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SOLITON EQUATIONS AND THEIR
ALGEBRO-GEOMETRIC SOLUTIONS

Volume I: (1 + 1)-Dimensional Continuous Models

The focus of this book is on algebro-geometric solutions of completely integrable,
nonlinear, partial differential equations in (1+1) dimensions, also known as soliton
equations. Explicitly treated integrable models include the KdV, AKNS, sine–
Gordon, and Camassa–Holm hierarchies as well as the classical massive Thirring
system. An extensive treatment of the class of algebro-geometric solutions in the
stationary as well as time-dependent contexts is provided. The formalism presented
includes trace formulas, Dubrovin-type initial value problems, Baker–Akhiezer
functions, and theta function representations of all relevant quantities involved.
The book uses techniques from the theory of differential equations, spectral ana-
lysis, and elements of algebraic geometry (most notably, the theory of compact
Riemann surfaces). The presentation is rigorous, detailed, and self-contained with
ample background material in various appendices. Detailed notes for each chapter
together with an extensive bibliography enhance the presentation offered in the
main text.
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Jerry Goldstein, and Ludwig Streit for encouragement and support. Moreover,
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Introduction

It often happens that the understanding of the mathematical nature
of an equation is impossible without a detailed understanding of
its solutions.

Freeman J. Dyson

Background: The discovery of solitary waves of translation goes back to Scott
Russell in 1834, and during the remaining part of the 19th century the true nature
of these waves remained controversial. It was only with the derivation by Korteweg
and de Vries in 1895 of what is now called the Korteweg–de Vries (KdV) equa-
tion, that the one-soliton solution and hence the concept of solitary waves was
put on a firm basis.1 An extraordinary series of events took place around 1965
when Kruskal and Zabusky, while analyzing the numerical results of Fermi, Pasta,
and Ulam on heat conductivity in solids, discovered that pulselike solitary wave
solutions of the KdV equation, for which the name “solitons” was coined, in-
teract elastically. This was followed by the 1967 discovery of Gardner, Greene,
Kruskal, and Miura that the inverse scattering method allows one to solve initial
value problems for the KdV equation with sufficiently fast-decaying initial data.
Soon thereafter, in 1968, Lax found a new explanation of the isospectral nature of
KdV solutions using the concept of Lax pairs and introduced a whole hierarchy
of KdV equations. Subsequently, in the early 1970s, Zakharov and Shabat (ZS),
and Ablowitz, Kaup, Newell, and Segur (AKNS) extended the inverse scattering
method to a wide class of nonlinear partial differential equations of relevance
in various scientific contexts ranging from nonlinear optics to condensed matter
physics and elementary particle physics. In particular, solitons found numerous
applications in classical and quantum field theory and in connection with optical
communication devices.

Another decisive step forward in the development of completely integrable
soliton equations was taken around 1974. Prior to that period, inverse spectral

1 With hindsight, though, it is now clear that other researchers, such as Boussinesq, derived the KdV
equation and its one-soliton solution prior to 1895, as described in the notes to Section 1.1.

1



2 Introduction

methods in the context of nonlinear evolution equations had been restricted to
spatially decaying solutions. In 1974–75, the arsenal of inverse spectral meth-
ods was extended considerably in scope to include periodic and certain classes
of quasi-periodic and almost periodic KdV solutions. This new approach to con-
structing solutions of integrable nonlinear evolution equations, partly based on
inverse spectral theory and partly relying on algebro-geometric methods devel-
oped by pioneers such as Dubrovin, Flaschka, Its, Krichever, Lax, Marchenko,
Matveev, McKean, Novikov, van Moerbeke – to name just a few – was followed
by very rapid development in the field. Within a few years of intense activity
worldwide, the landscape of integrable systems was changed forever. By the early
1980s the theory was extended to a large class of nonlinear (including some
multi-dimensional) evolution equations beyond the KdV equation, and the explicit
theta function representations of quasi-periodic solutions of integrable equations
(including, e.g., soliton solutions as special limiting cases) had introduced new
algebro-geometric techniques into this area of nonlinear partial differential equa-
tions. Subsequently, this led to several new and deep results in nonlinear partial dif-
ferential equations as well as in algebraic geometry (such as a solution of Schottky’s
problem).

Our series of monographs is devoted to this area of algebro-geometric solutions
of hierarchies of soliton equations.

Scope: We aim for an elementary, yet self-contained and precise, presentation of
hierarchies of integrable soliton equations and their algebro-geometric solutions.
Our point of view is predominantly influenced by analytical methods, especially
by spectral theoretic techniques. We hope this will make the presentation acces-
sible and attractive to analysts working outside the traditional areas associated
with soliton equations. Central to our approach is a simultaneous construction of
all algebro-geometric solutions and their theta function representation of a given
hierarchy. In this volume we focus on some of the key hierarchies in (1 + 1)-
dimensions associated with continuous integrable models such as the Korteweg–de
Vries hierarchy (KdV), the combined sine–Gordon modified Korteweg–de Vries
hierarchy (sGmKdV), the Ablowitz–Kaup–Newell–Segur hierarchy1 (AKNS), the
classical massive Thirring system (Th), and the Camassa–Holm hierarchy (CH).
The key equations defining the corresponding hierarchies read

KdV: ut + 1
4uxxx − 3

2uux = 0,

sGmKdV: uxt − sin(u) = 0,

AKNS:

(
pt + i

2 pxx − i p2q

qt − i
2qxx + i pq2

)
= 0, (0.1)

1 Using the gauge equivalence of the AKNS hierarchy and classical Boussinesq hierarchy, we also
treat the latter.
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Th:




−iux + 2v + 2vv∗u
iu∗

x + 2v∗ + 2vv∗u∗

−ivt + 2u + 2uu∗v
iv∗

t + 2u∗ + 2uu∗v∗


 = 0,

CH: 4ut − uxxt − 2uuxxx − 4uxuxx + 24uux = 0.

Our principal goal in this monograph is the construction of algebro-geometric so-
lutions of the hierarchies associated with the equations listed in (0.1). Interest in
the class of algebro-geometric solutions can be motivated in a variety of ways:
It represents a natural extension of the classes of soliton and rational solutions,
and similar to these, its elements can still be regarded as explicit solutions of the
nonlinear integrable evolution equation in question (even though their complex-
ity considerably increases compared with soliton solutions due to the underlying
analysis on compact Riemann surfaces). Moreover, algebro-geometric solutions
can be used to approximate more general solutions (such as almost periodic ones),
although this is not a topic pursued in this monograph. Here we primarily focus on
the construction of explicit solutions in terms of certain algebro-geometric data on
a compact Riemann surface and their representation in terms of theta functions.
For instance, in KdV-type contexts, solitons arise as the special case of solutions
corresponding to an underlying singular hyperelliptic curve obtained by conflu-
ence of two or more branch points, and rational solutions correspond to a further
singularization of the original curve. In either case, the theta function associated
with the underlying algebraic curve degenerates into appropriate determinants with
exponential, respectively, rational entries.

We use basic techniques from the theory of differential equations, some spec-
tral analysis, and elements of algebraic geometry (most notably, the basic theory
of compact Riemann surfaces). In particular, we do not employ more advanced
tools such as loop groups, Grassmanians, Lie algebraic considerations, formal
pseudo-differential expressions, etc. However, occasionally we bridge the gap to
spectral theory and its vicinity and include some finer points of the basic formal-
ism often omitted in this context. Thus, this volume strays off the mainstream, but
we hope it appeals to spectral theorists and their kin and convinces them of the
beauty of the subject. In particular, we hope a reader interested in quickly pen-
etrating to the fundamentals of the algebro-geometric approach of constructing
solutions of hierarchies of completely integrable evolution equations will not be
disappointed.

Completely integrable systems, and especially nonlinear evolution equations of
soliton-type, are an integral part of modern mathematical and theoretical physics
with far-reaching implications from pure mathematics to the applied sciences.
We intend to contribute to the dissemination of some of the beautiful techniques
applied in this area.



4 Introduction

Contents: In the present volume we provide an effective approach to the con-
struction of algebro-geometric solutions of certain completely integrable nonlinear
evolution equations by developing a technique that simultaneously applies to all
equations of the hierarchy in question.

Starting with a specific integrable partial differential equation, one can build an
infinite sequence of higher-order partial differential equations, the so-called hierar-
chy of the original soliton equation, by developing an explicit recursive formalism
that reduces the construction of the entire hierarchy to elementary manipulations
with polynomials and defines the associated Lax pairs or zero-curvature equations.
Using this recursive polynomial formalism, we simultaneously construct algebro-
geometric solutions for the entire hierarchy of soliton equations at hand. On a more
technical level, our point of departure for the construction of algebro-geometric
solutions is not directly based on Baker–Akhiezer functions and axiomatizations
of algebro-geometric data but rather on Dubrovin-type equations, trace formulas,
and a canonical meromorphic function φ on the underlying hyperelliptic Riemann
surface Kn of genus n ∈ N. More precisely, this fundamental meromorphic func-
tion φ carries the spectral information of the underlying Lax operator (such as the
Schrödinger and Dirac operators in the KdV and AKNS contexts) and in many
instances represents a direct generalization of the Weyl–Titchmarsh m-function,
a fundamental device in the spectral theory of ordinary differential operators.
Riccati-type differential equations satisfied by φ separately in the space and time
variables then govern the time evolutions of all quantities of interest (such as that
of the associated Baker–Akhiezer vector). The basic meromorphic function φ on
Kn is then linked with solutions of equations of the underlying hierarchy via trace
formulas and Dubrovin-type equations for (projections of) the pole divisor of φ.
Subsequently, the Riemann theta function representation of φ is then obtained
more or less simultaneously with those of the Baker–Akhiezer vector and the
algebro-geometric solutions of the (stationary or time-dependent) equations of the
hierarchy of evolution equations. This concisely summarizes our approach to all
the (1 + 1)-dimensional, continuous integrable models discussed in this volume.

In the following we will detail this verbal description of our approach to algebro-
geometric solutions of integrable hierarchies with the help of the KdV hierarchy.
The latter consists of a sequence of nonlinear evolution equations for a function
u = u(x, t), the most prominent element of which, the KdV equation itself, is
given by

ut + 1
4uxxx − 3

2uux = 0. (0.2)

The KdV hierarchy is the simplest of all the hierarchies of nonlinear evolution
equations studied in this volume, but the same strategy, with modifications to be
discussed in the individual chapters, applies to all integrable systems treated in this
monograph and is in fact typical for all (1 + 1)-dimensional integrable hierarchies
of soliton equations.
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A discussion of the KdV case then proceeds as follows.1 In order to define
the Lax pairs and zero-curvature pairs for the KdV hierarchy, one assumes u to
be a smooth function on R (or meromorphic in C) in the stationary context or a
smooth function on R

2 in the time-dependent case, and one introduces the recursion
relation for some functions f� of u by

f0 = 1, f�,x = −(1/4) f�−1,xxx + u f�−1,x + (1/2)ux f�−1, � ∈ N. (0.3)

Given the recursively defined sequence { f�}�∈N0 (whose elements turn out to be dif-
ferential polynomials with respect to u defined up to certain integration constants)
one defines the Lax pair of the KdV hierarchy by

L = − d2

dx2
+ u, (0.4)

P2n+1 =
n∑

�=0

(
fn−�

d

dx
− 1

2
fn−�,x

)
L�. (0.5)

The commutator of P2n+1 and L then reads2

[P2n+1, L] = 2 fn+1,x , (0.6)

using the recursion (0.3). Introducing a deformation (time) parameter3 tn ∈ R,
n ∈ N0 into u, the KdV hierarchy of nonlinear evolution equations is then defined
by imposing the Lax commutator relations

d

dtn
L − [P2n+1, L] = 0, (0.7)

for each n ∈ N0. By (0.6), the latter are equivalent to the collection of evolution
equations4

KdVn(u) = utn − 2 fn+1,x (u) = 0, n ∈ N0. (0.8)

Explicitly,

KdV0(u) = ut0 − ux = 0,

KdV1(u) = ut1 + 1
4uxxx − 3

2uux − c1ux = 0,

KdV2(u) = ut2 − 1
16uxxxxx + 5

8uuxxx + 5
4uxuxx − 15

8 u
2ux

+ c1
(

1
4uxxx − 3

2uux
)− c2ux = 0, etc.,

1 All details of the following construction are to be found in Chapter 1.
2 The quantities P2n+1 and { f�}�=0,...,n are constructed in such a manner that all differential operators

in the commutator (0.6) vanish.
3 Here we follow Hirota’s notation and introduce a separate time variable tn for the nth level in the

KdV hierarchy.
4 In a slight abuse of notation, we will occasionally stress the functional dependence of f� on u, writing
f�(u).
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represent the first few equations of the time-dependent KdV hierarchy. For n = 1
and c1 = 0, we obtain the KdV equation (0.2). Introducing the polynomials
(z ∈ C),

Fn(z) =
n∑

�=0

fn−�z
�, (0.9)

Gn−1(z) = −Fn,x (z)/2, (0.10)

Hn+1(z) = (z − u)Fn(z) + (1/2)Fn,xx (z), (0.11)

one can alternatively introduce the KdV hierarchy as follows. One defines a pair
of 2 × 2 matrices (U (z), Vn+1(z)) depending polynomially on z by

U (z) =
(

0 1
−z + u 0

)
, (0.12)

Vn+1(z) =
(
Gn−1(z) Fn(z)

−Hn+1(z) −Gn−1(z)

)
, (0.13)

and then postulates the zero-curvature equation1

Utn − Vn+1,x + [U, Vn+1] = 0. (0.14)

One easily verifies that both the Lax approach (0.8) as well as the zero-curvature
approach (0.14) reduce to the basic equation

utn + (1/2)Fn,xxx − 2(u − z)Fn,x − ux Fn = 0. (0.15)

Each one of (0.8), (0.14), and (0.15) defines the KdV hierarchy by varying n ∈ N0.
The strategy is as follows: We temporarily assume existence of a solution u

and derive several of its properties. In particular, we show that u satisfies a trace
formula (cf. (0.37) in the stationary case and (0.54) in the time-dependent case)
expressed in terms of certain Dirichlet data that satisfy the so-called Dubrovin
equations (cf. (0.38) in the stationary case and (0.55) in the time-dependent case),
a first-order system of ordinary differential equations that can be shown at least
locally to possess solutions. Furthermore, we deduce explicit formulas for the
solution u, the so-called Its–Matveev formulas (cf. (0.40) in the stationary case
and (0.57) in the time-dependent case).

The Lax and zero-curvature equations (0.7) and (0.14) imply a most remarkable
isospectral deformation of L , as will be discussed later in this introduction. At this

1 Equations �x = U�, �tn = Vn+1� and their compatibility condition (0.14), Utn − Vn+1,x +
[U, Vn+1] = 0 permit a geometrical interpretation as follows: U and Vn+1 may be considered local
connection coefficients in the trivial vector bundle R2 × C2 with space-time R2 the base and� taking
values in the fiber C2. The compatibility equation (0.14) then shows that the (U, Vn+1)-connection
has zero-curvature, and hence (0.14) is called a zero-curvature representation of a nonlinear evolution
equation.



Introduction 7

point, however, we interrupt our time-dependent KdV considerations for a while
and take a closer look at the special stationary KdV equations defined by

utn = 0, n ∈ N0. (0.16)

By (0.6)–(0.8) and (0.14), (0.15), the condition (0.16) is then equivalent to each
one of the following collection of equations, with n ranging in N0, which then
defines the stationary KdV hierarchy,

[P2n+1, L] = 0, (0.17)

fn+1,x = 0, (0.18)

−Vn+1,x + [U, Vn+1] = 0, (0.19)

(1/2)Fn,xxx − 2(u − z)Fn,x − ux Fn = 0. (0.20)

To set the stationary KdV hierarchy apart from the general time-dependent one,
we will denote it by

s-KdVn(u) = −2 fn+1,x (u) = 0, n ∈ N0.

Explicitly, the first few equations of the stationary KdV hierarchy then read as
follows

s-KdV0(u) = −ux = 0,

s-KdV1(u) = 1
4uxxx − 3

2uux − c1ux = 0,

s-KdV2(u) = − 1
16uxxxxx + 5

8uuxxx + 5
4uxuxx − 15

8 u
2ux

+ c1
(

1
4uxxx − 3

2uux
)− c2ux = 0, etc.

The class of algebro-geometric KdV potentials, by definition, equals the set of
solutions u of the stationary KdV hierarchy. In the following analysis we fix the
value of n in (0.17)–(0.20), and hence we now turn to the investigation of algebro-
geometric solutions u of the nth equation within the stationary KdV hierarchy.
Equation (0.17) is of special interest because, by a 1923 result of Burchnall and
Chaundy, commuting differential expressions (due to a common eigenfunction to
be discussed below, cf. (0.33), (0.34)) give rise to an algebraic relationship between
the two differential expressions. Similarly, (0.19) permits the important conclusion
that

∂x det(y I2 − iVn+1(z, x)) = 0 (0.21)

and hence

det(y I2 − iVn+1(z, x)) = y2 − det(Vn+1(z, x))

= y2 + Gn−1(z, x)2 − Fn(z, x)Hn+1(z, x) = y2 − R2n+1(z) (0.22)
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for some x-independent monic polynomial R2n+1, which we write as

R2n+1(z) =
2n∏
m=0

(z − Em) for some {Em}m=0,...,2n ⊂ C.

In particular, the combination

Fn(z, x)Hn+1(z, x) − Gn−1(z, x)2 = R2n+1(z) (0.23)

is x-independent. Moreover, (0.20) can easily be integrated to yield

(1/2)Fn,xx Fn − (1/4)F2
n,x − (u − z)F2

n = R2n+1 (0.24)

with precisely the same integration constant R2n+1(z) as in (0.22). In fact, by (0.10)
and (0.11), equations (0.23) and (0.24) are simply identical. Incidentally, the alge-
braic relationship between L and P2n+1 alluded to in connection with the vanishing
of their commutator in (0.17) can be made precise as follows: Restricting P2n+1 to
the (algebraic) kernel ker(L − z) of L − z, one computes, using (0.5) and (0.24),

(
P2n+1

∣∣
ker(L−z)

)2 = −
(

1

2
Fn,xx Fn − 1

4
F2
n,x − (u − z)F2

n

) ∣∣∣∣
ker(L−z)

= −R2n+1(L)
∣∣
ker(L−z).

Thus, one concludes that P2
2n+1 and −R2n+1(L) coincide on ker(L − z), and since

z ∈ C is arbitrary, one infers that

P2
2n+1 + R2n+1(L) = 0 (0.25)

holds once again with the same polynomial R2n+1. The characteristic equation of
iVn+1 (cf. (0.22)) and (0.25) naturally lead one to the introduction of the hyperel-
liptic curve Kn of (arithmetic) genus n ∈ N0 (possibly with a singular affine part)
defined by

Kn : Fn(z, y) = y2 − R2n+1(z) = 0, R2n+1(z) =
2n∏
m=0

(z − Em). (0.26)

We compactify the curve by adding the point P∞ (still denoting it by Kn for sim-
plicity) and note that points P on the curve are denoted by P = (z, y) ∈ Kn \ {P∞},
where y( · ) is a meromorphic function on Kn satisfying1 y2 − R2n+1(z) = 0. For
simplicity, we will assume in the following that the (affine part of the) curve Kn

is nonsingular, that is, the zeros Em of R2n+1 are all simple. Remaining within
the stationary framework a bit longer, one can now introduce the fundamental
meromorphic function φ on Kn alluded to earlier as follows,

φ(P, x) = iy − Gn−1,x (z, x)

Fn(z, x)
(0.27)

= −Hn+1(z, x)

iy + Gn−1,x (z, x)
, P = (z, y) ∈ Kn. (0.28)

1 For more details, refer to Appendix B and Chapter 1.
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Equality of the two expressions (0.27) and (0.28) is an immediate consequence
of the identity (0.23) and the fact y2 = R2n+1(z). A comparison with (0.19) then
readily reveals that φ satisfies the Riccati-type equation

φx + φ2 = u − z. (0.29)

The next step is crucial. It concerns the zeros and poles of φ and hence involves
the zeros of Fn( · , x) and Hn+1( · , x). Isolating the latter by introducing the fac-
torizations

Fn(z, x) =
n∏
j=1

(z − µ j (x)), Hn+1(z, x) =
n∏

�=0

(z − ν�(x)),

one can use the zeros of Fn and Hn+1 to define the following points µ̂ j (x), ν̂�(x)
on Kn ,

µ̂ j (x) = (µ j (x), iGn−1,x (µ j (x), x)), j = 1, . . . , n, (0.30)

ν̂�(x) = (ν�(x),−iGn−1,x (ν�(x), x)), � = 0, . . . , n. (0.31)

The motivation for this choice stems from y2 = R2n+1(z) by (0.22), the identity
(0.23) (which combines to FnHn+1 − G2

n−1 = y2), and a comparison of (0.27) and
(0.28). Given (0.27)–(0.31), one obtains for the divisor (φ( · , x)) of the meromor-
phic function φ

(φ( · , x)) = Dν̂0(x)ν̂(x) − DP∞µ̂(x). (0.32)

Here we abbreviated µ̂ = {µ̂1, . . . , µ̂n}, ν̂ = {ν̂1, . . . , ν̂n} ∈ Symn(Kn), with
Symn(Kn) the nth symmetric product of Kn , and used our conventions1 (A.43),
(A.47), and (A.48) to denote positive divisors of degree n and n + 1 on Kn .
Given φ( · , x), one defines the stationary Baker–Akhiezer vector �( · , x, x0) on
Kn \ {P∞} by

� =
(
ψ1

ψ2

)
, ψ1(P, x, x0) = exp

(∫ x

x0

dx ′ φ(P, x ′)
)
, ψ2 = ψ1,x .

In particular, this implies

φ = ψ2/ψ1

and the following normalization2 of ψ1, ψ1(P, x0, x0) = 1, P ∈ Kn \ {P∞}. The
Riccati-type equation (0.29) satisfied by φ then shows that the Baker–Akhiezer

1 DQ (P) = m if P occurs m times in {Q1, . . . , Qn} and zero otherwise, Q = {Q1, . . . , Qn} ∈
Symn(Kn). Similarly, DQ0Q = DQ0 + DQ , DQ = DQ1 + · · · + DQn , Q0 ∈ Kn , and DQ (P) = 1
for P = Q and zero otherwise.

2 This normalization is less innocent than it might appear at first sight. It implies that Dµ̂(x) and Dµ̂(x0)
are the divisors of zeros and poles of ψ1( · , x, x0) on Kn \ {P∞}.
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function ψ1 is the common formal eigenfunction of the commuting pair of Lax
differential expressions L and P2n+1,

Lψ1(P) = zψ1(P), (0.33)

Pn+1ψ1(P) = iyψ1(P), P = (z, y), (0.34)

and at the same time the Baker–Akhiezer vector � satisfies the zero-curvature
equations,

�x (P) = U (z)�(P), (0.35)

iy�(P) = Vn+1(z)�(P), P = (z, y). (0.36)

Moreover, one easily verifies that away from the (finite) branch points (Em, 0),
m = 0, . . . , 2n, of the two-sheeted Riemann surface Kn , the two branches of
ψ1 constitute a fundamental system of solutions of (0.33) and similarly, the two
branches of� yield a fundamental system of solutions of (0.35). Sinceψ1( · , x, x0)
vanishes at µ̂ j (x), j = 1, . . . , n and ψ2( · , x, x0) = ψ1,x ( · , x, x0) vanishes at
ν̂�(x), � = 0, . . . , n, we may call {µ̂ j (x)} j=1,...,n and {ν̂�(x)}�=0,...,n the Dirichlet
and Neumann data of L at the point x ∈ R, respectively.

Now the stationary formalism is almost complete; we only need to relate the
solution u of the nth stationary KdV equation and Kn-associated data. This can be
accomplished in several ways. We describe two of them next.

First we relate u and the zeros µ j of Fn . This is easily done by comparing the
coefficients of the power z2n in (0.24) and results in the trace formula,

u =
2n∑
m=0

Em − 2
n∑
j=1

µ j . (0.37)

Next we will indicate how to reconstruct (at least locally) u from Dirichlet data at
just one fixed point x0. Combining the definition (0.30) of µ̂ j and that of Gn−1 in
(0.10) yields, after a comparison with the x-derivative of Fn(z, x) = ∏n

k=1(z −
µk(x)),

y(µ̂ j (x)) = iGn−1(µ j (x), x) = −(i/2)Fn,x (µ j (x), x)

= (i/2)µ j,x (x)
n∏

k=1
k �= j

(µ j (x) − µk(x)), j = 1, . . . , n.

Hence, one arrives at the Dubrovin equations for µ̂ j , an autonomous first-order
system of differential equations on Kn ,

µ j,x = −2iy(µ̂ j )
n∏

k=1
k �= j

(
µ j − µk

)−1
, j = 1, . . . , n. (0.38)
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Augmenting (0.38) with appropriate initial data

{µ̂ j (x0)} j=1,...,n ⊂ Kn (0.39)

for some x0 ∈ R, with µ j (x0), j = 1, . . . , n assumed to be distinct, one can solve
the Dubrovin system (0.38) at least locally1 in a neighborhood of the point x0

and then reconstruct u in that neighborhood using the trace formula (0.37). In
other words, the Dirichlet data {µ̂ j (x0)} j=1,...,n in (0.39) at the point x0 can be
used to reconstruct u in a neighborhood of x0. Since u can be shown to be mero-
morphic, this uniquely determines u (even though it is not necessarily clear from
our discussion thus far how to reconstruct u globally). Furthermore, u satisfies
s-KdVn(u) = 0.

An alternative reconstruction of u, nicely complementing the one just discussed,
can be given with the help of the Riemann theta function2 associated with Kn and
an appropriate homology basis of cycles on it. The known zeros and poles of φ

(cf. (0.32)), and similarly, the set of zeros {µ̂ j (x)} j=1,...,n and poles {µ̂ j (x0)} j=1,...,n

of the Baker–Akhiezer function ψ1( · , x, x0) together with the characteristic essen-
tial singularity of ψ1 at P∞, then permit one to find theta function representations
for φ and ψ1 by alluding to Riemann’s vanishing theorem and the Riemann–
Roch theorem.3 The corresponding theta function representation of the algebro-
geometric solution u of the nth stationary KdV equation then can be obtained from
that of ψ1 by an asymptotic expansion with respect to the spectral parameter near
the point P∞. Alternatively, one can use the trace formula (0.37) and apply the
known theta function representations for symmetric functions of the projections
µ j (x) of the zeros µ̂ j (x) of ψ1 to the special case

∑n
j=1 µ j (x) at hand. Either way,

the resulting final expression for u, called the Its–Matveev formula, is of the type

u(x) = 0 − 2∂2
x ln(θ (A + Bx)). (0.40)

Here the constants 0 ∈ C and B ∈ C
n are uniquely determined by Kn (and its

homology basis), and the constant A ∈ C
n (related to the Abel map of the di-

visor Dµ̂(x0)) is in one-to-one correspondence with the Dirichlet data µ̂(x0) =
(µ̂1(x0), . . . , µ̂n(x0)) ∈ Symn(Kn) at the point x0 as long as the divisor Dµ̂(x0) is
assumed to be nonspecial.4 Moreover, the theta function representation (0.40)
remains valid as long as the divisor Dµ̂(x) stays nonspecial. We emphasize the re-
markable fact that the argument of the theta function in (0.40) is linear with respect
to x .

1 In some situations, such as the case of periodic u, it is possible to elevate this procedure to a global
reconstruction of u even in the presence of collisions of µ̂ j on Kn . But this requires an extensive
analysis we mention in the notes to Appendix F.

2 For details on the n-dimensional theta function θ (z), z ∈ Cn , we refer to Appendices A and B.
3 We defer the analogous discussion of ψ2 to Chapter 1 for simplicity.
4 IfD = n1DQ1 + · · · + nkDQk ∈ Symn(Kn) for some n� ∈ N, � = 1, . . . , k, with n1 + · · · + nk = n,

thenD is called nonspecial if there is no nonconstant meromorphic function onKn that is holomorphic
on Kn \ {Q1, . . . , Qk} with poles at most of order n� at Q�, � = 1, . . . , k.
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The current discussion assumed that one started with a solution u of the nth
stationary KdV equation and then either reconstructed it from the trace formula
(0.37), or represented the given u in terms of the theta function associated with
Kn , as in (0.40). In addition to this procedure we also solve the following inverse
problem: Given appropriate initial data (0.39) and solutions µ̂1(x), . . . , µ̂n(x) of
the first-order Dubrovin system (0.38) on an open interval � ⊆ R containing the
point x0, we will define u on � in terms of the trace formula (0.37) and then prove
that u so defined satisfies the nth stationary KdV equation on �.

This completes our somewhat lengthy excursion into the stationary KdV hierar-
chy. In the following we return to the time-dependent KdV hierarchy and describe
the analogous steps involved to construct solutions u = u(x, tr ) of the r th KdV
equation with initial values being algebro-geometric solutions of the nth station-
ary KdV equation. More precisely, we are seeking a solution u of the following
algebro-geometric initial value problem

K̃dVr (u) = utr − 2 f̃ r+1,x (u) = 0, u|tr=t0,r = u(0), (0.41)

s-KdVn
(
u(0)

) = −2 fn+1,x
(
u(0)

) = 0 (0.42)

for some t0,r ∈ R, n, r ∈ N0 and a fixed curve Kn associated with the stationary
solution u(0) in (0.42).

We pause for a moment to reflect on the pair of equations (0.41), (0.42): As
it turns out, they represent a dynamical system on the set of algebro-geometric
solutions isospectral to the initial value u(0). The term isospectral here alludes to
the fact that for any fixed tr , the solution u( · , tr ) of (0.41), (0.42) is a stationary
solution of (0.42),

s-KdVn(u( · , tr )) = −2 fn+1,x (u( · , tr )) = 0

associated with the fixed underlying algebraic curve Kn . Put differently, u( · , tr ) is
an isospectral deformation of u(0) with tr the corresponding deformation parameter.
In particular, u( · , tr ) traces out a curve in the set of algebro-geometric solutions
isospectral to u(0).

Since the integration constants in the functionals f� of u in the stationary and
time-dependent contexts are independent of each other, we indicate this by placing
a tilde over all the time-dependent quantities. Hence, we will employ the notation
P̃2r+1, Ṽr+1, F̃r , etc., to distinguish them from P2n+1, Vn+1, Fn , etc. Thus, P̃2r+1,
Ṽr+1, F̃r , H̃r+1, f̃s are constructed in the same way as P2n+1, Vn+1, Fn , Hn , f�
using the recursion (0.3) with the only difference being that the set of integration
constants c̃r in f̃s is independent of the set ck used in computing f�.

Our strategy will be the same as in the stationary case: Assuming existence of a
solution u, we will deduce many of its properties, which, in the end, will yield an
explicit expression for the solution. In fact, we will go a step further, postulating
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the equations

utr = −(1/2)F̃r,xxx + 2(u − z)F̃r,x + ux F̃r , (0.43)

(1/2)Fn,xx Fn − (1/4)F2
n,x − (u − z)F2

n = R2n+1, (0.44)

where u(0) = u(0)(x) in (0.42) has been replaced by u = u(x, tr ) in (0.44). Here,

Fn(z) =
n∑

�=0

fn−�z
� =

n∏
j=1

(z − µ j ), F̃r (z) =
r∑
s=0

f̃ r−s zs

for fixed n, r ∈ N0. Introducing Gn−1, Hn+1, U , Vn+1 and G̃r−1, H̃r+1, Ṽr+1 (re-
placing Fn by F̃r ) as in (0.10)–(0.13), we observe that the basic equations (0.43),
(0.44) are equivalent to the Lax equations

d

dtr
L − [P̃2r+1, L] = 0,

[P2n+1, L] = 0,

and to the zero-curvature equations

Utr − Ṽr+1,x + [U, Ṽr+1] = 0, (0.45)

−Vn+1,x + [U, Vn+1] = 0. (0.46)

Moreover, one computes in analogy to (0.21) and (0.22) that

∂x det(y I2 − iVn+1(z, x, tr )) = 0,

∂tr det(y I2 − iVn+1(z, x, tr )) = 0,

and hence

det(y I2 − iVn+1(z, x, tr )) = y2 − det(Vn+1(z, x, tr ))

= y2 + Gn−1(z, x, tr )
2 − Fn(z, x, tr )Hn+1(z, x, tr ) = y2 − R2n+1(z) (0.47)

is independent of (x, tr ). Thus,

FnHn+1 − G2
n−1 = R2n+1, (0.48)

(1/2)Fn,xx Fn − (1/4)F2
n,x − (u − z)F2

n = R2n+1 (0.49)

hold as in the stationary context. The independence of (0.47) of tr can be interpreted
as follows: The r th KdV flow represents an isospectral deformation of the curve
Kn defined in (0.26); in particular,1 the branch points of Kn remain invariant under

1 Property (0.50) is weaker than the usually stated isospectral deformation of the Lax operator L(tr ).
However, the latter is a more delicate functional analytic problem marred by possible singularities
of u and possible non-self-adjointness of L(tr ).
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these flows,

∂tr Em = 0, m = 0, . . . , 2n. (0.50)

As in the stationary case, one can now introduce the basic meromorphic function
φ on Kn by

φ(P, x, tr ) = iy − Gn−1(z, x, tr )

Fn(z, x, tr )

= −Hn+1(z, x, tr )

iy + Gn−1,x (z, x, tr )
, P = (z, y) ∈ Kn,

and a comparison with (0.45) and (0.46) then shows thatφ satisfies the Riccati-type
equations

φx + φ2 = u − z, (0.51)

φtr = ∂x
(
F̃rφ + G̃r−1

) = −F̃rφ
2 − 2G̃r−1φ − H̃r . (0.52)

Next, factorizing Fn and Hn+1 as before,

Fn(z, x, tr ) =
n∏
j=1

(z − µ j (x, tr )), Hn+1(z, x, tr ) =
n∏

�=0

(z − ν�(x, tr )),

one introduces points µ̂ j (x, tr ), ν̂�(x, tr ) on Kn by

µ̂ j = (µ j , iGn−1,x (µ j )), j = 1, . . . , n,

ν̂� = (ν�,−iGn−1,x (ν�)), � = 0, . . . , n

and obtains for the divisor (φ( · , x, tr )) of the meromorphic function φ

(φ( · , x, tr )) = Dν̂0(x,tr )ν̂(x,tr ) − DP∞µ̂(x,tr ),

as in the stationary context. Given φ( · , x, tr ), one then defines the time-dependent
Baker–Akhiezer vector �( · , x, x0, tr , t0,r ) on Kn \ {P∞} by

� =
(
ψ1

ψ2

)
,

ψ1(P, x, x0, tr , t0,r ) = exp

(∫ tr

t0,r

ds (F̃r (z, x0, s)φ(P, x0, s) + G̃r−1(z, x0, s))

+
∫ x

x0

dx ′ φ(P, x ′, tr )
)
,

ψ2 = ψ1,x .

The Riccati-type equations (0.51), (0.52) satisfied by φ then show that

−Vn+1,tr + [Ṽr+1, Vn+1] = 0 (0.53)

in addition to (0.45), (0.46). Moreover, they yield again that the Baker–Akhiezer
function ψ1 is the common formal eigenfunction of the commuting pair of Lax
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differential expressions L(tr ) and P2n+1(tr ),

Lψ1(P) = zψ1(P),

Pn+1ψ1(P) = iyψ1(P),

ψtr (P) = P̃2r+1ψ(P)

= F̃r (z)ψx (P) + G̃r−1(z)ψ(P), P = (z, y),

and at the same time the Baker–Akhiezer vector � satisfies the zero-curvature
equations

�x (P) = U (z)�(P),

iy�(P) = Vn+1(z)�(P),

�tr (P) = Ṽr+1(z)�(P), P = (z, y).

The remaining time-dependent constructions closely follow our stationary outline.
First one notes again the trace formula

u(x, tr ) =
2n∑
m=0

Em − 2
n∑
j=1

µ j (x, tr ) (0.54)

as a consequence of (0.49). Next, to reconstruct u (locally) from Dirichlet data at
just one fixed point (x0, t0,r ), one derives the Dubrovin equations1

µ j,x = −2iy(µ̂ j )
n∏

k=1
k �= j

(µ j − µk)
−1,

µ j,tr = −2i F̃r (µ j )y(µ̂ j )
n∏

k=1
k �= j

(µ j − µk)
−1,

(0.55)

using (0.44), and (0.53) for Fn,tr , as in the stationary case. Augmenting (0.55) with
appropriate initial data

{µ̂ j (x0, t0,r )} j=1,...,n ⊂ Kn (0.56)

for some (x0, t0,r ) ∈ R
2, with µ j (x0, t0,r ), j = 1, . . . , n assumed to be distinct,

one can again solve the Dubrovin system (0.55), at least locally in a neighborhood
of the point (x0, t0,r ), and then reconstruct u in that neighborhood using the trace
formula (0.54). In other words, the Dirichlet data {µ̂ j (x0, t0,r )} j=1,...,n in (0.56) at
the point (x0, t0,r ) reconstruct u in a neighborhood of (x0, t0,r ).

The corresponding representations of u, φ, and � in terms of the Riemann theta
function associated with Kn is then obtained in close analogy to the stationary
case. Particularly, in the case of u, one obtains the Its–Matveev formula

u(x, tr ) = 0 − 2∂2
x ln(θ(A + Bx + Cr tr )), (0.57)

1 To obtain a closed system of differential equations, one has to express F̃r (µ j ) solely in terms of
µ1, . . . , µn and E0, . . . , E2n+1; see (1.222) and (1.223).
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where the constants 0 ∈ C and B,Cr ∈ C
n are uniquely determined by Kn and

r , and the constant A ∈ C
n is in one-to-one correspondence with the Dirichlet

data µ̂(x0, t0,r ) = (µ̂1(x0, t0,r ), . . . , µ̂n(x0, t0,r )) ∈ Symn(Kn) at the point (x0, t0,r )
as long as the divisor Dµ̂(x0,t0,r ) is assumed to be nonspecial. Moreover, the theta
function representation (0.57) remains valid as long as the divisor Dµ̂(x,tr ) stays
nonspecial. Again one notes the remarkable fact that the argument of the theta
function in (0.57) is linear with respect to both x and tr .

Again, the current discussion assumed one started with a solution u of the
KdV initial value problem (0.41), (0.42) and then either reconstructed it from
the trace formula (0.54) or represented the given u in terms of the theta function
associated with Kn , as in (0.57). In addition to this procedure we also solve the
following inverse problem: Given appropriate initial data (0.56) and solutions
µ̂1(x, tr ), . . . , µ̂n(x, tr ) of the first-order Dubrovin system (0.55) on a connected
open set � ⊆ R

2 containing the point (x0, t0,r ), we will define u on � in terms of
the trace formula (0.54) and then prove that u so defined satisfies the KdV initial
value problem (0.41), (0.42) on �.

The reader will have noticed that we used terms such as integrability, soli-
ton equations, isospectral deformations, etc., without offering a precise definition
for them. Arguably, an integrable system in connection with nonlinear evolution
equations should possess several properties, including, for instance,

� infinitely many conservation laws
� isospectral deformations of a Lax operator
� action-angle variables, Hamiltonian formalism
� algebraic (spectral) curves
� infinitely many symmetries and transformation groups
� “explicit” solutions.

Although many of these properties apply to particular systems of interest, there
is simply no generally accepted definition to date of what constitutes an inte-
grable system.1 That explicit but meromorphic (i.e., singular) solutions of systems
such as the KdV hierarchy abound and local integrability of conserved densities
as well as the functional analytic meaning of the Lax operator and its isospec-
tral deformations in appropriate spaces are not obvious makes it plausible that
no universally accepted notion of integrability can be achieved. Thus, different
schools have necessarily introduced different shades of integrability (Liouville in-
tegrability, analytic integrability, algebraically complete integrability, etc.); in this
monograph we found it useful to focus on the existence of underlying algebraic
curves and explicit representations of solutions in terms of corresponding Riemann
theta functions and limiting situations thereof.

1 This has been eloquently discussed in Hitchin et al. (1999, p. 1ff). Most appropriate in this context
seems Cherednik’s statement, “All non-integrable equations are non-integrable the same way, all
integrable ones are integrable in their own way,” in the preface to Cherednik (1996).
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Finally, a brief discussion of the content of each chapter is in order (addi-
tional details are collected in the list of contents at the beginning of each chapter).
Chapter 1 is devoted to the KdV hierarchy and its algebro-geometric solutions. We
have just given a fairly detailed outline of the KdV theory, and hence it suffices
to mention that, in addition to that material, we will provide a general approach
to trace formulas for Schrödinger operators L that is not restricted to the case
of algebro-geometric potentials u. Throughout that chapter we often isolate the
special case where u is real-valued and then describe the spectral theoretic prop-
erties of algebro-geometric Schrödinger operators. In Chapter 2 we turn to the
sine–Gordon (sG) equation. In fact, we describe the algebro-geometric approach
to a particular hierarchy of nonlinear evolution equations that link the sine–Gordon
equation and the modified Korteweg–de Vries (mKdV) hierarchy, which we call the
sGmKdV hierarchy. Next, in Chapter 3, we consider the Ablowitz–Kaup–Newell–
Segur (AKNS) hierarchy (a complexified nonlinear Schrödinger (nS) hierarchy)
of evolution equations and its algebro-geometric solutions. Employing the gauge
equivalence of the AKNS and classical Boussinesq (cBsq) hierarchies, we also
derive the algebro-geometric cBsq solutions. Chapter 4, devoted to the classical
massive Thirring system (a complexified classical massive Thirring model), is
somewhat of an exception, for we restrict ourselves to the basic equation itself
and refrain from a discussion of the corresponding hierarchy. In our final chapter,
Chapter 5, we discuss the algebro-geometric approach to the Camassa–Holm (CH)
hierarchy – a hierarchy whose higher elements define nonlocal evolution equations
with respect to u.

Presentation: Each chapter, together with appropriate appendices compiled in
the second part of this volume, is intended to be essentially self-contained and
hence can be read independently from the remaining chapters. Occasionally we
provide more detail in the KdV chapter since it is the first and principal one in this
volume and by far the simplest with respect to the complexity of the whole for-
malism involved. This attempt to organize chapters independently of one another
comes at a price, of course: Similar arguments in the construction of algebro-
geometric solutions for different hierarchies are repeated in different chapters. We
believe this makes the results more easily accessible.

References are deferred to detailed notes for each section at the end of every
chapter. In addition to comprehensive bibliographical documentation of the ma-
terial dealt with in the main text, these notes also contain numerous additional
comments and results.

Succinctly written appendices, many of which summarize subjects of interest
on their own, such as compact (and particularly hyperelliptic) Riemann surfaces,
Darboux transformations, elliptic functions, Weyl–Titchmarsh theory for second-
order differential operators, and associated Herglotz functions, guarantee a fairly
self-contained presentation accessible at the advanced graduate level.



18 Introduction

An extensive bibliography is included at the end of this volume. Its size reflects
the enormous interest this subject generated over the past three decades. It un-
derscores the wide variety of techniques employed to study completely integrable
systems. Even though we undertook every effort to provide an exhaustive list of
references, the result in the end must necessarily be considered incomplete. We re-
gret any omissions that have occurred. Publications with three or more authors are
abbreviated with “First author et al. (year)” in the text. If more than one publication
yield the same abbreviation, latin letters a,b,c, etc., are added after the year. In the
bibliography, publications are alphabetically ordered using all authors’ names and
year of publication.

Future Projects: Volume II in our series will be devoted to (1 + 1)-dimensional
lattice models associated with hyperelliptic curves and include the Toda, Kac–van
Moerbeke, and variants of the Ablowitz–Ladik hierarchies. A subsequent project
will treat completely integrable equations associated with non-hyperelliptic curves,
including the Boussinesq and Gelfand–Dickey hierarchies in (1 + 1)-dimensions,
the multi-dimensional Davey–Stewartson and Kadomtsev–Petviashvili equations,
and certain systems associated with curves of infinite genus.
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The KdV Hierarchy

Im folgenden führe ich den Leser auf dem von mir selbst
zurückgelegten, etwas indirekten und holperigen Wege,
weil ich nur so hoffen kann, daß er dem Endergebnis
Interesse entgegenbringe.

Albert Einstein1

1.1 Contents

The Korteweg–de Vries (KdV) equation

ut + 1
4uxxx − 3

2uux = 0

for a function u = u(x, t) with its origins in fluid dynamics has a long and interest-
ing history,2 but this chapter focuses on a relatively recent development since the
mid-1970s, the construction of algebro-geometric solutions of the KdV hierarchy.
Below we briefly summarize the principal content of each section. A more detailed
discussion of the contents has been provided in the introduction to this volume.

Section 1.2.
� polynomial recursion formalism, Lax pairs (L , P2n+1)
� stationary and time-dependent KdV hierarchy
� Burchnall–Chaundy polynomial, hyperelliptic curve Kn

Section 1.3. (stationary)
� properties of φ and the Baker–Akhiezer function ψ
� Dubrovin equations for Dirichlet, Neumann, and other auxiliary divisors

1 Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie, Königl. Preuß. Akad. Wissensch.
(Berlin), Sitzungsber. (1917), 142–152. (“In the present paragraph I shall conduct the reader over the
road that I have myself traveled, rather a rough and winding road, because otherwise I cannot hope
that he will take much interest in the result at the end of the journey.”)

2 A guide to the literature can be found in the detailed notes at the end of this chapter.

19



20 1. The KdV Hierarchy

� trace formulas for u and higher-order KdV invariants
� theta function representations for φ, ψ , the Its–Matveev formula for u
� the algebro-geometric initial value problem
� examples

Section 1.4. (time-dependent)
� properties of φ and the Baker–Akhiezer function ψ
� Dubrovin equations for Dirichlet, Neumann, and other auxiliary divisors
� trace formulas for u and higher-order KdV invariants
� theta function representations for φ, ψ , the Its–Matveev formula for u
� the algebro-geometric initial value problem
� examples

Section 1.5. (trace formulas)
� general boundary conditions
� KdV invariants
� asymptotic spectral parameter expansions of Green’s functions
� spectral shift function
� general trace formulas for KdV invariants

This chapter relies on terminology and notions developed in connection with
compact Riemann surfaces. A brief summary of key results as well as definitions of
some of the main quantities can be found in Appendices A, B, and F. Occasionally,
we also draw from the spectral theory of Schrödinger operators, and some of the
relevant material is summarized in Appendices G, I, and J.

1.2 The KdV Hierarchy, Recursion Relations, and Hyperelliptic Curves

In this section we provide the construction of the KdV hierarchy using a polyno-
mial recursion formalism and derive the associated sequence of KdV Lax pairs.
Moreover, we discuss the Burchnall–Chaundy polynomial in connection with the
stationary KdV hierarchy and the underlying hyperelliptic curve.

Throughout this section we suppose the following hypothesis.

Hypothesis 1.1 In the stationary case we assume that u : R → C is smooth,1 that
is,

u ∈ C∞(R). (1.1)

In the time-dependent case we suppose that u : R
2 → C satisfies2

u( · , t) ∈ C∞(R), t ∈ R, u(x, · ) ∈ C1(R), x ∈ R. (1.2)
1 Alternatively, one could suppose that u : C→ C∞ is meromorphic.
2 Again one could assume that for fixed t ∈ R, u( · , t) is meromorphic, etc.
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Actually, up to (1.20) our analysis will be time-independent, and hence only
the space variation of u will matter. Consider the one-dimensional second-order
differential expression

L = − d2

dx2
+ u (1.3)

of Schrödinger-type. To construct the KdV hierarchy we need a second differential
expression of order 2n + 1, denoted by P2n+1, n ∈ N0, defined recursively in the
following. We take the quickest route to the construction of P2n+1 and hence to
that of the KdV hierarchy by starting from the recursion relation (1.4) below.
Subsequently, we will offer the motivation behind this approach (cf. Remark 1.4).

Define { f�}�∈N0 recursively by

f0 = 1, f�,x = −(1/4) f�−1,xxx + u f�−1,x + (1/2)ux f�−1, � ∈ N. (1.4)

Explicitly, one finds

f0 = 1,

f1 = 1
2u + c1,

f2 = − 1
8uxx + 3

8u
2 + c1

1
2u + c2, (1.5)

f3 = 1
32uxxxx − 5

16uuxx − 5
32u

2
x + 5

16u
3

+ c1
(− 1

8uxx + 3
8u

2
)+ c2

1
2u + c3, etc.

Here {c�}�∈N ⊂ C denote integration constants that naturally arise when solving
(1.4). Subsequently, it will be convenient also to introduce the corresponding
homogeneous coefficients f̂� defined by the vanishing of the integration constants
ck for k = 1, . . . , �,

f̂ 0 = f0 = 1, f̂ � = f�
∣∣
ck=0, k=1,...,�, � ∈ N. (1.6)

Hence,

f� =
�∑

k=0

c�−k f̂ k, � ∈ N0,

introducing

c0 = 1.

Remark 1.2 Using the nonlinear recursion (D.8) in Theorem D.1, one infers
inductively that all homogeneous elements f̂� (and hence all f�), � ∈ N0, are dif-
ferential polynomials in u, that is, polynomials with respect to u and (some of) its
x-derivatives. (Alternatively, one can prove directly by induction that the nonlinear
recursion (D.8) is equivalent to that in (1.4) with all integration constants put to
zero, c� = 0, � ∈ N.)
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Next we define differential expressions P2n+1 of order 2n + 1 by

P2n+1 =
n∑

�=0

(
fn−�

d

dx
− 1

2
fn−�,x

)
L�, n ∈ N0. (1.7)

We record the first few P2n+1,

P1 = d
dx ,

P3 = − d3

dx3 + 3
2u

d
dx + 3

4ux + c1
d
dx ,

P5 = d5

dx5 − 5
4u

d3

dx3 + 7
2ux

d2

dx2 + (
3
2u

2 − 3uxx
)
d
dx + 2uux − 15

16uxxx

+ 3
8u

2 − 1
8uxx + c1

(− d3

dx3 + 3
2u

d
dx + 3

4ux
)+ c2

d
dx , etc.

Introducing the corresponding homogeneous differential expressions P̂2�+1 de-
fined by

P̂2�+1 = P2�+1

∣∣
ck=0, k=1,...,�, � ∈ N0,

one finds

P2n+1 =
n∑

�=0

cn−� P̂2�+1. (1.8)

Using the recursion (1.4), the commutator of P2n+1 and L can be explicitly com-
puted and yields1

[P2n+1, L] = 2 fn+1,x , n ∈ N0. (1.9)

In particular, (L , P2n+1) represents the celebrated Lax pair of the KdV hierarchy.
Varying n ∈ N0, the stationary KdV hierarchy is then defined in terms of the
vanishing of the commutator of P2n+1 and L in (1.9) by,2

−[P2n+1, L] = −2 fn+1,x (u) = s-KdVn(u) = 0, n ∈ N0. (1.10)

Explicitly,

s-KdV0(u) = −ux = 0,

s-KdV1(u) = 1
4uxxx − 3

2uux + c1(−ux ) = 0,

s-KdV2(u) = − 1
16uxxxxx + 5

8uuxxx + 5
4uxuxx − 15

8 u
2ux

+ c1
(

1
4uxxx − 3

2uux
)+ c2(−ux ) = 0, etc.,

represent the first few equations of the stationary KdV hierarchy. By definition,
the set of solutions of (1.10), with n ranging in N0 and c� in C, � ∈ N, represents

1 The recursion (1.4) is constructed in such a manner that the commutator of P2n+1 and L ceases to
be a higher-order differential expression but results in multiplication by 2 fn+1,x only.

2 In a slight abuse of notation we will occasionally stress the functional dependence of f� on u, writing
f�(u).
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the class of algebro-geometric KdV solutions. At times it will be convenient to ab-
breviate algebro-geometric stationary KdV solutions u simply as KdV
potentials.

In the following we will frequently assume that u satisfies the nth stationary
KdV equation. By this we mean it satisfies one of the nth stationary KdV equations
after a particular choice of integration constants c� ∈ C, � = 1, . . . , n, n ∈ N, has
been made.

In accordance with our notation introduced in (1.6) and (1.8), the corresponding
homogeneous stationary KdV equations are defined by

s-K̂dVn(u) = s-KdVn(u)
∣∣
c�=0, �=1,...,n = 0, n ∈ N0.

Next, we introduce a polynomial Fn of degree n with respect to the spectral
parameter z ∈ C by

Fn(z) =
n∑

�=0

fn−�z
� =

n∑
�=0

cn−� F̂�(z), (1.11)

where F̂� denotes the corresponding homogeneous polynomials defined by

F̂0(z) = F0(z) = 1, F̂�(z) = F�(z)
∣∣
ck=0, k=1,...,� =

�∑
k=0

f̂ �−k z
k, � ∈ N0.

Explicitly, one obtains

F0 = 1,

F1 = z + 1
2u + c1,

F2 = z2 + 1
2uz − 1

8uxx + 3
8u

2 + c1
(

1
2u + z

)+ c2,

F3 = z3 + 1
2uz

2 + (− 1
8uxx + 3

8u
2
)
z + 1

32uxxxx − 5
16uuxx − 5

32u
2
x

+ 5
16u

3 + c1
(
z2 + 1

2uz − 1
8uxx + 3

8u
2
)+ c2

(
z + 1

2u
)+ c3, etc.

The recursion relation (1.4) together with (1.10) implies that

Fn,xxx − 4(u − z)Fn,x − 2ux Fn = 0. (1.12)

Multiplying (1.12) by Fn a subsequent integration with respect to x results in

(1/2)Fn,xx Fn − (1/4)F2
n,x − (u − z)F2

n = R2n+1, (1.13)

where R2n+1 is a monic polynomial of degree 2n + 1. We denote its roots1 by
{Em}m=0,...,2n and hence write

R2n+1(z) =
2n∏
m=0

(z − Em), {Em}m=0,...,2n ⊂ C. (1.14)

1 The roots of R2n+1 are related to the spectrum of a closed realization of L in L2(R) (see, e.g., (J.38)
in the special self-adjoint case).
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Equation (1.13) can be used to derive nonlinear recursion relations for the ho-
mogeneous coefficients f̂� (i.e., the ones satisfying (1.6) in the case of vanishing
integration constants), as proved in Theorem D.1 in Appendix D. This has in-
teresting applications to the asymptotic expansion of the Green’s function of L
with respect to the spectral parameter, as briefly discussed in Remark D.2, and
also yields a proof that f� are differential polynomials in u (cf. Remark 1.2). In
addition, as proven in Theorem D.1, (1.13) leads to an explicit determination of
the integration constants c1, . . . , cn in

s-KdVn(u) = −2 fn+1,x (u) = 0

in terms of the zeros E0 , . . . , E2n of the associated polynomial R2n+1 in (1.14). In
fact, one can prove (cf. (D.9))

c� = c�(E), � = 0, . . . , n, (1.15)

where

c0(E) = 1,

ck(E) = −
k∑

j0,..., j2n=0
j0+···+ j2n=k

(2 j0)! · · · (2 j2n)!

22k( j0!)2 · · · ( j2n!)2(2 j0 − 1) · · · (2 j2n − 1)
E j0

0 · · · E j2n
2n ,

k = 1, . . . , n. (1.16)

Next, we study the restriction of the differential expression P2n+1 to the two-
dimensional kernel (i.e., the formal null space in an algebraic sense as opposed to
the functional analytic one) of (L − z). More precisely, let1

ker(L − z) = {ψ : R → C∞ meromorphic | (L − z)ψ = 0} , z ∈ C, (1.17)

then, (1.7) implies

P2n+1

∣∣
ker(L−z) =

(
Fn(z)

d

dx
− 1

2
Fn,x (z)

)∣∣∣
ker(L−z)

. (1.18)

We emphasize that the result (1.18) is valid independently of whether P2n+1 and
L commute. However, if one makes the additional assumption that P2n+1 and L
commute, we will now prove that this implies an algebraic relationship between
P2n+1 and L .

Theorem 1.3 (Burchnall–Chaundy) Assume that P2n+1 and L commute,
[P2n+1, L] = 0, or equivalently, suppose s-KdVn(u) = −2 fn+1,x (u) = 0 for some

1 If u is considered on C, then ψ in (1.17) should be considered on C too.
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n ∈ N0. Then L and P2n+1 satisfy an algebraic relationship of the type (cf. (1.14))

Fn(L ,−i P2n+1) = −P2
2n+1 − R2n+1(L) = 0,

R2n+1(z) =
2n∏
m=0

(z − Em), z ∈ C.
(1.19)

Proof Using relations (1.18) and (1.13) one finds that
(
P2n+1

∣∣
ker(L−z)

)2 = −((1/2)Fn,xx Fn − (1/4)F2
n,x − (u − z)F2

n

)∣∣
ker(L−z)

= −R2n+1(L)
∣∣
ker(L−z).

Thus, one concludes that P2
2n+1 and −R2n+1(L) coincide on ker(L − z), and since

z ∈ C is arbitrary, one infers that (1.19) holds. �

The expression Fn(L ,−i P2n+1) is called the Burchnall–Chaundy polynomial
of the pair (L , P2n+1). Equation (1.19) naturally leads to the hyperelliptic curve
Kn of (arithmetic) genus n ∈ N0 (possibly with a singular affine part), where

Kn : Fn(z, y) = y2 − R2n+1(z) = 0,

R2n+1(z) =
2n∏
m=0

(z − Em), {Em}m=0,...,2n ⊂ C.
(1.20)

Remark 1.4 At this point it is easy to motivate the recursion relation (1.4) used
as our starting point for constructing the KdV hierarchy. If one is interested in
determining differential expressions P commuting with L (other than simply poly-
nomials of L or the case where P and L are polynomials of a third differential
expression), one can proceed as follows. Restricting P to the two-dimensional null
space, ker(L − z), of (L − z), one can systematically replace d2/dx2 by (u − z)
and hence effectively reduce P on ker(L − z) to a first-order differential expression
of the type P

∣∣
ker(L−z) = (F(z)d/dx + G(z))

∣∣
ker(L−z), where F and G are polyno-

mials. Imposing commutativity of P and L on ker(L − z) then yields the relation
G = −Fx/2 between F andG and as a consequence of this and [P, L]

∣∣
ker(L−z) = 0

also yields the equation

Fxxx − 4(u − z)Fx − 2ux F = 0. (1.21)

Moreover, we reproduced identity (1.18). Making the polynomial ansatz F(z) =∑n
�=0 fn−�z� and inserting it into (1.21) then readily yields the recursion relation

(1.4) for f0, . . . , fn together with − 1
4 fn,xxx + u fn,x + 1

2ux fn = 0. In other words,
one obtains the beginning of the recursion relation (1.4) as well as relation (1.10)
defining the nth stationary KdV equation.
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Remark 1.5 If u satisfies one of the stationary KdV equations in (1.10) for a par-
ticular value of n, s-KdVn(u) = 0, then it satisfies infinitely many such equations
of order higher than n for certain choices of integration constants c�. In fact, it
satisfies a certain stationary KdV equation s-KdVp(u) = 0 for every p ≥ n + 1.
This is seen as follows. Assuming fn+1,x = 0 for some n ∈ N and some set of
integration constants {c�}�=1,...,n ⊂ C, one infers

fn+1 = dn+1

for some constant dn+1 ∈ C. Subtracting the constant dn+1 (i.e., writing fn+1 =∑n+1
�=0 čn+1−� f̂ � for some set of constants {č�}�=1,...,n+1 ⊂ C and absorbing dn+1

into čn+1), we may without loss of generality assume that fn+1 = 0, and hence the
recursion (1.4) implies

fn+2 = dn+2

for some constant dn+2 ∈ C. Iterating this procedure yields

fn+q,x = 0, q ≥ 2.

Hence, s-KdVp(u) = 0 for all p ≥ n + 1 (corresponding to some p-dependent
choice of integration constants {c̆�}�=1,...,p ⊂ C).

We illustrate this remark by the following example. In it we denote by ℘( · ) =
℘( · |ω1, ω3) = ℘( · ; g2, g3) the Weierstrass ℘-function with periods 2ω j , j =
1, 3, Im(ω3/ω1) �= 0, ω2 = ω1 + ω3, and invariants g2 and g3 (cf. Appendix H).

Example 1.6 Consider the genus n = 1 elliptic KdV potential

u(x) = 2℘(x) + c, c ∈ C.

Then one infers

f̂ 1 = 1
2u = ℘ + 1

2c,

f̂ 2 = − 1
8uxx + 3

8u
2 = 3

2c℘ + 1
8g2 + 3

8c
2,

f̂ 3 = 1
32uxxxx − 5

16uuxx − 5
32u

2
x + 5

16u
3

= (
15
8 c

2 + 1
8g2

)
℘ + 5

16cg2 + 5
16c

3 − 1
8g3, etc.,

F1(z) = z + ℘ − c,

F2(z) = (z − c)(z + ℘ − c), etc.

Thus, u satisfies an s-KdV1 equation of the form

s-KdV1(u) = s-K̂dV1(u) − 3

2
c s-K̂dV0(u) = 0,
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with the associated genus n = 1 curve given by

K1 : y2 − R3(z) = 0,

R3(z) =
2∏

m=0

(z − c + em), em = ℘(ωm+1), m = 0, 1, 2,

c1(E) = −3c/2.

Moreover, u satisfies the s-KdV2 equation

s-KdV2(u) = s-K̂dV2(u) −
(g2

8
+ 15

8
c2
)

s-K̂dV0(u) = 0,

with the associated singular (arithmetic) genus n = 2 curve given by

K2 : y2 − R5(z) = 0,

R5(z) = (z − c)2
2∏

m=0

(z − c + em),

c1(E) = −5c/2, c2(E) = (15/8)c2 − (g2/8).

Analogous formulas can be derived for all higher-order s-KdVn equations for
n ≥ 3.

Next we turn to the time-dependent KdV hierarchy. This means thatu is now con-
sidered as a function of both space and time. For each equation in the hierarchy, that
is, for each n, we introduce a deformation (time) parameter tn ∈ R in u, replacing
u(x) by u(x, tn). The second-order differential expression L (cf. (1.3)) now reads

L(tn) = − d2

dx2
+ u( · , tn). (1.22)

The quantities { f�}�∈N0 and P2n+1, n ∈ N0, are still defined by (1.4) and (1.7),
respectively. The time-dependent KdV hierarchy is then obtained by imposing the
Lax commutator equations

d

dtn
L(tn) − [P2n+1(tn), L(tn)] = 0, tn ∈ R, (1.23)

varying n ∈ N0. The latter are equivalent to the collection of evolution equations

KdVn(u) = utn − 2 fn+1,x (u) = 0, (x, tn) ∈ R
2, n ∈ N0. (1.24)

Explicitly,

KdV0(u) = ut0 − ux = 0,

KdV1(u) = ut1 + 1
4uxxx − 3

2uux − c1ux = 0,

KdV2(u) = ut2 − 1
16uxxxxx + 5

8uuxxx + 5
4uxuxx − 15

8 u
2ux

+ c1
(

1
4uxxx − 3

2uux
)− c2ux = 0, etc.,
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represent the first few equations of the time-dependent KdV hierarchy. The equa-
tion KdV1(u) = 0 (with c1 = 0) is of course the Korteweg–de Vries equation.
Similarly, the corresponding homogeneous KdV equations are defined by

K̂dVn(u) = KdVn(u)
∣∣
c�=0, �=1,...,n = 0, n ∈ N0.

Later on we also use the following alternative formulation of the KdV hierarchy.
Consider once more P2n+1 restricted to ker(L − z). On this null space the Lax
equation (1.23) reads

(
Ltn − [P2n+1, L]

)∣∣
ker(L−z) = (

utn − (L − z)P2n+1
)∣∣

ker(L−z) = 0,

which simplifies to

utn + (1/2)Fn,xxx − 2(u − z)Fn,x − ux Fn = 0. (1.25)

Equation (1.25) is just another way of writing the nth KdV equation (1.24).
We conclude this section by pointing out an alternative construction of the KdV

hierarchy using a zero-curvature approach instead of Lax pairs (L , P2n+1).

Remark 1.7 The zero-curvature formalism for the KdV hierarchy can be set up
as follows. One defines the 2 × 2 matrices

U (z) =
(

0 1
−z + u 0

)
,

Vn+1(z) =
(
Gn−1(z) Fn(z)

−Hn+1(z) −Gn−1(z)

)
, n ∈ N0.

Then the stationary part of this section can equivalently be based on the zero-
curvature equation

0 = −Vn+1,x + [U, Vn+1]

=
(
−Gn−1,x + (z − u)Fn − Hn+1 −Fn,x − 2Gn−1

Hn+1,x − 2(z − u)Gn−1 Gn−1,x − (z − u)Fn + Hn+1

)
.

Thus, one obtains,

Gn−1 = −Fn,x/2, (1.26)

Gn−1,x = −Fn,xx/2 = (z − u)Fn − Hn+1, (1.27)

Hn+1,x = (u − z)Fn,x , (1.28)

implying the basic stationary equation (1.12). The hyperelliptic curve Kn in (1.20)
is then obtained from the characteristic equation of iVn+1(z) by1

det(y I2 − iVn+1(z, x)) = y2 − det(Vn+1(z, x))

= y2 + Gn−1(z, x)2 − Fn(z, x)Hn+1(z, x) = y2 − R2n+1(z) = 0

1 I2 denotes the identity matrix in C2.
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using (1.26) and (1.27). Similarly, using (1.26)–(1.28), one can equivalently de-
velop the time-dependent part (1.22)–(1.25) from the zero-curvature equation

0 = Utn − Vn+1,x + [U, Vn+1]

=
(
−Gn−1,x + (z − u)Fn − Hn+1 −Fn,x − 2Gn−1

ut + Hn+1,x − 2(z − u)Gn−1 Gn−1,x − (z − u)Fn + Hn+1

)
,

implying

Gn−1 = −Fn,x/2,

Gn−1,x = −Fn,xx/2 = (z − u)Fn − Hn+1,

ut = −Hn+1,x + (u − z)Fn,x

= −(1/2)Fn,xxx − 2(z − u)Fn,x + ux Fn

in agreement with (1.25).

1.3 The Stationary KdV Formalism

As shown in Section 1.2, the stationary KdV hierarchy is intimately connected with
pairs of commuting differential expressions P2n+1 and L of orders 2n + 1 and 2,
respectively, and a hyperelliptic curveKn . In this section we study this relationship
more closely and present a detailed study of the stationary KdV hierarchy and its
algebro-geometric solutions u. Our principal tools are derived from combining
the polynomial recursion formalism introduced in Section 1.2 and a fundamental
meromorphic function φ on Kn , the analog of the Weyl–Titchmarsh function of L .
With the help of φ we study the Baker–Akhiezer function ψ , the common eigen-
function of P2n+1 and L , Dubrovin equations governing the motion of auxiliary
divisors on Kn , trace formulas, and theta function representations of φ, ψ , and
u. We also discuss the algebro-geometric intitial value problem of constructing u
from the Dubrovin equations and auxiliary divisors as initial data.

For major parts of this section we suppose that

u ∈ C∞(R) (1.29)

(which could be replaced by u : C → C∞ meromorphic) and assume (1.10) (re-
spectively (1.12)) and (1.11); we then freely employ the formalism developed in
(1.4)–(1.19), keeping n ∈ N0 fixed.

We recall the Burchnall–Chaundy curve

Kn : Fn(z, y) = y2 − R2n+1(z) = 0,

R2n+1(z) =
2n∏
m=0

(z − Em), {Em}m=0,...,2n ⊂ C
(1.30)

as introduced in (1.20). The curve Kn is compactified by joining the point P∞, but
for notational simplicity the compactification is also denoted by Kn .
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Points P on Kn \ {P∞} are represented as pairs P = (z, y), where y( · ) is the
meromorphic function on Kn satisfying Fn(z, y) = 0. The complex structure on
Kn is then defined in the usual way (see Appendix B). Hence, Kn becomes a two-
sheeted hyperelliptic Riemann surface of (arithmetic) genus n ∈ N0 (possibly with
a singular affine part) in a standard manner.

We also emphasize that by fixing the curve Kn (i.e., by fixing E0, . . . , E2n),
the integration constants c1, . . . , cn in fn+1,x (and hence in the corresponding
stationary KdVn equation) are uniquely determined, as is clear from (1.15), (1.16),
which establish the integration constants c� as symmetric functions of E0, . . . , E2n .

For notational simplicity we will usually tacitly assume that n ∈ N. (The trivial
case n = 0 is explicitly treated in Example 1.25.)

In the following, the zeros1 of the polynomial Fn( · , x) (cf. (1.11)) will play a
special role. We denote them by {µ j (x)} j=1,...,n and hence write

Fn(z) =
n∏
j=1

(z − µ j ). (1.31)

From (1.13) we see that

R2n+1 + (1/4)F2
n,x = FnHn+1, (1.32)

where

Hn+1(z) = (1/2)Fn,xx (z) + (z − u)Fn(z) (1.33)

is a monic polynomial of degree n + 1. We introduce the corresponding roots2

{ν�(x)}�=0,...,n of Hn+1( · , x) and its associated homogeneous polynomials Ĥ �+1,
which are defined by the vanishing of the integration constants ck for k = 1, . . . , �,
by

Hn+1(z) =
n∏

�=0

(z − ν�) =
n∑

�=0

cn−� Ĥ �+1(z), (1.34)

where

Ĥ 1(z) = H1(z) = z − u, Ĥ �+1(z) = H�+1(z)
∣∣
ck=0, k=1,...,� ,

� = 0, . . . , n.

Explicitly, one computes from (1.5) and (1.11)

H1 = z − u,

H2 = z2 − 1
2uz + 1

4uxx − 1
2u

2 + c1(z − u),

H3 = z3 − 1
2uz

2 + 1
8

(
uxx − u2

)
z − 1

16uxxxx + 3
8u

2
x + 1

2uuxx

− 3
8u

3 + c1
(
z2 − 1

2uz + 1
4uxx − 1

2u
2
)+ c2(z − u), etc.

1 If u ∈ L∞(R), these zeros are the Dirichlet eigenvalues of a closed operator in L2(R) associated with
the differential expression L and a Dirichlet boundary condition at x ∈ R (cf. Appendix J).

2 If u ∈ L∞(R), these roots are the Neumann eigenvalues of a closed operator in L2(R) associated
with L and a Neumann boundary condition at x ∈ R (cf. Appendix J).
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The next step is crucial; it permits us to “lift” the zeros µ j and ν� of Fn and Hn+1

from C to the curve Kn . From (1.32) one infers

R2n+1(z) + (1/4)Fn,x (z)2 = 0, z ∈ {µ j , ν�} j=1,...,n,�=0,...,n.

We now introduce {µ̂ j (x)} j=1,...,n ⊂ Kn and {ν̂�(x)}�=0,...,n ⊂ Kn by

µ̂ j (x) = (µ j (x),−(i/2)Fn,x (µ j (x), x)), j = 1, . . . , n, x ∈ R (1.35)

and

ν̂�(x) = (ν�(x), (i/2)Fn,x (ν�(x), x)), � = 0, . . . , n, x ∈ R. (1.36)

Due to the C∞(R) assumption (1.29) on u, Fn(z, · ) ∈ C∞(R) by (1.4) and (1.11),
and hence also Hn+1(z, · ) ∈ C∞(R) by (1.33). Thus, one concludes

µ j , ν� ∈ C(R), j = 1, . . . , n, � = 0, . . . , n, (1.37)

taking multiplicities (and appropriate renumbering) of the zeros of Fn and Hn+1

into account. (Away from collisions of zeros, µ j and ν� are of course C∞.)
Next, we define the fundamental meromorphic function φ( · , x) on Kn ,

φ(P, x) = iy + (1/2)Fn,x (z, x)

Fn(z, x)
(1.38)

= −Hn+1(z, x)

iy − (1/2)Fn,x (z, x)
, (1.39)

P = (z, y) ∈ Kn, x ∈ R

with divisor (φ( · , x)) of φ( · , x) given by

(φ( · , x)) = Dν̂0(x)ν̂(x) − DP∞µ̂(x), (1.40)

using (1.31), (1.34), and (1.37). Here we abbreviated

µ̂ = {µ̂1, . . . , µ̂n}, ν̂ = {ν̂1, . . . , ν̂n} ∈ Symn(Kn).

Given φ( · , x), we define the stationary Baker–Akhiezer function ψ( · , x, x0) on
Kn \ {P∞} by

ψ(P, x, x0) = exp

(∫ x

x0

dx ′ φ(P, x ′)
)
, P ∈ Kn \ {P∞}, (x, x0) ∈ R

2. (1.41)

Basic properties of φ and ψ are summarized in the following result (W ( f, g) =
f g′ − f ′g denotes the Wronskian of f and g).

Lemma 1.8 Suppose u ∈ C∞(R) satisfies the nth stationary KdV equation (1.10).
Moreover, let P = (z, y) ∈ Kn \ {P∞}, (x, x0) ∈ R

2. Then φ satisfies the Riccati-
type equation

φx (P) + φ(P)2 = u − z (1.42)
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as well as

φ(P)φ(P∗) = Hn+1(z)

Fn(z)
, (1.43)

φ(P) + φ(P∗) = Fn,x (z)

Fn(z)
, (1.44)

φ(P) − φ(P∗) = 2iy

Fn(z)
. (1.45)

Moreover, ψ satisfies

(L − z(P))ψ(P) = 0, (Pn+1 − iy(P))ψ(P) = 0, (1.46)

ψ(P, x, x0) =
(
Fn(z, x)

Fn(z, x0)

)1/2

exp

(
iy
∫ x

x0

dx ′ Fn(z, x ′)−1

)
, (1.47)

ψ(P, x, x0)ψ(P∗, x, x0) = Fn(z, x)

Fn(z, x0)
, (1.48)

ψx (P, x, x0)ψx (P∗, x, x0) = Hn+1(z, x)

Fn(z, x0)
, (1.49)

ψ(P, x, x0)ψx (P∗, x, x0) + ψ(P∗, x, x0)ψx (P, x, x0) = Fn,x (z, x)

Fn(z, x0)
, (1.50)

W (ψ(P, · , x0), ψ(P∗, · , x0)) = − 2iy

Fn(z, x0)
. (1.51)

In addition, as long as the zeros of Fn( · , x) are all simple for x ∈ �, � ⊆ R an
open interval, ψ( · , x, x0) is meromorphic on Kn \ {P∞} for x, x0 ∈ �.

Proof Relation (1.42) follows by combining (1.13) and (1.38). Equation (1.43)
follows by multiplying (1.38) and (1.39), replacing P by P∗ in one of the two
factors. Equations (1.44) and (1.45) are clear from (1.38) and (1.39). By (1.41),
ψ( · , x, x0) is meromorphic on Kn \ {P∞} away from the poles µ̂ j (x ′) of φ( · , x ′).
By (1.35) and (1.38),

φ(P, x ′) =
P→µ̂ j (x ′)

∂x ′ ln
(
F(z, x ′)

)+ O(1) as z → µ j (x
′), (1.52)

and hence ψ( · , x, x0) is meromorphic on Kn \ {P∞} as long as the zeros of
Fn( · , x) are all simple. This follows from (1.41) by restricting P to a suffi-
ciently small neighborhood U j of {µ̂ j (x ′) ∈ Kn | x ′ ∈ �, x ′ ∈ [x0, x]} such that
µ̂k(x ′) /∈ U j for all x ′ ∈ [x0, x] and all k ∈ {1, . . . , n} \ { j}. To prove (1.46), one
employs ψxx/ψ = φx + φ2 = u − z to arrive at Lψ = zψ . Next, one uses (1.18)
and (1.38) to compute Pn+1ψ = Fnφψ − 1

2 Fn,xψ = iyψ . Equation (1.47) follows
by invoking (1.38) and (1.41). Equation (1.48) follows by combining (1.41) and
(1.43). Equation (1.49) is a consequence of (1.43) and (1.48), and the fact that
ψx = φψ . Equations (1.50) and (1.51) follow from (1.41), (1.44), and (1.45). �
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The normalization chosen for the Baker–Akhiezer function ψ in (1.41) (basi-
cally, ψ(P, x, x0) equals ψ̃(P, x)/ψ̃(P, x0) for a certain (not necessarily normal-
ized) solution ψ̃ of (L − z)ψ = 0) has some interesting consequences and is not
quite as innocent as it may appear at first glance. In fact, by (1.48), one infers that
its divisor of zeros and poles on Kn \ {P∞} is precisely given by Dµ̂(x) and Dµ̂(x0),
respectively.

Equations (1.48)–(1.51) show that the basic identity (1.13), rewritten in the
form −G2

n−1 + FnHn+1 = R2n+1, where Gn−1 = −Fn,x/2, is equivalent to the
elementary fact

(ψ1,+ψ2,− + ψ1,−ψ2,+)2 − 4ψ1,+ψ1,−ψ2,+ψ2,− = (ψ1,+ψ2,− − ψ1,−ψ2,+)2,

(1.53)

identifying ψ(P) = ψ1,+, ψ(P∗) = ψ1,−, ψx (P) = ψ2,+, ψx (P∗) = ψ2,−. This
provides the intimate link between our approach and the squared function systems
also employed in the literature in connection with algebro-geometric solutions of
the KdV hierarchy.

If u ∈ L∞(R), the zeros of µ j (x) of Fn( · , x), respectively, the zeros ν�(x) of
Hn+1( · , x), are naturally associated with Dirichlet, respectively, Neumann bound-
ary conditions of L at the point x ∈ R. In other words,µ j (x) are associated with the
boundary condition g(x) = 0 for an element g in the domain of an L2(R) operator
realization of L , whereas ν�(x) corresponds to g′(x) = 0. Next, we “interpolate”
between these two boundary conditions and consider the general case

g′(x) + βg(x) = 0, β ∈ R (1.54)

(cf. Appendix J for more details in the special case in which u is real-valued).
The values β = ∞ and β = 0 then represent the Dirichlet and Neumann cases,
respectively.

To this end we introduce the additional polynomial K β

n+1(z), β ∈ R of degree
n + 1 by

K β

n+1(z) = Hn+1(z) + βFn,x (z) + β2Fn(z) =
n∏

�=0

(
z − λ

β

�

)

=
n∑

�=0

cn−� K̂
β

�+1(z), β ∈ R.

(1.55)

Here K̂ β

�+1 denote the corresponding homogeneous polynomials defined by the
vanishing of the integration constants ck for k = 1, . . . , �,

K̂ β

1 (z) = K β

1 (z) = z + β2 − u, K̂ β

�+1(z) = K β

�+1(z)
∣∣
ck=0, k=1,...,�,

� = 0, . . . , n.
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In particular,

K 0
n+1(z) = Hn+1(z), λ0

� = ν�, � = 0, . . . , n.

Explicitly, one computes

K β

1 = z + β2 − u,

K β

2 = z2 + (
β2 − 1

2u
)
z + 1

4uxx − 1
2u

2 + 1
2βux + 1

2β
2u + c1(z + β2 − u),

K β

3 = z3 + (
β2 − 1

2u
)
z2 + (

1
2βux + 1

2β
2u + 1

8uxx − 1
8u

2
)
z − 1

8βuxxx

+ 3
4βuux − 1

8β
2uxx + 3

8β
2u2 − 1

16uxxxx + 3
8u

2
x + 1

2uuxx − 3
8u

3

+ c1(z2 + (
β2 − 1

2u
)
z + 1

4uxx − 1
2u

2 + 1
2βux + 1

2β
2u)

+ c2(z + β2 − u), etc. (1.56)

Strictly speaking, the Dirichlet eigenvalues µ j (x) of HD
x = H∞

x , the Neumann
eigenvalues ν�(x) of HN

x = H 0
x , and the eigenvaluesλβ

� (x) of Hβ
x for generalβ ∈ R

are introduced in Appendix J only in the special case in which u ∈ L1
loc(R) is real-

valued and the differential expression L = − d2

dx2 + u is in the limit point case at
±∞ (and hence Hβ

x is self-adjoint in L2(R) for x ∈ R andβ ∈ R ∪ {∞}). However,
this spectral interpretation immediately extends to the case in which u ∈ L∞(R) is
complex-valued; hence, we generally call µ j (x) and ν�(x) the Dirichlet and Neu-
mann eigenvalues associated with the closed L2(R)-realization of L , respectively.

Next, combining (1.38), (1.39), and (1.55) yields

φ(P) + β = iy + 1
2 Fn,x (z) + βFn(z)

Fn(z)
(1.57)

= −K β

n+1(z)

iy − 1
2 Fn,x (z) − βFn(z)

. (1.58)

One verifies, as before (cf. Lemma 1.8), that

R2n+1(z) + (
(1/2)Fn,x (z) + βFn(z)

)2 = Fn(z)K β

n+1(z), (1.59)

(φ(P) + β)(φ(P∗) + β) = K β

n+1(z)

Fn(z)
,

(ψx (P, x, x0) + βψ(P, x, x0))(ψx (P∗, x, x0) + βψ(P∗, x, x0)) = K β

n+1(z, x)

Fn(z, x0)
,

where the Baker–Akhiezer function ψ( · , x, x0) is defined in (1.41). The divisor
(φ( · , x) + β) of φ( · , x) + β, β ∈ R, is then given by

(φ( · , x) + β) = D
λ̂
β

0 (x)λ̂
β

(x) − DP∞µ̂(x), (1.60)

with

λ̂
β

� (x) = (
λ
β

� (x), (i/2)Fn,x
(
λ
β

� (x), x
)+ iβFn

(
λ
β

� (x), x
))
, (1.61)

� = 0, . . . , n, β ∈ R.
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Remark 1.9 Our notation D
λ̂
β

0 λ̂
β , λ̂

β = {λ̂β

1 , . . . , λ̂
β
n } in the general case, where u

is complex-valued, is somewhat misleading since

D
λ̂
β

0 λ̂
β =

n∑
�=0

D
λ̂
β

�
∈ Symn+1(Kn)

is symmetric in λ̂
β

0 , . . . , λ̂
β
n and there is no natural way to distinguish λ̂

β

0 from λ̂
β

� ,
� = 1, . . . , n. In particular,

D
λ̂
β

0 λ̂
β = D

λ̂
β

� λ̂
β,� ,

where

λ̂
β,1 = {

λ̂
β

0 , λ̂
β

2 , . . . , λ̂
β
n

}
,

λ̂
β,� = {

λ̂
β

0 , λ̂
β

1 , . . . , λ̂
β

�−1, λ̂
β

�+1, λ̂
β
n

}
, � = 2, . . . , n − 1,

λ̂
β,n = {

λ̂
β

0 , λ̂
β

1 , . . . , λ̂
β

n−1

}
.

In the special case, where u is real-valued and nonsingular, a distinction between
λ̂
β

0 and λ̂
β

� , � = 1, . . . , n can be made naturally by supposing

λ
β

0 ≤ E0, λ
β

� ∈ [E2�−1, E2�], � = 1, . . . , n.

For notational convenience in connection with positive divisors of degree n on Kn

and their subsequent use in the associated n-dimensional theta function, we will
keep the abbreviation D

λ̂
β

0 λ̂
β for general complex-valued u but occasionally

will caution the reader about this convention.

Next, we recall that the affine part of Kn is nonsingular if

Em �= Em ′ for m �= m ′, m,m ′ = 0, 1, . . . , 2n. (1.62)

In the special case in which {Em}m=0,...,2n ⊂ R, we will from now on always assume
the ordering

Em < Em+1 for m = 0, 1, . . . , 2n − 1. (1.63)

In particular, if u ∈ C∞(R) ∩ L∞(R) is assumed to be real-valued, then necessarily
{µ j (x)} j=1,...,n ⊂ R and {λβ

� (x)}�=0,...,n ⊂ R for all x ∈ R since one is then dealing
with self-adjoint boundary value problems in L2(R) (cf. also the explicit argument
presented for the Dirichlet case in the proof of Lemma 1.10 (ii) below); hence, we
will also always assume the ordering

µ j (x) < µ j+1(x) for j = 1, . . . , n − 1, x ∈ R, (1.64)

λ
β

� (x) < λ
β

�+1(x) for � = 0, . . . , n − 1, x ∈ R (1.65)

in this case.
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The dynamics of λ
β

� , β ∈ R ∪ {∞} with respect to variations of x can be de-
scribed by a first-order system of nonlinear differential equations traditionally
called Dubrovin equations in the Dirichlet case β = ∞. We first treat the Dirichlet
case β = ∞ and then turn to the case β ∈ R.

Lemma 1.10 (The Dubrovin Equations)
(i) Suppose that u ∈ C∞(�̃µ) satisfies the nth stationary KdV equation (1.10) on
an open interval �̃µ ⊆ R. Moreover, assume that the zeros µ j , j = 1, . . . , n, of
Fn( · ) remain distinct on �̃µ. Then {µ̂ j } j=1,...,n, defined by (1.35), satisfies the
following first-order system of differential equations on �̃µ

µ j,x = −2iy(µ̂ j )
n∏

k=1
k �= j

(
µ j − µk

)−1
, j = 1, . . . , n. (1.66)

Next, assume the affine part of Kn to be nonsingular and introduce the initial
condition

{µ̂ j (x0)} j=1,...,n ⊂ Kn (1.67)

for some x0 ∈ R, where µ j (x0), j = 1, . . . , n, are assumed to be distinct. Then
there exists an open interval �µ ⊆ R, with x0 ∈ �µ, such that the initial value
problem (1.66), (1.67) has a unique solution {µ̂ j } j=1,...,n ⊂ Kn satisfying

µ̂ j ∈ C∞(�µ,Kn), j = 1, . . . , n, (1.68)

and µ j , j = 1, . . . , n, remain distinct on �µ.
(i i) Suppose in addition to (1.10) that u ∈ C∞(R) ∩ L∞(R) is real-valued and the
affine part ofKn is nonsingular. Moreover, assume the eigenvalue orderings (1.63),
(1.64). Then {µ̂ j } j=1,...,n, with the projections µ j (x), j = 1, . . . , n, the Dirichlet
eigenvalues of −d2/dx2 + u corresponding to a Dirichlet boundary condition at
x ∈ R (i.e., the eigenvalues of H D

x ), satisfies the differential equation (1.66) for
x ∈ R. Furthermore, given initial data satisfying µ j (x0) ∈ [E2 j−1, E2 j ], j =
1, . . . , n, then

µ j (x) ∈ [E2 j−1, E2 j ], j = 1, . . . , n, x ∈ R. (1.69)

In particular, µ̂ j (x) changes sheets whenever it hits E2 j−1 or E2 j and its projection
µ j (x) remains trapped in [E2 j−1, E2 j ] for all j = 1, . . . , n and x ∈ R.

Proof Equations (1.31) and (1.35) imply

Fn,x (µ j ) = −µ j,x

n∏
k=1
k �= j

(µ j − µk) = 2iy(µ̂ j ),
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proving (1.66). To verify property (1.68) of the solutions µ̂ j , one invokes the charts
(B.3)–(B.6) and (B.12)–(B.15). In particular, the only nontrivial issue to check is
the case in which µ̂ j hits one of the branch points (Em, 0) ∈ B(Kn) and hence the
right-hand side of (1.66) vanishes. Therefore, we suppose

µ j0 (x) → Em0 as x → x0 ∈ �µ

for some j0 ∈ {1, . . . , n}, m0 ∈ {0, . . . , 2n}. Introducing

ζ j0 (x) = σ (µ j0 (x) − Em0 )1/2, σ = ±1, µ j0 (x) = Em0 + ζ j0 (x)2

for x in an open interval centered around x0, one finds that the Dubrovin equation
(1.66) for µ j0 becomes

ζ j0,x (x) =
x→x0

c(σ )




2n∏
m=0
m �=m0

(Em0 − Em)




1/2

×




n∏
k=1
k �= j0

(
Em0 − µk(x)

)−1


(1 + O(ζ j0 (x)2)

)

for some |c(σ )| = 1 and concludes (1.68). A simple strategy of proof of part (ii)
in our context proceeds as follows. First one invokes the fact that the diagonal
Green’s function g(z, x0) associated with the L2(R)-realization H of the differen-
tial expression L = −d2/dx2 + u on all of R is given by

g(z, x0) = i Fn(z, x0)

2R2n+1(z)1/2
, z ∈ C+.

This is discussed in detail in Appendix J (cf. (J.46)). The Herglotz property of
g( · , x0) (cf. (J.15)) together with Theorem I.3 then yields the interlacing property
of {µ j (x0)} j=1,...,n and {Em}m=0,...,2n , as described in (1.69) for x = x0. Since
x0 ∈ R was arbitrary, this proves (1.69). �

The analogous result for the generalβ-boundary conditions (1.54) reads as follows.

Lemma 1.11 Let β ∈ R.
(i) Suppose that u ∈ C∞(�̃λ) satisfies the nth stationary KdV equation (1.10) on
an open interval �̃λ ⊆ R. Moreover, assume that the zeros λ

β

� , � = 0, . . . , n, of
K β

n+1( · ) remain distinct on �̃λ. Then {λ̂β

� }�=0,...,n, defined by (1.61), satisfies the
following first-order system of differential equations on �̃λ

λ
β

�,x = −2i
(
β2 − u + λ

β

�

)
y
(
λ̂
β

�

) n∏
m=0
m �=�

(
λ
β

� − λβ
m

)−1
, � = 0, . . . , n. (1.70)
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Next, assume the affine part of Kn to be nonsingular and introduce the initial
condition

{
λ̂
β

� (x0)
}
�=0,...,n ⊂ Kn (1.71)

for some x0 ∈ R, where λ
β

� (x0), � = 0, . . . , n, are assumed to be distinct. Then
there exists an open interval �λ ⊆ R, with x0 ∈ �λ, such that the initial value
problem (1.70), (1.71) has a unique solution {λ̂β

� }�=0,...,n ⊂ Kn satisfying

λ̂
β

� ∈ C∞(�λ,Kn), � = 0, . . . , n, (1.72)

and λ
β

� , � = 0, . . . , n, remain distinct on �λ.
(i i) Suppose in addition to (1.10) that u ∈ C∞(R) ∩ L∞(R) is real-valued and
the affine part of Kn is nonsingular. Moreover, assume the eigenvalue orderings
(1.63), (1.65). Then {λ̂β

� }�=0,...,n, with λ
β

� (x), � = 0, . . . , n, the eigenvalues of Hβ
x ,

satisfies the differential equation (1.70) for x ∈ R. Furthermore, given initial data
λ
β

0 (x0) ≤ E0, λ
β

� (x0) ∈ [E2�−1, E2�], � = 1, . . . , n, then

λ
β

0 (x) ≤ E0, λ
β

� (x) ∈ [E2�−1, E2�], � = 1, . . . , n, x ∈ R. (1.73)

In particular, λ̂β

� (x) changes sheets whenever it hits E2�−1 or E2� and its projec-
tion λ

β

� (x) remains trapped in [E2�−1, E2�] for all � = 1, . . . , n and x ∈ R (and
similarly for λ̂β

0 (x)).

Proof The derivative with respect to x evaluated at z = λ
β

� (x) of (1.55) and (1.59)
reads

K β

n+1,x

(
λ
β

�

) = −λ
β

�,x

n∏
m=0
m �=�

(
λ
β

� − λβ
m

)
. (1.74)

and

2
(
(1/2)Fn,x

(
λ
β

�

)+ βFn
(
λ
β

�

))(
(1/2)Fn,xx

(
λ
β

�

)+ βFn,x
(
λ
β

�

))

= Fn
(
λ
β

�

)
K β

n+1,x

(
λ
β

�

)
, (1.75)

respectively. We will use (1.75) to evaluate the left-hand side of (1.74). From (1.61)
we see that

(1/2)Fn,x
(
λ
β

�

)+ βFn
(
λ
β

�

) = −iy(λ̂β

�

)
. (1.76)

Eliminating R2n+1(z) using (1.13) and (1.59), taking z = λ
β

� (x), implies

(1/2)Fn,xx
(
λ
β

�

)+ βFn,x
(
λ
β

�

) = (u − λ
β

� − β2)Fn
(
λ
β

�

)
. (1.77)

Inserting (1.76) and (1.77) into (1.75) and subsequently into (1.74) proves (1.70).
Equation (1.72) and the remainder of the proof follows that of Lemma 1.10 step by
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step, using (J.23) and (J.48) in connection with the β-boundary conditions (1.54)
at the point x0 ∈ R. �

In the following remark, the Neumann case, that is, the special case β = 0, is
stated as a separate result.

Remark 1.12 In the Neumann case β = 0, equation (1.70) simplifies to

ν�,x = −2i
(−u + ν�

)
y(ν̂�)

n∏
m=0
m �=�

(
ν� − νm

)−1
, � = 0, . . . , n. (1.78)

We remark that u in (1.70) and (1.78) has been used for reasons of brevity only.
In order to obtain a coupled system of differential equations for λ

β

� and ν�, one
needs to replace u by the corresponding trace formula for u in Lemma 1.17.

Remark 1.13 Due to our convention (B.19) for y( · ), the differential equations
(1.66) and (1.70) exhibit the well-known (piecewise) monotonicity properties of
µ j (x) and λ

β

� (x), β ∈ R, j ∈ N, � ∈ N0, with respect to x ∈ R. For instance,
Dirichlet eigenvalues corresponding to the right (left) half-axis (x,∞) ((−∞, x))
associated with the decomposition (J.19) are always increasing (decreasing) with
respect to x ∈ R, etc.

We also mention the following well-known result connecting Dirichlet and
Neumann eigenvalues in the self-adjoint case.

Lemma 1.14 Suppose that u ∈ C∞(R) ∩ L∞(R) is real-valued and satisfies the
nth stationary KdV equation (1.10). Moreover, assume the affine part of Kn to
be nonsingular. Suppose thatµ j (x0) ∈ {E2 j−1, E2 j }, j = 1, . . . , n. Then ν0(x0) =
E0, ν j (x0) ∈ {E2 j−1, E2 j } \ {µ j (x0)}, j = 1, . . . , n. Conversely, suppose ν j (x0) ∈
{E2 j−1, E2 j }, j = 1, . . . , n. Then ν0(x0) = E0, µ j (x0) ∈ {E2 j−1, E2 j } \ {ν j (x0)},
j = 1, . . . , n.

Proof The derivative of (1.31), inserting the Dubrovin equations (1.66), yields

Fn,x (z) = 2i
n∑
j=1

iy(µ̂ j )
n∏

k=1
k �= j

(z − µk)(µ j − µk)
−1, (1.79)

from which we infer that Fn,x (z, x0) = 0 for all z ∈ C. Equation (1.32) then implies
that R2n+1(z) = Fn(z, x0)Hn+1(z, x0) for all z and fixed x0. This proves the first
claim.

Conversely, assuming ν j (x0) ∈ {E2 j−1, E2 j } for all j = 1, . . . , n, one infers
from (1.36) that Fn,x (ν j (x0), x0) = −2iy(ν̂ j (x0)) = 0 for all j = 1, . . . , n, that
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is, the polynomial Fn,x , which is of degree n − 1, has at least n zeros. Hence,
Fn,x (z, x0) = 0 for all z. We conclude that R2n+1(z) = Fn(z, x0)Hn+1(z, x0), which
proves the second claim. �

In an analogous fashion one can analyze the behavior of λβ

� (x) as a function of
the boundary condition parameter β ∈ R. In fact, (1.55) yields

∂βK
β

n+1(z) = −Fn,x (z) + 2βFn(z), (1.80)

and hence

∂βK
β

n+1(z)
∣∣
z=λ

β

�

= −(∂βλβ

�

) n∏
m=0
m �=�

(
λ
β

� − λβ
m

) = −Fn,x
(
λ
β

�

)+ 2βFn
(
λ
β

�

)

= −2iy
(
λ̂
β

�

)
(1.81)

by (1.61). This implies the following result for the β-variation of the eigenvalues
λ
β

� (x).

Lemma 1.15 Let (x, β) ∈ � × U , where �,U ⊆ R are open intervals. Suppose
that u ∈ C∞(�), satisfies the nth stationaryKdV equation (1.10) on�, and assume
that the zeros λβ

� (x), � = 0, . . . , n, of K β

n+1( · , x) remain distinct for (x, β) ∈ � ×
U . Then {λ̂β

� }�=0,...,n, defined by (1.61), satisfies the following first-order system of
differential equations on �

∂βλ
β

� = 2iy
(
λ̂
β

�

) n∏
m=0
m �=�

(
λ
β

� − λβ
m

)−1
, � = 0, . . . , n. (1.82)

Proof This follows from (1.81). �

Combining the polynomial approach of Section 1.2 with (1.31) readily yields
trace formulas for the KdV invariants, that is, expressions of f� in terms of sym-
metric functions of the zeros µ j of Fn .

Lemma1.16 Supposeu ∈ C∞(R) satisfies thenth stationaryKdVequation (1.10).
Then,

u =
2n∑
m=0

Em − 2
n∑
j=1

µ j , (1.83)

u2 − (1/2)uxx =
2n∑
m=0

E2
m − 2

n∑
j=1

µ2
j , etc. (1.84)
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Proof Relations (1.83) and (1.84) follow by comparison of powers of zn−1 and
zn−2 in (1.31) for Fn with (1.5) taken into account. �

The analogous result for the general β-boundary conditions (1.54) then reads
as follows.

Lemma 1.17 Let β ∈ R. Suppose u ∈ C∞(R) satisfies the nth stationary KdV
equation (1.10). Then,

2β2 − u =
2n∑
m=0

Em − 2
n∑

�=0

λ
β

� , (1.85)

(1/2)uxx − u2 + 2βux + 4β2u − 2β4 =
2n∑
m=0

E2
m − 2

n∑
�=0

(
λ
β

�

)2
, etc. (1.86)

Proof Relations (1.83) and (1.84) are proved by comparing powers of zn and zn−1

in (1.55) for Kn+1 with (1.56) taken into account. �

Equations (1.83) and (1.85) represent trace formulas for the algebro-geometric
potential u. Equations (1.83)–(1.86) (as well as the method of proof) indicate
that higher-order trace formulas associated with the KdV hierarchy can be ob-
tained from (1.31) and (1.55) when comparing powers of z. Since we will sys-
tematically derive trace formulas for general potentials in Section 1.5, we post-
pone the special case of algebro-geometric potentials at this point and refer to
Example 1.60.

Since nonspecial divisors play a fundamental role in this section and the next,
we now take a closer look at them.

Lemma 1.18 Assume that u ∈ C∞(R) ∩ L∞(R) satisfies the nth stationary KdV
equation (1.10). Let Dµ̂, µ̂ = (µ̂1, . . . , µ̂n) be the Dirichlet divisor of degree n
associated with u defined according to (1.35), that is,

µ̂ j (x) = (µ j (x),−(i/2)Fn,x (µ j (x), x)), j = 1, . . . , n, x ∈ R.

Then, Dµ̂(x) is nonspecial for all x ∈ R.

Proof Since u ∈ C∞(R) ∩ L∞(R) and µ j vary continuously on R (with multi-
plicities and appropriate renumbering of the zeros of Fn taken into account), one
infers the existence of constants C j > 0, j = 1, 2, such that

Re(µ j (x)) ≥ −C1, |Im(µ j (x))| ≤ C2, j = 1, . . . , n, x ∈ R.

In particular, since u(x) = ∑2n
m=0 Em − 2

∑n
j=1 µ j (x) according to the trace
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formula (1.83), this yields the existence of a constant C > 0 such that

|µ j (x)| ≤ C, j = 1, . . . , n, x ∈ R. (1.87)

By Theorem A.30, Dµ̂(x) is special if and only if {µ̂1(x), . . . , µ̂n(x)} contains at
least one pair of the type {µ̂(x), µ̂∗(x)}. Hence, Dµ̂(x) is certainly nonspecial as
long as the projections µ j (x) of µ̂ j (x) are mutually distinct, µ j (x) �= µk(x) for
j �= k. On the other hand, if two or more projections collide for some x0 ∈ R, for
instance,

lim
x→x0

µ jp (x) = µ0, p = 1, 2, . . . , N , N ∈ {2, . . . , n},

then Fn,x (µ0, x0) �= 0 as long as µ0 /∈ {E0, . . . , E2n}. This fact immediately fol-
lows from (1.13), since Fn(µ0, x0) = 0 but R2n+1(µ0) �= 0 by hypothesis. In par-
ticular, µ̂ j1 (x), . . . , µ̂ jN (x) all meet on the same sheet since

lim
x→x0

µ̂ jp (x) = (µ0, Fn,x (µ0, x0)), p = 1, . . . , N ;

hence, no special divisor can arise in this manner. It remains to study the case in
which two or more projections collide at a branch point, say at (Em0 , 0) for some
x0 ∈ R. In this case, one concludes

Fn(z, x0) =
z→Em0

O
(
(z − Em0 )2

)

and

Fn,x (Em0 , x0) = 0, (1.88)

using again (1.13) and Fn(Em0 , x0) = R2n+1(Em0 ) = 0. Since Fn,x ( · , x0) is a poly-
nomial (of degree n − 1), (1.88) implies

Fn,x (z, x0) =
z→Em0

O((z − Em0 )).

Thus, using (1.13) once more, one obtains the contradiction,

O
(
(z − Em0 )2

) =
z→Em0

R2n+1(z)

=
z→Em0

(z − Em0 )




2n∏
m=1
m �=m0

(
Em0 − Em

)+ O(z − Em0 )


 .

Consequently, at most one µ̂ j (x) can hit a branch point at a time and again no
special divisor arises. Finally, by (1.87), µ̂ j (x) never reaches the branch point P∞,
completing the proof. �

Next we turn to asymptotic properties of φ and ψ .
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Lemma1.19 Supposeu ∈ C∞(R) satisfies thenth stationaryKdVequation (1.10).
Moreover, let P = (z, y) ∈ Kn \ {P∞}, (x, x0) ∈ R

2. Then,

φ(P) =
ζ→0

iζ−1 − (i/2)uζ + O(ζ 2) as P → P∞, (1.89)

ψ(P, x, x0) =
ζ→0

exp(iζ−1(x − x0))

(
1 − (i/2)

∫ x

x0

dx ′ u(x ′)ζ + O(ζ 2)

)

as P → P∞, ζ = σ/z1/2, σ = ±1. (1.90)

Proof The existence of the asymptotic expansion of φ in terms of the local co-
ordinate ζ = σ/z1/2, σ = ±1 near P∞ (cf. (B.7)–(B.11)) is clear from the ex-
plicit form of φ in (1.38). Insertion of the polynomial Fn into (1.38) then yields
the explicit expansion coefficients in (1.89). Alternatively, one can insert the
ansatz

φ =
z→∞ φ−1z

1/2 + φ0 + φ1z
−1/2 + O(z−1) (1.91)

into the Riccati-type equation (1.42). A comparison of powers of z−1/2 then proves
(1.89). Equation (1.90) then follows from inserting (1.89) into (1.41). �

For subsequent use we note the following asymptotic spectral parameter expan-
sion of Fn/y as P → P∞,

Fn(z)

y
=

ζ→0
ζ

∞∑
�=0

f̂ �ζ
2�, ζ = σ/z1/2, σ = ±1. (1.92)

Here, f̂� denote the homogeneous coefficients in (1.6) (i.e., the ones satisfying
(1.4) with vanishing integration constants). In particular, f̂� can be computed from
a nonlinear recursion relation as proven in Theorem D.1 in Appendix D. The
analogous expansion can be derived for Hn+1/y, K β

n+1/y, β ∈ R, etc. The spectral

theoretic content of the polynomials Fn , Hn+1, and K β

n+1 is clearly displayed in
(J.32)–(J.48) (particularly in the Green’s function formulas (J.45) and (J.46) in
connection with Fn).

We continue with the theta function representation for φ, ψ , and u. For the
general background and fundamental notation we refer to Appendices A and B.
To avoid the trivial case n = 0 (considered in Example 1.25), we assume n ∈ N

for the remainder of this argument.
Let θ denote the Riemann theta function associated with Kn (whose affine part

is assumed to be nonsingular) and {a j , b j } j=1,...,n be a fixed homology basis on
Kn . Next, choosing as a convenient base point Q0 one of the branch points (Em, 0),
m ∈ {0, . . . , 2n}, the Abel maps AQ0

andαQ0
are defined by (A.34) and (A.35), and

the Riemann vector �Q0
is given by (A.45). Let ω(3)

P∞,λ̂
β

0 (x)
be the normal differential
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of the third kind holomorphic on Kn \ {P∞, λ̂
β

0 (x)} with simple poles at P∞ and
λ̂
β

0 (x) and residues +1 and −1, respectively (cf. (A.23)–(A.26), (B.40)),

ω
(3)

P∞,λ̂
β

0 (x)
=

ζ→0
(ζ−1 + O(ζ ))dζ as P → P∞, (1.93)

ω
(3)

P∞,λ̂
β

0 (x)
=

ζ→0
(−ζ−1 + O(1))dζ as P → λ̂

β

0 (x), (1.94)

where ζ in (1.93) denotes the local coordinate

ζ = σ/z1/2 for P near P∞, σ = ±1

near P∞, and analogously, ζ in (1.94) that near λ̂β

0 (x). In particular,
∫
a j

ω
(3)

P∞,λ̂
β

0 (x)
= 0, j = 1, . . . , n, (1.95)

and with Q0 = (Em0 , 0),

∫ P

Q0

ω
(3)

P∞,λ̂
β

0 (x)
=

ζ→0
ln(ζ ) + (1/2) ln

(
Em0 − λ

β

0 (x)
)+ O(ζ ) as P → P∞, (1.96)

∫ P

Q0

ω
(3)

P∞,λ̂
β

0 (x)
=

ζ→0
− ln(ζ ) + (1/2) ln(Em0 − λ

β

0 (x)) + O(ζ ) as P → λ̂
β

0 (x).

(1.97)

Equations (1.96) and (1.97) follow from (B.40) by computing
∫ P
Q0

ω
(3)

P∞,λ̂
β

0 (x)
+∫ P∗

Q0
ω

(3)

P∞,λ̂
β

0 (x)
, choosing the same path of integration on both sheets �±.

Next, let ω(2)
P∞,0 denote the normalized differential of the second kind defined by

ω
(2)
P∞,0 = − 1

2y

n∏
j=1

(z − λ j )dz =
ζ→0

(ζ−2 + O(1))dζ as P → P∞, (1.98)

where the constants λ j ∈ C, j = 1, . . . , n are determined by employing the nor-
malization

∫
a j

ω
(2)
P∞,0 = 0, j = 1, . . . , n. (1.99)

One infers
∫ P

Q0

ω
(2)
P∞,0 =

ζ→0
−ζ−1 + O(ζ ) as P → P∞, (1.100)

since by (1.98),
∫ P
Q0

ω
(2)
P∞,0 + ∫ P∗

Q0
ω

(2)
P∞,0 = 0, choosing the same path of integration

on both sheets �±. Thus, the right-hand side of (1.100) is odd with respect to ζ

and hence contains no constant term. The vector of b-periods of ω
(2)
P∞,0/(2π i) is
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denoted by

U (2)
0 = (

U (2)
0,1, . . . ,U

(2)
0,n

)
, U (2)

0, j = 1

2π i

∫
b j

ω
(2)
P∞,0, j = 1, . . . , n. (1.101)

By (B.33) one concludes

U (2)
0, j = −2c j (n), j = 1, . . . , n. (1.102)

In the following it will be convenient to introduce the abbreviation

z(P, Q) = �Q0
− AQ0

(P) + αQ0
(DQ), (1.103)

P ∈ Kn, Q = {Q1, . . . , Qn} ∈ Symn(Kn).

We note that by (A.52) and (A.53), z( · , Q) is independent of the choice of base
point Q0.

Theorem 1.20 Suppose that u ∈ C∞(�) satisfies the nth stationary KdV equation
(1.10) on an open interval � ⊆ R. In addition, assume the affine part of Kn to
be nonsingular and let P ∈ Kn \ {P∞}, β ∈ R, and x, x0 ∈ �. Moreover, suppose
that Dµ̂(x), or equivalently, Dλ̂

β
(x) is nonspecial for x ∈ �. Then,1

φ(P, x) = −β + i
θ(z(P∞, µ̂(x)))θ(z(P, λ̂

β
(x)))

θ (z(P∞, λ̂
β
(x)))θ (z(P, µ̂(x)))

× exp

(
−
∫ P

Q0

ω
(3)

P∞,λ̂
β

0 (x)
+ (1/2) ln(Em0 − λ

β

0 (x))

)
, (1.104)

and2

ψ(P, x, x0) = θ (z(P∞, µ̂(x0)))θ (z(P, µ̂(x)))

θ (z(P∞, µ̂(x)))θ(z(P, µ̂(x0)))
exp

(
− i(x − x0)

∫ P

Q0

ω
(2)
P∞,0

)
,

(1.105)

with the linearizing property of the Abel map,

αQ0

(Dµ̂(x)
) = αQ0

(Dµ̂(x0)
)+ iU (2)

0 (x − x0), (1.106)

αQ0

(D
λ̂
β

0 (x)λ̂
β

(x)

) = αQ0

(D
λ̂
β

0 (x0)λ̂
β

(x0)

)+ iU (2)
0 (x − x0). (1.107)

1 According to Remark 1.9, the right-hand side of (1.104) is symmetric with respect to λ̂
β

� , � = 0, . . . , n;
hence, the pair

(
λ̂
β

0 , λ̂
β)

can be replaced by any of the pairs
(
λ̂
β

� , λ̂
β,�)

, � = 1, . . . , n.
2 To avoid multi-valued expressions in formulas such as (1.104), (1.105), etc., we agree always to

choose the same path of integration connecting Q0 and P and refer to Remark A.28 for additional
tacitly assumed conventions.
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The Its–Matveev formula for u reads

u(x) = E0 +
n∑
j=1

(E2 j−1 + E2 j − 2λ j )

− 2∂2
x ln

(
θ(�Q0

− AQ0
(P∞) + αQ0

(Dµ̂(x)))
)

(1.108)

= E0 +
n∑
j=1

(E2 j−1 + E2 j − 2λ j )

− 2∂2
x ln

(
θ
(
�Q0

+ AQ0

(
λ̂
β

0 (x)
)+ αQ0

(D
λ̂
β

(x)

)))
. (1.109)

Proof First we temporarily assume that

µ j (x) �= µ j ′ (x), λ
β

k (x) �= λ
β

k ′ (x) for j �= j ′, k �= k ′ and x ∈ �̃ (1.110)

for appropriate �̃ ⊆ �. Since by (1.40), Dν̂0 ν̂ ∼ DP∞µ̂, and P∞ = (P∞)∗ /∈
{µ̂1, . . . , µ̂n} by hypothesis, one can apply Theorem A.31 to conclude that Dν̂ ∈
Symn(Kn) is nonspecial. This argument is of course symmetric with respect to µ̂

and ν̂. Thus, Dµ̂ is nonspecial if and only if Dν̂ is. Next, let φ̃ denote the right-hand
side of (1.104) with the aim of proving φ = φ̃, with φ given by (1.38) (or (1.57)).
By (1.60) one infers that φ( · , x) has simple poles at µ̂(x) and P∞ and simple
zeros at λ̂

β

0 (x) and λ̂
β
(x). By inspection, the function φ̃ shares these properties

using (1.96), (1.97), the expression (1.104) for φ̃, and a special case of Riemann’s
vanishing theorem (cf. Theorem A.26). By the Riemann–Roch theorem (Theorem
A.13) and since φ and φ̃ share common zeros, one infers that φ̃/φ = c for some
constant c ∈ C. (Actually, the Riemann–Roch theorem implies φ̃ = cφ + d for
some c, d ∈ C since deg(DP∞µ̂(x)) = n + 1 and i(DP∞µ̂(x)) = 0. However, since φ̃

and φ have common zeros, one concludes that d = 0.) Using (1.89) and (1.96),
one computes

φ̃

φ
=

ζ→0

−β + i(1 + O(ζ ))(ζ−1 + O(1))

iζ−1 + O(ζ )
=

ζ→0
1 + O(ζ );

hence, c = 1. This proves (1.104) subject to (1.110).
For the Baker–Akhiezer function ψ we will use the same strategy. However,

the situation is slightly more involved in that ψ has an essential singularity at P∞.
Denote by ψ̃ the right-hand side of (1.105). To prove that ψ = ψ̃ , with ψ given by
(1.41), one first observes, using (1.35), the definition (1.38) of φ and the Dubrovin
equations (1.66), that

φ(P, x ′) =
P→µ̂ j (x ′)

∂x ′ ln(z − µ j (x
′)) + O(1). (1.111)
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Together with (1.41), this implies

ψ(P, x, x0) =




(z − µ j (x))O(1) as P → µ̂ j (x) �= µ̂ j (x0),

O(1) as P → µ̂ j (x) = µ̂ j (x0),

(z − µ j (x0))−1O(1) as P → µ̂ j (x0) �= µ̂ j (x),

(1.112)

P = (z, y) ∈ Kn, x, x0 ∈ �̃,

where O(1) �= 0 in (1.112). Consequently, all zeros and poles of ψ and ψ̃ on
Kn \ {P∞} are simple and coincide. Hence, one concludes by Theorem A.26 that ψ
contains a factor θ (z(P, µ̂(x)))/θ (z(P, µ̂(x0))). It remains to identify the essential
singularity of ψ and ψ̃ at P∞. The asymptotic spectral parameter expansion (1.89)
of φ yields

∫ x

x0

dx ′ φ(P, x ′) =
ζ→0

i(ζ−1 + O(ζ ))(x − x0) as P → P∞. (1.113)

Thus, comparing (1.41), (1.100), the expression (1.105) for ψ̃ , and (1.113) then
shows that ψ and ψ̃ have identical exponential behavior up to order O(ζ ) near P∞.
Consequently, ψ and ψ̃ share the same singularities and zeros, and the Riemann–
Roch-type uniqueness result in Lemma B.2 (taking tr = t0,r ) then proves that ψ
and ψ̃ coincide up to normalization. The latter is determined by (1.48) (or (1.90)),
implying

ψ(P, x, x0)ψ(P∗, x, x0) =
P→P∞

1. (1.114)

Hence, (1.105) holds subject to (1.110).
The Its–Matveev formula requires a more detailed analysis of the behavior of

ψ near P∞. For this, one needs to expand ω
(2)
P∞,0 up to second-order with respect

to ζ . By (1.98), one finds

ω
(2)
P∞,0 =

ζ→0
(ζ−2 + 0 + O(ζ 2)) dζ near P∞, (1.115)

abbreviating

0 = 1

2

(
E0 +

n∑
j=1

(E2 j−1 + E2 j − 2λ j )

)
.

Combining (1.105) and (1.115), one computes

ψ(P, x, x0) =
ζ→0

exp
(
i(x − x0)(ζ−1 − 0ζ + O(ζ 3))

)(
1 + c1(x)ζ + O(ζ 2)

)
,

(1.116)

where c1 is yet to be determined. This implies that

ψxx (P, x, x0) =
ζ→0

(− ζ−2 + 20 + 2ic1,x (x) + O(ζ )
)
ψ(P, x, x0),
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which results in

−ψxx + (
20 + 2ic1,x − ζ−2

)
ψ =

ζ→0
O(ζ )ψ.

The right-hand side is yet another Baker–Akhiezer function with the same divisors
and same essential singularity at P∞ asψ . By the uniqueness theorem for functions
of that type (see Lemma B.2) one infers

−ψxx + (
20 + 2ic1,x − ζ−2

)
ψ = 0,

and hence that

u = 20 + 2ic1,x , (1.117)

in agreement with (1.90). It remains to determine c1,x . Since only the x-derivative
of c1 enters the expression for u, we merely have to analyze the first ratio of theta
functions as the other ratio in the expression (1.105) for ψ is x-independent. From
(B.31), one infers

ω =
ζ→0

(−2c(n) + O(ζ 2))dζ as P → P∞,

and hence

AQ0
(P) =

∫ P

Q0

ω (mod Ln) =
ζ→0

AQ0
(P∞) − 2c(n)ζ + O(ζ 3)

= AQ0
(P∞) +U (2)

0 ζ + O(ζ 2) as P → P∞,

using (1.102). Thus,

θ (�Q0
− AQ0

(P) + αQ0
(Dµ̂))

θ (�Q0
− AQ0

(P∞) + αQ0
(Dµ̂))

(1.118)

=
ζ→0

1 −
∑n

j=1 U
(2)
0, j∂w j θ (�Q0

− AQ0
(P∞) + w + αQ0

(Dµ̂))
∣∣
w=0

θ (�Q0
− AQ0

(P∞) + αQ0
(Dµ̂))

ζ + O(ζ 3),

where
∑n

j=1 U
(2)
0, j∂w j denotes the directional derivative in the U (2)

0 -direction.
Next we prove the linearity of the Abel map with respect to x in (1.106) subject

to (1.110). From

αQ0
(Dµ̂) =

( n∑
j=1

∫ µ̂ j

Q0

ω

)
(mod Ln),

(B.30), and the Dubrovin equations (1.66) one infers

∂xαQ0
(Dµ̂) =

n∑
j=1

µ j,x

n∑
k=1

c(k)
µk−1
j

y(µ̂ j )
= −

n∑
j,k=1

c(k)
2iµk−1

j∏n
�=1
��= j

(µ j − µ�)
.
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The following special case of Lagrange’s interpolation formula (cf. Appendix E)

n∑
j=1

µk−1
j

n∏
�=1
��= j

(µ j − µ�)
−1 = δk,n, µ j ∈ C, j, k = 1, . . . , n

then yields (cf. also Theorem F.10)

∂xαQ0
(Dµ̂) = −2ic(n) = iU (2)

0 , x ∈ �̃. (1.119)

Given (1.119) we may write

n∑
j=1

iU (2)
0, j∂w j θ

(
�Q0

− AQ0
(P∞) + w + αQ0

(Dµ̂(x0)) + iU (2)
0 (x − x0)

)∣∣
w=0

= d

dx
θ
(
�Q0

− AQ0
(P∞) + αQ0

(Dµ̂(x0)) + iU (2)
0 (x − x0)

)

and hence obtain from (1.118)

θ (z(P, µ̂))

θ (z(P∞, µ̂))
=

ζ→0
1 + i∂x ln

(
θ (z(P∞, µ̂))

)
ζ + O(ζ 3).

Using (1.105) and (1.116) we may identify

c1,x = i∂2
x ln

(
θ(z(P∞, µ̂))

)
on �̃,

and hence obtain the Its–Matveev formula (1.108) as a consequence of (1.117),
assuming (1.110). The second equality (1.109) then follows from the linear equiv-
alence DP∞µ̂ ∼ D

λ̂
β

0 λ̂
β , that is,

AQ0
(P∞) + αQ0

(Dµ̂) = AQ0

(
λ̂
β

0

)+ αQ0
(D

λ̂
β ), (1.120)

and because AQ0
(P∞) is a half-period,

2AQ0
(P∞) = 0 (mod Lg).

The extension of all these results from �̃ to � then simply follows from the
continuity of αP0

and the hypothesis of Dµ̂ being nonspecial on �. Equation
(1.107) then follows from (1.106) and (1.120). �

Combining (1.106) and (1.108) shows the remarkable linearity of the theta
function with respect to x in the Its–Matveev formula for u. In fact, one can
rewrite (1.108) as

u(x) = 0 − 2∂2
x ln(θ (A + Bx)), (1.121)
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where

A = �Q0
− AQ0

(P∞) − iU (2)
0 x0 + αQ0

(Dµ̂(x0)), (1.122)

B = iU (2)
0 , (1.123)

0 = E0 +
n∑
j=1

(E2 j−1 + E2 j − 2λ j ), (1.124)

and hence the constants 0 ∈ C and B ∈ C
n are uniquely determined by Kn (and

its homology basis), and the constant A ∈ C
n is in one-to-one correspondence

with the Dirichlet data µ̂(x0) = (µ̂1(x0), . . . , µ̂n(x0)) ∈ Symn(Kn) at the point x0

as long as the divisor Dµ̂(x0) is assumed to be nonspecial.

Remark 1.21 If Dµ̂ is nonspecial and P∞ �∈ {µ̂1, . . . , µ̂n}, then D
λ̂
β is nonspecial

by Theorem A.31 (cf. also Lemma 1.18).

Remark 1.22 The explicit representation (1.105) for ψ complements Lemma 1.8
and shows that ψ stays meromorphic on Kn \ {P∞} as long as Dµ̂ is nonspecial
(assuming the affine part of Kn to be nonsingular).

The algebro-geometric KdV potential u in the Its–Matveev formula (1.108) is
complex-valued in general. To obtain real-valued potentials, one needs to impose
certain symmetry constraints on Kn and additional constraints on A in (1.121),
(1.122), which we will discuss next. In particular, the formal self-adjointness of
the Lax differential expression L = −d2/dx2 + u with a real-valued potential u
leads to the reality constraints

E0 < E1 < · · · < E2n (1.125)

on the zeros of R2n+1, that is, all branch points ofKn different from P∞ are assumed
to be in real position.

Lemma 1.23 Assume (1.125), suppose thatDµ̂(x0) is nonspecial for some x0 ∈ R,
and choose the homology basis {a j , b j }nj=1 according to Theorem A.36 (i)
(cf. the discussion in the paragraph following (B.20) and compare with Figure
B.2, implementing the additional constraint (1.125)). Then the meromorphic solu-
tion u in the Its–Matveev formula (1.108) is real-valued if and only if A in (1.122)
satisfies the constraint

Re(A) = (1/2)χ (mod Z
n), χ = (χ1, . . . , χn), χ j ∈ {0, 1}, j = 1, . . . , n.

(1.126)

In particular, under the present hypotheses, the set of real-valued stationary
algebro-geometricKdVpotentialsV in (1.121) consists of 2n connected components
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indexed by χ = (χ1, . . . , χn), χ j ∈ {0, 1}, j = 1, . . . , n, and the component asso-
ciated with χ = 0 comprises all real-valued smooth potentials u ∈ C∞(R).

Proof Define the antiholomorphic involution ρ+ : (z, y) �→ (z, y), as in Exam-
ple A.35 (iii). By Example A.35 (iii), Theorem A.36 (cf. (A.65), (A.69)–(A.71)),
(B.27)–(B.29), (B.33), and (B.37)–(B.39) one infers that (Kn, ρ+) is of dividing
type and hence

r = n + 1, τ = −τ, R = 0, θ (z) = θ (z), z ∈ C
n,

ρ+(a j ) = a j , ρ+(b j ) = −b j , j = 1, . . . , n,

c(k) ∈ R
n, k = 1, . . . , n, U (2)

0 ∈ R
n,

λ j ∈ R, j = 1, . . . , n.

Thus,

B = −B

by (1.123); hence, real-valuedness of u in (1.121) is equivalent to

∂2
x ln(θ (A + Bx)) = ∂2

x ln(θ (A + Bx)) = ∂2
x ln(θ (−A + Bx)).

This, in turn, is equivalent to

A = −A + m1 + n1τ, m1, n1 ∈ Z
n

and hence to

Re(A) = (1/2)m1, m1 ∈ Z
n.

Replacing A by A + m + nτ with m, n ∈ Z
n then yields

Re( A ) = (1/2)m1 − m, m1,m ∈ Z
n

and hence (1.126). Finally, since u is of the type

u(x) = 0 − 2∂2
x ln(θ (iIm( A ) + iIm(B )x + (1/2)χ )),

χ = (χ1, . . . , χn), χ j ∈ {0, 1}, j = 1, . . . , n,

u ∈ C∞(R) if and only if χ = 0 by (A.73) (with � = 0). �

Remark 1.24 The connected component of nonsingular KdV potentials (1.121)
associated with χ = 0 in Lemma 1.23 can be described as follows: The initial
position of µ̂ j (x0) ∈ Kn must be chosen in real position with its projections lying
in the spectral gaps of H , that is,

µ j (x0) ∈ [E2 j−1, E2 j ], j = 1, . . . , n, (1.127)
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in order to render αQ0
(Dµ̂(x0)) purely imaginary mod Z

n and u ∈ L∞(R). One
can show that all real-valued and bounded algebro-geometric KdV potentials arise
in this manner. In particular, as x varies, the motion of the projection µ j (x) of
µ̂ j (x) ∈ Kn remains confined to the spectral gap interval [E2 j−1, E2 j ], and µ̂ j

changes sheets whenever it hits a branch point. Topologically, this motion corre-
sponds to one on a circle. Moreover, the initial data µ̂ j (x0), with the projections
µ j (x0) constrained by (1.127), are independent of each other. Thus, the correspond-
ing isospectral set of all smooth (algebro-geometric) KdV potentials u ∈ C∞(R)
corresponding to a fixed curve Kn constrained by (1.125), that is, the connected
component associated with χ = 0 in Lemma 1.23, can then be identified with the
n-dimensional real torus T

n . Effective coordinates on this torus uniquely charac-
terizing u are then the Dirichlet data µ̂(x0) = (µ̂1(x0), . . . , µ̂n(x0)) (cf. also the
notes to Section 1.3), or equivalently, Dirichlet divisors Dµ̂(x0) in real position con-
strained by (1.127). Solving the Dubrovin equations (1.66) with these initial data
then recovers u for all x ∈ R from the trace formula (1.83). The Its–Matveev for-
mula (1.108) for u then provides a concrete representation of the elements of this
isospectral torus T

n . The potentials u in (1.108), in general, will be quasi-periodic1

with respect to x ∈ R.
Real-valued KdV potentialsu associated withKn constrained by (1.125) can also

be constructed by “misplacing” one or several initial values in the “wrong” spectral
gap (−∞, E0]. This then results in the remaining 2n − 1 connected but noncompact
components of isospectral and singular KdV potentials (the singularities being
certain poles in x) in Lemma 1.23.

If in addition one is interested in periodic KdV potentials u with a real period
� > 0, the additional periodicity constraints

i�U (2)
0 ∈ Z

n \ {0} (1.128)

must be imposed. (By (B.45) this is equivalent to 2i�c(n) ∈ Z
n \ {0}.) In fact, the

integers m j ∈ Z \ {0} arising in (1.128), i�U (2)
0, j = m j , have a topological inter-

pretation as winding numbers since by oscillation theoretic arguments they de-
scribe the number of full revolutions of µ j (x) in the j th spectral gap [E2 j−1, E2 j ],
j = 1, . . . , n, as x traverses a periodicity interval of length �.

An alternative strategy of proof of the Its–Matveev formula (1.108) based on the
trace formula (1.83) and theta function representations for symmetric functions of
µ j is outlined in (B.44)–(B.47).

Next, we briefly consider the trivial case n = 0 excluded in Theorem 1.20.

1 A function f ∈ C(R) is called quasi-periodic with fundamental periods (ω1, . . . , ωn) ∈ (0,∞)n if
ω1, . . . , ωn are linearly independent over Zand there exists an F ∈ C(Rn) with periods ω1, . . . , ωn ,
F(x1, . . . , x j−1, x j + ω j , x j+1, . . . , xn) = F(x1, . . . , xn) such that f (x) = F(x, . . . , x). f be-
comes periodic with period ω > 0 if and only if ω j = m jω for m j ∈ N, j = 1, . . . , n.



1.3. The Stationary KdV Formalism 53

Example1.25 Assumen = 0, P = (z, y) ∈ K0 \ {P∞}, and let (x, x0) ∈ R
2. Then

K0 : F0(z, y) = y2 − R1(z) = y2 − (z − E0) = 0, E0 ∈ C,

u(x) = E0,

s-K̂dVm(u) = 0, m ≥ 0,

L = − d2

dx2
+ E0, P1 = d

dx
,

F0(z, x) = 1, H1(z, x) = z − E0, ν0(x) = E0,

φ(P, x) = iy,

ψ(P, x, x0) = exp(iy(x − x0)).

Up to this point we assumed u ∈ C∞(R) satisfies the stationary KdV equation
(1.10) for some fixed n ∈ N0. Next we will show that solvability of the Dubrovin
equations (1.66) on �µ ⊆ R in fact implies equation (1.10) on �µ. As pointed
out in Remark 1.29, this amounts to solving the algebro-geometric initial value
problem in the stationary case.

Theorem 1.26 Fix n ∈ N, assume the affine part of Kn to be nonsingular, and
suppose that {µ̂ j } j=1,...,n satisfies the stationary Dubrovin equations (1.66) on an
open interval �µ ⊆ R such that µ j , j = 1, . . . , n, remain distinct on �µ. Then
u ∈ C∞(�µ), defined by

u = E0 +
n∑
j=1

(
E2 j−1 + E2 j − 2µ j

)
, (1.129)

satisfies the nth stationary KdV equation (1.10), that is,

s-KdVn(u) = 0 on �µ. (1.130)

Proof Given the solutions µ̂ j = (µ j , y(µ̂ j )) ∈ C∞(�µ,Kn), j = 1, . . . , n of
(1.66), we introduce

Fn(z) =
n∏
j=1

(z − µ j ) on C × �µ (1.131)

and note that on �µ,

µ̂ j = (µ j , y(µ̂ j )) = (µ j ,−(i/2)Fn,x (µ j )), j = 1, . . . , n, (1.132)

by (1.66) and Fn,x (µ j ) = −µ j,x
∏n

k=1
k �= j

(µ j − µk). Next we define a monic polyno-

mial Hn+1 of degree n + 1 on C × �µ such that (1.13) holds, that is,

R2n+1(z) + (1/4)Fn,x (z)2 = Fn(z)Hn+1(z) on C × �µ. (1.133)
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The polynomial Hn+1 exists since the left-hand side of (1.133) has zeros at z = µ j ,
j = 1, . . . , n by (1.132). Hence, we may factor Hn+1 as

Hn+1(z) =
n∏

�=0

(z − ν�).

A comparison of the coefficients of z2n in (1.133) then yields

2n∑
m=0

Em =
n∑
j=1

µ j +
n∑

�=0

ν� on �µ. (1.134)

Introducing u as in (1.129) and noticing u ∈ C∞(�µ) since µ j ∈ C∞(�µ), j =
1, . . . , n, we next define the polynomial Pn−1 by

Pn−1(z) = Hn+1(z) − (1/2)Fn,xx (z) + (u − z)Fn(z) on C × �µ.

Since by (1.129) and (1.134)

Pn−1(z) = zn+1 − zn
n∑

�=0

ν� + znu − zn+1 + zn
n∑
j=1

µ j + O(zn−1)

= O(zn−1) as |z| → ∞,

Pn−1 is a polynomial of degree n − 1. Differentiating (1.133) with respect to x
yields

Fn,x (z)Hn+1(z) + Fn(z)Hn+1,x (z) − (1/2)Fn,x (z)Fn,xx (z) = 0,

and hence

Fn,x (µ j )Pn−1(µ j ) = Fn(µ j )(−Hn+1,x (µ j ) + (u − µ j )Fn,x (µ j )) = 0

on �µ. Restricting x ∈ �µ temporarily to x ∈ �̃µ, where �̃µ ⊆ �µ is defined by

�̃µ = {x ∈ �µ | Fn,x (µ j (x), x) = 2iy(µ̂ j (x)) �= 0, j = 1, . . . , n}
= {x ∈ �µ | µ j (x) �∈ {Em}m=0,...,2n, j = 1, . . . , n},

one infers

Pn−1(µ j (x), x) = 0, j = 1, . . . , n, x ∈ �̃µ. (1.135)

Since Pn−1 is a polynomial of degree n − 1, (1.135) then yields

Pn−1 = 0 on C × �̃µ, (1.136)

and hence (1.33),

Hn+1(z) = (1/2)Fn,xx (z) − (u − z)Fn(z) on C × �̃µ, (1.137)
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and (1.13),

Fn,xx (z)Fn(z) − (1/2)Fn,x (z)2 − 2(u − z)Fn(z)2 = 2R2n+1(z) on C × �̃µ.

(1.138)

Differentiating (1.138) with respect to x then yields

Fn,xxx (z) − 4(u − z)Fn,x (z) − 2ux Fn(z) = 0 on C × �̃µ, (1.139)

the fundamental equation (1.12). Introducing f j , j = 1, . . . , n, on �̃µ by

Fn(z, x) =
n∑

�=0

fn−�(x)z�, (z, x) ∈ C × �̃µ,

(1.139) then yields the beginning of the basic recursion relation (1.4)

f0 = 1, f j,x = − 1
4 f j−1,xxx + u f j−1,x + 1

2ux f j−1, j = 1, . . . , n, x ∈ �̃µ.

(1.140)

Define fn+1,x by (1.140) with j = n + 1. Then

fn+1,x = −(1/4) fn,xxx + u fn,x + (1/2)ux fn

= −(1/4)Fn,xxx (0) + uFn,x (0) + (1/2)ux Fn(0) = 0 on �̃µ.

Thus,

0 = −2 fn+1,x (u) = s-KdVn(u) on �̃µ. (1.141)

To extend (1.141) to all x ∈ �µ, we next consider the case in which µ̂ j hits one
of the branch points (Em, 0). Hence, we suppose

µ j0 (x) → Em0 as x → x0 ∈ �µ

for some j0 ∈ {1, . . . , n}, m0 ∈ {0, . . . , 2n}. If one introduces

ζ j0 (x) = σ (µ j0 (x) − Em0 )1/2, σ = ±1, µ j0 (x) = Em0 + ζ j0 (x)2

for x in an open interval centered around x0, the Dubrovin equation (1.66) for µ j0

becomes

ζ j0,x (x) =
x→x0

c(σ )




2n∏
m=0
m �=m0

(Em0 − Em)




1/2

×
n∏

k=1
k �= j0

(Em0 − µk(x))−1
(
1 + O(ζ j0 (x)2)

)

for some |c(σ )| = 1, and hence (1.135) extends to �µ by continuity. Consequently,
(1.136)–(1.141) extend to �µ by continuity. �
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Remark 1.27 The explicit theta function representation (1.108) of u on �µ in
(1.129) then permits one to extend u beyond �µ as long as Dµ̂ remains nonspecial
(cf. Remark 1.22). This observation extends to all elementary symmetric functions
of the Dirichlet eigenvalues and hence to higher-order KdV invariants.

Remark 1.28 Although we formulated Theorem 1.26 in terms of Dirichlet eigen-
valuesµ j , j = 1, . . . , n only, the analogous result (and strategy of proof) works for
all β-boundary conditions (1.54) in terms of λ

β

� , � = 0, . . . , n for each
β ∈ R.

Remark 1.29 A closer look at Theorem 1.26 reveals that u is uniquely deter-
mined in an open neighborhood � of x0 by Kn and the initial condition µ̂(x0) =
(µ̂1(x0), . . . , µ̂n(x0)) ∈ Symn(Kn), or equivalently, by the Dirichlet divisorDµ̂(x0) ∈
Symn(Kn) at x = x0. Since u can be extended meromorphically to C with sin-
gularities given by second-order poles, u is actually globally uniquely deter-
mined by Dµ̂(x0). Conversely, given Kn and u in an open neighborhood � of
x0, one can construct the corresponding polynomial Fn( · , x) for x ∈ � (using the
recursion relation (1.4) to determine the homogeneous elements f̂� and (D.9)
to determine c� = c�(E), � = 0, . . . , n) and then recover the Dirichlet divisor
Dµ̂(x) for x ∈ � from the zeros of Fn( · , x) and from (1.35). This remark is
of relevance in connection with determining the isospectral set of KdV poten-
tials u in the sense that once the curve Kn is fixed, elements of the isospec-
tral class of potentials are parametrized by (nonspecial) Dirichlet divisors Dµ̂(x)

(cf. Remark 1.24).

We will end this section by providing some examples, we hope will aid in illus-
trating the general results of this section. We consider also some examples involving
singular curves and/or singular (i.e., meromorphic) algebro-geometric stationary
KdV solutions u, even though the principal results of this section were predomi-
nantly formulated for curves with nonsingular affine parts. We recall our convention
abbreviating algebro-geometric stationary solutions of some (and hence infinitely
many such) stationary KdV equations as KdV potentials.

The case of rational KdV potentials is treated first.

Example 1.30 The case of rational KdV potentials.
(i) The simplest nontrivial rational potential arises in connection with the arithmetic
genus one case, n = 1, where

u1(x) = 2

x2
, x ∈ R \ {0},

s-K̂dVm(u1) = 0, m ∈ N.
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Then,

L = − d2

dx2
+ 2

x2
, P3 = − d3

dx3
+ 3

x2

d

dx
− 3

x3
,

and the corresponding rational curve reads

F1(z, y) = y2 + z3 = 0, E0 = E1 = E2 = 0.

Furthermore,

F1(z, x) = z + 1

x2
, µ1(x) = − 1

x2
,

H2(z, x) = z2 − 1

x2
z + 1

x4
, ν�(x) = 1

2x2

(
1 + (−1)�

√
3 i
)
, � = 0, 1,

and hence one obtains for the two branches φ j , j = 1, 2, of φ

φ j (z, x) = y j − 1
x3

z + 1
x2

= − z2 − 1
x2 z + 1

x4

y j + 1
x3

, j = 1, 2,

y1 = i z3/2, y2 = −i z3/2.

(ii) The next example is the arithmetic genus two case, n = 2. Here

u2(x) = 6

x2
, x ∈ R \ {0},

s-K̂dVm(u2) = 0, m ≥ 2,

and

L = − d2

dx2
+ 6

x2
, P5 = d5

dx5
− 15

x2

d3

dx3
+ 45

x3

d2

dx2
− 45

x4

d

dx

with the rational curve

F2(z, y) = y2 + z5 = 0, Em = 0, m = 0, . . . , 4. (1.142)

Moreover,

F2(z, x) = z2 + 3

x2
z + 9

x4
, µ j (x) = 3

2x2

(− 1 + (−1) j
√

3 i
)
, j = 1, 2,

H3(z, x) = z3 − 3

x2
z2 + 36

x6
,

ν�(x) = n�

x2
, � = 0, 1, 2,

n0 = (
1 − (17 − 12

√
2)−1/3 − (17 − 12

√
2)1/3

)
,

n1 = (
1 + (17 − 12

√
2)−1/3(1 + i

√
3)/2 + (17 − 12

√
2)1/3(1 − i

√
3)/2

)
,

n2 = (
1 + (17 − 12

√
2)−1/3(1 − i

√
3)/2 + (17 − 12

√
2)1/3(1 + i

√
3)/2

)
.
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Thus,

φ j (z, x) = y j − 3
x3 z − 18

x5

z2 + 3
x2 z + 9

x4

= − z3 − 3
x2 z2 + 36

x6

y j + 3
x3 z + 18

x5

, j = 1, 2,

y1 = −i z5/2, y2 = i z5/2.

(iii) Next, we treat the arithmetic genus three case, n = 3. Here

u3(x) = 12

x2
, x ∈ R \ {0},

s-K̂dVm(u3) = 0, m ≥ 3,

and thus

L = − d2

dx2
+ 12

x2
,

P7 = − d7

dx7
+ 42

x2

d5

dx5
− 210

x3

d4

dx4
+ 315

x4

d3

dx3

+ 630

x5

d2

dx2
− 2835

x6

d

dx
+ 2835

x7

with rational curve

F3(z, y) = y2 + z7 = 0, Em = 0, m = 0, . . . , 6.

Furthermore,

F3(z, x) = z3 + 6

x2
z2 + 45

x4
z + 225

x6
,

µ j (x) = m j

x2
, j = 1, 2, 3,

m1 =
(

− 2 − 21/311
(− 151 + 75

√
5
)−1/3

+ 2−1/3
(− 151 + 75

√
5
)1/3

)
,

m2 =
(

− 2 + 2−2/311(1 + i
√

3 )
(− 151 + 75

√
5
)−1/3

− 2−4/3(1 − i
√

3 )
(− 151 + 75

√
5
)1/3

)
,

m3 =
(

− 2 + 2−2/311(1 − i
√

3 )
(− 151 + 75

√
5
)−1/3

− 2−4/3(1 + i
√

3 )
(− 151 + 75

√
5
)1/3

)
,

H4(z, x) = z4 − 6

x2
z3 − 9

x4
z2 + 135

x6
z + 2025

x8
,

ν�(x) = n�

x2
, � = 0, . . . , 3,
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n0 = 3

2
+ 1

2

(
15 + 993

(
1
2 (5083 + 225i

√
2355 )

)−1/3

+ 3
(

1
2 (5083 + 225i

√
2355 )

)1/3
)1/2

− 1

2

(
30 − 993

(
1
2 (5083 + 225i

√
2355 )

)−1/3

− 3
(

1
2 (5083 + 225i

√
2355 )

)1/3

− 54

(
5

3
+ 331

3

(
1
2 (5083 + 225i

√
2355 )

)−1/3

+ 1

3

(
1
2 (5083 + 225i

√
2355 )

)1/3
)−1/2)1/2

,

n1 = 3

2
+ 1

2

(
15 + 993

(
1
2 (5083 + 225i

√
2355 )

)−1/3

+ 3( 1
2 (5083 + 225i

√
2355 ))1/3

)1/2

+ 1

2

(
30 − 993

(
1
2 (5083 + 225i

√
2355 )

)−1/3

− 3
(

1
2 (5083 + 225i

√
2355 )

)1/3

− 54

(
5

3
+ 331

3

(
1
2 (5083 + 225i

√
2355 )

)−1/3

+ 1

3

(
1
2 (5083 + 225i

√
2355 )

)1/3
)−1/2)1/2

,

n2 = 3

2
− 1

2

(
15 + 993

(
1
2 (5083 + 225i

√
2355 )

)−1/3

+ 3
(

1
2 (5083 + 225i

√
2355 )

)1/3
)1/2

− 1

2

(
30 − 993

(
1
2 (5083 + 225i

√
2355 )

)−1/3

− 3
(

1
2 (5083 + 225i

√
2355 )

)1/3

+ 54

(
5

3
+ 331

3

(
1
2 (5083 + 225i

√
2355 )

)−1/3

+ 1

3

(
1
2 (5083 + 225i

√
2355 )

)1/3
)−1/2)1/2

,

n3 = 3

2
− 1

2

(
15 + 993

(
1
2 (5083 + 225i

√
2355 )

)−1/3

+ 3
(

1
2 (5083 + 225i

√
2355 )

)1/3
)1/2
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+ 1

2

(
30 − 993

(
1
2 (5083 + 225i

√
2355 )

)−1/3

− 3
(

1
2 (5083 + 225i

√
2355 )

)1/3

+ 54

(
5

3
+ 331

3

(
1
2 (5083 + 225i

√
2355 )

)−1/3

+ 1

3

(
1
2 (5083 + 225i

√
2355 )

)1/3
)−1/2)1/2

.

Thus,

φ j (z, x) = y j − 6
x3 z2 − 90

x5 z − 675
x7

z3 + 6
x2 z2 + 45

x4 z + 225
x6

= − z4 − 6
x2 z3 − 9

x4 z2 + 135
x6 z + 2025

x8

y j + 6
x3 z2 + 90

x5 z + 675
x7

, j = 1, 2,

y1 = −i z7/2, y2 = i z7/2.

(iv) In the general arithmetic genus n ∈ N case, the corresponding rational potential
is given by

un(x) = n(n + 1)

x2
, x ∈ R \ {0},

s-K̂dVm(un) = 0, m ≥ n,

with associated rational curve

Fn(z, y) = y2 + z2n+1 = 0, Em = 0, m = 0, . . . , 2n. (1.143)

(v) More generally, all rational (nonconstant) KdV potentials un in the arithmetic
genus n ∈ N case, vanishing at infinity, are obtained as follows. Let M ∈ N, sk ∈ N,
and xk ∈ C be pairwise distinct, k = 1, . . . ,M . Consider

un(x) =
M∑
k=1

sk(sk + 1)(x − xk)
−2, x ∈ R \ {xk}k=1,...,N (1.144)

subject to the constraints

n(n + 1) =
M∑
k=1

sk(sk + 1), (1.145)

M∑
k ′=1
k ′ �=k

sk ′ (sk ′ + 1)

(xk − xk ′ )2�+1
= 0 for � = 1, . . . , sk and k = 1, . . . ,M . (1.146)

Then u is a rational KdV potential vanishing at infinity if and only if u is of the
type (1.144) and the constraints (1.145), (1.146) hold. In particular, for fixed n, the
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constraints (1.145), (1.146) characterize the isospectral class of all rational KdV
potentials associated with the rational curve (1.143), and all KdV potentials of the
type (1.144)–(1.146) satisfy

s-K̂dVm(un) = 0, m ≥ n.

Our second example describes the n-soliton potentials of the stationary KdV
hierarchy.

Example 1.31 The case of n-soliton KdV potentials.
Let n ∈ N. Then

un(x) = −2
d2

dx2
ln(τn(x)), x ∈ R \ {y ∈ R | τn(y) = 0},

τn(x) = det(In + Cn(x)),

Cn(x) = (
c j ck(κ j + κk)

−1 exp(−(κ j + κk)x)
)
j,k=1,...,n,

c j , κ j ∈ C, j = 1, . . . , n,

s-K̂dVn(un) = 0,

with associated singular curve

Fn(z, y) = y2 + z
n∏
j=1

(
z + κ2

j

)2 = 0,

E2 j−2 = E2 j−1 = −κ2
j , j = 1, . . . , n, E2n = 0.

Nonsingular soliton potentials are obtained upon imposing the restrictions c j > 0,
κ j > 0, j = 1, . . . , n.

Finally we consider elliptic KdV potentials. By ℘( · ) = ℘( · |ω1, ω3) =
℘( · ; g2, g3), we denote the Weierstrass ℘-function with periods 2ω j , j = 1, 3,
Im(ω3/ω1) �= 0, ω2 = ω1 + ω3, invariants g2 and g3, and associated fundamental
period parallelogram " (cf. Appendix H).

Example 1.32 The case of Lamé potentials.
(i) In the genus one case, n = 1, one has

u1(x) = 2℘(x), x ∈ R, x �= 0 (mod "),

s-K̂dV1(u1) = 0,

s-K̂dV2(u1) − 1

8
g2s-K̂dV0(u1) = 0, etc.,
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and

L = − d2

dx2
+ 2℘(x), P3 = − d3

dx3
+ 3℘(x)

d

dx
+ 3

2
℘ ′(x),

with elliptic curve

F1(z, y) = y2 +
(
z3 − g2

4
z + g3

4

)
= 0,

E0 = −℘(ω1), E1 = −℘(ω2), E2 = −℘(ω3).

Moreover,

F1(z, x) = z + ℘(x), µ1(x) = −℘(x),

H2(z, x) = z2 − ℘(x)z + ℘(x)2 − g2

4
,

ν�(x) = 1

2

(
℘(x) − (−1)�(g2 − 3℘(x)2)1/2

)
, � = 0, 1.

Thus,

φ j (z, x) = y j + 1
2℘

′(x)

z + ℘(x)
= − z2 − ℘(x)z + ℘(x)2 − g2

4

y j − 1
2℘

′(x)
, j = 1, 2,

y j = (−1) j+1i
(
z3 − g2

4
z + g3

4

)1/2
, j = 1, 2.

(ii) In the genus two case, n = 2, one obtains

u2(x) = 6℘(x), x ∈ R, x �= 0 (mod "),

s-K̂dV2(u2) − 21

8
g2s-K̂dV0(u2) = 0,

s-K̂dV3(u2) − 21

8
g2s-K̂dV1(u2) − 27

8
g3s-K̂dV0(u2) = 0, etc.,

and

L = − d2

dx2
+ 6℘(x),

P5 = d5

dx5
− 15℘(x)

d3

dx3
− 45

2
℘ ′(x)

d2

dx2
+
(27

4
g2 − 45℘(x)2

) d

dx
,

with hyperelliptic curve

F2(z, y) = y2 +
(
z5 − 21

4
g2z

3 − 27

4
g3z

2 + 27

4
g2

2z + 81

4
g2g3

)

= y2 + (z2 − 3g2)(z3 − 9

4
g2z − 27

4
g3) = 0,

E0 = −(3g2)1/2, E1 = 3℘(ω3), E2 = 3℘(ω2),

E3 = 3℘(ω1), E4 = (3g2)1/2.
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Furthermore,

F2(z, x) = z2 + 3℘(x)z + 9℘(x)2 − 9

4
g2,

µ j (x) = 3

2

(− ℘(x) + (−1) j (g2 − 3℘(x)2)1/2
)
, j = 1, 2,

H3(z, x) = z3 − 3℘(x)z2 − 3g2z − 9g3 + 36℘(x)3,

ν0(x) = ℘(x) + 21/3
(
g2 + ℘(x)2

)
A(x)−1/3 + 2− 1

3 A(x)1/3,

ν1(x) = ℘(x) − 2−2/3 (1 +
√

3i)
(
g2 + ℘(x)2

)
A(x)−1/3

− 2−4/3(1 −
√

3i) A(x)1/3,

ν2(x) = ℘(x) − 2−2/3 (1 −
√

3i)
(
g2 + ℘(x)2

)
A(x)−1/3

− 2−4/3(1 +
√

3i) A(x)1/3,

where we used the abbreviation

A(x) = 9 g3 + 3 g2 ℘(x) − 34℘(x)3

+
((

9 g3 + 3 g2 ℘(x) − 34℘(x)3
)2 − 4

(
g2 + ℘(x)2

)3
)1/2

.

Thus,

φ j (z, x) = y j + 3
2℘

′(x)z + 9℘(x)℘ ′(x)

z2 + 3℘(x)z + 9℘(x)2 − 9
4g2

= − z3 − 3℘(x)z2 − 3g2z − 9g3 + 36℘(x)3

y j − 3
2℘

′(x)z − 9℘(x)℘ ′(x)
, j = 1, 2,

y j = (−1) j i
(
z5 − 21

4
g2z

3 − 27

4
g3z

2 + 27

4
g2

2z + 81

4
g2g3

)1/2
, j = 1, 2.

(iii) In the general genus n ∈ N case, the corresponding Lamé potential is given
by

un(x) = n(n + 1)℘(x), x ∈ R, x �= 0 (mod "),

s-KdVn(un) = 0
(1.147)

for a particular set of integration constants {c�}�=1,...,n ⊂ C in (1.147).
(iv) More generally, all elliptic (nonconstant) KdV potentials un in the genus n ∈ N

case are obtained as follows. Let M ∈ N, sk ∈ N, u0 ∈ C, and xk ∈ C be pairwise
distinct (mod "), k = 1, . . . ,M . Consider

un(x) = u0 +
M∑
k=1

sk(sk + 1)℘(x − xk), (1.148)

x ∈ R, x �= xk (mod "), k = 1, . . . , N
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subject to the constraints

n(n + 1) =
M∑
k=1

sk(sk + 1), (1.149)

M∑
k ′=1k ′ �=k

sk ′ (sk ′ + 1)℘(�)(xk − xk ′ ) = 0 for � = 1, . . . , sk and k = 1, . . . ,M .

(1.150)

Then u is an elliptic KdV potential if and only if u is of the type (1.148) and the
constraints (1.149), (1.150) hold. In particular, for fixed n, the constraints (1.149),
(1.150) characterize the isospectral class of all elliptic KdV potentials associated
with a curve of the form (1.30), (1.62). All KdV potentials of the type (1.148)–
(1.150) satisfy

s-KdVn(un) = 0 (1.151)

for a particular set of integration constants {c�}�=1,...,n ⊂ C in (1.151).

The rational case studied in Example 1.30 is obtained by letting ω1 and ω3 tend
to infinity in (1.147) assuming that ω3/ω1 and ω1/ω3 do not converge to a real
number. Under these circumstances,

lim
ω1,ω3→∞℘(x |ω1, ω3) = x−2.

Similarly, the soliton case described in Example 1.31 is obtained by letting ω1 tend
to infinity in (1.147), keeping ω3 fixed.

1.4 The Time-Dependent KdV Formalism

In this section we extend the algebro-geometric analysis of Section 1.3 to the
time-dependent KdV hierarchy.

For most of this section we assume the following hypothesis.

Hypothesis 1.33 Suppose that u : R
2 → C satisfies

u( · , t) ∈ C∞(R), t ∈ R, u(x, · ) ∈ C1(R), x ∈ R. (1.152)

The basic problem in the analysis of algebro-geometric solutions of the KdV
hierarchy consists in solving the time-dependent r th KdV flow with initial data a
stationary solution of the nth equation in the hierarchy. More precisely, given n ∈
N0, consider a solution u(0) of the nth stationary KdV equation s-KdVn(u(0)) = 0
associated with Kn and a given set of integration constants {c�}�=1,...,n ⊂ C. Next,
let r ∈ N0; we intend to construct a solution u of the r th KdV flow KdVr (u) = 0
with u(t0,r ) = u(0) for some t0,r ∈ R. To emphasize that the integration constants
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in the definitions of the stationary and the time-dependent KdV equations are
independent of each other, we indicate this by adding a tilde on all the time-
dependent quantities. Hence, we employ the notation P̃2r+1, F̃r , H̃r+1, K̃ β

r+1, f̃ s ,
c̃s to distinguish them from P2n+1, Fn , Hn+1, K β

n+1, f�, c� in the following. In
addition, we will follow a more elaborate notation inspired by Hirota’s τ -function
approach and indicate the individual r th KdV flow by a separate time variable
tr ∈ R.

Summing up, we are seeking a solution u of the time-dependent algebro-
geometric initial value problem

K̃dVr (u) = utr − 2 f̃ r+1,x (u) = 0, u
∣∣
tr=t0,r = u(0), (1.153)

s-KdVn(u(0)) = −2 fn+1,x (u(0)) = 0 (1.154)

for some t0,r ∈ R, n, r ∈ N0, where u = u(x, tr ) satisfies (1.152) and a fixed curve
Kn is associated with the stationary KdV solution u(0) in (1.154). In terms of Lax
pairs this amounts to solving

d

dtr
L(tr ) − [P̃2r+1(tr ), L(tr )] = 0, tr ∈ R, (1.155)

[P2n+1(t0,r ), L(t0,r )] = 0. (1.156)

In anticipating that the KdVr flows are isospectral deformations of L(t0,r ), we are
going a step further, replacing (1.156) by

[P2n+1(tr ), L(tr )] = 0, tr ∈ R. (1.157)

This then implies

−P2
2n+1(tr ) = R2n+1(L(tr )) =

2n∏
j=0

(L(tr ) − E j ), tr ∈ R. (1.158)

Here we base the explicit solution of (1.153) not directly on (1.155), (1.157), and
(1.158), but instead take the following equations as our point of departure,

utr = −(1/2)F̃r,xxx (z) + 2(u − z)F̃r,x (z) + ux F̃r (z), (1.159)

(1/2)Fn,xx (z)Fn(z) − (1/4)Fn,x (z)2 − (u − z)Fn(z)2 = R2n+1(z), (1.160)

where

Fn(z) =
n∑

�=0

fn−�z
� =

n∏
j=1

(z − µ j ), (1.161)

F̃r (z) =
r∑
s=0

f̃ r−s zs (1.162)

for fixed n, r ∈ N0. Here f�, � = 0, . . . , n, and f̃ s , s = 0, . . . , r , are defined as in
(1.5) with appropriate sets of integration constants c�, c̃s , etc.
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First we will assume the existence of a solution u of equations (1.159), (1.160)
and derive an explicit formula for u in terms of Riemann theta functions. In addi-
tion, we will show in Theorem 1.48 that (1.159), (1.160), and hence the algebro-
geometric initial value problem (1.153), (1.154) has a solution at least locally, that
is, for (x, tr ) ∈ � for some open and connected set � ⊆ R

2.
We recall from (1.79), (1.32)–(1.34), (1.35), and (1.36) that

− (1/2)Fn,x (z) = −i
n∑
j=1

y(µ̂ j )
n∏

k=1
k �= j

(z − µk)(µ j − µk)
−1,

R2n+1(z) + (1/4)Fn,x (z)2 = Fn(z)Hn+1(z),

Hn+1(z) =
n∏

�=0

(z − ν�) = (1/2)Fn,xx (z) − (u − z)Fn(z),

µ̂ j (x, tr ) = (
µ j (x, tr ),−(i/2)Fn,x (µ j (x, tr ), x, tr )

) ∈ Kn, (1.163)

j = 1, . . . , n, (x, tr ) ∈ R
2,

ν̂�(x, tr ) = (
ν�(x, tr ), (i/2)Fn,x (ν j (x, tr ), x, tr )

) ∈ Kn, (1.164)

� = 0, . . . , n, (x, tr ) ∈ R
2.

As in Section 1.3, the regularity assumptions (1.152) on u imply analogous regu-
larity assumptions on Fn , Hn+1, µ j , and ν�.

In analogy to (1.38), (1.39), and (1.41) one then considers the fundamental
meromorphic function φ( · , x, tr ) on Kn ,

φ(P, x, tr ) = iy + (1/2)Fn,x (z, x, tr )

Fn(z, x, tr )
(1.165)

= −Hn+1(z, x, tr )

iy − (1/2)Fn,x (z, x, tr )
, (1.166)

P = (z, y) ∈ Kn, (x, tr ) ∈ R
2

with divisor (φ( · , x, tr )) of φ( · , x, tr ) given by1

(φ( · , x, tr )) = Dν̂0(x,tr )ν̂(x,tr ) − DP∞µ̂(x,tr ), (1.167)

where

µ̂ = {µ̂1, . . . , µ̂n}, ν̂ = {ν̂1, . . . , ν̂n} ∈ Symn(Kn),

and the time-dependent Baker–Akhiezer functionψ( · , x, x0, tr , t0,r ) onKn\{P∞},

ψ(P, x, x0, tr , t0,r ) = exp

(∫ tr

t0,r

ds
(
F̃r (z, x0, s)φ(P, x0, s) − 1

2 F̃r,x (z, x0, s)
)

+
∫ x

x0

dx ′ φ(P, x ′, tr )
)
, (x, x0, tr , t0,r ) ∈ R

4. (1.168)

1 According to Remark 1.9, the right-hand side of (1.167) is symmetric with respect to ν̂
β

� , � = 0, . . . , n,
and hence the pair

(
ν̂
β

0 , ν̂β
)

can be replaced by any of the pairs
(
ν̂
β

� , ν̂
β,�
)
, � = 1, . . . , n.
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Moreover, in analogy to (1.33) we also introduce the polynomial

H̃r+1(z) = (1/2)F̃r,xx (z) − (u − z)F̃r (z). (1.169)

From (1.159) and (1.160) one then computes

H̃r+1,x = (1/2)F̃r,xxx − (u − z)F̃r,x − ux F̃r = −utr + (u − z)F̃r,x . (1.170)

The following lemma records basic properties of φ and � in analogy to the
stationary case discussed in Lemma 1.8.

Lemma 1.34 Assume Hypothesis 1.33 and suppose that (1.159), (1.160) hold.
Moreover, let P = (z, y) ∈ Kn \ {P∞}, (x, x0, tr , t0,r ) ∈ R

4. Then φ satisfies

φx (P) + φ(P)2 = u − z, (1.171)

φtr (P) = ∂x
(
F̃r (z)φ(P) − (1/2)F̃r,x (z)

)
(1.172)

= −F̃r (z)φ(P)2 + F̃r,x (z)φ(P) − H̃r (z), (1.173)

φ(P)φ(P∗) = Hn+1(z)

Fn(z)
, (1.174)

φ(P) + φ(P∗) = Fn,x (z)

Fn(z)
, (1.175)

φ(P) − φ(P∗) = 2iy

Fn(z)
. (1.176)

Moreover, ψ satisfies

(L(tr ) − z(P))ψ(P) = 0, (1.177)

(P2n+1(tr ) − iy(P))ψ(P) = 0, (1.178)

ψtr (P) = P̃2r+1(tr )ψ(P) (1.179)

= F̃r (z)ψx (P) − (1/2)F̃r,x (z)ψ(P). (1.180)

In addition, as long as the zeros of Fn( · , x, tr ) are all simple for (x, tr ) ∈ �,
� ⊆ R

2 open and connected, ψ( · , x, x0, tr , t0,r ) is meromorphic on Kn \ {P∞}
for (x, tr ), (x0, t0,r ) ∈ �.

Proof The proofs of (1.171), (1.177), (1.178), and (1.174)–(1.176) are analogous
to those in Lemma 1.8. To prove (1.172) one can argue as follows. By (1.159)
and (1.171),

∂tr (φx + φ2) = φtr ,x + 2φφtr
= utr = (

F̃rφ − (1/2)F̃r,x
)
xx + 2φ

(
F̃rφ − (1/2)F̃r,x

)
x ,

which implies

(∂x + 2φ)
(
φtr − (

F̃rφ − (1/2)F̃r,x
)
x

) = 0,
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and hence

φtr = (
F̃rφ − (1/2)F̃r,x

)
x + C exp

(
−2

∫ x

dx ′ φ
)
,

where C is independent of x (but may depend on P and tr ). The behavior of
φ(P, x, tr ) as the spectral parameter tends to infinity, derived from (1.167) for
fixed (x, tr ) ∈ R

2, yieldsφ(P, x, tr ) = ±i z1/2 + O(1) as z → ∞, P ∈ �±; hence,
C = 0 since φtr − (F̃rφ − 2−1 F̃r,x )x is meromorphic on Kn , and hence especially
near P∞, whileC exp

(− 2
∫ x dx ′φ

)
is meromorphic near P∞ only ifC = 0. This

proves (1.172). Equation (1.173) is then clear from (1.169) and (1.172). By (1.168),
ψ( · , x, x0, tr , t0,r ) is meromorphic onKn \ {P∞} away from the poles µ̂ j (x0, s) of
φ( · , x0, s) and µ̂k(x ′, tr ) of φ( · , x ′, tr ). That ψ( · , x, x0, tr , t0,r ) is meromorphic
on Kn \ {P∞} if Fn( · , x, tr ) has only simple zeros is a consequence of

φ(P, x ′, tr ) =
P→µ̂ j (x ′,tr )

∂x ′ ln
(
Fn(z, x ′, tr )

)+ O(1) as z → µ j (x
′, tr )

(cf. (1.52)) and from

F̃r (z, x0, s)φ(P, x0, s) =
P→µ̂ j (x0,s)

∂s ln
(
Fn(z, x0, s)

)+ O(1) as z → µ j (x0, s),

using (1.163), (1.167), and (1.181) ((1.181) in Lemma 1.35 follows from (1.172)
and (1.176), which have already been proven). This follows from (1.168) by
restricting P to a sufficiently small neighborhood U j (x0) of {µ̂ j (x0, s) ∈
Kn | (x0, s) ∈ �, s ∈ [t0,r , tr ]} such that µ̂k(x0, s) /∈ U j (x0) for all s ∈ [t0,r , tr ]
and all k ∈ {1, . . . , n} \ { j} and by simultaneously restricting P to a sufficiently
small neighborhood U j (tr ) of {µ̂ j (x ′, tr ) ∈ Kn | (x ′, tr ) ∈ �, x ′ ∈ [x0, x]} such
that µ̂k(x ′, tr ) /∈ U j (tr ) for all x ′ ∈ [x0, x] and all k ∈ {1, . . . , n} \ { j}. Finally,
(1.180) immediately follows from (1.168) and (1.172). �

The tr -dependence of Fn and Hn+1 is governed by the following result.

Lemma 1.35 Assume Hypothesis 1.33 and suppose that (1.159), (1.160) hold.
Then,

Fn,tr = Fn,x F̃r − Fn F̃r,x , (1.181)

Fn,xtr = 2(Hn+1 F̃r − Fn H̃r+1), (1.182)

Hn+1,tr = Hn+1 F̃r,x − Fn,x H̃ r+1. (1.183)

Proof By (1.172) and (1.176),

φtr (P) − φtr (P
∗) = −2iyF−2

n Fn,tr = ∂x
(
F̃r (φ(P) − φ(P∗))

)

= 2iy(Fn F̃r,x − Fn,x F̃r )F
−2
n ,
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implying (1.181). Similarly, by (1.169),

−(1/2)Fn,tr x = (1/2)(Fn F̃r,xx − F̃r Fn,xx ) = Fn H̃r+1 − F̃r Hn+1.

Finally, (1.12), (1.33), (1.170), and (1.181) yield

Hn+1,tr = (1/2)Fn,tr xx − (u − z)Fn,tr − utr Fn

= −Fn,x H̃ r+1 − Fn H̃r+1,x + F̃r,x Hn+1 + (u − z)Fn F̃r,x − utr Fn

= −Fn,x H̃ r+1 + F̃r,x Hn+1

and hence (1.183). �

Next we record the remaining tr -dependent analogs of Lemma 1.8.

Lemma 1.36 Assume Hypothesis 1.33 and suppose that (1.159), (1.160) hold.
Moreover, let P = (z, y) ∈ Kn \ {P∞} and (x, x0, t, t0) ∈ R

4. Then,

ψ(P, x, x0, tr , t0,r ) =
(

Fn(z, x, tr )

Fn(z, x0, t0,r )

)1/2

(1.184)

× exp

(
iy
∫ tr

t0

ds F̃r (z, x0, s)Fn(z, x0, s)
−1 + iy

∫ x

x0

dx ′ Fn(z, x ′, tr )−1

)
,

ψ(P, x, x0, tr , t0,r )ψ(P∗, x, x0, tr , t0,r ) = Fn(z, x, tr )

Fn(z, x0, t0,r )
, (1.185)

ψx (P, x, x0, tr , t0,r )ψx (P∗, x, x0, tr , t0,r ) = Hn+1(z, x, tr )

Fn(z, x0, t0,r )
, (1.186)

ψ(P, x, x0, tr , t0,r )ψx (P∗, x, x0, tr , t0,r )

+ ψ(P∗, x, x0, tr , t0,r )ψx (P, x, x0, tr , t0,r ) = Fn,x (z, x, tr )

Fn,x (z, x0.t0,r )
, (1.187)

W (ψ(P, · , x0, tr , t0,r ), ψ(P∗, · , x0, tr , t0,r )) = − 2iy

Fn(z, x0.t0,r )
. (1.188)

Proof Equation (1.184) follows from (1.165), (1.168), and (1.181). Combining
(1.168), (1.175), and (1.181) yields

ψ(P, x, x0, tr , t0,r )ψ(P∗, x, x0, tr , t0,r )

= exp

(∫ tr

t0,r

ds Fn,s(z, x0, s)Fn(z, x0, s)
−1

+
∫ x

x0

dx ′ Fn,x ′ (z, x ′, tr )Fn(z, x ′, tr )−1

)

= (Fn(z, x0, tr )/Fn(z, x0, t0,r ))(Fn(z, x, tr )/Fn(z, x0, tr ))

= Fn(z, x, tr )/Fn(z, x0, t0,r ),
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proving (1.185). Equations (1.174), (1.185) and ψx = φψ imply

ψx (P, x, x0, tr , t0,r )ψx (P∗, x, x0, tr , t0,r )

= (Hn+1(z, x, tr )/Fn(z, x, tr ))(Fn(z, x, tr )/Fn(z, x0, t0,r ))

= Hn+1(z, x, tr )/Fn(z, x0, t0,r ).

This proves (1.186). Equations (1.187) and (1.188) follow from (1.168), (1.175),
and (1.176). �

Turning to the tr -dependent analog of (1.55)–(1.61) we start by introducing

K β

n+1(z) = Hn+1(z) + βFn,x (z) + β2Fn(z) =
n∏

�=0

(
z − λ

β

�

)
, β ∈ R, (1.189)

with

Hn+1(z) = K 0
n+1(z), ν� = λ0

�, � = 0, . . . , n.

One then verifies in analogy to (1.57)–(1.61) that

φ(P) + β = iy + 1
2 Fn,x (z) + βFn(z)

Fn(z)

= −K β

n+1(z)

iy − (1/2)Fn,x (z) − βFn(z)
,

R2n+1(z) + (
(1/2)Fn,x (z) + βFn(z)

)2 = Fn(z)K β

n+1(z),

(φ(P) + β)(φ(P∗) + β) = K β

n+1(z)

Fn(z)
,

(ψx (P, x, x0, tr , t0,r ) + βψ(P, x, x0, tr , t0,r ))

× (ψx (P∗, x, x0, tr , t0,r ) + βψ(P∗, x, x0, tr , t0,r )) = K β

n+1(z, x, tr )

Fn(z, x0, t0,r )
,

(φ + β) = D
λ̂
β

0 λ̂
β − DP∞µ̂

with

λ̂
β

� (x, tr ) = (
λ
β

� (x, tr ), (i/2)Fn,x
(
λ
β

� (x, tr ), x, tr
)+ iβFn

(
λ
β

� (x, tr ), x, tr
))
,

� = 0, . . . , n. (1.190)

Equation (1.189) and Lemma 1.34 then yield

K β

n+1,tr
= K β

n+1

(
F̃r,x + 2β F̃r ) − (Fn,x + 2βFn)K̃ β

r+1. (1.191)

Before turning to the analog of Dubrovin equations in the time-dependent setting,
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we recall that the affine part of Kn is nonsingular if (1.62) holds. Moreover, as in
Section 1.3, we will always assume the eigenvalue ordering (1.63) in the special
case in which {Em}m=0,...,2n ⊂ R, that is,

Em < Em+1 for m = 0, 1, . . . , 2n − 1. (1.192)

In particular, if u( · , tr ) ∈ C∞(R) ∩ L∞(R) is real-valued, tr ∈ R, then again
{µ j } j=1,...,n ⊂ R and {λβ

� }�=0,...,n ⊂ R and hence we will also always assume the
ordering

µ j (x, tr ) < µ j+1(x, tr ) for j = 1, . . . , n − 1, (x, tr ) ∈ R
2, (1.193)

λ
β

� (x, tr ) < λ
β

�+1(x, tr ) for � = 0, . . . , n − 1, (x, tr ) ∈ R
2 (1.194)

in this case.
The stationary Dubrovin equations in Lemmas 1.10 and 1.11 have analogs for

each KdVr flow (indexed by the parameter tr ), which govern the dynamics of
µ j and λ

β

� with respect to variations of x and tr . In this context the stationary
case simply corresponds to the special case r = 0. We first provide the result in
connection with Dirichlet boundary conditions (where β = ∞) and then turn to
the general boundary conditions (1.54) parametrized by β ∈ R.

Lemma 1.37 (The Dubrovin Equations)
(i) Assume Hypothesis 1.33 and (1.159), (1.160) hold on an open and connected
set �̃µ ⊆ R

2. Moreover, suppose that the zeros µ j , j = 1, . . . , n, of Fn( · ) remain
distinct on �̃µ. Then {µ̂ j } j=1,...,n, defined by (1.163), satisfies the following first-
order system of differential equations on �̃µ

µ j,x = −2iy(µ̂ j )
n∏

k=1
k �= j

(µ j − µk)
−1, (1.195)

µ j,tr = −2i F̃r (µ j )y(µ̂ j )
n∏

k=1
k �= j

(µ j − µk)
−1, j = 1, . . . , n. (1.196)

Next, assume the affine part of Kn to be nonsingular and introduce the initial
condition

{µ̂ j (x0, t0,r )} j=1,...,n ⊂ Kn, (1.197)

for some (x0, t0,r ) ∈ R
2, where µ j (x0, t0,r ), j = 1, . . . , n, are assumed to be dis-

tinct. Then there exists an open and connected set �µ ⊆ R
2, with (x0, t0,r ) ∈ �µ,
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such that the initial value problem (1.195)–(1.197) has a unique solution
{µ̂ j } j=1,...,n ⊂ Kn satisfying

µ̂ j ∈ C∞(�µ,Kn), j = 1, . . . , n, (1.198)

and µ j , j = 1, . . . , n, remain distinct on �µ.
(i i) Suppose in addition to Hypothesis 1.33 and (1.159), (1.160) that u is real-
valued and bounded and that the affine part of Kn is nonsingular. Moreover,
assume the eigenvalue orderings (1.192), (1.193). Then {µ̂ j } j=1,...,n, withµ j (x, tr ),
j = 1, . . . , n, the Dirichlet eigenvalues of − d2

dx2 + u( · , tr ) corresponding to a
Dirichlet boundary condition at x ∈ R (i.e., the eigenvalues of H D

x (tr )), satisfies
(1.196) on R

2. Furthermore, given initial data satisfying µ j (x0, t0,r ) = µ
(0)
j (x0) ∈

[E2 j−1, E2 j ], j = 1, . . . n, then

µ j (x, tr ) ∈ [E2 j−1, E2 j ], j = 1, . . . n, (x, tr ) ∈ R
2.

In particular, µ̂ j (x, tr ) changes sheets whenever it hits E2 j−1 or E2 j , and its
projection µ j (x, tr ) remains trapped in [E2 j−1, E2 j ] for all j = 1, . . . , n and
(x, tr ) ∈ R

2.

Proof Since F̃0 = 1, the proof of (1.195) is identical to that in Lemma 1.10 in
the stationary case. Taking z = µ j in (1.181) and observing (1.161) and (1.163)
immediately yield

Fn,tr (µ j ) = −µ j,tr

n∏
k=1
k �= j

(µ j − µk) = Fn,x (µ j )F̃r (µ j ) = 2iy(µ̂ j )F̃r (µ j )

and hence (1.196). Similarly, the argument proving Lemma 1.10 (ii) applies to the
present time-dependent context line by line. For the proof of (1.198), one invokes
again the charts (B.3)–(B.6) and (B.12)–(B.15). As in the stationary case, the only
nontrivial issue to check is the case in which µ̂ j hits one of the branch points
(Em, 0) ∈ B(Kn), and hence the right-hand sides of (1.195) and (1.196) vanish.
We suppose therefore that

µ j0 (x, tr ) → Em0 as (x, tr ) → (x0, t0,r ) ∈ �µ

for some j0 ∈ {1, . . . , n}, m0 ∈ {0, . . . , 2n}. Introducing

ζ j0 (x, tr ) = σ (µ j0 (x, tr ) − Em0 )1/2, σ = ±1,

µ j0 (x, tr ) = Em0 + ζ j0 (x, tr )
2

for (x, tr ) in a sufficiently small neighborhood of (x0, t0,r ), the Dubrovin
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equations (1.195), (1.196) for µj0 become

ζ j0,x (x, tr ) =
(x,tr )→(x0,t0,r )

c(σ )




2n∏
m=0
m �=m0

(Em0 − Em)




1/2

×




n∏
k=1
k �= j0

(
Em0 − µk(x, tr )

)−1


(1 + O(ζ j0 (x, tr )

2)
)
,

ζ j0,tr (x, tr ) =
(x,tr )→(x0,t0,r )

c(σ )F̃r (Em0 , x0, t0,r )




2n∏
m=0
m �=m0

(Em0 − Em)




1/2

×




n∏
k=1
k �= j0

(
Em0 − µk(x, tr )

)−1


(1 + O(ζ j0 (x, tr )

2)
)

for some |c(σ )| = 1, and one concludes (1.198). �

For the general β boundary conditions (cf. (1.54)), we record the following
result.

Lemma 1.38 Let β ∈ R.
(i)AssumeHypothesis 1.33 and (1.159), (1.160) hold on an open and connected set
�̃λ ⊆ R

2. Moreover, suppose that the zeros λβ

� , � = 0, . . . , n, of K β

n+1( · ) remain

distinct on �̃λ. Then {λ̂β

� }�=0,...,n, defined by (1.190), satisfies the following first-
order system of differential equations on �̃λ

λ
β

�,x = −2i
(
β2 − u + λ

β

�

)
y
(
λ̂
β

�

) n∏
m=0
m �=�

(
λ
β

� − λβ
m

)−1
, (1.199)

λ
β

�,tr
= −2i K̃ β

r+1

(
λ
β

�

)
y
(
λ̂
β

�

) n∏
m=0
m �=�

(
λ
β

� − λβ
m

)−1
, � = 0, . . . , n. (1.200)

Next, assume the affine part of Kn to be nonsingular and introduce the initial
condition

{
λ̂
β

� (x0, t0,r )
}
�=0,...,n ⊂ Kn (1.201)

for some (x0, t0,r ) ∈ R
2, where λ

β

� (x0, t0,r ), � = 0, . . . , n, are assumed to be dis-
tinct. Then there exists an open and connected set �λ ⊆ R

2, with (x0, t0,r )
∈ �λ, such that the initial value problem (1.199)–(1.201) has a unique solution
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{λ̂β

� }�=0,...,n ⊂ Kn satisfying

λ̂
β

� ∈ C∞(�λ,Kn), � = 0, . . . , n, (1.202)

and λ
β

� , � = 0, . . . , n remain distinct on �λ.
(i i) Suppose in addition to Hypothesis 1.33 and (1.159), (1.160) that u is real-
valued and bounded and that the affine part of Kn is nonsingular. Moreover,
assume the eigenvalue orderings (1.192), (1.194). Then {λ̂β

� }�=0,...,n, with λ
β

� (x, tr ),
� = 0, . . . , n, the eigenvalues of Hβ

x (tr ), satisfies (1.200) on R
2. Furthermore,

given initial data satisfying λ0(x0, t0,r ) ≤ E0 and λ�(x0, t0,r ) ∈ [E2�−1, E2�], � =
1, . . . n, then

λ
β

0 (x, tr ) ≤ E0, λ
β

� (x, tr ) ∈ [E2�−1, E2�], � = 1, . . . n, (x, tr ) ∈ R
2.

In particular, λ̂β

� (x, tr ) changes sheets whenever it hits E2�−1 or E2�, and its projec-
tion λβ

� (x, tr ) remains trapped in [E2�−1, E2�] for all � = 1, . . . , n and (x, tr ) ∈ R
2

(and similarly for λ̂β

0 (x, tr )).

Proof Again the proofs of (1.199), (1.202) and part (ii) parallel those of Lemmas
1.10 and 1.11 line by line. Inserting (1.189) into (1.191), taking z = λ

β

� (x, tr ), and
applying (1.190) yield (1.200). �

In a fashion analogous to (1.80)–(1.82), one can analyze the behavior ofλβ

� (x, tr )
as a function of the boundary condition parameter β ∈ R. In fact, (1.189) yields

∂βK
β

n+1 = −Fn,x + 2βFn, (1.203)

and hence

∂βK
β

n+1(z)
∣∣
z=λ

β

�

= −(∂βλβ

�

) n∏
m=0
m �=�

(
λ
β

� − λβ
m

) = −Fn,x
(
λ
β

�

)+ 2βFn
(
λ
β

�

)

= −2iy
(
λ̂
β

�

)
(1.204)

by (1.190). As in Lemma 1.15 this implies the following result for the β-variation
of the eigenvalues λ

β

� (x, tr ).

Lemma 1.39 Let (x, tr , β) ∈ � × U , where � ⊆ R
2 is open and connected and

U ⊆ R is an open interval. AssumeHypothesis 1.33 and (1.159), (1.160) hold on�.
Moreover, suppose that the zeros λβ

� (x, tr ), � = 0, . . . , n of K β

n+1( · , x, tr ) remain
distinct for (x, tr , β) ∈ � × U . Then {λ̂β

� }�=0,...,n, defined by (1.190), satisfies the
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following first-order system of differential equations on �

∂βλ
β

� = 2iy
(
λ̂
β

�

) n∏
m=0
m �=�

(
λ
β

� − λβ
m

)−1
, � = 0, . . . , n.

Proof Combine (1.203) and (1.204). �

Since the stationary trace formulas for KdV invariants in terms of symmet-
ric functions of µ j and λ

β

� in Lemmas 1.16 and 1.17 extend line by line to the
corresponding time-dependent setting, we next record their tr -dependent analogs
without proof.

Lemma 1.40 Assume Hypothesis 1.33 and suppose that (1.159), (1.160) hold.
Then,

u =
2n∑
m=0

Em − 2
n∑
j=1

µ j ,

u2 − (1/2)uxx =
2n∑
m=0

E2
m − 2

n∑
j=1

µ2
j , etc.

Lemma 1.41 Let β ∈ R. Assume Hypothesis 1.33 and suppose that (1.159),
(1.160) hold. Then,

2β2 − u =
2n∑
m=0

Em − 2
n∑

�=0

λ
β

� ,

(1/2)uxx − u(x, tr )
2 + 2βux + 4β2u − 2β4 =

2n∑
m=0

E2
m − 2

n∑
�=0

(
λ
β

�

)2
, etc.

Remark 1.42 We emphasize that instead of taking (1.159) and (1.160) as our
starting point for solving (1.153), and subsequently deriving the first-order dif-
ferential system (1.195), (1.196), one could have started directly with the system
(1.195), (1.196) and derived (1.159) and (1.160) as well as the remaining facts of
this section using the time-dependent trace formula for u in Lemma 1.40. This
algebro-geometric initial value problem approach will be explicitly carried out in
Theorem 1.48.

Clearly, Lemma 1.18 extends to the present time-dependent setting. We omit
the corresponding details.

We also record the asymptotic properties of φ (whose proof is identical to that
in Lemma 1.19).
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Lemma 1.43 Assume Hypothesis 1.33 and suppose that (1.159), (1.160) hold.
Moreover, let P = (z, y) ∈ Kn \ {P∞}. Then, as P → P∞,

φ(P) =
ζ→0

iζ−1 − (i/2)uζ + O(ζ 2), ζ = σ/z1/2, σ = ±1.

As in Section 1.3 we continue with the theta function representation of φ, ψ ,
and u, assuming the affine part of Kn to be nonsingular. We start by introducing
some of the necessary quantities.

Let ω(2)
P∞,2q be a normalized differential of the second kind with a unique pole

at P∞ with principal part ζ−2q−2dζ near P∞ (cf. (A.20), (A.21), and (A.22)), and
define

�̃
(2)
P∞,2r =

r∑
q=0

(2q + 1)c̃r−qω
(2)
P∞,2q , c̃0 = 1, (1.205)

where c̃q are the constants introduced in the definition of F̃r . Thus, one infers as
in (1.98)–(1.100),

∫
a j

�̃
(2)
P∞,2r = 0, j = 1, . . . , n, (1.206)

∫ P

Q0

�̃
(2)
P∞,2r =

ζ→0
−

r∑
q=0

c̃r−qζ−2q−1 + O(ζ ) as P → P∞, (1.207)

choosing Q0 to be one of the branch points. Moreover, define the vector of
b-periods of �̃(2)

P∞,2r/(2π i) by

Ũ
(2)
2r = (

Ũ (2)
2r,1, . . . , Ũ

(2)
2r,n

)
, Ũ (2)

2r, j = 1

2π i

∫
b j

�̃
(2)
P∞,2r , j = 1, . . . , n. (1.208)

By (B.33) one obtains

Ũ (2)
2r, j = −2

r∑
q=0

c̃r−q
n∑

k=1

c j (k)ĉk−n+q (E), j = 1, . . . , n (1.209)

with ĉk(E) defined in (B.32). We also recall the definition of ω
(3)
P∞,λ̂β (x,tr )

and its
properties in (1.93)–(1.97) with λ̂β(x) replaced by λ̂β(x, tr ), etc.

Recalling the abbreviation (1.103) and our choice of base point Q0 = (Em0 , 0),
we can now state one of the principal results of this section.

Theorem 1.44 Suppose Hypothesis 1.33 and (1.159), (1.160) hold on �, and
assume the affine part ofKn to be nonsingular. In addition, let P ∈ Kn \ {P∞} and
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(x, tr ), (x0, t0,r ) ∈ �, where � ⊆ R
2 is open and connected. Moreover, suppose

that Dµ̂(x,t), or equivalently, Dλ̂
β

(x,t) is nonspecial for (x, tr ) ∈ �. Then,1

φ(P, x, tr ) = −β + i
θ (z(P∞, µ̂(x, tr )))θ (z(P, λ̂

β
(x, tr )))

θ (z(P∞, λ̂
β
(x, tr )))θ (z(P, µ̂(x, tr )))

(1.210)

× exp

(
−
∫ P

Q0

ω
(3)

P∞,λ̂
β

0 (x,tr )
+ (1/2) ln

(
Em0 − λ

β

0 (x, tr )
))

and2

ψ(P, x, x0, tr , t0,r ) = θ (z(P∞, µ̂(x0, t0,r )))θ (z(P, µ̂(x, tr )))

θ (z(P∞, µ̂(x, tr )))θ (z(P, µ̂(x0, t0,r )))
(1.211)

× exp

(
− i(x − x0)

∫ P

Q0

ω
(2)
P∞,0 − i(tr − t0,r )

∫ P

Q0

�̃
(2)
P∞,2r

)

with the linearizing property of the Abel map

αQ0
(Dµ̂(x,tr )) = αQ0

(Dµ̂(x0,t0,r )) + iU (2)
0 (x − x0)

+ iŨ
(2)
2r (tr − t0,r ), (1.212)

αQ0
(D

λ̂
β

0 (x,tr )λ̂
β

(x,tr )
) = αQ0

(D
λ̂
β

0 (x0,t0,r )λ̂
β

(x0,t0,r )
) + iU (2)

0 (x − x0)

+ iŨ
(2)
2r (tr − t0,r ). (1.213)

The Its–Matveev formula for u finally reads

u(x, tr ) = E0 +
n∑
j=1

(E2 j−1 + E2 j − 2λ j )

− 2∂2
x ln

(
θ (�Q0

− AQ0
(P∞) + αQ0

(Dµ̂(x,tr )))
)

(1.214)

= E0 +
n∑
j=1

(E2 j−1 + E2 j − 2λ j )

− 2∂2
x ln

(
θ (�Q0

+ AQ0
(λ̂β

0 (x, tr )) + αQ0
(D

λ̂
β

(x,tr )
))
)
. (1.215)

Proof The discussion with respect to the spatial variation of φ and ψ in Theorem
1.44 is identical to that of Theorem 1.20. Moreover, the proof of (1.210) carries
over without any changes. The behavior of ψ , however, requires a more refined

1 According to Remark 1.9, the right-hand side of (1.210) is symmetric with respect to λ̂
β

� , � = 0, . . . , n;
hence, the pair

(
λ̂
β

0 , λ̂
β)

can be replaced by any of the pairs
(
λ̂
β

� , λ̂
β,�)

, � = 1, . . . , n.
2 To avoid multi-valued expressions in formulas such as (1.210), (1.211), etc., we agree always to

choose the same path of integration connecting Q0 and P and refer to Remark A.28 for additional
tacitly assumed conventions.
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treatment since we have an extra time-dependent term in the exponential. Let
ψ be defined as in (1.168) and denote the right-hand side of (1.211) by ψ̃ . We
temporarily assume

µ j (x, tr ) �= µ j ′ (x, tr ) for j �= j ′ and (x, tr ) ∈ �̃ (1.216)

for appropriate �̃ ⊆ �. In order to prove that ψ = ψ̃ , one first observes that
(1.163), (1.165), (1.195), and (1.196) imply (cf. (1.111))

φ(P, x ′, tr ) =
P→µ̂ j (x ′,tr )

∂x ′ ln(z − µ j (x
′, tr )) + O(1),

F̃r (z, x0, s)φ(P, x0, s) =
P→µ̂ j (x0,s)

∂s ln(z − µ j (x0, s)) + O(1).

Together with (1.168) this yields

ψ(P, x, x0, tr , t0,r )

=




(z − µ j (x, tr ))O(1) as P → µ̂ j (x, tr ) �= µ̂ j (x0, t0,r ),

O(1) as P → µ̂ j (x, tr ) = µ̂ j (x0, t0,r ),

(z − µ j (x0, t0,r ))−1O(1) as P → µ̂ j (x0, t0,r ) �= µ̂ j (x, tr ),

(1.217)

P = (z, y) ∈ Kn, (x, tr ), (x0, t0,r ) ∈ �̃,

where O(1) �= 0 in (1.217). Consequently, all zeros and poles of ψ and ψ̃ on
Kn \ {P∞} are simple and coincide. To apply the Riemann–Roch theorem (Theo-
rem A.13; cf. Lemma B.2), as in the stationary context in Theorem 1.20, it remains
to identify the essential singularity of ψ and ψ̃ at P∞. For this purpose we first
observe that

∫ tr

t0,r

ds
(
F̃r (z, x0, s)φ(P, x0, s) − (1/2)F̃r,x (z, x0, s)

)

=
r∑

q=0

c̃r−q
∫ tr

t0,r

ds
(
F̂q (z, x0, s)φ(P, x0, s) − (1/2)F̂q,x (z, x0, s)

)
,

and hence it suffices to treat the homogeneous case in which c̃0 = 1, c̃q = 0 for
q = 1, . . . , r . Invoking (1.181) then yields from (1.167) and (1.92)

∫ tr

t0,r

ds
(
F̃r (z, x0, s)φ(P, x0, s) − (1/2)F̃r,x (z, x0, s)

)

=
∫ tr

t0,r

ds
(
F̃r (z, x0, s)iyFn(z, x0, s)

−1 + (1/2)∂s ln(Fn(z, x0, s))
)

=
ζ→0

iy
∫ tr

t0,r

ds F̃r (z, x0, s)Fn(z, x0, s)
−1 + O(ζ 2), ζ = σ/

√
z.
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Comparing (1.11) (in the homogeneous case) and (1.92), one obtains

iy F̃r (z, x0, s)Fn(z, x0, s)
−1 =

ζ→0
iζ−2r−1 + O(ζ ),

and hence (cf. (1.113))
∫ x

x0

dx ′φ(P, x ′, tr ) +
∫ tr

t0,r

ds
(
F̃r (z, x0, s)φ(P, x0, s) − (1/2)F̃r,x (z, x0, s)

)

=
ζ→0

iζ−1(x − x0) + iζ−2r−1(tr − t0,r ) + O(ζ ). (1.218)

A comparison of (1.168), (1.207) (recalling c̃0 = 1, c̃q = 0 for q = 1, . . . , r ), the
expression (1.211) for ψ̃ , and (1.218) then identifies the tr -dependent behavior of
the exponentials of ψ and ψ̃ up to order O(ζ ) near P∞. This completes the proof
of (1.211) subject to (1.216) and possibly the normalization of ψ . The latter is
determined by (1.185) as in the stationary context (1.114).

Equations (1.196), the second part of (1.11) (with cn− j replaced by c̃r−q ), and
(F.5) as well as Langrange’s interpolation theorem, Theorem E.1, yield

∂trαQ0
(Dµ̂) =

n∑
j=1

µ j,tr

n∑
k=1

c(k)
µk−1
j

y(µ̂ j )

= − 2i
n∑

j,k=1

c(k)
µk−1
j∏n

�=1
��= j

(µ j − µ�)
F̃r (µ j )

= − 2i
n∑

j,k=1

c(k)
µk−1
j∏n

�=1
��= j

(µ j − µ�)

r∑
q=0

c̃r−q
q∑

p=(q−n)∨n
ĉ p(E)#( j)

q−p(µ)

= − 2i
n∑

k=1

c(k)
r∑

q=0

q∑
p=(q−n)∨0

c̃r−q ĉ p(E)
n∑
j=1

µk−1
j∏n

�=1
��= j

(µ j − µ�)
#

( j)
q−p(µ)

= − 2i
n∑

k=1

r∑
q=0

c(k) c̃r−q ĉk−n+q (E) = −Ũ (2)
2r , r ∈ N, (1.219)

using (B.33) and hence (1.212) subject to (1.216). (This computation is equivalent
to that in (F.87).) The extension of these results from �̃ to � then follows by
continuity of αP0

and the hypothesis of Dµ̂ being nonspecial on �. Finally, (1.213)
immediately follows from (1.212) and the linear equivalence D

λ̂
β

0 λ̂
β ∼ DP∞µ̂. �

Combining (1.212) and (1.214) shows the remarkable linearity of the theta
function with respect to x and tr in the Its–Matveev formula for u. In fact, one can
rewrite (1.214) as

u(x, tr ) = 0 − 2∂2
x ln(θ (A + Bx + Cr tr )),
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where

A = �Q0
− AQ0

(P∞) − iU (2)
0 x0 − iŨ

(2)
2r t0,r + αQ0

(Dµ̂(x0,t0)),

B = iU (2)
0 , Cr = iŨ

(2)
2r ,

0 = E0 +
n∑
j=1

(E2 j−1 + E2 j − 2λ j );

hence, the constants 0 ∈ C and B,Cr ∈ C
n are uniquely determined by Kn and

r , and the constant A ∈ C
n is in one-to-one correspondence with the Dirichlet

data µ̂(x0, t0,r ) = (µ̂1(x0, t0,r ), . . . , µ̂n(x0, t0,r )) ∈ Symn(Kn) at the point (x0, t0,r )
as long as the divisor Dµ̂(x0,t0,r ) is assumed to be nonspecial.

Remark 1.45 Remark 1.21 applies to the current time-dependent setting, that is,
if Dµ̂ is nonspecial and P∞ /∈ {µ̂1, . . . , µ̂n}, then D

λ̂
β is nonspecial by

Theorem A.31.

Remark 1.46 The explicit representation (1.211) for ψ again complements
Lemma 1.34 and shows that ψ stays meromorphic on Kn \ {P∞} as long as Dµ̂ is
nonspecial (assuming the affine part of Kn to be nonsingular).

Remark1.47 The linearization property (1.212) (and (1.106)) can also be obtained
via an alternative procedure that we briefly sketch. One introduces the meromorphic
differential

�(x, x0, tr , t0,r ) = ∂z ln(ψ( · , x, x0, tr , t0,r ))dz

and hence infers from the representation (1.211)

�(x, x0, tr , t0,r ) = −i(x − x0)ω(2)
P∞,0 − (tr − t0,r )�̃

(2)
P∞,2r

−
n∑
j=1

ω
(3)
µ̂ j (x0,t0,r ),µ̂ j (x,tr )

+ ω.

Here, ω denotes a holomorphic differential on Kn , that is,

ω =
n∑
j=1

c jω j

for some c j ∈ C, j = 1, . . . , n. Since ψ( · , x, x0, tr , t0,r ) is single-valued on Kn ,
all a- and b-periods of � are integer multiples of 2π i ; hence,

2π imk =
∫
ak

�(x, x0, tr , t0,r ) =
∫
ak

ω = ck, j = 1, . . . , n

for some mk ∈ Z identifies ck as integer multiples of 2π i . Similarly, for some
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nk ∈ Z,

2π ink =
∫
bk

�(x, x0, tr , t0,r )

= − i(x − x0)
∫
bk

ω
(2)
P∞,0 − i(tr − t0,r )

∫
bk

�̃
(2)
P∞,2r

−
n∑
j=1

∫
bk

ω
(3)
µ̂ j (x0,t0,r ),µ̂ j (x,tr )

+ 2π i
n∑
j=1

m j

∫
bk

ω j

= 2πU (2)
0,k(x − x0) + 2πŨ (2)

2r,k(tr − t0,r ) (1.220)

− 2π i
n∑
j=1

Aµ̂ j (x,tr ),k(µ̂ j (x0, t0,r )) + 2π i
n∑
j=1

m jτ j,k, k = 1, . . . , n,

using (1.101), (1.208), (A.14), and (A.26). By symmetry of τ (cf. (A.15)), (1.220)
is equivalent to

αQ0
(Dµ̂(x,tr )) = αQ0

(Dµ̂(x0,t0,r )) + iU (2)
0 (x − x0) + iŨ

(2)
2r (tr − t0,r ). (1.221)

For a systematic approach to the linearization property (1.221) along the lines used
in (1.219), we refer to Appendix F.

Similarly, studying the meromorphic differential

�β(x, x0, tr , t0,r ) = ∂z ln
(
ψβ( · , x, x0, tr , t0,r )

)
dz,

where

ψβ(P, x, x0, tr , t0,r )

= ψx (P, x, x0, tr , t0,r ) + βψ(P, x, x0, tr , t0,r )

(ψx (P, x, x0, tr , t0,r ) + βψ(P, x, x0, tr , t0,r ))|x=x0,tr=t0,r

= θ (z(P∞, λ̂
β
(x0, t0,r )))θ (z(P, λ̂

β
(x, tr )))

θ (z(P∞, λ̂
β
(x, tr )))θ (z(P, λ̂

β
(x0, t0,r )))

exp

(
− i(x − x0)

∫ P

Q0

ω
(2)
P∞,0

− i(tr − t0,r )
∫ P

Q0

�̃
(2)
P∞,2r −

∫ P

Q0

ω
(3)

λ̂
β

0 (x0,t0,r ),λ̂
β

0 (x,tr )

)
,

using (1.210) and (1.211), then proves (1.213).
The solution u in the Its–Matveev formula (1.214) is complex-valued in general.

To obtain real-valued solutions, one argues as in Remark 1.24. In particular, the
b-periods Ũ (2)

2r,k , k = 1, . . . , n of the second-order differential �̃(2)
P∞,2r also become

purely imaginary, choosing c̃s ∈ R, s = 1, . . . , r . Moreover, the initial position of
µ̂ j (x0, t0,r ) ∈ Kn must be chosen in real position with its projections lying in the
spectral gaps of H , that is,

µ j (x0, t0,r ) ∈ [E2 j−1, E2 j ], j = 1, . . . , n
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in order to render αQ0
(Dµ̂(x0,t0,r )) purely imaginary (mod Z

n) as well and
u ∈ L∞(R2). The rest is completely analogous to the stationary discussion in
Lemma 1.23 and Remark 1.24; hence, real-valued and smooth solutions u in
(1.214), in general, will be quasi-periodic with respect to x ∈ R and tr ∈ R.

Up to this point we assumed Hypothesis 1.33 together with the basic equa-
tions (1.159) and (1.160). Next we will show that solvability of the Dubrovin
equations (1.195) and (1.196) on �µ ⊆ R

2 in fact implies equations (1.159) and
(1.160) on �µ. In complete analogy to our discussion in Section 3.3 (cf. Remark
1.29), this amounts to solving the time-dependent algebro-geometric initial value
problem (1.153), (1.154) on �µ. In this context we recall the definition of F̃r (µ j )
in terms of µ1, . . . , µn , introduced1 in (F.16), (F.19),

F̃r (µ j ) =
r∧n∑
k=0

d̃r,k(E)#( j)
k (µ), r ∈ N0, c̃0 = 1, (1.222)

d̃r,k(E) =
r−k∑
s=0

c̃r−k−s ĉs(E), k = 0, . . . , r ∧ n, (1.223)

in terms of a given set of integration constants {c̃1, . . . , c̃r } ⊂ C.

Theorem 1.48 Fix n ∈ N and assume the affine part of Kn to be nonsingular.
Suppose that {µ̂ j } j=1,...,n satisfies the Dubrovin equations (1.195), (1.196) on an
open and connected set �µ ⊆ R

2 with F̃r (µ j ) in (1.196) expressed in terms of
µk , k = 1, . . . , n, by (1.222) and (1.223). Moreover, assume that µ j , = 1, . . . , n
remain distinct on �µ. Then u ∈ C∞(�µ), defined by

u = E0 +
n∑
j=1

(
E2 j−1 + E2 j − 2µ j

)
, (1.224)

satisfies the rth KdV equation (1.159), that is,

K̃dVr (u) = 0 on �µ (1.225)

with initial values satisfying the nth stationary KdV equation (1.160).

Proof Given the solutions µ̂ j = (µ j , y(µ̂ j )) ∈ C∞(�µ,Kn), j = 1, . . . , n of
(1.195), (1.196), we define the polynomials Fn and Hn+1 as in the stationary
case (cf. (1.131), (1.133)) by

Fn(z) =
n∏
j=1

(z − µ j ) on C × �µ (1.226)

and

R2n+1(z) + (1/4)Fn,x (z)2 = Fn(z)Hn+1(z) on C × �µ.

1 m ∧ n = min(m, n).
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The proof that Hn+1 satisfies (1.137),

Hn+1(z) = (1/2)Fn,xx (z) − (u − z)Fn(z) on C × �µ,

and that u satisfies (1.160) is identical to the stationary case treating tr as a param-
eter. Hence, we exclusively focus on the proof of (1.159).
Next we prove (1.181), that is,

Fn,tr (z) = Fn,x (z)F̃r (z) − Fn(z)F̃r,x (z) on C × �µ, (1.227)

keeping in mind that F̃r on C × �µ is defined in terms of µ j , j = 1, . . . , n by
(F.10) or (F.12) in the special homogeneous case and by

F̃r =
r∑
s=0

c̃r−s F̂ s, c̃0 = 1,

in general, with {c̃1, . . . , c̃r } ⊂ C a given set of integration constants. To this end
we compute from (1.195), (1.196),

Fn,tr (z) = −Fn(z)
n∑
j=1

F̃r (µ j )µ j,x (z − µ j )
−1,

F̃r (z)Fn,x (z) = −Fn(z)F̃r (z)
n∑
j=1

µ j,x (z − µ j )
−1

and hence infer (1.227) immediately from (F.74). Next we introduce

H̃r+1(z) = (1/2)F̃r,xx (z) − (u − z)F̃r (z) on C × �µ.

Then one computes

Fn,xtr = Fn,tr x = F̃r,x Fn,x + F̃r Fn,xx − Fn,x F̃r,x − Fn F̃r,xx

= F̃r (2Hn+1 + 2(u − z)Fn) − Fn(2Hr+1 + 2(u − z)F̃r ),

and consequently

Fn,xtr = 2(Hn+1 F̃r − Fn H̃r+1) on C × �µ, (1.228)

that is, we obtained (1.182). Given Fn in (1.226) we define (as in (1.165)) on �µ

φ(P) = iy + (1/2)Fn,x (z)

Fn(z)
, P = (z, y) ∈ Kn (1.229)

and then observe
(
φ(P) − φ(P∗)

)
tr

= −2iyFn,tr (z)Fn(z)−2

= 2iy(Fn(z)F̃r,x (z) − F̃r (z)Fn,x (z))Fn(z)−2

= (
2iy F̃r (z)Fn(z)−1

)
x = (

F̃r (z)(φ(P) − φ(P∗))
)
x ,
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using (1.227), and

(
φ(P) + φ(P∗)

)
tr

= (
Fn,x (z)Fn(z)−1

)
tr

= (
Fn(z)Fn,xtr (z) − Fn,x (z)Fn,tr (z)

)
Fn(z)−2

= Fn(z)−2
(
Fn(z)2(F̃r (z)Hn+1(z) − Fn(z)H̃r+1(z))

− Fn,x (z)(F̃r (z)Fn,x (z) − F̃r,x (z)Fn(z))
)

= Fn(z)−2
(
Fn(z)F̃r (z)Fn,xx (z) − Fn(z)2 F̃r,xx (z)

− Fn,x (z)2 F̃r (z) + Fn,x (z)Fn(z)F̃r,x (z)
)

= (
F̃r (z)(φ(P) + φ(P∗))

)
x
− F̃r,xx (z),

using (1.227) and (1.228). Thus, we proved (1.172), that is,

φtr (P) = (
F̃r (z)φ(P) − (1/2)F̃r,x (z)

)
x on Kn × �µ. (1.230)

Equations (1.160) and (1.229) then yield (1.171), that is,

φx (P) + φ(P)2 = u − z on Kn × �µ, (1.231)

and repeatedly combining (1.230) and (1.231) then implies

utr = φxtr + 2φφtr = (F̃rφ − (1/2)F̃r,x )xx + 2φ(F̃rφ − (1/2)F̃r,x )x

= −(1/2)F̃r,xxx + 2(u − z)F̃r,x + F̃rφxx + 2φφx F̃r

= −(1/2)F̃r,xxx + 2(u − z)F̃r,x + ux F̃r on C × �µ,

and hence (1.159) on C × �µ. �

Remark 1.49 The explicit theta function representation (1.214) of u on �µ in
(1.224) then permits one to extend u beyond �µ as long as Dµ̂ remains nonspecial
(cf. Remark 1.46).

Remark 1.50 Again we formulated Theorem 1.48 in terms of Dirichlet eigenval-
uesµ j , j = 1, . . . , n only. Clearly the analogous result can be proved in connection
with allβ-boundary conditions (1.54) in terms ofλβ

� , � = 0, . . . , n, for eachβ ∈ R.

The analog of Remark 1.29 directly extends to the current time-dependent
setting.

As in our previous Section 1.3 we will end this section with a few examples
illustrating the general results. Again we also consider some examples involv-
ing singular curves and/or singular (i.e., meromorphic) algebro-geometric KdV
solutions u.

We start with rational KdV solutions.
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Example 1.51 The case of rational KdV solutions. Let (x, tr ) ∈ � for some open
connected subset � ⊂ R

2, r ∈ N.
(i) The simplest nontrivial rational KdV1 solution vanishing at infinity is the fol-
lowing,

u2(x, t1) = 6
x(x3 − 6t1)

(x3 + 3t1)2
= 2

3∑
�=1

1

(x − x�(t1))2
, (x, t1) ∈ �,

x �= x�(t1), x�(t1) = −(3t1)1/3ω�, ω� = exp(2π i�/3), � = 1, 2, 3,

s-K̂dVm(u2) = 0, m ≥ 2, K̂dV1(u2) = 0,

with associated curve given by (1.142).
(ii) More generally, generic rational KdV1 solutions vanishing at infinity are of the
type

un(x, t1) = 2
N∑
k=1

1

(x − xk(t1))2
, (x, t1) ∈ �, x �= xk(t1), k = 1, . . . , N ,

(1.232)

where N ∈ N must be of the form

N = n(n + 1)/2 for some n ∈ N,

and the points xk(t1) are pairwise distinct and satisfy the constraints

N∑
k ′=1
k ′ �=k

(xk(t1) − xk ′ (t1))−3 = 0, k = 1, . . . , N ,

d

dt1
xk(t1) = −3

N∑
k ′=1
k ′ �=k

(xk(t1) − xk ′ (t1))−2, k = 1, . . . , N .

The KdV solutions (1.232) satisfy

s-K̂dVm(un) = 0, m ≥ n, K̂dV1(un) = 0,

with associated curve given by (1.143).
(iii) Finally, generic rational KdVr solutions are of the type

un(x, tr ) = u0 + 2
N∑
k=1

1

(x − xk(tr ))2
, (x, tr ) ∈ �, x �= xk(tr ), k = 1, . . . , N ,

(1.233)

where N ∈ N must be of the form

N = n(n + 1)/2 for some n ∈ N,
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u0 ∈ C, and the points xk(tr ) are pairwise distinct and satisfy the constraints

N∑
k ′=1
k ′ �=k

(xk(tr ) − xk ′ (tr ))
−3 = 0, k = 1, . . . , N ,

d

dtr
xk(tr ) = ar+1,k(tr ), k = 1, . . . , N .

Here as, j are recursively defined by

a0, j (tr ) = 0, j = 1, . . . , N , c̃0 = 1,

as+1, j (tr ) = as, j (tr )u0 − c̃s −
s∑

p=1

c̃s−pαpu
p
0

−
N∑
k=1
k �= j

(
as,k(tr ) + 2as, j (tr )

)
(z j (tr ) − zk(tr ))

−2,

s = 0, . . . , r, j = 1, . . . , N ,

with αp = 2−2p(p!)−2(2p)!, p ∈ N.
The KdV solutions (1.233) satisfy

s-KdVm(un) = 0, m ≥ n, K̃dVr (un) = 0,

with associated curve given by y2 + (z − u0)2n+1 = 0 and for a particular set of
integration constants {c�}�=1,...,m in s-KdVm( · ) and {c̃�}�=1,...,r in K̃dVr ( · ).

Here (and in Example 1.53) the notion “generic” refers to the collisionless case
in which all xk remain pairwise distinct.

Our second example describes the n-soliton solutions of the KdV hierarchy.

Example 1.52 The case of n-soliton KdV solutions.
Let n, r ∈ N. Then

un(x, tr ) = −2
d2

dx2
ln(τn(x, tr )), (x, tr ) ∈ R

2 \ {(y, s) ∈ R
2 | τn(y, s) = 0},

τn(x, tr ) = det(In + Cn(x, tr )),

Cn(x, tr ) =
(

c j ck
κ j + κk

exp(−(κ j + κk)x + (−1)r+1(κ2r+1
j + κ2r+1

k )tr )

)

j,k=1,...,n

,

c j , κ j ∈ C, j = 1, . . . , n,

s-K̂dVn(u) = 0, K̂dVr (un) = 0.
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Nonsingular soliton solutions are obtained upon imposing the restrictions c j > 0,
κ j > 0, j = 1, . . . , n.

Finally, we consider elliptic KdV solutions. We recall our notation ℘( · ) =
℘( · |ω1, ω3) = ℘( · ; g2, g3) of the Weierstrass ℘-function with periods 2ω j , j =
1, 3, invariants g2 and g3, and associated fundamental period parallelogram "

(cf. Appendix H).

Example 1.53 The case of elliptic KdV solutions. Let (x, tr ) ∈ � for some open
connected subset � ⊂ R

2, r ∈ N.
(i) Generically, elliptic KdV1 solutions are of the type

un(x, t1) = u0 + 2
N∑
k=1

℘(x − xk(t1)), (1.234)

(x, t1) ∈ �, x �= xk(t1) (mod "), k = 1, . . . , N ,

where N ∈ N must be of the form

N = n(n + 1)/2 for some n ∈ N,

u0 ∈ C, and the points xk(t1) are pairwise distinct (mod ") and satisfy the con-
straints

N∑
k ′=1
k ′ �=k

℘ ′(xk(t1) − xk ′ (t1)) = 0, k = 1, . . . , N ,

d

dt1
xk(t1) = −3

N∑
k ′=1
k ′ �=k

℘(xk(t1) − xk ′ (t1)), k = 1, . . . , N .

The KdV solutions (1.234) with u0 = 0 satisfy

s-KdVn(un) = 0, K̂dV1(un) = 0

for a particular set of integration constants {c�}�=1,...,n in s-KdVn( · ).
(ii) More generally, generic elliptic KdVr solutions are of the type

un(x, tr ) = u0 + 2
N∑
k=1

℘(x − xk(tr )), (1.235)

(x, tr ) ∈ �, x �= xk(tr ) (mod "), k = 1, . . . , N ,

where N ∈ N must be of the form

N = n(n + 1)/2 for some n ∈ N,
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u0 ∈ C, and the points xk(tr ) are pairwise distinct (mod ") and satisfy the con-
straints

N∑
k ′=1
k ′ �=k

℘ ′(xk(tr ) − xk ′ (tr )) = 0, k = 1, . . . , N ,

d

dtr
xk(tr ) = ar+1,k(tr ), k = 1, . . . , N .

Here as, j are recursively defined by

a0, j (tr ) = 0, j = 1, . . . , N , c̃0 = 1,

as+1, j (tr ) = as, j (tr )u0 − c̃s −
s∑

p=1

c̃s−pαpu
p
0

−
N∑
k=1
k �= j

(
as,k(tr ) + 2as, j (tr )

)
℘(z j (tr ) − zk(tr )),

s = 0, . . . , r, j = 1, . . . , N ,

with αp = 2−2p(p!)−2(2p)!, p ∈ N.
The KdV solutions (1.235) satisfy

s-KdVn(un) = 0, K̃dVr (un) = 0

for a particular set of integration constants {c�}�=1,...,n in s-KdVn( · ) and {c̃�}�=1,...,r

in K̃dVr ( · ).

As in the stationary context described at the end of Section 1.3, the rational and
soliton cases described in Example 1.51 and Example 1.52 are appropriate limiting
cases of elliptic KdV solutions in (1.234).

1.5 General Trace Formulas

In this section we will extend the classical trace formula in the algebro-geometric
case presented in Lemmas 1.16 and 1.17,

u =
2n∑
m=0

Em − 2
n∑
j=1

µ j , (1.236)

2β2 − u =
2n∑
m=0

Em − 2
n∑

�=0

λ
β

� , (1.237)

as well as their higher-order analogs, to generalC∞(R)-potentials u bounded from
below. The key to our approach is to consider pairs of self-adjoint operators, for
example (HD

x , H ), that are closely related in the sense that their resolvents differ
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only by a rank-one operator. For such pairs the associated spectral shift function
takes a particularly simple form in terms of the diagonal of the Green’s function of
H , and this circle of ideas will be our main topic in this section. In addition to the
pair of operators just mentioned, we will also do a complete analysis of the case
with the more general boundary condition (1.54), that is, for the pair (Hβ

x , H ).
As an aside, we develop a recursive method for computing small-time heat

kernel and asymptotic spectral parameter resolvent expansion coefficients asso-
ciated with the general β-boundary conditions (1.54). (Additional expansions of
Weyl–Titchmarsh m-functions as the spectral parameter tends to infinity are pre-
sented in Appendix J.)

Unlike Sections 1.3 and 1.4, in which we focused on the special case of algebro-
geometric solutions of the KdV hierarchy, we now turn to the general situation
and throughout this section consider smooth and real-valued potentials that are
bounded from below.

Hypothesis 1.54 Let u : R → R satisfy

u ∈ C∞(R), u ≥ c (1.238)

for some c ∈ R.

As in Section 1.3, we study the differential expression L = − d2

dx2 + u on R and
associate with it operators H and HD

x , Hβ
x in analogy to Sections 1.3 and 1.4.

The self-adjoint operator HD
x is associated with the Dirichlet boundary condition

at the point x , that is, with g(x) = 0, whereas the self-adjoint operator Hβ
x corre-

sponds to the boundary condition g′(x) + βg(x) = 0 with β ∈ R, as in (1.54). See
Appendix J for precise definitions.

Let G(z, x, x ′) and g(z, x) = G(z, x, x) denote the Green’s function and diag-
onal Green’s function of H , respectively, and recall formulas (J.20)–(J.22) for the
resolvent of Hβ

x0 . Defining

$β(z, x) =
{

(β + ∂x1 )(β + ∂x2 )G(z, x1, x2)
∣∣
x1=x,x2=x for β ∈ R,

g(z, x) for β = ∞,
(1.239)

(cf. the notation introduced in (J.23)–(J.24)) one computes for β ∈ R ∪ {∞}

tr
(
(Hβ

x − z)−1 − (H − z)−1
) = − d

dz
ln
(
$β(z, x)

)
, (1.240)

z ∈ C \ (spec(Hβ
x ) ∪ spec(H )).

Combining (1.239), (1.240), (J.16), (J.23), (J.24), (J.27), and (J.29) yields the
existence of asymptotic expansions of the type

tr
(
(Hβ

x − z)−1 − (H − z)−1
) =
z→i∞

∞∑
�=0

rβ� (x)z−�−1, β ∈ R ∪ {∞} (1.241)
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uniformly with respect to x varying in compact intervals. Moreover, one can derive
the heat kernel expansion

tr
(
e−τH∞

x − e−τH
) ∼

τ↓0

∞∑
�=0

s∞� (x)τ �, x ∈ R, (1.242)

where

s∞� (x) = (−1)�+1

�!
r∞
� (x), � ∈ N0 (1.243)

and s∞� and r∞
� are the well-known invariants of the KdV hierarchy. More precisely,

suppose u satisfies the r th KdV equation (for some choice of integration constants
c�) and generates r∞

� (x, tr ), replacing u(x) by u(x, tr ) (cf. (1.152)–(1.162)). Then

d

dtr

∫
dx r∞

� (x, tr ) = 0, � ∈ N, r ∈ N0, (1.244)

where
∫
dx denotes

∫
R
dx in the case of sufficient decrease of u(x, tr ) as |x | → ∞,∫ �

0 dx in the case where u(x + �, tr ) = u(x, tr ) is �-periodic in x , and the ergodic
mean lim�↑∞ 1

�

∫ �

0 dx for classes of almost periodic solutions u(x, tr ) with respect
to x . We will return to this circle of ideas at the end of this section where we briefly
discuss the Hamiltonian approach to the KdV hierarchy in the case of spatially
rapidly decaying solutions.

In the special case of algebro-geometric potentials considered in Section 1.3,
the connection of $β in (1.239) with our polynomial approach in Section 1.3 is
clearly demonstrated by (J.45)–(J.48).

Before describing a recursive approach to the coefficients rβj , β ∈ R, we recall
the definition of the spectral shift function associated with the pair (Hβ

x , H ). The
rank-one resolvent difference of Hβ

x and H (cf. (J.21), (J.22)) is intimately con-
nected with the fact that $β( · , x) is a Herglotz function1 with respect to z for each
x ∈ R, β ∈ R ∪ {∞}. The exponential Herglotz representation for $β (cf. (I.1))
then reads for each x ∈ R,

$β(z, x) = exp

(
cβ(x) +

∫
R

dλ

(
1

(λ − z)
− λ

(1 + λ2)

)(
ξβ(λ, x) + δβ

))
,

cβ(x) = Re($β(i, x)), β ∈ R ∪ {∞}, δβ =
{

1 for β ∈ R,

0 for β = ∞,
(1.245)

where, by Fatou’s lemma,

ξβ(λ, x) = π−1 lim
ε↓0

Im
(

ln($β(λ + iε, x))
)− δβ, β ∈ R ∪ {∞} (1.246)

for a.e. λ ∈ R. Moreover,

− 1 ≤ ξβ(λ, x) ≤ 0, ξβ(λ, x) = 0, λ < inf spec(Hβ
x ), β ∈ R,

0 ≤ ξ∞(λ, x) ≤ 1, ξ∞(λ, x) = 0, λ < inf spec(H )

1 Herglotz functions are holomorphic maps C+ → C+; see Appendix I.
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for a.e. λ ∈ R. As a consequence, one can prove (cf. (I.2))

tr
(
f (Hβ

x ) − f (H )
) =

∫
R

dλ f ′(λ)ξβ(λ, x), β ∈ R ∪ {∞}, x ∈ R (1.247)

for any f ∈ C2(R) with (1 + λ2) f ( j) ∈ L2((0,∞)) for j = 1, 2 and for f (λ) =
1/(λ − z), z ∈ C \ [inf spec(Hβ

x ),∞). In particular, (1.247) holds for traces of heat
kernel and resolvent differences, that is, for any β ∈ R ∪ {∞}, x ∈ R,

tr
(
e−τHβ

x − e−τH
) = −τ

∫ ∞

eβx,0

dλ e−τλξβ(λ, x), τ > 0, (1.248)

tr
(
(Hβ

x − z)−1 − (H − z)−1
) = −

∫ ∞

eβx,0

dλ (λ − z)−2ξβ(λ, x), (1.249)

z ∈ C \ (spec
(
Hβ
x

) ∪ spec(H )),

where

eβx,0 =
{

inf spec
(
Hβ
x
)

for β ∈ R,

inf spec(H ) for β = ∞.

In the particularly simple case u = 0, one derives the following explicit
formulas.

Example 1.55 Consider the case u = 0. Then

G(z, x, x ′) = (i/2)z−1/2 exp(i z1/2|x − x ′|), Im(z1/2) ≥ 0

yields

$β(z, x) = (β + ∂x1 )(β + ∂x2 )G(z, x1, x2)
∣∣
x1=x,x2=x

= (i/2)(β2z−1/2 + z1/2), β ∈ R,

$∞(z, x) = g(z, x) = (i/2)z−1/2,

and

ξβ(λ, x) =




0 for λ < −β2,

−1 for −β2 < λ < 0,

− 1
2 for λ > 0,

β ∈ R \ {0},

ξ 0(λ, x) =
{

0 for λ < 0,

− 1
2 for λ > 0,

ξ∞(λ, x) =
{

0 for λ < 0,
1
2 for λ > 0.
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Thus,

tr
(
(Hβ

x − z)−1 − (H − z)−1
) = β2 − z

2z(z + β2)
,

β ∈ R, z ∈ C \ ({−β2} ∪ [0,∞)),

tr
(
(H∞

x − z)−1 − (H − z)−1
) = 1

2z
, z ∈ C \ [0,∞),

tr
(
e−t H

β
x − e−t H

) = −(1/2) + exp(tβ2), β ∈ R, t > 0,

tr
(
e−t H

∞
x − e−t H

) = −1/2, t > 0,

where H = − d2

dx2 in L2(R) with domain dom(H ) = H 2,2(R). One has

spec(Hβ) = {−β2} ∪ [0,∞), β ∈ R,

spec(H∞) = [0,∞).

Returning to a recursive approach for the expansion coefficients rβj in (1.241),
we first consider the expansion

$β(z) =
z→i∞

i

2

∞∑
�=−δβ

γ
β

� z
−�−1/2, β ∈ R ∪ {∞}. (1.250)

(A comparison of (1.250) and (1.92) reveals that γ∞
� = f̂ �, � ∈ N0 in the case

β = ∞.) To obtain a recursion relation for γ β

� , one can use the following result.

Lemma 1.56 Assume Hypothesis 1.54 and let z ∈ C \ spec(H ), x ∈ R.
(i) Suppose β ∈ R. Then $β(z) satisfies

2(u − β2 − z)$β
xx (z)$β(z) − (u − β2 − z)$β

x (z)2 − 2ux$
β
x (z)$β(z)

− 4
(
(u − z)(u − β2 − z) − βux

)
$β(z)2

= −(u − z − β2)3. (1.251)

(i i) Suppose β = ∞. Then $∞(z) satisfies

$∞
xxx (z) − 4(u − z)$∞

x (z) − 2ux$
∞(z) = 0 (1.252)

and

−2$∞
xx (z)$∞(z) + $∞

x (z)2 + 4(u − z)$∞(z)2 = 1. (1.253)

Proof The derivations of (1.252) and (1.253) follow from straightforward calcu-
lations using (J.14), (J.15), whereas the proof of (1.251), although straightforward
in principle, is very tedious. �
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Insertion of expansion (1.250) into (1.251) and (1.253) in Lemma 1.56 yields
the following result.

Lemma 1.57 Assume Hypothesis 1.54. Then the coefficients γ
β

� (x) in (1.250)
satisfy the following recursion relation.
(i) Suppose β ∈ R. Then,

γ
β

−1 = 1, γ
β

0 = β2 − 1
2u, γ

β

1 = 1
2β

2u + 1
2βux − 1

8u
2 + 1

8uxx ,

γ
β

2 = − 1
16u

3 + 3
8β

2u2 + 3
16ux (4βu + ux ) + 1

8uxx (u − β2)

− 1
8βuxxx − 1

64uxxxx ,

γ
β

�+1 = 1
8

�∑
k=1

(
2(u − β2)γ β

k−1γ
β

�−k,xx − (u − β2)γ β

k−1,xγ
β

�−k,x (1.254)

− 4γ β

k γ
β

�−k+1 − 4u(u − β2)γ β

k−1γ
β

�−k − 2uxγ
β

k−1γ
β

�−k,x + γ
β

k−1γ
β

�−k
)

+ 1
8

�∑
k=0

(
γ

β

k,xγ
β

�−k,x − 2γ β

k γ
β

�−k,xx − 4(β2 − 2u)γ β

k γ
β

�−k
)
,

� = 2, 3, . . . .

(i i) Suppose β = ∞. Then,

γ∞
0 = 1, γ∞

1 = 1
2u, (1.255)

γ∞
�+1 = − 1

2

�∑
k=1

γ∞
k γ∞

�+1−k + 1
2

�∑
k=0

(
uγ∞

k γ∞
�−k + 1

4γ
∞
k,xγ

∞
�−k,x − 1

2γ
∞
k,xxγ

∞
�−k
)
,

� ∈ N.

By comparison with the recursion (D.8) for f̂�, one infers

γ∞
� = f̂ �, � ∈ N0.

The final result for rβ� then reads as follows.

Theorem 1.58 Assume Hypothesis 1.54. Then the coefficients rβ� in (1.241) satisfy
the following recursion relations.
(i) Suppose β ∈ R. Then,

rβ0 = − 1
2 , rβ1 = β2 − 1

2u,

rβ� = �γ
β

�−1 −
�−1∑
k=1

γ
β

�−k−1r
β

k , � = 2, 3, . . . .
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(i i) Suppose β = ∞. Then,

r∞
0 = 1

2 , r∞
1 = 1

2u,

r∞
� = �γ∞

� −
�−1∑
k=1

γ∞
�−kr

∞
k , � = 2, 3, . . . .

Proof It suffices to combine (1.240), (1.241), (1.250), and the following well-
known fact on asymptotic expansions:

F(z) =
|z|→∞

∞∑
�=1

c�z
−�

implies

ln(1 + F(z)) =
|z|→∞

∞∑
�=1

d�z
−�,

where

d1 = c1, d� = c�−
�−1∑
k=1

k

�
c�−kdk, � = 2, 3, . . . . �

Combined with (1.254), Theorem 1.58 (i) yields an efficient algorithm for com-
puting rβ� , β ∈ R.

The connection between rβ� and ξβ is illustrated in the following result.

Theorem 1.59 Assume Hypothesis 1.54 and let eβx,0 = inf spec(Hβ
x ), β ∈ R, and

e∞0 = inf spec(H ).
(i) Suppose β ∈ R. Then,

rβ� (x) = −1

2

(
eβx,0

)� − lim
z→i∞

∫ ∞

eβx,0

dλ z�+1(λ − z)−�−1�(−λ)�−1

(
1

2
+ ξβ(λ, x)

)
,

� ∈ N. (1.256)

(i i) Suppose β = ∞. Then,

r∞
� (x) = 1

2

(
e∞0
)� + lim

z→i∞

∫ ∞

e∞0

dλ z�+1(λ − z)−�−1�(−λ)�−1

(
1

2
− ξ∞(λ, x)

)
,

� ∈ N. (1.257)

Proof Since (1.256) and (1.257) are proved exactly along the same lines, we focus
on a proof of (1.257). Combining (1.241) and (1.248) and introducing w = 1/z
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yield
∫ ∞

e∞0

dλ (1 − λw)−2

(
1

2
− ξ∞(λ, x)

)
=

−iw↓0

∞∑
�=0

(
r∞
�+1(x) − 1

2
(e∞0 )�+1

)
w�.

(1.258)

As pointed out in the paragraph following (J.31), the asymptotic expansions for
m±,0(z, x) in (J.29), and hence that for the diagonal Green’s function g(z, x), are
valid uniformly with respect to arg(z) in cones in C+ with apex e∞0 , symmetry
axis parallel to the imaginary axis, and arbitrarily small angle ε > 0 with the
real axis. Consequently, this property extends to (1.241) and hence to (1.258).
Moreover, since g( · , x) is analytic in C \ R, the asymptotic expansion (1.258) can
be differentiated term by term and infinitely often. Hence, differentiating (1.258)
k − 1 times with respect to w finally yields

r∞
k (x) − 1

2

(
e∞0
)k = lim

−iw↓0

∫ ∞

e∞0

dλ (1 − λw)−k−2(k + 1)λk
(

1

2
− ξ (λ, x)

)
,

k ∈ N,

which is equivalent to (1.257). �

We conclude with an example that yields the higher-order trace formulas for
(real-valued) periodic potentials and simultaneously applies to the (quasi-periodic)
algebro-geometric potentials of Section 1.3.

Example 1.60 In addition to Hypothesis 1.54, assume that u is periodic with
period � > 0, that is, u(x + �) = u(x) for all x ∈ R. Then Floquet theory implies

spec(H ) =
∞⋃
j=1

[E2 j−2, E2 j−1], E0 < E1 ≤ E2 < E3 ≤ · · ·

(i) Suppose β ∈ R. Then,

spec
(
Hβ
x

) = {
λ
β

� (x)
}
�∈N0

∪ spec(H ),

λ
β

0 (x) ≤ E0, λ
β

j (x) ∈ [E2 j−1, E2 j ], j ∈ N,

ξβ(λ, x) =




0 for λ < λ
β

0 (x), E2 j−1 < λ < λ
β

j (x), j ∈ N,

−1 for λβ

0 (x) < λ < E0, λβ

j (x) < λ < E2 j , j ∈ N,

− 1
2 for E2 j−2 < λ < E2 j−1, j ∈ N.

(1.259)

Inserting (1.259) into (1.256) then yields the higher-order periodic trace formulas

rβ� = 1

2
E�

0 − (
λ
β

0

)� + 1

2

∞∑
j=1

(
E�

2 j−1 + E�
2 j − 2

(
λ
β

j

)�)
, � ∈ N. (1.260)
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(ii) Suppose β = ∞. Then,

spec(H∞
x ) = {µ j (x)} j∈N ∪ spec(H ), µ j (x) ∈ [E2 j−1, E2 j ], j ∈ N,

ξ∞(λ, x) =




0 for λ < E0, µ j (x) < λ < E2 j , j ∈ N,

1 for E2 j−1 < λ < µ j (x), j ∈ N,

1
2 for E2 j−2 < λ < E2 j−1, j ∈ N.

(1.261)

Insertion of (1.261) into (1.257) then yields

r∞
� = 1

2
E�

0 + 1

2

∞∑
j=1

(
E�

2 j−1 + E�
2 j − 2µ�

j

)
, � ∈ N. (1.262)

The results (1.259) and (1.261) remain valid in the algebro-geometric situation
discussed in Section 1.3, where

E2 j+1 = λ
β

j (x) = E2 j+2, j ≥ n + 1, β ∈ R ∪ {∞}.

Hence, (1.260) and (1.262) apply to the real-valued stationary KdV solutions of
Section 1.3 (e.g., (1.262) and (1.260) for � = 1 coincide with (1.83) and (1.85),
which are reproduced in (1.236) and (1.237)). In general, these stationary KdV
solutions are quasi-periodic with respect to x .

We conclude this section with a brief description of the Hamiltonian approach to
the KdV hierarchy in connection with spatially rapidly decaying solutions. Given
the phase space P = SR(R), the Schwartz space of rapidly decreasing real-valued
functions u : R → R, we will exhibit a symplectic structure � on P × P and
Hamiltonian functions Hn : P → R such that the nth KdV equation takes on the
form ut = ∂x (∇Hn)u .

To set up the formalism, we define

∂ : P → P, (∂u)(x) = ux (x),

∂−1 : P → C∞(R), (∂−1u)(x) =
∫ x

−∞
dx ′ u(x ′)

and

� : P × P → R, �(u, v) = 1

2

∫
R

dx
(
(∂−1u)(x)v(x) − u(x)(∂−1v)(x)

)
.

One verifies

�(∂u, v) = 〈u, v〉, u, v ∈ P, (1.263)
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where 〈 · , · 〉 denotes the inner product in the real Hilbert space L2
R

(R)

〈 · , · 〉 : L2
R

(R) × L2
R

(R) → R, 〈u, v〉 =
∫

R

dx u(x)v(x), u, v ∈ L2
R

(R).

Thus, � is a weakly non-degenerate 2-form on P × P (i.e., �(u, v) = 0 for all
u ∈ P implies v = 0) since we may choose u = ∂xv and use (1.263). Moreover, �
is exact (i.e., � = dω for some 1-form ω on P × P) and closed, that is, d� = 0;
hence, � is a symplectic form for P and one can view P as a symplectic manifold.
If F : P → R is a smooth functional, the differential dF of F is the 1-form on P
defined by

(dF)u(v) = d

dε
F(u + εv)

∣∣
ε=0, u, v ∈ P;

hence,

(dF)u(v) = 〈(∇F)u, v〉 = �(∂x (∇F)u, v) = �((∇sF)u, v).

Here ∇F denotes the gradient with respect to the flat Riemannian structure on
P defined by the L2

R
inner product, and the symplectic gradient ∇sF is given

by

(∇sF)u = ∂x (∇F)u .

With attention focused on functionals F : P → R of the type

F(u) =
∫

R

dx F
(
u, ux , uxx , . . . , ∂

m
x u
)

in the following, where F : R
m+1 → R is a polynomial function (the density of

F ) with F(0) = 0, a standard integration by parts argument in the calculus of
variations shows that

(∇F)u = δF

δu
=

m∑
k=0

(−∂x )k∂u(k)F,

where u(0) = u, u(k) = ∂kx u, k ∈ N, and δF/δu abbreviates the variational deriva-
tive of F . In particular,

(∇sF)u = ∂x
δF

δu
=

m∑
k=0

(−1)k∂k+1
x ∂u(k)F, u ∈ P

and

(dF)u(v) =
∫

R

dx
δF

δu
(x) v(x), u, v ∈ P.
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Hence, any such functional F is a Hamiltonian function on P defining the
Hamiltonian flow

ut = (∇sF)u = ∂x
δF

δu
, (1.264)

where u(t) denotes a smooth curve in P . Writing u(t)(x) = u(x, t), the ordinary
differential equation (1.264) on P becomes the partial differential equation

ut = ∂x∂u F − ∂2
x ∂ux F + ∂3

x ∂uxx F + · · · + (−1)m∂m+1
x ∂u(m)F.

Concerning Poisson brackets in terms of the Riemann structure on P , one obtains

{F1,F2} = dF1(∇sF2) = �(∇sF1,∇sF2) = �(∂x (∇F1), ∂x (∇F2))

= 〈∇F1, ∂x (∇F2)〉 =
∫

R

dx
δF1

δu
(x)

(
∂x

δF2

δu

)
(x).

This implies the Jacobi identity

{{F1,F2},F3} + {{F2,F3},F1} + {{F3,F1},F2} = 0

and the Leibniz rule

{F1,F2F3} = {F1,F2}F3 + F2{F1,F3}.
If F is a smooth functional and u evolves according to a Hamiltonian flow with

Hamiltonian H and density H , that is,

ut = (∇sH)u = ∂x (∇H)u = ∂x
δH

δu
,

then
dF
dt

= d

dt

∫
R

dx F(u, ux , uxx , . . . , ∂
m
x u)

=
∫

R

dx
δF

δu
(x, t)ut (x, t) =

∫
R

dx
δF

δu
(x, t)

(
∂x

δH

δu

)
(x, t)

= {F,H}. (1.265)

In particular, any functional G in involution with the Hamiltonian H,

{G,H} = 0,

will be conserved by the flow
dG
dt

= 0.

To apply this to the KdV hierarchy we first derive a few auxiliary results.

Lemma 1.61 Suppose u ∈ SR(R) and x ∈ R.
(i) Let g(z, x) = G(z, x, x), z ∈ C denote the diagonal Green’s function of H
(if z ∈ spec(H ), then we agree to take a nontangential limit toward z).
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Then

−∂z
(
g(z, x)−1

) = 2g(z, x) (1.266)

− ∂x

(
g(z, x)−1

(
g(z, x)−1

)
zx

− (
g(z, x)−1

)
x

(
g(z, x)−1

)
z

g(z, x)−3

)
.

(ii) The following asymptotic expansion holds as |z| → ∞ in a cone Cε with apex
at inf(spec(H )), symmetry axis the imaginary axis, and opening angle π − ε for
some 0 < ε < π ,

g(z, x) =
|z|→∞
z∈Cε

i

2z1/2

∞∑
�=0

f̂ �(x)z−�, f̂ 0(x) = 1. (1.267)

The expansion (1.267) is uniform with respect to arg(z) within the cone Cε and
uniform in x as long as x varies in compact intervals.
(iii) Let m̂(z, x) = m+,0(z, x) be the Weyl–Titchmarsh m-function of H associated
with H on the interval [x,∞), as discussed in (J.29), (J.30). Then

f̂ �(x) = i(2� − 1)m̂2�−1(x) + ĥ�,x (x), � ∈ N, (1.268)

where m̂�(x) = m+,0,�(x) are the coefficients in the asymptotic expansion (J.29)
of m+,0(z, x) as |z| → ∞ in Cε, and ĥ� is a differential polynomial in u without
constant term.
(iv) The quantities f̂ j f̂ k,x , j, k ∈ N0 are x-derivatives of a differential polynomial.
More precisely, there exist differential polynomials p̂ j,k in u without constant term
such that

f̂ j f̂ k,x = p̂ j,k,x , j, k ∈ N0. (1.269)

(v) Regarding f̂ �(x) = f̂ �(u, ux , uxx , . . . ), � ∈ N, as a differential polynomial in
u (by a slight abuse of notation), one obtains

δ f̂ �
δu

= 2� − 1

2
f̂ �−1 = ∂ f̂ �

∂u
, � ∈ N. (1.270)

Proof In order to prove (1.266), one first rewrites the nonlinear differential equa-
tion for g = $∞ in (1.253) in the form

2g(g−1)xx − (3g2
x + 1)g−2 + 4(u − z) = 0. (1.271)

Differentiating (1.271) with respect to z then yields (1.266) after a series of ele-
mentary (yet tedious) manipulations.
The existence of the asymptotic expansion (1.267) and its uniformity properties
as stated in (ii) follows from

g(z, x) = $∞(z, x) = (m−,0(z, x) − m+,0(z, x))−1
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(cf. (J.29)) and the corresponding expansions (J.29), (J.30) for m±,0(z, x). In the
present short-range case in which u ∈ SR(R), the existence of the latter can be ob-
tained straightforwardly by iterating the Volterra integral equations for the Jost (i.e.,
Weyl–Titchmarsh) solutions of H . The actual expansion coefficients in (1.267) are
identified by noticing that the recursion relation (1.255) for γ∞

� coincides with that
of f̂� in (D.8).
Rewriting (1.266) in the form

g(z, x) = 1

2

(
m+,0(z, x) − m−,0(z, x)

)
z
+ (. . . )x ,

inserting the asymptotic expansions (1.267) for g and (J.29) for m±,0, and taking
into account (J.31) yield (1.268).
To prove (1.269), one first notes that the linear recursion (1.4) for f̂� implies

f̂ j f̂ k,x = f̂ j+1 f̂ k−1,x − ∂x
(
f̂ j+1 f̂ k−1 + (1/4) f̂ j,xx f̂ k−1 − (1/4) f̂ j,x f̂ k−1,x

+ (1/4) f̂ j f̂ k−1,xx − u f̂ j f̂ k−1

)
, j, k ∈ N. (1.272)

Iterating (1.272) while noticing f̂ 0,x = 0 then proves (1.269).
To prove

∂ f̂ �
∂u

= 2� − 1

2
f̂ �−1, � ∈ N (1.273)

one can proceed inductively upon � as follows. First, (1.273) is easily verified for
� = 0, 1. Next, assuming (1.273) for � = 0, . . . , k for some k ∈ N and noticing

∂u(∂x P(u)) = ∂x (∂u P(u)) (1.274)

for any differential polynomial P with respect to u, the nonlinear recursion relation
(D.8) yields after a straightforward calculation that

∂ f̂ k+1

∂u
= 2k + 1

2
f̂ k,

proving (1.273).
Finally, we turn to a proof of the remarkable fact

δ f̂ �
δu

= 2� − 1

2
f̂ �−1, � ∈ N. (1.275)

To avoid technicalities with (formal) asymptotic power series, etc., and especially
to be able to compute δg/δu, we assume for the remainder of this proof that g is
of the special algebro-geometric form

g(z, x) = i Fn(z, x)

2R2n+1(z)1/2
(1.276)
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associated with a compact hyperelliptic Riemann surface Kn : y2 = R2n+1(z) of
genus g. The universal nonlinear second-order differential equation (1.253) for
diagonal Green’s functions g = $∞ of Schrödinger-type operators then reads

2ggxx − g2
x + 4(z − u)g2 = −1,

and its z-derivative becomes

gzgxx + ggxxz − gxgxz + 2g2 + 4(z − u)ggz = 0. (1.277)

Since by (1.276), g is a differential polynomial with respect to u, one thus computes

(dg)u(v)gxx + g(dgxx )u(v) − gx (dgx )u(v) − 2g2v

+ 4(z − u)g(dg)u(v) = 0, u, v ∈ P. (1.278)

Multiplying (1.278) by gz/g2 then results in

g−2
(
gzgxx + 4(z − u)ggz

)
(dg)u(v) + g−1gz(dgxx )u(v)

− g−2gxgz(dgx )u(v) − 2gzv = 0. (1.279)

Since

(d(∂x P(u)))u(v) = ∂x ((dP)u(v))

for any differential polynomial P with respect to u, one can rewrite (1.279) in the
form

(
g−2(gzgxx + 4(z − u)ggz) + (gz/g)xx + (gxgz/g

2)x
)
(dg)u(v)

= g−2
(
gzgxx + 4(z − u)ggz + ggzxx − gxgzx

)
(dg)u(v) (1.280)

= 2gzv + ∂x { · · · },
where {· · · } vanishes as |x | → ∞ since u, v ∈ P . By (1.277), the middle expres-
sion in (1.280) simplifies to −2(dg)u(v), and hence one obtains

(dg)u(v) = −gzv + ∂x {· · · };
thus,

∫
R

dx (dg)u(v) =
∫

R

dx
δg

δu
v = −

∫
R

dx gzv, v ∈ P.

Since v ∈ P is arbitrary, one finally concludes

δg

δu
= −gz (1.281)

for any g of the type (1.276). To conclude the proof of (1.275), we invoke the
following (convergent) asymptotic expansion of g(z) as |z| → ∞. By (D.1) and
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(D.10), one computes

g(z) = i Fn(z)

2R2n+1(z)1/2
= i zn

2R2n+1(z)1/2

n∑
�=0

(
�∑

k=0

c�−k(E) f̂ k

)
z−�

= i

2z1/2

(
2n+1∏
m=0

(1 − (Em/z))

)−1/2 n∑
�=0

(
�∑

k=0

c�−k(E) f̂ k

)
z−�

= i

2z1/2

( ∞∑
p=0

ĉp(E)z−p

)
n∑

�=0

(
�∑

k=0

c�−k(E) f̂ k

)
z−�

= i

2z1/2

∞∑
r=0

(
r∧n∑
s=0

ĉr−s(E)
s∑

k=0

cs−k(E) f̂ k

)
z−r

= i

2z1/2

n∑
r=0

f̂ r z
−r + i

2z1/2

∞∑
r=n+1

(
n∑

k=0

f̂ k

n−k∑
s=0

ĉr−s−k(E)cs(E)

)
z−r

= i

2z1/2

n∑
r=0

f̂ r z
−r + O(|z|−n−1) as |z| → ∞, (1.282)

where we used (D.16) to isolate the first term
∑n

r=0 . . . in (1.282). As discussed in
the proof of Theorem D.1, the homogeneous coefficients f̂ r in (1.282) are universal
differential polynomials of u uniquely defined by the nonlinear recursion relation
(D.8). The same computation then yields

δg

δu
= i

2z1/2

n∑
r=1

δ f̂ r
δu

z−r + O(|z|−n−1) as |z| → ∞ (1.283)

and

gz = − i

2z1/2

n+1∑
r=1

(r − (1/2)) f̂ r−1z
−r + O(|z|−n−2) as |z| → ∞. (1.284)

By inserting (1.283) and (1.284) into (1.281) and comparing powers of z−r , one
then proves

∂ f̂ �
∂u

= 2� − 1

2
f̂ �−1, � = 1, . . . , n.

Since n can be chosen arbitrarily large, this proves (1.275). �

As a consequence of identity (1.268), one obtains
∫

R

dx f̂ �+1(x) = i(2� + 1)
∫

R

dx m̂2�+1(x), � ∈ N0
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and hence introduces the functionals1 Î� = Î�(u, ux , uxx , . . . , ∂mx u),

Î� = i
∫

R

dx m̂2�+1(x) = 1

2� + 1

∫
R

dx f̂ �+1(x), � ∈ N0. (1.285)

Thus, (1.275) implies

(∇Î�)u = 1

2� + 1

(
∇
∫

R

dx f̂ �+1(x)

)
u

= 1

2� + 1

δ f̂ �+1

δu

= 1

2
f̂ �(u), � ∈ N0. (1.286)

Hence, we may rewrite the nth KdV equation (for some n ∈ N0) in a variety of
ways,

0 = KdVn(u) = utn − 2 fn+1,x (u)

= utn − 2
n+1∑
�=1

cn+1−� f̂ �,x (u)

= utn − ∂x

n+1∑
�=1

4cn+1−�

2� + 1

δ f̂ �+1

δu

= utn − ∂x

n∑
�=0

4cn−�(∇Î�+1)u

= utn − (∇sHn)u

= utn − ∂x (∇sHn)u, (1.287)

where {Hn}n∈N0 represents the sequence of KdV Hamiltonians,

Hn =
n∑

�=0

cn−�Ĥ�, Ĥ� = 4Î�+1, � ∈ N0, (1.288)

and we used again Hirota’s notation of a separate time variable tn for the nth KdV
flow.

The following result sums up the principal aspects of the KdV equations as
completely integrable Hamiltonian systems.

Theorem 1.62 Suppose u ∈ SR(R) satisfies the nth KdV equation (1.287) (for
some set of integration constants c�, � = 1, . . . , n if n ∈ N). Then Î�, � ∈ N0 are
conserved by this flow and hence represent the infinitely many KdV conservation
laws

dÎ�

dtn
= 0, � ∈ N0.

1 We note that by (J.30), m̂2�+1, � ∈ N0 are purely imaginary if u is real-valued.
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In particular, since n ∈ N0 is arbitrary, {Î�}�∈N0 are conserved by any (higher-
order) KdV flow, and all Î�, � ∈ N0 are in involution,

{Î�, Îm} = 0, �,m ∈ N0.

Proof Combining (1.265), (1.275), and (1.287), one computes

dÎ�

dtn
= 1

2� + 1

∫
R

dx
δ f̂ �+1

δu
(x, tn) utn (x, tn)

= 1

2� + 1

n+1∑
m=1

4cn+1−m
2m + 1

∫
R

dx
δ f̂ �+1

δu
(x, tn)

(
∂x

δ f̂ m+1

δu

)
(x, tn)

=
n+1∑
m=1

cn+1−m
∫

R

dx f̂ �(x, tn) f̂ m,x (x, tn) = 0, � ∈ N0,

applying (1.269). The same argument also yields

{Î�, Îm} = 1

(2� + 1)(2m + 1)

∫
R

dx
δ f̂ �+1

δu
(x, tn)

(
∂x

δ f̂ m+1

δu

)
(x, tn)

= 1

4

∫
R

dx f̂ �(x, tn) f̂ m,x (x, tn) = 0, �,m ∈ N0. �

Rewriting the linear recursion (1.4) in the form

∂x f̂ �+1 = D(3)
x f̂ �, � ∈ N0, (1.289)

where we abbreviated

D(3)
x = −1

4
∂3
x + u∂x + 1

2
ux , (1.290)

yields a second Hamiltonian structure for the KdV hierarchy. In fact, the second
Poisson bracket {{ · , · }}, defined by

{{F1,F2}} =
∫

R

dx
δF1

δu
(x)

(
D(3)
x

δF2

δu

)
(x), (1.291)

is also skew-symmetric and satisfies the Jacobi identity. As in Theorem 1.62, one
verifies that all Î�, � ∈ N0 are in involution also with respect to the second Poisson
bracket (1.291), that is,

{{Î�, Îm}} = 0, �,m ∈ N0.

Finally, combining (1.285)–(1.287) and (1.289), (1.290) permits one to write
the nth KdV equation in the two Hamiltonian forms

0 = KdVn(u) = utn − ∂x (∇Hn)u

= utn − D(3)
x (∇Hn−1)u, n ∈ N0

with the KdV Hamiltonians Hn , n ∈ N0, defined in (1.288) and H−1 = 4Î0.
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1.6 Notes

Section 1.1.There are many excellent sources for the highly interesting background
and historical development of the Korteweg–de Vries (KdV) equation, starting with
the observation and subsequent experiments by Russell in 1834 (Russell (1837;
1840; 1845)), the controversy with Airy and Stokes on the origin of the “great
wave of translation,” and the derivation by Korteweg and his student de Vries of
the fundamental KdV equation (Korteweg and de Vries (1895)). Nice surveys of
the early days of KdV and all that can be found in Bullough (1988) and Bullough
and Caudrey (1995). This includes the fact that the KdV equation was already
known to Boussinesq (1871a,b; 1872; 1877) as discussed in Pego (1998). We also
refer to van der Blij (1978), Heyerhoff (1997), and Miles (1981) for a glimpse at
the early history of the KdV equation.

For modern physical applications of the KdV equation in connection with shal-
low water waves, etc., we refer, for instance, to Ablowitz and Segur (1981, Sec. 4.1),
Dodd et al. (1982, Ch. 5), Infeld and Rowlands (1990), Johnson (1997), and the
literature cited therein.

In 1965, Zabusky and Kruskal (Zabusky and Kruskal (1965)) coined the term
“soliton” while analyzing the important numerical results of Fermi et al. (1955)
on the a priori unrelated problem of describing phonons in an anharmonic lattice.
Their analysis prepared the ground for the breakthrough by Gardner et al. (1967).
It was their fundamental insight in 1967 that brought the KdV equation to the fore-
front of modern mathematical physics. They showed that one could solve the KdV
equation by relating it to the well-studied linear, one-dimensional Schrödinger op-
erator. In particular, the Cauchy problem for the KdV equation, with sufficiently
rapidly decaying initial data, was closely related to the inverse scattering problem
of the Schrödinger equation with the KdV solution u( · , t) serving as the potential
of the Schrödinger equation, which now depends on the parameter1 t . Their key in-
sight was to realize that the t-dependence of the scattering data of the Schrödinger
equation with a potential that is a solution of the KdV equation was extremely
simple and could be characterized explicitly. Moreover, they showed the isospec-
tral property of one-parameter families of Schrödinger operators with potentials
being KdV solutions depending on t . Soon thereafter Lax (1968) explained this
magical isospectral property of the t-dependent family of Schrödinger operators by
what is now called the Lax pair2 and introduced the whole hierarchy of nonlinear
evolution equations of KdV-type. In the same year an infinite sequence of poly-
nomial conservation laws was established with the help of Miura’s transformation
(Miura (1968)) in Miura et al. (1968) (see also Kruskal et al. (1970)), and the tools
to view the Korteweg–de Vries equation as a completely integrable system were

1 We note that the time parameter t is not the (quantum mechanical) time associated with the time-
dependent Schrödinger equation; rather, one considers the stationary Schrödinger equation with a
potential u( · , t) depending on an additional (deformation) parameter t ∈ R.

2 He actually did view t as a time parameter in connection with an explicitly t-dependent Hamiltonian
given by a third-order differential operator.
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provided by Gardner (1971) and especially Zakharov and Faddeev (1971). The
early stormy period up to about the mid-1970s dealing with solitons, conservation
laws, Bäcklund transformations, Poisson brackets, canonical transformations, and
the inverse scattering method is summarized, for instance, in Flaschka (1975a),
Flaschka and McLaughlin (1976a,b), Gardner et al. (1974), Gel’fand and Dikii
(1975), Kruskal (1975), Miura (1976), and Scott et al. (1973).

The Zakharov–Shabat (ZS) (Zakharov and Shabat (1972; 1973; 1974)) and
Ablowitz, Kaup, Newell, and Segur (AKNS) (Ablowitz et al. (1973a,b; 1974))
approaches then extended the inverse scattering method to several other nonlinear
partial differential equations of mathematical physics, as will be discussed in the
notes to Chapters 2 and 3, but here we will focus on the development relevant to
the KdV hierarchy.

The analogous application of the inverse scattering method to the case of pe-
riodic initial data was not immediately possible. It was well-known that the cor-
responding Schrödinger equation with periodic potential generically has a spec-
trum consisting of infinitely many bands separated by spectral gaps, the lengths
of which decrease as the spectral parameter increases. The exceptional case, in
which the actual number of gaps in the spectrum is finite, the so-called finite-gap
case, is what we study in detail in this chapter. The extension of the inverse scat-
tering method to periodic initial data, partly based on inverse spectral theory and
partly relying on algebro-geometric methods, was developed by pioneers such as
Dubrovin (1975b), Flaschka (1975b), Its and Matveev (1975b), Lax (1974; 1975),
Marčenko (1974a,b), McKean and van Moerbeke (1975), and Novikov (1974), to
name just a few. We will return to this in some detail in connection with the notes to
Section 1.3.

For more recent reviews on the KdV equation we refer, for instance, to Bullough
(1988), Bullough and Caudrey (1995), Lax (1996), Palais (1997), and Segal (1999).
For textbook literature on the KdV equation, we refer to Ablowitz and Clarkson
(1991, Ch. 2), Ablowitz and Segur (1981, Ch. 1), Asano and Kato (1990, Chs. 6, 7),
Belokolos et al. (1994, Ch. 3), Calogero and Degasperis (1982), Cherednik (1996),
Das (1989, Chs. 1–8), Dickey (1991, Chs. 3, 4, 12), Dodd et al. (1982, Ch. 8),
Drazin and Johnson (1989, Chs. 1–5), Eckhaus and van Harten (1983, Chs. 1–4),
Eilenberger (1983, Chs. 2, 3), Faddeev and Takhtajan (1987, Part 1), Miwa et al.
(2000), Newell (1985, Ch. 3), Novikov et al. (1984, Sec. I.10), and Toda (1989a,
Chs. 4–11).

Section 1.2. The approach presented in this section closely follows the one in
Gesztesy et al. (1996a).

The construction of the KdV hierarchy using a recursive approach is due to Lax
(1968). It has also been studied by Gel’fand and Dikii (1975), Lenard (unpublished,
see Gardner et al. (1974, p. 130)), and McKean and van Moerbeke (1975) and
later on especially by Al’ber (1979; 1981) (see also Dickey (1991, Ch. 12),
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Gel’fand and Dikii (1979), Gesztesy and Weikard (1993), Levitan (1987, Ch. 12),
and Marchenko (1986, Ch. 4)). However, the recursion (1.4) was well-known to
Burchnall and Chaundy (1923) and used by them to construct differential expres-
sions commuting with L .

For explicit expressions of the KdV functions f� in terms of u and its
x-derivatives, we refer to Avramidi and Schimming (2000), Rosenhouse and
Katriel (1987), and Schimming (1988; 1995). That the functions f� given by (1.5)
are polynomials with respect to u and its x-derivatives, is proved, for instance,
in Eilenberger (1983, p. 19f) (see also Ohmiya (1988b), who attributes the proof
presented to Tanaka). To describe the argument in Eilenberger (1983, pp. 19–20)
briefly, one rewrites the recursion (1.5) in the form f j+1,x = R( f j ) and defines
#( f, g) = − 1

4 ( f g)xxx + 3
4 fx gx + u f g. An explicit calculation then shows that

R( f )g + f R(g) = #( f, g)x . In addition, one verifies that

f j+1,x =
m∑

�=0

(
#( f j−�, f�) − f j−� f�+1

)
x
+ f j−m,x fm+1,

where m = 0, . . . , j, j ∈ N0, and

f j+1 = c j+1 +
k∑

�=0

(
#( f j−�, f�) − f j−� f�+1

)+



1
2#( fk+1, fk+1), j = 2k,

1
2 f

2
k+1, j = 2k + 1

(1.292)

with c j+1 ∈ C, k ∈ N0. By induction, relation (1.292) then shows that all f� are in-
deed differential polynomials with respect to u. An alternative argument of this fact
is mentioned in Remark 1.2; Gel’fand and Dikii (1975, Ch. 2) contains additional
results in this direction.

From a historical perspective it is interesting to remark that Appell was quite
familiar with our fundamental equation (1.12) for Fn(z, · ) in 1880. In fact, let y1

and y2 be linearly independent solutions of −y′′ +Uy = 0. Then he showed that
y2

1 , y1y2, and y2
2 are linearly independent solutions of

w′′′ − 4Uw′ − 2U ′w = 0 (1.293)

(cf. Appell (1880)). This equation is easily integrated and yields

2gg′′ − (g′)2 − 4Ug2 = −W (y1, y2)2, (1.294)

where g = y1y2 denotes the product of any two solutions y1 and y2 of −y′′(x) +
U (x)y(x) = 0, and W (y1, y2) = y1y′

2 − y′
1y2 denotes their (x-independent)

Wronskian. Noticing that the formal Green’s function G(z, x, x ′) of −d2/dx2 + u
on the diagonal x = x ′ is in fact of the type g(z, x) = y1(z, x)y2(z, x)/
W (y1(z), y2(z)), (1.294) with U = u − z is equivalent to the well-known univer-
sal nonlinear second-order differential equation satisfied by g (see also Gel’fand
and Dikii (1975; 1979)). A comparison of Lemma 1.8, (1.12), (1.13) and (1.293),
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(1.294) shows that (1.13) and (1.294) are equivalent in the special algebro-
geometric context of Section 1.3. Moreover, it should also be pointed out that
Drach used (1.293) to derive a class of completely integrable systems now known
as the stationary KdV hierarchy as early as 1918–19 (cf. Drach (1918; 1919a,b)).
In fact, it appears he was the first to make the explicit connection between com-
pletely integrable systems and spectral theory. More than 55 years later, Gelfand
and Dikii also based some of their celebrated work on the KdV hierarchy on (1.293)
(Gel’fand and Dikii (1975; 1979)). Finally, it must be mentioned that the linear re-
cursion relation for the coefficients f� in (1.4) was used by Burchnall and Chaundy
in 1923 in their construction of odd-order differential expressions P2n+1 (cf. (1.7))
commuting with the second-order differential expression L in (1.3) (Burchnall and
Chaundy (1923)).

Burchnall–Chaundy theory, the basic formalism underlying commuting differ-
ential expressions, has been pioneered by Burchnall and Chaundy in their semi-
nal papers Burchnall and Chaundy (1923; 1928; 1932) (see also Baker (1928)).
More recent treatments of this circle of ideas can be found, for instance, in
Amitsur (1954; 1958), Bogoyavlenskii (1976), Carlson and Goodearl (1980), Cha-
lykh (1993), Chalykh and Veselov (1990), Dehornoy (1981), Dubrovin (1975b),
Dubrovin et al. (1976), Frentzen et al. (1993), Giertz et al. (1981), Krichever
(1976a; 1977a,b; 1978), Latham and Previato (1994), Mulase (1984; 1990a,b),
Mumford (1977), Nakayashiki (1994), Previato (1996; 1998), Previato and Wil-
son (1989; 1992), Race and Zettl (1990), Segal and Wilson (1985), Veselov (1979),
Weikard (1998b; 1999; 2000; 2002), and Wilson (1985). Some of the extensions
of the classical Burchnall–Chaundy theory in connection with formal pseudo-
differential expressions were anticipated in Wallenberg (1903) and Schur (1905).
The special case involving a second-order differential expression L in Theorem
1.3 then leads to hyperelliptic curves branched at infinity. Certain classes of com-
muting (non-self-adjoint) operators (as opposed to merely commuting differential
expressions) and their connections with algebraic curves are also discussed in var-
ious works by Livšic, Kravitsky, Vinnikov, and others. An extensive account of
these activities up to 1994 is presented in the monograph Livšic et al. (1995); more
recent work in this direction can be found in Vinnikov (1998) and the references
therein.

Section 1.3.Again the presentation of most of the material in this section follows
the one in Gesztesy et al. (1996a).

The fundamental meromorphic function φ( · , x0) on Kn defined in (1.38) is in
many respects the key object of our formalism. For instance, in the special self-
adjoint case, where u ∈ C∞(R) ∩ L∞(R) and u and Em , m = 0, . . . , 2n are real-
valued, its two branches represent the two Dirichlet half-line Weyl–Titchmarsh
m-functions m±,0(z, x) associated with proper closed realizations of the differ-
ential expression L = −d2/dx2 + u in L2((x0,±∞)). In particular, the spectral
properties of the self-adjoint realization of L in L2(R) (as well as those of the
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self-adjoint Dirichlet-type operators in L2((x0,±∞))) can be inferred directly
from φ(P, x0). Completely analogous remarks apply to all other (non-Dirichlet)
β-boundary conditions defined in (1.54). This clearly illustrates the distinguished
role played by φ in the special self-adjoint case (for details we refer to Appendix J).
However, as amply demonstrated in Sections 1.3 and 1.4, φ turns out to be the
principal object of the algebro-geometric formalism independently of any self-
adjointness considerations in connection with L .

A look at (1.38)–(1.40) shows that φ links the Dirichlet divisor Dµ̂ of degree
n and the Neumann divisor Dν̂ of degree n + 1. This is of course a direct conse-
quence of the identity (1.32) together with the factorizations of Fn and Hn+1 in
(1.31) and (1.34). This construction of positive divisors of degree n and n + 1 on
hyperelliptic curves Kn of genus n apparently goes back at least to Jacobi (1846).
It has been applied to the KdV case in Mumford (1984, Sec. III a).1), and subse-
quently in McKean (1985), and our presentation of algebro-geometric solutions
of the stationary KdV hierarchy relies on these constructions.

The squared eigenfunction approach alluded to in connection with (1.53) is
discussed, for instance, in Ablowitz and Segur (1981, pp. 42–52) and Eilenberger
(1983, Sec. 3.5).

The Dubrovin equations (1.66) for Dirichlet-type eigenvalues in Lemma 1.10
appeared in papers by Dubrovin (1975a,b); (see also Dubrovin and Novikov (1974;
1975b)) around 1974–75. Additional discussions of these equations can be found,
for instance, in Dubrovin et al. (1976), Levitan (1987, Chs. 8–12), Marchenko
(1986, Ch. 4), McKean (1979a), and Trubowitz (1977).

The results in Lemma 1.10 can be extended to the case of colliding Dirichlet
eigenvalues as long as the corresponding Dirichlet divisor remains nonspecial.
The details are somewhat involved and have been worked out in Birnir (1986a,b).
As pointed out in Remark 1.27, symmetric functions of the Dirichlet eigenvalues
(such as u) are somewhat simpler to handle; in particular, they can be directly
expressed in terms of the underlying Riemann theta function associated with Kn .

Lemma 1.11 is well-known in the case of Neumann boundary conditions (cf.,
e.g., McKean and Trubowitz (1976) where the result is stated in the infinite genus
context). The general case β ∈ R \ {0} can be found in Levitan and Savin (1988)
(and in Gesztesy et al. (1996a)).

For more results concerning Remark 1.13, we refer to Dauge and Helffer
(1993a,b), Kong and Zettl (1996a,b), Kong et al. (1999).

Lemma 1.14 is quite familiar in the context of periodic Schrödinger operators
with even potentials, that is, u(−x) = u(x), x ∈ R; see, for instance, McKean and
Trubowitz (1976).

Lemma 1.15 is due to Gesztesy et al. (1996a).
The trace formulas in Lemmas 1.16 and 1.17 have a rich history going back to

Gelfand and Levitan. We defer a detailed discussion to the notes of Section 1.5.
The linearization property (1.106) of the Abel map, and hence the straighten-

ing out of the (higher-order) KdV flows on the Jacobi variety, is due to Dubrovin
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(1975a) (see also Dubrovin (1975b), Dubrovin and Novikov (1974)). For connec-
tions with the recursion formalism of Section 1.2, we refer to Gesztesy and Holden
(2002) and to Appendix F.

The celebrated expression (1.108) for u in terms of the Riemann theta function
associated with Kn was found by Its and Matveev (1975a,b). Its and Matveev
utilized previous work by Akhiezer (1961) (see also (Akhiezer (1960), Akhiezer
and Tomčuk (1961)). By a remarkable coincidence around 1975,
Dubrovin (1975a,b) (see also Dubrovin and Novikov (1974; 1975b)) had also
noticed essentially simultaneously that Akhiezer’s methods applied to the inverse
spectral theory for finite-band potentials. In particular, he isolated the solution of
Jacobi’s inversion problem as a key tool in this context.

It should be remarked at this point that Novikov had noted earlier in 1974 that
finite-band potentials are the natural analogs of multi-soliton solutions in the sense
that they are solving stationary higher-order KdV equations (Novikov (1974)). He
also observed that, generically, such solutions would be quasi-periodic rather than
periodic with respect to x , and hence the solution of the inverse spectral problem
associated with finitely many spectral bands should be posed within the class of
quasi-periodic functions u. Moreover, assuming u to be real-valued, nonsingular on
R, and periodic, he showed that if u satisfies an nth-order stationary KdV equation,
then the L2(R)-spectrum associated with u consists of at most n compact intervals
and an additional half-line (cf. (1.295)). Within a year, Dubrovin (1975b), Flaschka
(1975b), and McKean and van Moerbeke (1975) also proved the converse of this
assertion (a different proof of this result was also published in Goldberg (1976))
and hence it became possible to identify the set of real-valued periodic finite-band
potentials with the set of real-valued periodic solutions of stationary higher-order
KdV equations. It also became clear from Novikov’s 1974 paper that solutions of
the time-dependent higher-order KdV equations periodic with respect to x would
generically be quasi-periodic in t . Independently, Lax (1975) (see also Lax (1976))
showed in 1975 that real-valued periodic solutions in x of the higher-order time-
dependent KdV equations lie on finite-dimensional tori and that they depend on
t in a quasi-periodic manner. In this paper Lax also gave a very simple proof of
the fact that if a real-valued periodic potential u satisfies an nth stationary KdV
equation, then its corresponding L2(R)-spectrum consists of at most n compact
intervals (see also Lax (1974)).

Finally, another milestone must be mentioned. As early as 1974, Marčenko
(1974a,b) solved the periodic Cauchy problem for the KdV equation assuming
real-valued and sufficiently smooth initial data. In particular, he also characterized
the monodromy matrices of all real-valued periodic finite-band potentials.

Looking back at this period (and now with some distance from it), one cannot fail
to be in awe of the amazing theory developed between 1974 and 1976 in Moscow,
St. Petersburg, Kharkov, and New York by pioneers such as Dubrovin, Flaschka,
Its, Lax, Marchenko, Matveev, McKean, Novikov, van Moerbeke, and others.
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Since this initial period, many authors presented reviews and slightly varying
approaches to algebro-geometric (respectively periodic) solutions of (stationary
and time-dependent) equations of the KdV hierarchy. We mention, for instance,
the very influential reviews by Dubrovin et al. (1976) and Matveev (1976), Date
and Tanaka (1976), all in 1976, and especially Dubrovin’s 1981 review (Dubrovin
(1981); see also Dubrovin (1982b)), which is still regarded as a masterpiece of
exposition and paved the way for a subsequent generation of scientists to en-
ter this exciting field. A wealth of additional material can be found in Bobenko
(1984), Bobenko and Kubenskii (1988), Cherednik (1978), Dubrovin (1977; 1983),
Dubrovin et al. (1990), Gel’fand and Dikii (1979), Gesztesy (1992), Gesztesy et al.
(1996a), Grinevich and Krichever (1990), Krichever (1976a,b; 1977a,b; 1978;
1995), Krichever and Novikov (1980b,a; 1981; 2000), Levitan (1977; 1984),
McKean (1979a,b; 1985), Moser (1983), Novikov (1978a,b; 1980), and Taimanov
(1997). Moreover, the subject is briefly treated in the monographs of Ablowitz
and Segur (1981, Sec. 2.3), Asano and Kato (1990, Sec. 7.3), Dickey (1991,
Ch. 12), Marchenko (1988, Ch. 4), Newell (1985, Sec. 3h), and Rodin (1988,
Ch. 6), and dealt with at length in the monographs of Belokolos et al. (1994, Ch. 3),
Levitan (1987, Ch. 8), Marchenko (1986, Ch. 4), and Novikov et al. (1984, Ch. II).
A succinct overview of the algebro-geometric method can also be found in the
introduction to Novikov et al. (1981) by Wilson.

It is perhaps worth mentioning that φ(P0), P0 = (E0, 0) in (1.104) is a so-
lution of the corresponding stationary equation of the modified Korteweg–de
Vries (mKdV) hierarchy related to u in (1.108) by the Miura transformation
u = φ(P0)2 + φx (P0) + E0. We refer to Gesztesy (1989; 1991a,b; 1992), Gesztesy
et al. (1991), Gesztesy and Simon (1990), Gesztesy and Svirsky (1995), Previato
(1993) for details.

We have repeatedly emphasized that u was usually assumed to be real-valued
(and nonsingular) in these early investigations. In this case the spectrum of the self-
adjoint realization H in L2(R) of the differential expression L = −d2/dx2 + u is
given by a collection of bands of the type

spec(H ) =
n⋃
j=1

[E2 j−2, E2 j−1] ∪ [E2n,∞), E0 < E1 < · · · < E2n (1.295)

for some n ∈ N. Incidentally, this explains why potentials u with associated L2(R)-
spectrum of the type (1.295) are traditionally called finite-band (or finite-gap)
potentials. For the conclusion that the isospectral torus of a KdV potential u as-
sociated with an L2(R)-spectrum of the type (1.295) is an n-dimensional real
torus T

n = ∏n
j=1S

1, real-valuedness of u is crucial. The isospectral torus T
n then

comes about as follows. For a fixed x0 ∈ R, the Dirichlet divisors (data) µ̂ j (x0) =
(µ j (x0), (−i/2)Fn,x0 (µ j (x0), x0)), j = 1, . . . , n can be prescribed so that the pro-
jection µ j (x0) lies anywhere in the j th spectral gap µ j (x0) ∈ [E2 j−1, E2 j ] and
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µ̂ j (x0) lies on the upper or lower sheet ofKn . Effectively, this yields [E2 j−1, E2 j ] ×
{±} " S1 for each spectral gap (cum grano salis) and thus leads to T

n (or equiva-
lently, to the real part of the Jacobi variety of the underlying hyperelliptic curve)
since we have n such spectral gaps available for Dirichlet eigenvalues.

Apart from the Its–Matveev realization of the n-dimensional isospectral torus
In(u0) of a given real-valued nonsingular KdV potential u0, with spectrum as in
(1.295) in terms of the Riemann theta functions associated with Kn and positive
Dirichlet divisors Dµ̂(x0) of degree n (Its and Matveev (1975a,b)), there also exist
explicit realizations of In(u0) in terms of 2nDarboux transformations representable
as a 2n × 2n Wronski determinant of certain Baker–Akhiezer functions. The rel-
evant papers (in case u0 is also periodic) are Buys and Finkel (1984) and Finkel
et al. (1987) with pertinent results also in McKean (1985), McKean and van Moer-
beke (1975), McKean and Trubowitz (1976), Ralston and Trubowitz (1988), and
Trubowitz (1977). A complete spectral theoretic characterization of this method
(including the effects of isospectral deformations on Weyl m-functions and spec-
tral functions for the associated Schrödinger operators on a half-line and on R) was
presented in Gesztesy et al. (1996b) (see also Gesztesy et al. (1996c)). In particular,
their methods were applied to general one-dimensional Schrödinger operators with
gaps in their essential spectrum without assuming periodicity of the underlying
base potential u0. Hence, these results (like the Its–Matveev theta-function repre-
sentation) describe an explicit realization of the isospectral torus T

n for general
quasi-periodic, finite-band potentials with associated L2(R)-spectrum of the type
(1.295). For yet another characterization of In(u0) for periodic potentials u0, in
terms of Fredholm determinants, we refer to Iwasaki (1987).

Equations (1.128) single out those spectral band edges E0, . . . , E2n in (1.125)
that correspond to periodic potentials, that is, they separate periodic from quasi-
periodic (real-valued) algebro-geometric potentials u. This criterion, reformulated
in terms of conformal mapping techniques involving Schwarz–Christoffel integrals,
appeared already in Marčenko and Ostrovskiı̆ (1975a,b). The case of real-valued,
periodic algebro-geometric potentials and KdV solutions is exhaustively discussed
in the literature. We refer, for instance, to Ablowitz and Segur (1981, Sec. 2.3),
Belokolos et al. (1994, Sec. 3.6), Buys and Finkel (1984), Date and Tanaka (1976),
Dubrovin (1975a,b), Dubrovin et al. (1976), Dubrovin and Novikov (1974; 1975b),
Ercolani et al. (1986b), Finkel et al. (1987), Flaschka (1975a,b), Goldberg (1976),
Hochstadt (1965), Its and Matveev (1975a,b), Johnson (1982), Krichever and
Novikov (2000), Lax (1974; 1975; 1976), Marčenko (1974a,b), Marchenko (1986,
Secs. 3.4, 4.3, 4.4), Marčenko and Ostrovskiı̆ (1975a,b), Marchenko and Ostro-
vsky (1987), McKean (1979a; 1985), McKean and van Moerbeke (1975), Moser
(1983), Meiman (1977), Newell (1985, Sec. 3h), Novikov (1974; 1978a,b; 1980),
Novikov et al. (1984, Ch. II), and Trubowitz (1977).

In the complex-valued algebro-geometric periodic case much of the theory goes
through, but there are some characteristic changes apart from the corresponding
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isospectral manifold of u no longer being described by a real torus T
n . In this

complex-valued situation, the spectrum of the associated closed realization H of
L = −d2/dx2 + u in L2(R) is given by n regular analytic arcs in the complex
plane and a semi-infinite arc tending to ∞. (This is why it seems much more ap-
propriate to use the notion of finite-band as opposed to finite-gap KdV potentials.)
Locally, these arcs may exhibit multiple crossings and hence exhibit a much more
intricate picture than in the real-valued case, although for sufficiently large ener-
gies the picture resembles again that of the self-adjoint situation (cf. Gesztesy and
Weikard (1995b), Pastur and Tkachenko (1991a), Rofe-Beketov (1963), Sansuc
and Tkachenko (1996a,b; 1997), Serov (1960), Tkachenko (1992; 1994; 1996),
and Weikard (1998a,c)). The corresponding Dirichlet eigenvalues µ j (x) now are
no longer confined to certain regions of C (as opposed to their trapping in the spec-
tral gaps [E2 j−1, E2 j ] in the self-adjoint case), and the simple torus T

n now turns
into a complex torus, the Jacobian of the underlying curve Kn . This is discussed in
Dubrovin and Novikov (1974) and in great detail in Birnir (1986a,b; 1987). From
a spectral theoretic point of view, however, the distinction between real-valued and
complex-valued potentials is crucial in this finite-band context, as will be pointed
out next. In fact, Gasymov analyzed examples of the type u0(x) = exp(i x) (actu-
ally, he analyzed a whole class of generalizations of this example) and proved that
the spectrum of the corresponding closed L2(R)-realization H0 associated with
the differential expression −d2/dx2 + u0 is of the finite-band-type (cf. Gasymov
(1980)) spec(H0) = [0,∞). This spectrum is not only of the finite-band type but
is even a subset of the real line although H0 is clearly not self-adjoint. Further
extensions of this type of result where obtained in Guillemin and Uribe (1983) and
Pastur and Tkachenko (1988; 1991b). It is not difficult to see that this example,
despite its being of the finite-band spectral type, is not algebro-geometric, and
the underlying Riemann surface encountered from Floquet theoretic considera-
tions is, in fact, of infinite genus. The reason for this surprise is actually quite
simple. Although all spectral bands touch their neighboring spectral bands and
so all spectral gaps close (with the exception of only the spectral gap (−∞, 0)),
the corresponding Dirichlet eigenvalues are by no means trapped between these
bands but can roam freely in the complex plane once one varies the reference point
x ∈ R at which the Dirichlet boundary condition is imposed. It is the number of
movable Dirichlet eigenvalues that decides the genus of the underlying curve. In
the algebro-geometric case, only finitely many movable Dirichlet eigenvalues are
available, whereas the remaining infinite Dirichlet eigenvalues are pinned down
(i.e., they are immovable with respect to variations of x). These facts (and others
on complex-valued singular periodic potentials) are discussed in detail in Gesztesy
(2001), Gesztesy and Weikard (1996), and Weikard (1998a,b). The upshot of this
analysis is that the notion of “finite-band” (and much less that of “finite-gap”) is
not a sufficient characterization of complex-valued, algebro-geometric (stationary)
KdV solutions. The safe alternative adopted in this monograph is to talk about
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algebro-geometric KdV potentials (or simply KdV potentials), whenever an un-
derlying finite genus case is implied.

Finally, for those not yet sufficiently convinced by these arguments, we rec-
ommend the paper Chulaevsky and Sinai (1989), in which the spectrum of a
self-adjoint discrete Schrödinger (Jacobi) operator with two basic (rationally in-
dependent) frequencies is shown to be a compact interval (i.e., without bounded
spectral gaps) consisting of a dense pure point spectrum. The corresponding quasi-
periodic potential term is real-valued, and yet it is clearly not an algebro-geometric
situation. In particular, the corresponding Dirichlet eigenvalues are certainly real-
valued and interlace with the eigenvalues of the discrete Schrödinger operator on Z.
What went “wrong” with this example is a bit different. The essential spectrum
of this operator is not absolutely continuous. Moreover, it is associated with a
positive Lyapunov exponent. Put differently, this potential is not reflectionless –
a terminology briefly explained in Appendix J. The property of being reflection-
less turns out to be a necessary (though not sufficient) condition for a real-valued
potential to be of the algebro-geometric type. The interested reader can find more
about this, for instance, in Belokolos (1990), Carmona and Lacroix (1990), Craig
(1986), Johnson (1982; 1983), Johnson and Moser (1982), Kotani (1984; 1988),
Kotani and Krishna (1988), and Sodin and Yuditskiı̆ (1995a,b; 1996).

Theorem 1.26 is certainly known, although, a detailed proof in the generality
we formulated it seems difficult to locate in the literature. That u extends mero-
morphically to C as stated in Remark 1.29 is a special case of Theorem 6.10 in
Segal and Wilson (1985).

Examples 1.30–1.32 can be found, for instance, in Dickson et al. (1999), Duis-
termaat and Grünbaum (1986), Gardner et al. (1974), Gesztesy et al. (1992; 2000;
2003), Kay and Moses (1956), and Ohmiya (1988b). In particular, the rational
KdV potentials summarized in Example 1.30 (v) have been analyzed in detail
by Duistermaat and Grünbaum (1986) in their study of bispectral pairs of dif-
ferential operators. A new approach to this circle of ideas that exploits results
due to Halphen (1885) and permits an extension to elliptic KdV potentials, was
developed in Gesztesy et al. (2000; 2003). The n-soliton solutions in Example
1.31 employ the determinant approach used in Kay and Moses (1956) and later in
Gardner et al. (1974). Alternative representations of n-soliton solutions were found
in Hirota (1971; 1980); (see also Miwa et al. (2000, Ch. 3), Newell (1985, Ch. 4),
and the references therein). Our notation in connection with elliptic functions in
Example 1.32 follows Abramowitz and Stegun (1972, Ch. 18); their basic proper-
ties are summarized in Appendix H. A large body of literature on Lamé potentials
can be found, for instance, in the classical monographs Burkhardt (1906), Halphen
(1888), Krause (1897), Picard (1928), and Whittaker and Watson (1986). A key re-
sult in their analysis is a theorem due to Picard (1879; 1880; 1881), with important
contributions to this circle of ideas by Hermite (1877; 1912), Floquet (1884a,b,c),
Mittag-Leffler (1880), and Halphen (1884; 1885). For applications of these ideas
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to completely integrable systems, we refer to Gesztesy and Sticka (1998), Gesztesy
and Weikard (1995a,c,d,e; 1996; 1998a; 1999), Weikard (1998b,c; 1999; 2000),
and especially to Gesztesy and Weikard (1998b), and the extensive literature cited
therein.

The classical literature on Lamé potentials and alike amassed by the French
school in the latter part of the 19th century with very few exceptions – such
as Baker (1928), Burchnall and Chaundy (1923; 1928; 1932), and Drach (1918;
1919a,b), Guerritore (1909), and Strutt (1967)–went out of fashion for about the
first 75 years of the 20th century. A notable exception was a paper by Ince in
1940 (cf. Ince (1940)). He investigated the special case in which u is real-valued
and nonsingular on R and is given by un(x) = n(n + 1)℘(x + ω3), with −iω3 > 0
from a Floquet-theoretic point of view and established that such a potential exhibits
a finite-band (gap) structure in the associated self-adjoint Schrödinger operator Hn

on L2(R) if and only if n is an integer. In particular, if n ∈ N, the spectrum spec(Hn)
of Hn is of the type (1.295); that is, it consists of n compact intervals and one
half-line. It took 35 more years until an explicit expression of another finite-band
potential (i.e., not of Lamé-type) was found in Dubrovin and Novikov (1975b).
The actual history of the elliptic finite-band potentials (as solutions of some of
the stationary KdV equations) is not without interest, and hence we record it here
to a certain extent. Dubrovin and Novikov (1975b) explicitly integrated the KdV
flow ut = − 1

4uxxx + 3
2uux , with initial condition u(x, 0) = 6℘(x + ω3) (see also

Enol’skii (1983; 1984a,b), Its and Enol’skii (1986)) and found it to be of the type

u(x, t) = 2
3∑
j=1

℘(x − x j (t)) (1.296)

for appropriate {x j (t)} j=1,2,3. Due to the time evolution operator Un constructed
with the help of P2n+1 via Un,t = P2n+1Un , all potentials u( · , t) in (1.296) are
isospectral to u( · , 0) = 6℘( · + ω3). In 1977, Airault, McKean, and Moser, in
their seminal paper Airault et al. (1977) presented the first systematic study of the
isospectral torus IR(u0) of real-valued smooth potentials u0 of the type

u0(x) = 2
M∑
j=1

℘(x − x j ) (1.297)

with a finite-gap spectrum. Among a variety of results, they proved that any ele-
ment u of IR(u0) is an elliptic function of the type (1.297) (with different x j ) with
M constant throughout IR(u0) and dim IR(u0) ≤ M . In particular, if u0 evolves
according to any equation of the KdV hierarchy it remains an elliptic finite-gap
potential. However, explicit new examples of elliptic KdV potentials remained
elusive even though it was clear from the Its–Matveev formula that there existed
a whole torus of elliptic potentials isospectral to a given elliptic base potential
(e.g., the base potential can be taken as the Lamé potential n(n + 1)℘( · ), n ∈ N).
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The potential (1.297) is intimately connected with completely integrable many-
body systems of the Calogero–Moser-type (Calogero (1975), Moser (1975) (see
also Calogero (1978), Choodnovsky and Choodnovsky (1977), Chudnovsky (1979),
Olshanetsky and Perelomov (1981), and Ruijsenaars (1987)). This connection with
integrable particle systems was subsequently exploited in Krichever (1980) (see
also Krichever (1983; 1990)) in his construction of elliptic algebro-geometric so-
lutions of the Kadomtsev–Petviashvili equation. In the KdV context of (1.297),
Krichever’s approach relies on the ansatz

ψ(z, x) = eκ(z)x
M∑
j=1

A j (z)#(x − x j , ρ(z)), (1.298)

for the Floquet solutions of L = −d2/dx2 + u0(x), where

#(x, ρ) = σ (x − ρ)

σ (x)σ (−ρ)
eζ (ρ)x

(assuming for simplicity the generic case x j �= xk (mod") for j �= k, where "

denotes the fundamental period parallelogram associated with ℘( · )). Applying
L0 to (1.298) then yields an M-sheeted covering of the torus associated with the
fundamental periods 2ω1, 2ω3 and hence a description of the underlying algebraic
curve. The next breakthrough occurred when Verdier (1988) published new ex-
plicit examples of elliptic finite-gap potentials. Verdier’s examples spurred a flurry
of activities and inspired Belokolos and Enol’skii (1989a,b), Smirnov (1989), and
subsequently Taimanov (1990a) and Kostov and Enol’skii (1993) to find further
such examples by combining the reduction process of Abelian integrals to elliptic
integrals (see Babich et al. (1983; 1986), Belokolos et al. (1994, Ch. 7; 1986))
with the aforementioned techniques in Krichever (1980; 1983). This development
finally culminated in a series of papers by Treibich and Verdier (1990a,b; 1992),
in which it was shown that a general complex-valued potential of the form

u(x) =
4∑
j=1

d j ℘(x − ω j )

(ω2 = ω1 + ω3, ω4 = 0) is a finite-gap potential if and only if d j/2 are triangular
numbers, that is, if and only if

d j = s j (s j + 1) for some s j ∈ Z, 1 ≤ j ≤ 4.

The methods of Treibich and Verdier are based on hyperelliptic tangent covers
of the torus C/,  being the period lattice generated by 2ω1 and 2ω3 (cf. also
Colombo et al. (1994) and Treibich (1989; 1994)).

The state of the art of elliptic finite-gap solutions, until around 1993, was re-
viewed in Issues 1 and 2 of Volume 36 of Acta Applicandae Mathematicae, which
appeared in 1994, and we refer, for instance, to Belokolos and Enol’skii (1994),
Enol’skii and Kostov (1994), Krichever (1994), Smirnov (1994a), Taimanov (1994),
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and Treibich (1994) therein. For more recent results see Belokolos et al. (2001a),
Buchstaber et al. (to appear; 1997a,b,c; 1999), Eilbeck and Enol’skii (1994a,b;
2000), Eilbeck et al. (2000; 2001), Enol’skii and Eilbeck (1995), and Smirnov
(1994b). Moreover, Chapter 7 of the monograph Belokolos et al. (1994), and the
detailed review Belokolos and Enol’skii (2002a,b) present the connection between
reduction theory of Abelian functions and completely integrable systems. Here we
just add the comment that if one is interested in spatially elliptic (not necessar-
ily real-valued) solutions u in the Its–Matveev formula (1.108) with periods 2ω1,
2ω3, with Im(ω3/ω1) > 0 (cf. Appendix H), one necessarily needs to impose the
constraints

2iωpU
(2)
0 ∈ Z

n + τZ
n, p = 1, 3.

More about these constraints and a discussion of sufficiency is provided in
Belokolos et al. (1994, Sec. 7.7).

The whole development up to this point, however, missed the fundamental con-
nection between elliptic algebro-geometric KdV solutions and Picard’s theorem
mentioned a bit earlier. This connection was the starting point of a complete charac-
terization of all elliptic finite-band solutions of the KdV hierarchy by Gesztesy and
Weikard alluded to above. A detailed treatment of this approach will be the subject
of a forthcoming monograph, and so we refer the interested reader to Gesztesy and
Weikard (1996; 1998b) for now.

Darboux-type transformations and a complete account of their effect on the hy-
perelliptic curve Kn (possibly with a singular affine part) associated with algebro-
geometric KdV potentials are discussed in Gesztesy and Holden (2000c) (see
Appendix G for details).

Section 1.4. As in Sections 1.2 and 1.3, the approach presented closely follows
the one in Gesztesy et al. (1996a).

Since most of the references provided in connection with Section 1.3 treat
the time-dependent KdV equation and not just stationary KdV solutions, we will
now mainly focus on issues different from stationary ones and topics not yet
covered.

In analogy to its stationary analog in Section 1.3, the role of φ defined in (1.165)
is still central to Section 1.4, and the corresponding facts recorded in the notes to
Section 1.3 apply accordingly in the present time-dependent setting.

The Dubrovin equations (1.195), (1.196) in Lemma 1.37 and their β-dependent
analogs in Lemma 1.38 were found simultaneously with their stationary counter-
parts, as discussed in the notes to Section 1.3. However, they are often discussed
in connection with the simplest cases r = 0, 1 only.

Since the proofs of Lemmas 1.39, 1.40, and 1.41 are identical to those in the
corresponding stationary cases, what was said in connection with their stationary
counterparts in the notes to Section 1.3 again applies line by line.
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The linearization properties (1.212), (1.213) of the Abel map and the Its–
Matveev formula (1.214) for u in terms of the Riemann theta function associ-
ated with Kn were again found simultaneously with their stationary counterparts,
and thus the historical development sketched in this connection in the notes to
Section 1.3 remains valid in the context of Theorem 1.44.

The argument presented in Remark 1.47 can be found in the monograph Novikov
et al. (1984, pp. 139–144).

As in Section 1.3, we remark that φ(P0), P0 = (E0, 0) in (1.210) is a solution of
the corresponding equation of the modified Korteweg–de Vries (mKdV) hierarchy
and is related tou in (1.214) by Miura’s transformationu = φ(P0)2 + φx (P0) + E0.

The solution of the algebro-geometric initial value problem in Theorem 1.48
is rarely presented in this detail. Again the result is well-known to experts, but
discussions in the literature (such as a related one in Dubrovin et al. (1976, p. 139))
are usually restricted to the first KdV equation (i.e., to r = 1). An attempt to
solve the periodic KdV initial value problem numerically (for r = 1) based on the
coupled system of Dubrovin equations (1.195), (1.196) is undertaken in Osborne
and Segré (1990a,b,c). For connections between the Dubrovin equations and the
Hamiltonian formalism, including action-angle variables for algebro-geometric
solutions, we refer the reader, for instance, to Al’ber (1979), Al’ber and Al’ber
(1985; 1987a), Alber and Marsden (1992; 1994a), Bättig et al. (1993a; 1995; 1997),
Kappeler (1991), Kappeler and Makarov (2000), Kappeler and Mityagin (1999),
McKean (1997), and Vanhaecke (1992).

The differences between real-valued and complex-valued KdV solutions pointed
out in Section 1.3 remain of course valid in the present time-dependent context.
However, there are additional difficulties due to the presence of time variables tr .
A special divisor Dµ̂(x,tr ) may become trapped in the theta divisor, rendering the
Its–Matveev formula meaningless. This cannot happen for translations (i.e., r = 0)
but can occur for higher-order KdV flows in the presence of certain symmetries
in the distribution of the branch points of Kn , as discussed in Birnir (1986b). A
careful discussion of these issues is somewhat involved, and we refer the interested
reader to Birnir (1986a,b).

Examples 1.51–1.53 are taken from Gesztesy et al. (1992; 2000; 2003), and
the references therein. Example 1.52 describing n-soliton solutions employs the
determinant approach, as used in Kay and Moses (1956) and later in Gardner et al.
(1974). For Hirota’s alternative representation of n-soliton solutions Hirota (1971;
1980), we also refer the reader to the monographs Miwa et al. (2000, Ch. 3), Newell
(1985, Ch. 4), and the literature cited therein.

The connection between the Neumann system of constrained harmonic oscilla-
tors to a sphere and algebro-geometric solution of the KdV hierarchy is treated in
Ercolani and Flaschka (1985).

Although we mentioned rational and n-soliton KdV solutions at the end of
Sections 1.3 and 1.4, we did not explicitly study degenerations of quasi-periodic
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algebro-geometric solutions as certain periods tend to infinity, or alternatively,
systematically apply Darboux-type transformations (i.e., various commutation
methods) that can lead to Bäcklund transformations between the KdV and mKdV
hierarchies as well as auto-Bäcklund transformations for the KdV hierarchy. This
singularization procedure creates solitons and certain meromorphic solutions rel-
ative to a remaining algebro-geometric background solution (whose associated
Riemann surface has appropriately diminished genus) and leads to a singular
curve for the combined soliton and background KdV solution, etc. The possi-
bility of obtaining soliton solutions from degenerating hyperelliptic curves (i.e.,
pinching handles in the language of Fay (1973, Ch. III)) was recognized already
in Krichever (1975) (without, however, providing any details) and in the special
case of an elliptic genus one background solution by Kuznetsov and Mikhailov
(1975). Matveev (1976), and subsequently McKean (1979b), degenerated the
quasi-periodic algebro-geometric solutions into the class of soliton solutions by
explicitly exhibiting Hirota’s KdV soliton representation Hirota (1971) as the re-
sult of singularizing the Its–Matveev formula (1.214). Although this procedure
amounts to a complete degeneration of Kn into the Riemann sphere with ad-
ditional double points, partial degenerations were also mentioned by Matveev,
and more details appear in Appendix 1 of Dubrovin et al. (1976) and in Levi-
tan (1989); the corresponding scattering matrix is described in Firsova (1989).
Additional degenerations into the Riemann sphere and one multiple point on it
then led to the class of rational KdV solutions (derived in Ablowitz and Airault
(1981), Ablowitz and Satsuma (1978), and Adler and Moser (1978)) as shown in
Ehlers and Knörrer (1982) using Darboux transformations. These singularization
procedures (especially, their practical implementation in terms of Darboux-type
transformations) have been intensively studied in the literature, and the interested
reader can find plenty of additional results in Bikbaev (1989; 1994), Bikbaev and
Sharipov (1989), Gesztesy (1991a; 1993; 2001), Gesztesy and Holden (2000c),
Gesztesy et al. (1991; 1996b), Gesztesy and Svirsky (1995), Gesztesy and Teschl
(1996), Grinevich (1989; 1994), Jaulent et al. (1989), Matveev and Salle (1991,
Ch. 3), McRae and Weikard (1997), Rybin and Sall (1985), Sharipov (1986; 1987),
Trlifaj (1989), Veselov and Shabat (1993), and Zagrodziński (1984; 1991).

Section 1.5. Again our presentation follows Gesztesy et al. (1996a) to some
extent; the material on general trace formulas is taken from Gesztesy et al. (1995b),
Gesztesy and Simon (1996a,b).

Forβ ∈ R, the fundamental Herglotz function$β( · , x) in (1.239) and its associ-
ated spectral shift function ξβ( · , x), x ∈ R, in (1.246) were introduced in Gesztesy
et al. (1995b). The corresponding quantities in the Dirichlet context (whereβ = ∞)
were originally introduced in Gesztesy and Simon (1996b). Equation (1.245) fol-
lows from the exponential representation theorem for Herglotz functions as proven
in Aronszajn and Donoghue (1957). For more details, we refer to Appendix I.
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In addition to (1.241) for β = ∞ and (1.255), one can derive the following
asymptotic expansion for d

dx tr
(
(H∞

x − z)−1 − (H − z)−1
)
. From

d

dx
ln(g(z, x)) = m−,0(z, x) + m+,0(z, x)

(cf. Johnson and Moser (1982)) and (J.28)–(J.30) one observes (see Gesztesy et al.
(1995b))

d

dx
tr
(
(H∞

x − z)−1 − (H − z)−1
) = − d

dz

(
m−,0(z, x) + m+,0(z, x)

)

=
z→i∞

2
∞∑
�=1

�m±,0,2�(x)z−�−1.

Equations (1.242) and (1.243) are proved in Gesztesy et al. (1995b).
The trace formula (1.247) for f in various function classes has been discussed

a great deal in the literature. It originates in works of Lifshits (1952; 1956), who
had in mind applications to solid state physics. The first rigorous approach to the
spectral shift function and a proof of (1.247) is due to Kreı̆n (1953), Krein (1962;
1983). Since then this circle of ideas has been repeatedly revisited by many authors.
We refer, for instance, to Baumgärtel and Wollenberg (1983, Ch. 19), Peller (1985;
1990), Simon (1995; 1998), Sinha and Mohapatra (1994), Yafaev (1992, Ch. 8).

Lemma 1.56 is well-known in the Dirichlet case see, for instance, Gel’fand
and Dikii (1975), and the case of general β boundary condition can be found in
Gesztesy et al. (1996a). The special Neumann case β = 0 was derived in Gesztesy
and Weikard (1996).

Lemma 1.57 is an elementary consequence of Lemma 1.56 (cf. Gesztesy et al.
(1996a)).

Theorem 1.58 (i) was derived using a different strategy of proof in Gesztesy
et al. (1995b). The current derivation, based on the universal differential equation
(1.251) is due to Gesztesy et al. (1996a).

Theorem 1.59 is due to Gesztesy et al. (1995b). The case β = ∞, � = 1 was
first proved in Gesztesy and Simon (1996b). For simplicity we confined ourselves
to the resolvent regularization trace formulas in Theorem 1.59. The analogous
approach using a heat kernel regularization for the coefficients s∞� in (1.243) reads
(cf. Gesztesy et al. (1995b))

s∞� (x) = (−1)�+1

�!

(
E�

0

2
+ � lim

t↓0

∫ ∞

e∞0

dλ e−tλλ�−1

(
1

2
− ξ (λ, x)

))
, � ∈ N.

The original motivation that led to (1.257) (actually, its analog applying a heat
kernel regularization method) in Gesztesy and Simon (1996b), was to extend the
well-known trace formula for certain classes of reflectionless potentials, considered,
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for instance, in Craig (1989a), Kotani and Krishna (1988), and Levitan (1982; 1985;
1987, Chs. 9, 11), to general non-reflectionless potentials. In the special scatter-
ing theoretic context, a trace formula equivalent to (1.257) stated in terms of a
reflection coefficient rather than a spectral shift function had been found earlier by
Deift and Trubowitz (1979). This formula was rediscovered in slightly different
terms in Venakides (1988) as a result of studying the periodic trace formula (1.262)
for � = 1 in the limit where the period tends to infinity. For various connections
between trace formulas in terms of Krein’s spectral shift function and trace for-
mulas in terms of scattering theoretic objects (such as reflection coefficients, etc.;
cf. Gesztesy and Holden (1994) and the literature therein) we refer to Gesztesy
(1995). Additional results on trace formulas in terms of spectral shift functions can
be found in Gesztesy (1995), Gesztesy and Holden (1995; 1997), Gesztesy et al.
(1995a; 1993), Gesztesy and Makarov (2000), and Rybkin (2001a,b; 2002).

Historically, trace formulas for Schrödinger operators on compact intervals with
self-adjoint boundary conditions at the end points go back at least to the paper by
Gel’fand and Levitan (1953) with subsequent work by Gel’fand (1956), Dikiı̆
(1961), Halberg and Kramer (1960), and Gilbert and Kramer (1964) (see also
Magnus and Winkler (1979, Ch. VI)).

In the real-valued algebro-geometric context (i.e., in the case of only finitely
many gaps in the spectrum), the periodic Dirichlet-type trace formula (1.262)
for j = 1 (or rather, (1.236)), had been noticed in Hochstadt (1965) and later in
Dubrovin (1975b). The general case j ∈ N appeared in Flaschka (1975b), McKean
and van Moerbeke (1975). The general real-valued periodic case with infinitely
many gaps in the spectrum can be found in Trubowitz (1977). The Neumann
case β = 0 in (1.260) is due to McKean and Trubowitz (1976). The general case
β ∈ R is taken from Gesztesy et al. (1995b). In particular, (1.260) and (1.262)
also extend to certain classes of real-valued almost periodic potentials; see, for
instance, Craig (1989a), Kotani and Krishna (1988), and Levitan (1982; 1985;
1987, Chs. 9, 11). For a (perturbative) trace formula approach to Schrödinger
operators on a finite interval with periodic boundary conditions in terms of the
trace of the corresponding semigroup (i.e., the trace of the heat kernel) see Kac
and van Moerbeke (1974), Novitskii (1995), and Sunada (1980).

It should also be noted that the distinction between real-valued and complex-
valued potentials is of some importance in connection with trace formulas. The
trace formula (1.247) heavily relies on a pair of self-adjoint operators and hence so
do the results stated in Theorem 1.59. On the other hand, in the algebro-geometric
context, the trace formulas (1.236) and (1.237) (as well as their higher-order
analogs) remain valid for complex-valued potentials, as proven in Lemmas 1.16
and 1.17. Yet the periodic and almost periodic trace formulas associated with
infinitely many gaps in the spectrum mentioned in the preceding paragraph all
assume real-valuedness of the potential u. In the special complex-valued peri-
odic case, however, it is not too difficult to prove that the trace formulas (1.262)
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remain valid whether or not the associated L2(R)-spectrum consists of finitely
many spectral bands (cf. Gesztesy (2001)). We hope to return to this topic in a
later book project.

For the origins of the Hamiltonian KdV formalism presented at the end of
Section 1.5, the interested reader might consult Gardner (1971) and Zakharov
and Faddeev (1971). Our presentation follows Dickey (1991, Ch. 12), Gel’fand
and Dikii (1975), Lax (1975; 1976; 1978; 1996), Palais (1997), and Sattinger and
Weaver (1986). Related material can be found, for instance, in Dubrovin (1975b),
Dubrovin et al. (1976), Flaschka (1975b), Gel’fand and Dikii (1979), McKean
and van Moerbeke (1975), Novikov (1974; 1980), Novikov et al. (1984, Chs. I,
II), and Serre (1981). The remarkable identity (1.275) is derived in Dickey (1991,
Sec. 12.1), Gel’fand and Dikii (1975), and Yusin (1978), using a somewhat different
approach based on formal power series. In addition to identity (1.266), we also
mention the closely related identity (cf. Carmona and Lacroix (1990, p. 369)),

−∂z
(
g(z, x)−1

) = 2g(z, x) − ∂x

(
g(z, x)

(
f+(z, x)−2

∫ ∞

x
dx ′ f+(z, x ′)2

− f−(z, x)−2
∫ x

−∞
dx ′ f−(z, x ′)2

))
, z ∈ C \ R, (1.299)

where f±(z, x) denote the Jost (Weyl–Titchmarsh) solutions associated with H ,
that is,

f±(z, · ) ∈ L2((R,±∞)), z ∈ C \ R, R ∈ R.
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The Combined sine-Gordon and
Modified KdV Hierarchy

Someone told me that each equation I included in the book would
halve the sales. I therefore resolved not to have any equations at
all.

Stephen W. Hawking1

2.1 Contents

The sine-Gordon (sG) equation,

uxt − sin(u) = 0,

for a function u = u(x, t), which has its origins in the 19th-century analysis of
surfaces of constant negative curvature, has a long and interesting history.2 How-
ever, it got its name as a pun on the well-known Klein–Gordon equation when it
became a prominent model in elementary particle and condensed matter physics.
This chapter focuses on a relatively recent development since the mid-1970s –
the construction of algebro-geometric solutions of a combined sine-Gordon and
modified Korteweg–de Vries (sGmKdV) hierarchy whose first nontrivial element
reads

uxt + (i/8)
(
u3
x + 2uxxx

)
x
− sin(u) = 0.

Below we briefly summarize the principal content of each section. A more de-
tailed discussion, using the KdV hierarchy as a model, has been provided in the
introduction to this volume.

Section 2.2.
� polynomial recursion formalism, zero-curvature pairs (U, Vn)
� stationary and time-dependent sGmKdV hierarchy
� hyperelliptic curve Kn

1 A Brief History of Time, Bantam Books, Toronto, 1988, p. vi.
2 A guide to the literature can be found in the detailed notes at the end of this chapter.
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Section 2.3. (stationary)
� properties of φ and the Baker–Akhiezer vector �
� Dubrovin equations for auxiliary divisors
� trace formulas for u
� theta function representations for φ, ψ , and u
� the algebro-geometric initial value problem

Section 2.4. (time-dependent)
� properties of φ and the Baker–Akhiezer vector �
� Dubrovin equations for auxiliary divisors
� trace formulas for u
� theta function representations for φ, �, and u
� the algebro-geometric initial value problem

This chapter relies on terminology and notions developed in connection with
compact Riemann surfaces. A brief summary of key results as well as definitions
of some of the main quantities can be found in Appendices A, B, and F.

2.2 The sGmKdV Hierarchy, Recursion Relations,
and Hyperelliptic Curves

In this section we provide the construction of a hierarchy of integrable equa-
tions, the sGmKdV hierarchy, which combines the sine-Gordon (sG) equation
and the modified Korteweg–de Vries (mKdV) hierarchy. Using a polynomial re-
cursion formalism, we derive the corresponding sequence of zero-curvature pairs
and introduce the underlying hyperelliptic curve in connection with the stationary
sGmKdV hierarchy.

Throughout this section we suppose the following hypothesis.

Hypothesis 2.1 In the stationary case we assume1 that

u ∈ C∞(R). (2.1)

In the time-dependent case we suppose2

u( · , t) ∈ C∞(R), t ∈ R, ux (x, · ) ∈ C1(R), x ∈ R. (2.2)

To set up a zero-curvature formalism for the combined sine-Gordon and mKdV
equations, one can proceed as follows. One defines recursion relations for { f�}�∈N0 ,

1 Alternatively, we could suppose that u : C→ C∞ is meromorphic.
2 Again one could assume that for fixed t ∈ R, u( · , t) is meromorphic, etc.
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{g�}�∈N0 , and {h�}�∈N0 by

f0 = h0 = 1. (2.3)

g� = (i/2)( f�,x + iux f�), � ∈ N0, (2.4)

g� = (i/2)(−h�,x + iuxh�), � ∈ N0, (2.5)

g�,x = i(h�+1 − f�+1), � ∈ N0. (2.6)

From (2.4) (or (2.5)) and (2.3), one immediately infers that g0 = −ux/2. To show
that one can indeed solve this recursion for all � ∈ N0, one first subtracts equations
(2.4) and (2.5) and then uses (2.6) to obtain

f� + h� =
∫ x

dx ux g�−1,x , � ∈ N. (2.7)

By adding and subtracting equations (2.6) and (2.7), one finds

f� = 1

2

∫ x

dx ux g�−1,x + i

2
g�−1,x , (2.8)

h� = 1

2

∫ x

dx ux g�−1,x + i

2
g�−1,x , � ∈ N. (2.9)

Inserting any of these expressions into (2.4), one obtains

g� = −1

4

(
g�−1,xx + ux

∫ x

dx ux g�−1,x

)
, � ∈ N. (2.10)

This proves that the set of recursion relations (2.3)–(2.6) can be solved.

Remark 2.2 One can show that the quantities f�, g�, and h�, � ∈ N0, are all
differential polynomials in u (i.e., polynomials in u and (some of) its x-derivatives).
Starting from (2.8), one infers that

f�,x = (1/2)uxg�−1,x + (i/2)g�−1,xx = (i/2)(∂x − iux )g�−1,x

= (i/2)(∂x − iux )∂x
(
(i/2)(∂ + iux )

)
f�−1

= −(1/4) f�−1,xxx + w+ f�−1,x + (1/2)w+,x f�−1, (2.11)

where we used (2.4) and introduced

w+ = −((ux )2 + 2iuxx )/4. (2.12)

However, the recursion (2.11) is nothing but the KdV recursion (1.4) with the KdV
potential u replaced by w+. Thus, f�, � ∈ N0 are differential polynomials in u (see
Remark 1.2). Similarly, one finds that h� in (2.9) satisfies

h�,x = −(1/4)h�−1,xxx + w−h�−1,x + (1/2)w−,xh�−1, (2.13)
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with

w− = −((ux )2 − 2iuxx )/4, (2.14)

which is again the KdV recursion but this time with potential w−. Finally, by (2.4),
g� are obviously differential polynomials in u since f� are.

Explicitly, one computes

f0 = 1,

f1 = 1
2w+ + c1 = − 1

8

(
u2
x + 2iuxx

)+ c1,

f2 = − 1
8w+,xx + 3

8w
2
+ + c1

1
2w+ + c2

= − 1
32u

2
xx + 1

16uxuxxx + i
16uxxxx + 3

128u
4
x + 3i

32u
2
xuxx

− c1
8

(
u2
x + 2iuxx

)+ c2,

f3 = 1
32w+,xxxx − 5

16w+w+,xx − 5
32w

2
+,x + 5

16w
3
+ + c1

(− 1
8w+,xx + 3

8w
2
+
)

+ c2
1
2w+ + c3, etc.,

g0 = − 1
2ux ,

g1 = 1
16u

3
x + 1

8uxxx − c1
2 ux ,

g2 = − 3
256u

5
x − 1

32uxxxxx − i
32uxxuxxx − 5

64u
2
xuxxx − 5

64uxu
2
xx

+ c1
(

1
16u

3
x + 1

8uxxx
)− c2

2 ux , etc.,

h0 = 1,

h1 = 1
2w− + c1 = − 1

8

(
u2
x − 2iuxx

)+ c1,

h2 = − 1
8w−,xx + 3

8w
2
− + c1

1
2w− + c2

= − 1
32u

2
xx + 1

16uxuxxx − i
16uxxxx + 3

128u
4
x − 3i

32u
2
xuxx

− c1
8

(
u2
x − 2iuxx

)+ c2,

h3 = 1
32w−,xxxx − 5

16w−w−,xx − 5
32w

2
−,x + 5

16w
3
− + c1

(− 1
8w−,xx + 3

8w
2
−
)

+ c2
1
2w− + c3, etc.

Here {c�}�∈N ⊂ C denote integration constants. For subsequent purposes, it is
convenient also to introduce the corresponding homogeneous coefficients f̂�, ĝ�,
and ĥ� defined by the vanishing of the integration constants ck , for k = 1, . . . , �,

f̂0 = f0 = 1, f̂� = f�
∣∣
ck=0, k=1,...,�, � ∈ N, (2.15)

ĝ0 = g0 = − 1
2ux , ĝ� = g�

∣∣
ck=0, k=1,...,�, � ∈ N, (2.16)

ĥ0 = h0 = 1, ĥ� = h�

∣∣
ck=0, k=1,...,�, � ∈ N. (2.17)
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Hence,

f� =
�∑

k=0

c�−k f̂ k, g� =
�∑

k=0

c�−k ĝk, h� =
�∑

k=0

c�−k ĥk, � ∈ N0,

introducing

c0 = 1.

Next, we establish the zero-curvature formalism for the sGmKdV hierarchy. Given
Hypothesis 2.1, one introduces the 2 × 2 matrix U by

U (z) = −i
( 1

2ux 1
z − 1

2ux

)
, (2.18)

and for each n ∈ N0 the following 2 × 2 matrix Vn by

Vn(z) =
(−Gn−1(z) (1/z)Fn(z)

Hn(z) Gn−1(z)

)
, z ∈ C \ {0}, n ∈ N0, (2.19)

assuming Fn , Hn , and Gn−1 to be polynomials of degree n and n − 1 with C∞

(or meromorphic) coefficients with respect to x . Postulating the stationary zero-
curvature condition

−Vn,x + [U, Vn] = 0, (2.20)

equation (2.20) yields the following fundamental relationships between the poly-
nomials Fn , Hn , and Gn−1,

Fn,x = −iux Fn − 2i zGn−1, (2.21)

Hn,x = iux (x)Hn + 2i zGn−1, (2.22)

Gn−1,x = i(Hn − Fn). (2.23)

From (2.21)–(2.23) one infers that

∂x det(Vn(z, x)) = −(1/z)∂x
(
zGn−1(z, x)2 + Fn(z, x)Hn(z, x)

) = 0,

and hence

zG2
n−1 + FnHn = Q2n, (2.24)

where the monic polynomial Q2n of degree 2n is x-independent. It turns out that
it is more convenient to define

R2n+1(z) = zQ2n(z) =
2n∏
m=0

(z − Em), E0 = 0, E1, . . . , E2n ∈ C (2.25)

so that (2.24) becomes

z2G2
n−1 + zFnHn = R2n+1. (2.26)
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Moreover, computing the characteristic equation1 of iVn

det(w I2 − iVn(z)) = w2 − det(Vn(z)) = w2 + Gn−1(z)2 + z−1Fn(z)Hn(z)

= w2 + z−2R2n+1(z) = 0, (2.27)

one is naturally led to introduce the hyperelliptic curve Kn of arithmetic genus n
(possibly with a singular affine part) defined by

Kn : Fn(z, y) = y2 − R2n+1(z) = 0. (2.28)

To establish the connection between the zero-curvature formalism and the re-
cursion relations (2.3)–(2.6), we now make the following polynomial ansatz with
respect to the spectral parameter z,

Fn(z) =
n∑

�=0

fn−�z
�, Hn(z) =

n∑
�=0

hn−�z
�, (2.29)

Gn−1(z) =
n−1∑
�=0

gn−1−�z
�, G−1(z) = 0. (2.30)

Insertion of (2.29) and (2.30) into (2.21)–(2.23) then yields the recursion relation
(2.3)–(2.6) for � = 0, . . . , n − 1 (assuming n ∈ N to avoid cumbersome case dis-
tinctions in connection with the trivial case n = 0, which can easily be handled
directly, cf. (2.37)) as well as

fn,x = −iux fn, (2.31)

hn,x = iuxhn (2.32)

and the constraint

fnhn = Q2n(0) =
2n∏
m=1

Em, (2.33)

taking z = 0 in (2.24). Thus, one obtains

fn = αe−iu, α ∈ C, (2.34)

hn = βeiu, β ∈ C. (2.35)

The corresponding homogeneous coefficients f̂ n and ĥn are then also defined by

f̂ n = fn = αe−iu, ĥn = hn = βeiu . (2.36)

The trivial case n = 0 leads to

f̂0 = f0 = αe−iu, g−1 = 0, ĥ0 = h0 = βeiu . (2.37)

1 I2 denotes the identity matrix in C2.
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The last equation in (2.6) (i.e., the case � = n − 1) then defines the nth stationary
sGmKdV equation1

s-sGmKdVn(u) = 2ign−1,x (u) + 2(βeiu − αe−iu) = 0, n ∈ N0 (2.38)

subject to the constraint (cf. (2.33))

αβ = Q2n(0) =
2n∏
m=1

Em . (2.39)

Varying n ∈ N0 in (2.38) then defines the stationary sGmKdV hierarchy. We record
the first few equations explicitly,

s-sGmKdV0(u) = 2(βeiu − αe−iu) = 0,

s-sGmKdV1(u) = −iuxx + 2(βeiu − αe−iu) = 0, (2.40)

s-sGmKdV2(u) = (i/8)
(
u3
x + 2uxxx

)
x − c1iuxx + 2(βeiu − αe−iu) = 0, etc.

In particular, for α = β �= 0, the first equation in (2.40) yields the stationary sine-
Gordon equation (in light-cone coordinates), that is,

sin(u) = 0.

In the special case α = β = 0, one obtains fn = hn = 0, and hence the (n − 1)th
stationary KdV equation is satisfied for the potential w±. Introducing

v = −(i/2)ux ,

we see that w± and v are related by the Miura transformation

w± = v2 ± vx ,

and we may conclude that gn−1,x = 0,n ∈ N, equals the (n − 1)th stationary mKdV
equation with solution v.

By definition, the set of solutions of (2.38), with n ranging in N0 and c� in C,
� ∈ N, represents the class of algebro-geometric sGmKdV solutions. If u satisfies
one of the stationary sGmKdV equations in (2.38) for a particular value of n, then
it satisfies infinitely many such equations of order higher than n for certain choices
of integration constants c� (one can follow the argument in Remark 1.5). At times it
will be convenient to abbreviate algebro-geometric stationary sGmKdV solutions
u simply as sGmKdV potentials.

In the following we will frequently assume that u satisfies the nth stationary
sGmKdV equation. By this we mean it satisfies one of the nth stationary sGmKdV
equations after a particular choice of integration constants c� ∈ C, � = 1, . . . ,
n − 1, n ≥ 2, has been made.

1 In a slight abuse of notation we will occasionally stress the functional dependence of f�, g�, h� on
u, writing f�(u), g�(u), h�(u), etc.
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For subsequent purposes we also introduce the corresponding homogeneous
polynomials F̂�, Ĝ�−1, and Ĥ � defined by

F̂�(z) = F�(z)
∣∣
ck=0, k=1,...,� =

�∑
k=0

f̂ �−k zk, � = 0, . . . , n − 1,

(2.41)

F̂n(z) = αe−iu +
n∑

k=1

f̂ n−k zk = αe−iu + z F̂n−1(z),

Ĝ−1(z) = G−1(z) = 0,
(2.42)

Ĝ�−1(z) = G�−1(z)
∣∣
ck=0, k=1,...,�−1 =

�−1∑
k=0

ĝ�−1−k zk, � = 0, . . . , n,

Ĥ �(z) = H�(z)
∣∣
ck=0, k=1,...,� =

�∑
k=0

ĥ�−k zk, � = 0, . . . , n − 1,

(2.43)

Ĥ n(z) = βeiu +
n∑

k=1

ĥn−k zk = βeiu + z Ĥ n−1(z).

In accordance with our notation introduced in (2.15)–(2.17) and (2.41)–(2.43),
the corresponding homogeneous stationary sGmKdV equations are then defined
by

s- ̂sGmKdV0(u) = 2(βeiu − αe−iu) = 0,

s- ̂sGmKdVn(u) = s-sGmKdVn(u)
∣∣
c�=0, �=1,... ,n−1 = 0, n ∈ N.

Using equations (2.21)–(2.23) one can derive individual differential equations
for Fn and Hn as follows. From (2.21) and (2.23), one infers

Fn,xx = −iuxx Fn + 2z(Hn − Fn) − u2
x Fn − 2zuxGn−1. (2.44)

Multiplying (2.44) by Fn , one can eliminate Gn−1 to find

FnFn,xx − (1/2)F2
n,x + (

2z + (1/2)u2
x + iuxx

)
F2
n = 2R2n+1, (2.45)

and differentiating with respect to x finally yields

Fn,xxx + (
4z + u2

x + 2iuxx
)
Fn,x + (uxuxx + iuxxx )Fn = 0. (2.46)

A similar analysis for Hn results in

HnHn,xx − (1/2)H 2
n,x + (

2z + (1/2)u2
x − iuxx

)
H 2
n = 2R2n+1 (2.47)

and

Hn,xxx + (
4z + u2

x − 2iuxx
)
Hn,x + (uxuxx − iuxxx )Hn = 0. (2.48)
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Recalling (2.12), (2.14), one observes that equations (2.46) and (2.48) take on the
form

−(1/4)Fn,xxx + (w+ − z)Fn,x + (1/2)w+,x Fn = 0, (2.49)

−(1/4Hn,xxx + (w− − z)Hn,x + (1/2)w−,x Hn = 0, (2.50)

which are identical to the corresponding equations for the KdV hierarchy (see (1.4)
and footnote on this page) with KdV potential u = w±. Analogous assertions apply
to (2.45) and (2.47).

Equations (2.45) and (2.47) can be used to derive nonlinear recursion relations
for the homogeneous coefficients f̂� and ĥ� (i.e., the ones satisfying (2.15), (2.17) in
the case of vanishing integration constants) as proved in Theorem D.1 inAppendix D.
In addition, as proven in Theorem D.1, (2.45) leads to an explicit determination of
the integration constants c1, . . . , cn in

s-sGmKdVn(u) = 2ign−1,x (u) + 2(βeiu − αe−iu) = 0

in terms of the zeros E0 = 0, E1, . . . , E2n of the associated polynomial R2n+1 in
(2.25). In fact, one can prove (cf. (D.9))

c� = c�(E), � = 0, . . . , n − 1, (2.51)

where

c0(E) = 1,

ck(E) =
k∑

j1,... , j2n=0
j1+···+ j2n=k

(2 j1)! · · · (2 j2n)!

22k( j1!)2 · · · ( j2n!)2(2 j1 − 1) · · · (2 j2n − 1)
E j1

1 · · · E j2n
2n ,

k = 1, . . . , n − 1. (2.52)

Finally, we turn to the time-dependent sGmKdV hierarchy. Introducing a de-
formation parameter tn ∈ R into u (i.e., replacing u(x) by u(x, tn)), the definitions
(2.18), (2.19), and (2.29), (2.30) ofU , Vn , and Fn and Hn , respectively, still apply.
The corresponding zero-curvature relation reads

Utn − Vn,x + [U, Vn] = 0, n ∈ N0,

which results in the following set of equations

uxtn = −2iGn−1,x − 2(Hn − Fn), (2.53)

Fn,x = −iux Fn − 2i zGn−1, (2.54)

Hn,x = iux Hn + 2i zGn−1. (2.55)

Inserting the polynomial expressions for Fn , Hn , and Gn−1 into (2.54) and (2.55),
respectively, first yields

fn,x = −iux fn, hn,x = iuxhn, n ∈ N0.
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In the general case we find

f0 = 1, n ∈ N,

f�,x = −(1/4) f�−1,xxx + w+ f�−1,x + (1/2)w+,x f�−1, � = 1, . . . , n− 1, n ≥ 2,

and

h0 = 1, n ∈ N,

h�,x = −(1/4)h�−1,xxx + w−h�−1,x + (1/2)w−,xh�−1, � = 1, . . . , n− 1, n ≥ 2,

and (recalling our convention g−1 = 0, cf. (2.42))

uxtn = −2ign−1,x − 2(hn − fn), n ∈ N0,

in addition to equations (2.4), (2.5), (2.34), (2.35), and (2.6) (the latter equation
for � = 0, . . . , n − 2 and only for n ≥ 2). Varying n ∈ N0 then defines the time-
dependent sGmKdV hierarchy by

sGmKdVn(u) = uxtn + 2ign−1,x (u) + 2(βeiu − αe−iu) = 0, (2.56)

(x, tn) ∈ R
2, n ∈ N0.

Explicitly, the first few equations read

sGmKdV0(u) = uxt0 + 2(βeiu − αe−iu) = 0,

sGmKdV1(u) = uxt1 − iuxx + 2(βeiu − αe−iu) = 0, (2.57)

sGmKdV2(u) = uxt2 + i
8

(
u3
x + 2uxxx

)
x
− c1iuxx + 2(βeiu − αe−iu) = 0, etc.

Similarly, one introduces the corresponding homogeneous sGmKdV hierarchy
by

̂sGmKdV0(u) = uxt0 + 2(βeiu − αe−iu) = 0,

̂sGmKdVn(u) = sGmKdVn(u)
∣∣
c�=0, �=0,... ,n−1 = 0, n ∈ N.

In contrast to the stationary case, the constraint (2.39) does not apply in the
tn-dependent context (2.56) (since the left-hand side of (2.53) is nonvanishing).

Remark 2.3 Choosing α = β = i/4, sGmKdV0(u) = sG(u) = 0 is the sine-
Gordon equation in light-cone coordinates,

uxt0 = sin(u). (2.58)

In general, by introducing the scaled function

v(x, t0) = u((i/2)(αβ)−1/2x, t0) − (i/2) ln(β/α), αβ ∈ C \ {0}
the equation sGmKdV0(u) = 0 is equivalent to

vxt0 = sin(v).
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Introducing v = iu and rewriting sGmKdV0(u) = 0 in (2.57) in terms of v, setting
α = β = i/4, one finds

vxt0 = sinh(v),

that is, the sinh-Gordon equation. Similarly, introducing ξ = x + t0, η = x − t0
produces the (hyperbolic) sine-Gordon and (hyperbolic) sinh-Gordon equations in
laboratory coordinates

uξξ − uηη = sin(u), vξξ − vηη = sinh(v),

and ξ = x + t0, τ = i(x − t0) produces the elliptic sine-Gordon and elliptic sinh-
Gordon equations

uξξ + uττ = sin(u), vξξ + vττ = sinh(v).

Moreover, the case α = 0 yields

uxt0 = −2βeiu

and a similar equation in the case β = 0. Hence, writing v = iu and changing
coordinates (x, t0) → (ξ, τ ) yield the Liouville hierarchy for v starting with

vξξ + vττ = 2iβe−v. (2.59)

In particular, the results in Sections 2.3 and 2.4 extend to these hierarchies, and
hence we omit further distinctions and focus on the generalized sGmKdV hierarchy
in light-cone coordinates for the rest of this chapter. Finally, in the case α = β = 0,
we define

v(x, tn) = −(i/2)ux (x, i tn),

and the sG hierarchy reduces to

vtn − ign−1,x = 0, n ∈ N,

which equals the (n − 1)th modified KdV equation in terms of v.

Remark 2.4 The relation between the KdV and the modified KdV hierarchy on
the one side and the local sGmKdV hierarchy on the other side alluded to in
equations (2.12), (2.14), (2.49), and (2.50) can be made more precise as follows.
The equation

�x = U�, � =
(
ψ1

ψ2

)

is equivalent to

ψ1,xx = (w+ − z)ψ1, ψ2,xx = (w− − z)ψ2
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with

w± = v2 ± vx , v = −(i/2)ux . (2.60)

Equations (2.60) represent the familiar Miura transformation between solutionsw±
of the KdV hierarchy and v of the modified KdV hierarchy. Since sGmKdVn(u) =
0 reduces to mKdVn(v) = 0, n ∈ N for α = β = 0, as discussed in Remark 2.3,
sGmKdVn(u) = 0 for general α, β ∈ C represents a combination of the
sGmKdV0(u) = 0 equation and the mKdVn−1(u) = 0 equation. This corresponds
to our choice (2.19) of zVn(z) being a polynomial in z. The usually considered
nonlocal sG hierarchy then corresponds to a choice of zVn(z) rational in z with a
nontrivial principal part.

2.3 The Stationary sGmKdV Formalism

This section is devoted to a detailed study of the stationary sGmKdV hierarchy and
its algebro-geometric solutions. Our principal tools are derived from combining
the polynomial recursion formalism introduced in Section 2.2 and a fundamental
meromorphic function φ on a hyperelliptic curve Kn . With the help of φ we study
the Baker–Akhiezer vector �, Dubrovin-type equations governing the motion of
auxiliary divisors onKn , trace formulas, and theta function representations ofφ,�,
and u. We also discuss the algebro-geometric initial value problem of constructing
u from the Dubrovin equations and auxiliary divisors as initial data.

For major parts of this section we suppose

u ∈ C∞(R) (2.61)

(which could be replaced by u : C → C∞ meromorphic) and assume (2.3)–(2.6),
(2.29), (2.30), (2.38), (2.39) (respectively, (2.21)–(2.23)), and freely employ the
formalism developed in (2.18)–(2.50), keeping n ∈ N0 fixed.

We recall the hyperelliptic curve

Kn : Fn(z, y) = y2 − R2n+1(z) = 0,
(2.62)

R2n+1(z) =
2n∏
m=0

(z − Em), E0 = 0, E1, . . . , E2n ∈ C,

as introduced in (2.28). The curve Kn is compactified by joining the point P∞,
but for notational simplicity the compactification is also denoted by Kn . Points
P on Kn \ {P∞} are represented as pairs P = (z, y), where y( · ) is the meromor-
phic function on Kn satisfying Fn(z, y) = 0. The complex structure on Kn is then
defined in the usual way (see Appendix B). Hence, Kn becomes a two-sheeted hy-
perelliptic Riemann surface of (arithmetic) genus n ∈ N0 (possibly with a singular
affine part) in a standard manner.
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We also emphasize that by fixing the curve Kn (i.e., by fixing E0 = 0, E1, . . . ,

E2n), the integration constants c1, . . . , cn−1 in gn−1,x (and hence in the corre-
sponding stationary sGmKdVn equation) are uniquely determined, as is clear from
(2.51), (2.52), which establish the integration constants c� as symmetric functions
of E1, . . . , E2n .

To avoid numerous case distinctions in connection with the case n = 0, we will
assume n ∈ N for the remainder of this section. (The trivial case n = 0 is explicitly
treated in Example 2.13.) Moreover, to simplify our presentation in the following,
we will subsequently focus on sG-type equations and hence assume

α, β ∈ C \ {0}.
By (2.39) this is equivalent to

Q2n(0) =
2n∏
m=1

Em = αβ �= 0.

Hence, from this point on, we suppose

E0 = 0, Em ∈ C \ {0}, m = 1, . . . , 2n. (2.63)

In the following, the roots of the polynomials Fn and Hn will play a special role,
and hence we introduce

Fn(z) =
n∏
j=1

(z − µ j ), Hn(z) =
n∏
j=1

(z − ν j ). (2.64)

Moreover, we introduce (lifting µ j and ν j to Kn)

µ̂ j (x) = (µ j (x),−µ j (x)Gn−1(µ j (x), x)) ∈ Kn, j = 1, . . . , n, x ∈ R,

(2.65)

ν̂ j (x) = (ν j (x), ν j (x)Gn−1(ν j (x), x)) ∈ Kn, j = 1, . . . , n, x ∈ R (2.66)

and

P0 = (0, 0).

Due to the C∞(R) assumption (2.61) on u, Fn(z, · ), Hn(z, · ) ∈ C∞(R) by (2.11),
(2.13) and (2.29). Thus, one concludes

µ j , νk ∈ C(R), j, k = 1, . . . , n, (2.67)

taking multiplicities (and appropriate renumbering) of the zeros of Fn and Hn into
account. (Away from collisions of zeros, µ j and νk are of course C∞.) In addition,
(2.34) and (2.35) imply

µ j (x), νk(x) �= 0, j, k = 1, . . . , n, x ∈ R,

(cf. also (2.91) and (2.92)).
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Next, define the fundamental meromorphic function φ( · , x) on Kn by

φ(P, x) = y − zGn−1(z, x)

Fn(z, x)
(2.68)

= zHn(z, x)

y + zGn−1(z, x)
, (2.69)

P = (z, y) ∈ Kn, x ∈ R

with divisor (φ( · , x)) of φ( · , x) given by

(φ( · , x)) = DP0 ν̂(x) − DP∞µ̂(x), (2.70)

using (2.64) and (2.67). Here we abbreviated

µ̂ = {µ̂1, . . . , µ̂n}, ν̂ = {ν̂1, . . . , ν̂n} ∈ Symn(Kn).

The stationary Baker–Akhiezer vector

�(P, x, x0) =
(
ψ1(P, x, x0)

ψ2(P, x, x0)

)
, P ∈ Kn \ {P∞}, (x, x0) ∈ R

2, (2.71)

is defined by

ψ1(P, x, x0) = exp

(
−(i/2)(u(x) − u(x0)) + i

∫ x

x0

dx ′ φ(P, x ′)
)
, (2.72)

ψ2(P, x, x0) = −ψ1(P, x, x0)φ(P, x). (2.73)

We summarize the fundamental properties of φ and � in the following lemma.

Lemma 2.5 Suppose that u ∈ C∞(R) satisfies the nth stationary sGmKdV equa-
tion (2.38) subject to the constraints (2.39) and (2.63). Moreover, let P = (z, y) ∈
Kn \ {P∞}, (x, x0) ∈ R

2. Then φ satisfies the Riccati-type equation

−iφx (P) + φ(P)2 − uxφ(P) = z, (2.74)

as well as

φ(P)φ(P∗) = −z Hn(z)

Fn(z)
, (2.75)

φ(P) + φ(P∗) = −2z
Gn−1(z)

Fn(z)
, (2.76)

φ(P) − φ(P∗) = 2y

Fn(z)
, (2.77)

whereas � satisfies

�x (P) = U (z)�(P), (2.78)

− y�(P) = zVn(z)�(P), (2.79)
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ψ1(P, x, x0) =
(
Fn(z, x)

Fn(z, x0)

)1/2

exp

(
iy
∫ x

x0

dx ′Fn(z, x ′)−1

)
, (2.80)

ψ1(P, x, x0)ψ1(P∗, x, x0) = Fn(z, x)

Fn(z, x0)
, (2.81)

ψ2(P, x, x0)ψ2(P∗, x, x0) = −z Hn(z, x)

Fn(z, x0)
, (2.82)

ψ1(P, x, x0)ψ2(P∗, x, x0) + ψ1(P∗, x, x0)ψ2(P, x, x0) = 2z
Gn−1(z, x)

Fn(z, x0)
,

(2.83)

ψ1(P, x, x0)ψ2(P∗, x, x0) − ψ1(P∗, x, x0)ψ2(P, x, x0) = 2y

Fn(z, x0)
. (2.84)

In addition, as long as the zeros of Fn( · , x) are all simple for x ∈ �, � ⊆ R an
open interval, �( · , x, x0) is meromorphic on Kn \ {P∞} for x, x0 ∈ �.

Proof Equation (2.74) follows using the definition (2.68) of φ as well as rela-
tions (2.21)–(2.23). The other relations, (2.75)–(2.77), are easy consequences of
y(P∗) = −y(P), (2.68), and (2.69). By (2.72) and (2.73), � is meromorphic on
Kn \ {P∞} away from the poles µ̂ j (x ′) of φ( · , x ′). By (2.21), (2.65), and (2.68),

iφ(P, x ′) =
P→µ̂ j (x ′)

∂x ′ ln(Fn(z, x ′)) + O(1) as z → µ j (x
′), (2.85)

and hence ψ1 is meromorphic on Kn \ {P∞} by (2.72) as long as the zeros of
Fn( · , x) are all simple. This follows from (2.72) by restricting P to a sufficiently
small neighborhood U j of {µ̂ j (x ′) ∈ Kn | x ′ ∈ �, x ′ ∈ [x0, x]} such that µ̂k(x ′) /∈
U j for all x ′ ∈ [x0, x] and all k ∈ {1, . . . , n} \ { j}. Since φ is meromorphic on Kn

by (2.68), ψ2 is meromorphic on Kn \ {P∞} by (2.73). The remaining properties
of � can be verified by using the definition (2.71)–(2.73) as well as the relations
(2.74)–(2.77). In particular, (2.80) follows by inserting the definition of φ, (2.68),
into (2.72), using (2.21). �

Equations (2.81)–(2.84) show that the basic identity (2.26), z2G2
n−1 + zFnHn =

R2n+1, is equivalent to the elementary fact

(ψ1,+ψ2,− + ψ1,−ψ2,+)2 − 4ψ1,+ψ1,−ψ2,+ψ2,− = (ψ1,+ψ2,− − ψ1,−ψ2,+)2,

identifying ψ1(P) = ψ1,+, ψ1(P∗) = ψ1,−, ψ2(P) = ψ2,+, ψ2(P∗) = ψ2,−. This
provides the intimate link between our approach and the squared function systems
also employed in the literature in connection with algebro-geometric solutions of
the sine-Gordon hierarchy.

Next, we derive Dubrovin-type equations, that is, first-order systems of nonlin-
ear differential equations that govern the dynamics of µ j and ν j with respect to
variations of x . Since in the remainder of this section we will frequently assume
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the affine part of Kn to be nonsingular, we list all restrictions on Kn in this case,

E0 = 0, Em ∈ C \ {0}, Em �= Em ′ , m,m ′ = 1, . . . , 2n. (2.86)

Lemma 2.6 Suppose that u ∈ C∞(�̃µ) satisfies the nth stationary sGmKdV
equation (2.38) on an open interval �̃µ ⊆ R subject to the constraint (2.39).
Moreover, assume that the zeros µ j , j = 1, . . . , n, of Fn( · ) remain distinct on
�̃µ. Then {µ̂ j } j=1,...,n, defined by (2.65), satisfies the following first-order system
of differential equations on �̃µ

µ j,x = −2iy(µ̂ j )
n∏

k=1
k �= j

(µ j − µk)
−1, j = 1, . . . , n. (2.87)

Next, assume the affine part of Kn to be nonsingular and introduce the initial
condition

{µ̂ j (x0)} j=1,...,n ⊂ Kn (2.88)

for some x0 ∈ R, where µ j (x0), j = 1, . . . , n, are assumed to be distinct. Then
there exists an open interval �µ ⊆ R, with x0 ∈ �µ, such that the initial value
problem (2.87), (2.88) has a unique solution {µ̂ j } j=1,...,n ⊂ Kn satisfying

µ̂ j ∈ C∞(�µ,Kn), j = 1, . . . , n, (2.89)

and µ j , j = 1, . . . , n, remain distinct on �µ.
For the zeros ν j , j = 1, . . . , n, of Hn( · ) identical statements hold withµ j and�µ

replaced by ν j and �ν , etc. In particular, {ν̂ j } j=1,...,n, defined by (2.66), satisfies
the system

ν j,x = −2iy(ν̂ j )
n∏

k=1
k �= j

(ν j − νk)
−1, j = 1, . . . , n. (2.90)

Proof It suffices to prove (2.87) and (2.89) since the proof of (2.90) is analogous
to that of (2.87). Inserting z = µ j into equation (2.21), one concludes from (2.65)
that

Fn,x (µ j ) = −µ j,x

n∏
k=1
k �= j

(µ j − µk) = −2iµ j Gn−1(µ j ) = 2iy(µ̂ j ),

proving (2.87). The smoothness assertion (2.89) is clear as long as µ̂ j stays away
from the branch points (Em, 0). Hence, we suppose

µ j0 (x) → Em0 as x → x0 ∈ �µ,
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for some j0 ∈ {1, . . . , n}, m0 ∈ {0, . . . , 2n}. Introducing

ζ j0 (x) = σ (µ j0 (x) − Em0 )1/2, σ = ±1, µ j0 (x) = Em0 + ζ j0 (x)2

for x in an open interval centered around x0, the Dubrovin equation (2.87) for µ j0

becomes

ζ j0,x (x) =
x→x0

c(σ )




2n∏
m=0
m �=m0

(Em0 − Em)




1/2

×




n∏
k=1
k �= j0

(
Em0 − µk(x)

)−1


(1 + O(ζ j0 (x)2)

)

for some |c(σ )| = 1, and one concludes (2.89). �

Combining the polynomial approach in Section 2.2 with (2.64) readily yields
trace formulas for the sGmKdV invariants, that is, expressions of f� and h� in
terms of symmetric functions of the zeros µ j and ν j of Fn and Hn , respectively.
For simplicity, we just record the simplest case.

Lemma 2.7 Suppose that u ∈ C∞(R) satisfies the nth stationary sGmKdV
equation (2.38) subject to the constraints (2.39) and (2.63). Then,

u = i ln

(
(−1)nα−1

n∏
j=1

µ j

)
(2.91)

= −i ln

(
(−1)nβ−1

n∏
j=1

ν j

)
, (2.92)

where αβ = ∏2n
m=1 Em �= 0. In particular, one infers the constraint

n∏
j=1

µ jν j =
2n∏
m=1

Em . (2.93)

Proof Equation (2.91) follows by considering the constant term in Fn in (2.29)
combined with (2.34) and (2.64). Equation (2.92) can be deduced in a similar
way by studying the polynomial Hn . Equation (2.93) follows upon exponentiating
(2.91) and (2.92). �

Remark 2.8 If α = 0 (as in Liouville-type equations (2.59)), the fact that fn(x) =
(−1)n

∏n
j=1 µ j (x) = 0 forces (at least) one µ̂ j0 (x) to coincide with P0 = (0, 0) and
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hence to be x-independent. Similarly, if α = β = 0, then µ̂ j1 (x) = ν̂ j2 (x) = P0 for
some j1, j2 ∈ {1, . . . , n}.

Now we turn to asymptotic properties of φ and ψ j , j = 1, 2.

Lemma 2.9 Suppose that u ∈ C∞(R) satisfies the nth stationary sGmKdV
equation (2.38) subject to the constraints (2.39) and (2.63). Moreover, let P =
(z, y) ∈ Kn \ {P∞}, (x, x0) ∈ R

2. Then,

φ(P) =
ζ→0

ζ−1 + (1/2)ux + (
(1/8)u2

x + (i/4)uxx
)
ζ + O(ζ 2) as P → P∞,

(2.94)

ψ1(P, x, x0) =
ζ→0

exp(iζ−1(x − x0))(1 + O(ζ )) as P → P∞, (2.95)

ψ2(P, x, x0) =
ζ→0

− exp(iζ−1(x − x0))(ζ−1 + O(1)) as P → P∞, (2.96)

ζ = σ/z1/2, σ = ±1.

Proof The existence of the asymptotic expansion of φ in terms of the local coor-
dinate ζ = σ/z1/2, σ = ±1 near P∞ (cf. (B.7)–(B.11)) is clear from the explicit
form of φ in (2.68). Insertion of the polynomial Fn into (2.68) then yields the
explicit expansion coefficients in (2.94). Alternatively, one can insert the ansatz

φ =
z→∞ φ−1z

1/2 + φ0 + φ1z
−1/2 + O(z−1) (2.97)

into the Riccati-type equation (2.74). A comparison of powers of z−1/2 then proves
(2.94). Equation (2.95) then follows from inserting (2.94) into (2.72) and (2.96) is
clear from (2.73), (2.94), and (2.95). �

Next, we derive representations of φ, ψ , as well as u in terms of the Riemann
theta function of Kn , assuming the affine part of Kn to be nonsingular. We will
freely use the notation established in Appendices A and C. To avoid the trivial case
n = 0 (considered in Example 2.13), we assume n ∈ N for the remainder of this
argument.

We choose a fixed base point Q0 on Kn \ {P0, P∞} to be one of the remaining
branch points. Let ω(3)

P∞,P0
be a normal differential of the third kind holomorphic on

Kn \ {P∞, P0} with simple poles at P∞ and P0 and residues 1 and −1, respectively
(cf. (A.23)–(A.26)),

ω
(3)
P∞,P0

=
ζ→0

(ζ−1 + O(1))dζ as P → P∞, (2.98)

ω
(3)
P∞,P0

=
ζ→0

(−ζ−1 + O(1))dζ as P → P0, (2.99)
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where the local coordinates are given by

ζ = σ/z1/2 for P near P∞, ζ = σ ′z1/2 for P near P0, σ, σ ′ ∈ {1,−1}.
(2.100)

In particular,
∫
a j

ω
(3)
P∞,P0

= 0, j = 1, . . . , n, (2.101)

and with Q0 = (Em0 , 0),
∫ P

Q0

ω
(3)
P∞,P0

=
ζ→0

ln(ζ ) + (1/2) ln(Em0 ) + O(ζ ) as P → P∞, (2.102)

∫ P

Q0

ω
(3)
P∞,P0

=
ζ→0

− ln(ζ ) + (1/2) ln(Em0 ) + O(ζ ) as P → P0 (2.103)

in analogy to (1.96), (1.97).
Next, let ω(2)

P∞,0 be the normalized differential of the second kind holomorphic
on Kn \ {P∞} such that (cf. (A.20), (A.21), and (A.22))

∫
a j

ω
(2)
P∞,0 = 0, j = 1, . . . , n (2.104)

ω
(2)
P∞,0 =

ζ→0
(ζ−2 + O(1))dζ as P → P∞, (2.105)

∫ P

Q0

ω
(2)
P∞,0 =

ζ→0
−ζ−1 + O(ζ ) as P → P∞ (2.106)

in analogy to (1.98)–(1.100). Denoting the vector of b-periods of ω(2)
P∞,0/(2π i) by

U (2)
0 , one obtains

U (2)
0 = (

U (2)
0,1, . . . ,U

(2)
0,n

)
, U (2)

0, j = 1

2π i

∫
b j

ω
(2)
P∞,0 = −2c j (n), j = 1, . . . , n,

(2.107)

applying (B.33). In the following, it will be convenient to introduce the abbrevia-
tions

z(P, Q) = �Q0
− AQ0

(P) + αQ0
(DQ),

z(P, Q,") = �Q0
− AQ0

(P) + αQ0
(DQ) + ", (2.108)

P ∈ Kn, Q = {Q1, . . . , Qn} ∈ Symn(Kn).

We note that by (A.52) and (A.53), z( · , Q) and z( · , Q,") are independent of the
choice of base point Q0.

Theorem 2.10 Suppose that u ∈ C∞(�) satisfies the nth stationary sGmKdV
equation (2.38) on � subject to the constraints (2.39) and (2.86). In addition,
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let P ∈ Kn \ {P∞} and x, x0 ∈ �, where � ⊆ R is an open interval. Moreover,
suppose that Dµ̂(x), or equivalently, Dν̂(x) is nonspecial for x ∈ �. Then φ admits
the representation

φ(P, x) = θ (z(P∞, µ̂(x)))θ (z(P, µ̂(x),"))

θ (z(P∞, µ̂(x),"))θ(z(P, µ̂(x)))
exp

(
−
∫ P

Q0

ω
(3)
P∞,P0

+ 1
2 ln(Em0 )

)
,

(2.109)

where " is a half-period defined as

" = AP0
(P∞), 2" = 0 (mod Ln). (2.110)

The components ψ j , j = 1, 2 of the Baker–Akhiezer function � are given by1

ψ1(P, x, x0) = θ (z(P∞, µ̂(x0)))θ (z(P, µ̂(x)))

θ (z(P∞, µ̂(x)))θ (z(P, µ̂(x0)))

× exp

(
−i(x − x0)

∫ P

Q0

ω
(2)
P∞,0

)
(2.111)

and

ψ2(P, x, x0) = −θ(z(P∞, µ̂(x0)))θ (z(P, µ̂(x),"))

θ(z(P∞, µ̂(x),"))θ (z(P, µ̂(x0)))

× exp

(
−
∫ P

Q0

ω
(3)
P∞,P0

+ 1
2 ln(Em0 ) − i(x − x0)

∫ P

Q0

ω
(2)
P∞,0

)
.

(2.112)

The Abel map linearizes the auxiliary divisors in the sense that (cf. (2.107))

αQ0

(Dµ̂(x)
) = αQ0

(Dµ̂(x0)
)+ iU (2)

0 (x − x0), (2.113)

αQ0

(Dν̂(x)
) = αQ0

(Dν̂(x0)
)+ iU (2)

0 (x − x0). (2.114)

Finally, u is of the form

u(x) = −(i/2) ln(α/β) (mod 2πZ) + 2i ln

(
θ
(
z(P∞, µ̂(x),")

)
θ
(
z(P∞, µ̂(x))

)
)
. (2.115)

Proof First, we assume temporarily that

µ j (x) �= µ j ′ (x), νk(x) �= νk ′ (x) for j �= j ′, k �= k ′ and x ∈ �̃ (2.116)

for appropriate �̃ ⊆ �. Since by (2.70), DP0 ν̂ ∼ DP∞µ̂, and P∞ = (P∞)∗ /∈
{µ̂1, . . . , µ̂n} by hypothesis, one can apply Theorem A.31 to conclude that Dν̂ ∈
1 To avoid multi-valued expressions in formulas such as (2.109), (2.111), (2.112), etc., we agree always

to choose the same path of integration connecting Q0 and P and refer to Remark A.28 for additional
tacitly assumed conventions.
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Symn(Kn) is nonspecial. This argument is of course symmetric with respect to µ̂

and ν̂. Thus, Dµ̂ is nonspecial if and only if Dν̂ is. Next, we denote the right-hand
side of (2.109) by φ̃. To prove that φ = φ̃ by applying the Riemann–Roch theorem
(Theorem A.13), it suffices to show that φ and φ̃ have the same poles and zeros as
well as the same value at one point on Kn . From the definition (2.68) of φ( · , x)
one concludes that it has simple zeros at ν̂(x) and P0 and simple poles at µ̂(x)
and P∞. By (2.102), (2.103), the expression (2.109) for φ̃, and a special case of
Riemann’s vanishing theorem (cf. Theorem A.26), φ̃ also shares these properties.
As a consequence of the linear equivalence DP∞µ̂ ∼ DP0 ν̂ , that is,

AQ0
(P∞) + αQ0

(Dµ̂) = AQ0
(P0) + αQ0

(Dν̂), (2.117)

one obtains

αQ0
(Dν̂) = αQ0

(Dµ̂) + ", (2.118)

with

" = AP0
(P∞). (2.119)

Since P0 and P∞ are branch points of Kn , the right-hand side of (2.119) is a
half-period, proving (2.110). By the Riemann–Roch theorem (Theorem A.13) and
since φ and φ̃ share common zeros, one concludes that φ̃/φ = c for some constant
c ∈ C. Using (2.94), one infers together with (2.102) that

φ̃

φ
=

ζ→0

(1 + O(ζ ))(ζ−1 + O(1))

ζ−1 + O(1)
=

ζ→0
1 + O(ζ ),

and hence c = 1. This proves φ = φ̃ subject to (2.116).
Next we turn to the proof of (2.111). Denote by ψ̃ the right-hand side of (2.111).

To prove ψ1 = ψ̃1, with ψ1 given by (2.72), one first observes, using (2.65), the
definition (2.68) of φ and the Dubrovin equations (2.87) that

iφ(P, x ′) =
P→µ̂ j (x ′)

∂x ′ ln(z − µ j (x
′)) + O(1). (2.120)

Together with (2.72), this yields

ψ1(P, x, x0) =




(z − µ j (x))O(1) as P → µ̂ j (x) �= µ̂ j (x0),

O(1) as P → µ̂ j (x) = µ̂ j (x0),

(z − µ j (x0))−1O(1) as P → µ̂ j (x0) �= µ̂ j (x),

(2.121)

P = (z, y) ∈ Kn, x, x0 ∈ �̃,

where O(1) �= 0 in (2.121). Consequently, all zeros and poles of ψ1 and ψ̃1 on
Kn \ {P∞} are simple and coincide. Hence one concludes by Theorem A.23 thatψ1

contains a factor θ (z(P, µ̂(x)))/θ (z(P, µ̂(x0))). It remains to identify the essential
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singularity of ψ1 and ψ̃1 at P∞. The asymptotic spectral parameter expansion
(2.94) of φ yields

− i

2
(u(x) − u(x0)) + i

∫ x

x0

dx ′ φ(P, x ′) =
ζ→0

i(x − x0)(ζ−1 + O(ζ )) as P → P∞,

(2.122)

and thus comparing (2.72), (2.106), the expression (2.111) for ψ̃1, and (2.122)
then shows that ψ1 and ψ̃1 have identical exponential behavior up to order O(ζ )
near P∞. Consequently, ψ1 and ψ̃1 share the same singularities and zeros, and
the Riemann–Roch-type uniqueness result in Lemma B.2 (taking tr = t0,r ) then
proves that ψ1 and ψ̃1 coincide up to normalization. The latter is determined by
(2.81), implying

ψ1(P, x, x0)ψ1(P∗, x, x0) =
P→P∞

1. (2.123)

Hence (2.111) holds subject to (2.116). The corresponding expression (2.112) for
ψ2 is then obvious from (2.73), (2.109), and (2.111).

Next we prove the linearization property (2.113) using Lemma 2.6 (and still
assuming (2.116)). Equation (2.114) then follows from (2.113) and (2.117). From

αQ0
(Dµ̂) =

( n∑
j=1

∫ µ̂ j

Q0

ω

)
(mod Ln)

and the Dubrovin equations (2.87), one infers on �

∂xαQ0
(Dµ̂) =

n∑
j=1

µ j,x

n∑
k=1

c(k)
µk−1
j

y(µ̂ j )
= −2i

n∑
j,k=1

c(k)
µk−1
j∏n

�=1
��= j

(µ j − µ�)
.

Lagrange’s interpolation formula (cf. Theorem E.1)

n∑
j=1

µk−1
j

n∏
�=1
��= j

(µ j − µ�)
−1 = δk,n, k = 1, . . . , n

then yields

∂xαQ0
(Dµ̂) = −2ic(n) = iU (2)

0 , x ∈ �̃ (2.124)

and hence (2.113), subject to (2.116). In particular, applying (B.33) establishes the
relation between the left-hand side of (2.124) and the vector U 0 of b-periods of
ω

(2)
P∞,0/(2π i) introduced in (2.107).
To prove formula (2.115) for u we employ an asymptotic spectral parameter

expansion for φ and the Riccati equation (2.74). First we conclude from (B.31)

ω =
ζ→0

(−2c(n) + O(ζ 2))dζ as P → P∞,
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and hence

AQ0
(P) =

∫ P

Q0

ω (mod Ln) =
ζ→0

AQ0
(P∞) − 2c(n)ζ + O(ζ 3)

= AQ0
(P∞) +U (2)

0 ζ + O(ζ 2),

using (B.33) and (2.107). Expanding the subsequent ratios of Riemann theta
functions in (2.109) one finds

θ (P, µ̂)

θ (P∞, µ̂)

=
ζ→0

1 −
∑n

j=1 U
(2)
0, j∂w j θ

(
�Q0

− AQ0
(P∞) + w + αQ0

(µ̂)
)|w=0

θ
(
�Q0

− AQ0
(P∞) + αQ0

(µ̂)
) ζ + O(ζ 3)

(2.125)

and the same formula for the theta function ratio involving the additional half-
period ". Here

∑n
j=1 U

(2)
0, j∂w j denotes the directional derivative in U (2)

0 -direction.
Given (2.107), we may write

n∑
j=1

iU (2)
0, j∂w j θ

(
�Q0

− AQ0
(P∞) + w + αQ0

(µ̂(x0)) + iU (2)
0 (x − x0)

)∣∣
w=0

= ∂xθ
(
�Q0

− AQ0
(P∞) + αQ0

(µ̂(x0)) + iU (2)
0 (x − x0)

)

and hence obtain from (2.125)

θ
(
z(P, µ̂)

)
θ
(
z(P∞, µ̂)

) =
ζ→0

1 + i∂x ln
(
θ
(
z(P∞, µ̂)

))
ζ + O(ζ 3) as P → P∞,

and the identical formula for the theta function ratio involving ". Together with
(2.102) this shows that

φ(P) =
ζ→0

ζ−1 + i∂x ln

(
θ
(
z(P∞, µ̂,")

)
θ
(
z(P∞, µ̂)

)
)

+ O(ζ ) as P → P∞.

Expanding the Riccati equation (2.74) for P near P∞ then yields

ux = 2i∂x ln

(
θ
(
z(P∞, µ̂,")

)
θ
(
z(P∞, µ̂)

)
)
, x ∈ �̃

and hence

u = 2i ln

(
θ
(
z(P∞, µ̂,")

)
θ
(
z(P∞, µ̂)

)
)

+ C on �̃
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for some integration constant C ∈ C. The equalities

fn = αe−iu = (−1)n
n∏
j=1

µ j = αe−iC
(

θ
(
z(P∞, ν̂)

)
θ
(
z(P∞, µ̂)

)
)2

,

hn = βeiu = (−1)n
n∏
j=1

ν j = βeiC
(
θ
(
z(P∞, µ̂)

)
θ
(
z(P∞, ν̂)

)
)2

,

and the facts that µ̂ and ν̂ satisfy identical Dubrovin-type equations and the con-
straint

∏n
j=1 µ jν j = ∏2n

m=1 Em is symmetric with respect to µ̂ and ν̂ then yield

αe−iC = βeiC

and hence (2.115), assuming (2.116). The extension of all these results from �̃ to
� then simply follows from the continuity of αQ0

and the hypothesis of Dµ̂ being
nonspecial on �. �

Combining (2.113), (2.114), (2.118), and (2.115) shows the remarkable linearity
of the theta function arguments with respect to x in the formula for u. In fact, one
can rewrite (2.115) as

u(x) = c0 + 2i ln

(
θ (A + Bx + ")

θ (A + Bx)

)
,

where

A = �Q0
− AQ0

(P∞) − iU (2)
0 x0 + αQ0

(Dµ̂(x0)
)
,

B = iU (2)
0 ,

" = AP0
(P∞), c0 = −(i/2) ln(α/β) (mod 2πZ),

and hence the constants ", B ∈ C
n are uniquely determined by Kn (and its ho-

mology basis), and the constant A ∈ C
n is in one-to-one correspondence with the

Dirichlet data µ̂(x0) = (µ̂1(x0), . . . , µ̂n(x0)) ∈ Symn(Kn) at the point x0 as long
as the divisor Dµ̂(x0) is assumed to be nonspecial.

Remark 2.11 Although this approach to the algebro-geometric solutions of the
sGmKdV hierarchy resembles that of the AKNS hierarchy (which includes the
mKdV hierarchy) in many ways, there are, however, some characteristic differ-
ences. In particular, the branch point P0 = (0, 0) is an unusual necessity in the sG
context, and P∞ (as in the KdV context) is a branch point as opposed to the AKNS
case. This shows that sGmKdV curves are actually special KdV curves (with (0, 0)
a branch point).

Remark 2.12 The explicit expressions (2.111), (2.112) for ψ j , j = 1, 2 comple-
ment Lemma 2.5 and show that � stays meromorphic on Kn \ {P∞} as long as
Dµ̂ is nonspecial (assuming the affine part of Kn to be nonsingular).



2.3. The Stationary sGmKdV Formalism 147

The sGmKdV potential u in (2.115) is complex-valued in general. A discus-
sion of the isospectral set of real-valued (quasi-periodic and periodic) algebro-
geometric sGmKdV solutions will be deferred to the next section (cf. Lemmas 2.30
and 2.31 and Remark 2.32).

Next we briefly consider the trivial case n = 0 excluded in Theorem 2.10.

Example 2.13 Assume n = 0, P = (z, y) ∈ K0 \ {P∞} and let (x, x0) ∈ R
2. Then

K0 : F0(z, y) = y2 − R1(z) = y2 − z = 0, E0 = 0,

u(x) = −i ln(α), α ∈ C \ {0},
F0(z, x) = 1, G−1(z, x) = 0, H1(z, x) = 1,

φ(P, x) = y,

ψ1(P, x, x0) = exp(iy(x − x0)),

ψ2(P, x, x0) = −y exp(iy(x − x0)).

Up to this point we assumed u ∈ C∞(R) satisfies the stationary sGmKdV
equation (2.38) for some fixed n ∈ N0. Next we will show that solvability of the
Dubrovin equations (2.87) on �̂µ ⊆ �µ, such that µ j �= 0 on �̂µ, j = 1, . . . , n,
in fact implies equation (2.38) on �̂µ. As pointed out in Remark 2.17, this amounts
to solving the algebro-geometric initial value problem in the stationary case.

Theorem 2.14 Fix n ∈ N, α, β ∈ C \ {0}, and assume (2.86). Suppose that
{µ̂ j } j=1,...,n satisfies the stationary Dubrovin equations (2.87) on an open interval
�̂µ ⊆ R such that µ j , j = 1, . . . , n, remain distinct and nonzero on �̂µ. Then
u ∈ C∞(�̂µ), defined by

u = i ln

(
(−1)nα−1

n∏
j=1

µ j

)
, (2.126)

satisfies the nth stationary sGmKdV equation (2.38), that is,

s-sGmKdVn(u) = 0 on �̂µ (2.127)

subject to the constraint αβ = ∏2n
m=1 Em �= 0.

Proof Given the solutions µ̂ j = (µ j , y(µ j )) ∈ C∞(�̂µ,Kn), j = 1, . . . , n of
(2.87), we introduce

Fn(z) =
n∏
j=1

(z − µ j ) on C × �̂µ (2.128)

and define u ∈ C∞(�̂µ) by (2.126). In addition, we introduce

Gn−1(z) = i

2z

(
Fn,x (z) + iux Fn(z)

)
on C × �̂µ, (2.129)
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(cf. (2.21)), where Gn−1(0) is well-defined because of (2.128) and (2.129). We
also note that on �̂µ,

µ̂ j = (µ j ,−(i/2)Fn,x (µ j )) = (µ j ,−µ j Gn−1(µ j )), j = 1, . . . , n (2.130)

by (2.87) and Fn,x (µ j ) = −µ j,x
∏n

k=1
k �= j

(µ j − µk). Next, we define a monic poly-
nomial Hn of degree n on C × �̂µ such that (2.26) holds, that is,

R2n+1(z) − z2Gn−1(z)2 = zFn(z)Hn(z) on C × �̂µ. (2.131)

The polynomial Hn exists since the left-hand side of (2.131) vanishes at z = 0, and
z = µ j (x), j = 1, . . . , n by (2.130). Introducing the polynomial Pn−1 of degree
n − 1 on C × �̂µ by

Pn−1(z) = Hn(z) − Fn(z) + iGn−1,x (z) on C × �̂µ

and differentiating (2.131) with respect to x yields

2zGn−1(z)Gn−1,x (z) + Fn,x (z)Hn(z) + Fn(z)Hn,x (z) = 0, (2.132)

and hence

µ j Gn−1(µ j )Pn−1(µ j ) = 0, j = 1, . . . , n

on �̂µ. From this point on one can follow the proof of Theorem 1.26 step by step;
hence, one concludes that

Pn−1 = 0 on C × �̂µ,

and therefore (2.23), that is,

Hn(z) = Fn(z) − iGn−1,x (z) on C × �̂µ. (2.133)

Combining (2.132) and (2.133) then yields (2.22),

Hn,x (z) = iux Hn(z) + 2i zGn−1(z) on C × �̂µ;

thus, we have derived the fundamental equations (2.21)–(2.23) and (2.26) on
C × �̂µ. One can now mimic our analysis in (2.26)–(2.35) to arrive at the nth
stationary sGmKdV equation (2.38) satisfied by u, subject to the constraint (2.39),
αβ = ∏2n

m=1 Em �= 0. �

Remark 2.15 The explicit theta function representation (2.115) of u on �µ in
(2.126) then permits one to extend u beyond �µ as long as Dµ̂ remains nonspecial
(cf. Theorem A.31).

Remark 2.16 Although we formulated Theorem 2.14 in terms of Dirichlet eigen-
valuesµ j , j = 1, . . . , n only, the analogous result (and strategy of proof) obviously
works in terms of ν j , j = 1, . . . , n.
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Remark 2.17 A closer look at Theorem 2.14 reveals that u is uniquely deter-
mined in an open neighborhood � of x0 by Kn and the initial condition µ̂(x0) =
(µ̂1(x0), . . . , µ̂n(x0)) ∈ Symn(Kn), or equivalently, by the auxiliary divisorDµ̂(x0)∈
Symn(Kn) at x = x0. Conversely, given Kn and u in an open neighborhood � of
x0, one can construct the corresponding polynomials Fn( · , x), Gn−1( · , x), and
Hn( · , x) for x ∈ � (using the recursion relation (2.3)–(2.6) to determine the ho-
mogeneous elements f̂�, ĝ�, ĥ�, and (D.9) to determine c� = c�(E), � = 0, . . . , n)
and then recover the auxiliary divisor Dµ̂(x) for x ∈ � from the zeros of Fn( · , x)
and from (2.65). This remark is of relevance in connection with determining the
isospectral set of sGmKdV potentials u in the sense that once the curve Kn is
fixed, elements of the isospectral class of potentials are parametrized by (nonspe-
cial) auxiliary divisors Dµ̂(x) (cf. Remark 2.32).

2.4 The Time-Dependent sGmKdV Formalism

In this section we extend the algebro-geometric analysis of Section 2.3 to the
time-dependent sGmKdV hierarchy.

For most of this section, we assume the following hypothesis.

Hypothesis 2.18 Suppose that u : R
2 → C satisfies

u( · , t) ∈ C∞(R), t ∈ R, ux (x, · ) ∈ C1(R), x ∈ R. (2.134)

The basic problem in the analysis of algebro-geometric solutions of the sGmKdV
hierarchy consists in solving the time-dependent r th sGmKdV flow with initial
data a stationary solution of the nth equation in the hierarchy. More precisely,
given n ∈ N0, consider a solution u(0) of the nth stationary sGmKdV equation
s-sGmKdVn(u(0)) = 0 subject to the constraint αβ �= 0, associated with Kn and a
given set of integration constants {c�}�=1,... ,n ⊂ C. Next, let r ∈ N0; we intend to
construct a solution u of the r th sGmKdV flow sGmKdVr (u) = 0 with u(t0,r ) =
u(0) for some t0,r ∈ R. To emphasize that the integration constants in the definitions
of the stationary and the time-dependent sGmKdV equations are independent of
each other, we indicate this by adding a tilde on all the time-dependent quantities.
Hence, we employ the notation Ṽr , F̃r , G̃r−1, H̃r , f̃ s , g̃s , h̃s , c̃s , α̃, β̃ to distinguish
them from Vn , Fn , Gn−1, Hn , f�, g�, h�, c�, α, β in the following. In addition, we
follow a more elaborate notation inspired by Hirota’s τ -function approach and
indicate the individual r th sGmKdV flow by a separate time variable tr ∈ R.

Summing up, we are seeking a solution u of the time-dependent algebro-
geometric initial value problem

˜sGmKdVr (u) = uxtr + 2i g̃r−1,x (u) + 2(β̃eiu − α̃e−iu) = 0,
(2.135)

u
∣∣
tr=t0,r = u(0),

s-sGmKdVn
(
u(0)

) = 2ign−1,x
(
u(0)

)+ 2
(
βeiu

(0) − αe−iu
(0)) = 0 (2.136)
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for some t0,r ∈ R, n, r ∈ N0, where u = u(x, tr ) satisfies (2.134) and a fixed curve
Kn is associated with the stationary solution u(0) in (2.136). Actually, relying on the
isospectral property of the sGmKdV flows, we will go a step further and assume
(2.136) not only at tr = t0,r but for all tr ∈ R. Hence, we start with

Utr − Ṽr,x + [U, Ṽr ] = 0, (2.137)

−Vn,x + [U, Vn] = 0, (2.138)

where (cf. (2.18), (2.19), (2.29), (2.30))

U (z) = −i
(

1
2ux 1

z − 1
2ux

)
,

Vn(z) = i

(
−Gn−1(z) (1/z)Fn(z)

Hn(z) Gn−1(z)

)
, (2.139)

Ṽr (z) = i

(
−G̃r−1(z) (1/z)F̃r (z)

H̃r (z) G̃r−1(z)

)
,

and

Fn(z) =
n∑

�=0

fn−�z
� =

n∏
j=1

(z − µ j ), (2.140)

Gn−1(z) =
n−1∑
�=0

gn−1−�z
�, G−1(z) = 0, (2.141)

Hn(z) =
n∑

�=0

hn−�z
� =

n∏
j=1

(z − ν j ), (2.142)

F̃r (z) =
r∑
s=0

f̃ r−s zs, (2.143)

G̃r−1(z) =
r−1∑
s=0

g̃r−1−s zs, G̃−1(z) = 0, (2.144)

H̃r (z) =
r∑
s=0

h̃r−s zs (2.145)

for fixed n, r ∈ N0. Here f�, f̃ s , g�, g̃s , h�, and h̃s , � = 0, . . . , n − 1, s = 0, . . . ,
r − 1, are defined as in (2.3)–(2.6) with appropriate sets of integration constants.
Explicitly, (2.137) and (2.138) are equivalent to (cf. (2.53)–(2.55))

uxtr = −2i G̃r−1,x − 2(H̃r − F̃r ), (2.146)

F̃r,x = −iux F̃r − 2i zG̃r−1, (2.147)

H̃r,x = iux H̃ r + 2i zG̃r−1 (2.148)
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and (cf. (2.21)–(2.23)),

Fn,x = −iux Fn − 2i zGn−1, (2.149)

Hn,x = iux Hn + 2i zGn−1, (2.150)

Gn−1,x = i(Hn − Fn), (2.151)

respectively. Taking z = 0 in (2.147)–(2.150), yields

f̃ r = α̃e−iu, h̃r = β̃eiu, (2.152)

fn = αe−iu, hn = βeiu, (2.153)

as discussed in Section 2.2. It will turn out later (cf. Remark 2.21) that α, β, α̃, β̃
in (2.135) and (2.136) are not independent of each other but constrained by

fn h̃r = f̃ r hn or αβ̃ = α̃β. (2.154)

We also recall our conventions g−1 = G−1 = 0 in (2.42) and set

G̃−1(z, x, t0) = 0, g̃−1(x, t0) = 0 for r = 0. (2.155)

Hence, (2.3)–(2.50) apply to Fn , Gn−1, Hn , f j , g j , and h j and (2.3)–(2.6), (2.29),
(2.30) with n → r , c� → c̃�, α → α̃, β → β̃ apply to F̃r , G̃r−1, H̃r , f̃ j , g̃ j , and
h̃ j . In particular, the fundamental identity (2.26) holds,

z2G2
n−1 + zFnHn = R2n+1, (2.156)

and the hyperelliptic curve Kn is still given by (2.62) assuming (2.63) for the
remainder of this section, that is,

E0 = 0, Em ∈ C \ {0}, m = 1, . . . , 2n. (2.157)

First we will assume the existence of a solution u of equations (2.146)–(2.151),
(2.154) and derive an explicit formula for u in terms of Riemann theta functions.
In addition, we will show in Theorem 2.34 that (2.146)–(2.151), (2.154) and hence
the algebro-geometric initial value problem (2.135), (2.136) has a solution at least
locally, that is for (x, tr ) ∈ � for some open and connected set � ⊆ R

2.
In analogy to equations (2.65) and (2.66) we define

µ̂ j (x, tr ) = (µ j (x, tr ),−µ j (x, tr )Gn−1(µ j (x, tr ), x, tr )) ∈ Kn,
(2.158)

j = 1, . . . , n, (x, tr ) ∈ R
2,

ν̂ j (x, tr ) = (ν j (x, tr ), ν j (x, tr )Gn−1(ν j (x, tr ), x, tr )) ∈ Kn,
(2.159)

j = 1, . . . , n, (x, tr ) ∈ R
2.

As in Section 2.3, the regularity assumptions (2.134) on u imply analogous regu-
larity properties of Fn , Hn , µ j , and νk . Moreover, (2.153) implies

µ j (x, tr ), νk(x, tr ) �= 0, j, k = 1, . . . , n, (x, tr ) ∈ R
2.
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Next, in accordance with (2.68), one defines the meromorphic functionφ( · , x, tr)
on Kn by

φ(P, x, tr ) = y − zGn−1(z, x, tr )

Fn(z, x, tr )
(2.160)

= zHn(z, x, tr )

y + zGn−1(z, x, tr )
, (2.161)

P = (z, y) ∈ Kn \ {P∞}, (x, tr ) ∈ R
2,

and hence the divisor (φ( · , x, tr )) of φ( · , x, tr ) reads

(φ( · , x, tr )) = DP0 ν̂(x,tr ) − DP∞µ̂(x,tr ),

with

µ̂ = {µ̂1, . . . , µ̂n}, ν̂ = {ν̂1, . . . , ν̂n} ∈ Symn(Kn).

The time-dependent Baker–Akhiezer vector

�(P, x, x0, tr , t0,r ) =
(
ψ1(P, x, x0, tr , t0,r )

ψ2(P, x, x0, tr , t0,r )

)
, (2.162)

P ∈ Kn \ {P∞, P0}, (x, x0, tr , t0,r ) ∈ R
4

is defined by

ψ1(P, x, x0, tr , t0,r ) = exp

(
−
∫ tr

t0,r

ds
(
z−1 F̃r (z, x0, s)φ(P, x0, s)

+ G̃r−1(z, x0, s)
)− (i/2)(u(x, tr ) − u(x0, tr )) + i

∫ x

x0

dx ′ φ(P, x ′, tr )
)
,

(2.163)

ψ2(P, x, x0, tr , t0,r ) = −ψ1(P, x, x0, tr , t0,r )φ(P, x, tr ). (2.164)

Basic properties of φ are summarized next.

Lemma 2.19 Assume Hypothesis 2.18 and suppose that (2.137), (2.138) hold. In
addition, let P = (z, y) ∈ Kn \ {P∞} and (x, tr ) ∈ R

2. Then φ satisfies

−iφx (P) + φ(P)2 − uxφ(P) = z, (2.165)

φtr (P) = F̃r (z) − H̃r (z) + (i/z)(φ(P)F̃r (z))x (2.166)

= (1/z)F̃r (z)φ(P)2 + 2G̃r−1(z)φ(P) − H̃r (z), (2.167)

φ(P)φ(P∗) = −z Hn(z)

Fn(z)
, (2.168)

φ(P) + φ(P∗) = −2z
Gn−1(z)

Fn(z)
, (2.169)

φ(P) − φ(P∗) = 2y

Fn(z)
. (2.170)
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Proof Equations (2.165) and (2.168)–(2.170) are proved as in Lemma 2.5. To
prove (2.166), we first observe that

(
∂x + i(2φ − ux )

)(
φtr + (H̃r − F̃r ) − (i/z)(φ F̃r )x

) = 0,

using (2.165) and relations (2.146)–(2.148) repeatedly. Thus,

φtr + (H̃r − F̃r ) − (i/z)(φ F̃r )x = C exp

(
−i
∫ x

dx ′ (2φ − ux ′ )

)
,

where the left-hand side is meromorphic in a neighborhood of P∞, whereas the
right-hand side is meromorphic near P∞ only if C = 0. This proves (2.166).
Equation (2.167) is then clear from (2.147), (2.165), and (2.166). �

Next we prove that relations (2.146)–(2.148) and (2.149)–(2.151) determine the
time development of Fn , Gn , and Hn .

Lemma 2.20 Assume Hypothesis 2.18 and suppose that (2.137), (2.138) hold.
Then,

Fn,tr = 2(Gn−1 F̃r − FnG̃r−1), (2.171)

zGn−1,tr = Fn H̃r − Hn F̃r , (2.172)

Hn,tr = 2(HnG̃r−1 − Gn−1 H̃r ). (2.173)

Equations (2.171)–(2.173) are equivalent to

−Vn,tr + [Ṽr , Vn] = 0.

Proof We prove (2.171) by using (2.170), which shows that

(φ(P) − φ(P∗))tr = −2y
Fn,tr
F2
n

. (2.174)

However, the left-hand side of (2.174) also equals

φ(P)tr − φ(P∗)tr = 4y

F2
n

(G̃r−1Fn − F̃rGn−1) (2.175)

by means of (2.166), (2.170), (2.149), and (2.147). Combining (2.174) and (2.175)
proves (2.171). Similarly, to prove (2.172), we use (2.169) to write

(φ(P) + φ(P∗))tr = − 2z

F2
n

(
Gn−1,tr Fn − Gn−1Fn,tr

)
. (2.176)

Here we can express the left-hand side as

φ(P)tr + φ(P∗)tr = −2H̃r + 2
Hn

Fn
F̃r + 4z

(Gn−1

Fn

)2
F̃r − 4z

Gn−1

Fn
G̃r−1,

(2.177)



154 2. The Combined sine-Gordon and Modified KdV Hierarchy

using (2.147) and (2.149). Combining (2.176) and (2.177) by means of (2.171)
proves (2.172). Finally, (2.173) follows by differentiating (2.156), that is, (zGn−1)2

+ zFnHn = R2n+1, with respect to tr , and using (2.171) and (2.172). �

Remark 2.21 Taking z = 0 in (2.172), one infers the compatibility relation

fn h̃r = f̃ r hn,

or equivalently, using fn = αe−iu , f̃ r = α̃e−iu , hn = βeiu , and h̃r = β̃eiu

(cf. (2.152), (2.153)), one obtains the constraint

αβ̃ = α̃β.

Lemmas 2.19 and 2.20 permit one to characterize �.

Lemma 2.22 Assume Hypothesis 2.18 and suppose that (2.137), (2.138) hold.
In addition, let P = (z, y) ∈ Kn \ {P∞, P0} and (x, x0, tr , t0,r ) ∈ R

4. Then the
Baker–Akhiezer vector � satisfies

�x (P) = U (z)�(P), (2.178)

−y�(P) = zVn(z)�(P), (2.179)

�tr (P) = Ṽr (z)�(P), (2.180)

ψ1(P, x, x0, tr , t0,r ) =
(

Fn(z, x, tr )

Fn(z, x0, t0,r )

)1/2

× exp

(
−(y/z)

∫ tr

t0,r

ds F̃r (z, x0, s)Fn(z, x0, s)
−1

+ iy
∫ x

x0

dx ′Fn(z, x ′, tr )−1

)
, (2.181)

ψ1(P, x, x0, tr , t0,r )ψ1(P∗, x, x0, tr , t0,r ) = Fn(z, x, tr )

Fn(z, x0, t0,r )
, (2.182)

ψ2(P, x, x0, tr , t0,r )ψ2(P∗, x, x0, tr , t0,r ) = −z Hn(z, x, tr )

Fn(z, x0, t0,r )
, (2.183)

ψ1(P, x, x0, tr , t0,r )ψ2(P∗, x, x0, tr , t0,r )

+ ψ1(P∗, x, x0, tr , t0,r )ψ2(P, x, x0, tr , t0,r ) = 2z
Gn−1(z, x, tr )

Fn(z, x0, t0,r )
, (2.184)

ψ1(P, x, x0, tr , t0,r )ψ2(P∗, x, x0, tr , t0,r )

− ψ1(P∗, x, x0, tr , t0,r )ψ2(P, x, x0, tr , t0,r ) = 2y

Fn(z, x0, t0,r )
. (2.185)

In addition, as long as the zeros of Fn( · , x, tr ) are all simple for (x, tr ), (x0, t0,r ) ∈
�,� ⊆ R

2 open and connected,�( · , x, x0, tr , t0,r ) is meromorphic onKn \ {P∞}
for (x, tr ), (x0, t0,r ) ∈ �.
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Proof By (2.163), ψ1( · , x, x0, tr , t0,r ) is meromorphic on Kn \ {P∞} away from
the poles µ̂ j (x0, s) of φ( · , x0, s) and µ̂k(x ′, tr ) of φ( · , x ′, tr ). That ψ1( · , x, x0, tr ,
t0,r ) is meromorphic on Kn \ {P∞} if Fn( · , x, tr ) has only simple zeros is a con-
sequence of (cf. (2.85))

iφ(P, x ′, tr ) =
P→µ̂ j (x ′,tr )

∂x ′ ln(Fn(z, x ′, tr )) + O(1) as z → µ j (x
′, tr ),

and

−z−1 F̃r (z, x0, s)φ(P, x0, s) =
P→µ̂ j (x0,s)

∂s ln
(
Fn(z, x0, s)

)+ O(1)

as z → µ j (x0, s)

by means of (2.158), (2.160), and (2.171). This follows from (2.163) by restricting
P to a sufficiently small neighborhoodU j (x0) of {µ̂ j (x0, s) ∈ Kn | (x0, s) ∈ �, s ∈
[t0,r , tr ]} such that µ̂k(x0, s) /∈ U j (x0) for all s ∈ [t0,r , tr ] and all k ∈ {1, . . . , n} \
{ j} and by simultaneously restricting P to a sufficiently small neighborhoodU j (tr )
of {µ̂ j (x ′, tr ) ∈ Kn | (x ′, tr ) ∈ �, x ′ ∈ [x0, x]} such that µ̂k(x ′, tr ) /∈ U j (tr ) for all
x ′ ∈ [x0, x] and all k ∈ {1, . . . , n} \ { j}. By (2.164) and since φ is meromorphic
on Kn , one concludes that ψ2 is meromorphic on Kn \ {P∞} as well. Relations
(2.178) and (2.179) follow as in Lemma 2.5, and the time evolution (2.180) is
a consequence of the definition of � in (2.163), (2.164) as well as (2.166) and
(2.167). To prove (2.181), we recall (2.163), that is,

ψ1(P, x, x0, tr , t0,r ) = exp

(
−(i/2)(u(x, tr ) − u(x0, tr )) + i

∫ x

x0

dx ′ φ(P, x ′, tr )

−
∫ tr

t0,r

ds (z−1 F̃r (z, x0, s)φ(P, x0, s) + G̃r−1(z, x0, s))

)
,

= exp

(
iy
∫ x

x0

dx ′ Fn(z, x ′, tr )−1 − (y/z)
∫ tr

t0,r

ds F̃r (z, x0, s)Fn(z, x0, s)
−1

− (i/2)(u(x, tr ) − u(x0, tr )) − i z
∫ x

x0

dx ′ Gn−1(z, x ′, tr )Fn(z, x ′, tr )−1

+
∫ tr

t0,r

ds
(
F̃r (z, x0, s)Fn(z, x0, s)

−1Gn−1(z, x0, s) − G̃r−1(z, x0, s)
))

by means of (2.160). By first invoking (2.149) and subsequently (2.171), we obtain
relation (2.181). Evaluating (2.181) at the points P and P∗ and multiplying the
resulting expressions yield (2.182). The remaining statements (2.183)–(2.185) are
direct consequences of (2.169), (2.170), and (2.181). �

The stationary Dubrovin-type equations in Lemma 2.6 have analogs for each
sGmKdVr flow (indexed by the parameter tr ) that govern the dynamics of µ j and
ν j with respect to variations of x and tr . In this context the stationary case simply
corresponds to the special case r = 0, as described in the following result.
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Lemma 2.23 Assume Hypothesis 2.18 and (2.137), (2.138) hold on an open and
connected set �̃µ ⊆ R

2, and suppose that the zeros µ j , j = 1, . . . , n, of Fn( · )
remain distinct and nonzero on �̃µ. Then {µ̂ j } j=1,...,n, defined by (2.158), satisfies
the following first-order system of differential equations on �̃µ

µ j,x = −2iy(µ̂ j )
n∏

k=1
k �= j

(µ j − µk)
−1, (2.186)

µ j,tr = 2F̃r (µ j )µ
−1
j y(µ̂ j )

n∏
k=1
k �= j

(µ j − µk)
−1, j = 1, . . . , n. (2.187)

Next, assume the affine part of Kn to be nonsingular and introduce the initial
condition

{µ̂ j (x0, t0,r )} j=1,...,n ⊂ Kn (2.188)

for some (x0, t0,r ) ∈ R
2, where µ j (x0, t0,r ) �= 0, j = 1, . . . , n, are assumed to be

distinct. Then there exists an open and connected set �µ ⊆ R
2, with (x0, t0,r ) ∈

�µ, such that the initial value problem (2.186)–(2.188) has a unique solution
{µ̂ j } j=1,...,n ⊂ Kn satisfying

µ̂ j ∈ C∞(�µ,Kn), j = 1, . . . , n, (2.189)

and µ j , j = 1, . . . , n, remain distinct and nonzero on �µ.
For the zeros ν j , j = 1, . . . , n, of Hn( · ) identical statements hold withµ j and�µ

replaced by ν j and �ν , etc. In particular, {ν̂ j } j=1,...,n, defined by (2.159), satisfies
the system

ν j,x = −2iy(ν̂ j )
n∏

k=1
k �= j

(ν j − νk)
−1, (2.190)

ν j,tr = 2H̃r (ν j )ν
−1
j y(ν̂ j )

n∏
k=1
k �= j

(ν j − νk)
−1, j = 1, . . . , n. (2.191)

Proof It suffices to prove (2.187) and (2.189) since the argument for (2.191) is
analogous to that of (2.187) and that for (2.186) and (2.190) has been given in the
proof of Lemma 2.6. Inserting z = µ j into (2.171) with (2.158) observed yields

Fn,tr (µ j ) = −µ j,tr

n∏
k=1
k �= j

(µ j − µk) = 2
F̃r (µ j )

µ j
µ j Gn−1(µ j ) = −2

F̃r (µ j )

µ j
y(µ̂ j )

and hence (2.187). For the proof of (2.189) one invokes again the charts (B.3)–(B.6)
and (B.12)–(B.15). As in the stationary case, the only nontrivial issue to check is
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the case in which µ̂ j hits one of the branch points (Em, 0) ∈ B(Kn), m �= 0, and
hence the right-hand sides of (2.186) and (2.187) vanish. Thus, we suppose

µ j0 (x, tr ) → Em0 as (x, tr ) → (x0, t0,r ) ∈ �µ

for some j0 ∈ {1, . . . , n}, m0 ∈ {1, . . . , 2n}. Upon introduction of

ζ j0 (x, tr ) = σ (µ j0 (x, tr ) − Em0 )1/2, σ = ±1,

µ j0 (x, tr ) = Em0 + ζ j0 (x, tr )
2

for (x, tr ) in a sufficiently small neighborhood of (x0, t0,r ), the Dubrovin equations
(2.186), (2.187) for µ j0 become

ζ j0,x (x, tr ) =
(x,tr )→(x0,t0,r )

c(σ )




2n∏
m=0
m �=m0

(Em0 − Em)




1/2

×




n∏
k=1
k �= j0

(
Em0 − µk(x, tr )

)−1


(1 + O(ζ j0 (x, tr )

2)
)
,

ζ j0,tr (x, tr ) =
(x,tr )→(x0,t0,r )

−ic(σ )F̃r (Em0 , x0, t0,r )E
−1
m0

×




2n∏
m=0
m �=m0

(Em0 − Em)




1/2

×




n∏
k=1
k �= j0

(
(Em0 − µk(x, tr )

)−1


(1 + O(ζ j0 (x, tr )

2)
)

for some |c(σ )| = 1, and one concludes (2.189). �

Since the stationary trace formulas for sGmKdV invariants in terms of symmetric
functions of µ j and ν j in Lemma 2.7 extend line by line to the corresponding time-
dependent setting, we next record their tr -dependent analogs without proof.

Lemma 2.24 Assume Hypothesis 2.18 and (2.157) and suppose that (2.137),
(2.138) hold. Then,

u = i ln

(
(−1)nα−1

n∏
j=1

µ j

)
(2.192)

= −i ln

(
(−1)nβ−1

n∏
j=1

ν j

)
, (2.193)
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where αβ = ∏2n
m=1 Em �= 0. In particular, one infers the constraint

n∏
j=1

µ jν j =
2n∏
m=1

Em . (2.194)

Proof The proof is identical to that of relations (2.91)–(2.93). �

Remark 2.25 Consider the case n ∈ N, and r = 0, and α = β = i/4. Then

u(x, t0) = i ln

(
(−1)nα−1

n∏
j=1

µ j (x, t0)

)

satisfies

uxt0 = sin(u)

whenever {µ̂ j (x, t0)} j=1,...,n satisfies (2.186) and (2.187) for r = 0. Conversely,
when solving the Dubrovin-type equations (2.186), (2.187), the trace relation
(2.192) for u(x, tr ) yields algebro-geometric solutions of (higher-order) sGmKdV
equations as will be shown in Theorem 2.34.

Now we turn to asymptotic properties of φ (which are proven as in
Lemma 2.9).

Lemma 2.26 Assume Hypothesis 2.18 and (2.157) and suppose that (2.137),
(2.138) hold. Moreover, let P = (z, y) ∈ Kn \ {P∞}. Then, as P → P∞,

φ(P) =
ζ→0

ζ−1 + (1/2)ux + (
(1/8)u2

x + (i/4)uxx
)
ζ + O(ζ 2),

ζ = σ/z1/2, σ = ±1.

Next we turn to one of the principal results of this section, the representation of
φ, �, and u in terms of the Riemann theta function associated with Kn assuming
(2.86). We start by introducing some notation.

Let ω
(2)
P∞,2q be a normalized differential of the second kind with unique pole

at P∞ and principal part ζ−2q−2dζ near P∞ (cf. (A.20), (A.21), and (A.22)) and
define

�̃
(2)
P∞,r =

{∑r−1
q=0(2q + 1)c̃r−1−q ω

(2)
P∞,2q for r ∈ N,

0 for r = 0,
c̃0 = 1, (2.195)

where c̃q are the constants introduced in the definition of F̃r . Thus, one infers
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∫
a j

�̃
(2)
P∞,r = 0, j = 1, . . . , n, (2.196)

∫ P

Q0

�̃
(2)
P∞,r =

ζ→0

{
−∑r−1

q=0 c̃r−1−qζ−2q−1 + O(ζ ), r ∈ N

0, r = 0,
as P → P∞,

(2.197)

choosing Q0 to be a branch point different from P0 and P∞. The corresponding

vector of b-periods of �̃(2)
P∞,2r−2/(2π i) is then denoted by Ũ

(2)
2r−2,

Ũ
(2)
2r−2 = (

Ũ (2)
2r−2,1, . . . , Ũ

(2)
2r−2,n

)
, Ũ (2)

2r−2, j = 1

2π i

∫
b j

�̃
(2)
P∞,2r−2, j = 1, . . . , n.

(2.198)

One computes from (B.33),

Ũ (2)
2r−2, j = −2

r−1∑
q=0

c̃r−1−q
n∑

k=1

c j (k)ĉk−n+q (E), j = 1, . . . , n, (2.199)

with ĉk(E) defined in (B.32), using the convention that ĉ−k(E) = 0 for k ∈ N.
Moreover, let ω(2)

P0,0
be the normalized differential of the second kind, holomorphic

on Kn \ {P0}. Then (cf. (B.34)–(B.36)),

ω
(2)
P0,0

= Q1/2

2

dz

zy
=

ζ→0
(ζ−2 + O(1))dζ as P → P0 (2.200)

and

α̃

α
Q1/2

∫ P

Q0

ω
(2)
P0,0

=
ζ→0

− α̃

α
Q1/2ζ−1 + O(ζ ) as P → P0, (2.201)

with local coordinate ζ = σ ′z1/2, σ ′ ∈ {1,−1} near P0. Since by (2.200),∫ P
Q0

ω
(2)
P0,0

+ ∫ P∗

Q0
ω

(2)
P0,0

= 0, choosing the same path of integration on both sheets
�±, the right-hand side of (2.201) is odd with respect to ζ and hence contains no
constant term. The vector of b-periods of (α̃/α)Q1/2ω

(2)
P0,0

/(2π i) will be denoted
by W (2)

0 in the following, and one computes (cf. (B.36)),

W (2)
0 = (

W (2)
0,1, . . . ,W

(2)
0,n

)
, W (2)

0, j = α̃

α

Q1/2

2π i

∫
b j

ω
(2)
P0,0

= 2
α̃

α
c j (1),

j = 1, . . . , n. (2.202)

Recalling the abbreviations in (2.108) and our choice of base point Q0 = (Em0 , 0),
we can now state one of the principal results of this section.

Theorem 2.27 Assume Hypothesis 2.18 and (2.137), (2.138) hold on� subject to
the constraint (2.86). In addition, let P ∈ Kn \ {P∞, P0} and (x, tr ), (x0, t0,r ) ∈ �,
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where � ⊆ R
2 is open and connected. Moreover, suppose that Dµ̂(x,tr ), or equiv-

alently, Dν̂(x,tr ) is nonspecial for (x, tr ) ∈ �. Then φ admits the representation

φ(P, x, tr ) = θ
(
z(P∞, µ̂(x, tr ))

)
θ
(
z(P∞, µ̂(x, tr ),")

) θ
(
z(P, µ̂(x, tr ),")

)
θ
(
z(P, µ̂(x, tr ))

)

× exp

(
−
∫ P

Q0

ω
(3)
P∞,P0

+ (1/2) ln(Em0 )

)
(2.203)

with the half-period " defined in (2.110). The components ψ j , j = 1, 2 of the
Baker–Akhiezer vector � are given by1

ψ1(P, x, x0, tr , t0,r ) = θ
(
z(P∞, µ̂(x0, t0,r ))

)
θ
(
z(P, µ̂(x, tr ))

)
θ
(
z(P∞, µ̂(x, tr ))

)
θ
(
z(P, µ̂(x0, t0,r ))

)

× exp

(
− i(x − x0)

∫ P

Q0

ω
(2)
P∞,0

+ (tr − t0,r )

(
α̃

α
Q1/2

∫ P

Q0

ω
(2)
P0,0

+
∫ P

Q0

�̃
(2)
P∞,r

))

(2.204)

and

ψ2(P, x, x0, tr , t0,r ) = −θ
(
z(P∞, µ̂(x0, t0,r ))

)
θ
(
z(P, µ̂(x, tr ),")

)
θ
(
z(P∞, µ̂(x, tr ),")

)
θ
(
z(P, µ̂(x0, t0,r ))

)

× exp

(
−
∫ P

Q0

ω
(3)
P∞,P0

+ (1/2) ln(Em0 )− i(x − x0)
∫ P

Q0

ω
(2)
P∞,0

+ (tr − t0,r )

(
α̃

α
Q1/2

∫ P

Q0

ω
(2)
P0,0

+
∫ P

Q0

�̃
(2)
P∞,r

))
. (2.205)

The Abel map linearizes the auxiliary divisors in the sense that

αQ0
(Dµ̂(x,tr )) = αQ0

(Dµ̂(x0,t0,r )) + iU (2)
0 (x − x0) + dr (tr − t0,r ), (2.206)

αQ0
(Dν̂(x,tr )) = αQ0

(Dν̂(x0,t0,r )) + iU (2)
0 (x − x0) + dr (tr − t0,r ), (2.207)

where U (2)
0 is defined in (2.107) and dr is given by (cf. (2.199))

dr =
{
−Ũ (2)

2r−2 − 2(α̃/α)c(1) for r ∈ N,

−2(α̃/α)c(1) for r = 0.
(2.208)

1 To avoid multi-valued expressions in formulas such as (2.203)–(2.205), etc., we agree to always
choose the same path of integration connecting Q0 and P and refer to Remark A.28 for additional
tacitly assumed conventions.
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Finally, u is of the form

u(x, tr ) = −(i/2) ln(α/β) (mod 2πZ) + 2i ln

(
θ
(
z(P∞, µ̂(x, tr ),")

)
θ
(
z(P∞, µ̂(x, tr ))

)
)
.

(2.209)

Proof First one observes that the proofs of (2.203) and (2.209) carry over without
changes from the stationary situation described in Theorem 2.10 since they are
based on the Riccati-type equation (2.165) in both cases with essentially the same
expression for φ. Hence, we turn to the Baker–Akhiezer vector � whose first
component ψ1 is given by (2.181). We temporarily assume

µ j (x, tr ) �= µ j ′ (x, tr ) for j �= j ′ and (x, tr ) ∈ �̃ (2.210)

for appropriate �̃ ⊆ �. The time-dependent term in the exponential of (2.181)
has two potential singularities, one at P∞, and the other at P0. We first study this
term as P → P∞. First assume that F̃r is homogeneous, that is, F̃r = F̂r . Then,
using the asymptotic spectral parameter expansion (1.92) at x = x0 (identifying the
KdV potential u with the expression −(1/4)(u2

x + 2iuxx ) in the sGmKdV context,
cf. (2.12)), equation (2.41) at � = r , as well as (2.36) (with n, α, β replaced by
r, α̃, β̃), we obtain

y F̂r (z, x0, tr )

zFn(z, x0, tr )
= ζ 2

(
f̃ r +

r∑
q=1

f̂ r−q (x0, tr )z
q

)
y

Fn(z, x0, tr )

= ζ−2r+1 + ( f̃ r (x0, tr ) − f̂ r (x0, tr ))ζ + O(ζ 3) as P → P∞.

Here f̂ r is computed from the KdV recursion (2.11), whereas f̃ r = α̃e−iu . Simi-
larly,

y F̂q (z, x0, tr )

zFn(z, x0, tr )
=

ζ→0
ζ−2q+1 + O(ζ 3) as P → P∞, q = 0, . . . , r − 1.

Hence, one concludes

y F̃r (z, x0, tr )

zFn(z, x0, tr )
=

r∑
q=0

c̃r−q
y F̂q (z, x0, tr )

zFn(z, x0, tr )

=
ζ→0

{∑r
q=1 c̃r−qζ

−2q+1 + O(ζ ) for r ∈ N,

ζ + O(ζ 3) for r = 0,

and thus

y

z

∫ tr

t0,r

ds
F̃r (z, x0, s)

Fn(z, x0, s)

=
ζ→0

{(∑r−1
q=0 c̃r−1−qζ−2q−1

)
(tr − t0,r ) + O(ζ ) for r ∈ N,

ζ (tr − t0,r ) + O(ζ 3) for r = 0.
(2.211)
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Secondly, we study the behavior near P0 (using the local coordinate ζ = σ z1/2 →
0, σ = ±1, cf. (2.100)). One finds

y F̃r (z, x0, tr )

zFn(z, x0, tr )
=

ζ→0

α̃

α
Q1/2ζ−1 + O(ζ ) as P → P0,

and hence

y

z

∫ tr

t0,r

ds
F̃r (z, x0, s)

Fn(z, x0, s)
=

ζ→0

α̃

α
Q1/2ζ−1(tr − t0,r ) + O(ζ ) as P → P0, (2.212)

where Q1/2 = (∏2n
m=1 Em

)1/2
and the sign of Q1/2 is determined by the compati-

bility of the charts. A comparison of (2.197), the expression (2.204) for ψ̃ , (2.181),
(2.211), and (2.212) then identifies the tr -dependent behavior of the exponentials
of ψ and ψ̃ up to order O(ζ ) near P∞ and P0. The x-dependent exponential
behavior of ψ and ψ̃ can be discussed as in the stationary context of Theorem
2.10 (cf. (2.122)). Next we turn to the local behavior of ψ and ψ̃ and compare
their zeros and poles. One first observes that (2.158), (2.160), and (2.187) imply
(cf. (2.120))

iφ(P, x ′, tr ) =
P→µ̂ j (x ′,tr )

∂x ′ ln(z − µ j (x
′, tr )) + O(1),

−(1/z)F̃r (z, x0, s)φ(P, x0, s) =
P→µ̂ j (x0,s)

∂s ln(z − µ j (x0, s)) + O(1).

Together with (2.163), this yields

ψ(P, x, x0, tr , t0,r )

=




(z − µ j (x, tr ))O(1) as P → µ̂ j (x, tr ) �= µ̂ j (x0, t0,r ),

O(1) as P → µ̂ j (x, tr ) = µ̂ j (x0, t0,r ),

(z − µ j (x0, t0,r ))−1O(1) as P → µ̂ j (x0, t0,r ) �= µ̂ j (x, tr ),

(2.213)

P = (z, y) ∈ Kn, (x, tr ), (x0, t0,r ) ∈ �̃,

where O(1) �= 0 in (2.213). Consequently, all zeros and poles of ψ and ψ̃ on
Kn \ {P∞} are simple and coincide. Thus, ψ and ψ̃ share all singularities and
zeros, and an application of the Riemann–Roch-type uniqueness result in Lemma
B.2 then proves that ψ and ψ̃ coincide up to normalization. The latter is deter-
mined by (2.182), as in the stationary context (2.123). This proves (2.204) subject
to (2.210).

Next we indicate the proof of (2.206) using Lemma 2.23 and following the
corresponding argument in the proof of Theorem 2.10. Equations (2.187), (F.8),
Lagrange’s interpolation theorem, Theorem E.1, and (B.33) then yield the
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following for r ∈ N,

∂trαQ0
(Dµ̂) =

n∑
j=1

µ j,tr

n∑
k=1

c(k)
µk−1
j

y(µ̂ j )

= 2
n∑

j,k=1

c(k)
µk−1
j∏

�=1
��= j

(µ j − µ�)

F̃r (µ j )

µ j

= 2
n∑

j,k=1

c(k)
µk−1
j∏

�=1
��= j

(µ j − µ�)

(
r−1∑
q=0

q∑
p=(q−n)∨0

c̃r−1−q ĉ p(E)

×#
( j)
q−p(µ) − α̃

α
#

( j)
n−1(µ)

)

= 2
n∑

k=1

c(k)


r−1∑

q=0

q∑
p=(q−n)∨0

c̃r−1−q ĉ p(E)
n∑
j=1

µk−1
j∏

�=1
��= j

(µ j − µ�)

×#
( j)
q−p(µ) − α̃

α

n∑
j=1

µk−1
j∏

�=1
��= j

(µ j − µ�)
#

( j)
n−1(µ)




= 2
n∑

k=1

c(k)

(
r−1∑
q=0

q∑
p=(q−n)∨0

c̃r−1−q ĉ p(E)δk,n−(q−p) − α̃

α
δk,1

)

= dr

and hence (2.206). (This computation is equivalent to that in (F.87); see also
Corollary F.11.) The extension of all these results from �̃ to � then follows by
continuity of αQ0

and nonspecialty of Dµ̂ on �. Equation (2.207) then follows
from (2.206) and the linear equivalence of DP∞µ̂ and DP0 ν̂ , that is,

αQ0
(Dν̂) = αQ0

(Dµ̂) + ". (2.214)

�

Combining (2.206), (2.207), (2.214), and (2.209) shows the remarkable linearity
of the theta function arguments with respect to x and tr in the formula for u. In
fact, one can rewrite (2.209) as

u(x, tr ) = c0 + 2i ln

(
θ(A + Bx + Cr tr + ")

θ (A + Bx + Cr tr )

)
, (2.215)

where

A = �Q0
− AQ0

(P∞) − iU (2)
0 x0 − dr t0,r + αQ0

(Dµ̂(x0,t0,r )), (2.216)

B = iU (2)
0 , Cr = dr , (2.217)

" = AP0
(P∞), c0 = −(i/2) ln(α/β) (mod 2πZ), (2.218)
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and hence the constants ", B,Cr ∈ C
n are uniquely determined by Kn and r ,

and the constant A ∈ C
n is in one-to-one correspondence with the Dirichlet data

µ̂(x0, t0,r ) = (µ̂1(x0, t0,r ), . . . , µ̂n(x0, t0,r )) ∈ Symn(Kn) at the point (x0, t0,r ) as
long as the divisor Dµ̂(x0,t0,r ) is assumed to be nonspecial.

Remark 2.28 The explicit expressions (2.204), (2.205) for ψ j , j = 1, 2 again
complement Lemma 2.19 and show that � stays meromorphic on Kn \ {P∞} as
long as Dµ̂ is nonspecial (assuming the affine part of Kn to be nonsingular).

Remark2.29 The linearization property (2.206) (and (2.113)) can also be obtained
as follows. One introduces the meromorphic differential

�1(x, x0, tr , t0,r ) = ∂z ln(ψ1( · , x, x0, tr , t0,r ))dz

and hence infers from the representation (2.204) that

�1(x, x0, tr , t0,r ) = −i(x − x0)ω(2)
P∞,0 + (tr − t0,r )�̃

(2)
P∞,2r−2

+ (tr − t0,r )
α̃

α
Q1/2ω

(2)
P0,0

−
n∑
j=1

ω
(3)
µ̂ j (x0,t0,r ),µ̂ j (x,tr )

+ ω.

Here ω denotes a holomorphic differential on Kn , that is,

ω =
n∑
j=1

c jω j

for some c j ∈ C, j = 1, . . . , n. Since ψ1( · , x, x0, tr , t0,r ) is single-valued on Kn ,
all a- and b-periods of �1 are integer multiples of 2π i , and hence

2π imk =
∫
ak

�1(x, x0, tr , t0,r ) =
∫
ak

ω = ck, j = 1, . . . , n

for some mk ∈ Z identifies ck as integer multiples of 2π i . Similarly, for some
nk ∈ Z,

2π ink =
∫
bk

�1(x, x0, tr , t0,r )

= −i(x − x0)
∫
bk

ω
(2)
P∞,0 + (tr − t0,r )

α̃

α
Q1/2

∫
bk

ω
(2)
P0,0

+ (tr−t0,r )
∫
bk

�̃
(2)
P∞,2r−2 −

n∑
j=1

∫
bk

ω
(3)
µ̂ j (x0,t0,r ),µ̂ j (x,tr )

+ 2π i
n∑
j=1

m j

∫
bk

ω j

= 2πU (2)
0,k(x − x0) + 2π i

(
Ũ (2)

2r−2,k + W (2)
0,k

)
(tr − t0,r )

− 2π i
n∑
j=1

Aµ̂ j (x,tr ),k(µ̂ j (x0, t0,r )) + 2π i
n∑
j=1

m jτ j,k, k = 1, . . . , n,

(2.219)
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by use of (2.107), (2.198), (2.202), and (A.26). By symmetry of τ (cf. (A.15)),
(2.219) is equivalent to

αQ0
(Dµ̂(x,tr )) = αQ0

(Dµ̂(x0,t0,r )) + iU (2)
0 (x − x0)

− (
Ũ

(2)
2r−2 + W (2)

0

)
(tr − t0,r ).

The algebro-geometric solution u in (2.209) is complex-valued in general. To
obtain real-valued solutions, one needs to impose a certain symmetry on Kn and
additional constraints on A in (2.215), (2.216). Since the cases r = 0 and r ∈ N

in (2.209) are quite different (cf. (2.208)), we only focus on the important case of
the sine-Gordon equation, where

α̃ = β̃ = i/4, α = β =
( 2n∏
m=1

Em

)1/2

∈ R,

r = 0 in (2.135), and d0 = (2iα)−1c(1)

(2.220)

(recalling g̃−1 = 0, cf. (2.155)). Then the corresponding symmetry of Kn results
in the constraint that the projections of the branch points of Kn , different from
P0 and P∞, occur either in pairs on (−∞, 0) or else in complex conjugate pairs.
Hence, we list the corresponding symmetry constraints on the zeros of R2n+1 as1

{Ê p}p=1,...,2k, Ê1 < Ê2 < · · · < Ê2k−1 < Ê2k < 0,

E0 = 0, {Ẽq , Ẽq}q=1,...,�, k + � = n
(2.221)

with the convention that k = 0 corresponds to the absence of pairs on (−∞, 0) and
� = 0 corresponds to the absence of complex conjugate pairs in (2.221). The occur-
rence of possibly complex conjugate pairs indicates the inherent non-self-adjoint
character of the underlying linear (pseudo)differential expression (the analog of
the Schrödinger differential expression L in the KdV case) and points to marked
differences with the far simpler reality discussion in the KdV context.

We start by recalling that real-valued algebro-geometric sine-Gordon solutions
are smooth (cf. the notes of this section for a pertinent reference). For simplicity
we abbreviate t0 with t since we only discuss the case r = 0 in the following.

Lemma 2.30 Assume (2.220) and (2.221) and suppose u is a real-valued algebro-
geometric sine-Gordon solution

sG(u) = uxt − sin(u) = 0

of the type (2.209). Then,

u ∈ C∞(R2).

1 Of course we still assume the affine part of Kn to be nonsingular; cf. (2.86).
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Lemma 2.31 Assume (2.220) and (2.221), suppose that Dµ̂(x0,t0) is nonspecial
for some (x0, t0) ∈ R

2, and choose the homology basis {a j , b j }nj=1 according to
Theorem A.36 (i). Then the algebro-geometric solution u in (2.209) is real-valued
if and only if A in (2.216) (with d0 given by (2.220)) satisfies the constraint

Re(A) = (1/2)
(
(1/2)diag(R) − " + (0, . . . , 0, χ1, . . . , χk)

)
(mod Z

n),

χ j ∈ {0, 1}, j = 1, . . . , k. (2.222)

In particular, under thepresent hypotheses, the set of real-valuedalgebro-geometric
sG solutions u in (2.215) consists of 2k connected components indexed by (χ1, . . . ,

χk), χ j ∈ {0, 1}, j = 1, . . . , k, and all such solutions u are smooth, u ∈ C∞(R2).

Proof Define the antiholomorphic involution ρ+ : (z, y) �→ (z, y) as in in Example
A.35 (iii). For brevity we only treat the case 1 ≤ k ≤ n − 1, where (Kn, ρ+) is of
nondividing type, in some detail. The case k = n is slightly simpler and commented
on below. By Example A.35 (iii), Theorem A.36 (cf. (A.66), (A.69)–(A.71)), one
infers

r = k + 1, τ = R − τ, diag(R) = (1 . . . , 1︸ ︷︷ ︸
�

, 0, . . . , 0︸ ︷︷ ︸
k

),

θ (z) = θ (z + (1/2)diag(R)), z ∈ C
n,

ρ+(a j ) = a j , ρ+(b j ) = (aR) j − b j , j = 1, . . . , n,

U (2)
0 ∈ R

n.

Thus,

B = −B,

by (2.217) and hence real-valuedness of u in (2.215) is equivalent to the condition

1 = θ (A + Bx + ")θ (A + Bx + ")

θ (A + Bx)θ (A + Bx)

= θ (A + Bx + ")θ (−A + Bx − " + (1/2)diag(R))

θ (A + Bx)θ (−A + Bx + (1/2)diag(R))
.

This in turn is equivalent to

A = −A + (1/2)diag(R) − " + m1 + n1τ,

A = −A + (1/2)diag(R) − " + m2 + n2τ
(2.223)

for some n1, n2 ∈ Z
n and arbitrary m1,m2 ∈ Z

n . Taking real and imaginary parts
in (2.223) then yields m1 = m2, n1 = n2 and

Re(A) = (1/2)
(
(1/2)diag(R) − " + m1 + n1R

)
, m ∈ Z

n,

0 = ±Im(") + n1Im(τ ). (2.224)
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Noticing that

" ∈ R
n,

since limε↓0 y(λ ± iε) is real-valued for λ ∈ [0,∞), one finds that (2.224) implies
n1 = 0. Replacing A by A + m + nτ with m, n ∈ Z

n , then yields

Re(A) = (1/2)
(
(1/2)diag(R) − " + m1 + (n1, . . . , n�, 0, . . . , 0)

)− m,

m1,m ∈ Z
n, n j ∈ Z, j = 1, . . . , �,

and hence (2.222). In the case k = n, � = 0, where (Kn, ρ+) is of dividing type,
one infers r = n + 1 and R = 0 according to (A.65), simplifying the formulas just
presented. Finally, u ∈ C∞(R2) by Lemma 2.30. �

The assumption Ê p < 0 in (2.221) is crucial for the solvability of (2.224), for
otherwise " acquires a nontrivial imaginary part.

Remark 2.32 A careful analysis of the sine-Gordon case (pertinent references
are provided in the notes to this section) reveals the following additional facts
concerning the 2k connected components of real-valued algebro-geometric sG
solutions described in Lemma 2.31: In contrast to the self-adjoint KdV case, the
motion of the auxiliary divisors1 µ̂ j (x, t) is not constrained to certain fixed curves
on Kn (in addition, collisions between them may occur). Moreover, and again in
sharp contrast to the KdV case, the initial projections µ j (x0, t0) cannot be chosen
independently from each other due to the following additional constraint they need
to satisfy:

n∏
j=1

|µ j (x0, t0)|2 =
2n∏
m=1

Em . (2.225)

This follows from (2.194), αβ = α2 = ∏2n
m=1 Em > 0, and because g�(x), � =

0, . . . , n − 1, are real-valued, and f�(x) = h�(x), � = 0, . . . , n. Still, the motion
of the µ̂ j (x, t) can be shown to remain homologous to some linear combinations
of appropriate a j and b j cycles. In particular, the constraint (2.225) holds for all
(x, t) ∈ R

2,

n∏
j=1

|µ j (x, t)|2 =
2n∏
m=1

Em .

By Lemma 2.31, the isospectral class of real algebro-geometric sG solutions (i.e.,
all real algebro-geometric sG solutions corresponding to a fixed curve Kn con-
strained by (2.221)) consists of 2k connected components. It can be shown that
each such connected component is given by an n-dimensional real torus T

n . In

1 We recall our convention to abbreviate t0 with t for simplicity, since we only discuss the case r = 0
in this remark.
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other words, each pair (Ep, Ê p) on (−∞, 0) carries two degrees of freedom (re-
sembling a kink and antikink) as opposed to a complex conjugate pair (Ẽq , Ẽq ),
which carries one degree of freedom (resembling a breather). In general, the
elements in each isospectral torus represent smooth quasi-periodic functions of
x and tr .

If, in addition, one is interested in spatially periodic solutions with a real period
� > 0, the additional periodicity constraints

i�U (2)
0 ∈ Z

n \ {0}
must be imposed. (By (B.45) this is equivalent to 2i�c(n) ∈ Z

n \ {0}.)
In sharp contrast to this discussion, the corresponding sinh-Gordon reality prob-

lem turns out to be a self-adjoint one with the absence of complex conjugate pairs
in (2.221). The resulting constraint on Kn then results in all projections of the
branch points (being different from P∞) to be in nonnegative position, and hence
one can list them as

0 = E0 < E1 < · · · < E2n. (2.226)

Moreover, as in the KdV context, theµ j are real-valued and confined to the spectral
gaps [E2 j−1, E2 j ]. The whole discussion then parallels the one in the KdV chapter,
and the corresponding isospectral set of smooth, real-valued, algebro-geometric
sinh-Gordon solutions u ∈ C∞(R2) associated with a fixed curve Kn (constrained
by (2.226)) turns out to be a real n-dimensional torus T

n (cf. Remark 1.24).

Finally, we describe an interesting property of the time-dependent sGmKdV
hierarchy in connection with its algebro-geometric solutions. In fact, equations
(2.135) and (2.136) can be rewritten so that u satisfies a differential equation with
a pure first-order time derivative.

Remark 2.33 The solution u of equations (2.135) and (2.136) satisfies

utr = 2iα−1(α̃gn−1(u) − αg̃r−1(u)), u
∣∣
tr=t0,r = u(0). (2.227)

Indeed, (2.34) yields

fn = αe−iu, f̃ r = α̃e−iu,

which, inserted into the constant term (i.e., the coefficient of z0) in (2.171) results
in

−iαutr e−iu = 2(gn−1 f̃ r − g̃r−1 fn).

Remark 2.33 can be illustrated as follows:
(i) Consider the case n = 1.
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(ia) r = 0. Then (2.227) becomes

ut0 + i(α̃/α)ux = 0

with solution

u(x, t0) = u(0)(x − i(α̃/α)t0).

(ib) r = 1. Then (2.227) reads

ut1 + i(α̃/α) − 1)ux = 0,

with solution

u(x, t1) = u(0)(x − i((α̃/α) − 1)t1).

(ii) Consider the case n = 2.
(iia) r = 0. Then (2.227) becomes

ut0 = (i/8)(α̃/α)
(
u3
x + 2uxxx

)− i(α̃/α)c1ux , u(x, t0,0) = u(0)(x).

(iib) r = 1. Then (2.227) reads

ut1 = (i/8)(α̃/α)
(
u3
x + 2uxxx

)+ i(1 − (c1/8)(α̃/α))ux ,

u(x, t0,1) = u(0)(x).

(iic) r = 2. Then (2.227) becomes

ut2 = −(i/8)((α̃/α) − 1)
(
u3
x + 2uxxx

)+ i(c̃1 − (α̃/α)c1)ux ,

u(x, t0,2) = u(0)(x).

Up to this point we assumed Hypothesis 2.18 together with the basic equations
(2.137) and (2.138). Next we will show that solvability of the Dubrovin equations
(2.186), (2.187) on �µ ⊆ R

2 in fact implies equations (2.137) and (2.138) on
�µ. In complete analogy to our discussion in Section 2.3 (cf. Remark 2.17), this
amounts to solving the time-dependent algebro-geometric initial value problem
(2.135), (2.136) on �µ. In this context we recall the definition of F̂r (µ j )/µ j

introduced in (F.8) in the homogeneous case1

F̂r (µ j )

µ j
=

r−1∑
s=(r−1−n)∨0

ĉs(E)#( j)
r−1−s(µ) − α̃

α
#

( j)
n−1(µ), (2.228)

with #
( j)
k (µ) given by (E.2). The expression F̃r (µ j )/µ j is then defined by2

F̃r (µ j )

µ j
=

r−1∑
s=0

c̃r−s
F̂ s(µ j )

µ j
+ α̃

α
(−1)n

n∏
k=1
k �= j

µk (2.229)

1 m ∨ n = max{m, n}.
2 Since r is independent of n, one obtains f̂ r = f̃ r = α̃e−iu , ĥr = h̃r = β̃eiu with α̃, β̃ ∈ C indepen-

dent of α, β, and f̂ q , ĥq , q = 1, . . . , r − 1 constructed as in (2.31) and (2.32).
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in terms of a given set of integration constants {c̃1, . . . , c̃r } ⊂ C, α̃ ∈ C \ {0},
subject to the constraint αβ̃ = α̃β.

Theorem 2.34 Fix n ∈ N, α, β, α̃, β̃ ∈ C \ {0} with αβ̃ = α̃β and assume (2.86).
Suppose that {µ̂ j } j=1,...,n satisfies the Dubrovin equations (2.186), (2.187) on an
open and connected set�µ ⊆ R

2 with F̃r (µ j )/µ j in (2.187) expressed in terms of
µk , k = 1, . . . , n, by (2.228) and (2.229). Moreover, assume thatµ j , j = 1, . . . , n,
remain distinct and nonzero on �µ. Then u ∈ C∞(�µ), defined by

u = i ln

(
(−1)nα−1

n∏
j=1

µ j

)
, (2.230)

satisfies the rth sGmKdV equation (2.135), that is,

˜sGmKdVr (u) = 0 (2.231)

with initial values satisfying the nth stationary sGmKdV equation (2.136) subject
to the constraint αβ �= 0.

Proof Given the solutions µ̂ j = (µ j , y(µ̂ j )) ∈ C∞(�µ,Kn), j = 1, . . . , n of
(2.186), (2.187), we define u by (2.230) and Fn on C × �µ by

Fn(z) =
n∏
j=1

(z − µ j ).

Following the proof of Theorem 2.14 in the stationary case, we introduce polyno-
mials Gn−1 and Hn satisfying (2.149)–(2.151) (subject to αβ = ∏2n

m=1 Em), and
(2.156), that is,

Fn,x (z) = −iux Fn(z) − 2i zGn−1(z), (2.232)

Hn,x (z) = iux Hn(z) + 2i zGn−1(z), (2.233)

Gn−1,x (z) = i(Hn(z) − Fn(z)), (2.234)

R2n+1(z) = zFn(z)Hn(z) + z2Gn−1(z)2 (2.235)

on C × �µ, treating tr as a parameter. In particular, u satisfies (2.138) on �µ.
Hence, it suffices to focus on the proof of (2.146)–(2.148), and (2.154).
Next, we define F̃r on C × �µ in terms of the homogeneous polynomial F̂r and
integration constants {c̃1, . . . , c̃r } ⊂ C, α̃ ∈ C \ {0}, by

F̃r =
r∑
s=0

c̃r−s F̂ s on C × �µ, c̃0 = 1,

where

F̂r (z) = z F̂r−1(z) + f̂ r , f̂ r = α̃e−iu on C × �µ, (2.236)
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and F̂r−1 is defined by (F.10) or (F.12). The function G̃r−1 is then introduced by

G̃r−1(z) = (i/2)z−1
(
F̃r,x (z) + iux F̃r (z)

)
on C × �µ,

and remains well-defined at z = 0 by (2.236) (which implies (2.154)). In particular,
this yields (2.147). Next we claim that (cf. (2.171))

Fn,tr (z) = 2
(
Gn−1(z)F̃r (z) − Fn(z)G̃r−1(z)

)
(2.237)

= i z−1
(
Fn,x (z)F̃r (z) − Fn(z)F̃r,x (z)

)
on C × �µ. (2.238)

To prove (2.237), we compute from (2.186), (2.187),

Fn,tr (z) = −i Fn(z)
n∑
j=1

F̃r (µ j )µ
−1
j µ j,x (z − µ j )

−1,

i z−1Fn,x (z)F̃r (z) = −i Fn(z)
n∑
j=1

F̃r (z)z
−1µ j,x (z − µ j )

−1.

Thus, (2.237) is equivalent to

n∑
j=1

F̃r (µ j )µ
−1
j µ j,x (z − µ j )

−1 =
n∑
j=1

F̃r (z)z
−1µ j,x (z − µ j )

−1 + F̃r,x (z)z−1.

(2.239)

It suffices to prove (2.239) in the homogeneous case, that is, with F̃r replaced by
F̂r . Inserting (2.236) into (2.239) and applying (F.74) then reduces (2.239) to

n∑
j=1

f̂ rµ
−1
j µ j,x (z − µ j )

−1 =
n∑
j=1

f̂ r z
−1µ j,x (z − µ j )

−1 + f̂ r,x z
−1. (2.240)

By (F.14), (2.240) in turn is equivalent to

−z
n∑
j=1

#
( j)
n−1(µ)µ j,x (z − µ j )

−1 =
n∑
j=1

�n(µ)µ j,x (z − µ j )
−1 −

n∑
j=1

#
( j)
n−1(µ)µ j,x .

Since

−z#( j)
n−1(µ)(z − µ j )

−1 = �n(µ)(z − µ j )
−1 − #

( j)
n−1(µ)

is equivalent to

�n(µ) = −µ j#
( j)
n−1(µ),

and the latter is clearly true by the definitions (E.1), (E.2) of �k(µ) and #
( j)
k (µ) in

Appendix E, we proved (2.237) and (2.238). Next, we define the monic polynomial
H̃r of degree r by

uxtr = −2i G̃r−1,x (z) − 2
(
H̃r (z) − F̃r (z)

)
on C × �µ, (2.241)
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that is, by postulating (2.146). Differentiating (2.149) with respect to tr , insert-
ing (2.241), the x-derivative of (2.237), (2.232), and (2.234) into the resulting
expression then yields (2.172), that is,

zGn−1,tr (z) = Fn(z)H̃r (z) − Hn(z)F̃r (z) on C × �µ. (2.242)

Differentiating (2.235) with respect to tr , inserting (2.237) and (2.242), then yields
(2.173),

Hn,tr (z) = 2
(
Hn(z)G̃r−1(z) − Gn−1(z)H̃r (z)

)
on C × �µ. (2.243)

Finally, differentiating (2.242) with respect to x , observing (2.234), (2.237), and
(2.243), yields

zGn−1,tr x = i z(Hn,tr − Fn,tr )

= 2i z(HnG̃r−1 − Gn−1 H̃r + FnG̃r−1 − Gn−1 F̃r ). (2.244)

On the other hand, differentiating (2.242) with respect to x , using (2.232) and
(2.233), we find

zGn−1,tr x = Fn H̃r,x + Fn,x H̃ r − Hn F̃r,x − Hn,x F̃r

= Fn H̃r,x + (−iux Fn − 2i zGn−1)H̃r − Hn F̃r,x

− (iux Hn + 2i zGn−1)F̃r . (2.245)

Combining (2.244) and (2.245), using (2.238), we infer (2.148), that is,

H̃r,x (z) = iux H̃ r (z) + 2i zG̃r−1(z) on C × �µ.

Thus, we derived (2.154), (2.146)–(2.148) and incidentally also (2.171)–(2.173)
on C × �µ. Hence, we proved (2.231). �

Remark 2.35 The explicit theta function representation (2.209) of u on �µ in
(2.230) then permits one to extend u beyond �µ as long as Dµ̂ remains nonspecial
(cf. Theorem A.31).

Remark 2.36 Again we formulated Theorem 2.34 in terms of Dirichlet eigenval-
ues µ j , j = 1, . . . , n only. Obviously, the analogous result (and strategy of proof)
works in terms of ν j , j = 1, . . . , n.

The analog of Remark 2.17 directly extends to the current time-dependent
setting.
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2.5 Notes

Most of the material presented in this chapter closely follows Gesztesy and Holden
(2000b).

Section 2.1.Solvability of the initial value problem for the sine-Gordon equation
by the inverse scattering transform method was first shown in Ablowitz et al.
(1973a) (see also Ablowitz et al. (1973b; 1974)) and soon after in Takhtadzhyan
(1974) and Zakharov et al. (1975).

For a discussion of the early studies of the sine-Gordon equation in the context
of surfaces of constant negative curvature, we refer to Eisenhart (1909).

In physics one finds the sine-Gordon model isolated, for instance, in elementary
particle physics as a relativistically invariant integrable model (Ablowitz and Segur
(1981, Sec. 4.5), Cherednik (1996), Dodd et al. (1982, Secs. 7.1–7.5), and Zakharov
and Mikhailov (1978)), quantum optics (Ablowitz and Segur (1981, Sec. 4.4) and
Dodd et al. (1982, Sec. 7.8)), Josephson junctions (Dodd et al. (1982, Sec. 7.8.1)),
nonlinear excitations in condensed matter physics (Borisov and Kiseliev (1988;
1989)), and vortex structures in fluids and plasmas (Ting et al. (1987)).

In connection with the reduction process of Abelian integrals on hyperellip-
tic curves to elliptic functions, we refer to Babich (1985), Babich et al. (1986),
Belokolos et al. (1994, Sec. 7.9; 1986), Belokolos and Enol’skii (1982), Bobenko
(1984), Smirnov (1991), and Taimanov (1990b).

In spite of its popularity, relatively little effort has been spent on deriving solu-
tions that simultaneously satisfy a hierarchy of sine-Gordon equations. The gen-
erally accepted hierarchy in the sine-Gordon case, as originally derived in Sasaki
and Bullough (1980) (see also Sasaki and Bullough (1981)), is nonlocal in u for
all but the first element (2.58) in the hierarchy. There were other attempts to intro-
duce a (nonlocal) sG hierarchy. For instance, Newell (1985, Sec. 5k) introduced
a nonlocal sG hierarchy using an extension of the AKNS hierarchy, Tracy and
Widom (1996) discussed the sG hierarchy in close connection with the mKdV
hierarchy, Gu (1986) derived a generalized mKdV-sG hierarchy, and Al’ber and
Al’ber (1987b) considered a hierarchy starting from the so called µ-representation
of the algebro-geometric sGmKdV solutions (cf. Remark 2.25). The hierarchy de-
scribed in this chapter, as originally derived in Gesztesy and Holden (2000b), in a
certain sense embeds the sine-Gordon equation into the mKdV hierarchy.

The sG equation as a completely integrable Hamiltonian system and an infinite
sequence of conservation laws for (2.58) polynomial in u and its x-derivatives (see,
e.g., Sanuki and Konno (1974)) was established around 1974. Its integrability in
light-cone coordinates was discussed early on in Ablowitz et al. (1973a,b; 1974),
Lamb (1974); its integrability in laboratory coordinates is treated in Takhtadzhyan
and Faddeev (1974), Kaup (1975), Kaup and Newell (1978), Tahtadžjan and Fad-
deev (1979), Zakharov et al. (1975). This is further discussed in Faddeev and
Takhtajan (1987, Part II, Secs. II.6, II.7) and Novikov et al. (1984, Sec. I.11).
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It is an interesting fact that the usual zero-curvature representation for (2.58) is
gauge equivalent to that of the nonlinear Schrödinger (nS) equation, as discussed
in Faddeev and Takhtajan (1987, Part II, Sec. II.7) (see also Bobenko (1991b,
Sec. 5) and Pinkall and Sterling (1989)). Moreover, dimensional reductions of the
self-dual Yang–Mills equations to the (elliptic) sG equation (see, e.g., Uhlenbeck
(1992) and Ward (1986)) should also be mentioned in this connection.

For early reviews on the sG equation covering the period up to 1978, we refer,
for instance, to Flaschka and Newell (1975), Newell (1978).

Classes of relativistically invariant integrable systems containing the sine-
Gordon and Thirring models as special cases are discussed in Cherednik (1996)
and Zakharov and Mikhailov (1978).

For textbook literature on the KdV equation we refer to Ablowitz and Segur
(1981, Ch. 1), Cherednik (1996), Dodd et al. (1982, Ch. 7), Drazin and Johnson
(1989, Ch. 6), Eilenberger (1983, Ch. 5), Faddeev and Takhtajan (1987, Part 2,
Ch. II), Newell (1985, Ch. 5), and Novikov et al. (1984, Sec. I.11).

Section 2.2. To the best of our knowledge, the zero-curvature condition utilized
in Section 2.2 (cf. (2.18)–(2.20)) was first introduced in Gesztesy and Holden
(2000b).

The construction of the sGmKdV hierarchy using a recursive approach is pat-
terned after work by Al’ber and Al’ber (1985; 1987b).

The intimate connections between the KdV, mKdV, and sine-Gordon (respec-
tively sinh-Gordon) equations involving the Miura-type transformations displayed
in equations (2.49) and (2.50) have been known for a long time, see, for instance,
Cherednik (1979), Case and Roos (1982), Chodos (1980), Drin’feld and Sokolov
(1985), Gu (1986), and more recently, Tracy and Widom (1996).

Section 2.3. As indicated in Remark 2.3, our formalism not only combines the
sine-Gordon (sG) equation and the modified Korteweg–de Vries (mKdV) hier-
archies, but it easily can be adapted to the sinh-Gordon, Liouville, elliptic sine-
Gordon, and elliptic sinh-Gordon equations. To simplify matters a bit, the notes
below, for the most part, refer to treatments of the sG equation only.

As in all other chapters, the fundamental meromorphic function φ onKn defined
in (2.68) is still the key object of our algebro-geometric formalism. By (2.68)–
(2.70), φ again links the auxiliary divisor Dµ̂ and its counterpart, Dν̂ . This is of
course a direct consequence of the identity (2.27) together with the factorizations
of Fn and Hn in (2.64). Thus, our construction of positive divisors of degree n
(respectively, n + 1, since the points P0 and P∞ are also involved) on the hyper-
elliptic curve Kn of genus n again follows the recipe of Jacobi (1846), Mumford
(1984, Sec. III a).1), and McKean (1985).

The Dubrovin equations (2.87) and (2.90) in Lemma 2.6, in connection with the
auxiliary divisors, and the corresponding trace formulas in Lemma 2.7 (perhaps,
determinant formulas might be more appropriate in this particular instance) are
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well-known in the sine-Gordon context. We refer, for instance, to Al’ber and Al’ber
(1987b), Forest and McLaughlin (1982), and McKean (1981).

Algebro-geometric solutions for the sine-Gordon equation are usually discussed
directly in the time-dependent context. Hence, we defer their discussion to the notes
in the following section.

Section 2.4. As in the notes of Section 2.3, the notes below, for the most part,
refer to treatments of the sG equation only.

In analogy to its stationary analog in in Section 2.3, the role of φ defined in
(2.160) is again central to Section 2.4, and the corresponding facts recorded in the
notes to Section 2.3 still apply.

The Dubrovin equations (2.187) in Lemma 2.23 were found simultaneously
with their stationary counterparts, as discussed in the notes to Section 2.3. As in
the corresponding KdV context, they are usually discussed in connection with the
simplest cases r = 0, 1 only.

Since the proof of Lemma 2.24 is identical to that in the corresponding stationary
case, the remarks pertaining to the trace formulas in Lemma 2.7 in the notes to
Section 2.3 apply again.

The linearization property (2.206), (2.207) of the Abel map and formula (2.209)
for u in terms of the Riemann theta function associated with Kn was first published
by Kozel and Kotlyarov (1976). A simplified derivation of this result, due to Its,
is presented in the review Matveev (1976, Sec. 11).

Since then, many authors have presented reviews and slightly varying ap-
proaches to algebro-geometric (respectively periodic) solutions of the sG equa-
tion (and some of its close relatives such as the sinh-Gordon equation, etc.). We
mention, for instance, Babich (1991; 1992), Cherednik (1978; 1980; 1981; 1983;
1996, Ch. 4), Date (1980; 1982), Dubrovin (1982a; 1983), Dubrovin et al. (1990),
Dubrovin and Natanzon (1982), Dubrovin and Novikov (1975a), Ercolani (1989),
Ercolani and Forest (1985), Ercolani et al. (1984; 1986a,b; 1987), Forest and
McLaughlin (1982; 1983), Harnad (1993), Harnad and Wisse (1993), Krichever
(1983), Larson and Tracy (1988), McKean (1981), Novikov (1985), Taimanov
(1990c), Ting et al. (1984a,b; 1987), and the monographs Belokolos et al. (1994,
Chs. 4, 5), Cherednik (1996, Sec. I.4). Algebro-geometric solutions and their
theta function representations for higher-order sGmKdV equations were derived
in Gesztesy and Holden (2000b).

The smoothness of real-valued sine-Gordon solutions stated in Lemma 2.30 was
discussed in detail in Taimanov (1990c).

As indicated in Remark 2.32, the characterization of real-valued algebro-
geometric sG solutions proved to be more difficult than in the earlier settled KdV
case. Although most of the references cited in the previous paragraph address the
reality problem of sG solutions in one form or another, the problem was finally
settled by Dubrovin, Natanzon, and Novikov, and in great detail by Ercolani and
Forest in the early- to mid-1980s. We refer to Dubrovin (1982a; 1983), Dubrovin
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and Natanzon (1982), Dubrovin and Novikov (1975a), Novikov (1985), Ercolani
and Forest (1985), and Taimanov (1990c). (The genus n = 2 case had also been
discussed early on by Belokolos and Enol’skii (1982) and Dubrovin and Natanzon
(1982).) In particular, Ercolani and Forest (1985) provide a careful discussion of
isospectral sG manifolds in the real and complex-valued cases. For more recent
textbook discussions of these results, we refer to Belokolos et al. (1994, Sec. 4.3)
and Cherednik (1996, Ch. 4). Pertinent remarks on the reality problem for the
sinh-Gordon equation can be found in Forest and McLaughlin (1982; 1983) and
McKean (1981). A computation of topological charges (and a detailed review of
the reality problem) for the sG equation can be found in Grinevich and Novikov
(2001).

The symplectic structure and action-angle variables for the periodic sG equation
are discussed, for instance, in Al’ber and Al’ber (1985; 1987b), Ercolani et al.
(1986b), and Novikov (1985).

Theorem 2.34 (in the sG context) is well-known in the case r = 1. It has been
extensively used in the sG literature. Readers are referred to Al’ber and Al’ber
(1985; 1987b), Ercolani and Forest (1985), Ercolani et al. (1986b), Forest and
McLaughlin (1982; 1983), Ting et al. (1984a,b; 1987), and Tracy et al. (1986).

A multiscale spectral averaging method applied to the sG equation yields the
nonlinear Schrödinger equation, its spectral data, conservation laws, and solutions
in terms of theta functions, as shown in Larson and Tracy (1988).

Special cases of elliptic and genus two (respectively three) sG solutions are
discussed, for instance, in Belokolos et al. (1994, Ch. 7), Dubrovin and Natanzon
(1982), Ercolani and Forest (1985), Forest and McLaughlin (1982), Smirnov (1991;
1997a,c), and Taimanov (1990b,c).

A completely integrable system related to the algebro-geometric solutions of
the sG hierarchy (similar to the connection between the Neumann system of con-
strained harmonic oscillators to a sphere and the KdV equation) was treated in
Previato (1986).

Degenerations of the underlying hyperelliptic curve and solitons relative to
algebro-geometric background sG solutions are discussed in Borisov and Kiseliev
(1989), Kotlyarov (1989), and Zagrodziński and Jaworski (1982).

The 1990s experienced renewed interest in algebro-geometric solutions of the
sG equation owing to its relevance in connection with integrable surfaces, Willmore
tori, etc. The interested reader can find much pertinent information in Babich and
Bobenko (1993), Bobenko (1990a,b; 1991a,b; to appear), Dorfmeister and Haak
(1998a,b), Ercolani et al. (1993), Korotkin (1999), Melko and Sterling (1993),
Pinkall and Sterling (1989), and Taimanov (1998), and the literature therein.
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The AKNS Hierarchy

The miracle of the appropriateness of the language of
mathematics for the formulation of the laws of physics is a
wonderful gift which we neither understand nor deserve. We
should be grateful for it and hope that it will remain valid in
future research.

Eugene P. Wigner1

3.1 Contents

In 1974 Ablowitz, Kaup, Newell, and Segur introduced a new system of integrable
nonlinear evolution equations, later called the AKNS system,

pt + i

2
pxx − i p2q = 0,

qt − i

2
qxx + i pq2 = 0,

for functions p = p(x, t), q = q(x, t), which can be viewed as a complexified,
nonlinear Schrödinger (nS) equation

qt − i
2qxx ± i |q|2q = 0

under the assumption p = ±q . A Lax pair for the nS equation had previously been
found by Zakharov and Shabat (ZS) in 1972, and its integrability as a Hamiltonian
system2 had been established by Zakharov and Manakov in 1974. This chapter
focuses on the construction of algebro-geometric solutions of the AKNS hierar-
chy. Below we briefly summarize the principal content of each section. A more
detailed discussion, using the KdV hierarchy as a model, has been provided in the
introduction to this volume.

1 The unreasonable effectiveness of mathematics in the natural sciences, Comm. Pure Appl. Math. 13
(1960), 1–14.

2 A guide to the literature can be found in the detailed notes at the end of this chapter.
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Section 3.2.
� polynomial recursion formalism, zero-curvature pairs (U, Vn+1)
� stationary and time-dependent AKNS hierarchy
� Burchnall–Chaundy polynomial, hyperelliptic curve Kn

Section 3.3. (stationary)
� properties of φ and the Baker–Akhiezer vector �
� Dubrovin equations for auxiliary divisors
� trace formulas for p, q , and higher-order AKNS invariants
� theta function representations for φ, �, and p, q
� the algebro-geometric initial value problem

Section 3.4. (time-dependent)
� properties of φ and the Baker–Akhiezer vector �
� Dubrovin equations for auxiliary divisors
� trace formulas for p, q and higher-order AKNS invariants
� theta function representations for φ, �, and p, q
� the algebro-geometric initial value problem

Section 3.5.
� Gauge equivalence of AKNS and classical Boussinesq (cBsq) hierarchies
� polynomial recursion formalism, cBsq zero-curvature pairs (U , V n+1)
� theta function representations for cBsq solutions u, v

This chapter relies on terminology and notions developed in connection with
compact Riemann surfaces. A brief summary of key results as well as definitions
of some of the main quantities can be found in Appendices A, C, and F.

3.2 The AKNS Hierarchy, Recursion Relations,
and Hyperelliptic Curves

In this section we provide the construction of the AKNS hierarchy using a polyno-
mial recursion formalism and derive the associated sequence of AKNS Lax pairs.
Moreover, we discuss the Burchnall–Chaundy polynomial in connection with the
stationary AKNS hierarchy and the underlying hyperelliptic curve.

Throughout this section we suppose the following hypothesis.

Hypothesis 3.1 In the stationary case we assume that p : R → C and q : R → C

are smooth nonvanishing functions,1

p, q ∈ C∞(R), p(x) �= 0, q(x) �= 0, x ∈ R. (3.1)

1 Alternatively, one could suppose p, q : C→ C∞ to be meromorphic.
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In the time-dependent case we suppose that p : R
2 → C and q : R

2 → C satisfy1

p( · , t), q( · , t) ∈ C∞(R), t ∈ R, p(x, · ), q(x, · ) ∈ C1(R), x ∈ R,

p(x, t) �= 0, q(x, t) �= 0, (x, t) ∈ R
2.

(3.2)

Actually, up to (3.34) our analysis will be time-independent, and hence only the
space variation of u will matter. Consider the one-dimensional 2 × 2 matrix-valued
differential expression

M = i

(
d
dx −q
p − d

dx

)
(3.3)

of Dirac-type. To construct the AKNS hierarchy we will need another 2 × 2
matrix-valued differential expression of order n + 1 denoted by Qn+1, n ∈ N0,
which is defined recursively as follows. We take the quickest route to the cons-
truction of Qn+1 and hence to that of the AKNS hierarchy by starting from the
recursion relation (3.4)–(3.7) below. Subsequently, we will offer the motivation
behind this approach (cf. Remark 3.4).

Define { f�}�∈N0
, {g�}�∈N0

, and {h�}�∈N0
recursively by

f0 = −iq, g0 = 1, h0 = i p, (3.4)

f�+1 = (i/2) f�,x − iqg�+1, � ∈ N0, (3.5)

g�+1,x = p f� + qh�, � ∈ N0, (3.6)

h�+1 = −(i/2)h�,x + i pg�+1, � ∈ N0. (3.7)

Explicitly, one computes

f0 = −iq,
f1 = 1

2qx + c1(−iq),

f2 = i
4qxx − i

2 pq
2 + c1

(
1
2qx

)+ c2(−iq), etc.,

g0 = 1,

g1 = c1,

g2 = 1
2 pq + c2, (3.8)

g3 = − i
4 (px q − pqx ) + c1

(
1
2 pq

)+ c3, etc.,

h0 = i p,

h1 = 1
2 px + c1(i p),

h2 = − i
4 pxx + i

2 p
2q + c1

(
1
2 px

)+ c2(i p), etc.,

where {c�}�∈N0 ⊂ C are integration constants. Subsequently, it will be convenient to
introduce also the corresponding homogeneous coefficients f̂�, ĝ�, and ĥ�, defined

1 Again one could assume that for fixed t ∈ R, p( · , t), q( · , t) are meromorphic, etc.
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by the vanishing of the integration constants ck for k = 1, . . . , �,

f̂0 = −iq, f̂ � = f�
∣∣
ck=0,k=1,...,�, � ∈ N, (3.9)

ĝ0 = 1, ĝ� = g�
∣∣
ck=0,k=1,...,�, � ∈ N, (3.10)

ĥ0 = i p, ĥ� = h�

∣∣
ck=0,k=1,...,�, � ∈ N. (3.11)

Hence,

f� =
�∑

k=0

c�−k f̂ k, g� =
�∑

k=0

c�−k ĝk, h� =
�∑

k=0

c�−k ĥk,

introducing

c0 = 1.

Remark 3.2 Using the nonlinear recursions (D.24) and (D.25) in Theorem D.3,
one infers inductively that all homogeneous elements f̂�, ĥ� (and hence all f�
and h�), � ∈ N0, are differential polynomials in p and q , that is, polynomials
with respect to p and q and (some of) their x-derivatives. By (3.6), g�,x are also
differential polynomials in p and q , and by (3.5) (respectively (3.7)) the same
applies to qg� (respectively pg�). Combining these facts readily proves that g�,
� ∈ N0, are differential polynomials in p and q .

Next, we define the 2 × 2 matrix-valued differential expression Qn+1 by

Qn+1 = i
n+1∑
�=0

(
−gn+1−� fn−�

−hn−� gn+1−�

)
M�, n ∈ N0, f−1 = h−1 = 0. (3.12)

We record the first few Qn+1,

Q1 =
(

d
dx − ic1 0

0 d
dx + ic1

)
,

Q2 =
(
i d2

dx2 − i pq
2 + c1

d
dx − c2i −iq d

dx − i
2qx

ip d
dx − i

2 px −i d2

dx2 + i pq
2 + c1

d
dx + c2i

)
, etc.

Introducing the corresponding homogeneous differential expressions Q̂n+1, de-
fined by

Q̂�+1 = Q�+1

∣∣
ck=0,k=1,...,�+1, � ∈ N0, (3.13)

one finds

Qn+1 =
n∑

�=0

cn−� Q̂�+1.
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From the recursion relation (3.4)–(3.7), the commutator of Qn+1 and M can be
explicitly computed and yields1

[Qn+1,M] =
(

0 −2i fn+1

2ihn+1 0

)
, n ∈ N0. (3.14)

In particular, (M, Qn+1) represents the Lax pair of the AKNS hierarchy. Varying
n ∈ N0, the stationary AKNS hierarchy is then defined in terms of the vanishing
of the commutator of Qn+1 and M in (3.14) by

[Qn+1,M] = 0, n ∈ N0, (3.15)

or equivalently, by2

s-AKNSn(p, q) = −2

(
hn+1(p, q)

fn+1(p, q)

)
= 0, n ∈ N0. (3.16)

Explicitly,

s-AKNS0(p, q) =
(−px + c1(−2i p)

−qx + c1(2iq)

)
= 0,

s-AKNS1(p, q) =
( i

2 pxx − i p2q + c1(−px ) + c2(−2i p)

− i
2qxx + i pq2 + c1(−qx ) + c2(2iq)

)
= 0,

s-AKNS2(p, q)

=
( 1

4 pxxx − 3
2 ppxq + c1( i2 pxx − i p2q) + c2(−px ) + c3(−2i p)

1
4qxxx − 3

2 pqqx + c1(− i
2qxx + i pq2) + c2(−qx ) + c3(2iq)

)
= 0, etc.,

represent the first few equations of the stationary KdV hierarchy. By definition,
the set of solutions of (3.16), with n ranging in N0 and c� in C, � ∈ N, repre-
sents the class of algebro-geometric AKNS solutions. If p, q satisfy one of the
stationary AKNS equations in (3.16) for a particular value of n, then they sat-
isfy infinitely many such equations of order higher than n for certain choices of
integration constants c� (one can follow the argument in Remark 1.5). At times
it will be convenient to abbreviate algebro-geometric stationary AKNS solutions
p, q simply as AKNS potentials.

In the following we will frequently assume that p, q satisfy the nth stationary
AKNS equations. By this we mean they satisfy one of the nth stationary AKNS
equations after a particular choice of integration constants c� ∈ C, � = 1, . . . ,
n + 1, n ∈ N0, has been made.

1 The recursion (3.4)–(3.7) is constructed so that the commutator of Qn+1 and M ceases to be a higher-

order 2 × 2 matrix-valued differential expression but results in multiplication by
(

0 −2i fn+1
2ihn+1 0

)

only.
2 In a slight abuse of notation we will occasionally stress the functional dependence of f� and h� on
p, q , writing f�(p, q) and h�(p, q), etc.
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In accordance with our notation introduced in (3.9)–(3.11) and (3.13), the cor-
responding homogeneous stationary AKNS equations are defined by

s-ÂKNSn(p, q) = s-AKNSn(p, q)
∣∣
c�=0,�=1,...,n+1 = 0, n ∈ N0.

Next, we introduce polynomials Fn , Gn+1, and Hn with respect to the spectral
parameter z ∈ C by

Fn(z) =
n∑

�=0

fn−�z
� =

n∑
�=0

cn−� F̂�(z), (3.17)

Gn+1(z) =
n+1∑
�=0

gn+1−�z
� =

n∑
�=−1

cn−�Ĝ�+1(z), (3.18)

Hn(z) =
n∑

�=0

hn−�z
� =

n∑
�=0

cn−� Ĥ �(z), (3.19)

with F̂�, Ĝ�+1, and Ĥ � denoting the corresponding homogeneous polynomials
defined by

F̂0(z) = F0(z) = −iq,

F̂�(z) = F�(z)
∣∣
ck=0,k=1,...,� =

�∑
k=0

f̂ �−k zk, � ∈ N,

Ĝ0(z) = 1,

Ĝ�+1(z) = G�+1(z)
∣∣
ck=0,k=1,...,�+1 =

�+1∑
k=0

ĝ�+1−k zk, � ∈ N,

Ĥ 0(z) = H0(z) = i p,

Ĥ �(z) = H�(z)
∣∣
ck=0,k=1,...,� =

�∑
k=0

ĥ�−k zk, � ∈ N.

Explicitly, one obtains

F0 = −iq,
F1 = −iqz + 1

2qx + c1(−iq),

F2 = −iqz2 + 1
2qx z + i

4qxx − i
2 pq

2 + c1
(− iqz + 1

2qx
)+ c2(−iq), etc.,

G1 = z + c1,

G2 = z2 + 1
2 pq + c1z + c2,

G3 = z3 + 1
2 pqz − i

4 (pxq − pqx ) + c1
(
z2 + 1

2 pq
)+ c2z + c3, etc.,

H0 = i p,

H1 = i pz + 1
2 px + c1(i p),

H2 = i pz2 + 1
2 px z − i

4 pxx + i
2 p

2q + c1
(
i pz + 1

2 px
)+ c2(i p), etc.
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We note that (3.15), or equivalently (3.16), becomes

Fn,x = −2i zFn + 2qGn+1, (3.20)

Gn+1,x = pFn + qHn, (3.21)

Hn,x = 2i zHn + 2pGn+1. (3.22)

Moreover, (3.20)–(3.22) yield
(
G2
n+1 − FnHn

)
x = 0,

and hence G2
n+1 − FnHn is x-independent, implying

G2
n+1 − FnHn = R2n+2, (3.23)

where the integration constant R2n+2 is a monic polynomial of degree 2n + 2. If
{Em}m=0,...,2n+1 denote its zeros, then

R2n+2(z) =
2n+1∏
m=0

(z − Em), {Em}m=0,...,2n+1 ⊂ C. (3.24)

One can use (3.20)–(3.22) and (3.23) to derive differential equations for Fn and
Hn separately by eliminating Gn+1. We obtain for Fn

FnFn,xx − qx
q
FnFn,x − 1

2
F2
n,x +

(
2z2 − 2i z

qx
q

− 2pq
)
F2
n = −2q2R2n+2,

(3.25)

and upon dividing (3.25) by q2 and differentiating the result with respect to x ,

Fn,xxx − 3
qx
q
Fn,xx +

(
4z2 − 4i z

qx
q

− 4pq − qxx
q

+ 3
q2
x

q2

)
Fn,x

+
(
−4z2 qx

q
+ 6i z

q2
x

q2
− 2i z

qxx
q

+ 2pqx − 2pxq

)
Fn = 0. (3.26)

Similarly, one obtains for Hn ,

HnHn,xx − px
p
HnHn,x − 1

2
H 2
n,x +

(
2z2 + 2i z

px
p

− 2pq
)
H 2
n = −2p2R2n+2,

(3.27)

and

Hn,xxx − 3
px
p
Hn,xx +

(
4z2 + 4i z

px
p

− 4pq − pxx
p

+ 3
p2
x

p2

)
Hn,x

+
(
−4z2 px

p
− 6i z

p2
x

p2
+ 2i z

pxx
p

+ 2pxq − 2pqx

)
Hn = 0. (3.28)
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Equations (3.25) and (3.27) can be used to derive recursion relations for the ho-
mogeneous coefficients f̂�, ĝ�, and ĥ� (i.e., the ones in (3.9)–(3.11) in the case of
vanishing integration constants), as proved in Theorem D.3 in Appendix D. This
has interesting applications to the asymptotic expansion of the Green’s matrix of
M as the spectral parameter tends to infinity, as briefly discussed in Remark D.4,
and also yields a proof that f�, g�, and h� are differential polynomials in p, q
(cf. Remark 3.2). In addition, as proven in Theorem D.3, (3.25) leads to an explicit
determination of the integration constants c1, . . . , cn+1 in

s-AKNSn(p, q) = −2

(
hn+1(p, q)
fn+1(p, q)

)
= 0,

in terms of the zeros E0, . . . , E2n+1 of the associated polynomial R2n+2 in (3.24).
In fact, one can prove (cf. (D.26))

c� = c�(E), � = 0, . . . , n + 1, (3.29)

where

c0(E) = 1,

ck(E)

=
k∑

j0,..., j2n+1=0
j0+···+ j2n+1=k

(2 j0)! · · · (2 j2n+1)!

22k( j0!)2 · · · ( j2n+1!)2(2 j0 − 1) · · · (2 j2n+1 − 1)
E j0

0 · · · E j2n+1
2n+1,

k = 1, . . . , n + 1. (3.30)

Next, we study the restriction of the differential expression Qn+1 to the two-
dimensional kernel (i.e., the null space in an algebraic sense as opposed to the
functional analytic one) of (M − z). More precisely, let1

ker(M − z) =
{
� =

(
ψ1

ψ2

)
: R → C

2
∞

∣∣∣∣(M − z)� = 0

}
, z ∈ C, (3.31)

then (3.12) implies

Qn+1

∣∣
ker(M−z) = i

(−Gn+1(z) Fn(z)
−Hn(z) Gn+1(z)

) ∣∣∣∣
ker(M−z)

. (3.32)

We emphasize that the result (3.32) is valid independently of whether Qn+1 and
M commute. However, if one makes the additional assumption that Qn+1 and
M commute, we will now prove that this implies an algebraic relationship be-
tween Qn+1 and M . This is the matrix-valued analog of the celebrated result of
Burchnall and Chaundy discussed in Theorem 1.3. The following theorem details
this relationship.

1 If p, q are considered on C, then � in (3.31) should be considered on C too.
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Theorem3.3 Assume that Qn+1 and M commute, [Qn+1,M] = 0, or equivalently,
suppose s-AKNS(p, q) = 0 (i.e., fn+1(p, q) = hn+1(p, q) = 0) for some n ∈ N0.
Then M and Qn+1 satisfy an algebraic relationship of the type (cf. (3.24))

Fn(M, Qn+1) = −Q2
n+1 − R2n+2(M) = 0,

R2n+2(z) =
2n+1∏
m=0

(z − Em), z ∈ C.
(3.33)

Proof The commutativity of Qn+1 and M , the definition of R2n+2, (3.23), as well
as the expression for Qn+1 on the kernel of M − z, (3.32), imply

Q2
n+1

∣∣
ker(M−z) = −

(
G2
n+1 − FnHn 0

0 G2
n+1 − FnHn

) ∣∣∣∣
ker(M−z)

= −R2n+2(z)

(
1 0

0 1

) ∣∣∣∣
ker(M−z)

= −R2n+2(M)
∣∣
ker(M−z).

Hence, Q2
n+1 and −R2n+2(M) coincide on ker(M − z), and since z ∈ C is arbitrary,

one infers (3.33). �

One calls Fn(M, Qn+1) the Burchnall–Chaundy polynomial of the pair
(M, Qn+1). Equation (3.33) naturally leads to the hyperelliptic curve Kn of (arith-
metic) genus n ∈ N0 (possibly with a singular affine part), where

Kn : Fn(z, y) = y2 − R2n+2(z) = 0,

R2n+2(z) =
2n+1∏
m=0

(z − Em), {Em}m=0,...,2n+1 ⊂ C.
(3.34)

Remark 3.4 At this point it is easy to motivate the recursion relation (3.4)–(3.7)
used as our starting point for constructing the AKNS hierarchy. If one is interested
in determining 2 × 2 matrix-valued differential expressions Q commuting with M
(other than simply polynomials of M or the case in which Q and M are polynomi-
als of a third matrix-valued differential expression), one can proceed as follows.
Restricting Q to the two-dimensional null space, ker(M − z), of (M − z), one
can systematically replace �x = (ψ1,x , ψ2,x )# by (qψ2 − i zψ1, pψ1 + i zψ2)#

and hence effectively reduce Q on ker(M − z) to multiplication by Q
∣∣
ker(M−z) =

i
( −G F

−H G

) ∣∣
ker(M−z), where F , G, and H are polynomials. Imposing commutativity

of Q and M on ker(M − z) then yields relations (3.20)–(3.22). Moreover, we repro-
duced identity (3.32). Making the polynomial ansatz (3.17)–(3.19) for F ,G, and H
and inserting it into (3.20)–(3.22) then readily yields the recursion relation (3.4)–
(3.7) for f0, . . . , fn , g0, . . . , gn+1, h0, . . . , hn , together with (i/2) fn,x − iqgn+1 =
0, −(i/2)hn,x + i pgn+1 = 0. In other words, one obtains the beginning of the
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recursion relation (3.4)–(3.7) as well as relation (3.16) defining the nth stationary
AKNS equations.

We end this section by introducing the time-dependent AKNS hierarchy. This
means that p, q are now considered as functions of both space and time. For
each equation in the hierarchy – that is, for each n – we introduce a deformation
parameter tn ∈ R in p and q, replacing p(x), q(x) by p(x, tn), q(x, tn). The matrix
differential expression M now reads (cf. (3.3)),

M(tn) = i

(
d
dx −q( · , tn)

p( · , tn) − d
dx

)
.

The quantities { f�}�∈N0 , {g�}�∈N0 , {h�}�∈N0 , and Qn+1, n ∈ N, are still defined
by (3.4)–(3.7) and (3.12), respectively. The time-dependent AKNS hierarchy is
obtained by imposing the Lax commutator equations

d

dtn
M − [Qn+1,M] = 0, tn ∈ R, (3.35)

varying n ∈ N0, or equivalently, by
(

0 −iqtn − Fn,x − 2i zFn + 2qGn+1

i ptn − Hn,x + 2i zHn + 2pGn+1 0

)

=
(

0 −iqtn + 2i fn+1

i ptn − 2ihn+1 0

)
= 0, (x, tn) ∈ R

2, n ∈ N0.

(3.36)

The latter are equivalent to the collection of evolution equations

AKNSn(p, q) =
(
ptn − 2hn+1(p, q)

qtn − 2 fn+1(p, q)

)
= 0, (x, tn) ∈ R

2, n ∈ N0. (3.37)

Explicitly,

AKNS0(p, q) =
(
pt0 − px + c1(−2i p)

qt0 − qx + c1(2iq)

)
= 0,

AKNS1(p, q) =
(
pt1 + i

2 pxx − i p2q + c1 (−px ) + c2(−2i p)

qt1 − i
2qxx + i pq2 + c1 (−qx ) + c2(2iq)

)
= 0,

AKNS2(p, q)

=
(
pt2 + 1

4 pxxx − 3
2 ppxq + c1( i2 pxx − i p2q) + c2(−px ) + c3(−2i p)

qt2 + 1
4qxxx − 3

2 pqqx + c1(− i
2qxx + i pq2) + c2(−qx ) + c3(2iq)

)
= 0,

etc.,
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represent the first few equations of the time-dependent AKNS hierarchy. The
system of equations AKNS1(p, q) = 0 (with c1 = c2 = 0) represents the AKNS
system. Similarly, one introduces the corresponding homogeneous AKNS
hierarchy by

ÂKNSn(p, q) = AKNSn(p, q)
∣∣
c�=0,�=1,...,n+1 = 0, n ∈ N0.

We conclude this section by pointing out an alternative construction of the AKNS
hierarchy using a zero-curvature approach instead of the Lax pairs (M, Qn+1).

Remark 3.5 Frequently, the AKNS hierarchy is introduced by developing its
zero-curvature formalism. To this end one defines

U (z) =
(−i z q

p i z

)
, (3.38)

Vn+1(z) = i

(−Gn+1(z) Fn(z)

−Hn(z) Gn+1(z)

)
, n ∈ N0. (3.39)

Then (3.32) implies

−i
(

1 0
0 −1

)
[Qn+1,M]

∣∣∣∣
ker(M−z)

= (− Vn+1,x (z) + [U (z), Vn+1(z)]
)∣∣

ker(M−z),

and the stationary part of this section, being a consequence of [Qn+1,M] = 0, can
equivalently be based on the stationary zero-curvature equation

0 = −Vn+1,x + [U, Vn+1]

=
(
iGn+1,x − i pFn − iqHn −i Fn,x + 2zFn + 2iqGn+1

i Hn,x + 2zHn − 2i pGn+1 −iGn+1,x + i pFn + iqHn

)

=
(

0 −2 fn+1

−2hn+1 0

)
.

In particular, the hyperelliptic curve Kn in (3.34) is then obtained from the
characteristic equation of iVn+1 by1

det(y I2 − iVn+1(z)) = y2 − det(Vn+1(z))

= y2 − Gn+1(z)2 + Fn(z)Hn(z) = y2 − R2n+2(z) = 0.

Similarly, the time-dependent part (3.35)–(3.37), being based on the Lax equation

1 I2 denotes the identity matrix in C2.
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(3.35), can equivalently be developed from the zero-curvature equation

0 = Utn − Vn+1,x + [U, Vn+1]

=
(

0 qtn − i Fn,x + 2zFn + 2iqGn+1

ptn + i Hn,x + 2zHn − 2i pGn+1 0

)

=
(

0 qtn − 2 fn+1

ptn − 2hn+1 0

)
. (3.40)

In fact, since the latter approach (3.40) is almost universally adopted in the
contemporary literature on the AKNS hierarchy, we thought it might be worthwhile
to recall the alternative approach using the Lax pair (M, Qn+1) instead.

Finally we show that the AKNS equations (3.37) are invariant with respect to
certain scale transformations. More precisely, one has the following result.

Lemma 3.6 Suppose p, q satisfy one of the AKNS equations (3.37) for some
n ∈ N0,

AKNSn(p, q) = 0.

Consider the scale transformation

(p(x, tn), q(x, tn)) → ( p̆(x, tn), q̆(x, tn)) = (Ap(x, tn), A−1q(x, tn)), (3.41)

A ∈ C \ {0}.

Then,

AKNSn( p̆, q̆) = 0. (3.42)

Proof Let (M, Qn+1) and (M̆, Q̆n+1) be associated with (p, q) and ( p̆, q̆), respec-
tively, and defined according to (3.3) and (3.12). Defining the matrix T in C

2

by

T =
(

(A1/2)−1 0

0 A1/2

)

(fixing a particular square root branch A1/2), one computes

T MT−1 = M̆,

T Qn+1T
−1 = i

n+1∑
�=0

(−gn+1−� A−1 fn−�

−Ahn−� gn+1−�

)
M̆

� = Q̆n+1. (3.43)
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A comparison of (3.43) with

Q̆n+1 = i
n+1∑
�=0

(−ğn+1−� f̆ n−�

−h̆n−� ğn+1−�

)
M̆

�

yields

f̆ n−� = A−1 fn−�, ğn+1−� = gn+1−�, h̆n−� = A−1hn−�, � = 0, . . . , n + 1

and hence (3.42) if (3.37) and (3.41) are taken into account. �

In the particular case of the nonlinear Schrödinger (nS±) hierarchy, where

p(x, tn) = ±q(x, tn), n ∈ N0, c� ∈ R, � ∈ N, (3.44)

(3.41) further restricts A to be unimodular, that is,

|A| = 1. (3.45)

We remark that the plus sign in (3.44), denoted by nS+, corresponds to the defo-
cusing case in which M is formally self-adjoint,

M = i

(
d
dx −q
q − d

dx

)
, M∗ = M. (3.46)

On the other hand, the minus sign in (3.44), denoted by nS−, corresponds to the
focusing case, in which

M = i

(
d
dx −q
−q − d

dx

)
, M = −C2

(
0 −1

1 0

)
M

(
0 −1

1 0

)
C2, (3.47)

with C2 the antilinear conjugation map

C2

(
a

b

)
=
(
a

b

)
, a, b ∈ C,

and

M∗ =
(

1 0
0 −1

)
M

(
1 0
0 −1

)
�= M. (3.48)

Hence, M is formally non-self-adjoint (but shares certain symmetries with M∗). In
analogy to our notation in (3.37), the corresponding nS± hierarchies are denoted
by

nS±,n(q) = 0, (x, tn) ∈ R
2, n ∈ N0.
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The first few equations explicitly read

nS±,0(q) = qt0 − qx + c1(2iq) = 0,

nS±,1(q) = qt1 − i
2qxx ± i |q|2q + c1(−qx ) + c2(2iq) = 0,

nS±,2(q) = qt2 + 1
4qxxx ∓ 3

2 |q|2qx + c1
(− i

2qxx ± i |q|2q)

+ c2(−qx ) + c3(2iq) = 0, etc.

In the special case of the modified Korteweg–de Vries (mKdV±) hierarchies,
where

p(x, tn) = ±q(x, tn), n ∈ 2N0, c2�+1 = 0, � ∈ N0,

(3.41) implies the additional restriction

A ∈ {1,−1}.

3.3 The Stationary AKNS Formalism

As shown in Section 3.2, the stationary AKNS hierarchy is intimately connected
with pairs of commuting 2 × 2 matrix-valued differential expressions Qn+1 and M
of orders n + 1 and 1, respectively, and a hyperelliptic curve Kn . In this section we
study this relationship more closely and present a detailed study of the stationary
AKNS hierarchy and its algebro-geometric solutions p, q. Our principal tools
are derived from combining the polynomial recursion formalism introduced in
Section 1.2 and a fundamental meromorphic function φ on Kn , the analog of the
Weyl–Titchmarsh function of M . With the help of φ we study the Baker–Akhiezer
vector �, the common eigenfunction of Qn+1 and M , Dubrovin-type equations
governing the motion of auxiliary divisors onKn , trace formulas, and theta function
representations of φ, �, and p, q . We also discuss the algebro-geometric initial
value problem of constructing p, q from the Dubrovin equations and auxiliary
divisors as initial data.

For major parts of this section we suppose that

p, q ∈ C∞(R), p(x) �= 0, q(x) �= 0, x ∈ R (3.49)

(which could be replaced by p, q : C → C∞ meromorphic) and assume (3.4)–
(3.7), (3.16), (3.17)–(3.22), and (3.34) and freely employ the formalism in (3.1)–
(3.34), keeping n ∈ N0 fixed.

We recall the hyperelliptic curve

Kn : Fn(z, y) = y2 − R2n+2(z) = 0,

R2n+2(z) =
2n+1∏
m=0

(z − Em), {Em}m=0,...,2n+1 ⊂ C,
(3.50)
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as introduced in (3.34). The curve Kn is compactified by joining two points at
infinity, P∞± , P∞+ �= P∞− , but for notational simplicity the compactification is
also denoted by Kn . Points P on Kn \ {P∞+ , P∞−} are represented as pairs P =
(z, y), where y( · ) is the meromorphic function on Kn satisfying Fn(z, y) = 0.
The complex structure on Kn is then defined in the usual way (see Appendix C).
Hence, Kn becomes a two-sheeted hyperelliptic Riemann surface of (arithmetic)
genus n ∈ N0 (possibly with a singular affine part) in the standard manner.

We also emphasize that by fixing the curveKn (i.e., by fixing E0, . . . , E2n+1), the
integration constants c1, . . . , cn+1 in fn+1 and hn+1 (and hence in the corresponding
stationary AKNSn equations) are uniquely determined, as is clear from (3.29),
(3.30), which establish the integration constants c� as symmetric functions of
E0, . . . , E2n+1.

For notational simplicity we will usually tacitly assume that n ∈ N. (The trivial
case n = 0 is explicitly treated in Example 3.20.)

The two most frequently discussed cases in applications are the case of real
roots, where Em ∈ R, m = 0, . . . , 2n + 1, and the case of complex conjugate
roots, where {Em}m=0,...,2n+1 = {E2m ′ , E2m ′ }m ′=0,...,n . These cases are treated in
detail in Appendix C.

Let {µ j (x)} j=1,...,n and {ν j (x)} j=1,...,n denote the zeros of Fn( · , x) and Hn( · , x),
respectively (cf. (3.17), (3.19)). We may then write

Fn(z) = −iq
n∏
j=1

(z − µ j ) (3.51)

and

Hn(z) = i p
n∏
j=1

(z − ν j ), (3.52)

and define {µ̂ j (x)} j=1,...,n ⊂ Kn and {ν̂ j (x)} j=1,...,n ⊂ Kn by

µ̂ j (x) = (µ j (x),Gn+1(µ j (x), x)) ∈ Kn, j = 1, . . . , n, x ∈ R, (3.53)

ν̂ j (x) = (ν j (x),−Gn+1(ν j (x), x)) ∈ Kn, j = 1, . . . , n, x ∈ R, (3.54)

lifting µ j and ν j to Kn . Due to the C∞(R) assumption (3.49) on p, q , Fn(z, · ),
Hn(z, · ) ∈ C∞(R) by (3.5) and (3.7). Thus, one concludes

µ j , νk ∈ C(R), j, k = 1, . . . , n, (3.55)

taking multiplicities (and appropriate renumbering) of the zeros of Fn and Hn into
account. (Away from collisions of zeros, µ j and νk are of course C∞.)
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Next, recalling identity (3.23), we introduce the fundamental meromorphic func-
tion φ( · , x) on Kn ,

φ(P, x) = y + Gn+1(z, x)

Fn(z, x)
(3.56)

= −Hn(z, x)

y − Gn+1(z, x)
, (3.57)

P = (z, y) ∈ Kn, x ∈ R

with divisor (φ( · , x)) of φ( · , x) given by

(φ( · , x)) = DP∞+ ν̂(x) − DP∞− µ̂(x), (3.58)

using (3.51), (3.52), and (3.55). Here we used the abbreviations

ν̂ = {ν̂1, . . . , ν̂n}, µ̂ = {µ̂1, . . . , µ̂n} ∈ Symn(Kn)

and our convention (A.47) as well as additive notation for divisors. Equivalently,
P∞+ , ν̂1(x), . . . , ν̂n(x), are the n + 1 zeros and P∞− , µ̂1(x), . . . , µ̂n(x), the n + 1
poles of φ(P, x). Clearly µ j (x) and ν j (x) play the analogous role of Dirichlet and
Neumann eigenvalues in comparison with the KdV case. In particular, Dµ̂(x) and
Dν̂(x) represent the corresponding analogs of Dirichlet and Neumann divisors.

Given φ( · , x), one defines the stationary Baker–Akhiezer vector �( · , x, x0) on
Kn \ {P∞+ , P∞−} by

�(P, x, x0) =
(
ψ1(P, x, x0)

ψ2(P, x, x0)

)
, (3.59)

P = (z, y) ∈ Kn \ {P∞+ , P∞−}, (x, x0) ∈ R
2,

where

ψ1(P, x, x0) = exp

(∫ x

x0

dx ′(−i z + q(x ′)φ(P, x ′))
)
, (3.60)

ψ2(P, x, x0) = φ(P, x)ψ1(P, x, x0). (3.61)

Note that

ψ1(P, x0, x0) = 1, P ∈ Kn \ {P∞+ , P∞−}.
Next we summarize a variety of properties of φ and �.

Lemma3.7 Suppose p, q ∈ C∞(R) satisfy the nth stationaryAKNS system (3.16).
Moreover, let P = (z, y) ∈ Kn \ {P∞+ , P∞−}, (x, x0) ∈ R

2. Then φ satisfies the
Riccati-type equation

φx (P) + qφ(P)2 − 2i zφ(P) = p, (3.62)
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as well as

φ(P)φ(P∗) = Hn(z)

Fn(z)
, (3.63)

φ(P) + φ(P∗) = 2
Gn+1(z)

Fn(z)
, (3.64)

φ(P) − φ(P∗) = 2y

Fn(z)
. (3.65)

Moreover, � satisfies the first-order system (cf. (3.38), (3.39))

�x (P) = U (z)�(P), (3.66)

iy�(P) = Vn+1(z)�(P), (3.67)

or equivalently,

(M − z(P))�(P) = 0, (Qn+1 − iy(P))�(P) = 0. (3.68)

In addition,

ψ1(P, x, x0) =
(
Fn(z, x)

Fn(z, x0)

)1/2

exp

(
y
∫ x

x0

dx ′q(x ′)Fn(z, x ′)−1

)
, (3.69)

ψ1(P, x, x0)ψ1(P∗, x, x0) = Fn(z, x)

Fn(z, x0)
, (3.70)

ψ2(P, x, x0)ψ2(P∗, x, x0) = Hn(z, x)

Fn(z, x0)
, (3.71)

ψ1(P, x, x0)ψ2(P∗, x, x0) + ψ1(P∗, x, x0)ψ2(P, x, x0) = 2
Gn+1(z, x)

Fn(z, x0)
, (3.72)

ψ1(P, x, x0)ψ2(P∗, x, x0) − ψ1(P∗, x, x0)ψ2(P, x, x0) = − 2y

Fn(z, x0)
. (3.73)

Moreover, as long as the zeros of Fn( · , x) are all simple for x ∈ �, � ⊆ R an
open interval, �( · , x, x0) is meromorphic on Kn \ {P∞+ , P∞−} for x, x0 ∈ �.

Proof Equation (3.62) follows from (3.20), (3.21), (3.56), and (3.57). Relations
(3.63)–(3.65) are clear from (3.56), (3.57). By (3.60) and (3.61), �( · , x, x0) is
meromorphic on Kn \ {P∞+ , P∞−} away from the poles µ̂ j (x ′) of φ( · , x ′). By
(3.20), (3.53), and (3.56),

q(x ′)φ(P, x ′) =
P→µ̂ j (x ′)

∂x ′ ln(Fn(z, x ′)) + O(1) as z → µ j (x
′), (3.74)

and hence ψ1 is meromorphic onKn \ {P∞+ , P∞−} by (3.60) as long as the zeros of
Fn( · , x) are all simple. This follows from (3.60) by restricting P to a sufficiently
small neighborhood U j of {µ̂ j (x ′) ∈ Kn | x ′ ∈ �, x ′ ∈ [x0, x]} such that µ̂k(x ′) /∈
U j for all x ′ ∈ [x0, x] and all k ∈ {1, . . . , n} \ { j}. Since φ is meromorphic on
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Kn by (3.56), ψ2 is meromorphic on Kn \ {P∞+ , P∞−} by (3.61). Equation (3.68)
is an immediate consequence of (3.57), (3.60), and (3.61). Equation (3.69) is a
consequence of (3.20), (3.60), (3.64), (3.65), and

φ(P) = 1

2
(φ(P) + φ(P∗)) + 1

2
(φ(P) − φ(P∗))

= Gn+1

Fn
+ y

Fn
= 1

q

(
Fn,x
Fn

+ i z

)
+ y

Fn
.

Equation (3.70) is clear from (3.69), and (3.71) is a consequence of (3.61), (3.63),
and (3.70). Equation (3.72) is a consequence of (3.61), (3.64), and (3.70). Finally,
(3.73) follows from (3.61), (3.65), and (3.70). �

Equations (3.70)–(3.73) show that the basic identity (3.23), G2
n+1 − FnHn =

R2n+2, is equivalent to the elementary fact

(ψ1,+ψ2,− + ψ1,−ψ2,+)2 − 4ψ1,+ψ1,−ψ2,+ψ2,− = (ψ1,+ψ2,− − ψ1,−ψ2,+)2,

(3.75)

identifying ψ1(P) = ψ1,+, ψ1(P∗) = ψ1,−, ψ2(P) = ψ2,+, ψ2(P∗) = ψ2,−. This
provides the intimate link between our approach and the squared function systems
also employed in the literature in connection with algebro-geometric solutions of
the AKNS hierarchy.

Next, we derive Dubrovin-type equations, that is, first-order coupled systems
of differential equations that govern the dynamics of µ j and ν j with respect to
variations of x . We recall that the affine part of Kn is nonsingular if

{Em}m=0,,...,2n+1 ⊂ C, Em �= Em ′ for m �= m ′,m,m ′ = 0, . . . , 2n + 1. (3.76)

Lemma 3.8 Suppose that p, q ∈ C∞(�̃µ) are nonzero and satisfy the nth station-
ary AKNS system (3.16) on an open interval �̃µ ⊆ R. Moreover, assume that the
zeros µ j , j = 1, . . . , n, of Fn( · ) remain distinct on �̃µ. Then {µ̂ j } j=1,...,n, defined
by (3.53), satisfies the following first-order system of differential equations on �̃µ

µ j,x = −2iy(µ̂ j )
n∏

k=1
k �= j

(µ j − µk)
−1, j = 1, . . . , n. (3.77)

Next, assume the affine part of Kn to be nonsingular and introduce the initial
condition

{µ̂ j (x0)} j=1,...,n ⊂ Kn (3.78)

for some x0 ∈ R, where µ j (x0), j = 1, . . . , n, are distinct. Then there exists an
open interval �µ ⊆ R, with x0 ∈ �µ, such that the initial value problem (3.77),
(3.78) has a unique solution {µ̂ j } j=1,...,n ⊂ Kn satisfying

µ̂ j ∈ C∞(�µ,Kn), j = 1, . . . , n, (3.79)

and µ j , j = 1, . . . , n, remain distinct on �µ.
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For the zeros ν j , j = 1, . . . , n, of Hn( · ) identical statements hold withµ j and�µ

replaced by ν j and �ν , etc. In particular, {ν̂ j } j=1,...,n, defined by (3.54), satisfies
the system

ν j,x = −2iy(ν̂ j )
n∏

k=1
k �= j

(ν j − νk)
−1, j = 1, . . . , n. (3.80)

Proof It suffices to prove (3.77) and (3.79) since the proof of (3.80) is analogous
to that of (3.77). Equations (3.20), (3.51), and (3.53) readily yield

Fn,x (µ j ) = iqµ j,x

n∏
k=1
k �= j

(µ j − µk) = 2qGn+1(µ j ) = 2qy(µ̂ j )

and hence (3.77). The smoothness assertion (3.79) is clear as long as µ̂ j stays away
from the branch points (Em, 0). In case µ̂ j hits such a branch point, one can use
the local chart around (Em, 0) (with local coordinate ζ = σ (z − Em)1/2, σ = ±1)
to verify (3.79), as in the proof of Lemma 1.10. �

Combining the polynomial approach of Section 3.2 with (3.51) and (3.52) readily
yields trace formulas for the AKNS invariants, that is, expressions of f� and h� in
terms of symmetric functions of the zeros µ j and ν j of Fn and Hn , respectively.
For simplicity we just record the simplest case. We explicitly indicate the first few
of these below.

Lemma3.9 Suppose that p, q ∈ C∞(R) are nonzero and satisfy the nth stationary
AKNS system (3.16). Then,

i
px
p

− 2c1 = 2
n∑

j1=1

ν j1 , (3.81)

1

4

pxx
p

− 1

2
pq + c1

(
i

2

px
p

)
− c2 = −

n∑
j1, j2=1
j1< j2

ν j1ν j2 , etc., (3.82)

i
qx
q

+ 2c1 = −2
n∑

j1=1

µ j1 , (3.83)

1

4

qxx
q

− 1

2
pq + c1

(
− i

2

qx
q

)
− c2 = −

n∑
j1, j2=1
j1< j2

µ j1µ j2 , etc., (3.84)

(pq)x
pq

= 2i
n∑

j1=1

(
µ j1 − ν j1

)
. (3.85)
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Here

c1 = −1

2

2n+1∑
m1=0

Em1 , c2 = 1

2

2n+1∑
m1,m2=0
m1<m2

Em1Em2 − 1

8

( 2n+1∑
m1=0

Em1

)2

, etc. (3.86)

Proof Relations (3.81)–(3.84) follow by comparison of powers of z equating
the corresponding expressions (3.51) and (3.52) for Fn and Hn with those in (3.17),
(3.19) and with (3.8) taken into account. Equation (3.86) follows in exactly the
same way from (3.8), (3.17), (3.19), (3.23), and (3.24). Adding (3.81) and (3.83)
yields (3.85). �

Now we turn to asymptotic properties of φ and ψ j , j = 1, 2.

Lemma 3.10 Suppose that p, q ∈ C∞(R) are nonzero and satisfy the nth sta-
tionary AKNS system (3.16). Moreover let P ∈ Kn \ {P∞+ , P∞−}, (x, x0) ∈ R

2.
Then,

φ(P) =
ζ→0

{
(i/2)pζ + (px/4)ζ 2 + O(ζ 3) as P → P∞+ ,

(2i/q)ζ−1 + (qx/q2) + O(ζ ) as P → P∞− ,
(3.87)

ψ1(P, x, x0) =
ζ→0

{
exp(−iζ−1(x − x0) + O(ζ )) as P → P∞+ ,( q(x)
q(x0) + O(ζ )

)
exp(iζ−1(x − x0) + O(ζ )) as P → P∞− ,

(3.88)

ψ2(P, x, x0) (3.89)

=
ζ→0



(
(i/2)p(x)ζ + O(ζ 2)

)
exp(−iζ−1(x − x0) + O(ζ )) as P → P∞+ ,(

(2i/q(x0))ζ−1 + O(1)
)

exp(iζ−1(x − x0) + O(ζ )) as P → P∞− .

Proof The existence of the asymptotic expansion of φ in terms of the local coor-
dinate ζ = 1/z, near P∞± (cf. (C.7)–(C.11)) is clear from the explicit form of φ in
(3.56). Insertion of the polynomial Fn into (3.56) then yields the explicit expansion
coefficients in (3.87). Alternatively, and more efficiently, one can insert the ansatz

φ =
z→∞ φ1z

−1 + φ2z
−2 + O(z−3)

into the Riccati-type equation (3.62). A comparison of powers of z−1 then proves
the first line in (3.87). Similarly, after the ansatz is inserted

φ =
z→∞ φ−1z + φ0 + φ1z

−1 + O(z−2)

into the Riccati-type equation (3.62), comparing powers of z−1 proves the second
line in (3.87). Equation (3.88) then follows from inserting (3.87) into (3.60), and
(3.89) is clear from (3.61), (3.87), and (3.88). �
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For subsequent purpose we note the following asymptotic spectral parameter
expansion of Fn/y as P → P∞± :

Fn(z)

y
=

ζ→0
∓ζ

∞∑
�=0

f̂�ζ
� as P → P∞± , ζ = 1/z. (3.90)

Here f̂� denote the homogeneous coefficients in (3.9) (i.e., the ones satisfying (3.4)–
(3.7) with vanishing integration constants). In particular, f̂� can be computed from a
nonlinear recursion relation, as proven in Theorem D.3 in Appendix D. Analogous
expansions exist for Gn+1/y and Hn/y.

Next, we provide an explicit representation of φ, �, p, and q in terms of the
Riemann theta function associated with Kn , assuming the affine part of Kn to be
nonsingular. We freely employ the notation established in Appendices A and C.
To avoid the trivial case n = 0 (considered in Example 3.20), we assume n ∈ N

for the remainder of this argument.
Without loss of generality, we choose the branch point P0 = (E0, 0) as a con-

venient base point in the following. Let ω(3)
P∞+ ,P∞−

be the normal differential of the
third kind holomorphic on Kn \ {P∞+ , P∞−} with simple poles at P∞+ and P∞−
and residues +1 and −1, respectively (cf. (A.23)–(A.26), (C.45)),

ω
(3)
P∞+ ,P∞−

= 1

y

n∏
j=1

(z − λ j )dz =
ζ→0

(±ζ−1 + O(ζ ))dζ as P → P∞± . (3.91)

Here the constants, λ j ∈ C, j = 1, . . . , n, are determined by employing the nor-
malization ∫

a j

ω
(3)
P∞+ ,P∞−

= 0, j = 1, . . . , n, (3.92)

and ζ in (3.91) denotes the local coordinate

ζ = 1/z for P near P∞± .

Moreover,
∫ P

P0

ω
(3)
P∞+ ,P∞−

=
ζ→0

±(ln(ζ ) − ln(ω0) + O(ζ )) as P → P∞± (3.93)

for some constant ω0 ∈ C.
Next, let ω

(2)
P∞± ,0 be normalized differentials of the second kind (cf. (A.20),

(A.21), and (A.22)) satisfying
∫
a j

ω
(2)
P∞± ,0 = 0, j = 1, . . . , n, (3.94)

ω
(2)
P∞± ,0 =

ζ→0
(ζ−2 + O(1))dζ as P → P∞± (3.95)
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and introduce

�
(2)
0 = ω

(2)
P∞+ ,0 − ω

(2)
P∞− ,0. (3.96)

Then
∫ P

P0

�
(2)
0 =

ζ→0
∓(ζ−1 + e0,0 + e0,1ζ + O(ζ 2)) as P → P∞± . (3.97)

In addition, the vector of b-periods of �(2)
0 /(2π i) is denoted by

U (2)
0 = (U (2)

0,1, . . . ,U
(2)
0,n), U (2)

0, j = 1

2π i

∫
b j

�
(2)
0 , j = 1, . . . , n (3.98)

in the following. If DQ is assumed to be nonspecial, that is, i(DQ) = 0 with
Q = (Q1, . . . , Qn), a special case of Riemann’s vanishing theorem (cf. Theorem
A.26) yields

θ (�P0
− AP0

(P) + αP0
(DQ)) = 0 if and only if P ∈ {Q1, . . . , Qn}. (3.99)

Hence the divisor (3.58) of φ( · , x) suggests considering expressions of the type

C(x)
θ (�P0

− AP0
(P) + αP0

(Dν̂(x)))

θ (�P0
− AP0

(P) + αP0
(Dµ̂(x)))

exp

(∫ P

P0

ω
(3)
P∞+ ,P∞−

)
, (3.100)

where C(x) is independent of P ∈ Kn . In the following it is convenient to use the
abbreviation

z(P, Q) = �P0
− AP0

(P) + αP0
(DQ), (3.101)

P ∈ Kn, Q = {Q1, . . . , Qn} ∈ Symn(Kn).

We note that by (A.52) and (A.53), z( · , Q) is independent of the choice of base
point P0.

Given these preparations, one obtains the following theta function representation
for φ, �, p, and q .

Theorem 3.11 Suppose that p, q ∈ C∞(�) are nonzero and satisfy the nth sta-
tionary AKNS system (3.16) on �. In addition, assume the affine part of Kn to
be nonsingular and let P ∈ Kn \ {P∞+ , P∞−} and x, x0 ∈ �, where � ⊆ R is an
open interval. Moreover, suppose Dµ̂(x), or equivalently, Dν̂(x) is nonspecial for
x ∈ �. Then,1

φ(P, x) = C0

θ (z(P∞+ , µ̂(x)))θ (z(P, ν̂(x)))

θ (z(P∞− , ν̂(x)))θ (z(P, µ̂(x)))

× exp

(∫ P

P0

ω
(3)
P∞+ ,P∞−

− 2ie0,0x

)
, (3.102)

1 To avoid multi-valued expressions in formulas such as (3.102)–(3.104) etc., we agree always to
choose the same path of integration connecting P0 and P and refer to Remark A.28 for additional
tacitly assumed conventions.
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ψ1(P, x, x0) = θ (z(P∞+ , µ̂(x0)))θ (z(P, µ̂(x)))

θ(z(P∞+ , µ̂(x)))θ (z(P, µ̂(x0)))

× exp

(
i

(∫ P

P0

�
(2)
0 + e0,0

)
(x − x0)

)
, (3.103)

ψ2(P, x, x0) = C0 exp (−2ie0,0x0)
θ(z(P∞+ , µ̂(x0)))θ (z(P, ν̂(x)))

θ (z(P∞− , ν̂(x)))θ (z(P, µ̂(x0)))
(3.104)

× exp

(∫ P

P0

ω
(3)
P∞+ ,P∞−

+ i

(∫ P

P0

�
(2)
0 − e0,0

)
(x − x0)

)
,

where

C0 = 2i

q(x0)ω0

θ (z(P∞− , µ̂(x0)))

θ (z(P∞+ , µ̂(x0)))
exp (2ie0,0x0).

The Abel map linearizes the auxiliary divisors in the sense that

αP0
(Dµ̂(x)) = αP0

(Dµ̂(x0)) − iU (2)
0 (x − x0), (3.105)

αP0
(Dν̂(x)) = αP0

(Dν̂(x0)) − iU (2)
0 (x − x0). (3.106)

Finally, p, q are of the form

p(x) = p(x0)
θ (z(P∞− , ν̂(x0)))θ (z(P∞+ , ν̂(x)))

θ (z(P∞+ , ν̂(x0)))θ (z(P∞− , ν̂(x)))
exp(−2ie0,0(x − x0)), (3.107)

q(x) = q(x0)
θ (z(P∞+ , µ̂(x0)))θ(z(P∞− , µ̂(x)))

θ (z(P∞− , µ̂(x0)))θ(z(P∞+ , µ̂(x)))
exp(2ie0,0(x − x0)), r (3.108)

p(x0)q(x0) = 4

ω2
0

θ (z(P∞+ , ν̂(x0)))θ (z(P∞− , µ̂(x0)))

θ (z(P∞− , ν̂(x0)))θ (z(P∞+ , µ̂(x0)))
. (3.109)

Proof First, we assume temporarily that

µ j (x) �= µ j ′ (x), νk(x) �= νk ′ (x) for j �= j ′, k �= k ′ and x ∈ �̃ (3.110)

for appropriate �̃ ⊆ �. Since by (3.58), DP∞+ ν̂ ∼ DP∞− µ̂ and P∞+ = (P∞− )∗ /∈
{µ̂1, . . . , µ̂n} by hypothesis, one can apply Theorem A.31 to conclude that Dν̂ ∈
Symn(Kn) is nonspecial. This argument is of course symmetric with respect to µ̂

and ν̂. Thus, Dµ̂ is nonspecial if and only if Dν̂ is. Next, we define the right-hand
side of (3.103) to be ψ̃1. We intend to prove ψ1 = ψ̃1 with ψ1 given by (3.60).
For that purpose we first investigate the local zeros and poles of ψ1. Since they
can only come from zeros of Fn(z, x ′) in (3.60), one computes using (3.53), the
definition (3.56) of φ and the Dubrovin equations (3.77),

q(x ′)φ(P, x ′) =
P→µ̂ j (x ′)

q(x ′)
2y(µ̂ j (x ′))

−iq(x ′)
∏n

k=1
k �= j

(µ j (x ′) − µk(x ′))
1

z − µ j (x ′)
+ O(1)

=
P→µ̂ j (x ′)

∂x ′ ln(z − µ j (x
′)) + O(1). (3.111)
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Together with (3.60) this yields

ψ1(P, x, x0) =




(z − µ j (x))O(1) as P → µ̂ j (x) �= µ̂ j (x0),

O(1) as P → µ̂ j (x) = µ̂ j (x0),

(z − µ j (x0))−1O(1) as P → µ̂ j (x0) �= µ̂ j (x),

P = (z, y) ∈ Kn, x, x0 ∈ �̃

with O(1) �= 0. Consequently, ψ1 and ψ̃1 have identical zeros and poles on Kn \
{P∞+ , P∞−}, which are all simple by hypothesis (3.110). Next, comparing the
behavior of ψ1 and ψ̃1 near P∞± , taking into account (3.60), (3.97), the expression
(3.103) for ψ̃1, and (3.88), we observe that ψ1 and ψ̃1 have identical exponential
behavior up to order O(ζ ) near P∞+ and identical exponential behavior up to
order O(1) near P∞− . Thus, ψ1 and ψ̃1 share the same singularities and zeros, and
the Riemann–Roch-type uniqueness result in Lemma C.2 (taking tr = t0,r ) then
proves that ψ1 and ψ̃1 coincide up to normalization. By (3.97) one infers from the
right-hand side of (3.103) that

ψ̃1(P, x, x0) =
ζ→0

e−iζ
−1(x−x0)(1 + O(ζ )) as P → P∞+ . (3.112)

A comparison of (3.112) and (3.88) then yields (3.103) subject to (3.110). Equation
(3.99) also immediately yields that φ equals (3.100) which, together with (3.87),
implies

p = 2C

iω0

θ(z(P∞+ , ν̂))

θ(z(P∞+ , µ̂))
, q = 2i

Cω0

θ (z(P∞− , µ̂))

θ (z(P∞− , ν̂))
. (3.113)

On the other hand (3.88) (near P∞− ) and (3.103) yield (3.108). A comparison
of (3.108) and (3.113) determines C and p, as in (3.107), (3.109). Given C , one
determines φ in (3.102) using (3.100) and hence ψ2, as in (3.104), using ψ2 = φψ1

(all subject to (3.110)). By (3.77) and a special case of Lagrange’s interpolation
formula (cf. Theorem E.1),

n∑
j=1

µk−1
j

n∏
�=1
��= j

(µ j − µ�)
−1 = δk,n, µ j ∈ C, j, k = 1, . . . , n,

one infers by (3.96) and (C.37)

∂xαP0
(Dµ̂) = −2ic(n) = −iU (2)

0

and hence (3.105). Linear equivalence of Dµ̂ and Dν̂ then yields (3.106) (subject

to (3.110)). The extension of all these results from �̃ to � then simply follows
from the continuity of αP0

and the hypothesis of Dµ̂ being nonspecial on �. �

An alternative derivation of (3.107), (3.108) (more precisely, a theta function rep-
resentation of px/p, qx/q) is sketched in (C.49)–(C.52).
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Remark 3.12 Since by (3.58)DP∞+ ν̂ andDP∞− µ̂ are linearly equivalent, one infers

αP0
(Dν̂) = αP0

(Dµ̂) + ", " = AP∞+
(P∞− ).

Hence, one can eliminateDν̂ in (3.102), (3.104), (3.107), etc., in terms ofDµ̂ using

z(P, ν̂) = z(P, µ̂) + ", P ∈ Kn,

z(P∞± , ν̂) = z(P∞± , µ̂) + ". (3.114)

Combining (3.105), (3.106), (3.114), and (3.107), (3.108) shows the remarkable
linearity of the theta function arguments with respect to x in the formulas for p, q.
In fact, one can rewrite (3.107), (3.108) as

p(x) = Cp
θ (A + Bx + ")

θ (A + Bx)
exp(−ie0x), (3.115)

q(x) = Cq
θ (A + Bx − ")

θ (A + Bx)
exp(ie0x), (3.116)

where

A = �P0
− AP0

(P∞+ ) + iU (2)
0 x0 + αP0

(Dµ̂(x0)), (3.117)

B = −iU (2)
0 , (3.118)

" = AP∞+
(P∞− ), (3.119)

and hence the constants e0 ∈ C and ", B ∈ C
n are uniquely determined by Kn

(and its homology basis), the constant A ∈ C
n is in one-to-one correspondence

with the Dirichlet data µ̂(x0) = (µ̂1(x0), . . . , µ̂n(x0)) ∈ Symn(Kn) at the point x0

as long as the divisorDµ̂(x0) is assumed to be nonspecial. The constantsCp,Cq ∈ C

satisfy constraints analogous to (3.109).

Remark 3.13 The explicit expressions (3.103), (3.104) for ψ j , j = 1, 2 comple-
ment Lemma 3.7 and show that � stays meromorphic onKn \ {P∞+ , P∞−} as long
as Dµ̂ is nonspecial (assuming the affine part of Kn to be nonsingular).

For completeness we also mention another theta function representation for the
product pq that will be useful in connection with the classical Boussinesq equation
in Section 3.5.

Corollary 3.14 Assume the hypotheses of Theorem 3.11. Then,

p(x)q(x) = −e0,1 − ∂2
x ln(θ (z(P∞+ , µ̂(x)))). (3.120)

Proof The proof is exactly along the lines of the derivation of the Its–Matveev
formula for the KdV hierarchy (see Theorem 1.20). Eliminating ψ2 in (3.68)
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results in

ψ1,xx (P) = (qx/q)ψ1,x (P) + (
pq + i z(qx/q) − z2

)
ψ1(P).

Next, using

ψ1(P, x, x0) =
ζ→0

exp(−i(ζ−1 + e0,1ζ + O(ζ 2))(x − x0))

× (1 + c1(x)ζ + c2(x)ζ 2 + O(ζ 3)) as P → P∞+ ,

one infers

0 = −ψ1,xx (P, x, x0) + (qx (x)/q(x))ψ1,x (P, x, x0)

+ (p(x)q(x) + i(qx (x)/q(x))ζ−1 − ζ−2
)
ψ1(P, x, x0)

=
ζ→0

exp(−i(ζ−1 + e0,1ζ + O(ζ 2))(x − x0)) (3.121)

× (e0,1 + 2ic1,x (x) + p(x)q(x) + O(ζ )) as P → P∞+ .

By the uniqueness of ψ1, as discussed in Lemma C.2, one concludes that

pq = −e0,1 − 2ic1,x . (3.122)

It remains to determine c1,x . First, we recall from (C.35) that

ω =
ζ→0

(c(n) + O(ζ ))dζ near P∞+

and hence

AP0
(P) =

ζ→0
AP0

(P∞+ ) + c(n)ζ + O(ζ 2) =
ζ→0

AP0
(P∞+ ) + 1

2
U (2)

0 ζ + O(ζ 2)

as P → P∞+ ,

where we combined (3.96) and U (2)
0 = 2c(n) (cf. (3.98), (C.37)) in the second

equality. Since pq only depends on c1,x as opposed to c1 itself, it suffices to
consider the following expansion near P∞+ ,

θ (z(P, µ̂))

θ (z(P∞+ , µ̂))
=

ζ→0
1 − 1

2

(n
j=1U

(2)
0, j∂w j θ

(
z(P∞+ , µ̂) + w

)∣∣
w=0ζ

θ (z(P∞+ , µ̂))
+ O(ζ 2)

= 1 − (i/2)∂x ln(θ (z(P∞+ , µ̂)))ζ + O(ζ 2). (3.123)

Here we used (3.105) to arrive at the last equality in (3.123). A comparison of
(3.121) and (3.123) then yields

c1,x = −(i/2)∂2
x ln(θ (z(P∞+ , µ̂))),

which finally yields (3.120) via (3.122). �

We note that the free constant q(x0) in (3.107) (and in (3.108) using (3.109))
cannot be determined since the AKNS equations (3.37) are invariant with respect
to scale transformations, as discussed in Lemma 3.6.
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The algebro-geometric potentials p, q in (3.107), (3.108) represent stationary
solutions of the AKNS hierarchy, a complexified hierarchy of the hierarchy of non-
linear Schrödinger equations, denoted by nS±. Next, we comment on the isospec-
tral sets for the focusing, nS−, and defocusing, nS+, cases, as introduced at the end
of Section 3.2. In both cases one needs to impose certain symmetry constraints on
Kn and additional constraints on A in (3.115)–(3.117), which we will discuss in
the following.

We start with the defocusing nS+ case and hence suppose p = q: As observed
in (3.46), M is formally self-adjoint in this case, and hence the branch points of
Kn must all be in real position. This leads to the reality constraints

E0 < E1 < · · · < E2n+1 (3.124)

for the zeros of R2n+2, that is, all branch points of Kn are assumed to be in real
position.

Lemma 3.15 Assume (3.124), suppose thatDµ̂(x0) is nonspecial for some x0 ∈ R,
and choose the homology basis {a j , b j }nj=1 according to Theorem A.36 (i) (com-
pare with FigureC.2, implementing the constraint (3.124)). Then the meromorphic
solution q in (3.108) equals p in (3.107) and hence represents a stationary nS+
potential if and only if A in (3.117) satisfies the constraint

Re(A) = (1/2)χ (mod Z
n), χ = (χ1, . . . , χn), χ j ∈ {0, 1}, j = 1, . . . , n.

(3.125)

In particular, under the present hypotheses, the set of stationary algebro-geometric
nS+ potentials q in (3.116) consists of 2n connected components indexed by χ =
(χ1, . . . , χn),χ j ∈ {0, 1}, j = 1, . . . , n, and the component associated withχ = 0
comprises all real-valued smooth potentials q ∈ C∞(R).

Proof Define the antiholomorphic involution ρ+ : (z, y) �→ (z, y) as in Example
A.35 (i). By Example A.35 (i), Theorem A.36 (cf. (A.65), (A.69)–(A.71)), (C.31),
(C.32), (C.33), (C.37), and (C.38)–(C.40) one infers that (Kn, ρ+) is of dividing
type, and hence

r = n + 1, τ = −τ, R = 0, θ (z) = θ(z), z ∈ C
n,

ρ+(a j ) = a j , ρ+(b j ) = −b j , j = 1, . . . , n,

c(k) ∈ R
n, k = 1, . . . , n, U (2)

0 ∈ R
n,

ρ∗
+�

(2)
0 = �

(2)
0 , e0 ∈ R.

Thus,

B = −B
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by (3.118), and hence p = q in (3.115), (3.116) is equivalent to

Cp

Cq
= θ (A + Bx)θ (A + Bx − ")

θ (A + Bx + ")θ (A + Bx)
= θ (A + Bx)θ (−A + Bx + ")

θ (A + Bx + ")θ(−A + Bx)
. (3.126)

Given that

" = AP∞+
(P∞− ) ∈ R

n,

equation (3.126) is equivalent to

A = −A + m1 + n1τ

for some n1 ∈ Z
n and arbitrary m1 ∈ Z

n and hence to

Re(A) = (1/2)m1, m1 ∈ Z
n

and n1 = 0. Replacing A by A + m + nτ with m, n ∈ Z
n then yields

Re(A) = (1/2)m1 − m, m1,m ∈ Z
n

and hence (3.125). Finally, since q is of the type

q(x) = Cq
θ(A + Bx − ")

θ (A + Bx)
exp(ie0x), (3.127)

q ∈ C∞(R) if and only if χ = 0. This follows from (A.73) (with � = 0) since the
denominator in (3.127) is of the type

θ (iIm(A) + iIm(B)x + (1/2)(χ1, . . . , χn)), χ j ∈ {0, 1}, j = 1, . . . , n,

which has zeros if and only if χ �= 0. �

Remark 3.16 We briefly take a closer look at the connected component of
nonsingular nS+ potentials q ∈ C∞(R) in (3.116) associated with χ = 0 in
Lemma 3.15. Even though the Lax differential expression M = i

( d
dx −q
q − d

dx

)
is

formally self-adjoint in the nS+ context, the auxiliary divisors Dµ̂(x0) are not con-
strained to be in real position since the corresponding eigenvalue problem is easily
seen to be non-self-adjoint. Indeed, assuming q ∈ L∞(R), the auxiliary eigenval-
ues µ j (ξ ) and ν j (ξ ) (cf. (3.51)–(3.54), (3.59)–(3.61), (3.70), (3.71)) are associated
with self-adjoint Dirac-type operators in L2(R)2 of the form1

D1,ξ f = M f,

f ∈ dom(D1,ξ ) = {
g = (g1, g2)# ∈ L2(R)2

∣∣g1 ∈ ACloc(R),

g2 ∈ ACloc(R \ {ξ}), g1(ξ ) = 0,Mg ∈ L2(R)2
}

1 Here ACloc(I ), I ⊆ R an open interval, denotes the set of locally absolutely continuous functions
on I.
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and

D2,ξ f = M f,

f ∈ dom(D2,ξ ) = {
g = (g1, g2)# ∈ L2(R)2

∣∣g1 ∈ ACloc(R \ {0}),
g2 ∈ ACloc(R), g2(ξ ) = 0,Mg ∈ L2(R)2

}
,

respectively. One readily verifies

D∗
1,ξ = D2,ξ

and hence the non-self-adjoint character of Dj,ξ , j = 1, 2. That the auxiliary
divisors Dµ̂(x0) are not constrained to be in real position also follows from the
factor i on the right-hand side of (3.77) and the fact that for µ j ∈ [E2 j−1, E2 j ],
y(µ̂ j ) ∈ R for all j = 1, . . . , n since by (C.19) R2n+2(λ)1/2 is real-valued for
λ ∈ (E2 j−1, E2 j ), j = 1, . . . , n.

It can be shown (pertinent references are provided in the notes to this section) that
the corresponding isospectral set of all smooth algebro-geometric nS+ potentials
q ∈ C∞(R) corresponding to a fixed curve Kn constrained by (3.124), that is, the
connected component associated withχ = 0 in Lemma 3.15, can be identified with
an (n + 1)-dimensional real torus T

n+1. This isospectral torus is of dimensionn + 1
(rather than n) due to the additional scaling invariance discussed in (3.45) after
Lemma 3.6 involving an arbitrary constant multiple of absolute value equal to one.

Next, we turn to the focusing nS− case and hence suppose p = −q: As observed
in (3.48), M is not formally self-adjoint but formally unitarily equivalent to its
formal adjoint M∗. Further investigations (especially in the spatially periodic case
using Floquet theoretic methods) then lead to the assumption of complex conjugate
pairs of nS− branch points. Thus, the constraints on the set of zeros of R2n+2 can
be written as1

{Em, Em}m=0,...,n. (3.128)

We start by recalling that algebro-geometric nS− potentials are smooth.

Lemma 3.17 Assume that q is an algebro-geometric stationary nS− potential of
the type (3.108). Then,2

q ∈ C∞(R).

Proof Nonsingularity of the algebro-geometric nS− solutions q follows from
(3.116), the theta functions in (3.116) being entire with respect to x , and the equa-
tions of the stationary nS− hierarchy being incompatible with any pole behavior
of q of the type (x − x1)−n , n ∈ N, x1 ∈ R. �
1 Of course we still assume the affine part of Kn to be nonsingular (cf. (3.76)).
2 We are not explicitly assuming (3.128).
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Lemma 3.18 Assume (3.128), suppose thatDµ̂(x0) is nonspecial for some x0 ∈ R,
and choose the homology basis {a j , b j }nj=1 according to Theorem A.36 (i). Then
the solution q in (3.108) equals −p in (3.107) and hence represents a stationary
nS− potential if and only if A in (3.117) satisfies the constraint

Re(A) = 0 (mod Z
n). (3.129)

In particular, under the present hypotheses, the set of stationary algebro-geometric
nS− potentials q in (3.116) consists of one connected component, all of whose
elements are smooth, q ∈ C∞(R).

Proof The proof closely parallels that of Lemma 3.15, and hence we mainly focus
on those points that differ in the current case. By Example A.35 (i), Theorem A.36
(cf. (A.65), (A.69)–(A.71)), one infers that (Kn, ρ+) is of dividing type; hence,

r = 1 if n is even, r = 2 if n is odd, τ = R − τ,

R =



σ1

. . .

σ1


 if r = 1 (and hence n is even),

R =




σ1

. . .

σ1

0


 if r = 2 (and hence n is odd),

θ (z) = θ (z), z ∈ C
n, diag(R) = 0,

ρ+(a j ) = a j , ρ+(b j ) = (aR) j − b j , j = 1, . . . , n,

ρ∗
+�

(2)
0 = �

(2)
0 , e0 ∈ R, U (2)

0 ∈ R
n.

Thus,

B = −B

by (3.118), and hence p = −q in (3.115), (3.116) is equivalent to

−Cp

Cq
= θ (A + Bx)θ (A + Bx − ")

θ (A + Bx + ")θ(A + Bx)
= θ (A + Bx)θ(−A + Bx + ")

θ (A + Bx + ")θ (−A + Bx)
.

Thus, one infers

A = −A + m1 + n1τ

for some n1 ∈ Z
n and arbitrary m1 ∈ Z

n , and hence

Re(A) = (1/2)m1, m1 ∈ Z
n
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and n1 = 0. Similarly, one obtains

A + " = −A + " + m2 + n2τ

for some n2 ∈ Z
n and arbitrary m2 ∈ Z

n , and hence

2Im(") = n2Im(τ ),

m2 − m1 + (1/2)n2R = 0.

Replacing A by A + m + nτ with m, n ∈ Z
n then yields

Re(A) = (1/2)m1 − m − (1/2)nR, m1,m, n ∈ Z
n

=




(0, . . . , 0︸ ︷︷ ︸
n

), r = 1,

(1/2)(0, . . . , 0︸ ︷︷ ︸
n−1

, χn), χn ∈ {0, 1}, r = 2.
(3.130)

For r = 1, this yields (3.129). For r = 2, (3.130) appears to yield two connected
components corresponding to χn = 0 and χn = 1. However, all algebro-geometric
nS− potentials are smooth q ∈ C∞(R) by Lemma 3.17. On the other hand, since
q is of the type

q(x) = Cq
θ(A + Bx − ")

θ (A + Bx)
exp(ie0x), (3.131)

the component corresponding to χn = 1 would consist of singular solutions
since the denominator in (3.131) is of the type

θ (iIm(A) + iIm(B)x + (1/2)(0, . . . , 0, 1)),

which has zeros by (A.73) (with � = n − 1). Hence, the component corresponding
to χn = 1 is empty, and we again arrive at (3.129). �

Remark 3.19 A careful analysis of the nS− case (pertinent references are provided
in the notes to this section) reveals the following facts: The motion of the auxiliary
divisors µ̂ j is not constrained to certain fixed curves on Kn; moreover, collisions
between them may occur. Still, the motion of the µ̂ j can be shown to remain homol-
ogous to some linear combinations of appropriate a j and b j cycles. An analysis of
(3.107)–(3.109) yields that the connected component of algebro-geometrical nS−
potentials identified in Lemma 3.18, or equivalently, the isospectral set of algebro-
geometric nS− potentials q associated with the curve Kn constrained by (3.128),
is given by a real torus T

n+1. (Again the dimension of the torus is n + 1 (rather
than n) due to the additional scaling invariance in connection with a unimodular
constant, as in the nS+ case.) Moreover, all elements in the isospectral torus T

n+1

consist of smooth nS− potentials q ∈ C∞(R).

Next, we briefly consider the trivial case n = 0 excluded in Theorem 3.11.
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Example 3.20 Assume n = 0, P = (z, y) ∈ K0 \ {P∞+ , P∞−}, and let (x, x0) ∈
R

2. Then

K0 : F0(z, y) = y2 − R2(z) = y2 − (z − E0)(z − E1) = 0,

c1 = −(E0 + E1)/2, E0, E1 ∈ C,

p(x) = p(x0) exp(−2ic1(x − x0)),

q(x) = q(x0) exp(2ic1(x − x0)),

p(x)q(x) = (E0 − E1)2/4,

s-AKNS0(p, q) = 0,

F0(z, x) = −iq(x), G1(z, x) = z + c1, H0(z, x) = i p(x),

φ(P, x) = y + z + c1

−iq(x)
= i p(x)

y − z − c1
,

ψ1(P, x, x0) = exp(i(y + c1)(x − x0)),

ψ2(P, x, x0) = y + z + c1

−iq(x0)
exp(i(y − c1)(x − x0)).

Up to this point we assumed p, q ∈ C∞(R) and the stationary AKNS equation
(3.16) for some fixed n ∈ N0. Next we will show that solvability of the Dubrovin
equations (3.77) on �µ ⊆ R in fact implies equation (3.16) on �µ. As pointed
out in Remark 3.24, this amounts to solving the algebro-geometric initial value
problem in the stationary case.

Theorem 3.21 Fix n ∈ N, assume the affine part of Kn to be nonsingular, and
suppose that {µ̂ j } j=1,...,n satisfies the stationary Dubrovin equations (3.77) on an
open interval �µ ⊆ R such that µ j , j = 1, . . . , n, remain distinct on �µ. Define
p, q ∈ C∞(�µ) by

q(x) = q(x0) exp

(
− i(x − x0)

2n+1∑
m=0

Em + i
n∑
j=1

∫ x

x0

dx ′µ j (x
′)
)
, (3.132)

q(x0) �= 0

and1

p(x) = 1

2q(x)
∏n

j=1 µ j (x)

(
1

q(x)

(
q(x)

n∏
j=1

µ j (x)

)
x

)
x

− 1

4q(x)3
∏n

j=1 µ j (x)2

((
q(x)

n∏
j=1

µ j (x)

)
x

)2

−
∏2n+1

m=0 Em
q(x)

∏n
j=1 µ j (x)2

,

if µ j �= 0 on �µ, j = 1, . . . , n, (3.133)

1 If µ j0 (x0) = 0 for some j0 ∈ {1, . . . , n} and some x0 ∈ �µ, one can use (3.145) to define p at x0.
Since the explicit formula for p in terms of {µ j } j=1,...,n is straightforward but rather cumbersome
in this case, we omit further details.
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with q defined by (3.132). Then p is nonzero on �µ and p, q satisfy the nth
stationary AKNS equation (3.16), that is,

s-AKNSn(p, q) = 0 on �µ. (3.134)

Proof Given the solutions µ̂ j = (µ j , y(µ̂ j )) ∈ C∞(�µ,Kn), j = 1, . . . , n of
(3.77), we introduce

Fn(z) = −iq
n∏
j=1

(z − µ j ) on C × �µ (3.135)

with q defined by (3.132) up to a multiplicative constant (due to the scale invariance
of the AKNS hierarchy; cf. Lemma 3.6). Given Fn and q, one defines the monic
polynomial Gn+1 of degree n + 1 by

Gn+1(z) = (2q)−1Fn,x (z) + i zq−1Fn(z) on C × �µ (3.136)

(cf. (3.20)) and then infers on �µ

µ̂ = (µ j , (2q)−1Fn,x (µ j )) = (µ j ,Gn+1(µ j )), j = 1, . . . , n (3.137)

as a consequence of (3.77). We note that Gn+1 is uniquely defined independently
of the scaling freedom in q since Fn contains a factor of q. Next, we define a
polynomial Hn on C × �µ such that (3.23) holds, that is, by

R2n+2(z) − Gn+1(z)2 = −Fn(z)Hn(z) on C × �µ. (3.138)

Such a polynomial Hn exists since the left-hand side of (3.138) vanishes at z = µ j ,
j = 1, . . . , n by (3.137). To determine the degree of Hn , one computes

Gn+1(z)2 =
|z|→∞

z2n+2 −
( 2n+1∑

m=0

Em

)
z2n+1 + O(z2n) (3.139)

using (3.132) with O(z2n) depending on x by inspection. Thus, combining (3.138)
and (3.139), Hn has degree n with respect to z. Hence, we may write

Hn(z) = i p
n∏
j=1

(z − ν j ) on C × �µ (3.140)

for some p ∈ C∞(�µ). Equation (3.140) defines p ∈ C∞(�µ) up to a multiplica-
tive constant and in accordance with the AKNS scale invariance discussed in
Lemma 3.6. With the polynomial Pn−1 introduced by

Pn−1(z) = pFn(z) + qHn(z) − Gn+1,x (z) on C × �µ,

equations (3.135), (3.139), and (3.140) show that Pn−1 is a polynomial of degree
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n − 1. Differentiating (3.138) with respect to x yields

2Gn+1(z)Gn+1,x (z) − Fn,x (z)Hn(z) − Fn(z)Hn,x (z) = 0 on C × �µ, (3.141)

and hence

Gn+1(µ j )Pn−1(µ j ) = 0, j = 1, . . . , n

on �µ. From this point on one can follow the proof of Theorem 1.26 line by line
and thus conclude that

Pn−1 = 0 on C × �µ.

Hence, (3.21) holds, that is,

Gn+1,x (z) = pFn(z) + qHn(z) on C × �µ. (3.142)

Combining (3.136), (3.141), and (3.142) then yields (3.22),

Hn,x (z) = 2i zHn(z) + 2pGn+1(z) on C × �µ, (3.143)

and thus we have derived the fundamental equations (3.20)–(3.22) and (3.23) on
C × �µ. One can now mimic the analysis in (3.4)–(3.15) and thus conclude that
p, q satisfy the stationary AKNS equations (3.134). Equation iqx/q =∑2n+1

m=0 Em − 2
∑n

j=1 µ j (cf. (3.132)) and a comparison of powers of z in (3.135),

(3.138), (3.140), and (3.143) then yield i px/p = −∑2n+1
m=0 Em + 2

∑n
j=1 ν j

(cf. (3.81)) and hence show that p �= 0 on �µ. Finally, using (3.142), (3.138),
and (3.136), one obtains

p = Gn+1,x (z) − qHn(z)

Fn(z)
= Fn(z)Gn+1,x (z) + q(R2n+2(z) − Gn+1(z)2)

Fn(z)2

= 1

Fn(z)

(
1

2q
Fn,x (z) + i z

q
Fn(z)

)
x

+ q

Fn(z)2

(
R2n+2(z) −

(
1

2q
Fn,x (z) + i z

q
Fn(z)

)2
)
. (3.144)

Insertion of (3.135) into (3.144), taking z = 0, then yields expression (3.133) for
p as long as

∏n
j=1 µ j �= 0. If µ j0 (x0) = 0 for some j0 ∈ {1, . . . , n} and some

x0 ∈ �µ (we note that at most one µ j can vanish at x0 by our hypothesis that the
µ j are distinct on �µ), one uses

p(x0) = (d/dz)(Gn+1,x (z) − qHn(z))

(d/dz)Fn(z)

∣∣∣∣
z=µ j0 (x0)

(3.145)

to define p(x0) and then eliminates Hn in terms of Fn and Gn+1 using (3.138)
and finally eliminates Gn+1 and Gn+1,x in terms of Fn and its x-derivatives using
(3.136). �
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Remark 3.22 The explicit theta function representations (3.107), (3.108) of p, q
on �µ in (3.132), (3.133) then permit one to extend p and q beyond �µ as long
as Dµ̂ remains nonspecial (cf. Theorem A.31).

Remark 3.23 We singled out q and {µ j } j=1,...,n in Theorem 3.21, but of course
one can prove the analogous result in terms of p and {ν j } j=1,...,n .

Remark 3.24 A closer look at Theorem 3.21 reveals that p, q are uniquely
determined in an open neighborhood � of x0 by Kn and the initial condition
µ̂(x0) = (µ̂1(x0), . . . , µ̂n(x0)) ∈ Symn(Kn) or, equivalently, by the auxiliary
divisor Dµ̂(x0) ∈ Symn(Kn) at x = x0. Conversely, given Kn and p, q in an open
neighborhood � of x0, one can construct the corresponding polynomials Fn( · , x),
Gn+1( · , x), Hn( · , x) for x ∈ � (using the recursion relation (3.4)–(3.7) to deter-
mine the homogeneous elements f̂�, ĝ�, ĥ� and (D.26) to determine c� = c�(E),
� = 0, . . . , n) and then recover the auxiliary divisor Dµ̂(x) for x ∈ � from the
zeros of Fn( · , x) and from (3.53). This remark is of relevance in connection with
determining the isospectral set of AKNS potentials p, q in the sense that once the
curve Kn is fixed, elements of the isospectral class of potentials are parametrized
by (nonspecial) auxiliary divisors Dµ̂(x) (cf. Remark 3.16).

We will end this section by providing a few examples that are analyzed in de-
tail in the references given in the notes to this section. We recall our convention
abbreviating algebro-geometric stationary solutions p, q of some (and hence in-
finitely many such) stationary AKNS equations as AKNS potentials. By ℘( · ) =
℘( · |ω1, ω3) = ℘( · ; g2, g3) we denote the Weierstrass ℘-function with periods
2ω j , j = 1, 3, Im(ω3/ω1) �= 0, ω2 = ω1 + ω3, invariants g2 and g3, and associ-
ated fundamental period parallelogram " (cf. Appendix H). Similarly, ζ ( · ) =
ζ ( · |ω1, ω3) = ζ ( · ; g2, g3) denotes the corresponding Weierstrass ζ -function.

Example 3.25 A few elliptic algebro-geometric AKNS potentials follow.

p(x) = q(x) = n(ζ (x) − ζ (x − ω2) − ζ (ω2)), n ∈ N,

p(x) = 1, q(x) = n(n + 1)℘(x), n ∈ N,

p(x) = 3 − ℘ ′(x)/(2e1), q(x) = −℘ ′(x − ω2)/(2e1) assuming e2 = 0,

p(x) = 2

3
(℘ ′′(x) − e2

1), q(x) = −℘(x − ω2)/e2
1 assuming e2 = 0.

Incidentally, if q is an elliptic algebro-geometric potential of the KdV hierarchy,
then p = 1, q are algebro-geometric AKNS potentials. Conversely, if p, q are
algebro-geometric AKNS potentials with p = 1, then q is an algebro-geometric
potential of the KdV hierarchy. In particular, q(x) = n(n + 1)℘(x) is the well-
known class of Lamé potentials associated with the KdV hierarchy (cf. Exa-
mple 1.32).
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3.4 The Time-Dependent AKNS Formalism

In this section we extend the algebro-geometric analysis of Section 3.3 to the
time-dependent AKNS hierarchy.

For most of this section we assume the following hypothesis.

Hypothesis 3.26 Suppose that p : R
2 → C and q : R

2 → C satisfy

p( · , t), q( · , t) ∈ C∞(R), t ∈ R, p(x, · ), q(x, · ) ∈ C∞(R), x ∈ R,

p(x, t) �= 0, q(x, t) �= 0, (x, t) ∈ R
2. (3.146)

The basic problem in the analysis of algebro-geometric solutions of the AKNS
hierarchy consists in solving the time-dependent r th AKNS flow with initial
data a stationary solution of the nth equation in the hierarchy. More precisely,
given n ∈ N0, consider a solution p(0), q (0) of the nth stationary AKNS equation
s-AKNSn(p(0), q (0)) = 0 associated with Kn and a given set of integration con-
stants {c�}�=1,...,n+1 ⊂ C. Next, let r ∈ N0; we intend to construct a solution p, q
of the r th AKNS flow AKNSr (p, q) = 0 with p(t0,r ) = p(0), q(t0,r ) = q (0) for
some t0,r ∈ R. To emphasize that the integration constants in the definitions of the
stationary and the time-dependent AKNS equations are independent of each other,
we indicate this by adding a tilde on all the time-dependent quantities. Hence,
we employ the notation Q̃r+1, Ṽr+1, F̃r , G̃r+1, H̃r , f̃ s , g̃s , h̃s , c̃s to distinguish
them from Qn+1, Vn+1, Fn , Gn+1, Hn , f�, g�, h�, c� in the following. In addition,
we follow a more elaborate notation inspired by Hirota’s τ -function approach and
indicate the individual r th AKNS flow by a separate time variable tr ∈ R.

Summing up, we are seeking a solution p, q of the time-dependent algebro-
geometric initial value problem

ÃKNSr (p, q) =
(
ptr − 2h̃r+1(p, q)

qtr − 2 f̃ r+1(p, q)

)
= 0,

(p, q)
∣∣
tr=t0,r = (p(0), q (0)),

(3.147)

s-AKNSn(p(0), q (0)) = −2

(
hn+1(p(0), q (0))
fn+1(p(0), q (0))

)
= 0 (3.148)

for some t0,r ∈ R, n, r ∈ N0, where p = p(x, tr ), q = q(x, tr ) satisfy (3.146), and
a fixed curve Kn is associated with the stationary solutions p(0), q (0) in (3.148). In
terms of Lax pairs, this amounts to solving

d

dtr
M(tr ) − [Q̃r+1(tr ),M(tr )] = 0, tr ∈ R, (3.149)

[Qn+1(t0,r ),M(t0,r )] = 0. (3.150)

Anticipating that the AKNS flows are isospectral deformations of M(t0,r ), we are
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going a step further, replacing (3.150) by

[Qn+1(tr ),M(tr )] = 0, tr ∈ R. (3.151)

This then implies

Qn+1(tr )
2 = −R2n+2(M(tr )) = −

2n+1∏
m=0

(M(tr ) − Em), tr ∈ R.

Actually, instead of working directly with (3.149), (3.150), and (3.151), it is more
convenient to take the zero-curvature equations (3.40) as our point of departure,
that is, we start from

Utr − Ṽr+1,x + [U, Ṽr+1] = 0, (3.152)

−Vn+1,x + [U, Vn+1] = 0, (3.153)

where (cf. (3.17)–(3.19), (3.38), (3.39))

U (z) =
(−i z q

p i z

)
,

Vn+1(z) = i

(−Gn+1(z) Fn(z)
−Hn(z) Gn+1(z)

)
, (3.154)

Ṽr+1(z) = i

(−G̃r+1(z) F̃r (z)

−H̃r (z) G̃r+1(z)

)
,

and

Fn(z) =
n∑

�=0

fn−�z
� = −iq

n∏
j=1

(z − µ j ), f0 = −iq, (3.155)

Gn+1(z) =
n+1∑
�=0

gn+1−�z
�, g0 = 1, (3.156)

Hn(z) =
n∑

�=0

hn−�z
� = i p

n∏
j=1

(z − ν j ), h0 = i p, (3.157)

F̃r (z) =
r∑
s=0

f̃ r−s zs, f̃ 0 = −iq, (3.158)

G̃r+1(z) =
r+1∑
s=0

g̃r+1−s zs, g̃0 = 1, (3.159)

H̃r (z) =
r∑
s=0

h̃r−s zs, h̃0 = i p, (3.160)

for fixed n, r ∈ N0. Here, f�, f̃ s , g�, g̃s , h�, and h̃s , � = 0, . . . , n, s = 0, . . . , r are
defined as in (3.4)–(3.7) with appropriate sets of integration constants. Explicitly,
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(3.152) and (3.153) are equivalent to (cf. (3.40))

ptr = −i H̃ r,x − 2z H̃r + 2i pG̃r+1, (3.161)

qtr = i F̃r,x − 2z F̃r − 2iqG̃r+1, (3.162)

G̃r+1,x = pF̃r + q H̃r (3.163)

and (cf. (3.20)–(3.22))

Fn,x = −2i zFn + 2qGn+1, (3.164)

Gn+1,x = pFn + qHn, (3.165)

Hn,x = 2i zHn + 2pGn+1, (3.166)

respectively. In particular, (3.23) holds in the present tr -dependent setting, that is,

G2
n+1 − FnHn = R2n+2. (3.167)

First we will assume the existence of a solution p, q of (3.161)–(3.166) and de-
rive an explicit formula for p, q in terms of Riemann theta functions. In addition, we
will show in Theorem 3.37 that (3.161)–(3.166), and hence the algebro-geometric
initial value problem (3.147), (3.148) has a solution at least locally, that is, for
(x, tr ) ∈ � for some open and connected set � ⊆ R

2.
As in (3.53) and (3.54), one introduces

µ̂ j (x, tr ) = (µ j (x, tr ),Gn+1(µ j (x, tr ), x, tr )) ∈ Kn, j = 1, . . . , n, (x, tr ) ∈ R
2,

(3.168)

ν̂ j (x, tr ) = (ν j (x, tr ),−Gn+1(ν j (x, tr ), x, tr )) ∈ Kn, j = 1, . . . , n, (x, tr ) ∈ R
2

(3.169)

and notes in accordance with Section 3.3 that the regularity assumptions (3.146)
on p, q imply analogous regularity properties of Fn , Hn , µ j , and νk .

In analogy to (3.56), (3.57) one defines the following meromorphic function
φ( · , x, tr ) on Kn ,

φ(P, x, tr ) = y + Gn+1(z, x, tr )

Fn(z, x, tr )
(3.170)

= −Hn(z, x, tr )

y − Gn+1(z, x, tr )
, (3.171)

P = (z, y) ∈ Kn, (x, tr ) ∈ R
2

and infers that the divisor (φ( · , x, tr )) of φ( · , x, tr ) is then given by

(φ( · , x, tr )) = DP∞+ ν̂(x,tr ) − DP∞− µ̂(x,tr ) (3.172)
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with

µ̂ = {µ̂1, . . . , µ̂n}, ν̂ = {ν̂1, . . . , ν̂n} ∈ σ nKn.

Introduce the time-dependent Baker–Akhiezer function �( · , x, x0, tr , t0,r ) by

�(P, x, x0, tr , t0,r ) =
(
ψ1(P, x, x0, tr , t0,r )

ψ2(P, x, x0, tr , t0,r )

)
, (3.173)

ψ1(P, x, x0, tr , t0,r ) = exp

(
i
∫ tr

t0,r

ds(F̃r (z, x0, s)φ(P, x0, s) (3.174)

− G̃r+1(z, x0, s)) +
∫ x

x0

dx ′(−i z + q(x ′, tr )φ(P, x ′, tr ))
)
,

ψ2(P, x, x0, tr , t0,r ) = φ(P, x, tr )ψ1(P, x, x0, t, t0,r ),

P ∈ Kn \ {P∞±}, (x, tr ) ∈ R
2, (3.175)

with fixed (x0, t0,r ) ∈ R
2. The following lemma records properties of φ and � in

analogy to the stationary case discussed in Lemma 3.7.

Lemma 3.27 Assume Hypothesis 3.26 and suppose that (3.152), (3.153) hold.
In addition, let P = (z, y) ∈ Kn \ {P∞+ , P∞−} and (x, x0, tr , t0,r ) ∈ R

4. Then φ

satisfies

φx (P) + qφ(P)2 − 2i zφ(P) = p, (3.176)

(qφ(P))tr = i∂x
(
F̃r (z)φ(P) − G̃r+1(z)

)
, (3.177)

φtr (P) = 2i G̃r+1(z)φ(P)

+ q−1
(− i G̃r+1,x (z) + i F̃r (z)φx (P) + 2z F̃r (z)φ(P)

)
(3.178)

= − i F̃r (z)φ(P)2 + 2i G̃r+1(z)φ(P) − i H̃ r (z), (3.179)

φ(P)φ(P∗) = Hn(z)

Fn(z)
, (3.180)

φ(P) + φ(P∗) = 2
Gn+1(z)

Fn(z)
, (3.181)

φ(P) − φ(P∗) = 2y

Fn(z)
. (3.182)

Moreover, � satisfies

ψ1,x (P) = (qφ(P) − i z)ψ1(P), (3.183)

ψ1,tr (P) = i(F̃r (z)φ(P) − G̃r+1(z))ψ1(P), (3.184)

ψ2,x (P) = (pφ(P)−1 + i z)ψ1(P), (3.185)

ψ2,tr (P) = −i(H̃r (z)φ(P)−1 − G̃r+1(z))ψ2(P), (3.186)
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or, equivalently,

�x (P) = U (z)�(P), (3.187)

iy�(P) = Vn+1(z)�(P), (3.188)

�tr (P) = Ṽr+1(z)�(P) (3.189)

and hence

(M − z(P))�(P) = 0, (Qn+1 − iy(P))�(P) = 0. (3.190)

In addition, as long as the zeros of Fn( · , x, tr ) are all simple for (x, tr ) ∈ �,� ⊆
R

2 open and connected, �( · , x, x0, t0, t0,r ) is meromorphic on Kn \ {P∞+ , P∞−}
for (x, tr ), (x0, t0,r ) ∈ �.

Proof Equation (3.176) follows from (3.153) and (3.170). Relation (3.177) can be
proven as follows. Using (3.147) and (3.176), one infers by a straightforward (but
rather lengthy) calculation that

(
∂x + 2qφ − 2i z − (qx/q)

)(
(qφ)tr − i(F̃rφ − G̃r+1)x

) = 0.

Thus,

(qφ)tr − i(F̃rφ − G̃r+1)x = C exp

(∫ x

dx ′(2i z + (qx/q) − 2qφ
))

, (3.191)

whereC is independent of x (but may depend on P and tr ). By inspection of (3.170),
the left-hand side of (3.191) is meromorphic on Kn , whereas the right-hand side
of (3.191) is not meromorphic near P∞+ and P∞− unless C = 0. Hence, one in-
fers C = 0 and thus (3.177). Equation (3.178) is then an immediate consequence
of (3.147) (more precisely, the AKNS equation for qtr ) and (3.177). Similarly,
(3.179) is an immediate consequence of (3.163), (3.176), and (3.178). Relation
(3.183) is clear from (3.174), and (3.185) is obvious from (3.175), (3.176), and
(3.183). Equation (3.184) follows from (3.174), and (3.186) is a straightforward
consequence of (3.175), and (3.184). Moreover, (3.180)–(3.182) are proved as in
Lemma 3.7. By (3.174), ψ1( · , x, x0, tr , t0,r ) is meromorphic away from the poles
µ̂ j (x0, s) of φ( · , x0, s) and µ̂k(x ′, tr ) of φ( · , x ′, tr ). That ψ1 is actually meromor-
phic on Kn \ {P∞+ , P∞−} if Fn( · , x, tr ) has only simple zeros is a consequence
of

q(x ′)φ(P, x ′, tr ) =
P→µ̂ j (x ′,tr )

∂x ′ ln
(
Fn(z, x ′, tr )

)+ O(1) as z → µ j (x
′, tr )

(cf. (3.74)) and

i F̃r (z, x0, s)φ(P, x0, s) =
P→µ̂ j (x0,s)

∂s ln
(
Fn(z, x0, s)

)+ O(1) as z → µ j (x0, s)

via (3.170), (3.168), and (3.192). (Equation (3.192) in Lemma 3.28 only requires
(3.178), (3.181), and (3.182), which have already been proven.) This follows
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from (3.174) by restricting P to a sufficiently small neighborhood U j (x0) of
{µ̂ j (x0, s) ∈ Kn | (x0, s) ∈ �, s ∈ [t0,r , tr ]} such that µ̂k(x0, s) /∈ U j (x0) for all s ∈
[t0,r , tr ] and all k ∈ {1, . . . , n} \ { j} and by simultaneously restricting P to a suffi-
ciently small neighborhood U j (tr ) of {µ̂ j (x ′, tr ) ∈ Kn | (x ′, tr ) ∈ �, x ′ ∈ [x0, x]}
such that µ̂k(x ′, tr ) /∈ U j (tr ) for all x ′ ∈ [x0, x] and all k ∈ {1, . . . , n} \ { j}. The
function ψ2 is meromorphic on Kn \ {P∞+ , P∞−} by (3.175) and since φ is mero-
morphic on Kn by (3.170). �

Next we consider the tr -dependence of Fn , Gn+1, and Hn .

Lemma 3.28 Assume Hypothesis 3.26 and suppose that (3.152), (3.153) hold.
Then,

Fn,tr = 2i(Gn+1 F̃r − FnG̃r+1), (3.192)

Gn+1,tr = i(Hn F̃r − Fn H̃r ), (3.193)

Hn,tr = 2i(HnG̃r+1 − Gn+1 H̃r ). (3.194)

In particular, (3.192)–(3.194) are equivalent to

−Vn+1,tr + [Ṽr+1, Vn+1] = 0.

Proof By (3.170), (3.178), (3.181), and (3.182) one infers

φtr (P) − φtr (P
∗) = −2yFn,tr

F2
n

= 4iy

F2
n

(G̃r+1Fn − F̃rGn+1),

which proves (3.192). Similarly, differentiating (3.181) with respect to tr , using
(3.176), (3.178), (3.180)–(3.182), and (3.163), proves (3.193). Relation (3.194)
finally follows from (G2

n+1 − FnHn)tr = 0 (cf. (3.167)), (3.192), and (3.193). �

The remaining items (3.69)–(3.73) of Lemma 3.7 in the present time-dependent
setting then read as follows.

Lemma 3.29 Assume Hypothesis 3.26 and suppose that (3.152), (3.153) hold. In
addition, let P = (z, y) ∈ Kn \ {P∞+ , P∞−} and (x, x0, tr , t0,r ) ∈ R

4. Then

ψ1(P, x, x0, tr , t0,r ) =
(

Fn(z, x, tr )

Fn(z, x0, t0,r )

)1/2

× exp

(
iy
∫ tr

t0,r

ds F̃r (z, x0, s)Fn(z, x0, s)
−1 (3.195)

+ y
∫ x

x0

dx ′q(x ′, tr )Fn(z, x ′, tr )−1

)
,

ψ1(P, x, x0, tr , t0,r )ψ1(P∗, x, x0, tr , t0,r ) = Fn(z, x, tr )

Fn(z, x0, t0,r )
, (3.196)
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ψ2(P, x, x0, tr , t0,r )ψ2(P∗, x, x0, tr , t0,r ) = Hn(z, x, tr )

Fn(z, x0, t0,r )
, (3.197)

ψ1(P, x, x0, tr , t0,r )ψ2(P∗, x, x0, tr , t0,r )

+ ψ1(P∗, x, x0, tr , t0,r )ψ2(P, x, x0, tr , t0,r ) = 2
Gn+1(z, x, tr )

Fn(z, x0, t0,r )
, (3.198)

ψ1(P, x, x0, tr , t0,r )ψ2(P∗, x, x0, tr , t0,r )

− ψ1(P∗, x, x0, tr , t0,r )ψ2(P, x, x0, tr , t0,r ) = − 2y

Fn(z, x0, t0,r )
. (3.199)

Proof Relation (3.195) follows from (3.174), (3.170), (3.164), and (3.192). Equa-
tion (3.196) follows from (3.164), (3.174), (3.181), and (3.192). Equation (3.197)
is a consequence of (3.175), (3.180), and (3.196). Finally, (3.198) and (3.199) are
clear from (3.175), (3.181), (3.182), and (3.196). �

The stationary Dubrovin-type equations in Lemma 3.8 have analogs for
each AKNSr flow (indexed by the parameter tr ) that govern the dynamics of
µ j and ν j with respect to variations of x and tr . In this context the stationary
case simply corresponds to the special case r = 0, as described in the following
result.

Lemma 3.30 Assume Hypothesis 3.26 and (3.152), (3.153) hold on an open and
connected set �̃µ ⊆ R

2. Moreover, suppose that the zeros µ j , j = 1, . . . , n, of
Fn( · ) remain distinct on �̃µ. Then {µ̂ j } j=1,...,n, defined by (3.168), satisfies the
following first-order system of differential equations on �̃µ

µ j,x = −2iy(µ̂ j )
n∏

k=1
k �= j

(µ j − µk)
−1, (3.200)

µ j,tr = 2F̃r (µ j )q
−1y(µ̂ j )

n∏
k=1
k �= j

(µ j − µk)
−1, j = 1, . . . , n. (3.201)

Next, assume the affine part of Kn to be nonsingular and introduce the initial
condition

{µ̂ j (x0, t0,r )} j=1,...,n ⊂ Kn (3.202)

for some (x0, tr ) ∈ R
2, whereµ j (x0, t0,r ), j = 1, . . . , n, are assumed to be distinct.

Then there exists an open and connected set �µ ⊆ R
2, with (x0, t0,r ) ∈ �µ, such

that the initial value problem (3.200)–(3.202) has a unique solution {µ̂ j } j=1,...,n ⊂
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Kn satisfying

µ̂ j ∈ C∞(�µ,Kn), j = 1, . . . , n, (3.203)

and µ j , j = 1, . . . , n, remain distinct on �µ.
For the zeros ν j , j = 1, . . . , n, of Hn( · ), identical statements hold withµ j and�µ

replaced by ν j and �ν , etc. In particular, {ν̂ j } j=1,...,n, defined by (3.169), satisfies
the system

ν j,x = −2iy(ν̂ j )
n∏

k=1
k �= j

(ν j − νk)
−1, (3.204)

ν j,tr = −2H̃r (ν j )p
−1y(ν̂ j )

n∏
k=1
k �= j

(ν j − νk)
−1, j = 1, . . . , n. (3.205)

Proof For obvious reasons it suffices to focus on (3.200), (3.201), and (3.203).
But the proof of (3.200) is identical to that in Lemma 3.8, and equation (3.201),
follows from (3.155), (3.168), and (3.192) since

Fn,tr (µ j ) = iqµ j,tr

n∏
k=1
k �= j

(µ j − µk) = 2i F̃r (µ j )Gn+1(µ j ) = 2i F̃r (µ j )y(µ̂ j ).

The smoothness assertion (3.203) is clear as long as µ̂ j stays away from the branch
points (Em, 0). In case µ̂ j hits such a branch point, one can use the local chart
around (Em, 0) (with local coordinate ζ = σ (z − Em)1/2, σ ± 1) to verify (3.203),
as in the proof of Lemma 1.37. �

Since the stationary trace formulas for AKNS invariants in terms of symmetric
functions of µ j and ν j in Lemma 3.9 extend line by line to the corresponding
time-dependent setting, we next record their tr -dependent analogs without proof.
For simplicity we confine ourselves to the simplest ones only.

Lemma 3.31 Assume that p, q ∈ C∞(R2) are nonzero and suppose that (3.152),
(3.153) hold. Then,

i
px
p

= 2c1 + 2
n∑
j=1

ν j ,

i
qx
q

= −2c1 − 2
n∑
j=1

µ j ,



220 3. The AKNS Hierarchy

where

c1 = −1

2

2n+1∑
m=0

Em .

Now we turn to asymptotic properties of φ (which are proven as in Lemma
3.10).

Lemma 3.32 Suppose that p, q ∈ C∞(R2) are nonzero and assume that (3.152),
(3.153) hold. Moreover, let P ∈ Kn \ {P∞+ , P∞−}. Then,

φ(P) =
ζ→0

{
(i/2)pζ + (px/4)ζ 2 + O(ζ 3) as P → P∞+ ,

(2i/q)ζ−1 + (qx/q2) + O(ζ ) as P → P∞− .
(3.206)

Next, we provide the explicit theta function representations of �, φ, p, and q .
We rely on the notation established in Section 3.3 and Appendix C in the following,
assuming the affine part of Kn to be nonsingular as in (3.76).

In addition to (3.91)–(3.97), let ω(2)
P∞± ,r be normalized differentials of the second

kind (cf. (A.20), (A.21), and (A.22)) with a unique pole at P∞± and principal part
ζ−2−r dζ near P∞± and define

�̃(2)
r =

r∑
q=0

(q + 1)c̃r−q
(
ω

(2)
P∞+ ,q − ω

(2)
P∞− ,q

)
, c̃0 = 1, (3.207)

where c̃q are the constants introduced in the definition of F̃r . Thus, one infers

∫
a j

�̃(2)
r = 0, j = 1, . . . , n, (3.208)

∫ P

P0

�̃(2)
r =

ζ→0
∓
(

r∑
q=0

c̃r−qζ−1−q + ẽr,0 + O(ζ )

)
as P → P∞± (3.209)

for some constants ẽr,0 ∈ C. The corresponding vector of b-periods of �̃(2)
r /(2π i)

is then denoted by

Ũ
(2)
r = (

Ũ (2)
r,1 , . . . , Ũ

(2)
r,n

)
, Ũ (2)

r, j = 1

2π i

∫
b j

�̃(2)
r , j = 1, . . . , n. (3.210)

Moreover, if one writes

ω j =
( ∞∑
m=0

d j,m(P∞± )ζm
)
dζ = ±

( ∞∑
m=0

d j,m(P∞+ )ζm
)
dζ near P∞± ,
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relation (A.22) yields

Ũ (2)
r, j = 2

r∑
q=0

c̃r−qd j,q (P∞+ ), j = 1, . . . , n. (3.211)

Recalling the abbreviation (3.101), one of the principal results of this section,
the theta function representations for φ, �, p, and q , then reads as follows.

Theorem 3.33 Assume Hypothesis 3.26 and (3.152), (3.153) hold on�, and sup-
pose the affine part ofKn to be nonsingular. In addition, let P ∈ Kn \ {P∞+ , P∞−}
and (x, tr ), (x0, t0,r ) ∈ �, where � ⊆ R

2 is open and connected. Moreover,
suppose that Dµ̂(x,t), or equivalently, Dν̂(x,t) is nonspecial for (x, tr ) ∈ �. Then,1

φ(P, x, tr ) = C0

θ (z(P∞+ , µ̂(x, tr )))θ (z(P, ν̂(x, tr )))

θ (z(P∞− , ν̂(x, tr )))θ (z(P, µ̂(x, tr )))

× exp

(∫ P

P0

ω
(3)
P∞+ ,P∞−

− 2ie0,0x − 2i ẽr,0tr

)
, (3.212)

ψ1(P, x, x0, tr , t0,r ) = θ(z(P∞+ , µ̂(x0, t0,r )))θ (z(P, µ̂(x, tr )))

θ(z(P∞+ , µ̂(x, tr )))θ (z(P, µ̂(x0, t0,r )))
(3.213)

× exp

(
i

(∫ P

P0

�
(2)
0 + e0,0

)
(x − x0) + i

(∫ P

P0

�̃(2)
r + ẽr,0

)
(tr − t0,r )

)
,

ψ2(P, x, x0, tr , t0,r ) = C0 exp (−2ie0,0x0 − 2i ẽr,0t0,r )

× θ (z(P∞+ , µ̂(x0, t0,r )))θ (z(P, ν̂(x, tr )))

θ(z(P∞− , ν̂(x, tr )))θ (z(P, µ̂(x0, t0,r )))

× exp

(∫ P

P0

ω
(3)
P∞+ ,P∞−

+ i

(∫ P

P0

�
(2)
0 − e0,0

)
(x − x0)

+ i

(∫ P

P0

�̃(2)
r − ẽr,0

)
(tr − t0,r )

)
, (3.214)

where

C0 = 2i

q(x0, t0,r )ω0

θ(z(P∞− , µ̂(x0, t0,r )))

θ(z(P∞+ , µ̂(x0, t0,r )))
exp (2ie0,0x0 + 2i ẽr,0t0,r ).

The Abel map linearizes the auxiliary divisors in the sense that

αP0
(Dµ̂(x,tr )) = αP0

(Dµ̂(x0,t0,r )) − iU (2)
0 (x − x0) − iŨ

(2)
r (tr − t0,r ), (3.215)

αP0
(Dν̂(x,tr )) = αP0

(Dν̂(x0,t0,r )) − iU (2)
0 (x − x0) − iŨ

(2)
r (tr − t0,r ). (3.216)

1 To avoid multi-valued expressions in formulas such as (3.212)–(3.214), etc., we agree always to
choose the same path of integration connecting P0 and P and refer to Remark A.28 for additional
tacitly assumed conventions.
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Finally, p, q are of the form

p(x, tr ) = p(x0, t0,r )
θ (z(P∞− , ν̂(x0, t0,r )))θ (z(P∞+ , ν̂(x, tr )))

θ (z(P∞+ , ν̂(x0, t0,r )))θ (z(P∞− , ν̂(x, tr )))

× exp(−2ie0,0(x − x0) − 2i ẽr,0(tr − t0,r )), (3.217)

q(x, tr ) = q(x0, t0,r )
θ (z(P∞+ , µ̂(x0, t0,r )))θ (z(P∞− , µ̂(x, tr )))

θ (z(P∞− , µ̂(x0, t0,r )))θ (z(P∞+ , µ̂(x, tr )))

× exp(2ie0,0(x − x0) + 2i ẽr,0(tr − t0,r )), (3.218)

p(x0, t0,r )q(x0, t0,r ) = 4

ω2
0

θ(z(P∞+ , ν̂(x0, t0,r )))θ (z(P∞− , µ̂(x0, t0,r )))

θ(z(P∞− , ν̂(x0, t0,r )))θ (z(P∞+ , µ̂(x0, t0,r )))
. (3.219)

Proof We start with the proof of the theta function representation (3.213) for ψ1.
Without loss of generality it suffices to treat the homogeneous case ĉ0 = 1, ĉq = 0,
q = 1, . . . , r . As in the corresponding stationary case we temporarily assume

µ j (x, tr ) �= µ j ′ (x, tr ) for j �= j ′ and (x, tr ) ∈ �̃ (3.220)

for appropriate �̃ ⊆ �, and define the right-hand side of (3.213) to be ψ̃1. We
intend to prove ψ1 = ψ̃1, with ψ1 given by (3.174). For that purpose we first
investigate the local zeros and poles of ψ1 and note (cf. (3.111))

q(x ′, tr )φ(P, x ′, tr ) =
P→µ̂ j (x ′,tr )

∂x ′ ln(z − µ j (x
′, tr )) + O(1),

i F̂r (z, x0, s)φ(P, x0, s) =
P→µ̂ j (x0,s)

2i F̂r (z, x0, s)y(µ̂ j (x0, s))

−iq(x0, s)
∏n

k=1
k �= j

(µ j (x0, s) − µk(x0, s))

× 1

z − µ j (x0, s)
+ O(1)

=
P→µ̂ j (x0,s)

∂s ln(z − µ j (x0, s)) + O(1),

using (3.168), (3.170), (3.200), and (3.201). Together with (3.174), this implies

ψ1(P, x, x0, tr , t0,r ) =




(z − µ j (x, tr ))O(1), P → µ̂ j (x, tr ) �= µ̂ j (x0, t0,r ),

O(1), P → µ̂ j (x, tr ) = µ̂ j (x0, t0,r ),

(z − µ j (x0, tr ))−1O(1), P → µ̂ j (x0, t0,r ) �= µ̂ j (x, tr ),

P = (z, y) ∈ Kn, (x, tr ), (x0, t0,r ) ∈ �̃,

with O(1) �= 0, and hence ψ1 and ψ̃1 have identical zeros and poles on Kn \
{P∞+ , P∞−}, which are all simple by hypothesis (3.220). It remains to study the
behavior of ψ1 near P∞± . By (3.170), (3.192), (3.206), and (3.90) one
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computes

∫ x

x0

dx ′(−iζ−1 + q(x ′, tr )φ(P, x ′, tr ))

+ i
∫ tr

t0,r

ds(F̃r (ζ
−1, x0, s)φ(P, x0, s) − G̃r+1(ζ−1, x0, s))

=
ζ→0

∓iζ−1(x − x0) +
{
O(ζ ) for P → P∞+

O(1) for P → P∞−

+
∫ tr

t0,r

ds

(
iy F̃r (ζ−1, x0, s)

Fn(ζ−1, x0, s)
+ 1

2

Fn,tr (ζ
−1, x0, s)

Fn(ζ−1, x0, s)

)

=
ζ→0

∓iζ−1(x − x0) +
{
O(ζ ) for P → P∞+

O(1) for P → P∞−

(3.221)

+
∫ tr

t0,r

ds

(
∓iζ−r−1

∑r
m=0 f̃ m(x0, s)ζm∑∞
�=0 f̃ �(x0, s)ζ �

+ 1

2

qtr (x0, s)

q(x0, s)
+ O(ζ )

)

=
ζ→0

∓iζ−1(x − x0) +
{
O(ζ ) for P → P∞+

O(1) for P → P∞−

+
∫ tr

t0,r

ds

(
∓iζ−r−1 ± i f̃ r+1(x0, s)

f̃ 0(x0, s)
+ 1

2

qtr (x0, s)

q(x0, s)
+ O(ζ )

)

=
ζ→0

∓iζ−1(x − x0) ∓ iζ−r−1(tr − t0,r ) +
{
O(ζ ) for P → P∞+ ,

O(1) for P → P∞− ,

where we used f̃ 0 = −iq and

qtr = 2 f̃ r+1

(cf. (3.147)) in the homogeneous case c̃0 = 1, c̃q = 0, q = 1, . . . , r . A comparison
of ψ1 and ψ̃1 near P∞± , taking into account (3.174), (3.209) (recalling c̃0 = 1,
c̃q = 0 for q = 1, . . . , r ), the expression (3.213) for ψ̃ , and (3.221) then show that
ψ1 and ψ̃1 have identical exponential behavior up to order O(ζ ) near P∞+ and
identical exponential behavior up to order O(1) near P∞− . Thus, ψ1 and ψ̃1 share
the same singularities and zeros, and the Riemann–Roch-type uniqueness result in
Lemma C.2 then proves that ψ1 and ψ̃1 coincide up to normalization. The latter is
determined as in the stationary context (3.112) by inserting (3.209) into (3.213).
This results in

ψ̃1(P, x, x0, tr , t0,r ) =
ζ→0

e−iζ
−1(x−x0)−iζ−r−1(tr−t0,r )(1 + O(ζ )) as P → P∞+ .

(3.222)

Similarly, inserting (3.221) into (3.174) yields the identical asymptotic behavior
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(3.222) of ψ1 near P∞+ . Hence (3.213) holds subject to (3.220). The expression
(3.172) for the divisor of φ then yields

φ(P) = C
θ (z(P, ν̂))

θ (z(P, µ̂))
exp

(∫ P

P0

ω
(3)
P∞+ ,P∞−

)
, (3.223)

where C = C(x, tr ) is independent of P ∈ Kn . Thus, (3.206) implies

p = 2C

iω0

θ(z(P∞+ , ν̂))

θ(z(P∞+ , µ̂))
, q = 2i

Cω0

θ (z(P∞− , µ̂))

θ (z(P∞− , ν̂))
. (3.224)

Re-examining the asymptotic behavior (3.221) ofψ1 near P∞− , taking into account
(3.88), yields

ψ1(P, x, x0, tr , t0,r ) =
ζ→0

q(x, tr )

q(x0, tr )
exp(iζ−1(x − x0) + O(ζ ))

× q(x0, tr )

q(x0, t0,r )
exp(iζ−1−r (tr − t0,r ) + O(ζ )) (3.225)

=
ζ→0

q(x, tr )

q(x0, t0,r )
exp(iζ−1(x − x0)

+ iζ−1−r (tr − t0,r ) + O(ζ )) as P → P∞− .

A comparison of (3.213), (3.224), and (3.225) then proves (3.218). A further com-
parison of (3.218) and (3.224) then determines C(x, tr ) and hence yields (3.217)
and (3.219). Given C(x, tr ), one determines φ in (3.212) from (3.223) and hence
ψ2 in (3.214) from ψ2 = φψ1 (all subject to (3.220)). Finally, the linearization
property of the Abel map in (3.215) and (3.216) follows from Corollary F.11 and
Remark F.12. The extension of all these results from �̃ to � then follows by
continuity of αQ0

and nonspecialty of Dµ̂ on �. �

Of course, Remark 3.12 applies in the present time-dependent context as well.
Combining (3.215), (3.216), (3.114), and (3.217), (3.218) shows the remarkable

linearity of the theta function arguments with respect to x and tr in the formulas
for p, q. In fact, one can rewrite (3.217), (3.218) as

p(x, tr ) = Cp
θ(A + Bx + Cr tr + ")

θ(A + Bx + Cr tr )
exp(−ie0x − ie1tr ), (3.226)

q(x, tr ) = Cq
θ(A + Bx + Cr tr − ")

θ(A + Bx + Cr tr )
exp(ie0x + ie1tr ), (3.227)

where

A = �P0
− AP0

(P∞+ ) + iU (2)
0 x0 + iŨ

(2)
r t0,r + αP0

(Dµ̂(x0,t0,r )), (3.228)

B = −iU (2)
0 , Cr = −iŨ (2)

r , (3.229)

" = AP∞+
(P∞− ), (3.230)
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and hence the constants e0, e1 ∈ C and ", B,Cr ∈ C
n are uniquely determined

by Kn and r , and the constant A ∈ C
n is in one-to-one correspondence with

the Dirichlet data µ̂(x0, t0,r ) = (µ̂1(x0, t0,r ), . . . , µ̂n(x0, t0,r )) ∈ Symn(Kn) at the
point (x0, t0,r ), as long as the divisor Dµ̂(x0,t0,r ) is assumed to be nonspecial. The
constants Cp,Cq ∈ C satisfy constraints analogous to (3.219).

Remark 3.34 The explicit expressions (3.213), (3.214) for ψ j , j = 1, 2 again
complement Lemma 3.7 and show that � stays meromorphic onKn \ {P∞+ , P∞−}
as long as Dµ̂ is nonspecial (assuming the affine part of Kn to be nonsingular).

Since Corollary 3.14 extends to the present time-dependent setting in a straight-
forward manner, we record the corresponding result without proof.

Corollary 3.35 Assume the hypotheses of Theorem 3.33. Then

p(x, tr )q(x, tr ) = −e0,1 − ∂2
x ln(θ (z(P∞+ , µ̂(x, tr )))).

The constant q(x0, t0,r ) in (3.217)–(3.219) is inherent to the AKNS formalism
due to its scale invariance, as discussed in Lemma 3.6.

The functions p, q in (3.217), (3.218) represent solutions, of the AKNS system,
a complexified nonlinear Schrödinger equation (nS). To obtain algebro-geometric
nS± solutions, one can proceed as discussed in Lemmas 3.15, 3.17, and 3.18 and
Remarks 3.16 and 3.19, which all extend to the present time-dependent situation.

In analogy to Example 3.20, the special case n = 0 (excluded in Theorem 3.33)
yields solutions (p, q) as in (3.217), (3.218), replacing the theta quotients by 1.
For simplicity we just consider the elementary cases n = 0, r = 0, 1.

Example 3.36 Assume n = 0, P = (z, y) ∈ K0 \ {P∞+ , P∞−}, and let (x, tr ),
(x0, t0,r ) ∈ R

2, r = 0, 1. Then,

K0 : F0(z, y) = y2 − R2(z) = y2 − (z − E0)(z − E1) = 0,

c1 = −(E0 + E1)/2, E0, E1 ∈ C,

p(x, t0) = p(x0, t0,0) exp(−2ic1(x − x0) + 2i(c̃1 − c1)(t0 − t0,0)), r = 0,

q(x, t0) = q(x0, t0,0) exp(2ic1(x − x0) − 2i(c̃1 − c1)(t0 − t0,0)), r = 0,

p(x, t1) = p(x0, t0,1) exp(−2ic1(x − x0) + i(2c2
1 + ((E0 − E1)2/4)

− 2c1c̃1 + 2c̃2)(t1 − t0,1)), r = 1,

q(x, t1) = q(x0, t0,1) exp(2ic1(x − x0) − i(2c2
1 + ((E0 − E1)2/4)

− 2c1c̃1 + 2c̃2)(t1 − t0,1)), r = 1,

p(x, tr )q(x, tr ) = (E0 − E1)2/4, r = 0, 1.

Up to this point we assumed Hypothesis 3.26 together with the basic equations
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(3.152) and (3.153). Next, we will show that solvability of the Dubrovin equations
(3.200), (3.201) on�µ ⊆ R

2 in fact implies (3.152) and (3.153) on�µ. In complete
analogy to our discussion in Section 3.3 (cf. Remark 3.24), this amounts to solving
the time-dependent algebro-geometric initial value problem (3.147), (3.148) on
�µ. In this context we recall the definition of F̃r (µ j ) in terms of µ1, . . . , µn ,
introduced1 in (F.16), (F.19),

F̃r (µ j ) =
r∧n∑
k=0

d̃r,k(E)#( j)
k (µ), r ∈ N0, c̃0 = 1, (3.231)

d̃r,k(E) =
r−k∑
s=0

c̃r−k−s ĉs(E), k = 0, . . . , r ∧ n, (3.232)

in terms of a given set of integration constants {c̃1, . . . , c̃r } ⊂ C.

Theorem 3.37 Fix n ∈ N and assume the affine part of Kn to be nonsingular.
Suppose that {µ̂ j } j=1,...,n satisfies the Dubrovin equations (3.200), (3.201) on an
open and connected set �µ ⊆ R

2, with F̃r (µ j ) in (3.201) expressed in terms of
µk , k = 1, . . . , n, by (3.231) and (3.232) and q ∈ C∞(�µ) defined by

q(x, tr ) = q(x0, tr ) exp

(
− i(x − x0)

2n+1∑
m=0

Em + i
n∑
j=1

∫ x

x0

dx ′µ j (x
′, tr )

)
,

q(x0, t0,r ) �= 0. (3.233)

Moreover, assume that µ j , j = 1, . . . , n, remain distinct on �µ. Next, define p ∈
C∞(�µ) by2

p(x, tr ) = 1

2q(x, tr )
∏n

j=1 µ j (x, tr )

(
1

q(x, tr )

(
q(x, tr )

n∏
j=1

µ j (x, tr )

)
x

)
x

− 1

4q(x, tr )3
∏n

j=1 µ j (x, tr )2

((
q(x, tr )

n∏
j=1

µ j (x, tr )

)
x

)2

(3.234)

−
∏2n+1

m=0 Em
q(x, tr )

∏n
j=1 µ j (x, tr )2

, if µ j �= 0 on �µ, j = 1, . . . , n

with q defined by (3.233). Then p �= 0 on �µ and p, q satisfy the the rth AKNS
equation (3.147), that is,

ÃKNSr (p, q) = 0 on �µ (3.235)

with initial values satisfying the nth stationary AKNS equation (3.148).

1 m ∧ n = min(m, n).
2 If µ j0 (x0, t0,r ) = 0 for some j0 ∈ {1, . . . , n} and some (x0, t0,r ) ∈ �µ, one can use (3.145) to define

p at (x0, t0,r ). Since the explicit formula for p in terms of {µ j } j=1,...,n is straightforward but rather
cumbersome in this case, we omit further details.
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Proof Given the solutions µ̂ j = (µ j , y(µ̂ j )) ∈ C∞(�µ,Kn), j = 1, . . . , n of
(3.200), (3.201), we introduce polynomials Fn , Gn+1, and Hn exactly as in the
proof of Theorem 3.21 in the stationary case, treating tr as a parameter. In partic-
ular, we have the following on �µ,

Fn(z) = −iq
n∏
j=1

(z − µ j ),

2qGn+1(z) = Fn,x (z) + 2i zFn(z),

Hn(z) = i p
n∏
j=1

(z − ν j ),

Gn+1,x (z) = pFn(z) + qHn(z),

R2n+1(z) = Gn+1(z)2 − Fn(z)Hn(z),

Hn,x (z) = 2i zHn(z) + 2pGn+1(z).

Hence, it suffices to focus on the proof of (3.147).
We define the monic polynomial G̃r+1 of degree r + 1 by

qtr = i F̃r,x (z) − 2z F̃r (z) − 2iqG̃r+1(z) on C × �µ. (3.236)

Next we want to establish

Fn,tr (z) = 2i(Gn+1(z)F̃r (z) − Fn(z)G̃r+1(z)) on C × �µ. (3.237)

Here F̃r is defined on C × �µ in terms of the homogeneous quantities F̂r and
integration constants {c̃1, . . . , c̃r } ⊂ C by

F̃r =
r∑
s=0

c̃r−s F̂ s, c̃0 = 1,

and F̂ s is given by (F.10) or (F.12) times −iq. Temporarily introducing

F̌n(z) =
n∏
j=1

(z − µ j ) = iq−1Fn(z),

ˇ̃Fr (z) = iq−1 F̃r (z)

on C × �µ, (3.237) is equivalent to

F̌n,tr (z) = F̌n,x (z) ˇ̃Fr (z) − F̌n(z) ˇ̃Fr,x (z) on C × �µ. (3.238)

Identifying F̌n,
ˇ̃Fr with Fn, F̃r in the KdV context, (3.238) is identical to (1.227)

and hence is an immediate consequence of (F.74). This proves (3.238) and thus
(3.237). Next, we define the polynomial H̃r of degree r by

G̃r+1,x (z) = pF̃r (z) + q H̃r (z) on C × �µ (3.239)
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in accordance with (3.163). Differentiating (3.164) with respect to tr , inserting
(3.236), the x-derivative of (3.237), (3.238), and (3.239) into the resulting expres-
sion then yields (3.193), that is,

Gn+1,tr (z) = i(Hn(z)F̃r (z) − Fn(z)H̃r (z)) on C × �µ. (3.240)

Differentiating (3.167) with respect to tr , inserting (3.237) and (3.240), then yields
(3.194),

Hn,tr (z) = 2i(Hn(z)G̃r+1(z) − Gn+1(z)H̃r (z)) on C × �µ. (3.241)

Finally, differentiating (3.239) with respect to tr , inserting (3.236), (3.237), the
x-derivative of (3.240), (3.241), (3.164), and (3.166) into the resulting expression
then proves (3.161), that is,

ptr = −i H̃ r,x (z) − 2z H̃r (z) + 2i pG̃r+1(z) on C × �µ.

Thus, we have proved (3.161)–(3.166) and (3.192)–(3.194) on C × �µ and hence
(taking z = 0) conclude that p, q satisfy the r th AKNS equation (3.147) on
C × �µ. That p �= 0 on �µ and that p is given by (3.234) if

∏n
j=1 µ j �= 0 then

follows precisely, as in the proof of Theorem 3.21. The case in which one of the µ j

vanishes at some x0 ∈ �µ is also treated, as in the proof of Theorem 3.21, using
(3.145). We omit the details. �

Remark 3.38 The explicit theta function representations (3.217), (3.218) of p, q
on �µ in (3.233), (3.234) then permit one to extend p and q beyond �µ as long
as Dµ̂ remains nonspecial (cf. Theorem A.31).

Remark 3.39 Again we singled out q and {µ j } j=1,...,n in Theorem 3.37. The
analogous results can of course be proven in terms of p and {ν j } j=1,...,n .

The analog of Remark 3.24 directly extends to the current time-dependent
setting.

3.5 The Classical Boussinesq Hierarchy

In this section we show that the classical Boussinesq hierarchy is gauge equivalent
to the AKNS hierarchy and apply the techniques used for the latter to derive
algebro-geometric solutions for the classical Boussinesq hierarchy.

Fix1 α ∈ C \ {0}, β ∈ C, and define the 2 × 2 matrix

Ŭ (z) =
(
−i z − αv u + βvx

−1 i z + αv

)
, z ∈ C. (3.242)

1 The constants α and β remain fixed in the following and will not be emphasized in the notation.
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Define recursively { f̆ �}�∈N0 , {ğ�}�∈N0 , and {h̆�}�∈N0 by

f̆ 0 = −i(u + βvx ), ğ0 = 1, h̆0 = −i, (3.243)

f̆ �+1 = (i/2) f̆ �,x + iαv f̆ � − i(u + βvx )ğ�+1, (3.244)

ğ�+1,x = (u + βvx )h̆� − f̆ �, (3.245)

h̆�+1 = −(i/2)h̆�,x + iαvh̆� − i ğ�+1, � ∈ N0. (3.246)

Explicitly, the first few elements read

f̆ 0 = −i(u + βvx ),

f̆ 1 = 1
2 (u + βvx )x + αv(u + βvx ) + c1(−i)(u + βvx ), etc.,

ğ0 = 1,

ğ1 = c1,

ğ2 = − 1
2 (u + βvx ) + c2, etc.,

h̆0 = −i,
h̆1 = αv − ic1, etc.,

where {c j } j∈N ⊂ C are integration constants.
Next, define the 2 × 2 matrix

V̆ n+1(z) = i

(−Ğn+1(z) F̆n(z)

−H̆ n(z) Ğn+1(z)

)
, z ∈ C, (3.247)

where F̆n , Ğn+1, and H̆ n are polynomials of the type

F̆n(z) =
n∑

�=0

f̆ n−�z
� = −i(u + βvx )

n∏
j=1

(z − µ̆ j ),

Ğn+1(z) =
n+1∑
�=0

ğn+1−�z
�, (3.248)

H̆ n(z) =
n∑

�=0

h̆n−�z
� = −i

n∏
j=1

(z − ν̆ j ).

Using the recursion (3.243)–(3.246), one verifies

F̆n,x = −2(i z + αv)F̆n + 2(u + βvx )Ğn+1, (3.249)

Ğn+1,x = (u + βvx )H̆ n − F̆n, (3.250)

H̆ n,x = 2(i z + αv)H̆ n − 2Ğn+1, (3.251)

implying

(
Ğ2
n+1 − F̆n H̆ n

)
x = 0
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and hence

Ğ2
n+1 − F̆n H̆ n = R2n+2,

where R2n+2 is a monic polynomial of degree 2n + 2 with zeros {E0, . . . , E2n+1} ⊂
C. Thus,

R2n+2(z) =
2n+1∏
m=0

(z − Em), {Em}m=0,...,2n+1 ⊂ C.

Again the corresponding hyperelliptic curve Kn of genus n is naturally obtained
from the characteristic equation of i V̆ n+1,

det
(
y I2 − i V̆ n+1(z, x)

) = y2 − Ğn+1(z, x)2 + F̆n(z, x)H̆ n(z, x)

= y2 − R2n+2(z) = 0.

The corresponding stationary zero-curvature relation then reads

−V̆ n+1,x + [Ŭ , V̆ n+1] = 0,

implying

0 = −V̆ n+1,x + [Ŭ , V̆ n+1]

= i




Ğn+1,x + F̆n −F̆n,x − 2(i z + αv)F̆n

−(u + βvx )H̆ n +2(u + βvx )Ğn+1

H̆ n,x + 2Ğn+1 −Ğn+1,x − F̆n

−2(i z + αv)H̆ n +(u + βvx )H̆ n




. (3.252)

Using the recursion (3.243)–(3.246) to compute f̆ j , ğ j , and h̆ j for j = 0, . . . , n,
(3.252) equals

− V̆ n+1,x + [Ŭ , V̆ n+1]

= i

(
ğn+1,x + f̆ n − (u + βvx )h̆n − f̆ n,x − 2αv f̆ n + 2(u + βvx )ğn+1

h̆n,x − 2αvh̆n + 2ğn+1 −ğn+1,x − f̆ n + (u + βvx )h̆n

)
= 0.

(3.253)

Next, let

ğn+1 = −(1/2)h̆n,x + αvh̆n (3.254)

(consistent with h̆n+1 = 0 in (3.246)). Inserting (3.254) into (3.253), the stationary
cBsq hierarchy is given by

(
f̆ n,x + 2αv f̆ n + (u + βvx )(h̆n,x − 2αvh̆n)

−(1/2)h̆n,xx + α(vh̆n)x + f̆ n − (u + βvx )h̆n

)
= 0, n ∈ N0. (3.255)



3.5. The Classical Boussinesq Hierarchy 231

Remark 3.40 As a consequence of (3.254), the nth stationary cBsq system will
contain only integration constants c1, . . . , cn , n ∈ N, coming from integrating
(3.245). Since ğn+1,x + f̆ n − (u + βvx )h̆n = 0 by (3.253), our definition (3.254)
is consistent with the definition of ğn+1 given by the recursion (3.245). However,
no new integration constant is introduced in this context.

The first few equations read (after some additional simplifications)

n = 0 :

(
ux
vx

)
= 0,

n = 1 :

(
(u + βvx )xx + 4α(v(u + βvx ))x − c1i(u + βvx )x

ux + (β − α)vxx + 2α2(v2)x − 2ic1αvx

)
= 0, etc.

In the special homogeneous case, the latter set of equations, the stationary classical
Boussinesq system, can be rewritten in the more familiar form

u + (β − α)vx + 2α2v2 = 0, (3.256)

(2αβ − β2)vxxx + (α − β)uxx + 4α2(uv)x = 0. (3.257)

By inserting (3.256) into (3.257), the latter can also be rewritten as

vxxx − 12α2(v2)x = 0.

To discuss the time-dependent hierarchy of classical Boussinesq systems, we
follow the AKNS case and introduce a deformation parameter tn ∈ C in the func-
tionsu and v, that is,u = u(x, tn), v = v(x, tn). The time-dependent zero-curvature
relation then reads

Ŭ tn − V̆ n+1,x + [Ŭ , V̆ n+1] = 0,

implying

0 = Ŭ tn − V̆ n+1,x + [Ŭ , V̆ n+1]

=




−αvtn + i Ğn+1,x (u + βvx )tn − 2i(i z + αv)F̆n

+ i F̆n − i(u + βvx )H̆ n − i F̆n,x + 2i(u + βvx )Ğn+1

i H̆ n,x + 2i Ğn+1 αvtn − i Ğn+1,x

− 2i(i z + αv)H̆ n − i F̆n + i(u + βvx )H̆ n




. (3.258)

Using the recursion (3.243)–(3.246) to compute f̆ j , ğ j , and h̆ j for j = 0, . . . , n,
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we find that (3.258) reduces to

Ŭ tn − V̆ n+1,x + [Ŭ , V̆ n+1]

=




−αvtn + i ğn+1,x (u + βvx )tn − i f̆ n,x

+ i f̆ n − i(u + βvx )h̆n − 2iαv f̆ n + 2i(u + βvx )ğn+1

i h̆n,x − 2iαvh̆n αvtn − i ğn+1,x

+ 2i ğn+1 − i f̆ n + i(u + βvx )h̆n




= 0,

or equivalently, to

αvtn − i ğn+1,x − i f̆ n + i(u + βvx )h̆n = 0, (3.259)

(u + βvx )tn − i f̆ n,x − 2iαv f̆ n + 2i(u + βvx )ğn+1 = 0, (3.260)

h̆n,x − 2αvh̆n + 2ğn+1 = 0. (3.261)

Using h̆n,x − 2αvh̆n + 2ğn+1 = 0 to eliminate ğn+1 in (3.259) and (3.260) then
yields the following expressions for the time-dependent classical Boussinesq
hierarchy,

αutn − (i/2)βh̆n,xxx + iαβvh̆n,xx − i
(
(β + α)u + β(β − α)vx

)
h̆n,x

− i
(
β(u + (β − α)vx )x − 2α2(u + βvx )v

)
h̆n + i(β − α) f̆ n,x − 2iα2v f̆ n = 0,

αvtn + (i/2)h̆n,xx − iαvh̆n,x + i(u + (β − α)vx )h̆n − i f̆ n = 0, n ∈ N0.

(3.262)

For brevity, equations (3.262) will be denoted by

cBsqn(u, v) = 0, n ∈ N0.

Remark 3.41 One observes that ğn+1 defined by (3.261) does not satisfy (3.245)
but rather (3.259). This is in contrast to the stationary case as well as the cor-
responding definitions for the AKNS hierarchy. As in the stationary case, the nth
cBsq system contains n integration constants c1, . . . , cn , n ∈ N.

Explicitly, the first few equations read

cBsq0(u, v) =
(
αut0 − αux
αvt0 − αvx

)
= 0,

cBsq1(u, v) =




αut1 − i
2αβvxxx + i

2 (β − α)(u + βvx )xx

− 2iα2(uv)x + c1(−αux )

αvt1 − i
2 (u + βvx )x

− 2iα2vvx + c1(−αvx )




= 0, etc.
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In the homogeneous case cBsq1(u, v) = 0 can be rewritten as

αut1 = (i/2)β(2α − β)vxxx + (i/2)(α − β)uxx + 2iα2(uv)x ,

αvt1 = (1/2)(β − α)vxx + 2iα2vvx + (i/2)ux .

Finally, specializing to α = β, one obtains the classical Boussinesq system

ut1 = (i/2)αvxxx + 2iα(uv)x , αvt1 = 2iα2vvx + (i/2)ux .

We now prove that the AKNS and the cBsq hierarchies are gauge equivalent
by exhibiting an explicit gauge transformation between them. We first recall the
effect of gauge transformations on zero-curvature equations. Starting with the
time-dependent equations

�x = U�, �t = V�, � =
(
ψ1

ψ2

)
(3.263)

whose compatibility relation �xt = �t x yields the zero-curvature equation

Ut − Vx + [U, V ] = 0,

we introduce the gauge transformation

�̆ = S�, S invertible. (3.264)

Then one derives,

�̆x = Ŭ�̆, �̆t = V̆ �̆,

with

Ŭ = Sx S
−1 + SUS−1, V̆ = St S

−1 + SV S−1

and hence

Ŭ t − V̆ x + [Ŭ , V̆ ] = 0. (3.265)

The corresponding stationary formalism starts from

�x = U�, iy� = V�, y ∈ C (3.266)

and

−Vx + [U, V ] = 0. (3.267)

The gauge transformation (3.264) then effects

�̆x = Ŭ�̆, iy�̆ = V̆ �̆, (3.268)

with

Ŭ = Sx S
−1 + SUS−1, V̆ = SV S−1 (3.269)
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and hence

−V̆ x + [Ŭ , V̆ ] = 0. (3.270)

Introducing the particular choice

S =
(

(−p)1/2 0

0 1/(−p)1/2

)
, p ∈ C∞(R), p �= 0 (3.271)

and applying it to (3.266)–(3.270) in the case of the stationary AKNS hierarchy,
thus identifying (U, V ) and (U, Vn+1), then yield the following result.

Theorem 3.42 The stationary AKNS and cBsq hierarchies are gauge equivalent
in the sense that

Ŭ = Sx S
−1 + SUS−1,

V̆ n+1 = SVn+1S
−1,

where (U, Vn+1) and (Ŭ , V̆ n+1) are given by (3.38), (3.39) and (3.242), (3.247),
respectively, and S is defined by (3.271). In particular, u, v given by

u = −pq + β

2α

(
px
p

)
x

, v = − 1

2α

px
p
, (3.272)

satisfy the nth stationary cBsq system if and only if p, q, given by

p(x) = exp

(
−2α

∫ x

dx ′v(x ′)
)
,

q(x) = −(u(x) + βvx (x)) exp

(
2α
∫ x

dx ′v(x ′)
)
,

(3.273)

satisfy the nth stationary AKNS system with identical sets of integration constants
c j ∈ C, j = 1, . . . , n for n ∈ N.

Proof Ŭ = Sx S−1 + SUS−1 is easily seen to be equivalent to (3.272). Similarly,
V̆ n+1 = SVn+1S−1 is equivalent to

F̆n = −pFn, Ğn+1 = Gn+1, H̆ n = − 1

p
Hn. (3.274)

Next suppose that p, q solve the nth stationary AKNS system, that is, equations
(3.20)–(3.22) hold. Define F̆n , Ğn+1, and H̆ n by (3.274) and u, v by (3.272). Then
clearly, (3.252) is satisfied, proving that u, v satisfy the nth stationary cBsq system.
Conversely, starting with u, v solving the nth stationary cBsq system (3.252), we
can define p, q and Fn , Gn+1, and Hn using (3.273) and (3.274), respectively. One
then easily verifies that (3.20)–(3.22) hold, and thus p, q solve the nth stationary
AKNS system. �
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We note that the ambiguity inherent to (3.273), resulting from an arbitrary
integration constant, corresponds to the scale invariance of the AKNS hierarchy,
as discussed in Lemma 3.6.

The time-dependent analog of Theorem 3.42 reads as follows.

Theorem 3.43 The time-dependent AKNS and cBsq hierarchies are gauge equiv-
alent in the sense that

Ŭ = Sx S
−1 + SUS−1, V̆ n+1 = Stn S

−1 + SVn+1S
−1

with (U, Vn+1) and (Ŭ , V̆ n+1) given by (3.38), (3.39), and (3.242), (3.247), re-
spectively, and S defined by (3.271). In particular, u, v given by

u = −pq + β

2α

(
px
p

)
x

, v = − 1

2α

px
p
, (3.275)

satisfy the nth cBsq system cBsqn(u, v) = 0 if and only if p, q given by

p(x, tn) = exp

(
−2α

∫ x

dx ′v(x ′, tn)

)
,

q(x, tn) = −(u(x, tn) + βvx (x, tn)) exp

(
2α
∫ x

dx ′v(x ′, tn)

) (3.276)

satisfy the nth AKNS system AKNSn(p, q) = 0 with identical sets of integration
constants c j ∈ C, j = 1, . . . , n for n ∈ N.

Proof Ŭ = Sx S−1 + SUS−1 is equivalent to (3.275), as noted in the proof of
Theorem 3.42. By a direct calculation, V̆ n+1 = Stn S

−1 + SVn+1S−1 is equivalent
to

F̆n = −pFn, Ğn+1 = Gn+1 + i

2

ptn
p

, H̆ n = −p−1Hn. (3.277)

Next, assume that p, q solve the nth AKNS system. Define F̆n , Ğn+1 and H̆ n by
(3.277) and u, v by (3.275). Then clearly, (3.258) is satisfied, proving that u, v
satisfy the nth cBsq system. Conversely, starting with u, v solving the nth cBsq
system (3.258), we can define p, q and Fn ,Gn+1 and Hn using (3.276) and (3.277),
respectively. Again one verifies that p, q solve the nth AKNS system. �

Finally we derive the theta function representation of algebro-geometric cBsq
solutions utilizing the gauge equivalence of the cBsq and AKNS hierarchies.
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Let u(0), v(0) be stationary solutions of the nth classical Boussinesq system, that
is, we assume they satisfy

f̆ n,x (u(0), v(0)) + 2αv f̆ n(u(0), v(0)) + (u + βvx )(h̆n,x (u(0), v(0))

− 2αvh̆n(u(0), v(0))) = 0,

f̆ n(u(0), v(0)) − (u + βvx )h̆n(u(0), v(0)) − (1/2)h̆n,xx (u(0), v(0))

+ α(vh̆n(u(0), v(0)))x = 0,

for a given set of integration constants {c j } j=1,...,n ⊂ C. Fix r ∈ N0 and correspond-
ing integration constants {c̃ j } j=1,...,r ⊂ C. The aim in this section is to construct a
solution (u, v) of

cBsqr (u, v) = 0, (u, v)|tr=t0,r = (u(0), v(0)).

The function φ̆ and the Baker–Akhiezer function �̆ associated with the classical
Boussinesq hierarchy can be obtained as follows.

Lemma 3.44 Consider P = (z, y) ∈ Kn \ {P∞+ , P∞−} and (z, x, x0, tr , t0,r )∈
C × R

4. Let φ, �, and S be given by (3.170), (3.173), and (3.271), respectively.
Define

�̆ =
(
ψ̆1

ψ̆2

)
= S�, φ̆ = −φ

p
. (3.278)

Then φ̆ satisfies φ̆ = ψ̆2/ψ̆1 and

vφ̆(P) − 1

2α
φ̆x (P) + 1

2α
(u + βvx )φ̆(P)2 − i z

α
φ̆(P) − 1

2α
= 0. (3.279)

In addition, �̆ satisfies

�̆x (P) = Ŭ (z)�̆(P), (3.280)

iy�̆(P) = V̆ n+1(z)�̆(P), (3.281)

�̆tr (P) = ˜̆V r+1(z)�̆(P). (3.282)

Moreover, as long as the zeros of F̆n( · , x, tr ) are all simple for (x, tr ) ∈ �,� ⊆ R
2

open and connected, �̆( · , x, x0, t0, t0,r ) is meromorphic on Kn \ {P∞+ , P∞−} for
(x, tr ), (x0, t0,r ) ∈ �.

Proof Immediate from Lemma 3.27 and (3.263)–(3.265). �

The explicit representation of algebro-geometric solutions of the classical
Boussinesq hierarchy in terms of the Riemann theta function associated with Kn

then reads as follows.
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Theorem 3.45 Assume the hypotheses of Theorem 3.33 and suppose that u, v
satisfy

c̃Bsqr (u, v) = 0 on �, (u, v)
∣∣
tr=t0,r = (u(0), v(0))

with u(0), v(0) satisfying the nth stationary cBsq system (3.255). Then the theta
function representation of u, v is given by

u(x, tr ) = e0,1 + ∂2
x ln(θ (z(P∞+ , µ̂(x, tr ))))

+ β

2α
∂2
x ln

(
θ(z(P∞+ , ν̂(x, tr )))

θ (z(P∞− , ν̂(x, tr )))

)
, (3.283)

v(x, tr ) = i

α
e0,0 − 1

2α
∂x ln

(
θ(z(P∞+ , ν̂(x, tr )))

θ(z(P∞− , ν̂(x, tr )))

)
, (x, tr ) ∈ �. (3.284)

Proof Combine Theorem 3.33, Corollary 3.35, and (3.275). �

Obviously one can derive formulas similar to (3.212)–(3.214) for the functions φ̆
and �̆ using the explicit relation (3.278). Moreover, one can replace Dν̂ in (3.283),
(3.284) by Dµ̂ according to Remark 3.12.

3.6 Notes

Most of the material presented in Sections 3.1–3.4 closely follows Gesztesy and
Ratnaseelan (1998), whereas Section 3.5 is taken from Gesztesy and Holden
(2000a).

Section 3.1. Zakharov and Shabat established a Lax pair for the nonlinear
Schrödinger (nS) equation in 1972 and reduced the construction of spatially
decaying solutions to the inverse scattering problem of a Dirac-type operator
(Zakharov and Shabat (1972; 1973)). Complete integrability of the nS equation
as a Hamiltonian system and action and angle variables were subsequently estab-
lished in Zakharov and Manakov (1974). In the same year the AKNS system was
introduced by Ablowitz et al. (1974). In particular, Ablowitz et al. (1974) proved
that the inverse scattering method applied to the AKNS system and studied the
case of spatially decaying solutions in some detail. A general scheme of integrating
nonlinear soliton-type evolution equations was presented by Zakharov and Shabat
(1974) and then continued in Zakharov and Shabat (1979).

For reviews of the early period up to 1978, we refer to Ablowitz et al. (1974),
Flaschka and Newell (1975), and Newell (1978).

Originally, the equations were motivated by applications to nonlinear optics.
Since even an attempt of a bibliography on this topic is beyond the scope of this
monograph, we refer the interested reader to Abdullaev et al. (1993), Ablowitz and
Segur (1981, Sec. 4.3), Dodd et al. (1982, Ch. 8), Hasegawa (1990), Hasegawa and
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Kodama (1995), Kodama (1999), Newell and Moloney (1992), and the references
therein.

For textbook literature on the nS equation and the AKNS system, we refer, for
instance, to Ablowitz and Segur (1981, Ch. 1), Asano and Kato (1990, Ch. 5),
Cherednik (1996), Dodd et al. (1982, Ch. 6), Drazin and Johnson (1989, Ch. 6),
Eckhaus and van Harten (1983, Chs. 5, 6), Faddeev and Takhtajan (1987, Part 1),
Newell (1985, Chs. 3, 5), and Novikov et al. (1984, Sec. I.10); for a recent review
we refer to Palais (1997).

Section 3.2. Our recursive approach to the Lax and zero-curvature pairs of the
AKNS hierarchy follows Alber’s treatment of the KdV and nonlinear Schrödinger
hierarchies in Al’ber (1979; 1981), S. J. Al’ber and Al’ber (1987b) (as well as
Dickey (1991, Ch. 12), Gel’fand and Dikii (1979), Gesztesy and Weikard (1993),
and Gesztesy et al. (1996a)).

The original Burchnall–Chaundy theory has been developed in Burchnall and
Chaundy (1923; 1928; 1932) (and Baker (1928)). More recent presentations can
be found, for instance, in Carlson and Goodearl (1980), Previato (1996; 1998),
and Wilson (1985).

Global existence and longtime behavior of nS solutions recently attracted much
activity. Since a detailed list of these activities is far beyond the scope of this
monograph, we just refer to Bourgain (1999) and the references therein.

Connections between the motion of closed curves in R
3 guided by the filament

equation (describing the motion of thin isolated filament vortices in a fluid) and the
nS hierarchy are discussed in Grinevich and Schmidt (1999) and Grinevich (2001).
Finally, we mention an interesting gauge equivalence between the nS equation and
the continuous isotropic Heisenberg ferromagnet model observed in Zakharov and
Takhtadzhyan (1979) and further explored, for instance, in Faddeev and Takhtajan
(1987, Part 2, Ch. I).

Section 3.3. The theory of commuting matrix-valued differential expressions
and, more generally, the algebro-geometric approach to matrix hierarchies of soli-
ton equations has been developed in great generality by Dubrovin and Krichever.
Corresponding authoritative accounts can be found, for instance, in Belokolos et al.
(1994, Chs. 3–4), Dubrovin (1977; 1983), Dubrovin et al. (1990), Its (1981; 1986),
Krichever (1977a; 1983), and Previato (1985). In contrast to these references, our
approach relies on two basic ingredients, an elementary polynomial recursive ap-
proach to Lax pairs (or zero-curvature pairs) of the AKNS hierarchy and its explicit
connection with the fundamental meromorphic function φ (cf. (3.56), (3.57)) that
allows for a unified algebro-geometric treatment of the entire AKNS hierarchy.

As in all other chapters, the meromorphic function φ on Kn defined in (3.56), is
the key object of our algebro-geometric formalism. By (3.56)–(3.58), φ again links
the auxiliary divisor Dµ̂ and its counterpart, Dν̂ . This is of course a direct conse-
quence of the identity (3.23) together with the factorizations of Fn and Hn in (3.51)
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and (3.52). Thus, our construction of positive divisors of degree n (respectively
n + 1 since the points P∞± are also involved) on the hyperelliptic curve Kn of
genus n again follows the recipe of Jacobi (1846), Mumford (1984, Sec. III a).1),
and McKean (1985).

The Dubrovin equations (3.77) and (3.80) in Lemma 3.8, in connection with the
auxiliary divisors, and the corresponding trace formulas in Lemma 3.9 are well-
known in the AKNS context. We refer, for instance, to Al’ber and Al’ber (1987b),
Alber and Marsden (1994b), De Concini and Johnson (1987), Elgin (1990), Forest
and Lee (1986), Lee (1990; 1991), Ma and Ablowitz (1981), Mertsching (1987),
and Tracy et al. (1984; 1988).

The analog of the theta function representations (3.107), (3.108) in connection
with the nS equation was first published by Its and Kotlyarov (1976).

Since then, many authors presented reviews and slightly varying approaches to
algebro-geometric (respectively periodic) solutions of the nS and AKNS equations.
The linearization property (3.105), (3.106) of the Abel map and formulas (3.107)–
(3.109) for p, q in terms of the Riemann theta function associated with Kn in
Theorem 3.11 can be found, for instance, in Adams et al. (1990; 1993), Alber
(1993), Dubrovin (1977; 1983), Fedorov and Ma (2002), Harnad (1993), Its (1981;
1986), Lee (1991), Ma and Ablowitz (1981), Matveev (1976, Sec. 9), Mertsching
(1987), Previato (1985), Wisse (1992), and the monographs Belokolos et al. (1994,
Chs. 4, 5), Cherednik (1996, Sec. I.4). Corollary 3.14 can be found in Its (1981).

The characterization of the isospectral sets of algebro-geometric nS± solutions,
as discussed in Remark 3.16, proved to be more difficult than the earlier settled
KdV case and turned out to be somewhat similar to that of the characterization of
the isospectral set of all real-valued sG solutions. In fact, the corresponding nS±
and sG cases were settled more or less simultaneously in the first half of the 1980s.
After being first discussed in Cherednik (1980) (see also Cherednik (1983)), the
problem was later settled by Dubrovin and Novikov and in great detail by Previato.
We refer to Dubrovin (1982a; 1983), Dubrovin and Novikov (1975a), Lee (1986),
Novikov (1985), Previato (1983; 1985) and the textbook accounts in Belokolos
et al. (1994, Sec. 4.3) and Cherednik (1996, Ch. 4) for further details.

We also mention an interesting characterization of all algebro-geometric AKNS
potentials by De Concini and Johnson (1987) in the special case in which the
2 × 2 matrix differential expression M generates a self-adjoint Dirac-type operator
D in L2(R) ⊗ C

2. In this case the algebro-geometric potentials are characterized by
the corresponding spectrum consisting of finitely many intervals and the Lyapunov
exponent vanishing a.e. on the spectrum. The corresponding 2 × 2 matrix-valued
spectral function of such self-adjoint, algebro-geometric, Dirac-type operators is
discussed in Levitan and Mamatov (1993). In this context we also mention a
detailed study of Floquet theory for periodic and self-adjoint AKNS operators
(not necessarily of algebro-geometric type) generated by D in Grébert and Guillot
(1993) and a study of almost periodic, self-adjoint, Dirac-type operators
in Giachetti and Johnson (1984). Both references also treat the analog of Borg-type
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theorems for D when the spectrum of D is either R or contains one gap (see also
Clark and Gesztesy (2002) and Gesztesy et al. (1991)).

The symplectic structure and action-angle variables for the periodic nS
and AKNS equations are discussed in Bättig et al. (1993b; 1995), Ercolani and
McLaughlin (1991), Grébert and Kappeler (1999), McKean (1997), and McKean
and Vaninsky (1997a,b).

For variants of Theorem 3.21, refer, for instance, to Elgin (1990), Ma and
Ablowitz (1981), and Tracy et al. (1984; 1988).

The elliptic AKNS potentials in Example 3.25 were analyzed in Gesztesy and
Weikard (1998a) (see also Gesztesy and Weikard (1998b)). These references pro-
vide a complete characterization of all elliptic algebro-geometric AKNS potentials
on the basis of Picard’s theorem in analogy to the KdV case, which was mentioned
in some detail in the notes to Chapter 1 on the KdV hierarchy. Additional special
cases of elliptic AKNS solutions are discussed, for instance, in A’lfimov et al.
(1990), Babich et al. (1986), Christiansen et al. (1995; 2000), Its (1981), Lee and
Tsui (1990), Ma and Ablowitz (1981), Matveev and Smirnov (1993), Mertsching
(1987), Osborne and Boffetta (1990), Pavlov (1987), and Smirnov (1995a,b; 1996;
1997b). For a discussion of rational AKNS potentials bounded at infinity and sim-
ply periodic AKNS potentials bounded at the end of the period strip, see Weikard
(2002).

Darboux-type transformations and a complete account of their effect on the hy-
perelliptic curve Kn (possibly with a singular affine part) associated with algebro-
geometric AKNS potentials are discussed in Gesztesy and Holden (2000c); see
Appendix G for details.

Section 3.4. Since almost all of the references provided in connection with
Section 3.4 treat the time-dependent AKNS system and not just stationary AKNS
equations, we will now mainly focus on issues markedly different from stationary
ones and topics not yet covered.

In analogy to its stationary analog in Section 3.3, the role of φ defined in (3.170)
is again central to Section 3.4, and the corresponding facts recorded in the notes
to Section 3.3 still apply.

The Dubrovin equations (3.201) in Lemma 3.30 were found simultaneously
with their stationary counterparts, as discussed in the notes to Section 3.3. As in
the corresponding KdV and sG contexts, equations (3.201) are typically discussed
in connection with the simplest cases r = 0, 1.

Since the proof of Lemma 3.31 is identical to that in the corresponding stationary
case, the remarks in connection with the trace formulas in Lemma 3.9 in the notes
to Section 3.3 apply again.

The linearization property (3.215), (3.216) of the Abel map and formulas
(3.217)–(3.219) for p, q in terms of the Riemann theta function associated with
Kn in Theorem 3.33 were again found simultaneously with their stationary
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counterparts, and thus the historical development sketched in this connection in
the notes to Section 3.3 remains valid in the context of Theorem 3.33.

The solution of the algebro-geometric initial value problem in Theorem 3.37
is rarely presented in this generality. The result is well-known in the special case
r = 1, refer to Elgin (1990), Ma and Ablowitz (1981), Tracy et al. (1984), and
Tracy et al. (1988).

The Cauchy problem and leading longtime asymptotics of solutions of the nS
equation with algebro-geometric behavior as x → ±∞ (belonging to different
hyperelliptic curves at −∞ and +∞) are studied in Bikbaev (1991).

Completely integrable systems related to the algebro-geometric solutions of the
nS and AKNS hierarchies (similar to the connection between the Neumann system
of constrained harmonic oscillators to a sphere and the KdV equation) are treated
in Previato (1985) and Schilling (1992).

Flows on the moduli space of hyperelliptic curves preserving the periods of nS
solutions are studied in Grinevich and Schmidt (1995). These flows are used to pro-
vide a complete description of the moduli space of algebraic curves corresponding
to spatially periodic nS solutions.

Degenerations of the underlying hyperelliptic curve (resulting in soliton solu-
tions) and solitons relative to algebro-geometric background AKNS solutions are
discussed in Belokolos et al. (1994, Secs. 4.4–5), Its (1986), Its et al. (1988), and
Previato (1985).

Algebro-geometric solutions of the modified nonlinear Schrödinger equation
(including the singularizations of Kn yielding soliton solutions) are described in
Its and Matveev (1983).

Various aspects of the coupled nonlinear Schrödinger equations such as quasi-
periodic solutions, Dubrovin-type equations, and elliptic solutions are studied in
Alber et al. (1997), Christiansen et al. (1995; 2000), and Eilbeck et al. (2000).

Section 3.5. The equivalence of the cBsq and AKNS hierarchies, on the basis of
the transformation (3.275), has been noted in Jaulent and Miodek (1977) and later
in Matveev and Yavor (1979). It has been further discussed and linked to Hirota’s
bilinear formalism in Sachs (1988; 1989).

Algebro-geometric solutions of the time-dependent classical Boussinesq system
cBsq1(u, v) = 0 and their theta function representations were originally derived in
Matveev and Yavor (1979). The case of real-valued smooth solutions and additional
reductions to elliptic solutions (in the case of genus n ≤ 3) was subsequently
studied by Smirnov (1986). Theta function representations of algebro-geometric
solutions of cBsqr (u, v) = 0 in the special case r ≤ 3 recently appeared in Geng
and Wu (1999).
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The Classical Massive Thirring System

And let it be noted that there is no more delicate matter to take in
hand, nor more dangerous to conduct, nor more doubtful in its
success, than to set up as a leader in the introduction of changes.
For he who innovates will have for his enemies all those who are
well off under the existing order of things, and only lukewarm
supporters in those who might be better off under the new.

Niccolò Machiavelli (1469–1527)1

4.1 Contents

Integrability of the classical massive Thirring model,2

−iux + 2v + 2|v|2u = 0,

−ivt + 2u + 2|u|2v = 0
(4.1)

for functions u = u(x, t), v = v(x, t) was originally established by Mikhailov in
1976. This chapter focuses on the construction of algebro-geometric solutions of
the classical massive Thirring system,

−iux + 2v + 2vv∗u = 0,

iu∗
x + 2v∗ + 2vv∗u∗ = 0,

−ivt + 2u + 2uu∗v = 0,

iv∗
t + 2u∗ + 2uu∗v∗ = 0,

a complexified version of the classical massive Thirring model (4.1). Below we
briefly summarize the principal content of each section.

Section 4.2.
� polynomial recursion formalism, zero-curvature triples (U, Vn+1, Ṽ )
� hyperelliptic curve Kn

1 The Prince, Dover, New York, 1992, p. 13.
2 A guide to the literature can be found in the detailed notes at the end of this chapter.
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Section 4.3.
� properties of φ and the Baker–Akhiezer vector �
� Dubrovin equations for auxiliary divisors
� trace formulas for u, v, u∗, v∗
� the algebro-geometric initial value problem

Section 4.4.
� theta function representations for φ, ψ1, and u, v, u∗, v∗

This chapter relies on terminology and notions developed in connection with
compact Riemann surfaces. A brief summary of key results as well as definitions
of some of the main quantities can be found in Appendices A, C, and F.

4.2 The Classical Massive Thirring System, Recursion Relations,
and Hyperelliptic Curves

In this section we provide the zero-curvature setup for the classical massive
Thirring system by developing a polynomial recursion relation formalism. More-
over, we introduce the underlying hyperelliptic curve Kn needed subsequently in
the construction of algebro-geometric solutions of the Thirring system.

Throughout this section we suppose the following hypothesis.

Hypothesis 4.1 Suppose u, v, u∗, v∗ : R
2 → C satisfy1

u( · , t), u∗( · , t) ∈ C1(R), v( · , t), v∗( · , t) ∈ C∞(R), t ∈ R,

u(x, · ), u∗(x, · ) ∈ C(R), v(x, · ), v∗(x, · ) ∈ C1(R), x ∈ R, (4.2)

u(x, t) �= 0, u∗(x, t) �= 0, v(x, t) �= 0, v∗(x, t) �= 0, (x, t) ∈ R
2.

To set up a zero-curvature formalism for the classical massive Thirring system,
one can proceed as follows. One defines recursion relations for { f�}�∈N0 , {g�}�∈N0 ,
and {h�}�∈N0 recursively by

f−1 = 0, g0 = 1, h−1 = 0, (4.3)

f� = (2i)−1 f�−1,x + vv∗ f�−1 − 2vg�, � ∈ N0, (4.4)

g�,x = 2iv∗ f� + 2ivh�, � ∈ N0, (4.5)

h� = −(2i)−1h�−1,x + vv∗h�−1 + 2v∗g�, � ∈ N0, (4.6)

Manipulating (4.3)–(4.6), one can replace (4.5) by

g�,x = v∗ f�−1,x − vh�−1,x + 2iv(v∗)2 f�−1 + 2iv2v∗h�−1, � ∈ N0. (4.7)

1 Again one could assume that for fixed t ∈ R, u( · , t), v( · , t), u∗( · , t), v∗( · , t) are meromorphic,
etc.
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Explicitly, the first few coefficients read

f0 = −2v,

f1 = ivx + 2v2v∗ + c1(−2v), etc.,

g0 = 1,

g1 = −2vv∗ + c1, etc.,

h0 = 2v∗,

h1 = iv∗
x − 2v(v∗)2 + c12v∗, etc.,

(4.8)

where {c�}�∈N ⊂ C denote integration constants. For subsequent use we also in-
troduce the corresponding homogeneous coefficients f̂�, ĝ�, and ĥ� defined by the
vanishing of the integration constants ck for k = 1, . . . , �

f̂0 = f0 = −2v, f̂� = f�
∣∣
ck=0, k=1,...,�, � ∈ N, (4.9)

ĝ0 = g0 = 1, ĝ� = g�
∣∣
ck=0, k=1,...,�, � ∈ N, (4.10)

ĥ0 = h0 = 2v∗, ĥ� = h�

∣∣
ck=0, k=1,...,�, � ∈ N. (4.11)

One then obtains

f� =
�∑

k=0

c�−k f̂k, h� =
�∑

k=0

c�−k ĥk, g� =
�∑

k=0

c�−k ĝk, � ∈ N0,

defining

c0 = 1.

Remark 4.2 Using the nonlinear recursions (D.43) and (D.44) in Theorem D.5,
one infers inductively that all homogeneous elements f̂�, ĥ� (and hence all f�
and h�), � ∈ N0, are differential polynomials in v and v∗, that is, polynomials
with respect to v and v∗ and (some of) their x-derivatives. By (4.5), g�,x are also
differential polynomials in v and v∗, and by (4.4) (respectively (4.6)) the same
applies to vg� (respectively v∗g�). Combining these facts readily proves that g�,
� ∈ N0, are differential polynomials in v and v∗.

Next, one introduces the 2 × 2 matrices

U (ξ ) = i

(
z − vv∗ 2ξv

2ξv∗ −z + vv∗

)
, (4.12)

Vn+1(ξ ) = i

(−Gn+1(z) ξFn(z)
−ξHn(z) Gn+1(z)

)
, n ∈ N0, (4.13)

ξ ∈ C \ {0}, z = ξ 2
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assuming Fn , Hn , and Gn+1 to be polynomials of degree n and n + 1 with respect
to z. Postulating the zero-curvature representation

−Vn+1,x + [U, Vn+1] = 0, (4.14)

one finds

Fn,x = −2i(vv∗ − z)Fn + 4ivGn+1, (4.15)

Gn+1,x = 2i z(v∗Fn + vHn), (4.16)

Hn,x = 2i(vv∗ − z)Hn + 4iv∗Gn+1. (4.17)

By (4.15)–(4.17), one infers that
(
G2
n+1 − zFnHn

)
x = 0

and hence

G2
n+1 − zFnHn = R2n+2, (4.18)

where the integration constant R2n+2 is a monic polynomial of degree 2n + 2, that
is,

R2n+2(z) =
2n+1∏
m=0

(z − Em), {Em}m=0,...,2n+1 ⊂ C, (4.19)

since we chose g0 = 1. Moreover, (4.18) implies

Gn+1(0)2 =
2n+1∏
m=0

Em,

and we subsequently choose

Gn+1(0) �= 0, that is, Em �= 0, m = 0, . . . , 2n + 1. (4.20)

The identity (4.18) then yields for the characteristic equation1 of iVn+1

det(y I2 − iVn+1(z)) = y2 − det(Vn+1(z))

= y2 − Gn+1(z)2 + zFn(z)Hn(z) = y2 − R2n+2(z) = 0.

This naturally leads to a hyperelliptic curve Kn of (arithmetic) genus n ∈ N0 (pos-
sibly with a singular affine part), where

Kn : Fn(z, y) = y2 − R2n+2(z) = 0. (4.21)

To establish the connection between the zero-curvature formalism and the re-
cursion relations (4.3)–(4.6) we now make the following polynomial ansatz with

1 I2 denotes the identity matrix in C2.
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respect to the spectral parameter z,

Fn(z) =
n∑

�=0

fn−�z
� = f0

n∏
j=1

(z − µ j ), (4.22)

Gn+1(z) =
n+1∑
�=0

gn+1−�z
�, (4.23)

Hn(z) =
n∑

�=0

hn−�z
� = h0

n∏
j=1

(z − ν j ). (4.24)

Imposing equations (4.15)–(4.17) then amounts to the additional constraints

fn+1 = 0, gn+1,x = 0, hn+1 = 0

together with the recursion (4.3)–(4.6), respectively (4.7), for � = 0, . . . , n. Equa-
tions (4.15)–(4.17) permit one to derive differential equations for Fn and Hn sep-
arately. One obtains

Fn,xx Fn − 2−1F2
n,x − (vx/v)Fn,x Fn

+ 2
(
z2 + 2zvv∗ + i z(vx/v) + v2(v∗)2 + ivv∗

x

)
F2
n = 8v2R2n+2, (4.25)

Hn,xx Hn − 2−1H 2
n,x − (v∗

x/v
∗)Hn,x Hn

+ 2
(
z2 + 2zvv∗ − i z(v∗

x/v
∗) + v2(v∗)2 − ivxv

∗)H 2
n = 8(v∗)2R2n+2. (4.26)

Equations (4.25) and (4.26) can be used to derive nonlinear recursion relations
for the homogeneous coefficients f̂�, g�, and ĥ� (i.e., the ones satisfying (4.9)–
(4.11) in the case of vanishing integration constants), as proved in Theorem D.5
in Appendix D. Moreover, equations (4.25) and (4.26) also yield a proof that
f�, g�, and h� are differential polynomials in v, v∗ (cf. Remark 4.2). In addition, as
proven in Theorem D.5, (4.25) leads to an explicit determination of the integration
constants c1, . . . , cn in Fn in terms of the zeros E0, . . . , E2n+1 of the associated
polynomial R2n+2 in (4.19). In fact, one can prove (cf. (D.45))

c� = c�(E), � = 0, . . . , n, (4.27)

where

c0(E ) = 1,

ck(E )

=
k∑

j0,..., j2n+1=0
j0+···+ j2n+1=k

(2 j0)! · · · (2 j2n+1)!

22k( j0!)2 · · · ( j2n+1!)2(2 j0 − 1) · · · (2 j2n+1 − 1)
E j0

0 · · · E j2n+1
2n+1,

k = 1, . . . , n + 1. (4.28)
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With the introduction of the 2 × 2 matrix

Ṽ (ξ ) = i

(
z−1 − uu∗ 2ξ−1u

2ξ−1u∗ −z−1 + uu∗

)
, (4.29)

the time-dependent zero-curvature condition equals

Ut − Ṽx + [U, Ṽ ] = 0, (4.30)

which yields the first-order system

−iux + 2v + 2vv∗u = 0,

iu∗
x + 2v∗ + 2vv∗u∗ = 0,

−ivt + 2u + 2uu∗v = 0,

iv∗
t + 2u∗ + 2uu∗v∗ = 0.

(4.31)

One observes that (4.31) implies the relation
(
uu∗)

x
+ (

vv∗)
t
= 0.

Equations (4.31) represent the classical massive Thirring system in light cone
coordinates. It should be emphasized that the original Thirring model equations
are given by

−iux + 2v + 2|v|2u = 0,

−ivt + 2u + 2|u|2v = 0.
(4.32)

In fact, equations (4.32) result from the system (4.31) by imposing the constraints

u∗ = u, v∗ = v, (4.33)

where the bar denotes the operation of complex conjugation. Hence the system
(4.31) can be viewed as a complexified classical massive Thirring model. For most
of this chapter, however, we will not impose the constraints (4.33) but rather study
the system (4.31).

Remark 4.3 The zero-curvature formalism for the classical massive Thirring sys-
tem markedly differs from that of the KdV, AKNS, CH, and sGmKdV equations
in the following sense: In the KdV and AKNS cases, U coincides with V1; in the
CH case, U coincides with V0. Similarly, Ṽr+1 (respectively Ṽr ) are constructed
as Vr+1 (respectively Vr ), the only difference being a priori different sets of inte-
gration constants c̃� and c�. The sGmKdV case already deviates from this scheme
sinceU differs from all Vn , but Ṽr is still constructed like Vr (apart from indepen-
dent sets of integration constants c̃� and c�). The Thirring system finally shows
one additional difference in the sense that U differs from all Vn+1 but in addition
Ṽ also differs from U and is constructed differently from all the Vn+1. The latter
property complicates the construction of a classical massive Thirring hierarchy,
and hence we omit its discussion.
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The stationary Thirring system, characterized by vt = v∗
t = 0, reduces to

−iux + 2v + 2vv∗u = 0,

iu∗
x + 2v∗ + 2vv∗u∗ = 0,

2u + 2uu∗v = 0,

2u∗ + 2uu∗v∗ = 0.

Hence, one either obtains the trivial solution

u = v = u∗ = v∗ = 0

or else constant solutions of the type

u = c, v = −1/c∗, u∗ = c∗, v∗ = −1/c∗, c, c∗ ∈ C \ {0}.
Thus, we will ignore this special case in the following.

Finally, we note the elementary fact that the Thirring system (4.31) is invariant
under the scaling transformation

(u, v, u∗, v∗) → (Au, Av, A−1u∗, A−1v∗), A ∈ C \ {0}. (4.34)

In the special case of the classical massive Thirring model (4.32), where u∗ =
u, v∗ = v, A in (4.34) is further constrained by

|A| = 1. (4.35)

Remark 4.4 If v∗ ≡ 0, then Hn ≡ 0. The recursion (4.5) yields that Gn+1 is
constant in x in this case. The Thirring equations (4.31) reduce to

−iux + 2v = 0, −ivt + 2u = 0. (4.36)

In particular, u∗ ≡ 0. These equations can be obtained directly from the zero-
curvature relation

Ut − Ṽx + [U, Ṽ ] = 0

for matrices1

U (z) = i

(
z 2v
0 −z

)
, Ṽ (z) = i

(
z−1 2u
0 −z−1

)
.

The hyperelliptic curve is determined by

R2n+2(z) = Gn+1(z)2 =
n∏

�=0

(z − Ẽ�)
2, {Ẽ�}�=0,...,n ⊆ C,

making the curve singular. Similarly, one could start with u∗ ≡ 0, then Fn ≡ 0,
etc., and one again obtains (4.36).

1 One can put ξ = 1 in (4.12), (4.29).
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4.3 The Basic Algebro-Geometric Formalism

This section is devoted to a detailed study of the algebro-geometric setup for the
classical massive Thirring system. Our principal tools are derived from combining
the polynomial recursion formalism introduced in Section 4.2 and a fundamental
meromorphic function φ on a hyperelliptic curve Kn . With the help of φ we study
the Baker–Akhiezer vector �, Dubrovin-type equations governing the motion of
auxiliary divisors onKn and trace formulas. We also discuss the algebro-geometric
initial value problem of constructing u, v, u∗, v∗ from the Dubrovin equations and
auxiliary divisors as initial data.

We recall the hyperelliptic curve

Kn : Fn(z, y) = y2 − R2n+2(z) = 0,

R2n+2(z) =
2n+1∏
m=0

(z − Em), {Em}m=0,...,2n+1 ⊂ C \ {0}, (4.37)

as introduced in (4.21). The curve Kn is compactified by joining two points at
infinity, P∞± , P∞+ �= P∞− , but for notational simplicity the compactification
is also denoted by Kn . Points P on Kn \ {P∞+ , P∞−} are represented as pairs
P = (z, y), where y( · ) is the meromorphic function onKn satisfyingFn(z, y) = 0.
The complex structure on Kn is then defined in the usual way (see Appendix C).
Hence, Kn becomes a two-sheeted hyperelliptic Riemann surface of (arithmetic)
genus n ∈ N0 (possibly with a singular affine part) in a standard manner.

We also emphasize that by fixing the curve Kn (i.e., by fixing E0, . . . , E2n+1),
the integration constants c1, . . . , cn in fn are uniquely determined, as is clear from
(4.27), (4.28), which establish the integration constants c� as symmetric functions
of E0, . . . , E2n+1.

For notational simplicity we will usually tacitly assume that n ∈ N. (The trivial
case n = 0 is explicitly discussed in Example 4.31.

Next, we define the fundamental meromorphic function φ( · , x, t) on Kn by

φ(P, x, t) = y + Gn+1(z, x, t)

Fn(z, x, t)
(4.38)

= −zHn(z, x, t)

y − Gn+1(z, x, t)
, (4.39)

P = (z, y) ∈ Kn, (x, t) ∈ R
2,

where we used (4.18) to obtain (4.39). In addition, we introduce

µ̂ j (x, t) = (µ j (x, t),Gn+1(µ j (x, t), x, t)) ∈ Kn, (4.40)

j = 1, . . . , n, (x, t) ∈ R
2,

ν̂ j (x, t) = (ν j (x, t),−Gn+1(ν j (x, t), x, t)) ∈ Kn, (4.41)

j = 1, . . . , n, (x, t) ∈ R
2,
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lifting µ j and ν j to Kn , and

P0,± = (0,±Gn+1(0)) = (0,±gn+1) ∈ Kn, (4.42)

where

y(P0,±) = ±gn+1, g2
n+1 =

2n+1∏
m=0

Em . (4.43)

We emphasize that P0,± and P∞± are not necessarily on the same sheet of Kn . The
actual sheet on which P0,± lie depends on the sign of gn+1. The branch of y( · )
near P∞± is fixed according to

lim
|z(P)|→∞
P→P∞±

y(P)

Gn+1(z(P), x, t)
= lim

|z(P)|→∞
P→P∞±

y(P)

z(P)n+1
= ∓1.

Next we collect a few characteristic properties of φ.

Lemma 4.5 Assume (4.2), (4.14), (4.30), and (4.37) hold. In addition, let
P = (z, y) ∈ Kn \ {P∞+ , P∞− , P0,+, P0,−} and (x, t) ∈ R

2. Then φ satisfies the
Riccati-type equations

φx (P) + 2ivφ(P)2 + 2i(z − vv∗)φ(P) = 2i zv∗, (4.44)

φt (P) + 2i z−1uφ(P)2 + 2i(z−1 − uu∗)φ(P) = 2iu∗. (4.45)

Moreover,

φ(P)φ(P∗) = z
Hn(z)

Fn(z)
, (4.46)

φ(P) + φ(P∗) = 2
Gn+1(z)

Fn(z)
, (4.47)

φ(P) − φ(P∗) = 2y

Fn(z)
. (4.48)

Proof Equation (4.44) follows from (4.15)–(4.17), (4.18), and (4.38). A direct
calculation, using (4.31) and (4.44), shows that
(
∂x + 2i(2vφ + z − vv∗)

)(
φt + 2i z−1uφ2 + 2i(z−1 − uu∗)φ − 2iu∗) = 0,

which implies

φt + 2i z−1uφ2 + 2i(z−1 − uu∗)φ − 2iu∗

= C exp

(
− 2i

∫ x

dx (2vφ + z − vv∗)

)
. (4.49)

Since by (4.38) the left-hand side of (4.49) is meromorphic near P∞± , whereas
the right-hand side has an essential singularity at P∞± unless C = 0, one infers
that (4.45) holds. Relations (4.46)–(4.48) are obvious from (4.18), (4.38), and
(4.39). �
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Next we determine the time evolution of Fn , Gn+1, and Hn .

Lemma 4.6 Assume (4.2), (4.14), (4.30), and (4.37) hold. Then,

Fn,t = −2i(uu∗ − z−1)Fn + 4i z−1uGn+1, (4.50)

Gn+1,t = 2i(u∗Fn + uHn), (4.51)

Hn,t = 2i(uu∗ − z−1)Hn + 4i z−1u∗Gn+1. (4.52)

Equations (4.50)–(4.52) are equivalent to

−Vn+1,t + [Ṽ , Vn+1] = 0. (4.53)

Proof To prove (4.50), we note that (4.48) implies
(
φ(P) − φ(P∗)

)
t
= −2yF−2

n Fn,t . (4.54)

However, the left-hand side of (4.54) also equals

φ(P)t − φ(P∗)t = 2yF−2
n

(− 4iuz−1Gn+1 − 2i(z−1 − uu∗)Fn
)

(4.55)

by means of (4.45), (4.47), and (4.48). Combining (4.54) and (4.55) proves (4.50).
Similarly, to prove (4.51), we use (4.47) to write

(
φ(P) + φ(P∗)

)
t = 2F−2

n

(
Gn+1,t Fn − Gn+1Fn,t

)
. (4.56)

Now the left-hand side equals

φ(P)t + φ(P∗)t = −2Gn+1F
−2
n Fn,t + 4i F−1

n

(
uHn + u∗Fn

)
(4.57)

by means of (4.45), (4.46), (4.47), and (4.50). Equations (4.56) and (4.57) yield
(4.51). Finally, (4.52) follows by differentiating (4.18) with respect to t , using
(4.50) and (4.51). �

By (4.50) and (4.52), a comparison of coefficients of z−1 then yields

fn = −2gn+1u, (4.58)

hn = 2gn+1u
∗. (4.59)

At this point we briefly return to properties of φ. Due to the regularity as-
sumptions (4.2) on u, v, u∗, and v∗, one infers analogous regularity properties of
Fn , Hn , µ j , and νk . Moreover, since u �= 0, u∗ �= 0 by (4.2), equations (4.20),
(4.22), (4.24), (4.58), and (4.59) imply

µ j (x, t), νk(x, t) �= 0, j, k = 1, . . . , n, (x, t) ∈ R
2 (4.60)

and

µ j , νk ∈ C(R2) (4.61)
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with multiplicities (and appropriate renumbering) of the zeros of Fn and Hn taken
into account. (Away from collisions of zeros, µ j and νk are of course C∞.) Com-
bining (4.38), (4.39), (4.58), (4.59), (4.60), and (4.61), the divisor (φ( · , x, t)) of
φ( · , x, t) thus reads

(φ( · , x, t)) = DP0,− ν̂(x,t) − DP∞− µ̂(x,t), (x, t) ∈ R
2 (4.62)

with

µ̂ = {µ̂1, . . . , µ̂n}, ν̂ = {ν̂1, . . . , ν̂n} ∈ Symn(Kn).

Given φ( · , x, t), we can define the Baker–Akhiezer vector �( · , ξ, x, x0, t, t0)
by

�(P, ξ, x, x0, t, t0) =
(

ψ1(P, x, x0, t, t0)

ψ2(P, ξ, x, x0, t, t0)

)
, (4.63)

P = (z, y) ∈ Kn \ {P∞+ , P∞− , P0,+, P0,−}, z = ξ 2, (x, t), (x0, t0) ∈ R
2,

ψ1(P, x, x0, t, t0)

= exp

(
i
∫ t

t0

ds
(
z−1 − u(x0, s)u

∗(x0, s) + 2z−1u(x0, s)φ(P, x0, s)
)

+ i
∫ x

x0

dx ′ (z − v(x ′, t)v∗(x ′, t) + 2v(x ′, t)φ(P, x ′, t)
))

, (4.64)

ψ2(P, ξ, x, x0, t, t0) = ξ−1ψ1(P, x, x0, t, t0)φ(P, x, t). (4.65)

Properties of � are summarized in the following result.

Lemma 4.7 Assume (4.2), (4.14), (4.30), and (4.37) hold. In addition, let P =
(z, y) ∈ Kn \ {P∞+ , P∞− , P0,+, P0,−} and (x, x0, t, t0) ∈ R

4. Then � satisfies

�x (P, ξ ) = U (ξ )�(P, ξ ), (4.66)

�t (P, ξ ) = Ṽ (ξ )�(P, ξ ), (4.67)

iy�(P, ξ ) = Vn+1(ξ )�(P, ξ ). (4.68)

Moreover, if the zeros of Fn( · , x, t) are all simple for (x, t) ∈ �, � ⊆ R
2 open

and connected, then ψ1( · , x, x0, t, t0) is meromorphic on Kn \ {P∞+ , P∞−} for
(x, t), (x0, t0) ∈ �. In addition,

ψ1(P, x, x0, t, t0) =
(
Fn(z, x, t)

Fn(z, x0, t0)

)1/2

× exp

(
2i(y/z)

∫ t

t0

ds u(x0, s)Fn(z, x0, s)
−1 (4.69)

+ 2iy
∫ x

x0

dx ′ v(x ′, t)Fn(z, x ′, t)−1

)
,
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ψ1(P, x, x0, t, t0)ψ1(P∗, x, x0, t, t0) = Fn(z, x, t)

Fn(z, x0, t0)
, (4.70)

ψ2(P, ξ, x, x0, t, t0)ψ2(P∗, ξ, x, x0, t, t0) = Hn(z, x, t)

Fn(z, x0, t0)
, (4.71)

ψ1(P, x, x0, t, t0)ψ2(P∗, ξ, x, x0, t, t0) + ψ1(P∗, x, x0, t, t0)ψ2(P, ξ, x, x0, t, t0)

= 2ξ−1Gn+1(z, x, t)

Fn(z, x0, t0)
, (4.72)

ψ1(P, x, x0, t, t0)ψ2(P∗, ξ, x, x0, t, t0) − ψ1(P∗, x, x0, t, t0)ψ2(P, ξ, x, x0, t, t0)

= − 2ξ−1y

Fn(z, x0, t0)
. (4.73)

Proof Equations (4.66), (4.67) are verified using (4.15)–(4.17), (4.50)–(4.52),
(4.44), (4.45), (4.64), and (4.65). Equation (4.68) follows by combining (4.13),
(4.38), (4.39), (4.64), and (4.65). By (4.64),ψ1 is meromorphic onKn \ {P∞+ , P∞− ,

µ̂1(x, t), . . . , µ̂n(x, t)}. Since

2iv(x ′, t)φ(P, x ′, t) =
P→µ̂ j (x ′,t)

∂x ′ ln
(
Fn(z, x ′, t)

)+ O(1)

as z → µ j (x
′, t),

2i z−1u(x0, s)φ(P, x0, s) =
P→µ̂ j (x0,s)

∂s ln
(
Fn(z, x0, s)

)+ O(1) (4.74)

as z → µ j (x0, s),

one infers that ψ1 is meromorphic on Kn \ {P∞+ , P∞−} if the zeros of Fn( · , x, t)
are all simple. This follows from (4.64) by restricting P to a sufficiently small
neighborhood U j (x0) of {µ̂ j (x0, s) ∈ Kn | (x0, s) ∈ �, s ∈ [t0, t]} such that
µ̂k(x0, s) /∈ U j (x0) for all s ∈ [t0, t] and all k ∈ {1, . . . , n} \ { j} and simultane-
ously restricting P to a sufficiently small neighborhood U j (t) of {µ̂ j (x ′, t) ∈
Kn | (x ′, t) ∈ �, x ′ ∈ [x0, x]} such that µ̂k(x ′, t) /∈ U j (t) for all x ′ ∈ [x0, x] and
all k ∈ {1, . . . , n} \ { j}. Equation (4.69) follows from (4.64) after replacing φ by
the right-hand side of (4.38) and utilizing (4.15) in the x ′-integral and (4.50) in
the s-integral. Equations (4.70)–(4.73) immediately follow from (4.46)–(4.48) and
(4.65). �

Equations (4.70)–(4.73) show that the basic identity (4.18), G2
n+1 − zFnHn =

R2n+2, is equivalent to the elementary fact

(ψ1,+ψ2,− + ψ1,−ψ2,+)2 − 4ψ1,+ψ1,−ψ2,+ψ2,− = (ψ1,+ψ2,− − ψ1,−ψ2,+)2

(4.75)

identifying ψ1(P) = ψ1,+, ψ1(P∗) = ψ1,−, ψ2(P) = ψ2,+, ψ2(P∗) = ψ2,−. This
provides the intimate link between our approach and the squared function systems
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also employed in the literature in connection with algebro-geometric solutions of
the classical massive Thirring system.

Next we discuss the asymptotic behavior of φ(P, x, t) as P → P0,±, P∞± in
some detail since this will turn out to be a crucial ingredient for the theta function
representation to be derived in Section 4.4.

Lemma 4.8 Assume (4.2), (4.14), (4.30), and (4.37) hold. In addition, let
P = (z, y) ∈ Kn \ {P∞+ , P∞−}. Then,

φ(P) =
ζ→0

{
−v−1ζ−1 + (i/2)

(
v−1

)
x
+ O(ζ ) as P → P∞− ,

v∗ + (i/2)v∗
xζ + O

(
ζ 2
)

as P → P∞+ ,
ζ = 1/z,

(4.76)

φ(P) =
ζ→0

{
u∗ζ + (i/2)u∗

t ζ
2 + O(ζ 3) as P → P0,−,

−u−1 + (i/2)
(
u−1

)
tζ + O

(
ζ 2
)

as P → P0,+,
ζ = z. (4.77)

Proof The existence of these asymptotic expansions in terms of local coordinates
ζ = 1/z near P∞± and ζ = z near P0,± is clear from the explicit form of φ in
(4.38). Insertion of the polynomials Fn , Hn , and Gn+1 then, in principle, yields the
explicit expansion coefficients in (4.76) and (4.77). However, this is a cumbersome
procedure, especially with regard to the next-to-leading coefficients in (4.76) and
(4.77). Much more efficient is the actual computation of these coefficients utilizing
the Riccati-type equations (4.44) and (4.45). Indeed, inserting the ansatz

φ =
z→∞ zφ−1 + φ0 + O(z−1)

into (4.44) and comparing the first two leading powers of z immediately yield the
first line of (4.76). Similarly, the ansatz

φ =
z→∞ φ0 + φ1z

−1 + O(z−2)

inserted into (4.44) immediately produces the second line of (4.76). In exactly the
same manner, inserting the ansatz

φ =
z→0

φ1z + φ2z
2 + O(z3)

and the ansatz

φ =
z→0

φ0 + φ1z + O(z2)

into (4.45) immediately yields (4.77). �
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We follow up with a similar asymptotic analysis of �(P, ξ, x, x0, t, t0).

Lemma 4.9 Assume (4.2), (4.14), (4.53), and (4.37) hold. In addition, let
P = (z, y) ∈ Kn \ {P∞+ , P∞− , P0,+, P0,−} and (x, x0, t, t0) ∈ R

4. Then,

ψ1(P, x, x0, t, t0) =
ζ→0

exp
(∓ iζ−1(x − x0)

)

× (
ψ1,∞∓,0(x, x0, t, t0) + ζψ1,∞∓,1(x, x0, t, t0) + O(ζ 2)

)
, (4.78)

as P → P∞∓ , ζ = 1/z,

ψ2(P, ξ, x, x0, t, t0) =
ζ→0

ξ−1 exp
(∓ iζ−1(x − x0)

)

×
{
ζ−1ψ2,∞−,−1(x, x0, t, t0) + ζψ2,∞−,0(x, x0, t, t0) + O(ζ )

ψ2,∞+,0(x, x0, t, t0) + ζψ2,∞+,1(x, x0, t, t0) + O(ζ 2)
(4.79)

as P → P∞∓ , ζ = 1/z,

ψ1(P, x, x0, t, t0) =
ζ→0

exp
(± iζ−1(t − t0)

)

× (
ψ1,0,∓,0(x, x0, t, t0) + ζψ1,0,∓,1(x, x0, t, t0) + O(ζ 2)

)
, (4.80)

as P → P0,∓, ζ = z,

ψ2(P, ξ, x, x0, t, t0) =
ζ→0

ξ−1 exp
(± iζ−1(x − x0)

)

×
{
ζψ2,0,−,1(x, x0, t, t0) + ζ 2ψ2,0,−,2(x, x0, t, t0) + O(ζ 3)

ψ2,0,+,0(x, x0, t, t0) + ζψ2,0,+,1(x, x0, t, t0) + O(ζ 2)
(4.81)

as P → P0,∓, ζ = z

and

u = −ψ1,0,+,0/ψ2,0,+,0, (4.82)

v = −ψ1,∞−,0/ψ2,∞−,−1, (4.83)

u∗ = ψ2,0,−,1/ψ1,0,−,0, (4.84)

v∗ = ψ2,∞+,0/ψ1,∞+,0, (4.85)

as well as

ψ1,∞+,0,x

ψ1,∞+,0
= − ψ2,∞−,−1,x

ψ2,∞−,−1
= ψ2,0,+,0,x

ψ2,0,+,0
= − ψ1,0,−,0,x

ψ1,0,−,0
= ivv∗, (4.86)

ψ2,∞−,−1,t

ψ2,∞−,−1
= − ψ1,∞+,0,t

ψ1,∞+,0
= ψ1,0,−,0,t

ψ1,0,−,0
= − ψ2,0,+,0,t

ψ2,0,+,0
= iuu∗. (4.87)
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Proof Equations (4.78) and (4.80) follow from (4.64) by noting that

i(z−1 − u(x0, s)u
∗(x0, s)) + 2i z−1u(x0, s)φ(P, x0, s) =

z→∞ O(1)

as P → P∞∓ ,

i(z − v(x, t)v∗(x, t)) + 2iv(x, t)φ(P, x, t) =
z→∞ ∓i z + O(1) as P → P∞∓ ,

i(z−1 − u(x0, s)u
∗(x0, s)) + 2i z−1u(x0, s)φ(P, x0, s) =

z→0
±i z−1 + O(1)

as P → P0,∓,

i(z − v(x, t)v∗(x, t)) + 2iv(x, t)φ(P, x, t) =
z→0

O(1) as P → P0,∓.

Similarly, (4.79) and (4.81) follow from (4.65), (4.76), (4.77), (4.78), and (4.80).
Equations (4.65), (4.76), (4.77), (4.78), and (4.80) imply (4.82)–(4.85). Insertion
of (4.78)–(4.81) into �x = U� and �t = Ṽ�, collecting leading and next-to-
leading order terms (utilizing (4.82)–(4.85)) then yields (4.86) and (4.87). �

Although (4.79), (4.81), and (4.82)–(4.87) are not needed in our derivation of
the theta function representations of u, v, u∗, v∗ in Section 4.4, they play a crucial
role in the context of isospectral set considerations (cf. Lemma 4.29).

In some of the following considerations it is appropriate to assume that the affine
part of Kn is nonsingular, and hence we then assume

Em �= Em ′ for m �= m ′, m,m ′ = 0, . . . , 2n + 1 (4.88)

in addition to (4.37).
Next, we turn to Dubrovin-type equations for µ j , ν j , j = 1, . . . , n, that is, we

derive the nonlinear first-order system of partial differential equations governing
their (x, t)-dynamics.

Lemma 4.10 Assume that (4.2) and (4.14), (4.30) hold on an open connected set
�̃µ ⊆ R

2, suppose (4.37), and assume that the zeros µ j , j = 1, . . . , n, of Fn( · )
remain distinct on �̃µ. Then {µ̂ j } j=1,...,n, defined by (4.40), satisfies the following
first-order system of differential equations on �̃µ

µ j,x = 2iy(µ̂ j )
n∏

k=1
k �= j

(µ j − µk)
−1, (4.89)

µ j,t = (−1)ng−1
n+1




n∏
�=1
��= j

µ�


 2iy(µ̂ j )

n∏
k=1
k �= j

(µ j − µk)
−1, j = 1, . . . , n. (4.90)

Next, assume the affine part of Kn to be nonsingular and introduce the initial
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condition

{µ̂ j (x0, t0)} j=1,...,n ⊂ Kn (4.91)

for some (x0, t0) ∈ R
2, where µ j (x0, t0) �= 0, j = 1, . . . , n, are assumed to be dis-

tinct. Then there exists an openand connected set�µ ⊆ R
2with (x0, t0) ∈ �µ, such

that the initial value problem (4.89)–(4.91)has a unique solution {µ̂ j } j=1,...,n ⊂ Kn

satisfying

µ̂ j ∈ C∞(�µ,Kn), j = 1, . . . , n, (4.92)

and µ j , j = 1, . . . , n, remain distinct and nonzero on �µ.
For the zeros {ν j } j=1,...,n of Hn( · ) identical statements holdwithµand �̃µ replaced
by ν and �̃ν , etc. In particular, {ν̂ j } j=1,...,n, defined by (4.41), satisfies the system

ν j,x = 2iy(ν̂ j )
n∏

k=1
k �= j

(ν j − νk)
−1, (4.93)

ν j,t = (−1)ng−1
n+1




n∏
�=1
��= j

ν�


 2iy(ν̂ j )

n∏
k=1
k �= j

(ν j − νk)
−1, j = 1, . . . , n. (4.94)

Proof Equations (4.15), (4.22), and (4.40) imply

Fn,x (µ j ) = −µ j,x f0
n∏

k=1
k �= j

(µ j − µk) = 4ivGn+1(µ j ) = 4ivy(µ̂ j ).

Using f0 = −2v by (4.8), one concludes (4.89). Similarly, one derives from (4.22),
(4.50), and (4.40),

Fn,t (µ j ) = −µ j,t f0
n∏

k=1
k �= j

(µ j − µk) = (4iu/µ j )Gn+1(µ j ) = (4iu/µ j )y(µ̂ j ).

Since

−4iu/ f0 = 2i fn/( f0gn+1) = 2i(−1)n
( n∏
k=1

µk

)
/gn+1

by (4.8), (4.58), and (4.22), one arrives at (4.90). Equations (4.93) and (4.94) are
derived analogously. To conclude (4.92), one invokes the charts (B.3)–(B.6) and
(B.12)–(B.15). In particular, the only nontrivial issue to investigate concerns the
case in which µ̂ j (x, t) hits one of the branch points (Em, 0) ∈ B(Kn), and hence
the right-hand sides of (4.89) and (4.90) vanish. Thus, we suppose that

µ j0 (x, t) → Em0 as (x, t) → (x̃0, t̃0)



258 4. The Classical Massive Thirring System

for some j0 ∈ {1, . . . , n}, m0 ∈ {0, . . . , 2n + 1}, and some (x̃0, t̃0) ∈ �µ. By
introducing

ζ j0 (x, t) = σ (µ j0 (x, t) − Em0 )1/2, σ = ±1, µ j0 (x, t) = Em0 + ζ j0 (x, t)2

for (x, t) in an open neighborhood of (x̃0, t̃0) ∈ �µ, equations (4.89) and (4.90)
become

ζ j0,x (x, t) =
(x,t)→(x̃0,t̃0)

c(σ )




2n+1∏
m=0
m �=m0

(
Em0 − Em

)



1/2

×




n∏
k=1
k �= j0

(
Em0 − µk(x, t)

)−1


(1 + O(ζ j0 (x, t)2)

)
,

ζ j0,t (x, t) =
(x,t)→(x̃0,t̃0)

c(σ )(−1)ng−1
n+1




2n+1∏
m=0
m �=m0

(
Em0 − Em

)



1/2

×




n∏
k=1
k �= j0

(
Em0 − µk(x, t)

)−1







n∏
�=1
��= j0

µ�(x, t)


(1 + O(ζ j0 (x, t)2)

)

for some |c(σ )| = 1, and one arrives at (4.92). �

Combining the polynomial approach in Section 4.2 with (4.22), (4.24), we
next derive a few trace formulas involving u, v, u∗, v∗ and some of their x-
derivatives in terms of symmetric functions of the zeros µ j and ν j of Fn and Hn ,
respectively.

Lemma 4.11 Assume (4.2), (4.14), (4.30), and (4.37) hold. Then,

i
vx

v
+ 2vv∗ − 2c1 = 2

n∑
j=1

µ j , (4.95)

i
vx

v
− 2vv∗ = −i

n∑
j=1

µ j,x

µ j
+ 2(−1)ngn+1∏n

j=1 µ j
, (4.96)

v

u
= (−1)ngn+1∏n

j=1 µ j
, (4.97)

i
v∗
x

v∗ − 2vv∗ + 2c1 = −2
n∑
j=1

ν j , (4.98)

i
v∗
x

v∗ + 2vv∗ = −i
n∑
j=1

ν j,x

ν j
− 2(−1)ngn+1∏n

j=1 ν j
, (4.99)
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v∗

u∗ = (−1)ngn+1∏n
j=1 ν j

, (4.100)

∂x ln
(
vv∗) = −2i

n∑
j=1

(
µ j − ν j

)
, (4.101)

∂x ln
(
uu∗) = −2i(−1)ngn+1

( n∏
j=1

µ−1
j −

n∏
j=1

ν−1
j

)
, (4.102)

i
ut
u

+ 2uu∗ − p1

g2
n+1

= 2
n∑
j=1

µ−1
j , (4.103)

i
u∗
t

u∗ − 2uu∗ + p1

g2
n+1

= −2
n∑
j=1

ν−1
j , (4.104)

∂t ln
(
vv∗) = −2i

(−1)n

gn+1

( n∏
j=1

µ j −
n∏
j=1

ν j

)
, (4.105)

∂t ln
(
uu∗) = −2i

n∑
j=1

(
µ−1
j − ν−1

j

)
. (4.106)

Here

c1 = −1

2

2n+1∑
m=0

Em, p1 = −
( 2n+1∏

m=0

Em

) 2n+1∑
m=0

E−1
m

(cf. (D.6) and (D.45)), and gn+1 has been introduced in (4.42).

Proof Equations (4.95) and (4.98) follow from (4.22), (4.24) by comparing pow-
ers of zn and zn−1, using (4.8). Equations (4.96) and (4.99) follow from taking
z = 0 in (4.15) and (4.17), using (4.8), and (4.22), (4.24). Next, (4.97) and (4.100)
follow from fn = f0

∏n
j=1(−µ j ), hn = h0

∏n
j=1(−ν j ) and from (4.58) and (4.59).

Adding (4.95) and (4.96) yields (4.101). Divide the first two equations in (4.31)
by u and u∗, respectively, and add the results. Applying (4.97) and (4.100) yields
(4.102). A similar argument using the two last equations in (4.31) results in (4.105).
Taking the z → 0 limit in (4.50) and using (4.58), (4.18) (the first-order term in z)
and (4.22), one arrives at

i
ut
u

= i
fn,t
fn

= i

fn
(−2iuu∗ fn + 2i fn−1 + 4iugn)

= 2uu∗ − 2
fn−1

fn
− 4u

fn

(
−2gn+1uu

∗ + p1

2gn+1

)

= −2uu∗ + p1

g2
n+1

− 2
fn−1

fn
,

which is (4.103). An analogous argument using Hn rather than Fn yields (4.104).
Adding equations (4.103) and (4.104) results in (4.106). �
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Up to this point we assumed that u, v, u∗, v∗ satisfy the zero-curvature equa-
tions (4.14) and (4.30), or equivalently, (4.15)–(4.17), (4.50)–(4.52) and, as a
consequence, derived the corresponding algebro-geometric formalism. In the re-
mainder of this section we will study the algebro-geometric initial value problem,
that is, starting from the Dubrovin equations (4.89)–(4.91) and the trace formulas
(4.95)–(4.97), derive (4.15)–(4.17), (4.50)–(4.52), and hence the zero-curvature
equations (4.14) and (4.30) at least locally, that is, for (x, t) ∈ � for some open
and connected set � ⊆ R

2.
We start with an elementary result extending the scaling transformation men-

tioned in (4.34).

Lemma 4.12 Assume (4.2), suppose that u, v, u∗, v∗ satisfy the Thirring system
(4.31), and let (x, t, t0) ∈ R

3. Assume B(t) = A exp
( ∫ t

t0
ds b(s)

)
, with b ∈ C(R),

A ∈ C \ {0} and consider the time-dependent scaling transformation

(u, v, u∗, v∗) → (ŭ, v̆, ŭ∗, v̆∗) = (Bu, Bv, B−1u∗, B−1v∗). (4.107)

Then ŭ, v̆, ŭ∗, v̆∗ satisfy the corresponding extended massive Thirring system

−i ŭx + 2v̆ + 2v̆v̆∗ŭ = 0,

i ŭ∗
x + 2v̆∗ + 2v̆v̆∗ŭ∗ = 0,

−i v̆t + 2ŭ + 2ŭŭ∗v̆ + ibv̆ = 0,

i v̆∗
t + 2ŭ∗ + 2ŭŭ∗v̆∗ − ibv̆∗ = 0.

(4.108)

Proof It suffices to insert (4.107) into the system (4.31). �

In the special case in which u∗ = u, v∗ = v, the function B in Lemma 4.12 is
further constrained by

|B(t)| = 1, t ∈ R.

Next we provide the basic setup for the algebro-geometric initial value problem.
We start from the following assumptions.

Hypothesis 4.13 Given the hyperelliptic curveKn in (4.37) and a constant gn+1 ∈
C \ {0} with g2

n+1 = ∏2n+1
m=0 Em, consider the Dubrovin-type system of differential

equations (4.89), (4.90) on�µ, for some initial conditions (4.91). Here�µ ⊆ R
2 is

assumed to be open and connected and such that the projections
µ j of µ̂ j onto C remain distinct and nonzero on �µ, that is,

µ j (x, t) �= µ j ′ (x, t), j �= j ′, j, j ′ = 1, . . . , n, (x, t) ∈ �µ,

µ j (x, t) �= 0, j = 1, . . . , n, (x, t) ∈ �µ.
(4.109)
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Assuming Hypothesis 4.13 in the following, we will next define u, v, u∗, v∗ and
the polynomials Fn,Gn+1, Hn in steps (S1)–(S4) below.

(S1). Use the trace formulas (4.95)–(4.97) on �µ, that is,

i
vx

v
+ 2vv∗ − 2c1 = 2

n∑
j=1

µ j , (4.110)

i
vx

v
− 2vv∗ = −i

n∑
j=1

µ j,x

µ j
+ 2(−1)ngn+1∏n

j=1 µ j
, (4.111)

u = (−1)ng−1
n+1v

n∏
j=1

µ j , (4.112)

to define u, v, v∗ ∈ C∞(�µ) up to a possibly t-dependent multiplicative factor
according to the scale transformation described in Lemma 4.12. (More precisely,
adding (4.110) and (4.111) yields a first-order differential equation for v. Given v,
we obtain v∗ and u from (4.110) and (4.112), respectively.) Moreover, v is non-
vanishing on �µ by adding (4.110) and (4.111), and hence u is also nonvanishing
on �µ by (4.112).

(S2). Define the polynomial Fn of degree n by

Fn(z) = −2v
n∏
j=1

(z − µ j ) on C × �µ (4.113)

and define the polynomial Gn+1 of degree n + 1 by

Fn,x (z) = −2i(vv∗ − z)Fn(z) + 4ivGn+1(z) on C × �µ. (4.114)

Both Fn and Gn+1 have C∞(�µ) coefficients. One then verifies from

2iy(µ̂ j ) = µ j,x

n∏
k=1
k �= j

(µ j − µk) = Fn,x (µ j )

2v
, j = 1, . . . , n

and (4.114) that

y(µ̂ j ) = Fn,x (µ j )

4iv
= Gn+1(µ j ), j = 1, . . . , n (4.115)

on �µ, and hence

(
Gn+1(z)2 − R2n+2(z)

)∣∣
z=µ j

= 0, j = 1, . . . , n (4.116)

on �µ.
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(S3). Taking z = 0 in (4.114), using (4.113), results in

2(−1)nGn+1(0)∏n
j=1 µ j

= i
vx

v
− 2vv∗ + i

n∑
j=1

µ j,x

µ j

and hence a comparison with (4.111) yields

Gn+1(0, x, t) = gn+1, (x, t) ∈ �µ, (4.117)

and thus,
(
Gn+1(z)2 − R2n+2(z)

)∣∣
z=0 = 0 on �µ. (4.118)

Because of (4.116) and (4.118) we can define a polynomial Hn of degree n with
C∞(�µ) coefficients by

Gn+1(z)2 − R2n+2(z) = zFn(z)Hn(z) on C × �µ. (4.119)

(S4). Given Hn , we finally define u∗ ∈ C∞(�µ) by

u∗ = Hn(0)

2gn+1
. (4.120)

Again u∗ is unique up to a possibly t-dependent factor in accordance with Lemma
4.12.

Now we are ready to prove that, starting from the Dubrovin equations (4.89)–
(4.91) and the trace formulas (4.95)–(4.97) for u, v, u∗, v∗, one can derive (4.15)–
(4.17), (4.50)–(4.52), and hence the zero-curvature equations (4.14) and (4.53), at
least locally, that is, for (x, t) ∈ � for some open and connected set � ⊆ R

2. In
particular u, v, u∗, v∗ so constructed satisfy the classical massive Thirring system
(4.31) (apart from some additional scaling terms). As pointed out in Remark 4.19,
this amounts to solving the algebro-geometric initial value problem.

Theorem 4.14 Fix n ∈ N, assume Hypothesis 4.13, define u, v, u∗, v∗ and the
polynomials Fn,Gn+1, Hn as in (S1)–(S4), and let (z, x, t) ∈ C × �µ. Then u and
v are nonvanishing on �µ and there exists a function b ∈ C∞(�µ), independent
of x (bx |�µ

= 0), such that

Fn,x = −2i(vv∗ − z)Fn + 4ivGn+1, (4.121)

Gn+1,x = 2i z(v∗Fn + vHn), (4.122)

Hn,x = 2i(vv∗ − z)Hn + 4iv∗Gn+1, (4.123)

Fn,t = −2i(uu∗ − z−1)Fn + bFn + 4i z−1uGn+1, (4.124)

Gn+1,t = 2i(u∗Fn + uHn), (4.125)

Hn,t = 2i(uu∗ − z−1)Hn − bHn + 4i z−1u∗Gn+1. (4.126)
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In particular, u, v, u∗, v∗ satisfy the extended massive Thirring system (4.108) on
�µ,

−iux + 2v + 2vv∗u = 0,

iu∗
x + 2v∗ + 2vv∗u∗ = 0,

−ivt + 2u + 2uu∗v + ibv = 0,

iv∗
t + 2u∗ + 2uu∗v∗ − ibv∗ = 0.

(4.127)

Proof Define the polynomial Pn by

Pn(z) = 2i zv∗Fn(z) + 2i zvHn(z) − Gn+1,x (z) on C × �µ. (4.128)

Using (4.115) and 2Gn+1Gn+1,x = z(Fn,x Hn + FnHn,x ) (by differentiating (4.119)
with respect to x), one then computes

Gn+1(µ j )Pn(µ j ) = 2iµ jvHn(µ j )Gn+1(µ j ) − Gn+1(µ j )Gn+1,x (µ j ) (4.129)

= (1/2)µ j Hn(µ j )Fn,x (µ j ) − (1/2)µ j Fn,x (µ j )Hn(µ j ) = 0, j = 1, . . . , n.

To investigate the leading-order term with respect to z of Pn , we first study the
leading-order z-behavior of Fn,Gn+1, and Hn . Writing (cf. (4.22)–(4.24))

Fn(z) =
n∑
j=0

fn− j z
j , Hn(z) =

n∑
j=0

hn− j z
j ,

Gn+1(z) =
n+1∑
j=0

gn+1− j z
j , g0 = 1,

(4.130)

a comparison of leading powers with respect to z in (4.113), (4.114), and (4.119)
yields

f0 = −2v, (4.131)

g0 = 1, (4.132)

vx + 2iv2v∗ + i f1 + 2ivg1 = 0, (4.133)

2g1 + 2vh0 +
2n+1∑
m=0

Em = 0. (4.134)

Since (4.110) can be rewritten in the form

f1 = ivx + 2v2v∗ + v

2n+1∑
m=0

Em, (4.135)

a comparison of (4.133) and (4.135) implies

g1 = −2vv∗ − 1

2

2n+1∑
m=0

Em (4.136)
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and hence

h0 = 2v∗. (4.137)

Insertion of (4.131), (4.132), and (4.137) into (4.128) then yields

Pn(z) = O(zn) as |z| → ∞. (4.138)

Thus, (4.129) and (4.138) prove

Pn(z) = cFn(z) on C × �µ

for some c ∈ C∞(�µ) (independent of z), implying

Gn+1,x (z) = 2i zv∗Fn(z) + 2i zvHn(z) − cFn(z) on C × �µ. (4.139)

Taking z = 0 in (4.139), observing thatGn+1(0, x, tr ) is independent of (x, t) ∈ �µ

by (4.117), then shows that

0 = −cFn(0) on �µ,

and hence c = 0 on �µ because of (4.109). Thus,

Gn+1,x (z) = 2i zv∗Fn(z) + 2i zvHn(z) on C × �µ. (4.140)

Differentiating (4.119) with respect to x , inserting (4.114) and (4.140), then yields

Hn,x (z) = 2i(vv∗ − z)Hn(z) + 4iv∗Gn+1(z) on C × �µ, (4.141)

and we have proved (4.121)–(4.123).
Next, combining (4.90), (4.112), and (4.115), one computes

Fn,t (µ j ) = 2v
(−1)n

gn+1




n∏
k=1
k �= j

µk


 2iy(µ̂ j ) = (−1)n

gn+1

(
n∏

k=1

µk

)
4iv

µ j
Gn+1(µ j )

= 4iu

µ j
Gn+1(µ j ), j = 1, . . . , n. (4.142)

Since clearly

Fn,t (z) − (− 2i(uu∗ − z−1)Fn(z) + 4i z−1uGn+1(z)
) = O(zn) as |z| → ∞,

(4.143)

a comparison of (4.142) and (4.143) yields

Fn,t (z) − (− 2i(uu∗ − z−1)Fn(z) + 4i z−1uGn+1(z)
) = bFn(z) on C × �µ

(4.144)

for some b ∈ C∞(�µ) (independent of z), and hence (4.124), except for bx = 0.
A comparison of powers of zn in (4.144) then yields the equation involving vt in
(4.127).
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Next, we further restrict �µ and introduce �̂µ ⊆ �µ by the requirement that µ j

remain distinct and also distinct from {Em}m=0,...,2n+1 ∪ {0} on �̂µ, that is, we
suppose

µ j (x, t) �= µ j ′ (x, t) j �= j ′, j, j ′ = 1, . . . , n, (x, t) ∈ �̂µ,
(4.145)

µ j (x, t) /∈ {E0, . . . , E2n+1, 0}, j = 1, . . . , n, (x, t) ∈ �̂µ.

Differentiating (4.119) with respect to t and inserting (4.144) then yields

2Gn+1(z)Gn+1,t (z) = zFn(z)
(− 2i(uu∗ − z−1)Hn(z)

+ bHn(z) + Hn,t (z)
)+ 4iuGn+1Hn(z). (4.146)

Since the zeros of Fn and Gn+1 are distinct by hypothesis (4.146) (cf. (4.18)),
zHn,t (z) necessarily must be of the form

zHn,t (z) = 2i(zuu∗ − 1)Hn(z) − bzHn(z) + 4idGn+1(z) on C × �̂µ (4.147)

for some d ∈ C∞(�̂µ) (independent of z), and (4.147) inserted into (4.146) then
yields

Gn+1,t (z) = 2iuHn(z) + 2idFn(z) on C × �̂µ. (4.148)

Since

u = − Fn(0)

2gn+1
on �̂µ, (4.149)

combining (4.112) and (4.113), taking z = 0 in (4.148) and observing (4.117) and
(4.120), results in

0 = 2iu2gn+1u
∗ + 2id(−2gn+1u)

and hence in

d = u∗ on �̂µ. (4.150)

Using property (4.92), (4.147)–(4.150) then extend by continuity from �̂µ to �µ.
This proves (4.125) and (4.126), except for bx = 0. A comparison of powers of
zn in (4.126) then yields the equation involving v∗

t in (4.127). Taking z = 0 in
(4.121) and (4.123), observing (4.120) and (4.149), then proves the equations
involving ux and u∗

x in (4.127). Finally, computing the partial t-derivative of Fn,x
and separately the partial x-derivative of Fn,t , utilizing (4.121), (4.122), (4.124),
(4.125), and (4.127) then shows

Fn,xt − Fn,t x = −bx Fn(z) on C × �µ,

and hence

bx = 0 on �µ.

Furthermore, u and v are nonvanishing on �µ by the construction in step (S1). �
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Remark 4.15 One can factorize the polynomial Hn(z) as (cf. (4.130), (4.137))

Hn(z) = 2v∗
n∏
j=1

(z − ν j ). (4.151)

Considering the coefficient of zn in relation (4.141), one finds, using (4.151) and
(4.136), that

iv∗
x = (

2vv∗ − 2
n∑
j=1

ν j − 2c1
)
v∗. (4.152)

Since ν j ∈ C(�µ), j = 1, . . . , n, (4.152) yields that either v∗ is nonzero on �µ or
it vanishes identically on �µ. In the latter case, however, one also infers u∗ = 0
on �µ by the last equation in (4.127). By Remark 4.4, this in turn contradicts the
fact that the affine part of Kn is nonsingular. Hence v∗ is nonzero on �µ. Whether
or not u∗ can have isolated zeros in �µ appears to be unknown.

Remark 4.16 That the system of Dubrovin equations (4.89)–(4.91) cannot
uniquely determine the solutions u, v, u∗, v∗ of the massive Thirring system (4.31),
as is evident from the occurrence of b(t) in the equations involving vt and v∗

t in
(4.127), is of course due to the scale invariance displayed explicitly in Lemma 4.12.
In particular, once a certain b(t) has been identified, a scaling transformation of
the type (4.107) (with B(t) replaced by 1/B(t)) will restore the extended massive
Thirring system (4.127) to its original form in (4.31).

Remark 4.17 The explicit theta function representations (4.194)–(4.197) for
u, v, u∗, v∗ to be proven in Section 4.4 (this approach is independent of that used to
prove Theorem 4.14) permit one to extend the principal assertions (4.121)–(4.127)
of Theorem 4.14 by continuity beyond �µ as long as the divisor Dµ̂ remains non-
special (cf. Theorem A.31).

Remark 4.18 Although we formulated Theorem 4.14 in terms of {µ̂ j } j=1,...,n and
(4.89)–(4.91) only, there exists of course a completely analogous approach starting
with {ν̂ j } j=1,...,n and the system (4.93), (4.94) instead.

Remark 4.19 A closer look at Theorem 4.14 reveals that, up to scaling (cf. Lemma
4.12), u, v, u∗, v∗ are uniquely determined in an open neighborhood � of (x0, t0)
by Kn and the initial data µ̂(x0, t0) = (µ̂1(x0, t0), . . . , µ̂n(x0, t0)) ∈ Symn(Kn) or,
equivalently, by the auxiliary divisorDµ̂(x0,t0) ∈ Symn(Kn) at (x, t) = (x0, t0). Con-
versely, given Kn and u, v, u∗, v∗ in an open neighborhood � of (x0, t0), one can
construct the polynomials Fn( · , x, t), Gn+1( · , x, t), Hn( · , x, t) for (x, t) ∈ �

(using the recursion relation (4.3)–(4.6) to determine the homogeneous elements
f̂�, ĝ�, ĥ� and (D.45) to determine c� = c�(E), � = 0, . . . , n) and then recover
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the auxiliary divisor Dµ̂(x,t) for (x, t) ∈ � from the zeros of Fn( · , x, t) and from
(4.40). This remark is of relevance in connection with determining the isospectral
set of Thirring potentials u, v, u∗, v∗ in the sense that once the curve Kn is fixed,
elements of the isospectral class of potentials are parametrized by (nonspecial)
auxiliary divisors Dµ̂(x,t) (cf. Lemma 4.30).

4.4 Theta Function Representations of u, v, u∗, v∗

In this final section we complete the algebro-geometric approach initiated in Sec-
tion 4.3 and now derive theta function representations of the principal objects such
as φ, ψ1, u, v, u∗, and v∗.

According to our shift in emphasis from the Baker–Akhiezer vector � to our
fundamental meromorphic function φ on Kn , we first aim at the theta function
representation of φ.

Assuming the affine part ofKn to be nonsingular for the remainder of this section
(i.e., Em �= Em ′ for m �= m ′, m,m ′ = 0, . . . , 2n + 1) and n ∈ N for simplicity (to
avoid repeated case distinctions; see Example 4.31 for the case n = 0), we next
recall the formula for a normal differential of the third kind, which has simple
poles at P0,− and P∞− , corresponding residues +1 and −1, vanishing a-periods,
and is holomorphic otherwise on Kn . One computes

ω
(3)
P0,−,P∞−

= y + y0,−
2z

dz

y
+ 1

2y

n∏
j=1

(z − λ j )dz, P0,− = (0, y0,−) = (0,−gn+1),

(4.153)

where {λ j } j=1,...,n are uniquely determined by the normalization

∫
a j

ω
(3)
P0,−,P∞−

= 0, j = 1, . . . , n. (4.154)

The explicit formula (4.153) then implies (using the local coordinate ζ = z near
P0,∓)

ω
(3)
P0,−,P∞−

(P) =
ζ→0

{
ζ−1

0

}
dζ ±

( ∞∑
q=0

(q + 1)ω0
q+1ζ

q

)
dζ as P → P0,∓,

(4.155)

and similarly (using the local coordinate ζ = 1/z near P∞∓ ),

ω
(3)
P0,−,P∞−

(P) =
ζ→0

{−ζ−1

0

}
dζ ±

( ∞∑
q=0

(q + 1)ω∞
q+1ζ

q

)
dζ as P → P∞∓ .

(4.156)
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In particular,

∫ P

Q0

ω
(3)
P0,−,P∞−

=
ζ→0

{
ln(ζ )

0

}
+ ω

0,∓
0 ± ω0

1ζ ± ω0
2ζ

2 + O(ζ 3) as P → P0,∓,

(4.157)∫ P

Q0

ω
(3)
P0,−,P∞−

=
ζ→0

{− ln(ζ )
0

}
+ ω

∞∓
0 ± ω∞

1 ζ ± ω∞
2 ζ 2 + O(ζ 3) as P → P∞∓ .

(4.158)

Here Q0 ∈ B(Kn) is an appropriate base point, and we agree to choose the same
path of integration from Q0 to P in all Abelian integrals in this section.

A comparison of (4.155), (4.156) with (4.153), (C.41), and (C.42) then yields

ω0
1 = 1

4

2n+1∑
m=0

1

Em
− (−1)n

2gn+1

n∏
j=1

λ j , ω∞
1 = −1

4

2n+1∑
m=0

Em + 1

2

n∑
j=1

λ j . (4.159)

Next, we intend to go a step further and derive alternative expressions for the
expansion coefficients ω

0,±
0 , ω0

1, ω∞±
0 , and ω∞

1 in (4.157) and (4.158). To begin
these calculations we first recall the notion of a nonsingular odd half-period ϒ

defined by

2ϒ = 0 (mod Ln), θ (ϒ ) = 0, ∂z j θ (z)
∣∣
z=ϒ

�= 0 for some j ∈ {1, . . . , n}.

In addition, we need to introduce the normalized differentials ω
(2)
P0,+,0 and ω

(2)
P∞+ ,0

with unique poles at P0,+ and P∞+ and principal parts

ω
(2)
P0,+,0 =

ζ→0
(ζ−2 + O(1))dζ as P → P0,+, (4.160)

ω
(2)
P∞+ ,0 =

ζ→0
(ζ−2 + O(1))dζ as P → P∞+ , (4.161)

respectively. In particular,

∫
a j

ω
(2)
P0,+,0 = 0,

∫
a j

ω
(2)
P∞+ ,0 = 0, j = 1, . . . , n. (4.162)

In the following we find it convenient to use the notations

"0 = AQ0
(P0,+), "∞ = AQ0

(P∞+ ), (4.163)

W 0
1 = (

W 0
1,1, . . . ,W

0
1,n

)
, W 0

1, j = 1

2π i

∫
b j

ω
(2)
P0,+,0 = c j (1)

gn+1
, j = 1, . . . , n,

(4.164)
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W 0
2 = (

W 0
2,1, . . . ,W

0
2,n

)
, W 0

2, j = c j (1)

4gn+1

2n+1∑
m=0

E−1
m + c j (2)

2gn+1
, j = 1, . . . , n,

(4.165)

W∞
1 = (

W∞
1,1, . . . ,W

∞
1,n

)
, W∞

1, j = 1

2π i

∫
b j

ω
(2)
P∞+ ,0 = c j (n), j = 1, . . . , n,

(4.166)

W∞
2 = (

W∞
2,1, . . . ,W

∞
2,n

)
, W∞

2, j = c j (n)

4

2n+1∑
m=0

Em + c j (n − 1)

2
, j = 1, . . . , n.

(4.167)

(∂W f )(z) =
n∑
j=1

Wj (∂z j f )(z),
(
∂2
W f

)
(z) =

n∑
j,k=1

WjWk
(
∂2
z j zk f

)
(z),

z = (z1, . . . , zn) ∈ C
n.

Then one obtains the following result.

Lemma 4.20 Given (4.153)–(4.166) one obtains

ω
0,+
0 = ln

(
θ (ϒ − 2"0)θ(ϒ − "∞)

θ (ϒ − "0 − "∞)θ (ϒ − "0)

)
, (4.168)

ω
0,−
0 = ln

( (
∂W 0

1
θ
)
(ϒ )θ (ϒ − "∞)

θ (ϒ + "0 − "∞)θ (ϒ − "0)

)
, (4.169)

ω0
1 = −∂W 0

1
ln(θ (ϒ + "0 − "∞)) +

(
∂W 0

2
θ
)
(ϒ ) + 2−1

(
∂2
W 0

1
θ
)
(ϒ )

(
∂W 0

1
θ
)
(ϒ )

(4.170)

= ∂W 0
1

ln

(
θ (ϒ − 2"0)

θ (ϒ − "0 − "∞)

)
, (4.171)

ω
∞+
0 = ln

(
θ (ϒ − "0 − "∞)θ (ϒ − "∞

θ(ϒ − 2"∞)θ (ϒ − "0)

)
, (4.172)

ω
∞−
0 = − ln

( (
∂W∞

1
θ
)
(ϒ )θ(ϒ − "0)

θ(ϒ − "0 + "∞)θ(ϒ − "∞)

)
, (4.173)

ω∞
1 = ∂W∞

1
ln(θ(ϒ − "0 + "∞)) −

(
∂W∞

2
θ
)
(ϒ ) + 2−1

(
∂2
W∞

1
θ
)
(ϒ )(

∂W∞
1
θ
)
(ϒ )

(4.174)

= ∂W∞
1

ln

(
θ (ϒ − "0 − "∞)

θ (ϒ − 2"∞)

)
. (4.175)

Proof Abbreviating

w(P, Q) = ϒ − AQ0
(P) + AQ0

(Q) (mod Ln), P, Q ∈ Kn,
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one infers from

AQ0
(P) =

ζ→0
AQ0

(P0,±) ± W 0
1ζ ± W 0

2ζ
2 + O(ζ 3) as P → P0,±, (4.176)

AQ0
(P) =

ζ→0
AQ0

(P∞± ) ± W∞
1 ζ ± W∞

2 ζ 2 + O(ζ 3) as P → P∞± (4.177)

(cf. (C.35) and (C.41)), and (4.164), (4.166), that

θ (w(P, Q)) =
ζ→0

θ (w(P0,±, Q)) ∓ (
∂W 0

1
θ
)
(w(P0,±, Q))ζ (4.178)

∓ (
∂W 0

2
θ
)
(w(P0,±, Q))ζ 2 + 2−1

(
∂2
W 0

1
θ
)
(w(P0,±, Q))ζ 2 + O(ζ 3) as P → P0,±,

θ (w(P, Q)) =
ζ→0

θ (w(P∞± , Q)) ∓ (∂W∞
1
θ )(w(P∞± , Q))ζ (4.179)

∓ (
∂W∞

2
θ
)
(w(P∞± , Q))ζ 2 + 2−1

(
∂2
W∞

1
θ
)
(w(P∞± , Q))ζ 2 + O(ζ 3) as P → P∞± .

Next, by observing that

ω
(3)
P0,−,P∞−

= d ln

(
θ (w( · , P0,−))

θ (w( · , P∞− ))

)
, (4.180)

it becomes a straightforward matter to derive (4.168)–(4.175). For simplicity we
just focus on the expansion of

∫ P
Q0

ω
(3)
P0,−,P∞−

as P → P0,±; the rest is completely
analogous. Using

w(Q0, P0,±) = ϒ ± "0, w(Q0, P∞± ) = ϒ ± "∞, w(Q, Q) = ϒ,

w(P∞σ
, P0,σ ′ ) = ϒ + σ ′"0 − σ"∞, w(P0,σ ′ , P∞σ

) = ϒ − σ ′"0 + σ"∞,

w(P0,σ , P0,σ ′ ) = ϒ + (σ ′ − σ )"0, w(P0,σ ′ , P0,σ ) = ϒ + (σ − σ ′)"0,

w(P∞σ
, P∞σ ′ ) = ϒ + (σ ′ − σ )"∞, w(P∞σ ′ , P∞σ

) = ϒ + (σ − σ ′)"∞,

Q ∈ Kn, σ, σ ′ ∈ {1,−1} (4.181)

and (4.178)–(4.180), one computes the following by comparison with (4.157),

∫ P

Q0

ω
(3)
P0,−,P∞−

=
∫ P

Q0

d ln

(
θ (w(P ′, P0,−))

θ (w(P ′, P∞− ))

)

= ln

(
θ (w(P, P0,−))

θ (w(P, P∞− ))

)
− ln

(
θ (w(Q0, P0,−))

θ (w(Q0, P∞− ))

)

= ln

(
θ (w(P, P0,−))

θ (w(P, P∞− ))

)
− ln

(
θ (ϒ − "0)

θ (ϒ − "∞)

)

= ln

(
θ(ϒ − 2"0)θ (ϒ − "∞)

θ (ϒ − "0 − "∞)θ (ϒ − "0)

)

− ∂W 0
1

ln

(
θ (ϒ − 2"0)

θ (ϒ − "0 − "∞)

)
ζ + O(ζ 2)

= ω
0,+
0 − ω0

1ζ + O(ζ 2) as P → P0,+.
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This proves (4.168) and (4.171). Similarly, one calculates,

∫ P

Q0

ω
(3)
P0,−,P∞−

= ln

(
θ (w(P, P0,−))

θ (w(P, P∞− ))

)
− ln

(
θ (ϒ − "0)

θ (ϒ − "∞)

)

= ln(ζ ) + ln

( (∂W 0
1
θ )(ϒ )θ (ϒ − "∞)

θ (ϒ + "0 − "∞)θ (ϒ − "0)

)
− ∂W 0

1
ln(θ (ϒ + "0 − "∞))ζ

+
(∂W 0

2
θ )(ϒ ) + 2−1(∂2

W 0
1
θ )(ϒ )

(∂W 0
1
θ )(ϒ )

ζ + O(ζ 2)

= ln(ζ ) + ω
0,−
0 + ω0

1ζ + O(ζ 2) as P → P0,−,

proving (4.169) and (4.170). �

The results of Lemma 4.20 can conveniently be reformulated in terms of theta
functions with characteristics associated with the vector ϒ , but we omit further
details at this point.

Next, we now turn to the theta function representation of φ and refer to Appen-
dices A and C for our notational conventions concerning Abel maps AQ0

, αQ0
, and

θ-functions. Here Q0 ∈ Kn \ {P0,±, P∞±} is a fixed base point that we will always
choose among the branch points of Kn (e.g., Q0 = (E0, 0)).

Combining (4.62) and Theorem A.26, the theta function representation of φ

must be of the following form

φ(P) = C
θ
(
�Q0

− AQ0
(P) + αQ0

(Dν̂)
)

θ
(
�Q0

− AQ0
(P) + αQ0

(Dµ̂)
) exp

(∫ P

Q0

ω
(3)
P0,−,P∞−

)
,

P ∈ Kn \ {P∞+ , P∞−}, (x, t) ∈ �, (4.182)

assuming Dµ̂ (or equivalently Dν̂) to be nonspecial on �, where � ⊆ R
2 is open

and connected. Indeed, by (4.62), (4.157), (4.158), and Theorem A.26, φ and

θ
(
�Q0

− AQ0
(P) + αQ0

(Dν̂)
)

θ
(
�Q0

− AQ0
(P) + αQ0

(Dµ̂)
) exp

(∫ P

Q0

ω
(3)
P0,−,P∞−

)
(4.183)

have the same singularity structure with respect to P ∈ Kn . By (A.26), (A.38),
and (A.39), the expression (4.183) is single-valued and hence meromorphic on
Kn . Since by (4.62), DP0,− ν̂ ∼ DP∞− µ̂, and P∞+ = (P∞− )∗ /∈ {µ̂1, . . . , µ̂n} by hy-
pothesis, one can apply Theorem A.31 to conclude that Dν̂ ∈ Symn(Kn) is non-
special. This argument is of course symmetric with respect to µ̂ and ν̂. Thus,
Dµ̂ is nonspecial if and only if Dν̂ is. Nonspecialty of Dµ̂ and Dν̂ then yields
(4.182).

It remains to analyze the function C = C(x, t) in (4.182) (which is
P-independent), and in the course of that we will also obtain the theta function
representations of u, v, u∗, v∗.
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In the following it will occasionally be convenient to use a short-hand notation
for the arguments of the theta functions in (4.182), and hence we introduce the
abbreviation

z(P, Q) = �Q0
− AQ0

(P) + αQ0
(DQ),

(4.184)
P ∈ Kn, Q = {Q1, . . . , Qn} ∈ Symn(Kn).

We note that by (A.52) and (A.53), z( · , Q) is independent of the choice of base
point Q0.

Next we show that the Abel map linearizes the auxiliary divisors Dµ̂(x,t) and
Dν̂(x,t).

Lemma 4.21 Assume (4.2), (4.14), (4.53) hold on �. In addition, suppose (4.37)
holds and let (x, t), (x0, t0) ∈ �, where� ⊆ R

2 is open and connected. Moreover,
suppose that the affine part of Kn is nonsingular and that Dµ̂(x,t), or equivalently,
Dν̂(x,t) is nonspecial for (x, t) ∈ �. Then,

αQ0
(Dµ̂(x,t)) = αQ0

(Dµ̂(x0,t0)) + 2i(x − x0)c(n) − 2ig−1
n+1(t − t0)c(1), (4.185)

αQ0
(Dν̂(x,t)) = αQ0

(Dν̂(x0,t0)) + 2i(x − x0)c(n) − 2ig−1
n+1(t − t0)c(1). (4.186)

Proof Given the expansions (C.35) and (C.41) of ω near P∞± and P0,±, (4.185)
and (4.186) are standard facts following from Lagrange interpolation results of the
type

n∑
j=1

µk−1
j∏n

�=1
��= j

(µ j − µ�)
= δk,n,

n∑
j=1

µk−1
j

(∏n
m=1
m �= j

µm

)
∏n

�=1
��= j

(µ j − µ�)
= (−1)n+1δk,1, k = 1, . . . , n. �

In Lemma 4.8 we determined the asymptotic behavior of φ(P, x, t) as
P → P∞± , P0,± comparing (4.38) with (4.44) and (4.45). Now we will recom-
pute the asymptotics of φ starting from (4.182).

Lemma 4.22 Assume (4.2), (4.14), (4.53) hold on �. In addition, suppose (4.37)
holds, assume that theaffinepart ofKn is nonsingular, and let P ∈Kn\ {P∞+ , P∞−}
and (x, t) ∈ �, where � ⊆ R

2 is open and connected. Moreover, suppose that
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Dµ̂(x,t), or equivalently, Dν̂(x,t) is nonspecial for (x, t) ∈ �. Then,1

φ(P, x, t) =
ζ→0

C(x, t)eω
∞−
0

θ
(
z(P∞− , ν̂(x, t))

)
θ
(
z(P∞− , µ̂(x, t))

) ζ−1

+ C(x, t)ω∞
1 e

ω
∞−
0

θ
(
z(P∞− , ν̂(x, t))

)
θ
(
z(P∞− , µ̂(x, t))

) (4.187)

− C(x, t)eω
∞−
0

i

2
∂x

(
θ
(
z(P∞− , ν̂(x, t))

)
θ
(
z(P∞− , µ̂(x, t))

)
)

+ O(ζ ) as P → P∞− ,

φ(P, x, t) =
ζ→0

C(x, t)eω
∞+
0

θ
(
z(P∞+ , ν̂(x, t))

)
θ
(
z(P∞+ , µ̂(x, t))

)

− C(x, t)ω∞
1 e

ω
∞+
0

θ
(
z(P∞+ , ν̂(x, t))

)
θ
(
z(P∞+ , µ̂(x, t))

)ζ (4.188)

+ C(x, t)eω
∞+
0

i

2
∂x

(
θ
(
z(P∞+ , ν̂(x, t))

)
θ
(
z(P∞+ , µ̂(x, t))

)
)
ζ + O(ζ 2) as P → P∞+ ,

φ(P, x, t) =
ζ→0

C(x, t)eω
0,−
0

θ
(
z(P0,−, ν̂(x, t))

)
θ
(
z(P0,−, µ̂(x, t))

) ζ

+ C(x, t)ω0
1e

ω
0,−
0

θ
(
z(P0,−, ν̂(x, t))

)
θ
(
z(P0,−, µ̂(x, t))

)ζ 2 (4.189)

+ C(x, t)eω
0,−
0
i

2
∂t

(
θ
(
z(P0,−, ν̂(x, t))

)
θ
(
z(P0,−, µ̂(x, t))

)
)
ζ 2 + O(ζ 3) as P → P0,−,

φ(P, x, t) =
ζ→0

C(x, t)eω
0,+
0

θ
(
z(P0,+, ν̂(x, t))

)
θ
(
z(P0,+, µ̂(x, t))

)

− C(x, t)ω0
1e

ω
0,+
0

θ
(
z(P0,+, ν̂(x, t))

)
θ
(
z(P0,+, µ̂(x, t))

)ζ (4.190)

− C(x, t)eω
0,+
0
i

2
∂t

(
θ
(
z(P0,+, ν̂(x, t))

)
θ
(
z(P0,+, µ̂(x, t))

)
)
ζ + O(ζ 2) as P → P0,+.

Proof Using (4.176) and (4.177) (cf. (C.35) and (C.41)), one obtains

z(P, µ̂) =
ζ→0

z(P∞± , µ̂) ∓ c(n)ζ + O(ζ 2) as P → P∞± ,

z(P, µ̂) =
ζ→0

z(P0,±, µ̂) ∓ c(1)g−1
n+1ζ + O(ζ 2) as P → P0,±

1 To avoid multi-valued expressions in formulas such as (4.187), etc., we agree always to choose
the same path of integration connecting Q0 and P and refer to Remark A.28 for additional tacitly
assumed conventions.
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and hence

θ
(
z(P, µ̂)

) =
ζ→0

θ
(
z(P∞± , µ̂)

)± i

2
∂xθ

(
z(P∞± , µ̂)

)
ζ + O(ζ 2) as P → P∞± ,

(4.191)

θ
(
z(P, µ̂)

) =
ζ→0

θ
(
z(P0,±, µ̂)

)∓ i

2
∂tθ
(
z(P0,±, µ̂)

)
ζ + O(ζ 2) as P → P0,±.

(4.192)

Here we used (4.185) to convert the directional derivatives
∑n

j=1 c j (n)∂w j and∑n
j=1 c j (1)∂w j ,w = (w1, . . . , wn) ∈ C

n into ∂x and ∂t derivatives. Since by (4.186)
exactly the same formulas (4.191) and (4.192) apply to Dν̂ , insertion of (4.157),
(4.158), (4.191), and (4.192) (and their Dν̂ analogs) into (4.182) proves (4.187)–
(4.190). �

Lemma 4.22 may seem to be just another asymptotic result; however, a com-
parison with Lemma 4.8 reveals that in passing we have actually derived the theta
function representations for u, v, u∗, and v∗.

Theorem 4.23 Assume (4.2), (4.14), and (4.53) hold on �. In addition, suppose
(4.37) holds, assume that the affine part of Kn is nonsingular, and let P ∈ Kn \
{P∞+ , P∞−} and (x, t) ∈ �, where � ⊆ R

2 is open and connected. Moreover,
suppose that Dµ̂(x,t) or equivalently, Dν̂(x,t) is nonspecial for (x, t) ∈ �. Then
φ(P, x, t) admits the representation1

φ(P, x, t) = C0e
2i(ω∞

1 x−ω0
1 t)

θ
(
z(P, ν̂(x, t))

)
θ
(
z(P, µ̂(x, t))

) exp

(∫ P

Q0

ω
(3)
P0,−,P∞−

)
(4.193)

for some constant C0 ∈ C \ {0} and the theta function representations for the
algebro-geometric solutions u, u∗, v, and v∗ of the classical massive Thirring
system (4.31) read

u(x, t) = −C−1
0 e−ω

0,+
0

θ
(
z(P0,+, µ̂(x, t))

)
θ
(
z(P0,+, ν̂(x, t))

) e−2i(ω∞
1 x−ω0

1 t), (4.194)

v(x, t) = −C−1
0 e−ω

∞−
0

θ
(
z(P∞− , µ̂(x, t))

)
θ
(
z(P∞− , ν̂(x, t))

) e−2i(ω∞
1 x−ω0

1 t), (4.195)

u∗(x, t) = C0e
ω

0,−
0

θ
(
z(P0,−, ν̂(x, t))

)
θ
(
z(P0,−, µ̂(x, t))

)e2i(ω∞
1 x−ω0

1 t), (4.196)

v∗(x, t) = C0e
ω

∞+
0

θ
(
z(P∞+ , ν̂(x, t))

)
θ
(
z(P∞+ , µ̂(x, t))

)e2i(ω∞
1 x−ω0

1 t), (4.197)

1 To avoid multi-valued expressions in formulas such as (4.193), etc., we agree always to choose
the same path of integration connecting P0 and P and refer to Remark A.28 for additional tacitly
assumed conventions.
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with ω
0,±
0 , ω0

1, ω
∞±
0 , and ω∞

1 given by (4.168)–(4.175) (cf. also (4.157)–
(4.159)).

Proof A comparison of (4.76), (4.77), and (4.187)–(4.190) yields

Cx = 2iω∞
1 C, Ct = −2iω0

1C.

Hence,

C(x, t) = C0e
2i(ω∞

1 x−ω0
1 t) (4.198)

proves (4.193). Insertion of (4.198) into the leading asymptotic term of (4.187)–
(4.190) then yields (4.194)–(4.197). �

Remark 4.24 (i) The constant C0 in (4.193)–(4.197) remains undetermined due
to the scaling invariance (4.34) of the Thirring system. One can rewrite (4.194)–
(4.197) in the form

u(x, t) = u(x0, t0)
θ
(
z(P0,+, ν̂(x0, t0))

)
θ
(
z(P0,+, µ̂(x, t))

)
θ
(
z(P0,+, µ̂(x0, t0))

)
θ
(
z(P0,+, ν̂(x, t))

)
(4.199)× exp

(−2i(ω∞
1 (x − x0) − ω0

1(t − t0))
)
,

v(x, t) = v(x0, t0)
θ
(
z(P∞− , ν̂(x0, t0))

)
θ
(
z(P∞− , µ̂(x, t))

)
θ
(
z(P∞− , µ̂(x0, t0))

)
θ
(
z(P∞− , ν̂(x, t))

)
(4.200)× exp

(−2i(ω∞
1 (x − x0) − ω0

1(t − t0))
)
,

u∗(x, t) = u∗(x0, t0)
θ
(
z(P0,−, µ̂(x0, t0))

)
θ
(
z(P0,−, ν̂(x, t))

)
θ
(
z(P0,−, ν̂(x0, t0))

)
θ
(
z(P0,−, µ̂(x, t))

)
(4.201)× exp

(
2i(ω∞

1 (x − x0) − ω0
1(t − t0))

)
,

v∗(x, t) = v∗(x0, t0)
θ
(
z(P∞+ , µ̂(x0, t0))

)
θ
(
z(P∞+ , ν̂(x, t))

)
θ
(
z(P∞+ , ν̂(x0, t0))

)
θ
(
z(P∞+ , µ̂(x, t))

)
(4.202)× exp

(
2i(ω∞

1 (x − x0) − ω0
1(t − t0))

)
,

where

z(Q, µ̂(x, t)) = z(Q, µ̂(x0, t0)) + 2i(x − x0)c(n) + 2ig−1
n+1(t − t0)c(1),

(4.203)

z(Q, ν̂(x, t)) = z(Q, ν̂(x0, t0)) + 2i(x − x0)c(n) + 2ig−1
n+1(t − t0)c(1), (4.204)

by (4.184), (4.185), and (4.186).
(ii) Since the divisors DP0,− ν̂ and DP∞− µ̂ are linearly equivalent by (4.62), one
infers

αQ0
(Dν̂) = αQ0

(Dµ̂) + " on �, " = AP0,− (P∞− ).
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Hence one can replace z(Q, ν̂) in (4.193)–(4.197), (4.199)–(4.202), (4.204) in
terms of z(Q, µ̂) according to

z(Q, ν̂) = z(Q, µ̂) + ". (4.205)

Combining (4.185),(4.186), (4.205), and (4.194)–(4.197) shows the remarkable
linearity of the theta function arguments with respect to x and t in the formulas
for u, v, u∗, v∗. In fact, one can rewrite (4.194)–(4.197) as

u(x, t) = Cu
θ (A + Bx + Ct)

θ (A + Bx + Ct + ")
exp(−iω0x − iω1t), (4.206)

v(x, t) = Cv

θ( Ã + Bx + Ct)

θ ( Ã + Bx + Ct + ")
exp(−iω0x − iω1t), (4.207)

u∗(x, t) = Cu∗
θ (A + Bx + Ct + " − AP0,+ (P0,−))

θ (A + Bx + Ct − AP0,+ (P0,−))
exp(iω0x + iω1t), (4.208)

v∗(x, t) = Cv∗
θ ( Ã + Bx + Ct + " − AP∞−

(P∞+ ))

θ ( Ã + Bx + Ct − AP∞−
(P∞+ ))

exp(iω0x + iω1t), (4.209)

where

A = �Q0
− AQ0

(P0,+) − 2ic(n)x0 − 2ig−1
n+1c(1)t0 + αQ0

(Dµ̂(x0,t0)), (4.210)

Ã = A + AP∞−
(P0,+), B = 2ic(n), C = 2ig−1

n+1c(1), (4.211)

" = AP∞+
(P0,+) = AP0,− (P∞− ), (4.212)

and hence the constants ω0, ω1 ∈ C and ", B,C ∈ C
n are uniquely determined by

Kn; the constant A ∈ C
n (and hence Ã ∈ C

n) is in one-to-one correspondence with
the Dirichlet data µ̂(x0, t0) = (µ̂1(x0, t0), . . . , µ̂n(x0, t0)) ∈ Symn(Kn) at the point
(x0, t0), as long as the divisor Dµ̂(x0,t0) is assumed to be nonspecial. The constants
Cu,Cu∗ ,Cv,Cv∗ ∈ C satisfy certain constraints that we omit.

In principle, Theorem 4.23 completes the primary aim of this chapter, the deriva-
tion of the theta function representation of algebro-geometric solutions of the
classical massive Thirring system (4.31). The reader will have noticed that our
approach thus far is nontraditional in the sense that we did not use the Baker–
Akhiezer vector � at all but instead put all emphasis on the meromorphic φ on
Kn . Just for completeness we finally derive the theta function representation for
ψ1 in (4.64).

The singularity structure of ψ1( · , x, x0, t, t0) near P∞± displayed in Lemma 4.9
suggests introducing Abelian differentials ω

(2)
Q,0 of the second kind, normalized by

the vanishing of their a-periods,
∫
a j

ω
(2)
Q,0 = 0, j = 1, . . . , n, (4.213)
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with a second-order pole at Q of the type

ω
(2)
Q,0 =

ζ→0
(ζ−2 + O(1))dζ as P → Q, (4.214)

and holomorphic on Kn \ {Q}. More precisely, we introduce

�
(2)
∞,0 = ω

(2)
P∞+ ,0 − ω

(2)
P∞− ,0, (4.215)

�
(2)
0,0 = ω

(2)
P0,+,0 − ω

(2)
P0,−,0 (4.216)

and note that
∫ P

Q0

�
(2)
∞,0 =

ζ→0
±(ζ−1 + e∞,0 + e∞,1ζ + O(ζ 2)) as P → P∞∓ , (4.217)

∫ P

Q0

�
(2)
0,0 =

ζ→0
±(ζ−1 + e0,0 + e0,1ζ + O(ζ 2)) as P → P0,∓. (4.218)

Theorem 4.25 Assume (4.2), (4.14), (4.53) hold on �. In addition, suppose that
(4.37) holds, assume that the affine part of Kn is nonsingular, and let
P ∈ Kn \ {P∞+ , P∞− , P0,+, P0,−} and (x, t), (x0, t0) ∈ �, where � ⊆ R

2 is open
and connected. Moreover, suppose that Dµ̂(x,t) is nonspecial for (x, t) ∈ �. Then
ψ1 admits the representation1

ψ1(P, x, x0, t, t0) =
(
θ
(
z(P∞− , µ̂(x0, t0))

)
θ
(
z(P∞+ , ν̂(x0, t0))

)
θ
(
z(P∞+ , µ̂(x, t))

)
θ
(
z(P∞− , ν̂(x, t))

)
)1/2

× θ
(
z(P, µ̂(x, t))

)
θ
(
z(P, µ̂(x0, t0))

) (4.219)

× exp

(
− i

(
ω∞

1 +
∫ P

Q0

�
(2)
∞,0

)
(x − x0) + i

(
ω0

1 +
∫ P

Q0

�
(2)
0,0

)
(t − t0)

)

or equivalently,

ψ1(P, x, x0, t, t0) =
(
θ
(
z(P0,−, µ̂(x0, t0))

)
θ
(
z(P0,+, ν̂(x0, t0))

)
θ
(
z(P0,−, µ̂(x, t))

)
θ
(
z(P0,+, ν̂(x, t))

)
)1/2

× θ
(
z(P, µ̂(x, t))

)
θ
(
z(P, µ̂(x0, t0))

) (4.220)

× exp

(
− i

(
ω∞

1 +
∫ P

Q0

�
(2)
∞,0

)
(x − x0) + i

(
ω0

1 +
∫ P

Q0

�
(2)
0,0

)
(t − t0)

)
.

1 To avoid multi-valued expressions in formulas such as (4.219), (4.220), etc., we agree always to
choose the same path of integration connecting Q0 and P and refer to Remark A.28 for additional
tacitly assumed conventions.
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Proof Introducing

ψ̂1(P, x, x0, t, t0) = C(x, t)

C(x0, t0)

θ
(
z(P, µ̂(x, t))

)
θ
(
z(P, µ̂(x0, t0))

) (4.221)

× exp

(
− i(x − x0)

∫ P

Q0

�
(2)
∞,0 + i(t − t0)

∫ P

Q0

�
(2)
0,0

)
,

P ∈ Kn \ {P∞+ , P∞− , P0,+, P0,−}, (x, t), (x0, t0) ∈ �

with an appropriate normalization C(x, t) (which is P-independent) to be deter-
mined later, we next intend to prove that

ψ1(P, x, x0, t, t0) = ψ̂1(P, x, x0, t, t0), (4.222)

P ∈ Kn \ {P∞+ , P∞− , P0,+, P0,−}, (x, t), (x0, t0) ∈ �.

A comparison of (4.8), (4.58), (4.69), (4.78), (4.80), (4.217), (4.218), and (4.221)
shows that ψ1 and ψ̂1 share the identical essential singularity near P0,± and P∞± .
Next we turn to the local behavior of ψ1 with respect to its zeros and poles. We
temporarily restrict � to �̃ ⊆ � such that for all (x ′, s) ∈ �̃, µ j (x ′, s) �= µk(x ′, s)
for all j �= k, j, k = 1, . . . , n. Then, arguing as in the paragraph following (4.74),
one infers from (4.64) that

ψ1(P, x, x0, t, t0) =




(µ j (x, t) − z)O(1) as P → µ̂ j (x, t) �= µ̂(x0, t0),

O(1) as P → µ̂ j (x, t) = µ̂(x0, t0),

(µ j (x0, t0) − z)−1O(1) as P → µ̂ j (x0, t0) �= µ̂(x, t),

P = (z, y) ∈ Kn, (x, t), (x0, t0) ∈ �̃,

where O(1) �= 0. Applying Lemma C.3 then proves (4.222) for (x, t), (x0, t0) ∈ �̃.
By continuity this extends to (x, t), (x0, t0) ∈ � as long as Dµ̂(x,t) ∈ Symn(Kn)
remains nonspecial. Finally, we determine C(x, t)/C(x0, t0). A comparison of
(4.8), (4.22), (4.58), (4.70), (4.199), (4.200), and (4.221) yield for P = (z, y),

ψ1(P, x, x0, t, t0)ψ1(P∗, x, x0, t, t0)

=
z→∞

C(x, t)2

C(x0, t0)2

θ
(
z(P∞+ , µ̂(x, t))

)
θ
(
z(P∞− , µ̂(x, t))

)
θ
(
z(P∞+ , µ̂(x0, t0))

)
θ
(
z(P∞− , µ̂(x0, t0))

)

× exp
(−2i(e∞,0(x − x0) − e0,0(t − t0))

)

= v(x, t)

v(x0, t0)
(4.223)

= θ
(
z(P∞− , µ̂(x, t))

)
θ
(
z(P∞− , ν̂(x0, t0))

)
θ
(
z(P∞− , µ̂(x0, t0))

)
θ
(
z(P∞− , ν̂(x, t))

)

× exp
(−2i(ω∞

1 (x − x0) − ω0
1(t − t0))

)
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and

ψ1(P, x, x0, t, t0)ψ1(P∗, x, x0, t, t0)

=
z→0

C(x, t)2

C(x0, t0)2

θ
(
z(P0,+, µ̂(x, t))

)
θ
(
z(P0,−, µ̂(x, t))

)
θ
(
z(P0,+, µ̂(x0, t0))

)
θ
(
z(P0,−, µ̂(x0, t0))

)

× exp
(−2i(e∞,0(x − x0) − e0,0(t − t0))

)

= u(x, t)

u(x0, t0)
(4.224)

= θ
(
z(P0,+, µ̂(x, t))

)
θ
(
z(P0,+, ν̂(x0, t0))

)
θ
(
z(P0,+, µ̂(x0, t0))

)
θ
(
z(P0,+, ν̂(x, t))

)

× exp
(−2i(ω∞

1 (x − x0) − ω0
1(t − t0))

)
.

Thus, (4.223) implies

C(x, t)2

C(x0, t0)2
= θ

(
z(P∞+ , µ̂(x0, t0))

)
θ
(
z(P∞− , ν̂(x0, t0))

)
θ
(
z(P∞+ , µ̂(x, t))

)
θ
(
z(P∞− , ν̂(x, t))

)

× exp
(−2i(ω∞

1 (x − x0) − ω0
1(t − t0))

)
, (4.225)

and (4.224) yields

C(x, t)2

C(x0, t0)2
= θ

(
z(P0,−, µ̂(x0, t0))

)
θ
(
z(P0,+, ν̂(x0, t0))

)
θ
(
z(P0,−, µ̂(x, t))

)
θ
(
z(P0,+, ν̂(x, t))

)

× exp
(−2i(ω∞

1 (x − x0) − ω0
1(t − t0))

)
. (4.226)

To reconcile the two expressions (4.225) and (4.226) we obtained for C(x, t)2/

C(x0, t0)2, it suffices to recall the linear dependence of the divisors DP∞− µ̂ and
DP0,− ν̂ , that is,

AQ0
(P∞− ) + αQ0

(Dµ̂(x,t)) = AQ0
(P0,−) + αQ0

(Dν̂(x,t)),

and

AQ0
(P0,−) = −AQ0

(P0,+), AQ0
(P∞− ) = −AQ0

(P∞+ )

to conclude that

z(P∞+ , µ̂) = z(P0,+, ν̂), z(P0,−, µ̂) = z(P∞− , ν̂)

and hence equality of the right-hand sides of (4.225) and (4.226). This proves
(4.219) and (4.220). �

Remark 4.26 The explicit representation (4.219) for ψ1 complements Lemma 4.7
and shows that ψ1 stays meromorphic on Kn \ {P∞+ , P∞− , P0,+, P0,−} as long as
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Dµ̂ is nonspecial (assuming the affine part of Kn to be nonsingular). An analogous
theta function derivation can be performed for ξψ2; we omit further details.

Remark4.27 We emphasize thatφ andψ1 are naturally defined on the two-sheeted
Riemann surfaceKn , whereas ψ2 requires a four-sheeted Riemann surface because
of the additional factor 1/z1/2 in (4.65). In particular, the Baker–Akhiezer vector �
in (4.63) requires a four-sheeted Riemann surface, which is a disadvantage when
compared with our use of φ.

The algebro-geometric solutions u, v, u∗, v∗ in (4.199)–(4.202) represent solu-
tions of the classical massive Thirring system (4.31), a complexified version of the
classical massive Thirring model (4.32) denoted by Th henceforth. To comment
on the isospectral set for the Th model, one needs to impose certain symmetry
constraints on Kn and additional constraints on A in (4.206)–(4.210), which we
discuss in the following.

Multiplying (4.97) and (4.100) in the Th model case, where u∗ = ū, v∗ = v̄,
one infers

|v|2
|u|2 = g2

n+1∏n
j=0 |µ j |2 (4.227)

and hence g2
n+1 = ∏2n+1

m=0 Em > 0. Thus, the set {Em}m=0,...,2n+1 consists of com-
plex conjugate pairs, strictly negative pairs, and strictly positive pairs. However,
the symmetry constraints we are imposing on Kn will be of the following more
restrictive form.1

Hypothesis 4.28 There exists at least one real pair of branch points (E0, E1) with
either 0 < E0 and then no further branch points on (−∞, E0) or with 0 > E1 and
then no further branch points on (E1,∞). Moreover, we assume that no branch
cut connecting complex conjugate pairs crosses (−∞, E0) if 0 < E0, respectively,
(E1,∞) if 0 > E1. The number of real pairs of branch points is denoted by k, and
the number of complex conjugate pairs by � (i.e., k + � = n + 1, 1 ≤ k ≤ n + 1).

We start by recalling that algebro-geometric Th solutions are smooth.

Lemma4.29 Assumeu, v are algebro-geometric solutions of the classicalmassive
Thirring model (4.32) of the type (4.199), (4.200) (satisfying u = u∗ and v = v∗

with u∗, v∗ given by (4.201), (4.202)). Then,2

u, v ∈ C∞(R2). (4.228)

1 Of course we still assume the affine part of Kn to be nonsingular (cf. (4.37) and (4.88)).
2 We are not explicitly assuming Hypothesis 4.28.
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Proof Identifying u = u∗ and v = v∗ in (4.82)–(4.87), one infers

∂x ln(ψ2,0,+,0(x, t)) = −∂x ln(ψ2,∞−,−1(x, t)) = i |v(x, t)|2,
∂t ln(ψ2,0,+,0(x, t)) = −∂t ln(ψ2,∞−,−1(x, t)) = −i |u(x, t)|2,

and hence

∂x ln(|ψ2,0,+,0(x, t)|) = ∂t ln(|ψ2,0,+,0(x, t)|) = 0,

∂x ln(|ψ2,∞−,−1(x, t)|) = ∂t ln(|ψ2,∞−,−1(x, t)|) = 0.

Since

u = −ψ1,0,+,0/ψ2,0,+,0, v = −ψ1,∞−,0/ψ2,∞−,−1,

with ψ2,0+,,0 and ψ2,∞−,−1 entire with respect to x and t , u and v are free of local
singularities and (4.228) holds. �

Lemma 4.30 Assume Hypothesis 4.28, suppose that Dµ̂(x0,t0) is nonspecial for
some (x0, t0) ∈ R

2, and choose the homology basis {a j , b j }nj=1 according to The-
orem A.36 (i). Then the solutions u, v in (4.199), (4.200) equal u∗, v∗, in (4.201),
(4.202), respectively, and hence represent algebro-geometric Th solutions if and
only if A in (4.210) satisfies the constraint

Re(A) = (1/2)
(
AP0,+ (P0,−) − " + (1/2)diag(R)

+ (0, . . . , 0, χ1, . . . , χk−1)
)

(mod Z
n), (4.229)

χ = (χ1, . . . , χk−1), χ j ∈ {0, 1}, j = 1, . . . , k − 1.

In particular, under the present hypotheses, the set of algebro-geometric Th so-
lutions u, v in (4.206), (4.207) consist of 2k−1 connected components indexed
by (χ1, . . . , χk−1), χ j ∈ {0, 1}, j = 1, . . . , k − 1, and all such solutions u, v are
smooth, u, v ∈ C∞(R2).

Proof Define the antiholomorphic involution ρ+ : (z, y) �→ (z, y) as in in Exam-
ple A.35 (i). For brevity we only treat the case 1 ≤ k ≤ n, where (Kn, ρ+) is of
nondividing type, in some detail. The case k = n + 1 is slightly simpler and is
commented on below. By Example A.35 (i), Theorem A.36 (cf. (A.66), (A.69)–
(A.71)), one infers

r = k, τ = R − τ, diag(R) = (1 . . . , 1︸ ︷︷ ︸
�

, 0, . . . , 0︸ ︷︷ ︸
k−1

),

θ (z) = θ (z + (1/2)diag(R)), z ∈ C
n,

ρ+(a j ) = a j , ρ+(b j ) = (aR) j − b j , j = 1, . . . , n,

ρ∗ω(2)
P0,+,0 = ω

(2)
P0,+,0, c(1) ∈ R

n,

ρ∗ω(2)
P∞+ ,0 = ω

(2)
P∞+ ,0, c(n) ∈ R

n,

ρ∗
+ω

(3)
P0,−,P∞−

= ω
(3)
P0,−,P∞−

, ω0, ω1 ∈ R.
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Thus,

B = −B, C = −C,

by (4.211), and hence u∗ = u in (4.206), (4.208) is equivalent to

Cu∗

Cu
= θ (A + Bx + Ct − AP0,+ (P0,−))θ (A + Bx + Ct)

θ (A + Bx + Ct + " − AP0,+ (P0,−))θ (A + Bx + Ct + ")
(4.230)

= θ (A + Bx + Ct − AP0,+ (P0,−))θ (−A + Bx + Ct + (1/2)diag(R))

θ (A + Bx + Ct + " − AP0,+ (P0,−))θ (−A + Bx + Ct − " + (1/2)diag(R))
.

Equation (4.230) is equivalent to

A = −A + AP0,+ (P0,−) − " + (1/2)diag(R) + m1 + n1τ, (4.231)

A = −A + AP0,+ (P0,−) − " + (1/2)diag(R) + m2 + n2τ (4.232)

for some n1, n2 ∈ Z
n and arbitrary m1,m2 ∈ Z

n . If one takes into account

" = AP∞+
(P0,+) = AP0,− (P∞− ) ∈ R

n,

AP0,+ (P0,−) ∈ R
n, AP∞−

(P∞+ ) ∈ R
n

and uses τ = R − τ , equations (4.231) and (4.232) are equivalent to

Re(A) = (1/2)
(
AP0,+ (P0,−) − " + (1/2)diag(R) + m1

)
, m1 ∈ Z

n

and n1 = n2 = 0, m1 = m2. Replacing A by A + m + nτ with m, n ∈ Z
n then

yields

Re(A) = (1/2)
(
AP0,+ (P0,−) − " + (1/2)diag(R) + m1

)− m − (1/2)nR,

m1,m, n ∈ Z
n (4.233)

and hence (4.229). Exactly the same analysis applies to v and v∗. Due to the
simple relationship (4.211) between A and Ã, one then verifies that the resulting
reality constraint on Ã is equivalent to that on A in (4.233). In the case k = n + 1,
� = 0, where (Kn, ρ+) is of dividing type, one infers r = n + 1 and R = 0 accord-
ing to (A.65), simplifying the formulas just presented. Finally, u, v ∈ C∞(R2) by
Lemma 4.29. �

Even though (4.227) permits complex conjugate pairs of branch points and real
pairs on either side of 0, it appears impossible to satisfy both equations (4.231)
and (4.232) in such more general circumstances.

We conclude with the elementary genus zero example (i.e., n = 0), which is a
case thus far excluded in this section.



4.5. Notes 283

Example 4.31 Assume n = 0, P = (z, y) ∈ K0 \ {P∞+ , P∞−}, and let (x, t),
(x0, t0) ∈ R

2. Then

K0 : F0(z, y) = y2 − R2(z) = y2 − (z − E0)(z − E1) = 0,

c1 = −(E0 + E1)/2, g1 = (E0E1)1/2,

ω∞
1 = (g1 + c1)/2, ω0

1 = −ω∞
1 /(E0E1),

v(x, t) = v(x0, t0) exp(−2i(ω∞
1 (x − x0) − ω0

1(t − t0))) = g1u(x, t),

v∗(x, t) = v∗(x0, t0) exp(2i(ω∞
1 (x − x0) − ω0

1(t − t0))) = g1u
∗(x, t),

v(x, t)v∗(x, t) = (c1 − g1)/2 = g2
1u(x, t)u∗(x, t),

φ(P, x, t) = y + z + g1

−2v(x, t)
= −2v∗(x, t)z

y − z − g1
,

ψ1(P, x, x0, t, t0) = exp(−i(y + ω∞
1 )(x − x0) − i(g−1

1 z−1y − ω0
1)(t − t0)).

4.5 Notes

This chapter follows Enolskii et al. (2000).

Section 4.1. Formal integrability of the classical massive Thirring model (4.32)
was originally established by Mikhaı̆lov (1976) utilizing a corresponding com-
mutator representation (cf. (4.14) and (4.53)). Actually, one can replace (4.32) by
the more general system (4.31) without losing formal integrability, and we de-
cided to focus on the latter. Both (4.31) and (4.32) have been studied by numerous
authors who derived the inverse scattering approach (Kaup and Lakoba (1996),
Kawata et al. (1979), Kuznetsov and Mikhailov (1977), and Villarroel (1991)), con-
sidered soliton solutions (Barashenkov and Getmanov (1987), Barashenkov et al.
(1993), Barashenkov and Getmanov (1993), Date (1979; 1982), David et al. (1984),
and Vaklev (1996)), investigated Bäcklund transformations and close connections
with other integrable equations (especially the sine-Gordon equation)
(Alonso (1984), Kaup and Newell (1977), Lee (1993; 1994), Nijhoff et al. (1983),
Prikarpatskii (1981), Prikarpatskii and Golod (1979), Tsuchida and Wadati (1996),
and Wadati and Sogo (1983)), and considered monodromy deformations
(Chowdhury and Naskar (1988)). Classes of relativistically invariant integrable
systems containing the sine-Gordon and Thirring models as special cases are dis-
cussed, for instance, in Cherednik (1996) and Zakharov and Mikhailov (1978).

Originally, the Thirring model (Thirring (1958)) was constructed as a solvable
model in quantum field theory. Although the quantum field theory aspects of this
model are far beyond the scope of this monograph, it must be underscored that
the model kept its fascination for two generations of mathematical physicists, as
is witnessed by the incredible amount of attention paid to it since 1958 and by the
interest it continues to generate (see, e.g., Ilieva and Thirring (1999) for a recent
review).
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Section 4.2.The polynomial recursion formalism presented follows Date (1978)
and his explicit realization of the commutator representation of Mikhaı̆lov (1976)
of the classical massive Thirring system in terms of polynomials in the spectral
parameter. Similar material can be found in papers by Holod and Prikarpatsky
(1978) and Prikarpatskii and Golod (1979).

Section 4.3. As in all other chapters, the fundamental meromorphic function φ

on Kn defined in (4.38) is still the key object of our algebro-geometric formalism.
By (4.40)–(4.62), φ again links the auxiliary divisor Dµ̂ and its counterpart Dν̂ .
This is of course a direct consequence of the identity (4.18) together with the
factorizations of Fn and Hn in (4.22) and (4.24). Thus, our construction of positive
divisors of degree n (respectively n + 1 since the points P0,− and P∞− are also
involved) on the hyperelliptic curve Kn of genus n again follows the recipe of
Jacobi (1846), Mumford (1984, Sec. III a).1), and McKean (1985).

Dubrovin equations of the type (4.89) and (4.90) were discussed by Holod and
Prikarpatsky (1978) and Prikarpatskii and Golod (1979) in the spatially periodic
case, and by Date (1978) in the algebro-geometric context. They also derived the
trace formulas collected in Lemma 4.11. The solution of the algebro-geometric
initial value problem, as presented in Theorem 4.14, was first discussed in Enolskii
et al. (2000).

Section 4.4. First attempts to derive algebro-geometric solutions of (4.32) were
made by Date (1978) and almost simultaneously by Prikarpatskii and Golod (1979)
(see also Holod and Prikarpatsky (1978)). Both papers are remarkably similar in
strategy. In particular, both groups discuss theta function representations of appro-
priate symmetric functions associated with auxiliary divisors, but neither derives
explicit theta function representations of u and v. An attempt at theta function
representations of u, v, u∗, v∗ for the general massive Thirring system (4.31)
was made by Bikbaev (1985), following a different strategy than ours. More re-
cently, algebro-geometric solutions of (4.32) were also briefly considered by Wisse
(1993), but without explicitly deriving theta function representations for u and v.

In connection with Lemma 4.20, discussions of even and odd half-periods (sin-
gular and nonsingular ones) can be found, for instance, in Fay (1973, pp. 12–15)
and Lewittes (1964).

The explicit theta function representations of u, v, u∗, and v∗ in Theorem 4.23
complement the papers by Date (1978) and Prikarpatskii and Golod (1979) in which
theta function representations were derived for appropriate symmetric functions
associated with auxiliary divisors but not explicitly for u, v, u∗, and v∗. The
treatment in Enolskii et al. (2000) appears to offer the first complete solution of
the problem at hand.

The smoothness of solutions of the classical massive Thirring model (4.32)
stated in Lemma 4.29 was first discussed in Bikbaev (1985).
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Reality constraints of the type (4.33) have also been discussed by Bikbaev
(1985); see also Date (1982). In analogy to the sGmKdV and nS± cases, one
expects the 2k−1 connected components alluded to in Lemma 4.30 to be real tori.
Due to the scaling property discussed in (4.35), one then expects these tori to be
of dimension n + 1 (in analogy to the nS± case). However, as far as we know, the
precise nature of these connected components has not been investigated.
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The Camassa–Holm Hierarchy

The motion proceeds in straight lines – but not at constant
speed . . . Why, nobody knows.

Adrian Constantin and Henry P. McKean1

5.1 Contents

The Camassa–Holm equation, also known as the dispersive shallow water equation,

4ut − uxxt − 2uuxxx − 4uxuxx + 24uux = 0

for a function u = u(x, t), was established as an integrable evolution equation2

in 1993. This chapter focuses on the construction of algebro-geometric solutions
of the Camassa–Holm (CH) hierarchy. Below we briefly summarize the principal
content of each section. A more detailed discussion, using the KdV hierarchy as a
model, has been provided in the introduction to this volume.

Section 5.2.
� polynomial recursion formalism, zero-curvature pairs (U, Vn)
� stationary and time-dependent CH hierarchy
� hyperelliptic curve Kn

Section 5.3. (stationary)
� properties of φ and the Baker–Akhiezer vector �
� Dubrovin equations for auxiliary divisors
� trace formula for u
� theta function representations for φ and u
� the algebro-geometric initial value problem

1 Constantin and McKean (1999, p. 954).
2 A guide to the literature can be found in the detailed notes at the end of this chapter.

286
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Section 5.4. (time-dependent)
� properties of φ and the Baker–Akhiezer vector �
� Dubrovin equations for auxiliary divisors
� trace formula for u
� theta function representations for φ and u
� the algebro-geometric initial value problem

This chapter relies on terminology and notions developed in connection with
compact Riemann surfaces. A brief summary of key results as well as definitions
of some of the main quantities can be found in Appendices A, C, and F.

5.2 The CH Hierarchy, Recursion Relations, and Hyperelliptic Curves

In this section we provide the construction of the CH hierarchy, a completely in-
tegrable hierarchy of nonlinear evolution equations in which the Camassa–Holm
(CH) equation, or dispersive shallow water equation, is the first element in the
hierarchy (the higher-order CH equations will turn out to be nonlocal with respect
to u). Using a polynomial recursion formalism we derive the corresponding se-
quence of zero-curvature pairs and introduce the underlying hyperelliptic curve in
connection with the stationary CH hierarchy.

Throughout this section we suppose the following hypothesis.

Hypothesis 5.1 In the stationary case we assume that

u ∈ C∞(R), ∂mx u ∈ L∞(R),m ∈ N0. (5.1)

In the time-dependent case we suppose

u( · , t) ∈ C∞(R), ∂mx u( · , t) ∈ L∞(R),m ∈ N0, t ∈ R,

u(x, · ), uxx (x, · ) ∈ C1(R), x ∈ R.
(5.2)

We start by formulating the basic polynomial set-up. Define { f�}�∈N0 recursively
by

f0 = 1, f�,x = −2G(2(4u − uxx ) f�−1,x + (4ux − uxxx ) f�−1
)
, � ∈ N,

(5.3)

where G is given by

G : L∞(R) → L∞(R), (Gv)(x) = 1

4

∫
R

dy e−2|x−y|v(y), x ∈ R, v ∈ L∞(R).

(5.4)

One observes that G is the resolvent of minus the one-dimensional Laplacian at
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spectral parameter equal to −4, that is,

G =
(

− d2

dx2
+ 4

)−1

.

The first coefficient reads

f1 = −2u + c1,

where c1 is an integration constant. Subsequent coefficients are nonlocal with
respect to u. At each level a new integration constant, denoted by c�, is introduced.
Moreover, we introduce coefficients {g�}�∈N0 and {h�}�∈N0 by

g� = f� + (1/2) f�,x , � ∈ N0, (5.5)

h� = (4u − uxx ) f� − g�+1,x , � ∈ N0. (5.6)

Explicitly, one computes

f0 = 1,

f1 = −2u + c1,

f2 = 2u2 + 2G(u2
x + 8u2

)+ c1(−2u) + c2,

g0 = 1,

g1 = −2u − ux + c1,

g2 = 2u2 + 2uux + 2G(u2
x + uxuxx + 8uux + 8u2

)+ c1(−2u − ux ) + c2,

h0 = 4u + 2ux ,

h1 = −2u2
x − 4uux − 8u2

− 2G(uxuxxx + u2
xx + 2uxuxx + 8uuxx + 8u2

x + 16uux
)

+ c1(4u + 2ux ), etc.

For later use it is convenient also to introduce the corresponding homogeneous
coefficients f̂ �, ĝ�, and ĥ� defined by the vanishing of the integration constants ck ,
k = 1, . . . , �,

f̂0 = f0 = 1, f̂� = f�
∣∣
ck=0, k=1,...,�, � ∈ N, (5.7)

ĝ0 = g0 = 1, ĝ� = g�
∣∣
ck=0, k=1,...,�, � ∈ N, (5.8)

ĥ0 = h0 = (4u + 2ux ), ĥ� = h�

∣∣
ck=0, k=1,...,�, � ∈ N. (5.9)

Hence,

f� =
�∑

k=0

c�−k f̂ k, g� =
�∑

k=0

c�−k ĝk, h� =
�∑

k=0

c�−k ĥk, � ∈ N0,
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defining

c0 = 1.

Next, given Hypothesis 5.1, one introduces the 2 × 2 matrix U by

U (z) =
(

−1 1

z−1(4u − uxx ) 1

)
, (5.10)

and for each n ∈ N0 the following 2 × 2 matrix Vn by

Vn(z) =
(

−Gn(z) Fn(z)

z−1Hn(z) Gn(z)

)
, z ∈ C \ {0}, n ∈ N0, (5.11)

assuming Fn , Gn , and Hn to be polynomials of degree n withC∞ coefficients with
respect to x . Postulating the zero-curvature condition

−Vn,x + [U, Vn] = 0, (5.12)

one finds

Fn,x = 2(Gn − Fn), (5.13)

zGn,x = (4u − uxx )Fn − Hn, (5.14)

Hn,x = 2Hn − 2(4u − uxx )Gn. (5.15)

From (5.13)–(5.15), one infers that

d

dx
det(Vn(z, x)) = −1

z

d

dx

(
zGn(z, x)2 + Fn(z, x)Hn(z, x)

) = 0,

and hence

zG2
n + FnHn = Q2n+1, (5.16)

where the polynomial Q2n+1 of degree 2n + 1 is x-independent. Actually it turns
out that it is more convenient to define

R2n+2(z) = zQ2n+1(z) =
2n+1∏
m=0

(z − Em), E0 = 0, E1, . . . , E2n+1 ∈ C (5.17)

so that (5.16) becomes

z2G2
n + zFnHn = R2n+2. (5.18)

Moreover, computing the characteristic equation1 of iVn

det(w I2 − iVn(z)) = w2 − det(Vn(z)) = w2 + Gn(z)2 + z−1Fn(z)Hn(z)

= w2 + z−2R2n+2(z) = 0,

1 I2 denotes the identity matrix in C2.
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one is naturally led to introducing the hyperelliptic curve Kn of (arithmetic) genus
n ∈ N0 (possibly with a singular affine part) defined by

Kn : Fn(z, y) = y2 − R2n+2(z) = 0. (5.19)

To establish the connection between the zero-curvature formalism and the re-
cursion relations (5.3), (5.5), (5.6), we now make the following polynomial ansatz
with respect to the spectral parameter z,

Fn(z) =
n∑

�=0

fn−�z
�, (5.20)

Gn(z) =
n∑

�=0

gn−�z
�, (5.21)

Hn(z) =
n∑

�=0

hn−�z
�. (5.22)

Insertion of (5.20)–(5.22) into (5.13)–(5.15) then yields the recursion relations
(5.3)–(5.4) and (5.5) for f� and g� for � = 0, . . . , n. For fixed n ∈ N we obtain the
recursion (5.6) for h� for � = 0, . . . , n − 1 and

hn = (4u − uxx ) fn. (5.23)

(When n = 0 one directly gets h0 = (4u − uxx ).) Moreover, taking z = 0 in (5.18)
yields

fnhn = −
2n+1∏
m=1

Em .

In addition, one finds

hn,x − 2hn + 2(4u − uxx )gn = 0, n ∈ N0. (5.24)

Using the relations (5.5) and (5.23) permits one to write (5.24) as1

s-CHn(u) = (uxxx − 4ux ) fn(u) − 2(4u − uxx ) fn,x (u) = 0, n ∈ N0. (5.25)

Varying n ∈ N0 in (5.25) then defines the stationary CH hierarchy. We record the
first few equations explicitly,

s-CH0(u) = uxxx − 4ux = 0,

s-CH1(u) = −2uuxxx − 4uxuxx + 24uux + c1(uxxx − 4ux ) = 0,

s-CH2(u) = 2u2uxxx − 8uuxuxx − 40u2ux + 2(uxxx − 4ux )G(u2
x + 8u2

)

− 8(4u − uxx )G(uxuxx + 8uux )

+ c1(−2uuxxx − 4uxuxx + 24uux ) + c2(uxxx − 4ux ) = 0, etc.

1 In a slight abuse of notation we will occasionally stress the functional dependence of f� on u, writing
f�(u).
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By definition, the set of solutions of (5.25), with n ranging in N0 and c� in C,
� ∈ N, represents the class of algebro-geometric CH solutions. If u satisfies one
of the stationary CH equations in (5.25) for a particular value of n, then it satisfies
infinitely many such equations of order higher than n for certain choices of inte-
gration constants c� (one can follow the argument in Remark 1.5). At times it will
be convenient to abbreviate algebro-geometric stationary CH solutions u simply
as CH potentials.

In the following we will frequently assume that u satisfies the nth stationary
CH equation. By this we mean it satisfies one of the nth stationary CH equations
after a particular choice of integration constants c� ∈ C, � = 1, . . . , n, n ≥ 1, has
been made.

For later use we also introduce the corresponding homogeneous polynomials
F̂�, Ĝ�, and Ĥ � defined by

F̂�(z) = F�(z)
∣∣
ck=0, k=1,...,� =

�∑
k=0

f̂�−k zk, � = 0, . . . , n, (5.26)

Ĝ�(z) = G�(z)
∣∣
ck=0, k=1,...,� =

�∑
k=0

ĝ�−k zk, � = 0, . . . , n, (5.27)

Ĥ �(z) = H�(z)
∣∣
ck=0, k=1,...,� =

�∑
k=0

ĥ�−k zk, � = 0, . . . , n − 1, (5.28)

Ĥ n(z) = (4u − uxx ) f̂ n +
n∑

k=1

ĥn−k zk . (5.29)

In accordance with our notation introduced in (5.7)–(5.9) and (5.26)–(5.29), the
corresponding homogeneous stationary CH equations are then defined by

s-ĈHn(u) = s-CHn(u)
∣∣
c�=0, �=1,...,n = 0, n ∈ N0.

Using equations (5.13)–(5.15) one can also derive individual differential equa-
tions for Fn and Hn . Focusing on Fn only, one obtains

Fn,xxx − 4(z−1(4u − uxx ) + 1)Fn,x − 2z−1(4ux − uxxx )Fn = 0. (5.30)

This is of course consistent with (5.20) and (5.3) (applying G−1 to (5.3)). Multi-
plying (5.30) with Fn and integrating the result yields

Fn,xx Fn − 2−1F2
n,x − 2F2

n − 2z−1(4u − uxx )F2
n = C

for some C = C(z), constant with respect to x . Differentiating (5.13), inserting
(5.14) into the resulting equation, and comparing with (5.13) and (5.18) then yields

C(z) = −2z−2R2n+2(z).
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Thus,

−(z2/2)Fn,xx Fn + (z2/4)F2
n,x + z2F2

n + z(4u − uxx )F2
n = R2n+2. (5.31)

Equation (5.31) can be used to derive a nonlinear recursion relation for the ho-
mogeneous coefficients f̂ � (i.e., the ones satisfying (5.3) in the case of vanishing
integration constants) as proved in Theorem D.6 in Appendix D. In addition, as
proven in Theorem D.6, (5.31) leads to an explicit determination of the integration
constants c1, . . . , cn in

s-CHn(u) = (uxxx − 4ux ) fn(u) − 2(4u − uxx ) fn,x (u) = 0, n ∈ N0.

in terms of the zeros E0 = 0, E1, . . . , E2n+1 of the associated polynomial R2n+2

in (5.17). In fact, one can prove (cf. (D.59))

c� = c�(E), � = 0, . . . , n, (5.32)

where

c0(E) =1,

ck(E) = −
k∑

j1,..., j2n+1=0
j1+···+ j2n+1=k

(2 j1)! · · · (2 j2n+1)!

22k( j1!)2 · · · ( j2n+1!)2(2 j1 − 1) · · · (2 j2n+1 − 1)

× E j1
1 · · · E j2n+1

2n+1, k = 1, . . . , n. (5.33)

Next, we turn to the time-dependent CH hierarchy. We introduce a deformation
parameter tn ∈ R into u (replacing u(x) by u(x, tn)), and note that the definitions
(5.10), (5.11), and (5.20)–(5.22) of U , Vn , and Fn , Gn , and Hn still apply. The
corresponding zero-curvature relation reads

Utn − Vn,x + [U, Vn] = 0, n ∈ N0,

which results in the following set of equations

4utn−uxxtn − Hn,x + 2Hn − 2(4u − uxx )Gn = 0, (5.34)

Fn,x = 2(Gn − Fn), (5.35)

zGn,x = (4u − uxx )Fn − Hn. (5.36)

Inserting the polynomial expressions for Fn , Hn , and Gn into (5.35) and (5.36),
respectively, first yields recursion relations (5.3) and (5.5) for f� and g� for � =
0, . . . , n. For fixed n ∈ N we obtain from (5.34) the recursion (5.6) for h� for
� = 0, . . . , n − 1 and

hn = (4u − uxx ) fn. (5.37)

(When n = 0 one directly gets h0 = (4u − uxx ).) In addition, one finds

4utn − uxxtn − hn,x + 2hn − 2(4u − uxx )gn = 0, n ∈ N0. (5.38)
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Using relations (5.5) and (5.37) permits one to write (5.38) as

CHn(u) = 4utn − uxxtn + (uxxx − 4ux ) fn(u) − 2(4u − uxx ) fn,x (u) = 0, (5.39)

(x, tn) ∈ R
2, n ∈ N0.

Varying n ∈ N0 in (5.39) then defines the time-dependent CH hierarchy. We record
the first few equations explicitly,

CH0(u) = 4ut0 − uxxt0 + uxxx − 4ux = 0,

CH1(u) = 4ut1 − uxxt1 − 2uuxxx − 4uxuxx + 24uux + c1(uxxx − 4ux ) = 0,

CH2(u) = 4ut2 − uxxt2 + 2u2uxxx − 8uuxuxx − 40u2ux (5.40)

+ 2(uxxx − 4ux )G(u2
x + 8u2

)− 8(4u − uxx )G(uxuxx + 8uux )

+ c1(−2uuxxx − 4uxuxx + 24uux ) + c2(uxxx − 4ux ) = 0, etc.

Similarly, one introduces the corresponding homogeneous CH hierarchy by

ĈHn(u) = CHn(u)
∣∣
c�=0, �=1,...,n = 0, n ∈ N0.

Up to inessential scaling of the (x, t1) variables, ĈH1(u) = 0 represents the
Camassa–Holm equation as discussed in the references cited in the notes to this
section.

Our recursion formalism was introduced under the assumption of a sufficiently
smooth function u in Hypothesis 5.1. The actual existence of smooth global so-
lutions of the initial value problem associated with the CH hierarchy (5.40) is a
nontrivial issue and is discussed in the references cited in the notes to Sections 5.1
and 5.2.

5.3 The Stationary CH Formalism

This section is devoted to a detailed study of the stationary CH hierarchy and
its algebro-geometric solutions. Our principal tools are derived from combining
the polynomial recursion formalism introduced in Section 5.2 and a fundamental
meromorphic function φ on a hyperelliptic curve Kn . With the help of φ we study
the Baker–Akhiezer vector �, Dubrovin-type equations governing the motion of
auxiliary divisors onKn , trace formulas, and theta function representations ofφ,�,
and u. We also discuss the algebro-geometric initial value problem of constructing
u from the Dubrovin equations and auxiliary divisors as initial data.

For major parts of this section we suppose

u ∈ C∞(R),
dmu

dxm
∈ L∞(R), m ∈ N0, (5.41)

and assume (5.3), (5.4), (5.5), (5.6), (5.10)–(5.12), (5.17), (5.18), (5.20)–(5.22),
(5.23)–(5.25), keeping n ∈ N0 fixed.



294 5. The Camassa–Holm Hierarchy

We recall the hyperelliptic curve

Kn : Fn(z, y) = y2 − R2n+2(z) = 0,

R2n+2(z) =
2n+1∏
m=0

(z − Em), E0 = 0, E1, . . . , E2n+1 ∈ C,
(5.42)

as introduced in (5.19). The curve Kn is compactified by joining two points at
infinity, P∞± , P∞+ �= P∞− , but for notational simplicity the compactification is
also denoted by Kn . Points P on Kn \ {P∞+ , P∞−} are represented as pairs P =
(z, y), where y( · ) is the meromorphic function on Kn satisfying Fn(z, y) = 0.
The complex structure on Kn is then defined in the usual way (see Appendix C).
Hence, Kn becomes a two-sheeted hyperelliptic Riemann surface of (arithmetic)
genus n ∈ N0 (possibly with a singular affine part) in a standard manner. In the
following we will occasionally impose further constraints on the zeros Em of R2n+2

introduced in (5.42) and assume that

E0 = 0, E1, . . . , E2n+1 ∈ C \ {0}. (5.43)

We also emphasize that by fixing the curve Kn (i.e., by fixing E0 = 0, E1, . . . ,

E2n+1), the integration constants c1, . . . , cn in fn (and hence in the correspond-
ing stationary CHn equation) are uniquely determined, as is clear from (5.32),
(5.33), which establish the integration constants c� as symmetric functions of
E1, . . . , E2n+1.

For notational simplicity we will usually tacitly assume that n ∈ N. (The case
n = 0 is explicitly treated in Example 5.13.)

In the following the roots of the polynomials Fn and Hn will play a special role,
and hence we write

Fn(z) =
n∏
j=1

(z − µ j ), Hn(z) = h0

n∏
j=1

(z − ν j ). (5.44)

Moreover, we introduce

µ̂ j (x) = (µ j (x),−µ j (x)Gn(µ j (x), x)) ∈ Kn, j = 1, . . . , n, x ∈ R, (5.45)

ν̂ j (x) = (ν j (x), ν j (x)Gn(ν j (x), x)) ∈ Kn, j = 1, . . . , n, x ∈ R, (5.46)

lifting µ j and ν j to Kn , and

P0 = (0, 0).

The branch of y( · ) near P∞± is fixed according to

lim
|z(P)|→∞
P→P∞±

y(P)

z(P)Gn(z(P), x)
= ∓1.

Due to assumption (5.41), u is smooth and bounded, and hence Fn(z, · ) and
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Hn(z, · ) share the same property. Thus, one concludes

µ j , νk ∈ C(R), j, k = 1, . . . , n,

taking multiplicities (and appropriate renumbering) of the zeros of Fn and Hn into
account. (Away from collisions of zeros, µ j and νk are of course C∞.)

Next, define the fundamental meromorphic function φ( · , x) on Kn by

φ(P, x) = y − zGn(z, x)

Fn(z, x)
(5.47)

= zHn(z, x)

y + zGn(z, x)
, (5.48)

P = (z, y) ∈ Kn, x ∈ R.

Assuming (5.43), the divisor (φ( · , x)) of φ( · , x) is given by1

(φ( · , x)) = DP0 ν̂(x) − DP∞+ µ̂(x). (5.49)

Here we abbreviated

µ̂ = {µ̂1, . . . , µ̂n}, ν̂ = {ν̂1, . . . , ν̂n} ∈ Symn(Kn).

Given φ( · , x), one then defines the associated vector �( · , x, x0) on Kn \ {P∞+ ,

P∞− , P0} by

�(P, x, x0) =
(
ψ1(P, x, x0)

ψ2(P, x, x0)

)
, P ∈ Kn \ {P∞+ , P∞− , P0}, (x, x0) ∈ R

2,

(5.50)

where

ψ1(P, x, x0) = exp

(
− z−1

∫ x

x0

dx ′ φ(P, x ′) − (x − x0)

)
, (5.51)

ψ2(P, x, x0) = −ψ1(P, x, x0)φ(P, x)/z. (5.52)

Although � is formally the analog of the stationary Baker–Akhiezer vector of
the stationary CH hierarchy when compared with analogous definitions in the
context of the KdV or AKNS hierarchies, its actual properties in a neighborhood
of its essential singularity will feature characteristic differences from standard
Baker–Akhiezer vectors (cf. Remark 5.6). We summarize the fundamental prop-
erties of φ and � in the following result.

1 If h0 is permitted to vanish at a point x1 ∈ R, then for x = x1, the polynomial Hn( · , x1) is at most
of degree n − 1 (cf. (5.22)), and (5.49) is altered to

(φ( · , x1)) = DP0P∞− ν̂1(x1),...,ν̂n−1(x1) − DP∞+ µ̂(x),

that is, one of the ν̂ j (x) tends to P∞− as x → x1 (cf. also (5.71)). Analogously, one can discuss the
case of several ν̂ j approaching P∞− . Since this can be viewed as a limiting case of (5.49), we will
henceforth not particularly distinguish the case h0 �= 0 from the more general situation in which h0
is permitted to vanish.
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Lemma 5.2 Suppose (5.41) and assume that u satisfies the nth stationary CH
equation (5.25). Moreover, let P = (z, y) ∈ Kn \ {P∞+ , P∞− , P0}, (x, x0) ∈ R

2.
Then φ satisfies the Riccati-type equation

φx (P) − z−1φ(P)2 − 2φ(P) = uxx − 4u, (5.53)

as well as

φ(P)φ(P∗) = − zHn(z)

Fn(z)
, (5.54)

φ(P) + φ(P∗) = −2
zGn(z)

Fn(z)
, (5.55)

φ(P) − φ(P∗) = 2y

Fn(z)
, (5.56)

whereas � fulfills

�x (P) = U (z)�(P), (5.57)

− y�(P) = zVn(z)�(P), (5.58)

ψ1(P, x, x0) =
(
Fn(z, x)

Fn(z, x0)

)1/2

exp

(
− (y/z)

∫ x

x0

dx ′Fn(z, x ′)−1

)
, (5.59)

ψ1(P, x, x0)ψ1(P∗, x, x0) = Fn(z, x)

Fn(z, x0)
, (5.60)

ψ2(P, x, x0)ψ2(P∗, x, x0) = − Hn(z, x)

zFn(z, x0)
, (5.61)

ψ1(P, x, x0)ψ2(P∗, x, x0) + ψ1(P∗, x, x0)ψ2(P, x, x0) = 2
Gn(z, x)

Fn(z, x0)
, (5.62)

ψ1(P, x, x0)ψ2(P∗, x, x0) − ψ1(P∗, x, x0)ψ2(P, x, x0) = 2y

zFn(z, x0)
. (5.63)

In addition, as long as the zeros of Fn( · , x) are all simple for x ∈ �, � ⊆ R an
open interval, �( · , x, x0) is meromorphic on Kn \ {P0} for x, x0 ∈ �.

Proof Equation (5.53) follows using the definition (5.47) of φ as well as
relations (5.13)–(5.15). The other relations, (5.54)–(5.56), are easy consequences
of y(P∗) = −y(P), (5.47), and (5.48). By (5.50)–(5.52), � is meromorphic on
Kn \ {P∞±} away from the poles µ̂ j (x ′) of φ( · , x ′). By (5.13), (5.45), and (5.47),

−z−1φ(P, x ′) =
P→µ̂ j (x ′)

∂x ′ ln(Fn(z, x ′)) + O(1) as z → µ j (x
′), (5.64)

and hence ψ1 is meromorphic on Kn \ {P∞±} by (5.51) as long as the zeros of
Fn( · , x) are all simple. This follows from (5.51) by restricting P to a sufficiently
small neighborhood U j of {µ̂ j (x ′) ∈ Kn | x ′ ∈ �, x ′ ∈ [x0, x]} such that µ̂k(x ′)
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/∈ U j for all x ′ ∈ [x0, x] and all k ∈ {1, . . . , n} \ { j}. Sinceφ is meromorphic onKn

by (5.47), ψ2 is meromorphic on Kn \ {P∞±} by (5.52). The remaining properties
of � can be verified by using the definition (5.50)–(5.52) as well as relations
(5.53)–(5.56). In particular, equation (5.59) follows by inserting the definition of
φ, (5.47), into (5.51), using (5.13). �

Equations (5.60)–(5.63) show that the basic identity (5.18), z2G2
n + zFnHn =

R2n+2, is equivalent to the elementary fact

(ψ1,+ψ2,− + ψ1,−ψ2,+)2 − 4ψ1,+ψ1,−ψ2,+ψ2,− = (ψ1,+ψ2,− − ψ1,−ψ2,+)2,

identifying ψ1(P) = ψ1,+, ψ1(P∗) = ψ1,−, ψ2(P) = ψ2,+, ψ2(P∗) = ψ2,−. This
provides the intimate link between our approach and the squared function systems
also employed in the literature in connection with algebro-geometric solutions of
hierarchies of soliton equations.

Next, we derive Dubrovin-type equations, that is, first-order systems of nonlin-
ear differential equations that govern the dynamics of µ j and ν j with respect to
variations of x . Since, in the remainder of this section, we will frequently assume
the affine part of Kn to be nonsingular, we list all restrictions on Kn in this case,

E0 = 0, Em ∈ C \ {0}, Em �= Em ′ for m �= m ′, m,m ′ = 1, . . . , 2n + 1.
(5.65)

Lemma 5.3 Suppose (5.41) and assume that u satisfies the nth stationary CH
equation (5.25) subject to the constraint (5.65) on an open interval �̃µ ⊆ R.
Moreover, suppose that the zeros µ j , j = 1, . . . , n, of Fn( · ) remain distinct and
nonzero on �̃µ. Then {µ̂ j } j=1,...,n, defined by (5.45), satisfies the following first-
order system of differential equations on �̃µ

µ j,x = 2
y(µ̂ j )

µ j

n∏
k=1
k �= j

(µ j − µk)
−1, j = 1, . . . , n. (5.66)

Next, assume the affine part of Kn to be nonsingular and introduce the initial
condition

{µ̂ j (x0)} j=1,...,n ⊂ Kn (5.67)

for some x0 ∈ R, whereµ j (x0) �= 0, j = 1, . . . , n, are assumed to be distinct. Then
there exists an open interval �µ ⊆ R, with x0 ∈ �µ, such that the initial value
problem (5.66), (5.67) has a unique solution {µ̂ j } j=1,...,n ⊂ Kn satisfying

µ̂ j ∈ C∞(�µ,Kn), j = 1, . . . , n, (5.68)

and µ j , j = 1, . . . , n, remain distinct and nonzero on �µ.
For the zeros {ν j } j=1,...,n of Hn( · ) similar statements holdwithµ j and�µ replaced
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by ν j and�ν , etc. In particular, {ν̂ j } j=1,...,n, defined by (5.46), satisfies the system

ν j,x = 2
(4u − uxx )y(ν̂ j )

(4u + 2ux )ν j

n∏
k=1
k �= j

(ν j − νk)
−1, j = 1, . . . , n. (5.69)

Proof We only prove equation (5.66) since the proof of (5.69) follows in an iden-
tical manner. Inserting z = µ j into equation (5.13), one concludes from (5.45),

Fn,x (µ j ) = −µ j,x

n∏
k=1
k �= j

(µ j − µk) = 2Gn(µ j ) = −2y(µ̂ j )/µ j ,

proving (5.66). The smoothness assertion (5.68) is clear as long as µ̂ j stays away
from the branch points (Em, 0). In case µ̂ j hits such a branch point, one can use
the local chart around (Em, 0) (with local coordinate ζ = σ (z − Em)1/2, σ = ±1)
to verify (5.68) as in the proof of Lemma 1.10. �

Combining the polynomial approach in Section 5.2 with (5.44) readily yields
trace formulas for the CH invariants, that is, expressions of f� and h� in terms
of symmetric functions of the zeros µ j and ν j of Fn and Hn , respectively. For
simplicity we just record the simplest case.

Lemma 5.4 Suppose (5.41) and assume that u satisfies the nth stationary CH
equation (5.25). Then,

u = −1

4

2n+1∑
m=0

Em + 1

2

n∑
j=1

µ j . (5.70)

Proof Equation (5.70) follows by considering the coefficient of zn−1 in Fn in
(5.20), which yields

u = 1

2

n∑
j=1

µ j + c1

2
.

The constant c1 can be determined by considering the coefficient of the term z2n+1

in (5.18), which results in

c1 = −1

2

2n+1∑
m=0

Em .

�
Next we turn to asymptotic properties of φ and ψ j , j = 1, 2.

Lemma 5.5 Suppose (5.41) and assume that u satisfies the nth stationary CH
equation (5.25). Moreover, let P = (z, y) ∈ Kn \ {P∞+ , P∞− , P0}, (x, x0) ∈ R

2.
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Then,

φ(P) =
ζ→0

{
−2ζ−1 − 2u + ux + O(ζ ), P → P∞+ ,

2u + ux + O(ζ ), P → P∞− ,
ζ = z−1, (5.71)

φ(P) =
ζ→0

( 2n+1∏
m=1

Em

)1/2

f −1
n ζ + O(ζ 2), P → P0, ζ = z1/2 (5.72)

and

ψ1(P, x, x0) =
ζ→0

exp(±(x − x0))(1 + O(ζ )), P → P∞± , ζ = 1/z, (5.73)

ψ2(P, x, x0) =
ζ→0

exp(±(x − x0))

{
−2 + O(ζ ), P → P∞+ ,

(2u(x) + ux (x))ζ + O(ζ 2), P → P∞− ,

ζ = 1/z, (5.74)

ψ1(P, x, x0) =
ζ→0

exp

(
− 1

ζ

∫ x

x0

dx ′
( 2n+1∏

m=1

Em

)1/2

fn(x ′)−1 + O(1)

)
, (5.75)

P → P0, ζ = z1/2,

ψ2(P, x, x0) =
ζ→0

O
(
ζ−1

)
exp

(
− 1

ζ

∫ x

x0

dx ′
( 2n+1∏

m=1

Em

)1/2

fn(x ′)−1 + O(1)

)
,

P → P0, ζ = z1/2. (5.76)

Proof The existence of the asymptotic expansions of φ in terms of the appropriate
local coordinates ζ = 1/z near P∞± and ζ = z1/2 near P0 is clear from the explicit
form of φ in (5.47). Insertion of the polynomials Fn , Gn , and Hn into (5.47)
then, in principle, yields the explicit expansion coefficients in (5.71) and (5.72).
However, a more efficient way to compute these coefficients consists in utilizing
the Riccati-type equation (5.53). Indeed, inserting the ansatz

φ =
z→∞ φ1z + φ0 + O(z−1)

into (5.53) and comparing the leading powers of 1/z immediately yields the first
line in (5.71). Similarly, the ansatz

φ =
z→∞ φ0 + φ1z

−1 + O(z−2)

inserted into (5.53) then yields the second line in (5.71). Finally, the ansatz

φ =
z→0

φ1z
1/2 + φ2z + O(z3/2)

inserted into (5.53) yields (5.72). Expansions (5.73)–(5.76) then follow from
(5.51), (5.52), (5.71), and (5.72). �
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Remark 5.6 We note the unusual fact that P0, as opposed to P∞± , is the es-
sential singularity of ψ j , j = 1, 2. What makes matters worse is the intricate
x-dependence of the leading-order exponential term in ψ j , j = 1, 2, near P0, as
displayed in (5.75), (5.76). This is in sharp contrast to standard Baker–Akhiezer
functions that typically feature a linear behavior with respect to x in connection
with their essential singularities of the type exp(c(x − x0)ζ−1) near ζ = 0.

Next, we introduce

B̂Q0
: K̂n \ {P∞+ , P∞−} → C

n,

P �→ B̂Q0
(P) = (

B̂Q0,1, . . . , B̂Q0,n
)

(5.77)

=




∫ P
Q0

ω̃
(3)
P∞+ ,P∞−

, n = 1,
(∫ P

Q0
η2, . . . ,

∫ P
Q0

ηn,
∫ P
Q0

ω̃
(3)
P∞+ ,P∞−

)
, n ≥ 2,

where ω̃
(3)
P∞+ ,P∞−

= zndz/y (cf. (F.53)) and

β̂
Q0

: Symn
(K̂n \ {P∞+ , P∞−}

) → C
n,

DQ �→ β̂
Q0

(DQ) =
n∑
j=1

B̂Q0
(Q j ), (5.78)

Q = {Q1, . . . , Qn} ∈ Symn
(K̂n \ {P∞+ , P∞−}

)
,

choosing identical paths of integration from Q0 to P in all integrals in (5.77)
and (5.78). Then one obtains the following result, which indicates a characteristic
difference between the CH hierarchy and other completely integrable systems such
as the KdV and AKNS hierarchies.

Lemma 5.7 Assume (5.65) and suppose that {µ̂ j } j=1,...,n satisfies the station-
ary Dubrovin equations (5.66) on an open interval �µ ⊆ R such that µ j , j =
1, . . . , n, remain distinct and nonzero on �µ. Introducing the associated divisor
Dµ̂ ∈ Symn(K̂n), µ̂ = {µ̂1, . . . , µ̂n} ∈ Symn(K̂n), one computes

∂xαQ0
(Dµ̂(x)) = − 2

�n(µ(x))
c(1), x ∈ �µ. (5.79)

In particular, the Abel map does not linearize the divisorDµ̂( · ) on�µ. In addition,

∂x

n∑
j=1

∫ µ̂ j (x)

Q0

η1 = − 2

�n(µ(x))
, x ∈ �µ, (5.80)

∂x β̂(Dµ̂(x)) =
{

2, n = 1,

2(0, . . . , 0, 1), n ≥ 2,
x ∈ �µ. (5.81)
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Proof Let x ∈ �µ. Then, using

1

µ j
=

∏n
p=1
p �= j

µp

∏n
m=1 µm

= −#
( j)
n−1(µ)

�n(µ)
, j = 1, . . . , n, (5.82)

(cf. (E.1), (E.2)) one obtains

∂x

( n∑
j=1

∫ µ̂ j

Q0

ω

)
=

n∑
j=1

µ j,x

n∑
k=1

c(k)
µk−1
j

y(µ̂ j )
= 2

n∑
j=1

n∑
k=1

c(k)
µk−2
j∏n

�=1
��= j

(µ j − µ�)

= − 2

�n(µ)

n∑
j=1

n∑
k=1

c(k)
µk−1
j∏n

�=1
��= j

(µ j − µ�)
#

( j)
n−1(µ)

= − 2

�n(µ)

n∑
j=1

n∑
k=1

c(k)(Un(µ))k, j (Un(µ))−1
j,1

= − 2

�n(µ)

n∑
k=1

c(k)δk,1 = − 2

�n(µ)
c(1), (5.83)

using (E.13) and (E.14). Equation (5.80) is just a special case of (5.79), and (5.81)
follows as in (5.83), using (E.8). �

The analogous results hold for the corresponding divisor Dν̂(x) associated with
φ( · , x).

That the Abel map does not provide the proper change of variables to linearize
the divisor Dµ̂(x) in the CH context is in sharp contrast to standard integrable
soliton equations such as the KdV and AKNS hierarchies (cf. also Remark 5.6).
The change of variables

x �→ x̃ =
∫ x

dx ′ �n(µ(x ′))−1 (5.84)

linearizes the Abel map AQ0
(D ˆ̃µ(x̃)), µ̃ j (x̃) = µ j (x), j = 1, . . . , n. The intricate

relation between the variables x and x̃ is detailed in (5.93).
Next we turn to representations ofφ and u in terms of the Riemann theta function

associated with Kn , assuming the affine part of Kn to be nonsingular. Since the
Abel map fails to linearize the divisorDµ̂(x), one could argue that the theta function
representations of φ and u are not particularly useful and therefore restrict the
discussion to the Dubrovin equations (5.66), (5.67) and reconstruct u from the
trace formula (5.70). However, we feel it is of some value to demonstrate the sharp
contrast to all other hierarchies discussed in this volume explicitly. In the following,
the notation established in Appendices A and C will be freely employed. In fact,
given the preparatory work collected in Appendices A, C, E, and F, the proof of
Theorem 5.8 below will be reduced to a few lines. To avoid the trivial case n = 0
(considered in Example 5.13), we assumen ∈ N for the remainder of this argument.
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We choose a fixed base point Q0 on Kn \ {P∞+ , P0}. Let ω(3)
P∞+ ,P0

be a normal
differential of the third kind holomorphic on Kn \ {P∞+ , P0} with simple poles at
P∞ and P0 and residues 1 and −1, respectively (cf. (A.23), (A.26), (C.45)–(C.48)),

ω
(3)
P∞+ ,P0

= 1

y

n∏
j=1

(z − λ j )dz =
ζ→0

{
(ζ−1 + O(1))dζ as P → P∞+ ,

(−ζ−1 + O(1))dζ as P → P0,
(5.85)

where the local coordinates are given by

ζ = 1/z for P near P∞+ , ζ = σ z1/2 for P near P0, σ = ±1.

Moreover,
∫
a j

ω
(3)
P∞+ ,P0

= 0, j = 1, . . . , n, (5.86)

∫ P

Q0

ω
(3)
P∞+ ,P0

=
ζ→0

ln(ζ ) + e0 + O(ζ ) as P → P∞+ , (5.87)

∫ P

Q0

ω
(3)
P∞+ ,P0

=
ζ→0

− ln(ζ ) + d0 + O(ζ ) as P → P0 (5.88)

for some constants e0, d0 ∈ C. We also record

AQ0
(P) − AQ0

(
P∞±

) =
ζ→0

±Uζ + O(ζ 2) as P → P∞± , U = c(n).

In the following it will be convenient to introduce the abbreviations

z(P, Q) = �Q0
− AQ0

(P) + αQ0
(DQ), (5.89)

P ∈ Kn, Q = {Q1, . . . , Qn} ∈ Symn(Kn),

and analogously,

ẑ(P, Q) = �̂Q0
− ÂQ0

(P) + α̂Q0
(DQ), (5.90)

P ∈ K̂n, Q = {Q1, . . . , Qn} ∈ Symn
(K̂n

)
.

Theorem 5.8 Suppose u ∈ C∞(�), u(m) ∈ L∞(�), m ∈ N0, and assume that u
satisfies the nth stationary CH equation (5.25) on � subject to the constraint
(5.65). Moreover, let P ∈ Kn \ {P∞+ , P0} and x ∈ �, where � ⊆ R is an open
interval. In addition, suppose that Dµ̂(x), or equivalently, Dν̂(x) is nonspecial for
x ∈ �. Then φ and u admit the representations1

φ(P, x) = −2
θ (z(P∞+ , µ̂(x)))θ (z(P, ν̂(x)))

θ (z(P∞+ , ν̂(x)))θ (z(P, µ̂(x)))
exp

(
−
∫ P

Q0

ω
(3)
P∞+ ,P0

+ e0

)
, (5.91)

1 To avoid multi-valued expressions in formulas such as (5.91), etc., we agree always to choose the
same path of integration connecting Q0 and P and refer to Remark A.28 for additional tacitly
assumed conventions.
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u(x) = −1

4

2n+1∑
m=0

Em + 1

2

n∑
j=1

λ j

+ 1

2

n∑
j=1

Uj∂w j ln

(
θ
(
z(P∞+ , µ̂(x)) + w

)
θ
(
z(P∞− , µ̂(x)) + w

)
) ∣∣∣∣

w=0

. (5.92)

Moreover, let �̃ ⊆ � be such thatµ j , j = 1, . . . , n, are nonvanishing on �̃. Then,
the constraint

2(x − x0) = −2
∫ x

x0

dx ′
∏n

k=1 µk(x ′)

n∑
j=1

(∫
a j

ω̃
(3)
P∞+ ,P∞−

)
c j (1)

+ ln

(
θ
(
z(P∞+ , µ̂(x))

)
θ
(
z(P∞− , µ̂(x0))

)
θ
(
z(P∞− , µ̂(x))

)
θ
(
z(P∞+ , µ̂(x0))

)
)
, x, x0 ∈ �̃ (5.93)

holds, with

ẑ(P∞± , µ̂(x)) = �̂Q0
− ÂQ0

(P∞± ) + α̂Q0
(Dµ̂(x)) (5.94)

= �̂Q0
− ÂQ0

(P∞± ) + α̂Q0
(Dµ̂(x0)) − 2

∫ x

x0

dx ′

�n(µ(x ′))
c(1), x ∈ �̃.

Proof First we temporarily assume that

µ j (x) �= µ j ′ (x), νk(x) �= νk ′ (x) for j �= j ′, k �= k ′ and x ∈ �̃ (5.95)

for appropriate �̃ ⊆ �. Since by (5.49), DP0 ν̂ ∼ DP∞+ µ̂, and P∞− = (P∞+ )∗ /∈
{µ̂1, . . . , µ̂n} by hypothesis, one can apply Theorem A.31 to conclude that Dν̂ ∈
Symn(Kn) is nonspecial. This argument is of course symmetric with respect to
µ̂ and ν̂. Thus, Dµ̂ is nonspecial if and only if Dν̂ is. The representation (5.91)
for φ, subject to (5.95), then follows by combining (5.49), (5.71), (5.72), and
Theorem A.26 since Dµ̂ and Dν̂ are nonspecial. The representation (5.92) for u on

�̃ follows from the trace formula (5.70) and (F.59) (taking k = 1). By continuity,
(5.91) and (5.92) extend from �̃ to �. Assuming µ j �= 0, j = 1, . . . , n, in addition
to (5.95), the constraint (5.93) follows by combining (5.80), (5.81), and (F.58).
Equation (5.94) is clear from (5.79). Again, the extra assumption (5.95) can be
removed by continuity, and hence (5.93) and (5.94) extend to �̃. �

Remark 5.9 Since by (5.49) DP0 ν̂ and DP∞+ µ̂ are linearly equivalent, one infers

αQ0
(Dν̂) = αQ0

(Dµ̂) + ", " = AP0
(P∞+ ).

Hence, one can eliminate Dν̂ in (5.91), in terms of Dµ̂ using

z(P, ν̂) = z(P, µ̂) + ", P ∈ Kn.
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Remark 5.10 Although the stationary CH solution u in (5.92) is of course a
meromorphic quasi-periodic function with respect to the new variable x̃ in (5.84),
u may exhibit a rather intricate behavior with respect to the original variable x .
Generically, u has an infinite number of branch points of the type

u(x) =
x→x0

O((x − x0)2/3) (5.96)

and

x̃ − x̃0 =
x→x0

O((x − x0)1/3). (5.97)

Moreover, real-valued bounded stationary CH solutions fall into two categories
and are either smooth quasi-periodic functions in x or else (5.96) and (5.97) hold
at infinitely many points (depending on whether or not �n(µ) is zero-free, cf.
(5.84)). We note that (5.93) relates the variables x and x̃ .

Remark 5.11 We emphasized in Remark 5.6 that � in (5.50)–(5.52) markedly
differs from standard Baker–Akhiezer vectors. Hence, one cannot expect the usual
theta function representation of ψ j , j = 1, 2, in terms of ratios of theta functions
times an exponential term containing a meromorphic differential with a pole at the
essential singularity of ψ j multiplied by (x − x0). However, combining (E.3) and
(F.59), one computes

Fn(z) = zn +
n−1∑
�=0

�n−�(µ)z� = zn +
n∑

k=1

(
�n+1−k(λ)

−
n∑
j=1

c j (k)∂w j ln

(
θ (z(P∞+ , µ̂) + w)

θ (z(P∞− , µ̂) + w)

)∣∣∣∣
w=0

zk−1

)
(5.98)

=
n∏
j=1

(z − λ j ) −
n∑
j=1

n∑
k=1

c j (k)∂w j ln

(
θ (z(P∞+ , µ̂) + w)

θ (z(P∞− , µ̂) + w)

)∣∣∣∣
w=0

zk−1,

and hence obtains a theta function representation of ψ1 upon inserting (5.98) into
(5.59). The corresponding theta function representation of ψ2 is then clear from
(5.52) and (5.91).

Remark 5.12 The algebro-geometric CH potential u described in (5.92) is
complex-valued in general. To obtain real-valued solutions one needs to im-
pose symmetry restrictions on Kn . The zero-curvature equation (5.57), �x (P) =
U (z)�(P), � = (ψ1, ψ2)#, can be rewritten as

−ψ1,xx + z−1(4u − uxx )ψ1 = −ψ1, (5.99)

and with introduction of f = (−d2/dx2 + 1)1/2ψ , (5.99) can be formally
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rewritten as

(−d2/dx2 + 1)−1/2(4u − uxx )(−d2/dx2 + 1)−1/2 f = −z f.
If u is real-valued and u, uxx ∈ L∞(R) (the latter condition can easily be improved
but this is not the point of this remark),

A = (−d2/dx2 + 1)−1/2(4u − uxx )(−d2/dx2 + 1)−1/2 (5.100)

extends to a bounded self-adjoint operator in L2(R); hence, the reality constraints
on Kn become,

E0 = 0, Em ∈ R, m = 1, . . . , 2n + 1,

that is, all branch points of Kn are assumed to be in real position. In the spe-
cial periodic case, where A becomes a compact operator when restricted to the
corresponding L2-space over the periodicity interval, it has been shown that the
projections µ j (x) of the associated Dirichlet divisors remain in appropriate spec-
tral gaps as x varies throughout the periodicity interval and an isopsectral torus
picture familiar from the KdV context emerges. This picture extends to the present
algebro-geometric setting (cf. the references provided in the notes to this section).

Next we briefly consider the trivial case n = 0 excluded in Theorem 5.8.

Example 5.13 Assume n = 0, P = (z, y) ∈ K0 \ {P∞+ , P∞− , P0}, and let
(x, x0) ∈ R

2. Then

K0 : F0(z, y) = y2 − R2(z) = y2 − z(z − E1) = 0, E0 = 0, E1 ∈ C,

u(x) = −E1/4, (5.101)

φ(P, x) = y − z = − E1z

y + z
,

ψ1(P, x, x0) = exp(−(y/z)(x − x0)),

ψ2(P, x, x0) = (1 − (y/z)) exp(−(y/z)(x − x0)).

Actually, the general solution of s-CH0(u) = uxxx − 4ux = 0 is given by

u(x) = a1e
2x + a2e

−2x − (E1/4), a j ∈ C, j = 1, 2.

However, the requirementu(m) ∈ L∞(R),m ∈ N0, according to (5.41), necessitates
the choice a1 = a2 = 0 and hence yields (5.101). The latter corresponds to the trace
formula (5.70) in the special case n = 0.

Up to this point we assumed that u ∈ C∞(R) satisfies the stationary CH equation
(5.25) for some fixed n ∈ N0. Next, we show that solvability of the Dubrovin
equations (5.66) on �µ ⊆ R in fact implies equation (5.25) on �µ. As pointed
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out in Remark 5.15, this amounts to solving the algebro-geometric initial value
problem in the stationary case.

Theorem 5.14 Fix n ∈ N, assume (5.65), and suppose that {µ̂ j } j=1,...,n satisfies
the stationaryDubrovin equations (5.66) on an open interval�µ ⊆ R such thatµ j ,
j = 1, . . . , n, remain distinct and nonzero on �µ. Then u ∈ C∞(�µ), defined by

u = −1

4

2n+1∑
m=0

Em + 1

2

n∑
j=1

µ j , (5.102)

satisfies the nth stationary CH equation (5.25), that is,

s-CHn(u) = 0 on �µ. (5.103)

Proof Given the solutions µ̂ j = (µ j , y(µ̂ j )) ∈ C∞(�µ,Kn), j = 1, . . . , n of
(5.66), we introduce

Fn(z) =
n∏
j=1

(z − µ j ), (5.104)

Gn(z) = Fn(z) + (1/2)Fn,x (z) (5.105)

on C × �µ. The Dubrovin equations imply

y(µ̂ j ) = (1/2)µ jµ j,x

n∏
k=1
k �= j

(µ j − µk) = −µ j Fn,x (µ j )/2 = −µ j Gn(µ j ).

Thus,

R2n+2(µ j ) − µ2
j Gn(µ j )

2 = 0, j = 1, . . . , n.

Furthermore, R2n+2(0) = 0, and hence there exists a polynomial Hn such that

R2n+2(z) − z2Gn(z)2 = zFn(z)Hn(z). (5.106)

Computing the coefficient of the term z2n+1 in (5.106), one finds

Hn(z) = (4u + 2ux )zn + O(zn−1) as |z| → ∞. (5.107)

Next, one defines a polynomial Pn−1 by

Pn−1(z) = (4u − uxx )Fn(z) − Hn(z) − zGn,x (z). (5.108)

Using (5.102), (5.104), (5.105), and (5.107), one infers that indeed Pn−1 has degree
at most n − 1. Multiplying (5.108) by Gn and replacing the term GnGn,x with the
result obtained upon differentiating (5.106) with respect to x yield

Gn(z)Pn−1(z) = Fn(z)
(
(4u − uxx )Gn(z) + (1/2)Hn,x (z)

)

+ (
(1/2)Fn,x (z) − Gn(z)

)
Hn(z),
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and hence

Gn(µ j )Pn−1(µ j ) = 0, j = 1, . . . , n

on �µ. Restricting x ∈ �µ temporarily to x ∈ �̃µ, where

�̃µ = {x ∈ �µ | Fn,x (µ j (x), x) = 2iy(µ̂ j (x))/µ j (x) �= 0, j = 1, . . . , n}
= {x ∈ �µ | µ j (x) /∈ {E0, . . . , E2n+1}, j = 1, . . . , n},

one infers that

Pn−1(µ j ) = 0, j = 1, . . . , n

on C × �̃µ. Since Pn−1(z) has degree at most n − 1, one concludes

Pn−1 = 0 on C × �̃µ, (5.109)

and hence (5.14), that is,

zGn,x (z) = (4u − uxx )Fn(z) − Hn(z) (5.110)

on C × �̃µ. Differentiating (5.106) with respect to x and using equations (5.110)
and (5.105), one finds

Hn,x (z) = 2Fn(z) − 2(4u − uxx )Gn(z) (5.111)

on C × �̃µ. To extend these results to �µ, we next investigate the case in which
µ̂ j hits a branch point (Em, 0), m �= 0. Hence, we suppose

µ j0 (x) → Em0 as x → x0 ∈ �µ

for some j0 ∈ {1, . . . , n}, m0 ∈ {1, . . . , 2n + 1}. By introducing

ζ j0 (x) = σ (µ j0 (x) − Em0 )1/2, σ = ±1, µ j0 (x) = Em0 + ζ j0 (x)2,

for some x in an open interval centered around x0, the Dubrovin equation (5.66)
for µ j0 becomes

ζ j0,x (x) =
x→x0

c(σ )

Em0




2n+1∏
m=0
m �=m0

(Em0 − Em)




1/2
n∏

k=1
k �= j0

(
Em0 − µk(x)

)−1

× (
1 + O

(
ζ j0 (x)2

))

for some |c(σ )| = 1, and hence relations (5.109)–(5.111) extend to �µ. We have
now established relations (5.13)–(5.15) on C × �µ, and one can now proceed, as
in Section 5.2, to obtain (5.103). �

Remark 5.15 A closer look at Theorem 5.14 reveals that u is uniquely deter-
mined in an open neighborhood � of x0 by Kn and the initial condition µ̂(x0) =
(µ̂1(x0), . . . , µ̂n(x0)) ∈ Symn(Kn), or equivalently, by the auxiliary divisorDµ̂(x0) ∈



308 5. The Camassa–Holm Hierarchy

Symn(Kn) at x = x0. Conversely, given Kn and u in an open neighborhood � of
x0, one can construct the corresponding polynomial Fn( · , x), Gn( · , x), Hn( · , x)
for x ∈ � (using the recursion relations (5.3), (5.5), (5.6) to determine the homo-
geneous elements f̂ �, ĝ�, ĥ�, and (D.59) to determine c� = c�(E), � = 0, . . . , n)
and then recover the auxiliary divisor Dµ̂(x) for x ∈ � from the zeros of Fn( · , x)
and from (5.45). This remark is of relevance in connection with determining the
isospectral set of CH potentials u in the sense that once the curve Kn is fixed,
elements of the isospectral class of potentials are parametrized by (nonspecial)
auxiliary divisors Dµ̂(x).

5.4 The Time-Dependent CH Formalism

In this section we extend the algebro-geometric analysis of Section 5.3 to the
time-dependent CH hierarchy.

For most of this section we assume the following hypothesis.

Hypothesis 5.16 Suppose that u : R
2 → C satisfies

u( · , t) ∈ C∞(R), ∂mx u( · , t) ∈ L∞(R), m ∈ N0, t ∈ R,

u(x, · ), uxx (x, · ) ∈ C1(R), x ∈ R.
(5.112)

The basic problem in the analysis of algebro-geometric solutions of the CH
hierarchy consists in solving the time-dependent r th CH flow with initial data
a stationary solution of the nth equation in the hierarchy. More precisely, given
n ∈ N0, consider a solution u(0) of the nth stationary CH equation s-CHn(u(0)) = 0
associated with Kn and a given set of integration constants {c�}�=1,...,n ⊂ C. Next,
let r ∈ N0; we intend to construct a solution u of the r th CH flow CHr (u) = 0 with
u(t0,r ) = u(0) for some t0,r ∈ R. To emphasize that the integration constants in the
definitions of the stationary and the time-dependent CH equations are independent
of each other, we indicate this by adding a tilde on all the time-dependent quantities.
Hence, we employ the notation Ṽr , F̃r , G̃r , H̃r , f̃ s , g̃s , h̃s , c̃s to distinguish them
from Vn , Fn , Gn , Hn , f�, g�, h�, c� in the following. In addition, we follow a
more elaborate notation inspired by Hirota’s τ -function approach and indicate the
individual r th CH flow by a separate time variable tr ∈ R.

Summing up, we are seeking a solution u of the time-dependent algebro-
geometric initial value problem

C̃Hr (u) = 4utr − uxxtr + (uxxx − 4ux ) f̃ r (u) − 2(4u − uxx ) f̃ r,x (u) = 0,

u
∣∣
tr=t0,r = u(0), (5.113)

s-CHn(u(0)) = (uxxx − 4ux ) fn(u(0)) − 2(4u − uxx ) fn,x (u(0)) = 0, (5.114)

for some t0,r ∈ R, n, r ∈ N0, where u = u(x, tr ) satisfies (5.112) and a fixed curve
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Kn is associated with the stationary solution u(0) in (5.114). Actually, relying on
the isospectral property of the CH flows, we will go a step further and assume
(5.114) not only at tr = t0,r but for all tr ∈ R. Hence, we start with

Utr − Ṽr,x + [U, Ṽr ] = 0, (5.115)

−Vn,x + [U, Vn] = 0, (5.116)

where (cf. (5.20)–(5.22))

U (z) =
(

−1 1

z−1(4u − uxx ) 1

)
,

Ṽn(z) =
(

−Gn(z) Fn(z)

z−1Hn(z) Gn(z)

)
, (5.117)

Ṽr (z) =
( −G̃r (z) F̃r (z)

z−1 H̃r (z) G̃r (z)

)
,

and

Fn(z) =
n∑

�=0

fn−�z
� =

n∏
j=1

(z − µ j ), (5.118)

Gn(z) =
n∑

�=0

gn−�z
�, (5.119)

Hn(z) =
n∑

�=0

hn−�z
� = h0

n∏
j=1

(z − ν j ), h0 = 4u + 2ux , (5.120)

F̃r (z) =
r∑
s=0

f̃ r−s zs, (5.121)

G̃r (z) =
r∑
s=0

g̃r−s zs, (5.122)

H̃r (z) =
r∑
s=0

h̃r−s zs, h̃0 = 4u + 2ux (5.123)

for fixed n, r ∈ N0. Here f�, f̃ s , g�, g̃s , h�, and h̃s , � = 0, . . . , n, s = 0, . . . , r , are
defined as in (5.3), (5.5), and (5.6) with appropriate sets of integration constants.
Explicitly, (5.115), (5.116) are equivalent to

4utr−uxxtr − H̃r,x + 2H̃r − 2(4u − uxx )G̃r = 0, (5.124)

F̃r,x = 2(G̃r − F̃r ), (5.125)

zG̃r,x = (4u − uxx )F̃r − H̃r (5.126)
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and

Fn,x = 2(Gn − Fn), (5.127)

Hn,x = 2Hn − 2(4u − uxx )Gn, (5.128)

zGn,x = (4u − uxx )Fn − Hn. (5.129)

First we will assume the existence of a solution u of equations (5.124)–(5.129)
and derive an explicit formula for u in terms of Riemann theta functions. In addi-
tion, we will show in Theorem 5.25 that (5.124)–(5.129) and hence the algebro-
geometric initial value problem (5.113), (5.114) has a solution at least locally, that
is, for (x, tr ) ∈ � for some open and connected set � ⊆ R

2.
One observes that equations (5.3)–(5.31) apply to Fn , Gn , Hn , f�, g�, and h�

and (5.3)–(5.6), (5.20)–(5.22), with n replaced by r and c� replaced by c̃�, apply
to F̃r , G̃r , H̃r , f̃ �, g̃�, and h̃�. In particular, the fundamental identity (5.18) holds,

z2G2
n + zFnHn = R2n+2,

and the hyperelliptic curve Kn is still given by (5.42) assuming (5.43) for the
remainder of this section, that is,

E0 = 0, E1, . . . , E2n+1 ∈ C \ {0}. (5.130)

In analogy to equations (5.45), (5.46) we define

µ̂ j (x, tr ) = (µ j (x, tr ),−µ j (x, tr )Gn(µ j (x, tr ), x, tr )) ∈ Kn, (5.131)

j = 1, . . . , n, (x, tr ) ∈ R
2,

ν̂ j (x, tr ) = (ν j (x, tr ), ν j (x, tr )Gn(ν j (x, tr ), x, tr )) ∈ Kn, (5.132)

j = 1, . . . , n, (x, tr ) ∈ R
2.

As in Section 5.3, the regularity assumptions (5.112) on u imply analogous regu-
larity properties of Fn , Hn , µ j , and νk .

Next, one defines the meromorphic function φ( · , x, tr ) on Kn by

φ(P, x, tr ) = y − zGn(z, x, tr )

Fn(z, x, tr )
(5.133)

= zHn(z, x, tr )

y + zGn(z, x, tr )
, (5.134)

P = (z, y) ∈ Kn \ {P∞±}, (x, tr ) ∈ R
2.

Assuming (5.130), the divisor (φ( · , x, tr )) of φ( · , x, tr ) reads

(φ( · , x, tr )) = DP0 ν̂(x,tr ) − DP∞+ µ̂(x,tr ) (5.135)
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with

µ̂ = {µ̂1, . . . , µ̂n}, ν̂ = {ν̂1, . . . , ν̂n} ∈ Symn(Kn).

The corresponding time-dependent vector �,

�(P, x, x0, tr , t0,r ) =
(
ψ1(P, x, x0, tr , t0,r )

ψ2(P, x, x0, tr , t0,r )

)
, (5.136)

P ∈ Kn \ {P∞±}, (x, x0, tr , t0,r ) ∈ R
4

is defined by

ψ1(P, x, x0, tr , t0,r ) = exp

(
−
∫ tr

t0,r

ds
(
z−1 F̃r (z, x0, s)φ(P, x0, s) (5.137)

+ G̃r (z, x0, s)
)− z−1

∫ x

x0

dx ′ φ(P, x ′, tr ) − (x − x0)

)
,

ψ2(P, x, x0, tr , t0,r ) = −ψ1(P, x, x0, tr , t0,r )φ(P, x, tr )/z. (5.138)

Basic properties of φ can now be summarized as follows.

Lemma 5.17 Assume Hypothesis 5.16 and suppose that (5.115), (5.116) hold.
Moreover, let P = (z, y) ∈ Kn \ {P∞+ , P∞− , P0} and (x, tr ) ∈ R

2. Thenφ satisfies

φx (P) − z−1φ(P)2 − 2φ(P) = uxx − 4u, (5.139)

φtr (P) = (4u − uxx )F̃r (z) − H̃r (z) + 2(F̃r (z)φ(P))x (5.140)

= (1/z)F̃r (z)φ(P)2 + 2G̃r (z)φ(P) − H̃r (z), (5.141)

φ(P)φ(P∗) = − zHn(z)

Fn(z)
, (5.142)

φ(P) + φ(P∗) = −2
zGn(z)

Fn(z)
, (5.143)

φ(P) − φ(P∗) = 2y

Fn(z)
. (5.144)

Proof Equations (5.139) and (5.142)–(5.144) are proved as in Lemma 5.2. To
prove (5.141), one first observes that

(
∂x − 2(z−1φ + 1)

)(
φtr − z−1 F̃rφ

2 − 2G̃rφ + H̃r
) = 0,

using (5.139) and relations (5.124)–(5.126) repeatedly. Thus,

φtr − z−1 F̃rφ
2 − 2G̃rφ + H̃r = C exp

(
2
∫ x

dx ′ (z−1φ + 1
))

,
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where the left-hand side is meromorphic in a neighborhood of P∞− , whereas the
right-hand side is meromorphic near P∞− only if C = 0. This proves (5.141).

Using (5.125) and (5.139), one obtains

(4u − uxx )F̃r + 2
(
F̃rφ

)
x
= 2G̃rφ + z−1φ2 F̃r .

Combining this result with (5.141), one concludes that (5.140) holds. �

Using relations (5.127)–(5.129) and (5.124)–(5.126), we next determine the time
evolution of Fn , Gn , and Hn .

Lemma 5.18 Assume Hypothesis 5.16 and suppose that (5.115), (5.116) hold.
Then,

Fn,tr = 2
(
Gn F̃r − FnG̃r

)
, (5.145)

zGn,tr = Fn H̃r − Hn F̃r , (5.146)

Hn,tr = 2
(
HnG̃r − Gn H̃r

)
. (5.147)

Equations (5.145)–(5.147) are equivalent to

−Vn,tr + [
Ṽr , Vn

] = 0.

Proof We prove (5.145) by using (5.144) which shows that

(φ(P) − φ(P∗))tr = −2yF−2
n Fn,tr . (5.148)

However, the left-hand side of (5.148) also equals

φ(P)tr − φ(P∗)tr = 4yF−2
n

(
G̃r Fn − F̃rGn

)
(5.149)

by means of (5.141), (5.143), and (5.144). Combining (5.148) and (5.149) proves
(5.145). Similarly, to prove (5.146), we use (5.143) to write

(φ(P) + φ(P∗))tr = −2zF−2
n

(
Gn,tr Fn − GnFn,tr

)
. (5.150)

Here the left-hand side can be expressed as

φ(P)tr + φ(P∗)tr = 2zGnF
−2
n Fn,tr + 2F−1

n

(
F̃r Hn − H̃r Fn

)
, (5.151)

using (5.141), (5.142), and (5.143). Combining (5.150) and (5.151), using (5.145),
proves (5.146). Finally, (5.147) follows by differentiating (5.18), that is, (zGn)2 +
zFnHn = R2n+2, with respect to tr , and using (5.145) and (5.146). �

Lemmas 5.17 and 5.18 permit one to characterize �.

Lemma 5.19 Assume Hypothesis 5.16 and suppose that (5.115), (5.116) hold.
Moreover, let P = (z, y) ∈ Kn \ {P∞+ , P∞− , P0} and (x, x0, tr , t0,r ) ∈ R

4. Then
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the Baker–Akhiezer vector � satisfies

�x (P) = U (z)�(P), (5.152)

− y�(P) = zVn(z)�(P), (5.153)

�tr (P) = Ṽr (z)�(P), (5.154)

ψ1(P, x, x0, tr , t0,r ) =
(

Fn(z, x, tr )

Fn(z, x0, t0,r )

)1/2

× exp

(
−(y/z)

∫ tr

t0,r

ds F̃r (z, x0, s)Fn(z, x0, s)
−1

− (y/z)
∫ x

x0

dx ′Fn(z, x ′, tr )−1

)
, (5.155)

ψ1(P, x, x0, tr , t0,r )ψ1(P∗, x, x0, tr , t0,r ) = Fn(z, x, tr )

Fn(z, x0, t0,r )
, (5.156)

ψ2(P, x, x0, tr , t0,r )ψ2(P∗, x, x0, tr , t0,r ) = − Hn(z, x, tr )

zFn(z, x0, t0,r )
, (5.157)

ψ1(P, x, x0, tr , t0,r )ψ2(P∗, x, x0, tr , t0,r )

+ ψ1(P∗, x, x0, tr , t0,r )ψ2(P, x, x0, tr , t0,r ) = 2
Gn(z, x, tr )

Fn(z, x0, t0,r )
, (5.158)

ψ1(P, x, x0, tr , t0,r )ψ2(P∗, x, x0, tr , t0,r )

− ψ1(P∗, x, x0, tr , t0,r )ψ2(P, x, x0, tr , t0,r ) = 2y

zFn(z, x0, t0,r )
. (5.159)

In addition, as long as the zeros of Fn( · , x, tr ) are all simple for (x, tr ), (x0, t0,r ) ∈
�, � ⊆ R

2 open and connected, �( · , x, x0, tr , t0,r ) is meromorphic on Kn \
{P0, P∞±} for (x, tr ), (x0, t0,r ) ∈ �.

Proof By (5.137), ψ1( · , x, x0, tr , t0,r ) is meromorphic on Kn \ {P∞±} away from
the poles µ̂ j (x0, s) of φ( · , x0, s) and µ̂k(x ′, tr ) of φ( · , x ′, tr ). That
ψ1( · , x, x0, tr , t0,r ) is meromorphic on Kn \ {P∞±} if Fn( · , x, tr ) has only simple
zeros is a consequence of (cf. (5.64))

− z−1φ(P, x ′, tr ) =
P→µ̂ j (x ′,tr )

∂x ′ ln
(
Fn(z, x ′, tr )

)+ O(1) as z → µ j (x
′, tr ),

− z−1 F̃r (z, x0, s)φ(P, x0, s) =
P→µ̂ j (x0,s)

∂s ln
(
Fn(z, x0, s)

)+ O(1)

as z → µ j (x0, s),

using (5.131), (5.133), and (5.145). This follows from (5.137) by restricting
P to a sufficiently small neighborhood U j (x0) of {µ̂ j (x0, s) ∈ Kn | (x0, s) ∈
�, s ∈ [t0,r , tr ]} such that µ̂k(x0, s) /∈ U j (x0) for all s ∈ [t0,r , tr ] and all
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k ∈ {1, . . . , n} \ { j} and by simultaneously restricting P to a sufficiently small
neighborhood U j (tr ) of {µ̂ j (x ′, tr ) ∈ Kn | (x ′, tr ) ∈ �, x ′ ∈ [x0, x]} such that
µ̂k(x ′, tr ) /∈ U j (tr ) for all x ′ ∈ [x0, x] and all k ∈ {1, . . . , n} \ { j}. By (5.138)
and since φ is meromorphic on Kn one concludes that ψ2 is meromorphic on
Kn \ {P∞±} as well. Relations (5.152) and (5.153) follow as in Lemma 5.2, whereas
the time evolution (5.154) is a consequence of the definition of� in (5.137), (5.138)
as well as (5.141) by rewriting

(1/z)φtr = (
z−12φ F̃r + G̃r

)
x

using (5.126) and (5.140). To prove (5.155), we recall the definition (5.137), that is,

ψ1(P, x, x0, tr , t0,r ) = exp

(
− (x − x0) − z−1

∫ x

x0

dx ′ φ(P, x ′, tr )

−
∫ tr

t0,r

ds
(
z−1 F̃r (z, x0, s)φ(P, x0, s) + G̃r (z, x0, s)

))

=
(
Fn(z, x, tr )

Fn(z, x0, tr )

)1/2

exp

(
− (y/z)

∫ x

x0

dx ′Fn(z, x ′, tr )−1

−
∫ tr

t0,r

ds
(
z−1 F̃r (z, x0, s)φ(P, x0, s) + G̃r (z, x0, s)

))
,

(5.160)

using the calculation leading to (5.59). Equations (5.133) and (5.145) show that

1

z
F̃r (z, x0, s)φ(P, x0, s) + G̃r (z, x0, s) = y

z

F̃r (z, x0, s)

Fn(z, x0, s)
− 1

2

Fn,tr (z, x0, s)

Fn(z, x0, s)
,

which, inserted into (5.160), yields (5.155). Evaluating (5.155) at the points P
and P∗ and multiplying the resulting expressions yield (5.156). The remaining
statements are direct consequences of (5.142)–(5.144) and (5.155). �

The stationary Dubrovin-type equations in Lemma 5.3 have analogs for each
CHr flow (indexed by the parameter tr ) that govern the dynamics of µ j and ν j

with respect to variations of x and tr . In this context the stationary case simply
corresponds to the special case r = 0, as described in the following result. We
assume (5.65), that is,

E0 = 0, Em ∈ C \ {0}, Em �= Em ′ for m �= m ′, m,m ′ = 1, . . . , 2n + 1.
(5.161)

Lemma 5.20 Assume Hypothesis 5.16, (5.161) and suppose (5.115), (5.116) hold
on an open and connected set �̃µ ⊆ R

2. Moreover, suppose that the zeros µ j , j =
1, . . . , n, of Fn( · ) remain distinct and nonzero on �̃µ. Then {µ̂ j } j=1,...,n, defined
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by (5.131), satisfies the following first-order system of differential equations on �̃µ

µ j,x = 2µ−1
j y(µ̂ j )

n∏
k=1
k �= j

(µ j − µk)
−1, (5.162)

µ j,tr = 2F̃r (µ j )µ
−1
j y(µ̂ j )

n∏
k=1
k �= j

(µ j − µk)
−1, j = 1, . . . , n. (5.163)

Next, assume the affine part of Kn to be nonsingular and introduce the initial
condition

{µ̂ j (x0, t0,r )} j=1,...,n ⊂ Kn (5.164)

for some (x0, t0,r ) ∈ R
2, where µ j (x0, t0,r ) �= 0, j = 1, . . . , n, are assumed to be

distinct. Then there exists an open and connected set �µ ⊆ R
2, with (x0, t0,r ) ∈

�µ, such that the initial value problem (5.162)–(5.164) has a unique solution
{µ̂ j } j=1,...,n ⊂ Kn satisfying

µ̂ j ∈ C∞(�µ,Kn), j = 1, . . . , n, (5.165)

and µ j , j = 1, . . . , n, remain distinct and nonzero on �µ.
For the zeros {ν j } j=1,...,n of Hn( · ) similar statements holdwithµ j and�µ replaced
by ν j and�ν , etc. In particular, {ν̂ j } j=1,...,n, defined by (5.132), satisfies the system

ν j,x = 2(4u − uxx )(4u + 2ux )−1ν−1
j y(ν̂ j )

n∏
k=1
k �= j

(ν j − νk)
−1, (5.166)

ν j,tr = 2H̃r (ν j )(4u + 2ux )−1ν−1
j y(ν̂ j )

n∏
k=1
k �= j

(ν j − νk)
−1, (5.167)

j = 1, . . . , n.

Proof It suffices to prove (5.163) since the argument for (5.167) is analogous and
that for (5.162) and (5.166) has been given in the proof of Lemma 5.3. Inserting
z = µ j into (5.145), observing (5.131), yields

Fn,tr (µ j ) = −µ j,tr

n∏
k=1
k �= j

(µ j − µk) = 2F̃r (µ j )Gn(µ j ) = −2
F̃r (µ j )

µ j
y(µ̂ j ).

The smoothness assertion (5.165) is clear as long as µ̂ j stays away from the
branch points (Em, 0). In case µ̂ j hits such a branch point, one can use the local
chart around (Em, 0) (with local coordinate ζ = σ (z − Em)1/2, σ = ±1) to verify
(5.165), as in the proof of Lemma 1.37. �
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Since the stationary trace formulas for CH invariants in terms of symmetric
functions of µ j in Lemma 5.4 extend line by line to the corresponding time-
dependent setting, we next record their tr -dependent analogs without proof. For
simplicity, we confine ourselves to the simplest one only.

Lemma 5.21 Assume Hypothesis 5.16 and suppose that (5.115), (5.116) hold.
Then,

u = −1

4

2n+1∑
m=0

Em + 1

2

n∑
j=1

µ j . (5.168)

We also record the asymptotic properties of φ, the time-dependent analogs of
(5.71) and (5.72) in the stationary case.

Lemma 5.22 Assume Hypothesis 5.16 and suppose that (5.115), (5.116) hold.
Moreover, let P = (z, y) ∈ Kn \ {P∞+ , P∞− , P0}. Then,

φ(P) =
ζ→0

{
−2ζ−1 − 2u + ux + O(ζ ) as P → P∞+ ,

2u + ux + O(ζ ) as P → P∞− ,
ζ = z−1, (5.169)

φ(P) =
ζ→0

( 2n+1∏
m=1

Em

)1/2

f −1
n ζ + O(ζ 2) as P → P0, ζ = z1/2. (5.170)

Since the proofs of Lemmas 5.21 and 5.22 are identical to the corresponding
stationary results in Lemmas 5.4 and 5.5, we omit the corresponding details.

Next, recalling the definitions of d̃r,k and F̃r (µ j ) introduced in (F.16) and (F.19)
and also the definition of B̂Q0

and β̂
Q0

in (5.77) and (5.78), respectively, we now
state the analog of Lemma 5.7, thereby underscoring marked differences between
the CH hierarchy and other completely integrable systems such as the KdV and
AKNS hierarchies.

Lemma 5.23 Assume (5.161) and suppose that {µ̂ j } j=1,...,n satisfies the Dubrovin
equations (5.162), (5.163) on an open set�µ ⊆ R

2 such thatµ j , j = 1, . . . , n, re-
main distinct and nonzero on�µ and that F̃r (µ j ) �= 0 on�µ, j = 1, . . . , n. Intro-
ducing the associated divisor Dµ̂ ∈ Symn(K̂n), µ̂ = {µ̂1, . . . , µ̂n} ∈ Symn(K̂n),
one computes

∂xαQ0

(Dµ̂(x,tr )
) = − 2

�n(µ(x, tr ))
c(1), (x, tr ) ∈ �µ, (5.171)

∂trαQ0

(Dµ̂(x,tr )
) = − 2

�n(µ(x, tr ))

( r∧n∑
k=0

d̃r,k(E)�k(µ(x, tr ))

)
c(1) (5.172)

+ 2

( n∑
�=1∨(n+1−r )

d̃r,n+1−�(E)c(�)

)
, (x, tr ) ∈ �µ.
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In particular, the Abel map does not linearize the divisor Dµ̂( · , · ) on �µ. In
addition,

∂x

n∑
j=1

∫ µ̂ j (x,tr )

Q0

η1 = − 2

�n(µ(x, tr ))
, (x, tr ) ∈ �µ, (5.173)

∂x β̂
(Dµ̂(x,tr )

) =
{

2, n = 1,

2(0, . . . , 0, 1), n ≥ 2,
(x, tr ) ∈ �µ, (5.174)

∂tr

n∑
j=1

∫ µ̂ j (x,tr )

Q0

η1 = − 2

�n(µ(x, tr ))

r∧n∑
k=0

d̃r,k(E)�k(µ(x, tr ))

+ 2d̃r,n(E)δn,r∧n, (x, tr ) ∈ �µ, (5.175)

∂tr β̂
(Dµ̂(x,tr )

)

= 2

( r∑
s=0

c̃r−s ĉs+1−n(E), . . . ,
r∑
s=0

c̃r−s ĉs+1(E),
r∑
s=0

c̃r−s ĉs(E)

)
, (5.176)

ĉ−�(E) = 0, � ∈ N, (x, tr ) ∈ �µ.

Proof Let (x, tr ) ∈ �µ. Since (5.171), (5.173), and (5.174) are proved as in in the
stationary context of Lemma 5.7, we focus on the proofs of (5.172), (5.175), and
(5.176). First we note that

F̃r
µ j

= −
r∧n∑
m=0

d̃r,m(E)�m(µ)
#

( j)
n−1(µ)

�n(µ)
+

r∧n∑
m=1

d̃r,m(E)#( j)
m−1(µ) (5.177)

by applying (F.19), (E.10), and (5.82). Then, using (5.177), (5.163), (5.82), (E.10),
and (E.4), (E.13), and (E.14), one obtains1

∂tr

( n∑
j=1

∫ µ̂ j

Q0

ω

)
=

n∑
j,k=1

µ j,tr c(k)
µk−1
j

y(µ̂ j )
= 2

n∑
j,k=1

c(k)
µk−1
j∏n

�=1
��= j

(µ j − µ�)

F̃r (µ j )

µ j

= 2
n∑

j,k=1

c(k)
µk−1
j∏n

�=1
��= j

(µ j − µ�)

(
−

r∧n∑
m=0

d̃r,m(E)�m(µ)
#

( j)
n−1(µ)

�n(µ)

+
r∧n∑
m=1

d̃r,m(E)#( j)
m−1(µ)

)

= −2
r∧n∑
m=0

d̃r,m(E)
�m(µ)

�n(µ)

n∑
k=1

n∑
j=1

c(k)(Un(µ))k, j (Un(µ))−1
j,1

+ 2
r∧n∑
m=1

d̃r,m(E)
n∑

k=1

n∑
j=1

c(k)(Un(µ))k, j (Un(µ))−1
j,n−m+1

1 m ∧ n = min{m, n}, m ∨ n = max{m, n}.
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= − 2

�n(µ)

r∧n∑
m=0

d̃r,m(E)�m(µ)c(1) + 2
r∧n∑
m=1

d̃r.m(E)c(n − m + 1) (5.178)

= − 2

�n(µ)

r∧n∑
m=0

d̃r,m(E)�m(µ)c(1) + 2
n∑

m=1∨(n+1−r )

d̃r,n+1−m(E)c(m).

Equation (5.175) is just a special case of (5.172), and (5.176) follows as in (5.178),
through use again of (E.4). �

Analogous results hold for the corresponding divisor Dν̂ associated with φ.
One confirms again that the Abel map does not effect a linearization of the

divisor Dµ̂(x,tr ) in the time-dependent CH context.
Next we turn to the representations of φ and u in terms of the Riemann theta

function associated with Kn , assuming the affine part of Kn to be nonsingular.
Again, one could argue it suffices to consider the Dubrovin equations (5.162)–
(5.164) and reconstruct u from the trace formula (5.168) since the Abel map fails
to linearize the divisor Dµ̂(x,tr ). However, as in the stationary context, we decided
to present the whole formalism to enable a comparison with all other hierarchies
studied in this volume. Recalling (5.85)–(5.90), the analog of Theorem 5.8 in the
stationary case then reads as follows.

Theorem 5.24 Suppose Hypothesis 5.16 and suppose (5.113), (5.114) hold on
� subject to the constraint (5.161). In addition, let P ∈ Kn \ {P∞+ , P0} and
(x, tr ), (x0, t0,r ) ∈ �, where � ⊆ R

2 is open and connected. Moreover, suppose
that Dµ̂(x,tr ), or equivalently, Dν̂(x,tr ) is nonspecial for (x, tr ) ∈ �. Then φ and u
admit the representations1

φ(P, x, tr ) = −2
θ (z(P∞+ , µ̂(x, tr )))θ (z(P, ν̂(x, tr )))

θ (z(P∞+ , ν̂(x, tr )))θ (z(P, µ̂(x, tr )))

× exp

(
−
∫ P

Q0

ω
(3)
P∞+ ,P0

+ e0

)
, (5.179)

u(x, tr ) = −1

4

2n+1∑
m=0

Em + 1

2

n∑
j=1

λ j

+ 1

2

n∑
j=1

Uj∂w j ln

(
θ
(
z(P∞+ , µ̂(x, tr )) + w

)
θ
(
z(P∞− , µ̂(x, tr )) + w

)
)∣∣∣∣

w=0

. (5.180)

Moreover, let �̃ ⊆ � be such thatµ j , j = 1, . . . , n, are nonvanishing on �̃. Then,

1 To avoid multi-valued expressions in formulas such as (5.179), etc., we agree always to choose
the same path of integration connecting Q0 and P and refer to Remark A.28 for additional tacitly
assumed conventions.
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the constraint

2(x − x0) + 2(tr − t0,r )
r∑
s=0

c̃r−s ĉs(E)

=
(
−2

∫ x

x0

dx ′
∏n

k=1 µk(x ′, tr )

− 2
r∧n∑
k=0

d̃r,k(E)
∫ tr

t0,r

�k(µ(x0, t ′)

�n(µ(x0, t ′)
dt ′
) n∑

j=1

(∫
a j

ω̃
(3)
P∞+ ,P∞−

)
c j (1)

+ 2(tr − t0,r )
n∑

�=1∨(n+1−�)

d̃r,n+1−�(E)
n∑
j=1

(∫
a j

ω̃
(3)
P∞+ ,P∞−

)
c j (�)

+ ln

(
θ
(
z(P∞+ , µ̂(x, tr ))

)
θ
(
z(P∞− , µ̂(x0, t0,r ))

)
θ
(
z(P∞− , µ̂(x, tr ))

)
θ
(
z(P∞+ , µ̂(x0, t0,r ))

)
)
, (5.181)

(x, tr ), (x0, t0,r ) ∈ �̃

holds, with

ẑ(P∞± , µ̂(x, tr )) = �̂Q0
− ÂQ0

(P∞± ) + α̂Q0

(Dµ̂(x,tr )
)

= �̂Q0
− ÂQ0

(P∞± ) + α̂Q0
(Dµ̂(x0,tr )) − 2

(∫ x

x0

dx ′

�n(µ(x ′, tr ))

)
c(1) (5.182)

= �̂Q0
− ÂQ0

(P∞± ) + α̂Q0
(Dµ̂(x,t0,r ))

− 2

( r∧n∑
k=0

d̃r,k(E)
∫ tr

t0,r

�k(µ(x, t ′))

�n(µ(x, t ′))
dt ′
)
c(1) (5.183)

+ 2(tr − t0,r )

( n∑
�=1∨(n+1−r )

d̃r,n+1−�(E)c(�)

)
, (x, tr ), (x0, t0,r ) ∈ �̃.

Proof First, let ˜̃� ⊆ � be defined by requiring that µ j , j = 1, . . . , n, are
distinct and nonvanishing on ˜̃� and F̃r (µ j ) �= 0 on ˜̃�, j = 1, . . . , n. The
representation (5.179) for φ on ˜̃� then follows by combining (5.135), (5.169),
(5.170), and Theorem A.26 sinceDµ̂ andDν̂ are simultaneously nonspecial, as dis-
cussed in the proof of Theorem 5.8. The representation (5.180) for u on ˜̃� follows
from the trace formula (5.168) and (F.59) (taking k = 1). By continuity, (5.179)
and (5.180) extend from ˜̃� to �. The constraint (5.181) then holds on ˜̃� by com-
bining (5.173)–(5.176) and (F.58). Equations (5.182) and (5.183) are clear from
(5.171) and (5.172). Again by continuity, (5.181)–(5.183) extend from ˜̃� to �̃. �

Of course, Remark 5.9 applies in the present time-dependent context.
The algebro-geometric CH solution u in (5.180) is not meromorphic with respect

to x, tr in general. In more geometrical terms, the CHr flows evolve on a nonlinear
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subvariety (corresponding to the constraint (5.181)) of a generalized Jacobian
topologically given by J (Kn) × C

∗ (C∗ = C \ {0}), as discussed in the references
mentioned in the notes to Section 5.4.

Expressing F̃r in terms of �k(µ) and hence in terms of the theta function
associated with Kn , one can use (5.155) to derive a theta function representation
of ψ j , j = 1, 2, in analogy to the stationary case discussed in Remark 5.11. We
omit further details.

Up to this point we assumed Hypothesis 5.16 together with the basic equations
(5.115) and (5.116). Next, we will show that solvability of the Dubrovin equations
(5.162) and (5.163) on �µ ⊆ R

2 in fact implies equations (5.115) and (5.116) on
�µ. In complete analogy to our discussion in Section 5.3 (cf. Remark 5.15), this
amounts to solving the time-dependent algebro-geometric initial value problem
(5.113), (5.114) on �µ. In this context we recall the definition of F̃r (µ j ) in terms
of µ1, . . . , µn , introduced in (F.16), (F.19),

F̃r (µ j ) =
r∧n∑
k=0

d̃r,k(E)#( j)
k (µ), r ∈ N0, c̃0 = 1, (5.184)

d̃r,k(E) =
r−k∑
s=0

c̃r−k−s ĉs(E), k = 0, . . . , r ∧ n, (5.185)

in terms of a given set of integration constants {c̃1, . . . , c̃r } ⊂ C.

Theorem 5.25 Fix n ∈ N and assume (5.161). Suppose that {µ̂ j } j=1,...,n satisfies
the Dubrovin equations (5.162), (5.163) on an open and connected set �µ ⊆ R

2,
with F̃r (µ j ) in (5.163) expressed in terms ofµk , k = 1, . . . , n, by (5.184), (5.185).
Moreover, assume thatµ j , j = 1, . . . , n, remain distinct and nonzero on�µ. Then
u ∈ C∞(�µ), defined by

u = −1

4

2n+1∑
m=0

Em + 1

2

n∑
j=1

µ j , (5.186)

satisfies the rth CH equation (5.113), that is,

C̃Hr (u) = 0 on �µ, (5.187)

with initial values satisfying the nth stationary CH equation (5.114).

Proof Given solutions µ̂ j = (µ j , y(µ̂ j )) ∈ C∞(�µ,Kn), j = 1, . . . , n of (5.162)
and (5.163), we define polynomials Fn , Gn , and Hn on �µ as in the stationary case
(cf. Theorem 5.14) with properties

Fn(z) =
n∏
j=1

(z − µ j ), (5.188)
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Gn = Fn + (1/2)Fn,x , (5.189)

zGn,x = (4u − uxx )Fn − Hn, (5.190)

Hn,x = 2Hn − 2(4u − uxx )Gn, (5.191)

R2n+2 = z2G2
n + zFnHn, (5.192)

treating tr as a parameter. Define polynomials G̃r and H̃r by

G̃r (z) = F̃r (z) + (1/2)F̃r,x (z), (5.193)

H̃r (z) = (4u − uxx )F̃r (z) − zG̃r,x (z), (5.194)

respectively. We claim that

Fn,tr = 2
(
Gn F̃r − FnG̃r

)
. (5.195)

To prove (5.195), one computes from (5.162) and (5.163) that

Fn,tr (z) = −Fn(z)
n∑
j=1

F̃r (µ j )µ j,x (z − µ j )
−1,

Fn,x (z) = −Fn(z)
n∑
j=1

µ j,x (z − µ j )
−1.

Using (5.189) and (5.193), one concludes that (5.195) is equivalent to

F̃r,x (z) =
n∑
j=1

(F̃r (z) − F̃r (µ j ))µ j,x (z − µ j )
−1. (5.196)

Equation (5.196) is proved in Lemma F.9. This in turn proves (5.195). Next, taking
the derivative of (5.195) with respect to x and inserting (5.189) and (5.190), yield

Fn,tr x = 2
(
z−1(4u − uxx )Fn F̃r − z−1Hn F̃r + Gn F̃r,x

− 2(Gn − Fn)G̃r − FnG̃r,x
)
. (5.197)

On the other hand, by differentiating (5.189) with respect to tr , using (5.195), one
obtains

Fn,tr x = 2
(
Gn,tr − 2

(
Gn F̃r − FnG̃r

))
. (5.198)

Combining (5.189), (5.193), (5.197), and (5.198), one concludes

zGn,tr = Fn H̃r − F̃r Hn. (5.199)

Next, taking the derivative of (5.192) with respect to tr and using the expressions
(5.195) and (5.199) for Fn,tr and Gn,tr , respectively, one obtains

Hn,tr = 2
(
G̃r Hn − Gn H̃r

)
. (5.200)
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Finally, we compute Gn,xtr in two different ways. Differentiating (5.199) with
respect to x , using (5.189), (5.193), and (5.191), one finds

zGn,xtr = H̃r,x Fn + 2(Gn H̃r − G̃r Hn) + 2(4u − uxx )Gn F̃r − 2Fn H̃r . (5.201)

Differentiating (5.190) with respect to tr , using (5.195) and (5.200), results in

zGn,xtr = (utr − uxxtr )Fn − 2(G̃r Hn − Gn H̃r )

+ 2(4u − uxx )(Gn F̃r − FnG̃r ). (5.202)

Combining (5.201) and (5.202), one concludes

utr − uxxtr = H̃r + 2(4u − uxx )G̃r − H̃r ,

which is equivalent to (5.187). �

The analog of Remark 5.15 directly extends to the current time-dependent
setting.

5.5 Notes

This chapter follows Gesztesy and Holden (to appear, a).

Section 5.1. The Camassa–Holm (CH) equation, also known as the dispersive
shallow water equation,

4ut − uxxt − 2uuxxx − 4uxuxx + 24uux = 0 (5.203)

(choosing a scaling of x, t that is convenient for our purpose), with u representing
the fluid velocity in x-direction, was introduced1 in Camassa and Holm (1993)
and Camassa et al. (1994). Actually, (5.203) represents the limiting case κ → 0
of the general Camassa–Holm equation

4vt − vxxt − 2vvxxx − 4vxvxx + 24vvx + 4κvx = 0, κ ∈ R. (5.204)

However, in our formalism the general Camassa–Holm equation (5.204) just rep-
resents a linear combination of the first two equations in the CH hierarchy, and
hence we consider without loss of generality (5.203) as the first nontrivial element
of the Camassa–Holm hierarchy. Alternatively, one can transform

v(x, t) �→ u(x, t) = v(x − (κ/2)t, t) + (κ/4)

and thereby reduce (5.204) to (5.203).
Various aspects of local existence, global existence, and uniqueness of solu-

tions of (5.203) are treated in Constantin and Escher (1998a,b,d), Constantin and

1 The equation appeared already in Fuchssteiner and Fokas (1981) on a list of equations with a bi-
Hamiltonian structure.



5.5. Notes 323

Molinet (2000), Danchin (2001), and Xin and Zhang (2000), and wave-breaking
phenomena are discussed in Constantin (2000), Constantin and Escher (1998c),
McKean (1998), and Constantin and Escher (2000). Soliton-type solutions (called
“peakons”) were extensively studied due to their unusual nonmeromorphic (peak-
type) behavior, which features a discontinuity in the x-derivative of u with existing
left and right derivatives of opposite sign at the peak. In this context, we refer, for
instance, to Alber et al. (1994; 2001), Alber and Fedorov (2000; 2001), Alber and
Miller (2001), Beals et al. (1999; 2000; 2001), Camassa and Holm (1993), and
Camassa et al. (1994). Integrability aspects such as infinitely many conservation
laws, (bi-)Hamiltonian formalism, Bäcklund transformations, infinite dimensional
symmetry groups, etc., are discussed, for instance, in Camassa and Holm (1993),
Camassa et al. (1994), Constantin (1997b), Fisher and Schiff (1999), Fuchssteiner
(1996) (see also Fuchssteiner and Fokas (1981)), and Schiff (1996). The CH equa-
tion is derived as a model for water waves in Johnson (2002). The general CH
equation (5.204) is shown to give rise to a geodesic flow of a certain right invariant
metric on the Bott–Virasoro group in Misio✱✱lek (1998). In the case κ = 0, the CH
equation (5.203) corresponds to the geodesic flow on the group of orientation pre-
serving diffeomorphisms of the circle. This follows from the Lie–Poisson structure
established in Camassa et al. (1994) and is also remarked upon in Misio✱✱lek (1998).
Scattering data and their evolution under the CH flow are determined in Beals et al.
(1998), and intimate relations with the classical moment problem and the finite
Toda lattice are worked out in Beals et al. (1999; 2000; 2001).

Section 5.2. The basic polynomial recursion formalism presented is essentially
taken from Alber et al. (1994). We note that our zero-curvature approach is similar
(but not identical) to that sketched in Schiff (1996). For yet another zero-curvature
approach, see Holm and Qiao (2002). In other treatments of the CH equation, a
Lax equation approach appears to be preferred.

Up to inessential scaling of the (x, t1) variables, ĈH1(u) = 0 represents the
Camassa–Holm equation, as discussed in Camassa and Holm (1993) and Camassa
et al. (1994).

The polynomial recursion formalism was introduced under the assumption of a
sufficiently smooth function u in Hypothesis 5.1. The actual existence of smooth
global solutions of the initial value problem associated with the CH hierarchy
(5.40) is a nontrivial issue, and various aspects of it are discussed, for instance,
in Constantin (2000), Constantin and Escher (1998a,b,c), Constantin and Molinet
(2000), Danchin (2001), and Xin and Zhang (2000).

Section 5.3. As in all other chapters, the fundamental meromorphic function φ

on Kn defined in (5.47) is still the key object of our algebro-geometric formalism.
By (5.47)–(5.49), φ again links the auxiliary divisor Dµ̂ and its counterpart Dν̂ .
This is of course a direct consequence of the identity (5.18) together with the
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factorizations of Fn and Hn in (5.44). Thus, our construction of positive divisors
of degree n (respectively n + 1 since the points P0 and P∞+ are also involved) on
the hyperelliptic curve Kn of genus n again follows the recipe of Jacobi (1846),
Mumford (1984, Sect. III a).1), and McKean (1985).

Dubrovin equations of the type (5.66) were first discussed by
Constantin (1998a,b) and Constantin and McKean (1999) in the spatially periodic
case, and by Alber and Fedorov (2000; 2001) in the algebro-geometric context.

That the Abel map does not provide the proper change of variables to linearize
the divisor Dµ̂(x) in the CH context, as proven in (5.79), is in sharp contrast to
standard integrable soliton equations such as the KdV and AKNS hierarchies and
comes, perhaps, as a surprise. The change of variables in (5.84) then linearizes the
Abel map AQ0

(D ˆ̃µ(x̃)), µ̃ j (x̃) = µ j (x), j = 1, . . . , n. These facts are well-known
and discussed (by different methods) by Constantin and McKean (1999), Alber
(2000), Alber and Fedorov (2000; 2001), and Alber et al. (2001).

Theta function representations for u analogous to (5.92) were first studied by
Alber and Fedorov (2000; 2001) and Alber et al. (2001). These references also
discuss the nature of real-valued bounded solutions that are either smooth and
quasi-periodic with respect to x or exhibit an infinite number of branch points as
alluded to in Remark 5.10. Additional studies of algebro-geometric solutions of
(5.203) and their properties are made in Alber (2000), Alber et al. (1999; 1994;
1995; 2000a). Our own approach to algebro-geometric solutions of the CH hierar-
chy differs from the ones just mentioned in several aspects, and we will outline some
of the differences next. In contrast to the treatments in Alber et al. (2001), Alber and
Fedorov (2000; 2001), we rely on a zero-curvature approachUt − Vx = [V,U ] as
opposed to their Lax formalism. However, we incorporate important features of
the recursion formalism developed in Alber et al. (1994) into our zero-curvature
approach. Our treatment is comprehensive and self-contained in the sense that it
includes Dubrovin-type equations for auxiliary divisors on the associated com-
pact hyperelliptic curve, trace formulas, and theta function representations of so-
lutions, which are the usual ingredients of such a formalism. Moreover, while
Alber et al. (2001), Alber and Fedorov (2000; 2001) focus on solutions of the
CH equation itself, we simultaneously derive theta function formulas for solutions
of any equation of the CH hierarchy. Explicit theta function representations for
symmetric functions of (projections of) auxiliary divisors then yield the theta func-
tion representations for any algebro-geometric solution u of the CH hierarchy. Here
our strategy again differs somewhat from that employed in Alber et al. (2001),
Alber and Fedorov (2000; 2001) for the CH equation. Although the latter ref-
erences also employ the trace formula for u in terms of (projections of) auxil-
iary divisors, they subsequently rely on generalized theta functions and gener-
alized Jacobians (going back to investigations of Clebsch and Gordan (1866)),
whereas we stay within the traditional framework familiar from the KdV, AKNS,
Toda hierarchies, etc., following a route similar to the treatment of the Dym
equation in Novikov (1999).
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The stationary algebro-geometric initial value problem in Theorem 5.14 was
first discussed in Gesztesy and Holden (to appear, a).

The case of spatially periodic solutions, the corresponding inverse spectral prob-
lem, and isospectral classes of solutions were previously discussed in Constantin
(1997a,c,d; 1998a,b) and Constantin and McKean (1999) under certain smooth-
ness assumptions on u. We note that the integral kernel of (−d2/dx2 + 1)−1/2 in
L2(R) used in (5.100) is of the type

(−d2/dx2 + 1)−1/2(x, x ′) = π−1K0(|x − x ′|), x, x ′ ∈ R, x �= x ′,

where K0( · ) denotes the modified Bessel function of order zero (cf. Abramowitz
and Stegun (1972, Sec. 9.6).) The problem of characterizing real-valued algebro-
geometric CH solutions has been solved in Gesztesy and Holden (to appear, b).

Section 5.4. Since almost all references cited in the notes to Section 5.3 also
treat time-dependent aspects, we can be brief in connection with Section 5.4.

As described in the notes to Section 5.3, the fundamental meromorphic func-
tion φ on Kn defined in (5.133), is still the key object of our algebro-geometric
formalism, and the facts recorded in the stationary context also apply to the time-
dependent setting.

That the Abel map does not effect a linearization of the divisor Dµ̂(x,tr ) in the CH
context is well-known and discussed (using different approaches) by Constantin
and McKean (1999), Alber and Fedorov (2000; 2001), and Alber et al. (2001).
A change of the variable t1 in analogy to that in (5.84) in the stationary context,
which avoids the use of a meromorphic differential (cf. (5.77), (5.78)) and lin-
earizes the Abel map when considering the CH1 flow, is discussed in Alber (2000)
and Alber et al. (2001). That change of variables corresponds to the case r = 1
in (5.181).

Theta function representations for u analogous to (5.180) were first studied by
Alber and Fedorov (2000; 2001).

In analogy to the stationary case, the algebro-geometric CH solution u in (5.180)
is not meromorphic with respect to x, tr , in general, as discussed by Alber and Fe-
dorov (2000; 2001), and Alber et al. (2001). In more geometrical terms, the CHr

flows evolve on a nonlinear subvariety (corresponding to the constraint (5.181)) of
a generalized Jacobian topologically given by J (Kn) × C

∗ (C∗ = C \ {0}). For
discussions of generalized Jacobians in this context we refer, for instance, to
Fedorov (1999), Gagnon et al. (1985), and Gavrilov (1999). That smooth (i.e.,
C1 with respect to t1 and C3 and hence C∞ with respect to x), spatially periodic
CH1 solutions u are quasi-periodic in t1 was shown in Constantin (1998b).

The general time-dependent algebro-geometric initial value problem in
Theorem 5.25 was first discussed in Gesztesy and Holden (to appear, a).

Quasi-periodicity of solutions with respect to time is discussed in Constantin
(1998b).
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Without going into further details, we mention that our approach extends in a
straightforward manner to the Dym-type equation,

vxxt + 2vvxxx + 4vxvxx − 4κv = 0, κ ∈ R, (5.205)

and its hierarchy. The corresponding zero-curvature formalism leads to a trace
formula analogous to (5.168) (cf. Alber and Fedorov (2000; 2001)). One needs to
replace the polynomial R2n+2 by R2n+1(z) = ∏2n

m=0(z − Em), which results in a
branch point P∞ at infinity and replaces the (nonnormalized) differential ω̃(3)

P∞+ ,P∞−
of the third kind by the (nonnormalized) differential ω̃(2)

P∞ = zndz/y of the second
kind, etc. This approach (applied to the Dym equation 4ρt = ρ3ρxxx , related to
(5.205) by proper variable transformations) was first realized by Novikov (1999)
and influenced our treatment of the CH hierarchy. For different approaches to
algebro-geometric solutions of the Dym hierarchy, we also refer to Dmitrieva
(1993) and Alber et al. (1995; 2000b; 2001).



Appendix A

Algebraic Curves and Their Theta Functions
in a Nutshell

It is assumed that the reader will not have a heart failure at the
mention of a Riemann surface.

Julian L. Coolidge1

This appendix treats some of the basic aspects of complex algebraic curves and their
theta functions as used at various places in this monograph. The material presented
is standard, and we include it for two major reasons: On one hand it allows us to
summarize a variety of facts and explicit formulas needed in connection with the
construction of algebro-geometric solutions of completely integrable equations,
and, on the other hand, it will simultaneously enable us to introduce a large part
of the notation used throughout this volume. We emphasize that the summary
presented in this appendix is not intended as a substitute for textbook consultations.
Relevant literature in this context is mentioned in the notes to this appendix.

Definition A.1 An affine plane (complex) algebraic curve K is the locus of zeros
in C

2 of a (nonconstant) polynomial F in two variables. The polynomial F is
called nonsingular at a root (z0, y0) if

∇F(z0, y0) = (Fz(z0, y0),Fy(z0, y0)) �= 0.

The affine plane curve K of roots of F is called nonsingular at P0 = (z0, y0) if F is
nonsingular at P0. The curveK is called nonsingular, or smooth, if it is nonsingular
at each of its points (otherwise, it is called singular).

The implicit function theorem allows one to conclude that a smooth affine
curve K is locally a graph and to introduce complex charts on K as follows.
If F(P0) = 0 with Fy(P0) �= 0, there is a holomorphic function gP0 such that in
a neighborhood UP0 of P0, the curve K is characterized by the graph y = gP0 (z).
Hence, the projection

π̃z : UP0 → π̃z(UP0 ) ⊂ C, (z, y) �→ z (A.1)
1 A Treatise on Algebraic Plane Curves, Dover, New York, 1959, p. x.
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yields a complex chart on K. If, on the other hand, F(P0) = 0 with Fz(P0) �= 0,
then the projection

π̃y : UP0 → π̃y(UP0 ) ⊂ C, (z, y) �→ y (A.2)

defines a chart on K. In this way, as long as K is nonsingular, one arrives at a
complex atlas on K. The space K ⊂ C

2 is second countable and Hausdorff. To
obtain a Riemann surface, one needs connectedness of K, which is implied by
adding the assumption of irreducibility1 of the polynomial F . Thus, K equipped
with charts (A.1) and (A.2) is a Riemann surface ifF is nonsingular and irreducible.
Affine plane curves K are unbounded as subsets of C

2 and hence are noncompact.
The compactification of K is conveniently described in terms of the projective
plane CP

2, the set of all one-dimensional (complex) subspaces of C
3.

To simplify notations, we temporarily abbreviate x1 = y and x2 = z. Moreover,
we denote the linear span of (x2, x1, x0) ∈ C

3 \ {0} by [x2 : x1 : x0]. Since the
homogeneous coordinates [x2 : x1 : x0] satisfy

[x2 : x1 : x0] = [cx2 : cx1 : cx0], c ∈ C \ {0},
the space CP

2 can be viewed as the quotient space of C
3 \ {0} by the multiplicative

action of C \ {0}, that is, CP
2 = (C3 \ {0})/(C \ {0}), and hence CP

2 inherits a
Hausdorff topology, which is the quotient topology induced by the natural map

ι : C
3 \ {0} → CP

2, (x2, x1, x0) �→ [x2 : x1 : x0].

Next, define the open sets

Um = { [x2 : x1 : x0] ∈ CP
2 | xm �= 0}, m = 0, 1, 2.

Then,

f 0 : U 0 → C
2, [x2 : x1 : x0] �→ (x2/x0, x1/x0)

with inverse

( f 0)−1 : C
2 → U 0, (x2, x1) �→ [x2 : x1 : 1],

and analogously for functions f 1 and f 2 (relative to setsU 1 andU 2, respectively),
are homeomorphisms. In particular, U 0, U 1, and U 2 together cover CP

2. Thus,
CP

2 is compact since it is covered by the closed unit (poly)disks in U 0, U 1,
and U 2. The element [x2 : x1 : 0] ∈ CP

2 represents the point at infinity along
the direction x2 : x1 in C

2 (identifying [x2 : x1 : 0] ∈ CP
2 and [x2 : x1] ∈ CP

1).
The set of all such elements then represents the line at infinity, L∞ = {[x2 : x1 :
x0] ∈ CP

2 | x0 = 0}, and yields the compactification CP
2 of C

2. In other words,
CP

2 ∼= C
2 ∪ L∞, CP

1 ∼= C∞, and L∞ ∼= CP
1.

1 The polynomial F in two variables is called irreducible if it cannot be factored into F = F1F2 with
F1 and F2 both nonconstant polynomials in two variables.
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Let P be a (nonconstant) homogeneous polynomial of degree d in (x2, x1, x0),
that is,

P(cx2, cx1, cx0) = cdP(x2, x1, x0),

and introduce

K = {[x2 : x1 : x0] ∈ CP
2 | P(x2, x1, x0) = 0}.

The set K is well-defined (even though P(u, v, w) is not for [u : v : w] ∈ CP
2)

and closed in CP
2. The intersections,

Km = K ∩Um, m = 0, 1, 2

are affine plane curves when transported to C
2. In particular,

K0 ∼= {(x2, x1) ∈ C
2 | P(x2, x1, 1) = 0}

represents the affine curve K defined by F(z, y) = 0, where F(x2, x1) =
P(x2, x1, 1), that is, K0 represents the affine part of K. (F has degree d pro-
vided x0 is not a factor of P , i.e., provided K does not contain the projective
line L∞).

Conversely, given the affine curve K defined by

F(x2, x1) =
d∑

r,s=0
r+s≤d

ar,s z
r ys = 0,

with F of degree d , the associated homogeneous polynomial P of degree d can
be obtained from

P(x2, x1, x0) = xd0F(x2/x0, x1/x0).

The affine curve K is then the intersection of the projective curve K defined by
P(x2, x1, x0) = 0 withU 0, that is,K ∼= K ∩U 0 = K0. The interesection ofKwith
L∞, the line at infinity, then consists of the finite set of points

K \ K =
{

[x2 : x1 : 0] ∈ CP
2

∣∣∣∣
d∑
r=0

ar,d−r zr yd−r = 0

}
.

Definition A.2 A projective plane (complex) algebraic curve K is the locus of
zeros in CP

2 of a homogeneous polynomial P in three variables. A homogeneous
(nonconstant) polynomial P in three variables is called nonsingular if there are no
common solutions (x2,0, x1,0, x0,0) ∈ C

3 \ {0} of

P(x2,0, x1,0, x0,0) = 0,

∇P(x2,0, x1,0, x0,0) = (Px2 ,Px1 ,Px0 )(x2,0, x1,0, x0,0) = 0.
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The set K is called a smooth (or nonsingular) projective plane curve (of degree
d ∈ N) if P is nonsingular (and of degree d ∈ N).

If x0,0 �= 0, then [x2,0 : x1,0 : x0,0] ∈ CP
2 is a nonsingular point of the projective

curve K (defined by P(x2, x1, x0) = 0) if and only if (x2,0/x0,0, x1,0/x0,0) ∈ C
2 is

a nonsingular point of the affine curve K (defined by P(x2, x1, 1) = 0).
One verifies that the homogeneous polynomial P is nonsingular if and only if

each Km is a smooth affine plane curve in C
2. Moreover, any nonsingular homoge-

neous polynomialP is irreducible, and consequently eachKm is a Riemann surface
for m = 0, 1, 2. The coordinate charts on each Km are simply the projections, that
is, x2/x0 and x1/x0 for K0, x2/x1 and x0/x1 for K1, and finally, x1/x2 and x0/x2

for K2. These separate complex structures on Km are compatible on K and hence
induce a complex structure on K.

The zero locus of a nonsingular homogeneous polynomial P(x2, x1, x0) in CP
2

defines a smooth projective plane curve K, which is a compact Riemann surface.
Topologically, this Riemann surface is a sphere with g handles, where

g = (d − 1)(d − 2)/2 (A.3)

with d the degree of P . In particular, K has topological genus g, and we indicate
this by writing Kg . However, for notational convenience we use the symbol Kg

instead (i.e., Kg always denotes the corresponding compact Riemann surface).
In general, the projective curve Kg can be singular even though the associated
affine curve K0

g is nonsingular. In this case one has to account for the singularities
at infinity and properly amend the genus formula (A.3) according to results of
Clebsch, M. Noether, and Plücker.

Next, let Kg be a smooth projective curve not containing the point [0, 1, 0]
associated with the homogeneous polynomial P of degree d. Then

P(z, y, 1) = 0

defines y as a multi-valued function of z such that away from ramification points
there correspond precisely d values of y for each value of z ∈ C. The set of finite
ramification points of Kg is given by

{ [z : y : 1] ∈ CP
2 | P(z, y, 1) = Py(z, y, 1) = 0}. (A.4)

Similarly, ramification points at infinity are defined by

{ [1 : y : 0] ∈ CP
2 | P(1, y, 0) = Py(1, y, 0) = 0}. (A.5)

The set of ramification points of Kg is then the union of points in (A.4) and (A.5).
Given the set of ramification points {P1, . . . , Pr }, one can cut the complex plane
along smooth nonintersecting arcs Cq (e.g., straight lines if P1, . . . , Pr are suitably
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situated) connecting Pq and Pq+1 for q = 1, . . . , r − 1, and define holomorphic
functions f1, . . . , fd on the cut plane � = C \⋃r−1

q=1 Cq such that

P(z, y, 1) = 0 for y ∈ � if and only if y = f j (z) for some j ∈ {1, . . . , d}.
This yields a topological construction of Kg by appropriately gluing together d
copies of the cut plane �, the result being a sphere with g handles (g depending
on the order of the ramification points points). If Kg is singular, this procedure
requires appropriate modifications.

There is an alternative description of Kg as a (branched) covering surface of the
Riemann sphere K0 = C∞, which naturally leads to the notion of branch points.
To begin with, we briefly consider the case of a general (not necessarily compact)
Riemann surface. Starting from a (real) two-dimensional connected C0-manifold1

(M,A = (Uα, zα)α∈I ) and a nonconstant map F : M → C∞ such that

F ◦ z−1
α : zα(Uα) → C∞ is nonconstant and holomorphic for all α ∈ I , (A.6)

one defines a maximal atlas A(F) compatible with (A.6). The Riemann surface
RF = (M,A(F)) is then a covering surface2 of C∞ and branch points on RF

are identified with those of F . More precisely, if z = F(P) has a k-fold z0-point3

at P = P0, P0 ∈ RF for some k ∈ N, then P0 is called unbranched (unramified)
for k = 1 and has a branch point (respectively ramification point)4 of order k − 1
(respectively k) for k ≥ 2. The set of branch points of RF will be denoted by
B(RF ). Depending on the branching behavior of P ∈ RF , one then introduces the
following system of charts on RF .

(i) F(P0) = z0 ∈ C : One defines for appropriate C0 > 0

UP0 = {P ∈ RF | |z − z0| < C0}, VP0 = {
ζ ∈ C | |ζ | < C1/k

0

}
,

ζP0 : UP0 → VP0 , P �→ (z − z0)1/k,

ζ−1
P0

: VP0 → UP0 , ζ �→ z0 + ζ k .

1 (M, τ ) is a (real) two-dimensional connected C0-manifold if (M, τ ) is a second countable con-
nected Hausdorff topological space with topology τ , M = ⋃

α∈I Uα , Uα ∈ τ , zα : Uα → C are
homeomorphisms, zα(Uα) is open in C, α ∈ I (an index set), and A is a maximal C0-atlas on M.

2 In this monograph we only deal with covering surfaces of the Riemann sphere K0 = C∞. The study
of special elliptic algebro-geometric solutions of integrable hierarchies, however, is most naturally
connected with covers of the torus K1.

3 F has a k-fold z0-point at P = P0, if for some chart (UP0 , ζP0 ) on RF at P0 with ζP0 (P0) = 0 and
some chart (VP0 , wP0 ) on C∞ at z0 = F(P0) with wP0 (F(P0)) = 0, (wP0 ◦ F ◦ ζ−1

P0
)(ζ ) = ζ k for all

ζ ∈ ζP0 (UP0 ). This includes, of course, the possibility that z0 = ∞.
4 This definition of branch points is not universally adopted. Many monographs distinguish ramification

and branch points in the sense that a branch point is the image of a ramification point under the
covering map. In this monograph we found it convenient to follow the convention used in Farkas and
Kra (1992, Sec. I.2).
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(ii) F(P0) = z0 = ∞ : One defines for appropriate C∞ > 0

UP0 = {P ∈ RF | |z| > C∞}, VP0 = {
ζ ∈ C | |ζ | < C−1/k

∞
}
,

ζP0 : UP0 → VP0 , P �→ z−1/k,

ζ−1
P0

: VP0 → UP0 , ζ �→ ζ−k .

Next, consider an open nonempty and connected subset S of RF over C∞ such
that F is univalent in S, that is, F is analytic in S and takes distinct values at
distinct points of S (thus, F maps S onto a subset F(S) of C∞ in a one-to-one
fashion). If S is maximal with respect to this property (i.e., S cannot be extended
to S̃ 	 S with F univalent on S̃), S is called a sheet of RF . In this manner RF can
be pictured as consisting of finitely many or countably infinitely many sheets over
C∞ that are connected along branch cuts in such a way that RF can be covered
locally by disks (if k = 1 for the center of such disks) and by k-fold disks (if the
center of the disk is a branch point of order k − 1, k ≥ 2). The choice of branch
cuts is largely arbitrary as long as they connect branch points and are non-self-
intersecting. In the special case of compact Riemann surfaces, the total number of
sheets, branch cuts, and branch points is finite.

An important aspect is the possibility of analytic continuation of a given (cir-
cular) function element in C∞ (i.e., a convergent power series expansion in some
disk) along all possible continuous paths on a (covering) Riemann surface RF in
such a way that the resulting function f has algebroidal1 behavior at any point
of RF . More precisely, RF and a function f : RF → C∞ are said to correspond
to each other if f is meromorphic on RF , two function elements of f associated
with two different points on RF over the same point z ∈ C∞ are distinct, and
RF is maximal in the sense that there is no R̃F 	 RF such that these properties
hold with RF replaced by R̃F . The basic fact concerning analytic functions and
corresponding covering Riemann surfaces is then the following: To every function
element ϕ in C∞ there exists a covering Riemann surface RF such that RF and
the analytic function f obtained by analytic continuation of ϕ along any possible
continuous path on RF correspond to each other.

Finally we briefly consider the special case of compact Riemann surfaces, the
case at hand in this monograph. We recall that w = f (z) is called algebraic if
there exists an irreducible polynomial P in two variables such that P(z, w) = 0
for all z ∈ C. The fundamental connection between compact Riemann surfaces and
algebraic functions then reads as follows: f corresponds to a compact Riemann
surface if and only if f is algebraic.

Next, we consider the notion of the meromorphic function field M(RF ) of RF ,
which by definition consists of all analytic maps f : RF → C∞. IfRF corresponds
to an algebraic function in the sense described above, then g : RF → C∞ belongs

1 The function f has algebroidal behavior at P ∈ RF if f (P) = ∑∞
n=−p cn(z − z0)n/k for z0 ∈ Cand

f (P) = ∑∞
n=−q dnz−n/k for z0 = ∞.
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to M(RF ), that is, g ∈ M(RF ), if and only if g(z) is a rational function in the two
variables z and f (z). In addition, if N ∈ N denotes the number of sheets of RF ,
1, f, f 2, . . . , f N−1 forms a basis in M(RF ) and g can be uniquely represented as

g(z) = r0(z) + r1(z) f (z) + · · · + rN−1(z) f (z)N−1

with r j , j = 0, . . . , N − 1 rational functions. Moreover, if f1, f2 ∈ M(RF ), then
Q( f1(z), f2(z)) = 0 for all z ∈ C for some irreducible polynomial Q in two
variables.

We also mention an alternative to (A.3) for computing the topological genus
of RF covering C∞. Denote by N the number of sheets of RF , by B the total
branching number of RF ,

B =
∑
P∈RF

(k(P) − 1) =
∑

P∈B(RF )

(k(P) − 1),

where k(P) − 1 denotes the branching order of P ∈ RF (of course k(P) = 1 for
all but finitely many P ∈ RF ), and by B(RF ) the set of branch points of RF . Then
the topological genus g of RF is given by the Riemann–Hurwitz formula

g = 1 − N + (B/2).

Since hyperelliptic Riemann surfaces are of particular importance to the main
body of this monograph, we end this informal introduction with a precise definition
of this special case.

Definition A.3 A compact Riemann surface is called hyperelliptic if it admits a
meromorphic function of degree two (i.e., a nonconstant meromorphic function
with precisely two poles counting multiplicity).

We will describe hyperelliptic Riemann surfaces Kg of genus g ∈ N as two-
sheeted coverings of the Riemann sphere C∞ branched at 2g + 2 points in great
detail in Appendices B and C. The meromorphic function of degree two alluded to
in Definition A.3 is then given by the projection π̃ , as defined in (B.23) and (C.26).
Here we just add one more brief comment on hyperelliptic curves, the principal
object in the main body of this text. The projective curve

x2
1 x

k−2
0 =

k∏
�=1

(x2 − e�x0), k ∈ N (A.7)

in CP
2 of degree k, with e1, . . . , ek distinct complex numbers, is called elliptic

if k = 3, 4 and hyperelliptic if k ≥ 5. However, to simplify matters, all curves in
(A.7) are usually called hyperelliptic, and this convention is adopted in Definition
A.3. The projective curve (A.7) is smooth (nonsingular) if and only if 1 ≤ k ≤ 3;
if k ≥ 4 it has the unique singular point [0, 1, 0].
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b1

a1

Fig. A.1. Genus g = 1.

b1

b2

a2

a1

Fig. A.2. Genus g = 2. (a j ◦ bk = δ jk)

For most of the remainder of Appendix A, we suppose that Kg is a compact
Riemann surface of genus g ∈ N and choose a homology basis {a j , b j }gj=1 on Kg

in such a way that the intersection matrix of the cycles satisfies

a j ◦ bk = δ j,k, a j ◦ ak = 0, b j ◦ bk = 0, j, k = 1, . . . , g (A.8)

(with a j and bk intersecting to form a right-handed coordinate system, cf. Figures
A.1, A.2). In particular, the first homology group of Kg with integer coefficients
H1(Kg,Z) is the free Abelian group on the generators [a j ], [b j ], j = 1, . . . , g,
where [c] denotes the homology class of the cycle c.

Unless explicitly stated otherwise, it will be assumed that g ≥ 1 for the remain-
der of this appendix.

Turning briefly to meromorphic differentials (1-forms) on Kg , we state the
following result.

Theorem A.4 (Riemann’s period relations) Suppose ω and ν are closed C1

meromorphic differentials (1-forms) on Kg. Then,
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(i)

∫∫

Kg

ω ∧ ν =
g∑
j=1

((∫
a j

ω

)(∫
b j

ν

)
−
(∫

b j

ω

)(∫
a j

ν

))
. (A.9)

If, in addition ω and ν are holomorphic 1-forms on Kg, then

g∑
j=1

((∫
a j

ω

)(∫
b j

ν

)
−
(∫

b j

ω

)(∫
a j

ν

))
= 0. (A.10)

(ii) If ω is a nonzero holomorphic 1-form on Kg, then

Im

( g∑
j=1

(∫
a j

ω

)(∫
b j

ω

))
> 0. (A.11)

The proof of Theorem A.4 is usually based on Stokes’ theorem and a canonical
dissection of Kg along its cycles yielding the simply connected interior K̂g of the
fundamental polygon ∂K̂g given by

∂K̂g = a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 . . . a−1
g b−1

g . (A.12)

Given the cycles {a j , b j }gj=1, we denote by {ω j }gj=1 the corresponding normal-
ized basis of the space of holomorphic differentials (also called Abelian differen-
tials of the first kind) on Kg , that is,

∫
ak

ω j = δ j,k, j, k = 1, . . . , g. (A.13)

The b-periods of ω j are then defined by

τ j,k =
∫
bk

ω j , j, k = 1, . . . , g. (A.14)

Theorem A.4 then implies the following result.

Theorem A.5 The g × g matrix τ = (τ j,k) j,k=1,...,g is symmetric, that is,

τ j,k = τk, j , j, k = 1, . . . , g (A.15)

with a positive definite imaginary part

Im(τ ) = 1

2i
(τ − τ ∗) > 0. (A.16)

Next we briefly study some consequences of a change of homology basis. Let

{a1, . . . , ag, b1, . . . , bg} (A.17)
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be a canonical homology basis on Kg with intersection matrix satisfying (A.8) and

{a′
1, . . . , a

′
g, b

′
1, . . . , b

′
g} (A.18)

a homology basis on Kg related to each other by
(
a′#

b′#

)
= X

(
a#

b#

)
,

where

a# = (a1, . . . , ag)#, b# = (b1, . . . , bg)#,

a′# = (a′
1, . . . , a

′
g)#, b′# = (b′

1, . . . , b
′
g)#,

X =
(
A B
C D

)
,

with A, B,C , and D being g × g matrices with integer entries. Then (A.18) is also
a canonical homology basis on Kg with an intersection matrix satisfying (A.8) if
and only if

X ∈ Sp(g,Z),

where

Sp(g,Z) =
{
X =

(
A B
C D

) ∣∣∣∣ X
(

0 Ig
−Ig 0

)
X# =

(
0 Ig

−Ig 0

)
, det(X ) = 1

}

denotes the symplectic modular group of genus g ∈ N (here A, B,C, D in X are
again g × g matrices with integer entries). If {ω j }gj=1 and {ω′

j }gj=1 are the normal-
ized bases of holomorphic differentials corresponding to the canonical homology
bases (A.17) and (A.18), with τ and τ ′ the associatedb andb′-periods ofω1, . . . , ωg

and ω′
1, . . . , ω

′
g , respectively, one computes

ω′ = ω(A + Bτ )−1, τ ′ = (C + Dτ )(A + Bτ )−1, (A.19)

where ω = (ω1, . . . , ωg), ω′ = (ω′
1, . . . , ω

′
g).

Abelian differentials of the second kind, say ω(2), are characterized by the prop-
erty that all their residues vanish. They will usually be normalized by the vanishing
of all their a-periods (this is achieved by adding a suitable linear combination of
differentials of the first kind)

∫
a j

ω(2) = 0, j = 1, . . . , g. (A.20)
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We may add in this context that the sum of the residues of any meromorphic
differential ν on Kg vanishes, the residue at a pole Q0 ∈ Kg of ν being defined by

res
Q0

(ν) = 1

2π i

∫
γQ0

ν,

where γQ0 is smooth, simple, closed contour, oriented counter-clockwise, encir-
cling Q0 but no other pole of ν.

Theorem A.6 Assume ω
(2)
Q1,n

to be a differential of the second kind on Kg whose

only pole is Q1 ∈ K̂g with principal part ζ
−n−2
Q1

dζQ1 for some n ∈ N0 and ω(1) a
differential of the first kind on Kg of the type ω(1) = ∑∞

m=0 cm(Q1)ζmQ1
dζQ1 near

Q1. Then

1

2π i

g∑
j=1

((∫
a j

ω(1)

)(∫
b j

ω
(2)
Q1,n

)
(A.21)

−
(∫

a j

ω
(2)
Q1,n

)(∫
b j

ω(1)

))
= cn(Q1)

n + 1
, n ∈ N0.

In particular, if ω(2)
Q1,n

is normalized and ω(1) = ω j = ∑∞
m=0 c j,m(Q1)ζmQ1

dζQ1 ,

then the vector of b-periods of ω(2)
Q1,n

/(2π i), denoted by U (2)
n , reads

U (2)
n = (

U (2)
n,1, . . . ,U

(2)
n,g

)
, U (2)

n, j = 1

2π i

∫
b j

ω
(2)
Q1,n

= c j,n(Q1)

n + 1
, (A.22)

n ∈ N0, j = 1, . . . , g.

Any meromorphic differential ω(3) onKg not of the first or second kind is said to be
of the third kind. It is common to normalize ω(3) by the vanishing of its a-periods,
that is, by

∫
a j

ω(3) = 0, j = 1, . . . , g. (A.23)

A normal differential of the third kind, denotedω
(3)
Q1,Q2

, associated with two distinct

points Q1, Q2 ∈ K̂g by definition has simple poles at Q� with residues (−1)�+1,
� = 1, 2, and vanishing a-periods.

Theorem A.7 Suppose ω(3) to be a differential of the third kind onKg whose only
singularities are simple poles at Qn ∈ K̂g with residues cn, n = 1, . . . , N. Denote
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by ω(1) a differential of the first kind on Kg. Then

1

2π i

g∑
j=1

((∫
a j

ω(1)

)(∫
b j

ω(3)

)
−
(∫

b j

ω(1)

)(∫
a j

ω(3)

))

=
N∑
n=1

cn

∫ Qn

Q0

ω(1), (A.24)

where Q0 ∈ K̂g is any fixed base point. In particular, if ω(3) is normalized and
ω(1) = ω j , then

1

2π i

∫
b j

ω(3) =
N∑
n=1

cn

∫ Qn

Q0

ω j , j = 1, . . . , g. (A.25)

Moreover, if ω(3)
Q1,Q2

is a normal differential of the third kind on Kg holomorphic
on Kg \ {Q1, Q2}, then

1

2π i

∫
b j

ω
(3)
Q1,Q2

=
∫ Q1

Q2

ω j , j = 1, . . . , g. (A.26)

We always assume (without loss of generality) that all poles of differentials of
the second and third kind on Kg lie on K̂g (i.e., not on ∂K̂g). This can always be
achieved by an appropriate choice of the cycles a j and b j . Moreover, we assume
that all integration paths on the right-hand sides of (A.24)–(A.26) stay away from
the cycles a j and bk .

Next, we turn to divisors on Kg and the Jacobi variety J (Kg) of Kg . Let M(Kg)
and M1(Kg) denote the set of meromorphic functions (0-forms) and meromorphic
1-forms on Kg , respectively, for some g ∈ N0.

Definition A.8 Let g ∈ N0. Suppose f ∈ M(Kg), ω = h(ζQ0 )dζQ0 ∈ M1(Kg),
and (UQ0 , ζQ0 ) is a chart near some point Q0 ∈ Kg .

(i) If ( f ◦ ζ−1
Q0

)(ζ ) = ∑∞
n=m0

cn(Q0)ζ n for some m0 ∈ Z (which turns out to be
independent of the chosen chart), the order ν f (Q0) of f at Q0 is defined by

ν f (Q0) = m0.

One defines ν f (P) = ∞ for all P ∈ Kg if f is identically zero on Kg .
(ii) If hQ0 (ζQ0 ) = ∑∞

n=m0
dn(Q0)ζ nQ0

for some m0 ∈ Z (which again is indepen-
dent of the chart chosen), the order νω(Q0) of ω at Q0 is defined by

νω(Q0) = m0.

Next, we turn to divisors and introduce some structure on the set of all divisors.
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Definition A.9 Let g ∈ N0.

(i) A divisor D on Kg is a map D : Kg → Z, where D(P) �= 0 for only finitely
many P ∈ Kg . On the set of all divisors Div(Kg) on Kg one introduces the
partial ordering

D ≥ E if D(P) ≥ E(P), P ∈ Kg.

(ii) The degree deg(D) of D ∈ Div(Kg) is defined by

deg(D) =
∑
P∈Kg

D(P).

(iii) D ∈ Div(Kg) is called nonnegative (or effective) if

D ≥ 0,

where 0 denotes the zero divisor 0(P) = 0 for all P ∈ Kg .

(iv) Let D, E ∈ Div(Kg). Then D is called a multiple of E if

D ≥ E .
The divisors D and E are called relatively prime if

D(P)E(P) = 0, P ∈ Kg.

(v) If f ∈ M(Kg) \ {0} and ω ∈ M1(Kg) \ {0}, then the divisor ( f ) of f is
defined by

( f ) : Kg → Z, P �→ ν f (P)

(thus, f is holomorphic if and only if ( f ) ≥ 0) and the divisor of ω is defined
by

(ω) : Kg → Z, P �→ νω(P)

(thus, ω is a differential of the first kind if and only if (ω) ≥ 0). The divisor
( f ) is called a principal divisor, and (ω) a canonical divisor.

(vi) The divisors D, E ∈ Div(Kg) are called equivalent, written D ∼ E , if

D − E = ( f )

for some f ∈ M(Kg) \ {0}. The divisor class [D] of D is defined by

[D] = {E ∈ Div(Kg) | E ∼ D}. (A.27)

Lemma A.10 Let g ∈ N0. Suppose f ∈ M(Kg) and ω ∈ M1(Kg). Then

deg(( f )) = 0
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and

deg((ω)) = 2(g − 1).

Clearly, Div(Kg) forms an abelian group with respect to addition of divisors.
The principal divisors form a subgroup DivP (Kg) of Div(Kg). The quotient group
Div(Kg)/DivP (Kg) consists of the cosets of divisors, the divisor classes defined
in (A.27). Also, the set of divisors of degree zero, Div0(Kg), forms a subgroup
of Div(Kg). Since DivP (Kg) ⊂ Div0(Kg), one can introduce the quotient group
Pic(Kg) = Div0(Kg)/DivP (Kg), which is called the Picard group of Kg .

Definition A.11 Let g ∈ N0, and define

L(D) = { f ∈ M(Kg) | ( f ) ≥ D},
L1(D) = {ω ∈ M1(Kg) | (ω) ≥ D}. (A.28)

Both L(D) and L1(D) are linear spaces over C. We denote their (complex) dimen-
sions by

r (D) = dimL(D), (A.29)

i(D) = dimL1(D). (A.30)

i(D) is also called the index of specialty of D and D is called special (respectively
nonspecial) if i(D) ≥ 1 (respectively i(D) = 0).

Lemma A.12 Let g ∈ N0 and D ∈ Div(Kg). Then deg(D), r (D), and i(D) only
depend on the divisor class [D] ofD (and not on the particular representativeD).
Moreover, for ω ∈ M1(Kg) \ {0} one infers

i(D) = r (D − (ω)), D ∈ Div(Kg).

TheoremA.13 (Riemann–Roch) Let g ∈ N0 andD ∈ Div(Kg). Then r (−D) and
i(D) are finite and

r (−D) = deg(D) + i(D) − g + 1. (A.31)

In particular, Riemann’s inequality

r (−D) ≥ deg(D) − g + 1

holds.

Next we turn to Jacobi varieties and the Abel map.
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Definition A.14 Define the period lattice Lg in C
g by

Lg = {z ∈ C
g | z = n + mτ, n,m ∈ Z

g}. (A.32)

Then the Jacobi variety J (Kg) of Kg is defined by

J (Kg) = C
g/Lg, (A.33)

and the Abel maps are defined by

AQ0
: Kg → J (Kg), P �→ AQ0

(P) = (AQ0,1(P), . . . , AQ0,g(P)) (A.34)

=
(∫ P

Q0

ω1, . . . ,

∫ P

Q0

ωg

)
(mod Lg)

and

αQ0
: Div(Kg) → J (Kg), D �→ αQ0

(D) =
∑
P∈Kg

D(P)AQ0
(P), (A.35)

where Q0 ∈ Kg is a fixed base point and (for convenience only) the same path is
chosen from Q0 to P for all j = 1, . . . , g in (A.34) and (A.35)1.

Clearly, AQ0
is well-defined since changing the path from Q0 to P amounts to

adding a closed cycle whose contribution in the integral (A.34) consists in adding
a vector in Lg . Moreover, αQ0

is a group homomorphism and J (Kg) is a complex
torus of (complex) dimension g that depends on the choice of the homology basis
{a j , b j }gj=1. However, different homology bases yield isomorphic Jacobians.

Theorem A.15 (Abel’s theorem) A divisor D ∈ Div(Kg) is principal if and only
if

deg(D) = 0 and αQ0
(D) = 0. (A.36)

We note that the apparent base point dependence of the Abel map on Q0 in (A.36)
disappears if deg(D) = 0.

Finally, we turn to Riemann theta functions and a constructive approach to the
Jacobi inversion problem. We assume g ∈ N for the remainder of this appendix.

Given the Riemann surfaceKg , the homology basis {a j , b j }gj=1, and the matrix τ

of b-periods of the differentials of the first kind, {ω j }gj=1 (cf. (A.14)), the Riemann
theta function associated with Kg and the homology basis is defined as

θ (z) =
∑
n∈Zg

exp
(
2π i(n, z) + π i(n, nτ )

)
, z ∈ C

g, (A.37)

1 This convention allows one to avoid the multiplicative version of the Riemann–Roch theorem at
various places in this monograph.
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where (u, v) = u v# = ∑g
j=1 u jv j denotes the scalar product in C

g . Because of
(A.16), θ is well-defined and represents an entire function on C

g . Elementary
properties of θ are, for instance,

θ (z1, . . . , z j−1,−z j , z j+1, . . . , zn) = θ(z), z = (z1, . . . , zg) ∈ C
g, (A.38)

θ (z + m + nτ ) = θ (z) exp
(− 2π i(n, z) − π i(n, nτ )

)
, m, n ∈ Z

g, z ∈ C
g.

(A.39)

Lemma A.16 Let ξ ∈ C
g and define

F̂ : K̂g → C, P �→ θ (ξ − ÂQ0
(P)), (A.40)

where

ÂQ0
: K̂g → C

g, (A.41)

P �→ ÂQ0
(P) = (

ÂQ0,1(P), . . . , ÂQ0,g(P)
) =

(∫ P

Q0

ω1, . . . ,

∫ P

Q0

ωg

)
.

Suppose F̂ is not identically zero on K̂g, that is, F̂ �≡ 0. Then F̂ has precisely g
zeros on K̂g counting multiplicities.

Lemma A.16 can be proved by integrating d ln(F̂) along ∂K̂g .
For subsequent use in Remark A.28 we also introduce

α̂Q0
: Div(K̂g) → C

g, D �→ α̂Q0
(D) =

∑
P∈K̂g

D(P) ÂQ0
(P), (A.42)

in addition to ÂQ0
in (A.41).

Theorem A.17 Let ξ ∈ C
g and define F̂ as in (A.40). Assume that F̂ is not

identically zero on K̂g, and let Q1, . . . , Qg ∈ Kg be the zeros of F̂ (multiplicities
included) given by Lemma A.16. Define the corresponding positive divisor DQ of
degree g on Kg by

DQ : Kg → N0, P �→ DQ(P) =
{
m if P occurs m times in {Q1, . . . , Qg},
0 if P /∈ {Q1, . . . , Qg},

Q = {Q1, . . . , Qg} ∈ Symg(Kg), (A.43)

and recall the Abel map αQ0
in (A.35). Then there exists a vector �Q0

∈ C
g, the

vector of Riemann constants, such that

αQ0
(DQ) = (ξ − �Q0

) (mod Lg). (A.44)
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The vector �Q0
= (�Q0,1 , . . . , �Q0,g ) is given by

�Q0, j = (1/2)(1 + τ j, j ) −
g∑

�=1
��= j

∫
a�

ω�(P)
∫ P

Q0

ω j , j = 1, . . . , g. (A.45)

For the proof of Theorem A.17 one integrates ÂP0, j (P)d ln(F̂(P)) along ∂K̂g .
Clearly, �Q0

depends on the base point Q0 and on the choice of the homology
basis {a j , b j }gj=1. In the special hyperelliptic case in which Kg is derived from

F(z, y) = y2 −∏2g
m=0(z − Em) = 0 and {Em}m=0,...,2g are 2g + 1 distinct points

in C, equation (A.45) simplifies to

�P∞, j
= 1

2

(
j +

g∑
k=1

τ j,k

)
, j = 1, . . . , g,

where the base point Q0 has been chosen to be the unique point P∞ of Kg at
infinity.

Remark A.18 Theorem A.17 yields a partial solution of Jacobi’s inversion prob-
lem which can be stated as follows: Given ξ ∈ C

g , find a divisor DQ ∈ Div(Kg)
such that

αQ0
(DQ) = ξ (mod Lg).

Indeed, if F̃( · ) = θ (�Q0
− ÂQ0

( · ) + ξ ) �≡ 0 on K̂g , the zeros Q1, . . . , Qg ∈ K̂g

of F̃ (guaranteed by Lemma A.16) satisfy Jacobi’s inversion problem by (A.44).
Thus, it remains to specify conditions such that F̃ �≡ 0 on K̂g .

TheoremA.19 LetD ∈ Div(Kg) be of degree 2(g − 1), g ∈ N. ThenD is a canon-
ical divisor (i.e., the divisor of a meromorphic differential on Kg) if and only if

αQ0
(D) = −2�Q0

.

Remark A.20 Although θ is well-defined (in fact, entire) on C
g , it is not well-

defined on J (Kg) = C
g/Lg because of (A.39). Nevertheless, θ is a “multiplicative

function” on J (Kg) since the multipliers in (A.39) cannot vanish. In particular, if
z1 = z2 (mod Lg), then θ (z1) = 0 if and only if θ (z2) = 0. Hence, it is meaningful
to state that θ vanishes at points of J (Kg). Since the Abel map AQ0

maps Kg into
J (Kg), the function θ (ξ − AQ0

(P)) for ξ ∈ C
g becomes a multiplicative function

on Kg . Again it makes sense to say that θ (ξ − AQ0
( · )) vanishes at points of Kg . In

particular, Lemma A.16 and Theorem A.17 extend to the case where F̂ is replaced
by F : Kg → C, P �→ θ (ξ − AQ0

(P)).
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In the following we use the obvious notation

X + Y = {(x + y) ∈ J (Kg) | x ∈ X, y ∈ Y },
−X = {−x ∈ J (Kg) | x ∈ X}, (A.46)

X + z = {(x + z) ∈ J (Kg) | x ∈ X},
for X, Y ⊂ J (Kg) and z ∈ J (Kg). Furthermore, we identify the mth symmetric
power of Kg , denoted Symm(Kg), with the set of nonnegative divisors of degree
m ∈ N on Kg . For notational convenience, the restriction of the Abel map to
Symm(Kg) (i.e., its restriction to the set of nonnegative divisors of degree m)
will be denoted by the same symbol αQ0

. Moreover, we introduce the convenient
notation

DQ0Q = DQ0 + DQ, DQ = DQ1 + · · · + DQm , (A.47)

Q = {Q1, . . . , Qm} ∈ Symm(Kg), Q0 ∈ Kg, m ∈ N,

where for any Q ∈ Kg ,

DQ : Kg → N0, P �→ DQ(P) =
{

1 for P = Q,

0 for P ∈ Kg \ {Q}. (A.48)

Definition A.21

(i) Define

W 0 = {0} ⊂ J (Kg), Wn,Q0
= αQ0

(Symn(Kg)), n ∈ N.

(ii) Q ∈ Kg is called a Weierstrass point of Kg if i(gDQ) ≥ 1, where gDQ =∑g
j=1 DQ .

Remark A.22

(i) Since i(DP ) = 0 for all P ∈ K1, K1 has no Weierstrass points.
(ii) If g ≥ 2 and Kg is hyperelliptic, Kg has precisely 2g + 2 Weierstrass points.

In particular, if Kg is given as a double cover of the Riemann sphere C∞, then
the Weierstrass points of Kg are precisely its 2g + 2 branch points.

(iii) If g ≥ 3 and Kg is not hyperelliptic, then the number N of Weierstrass points
of Kg satisfies the inequality

2g + 2 ≤ N ≤ g3 − g.

(iv) Special divisors DQ with deg(Q) = N ≥ g and Q = {Q1, . . . , QN } ∈ SymN

(Kg) are the critical points of the Abel map αQ0
: SymN (Kg) → J (Kg), that

is, the set of points D at which the rank of the differential dαQ0
is less than g.
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(v) Although Symm(Kg) �⊂ Symn(Kg) for m < n, one has Wm,Q0
⊆ Wn,Q0

for
m < n. Thus, Wn,Q0

= J (Kg) for n ≥ g by Theorem A.25 below.

TheoremA.23 The set, = Wg−1,Q0
+ �Q0

⊂ J (Kg), the so-called theta divisor,
is the complete set of zeros of θ on J (Kg), that is,

θ (X ) = 0 if and only if X ∈ , (A.49)

(i.e., if and only if X = (
αQ0

(D) + �Q0

)
(mod Lg) for some D ∈ Symg−1(Kg)).

The theta divisor , has complex dimension g − 1 and is independent of the base
point Q0.

Theorem A.24 (Riemann’s vanishing theorem) Let ξ ∈ C
g.

(i) If θ (ξ ) �= 0, then there exists a unique D ∈ Symg(Kg) such that

ξ = (
αQ0

(D) + �Q0

)
(mod Lg) (A.50)

and

i(D) = 0.

(ii) If θ (ξ ) = 0 and g = 1, then

ξ = � (mod L1) = (1 + τ )/2 (mod L1), L1 = Z + τZ, −iτ > 0.

(iii) Assume θ (ξ ) = 0 and g ≥ 2. Let s ∈ N with s ≤ g − 1 be the smallest inte-
ger such that θ (Ws,Q0

− Ws,Q0
− ξ ) �= 0 (i.e., there exist E,F ∈ Syms(Kg)

with E �= F such that θ(αQ0
(E) − αQ0

(F) − ξ ) �= 0). Then there exists a
D ∈ Symg−1(Kg) such that

ξ = (
αQ0

(D) + �Q0

)
(mod Lg) (A.51)

and

i(D) = s.

All partial derivatives of θ with respect to AQ0, j for j = 1, . . . , g of order
strictly less than s vanish at ξ , whereas at least one partial derivative of θ
of order s is nonzero at ξ . Moreover, s ≤ (g + 1)/2, and the integer s is the
same for ξ and −ξ .

Note that there is no explicit reference to the base point Q0 in the formulation of
Theorem A.24 since the set Ws,Q0

− Ws,Q0
⊂ J (Kg) (cf. (A.46)) is independent

of the base point Q0, whereas Ws,Q0
alone is obviously not.
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Theorem A.25 (Jacobi’s inversion theorem) The Abel map restricted to the set
of nonnegative divisors, αQ0

: Symg(Kg) → J (Kg) is surjective. More precisely,
given ξ̃ = (ξ + �Q0

) ∈ C
g, the divisorsD in (A.50) and (A.51) (respectivelyD =

DQ0 if g = 1) solve the Jacobi inversion problem for ξ ∈ C
g.

A special case of this analysis can be summarized as follows. Consider the
function

G( · ) = θ
(
�Q0

− AQ0
( · ) +

g∑
j=1

AQ0
(Q j )

)
, Q j ∈ Kg, j = 1, . . . , g

on Kg . Then

G(Qk) = θ (�Q0
+

g∑
j=1
j �=k

AQ0
(Q j ))

= θ
(
�Q0

+ αQ0
(D(Q1,...,Qk−1,Qk+1,...,Qg))

) = 0, k = 1, . . . , g

by Theorem A.23. Moreover, by Lemma A.16, Remark A.20, and Theorem A.24,
the points Q1, . . . , Qg are the only zeros ofG onKg if and only ifDQ is nonspecial,
that is, if and only if

i(DQ) = 0, Q = {Q1, . . . , Qg} ∈ Symg(Kg).

Conversely, G ≡ 0 on Kg if and only if DQ is special, that is, if and only if
i(DQ) ≥ 1. Thus, one obtains the following fact.

Theorem A.26 Let Q = {Q1, . . . , Qg} ∈ Symg(Kg) and assume DQ to be non-
special, that is, i(DQ) = 0. Then

θ
(
�Q0

− AQ0
(P) + αQ0

(DQ)
) = 0 if and only if P ∈ {Q1, . . . , Qg}.

We also mention the elementary change in the Abel map and in Riemann’s
vector if one changes the base point,

AQ1
= (

AQ0
− AQ0

(Q1)
)

(mod Lg), (A.52)

�Q1
= (

�Q0
+ (g − 1)AQ0

(Q1)
)

(mod Lg), Q0, Q1 ∈ Kg. (A.53)

Remark A.27 The Lg quasi-periodic holomorphic function θ on C
g can be used

to construct Lg periodic, meromorphic functions f on C
g as follows. Either
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(i)

f (z) =
N∏
j=1

θ (z + c j )

θ(z + d j )
, z, c j , d j ∈ C

g, j = 1, . . . , N ,

where

N∑
j=1

c j =
N∑
j=1

d j (mod Z
g),

or
(ii)

f (z) = ∂z j ln

(
θ (z + e)

θ(z + h)

)
, j = 1, . . . , g, z, e, h ∈ C

g,

or
(iii)

f (z) = ∂2
z j zk ln θ(z), z ∈ C

g, j, k = 1, . . . , g.

Then, indeed, in all cases (i)–(iii),

f (z + m + nτ ) = f (z), z ∈ C
g, m, n ∈ Z

g

holds by (A.39).

Remark A.28 In the main text we frequently deal with theta function expressions
of the type

φ(P) = θ (�Q0
− AQ0

(P) + αQ0
(D1))

θ (�Q0
− AQ0

(P) + αQ0
(D2))

exp

(∫ P

Q0

ω
(3)
Q1,Q2

)
, P ∈ Kg (A.54)

and

ψ(P) = θ (�Q0
− AQ0

(P) + αQ0
(D1))

θ (�Q0
− AQ0

(P) + αQ0
(D2))

exp

(
− c

∫ P

Q0

�(2)

)
, P ∈ Kg,

(A.55)

where D j ∈ Symg(Kg), j = 1, 2, are nonspecial positive divisors of degree g,
c ∈ C is a constant, Q j ∈ Kg \ {P∞1 , . . . , P∞N }, where {P∞1 , . . . , P∞N }, N ∈ N,
denotes the set of points of Kg at infinity, ω(3)

Q1,Q2
is a normal differential of the

third kind, and �(2) a normalized differential of the second kind with singularities
contained in {P∞1 , . . . , P∞N }. In particular, one has

∫
a j

ω
(3)
Q1,Q2

=
∫
a j

�(2) = 0, j = 1, . . . , g. (A.56)

Even though we agree always to choose identical paths of integration from P0 to
P in all Abelian integrals (A.54) and (A.55), this is not sufficient to render φ and
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ψ single-valued on Kg . To achieve single-valuedness, one needs to replace Kg by
its simply connected canonical dissection K̂g and then replace AQ0

, αQ0
in (A.54)

and (A.55) with ÂQ0
, α̂Q0

, as introduced in (A.41) and (A.42). In particular, one

regards a j , b j as curves (being a part of ∂K̂g , cf. (A.12)) and not as homology
classes [a j ], [b j ] in H1(Kg,Z). Similarly, one then replaces �Q0

by �̂Q0
, etc.

Moreover, to render φ single-valued on K̂g , one needs to assume in addition that

α̂Q0
(D1) − α̂Q0

(D2) = 0 (A.57)

(as opposed to merely αQ0
(D1) − αQ0

(D2) = 0 (mod Lg)). Similarly, in connec-
tion with ψ , one introduces the vector of b-periods U (2) of �(2) by

U (2) = (U (2)
1 , . . . ,U (2)

g ), U (2)
j = 1

2π i

∫
b j

�(2), j = 1, . . . , g, (A.58)

and then renders ψ single-valued on K̂g by requiring

α̂Q0
(D1) − α̂Q0

(D2) = cU (2) (A.59)

(as opposed to merely αQ0
(D1) − αQ0

(D2) = cU (2) (mod Lg)). These statements
easily follow from (A.26) and (A.39) in the case of φ and simply from (A.39) in
the case of ψ . In fact, by (A.39),

α̂Q0
(D1 + DQ1 ) − α̂Q0

(D2 + DQ2 ) ∈ Z
g, (A.60)

respectively,

α̂Q0
(D1) − α̂Q0

(D2) − cU (2) ∈ Z
g, (A.61)

suffice to guarantee single-valuedness of φ, respectively ψ , on K̂g . Without the
replacement of AQ0

and αQ0
by ÂQ0

and α̂Q0
in (A.54) and (A.55) and the as-

sumptions (A.57) and (A.59) (or (A.60) and (A.61)), φ and ψ are multiplicative
(multi-valued) functions on Kg and are then most effectively discussed by intro-
ducing the notion of characters on Kg . For simplicity, we decided to avoid the
latter possibility and throughout this text will always tacitly assume (A.57) and
(A.59) without particularly emphasizing this convention each time it is used.

RemarkA.29 Let ξ ∈ J (Kg) be given, assume that θ (�Q0
− AQ0

( · ) + ξ ) �≡ 0 on
Kg , and suppose that α−1

Q0
(ξ ) = {Q1, . . . , Qg} ∈ Symg(Kg) is the unique solution

of Jacobi’s inversion problem. Let f ∈ M(Kg) \ {0}, and suppose f (Q j ) �= ∞ for
j = 1, . . . , g. Then ξ uniquely determines the values f (Q1), . . . , f (Qg). More-
over, any symmetric function of these values is a single-valued meromorphic func-
tion of ξ ∈ J (Kg), that is, an Abelian function on J (Kg). Any such meromorphic
function on J (Kg) can be expressed in terms of the Riemann theta function on Kg .
For instance, for the elementary symmetric functions of the second kind (Newton
polynomials) one obtains from the residue theorem in analogy to the proof of
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Lemma A.16 that

g∑
j=1

f (Q j )
n =

g∑
j=1

∫
a j

f (P)nω j (P)

−
∑
Pr∈Kg
f (Pr )=∞

res
P=Pr

(
f (P)nd ln

(
θ
(
�Q0

− AQ0
(P) + αQ0

(DQ)
)))

,

Q = {Q1, . . . , Qn} ∈ Symn(Kg). (A.62)

Here an appropriate homology basis {a j , b j }gj=1, avoiding {Q1, . . . , Qg} and the
poles {Pr } of f , has been chosen.

In the special case of hyperelliptic Riemann surfaces, special divisors are char-
acterized as follows. Denote by ∗ : Kg → Kg the sheet exchange map (involution)

∗ : Kg → Kg, [x2 : x1 : x0] �→ [x2 : −x1 : x0].

Theorem A.30 Suppose Kg is a hyperelliptic Riemann surface of genus g ∈ N

and DQ ∈ Symg(Kg) with Q = {Q1, . . . , Qg} ∈ Symg(Kg). Then

1 ≤ i(DQ) = s

if and only if there are s pairs of the type {P, P∗} ⊆ {Q1, . . . , Qg}. (This includes,
of course, branch points of Kg for which P = P∗.) Obviously, one has s ≤ g/2.

We add one more result in connection with hyperelliptic Riemann surfaces.

Theorem A.31 Suppose Kg is a hyperelliptic Riemann surface of genus g ∈ N,
Dµ̂ ∈ Symg(Kg) is nonspecial, µ̂ = {µ̂1, . . . , µ̂g}, and µ̂g+1 ∈ Kg with µ̂∗

g+1 �∈
{µ̂1, . . . , µ̂g}. Let {λ̂1, . . . , λ̂g+1} ⊂ Kg with Dλ̂λ̂g+1

∼ Dµ̂µ̂g+1 (i.e., Dλ̂λ̂g+1
∈

[Dµ̂µ̂g+1 ]). Then any g points ν̂ j ∈ {λ̂1, . . . , λ̂g+1}, j = 1, . . . , g define a nonspe-
cial divisor Dν̂ ∈ Symg(Kg), ν̂ = {ν̂1, . . . , ν̂g}.

Proof Since i(DP ) = 0 for all P ∈ K1, there is nothing to be proven in the special
case g = 1. Hence, we assume g ≥ 2. Let Q0 ∈ B(Kg) be a fixed branch point
of Kg and suppose that Dν̂ is special. Then by Theorem A.30 there is a pair
{ν̂, ν̂∗} ⊂ {ν̂1, . . . , ν̂g} such that

αQ0
(Dν̂) = αQ0

(Dν̂),

where ν̂ = {ν̂1, . . . , ν̂g} \ {ν̂, ν̂∗} ∈ Symg−2(Kg). Let ν̂g+1 ∈ {λ̂1, . . . , λ̂g+1} \
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{ν̂1, . . . , ν̂g} so that {ν̂1, . . . , ν̂g+1} = {λ̂1, . . . , λ̂g+1} ∈ Symg+1(Kg). Then

αQ0
(Dν̂ν̂g+1 ) = αQ0

(Dν̂ν̂g+1 ) = αQ0
(Dλ̂λ̂g+1

)

= αQ0
(Dµ̂µ̂g+1 ) = −AQ0

(µ̂∗
g+1) + αQ0

(Dµ̂), (A.63)

and hence by Theorem A.23 and (A.63),

0 = θ (�Q0
+ αQ0

(Dν̂ν̂g+1 )) = θ (�Q0
− AQ0

(µ̂∗
g+1) + αQ0

(Dµ̂)). (A.64)

Since by hypothesisDµ̂ is nonspecial and µ̂∗
g+1 �∈ {µ̂1, . . . , µ̂g}, (A.64) contradicts

Theorem A.26. Thus, Dν̂ is nonspecial. �

We conclude this appendix with a brief summary of Riemann surfaces with
symmetries, which is a topic of fundamental importance in characterizing real-
valued algebro-geometric solutions of the KdV, sGmkdV, and CH hierarchies, as
well as algebro-geometric solutions of the nS± hierarchy and the massive Thirring
system.

Assuming Kg to be a compact Riemann surface of genus g, let

ρ : Kg → Kg

be an antiholomorphic involution on Kg (i.e., ρ2 = id |Kg ). Moreover, let

R = {P ∈ Kg | ρ(P) = P}
be the set of fixed points of ρ (sometimes called the set of “real” points of Kg) and
denote by r the number of nontrivial connected components of R. Topologically,
these connected components are circles.

TheoremA.32 Let ρ be an antiholomorphic involution onKg. Then eitherKg \ R
is connected (and then the quotient space (the Klein surface) Kg/ρ is nonori-
entable) or Kg \ R consists precisely of two connected components (and then
Kg/ρ is orientable). In the latter case, if R �= ∅, Kg ∪ R is a bordered Riemann
surface and (Kg, ρ) is the complex double of Kg ∪ R.

Definition A.33 Suppose ρ is an antiholomorphic involution on Kg . Define

ε =
{
+ if Kg \ R is disconnected,

− if Kg \ R is connected.

The pair (Kg, ρ) is called a symmetric Riemann surface; the triple (g, r, ε) denotes
the type of (Kg,R). If ε = +, (Kg, ρ) is of dividing (separating) type; if ε = −,
(Kg, ρ) is of nondividing (nonseparating) type.
If r = g + 1, then Kg is called an M-curve.
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Theorem A.34 Assume ρ is an antiholomorphic involution on Kg.

(i) If ε = +, then 1 ≤ r ≤ g + 1, r = g + 1 (mod 2), g = r − 1 + 2k, 0 ≤ k ≤
(g + 1 − r )/2.

(ii) If ε = −, then 0 ≤ r ≤ g.
(iii) If r = 0, then ε = −. If r = g + 1, then ε = +.

Example A.35

(i) Consider the hyperelliptic Riemann surface Kg : y2 = ∏2g+1
m=0 (z − Em) with

Em ,
m = 0, . . . , 2g + 1, grouped into k real and � complex conjugate pairs, k +
� = g + 1. Define the antiholomorphic involution ρ+ : (z, y) �→ (z, y) onKg .
If (Kg, ρ+) is of dividing type (g, r,+), then either r = g + 1 = k and � = 0
(if Em ∈ R, m = 0, . . . , 2g + 1), or else, r = 1 if g is even and r = 2 if g
is odd if none of the Em are real (and hence only occur in complex conju-
gate pairs). In particular, if

∏2g+1
m=0 (z − Em) contains 2r > 0 real roots, then

(Kg, ρ+) is of type (g, r,+) if and only if r = g + 1 and of type (g, r,−) if
and only if 1 ≤ r ≤ g. If (Kg, ρ+) is of nondividing type, then r = k (and of
course 1 ≤ r ≤ g).

(ii) The hyperelliptic Riemann surfaces Kg : y2 = ±∏g
m=0 |z − Ẽm |2 are of the

type (g, 0,−) with respect to the antiholomorphic involutions ρ± : (z, y) �→
(z,±y), respectively, since R = ∅, r = 0 in either case.

(iii) Consider the hyperelliptic Riemann surface Kg : y2 = ∏2g
m=0(z − Em) with

E0 ∈ R and Em , m = 1, . . . , 2g, grouped into k real and � complex con-
jugate pairs, k + � = g. In addition, define the antiholomorphic involution
ρ+ : (z, y) �→ (z, y) on Kg . Then (Kg, ρ+) is of dividing type (g, r,+) if and
only if r = g + 1 = k + 1 and � = 0 (and hence Em ∈ R,m = 0, . . . , 2g). If
(Kg, ρ+) is of nondividing type, then r = k + 1 (and of course 1 ≤ r ≤ g).

In the following it is convenient to abbreviate

diag(M) = (M1,1, . . . ,Mg,g)

for a g × g matrix M with entries in C.

Theorem A.36 Let (Kg, ρ) be a symmetric Riemann surface.

(i) There exists a canonical homology basis {a j , b j }gj=1 on Kg with intersection
matrix (A.8) and a symmetric g × g matrix R such that the 2g × 2g matrix
S of complex conjuguation of the action of ρ on H1(Kg,Z) in this basis is
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given by

S =
(
Ig R
0 −Ig

)
, R# = R,

that is,

(ρ(a), ρ(b)) = (a, b)

(
Ig R
0 −Ig

)
= (a, aR − b),

a = (a1, . . . , ag), b = (b1, . . . , bg),

ρ(a) = (ρ(a1), . . . , ρ(ag)), ρ(b) = (ρ(b1), . . . , ρ(bg)),

where R is of the following form1.
IfR �= ∅ and Kg \ R is disconnected,

R =




σ1

. . .

σ1

0
. . .

0




, rank(R) = g + 1 − r (A.65)

(in particular, R = 0 if r = g + 1).
IfR �= ∅ and Kg \ R is connected,

R =
(
Ig+1−r

0

)
, rank(R) = g + 1 − r (A.66)

(in particular, R = 0 if r = g + 1).
IfR = ∅ and g is even,

R =



σ1

. . .

σ1


 , rank(R) = g (A.67)

(in particular, R = 0 if g = 0).
IfR = ∅ and g is odd,

R =




σ1

. . .

σ1

0


 , rank(R) = g − 1 (A.68)

1 Blank entries are representing zeros in the matrices (A.65)–(A.68). Moreover, 0 in (A.65) and (A.68)
denotes a 1 × 1 element, whereas 0 in (A.66) represents a (r − 1) × (r − 1) block matrix (which is
absent for r = 1).



Algebraic Curves and Their Theta Functions in a Nutshell 353

(in particular, R = 0 if g = 1).
Here σ1 denotes the 2 × 2 Pauli matrix

σ1 =
(

0 1
1 0

)
.

(ii) Given the basis of cycles {a j , b j }gj=1 of item (i), introduce the corresponding
basis {ω j }gj=1 of normalized holomorphic differentials satisfying (A.13) and
define the associated matrix τ of b-periods as in (A.14) and the Riemann theta
function θ as in (A.37). Then, ω j , j = 1, . . . , g, are ρ-real, that is,

ρ∗ω j = ω j , j = 1, . . . , g, (A.69)

where ρ∗ω denotes the pull back1 of a meromorphic differential ω by the
involution ρ. Moreover,

τ = R − τ, Re(τ ) = (1/2)R, (A.70)

θ (z) = θ
(
z + (1/2)diag(R)

)
, z ∈ C

g, (A.71)

�Q0
= �Q0

+ (1/2)diag(R) + (g − 1)αQ0
(ρ(Q0)). (A.72)

Finally, assume R �= ∅, Kg \ R is disconnected (cf. (A.65)), x ∈ R
g, χm ∈

{0, 1}, m = � + 1, . . . , g, � = rank(R). Then

θ (i x + (1/2)(0, . . . , 0, χ�+1, . . . , χg)) �= 0

if and only if χm = 0, m = � + 1, . . . , g. (A.73)

Assuming P0 to be a Weierstrass point ofKg (implying g ≥ 2),�P0
is a half-period,

that is,

�P0
= −�P0

(mod Lg), (A.74)

�P0
= β + γ τ, β, γ ∈ (1/2)Zg.

In this case (A.70) implies in addition to (A.72) and (A.74) that

�P0
= −�P0

(mod Z
g). (A.75)

In the context of the hyperelliptic Riemann surfaces described as two-sheeted
covers of the Riemann sphere C∞ in Appendices B and C, equation (A.75) remains
valid if P0 is any of the associated 2g + 2 branch points, g ∈ N.

Notes

The bulk of the material of this appendix is standard and taken from textbooks.
The one we relied on most was Farkas and Kra (1992). Moreover, we used material
1 If ω = f (ζ )dζ , then ρ∗ω = f (ρ(ζ ))dρ(ζ ) and

∫
γ
ρ∗ω = ∫

ρ(γ ) ω, γ ∈ H1(Kg,Z). In particular, if

ω is ρ-real, that is, ρ∗(ω) = ω, then
∫
γ
ω = ∫

ρ(γ ) ω, γ ∈ H1(Kg,Z).
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from Mumford (1983, Ch. II; 1984, Ch. IIIa) (concerning divisors on hyper-
elliptic Riemann surfaces constructed originally in Jacobi (1846)) and Behnke
and Sommer (1965) (in connection with covering Riemann surfaces). In ad-
dition, the following well-known sources make for great collateral reading on
various topics relevant to the applications discussed in this monographs: Fay
(1973), Forsyth (1965), Griffiths (1989), Griffiths and Harris (1978), Gunning
(1972), Hofmann (1888), Kirwan (1992), Markushevich (1992), Miranda (1995),
Narasimhan (1992), Rauch and Farkas (1974), Reyssat (1989), Rodin (1988),
Schlichenmaier (1989), Shokurov (1994), Siegel (1988b), Springer (1981), and
the recently reprinted classical treatise by Baker (1995). Finally, there are various
reviews on compact Riemann surfaces and their associated theta functions. A mas-
terpiece in this connection that is still of great relevance is Dubrovin (1981). In
addition, we call attention to the following reviews: Bost (1992), Korotkin (1998),
Lewittes (1964), Rodin (1987), Smith (1989), and Taimanov (1997).

That different homology bases yield isomorphic Jacobians, as alluded to after
Definition A.14, is discussed, for instance, in Farkas and Kra (1992, p. 137) and
Gunning (1966, Sec. 8(b)). For a detailed discussion of multiplicative (multi-
valued) functions in connection with Remark A.28 (a topic we circumvent in this
monograph), refer to Farkas and Kra (1992, Secs. III.9, VI.2). Theorem A.30 can
be found in Krazer (1970, Sec. X.3).

Finally, the material on symmetric Riemann surfaces is mainly taken from Gross
and Harris (1981) and Vinnikov (1993). In particular, Theorem A.36 is proved in
Vinnikov (1993) (compare Alpay and Vinnikov (2002) for the proof of (A.71)).
The case is R �= ∅, and Kg \ R disconnected is treated in Fay (1973, Ch. VI).
Classical sources for this material are Comessatti (1924), Harnack (1876), Klein
(1893), and Weichold (1883). For modern treatments of this subject, refer to Fay
(1973, Ch. VI), Gross and Harris (1981), Natanzon (1980; 1990), Silhol (1982),
and Wilson (1978); applications to algebro-geometric solutions can be found, for
instance, in Date (1982), Dubrovin (1982b; 1983), Dubrovin and Natanzon (1982),
Natanzon (1995), Taimanov (1990c), and Zhivkov (1989; 1994).
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Hyperelliptic Curves of the KdV-Type

. . . et il reste là un domaine restreint où continuent à s’exercer avec
bonheur de nombreux amateurs (géométrie du triangle, du tétraèdre,
des courbes et surfaces algébriques de bas degré, etc.). Mais pour le
mathématicien professionnel, la mine est tarie, . . .

Nicolas Bourbaki1

We briefly summarize the basics of hyperelliptic KdV-type curves (i.e., those
branched at infinity) as employed in Chapters 1 and 2 in connection with the
KdV and sGmKdV hierarchies. We freely use the notation and results collected in
Appendix A.

Fix n ∈ N0. We are going to construct the hyperelliptic Riemann surface Kn of
(arithmetic) genus n associated with the KdV-type curve (1.20), that is, associated
with the polynomial

Fn(z, y) = y2 − R2n+1(z) = 0,

R2n+1(z) =
2n∏
m=0

(z − Em), {Em}m=0,...,2n ⊂ C.
(B.1)

At this point we explicitly permit Em = Em ′ for somem,m ′ ∈ {0, . . . , 2n} in order
to include curves with a singular affine part. Next, we introduce an appropriate set
of (at most) n (nonintersecting) cuts C j , joining Em( j) and Em ′( j), and C∞, joining
E2n and ∞, and denote

C =
⋃

j∈J∪{∞}
C j , C j ∩ Ck = ∅, j �= k,

where the finite index set J ⊆ {1, . . . , n} has at most cardinality n. Define the cut
plane

� = C \ C
1 Éléments de Mathématique, XXIV, Algèbre, Ch. 9, Formes sesquilinéaires et formes quadratiques,

Hermann, Paris, 1973, p. 196. (“ . . . and there remains a restricted domain where amateurs continue
to practice with happiness (geometry of the triangle, the tetrahedron, algebraic curves and surfaces
of low degree, etc.). But for the professional mathematician the well is dry, . . . ”)
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and introduce the holomorphic function

R2n+1( · )1/2 : � → C, z �→
( 2n∏
m=0

(z − Em)

)1/2

(B.2)

on � with an appropriate choice of the square root branch in (B.2). Next, define

Mn = {(z, σ R2n+1(z)1/2) | z ∈ C, σ ∈ {1,−1}} ∪ {P∞}

by extending R2n+1( · )1/2 to C and joining P∞, the point at infinity. To describe
charts on Mn we need to introduce more notation. Let Q0 ∈ Mn , UQ0 ⊂ Mn

a neighborhood of Q0, ζQ0 : UQ0 → VQ0 ⊂ C a homeomorphism defined below,
and write

Q0 = (z0, σ0R2n+1(z0)1/2) or Q0 = P∞,

Q = (z, σ R2n+1(z)1/2) ∈ UQ0 ⊂ Mn, VQ0 = ζQ0 (UQ0 ) ⊂ C.

Branch points and/or singular points on Mn are defined by

Bs(Kn) = {(Em, 0)}m=0,...,2n ∪ {P∞},

with (Em, 0) being a branch point on Mn if (Em, 0) occurs an odd number of times
in Bs(Kn). If (Em, 0) occurs an even number of times in Bs(Kn) or an odd number
of times larger or equal to three, then (Em, 0) is a singular point onMn . The branch
point P∞ is nonsingular for n = 0 and 1 and singular for n ≥ 2. Charts on Mn are
now introduced by distinguishing three different cases; (i) Q0 ∈ Mn \ Bs(Kn), (ii)
Q0 = P∞, and (iii) Q0 = (Em, 0) for some m = 0, . . . , 2n.

(i) Q0 ∈ Mn \ Bs(Kn): Then one defines

UQ0 = {Q ∈ Mn | |z − z0| < C0}, C0 = min
m=0,...,2n

|z0 − Em |, (B.3)

where σ R2n+1(z)1/2 is the branch obtained by straight line analytic contin-
uation starting from z0,

VQ0 = {ζ ∈ C | |ζ | < C0} (B.4)

and

ζQ0 : UQ0 → VQ0 , Q �→ (z − z0) (B.5)

with inverse

ζ−1
Q0

: VQ0 → UQ0 , ζ �→ (z0 + ζ, σ R2n+1(z0 + ζ )1/2). (B.6)
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(ii) Q0 = P∞: Here one introduces

UP∞ = {Q ∈ Mn | |z| > C∞}, C∞ = max
m=0,...,2n

|Em |, (B.7)

VP∞ = {ζ ∈ C | |ζ | < C−1/2
∞ }, (B.8)

and

ζP∞ : UP∞ → VP∞ , Q �→ σ/z1/2, P∞ �→ 0, (B.9)

σ ∈ {1,−1}, z1/2 = |z1/2| exp
(
(i/2) arg(z)

)
, 0 ≤ arg(z) < 2π

with inverse

ζ−1
P∞ : VP∞ → UP∞ , ζ �→

(
ζ−2,

( 2n∏
m=0

(1 − Emζ
2)

)1/2

ζ−2n−1

)
, (B.10)

0 �→ P∞,

where the square root is chosen such that

( 2n∏
m=0

(1 − Emζ
2)

)1/2

= 1 − 1

2

( 2n∑
m=0

Em

)
ζ 2 + O(ζ 4). (B.11)

(iii) Q0 = (Em0 , 0): Here we have to distinguish two subcases: (iiia), where Q0

is a branch point and possibly a singular point, and (iiib), where Q0 is a
singular point but not a branch point.

(iiia) Define

UQ0 = {Q ∈ Mn | |z − Em0 | < Cm0}, (B.12)

Cm0 =




min
m=0,...,2n
m �=m0

|Em − Em0 |, n ∈ N,

∞, n = 0,

VQ0 = {
ζ ∈ C | |ζ | < C1/2

m0

}
(B.13)

and

ζQ0 : UQ0 → VQ0 , Q �→ σ (z − Em0 )1/2, σ ∈ {1,−1} (B.14)

with inverse

ζ−1
Q0

: VQ0 → UQ0 , ζ �→


Em0 + ζ 2,




2n∏
m=0
m �=m0

(Em0 − Em + ζ 2)




1/2

ζ




(B.15)
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Fig. B.1. Genus n = 1.

for which the square root branches are chosen to yield compatibility with
the charts in (B.3)–(B.15).

(iiib) Here we proceed as in case (i); the branch σ R2n+1(z)1/2 needs to be chosen
to yield compatibility with the charts in (B.3)–(B.6) and (B.7)–(B.11).

The set Mn and the complex structure (B.3)–(B.15) just defined then yield a
compact Riemann surface of arithmetic genus n, which we denoted by Kn in
Appendix A. To simplify the notation we use the symbol Kn to denote both the
affine curve (B.1) and its projective closure Kn throughout major parts of this
monograph. If the zeros Em of R2n+1 are all distinct,

Em �= Em ′ , m �= m ′, m,m ′ = 0, . . . , 2n, (B.16)

Kn is a compact hyperelliptic Riemann surface of topological genus n. The con-
struction of Kn is sketched in Figure B.1 in the genus n = 1 case. A typical
homology basis on Kn in the genus n = 3 case is depicted in Figure B.2.

Due to its importance in connection with spectral theoretic considerations, we
now take a closer look at a particular self-adjoint case in which all zeros Em of
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R2n+1 in (B.1) are real and distinct, that is,

E0 < E1 < · · · < E2n. (B.17)

In this case,

C1 = [E0, E1], . . . , Cn = [E2n−2, E2n−1], C∞ = [E2n,∞),

and the square root branch in (B.2) is chosen according to

R2n+1(λ)1/2 = lim
ε↓0

R2n+1(λ + iε)1/2, λ ∈ C, (B.18)

and

R2n+1(λ)1/2

= |R2n+1(λ)1/2|




(−1)ni for λ ∈ (−∞, E0),

(−1)n+ j i for λ ∈ (E2 j−1, E2 j ), j = 1, . . . , n,

(−1)n+ j for λ ∈ (E2 j , E2 j+1), j = 0, . . . , n − 1,

1 for λ ∈ (E2n,∞),

λ ∈ R. (B.19)

The square root branches in (B.14) and (B.15) are then defined by

(z − Em0 )1/2 = |(z − Em0 )1/2| exp
(
(i/2) arg(z − Em0 )

)
,

arg(z − Em0 ) ∈
{

[0, 2π ) for m0 even,

(−π, π ] for m0 odd,



2n∏
m=0
m �=m0

(Em0 − Em + ζ 2)




1/2

= (−1)ni−m0

∣∣∣∣∣∣∣




2n∏
m=0
m �=m0

(Em0 − Em)




1/2∣∣∣∣∣∣∣

×


1 + 1

2




2n∑
m=0
m �=m0

(Em0 − Em)−1


 ζ 2 + O(ζ 4)


 (B.20)
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to guarantee compatibility of all charts. Assuming n ∈ N for the remainder of this
appendix, the homology basis {a j , b j } j=1,...,n on Kn is then conveniently chosen as
follows. The a j cycle encircles the interval [E2 j−2, E2 j−1], j = 1, . . . , n, clock-
wise on the upper sheet �+. The cycle b j starts at a point in (E2 j−2, E2 j−1), j =
1, . . . , n, on the upper sheet �+ (i.e., on the upper rim of the cut [E2 j−2, E2 j−1]),
proceeds clockwise to intersect a j , and then continues clockwise on �+ until it
hits a point on the cut [E2n,∞). Then b j returns clockwise on the lower sheet to
its original starting point. In doing so, b j avoids crossing of all other cycles ak, bk ,
k �= j , k = 1, . . . , n. (Figure B.2 shows a typical genus n = 3 case with Em not
necessarily in real position.)

In the following we return to the general case (B.1) (as opposed to (B.17)).
Points P ∈ Kn \ {P∞} are denoted by

P = (z, σ R2n+1(z)1/2) = (z, y), P ∈ Kn \ {P∞},
where

y(P) =
ζ→0

(
1 − 1

2

( 2n∑
m=0

Em

)
ζ 2 + O(ζ 4)

)
ζ−2n−1 as P → P∞, (B.21)

ζ = σ ′/z1/2, σ ′ ∈ {1,−1}
(i.e., we abbreviate y(P) = σ R2n+1(z)1/2). Moreover, we introduce the holomor-
phic sheet exchange map (involution)

∗ : Kn → Kn, P = (z, y) �→ P∗ = (z,−y), P∞ �→ P∗
∞ = P∞ (B.22)

and the two meromorphic projection maps

π̃ : Kn → C ∪ {∞}, P = (z, y) �→ z, P∞ �→ ∞ (B.23)

and

y : Kn → C ∪ {∞}, P = (z, y) �→ y, P∞ �→ ∞. (B.24)

The map π̃ has a pole of order 2 at P∞, and y has a pole of order 2n + 1 at P∞.
Moreover,

π̃ (P∗) = π̃ (P), y(P∗) = −y(P), P ∈ Kn.

Thus, Kn is a two-sheeted branched covering of the Riemann sphere CP
1 (∼=

C ∪ {∞}) branched at the 2n + 2 points {(Em, 0)}m=0,...,2n, P∞. Moreover, Kn is
compact (since π̃ is open and CP

1 is compact), and Kn is hyperelliptic (since it
admits the meromorphic function π̃ of degree two). In this context we denote the
set of branch points of Kn by B(Kn). Topologically, Kn is a sphere with n handles
and hence has genus n.

For the rest of this appendix we assume n ∈ N and that Kn is a compact hyper-
elliptic Riemann surface of (topological) genus n (cf. (B.1) and (B.16)). In this
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case π̃ has two simple zeros at (0,±R2n+1(0)1/2) if R2n+1(0) �= 0 or a double zero
at (0, 0) if R2n+1(0) = 0 (i.e., if 0 ∈ {Em}m=0,...,2n), and y has 2n + 1 simple zeros
at (Em, 0) for m = 0, . . . , 2n.

We introduce the upper and lower sheets �± by

�± = {(z,±R2n+1(z)1/2) ∈ Mn | z ∈ �} (B.25)

and the associated charts

ζ± : �± → �, P �→ z. (B.26)

In particular, the charts in (B.3)–(B.15) are chosen to be compatible with ζ±
wherever they overlap.

Using the local chart near P∞, one verifies thatdz/y is a holomorphic differential
on Kn with zeros of order 2(n − 1) at P∞, and hence

η j = z j−1dz

y
, j = 1, . . . , n (B.27)

form a basis for the space of holomorphic differentials on Kn . Upon introduction
of the invertible matrix C in C

n ,

C = (C j,k) j,k=1,...,n, C j,k =
∫
ak

η j , (B.28)

c(k) = (c1(k), . . . , cn(k)), c j (k) = (
C−1

)
j,k, j, k = 1, . . . , n, (B.29)

the normalized differentials ω j for j = 1, . . . , n (cf. (A.13)),

ω j =
n∑

�=1

c j (�)η�,

∫
ak

ω j = δ j,k, j, k = 1, . . . , n, (B.30)

form a canonical basis for the space of holomorphic differentials on Kn .
In the chart (UP∞ , ζP∞ ) induced by 1/π̃1/2 near P∞, one infers

ω = (ω1, . . . , ωn) = −2

( n∑
j=1

c( j)ζ 2(n− j)

(∏2n
m=0(1 − ζ 2Em)

)1/2

)
dζ

=
ζ→0

−2

( ∞∑
q=0

n∑
k=1

c(k)ĉk−n+q (E)ζ 2q

)
dζ (B.31)

= −2

(
c(n) +

(
1

2
c(n)

2n∑
m=0

Em + c(n − 1)

)
ζ 2 + O(ζ 4)

)
dζ as P → P∞,

ζ = σ/z1/2, σ ∈ {1,−1},
where E = (E0, . . . , E2n), and we used (B.21) and

( 2n∏
m=0

(1 − Emζ )

)−1/2

=
∞∑
k=0

ĉk(E)ζ k
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for ζ ∈ C such that |ζ |−1 > max{|E0|, . . . , |E2n|} with

ĉ−k(E) = 0, k ∈ N, ĉ0(E) = 1,

ĉk(E) =
k∑

j0,..., j2n=0
j0+···+ j2n=k

(2 j0)! · · · (2 j2n)!

22k( j0!)2 · · · ( j2n!)2
E j0

0 · · · E j2n
2n , k ∈ N. (B.32)

Combining (A.22) and (B.31), one computes for the vector U (2)
2q of b-periods of

ω
(2)
P∞,2q/(2π i), the normalized differential of the second kind, holomorphic on

Kn \ {P∞} with principal part ζ−2q−2dζ/(2π i),

U (2)
2q = (

U (2)
2q,1, . . . ,U

(2)
2q,n

)
, (B.33)

U (2)
2q, j = 1

2π i

∫
b j

ω
(2)
P∞,2q = − 2

2q + 1

n∑
k=1

c j (k)ĉk−n+q (E),

j = 1, . . . , n, q ∈ N0.

The results of this appendix apply to the sGmKdV curves upon taking into
account the additional constraint 0 ∈ {Em}m=0,...,2n . Without loss of generality, we
then choose

E0 = 0.

One then computes in the sGmKdV context in the chart (UP0 , ζP0 ) induced by π̃1/2,
near the branch point P0 = (0, 0),

ω =
ζ→0

2

(
c(1)

Q1/2
+ O(ζ 2)

)
dζ as P → P0, Q1/2 =

( 2n∏
m=1

Em

)1/2

, (B.34)

ζ = σ z1/2, σ ∈ {1,−1}
with the sign of Q1/2 determined by the compatibility of the charts and

y(P) =
ζ→0

Q1/2ζ + O(ζ 3) as P → P0. (B.35)

Combining (A.22) and (B.34) then yields

1

2π i

∫
b j

ω
(2)
P0,0

= 2
c j (1)

Q1/2
, j = 1, . . . , n. (B.36)

In the special self-adjoint case (B.17), the matrix τ of b-periods (cf. (A.14))
satisfies, in addition to (A.16),

τ = iT, T > 0 (B.37)

since

C j,k =
∫
ak

η j = 2
∫ E2k−1

E2k−2

z j−1dz

R2n+1(z)1/2
∈ R (B.38)
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and

∫
bk

η j = 2
∫ E2k

E2k−1

z j−1dz

R2n+1(z)1/2
∈ iR. (B.39)

Explicit formulas for normal differentials of the third kind, ω(3)
Q1,Q2

, with simple
poles at Q1 and Q2, corresponding residues +1 and −1, vanishing a-periods, and
holomorphic on Kn \ {Q1, Q2}, can easily be found. One obtains

ω
(3)
P1,P∞ = − y + y1

z − z1

dz

2y
+ λn

y

n−1∏
j=1

(z − λ j ) dz, (B.40)

ω
(3)
P1,P2

=
(
y + y1

z − z1
− y + y2

z − z2

)
dz

2y
+ λ̃n

y

n−1∏
j=1

(z − λ̃ j ) dz, (B.41)

P1, P2 ∈ Kn \ {P∞},

where λ j , λ̃ j ∈ C, j = 1, . . . , n, are uniquely determined by the requirement of
vanishing a-periods, and we abbreviated Pj = (z j , y j ), j = 1, 2. (If n = 1, we
use the standard convention that the product over an empty index set is replaced
by 1; if n = 0, both products in (B.40) and (B.41) are replaced by 0.) Moreover,
choosing Q0 = (Em0 , 0), the following asymptotic expansions hold

∫ P

Q0

ω
(3)
P1,P∞ =

ζ→0
ln(ζ ) + (1/2) ln(Em − z1) + O(ζ ) as P → P∞, (B.42)

∫ P

Q0

ω
(3)
P1,P∞ =

ζ→0
− ln(ζ ) + (1/2) ln(Em − z1) + O(ζ ) as P → P1. (B.43)

Next, we turn to the theta function representation of symmetric functions of
values of a meromorphic function as discussed in Remark A.29 in the current case
of KdV-type hyperelliptic Riemann surfaces. The choice f (P) = π̃ (P) in (A.62)
then yields, after an explicit residue computation at P∞,

n∑
j=1

µ j =
n∑
j=1

∫
a j

π̃ω j (B.44)

−
n∑

j,k=1

U (2)
0, jU

(2)
0,k∂

2
w jwk

ln
(
θ
(
�Q0

− AQ0
(P∞) + αQ0

(Dµ̂) + w
))∣∣∣

w=0
,

where µ̂ = {µ̂1, . . . , µ̂n}, µ̂ j = (µ j , y(µ̂ j )) ∈ Kn , j = 1, . . . , n, assuming Dµ̂ ∈
Symn(Kn) to be nonspecial and using

AQ0
(P) − AQ0

(P∞) =
ζ→0

U (2)
0 ζ + O(ζ 3) as P → P∞, U (2)

0 = −2c(n) (B.45)

according to (B.31)–(B.33). Here Q0 ∈ Kn \ {P∞} denotes an appropriate base
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point. In the present hyperelliptic context, the constant
∑n

j=1

∫
a j

π̃ω j can be related
to the zeros {λ j } j=1,...,n of the normalized differential of the second kind, ω(2)

P∞,0 as
follows,

n∑
j=1

∫
a j

π̃ω j =
n∑
j=1

λ j .

This will be proven in Appendix F (cf. (F.48) for k = n and (F.50)). Hence, one
finally obtains

n∑
j=1

µ j =
n∑
j=1

λ j (B.46)

−
n∑

j,k=1

U (2)
0, jU

(2)
0,k∂

2
w jwk

ln
(
θ
(
�Q0

− AQ0
(P∞) + αQ0

(Dµ̂) + w
))∣∣∣

w=0
,

If, in addition, Dµ̂ depends on a parameter x ∈ �, � ⊆ R an open interval, satis-
fying the linearization property

αQ0
(Dµ̂(x)) = αQ0

(Dµ̂(x0)) + cU (2)
0 (x − x0), x, x0 ∈ �

for some constant c ∈ C \ {0}, as verified, for instance, in the KdV context (cf.
(1.106) and (1.212)), where c = i , one can rewrite (B.46) in the form

n∑
j=1

µ j (x) =
n∑
j=1

λ j − c−2∂2
x ln

(
θ
(
�Q0

− AQ0
(P∞) + αQ0

(Dµ̂(x))
))

, x ∈ �.

(B.47)

Combined with the trace formula (1.83), (B.47) confirms the Its–Matveev formula

(1.108). A systematic approach to elementary symmetric functions of µ1, . . . , µn

will be discussed in Appendix F.
Next, we provide a brief illustration of the Riemann–Roch theorem in con-

nection with KdV-type compact hyperelliptic Riemann surfaces Kn of genus
n (cf. (B.1) and (B.16)) and explicitly determine a basis for the vector space
L(−kDP∞ − Dµ̂(x0)) for k ∈ N0. We refer to (A.28) for the definition of L(D)
and to Theorem A.13 for the Riemann–Roch theorem. In addition, we use the
short-hand notation

kDP∞ + Dµ̂(x0) =
k∑

�=1

DP∞ +
n∑
j=1

Dµ̂ j (x0), k ∈ N0,

µ̂(x0) = {µ̂1(x0), . . . , µ̂n(x0)} ∈ Symn(Kn)

and recall that

L(−kDP∞ − Dµ̂(x0)) = { f ∈ M(Kn) | ( f ) + kDP∞ + Dµ̂(x0) ≥ 0}, n ∈ N0.
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With φ(P, x) and ψ(P, x, x0) defined as in (1.38) and (1.41) one obtains the

following result (we denote by )x* the integer part of x ∈ R, i.e., the largest
integer less or equal to x).

Theorem B.1 Assume Dµ̂(x0) to be nonspecial (i.e., i(Dµ̂(x0)) = 0) and of degree
n ∈ N. For k ∈ N0, a basis for the vector space L(−kDP∞ − Dµ̂(x0)) is given by

{1}, k = 0,

{π̃ j } j=0,...,)k/2* ∪ {π̃ jφ( · , x0)} j=0,...,)(k−1)/2*, k ∈ N. (B.48)

Equivalently,

L(−kDP∞ − Dµ̂(x0)) = span
{
∂ j
xψ( · , x, x0)

∣∣
x=x0

}
j=0,...,k . (B.49)

Proof The elements in (B.48) are easily seen to be linearly independent and be-
longing to L(−kDP∞ − Dµ̂(x0)). It remains to be shown that they are maximal.
From 0 = i(Dµ̂(x0)) = i(DkP∞ + Dµ̂(x0)) and the Riemann–Roch Theorem A.13
one obtains r (−kDP∞ − Dµ̂(x0)) = k + 1, proving (B.48). To prove (B.49), one
repeatedly uses the Schrödinger equation (1.47) to prove inductively that

∂2m+2
x ψ(P, x, x0) = (−π̃ )m+1 + R2m+1(P, x),

∂2m+1
x ψ(P, x, x0) = (−π̃ )m∂xψ(P, x, x0) + R2m(P, x),

where Rk( · , x0) ∈ L(−kDP∞ − Dµ̂(x0)). �

Finally, we consider a Riemann–Roch-type uniqueness result for Baker–
Akhiezer functions needed in Chapters 1 and 2. Let Q0 be an appropriate base point
on Kn \ {P∞} (in the sGmKdV case we choose in addition Q0 �= P0 = (E0, 0)).

Lemma B.2 Let P ∈ Kn \ {P∞} and (x, tr ), (x0, t0,r ) ∈ � for some � ⊆ R
2. As-

sume ψ( · , x, tr ), (x, tr ) ∈ �, to be meromorphic on Kn \ {P∞} with an essential
singularity at P∞ such that ψ̃( · , x, tr ), defined by

ψ̃(P, x, tr ) = ψ(P, x, tr ) exp

(
i(x − x0)

∫ P

Q0

ω
(2)
P∞,0 + i(tr − t0,r )

∫ P

Q0

�̃
(2)
P∞,2r

)
,

(B.50)

is meromorphic on Kn and its divisor satisfies

(ψ̃( · , x, tr )) ≥ −Dµ̂(x0,t0,r )

for some positive divisorDµ̂(x0,t0,r ) of degree n. Here ω
(2)
P∞,0 and �̃

(2)
P∞,2r are defined

in (1.98) and (1.205), and the path of integration in the right-hand side of (B.50)
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is chosen identical to that in the Abel maps (A.34) and (A.35).1 Define a divisor
D0(x, tr ) by

(ψ̃( · , x, tr )) = D0(x, tr ) − Dµ̂(x0,t0,r ). (B.51)

Then

D0(x, tr ) ∈ Symn(Kn), D0(x, tr ) > 0, deg(D0(x, tr )) = n.

Moreover, if D0(x, tr ) is nonspecial for all (x, tr ) ∈ �, that is, if

i(D0(x, tr )) = 0, (x, tr ) ∈ �,

then ψ( · , x, tr ) is unique up to a constant multiple (which may depend on the
parameters (x, tr ), (x0, t0,r ) ∈ �).

Proof By the Riemann–Roch Theorem A.13, there exists at least one such func-
tion ψ̃( · , x, tr ). If ψ̃ j ( · , x, tr ) are two such functions satisfying (B.51) with cor-
responding divisors D0, j (x, tr ) for j = 1 and 2, then one infers

(ψ̃1( · , x, tr )/ψ̃2( · , x, tr )) = D0,1(x, tr ) − D0,2(x, tr ).

Since i(D0,2(x, tr )) = 0 and deg(D0,2(x, tr )) = n, equation (A.31) yields
r (−D0,2(x, tr )) = 1 for (x, tr ) ∈ �, and hence ψ̃1/ψ̃2 is a constant on Kn . �

1 This is to avoid multi-valued expressions and hence the use of the multiplicative Riemann–Roch
theorem in the proof below.
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Hyperelliptic Curves of the AKNS-Type

“Why,” said the Dodo, “the best way to explain it is to do it.”
Lewis Carroll1

We briefly summarize some of the basic facts on hyperelliptic AKNS-type curves
(i.e., those not branched at infinity) as employed in Chapters 3–5 in connection
with the AKNS and Camassa–Holm hierarchies and the classical massive Thirring
system. We freely use the notation and results collected in Appendix A.

Fix n ∈ N0. We are going to construct the hyperelliptic Riemann surface Kn of
(arithmetic) genus n associated with the AKNS-type curve (3.34), that is,

Fn(z, y) = y2 − R2n+2(z) = 0,

R2n+2(z) =
2n+1∏
m=0

(z − Em), {Em}m=0,...,2n+1 ⊂ C.
(C.1)

At this point we explicitly permit Em = Em ′ for some m,m ′ ∈ {0, . . . , 2n + 1} in
order to include curves with a singular affine part. We introduce an appropriate set
of (at most) n + 1 (nonintersecting) cuts C j joining Em( j) and Em ′( j) and denote

C =
⋃
j∈J

C j , C j ∩ Ck = ∅, j �= k,

where the finite index set J ⊆ {1, . . . , n + 1} has (at most) cardinality n + 1.
Define the cut plane �,

� = C \ C,

and introduce the holomorphic function

R2n+2( · )1/2 : � → C, z �→
( 2n+1∏

m=0

(z − Em)

)1/2

(C.2)

1 Alice’s Adventures in Wonderland, Puffin Books, Harmandsworth, 1962, p. 45.

367
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on � with an appropriate choice of the square root branch (C.2). Next, define

Mn = {(z, σ R2n+2(z)1/2) | z ∈ C, σ ∈ {1,−1}} ∪ {P∞+ , P∞−}
by extending R2n+2( · )1/2 to C and joining P∞+ and P∞− , P∞+ �= P∞− , the two
points at infinity. To describe charts on Mn let Q0 ∈ Mn ,UQ0 ⊂ Mn a neighbor-
hood of Q0, ζQ0 : UQ0 → VQ0 ⊂ C a homeomorphism defined below, and write

Q0 = (z0, σ0R2n+2(z0)1/2) or Q0 = P∞± ,

Q = (z, σ R2n+2(z)1/2) ∈ UQ0 ⊂ Mn, VQ0 = ζQ0 (UQ0 ) ⊂ C.

Branch points and/or singular points on Mn are defined by

Bs(Kn) =
{
{(Em, 0)}m=0,1, n = 0,

{(Em, 0)}m=0,...,2n+1 ∪ {P∞+ , P∞−}, n ∈ N,

with (Em, 0) being a branch point on Mn if (Em, 0) occurs an odd number of
times in Bs(Kn). If (Em, 0) occurs an even number of times in Bs(Kn) or an odd
number of times larger or equal to three, then (Em, 0) is a singular point on Mn .
While P∞± are never branch points, P∞± are nonsingular for n = 0 and singular
for n ∈ N.

Charts on Mn are now introduced distinguishing three cases, (i) Q0 ∈ Mn \(Bs(Kn) ∪ {P∞+ , P∞−}
)
, (ii) Q0 = P∞± , and (iii) Q0 = (Em, 0) for some m =

0, . . . , 2n + 1.

(i) Q0 ∈ Mn \ (Bs(Kn) ∪ {P∞+ , P∞−}
)
: Then one defines

UQ0 = {Q ∈ Mn | |z − z0| < C0}, C0 = min
m=0,...2n+1

|z0 − Em |, (C.3)

where σ R2n+2(z)1/2 is the branch obtained by straight line analytic contin-
uation starting from z0,

VQ0 = {ζ ∈ C | |ζ | < C0} (C.4)

and

ζQ0 : UQ0 → VQ0 , Q �→ (z − z0) (C.5)

with inverse

ζ−1
Q0

: VQ0 → UQ0 , ζ �→ (z0 + ζ, σ R2n+2(z0 + ζ )1/2). (C.6)

(ii) Let Q0 = P∞± : Then one introduces

UP∞± = {Q ∈ Mn | |z| > C∞}, C∞ = max
m=0,...2n+1

|Em |, (C.7)

VP∞± = {
ζ ∈ C | |ζ | < C−1

∞
}

(C.8)
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and

ζP∞± : UP∞± → VP∞± , Q �→ z−1, P∞± �→ 0 (C.9)

with inverse

ζ−1
P∞±

: VP∞± → UP∞± ,

ζ �→
(
ζ−1,∓

( 2n+1∏
m=0

(1 − Emζ )

)1/2

ζ−n−1

)
, 0 �→ P∞± , (C.10)

where the square root is chosen such that
( 2n+1∏

m=0

(1 − Emζ )

)1/2

= 1 − 1

2

( 2n+1∑
m=0

Em)

)
ζ + O(ζ 2). (C.11)

(iii) Q0 = (Em, 0): Here we have to distinguish two subcases: (iiia), where Q0

is a branch point and possibly a singular point, and (iiib), where Q0 is a
singular point but not a branch point.

(iiia) Then one defines

UQ0 = {Q ∈ Mn | |z − Em0 | < Cm0}, Cm0 = min
m=0,...,2n+1

|Em − Em0 |,
(C.12)

VQ0 = {
ζ ∈ C | |ζ | < C1/2

m0

}
(C.13)

and

ζQ0 : UQ0 → VQ0 , Q �→ σ (z − Em0 )1/2, σ ∈ {1,−1} (C.14)

with inverse

ζ−1
Q0

: VQ0 → UQ0 , ζ �→


Em0 + ζ 2,




2n+1∏
m=0
m �=m0

(Em0 − Em + ζ 2)




1/2

ζ


 ,

(C.15)

where the square root branches are chosen to yield compatibility with the
charts in (C.3)–(C.6) and (C.7)–(C.11).

(iiib) In this case one can proceed as in case (i); the branch σ R2n+2(z)1/2 needs to
be chosen to yield compatibility with the charts in (C.3)–(C.6) and (C.7)–
(C.11).

The set Mn and the complex structure (C.3)–(C.15) just defined then yield
a compact Riemann surface of arithmetic genus n, which we denoted by Kn in
Appendix A. For simplicity of notation we use the symbol Kn to denote both the
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Fig. C.1. Genus n = 1.

affine curve (C.1) and its projective closure Kn throughout major parts of this
monograph. If the zeros Em of R2n+2 are all distinct,

Em �= Em ′ , m �= m ′, m,m ′ = 0, . . . , 2n + 1, (C.16)

Kn is a compact hyperelliptic Riemann surface of topological genus n. The con-
struction of Kn is sketched in Figure C.1 in the genus n = 1 case. A typical
homology basis on Kn in the genus n = 3 case is depicted in Figure C.2 (it differs
from the corresponding one shown in Figure C.1).

Next, for the reader’s convenience, we provide a detailed treatment of branch
points in the case of a nonsingular affine part (cf. (C.16)) for the two most frequently
occurring situations: the self-adjoint case, where {Em}m=0,...,2n+1 ⊂ R, and the case
in which {Em}m=0,...,2n+1 = {Ẽ�, Ẽ}�=0,...,n consists of complex conjugate pairs.

Let us first consider the case with real and distinct roots, that is, {Em}m=0,...,2n+1 ⊂
R, and

E0 < E1 < · · · < E2n+1. (C.17)

In this case,

C j = [E2 j , E2 j+1], j = 0, . . . , n
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and the square root branch in (C.2) is chosen according to

R2n+2(λ)1/2 = lim
ε↓0

R2n+2(λ + iε)1/2, λ ∈ C, (C.18)

and

R2n+2(λ)1/2

= |R2n+2(λ)1/2|




−1 for λ ∈ (E2n+1,∞),

(−1)n+ j for λ ∈ (E2 j−1, E2 j ), j = 1, . . . , n,

(−1)n for λ ∈ (−∞, E0),

i(−1)n+ j+1 for λ ∈ (E2 j , E2 j+1), j = 0, . . . , n,

λ ∈ R. (C.19)

The square-root branches in (C.14) and (C.15) are defined by

(z − Em0 )1/2 = |(z − Em0 )1/2| exp
(
(i/2) arg(z − Em0 )

)
,

arg(z − Em0 ) ∈
{

[0, 2π ) m0 even,

(−π, π ] m0 odd,

and



2n+1∏
m=0
m �=m0

(Em0 − Em + ζ 2)




1/2

= (−1)ni−m0−1

∣∣∣∣∣∣∣




2n+1∏
m=0
m �=m0

(Em0 − Em)




1/2∣∣∣∣∣∣∣

×


1 + 1

2




2n+1∑
m=0
m �=m0

(Em0 − Em)−1


 ζ 2 + O(ζ 4)


 , (C.20)

to guarantee compatibility of all charts.
Next we turn to the case in which the roots form complex conjugate pairs,

{Em}m=0,...,2n+1 = {Ẽ�, Ẽ�}�=0,...,n,
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where we assume

Re(Ẽ�) < Re(Ẽ�+1), � = 0, . . . , n − 1, Im(Ẽ�) < Im(Ẽ�), � = 0, . . . , n.

In this case,

C� = {z ∈ C | z = Ẽ� + t(Ẽ� − Ẽ�), 0 ≤ t ≤ 1}, � = 0, . . . , n

and the square root branch in (C.2) is chosen according to

R2n+2(z)1/2 = lim
ε↓0

R2n+2(z + (−1)n+�ε)1/2, z ∈ C�, � = 0, . . . , n, (C.21)

where

R2n+2(λ)1/2 = |R2n+2(λ)1/2|

×




−1 for Re(λ) ∈ (Ẽn,∞),

(−1)n+�+1 for λ ∈ (Re(Ẽ�),Re(Ẽ�+1)), � = 0, . . . , n − 1,

(−1)n for λ ∈ (−∞,Re(Ẽ0)).

(C.22)

The square root branches in (C.14) and (C.15) then are defined by

(z − Em0 )1/2 = |(z − Em0 )1/2| exp
(
(i/2) arg(z − Em0 )

)
,

where, for n even,

arg(z − Ẽ�) ∈
{

(π
2 ,

5π
2 ], � even,

[π
2 ,

5π
2 ), � odd,

arg(z − Ẽ�) ∈
{

[−π
2 ,

3π
2 ), � even,

(−π
2 ,

3π
2 ], � odd,

and for n odd,

arg(z − Ẽ�) ∈
{

[π
2 ,

5π
2 ), � even,

(π
2 ,

5π
2 ], � odd,

arg(z − Ẽ�) ∈
{

(−π
2 ,

3π
2 ], � even,

[−π
2 ,

3π
2 ), � odd.

Here,



2n+1∏
m=0
m �=m0

(Em0 − Em + ζ 2)




1/2

= exp


(i/2)

2n+1∑
m=0
m �=m0

arg(Em0 − Em)




∣∣∣∣∣∣∣




2n+1∏
m=0
m �=m0

(Em0 − Em)




1/2∣∣∣∣∣∣∣

×


1 + 1

2




2n+1∑
m=0
m �=m0

(Em0 − Em)−1


 ζ 2 + O(ζ 4)


 , (C.23)
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where exp((i/2)
∑2n+1

m=0
m �=m0

arg(Em0 − Em)) is determined by analytic continuation in

(C.22).
In the following we return to the general case (C.1). Points P ∈ Kn \ {P∞− , P∞+}

are denoted by

P = (z, σ R2n+2(z)1/2) = (z, y), P ∈ Kn \ {P∞− , P∞+}

where

y(P) =
ζ→0

∓
(

1 − 1

2

( 2n+1∑
m=0

Em

)
ζ + O(ζ 2)

)
ζ−n−1 as P → P∞± , ζ = 1/z

(C.24)

(i.e., we abbreviate y(P) = σ R2n+2(z)1/2). Moreover, we introduce the holomor-
phic sheet exchange map (involution)

∗ : Kn → Kn, P = (z, y) �→ P∗ = (z,−y), P∞± �→ P∗
∞± = P∞∓ (C.25)

and the two meromorphic projection maps

π̃ : Kn → C ∪ {∞}, P = (z, y) �→ z, P∞± �→ ∞ (C.26)

and

y : Kn → C ∪ {∞}, P = (z, y) �→ y, P∞± �→ ∞. (C.27)

The map π̃ has poles of order 1 at P∞± , and y has poles of order n + 1 at P∞± .
Moreover,

π̃ (P∗) = π̃ (P), y(P∗) = −y(P), P ∈ Kn. (C.28)

Thus, Kn is a two-sheeted branched covering of the Riemann sphere CP
1 (∼=

C ∪ {∞}) branched at the 2n + 2 points {(Em, 0)}m=0,...,2n+1. Moreover, Kn is
compact (since π̃ is open and CP

1 is compact), and Kn is hyperelliptic (since it
admits the meromorphic function π̃ of degree two). In this context we denote the
set of branch points of Kn by B(Kn). Topologically, Kn is a sphere with n handles
and hence has genus n.

For the rest of this appendix we assume n ∈ N and that Kn is a compact hyper-
elliptic Riemann surface of (topological) genus n (cf. (C.1) and (C.16)). In this
case π̃ has two simple zeros at (0,±R2n+2(0)1/2) if R2n+2(0) �= 0 or a double zero
at (0, 0) if R2n+2(0)1/2 = 0 (i.e., if 0 ∈ {Em}m=0,...,2n+1), and y has 2n + 2 simple
zeros at (Em, 0) for m = 0, . . . , 2n + 1.

We introduce the upper and lower sheets by

�± = {(z,±R2n+2(z)1/2) ∈ Mn | z ∈ �} (C.29)
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and the associated charts

ζ± : �± → �, P �→ z. (C.30)

In particular, the charts in (C.3)–(C.15) are chosen to be compatible with ζ±
wherever they overlap.

Using the local chart near P∞± , one verifies that dz/y is a holomorphic differ-
ential on Kn with zeros of order n − 1 at P∞± , and hence

η j = z j−1dz

y
, j = 1, . . . , n (C.31)

form a basis for the space of holomorphic differentials on Kn . Upon introduction
of the invertible matrix C in C

n ,

C = (C j,k) j,k=1,...,n, C j,k =
∫
ak

η j , (C.32)

c(k) = (c1(k), . . . , cn(k)), c j (k) = (
C−1

)
j,k
, j, k = 1, . . . , n, (C.33)

the normalized holomorphic differentials ω j for j = 1, . . . , n (cf. (A.13)),

ω j =
n∑

�=1

c j (�)η�,

∫
ak

ω j = δ j,k, j, k = 1, . . . , n, (C.34)

form a canonical basis for the space of holomorphic differentials on Kn .
In the charts (UP∞± , ζP∞± ) induced by 1/π̃ near P∞± , one infers

ω = (ω1, . . . , ωn) = ±
n∑
j=1

c( j)
ζ n− j dζ(∏2n+1

m=0 (1 − Emζ )
)1/2

=
ζ→0

±
( ∞∑

q=0

n∑
k=1

c(k)ĉk−n+q (E)ζ q
)
dζ (C.35)

=
ζ→0

±
(
c(n) +

(
1

2
c(n)

2n+1∑
m=0

Em + c(n − 1)

)
ζ + O(ζ 2)

)
dζ as P → P∞± ,

ζ = 1/z,

where E = (E0, . . . , E2n+1), and we used (C.24) and
( 2n+1∏

m=0

(1 − Emζ )

)−1/2

=
∞∑
k=0

ĉk(E)ζ k

for ζ ∈ C such that |ζ |−1 > max{|E0|, . . . , |E2n+1|} with

ĉ−k(E) = 0, k ∈ N, ĉ0(E) = 1,

ĉk(E) =
k∑

j0,..., j2n+1=0
j0+···+ j2n+1=k

(2 j0)! · · · (2 j2n+1)!

22k( j0!)2 · · · ( j2n+1!)2
E j0

0 · · · E j2n+1
2n+1, k ∈ N. (C.36)
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Combining (A.22) and (C.35), one computes for the vector U (2)
±,q of b-periods

of ω
(2)
P∞± ,q/(2π i), the normalized differential of the second kind, holomorphic on

Kn \ {P∞±}, with principal part ζ−q−2dζ/(2π i),

U (2)
±,q = (

U (2)
±,q,1, . . . ,U

(2)
±,q,n

)
, (C.37)

U (2)
±,q, j = 1

2π i

∫
b j

ω
(2)
P∞± ,q = ±1

q + 1

n∑
k=1

c j (k)ĉk−n+q (E), j = 1, . . . , n, q ∈ N0.

In the special self-adjoint case (C.17), the matrix τ of b-periods satisfies, in addition
to (A.16),

τ = iT , T > 0 (C.38)

since

C j,k =
∫
ak

η j = 2
∫ E2k−1

E2k−2

z j−1dz

R2n+2(z)1/2
∈ R (C.39)

and

∫
bk

η j = 2
∫ E2k

E2k−1

z j−1dz

R2n+2(z)1/2
∈ iR. (C.40)

Next, assuming 0 �∈ {Em}m=0,...,2n+1, one then computes in the charts (UP0± , ζP0± )
induced by π̃ near P0± = (0, y(P0± )),

ω =
ζ→0

± 1

Q̂
1/2

(
c(1) +

(
1

2
c(1)

2n+1∑
m=0

E−1
m + c(2)

)
ζ + O(ζ 2)

)
dζ as P → P0± ,

Q̂
1/2 =

( 2n+1∏
m=0

Em

)1/2

, ζ = z, (C.41)

using

y(P) =
ζ→0

±Q̂1/2 + O(ζ ) as P → P0± , ζ = z (C.42)

with the sign of Q̂
1/2

determined by the compatibility of charts.
Finally, if E0 = 0, Em �= 0, m = 1, . . . , 2n + 1, one computes in the chart

(UP0 , ζP0 ) induced by π̃1/2 near P0 = (0, 0),

ω =
ζ→0

−2i

(
c(1)

Q̃1/2
+ O(ζ 2)

)
dζ as P → P0, Q̃1/2 =

( 2n+1∏
m=1

Em

)1/2

, (C.43)

ζ = σ z1/2, σ ∈ {1,−1}
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using

y(P) =
ζ→0

i Q̃1/2ζ + O(ζ 3) as P → P0, ζ = σ z1/2, σ ∈ {1,−1} (C.44)

with the sign of Q̃1/2 determined by the compatibility of charts.
Explicit formulas for normal differentials of the third kind,ω(3)

Q1,Q2 , with simple
poles at Q1 and Q2, corresponding residues +1 and −1, vanishing a-periods, and
holomorphic on Kn \ {Q1, Q2}, can easily be found. One obtains

ω
(3)
P∞+ ,P∞−

= zn dz

y
+

n∑
j=1

γ jω j = 1

y

n∏
j=1

(z − λ j ) dz, (C.45)

ω
(3)
P1,P∞+

= y + y1

z − z1

dz

2y
− 1

2y

n∏
j=1

(z − λ̃ j ) dz, (C.46)

ω
(3)
P1,P∞−

= y + y1

z − z1

dz

2y
+ 1

2y

n∏
j=1

(z − λ′
j ) dz, (C.47)

ω
(3)
P1,P2

=
(
y + y1

z − z1
− y + y2

z − z2

)
dz

2y
+ λ′′

n

y

n−1∏
j=1

(z − λ′′
j ) dz, (C.48)

P1, P2 ∈ Kn \ {P∞+ , P∞−},
where γ j , λ j , λ̃ j , λ′

j , λ
′′
j ∈ C, j = 1, . . . , n, are uniquely determined by the re-

quirement of vanishing a-periods, and we abbreviated Pj = (z j , y j ), j = 1, 2. (If
n = 0 in (C.45)–(C.47) and n = 1 in (C.48), we use the standard conventions that
products and sums over empty index sets are replaced by 1 and 0, respectively; if
n = 0, the product in (C.48) is replaced by 0.)

Next, we turn to the theta function representation of symmetric functions of
values of a meromorphic function as discussed in Remark A.29 in the current case
of AKNS-type hyperelliptic Riemann surfaces. The choice f = π̃ in (A.62) then
yields, after a standard residue calculation at P∞± ,

n∑
j=1

µ j =
n∑
j=1

∫
a j

π̃ω j (C.49)

+
n∑
j=1

U (2)
+,0, j∂w j ln

(
θ
(
�Q0

− AQ0
(P∞+ ) + αQ0

(Dµ̂) + w
)

θ
(
�Q0

− AQ0
(P∞− ) + αQ0

(Dµ̂) + w
)
)∣∣∣∣∣

w=0

,

where µ̂ = {µ̂1, . . . , µ̂n}, µ̂ j = (µ j , y(µ̂ j )) ∈ Kn , j = 1, . . . , n, assuming Dµ̂ ∈
Symn(Kn) to be nonspecial and using

AQ0
(P) − AQ0

(P∞± ) =
ζ→0

±U (2)
+,0ζ + O(ζ 2) as P → P∞± , U (2)

+,0 = c(n)

(C.50)

according to (C.35)–(C.37). Here Q0 ∈ Kn \ {P∞+ , P∞−} denotes an appropriate
base point. In the present hyperelliptic context, the constant

∑n
j=1

∫
a j

π̃ω j can
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be related to the zeros {λ j } j=1,...,n of the normal differential of the third kind,
ω

(3)
P∞+ ,P∞−

, as follows,

n∑
j=1

∫
a j

π̃ω j =
n∑
j=1

λ j .

This will be proven in Appendix F (cf. (F.68) for k = n and (F.70)). Hence, one
finally obtains

n∑
j=1

µ j =
n∑
j=1

λ j (C.51)

+
n∑
j=1

U (2)
+,0, j∂w j ln

(
θ
(
�Q0

− AQ0
(P∞+ ) + αQ0

(Dµ̂) + w
)

θ
(
�Q0

− AQ0
(P∞− ) + αQ0

(Dµ̂) + w
)
)∣∣∣∣∣

w=0

.

If, in addition, Dµ̂ depends on a parameter x ∈ �, � ⊆ R an open interval, satis-
fying the linearization property

αQ0
(Dµ̂(x)) = αQ0

(Dµ̂(x0)) + cU (2)
+,0(x − x0), x, x0 ∈ �

for some constant c ∈ C \ {0}, as verified, for instance, in the AKNS context (cf.
(3.105) and (3.215)), where c = −2i , one can rewrite (C.51) in the form

n∑
j=1

µ j (x) =
n∑
j=1

λ j + c−1 ∂x ln

(
θ
(
�Q0

− AQ0
(P∞+ ) + αQ0

(Dµ̂)
)

θ
(
�Q0

− AQ0
(P∞− ) + αQ0

(Dµ̂)
)
)
, x ∈ �.

(C.52)

Combined with trace formulas of the type (3.81) and (3.83), (C.52) confirms
the theta function representations (3.107) and (3.108). A systematic approach to
elementary symmetric functions of µ1, . . . , µn will be discussed in Appendix F.

Next we provide a brief illustration of the Riemann–Roch theorem in connection
with AKNS-type compact hyperelliptic Riemann surfaces Kn of genus n (cf. (C.1)
and (C.16)) and explicitly determine a basis for the vector space L(−kDP∞− −
m(k)DP∞+ − Dµ̂(x0)) form(k) = max(0, k − 2) and k ∈ N0. We refer to (A.28) for
the definition of L(D) and to Theorem A.13 for the Riemann–Roch theorem. In
addition, we use the short-hand notation

kDP∞− + m(k)DP∞+ + Dµ̂(x0) =
k∑

�=1

DP∞− +
m(k)∑
�=1

DP∞+ +
n∑
j=1

Dµ̂ j (x0),

k ∈ N0, µ̂(x0) = {µ̂1(x0), . . . , µ̂n(x0)} ∈ Symn(Kn)

and recall that

L(−kDP∞− − m(k)DP∞+ − Dµ̂(x0))

={ f ∈ M(Kn) | ( f ) + kDP∞− + m(k)DP∞+ + Dµ̂(x0) ≥ 0}, k ∈ N0.

With φ(P, x) defined as in (3.56) one obtains the following result.
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Theorem C.1 Assume Dµ̂(x0) to be nonspecial (i.e., i(Dµ̂(x0)) = 0) and of degree
n ∈ N. For k ∈ N0, a basis for the vector spaceL(−kDP∞− − m(k)DP∞+ − Dµ̂(x0))
is given by

{1}, k = 0,

{π̃ �}�=0,...,m(k) ∪ {π̃ �φ( · , x0)}�=0,...,k−1, k ∈ N. (C.53)

Proof The elements in (C.53) are easily seen to be linearly independent and be-
longing toL(−kDP∞− − m(k)DP∞+ − Dµ̂(x0)). It remains to be shown that they are
maximal. Since i(Dµ̂(x0)) = i(kD∞− + m(k)DP∞+ + Dµ̂(x0)) = 0, the Riemann–
Roch Theorem A.13 implies r (−kDP∞− − m(k)DP∞+ − Dµ̂(x0)) = k + m(k) + 1
proving (C.53). �

Replacing φ by φ−1, one can discuss L(−kDP∞+ − m(k)DP∞− − Dν̂(x0)) for
k ∈ N0 in an analogous fashion.

Finally, we formulate the following Riemann–Roch-type uniqueness results for
the Baker–Akhiezer functions needed in Chapters 3 and 4. In the following, Q0 is
an appropriate base point on Kn \ {P∞+ , P∞−} (in the Thirring case we choose in
addition Q0 /∈ {P0,+, P0,−}). We start with the AKNS case.

Lemma C.2 Let P ∈ Kn \ {P∞+ , P∞−} and (x, tr ), (x0, t0,r ) ∈ � for some � ⊆
R

2. Assume ψ( · , x, tr ), (x, tr ) ∈ �, to be meromorphic onKn \ {P∞+ , P∞−} with
essential singularities at P∞+ , P∞− such that ψ̃( · , x, tr ), defined by

ψ̃(P, x, tr ) = ψ(P, x, tr ) exp

(
− i(x − x0)

∫ P

Q0

�
(2)
0 − i(tr − t0,r )

∫ P

Q0

�̃(2)
r

)
,

(C.54)

is meromorphic on Kn and its divisor satisfies

(ψ̃( · , x, tr )) ≥ −Dµ̂(x0,t0,r )

for some positive divisor Dµ̂(x0,t0,r ) of degree n. Here �
(2)
0 and �̃(2)

r are defined in
(3.96) and (3.207), and the path of integration in (C.54) is chosen identical to that
in the Abel maps (A.34) and (A.35).1 Define a divisor D0(x, tr ) by

(ψ̃( · , x, tr )) = D0(x, tr ) − Dµ̂(x0,t0,r ).

Then

D0(x, tr ) ∈ Symn(Kn), D0(x, tr ) > 0, deg(D0(x, tr )) = n.

1 This is to avoid multi-valued expressions and hence the use of the multiplicative Riemann–Roch
theorem.
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Moreover, if D0(x, tr ) is nonspecial for all (x, tr ) ∈ �, that is, if

i(D0(x, tr )) = 0, (x, tr ) ∈ �,

then ψ( · , x, tr ) is unique up to a constant multiple (which may depend on the
parameters (x, tr ) ∈ �).

Next we turn to the case of the Thirring system.

Lemma C.3 Let P ∈ Kn \ {P∞+ , P∞− , P0,+, P0,−} and (x, t), (x0, t0) ∈ � for
some � ⊆ R

2. Assume ψ( · , x, t), (x, t) ∈ �, to be meromorphic on Kn \ {P∞+ ,

P∞− , P0,+, P0,−} with essential singularities at P∞+ , P∞− , P0,+, P0,− such that
ψ̃( · , x, t), defined by

ψ̃(P, x, t) = ψ(P, x, t) exp

(
i(x − x0)

∫ P

Q0

�
(2)
∞,0 − i(t − t0)

∫ P

Q0

�
(2)
0,0

)
,

(C.55)

is meromorphic on Kn and its divisor satisfies

(ψ̃( · , x, t)) ≥ −Dµ̂(x0,t0,)

for some positive divisorDµ̂(x0,t0,r ) of degree n. Here�
(2)
∞,0 and�

(2)
0,0 are defined in

(4.215), and (4.216), and the path of integration in (C.55) is chosen identical to
that in the Abel maps (A.34) and (A.35). Define a divisor D0(x, t) by

(ψ̃( · , x, t)) = D0(x, t) − Dµ̂(x0,t0).

Then

D0(x, t) ∈ Symn(Kn), D0(x, t) > 0, deg(D0(x, t)) = n.

Moreover, if D0(x, t) is nonspecial for all (x, t) ∈ �, that is, if

i(D0(x, t)) = 0, (x, t) ∈ �,

then ψ( · , x, t) is unique up to a constant multiple (which may depend on the
parameters (x, t) ∈ �).

Since the proofs of Lemmas C.2 and C.3 are completely analogous to that of
Lemma B.2, we omit further details.
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Asymptotic Spectral Parameter Expansions
and Nonlinear Recursion Relations

Theorems are stable; proofs are not.
Raphael Høegh-Krohn

In this appendix we discuss asymptotic spectral parameter expansions for quan-
tities such as Fn/y as well as nonlinear recursion relations for the corresponding
homogeneous coefficients f̂� and analogous quantities fundamental to the polyno-
mial recursion formalism used for all (1 + 1)-dimensional integrable models.

Before individually discussing several completely integrable systems, we start
with the following elementary results (which are consequences of the binomial
expansion). Let

{Em}m=0,...,N ⊂ C for some N ∈ N0

and η ∈ C such that |η| < min{|E0|−1, . . . , |EN |−1}.
Then

( N∏
m=0

(
1 − Emη

))−1/2

=
∞∑
k=0

ĉk(E)ηk, (D.1)

where

ĉ0(E) = 1,

ĉk(E) =
k∑

j0,..., jN=0
j0+···+ jN=k

(2 j0)! · · · (2 jN )!

22k( j0!)2 · · · ( jN !)2
E j0

0 · · · E jN
N , k ∈ N. (D.2)

The first few coefficients explicitly read

ĉ0(E) = 1, ĉ1(E) = 1

2

N∑
m=0

Em,

ĉ2(E) = 1

4

N∑
m1,m2=0
m1<m2

Em1Em2 + 3

8

N∑
m=0

E2
m, etc. (D.3)

380
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Similarly,

( N∏
m=0

(
1 − Emη

))1/2

=
∞∑
k=0

ck(E)ηk, (D.4)

where

c0(E) = 1,

ck(E) = (−1)N+1
k∑

j0,..., jN=0
j0+···+ jN=k

(2 j0)! · · · (2 jN )!

22k( j0!)2 · · · ( jN !)2(2 j0 − 1) · · · (2 jN − 1)

×E j0
0 · · · E jN

N , k ∈ N. (D.5)

The first few coefficients explicitly are given by

c0(E) = 1, c1(E) = −1

2

N∑
m=0

Em,

c2(E) = 1

4

N∑
m1,m2=0
m1<m2

Em1Em2 − 1

8

N∑
m=0

E2
m, etc. (D.6)

We start with the KdV case, where N = 2n for some n ∈ N0.

Theorem D.1 Assume u ∈ C∞(R), s-KdVn(u) = 0, and suppose P = (z, y) ∈
Kn \ {P∞}. Then Fn/y has the following convergent expansion as P → P∞,

Fn(z)

y
=

ζ→0

∞∑
�=0

f̂� ζ
2�+1, (D.7)

where ζ = σ/z1/2 is the local coordinate near P∞ described in (B.7)–(B.10) and
f̂� are the homogeneous coefficients f� in (1.6). In particular, f̂� can be computed
from the nonlinear recursion relation

f̂0 = 1, f̂1 = 1
2u, (D.8)

f̂�+1 = − 1
2

�∑
k=1

f̂k f̂�+1−k + 1
2

�∑
k=0

(
u f̂k f̂�−k + 1

4 f̂k,x f̂�−k,x − 1
2 f̂k,xx f̂�−k

)
, �∈N.

Moreover, one infers for the Em-dependent integration constants c�, � = 0, . . . , n,
in Fn that

c� = c�(E), � = 0, . . . , n (D.9)
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and1

f� =
�∑

k=0

c�−k(E) f̂k, � = 0, . . . , n, (D.10)

f̂� =
�∧n∑
k=0

ĉ�−k(E) fk, � ∈ N0. (D.11)

Proof In the course of this proof it will be convenient to introduce the notion of a
degree, deg( · ), to effectively distinguish between homogeneous and nonhomoge-
neous quantities. Thus, assuming (1.1), one defines

deg(u) = 2, deg(∂x ) = 1,

implying

deg( f̂�) = 2�, � ∈ N0 (D.12)

using the linear recursion relation (1.4) and induction on �. Next, dividing Fn by
R1/2

2n+1 (temporarily fixing the branch of R2n+1(z)1/2 as zn+(1/2) near infinity), one
obtains

Fn(z)

R2n+1(z)1/2
=

|z|→∞

( ∞∑
k=0

ĉk(E)z−k
)( n∑

�=0

f�z
−�−(1/2)

)
=

∞∑
�=0

f̌�z
−�−(1/2)

(D.13)

for some coefficients f̌� to be determined next. Dividing (1.13) by R2n+1 and
inserting the expansion (D.13) into the resulting equation then yield the recursion
relation (D.8) (with f̂� replaced by f̌�). The sign of f̌0 has been chosen such that
f̌0 = f̂0 = 1. Moreover, one confirms inductively using the nonlinear recursion
relation (D.8) satisfied by f̌� that

deg( f̌�) = 2�, � ∈ N0. (D.14)

Differentiating f̌� with respect to x (using (D.8)), one proves inductively that f̌�
also satisfy the linear recursion relation (1.4). Hence, (D.12) and (D.14) imply

f̌� = f̂� for all � ∈ N0.

Thus, we proved

Fn(z)

R2n+1(z)1/2
=

|z|→∞

( ∞∑
k=0

ĉk(E)z−k
)( n∑

�=0

f�z
−�−(1/2)

)
=

∞∑
�=0

f̂�z
−�−(1/2)

(D.15)

1 m ∧ n = min{m, n}.
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and hence (D.7). A comparison of coefficients in (D.15) then proves (D.11). Next,
multiplying (D.1) and (D.4), a comparison of coefficients of η−k yields

k∑
�=0

ĉk−�(E)c�(E) = δk,0, k ∈ N0. (D.16)

Hence, one computes

�∑
m=0

c�−m(E) f̂m =
�∑

m=0

m∑
k=0

c�−m(E)ĉm−k(E) fk =
�∑

k=0

�∑
p=k

c�−p(E)ĉ p−k(E) fk

=
�∑

k=0

( �−k∑
m=0

c�−k−m(E)ĉm(E)

)
fk = f�, � = 0, . . . , n,

applying (D.16). Hence one obtains (D.10) and thus (D.9). �

Theorem D.1 has interesting consequences for the asymptotic spectral param-
eter expansion of the Green’s function G(z, x, x ′) of Schrödinger operators L as
described in the following remark.

RemarkD.2 Let L = −d2/dx2 + u (with u ∈ L∞(R) not necessarily an algebro-
geometric potential) and assume that for some z ∈ C, and all x0 ∈ R, ψ±(z, · ) ∈
L2((x0,±∞)) satisfy (L − z)ψ± = 0. Then the Green’s function G(z, x, x ′) of L
(i.e., the integral kernel of the resolvent (L − z)−1, identifying L and its L2(R)-
realization as a closed linear operator for simplicity) is given by

G(z, x, x ′) = 1

W (ψ+(z), ψ−(z))

{
ψ+(z, x)ψ−(z, x ′), x ≥ x ′,

ψ−(z, x)ψ+(z, x ′), x ≤ x ′,
(D.17)

where the Wronskian

W (ψ+(z), ψ−(z)) = ψ+(z, x)ψ ′
−(z, x) − ψ−(z, x)ψ ′

+(z, x)

is independent of x .
In the special algebro-geometric context we next replace

ψ+(z, x) by ψ(P, x, x0), ψ−(z, x) by ψ(P∗, x, x0) (D.18)

and

W (ψ+(z), ψ−(z)) by W (ψ(P, · , x0), ψ(P∗, · , x0)) =
∣∣∣∣

1 1
φ(P, x0) φ(P∗, x0)

∣∣∣∣

= φ(P∗, x0) − φ(P, x0) = −2iy

Fn(z, x0)
(D.19)

since the Wronskian is x-independent. Substituting (D.18) and (D.19) into (D.17),
with the result denoted by G(P, x, x ′) then yields the following for the diagonal
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Green’s function g(P, x) = G(P, x, x),

g(P, x) = i Fn(z, x)

2y
, P = (z, y) ∈ Kn \ {P∞}, (D.20)

which is the basic quantity encountered in (D.7). In particular, in the special case
where u is real-valued, the branch of g(P, x) for P ∈ �+ is the Green’s function
G(z, x, x ′) of a closed realization of L in L2(R) on the diagonal, that is, for x = x ′

(cf. Appendix J for more details.) From (1.12) we see that g satisfies the universal
third-order linear differential equation

gxxx (P) − 4(u − z)gx (P) − 2uxg(P) = 0 (D.21)

as well as the universal second-order nonlinear differential equation

−2gxx (P)g(P) + gx (P)2 + 4(u − z)g(P)2 = 1. (D.22)

The expansion (D.7) of Fn(z)/y then determines the spectral parameter expansion
of the diagonal Green’s function g(P, x) in (D.20) as P → P∞. Even though (D.7)
and (D.20) were derived in the special algebro-geometric context, we emphasize
that the expansion of (D.20) as P → P∞ only involves the homogeneous coef-
ficients f̂k , which are universal differential polynomials in u. Thus, identifying
ψ±(z, x) and ψ(P, x, x0), ψ(P∗, x, x0) as in (D.18) yields the universal asymp-
totic spectral parameter expansion of the diagonal Green’s function g(z, x) of L
as z → ∞ in the general (not necessarily algebro-geometric) case. In the gen-
eral case, the spectral parameter expansion of g(z, x) as z → ∞ will only be an
asymptotic expansion valid in appropriate regions exterior to the spectrum of L .
Analogous results apply in the case in which u is complex-valued, but then the
actual determination of branches of g(P, x) is more intricate.

The spectral theoretic content of the polynomial Fn is clearly displayed in (D.20)
and especially in (J.32)–(J.48) of Appendix J.

Completely analogous asymptotic spectral parameter expansions are possible
for K β

n+1. In particular, we refer to the corresponding diagonal Green’s function
$β discussed in Section 1.5 and Appendix J.

The sGmKdV case, where N = 2n for some n ∈ N0 follows from the KdV re-
sults in Theorem D.1, identifying the KdV potential u and the expression −(1/4)
× (u2

x + 2iuxx ) (cf. (2.12)) in the sGmKdV context. Hence we omit the corre-
sponding details.

The AKNS case, where N = 2n + 1 for some n ∈ N0, is treated next.

Theorem D.3 Assume p, q ∈ C∞(R), s-AKNSn(p, q) = 0, and suppose P =
(z, y) ∈ Kn\ {P∞+ , P∞−}. Then Fn/y, Gn+1/y, and Hn/y have the following
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convergent expansions as P → P∞± ,

Fn(z)

y
=

ζ→0
∓

∞∑
�=0

f̂� ζ
�+1,

Gn+1(z)

y
=

ζ→0
∓

∞∑
�=0

ĝ� ζ
�,

Hn(z)

y
=

ζ→0
∓

∞∑
�=0

ĥ� ζ
�+1,

(D.23)

where ζ = 1/z is the local coordinate near P∞± described in (C.7)–(C.11) and f̂�
and ĥ� are the homogeneous coefficients f� and h� in (3.9)–(3.11). In particular,
f̂� and ĥ� can be computed from the nonlinear recursion relations

f̂0 = −iq, f̂1 = 1

2
qx ,

f̂� =
�−2∑
k=0

(
− i

4q
f̂k f̂�−2−k,xx + iqx

4q2
f̂k f̂�−2−k,x + i

8q
f̂k,x f̂�−2−k,x (D.24)

+ i p

2
f̂k f̂�−2−k

)
− qx

2q2

�−1∑
k=0

f̂k f̂�−1−k − i

2q

�−1∑
k=1

f̂k f̂�−k, � ≥ 2,

and

ĥ0 = i p, ĥ1 = 1

2
px ,

ĥ� =
�−2∑
k=0

( i

4p
ĥk ĥ�−2−k,xx − i px

4p2
ĥk ĥ�−2−k,x − i

8p
ĥk,x ĥ�−2−k,x (D.25)

− iq

2
ĥk ĥ�−2−k

)
− px

2p2

�−1∑
k=0

ĥk ĥ�−1−k + i

2p

�−1∑
k=1

ĥk ĥ�−k, � ≥ 2.

Moreover, one infers for the Em-dependent integration constants c�, � = 0, . . . , n,
in Fn, Gn+1, and Hn that

c� = c�(E), � = 0, . . . , n + 1 (D.26)

and1

f� =
�∑

k=0

c�−k(E) f̂k, h� =
�∑

k=0

c�−k(E)ĥk, � = 0, . . . , n,

g� =
�∑

k=0

c�−k(E)ĝk, � = 0, . . . , n + 1, (D.27)

f̂� =
�∧n∑
k=0

ĉ�−k(E) fk, ĥ� =
�∧n∑
k=0

ĉ�−k(E)hk,

ĝ� =
�∧(n+1)∑
k=0

ĉ�−k(E)gk, � ∈ N0. (D.28)

1 m ∧ n = min{m, n}.
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Proof Again it will be convenient to introduce the notion of a degree to effec-
tively distinguish between homogeneous and nonhomogeneous quantities. Thus,
assuming (3.1), one defines

deg(p) = deg(q) = 1, deg(∂x ) = 1,

implying

deg( f̂�) = deg(ĥ�) = � + 1, � ∈ N0, deg(ĝ�) = �, � ≥ 2 (D.29)

using the linear recursion relation (3.5)–(3.7) and induction on �. Next, dividing
Fn and Hn by R1/2

2n+2 (temporarily fixing the branch of R2n+2(z)1/2 as zn+1 near
infinity), one obtains

Fn(z)

R2n+2(z)1/2
=

|z|→∞

( ∞∑
k=0

ĉk(E)z−k
)( n∑

�=0

f�z
−�−1

)
=

∞∑
�=0

f̌�z
−�−1, (D.30)

Hn(z)

R2n+2(z)1/2
=

|z|→∞

( ∞∑
k=0

ĉk(E)z−k
)( n∑

�=0

h�z
−�−1

)
=

∞∑
�=0

ȟ�z
−�−1 (D.31)

for some coefficients f̌� and ȟ� to be determined next. Dividing (3.25) and (3.27) by
R2n+2 and inserting the expansions (D.30) and (D.31) into the resulting equations
then yield the recursion relations (D.24) and (D.25) (with f̂� and ĥ� replaced
by f̌� and ȟ�, respectively). The signs of f̌0 and ȟ0 have been chosen such that
f̌0 = f̂0 = −iq and ȟ0 = ĥ0 = i p. Moreover, one confirms inductively using the
nonlinear recursion relations (D.24) and (D.25) satisfied by f̌� and ȟ� that

deg( f̌�) = deg(ȟ�) = � + 1, � ∈ N0. (D.32)

Differentiating f̌� and ȟ� with respect to x (using (D.24) and (D.25)), one proves
inductively that

i

q
f̌�+1 + 1

2q
f̌�,x = − i

p
ȟ�+1 + 1

2p
ȟ�,x , � ∈ N0. (D.33)

Defining ǧ�+1 equal to the expression (D.33), one again proves inductively that

ǧ�+1,x = p f̌� + qȟ�, � ∈ N0.

Thus, f̌�, ǧ�, and ȟ� also satisfy the linear recursion relation (3.5)–(3.7). Hence,
(D.29) and (D.32) imply

f̌� = f̂� and ȟ� = ĥ� for all � ∈ N0.

Thus, we proved

Fn(z)

R2n+2(z)1/2
=

|z|→∞

( ∞∑
k=0

ĉk(E)z−k
)( n∑

�=0

f�z
−�−1

)
=

∞∑
�=0

f̂�z
−�−1, (D.34)

Hn(z)

R2n+2(z)1/2
=

|z|→∞

( ∞∑
k=0

ĉk(E)z−k
)( n∑

�=0

h�z
−�−1

)
=

∞∑
�=0

ĥ�z
−�−1 (D.35)
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and hence (D.23) for f̂� and ĥ�. A comparison of coefficients in (D.34) and (D.35)
then proves (D.28) for f̂� and ĥ�. To prove (D.28) also for ĝ� one makes the ansatz

Gn+1(z)

R2n+2(z)1/2
=

|z|→∞

( ∞∑
k=0

ĉk(E)z−k
)( n+1∑

�=0

g�z
−�

)
=

∞∑
�=0

ǧ�z
−�

for some coefficients ǧ�. Next, dividing (3.23) by R2n+2, that is, writing

Gn+1(z)2

R2n+2(z)
= 1 + Fn(z)

R2n+2(z)1/2

Hn(z)

R2n+2(z)1/2
, (D.36)

and inserting expansions (D.34) and (D.35) into the right-hand side of (D.36), one
proves inductively that

deg(ǧ�) = �, � ≥ 2.

Since it can easily be verified that ǧ0 = ĝ0 = 1 and ǧ1 = ĝ1 = 0 directly, one
obtains

ǧ� = ĝ� for all � ∈ N0,

and hence

Gn+1(z)

R2n+2(z)1/2
=

|z|→∞

( ∞∑
k=0

ĉk(E)z−k
)( n+1∑

�=0

g�z
−�

)
=

∞∑
�=0

ĝ�z
−�. (D.37)

This completes the proof of (D.23), and a comparison of coefficients in (D.37)
then also proves (D.28) for ĝ�. The proof of (D.26) and (D.27) is identical to that
of (D.9) and (D.10) in Theorem D.1 and is hence omitted. �

The coefficients ĝ� in (D.23) can be determined from (D.36) and (D.37). (How-
ever, it is simpler to use the linear recursion relation (3.6) instead.) Explicitly, one
obtains

ĝ0 = 1, ĝ1 = 0, ĝ2 = pq/2, ĝ3 = −(i/4)(pxq − pqx ), etc.

Theorem D.3 has interesting consequences for the asymptotic spectral parameter
expansion of the Green’s matrixG(z, x, x ′) of the Dirac-type operator M described
next.

RemarkD.4 Let M be given by (3.3) (with p, q ∈ L∞(R) not necessarily algebro-
geometric potentials) and assume that for some z ∈ C, and all x0 ∈ R, ψ1,±(z, · ),
ψ2,±(z, · ) ∈ L2((x0,±∞)) satisfy (M − z)�± = 0, �± = ( ψ1,±

ψ2,± ), that is,

ψ1,±,x = −i zψ1,± + qψ2,±, ψ2,±,x = i zψ2,± + pψ1,±.

Then the Green’s matrix G(z, x, x ′), x �= x ′, of M (i.e., the integral kernel of the
resolvent (M − z)−1, identifying M and its L2(R)2-realization as a closed linear
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operator for simplicity) is given by

G(z, x, x ′) = i

W (�−(z), �+(z))
(D.38)

×




(
ψ1,+(z, x)ψ2,−(z, x ′) ψ1,+(z, x)ψ1,−(z, x ′)

ψ2,+(z, x)ψ2,−(z, x ′) ψ2,+(z, x)ψ1,−(z, x ′)

)
, x > x ′,

(
ψ1,−(z, x)ψ2,+(z, x ′) ψ1,−(z, x)ψ1,+(z, x ′)

ψ2,−(z, x)ψ2,+(z, x ′) ψ2,−(z, x)ψ1,+(z, x ′)

)
, x < x ′,

where the Wronskian

W (�−(z), �+(z)) =
∣∣∣∣
ψ1,−(z, x) ψ1,+(z, x)
ψ2,−(z, x) ψ2,+(z, x)

∣∣∣∣
= ψ1,−(z, x)ψ2,+(z, x) − ψ2,−(z, x)ψ1,+(z, x)

is independent of x . Note thatG(z, x, x ′) is continuous at x = x ′ in its off-diagonal
elements but discontinuous on the diagonal.
In the special algebro-geometric context we next replace

ψ j,+(z, x) by ψ j (P, x, x0), ψ j,−(z, x) by ψ j (P
∗, x, x0), j = 1, 2 (D.39)

and

W (�−(z), �+(z)) by W (�(P∗, · , x0), �(P, · , x0)) =
∣∣∣∣

1 1
φ(P∗, x0) φ(P, x0)

∣∣∣∣

= φ(P, x0) − φ(P∗, x0) = 2y

Fn(z, x0)
, (D.40)

since the Wronskian is x-independent. Substituting (D.39) and (D.40) into (D.38)
with the result denoted by G(P, x, x ′) then yields

(G(P, x, x + 0) + G(P, x, x − 0))/2 = (G(P, x − 0, x) + G(P, x + 0, x))/2

= i

2y

(
Gn+1(z, x) Fn(z, x)
Hn(z, x) Gn+1(z, x)

)
, P = (z, y) ∈ Kn \ {P∞±}, (D.41)

where Fn/y,Gn+1/y, and Hn/y denote the basic quantities encountered in (D.23).
Since G(P, x, x ′) is discontinuous at x = x ′, we introduced the arithmetic mean
of the corresponding one-sided limits following the usual treatment of first-order
systems. In fact, in the special self-adjoint case in which p = q , the arithmetic
mean in (D.41) leads to the characteristic function of M , a fundamental object
for studying spectral properties of M . The expansions in (D.23) then determine
the off-diagonal asymptotic spectral parameter expansions of the arithmetic mean
of the diagonal Green’s matrix in (D.41) as P → P∞± . Even though (D.23) and
(D.41) were derived in the special algebro-geometric context, we emphasize that
the expansion of (D.41) as P → P∞± only involves the homogeneous coefficients
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f̂k, ĥk , which are universal differential polynomials in p, q . Thus, identifying
�±(z, x) and �(P, x, x0), �(P∗, x, x0) as in (D.39) yields the universal spectral
parameter expansion of the arithmetic mean of the diagonal Green’s matrix of M
as z → ∞ in the general (not necessarily algebro-geometric) case. In the general
case, the expansion of the arithmetic mean of the diagonal Green’s matrix of M as
z → ∞ will only be an asymptotic expansion valid in appropriate regions exterior
to the spectrum of M .

Next, we turn to the case of the Thirring system, where N = 2n + 1 for some
n ∈ N0.

Theorem D.5 Assume (4.2), (4.15)–(4.17), and suppose P = (z, y) ∈ Kn \
{P∞+ , P∞−}. Then Fn/y, Gn+1/y, and Hn/y have the following convergent
expansions as P → P∞± ,

Fn(z)

y
=

ζ→0

∞∑
�=0

f̂� ζ
�+1,

Gn+1(z)

y
=

ζ→0

∞∑
�=0

ĝ� ζ
�,

Hn(z)

y
=

ζ→0

∞∑
�=0

ĥ� ζ
�+1,

(D.42)

where ζ = 1/z is the local coordinate near P∞± described in (C.7)–(C.11) and f̂�,
ĝ�, ĥ� are the homogeneous coefficients f�, g�, h� in (4.9)–(4.11). In particular, f̂�
and ĥ� can be computed from the nonlinear recursion relations

f̂0 = −2v, f̂1 = ivx + 2v2v∗,

f̂� = 1

8v

�−2∑
k=0

(
f̂�−2−k,xx f̂k − 1

2
f̂�−2−k,x f̂k,x − vx

v
f̂�−2−k,x f̂k

+ 2
(
v2(v∗)2 + ivv∗

x

)
f̂�−2−k f̂k

)

+ 1

4v

(
2vv∗ + i

vx

v

) �−1∑
k=0

f̂�−1−k f̂k + 1

4v

�−1∑
k=0

f̂�−k f̂k, � ≥ 2, (D.43)

and

ĥ0 = 2v∗, ĥ1 = iv∗
x − 2v(v∗)2,

ĥ� = − 1

8v∗

�−2∑
k=0

(
ĥ�−2−k,xx ĥk − 1

2
ĥ�−2−k,x ĥk,x − v∗

x

v∗ ĥ�−2−k,x ĥk

+ 2
(
v2(v∗)2 − ivxv

∗)ĥ�−2−k ĥk
)

− 1

4v∗
(

2vv∗ − i
v∗
x

v∗
) �−1∑
k=0

ĥ�−1−k ĥk − 1

4v∗

�−1∑
k=0

ĥ�−k ĥk, � ≥ 2. (D.44)

Moreover, one infers for the Em-dependent integration constants c�, � = 0, . . . , n,
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in Fn, Gn+1, and Hn that

c� = c�(E), � = 0, . . . , n (D.45)

and1

f� =
�∑

k=0

c�−k(E) f̂k, h� =
�∑

k=0

c�−k(E)ĥk, � = 0, . . . , n,

g� =
�∑

k=0

c�−k(E)ĝk, � = 0, . . . , n + 1, (D.46)

f̂� =
�∧n∑
k=0

ĉ�−k(E) fk, ĥ� =
�∧n∑
k=0

ĉ�−k(E)hk,

ĝ� =
�∧(n+1)∑
k=0

ĉ�−k(E)gk, � ∈ N0. (D.47)

Proof Again it will be convenient to introduce the notion of a degree to effec-
tively distinguish between homogeneous and nonhomogeneous quantities. Thus,
assuming (4.2), one defines

deg(v) = deg(v∗) = 1, deg(∂x ) = 2,

implying

deg( f̂�) = deg(ĥ�) = 2� + 1, deg(ĝ�) = 2�, � ∈ N0 (D.48)

using the linear recursion relation (4.4)–(4.6) and induction on �. Next, dividing
Fn and Hn by R1/2

2n+2 (temporarily fixing the branch of R2n+2(z)1/2 as zn+1 near
infinity), one obtains

Fn(z)

R2n+2(z)1/2
=

|z|→∞

( ∞∑
k=0

ĉk(E)z−k
)( n∑

�=0

f�z
−�−1

)
=

∞∑
�=0

f̌�z
−�−1, (D.49)

Hn(z)

R2n+2(z)1/2
=

|z|→∞

( ∞∑
k=0

ĉk(E)z−k
)( n∑

�=0

h�z
−�−1

)
=

∞∑
�=0

ȟ�z
−�−1 (D.50)

for some coefficients f̌� and ȟ� to be determined next. Dividing (4.25) and (4.26) by
R2n+2 and inserting the expansions (D.49) and (D.50) into the resulting equations
then yield the recursion relations (D.43) and (D.44) (with f̂� and ĥ� replaced
by f̌� and ȟ�, respectively). The signs of f̌0 and ȟ0 have been chosen such that
f̌0 = f̂0 = −2v and ȟ0 = ĥ0 = 2v∗. Moreover, one confirms inductively using the
nonlinear recursion relations (D.43) and (D.44) satisfied by f̌� and ȟ� that

deg( f̌�) = deg(ȟ�) = 2� + 1, � ∈ N0. (D.51)

1 m ∧ n = min{m, n}.
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Differentiating f̌� and ȟ� with respect to x (using (D.43) and (D.44)), one proves
inductively that

− 1

2v
f̌� − i

4v
f̌�−1,x + v∗

2
f̌�−1 = 1

2v∗ ȟ� − i

4v∗ ȟ�−1,x − v

2
ȟ�−1, � ∈ N0.

(D.52)

Defining ǧ� equal to the expression (D.52), one again proves inductively that

ǧ�,x = 2iv∗ f̌� + 2ivȟ�, � ∈ N0.

Thus, f̌�, ǧ�, and ȟ� also satisfy the linear recursion relation (4.4)–(4.6). Hence,
(D.48) and (D.51) imply

f̌� = f̂� and ȟ� = ĥ� for all � ∈ N0.

Thus, we proved

Fn(z)

R2n+2(z)1/2
=

|z|→∞

( ∞∑
k=0

ĉk(E)z−k
)( n∑

�=0

f�z
−�−1

)
=

∞∑
�=0

f̂�z
−�−1, (D.53)

Hn(z)

R2n+2(z)1/2
=

|z|→∞

( ∞∑
k=0

ĉk(E)z−k
)( n∑

�=0

h�z
−�−1

)
=

∞∑
�=0

ĥ�z
−�−1 (D.54)

and hence (D.42) for f̂� and ĥ�. A comparison of coefficients in (D.53) and (D.54)
then proves (D.47) for f̂� and ĥ�. To prove (D.47) also for ĝ� one makes the ansatz

Gn+1(z)

R2n+2(z)1/2
=

|z|→∞

( ∞∑
k=0

ĉk(E)z−k
)( n+1∑

�=0

g�z
−�

)
=

∞∑
�=0

ǧ�z
−�

for some coefficients ǧ�. Next, dividing (4.18) by R2n+2, that is, writing

Gn+1(z)2

R2n+2(z)
= 1 + z

Fn(z)

R2n+2(z)1/2

Hn(z)

R2n+2(z)1/2
, (D.55)

and inserting expansions (D.53) and (D.54) into the right-hand side of (D.55), one
proves inductively that

deg(ǧ�) = 2�, � ∈ N0.

Thus,

ǧ� = ĝ� for all � ∈ N0,

and hence

Gn+1(z)

R2n+2(z)1/2
=

|z|→∞

( ∞∑
k=0

ĉk(E)z−k
)( n+1∑

�=0

g�z
−�

)
=

∞∑
�=0

ĝ�z
−�. (D.56)
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This completes the proof of (D.42), and a comparison of coefficients in (D.56) also
proves (D.47) for ĝ�. Again the proof of (D.45) and (D.46) is identical to that of
(D.9) and (D.10) in Theorem D.1 and is hence omitted. �

The coefficients ĝ� in (D.42) can be determined from (D.55) and (D.56). (How-
ever, it is simpler to use the linear recursion relation (4.5) instead.) Explicitly, one
obtains

ĝ0 = 1, ĝ1 = −2vv∗, etc.

Next, we turn to the CH system, where N = 2n + 1 for some n ∈ N0.

Theorem D.6 Assume that u ∈ C∞(R), dmu/dx (m) ∈ L∞(R), m ∈ N0,
s-CHn(u) = 0, and suppose P = (z, y) ∈ Kn \ {P∞+ , P∞−}. Then Fn/y has the
following convergent expansion as P → P∞± ,

Fn(z)

y
=

ζ→0
∓

∞∑
�=0

f̂� ζ
�+1, (D.57)

where ζ = 1/z is the local coordinate near P∞± described in (C.7)–(C.11) and
f̂� are the homogeneous coefficients f� in (5.7). In particular, f̂� can be computed
from the nonlinear recursion relation

f̂0 = 1, f̂1 = −2u,

f̂�+1 = G
( �∑

k=1

(
f̂�+1−k,xx f̂k − 1

2 f̂�+1−k,x f̂k,x − 2 f̂�+1−k f̂k
)

+ 2(uxx − 4u)
�∑

k=0

f̂�−k f̂k

)
, � ∈ N (D.58)

assuming

f̂� ∈ L∞(R), � ∈ N.

Moreover, one infers for the Em-dependent integration constants c�, � = 0, . . . , n,
in Fn that

c� = c�(E), � = 0, . . . , n (D.59)

and1

f� =
�∑

k=0

c�−k(E) f̂k, � = 0, . . . , n, (D.60)

f̂� =
�∧n∑
k=0

ĉ�−k(E) fk, � ∈ N0. (D.61)

1 m ∧ n = min{m, n}.
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Proof Dividing Fn by R1/2
2n+2 (temporarily fixing the branch of R2n+2(z)1/2 as zn+1

near infinity), one obtains

Fn(z)

R2n+2(z)1/2
=

|z|→∞

( ∞∑
k=0

ĉk(E)z−k
)( n∑

�=0

f�z
−�−1

)
=

∞∑
�=0

f̌�z
−�−1 (D.62)

for some coefficients f̌� to be determined next. Dividing (5.31) by R2n+2 and
inserting the expansion (D.62) into the resulting equation then yield the recursion
relation (D.58) (with f̂� replaced by f̌�). More precisely, for f̌1, one originally
obtains the relation

− f̌1,xx + 4 f̌1 = 2(uxx − 4u), that is,

(
− d2

dx2
+ 4

)(
f̌1 + 2u

) = 0.

Thus,

f̌1(x) = −2u(x) + a1e
2x + b1e

−2x

for some a1, b1 ∈ C, and hence the requirement f̌1 ∈ L∞(R) then yields a1 =
b1 = 0. The sign of f̌0 has been chosen such that f̌0 = f̂0 = 1. For � ≥ 2, one
obtains similarly

− f̌�+1,xx + 4 f̌�+1 =
( �∑

k=1

(
f̌�+1−k,xx f̌k − 1

2 f̌�+1−k,x f̌k,x − 2 f̌�+1−k f̌k
)

+ 2(uxx − 4u)
�∑

k=0

f̌�−k f̌k

)
, � ≥ 1,

and hence,

f̌�+1 = G
( �∑

k=1

(
f̌�+1−k,xx f̌k − 1

2 f̌�+1−k,x f̌k,x − 2 f̌�+1−k f̌k
)

+ 2(uxx − 4u)
�∑

k=0

f̌�−k f̌k

)
+ a�+1e

2x + b�+1e
−2x , � ≥ 1

for some a�+1, b�+1 ∈ C. Again the requirement f̌�+1 ∈ L∞(R) then yields a�+1 =
b�+1 = 0, � ≥ 1. If one introduces f̂� by (5.7) with ck = 0, k ∈ N, and f̌� by (D.58),
a straightforward computation shows that

f̌�,x = G
( �−1∑

k=1

(
f�−k,xxx − 4 f�−k,x

)
fk −

�−1∑
k=0

2
(− 2(uxx − 4u) f�−k−1,x

+ (4ux − uxxx ) f�−k−1
))

fk

= G
(

−
�−1∑
k=1

G−1 f�−k,x fk +
�−1∑
k=0

(G−1 f�−k,x
)
fk

)

= f̂�,x , � ∈ N.
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Hence,

f̌� = f̂� + d�, � ∈ N (D.63)

for some constants d� ∈ C, � ∈ N. Since d0 = d1 = 0 by inspection, we next pro-
ceed by induction on � and suppose that

dk = 0 and hence f̌k = f̂k for k = 0, . . . , �.

Thus, (D.58) and (D.63) imply

f̌�+1 = G{. . . } = f̂�+1 + d�+1,

where {. . . } denotes the expression on the right-hand side of (D.58) in terms of
f̌k = f̂k , k = 0, . . . , �. Hence,

{. . . } − f̂�+1 + α�+1e
2x + β�+1e

−2x = G−1d�+1 = 4d�+1

for some constants α�+1, β�+1 ∈ C. Since {. . . } − f̂�+1 ∈ L∞(R), one concludes
once more that α�+1 = β�+1 = 0. Moreover, since {. . . } − f̂�+1 contains no con-
stants by construction, one concludes d�+1 = 0, and hence

f̌� = f̂� for all � ∈ N0.

Thus, we have proved that

Fn(z)

R2n+2(z)1/2
=

|z|→∞

( ∞∑
k=0

ĉk(E)z−k
)( n∑

�=0

f�z
−�−1

)
=

∞∑
�=0

f̂�z
−�−1, (D.64)

and hence (D.57). A comparison of coefficients in (D.64) then proves (D.61). Next,
after multiplying (D.1) and (D.4), a comparison of coefficients of z−k yields

k∑
�=0

ĉk−�(E)c�(E) = δk,0, k ∈ N0. (D.65)

Thus, one computes

�∑
m=0

c�−m(E) f̂m =
�∑

m=0

m∑
k=0

c�−m(E)ĉm−k(E) fk =
�∑

k=0

�∑
p=k

c�−p(E)ĉ p−k(E) fk

=
�∑

k=0

( �−k∑
m=0

c�−k−m(E)ĉm(E)

)
fk = f�, � = 0, . . . , n,

applying (D.65). Hence, one obtains (D.60) and thus (D.59). �

Notes

Equation (D.7) is well-known and can be found, for instance, in Gel’fand and
Dikii (1975), which is the classical reference for asymptotic spectral parameter
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expansions of the type considered in this appendix. Explicit formulas for the
coefficients f̂� in (D.8) have been derived in Avramidi and Schimming (2000),
Rosenhouse and Katriel (1987), and Schimming (1988; 1995).

For first-order Dirac-type systems and the associated Green’s matrices refer, for
instance, to Atkinson (1964, Sec. 9.4). The characteristic function for self-adjoint
Dirac-type operators M is also discussed in Atkinson (1964, Sec. 9.5).



Appendix E

Lagrange Interpolation

A good stack of examples, as large as possible, is indispensable for
a thorough understanding of any concept, and when I want to learn
something new, I make it my first job to build one.

Paul R. Halmos1

We briefly review essentials of Lagrange interpolation formulas. Assuming n ∈ N

to be fixed and introducing

Sk = {� = (�1, . . . , �k) ∈ N
k | �1 < · · · < �k ≤ n}, k = 1, . . . , n,

I ( j)
k = {� = (�1, . . . , �k) ∈ Sk | �m �= j}, k = 1, . . . , n − 1, j = 1, . . . , n,

one defines the symmetric functions

�0(µ) = 1, �k(µ) = (−1)k
∑
�∈Sk

µ�1 · · ·µ�k , k = 1, . . . , n, (E.1)

#
( j)
0 (µ) = 1,

#
( j)
k (µ) = (−1)k

∑
�∈I ( j)

k

µ�1 · · ·µ�k , k = 1, . . . , n − 1, j = 1, . . . , n, (E.2)

#( j)
n (µ) = 0, j = 1, . . . , n,

where µ = (µ1, . . . , µn) ∈ C
n . Explicitly, one verifies

�1(µ) = −
n∑

�=1

µ�, �2(µ) =
n∑

�1,�2=1
�1<�2

µ�1µ�2 , etc.,

#
( j)
1 (µ) = −

n∑
�=1
��= j

µ�, #
( j)
2 (µ) =

n∑
�1,�2=1
�1,�2 �= j
�1<�2

µ�1µ�2 , etc.

1 Quoted in J. A. Gallian, Contemporary Abstract Algebra, D. C. Heath, Lexington, Mass., 1990,
p. 33.
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Introducing

Fn(z) =
n∏
j=1

(z − µ j ) =
n∑

�=0

�n−�(µ)z�, z ∈ C, (E.3)

one infers

Fn,z(µk) =
n∏
j=1
j �=k

(µk − µ j ).

The general form of Lagrange’s interpolation theorem then reads as follows.

Theorem E.1 Assume that µ1, . . . , µn are n distinct complex numbers. Then

n∑
j=1

µm−1
j

Fn,z(µ j )
#

( j)
k (µ) = δm,n−k − �k+1(µ)δm,n+1, (E.4)

m = 1, . . . , n + 1, k = 0, . . . , n − 1.

Proof Let CR be a circle with center at the origin and radius R that contains the
zeros µ j of the polynomial Fn and that is oriented counterclockwise. Cauchy’s
theorem then yields

1

2π i

∮
CR

dζ
ζm−1

Fn(ζ )(ζ − z)
= zm−1

Fn(z)
+

n∑
k=1

µm−1
k

Fn,z(µ j )(µ j − z)
,

z �= µ1, . . . , µn, m = 1, . . . , n + 1.

However, by letting R → ∞, we infer that

1

2π i

∮
CR

dζ
ζm−1

Fn(ζ )(ζ − z)
= lim

R→∞
Rm−1

Fn(R)
= δm,n+1, m = 1, . . . , n + 1,

which implies

zm−1 −
n∑

k=1

µm−1
k Fn(z)

Fn,z(µ j )(z − µ j )
= Fn(z)δm,n+1. (E.5)

Using the symmetric functions � j , we may write

Fn(z) =
n∑
j=0

� j (µ)zn− j (E.6)

and

Fn(z)

z − µ j
=

n−1∑
k=0

#
( j)
k (µ)zn−1−k . (E.7)
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Expanding both sides of equation (E.5) in powers in z, using (E.6) on the right-hand
side and (E.7) on the left-hand side, proves (E.4). �

The simplest Lagrange interpolation formula reads, in the case k = 0,

n∑
j=1

µm−1
j

Fn,z(µ j )
= δm,n, m = 1, . . . , n. (E.8)

As a consequence, if Qn−1 denotes a polynomial of degree n − 1, then

Qn−1(z) = Fn(z)
n∑
j=1

Qn−1(µ j )

Fn,z(µ j )(z − µ j )

=
n∑
j=1

Qn−1(µ j )
n∏

k=1
k �= j

z − µk

µ j − µk
, z ∈ C. (E.9)

For use in the main text we finally observe the following results.

Lemma E.2 Assume that µ1, . . . , µn are n distinct complex numbers. Then

(i) �k+1(µ) + µ j#
( j)
k (µ) = #

( j)
k+1(µ), k = 0, . . . , n − 1, j = 1, . . . , n.

(E.10)

(ii)
k∑

�=0

�k−�(µ)µ�
j = #

( j)
k (µ), k = 0, . . . , n, j = 1, . . . , n. (E.11)

(iii)
k−1∑
�=0

#
( j)
k−1−�(µ)z� = 1

z − µ j

( k∑
�=0

�k−�(µ)z� − #
( j)
k (µ)

)
, (E.12)

k = 0, . . . , n, j = 1, . . . , n.

Proof

(i) Adding (E.6) to µ j times (E.7), one finds

Fn(z) + µ j
Fn(z)

z − µ j
=

n−1∑
k=0

(
�k+1 + µ j#

( j)
k

)
zn−k−1 + zn.

However, one also has

Fn(z) + µ j
Fn(z)

z − µ j
= z

Fn(z)

z − µ j
=

n−1∑
k=0

#
( j)
k+1z

n−k−1 + zn,

using (E.7) and recalling #
( j)
n = 0. Thus, (E.10) holds.
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(ii) We prove (E.11) by induction on k. Equation (E.11) clearly holds for k = 0;
next assume that

k−1∑
�=0

�k−1−�µ
�
j = #

( j)
k−1

holds. Then we find that

k∑
�=0

�k−�µ
�
j = �k + µ j

k∑
�=1

�k−�µ
�−1
j

= �k + µ j

k−1∑
�=0

�k−1−�µ
�
j = �k + µ j#

( j)
k−1 = #

( j)
k ,

using first the induction hypothesis and then (E.10).

(iii) Using (E.10) and �0(µ) = #
( j)
0 (µ) = 1 one computes

(z−µ j )
k−1∑
�=0

#
( j)
k−1−�(µ)z� =

k∑
m=1

#
( j)
k−m(µ)zm −

k−1∑
�=0

µ j#
( j)
k−1−�(µ)z�

=
k∑

m=1

#
( j)
k−m(µ)zm +

k−1∑
�=0

�k−�(µ)z� −
k−1∑
�=0

#
( j)
k−�(µ)z�

=
k−1∑
�=0

�k−�(µ)z� + #
( j)
0 (µ)zk − #

( j)
k (µ)

=
k∑

�=0

�k−�(µ)z� − #
( j)
k (µ). �

Next, assuming µ j �= µ j ′ for j �= j ′, we introduce the n × n matrix Un(µ) by

U1(µ) = 1, Un(µ) =
(

µ
j−1
k∏n

m=1
m �=k

(µk − µm)

)n
j,k=1

, (E.13)

where µ = (µ1, . . . , µn) ∈ C
n .

LemmaE.3 Supposeµ j ∈ C, j = 1, . . . , n, are n distinct complex numbers. Then

Un(µ)−1 =
(
#

( j)
n−k(µ)

)n
j,k=1

. (E.14)

Proof One observes that (E.14) may be written as

Un(µ) =
(

µ
j−1
k

Fn,z(µk)

)n
j,k=1

.
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Using Lagrange’s interpolation result, Theorem E.1 (replacing k by n − k in (E.4))
then proves the result. �

Notes

The material of this appendix is mostly taken from Gesztesy and Holden (2002;
to appear, a). A proof of Lagrange’s interpolation result in the simplest case k = 0
can be found, for example, in Toda (1989b, App. E).



Appendix F

Symmetric Functions, Trace Formulas,
and Dubrovin-Type Equations

. . . You should not publish this. It’s a compendium of known
things, written in an over-complicated and idiosyncratic
notation. I think it is fair to say that ameteurs [sic!] of “KdV
and all that” have known and used these things for 20 years
or more.1

Ich glaub von jedem Menschen das Schlechteste, selbst von
mir, und ich hab mich noch selten getäuscht.

Johann Nestroy2

This appendix takes a close look at Dubrovin-type equations in connection
with hyperelliptic Riemann surfaces. We heavily employ elementary symmetric
functions of µ1, . . . , µn and derive their theta function representations relevant
in connection with trace formulas for solutions of (1 + 1)-dimensional integrable
hierarchies of soliton equations. The material presented is of particular importance
in connection with our discussion of algebro-geometric solutions in the time-
dependent context.

First we express f� and F̃r in terms of elementary symmetric functions of
µ1, . . . , µn and recall our abbreviations �k(µ) and #

( j)
k (µ) introduced in (E.1)

and (E.2), respectively. For simplicity we will often focus on the homogeneous
cases, denoted by f̂� and F̂r , where ck = 0, k = 1, . . . , �. We start with f̂�.

LemmaF.1 Let ĉk(E)be defined as in (D.2), with N = 2n in theKdVand sGmKdV
cases and N = 2n + 1 in the AKNS and CH cases, respectively. Then one infers
the following results for the KdV and CH hierarchies (cf. (E.1)),3

f̂� =
�∧n∑
k=0

ĉ�−k(E)�k(µ), � ∈ N0. (F.1)

1 A warning to the reader from an anonymous referee who clearly disliked the material in Gesztesy
and Holden (2002) on which parts of this appendix are based.

2 In Die beiden Nachtwandler oder Das Notwendige und das Überflüssige, first act, scene 16.
(“I expect the worst of everyone, including myself, and I have seldom erred.”)

3 m ∧ n = min{m, n}.
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For the AKNS hierarchy, one obtains

f̂� = −iq
�∧n∑
k=0

ĉ�−k(E)�k(µ), ĥ� = i p
�∧n∑
k=0

ĉ�−k(E)�k(ν), � ∈ N0, (F.2)

where ν = (ν1, . . . , νn).
In the sGmKdV case, one derives

f̂� =
�∧n∑
k=0

ĉ�−k(E)�k(µ), ĥ� =
�∧n∑
k=0

ĉ�−k(E)�k(ν), � ∈ N0, (F.3)

and

f̂ n = �n(µ), ĥn = �n(ν). (F.4)

Proof In the KdV and CH cases it suffices to refer to (1.11), (1.31), (5.20), (5.44)
and to note

Fn(z) =
n∑

�=0

fn−�z
� =

n∏
j=1

(z − µ j ) =
n∑

�=0

�n−�(µ)z�,

that is, f� = ��(µ), � = 0, . . . , n. Equation (F.1) then follows from (D.11) and
(D.61). The sGmKdV case (F.3), (F.4) follows in the same way using (2.29), (2.34),
(2.35), (2.64), (2.91), and (2.92). In the AKNS case, one uses (3.17), (3.19), (3.51),
and (3.52) and notes

n∑
�=0

fn−�z
� = −iq

n∏
j=1

(z − µ j ) = −iq
n∑

�=0

�n−�(µ)z�,

n∑
�=0

hn−�z
� = i p

n∏
j=1

(z − ν j ) = i p
n∑

�=0

�n−�(ν)z�,

that is, f� = −iq��(µ), h� = i p��(ν), � = 0, . . . , n. Equation (F.2) then follows
applying (D.28). �

Theorem F.2 Let r ∈ N0. In the KdV and CH cases one derives1 (cf. (E.2))

F̂r (µ j ) =
r∑

s=(r−n)∨0

ĉs(E)#( j)
r−s(µ). (F.5)

For the AKNS hierarchy, one infers

F̂r (µ j ) = −iq
r∑

s=(r−n)∨0

ĉs(E)#( j)
r−s(µ), (F.6)

Ĥr (ν j ) = i p
r∑

s=(r−n)∨0

ĉs(E)#( j)
r−s(ν). (F.7)

1 m ∨ n = max{m, n}.
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For the sGmKdV hierarchy one concludes1

F̂r (µ j )

µ j
=

r−1∑
s=(r−1−n)∨0

ĉs(E)#( j)
r−1−s(µ) − α̃

α
#

( j)
n−1(µ), (F.8)

Ĥr (ν j )

ν j
=

r−1∑
s=(r−1−n)∨0

ĉs(E)#( j)
r−1−s(ν) − β̃

β
#

( j)
n−1(ν). (F.9)

Proof It suffices to consider the KdV and sGmKdV cases. By definition

F̂r (z) =
r∑

�=0

f̂ r−�z
� =

r∑
�=0

z�
(r−�)∧n∑
m=0

ĉr−�−m(E)�m(µ).

Consider first the case r ≤ n. Then

F̂r (z) =
r∑
s=0

ĉs(E)
r−s∑
�=0

�r−�−s(µ)z� (F.10)

and hence

F̂r (µ j ) =
r∑
s=0

ĉs(E)#( j)
r−s(µ), (F.11)

using (E.11). In the case in which r ≥ n + 1, we find (applying (E.3))

F̂r (z) =
n∑

m=0

�m(µ)
r−m∑
s=0

ĉs(E)zr−m−s

=
r−n∑
s=0

ĉs(E)

( n∑
�=0

��(µ)zn−�

)
zr−n−s +

r∑
s=r−n+1

ĉs(E)
r−s∑
�=0

��(µ)zr−s−�

= Fn(z)
r−n∑
s=0

ĉs(E)zr−n−s +
r∑

s=r−n+1

ĉs(E)
r−s∑
�=0

��(µ)zr−s−� (F.12)

= Fn(z)
r−n∑
s=0

ĉs(E)zr−n−s +
r∑

s=r−n+1

ĉs(E)
r−s∑
�=0

�r−s−�(µ)z�.

Hence,

F̂r (µ j ) =
r∑

s=r−n+1

ĉs(E)#( j)
r−s(µ), (F.13)

using (E.11) again.
In the sGmKdV case, one observes the identity

F̂r (z) = z F̂r−1(z) + f̂ r

1 Since r is independent of n, one obtains f̂ r = α̃e−iu , ĥr = β̃eiu with α̃, β̃ ∈ C independent of α, β,
and f̂ q , ĥq , q = 1, . . . , r − 1 constructed as in (2.31) and (2.32).
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and computes

F̂r (µ j )

µ j
= F̂r−1(µ j ) + f̂ r

µ j
=

r−1∑
s=(r−1−n)∨0

ĉs(E)#( j)
r−1−s(µ) − α̃

α
#

( j)
n−1(µ), (F.14)

using f̂ r = α̃e−iu and the trace relation (2.91), (2.92). �

Introducing

d�,k(E) =
�−k∑
m=0

c�−k−m(E)ĉm(E), k = 0, . . . , �, � = 0, . . . , n, (F.15)

d̃r,k(E) =
r−k∑
s=0

c̃r−k−s ĉs(E), k = 0, . . . , r ∧ n, (F.16)

for a given set of constants {c̃s}s=1,...,r ⊂ C, the corresponding nonhomogeneous
quantities f�, Fn(µ j ), and F̃r (µ j ) in the KdV, AKNS, and CH cases are then given
by

f� =
�∑

k=0

c�−k(E) f̂ k =
�∑

k=0

d�,k(E)�k(µ), � = 0, . . . , n, (F.17)

Fn(µ j ) =
n∑

�=0

cn−�(E)F̂�(µ j ) =
n∑

�−0

dn,�(E)#( j)
� (µ), c0 = 1, (F.18)

F̃r (µ j ) =
r∑
s=0

c̃r−s F̂s(µ j ) =
r∧n∑
k=0

d̃r,k(E)#( j)
k (µ), r ∈ N0, c̃0 = 1, (F.19)

using (D.59) and (D.60). Here ck(E), k ∈ N0, is defined by (D.5).
Before we continue with a detailed discussion of the theta function representa-

tions of the elementary symmetric functions �k(µ) of µ1, . . . , µn associated with
the completely integrable systems discussed in this monograph, we take a closer
look at the unique local solvability question of Dubrovin-type equations. The key
ingredient for such an analysis is the following classical Frobenius-type theorem.

Theorem F.3 Let U × V ⊆ R
m × R

n be open, (t0, α0) ∈ U × V , and let fk =
( fk,1, . . . , fk,n) : U × V → R

n beCr functions, r ∈N ∪ {∞}, for all k= 1, . . . ,m.

(i) Then there exists a neighborhood W ⊆ U of t0, and at most one Cr function
α : W → V satisfying the initial value problem

αtk = fk( · , α) on V , k = 1, . . . ,m,

α(t0) = α0,
(F.20)

where t = (t1, . . . , tm) ∈ W and α = (α1, . . . , αn) ∈ V .
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(ii) Moreover, such a function α exists if and only if there is a neighborhood of
(t0, α0) ∈ U × V on which

fk,t� − f�,tk +
n∑
j=1

(
(∂α j fk) f�, j − (∂α j f�) fk, j

) = 0, k, � = 1, . . . ,m.

(F.21)

Given this result it is easy to state the basic local existence and uniqueness theorem
for Dubrovin-type equations.

Theorem F.4 Let Kn : y2 = R2n+p, R2n+p = ∏2n+p
m=0 (z − Em), p = 0, 1, be a hy-

perelliptic Riemann surface of genus n of KdV- or AKNS-type with a nonsingular
affine part. Assume (x0, t0) ∈ R

2 and

µ̂0, j ∈ Kn, µ j,0 �= µ0, j ′ , j �= j ′, j, j ′ = 1, . . . , n.

Consider the initial value problem

µ j,x = −2iy(µ̂ j )
n∏

k=1
k �= j

(
µ j − µk

)−1
,

µ j,t = −2iy(µ̂ j )F̃j (µ)
n∏

k=1
k �= j

(
µ j − µk

)−1
, (F.22)

µ̂ j (x0, t0) = µ̂0, j , j = 1, . . . , n,

where µ = (µ1, . . . , µn) and

F̃j = F̃j (µ) =
r∑
s=0

cs#
( j)
r−s(µ), j = 1, . . . , n

for some constants cs ∈ C, s = 0, . . . , r , and some r ∈ N0. Then there exists an
open and connected set � ⊆ R

2, with (x0, t0) ∈ �, such that the initial value
problem (F.22) has a unique solution {µ̂ j } j=1,...,n ⊂ Kn satisfying

µ̂ j ∈ C∞(�,Kn), j = 1, . . . , n.

Proof Using appropriate charts on Kn , one can apply Theorem F.3, and the proof
reduces to showing that the integrability condition (F.21) is satisfied for the system
(F.22). We first study the case in which each µ̂ j stays away from all branch points
(Em, 0), m = 0, . . . , 2n + p. Introducing

φ j = −2iy(µ̂ j )
n∏

k=1
k �= j

(µ j − µk)
−1, ψ j = φ j F̃j ,
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the j th component of the integrability condition (F.21) reads

n∑
k=1

(
(∂µkφ j )φk F̃k − (∂µkφ j F̃j )φk

)

=
n∑

k=1

(
φk(∂µkφ j )(F̃k − F̃j ) − φk(∂µk F̃j )φ j

)
. (F.23)

Using the facts

∂µ j F̃ j = 0, ∂µkφ j = φ j (µ j − µk)
−1, j �= k, (F.24)

we may rewrite (F.23) as

n∑
k=1
k �= j

φ jφk

r∑
s=0

cs
(
(µ j − µk)

−1
(
#

(k)
r−s − #

( j)
r−s
)− ∂µk#

( j)
r−s
) = 0,

since

∂µk#
( j)
r−s = (µ j − µk)

−1
(
#

(k)
r−s − #

( j)
r−s
)
.

Next, we check the case in which one of the µ̂ j hits one of the branch points
(Em, 0) ∈ B(Kn) and hence the right-hand sides of the system (F.22) vanish for
some j . Hence, we suppose

µ j0 (x, t) → Em0 as (x, t) → (x̃0, t̃0) ∈ �,

for some j0 ∈ {1, . . . , n}, m0 ∈ {0, . . . , 2n + p}. Introducing

ζ j0 (x, t) = σ (µ j0 (x, t) − Em0 )1/2, σ = ±1, µ j0 (x, t) = Em0 + ζ j0 (x, t)2

for (x, t) in a neighborhood of (x̃0, t̃0), the Dubrovin system (F.22) for µ j0 becomes

ζ j0,x = c(σ )




2n+p∏
m=0
m �=m0

(
ζ 2
j0 + Em0 − Em

)



1/2
n∏

k=1
k �= j0

(
ζ 2
j0 + Em0 − µk

)−1
,

ζ j0,t = c(σ )F̃j (µ)




2n+p∏
m=0
m �=m0

(
ζ 2
j0 + Em0 − Em

)



1/2
n∏

k=1
k �= j0

(
ζ 2
j0 + Em0 − µk

)−1

for some |c(σ )| = 1. Relations (F.24) remain valid, and hence the integrability
condition (F.21) holds in this case as well. �

Next we turn to theta function representation of the elementary symmetric
functions �k(µ). Given a compact hyperelliptic Riemann surface Kn of genus n
(of KdV or AKNS-type), we introduce the first-order Dubrovin-type system
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(or generalized Dubrovin equations)

∂vkµ j (v) = #
( j)
n−k(µ(v))

y(µ̂ j (v))∏n
m=1
m �= j

(µ j (v) − µm(v))
, j, k = 1, . . . , n, (F.25)

v = (v1, . . . , vn) ∈ V

with initial conditions

{µ̂ j (v0)} j=1,...,n ⊂ Kn (F.26)

for some v0 ∈ V , where V ⊆ C
n is an open connected set such that µ j remain

distinct on V , µ j �= µ j ′ for j �= j ′, j, j ′ = 1, . . . , n. The obvious extension from
(x, t) to v = (v1, . . . , vn) of Theorem F.4 clearly applies to the system (F.25),
(F.26). One then obtains, using (E.4) and (F.25),

∂vk

n∑
j=1

∫ µ̂ j (v)

Q0

zk−1dz

y
=

n∑
j=1

µ j (v)k−1

y(µ̂ j (v))
∂vkµ j (v)

=
n∑
j=1

µ j (v)k−1

y(µ̂ j (v))
#

( j)
n−k(µ(v))

y(µ̂ j (v))∏n
m=1
m �= j

(µ j (v) − µm(v))

=
n∑
j=1

#
( j)
n−k(µ(v))

µ j (v)k−1

∏n
m=1
m �= j

(µ j (v) − µm(v))
= 1, (F.27)

implying

n∑
j=1

∫ µ̂ j (v)

Q0

zk−1dz

y
−

n∑
j=1

∫ µ̂ j (v0)

Q0

zk−1dz

y
= (v)k − (v0)k,

k = 1, . . . , n, v, v0 ∈ V.

Moreover, introducing

vn+1(v) =
n∑
j=1

∫ µ̂ j (v)

Q0

zndz

y
,

one then computes, as in (F.27),

∂vkvn+1(v) = −�n+1−k(µ(v)), k = 1, . . . , n, (F.28)

using

n∑
j=1

#
( j)
n−k(µ)

µn
j∏n

q=1
q �= j

(µ j − µq )
= −�n+1−k(µ), k = 1, . . . , n
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(cf. (E.4)). Thus, one concludes

n∏
j=1

(z − µ j (v)) =
n∑

�=0

�n−�(µ(v))z� = zn −
n∑

k=1

∂vkvn+1(v)zk−1, v ∈ V,

(F.29)

whenever µ satisfies (F.25).
Next, we recall our notation (cf. (A.34), (A.35), (A.41), (A.42), and (A.45))

z(P, Q) = �Q0
− AQ0

(P) + αQ0
(DQ),

P ∈ Kn, Q = {Q1, . . . , Qn} ∈ Symn(Kn),

ẑ(P, Q) = �̂Q0
− ÂQ0

(P) + α̂Q0
(DQ),

P ∈ K̂n, Q = {Q1, . . . , Qn} ∈ Symn(K̂n)

in connection with Kn and K̂n , respectively. Moreover, we conveniently choose
Q0 ∈ ∂K̂n (e.g., the initial point of the curve a1 ⊂ ∂K̂n). In addition, we recall (cf.
(B.28), (B.29), (C.32), (C.33))

C = (C j,k) j,k=1,...,n, C j,k =
∫
ak

η j , (F.30)

c(k) = (c1(k), . . . , cn(k)), c j (k) = (C−1) j,k, j, k = 1, . . . , n. (F.31)

To derive theta function representations of the elementary symmetric functions
�k(µ) of µ1, . . . , µn , k = 1, . . . , n, we now need to distinguish between the cases
of KdV- and AKNS-type curves. We start with the case of compact hyperelliptic
KdV-type Riemann surfaces of genus n, where Kn corresponds to y2 = ∏2n

m=0(z −
Em) with pairwise distinct Em ∈ C,m = 0, . . . , 2n + 1 (cf. (B.1) and (B.16)). We
can write

vn+1(v) =
n∑
j=1

∫ µ̂ j (v)

Q0

zndz

y
= −2

n∑
j=1

∫ µ̂ j (v)

Q0

ω̃
(2)
P∞,0, (F.32)

where

ω̃
(2)
P∞,0 = −zndz/(2y) = −π̃ηn/2 (F.33)

represents a differential of the second kind that is not necessarily normalized, that
is, the a-periods of ω̃(2)

P∞,0 do not necessarily vanish. We also recall the normalized
differential of the second kind (cf. (1.98), (1.99)),

ω
(2)
P∞,0 = − 1

2y

n∏
j=1

(z − λ j )dz, λ = (λ1, . . . , λn) ∈ C
n, (F.34)

∫
a j

ω
(2)
P∞,0 = 0, j = 1, . . . , n (F.35)
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with b-periods (cf. (1.101), (1.102)

U (2)
0, j = 1

2π i

∫
b j

ω
(2)
P∞,0 = −2c j (n), j = 1, . . . , n. (F.36)

Theorem F.5 Suppose Dµ̂ ∈ Symn(K̂n) is nonspecial and µ̂ = {µ̂1, . . . , µ̂n} ∈
Symn(K̂n). Then,

n∑
j=1

∫ µ̂ j

Q0

ω̃
(2)
P∞,0 =

n∑
j=1

(∫
a j

ω̃
(2)
P∞,0

) n∑
k=1

(∫ µ̂k

Q0

ω j −
∫
ak

(
ÂQ0

)
j
ωk

)

−
n∑
j=1

U (2)
0, j∂w j ln

(
θ(z(P∞, µ̂) + w)

)∣∣∣
w=0

, (F.37)

and

�n+1−k(µ) = �n+1−k(λ)

− 2
n∑

j,�=1

U (2)
0, j c�(k)∂2

w jw�
ln
(
θ(z(P∞, µ̂) + w)

)∣∣∣
w=0

, k = 1, . . . , n, (F.38)

with λ = (λ1, . . . , λn) ∈ C
n introduced in (F.34).

Proof Let Dµ̂ ∈ Symn(K̂n) be a nonspecial divisor on K̂n , µ̂ = {µ̂1, . . . , µ̂n} ∈
Symn(K̂n). Introducing

�̃(2)(P) =
∫ P

Q0

ω̃
(2)
P∞,0, P ∈ Kn \ {P∞},

as well as the meromorphic differential

ν = d ln
(
θ(z( · , µ̂))

)
,

the residue theorem applied to �̃(2)ν yields
∫
∂K̂n

�̃(2)ν =
n∑
j=1

((∫
a j

ω̃
(2)
P∞,0

)(∫
b j

ν

)
−
(∫

b j

ω̃
(2)
P∞,0

)(∫
a j

ν

))

= 2π i
∑
P∈K̂n

res
P

(
�̃(2)ν

)
. (F.39)

Investigating separately the items occurring in (F.39) then yields the following
facts: ∫

a j

ν = 0, j = 1, . . . , n, (F.40)

∫
b j

ν = 2π i
((

�̂Q0

)
j
− (

ÂQ0
(R(a j ))

)
j
+ (

α̂Q0
(Dµ̂)

)
j

)
− iπτ j, j

=
n∑

k=1

(∫ µ̂k

Q0

ω j −
∫
ak

(
ÂQ0

)
jωk

)
, j = 1, . . . , n, (F.41)
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∑
P∈K̂n

res
P

(�̃(2)ν) =
n∑
j=1

�̃(2)(µ̂ j ) + res
P∞

(�̃(2)ν)

=
n∑
j=1

∫ µ̂ j

Q0

ω̃
(2)
P∞,0 + res

P∞
(�̃(2)ν), (F.42)

by applying (A.39) in (F.40) and (F.42) and recalling the well-known results

(
ÂQ0

(R(a j ))
)
j
= 1

2
+
∫
a j

(
ÂQ0

)
j
ω j , j = 1, . . . , n, (F.43)

(
�̂Q0

)
j = 1

2
(1 + τ j, j ) −

n∑
k=1
k �= j

∫
ak

(
ÂQ0

)
jωk, j = 1, . . . , n. (F.44)

Here R(a j ) denotes the end point of a j ⊂ ∂K̂n , j = 1, . . . , n. As for the residue
evaluation at P∞ we proceed as follows. First we recall (cf. (1.100))

�̃(2)(P) =
ζ→0

−ζ−1 + O(1) as P → P∞.

Moreover,

ν(P) = dθ (z(P, µ̂))

θ (z(P, µ̂))

=
ζ→0

(
−

n∑
j=1

U (2)
0, j∂w j ln

(
θ(ẑ(P∞, µ̂) + w)

)∣∣
w=0 + O(ζ 2)

)
dζ as P → P∞,

according to (1.118). Thus,

(
�̃(2)ν

)
(P) =

ζ→0

(
1

ζ

n∑
j=1

U (2)
0, j∂w j ln

(
θ (ẑ(P∞, µ̂) + w)

)∣∣
w=0 + O(1)

)
dζ,

as P → P∞,

implying

res
P∞

(�̃(2)ν) =
n∑
j=1

U (2)
0, j∂w j ln

(
θ (ẑ(P∞, µ̂) + w)

)∣∣
w=0.

Introducing the results above into (F.39), one concludes

n∑
j=1

∫ µ̂ j

Q0

ω̃
(2)
P∞,0 =

n∑
j=1

(∫
a j

ω̃
(2)
P∞,0

) n∑
k=1

(∫ µ̂k

Q0

ω j −
∫
ak

(
ÂQ0

)
jωk

)

−
n∑
j=1

U (2)
0, j∂w j ln

(
θ (z(P∞, µ̂) + w)

)∣∣
w=0. (F.45)

Here we replaced ẑ by z to arrive at (F.45) using properties (A.39) of θ . This proves
(F.37).
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Next, assume that µ̂ satisfies the Dubrovin system (F.25), (F.26) on some open
connected set V such that µ j , j = 1, . . . , n, remain distinct on V . Then, by means
of (B.30), (F.25), and (E.4),

∂vk
(
α̂Q0

(Dµ̂(v))
)
j
= ∂vk

n∑
�=1

∫ µ̂�(v)

Q0

ω j =
n∑

�,m=1

∂vk

∫ µ̂�(v)

Q0

c j (m)ηm

=
n∑

�,m=1

c j (m)
µ�(v)m−1

y(µ̂�(v))
∂vkµ�(v)

=
n∑

�,m=1

c j (m)#(�)
n−k

µ�(v)m−1

∏n
�′=1
�′ �=�

(µ�(v) − µ�′ (v))

= c j (k), v ∈ V. (F.46)

Moreover, using (F.28), (F.32), (F.37), and (F.46), one computes

�n+1−k(µ(v)) = −∂vkvn+1 = 2∂vk

n∑
j=1

∫ µ̂ j (v)

Q0

ω̃
(2)
P∞,0

= 2
n∑
j=1

(∫
a j

ω̃
(2)
P∞,0

)
c j (k)

− 2
n∑
j=1

U (2)
0, j∂

2
vkw j

ln
(
θ (z(P∞, µ̂(v)) + w)

)∣∣
w=0.

Using (F.46), one obtains

z(P∞, µ̂(v)) = �Q0
− AQ0

(P) + αQ0

(Dµ̂(v)
)

= �Q0
− AQ0

(P) + αQ0

(Dµ̂(v0)
)+ C−1(v − v0)

= z(P∞, µ̂(v0)) + C−1(v − v0),

where C is the matrix defined in (F.30). Thus,

∂2
vkw j

ln
(
θ(z(P∞, µ̂(v)) + w)

)∣∣
w=0

=
n∑

�=1

c�(k)∂2
w jw�

ln
(
θ (z(P∞, µ̂(v)) + w)

)∣∣
w=0

and hence

�n+1−k(µ(v)) = 2
n∑
j=1

(∫
a j

ω̃
(2)
P∞,0

)
c j (k)

− 2
n∑

j,�=1

U (2)
0, j c�(k)∂2

w jw�
ln
(
θ (z(P∞, µ̂(v)) + w)

)∣∣
w=0. (F.47)
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Since

ω
(2)
P∞,0 = − 1

2y

n∏
j=1

(z − λ j )dz = − 1

2y

n∑
�=0

�n−�(λ)z�dz

= ω̃
(2)
P∞,0 − 1

2

n−1∑
�=0

�n−�(λ)η�+1, λ = (λ1, . . . , λn) ∈ C
n,

one concludes

0 =
∫
a j

ω
(2)
P∞,0 =

∫
a j

ω̃
(2)
P∞,0 − 1

2

n−1∑
�=1

�n−�(λ)
∫
a j

η�+1

=
∫
a j

ω̃
(2)
P∞,0 − 1

2

n∑
m=1

�n+1−m(λ)Cm, j ,

and hence
n∑
j=1

c j (k)
∫
a j

ω̃
(2)
P∞,0 = 1

2

n∑
j,m=1

c j (k)�n+1−m(λ)Cm, j = 1

2
�n+1−k(λ). (F.48)

This proves (F.38). �

Remark F.6 The special case k = n in (F.47) yields

n∑
j=1

µ j =
n∑
j=1

c j (n)

(∫
a j

ω̃
(2)
P∞,0

)

−
n∑

j,�=1

U (2)
0, jU

(2)
0,�∂

2
w jw�

ln
(
θ (z(P∞, µ̂) + w)

)∣∣∣
w=0

. (F.49)

To reconcile (F.49) and (B.44), one computes

n∑
j=1

∫
a j

π̃ω j =
n∑

j,k=1

c j (k)
∫
a j

π̃ηk

=
n∑
j=1

(
c j (n)

∫
a j

π̃ηn +
n−1∑
k=1

c j (k)
∫
a j

ηk+1

)

=
n∑
j=1

c j (n)
∫
a j

π̃ηn +
n−1∑
k=1

n∑
j=1

Ck+1, j (C
−1) j,k

=
n∑
j=1

c j (n)
∫
a j

π̃ηn =
n∑
j=1

c j (n)

(∫
a j

ω̃
(2)
P∞,0

)
. (F.50)

Thus, recalling c(n) = −U (2)
0 /2 (cf. (F.36)),

n∑
j=1

µ j =
n∑
j=1

∫
a j

π̃ω j −
n∑

j,�=1

U (2)
0, jU

(2)
0,�∂

2
w jw�

ln
(
θ (z(P∞, µ̂) + w)

)∣∣∣
w=0

, (F.51)
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which is in agreement with (B.44). Moreover, taking k = n in (F.38) yields agree-
ment with (B.46).

Next, we turn to the case of compact hyperelliptic AKNS-type Riemann surfaces
of genus n, where Kn corresponds to y2 = ∏2n+1

m=0 (z − Em) with pairwise distinct
Em ∈ C, m = 0, . . . , 2n + 1 (cf. (C.1) and (C.16)). In this context vn+1(v) can be
written as

vn+1(v) =
n∑
j=1

∫ µ̂ j (v)

Q0

zndz

y
=

n∑
j=1

∫ µ̂ j (v)

Q0

ω̃
(3)
P∞+ ,P∞−

, (F.52)

where

ω̃
(3)
P∞+ ,P∞−

= zndz/y = π̃ηn (F.53)

represents a differential of the third kind with simple poles at P∞+ and P∞− and
corresponding residues +1 and −1, respectively. This differential is not normal-
ized, that is, the a-periods of ω̃

(3)
P∞+ ,P∞−

do not necessarily vanish. We also recall
the normal differential of the third kind (cf. (3.91), (3.92)),

ω
(3)
P∞+ ,P∞−

= 1

y

n∏
j=1

(z − λ j )dz, λ = (λ1, . . . , λn) ∈ C
n, (F.54)

∫
a j

ω
(3)
P∞+ ,P∞−

= 0, j = 1, . . . , n, (F.55)

and the normalized differentials ω
(2)
P∞± ,0 of the second kind (cf. (3.94))

∫
a j

ω
(2)
P∞± ,0 = 0, j = 1, . . . , n (F.56)

with b-periods (cf. (C.37))

U (2)
±,0, j = 1

2π i

∫
b j

ω
(2)
P∞± ,0 = ±c j (n), j = 1, . . . , n. (F.57)

Theorem F.7 Suppose Dµ̂ ∈ Symn
(K̂n

)
is nonspecial and µ̂ = {µ̂1, . . . , µ̂n} ∈

Symn
(K̂n

)
. Then,

n∑
j=1

∫ µ̂ j

Q0

ω̃
(3)
P∞+ ,P∞−

=
n∑
j=1

(∫
a j

ω̃
(3)
P∞+ ,P∞−

)( n∑
k=1

∫ µ̂k

Q0

ω j

−
n∑

k=1

∫
ak

(
ÂQ0

)
j
ωk

)
+ ln

(
θ (ẑ(P∞+ , µ̂))

θ (ẑ(P∞− , µ̂))

)
(F.58)
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and

�n+1−k(µ) = �n+1−k(λ) −
n∑
j=1

c j (k)∂w j ln

(
θ (z(P∞+ , µ̂) + w)

θ (z(P∞− , µ̂) + w)

)∣∣∣∣
w=0

,

k = 1, . . . , n (F.59)

with λ = (λ1, . . . , λn) ∈ C
n introduced in (C.45).

Proof Let Dµ̂ ∈ Symn
(K̂n

)
be a nonspecial divisor on K̂n , µ̂ = {µ̂1, . . . , µ̂n} ∈

Symn
(K̂n

)
. Introducing

�̃(3)(P) =
∫ P

Q0

ω̃
(3)
P∞+ ,P∞−

, P ∈ Kn \ {P∞+ , P∞−},

we can render �̃(3)( · ) single-valued on

̂̂Kn = K̂n \ (,

where ( denotes the union of cuts

( = ((P∞+ ) ∪ ((P∞− ), ((P∞+ ) ∩ ((P∞− ) = {Q0}

with ((P∞+ ) (respectively ((P∞− )) a cut connecting Q0 and P∞+ (respectively
P∞− ) through the open interior K̂n (i.e., avoiding all curves a j , b j , a

−1
j , b−1

j , j =
1, . . . , n, with the exception of the point Q0 ∈ ∂K̂n), avoiding µ̂ j , j = 1, . . . , n.
The left and right side of the cut ((P∞± ) is denoted by ((P∞± )� and ((P∞± )r .
The oriented boundary ∂

̂̂Kn of ̂̂Kn , in obvious notation, is then given by

∂
̂̂Kn = ((P∞+ )� ∪ ((P∞+ )r ∪ ((P∞− )� ∪ ((P∞− )r ∪ ∂K̂n,

that is, it consists of ∂K̂n together with the piece from Q0 to P∞+ along the left
side of the cut ((P∞+ ) and then back to Q0 along the right side of ((P∞+ ), plus
the corresponding pieces from Q0 to P∞− and back to Q0 along the cut ((P∞− ),
preserving orientation. Introducing the meromorphic differential,

ν = d ln
(
θ (z( · , µ̂))

)
,

the residue theorem applied to �̃(3)ν yields

∫
∂
̂̂Kn

�̃(3)ν =
n∑
j=1

((∫
a j

ω̃
(3)
P∞+ ,P∞−

)(∫
b j

ν

)
−
(∫

b j

ω̃
(3)
P∞+ ,P∞−

)(∫
a j

ν

))

+
∫
(

�̃(3)ν = 2π i
∑
P∈̂̂Kn

res
P

(
�̃(3)ν

)
. (F.60)

Investigating separately the items occurring in (F.60) then yields the following
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facts:

∑
P∈̂̂Kn

res
P

(�̃(3)ν) =
n∑
j=1

�̃(3)(µ̂ j ) =
n∑
j=1

∫ µ̂ j

Q0

ω̃
(3)
P∞+ ,P∞−

, (F.61)

∫
a j

ν = 0, j = 1, . . . , n, (F.62)

∫
b j

ν = 2π i
((

�̂Q0

)
j
− (

ÂQ0
(R(a j ))

)
j
+ (

α̂Q0
(Dµ̂)

)
j

)
− iπτ j, j , (F.63)

j = 1, . . . , n,

applying (A.39) in (F.62) and (F.63). Here R(a j ) denotes the end point ofa j ⊂ ∂K̂n ,
j = 1, . . . , n. In addition, the cut ( produces the contribution

∫
(

�̃(3)ν = 2π i

(∫ P∞+

Q0

ν −
∫ P∞−

Q0

ν

)
= 2π i

∫ P∞+

P∞−

ν

= 2π i ln

(
θ(ẑ(P∞+ , µ̂))

θ (ẑ(P∞− , µ̂))

)
,

since (by an application of the residue theorem)

�̃(3)(µ̂�) − �̃(3)(µ̂r ) = ±2π i, µ̂� ∈ ((P∞± )�, µ̂r ∈ ((P∞± )r , (F.64)

where µ̂� ∈ ((P∞± )� and µ̂r ∈ ((P∞± )r are on opposite sides of the cut ((P∞± ).
Recalling the well-known results (F.43), (F.44), equations (F.60)–(F.64) imply

n∑
j=1

∫ µ̂ j

Q0

ω̃
(3)
P∞+ ,P∞−

=
n∑
j=1

(∫
a j

ω̃
(3)
P∞+ ,P∞−

)( n∑
k=1

∫ µ̂k

Q0

ω j

−
n∑

k=1

∫
ak

(
ÂQ0

)
j
ωk

)
+ ln

(
θ (ẑ(P∞+ , µ̂))

θ (ẑ(P∞− , µ̂))

)
. (F.65)

This proves (F.58).
In the following we will apply (F.65) assuming that µ̂ = (µ̂1, . . . , µ̂n) satisfies

the first-order system (F.25), (F.26) on some open, connected set V such that µ j ,
j = 1, . . . , n, remain distinct on V and #

( j)
n−k(µ) �= 0 on V , j, k = 1, . . . , n. As in

(F.46) one computes

∂vk
(
α̂Q0

(Dµ̂(v))
)
j = c j (k), v ∈ V. (F.66)

Thus, (F.29) and (F.66) imply

�n+1−k(µ(v)) = −∂vkvn+1(v) = −
n∑
j=1

c j (k)

(∫
a j

ω̃
(3)
P∞+ ,P∞−

)

−
n∑
j=1

c j (k)∂w j ln

(
θ (z(P∞+ , µ̂(v)) + w)

θ (z(P∞− , µ̂(v)) + w)

)∣∣∣∣
w=0

, (F.67)

v ∈ V, k = 1, . . . , n.
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Here we replaced ẑ by z to arrive at (F.67) using properties (A.39) of θ . If
µ̂ j , j = 1, . . . , n, are distinct and #

( j)
n−k(µ) �= 0, j, k = 1, . . . , n, we can choose

µ̂ j (v0) = µ̂ j , j = 1, . . . , n and obtain (F.59). The general case in which Dµ̂ is
nonspecial then follows from (F.67) by continuity with V chosen such that there
exists a sequence vn ∈ V with µ̂(vn) → µ̂ as n → ∞. Finally, combining (C.31),
(C.32), (C.33), (C.45), and the normalization

∫
a j

ω
(3)
P∞+ ,P∞−

= 0, j = 1, . . . , n, one
computes

0 =
∫
a j

ω
(3)
P∞+ ,P∞−

=
∫
a j

ω̃
(3)
P∞+ ,P∞−

+
n−1∑
�=0

�n−�(λ)
∫
a j

z�dz

y

=
∫
a j

ω̃
(3)
P∞+ ,P∞−

+
n∑

m=1

�n+1−m(λ)
∫
a j

ηm

=
∫
a j

ω̃
(3)
P∞+ ,P∞−

+
n∑

m=1

�n+1−m(λ)Cm, j , j = 1, . . . , n,

and thus

n∑
j=1

c j (k)

(∫
a j

ω̃
(3)
P∞+ ,P∞−

)
= −

n∑
j,m=1

c j (k)�n+1−m(λ)Cm, j = −�n+1−k(λ),

(F.68)

proving (F.59). �

Remark F.8 The special case k = n in (F.67) yields

n∑
j=1

µ j =
n∑
j=1

c j (n)

(∫
a j

ω̃
(3)
P∞+ ,P∞−

)

+
n∑
j=1

c j (n)∂w j ln

(
θ (z(P∞+ , µ̂) + w)

θ (z(P∞− , µ̂) + w)

)∣∣∣∣
w=0

. (F.69)

To reconcile (F.69) and (C.49), one computes

n∑
j=1

∫
a j

π̃ω j =
n∑

j,k=1

c j (k)
∫
a j

π̃ηk

=
n∑
j=1

(
c j (n)

∫
a j

π̃ηn +
n−1∑
k=1

c j (k)
∫
a j

ηk+1

)

=
n∑
j=1

c j (n)
∫
a j

π̃ηn +
n−1∑
k=1

n∑
j=1

Ck+1, j (C
−1) j,k

=
n∑
j=1

c j (n)
∫
a j

π̃ηn =
n∑
j=1

c j (n)

(∫
a j

ω̃
(3)
P∞+ ,P∞−

)
. (F.70)
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Thus, if one recalls that c(n) = U (2)
+,0 (cf. (C.50)),

n∑
j=1

µ j =
n∑
j=1

∫
a j

π̃ω j +
n∑
j=1

U (2)
+,0, j∂w j ln

(
θ (z(P∞+ , µ̂) + w)

θ (z(P∞− , µ̂) + w)

)∣∣∣∣
w=0

, (F.71)

which is in agreement with (C.49). Moreover, taking k = n in (F.59) yields agree-
ment with (C.51).

Next, we turn to the Dubrovin equations for auxiliary divisors. Let n ∈ N. We
recall the construction of the hierarchies as explained in Section 1.2 (KdV) and
Section 3.2 (AKNS). In particular, we recall the function Fn in (E.3) with its zeros
µ = {µ1, . . . , µn} and introduce the corresponding hyperelliptic curve Kn . (In the
AKNS case we also consider the function Hn .) Next, we fix r ∈ N0 and construct
the function Fr . The integration constants in the definition of Fr are assumed to be
independent of those used to construct Fn , and to emphasize this fact we denote
it by F̃r and the corresponding constants by c̃�. The Dubrovin equations give the
evolution of µ̂ = {µ̂1, . . . , µ̂n} in terms of the deformation (time) parameter tr
according to the r th equation in the hierarchy considered.

In the following we assume that µ j �= µ j ′ on �µ for j �= j ′, where �µ ⊆ R
2 is

open and connected, and similarly for ν j , j = 1, . . . , n.

The KdV Hierarchy. The Dubrovin equations for the KdV hierarchy on �µ

read (cf. (1.195), (1.196))

µ j,x = −2i
y(µ̂ j )∏n

k=1
k �= j

(µ j − µk)
, (F.72)

µ j,tr = F̃r (µ j )µ j,x = −2i
y(µ̂ j )∏n

k=1
k �= j

(µ j − µk)
F̃r (µ j ), j = 1, . . . , n (F.73)

with initial data given by µ̂(x0, t0,r ) ∈ Symn(Kn), where

µ̂ j = (µ j ,−(i/2)Fn,x (µ j )) ∈ Kn, j = 1, . . . , n.

The following result is used in the proof of Theorem 1.48. We recall our notation
F ′
n(z) = ∂Fn(z)/∂z and that F̃r is defined as in (F.10) or (F.12) with a set of

integration constants {c̃1, . . . , c̃r } ⊂ C.

LemmaF.9 Suppose r ∈ N0, (x, tr ) ∈ �µ, where�µ ⊆ R
2 is open and connected,

and assume µ j �= µ j ′ on �µ for j �= j ′, j, j ′ = 1, . . . , n. Then,

F̃r,x (z) =
n∑
j=1

(
F̃r (µ j ) − F̃r (z)

)
µ j,x (z − µ j )

−1 (F.74)

=
n∑
j=1

(
F̃r (z) − F̃r (µ j )

) Fn,x (µ j )

Fn,xz(µ j )
(z − µ j )

−1. (F.75)
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Proof It suffices to prove (F.74) for the homogeneous case where F̃r is replaced
by F̂r . Using

�k,x (µ) = −
n∑
j=1

µ j,x#
( j)
k−1(µ), k = 0, . . . , n

with the convention

#
( j)
−1(µ) = 0, j = 1, . . . , n,

one computes for r ≤ n,

F̂r,x (z) =
r∑
s=0

ĉs(E)
r−s∑
�=0

�r−s−�,x (µ)z�

= −
n∑
j=1

µ j,x

r∑
s=0

ĉs(E)
r−s∑
�=0

#
( j)
r−s−�−1(µ)z�

=
n∑
j=1

µ j,x (z − µ j )
−1

r∑
s=0

ĉs(E)

(
#

( j)
r−s(µ) −

r−s∑
�=0

�r−s−�(µ)z�
)

=
n∑
j=1

(
F̂r (µ j ) − F̂r (z)

)
µ j,x (z − µ j )

−1,

applying (E.12), (F.10), and (F.11). For r ≥ n + 1 one obtains from (E.12), (F.12),
and (F.13),

F̂r,x (z) = Fn,x (z)
r−n∑
s=0

ĉs(E)zr−n−s +
r∑

s=r−n+1

ĉs(E)
r−s∑
�=0

�r−s−�,x (µ)z�

= −Fn(z)
n∑
j=1

µ j,x (z − µ j )
−1

r−n∑
s=0

ĉs(E)zr−n−s

−
n∑
j=1

µ j,x

r∑
s=r−n+1

ĉs(E)
r−s∑
�=0

#
( j)
r−s−�−1(µ)z�

= −Fn(z)
n∑
j=1

µ j,x (z − µ j )
−1

r−n∑
s=0

ĉs(E)zr−n−s

+
n∑
j=1

µ j,x (z − µ j )
−1

r∑
s=r−n+1

ĉs(E)

(
#

( j)
r−s(µ) −

r−s∑
�=0

�r−s−�(µ)z�
)

=
n∑
j=1

(
F̂r (µ j ) − F̂r (µ)

)
µ j,x (z − µ j )

−1.

Equation (F.75) immediately follows from (F.74) and µ j,x = Fn,x (µ j )/F ′
n(µ j ) (cf.

(1.163)). �
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The sGmKdV Hierarchy. Finally, in the case of the sGmKdV hierarchy, the
Dubrovin-type equations for µ̂ = {µ̂1, . . . , µ̂n} read on �µ (cf. (2.186), (2.187))

µ j,x = −2i
y(µ̂ j )∏n

k=1
k �= j

(µ j − µk)
, (F.76)

µ j,tr = 2
F̃r (µ j )

µ j

y(µ̂ j )∏n
k=1
k �= j

(µ j − µk)
, j = 1, . . . , n (F.77)

with initial data given by µ̂(x0, t0,r ) ∈ Symn(Kn), where

µ̂ j = (µ j ,−µ j Gn−1(µ j )) ∈ Kn, j = 1, . . . , n.

The corresponding equations for ν̂ = {ν̂1, . . . , ν̂n} equal (cf. (2.190), (2.191))

ν j,x = −2i
y(ν̂ j )∏n

k=1
k �= j

(ν j − νk)
, (F.78)

ν j,tr = 2
H̃r (ν j )

ν j

y(ν̂ j )∏n
k=1
k �= j

(ν j − νk)
, j = 1, . . . , n (F.79)

with initial data given by ν̂(x0, t0,r ) ∈ Symn(Kn), where

ν̂ j = (ν j , ν j Gn−1(ν j )) ∈ Kn, j = 1, . . . , n.

The AKNS Hierarchy. In this case the Dubrovin-type equations on �µ for
µ̂ = {µ̂1, . . . , µ̂n} are given by (cf. (3.200), (3.201))

µ j,x = −2i
y(µ̂ j )∏n

k=1
k �= j

(µ j − µk)
, (F.80)

µ j,tr = − F̃r (µ j )

iq
µ j,x = 2

y(µ̂ j )

q
∏n

k=1
k �= j

(µ j − µk)
F̃r (µ j ), j = 1, . . . , n (F.81)

with initial data given by µ̂(x0, t0,r ) ∈ Symn(Kn), where

µ̂ j = (µ j ,Gn+1(µ j )) ∈ Kn, j = 1, . . . , n.

For the corresponding evolution of ν̂ ={ν̂1, . . . , ν̂n}one gets (cf. (3.204), (3.205))

ν j,x = −2i
y(ν̂ j )∏n

k=1
k �= j

(ν j − νk)
, (F.82)

ν j,tr = H̃r (ν j )ν j,x = −2
y(ν̂ j )

p
∏n

k=1
k �= j

(ν j − νk)
H̃r (ν j ), j = 1, . . . , n (F.83)

with initial data given by ν̂(x0, t0,r ) ∈ Symn(Kn), where

ν̂ j = (ν j ,−Gn+1(ν j )) ∈ Kn, j = 1, . . . , n.
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Next we will prove that the Abel map provides a clever change of coordinates
that linearizes the Dubrovin flows (we are still assuming that the affine part of the
hyperelliptic curve under consideration is nonsingular). This will turn out to be
a consequence of the fact that F̃r (µ j ) can be expressed as a linear combination
of the functions #

( j)
k . Using Theorem F.2 one concludes that this is not only the

case for the KdV hierarchy but also for all the other hierarchies discussed in this
monograph.

TheoremF.10 Suppose µ̂ = {µ̂1, . . . , µ̂n} satisfies theDubrovin equations (F.72),
(F.73) on �µ, where �µ ⊆ R

2 is open and connected, assuming µ j �= µ j ′ on �µ

for j �= j ′, j, j ′ = 1, . . . , n. Let r ∈ N0 and introduce

F̃r (µ j ) =
r∧n∑
k=0

dr,k#
( j)
k (µ), dr,0, . . . , dr,r∧n ∈ C. (F.84)

Then the Abel map linearizes the Dubrovin flows (F.72), (F.73) in the sense that

∂tr

n∑
j=1

AP0,k(µ̂ j (x, tr )) = −2i
n∑

�=1∨(n−r )

ck(�)dr,n−�, (x, tr ) ∈ �µ (F.85)

and hence1

αP0
(Dµ̂(x,tr )) = αP0

(Dµ̂(x0,t0,r )
)− 2i(x − x0)ck(n)

− 2i(tr − t0,r )
n∑

�=1∨(n−r )

ck(�)dr,n−�, (x, tr ) ∈ �µ. (F.86)

Proof One computes,

∂tr

n∑
j=1

AP0,k(µ̂ j ) = ∂tr

n∑
j=1

∫ µ̂ j

P0

ωk

= ∂tr

n∑
j=1

n∑
�=1

ck(�)
∫ µ̂ j

P0

z�−1 dz

y(P)

=
n∑
j=1

n∑
�=1

ck(�)
µ�−1
j

y(µ̂ j )
µ j,tr (F.87)

= −2i
n∑
j=1

n∑
�=1

ck(�)
µ�−1
j

y(µ̂ j )

y(µ̂ j )∏n
m �= j (µ j − µm)

F̃r (µ j )

= −2i
n∑
j=1

n∑
�=1

ck(�)Un(µ)�, j F̃r (µ j ) = −2i
n∑

�=1∨(n−r )

ck(�)dr,n−�,

1 The situation here resembles the one in classical mechanics in which, by a canonical change to cyclic
coordinates the momentum p j becomes a constant of motion, and thus q j (t) = q j (t0) + p j (t − t0)
is linear in time.
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using Lemma E.3 in the final step. As for the x-variation, we observe that the t0-
derivative of µ j coincides with the x-derivative in (F.72), and hence it is a special
case of (F.87) with F̃0 = 1. This proves the theorem. �

Corollary F.11 The Abel map linearizes the Dubrovin flows for the KdV, sGmKdV,
and AKNS hierarchies.

Proof Theorem F.2 shows that F̃r (µ j ) (and H̃r (ν j ) in the AKNS case) indeed
satisfies the assumption (F.84) of Theorem F.10, and hence the key calculation
(F.87) carries over to the sGmKdV and AKNS hierarchies. The special case r = 0
gives the x-variation in all but the sGmKdV case which, however, can easily be
verified by explicit computation. �

Analogous considerations apply to the classical massive Thirring system.

Remark F.12 We provide a few more details in the AKNS case. Suppose µ̂

satisfies (F.80), (F.81) and similarly ν̂ satisfies (F.82), (F.83) with µ j �= µ j ′ and
ν j �= ν j ′ for j �= j ′, j , j ′ = 1, . . . , n. Let r ∈ N0 and introduce

F̃r (µ j ) = −iq
r∧n∑
k=0

dr,k#
( j)
k (µ), H̃r (ν j ) = i p

r∧n∑
k=0

er,k#
( j)
k (ν).

Then (F.85) and (F.86) hold. In addition, one obtains the following results for the
analog of Neumann divisors ν̂.

∂tr

n∑
j=1

AP0,k(ν̂ j (x, tr )) = −2i
n∑

�=1∨(n−r )

ck(�)er,n−�

and hence,

αP0
(Dν̂(x,tr )) = αP0

(Dν̂(x0,t0,r )
)− 2i(x − x0)ck(n)e0,0

− 2i(tr − t0,r )
n∑

�=1∨(n−r )

ck(�)er,n−�. (F.88)

Solving these equations we can recover the solution of the integrable equation
using trace formulas. For the KdV hierarchy we have the classical trace formula

u =
2n∑
m=0

Em − 2
n∑
j=1

µ j . (F.89)

For the AKNS hierarchy we have

px
p

= i
2n+1∑
m=0

Em − 2i
n∑
j=1

ν j ,
qx
q

= −i
2n+1∑
m=0

Em + 2i
n∑
j=1

µ j . (F.90)
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The “trace” relation for the sGmKdV hierarchy (perhaps, it would be more appro-
priate to call this a “determinant” relation) reads (cf. (2.192), (2.193))

u = i ln

(
(−1)nα−1

n∏
j=1

µ j

)
= −i ln

(
(−1)nβ−1

n∏
j=1

ν j

)
. (F.91)

Remark F.13 If one postulates the Dubrovin equations (F.72), (F.73), and defines
u using the trace formula (F.89), it can be shown that u indeed satisfies the r th KdV
equation with the correct initial condition. This is discussed in detail in connection
with the algebro-geometric initial value problems solved for all models in question
in the main parts of this text.

Remark F.14 For simplicity we assumed µ j �= µ j ′ on �µ for j �= j ′ in Theorem
F.10. In the self-adjoint cases, where {Em}m=0,...,N ⊂ R, this condition is auto-
matically fulfilled on �µ = R

2 since then all µ j are separated from each other
by spectral gaps of L or M . In the general nonself-adjoint case this is no longer
true and collisions between the µ j ’s become possible. Nevertheless, the Dubrovin
equations, properly desingularized near such collision points, stay meaningful as
long as the corresponding auxiliary divisors remain nonspecial or their specialty
stems from points at infinity only, as is discussed in the references mentioned in
the notes to this section.

We end this section with an example.

Example F.15 KdV and sG. Pick E0 = 0 and E1, . . . , E2n ∈ C, Em �= Em ′ for
m �= m ′, assume (x, tn) ∈ �, where � ⊆ R

2 is open and connected, and solve

µ j,x = −2i
y(µ̂ j )∏n

k=1
k �= j

(µ j − µk)
,

µ j,tn =


 1

16Q1/2

n∏
k=1
k �= j

µk


µ j,x , j = 1, . . . , n,

with Q = ∏2n
m=1 Em and R2n+1(z) = z

∏2n
m=1(z − Em). Define

u = i ln

(
Q−1/2

n∏
j=1

µ j

)
, û =

2n∑
m=0

Em − 2
n∑
j=1

µ j .
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Then u and û satisfy the sG equation and nth KdV equation, respectively, that is,

4uxtn = sin(u), KdVn(û) = 0

for the following choice of c̃�,

c̃0 = 1, c̃1 = (−1)n−1

16Q1/2
− ĉ1(E), c̃� = −

�−1∑
p=0

c̃pĉ�−p(E), � = 2, . . . , n.

Remark F.16 This example provides an interesting connection between the KdVn

and sG equation and illustrates the fundamental role of the Dubrovin equations
as a common underlying principle for hierarchies of soliton equations in (1 + 1)-
dimensions. In particular, this approach establishes an isomorphism between the
classes of algebro-geometric solutions of this pair of integrable systems. Indeed,
once the hyperelliptic curve Kn is fixed, algebro-geometric solutions of the KdVn

and sG equation are just certain symmetric functions (i.e., “trace” relations) of the
solutions of the corresponding Dubrovin equations on Kn .

Notes

The material in this appendix is predominantly taken from Gesztesy and Holden
(2002; to appear, a).

The first systematic use of symmetric functions of the auxiliary eigenvalues µ j

in connection with the KdV hierarchy has been made in McKean and van Moerbeke
(1975).

A comprehensive treatment of Frobenius-type theorems such as Theorem F.3
can be found, for instance, in Narasimhan (1985, Sec. 2.11), Spivak (1979, Ch. 6).

Formulas (F.29), (F.58), and (F.59) (without detailed proofs and without explicit
form of the constant terms on the right-hand sides of (F.58) and (F.59)) have been
used in Novikov (1999) in the context of deriving algebro-geometric solutions of
the Dym equation. The approach chosen in this appendix based on elementary
symmetric functions and Dubrovin-type systems (F.25) is due to Gesztesy and
Holden (to appear, a).

Necessary and sufficient conditions on Lax pairs to linearize the flow t → Lt
on J (C), where {Lt } represents a dynamical system on the Jacobi variety J (C)
with C the underlying spectral curve, have been considered in Griffiths (1985).
While this paper considers Lax equations within a cohomological framework, our
present approach is much more modest in scope but in turn reduces the linearization
problem to an elementary exercise in symmetric functions.

For simplicity we assumed that the auxiliary eigenvalues µ j do not coincide
(cf. Remark F.14). However, the Dubrovin equations, properly desingularized near
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such collision points, remain well-defined, as demonstrated by Birnir (1986a,b;
1987) in the case of complex-valued periodic KdV solutions as long as the auxiliary
divisors remain nonspecial or their specialty stems from points at infinity only. In
particular, (F.86) (and (F.88)) remain valid in the presence of such collisions.

The isomorphism between algebro-geometric KdVn and sG equations, as dis-
played in Example F.15, has been discussed, for instance, in Al’ber and Al’ber
(1987a,b). Analogous considerations apply to the nonlinear Schrödinger equation
and the (continuum) Heisenberg chain (see, e.g., Elgin (1990)).
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KdV and AKNS Darboux-Type Transformations

. . . he who seeks for methods without having a definite problem
in mind seeks for the most part in vain.

David Hilbert1

In this appendix we present a short summary of fundamental facts concerning
Darboux transformations applied to the stationary KdV and AKNS hierarchies
and their effect on the underlying hyperelliptic curves. We briefly outline the
corresponding ideas in the KdV context.

First we factorize

L = − d2

dx2
+ u

into a product of first-order differential expressions plus a shift,

L = AA+ + z0, A = d

dx
+ φ, A+ = − d

dx
+ φ, u = φ2 + φx + z0.

(G.1)

Assuming u to satisfy one of the stationary KdV equations, reversing the order of
the two factors A and A+ produces a new Lax operator L̂ ,

L̂ = A+A + z0 = − d2

dx2
+ û, û = φ2 − φx + z0, (G.2)

whose potential û is a new solution of one of the equations in the stationary KdV
hierarchy. In short, the transformation

u �→ û

represents a Darboux transformation, or equivalently, an auto-Bäcklund transfor-
mation of the stationary KdV hierarchy. Incidentally, ±φ in (G.1), (G.2) represent

1 Mathematical problems, Bull. Amer. Math. Soc. 37 (2000), 407–436. (“ . . . wer, ohne ein bestimmtes
Problem vor Augen zu haben, nach Methoden sucht, dessen Suchen is meist vergeblich.” German orig-
inal in Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker-Congress
zu Paris 1900, Gött. Nachr. (1900), 253–297.)

425
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solutions of one of the stationary equations of the mKdV hierarchy, and hence

u �→ φ �→ −φ �→ û

represents a Bäcklund transformation from the (stationary) KdV to the mKdV
hierarchy (u �→ φ) as well as auto-Bäcklund transformations for the KdV (u �→ û)
and mKdV hierarchy (φ �→ −φ). However, althoughφ and −φ satisfy the identical
equation(s) within the stationary mKdV hierarchy, and hence

D =
(

0 A+

A 0

)
�→ D̃ =

(
0 −A

−A+ 0

)

represents an isospectral deformation of D, u and û in general do not necessarily
satisfy the same stationary equation of the KdV hierarchy, that is,

L �→ L̂,

in general, is not an isospectral deformation of L . More precisely, each solution
u of (one of) the nth stationary KdV equations is associated with a hyperelliptic
curve Kn (possibly with a singular affine part) of the type

Kn : y2 =
2n∏
m=0

(z − Em), {Em}m=0,...,2n ⊂ C. (G.3)

Similarly, û corresponds to a curve K̂n̂ of the type

K̂n̂ : y2 =
2n̂∏
m=0

(z − Êm), {Êm}m=0,...,2n̂ ⊂ C (G.4)

and hence u and û (respectively L and L̂) are isospectral if and only if Kn = K̂n̂

(i.e., {Em}m=0,...,2n = {Êm}m=0,...,2n̂, n = n̂).
The principal aim of this appendix is to re-examine the relationship between Kn

and K̂n̂ , depending on various choices of the function φ in (G.1), and to provide a
complete yet elementary solution of this problem in the KdV and AKNS contexts.

KdV Darboux-Type Transformations

Recalling the stationary Baker–Akhiezer function ψ(P, x, x0) given by (1.41), we
define

ψ(P, x, x0, σ ) =
{

1
2 (1 + σ )ψ(P, x, x0) + 1

2 (1 − σ )ψ(P∗, x, x0) for σ ∈ C,

ψ(P, x, x0) − ψ(P∗, x, x0) for σ = ∞,

P ∈ Kn \ {P∞}. (G.5)
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Pick Q0 = (z0, y0) ∈ Kn \ {P∞} and introduce the differential expressions

Aσ (Q0) = d

dx
+ φ(Q0, · , σ ), A+

σ (Q0) = − d

dx
+ φ(Q0, · , σ ), σ ∈ C∞,

where

φ(P, x, σ ) = ψx (P, x, x0, σ )/ψ(P, x, x0, σ ), P ∈ Kn \ {P∞}, σ ∈ C∞.

(G.6)

One verifies (cf. (1.42))

L = Aσ (Q0)A+
σ (Q0) + z0 = − d2

dx2
+ u (G.7)

with

u(x) = φ(Q0, x, σ )2 + φx (Q0, x, σ ) + z0

independent of the choice of σ ∈ C∞. Recall that the diagonal Green’s function
associated with L reads (cf. (D.20), (J.14), (J.8))

g(P, x) = ψ(P, x, x0)ψ(P∗, x, x0)

W (ψ(P, · , x0), ψ(P∗, · , x0))
(G.8)

= i Fn(z, x)

2y
, P = (z, y) ∈ Kn \ {P∞}, x ∈ C. (G.9)

Interchanging the order of the differential expressions Aσ (Q0) and A+
σ (Q0) in

(G.7) then yields

L̂σ (Q0) = A+
σ (Q0)Aσ (Q0) + z0 = − d2

dx2
+ ûσ ( · , Q0)

with

ûσ (x, Q0) = φ(Q0, x, σ )2 − φx (Q0, x, σ ) + z0

= u(x) − 2(ln(ψ(Q0, x, x0, σ )))xx , σ ∈ C∞.

The transformation

u �→ ûσ ( · , Q0), Q0 ∈ Kn \ {P∞}, σ ∈ C∞ (G.10)

is usually called the Darboux transformation (also Crum–Darboux transformation
or single commutation method).

Next, assuming that ψ ∈ ker(L − z), one infers A+
σ (Q0)ψ(z) ∈ ker(L̂σ (Q0) −

z), and

W
(
A+

σ (Q0)ψ1(z), A+
σ (Q0)ψ2(z)

) = (z − z0)W (ψ1(z), ψ2(z)), (G.11)

ψ1(z), ψ2(z) ∈ ker(L − z).
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Define

ψ̂σ (P, x, x0, Q0) = (
A+

σ (Q0)ψ(P, · , x0)
)
(x)

= (φ(Q0, x, σ ) − φ(P, x))ψ(P, x, x0),

P ∈ Kn \ {Q0, P∞}, σ ∈ C∞.

Then

(L̂σ (Q0) − z)ψ̂σ (P, · , x0, Q0)) = 0, P = (z, y) ∈ Kn \ {Q0, P∞},
and we define in analogy to (G.8) the diagonal Green’s function ĝσ (P, x, Q0) of
L̂σ (Q0) by

ĝσ (P, x, Q0) = ψ̂σ (P, x, x0, Q0)ψ̂σ (P∗, x, x0, Q0)

W (ψ̂σ (P, · , x0, Q0), ψ̂σ (P∗, · , x0, Q0))
, (G.12)

P = (z, y) ∈ Kn \ {Q0, P∞}.

Lemma G.1 Assume s-KdVn(u) = 0, and let Q0 = (z0, y0) ∈ Kn \ {P∞}, P =
(z, y) ∈Kn \{Q0, P∞},σ ∈ C∞. Then the diagonalGreen’s function ĝσ (P, · , Q0)
in (G.12) explicitly reads

ĝσ (P, · , Q0)

= Hn+1(z) + φ(Q0, · , σ )2Fn(z) − φ(Q0, · , σ )Fn,x (z)

−2i(z − z0)y
(G.13)

= (φ(P) − φ(Q0, x, σ ))(φ(P∗) − φ(Q0, σ ))Fn(z)

−2i(z − z0)y
(G.14)

= i F̂σ,n̂(z)

2ŷ
, (G.15)

where ŷ( · ) denotes the meromorphic solution obtained upon solving y2 =
R̂σ,2n̂+1(z), P = (z, y) for some polynomial R̂σ,2n̂+1 of degree 2n̂ + 1 ∈ N0, and
F̂σ,n̂( · , x) denotes a polynomial of degree n̂ with 0 ≤ n̂ ≤ n + 1. In particular,
the Darboux transformation (G.10), u �→ ûσ ( · , Q0) maps the class of algebro-
geometric KdV potentials into itself.

Proof Equations (G.13) and (G.14) follow upon use of φ(P, x) = ψx (P, x, x0)/
ψ(P, x, x0), (1.43), (1.44), (1.48)–(1.51), and (G.11). Since the numerator in
(G.13) is a polynomial in z and

ĝσ (P, x, Q0) = i zn

2y
+ O(|z|−1) as P = (z, y) → P∞

again by (G.13), one concludes (G.15) and 0 ≤ n̂≤ n+ 1. By inspection, F̂σ,n̂(z, x)
satisfies equation (1.13) with u(x) replaced by ûσ (x, Q0), n by n̂, and R2n+1(z)
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by R̂σ,2n̂+1(z). As a consequence, u, being an algebro-geometric KdV potential,
implies that ûσ ( · , Q0) is one as well. �

The following theorem clarifies the dependence of n̂ = n̂(n, Q0, σ ) on its vari-
ables.

Theorem G.2 Suppose s-KdVn(u) = 0, let Q0 = (z0, y0) ∈ Kn \ {P∞}, n ∈ N0,
σ ∈ C∞, and n̂ = n̂(n, Q0, σ ), as in (G.15). Then

n̂(n, Q0, σ ) =




n + 1 for σ ∈ C∞ \ {−1, 1} and y0 �= 0,

n + 1 for σ = ∞ and y0 = 0,

n for σ ∈ {−1, 1} and y0 �= 0,

n for σ ∈ C, y0 = 0, and R2n+1,z(z0) �= 0,

n − 1 for σ ∈ C, y0 = 0, and R2n+1,z(z0) = 0, n ∈ N,

and hence the hyperelliptic curve1 K̂σ,n̂(Q0) associated with ûσ ( · , Q0) is of the
type

K̂σ,n̂(Q0) : F̂σ,n̂(z, y, Q0) = y2 − R̂σ,2n̂+1(z, Q0) = 0

with

R̂σ,2n̂+1(z, Q0)

=




(z − z0)2R2n+1(z) for σ ∈ C∞ \ {−1, 1} and y0 �= 0,

(z − z0)2R2n+1(z) for σ = ∞ and y0 = 0,

R2n+1(z) for σ ∈ {−1, 1} and y0 �= 0,

R2n+1(z) for σ ∈ C, y0 = 0, and R2n+1,z(z0) �= 0,

(z − z0)−2R2n+1(z) for σ ∈ C, y0 = 0, and R2n+1,z(z0) = 0, n ∈ N.

(G.16)

Here

R2n+1(z) =
2n∏
m=0

(z − Em).

Proof Our starting point will be (G.14) and a careful case distinction taking into
account whether or not Q0 is a branch point and distinguishing the cases σ ∈
C \ {−1, 1}, σ ∈ {−1, 1}, and σ = ∞.

1 We compactify K̂σ,n̂(Q0) by adding the point P∞ at infinity and still denote the compactified curve
by K̂σ,n̂(Q0).
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Case (i). σ ∈ C∞ \ {−1, 1} and y0 �= 0: One computes from (G.5) and (G.6),

φ(Q0, x, σ )

=




(1 + σ )ψx (Q0, x, x0) + (1 − σ )ψx (Q∗
0, x, x0)

(1 + σ )ψ(Q0, x, x0) + (1 − σ )ψ(Q∗
0, x, x0)

for σ ∈ C \ {−1, 1},

ψx (Q0, x, x0) − ψx (Q∗
0, x, x0)

ψ(Q0, x, x0) − ψ(Q∗
0, x, x0)

for σ = ∞,

and upon comparison with φ(Q0, x) �= φ(Q∗
0, x),

φ(Q0, x) = ψx (Q0, x, x0)

ψ(Q0, x, x0)
, φ

(
Q∗

0, x
) = ψx

(
Q∗

0, x, x0
)

ψ
(
Q∗

0, x, x0
) ,

one concludes that no cancellations can occur in (G.14), proving n̂(n, Q0, σ ) =
n + 1 and the first statement in (G.16).
Case (ii). σ = ∞ and y0 = 0: Combining (1.38), (1.41), (1.45), and (G.5), one

computes

φ(Q0, x,∞) = lim
P→Q0

φ(P, x,∞)

= lim
P→Q0

(
φ(P, x) exp

( ∫ x
x0
dx ′ φ(P, x ′)

)− φ(P∗, x) exp
( ∫ x

x0
dx ′ φ(P∗, x ′)

)

exp
( ∫ x

x0
dx ′ φ(P, x ′)

)− exp
( ∫ x

x0
dx ′ φ(P∗, x ′)

)
)

= φ(Q0, x)

+ lim
P→Q0

(
φ(P, x) − φ(P∗, x)

exp
( ∫ x

x0
dx ′ φ(P, x ′)

)− exp
( ∫ x

x0
dx ′ φ(P∗, x ′)

)

× exp

(∫ x

x0

dx ′ φ(P∗, x ′)
))

= φ(Q0, x) + exp

(∫ x

x0

dx ′ φ(Q0, x
′)
)

× lim
P→Q0

(
2iy/Fn(z, x)

exp
(
iy
∫ x
x0

dx ′
Fn (z,x ′)

)− exp
(−iy ∫ xx0

dx ′
Fn (z,x ′)

)

× exp

(
−1

2

∫ x

x0

dx ′ Fn,x (z, x ′)
Fn(z, x ′)

))

= φ(Q0, x)

+ ψ(Q0, x, x0)
1

Fn(z0, x)ψ(Q0, x, x0)
lim
P→Q0

(
2iy

2iy
∫ x
x0

dx ′
Fn (z,x ′) + O(y2)

)

= φ(Q0, x) +
(
Fn(z0, x)

∫ x

x0

dx ′

Fn(z, x ′)

)−1

, x ∈ C \ {x0}, (G.17)

using limP→Q0 y(P) = y(Q0) = y0 = 0. From

φ(Q0) = 1

2

Fn,x (z0)

Fn(z0)
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one concludes again that no cancellations can occur in (G.14). Thus, one concludes
n̂(n, Q0,∞) = n + 1 and hence the second statement in (G.16).

The remainder of the proof requires a more refined argument, the basis of which
will be derived next. First, replacing u(x) by u(x) − z0, we may assume without
loss of generality that z0 = 0 in the following. Writing

y2 = R2n+1(z) =
z→0

y2
0 + ỹ1z + ỹ2z

2 + O(z3), (G.18)

a comparison of the powers z0 and z1 in (1.13) yields

2 fn,xx fn = f 2
n,x + 4u f 2

n + 4y2
0 (G.19)

and

fn−1,xx fn + fn,xx fn−1 − fn,x fn−1,x − 4u fn fn−1 + 2 f 2
n − 2ỹ1 = 0. (G.20)

When one inserts (G.19) into (G.20), a little algebra proves the basic identity

f 2
n ( fn−1/ fn)xx + fn,x fn( fn−1/ fn)x + 2 f 2

n + 4y2
0 ( fn−1/ fn) − 2ỹ1 = 0. (G.21)

Case (iii). σ ∈ {−1, 1} and y0 �= 0: Then (G.5) yields

φ(Q0, x, 1) = φ(Q0, x), φ(Q0, x,−1) = φ
(
Q∗

0, x
)
,

with φ(Q0, x) �= φ(Q∗
0, x) since y0 �= 0. In this case there is a cancellation in

(G.14). For instance, choosing σ = 1, one computes from (1.11) and (1.38)

φ(P) − φ(Q0, · ,1) = φ(P) − φ(Q0)

=
P→Q0

i(y − y0)

fn
− iy0

fn−1

f 2
n

z + 1

2

(
fn−1

fn

)
x

z + O(z2)

=
P→Q0

c1z + O(z2)

since

y − y0 =
P→Q0

y1z + O(z2), ỹ1 = 2y0y1.

It remains to show that c1 does not vanish identically on C. Arguing by contradic-
tion, we assume

0 = c1 = iy1

fn
− iy0

fn

fn−1

fn
+ 1

2

(
fn−1

fn

)
x

, x ∈ C. (G.22)

Differentiating (G.22) with respect to x and inserting the ensuing expression for
( fn−1/ fn)xx and the one for ( fn−1/ fn)x from (G.22) into (G.21) then result in the
contradiction

0 = 2 fn(x)2, x ∈ C.



432 Appendix G

Moreover, since

φ(P∗) − φ(Q0, · , 1) = φ(P∗) − φ(Q0) =
P→Q0

−2iy0 f
−1
n + O(z),

one concludes that precisely one factor of z cancels in (G.14). Thus, one infers
n̂(n, Q0, 1) = n and hence the third relation in (G.16). The case σ = −1 is treated
analogously.
Case (iv). σ ∈ C, y0 = 0, and R2n+1,z(0) �= 0: Taking into account that
φ(Q0, x, σ ) = φ(Q0, x) (using (G.6) and Q0 = Q∗

0) is independent of σ ∈ C,
one observes that (1.11) and (1.38) yield

(φ(P) − φ(Q0))(φ(P∗) − φ(Q0)) =
P→Q0

y2
1 z f

−2
n + O(z2) (G.23)

since

y =
P→Q0

y1z
1/2 + O(z3/2), y1 =

( ∏
Em �=0

Em

)1/2

.

Thus, we infer again that precisely one factor of z cancels in (G.14). Hence,
n̂(n, Q0, σ ) = n, and the fourth relation in (G.16) is proved. Case (v). σ ∈ C,
y0 = ỹ1 = 0, and ỹ2 �= 0 (cf. (G.18)): One calculates as in (G.23) that

(φ(P) − φ(Q0))(φ(P∗) − φ(Q0))

=
P→Q0

(
y2

1

f 2
n

+ 1

4

((
fn−1

fn

)
x

)2)
z2 + O(z3)

=
P→Q0

c2z
2 + O(z3) (G.24)

since

y =
P→Q0

y1z + O(z2), y1 =
( ∏

Em �=0

Em

)1/2

.

Next we show that c2 does not vanish identically on C. Arguing again by contra-
diction, we suppose that

0 = c2 = y2
1

f 2
n

+ 1

4

((
fn−1

fn

)
x

)2

, x ∈ C.

Thus,
(
fn−1

fn

)
x

= C

fn
(G.25)

for some constant C ∈ C. Insertion of (G.25) and its x-derivative into (G.21) then
again yields the contradiction

0 = 2 fn(x)2, x ∈ C.
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Hence, n̂(n, Q0, σ ) = n − 1 and the last relation in (G.16) holds in this case.
Case (vi). σ ∈ C, y0 = ỹ1 = ỹ2 = 0 (cf. (G.18)): As in (G.24) one obtains

(φ(P) − φ(Q0))(φ(P∗) − φ(Q0)) =
P→Q0

1

4

((
fn−1

fn

)
x

)2

z2 + O(z3)

since

y =
P→Q0

O(z3/2).

The remainder of the proof of case (vi) is now a special case of case (v) (with
y1 = C = 0), and one concludes again that n̂(n, Q0, σ ) = n − 1. �

We can summarize the previous theorem in the following table.

Table G.3 The table shows the value of the arithmetic genus n̂ associated with
theDarboux transformation. Here, R2n+1(z) = y2

0 + ỹ1(z − z0) + O((z − z0)2) as
z → z0.

σ ∈ C \ {−1, 1} σ ∈ {−1, 1} σ = ∞

y0 �= 0 n + 1 n

y0 = 0 ỹ1 �= 0 n n + 1

ỹ1 = 0 n − 1

These results show, in particular, that Darboux transformations do not change
the local structure of the original curve y2 = R2n+1(z), except, of course, near the
point Q0.

We conclude with the following elementary illustration.

ExampleG.4 Assume n = 0, P = (z, y) ∈ K0 \ {P∞}, and let (x, x0) ∈ R
2. Then

y2 = R1(z) = z − E0, E0 ∈ C,

u(x) = E0,

φ(P, x) = iy, ψ(P, x, x0) = exp(iy(x − x0)),

g(P, x) = i

2y
,

φ(P, x, σ ) =




iy
(1 + σ ) exp(iy(x − x0)) − (1 − σ ) exp(−iy(x − x0))

(1 + σ ) exp(iy(x − x0)) + (1 − σ ) exp(−iy(x − x0))
, σ ∈C,

iy
exp(iy(x − x0)) − exp(−iy(x − x0))

exp(iy(x − x0)) + exp(−iy(x − x0))
, σ =∞,

φ((E0, 0), x, σ ) =
{

0, σ ∈ C,

(x − x0)−1, σ = ∞.
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More generally, the caseu(x) = E0 can be associated with any curve y2 = R2n+1(z)
since fn,x (x) = 0, n ∈ N0 in this special case.

AKNS Darboux-Type Transformations

We recall the Baker–Akhiezer function � given by (3.59), which satisfies (cf.
(3.68))

(M − z)�(P, · , x0) = 0,

where (cf. (3.3))

M = i

(
d
dx −q
p − d

dx

)
.

In the following, the 1, 2 and 2, 1 matrix elements of the 2 × 2 Green’s matrix
associated with M (cf. Remark D.4) on the diagonal are denoted by g�,�′ (P, x),
� �= �′, �, �′ = 1, 2. We also recall that1 (cf. (D.41)),

g1,2(P, x) = −i ψ1(P, x, x0)ψ1(P∗, x, x0)

W (�(P, · , x0), �(P∗, · , x0))
(G.26)

= i Fn(z, x)

2y
, P = (z, y) ∈ Kn \ {P∞− , P∞+}, x ∈ C. (G.27)

Equations (3.26) and (G.27) then yield the universal equation

2g1,2,xx (P)g1,2(P) − 2
qx
q
g1,2,x (P)g1,2(P) − g1,2,x (P)2

+ 2
(
2z2 − 2i z(qx/q) − 2pq

)
g1,2(P)2 = q2,

P = (z, y) ∈ Kn \ {P∞− , P∞+}.
Similarly, we find

g2,1(P, x) = −i ψ2(P, x, x0)ψ2(P∗, x, x0)

W (�(P, · , x0), �(P∗, · , x0))
(G.28)

= i Hn(z, x)

2y
, P = (z, y) ∈ Kn \ {P∞− , P∞+}, x ∈ C, (G.29)

and

g2,1,xx (P)g2,1(P) − 2
px
p
g2,1,x (P)g2,1(P) − g2,1,x (P)2

+ 2
(
2z2 + 2i z(px/p) − 2pq

)
g2,1(P)2 = p2,

P = (z, y) ∈ Kn \ {P∞− , P∞+}.

1 The off-diagonal elements of the Green’s matrix G(P, x, x ′) are continuous as x → x ′, whereas the
diagonal elements are not.
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The formal gauge (i.e., Darboux-type) transformation, withU given by (cf. (3.38))

U (z) =
(−i z q

p i z

)
,

is defined using

�(z) �→ �̂(z) = $(z)�(z),

U (z) �→ Û (z) =
(
−i z −q̂
p̂ i z

)

= $(z)U (z)$(z)−1 + $x (z)$(z)−1 (G.30)

with $(z) a 2 × 2 matrix to be chosen later. Since (cf. (3.66))

�x (z) = U (z)�(z),

we find

�̂x (z) = Û (z)�̂(z).

Hence,

(M̂ − z)�̂(z) = 0, �̂(z) =
(
ψ̂1(z)

ψ̂2(z)

)

with

M̂ = i

(
d/dx −q̂
p̂ −d/dx

)
.

Next, introduce

�(P, x, x0, σ ) =
(
ψ1(P, x, x0, σ )
ψ2(P, x, x0, σ )

)

=
{

1
2 (1 + σ )�(P, x, x0) + 1

2 (1 − σ )�(P∗, x, x0) for σ ∈ C,

�(P, x, x0) − �(P∗, x, x0) for σ = ∞,

P = (z, y) ∈ Kn \ {P∞− , P∞+}, (G.31)

pick Q0 = (z0, y0) ∈ Kn \ {P∞− , P∞+}, and define

$(z, Q0, x, σ ) =
(
z − z0 − i

2q(x)φ(Q0, x, σ ) i
2q(x)

i
2φ(Q0, x, σ ) − i

2

)
. (G.32)

Here �(P, x, x0) is defined in (3.59)–(3.61) and we recall (3.68) and

φ(P, x, σ ) = ψ2(P, x, x0, σ )/ψ1(P, x, x0, σ ), (G.33)

P = (z, y) ∈ Kn \ {P∞− , P∞+}, σ ∈ C∞.
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We note that

det($(z, Q0, x, σ )) = −(i/2)(z − z0).

According to (G.30), one then obtains

M̂σ (Q0) = i

(
d/dx −q̂σ (Q0)

p̂σ (Q0) −d/dx

)
, σ ∈ C∞,

p̂σ (x, Q0) = φ(Q0, x, σ ),

q̂σ (x, Q0) = −2i z0q(x) − qx (x) + φ(Q0, x, σ )q(x)2,

Q0 = (z0, y0) ∈ Kn \ {P∞− , P∞+}, σ ∈ C∞,

utilizing the fact thatφ(P, x, σ ) satisfies the Riccati-type equation (3.62) for allσ ∈
C∞. The gauge transformation (or equivalently, Darboux transformation) reads

(p, q) �→ ( p̂σ ( · , Q0), q̂σ ( · , Q0)). (G.34)

Introducing

�̂σ (P, x, x0, Q0) = $(z, Q0, x, σ )�(P, x, x0),

P = (z, y) ∈ Kn \ {P∞− , P∞+}, σ ∈ C∞,

where �(P, · , x0) ∈ ker(M − z) and $(z, Q0, x, σ ) is defined in (G.32), one in-
fers

(M̂σ (Q0) − z)�̂σ (P, · , x0, Q0) = 0.

Moreover,

W (�̂σ,1(P, · , x0, Q0), �̂σ,2(P, · , x0, Q0))

= −(i/2)(z − z0)W (�1(P, · , x0), �2(P, · , x0)), (G.35)

where

�̂σ, j (P, x, x0, Q0) = $(z, Q0, x, σ )� j (P, x, x0),

� j (P, · , x0) ∈ ker(D − z), j = 1, 2.

Given these facts we define, in analogy to (G.26) and (G.28), the 1, 2 and 2, 1
Green’s matrix elements associated with M̂σ (Q0) on the diagonal by

ĝσ,1,2(P, x, Q0) = −i ψ̂σ,1(P, x, x0, Q0)ψ̂σ,1(P∗, x, x0, Q0)

W (�̂σ (P, · , x0, Q0), �̂σ (P∗, · , x0, Q0))
,

ĝσ,2,1(P, x, Q0) = −i ψ̂σ,2(P, x, x0, Q0)ψ̂σ,2(P∗, x, x0, Q0)

W (�̂σ (P, · , x0, Q0), �̂σ (P∗, · , x0, Q0))
,

P = (z, y) ∈ Kn \ {Q0, P∞− , P∞+}, σ ∈ C∞.
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Lemma G.5 Assume s-AKNSn(p, q) = 0 and let Q0 = (z0, y0) ∈ Kn \ {P∞− ,

P∞+}, P = (z, y) ∈ Kn \ {Q0, P∞− , P∞+}, σ ∈ C∞. Then the off-diagonal ele-
ments of the Green’s matrix of M̂σ (Q0) read

ĝσ,1,2(P, · , Q0)

= i((i(z − z0)q + (1/2)q2φ(Q0, · , σ ))Gn+1(z) − (1/4)q2Hn(z) + ((z − z0)2

− i(z − z0)qφ(Q0, · , σ ) − (1/4)q2φ(Q0, · , σ )2)Fn(z))(−(z − z0)y)−1

(G.36)

= i((z − z0) + (i/2)q(φ(P) − φ(Q0, · , σ )))

× ((z − z0) + (i/2)q(φ(P∗) − φ(Q0, · , σ )))Fn(z)(−(z − z0)y)−1 (G.37)

= i F̂σ,n̂(z)

2ŷ
(G.38)

and

ĝσ,2,1(P, · , Q0)

= (i/4)(φ(Q0, · , σ )2Fn(z) − 2φ(Q0, · , σ )Gn+1(z) + Hn(z))((z − z0)y)−1

(G.39)

= (i/4)(φ(P) − φ(Q0, · , σ ))(φ(P∗) − φ(Q0, · , σ ))Fn(z)((z − z0)y)−1

(G.40)

= i Ĥσ,n̂(z)

2ŷ
, (G.41)

where ŷ( · ) denotes the meromorphic solution obtained upon solving y2 =
R̂σ,2n̂+2(z), P = (z, y) for some polynomial R̂σ,2n̂+2 of degree 2n̂ + 2 ∈ N0 and
F̂σ,n̂( · , x), and Ĥσ,n̂( · , x), denote polynomials of degree n̂ with 0 ≤ n̂ ≤ n + 1. In
particular, the Darboux transformation (G.34), (p, q) �→ ( p̂σ ( · , Q0), q̂σ ( · , Q0))
maps the class of algebro-geometric AKNS potentials into itself.

Proof We present the argument for ĝσ,1,2 only; the case ĝσ,2,1 follows similarly.
As in Lemma G.1, φ(P, x) = ψ2(P, x, x0)/ψ1(P, x, x0), (3.63), (3.64), (3.70)–
(3.73), and (G.35) imply equations (G.36) and (G.37). Since the numerator in
(G.36) is a polynomial in z and

ĝσ,1,2(P, x, Q0) = q̂(x)zn

2y
+ O(|z|−2) as P = (z, y) →P∞±

by (G.36), one infers (G.38) and 0 ≤ n̂ ≤ n + 1. Again, one verifies that F̂σ,n̂(z, x)
satisfies equation (3.26) with p(x), q(x) replaced by p̂σ (x, Q0), q̂σ (x, Q0), n by
n̂, and R2n+2(z) by R̂σ,2n̂+2(z), proving that the Darboux transformation (G.34)
leaves the class of algebro-geometric AKNS potentials invariant. �

The following theorem, which is in complete analogy to Theorem G.2, will
clarify the dependence of n̂ = n̂(n, Q0, σ ) on its variables.
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TheoremG.6 Suppose s-AKNSn(p, q) = 0, let Q0 = (z0, y0) ∈Kn \ {P∞− , P∞+},
n ∈ N0, σ ∈ C∞, and n̂ = n̂(n, Q0, σ ) as in (G.38). Then

n̂(n, Q0, σ ) =




n + 1 for σ ∈ C∞ \ {−1, 1} and y0 �= 0,

n + 1 for σ = ∞ and y0 = 0,

n for σ ∈ {−1, 1} and y0 �= 0,

n for σ ∈ C, y0 = 0, and R2n+2,z(z0) �= 0,

n − 1 for σ ∈ C, y0 = 0, and R2n+2,z(z0) = 0, n ∈ N,

and hence the hyperelliptic curve1 K̂σ,n̂(Q0) associated with ( p̂σ ( · , Q0),
q̂σ ( · , Q0)) is of the type

K̂σ,n̂ : F̂σ,n̂(z, y, Q0) = y2 − R̂σ,2n̂+2(z, Q0) = 0

with

R̂σ,2n̂+2(z, Q0)

=




(z − z0)2R2n+2(z) for σ ∈ C∞ \ {−1, 1} and y0 �= 0,

(z − z0)2R2n+2(z) for σ = ∞ and y0 = 0,

R2n+2(z) for σ ∈ {−1, 1} and y0 �= 0,

R2n+2(z) for σ ∈ C, y0 = 0, and R2n+2,z(z0) �= 0,

(z − z0)−2R2n+2(z) for σ ∈ C, y0 = 0, and R2n+2,z(z0) = 0, n ∈ N.

(G.42)

Here

R2n+2(z) =
2n+1∏
m=0

(z − Em).

Proof The following arguments closely parallel those in the proof of Theorem G.2.
Again our starting point will be (G.37) and (G.40) and a careful case distinction be-
tween σ ∈ C∞ \ {−1, 1}, σ ∈ {−1, 1}, σ = ∞, and whether or not Q0 is a branch
point.

Case (i). σ ∈ C∞ \ {−1, 1} and y0 �= 0: One calculates using (G.31) and (G.33)

φ(Q0, x, σ )

=




(1 + σ )ψ2(Q0, x, x0) + (1 − σ )ψ2(Q∗
0, x, x0)

(1 + σ )ψ1(Q0, x, x0) + (1 − σ )ψ1(Q∗
0, x, x0)

for σ ∈ C \ {−1, 1},

ψ2(Q0, x, x0) − ψ2(Q∗
0, x, x0)

ψ1(Q0, x, x0) − ψ1(Q∗
0, x, x0)

for σ = ∞,

1 We compactify K̂σ,n̂(Q0) by adding the points P∞+ , P∞− at infinity and still denote the compactified
curve by K̂σ,n̂(Q0).
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and since

φ(Q0, x) = ψ1(Q0, x, x0)

ψ2(Q0, x, x0)
�= φ(Q∗

0, x) = ψ1(Q∗
0, x, x0)

ψ2(Q∗
0, x, x0)

,

one concludes that no cancellations can occur in (G.37) or (G.40) and hence
n̂(n, Q0, σ ) = n + 1.
Case (ii). σ = ∞ and y0 = 0: Then (3.59), (3.56), (3.57), (3.69), (3.65), and (G.31)
imply

φ(Q0, x,∞) = lim
P→Q0

φ(P, x,∞)

= lim
P→Q0

((
φ(P, x) exp

(∫ x

x0

dx ′ (−i z + q(x ′)φ(P, x ′))
)

− φ(P∗, x) exp

(∫ x

x0

dx ′ (−i z + q(x ′)φ(P∗, x ′))
))

×
(

exp

(∫ x

x0

dx ′ (−i z + q(x ′)φ(P, x ′))
)

− exp

(∫ x

x0

dx ′ (−i z + q(x ′)φ(P∗, x ′))
))−1)

= φ(Q0, x)

+ lim
P→Q0

(
φ(P, x) − φ(P∗, x)

exp(
∫ x
x0
dx ′ q(x ′)φ(P, x ′)) − exp(

∫ x
x0
dx ′ q(x ′)φ(P∗, x ′))

× exp

(∫ x

x0

dx ′ q(x ′)φ(P∗, x ′)
))

= φ(Q0, x) + exp

(∫ x

x0

dx ′ q(x ′)φ(Q0, x
′)
)

× lim
P→Q0

(((
exp

(
y
∫ x

x0

dx ′ q(x ′)
Fn(z, x ′)

)
− exp

(
− y

∫ x

x0

dx ′ q(x ′)
Fn(z, x ′)

))

× exp

(∫ x

x0

dx ′ q(x ′)Gn+1(z, x ′)
Fn(z, x ′)

))−1 2y

Fn(z, x)

)

= φ(Q0, x) +
(
Fn(z0, x)

∫ x

x0

dx ′ q(x ′)
Fn(z, x ′)

)−1

, x ∈ C \ {x0},

by means of limP→Q0 y(P) = y(Q0) = y0 = 0. Since by (3.21)

φ(Q0) = Gn+1,x (z0)

Fn(z0)
= 1

q

(
Fn,x (z0)

2Fn(z0)
+ i z0

)
,

one again concludes that no cancellation occurs in (G.37) or (G.40), and hence
n̂(n, Q0,∞) = n + 1.

The rest of the proof relies on some additional arguments to be discussed next.
First, we will assume without loss of generality that z0 = 0. This can be achieved
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by noticing that

M = i

(
d/dx −q
p −d/dx

)
and Ma = i

(
d/dx −qe−2ax

pe2ax −d/dx

)

are related by

UMaU
−1 = M − ia I, U =

(
e2ax 0

0 e−2ax

)
.

In the following we abbreviate

y2 = R2n+2(z) =
z→0

y2
0 + ỹ1z + ỹ2z

2 + O(z3). (G.43)

Case (iii). σ ∈ {−1, 1} and y0 �= 0: Then (G.31) yields

φ(Q0, x, 1) = φ(Q0, x), φ(Q0, x,−1) = φ(Q∗
0, x),

with φ(Q0, x) �= φ(Q∗
0, x) since y0 �= 0. In this case there is a cancellation in

(G.37) and (G.40). Choosing σ = 1, one computes from (3.17), (3.18), and (3.61)

φ(P∗) − φ(Q0, · , 1) = φ(P∗) − φ(Q0) =
P→Q0

−2y0 f
−1
n + O(z).

Furthermore,

φ(P) − φ(Q0, · , 1) = φ(P) − φ(Q0)

=
P→Q0

y − y0

fn
−
(
y0
fn−1

f 2
n

− gn
fn

+ gn+1 fn−1

f 2
n

)
z + O(z2)

=
P→Q0

(
y1

fn
− y0 fn−1

f 2
n

+ gn
fn

− gn+1 fn−1

f 2
n

)
z + O(z2)

=
P→Q0

c1z + O(z2) (G.44)

since

y − y0 =
P→Q0

y1z + O(z2), ỹ1 = 2y0y1.

Similarly, we find

z + (i/2)q(φ(P) − φ(Q0, · , 1)) =
P→Q0

(1 + (i/2)qc1)z + O(z2). (G.45)

It remains to show that c1 does not vanish identically. We assume temporar-
ily that ĝσ,1,2 and ĝσ,2,1 have cancellations of the same order as z → 0. Argu-
ing by contradiction, we suppose that c1 vanishes identically. But (G.44) and
(G.45) then show that ĝσ,1,2 and ĝσ,2,1 would have cancellations of different order,
which is a contradiction. We conclude that precisely one factor of z cancels in
(G.37) and (G.40), and hence n̂(n, Q0, 1) = n. The case σ = −1 is treated anal-
ogously. It remains to show that ĝσ,1,2 and ĝσ,2,1 necessarily have cancellations
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of the same order as z → 0. A comparison of M̂σ = i
( d/dx −q̂σ

p̂σ −d/dx
)

and its for-

mal adjoint M̂∗
σ = i

( d/dx − p̂σ
q̂σ −d/dx

)
yields the replacement of ( p̂σ , q̂σ ) by (q̂σ , p̂σ )

and hence the corresponding replacements of (F̂σ,n̂(z, x), Ĝσ,n̂+1(z, x), Ĥσ,n̂(z, x))
by ( F̂σ,n̂(z, x) , Ĝσ,n̂+1(z, x) , Ĥσ,n̂(z, x) ) (cf. (3.4)–(3.7) and (3.17)–(3.19)) and

R̂σ,2n̂+2(z) by R̂σ,2n̂+2(z) (cf. the notation employed in Lemma G.5). This fact
has two consequences: Firstly, from relation (3.23) we infer that the correspond-
ing algebraic curves associated with M̂σ and M̂∗

σ have complex conjugate branch
points, that is, if {Êσ,m}m=0,...,2n̂+1 corresponds to M̂σ , then { Êσ,m }m=0,...,2n̂+1

corresponds to M̂∗
σ , where R̂σ,2n̂+2(z) = ∏2n̂+1

m=0 (z − Êσ,m). Secondly, we infer

ĝσ,2,1(P, x) = ĝ∗
σ,2,1(P, x),

where P(z, y), P = (z, y), and ĝ∗
σ, j,k(P, x) denotes the Green’s matrix elements

associated with M̂∗
σ . This shows that any cancellations in ĝσ,1,2 and ĝσ,2,1 as z → 0

are necessarily of identical order.
Case (iv). σ ∈ C, y0 = 0, and R2n+1,z(0) �= 0: Using φ(Q0, x, σ ) = φ(Q0, x) for
all σ ∈ C, (3.17), (3.18) and (3.61) yield

(z + (i/2)q(φ(P) − φ(Q0)))(z + (i/2)q(φ(P∗) − φ(Q0)))

=
P→Q0

q2y2
1

4 f 2
n

z + O(z2) (G.46)

since

y =
P→Q0

y1z
1/2 + O(z3/2), y1 =

( ∏
Em �=0

Em

)1/2

.

Thus, again precisely one factor of z cancels in (G.37) (similarly, one factor cancels
in (G.40)) and hence n̂(n, Q0, σ ) = n.

Case (v). σ ∈ C, y0 = ỹ1 = 0, and ỹ2 �= 0 (cf. (G.43)): One computes, as in (G.46)
that

(
z + (i/2)q(φ(P) − φ(Q0))

)(
z + (i/2)q(φ(P∗) − φ(Q0)))

=
P→Q0

(
q2y2

1

4 f 2
n

+
(

1 + i

2
q

(
gn
fn

− gn+1 fn−1

f 2
n

))2 )
z2 + O(z3)

=
P→Q0

c2z
2 + O(z3) (G.47)

since

y =
P→Q0

y1z + O(z2), y1 =
( ∏

Em �=0

Em

)1/2

.
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Similarly, we find

(φ(P) − φ(Q0))(φ(P∗) − φ(Q0))

=
P→Q0

−
(
y2

1

f 2
n

−
(
gn
fn

− gn+1 fn−1

f 2
n

)2)
z2 + O(z3)

=
P→Q0

c3z
2 + O(z3). (G.48)

We see that both c2 and c3 cannot vanish simultaneously, and hence precisely a
factor z2 cancels in (G.37) and (G.40). Thus, n̂(n, Q0, σ ) = n − 1.

Case (vi). σ ∈ C, y0 = ỹ1 = ỹ2 = 0 (cf. (G.43)): In analogy to (G.47) and (G.48),
one obtains

(z + (i/2)q(φ(P) − φ(Q0)))(z + (i/2)q(φ(P∗) − φ(Q0)))

=
P→Q0

(
1 + i

2
q

(
gn
fn

− gn+1 fn−1

f 2
n

))2

z2 + O(z3)

and

(φ(P) − φ(Q0))(φ(P∗) − φ(Q0))

=
P→Q0

(
gn
fn

− gn+1 fn−1

f 2
n

)2

z2 + O(z3)

respectively since

y =
P→Q0

O(z3/2).

Thus, this case subordinates to case (v), resulting again in n̂(n, Q0, σ ) =
n − 1. �

We emphasize that Table G.3 applies as well in the AKNS context.
We conclude this section with the elementary genus zero example.

Example G.7 Assume n = 0, P ∈ K0 \ {P∞+ , P∞−}, and let (x, x0) ∈ R
2. Then

y2 = R2(z) = (z − E0)(z − E1), c1 = −(E0 + E1)/2, E0, E1 ∈ C,

p(x) = p(x0) exp(−2ic1(x − x0)), q(x) = q(x0) exp(2ic1(x − x0)),

p(x)q(x) = (E0 − E1)2/4,

φ(P, x) = y + z + c1

−iq(x)
= i p(x)

y − z − c1
,

ψ1 = exp((i(y + c1)(x − x0)), ψ2 = y + z + c1

−iq(x0)
exp((i(y − c1)(x − x0)),
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φ(P, x, σ ) = i

q(x)

×




(1 + σ )(y + z + c1) exp(iy(x − x0)) + (1 − σ )(−y + z + c1) exp(−iy(x − x0))

(1 + σ ) exp(iy(x − x0)) + (1 − σ ) exp(−iy(x − x0))
, σ ∈ C,

(y + z + c1) exp(iy(x − x0)) + (y − z − c1) exp(−iy(x − x0))

exp(iy(x − x0)) + exp(−iy(x − x0))
, σ = ∞,

φ((E j , 0), x, σ ) = 1

2q(x)

{
i(E j + c1), σ ∈ C,

i(E j + c1) + (x − x0)−1, σ = ∞,
j = 0, 1.

Notes

The material in this appendix is taken from Gesztesy and Holden (2000c).
General commutation methods (also called Crum–Darboux transformations,

transmutation methods, etc.) of the type (G.1), (G.2), effecting a transition from
AA+ to A+A, have a rather long history and go back at least to Jacobi (1837) and
Darboux (1882). Since it seems impossible to give a complete bibliography on the
subject, we confine ourselves to some of the most relevant sources such as, Buys
and Finkel (1984), Crum (1955), Deift (1978), Deift and Trubowitz (1979), Finkel
et al. (1987), Flaschka and McLaughlin (1976b), Gesztesy (1993), Gesztesy et al.
(1996b), Gesztesy and Teschl (1996), Gesztesy and Weikard (1993), McKean
and van Moerbeke (1975), McKean and Trubowitz (1976), Schmincke (1978),
and Wahlquist (1976). For commutation methods in connection with Bäcklund
transformations in the algebro-geometric context, for instance, to Ercolani and
Flaschka (1985), Flaschka (1983), Gesztesy et al. (1991), Gesztesy and Svirsky
(1995), Latham and Previato (1994), Matveev and Salle (1991), McKean (1985;
1986; 1987; 1992), Ohmiya (1988a,b; 1995; 1999), Ohmiya and Mishev (1993),
Previato (1993), Prikarpatskii (1981), Samoilenko and Prikarpatskii (1985), and
Veselov and Shabat (1993).

Historically, the first attempts to link Kn and K̂n̂ were made by Drach (1918;
1919a,b), who appears to have been the first to study particular aspects (the case
n̂ = n + 1) of Theorem G.2 around 1918. Theorem G.2 was first derived by purely
algebro-geometric means in Ehlers and Knörrer (1982). An elementary but lengthy
derivation of Theorem G.2 (focusing on the case where n̂(n, σ ) = n − 1) was
recently provided in Ohmiya (1999) based on two other papers: Ohmiya (1995),
and Ohmiya and Mishev (1993). The proof presented in this appendix, taken from
Gesztesy and Holden (2000c), seems to be the only elementary and relatively short
one available at this point.

It seems worthwhile to point out that the case σ = ∞ and y0 = 0, which leads to
n̂(n, Q0, σ ) = n + 1, necessarily constructs an algebro-geometric KdV potential
û∞(x, Q0) singular at x = x0 (cf. (G.17)). Moreover, the curves (G.3) and (G.4)
may of course be singular, that is, some (or even all) of the Em’s may coincide.



444 Appendix G

In fact, the class of rational algebro-geometric solutions constructed in Adler and
Moser (1978) (see also Ablowitz and Airault (1981), Ohmiya (1988b), and Ohmiya
and Mishev (1993)) arises exactly in this manner with all Em’s vanishing. Similarly,
the class of N -soliton solutions and, more generally, N solitons relative to an
algebro-geometric background potential, as described, for instance, in Adler and
van Moerbeke (1994), Deift (1978), Deift and Trubowitz (1979), Dubrovin et al.
(1976), Gesztesy et al. (1991), Gesztesy and Svirsky (1995), Gesztesy and Teschl
(1996), Gesztesy and Weikard (1993), Kay and Moses (1956), McKean (1979b;
1987; 1992), McRae and Weikard (1997), Previato (1998), and van Moerbeke
(1993), results in N pairs of coinciding Em’s.

The results described in Theorem G.2 are not confined to hyperelliptic curves
Kn of finite (arithmetic) genus n. In fact, upon shifting the emphasis from Fn(z, x)
to the diagonal Green’s function g(P, x), the results in Theorem G.2 extend to
certain classes of transcendental hyperelliptic curves of infinite (arithmetic) genus
K∞ (including those associated with periodic potentials u), as shown in Gesztesy
(2001).

In the AKNS context the gauge transformation (G.34) can be inferred from
the results in Konopelchenko (1982) and Konopelchenko and Rogers (1992) with
a bit of additional work, as shown in Gesztesy and Weikard (1998a); cf. also
Gesztesy and Weikard (1998b). Adding solitons (i.e., inserting eigenvalues into
the spectrum of M) and its effect on the Baker–Akhiezer vector � has also been
studied in Flaschka (1983) and Flaschka and Newell (1981). Lemma G.5 was first
noted in Gesztesy and Weikard (1998a); see also Gesztesy and Weikard (1998b),
and Theorem G.6 first appeared in Gesztesy and Holden (2000c).
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Elliptic Functions

The theory of elliptic functions is the fairyland of mathematics.
The mathematician who once gazes upon this enchanting and
wondrous domain crowded with the most beautiful relations
and concepts is forever captivated.

Richard Bellman1

In this appendix we state some fundamental definitions and special results on
elliptic functions useful in connection with the elliptic algebro-geometric examples
presented in Chapters 1 and 3.

Definition H.1 A function f : C → C ∪ {∞} with two periods a and b,

f (z + na + mb) = f (z), z ∈ C, n,m ∈ Z,

where the ratio of a and b is not real, Im(a/b) �= 0, is called doubly periodic. If
all its periods are of the form m1a + m2b, where m1 and m2 are integers, then a
and b are called fundamental periods of f .
A doubly periodic meromorphic function is called elliptic.

It is customary to denote the fundamental periods of an elliptic function by 2ω1

and 2ω3 with Im(ω3/ω1) > 0. We also introduce ω2 = ω1 + ω3 and ω4 = 0. The
numbersω1, . . . , ω4 are called half-periods. The fundamental period parallelogram
" denotes the domain consisting of the line segments [0, 2ω1), [0, 2ω3) and the
interior of the parallelogram with vertices 0, 2ω1, 2ω2, and 2ω3.

The class of elliptic functions with fundamental periods 2ω1, 2ω3 is closed under
addition, subtraction, multiplication, division by nonzero divisors, and differenti-
ation. If f is an entire elliptic function, then f is constant. An elliptic function
f that is not constant must have at least one pole in ", and the total number of
poles in " is finite. The total number of poles (counting multiplicity) of an elliptic
function f in " is called the order of f . The sum of residues of an elliptic function

1 A Brief Introduction to Theta Functions, Holt, Rinehart, and Winston, New York, 1961, p. vii.

445
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f at all its poles in " equals zero. In particular, the order of a nonconstant elliptic
function f is at least 2. The total number of points in " where the nonconstant
elliptic function f assumes the value A ∈ C∞ (counting multiplicity), denoted by
n(A), is equal to the order of f . In particular, n(A) ≥ 2. Furthermore, s(A), the
sum of all the points in " where the nonconstant elliptic function f assumes the
value A, is congruent to s(∞), the sum of all the points in " where f has a pole,
that is, s(A) = s(∞) + 2m1ω1 + 2m3ω3, where m1 and m3 are certain integers.

We now introduce the fundamental Weierstrass ℘-function.

Definition H.2 The function ℘( · |ω1, ω3) defined by

℘(z|ω1, ω3) = 1

z2
+
∑
m,n∈Z

(m,n)�=(0,0)

(
1

(z − 2mω1 − 2nω3)2
− 1

(2mω1 + 2nω3)2

)
, (H.1)

z ∈ C, z �= 0 (mod "),

often simply denoted by ℘( · ) for brevity, is an even elliptic function of order 2
with fundamental periods 2ω1 and 2ω3.

Every elliptic function with fundamental periods 2ω1 and 2ω3 may be written
as R1(℘) + R2(℘)℘ ′, where R1 and R2 are rational functions of ℘( · |ω1, ω3).
We recall that the derivative ℘ ′ of ℘ is an odd elliptic function of order 3 with
fundamental periods 2ω1 and 2ω3.

The Laurent expansions of ℘ and ℘ ′ at z = 0 are given by

℘(z) = 1

z2
+

∞∑
k=2

ckz
2k−2,

℘ ′(z) = − 2

z3
+

∞∑
k=2

(2k − 2)ckz
2k−3,

where

c2 = 3
∑
m,n∈Z

(m,n) �=(0,0)

1

(2mω1 + 2nω3)4
, c3 = 5

∑
m,n∈Z

(m,n)�=(0,0)

1

(2mω1 + 2nω3)6
,

ck = 3

(2k + 1)(k − 3)

k−2∑
m=2

cmck−m, k ≥ 4. (H.2)

The numbers g2 = 20c2 and g3 = 28c3 are called invariants of℘. Since℘( · |ω1, ω3)
is also uniquely characterized by its invariants g2 and g3, one frequently uses the
notation ℘( · ; g2, g3).

The function ℘ satisfies the first-order differential equation

℘ ′(z)2 = 4℘(z)3 − g2℘(z) − g3 (H.3)
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and the second-order differential equation

℘ ′′(z) = 6℘(z)2 − g2/2.

The function ℘ ′ being of order 3 has three zeros in ". Since ℘ ′ is odd and elliptic,
it is obvious that these zeros are the half-periods ω1, ω2 = ω1 + ω3 and ω3. Denote
℘(ω j ) = e j , j = 1, 2, 3. Then (H.3) implies that 4e3

j − g2e j − g3 = 0 for j = 1,
2, 3. Therefore,

0 = e1 + e2 + e3,

g2 = −4(e1e2 + e1e3 + e2e3) = 2
(
e2

1 + e2
2 + e2

3

)
,

g3 = 4e1e2e3 = 4

3

(
e3

1 + e3
2 + e3

3

)
.

Weierstrass also introduced two other functions denoted by ζ and σ . The Weier-
strass ζ -function, ζ ( · |ω1, ω3), or simply ζ ( · ), is defined by

d

dz
ζ (z) = −℘(z), lim

z→0

(
ζ (z) − 1

z

)
= 0, z ∈ C, z �= 0 (mod ").

ζ is a meromorphic function with simple poles at 2mω1 + 2nω3 for m, n ∈ Z

having residues 1. It is not periodic but satisfies

ζ (z + 2ω j ) = ζ (z) + 2η j , j = 1, 2, 3, 4,

where η j = ζ (ω j ) for j = 1, 2, 3 and η4 = 0. The Laurent expansion of ζ at z = 0
is given by

ζ (z) = 1

z
−

∞∑
k=2

ck
2k − 1

z2k−1,

with the ck given in (H.2).
The Weierstrass σ -function, σ ( · |ω1, ω3), or simply σ ( · ), is defined by

σ ′(z)
σ (z)

= ζ (z), lim
z→0

σ (z)

z
= 1, z ∈ C.

σ is an entire function with simple zeros at the points 2mω1 + 2nω3 for m, n ∈ Z.
It satisfies

σ (z + 2ω j ) = −σ (z)e2η j (z+ω j ), j = 1, 2, 3.

Next we recall the following fundamental theorems.

TheoremH.3 Given an elliptic function f with fundamental periods 2ω1 and 2ω3,
let b1, . . . , br be the poles of f in ". Suppose the principal part of the Laurent
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expansion near bk is given by

βk∑
�=1

A�,k

(z − bk)�
, k = 1, . . . , r.

Then

f (z) = C +
r∑

k=1

βk∑
�=1

(−1)�−1 A�,k

(� − 1)!
ζ (�−1)(z − bk),

where C is a suitable constant and ζ is constructed from the fundamental pe-
riods 2ω1 and 2ω3. Conversely, every such function is an elliptic function if∑r

k=1 A1,k = 0.

Theorem H.4 Given an elliptic function f of order n with fundamental periods
2ω1 and 2ω3, let a1, . . . , an and b1, . . . , bn be the zeros and poles of f in " each
counted a number of times equal to its order. Then

f (z) = C
σ (z − a1) · · · σ (z − an)

σ (z − b1) · · · σ (z − bn−1)σ (z − b′
n)

,

where C is a suitable constant, σ is constructed from the fundamental periods 2ω1

and 2ω3, and where

b′
n − bn = (a1 + · · · + an) − (b1 + · · · + bn)

is a period of f . Conversely, every such function is an elliptic function.

Finally, we turn to elliptic functions of the second kind. A meromorphic function
ψ : C → C∞ for which there exist two complex constants ω1 and ω3 with nonreal
ratio and two complex constants ρ1 and ρ3 such that for i = 1, 3

ψ(z + 2ωi ) = ρiψ(z)

is called elliptic of the second kind. It is common to call 2ω1 and 2ω3 the quasi-
periods of ψ . Together with 2ω1 and 2ω3, 2m1ω1 + 2m3ω3 are also quasi-periods
of ψ if m1 and m3 are integers. If every quasi-period of ψ can be written as
an integer linear combination of 2ω1 and 2ω3, then these are called fundamental
quasi-periods.

TheoremH.5 A functionψ that is elliptic of the second kind and has fundamental
quasi-periods 2ω1 and 2ω3 can always be put in the form

ψ(z) = C exp(λz)
σ (z − a1) · · · σ (z − an)

σ (z − b1) · · · σ (z − bn)
(H.4)
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for suitable constants C, λ, a1, . . . , an, and b1, . . . , bn. Here σ is constructed from
the fundamental periods 2ω1 and 2ω3. Conversely, every function of the type (H.4)
is elliptic of the second kind.

Theorem H.6 Given numbers α1, . . . , αm and β1, . . . , βm such that βk �= β�

(mod ") for k �= �, the following identity holds

m∏
j=1

σ (z − α j )

σ (z − β j )
=

m∑
j=1

∏m
k=1 σ (β j − αk)∏m

�=1,��= j σ (β j − β�)

σ (z − β j + β − α)

σ (z − β j )σ (β − α)
,

where

α =
m∑
j=1

α j and β =
m∑
j=1

β j

and σ is constructed from the fundamental periods 2ω1 and 2ω3.

Notes

For standard monographs on elliptic functions refer, for instance, to Akhiezer
(1990), Burkhardt (1906), Chandrasekharan (1985), Forsyth (1965), Fricke (1913),
Halphen (1886; 1888; 1891), Hancock (1958), Hurwitz and Courant (1964), Jones
and Singerman (1987), Krause (1895; 1897), Markushevich (1985), McKean and
Moll (1997), Rauch and Lebowitz (1973), Siegel (1988a), and Whittaker and
Watson (1986). For a comprehensive summary of results, refer to Abramowitz and
Stegun (1972, Ch. 18), whose notation we follow in this text.

Theorem H.6, in a somewhat different form, can be found with some effort in
Krause (1895, pp. 292–296; 1897, pp. 259–264); a sketch of its proof has been
given in Gesztesy and Weikard (1998b, Theorem 2.5).



Appendix I

Herglotz Functions

Ingen trykfejl; hvert ord er vigtig.
Henrik Ibsen1

We briefly summarize a few basic facts on Herglotz functions relevant to Green’s
functions and the spectral theory of one-dimensional Schrödinger operators in
Chapter 1 (cf. also Appendix J).

Definition I.1 Let C± = {z ∈ C | Im(z) ≷ 0}. Any analytic map m : C+ → C+
extended to C− by m(z) = m(z) for z ∈ C+, is called a Herglotz function.2

With m a Herglotz function, one verifies that

m̂(z) = −1 + βm(z)

β + m(z)
, β ∈ R ∪ {∞},

and

m̂(z) = ln(m(z))

(ln(reiφ) = ln(r ) + iφ for r > 0 and 0 < φ < π ) are Herglotz functions as
well.

Herglotz functions admit particular representations (Borel transforms) in terms
of measures on R. Since this aspect is of fundamental importance in the context
of spectral theory for Schrödinger and Jacobi operators, we recall the following
classical results.

1 InEn folkefiende (1882), third act. (“No misprints; every word is important.”AnEnemy of the People.)
2 There appears to be considerable confusion in the literature since Nevanlinna, Pick, Nevanlinna–Pick

function, as well as R-function in addition to Herglotz function, are also in use. In part these dis-
crepancies can be traced back to the use of the upper half-plane C+ versus the open unit disk
D; in some cases the geographical location of the author in question determines the preferred
notation.

450
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Theorem I.2 Let m be a Herglotz function. Then,
(i) There exists a measure dω on R and a ξ ∈ L1

loc(R) real-valued such that

m(z) = a + bz +
∫

R

dω(λ)

(
1

λ − z
− λ

1 + λ2

)

= exp

(
c +

∫
R

dλ

(
1

λ − z
− λ

1 + λ2

)
ξ (λ)

)
, (I.1)

where
∫

R

dω(λ)

1 + λ2
< ∞, a = Re(m(i)), b ≥ 0

and

0 ≤ ξ ≤ 1 a.e., c = Re(ln(m(i))).

(ii)m (andhence ln(m)) havenontangential limits at almost everyλ ∈ R.Moreover,

ω((λ,µ]) = lim
δ↓0

lim
ε↓0

1

π

∫ µ+δ

λ+δ

dν Im(m(ν + iε)), λ, µ ∈ R, λ < µ,

ξ (λ) = lim
ε↓0

1

π
Im
(
ln
(
m(λ + iε)

))
for a.e. λ ∈ R.

(iii) Let n, p ∈ N and b = 0. Then
∫ 0

−∞
dλ (1 + λ2)−1|λ|p|ξ (λ)| +

∫ ∞

0
dλ (1 + λ2)−1|λ|n|ξ (λ)| < ∞

if and only if
∫ 0

−∞
dω(λ) (1 + λ2)−1|λ|p +

∫ ∞

0
dω(λ) (1 + λ2)−1|λ|n < ∞

and lim
z→i∞

m(z) = a −
∫

R

dω(λ) (1 + λ2)−1λ > 0.

(iv) Furthermore,

m(z) = 1 +
∫

R

dω(λ) (λ − z)−1,

∫
R

dω(λ) < ∞

if and only if

m(z) = exp

(∫
R

dλ (λ − z)−1ξ (λ)

)
, 0 ≤ ξ ≤ 1 a.e., ξ ∈ L1(R).

In this case ∫
R

dω(λ) =
∫

R

dλ ξ (λ).
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(v) Local singularities and zeros of m are necessarily located on the real axis and
are at most of first order in the sense that

ω({λ}) = lim
ε↓0

(ω(λ + ε) − ω(λ − ε)) = − lim
ε↓0

iεm(λ + iε) ≥ 0, λ ∈ R,

lim
ε↓0

iεm(λ + iε)−1 ≥ 0, λ ∈ R.

In particular, isolated poles of m are simple and located on the real axis, the
corresponding residues being negative.

Moreover, (I.1) implies

d

dz
ln(m(z)) =

∫
R

dλ (λ − z)−2ξ (λ), (I.2)

which is a useful fact in connection with trace formulas.
The next result is used in the KdV context in Lemmas 1.10, 1.11, 1.37, and 1.38.

Theorem I.3 Let {Em}m=0,...,2n ⊂ R with E0 < E1 < · · · < E2n, n ∈ N, define
( ⊂ R by

( =
n−1⋃
j=0

[E2 j , E2 j+1] ∪ [E2n,∞), (I.3)

and introduce R1/2
2n+1 as in (B.17)–(B.20) followed by an analytic continuation

to C \ (. Moreover let Fn and Hn+1 be two polynomials of degree n and n + 1,
respectively. Then

i Fn(z)

R2n+1(z)1/2

is a Herglotz function if and only if all zeros of Fn are real and there is precisely one
zero in each of the intervals [E2 j−1, E2 j ], j = 1, . . . , n. Moreover, if i Fn/R1/2

2n+1

is a Herglotz function, then it can be represented in the form

i Fn(z)

R2n+1(z)1/2
= 1

π

∫
(

dλ Fn(λ)

R2n+1(λ)1/2

1

λ − z
, z ∈ C \ (.

Similarly,

i Hn+1(z)

R2n+1(z)1/2

is a Herglotz function if and only if all zeros of Hn+1 are real and there is pre-
cisely one zero in each of the intervals (−∞, E0] and [E2 j−1, E2 j ], j = 1, . . . , n.
Moreover, if i Hn+1/R1/2

2n+1 is a Herglotz function, then it can be represented in the
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form

i Hn+1(z)

R2n+1(z)1/2
= Re

(
i Hn+1(i)

R2n+1(i)1/2

)

+ 1

π

∫
(

dλ Hn+1(λ)

R2n+1(λ)1/2

(
1

λ − z
− λ

1 + λ2

)
, z ∈ C \ (.

These results naturally extend to matrix-valued situations. Since we actually
have occasion to use matrix Herglotz functions in connection with Schrödinger
operators on R, we briefly summarize a few results in this context.

Definition I.4 Denote by Mn(C) the set of n × n matrices with entries in C. A map
M : C+ → Mn(C), extended to C− by M(z) = M(z)∗ for all z ∈ C+, is called an
n × n Herglotz matrix if it is analytic on C+ and1 Im(M(z)) ≥ 0 for all z ∈ C+.

Theorem I.5 Let M be an n × n Herglotz matrix. Then,

(i) There exists an n × n matrix measure d� on R and a self-adjoint matrix � ∈
L1

loc(R)n×n such that

M(z) = A + Bz +
∫

R

d�(λ)

(
1

λ − z
− λ

1 + λ2

)

= exp

(
C +

∫
R

dλ

(
1

λ − z
− λ

1 + λ2

)
�(λ)

)
, (I.4)

where
∫

R

d�(λ)

1 + λ2
< ∞, A = Re(M(i)), B ≥ 0,

and2

0 ≤ � ≤ In a.e., C = Re(ln(M(i))).

(ii) M (and ln(M)) have nontangential limits at almost every λ ∈ R. Moreover,

�((λ,µ]) = lim
δ↓0

lim
ε↓0

1

π

∫ µ+δ

λ+δ

dν Im(M(ν + iε)), λ, µ ∈ R, λ < µ, (I.5)

�(λ) = lim
ε↓0

1

π
Im
(
ln
(
M(λ + iε)

))
for a.e. λ ∈ R, (I.6)

�({λ}) = lim
ε↓0

(�(λ + ε) − �(λ − ε)) = − lim
ε↓0

iε M(λ + iε) ≥ 0, λ ∈ R,

(I.7)

1 We denote Im(M) = (M − M∗)/2i and Re(M) = (M + M∗)/2.
2 In denotes the identity matrix in Mn(C).
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and

lim
ε↓0

iε M(λ + iε)−1 ≥ 0, λ ∈ R.

If M is an n × n Herglotz matrix, then any diagonal element Mp,p �≡ 0 is a
(scalar) Herglotz function (in the sense of Definition I.1) for p = 1, . . . , n. More-
over, if A is a self-adjoint operator in a complex separable Hilbert space H, then
( f, (A − · )−1 f ) is a Herglotz function for each f ∈ H \ {0}. Finally, by a straight-
forward application of the first resolvent identity, diagonal Green’s functions of
scalar self-adjoint Schrödinger and Jacobi-type operators are all (scalar) Herglotz
functions.

Notes

The fundamental results on Herglotz functions and their representations as Borel
transforms, in parts, are due to Fatou, Herglotz, Luzin, Nevanlinna, Plessner, Pri-
valov, de la Vallée Poussin, Riesz, and others. A fairly extensive list of pertinent
references can be found in Gesztesy and Tsekanovskii (2000). The exponential
Herglotz representation (I.1) is due to Aronszajn and Donoghue (1957) (see also
Aronszajn and Donoghue (1964)). The corresponding matrix-valued case (I.4)
(and more generally, the infinite-dimensional case) can be found in Carey (1976),
Gesztesy et al. (1999), and Gesztesy and Tsekanovskii (2000). Details concerning
Theorem I.3 (and its matrix-valued generalizations) can be found in Gesztesy and
Sakhnovich (to appear). Applications of this circle of ideas to (inverse) spectral
theory of (matrix-valued) Schrödinger operators can be found, for instance, in
Belokolos et al. (to appear), Clark et al. (2000), Gesztesy (1995), Gesztesy and
Holden (1995; 1997), Gesztesy et al. (1993; 1995a,b), Gesztesy and Makarov
(2000), Gesztesy et al. (1996a; 1999), Gesztesy and Simon (1995; 1996a,b), and
Gesztesy and Tsekanovskii (2000).
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Spectral Measures and Weyl–Titchmarsh
m-Functions for Schrödinger Operators

Proof is the idol before whom the pure mathematician tortures himself.
Sir Arthur Eddington1

In this appendix we indicate the role of Herglotz functions (cf. Appendix I) in
connection with spectral theory of Schrödinger operators on the half-line [0,∞)
and on all of R. The material presented includes a discussion of (matrix-valued)
spectral functions and asymptotic spectral parameter expansions of half-line Weyl–
Titchmarsh m-functions for general (i.e., not necessarily Dirichlet) boundary con-
ditions. We also treat the special case of algebro-geometric potentials and explicitly
compute the corresponding spectral matrix.

We start with Schrödinger operators on the half-line [0,∞) under the following
basic assumptions.

Hypothesis J.1 Suppose

u ∈ L1([0, R]) for all R > 0, u real-valued,

and that the differential expression

L+ = − d2

dx2
+ u, x ≥ 0

is in the limit point case at +∞.

Associated with L+ we introduce the following self-adjoint operator H+,α in
L2([0,∞)). Define

H+,α f = L+ f, α ∈ [0, π ),

f ∈ dom(H+,α) = {g ∈ L2([0,∞)) | g, g′ ∈ AC([0, R]) for all R > 0, (J.1)

sin(α)g′(0+) + cos(α)g(0+) = 0, L+g ∈ L2([0,∞))}.

1 Quoted in N. J. Rose, Mathematical Maxims and Minims, Raleigh, NC, Rome Press, 1988, p. 130.
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H+,α is a real operator (i.e., g ∈ dom(H+,α) implies g ∈ dom(H+,α) and H+,αg =
H+,α g ) with uniform spectral multiplicity one.

Next we introduce the fundamental system φα(z, · ), θα(z, · ) for z ∈ C of solu-
tions of

(L+ − z)ψ(z) = 0, x ≥ 0 (J.2)

satisfying

φα(z, 0+) = −θ ′
α(z, 0+) = − sin(α), φ′

α(x, 0+) = θα(z, 0+) = cos(α) (J.3)

such that the Wronskian W (θα(z), φα(z)) = 1. Furthermore, let ψ+,α(z, · ) for z ∈
C \ R be the unique solution of (J.2) that satisfies

ψ+,α(z, · ) ∈ L2([0,∞)), sin(α)ψ ′
+,α(z, 0+) + cos(α)ψ+,α(z, 0+) = 1.

The function ψ+,α(z, · ) is of the form

ψ+,α(z, x) = θα(z, x) + m+,α(z)φα(z, x),

where m+,α denotes Weyl–Titchmarsh’s m-function, which is well-known to be a
Herglotz function (cf. also the comment following (J.5)). To avoid repetitions, we
list properties of m+,α a bit later (together with those of m−,α). Here we just note
that the Herglotz property of m+,α together with the asymptotic behavior (J.12)
and (J.13) yields the existence of a measure dω+,α on R, the spectral measure of
H+,α , such that

m+,α(z) = Re(m+,α(i)) +
∫

R

dω+,α(λ)

(
1

λ − z
− λ

1 + λ2

)
, α ∈ [0, π )

= cot(α) +
∫

R

dω+,α(λ) (λ − z)−1, α ∈ (0, π )

with∫
R

dω+,α(λ)

1 + |λ| < ∞, α ∈ (0, π ),
∫

R

dω+,0(λ)

1 + |λ| = ∞,

∫
R

dω+,0(λ)

1 + λ2
< ∞.

The Green’s function G+,α(z, x, x ′) of H+,α finally reads

((H+,α − z)−1 f )(x) =
∫ ∞

0
dx ′ G+,α(z, x, x ′) f (x ′),

z ∈ C \ spec(H+,α), f ∈ L2([0,∞)),

where

G+,α(z, x, x ′) =
{
φα(z, x)ψ+,α(z, x ′) for 0 ≤ x ≤ x ′,

φα(z, x ′)ψ+,α(z, x) for 0 ≤ x ′ ≤ x,

=
∫

R

dω+,α(λ) (λ − z)−1φα(λ, x)φα(λ, x ′).
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In particular,

G+,α(z, 0, 0) = − sin(α)
(
cos(α) − m+,α(z) sin(α)

)
, α ∈ [0, π ) (J.4)

= sin2(α)
∫

R

dω+,α(λ) (λ − z)−1, α ∈ (0, π )

and for each x ≥ 0, one concludes that

G+,α( · , x, x) is Herglotz (J.5)

in accordance with the paragraph following (I.7). Together with (J.4) this yields a
proof that m+,α is Herglotz too.

Next, we recall a few facts in connection with Schrödinger operators on R. We
use the following basic assumptions.

Hypothesis J.2 Suppose

u ∈ L1
loc(R), u real-valued,

and that the differential expression

L = − d2

dx2
+ u, x ∈ R

is in the limit point case at ±∞.

The self-adjoint operator H in L2(R) associated with L is then introduced by

H f = L f,

f ∈ dom(H ) = {g ∈ L2(R) | g, g′ ∈ ACloc(R), Lg ∈ L2(R)}.
As in the half-line case (J.1), H is a real operator. Moreover, the point spectrum
specp(H ) of H is simple.

Next we define φα(z, · ) and θα(z, · ) as in (J.2) and (J.3) (replacing L+ by L)
and introduce the uniquely determined solutions ψ±,α(z, · ) of

(L − z)ψ(z) = 0, x ∈ R

satisfying

ψ±,α(z, · ) ∈ L2([R,±∞)), sin(α)ψ ′
±,α(z, 0) + cos(α)ψ±,α(z, 0) = 1

for all R ∈ R. One infers

ψ±,α(z, x) = θα(z, x) + m±,α(z)φα(z, x)

in terms of the half-line Weyl–Titchmarshm-functionsm±,α . With our conventions

± m±,α are Herglotz, ±Im(m±,α(z)) > 0, ±z ∈ C+, (J.6)

m±,α(z) = m±,α(z), z ∈ C \ R, (J.7)

W (ψ+,α(z), ψ−,α(z)) = m−,α(z) − m+,α(z). (J.8)
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Moreover, in accordance with Theorem I.2, we recall the following facts:

± lim
ε↓0

iεm±,α, (λ + iε) =



0 for φα(λ, · ) /∈ L2((0,±∞)),

−‖φα(λ, · )‖−2
2 for φα(λ, · ) ∈ L2((0,±∞)),

λ ∈ R, (J.9)

m±,α1 (z) = − sin(α1 − α2) + cos(α1 − α2)m±,α2 (z)

cos(α1 − α2) + sin(α1 − α2)m±,α2 (z)
, α1, α2 ∈ [0, π ), (J.10)

m±,α(z) = Re(m±,α(±i)) ±
∫

R

dω±,α(λ)

(
1

λ − z
− λ

1 + λ2

)
, α ∈ [0, π )

= cot(α) ±
∫

R

dω±,α(λ) (λ − z)−1, α ∈ (0, π ), (J.11)

m±,α(z) =
z→i∞

cot(α) ± i

sin2(α)
z−1/2 − cos(α)

sin3(α)
z−1 + o(z−1), α ∈ (0, π ),

(J.12)

m±,0(z) =
z→i∞

±i z1/2 + o(1) (J.13)

with
∫

R

dω±,α(λ)

1 + |λ| < ∞, α ∈ (0, π ),
∫

R

dω±,0(λ)

1 + |λ| = ∞,

∫
R

dω±,0(λ)

1 + λ2
< ∞,

±
∫ ±∞

0
dx ψ±,α(z1, x)ψ±,α(z2, x) = ±m±,α(z1) − m±,α(z2)

z1 − z2

=
∫

R

(λ − z1)−1(λ − z2)−1 dω±,α(λ).

The Green’s function G(z, x, x ′) of H is then characterized by

((H − z)−1 f )(x) =
∫

R

dx ′ G(z, x, x ′) f (x ′), z ∈ C \ spec(H ), f ∈ L2(R),

G(z, x, x ′) = 1

m−,α(z) − m+,α(z)



ψ−,α(z, x)ψ+,α(z, x ′) for x ≤ x ′,

ψ−,α(z, x ′)ψ+,α(z, x) for x ′ ≤ x .
(J.14)

Again (cf. the paragraph following (I.7)), for each x ∈ R, the diagonal Green’s
function g(z, x) of H has the Herglotz property, that is,

g( · , x) = G( · , x, x) is Herglotz. (J.15)

We emphasize that our choice of reference point x0 = 0 in (J.3) was purely a
matter of convenience. In Section 1.5 it turns out to be advantageous to introduce
a (variable) reference point x = x0 instead. Without going into further details at
this point, we agree to add an additional variable x0 in this case and hence use the
notation θα(z, x, x0), φα(z, x, x0), ψ±,α(z, x, x0), m±,α(z, x0), dω±,α(λ, x0), etc.
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The Weyl–Titchmarsh M-matrix for H is then defined by

Mα(z, x0) = (
Mα,p,q (z, x0)

)
p,q=1,2

= (
m−,α(z, x0) − m+,α(z, x0)

)−1
(J.16)

×
(

m−α(z, x0)m+,α(z, x0) 1
2 (m−,α(z, x0) + m+,α(z, x0))

1
2 (m−,α(z, x0) + m+,α(z, x0)) 1

)
.

By inspection,

det(Mα(z, x0)) = −1/4, z ∈ C \ R,

Im(Mα(z, x0)) > 0, z ∈ C+,

and hence

Mα,p,p( · , x0) are Herglotz for p = 1, 2.

According to Theorem I.5, (J.12), and (J.13), there exists a matrix-valued mea-
sure d�α( · , x0) on R, the matrix-valued spectral measure of H , such that

Mα(z, x0) = Re(Mα(i, x0)) +
∫

R

d�α(λ, x0)

(
1

(λ− z)
− λ

1 + λ2

)
, α ∈ [0, π ),

(J.17)

Mα(z, x0) =
z→i∞

i

2

(
cos2(α) cos(α) sin(α)

cos(α) sin(α) sin2(α)

)
z1/2 + o(1), α(0, π ),

M0(z, x0) =
z→i∞

i

2

(
z1/2 + o(1) o(z−1/2)

o(z−1/2) z−1/2 + o(z−1)

)

with
∫

R

d ‖�α(λ, x0)‖
1 + |λ| = ∞, α ∈ (0, π ),

∫
R

d ‖�0,1,1(λ, x0)‖
1 + |λ| = ∞,

∫
R

d ‖�0,1,1(λ, x0)‖
1 + λ2

< ∞,

∫
R

d ‖�0,p,q (λ, x0)‖
1 + |λ| < ∞, p, q ∈ {1, 2}, (p, q) �= (1, 1).

With the introduction of

∂1G(z, x0, x
′) = ∂x1G(z, x1, x

′)
∣∣
x1=x0

,

∂2G(z, x, x0) = ∂x2G(z, x, x2)
∣∣
x2=x0

,

∂1∂2G(z, x0, x0) = ∂x1∂x2G(z, x1, x2)
∣∣
x1=x0,x2=x0

, etc.,
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the expression (J.16) for Mα(z, x0) can be rewritten as

Mα,1,1(z, x0) = (− sin(α) + cos(α)∂1
)(− sin(α) + cos(α)∂2

)
G(z, x0, x0),

Mα,1,2(z, x0) = Mα,2,1(z, x0)

= (1/2)
(
(cos(α) + sin(α)∂1)(− sin(α) + cos(α)∂2)

+ (− sin(α) + cos(α)∂1)(cos(α) + sin(α)∂2)
)
G(z, x0 ± 0, x0 ∓ 0),

Mα,2,2(z, x0) = (
cos(α) + sin(α)∂1

)(
cos(α) + sin(α)∂2

)
G(z, x0, x0). (J.18)

Closely associated with H is the family of operators Hβ
x0 defined in L2(R) by

Hβ
x0
f = L f, β ∈ R ∪ {∞}, x0 ∈ R,

f ∈ dom(Hβ
x0

) = {g ∈ L2(R) | g, g′ ∈ AC([x0,±R]) for all R > 0,

lim
ε↓0

(
g′(x0 ± ε) + βg(x0 ± ε)

) = 0, Lg ∈ L2(R)}.

Here, in obvious notation, β = ∞ denotes the Dirichlet Schrödinger operator
HD
x0

= H∞
x0

andβ = 0 the corresponding Neumann Schrödinger operatorHN
x0

= H 0
x0

.
Moreover, Hβ

x0 decomposes into a direct sum of half-line operators

Hβ
x0

= Hβ
−,x0

⊕ Hβ
+,x0

, L2(R) = L2((−∞, x0]) ⊕ L2([x0,∞)). (J.19)

The resolvent of Hβ
x0 reads

(
(Hβ

x0
− z)−1 f

)
(x) =

∫
R

dx ′ Gβ
x0

(z, x, x ′) f (x ′), (J.20)

z ∈ C \ spec(Hβ
x0

), f ∈ L2(R),

where

Gβ
x0

(z, x, x ′) = G(z, x, x ′) − (β + ∂2)G(z, x, x0)(β + ∂1)G(z, x0, x ′)
(β + ∂2)(β + ∂1)G(z, x0, x0)

(J.21)

β ∈ R, z ∈ C \ ( spec(Hβ
x0

) ∪ spec(H )
)
,

G∞
x0

(z, x, x ′) = G(z, x, x ′) − G(z, x, x0)G(z, x0, x
′)G(z, x0, x0)−1, (J.22)

z ∈ C \ ( spec(H∞
x0

) ∪ spec(H )
)
.

By (J.15) and (J.18), both denominators on the right-hand side of (J.21) and (J.22)
are Herglotz functions; in particular,

$β(z, x0) = (β + ∂1)(β + ∂2)G(z, x0, x0) = Mα,2,2(z, x0)/ sin2(α) (J.23)

= (m−,α(z, x0) − m+,α(z, x0))−1/ sin2(α), β = cot(α) ∈ R,

$∞(z, x0) = G(z, x0, x0) = M0,2,2(z, x0) = (m−,0(z, x0) − m+,0(z, x0))−1.

(J.24)

Although the asymptotic expansions (J.12) and (J.13) are optimal under the weak
Hypothesis J.2 on u, one can obtain asymptotic expansions to all orders in z−1/2
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if one assumes u ∈ C∞(R) in addition to Hypothesis J.2. In fact, the Riccati-type
equations for m±,α(z, x) and m±,0(z, x), that is,

(1 + β2)m±,α,x (z, x) + 2β(1 + u(x) − z)m±,α(z, x)

+ (β2 + z − u(x))m±,α(z, x)2 = β2(u(x) − z) − 1, α ∈ (0, π ), (J.25)

m±,0,x (z, x) + m±,0(z, x)2 = u(x) − z, (J.26)

imply the following recursion relations for the coefficientsm±,α, j (x) in the asymp-
totic expansion for m±,α(z, x),

m±,α(z, x) =
z→i∞

∞∑
j=0

m±,α, j (x)
(
z−1/2

) j
, α ∈ (0, π ). (J.27)

The coefficients are given by

m±,α,0 = β, m±,α,1 = ±i(1 + β2), m±,α,2 = −β(1 + β2),

m±,α, j+1 = ±
(

− 1

2i
m±,α, j,x + im±,α, j + u − β2

2i(1 + β2)

j−1∑
�=1

m±,α,�m±,α, j−�

− 1

2i(1 + β2)

j−1∑
�=1

m±,α,�+1m±,α, j+1−�

)
, (J.28)

j= 2, 3, . . . , α ∈ (0, π ).

When α = 0 one finds similarly

m±,0(z, x) =
z→i∞

∞∑
j=−1

m±,0, j (x)
(
z−1/2

) j
(J.29)

with coefficients given by

m±,0,−1 = ±i, m±,0,0 = 0,

m±,0,1 = ∓ i

2
u, m±,0,2 = 1

4
ux , (J.30)

m±,0, j+1 = ± i

2

(
m±,0, j,x +

j−1∑
�=1

m±,0,�m±,0, j−�

)
, j = 2, 3, . . .

One verifies

m−,0, j = (−1) jm+,0, j , j ∈ {−1} ∪ N0. (J.31)

Expansions (J.27) and (J.29) are uniform with respect to x as long as x varies in
compact intervals. Moreover, expansions (J.12)–(J.13), (J.27), and (J.29) are valid
as |z| → ∞ outside any cone with apex inf spec(Hβ

x ) and arbitrarily small opening
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angle ε > 0 along the real axis and are uniform with respect to arg(z) within that
cone.

In the special algebro-geometric case studied in Section 1.3 the preceding
formalism simplifies considerably. In particular, the main objects such as spec-
tral and Weyl–Titchmarsh m-functions, Green’s functions, etc., can be expressed
directly in terms of quantities related to our recursion formalism such as the
polynomials Fn(z, x) and K β

n+1(z, x) introduced in (1.11) and (1.55). Below we
record the most important of these formulas. We recall some of our conven-
tions in the self-adjoint algebro-geometric case, such as {Em}m=0,...,2n ⊂ R with
E0 < E1 < · · · < E2n , n ∈ N, and( = ⋃n−1

j=0[E2 j , E2 j+1] ∪ [E2n,∞), as in (I.3).

Moreover, we introduce R1/2
2n+1 as in (B.17)–(B.20) followed by an analytic con-

tinuation to C \ (.
In the following, let P = (z, y) = (z, σ R2n+1(z)1/2) with σ ∈ {−1,+1}.

Restricting ψ(P, x, x0) and φ(P, x) to the upper and lower sheets �± (cf. (B.25)
and (B.26)) and denoting the corresponding branches byψ±(z, x, x0) andφ±(z, x),
equations (1.38), (1.39), and (1.41), and (B.17)–(B.19) yield for z ∈ C \ spec(H )

m±,0(z, x0) = ψ±,x (z, x, x0)
∣∣
x=x0

= φ±(z, x0)

= ±i R2n+1(z)1/2 + 1
2 Fn,x (z, x0)

Fn(z, x0)
(J.32)

= Hn+1(z, x0)

∓i R2n+1(z)1/2 + 1
2 Fn,x (z, x0)

. (J.33)

Abbreviating cot(α) = β, equations (J.10) and (J.32) imply

m±,α(z, x0)

= ±(1 +β2)i R2n+1(z)1/2 +β(Hn+1(z, x0) − Fn(z, x0)) − (1/2)(1 −β2)Fn,x (z, x0)

K β

n+1(z, x,0 )

= Fn(z, x0) −βFn,x (z, x0) +β2Hn+1(z, x0)

∓(1 +β2)i R2n+1(z)1/2 +β(Hn+1(z, x0) − Fn(z, x0)) − (1/2)(1 −β2)Fn,x (z, x0)

(J.34)

with Fn(z, x0), Hn+1(z, x0), and K β

n+1(z, x,0 ) defined in (1.11), (1.33), and (1.55).
By inspection, m+,α(z, x0) is the analytic continuation of m−,α(z, x0) through the
open interior of (, and vice versa, a fact typical for reflectionless potentials.
Combining (J.16) and (J.32) then yields

M0(z, x0) = i

2R2n+1(z)1/2

(
Hn+1(z, x0) Fn,x (z, x0)/2

Fn,x (z, x0)/2 Fn(z, x0)

)
. (J.35)
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In the case where α ∈ (0, π ), we find, using (J.16) and (J.34), that

Mα,1,1(z, x0)

= i
(1 +β2)2R2n+1(z) + ((1/2)(β2 − 1)Fn,x (z, x0) +β(Hn+1(z, x0) − Fn(z, x0))

)2

2(1 + β2)K β

n+1(z, x0)R2n+1(z)1/2
,

Mα,1,2(z, x0) = Mα,2,1(z, x0) = i
(β2 − 1)Fn,x (z, x0) + 2β

(
Hn+1(z, x0) − Fn(z, x0)

)
4(1 + β2)R2n+1(z)1/2

,

Mα,2,2(z, x0) = i
K β

n+1(z, x0)

2(1 + β2)R2n+1(z)1/2
. (J.36)

Finally, equations (I.5) and (J.17) imply

d�α,p,q

dλ
(λ, x0)

=
{
−(i/π )Mα,p,q (λ + i0, x0), λ ∈ spec(H )o,

0, λ ∈ R \ spec(H ),
p, q = 1, 2, (J.37)

where

spec(H ) = specess(H ) = specac(H ) =
n−1⋃
j=0

[E2 j , E2 j+1] ∪ [E2n,∞), (J.38)

specsc(H ) = specp(H ) = ∅, (J.39)

spec
(
Hβ
x0

) = spec(H ) ∪ {λβ

� (x0)
}
�=0,...,n, β ∈ R, (J.40)

spec
(
H∞
x0

) = spec(H ) ∪ {µ j (x0)} j=1,...,n, µ j (x0) = λ∞
j (x0), j = 1, . . . , n,

(J.41)

specess

(
Hβ
x0

) = specac

(
Hβ
x0

) = spec(H ), β ∈ R ∪ {∞}, (J.42)

specsc

(
Hβ
x0

) = ∅, β ∈ R ∪ {∞}, (J.43)

and

λ
β

0 (x0) ≤ E0, β ∈ R, λ
β

� (x0) ∈ [E2�−1, E2�], � = 1, . . . , n, β ∈ R ∪ {∞}
(J.44)

in the algebro-geometric case.
Introducing

g(P, x) = i Fn(z, x)

2y
, P = (z, y) (J.45)

and its branches g±(z, x) by restricting g(P, x) to the upper and lower sheet �±,
a comparison of (J.14) and (J.32) then yields for the diagonal Green’s function of
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H (cf. (D.20)),

g(z, x) = g+(z, x) = i Fn(z, x)

2R2n+1(z)1/2
= i

∏n
j=1(z − µ j (x))

2R2n+1(z)1/2
. (J.46)

Equation (J.46), in particular, identifies the n zeros µ j (x) of Fn(z, x) as the Dirich-
let eigenvalues of H , that is, the eigenvalues of HD

x = H∞
x . Similarly, a compar-

ison of (J.33) and (1.34) shows that the n + 1 zeros ν�(x) of Hn+1(z, x) are the
corresponding Neumann eigenvalues of H , that is, the eigenvalues of HN

x = H 0
x .

Introducing

$β(P, x) = (β + ∂x1 )(β + ∂x2 )G(P, x1, x2)
∣∣
x1=x,x2=x = i K β

n+1(z, x)

2y(P)
, β ∈ R

(J.47)

and its branches $
β
±(z, x) = (β + ∂x1 )(β + ∂x2 )G±(z, x1, x2)|x1=x,x2=x , restricting

P to the upper and lower sheets �±, one infers

$β(z, x) = $
β
+(z, x) = i K β

n+1(z, x)

2R2n+1(z)1/2
= i

∏n
�=0(z − λ

β

� (x))

2R2n+1(z)1/2
. (J.48)

In analogy to (J.46) in the context of Dirichlet eigenvalues, (J.48) identifies the
n + 1 zeros λ

β

� (x) of K β

n+1(z, x) as the eigenvalues of Hβ
x . In the Dirichlet case

one analogously considers $∞(P, x) = g(P, x).

Notes

For general Weyl–Titchmarsh theory for Schrödinger and Sturm–Liouville opera-
tors, refer, for instance, to Carmona and Lacroix (1990, Chs. III, VII), Coddington
and Levinson (1985, Ch. 9), Dunford and Schwartz (1963, Ch. XIII), Eastham and
Kalf (1982, Ch. 2), Levitan (1987, Chs. 2, 6–8), Levitan and Sargsjan (1975, Chs.
1, 2; 1991, Chs. 1, 2, 6), Pastur and Figotin (1992, Ch. V), Pearson (1988, Chs. 6,
7), and Titchmarsh (1962, Chs. II, III).

The special algebro-geometric case in (J.32)–(J.44) can be found in Levitan
(1987) and Levitan and Savin (1988) (cf. also Gesztesy et al. (1996a)). Equations
(J.45)–(J.48) are further studied in Gesztesy et al. (1995b; 1996a).

The asymptotic expansion (J.29) is derived in detail in Danielyan and Levitan
(1991) (see also Atkinson (1981), Everitt (1972), and Clark and Gesztesy (2001)).
Although the recursion relation (J.30) is well-known (see, e.g., Gel’fand and Dikii
(1975)), the one in (J.28) appears to be new. It can, however, be derived quickly
from (J.25), which in turn follows from the familiar Riccati-type equation (J.26)
and (J.10) by choosing α1 = 0 and α2 = α.
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More on reflectionless potentials can be found, for instance, in Belokolos et al.
(to appear), Clark and Gesztesy (2001), Clark et al. (2000), Craig (1989a,b),
Gesztesy and Sakhnovich (to appear), Gesztesy and Simon (1996b), Gesztesy
and Tsekanovskii (2000), Kotani (1984; 1985; 1986; 1987a,b; 1988), Kotani and
Krishna (1988), Kotani and Simon (1988), Marchenko (1991), and Sodin and
Yuditskiı̆ (1995a,b; 1996).



List of Symbols

There is nothing that can be said by mathematical symbols and
relations which cannot also be said by words. The converse,
however, is false. Much that can be and is said by words cannot
successfully be put into equations because it is nonsense.

Clifford A. Truesdell1

N, the natural numbers
N0 = N ∪ {0}, the nonnegative integers
Z, the integers
R, the real numbers
T, the one-dimensional torus (homeomorphic

to the circle S1)
C, the complex numbers
C∞ = C ∪ {∞} ∼= CP

1, the Riemann sphere
CP

2 = (C3 \ {0})/(C \ {0}), the projective plane, p. 328
C± = {z ∈ C | Im(z) ≷ 0}, the open upper (lower) complex half-plane
)x* = sup{n ∈ Z|n ≤ x}, the largest integer not exceeding x
p ∨ q, the maximum of p and q
p ∧ q, the minimum of p and q
Re(z), Im(z), the real and imaginary part of z ∈ C

arg(z), the argument of z ∈ C

z, the complex conjugate of z
Im , the identity matrix in C

m , m ≥ 2
a = (a1, . . . , am), a row vector in C

m , a# a column vector
in C

m

M#, the transpose of the matrix M
M∗, the adjoint (conjugate transpose) of the

matrix M
diag(M) = (M1,1, . . . ,Mm,m), a row vector built of the diagonal terms of

an m × m matrix M
1 Six Lectures on Modern Natural Philosophy, Springer, New York, 1966, p. 35.
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List of Symbols 467

dom(T ), the domain of an operator T
ker(T ), the kernel (null space) of a linear opera-

tor T
ran(T ), the range of a linear operator T
spec(T ), the spectrum of a closed linear operator T
specp(T ), the point spectrum (i.e., the set of eigen-

values)
specac(T ), the absolutely continuous spectrum
specsc(T ), the singularly continuous spectrum
specess(T ), the essential spectrum of T
tr(A), the trace of a trace-class operator A
[A, B] = AB − BA, the commutator of A and B
G(z, x, x ′), the Schrödinger operator Green’s function,

p. 439
g(z, x) = G(z, x, x), the diagonal Green’s function, p. 439
L p(I ), the set of all measurable functions f such

that | f |p is Lebesgue integrable on I
L p

loc(R), the set of all measurable functions f such
that | f |p is Lebesgue integrable on all
compact intervals

C∞(�), the set of all infinitely differentiable func-
tions on an open subset � ⊆ R

C∞(�,K), the set of all infinitely differentiable func-
tions on � taking values in K

AC(loc)(I ), the set of (locally) absolutely continuous
functions on the interval I ⊂ R

Hk,p(I ), k ∈ N, p ≥ 1, the Sobolev space of order (k, p) on the
interval I ⊂ R

Ao, the open interior of A ⊂ R

g = O( f ) as x → x0, (“big-Oh”) if g/ f is bounded in a neigh-
borhood of x0

g = o( f ) as x → x0, (“little-Oh”) if g(x)/ f (x) → 0 as x → x0

∂w = ∂
∂w

, the (partial) derivative with respect to w

∂mw = ∂m

∂wm ,m ∈ N, ∂2
w1w2

= ∂2

∂w1 ∂w2
,

W ( f, g) = f g′ − f ′g, the Wronskian of f and g
Symn(X ) = {{x1, . . . , xn} | x j ∈ X, the nth symmetric product of X

j = 1, . . . , n
}
,

�k(µ), elementary symmetric functions, #( j)
k (µ),

p. 385
Kg , a compact Riemann surface of genus g,

p. 329
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B(Kn), the set of branch points of Kn

in the hyperelliptic case, p. 355, 366
∂K̂g = a1b1a

−1
1 b−1

1 . . . agb1a−1
g b−1

g , the fundamental polygon of Kg , p. 334
K̂g , the simply connected interior of the funda-

mental polygon ∂K̂g , p. 344
π̃z, π̃y , projections, p. 327
[x2 : x1 : x0], homogeneous coordinates, p. 328
{a j , b j }gj=1, a homology basis on Kg , p. 332
ω, Abelian differential of the first kind, p. 334
ω(2), �(2), Abelian differentials of the second kind,

p. 335
ω(3), �(3), Abelian differentials of the third kind,

p. 335
resP=Q f (P), the residue of a meromorphic function f

on a Riemann surface Kg at Q ∈ Kg

M(Kg), the set of meromorphic functions (0-forms)
on Kg , p. 336

M1(Kg), the set of meromorphic 1-forms on Kg ,
p. 336

Lg , the period lattice, p. 338
J (Kg) = C

g/Lg , the Jacobi variety of Kg , p. 338
D, a divisor, p. 336
Div(K), the set of divisors, p. 336
deg(D), the degree of a divisor D, p. 337
( f ), the divisor of f ∈ M(Kg) \ {0}, p. 337
(ω), the divisor of ω ∈ M1(Kg) \ {0}, p. 337
D ∼ E , the equivalence of divisorsD and E , p. 337
[D], the divisor class of the divisor D, p. 337
i(D) = dim{ω ∈ M1(K) | (ω) ≥ D}, the index of specialty of the divisor D,

p. 338
r (D) = dim{ f ∈ M(K) | ( f ) ≥ D}, p. 338
DQ , a nonnegative divisor of degree m ∈ N,

Q = {Q1, . . . , Qm} ∈ Symm(Kg), p. 339
AQ, αQ, ÂQ, α̂Q , Abel maps, p. 338, 339
θ , Riemann’s theta function, p. 339
�Q , the vector of Riemann constants, p. 340
∗ : Kn → Kn , the hyperelliptic involution (sheet

exchange map), p. 345, 354, 365
�±, the upper and lower sheets of Kn in the

hyperelliptic case, p. 355, 366
℘, ζ, σ , the Weierstrass ℘-, ζ -, and σ -function,

p. 428, 429, 429
ψ(P, x, x0), ψ(P, x, x0, tr , tr,0), Baker–Akhiezer functions, p. 31, 66
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Akhiezer, N. I. and Tomčuk, Yu. Ya. 1961. On the theory of orthogonal polynomials
over several intervals. Soviet Math. Dokl., 2, 687–690.

Alber, S. J. 1993. Complex deformation of integrable Hamiltonian systems over general-
ized Jacobi varieties. Pages 6–20 of: Fokas, A. S., Kaup, D. J., Newell, A. C., and
Zakharov, V. E. (eds.), Nonlinear Processes in Physics. Springer Series in Nonlinear
Dynamics. Berlin: Springer.

Alber, M. S. 2000. N -component integrable systems and geometric asymptotics. Pages
213–228 of: Braden, H. W. and Krichever, I. M. (eds.), Integrability: The Seiberg–
Witten and Whitham Equations. Singapore: Gordon and Breach Science Publishers.

Alber, M. S., Camassa, R., Fedorov, Yu. N., Holm, D. D., and Marsden, J. E. 1999.
On billiard solutions of nonlinear PDEs. Phys. Lett. A, 264, 171–178.

Alber, M. S., Camassa, R., Fedorov, Yu. N., Holm, D. D., and Marsden, J. E. 2001.
The complex geometry of weak piecewise smooth solutions of integrable nonlinear
PDE’s of shallow water and Dym type. Comm. Math. Phys., 221, 197–227.

Alber, M. S., Camassa, R., and Gekhtman, M. 2000a. Billiard weak solutions of non-
linear PDE’s and Toda flows. Pages 1–11 of: Levi, D. and Ragnisco, O. (eds.), SIDE
III–Symmetries and Integrability of Difference Equations. CRM Proceedings and Lec-
ture Notes, vol. 25. Providence, RI: Amer. Math. Soc.

Alber, M. S., Camassa, R., Holm, D. D., and Marsden, J. E. 1994. The geometry of
peaked solitons and billiard solutions of a class of integrable PDE’s. Lett. Math. Phys.,
32, 137–151.

Alber, M. S., Camassa, R., Holm, D. D., and Marsden, J. E. 1995. On the link between
umbilic geodesics and soliton solutions of nonlinear PDE’s. Proc. Roy. Soc. London
Ser. A, 450, 677–692.

Alber, M. S. and Fedorov, Yu. N. 2000. Wave solutions of evolution equations and
Hamiltonian flows on nonlinear subvarieties of generalized Jacobians. J. Phys. A, 33,
8409–8425.

Alber, M. S. and Fedorov, Yu. N. 2001. Algebraic geometrical solutions for certain
evolution equations and Hamiltonian flows on nonlinear subvarieties of generalized
Jacobians. Inverse Problems, 17, 1017–1042.

Alber, M. S., Luther, G. G., and Marsden, J. E. 1997. Complex billiard Hamiltonian
systems and nonlinear waves. Pages 1–16 of: Fokas, A. S. and Gelfand, I. M.
(eds.), Algebraic Aspects of Integrable Systems. In Memory of Irene Dorfman. Boston:
Birkhäuser.
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zone” d’équations intégrables. C. R. Acad. Sci. Paris Sér. I Math., 301, 777–780.

Al’ber, S. I. and Al’ber,M. S. 1987a. Hamiltonian formalism for finite-zone solutions
of non-linear integrable equations. Pages 447–462 of: Mebkhout, M. and Sénéor,
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Drach, J. 1919b. Sur l’intégration par quadratures de l’équation d2y/dx2 = [φ(x) + h]y.

C. R. Acad. Sci. Paris, 168, 337–340.
Drazin, P. G. and Johnson, R. S. 1989. Solitons: An Introduction. Cambridge, U.K.:

Cambridge University Press.
Drin’feld, V. G. and Sokolov, V. V. 1985. Lie algebra and equations of Korteweg–de

Vries type. J. Soviet Math., 30, 1975–2036.
Dubrovin, B. A. 1975a. Inverse problem for periodic finite-zoned potentials in the theory

of scattering. Functional Anal. Appl., 9, 61–62.
Dubrovin, B. A. 1975b. Periodic problems for the Korteweg–de Vries equation in the class

of finite band potentials. Functional Anal. Appl., 9, 215–223.
Dubrovin, B. A. 1977. Completely integrable Hamiltonian systems associated with matrix

operators and Abelian varieties. Functional Anal. Appl., 11, 265–277.
Dubrovin, B. A. 1981. Theta functions and non-linear equations. Russian Math. Surveys,

36 (2), 11–92.
Dubrovin, B. A. 1982a. Analytic properties of spectral data for nonselfadjoint linear oper-

ators connected with real periodic solutions of the sine-Gordon equation. Soviet Math.
Dokl., 26, 127–131.

Dubrovin, B. A. 1982b. Multidimensional theta functions and their application to the inte-
gration of nonlinear equations. Pages 83–150 of: Novikov, S. P. (ed.), Mathematical
Physics Reviews. Soviet Scientific Reviews, Section C, vol. 3. Chur: Harwood.

Dubrovin, B. A. 1983. Matrix finite-zone operators. Revs. Sci. Tech., 23, 20–50.



478 Bibliography

Dubrovin, B. A., Krichever, I. M., and Novikov, S. P. 1990. Integrable systems. I. Pages
173–280 of: Arnold, V. I. and Novikov, S. P. (eds.), Dynamical Systems IV. Berlin:
Springer.

Dubrovin, B. A., Matveev, V. B., and Novikov, S. P. 1976. Non-linear equations of the
Korteweg–de Vries type, finite-zone linear operators and Abelian varieties. Russian
Math. Surveys, 31 (1), 59–146. Reprinted in Novikov et al. (1981), pp. 53–140.

Dubrovin, B. A. and Natanzon, S. M. 1982. Real two-zone solutions of the sine-Gordon
equations. Functional Anal. Appl., 16, 21–33.

Dubrovin, B. A. and Novikov, S. P. 1974. A periodicity problem for the Korteweg–de
Vries and Sturm–Liouville equations. Their connection with algebraic geometry.Dokl.
Akad. Nauk SSSR, 15, 1597–1601.

Dubrovin, B. A. and Novikov, S. P. 1975a. Algebro-geometric Poisson brackets for real
finite-zone solutions of the sine-Gordon equations and the nonlinear Schrödinger equa-
tion. Soviet Math. Dokl., 26, 760–765.

Dubrovin, B. A. and Novikov, S. P. 1975b. Periodic and conditionally periodic analogs
of the many-soliton solutions of the Korteweg–de Vries equation. Soviet Phys. JETP,
40, 1058–1063.
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Gu, C. H. 1986. On the Bäcklund transformations for the generalized hierarchies of com-
pound MKdV–SG equations. Lett. Math. Phys., 12, 31–41.

Guerritore, G. 1909. Calcolo delle funzioni di Lam’e fino a quelle di grado 10. Giorn.
Mat. Napoli, 47, 164–172.

Guillemin, V. and Uribe, A. 1983. Hardy functions and the inverse spectral method.
Comm. Partial Differential Equations, 8, 1455–1474.

Gunning, R. C. 1966. Lectures on Riemann Surfaces. Princeton Mathematical Notes.
Princeton: Princeton University Press.

Gunning, R. C. 1972. Lectures on Riemann Surfaces: Jacobi Varieties. Princeton Mathe-
matical Notes. Princeton: Princeton University Press.

Halberg, C. J. A. and Kramer, V. A. 1960. A generalization of the trace concept. Duke
Math. J., 27, 607–617.
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Halphen, G.-H. 1891. Traité des Fonctions Elliptiques, Tome 3. Paris: Gauthier-Villars.
Hancock, H. 1958. Lectures on the Theory of Elliptic Functions. New York: Dover.
Harnack, A. 1876. Ueber die Vieltheiligkeit der ebenen algebraischen Curven.Math. Ann.,

10, 189–209.
Harnad, J. 1993. Isospectral flow and Liouville–Arnold integration in loop algebras. Pages

1–42 of: Helminck, G. F. (ed.), Geometric and Quantum Aspects of Integrable Sys-
tems. Berlin: Springer.

Harnad, J. and Wisse, M.-A. 1993. Isospectral flow in loop algebras and quasiperiodic
solutions of the sine-Gordon equation. J. Math. Phys., 34, 3518–3526.

Hasegawa, A. 1990. Optical Solitons in Fibers. Second enlarged edn. Berlin: Springer.
Hasegawa, A. and Kodama, Y. 1995. Solitons in Optical Communications. Oxford Series

in Optical and Imaging Sciences, vol. 7. Oxford, U.K.: Clarendon Press.
Hermite, C. 1877. Sur quelques applications des fonctions elliptiques. C. R. Acad. Sci.

Paris, 85, 689–695, 728–732, 821–826.
Hermite, C. 1912. Oeuvres, Tome 3. Paris: Gauthier-Villars.
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Flächen. Halle: Verlag von L. Nebert.

Holm, D. D. and Qiao, Z. 2002. On the Camassa–Holm hierarchy and N-dimensional
integrable systems. Preprint.

Holod, I. P. and Prikarpatsky, A. K. 1978. Classical solutions of two-dimensional
Thirring model with periodic initial conditions. Preprint. In Russian.

Hurwitz, A. and Courant, R. 1964. Funktionentheorie. Fourth edn. Grundlehren, vol. 3.
Berlin: Springer. With an Appendix by H. Röhrl.
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Konopelchenko, B. G. 1982. Elementary Bäcklund transformations, nonlinear superpo-
sition principle and solutions of the integrable equations. Phys. Lett. A, 87, 445–448.

Konopelchenko, B. G. and Rogers, C. 1992. Bäcklund and reciprocal transformations:
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Marchenko, V. A. 1988. Nonlinear Equations and Operator Algebras. Dordrecht, The

Netherlands: Reidel.
Marchenko, V. A. 1991. The Cauchy problem for the KdV equation with non-decreasing

initial data. Pages 273–318 of: Zhakarov, V. E. (ed.), What is Integrability? Springer
Series in Nonlinear Dynamics. Berlin: Springer.



490 Bibliography

Marchenko, V. A. and Ostrovsky, I. V. 1987. Approximation of periodic by finite-zone
potentials. Selecta Math. Soviet., 6, 101–136.

Markushevich, A. I. 1985. Theory of Functions of a Complex Variable. Second edn. New
York: Chelsea.

Markushevich, A. I. 1992. Introduction to the Classical Theory of Abelian Functions.
Translations of Mathematical Monographs, vol. 96. Providence, RI: Amer. Math. Soc.

Mattis, D. C. (ed.). 1993. The Many-Body Problem. Singapore: World Scientific.
Matveev, V. B. 1976. Abelian functions and solitons. Univ. of Wroclaw, Preprint, no. 373.
Matveev, V. B. and Salle, M. A. 1991. Darboux Transformations and Solitons. Berlin:

Springer.
Matveev, V. B. and Smirnov, A. O. 1993. Symmetric reductions of the Riemann θ-

function and some of their applications to the Schrödinger and Boussinesq equations.
Amer. Math. Soc. Transl. Ser. 2, 157, 227–237.

Matveev, V. B. and Yavor, M. I. 1979. Solutions presque périodiques et à N -solitons de
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Vanhaecke, P. 1992. Linearising two-dimensional integrable systems and the construction
of action-angle variables. Math. Z., 211, 265–313.

Venakides, S. 1988. The infinite period limit of the inverse formalism for periodic poten-
tials. Comm. Pure Appl. Math., 41, 3–17.

Verdier, J.-L. 1988. New elliptic solitons. Pages 901–910 of: Kashiwara, M. and Kawai,
T. (eds.), Algebraic Analysis. Academic Press, Boston.

Veselov, A. P. 1979. Hamiltonian formalism for the Novikov–Krichever equations for the
commutativity of two operators. Functional Anal. Appl., 13, 1–6.

Veselov, A. P. and Shabat, A. B. 1993. Dressing chains and the spectral theory of the
Schrödinger operator. Functional Anal. Appl., 27, 81–96.

Villarroel, J. 1991. The DBAR problem and the Thirring model. Stud. Appl. Math., 84,
207–220.

Vinnikov, V. 1993. Self-adjoint determinantal representations of real plane curves. Math.
Ann., 296, 453–479.

Vinnikov, V. 1998. Commuting operators and function theory on a Riemann surface. Pages
445–476 of: Axler, S., McCarthy, J. E., and Sarason, D. (eds.), Holomorphic
Spaces. Cambridge, U.K.: Cambridge University Press.

Wadati, M. and Sogo, K. 1983. Gauge transformation in soliton theory. J. Phys. Soc.
Japan, 52, 394–398.

Wahlquist, H. D. 1976. Bäcklund transformation of potentials of the Korteweg–de Vries
equation and the interaction of solitons with cnoidal waves. Pages 162–183 of: Miura,
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