (2.253)

There is also the question of indicating the lengths of the simple roots. Although it is
not immediately obvious, it turns out that in fact the simple roots in any given simple Lie

algebra can only have two possible lengths. We can call these short roots and long roots.

15To be precise, with what we have studied so far we will know which of the constants N, 5,3 1s zero and
which is non-zero, since we will know the root system, so we will know which commutators [Ez, E 5] produce
non-zero results and which produce zero. If one needs to know the values of the non-vanishing constants
N ~.3> they can be worked out from the chain of equations we derived in section 2.5.4 by repeatedly acting

with the raising and lowering operators.
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Thus we merely need a notation for each circle, representing a simple root, to indicate
whether that particular root is a short one or a long one. This is done by filling in the circle
(i.e. a black circle) if it is a short root, while leaving it hollow (i.e. a white circle) if it is a
long root.16

In our SU(3) example, the two simple roots have equal length. In all cases where all the
roots have equal length, the convention is to call them long roots, and thus represent them
by open circles. A Lie algebra where all the simple roots have the same length is called a
Simply-laced Lie algebra.

The Dynkin diagram for SU(2) will consist of just a single circle, since there is just one

simple root:

o (2.254)

For SU(3), we have two simple roots, of equal length, and with an angle of 120° between

them. The SU(3) Dynkin diagram is therefore

oo (2.255)

2.5.8 Fundamental Weights

Consider a simple Lie algebra G that has rank m. There are m simple roots, which we
shall call &@;, with the index 4 that labels the simple roots ranging from 1 < i < m.7
Consider an arbitrary finite-dimensional irreducible representation D, and suppose that its
highest-weight state is

|, D). (2.256)

In other words, we have H;|ji, D) = p; |ii, D), and i is bigger than the weights of any of the
other states in the representation.
From its definition, it therefore follows that [ + 7 is not a weight in the representation

D, for any positive root 4. In fact, it suffices to say that i + &; is not a weight for any of

80Of course, when drawing Dynkin diagrams on a blackboard there is a reversal of the roles, in the sense

that a filled-in circle (a short root) will actually be white, while an open circle (a long root) will be black.
7Take care not to confuse the index i on &;, which labels the different simple roots, and the index i that

we typically use to label the components of a given vector, such as when we write i = (u1, 2, - .-, ttm), and
we call these components p;. The way to distinguish between the two usages is that if the index i appears
on a quantity with an arrow, as in &;, then it is labelling a set of vectors (such as simple roots), whereas if
the index ¢ appears on a quantity without an arrow, such as p;, it is labelling the components of a specific

vector.
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the m simple roots @;. Thus we have the statement

i, D)=0. (2.257)

e p—q), (2.258)

which was derived for any state |, D) in an irreducible representation D, and any root
vector @, where the non-negative integers p and ¢ were defined by the fact that i+ pa and

[l — q & are weights in the representation, but i+ (p+1) & and i — (¢+ 1) & are not. Taking

—

a in (2.258) to be any of the simple roots @;, it follows from (2.257) that p = 0 for each 1,
and so we have
2_'. T
aiQ B qi for each 7, (2.259)
ok

1

where the g; are non-negative integers.

Since we have established that the a; are m linearly independent m-component vectors,
it follows that the g; specify the highest-weight vector ji completely. Each set of non-negative
integers ¢; determines a highest-weight vector, and so each set of g; specifies an irreducible
representation D of the Lie algebra G. The complete set of states in D are then built up
by repeatedly acting on the highest-weight state |, D) with the lowering operators E_g,,
where @; are the simple roots. Needless to say, the master formula (2.258) will play a central
role in working out what the full set of states in D are.

It is convenient at this point ot introduce the so-called Fundamental Weight Vectors ji;,
which are defined to be the highest-weight vectors corresponding to taking all of the ¢; =0

except for one, which is taken to be unity. There are m possible choices; we define

ﬁl s qi:(l,0,0,...,O)
/j2 = Qz:(oalvoavo)

fim < ¢ =(0,0,...,0,1). (2.260)

= 6. (2.261)

The m irreducible representations whose highest-weight vectors are the fundamental weight

vectors fi; are called the Fundamental Representations of the Lie algebra G.
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The highest-weight vector of any irreducible representation D, specified by a set of

non-negative integers ¢; = (q1, 42, .. .,qm), is given by
A= qifii (2.262)
i
This way of characterising a representation by means of the integers ¢; is known as describing
it by means of the Highest-weight labelling.

2.5.9 Examples in SU(3)

As we saw already (see (2.246)), the simple root vectors for SU(3) are given by

a=(53V3), ar=(3-3V3). (2.263)

[ = (%,2_\1/3), fla = (%,_2_\1/3), (2.264)

We have in fact already encountered the fundamental weight vector ji1, when we looked

at the 3-dimensional representation 3 of SU(3). The three states are listed in (2.217), and it

11
27 9y/3
the 3 representation as the one characterised by taking ¢; = (1,0).

is evident by inspection that the state with the highest weight is | ). We now recognise

Let us look now at the other fundamental representation of SU(3), specified by ¢; =
(0,1). Thus has i = (3, —ﬁ) as its highest-weight vector. The idea now is to build
up the rest of the states in this representation. We know straight away that s — ds is a
weight, but fis — @1 and fis — 2ds are not. (This follows from the master formula (2.258),

together with the previous observation that, by definition, p; = 0 for any of the simple roots

@; acting on the highest-weight states.) So we know there is a state
E_g, |fi2) = c|fiz — d2), (2.265)

for some non-zero constant c. Note that jiy — dy = (0,1/v/3). Now we descend a level, by
acting on |fiy — @) with lowering operators. We know that E_gz, will annihilate it, since
we established fis — 2@» is not a weight.

The only remaining option is to act with £_g,. Applying the master formula (2.258),

we have
20y - (fiz — o
—(&2 ) =1= —(p — q) . (2266)
1

But p = 0, since jiy — a2+ @ is not a weight. We can see this, i.e. that E, |fls —d2) = 0, by

considering Ez, E_s, |fi2). Now, we know that [Eg,, E_g,] = 0, since we proved in general
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that the difference of simple roots is never a root. Therefore, proving Ez, E_g, |fi2) = 0 is
equivalent to proving E_gz, Fg, |fi2) = 0, and this is obvious, since |ji2) is the highest-weight
state and so Eg, |ii2) = 0. Having proved p = 0, equation (2.266) shows that ¢ = 1, and so
o — Ao — @1 is a weight.

Similar arguments show that E_g, and E_g, both annihilate |fiy — d2 — @1), and so the
construction of the representation with highest-weight vector fis is complete. It has three

states, with weights

R ﬁ)’ /,62—042:(07%)7 /IQ_&Q_O_ZIZ(_%v_Q—\l/g) (2267)

N[

flo = (
These can be plotted on a weight diagram, depicted in Figure 6. We can see that it is
just an upside-down version of the original 3 representation. For reasons that will become

apparent, it is called the 3 representation.

H,

Figure 6: The weight diagram for the 3 representation of SU(3)

2.5.10 Weyl Reflections

Strictly speaking, our derivation of the three states of the 3 representation of SU(3) is
not yet complete. Although we could argue from the master formula (2.258) that no other
weights could arise, it does still leave open the question of whether there might exist more
than one state with any of the three weights that we found. One useful tool that helps to
rule out such a possibility is called the Weyl Reflection Formula. This says the following:
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If (i is a weight of a state in an irreducible representation D, and & is any root, then

i = ji— (20;2’7) a (2.268)

is also a weight of a state in the representation D. The proof consists of showing that if i’
is substituted into the master formula, it passes the test of being a permissible weight. The

key point is that, from (2.268), we have

== (2.269)

and hence if ji passes the test for being a weight, then so does ji’.

A consequence of the Weyl reflection formula is that the degeneracy of states with weight
ii is identical to the degeneracy of states with weights fi’.

Notice that the Weyl reflection formula (2.268) constructs a weight i’ by reflection of /i

in the hyperplane!® orthogonal to the root &@. To see this, consider the vector

6:/1—(07"7)07. (2.270)

Obviously we have v- @ = 0. We also obviously have that i + i’ lies along ¥; in fact from
(2.268) and (2.270) we have i + i’ = 2¢. This proves the assertion.

The set of all reflections, for all the roots @, is called the Weyl Group. It is a discrete
symmetry of the weight daigram.

In our SU(3) example, take another look at the root diagram of Figure 5. Recall that
we identified the simple roots @1 and @ in (2.246), and the remaining positive root @y + ds
in (2.247). In Figure 5, d; is therefore the dot in the top right, and @ is the dot in the
bottom right. @ + ds is the dot in the middle right. The hyperplanes (i.e. lines) orthogonal
to these vectors therefore comprise the Hy axis (perpendicular to &@; + ds), and lines at
+30° and —30° to the H; axis. In other words these lines make 60° angles to each other.
Imagine these lines as mirrors, and it is clear that a dot placed at a generic point on the
weight diagram will acquire 5 image points under these reflections, making six dots in total,
at the vertices of a regular hexagon. This is illustrated in Figure 7 below.

A dot that is placed at a special point, sitting actually on the surface of one of the
mirrors, will only acquire 2 image points.

Now let us go back to our 3 representation of SU(3). Start with the highest-weight state
{2, which is the bottom right vertex of the triangle in Figure 6. This is clearly at one of the

8In our SU(3) example, which is rank 2, the roots and weights live in a 2-dimensional space, and so the

“hyperplane” orthogonal to a root & is a line.
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Figure 7: The Weyl reflection lines for SU(3). The NW-SE line is perpendicular to &y,
the SW-NE line is perpendicular to ds, and the vertical line is perpendicular to @1 + ds.
A generically-placed dot (the black circle) acquires 5 image points (the open circles) under

the set of Weyl reflections

special points, which sits on one of the mirrors. It therefore acquires just two image points,
which are exactly the two other weights in the representation, which we already calculated.
This is illustrated in Figure 8 below.

At this stage, we know from our general discussion of the Weyl group that the degen-
eracies of all the Weyl-reflected weights are the same. Since for the 3 representation we
are able to get all three weights from the highest-weight state by reflection, we need only
demonstrate that the highest-weight state is unique (i.e. not degenerate), and we will have
proved that all three states are non-degenerate, and hence that there really are exactly three
states and no more.

It is easy to prove, for any representation of any simple Lie algbera, that the highest-
weight state is unique, i.e. that there is a unique state with the highest weight . Recall
that, by definition, the states in a representation are built up by acting in all posible ways
with raising and lowering operators on a state with the highest weight . Without yet
assuming that there is a unique highest-weight state, consider one such, say |ii), and now
build up the representation. It will be obtained as the set of all non-vanishing states of the
form

E,y E,y cee E,yn |ﬁ> y for all n, (2.271)
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Figure 8: The highest weight (bottom right dot) of the 3 representation of SU (3) acquires

2 image dots under Weyle reflections, filling out the entire irreducible representation.

where each of (Y1,%2,...,%,) is any of the root vectors of the algebra. We can immediately
exclude all positive roots, since by repeated commutation we can move them to the right,
where they hit |) and annihilate it. They get progressively less positive as they form
commutators with negative-root generators along the way, but the net effect is that any
non-vanishing state obtained in (2.271) is actually expressible as a (possibly smaller number)
of purely negative-root generators acting on |iZ). (This is an important point, and so if you
don’t immediately see it, try playing around with an example in order to see why it is true.)

Having established that we need only consider states in (2.271) where all the operators
have negative root-vectors, it is now manifest that we will never build a second state with
the weight [ of the highest weight. Thus the highest-weight state is unique.

Going back to our example of the 3 of SU(3), this completes the proof that it really is

a representation with exactly three states, i.e. with no degeneracy.

2.5.11 Complex Representations
Suppose T, are the generators of a Lie algebra G, in some represenation D. We have
(Ta, Ty =1 fap“ Tt (2.272)
where the structure constants f,;¢ are real. Complex conjugating, we therefore have
T3, Ty = =i fa" T7 (2.273)
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and so we see that the (—7,) generate the same algebra as T,. The representation of G
using the the generators (—77F) is called the complex conjugate of the representation D of
the generators T, and it is denoted by D.

If D is equivalent to D, then we say that D is a real representation. If D is inequivalent
to D, then we say that D is a complex representation.

Suppose that i is a weight in the representation D, i.e. there is a corresponding state
with

H, |ii, D) = i |fi, D). (2.274)

It then follows that D has a corresponding state with weight —ji. The reason for this is
that the Cartan generators for D are —H}, and furthermore, we know that H; has the
same eigenvalues as H;. This is because the Cartan generators are Hermitean, and so they
eigenvalues are real. The upshot is that the highest weight of D is the negative of the lowest
weight of D. Since the highest weight determines the entire representation, it follows that

D is real if its lowest weight is the negative of its highest weight

If this is not the case, the representation is complex.

Let us consider some examples. In the defining representation of SU(3), i.e. the 3
representation depicted in Figure 4. Its highest weight is the fundamental weight vector
fl1; this corresponds to the top right dot in the weight diagram. Its lowest weight is the
reflection across the Hs axis, i.e. the dot on the top left, which is —jis, where [is is the
other fundamental weight vector of SU(3). Manifestly, the lowest-weight vector is not the
negative of the highest-weight vector, and so we conclude that the 3 of SU(3) is a complex
representation. Indeed, as we already saw, there is another three-dimensional representation
which is just the upside-down version of the 3, namely the 3 that we constructed, and that
is depicted in Figure 6. This has iy as its highest weight.

In terms of the highest-weight labelling, where the representation is specified by the
integers ¢; and the highest weight is 7 = 3", g; ii;, the 3 and the 3 representations are the
(1,0) and the (0,1) respectively. It is no coincidence that one is obtained from the other
by exchanging the first and second components of their highest-weight labels.

Consider an SU(3) representation defined by ¢; = (m,n). By definition, this has as its
highest weight the vector

f=mf+nfiz, (2.275)

where (i1 and jio are the fundamental weight vectors defined earlier, which satisfy 2a -

fi;/(@2) = &;;. It follows therefore that the lowest-weight state in the (m,n) representation
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has weight
—Nn ﬁl - mﬁg . (2276)

The highest weight of the complex conjugate representation (m,n)* is therefore given by
n i+ m iz, (2.277)

from which we see that (m,n)* = (n,m). It is now very easy to recognise which represen-
tations of SU(3) are real, and which are complex: A representation (m,n) is real if m = n,
and complex if m # n.

Let us discuss two more examples of SU(3) representations before moving on to other
matters. First, consider the representation (1,1), which, in view of the above discussion, is

real. In fact we already know this representation. By definition, its highest-weight vector is
fi = i1+ fiz = (1,0). (2.278)

(Recall that the fundamental weight vectors were given in (2.264).) Now, recall that when
we studied the adjoint representation of SU(3), we found that the three positive root vectors
were the two simple roots d; and @ given in (2.246), and the vector @ + dy. This last is

obviously the highest-weight vector in the adjoint representation. From (2.246) we have
a1+ ds = (1,0). (2.279)

Thus we see that the highest-weight vector of the ¢; = (1,1) representation is precisely the
highest-weight vector of the adjoint representation. It follows that the (1,1) representation
1s the adjoint representation.

If we didn’t already know everything about the adjoint representation of SU(3), we
could easily construct it from the knowledge of the simple roots, and the highest-weight
vector in (2.278). By definition, since ¢; = 1 and g2 = 1, we know that ji — &@; and @ — ds
are weights but ji — 2« and i — 2d2 are not. Applying the master formula (2.258) to the

weight [ — ay, we find
20y - (i — dh)
203

Since jI — Ay + dlp is not a weight (we know this because @3 — @z is not a root), we have

—2=—(p—q). (2.280)

p = 0, and hence ¢ = 2. This means i — &1 — dy and i — d; — 20y are weights, but
i1l — @1 — 3dls is not. Interchanging the roles of @1 and ds when applying the master formula,
we also learn that [ — 2@ — @ is a weight but @ — 3@y — ds is not. Finally, we find that
2dy - (fi — 2@, — ds)/(@%) = 1, and since ji — 2@ is not a weight, we have ¢ = 1 and so

(i — 2a1 — 2ds is a weight. Applying the master formula to all our newly-found weights,
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we discover that there can be no more, and the process has terminated. The weights we
have found by this process comprise six non-zero weights, which live on the six vertices
of the hexagon in Figure 5, and the weight i — a1 — ds = 0. This lives at the origin. It
was not included in Figure 5 because there, we were specifically plotting the roots, i.e. the
non-zero-weight vectors of the adjoint represenation. When we plot the weight diagram of
the adjoint representation, which should of course include the zero-weight states too.

For the record, the non-zero weights found above lie in Figure 5 as follows. At the far
right we have ji. Top-right is ji — da, and bottom-right is i — &y. Far-left is ji — 261 — 2ds;
top-left is fi — @1 — 2ds; and bottom-left is ji — 2di; — dbs.

There is a small subtlety about the zero-weight vector fi — @y — @s. There are actually

two linearly-independent zero-weight states, which we can write as
E*O‘l‘l E*QQ ‘ﬁ> ) and E*&Q E*O?l ’ﬁ> : (2281)

The reason why these are independent is that the commutator [E_g,, E_g,]| is non-zero
(it gives a constant times E_g, _g,), and so the two orderings of the lowering operators in
(2.281) can, and indeed do, give different states. This can be proved by a rather simple
argument.

It is, of course, precisely to be expected that there should be two linearly-independent
zero-weight states in the adjoint representation; they are nothing but the Cartan states
|Hy) and |H2).

For a second, and final example of an SU(3) representation, consider the ¢; = (2,0)
representation, which is complex. Its highest-weight vector is ji = 2ji; = (1,1/4/3). Since
q1 = 2 we know (I — &1 and i — 2d; are weights but i — 3d; is not. We can proceed again
using the master formula (2.258), to build up all the weights. Recall that one can also make
use of the Weyl reflection properties derived earlier. Either way, one soon arrives at the

conclusion that there are six weights in the representation, namely

ﬁ:(l,%), ﬁ_&lz(%7 2[)7
fi—2a = (0,-%), fi—dy—dy = (0, 5),
i — 28, — 2dy = (—1, %), — 2 — dy = (—3, _W)' (2.282)

The weight diagram for this six-dimensional representation is given in Figure 9 below.

2.5.12 Two Theorems about & Strings

As we have been seeing, one can extract an enormous amount of information from the

“master formula” (2.258). In fact, it lies at the heart of the entire procedure for constructing
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T

Figure 9: The 6 representation of SU(3). The highest-weight state i = 2ji; is at the top
right of the triangle.

irreducible representations of Lie algebras. Some of the things one learns from using (2.258)
are specific to the details of the particular Lie algebra one is studying, as encoded in the
information about the lengths of the simple roots and the angles between them. Other
things are rather general, such as the results about the allowed angles between simple
roots.

Here are two more general results, which can be derived from the master formula (2.258).
It is useful to know these, when constructing the root system, because they can save a lot
of time. They are both concerned with what we may call @ Strings, namely sets of roots in
the root system that are obtained by adding or subtracting the root vector & repeatedly to

a given root vector 7:

(1) A string of roots ¥ + k& has no gaps.

Imagine that we start with the integer k being sufficiently small (which could mean
large and negative) that ¥ 4+ k,d is not a root, and we increase k until we get an
allowed root. We now keep increasing k£ until again we reach a vector that is not an
allowed root. The theorem states that if we keep increasing k further, it is not possible
to find any further allowed roots. In other words, an & string of roots cannot have

segments of allowed roots with a gap of disallowed vectors in between.

We can prove this by the time-honoured procedure of supposing the contrary, and
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arriving at a contradiction. Suppose, therefore, that we did have a gap in a string of

allowed roots. We can characterise this by supposing that we have roots

-

3 —2a, G—a, 3, (2.283)

and then a gap where there are no roots, and then a further set of allowed roots

-,

g, f+a, F+2a, -, (2.284)
where
F=3+nd, n>2. (2.285)
In particular, we are supposing that 5—}— & is not a root, and ﬂ_" — @ is not a root.

Applying the master formula (2.258), these last two facts imply that

2d - 3

= = Ww-ad=q

2a - 7

= = 0 -d)=-" (2.286)

Using (2.285) in the second of these equations, we therefore obtain
g+p +2n=0. (2.287)

This is a contradiction, since g and p’ are non-negative, and n > 2. Therefore, the

a-string cannot have gaps.

No string of roots can have more than 4 roots in the chain

Again, the proof is by contradiction. Suppose we had a string of 5 or more roots.
Without loss of generality, we could then pick a root, let’s call it 5, somewhere in the

middle, such that we have roots

-

) 3_20_27 B—O_Z’ ﬁv g+&7 /8—1_20_27 "y (2288)
where @ is a simple root.

Now, we know that that

—

26=(F+28)—F and 2F+a)=(F+2a)+0 (2.289)

are not roots, since if 4 is a root 2 can never be a root. (This follows from the fact
that [E5, E5] = 0.) Applying the master formula (2.258), with & replaced by 3, andd
ii replaced by (B+ 2d)), we know from (2.289) that p = ¢ = 0 and so
3. (G105
p-0+2) (2.290)
32
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By the same token, we know that
—2a=(F-2a)—-3 and 206-a)=(@-2a)+73 (2.291)

are not roots, and so applying the master formula here we obtain

3. (32
p-6-24) _ (2.292)
32
Adding (2.290) and (2.292) we arrive at the conclusion
32
by, (2.293)
32

which is a contradiction. Hence we cannot have more than 4 roots in a string of roots
v+ ka.

2.6 Root Systems for the Classical Algebras

2.6.1 The SU(N) Algebras: A,

An arbitrary N x N unitary matrix can be written as U = ¢!, where H is hermitean. The
unit-determinant condition det U = 1 is equivalent to the tracelessness condition tr H = 0.
Therefore the generators of SU(N) are the set of all hermitean traceless N x N matrices,

T.,. Let us choose a basis so that
tr(To Tp) = 30ab - (2.294)

The maximal set of mutually commuting matrices amongst the T, can most conveniently

be taken to be the diagonal matrices, so these will form the Cartan subalgebra. Thus we

can take
Hy = %diag(l,—l,O,O,O,.--,0,0)7
Hy = 5=diag(1,1,-1,0,0,...,0,0),
Hy = ﬁdiag(l,l,l,—,o,---7070)7
Hj = ———diag(1,1,1,...,1,-4,0,0,...,0,0),

V2i(G+1)

Hy_, = mdiag(l,l,l,l,l,...,1,1,—(N—1)), (2.295)
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where in the penultimate line H; has j entries of 1 before the —j. These are normalised so

that
tr(H; H;) = 36;; . (2.296)
Since there are (N — 1) of them, we conclude that SU(N) has rank (N — 1). In Cartan’s
classification, SU(N) is denoted by An_1. The A indicates the special unitary sequence of
algebras, and the subscript indicates the rank.
The N x N matrices generate the N-dimensional represenation of SU(N), i.e. the defin-
ing representation. The matrices act by matrix multiplication on the N states of the vector

space,

1 0 0
0 1 0
0 0 0

iy =1.1; y=1.1, . o) =1 . |- (2.297)
0 0 0
0 0 1

Their weights, 7/, i.e. their eigenvalues under H;, are easily seen to be

- 1.1 1 1 1
N = (5,==,=7,... ey ———
1 S 2w A AR 2G+1 \/2N(N71))’
52 — (_l 1 1 1 1 )
222V372v67 7 /25417 \/2N(N-1) "
11

L B 1 1
vy = (0, \/§,2\/€7. .,_/—Qj(j+1a.'-;\/m)u

vy = (0,0,0,...,0,...,—\/%). (2.298)

When we introduced the notion of positivity or negativity of weight vectors, we used the
rule that the sign of the first non-zero component working from the left would determine
the sign of the root. As we emphasised then, this is a completely arbitrary choice. In fact
here, it is preferrable to work in from the right; i.e. , we shall say that a weight is positive
(negative) if its first non-zero component working from the right is positive (negative).

Under this scheme, we have
Uy >y >3 > +>Un_1>DUN. (2.299)

The raising and lowering operators will be built from complex combinations of the off-
diagonal hermitean matrices. Specifically, we may define the N x N matrix E;;, which has

zeros everywhere except at row i, column j, where the component is equal to 1/4/2. Tt is

138



manifest that these act as raising and lowering operators on the set of fundamental states

|k ), according to the rule
Eij|vk) = % Sjk |74) - (2.300)

Now the differences between the weights are necessarily roots, since in general Ez|f) =

c|fi + @). Thus we know that roots are given by

v — Uy, for any i #j. (2.301)

In fact since we get N(N — 1) roots by this construction, we see that these constitute all

the roots of SU(N).' From (2.299) we see that the positive roots are given by
v — Uj, 1<7. (2.302)
The simple roots are then clearly given by
& =0~ 1, 1<i<N-—1. (2.303)

Explicitly, they are given by

a; = (0,0,0,...,— % %,0,...,0,0),
Ava = (0,0,0,...,0,—/55E /oo )- (2.304)

It is straightforward to check from the above that the simple roots of SU (V) satisfy

a;-a; = 1, for each 7,
Qi - Qi1 = —% , for each 7,
a;-a; = 0, i#£jandi#jE1. (2.305)

Note that we can summarise all these dot products in the single equation

O_Zi . O_Zj = 51‘,]' — %5i,j+1 — %51‘,]',1 . (2306)

19SU(N) has dimension N? — 1, and it has rank (N — 1), so there are (N? —1) — (N —1) = N(N — 1)

roots.
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From these, it follows that the angle between any pair of adjacent simple roots is 120°, while
the angle between any pair of non-adjacent simple roots is 90°. All the simple roots have

the same length. It therefore follows that the Dynkin diagram for SU(n) is
0—0—0—0--+0—0—0, (2.307)

where there are N — 1 circles. We can label them &y, ds, ds,...,an_2,0N_1.

There is a more convenient way to parameterise the roots of SU(N). Let us first make
a shift by 1, and consider SU(n + 1), which has rank n and is called A, in the Dynkin
classification scheme. We then introduce a set of (n + 1) mutually-orthogonal unit vectors

€ in R™*!, for 1 <i < n + 1, satisfying
€ - € = 045 - (2.308)
We can choose a basis where
é; = (0,0,0,...,0,1,0,...,0,0), (2.309)

where the only non-zero entry is the 1 in the i’th component. The root vectors of A,, then

lie in the n-dimensional hyperplane orthogonal to

-

V=€ +e+e3+ -+ €+ nt1- (2.310)

They are given by
€ —€j, (2.311)

and are positive if i > j, and negative if i < .20 The simple roots are clearly given by

&i:a—a+1, 1§z§n (2312)

el — €3 = (51 — 52) + (62 — 53) = a1 + dsy . (2313)
From (2.312) we clearly have
a; - &j = 2(51‘73‘ - (51‘73‘4_1 - (51‘73‘_1 . (2.314)

Up to an overall normalisation factor (which is totally irrelevant as far as determing the

structure of the algebra is concerned), this is equivalent to what we had in equation (2.306).

20We have now reverted to determining the sign of a vector by the sign of its first non-zero component

starting from the left.
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2.6.2 The SO(N) Algebras: B, and D,

The SO(N) algebra is generated by N x N matrices that are imaginary and antisymmetric.
This can be seen by exponentiating to get SO(N) group elements. Thus if A is antisym-

A

metric, then e'4 is orthogonal:

(eiA)T (eiA) — (eiAT) (eiA) — (efiA) (eiA) -1. (2315)

Our general rule is that we take our generators to be Hermitean, and so if they are anti-
symmetric, they must be imaginary.

Here, we must divide the discussion into two cases, depending on whether N is even or
odd. First, let us consider the even case, N = 2n. The SO(2n) algebras are called D,, in
the Dynkin classification.

For D,, = SO(2n), we consider the set of all imaginary antisymmetric 2n x 2n matrices.

We can take the Cartan generators, of which there are n, to be

oo 0 0 0 o 0 0 --- 0

0 0 O 0 0 o2 O 0
H = 0 0 0 01, Hyo=10 0 O 01,

0 0 0 0 0 0 O 0

0 0 O 0 0 0 0 0

0 0 O 0 0 0 0 0
Hs = 0 0 o9 01, H,=10 0 0 01,

o0 0o - 0 00 0 - o9

where each entry represents a 2 x 2 matrix, and o9 is the second Pauli matrix,

0 —i
oy = <i . ) . (2.316)

Note that tr(H;H;) = 24;;. Note also that D,, = SO(2n) has rank n.
We can now consider the states of the 2n-dimensional defining representation (corre-

sponding to the 2n x 2n matrices acting on the 2n-dimensional vector space). We can write
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these states as

1 1 0 0
i —i 0 0
0 0 1 1
1)=101, 2)=10 |, By=11]|, 4) =1 -], (2.317)
0 0 0 0
0 0 0 0

and so on, up to

0 0
0 0
0 0
2n—1)=10], 2n) =1 0 (2.318)
1 1
i —i

These vectors have been chosen because they are eigenvectors under the Cartan generators

H)i. In fact they clearly have weight vectors as follows:

:  (1,0,0,...,0,0) =&,
2) :
3) :
[4) :

1,0,0,...,0,0) = —&

w

(
(=
(0,1,0,...,0,0) = &,
(

0,-1,0,...,0,0) = —¢&,,

2n—1):  (0,0,0,...,0,1) =&, ,
2n) 1 (0,0,0,...,0,—1) = —&,. (2.319)

As in our SU(N) discussion, we can now read off the root vectors of SO(2n), since we
know that the difference between any pair of weights in the defining representation must

be a root. Thus the full set of roots is given by

té; +¢€j, 1<, (2.320)
where the £ signs can be chosen independently. The positive roots are then

e xej, 1<7, (2.321)
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and we can easily then see that the simple roots are given by
1<i1<n—-1,
(2.322)

= € — €41,
€n_1+e€n.

Q, =
check that using these, one can build all the positive roots

In other words, one can easily
in (2.321) by taking sums of the @; with non-negative integer coefficients.

It follows from (2.322) that all n simple roots have the same length:
B=di=d=---=a>=2, (2.323)
and that their dot products are given by
Q1-0y =09 -A3=03a3-0y="+=09 -0p_1=—1,
(2.324)

= _17 Qp—1

6271—2 : O_gn
All other dot products not listed here are zero. The Dynkin diagram for D,, = SO(n) is

shown in Figure 10 below.?!
aq a Qn—3 On—2 On—1
1) - o) e e R le) e [e) — O
(e
an

Figure 10. The Dynkin diagram for SO(2n), which is called D,, in the Dynkin classi-

fication. It has rank n, and it is simply-laced.
Now, let us consider SO(2n + 1), which is known as B, in the Dynkin classification.

Like SO(2n), this has rank n. We can take the Cartan generators to be
o2 0 0 0 0 0 00 -~ 00
0 0 0 0 0 0 o2 O 0 0

e R T A R

0 0 0 0 0 0 0 O 0 0

0 0 0 0 O 0 0

0 0 O

2INote that it is customarily drawn with the right-hand end twisted anti-clockwise through 45°, so that

there are two “ears” formed by @,—1 and &,. This is entirely equivalent, since only the pattern of connecting

lines and the type of circle (open or closed) has any significance. The reason for displaying it as in Figure

10 is simply because I don’t know how to construct the necessary 45° lines using Latex.
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H; =

0
0

0
0

0
0

0
0

0
0

g2

0

0
0

. (2.325)

where again o9 is the Pauli matrix given in (2.316). Note that here, every entry in the

matrix represents a 2 X 2 submatrix, except for the entries down the far right column, and

along the bottom row, which are just numbers (i.e. 1 x 1 matrices). The reason for this

is, of course, that the matrices here are (2n + 1) x (2n + 1) in dimension, and so there

is a left-over strip around the right and the bottom, after we have filled in the rest with

2 x 2 blocks. This is also why we don’t get an extra Cartan generator when we move from

SO(2n) to SO(2n + 1).

The states of the (2n+1)-dimensional defining representation will comprise the (2n+1)-

component column vectors

1
i

0

and so on, up to

|2n — 1) =

o o o O

, |2n + 1) =

144

o o o o

[4)

)

(2.326)

(2.327)



Note that the first 2n of these are just like the 2n-component state vectors of SO(2n),
except that they now have an extra 0 entry at the bottom. The weights of these states

under the Cartan generators H; can be read off by inspection:

I1):  (1,0,0,...,0,0) = &,
2):  (=1,0,0,...,0,0) = —é} ,
13):  (0,1,0,...,0,0) =&,
4):  (0,-1,0,...,0,0) = —&,

[2n — 1) : (0,0,0,...,0,1) =é,,
|2n) : (0,0,0,...,0,—1) = —&,,
[2n + 1) : = (0,0,0,...,0,0),
(2.328)
As before, the raising and lowering operators in the SO(2n+1) algebra will map amongst

the states of the defining representation, and so we can read off the root vectors as the

differences between their weight vectors. Thus we have that the roots are given by

+eé; £ €, 1<,
and +e; . (2.329)
The positive roots are
& tej, 1<7,
and €, (2.330)
and so the simple roots are given by
a; = € — €41, 1<i<n-1,
Gn = €. (2.331)
From (2.331) we see that
AB=di=-=ad’,=ad’,=2, a‘=1. (2.332)

Thus @; for 1 <i <n — 1 are long roots, and &, is a short root. Unlike A, = SU(n + 1),
and D,, = SO(2n), therefore, B,, = SO(2n + 1) is not simply-laced. The remaining non-

vanishing dot products are

C_fl '0_22 :&2 '0_23 = :O_Zn,Q '&n,1 :O_anl &n =—1. (2333)
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From these results, it follows that each simple root makes an angle of 120° with the adjacent
one, except for a,, which makes an angle of 135° with &,_1. The Dynkin diagram for

B, = SO(2n + 1) is shown in Figure 11 below.

Figure 11. The Dynkin diagram for SO(2n + 1), which is called B,, in the Dynkin

classification. It has rank n, and it is not simply-laced.

2.6.3 The Sp(2n) Algebras: C,

Sp(2n) is generated by 2n x 2n matrices X that satisfy
XG+aGxT =o, (2.334)

where G = —G7 is some non-degenerate antisymmetric matrix. We can write G, and the

generators X, as tensor products of 2 x 2 and n x n matrices. We take
G=02®1, (2.335)

where 1 is the n X n unit matrix, and o9 is the second Pauli matrix, as given in (2.316).
The tensor product can be understood as follows: one thinks of the 2n x 2n matrix as being
composed of four n x n blocks, with each block composed of the second matrix factor (the

n X n matrix after the ® sign) multiplied by the corresponding component of the 2 x 2

a b aA bA
® A= . (2.336)
c d cA dA

a-(° 1 2.337
_<111 o)' (2.337)

However, one does not actually need to construct the 2n x 2n matrices explicitly like this.

matrix. Thus

In particular, we shall have

One can perfectly well just manipulate the matrices in their tensor product forms. The

rules for multiplication of matrices written in tensor-product form are simply
(A® B) (C® D) =(AC)® (BD). (2.338)

The generators X are first of all, as always, Hermitean matrices, and in addition they

must satisfy (2.334). With G given by (2.335), it follows that the set of all X can be
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obtained from the following sets of matrices:
19 A, 01 ® 851, 0o ® Sy, 03 ® S3. (2.339)

Here A denotes arbitrary n X n imaginary antisymmetric matrices, S1, So and S3 denote
arbitrary n X n real symmetric matrices, and o; are the three Pauli matrices, as given in

(2.80). Counting the total number of real generators X, we therefore get
dim Sp(2n) = sn(n—1)+3 x gn(n+1) =n(2n+1). (2.340)

In the explicit 2n x 2n format, as in (2.336), one has

A 0 0 Sl 0 —iSQ 53 0
, , , . (2.341)
0 A S1 0 .59 0 0 —953

One can easily verify that all these matrices satisfy the defining relation (2.334).
The subset 1® A and 03®.S3, with the additional condition that S5 be traceless, generate
an SU(n) subalgebra of Sp(2n), since we shall have

A+ S5 0 T 0
= , (2.342)
0 A— 53 0o -—-T*

with 7= A + S3 being Hermitean and traceless. (Recall that A is imaginary and antisym-
metric, whilst S is real and symmetric.) It is convenient, therefore, to choose the Sp(2n)
Cartan subalgebra to include the Cartan subalgebra of SU(n). We can therefore choose
(n — 1) of the Sp(2n) Cartan subalgebra matrices to be the given by taking matrices T in
(2.342) that are just the diagonal traceless SU(n) Cartan matrices given in (2.295). There
is one more matrix in Sp(2n) that commutes with these, namely

1
H,=——03®]1. 2.343
o g3 ( )

Thus we have in total n Cartan generators, so Sp(2n) has rank n. It is known as C,, in the
Cartan classification.

The full set of generators in the SU(n) subalgebra comprise Sp(2n) matrices that com-
mute with H,,. Thus we can first enumerate the Sp(2n) roots that lie in the SU(n) sub-
algebra; they will simply be give by the differences of weights 7; of the defining represen-
tation of SU(n), which were given in (2.298. These are (n — 1)-component vectors (since

SU(n) = Ap—1 has rank (n — 1)), and so we can write the corresponding Sp(2n) roots as

(7 - 7,0), (2.344)
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where we have appended a zero as the n’th component (since the SU(n) matrices all have

zero weight under H,). The remaining Sp(2n) generators that are not contained in SU(n)

consist of matrices which can be organised into raising and lowering operators of the form

(01 £i02) ® Ske,
where S is the symmetric n x n matrix with components (Si¢)i; given by
(Ske)ij = Oik 0j¢ + 0ig S -

They satisfy

[Hy,, (01 £i02) @ S| = i\/%_n (01 £i02) ® Ske,

and

[HZ‘,(O'l :|:i0’2) ®Skg] = :|:(l7]€—|—l7@)z (0’1 :tiJQ)@Skg, 1<i:<n—-1.

The full set of Sp(2n) roots are therefore given by
(lji_ﬁﬁo)v 175.77
2
(z/z + v; n) all 2,7
The positive roots comprise the subset
(lji_ﬁﬁo)v 1<7,
T .
:l:(l/l'—f—ljj,\/g), all 4,7,
and hence the simple roots are

a; = (171‘—171‘_’_1,0), 1<i<n-1,

Gy o= (22).

(2.345)

(2.346)

(2.347)

(2.348)

(2.349)

(2.350)

(2.351)

These therefore satisfy dot-product relations as follows. For 1 < ¢ < n — 1, they are the

same as for SU(n), namely

Oéi'Oéj = 1, i:j,
- o 1 .
Oéi'Oéj = —3 ’L—j:l:l,
a;-d; = 0, otherwise .
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The dot-product relations involving the n’th simple root are

di-dn=0, 1<i<n-2,
Gno1-Gp = —1,
- G = 2. (2.353)

We see that the simple roots @; with 1 < ¢ <n — 1 are all “short,” having length 1, whilst
@y is “long,” with length /2. The Dynkin diagram for Sp(2n) = C,, is given by

Figure 11. The Dynkin diagram for Sp(2n), which is called C), in the Dynkin classi-

fication. It has rank n, and it is not simply-laced.

Note that a simpler way to write the root vectors is by defining a set of n orthonomral

unit vectors €; in IR", satisfying €; - €; = d;;. The positive roots are given by
€ * €j, 1<, and 2¢;. (2.354)
The simple roots are given by

d;=¢ -4, 1<i<n-—1, and 2¢,. (2.355)

2.6.4 The Exceptional Lie Algebras

So far, we have examined in detail the so-called classical Lie algebras, which are the ones that
are definined by the action matrices on a vector space. In the case of the orthogonal, unitary
and symplectic groups, the matrices are required to preserve a metric on the vector space.
We have seen how to analyse all the classical groups in terms of the Cartan decomposition,
we have found their root systems, and hence we have constructed their Dynkin diagrams.
In this section, we discuss the remaining simple Lie algebras. It might come as a surprise
that there exist any more, and indeed they were discovered much later. As it turns out there
are precisely five more simple Lie algebras, in addition to the infinite sequences of the A,
B,, C,, and D,, algebras that we have already met. They are named Gs, F}y, Eg, E7 and Ej,
and they are known as the exceptional Lie algebras. The reason why they were discovered
later is that they are not defined in terms of their action via matrix multiplication on

vector spaces; i.e. they do not correspond to groups of metric-preserving matrices. Instead,
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we define them by directly constructing their root systems, which, as we have seen, are fully
encoded in the Dynkin diagram.

Effectively, then, the idea is that we establish the necessary and sufficient condititions
under which a Dynkin diagram is valid. All valid Dynkin diagrams define Lie algebras, and
so by classifying all valid Dynkin diagrams, we classify all Lie algberas.

There is insufficient time in this lecture course to present the classification procedure in
detail, so at this stage we shall just give the basic facts, accompanied with a brief summary
of how the results are proved.

We begin with the following observations. The simple roots of any simple Lie algebra,

of rank m, satisfy:
1. They are m linearly-independent m-vectors.

2. If @ and 5 are simple roots, then

QB
Y] i\dl

(2.356)

is a non-positive integer.

3. The simple roots must be indecomposable, i.e. their Dynkin diagram nmust be con-
nected. If the Dynkin diagram comprised two or more disconnected pieces, then the

Lie algebra would not be simple.

Any connected Dynkin diagram describes a simple Lie algebra. A system of vectors that
satisfies conditions 1, 2 and 3 above is called a II system. Every II system corresponds to
a simple Lie algebra. Our task, therefore, is to classify all possible II systems.

We can begin by just focusing on the angles between the simple roots &;. Thus we define

the unit vectors

Q

(2.357)

We saw earlier that the simple roots can only have angles 90°, 120°, 135° or 150° between

them. Thus when i # j we have
ﬂ,’i-ﬁj——\/g, 0<r<3, (2.358)
where r is an integer, whilst
-y =1, when i=j. (2.359)

Since the dot product of a non-vanishing vector with itself is strictly positive, we have

(Z a’) : (21 ﬁj) >0, (2.360)

i=1 j=
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and hence

;- +2Y -1 >0, (2.361)
i=1 i<j
and hence we have
Theorem 1:
N+2) i;-i;>0. (2.362)
i<j
Suppose that 07,73, ...,7, are a set of p orthonormal vectors in the root space, where
p < rank G, satisfying
U - U = 0y - (2.363)

Then for any unit vector 4 in the root space, - ; is the direction cosine cos(u, ¥;) of & with
respect to ¥;, and we have

Theorem 2:

p
S (@-7)? =) cos® (@, 7;) < 1. (2.364)
=1

i=1
Equality implies @ lies in the subspace spanned by the ¥, i.e. that @ is linearly dependent
on ¥;. Inequality implies that 4 and o; are all linearly independent.
Using Theorems 1 and 2, we can classify all Dynkin diagrams. To do this, we establish

a number of intermediate results.

(1) A Dynkin diagram cannot have loops. For example, we cannot have three circles
where each is joined by a line to each of the other circles, forming a triangular loop.

Here is the proof:

If two roots w; and 1; are connected, then by (2.358) they satisfy
24; - u; < —1. (2.365)
If N roots are connected in a loop, we must therefore have at least N lines, so

2) ;i < —N. (2.366)
i<j
However, by Theorem 1 (equation (2.362)), we have
2) ;- i >—N. (2.367)
i<j
Equations (2.366) and (2.367) contradict each other, and hence the supposition that

loops can exist must be false.
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(2)

A Dynkin diagram cannot have more than two double lines. For example, the following

cannot occur:

O—O0—0—""0 o o O. (2368)

Numbering the roots 1,2,3,...,7, starting from the left, we have

261 U :2’LL2"U,3 ZQU3'U4 = —1,
2y - Uy = 25 - Ulg = 2ig - Uy = —V/2. (2.369)
Plugging into the left-hand side of equation (2.362, we get
N+2Y d d=T—1+14+1+V2+v2+V2), (2.370)
1<j
which is negative. This contradicts Theorem 1, since (2.362) says that in a valid
Dynkin diagram this quantity should be positive. Hence the supposition that the

diagram above could exist is false. One can similarly prove that no Dynkin diagram

with more than one double root can exist.

A Dynkin diagram cannot have more than one triple line. For example, the following

cannot occur:

o—o—o o o. (2.371)
For this diagram, we shall have
N+2Y a;-dj=5-(1+1+V3+V3), (2.372)

1<j
which is negative. This contradicts equation (2.362) of Theorem 1, and hence the
diagram is not a valid Dynkin diagram. Similar arguments show that no diagram

with more than one triple line is valid.

If the lines joining any two ;’s in a Dynkin diagram are cut, the result is a sum of
two disconnected Dynkin diagrams.
Cutting the lines amounts to removing some root vectors from the root space. The

remaining ones generate a subalgebra.

The maximum number of lines that can connect to any vertex in a Dynkin diagram

is 3. The proof is as follows:
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Let vertices 1, U2, 03, ... be connected to the vertex 4. Since there can be no loops,
we must have 7; - ¥; = 0 for all 7 # j, and so ¥; - ¥ = ;5. Let the number of lines

joining the vertex ; to the vertex @ be n;. We therefore have

U- U = — 1 (2.373)
with n; = 1, 2 or 3. Hence we have
S ()2 = ”Z (2.374)

Now @ must be linearly independent of the vj;, since this is one of the defining properties

of a II system. By Theorem 2, we must therefore have
S (@-v)? < 1. (2.375)
Comparing with (2.374) we therefore have
> ny <4, (2.376)
i

and so the total number of lines joining any vertex must be less than 4.

An immediate consequence of this property is that there can only be one Dynkin

diagram with a triple line, namely

o. (2.377)

Recall that we are not yet worrying about the lengths of the simple roots; our current
arguments are all concerned just with the angles between the simple roots. We are
not at this stage making any statement about the relative lengths of the roots. Thus
the diagram (2.377) is not being claimed to be a true Dynkin diagram; it is what one
would see if one would see if one were blind to whether circles were open or filled in.
As we shall see later, the actual Dynkin diagram involving a triple line is like (2.377),

except that one circle is opem, and the other is filled.

Any set of vertices 4; in a Dynkin diagram that are joined by a simple chain (i.e.
vertices joined by single lines) can be shrunk to a single vertex, and the resulting

diagram will again be a valid Dynkin diagram.

Thus, for example, one could shrink

0O—0—0—0—:++—0

o (2.378)
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to

°, (2.379)

and if the upper diagram were valid, then the lower would be too. Of course the
lower one in this example is not valid, since the middle vertex has four lines joining
it, which we proved to be impossible. The power of this “shrinking theorem” is that
it enables to see immediately that the upper diagram (2.378) is not a valid Dynkin

diagram either.

Proof:

We have presented above various properties that valid Dynkin diagrams must have.
Due to lack of time, we will not present all the properties. Suffice it to say that after some
effort, one can eventually establish a complete set of properties of valid Dynkin diagrams.
By applying these considerations, one can then give an enumeration of all valid Dynkin
diagrams, and hence of all simple Lie algebras. The upshot is that in addition to the four

series that we have already met, namely
A, =SU(n+1), B, =S50(2n+1), D,, = 50(2n), C, = Sp(2n), (2.380)
there are exactly five additional isolated cases, denoted by
Ga, Fy, Eg, Er, Exg (2.381)

in the Dynkin classification. As always, the subscript denotes the rank of the algebra. Their

Dynkin digrams are

Gy o °
Fy o—o o—e
and then Fjg is given by

o — o — o — o
|
0
|
0

FE; is given by
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and Fjg is given by

The dimensions of these exceptional Lie algebras are

Go
Fy
Es
Er
Eg

14
52
78
133
248

The algebra G9 arises in a number of contexts in physics and mathematics. It is, for

example, associated with a symmetry of the algebra of the octonions. In many ways FEg is

the most interesting of all. It also arises in various contexts in mathematics and physics.

For example, it plays a very important role in string theory.
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