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The collection of papers below mostly deals with symmetries and conservation
laws of (in particular, nonlinear) differential equations or topics closely related to
these problems. As an editor, I thought it reasonable to include this short intro-
duction stating all necessary definitions, notation and results of a general nature.
More details can be found, for example, in [1, 6], while wider applications and
generalizations are contained in [2]. It should be noted that our references here
are in no way complete or exhaustive: they reflect only one of several viewpoints
concerning the geometry of differential equations.

1. Jets and Lie Transformations ([1])

Let π : E → M be a locally trivial smooth bundle over a smooth manifold M.
We shall consider vector bundles in the sequel, though this assumption is not es-
sential. Denote by �(π) the C∞(M)-module of sections f : M → E. If necessary,
we shall consider local sections. Let θ ∈ E, π(θ) = x ∈ M, and f (x) = θ . The
k-jet [f ]kx of f at x is the class of sections f ′ ∈ �(π) such that their graphs are
tangent to the graph of f at θ with order k. We use the notation

J kx (π) = {[f ]kx | f ∈ �(π)} and J k(π) =
⋃
x∈M

J kx (π).

The set J k(π) carries a natural structure of a smooth manifold, while πk: J k(π)→
M, [f ]kx �→ x, is a smooth vector bundle. Moreover, the mappings

πk,k−1: J k(π)→ J k−1(π), [f ]kx �→ [f ]k−1
x , k � 1,
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are affine bundles. The bundle πk is called the bundle of k-jets for the bundle π ,
while J k(π) is called the manifold of k-jets. To any section f ∈ �(π) one can put
into correspondence the section jk(f ): M → J k(π), x �→ [f ]kx , which is called
the k-jet of f .

If U ⊂ M is a local chart with coordinates x1, . . . , xn such that π becomes
trivial over U and e1, . . . , em is a basis of local sections over U, then adapted (or
canonical) coordinates x1, . . . , xn, . . . , p

j
σ , . . . in π−1

k (U) arise defined by

pjσ ([f ]kx) =
∂ |σ |f j

∂xσ

∣∣∣∣
x

,

where σ is multi-index of length � k and f j is the j th component of f in the basis
e1, . . . , em.

Let θk+1 = [f ]k+1
x ∈ J k+1(π) and Mk

f be the graph of the jet jk(f ). Then the
point θk+1 is uniquely determined by θk and the tangent plane Lθk+1 = Tθk (M

k
f ).

The linear span Cθk ⊂ TθkJ k(π) of all planes Lθk+1, πk+1,k(θk+1) = θk, is called the
Cartan plane at θk. The correspondence θk �→ Cθk is called the Cartan distribution
on J k(π).

PROPOSITION 1. Let π : E→ M be a vector bundle and J k(π) be the manifold
of its k-jets.

(1) For any θk ∈ J k(π) one has Cθk = (πk,k−1)
−1∗ (Lθk ).

(2) An n-dimensional manifold N ⊂ J k(π) nondegenerately projecting to M is a
maximal integral manifold of the Cartan distribution on J k(π) if and only if
N = Mk

f for some f ∈ �(π).

In adapted coordinates, the Cartan distribution is described by the system of
1-forms (the so-called Cartan forms)

ωjσ = dpjσ −
n∑
i=1

pσidxi, |σ | = 0, . . . , k − 1, j = 1, . . . , m,

where σ i = i1 . . . is i for σ = i1 . . . is , 1 � i, iα � n. In particular, we see that
J 1(π) is a contact manifold, if dimπ = 1.

Cartan distribution determines geometry of the manifolds J k(π).

DEFINITION 1. Let J k(π) be the manifold of k-jets.

(1) A diffeomorphism F : J k(π) → J k(π) is called a Lie transformation, if it
preserves the Cartan distribution, i.e., if F∗(Cθk ) = CF(θk) for any θk ∈ J k(π).

(2) A vector field X on J k(π) is called a Lie field, if the corresponding one-
parameter group consists of Lie transformations.
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If F : J k(π)→ J k(π) is a Lie transformation, then for a point θk+1 = (θk, Lθk+1)

one can set F (1)(θk+1) = (F (θk), F∗Lθk+1). The mapping F (1) is defined almost
everywhere and is a Lie transformation in its domain. It is called the first lifting
of F . We set by induction F (l+1) = (F (l))(1). For a Lie field X, we set

X(l) = dA(l)t
dt

∣∣∣∣
t=0

,

where At is the one-parameter group of the field X. Contrary to Lie transforma-
tions, the liftings X(l) are defined everywhere.

THEOREM 1 (Lie–Bäcklund theorem). Any Lie transformation F of the space
J k(π) is of the following form:

(1) If dimπ = 1 and k � 1, then F = F
(k−1)
1 for some contact transformation

F1: J 1(π)→ J 1(π).
(2) If dimπ > 1 and k � 0, then F = F

(k)

0 for some diffeomorphism F0:
J 0(π)→ J 0(π).

A similar theorem is valid for Lie fields.

Remark 1. With natural modifications, the theory above (as well as what fol-
lows below) can be constructed in a more general context. Namely, instead of graph
of sections in E one can consider jets of arbitrary n-dimensional submanifolds.
Note that the manifold J k(E, n) arising in such a way can be covered by manifolds
of the form J k(ξ), ξ being vector bundles.

2. Differential Equations and Classical Symmetries ([1])

Let π : E→ M be a vector bundle.

DEFINITION 2. A differential equation of order k posed on sections of the bun-
dle π is a submanifold E ⊂ J k(π). A section f ∈ �(π) is a solution of E , if
Mk
f ⊂ E .

Let π ′: E′ → M be another vector bundle. Consider the pullback π∗(π ′) and a
section$ ∈ �(π∗k (π ′)) =def Fk(π, π

′). Then$ can be identified with a (nonlinear)
differential operator acting from �(π) to �(π ′) by$(f ) = jk(f )∗($), f ∈ �(π).
Note that Fk(π, π

′) is a module over the ring C∞(J k(π)) =def Fk(π). For any
differential equation E ⊂ J k(π) there exists a vector bundle π ′ and a differential
operator $ = $E ∈ F (π, π ′) such that E = {θk ∈ J k(π) | $θk = 0}. A section
f ∈ �(π) is a solution of E if and only if $E(f ) = 0. Vice versa, to any operator
$ ∈ Fk(π, π

′) one can put in correspondence an equation E = E$ ⊂ J k(π).
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DEFINITION 3. Let E ⊂ J k(π) be a differential equation.

(1) A Lie transformation F : J k(π)→ J k(π) is called a (finite classical) symme-
try of E , if F(E) = E .

(2) A Lie field X on E is called an (infinitesimal classical) symmetry of E , if it is
tangent to E .

From definitions it follows that finite symmetries take (local) solutions of E
to local solutions. The same is valid for elements of one-parameter groups of in-
finitesimal symmetries. A solution f is said to be invariant (or self-similar) with
respect to a finite symmetry F , if F(f ) = f . It is X-invariant, if X is tangent to
Mk
f , X being an infinitesimal symmetry.

Remark 2. Let in an adapted coordinate system a Lie field be expressed by

X =
∑
i

ai
∂

∂xi
+

∑
j,σ

biσ
∂

∂p
j
σ

.

Then bjσ i = Di(bjσ )−
∑

s p
j
σsDi(as), whereDi are the total derivatives (see below).

Thus, to compute the coefficients of the lifting, one only needs to know the func-
tions ai and bj∅. In the case m > 1 they are arbitrary smooth functions on J 0(π),
while for m = 1 one has

ai = − ∂f
∂xi
, b∅ = f −

∑
s

ps
∂f

∂ps
,

where f is an arbitrary smooth function on J 1(π).

There is an alternative approach to the concept of a symmetry. Namely, let θ ∈ E
and Cθ (E) = Cθ ∩ TθE . Thus we obtain the Cartan distribution on E . We say that
a diffeomorphism F : E → E is an intrinsic symmetry of E if it preserves C(E).
Obviously, any extrinsic symmetry gives rise to an intrinsic one. The following
result shows that if the equation at hand is not ‘highly overdetermined’, all intrinsic
symmetries are obtained in such a way.

THEOREM 2. If E ⊂ J k(π) is an equation of order k, dimM = n, dimπ = m

and fibers of the projection πk|E are connected, then the condition

codim E � (n+ k − 2)!
(k − 1)!(n − 1)! − 2

is sufficient for any intrinsic symmetry of E to be the restriction of some extrinsic
one.

In particular, if E is a determined equation (i.e., its codimension coincides with
dimension of π ), then the condition above is violated in the following exceptional
cases:
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(a) k = 1 (equations and systems of 1st order);
(b) n = 1 (ordinary differential equations and systems);
(c) m = 1, k = n = 2 (scalar 2nd-order equations in one dependent and two

independent variables).

3. Infinite Prolongations and Higher Symmetries ([1])

Consider the sequence of projections

M
π←−E π1,0←− J 1(π)← · · · ← J k(π)

πk+1,k←− J k+1(π)← · · · .
Its inverse limit is denoted by J∞(π) and is called the manifold of infinite jets
for the bundle π . By definition, the vector fiber bundles π∞: J∞(π) → M and
affine bundles π∞,k: J∞(π)→ J k(π) exist, satisfying π∞ = πk ◦π∞,k , π∞,k−1 =
πk,k−1 ◦ π∞,k. Points of J∞(π) are identified with classes [f ]∞x of sections whose
graphs are tangent to each other with infinite order. To any section f ∈ �(π) the
section j∞(f ) ∈ �(π∞) corresponds, x �→ [f ]∞x , with the graph M∞

f ⊂ J∞(π),
and one has jk(f ) = π∞,k ◦ j∞(f ), π∞,k(M∞

f ) = Mk
f for any f ∈ �(π) and

k � 0.
The algebra of smooth functions on J∞(π) is the filtered algebra F (π) =def⋃
k�0 Fk(π). If π ′: E′ → M is another vector bundle, we introduce the filtered

F (π)-module F (π, π ′) =def
⋃
k�0 Fk(π, π

′) and identify its elements with non-
linear differential operators �(π) → �(π ′) of arbitrary order. A vector field on
J∞(π) is a filtered derivation X: F (π)→ F (π). The module of all these deriva-
tions is denoted by D(π). The module of i-differential forms on J∞(π) is also
filtered and we define it by (i(π) =def

⋃
k�0(

i(J k(π)).
Consider a point θ ∈ J∞(π) which may be understood as a sequence of points

θk ∈ J k(π), πk+1,k(θk+1) = θk, k = 0, 1, . . .. For any Cartan plane Cθk+1 one
has (πk+1,k)∗Cθk+1 ⊂ Cθk and the Cartan plane Cθ is defined as the corresponding
inverse limit. The correspondence θ �→ Cθ is the Cartan distribution on J∞(π).

PROPOSITION 2. Let π : E→ M be a vector bundle. Then:

(1) For any θ ∈ J∞(π) the Cartan plane Cθ is dimM-dimensional and π∞-
horizontal.

(2) The distribution C is integrable in formal sense: for any two vector fields lying
in C their commutator lies in C as well.

(3) Manifolds of the form M∞
f and they only are maximal integral manifolds of C.

From this proposition it follows that the bundle π∞ is endowed with a flat
connection C: D(M) → D(π) called the Cartan connection. Moreover, one can
show that this connection is generalized to the following construction. Let π ′ and
π ′′ be two vector bundles over M and $: �(π ′) → �(π ′′) be a linear differential
operator. Then there exists a unique linear differential operator C$: F (π, π ′)→
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F (π, π ′′) satisfying j∞(f )∗ ◦ C$ = $ ◦ j∞(f )∗ for any f ∈ �(π). From
the very definition it follows that operators of the form C$ admit restrictions to
submanifolds M∞

f . Operators possessing this properties are called C-differential
(or total differential) operators.

In adapted coordinates, the Cartan connection is expressed by

C
∂

∂xi
= Di def= ∂

∂xi
+

∑
σ,j

p
j

σ i

∂

∂p
j
σ

,

where Di is the total derivative along xi . Total derivatives form a local basis of
the Cartan distribution on J∞(π). An operator �: F (π, π ′) → F (π, π ′′) is a
C-differential operator if and only if it is locally expressed in total derivatives.

Denote by CD(π) the module of vector fields lying in the Cartan distribu-
tion. A vector field X ∈ D(π) is called an (infinitesimal) automorphism of C,
if [X,CD(π)] ⊂ CD(π). These automorphisms form a Lie algebra DC(π), and
CD(π) is its ideal consisting of trivial automorphisms. Elements of the quotient Lie
algebra sym π = DC(π)

/
CD(π) are called symmetries of the Cartan distribution.

The Cartan connection splits the module DC(π) into the direct sum DC(π) =
Dv

C(π)⊕ CD(π), where Dv
C(π) consists of vertical vector fields X ∈ DC(π), i.e.,

fields such that X(C∞(M)) = 0. Hence, any coset ξ ∈ symπ contains a unique
vertical representative and we identify symπ with Dv

C(π). With this identification,
the following result is valid.

THEOREM 3. There is a one-to-one correspondence between symπ and the mod-
ule F (π, π). In adapted coordinates this correspondence is given by the formula

� : ϕ �→ � ϕ =
∑
σ,j

Dσ (ϕ
j)
∂

∂piσ
,

where ϕj , j = 1, . . . , dimπ , are the components of ϕ in local representation and
Dσ = Di1 ◦ · · · ◦Dis for σ = i1 . . . is .

The field � ϕ is called an evolutionary vector field with the generating section
(or function) ϕ ∈ F (π, π). Note that ϕj = � ϕ � ωj∅, where ωj∅ is the Cartan form
corresponding to the empty multi-index. Let π ′: E′ → M be a vector bundle. Then
any evolutionary vector field � ϕ is uniquely extended to a first-order differential
operator � π ′

ϕ : F (π, π ′)→ F (π, π ′) satisfying � π ′
ϕ (f$) = � ϕ(f )$+f� π ′

ϕ ($)

for any f ∈ F (π) and $ ∈ F (π, π ′).
Evolutionary vector fields form a Lie algebra and consequently for any ϕ,ψ ∈

F (π, π) the commutator [� ϕ,�ψ ] is of the form � ξ for some section ξ ∈ F (π, π).
This section is denoted by {ϕ,ψ} and called the Jacobi bracket of ϕ and ψ . This
bracket can be computed by the formula {ϕ,ψ} = � π

ϕ (ψ) − � π
ψ(ϕ) while in

adapted coordinates one has

{ϕ,ψ}j =
∑
σ,α

(
Dσ(ϕ

α)
∂ψj

∂pασ
−Dσ(ψα)∂ϕ

j

∂pασ

)
.
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Consider now an equation E ⊂ J k(π).
DEFINITION 4. The set

E l = {[f ]k+lx | θk = [f ]k ∈ E, Mk
f is tangent to E at θk with order l}

is the lth prolongation of E , l = 0, 1, . . . ,∞. An equation is said to be formally
integrable, if all E l are smooth manifolds and the mappings πk+l+1,k+l: E l+1 → E l

are smooth fiber bundles.

Let in local coordinates E be given by equations F 1 = 0, . . . , F r = 0, Fα ∈
F (π). Then its lth prolongation is described by the system DσF

α = 0, |σ | � l,
α = 1, . . . , r.

Our concern now is the infinite prolongation, E∞.

DEFINITION 5. An evolutionary derivation � ϕ (or a section ϕ) is called a higher
symmetry of E , if it is tangent to E∞.

Higher symmetries of E form a Lie algebra over R denoted by sym E .
To describe higher symmetries in efficient terms, let us note the following. Let

$ ∈ F (π, π ′) be a differential operator corresponding to E . Consider the operator
-$: F (π, π)→ F (π, π ′) defined by

-$ϕ
def= � π ′

ϕ $, ϕ ∈ F (π, π).

The operator -$ is called the universal linearization of $. Let locally $ be given
by its components F 1, . . . , F r . Then -$ is a matrix linear differential operator of
the form

-$ =
∥∥∥∥∑
σ

∂F α

∂p
β
σ

Dσ

∥∥∥∥, α = 1, . . . , dimπ ′, β = 1, . . . , dimπ.

In particular, it follows that -$ is a C-differential operator.
Let us now recall that C-differential operators admit restriction to manifolds of

the form E∞ and introduce the notation -E = -$|E∞ , where $ = $E .

THEOREM 4. Let E ⊂ J k(π) and a section $ = $E ∈ F (π, π ′) be chosen
in such a way that its graph intersects the graph of the zero section transversally.
Then sym E = ker -E .

Remark 3. Similar to the case of classical symmetries, one can define the notion
of intrinsic higher symmetry introducing the Cartan distribution on E∞ and con-
sidering nontrivial symmetries of this distribution. Contrary to the classical case,
we obtain nothing new:

THEOREM 5. If an equation E is such that π∞,0(E∞) = J 0(π), then any intrinsic
symmetry is a restriction to E∞ of some extrinsic one.
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To conclude this section, let us note that the theory of classical symmetries is
included in the theory of higher ones.

4. Coverings and Nonlocal Symmetries ([1, 9])

Let E∞ ⊂ J∞(π) π∞−→M be an infinitely prolonged equation, dimM = n.

DEFINITION 6. A locally trivial bundle τ : W → E∞ is called a covering over
E , if the space W is endowed with an n-dimensional integrable distribution C̃ such
that τ∗(C̃θ̃ ) = Cτ (θ) for any θ̃ ∈ W .

From this definition it follows that the bundle πτ = π∞ ◦ τ : W → M is en-
dowed with a flat connection which we denote by C̃ and which ‘covers’ the Cartan
connection in the bundle π∞: for any X ∈ D(M) one has τ∗(C̃X) = CX. In an
adapted coordinate system such that τ trivializes over the corresponding coordinate
neighborhood, this connection is described by the formulas

C̃
∂

∂xi

def= D̃i = Di +Xi,

where Di are the restrictions of the total derivative to E∞ and

Xi =
∑
α

Xαi
∂

∂wα

are τ -vertical vector fields, {wα} being local coordinates along the fiber of τ . The
condition for τ to be a covering is expressed by

[D̃i, D̃j ] = Di(Xj)−Dj(Xi)+ [Xi,Xj ] = 0, 1 � i < j � n,

where Di(Xj ) denotes the component-wise action of Di on coefficients of the
field Xj .

Two coverings τ : W → E∞, τ ′: W ′ → E∞, are called equivalent, if there
exists a diffeomorphism 3: W → W ′ satisfying

τ = τ ′ ◦3 and 3∗(C̃θ̃ ) = C̃ ′
3(θ̃)

, θ̃ ∈ W.
Consider the trivial bundle τ : W = R

l × E∞ → E∞ and define a dimM-di-
mensional distribution C̃ on W in such a way that τ∗C̃θ̃ = Cτ (θ̃) for any θ̃ ∈ W
while the projection of C̃θ̃ on the fiber is trivial. Any covering equivalent to this one
is called trivial. A covering is called linear, if τ is a vector bundle and the fields
C̃X preserve the subset of fiberwise linear functions in C∞(W).

Similar to the case of J∞(π), we can introduce the Lie algebras C̃D(τ ) of vector
fields lying in C̃ and

DC̃(τ ) = {X ∈ D(W) | [X, C̃D(τ )] ⊂ C̃D(τ )}.
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As before, C̃D(τ ) is an ideal of DC̃(τ ) and the elements of the quotient Lie algebra

symτ E
def= DC̃(τ )/C̃D(τ )

are called nonlocal τ -symmetries of E . Any coset ξ ∈ symτ E contains a unique
(π∞ ◦ τ)-vertical representative and symτ E may be identified with the Lie algebra
of such vertical vector fields.

Note now that if π ′ and π ′′ are vector bundles over the base M and $:
F (π, π ′) → F (π, π ′′) is a C-differential operator, then its restriction $E to E∞
can be naturally lifted to a linear differential operator $̃: �(π∗τ (π ′))→ �(π∗τ (π ′′)).
In particular, we can construct the lifting -̃E of the operator -E .

DEFINITION 7. A section ϕ ∈ �(π∗τ (π)) is called a τ -shadow, if -̃E(ϕ) = 0.

If ϕ is a τ -shadow, we can define the derivation �̃ ϕ: C∞(E∞)→ C∞(W) by

�̃ ϕ =
∑

D̃σ (ϕ
j )
∂

∂p
j
σ

,

where the sum is taken over all internal coordinates in E∞.

DEFINITION 8. Let µ: W ′ → W be a bundle such that

(1) The bundle τ ′ = τ ◦ µ: W ′ → E∞ is endowed with a covering structure.
(2) The connection C̃τ ′ covers the connection C̃τ .

A τ -shadow ϕ is said to be τ ′-reconstructable, if there exists a nonlocal
τ ′-symmetry S such that S|C∞(E∞) = �̃ ϕ .

THEOREM 6. Let τ : W → E∞ be a covering and ϕ1, . . . , ϕs be τ -shadows.
Then there exists a covering τ ′ such that these shadows are τ ′-reconstructable.

5. Horizontal Cohomology ([11])

Consider the de Rham complex

0 → C∞(M) d−→(1(M)→ · · · → (n−1(M)
d−→(n(M)→ 0

of the manifold M. Denote by ∧i: ∧i
T ∗M → M the ith exterior power of

the cotangent bundle of the manifold M and by (̄i(π) the modules F (π,∧i).
Since d are linear differential operators, we can construct the operators d̄ =def

Cd: (̄i(π)→ (̄i+1(π) and obtain the complex

0 → F (π)
d̄−→ (̄1(π)→ · · · → (̄n−1(π)

d̄−→ (̄n(π)→ 0,
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which is called the horizontal de Rham complex on J∞(π). Elements of (̄i(π) can
be identified with horizontal i-forms on J∞(π), i.e., the forms ω ∈ (i(J∞(π))
such that X �ω = 0 for any π∞-vertical vector field. Since the operators d̄ are
C-differential, one can restrict the above complex to any infinite prolongation
E∞ ⊂ J∞(π) and obtain the complex

0 → F (E∞) d̄−→ (̄1(E∞)→ · · · → (̄n−1(E∞) d̄−→ (̄n(E∞)→ 0,

which is called the horizontal de Rham complex of the equation E . Its cohomology
is denoted by H̄ i(E).

In the sequel we shall need horizontal cohomology with coefficients. To this
end, we give the following

DEFINITION 9. Let F = F (E) be the smooth function algebra on E∞ and
C Diff(F ) be the algebra of C-differential operators acting from F to F . An
F -module P is called a C-module, if it is endowed with a left module structure
over C Diff(F ) such that any a ∈ F ⊂ C Diff(F ) acts on P by multiplication.

It is useful to note that P is a C-module if and only if it is of the form P = �(τ),
where τ is linear covering over E .

PROPOSITION 3. Let Q,Q′ be F -modules and $: Q→ Q′ be a C-differential
operator. Then for any C-module P the operator $ can be naturally extended
to a C-differential operator $P : Q⊗F P → Q′ ⊗F P of the same order.
If $′: Q′ → Q′′ is another C-differential operator, then ($′ ◦$)P = $′P ◦$P .

Applying this result to the horizontal de Rham complex, we obtain the complex

0 → P
d̄P−→ (̄1(E∞)⊗ P d̄P−→· · · d̄P−→ (̄n(E∞)⊗ P → 0,

whose cohomology is called the horizontal de Rham cohomology of E with coeffi-
cients in P and is denoted by H̄ i(P ). In particular, H̄ i(E) = H̄ i(F ).

Efficient computation of horizontal cohomologies is based on the notion of
compatibility complex. Let Q,Q1 be F -modules.

PROPOSITION 4. There exists an F -module J̄k(Q) and a C-differential opera-
tor ̄k: Q→ J̄k(Q) of order k such that for any C-differential operator $: Q→
Q1 of order k a homomorphism ϕ$: J̄k(Q) → Q1 satisfying $ = ϕ$ ◦ ̄k is
uniquely defined.

By its properties, J̄k(Q) is defined up to an isomorphism and is called the
module of horizontal k-jets. One can also see that for any l � k there exists a natural
homomorphism J̄l(π)→ J̄k(π) and thus the module J̄∞(π) = proj lim J̄k(π) is
defined. For any C-differential operator $: Q→ Q1 of order k one can consider
the operators $(s) = ̄s ◦ϕ$: Q→ J̄s(Q1) and the corresponding homomorphism
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of horizontal jets ϕs$: J̄k+s(Q) → J̄s(Q1). Passing to the inverse limit, we also
obtain the homomorphism ϕ∞$ : J̄∞(Q) → J̄∞(Q1). Let us denote the kernel of
this homomorphism by R$. It can be seen that R$ is a C-module.

Without loss of generality we can always assume that ϕ$ is an epimorphism.
Now choose an integer k1 > 0 and consider the homomorphism ϕ

k1
$ : J̄k+k1(Q)→

J̄k1(Q). Let us introduce the module Q2 = coker ϕk1
$ and the operator $1: Q1 →

Q2 as the composition of ̄k1 with the natural projection J̄k1(Q1)→ Q2. Applying
this procedure to$1, we shall obtain the operator $2: Q2 → Q3, etc. Thus we get
the complex Q$•

0 → Q
$=$0−→ Q1

$1−→Q2 → · · · → Qi

$i−→Qi+1 → · · ·
of C-differential operators satisfying the following property: for any C-differential
operator ∇: Qi → P of order � ki such that ∇ ◦ $i−1 = 0 there exists
a C-differential operator �: Qi+1 → P such that ∇ = � ◦ $i . By this reason,
we call this complex the compatibility complex of the operator $. For an involu-
tive $ (see [6]), this complex is formally exact which means that the complex of
homomorphisms

0 → J̄∞(Q)
ϕ∞$−→ J̄∞(Q1)

ϕ∞$1−→ J̄∞(Q2)→ · · ·
· · · → J̄∞(Qi)

ϕ∞$i−→ J̄∞(Qi+1)→ · · ·
is exact in all positive terms.

THEOREM 7. For any C-module P one has

H̄ i(R$⊗̂P) = Hi(Q$
• ⊗ P),

where R$⊗̂P = proj lim Rs
$ ⊗ P with Rs

$ =def ker ϕs$.

Let us now dualize the above construction. Let δ: Q→ Q′ be a C-differential
operator. Consider the diagram

· · · C Diff(Q′, (̄i) w

δ̃

C Diff(Q′, (̄i+1)

δ̃

· · ·

· · · C Diff(Q, (̄i)
w

C Diff(Q, (̄i+1) · · ·
where w(∇) = d̄ ◦ ∇ and δ̃(∇) = ∇ ◦ δ. Denote the cohomologies of these
complexes at the term C Diff(•, (̄n) by Q̂′ and Q̂ respectively. Then δ̃ induces
the mapping δ∗: Q̂′ → Q̂ which is called the adjoint operator of δ.

Let us now consider the complex Q̂$•

0 ← Q̂
$∗←− Q̂1

$∗1←− Q̂2 ← · · · ← Q̂i

$∗i←− Q̂i+1 ← · · ·
adjoint to the compatibility complex of the operator $.
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THEOREM 8. For any C-module P one has

H̄ i(R∗
$ ⊗ P) = Hn−i (Q̂$

• ⊗ P),
where R∗

$ = hom(R$,F ).

Both theorems are proved using techniques of spectral sequences associated
to bicomplexes.

6. C-cohomology and Recursion Operators ([5, 10])

Consider an equation E ⊂ J k(π) and denote by Dv((i(E)) the module of
π∞-vertical derivations F (E) → (i(E∞). Recall that the module Dv((∗(E)) =⊕

i Dv((i(E)) carries the following structures:

− the structure of a graded (∗(E∞)-module

∧: (i(E∞)× Dv((j(E))→ Dv((i+j (E));
− the inner product operations

�: Dv((i(E))× Dv((j (E))→ Dv((i+j−1(E)),

�: Dv((i(E))×(j(E∞)→ (i+j−1(E∞);
− the Frölicher–Nijenhuis bracket

[[·, ·]]: Dv((i(E))× Dv((j (E))→ Dv((i+j (E))

with respect to which Dv((∗(E)) is a graded Lie algebra.

Consider the Cartan connection C in π∞: E∞ → M and its connection form
UE ∈ Dv((1(E)) (also called the structural element of the equation E). By flatness
of C, one has [[UE , UE ]] = 0. Then ∂E =def [[UE , ·]]: Dv((i(E)) → Dv((i+1(E))
is a first-order differential operator and, due to the Jacobi identity for the Frölicher–
Nijenhuis bracket, ∂E ◦ ∂E = 0. Thus we obtain the complex

0 → Dv(E)
∂E−→Dv((1(E))→ · · · → Dv((i(E))

∂E−→Dv((i+1(E))→ · · ·
which is called the C-complex of the equation E and whose cohomology (the
C-cohomology) is denoted by Hi

C(E).

THEOREM 9. For any formally integrable equation E ⊂ J k(π) one has:

(1) H 0
C(E) = sym E .

(2) H 1
C(E) is identified with equivalence classes of nontrivial infinitesimal defor-

mations of the equation structure.
(3) H 2

C(E) contains obstructions for continuation of infinitesimal deformations to
formal ones.
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We shall first describe the groupsHi
C(E) for the ‘empty’ equation E∞ = J∞(π).

To do this, let us introduce the mapping dC : (i(E∞) → (i+1(E∞) defined by
dC(ω) = UE �(dω) − d(UE �ω). It is called the Cartan (or vertical) differential
and it can be easily shown that dC ◦ dC = 0. Let C((E) ⊂ (1(E∞) be the module
generated by the image of dC and C i((E) ⊂ (i(E∞) be its ith external power.

THEOREM 10. For the ‘empty’ equation E∞ = J∞(π) the groups Hi
C(E) are

isomorphic to C i((E) ⊗F F (π, π). In adapted coordinates, this isomorphism
takes an element = ∈ C i((E)⊗F F (π, π) to the class of the vertical derivation

�= =
∑

Dσ(=
j)⊗ ∂

∂p
j
σ

,

where =j are components of ω in local representation.

To deal with the general case, let us first note that both Cp((E) and
Dv(Cp((E)) are C-modules. Hence, we can consider the horizontal cohomol-
ogy H̄ q(Dv(Cp((E)) of E with coefficients in Dv(Cp((E)). Let us now take the
compatibility complex for the linearization operator Q-E•

0 → F (E, π)
-E−→Q1

$1−→Q2 → · · · .
THEOREM 11. The following isomorphisms are valid:

(1) H̄ q(Dv(Cp((E))) = Hq(Q-E• ⊗ Cp((E)).
(2) Hi

C(E) =
⊕

p+q=i H̄
q(Dv(Cp((E))).

As a consequence, we get the following result:

THEOREM 12 (the s-line theorem). If the compatibility complex of the lineariza-
tion operator is of length s, then

(1) H̄ q(Dv(Cp((E))) = 0 for q � s.
(2) H̄ 0(Dv(Cp((E))) = ker -[p]E .
(3) In the case s = 2 one also has H̄ 1(Dv(Cp((E)) = coker -[p]E .

Here -[p]E is the extension of -E to Cp((E).

Remark 4. An equation E satisfies the conditions of 2-line theorem, if the func-
tions F 1, . . . , F r determining this equation are differentially independent, i.e., there
exists no nontrivial relation of the form

∑
$jF

j = 0, where $j are C-differential
operators. ‘Almost all’ equations possess this property and we call such equations
--normal.

To conclude this section, we shall describe relations between C-cohomology
and recursion operators. Recall that the module Dv((∗(E)) is endowed with the
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inner product operation. It can be seen that this operation is inherited by the C-
cohomology groups and the following fact is valid:

PROPOSITION 5. The group H 1
C(E) forms and associative algebra with respect

to inner product, the class UE being its unit. This algebra acts on H 0
C(E) by

R=(X) = X �=, = ∈ H 1
C(E), X ∈ H 0

C(E).

Note that the above action is trivial for = ∈ H̄ 1(C0((E)) ⊂ H 1
C(E). We

call elements of H̄ 0(C1((E)) ⊂ H 1
C(E) recursion operators for symmetries of

the equation E . Thus to find a recursion operator it needs to solve the equation
-
[1]
E = = 0 for = ∈ C((E) ⊗ F (E, π) and this operator will act on symmetries

by R=(ϕ) = � ϕ �=.
Let now τ : W → E∞ be a covering over E . Then the C-cohomology theory can

be literary repeated for the bundle π∞ ◦ τ . An element =̃ ∈ C((W) ⊗ F (W, π)
is called a τ -shadow of a recursion operator, if -̃[1]E =̃ = 0. For applications the
following result is important:

PROPOSITION 6. If =̃ is a τ -shadow of a recursion operator and ϕ̃ is a nonlocal
τ -symmetry, then R=̃ϕ̃ is a τ -shadow of a symmetry.

7. C-spectral Sequence and Conservation Laws ([15])

Consider a differential equation E ⊂ J k(π) and the submodule C((E) ⊂ (1(E∞).
Let IE ⊂ (∗(E∞) be the ideal generated by C((E). Since the Cartan distribution
on E∞ is integrable, this ideal is closed with respect to the de Rham differential
d: (∗(E∞)→ (∗(E∞) and the filtration

(∗(E∞) = I0
E ⊃ IE ⊃ · · · ⊃ I iE ⊃ I i+1

E ⊃ · · ·
is in agreement with d. The corresponding spectral sequence converges to the
de Rham cohomology of E∞ and is called the Vinogradov spectral sequence
(or C-spectral sequence). Denote its terms by Ep,qr (E) and the corresponding dif-
ferentials by dp,qr . For the empty equation E∞ = J∞(π) we use the notation
E
p,q
r (π).

Remark 5. Consider the Cartan differential dC . Then it can be shown that the
difference d − dC is also a differential and its restriction to (̄∗(E) coincides with
the horizontal differential. Let us denote this difference also by d̄. It can be seen
that the module (∗(E∞) is bigraded, (∗(E∞) = ⊕

p,q (̄
q(E)⊗ Cp((E), and the

triple ((∗(E∞), d̄, dC) is a bicomplex. It is called the variational bicomplex and
the spectral sequence associated to it is isomorphic to the C-spectral sequence.

We start with a description of the C-spectral sequence for J∞(π).
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PROPOSITION 7. Let π be a vector bundle over an n-dimensional manifold M.
Then Ep,qr (π) = 0, 1 � r �∞, if p > 0, q != n or p = 0, q > n.

Note now that the 0th column of the term E0(π) coincides with the horizontal
complex and consider the sequence

0 → F (π)
d̄−→ (̄1(π)

d̄−→· · ·
· · · d̄−→ (̄n(π)

E−→E
1,n
1 (π)

d
1,n
1−→E

2,n
1 (π)

d
2,n
1−→· · · ,

where E is the composition of the natural projection (̄n(π) → H̄ n(π) with the
differential d0,n

1 : H̄ n(π) → E
1,n
1 (π). This sequence is a complex called the vari-

ational complex and its cohomology coincides with the cohomology of M. In
particular, if M is homologically trivial, the variational complex exact.

Note now that the elements of (̄n(π) are Lagrangians depending on sections
of the bundle π and their derivatives while d̄: (̄n−1(π) → (̄n(π) is the operator
of total divergence. Using an adapted coordinate system one can also see that E
is the Euler operator (or variational derivative) assigning to a Lagrangian (more
exactly, to an equivalence class of Lagrangians) the corresponding Euler–Lagrange
equation.

THEOREM 13. Let the manifold M be homologically trivial. Then:

(1) ker E = im d̄, i.e., a Lagrangian with vanishing variational derivative is a
total divergence.

(2) d̄ω = 0 if and only if ω = d̄θ which means that all zero total divergences are
total curls.

(3) ψ = E(ω) if and only if -ψ = -∗ψ which gives the solution to the inverse
problem in the calculus of variations.

Let E ⊂ J k(π) and consider the complex Q̄-E•

0 ← Q̂0
-∗E←− Q̂1

$∗1←− Q̂2 ← · · ·
adjoint to the compatibility complex for -E (here Q0 = F (E, π)). Taking into
account the results of Section 5 together with the fact that Cp((E) is a C-module,
we obtain

THEOREM 14. The following facts are valid:

(1) For any F (E)-module P one has H̄ n−i (C((E)⊗ P) = Hi(Q̄-E• ⊗ P).
(2) Ep,q1 (E) = H̄ q(Cp((E)).
(3) Ep,q1 (E) is a direct summand in Hn−q(Q̄-E• ⊗ Cp−1((E)).

As a consequence, we get
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THEOREM 15 (the s-line theorem). If the compatibility complex of the lineariza-
tion operator is of length s, then

(1) Ep,q1 (E) = 0 for p > 0 and q � n− s.
(2) Ep,n1 (E) ⊂ coker(-[p]E )

∗ for p > 0.

(3) In the case s = 2 one also has Ep,n−1
1 (E) ⊂ ker(-[p]E )

∗ for p > 0.

In conclusion, we shall discuss the theory of conservation laws for --normal
equations. We also assume that equations in question are formally integrable. In
this case from the 2-line theorem one has the exact sequence

0 → Hn−1(E)→ H̄ n−1(E)
d0,n−1

1−→ ker -∗E .

DEFINITION 10. Elements ofHn−1(E) are called topological (or rough) conser-
vation laws of the equation E . The quotient

cl(E)
def= H̄ n−1(E)/Hn−1(E)

is called the group of proper conservation laws.

The 2-line theorem implies

THEOREM 16. If E is an --normal equation, then cl(E) ⊂ ker -∗E . If, in addition,
Hn(E) ⊂ H̄ n(E) (in particular, if Hn(E) = 0), then cl(E) = ker d1,n−1

1 .

An element ψ ∈ ker -∗E corresponding to a conservation law is called its gener-
ating function.

Let ψ satisfy the equation -∗Eψ = 0 and E be given by a section F . Then
-∗F (ψ) = $(F) for some C-differential operator $.

PROPOSITION 8. An element ψ ∈ ker -∗E is the generating function of a con-
servation law, if there exists a C-differential operator ∇ such that ∇∗ = ∇ and
-∗ψ + ($|E∞)∗ = ∇|E∞ ◦ -E .

The last two results provide an efficient method for computation of conservation
laws.

Acknowledgements

It is our real pleasure to express deep gratitude to Professor Michiel Hazewinkel
without whom this collection, as well as [4, 7, 8, 12], could hardly be published.

I am also grateful to A. Verbovetsky for reading the manuscript and for valuable
remarks.



GEOMETRY OF DIFFERENTIAL EQUATIONS 17

References

1. Bocharov, A. V., Chetverikov, V. N., Duzhin, S. V., Khor’kova, N. G., Krasil’shchik, I. S.,
Samokhin, A. V., Torkhov, Yu. N., Verbovetsky, A. M. and Vinogradov, A. M.: Symmetries
and Conservation Laws for Differential Equations of Mathematical Physics, Amer. Math. Soc.,
Providence, RI, 1999. Edited and with a preface by Krasil’shchik and Vinogradov.

2. Henneaux, M., Krasil’shchik, I. S. and Vinogradov, A. M. (eds): Secondary Calculus and
Cohomological Physics, Contemp. Math. 219, Amer. Math. Soc., Providence, RI, 1998.

3. Henneaux, M., Krasil’shchik, I. S. and Vinogradov, A. M. (eds): The International Con-
ference on Secondary Calculus and Cohomological Physics, Moscow (communications), The
Electronic Library of European Math. Soc. (ElibEMS), 1997; URL http://www.emis.de/
proceedings/SCCP97/

4. Kersten, P. H. M. and Krasil’shchik, I. S. (eds): Geometrical and Algebraic Structures in Differ-
ential Equations, Reprinted from Acta Appl. Math. 1–3 (1995), Kluwer Acad. Publ., Dordrecht
1995.

5. Krasil’shchik, I. S., Cohomology background in geometry of PDE, in [2], pp. 121–140; URL
http://diffiety.ac.ru/preprint/98/01_98abs.htm

6. Krasil’shchik, I. S. and Verbovetsky, A. M.: Homological methods in equations of mathematical
physics, Open Education and Sciences, Opava (Czech Rep.), 1998; arXive:math.DG/9808130

7. Krasil’shchik, I. S. and Vinogradov, A. M. (eds): Algebraic Aspects of Differential Calculus,
Acta Appl. Math. 49(3) (1997).

8. Krasil’shchik, I. S. and Vinogradov, A. M. (eds): Geometrical Aspects of Nonlinear Differential
Equations, Acta Appl. Math. 56(2–3) (1999).

9. Krasil’shchik, I. S. and Vinogradov, A. M.: Nonlocal trends in the geometry of differential
equations: Symmetries, conservation laws, and Bäcklund transformations, in [12], pp. 161–209.

10. Krasil’shchik, I. S. and Kersten, P. H. M.: Symmetries and Recursion Operators for Classical
and Supersymmetric Differential Equations, Kluwer Acad. Publ., Dordrecht, 2000, 384 pp.

11. Verbovetsky, A. M.: Notes on the horizontal cohomology, in [2], pp. 211–232; arXive:
math.DG/9803115

12. Vinogradov, A. M. (ed.): Symmetries of Partial Differential Equations. Conservation Laws –
Applications – Algorithms, Reprinted from Acta Appl. Math. 15 & 16 (1989), Kluwer Acad.
Publ., Dordrecht, 1989.

13. Vinogradov, A. M.: An informal introduction to the geometry of jet spaces, Rend. Sem. Fac.
Sci. Univ. Cagliari 58 (1988), 301–333.

14. Vinogradov, A. M.: Local symmetries and conservation laws, Acta Appl. Math. 2 (1981), 21–78.
15. Vinogradov, A. M.: The C-spectral sequence, Lagrangian formalism, and conservation laws,

I. The linear theory. II. The nonlinear theory, J. Math. Anal. Appl. 100 (1984), 1–129.


