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1. Introduction. The concept of set-valued functions and their calculus [2] were

found useful in some problems in economics [3], as well as in control theory [17].

Later on, the notion of H-differentiability was introduced by Puri and Ralesku in or-

der to extend the differential of set-valued functions to that of fuzzy functions [29].

This in turn led Seikkala [30] to introduce the notion of fuzzy derivative, which is a

generalization of the Hukuhara derivative and the fuzzy integral, which is the same

as that proposed by Dubois and Prade [7, 8]. A natural consequence of the above was

the study of fuzzy differential and integral equations, see [5, 9, 10, 11, 12, 18, 19, 20,

21, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33].

Fixed point theorems for fuzzy mappings, an important tool for showing existence

and uniqueness of solutions to fuzzy differential and integral equations, have recently

been proved by various authors, see [1, 4, 13, 14, 15, 16, 22, 27]. In particular, in [22]

Lakshmikantham and Vatsala proved the existence of fixed points to fuzzy mappings,

using theory of fuzzy differential equations. Finally, stability criteria for the solutions

of fuzzy differential systems are given in [21].

In this paper, we examine conditions under which all the solutions of the fuzzy

integral equation

x(t)=
∫ t

0
G(t,s)x(s)ds+f(t) (1.1)

and the special case

x(t)=
∫ t

0
k(t−s)x(s)ds+f(t) (1.2)

are bounded.

These fuzzy integral equations are proved useful when studying observability of

fuzzy dynamical control systems, see [6].

2. Preliminaries. By Pk(Rn), we denote the family of all nonempty compact convex

subsets of Rn.

http://ijmms.hindawi.com
http://ijmms.hindawi.com
http://www.hindawi.com


110 D. N. GEORGIOU AND I. E. KOUGIAS

For A,B ∈ Pk(Rn), the Hausdorff metric is defined by

d(A,B)=max
{

sup
a∈A

inf
b∈B

‖a−b‖, sup
b∈B

inf
a∈A

‖a−b‖
}
. (2.1)

A fuzzy set inRn is a function with domainRn and values in [0,1], that is an element

of [0,1]Rn (see [35, 34]).

Let u∈ [0,1]Rn , the a-level set is

[u]a = {x ∈Rn :u(x)≥ a}, a∈ (0,1],
[u]0 = Cl

({
x ∈Rn :u(x) > 0

})
.

(2.2)

By En, we denote the family of all fuzzy setsu∈ [0,1]Rn (see [18, 29, 35]), for which:

(i) u is normal, that is, there exists an element x0 ∈Rn, such that u(x0)= 1,

(ii) u is fuzzy convex,

(iii) u is uppersemicontinuous,

(iv) [u]0 is compact.

Let u∈ En. Then for each a∈ (0,1] the a-level set [u]a of u is a nonempty compact

convex subset of Rn, that is, u∈ Pk(Rn). Also [u]0 ∈ Pk(Rn).
Let

D : En×En �→ [0,∞), D(u,v)= sup
{
d
(
[u]a,[v]a

)
: a∈ [0,1]}, (2.3)

where d is the Hausdorff metric for nonempty compact convex subsets of Rn (see

[18]).

3. Main results

Notation 3.1. By 0̂∈ En, we denote the fuzzy set for which 0̂(x)= 1 if x = 0 and

0̂(x)= 0 if x ≠ 0.

Definition 3.2. A mapping x : T → En is bounded, where T is an interval of the

real line, if there exists an element r > 0, such that

D
(
x(t), 0̂

)
< r, ∀t ∈ T . (3.1)

Theorem 3.3. Suppose that f : [0,+∞)→ En with D(f(t), 0̂)≤M , and G :∆→R is

continuous, where ∆ = {(t,s) : 0 ≤ s ≤ t <∞}. If there exists m< 1 with
∫ t
0 |G(t,s)|ds

≤m, for t ∈ [0,+∞), then all solutions of the fuzzy integral equation

x(t)=
∫ t

0
G(t,s)x(s)ds+f(t), (3.2)

are bounded.
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Proof. Let x(t) be an unbounded solution of (3.2). Then for every r > 0, there

exists an element t1 ∈ (0,∞), such that

D
(
x(s), 0̂

)
< r, ∀s ∈ [0, t1), D

(
x
(
t1
)
, 0̂
)= r . (3.3)

Clearly, we can find a positive number r with

M+mr < r. (3.4)

By (3.3), (3.4), and the assumptions of the theorem we have

r =D(x(t1), 0̂)

=D
(∫ t1

0
G
(
t1,s

)
x(s)ds+f (t1), 0̂

)

≤D
(∫ t1

0
G
(
t1,s

)
x(s)ds, 0̂

)
+D(f (t1), 0̂)

≤
∫ t1

0
D
(
G
(
t1,s

)
x(s), 0̂

)
ds+M (see [19, Theorem 4.3])

≤
∫ t1

0

∣∣G(t1,s)∣∣D(x(s), 0̂)ds+M (by the definition of D, see [19])

≤M+mr < r,

(3.5)

which is a contradiction. Thus x(t) is bounded.

Theorem 3.4. Suppose that f : [0,∞)→ En and k : [0,∞)→ R are continuous and

that there exist constants A, B, and a> 0 with 0< B < 1 and

D
(
f(t), 0̂

)≤Ae−at,
∫ t

0

∣∣k(t−s)∣∣ds ≤ Be−at. (3.6)

Then, every solution of the fuzzy integral equation

x(t)=
∫ t

0
k(t−s)x(s)ds+f(t) (3.7)

is bounded.

Proof. Let x(t) be an unbounded solution of (3.7). Then for every r > 0, there

exists an element t1 ∈ (0,∞), such that

D
(
x(s), 0̂

)
< r, ∀s ∈ [0, t1), D

(
x
(
t1
)
, 0̂
)= r . (3.8)
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Clearly, we can find a positive number r with

A+Br < r. (3.9)

By (3.6), (3.7), and (3.8) we have

r =D(x(t1), 0̂)

=D
(∫ t1

0
k
(
t1−s

)
x(s)ds+f (t1), 0̂

)

≤D
(∫ t1

0
k
(
t1−s

)
x(s)ds, 0̂

)
+D(f (t1), 0̂)

≤
∫ t1

0
D
(
k
(
t1−s

)
x(s), 0̂

)
ds+D(f (t1), 0̂) (see [19, Theorem 4.3])

≤
∫ t1

0

∣∣k(t1−s)∣∣D(x(s), 0̂)ds+D(f (t1), 0̂) (by the definition of D, see [19])

≤Ae−at1+Be−at1r
≤Ae−at1+Be−at1r

(3.10)

and thus

eat1r < A+Br < r, (3.11)

which is a contradiction. Thus, x(t) is bounded.

Remark 3.5. Now, since the initial value problem

x′(t)= f (t,x(t)), t ∈ T , x(0)= x0, (3.12)

where f : T ×En→ En is continuous, it is equivalent to the integral equation

x(t)= x0+
∫ t

0
f
(
s,x(s)

)
ds, t ∈ [0,b] (see [20, Lemma 3.1]). (3.13)

If for the map f : T ×En→ En the conditions of Theorem 3.3 or 3.4 hold true, then

all the solutions of the initial value problem (3.12) are bounded.

4. Conclusion. In this paper, using a Gronwall type inequality, we give conditions

under which the fuzzy integral equations (3.2) and (3.7) possess only bounded so-

lutions. Consequently, this implies that the Cauchy problem (3.12) possesses only

bounded solutions as well. It appears that, these fuzzy equations are useful when one

studies the observability of fuzzy dynamical control systems. We also think that, our

results can be of use in studying stability of fuzzy differential equations and fuzzy

differential systems.
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