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SOLITON EQUATIONS AND THEIR
ALGEBRO-GEOMETRIC SOLUTIONS

Volume II: (1 + 1)-Dimensional Discrete Models

As a partner to Volume I: (1 + 1)-Dimensional Continuous Models, this mono-

graph provides a self-contained introduction to algebro-geometric solutions of

completely integrable, nonlinear, partial differential-difference equations, also

known as soliton equations.

The systems studied in this volume include the Toda lattice hierarchy, the

Kac–van Moerbeke hierarchy, and the Ablowitz–Ladik hierarchy. An extensive

treatment of the class of algebro-geometric solutions in the stationary as well

as time-dependent contexts is provided. The theory presented includes trace

formulas, algebro-geometric initial value problems, Baker–Akhiezer functions,

and theta function representations of all relevant quantities involved.

The book uses basic techniques from the theory of difference equations and

spectral analysis, some elements of algebraic geometry and, especially, the the-

ory of compact Riemann surfaces. The presentation is constructive and rigorous,

with ample background material provided in various appendices. Detailed notes

for each chapter, together with an exhaustive bibliography, enhance understand-

ing of the main results.

Reviews of Volume I:

‘. . . this is a book that I would recommend to any student of mine, for clarity

and completeness of exposition. . . Any expert as well would enjoy the book

and learn something stimulating from the sidenotes that point to alternative

developments. We look forward to Volumes II and III!’

Mathematical Reviews

‘The book is very well organized and carefully written. It could be particu-

larly useful for analysts wanting to learn new methods coming from algebraic

geometry.’

EMS Newsletter
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Introduction

. . . though I bestowed some time in writing the book, yet it cost
me not half so much labor as this very preface.

Miguel de Cervantes Saavedra1

Background: In the early 1950s, Fermi, Pasta, and Ulam2 (FPU), in the unpublished
report by Fermi et al. (1955), analyzed numerically, in one of the first computer simu-
lations performed, the behavior of oscillations in certain nonlinear lattices. Expecting
equipartition of energy among the various modes, they were highly surprised to dis-
cover that the energy did not equidistribute, but rather they observed that the system
seemed to return periodically to its initial state. Motivated by the surprising findings
in FPU, several researchers, including Ford (1961), Ford and Waters (1964), Waters
and Ford (1964), Atlee Jackson et al. (1968), Payton and Visscher (1967a,b; 1968),
Payton et al. (1967), studied lattice models with different nonlinear interactions, ob-
serving close to periodic and solitary behavior. It was Toda who in 1967 isolated the
exponential interaction, see Toda (1967a,b) and hence introduced a model that sup-
ported an exact periodic and soliton solution. The model, now called the Toda lattice,
is a nonlinear differential-difference system continuous in time and discrete in space,

xtt (n, t) = e(x(n−1,t)−x(n,t)) − e(x(n,t)−x(n+1,t)), (n, t) ∈ Z× R, (0.1)

where x(n, t) denotes the displacement of the nth particle from its equilibrium posi-
tion at time t . While nonlinear lattices are interesting objects of study and certainly

1 Don Quixote, (1605) preface.
2 “We [Fermi and Ulam]. . . decided to attempt to formulate a problem simple to state but such that a so-

lution . . . could not be done with pencil and paper. . . . Our problem turned out to be felicitously chosen.
The results were entirely different from what even Fermi, with his great knowledge of wave motions,
had expected. . . . Fermi considered this to be, as he said, “a minor discovery.” . . . He intended to talk
about this [at the Gibbs lecture; a lecture never given as Fermi became ill before the meeting]. . . ”, see
Ulam (1991, p. 226f).
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2 Introduction

of fundamental importance in their own right, it should be mentioned that already in
the paper Toda (1967b), it is also shown that the Korteweg–de Vries (KdV) equa-
tion emerges in a certain scaling, or continuum limit, from the Toda lattice, creating
a link with the theory of the KdV equation. Indeed, the theory for the Toda lattice
is closely intertwined with the corresponding theory for the KdV equation on sev-
eral levels. Most notably, the Toda lattice shares many of the properties of the KdV
equation and other completely integrable equations. This applies, in particular, to the
Hamiltonian and algebro-geometric formalism treated in detail in the present mono-
graph. While the developments for the KdV equation preceded those for the Toda
lattice, in the context of algebro-geometric solutions the actual developments for the
latter rapidly followed the former as described below.

Before turning to a description of the main contributors and their accomplishments
in connection with the Hamiltonian and algebro-geometric formalism for the Toda
lattice, we briefly recall a few milestones in the development leading up to soliton
and algebro-geometric solutions of the KdV equation (for an in-depth presentation of
that theory, we refer to the introduction of Volume I). In 1965, Kruskal and Zabusky
(cf. Zabusky and Kruskal (1965)), while analyzing the numerical results of FPU
on heat conductivity in solids, discovered that pulselike solitary wave solutions of
the KdV equation, for which the name “solitons” was coined, interacted elastically.
This was followed by the 1967 discovery of Gardner, Greene, Kruskal, and Miura
(cf. Gardner et al. (1967; 1974)) that the inverse scattering method allowed one to
solve initial value problems for the KdV equation with sufficiently fast decaying ini-
tial data. Soon after, Lax (1968) found the explanation of the isospectral nature of
KdV solutions using the concept of Lax pairs and introduced a whole hierarchy of
KdV equations. Subsequently, in the early 1970s, Zakharov and Shabat (1972; 1973;
1974), and Ablowitz et al. (1973a,b; 1974) extended the inverse scattering method
to a wide class of nonlinear partial differential equations of relevance in various
scientific contexts, ranging from nonlinear optics to condensed matter physics and
elementary particle physics. In particular, soliton solutions found numerous applica-
tions in classical and quantum field theory, in connection with optical communication
devices, etc.

Another decisive step forward in the development of completely integrable soliton
equations was taken around 1974. Prior to that period, inverse spectral methods in
the context of nonlinear evolution equations had been restricted to spatially decaying
solutions to enable the applicability of inverse scattering techniques. From 1975 on,
following some pioneering work of Novikov (1974), the arsenal of inverse spectral
methods was extended considerably in scope to include periodic and certain classes
of quasi-periodic and almost periodic KdV finite-band solutions. This new approach
to constructing solutions of integrable nonlinear evolution equations, based on so-
lutions of the inverse periodic spectral problem and on algebro-geometric methods
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and theta function representations, developed by pioneers such as Dubrovin, Its, Kac,
Krichever, Marchenko, Matveev, McKean, Novikov, and van Moerbeke, to name just
a few, was followed by very rapid development in the field and within a few years of
intense activity worldwide, the landscape of integrable systems was changed forever.
By the early 1980s the theory was extended to a large class of nonlinear (includ-
ing certain multi-dimensional) evolution equations beyond the KdV equation, and
the explicit theta function representation of quasi-periodic solutions of integrable
equations (including soliton solutions as special limiting cases) had introduced new
algebro-geometric techniques into this area of nonlinear partial differential equa-
tions. Subsequently, this led to an interesting cross-fertilization between the areas of
integrable nonlinear partial differential equations and algebraic geometry, culminat-
ing, for instance, in a solution of Schottky’s problem (Shiota (1986; 1990), see also
Krichever (2006) and the references cited therein).

The present monograph is devoted to hierarchies of completely integrable
differential-difference equations and their algebro-geometric solutions, treating,
in particular, the Toda, Kac–van Moerbeke, and Ablowitz–Ladik hierarchies. For
brevity we just recall the early historical development in connection with the Toda
lattice and refer to the Notes for more recent literature on this topic and for the
corresponding history of the Kac–van Moerbeke and Ablowitz–Ladik hierarchies.
After Toda’s introduction of the exponential lattice in 1967, it was Flaschka who
in 1974 proved its integrability by establishing a Lax pair for it with Lax operator
a tri-diagonal Jacobi operator on Z (a discrete Sturm–Liouville-type operator, cf.
Flaschka (1974a)). He used the variable transformation

a(n, t) = 1

2
exp
( 1

2 (x(n, t)− x(n + 1, t))
)
,

b(n, t) = −1

2
xt (n, t), (n, t) ∈ Z× R,

(0.2)

which transforms (0.1) into a first-order system for a, b, the Toda lattice system, dis-
played in (0.3). Just within a few months, this was independently observed also by
Manakov (1975). The corresponding integrability in the finite-dimensional periodic
case had first been established by Hénon (1974) and shortly thereafter by Flaschka
(1974b) (see also Flaschka (1975), Flaschka and McLaughlin (1976a), Kac and van
Moerbeke (1975a), van Moerbeke (1976)). Soon after, integrability of the finite non-
periodic Toda lattice was established by Moser (1975a). Returning to the Toda lattice
(0.2) on Z, infinitely-many constants of motion (conservation laws) were derived by
Flaschka (1974a) and Manakov (1975) (see also McLaughlin (1975)), moreover, the
Hamiltonian formalism, Poisson brackets, etc., were also established by Manakov
(1975) (see also Flaschka and McLaughlin (1976b)). The theta function representa-
tion of b in the periodic case was nearly simultaneously derived by Dubrovin et al.
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(1976) and Date and Tanaka (1976a,b), following Its and Matveev (1975a,b) in their
theta function derivation of the corresponding periodic finite-band KdV solution.
An explicit theta function representation for a was derived a bit later by Krichever
(1978) (see also Kričever (1982), Krichever (1982; 1983), and the appendix writ-
ten by Krichever in Dubrovin (1981)). We also note that Dubrovin, Matveev, and
Novikov as well as Date and Tanaka consider the special periodic case, but Krichever
treats both the periodic and quasi-periodic cases.

Scope: We aim for an elementary, yet self-contained, and precise presentation of
hierarchies of integrable soliton differential-difference equations and their algebro-
geometric solutions. Our point of view is predominantly influenced by analytical
methods. We hope this will make the presentation accessible and attractive to ana-
lysts working outside the traditional areas associated with soliton equations. Central
to our approach is a simultaneous construction of all algebro-geometric solutions
and their theta function representation of a given hierarchy. In this volume we focus
on some of the key hierarchies in (1 + 1)-dimensions associated with differential-
difference integrable models such as the Toda lattice hierarchy (Tl), the Kac–van
Moerbeke hierarchy (KM), and the Ablowitz–Ladik hierarchy (AL). The key equa-
tions, defining the corresponding hierarchies, read1

Tl:

(
at − a(b+ − b)

bt − 2
(
a2 − (a−)2

)) = 0,

KM: ρt − ρ
(
(ρ+)2 − (ρ−)2

) = 0, (0.3)

AL:

(−iαt − (1− αβ)(α+ + α−)+ 2α
−iβt + (1− αβ)(β+ + β−)− 2β

)
= 0.

Our principal goal in this monograph is the construction of algebro-geometric solu-
tions of the hierarchies associated with the equations listed in (0.3). Interest in the
class of algebro-geometric solutions can be motivated in a variety of ways: It rep-
resents a natural extension of the classes of soliton solutions and similar to these,
its elements can still be regarded as explicit solutions of the nonlinear integrable
evolution equation in question (even though their complexity considerably increases
compared to soliton solutions due to the underlying analysis on compact Riemann
surfaces). Moreover, algebro-geometric solutions can be used to approximate more
general solutions (such as almost periodic ones) although this is not a topic pursued
in this monograph. Here we primarily focus on the construction of explicit solu-
tions in terms of certain algebro-geometric data on a compact hyperelliptic Riemann
surface and their representation in terms of theta functions. Solitons arise as the spe-
cial case of solutions corresponding to an underlying singular hyperelliptic curve

1 Here, and in the following, φ± denotes the shift of a lattice function φ, that is, φ±(n) = φ(n ± 1),
n ∈ Z.
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obtained by confluence of pairs of branch points. The theta function associated with
the underlying singular curve then degenerates into appropriate determinants with
exponential entries.

We use basic techniques from the theory of differential-difference equations, some
spectral analysis, and elements of algebraic geometry (most notably, the basic theory
of compact Riemann surfaces). In particular, we do not employ more advanced tools
such as loop groups, Grassmanians, Lie algebraic considerations, formal pseudo-
differential expressions, etc. Thus, this volume strays off the mainstream, but we
hope it appeals to spectral theorists and their kin and convinces them of the beauty of
the subject. In particular, we hope a reader interested in quickly reaching the funda-
mentals of the algebro-geometric approach of constructing solutions of hierarchies
of completely integrable evolution equations will not be disappointed.

Completely integrable systems, and especially nonlinear evolution equations of
soliton-type, are an integral part of modern mathematical and theoretical physics,
with far-reaching implications from pure mathematics to the applied sciences. It is
our intention to contribute to the dissemination of some of the beautiful techniques
applied in this area.

Contents: In the present volume we provide an effective approach to the con-
struction of algebro-geometric solutions of certain completely integrable nonlinear
differential-difference evolution equations by developing a technique which simulta-
neously applies to all equations of the hierarchy in question.

Starting with a specific integrable differential-difference equation, one can build
an infinite sequence of higher-order differential-difference equations, the so-called
hierarchy of the original soliton equation, by developing an explicit recursive formal-
ism that reduces the construction of the entire hierarchy to elementary manipulations
with polynomials and defines the associated Lax pairs or zero-curvature equations.
Using this recursive polynomial formalism, we simultaneously construct algebro-
geometric solutions for the entire hierarchy of soliton equations at hand. On a more
technical level, our point of departure for the construction of algebro-geometric so-
lutions is not directly based on Baker–Akhiezer functions and axiomatizations of
algebro-geometric data, but rather on a canonical meromorphic function φ on the
underlying hyperelliptic Riemann surface Kp of genus p ∈ N0. More precisely,
this fundamental meromorphic function φ carries the spectral information of the un-
derlying Lax operator (such as the Jacobi operator in context of the Toda lattice)
and in many instances represents a direct generalization of the Weyl–Titchmarsh m-
function, a fundamental device in the spectral theory of difference operators. Riccati-
type difference equations satisfied by φ separately in the discrete space and continu-
ous time variables then govern the time evolutions of all quantities of interest (such
as that of the associated Baker–Akhiezer function). The basic meromorphic function
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φ on Kp is then linked with solutions of equations of the underlying hierarchy via
trace formulas and Dubrovin-type equations for (projections of) the pole divisor of φ.
Subsequently, the Riemann theta function representation of φ is then obtained more
or less simultaneously with those of the Baker–Akhiezer function and the algebro-
geometric solutions of the (stationary or time-dependent) equations of the hierarchy
of evolution equations. This concisely summarizes our approach to all the (1 + 1)-
dimensional discrete integrable models discussed in this volume.

In the following we will detail this verbal description of our approach to algebro-
geometric solutions of integrable hierarchies with the help of the Toda hierarchy.

The Toda lattice, in Flaschka’s variables, reads

at − a
(
b+ − b

) = 0,

bt − 2
(
(a+)2 − (a−)2

) = 0,
(0.4)

where a = {a(n, t)}n∈Z ∈ CZ, b = {b(n, t)}n∈Z ∈ CZ, t ∈ R. The system (0.4) is
equivalent to the Lax equation

Lt (t)− [P2(t), L(t)] = 0.

Here L and P2 are the difference expressions of the form

L = aS+ + a−S− + b, P2 = aS+ − a−S−,

and S± denote the shift operators

(S± f )(n) = f (n ± 1), n ∈ Z, f = { f (m)}m∈Z ∈ CZ,

with CZ abbreviating the set of complex-valued sequences indexed by Z.
In this introduction we will indicate how to construct all real-valued algebro-

geometric quasi-periodic finite-band solutions of a hierarchy of nonlinear evolution
equations of which the first equation is the Toda lattice, abbreviated Tl. The approach
is similar to the one advocated for the Korteweg–de Vries (KdV) and Zakharov–
Shabat (ZS), or equivalently, Ablowitz–Kaup–Newell–Segur (AKNS), equations and
their hierarchies in Chapters 1 and 3 of Volume I.

This means that we construct a hierarchy of difference operators P2p+2 such that
the Lax relation

Ltp − [P2p+2, L] = 0,

defines a hierarchy of differential-difference equations where the time variation is
continuous and space is considered discrete. We let each equation in this hierarchy
run according to its own time variable tp. The operators P2p+2 are defined recur-
sively. In the stationary case, where we study

[P2p+2, L] = 0,
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there is a hyperelliptic curve Kp of genus p which is associated with the equation in
a natural way. This relation is established by introducing the analog of Burchnall–
Chaundy polynomials, familiar from the KdV and ZS-AKNS theory. The basic rela-
tions for both the time-dependent and stationary Toda hierarchy as well as the con-
struction of the Burchnall–Chaundy polynomials are contained in Section 1.2.

In Section 1.3 we discuss the stationary case in detail. We introduce the Baker–
Akhiezer function ψ which is the common eigenfunction of the commuting differ-
ence operators L and P2p+2. The main result of this section is the proof of theta
function representations of φ = ψ+/ψ and ψ , as well as the solutions a and b of the
stationary Toda hierarchy.

In Section 1.4 we analyze the algebro-geometric initial value problem for the Toda
hierarchy. By that we mean the following: Given a nonspecial Dirichlet divisor of
degree p at one fixed lattice point, we explicitly construct an algebro-geometric so-
lution, which equals the given data at the lattice point, of the qth stationary Toda
lattice, q ∈ N.

Section 1.5 parallels that of Section 1.3, but it discusses the time-dependent case.
The goal of the section is to construct the solution of the r th equation in the Toda
hierarchy with a given stationary solution of the pth equation in the Toda hierarchy
as initial data. We construct the solution in terms of theta functions.

Section 1.6 treats the algebro-geometric time-dependent initial value problem for
the Toda hierarchy. Given a stationary solution of an arbitrary equation in the Toda
hierarchy and its associated nonsingular hyperelliptic curve as initial data, we con-
struct explicitly the solution of any other time-dependent equation in the Toda hier-
archy with the given stationary solution as initial data.

Finally, in Section 1.7 we construct an infinite sequence of local conservation laws
for each of the equations in the Toda hierarchy. Moreover, we derive two Hamiltonian
structures for the Toda hierarchy.

We now return to a more detailed survey of the results in this monograph for
the Toda hierarchy. The Toda hierarchy is the simplest of the hierarchies of nonlin-
ear differential-difference evolution equations studied in this volume, but the same
strategy, with modifications to be discussed in the individual chapters, applies to the
integrable systems treated in this monograph and is in fact typical for all (1 + 1)-
dimensional integrable differential-difference hierarchies of soliton equations.

A discussion of the Toda case then proceeds as follows.1 In order to define the
Lax pairs and zero-curvature pairs for the Toda hierarchy, one assumes a, b to be
bounded sequences in the stationary context and smooth functions in the time vari-
able in the time-dependent case. Next, one introduces the recursion relation for some

1 All details of the following construction are to be found in Chapter 1.



8 Introduction

polynomial functions f�, g� of a, b and certain of its shifts by

f0 = 1, g0 = −c1,

2 f�+1 + g� + g−� − 2b f� = 0, � ∈ N0, (0.5)

g�+1 − g−�+1 + 2
(
a2 f +� − (a−)2 f −�

)− b
(
g� − g−�

) = 0, � ∈ N0.

Here c1 is a given constant. From the recursively defined sequences { f�, g�}�∈N0

(whose elements turn out to be difference polynomials with respect to a, b, defined
up to certain summation constants) one defines the Lax pair of the Toda hierarchy
by

L = aS+ + a−S− + b, (0.6)

P2p+2 = −L p+1 +
p∑

�=0

(gp−� + 2a f p−�S+)L� + f p+1. (0.7)

The commutator of P2p+2 and L then reads1

[P2p+2, L] = −a
(
g+p + gp + f +p+1 + f p+1 − 2b+ f +p

)
S+

+ 2
(− b(gp + f p+1)+ a2 f +p − (a−)2 f −p + b2 f p

)
(0.8)

− a−
(
gp + g−p + f p+1 + f −p+1 − 2b f p

)
S−,

using the recursion (0.5). Introducing a deformation (time) parameter2 tp ∈ R, p ∈
N0, into a, b, the Toda hierarchy of nonlinear evolution equations is then defined by
imposing the Lax commutator relation

d

dtp
L − [P2p+2, L] = 0, (0.9)

for each p ∈ N0. By (0.8), the latter are equivalent to the collection of evolution
equations3

Tlp(a, b) =
(

atp − a( f +p+1(a, b)− f p+1(a, b))

btp + gp+1(a, b)− g−p+1(a, b)

)
= 0, p ∈ N0. (0.10)

1 The quantities P2p+2 and { f�, g�}�=0,...,p are constructed such that all higher-order difference oper-
ators in the commutator (0.8) vanish. Observe that the factors multiplying S± are just shifts of one
another.

2 Here we follow Hirota’s notation and introduce a separate time variable tp for the pth level in the Toda
hierarchy.

3 In a slight abuse of notation we will occasionally stress the functional dependence of f�, g� on a, b,
writing f�(a, b), g�(a, b).
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Explicitly,

Tl0(a, b) =
(

at0 − a(b+ − b)
bt0 − 2(a2 − (a−)2)

)
= 0,

Tl1(a, b) =
(

at1 − a((a+)2 − (a−)2 + (b+)2 − b2)

bt1 + 2(a−)2(b + b−)− 2a2(b+ + b)

)
+ c1

( −a(b+ − b)
−2(a2 − (a−)2)

)
= 0,

Tl2(a, b) =


at2 − a((b+)3 − b3 + 2(a+)2b+ − 2(a−)2b
+a2(b+ − b)+ (a+)2b++ + (a−)2b−)

bt2 − 2a2(b2 + bb+ + (b+)2 + a2 + (a+)2)
+2(a−)2(b2 + bb− + (b−)2 + (a−)2 + (a−−)2)


+ c1

(−a((a+)2 − (a−)2 + (b+)2 − b2)

2(a−)2(b + b−)− 2a2(b+ + b)

)
+ c2

( −a(b+ − b)
−2(a2 − (a−)2)

)
= 0, etc.,

represent the first few equations of the time-dependent Toda hierarchy. For p = 0
one obtains the Toda lattice (0.4). Introducing the polynomials (z ∈ C),

Fp(z) =
p∑

�=0

f p−�z�, (0.11)

G p+1(z) = −z p+1 +
p∑

�=0

gp−�z� + f p+1, (0.12)

one can alternatively introduce the Toda hierarchy as follows. One defines a pair of
2× 2 matrices (U (z), Vp+1(z)) depending polynomially on z by

U (z) =
(

0 1
−a−/a (z − b)/a

)
, (0.13)

Vp+1(z) =
(

G−p+1(z) 2a−F−p (z)
−2a−Fp(z) 2(z − b)Fp + G p+1(z)

)
, p ∈ N0, (0.14)

and then postulates the discrete zero-curvature equation

0 = Utp +U Vp+1 − V+p+1U. (0.15)

One verifies that both the Lax approach (0.10), as well as the zero-curvature approach
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(0.15), reduce to the basic equations,

atp = −a
(
2(z − b+)F+p + G+p+1 + G p+1

)
,

btp = 2
(
(z − b)2 Fp + (z − b)G p+1 + a2 F+p − (a−)2 F−p

)
.

(0.16)

Each one of (0.10), (0.15), and (0.16) defines the Toda hierarchy by varying
p ∈ N0.

The strategy we will be using is then the following: First we assume the existence
of a solution a, b, and derive several of its properties. In particular, we deduce explicit
Riemann’s theta function formulas for the solution a, b, the so-called Its–Matveev
formulas (cf. (0.41) in the stationary case and (0.53) in the time-dependent case). As
a second step we will provide an explicit algorithm to construct the solution given
appropriate initial data.

The Lax and zero-curvature equations (0.9) and (0.15) imply a most remarkable
isospectral deformation of L as will be discussed later in this introduction. At this
point, however, we interrupt our time-dependent Toda considerations for a while and
take a closer look at the special stationary Toda equations defined by

atp = btp = 0, p ∈ N0. (0.17)

By (0.8)–(0.10) and (0.15), (0.16), the condition (0.17) is then equivalent to each one
of the following collection of equations, with p ranging in N0, defining the stationary
Toda hierarchy in several ways,

[P2p+2, L] = 0, (0.18)

f +p+1 − f p+1 = 0, gp+1 − g−p+1 = 0, (0.19)

U Vp+1 − V+p+1U = 0, (0.20)

2(z − b+)F+p + G+p+1 + G p+1 = 0,

(z − b)2 Fp + (z − b)G p+1 + a2 F+p − (a−)2 F−p = 0.
(0.21)

To set the stationary Toda hierarchy apart from the general time-dependent one, we
will denote it by

s-Tlp(a, b) =
(

f +p+1(a, b)− f p+1(a, b)

gp+1(a, b)− g−p+1(a, b)

)
= 0, p ∈ N0.

Explicitly, the first few equations of the stationary Toda hierarchy then read as fol-
lows

s-Tl0(a, b) =
(

b+ − b
2((a−)2 − a2)

)
= 0,
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s-Tl1(a, b) =
(

(a+)2 − (a−)2 + (b+)2 − b2

2(a−)2(b + b−)− 2a2(b+ + b)

)
+ c1

(
b+ − b

2((a−)2 − a2)

)
= 0,

s-Tl2(a, b) =


(b+)3 − b3 + 2(a+)2b+ − 2(a−)2b
+a2(b+ − b)+ (a+)2b++ + (a−)2b−

2(a−)2(b2 + bb− + (b−)2 + (a−)2 + (a−−)2)
−2a2(b2 + bb+ + (b+)2 + a2 + (a+)2)


+ c1

(
(a+)2 − (a−)2 + (b+)2 − b2

2(a−)2(b + b−)− 2a2(b+ + b)

)
+ c2

(
b+ − b

2((a−)2 − a2)

)
= 0, etc.

The class of algebro-geometric Toda potentials, by definition, equals the set of
solutions a, b of the stationary Toda hierarchy. In the following analysis we fix the
value of a, b in (0.18)–(0.21), and hence we now turn to the investigation of algebro-
geometric solutions a, b of the pth equation within the stationary Toda hierarchy.
Equation (0.18) is of special interest since by the discrete analog of a 1923 result of
Burchnall and Chaundy, proven by Naiman in 1962, commuting difference expres-
sions (due to a common eigenfunction, to be discussed below, cf. (0.34), (0.35)) give
rise to an algebraic relationship between the two difference expressions. Similarly,
(0.20) permits the important conclusion that

det(y I2 − Vp+1(z, n)) = det(y I2 − Vp+1(z, n + 1)), (0.22)

(with I2 the identity matrix in C2) and hence

det(y I2 − Vp+1(z, n)) = y2 + det(Vp+1(z, n))

= y2 − G−p+1(z, n)2 + 4a−(n)2 F−p (z, n)Fp(z, n)

= y2 − R2p+2(z), (0.23)

for some n-independent monic polynomial R2p+2, which we write as

R2p+2(z) =
2p+1∏
m=0

(z − Em) for some {Em}m=0,...,2p+1 ⊂ C.

In particular, the combination

G p+1(z, n)2 − 4a(n)2 Fp(z, n)F+p (z, n) = R2p+2(z) (0.24)
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is n-independent. Moreover, one can rewrite (0.21) to yield

(z − b)4 F2
p − 2a2(z − b)2 Fp F+p − 2(a−)2(z − b)2 Fp F−p + a4(F+p )2

+ (a−)4(F−p )2 − 2a2(a−)2 F+p F−p = (z − b)2 R2p+2(z),

(z − b)(z − b+)G2
p+1 − a2(G−p+1 + G p+1)(G p+1 + G+p+1)

= (z − b)(z − b+)R2p+2(z),

(0.25)

with precisely the same integration constant R2p+2(z) as in (0.23). In fact, by (0.11)
and (0.12), equations (0.24) and (0.25) are simply identical. Incidentally, the alge-
braic relationship between L and P2p+2 alluded to in connection with the vanishing
of their commutator in (0.18) can be made precise as follows: Restricting P2p+2 to
the (algebraic) kernel ker(L − z) of L − z, one computes, using (0.7) and (0.25),(

P2p+2
∣∣
ker(L−z)

)2 = ((2aFp S+ + G p+1)
∣∣
ker(L−z)

)2
= (2aFp(G

+
p+1 + G p+1 + 2(z − b+)F+p )S+

+ G2
p+1 − 4a2 Fp F+p

)∣∣
ker(L−z)

= (G2
p+1 − 4a2 Fp F+p )

∣∣
ker(L−z) = R2p+2(L)

∣∣
ker(L−z).

Thus, P2
2p+2 and R2p+2(L) coincide on the finite-dimensional nullspace of L − z.

Since z ∈ C is arbitrary, one infers that

P2
2p+2 − R2p+2(L) = 0 (0.26)

holds once again with the same polynomial R2p+2. The characteristic equation of
Vp+1 (cf. (0.23)) and (0.26) naturally leads one to the introduction of the hyperelliptic
curve Kp of genus p ∈ N0 defined by

Kp : Fp(z, y) = y2 − R2p+2(z) = 0, R2p+2(z) =
2p+1∏
m=0

(z − Em). (0.27)

One compactifies the curve by adding two distinct points P∞− , P∞+ (still denoting
the curve by Kp for simplicity) and notes that points P �= P∞± on the curve are
denoted by P = (z, y) ∈ Kp \ {P∞− , P∞+}, where y( · ) is the meromorphic func-
tion on Kp satisfying1 y2 − R2p+2(z) = 0. For simplicity, we will assume in the
following that the (affine part of the) curve Kp is nonsingular, that is, the zeros Em

of R2p+2 are all simple. Remaining within the stationary framework a bit longer,

1 For more details we refer to Appendix B and Chapter 1.
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one can now introduce the fundamental meromorphic function φ on Kp alluded to
earlier, as follows,

φ(P, n) = y − G p+1(z, n)

2a(n)Fp(z, n)
(0.28)

= −2a(n)F+p (z, n)

y + G p+1(z, n)
, P = (z, y) ∈ Kp. (0.29)

(We mention in passing that via (C.9) and (C.17), the two branches φ± of φ are di-
rectly connected with the diagonal Green’s function of the Lax operator L .) Equality
of the two expressions (0.28) and (0.29) is an immediate consequence of the identity
(0.24) and the fact y2 = R2p+2(z). A comparison with (0.20) then readily reveals
that φ satisfies the Riccati-type equation

aφ(P)+ a−φ−(P)−1 = z − b. (0.30)

The next step is crucial. It concerns the zeros and poles of φ and hence involves the
zeros of Fp( · , n). Isolating the latter by introducing the factorization

Fp(z, n) =
p∏

j=1

(z − µ j (n)),

one can use the zeros of Fp and F+p to define the following points µ̂ j (n) and µ̂+j (n)
on Kp,

µ̂ j (n) = (µ j (n),−G p+1(µ j (n), n)), j = 1, . . . , p, (0.31)

µ̂+j (n) = (µ+j (n),G p+1(µ
+
j (n), n)), j = 1, . . . , p, (0.32)

where µ+j , j = 1, . . . , p, denote the zeros of F+p . The motivation for this choice

stems from y2 = R2p+2(z) by (0.23), the identity (0.24) (which combines to G2
p+1−

4a2 Fp F+p = y2), and a comparison of (0.28) and (0.29). Given (0.28)–(0.32) one
obtains for the divisor (φ( · , n)) of the meromorphic function φ,

(φ( · , n)) = DP∞+ µ̂
+(n) −DP∞− µ̂(n). (0.33)

Here we abbreviated µ̂ = {µ̂1, . . . , µ̂p}, µ̂+ = {µ̂+1 , . . . , µ̂+p } ∈ Symp(Kp), with

Symp(Kp) the pth symmetric product of Kp, and used our conventions1 (A.39),
(A.43), and (A.44) to denote positive divisors of degree p and p + 1 on Kp. Given

1 DQ(P) = m if P occurs m times in {Q1, . . . , Q p} and zero otherwise, Q = {Q1, . . . , Q p} ∈
Symp(Kp). Similarly, DQ0 Q = DQ0 +DQ , DQ = DQ1 + · · · +DQ p , Q0 ∈ Kp , and DQ(P) = 1
for P = Q and zero otherwise.
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φ( · , n) one defines the stationary Baker–Akhiezer function ψ( · , n, n0) on Kp \
{P∞±} by

ψ(P, n, n0) =


∏n−1

n′=n0
φ(P, n′), n ≥ n0 + 1,

1, n = n0,∏n0−1
n′=n φ(P, n′)−1, n ≤ n0 − 1.

In particular, this implies

φ = ψ+/ψ,

and the following normalization1 of ψ , ψ(P, n0, n0) = 1, P ∈ Kp \ {P∞±}. The
Riccati-type equation (0.30) satisfied by φ then shows that the Baker–Akhiezer func-
tion ψ is the common formal eigenfunction of the commuting pair of Lax difference
expressions L and P2p+2,

Lψ(P) = zψ(P), (0.34)

P2p+2ψ(P) = yψ(P), P = (z, y) ∈ Kp \ {P∞±}, (0.35)

and at the same time the Baker–Akhiezer vector � defined by

�(P) =
(
ψ(P)
ψ+(P)

)
, P ∈ Kp \ {P∞±}, (0.36)

satisfies the zero-curvature equations,

�(P) = U (z)�−(P), (0.37)

y�−(P) = Vp+1(z)�
−(P), P = (z, y) ∈ Kp \ {P∞±}. (0.38)

Moreover, one easily verifies that away from the branch points (Em, 0), m =
0, . . . , 2p + 1, of the two-sheeted Riemann surface Kp, the two branches of ψ con-
stitute a fundamental system of solutions of (0.34) and similarly, the two branches
of ψ yield a fundamental system of solutions of (0.37). Since ψ( · , n, n0) vanishes
at µ̂ j (n), j = 1, . . . , p, and ψ+( · , n, n0) vanishes at µ̂+j (n), j = 1, . . . , p, we may

call {µ̂ j (n)} j=1,...,p and {µ̂+j (n)} j=1,...,p the Dirichlet and Neumann data of L at the
point n ∈ Z, respectively.

Now the stationary formalism is almost complete; we only need to relate the so-
lution a, b of the pth stationary Toda equation and Kp-associated data. This can be
accomplished as follows.

1 This normalization is less innocent than it might appear at first sight. It implies that Dµ̂(n) and Dµ̂(n0)

are the divisors of zeros and poles of ψ( · , n, n0) on Kp \ {P∞±}.
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First we relate a, b and the zeros µ j of Fp. This is easily done by comparing the
coefficients of the power z2p in (0.25) and results in the trace formulas,1

a2 = 1

2

p∑
j=1

y(µ̂ j )

p∏
k=1
k �= j

(µ j − µk)
−1 + 1

4

(
b(2) − b2),

b = 1

2

2p+1∑
m=0

Em −
p∑

j=1

µ j ,

(0.39)

where b(2) = 1
2

∑2p+1
m=0 E2

m −
∑p

j=1 µ
2
j . However, the formula for a2 is not use-

ful for the algebro-geometric initial value problem as the quantities µ j indeed
may collide.2 A more elaborate reconstruction algorithm, as described below, is
required.

We will now indicate how to reconstruct a, b from Kp and given Dirichlet data
at just one fixed point n0. Due to the discrete spatial variation, this is considerably
more involved than, say, for the KdV equation. Consider first the simplest case of
self-adjoint Jacobi operators where a and b are real-valued and bounded sequences.
In that case we are given Dirichlet divisors Dµ̂(n0) ∈ Symp(Kp) with corresponding
Dirichlet eigenvalues in appropriate spectral gaps of L (more precisely, in appropri-
ate spectral gaps of a bounded operator realization of L in �2(Z), but for simplicity
this aspect will be ignored in the introduction). Next one develops an algorithm that
provides finite nonspecial divisors Dµ̂(n) ∈ Symp(Kp) in real position for all n ∈ Z.
In the self-adjoint case, the Dirichlet eigenvalues remain in distinct spectral gaps,
and hence the expression for (0.39) for a2 remains meaningful.

The self-adjoint situation is in sharp contrast to the general non-self-adjoint case
in which the Dirichlet eigenvalues no longer are confined to distinct spectral gaps on
the real axis. Moreover, Dirichlet eigenvalues are not necessarily separated and hence
might coincide (i.e., collide) at particular lattice points. In addition, they may not
remain finite and hit P∞+ or P∞− . The algorithm has to take that into consideration;
it is handled by further restricting the permissible set of initial data, which, however,
remains a dense set of full measure even in this more involved setting. A key element

1 Observe that only a2 enters, and thus the sign of a is left undetermined.
2 In the continuous case, e.g., for the Korteweg–de Vries equation, the situation is considerably simpler:

The spatial variation of the µ j , j = 1, . . . , p, is determined by the Dubrovin equations, a first-order
system of ordinary differential equations. Assuming theµ j , j = 1, . . . , p, are distinct at a given spatial
point, there exists a small neighborhood around that point for which they remain distinct. This has no
analog in the discrete case.
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in the construction is the discrete dynamical system1

αQ0
(Dµ̂(n)) = αQ0

(Dµ̂(n0))− (n − n0)AP∞− (P∞+),

µ̂(n0) = {µ̂1(n0), . . . , µ̂p(n0)} ∈ Symp(Kp),

where Q0 ∈ Kp \ {P∞±} is a given base point. Starting from a nonspecial finite
initial divisor Dµ̂(n0), we find that as n increases, Dµ̂(n) stays nonspecial as long
as it remains finite. If it becomes infinite, then it is still nonspecial and contains
P∞+ at least once (but not P∞− ). Further increasing n, all instances of P∞+ will
be rendered into P∞− step by step, until we have again a nonspecial divisor that
has the same number of P∞− as the first infinite one had P∞+ . Generically, one
expects the subsequent divisor to be finite and nonspecial again. A central part of
the algorithm is to prove that for a full set of initial data, the iterates stay away
from P∞± . Summarizing, we solve the following inverse problem: Given Kp and
appropriate initial data

µ̂(n0) = {µ̂1(n0), . . . , µ̂p(n0)} ∈M0,

µ̂ j (n0) =
(
µ j (n0),−G p+1(µ j (n0), n0)

)
, j = 1, . . . , p,

where M0 ⊂ Symp(Kp) is the set of nonspecial Dirichlet divisors, we develop an
algorithm that defines finite nonspecial divisors µ̂(n) for all n ∈ Z.

Having constructed µ j (n), j = 1, . . . , p, n ∈ Z, using an elaborate twelve-step
procedure, one finds that the quantities a and b are given by

a(n)2 = 1

2

q(n)∑
k=1

(
d pk (n)−1 y(P)/dζ pk (n)−1

)∣∣
P=(ζ,η)=µ̂k (n)

(pk(n)− 1)!

×
q(n)∏

k′=1, k′ �=k

(µk(n)− µk′(n))
−pk (n) + 1

4

(
b(2)(n)− b(n)2

)
,

b(n) = 1

2

2p+1∑
m=0

Em −
q(n)∑
k=1

pk(n)µk(n), n ∈ Z,

(0.40)

where pk(n) are associated with degeneracies of the µ j , j = 1, . . . , p, and∑q(n)
k=1 pk(n) = p, see Theorem 1.32. We stress the resemblance between (0.40)

and (0.39). Formulas (0.40) then yield a solution a, b of the pth stationary Toda
equation.

An alternative reconstruction of a, b, nicely complementing the one just dis-
cussed, can be given with the help of the Riemann theta function2 associated with

1 Here αQ0
and AQ0

denote Abel maps, see (A.30) and (A.29), respectively.
2 For details on the p-dimensional theta function θ(z), z ∈ Cp , we refer to Appendices A and B.
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Kp and an appropriate homology basis of cycles on it. The known zeros and poles
of φ (cf. (0.33)), and similarly, the set of zeros {P∞+} ∪ {µ̂ j (n)} j=1,...,p and poles
{P∞−} ∪ {µ̂ j (n0)} j=1,...,p of the Baker–Akhiezer function ψ( · , n, n0), then permit
one to find theta function representations for φ and ψ by referring to Riemann’s
vanishing theorem and the Riemann–Roch theorem. The corresponding theta func-
tion representation of the algebro-geometric solution a, b of the pth stationary Toda
equation then can be obtained from that of ψ by an asymptotic expansion with re-
spect to the spectral parameter near the point P∞+ . The resulting final expression for
a, b, the analog of the Its–Matveev formula in the KdV context, is of the type

a(n)2 = ã2 θ(A − B + Bn)θ(A + B + Bn)

θ(A + Bn)2
,

b(n) = 1

2

2p+1∑
m=0

Em −
p∑

j=1

λ j

−
p∑

j=1

c j (p)
∂

∂w j
ln

(
θ(A + Bn + w)

θ(A − B + Bn + w)

)∣∣∣∣
w=0

.

(0.41)

Here the constants ã, λ j , c j (p) ∈ C, j = 1, . . . , p, and the constant vector B ∈ Cp

are uniquely determined by Kp (and its homology basis), and the constant vec-
tor A ∈ Cp is in one-to-one correspondence with the Dirichlet data µ̂(n0) =
(µ̂1(n0), . . . , µ̂p(n0)) ∈ Symp(Kp) at the initial point n0 as long as the divisor
Dµ̂(n0) is assumed to be nonspecial.1 Moreover, the theta function representation
(0.41) remains valid as long as the divisor Dµ̂(n) stays nonspecial. We emphasize
the remarkable fact that the argument of the theta functions in (0.41) is linear with
respect to n.

This completes our somewhat lengthy excursion into the stationary Toda hierar-
chy. In the following we return to the time-dependent Toda hierarchy and describe
the analogous steps involved to construct solutions a = a(n, tr ), b = b(n, tr ) of the
r th Toda equation with initial values being algebro-geometric solutions of the pth
stationary Toda equation. More precisely, we are seeking a solution a, b of

T̃lr (a, b) =
(

atr − a
(

f̃ +p+1(a, b)− f̃ p+1(a, b)
)

btr + g̃p+1(a, b)− g̃−p+1(a, b)

)
= 0,

(a, b)
∣∣
tr=t0,r

= (a(0), b(0)
)
,

(0.42)

s-Tlp
(
a(0), b(0)

) = ( f +p+1

(
a(0), b(0)

)− f p+1
(
a(0), b(0)

)
gp+1

(
a(0), b(0)

)− g−p+1

(
a(0), b(0)

)) = 0 (0.43)

1 If D = n1DQ1 + · · · + nkDQk ∈ Symp(Kp) for some n� ∈ N, � = 1, . . . , k, with n1 + · · · +
nk = p, then D is called nonspecial if there is no nonconstant meromorphic function on Kp which is
holomorphic on Kp \ {Q1, . . . , Qk } with poles at most of order n� at Q�, � = 1, . . . , k.
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for some t0,r ∈ R, p, r ∈ N0, and a prescribed curve Kp associated with the station-
ary solution a(0), b(0) in (0.43).

We pause for a moment to reflect on the pair of equations (0.42), (0.43): As it
turns out, it represents a dynamical system on the set of algebro-geometric solutions
isospectral to the initial value a(0), b(0). By isospectral we here allude to the fact that
for any fixed tr , the solution a( · , tr ), b( · , tr ) of (0.42), (0.43) is a stationary solution
of (0.43),

s-Tlp
(
a( · , tr ), b( · , tr )

)
=
(

f +p+1(a( · , tr ), b( · , tr ))− f p+1(a( · , tr ), b( · , tr ))

gp+1(a( · , tr ), b( · , tr ))− g−p+1(a( · , tr ), b( · , tr ))

)
= 0

associated with the fixed underlying algebraic curve Kp (the latter being independent
of tr ). Put differently, a( · , tr ), b( · , tr ) is an isospectral deformation of a(0), b(0)

with tr the corresponding deformation parameter. In particular, a( · , tr ), b( · , tr )
traces out a curve in the set of algebro-geometric solutions isospectral to
a(0), b(0).

Since the summation constants in the functionals f� of a, b in the stationary and
time-dependent contexts are independent of each other, we indicate this by adding
a tilde on all the time-dependent quantities. Hence we shall employ the notation
P̃2r+2, Ṽr+1, F̃r , etc., in order to distinguish them from P2p+2, Vp+1, Fp, etc.
Thus P̃2r+2, Ṽr+1, F̃r , G̃r+1, f̃s , g̃s , c̃s are constructed in the same way as P2p+2,
Vp+1, Fp, G p, f�, g�, c� using the recursion (0.5) with the only difference being
that the set of summation constants c̃r in f̃s is independent of the set ck used in
computing f�.

Our strategy will be the same as in the stationary case: Assuming existence of a
solution a, b, we will deduce many of its properties which in the end will yield an
explicit expression for the solution. In fact, we will go a step further, postulating the
equations

atr = −a
(
2(z − b+)F̃+r + G̃+r+1 + G̃r+1

)
,

btr = 2
(
(z − b)2 F̃r + (z − b)G̃r+1 + a2 F̃+r − (a−)2 F̃−r

)
,

(0.44)

0 = 2(z − b+)F+p + G+p+1 + G p+1,

0 = (z − b)2 Fp + (z − b)G p+1 + a2 F+p − (a−)2 F−p ,
(0.45)

where a(0) = a(0)(n), b(0) = b(0)(n) in (0.43) has been replaced by a = a(n, tr ),
b = b(n, tr ) in (0.45). Here

Fp(z) =
p∑

�=0

f p−�z� =
p∏

j=1

(z − µ j ), F̃r (z) =
r∑

s=0

f̃r−s zs,
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G p+1(z) = −z p+1 +
p∑

�=0

gp−�z� + f p+1,

G̃r+1(z) = −zr+1 +
r∑

s=0

g̃r−s zs + f̃r+1,

for fixed p, r ∈ N0. Introducing G p+1, U , Vp+1 and G̃r+1, Ṽr+1 (replacing Fp by
F̃r ) as in (0.12)–(0.14), the basic equations (0.44), (0.45) are equivalent to the Lax
equations

d

dtr
L − [P̃2r+2, L

] = 0,

[P2p+2, L] = 0,

and to the zero-curvature equations

Utr +U Ṽr+1 − Ṽ+r+1U = 0, (0.46)

U Vp+1 − V+p+1U = 0. (0.47)

Moreover, one computes in analogy to (0.22) and (0.23) that

det(y I2 − Vp+1(z, n + 1, tr ))− det(y I2 − Vp+1(z, n, tr )) = 0,

∂tr det(y I2 − Vp+1(z, n, tr )) = 0,

and hence

det(y I2 − Vp+1(z, n, tr )) = y2 + det(Vp+1(z, n, tr )) (0.48)

= y2 − G−p+1(z, n)2 + 4a−(n)2 F−p (z, n)Fp(z, n) = y2 − R2p+2(z),

is independent of (n, tr ) ∈ Z× R. Thus,

G2
p+1 − 4a2 Fp F+p = R2p+2,

(z − b)4 F2
p − 2a2(z − b)2 Fp F+p − 2(a−)2(z − b)2 Fp F−p + a4(F+p )2

+ (a−)4(F−p )2 − 2a2(a−)2 F+p F−p = (z − b)2 R2p+2(z),

(z − b)(z − b+)G2
p+1 − a2(G−p+1 + G p+1)(G p+1 + G+p+1)

= (z − b)(z − b+)R2p+2(z),

hold as in the stationary context. The independence of (0.48) of tr can be interpreted
as follows: The r th Toda flow represents an isospectral deformation of the curve Kp

defined in (0.27), in particular,1 the branch points of Kp remain invariant under these

1 Property (0.49) is weaker than the usually stated isospectral deformation of the Lax operator L(tr ).
However, the latter is a more delicate functional analytic problem since a, b need not be bounded and
by the possibility of non-self-adjointness of L(tr ). See, however, Theorem 1.62.
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flows,

∂tr Em = 0, m = 0, . . . , 2p + 1. (0.49)

As in the stationary case, one can now introduce the basic meromorphic function φ

on Kp by

φ(P, n, tr ) = y − G p+1(z, n, tr )

2a(n, tr )Fp(z, n, tr )

= −2a(n, tr )Fp(z, n + 1, tr )

y + G p+1(z, n, tr )
, P(z, y) ∈ Kp,

and a comparison with (0.46) and (0.47) then shows that φ satisfies the Riccati-type
equations

aφ(P)+ a−(φ−(P))−1 = z − b, (0.50)

φtr (P) = −2a
(
F̃r (z)φ(P)2 + F̃+r (z)

)+ 2(z − b+)F̃+r (z)φ(P)

+ (G̃+r+1(z)− G̃r+1(z)
)
φ(P). (0.51)

Next, factorizing Fp as before,

Fp(z) =
p∏

j=1

(z − µ j ),

one introduces points µ̂ j (n, tr ), µ̂
+
j (n, tr ) on Kp by

µ̂ j (n, tr ) = (µ j (n, tr ),−G p+1(µ j (n, tr ), n, tr )), j = 1, . . . , p,

µ̂+j (n, tr ) = (µ+j (n, tr ),G p+1(µ
+
j (n, tr ), n, tr )), j = 1, . . . , p,

and obtains for the divisor (φ( · , n, tr )) of the meromorphic function φ,

(φ( · , n, tr )) = DP∞+ µ̂
+(n,tr ) −DP∞− µ̂(n,tr ),

as in the stationary context. Given φ( · , n, tr ) one then defines the time-dependent
Baker–Akhiezer vector ψ( · , n, n0, tr , t0,r ) on Kp \ {P∞±} by

ψ(P, n, n0, tr , t0,r )

= exp

(∫ tr

t0,r
ds
(
2a(n0, s)F̃r (z, n0, s)φ(P, n0, s)+ G̃r+1(z, n0, s)

))

×


∏n−1

n′=n0
φ(P, n′, tr ), n ≥ n0 + 1,

1, n = n0,∏n0−1
n′=n φ(P, n′, tr )−1, n ≤ n0 − 1,
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with

φ(P, n, tr ) = ψ+(P, n, n0, tr , t0,r )/ψ(P, n, n0, tr , t0,r ).

The Riccati-type equations (0.50), (0.51) satisfied by φ then show that

−Vp+1,tr +
[
Ṽr+1, Vp+1

] = 0

in addition to (0.46), (0.47). Moreover, they yield again that the Baker–Akhiezer
function ψ is the common formal eigenfunction of the commuting pair of Lax dif-
ferential expressions L(tr ) and P2p+2(tr ),

Lψ(P) = zψ(P),

P2p+2ψ(P) = yψ(P), P = (z, y) ∈ Kp \ {P∞±},
ψtr (P) = P̃2r+2ψ(P)

= 2aF̃r (z)ψ
+(P)+ G̃r+1(z)ψ(P),

and at the same time the Baker–Akhiezer vector � (cf. (0.36)) satisfies the zero-
curvature equations,

�(P) = U (z)�−(P),

y�−(P) = Vp+1(z)�
−(P), P = (z, y) ∈ Kp \ {P∞±},

�tr (P) = Ṽ+r+1(z)�(P).

The remaining time-dependent constructions closely follow our stationary outline.
The time variation of the µ j , j = 1, . . . , p, is given by the Dubrovin equations1

µ j,tr = −2F̃r (µ j )y(µ̂ j )

p∏
�=1
� �= j

(µ j − µ�)
−1, j = 1, . . . , p. (0.52)

However, as in the stationary case, the formula (0.52) as well as (0.39) are not useful
in the general complex-valued case where the µ j , j = 1, . . . , p may be degenerate
and may not remain bounded. Thus, a more elaborate procedure is required.

Let us first consider the case of real-valued and bounded sequences a, b, that is,
the situation when the Lax operator L is self-adjoint. Given the curve Kp and an
initial nonspecial Dirichlet divisor Dµ̂(n0,t0,r ) ∈ Symp(Kp) at a point (n0, t0,r ), one

follows the stationary algorithm to construct a solution s-Tlp(a(0), b(0)) = 0. From
each lattice point n ∈ Z one can use the time-dependent Dubrovin equations (0.52)
to construct locally the solution µ j (n, tr ) for tr near t0,r . Using the formulas (0.39)
we find solutions of Tlr (a, b) = 0 with (a, b)|tr=t0,r = (a(0), b(0)). However, this
construction requires that the eigenvalues µ j (n, tr ), j = 1, . . . , p, remain distinct,

1 To obtain a closed system of differential equations, one has to express F̃r (µ j ) solely in terms of
µ1, . . . , µp and E0, . . . , E2p+1, see Lemma D.4.
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which generally is only true in the self-adjoint case with real-valued initial data. In
contrast, in the general complex-valued case where eigenvalues can be expected to
collide, a considerably more refined approach is required. The Dubrovin equations
(0.52) are replaced by a first-order autonomous system of 2p differential equations
in the variables f j , j = 1, . . . , p, g j , j = 1, . . . , p − 1, and gp + f p+1 which can
be solved locally in a neighborhood (t0,r − T0, t0,r + T0) of t0,r . Next, one uses the
general stationary algorithm to extend this solution from {n0}× (t0,r − T0, t0,r + T0)

to Z × (t0,r − T0, t0,r + T0). For a carefully selected set M1 of full measure of
initial divisors, the solution can even be extended to a global solution on Z × R.
Summarizing, we solve the following inverse problem: Given Kp and appropriate
initial data

µ̂(n0, t0,r ) = {µ̂1(n0), . . . , µ̂p(n0, t0,r )} ∈M1,

µ̂ j (n0, t0,r ) =
(
µ j (n0, t0,r ),−G p+1(µ j (n0, t0,r ), n0, t0,r )

)
, j = 1, . . . , p,

where M1 ⊂ Symp(Kp) is an appropriate set of nonspecial Dirichlet divisors, we
develop an algorithm that defines finite nonspecial divisors µ̂(n, tr ) for all (n, tr ) ∈
Z× R.

Having constructed µ j (n, tr ), j = 1, . . . , p, (n, tr ) ∈ Z×R, one then shows that
the analog of (0.40) remains valid and then leads to a solution a, b of (0.42), (0.43).

The corresponding representations of a, b, φ, and ψ in terms of the Riemann theta
function associated with Kp are then obtained in close analogy to the stationary case.
In particular, in the case of a, b, one obtains the Its–Matveev formula

a(n, tr )
2 = ã2 θ(A − B + Bn + Cr tr )θ(A + B + Bn + Cr tr )

θ(A + Bn + Cr tr )2
,

b(n, tr ) = 1

2

2p+1∑
m=0

Em −
p∑

j=1

λ j

−
p∑

j=1

c j (p)
∂

∂w j
ln

(
θ(A + Bn + Cr tr + w)

θ(A − B + Bn + Cr tr + w)

)∣∣∣∣
w=0

.

(0.53)

Here the constants ã, λ j , c j (p) ∈ C, j = 1, . . . , p, and the constant vectors B,Cr ∈
Cp are uniquely determined by Kp (and its homology basis) and r , and the constant
vector A ∈ Cp is in one-to-one correspondence with the Dirichlet data µ̂(n0, t0,r ) =
(µ̂1(n0, t0,r ), . . . , µ̂p(n0, t0,r )) ∈ Symp(Kp) at the initial point (n0, t0,r ) as long
as the divisor Dµ̂(n0,t0,r ) is assumed to be nonspecial. Moreover, the theta function
representation (0.53) remains valid as long as the divisor Dµ̂(n,tr ) stays nonspecial.
Again, one notes the remarkable fact that the argument of the theta functions in (0.53)
is linear with respect to both n and tr .
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The reader will have noticed that we used terms such as completely inte-
grable, soliton equations, isospectral deformations, etc., without offering a precise
definition for them. Arguably, an integrable system in connection with nonlinear evo-
lution equations should possess several properties, including, for instance,

• infinitely many conservation laws

• isospectral deformations of a Lax operator

• action-angle variables, Hamiltonian formalism

• algebraic (spectral) curves

• infinitely many symmetries and transformation groups

• “explicit” solutions.

While many of these properties apply to particular systems of interest, there is simply
no generally accepted definition to date of what constitutes an integrable system.1

Thus, different schools have necessarily introduced different shades of integrabil-
ity (Liouville integrability, analytic integrability, algebraically complete integrability,
etc.); in this monograph we found it useful to focus on the existence of underlying
algebraic curves and explicit representations of solutions in terms of corresponding
Riemann theta functions and limiting situations thereof.

Finally, a brief discussion of the content of each chapter is in order (additional de-
tails are collected in the list of contents at the beginning of each chapter). Chapter 1
is devoted to the Toda hierarchy and its algebro-geometric solutions. In Chapter 2
we turn to the Kac–van Moerbeke equation. Rather than studying this equation in-
dependently, we exploit its intrinsic connection with the Toda lattice. Indeed, there
exists a Miura-like transformation between the two integrable systems, allowing for
a transfer of solutions between them. Next, in Chapter 3, we consider the Ablowitz–
Ladik (AL) hierarchy (a complexified discrete nonlinear Schrödinger hierarchy) of
differential-difference evolution equations and its algebro-geometric solutions.

Presentation: Each chapter, together with appropriate appendices compiled in the
second part of this volume, is intended to be essentially self-contained and hence can
be read independently from the remaining chapters. This attempt to organize chapters
independently of one another comes at a price, of course: Similar arguments in the
construction of algebro-geometric solutions for different hierarchies are repeated in
different chapters. We believe this makes the results more easily accessible.

While we kept the style of presentation and the notation employed as close as
possible to that used in Volume I, we emphasize that this volume is entirely self-
contained and hence can be read independently of Volume I.

1 See, also, Lakshmanan and Rajasekar (2003, Chs. 10, 14, App. I) and several contributions to Zakharov
(1991) for an extensive discussion of various aspects of integrability.
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References are deferred to detailed notes for each section at the end of every chap-
ter. In addition to a comprehensive bibliographical documentation of the material
dealt with in the main text, these notes also contain numerous additional comments
and results (and occasionally hints to the literature of topics not covered in this mono-
graph).

Succinctly written appendices, some of which summarize subjects of interest on
their own, such as compact (and, in particular, hyperelliptic) Riemann surfaces, guar-
antee a fairly self-contained presentation, accessible at the advanced graduate level.

An extensive bibliography is included at the end of this volume. Its size reflects
the enormous interest this subject generated over the past four decades. It under-
scores the wide variety of techniques employed to study completely integrable sys-
tems. Even though we undertook every effort to provide an exhaustive list of refer-
ences, the result in the end must necessarily be considered incomplete. We regret any
omissions that have occurred. Publications with three or more authors are abbrevi-
ated “First author et al. (year)” in the text. If more than one publication yields the
same abbreviation, latin letters a,b,c, etc., are added after the year. In the bibliog-
raphy, publications are alphabetically ordered using all authors’ names and year of
publication.
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The Toda Hierarchy

. . . that I can offer you no better gift than the means of mastering
in a very brief time, all that in the course of so many years, and at
the cost of so many hardships and dangers, I have learned, and
know.

N. Machiavelli (1469–1527)1

1.1 Contents

The Toda lattice (Tl) equations,

at − a(b+ − b) = 0,

bt − 2
(
a2 − (a−)2

) = 0

for sequences a = a(n, t), b = b(n, t) (with a±(n, t) = a(n ± 1, t), b±(n, t) =
b(n± 1, t), (n, t) ∈ Z×R), were originally derived in 1966 as a model for waves in
lattices composed of particles interacting by nonlinear (exponential) forces between
nearest neighbors.2 This chapter focuses on the construction of algebro-geometric
solutions of the Toda hierarchy as developed since the mid-1970s. Below we briefly
summarize the principal content of each section. A more detailed discussion of the
contents has been provided in the introduction to this volume.

Section 1.2.
• polynomial recursion formalism, Lax pairs (L , P2p+1)

• stationary and time-dependent Toda hierarchy
• Burchnall–Chaundy polynomial, hyperelliptic curve Kp

Sections 1.3 and 1.4. (stationary)
• properties of φ and the Baker–Akhiezer function ψ
• Dubrovin equations for Dirichlet, Neumann, and other auxiliary divisors

1 The Prince, Dover, New York, 1992, p. vii.
2 A guide to the literature can be found in the detailed notes at the end of this chapter.
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• trace formulas for a, b

• theta function representations for φ, ψ , and a, b

• examples

• the algebro-geometric initial value problem

Sections 1.5 and 1.6. (time-dependent)

• properties of φ and the Baker–Akhiezer function ψ

• Dubrovin equations for Dirichlet, Neumann, and other auxiliary divisors

• trace formulas for a, b

• theta function representations for φ, ψ , and a, b

• examples

• the algebro-geometric initial value problem

Section 1.7. (Hamiltonian formalism)

• asymptotic spectral parameter expansions of Riccati-type solutions

• local conservation laws

• variational derivatives

• Poisson brackets

This chapter relies on terminology and notions developed in connection with com-
pact Riemann surfaces. A brief summary of key results as well as definitions of some
of the main quantities can be found in Appendices A and B.

1.2 The Toda Hierarchy, Recursion Relations, Lax Pairs, and
Hyperelliptic Curves

I guess I should warn you, if I turn out to be particularly clear,
you’ve probably misunderstood what I’ve said.

Alan Greenspan1

In this section we provide the construction of the Toda hierarchy using a polynomial
recursion formalism and derive the associated sequence of Toda Lax pairs (we also
hint at zero-curvature pairs). Moreover, we discuss the Burchnall–Chaundy polyno-
mial in connection with the stationary Toda hierarchy and the underlying hyperellip-
tic curve.

We denote by CZ the set of all complex-valued sequences indexed by Z.
Throughout this section we suppose the following hypothesis.

1 US economist. Quoted in The New York Times, October 28, 2005.
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Hypothesis 1.1 In the stationary case we assume that a, b satisfy

a, b ∈ CZ, a(n) �= 0, n ∈ Z. (1.1)

In the time-dependent case we assume that a, b satisfy

a( · , t), b( · , t) ∈ CZ, t ∈ R, a(n, · ), b(n, · ) ∈ C1(R), n ∈ Z,

a(n, t) �= 0, (n, t) ∈ Z× R.

Actually, up to Remark 1.8 our analysis will be time-independent, and hence only
the lattice variations of a and b will matter.

We denote by S± the shift operators acting on complex-valued sequences
f = { f (n)}n∈Z ∈ CZ according to

(S± f )(n) = f (n ± 1), n ∈ Z.

Moreover, we will frequently use the notation

f ± = S± f, f ∈ CZ.

Consider the one-dimensional second-order difference expression

L = aS+ + a−S− + b (1.2)

of Jacobi-type, soon to be identified with the Lax differential expression of the Toda
hierarchy. To construct the Toda hierarchy one needs a second difference expression
of order 2p + 2, denoted by P2p+2, p ∈ N0, defined recursively in the following.
We take the quickest route to the construction of P2p+2 and hence to that of the Toda
hierarchy by starting from the recursion relation (1.3)–(1.5) below. Subsequently we
will offer the motivation behind this approach (cf. Remark 1.7).

Define sequences { f�(n)}�∈N0 and {g�(n)}�∈N0 recursively by

f0 = 1, g0 = −c1, (1.3)

2 f�+1 + g� + g−� − 2b f� = 0, � ∈ N0, (1.4)

g�+1 − g−�+1 + 2
(
a2 f +� − (a−)2 f −�

)− b
(
g� − g−�

) = 0, � ∈ N0. (1.5)

We note that a enters only quadratically in f� and g�. Explicitly, one obtains

f0 = 1,

f1 = b + c1,

f2 = a2 + (a−)2 + b2 + c1b + c2,

f3 = (a−)2(b− + 2b)+ a2(b+ + 2b)+ b3

+ c1
(
a2 + (a−)2 + b2)+ c2b + c3, etc., (1.6)

g0 = −c1,
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g1 = −2a2 − c2,

g2 = −2a2(b + b+)+ c1
(− 2a2)− c3, etc.

Here {c�}�∈N denote summation constants which naturally arise when solving (1.5).
Subsequently, it will also be useful to work with the corresponding homogeneous
coefficients f̂� and ĝ�, defined by the vanishing of all summation constants ck for
k = 1, . . . , �+ 1,

f̂0 = 1, f̂� = f�
∣∣
ck=0, k=1,...,�, � ∈ N, (1.7)

ĝ0 = 0, ĝ� = g�
∣∣
ck=0, k=1,...,�+1, � ∈ N. (1.8)

By induction one infers that

f� =
�∑

k=0

c�−k f̂k, � ∈ N0,

g� =
�∑

k=1

c�−k ĝk − c�+1, � ∈ N,

(1.9)

introducing

c0 = 1. (1.10)

In a slight abuse of notation we will occasionally stress the dependence of f� and g�
on a, b by writing f�(a, b), g�(a, b).

Remark 1.2 Using the nonlinear recursion relations (C.20), (C.21) in Theorem
C.1, one infers inductively that all homogeneous elements f̂� and ĝ�, � ∈ N0,
are polynomials in a, b, and some of their shifts. (Alternatively, one can prove di-
rectly by induction that the nonlinear recursion relations (C.20), (C.21) are equiv-
alent to those in (1.3)–(1.5) with all summation constants put equal to zero,
c� = 0, � ∈ N.)

Remark 1.3 As an efficient tool to distinguish between homogeneous and nonho-
mogeneous quantities f̂�, ĝ� and f�, g�, respectively, we now introduce the notation
of degree as follows. Denote

f (r) = S(r) f, f = { f (n)}n∈Z ∈ CZ, S(r) =
{

(S+)r , r ≥ 0,

(S−)−r , r < 0,
r ∈ Z,

and define

deg
(
a(r)
) = deg

(
b(r)
) = 1, r ∈ Z. (1.11)
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This then results in

deg
(

f̂ (r)�

) = �, � ∈ N0, r ∈ Z,

deg
(
ĝ(r)�

) = �+ 1, � ∈ N, r ∈ Z,
(1.12)

using induction in the linear recursion relations (1.3)–(1.5).

Next we relate the homogeneous quantities f̂�, ĝ� to certain matrix elements of
L�. For this purpose it is useful to introduce the standard basis {δm}m∈Z in �2(Z) by

δm = {δm,n}n∈Z, m ∈ Z, δm,n =
{

1, m = n,

0, m �= n.
(1.13)

The scalar product in �2(Z), denoted by ( · , · ), is defined by

( f, g) =
∑
n∈Z

f (n)g(n), f, g ∈ �2(Z).

In the basis just introduced, the Jacobi difference expression L in (1.2) takes on
the form

L =



. . .
. . .

. . .
. . .

. . . 00 a(−2) b(−1) a(−1) 0
0 a(−1) b(0) a(0) 0

0 a(0) b(1) a(1) 0

0
0 a(1) b(2) a(2) 0
. . .

. . .
. . .

. . .
. . .


. (1.14)

Here terms of the form b(n) represent the diagonal (n, n)-entries, n ∈ Z, in the
infinite matrix (1.14).

Lemma 1.4 Assume (1.1) and let n ∈ Z, � ∈ N0. Then the homogeneous coefficients
{ f̂�}�∈N0 and {ĝ�}�∈N0 satisfy

f̂�(n) = (δn, L�δn), (1.15)

ĝ�(n) = −2a(n)(δn+1, L�δn). (1.16)

Proof We abbreviate

f̃�(n) = (δn, L�δn), g̃�(n) = −2a(n)(δn+1, L�δn).

Then

f̃�+1(n) = (Lδn, L�δn) = −1

2
(g̃�(n)+ g̃−� (n))+ b f̃�(n), (1.17)
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and similarly,

g̃�+1 = bg̃� − 2a2 f̃ +� + h̃� = b+g̃� − 2a2 f̃� + h̃+� , (1.18)

where

h̃�(n) = −2a(n)a(n − 1)(δn+1, L�δn−1).

Eliminating h̃� in (1.18) results in

g̃�+1 − g̃−�+1 = −2(a2 f̃ +� − (a−)2 f̃ −� )+ b(g̃� − g̃−� ). (1.19)

By inspection, (1.17) and (1.19) are equivalent to (1.3)–(1.5). In order to determine
which solution of (1.3)–(1.5) has been found (i.e., determine the summation con-
stants c1, . . . , cp) we apply the notion of degree as introduced in Remark 1.3. Then
(1.11) implies that f̂� and ĝ�−1 have degree � and hence

c0 = 1, c� = 0, � = 1, . . . , p,

completing the proof.

As a byproduct, (1.15) and (1.16) yield an alternative proof (by induction) that f�,
g�, � ∈ N0, are polynomials in a, b, and some of their shifts.

Next we define difference expressions P2p+2 of order 2p + 2 by

P2p+2 = −L p+1 +
p∑

�=0

(gp−� + 2a f p−�S+)L� + f p+1, p ∈ N0. (1.20)

We record the first few P2p+2,

P2 = aS+ − a−S−,
P4 = aa+(S+)2 + a(b + b+)S+ − a−(a−)2(S−)2

− a−(b + b−)S− + c1(aS+ − a−S−), etc.

Introducing the corresponding homogeneous difference expressions P̂2p+2 defined
by

P̂2�+2 = P2�+2
∣∣
ck=0, k=1,...,�, � ∈ N0, (1.21)

one finds

P2p+2 =
p∑

�=0

cp−� P̂2�+2. (1.22)
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Using the recursion (1.3)–(1.5), the commutator of P2p+2 and L can be computed
explicitly and one obtains1

[P2p+2, L] = −a
(
g+p + gp + f +p+1 + f p+1 − 2b+ f +p

)
S+

+ 2
(− b(gp + f p+1)+ a2 f +p − (a−)2 f −p + b2 f p

)
(1.23)

− a−
(
gp + g−p + f p+1 + f −p+1 − 2b f p

)
S−, p ∈ N0.

In particular, (L , P2p+2) represents the celebrated Lax pair of the Toda hierarchy.
Varying p ∈ N0, the stationary Toda hierarchy is then defined in terms of the vanish-
ing of the commutator of P2p+2 and L in (1.23) by

[P2p+2, L] = 0, p ∈ N0, (1.24)

or equivalently, by

gp + g−p + f p+1 + f −p+1 − 2b f p = 0, (1.25)

−b(gp + f p+1)+ a2 f +p − (a−)2 f −p + b2 f p = 0. (1.26)

Using (1.4) with � = p one concludes that (1.25) reduces to

f p+1 − f −p+1 = 0, (1.27)

that is, f p+1 is a lattice constant. Similarly, subtracting b times (1.25) from twice
(1.26), and using (1.27) and (1.5) with � = p, one infers that gp+1 is a lattice constant
as well,

gp+1 − g−p+1 = 0. (1.28)

Thus, varying p ∈ N0, equations (1.27) and (1.28) give rise to the stationary Toda
hierarchy, which we introduce as follows

s-Tlp(a, b) =
(

f +p+1 − f p+1

gp+1 − g−p+1

)
= 0, p ∈ N0. (1.29)

Explicitly,

s-Tl0(a, b) =
(

b+ − b
2((a−)2 − a2)

)
= 0,

s-Tl1(a, b) =
(

(a+)2 − (a−)2 + (b+)2 − b2

2(a−)2(b + b−)− 2a2(b+ + b)

)
+ c1

(
b+ − b

2((a−)2 − a2)

)
= 0,

1 The recursion relations (1.3)–(1.5) are constructed in such a manner that the commutator of P2p+2
and L ceases to be a higher-order difference expression and reduces to second order only.
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s-Tl2(a, b) =


(b+)3 − b3 + 2(a+)2b+ − 2(a−)2b
+a2(b+ − b)+ (a+)2b++ + (a−)2b−

2(a−)2(b2 + bb− + (b−)2 + (a−)2 + (a−−)2)
−2a2(b2 + bb+ + (b+)2 + a2 + (a+)2)


+ c1

(
(a+)2 − (a−)2 + (b+)2 − b2

2(a−)2(b + b−)− 2a2(b+ + b)

)
+ c2

(
b+ − b

2((a−)2 − a2)

)
= 0, etc.,

represent the first few equations of the stationary Toda hierarchy. By definition, the
set of solutions of (1.29), with p ranging in N0 and c� ∈ C, � ∈ N, defines the class
of algebro-geometric Toda solutions.

In the following we will frequently assume that a, b satisfy the pth stationary Toda
system. By this we mean it satisfies one of the pth stationary Toda equations after
a particular choice of summation constants c� ∈ C, � = 1, . . . , p, p ∈ N, has been
made.

In accordance with our notation introduced in (1.7), (1.8), and (1.21), the corre-
sponding homogeneous stationary Toda equations are defined by

s-T̂lp(a, b) = s-Tlp(a, b)
∣∣
c�=0, �=1,...,p = 0, p ∈ N0.

Now we are in a position to describe the connections with the usual approach to the
Toda hierarchy equations. For this purpose it suffices to consider the homogeneous
case only. Let T be a bounded operator in �2(Z). Given the standard basis (1.13) in
�2(Z), we represent T by

T = {T (m, n)}(m,n)∈Z2 , T (m, n) = (δm, T δn), (m, n) ∈ Z2.

Moreover, we introduce the upper and lower triangular parts T± of T as

T± = {T±(m, n)}(m,n)∈Z2 , T±(m, n) =
{

T (m, n), ±(n − m) > 0,

0, otherwise.

Lemma 1.5 The homogeneous Lax differential expression P̂2p+2 satisfies

P̂2p+2 =
(
L p+1)

+ −
(
L p+1)

−.

Proof We use induction on p. The case p = 0 is trivial. By (1.20) we need to show

P̂2p+2 = P̂2p L + (ĝp + 2a f̂ p S+)− f̂ p L + f̂ p+1.

This can be done upon considering (δm, P̂2p+2 δn) and making the case distinctions
m < n − 1,m = n − 1,m = n,m = n + 1,m > n + 1 (for m = n one can use
(1.3)–(1.5)).
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Next, we introduce polynomials Fp and G p+1 with respect to the spectral param-
eter z ∈ C of degree p and p + 1, respectively, by

Fp(z) =
p∑

�=0

f p−�z� =
p∑

�=0

cp−� F̂�(z), (1.30)

G p+1(z) = −z p+1 +
p∑

�=0

gp−�z� + f p+1 =
p+1∑
�=1

cp+1−�Ĝ�(z), (1.31)

where F̂� and Ĝ� denote the corresponding homogeneous polynomials defined by

F̂0(z) = F0(z) = 1,

F̂�(z) = F�(z)
∣∣
ck=0, k=1,...,� =

�∑
k=0

f̂�−k zk, � ∈ N0, (1.32)

Ĝ0(z) = G0(z)
∣∣
c1=0 = 0, Ĝ1(z) = G1(z) = −z + b, (1.33)

Ĝ�+1(z) = G�+1(z)
∣∣
ck=0, k=1,...,� = −z�+1 +

�∑
k=0

ĝ�−k zk + f̂�+1, � ∈ N.

Explicitly, one obtains

F0 = 1,

F1 = z + b + c1,

F2 = z2 + bz + a2 + (a−)2 + b2 + c1(z + b)+ c2, etc.,

G0 = −c1, (1.34)

G1 = −z + b,

G2 = −z2 + (a−)2 − a2 + b2 + c1(−z + b),

G3 = −z3 − 2a2z − a2b+ + (a−)2b− − 2(a−)2b + b3

+ c1
(− z2 + (a−)2 − a2 + b2)+ c2(−z + b), etc.

Considering the kernel of L− z for z ∈ C (in the algebraic sense rather than in the
functional analytic one),

ker(L − z) = {ψ : Z→ C ∪ {∞} | (L − z)ψ = 0}, z ∈ C,

one then computes for the restriction of P2p+2 to this space,

P2p+2|ker(L−z) =
(
2aFp(z)S

+ + G p+1(z)
)∣∣

ker(L−z). (1.35)

We emphasize that the result (1.35) is valid independently of whether or not P2p+2

and L commute. However, if one makes the additional assumption that P2p+2 and L
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commute, we will prove in Theorem 1.6 that this implies an algebraic relationship
between P2p+2 and L .

Given the result (1.35), the Lax relation (1.24) becomes

0 = [P2p+2, L]∣∣ker(L−z) = −(L − z)P2p+2
∣∣
ker(L−z)

= (a(2(z − b+)F+p − 2(z − b)Fp + G+p+1 − G−p+1

)
S+

+ (2(a−)2 F−p − 2a2 F+p + (z − b)(G−p+1 − G p+1)
))∣∣

ker(L−z),

or equivalently,

2(z − b+)F+p − 2(z − b)Fp + G+p+1 − G−p+1 = 0, (1.36)

2a2 F+p − 2(a−)2 F−p + (z − b)(G p+1 − G−p+1) = 0. (1.37)

Further manipulations of (1.36) and (1.37) then yield

2(z − b)Fp + G p+1 + G−p+1 = 0, (1.38)

(z − b)2 Fp + (z − b)G p+1 + a2 F+p − (a−)2 F−p = 0, p ∈ N0. (1.39)

Indeed, adding G p+1 − G p+1 to the left-hand side of (1.36) (neglecting a trivial
summation constant) yields (1.38). Insertion of (1.38) into (1.37) implies (1.39).
Equations (1.38) and (1.39) provide an alternative description of the stationary Toda
hierarchy.

Combining equations (1.37) and (1.38) one infers that the expression R2p+2, de-
fined as

R2p+2(z) = G p+1(z, n)2 − 4a(n)2 Fp(z, n)F+p (z, n), (1.40)

is a lattice constant, that is, R2p+2 − R−2p+2 = 0, and hence depends on z only.
Indeed,

(z − b)(R2p+2 − R−2p+2)

= (z − b)
(
(G p+1 + G−p+1)(G p+1 − G−p+1)− 4Fp

(
a2 F+p − (a−)2 F−p

))
= −(G p+1 + G−p+1 + 2(z − b)Fp)2(a

2 F+p − (a−)2 F−p ) = 0,

using (1.37) and (1.38). Thus, R2p+2 is a monic polynomial of degree 2p + 2. We
denote its zeros1 by {Em}m=0,...,2p+1 and hence write

R2p+2(z) =
2p+1∏
m=0

(z − Em), {Em}m=0,...,2p+1 ⊂ C. (1.41)

1 The roots of R2p+2 are related to the spectrum of a bounded operator realization L̆ of L in �2(Z),
assuming a, b ∈ �∞(Z).
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One can decouple (1.38) and (1.39) to obtain separate equations for Fp and G p+1.
For instance, computing G p+1 from (1.39) and inserting the result into (1.38) yields
the following linear difference equation for Fp

(z − b)2(z − b−)Fp − (z − b−)2(z − b)F−p +
(
(a−)2 F−p − a2 F+p

)
(z − b−)

+ ((a−−)2 F−−p − (a−)2 Fp
)
(z − b) = 0.

Similarly, insertion of (1.39) into (1.40) permits one to eliminate G p+1 and results
in the following nonlinear difference equation for Fp,

(z − b)4 F2
p − 2a2(z − b)2 Fp F+p − 2(a−)2(z − b)2 Fp F−p + a4(F+p )2

+ (a−)4(F−p )2 − 2a2(a−)2 F+p F−p = (z − b)2 R2p+2(z). (1.42)

On the other hand, computing Fp in terms of G p+1 and G+p+1 using (1.38) and
inserting the result into (1.39) yields the following linear difference equation for
G p+1

a2(z − b−)(G+p+1 + G p+1)− (a−)2(z − b+)(G−p+1 + G−−p+1)

+ (z − b−)(z − b)(z − b+)(G−p+1 − G p+1) = 0.

Finally, inserting the result for Fp into (1.40) yields the following nonlinear differ-
ence equation for G p+1

(z − b)(z − b+)G2
p+1 − a2(G−p+1 + G p+1)(G p+1 + G+p+1)

= (z − b)(z − b+)R2p+2. (1.43)

Equations analogous to (1.42) and (1.43) can be used to derive nonlinear recur-
sion relations for the homogeneous coefficients f̂� and ĝ� (i.e., the ones satisfying
(1.7) and (1.8) in the case of vanishing integration constants) as proved in Theo-
rem C.1 in Appendix C. This has interesting applications to the asymptotic expan-
sion of the Green’s function of L with respect to the spectral parameter and also
yields a proof that f̂� and ĝ� are polynomials in a, b, and some of their shifts (cf.
Remark 1.2). In addition, as proven in Theorem C.2, (1.42) leads to an explicit de-
termination of the integration constants c1, . . . , cp in (1.29) in terms of the zeros
E0, . . . , E2p+1 of the associated polynomial R2p+2 in (1.41). In fact, one can prove
(cf. (C.23))

c� = c�(E), � = 0, . . . , p, (1.44)

where

c0(E) = 1,
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ck(E) (1.45)

= −
k∑

j0,..., j2p+1=0
j0+···+ j2p+1=k

(2 j0)! · · · (2 j2p+1)!
22k( j0!)2 · · · ( j2p+1!)2(2 j0 − 1) · · · (2 j2p+1 − 1)

E j0
0 · · · E

j2p+1
2p+1,

k = 1, . . . , p,

are symmetric functions of E = (E0, . . . , E2p+1).
The fact that the two difference expressions P2p+2 and L commute implies the

existence of a polynomial relationship between them as detailed in the next result.

Theorem 1.6 Assume Hypothesis 1.1 and suppose that P2p+2 and L commute,
[P2p+2, L] = 0, or equivalently, that s-Tlp(a, b) = 0 for some p ∈ N0. Then L
and P2p+2 satisfy an algebraic relationship of the type (cf. (1.41))

Fp(L , P2p+2) = P2
2p+2 − R2p+2(L) = 0,

R2p+2(z) =
2p+1∏
m=0

(z − Em), z ∈ C.
(1.46)

Proof Using relations (1.20) and (1.35) one computes

P2
2p+2

∣∣
ker(L−z) =

(
P2p+2

∣∣
ker(L−z)

)2
= ((2aFp S+ + G p+1)

∣∣
ker(L−z)

)2
= (2aFp(G

+
p+1 + G p+1 + 2(z − b+)F+p )S+

+ G2
p+1 − 4a2 Fp F+p

)∣∣
ker(L−z)

= (G2
p+1 − 4a2 Fp F+p )

∣∣
ker(L−z) = R2p+2(L)

∣∣
ker(L−z).

Thus one concludes that the finite-order difference expressions P2
2p+2 and R2p+2(L)

coincide on the nullspace of L − z. Since z ∈ C is arbitrary, and solutions ψ(z) of
Lψ = zψ for different values of z are linearly independent, one infers that (1.46)
holds.

The expression Fp(L , P2p+2) in (1.46) represents the Burchnall–Chaundy poly-
nomial of the pair (L , P2p+2). Equation (1.46) naturally leads to the hyperelliptic
curve Kp of (arithmetic) genus p ∈ N0 (possibly with a singular affine part), where

Kp : Fp(z, y) = y2 − R2p+2(z) = 0,

R2p+2(z) =
2p+1∏
m=0

(z − Em), {Em}m=0,...,2p+1 ⊂ C.
(1.47)

Remark 1.7 At this point it is easy to motivate the recursion relation (1.3)–(1.5)
used as our starting point for constructing the Toda hierarchy. If one is interested in
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determining difference expressions P commuting with L (other than simply polyno-
mials of L or the case where P and L are polynomials of a third difference expres-
sion), one can proceed as follows. Restricting P to the two-dimensional null space,
ker(L − z), of (L − z), one can systematically replace second-order shifts S++ by
(a+)−1(−a − (z − b+)S+) and hence effectively reduce P on ker(L − z) to a first-
order difference expression of the type P|ker(L−z) = (2aF(z)S+ + G(z))|ker(L−z),
where F and G are polynomials. Imposing commutativity of P and L on ker(L − z)
then yields the relations (1.36) and (1.37) and hence (1.38) and (1.39) for F
and G. Making the polynomial ansatz F(z) = ∑p

�=0 f p−�z�, G(z) = z p+1 +∑p
�=0 gp−�z� + f p+1 (by (1.38) the degree of G exceeds that of F by one) and in-

serting it into (1.37) and (1.38) then readily yields the recursion relation (1.3)–(1.5)
for f0, . . . , f p, g0, . . . , gp. In other words, one obtains the beginning of the recur-
sion relation (1.3)–(1.5) as well as relations (1.38), (1.39) defining the pth stationary
Toda equations.

Remark 1.8 If a, b satisfy one of the stationary Toda equations in (1.29) for a par-
ticular value of p, s-Tlp(a, b) = 0, then they satisfy infinitely many such equations
of order higher than p for certain choices of summation constants c�. In fact, they
satisfy certain stationary Toda equations s-Tlq(a, b) = 0 for every q ≥ p + 1. This
can be shown as in Remark 1.5 of Volume I.

Next we turn to the time-dependent Toda hierarchy. For that purpose the co-
efficients a and b are now considered as functions of both the lattice point and
time. For each equation in the hierarchy, that is, for each p ∈ N0, we in-
troduce a deformation (time) parameter tp ∈ R in a, b, replacing a(n), b(n)
by a(n, tp), b(n, tp). The second-order difference expression L (cf. (1.2)) now
reads

L(tp) = a( · , tp)S
+ + a−( · , tp)S

− + b( · , tp).

The quantities { f�}�∈N0 , {g�}�∈N0 , and P2p+2, p ∈ N0, are still defined by (1.3)–
(1.5) and (1.20), respectively. The time-dependent Toda equations are then obtained
by imposing the Lax commutator equations

Ltp (tp)− [P2p+2(tp), L(tp)] = 0, tp ∈ R. (1.48)

Relation (1.48) implies(
atp + a(g+p + gp + f +p+1 + f p+1 − 2b+ f +p )

)
S+

−
(
−btp + 2

(− b(gp + f p+1)+ a2 f +p − (a−)2 f −p + b2 f p
))

(1.49)

+
(

atp + a(g+p + gp + f +p+1 + f p+1 − 2b+ f +p )
)−

S− = 0.
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Inserting (1.4) and (1.5) with � = p into (1.49) then yields

0 = Ltp − [P2p+2, L]
=
(

atp − a( f +p+1 − f p+1)
)

S+ +
(

btp + gp+1 − g−p+1

)
+
(

atp − a( f +p+1 − f p+1)
)−

S−.

Varying p ∈ N0, the collection of evolution equations

Tlp(a, b) =
(

atp − a( f +p+1 − f p+1)

btp + gp+1 − g−p+1

)
= 0, (n, tp) ∈ Z× R, p ∈ N0, (1.50)

then defines the time-dependent Toda hierarchy. Explicitly,

Tl0(a, b) =
(

at0 − a(b+ − b)
bt0 − 2(a2 − (a−)2)

)
= 0,

Tl1(a, b) =
(

at1 − a((a+)2 − (a−)2 + (b+)2 − b2)

bt1 + 2(a−)2(b + b−)− 2a2(b+ + b)

)
+ c1

( −a(b+ − b)
−2(a2 − (a−)2)

)
= 0,

Tl2(a, b) =


at2 − a((b+)3 − b3 + 2(a+)2b+ − 2(a−)2b
+a2(b+ − b)+ (a+)2b++ + (a−)2b−)

bt2 − 2a2(b2 + bb+ + (b+)2 + a2 + (a+)2)
+2(a−)2(b2 + bb− + (b−)2 + (a−)2 + (a−−)2)


+ c1

(−a((a+)2 − (a−)2 + (b+)2 − b2)

2(a−)2(b + b−)− 2a2(b+ + b)

)
+ c2

( −a(b+ − b)
−2(a2 − (a−)2)

)
= 0, etc.,

represent the first few equations of the time-dependent Toda hierarchy. The system
of equations, Tl0(a, b) = 0, is of course the Toda system.

The corresponding homogeneous Toda equations are then defined by

T̂lp(a, b) = Tlp(a, b)
∣∣
c�=0, �=1,...,p. (1.51)

Restricting the Lax relation (1.48) to the kernel ker(L − z) one finds that

0 = (Ltp − [P2p+2, L])∣∣ker(L−z) =
(
Ltp + (L − z)P2p+2

)∣∣
ker(L−z)

=
(

a
(atp

a
− a−tp

a−
+ 2(z − b+)F+p − 2(z − b)Fp + G+p+1 − G−p+1

)
S+

+
(

btp + (z − b)
a−tp

a−
+ 2(a−)2 F−p − 2a2 F+p

+ (z − b)(G−p+1 − G p+1)
))∣∣∣∣

ker(L−z)
.
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Hence one obtains

atp

a
− a−tp

a−
= −2(z − b+)F+p + 2(z − b)Fp + G−p+1 − G+p+1, (1.52)

btp = −(z − b)
a−tp

a−
+ 2a2 F+p − 2(a−)2 F−p + (z − b)(G p+1 − G−p+1). (1.53)

Further manipulations then lead to

atp = −a
(
2(z − b+)F+p (z)+ G+p+1(z)+ G p+1(z)

)
, p ∈ N0, (1.54)

btp = 2
(
(z − b)2 Fp(z)+ (z − b)G p+1(z)+ a2 F+p (z)− (a−)2 F−p (z)

)
, (1.55)

p ∈ N0.

Indeed, adding G p+1−G p+1 to (1.52) (neglecting a trivial summation constant) then
implies (1.54), and insertion of (1.54) into (1.53) then yields (1.55). Equations (1.54)
and (1.55) give an alternative description of the time-dependent Toda hierarchy.

Remark 1.9 From (1.3)–(1.5) and (1.30), (1.31) one concludes that the coeffi-
cient a enters quadratically in Fp and G p+1, and hence the Toda hierarchy (1.50)
(respectively (1.29)) is invariant under the substitution

a → aε = {ε(n)a(n)}n∈Z, ε(n) ∈ {1,−1}, n ∈ Z.

This result should be compared with the following lemma.

Lemma 1.10 Suppose a, b ∈ �∞(Z) with a(n) �= 0, n ∈ Z, and introduce aε ∈
�∞(Z) by

aε = {ε(n)a(n)}n∈Z, ε(n) ∈ {1,−1}, n ∈ Z.

Denote by L̆ the bounded �2(Z)-realization of the difference expression L in (1.2)
and define L̆ε in �2(Z) with L replaced by Lε = aεS+ + a−ε S− + b. Then L̆ and L̆ε

are unitarily equivalent, that is, there exists a unitary operator Uε̃ in �2(Z) such that

L̆ε = Uε̃ L̆U−1
ε̃

.

Proof Uε̃ is explicitly represented by the infinite diagonal matrix

Uε̃ =
(
ε̃(n)δm,n

)
m,n∈Z, ε̃(n) ∈ {+1,−1}, n ∈ Z,

in the standard basis (1.13) of �2(Z) with

ε(n) = ε̃(n)ε̃(n + 1), n ∈ Z.

We conclude this section by pointing out an alternative construction of the Toda
hierarchy using a zero-curvature approach instead of Lax pairs (L , P2p+2).
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Remark 1.11 The zero-curvature formalism for the Toda hierarchy can be set up as
follows. One defines the 2× 2 matrix-valued polynomials with respect to z ∈ C,

U (z) =
(

0 1
−a−/a (z − b)/a

)
, (1.56)

Vp+1(z) =
(

G−p+1(z) 2a−F−p (z)
−2a−Fp(z) 2(z − b)Fp + G p+1(z)

)
, p ∈ N0. (1.57)

Then the stationary part of this section can equivalently be based on the zero-
curvature equation

0 = U Vp+1 − V+p+1U (1.58)

= 2

a


0 0

a−
(
(z − b+)F+p − (z − b)Fp a2 F+p − (a−)2 F−p
+ 1

2 (G
+
p+1 − G−p+1)

) + 1
2 (z − b)(G p+1 − G+p+1)

+(z − b)2 Fp − (z − b+)(z − b)F+p

 .

Thus, one obtains (1.36) from the (2, 1)-entry in (1.58). Insertion of (1.36) into the
(2, 2)-entry of (1.58) then yields (1.37). Thus, one also obtains (1.38) and hence the
(2, 2)-entry of Vp+1 in (1.57) simplifies to

Vp+1,2,2(z) = −G−p+1(z) (1.59)

in the stationary case. Since det(U (z, n)) = a−(n)/a(n) �= 0, n ∈ Z, the zero-
curvature equation (1.58) yields that det(Vp+1(z, n)) is a lattice constant (i.e., inde-
pendent of n ∈ Z). Hence, the hyperelliptic curve Kp in (1.47) is then obtained from
the characteristic equation of Vp+1(z) by1

det(y I2 − Vp+1(z, n)) = y2 + det(Vp+1(z, n))

= y2 − G−p−1(z, n)2 + 4a−(n)2 F−p (z, n)Fp(z, n) = y2 − R2p+2(z) = 0,

using (1.59). Similarly, the time-dependent part (1.48)–(1.55) can equivalently be
developed from the zero-curvature equation

0 = Utp +U Vp+1 − V+p+1U. (1.60)

The (1, 1)- and (1, 2)-entry of (1.60) equals zero, the (2, 1)-entry yields (1.52), and
inserting (1.52) into the (2, 2)-entry of (1.60) yields (1.53) and hence also the basic
equations defining the time-dependent Toda hierarchy in (1.54), (1.55).

1 I2 denotes the identity matrix in C2.
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1.3 The Stationary Toda Formalism

Wenn ich nur erst die Sätze habe! Die Beweise werde ich schon
finden.

Bernhard Riemann1

As shown in Section 1.2, the stationary Toda hierarchy is intimately connected with
pairs of commuting differential expressions P2p+2 and L of orders 2p + 2 and 2,
respectively, and a hyperelliptic curve Kp. In this section we study this relationship
more closely and present a detailed study of the stationary Toda hierarchy and its
algebro-geometric solutions a, b. Our principal tools are derived from combining the
polynomial recursion formalism introduced in Section 1.2 and a fundamental mero-
morphic function φ on Kp, the analog of the Weyl–Titchmarsh function of L . With
the help of φ we study the Baker–Akhiezer function ψ , the common eigenfunction
of P2p+2 and L , trace formulas, and theta function representations of φ, ψ , a, and b.

Unless explicitly stated otherwise, we suppose throughout this section that

a, b ∈ CZ, a(n) �= 0, n ∈ Z, (1.61)

and assume (1.29) (respectively (1.38), (1.39)) and (1.30), (1.31), and freely employ
the formalism developed in (1.3)–(1.47), keeping p ∈ N0 fixed.

We recall the Burchnall–Chaundy curve

Kp : Fp(z, y) = y2 − R2p+2(z) = 0,

R2p+2(z) =
2p+1∏
m=0

(z − Em), {Em}m=0,...,2p+1 ⊂ C,
(1.62)

as introduced in (1.47). Throughout this section we assume Kp to be nonsingular,
that is, we suppose that

Em �= Em′ for m �= m′, m,m′ = 0, 1, . . . , 2p + 1. (1.63)

Kp is compactified by joining two points P∞± , P∞+ �= P∞− , but for notational
simplicity the compactification is also denoted by Kp. Points P on Kp \{P∞+ , P∞−}
are represented as pairs P = (z, y), where y( · ) is the meromorphic function on Kp

satisfying Fp(z, y) = 0. The complex structure on Kp is then defined in the usual
way, see Appendix B. Hence, Kp becomes a hyperelliptic Riemann surface of genus
p ∈ N0 in a standard manner.

We also emphasize that by fixing the curve Kp (i.e., by fixing E0, . . . , E2p+1),
the summation constants c1, . . . , cp in f +p+1 − f p+1 and gp+1 − g−p+1 (and hence in
the corresponding stationary Tlp equations) are uniquely determined as is clear from

1 Quoted in O. Hölder, Die Mathematische Methode, Springer, Berlin, 1924, p. 487. (“If I only had the
theorems first. The proofs I would surely find.”)
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(1.44), (1.45), which establish the summation constants c� as symmetric functions of
E0, . . . , E2p+1.

For notational simplicity we will usually tacitly assume that p ∈ N. (The trivial
case p = 0 is explicitly treated in Example 1.23.)

In the following, the zeros of the polynomial Fp( · , n) (cf. (1.30)) will play a
special role. We denote them by {µ j (n)} j=1,...,p and hence write

Fp(z) =
p∏

j=1

(z − µ j ). (1.64)

Similarly, we write

F±p (z) =
p∏

j=1

(z − µ±j ), µ±j (n) = µ j (n ± 1), j = 1, . . . , p, n ∈ Z, (1.65)

and recall that (cf. (1.40))

R2p+2 − G2
p+1 = −4a2 Fp F+p . (1.66)

The next step is crucial; it permits us to “lift” the zeros µ j and µ+j of Fp and F+p
from the complex plane C to the curve Kp. From (1.66) one infers that

R2p+2(z)− G p+1(z)
2 = 0, z ∈ {µ j , µ

+
k } j,k=1,...,p.

We now introduce {µ̂ j } j=1,...,p ⊂ Kp and {µ̂+j } j=1,...,p ⊂ Kp by

µ̂ j (n) = (µ j (n),−G p+1(µ j (n), n)), j = 1, . . . , p, n ∈ Z, (1.67)

and

µ̂+j (n) = (µ+j (n),G p+1(µ
+
j (n), n)), j = 1, . . . , p, n ∈ Z. (1.68)

Next, we introduce the fundamental meromorphic function φ( · , n) on Kp,

φ(P, n) = y − G p+1(z, n)

2a(n)Fp(z, n)
(1.69)

= −2a(n)F+p (z, n)

y + G p+1(z, n)
, (1.70)

P = (z, y) ∈ Kp, n ∈ Z,

with divisor (φ( · , n)) of φ( · , n) given by

(φ( · , n)) = DP∞+ µ̂
+(n) −DP∞− µ̂(n), (1.71)

using (1.64) and (1.65). Here we abbreviated

µ̂ = {µ̂1, . . . , µ̂p}, µ̂+ = {µ̂+1 , . . . , µ̂+p } ∈ Symp(Kp).
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Given the function φ( · , n), the meromorphic stationary Baker–Akhiezer function
ψ( · , n, n0) on Kp is then defined by

ψ(P, n, n0) =


∏n−1

n′=n0
φ(P, n′), n ≥ n0 + 1,

1, n = n0,∏n0−1
n′=n φ(P, n′)−1, n ≤ n0 − 1,

(1.72)

P ∈ Kp \ {P∞±}, (n, n0) ∈ Z2,

with divisor

(ψ( · , n, n0)) = Dµ̂(n) −Dµ̂(n0) + (n − n0)(DP∞+ −DP∞− ). (1.73)

In addition to ψ in (1.72) we also introduce the Baker–Akhiezer vector � defined
by

�(P, n, n0) =
(

ψ(P, n, n0)

ψ(P, n + 1, n0)

)
, P ∈ Kp \ {P∞±}, (n, n0) ∈ Z2. (1.74)

Basic properties of φ, ψ , and � are summarized in the following result. (We
denote by W ( f, g) = a( f g+ − f +g) the (discrete) Wronskian of f and g, f,
g ∈ CZ.)

Lemma 1.12 Suppose that a, b satisfy (1.61) and the pth stationary Toda system
(1.29). Moreover, assume (1.62) and (1.63) and let P = (z, y) ∈ Kp \ {P∞+ , P∞−},
(n, n0) ∈ Z2. Then φ satisfies the Riccati-type equation

aφ(P)+ a−φ−(P)−1 = z − b, (1.75)

as well as

φ(P)φ(P∗) = F+p (z)
Fp(z)

, (1.76)

φ(P)+ φ(P∗) = −G p+1(z)

aFp(z)
, (1.77)

φ(P)− φ(P∗) = y

aFp(z)
. (1.78)

Moreover, ψ and � satisfy

(L − z(P))ψ(P) = 0, (P2p+2 − y(P))ψ(P) = 0, (1.79)

U (z)�−(P) = �(P), (1.80)

Vp+1(z)�
−(P) = y�−(P), (1.81)

ψ(P, n, n0)ψ(P∗, n, n0) = Fp(z, n)

Fp(z, n0)
, (1.82)
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a(n)(ψ(P, n, n0)ψ(P∗, n + 1, n0)+ ψ(P, n + 1, n0)ψ(P∗, n, n0))

= −G p+1(z, n)/Fp(z, n0), (1.83)

W (ψ(P, · , n0), ψ(P∗, · , n0)) = − y

Fp(z, n0)
. (1.84)

Proof Equation (1.37) implies

aφ(P)+ a−φ−(P)−1

= 1

2
(−G p+1(z)+ y)Fp(z)

−1 − 1

2
(G−p+1(z)+ y)Fp(z)

−1

= z − b(n) (1.85)

which proves (1.75). Equations (1.76)–(1.78) then follow from (1.40) and (1.70).
Clearly ψ( · , n, n0) is meromorphic on Kp by (1.72) since φ( · , n) is. (L − z)ψ = 0
follows from (1.85) and

φ(P, n) = ψ(P, n + 1, n0)/ψ(P, n, n0). (1.86)

(L − z)ψ = 0, (1.86), and (1.35) then imply P2p+2ψ = 2aFpψ
+ + G p+1ψ =

(2aFpφ + G p+1)ψ = yψ . (1.82)–(1.84) are an immediate consequence of (1.76)–
(1.78).

Equation (1.80) is an immediate consequence of the definition (1.56) of U and of
(L − z)ψ = 0. Similarly, (1.81) follows from the definition (1.57) of Vp+1 and the
Riccati equation (1.75).

The normalization chosen for the Baker–Akhiezer function ψ in (1.72) (basically,
ψ(P, n, n0) equals ψ̃(P, n)/ψ̃(P, n0) for a certain (not necessarily normalized) so-
lution ψ̃ of (L − z)ψ = 0) has some interesting consequences and is not quite as
innocent as it may appear at first glance. In fact, by (1.73), one infers that its divisor
of zeros and poles on Kp is precisely given by Dµ̂(n)+nDP∞+ and Dµ̂(n0)+n0DP∞− ,
respectively.

Equations (1.82)–(1.84) show that the basic identity (1.40), that is, G2
p+1 −

4a2 Fp F+p = R2p+2, is equivalent to the elementary fact

a2(ψ1,+ψ2,− + ψ1,−ψ2,+)2 − 4a2ψ1,+ψ1,−ψ2,+ψ2,−
= a2(ψ1,+ψ2,− − ψ1,−ψ2,+)2,

identifying ψ(P) = ψ1,+, ψ(P∗) = ψ1,−, ψ+(P) = ψ2,+, ψ+(P∗) = ψ2,−. This
provides the intimate link between our approach and the squared function systems
frequently employed in the literature in connection with algebro-geometric solutions
of the Toda hierarchy.
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If a, b ∈ �∞(Z), the zeros µ j (n) of Fp( · , n) and the zeros µ+� (n) of F+p ( · , n)
are naturally associated with Dirichlet and Neumann boundary conditions of L at the
point n ∈ Z and (n + 1) ∈ Z, respectively. In other words, the Dirichlet eigenvalues
µ j (n) are associated with the boundary condition g(n) = 0 for an element g in
the domain of an appropriate �2(Z)-operator realization of L , whereas the Neumann
eigenvalues µ+� (n) correspond to the boundary condition g(n + 1) = 0. Next, we
“interpolate” between these two boundary conditions and consider the general case

g(n + 1)+ βg(n) = 0, β ∈ R.

The values β = ∞ (formally) and β = 0 then represent the Dirichlet and Neumann
cases, respectively.

To this end we introduce the additional polynomial K β

p+1(z), β ∈ R, of degree
p + 1 for β ∈ R \ {0} and degree p for β = 0 by

K β

p+1(z) = F+p (z)− βa−1G p+1(z)+ β2 Fp(z) (1.87)

=
{
βa−1∏p

�=0(z − λ
β
� ), β ∈ R \ {0}∏p

j=1(z − µ+j ), β = 0
(1.88)

=
p∑

�=0

cp−� K̂ β

�+1(z), β ∈ R \ {0}. (1.89)

Here K̂ β

�+1 denote the corresponding homogeneous polynomials, defined by the van-
ishing of the integration constants ck for k = 1, . . . , �,

K̂ β

1 (z) = K β

1 (z) = βa−1z − βa−1b + 1+ β2,

K̂ β

�+1(z) = K β

�+1(z)
∣∣
ck=0, k=1,...,�, � = 0, . . . , p.

In particular,

K 0
p+1(z) = F+p (z).

Explicitly, one computes

K β

1 = βa−1z − βa−1b + 1+ β2,

K β

2 = βa−1z2 + (1+ β2)z + β2b − βa−1((a−)2 − a2 + b2)+ b+

+ c1(βa−1z − βa−1b + 1+ β2), etc.

Next, combining (1.69), (1.70), and (1.87) yields

φ(P)+ β = y − G p+1(z)+ 2βaFp(z)

2aFp(z)

= −2aK β

p+1(z)

y + G p+1(z)− 2βaFp(z)
.
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One verifies as before (cf. Lemma 1.12) that

R2n+1(z)−
(
G p+1(z)− 2βaFp(z)

)2 = −4a2 Fp(z)K
β

p+1(z),

(φ(P)+ β)(φ(P∗)+ β) = K β

p+1(z)

Fp(z)
,

(ψ(P, n + 1, n0)+ βψ(P, n, n0))(ψ(P∗, n + 1, n0)+ βψ(P∗, n, n0))

= K β

p+1(z, n)

Fp(z, n0)
,

where the Baker–Akhiezer function ψ( · , n, n0) is defined in (1.72). The divisor
(φ( · , n)+ β) of φ( · , n)+ β, β ∈ R \ {0}, is then given by

(φ( · , n)+ β) = D
λ̂
β
0 (n)λ̂

β
(n)
−DP∞− µ̂(n), β ∈ R \ {0},

with

λ̂
β
� (n) = (λ

β
� (n),G p+1(λ

β
� (n), n)− 2βaFp(λ

β
� (n), n)),

� = 0, . . . , p, β ∈ R \ {0}. (1.90)

Remark 1.13 Our notation D
λ̂
β
0 λ̂

β , λ̂
β = {λ̂β1 , . . . , λ̂βp}, in the general case, where

a, b are complex-valued, is somewhat misleading as

D
λ̂
β
0 λ̂

β =
p∑

�=0

D
λ̂
β
�

∈ Symp+1(Kp)

is symmetric in λ̂
β

0 , . . . , λ̂
β
p and there is no natural way to distinguish λ̂

β

0 from λ̂
β
� ,

� = 1, . . . , p. In particular,

D
λ̂
β
0 λ̂

β = D
λ̂
β
� λ̂

β,�

where

λ̂
β,1 = {λ̂β0 , λ̂β2 , . . . , λ̂βp},
λ̂
β,� = {λ̂β0 , λ̂β1 , . . . , λ̂β�−1, λ̂

β

�+1, λ̂
β
p}, � = 2, . . . , p − 1,

λ̂
β,p = {λ̂β0 , λ̂β1 , . . . , λ̂βp−1}.

In the special case, where a, b are real-valued, a distinction between λ̂
β

0 and λ̂
β
� ,

� = 1, . . . , p, can be made naturally by supposing

λ
β

0 ∈ (−∞, E0] ∪ [E2p+1,∞), λ
β
� ∈ [E2�−1, E2�], � = 1, . . . , p.

For notational convenience in connection with positive divisors of degree p on Kp

and their subsequent use in the associated p-dimensional theta function, we will
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keep the abbreviation D
λ̂
β
0 λ̂

β for general complex-valued a, b, but occasionally will

caution the reader about this convention.

In the special case where {Em}m=0,...,2p+1 ⊂ R, we will from now on always
assume the ordering

Em < Em+1, m = 0, 1, . . . , 2p. (1.91)

In particular, if a, b ∈ �∞(Z) are assumed to be real-valued, then necessarily
{µ j (n)} j=1,...,p ⊂ R and {λβ� (n)}�=0,...,p ⊂ R, β ∈ R \ {0}, for all n ∈ Z, since
one is then dealing with self-adjoint boundary value problems in �2(Z); hence, we
will also always assume the ordering

µ j (n) < µ j+1(n), j = 1, . . . , p − 1, n ∈ Z, (1.92)

λ
β
� (n) < λ

β

�+1(n), � = 1, . . . , p − 1, n ∈ Z (1.93)

in this case.
There is apparently no simple discrete analog of the Dubrovin equations in the

case of the Toda lattice, describing the variations of µ j (n), λ
β
� (n), β ∈ R \ {0},

with respect to n by a first-order system of nonlinear difference equations. As a
substitute we offer a continuous first-order system of nonlinear differential equations
whose solution χ̂(x) provides a continuous interpolation for µ̂(n) in the notes to this
section.

Next we analyze the behavior of λβ� (n) as a function of the boundary condition
parameter β ∈ R. By (1.87) one concludes

∂βK β

p+1(z) = −a−1G p+1(z)+ 2βFp(z) (1.94)

and hence

∂βK β

p+1(z)
∣∣
z=λβ� = −βa−1(∂βλβ� ) n∏

m=0
m �=�

(λ
β
� − λβm)

= −a−1G p+1(λ
β
� )+ 2βFp(λ

β
� )

= −a−1 y(λ̂β� ) (1.95)

by (1.90). This implies the following result for the β-variation of the eigenvalues
λ
β
� (n).

Lemma 1.14 Suppose that a, b satisfy (1.61) and the pth stationary Toda system
(1.29). Moreover, assume (1.62) and (1.63) and let β ∈ U , where U ⊂ R \ {0} is
an open interval, and assume that the zeros λβ� (n), � = 0, . . . , p, of K β

p+1( · , n)
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remain distinct for (n, β) ∈ Z×U . Then {λ̂β� }�=0,...,p, defined by (1.90), satisfies the
following first-order system of differential equations

∂βλ
β
� = β−1 y(λ̂β� )

p∏
m=0
m �=�

(λ
β
� − λβm)

−1, � = 0, . . . , p.

Proof This follows from (1.95).

Combining the polynomial recursion approach of Section 1.2 with (1.64) readily
yields trace formulas for f� in terms of symmetric functions of the zeros µ j of Fp.
Similarly, a Lagrange interpolation formula involving G p+1 yields a trace formula
for a2. We focus on the simplest trace formulas only. For this purpose we find it
convenient to introduce the abbreviation,

b(k) = 1

2

2p+1∑
m=0

Ek
m −

p∑
j=1

µk
j , k ∈ N. (1.96)

Lemma 1.15 Suppose that a, b satisfy (1.61) and the pth stationary Toda system
(1.29). Then,

b = 1

2

2p+1∑
m=0

Em −
p∑

j=1

µ j . (1.97)

In addition, if for all n ∈ Z, µ j (n) �= µk(n) for j �= k, j, k = 1, . . . , p, then,

a2 = 1

2

p∑
j=1

y(µ̂ j )

p∏
k=1
k �= j

(µ j − µk)
−1 + 1

4

(
b(2) − b2). (1.98)

Proof The trace relation (1.97) follows by a comparison of powers of z p−1 in (1.30)
and (1.64) for Fp, taking into account (1.6) for f1. In order to prove (1.98) one can
argue as follows. A simple computation reveals

G p+1(z)+(z−b)Fp(z) =|z|→∞ (g0+ f1−b)z p+O(z p−1) =|z|→∞ O(z p−1), (1.99)

since g0 + f1 − b = 0 by (1.6). Hence, applying Lagrange’s interpolation formula
(D.6) to G p+1 + (z − b)Fp with interpolator Fp yields

G p+1(z)+ (z − b)Fp(z) = −
p∑

j=1

y(µ̂ j )

p∏
k=1
k �= j

z − µk

µ j − µk
, z ∈ C.
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Assuming p ≥ 2 for simplicity (the case p = 1 can easily be handled separately),
one then computes for the leading asymptotic terms in (1.99) as |z| → ∞,

− z p+1 + g0z p + g1z p−1 + z p+1 + f1z p − bz p + f2z p−1 − b f1z p−1 + O(z p−2)

=|z|→∞ −
p∑

j=1

y(µ̂ j )

p∏
k=1
k �= j

(µ j − µk)
−1z p−1 + O(z p−2).

Comparing powers of z p−1 then yields

g1 + f2 − b f1 = −
p∑

j=1

y(µ̂ j )

p∏
k=1
k �= j

(µ j − µk)
−1. (1.100)

By (1.6), (1.100) is equivalent to

a2 − (a−)2 =
p∑

j=1

y(µ̂ j )

p∏
k=1
k �= j

(µ j − µk)
−1. (1.101)

On the other hand, using

f1 = −
p∑

j=1

µ j , f2 =
p∑

j,k=1
j<k

µ jµk,

one can rewrite (1.100) in the form

− 2a2 − c2 +
p∑

j,k=1
j<k

µ jµk +
(

1

2

2p+1∑
m=0

Em −
p∑

j=1

µ j

) p∑
k=1

µk

= −
p∑

j=1

y(µ̂ j )

p∏
k=1
k �= j

(µ j − µk)
−1. (1.102)

Inserting c1 and c2 into (1.102), using (1.45), and taking into account (1.96) then
yields (1.98).

Combining (1.98) and (1.101) yields

(a−)2 = −1

2

p∑
j=1

y(µ̂ j )

p∏
k=1
k �= j

(µ j − µk)
−1 + (1/4)

(
b(2) − b2).

The case where some of the µ j coincide in (1.98) requires a more elaborate argu-
ment that will be presented in the next Section 1.4.
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The situation for the general β-boundary conditions (1.94) is a bit different as
described below.

Lemma 1.16 Suppose that a, b satisfy (1.61) and the pth stationary Toda system
(1.29). Then,

a = (β + β−1)−1
(

1

2

2p+1∑
m=0

Em −
p∑

�=0

λ
β
�

)
. (1.103)

Proof This is an immediate consequence of comparing powers of z p in (1.87) and
(1.88).

There appears to be no simple trace formula for b in terms of elementary symmet-
ric functions of λβ0 , . . . , λ

β
p, though. Comparing powers of z p−1 in (1.87) and (1.88)

only yields

b+ + β2b = −(1+ β2)c1 − β(2a + c2a−1)+ βa
p∑

�1,�2=0
�1<�2

λ
β
�1
λ
β
�2
. (1.104)

Equations (1.97) and (1.98) are trace formulas for the algebro-geometric coeffi-
cients a, b. Equations (1.97), (1.98), (1.103), (1.104) (as well as the method of proof)
indicate that higher-order trace formulas associated with the Toda hierarchy can be
obtained from (1.64) and (1.88) comparing powers of z.

Next we turn to asymptotic properties of φ and ψ in a neighborhood of P∞± .

Lemma 1.17 Suppose that a, b satisfy (1.61) and the pth stationary Toda system
(1.29). Moreover, let P = (z, y) ∈ Kp \ {P∞+ , P∞−}, (n, n0) ∈ Z2. Then,

φ(P) =
ζ→0

{
aζ + ab+ζ 2 + O(ζ 3) as P → P∞+ ,
a−1ζ−1 − a−1b − a−1(a−)2ζ + O(ζ 2) as P → P∞− ,

ζ = 1/z,

(1.105)

ψ(P, n, n0) =
ζ→0

(
A(n, n0)ζ

(n−n0)
)±1

(1+ O(ζ )), P → P∞± , ζ = 1/z,

(1.106)

where we used the abbreviation

A(n, n0) =


∏n−1

n′=n0
a(n′)−1, n ≥ n0 + 1,

1, n = n0,∏n0−1
n′=n a(n′), n ≤ n0 − 1.
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Proof The existence of the asymptotic expansion of φ in terms of the local coor-
dinate ζ = 1/z near P∞± (cf. (B.7)–(B.11)) is clear from the explicit form of φ in
(1.69). Insertion of the polynomial Fp into (1.69) then yields the explicit expansion
coefficients in (1.105). Alternatively, and more efficiently, one can insert the ansatz

φ =
z→∞ φ1z−1 + φ2z−2 + O(z−3)

into the Riccati-type equation (1.75). A comparison of powers of z−1 then proves the
first line in (1.105). Similarly, inserting the ansatz

φ =
z→∞ φ−1z + φ0 + φ1z−1 + O(z−2)

into the Riccati-type equation (1.75), a comparison of powers of z−1 then proves the
second line in (1.105).

The existence of the corresponding asymptotic expansion of ψ in terms of the local
coordinate ζ = 1/z near P∞± is clear from the representation (1.72). Inserting the
ansatz

ψ =
ζ→0

(ψ0,± + O(ζ ))ζ∓(n−n0)

into the equation aψ+ + a−ψ− = (z − b)ψ and comparing the coefficients of ζ−1

then yields the recursion relations

aψ+0,+ = ψ0,+, a−ψ−0,− = ψ0,−

and hence proves (1.106) taking into account the normalization ψ(P, n0, n0) = 1.

In addition to (1.105) one can use the Riccati-type equation (1.75) to derive a
convergent expansion of φ around P∞± and recursively determine the coefficients as
in Lemma 1.56. Since this is not used later in this section, we omit further details at
this point.

Since nonspecial divisors play a fundamental role in this section and the next, we
now take a closer look at them.

Lemma 1.18 Suppose that a, b satisfy (1.61) and the pth stationary Toda system
(1.29). Moreover, assume (1.62) and (1.63) and let n ∈ Z. Denote by Dµ̂, µ̂ =
(µ̂1, . . . , µ̂p) ∈ Symp(Kp), the Dirichlet divisor of degree p associated with a, b,
and φ defined according to (1.67), that is,

µ̂ j (n) = (µ j (n),−G p+1(µ j (n), n)) ∈ Kp, j = 1, . . . , p.

Then Dµ̂(n) is nonspecial for all n ∈ Z.
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Proof By Theorem A.32, Dµ̂(n) is special if and only if {µ̂1(n), . . . , µ̂p(n)} contains
at least one pair of the type {µ̂(n), µ̂∗(n)}. Hence Dµ̂(n) is certainly nonspecial as
long as the projections µ j (n) of µ̂ j (n) are mutually distinct, µ j (n) �= µk(n) for
j �= k. On the other hand, if two or more projections coincide for some n0 ∈ Z, for
instance,

µ j1(n0) = · · · = µ jN (n0) = µ0, N ∈ {2, . . . , p},
then G p+1(µ0, n0) �= 0 as long as µ0 /∈ {E0, . . . , E2p+1}. This fact immediately
follows from (1.40) since Fp(µ0, n0) = 0 but R2p+2(µ0) �= 0 by hypothesis. In
particular, µ̂ j1(n0), . . . , µ̂ jN (n0) all meet on the same sheet since

µ̂ jr (n0) = (µ0,−G p+1(µ0, n0)), r = 1, . . . , N ,

and hence no special divisor can arise in this manner. It remains to study the case
where two or more projections collide at a branch point, say at (Em0 , 0) for some
n0 ∈ Z. In this case one concludes

Fp(z, n0) =
z→Em0

O
(
(z − Em0)

2)
and

G p+1(Em0 , n0) = 0 (1.107)

using again (1.40) and Fp(Em0 , n0) = R2p+2(Em0) = 0. Since G p+1( · , n0) is a
polynomial (of degree p + 1), (1.107) implies

G p+1(z, n0) =
z→Em0

O((z − Em0)).

Thus, using (1.40) once more, one obtains the contradiction,

O
(
(z − Em0)

2) =
z→Em0

R2p+2(z)

=
z→Em0

(z − Em0)

( 2p+1∏
m=1

m �=m0

(
Em0 − Em

)+ O(z − Em0)

)
.

Consequently, at most one µ̂ j (n) can hit a branch point at a time and again no special
divisor arises. Finally, by our hypotheses on a, b, µ̂ j (n) stay finite for fixed n ∈ Z
and hence never reach the points P∞± . (Alternatively, by (1.105), µ̂ j never reach the
point P∞− . Hence, if some µ̂ j tend to infinity, they all necessarily converge to P∞+ .)
Again no special divisor can arise in this manner, completing the proof.

If a, b ∈ �∞(Z), the Dirichlet Jacobi operator L̆ D
n , the bounded operator realiza-

tion of L with a Dirichlet boundary condition at the point n ∈ Z in �2((−∞, n−1]∩
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Z)⊕ �2([n + 1,∞) ∩ Z) is self-adjoint, and one infers

|µ j (n)| ≤ 2‖a‖�∞(Z) + ‖b‖�∞(Z), j = 1, . . . , p, n ∈ Z.

Next, we shall provide an explicit representation of φ, �, a, and b in terms of the
Riemann theta function associated with Kp. We freely employ the notation estab-
lished in Appendices A and B. In order to avoid the trivial case p = 0 (considered in
Examples 1.23 and 1.26) we assume p ∈ N for the remainder of this argument.

Let θ denote the Riemann theta function associated with Kp and introduce a fixed
homology basis {a j , b j } j=1,...,p on Kp. Choosing as a convenient fixed base point
the branch point P0 = (E0, 0), the Abel maps AP0

and αP0
are defined by (A.29) and

(A.30) and the Riemann vector �P0
is given by (A.41). Let ω(3)

P∞+ ,P∞−
be the normal

differential of the third kind holomorphic on Kp \ {P∞+ , P∞−} with simple poles
at P∞+ and P∞− and residues +1 and −1, respectively (cf. (A.20)–(A.23), (B.40),
(B.43)),

ω
(3)
P∞+ ,P∞−

= 1

y

p∏
j=1

(z − λ j )dz =
ζ→0
±(ζ−1 + O(ζ )

)
dζ as P → P∞± . (1.108)

Here the constants {λ j }pj=1 ⊂ C are uniquely determined by employing the normal-
ization ∫

a j

ω
(3)
P∞+ ,P∞−

= 0, j = 1, . . . , p (1.109)

and ζ in (1.108) denotes the local coordinate

ζ = 1/z for P near P∞± .

Moreover,

exp

(∫ P

P0

ω
(3)
P∞+ ,P∞−

)
=

ζ→0
(ãζ )±1

( ∞∑
�=0

b̃�ζ
�

)±1

as P → P∞± , ζ = 1/z,

(1.110)

where ã, {b̃�}�∈N0 only depend on Kp (i.e., on {Em}m=0,...,2p+1), ã is an integration
constant, and

b̃0 = 1, b̃1 = 1

2

2p+1∑
m=0

Em −
p∑

j=1

λ j , etc. (1.111)

In order to prove (1.110) and (1.111) one integrates the expansion (B.43) term by
term. The remaining contribution to the integral in (1.110) is then absorbed into the
integration constant ã. The vector of b-periods of the differential ω(3)

P∞+ ,P∞−
/(2π i)
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is denoted by

U (3) = (U (3)
1 , . . . ,U (3)

p

)
, U (3)

j =
1

2π i

∫
b j

ω
(3)
P∞+ ,P∞−

, j = 1, . . . , p. (1.112)

By (A.23) one concludes

U (3)
j = AP∞− (P∞+) = 2AP0(P∞+), j = 1, . . . , p. (1.113)

Assuming DQ to be nonspecial, that is, i(DQ) = 0, with Q = (Q1, . . . , Q p), a
special case of Riemann’s vanishing theorem (cf. Theorem A.28) yields

θ(�P0
− AP0

(P)+ αP0
(DQ)) = 0 if and only if P ∈ {Q1, . . . , Q p}.

Hence the divisors (1.71) and (1.73) of φ( · , n) and ψ( · , n, n0) suggest considering
expressions of the type

C(n)
θ(�P0

− AP0
(P)+ αP0

(Dµ̂+(n)))

θ(�P0
− AP0

(P)+ αP0
(Dµ̂(n)))

exp

(∫ P

P0

ω
(3)
P∞+ ,P∞−

)
, (1.114)

and

C(n, n0)
θ(�P0

− AP0
(P)+ αP0

(Dµ̂(n)))

θ(�P0
− AP0

(P)+ αP0
(Dµ̂(n0)))

exp

(
(n − n0)

∫ P

P0

ω
(3)
P∞+ ,P∞−

)
,

(1.115)
for φ and ψ , respectively, where C(n) and C(n, n0) are independent of P ∈ Kp.

In the following it will be convenient to use the abbreviation

z(P, Q) = �P0
− AP0

(P)+ αP0
(DQ),

P ∈ Kp, Q = {Q1, . . . , Q p} ∈ Symp(Kp).
(1.116)

We note that by (A.48) and (A.49), z( · , Q) is independent of the choice of base point
P0.

A comparison of (1.105), (1.110), and (1.114) at P = P∞+ then yields

a(n) = C(n)ã
θ(z(P∞+ , µ̂

+
(n)))

θ(z(P∞+ , µ̂(n)))
, n ∈ Z. (1.117)

By Abel’s theorem (cf. Theorem A.16), (1.73) yields

αP0
(Dµ̂(n)) = αP0

(Dµ̂(n0))− AP∞− (P∞+)(n − n0)

= αP0
(Dµ̂(n0))− 2AP0

(P∞+)(n − n0), (1.118)

and hence one infers

z(P∞− , µ̂
+
) = z(P∞+ , µ̂) (mod L p). (1.119)

Given these preparations, the theta function representations for φ, ψ , a, and b then
read as follows.
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Theorem 1.19 Suppose that a, b satisfy (1.61) and the pth stationary Toda system
(1.29). Moreover, assume (1.62), (1.63) and let P ∈ Kp \{P∞+ , P∞−} and (n, n0) ∈
Z2. Then for each n ∈ Z, Dµ̂(n) is nonspecial. Moreover,1

φ(P, n) = C(n)
θ(z(P, µ̂+(n)))
θ(z(P, µ̂(n)))

exp

(∫ P

P0

ω
(3)
P∞+ ,P∞−

)
, (1.120)

and

ψ(P, n, n0) = C(n, n0)
θ(z(P, µ̂(n)))

θ(z(P, µ̂(n0)))
exp

(
(n − n0)

∫ P

P0

ω
(3)
P∞+ ,P∞−

)
, (1.121)

where C(n) and C(n, n0) are given by

C(n) = C(n + 1, n) =
(
θ(z(P∞+ , µ̂

−
(n)))

θ(z(P∞+ , µ̂
+
(n)))

)1/2

, (1.122)

C(n, n0) =


∏n−1

n′=n0
C(n′), n ≥ n0 + 1,

1, n = n0,∏n0−1
n′=n C(n′)−1, n ≤ n0 − 1,

(1.123)

=
(
θ(z(P∞+ , µ̂(n0)))θ(z(P∞+ , µ̂

−
(n0)))

θ(z(P∞+ , µ̂(n)))θ(z(P∞+ , µ̂
−
(n)))

)1/2

. (1.124)

Here the square root branch of C(n) in (1.122) has to be chosen according to (1.117)
and the square root branch of C(n, n0) in (1.124) is determined by that in (1.122)
and by formula (1.123).

The Abel map linearizes the auxiliary divisor Dµ̂(n) in the sense that

αP0
(Dµ̂(n)) = αP0

(Dµ̂(n0))− AP∞− (P∞+)(n − n0). (1.125)

Finally, a, b are of the form

a(n)2 = ã2 θ(z(P∞+ , µ̂
−
(n)))θ(z(P∞+ , µ̂

+
(n)))

θ(z(P∞+ , µ̂(n)))2
, (1.126)

b(n) = 1

2

2p+1∑
m=0

Em −
p∑

j=1

λ j

−
p∑

j=1

c j (p)
∂

∂w j
ln

(
θ(z(P∞+ , µ̂(n))+ w)

θ(z(P∞+ , µ̂
−
(n))+ w)

)∣∣∣∣
w=0

(1.127)

with ã introduced in (1.110).

1 To avoid multi-valued expressions in formulas such as (1.120), (1.121), etc., we agree always to choose
the same path of integration connecting P0 and P and refer to Remark A.30 for additional tacitly
assumed conventions.
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Proof By (1.114) and (1.115) in order to prove (1.120) and (1.121) it only remains
to determine the constants C(n) and C(n, n0). By (1.82) one infers

ψ(P∞+ , n, n0)ψ(P∞− , n, n0) = 1

and hence (1.114) and (1.116) yield

C(n, n0)
2 = θ(z(P∞+ , µ̂(n0)))θ(z(P∞+ , µ̂

−
(n0)))

θ(z(P∞+ , µ̂(n)))θ(z(P∞+ , µ̂
−
(n)))

.

Because of

φ(P, n) = ψ(P, n + 1, n),

one gets

C(n) =
(
θ(z(P∞+ , µ̂

−
(n)))

θ(z(P∞+ , µ̂
+
(n)))

)1/2

.

The linearization property (1.125) has already been noted in (1.118).
Formula (1.117) then proves the representation (1.126) for a.
In order to determine b one can argue as follows: Introducing the short-hand
notation

δ+ = 1, δ− = 0,

one finds

θ(z(P, µ̂+(n)))
θ(z(P, µ̂(n)))

=
ζ→0

θ
(
z(P∞+ , µ̂(n + δ±)

)
θ
(
z(P∞+ , µ̂(n − 1+ δ±)

) ∞∑
�=0

θ̃±,�(n)ζ � as P → P∞± ,

(1.128)
where

θ̃±,0(n) = 1, (1.129)

θ̃±,1(n) = ∓
p∑

j=1

c j (p)
∂

∂w j
ln

(
θ
(
z(P∞+ , µ̂(n + δ±)+ w

)
θ
(
z(P∞+ , µ̂(n − 1+ δ±)+ w

))∣∣∣∣
w=0

, etc.,
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and c j (k) are defined in (B.31). Equation (1.128) follows from (1.116), (1.119), and
(B.33). Given (1.128), (1.129), one invokes (1.110) and (1.120) to obtain

φ(P, n) =
ζ→0

ãC(n)
θ(z(P∞+ , µ̂

+
(n)))

θ(z(P∞+ , µ̂(n)))
ζ

+ ãC(n)
θ(z(P∞+ , µ̂

+
(n)))

θ(z(P∞+ , µ̂(n)))

×
(

b̃1 −
p∑

j=1

c j (p)
∂

∂w j
ln

(
θ(z(P∞+ , µ̂

+
(n))+ w)

θ(z(P∞+ , µ̂(n))+ w)

)∣∣∣∣
w=0

)
ζ 2

+ O(ζ 3) as P → P∞+ . (1.130)

A comparison of (1.105) at P∞+ and (1.130), taking into account (1.117), then iden-
tifies b+ and hence yields the representation (1.127) for b.

Remark 1.20 Alternatively, one could have derived the expression (1.127) for b by
evaluating the integral

I = 1

2π i

∫
∂K̂p

π̃( · ) d ln(θ(z( · , µ̂)))

=
p∑

j=1

µ j +
∑

P∈{P∞±}
res
P

(
π̃( · ) d ln(θ(z( · , µ̂))),

using the residue theorem. A direct calculation shows that

I =
p∑

j=1

∫
a j

π̃ω j

and the trace relation (1.97) for b yields

b(n) = 1

2

2p+1∑
m=0

Em −
p∑

j=1

∫
a j

π̃ω j

−
p∑

j=1

c j (p)
∂

∂w j
ln

(
θ(z(P∞+ , µ̂(n))+ w)

θ(z(P∞+ , µ̂
−
(n))+ w)

)∣∣∣∣
w=0

, n ∈ Z. (1.131)

A comparison of (1.127) and (1.131) then reveals that

p∑
j=1

∫
a j

π̃ω j =
p∑

j=1

λ j .

Next we derive an alternative theta function representation of b.
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Corollary 1.21 Under the hypotheses of Theorem 1.19, b admits the representation

b(n) = E0 − ã
θ(z(P∞+ , µ̂

−
(n)))θ(z(P0, µ̂

+
(n)))

θ(z(P∞+ , µ̂(n)))θ(z(P0, µ̂(n)))

− ã
θ(z(P∞+ , µ̂(n)))θ(z(P0, µ̂

−
(n)))

θ(z(P∞+ , µ̂
−
(n)))θ(z(P0, µ̂(n)))

, n ∈ Z.

Proof It suffices to combine (1.75), (1.120), (1.122) (all at P = P0), and (1.126).

One can use Lemma B.1 in the stationary case to obtain an alternative proof of the
fact that φ and ψ given by (1.120)–(1.124) coincide with the expressions (1.70) and
(1.72) and satisfy the Riccati and Jacobi equations (1.75) and (1.79), respectively.
We shall use precisely this strategy in the time-dependent context to be discussed in
Section 1.5.

Combining (1.125) and (1.126), (1.127) shows the remarkable linearity of the theta
function representations for a and b with respect to n ∈ Z. In fact, one can rewrite
(1.126), (1.127) as

a(n)2 = ã2 θ(A − B + Bn)θ(A + B + Bn)

θ(A + Bn)2
,

b(n) = 1

2

2p+1∑
m=0

Em −
p∑

j=1

λ j

−
p∑

j=1

c j (p)
∂

∂w j
ln

(
θ(A + Bn + w)

θ(A − B + Bn + w)

)∣∣∣∣
w=0

,

(1.132)

where

A = �P0 − AP0
(P∞+)+ AP∞− (P∞+)n0 + αP0(Dµ̂(n0)), (1.133)

B = −AP∞− (P∞+), (1.134)

�0 = 1

2

2p+1∑
m=0

Em −
p∑

j=1

λ j . (1.135)

Here the constants ã, λ j , c j (p) ∈ C, j = 1, . . . , p, and the constant vector B ∈ Cp

are uniquely determined by Kp (and its homology basis), and the constant vec-
tor A ∈ Cp is in one-to-one correspondence with the Dirichlet data µ̂(n0) =
(µ̂1(n0), . . . , µ̂p(n0)) ∈ Symp(Kp) at the initial point n0 as long as the divisor
Dµ̂(n0) is assumed to be nonspecial.
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Remark 1.22 The algebro-geometric coefficients a, b in (1.126), (1.127), respec-
tively, (1.132), are complex-valued in general. To obtain real-valued coefficients,
one needs to impose certain symmetry constraints on Kp and additional constraints
on A in (1.133), which we will briefly indicate next. In particular, the formal self-
adjointness of the Lax difference expression L = aS++a−S−+b, with real-valued
coefficients a, b, leads to the reality constraints

E0 < E1 < · · · < E2p+1 (1.136)

on the zeros of R2p+2, that is, all branch points of Kp are assumed to be in real
position.

We choose the homology basis {a j , b j }pj=1 according to Theorem A.38 (i) (cf. Fig-
ure B.2, implementing the additional constraint (1.136)). Moreover, we introduce the
antiholomorphic involution ρ+ : (z, y) �→ (z, y) as in Example A.37 (i). By Example
A.37 (i), Theorem A.38 (cf. (A.61), (A.65)–(A.67)), (B.29), (B.30), (B.31), (B.34),
and (B.35)–(B.37) one infers that (Kp, ρ+) is of dividing type and hence

r = p + 1, τ = −τ, R = 0, θ(z) = θ(z), z ∈ Cp,

ρ+(a j ) = a j , ρ+(b j ) = −b j , j = 1, . . . , p,

c(k) ∈ Rp, k = 1, . . . , p,

ã ∈ R, λ j ∈ R, j = 1, . . . , p, �0 ∈ R.

In particular,

B ∈ Rp.

The connected component of bounded, real-valued algebro-geometric Jacobi coeffi-
cients a2, b in the Lax difference expression L can then be described as follows: The
initial position of µ̂ j (n0) ∈ Kp must be chosen in real position with its projections
lying in the (closure of) spectral gaps of L̆ , that is,

µ j (n0) ∈ [E2 j−1, E2 j ], j = 1, . . . , p, (1.137)

implying

A ∈ Rp.

(This immediately shows that a2 and b are real-valued. An additional argument also
shows that a itself is real-valued.) One can show that all real-valued and bounded
algebro-geometric Jacobi coefficients a, b arise in this manner. In particular, as n
varies in Z, the motion of the projection µ j (n) of µ̂ j (n) ∈ Kp remains confined
to the interval [E2 j−1, E2 j ] (the closure of the spectral gap (E2 j−1, E2 j )). Since
the initial divisor data µ̂ j (n0), with the projections µ j (n0) constrained by (1.137)
for j = 1, . . . , p, are independent of each other, the set of all initial divisors Dµ̂(n0)
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corresponds topologically to a product of p circles. Thus, the corresponding isospec-
tral set of all bounded algebro-geometric Jacobi coefficients a2, b, corresponding to
a fixed curve Kp, constrained by (1.136), can be identified with the p-dimensional
real torus Tp. Effective coordinates on this torus uniquely characterizing a2, b are
then the Dirichlet data µ̂(n0) = (µ̂1(n0), . . . , µ̂p(n0)) (cf. also the notes to Sec-
tion 1.3), or equivalently, Dirichlet divisors Dµ̂(n0) in real position constrained by
(1.137). Formulas (1.126), (1.127) for a, b then provide a concrete representation of
the elements of this isospectral torus Tp. The coefficients a, b in (1.126), (1.127), in
general, will be quasi-periodic1 with respect to n ∈ Z.

Real-valued Jacobi coefficients a, b associated with Kp constrained by (1.136)
can also be constructed by “misplacing” one or several initial values µ j (n0) in the
“wrong” spectral gap closure (−∞, E0]. This then results in additional connected but
noncompact components of isospectral and singular, respectively, unbounded Jacobi
coefficients a2, b.

If in addition one is interested in periodic Jacobi coefficients a, b with a real period
� > 0, the additional periodicity constraints

�B ∈ Zp \ {0}
must be imposed.

Next we briefly consider the trivial case p = 0 excluded in Theorem 1.19.

Example 1.23 Assume p = 0, P = (z, y) ∈ K0\{P∞+ , P∞−}, and let (n, n0) ∈ Z2.
Then,

K0 : F0(z, y) = y2 − R2(z) = y2 − (z − E0)(z − E1) = 0,

E0, E1 ∈ C, E0 �= E1,

a(n) = a, a2 = (E1 − E0)
2/16, b(n) = b = (E0 + E1)/2,

s-T̂lk(a, b) = 0, k ∈ N0,

L = aS+ + aS− + b, P2 = aS+ − aS−,
F0(z, n) = 1, G1(z, n) = −z + b,

φ(P, n) = y + z − b

2a
,

ψ(P, n, n0) =
(

y + z − b

2a

)n−n0

.

1 A sequence f = { f (n)}n∈Z ∈ CZ is called quasi-periodic with fundamental periods (ω1, . . . , ωN ) ∈
(0,∞)N if the frequencies 2π/ω1, . . . , 2π/ωN are linearly independent over Q and if there exists a
continuous function F ∈ C(RN ), periodic of period 1 in each of its arguments, such that f (n) =
F(ω−1

1 n, . . . , ω−1
N n), n ∈ Z. In particular, f becomes periodic with period ω > 0 if and only if

ω = m jω j for some m j ∈ N, j = 1, . . . , N .
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We will end this section by providing some additional examples, which we hope
will aid in illustrating the general results of this section. We also consider the case of
Toda hierarchy solitons involving singular curves even though the principal results
of this section were formulated for curves with nonsingular affine parts.

We start with the special case of real-valued periodic stationary Toda solutions and
hence summarize the highlights of periodic Jacobi matrices.

Example 1.24 The case of real-valued periodic stationary Toda solutions.
We assume

a, b ∈ RZ, a(n) �= 0, n ∈ Z,

and the periodicity condition

a(n + N ) = a(n), b(n + N ) = b(n), n ∈ Z,

for some N ∈ N. (In most formulas below we assume N ≥ 2 and tacitly avoid the
trivial case N = 1. The latter situation is treated in Example 1.26.) We agree to
abbreviate

A =
N∏

n=1

a(n) =
N∏

n=1

a(n0 + n), B =
N∑

n=1

b(n) =
N∑

n=1

b(n0 + n), n0 ∈ Z.

Given the fundamental system of solutions c(z, · , n0) and s(z, · , n0) of Lψ = zψ ,
satisfying the initial conditions

s(z, n0, n0) = 0, s(z, n0 + 1, n0) = 1,

c(z, n0, n0) = 1, c(z, n0 + 1, n0) = 0,

one defines the fundamental matrix

�(z, n, n0) =
(

c(z, n, n0) s(z, n, n0)

c(z, n + 1, n0) s(z, n + 1, n0)

)

=


Un(z) · · ·Un0+1(z), n ≥ n0 + 1,

I2, n = n0,

U−1
n+1(z) · · ·U−1

n0
(z), n ≤ n0 − 1,

where

Um(z) = 1

a(m)

(
0 a(m)

−a(m − 1) z − b(m)

)
,

Um(z)
−1 = 1

a(m − 1)

(
z − b(m) −a(m)

a(m − 1) 0

)
.



62 1 The Toda Hierarchy

Since

W (c(z, · , n0), s(z, · , n0)) = a(n0),

an arbitrary solution ψ of Lψ = zψ is of the type

ψ(z, n) = ψ(z, n0)c(z, n, n0)+ ψ(z, n0 + 1)s(z, n, n0),

or equivalently, (
ψ(z, n)

ψ(z, n + 1)

)
= �(z, n, n0)

(
ψ(z, n0)

ψ(z, n0 + 1)

)
. (1.138)

Moreover, one infers

det(�(z, n, n0)) = a(n0)

a(n)
,

�(z, n, n0) = �(z, n, n1)�(z, n1, n0),

�(z, n, n0)
−1 = �(z, n0, n). (1.139)

The monodromy matrix M(z, n) is then defined by

M(z, n) = �(z, n + N , n)

and hence

M(z, n) = �(z, n, n0)M(z, n0)�(z, n, n0)
−1 (1.140)

and

det(M(z, n)) = 1.

The Floquet discriminant �(z) defined by

�(z) = 1

2
tr(M(z, n))

is independent of n (cf. (1.140)) and the Floquet multipliers ρ±(z) (the eigenvalues
of M(z, n)) then read

ρ±(z) = �(z)± (�(z)2 − 1)1/2. (1.141)

Again by (1.140) they are independent of n and satisfy

ρ+(z)ρ−(z) = 1, ρ+(z)+ ρ−(z) = 2�(z).

Let {Ẽ�}�=0,...,2N−1 ⊂ R be the zeros of �(z)2 − 1 and write

�(z)2 − 1 = 1

4A2

2N−1∏
�=0

(z − Ẽ�) (1.142)
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and

�(z)∓ 1 = 1

2A

N∏
j=1

(z − E±j ). (1.143)

The zeros {E±j }1≤ j≤N turn out to be the eigenvalues of the following periodic, re-

spectively antiperiodic, Jacobi matrices L̆±n0
in CN . More generally, define L̆θ

n0
in

CN associated with the boundary conditions

a(n0+N )ψ(n0+N ) = eiθa(n0)ψ(n0), ψ(n0+N+1) = eiθψ(n0+1), 0 ≤ θ < 2π

by

L̆θ
n0
=



b(n0+1) a(n0+1) 0 ··· 0 e−iθa(n0+N )

a(n0+1) b(n0+2)
. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . . b(n0+N−1) a(n0+N−1)
eiθa(n0+N ) 0 ··· 0 a(n0+N−1) b(n0+N )


,

0 ≤ θ < 2π.

One infers that L̆θ
n0

and L̆2π−θ
n0

are antiunitarily equivalent. The periodic, respectively

antiperiodic, Jacobi matrices L̆±n0
alluded to above are then defined by

L̆+n0
= L̆0

n0
, L̆−n0

= L̆π
n0
.

The eigenvalues of L̆θ
n0

are then given by

(ρ+(z)− eiθ )(ρ−(z)− eiθ ) = 0, that is, by �(z) = cos(θ).

They are simple for θ ∈ (0, π) ∪ (π, 2π) and at most twice degenerate for θ = 0
or π . The periodic and antiperiodic eigenvalues {E±j }1≤ j≤N (cf. (1.143)) satisfy the
inequalities

E±1 < E∓1 ≤ E∓2 < E±2 ≤ E±3 < · · · < E (−1)N−1

N−1 ≤ E (−1)N−1

N < E (−1)N

N ,

sgn(A) = ±(−1)N .

In addition (cf. (1.142)),

{E±j }1≤ j≤N = {Ẽ�}�=0,...,2N−1.

Another way to express these facts is to invoke the theory of direct integral decom-
positions

�2(Z) ∼=
∫ ⊕
[0,2π)

dθ

2π
�2((n0 + 1, n0 + N )), L̆ ∼=

∫ ⊕
[0,2π)

dθ

2π
L̆θ

n0
,
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where ∼= denotes unitary equivalence. In particular, the spectrum spec
(
L̆
)

of L̆ is
characterized by

spec
(
L̆
) = {λ ∈ R | |�(λ)| ≤ 1} =

N−1⋃
j=0

[
Ẽ2 j , Ẽ2 j+1

]
.

Returning to the square root (�(z)2−1)1/2 in (1.141), we shall define it as follows.
First, we fix its branch near +∞ by

(�(λ)2 − 1)1/2 = − sgn(A)|(�(λ)2 − 1)1/2|, λ > Ẽ2N−1.

Requiring (�(z)2 − 1)1/2 to be analytic in C \⋃N−1
j=0 [Ẽ2 j , Ẽ2 j+1] one then defines

(�(λ)2 − 1)1/2 = lim
ε↓0

(�(λ+ iε)2 − 1)1/2, λ ∈ R,

and analytically continues with respect to z ∈ C \⋃N−1
j=0 [Ẽ2 j , Ẽ2 j+1].

As a consequence one obtains

|ρ+(z)| ≤ 1, |ρ−(z)| ≥ 1 (1.144)

and the (normalized) Floquet functions ψ±(z, · , n0) defined by

ψ±(z, n, n0) = c(z, n, n0)+ φ±(z, n)s(z, n, n0)

then satisfy

ψ±(z, n + N , n0) = ρ±(z)ψ±(z, n, n0) (1.145)

and

W (ψ−(z, · , n0), ψ+(z, · , n0)) = a(n0)(φ+(z, n0)− φ−(z, n0)).

In addition, one infers

φ±(z, n0) = φ±(z, n0 + N ) = ρ±(z)− c(z, n0 + N , n0)

s(z, n0 + N , n0)

= c(z, n0 + N + 1, n0)

ρ±(z)− s(z, n0 + N + 1, n0)
, (1.146)

W (ψ−(z, · , n0), ψ+(z, · , n0)) = 2a(n0)(�(z)2 − 1)1/2

s(z, n0 + N , n0)
, (1.147)

G(z, n, n) = s(z, n + N , n)

2a(n)(�(z)2 − 1)1/2
=

∏N−1
j=1 (z − µ j (n))(∏2N−1
�=0 (z − Ẽ�)

)1/2
, (1.148)

ψ+(z, n, n0)ψ−(z, n, n0) = a(n0)s(z, n + N , n)

a(n)s(z, n0 + N , n0)
=

N−1∏
j=1

(
z − µ j (n)

z − µ j (n0)

)
.

(1.149)
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If all spectral gaps of L̆ are “open”, that is, the spectra of L̆±n0
are both simple, we

have

p = N − 1,

(
2N−1∏
�=0

(z − Ẽ�)

)1/2

= R2p+2(z)
1/2 = 2A(�(z)2 − 1)1/2,

see (B.17)–(B.18). In the case where some spectral gaps “close”, we introduce the
index sets

J ′ = { j ′ ∈ {1, . . . , N − 1} | Ẽ2 j ′−1 = Ẽ2 j ′ },
J = {0, 1, . . . , 2N − 1} \ { j ′, j ′ + 1 | j ′ ∈ J ′},

and define

Q|J ′|(z) = 1

2A

∏
j ′∈J ′

(z − Ẽ2 j ′−1), R2p+2(z) =
∏
j∈J

(z − Ẽ j ).

In order to establish the connection with the notation employed earlier in this section
and in Appendix A we agree to identify

{Ẽ j } j∈J and {Em}0≤m≤2p+1

and

{̃λ j ′ } j ′∈{1,...,N−1}\J ′ and {λ j }1≤ j≤p.

Then one infers

p = N − 1− |J ′| = N − 1− deg(Q|J ′|) = 1

2
(|J | − 2),

(�(z)2 − 1)1/2 = R2p+2(z)
1/2 Q|J ′|(z),

Kp : Fp(z, y) = y2 − R2p+2(z) = y2 −
2p+1∏
m=0

(z − Em) = 0,

where |J | and |J ′| abbreviate the cardinality of J and J ′, respectively. Finally, the
N -periodic sequences a, b satisfy

s-Tlp(a, b) = 0

for an appropriate set of summation constants {c�}�=1,...,p ⊂ C (cf. (1.44)).

Next, we indicate a systematic approach to high-energy expansions of the functions
c(z, n, n0) and s(z, n, n0). This will then be used to explicitly compute ã, b̃1, and B



66 1 The Toda Hierarchy

in Lemma 1.25. First we note that (1.139) yields

s(z, n + 1, n0) = a(n0)a(n)
−1c(z, n0, n),

s(z, n, n0) = −a(n0)a(n)
−1s(z, n0, n),

c(z, n, n0) = a(n0)a(n)
−1s(z, n0 + 1, n),

c(z, n + 1, n0) = −a(n0)a(n)
−1c(z, n0 + 1, n)

(1.150)

and (1.138) implies

s(z, n, n0 + 1) = −a(n0 + 1)a(n0)
−1c(z, n, n0),

c(z, n, n0 − 1) = −a(n0 − 1)a(n0)
−1s(z, n, n0),

s(z, n, n0 − 1) = c(z, n, n0)+ (z − b(n0))a(n0)
−1s(z, n, n0),

c(z, n, n0 + 1) = s(z, n, n0)+ (z − b(n0 + 1))a(n0 + 1)−1c(z, n, n0).

(1.151)

Next we define the Jacobi matrix Jn0(k) in Ck

Jn0(k) =



b(n0 + 1) a(n0 + 1) 0 · · · 0

a(n0 + 1) b(n0 + 2)
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . b(n0 + k − 1) a(n0 + k − 1)
0 · · · 0 a(n0 + k − 1) b(n0 + k)


and introduce

Pn0(n, k) = 1

n

(
tr(Jn0(k)

n)−
n−1∑
j=1

Pn0( j, k) tr(Jn0(k)
n− j )

)
.

One then obtains

s(z, n0 + k + 1, n0) = det(z − Jn0(k))∏k
n=1 a(n0 + n)

= zk −∑k
�=1 Pn0(�, k)zk−�∏k

n=1 a(n0 + n)
, k ∈ N.

(1.152)
Explicitly, one computes

tr(Jn0(k)) =
n0+k∑

n=n0+1

b(n),

tr(Jn0(k)
2) =

n0+k∑
n=n0+1

b(n)2 + 2
n0+k−1∑
n=n0+1

a(n)2, (1.153)
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tr(Jn0(k)
3) =

n0+k∑
n=n0+1

b(n)3 + 3
n0+k−1∑
n=n0+1

a(n)2(b(n)+ b(n + 1)), etc.

Using (1.150) and (1.151) one can extend (1.152) to k ≤ −1 and to corresponding
results for c(z, n, n0). A direct calculation yields

c(z, n0 + k + 1, n0) = − a(n0)zk−1∏k
n=1 a(n0 + n)

(
1− z−1

k∑
n=2

b(n0 + n)+ O(z−2)

)
,

c(z, n0 − k, n0) = zk∏k
n=1 a(n0 − n)

(
1− z−1

k−1∑
n=0

b(n0 − n)+ O(z−2)

)
,

s(z, n0 + k + 1, n0) = zk∏k
n=1 a(n0 + n)

(
1− z−1

k∑
n=1

b(n0 + n)+ O(z−2)

)
,

s(z, n0 − k, n0) = − a(n0)zk−1∏k
n=1 a(n0 − n)

(
1− z−1

k−1∑
n=1

b(n0 − n)+ O(z−2)

)
,

k ∈ N. (1.154)

We emphasize that (1.150)–(1.154) hold for general (not necessarily periodic or
algebro-geometric finite-band) Jacobi operators. In the following we shall apply
(1.154) to the periodic case. Equations (1.141), (1.144) yield the expansion

ρ±(z) =|z|→∞ (1∓ 1)�(z)± 1

2�(z)
+ O(�(z)−3)

=|z|→∞
(

zN

A

)∓1

(1+ O(z−1))

and (1.146) and (1.154) then imply

φ±(z, n) =|z|→∞
(

a(n)

z

)±1 (
1± z−1b(n + δ±)+ O(z−2)

)
,

δ± = 1

2
(1± 1) =

{
1,

0.

(1.155)

The relation

ψ±(z, n, n0) =


∏n−1

n′=n0
φ±(z, n′), n ≥ n0 + 1,

1, n = n0,∏n0−1
n′=n φ±(z, n′)−1, n ≤ n0 − 1,
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then yields

ψ±(z, n0 + k, n0) =
(

z−k
k−1∏
n=0

a(n0 + n)

)±1

(1.156)

×
(

1± z−1
k(k−1)∑
n=δ±

b(n0 + n)+ O(z−2)

)
, k ∈ N,

ψ±(z, n0 − k, n0) =
(

z−k
k∏

n=1

a(n0 − n)

)∓1

(1.157)

×
(

1± z−1
k(k−1)∑
n=δ±

b(n0 − n)+ O(z−2)

)
, k ∈ N.

Expansions (1.155)–(1.156) also hold in the general case if ψ± are the solutions of
Lψ = zψ which are in �2((0,±∞)).

These expansions can now be employed to explicitly compute ã, b̃1, and B
(cf. (1.110)–(1.111)).

Lemma 1.25 In the periodic case one obtains (cf. (1.110), (1.111))

ã = −|A|1/N , (1.158)

b̃1 = B

N
= 1

2

2N−1∑
�=0

Ẽ� −
N∑

j=1

λ̃ j = 1

2

2p+1∑
m=0

Em −
p∑

j=1

λ j . (1.159)

Proof Combining (1.145), (1.156), and (1.110) yields

ρ±(z) = ψ±(z, n0 + N , n0) = (A/zN )±1(1± z−1 B + O(z−2))

= sgn(A)(−ã/z)±N (1± z−1 Nb̃1 + O(z−2))

and hence (1.158) (noting ã < 0) and the first equality in (1.159). Combining the
latter and (1.111) (accounting for the possibility of closing spectral gaps) then yields
the last two equalities in (1.159).

The special cases of real-valued periodic stationary Toda solutions corresponding
to p = 0, 1 are isolated next (in the case p = 0 we complement Example 1.23 and
record additional results under the current real-valuedness assumptions on a and b):

Example 1.26 The case p = 0.
Let a ∈ R \ {0}, b ∈ R, N ∈ N, and consider

a(n) = a, b(n) = b, n ∈ Z.
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One then verifies the following explicit formulas:

φ±(z, n) = 1

2a

(
z − b ±

√
(z − b)2 − 4a2

)
= φ±(z),

ψ±(z, n, n0) = φ±(z)(n−n0),

s(z, n, n0) = a√
(z − b)2 − 4a2

(
φ+(z)(n−n0) − φ−(z)(n−n0)

)
,

c(z, n, n0) = −s(z, n − 1, n0),

�(z) = 1

2

(
φ+(z)N + φ−(z)N ),

ρ±(z) = φ±(z)N ,

A = aN , B = Nb,

Ẽ0 = −2|a| + b, Ẽ2 j+1 = Ẽ2 j+2 = µ j (n) = −2|a| cos( jπ/N )+ b,

j = 0, . . . , N − 2, n ∈ Z, Ẽ2N−1 = 2|a| + b,

J ′ = {1, 2, . . . , N − 1}, J = {0, 2N − 1},
E0 = −2|a| + b, E1 = 2|a| + b,

|a| = 1

4
(E1 − E0), b = 1

2
(E0 + E1),

L̆ = a(S+ + S−)+ b, dom
(
L̆
) = �2(Z),

spec
(
L̆
) = [E0, E1] = [−2|a| + b, 2|a| + b],

K0 : F0(z, y) = y2 − R2(z) = y2 − (z − E0)(z − E1) = 0,

ã = −|a|, b̃1 = b,

s-T̂lk(a, b) = 0, k ∈ N0.

Example 1.27 The case p = 1.
Assume

E0 < E1 < E2 < E3, (1.160)

and introduce the following objects:

K1 : F1(z, y) = y2 − R4(z) = y2 −
3∏

m=0

(z − Em) = 0,

k =
(
(E2 − E1)(E3 − E0)

(E3 − E1)(E2 − E0)

)1/2

∈ (0, 1),

k′ =
(
(E3 − E2)(E1 − E0)

(E3 − E1)(E2 − E0)

)1/2

∈ (0, 1),

k2 + k′2 = 1,
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ū(z) =
(
(E3 − E1)(E0 − z)

(E3 − E0)(E1 − z)

)1/2

,

C = 2

((E3 − E1)(E2 − E0))1/2
, (1.161)

F(z, k) =
∫ z

0

dx

((1− x2)(1− k2x2))1/2
,

E(z, k) =
∫ z

0
dx

(
1− x2

1− k2x2

)1/2

,

�(z, α2, k) =
∫ z

0

dx

(1− α2x2)((1− x2)(1− k2x2))1/2
, α2 ∈ R,

K (k) = F(1, k), E(k) = E(1, k), �(α2, k) = �(1, α2, k).

(We note that all square roots are assumed to be positive for x ∈ (0, 1).) Here F , E ,
and � denote the Jacobi integral of the first, second, and third kind, respectively. One
observes that E( · , k) has a simple pole at∞ while �( · , α2, k) has simple poles at
z = ±α−1.

Given these concepts we can now compute the basic objects in connection with
the elliptic curve K1 as follows:

ω1 = dz

2C K (k)y
,

τ1,1 =
∫

b1

ω1 = i K (k′)/K (k),

AP0(P) = ±(2K (k))−1 F(ū(z), k) (mod L1), P = (z, y) ∈ �±,
AP0(P∞+) = (2K (k))−1 F

(
((E3 − E1)/(E3 − E0))

1/2, k
)

(mod L1),

� = 1

2
(1− τ1,1) (mod L1), (1.162)

ω
(3)
P∞+ ,P∞−

= (z − λ1) dz

y
, λ1 = E0 + E1 − E0

K (k)
�((E2 − E1)/(E2 − E0), k),∫

b1

ω
(3)
P∞+ ,P∞−

= 2π i
(

K (k)−1 F
(
((E3 − E1)/(E3 − E0))

1/2, k
)+ 1

)
,∫ P

P0

ω
(3)
P∞+ ,P∞−

= ±C(E1 − E0)
((

1− K (k)−1�((E2 − E1)/(E2 − E0), k)
)

F(ū(z), k)

−�(ū(z), (E3 − E0)/(E3 − E1), k)
)
, P = (z, y) ∈ �±.

The relation

AP0(µ̂1(n)) = AP0(µ̂1(n0))− 2(n − n0)AP0(P∞+)
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for (n, n0) ∈ Z2 then yields

µ1(n) = E1

(
1− ((E2 − E1)/(E2 − E0))(E0/E1)

× sn2 (2K (k)δ1 − 2(n − n0)F
(
((E3 − E1)/(E3 − E0))

1/2, k
)))

×
(

1− ((E2 − E1)/(E2 − E0))

× sn2 (2K (k)δ1 − 2(n − n0)F
(
((E3 − E1)/(E3 − E0))

1/2, k
)))−1

,

where we abbreviated

AP0(µ̂1(n0)) = (−δ1 + 1

2
τ1,1) (mod L1)

and

sn(w) = z, w =
∫ z

0

dx

((1− x2)(1− k2x2))1/2
= F(z, k). (1.163)

Moreover,

s-Tl1(a, b) = 0

for c1 = − 1
2 (E0 + E1 + E2 + E3).

Recalling that

θ(z) = ϑ3(z) =
∑
n∈Z

exp(2π inz + π iτ1,1n2), (1.164)

the results collected in Example 1.27 now enable one to express a, b in terms of the
quantities in (1.160)–(1.163), and (1.164). We omit further details at this point.

Finally, we consider the case of (not necessarily real-valued) p-solitons for the
stationary Toda lattice hierarchy.

Example 1.28 The case of stationary Toda p-soliton solutions.
Let p ∈ N, n ∈ Z, introduce

τ0(n) = 1,

τp(n) = det(Ip + C p(n)), C p(n) =
(

č j čk
(z j zk)

n+1

1− z j zk

)
j,k=1,...,p

,

č j ∈ C \ {0}, z j ∈ C, 0 < |z j | < 1, z j �= zk for j �= k, j, k ∈ {1, . . . , p},
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and assume that τp−1(n) �= 0, τp(n) �= 0 for all n ∈ Z. Then,

ap(n) = τp(n + 2)1/2τp(n)1/2

2τp(n + 1)
,

bp(n) = −1

2

(
z pτp−1(n + 2)τp(n)

τp−1(n + 1)τp(n + 1)
+ τp−1(n)τp(n + 1)

z pτp−1(n + 1)τp(n)

)
+ 1

2

(
z p + z−1

p

)
,

and

s-Tlp(ap, bp) = 0

for an appropriate set of summation constants {c�}�=1,...,p ⊂ C (cf. (1.44)). The
associated singular curve is given by

Fp(z, y) = y2 − (z + 1)(z − 1)
p∏

j=1

(
z − 1

2

(
z j + z−1

j

))2 = 0,

E0 = −1, E2p+1 = 1, E2 j−1 = E2 j = 1

2

(
z j + z−1

j

)
, j = 1, . . . , p.

The conditions in Example 1.28 are satisfied in the case where a, b are real-valued,
assuming

č j > 0, j = 1, . . . , p,

1

2

(
z p + z−1

p

)
>

1

2

(
z p−1 + z−1

p−1

)
> · · · > 1

2

(
z1 + z−1

1

)
> 1,

and for sufficiently small (complex) perturbations thereof.
This completes our treatment of stationary algebro-geometric solutions of the Toda

hierarchy. Before we now turn to the corresponding time-dependent case we de-
scribe a solution of the stationary algebro-geometric Toda hierarchy initial value
problem with complex-valued initial data in the following section. Equivalently, we
will present an algorithm solving the inverse algebro-geometric spectral problem for
non-self-adjoint Jacobi operators.

1.4 The Stationary Toda Algebro-Geometric Initial Value Problem

My method to overcome a difficulty is to go around it.
George Pòlya1

The aim of this section is to derive an algorithm that enables one to construct algebro-
geometric solutions for the stationary Toda hierarchy for complex-valued initial data.
To this effect we will develop a new algorithm for constructing stationary complex-
valued algebro-geometric solutions of the Toda hierarchy, which is of independent

1 How to Solve It, p. 181.
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interest as it solves the inverse algebro-geometric spectral problem for generally
non-self-adjoint Lax operators L̆ in �2(Z) (i.e., operator realizations of the differ-
ence expression L in (1.2)), starting from a suitably chosen set of initial divisors of
full measure. The generally non-self-adjoint behavior of the underlying Lax operator
associated with general coefficients for the Toda hierarchy poses a variety of diffi-
culties that we will briefly indicate next (a more detailed discussion will follow in
the time-dependent context in Section 1.6).

In the special case of a self-adjoint Lax (i.e., Jacobi) operator L̆ , where a and b
are real-valued and bounded, real-valued algebro-geometric solutions of the station-
ary Toda hierarchy, or equivalently, self-adjoint Jacobi operators with real-valued
algebro-geometric coefficients a, b are constructed as follows: One develops an al-
gorithm that constructs finite nonspecial divisors Dµ̂(n) ∈ Symp(Kp) in real position
for all n ∈ Z starting from an initial Dirichlet divisor Dµ̂(n0) ∈ Symp(Kp) in an ap-
propriate real position (i.e., with Dirichlet eigenvalues in appropriate spectral gaps
of L̆). “Trace formulas” of the type (1.97) and (1.98) then construct the stationary
real-valued solutions a(0), b(0) of s-Tlp(a, b) = 0.

This approach works perfectly in the special self-adjoint case where the Dirichlet
divisors µ̂(n) = (µ̂1(n), . . . , µ̂p(n)) ∈ Symp(Kp), n ∈ Z, yield Dirichlet eigen-

values µ1, . . . , µp of the Lax operator L̆ situated in p different spectral gaps of
L̆ on the real axis. In particular, for fixed n ∈ Z, the Dirichlet eigenvalues µ j (n),
j = 1, . . . , p, are pairwise distinct and hence formula (1.98) for a is well-defined.

This situation drastically changes if complex-valued initial data a(0), b(0) or Dµ̂(n0)

are permitted. In this case the Dirichlet eigenvalues µ j , j = 1, . . . , p, are no longer
confined to separated spectral gaps of L̆ on the real axis and, in particular, they are
in general no longer pairwise distinct and “collisions” between them can occur at
certain values of n ∈ Z. Thus, the stationary algorithm breaks down at such values
of n. A priori, one has no control over such collisions, especially, it is not possible to
identify initial conditions Dµ̂(n0) at some n0 ∈ Z which avoid collisions for all n ∈ Z.
We solve this problem directly by explicitly permitting collisions from the outset. In
particular, we properly modify the algorithm described above in the self-adjoint case
by referring to a more general interpolation formalism (cf. the end of Appendix D)
for polynomials, going beyond the usual Lagrange interpolation formulas. In this
manner it will be shown that collisions of Dirichlet eigenvalues no longer pose a
problem.

In addition, there is a second nontrivial complication in the non-self-adjoint case:
Since the Dirichlet eigenvalues µ j (n), j = 1, . . . , p, are no longer confined to spec-
tral gaps of L̆ on the real axis as n varies in Z, it can no longer be guaranteed that
µ j (n), j = 1, . . . , p, stay finite for all n ∈ Z. As will be shown in this section,
this phenomenon is related to certain deformations of the algebraic curve Kp under
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which for some n0 ∈ Z, a(n0)→ 0 and µ j (n0 + 1)→∞ for some j ∈ {1, . . . , p}.
We solve this particular problem by properly restricting the initial Dirichlet divisors
Dµ̂(n0) ∈ Symp(Kp) to a dense set of full measure.

Summing up, we offer a new algorithm to solve the inverse algebro-geometric
spectral problem for general (non-self-adjoint) Toda Lax operators, starting from a
properly chosen dense set of initial divisors of full measure.

After this lengthy introduction we now embark on the corresponding inverse prob-
lem consisting of constructing a solution of (1.29) given certain initial data. More
precisely, we seek to construct solutions a, b ∈ CZ satisfying the pth stationary
Toda system (1.29) starting from a properly restricted set M0 of finite nonspecial
Dirichlet divisor initial data Dµ̂(n0) at some fixed n0 ∈ Z,

µ̂(n0) = {µ̂1(n0), . . . , µ̂p(n0)} ∈M0, M0 ⊂ Symp(Kp),

µ̂ j (n0) =
(
µ j (n0),−G p+1(µ j (n0), n0)

)
, j = 1, . . . , p.

(1.165)

For notational convenience we will use the phrase that a, b blow up whenever the
divisor Dµ̂ hits one of the points P∞+ or P∞− .

Of course, we would like to ensure that the sequences obtained via our algorithm
do not blow up. To investigate when this happens, we study the image of our divisors
under the Abel map. A key ingredient in our analysis will be (1.125) which yields a
linear discrete dynamical system on the Jacobi variety J (Kp). In particular, we will
be led to investigate solutions Dµ̂ of the discrete initial value problem

αQ0
(Dµ̂(n)) = αQ0

(Dµ̂(n0))− (n − n0)AP∞− (P∞+),

µ̂(n0) = {µ̂1(n0), . . . , µ̂p(n0)} ∈ Symp(Kp),
(1.166)

where Q0 ∈ Kp is a given base point. Eventually, we will be interested in solutions
Dµ̂ of (1.166) with initial data Dµ̂(n0) satisfying (1.165) and M0 to be specified as
in (the proof of) Lemma 1.30.

Before proceeding to develop the stationary Toda algorithm, we briefly analyze
the dynamics of (1.166).

Lemma 1.29 Let n ∈ Z and suppose that Dµ̂(n) is defined via (1.166) for some
divisor Dµ̂(n0) ∈ Symp(Kp).
(i) If Dµ̂(n) is finite and nonspecial and Dµ̂(n+1) is infinite, then Dµ̂(n+1) contains
P∞+ but not P∞− .
(i i) If Dµ̂(n) is nonspecial and Dµ̂(n+1) is special, then Dµ̂(n) contains P∞+ at least
twice.
(i i i) Items (i) and (i i) hold if n + 1 is replaced by n − 1 and P∞+ by P∞− .
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Proof (i) Suppose one point in Dµ̂(n+1) equals P∞− and denote the remaining ones
by Dµ̃(n+1). Then (1.166) implies that αQ0

(Dµ̃(n+1)) + AQ0
(P∞+) = αQ0

(Dµ̂(n)).
Since we assumed Dµ̂(n) to be nonspecial, we have Dµ̂(n) = Dµ̃(n+1) +DP∞+ , con-
tradicting finiteness of Dµ̂(n).
(i i) Next, we choose Q0 to be a branch point of Kp such that AQ0

(P∗) = −AQ0
(P).

If Dµ̂(n+1) is special, then it contains a pair of points (Q, Q∗) whose contribu-
tion will cancel under the Abel map, that is, αQ0

(Dµ̂(n+1)) = αQ0
(Dν̂(n+1)) for

some Dν̂(n+1) ∈ Symp−2(Kp). Invoking (1.166) then shows that αQ0
(Dµ̂(n)) =

αQ0
(Dν̂(n+1)) + 2AQ0

(P∞+). As Dµ̂(n) was assumed to be nonspecial, this shows
that Dµ̂(n) = Dν̂(n+1) + 2DP∞+ , as claimed.
(i i i) This is proved analogously to item (i).

This yields the following behavior of Dµ̂(n) if we start with some nonspecial finite
initial divisor Dµ̂(n0): As n increases, Dµ̂(n) stays nonspecial as long as it remains
finite. If it becomes infinite, then it is still nonspecial and contains P∞+ at least
once (but not P∞− ). Further increasing n, all instances of P∞+ will be rendered into
P∞− step by step, until we have again a nonspecial divisor that has the same number
of P∞− as the first infinite one had P∞+ . Generically, one expects the subsequent
divisor to be finite and nonspecial again.

Next we show that most initial divisors are well-behaved in the sense that their
iterates stay away from P∞± . Since we want to show that this set is of full measure,
it will be convenient to identify Symp(Kp) with the Jacobi variety J (Kp) via the
Abel map and take the Haar measure on J (Kp). Of course, the Abel map is only
injective when restricted to the set of nonspecial divisors, but these are the only ones
we are interested in.

Lemma 1.30 The set M0 ⊂ Symp(Kp) of initial divisors Dµ̂(n0) for which Dµ̂(n),
defined via (1.166), is finite and hence nonspecial for all n ∈ Z, forms a dense set of
full measure in the set Symp(Kp) of positive divisors of degree p.

Proof Let M∞± be the set of divisors in Symp(Kp) for which (at least) one point is
equal to P∞+ or P∞− . The image αQ0

(M∞±) of M∞± is given by

αQ0
(M∞±) ⊆

⋃
P∈{P∞+ ,P∞−}

AQ0
(P)+ αQ0

(Symp−1(Kp)) ⊂ J (Kp).

Since the (complex) dimension of Symp−1(Kp) is p − 1, its image must be of mea-
sure zero by Sard’s theorem. Similarly, let Msp be the set of special divisors, then its
image is given by

αQ0
(Msp) = αQ0

(Symp−2(Kp)),
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assuming Q0 to be a branch point of Kp. In particular, we conclude that αQ0
(Msp) ⊂

αQ0
(M∞±) and thus αQ0

(Msing) = αQ0
(M∞±) has measure zero, where

Msing =M∞± ∪Msp.

Hence, ⋃
n∈Z

(
αQ0

(Msing)+ n AP∞− (P∞+)
)

(1.167)

is of measure zero as well. But this last set contains all initial divisors which will hit
P∞+ or P∞− or become special at some n ∈ Z. We denote by M0 the inverse image
of the complement of the set (1.167) under the Abel map,

M0 = α−1
Q0

(
Symp(Kp)

∖⋃
n∈Z

(
αQ0

(Msing)+ n AP∞− (P∞+)
))
.

Since M0 is of full measure, it is automatically dense in Symp(Kp).

We briefly illustrate some aspects of this analysis in the special case p = 1 (i.e.,
the case where (1.62) represents an elliptic Riemann surface) in more detail.

Example 1.31 The case p = 1.
In this case one has

F1(z, n) = z − µ1(n),

G2(z, n) = R4(µ̂1(n))
1/2 + (z − b(n))F1(z, n),

R4(z) =
3∏

m=0

(z − Em),

and hence a straightforward calculation shows that

G2(z, n)2 − R4(z) = 4a(n)2(z − µ1(n))(z − µ1(n + 1))

= (z − µ1(n))(4a(n)2z − 4a(n)2b(n)+ Ẽ),

where

Ẽ = 1

8
(E0 + E1 − E2 − E3)(E0 − E1 + E2 − E3)(E0 − E1 − E2 + E3).

Solving for µ1(n + 1), one obtains

µ1(n + 1) = b(n)− Ẽ

4a(n)2
.

This shows that µ1(n0 + 1)→∞, in fact, µ1(n0 + 1) = O(a(n0)
−2) as a(n0)→ 0



1.4 The Stationary Toda Algebro-Geometric IVP 77

during an appropriate deformation of the parameters Em , m = 0, . . . , 3. In particular,
as a(n0)→ 0, one thus infers b(n0 + 1)→∞ during such a deformation since

b(n) = 1

2

3∑
m=0

Em − µ1(n), n ∈ Z,

specializing to p = 1 in the trace formula (1.97). Next, we illustrate the set M∞ in
the case p = 1. (We recall that Msp = ∅ and hence Msing = M∞ if p = 1.) By
(1.166) one infers

AP∞+ (µ̂1(n)) = AP∞+ (µ̂1(n0))+ (n − n0)AP∞+ (P∞−), n, n0 ∈ Z. (1.168)

We note that µ̂1 ∈M∞ is equivalent to

there is an n ∈ Z such that µ̂1(n) = P∞+ (or P∞− ). (1.169)

By (1.168), relation (1.169) is equivalent to

AP∞+ (µ̂1(n0))+ AP∞+ (P∞−)Z = 0 (mod L1).

Thus, Dµ̂1(n0) ∈M0 ⊂ K1 if and only if

AP∞+ (µ̂1(n0))+ AP∞+ (P∞−)Z �= 0 (mod L1)

or equivalently, if and only if

AP∞− (µ̂1(n0))+ AP∞− (P∞+)Z �= 0 (mod L1).

Next, we describe the stationary Toda algorithm. Since this is a somewhat lengthy
affair, we will break it up into several steps.

The Stationary (Complex) Toda Algorithm:
We prescribe the following data:

(i) The set

{Em}2p+1
m=0 ⊂ C, Em �= Em′ for m �= m′, m,m′ = 0, . . . , 2p + 1, (1.170)

for some fixed p ∈ N. Given {Em}2p+1
m=0 , we introduce the function R2p+2 and the

hyperelliptic curve Kp (with nonsingular affine part) according to (1.62).
(i i) The nonspecial divisor

Dµ̂(n0) ∈ Symp(Kp),

where µ̂(n0) is of the form

µ̂(n0) = {µ̂1(n0), . . . , µ̂1(n0)︸ ︷︷ ︸
p1(n0) times

, . . . , µ̂q(n0), . . . , µ̂q(n0)︸ ︷︷ ︸
pq(n0)(n0) times

}
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with

µ̂k(n0) = (µk(n0), y(µ̂k(n0))),

µk(n0) �= µk′(n0) for k �= k′, k, k′ = 1, . . . , q(n0),
(1.171)

and

pk(n0) ∈ N, k = 1, . . . , q(n0),

q(n0)∑
k=1

pk(n0) = p.

With {Em}2p+1
m=0 and Dµ̂(n0) prescribed, we next introduce the following quantities

(for z ∈ C):

Fp(z, n0) =
q(n0)∏
k=1

(z − µk(n0))
pk (n0), (1.172)

Tp−1(z, n0) = −Fp(z, n0)

q(n0)∑
k=1

pk (n0)−1∑
�=0

(
d�y(P)/dζ �

)∣∣
P=(ζ,η)=µ̂k (n0)

�!(pk(n0)− �− 1)! (1.173)

×
(

d pk (n0)−�−1

dζ pk (n0)−�−1

(
(z − ζ )−1

q(n0)∏
k′=1, k′ �=k

(ζ − µk′(n0))
−pk′ (n0)

))∣∣∣∣
ζ=µk (n0)

,

b(n0) = 1

2

2p+1∑
m=0

Em −
q(n0)∑
k=1

pk(n0)µk(n0), (1.174)

G p+1(z, n0) = −(z − b(n0))Fp(z, n0)+ Tp−1(z, n0). (1.175)

Here the sign of y in (1.173) is chosen according to (1.171).
Next we record a series of facts:

(I) By construction (cf. Lemma D.5),

T (�)
p−1(µk(n0), n0) = −d�y(P)

dζ �

∣∣∣∣
P=(ζ,η)=µ̂k (n0)

= G(�)
p+1(µk(n0), n0),

� = 0, . . . , pk(n0)− 1, k = 1, . . . , q(n0),

(1.176)

(here the superscript (�) denotes � derivatives w.r.t. z) and hence

µ̂k(n0) = (µk(n0),−G p+1(µk(n0), n0)), k = 1, . . . , q(n0).

(II) Since Dµ̂(n0) is nonspecial by hypothesis, one concludes that

pk(n0) ≥ 2 implies R2p+2(µk(n0)) �= 0, k = 1, . . . , q(n0).
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(III) By (I) and (II) one computes

d�
(
G p+1(z, n0)

2
)

dz�

∣∣∣∣
z=µk (n0)

= d�R2p+2(z)

dz�

∣∣∣∣
z=µk (n0)

,

z ∈ C, � = 0, . . . , pk(n0)− 1, k = 1, . . . , q(n0).

(1.177)

(IV) By (1.175) and (1.177) one infers that Fp divides R2p+2 − G2
p+1.

(V) By (1.174) and (1.175) one verifies that

R2p+2(z)− G p+1(z, n0)
2 =

z→∞ O(z2p). (1.178)

By (IV) and (1.178) we may write

R2p+2(z)− G p+1(z, n0)
2 = Fp(z, n0)F̌p−r (z, n0 + 1), z ∈ C, (1.179)

for some r ∈ {0, . . . , p}, where the polynomial F̌p−r has degree p − r . If, in fact,
F̌0 = 0, then R2p+2(z) = G p+1(z, n0)

2 would yield double zeros of R2p+2, con-
tradicting our basic hypothesis (1.170). Thus we conclude that in the case r = p,
F̌0 cannot vanish identically and hence we may break up (1.179) in the following
manner

φ̌(P, n0) = y − G p+1(z, n0)

Fp(z, n0)
= F̌p−r (z, n0 + 1)

y + G p+1(z, n0)
, P = (z, y) ∈ Kp.

Next we decompose

F̌p−r (z, n0 + 1) = Č
p−r∏
j=1

(z − µ j (n0 + 1)), z ∈ C, (1.180)

where Č ∈ C\{0} and {µ j (n0+1)}p−r
j=1 ⊂ C (if r = p we follow the usual convention

and replace the product in (1.180) by 1). By inspection of the local zeros and poles
as well as the behavior near P∞± of the function φ̌( · , n0), its divisor,

(
φ̌( · , n0)

)
, is

given by (
φ̌( · , n0)

) = DP∞+ µ̂(n0+1) −DP∞− µ̂(n0),

where

µ̂(n0 + 1) = {µ̂1(n0 + 1), . . . , µ̂p−r (n0 + 1), P∞+ , . . . , P∞+︸ ︷︷ ︸
r times

}.

In particular,
Dµ̂(n0+1) is a finite divisor if and only if r = 0. (1.181)

We note that
αQ0

(Dµ̂(n0+1)) = αQ0
(Dµ̂(n0))− AP∞− (P∞+),

in accordance with (1.166).



80 1 The Toda Hierarchy

(VI) Assuming that (1.178) is precisely of order z2p as z → ∞, that is, assuming
r = 0 in (1.179), we rewrite (1.179) in the more appropriate manner

R2p+2(z)− G p+1(z, n0)
2 = −4a(n0)

2 Fp(z, n0)Fp(z, n0 + 1), z ∈ C, (1.182)

where we introduced the coefficient a(n0)
2 to make Fp( · , n0 + 1) a monic poly-

nomial of degree p. (We will later discuss conditions which indeed guarantee
that r = 0, cf. (1.181) and the discussion in step (XI) below.) By construction,
Fp( · , n0 + 1) is then of the type

Fp(z, n0 + 1) =
q(n0+1)∏

k=1

(z − µk(n0 + 1))pk (n0+1),

q(n0+1)∑
k=1

pk(n0 + 1) = p,

µk(n0 + 1) �= µk′(n0 + 1) for k �= k′, k, k′ = 1, . . . , q(n0 + 1), z ∈ C,

and we define

µ̂k(n0+1) = (µk(n0+1),G p+1(µk(n0+1), n0)), k = 1, . . . , q(n0+1). (1.183)

Moreover, we introduce the divisor

Dµ̂(n0+1) ∈ Symp(Kp)

by

µ̂(n0 + 1) = {µ̂1(n0 + 1), . . . , µ̂1(n0 + 1)︸ ︷︷ ︸
p1(n0+1) times

, . . . , µ̂q(n0+1), . . . , µ̂q(n0+1)︸ ︷︷ ︸
pq(n0+1)(n0+1) times

}.

In particular, because of definition (1.183), Dµ̂(n0+1) is nonspecial and hence

pk(n0 + 1) ≥ 2 implies R2p+2(µk(n0 + 1)) �= 0, k = 1, . . . , q(n0 + 1).

Again we note that

αQ0
(Dµ̂(n0+1)) = αQ0

(Dµ̂(n0))− AP∞− (P∞+),

in accordance with (1.166).
(VII) Introducing

b(n0 + 1) = 1

2

2p+1∑
m=0

Em −
q(n0+1)∑

k=1

pk(n0 + 1)µk(n0 + 1),

and interpolating G p+1( · , n0) with Fp( · , n0 + 1) rather than Fp( · , n0) yields

G p+1(z, n0) = −(z − b(n0 + 1))Fp(z, n0 + 1)− Tp−1(z, n0 + 1), z ∈ C,
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where

Tp−1(z, n0 + 1) = Fp(z, n0 + 1)

×
q(n0+1)∑

k=1

pk (n0+1)−1∑
�=0

(
d�y(P)/dζ �

)∣∣
P=(ζ,η)=µ̂k (n0+1)

�!(pk(n0 + 1)− �− 1)!

×
(

d pk (n0+1)−�−1

dζ pk (n0+1)−�−1

(
(z − ζ )−1

×
q(n0+1)∏

k′=1, k′ �=k

(ζ − µk′(n0 + 1))−pk′ (n0+1)
))∣∣∣∣

ζ=µk (n0+1)

. (1.184)

Here the sign of y in (1.184) is chosen in accordance with (1.183), that is,

µ̂k(n0 + 1) = (µk(n0 + 1),G p+1(µk(n0 + 1), n0)), k = 1, . . . , q(n0 + 1).

(VIII) An explicit computation of a(n0)
2 then yields

a(n0)
2 = 1

2

q(n0)∑
k=1

(
d pk (n0)−1 y(P)/dζ pk (n0)−1

)∣∣
P=(ζ,η)=µ̂k (n0)

(pk(n0)− 1)! (1.185)

×
q(n0)∏

k′=1, k′ �=k

(µk(n0)− µk′(n0))
−pk (n0) + 1

4

(
b(2)(n0)− b(n0)

2).
Here and in the following we abbreviate

b(2)(n) = 1

2

2p+1∑
m=0

E2
m −

q(n)∑
k=1

pk(n)µk(n)
2 (1.186)

for an appropriate range of n ∈ N.
The result (1.185) is obtained as follows: Starting from the identity (1.182), one

inserts the expressions (1.172) and (1.175) for Fp( · , n0) and G p+1( · , n0), respec-
tively, then inserts the explicit form (1.173) of Tp−1( · , n0), and finally collects all
terms of order z2p as z → ∞. An entirely elementary but fairly tedious calculation
then produces (1.185).

In the special case q(n0) = p, pk(n0) = 1, k = 1, . . . , p, (1.185) and (1.186)
reduce to (1.98) and (1.96) (for k = 2).
(IX) Introducing

G p+1(z, n0 + 1) = −(z − b(n0 + 1))Fp(z, n0 + 1)+ Tp−1(z, n0 + 1)

one then obtains

G p+1(z, n0 + 1) = −G p+1(z, n0)− 2(z − b(n0 + 1))Fp(z, n0 + 1). (1.187)
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(X) At this point one can iterate the procedure step by step to construct Fp( · , n),
G p+1( · , n), Tp−1( · , n), a(n), b(n), µk(n), k = 1, . . . , q(n), etc., for n ∈ [n0,∞)∩
Z, subject to the following assumption (cf. (1.181)) at each step:

Dµ̂(n+1) is a finite divisor (and hence a(n) �= 0) for all n ∈ [n0,∞) ∩ Z. (1.188)

The formalism is symmetric with respect to n0 and can equally well be developed
for n ∈ (−∞, n0] ∩ Z subject to the analogous assumption

Dµ̂(n−1) is a finite divisor (and hence a(n) �= 0) for all n ∈ (−∞, n0] ∩ Z.
(1.189)

Indeed, one first interpolates G p+1( · , n0 − 1) with the help of Fp( · , n0), then with
Fp( · , n0 − 1), etc.

Moreover, we once again remark for consistency reasons that

αQ0
(Dµ̂(n)) = αQ0

(Dµ̂(n0))− (n − n0)AP∞− (P∞+), n ∈ Z,

in agreement with our starting point (1.166).
(XI) Choosing the initial data Dµ̂(n0) such that

Dµ̂(n0) ∈M0,

where M0 ⊂ Symp(Kp) is the set of finite initial divisors introduced in Lemma 1.30,
then guarantees that assumptions (1.188) and (1.189) are satisfied for all n ∈ Z.
(XII) Performing these iterations for all n ∈ Z, one then arrives at the following set of
equations for Fp and G p+1 after the following elementary manipulations: Utilizing

G2
p+1 − 4a2 Fp F+p = R2p+2 = (G−p+1)

2 − 4(a−)2 F−p Fp, (1.190)

and inserting

G+p+1 = −G p+1 − 2(z − b+)F+p (1.191)

into

G2
p+1 − (G−p+1)

2 − 4a2 Fp F+p + 4(a−)2 F−p Fp = 0

then yields

2a2 F+p − 2(a−)2 F−p + (z − b)(G p+1 − G−p+1) = 0. (1.192)

Subtracting (1.191) from its shifted version G p+1 = −G−p+1− 2(z− b)Fp then also
yields

2(z − b+)F+p − 2(z − b)Fp + G+p+1 − G−p+1 = 0. (1.193)

As discussed in Section 1.2, (1.192) and (1.193) are equivalent to the stationary Lax
and zero-curvature equations (1.24) and (1.58), and hence to (1.29). At this stage we
have verified the basic hypotheses of Section 1.3 (i.e., (1.61) and the assumption that
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a, b satisfy the pth stationary Toda system (1.29)) and hence all results of Section
1.3 apply.

Finally, we briefly summarize these considerations:

Theorem 1.32 Let n ∈ Z, suppose the set {Em}2p+1
m=0 ⊂ C satisfies Em �= Em′

for m �= m′, m,m′ = 0, . . . , 2p + 1, and introduce the function R2p+2 and the
hyperelliptic curve Kp as in (1.62). Choose a nonspecial divisor Dµ̂(n0) ∈ M0,
where M0 ⊂ Symp(Kp) is the set of finite initial divisors introduced in Lemma
1.30. Then the stationary (complex) Toda algorithm as outlined in steps (I)–(XII)
produces solutions a, b of the pth stationary Toda system,

s-Tlp(a, b) =
(

f +p+1 − f p+1

gp+1 − g−p+1

)
= 0, p ∈ N0,

satisfying (1.61) and

a(n)2 = 1

2

q(n)∑
k=1

(
d pk (n)−1 y(P)/dζ pk (n)−1

)∣∣
P=(ζ,η)=µ̂k (n)

(pk(n)− 1)!

×
q(n)∏

k′=1, k′ �=k

(µk(n)− µk′(n))
−pk (n) + 1

4

(
b(2)(n)− b(n)2

)
,

b(n) = 1

2

2p+1∑
m=0

Em −
q(n)∑
k=1

pk(n)µk(n), n ∈ Z.

Moreover, Lemmas 1.12 and 1.14–1.17 apply.

Remark 1.33 Suppose that the hypotheses of the previous theorem are satisfied and
that a(n0), b(n0), b(n0+1), Fp(z, n0), Fp(z, n0+1), G p+1(z, n0), and G p+1(z, n0+
1) have already been computed using steps (I)–(IX). Then, alternatively, one can use

(a−)2 F−p = a2 F+p +
1

2
(z − b)(G p+1 − G+p+1)+ (z − b)2 Fp

− (z − b+)(z − b)F+p ,
G−p+1 = 2((z − b+)F+p − (z − b)Fp)+ G+p+1

(derived from (1.58)) to compute a(n), b(n), Fp(z, n), G p+1(z, n) for n < n0 and

a+F++p = aFp − 1

2
(z − b)(G+p+1 − G p+1),

G++p+1 = G p+1 − 2((z − b++)F++p − (z − b+)F+p )

to compute a(n − 1), b(n), Fp(z, n), G p+1(z, n) for n > n0 + 1.
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Theta function representations of a and b can now be derived as in Theorem 1.19.
The stationary (complex) Toda algorithm as outlined in steps (I)–(XII), starting

from a nonspecial divisor Dµ̂(n0) ∈M0, represents a solution of the inverse algebro-
geometric spectral problem for generally non-self-adjoint Jacobi operators. While
we do not assume periodicity (or quasi-periodicity), let alone real-valuedness of the
coefficients of the underlying Jacobi operator, once can view this algorithm as a
continuation of the inverse periodic spectral problem started around 1975 (in the
self-adjoint context).

We note that in general (i.e., unless one is, e.g., in the special periodic or self-
adjoint case), Dµ̂(n) will get arbitrarily close to P∞± since straight motions on the
torus are generically dense. Thus, no uniform bound on the sequences a(n), b(n)
(and no uniform lower bound on |a(n)|) exists as n varies in Z. In particular, these
complex-valued algebro-geometric solutions of some of the equations of the station-
ary Toda hierarchy, generally, will not be quasi-periodic with respect to n.

1.5 The Time-Dependent Toda Formalism

In theory there is no difference between theory and practice. In
practice there is.

Yogi Berra1

In this section we extend the algebro-geometric analysis of Section 1.3 to the time-
dependent Toda hierarchy.

For most of this section we assume the following hypothesis.

Hypothesis 1.34 (i) Assume that a, b satisfy

a( · , t), b( · , t) ∈ CZ, t ∈ R, a(n, · ), b(n, · ) ∈ C1(R), n ∈ Z,

a(n, t) �= 0, (n, t) ∈ Z× R.
(1.194)

(i i) Suppose that the hyperelliptic curve Kp, p ∈ N0, satisfies (1.62) and (1.63).

The basic problem in the analysis of algebro-geometric solutions of the Toda hi-
erarchy consists of solving the time-dependent r th Toda flow with initial data a sta-
tionary solution of the pth equation in the hierarchy. More precisely, given p ∈ N0,
consider a solution a(0), b(0) of the pth stationary Toda system s-Tlp(a, b) = 0,
associated with the hyperelliptic curve Kp and a corresponding set of summation
constants {c�}�=1,...,p ⊂ C. Next, let r ∈ N0; we intend to construct solutions a, b of
the r th Toda flow Tlr (a, b) = 0 with a(t0,r ) = a(0), b(t0,r ) = b(0) for some t0,r ∈ R.
To emphasize that the summation constants in the definitions of the stationary and

1 American baseball player, 1925–.
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the time-dependent Toda equations are independent of each other, we indicate this
by adding a tilde on all the time-dependent quantities. Hence we shall employ the
notation P̃2r+2, Ṽr+1, F̃r , G̃r+1, f̃s , g̃s , c̃s , in order to distinguish them from P2p+2,
Vp+1, Fp, G p+1, f�, g�, c�, in the following. In addition, we will follow a more elab-
orate notation inspired by Hirota’s τ -function approach and indicate the individual
r th Toda flow by a separate time variable tr ∈ R.

Summing up, we are seeking solutions a, b of the time-dependent algebro-
geometric initial value problem

T̃lr (a, b) =
(

atr − a
(

f̃ +p+1(a, b)− f̃ p+1(a, b)
)

btr + g̃p+1(a, b)− g̃−p+1(a, b)

)
= 0,

(a, b)
∣∣
tr=t0,r

= (a(0), b(0)
)
,

(1.195)

s-Tlp
(
a(0), b(0)

) = (−a
(

f +p+1

(
a(0), b(0)

)− f p+1
(
a(0), b(0)

))
gp+1

(
a(0), b(0)

)− g−p+1

(
a(0), b(0)

) )
= 0 (1.196)

for some t0,r ∈ R, p, r ∈ N0, where a = a(n, tr ), b = b(n, tr ) satisfy (1.194) and
a fixed curve Kp is associated with the stationary solutions a(0), b(0) in (1.196). In
terms of Lax pairs this amounts to solving

d

dtr
L(tr )−

[
P̃2r+2(tr ), L(tr )

] = 0, tr ∈ R, (1.197)

[P2p+2(t0,r ), L(t0,r )] = 0. (1.198)

In anticipating that the Toda flows are isospectral deformations of L(t0,r ), we are
going a step further replacing (1.198) by

[P2p+2(tr ), L(tr )] = 0, tr ∈ R. (1.199)

This then implies

P2p+2(tr )
2 = R2p+2(L(tr )) =

2p+1∏
m=0

(L(tr )− Em), tr ∈ R.

Actually, instead of working with (1.197), (1.198), and (1.199), one can equivalently
take the zero-curvature equations (1.60) as one’s point of departure, that is, one can
also start from

Utr +U Ṽr+1 − Ṽ+r+1U = 0, (1.200)

U Vp+1 − V+p+1U = 0. (1.201)



86 1 The Toda Hierarchy

For further reference, we recall the relevant quantities here (cf. (1.30), (1.31), (1.56),
(1.57)):

U (z) =
(

0 1
−a−/a (z − b)/a

)
,

Vp+1(z) =
(

G−p+1(z) 2a−F−p (z)
−2a−Fp(z) 2(z − b)Fp + G p+1(z)

)
, (1.202)

Ṽr+1(z) =
(

G̃−r+1(z) 2a− F̃−r (z)
−2a− F̃r (z) 2(z − b)F̃r (z)+ G̃r+1(z)

)
,

and

Fp(z) =
p∑

�=0

f p−�z� =
p∏

j=1

(z − µ j ), f0 = 1, (1.203)

G p+1(z) = −z p+1 +
p∑

�=0

gp−�z� + f p+1, g0 = −c1, (1.204)

F̃r (z) =
r∑

s=0

f̃r−s zs, f̃0 = 1, (1.205)

G̃r+1(z) = −zr+1 +
r∑

s=0

g̃r−s zs + f̃r+1, g̃0 = −c̃1, (1.206)

for fixed p, r ∈ N0. Here f�, f̃s , g�, and g̃s , � = 0, . . . , p, s = 0, . . . , r , are defined
as in (1.3)–(1.5) with appropriate sets of summation constants c�, � ∈ N, and c̃k ,
k ∈ N. Explicitly, (1.200) and (1.201) are equivalent to (cf. (1.38), (1.39), (1.54),
(1.55)),

atr = −a
(
2(z − b+)F̃+r + G̃+r+1 + G̃r+1

)
, (1.207)

btr = 2
(
(z − b)2 F̃r + (z − b)G̃r+1 + a2 F̃+r − (a−)2 F̃−r

)
, (1.208)

0 = 2(z − b+)F+p + G+p+1 + G p+1, (1.209)

0 = (z − b)2 Fp + (z − b)G p+1 + a2 F+p − (a−)2 F−p , (1.210)

respectively. In particular, (1.40) holds in the present tr -dependent setting, that is,

G2
p+1 − 4a2 Fp F+p = R2p+2.

As in the stationary context (1.67), (1.68) we introduce

µ̂ j (n, tr ) = (µ j (n, tr ),−G p+1(µ j (n, tr ), n, tr )) ∈ Kp,

j = 1, . . . , p, (n, tr ) ∈ Z× R,
(1.211)
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and

µ̂+j (n, tr ) = (µ+j (n, tr ),G p+1(µ
+
j (n, tr ), n, tr )) ∈ Kp,

j = 1, . . . , p, (n, tr ) ∈ Z× R,
(1.212)

and note that the regularity assumptions (1.194) on a, b imply continuity of µ j with
respect to tr ∈ R (away from collisions of these zeros, µ j are of course C∞).

In analogy to (1.69), (1.70), one defines the following meromorphic function
φ( · , n, tr ) on Kp,

φ(P, n, tr ) = y − G p+1(z, n, tr )

2a(n, tr )Fp(z, n, tr )
(1.213)

= −2a(n, tr )Fp(z, n + 1, tr )

y + G p+1(z, n, tr )
, (1.214)

P(z, y) ∈ Kp, (n, tr ) ∈ Z× R,

with divisor (φ( · , n, tr )) of φ( · , n, tr ) given by

(φ( · , n, tr )) = DP∞+ µ̂(n+1,tr ) −DP∞− µ̂(n,tr ), (1.215)

using (1.203) and (1.211). Here we abbreviated

µ̂ = {µ̂1, . . . , µ̂p}, µ̂+ = {µ̂+1 , . . . , µ̂+p } ∈ Symp(Kp).

The time-dependent Baker–Akhiezer function ψ( · , n, n0, tr , t0,r ) is then defined in
terms of φ by

ψ(P, n, n0, tr , t0,r )

= exp

(∫ tr

t0,r
ds
(
2a(n0, s)F̃r (z, n0, s)φ(P, n0, s)+ G̃r+1(z, n0, s)

))

×


∏n−1

n′=n0
φ(P, n′, tr ), n ≥ n0 + 1,

1, n = n0,∏n0−1
n′=n φ(P, n′, tr )−1, n ≤ n0 − 1,

(1.216)

P = (z, y) ∈ Kp \ {P∞+ , P∞−}, (n, n0, tr , t0,r ) ∈ Z2 × R2.

One observes that
ψ(P, n, n0, tr , t0,r ) = ψ(P, n, n0, t0,r , t0,r )ψ(P, n0, n0, tr , t0,r ),

P = (z, y) ∈ Kp \ {P∞+ , P∞−}, (n, n0, tr , t0,r ) ∈ Z2 × R2.
(1.217)

As in the stationary context we also introduce the Baker–Akhiezer vector � de-
fined by

�(P, n, n0, tr , t0,r ) =
(

ψ(P, n, n0, tr , t0,r )
ψ(P, n + 1, n0, tr , t0,r )

)
,

P = (z, y) ∈ Kp \ {P∞+ , P∞−}, (n, n0, tr , t0,r ) ∈ Z2 × R2.
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The following lemma records basic properties of φ, ψ , and � in analogy to the
stationary case discussed in Lemma 1.12.

Lemma 1.35 Assume Hypothesis 1.34 and suppose that (1.207)–(1.210) hold. In
addition, let P = (z, y) ∈ Kp \ {P∞+ , P∞−}, (n, n0, tr , t0,r ) ∈ Z2 × R2, and
r ∈ N0. Then φ satisfies

aφ(P)+ a−(φ−(P))−1 = z − b, (1.218)

φtr (P) = −2a
(
F̃r (z)φ(P)2 + F̃+r (z)

)+ 2(z − b+)F̃+r (z)φ(P)

+ (G̃+r+1(z)− G̃r+1(z)
)
φ(P), (1.219)

φ(P)φ(P∗) = F+p (z)
Fp(z)

, (1.220)

φ(P)− φ(P∗) = y(P)

aFp(z)
, (1.221)

φ(P)+ φ(P∗) = −G p+1(z)

aFp(z)
. (1.222)

Moreover, ψ and � satisfy

(L − z(P))ψ(P) = 0, (P2p+2 − y(P))ψ(P) = 0, (1.223)

ψtr (P) = P2r+2 ψ(P) (1.224)

= 2aF̃r (z)ψ
+(P)+ G̃r+1(z)ψ(P), (1.225)

U (z)�−(P) = �(P), (1.226)

Vp+1(z)�
−(P) = y�−(P), (1.227)

�tr (P) = Ṽ+r+1(z)�(P), (1.228)

ψ(P, n, n0, tr , t0,r )ψ(P∗, n, n0, tr , t0,r ) = Fp(z, n, tr )

Fp(z, n0, t0,r )
, (1.229)

a(n, tr )
(
ψ(P, n, n0, tr , t0,r )ψ(P∗, n + 1, n0, tr , t0,r )

+ ψ(P∗, n, n0, tr , t0,r )ψ(P, n + 1, n0, tr , t0,r )
) = −G p+1(z, n, tr )

Fp(z, n0, t0,r )
, (1.230)

W (ψ(P, · , n0, tr , t0,r ), ψ(P∗, · , n0, tr , t0,r )) = − y(P)

Fp(z, n0, t0,r )
. (1.231)

In addition, as long as the zeros µ j (n0, s) of Fp( · , n0, s) are all simple for s ∈ Iµ,
Iµ ⊆ R an open interval, ψ is meromorphic on Kp \ {P∞+ , P∞−} for (n, tr , t0,r ) ∈
Z× I2

µ.

Proof The proof of this lemma, except for the time derivatives of φ and ψ , is essen-
tially identical to that of Lemma 1.12.
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We first study the time derivative of φ. The derivative of (1.218) reads

atrφ + aφtr +
1

(φ−)2
(a−tr φ

− − a−φ−tr ) = −btr . (1.232)

A lengthy, but straightforward calculation, using (1.232), (1.38), and (1.39), shows
that(
a(φ−)2−a−S−

)(
φtr +2a

(
F̃rφ

2+ F̃+r
)−2(z−b+)F̃+r φ− (G̃+r+1− G̃r+1

)
φ
) = 0.

Thus

φtr (z, n, tr )+ 2a(n, tr )
(
F̃r (z, n, tr )φ

2(z, n, tr )+ F̃+r (z, n, tr )
)

− 2(z − b+(n, tr ))F̃
+
r (z, n, tr )φ(z, n, tr )

− (G̃+r+1(z, n, tr )− G̃r+1(z, n, tr )
)
φ(z, n, tr )

= C


∏n

n′=1 B(z, n′, tr ), n ∈ N,

1, n = 0,∏n+1
n′=0 B(z, n′, tr )−1, −n ∈ N,

where

B(z, n, tr ) = a−(n, tr )

a(n, tr )φ−(z, n, tr )2
, (n, tr ) ∈ Z× R.

However, by studying the high-energy behavior of the left-hand side using (1.213)
and that of the right-hand side, we infer that in fact C = 0, thereby proving (1.219).
That ψ is meromorphic on Kp \ {P∞±} if Fp( · , n0, tr ) has only simple zeros is a
consequence of (1.213), (1.215), (1.216), and of

2a(n0, s)F̃r (z, n0, s)φ(P, n0, s) =
P→µ̂ j (n0,s)

d

ds
ln
(
Fp(z, n0, s)

)+ O(1)

as z → µ j (n0, s),

which follows from (1.233) below. (The proof of (1.233) in Lemma 1.36 below only
requires (1.219) which has already been proven.)
The time derivative of ψ follows from (1.219) and the definition of ψ .
Equations (1.226) and (1.227) are proved as in Lemma 1.12 in the stationary context
as tr can be viewed as just an additional parameter. Equation (1.228) is an immediate
consequence of (1.225) and the definition of Ṽr+1 in (1.202).

Next we consider the tr -dependence of Fp and G p+1.

Lemma 1.36 Assume Hypothesis 1.34 and suppose that (1.207)–(1.210) hold. In
addition, let (z, n, tr ) ∈ C× Z× R. Then,

Fp,tr = 2
(
FpG̃r+1 − G p+1 F̃r

)
, (1.233)

G p+1,tr = 4a2(Fp F̃+r − F+p F̃r
)
. (1.234)
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In particular, (1.233) and (1.234) are equivalent to

Vp+1,tr =
[
Ṽr+1, Vp+1

]
. (1.235)

Proof By taking the time derivative of (1.78) we find

φtr (P)− φtr (P∗) = − y(P)

(aFp)2

(
atr Fp − aFp,tr

)
.

Using (1.219) we can compute the left-hand side, and by inserting (1.52) for atr , the
result (1.233) follows.
In order to prove (1.234) we take the time derivative of (1.222) which gives

φtr (P)+ φtr (P∗) = −G p+1,tr aFp − G p+1(atr Fp − aFp,tr )

(aFp)2
.

Again using (1.219) on the left-hand side and (1.233) and (1.52) on the right-hand
side yields the result.

Next we turn to the Dubrovin equations for the time variation of the Dirichlet
eigenvalues governed by the T̃lr flow.

Lemma 1.37 (i) Assume Hypothesis 1.34 and suppose that (1.207)–(1.210) hold
on Z × Iµ with Iµ ⊆ R an open interval. In addition, assume that the zeros µ j ,
j = 1, . . . , p, of Fp( · ) remain distinct on Z × Iµ. Then {µ̂ j } j=1,...,p, defined in
(1.211), satisfies the following first-order system of differential equations on Z×Iµ,

µ j,tr = −2F̃r (µ j )y(µ̂ j )

p∏
�=1
� �= j

(µ j − µ�)
−1, j = 1, . . . , p, (1.236)

with

µ̂ j (n, ·) ∈ C∞(Iµ,Kp), j = 1, . . . , p, n ∈ Z. (1.237)

(i i) Suppose in addition that a and b are real-valued and bounded. Moreover, assume
the eigenvalue ordering

Em < Em+1, m = 0, 1, . . . , 2p,

µ j (n, tr ) < µ j+1(n, tr ), j = 1, . . . , p − 1, (n, tr ) ∈ Z× R.

Then the Dirichlet eigenvalues {µ j (n, tr )} j=1,...,p satisfy (1.236) on Z×R. Further-

more, suppose that for all n ∈ Z, µ(0)
j (n, t0,r ) ∈ [E2 j−1, E2 j ], j = 1, . . . , p (cf. the

discussion in Remark 1.77 which introduces a sufficient condition for this entrapment
to hold), then

µ j (n, tr ) ∈ [E2 j−1, E2 j ], j = 1, . . . , p, (n, tr ) ∈ Z× R.
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In particular, µ̂ j (n, tr ) changes sheets whenever it hits E2 j−1 or E2 j , and its projec-
tion µ j (n, tr ) remains trapped in [E2 j−1, E2 j ], j = 1, . . . , p, for all (n, tr ) ∈ Z×R.

Proof Choosing z = µ j (n, tr ) in (1.233) and combining the result with (1.64) and
(1.67) yields (1.236). To prove (1.237) one can argue as follows: First, one notices
that (1.236) is autonomous and the denominator on the right-hand side of (1.236)
remains bounded away from zero by hypothesis. Thus, it remains to check what
happens if the numerator on the right-hand side of (1.236) vanishes, that is, if µ j hits
one of the branch points (Em, 0) of Kp. Hence we suppose

µ j0(n0, tr )→ Em0 as tr → t0,r ∈ Iµ,

for some j0 ∈ {1, . . . , p}, m0 ∈ {0, . . . , 2p + 1}, n0 ∈ Z. Introducing

ζ j0(n0, tr ) = σ(µ j0(n0, tr )− Em0)
1/2, σ = ±1,

µ j0(n0, tr ) = Em0 + ζ j0(n0, tr )
2

for tr in a sufficiently small neighborhood of t0,r , the Dubrovin equations (1.236)
become

ζ j0,tr (n0, tr ) =
tr→t0,r

c(σ )F̃r (Em0 , n0, t0,r )

( 2p+1∏
m=0

m �=m0

(Em0 − Em)

)1/2

×
( p∏

k=1
k �= j0

(
Em0 − µk(n0, tr )

)−1
)(

1+ O(ζ j0(n0, tr )
2)
)

for some |c(σ )| = 1 and one concludes (1.237).
Part (i i) follows as in Remark 1.77 since tr ∈ R is now just an additional parameter.

When attempting to solve the Dubrovin system (1.236) it must be augmented with
appropriate divisors Dµ̂(n,t0,r ) ∈ Symp Kp, t0,r ∈ Iµ, as initial conditions.

Since the stationary trace formulas for Toda invariants in terms of symmetric func-
tions of µ j in Lemma 1.15 extend line by line to the corresponding time-dependent
setting, we next record their tr -dependent analogs without proof. For simplicity we
again confine ourselves to the simplest cases only. We recall the abbreviation b(k) in
(1.96).

Lemma 1.38 Assume Hypothesis 1.34 and suppose that (1.207)–(1.210) hold. Then,

b = 1

2

2p+1∑
m=0

Em −
p∑

j=1

µ j . (1.238)
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In addition, if µ j (n, tr ) �= µk(n, tr ) for j �= k, j, k = 1, . . . , p, for all (n, tr ) ∈
Z× Iµ, Iµ ⊆ R an open interval, then

a2 = 1

2

p∑
j=1

y(µ̂ j )

p∏
k=1
k �= j

(µ j − µk)
−1 + 1

4

(
b(2) − b2) (1.239)

holds on Z× Iµ.

Proof Equations (1.239) and (1.238) are obtained in precisely the same way as (1.97)
and (1.98) taking into account (1.213), (1.218), (1.219), and (1.40) (for n0 ∈ Z).

Next, we turn to the asymptotic expansions of φ and � in a neighborhood of P∞± .

Lemma 1.39 Assume Hypothesis 1.34 and suppose that (1.207)–(1.210) hold.
Moreover, let P = (z, y) ∈ Kp \ {P∞+ , P∞−}, (n, n0, tr , t0,r ) ∈ Z2 × R2. Then
φ has the asymptotic behavior

φ(P) =
ζ→0

{
aζ + ab+ζ 2 + O(ζ 3) as P → P∞+ ,
a−1ζ−1 − a−1b − a−1(a−)2ζ + O(ζ 2) as P → P∞− ,

ζ = 1/z.

The Baker–Akhiezer function ψ has the asymptotic behavior

ψ(P, n, n0, tr , t0,r ) =
ζ→0

(
A(n, n0, tr )ζ

(n−n0)
)±1

(1+ O(ζ )) (1.240)

× exp

(
∓ (tr − t0,r )

r∑
s=0

c̃r−sζ
−s−1

)
, P → P∞± , ζ = 1/z,

where we used the abbreviation

A(n, n0, tr ) =


∏n−1

n′=n0
a(n′, tr )−1, n ≥ n0 + 1,

1, n = n0,∏n0−1
n′=n a(n′, tr ), n ≤ n0 − 1.

Proof Since by the definition of φ in (1.213) the time parameter tr can be viewed
as an additional but fixed parameter, the asymptotic behavior of φ remains the same
as in Lemma 1.17. Similarly, also the asymptotic behavior of ψ1(P, n, n0, tr , tr )
is derived in an identical fashion to that in Lemma 1.17. This proves (1.240) for
t0,r = tr , that is,

ψ(P, n, n0, tr , tr ) =
ζ→0

(
A(n, n0, tr )ζ

(n−n0)
)±1

(1+ O(ζ )), P → P∞± , ζ = 1/z.

(1.241)
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By (1.217) it remains to investigate ψ(P, n0, n0, tr , t0,r ). We note that (1.213),
(1.216), and (1.233) imply

ψ(P, n0, n0, tr , t0,r )

= exp

(∫ t

t0,r
ds
(
2a(n0, s)F̃r (z, n0, s)φ(P, n0, s)+ G̃r+1(z, n0, s)

))
= exp

(∫ t

t0,r
ds

(
F̃r (z, n0, s)

y(P)− G p+1(z, n0, s)

Fp(z, n0, s)
+ G̃r+1(z, n0, s)

))
.

(1.242)

Next we rewrite (1.242) in the form

ψ(P, n0, n0, tr , t0,r ) = exp

(∫ t

t0,r
ds

(
1

2

d
ds Fp(z, n0, s)

Fp(z, n0, s)
+ y(P)

F̃r (z, n0, s)

Fp(z, n0, s)

))
=
(

Fp(z, n0, tr )

Fp(z, n0, t0,r )

)1/2

exp

(
y(P)

∫ t

t0,r
ds

F̃r (z, n0, s)

Fp(z, n0, s)

)
. (1.243)

We claim that

y(P)
F̃r (z, n, tr )

Fp(z, n, tr )
=

ζ→0
∓

r∑
q=0

c̃r−qζ
−q−1 + O(1) as P → P∞± . (1.244)

By (1.22), in order to prove (1.244), it suffices to prove the homogeneous case with
c̃0 = 1 and c̃q = 0, q = 1, . . . , r . Using the expression

G(z, n, n, tr ) = Fp(z, n, tr )/y(P)

for the diagonal Green’s function of L̆(tr ), we may rewrite (1.244) in the form

F̃r (z, n, tr )/zr+1 = z−1
r∑

q=0

f̂r−q(n, tr )z
q−r

=
z→∞ −G(z, n, n, tr )+ O(z−r−1). (1.245)

Since

G(z, n, n, tr ) =
(
δn,
(
L̆(tr )− z

)−1
δn
)
,

the Neumann expansion for
(
L̆(tr )− z

)−1 then shows that (1.245) is equivalent to

z−1
r∑

q=0

f̂r−q(n, tr )z
q−r =

z→∞ z−1
r∑

q=0

(
δn, L̆(tr )

qδn
)
z−q + O(z−r−2). (1.246)

But (1.246) is proven in (1.15) of Lemma 1.4. Combining (1.217), (1.241), (1.243),
and (1.244) then proves (1.240).
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Finally, we note that Lemma 1.18 on nonspecial divisors in the stationary context
extends to the present time-dependent situation without a change. Indeed, since tr ∈
R just plays the role of a parameter, the proof of Lemma 1.18 extends line by line
and is hence omitted.

Lemma 1.40 Assume Hypothesis 1.34 and suppose that (1.207)–(1.210) hold.
Moreover, let (n, tr ) ∈ Z × R. Denote by Dµ̂, µ̂ = (µ̂1, . . . , µ̂p) ∈ Symp(Kp),
the Dirichlet divisor of degree p associated with a, b, and φ defined according to
(1.67), that is,

µ̂ j (n, tr ) = (µ j (n, tr ),−G p+1(µ j (n, tr ), n, tr )) ∈ Kp, j = 1, . . . , p.

Then Dµ̂(n,tr ) is nonspecial for all (n, tr ) ∈ Z× R.

In order to express φ(P, n, tr ) and ψ(P, n, n0, tr , t0,r ) in terms of the theta func-
tion of Kp we need some additional notation. Let ω(2)

P∞± ,q
be the normalized abelian

differential of the second kind (i.e., with vanishing a-periods) with a single pole at
P∞± of the form

ω
(2)
P∞± ,q

=
ζ→0

(
ζ−2−q + O(1)

)
dζ, P → P∞± , ζ = 1/z, q ∈ N0.

Given the summation constants c̃1, . . . , c̃r in F̃r , see (1.6), (1.51), (1.22), and (1.34),
we then define

�̃(2)
r =

r∑
q=0

(q + 1)c̃r−q
(
ω
(2)
P∞+ ,q

− ω
(2)
P∞− ,q

)
, c̃0 = 1. (1.247)

Since ω(2)
P∞± ,q

were supposed to be normalized one has∫
a j

�̃(2)
r = 0, j = 1, . . . , p. (1.248)

Moreover, writing

ω j =
 ∞∑

q=0

d j,q(P∞±)ζ q

 dζ = ±
 ∞∑

q=0

d j,q(P∞+)ζ q

 dζ near P∞± , (1.249)

relations (A.19) and (B.33) yield

Ũ
(2)
r =

(
Ũ (2)

r,1 , . . . , Ũ (2)
r,p

)
,

Ũ (2)
r, j =

1

2π i

∫
b j

�̃(2)
r = 2

r∑
q=0

c̃r−qd j,q(P∞+), (1.250)

= 2
r∑

q=0

c̃r−q

p∑
k=1

c j (k)ĉk−p+q(E), j = 1, . . . , p.
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We also recall the properties of the normal differential of the third kind ω(3)
P∞+ ,P∞−

discussed in (1.108)–(1.111) and its vector of b-periods, U (3), in (1.112), (1.113).
As in the stationary context (cf. (1.114) and (1.117)) one infers that φ is now of

the form

φ(P, n, tr ) = C(n, tr )
θ(z(P, µ̂+(n, tr )))

θ(z(P, µ̂(n, tr )))
exp

(∫ P

P0

ω
(3)
P∞+ ,P∞−

)
for some C(n, tr ) independent of P , and by comparison with Lemma 1.39 that

a(n, tr ) = C(n, tr )ã
θ(z(P∞+ , µ̂

+
(n, tr )))

θ(z(P∞+ , µ̂(n, tr )))
, (n, tr ) ∈ Z× R. (1.251)

Given these preparations, the theta function representations for φ, ψ , a, and b then
read as follows.

Theorem 1.41 Assume Hypothesis 1.34 and suppose that (1.207)–(1.210) hold. In
addition, let P ∈ Kp \ {P∞+ , P∞−} and (n, n0, tr , t0,r ) ∈ Z2 × R2. Then for each
(n, tr ) ∈ Z× R, Dµ̂(n,tr ) is nonspecial. Moreover,1

φ(P, n, tr ) = C(n, tr )
θ(z(P, µ̂+(n, tr )))

θ(z(P, µ̂(n, tr )))
exp

(∫ P

P0

ω
(3)
P∞+ ,P∞−

)
,

(1.252)

ψ(P, n, n0, tr , t0,r ) = C(n, n0, tr , t0,r )
θ(z(P, µ̂(n, tr )))

θ(z(P, µ̂(n0, t0,r )))
(1.253)

× exp

(
(n − n0)

∫ P

P0

ω
(3)
P∞+ ,P∞−

+ (tr − t0,r )
∫ P

P0

�̃(2)
r

)
,

where C(n, tr ) and C(n, n0, tr , t0,r ) are given by

C(n, tr ) = C(n + 1, n, tr , tr ) =
(
θ(z(P∞+ , µ̂

−
(n, tr )))

θ(z(P∞+ , µ̂
+
(n, tr )))

)1/2

, (1.254)

C(n, n0, tr , t0,r ) = C(n, n0, tr , tr )C(n0, n0, tr , t0,r ) (1.255)

=
(
θ(z(P∞+ , µ̂(n0, t0,r )))θ(z(P∞+ , µ̂

−
(n0, t0,r )))

θ(z(P∞+ , µ̂(n, tr )))θ(z(P∞+ , µ̂
−
(n, tr )))

)1/2

, (1.256)

1 To avoid multi-valued expressions in formulas such as (1.120), (1.121), etc., we agree always to choose
the same path of integration connecting P0 and P and refer to Remark A.30 for additional tacitly
assumed conventions.
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with

C(n, n0, tr , tr ) =


∏n−1

n′=n0
C(n′, tr ), n ≥ n0 + 1,

1, n = n0,∏n0−1
n′=n C(n′, tr )−1, n ≤ n0 − 1,

(1.257)

and

C(n0, n0, tr , t0,r ) =
(
θ(z(P∞+ , µ̂(n0, t0,r )))θ(z(P∞+ , µ̂

−
(n0, t0,r )))

θ(z(P∞+ , µ̂(n0, tr )))θ(z(P∞+ , µ̂
−
(n0, tr )))

)1/2

.

(1.258)

Here the square root branch of C(n, tr ) in (1.254) has to be chosen according to
(1.251) and the square root branch of C(n, n0, tr , t0,r ) in (1.256) is determined with
the help of (1.255), by the square root branch in (1.254), and by formula (1.257).

The Abel map linearizes the auxiliary divisor Dµ̂(n,tr ) in the sense that

αP0
(Dµ̂(n,tr )) = αP0

(Dµ̂(n0,t0,r ))−U (3)(n − n0)− Ũ
(2)
r (tr − t0,r ) (mod L p).

(1.259)
Finally, a, b are of the form

a(n, tr )
2 = ã2 θ(z(P∞+ , µ̂

−
(n, tr )))θ(z(P∞+ , µ̂

+
(n, tr )))

θ(z(P∞+ , µ̂(n, tr )))2
, (1.260)

b(n, tr ) = 1

2

2p+1∑
m=0

Em −
p∑

j=1

λ j

−
p∑

j=1

c j (p)
∂

∂w j
ln

(
θ(z(P∞+ , µ̂(n, tr )+ w))

θ(z(P∞+ , µ̂
−
(n, tr )+ w))

)∣∣∣∣
w=0

(1.261)

with ã introduced in (1.110).

Proof First of all we note that (1.252) and (1.253) are well-defined due to (1.109),
(1.113), (1.248), (1.250), (A.34), and (A.35). Moreover, (1.252) for φ and (1.253)
for ψ in the special case t0,r = tr are clear from the stationary context that led to
(1.114) and (1.115).

Denoting the right-hand side of (1.253) by �(P, n, n0, tr , t0,r ), our goal is to prove
ψ = �. By inspection, one verifies

�(P, n, n0, tr , t0,r ) = �(P, n, n0, tr , tr )�(P, n0, n0, tr , t0,r ). (1.262)
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Comparison of (1.72), (1.71), (1.120)–(1.122) and (1.213), (1.252)–(1.256) then
yields

ψ(P, n + 1, n, tr , tr ) = φ(P, n, tr ) = �(P, n + 1, n, tr , tr ).

Moreover,

ψ(P, n, n0, tr , tr ) =


∏n−1

n′=n0
φ(P, n′, tr ), n ≥ n0 + 1,

1, n = n0,∏n0−1
n′=n φ(P, n′, tr )−1, n ≤ n0 − 1,

= �(P, n, n0, tr , tr ).

By (1.262) it remains to identify

ψ(P, n0, n0, tr , t0,r ) = �(P, n0, n0, tr , t0,r ). (1.263)

We start by recalling (cf. (1.242))

ψ(P, n0, n0, tr , t0,r ) (1.264)

= exp

(∫ t

t0,r
ds

(
F̃r (z, n0, s)

y(P)− G p+1(z, n0, s)

Fp(z, n0, s)
+ G̃r+1(z, n0, s)

))
.

In order to spot the zeros and poles of ψ on Kp \{P∞+ , P∞−} we need to expand the
integrand in (1.264) near its singularities (the zeros µ j (n0, s) of Fp(z, n0, s)). Using
(1.236) one obtains

ψ(P, n0, n0, tr , t0,r ) = exp

(∫ tr

t0,r
ds

( d
dsµ j (n0, s)

µ j (n0, s)− z
+ O(1)

))

=


(µ j (n0, tr )− z)O(1), P near µ̂ j (n0, tr ) �= µ̂ j (n0, t0,r ),

O(1), P near µ̂ j (n0, tr ) = µ̂ j (n0, t0,r ),

(µ j (n0, t0,r )− z)−1 O(1), P near µ̂ j (n0, t0,r ) �= µ̂ j (n0, tr )

with O(1) �= 0. Hence all zeros and poles of ψ(P, n0, n0, tr , t0,r ) on Kp \
{P∞+ , P∞−} are simple. Moreover, the poles of ψ(P, n0, n0, tr , t0,r ) coincide with
those of �(P, n0, n0, tr , t0,r ). Next we need to identify the essential singularities of
ψ(P, n0, n0, tr , t0,r ) at P∞± . But these essential singularities have been identified in
(1.240) and hence they coincide with those of �(P, n0, n0, tr , t0,r ) at P∞± . Thus,
we can apply Lemma B.1 to conclude (1.263) since Dµ̂(n,tr ) is nonspecial for all
(n, tp) ∈ Z× R. This yields (1.252) and (1.253).
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The computation (cf. (D.13)–(D.18))

∂tr

p∑
j=1

AP0,k(µ̂ j (n, tr )) = ∂tr

p∑
j=1

∫ µ̂ j (n,tr )

P0

ωk

= ∂tr

p∑
j=1

p∑
�=1

ck(�)

∫ µ̂ j (n,tr )

P0

z�−1 dz

y(P)

=
p∑

j=1

p∑
�=1

ck(�)
µ j (n, tr )�−1

y(µ̂ j (n, tr ))
∂trµ j (n, tr )

= −2i
p∑

j=1

p∑
�=1

ck(�)
µ j (n, tr )�−1

y(µ̂ j (n, tr ))

y(µ̂ j (n, tr ))∏p
m �= j (µ j (n, tr )− µm(n, tr ))

F̃r (µ j (n, tr ))

= −2i
p∑

j=1

p∑
�=1

ck(�)Up(µ(n, tr ))�, j F̃r (µ j (n, tr ))

= −2i
p∑

�=1∨(p−r)

ck(�)d̃r,p−�(E), (1.265)

using Lemma D.3 and (D.18) in the final step (with Up(µ) defined in (D.10)), then
shows that the flows (1.236) are linearized by the Abel map. Equations (B.34) and
(D.15) then yield

d

dtr
αP0

(Dµ̂(n,tr )) = −Ũ
(2)
r ,

which proves (1.259).

Equations (1.254)–(1.256) and expressions (1.260) and (1.261) are then proved as in
Theorem 1.19.

Remark 1.42 (i) Since in the special case r = 0, that is, for the original Toda lattice
equations, U (2)

0 simplifies to

U (2)
0 = 2c(p),

due to (1.249), (1.250), and (B.33), the linearization property (1.259) shows that the
expression for b(n, tr ) in (1.261) can be rewritten in the familiar form

b(n, t0) = 1

2

2p+1∑
m=0

Em −
p∑

j=1

λ j + 1

2

d

dt0
ln

(
θ(z(P∞+ , µ̂(n, t0)))

θ(z(P∞+ , µ̂
−
(n, t0)))

)
,

(n, t0) ∈ Z× R.
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(ii) Furthermore, expanding equation (1.225) around P∞± (still for r = 0) shows
that ∫ P

P0

�
(2)
0 =

ζ→0
∓(ζ−1 − b̃1 + O(ζ )

)
as P → P∞± , r = 0, (1.266)

where b̃1 is defined in (1.111). Conversely, proving (1.225) as in the KdV case in
Volume I (by expanding both sides in (1.225) around P∞± and using Lemma B.1)
turns out to be equivalent to proving (1.266). However, since we are not aware of an
independent proof of (1.266), we chose a different strategy in the proof of Theorem
1.41.

Moreover, in analogy to Corollary 1.21, b(n, tr ) admits the following alternative
theta function representation.

Corollary 1.43 b(n, tr ) admits the representation

b(n, tr ) = E0 − ã
θ(z(P∞+ , µ̂

−
(n, tr )))θ(z(P0, µ̂

+
(n, tr )))

θ(z(P∞+ , µ̂(n, tr )))θ(z(P0, µ̂(n, tr )))

− ã
θ(z(P∞+ , µ̂(n, tr )))θ(z(P0, µ̂

−
(n, tr )))

θ(z(P∞+ , µ̂
−
(n, tr )))θ(z(P0, µ̂(n, tr )))

, (n, tr ) ∈ Z× R.

Since the proof of Corollary 1.43 is identical to that of 1.21 we omit further details.
Combining (1.259) and (1.260), (1.261) shows the remarkable linearity of the theta

function representations for a and b with respect to (n, tr ) ∈ Z× R. In fact, one can
rewrite (1.260), (1.261) as

a(n)2 = ã2 θ(A − B + Bn + Cr tr )θ(A + B + Bn + Cr tr )

θ(A + Bn + Cr tr )2
,

b(n) = 1

2

2p+1∑
m=0

Em −
p∑

j=1

λ j

−
p∑

j=1

c j (p)
∂

∂w j
ln

(
θ(A + Bn + Cr tr + w)

θ(A − B + Bn + Cr tr + w)

)∣∣∣∣
w=0

,

where

A = �P0 − AP0
(P∞+)+U (3)n0 + Ũ

(2)
r tr + αP0(Dµ̂(n0,t0,r )),

B = −U (3), Cr = −Ũ
(2)
r ,

�0 = 1

2

2p+1∑
m=0

Em −
p∑

j=1

λ j .



100 1 The Toda Hierarchy

Here the constants ã, λ j , c j (p) ∈ C, j = 1, . . . , p, and the constant vectors B,Cr ∈
Cp are uniquely determined by Kp (and its homology basis) and r , and the constant
vector A ∈ Cp is in one-to-one correspondence with the Dirichlet data µ̂(n0, t0,r ) =
(µ̂1(n0, t0,r ), . . . , µ̂p(n0, t0,r )) ∈ Symp(Kp) at the initial point (n0, t0,r ) as long as
the divisor Dµ̂(n0,t0,r ) is assumed to be nonspecial.

Remark 1.44 The explicit representation (1.253) for ψ complements Lemma 1.35
and shows that ψ stays meromorphic on Kp \ {P∞+ , P∞−} as long as Dµ̂ is
nonspecial.

As in our stationary Section 1.3 we will end this section with some examples
illustrating the general results. Again we also consider an example involving singular
curves. We start with the elementary genus p = 0 example excluded thus far in our
considerations of this section.

Example 1.45 Assume p = 0, r ∈ N0, P = (z, y) ∈ K0 \ {P∞+ , P∞−}, and let
(n, n0, tr , t0,r ) ∈ Z2 × R2. Then,

K0 : F0(z, y) = y2 − R2(z) = y2 − (z − E0)(z − E1) = 0,

E0, E1 ∈ C, E0 �= E1,

a(n) = a, a2 = (E1 − E0)
2/16, b(n) = b = 1

2
(E0 + E1),

s-T̂lk(a, b) = 0, k ∈ N0, T̃lr (a, b) = 0,

φ(P, n) = y + z − b

2a
,

ψ(P, n, n0, tr , t0,r ) =
(

y + z − b

2a

)(n−n0)

exp
(
y F̃r (z)(tr − t0,r )

)
.

Example 1.46 The case p = 1, r = 0.
We suppose

E0 < E1 < E2 < E3, R4(z) =
3∏

m=0

(z − Em),

and record in addition to the objects introduced in (1.161) and (1.162) in connection
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with the stationary p = 1 Example 1.27 the following formulas:

�
(2)
0 = ω

(2)
P∞+ ,0

− ω
(2)
P∞− ,0

,

2π iU (2)
0,1 =

∫
b1

�
(2)
0 = 4π ic1(1) = 2π i

C K (k)
,∫ P

P0

�
(2)
0 =

1

2
C(E2 − E0)

(
(E3 − E1)K (k)−1 E(k)F(ū(z), k)

− (E3 − E1)E(ū(z), k)− (E3 − E0)
(
1− ((E3 − E0)/(E3 − E1))ū(z)

2)−1

× ū(z)
(
1− ū(z)2

)1/2(1− k2ū(z)2
)−1/2

)
, P = (z, y) ∈ K1.

In addition, one computes for (n, n0, t0, t0,0) ∈ Z2 × R2 (cf. (1.163))

AP0(µ̂1(n, t0)) = AP0(µ̂1(n0, t0,0))− 2(n − n0)AP0(P∞+)− 2(t0 − t0,0)c1(1),

µ1(n, t0) = E1

(
1− ((E2 − E1)/(E2 − E0))(E0/E1)

× sn2 (2K (k)δ1 − 2(n − n0)F
(
((E3 − E1)/(E3 − E0))

1/2, k
)

+ 2C−1(t0 − t0,0)
))

×
(

1− ((E2 − E1)/(E2 − E0))

× sn2 (2K (k)δ1 − 2(n − n0)F
(
((E3 − E1)/(E3 − E0))

1/2, k
)

+ 2C−1(t0 − t0,0)
))−1

,

where we abbreviated

AP0(µ̂1(n0, t0,0)) = (−δ1 + 1

2
τ1,1) (mod L1).

Moreover,

s-Tl1(a, b) = 0, T̃l0(a, b) = 0

for c1 = − 1
2 (E0 + E1 + E2 + E3).

Finally, we consider the case of (not necessarily real-valued) p-soliton solutions
for the Toda lattice hierarchy.

Example 1.47 The case of Toda p-soliton solutions.
Let p, r ∈ N, (n, tr ) ∈ Z× I , I ⊆ R an open interval, introduce

τ0(n, tr ) = 1,

τp(n, tr ) = det(Ip + C p(n, tr )),



102 1 The Toda Hierarchy

C p(n, tr ) =
(

č j čk
(z j zk)

n+1

1− z j zk
exp
(1

2

(
z j − z−1

j

)
F̃0,r (E2 j )tr

+ 1

2

(
zk − z−1

k

)
F̃0,r (E2k)tr

))
j,k=1,...,p

,

č j ∈ C \ {0}, z j ∈ C, 0 < |z j | < 1, z j �= zk for j �= k, j, k ∈ {1, . . . , p},
and assume τp−1(n, tr ) �= 0, τp(n, tr ) �= 0 for all (n, tr ) ∈ N × I . Here F̃0,r (z)
denotes the polynomial F̃r (z) in (1.205) in the special case N = 0 with a = 1

2 ,
b = 0. Explicitly,

F̃0,r (z) =
r∑

s=0

c̃r−s F̂0,s(z), (1.267)

F̂0,2k(z) =
k∑

�=0

2−2�
(

2�
�

)
z2(k−�), F̂0,2k+1(z) = z F̂0,2k(z), k ∈ N0, z ∈ C,

for an appropriate set of summation constants {c̃s}s=1,...,r ⊂ C. Then,

ap(n, tr ) = τp(n + 2, tr )1/2τp(n, tr )1/2

2τp(n + 1, tr )
,

bp(n, tr ) = −1

2

(
z pτp−1(n + 2, tr )τp(n, tr )

τp−1(n + 1, tr )τp(n + 1, tr )
+ τp−1(n, tr )τp(n + 1, tr )

z pτp−1(n + 1, tr )τp(n, tr )

)
+ 1

2

(
z p + z−1

p

)
,

and

s-Tlp(ap, bp) = 0, T̃lr (ap, bp) = 0

for an appropriate set of summation constants {c�}�=1,...,p (cf. (1.44)) and with
{c̃s}s=1,...,r chosen as in (1.267). The associated singular curve is given by

Fp(z, y) = y2 − (z + 1)(z − 1)
p∏

j=1

(
z − 1

2

(
z j + z−1

j

))2 = 0,

E0 = −1, E2p+1 = 1, E2 j−1 = E2 j = 1

2

(
z j + z−1

j

)
, j = 1, . . . , p.

The conditions in Example 1.47 are satisfied in the case where a, b are real-valued
for I = R, assuming

č j > 0, j = 1, . . . , p,

1

2

(
z p + z−1

p

)
>

1

2

(
z p−1 + z−1

p−1

)
> · · · > 1

2

(
z1 + z−1

1

)
> 1,

and for sufficiently small (complex) perturbations thereof (if I is small enough).
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This completes our treatment of time-dependent algebro-geometric solutions of
the Toda hierarchy. In the following section we describe a solution of the algebro-
geometric Toda hierarchy initial value problem with complex-valued initial data.

1.6 The Time-Dependent Toda Algebro-Geometric
Initial Value Problem

Some mathematician, I believe, has said that true pleasure lies
not in the discovery of truth, but in the search for it.

Leo Tolstoy1

In this section we discuss the algebro-geometric initial value problem (1.195),
(1.196) for the Toda hierarchy with complex-valued initial data and prove unique
solvability globally in time for a set of initial (Dirichlet divisor) data of full mea-
sure. More precisely, we intend to describe a solution of the following problem:
Given p ∈ N0, assume a(0), b(0) to be complex-valued solutions of the pth station-
ary Toda system s-Tlp(a, b) = 0 associated with a prescribed nonsingular hyper-
elliptic curve Kp of genus p and let r ∈ N0; we want to construct unique global
solutions a = a(n, tr ), b = b(n, tr ) of the r th Toda flow Tlr (a, b) = 0 with
a(t0,r ) = a(0), b(t0,r ) = b(0) for some t0,r ∈ R. Thus, we seek a unique global
solution of the initial value problem

Tlr (a, b) = 0,

(a, b)
∣∣
tr=t0,r

= (a(0), b(0)
)
,

s-Tlp
(
a(0), b(0)

) = 0

for some t0,r ∈ R, p, r ∈ N0, where a = a(n, tr ), b = b(n, tr ) satisfy

a : Z× R→ C \ {0}, b : Z× R→ C,

a( · , t), b( · , t) ∈ CZ, t ∈ R, a(n, · ), b(n, · ) ∈ C1(R), n ∈ Z.

In the special case of a self-adjoint Lax (i.e., Jacobi) operator L̆ , where a and b are
real-valued and bounded, the actual solution of this algebro-geometric initial value
problem consists of the following two-step procedure:
(i) An algorithm that constructs finite nonspecial divisors Dµ̂(n) ∈ Symp(Kp)

in real position for all n ∈ Z starting from an initial Dirichlet divisor Dµ̂(n0) ∈
Symp(Kp) in an appropriate real position (i.e., with Dirichlet eigenvalues in ap-
propriate spectral gaps of L̆). “Trace formulas” of the type (1.97) and (1.98) then
construct the stationary real-valued solutions a(0), b(0) of s-Tlp(a, b) = 0.

1 Anna Karenina, Part II, Chapter XIV, p. 192.
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(i i) The first-order Dubrovin-type system of differential equations (1.236), aug-
mented by the initial divisor Dµ̂(n0,t0,r ) = Dµ̂(n0) (cf. step (i)) together with the
analogous “trace formulas” (1.239), (1.238) then yield unique global real-valued
solutions a = a(tr ), b = b(tr ) of the r th Toda flow Tlr (a, b) = 0 satisfying
a(t0,r ) = a(0), b(t0,r ) = b(0).

As in the stationary context, this approach works perfectly in the special self-
adjoint case where the Dirichlet divisors

µ̂(n, tr ) = (µ̂1(n, tr ), . . . , µ̂p(n, tr )) ∈ Symp(Kp), (n, tr ) ∈ Z× R,

yield Dirichlet eigenvalues µ1, . . . , µp of the Lax operator L̆ situated in p different
spectral gaps of L̆ on the real axis. In particular, for fixed (n, tr ) ∈ Z × R, the
Dirichlet eigenvalues µ j (n, tr ), j = 1, . . . , p, are pairwise distinct and formulas
(1.239) for a and (1.236) for µ j,tr , j = 1, . . . , p, are well-defined.

This situation changes drastically if complex-valued initial data a(0), b(0) or divi-
sors Dµ̂(n0,t0,r ) in general complex position with projections off the spectral gaps of L̆
on the real axis are permitted. In this case the Dirichlet eigenvaluesµ j , j = 1, . . . , p,
are no longer confined to separated spectral gaps of L̆ on the real axis and, in par-
ticular, they are in general no longer pairwise distinct and “collisions” between them
can occur at certain values of (n, tr ) ∈ Z×R. Thus, the stationary algorithm in step
(i) as well as the Dubrovin-type first-order system of differential equations (1.236)
in step (i i) above, breaks down at such values of (n, tr ). A priori, one has no con-
trol over such collisions, especially, it is not possible to identify initial conditions
Dµ̂(n0,t0,r ) at some (n0, t0,r ) ∈ Z× R which avoid collisions for all (n, tr ) ∈ Z× R.
We solve this problem head on by explicitly permitting collisions in the stationary
as well as the time-dependent context from the outset. In the stationary context, we
properly modify the algorithm described above in step (i) in the self-adjoint case by
referring to a more general interpolation formalism (cf. Appendix D) for polynomi-
als, going beyond the usual Lagrange interpolation formulas. In the time-dependent
context we replace the first-order system of Dubrovin-type equations (1.236), aug-
mented with the initial divisor Dµ̂(n0,t0,r ), by a different first-order system of differ-
ential equations (1.288) with initial conditions (1.289) which focuses on symmet-
ric functions of µ1(n, tr ), . . . , µp(n, tr ) rather than individual Dirichlet eigenvalues
µ j (n, tr ), j = 1, . . . , p. In this manner it will be shown that collisions of Dirichlet
eigenvalues no longer pose a problem.

In addition, there is again a second nontrivial complication in the non-self-adjoint
case: Since the Dirichlet eigenvalues µ j (n, tr ), j = 1, . . . , p, are no longer confined
to spectral gaps of L̆ on the real axis as (n, tr ) varies in Z × R, it can no longer
be guaranteed that µ j (n, tr ), j = 1, . . . , p, stay finite for all (n, tr ) ∈ Z × R. As
discussed in Section 1.4 in the stationary case, this phenomenon is related to certain
deformations of the algebraic curve Kp under which for some n0 ∈ Z, a(n0) → 0
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and µ j (n0 + 1) → ∞ for some j ∈ {1, . . . , p}. We solve this particular prob-
lem as in the stationary case by properly restricting the initial Dirichlet divisors
Dµ̂(n0,t0,r ) ∈ Symp(Kp) to a dense set of full measure. Summing up, in this sec-
tion we offer an algorithm to solve the inverse algebro-geometric spectral problem
for generally non-self-adjoint Jacobi operators, starting from a properly chosen dense
set of initial divisors of full measure. Combined with an appropriate first-order sys-
tem of differential equations with respect to time (a substitute for the well-known
Dubrovin equations), this yields the construction of global algebro-geometric solu-
tions of the time-dependent Toda hierarchy.

In short, the strategy applied in this section consists of the following:
(α) Replace the first-order autonomous Dubrovin system (1.236) of differential

equations in tr for the Dirichlet eigenvalues µ j (n, tr ), j = 1, . . . , p, augmented by
appropriate initial conditions, by the first-order autonomous system (1.288), (1.289)
for the coefficients f j , j = 1, . . . , p, g j , j = 1, . . . , p − 1, and gp + f p+1 with re-
spect to tr . (We note that f j , j = 1, . . . , p, are symmetric functions of µ1, . . . , µp.)
Solve this first-order autonomous system in some time interval (t0,r − T0, t0,r + T0)

under appropriate initial conditions at (n0, t0,r ) derived from an initial (nonspecial)
Dirichlet divisor Dµ̂(n0,t0,r ).
(β) Use the stationary algorithm derived in Section 1.4 to extend the solution of

step (α) from {n0} × (t0,r − T0, t0,r + T0) to Z × (t0,r − T0, t0,r + T0) (cf. Lemma
1.49).
(γ ) Prove consistency of this approach, that is, show that the discrete algorithm of

Section 1.4 is compatible with the time-dependent Lax and zero-curvature equations
in the sense that first solving the autonomous system (1.288), (1.289) and then apply-
ing the discrete algorithm, or first applying the discrete algorithm and then solving
the autonomous system (1.288), (1.289) yields the same result whenever the same
endpoint (n, tr ) is reached (cf. the discussion following Lemma 1.49 and the subse-
quent Lemma 1.50 and Theorem 1.51).
(δ) Prove that there is a dense set of initial conditions of full measure for which

this strategy yields global solutions of the algebro-geometric Toda hierarchy initial
value problem (cf. Lemma 1.52 and Theorem 1.53).

To set up this formalism we need some preparations. From the outset we make the
following assumption.

Hypothesis 1.48 Suppose that

a, b ∈ CZ and a(n) �= 0 for all n ∈ Z, (1.268)

and assume that a, b satisfy the pth stationary Toda system (1.29). In addition, sup-
pose that the affine part of the hyperelliptic curve Kp (cf. (1.62)) is nonsingular.
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Assuming Hypothesis 1.48, we consider the polynomials Fp, G p+1, F̃r , and G̃r+1

given by (1.203)–(1.206) for fixed p, r ∈ N0. Here f�, f̃s , g�, and g̃s , � = 0, . . . , p,
s = 0, . . . , r , are defined as in (1.3)–(1.5) with appropriate sets of summation con-
stants c�, � ∈ N, c̃k , k ∈ N.

Our aim will be to find an autonomous first-order system of ordinary differential
equations with respect to tr for f� and g� rather than for µ j . Indeed, we will take the
coupled system of differential equations (1.233), (1.236), properly rewritten next, as
our point of departure. In order to turn (1.233), (1.236) into a system of first-order
ordinary differential equations for f� and g�, we first need to express f +� , f̃s , g̃s , and
f̃ +s in terms of f� and g� as follows.

Using (1.9), (1.30), (1.32), and Theorem C.2 one infers

F̃r (z) =
r∑

s=0

f̃r−s zs =
r∑

s=0

c̃r−s F̂s(z), (1.269)

F̂�(z) =
�∑

k=0

f̂�−k zk, f̂0 = 1, f̂� =
�∧p∑
k=0

ĉ�−k(E) fk, � ∈ N0, (1.270)

where m∧n = min{m, n} and ĉ�(E) has been introduced in (C.3). Hence one obtains

f̃0 = 1, f̃s = F1,s( f1, . . . , f p), s = 1, . . . , r,

where F1,s , s = 1, . . . , r , are polynomials in p variables.
Next, using (1.9), (1.31), (1.33), and Theorem C.2 one concludes

G̃r+1(z) = −zr+1 +
r∑

s=0

g̃r−s zs + f̃r+1 =
r+1∑
s=1

c̃r+1−s Ĝs(z), (1.271)

Ĝ0(z) = G0(z)
∣∣
c1=0 = 0, Ĝ1(z) = G1(z) = −z − b,

Ĝ�+1(z) = G�+1(z)
∣∣
ck=0, k=1,...,� = −z�+1 +

�∑
k=0

ĝ�−k zk + f̂�+1, (1.272)

ĝ0 = 0, ĝ� =
�∧p∑
k=0

ĉ�−k(E)(gk + f p+1δp,k)− ĉ�+1(E), � ∈ N.

Hence one concludes

g̃0 = −c̃1, g̃s = F2,s( f1, . . . , f p, g1, . . . , gp−1, (gp + f p+1)), s = 1, . . . , r,

where F2,s , s = 1, . . . , r , are polynomials in 2p variables. We also recall (cf. (1.27))
that f p+1 is a lattice constant, that is,

f p+1 = f −p+1.
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Next we invoke the fundamental identity (1.40) in the form

−4a2 F+p =
R2p+2 − G2

p+1

Fp
. (1.273)

While (1.273) at this point only holds in the stationary context, we will use it later
on also in the tr -dependent context and verify after the time-dependent solutions of
(1.195), (1.196) have been obtained that (1.273) indeed is valid for all (n, tr ) ∈ Z×R.
A comparison of powers of z in (1.273) then yields

4a2 f +0 = −2g1 − 2c2,

4a2 f +� = F3,�( f1, . . . , f p, g1, . . . , gp−1, (gp + f p+1)), � = 1, . . . , p,
(1.274)

where F3,�, � = 1, . . . , p, are polynomials in 2p variables.
Finally, combining (1.269), (1.270), (1.273), and (1.274), one obtains

4a2 f̃ +0 = −2g1 − 2c2,

4a2 f̃ +s = F4,s( f1, . . . , f p, g1, . . . , gp−1, (gp + f p+1)), s = 1, . . . , r,
(1.275)

where F4,s , s = 1, . . . , 3, are polynomials in 2p variables.
We emphasize that also the Dubrovin equations (1.236) require an analogous

rewriting of F̃r in terms of (symmetric functions of) µ j in order to represent a first-
order system of differential equations for µ j , j = 1, . . . , p.

Next, we make the transition to the algebro-geometric initial value problem
(1.195), (1.196). We introduce a deformation (time) parameter tr ∈ R in a = a(tr )
and b = b(tr ) and hence obtain tr -dependent quantities f� = f�(tr ), g� = g�(tr ),
Fp(z) = Fp(z, tr ), G p+1(z) = G p+1(z, tr ), etc. At a fixed initial time t0,r ∈ R we
require that

(a, b)|tr=t0,r =
(
a(0), b(0)

)
, (1.276)

where a(0) = a( · , t0,r ), b(0) = b( · , t0,r ) satisfy the pth stationary Toda equation
(1.29) as in (1.268)–(1.275). As discussed in Section 1.4, in order to guarantee that
the stationary solutions (1.276) can be constructed for all n ∈ Z one starts from a
particular divisor

Dµ̂(n0,t0,r ) ∈M0, (1.277)

where µ̂(n0, t0,r ) is of the form

µ̂(n0, t0,r ) = {µ̂1(n0, t0,r ), . . . , µ̂1(n0, t0,r )︸ ︷︷ ︸
p1(n0,t0,r ) times

, . . . (1.278)

. . . , µ̂q(n0,t0,r )(n0, t0,r ), . . . , µ̂q(n0,t0,r )(n0, t0,r )︸ ︷︷ ︸
pq(n0,t0,r )(n0,t0,r ) times

}
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with

µ̂k(n0, t0,r ) = (µk(n0, t0,r ), y(µ̂k(n0, t0,r ))),

µk(n0, t0,r ) �= µk′(n0, t0,r ) for k �= k′, k, k′ = 1, . . . , q(n0, t0,r ),

and

pk(n0, t0,r ) ∈ N, k = 1, . . . , q(n0, t0,r ),

q(n0,t0,r )∑
k=1

pk(n0, t0,r ) = p.

Next we recall

Fp(z, n0, t0,r ) =
p∑

�=0

f p−�(n0, t0,r )z
� =

q(n0,t0,r )∏
k=1

(z − µk(n0, t0,r ))
pk (n0,t0,r ),

(1.279)

Tp−1(z, n0, t0,r ) = −Fp(z, n0, t0,r )

×
q(n0,t0,r )∑

k=1

pk (n0,t0,r )−1∑
�=0

(
d�y(P)/dζ �

)∣∣
P=(ζ,η)=µ̂k (n0,t0,r )

�!(pk(n0, t0,r )− �− 1)!

×
(

d pk (n0,t0,r )−�−1

dζ pk (n0,t0,r )−�−1

(
(z − ζ )−1 (1.280)

×
q(n0,t0,r )∏

k′=1, k′ �=k

(ζ − µk′(n0, t0,r ))
−pk′ (n0,t0,r )

))∣∣∣∣
ζ=µk (n0,t0,r )

,

b(n0, t0,r ) = 1

2

2p+1∑
m=0

Em −
q(n0,t0,r )∑

k=1

pk(n0, t0,r )µk(n0, t0,r ), (1.281)

G p+1(z, n0, t0,r ) = −z p+1 +
p∑

�=0

gp−�(n0, t0,r )z
� + f p+1(t0,r ),

= −(z − b(n0, t0,r ))Fp(z, n0, t0,r )+ Tp−1(z, n0, t0,r ). (1.282)

Here the sign of y in (1.280) is chosen as usual by

µ̂k(n0, t0,r ) = (µk(n0, t0,r ),−G p+1(µk(n0, t0,r ), n0, t0,r )),

k = 1, . . . , q(n0, t0,r ).

By (1.279) one concludes that (1.278) uniquely determines Fp(z, n0, t0,r ) and hence

f1(n0, t0,r ), . . . , f p(n0, t0,r ). (1.283)

By (1.280)–(1.283) one concludes that also G p+1(z, n0, t0,r ) and hence

g1(n0, t0,r ), . . . , gp−1(n0, t0,r ), gp(n0, t0,r )+ f p+1(t0,r ) (1.284)

are uniquely determined by the initial divisor Dµ̂(n0,t0,r ) in (1.277).



1.6 The Time-Dependent Toda Algebro-Geometric IVP 109

Summing up the discussion in (1.269)–(1.284), we can transform the differential
equations

Fp,tr (z, n0, tr ) = 2
(
Fp(z, n0, tr )G̃r+1(z, n0, tr )

− G p+1(z, n0, tr )F̃r (z, n0, tr )
)
, (1.285)

G p+1,tr (z, n0, tr ) = 4a(n0, tr )
2(Fp(z, n0, tr )F̃

+
r (z, n0, tr )

− F+p (z, n0, tr )F̃r (z, n0, tr )
)

(1.286)

subject to the constraint

−4a2 F+p (z, n0, tr ) = R2p+2(z)− G p+1(z, n0, tr )2

Fp(z, n0, tr )
, (1.287)

and associated with an initial divisor Dµ̂(n0,t0,r ) in (1.277) into the following au-
tonomous first-order system of ordinary differential equations (for fixed n = n0),

f j,tr = F j ( f1, . . . , f p, g1, . . . , gp−1, gp + f p+1), j = 1, . . . , p,

g j,tr = G j ( f1, . . . , f p, g1, . . . , gp−1, gp + f p+1), j = 1, . . . , p − 1, (1.288)

(gp + f p+1)tr = Gp( f1, . . . , f p, g1, . . . , gp−1, gp + f p+1)

with initial condition

f j (n0, t0,r ), j = 1, . . . , p,

g j (n0, t0,r ), j = 1, . . . , p − 1, (1.289)

gp(n0, t0,r )+ f p+1(t0,r ),

where F j , G j , j = 1, . . . , p, are polynomials in 2p variables. As just discussed, the
initial conditions (1.289) are uniquely determined by the initial divisor Dµ̂(n0,t0,r ) in
(1.277).

Since the system (1.288) is autonomous with polynomial right-hand sides, there
exists a T0 > 0, such that the first-order initial value problem (1.288), (1.289) has a
unique solution

f j = f j (n0, tr ), j = 1, . . . , p,

g j = g j (n0, tr ), j = 1, . . . , p − 1,

gp + f p+1 = gp(n0, tr )+ f p+1(tr )

for all tr ∈ (t0,r − T0, t0,r + T0).

(1.290)

Given the solution (1.290), we next introduce the following quantities (where tr ∈
(t0,r − T0, t0,r + T0)):

Fp(z, n0, tr ) =
p∑

�=0

f p−�(n0, tr )z
� =

q(n0,tr )∏
k=1

(z − µk(n0, tr ))
pk (n0,tr ), (1.291)
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Tp−1(z, n0, tr ) = −Fp(z, n0, tr )

×
q(n0,tr )∑

k=1

pk (n0,tr )−1∑
�=0

(
d�y(P)/dζ �

)∣∣
P=(ζ,η)=µ̂k (n0,tr )

�!(pk(n0, tr )− �− 1)!

×
(

d pk (n0,tr )−�−1

dζ pk (n0,tr )−�−1

(
(z − ζ )−1 (1.292)

×
q(n0,tr )∏

k′=1, k′ �=k

(ζ − µk′(n0, tr ))
−pk′ (n0,tr )

))∣∣∣∣
ζ=µk (n0,tr )

,

b(n0, tr ) = 1

2

2p+1∑
m=0

Em −
q(n0,tr )∑

k=1

pk(n0, tr )µk(n0, tr ), (1.293)

G p+1(z, n0, tr ) = −z p+1 +
p∑

�=0

gp−�(n0, tr )z
� + f p+1(tr )

= −(z − b(n0, tr ))Fp(z, n0, tr )+ Tp−1(z, n0, tr ). (1.294)

In particular, this leads to the divisor

Dµ̂(n0,tr ) ∈ Symp(Kp)

and the sign of y in (1.292) is chosen as usual by

µ̂k(n0, tr ) = (µk(n0, tr ),−G p+1(µk(n0, tr ), n0, tr )), k = 1, . . . , q(n0, tr ),

(1.295)

and

µ̂(n0, tr )

= {µ1(n0, tr ), . . . , µ1(n0, tr )︸ ︷︷ ︸
p1(n0,tr ) times

, . . . , µq(n0,tr )(n0, tr ), . . . , µq(n0,tr )(n0, tr )︸ ︷︷ ︸
pq(n0,tr )(n0,tr ) times

}

with

µk(n0, tr ) �= µk′(n0, tr ) for k �= k′, k, k′ = 1, . . . , q(n0, tr ),

and

pk(n0, tr ) ∈ N, k = 1, . . . , q(n0, tr ),
q(n0,tr )∑

k=1

pk(n0, tr ) = p.

By construction (cf. (1.295)), the divisor Dµ̂(n0,tr ) is nonspecial for all tr ∈
(t0,r − T0, t0,r + T0).
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In exactly the same manner as in (1.176)–(1.177) one then infers that Fp( · , n0, tr )
divides R2p+2 − G2

p+1 (since tr is just a fixed parameter). Moreover, arguing as in
(1.178)–(1.181) we now assume that the polynomial

R2p+2(z)− G p+1(z, n0, tr )
2 =

z→∞ O(z2p)

is precisely of maximal order 2p for all tr ∈ (t0,r − T0, t0,r + T0). One then obtains

R2p+2(z)− G p+1(z, n0, tr )
2 = −4a(n0, tr )

2 Fp(z, n0, tr )Fp(z, n0 + 1, tr ),

(z, tr ) ∈ C× (t0,r − T0, t0,r + T0), (1.296)

where we introduced the coefficient a(n0, tr )2 to make Fp( · , n0 + 1, tr ) a monic
polynomial of degree p. As in Section 1.4, the assumption that the polynomial
Fp( · , n0 + 1, tr ) is precisely of order p is implied by the hypothesis that

Dµ̂(n0,tr ) ∈M0 for all tr ∈ (t0,r − T0, t0,r + T0), (1.297)

a point we will revisit later (cf. Lemma 1.52). Given (1.296), we obtain consistency
with (1.273) for n = n0 and tr ∈ (t0,r − T0, t0,r + T0).

The explicit formula for a(n0, tr )2 then reads (for tr ∈ (t0,r − T0, t0,r + T0))

a(n0, tr )
2 = 1

2

q(n0,tr )∑
k=1

(
d pk (n0,tr )−1 y(P)/dζ pk (n0,tr )−1

)∣∣
P=(ζ,η)=µ̂k (n0,tr )

(pk(n0, tr )− 1)!

×
q(n0,tr )∏

k′=1, k′ �=k

(µk(n0, tr )− µk′(n0, tr ))
−pk (n0,tr )

+ 1

4

(
b(2)(n0, tr )− b(n0, tr )

2).
Here and in the following we use the abbreviation

b(2)(n, tr ) = 1

2

2p+1∑
m=0

E2
m −

q(n,tr )∑
k=1

pk(n, tr )µk(n, tr )
2 (1.298)

for appropriate ranges of (n, tr ) ∈ N× R.
With (1.291)–(1.298) in place, we can now apply the stationary formalism as sum-

marized in Theorem 1.32, subject to the additional hypothesis (1.297), for each fixed
tr ∈ (t0,r − T0, t0,r + T0). This yields, in particular, the quantities

Fp, G p+1, a, b, and µ̂ for (n, tr ) ∈ Z× (t0,r − T0, t0,r + T0), (1.299)

which are of the form (1.291)–(1.298), replacing the fixed n0 ∈ Z by an arbitrary
n ∈ Z. In addition, one has the following fundamental identities (cf. (1.187), (1.190),
(1.192), and (1.193)), which we summarize in the following result.
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Lemma 1.49 Assume Hypothesis 1.48 and condition (1.297). Then the following
relations are valid on C× Z× (t0,r − T0, t0,r + T0),

R2p+2 − G2
p+1 + 4a2 Fp F+p = 0, (1.300)

2(z − b+)F+p + G+p+1 + G p+1 = 0, (1.301)

2a2 F+p − 2(a−)2 F−p + (z − b)(G p+1 − G−p+1) = 0, (1.302)

2(z − b+)F+p − 2(z − b)Fp + G+p+1 − G−p+1 = 0, (1.303)

and hence the stationary part, (1.201), of the algebro-geometric initial value problem
holds,

U Vp+1 − V+p+1U = 0 on C× Z× (t0,r − T0, t0,r + T0).

In particular, Lemmas 1.12 and 1.14–1.17 apply.

Lemma 1.49 now raises the following important consistency issue: On the one
hand, one can solve the initial value problem (1.288), (1.289) at n = n0 in some
interval tr ∈ (t0,r − T0, t0,r + T0), and then extend the quantities Fp,G p+1 to all
C×Z× (t0,r − T0, t0,r + T0) using the stationary algorithm summarized in Theorem
1.32 as just recorded in Lemma 1.49. On the other hand, one can solve the initial
value problem (1.288), (1.289) at n = n1, n1 �= n0, in some interval tr ∈ (t0,r −
T1, t0,r + T1) with the initial condition obtained by applying the discrete algorithm
to the quantities Fp,G p+1 starting at (n0, t0,r ) and ending at (n1, t0,r ). Consistency
then requires that the two approaches yield the same result at n = n1 for tr in some
open neighborhood of t0,r .

Equivalently, and pictorially speaking, envisage a vertical tr -axis and a horizontal
n-axis. Then, consistency demands that first solving the initial value problem (1.288),
(1.289) at n = n0 in some tr -interval around t0,r and using the stationary algorithm
to extend Fp,G p+1 horizontally to n = n1 and the same tr -interval around t0,r ,
or first applying the stationary algorithm starting at (n0, t0,r ) to extend Fp,G p+1

horizontally to (n1, t0,r ) and then solving the initial value problem (1.288), (1.289)
at n = n1 in some tr -interval around t0,r should produce the same result at n = n1

in a sufficiently small open tr interval around t0,r .
To settle this consistency issue, we will prove the following result. To this end

we find it convenient to replace the initial value problem (1.288), (1.289) by the
original tr -dependent zero-curvature equation (1.200), Utr + U Ṽr+1 − Ṽ+r+1U = 0
on C× Z× (t0,r − T0, t0,r + T0).

Lemma 1.50 Assume Hypothesis 1.48 and condition (1.297). Moreover, suppose
that (1.285)–(1.287) hold on C× {n0} × (t0,r − T0, t0,r + T0). Then (1.285)–(1.287)
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hold on C× Z× (t0,r − T0, t0,r + T0), that is,

Fp,tr (z, n, tr ) = 2
(
Fp(z, n, tr )G̃r+1(z, n, tr )

− G p+1(z, n, tr )F̃r (z, n, tr )
)
, (1.304)

G p+1,tr (z, n, tr ) = 4a(n, tr )
2(Fp(z, n, tr )F̃

+
r (z, n, tr )

− F+p (z, n, tr )F̃r (z, n, tr )
)
, (1.305)

R2p+2(z) = G p+1(z, n, tr )
2 − 4a(n, tr )

2 Fp(z, n, tr )F
+
p (z, n, tr ). (1.306)

Moreover,

φtr (P, n, tr ) = −2a(n, tr )
(
F̃r (z, n, tr )φ(P, n, tr )

2 + F̃+r (z, n, tr )
)

+ 2(z − b+(n, tr ))F̃
+
r (z, n, tr )φ(P, n, tr ) (1.307)

+ (G̃+r+1(z, n, tr )− G̃r+1(z, n, tr )
)
φ(P, n, tr ),

atr (n, tr ) = −a(n, tr )
(
2(z − b+(n, tr ))F̃

+
r (z, n, tr )

+ G̃+r+1(z, n, tr )+ G̃r+1(z, n, tr )
)
, (1.308)

btr (n, tr ) = 2
(
(z − b(n, tr ))

2 F̃r (z, n, tr )+ (z − b(n, tr ))G̃r+1(z, n, tr )

+ a(n, tr )
2 F̃+r (z, n, tr )− (a−(n, tr ))

2 F̃−r (z, n, tr )
)
, (1.309)

(z, n, tr ) ∈ C× Z× (t0,r − T0, t0,r + T0).

Proof By Lemma 1.49 we have (1.213), (1.214), (1.218), (1.220)–(1.222), and
(1.300)–(1.303) for (n, tr ) ∈ Z × (t0,r − T0, t0,r + T0) at our disposal. Differen-
tiating (1.306) at n = n0 with respect to tr , inserting (1.304) and (1.305) at n = n0,
then yields

2F+p atr + aF+p,tr = 2a
(
G p+1 F̃+r − F+p G̃r+1

)
(1.310)

= 2F+p a
(− 2(z − b+)F̃+r − G̃+r+1 − G̃r+1

)+ 2a
(
F+p G̃+r+1 − G+p+1 F̃+r

)
at n = n0. By inspection,

F+p (z)G̃+r+1(z)− G+p+1(z)F̃
+
r (z) =|z|→∞ O(z p−1). (1.311)

This can be shown directly using formulas such as (1.30)–(1.33), (1.269), (1.270),
(1.271), and (1.272). It also follows from (1.233) and the fact that Fp is a monic
polynomial of degree p. Thus one concludes that

2F+p atr = 2F+p a
(− 2(z − b+)F̃+r − G̃+r+1 − G̃r+1

)
at n = n0, and upon cancelling 2F+p that (1.308) holds at n = n0. This and (1.310)
then also prove that (1.304) holds at n = n0 + 1.
Next, differentiating 2aFpφ = y − G p+1 at n = n0 with respect to tr , inserting
(1.304), (1.305), and (1.308) at n = n0, and using (1.214) to replace 2aF+p by
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−(y + G p+1)φ and (1.213) to replace (G p+1 − y) by −2aFpφ, yields (1.307) at
n = n0 upon cancelling the factor 2aFp.

Differentiating (1.301) with respect to tr (fixing n = n0), inserting (1.301) (to replace
G+p+1), (1.305) at n = n0, and (1.304) at n = n0 + 1 yields

0 = −2F+p
(
b+tr − 2(z − b+)2 F̃+r + 2a2 F̃r − 2(z − b+)G̃+r+1

)
+ 4(z − b+)2 F+p F̃+r + 4(z − b+)G p+1 F̃+r + 4(a)2 Fp F̃+r + G+p+1,tr

= −2F+p
(
b+tr − 2(z − b+)2 F̃+r − 2(z − b+)G̃+r+1 + 2a2 F̃r − 2(a+)2 F̃++r

)
− 4(a+)2 F+p F̃++r + 4(z − b+)2 F+p F̃+r + 4(z − b+)G p+1 F̃+r
+ 4a2 Fp F̃+r + G+p+1,tr

= −2F+p
(
b+tr − 2(z − b+)2 F̃+r − 2(z − b+)G̃+r+1 + 2a2 F̃r − 2(a+)2 F̃++r

)
+ G+p+1,tr

− 4(a+)2 F+p F̃++r (1.312)

+ (4a2 Fp + 4(z − b+)2 F+p + 4(z − b+)G p+1
)
F̃+r

at n = n0. Combining (1.301) and (1.302) at n = n0 one computes

4(a+)2 F++p = 4a2 Fp + 4(z − b+)2 F+p + 4(z − b+)G p+1 (1.313)

at n = n0. Insertion of (1.313) into (1.312) then yields

0 = −2F+p
(
b+tr − 2(z − b+)2 F̃+r − 2(z − b+)G̃+r+1 + 2a2 F̃r − 2(a+)2 F̃++r

)
+ G+p+1,tr

− 4(a+)2 F+p F̃++r + 4(a+)2 F++p F̃+r (1.314)

at n = n0. In close analogy to (1.311) one observes that

F+p (z)F̃++r (z)− F++p (z)F̃+r (z) =|z|→∞ O(z p−1) for p ∈ N.

Thus, since F+p is a monic polynomial of degree p, (1.314) proves that

b+tr − 2(z − b+)2 F̃+r − 2(z − b+)G̃+r+1 + 2a2 F̃r − 2(a+)2 F̃++r = 0

at n = n0, upon cancelling F+p . Thus, (1.309) holds at n = n0 + 1. Simultaneously,
this proves (1.305) at n = n0 + 1.

Iterating the arguments just presented (and performing the analogous considerations
for n < n0) then extends these results to all lattice points n ∈ Z and hence proves
(1.304)–(1.309) for (z, n, tr ) ∈ C× Z× (t0,r − T0, t0,r + T0).

We summarize Lemmas 1.49 and 1.50 next.
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Theorem 1.51 Assume Hypothesis 1.48 and condition (1.297). Moreover, suppose
that

f j = f j (n0, tr ), j = 1, . . . , p,

g j = g j (n0, tr ), j = 1, . . . , p − 1,

gp + f p+1 = gp(n0, tr )+ f p+1(tr )

for all tr ∈ (t0,r − T0, t0,r + T0),

satisfies the autonomous first-order system of ordinary differential equations (1.288)
(for fixed n = n0),

f j,tr = F j ( f1, . . . , f p, g1, . . . , gp−1, gp + f p+1), j = 1, . . . , p,

g j,tr = G j ( f1, . . . , f p, g1, . . . , gp−1, gp + f p+1), j = 1, . . . , p − 1,

(gp + f p+1)tr = Gp( f1, . . . , f p, g1, . . . , gp−1, gp + f p+1)

with initial condition

f j (n0, t0,r ), j = 1, . . . , p,

g j (n0, t0,r ), j = 1, . . . , p − 1,

gp(n0, t0,r )+ f p+1(t0,r ).

Then Fp and G p+1 as constructed in (1.269)–(1.299) on C×Z×(t0,r−T0, t0,r+T0)

satisfy the zero-curvature equations (1.200), (1.201), and (1.235) on C×Z× (t0,r −
T0, t0,r + T0),

Utr +U Ṽr+1 − Ṽ+r+1U = 0,

U Vp+1 − V+p+1U = 0,

Vp+1,tr −
[
Ṽr+1, Vp+1

] = 0,

with U, Vp+1, and Ṽr+1 given by (1.202). In particular, a, b satisfy the algebro-
geometric initial value problem (1.195), (1.196) on Z× (t0,r − T0, t0,r + T0),

T̃lr (a, b) =
(

atr − a
(

f̃ +p+1(a, b)− f̃ p+1(a, b)
)

btr + g̃p+1(a, b)− g̃−p+1(a, b)

)
= 0,

(a, b)
∣∣
tr=t0,r

= (a(0), b(0)
)
,

(1.315)

s-Tlp
(
a(0), b(0)

) = (−a
(

f +p+1

(
a(0), b(0)

)− f p+1
(
a(0), b(0)

))
gp+1

(
a(0), b(0)

)− g−p+1

(
a(0), b(0)

) )
= 0 (1.316)
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and are given by

a(n, tr )
2 = 1

2

q(n,tr )∑
k=1

(
d pk (n,tr )−1 y(P)/dζ pk (n,tr )−1

)∣∣
P=(ζ,η)=µ̂k (n,tr )

(pk(n, tr )− 1)!

×
q(n,tr )∏

k′=1, k′ �=k

(µk(n, tr )− µk′(n, tr ))
−pk (n,tr )

+ 1

4

(
b(2)(n, tr )− b(n, tr )

2),
b(n, tr ) = 1

2

2p+1∑
m=0

Em −
q(n,tr )∑

k=1

pk(n, tr )µk(n, tr ),

(z, n, tr ) ∈ Z× (t0,r − T0, t0,r + T0).

Moreover, Lemmas 1.12, 1.15, 1.18 and 1.35, 1.36, 1.37, 1.38, 1.40 apply.

In analogy to Lemma 1.30 we next show that also in the time-dependent case, most
initial divisors are well-behaved in the sense that the corresponding divisor trajectory
stays away from P∞± for all (n, tr ) ∈ Z× R.

Lemma 1.52 The set M1 of initial divisors Dµ̂(n0,t0,r ) for which Dµ̂(n,tr ), defined
via (1.259), is nonspecial and finite for all (n, tr ) ∈ Z× R, forms a dense set of full
measure in the set Symp(Kp) of positive divisors of degree p.

Proof Let Msing be as introduced in the proof of Lemma 1.30. Then⋃
tr∈R

(
αQ0

(Msing)+ tr Ũ
(2)
r

)
⊆

⋃
P∈{P∞+ ,P∞−}

⋃
tr∈R

(
AQ0

(P)+ αQ0
(Symp−1(Kp))+ tr Ũ

(2)
r

)

is of measure zero as well, since it is contained in the image of R × Symp−1(Kp)

which misses one real dimension in comparison to the 2p real dimensions of J (Kp).
But then ⋃

(n,tr )∈Z×R

(
αQ0

(Msing)+ n AP∞− (P∞+)+ tr Ũ
(2)
r

)
(1.317)

is also of measure zero. Applying α−1
Q0

to the complement of the set in (1.317) then
yields a set M1 of full measure in Symp(Kp). In particular, M1 is necessarily dense
in Symp(Kp).
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Theorem 1.53 Let Dµ̂(n0,t0,r ) ∈ M1 be an initial divisor as in Lemma 1.52. Then
the sequences a, b constructed from µ̂(n0, t0,r ) as described in Theorem 1.51 satisfy
Hypothesis 1.34. In particular, the solution a, b of the algebro-geometric initial value
problem (1.315), (1.316) is global in (n, tr ) ∈ Z× R.

Proof Starting with Dµ̂(n0,t0,r ) ∈ M1, the procedure outlined in this section and
summarized in Theorem 1.51 leads to Dµ̂(n,tr ) for all (n, tr ) ∈ Z×(t0,r−T0, t0,r+T0)

such that (1.259) holds. But if a, b should blow up, then Dµ̂(n,tr ) must hit P∞+ or
P∞− , which is excluded by our choice of initial condition.

Note, however, that in general (i.e., unless one is, e.g., in the special periodic or
self-adjoint case), Dµ̂(n,tr ) will get arbitrarily close to P∞± since straight motions
on the torus are generically dense and hence no uniform bound on the sequences
a(n, tr ), b(n, tr ) (and no uniform lower bound on |a(n, tr )|) exists as (n, tr ) varies in
Z× R. In particular, these complex-valued algebro-geometric solutions of the Toda
hierarchy initial value problem, in general, will not be quasi-periodic with respect to
n or tr .

1.7 Toda Conservation Laws and the Hamiltonian Formalism

What is a Hilbert space?
Asked by David Hilbert1

In this section we deviate from the principal theme of this book and discuss the
Green’s function of an �2(Z)-realization of the difference expression L and sys-
tematically derive high-energy expansions of solutions of an associated Riccati-type
equation in connection with spatially sufficiently decaying sequences a and b, not
necessarily associated with algebro-geometric coefficients. In addition, we derive
local conservation laws and develop the Hamiltonian formalism for the Toda hierar-
chy including variational derivatives and Poisson brackets. At the end of this section
we then hint at the necessary extensions to treat almost periodic (and hence quasi-
periodic and periodic) coefficients a and b.

In connection with the asymptotic expansions of various quantities we now make
the following strengthened assumptions on the coefficients a and b.

Hypothesis 1.54 Suppose

a, b ∈ �∞(Z), a(n) �= 0 for all n ∈ Z.

1 Quoted in S. G. Krantz, Mathematical Apocrypha, Mathematical Association of America, 2002, p. 89.
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Given Hypothesis 1.54 we introduce the �2(Z)-realization L̆ of the Jacobi differ-
ence expression L in (1.2) by

L̆ f = L f, f ∈ dom
(
L̆
) = �2(Z). (1.318)

In addition, we introduce the half-line Dirichlet operators L̆ D+,n0
on �2([n0,∞) ∩ Z)

and L̆ D−,n0
on �2((−∞, n0] ∩ Z), n0 ∈ Z, by

(
L̆ D+,n0

u
)
(n) =

{
a(n0)u(n0 + 1)+ b(n0)u(n0), n = n0,

(Lu)(n), n ∈ [n0 + 1,∞) ∩ Z,

u ∈ dom
(
L̆ D+,n0

) = �2([n0,∞) ∩ Z), (1.319)(
L̆ D−,n0

v
)
(n) =

{
a(n0)v(n0 + 1)+ b(n0)v(n0), n = n0,

(Lv)(n), n ∈ (−∞, n0 − 1] ∩ Z,

v ∈ dom
(
L̆ D−,n0

) = �2((−∞, n0] ∩ Z). (1.320)

(At least formally, it is customary to join the Dirichlet-type boundary condition
u(n0 − 1) = 0 in the case of L̆ D+,n0

and v(n0 + 1) = 0 in the case of L̆ D−,n0
in

order to avoid the case distinction in (1.319) and (1.320).)
For future purposes we recall the notion of weak solutions associated with finite

difference expressions: If R denotes a finite difference expression, then ψ is called a
weak solution of Rψ = zψ , for some z ∈ C, if the relation holds pointwise for each
lattice point, that is, if ((R − z)ψ)(n) = 0 for all n ∈ Z.

The following elementary result about a spectral inclusion of L̆ and L̆ D±,n0
will be

useful later.

Theorem 1.55 Suppose a, b satisfy Hypothesis 1.54. Then the numerical range of
L̆, and hence in particular, the spectrum of L̆ and L̆ D±,n0

is contained in the closed
ball centered at the origin of radius 2‖a‖∞ + ‖b‖∞, that is,

spec
(
L̆
)
, spec

(
L̆ D±,n0

) ⊆ B(0; 2‖a‖∞ + ‖b‖∞), n0 ∈ Z. (1.321)

Proof We denote by W (T ) the numerical range of a bounded linear operator T ∈
B(H) in the complex, separable Hilbert space H,

W (T ) = {(g, T g)H ∈ C | g ∈ H, ‖g‖H = 1}.
It is well-known that W (T ) is convex and that its closure contains the spectrum
of T ,

spec(T ) ⊆ W (T ).
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Elementary arguments then prove∣∣( f, L̆ f
)∣∣ ≤ (2‖a‖∞ + ‖b‖∞)‖ f ‖2, f ∈ �2(Z),∣∣(w, L̆ D±,n0

w
)
�2([n0,±∞)∩Z)

∣∣ ≤ (2‖a‖∞ + ‖b‖∞)‖w‖2�2([n0,±∞)∩Z)
,

w ∈ �2([n0,±∞) ∩ Z),

and hence (1.321).

Since L̆ is a bounded second-order difference operator in �2(Z) with∥∥L̆
∥∥ ≤ 2‖a‖∞ + ‖b‖∞,

the resolvent
(
L̆− z I )−1, z ∈ C \ spec

(
L̆
)
, of L̆ is thus a Carleman integral operator

(the corresponding measures involved are of course discrete measures). Introducing

ψ+(z, n) = ((L̆ − z I
)−1

δ0
)
(n), n ≥ 1, z ∈ C \ spec

(
L̆
)
, (1.322)

ψ−(z, n) = ((L̆ − z I
)−1

δ0
)
(n), n ≤ −1, z ∈ C \ spec

(
L̆
)
, (1.323)

where

δk(n) =
{

1, n = k,

0, n ∈ Z \ {k}, k ∈ Z,

one can use the Jacobi equation Lψ±(z) = zψ±(z) to extend ψ±(z, n) uniquely to
all n ∈ [0,∓∞) ∩ Z (this is possible since by Hypothesis 1.54, a(n) �= 0 for all
n ∈ Z). Thus, one obtains,

Lψ±(z) = zψ±(z), ψ±(z, · ) ∈ �2([n0,±∞) ∩ Z), z ∈ C \ spec
(
L̆
)
, n0 ∈ Z,

in the weak sense. We note that the Weyl–Titchmarsh-type solutions ψ±(z, · ) are
unique up to normalization. Moreover, by the second inclusion in (1.321),

ψ±(z, · ) is zero free for |z| > (2‖a‖∞ + ‖b‖∞)

since ψ±(z, n0) = 0 for some n0 ∈ Z yields an eigenvalue of L̆ D±,n0±1.

The Green’s function G(z, · , · ) of L̆ , that is, the integral kernel of the resolvent(
L̆ − z I

)−1 (with respect to discrete measures), is then given by

G(z, n, n′) = 1

W (ψ−(z), ψ+(z))

{
ψ−(z, n)ψ+(z, n′), n ≤ n′,
ψ−(z, n′)ψ+(z, n), n ≥ n′,

z ∈ C \ spec
(
L̆
)
, n, n′ ∈ Z,

(1.324)
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where W ( f, g)(n) denotes the Wronskian

W ( f, g)(n) = a(n)( f (n)g(n + 1)− f (n + 1)g(n)), n ∈ Z, (1.325)

of complex-valued sequences f = { f (n)}n∈Z and g = {g(n)}n∈Z.
The corresponding Green’s functions G D±,n0

(z, · , · ) of L̆ D±,n0
, that is, the integral

kernels of the resolvents
(
L̆ D±,n0

− z I
)−1 (again with respect to discrete measures),

are then given by

G D+,n0
(z, n, n′)

= −1

a(n0 − 1)ψ+(z, n0 − 1)

{
φ0(z, n, n0 − 1)ψ+(z, n′), n ≤ n′,
φ0(z, n′, n0 − 1)ψ+(z, n), n ≥ n′,

(1.326)

z ∈ C \ spec(L̆ D+,n0
), n, n′ ∈ Z,

G D−,n0
(z, n, n′)

= −1

a(n0 + 1)ψ−(z, n0 + 1)

{
ψ−(z, n)φ0(z, n′, n0 + 1), n ≤ n′,
ψ−(z, n′)φ0(z, n, n0 + 1), n ≥ n′,

(1.327)

z ∈ C \ spec(L̆ D−,n0
), n, n′ ∈ Z,

where φ0(z, · , n0) is a weak solution of

Lψ = zψ, (1.328)

satisfying the initial conditions

φ0(z, n0, n0) = 0, φ0(z, n0 + 1, n0) = 1, z ∈ C.

Next, assuming that ψ satisfies (1.328), the function φ = φ(z, n), introduced by

φ = ψ+

ψ
, (1.329)

satisfies the Riccati-type equation

aφ + a−(φ−)−1 + (b − z) = 0. (1.330)

Defining

φ±(z, n) = ψ±(z, n + 1)

ψ±(z, n)
, z ∈ C \ spec

(
L̆ D±,n±1

)
, n ∈ Z,

and using the Green’s function representations (1.326), (1.327), one computes

φ+(z, n) = −a(n)G D+,n+1(z, n + 1, n + 1)

= −a(n)
(
δn+1,

(
L̆ D+,n+1 − z I

)−1
δn+1

)
�2([n+1,∞)∩Z)

, (1.331)

z ∈ C \ spec
(
L̆ D+,n+1

)
, n ∈ Z,
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and

φ−(z, n) = a(n)−1(z − b(n)+ a(n − 1)2G D−,n+1(z, n − 1, n − 1)
)

= a(n)−1
(

z − b(n) (1.332)

+ a(n − 1)2
(
δn−1,

(
L̆ D+,n−1 − z I

)−1
δn−1

)
�2((−∞,n−1]∩Z)

)
,

z ∈ C \ spec
(
L̆ D−,n−1

)
, n ∈ Z.

We provide the following description of the asymptotic behavior of φ± as
z →∞.

Lemma 1.56 Suppose a, b satisfy Hypothesis 1.54. Then φ± has the following con-
vergent expansion with respect to 1/z around 1/z = 0,

φ±(z) =
a
∑∞

j=1 φ+, j z− j ,

1
a

∑∞
j=−1 φ−, j z− j ,

(1.333)

where

φ+,1 = 1, φ+,2 = b+,

φ+, j+1 = b+φ+, j + (a+)2
j−1∑
�=1

φ++, j−�φ+,�, j ≥ 2, (1.334)

φ−,−1 = 1, φ−,0 = −b, φ−,1 = −(a−)2,

φ−, j+1 = −bφ−−, j −
j∑

�=0

φ−, j−�φ−−,�, j ≥ 1. (1.335)

Proof Since L̆ D±,n±1 are bounded operators, (1.331) and (1.332) prove the existence
of an analytic expansion of φ±(z) with respect to 1/z around 1/z = 0 for |z| suffi-
ciently large. Moreover, (1.331) and (1.332) yield the leading asymptotic behavior,

φ+(z) =
z→∞− az−1 + O(z−2)

and

φ−(z) =
z→∞

z

a
+ O(1).

Thus, by making the ansatz (1.333) for φ± and inserting it into (1.330) one finds
(1.334) and (1.335).
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For the record we note the following explicit expressions,

φ+,1 = 1,

φ+,2 = b+,
φ+,3 = (a+)2 + (b+)2,
φ+,4 = (a+)2(2b+ + b++)+ (b+)3, etc.,

φ−,−1 = 1,

φ−,0 = −b,

φ−,1 = −(a−)2,
φ−,2 = −(a−)2b−,
φ−,3 = −(a−)2((a−−)2 + (b−)2), etc.

Later on we will also need the convergent expansion of ln(φ+) with respect to 1/z
for 1/|z| sufficiently small and hence we note that

ln(φ+(z)) = ln

(
a
∞∑
j=1

φ+, j z
− j
)

= ln

(
a

z

)
+ ln

(
1+

∞∑
j=1

φ+, j+1z− j
)

= ln

(
a

z

)
+
∞∑
j=1

ρ+, j z
− j , (1.336)

where

ρ+,1 = φ+,2, ρ+, j = φ+, j+1 −
j−1∑
�=1

�

j
φ+, j+1−�ρ+,�, j ≥ 2. (1.337)

The first few explicitly read

ρ+,1 = b+,

ρ+,2 = (a+)2 + 1

2
(b+)2,

ρ+,3 = 1

3
(b+)3 + (a+)2(b+ + b++), etc.
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Similarly, one finds for 1/|z| sufficiently small,

ln(φ−(z)) = ln

(
a−1

∞∑
j=−1

φ−, j z
− j
)

= ln

(
z

a

)
+ ln

(
1+

∞∑
j=1

φ−, j−1z− j
)

= ln

(
z

a

)
+
∞∑
j=1

ρ−, j z
− j ,

where

ρ−,1 = φ−,0, ρ−, j = φ−, j−1 −
j−1∑
�=1

�

j
φ−, j−1−�ρ−,�, j ≥ 2. (1.338)

The first few explicitly read

ρ−,1 = −b,

ρ−,2 = −(a−)2 − 1

2
b2,

ρ−,3 = −1

3
b3 − (a−)2(b− + b), etc.

Equations (1.337) and (1.338) may be written as

ρ±,1 = φ±,1±1, ρ±, j = φ±, j±1 −
j−1∑
�=1

�

j
φ±, j±1−�ρ±,�, j ≥ 2.

The next result shows that f̂ j and ± jρ±, j are equal up to terms that are total
differences, that is, are of the form (S+ − I )d±, j for some sequence d±, j . The exact
form of d±, j will not be needed later.

Lemma 1.57 Suppose a, b satisfy Hypothesis 1.54. Then,

f̂ j = ± jρ±, j + (S+ − I )d±, j , j ∈ N, (1.339)

for some polynomials d±, j , j ∈ N, in a and b and certain shifts thereof.

Proof To shorten the notation we introduce the abbreviations

g(z, n) = G(z, n, n), h(z, n) = G(z, n, n + 1), (z, n) ∈ C× Z. (1.340)

Thus,

φ+ = h

g
.
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To increase readability we suppress the display of variables in the subsequent com-
putations. First, one observes that

agg+ − h(ah − 1) = a
ψ+ψ−ψ++ψ+−

W 2
− ψ++ψ−

W

(
a
ψ++ψ−

W
− 1

)
= ψ++ψ−

W 2

(
aψ+ψ+− − aψ++ψ− +W

) = 0 (1.341)

and thus,

φ2+ =
h2

g2
= ah2

agg+
g+

g
= ah

ah − 1

g+

g
.

This yields

d

dz
ln(φ+) = 1

2

d

dz
ln

(
ah

ah − 1

)
+ 1

2

d

dz
ln

(
g+

g

)
. (1.342)

Next we study the first term on the right-hand side of (1.342), namely,

d

dz
ln

(
ah

ah − 1

)
= hz

h
− ahz

ah − 1
. (1.343)

We claim that

hz

h
− ahz

ah − 1
= (1− 2ah)

(
gz

g
+ g+z

g+

)
+ 4ahz . (1.344)

To this end we first take the logarithmic derivative of (1.341), that is, of agg+ =
h(ah − 1), to obtain

gz

g
+ g+z

g+
= hz

h
+ ahz

ah − 1
.

Thus,

hz

h
− ahz

ah − 1
−
(
(1− 2ah)

(
gz

g
+ g+z

g+

)
+ 4ahz

)
= hz

h
− ahz

ah − 1
− (1− 2ah)

(
hz

h
+ ahz

ah − 1

)
− 4ahz

= − 2ahz

ah − 1

(
1+ (ah − 1)− ah

) = 0.

Combining (1.342), (1.343), and (1.344) one finds

d

dz
ln(φ+) = 1

2

(
(1− 2ah)

(
gz

g
+ g+z

g+

)
+ 4ahz

)
+ 1

2

d

dz
ln

(
g+

g

)
= 1

2
(1− 2ah)

(
gz

g
+ g+z

g+

)
+ 2ahz + 1

2

d

dz
ln

(
g+

g

)
. (1.345)
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Considering the first term on the right-hand side of (1.345) and subtracting g then
yields

1

2
(1− 2ah)

(
gz

g
+ g+z

g+

)
+ 2ahz − g

= 1

2
(1− 2ah)

(
d

dz
ln(ah + a−h− − 1)+ d

dz
ln(a+h+ + ah − 1)

− d

dz
ln
(
(z − b+)(z − b)

))+ 2ahz − ah + a−h− − 1

z − b

= 1

2
(1− 2ah)

(
ahz + a−h−z

ah + a−h− − 1
+ a+h+z + ahz

a+h+ + ah − 1
−
(

1

z − b+
+ 1

z − b

))
+ 2ahz − ah + a−h−

z − b
+ 1

z − b

= 1

2

(
1

z − b
− 1

z − b+

)
+ ah

z − b+
− a−h−

z − b

+ 2ahz + 1

2
(1− 2ah)

(
ahz + a−h−z

ah + a−h− − 1
+ a+h+z + ahz

a+h+ + ah − 1

)
,

using

(z − b)g − ah − a−h− + 1 = 0.

The latter follows from the definition (1.340) of g and h (cf. (1.324)) and from
Lψ− = zψ−. By purely algebraic manipulations one obtains that

2ahz + 1

2
(1− 2ah)

(
ahz + a−h−z

ah + a−h− − 1
+ a+h+z + ahz

a+h+ + ah − 1

)
=
(

a−h−ahz − a−h−z ah

ah + a−h− − 1
− aha+h+z − ahza+h+

a+h+ + ah − 1

)
+ 1

2

(
a+h+z − ahz

a+h+ + ah − 1
− ahz − a−h−z

ah + a−h− − 1

)
.

Summarizing the computations thus far, one finds

d

dz
ln(φ+) = g + 1

2

d

dz
ln

(
g+

g

)
+ 1

2

(
1

z − b
− 1

z − b+

)
+ ah

z − b+
− a−h−

z − b

+
(

a−h−ahz − a−h−z ah

ah + a−h− − 1
− aha+h+z − ahza+h+

a+h+ + ah − 1

)
+ 1

2

(
a+h+z − ahz

a+h+ + ah − 1
− ahz − a−h−z

ah + a−h− − 1

)
= g + (S+ − I )� (1.346)
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for some function � = �(z, n). By (C.17) and (C.19) one obtains the convergent
expansion

g(z, n) = G(z, n, n) =|z|→∞ −
∞∑
j=0

f̂ j (n)z
− j−1, n ∈ Z. (1.347)

From (1.336) and (1.347) one then concludes

−z−1 −
∞∑
j=1

jρ+, j z
− j−1 = −

∞∑
j=0

f̂ j z
− j−1 + (S+ − I )

∞∑
j=0

d+, j z
− j−1

for some sequences {d+, j (n)}n∈Z, j ∈ N0.
Noting that

φ− = g+

h
,

one finds the analogous result regarding ρ−, j and d−, j , j ∈ N.

Remark 1.58 (i) Alternatively, one can derive (1.339) in a similar way to the corre-
sponding result for the Ablowitz–Ladik model, see (3.357) and (3.358).
(i i) Closely related to (1.346) is the identity

d

dz
ln

(
1− 1

ah

)
= −2g + (S+ − I )

(
− 2�+ d

dz
ln(g)

)
, (1.348)

which follows from (1.342) and (1.346).

Remark 1.59 For later use in this section we recall the notion of degree of various
quantities as introduced in Remark 1.3. One has

deg
(
a(r)
) = deg

(
b(r)
) = 1, r ∈ Z,

deg
(

f̂�
) = �, deg

(
ĝ�
) = �+ 1, � ∈ N.

Similarly, the recursion relations (1.334) and (1.335) yield inductively that

deg
(
φ±, j±1

) = j, j ∈ N0.

Next, we turn to local conservation laws.
For this purpose we introduce the following assumption:

Hypothesis 1.60 Suppose that a, b : Z× R→ C satisfy

sup
(n,tp)∈Z×R

(|a(n, tp)| + |b(n, tp)|
)
<∞,

a(n, · ), b(n, · ) ∈ C1(R), n ∈ Z, a(n, tp) �= 0 for all (n, tp) ∈ Z× R.
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In accordance with the notation introduced in (1.318) we denote the bounded
difference operator defined on �2(Z), generated by the finite difference expression
P2p+2 in (1.20), by the symbol P̆2p+2.

We start with the following existence result.

Theorem 1.61 Assume Hypothesis 1.60 and suppose a, b satisfy Tlp(a, b) = 0 for
some p ∈ N0. In addition, let tp ∈ R and z ∈ C \ spec

(
L̆
)
. Then there exist Weyl–

Titchmarsh-type solutions ψ± = ψ±(z, n, tp) such that

ψ±(z, · , tp) ∈ �2([n0,±∞) ∩ Z), n0 ∈ Z, ψ±(z, n, · ) ∈ C1(R), (1.349)

and ψ± simultaneously satisfy the following two equations in the weak sense

L̆(tp)ψ±(z, · , tp) = zψ±(z, · , tp),

ψ±,tp (z, · , tp) = P̆2p+2(tp)ψ±(z, · , tp), (1.350)

= 2a(tp)Fp(z, · , tp)ψ
+± (z, · , tp)+ G p+1(z, · , tp)ψ±(z, · , tp). (1.351)

Moreover, the Wronskian

W (ψ−(z, n, tp), ψ+(z, n, tp)) is independent of (n, tp) ∈ Z× R. (1.352)

Proof Applying
(
L̆(t) − z I

)−1 to δ0 (cf. (1.322) and (1.323)) yields the existence
of Weyl–Titchmarsh-type solutions �± of Lψ = zψ satisfying (1.349). Next, using
the Lax commutator equation (1.48) one computes

z�±,tp = (L�±)tp = Ltp�± + L�±,tp = [P2p+2, L]�± + L�±,tp

= z P2p+2�± − L P2p+2�± + L�±,tp

and hence

(L − z I )(�±,tp − P2p+2�±) = 0.

Thus, �± satisfy

�±,tp − P2p+2�± = C±�± + D±�∓.

Introducing �± = c±ψ±, and choosing c± such that c±,tp = C±c±, one obtains

ψ±,tp − P2p+2ψ± = D±ψ∓. (1.353)

Since ψ± ∈ �2([n0,±∞) ∩ Z), n0 ∈ Z, and a, b satisfy Hypothesis 1.60, (1.35)
shows that P2p+2ψ± = (2aFp S+ψ± + G p+1ψ±) ∈ �2([n0,±∞) ∩ Z). (Inci-
dentally, this argument yields of course (1.351).) Moreover, since ψ±(z, n, tp) =
d±(tp)

(
L̆(tp) − z I

)−1
δ0)(n) for n ∈ [±1,∞) ∩ Z and some d± ∈ C1(R), the

calculation

ψ±,tp = d±,tp

(
L̆ − z I

)−1
δ0 − d±

(
L̆ − z I )−1 L̆ tp

(
L̆ − z I

)−1
δ0
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also yields ψ±,tp ∈ �2([n0,±∞) ∩ Z). But then D± = 0 in (1.353) since ψ∓ /∈
�2([n0,±∞) ∩ Z). This proves (1.350).

Since ψ±(z, · ) satisfy Lψ(z, · ) = zψ(z, · ), the Wronskian (1.352) is independent
of n ∈ Z. To show also its tp-independence, a computation reveals

d

dtp
W (ψ−, ψ+) =

(
atp

a
+ 2(z − b+)F+p + G+p+1 + G p+1

)
W (ψ−, ψ+) = 0

using (1.325), (1.351), and (1.54).

For the rest of this section, ψ± will always refer to the Weyl–Titchmarsh solutions
introduced in Theorem 1.61.

The next result recalls the existence of a propagator Wp associated with P2p+2.
(Below we denote by B(H) the Banach space of all bounded linear operators defined
on the Hilbert space H.)

Theorem 1.62 Assume Hypothesis 1.60 and suppose a, b satisfy Tlp(a, b) = 0 for
some p ∈ N0. Then there is a propagator Wp(s, t) ∈ B(�2(Z)), (s, t) ∈ R2, satisfy-
ing

(i) Wp(t, t) = I, t ∈ R, (1.354)

(i i) Wp(r, s)Wp(s, t) = Wp(r, t), (r, s, t) ∈ R3, (1.355)

(i i i) Wp(s, t) is jointly strongly continuous in (s, t) ∈ R2, (1.356)

such that for fixed t0 ∈ R, f0 ∈ �2(Z),

f (t) = Wp(t, t0) f0, t ∈ R,

satisfies

d

dt
f (t) = P̆2p+2(t) f (t), f (t0) = f0. (1.357)

Moreover, L̆(t) is similar to L̆(s) for all (s, t) ∈ R2,

L̆(s) = Wp(s, t)L̆(t)Wp(s, t)−1, (s, t) ∈ R2. (1.358)

This extends to appropriate functions of L̆(t) and so, in particular, to its resolvent(
L̆(t)− z I

)−1
, z ∈ C \ σ (L̆(t)), and hence also yields

σ
(
L̆(s)

) = σ
(
L̆(t)

)
, (s, t) ∈ R2. (1.359)

Consequently, the spectrum of L̆(t) is independent of t ∈ R.



1.7 Toda Conservation Laws and the Hamiltonian Formalism 129

Proof The existence of the propagator W ( · , · ) satisfying (1.354)–(1.357) is a stan-
dard result (valid under even weaker hypotheses on a, b). In particular, the propagator
Wp admits the norm convergent Dyson series

Wp(s, t) = I

+
∑
k∈N

∫ t

s
dt1

∫ t1

s
dt2 · · ·

∫ tk−1

s
dtk P̆2p+2(t1)P̆2p+2(t2) · · · P̆2p+2(tk),

(s, t) ∈ R2.

Fixing s ∈ R and introducing the operator-valued function

K̆ (t) = Wp(s, t)L̆(t)Wp(s, t)−1, t ∈ R, (1.360)

one computes

K̆ ′(t) f = Wp(s, t)
(
L̆ ′(t)− [P̆2p+2(t), L̆(t)

])
Wp(s, t)−1 f = 0,

t ∈ R, f ∈ �2(Z),

using the Lax commutator equation (1.48). Thus, K̆ is independent of t ∈ R and
taking t = s in (1.360), then yields K̆ = L̆(s) and thus proves (1.358).

In the special case where L̆(t), t ∈ R, is self-adjoint, the operator P̆2p+2(t) is
skew-adjoint, P̆2p+2(t)∗ = −P̆2p+2(t), t ∈ R, and hence Wp(s, t) is unitary for all
(s, t) ∈ R2.

Next we briefly recall the Toda initial value problem in a setting convenient for
our purpose.

Theorem 1.63 Let t0,p ∈ R and suppose a(0), b(0) ∈ �∞(Z). Then the pth Toda
lattice initial value problem

Tlp(a, b) = 0, (a, b)
∣∣
tp=t0,p

= (a(0), b(0)
)

(1.361)

for some p ∈ N0 has a unique, local, and smooth solution in time, that is, there exists
a T0 > 0 such that

a( · ), b( · ) ∈ C∞((t0,p − T0, t0,p + T0), �
∞(Z)).

Remark 1.64 (i) As discussed in the notes to this section, Theorem 1.63 extends to
the case where a(0), b(0) ∈ �∞(Z) is replaced, for instance, by{

a(0)(n)2 − 1
4

}
n∈Z,

{
b(0)(n)

}
n∈Z ∈ �1(Z).

This observation will be used in the proof of Theorem 1.74.
(i i) In the special case where L̆(t), t ∈ R, is self-adjoint, one obtains

sup
(n,tp)∈N×(t0,p−T0,t0,p+T0)

(|a(n, tp)| + |b(n, tp)|
) ≤ 2

∥∥L̆(tp)
∥∥ = 2

∥∥L̆(t0,p)
∥∥,
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using (the local version of ) the isospectral property (1.359) of Toda flows. This then
yields a unique, global, and smooth solution of the pth Toda lattice initial value
problem (1.361). Moreover, along similar lines one can show that if a, b satisfy Hy-
pothesis 1.60 and the pth Toda equation Tlp(a, b) = 0, then a, b are actually smooth
with respect to tp ∈ R, that is,

a(n, · ), b(n, · ) ∈ C∞(R), n ∈ Z.

Theorem 1.65 Assume Hypothesis 1.60 and suppose a, b satisfy Tlp(a, b) = 0 for
some p ∈ N0. Then the following infinite sequence of local conservation laws holds,

∂tp ln(a)− (S+ − I ) f p+1 = 0, (1.362)

∂tpρ±, j + (S+ − I )J±,p, j = 0, j ∈ N, (1.363)

where

J±,p, j = −2

(
a2

p∑
�=0

f�φ±,p+ j−�
)
, (1.364)

and φ±, j , j ∈ N, are given by (1.334) and (1.335), and ρ±, j , j ∈ N, are given by
(1.337) and (1.338).

Proof Using (1.351) and (1.329) one computes

∂tp ln

(
ψ++
ψ+

)
= ψ++,tp

ψ++
− ψ+,tp

ψ+
= 2a+F+p φ++ − 2aFpφ+ + G+p+1 − G p+1

= (S+ − I )
(
2aFpφ+ + G p+1

)
.

Utilizing the expansion (1.333) of φ+ as z →∞ one finds

2aFpφ+ + G p+1 = 2a2
( p∑

�=0

f p−�z�
)( ∞∑

j=1

φ+, j z
− j
)
− z p+1 +

p∑
�=0

gp−�z�

+ f p+1

= 2a2
p∑

�=1

f p−�φ+,� + gp + f p+1 +
p∑

k=1

(
2a2

p∑
�=1

f p−�φ+,� + gp−k

)
zk

− z p+1 + 2a2
∞∑
j=1

( p∑
�=0

f�φ+,p+ j−�
)

z− j .
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On the other hand, using (1.329) and the expansions (1.333) and (1.336), one
concludes

∂tp ln

(
ψ++
ψ+

)
= ∂tp ln(φ+) =

atp

a
+
∞∑
j=1

(∂tpρ+, j )z
− j .

Combining these equations one infers

atp

a
+
∞∑
j=1

(∂tpρ+, j )z
− j = (S+ − I )

(
2a2

p∑
�=1

f p−�φ+,� + gp + f p+1

+
p∑

k=1

(
2a2

p∑
�=k+1

f p−�φ+,�−k + gp−k

)
zk − z p+1

+ 2a2
∞∑
j=1

p∑
�=0

f�φ+,p+ j−�z− j
)

= (S+ − I )

(
2a2

p∑
�=1

f p−�φ+,� + gp + f p+1

)

+ (S+ − I )

(
2a2

∞∑
j=1

p∑
�=0

f�φ+,p+ j−�z− j
)

= (S+ − I ) f p+1 + (S+ − I )

(
2a2

∞∑
j=1

p∑
�=0

f�φ+,p+ j−�z− j
)

(1.365)

and hence (1.363), (1.364) in the case of ρ+, j . Here we used the first of the equations
in Tlp(a, b) = 0 as well as the fact that the left-hand side of (1.365) contains no
positive powers of z.
Similarly, one can start with φ− and finds

∂tp ln

(
ψ+−
ψ−

)
= (S+ − I )

(
2aFpφ− + G p+1

)
= (S+ − I )

(
2φ−,0 f p + 2

p−1∑
�=0

f�φ−,p−� + gp + f p+1

)

+ (S+ − I )
p−1∑
j=1

(
2

p−1− j∑
�=0

f�φ−,p− j−� + 2φ−,−1 f p− j+1

+ 2φ−,0 f p− j + gp− j

)
z j

+ (S+ − I )
(
(2φ−,−1 f p−1 + 2φ−,0 f0 + g0)z

p + (2φ−,−1 f0 − 1)z p+1)
+ (S+ − I )

∞∑
j=1

(
2

p∑
�=0

f�φ−,p+ j−�
)

z− j .
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Thus,

− atp

a
+
∞∑
j=1

(∂tpρ−, j )z
− j = ∂tp ln(φ+) = ∂tp ln

(
ψ++
ψ+

)

= (S+ − I )

(
2φ−,0 f p + 2

p−1∑
�=0

f�φ−,p−� + gp + f p+1

)

+ (S+ − I )
∞∑
j=1

(
2

p∑
�=0

f�φ−,p+ j−�
)

z− j , (1.366)

implying

∂tpρ−, j = (S+ − I )

(
2

p∑
�=0

f�φ−,p+ j−�
)
, j ∈ N (1.367)

and hence (1.363), (1.364) in the case of ρ−, j .

Remark 1.66 We emphasize that the sequence (1.367) yields no new conservation
laws, and so the latter is equivalent to that in (1.365).

The first local conservation law, (1.362), is of course nothing but the first equation
in Tlp(a, b) = 0, namely atp = a( f +p+1− f p+1). The second equation in Tlp(a, b) =
0 is (1.363) for j = 1, namely, b+tp

= −(S+ − I )gp+1. Indeed, using the second

equation in Tlp(a, b) = 0 one infers that 2a2∑p
�=0 f̂�φ+,p+1−� = −ĝp+1 up to a

constant, that is, an element in the kernel of S+− I . Using the notion of a degree (cf.
Remark 1.59), one concludes that the constant equals zero.

The first few local conservation laws explicitly read as follows:
(i) p = 0:

∂t0ρ+, j = 2(S+ − I )φ+, j ,

in particular,

j = 1 : ∂t0 b+ = 2(S+ − I )a2,

j = 2 : ∂t0

(
(a+)2 + 1

2
(b+)2

)
= 2(S+ − I )a2b+.

(i i) p = 1:

∂t1ρ+, j = 2(S+ − I )(φ+, j+1 + (b + c1)φ+, j ),

in particular,

j = 1 : ∂t1 b+ = 2(S+ − I )
(
a2(b+ + b

)+ c1
)
,

j = 2 : ∂t1

(
(a+)2 + 1

2
(b+)2

)
= 2(S+ − I )

(
a2((a+)2 + b+(b + b+)

)+ c1b+
)
.
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Using Lemma 1.57, one observes that one can replace ρ±, j in (1.363) by f̂ j by
suitably adjusting the right-hand side.

An obvious consequence of the local conservation laws is that, assuming sufficient
decay of the sequences a2 − 1

4 and b, one obtains

d

dtp

∑
n∈Z

ρ±, j (n, tp) = d

dtp

∑
n∈Z

f̂ j (n, tp) = 0.

Remark 1.67 As a byproduct, (1.365) also yields the following relations:

(S+ − I )

(
2a2

p∑
�=k+1

f p−�φ+,�−k + gp

)
= 0,

(S+ − I )

(
2a2

p∑
�=1

f p−�φ+,� + gp−k

)
= 0, k = 1, . . . , p.

Similarly, (1.366) yields

(S+ − I )

(
2φ−,0 f p + 2

p−1∑
�=0

f�φ−,p−� + gp + 2 f p+1

)
= 0,

(S+ − I )

(
2

p−1− j∑
�=0

f�φ−,p− j−� + 2φ−,−1 f p− j+1 + 2φ−,0 f p− j + gp− j

)
= 0,

j = 1, . . . , p − 1.

We now turn to the Hamiltonian formalism and start with a short review of varia-
tional derivatives for discrete systems. Consider the functional

F : �1(Z)κ → C,

F(u) =
∑
n∈Z

F
(
u(n), u(+1)(n), u(−1)(n), . . . , u(k)(n), u(−k)(n)

) (1.368)

for some κ ∈ N and k ∈ N0, where F : C(2k+1)κ → C is C1 with respect to the
(2k + 1)κ complex-valued entries and where

u(s) = S(s)u, S(s) =
{
(S+)su if s ≥ 0,

(S−)−su if s < 0,
u ∈ �∞(Z)κ .

For brevity we write

F(u) = F
(
u(n), u(+1)(n), u(−1)(n), . . . , u(k)(n), u(−k)(n)

)
, (1.369)

and it is assumed that {F(u)}n∈Z ∈ �1(Z) and that F is a polynomial in u and some
of its shifts.
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The functional F is Frechet differentiable and one computes for any v ∈ �1(Z)κ

for the differential dF

(dF)u(v) = d

dε
F(u + εv)

∣∣
ε=0

=
∑
n∈Z

(
∂F(u)

∂u
v(n)+ ∂F(u)

∂u(+1)
v(+1)(n)+ ∂F(u)

∂u(−1)
v(−1)(n)

+ · · · + ∂F(u)

∂u(k)
v(k)(n)+ ∂F(u)

∂u(−k)
v(−k)(n)

)
=
∑
n∈Z

(
∂F(u)

∂u
+ S(−1) ∂F(u)

∂u(+1)
+ S(+1) ∂F(n, u)

∂u(−1)

+ · · · + S(−k) ∂F(u)

∂u(k)
+ S(k)

∂F(u)

∂u(−k)

)
v(n), (1.370)

assuming

{F(u)}n∈Z,
{
∂F(u)

∂u(± j)

}
n∈Z
∈ �1(Z), j = 1, . . . , k. (1.371)

Because of the result (1.370), we thus introduce the gradient and the variational
derivative of F by

(∇F)u = δF

δu

= ∂F

∂u
+ S(−1) ∂F

∂u(+1)
+ S(+1) ∂F

∂u(−1)
+ · · · + S(−k) ∂F

∂u(k)
+ S(k)

∂F

∂u(−k)
,

assuming (1.371). Thus,

(dF)u(v) =
∑
n∈Z

(∇F)u(n)v(n) =
∑
n∈Z

δF

δu
(n)v(n). (1.372)

To establish the connection with the Toda hierarchy we make the following as-
sumption for the remainder of this section (it will be strengthened later on, though).

Hypothesis 1.68 Suppose

a, b ∈ �1(Z), a−1 ∈ �∞(Z).
We introduce the difference expressions

D =
(

0 D1

D2 0

)
, D1 = aS+ − a, D2 = a − a−S−,

D−1 =
(

0 D−1
2

D−1
1 0

)
, (D−1)† =

(
0 (D−1

1 )†

(D−1
2 )† 0

)
,
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where

(D−1
1 u)(n) =

n−1∑
m=−∞

u(m)

a(m)
, (D−1

2 u)(n) = 1

a(n)

n∑
m=−∞

u(m),

((D−1
1 )†u)(n) = 1

a(n)

∞∑
m=n+1

u(m), ((D−1
2 )†u)(n) =

∞∑
m=n

u(m)

a(m)
, u ∈ �1(Z).

Viewing D,D−1 and D1, D−1
1 , D2, D−1

2 as operators on �1(Z)2 and �1(Z), respec-
tively, one concludes that

DD−1 = I�1(Z)2 , D1 D−1
1 = I�1(Z), D2 D−1

2 = I�1(Z).

Next, let F be a functional of the type

F : �1(Z)2 → C, (1.373)

F(a, b) =
∑
n∈Z

F
(
a, b, a(+1), b(+1), a(−1), b(−1), . . . , a(+k), b(+k), a(−k), b(−k)),

assuming

{F(a, b)}n∈Z,
{
∂F(a, b)

∂a(± j)

}
n∈Z

,

{
∂F(a, b)

∂b(± j)

}
n∈Z
∈ �1(Z), j = 1, . . . , k.

For simplicity of notation we again abbreviate (1.373) by

F(a, b) =
∑
n∈Z

F(a, b)

in the following. The gradient ∇F and symplectic gradient ∇sF of F are then
defined by

(∇F)a,b =
(
(∇F)a
(∇F)b

)
=
(
δF
δa
δF
δb

)

and

(∇sF)a,b = D(∇F)a,b = D
(
(∇F)a
(∇F)b

)
,

respectively. In addition, we introduce the weakly nondegenerate closed 2-form

� : �1(Z)2 × �1(Z)2 → C,

�(u, v) = 1

2

∑
n∈Z

(
(D−1u)(n) · v(n)+ u(n) · ((D−1)†v)(n)

)
.
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One then concludes that

�(Du, v) =
∑
n∈Z

u(n) · v(n) =
∑
n∈Z

(
u1(n)v1(n)+ u2(n)v2(n)

)
= 〈u, v〉�2(Z)2 , u, v ∈ �1(Z)2,

where 〈 · , · 〉�2(Z)2 denotes the “real” inner product in �2(Z)2, that is,

〈 · , · 〉�2(Z)2 : �2(Z)2 × �2(Z)2 → C,

〈u, v〉�2(Z)2 =
∑
n∈Z

u(n) · v(n) =
∑
n∈Z

(
u1(n)v1(n)+ u2(n)v2(n)

)
.

In addition, one obtains

(dF)a,b(v) = 〈(∇F)a,b, v〉�2(Z)2 = �(D(∇F)a,b, v) = �((∇sF)a,b, v).

Given two functionals F1,F2 we define their Poisson bracket by

{F1,F2} = dF1(∇sF2) = �(∇sF1,∇sF2)

= �(D∇F1,D∇F2) = 〈∇F1,D∇F2〉�2(Z)2

=
∑
n∈Z

(
δF1
δa (n)
δF1
δb (n)

)
·D
(
δF2
δa (n)
δF2
δb (n)

)
. (1.374)

One then verifies that both the Jacobi identity

{{F1,F2},F3} + {{F2,F3},F1} + {{F3,F1},F2} = 0,

as well as the Leibniz rule

{F1,F2F3} = {F1,F2}F3 + F2{F1,F3},
hold.

If F is a smooth functional and (a, b) develops according to a Hamiltonian flow
with Hamiltonian H, that is,(

a
b

)
t

= (∇sH)a,b = D(∇H)a,b = D
(
δH
δa
δH
δb

)
, (1.375)

then

dF
dt
= d

dt

∑
n∈Z

F(a(n), b(n))

=
∑
n∈Z

(
δF
δa (n)
δF
δb (n)

)
·
(

a(n)
b(n)

)
t

=
∑
n∈Z

(
δF
δa (n)
δF
δb (n)

)
·D
(
δH
δa (n)
δH
δb (n)

)
= {F ,H}. (1.376)
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Here, and in the remainder of this section and the next, time-dependent equations
such as (1.376) are viewed locally in time, that is, assumed to hold on some open
t-interval I ⊆ R.

If a functional G is in involution with the Hamiltonian H, that is,

{G,H} = 0,

then it is conserved, that is,
dG
dt
= 0.

Next, we turn to the specifics of the Toda hierarchy.

Lemma 1.69 Assume Hypothesis 1.54. Then,

δ f̂�
δa
= − �

a
ĝ�−1, � ∈ N, (1.377)

δ f̂�
δb
= � f̂�−1, � ∈ N. (1.378)

Proof With our assumptions on (a, b) we only know that f̂� ∈ �∞(Z). We start by
deriving (1.378). To that end we introduce the functional

F̂�,N (a, b) =
∑
n∈Z

f̂�(n)χN (n),

where χN is the characteristic function of the set [−N , N ] ∩ Z. Then one finds

(dF̂�,N (a, b))b(v) =
∑
n∈Z

(
χN (n)

∂ f̂�
∂b

(n)+ χ−N (n)
(

S(−1) ∂ f̂�
∂b(+1)

)
(n)

+ χ+N (n)
(

S(+1) ∂ f̂�
∂b(−1)

)
(n)+ · · ·

)
v(n)

→
N→∞

∑
n∈Z

(
∂ f̂�
∂b

(n)+
(

S(−1) ∂ f̂�
∂b(+1)

)
(n)+

(
S(+1) ∂ f̂�

∂b(−1)

)
(n)+ · · ·

)
v(n)

=
∑
n∈Z

δ f̂�
δb

(n)v(n), v ∈ �1(Z).

On the other hand, recalling that ( · , · ) denotes the usual scalar product in �2(Z),

(dF̂�,N (a, b))b(v)

= d

dε
F̂�,N (b + εv)

∣∣
ε=0 =

∑
n∈Z

(
δn,

�−1∑
k=0

LkvL�−1−kδn

)
χN (n)
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=
∑
n∈Z

(
δn,

�−1∑
k=0

L�−1vδn

)
χN (n)

+
∑
n∈Z

(
δn,

�−1∑
k=0

[Lkv, L�−1−k]δn

)
χN (n)

→
N→∞

�−1∑
k=0

∑
n∈Z

(
δn, L�−1δn

)
v(n)+

�−1∑
k=0

∑
n∈Z

(
δn, [Lkv, L�−1−k]δn

)
= �

∑
n∈Z

(
δn, L�−1δn

)
v(n) = �

∑
n∈Z

f̂�−1(n)v(n), v ∈ �1(Z),

using (1.15), and the general result that for bounded operators A, B ∈ B(H) on a
separable, complex Hilbert space H with AB and B A trace class operators, their
commutator is traceless, that is, tr([A, B]) = 0. Combining the two expressions, one
concludes that (1.378) holds.

Next we turn to the proof of (1.377). To this end one first observes that, as before,

(dF̂�,N (a, b))a(v) →
N→∞

∑
n∈Z

(
∂ f̂�
∂a

(n)+ S(−1)
(

∂ f̂�
∂a(+1)

)
(n)

+ S(+1)
(

∂ f̂�
∂a(−1)

)
(n)+ · · ·

)
v(n)

=
∑
n∈Z

δ f̂�
δa

(n)v(n), v ∈ �1(Z).

Furthermore, one computes

(dF̂�,N (a, b))a(v) = d

dε
F̂�,N (a + εv)

∣∣
ε=0

= d

dε

∑
n∈Z

(
δn,
(
(a + εv)S+ + (a + εv)−S− + b

)�
δn
)
χN (n)

∣∣∣
ε=0

=
∑
n∈Z

(
δn,

�−1∑
k=0

(
Lk(vS+ + v−S−)L�−1−k)δn

)
χN (n)

=
�−1∑
k=0

∑
n∈Z

(
δn, (vS+ + v−S−)L�−1δn

)
v(n)χN (n)

+
�−1∑
k=0

∑
n∈Z

(
δn, [Lk(vS+ + v−S−), L�−1−k]δn

)
χN (n)
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→
N→∞

�−1∑
k=0

∑
n∈Z

(
δn, (vS+ + v−S−)L�−1δn

)
v(n)

+
�−1∑
k=0

tr
([Lk(vS+ + v−S−), L�−1−k])

= �
∑
n∈Z

((
δn, vS+L�−1δn

)+ (δn, v
−S−L�−1δn

))
= �

∑
n∈Z

(
v(n)

(
S−δn, L�−1δn

)+ v(n − 1)
(
S+δn, L�−1δn

))
= �

∑
n∈Z

(
v(n)

(
δn+1, L�−1δn

)+ v(n − 1)
(
δn−1, L�−1δn

))
= �

∑
n∈Z

(
v(n)

(
δn+1, L�−1δn

)+ v(n)
(
δn, L�−1δn+1

))
= 2�

∑
n∈Z

(
δn+1, L�−1δn

)
v(n)

= −�
∑
n∈Z

1

a(n)
ĝ�−1(n)v(n), v ∈ �1(Z).

Thus (1.377) is established.

For the remainder of this section we now introduce the following assumption.

Hypothesis 1.70 In addition to Hypothesis 1.54 suppose that{
a(n)2 − 1

4

}
n∈Z, {b(n)}n∈Z ∈ �1(Z).

We fix � ∈ N and want to show that a suitably renormalized functional F̂� is
well-defined. We define it by subtracting the limit of each f̂�(n) as n → ∞. Each
f̂� is a polynomial in a, b and certain shifts thereof. Terms with a and shifts enter
homogeneously and only in even powers. Assume that f̂�(n)→ λ� as |n| → ∞. For
� odd, we know that λ� = 0 because each term contains at least one b or certain shifts
thereof. Then { f̂�(n)−λ�}n∈Z ∈ �1(Z). We can see this as follows. Each f̂� is a finite
sum of terms containing a and b with shifts. Terms with b are already summable.
Only terms exclusively with a have a nonzero limit and hence are nonsummable.
Their general form will be α1(n) · · ·αk(n) with α j (n) = (a(m j )(n))2p j → λ̃ j as
|n| → ∞, where (m j ) denotes the shifts. Then

α1(n) · · ·αk(n)− λ̃1 · · · λ̃k = (α1(n)− λ̃1)α2(n) · · ·αk(n)

+ λ̃1(α2(n)− λ̃2)α2(n) · · ·αk(n)

+ · · · + λ̃1 · · · λ̃k−1(αk(n)− λ̃k).
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Thus we see that

{α1(n) · · ·αk(n)− λ̃1 · · · λ̃k}n∈Z ∈ �1(Z),

and hence

{ f̂�(n)− λ�}n∈Z ∈ �1(Z).

Thus, the functional

F̂�(a, b) =
∑
n∈Z

(
f̂�(n)− λ�

)
is well-defined.

In the following it is convenient to introduce the abbreviation N−1 = N∪ {−1, 0}.
Theorem 1.71 Assume Hypothesis 1.70 and let p ∈ N−1. In addition, define

Ĥp = 1

p + 2

∑
n∈Z

(
f̂ p+2(n)− λp+2

)
, (1.379)

where

λp+2 = lim|n|→∞ f̂ p+2(n).

Then,

(∇Ĥp)a = 1

p + 2

δ f̂ p+2

δa
= −1

a
ĝp+1, (∇Ĥp)b = 1

p + 2

δ f̂ p+2

δb
= f̂ p+1.

Moreover, the homogeneous pth Toda equations then take on the form

T̂lp(a, b) =
(

atp

btp

)
−D

(
(∇Ĥp)a

(∇ Î p)b

)
= 0, p ∈ N−1. (1.380)

Proof This follows directly from Lemma 1.69 and (1.50).

Remark 1.72 In (1.380) we also introduced the trivial linear flow T̂l−1 given by

T̂l−1(a, b) =
(

at−1

bt−1

)
−D

(
(∇Ĥ−1)a

(∇ Î−1)b

)
=
(

at−1

bt−1

)
= 0.

Next, we consider the general case, where

Tlp(a, b) =
(

atp − a( f +p+1 − f p+1)

btp + gp+1 − g−p+1

)
= 0, p ∈ N−1,
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and

f p =
p∑

k=0

cp−k f̂k, gp =
p∑

k=1

cp−k ĝk − cp+1, p ∈ N0.

Introducing

H−1 = Ĥ−1, Hp =
p∑

k=0

cp−kĤk, p ∈ N0, (1.381)

one then obtains

Tlp(a, b) =
(

atp

btp

)
−D

(
(∇Hp)a

(∇Hp)b

)
= 0, p ∈ N−1. (1.382)

Theorem 1.73 Assume Hypothesis 1.70 and suppose that a, b satisfy the system
Tlp(a, b) = 0 for some p ∈ N−1. Then,

dHr

dtp
= 0, r ∈ N−1. (1.383)

Proof From (1.363) and (1.339) (cf. Remark 1.66) one obtains

d f̂r+2

dtp
= (S+ − I )βr+2, r ∈ N−1,

for some βr+2, r ∈ N−1, which are polynomials in a and b and certain shifts thereof.
Using definition (1.379) of Ĥr , the result (1.383) follows in the homogeneous case
and then by linearity in the general case.

Theorem 1.74 Assume Hypothesis 1.70 and let p, r ∈ N−1. Then,

{Hp,Hr } = 0, (1.384)

that is, Hp and Hr are in involution for all p, r ∈ N−1.

Proof By Remark 1.64 (i), there exists T0 > 0 such that the initial value problem

Tlp(a, b) = 0, (a, b)
∣∣
t=0 =

(
a(0), b(0)

)
,

where a(0), b(0) satisfy Hypothesis 1.70, has a unique and continuous solution
a(t), b(t) satisfying Hypothesis 1.70 for each t ∈ [0, T0). For this solution we know
that

d

dt
Hp(t) = {Hr (t),Hp(t)} = 0.

Next, let t ↓ 0. Then

0 = {Hr (t),Hp(t)} →
t↓0
{Hr (0),Hp(0)} = {Hr ,Hp}

∣∣
(a,b)=(a(0),b(0)).
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Since a(0), b(0) are arbitrary coefficients satisfying Hypothesis 1.70 one concludes
(1.384).

There is also a second Hamiltonian structure for the Toda hierarchy. Rewriting the
linear recursion (1.3)–(1.5) in the form

f +�+1 − f�+1 = −1

2
(g+� − g−� )+ (b+ f +� − b f�),

g�+1 − g−�+1 = −2(a2 f +� − (a−)2 f −� )+ b(g� − g−� ), � ∈ N0,

(1.385)

one finds ( 1
2 ( f +n+1 − fn+1)

g−n+1 − gn+1

)
= D̃

(− 1
a gn

fn

)
,

where we abbreviated

D̃ =
(

1
2 a(S+ − S−)a a(S+ − I )b

b(I − S−)a 2(S+ − S−)a2

)
. (1.386)

One can introduce a second Poisson bracket {{ · , · }}, defined by

{{F1,F2}} =
∑
n∈Z

(
δF1
δa (n)
δF1
δb (n)

)
· D̃
(
δF2
δa (n)
δF2
δb (n)

)
. (1.387)

This second Poisson bracket is also skew-symmetric and satisfies the Jacobi iden-
tity and the Leibniz rule. As in Theorem 1.74, one verifies that all Hp, p ∈ N−1, are
in involution also with respect to this second Poisson bracket (1.387), that is,

{{Hr ,Hp}} = 0, p, r ∈ N−1.

Combining (1.379), (1.381), (1.382), and (1.385), (1.386) permits one to write the
pth Toda equation in another Hamiltonian form

Tlp(a, b) =
(

atp

btp

)
− D̃

(
(∇Hp−1)a

(∇Hp−1)b

)
= 0, p ∈ N0.

Finally, we now very briefly sketch an extension of the Hamiltonian formalism to
the case of almost periodic coefficients a and b.

We start by recalling the notions of quasi-periodic and almost periodic sequences:
First, a bounded continuous function f : R→ C is called Bohr almost periodic (or
uniformly almost periodic) if it is the limit of a sequence of trigonometric polyno-
mials on R in the uniform (sup norm) topology. Then a sequence f = { f (n)}n∈Z is
called almost periodic if there exists a Bohr almost periodic function g on R such
that f (n) = g(n) for all n ∈ Z. For completeness we also recall that a sequence
f is called quasiperiodic with fundamental periods (ω1, . . . , ωN ) ∈ (0,∞)N if the
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frequencies 2π/ω1, . . . , 2π/ωN are linearly independent over Q and if there exists a
continuous function F ∈ C(RN ), periodic of period 1 in each of its arguments,

F(x1, . . . , x j + 1, . . . , xN ) = F(x1, . . . , xN ), x j ∈ R, j = 1, . . . , N ,

such that

f (n) = F(ω−1
1 n, . . . , ω−1

N n), n ∈ Z.

Any quasiperiodic sequence is also almost periodic.
For any almost periodic sequence f = { f (n)}n∈Z, the mean value 〈 f 〉 of f ,

defined by

〈 f 〉 = lim
N↑∞

1

2N + 1

n0+N∑
n=n0−N

f (n),

exists and is independent of n0 ∈ Z.
We assume that u has the frequency module M(u) and given a density F as in

(1.369), equation (1.368) then becomes

F(u) = lim
N↑∞

1

2N + 1

N∑
n=−N

F
(
u(n), u(+1)(n), u(−1)(n), . . . , u(k)(n), u(−k)(n)

)
= 〈F(u)〉.

Supposing that the frequency module M(v) of v satisfies M(v) ⊆M(u), the analog
of (1.370) then reads

(dF)u(v) = d

dε
F(u + εv)

∣∣
ε=0

= lim
N↑∞

N∑
n=−N

(
∂F(n, u)

∂u
+ S(−1) ∂F(n, u)

∂u(+1)
+ S(+1) ∂F(n, u)

∂u(−1)

+ · · · + S(−k) ∂F(n, u)

∂u(k)
+ S(k)

∂F(n, u)

∂u(−k)

)
v(n)

= 〈(∇F)uv〉 = 〈δF

δu
v

〉
.

Assuming a and b are almost periodic with frequency module M, we again con-
sider functionals as in (1.373),

F(a, b) = 〈F(a, b, a(+1), b(+1), a(−1), b(−1), . . . , a(+k), b(+k), a(−k), b(−k))
〉

= 〈F(a, b)
〉
,

and in analogy to (1.374), the Poisson brackets of two functionals F1,F2 are then
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given by

{F1,F2} =
〈( δF1

δa (n)
δF1
δb (n)

)
·D
(
δF2
δa (n)
δF2
δb (n)

)〉
.

Again one verifies that both the Jacobi identity as well as the Leibniz rule hold in
this case. Moreover, as in (1.375) and (1.376), if F is a smooth functional and (a, b)
develops according to a Hamiltonian flow with Hamiltonian H, that is,(

a
b

)
t

= (∇sH)a,b = D(∇H)a,b = D
(
δH
δa
δH
δb

)
,

then
dF
dt
= d

dt
〈F(a, b)〉 = {F ,H}.

Next, assuming in addition that 1/a ∈ �∞(N) and that 〈1/a〉 stays finite for t vary-
ing in some open time interval I ⊆ R, we now introduce the fundamental function w
by

w(z) = 〈φ+(z, · )〉 (1.388)

for |z| sufficiently large. Since

w′(z) = −〈g(z, · )〉, z ∈ C \ spec
(
L̆
)
,

w in (1.388) extends analytically to z ∈ C \ spec
(
L̆
)
.

One observes the asymptotic expansion

w(z) = 〈ln(φ+(z, · )〉 =
z→∞ 〈ln(a/z)〉 +

∑
j∈N
〈ρ+, j 〉z− j

=
z→∞ 〈ln(a/z)〉 +

∑
j∈N

j−1〈 f̂ j
〉
z− j

and computes

δw(z)

δa
(n) = 1

a(n)
− 2G(z, n, n + 1), z ∈ C \ spec

(
L̆
)
, n ∈ Z,

δw(z)

δb
(n) = −g(z, n), z ∈ C \ spec

(
L̆
)
, n ∈ Z.

Introducing

Ĥ−1 = H−1 =
〈
f̂1
〉
, Ĥp = 1

p + 2

〈
f̂ p+2

〉
, Hp =

p∑
k=0

cp−kĤk, p ∈ N0,
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the Toda equations again take on the form

Tlp(a, b) =
(

atp

btp

)
−D

(
(∇Hp)a

(∇Hp)b

)
= 0, p ∈ N−1.

Finally, one can show that w(z1) and w(z2) are in involution for arbitrary z1, z2 ∈
C \ spec

(
L̆
)
, and hence obtains

{w(z1), w(z2)} = 0, z1, z2 ∈ C \ spec
(
L̆
)
,

{w(z),Hp} = 0, {Hp,Hr } = 0, z ∈ C \ spec
(
L̆
)
, p, r ∈ N−1.

Naturally, these considerations apply to the special periodic case in which 〈c〉 for
a periodic sequence c on Z is to be interpreted as the periodic mean value.

1.8 Notes

Pereant qui ante nos nostra dixerunt.
Aelius Donatus (4th century)1

Section 1.1. For historical facts and key references leading up to the exponential
lattice introduced by Toda, we refer to our discussion at the beginning of the intro-
duction. In the remainder of these notes we shall primarily focus on the Toda lattice
and its associated hierarchy.

The equations of motion for a chain of particles (of equal mass m = 1) with
nearest neighbor interactions, are of the type

xtt (n, t) = V ′(x(n + 1, t)− x(n, t))− V ′(x(n, t)− x(n − 1, t)), (n, t) ∈ Z×R,
(1.389)

where x(n, t) denotes the displacement of the nth particle from its equilibrium po-
sition at time t , and V ( · ) the interaction potential (with −V ′(y) = − dV (y)

dy the

corresponding force). The special case V (y) = 1
2 y2, in accordance with Hooke’s

law, represents the case of a linear lattice,

xtt (n, t) = x(n + 1, t)− 2x(n, t))+ x(n − 1, t)), (n, t) ∈ Z× R.

Motivated by the numerical investigations by Fermi, Pasta, and Ulam (cf. also the
very recent historical account by Dauxois (2008), highlighting the contributions by
M. T. Menzel to this first ever numerical experiment), and especially, by those of
Ford and Waters, Toda published a particular nonlinear lattice in 1967, an exponential
lattice, that supported a periodic solution. He chose (cf. Toda (1967a,b))

V (y) = e−y + y − 1, y ∈ R,

1 Quoted by his pupil St. Jerome (“To the devil with those who published before us.”).
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such that V (y) = 1
2 y2 + O(y3) as y → 0. Introducing Flaschka’s variables (cf.

Flaschka (1974a,b))

a(n, t) = 1

2
exp( 1

2 (x(n, t)−x(n+1, t))), b(n, t) = −1

2
xt (n, t), (n, t) ∈ Z×R,

equation (1.389) becomes the first-order Toda lattice system

at (n, t)− a(n, t)
(
b(n + 1, t)− b(n, t)

) = 0, (1.390)

bt (n, t)− 2
(
a(n, t)2 − a(n − 1, t)2

) = 0, (n, t) ∈ Z× R. (1.391)

For very recent work on FPU chains we refer, for instance, to Henrici and Kappeler
(2008).

As mentioned in the introduction, the integrability in the finite-dimensional pe-
riodic case was first established by Hénon (1974) and soon thereafter by Flaschka
(1974b) (see also Flaschka (1975), Flaschka and McLaughlin (1976a), Kac and van
Moerbeke (1975a), van Moerbeke (1976)). Flaschka proved the integrability of the
doubly infinite Toda lattice (1.391) on Z in 1974 by establishing a Lax pair for it
with Lax operator the tridiagonal Jacobi operator on Z (a discrete Sturm–Liouville-
type operator, cf. Flaschka (1974a)). Nearly simultaneously, this was independently
observed by Manakov (1975). Soon after, integrability of the finite nonperiodic Toda
lattice was established by Moser (1975a).

For books containing material on the Toda lattice, its soliton solutions, etc., we
refer to Eilenberger (1983), Faddeev and Takhtajan (1987), Kupershmidt (1985),
Novikov et al. (1984, Sect. I.7), Teschl (2000), Toda (1989a,b). For general reviews
on the Toda lattice and its solutions, the interested reader can consult, for instance,
Dubrovin et al. (1990), McLaughlin (1989), Suris (2006), Toda (1970; 1975; 1976),
Teschl (2001), and Krüger and Teschl (2007).

Integrable discretizations of the Toda lattice (and other integrable systems) are
discussed in Suris (2003).

Since the paper Bulla et al. (1998) and the monograph Teschl (2000) focused on
real-valued Toda hierarchy solutions, we put the emphasis on the complex-valued
case (and hence on the case of a non-self-adjoint Lax operator) in this chapter.

Finally, for various Lie-algebraic extensions of the (one and two-dimensional,
periodic and nonperiodic) Toda lattice, and applications to various algorithms, which
are not discussed in this volume, we refer, for instance, to Adler (1979), Adler et al.
(1993), Adler and van Moerbeke (1980a,b; 1982; 1991; 1995), Bloch et al. (1990;
1992), Bloch and Gekhtman (1998; 2007), Casian and Kodama (2006; 2007), Chu
(1985; 1994), Chu and Norris (1988), Damianou (2004), Deift and Li (1989; 1991),
Deift et al. (1986; 1989), Driessel (1986), Ercolani et al. (1993), Faybusovich (1992;
1994), Faybusovich and Gekhtman (2000; 2001), Flaschka (1994), Gekhtman
(1998), Gekhtman and Shapiro (1999), Gel’fand and Zakharevich (2000), Guest
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(1997), Kodama and Ye (1996a), Koelling et al. (2004), Kostant (1979), Leznov and
Saveliev (1992, Sect. 4.2), Li (1997), McDaniel and Smolinsky (1992; 1997; 1998),
Mikhailov et al. (1981), Olshanetsky and Perelomov (1979; 1981; 1994), Perelomov
(1990, Ch. 4), Razumov and Saveliev (1997), Reyman and Semenov-Tian-Shansky
(1979; 1981; 1994), Symes (1980a,b), Takasaki (1984), Ueno and Takasaki (1984),
Watkins (1984; 1993), and the extensive list of references contained therein.

Section 1.2. The approach presented in this section closely follows Bulla et al.
(1998).

The construction of the Toda hierarchy using a recursive approach is patterned
after work by Alber (1991a) (see also Alber (1989; 1991b)).

Burchnall–Chaundy theory, the formalism underlying commuting difference ex-
pressions, is discussed in Glazman (1965, Sect. 67), Krichever (1978), van Moer-
beke and Mumford (1979), Mumford (1978), Naı̆man (1962; 1964). The special case
involving a second-order difference expression L in Theorem 1.6 then leads to hy-
perelliptic curves not branched at infinity.

Lemma 1.10 is well-known, it can be found, for instance, in Eilenberger (1983,
p. 141).

Interesting connections between biorthogonal Laurent polynomials, Töplitz deter-
minants, τ -functions, and generalized Toda lattices are studied in Bertola and Gekht-
man (2007). More on τ -functions can be found in Kajiwara et al. (2007). The con-
nection between Jacobi operators, orthogonal polynomials, and continued fractions
is detailed in Deift (1999).

For connections between Willmore surfaces and the Baker–Akhiezer vector of the
Toda lattice we refer to Babich (1996). For connections between the Toda lattice
and the construction of minimal tori in C3, see Sharipov (1991). A connection be-
tween the Toda lattice and discrete curves in CP1 is discussed in Hoffmann and Kutz
(2004), Kutz (2003).

Intriguing connections between peakons, strings, and the finite Toda lattice are dis-
cussed in Alber et al. (2000), Beals et al. (2001), and Ragnisco and Bruschi (1996).

Connections between heat kernel expansions and the Toda lattice hierarchy were
discussed in Iliev (2007).

Section 1.3. Most of the material presented in this section has been taken from
Bulla et al. (1998).

As in previous chapters, the fundamental meromorphic function φ( · , n0) on Kp

defined in (1.69), is in many respects the key object of our algebro-geometric formal-
ism. Again, in the special self-adjoint case, where a, b ∈ �∞(Z) and a, b, and Em ,
m = 0, . . . , 2p + 1, are real-valued, its two branches are intimately related to the
two Dirichlet half-line Weyl m-functions m±,0( · , n0) associated with proper closed



148 1 The Toda Hierarchy

realizations L̆ of the difference expression L = aS++a−S−+b in �2((n0,±∞)). In
particular, the spectral properties of the self-adjoint realization of L̆ in �2(Z) (as well
as those of the self-adjoint Dirichlet-type operators in �2((n0,±∞))) can be inferred
directly from φ( · , n0). (For a detailed spectral theoretic treatment of self-adjoint Ja-
cobi operators, we refer, for instance, to Berezanskii (1968, Ch. VII), Carmona and
Lacroix (1990), Teschl (2000, Part 1).)

A look at (1.69)–(1.71) shows that φ( · , n) links the Dirichlet divisor Dµ̂(n) and
its shift Dµ̂(n+1), the Neumann divisor. This is of course a direct consequence of
the identity (1.61) together with the factorizations of Fp( · , n) in (1.64). This con-
struction of positive divisors of degree p (respectively, p + 1, since the points P∞±
are also involved) on hyperelliptic curves Kp of genus p is analogous to that of Ja-
cobi (1846) with applications to the KdV case by Mumford (1984, Sect. III a).1) and
McKean (1985).

Trace formulas of the type (1.97), (1.96) in Lemma 1.15 can be found, for instance,
in Date and Tanaka (1976a,b), Dubrovin et al. (1976), van Moerbeke (1976). (For
systematic generalizations, involving Krein’s spectral shift function, cf. Gesztesy
and Simon (1996; 1997), Teschl (1998; 1999a), and the monograph Teschl (2000,
Chs. 6, 8).)

Expression (1.127) for b in Theorem 1.19, in terms of the Riemann theta func-
tion associated with Kp, apparently, was found by different groups around 1976. It
appeared in papers by Dubrovin et al. (1976) and Date and Tanaka (1976a,b). An
explicit formula for a in terms of theta functions was not derived in these papers,
partly, since a (as well as the original Toda variables P and Q, cf. Toda (1989b,
Sects. 3.1, 4.6)) in principle, follows from b. The explicit theta function formula
(1.126) for a was derived a bit later by Krichever (1978), Kričever (1982), Krichever
(1982; 1983) (cf. also the appendix written by Krichever in Dubrovin (1981)). While
Dubrovin, Matveev, and Novikov as well as Date and Tanaka consider the special
periodic case, Krichever treats both the periodic and quasi-periodic cases.

There was also an interesting parallel to the periodic KdV case (which was solved
by Marčenko (1974a,b) shortly before the theta function representations by Its and
Matveev (1975a,b)): The inverse periodic Toda problem had been solved slightly
earlier by Kac and van Moerbeke (1975a), with a very detailed account to be found
in the seminal paper van Moerbeke (1976). Additional results on isospectral defor-
mations can be found in McKean (1979), van Moerbeke (1979), and van Moerbeke
and Mumford (1979).

Since this initial period, many authors presented reviews and slightly varying ap-
proaches to algebro-geometric (respectively, periodic) solutions of (stationary and
time-dependent) equations of the Toda hierarchy. We mention, for instance, the ex-
tensive treatments in Dubrovin et al. (1990), Flaschka (1975), Iguchi (1992a,b),
McKean (1979), McKean and van Moerbeke (1980), van Moerbeke (1979),
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van Moerbeke and Mumford (1979), Mumford (1978), and in the monographs
Novikov et al. (1984, Sect. I.7, App., Sect. 9), Teschl (2000, Chs. 9, 13), Toda
(1989b, Ch. 4), Toda (1989a, Chs. 26–30). We note that Aptekarev (1986) derived
the theta function representation for a using the theory of orthogonal polynomials
associated with measures supported on a system of contours. In this context we also
refer to Lukashov (2004), Pastur (2006), Peherstorfer (1995), and Zhedanov (1990),
and the references cited therein. For various additional material we refer to Deift
and Trubowitz (1981) concerning the continuum limit of the periodic Jacobi matrix
inverse problem, to Deift and McLaughlin (1998), Kuijlaars (2000), Kuijlaars and
McLaughlin (2001) and the references therein for discussions of the continuum limit
of the Toda lattice, to Gieseker (1996) for limiting connections between the periodic
Toda and KdV hierarchies, to Iguchi (1992b), Smirnov (1989) in connection with ex-
pressions for a, b in terms of elliptic functions, to Iguchi (1992a), Sodin and Yudit-
skiı̆ (1994; 1997), in the context of infinite genus situations, to Deift et al. (1995a,b;
1996) for dealing with forced lattice vibrations, to Boley and Golub (1984; 1987),
Ferguson (1980), Zhernakov (1986) for additional discussions of the periodic inverse
spectral problem, and to Antony and Krishna (1992; 1994), Carmona and Kotani
(1987), Carmona and Lacroix (1990, Sects. VII.2.3, VII.4.2), Knill (1993b), Kotani
and Simon (1988), in connection with almost-periodic and random inverse spectral
problems.

The solution of certain discrete Peierls models for quasi-one-dimensional con-
ducting polymers in connection with finite-band Toda solutions has been studied
in Brazovskii et al. (1982), Dzyaloshinskii and Krichever (1983), Krichever (1982;
1983) (see also the references therein).

With the exception of the references Krichever (1978; 1982), Kričever (1982), van
Moerbeke (1979), van Moerbeke and Mumford (1979), and Mumford (1978), the ref-
erences discussed thus far focus on real-valued algebro-geometric sequences a and b.
Assuming all a(n) > 0, n ∈ Z, and b real-valued, the isospectral manifold is a torus
Tp (equivalently, the real part of the Jacobi variety of the underlying hyperelliptic
curve Kp), as shown by van Moerbeke (1976). Here p, the genus of the curve Kp,
equals the number of nondegenerate gaps in the spectrum of the �2(Z)-realization
L̆ of the finite-difference expression L in (1.2), where we only count the (bounded)
spectral gaps in the interval

[
inf spec

(
L̆
)
, sup spec

(
L̆
)]

, not the unbounded one near
±∞. Equivalently, the spectrum of L̆ consists of p compact intervals and hence reads

spec
(
L̆
) = p+1⋃

�=1

[E2�−2, E2�−1], E0 < E1 < · · · < E2p+1 (1.392)

for some p ∈ N. In particular, if a, b are N -periodic real-valued sequences (i.e., for
some N ∈ N, a(n + N ) = a(n), b(n + N ) = b(n) for all n ∈ Z) then p ≤ N − 1.
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Some delicate questions in connection with the boundary of isospectral manifolds,
when flows hit the theta divisor, are discussed in Adler et al. (1993), Kodama (2002),
and van Moerbeke (1993).

Apart from the realization of the p-dimensional isospectral torus Ip((a0, b0)) of a
given base pair (a0, b0) of algebro-geometric coefficients, with fixed band spectrum
as in (1.392) and fixed sign of all the coefficients a, in terms of the Riemann theta
functions associated with Kp and positive Dirichlet-type divisors Dµ̂(n0) of degree p
in Date and Tanaka (1976a,b), Dubrovin et al. (1976), there also exist explicit real-
izations of Ip((a0, b0)) in terms of 2p Darboux transformations, representable as a
2p × 2p Wronski determinant of certain Baker–Akhiezer functions. This torus has
been explicitly described by Gesztesy and Teschl (1996). The method can be con-
sidered a finite-difference analog of that in Buys and Finkel (1984) and Finkel et al.
(1987), Gesztesy et al. (1996b) (see also Teschl (1997) for generalizations to arbi-
trary, not necessarily (quasi-)periodic, base pairs (a0, b0) with gaps in their essential
spectrum).

Isospectral manifolds in connection with Toda flows in various settings (including
non-abelian generalizations) have attracted a lot of interest and we refer, for instance,
to Bättig et al. (1993), Bloch et al. (1990), Davis (1987), Faybusovich (1992), Fried
(1986), Gibson (2002), Leite et al. (2008), van Moerbeke (1976; 1979), van Moer-
beke and Mumford (1979), Tomei (1984), and the references therein. If one relaxes
the sign restriction on the coefficients a(n) and assumes N -periodicity of the real-
valued sequences a and b, with

∏N
n=1 a(n) �= 0, the corresponding isospectral set

of periodic N × N Jacobi matrices (i.e., the associated tridiagonal N × N matrices
with elements a(N ) in the lower left and upper right corners) breaks up into 2N con-
nected components of the type Tp, according to the various sign combinations of the
a(n) (cf. van Moerbeke (1976)). Further relaxing the condition

∏N
n=1 a(n) �= 0 and

simply studying the isospectral set of periodic self-adjoint tridiagonal matrices then
leads to intriguing topological and cohomological questions. The interested reader is
invited to consult Bloch et al. (1990), Davis (1987), Deift et al. (1993), Fried (1986),
Kodama and Ye (1996b; 1998), Tomei (1984), and van Moerbeke (1976).

Corollary 1.21 is taken from Bulla et al. (1998).
There is an extensive literature on the theory of periodic Jacobi matrices, see,

for instance, Adler et al. (1993), Babelon et al. (2003, Ch. 6), Bättig et al. (1993),
Date and Tanaka (1976a), Deift and Li (1991), Kac and van Moerbeke (1975a), Kato
(1983), McKean (1979), Teschl (2000, Ch. 7), Toda (1989a,b), van Moerbeke (1976;
1979), and van Moerbeke and Mumford (1979). Our presentation of periodic Jacobi
operators is taken from Bulla et al. (1998).

Examples 1.26 and 1.27 are taken from Bulla et al. (1998). We refer, for in-
stance, to Byrd and Friedman (1971) for details on Jacobi elliptic integrals used in
Example 1.27.
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The possibility of obtaining stationary soliton solutions from degenerating hyper-
elliptic curves (i.e., pinching handles Fay (1973, Ch. III), etc.) is analogous to our
discussion in the notes to Section 1.3 in Volume I. The alternative approach using
Darboux transformations seems to be a bit simpler to implement in practice and we
refer the interested reader to Bulla et al. (1998), Gesztesy et al. (1993), Gesztesy
and Teschl (1996), Matveev and Salle (1991, Sects. 2.5, 5.3), Teschl (1995; 1997;
1999b), and the monograph Teschl (2000, Chs. 11, 14). The limit N → ∞ in the
stationary N -soliton solutions has been studied in Gesztesy and Renger (1997) and
relative to general backgrounds in Renger (1999).

Constraints on scattering data to guarantee short-range solitons relative to algebro-
geometric finite-band solutions were found in Teschl (2007). In this context we also
refer to Egorova et al. (2006) and Michor (2005), Michor and Teschl (2007b) in con-
nection with scattering theory relative to algebro-geometric finite-band backgrounds,
and to Egorova et al. (2007b; 2008) in the context of scattering theory relative to
steplike algebro-geometric finite-band backgrounds.

In analogy to the KdV context, real-valued algebro-geometric coefficients a and
b are reflectionless (cf., e.g., Gesztesy and Simon (1996) for the corresponding def-
inition). The interested reader may want to consult Clark et al. (2005), Gesztesy
et al. (1996a), Gesztesy and Simon (1996), Gesztesy and Yuditskii (2006), Gesztesy
and Zinchenko (to appear), Sodin and Yuditskiı̆ (1994; 1997), Teschl (1998), and
the monograph Teschl (2000, Ch. 8), for more details on reflectionless Jacobi
operators.

In the case of periodic complex-valued sequences a, b, the �2(Z)-spectrum
associated with L consists of p + 1 regular analytic arcs in the complex
plane. Compared to its real-valued counterpart, this case appears to have been
much less studied in the literature, see, however, the detailed discussion in
Batchenko and Gesztesy (2005a).

The Toda hierarchy differs from the soliton hierarchies for the continuous mod-
els studied in Volume I in the sense that it does not seem to have simple Dubrovin
equations that govern the n-dependence of µ̂(n, tr ). We now show how to obtain a
first-order system of nonlinear differential equations, whose solution χ̂ (x, tr ) coin-
cides with µ̂(n, tr ) at the integer points x = n ∈ Z. Since the tr -dependence of χ̂
and µ̂ plays no role in this argument, we ignore this dependence in the following
result.

Lemma 1.75 (Dubrovin-type equations) Assume (1.62) and (1.63) and let x ∈
Ĩχ , where Ĩχ ⊆ R is an open interval. Abbreviate1 � = (�1, . . . , �p) =

1 Here AQ0
denotes the Abel map as defined in (A.29).
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−AP∞− (P∞+) and consider the Dubrovin-type system on Ĩχ ,

χ j,x (x) = y(χ̂ j (x))∏p
�=1
� �= j

(χ j (x)− χ�(x))

p∑
m=1

�
( j)
p−m(χ(x))

p∑
n=1

Cm,n�n,

{χ̂ j (x0)} j=1,...,p ⊂ Kp

(1.393)

for some x0 ∈ Ĩχ , where χ1(x0), . . . , χp(x0) are assumed to be distinct and Cm,n

is defined in (B.30). Then there exists an open interval Iχ ⊆ Ĩχ , with x0 ∈ Iχ ,
such that the initial value problem (1.393) has a unique solution {χ̂ j } j=1,...,p ⊂ Kp

satisfying

χ̂ j ∈ C∞(Iχ ,Kp), j = 1, . . . , p,

and χ j , j = 1, . . . , p, remain distinct on Iχ . Moreover, suppose x0 = n0 ∈ Iχ ∩ Z
and

χ̂ j (n0) = µ̂ j (n0) ∈ Kp, j = 1, . . . , p,

with µ1(n0), . . . , µp(n0) assumed to be distinct and µ̂ j (n0) satisfying

µ̂ j (n0) = (µ j (n0),−G p+1(µ j (n0), n0)), j = 1, . . . , p,

Fp(µ j (n0), n0) = 0, j = 1, . . . , p.

Then the solution χ̂ = χ̂ (x) of the initial value problem (1.393) coincides with µ̂(n)
defined in (1.67) at all integer values x = n ∈ Iχ ∩ Z, that is,

χ̂ j (x)
∣∣
x=n = (µ j (n),−G p+1(µ j (n), n)),

Fp(χ j (x), n)
∣∣
x=n = 0, j = 1, . . . , p, n ∈ Iχ ∩ Z.

Proof First we recall (cf. (1.67) and (1.118))

αP0
(Dµ̂(n))− αP0

(Dµ̂(n0)) = −AP∞− (P∞+)(n − n0) = �(n − n0).

Since Dχ̂(x) is nonspecial, we only need to establish that χ̂ satisfies

αP0
(Dχ̂ (x))− αP0

(Dχ̂ (x0)) = −AP∞− (P∞+)(x − x0) = �(x − x0),

that is, we need to show that

∂xαP0
(Dχ̂ (x)) = �. (1.394)
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However, equation (1.394) follows along the lines of (1.265): Using (1.393),
(D.10), (D.11), (D.12), and (B.31), (1.394) is a consequence of the following
computation:

d

dx

p∑
j=1

AP0,k(χ̂ j (x)) = d

dx

p∑
j=1

∫ χ̂ j (x)

P0

ωk

= d

dx

p∑
j=1

p∑
�=1

ck(�)

∫ χ̂ j (x)

P0

z�−1 dz

y(P)

=
p∑

j=1

p∑
�=1

ck(�)
χ j (x)�−1

y(χ̂ j (x))

d

dx
χ j (x)

=
p∑

j=1

p∑
�=1

ck(�)
χ j (x)�−1

y(χ̂ j (x))

y(χ̂ j (x))∏p
m �= j (χ j (x)− χm(x))

×
p∑

m=1

�
( j)
p−m(χ(x))

p∑
n=1

Cm,n�n

=
p∑

j=1

p∑
�=1

ck(�)Up(χ(x))�, j

p∑
m=1

�
( j)
p−m(χ(x))

p∑
n=1

Cm,n�n

=
p∑

j=1

p∑
�=1

p∑
m=1

ck(�)Up(χ(x))�, jUp(χ(x))
−1
j,m(χ(x))

p∑
n=1

Cm,n�n

=
p∑

�=1

p∑
n=1

ck(�)C�,n�n

=
p∑

�=1

p∑
n=1

C−1
k,�C�,n�n

= �k, k = 1, . . . , p.

Thus, the solution χ̂(x) of (1.393) provides a continuous interpolation for µ̂(n).
In principle, it might happen that Iχ ∩ Z = ∅ due to collisions of µ j . In this case
one has to resort to appropriate symmetric functions of the functions µ j as indicated
in the next remark.

The Dubrovin equations (1.393) for continuous interpolations of Dirichlet-type
eigenvalues in Lemma 1.75 appeared in Gesztesy and Holden (2002). The possibil-
ity of a finite difference analog of Dubrovin-type equations is mentioned in Dubrovin
et al. (1976), but without providing details. This finite difference equation idea was
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also discussed by Nijhoff (2000). In this context, relations between discrete and con-
tinuous integrable systems are also treated in Alber (1991a,b).

Remark 1.76 If two or more of the χ̂ j (x) coincide at a point x = x0, the Dubrovin-
type equations (1.393) are ill-defined. However, in new and symmetric variables, the
solution remains smooth. We illustrate this in the case when two χ̂ j collide at a point
x0. Specifically, assume that χ̂1(x0) = χ̂2(x0) but χ̂1(x) �= χ̂2(x) for x �= x0. All the
remaining χ̂ j , j > 2, are supposed to be distinct from one another, and also from
χ̂1 and χ̂2, near x0. Consider new variables σ1 = χ1 + χ2 and σ2 = χ1χ2. In these
variables we record for x near x0 that

σ1,x (x) = χ1,x (x)+ χ2,x (x)

= 1

χ1 − χ2

(
y(χ̂1)∏p

�=3(χ1 − χ�)

p∑
m=1

�
(1)
p−m(χ)

p∑
n=1

Cm,n�n

− y(χ̂2)∏p
�=3(χ2 − χ�)

p∑
m=1

�
(2)
p−m(χ)

p∑
n=1

Cm,n�n

)
= 1

χ1 − χ2

(
A(χ1)χ2 + B(χ1)− A(χ2)χ1 − B(χ2)

)
= A(χ1(x))+ A′(χ1(x))χ1(x)+ B ′(χ1(x))+ O(x − x0)

by Taylor expanding the auxiliary functions A(χ j ) and B(χ j ) (that depend smoothly
on χ� for � > 2 as well as χ j ) around χ1. In the same way one finds

σ2,x (x) = χ1,x (x)χ2(x)+ χ1(x)χ2,x (x)

= 1

χ1(x)− χ2(x)

(
(A(χ1)χ2 + B(χ1))χ2 − (A(χ2)χ1 − B(χ2))χ1

)
= 2A(χ1(x))χ1(x)+ A′(χ1(x))χ1(x)

2 + B ′(χ1(x))+ O(x − x0).

Clearly this analysis extends to the models treated in Volume I and to the AL hierar-
chy treated in Chapter 3.

Remark 1.77 Suppose in addition that a and b are real-valued and bounded. More-
over, assume the eigenvalue ordering (1.91) and (1.92). Furthermore, assume that
the initial data in (1.393) are constrained to lie in spectral gaps, that is, χ j (x0) ∈
[E2 j−1, E2 j ], j = 1, . . . , p. Then,

χ j (x) ∈ [E2 j−1, E2 j ], j = 1, . . . , p, x ∈ R.

In particular, χ̂ j (x) changes sheets whenever it hits E2 j−1 or E2 j , and its projection
χ j (x) remains trapped in [E2 j−1, E2 j ], j = 1, . . . , p, for all x × R.
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Indeed, this follows from (1.393), � ∈ Rp, y(χ̂ j ) ∈ R for χ j ∈ [E2 j−1, E2 j ],
j = 1, . . . , p, since R2p+2(λ)

1/2 is real-valued for λ ∈ [E2 j−1, E2 j ], j = 1, . . . , p,
by (B.18), and the fact that C j,k ∈ R, j, k = 1, . . . , p, by (B.36).

Section 1.4. The results of this section are taken from the paper Gesztesy et al.
(2008b).

For the construction of self-adjoint Jacobi operators with real-valued algebro-
geometric coefficients a, b alluded to in the beginning of this section, we refer, for
instance, to Bulla et al. (1998) and Teschl (2000, Sect. 8.3).

For Sard’s theorem in connection with Lemma 1.30, we refer, for instance, to
Abraham et al. (1988, Sect. 3.6).

The stationary (complex) Toda algorithm as outlined in steps (I)–(XII) represents
a new solution of the inverse algebro-geometric spectral problem for generally non-
self-adjoint Jacobi operators. In particular, one can view this algorithm as a contin-
uation of the inverse periodic spectral problem started in 1975 (in the self-adjoint
context) by Kac and van Moerbeke (1975a,c) and Flaschka (1975), continued in the
seminal papers by van Moerbeke (1976), Date and Tanaka (1976a), and Dubrovin
et al. (1976), and further developed by Krichever (1978), McKean (1979), van Moer-
beke and Mumford (1979), Mumford (1978), and others, in part in the more general
quasi-periodic algebro-geometric case.

That straight motions on the torus are generically dense is of course a well-known
fact (see e.g. Arnold (1989, Sect. 51) or Katok and Hasselblatt (1995, Sects. 1.4,
1.5)). For quasi-periodicity of sequences indexed by n ∈ Z one can consult, for
instance, Pastur and Figotin (1992, p. 31). For the special case of complex-valued
and quasi-periodic Jacobi matrices where all quasi-periods are real-valued, we refer
to Batchenko and Gesztesy (2005a,b).

We emphasize that the approach described in this section is not limited to the sta-
tionary Toda hierarchy, respectively, to the inverse algebro-geometric spectral prob-
lem of non-self-adjoint Jacobi operators, but applies universally to the construction
of stationary algebro-geometric solutions of integrable lattice hierarchies of soliton
equations. In particular, it is also applied to the Ablowitz–Ladik hierarchy as dis-
cussed in Gesztesy et al. (2007b) and in Section 3.5 of this monograph.

We also note that while the periodic case with complex-valued a, b is of course
included in our analysis, we throughout consider the more general algebro-geometric
case (in which a, b need not be quasi-periodic).

Section 1.5. The approach presented in this section closely follows Bulla et al.
(1998).

Since many of the references provided in connection with Section 1.3 treat the
time-dependent Toda equations and not just stationary Toda solutions, we will now
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mainly focus on issues markedly different from stationary ones and topics not yet
covered. Connections between the Toda lattice and associated continuous integrable
systems were discussed in Alber (1991a) and Gesztesy and Holden (2002).

In analogy to its stationary analog in Section 1.3, the role of φ(P, n, tr ) defined
in (1.213) is still central to Section 1.5 and the corresponding facts recorded in the
notes to Section 1.3 still apply.

The Dubrovin equations (1.236) in Lemma 1.37 were found simultaneously with
the theta function representations discussed in the notes to Section 1.3. As in the cor-
responding KdV context, they are usually discussed in connection with the simplest
cases r = 0, 1 only.

Since the proof of Lemma 1.38 is identical to that in the corresponding stationary
case, the remarks in connection with the trace formulas in Lemma 1.15 in the notes
to Section 1.3 apply again.

The linearization property (1.259) of the Abel map and formulas (1.260), (1.261)
for the pair (a(n, tr ), b(n, tr )) in terms of the Riemann theta function associated with
Kp were again found simultaneously with their stationary counterparts and thus the
historical development sketched in this connection in the notes to Section 1.3 remains
valid in the context of Theorem 1.41.

Corollary 1.43 is taken from Bulla et al. (1998).
Although we mentioned p-soliton solutions of the Toda hierarchy at the end of

Sections 1.3 and 1.5, we did not explicitly study degenerations of quasi-periodic
algebro-geometric solutions as certain periods tend to infinity, or alternatively, sys-
tematically apply Darboux-type transformations (i.e., various commutation methods)
that can lead to Bäcklund transformations between the Toda and Kac–van Moerbeke
hierarchies as well as auto-Bäcklund transformations for the Toda hierarchy. The
connections with the Kac–van Moerbeke hierarchy will be dealt with in detail in our
next chapter. Here we just recall that this singularization procedure creates soliton-
type solutions relative to a remaining algebro-geometric background solution (whose
associated Riemann surface has appropriately diminished genus) and leads to a sin-
gular curve for the combined soliton and background Toda solution, etc. The pos-
sibility of obtaining soliton solutions from degenerating hyperelliptic curves (i.e.,
pinching handles, Fay (1973, Ch. III), etc.) is analogous to our discussion in the
notes to Section 1.3. The alternative approach using Darboux transformations seems
to be a bit simpler to implement in practice and we refer the interested reader to
Bulla et al. (1998), Gesztesy et al. (1993), Gesztesy and Teschl (1996), Matveev and
Salle (1991, Sects. 2.5, 5.3), Sun et al. (2005), Teschl (1997; 1999b), Teschl (2000,
Chs. 11, 14). Infinite soliton solutions obtained as limits of N -soliton solutions as
N → ∞, have been discussed in Gesztesy and Renger (1997) and relative to gen-
eral backgrounds in Renger (1999). For solutions expressed in terms of Fredholm
determinants we also refer to Widom (1997). Different approaches to infinite soliton
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solutions were undertaken in Orlov (2006) and Schiebold (1998; 2005). Soliton solu-
tions on algebro-geometric finite-band backgrounds are treated in Egorova et al. (to
appear). The inverse scattering transform for the Toda hierarchy relative to algebro-
geometric quasi-periodic backgrounds is studied in Egorova et al. (2007a).

For Toda flows in the Hilbert space �2(N) we refer to Deift et al. (1985) (see also
Li (1987)).

Section 1.6. The results of this section are taken from the paper Gesztesy et al.
(2008b).

In the special case of a self-adjoint Lax (i.e., Jacobi) operator L̆ , where a and b
are real-valued and bounded, the two-step procedure to construct the solution of this
algebro-geometric initial value problem alluded to at the beginning of this section is
discussed in detail in Bulla et al. (1998) and Teschl (2000, Sect. 13.2).

Unique solvability of the autonomous system (1.288), (1.289) with polynomial
right-hand sides is a standard result (see, e.g., Walter (1998, Sect. III.10)).

Again we refer, for instance, to Arnold (1989, Sect. 51) or Katok and Hasselblatt
(1995, Sects. 1.4, 1.5) for the well-known fact that straight motions on the torus are
generically dense and as in the notes to Section 1.4 one can consult Pastur and Figotin
(1992, p. 31) for quasi-periodicity with respect to sequences indexed by n ∈ N.

We emphasize that the approach described in this section is not limited to the
Toda hierarchy but applies universally to constructing algebro-geometric solutions
of (1 + 1)-dimensional integrable soliton equations of differential-difference (i.e.,
lattice) type. Moreover, the principal idea of replacing the Dubrovin-type equations
by a first-order system of the type (1.288) is also relevant in the context of general
non-self-adjoint Lax operators for the continuous models in (1 + 1)-dimensions. In
particular, the models studied in detail in Gesztesy and Holden (2003b) can be revis-
ited from this point of view. However, the fact that the set in (1.317) is of measure
zero relies on the fact that n varies in the countable set Z and hence is not applicable
to continuous models in (1+ 1)-dimensions.

We also note that while the periodic case with complex-valued a, b is of course
included in our analysis, we throughout consider the more general algebro-geometric
case (in which a, b need not be quasi-periodic).

Alternative approaches to the integration of the Toda initial value problem have
been studied by Gekhtman (1991a,b), Kudryavtsev (2002), Vinnikov and Yuditskii
(2002), and Zhernakov (1987).

The following material is not treated in this volume but illustrates alternative ways
to integrate the Toda lattice in various situations.

In connection with the Toda lattice half-line initial value problem, using a mo-
ment problem approach, we refer, for instance to Berezanskiı̆ (1985), Berezanski
(1986), Peherstorfer (2001), Sakhnovich (1989), Shmoish (1989), Yurko (1995). The
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corresponding nonabelian problem is studied in Berezanskii and Gekhtman (1990),
Berezanskii et al. (1986), Gekhtman (1990). Rapidly decreasing solutions of the half-
line Toda lattice initial value problem, using scattering theoretic techniques, were
studied in Khanmamedov (2005b).

Further generalizations including non-isospectral Toda flows can be found in
Berezansky (1990; 1996), Berezanskii and Smoish (1990; 1994).

The asymptotic time behavior of solutions of the Toda lattice with rapidly de-
creasing initial data is discussed in Kamvissis (1993). Stability of the periodic (and
algebro-geometric quasi-periodic) Toda lattice under short-range perturbations is
treated in Kamvissis and Teschl (2007a,b). The asymptotic time behavior of the Toda
lattice initial value problem with initial data tending to different asymptotic constants
as n→±∞ has been studied in Guseinov and Khanmamedov (1999).

Finally, singularities of the finite Toda lattice in the complex domain were studied
in Casian and Kodama (2002a–c), Flaschka (1988), Flaschka and Haine (1991),
Gekhtman and Shapiro (1997), Kodama and Ye (1996a,b; 1998). In the case of the
periodic Toda lattice we refer to Adler (1981), Adler et al. (1993), Kodama and Ye
(1998), and Kodama (2002).

Section 1.7. The material in this section is primarily taken from Gesztesy and
Holden (2006).

The Toda hierarchy and its interpretation as a Hamiltonian system has received
enormous attention in the past. Without being able to provide a comprehensive re-
view of the vast literature we mention that Lie algebraic approaches to Hamiltonian
and gradient structures in the asymmetric nonperiodic Toda flows, Poisson maps,
etc., are studied in many of the references provided at the end of the Notes to Section
1.1. The symplectic structure and action-angle variables for the periodic Toda lattice
are discussed, for instance, in Bättig et al. (1993; 1995), Guillot (1994), Li (1997).
Master symmetries for the finite nonperiodic Toda lattice are treated in Damianou
(1993), the second Hamiltonian structure for the periodic Toda lattice is discussed
in Beffa (1997), and multiple Hamiltonian structures for various Bogoyavlensky–
Toda systems, Poisson manifolds, master symmetries, recursion operators, etc., can
be found in Damianou (2000), Damianou and Fernandes (2002), Faybusovich and
Gekhtman (2000), and Fernandes (1993). Moreover, Poisson brackets are studied
in Faddeev and Takhtajan (1987, Sect. III.4), Flaschka and McLaughlin (1976a,b),
Manakov (1975), McLaughlin (1989), Novikov et al. (1984, Sect. II.4), Tsiganov
(2007) and infinitely many constants of motion appeared for instance, in Eilenberger
(1983, Sect. 7.3), Faddeev and Takhtajan (1987, Sect. III.2.4), Flaschka (1974a,b;
1975), Flaschka and McLaughlin (1976a), Gesztesy and Holden (1994), Hénon
(1974), Manakov (1975), McLaughlin (1975), Takebe (1990), Teschl (2000, Sect.
13.4), Toda (1989b, Sect. 3.7), and Wadati (1976). An elementary approach to the
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infinite sequence of Toda hierarchy conservation laws was presented in Zhang and
Chen (2002a) (but it seems to lack an explicit and recursive structure). Moreover,
a Hamiltonian formalism for the Toda hierarchy, based on recursion operators and
hence on an algebraic formalism familiar from the one involving formal pseudo-
differential expressions in connection with the Gelfand–Dickey hierarchy, was devel-
oped in Zhang and Chen (2002b). A connection between the Hamiltonian formalism
of the Toda lattice and the Weyl–Titchmarsh function associated with L̆ is discussed
in Vaninsky (2003). For interesting connections with orthogonal polynomials in this
context we also refer to Peherstorfer et al. (2007).

In spite of this large body of literature on the Toda Hamiltonian formalism, the
recursive and most elementary approach to local conservation laws of the infinite
Toda hierarchy as presented in Gesztesy and Holden (2006), apparently, had not
been noted in the literature before. Moreover, the treatment of Poisson brackets and
variational derivatives, and their connections with the diagonal Green’s function of
the underlying Lax operator L̆ in Gesztesy and Holden (2006), put the Toda hierarchy
on precisely the same level as the KdV hierarchy with respect to these particular
aspects of the Hamiltonian formalism.

Next we mention some references supporting more technical points in this section:
For a collection of results concerning the numerical range of operators used in the
proof of Theorem 1.55 we refer, for instance, to Gustafson and Rao (1997, Ch. 1).

Carleman integral kernels mentioned in connection with (1.322), (1.323) are dis-
cussed in Weidmann (1980, Sect. 6.2).

Equation (1.348) (which has been observed in Batchenko and Gesztesy (2005b)
in the algebro-geometric context) can be viewed as the analog of a well-known
identity for the diagonal Green’s function of Schrödinger operators as discussed in
Lemma 1.61 (i) in Volume I (see also (1.299) in Volume I). Relevant references in the
Schrödinger context are, for instance, Carmona and Lacroix (1990, p. 369), Gel’fand
and Dikii (1975), Gesztesy and Holden (2003b, pp. 99 and 122), and Johnson and
Moser (1982).

The existence of the propagator Wp( · , · ) satisfying (1.354)–(1.357) in Theorem
1.62 is a standard result and follows, for instance, from Reed and Simon (1975,
Theorem X.69) (under even weaker hypotheses on a, b).

Theorem 1.63 follows from standard results in Abraham et al. (1988, Sect. 4.1)
and has been exploited in the self-adjoint case in Teschl (2000, Sect. 12.2). More
precisely, local existence and uniqueness as well as smoothness of the solution of
the initial value problem (1.361) (cf. also (1.50)) follows from Abraham et al. (1988,
Theorem 4.1.5) since f p+1 and gp+1 depend only polynomially on a, b and certain
of their shifts, and the fact that the Toda flows are autonomous.

Remark 1.64 (i) follows from Abraham et al. (1988, Theorem 4.1.5). To apply the
Banach space setting of Abraham et al. (1988, Theorem 4.1.5) in this situation, one
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introduces a new sequence{
c(0)(n)

}
n∈Z =

{
a(0)(n)2 − 1

4

}
n∈Z,

and then demands {
b(0)(n)

}
n∈Z,

{
c(0)(n)

}
n∈Z ∈ �1(Z),

upon substituting
{
a(0)(n)2

}
n∈Z by

{
c(0)(n) + 1

4

}
n∈Z in the equations of the Toda

hierarchy. The latter is possible by Remark 1.9 since only a2 but not a itself enters
the Toda hierarchy of evolution equations.

In the self-adjoint context, the results of Theorems 1.61 and 1.62 appeared in
Teschl (2000, Theorem 12.4, Lemma 12.16) (see also Gesztesy et al. (1993) for some
relevant results in this context).

The unique, global, and smooth solution of the pth Toda lattice initial value prob-
lem (1.361) alluded to in Remark 1.64 (i i) follows from a further application of
Abraham et al. (1988, Proposition 4.1.22).

The general result that for bounded operators A, B ∈ B(H) on a separable, com-
plex Hilbert space H with AB and B A trace class operators, their commutator is
traceless, that is, tr([A, B]) = 0, used in the proof of Lemma 1.69, can be found in
Deift (1978) and Simon (2005d, Corollary 3.8).

For the brief sketch of the Hamiltonian formalism in the case of almost periodic
coefficients a and b we followed Johnson and Moser (1982) in the context of one-
dimensional almost periodic Schrödinger operators and Carmona and Kotani (1987)
in the corresponding discrete case (see also the treatment in Carmona and Lacroix
(1990, Sects. VII.1, VII.2)). In particular, we note that w in (1.388) is the appropriate
discrete analog of the function 〈m+(z)〉 = 〈−1/G(z, · , · )〉 introduced by Johnson
and Moser (1982) in the case of almost periodic Schrödinger operators. (Here m+
denotes the analog of the right half-line Weyl–Titchmarsh coefficient and G(z, · , · )
the diagonal Green’s function of the underlying almost periodic Schrödinger operator
H = −d2/dx2 + V in L2(R).)

For basic properties of quasi-periodic and almost periodic functions and sequences
we refer, for instance, to Corduneanu (1989), Levitan and Zhikov (1982), and Pastur
and Figotin (1992, p. 30–31).
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The Kac–van Moerbeke Hierarchy

A formal manipulator in mathematics often experiences the
discomforting feeling that his pencil surpasses him in
intelligence.

Howard W. Eves1

2.1 Contents

The Kac–van Moerbeke (KM) lattice is a system of differential-difference equations
that is closely related to the Toda lattice by a Miura-type transformation familiar from
analogous connections between the KdV and the modified KdV hierarchy. In fact,
the relation is so close that we will depart from the strategy of the previous chapters
in Volumes I and II in the construction of the associated hierarchy and directly exploit
this intimate connection to transport the algebro-geometric solutions constructed in
Chapter 1 for the Toda hierarchy to that of the Kac–van Moerbeke hierarchy.

The equation for the Kac–van Moerbeke lattice,

KM0(ρ) = ρt − ρ
(
(ρ+)2 − (ρ−)2

)
= 0 (2.1)

for a sequence ρ = ρ(n, t) (with ρ±(n, t) = ρ(n ± 1, t), (n, t) ∈ Z× R, etc.), was
originally derived in the mid-1970s.2

The transformation c = 2ρ2 transforms the KM system (2.1) into the Langmuir
lattice

ct − c
(
c+ − c−

) = 0, (2.2)

of relevance to the spectrum of Langmuir oscillations in plasmas. Moreover, when
written instead in the form

Rt − 1

2

(
exp(−R+)− exp(−R−)

) = 0, (2.3)

1 Quoted in Return to Mathematical Circles, Boston: Prindle, Weber & Schmidt, 1988.
2 A guide to the literature can be found in the detailed notes at the end of this chapter.

161
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it is frequently called the Volterra system. By introducing ρ = 1
2 exp(R/2), one

verifies that (2.3) reduces to (2.1).
This chapter focuses on the Miura-type transformation between the Toda and KM

hierarchies and as an explicit example constructs algebro-geometric KM solutions
from algebro-geometric Toda hierarchy solutions. Below we briefly summarize the
principal content of each section. A more detailed discussion of the contents has been
provided in the introduction to this volume.

Section 2.2.

• Lax pairs (M, Q2p+2), Miura-type transformation
• stationary and time-dependent KM hierarchy
• Burchnall–Chaundy polynomials, hyperelliptic curves

Section 2.3. (stationary)

• properties of φk and the Baker–Akhiezer function ψk , k = 1, 2
• theta function representations for φ1, ψ1, φ2,±, ψ2,±, a1, b1, a2,±, b2,±, and ρ±

Section 2.4. (time-dependent)

• theta function representations for a1, b1, a2,±, b2,±, and ρ±

Due to its close ties with the Toda hierarchy dealt with in Chapter 1, this chapter
also relies on terminology and notions developed in connection with compact Rie-
mann surfaces. A brief summary of key results as well as definitions of some of the
main quantities can be found in Appendices A and B.

2.2 The KM Hierarchy and its Relation to the Toda Hierarchy

We can’t define anything precisely.
R. Feynman1

In this section we introduce the basic notation for the Kac–van Moerbeke hierarchy
and describe how it connects with the Toda hierarchy.

Hypothesis 2.1 In the stationary case we assume that ρ satisfies

ρ ∈ CZ, ρ(n) �= 0, n ∈ Z. (2.4)

In the time-dependent case we assume that ρ satisfies

ρ( · , t) ∈ CZ, t ∈ R, ρ(n, · ) ∈ C1(R), n ∈ Z,

ρ(n, t) �= 0, (n, t) ∈ Z× R.
(2.5)

1 The Feynman Lectures on Physics (1998), Addison Wesley, Vol. I, 8-2.
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We introduce the “even” and “odd” parts of ρ by

ρe(n) = ρ(2n), ρo(n) = ρ(2n + 1), n ∈ Z, (2.6)

and consider the first-order difference expressions1 in �∞(Z)

A = ρoS+ + ρe, A† = ρ−o S− + ρe, (2.7)

which in turn enable one to define matrix-valued difference expressions M and
Q2p+2 in �∞(Z)⊗ C2 as follows,

M =
(

0 A†

A 0

)
, (2.8)

Q2p+2 =
(

P1,2p+2 0
0 P2,2p+2

)
= P1,2p+2 ⊕ P2,2p+2, p ∈ N0. (2.9)

Here Pk,2p+2, k = 1, 2, are defined as in (1.20) respectively (1.35), that is,

Pk,2p+2 = −L p+1
k +

p∑
j=0

(
gk, j + 2ak fk, j S+

)
L p− j

k + fk,p+1, (2.10)

Pk,2p+2
∣∣
ker(Lk−z) =

(
2ak Fk,p(z)S

+ + Gk,p+1(z)
)∣∣

ker(Lk−z), (2.11)

Lk = ak S+ + a−k S− + bk, k = 1, 2, (2.12)

and { fk,p, j } j=0,...,p and {gk,p+1, j } j=0,...,p+1, as well as Fk,p(z) and Gk,p+1(z) are
defined as in (1.3)–(1.5) and (1.31) with

a1 = ρeρo, b1 = ρ2
e + (ρ−o )2, (2.13)

a2 = ρ+e ρo, b2 = ρ2
e + ρ2

o , (2.14)

and an equal set of summation constants {c�}�∈N employed in Fk,p(z) and Gk,p+1(z)
for k = 1, 2.

One then verifies the factorizations

L1 = A† A, L2 = AA†.

Moreover, one proves that

M2 =
(

A† A 0
0 AA†

)
=
(

L1 0
0 L2

)
= L1 ⊕ L2 (2.15)

and that2

ker(M − w) = ker(M2 − z) = ker(L1 − z)⊕ ker(L2 − z), w2 = z. (2.16)

1 When ρ is real-valued, A† equals the formal adjoint of the difference expression A.
2 We shall use (2.15) and (2.16) only in an algebraic sense as in (1.35). However, (2.15) and (2.16) are

easily seen to be valid in a functional analytic sense as well.
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Using

[Q2p+2, M] =
(

0 −P1,2p+2 A† + A† P2,2p+2

−P2,2p+2 A + AP1,2p+2 0

)
,

and postulating the stationary Lax equation

[Q2p+2, M] = 0, (2.17)

one concludes after some computations employing (2.6)–(2.16) that

2ρeρ
2
o

(
F+1,p − F2,p

)− ρe
(
G1,p+1 − G2,p+1

) = 0,

2ρo(ρ
+
e )

2(F+1,p − F+2,p
)− ρo

(
G+1,p+1 − G2,p+1

) = 0.
(2.18)

Taking z = 0 in (2.18) then results in

2ρ2
o( f +1,p − f2,p)− (g1,p + f1,p+1 − g2,p − f2,p+1) = 0,

2(ρ+e )2( f +1,p − f +2,p)− (g+1,p + f +1,p+1 − g2,p − f2,p+1) = 0.

Moreover, using the relations

2ρ2
o( f +1,� − f2,�)− (g1,� − g2,�) = 0, � ∈ N0,

2ρ2
e ( f1,� − f2,�)− (g1,� − g−2,�) = 0, � ∈ N0,

equation (2.17) finally reduces to the pair of equations

−ρe( f2,p+1 − f1,p+1) = 0,

ρo( f2,p+1 − f +1,p+1) = 0

or equivalently, to

s-KMp(ρ) = (s-KMp(ρ)e, s-KMp(ρ)o)
�

=
(
−ρe( f2,p+1 − f1,p+1)

ρo( f2,p+1 − f +1,p+1)

)
= 0, p ∈ N0.

(2.19)

Equation (2.19) can be combined into one by introducing

s-KMp(ρ)(n) =
{

s-KMp(ρ)e(
n
2 ), n even,

s-KMp(ρ)o(
n−1

2 ), n odd,
n ∈ Z. (2.20)

An alternative and recursive approach to arrive at (2.20) proceeds as follows. Intro-
ducing

γ�(2n) = f1,�(n), γ�(2n + 1) = f2,�(n), � ∈ N0, n ∈ Z, (2.21)

ω�(2n) = g1,�(n), ω�(2n + 1) = g2,�(n), � ∈ N0, n ∈ Z, (2.22)
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one notices the recursion (implied by that in (1.3)–(1.5)),

γ0 = 1, ω0 = −c1, (2.23)

2γ�+1 + ω� + ω−−� − 2
(
ρ2 + (ρ−)2

)
γ� = 0, � ∈ N0, (2.24)

ω�+1 − ω−−�+1 + 2
(
(ρρ+)2γ++� − (ρ−ρ−−)2γ−−�

)
− (ρ2 + (ρ−)2

)
(ω� − ω−−� ) = 0, � ∈ N0. (2.25)

Explicitly, one finds

γ0 = 1,

γ1 = ρ2 + (ρ−)2 + c1, etc.,

ω0 = −c1,

ω1 = −2(ρρ+)2 − c2, etc.

Equation (2.19) finally is then equivalent to

s-KMp(ρ) = −ρ
(
γ+p+1 − γp+1

)
, p ∈ N0. (2.26)

Varying p ∈ N0 in (2.26) then gives rise to the stationary Kac–van Moerbeke (KM)
hierarchy. Thus,

s-KM0(ρ) = −ρ
(
(ρ+)2 − (ρ−)2

)
= 0,

s-KM1(ρ) = −ρ
(
(ρ+)4 − (ρ−)4 + (ρ++)2(ρ+)2 + (ρ+)2ρ2 − ρ2(ρ−)2

−(ρ−)2(ρ−−)2
)
+ c1(−ρ)

(
(ρ+)2 − (ρ−)2

)
= 0, etc.,

represent the first few equations of the stationary KM hierarchy. By definition, the
set of solutions of (2.26), with p ranging in N0 and c� ∈ C, � ∈ N, defines the class
of algebro-geometric KM solutions.

We can now describe the Burchnall–Chaundy polynomial and the algebraic curve
associated with the pair (M, Q2p+2).

Lemma 2.2 Assume that M and Q2p+2 commute. Then,

Q2
2p+2 =

(
R1,2p+2(L1) 0

0 R2,2p+2(L2)

)
= R1,2p+2(L1)⊕ R2,2p+2(L2).

If in addition L1 and L2 are isospectral in the sense that their Burchnall–Chaundy
polynomials coincide and then equal

Fp(Lk, Pk,2p+2) = P2
k,2p+2 − R2p+2(Lk) = 0, k = 1, 2,

R2p+2(z) =
2p+1∏
m=0

(z − Em), {Em}m=0,...,2p+1 ⊂ C,
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the Burchnall–Chaundy polynomial Gp(M, Q2p+2) of the pair (M, Q2p+2) is given
by

Gp(M, Q2p+2) = Q2
2p+2 − R2p+2(M

2) = 0. (2.27)

Proof One infers from (2.9) that

Q2
2p+2 =

(
P2

1,2p+2 0

0 P2
2,2p+2

)
=
(

R1,2p+2(L1) 0
0 R2,2p+2(L2)

)
=
(

R2p+2(L1) 0
0 R2p+2(L2)

)
= R2p+2(M

2)

using (1.40).

We note that the affine part of the curve associated with the Burchnall–Chaundy
polynomial (2.27) of the pair (M, Q2p+2), that is,

y2 =
2p+1∏
m=0

(w − E1/2
m )(w + E1/2

m ) =
2p+1∏
m=0

(w2 − Em), (2.28)

is singular if and only if Em = 0 for some m = 0, . . . , 2p + 1.

Now we turn to the time-dependent KM hierarchy. For that purpose the coeffi-
cients ρ as well as corresponding coefficients ak and bk , k = 1, 2, are now considered
as functions of both the lattice point and time. For each equation in the hierarchy, that
is, for each p ∈ N0, we now introduce a deformation (time) parameter tp ∈ R in ak ,
bk , ρ, replacing ak(n), bk(n), ρ(n) by ak(n, tp), bk(n, tp), ρ(n, tp), k = 1, 2, etc.

The time-dependent KM equations are then obtained by imposing the Lax com-
mutator equations

0 = Mtp − [Q2p+2, M]

=
(

0 A†
tp
− P1,2p+2 A† + A† P2,2p+2

Atp − P2,2p+2 A + AP1,2p+2 0

)
.

In analogy to the stationary case one then obtains

ρe,tp − 2ρeρ
2
o

(
F+1,p − F2,p

)+ ρe
(
G1,p+1 − G2,p+1

) = 0,

ρo,tp + 2ρo(ρ
+
e )

2(F+1,p − F+2,p
)− ρo

(
G+1,p+1 − G2,p+1

) = 0.
(2.29)

Taking again z = 0 in (2.29) then results in

KMp(ρ) = (KMp(ρ)e,KMp(ρ)o)
�

=
(
ρe,tp − ρe( f2,p+1 − f1,p+1)

ρo,tp + ρo( f2,p+1 − f +1,p+1)

)
= 0, p ∈ N0.

(2.30)
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As in the stationary case, we may combine the even and odd part of the lattice to
obtain

KMp(ρ)(n) =
{

KMp(ρ)e(
n
2 ), n even,

KMp(ρ)o(
n−1

2 ), n odd,
n ∈ Z.

Moreover, using the recursive approach (2.21)–(2.25) employed in the stationary
context, (2.30) become

KMp(ρ) = ρtp − ρ
(
γ+p+1 − γp+1

)
, p ∈ N0. (2.31)

Varying p ∈ N0 in (2.26) then gives rise to the time-dependent Kac–van Moerbeke
hierarchy. Explicitly,

KM0(ρ) = ρt0 − ρ
(
(ρ+)2 − (ρ−)2

)
= 0,

KM1(ρ) = ρt1 − ρ
(
(ρ+)4 − (ρ−)4 + (ρ++)2(ρ+)2 + (ρ+)2ρ2 − ρ2(ρ−)2

−(ρ−)2(ρ−−)2
)
+ c1(−ρ)

(
(ρ+)2 − (ρ−)2

)
= 0, etc.,

represent the first few equations of the time-dependent KM hierarchy.

Remark 2.3 In analogy to Remark 1.9 one infers that the coefficients ρe and ρo

enter Fp and G p+1 quadratically so that the KM hierarchy (2.31) (as well as the
stationary hierarchy (2.26)) is invariant under the substitution

ρ → ρε = {ε(n)ρ(n)}n∈Z, ε(n) ∈ {1,−1}, n ∈ Z.

Next, we will detail the relation between the Toda and the Kac–van Moerbeke
hierarchies. We have already seen the connection between Pk,2p+2 for k = 1, 2 and
Q2p+2 in (2.15).

Introducing the notation familiar from Section 1.5 (cf. (1.195))

T̃lr (a, b) = (T̃lr (a, b)1, T̃lr (a, b)2)
� =

(
atr − a

(
f̃ +r+1)− f̃r+1

)
btr + g̃r+1 − g̃−r+1,

)
, r ∈ N0,

one verifies the Miura-type identity

T̃lr (ak, bk) = Wk K̃Mr (ρ), r ∈ N0, k = 1, 2, (2.32)

where Wk denote the 2× 2 matrix-valued difference expressions

W1 =
(
ρo ρe

2ρe 2ρ−o S−
)
, W2 =

(
ρoS+ ρ+e
2ρe 2ρo

)
.

Here we employed the same set of summation constants {c̃s}s∈N in F̃r and G̃r+1 and
hence in T̃lr (ak, bk) and K̃Mr (ρ) in (2.32) for k = 1, 2.
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Relation (2.32) is the discrete analog of Miura’s well-known identity that links the
KdV and mKdV hierarchy (cf. Section 2.2 in Volume I). Of course, (2.32)–(2.33)
equally apply to the stationary case, where ak,tr = bk,tr = ρtr = 0, k = 1, 2.

Using that K̃Mr (ρ) = 0 if and only if K̃Mr (ρ) = 0, identity (2.32) immediately
yields the implication

K̃Mr (ρ) = 0 =⇒ T̃lr (ak, bk) = 0, k = 1, 2, (2.33)

that is, given a solution ρ of the K̃Mr equation (2.31) (respectively (2.26)), one ob-
tains two solutions, (a1, b1) and (a2, b2), of the T̃lr equations (1.50) related to each
other by the Miura-type transformation (2.13), (2.14).

Next we will describe a method to reverse the implication in (2.33), that is, starting
from a solution, say (a1, b1) of T̃lr (a1, b1) = 0, we construct a solution ρ of the
K̃Mr equation (2.31) (respectively (2.26)) and another T̃lr solution (a2, b2) of (1.50)
related to each other by the Miura-type transformation (2.13), (2.14).

We consider the stationary case first.

Theorem 2.4 Suppose that a, b satisfy (1.61) and the pth stationary Toda system
(1.29),

s-Tlp(a1, b1) = 0

for some p ∈ N0. In addition, assume the existence of weak solutions ψ1,± (not
necessarily distinct) of L1ψ = 0 which are nonzero, ψ1,±(n) �= 0, n ∈ Z. Moreover,
introduce for some constant σ ∈ C,

ψ1,σ = 1

2
(1− σ)ψ1,− + 1

2
(1+ σ)ψ1,+, (2.34)

ρe,σ = (a1ψ
+
1,σ /ψ1,σ )

1/2, (2.35)

ρo,σ = (a1ψ1,σ /ψ
+
1,σ )

1/2, (2.36)

ρσ (n) =
{
ρe,σ (m), n = 2m,

ρo,σ (m), n = 2m + 1,
m ∈ Z, (2.37)

a2,σ = ρ+e,σ ρo,σ , (2.38)

b2,σ = ρ2
e,σ + ρ2

o,σ , (2.39)

and suppose that ψ1,σ (n) �= 0, n ∈ Z. Then, ρσ and a2,σ , b2,σ satisfy (2.4) and
(1.61), respectively, and

s-KMp(ρσ ) = 0, s-Tlp(a2,σ , b2,σ ) = 0.

In addition, L1 and L2,σ satisfy (2.12)–(2.14).

Proof This follows from an explicit computation (cf. (2.50)–(2.52)).
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In the time-dependent case one first has to show that one can find a solution of
the equation L1ψ = zψ with the proper time-dependence. To prepare for this we
denote by c = c(z, n, tr ) and s = s(z, n, tr ) a fundamental system of solutions of
L1ψ = zψ satisfying the initial conditions

c(z, 0, tr ) = s(z, 1, tr ) = 1, c(z, 1, tr ) = s(z, 0, tr ) = 0,

and where the coefficients a1 and b1 of L1 satisfy T̃lr (a1, b1) = 0 for some r ∈ N0.
Then the monodromy matrix defined by

�(z, n, tr ) =
(

c(z, n, tr ) s(z, n, tr )
c(z, n + 1, tr ) s(z, n + 1, tr )

)
, (z, n, tr ) ∈ C× Z× R,

satisfies

(L1 − z)

(
d

dtr
− P̃2r+2

)
� = 0,

implying (
d

dtr
− P̃2r+2

)
�(z, n, tr ) = �(z, n, tr )Cr (z, tr )

for some 2× 2 matrix Cr . In particular,

�tr = P̃2r+2�+�Cr .

Lemma 2.5 Assume that a1, b1 satisfy (1.194) and T̃lr (a1, b1) = 0 for some r ∈ N0.
Let ψ(0)

1 be a weak solution of L1ψ
(0)
1 = zψ(0)

1 for tr = t0,r for some t0,r ∈ R. Then
there is a unique weak solution ψ1 of

L1ψ = zψ, ψtr = P̃2r+2ψ, (2.40)

ψ1(n, · ) ∈ C1(R), n ∈ Z, such that

ψ1( · , t0,r ) = ψ
(0)
1 . (2.41)

Proof The general solution of L1ψ = zψ can be written as

ψ(z, n, tr ) = ψ(z, 0, tr )c(z, n, tr )+ψ(z, 1, tr )s(z, n, tr ), (z, n, tr ) ∈ C×Z×R,

and using (2.40) one concludes that (2.40), (2.41) is equivalent to the linear first-
order system (

ψ(z, 0, tr )
ψ(z, 1, tr )

)
tr

= −Cr (z, tr )

(
ψ(z, 0, tr )
ψ(z, 1, tr )

)
(2.42)

with initial data (
ψ(z, 0, t0,r )
ψ(z, 1, t0,r )

)
=
(
ψ
(0)
1 (z, 0)

ψ
(0)
1 (z, 1)

)
. (2.43)
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Unique solvability of the first-order system (2.42), (2.43) then completes the proof.

At this point we can present the key result on how to transfer solutions of the Toda
hierarchy to that of the Kac–van Moerbeke hierarchy.

Theorem 2.6 Let r ∈ N0 and suppose that a1, b1 satisfy assumptions (1.194) and
T̃lr (a1, b1) = 0 on Z× I , I ⊆ R an open interval. In addition, assume the existence
of weak solutions ψ1,±(n, · ) ∈ C1(I ), n ∈ Z (not necessarily distinct), of

L1ψ1,± = 0, ψ1,±,tr = P̃1,2r+2ψ1,±, tr ∈ I,

which are nonzero, ψ1,±(n, tr ) �= 0, (n, tr ) ∈ Z × I . Moreover, introduce for some
σ ∈ C1(I ),

ψ1,σ = 1

2
(1− σ)ψ1,− + 1

2
(1+ σ)ψ1,+, (2.44)

ρe,σ = (a1ψ
+
1,σ /ψ1,σ )

1/2, (2.45)

ρo,σ = (a1ψ1,σ /ψ
+
1,σ )

1/2, (2.46)

ρσ (n, tr ) =
{
ρe,σ (m, tr ), n = 2m,

ρo,σ (m, tr ), n = 2m + 1,
m ∈ Z, tr ∈ I, (2.47)

a2,σ = ρ+e,σ ρo,σ , (2.48)

b2,σ = ρ2
e,σ + ρ2

o,σ , (2.49)

and suppose that ψ1,σ (n, tr ) �= 0, (n, tr ) ∈ Z × I . Then ρσ and a2,σ , b2,σ satisfy
(2.5) and (1.194) on Z× I , respectively, and

K̃Mr (ρσ ) = 0, T̃lr (a2,σ , b2,σ ) = 0 on Z× I,

if and only if σtr = 0 or W (ψ1,−, ψ1,+) = 0.

In addition, L1 and L2,σ satisfy (2.12)–(2.14).

Proof The existence of the solutions ψ± follows from Lemma 2.5. Let (n, tr ) ∈
Z× I . An explicit computation then shows that

KMr (ρσ )(2n, tr ) = −1

4
σ(tr )trρe,σ (n, tr )

−1ψ1,σ (n, tr )
−2W (ψ1,−, ψ1,+), (2.50)

KMr (ρσ )(2n + 1, tr ) = 1

4
σ(tr )trρo,σ (n, tr )

−1ψ1,σ (n + 1, tr )
−2W (ψ1,−, ψ1,+),

(2.51)
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and similarly,

T̃lr (a2,σ , b2,σ ) = 1

4
σtr W (ψ1,−, ψ1,+)

(ψ+1,σ )−2
(
− ρo,σ

ρ+e,σ
+ ρ+e,σ

ρo,σ

)
2
(
ψ−2

1,σ − (ψ+1,σ )−2
)
 . (2.52)

We emphasize that Theorem 2.6 applies to the transfer of general solutions (not
just algebro-geometric ones) from the Toda to the KM hierarchy.

Since the cases σ = ±1 with ψ1,± being the branches of the Baker–Akhiezer
function associated with the algebro-geometric finite-band operator L1 will be the
most important ones for us in the following, we shall identify ψ1,±1 = ψ1,±, ρ±1 =
ρ±, a2,±1 = a2,±, b2,±1 = b2,±, L2,±1 = L2,±, etc., for notational convenience
throughout the remainder of this chapter.

We conclude this section with the following fact:

Remark 2.7 Let r ∈ N0, and consider the (2r + 1)th equation in the Toda hi-
erarchy. Assume that all the even-order constants used in the construction of the
Tl2r+1 equation vanish, that is, c2 j = 0, j = 1, . . . , r . Then one has the following
identity

Tl2r+1(a, 0) = KMr (a), a ∈ CZ,

where the odd constants for the Toda hierarchy coincide with the corresponding con-
stants in the Kac–van Moerbeke hierarchy. In particular, this implies that any solution
(algebro-geometric or not) of KMr (a) = 0 also gives rise to a solution of the type
Tl2r+1(a, 0) = 0 for the special Toda hierarchy where all the odd constants vanish.
Similarly, starting with any solution with b identically zero of the Toda hierarchy
where all the odd constants vanish, Tl2r+1(a, 0) = 0, provides a solution of the
Kac–van Moerbeke hierarchy, KMr (a) = 0.

To apply this relation for algebro-geometric solutions, starting with a solution of
the special Toda hierarchy, one has to identify quasi-periodic algebro-geometric solu-
tions where b vanishes identically. This happens if and only if both the spectrum and
the Dirichlet divisors are symmetric with respect to the reflection z �→ −z. In partic-
ular, for an N -soliton solution (cf. Example 1.47), b vanishes identically if and only
if the eigenvalues come in pairs,±E , and the norming constants associated with each
pair are equal. Similarly, starting with an algebro-geometric solution KMr (a) = 0,
we conclude that (a, 0) is an algebro-geometric solution, Tl2r+1(a, 0) = 0.
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2.3 The Stationary KM Formalism

There’s no sense in being precise when
you don’t even know what you’re talking about.

John von Neumann1

The principal focus of this section is the construction of algebro-geometric finite-
band solutions of the stationary Kac–van Moerbeke hierarchy.

We start with some notations. Let a1, b1 be the stationary algebro-geometric p-
band solutions (1.126), (1.127) and denote the corresponding Dirichlet eigenvalues
and divisor by {µ1, j } j=1,...,p and Dµ̂

1
, etc. We then define L1, φ1, and ψ1 as in (1.2),

(1.69), (1.72) (resp., (1.120)–(1.124)). Next, introducing2

Q0 = (0, y(Q0)) ∈ �+, (2.53)

and assuming

ψ1(Q0, n, n0) �= 0, n ∈ Z,

we identify the branches ψ1,±(0, n, n0) of ψ1(Q0, n, n0) (i.e., the restrictions of
ψ1(Q0, n, n0) to the upper and lower sheets �± of Kp) with the two solutions
ψ1,±(n) in Theorem 2.4, that is,

ψ1,±(n) = ψ1,±(0, n, n0), (n, n0) ∈ Z2.

This then enables one to construct a2,±, b2,±, and ρ± as in Theorem 2.4 in the case
σ = ±1 (cf. (2.35)–(2.39)). For convenience of the reader we now list these formulas
here, viz.

ρe,± = (a1ψ
+
1,±/ψ1,±)1/2, (2.54)

ρo,± = (a1ψ1,±/ψ+1,±)
1/2, (2.55)

ρ±(n) =
{
ρe,±(m), n = 2m,

ρo,±(m), n = 2m + 1,
m ∈ Z, (2.56)

a2,± = ρ+e,±ρo,±, (2.57)

b2,± = ρ2
e,± + ρ2

o,±. (2.58)

Given a2,±, b2,±, and ρ± one then defines L2,±, φ2,±, ψ2,±, A±, M±, and Q± as in
(1.2), (1.69), (1.72), (2.7)–(2.9). In particular,

L1 = A†
±A±, L2,± = A±A†

±.

1 Quoted on http://en.wikiquote.org/wiki/John von Neumann.
2 We chose Q0 ∈ �+ for notational simplicity only and note that Q0 is permitted to coincide with a

branch point of Kp .



2.3 The Stationary KM Formalism 173

Next we want to determine the branches of φ1. To this end one defines

φ1,± = ρe,±/ρo,±,

and hence verifies

a1φ1,± + (a−1 /φ
−
1,±) = −b1.

A comparison with the Riccati-type equation (1.75) then yields that

φ1,± = φ1,±(0, · )
are indeed the branches of φ1(Q0, · ). In particular, (1.72) and (1.79) imply

ψ1,±(n) =


∏n−1

m=n0
φ1,±(m), n ≥ n0 + 1,

1, n = n0,∏n0−1
m=n φ1,±(m)−1, n ≤ n0 − 1,

(n, n0) ∈ Z2,

and

L1ψ1,± = 0, ψ1,±(n) �= 0, n ∈ Z,

since ψ1,± = ψ1,±(0, · , n0) are the branches of ψ1(Q0, · , n0). Next, defining1

φ2,±,∓ = ρo,±/ρ+e,±, (2.59)

and

ψ2,±,∓(n) =


∏n−1

m=n0
φ2,±,∓(m), n ≥ n0 + 1,

1, n = n0,∏n0−1
m=n φ2,±,∓(m)−1, n ≤ n0 − 1,

(n, n0) ∈ Z2,

one verifies

a2,±φ2,±,∓ + (a−2,±/φ2,±,∓) = −b2,±

and

L2,±ψ2,±,∓ = 0.

In order to derive the theta function representations for a2,±, b2,±, and ρ±, we
first recall the ones for a1, b1, φ1(Q0), and ψ1(Q0) as proven in Theorem 1.19. In
the context of this section and the following it will be useful to slightly change the

1 A remark concerning our notation: The first ± relates to the difference expression L2,±, the second ±
to the upper or lower sheet. Thus φ2,+,− equals, as we shall see in (2.75), the function φ2,+ associated
with L2,+ and the lower sheet �−. Only the combinations φ2,+,− and φ2,−,+ occur in (2.59).
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notation we employed thus far for z(P, Q) as defined in (1.116). We will now use
the following notation instead

z1(P, n) = �P0
− AP0

(P)+ αP0
(Dµ̂

1
(n)),

z1(n) = z1(P∞+ , n), P ∈ Kp, n ∈ Z,
(2.60)

and a bit later append it by considering also the branches of z1( · , n), n ∈ Z. Given
the notation (2.60), the principal results of Theorem 1.19 may be recast in the fol-
lowing form (for (n, n0) ∈ Z2),

a1(n) = ã
(
θ(z1(n + 1))θ(z1(n − 1))/θ(z1(n))

2)1/2
, (2.61)

b1(n) = 1

2

2p+1∑
m=0

Em −
p∑

j=1

λ j −
p∑

j=1

c j (p)
∂

∂w j
ln

(
θ(z1(n)+ w)

θ(z1(n − 1)+ w)

)∣∣∣∣
w=0

,

(2.62)

φ1(Q0, n) =
(
θ(z1(n − 1))

θ(z1(n + 1))

)1/2
θ(z1(Q0, n + 1))

θ(z1(Q0, n))
exp

(∫ Q0

P0

ω
(3)
P∞+ ,P∞−

)
,

(2.63)

ψ1(Q0, n, n0) = C1(n, n0)
θ(z1(Q0, n))

θ(z1(Q0, n0))
exp

(
(n − n0)

∫ Q0

P0

ω
(3)
P∞+ ,P∞−

)
.

(2.64)

Here ã is defined in (1.110) and C1(n) and C1(n, n0) are defined as in (1.122) and
(1.124) with µ̂ replaced by µ̂

1
, that is,

C1(n) = C1(n + 1, n) =
(
θ(z1(n − 1))

θ(z1(n + 1))

)1/2

, (2.65)

C1(n, n0) =


∏n−1

m=n0
C1(m), n ≥ n0 + 1,

1, n = n0,∏n0−1
m=n C1(m)−1, n ≤ n0 − 1,

=
(
θ(z1(n0))θ(z1(n0 − 1))

θ(z1(n))θ(z1(n − 1))

)1/2

, (n, n0) ∈ Z2. (2.66)

Next, we explicitly need the branches φ1,±(z, n) of φ1(P, n), P = (z, y) ∈ Kp,
n ∈ Z. For this purpose we first introduce the branches associated with z1( · , n) in
(2.60) as follows,

z1,±(z, n) = �P0
∓ AP0

(P)+ αP0
(Dµ̂

1
(n)), P = (z, y) ∈ �+, (2.67)

z1,±(n) = �P0
∓ AP0

(P∞+)+ αP0
(Dµ̂

1
(n)), z1,+(n) = z1(n), n ∈ Z,
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with all paths of integration starting from P0 and ending at P or P∞+ in (2.67) chosen
to lie on �+. The branches φ1,±(z, n) of φ1(P, n) then read explicitly,

φ1,±(z, n) =
(
θ(z1(n − 1))

θ(z1(n + 1))

)1/2 θ(z1,±(z, n + 1))

θ(z1,±(z, n))
exp

(
±
∫ z

E0

ω
(3)+
P∞+ ,P∞−

)
,

P = (z, y) ∈ �+, n ∈ Z, (2.68)

again with all paths of integration starting from P0 and ending at P or P∞+ in (2.68)

chosen to lie on �+. (Here
∫ z

E0
ω
(3)+
P∞+ ,P∞−

is a short-hand for
∫ P

P0
ω
(3)
P∞+ ,P∞−

, P =
(z, y) ∈ �+, etc.)

Together with (2.54), (2.59), and

φ1,±(z, n) = ψ1,±(z, n + 1)/ψ1,±(z, n), (z, n) ∈ C× Z,

this yields the following theta function representations (for n ∈ Z),

ρe,±(n) = (a1(n)φ1,±(0, n))1/2 (2.69)

=
(

ã
θ(z1(n − 1))θ(z1,±(0, n + 1))

θ(z1(n))θ(z1,±(0, n))

)1/2

exp

(
± 1

2

∫ 0

E0

ω
(3)+
P∞+ ,P∞−

)
,

ρo,±(n) = (a1(n)φ1,±(0, n)−1)1/2 (2.70)

=
(

ã
θ(z1(n + 1))θ(z1,±(0, n))

θ(z1(n))θ(z1,±(0, n + 1))

)1/2

exp

(
∓ 1

2

∫ 0

E0

ω
(3)+
P∞+ ,P∞−

)
,

φ2,±,∓(n) = ρo,±(n)/ρe,±(n + 1) (2.71)

=
(

θ(z1,±(0, n))

θ(z1,±(0, n + 2))

)1/2
θ(z1(n + 1))

θ(z1(n))
exp

(
∓
∫ 0

E0

ω
(3)+
P∞+ ,P∞−

)
.

We can also express these functions in terms of the function z2,± defined by

z2,±(P, n) = �P0
− AP0

(P)+ αP0
(Dµ̂

2,±(n)),

z2,±(n) = z2,±(P∞+ , n), P ∈ Kp, n ∈ Z,
(2.72)

where1

αP0
(Dµ̂

2,±(n)) = αP0
(Dµ̂

1
(n))∓ AP0

(Q0)− AP0
(P∞+), n ∈ Z, (2.73)

describes the connection2 between the Dirichlet divisors Dµ̂
2,± of L2,± = A±A†

±
and Dµ̂

1
of L1 = A†

±A±.

1 Here the choice Q0 ∈ �+ has been used.
2 In the special case where E0 = 0 and hence P0 = Q0, one obtains µ̂2,+, j = µ̂2,−, j for j = 1, . . . , p,

and the sign ambiguity in (2.73) vanishes.
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The branches of z2,±(P, n) are then denoted by

z2,ε,ε′(z, n) = �P0
− ε′AP0

(P)+ αP0
(Dµ̂

2,ε
(n)), P = (z, y) ∈ �+, (2.74)

z2,ε,ε′(n) = �P0
− ε′AP0

(P∞+)+ αP0
(Dµ̂

2,ε
(n)), z2,ε,+(n) = z2,ε(n),

ε, ε′ ∈ {+,−}, n ∈ Z,

with all paths of integration starting from P0 and ending at P or P∞+ in (2.74) chosen
to lie on �+.

At this point φ2,+,−, φ2,−,+ in (2.71) are seen to be the branches of the function
φ2,±(Q0, n), where the meromorphic function φ2,±( · , n) on Kp is defined by

φ2,±(P, n) =
(
θ(z2,±(n − 1))

θ(z2,±(n + 1))

)1/2
θ(z2,±(P, n + 1))

θ(z2,±(P, n))
exp

(∫ P

P0

ω
(3)
P∞+ ,P∞−

)
,

P = (z, y) ∈ Kp n ∈ Z, (2.75)

by noticing that

z2,±,∓(0, n) = z1,+(n) = z1(n), z2,±,+(n−1) = z2,±(n−1) = z1,±(0, n). (2.76)

The relations in (2.76) follow by combining (1.125), (2.53), (2.60), (2.67), (2.72),
(2.73), and (2.74). In particular, we may rewrite and extend (2.71) in the form1

φ2,ε,ε′(n) =
(
θ(z2,ε(n − 1))

θ(z2,ε(n + 1))

)1/2
θ(z2,ε,−ε′(n + 1))

θ(z2,ε,−ε′(n))
exp

(
ε′
∫ 0

E0

ω
(3)+
P∞+ ,P∞−

)
,

ε, ε′ ∈ {+,−}, n ∈ Z. (2.77)

The divisor of φ2,±( · , n) thus reads

(φ2,±( · , n)) = Dµ̂
2,±(n+1) −Dµ̂

2,±(n) +DP∞+ −DP∞− , n ∈ Z,

in analogy to that of φ1( · , n) (cf. (1.71))

(φ1( · , n)) = Dµ̂
1
(n+1) −Dµ̂

1
(n) +DP∞+ −DP∞− , n ∈ Z. (2.78)

Given (2.77) (resp., (2.69)–(2.78)) one can now express a2,±, b2,±, and ρ± in
terms of theta functions as follows.

Theorem 2.8 Let (n, n0) ∈ Z2 and suppose that a1, b1 satisfy (1.61) and the pth
stationary Toda system (1.29) associated with the hyperelliptic curve Kp such that
(1.62) and (1.63) are satisfied. Then for each n ∈ Z, Dµ̂

1
(n) is nonspecial and a1 and

b1 are given by (2.61) and (2.62). Given the associated quantities L1, φ1, and ψ1

according to (1.2), (1.69), (1.72) (resp., (1.120)–(1.124)) one constructs a2,±, b2,±,

1 Here any combination of ε, ε′ ∈ {+,−} is permitted.
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and ρ± according to (2.54)–(2.58), and hence L2,±, φ2,±, ψ2,±, A±, M±, and Q±
as in (1.2), (1.69), (1.31), (2.7)–(2.9) such that L1 = A†

±A± and L2,± = A±A†
±.

Then ρ± and a2,±, b2,± are of the form

ρe,±(n) =
(

ã
θ(z1(n − 1))θ(z1,±(0, n + 1))

θ(z1(n))θ(z1,±(0, n))

)1/2

exp

(
± 1

2

∫ 0

E0

ω
(3)+
P∞+ ,P∞−

)

=
(

ã
θ(z2,±(n))θ(z2,±,∓(0, n − 1))

θ(z2,±(n − 1))θ(z2,±,∓(0, n))

)1/2

exp

(
± 1

2

∫ 0

E0

ω
(3)+
P∞+ ,P∞−

)
,

(2.79)

ρo,±(n) =
(

ã
θ(z1(n + 1))θ(z1,±(0, n))

θ(z1(n))θ(z1,±(0, n + 1))

)1/2

exp

(
∓ 1

2

∫ 0

E0

ω
(3)+
P∞+ ,P∞−

)

=
(

ã
θ(z2,±(n − 1))θ(z2,±,∓(0, n + 1))

θ(z2,±(n))θ(z2,±,∓(0, n))

)1/2

exp

(
∓ 1

2

∫ 0

E0

ω
(3)+
P∞+ ,P∞−

)
,

(2.80)

ρ±(n) =
{
ρe,±(m), n = 2m,

ρo,±(m), n = 2m + 1,
m ∈ Z, (2.81)

a2,±(n) = ã
(
θ(z2,±(n + 1))θ(z2,±(n − 1))/θ(z2,±(n))2

)1/2
, (2.82)

b2,±(n) = 1

2

2p+1∑
m=0

Em −
p∑

j=1

λ j −
p∑

j=1

c j (p)
∂

∂w j
ln

(
θ(z2,±(n)+ w)

θ(z2,±(n − 1)+ w)

)∣∣∣∣∣
w=0

.

(2.83)

Moreover, L2,± are isospectral to L1 in the sense that they correspond to the same
hyperelliptic curve Kp and the corresponding Dirichlet divisor Dµ̂

2,±(n) is nonspe-

cial for each n ∈ Z and satisfies

αP0
(Dµ̂

2,±(n)) = αP0
(Dµ̂

1
(n))∓ AP0

(Q0)− AP0
(P∞+) (2.84)

= αP0
(Dµ̂

1
(n0))− 2(n − n0)AP0

(P∞+)∓ AP0
(Q0)− AP0

(P∞+).

Finally, a1, b1 and a2,±, b2,± are related via the Miura-type transformation

a1 = ρe,±ρo,±, b1 = ρ2
e,± + (ρ−o,±)2, (2.85)

a2,± = ρ+e,±ρo,±, b2,± = ρ2
e,± + ρ2

o,±. (2.86)

Proof To prove (2.79) and (2.80) it suffices to combine (2.56), (2.69), (2.70), and
(2.76). Equation (2.82) is clear from (2.57), (2.69), (2.70), and (2.76). Equation
(2.84) directly follows from (2.73) and (2.66) and (2.83) can be derived from an
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expansion of φ2,±(P, n) near P = P∞+ exactly as in the proof of Theorem 1.19. The
Miura transformation (2.85), (2.86) is clear from (2.54), (2.55), (2.57), and (2.58).

Remark 2.9 Equations (2.73), respectively (2.84), illustrate the effect of commuta-
tion, that is, the transformation L1 = A†

±A± → L2,± = A±A†
±, as translations by

−AP0
(Q0)− AP0

(P∞+) on the Jacobi variety J (Kp).

We conclude this section with the trivial case p = 0 excluded thus far.

Example 2.10 Assume p = 0, n ∈ Z, and

a1(n) = a ∈ C \ {0}, b1(n) = b ∈ C

(cf. Example 1.23). Then one computes,

ρe,±(n) = 2−1/2(b ± (b2 − 4a2)1/2)1/2
,

ρo,±(n) = ρe,∓(n),

ρ±(n) =
{

2−1/2
(
b ± (b2 − 4a2)1/2

)1/2
, n = 2m,

2−1/2
(
b ∓ (b2 − 4a2)1/2

)1/2
, n = 2m + 1,

m ∈ Z,

a2,±(n) = a, b2,±(n) = b,

s-KMk(ρ±) = 0, k ∈ N0.

2.4 The Time-Dependent KM Formalism

Many a little makes a mickle.
Scottish proverb

Finally, we describe how to transfer solutions of the time-dependent algebro-
geometric initial value problem for the Toda hierarchy, derived in detail in Section
1.5, to solutions of the time-dependent algebro-geometric initial value problem for
the KM hierarchy using the principal transfer result, Theorem 2.6.

First we recall that the basic problem in the analysis of algebro-geometric solu-
tions of the Toda hierarchy consists of solving the time-dependent r th Toda flow with
initial data a stationary solution of the pth equation in the hierarchy. More precisely,
one is seeking solutions a1, b1 of the time-dependent algebro-geometric initial value
problem for the Toda hierarchy

T̃lr (a1, b1) = 0, (a1, b1)
∣∣
tr=t0,r

= (a(0)1 , b(0)1

)
, (2.87)

s-Tlp
(
a(0)1 , b(0)1

) = 0 (2.88)
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for some t0,r ∈ R, p, r ∈ N0, where a1 = a1(n, tr ), b1 = b1(n, tr ) satisfy (1.194)
and a fixed curve Kp is associated with the stationary solutions a(0)1 , b(0)1 in (2.88).

Given the solution a1, b1 of (2.87), (2.88) we intend to construct solutions ρ± of
the time-dependent algebro-geometric initial value problem for the KM hierarchy
satisfying (2.5) and solutions a2,±, b2,± of the time-dependent algebro-geometric
initial value problem for the Toda hierarchy satisfying (1.194), that is,

K̃Mr (ρ±) = 0, ρ±
∣∣
tr=t0,r

= ρ
(0)
± , (2.89)

s-KMp
(
ρ
(0)
±
) = 0,

and

T̃lr (a2,±, b2,±) = 0, (a2,±, b2,±)
∣∣
tr=t0,r

= (a(0)2,±, b(0)2,±
)
,

s-Tlp
(
a(0)2,±, b(0)2,±

) = 0, (2.90)

related to each other by the Miura-type transformation (2.13), (2.14). Moreover, the
solutions a2,±, b2,± are isospectral to a1, b1 in the sense that they are associated with
the same underlying curve Kp as a1, b1.

Associated with a1, b1 satisfying (2.87), (2.88) we introduce L1, φ1, and ψ1 as in
(1.2), (1.213), and (1.216) (resp., (1.252)–(1.256)). Since the time-dependent Baker–
Akhiezer function ψ1 satisfies (1.223) and (1.224) one can now apply Theorem
2.6 by identifying ψ1,± in Theorem 2.6 with the branches of the Baker–Akhiezer
function ψ1 as follows. Introducing Q0 = (0, y(Q0)) ∈ �+ as in (2.53) and
assuming

ψ1(Q0, n, n0, tr , t0,r ) �= 0, (n, tr ) ∈ Z× I0,

where I0 is an open interval with t0,r ∈ I0, one identifies the branches
ψ1,±(0, n, n0, tr , t0,r ) of ψ1(Q0, n, n0, tr , t0,r ) with the two solutions ψ1,±(n, tr ) in
Theorem 2.4, that is,

ψ1,±(n, tr ) = ψ1,±(0, n, n0, tr , t0,r ), (n, n0, tr , t0,r ) ∈ Z2 × I 2
0 .

This then enables one to construct a2,±, b2,±, and ρ± according to (2.29)–(2.49),
choosing σ = ±1. In particular, one verifies (2.89)–(2.90) on Z×I0 as a consequence
of Theorems 2.4 (for the Miura-type identities satisfied at tr = t0,r ) and 2.6.

It remains to construct the theta function representations of a1, b1, a2,±, b2,±, and
ρ±. Given the results in Theorem 1.41 one can now proceed as in the stationary
section replacing z1,ε(z, n), z2,ε,ε′(z, n) by z1,ε(z, n, tr ), z2,ε,ε′(z, n, tr ), which in
turn is accomplished by replacing Dµ̂

1
(n) by Dµ̂

1
(n,tr ) and Dµ̂

2,ε
(n) by Dµ̂

2,ε
(n,tr ),

(n, tr ) ∈ Z× I0. In particular, Dµ̂
1
(n,tr ) and Dµ̂

2,ε
(n,tr ) are nonspecial for all (n, tr ) ∈
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Z× I0 and (cf. (1.113), (1.125), (1.250), (1.259), (1.259))

αP0
(Dµ̂

2,±(n,t)) = αP0
(Dµ̂

1
(n,tr ))∓ AP0

(Q0)− AP0
(P∞+)

= αP0
(Dµ̂

1
(n0,t0,r ))− (n − n0)U

(3) − (tr − t0,r )Ũ
(2)
r ∓ AP0

(Q0)− AP0
(P∞+).

We now summarize these findings in the final result of this section.

Theorem 2.11 Let (n, tr ) ∈ Z × I0. Then the theta function representations of the
solutions a1, b1, ρ±, and a2,±, b2,± of the algebro-geometric initial value problems
(2.87)–(2.90) on Z× I0 are given by

a1(n, tr ) = ã

(
θ(z1(n + 1, tr ))θ(z1(n − 1, tr ))

θ(z1(n, tr ))2

)1/2

,

b1(n, tr ) = 1

2

2p+1∑
m=0

Em −
p∑

j=1

λ j

−
p∑

j=1

c j (p)
∂

∂w j
ln

(
θ(z1(n, tr )+ w)

θ(z1(n − 1, tr )+ w)

)∣∣∣∣
w=0

,

ρe,±(n, tr ) =
(

ã
θ(z1(n − 1, tr ))θ(z1,±(0, n + 1, tr ))

θ(z1(n, tr ))θ(z1,±(0, n, tr ))

)1/2

× exp

(
± 1

2

∫ 0

E0

ω
(3)+
P∞+ ,P∞−

)

=
(

ã
θ(z2,±(n, tr ))θ(z2,±,∓(0, n − 1, tr ))

θ(z2,±(n − 1, tr ))θ(z2,±,∓(0, n, tr ))

)1/2

× exp

(
± 1

2

∫ 0

E0

ω
(3)+
P∞+ ,P∞−

)
,

ρo,±(n, tr ) =
(

ã
θ(z1(n + 1, tr ))θ(z1,±(0, n, tr ))

θ(z1(n, tr ))θ(z1,±(0, n + 1, tr ))

)1/2

× exp

(
∓ 1

2

∫ 0

E0

ω
(3)+
P∞+ ,P∞−

)

=
(

ã
θ(z2,±(n − 1, tr ))θ(z2,±,∓(0, n + 1, tr ))

θ(z2,±(n, tr ))θ(z2,±,∓(0, n, tr ))

)1/2

× exp

(
∓ 1

2

∫ 0

E0

ω
(3)+
P∞+ ,P∞−

)
,
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ρ±(n, tr ) =
{
ρe,±(m, tr ), n = 2m,

ρo,±(m, tr ), n = 2m + 1,
m ∈ Z,

a2,±(n, tr ) = ã

(
θ(z2,±(n + 1, tr ))θ(z2,±(n − 1, tr ))

θ(z2,±(n, tr ))2

)1/2

,

b2,±(n, tr ) = 1

2

2p+1∑
m=0

Em −
p∑

j=1

λ j

−
p∑

j=1

c j (p)
∂

∂w j
ln

(
θ(z2,±(n, tr )+ w)

θ(z2,±(n − 1, tr )+ w)

)∣∣∣∣∣
w=0

.

In addition, a1, b1 and a2,±, b2,± are related via the Miura-type transformation on
Z× I0,

a1 = ρe,±ρo,±, b1 = ρ2
e,± + (ρ−o,±)2,

a2,± = ρ+e,±ρo,±, b2,± = ρ2
e,± + ρ2

o,±.

2.5 Notes

Who controls the past controls the future.
Who controls the present controls that past.

George Orwell1

The material of this chapter is primarily taken from Gesztesy et al. (1993) and Bulla
et al. (1998).

Section 2.1. Complete integrability and a Lax pair for what we call the Kac–
van Moerbeke (KM) system, seems to have been found independently and nearly
at the same time by Kac and van Moerbeke (1975b–d), and Manakov (1975). More
precisely, Kac and van Moerbeke considered the finite nonperiodic, the semi-infinite,
and the periodic cases, while Manakov studied the doubly infinite system on Z. Soon
after, isospectral deformations of the finite nonperiodic system were also discussed
in Moser (1975b), who also notes in a footnote that the Kac–van Moerbeke equation,
apparently, was known to Hénon in 1973. The first equation in the KM hierarchy had
been isolated by Zakharov et al. (1974) in their study of the spectrum of Langmuir
waves, and hence it is also called the Langmuir lattice (cf. Novikov et al. (1984,
p. 45)). However, the same equation arises in various different circumstances: For
instance, it is called the Volterra lattice (in connection with a predator–prey model)
and intimately related to a nonlinear network system as discussed in Hirota (1975),

1 Nineteen Eighty-four (1949), London: Secker & Warburg, Book One, Chapter 3.
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Hirota and Satsuma (1976a,b), Ladik and Chiu (1977), and Wadati (1976). Moreover,
it is also called the KdV difference equation in Dubrovin et al. (1976) (or simply the
discrete KdV equation in Sharipov (1990)).

The KM equation, originally, was introduced in the form

xt (n, t) = 1

2

(
e−x(n−1,t) − e−x(n+1,t)

)
, (n, t) ∈ Z× R. (2.91)

The transformation

ρ(n, t) = 1

2
e−

1
2 x(n,t)

, (n, t) ∈ Z× R,

then puts (2.91) into the form used in this monograph

ρt (n, t) = ρ(n, t)
(
ρ(n + 1, t)2 − ρ(n − 1, t)2

)
, (n, t) ∈ Z× R.

Analogously to our treatment of the Toda lattice, the finite nonperiodic KM
lattice and its various extensions are not discussed in this volume. For extensions of
the finite nonperiodic (one and two-dimensional) KM lattice connected with root
systems of Lie algebras we refer, for instance, to Leznov and Saveliev (1992, Sect.
4.2) and the references therein.

Section 2.2. The approach presented in this section is essentially modeled after
Gesztesy et al. (1993) (see also Bulla et al. (1998), Teschl (1999b), and Chapter 14
in the monograph Teschl (2000)).

The supersymmetric approach described in (2.8)–(2.15) demonstrates that the
Kac–van Moerbeke (KM) hierarchy is a modified Toda hierarchy precisely in the
manner the Drinfeld–Sokolov (DS) hierarchy is a modified version of the Gel’fand–
Dickey (GD) hierarchy. The latter represents an extension of the well-known connec-
tion between the modified Korteweg–de Vries (mKdV) hierarchy and the Korteweg–
de Vries (KdV) hierarchy. The connection between all these hierarchies and their
modified counterparts is based on (suitable generalizations of) Miura-type trans-
formations which in turn are based on factorizations of differential (respectively,
difference) expressions. The literature on this subject is too extensive to be quoted
here in full. The interested reader can consult, for instance, Gesztesy (1989; 1992),
Gesztesy et al. (1991; 1994), Gesztesy and Svirsky (1995), Toda (1989b, Ch. 3),
Wadati (1976), and the references cited therein.

In the present case of the Toda and modified Toda, respectively, Kac–van
Moerbeke hierarchies, a connection between the KM and Toda systems was known
to Hénon in 1973 according to a footnote in Moser (1975b). The discrete analog of
the Miura transformation (2.13), (2.14) is due to Kac and van Moerbeke (1975b). For
a detailed discussion see Toda (1989b, Sect. 3.8), Toda (1989a, Ch. 20). The connec-
tion between the discrete Miura transformation and factorization methods of the Lax
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operator was first systematically employed by Adler (1981) and further developed
in Gesztesy et al. (1993) (where further details on the Tl and KM systems can be
found). Transformations between KM and Toda lattices were also investigated by
Wadati (1976). In the half-line case a detailed discussion of this relationship can be
found in Peherstorfer (2001).

For a functional analytic treatment in connection with (2.15) and (2.16) we refer
to Gesztesy et al. (1991, Theorems 2.1 and 2.3).

The ω�-recursion relation in (2.23)–(2.25) can be found in Teschl (1999b) and in
Section 14.1 of the monograph Teschl (2000).

Theorem 2.4 was first proved in the case r = 0 in Gesztesy et al. (1993) and
extended to the general case r ∈ N0 by Teschl (1999b).

The connection between the Toda and KM systems alluded to in Remark 2.7 ap-
pears to be due to Kac and van Moerbeke (1975b,c), and Manakov (1975) who seem
to have found this independently and nearly at the same time. This relation is also
mentioned in Dubrovin et al. (1976, p. 70), Novikov et al. (1984, Sect. I.7), Perelo-
mov (1990, p. 207), and in Toda (1989b, Sect. 3.8). The case b = 0 for algebro-
geometric Toda lattice solutions is also discussed in Kac and van Moerbeke (1975c)
and Dubrovin et al. (1976, pp. 109, 111), Dubrovin et al. (1990, p. 269) (see also
Veselov (1991)). For details and additional facts in connection with Remark 2.7, es-
pecially, the extension of that connection to the whole KM hierarchy, we refer to
Michor and Teschl (2007a).

Bäcklund transformations for the Toda hierarchy and connections with the KM
system based on factorization techniques were also studied by Knill (1993a,c). Miura
transformations for integrable extensions of the KM equation due to Bogoyavlensky
(1988; 1990), Bogoyavlenskii (1991) are studied in Inoue and Wadati (1997).

The following references are included to provide the reader with a glimpse of the
large amount of material available that could not be treated in this volume.

The integration of the KM equation on the half-line using a moment problem ap-
proach was undertaken by Kac and van Moerbeke (1975b), Khanmamedov (2005a),
Peherstorfer (2001), and Yamazaki (1987; 1989; 1990; 1992). The integration of cer-
tain nonabelian KM lattices on the half-line was studied by Osipov (1997). Connec-
tions with the Hamburger moment problem and τ -functions are discussed in Naka-
mura and Kodama (1995).

The bi-Hamiltonian formalism and the continuum limit of the KM hierarchy are
studied in Zeng and Rauch-Wojciechowski (1995a), the multi-Hamiltonian structure
is discussed in Agrotis and Damianou (2007). Conservation laws of the KM and
nonlinear self-dual network equation are derived in Wadati and Watanabe (1977).
Bäcklund transformations between Toda and Volterra lattices on half-lines are dis-
cussed in Rolanı́a and Heredero (2006) and Vekslerchik (2005). A link between the
KM and lattice sinh-Gordon model is established in Volkov (1988).
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The integrability of a generalized KM lattice with periodic boundary conditions is
studied in Inoue (2003; 2004).

For an alternative approach to the Volterra hierarchy in terms of τ -functions we
refer to Vekslerchik (2005).

Section 2.3. The material in this section is taken from Bulla et al. (1998,
Sects. 5, 9).

Various aspects of the periodic KM lattice (in the real-valued case) were dis-
cussed in the following references: The algebro-geometric approach can be found
in Dai and Geng (2003), Dubrovin et al. (1976), Kac and van Moerbeke (1975c),
and Sharipov (1990) (the latter reference, actually, considers integrable extensions
of the KM equation due to Bogoyavlensky (1988; 1990), Bogoyavlenskii (1991)).
Algebro-geometric Poisson brackets, etc., are studied in Fernandes and Vanhaecke
(2001), Penskoi (1998a), and Veselov and Penskoi (1998; 1999). Isospectral sets of
Jacobi matrices with zero diagonal entries and gradient flows for the KM lattice were
considered by Penskoi (1998b; 2007; 2008).

In the important special case where a > 0 and b is real-valued, and all branch
points of the underlying hyperelliptic Toda curve Kp are in real position and ordered
according to

0 ≤ E0 < E1 < · · · < E2p+1,

all p-gap sequences (a, b) associated with the corresponding Jacobi operator L̆ are
parametrized by the initial conditions

{(µ j (n0), σ j (n0))} j=1,...,p, σ j (n0) = ± for µ̂ j (n0) ∈ �±, j = 1, . . . , p. (2.92)

Here one omits σ j (n0) in the special case where µ j (n0) ∈ {E2 j−1, E2 j }. With
this restriction in mind, (2.92) represents the product of p circles S1 when varying
µ j (n0) (independently of µ�(n0), � �= j) in [E2 j−1, E2 j ], j = 1, . . . , p. In other
words, the isospectral set of all (p+ 1)-band sequences (a, b) associated with L̆ can
be identified with the p-dimensional torus T p = ×p

j=1S1. Theorem 2.8 then pro-
vides a concrete realization of all elements in T p, that is, of all isospectral (p + 1)-
band sequences (a, b). Again by Theorem 2.8, the same applies to the set of all
(2p + 1)-gap, respectively, 2p-gap sequences ρ associated with the Dirac-type op-
erator M , depending on whether E0 > 0 or E0 = 0. More precisely, assuming
inf
(

spec
(
L̆1
)) = E0 > 0 (and hence inf

(
spec

(
L̆2,±

)) = E0 > 0), the isospectral
set of all (2p + 1)-gap sequences ρ in connection with the nonsingular hyperelliptic
curve K2p+1 of genus 2p + 1 (cf. (2.28)), is again parametrized bijectively by the
Dirichlet divisor Dµ̂

1
(n0) (respectively by the analog of (2.92)), as is demonstrated

in (2.84). In particular, ρ+ and ρ− in (2.79)–(2.81) represent two independent (yet
equivalent) concrete realizations of the isospectral manifold T p of all (2p + 1)-gap
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sequences ρ associated with M . In the case where inf
(

spec
(
L̆1
)) = E0 = 0 (and

hence inf
(

spec
(
L̆2,±

)) = E0 = 0), the curve K2p+1 of arithmetic genus 2p + 1 is
singular (cf. (2.28)), yet Dµ̂

1
(n0) still parametrizes the corresponding isospectral set

of 2p-gap sequences ρ = ρ± in a one-to-one and onto fashion. In particular, ρ in
(2.79)–(2.81) then represents a concrete realization of the isospectral torus T p of all
2p-gap sequences ρ associated with M .

For additional spectral theoretic results in the special case where a, b are real-
valued we refer to Bulla et al. (1998) and Teschl (2000).

Section 2.4. The material in this section closely follows Bulla et al. (1998,
Sects. 6, 9).
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The Ablowitz–Ladik Hierarchy

Never express yourself more clearly than you think.
Niels Bohr1

3.1 Contents

The Ablowitz–Ladik (AL) equations

−iαt − (1− αβ)(α− + α+)+ 2α = 0,

−iβt + (1− αβ)(β− + β+)− 2β = 0
(3.1)

for sequences α = α(n, t), β = β(n, t) (with α±(n, t) = α(n ± 1, t), β±(n, t) =
β(n ± 1, t), etc.), (n, t) ∈ Z × R, were derived in the mid-1970s by Ablowitz and
Ladik in a series of papers2 in an attempt to use inverse scattering methods to analyze
certain integrable differential-difference systems. In particular, the system (3.1) can
be viewed as an integrable discretization of the AKNS-ZS system. This chapter fo-
cuses on the construction of algebro-geometric solutions of the AL hierarchy. Below
we briefly summarize the principal content of each section.

Section 3.2.

• Laurent polynomial recursion formalism, zero-curvature pairs U, Vp

• stationary and time-dependent Ablowitz–Ladik hierarchy
• Burchnall–Chaundy Laurent polynomial, hyperelliptic curve Kp

Section 3.3.

• Lax pairs for the Ablowitz–Ladik hierarchy

Sections 3.4 and 3.5. (stationary)

• properties of φ and the Baker–Akhiezer vector �

1 As quoted in A. Pais, Niels Bohr’s Times, In Physics, Philosophy, and Polity, Clarendon Press, Oxford,
1991, p. 178.

2 A guide to the literature can be found in the detailed notes at the end of this chapter.

186
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• auxiliary divisors

• trace formulas for α, β

• theta function representations for φ, �, and α, β

• the algebro-geometric initial value problem

Sections 3.6 and 3.7. (time-dependent)

• properties of φ and the Baker–Akhiezer vector �

• auxiliary divisors

• trace formulas for α, β

• theta function representations for φ, �, and α, β

• the algebro-geometric initial value problem

Section 3.8. (Hamiltonian formalism)

• asymptotic spectral parameter expansions of Riccati-type solutions

• local conservation laws

• variational derivatives

• Poisson brackets

This chapter relies on terminology and notions developed in connection with com-
pact Riemann surfaces. A brief summary of key results as well as definitions of some
of the main quantities can be found in Appendices A and B.

3.2 The Ablowitz–Ladik Hierarchy, Recursion Relations, Zero-Curvature
Pairs, and Hyperelliptic Curves

Consistency is the last refuge of the unimaginative.
Oscar Wilde1

In this section we provide the construction of the Ablowitz–Ladik hierarchy em-
ploying a polynomial recursion formalism and derive the associated sequence of
Ablowitz–Ladik zero-curvature pairs. Moreover, we discuss the hyperelliptic curve
underlying the stationary Ablowitz–Ladik hierarchy.

We denote by CZ the set of complex-valued sequences indexed by Z.
Throughout this section we suppose the following hypothesis.

Hypothesis 3.1 In the stationary case we assume that α, β satisfy

α, β ∈ CZ, α(n)β(n) /∈ {0, 1}, n ∈ Z. (3.2)

1 The Relation of Art to Dress in (London) Sunday Telegraph (2/28/1885); reprinted in Aristotle at
Afternoon Tea: The Rare Oscar Wilde (1991).
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In the time-dependent case we assume that α, β satisfy

α( · , t), β( · , t) ∈ CZ, t ∈ R, α(n, · ), β(n, · ) ∈ C1(R), n ∈ Z,

α(n, t)β(n, t) /∈ {0, 1}, (n, t) ∈ Z× R.
(3.3)

For a discussion of assumptions (3.2) and (3.3) we refer to Remark 3.20.
Actually, up to Remark 3.11 our analysis will be time-independent and hence only

the lattice variations of α and β will matter.
We denote by S± the shift operators acting on complex-valued sequences f =
{ f (n)}n∈Z ∈ CZ according to

(S± f )(n) = f (n ± 1), n ∈ Z.

Moreover, we will frequently use the notation

f ± = S± f, f ∈ CZ.

To construct the Ablowitz–Ladik hierarchy we will try to generalize (3.1) by con-
sidering the 2× 2 matrix

U (z) =
(

z α

zβ 1

)
, z ∈ C, (3.4)

and making the ansatz

Vp(z) = i

(
G−p (z) −F−p (z)
H−p (z) −K−p (z)

)
, p = (p−, p+) ∈ N2

0, (3.5)

where G p, K p, Fp, and Hp are chosen as Laurent polynomials, namely1

G p(z) =
p−∑
�=1

z−�gp−−�,− +
p+∑
�=0

z�gp+−�,+,

Fp(z) =
p−∑
�=1

z−� f p−−�,− +
p+∑
�=0

z� f p+−�,+,

Hp(z) =
p−∑
�=1

z−�h p−−�,− +
p+∑
�=0

z�h p+−�,+,

K p(z) =
p−∑
�=1

z−�kp−−�,− +
p+∑
�=0

z�kp+−�,+.

(3.6)

1 Throughout this monograph, a sum is interpreted as zero whenever the upper limit in the sum is strictly
less than its lower limit.
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Without loss of generality we will only look at the time-independent case and add
time later on. Then the stationary zero-curvature equation,

0 = U Vp − V+p U, (3.7)

is equivalent to the following relationships between the Laurent polynomials

U Vp−V+p U = i

(
z(G−p − G p)+ zβFp + αH−p Fp − zF−p − α(G p + K−p )
zβ(G−p + K p)− zHp + H−p −zβF−p − αHp + K p − K−p

)
,

respectively, to

z(G−p − G p)+ zβFp + αH−p = 0, (3.8)

zβF−p + αHp − K p + K−p = 0, (3.9)

−Fp + zF−p + α(G p + K−p ) = 0, (3.10)

zβ(G−p + K p)− zHp + H−p = 0. (3.11)

Lemma 3.2 Suppose the Laurent polynomials defined in (3.6) satisfy the zero-
curvature equation (3.7), then

f0,+ = 0, h0,− = 0, g0,± = g−0,±, k0,± = k−0,±,
k�,± − k−�,± = g�,± − g−�,±, � = 0, . . . , p± − 1, gp+,+ − g−p+,+ = kp+,+ − k−p+,+.

(3.12)

Proof Comparing coefficients at the highest order of z in (3.9) and the lowest in
(3.8) immediately yields f0,+ = 0, h0,− = 0. Then g0,+ = g−0,+, k0,− = k−0,− are
necessarily lattice constants by (3.8), (3.9). Since det(U (z)) �= 0 for z ∈ C \ {0} by
(3.2), (3.7) yields tr(V+p ) = tr(U VpU−1) = tr(Vp) and hence

G p − G−p = K p − K−p ,

implying (3.12). Taking � = 0 in (3.12) then yields g0,− = g−0,− and k0,+ = k−0,+.

In particular, this lemma shows that we can choose

k�,± = g�,±, 0 ≤ � ≤ p± − 1, kp+,+ = gp+,+

without loss of generality (since this can always be achieved by adding a Lau-
rent polynomial times the identity to Vp, which does not affect the zero-curvature
equation). Hence the ansatz (3.6) can be refined as follows (it is more convenient
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in the following to relabel h p+,+ = h p−−1,− and kp+,+ = gp−,−, and hence,
gp−,− = gp+,+),

Fp(z) =
p−∑
�=1

f p−−�,−z−� +
p+−1∑
�=0

f p+−1−�,+z�, (3.13)

G p(z) =
p−∑
�=1

gp−−�,−z−� +
p+∑
�=0

gp+−�,+z�, (3.14)

Hp(z) =
p−−1∑
�=0

h p−−1−�,−z−� +
p+∑
�=1

h p+−�,+z�, (3.15)

K p(z) = G p(z) since gp−,− = gp+,+. (3.16)

In particular, (3.16) renders Vp in (3.5) traceless in the stationary context. We empha-
size, however, that equation (3.16) ceases to be valid in the time-dependent context:
In the latter case (3.16) needs to be replaced by

K p(z) =
p−∑
�=0

gp−−�,−z−� +
p+∑
�=1

gp+−�,+z� = G p(z)+ gp−,− − gp+,+. (3.17)

Plugging the refined ansatz (3.13)–(3.16) into the zero-curvature equation (3.7)
and comparing coefficients then yields the following result.

Lemma 3.3 Suppose that U and Vp satisfy the zero-curvature equation (3.7). Then
the coefficients { f�,±}�=0,...,p±−1, {g�,±}�=0,...,p± , and {h�,±}�=0,...,p±−1 of Fp, G p,
Hp, and K p in (3.13)–(3.16) satisfy the following relations

g0,+ = 1
2 c0,+, f0,+ = −c0,+α+, h0,+ = c0,+β,

g�+1,+ − g−�+1,+ = αh−�,+ + β f�,+, 0 ≤ � ≤ p+ − 1,

f −�+1,+ = f�,+ − α(g�+1,+ + g−�+1,+), 0 ≤ � ≤ p+ − 2,

h�+1,+ = h−�,+ + β(g�+1,+ + g−�+1,+), 0 ≤ � ≤ p+ − 2,

and

g0,− = 1
2 c0,−, f0,− = c0,−α, h0,− = −c0,−β+,

g�+1,− − g−�+1,− = αh�,− + β f −�,−, 0 ≤ � ≤ p− − 1,

f�+1,− = f −�,− + α(g�+1,− + g−�+1,−), 0 ≤ � ≤ p− − 2,

h−�+1,− = h�,− − β(g�+1,− + g−�+1,−), 0 ≤ � ≤ p− − 2.
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Here c0,± ∈ C are given constants. In addition, (3.7) reads

0 = U Vp − V+p U

= i


0

−α(gp+,+ + g−p−,−)
+ f p+−1,+ − f −p−−1,−

z(β(g−p+,+ + gp−,−)
−h p−−1,− + h−p+−1,+)

0

 . (3.18)

Given Lemma 3.3, we now introduce the sequences { f�,±}�∈N0 , {g�,±}�∈N0 , and
{h�,±}�∈N0 recursively by

g0,+ = 1
2 c0,+, f0,+ = −c0,+α+, h0,+ = c0,+β, (3.19)

g�+1,+ − g−�+1,+ = αh−�,+ + β f�,+, � ∈ N0, (3.20)

f −�+1,+ = f�,+ − α(g�+1,+ + g−�+1,+), � ∈ N0, (3.21)

h�+1,+ = h−�,+ + β(g�+1,+ + g−�+1,+), � ∈ N0, (3.22)

and

g0,− = 1
2 c0,−, f0,− = c0,−α, h0,− = −c0,−β+, (3.23)

g�+1,− − g−�+1,− = αh�,− + β f −�,−, � ∈ N0, (3.24)

f�+1,− = f −�,− + α(g�+1,− + g−�+1,−), � ∈ N0, (3.25)

h−�+1,− = h�,− − β(g�+1,− + g−�+1,−), � ∈ N0. (3.26)

For later use we also introduce

f−1,± = h−1,± = 0. (3.27)

Remark 3.4 The sequences { f�,+}�∈N0 , {g�,+}�∈N0 , and {h�,+}�∈N0 can be com-
puted recursively as follows: Assume that f�,+, g�,+, and h�,+ are known. Equation
(3.20) is a first-order difference equation in g�+1,+ that can be solved directly and
yields a local lattice function that is determined up to a new constant denoted by
c�+1,+ ∈ C. Relations (3.21) and (3.22) then determine f�+1,+ and h�+1,+, etc. The
sequences { f�,−}�∈N0 , {g�,−}�∈N0 , and {h�,−}�∈N0 are determined similarly.

Upon setting

γ = 1− αβ,



192 3 The Ablowitz–Ladik Hierarchy

one explicitly obtains

f0,+ = c0,+(−α+),
f1,+ = c0,+

(− γ+α++ + (α+)2β
)+ c1,+(−α+),

g0,+ = 1
2 c0,+,

g1,+ = c0,+(−α+β)+ 1
2 c1,+,

g2,+ = c0,+
(
(α+β)2 − γ+α++β − γα+β−

)+ c1,+(−α+β)+ 1
2 c2,+,

h0,+ = c0,+β,
h1,+ = c0,+

(
γβ− − α+β2)+ c1,+β,

f0,− = c0,−α,
f1,− = c0,−

(
γα− − α2β+

)+ c1,−α,
g0,− = 1

2 c0,−,
g1,− = c0,−(−αβ+)+ 1

2 c1,−,
g2,− = c0,−

(
(αβ+)2 − γ+αβ++ − γα−β+

)+ c1,−(−αβ+)+ 1
2 c2,−,

h0,− = c0,−(−β+),
h1,− = c0,−

(− γ+β++ + α(β+)2
)+ c1,−(−β+), etc.

Here {c�,±}�∈N denote summation constants which naturally arise when solving the
difference equations for g�,± in (3.20), (3.24).

In particular, by (3.18), the stationary zero-curvature relation (3.7), 0 = U Vp −
V+p U , is equivalent to

−α(gp+,+ + g−p−,−)+ f p+−1,+ − f −p−−1,− = 0, (3.28)

β(g−p+,+ + gp−,−)+ h−p+−1,+ − h p−−1,− = 0. (3.29)

Thus, varying p± ∈ N0, equations (3.28) and (3.29) give rise to the stationary
Ablowitz–Ladik (AL) hierarchy which we introduce as follows

s-ALp(α, β) =
(
−α(gp+,+ + g−p−,−)+ f p+−1,+ − f −p−−1,−
β(g−p+,+ + gp−,−)+ h−p+−1,+ − h p−−1,−

)
= 0,

p = (p−, p+) ∈ N2
0.

(3.30)

Explicitly (recalling γ = 1− αβ and taking p− = p+ for simplicity),

s-AL(0,0)(α, β) =
(−c(0,0)α

c(0,0)β

)
= 0,

s-AL(1,1)(α, β) =
(−γ (c0,−α− + c0,+α+)− c(1,1)α
γ (c0,+β− + c0,−β+)+ c(1,1)β

)
= 0,
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s-AL(2,2)(α, β) =


−γ (c0,+α++γ+ + c0,−α−−γ− − α(c0,+α+β− + c0,−α−β+)

−β(c0,−(α−)2 + c0,+(α+)2)
)

γ
(
c0,−β++γ+ + c0,+β−−γ− − β(c0,+α+β− + c0,−α−β+)

−α(c0,+(β−)2 + c0,−(β+)2)
)


+
(−γ (c1,−α− + c1,+α+)− c(2,2)α
γ (c1,+β− + c1,−β+)+ c(2,2)β

)
= 0, etc.,

represent the first few equations of the stationary Ablowitz–Ladik hierarchy. Here
we introduced

cp = (cp,− + cp,+)/2, p± ∈ N0. (3.31)

By definition, the set of solutions of (3.30), with p± ranging in N0 and c�,± ∈ C,
� ∈ N0, represents the class of algebro-geometric Ablowitz–Ladik solutions.

In the special case p = (1, 1), c0,± = 1, and c(1,1) = −2, one obtains the station-
ary version of the Ablowitz–Ladik system (3.1)(−γ (α− + α+)+ 2α

γ (β− + β+)− 2β

)
= 0.

Subsequently, it will also be useful to work with the corresponding homogeneous
coefficients f̂�,±, ĝ�,±, and ĥ�,±, defined by the vanishing of all summation constants
ck,± for k = 1, . . . , �, and choosing c0,± = 1,

f̂0,+ = −α+, f̂0,− = α, f̂�,± = f�,±|c0,±=1, c j,±=0, j=1,...,�, � ∈ N, (3.32)

ĝ0,± = 1
2 , ĝ�,± = g�,±|c0,±=1, c j,±=0, j=1,...,�, � ∈ N, (3.33)

ĥ0,+ = β, ĥ0,− = −β+, ĥ�,± = h�,±|c0,±=1, c j,±=0, j=1,...,�, � ∈ N. (3.34)

By induction one infers that

f�,± =
�∑

k=0

c�−k,± f̂k,±, g�,± =
�∑

k=0

c�−k,±ĝk,±, h�,± =
�∑

k=0

c�−k,±ĥk,±.

(3.35)
In a slight abuse of notation we will occasionally stress the dependence of f�,±, g�,±,
and h�,± on α, β by writing f�,±(α, β), g�,±(α, β), and h�,±(α, β).

Remark 3.5 Using the nonlinear recursion relations (C.50)–(C.55) recorded in The-
orem C.3, one infers inductively that all homogeneous elements f̂�,±, ĝ�,±, and ĥ�,±,
� ∈ N0, are polynomials in α, β, and some of their shifts. (As an alternative, one can
prove directly by induction that the nonlinear recursion relations (C.50)–(C.55) are
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equivalent to that in (3.19)–(3.26) with all summation constants put equal to zero,
c�,± = 0, � ∈ N.)

Remark 3.6 As an efficient tool to later distinguish between nonhomogeneous and
homogeneous quantities f�,±, g�,±, h�,±, and f̂�,±, ĝ�,±, ĥ�,±, respectively, we now
introduce the notion of degree as follows. Denote

f (r) = S(r) f, f = { f (n)}n∈Z ∈ CZ, S(r) =
{

(S+)r , r ≥ 0,

(S−)−r , r < 0,
r ∈ Z,

and define

deg
(
α(r)
) = r, deg

(
β(r)
) = −r, r ∈ Z.

This then results in

deg
(

f̂ (r)�,+
) = �+ 1+ r, deg

(
f̂ (r)�,−
) = −�+ r, deg

(
ĝ(r)�,±

) = ±�,
deg
(
ĥ(r)�,+

) = �− r, deg
(
ĥ(r)�,−

) = −�− 1− r, � ∈ N0, r ∈ Z,
(3.36)

using induction in the linear recursion relations (3.19)–(3.26).

In accordance with our notation introduced in (3.32)–(3.34), the corresponding
homogeneous stationary Ablowitz–Ladik equations are defined by

s-ÂLp(α, β) = s-ALp(α, β)
∣∣
c0,±=1, c�,±=0, �=1,...,p± , p = (p−, p+) ∈ N2

0.

We also note the following useful result.

Lemma 3.7 The coefficients f�,±, g�,±, and h�,± satisfy the relations

g�,+ − g−�,+ = αh�,+ + β f −�,+, � ∈ N0,

g�,− − g−�,− = αh−�,− + β f�,−, � ∈ N0.
(3.37)

Moreover, we record the following symmetries,

f̂�,±(c0,±, α, β) = ĥ�,∓(c0,∓, β, α), ĝ�,±(c0,±, α, β) = ĝ�,∓(c0,∓, β, α), � ∈ N0.

(3.38)

Proof The relations (3.37) are derived as follows:

αh�+1,+ + β f −�+1,+ = αh−�,+ + αβ(g�+1,+ + g−�+1,+)+ β f�,+
− αβ(g�+1,+ + g−�+1,+)
= αh−�,+ + β f�,+ = g�+1,+ − g−�+1,+,
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and

αh−�+1,− + β f�+1,− = αh�,− − αβ(g�+1,− + g−�+1,−)+ β f −�,−
+ αβ(g�+1,− + g−�+1,−)
= αh�,− + β f −�,− = g�+1,− + g−�+1,−.

The statement (3.38) follows by showing that ĥ�,∓(β, α) and ĝ�,∓(β, α) satisfy the
same recursion relations as those of f̂�,±(α, β) and ĝ�,±(α, β), respectively. That the
recursion constants are the same, follows from the observation that the corresponding
coefficients have the proper degree.

Next we turn to the Laurent polynomials Fp, G p, Hp, and K p defined in (3.13)–
(3.15) and (3.17). Explicitly, one obtains

F(0,0) = 0,

F(1,1) = c0,−αz−1 + c0,+(−α+),
F(2,2) = c0,−αz−2 + (c0,−

(
γα− − α2β+

)+ c1,−α
)
z−1

+ c0,+
(− γ+α++ + (α+)2β

)+ c1,+(−α+)+ c0,+(−α+)z,
G(0,0) = 1

2 c0,+,
G(1,1) = 1

2 c0,−z−1 + c0,+(−α+β)+ 1
2 c1,+ + 1

2 c0,+z,

G(2,2) = 1
2 c0,−z−2 + (c0,−(−αβ+)+ 1

2 c1,−
)
z−1

+ c0,+
(
(α+β)2 − γ+α++β − γα+β−

)+ c1,+(−α+β)+ 1
2 c2,+

+ (c0,+(−α+β)+ 1
2 c1,+

)
z + 1

2 c0,+z2,

H(0,0) = 0,

H(1,1) = c0,−(−β+)+ c0,+βz,

H(2,2) = c0,−(−β+)z−1 + c0,−
(− γ+β++ + α(β+)2

)+ c1,−(−β+)
+ (c0,+(γβ− − α+β2)+ c1,+β

)
z + c0,+βz2,

K(0,0) = 1
2 c0,−,

K(1,1) = 1
2 c0,−z−1 + c0,−(−αβ+)+ 1

2 c1,− + 1
2 c0,+z,

K(2,2) = 1
2 c0,−z−2 + (c0,−(−αβ+)+ 1

2 c1,−
)
z−1

+ c0,−
(
(αβ+)2 − γ+αβ++ − γα−β+

)+ c1,−(−αβ+)+ 1
2 c2,−

+ (c0,+(−α+β)+ 1
2 c1,+

)
z + 1

2 c0,+z2, etc.
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The corresponding homogeneous quantities are defined by (� ∈ N0)

F̂0,∓(z) = 0, F̂�,−(z) =
�∑

k=1

f̂�−k,−z−k, F̂�,+(z) =
�−1∑
k=0

f̂�−1−k,+zk,

Ĝ0,−(z) = 0, Ĝ�,−(z) =
�∑

k=1

ĝ�−k,−z−k,

Ĝ0,+(z) = 1

2
, Ĝ�,+(z) =

�∑
k=0

ĝ�−k,+zk,

Ĥ0,∓(z) = 0, Ĥ�,−(z) =
�−1∑
k=0

ĥ�−1−k,−z−k, Ĥ�,+(z) =
�∑

k=1

ĥ�−k,+zk,

K̂0,−(z) = 1

2
, K̂�,−(z) =

�∑
k=0

ĝ�−k,−z−k = Ĝ�,−(z)+ ĝ�,−,

K̂0,+(z) = 0, K̂�,+(z) =
�∑

k=1

ĝ�−k,+zk = Ĝ�,+(z)− ĝ�,+.

Similarly, with F�+,+, G�+,+, H�+,+, and K�+,+ denoting the polynomial parts of
F�, G�, H�, and K�, respectively, and F�−,−, G�−,−, H�−,−, and K�−,− denoting the
Laurent parts of F�, G�, H�, and K�, � = (�−, �+) ∈ N0, such that

F�(z) = F�−,−(z)+ F�+,+(z), G�(z) = G�−,−(z)+ G�+,+(z),
H�(z) = H�−,−(z)+ H�+,+(z), K�(z) = K�−,−(z)+ K�+,+(z),

one finds that

F�±,± =
�±∑

k=1

c�±−k,± F̂k,±, H�±,± =
�±∑

k=1

c�±−k,± Ĥk,±,

G�−,− =
�−∑

k=1

c�−−k,−Ĝk,−, G�+,+ =
�+∑

k=0

c�+−k,+Ĝk,+,

K�−,− =
�−∑

k=0

c�−−k,− K̂k,−, K�+,+ =
�+∑

k=1

c�+−k,+ K̂k,+.

In addition, one immediately obtains the following relations from (3.38):
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Lemma 3.8 Let � ∈ N0. Then,

F̂�,±(α, β, z, n) = Ĥ�,∓(β, α, z−1, n),

Ĥ�,±(α, β, z, n) = F̂�,∓(β, α, z−1, n),

Ĝ�,±(α, β, z, n) = Ĝ�,∓(β, α, z−1, n),

K̂�,±(α, β, z, n) = K̂�,∓(β, α, z−1, n).

Returning to the stationary Ablowitz–Ladik hierarchy, we will frequently as-
sume in the following that α, β satisfy the pth stationary Ablowitz–Ladik system
s-ALp(α, β) = 0, supposing a particular choice of summation constants c�,± ∈ C,
� = 0, . . . , p±, p± ∈ N0, has been made.

Remark 3.9 (i) The particular choice c0,+ = c0,− = 1 in (3.30) yields the sta-
tionary Ablowitz–Ladik equation. Scaling c0,± with the same constant then amounts
to scaling Vp with this constant which drops out in the stationary zero-curvature
equation (3.7).
(i i) Different ratios between c0,+ and c0,− will lead to different stationary hierar-
chies. In particular, the choice c0,+ = 2, c0,− = · · · = cp−−1,− = 0, cp−,− �= 0,
yields the stationary Baxter–Szegő hierarchy. However, in this case some parts from
the recursion relation for the negative coefficients still remain. In fact, (3.26) reduces
to gp−,− − g−p−,− = αh p−−1,−, h p−−1,− = 0 and thus requires gp−,− to be a con-
stant in (3.30) and (3.54). Moreover, f p−−1,− = 0 in (3.30) in this case.
(i i i) Finally, by Lemma 3.8, the choice c0,+ = · · · = cp+−1,+ = 0, cp+,+ �= 0,
c0,− = 2 again yields the Baxter–Szegő hierarchy, but with α and β interchanged.

Next, taking into account (3.16), one infers that the expression Rp, defined as

Rp = G2
p − Fp Hp, (3.39)

is a lattice constant, that is, Rp− R−p = 0, since taking determinants in the stationary
zero-curvature equation (3.7) immediately yields

γ
(− (G−p )2 + F−p H−p + G2

p − Fp Hp
)
z = 0.

Hence, Rp(z) only depends on z, and assuming in addition to (3.2) that

c0,± ∈ C \ {0}, p = (p−, p+) ∈ N2
0 \ {(0, 0)},

one may write Rp as

Rp(z) =
(

c0,+
2z p−

)2 2p+1∏
m=0

(z− Em), {Em}2p+1
m=0 ⊂ C \ {0}, p = p−+ p+− 1 ∈ N0.

(3.40)
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Moreover, (3.39) also implies

lim
z→0

4z2p−Rp(z) = c2
0,+

2p+1∏
m=0

(−Em) = c2
0,−,

and hence,
2p+1∏
m=0

Em =
c2

0,−
c2

0,+
. (3.41)

Relation (3.39) allows one to introduce a hyperelliptic curve Kp of (arithmetic)
genus p = p− + p+ − 1 (possibly with a singular affine part), where

Kp : Fp(z, y) = y2−4c−2
0,+z2p−Rp(z) = y2−

2p+1∏
m=0

(z−Em) = 0, p = p−+ p+−1.

(3.42)

Remark 3.10 In the special case p− = p+ and c�,+ = c�,−, � = 0, . . . , p−, the
symmetries of Lemma 3.8 also hold for Fp, G p, and Hp and thus Rp(1/z) = Rp(z)
and hence the numbers Em , m = 0, . . . , 2p + 1, come in pairs (Ek, 1/Ek), k =
1, . . . , p + 1.

Equations (3.8)–(3.11) and (3.39) permit one to derive nonlinear difference equa-
tions for Fp, G p, and Hp separately. One obtains(

(α+ + zα)2 Fp − z(α+)2γ F−p
)2 − 2zα2γ+

(
(α+ + zα)2 Fp + z(α+)2γ F−p

)
F+p

+ z2α4(γ+)2(F+p )2 = 4(αα+)2(α+ + αz)2 Rp, (3.43)

(α+ + zα)(β + zβ+)(z + α+β)(1+ zαβ+)G2
p

+ z(α+γG−p + zαγ+G+p )(zβ+γG−p + βγ+G+p )

− zγ
(
(α+β + z2αβ+)(2− γ+)+ 2z(1− γ+)(2− γ )

)
G−p G p

− zγ+
(
2z(1− γ )(2− γ+)+ (α+β + z2αβ+)(2− γ )

)
G+p G p

= (α+β − z2αβ+)2 Rp, (3.44)

z2((β+)2γ H−p − β2γ+H+p
)2 − 2z(β + zβ+)2

(
(β+)2γ H−p + β2γ+H+p

)
Hp

+ (β + zβ+)4 H2
p = 4z2(ββ+)2(β + β+z)2 Rp. (3.45)

Equations analogous to (3.43)–(3.45) can be used to derive nonlinear recursion
relations for the homogeneous coefficients f̂�,±, ĝ�,±, and ĥ�,± (i.e., the ones sat-
isfying (3.32)–(3.34) in the case of vanishing summation constants) as proved in
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Theorem C.3. This then yields a proof that f̂�,±, ĝ�,±, and ĥ�,± are polynomials in
α, β, and some of their shifts (cf. Remark 3.5). In addition, as proven in Theorem C.4,
(3.43) leads to an explicit determination of the summation constants c1,±, . . . , cp±,±
in (3.30) in terms of the zeros E0, . . . , E2p+1 of the associated Laurent polynomial
Rp in (3.40). In fact, one can prove (cf. (C.59))

c�,± = c0,±c�
(
E±1), � = 0, . . . , p±, (3.46)

where

c0
(
E±1) = 1,

ck
(
E±1) = − k∑

j0,..., j2p+1=0
j0+···+ j2p+1=k

(2 j0)! · · · (2 j2p+1)!
22k( j0!)2 · · · ( j2p+1!)2(2 j0 − 1) · · · (2 j2p+1 − 1)

× E± j0
0 · · · E± j2p+1

2p+1 , k ∈ N, (3.47)

are symmetric functions of E±1 = (E±1
0 , . . . , E±1

2p+1) introduced in (C.4) and (C.5).

Remark 3.11 If α, β satisfy one of the stationary Ablowitz–Ladik equations in
(3.30) for a particular value of p, s-ALp(α, β) = 0, then they satisfy infinitely many
such equations of order higher than p for certain choices of summation constants
c�,±.

Finally we turn to the time-dependent Ablowitz–Ladik hierarchy. For that purpose
the coefficients α and β are now considered as functions of both the lattice point and
time. For each system in the hierarchy, that is, for each p, we introduce a deformation
(time) parameter tp ∈ R in α, β, replacing α(n), β(n) by α(n, tp), β(n, tp). More-
over, the definitions (3.4), (3.5), and (3.13)–(3.15) of U, Vp, and Fp,G p, Hp, K p,
respectively, still apply; however, equation (3.16) now needs to be replaced by (3.17)
in the time-dependent context.

Imposing the zero-curvature relation

Utp +U Vp − V+p U = 0, p ∈ N2
0, (3.48)

then results in the equations

0 = Utp +U Vp − V+p U

= i


z(G−p − G p)

+zβFp + αH−p

−iαtp + Fp − zF−p
−α(G p + K−p )

−i zβtp + zβ(G−p
+K p)− zHp + H−p

−zβF−p − αHp

+K p − K−p


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= i


0

−iαtp − α(gp+,+ + g−p−,−)
+ f p+−1,+ − f −p−−1,−

z
(− iβtp + β(g−p+,+ + gp−,−)
−h p−−1,− + h−p+−1,+

) 0

 , (3.49)

or equivalently,

αtp = i
(
zF−p + α(G p + K−p )− Fp

)
, (3.50)

βtp = −i
(
β(G−p + K p)− Hp + z−1 H−p

)
, (3.51)

0 = z(G−p − G p)+ zβFp + αH−p , (3.52)

0 = zβF−p + αHp + K−p − K p. (3.53)

Varying p ∈ N2
0, the collection of evolution equations

ALp(α, β) =
(
−iαtp − α(gp+,+ + g−p−,−)+ f p+−1,+ − f −p−−1,−
−iβtp + β(g−p+,+ + gp−,−)− h p−−1,− + h−p+−1,+

)
= 0,

tp ∈ R, p = (p−, p+) ∈ N2
0,

(3.54)

then defines the time-dependent Ablowitz–Ladik hierarchy. Explicitly, taking
p− = p+ for simplicity,

AL(0,0)(α, β) =
(−iαt(0,0) − c(0,0)α
−iβt(0,0) + c(0,0)β

)
= 0,

AL(1,1)(α, β) =
(−iαt(1,1) − γ (c0,−α− + c0,+α+)− c(1,1)α
−iβt(1,1) + γ (c0,+β− + c0,−β+)+ c(1,1)β

)
= 0,

AL(2,2)(α, β)

=


−iαt(2,2) − γ

(
c0,+α++γ+ + c0,−α−−γ− − α(c0,+α+β− + c0,−α−β+)

−β(c0,−(α−)2 + c0,+(α+)2)
)

−iβt(2,2) + γ
(
c0,−β++γ+ + c0,+β−−γ− − β(c0,+α+β− + c0,−α−β+)

−α(c0,+(β−)2 + c0,−(β+)2)
)


+
(−γ (c1,−α− + c1,+α+)− c(2,2)α
γ (c1,+β− + c1,−β+)+ c(2,2)β

)
= 0, etc.,

represent the first few equations of the time-dependent Ablowitz–Ladik hierarchy.
Here we recall the definition of cp in (3.31).

The special case p = (1, 1), c0,± = 1, and c(1,1) = −2, that is,(−iαt(1,1) − γ (α− + α+)+ 2α
−iβt(1,1) + γ (β− + β+)− 2β

)
= 0,

represents the Ablowitz–Ladik system (3.1).
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The corresponding homogeneous equations are then defined by

ÂLp(α, β) = ALp(α, β)
∣∣
c0,±=1, c�,±=0, �=1,...,p± = 0, p = (p−, p+) ∈ N2

0.

By (3.54), (3.20), and (3.24), the time derivative of γ = 1− αβ is given by

γtp = iγ
(
(gp+,+ − g−p+,+)− (gp−,− − g−p−,−)

)
, (3.55)

or equivalently, by

γtp = iγ
(
z−1αH−p − αHp + βFp − zβF−p

)
, (3.56)

using (3.50)–(3.53). (Alternatively, this follows from computing the trace of
Utp U−1 = V+p −U VpU−1.) For instance, if α, β satisfy AL1(α, β) = 0, then

γt1 = iγ
(
α(c0,−β+ + c0,+β−)− β(c0,+α+ + c0,−α−)

)
.

Remark 3.12 From (3.8)–(3.11) and the explicit computations of the coefficients
f�,±, g�,±, and h�,±, one concludes that the zero-curvature equation (3.49) and hence
the Ablowitz–Ladik hierarchy is invariant under the scaling transformation

α→ αc = {c α(n)}n∈Z, β → βc = {β(n)/c}n∈Z, c ∈ C \ {0}.
Moreover, Rp = G2

p − Hp Fp and hence {Em}2p+1
m=0 are invariant under this transfor-

mation. Furthermore, choosing c = eicpt , one verifies that it is no restriction to as-
sume cp = 0. This also shows that stationary solutions α, β can only be constructed
up to a multiplicative constant.

Remark 3.13 (i) The special choices β = ±α, c0,± = 1 lead to the discrete non-
linear Schrödinger hierarchy. In particular, choosing c(1,1) = −2 yields the discrete
nonlinear Schrödinger equations in their usual form, with

−iαt − (1∓ |α|2)(α− + α+)+ 2α = 0,

the first nonlinear element of the hierarchy. The choice β = α is called the defocusing
case, β = −α represents the focusing case of the discrete nonlinear Schrödinger
hierarchy.
(i i) The alternative choice β = α, c0,± = ∓i , leads to the hierarchy of Schur flows.
In particular, choosing c(1,1) = 0, yields

αt − (1− |α|2)(α+ − α−) = 0 (3.57)

as the first nonlinear element of this hierarchy.
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3.3 Lax Pairs for the Ablowitz–Ladik Hierarchy

Such errors as do not depend upon wrong reasoning can be of no
great consequence & may be corrected by the Reader.

Isaac Newton1

In this section we introduce Lax pairs for the AL hierarchy and prove the equivalence
of the zero-curvature and Lax representation.

Throughout this section we suppose Hypothesis 3.1. We start by relating the ho-
mogeneous coefficients f̂�,±, ĝ�,±, and ĥ�,± to certain matrix elements of L , where L
will later be identified as the Lax difference expression associated with the Ablowitz–
Ladik hierarchy. For this purpose it is useful to introduce the standard basis {δm}m∈Z
in �2(Z) by

δm = {δm,n}n∈Z, m ∈ Z, δm,n =
{

1, m = n,

0, m �= n.
(3.58)

The scalar product in �2(Z), denoted by ( · , · ), is defined by

( f, g) =
∑
n∈Z

f (n)g(n), f, g ∈ �2(Z).

In the standard basis just defined, we introduce the difference expression L by

L =


. . .

. . .
. . .

. . .
. . . 00 −α(0)ρ(−1) −β(−1)α(0) −α(1)ρ(0) ρ(0)ρ(1)

ρ(−1)ρ(0) β(−1)ρ(0) −β(0)α(1) β(0)ρ(1) 0
0 −α(2)ρ(1) −β(1)α(2) −α(3)ρ(2) ρ(2)ρ(3)

0
ρ(1)ρ(2) β(1)ρ(2) −β(2)α(3) β(2)ρ(3) 0

. . .
. . .

. . .
. . .

. . .


(3.59)

=
(
− β(n)α(n + 1)δm,n +

(
β(n − 1)ρ(n)δodd(n)

− α(n + 1)ρ(n)δeven(n)
)
δm,n−1

+ (β(n)ρ(n + 1)δodd(n)− α(n + 2)ρ(n + 1)δeven(n)
)
δm,n+1 (3.60)

+ ρ(n + 1)ρ(n + 2)δeven(n)δm,n+2

+ ρ(n − 1)ρ(n)δodd(n)δm,n−2

)
m,n∈Z

1 Quoted in R. Westfall, The Life of Isaac Newton, Cambridge University Press, Cambridge, 1993,
p. 275.
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= ρ−ρ δeven S−− + (β−ρ δeven − α+ρ δodd)S
− − βα+

+ (βρ+ δeven − α++ρ+ δodd)S
+ + ρ+ρ++ δodd S++, (3.61)

where δeven and δodd denote the characteristic functions of the even and odd integers,

δeven = χ2Z
, δodd = 1− δeven = χ2Z+1 .

In particular, terms of the form −β(n)α(n+ 1) represent the diagonal (n, n)-entries,
n ∈ Z, in the infinite matrix (3.59). In addition, we used the abbreviation

ρ = γ 1/2 = (1− αβ)1/2. (3.62)

Next, we introduce the unitary operator Uε̃ in �2(Z) by

Uε̃ =
(
ε̃(n)δm,n

)
(m,n)∈Z2 , ε̃(n) ∈ {1,−1}, n ∈ Z,

and the sequence ε = {ε(n)}n∈Z ∈ CZ by

ε(n) = ε̃(n − 1)ε̃(n), n ∈ Z.

Assuming α, β ∈ �∞(Z), a straightforward computation then shows that

L̆ε = Uε̃ L̆U−1
ε̃

,

where Lε is associated with the sequences αε = α, βε = β, and ρε = ερ, and L̆ and
L̆ε are the bounded operator realizations of L and Lε in �2(Z), respectively. More-
over, the recursion formalism in (3.19)–(3.26) yields coefficients which are polyno-
mials in α, β and some of their shifts and hence depends only quadratically on ρ.
As a result, the choice of square root of ρ(n), n ∈ Z, in (3.62) is immaterial when
introducing the AL hierarchy via the Lax equations (3.79).

The matrix representation of L−1 is then obtained from that of L in (3.59) by
taking the formal adjoint of L and subsequently exchanging α and β

L−1 =
(
− α(n)β(n + 1)δm,n +

(
α(n − 1)ρ(n)δeven(n)

− β(n + 1)ρ(n)δodd(n)
)
δm,n−1 (3.63)

+ (α(n)ρ(n + 1)δeven(n)− β(n + 2)ρ(n + 1)δodd(n)
)
δm,n+1

+ ρ(n + 1)ρ(n + 2)δodd(n)δm,n+2 + ρ(n − 1)ρ(n)δeven(n)δm,n−2

)
m,n∈Z

= ρ−ρ δodd S−− + (α−ρ δodd − β+ρ δeven)S
− − αβ+

+ (αρ+ δodd − β++ρ+ δeven)S
+ + ρ+ρ++ δeven S++. (3.64)
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L and L−1 lead to bounded operators in �2(Z) if α and β are bounded sequences.
However, this is of no importance in the context of Lemma 3.14 below as we only
apply the five-diagonal matrices L and L−1 to basis vectors of the type δm .

Next, we discuss a useful factorization of L . For this purpose we introduce the
sequence of 2× 2 matrices θ(n), n ∈ Z, by

θ(n) =
(−α(n) ρ(n)
ρ(n) β(n)

)
, n ∈ Z, (3.65)

and two difference expressions D and E by their matrix representations in the stan-
dard basis (3.58) of �2(Z)

D =


. . . 0

θ(2n−2)
θ(2n)

0 . . .

 , E =


. . . 0

θ(2n−1)
θ(2n+1)

0 . . .

 ,

where (
D(2n − 1, 2n − 1) D(2n − 1, 2n)

D(2n, 2n − 1) D(2n, 2n)

)
= θ(2n),(

E(2n, 2n) E(2n, 2n + 1)
E(2n + 1, 2n) E(2n + 1, 2n + 1)

)
= θ(2n + 1), n ∈ Z.

Then L can be factorized into

L = DE . (3.66)

Explicitly, D and E are given by

D = ρ δeven S− − α+ δodd + β δeven + ρ+ δodd S+, (3.67)

E = ρ δodd S− + β δodd − α+ δeven + ρ+ δeven S+, (3.68)

and their inverses are of the form

D−1 = ρ δeven S− − β+ δodd + α δeven + ρ+ δodd S+, (3.69)

E−1 = ρ δodd S− + α δodd − β+ δeven + ρ+ δeven S+. (3.70)

The next result details the connections between L and the recursion coefficients
f�,±, g�,±, and h�,±.

Lemma 3.14 Let n ∈ Z. Then the homogeneous coefficients { f̂�,±}�∈N0 , {ĝ�,±}�∈N0 ,
and {ĥ�,±}�∈N0 satisfy the following relations:

f̂�,+(n) = (δn, E L�δn)δeven(n)+ (δn, L�Dδn)δodd(n), � ∈ N0,

f̂�,−(n) = (δn, D−1L−�δn)δeven(n)+ (δn, L−�E−1δn)δodd(n), � ∈ N0,
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ĝ0,± = 1/2, ĝ�,±(n) = (δn, L±�δn), � ∈ N, (3.71)

ĥ�,+(n) = (δn, L�Dδn)δeven(n)+ (δn, E L�δn)δodd(n), � ∈ N0,

ĥ�,−(n) = (δn, L−�E−1δn)δeven(n)+ (δn, D−1L−�δn)δodd(n) � ∈ N0.

Proof Using (3.66)–(3.70) we show that the sequences defined in (3.71) satisfy the
recursion relations of Lemma C.5 respectively relation (3.20). For n even,

ĝ�,+(n)− ĝ�,+(n − 1) = (δn, DE L�−1δn)− (δn−1, DE L�−1δn−1)

= (D∗δn, E L�−1δn)− (D∗δn−1, E L�−1δn−1)

= β(n)(δn, E L�−1δn)+ ρ(n)(δn−1, E L�−1δn)

+ α(n)(δn−1, E L�−1δn−1)− ρ(n)(δn, E L�−1δn−1)

= β(n) f̂�−1,+(n)+ α(n)ĥ�−1,+(n − 1),

since (E L�)� = E L� by (3.65), (3.66). Moreover,

f̂�,+(n) = (δn, E L�δn) = (E∗δn, L�δn)

= −α(n + 1)(δn, L�δn)+ ρ(n + 1)(δn+1, L�δn)

+ α(n + 1)(δn+1, L�δn+1)− α(n + 1)(δn+1, L�δn+1)

= f̂�−1,+(n + 1)− α(n + 1)
(
ĝ�,+(n + 1)+ ĝ�,+(n)

)
,

ĥ�,+(n) = (δn, L�Dδn) = β(n)(δn, L�δn)+ ρ(n)(δn, L�δn−1)

+ β(n)(δn−1, L�δn−1)− β(n)(δn−1, L�δn−1)

= ĥ�−1,+(n − 1)+ β(n)
(
ĝ�,+(n)+ ĝ�,+(n − 1)

)
,

that is, the coefficients satisfy (C.77). The remaining cases follow analogously.

Finally, we derive an explicit expression for the Lax pair for the Ablowitz–Ladik
hierarchy, but first we need some notation. Let T be a bounded operator in �2(Z).
Given the standard basis (3.58) in �2(Z), we represent T by

T = (T (m, n)
)
(m,n)∈Z2 , T (m, n) = (δm, T δn), (m, n) ∈ Z2.

Actually, for our purpose below, it is sufficient that T is an N -diagonal matrix for
some N ∈ N. Moreover, we introduce the upper and lower triangular parts T± of T
by

T± =
(
T±(m, n)

)
(m,n)∈Z2 , T±(m, n) =

{
T (m, n), ±(n − m) > 0,

0, otherwise.
(3.72)



206 3 The Ablowitz–Ladik Hierarchy

Next, consider the finite difference expression Pp defined by

Pp = i

2

p+∑
�=1

cp+−�,+
(
(L�)+ − (L�)−

)− i

2

p−∑
�=1

cp−−�,−
(
(L−�)+ − (L−�)−

)
− i

2
cp Qd , p ∈ N2

0, (3.73)

with L given by (3.59) and Qd denoting the doubly infinite diagonal matrix

Qd =
(
(−1)kδk,�

)
k,�∈Z. (3.74)

Before we prove that (L , Pp) is indeed the Lax pair for the Ablowitz–Ladik hier-
archy, we derive one more representation of Pp in terms of L .

We denote by �0(Z) the set of complex-valued sequences of compact support. If R
denotes a finite difference expression, then ψ is called a weak solution of Rψ = zψ ,
for some z ∈ C, if the relation holds pointwise for each lattice point, that is, if
((R − z)ψ)(n) = 0 for all n ∈ Z.

Lemma 3.15 Let ψ ∈ �∞0 (Z). Then the difference expression Pp defined in (3.73)
acts on ψ by

(Ppψ)(n) = i

(
−

p−∑
�=1

f p−−�,−(n)(E L−�ψ)(n)−
p+−1∑
�=0

f p+−1−�,+(n)(E L�ψ)(n)

+
p−∑
�=1

gp−−�,−(n)(L−�ψ)(n)+
p+∑
�=1

gp+−�,+(n)(L�ψ)(n)

+ 1

2

(
gp−,−(n)+ gp+,+(n)

)
ψ(n)

)
δodd(n) (3.75)

+ i

( p−−1∑
�=0

h p−−1−�,−(n)(D−1L−�ψ)(n)

+
p+∑
�=1

h p+−�,+(n)(D−1L�ψ)(n)

−
p−∑
�=1

gp−−�,−(n)(L−�ψ)(n)−
p+∑
�=1

gp+−�,+(n)(L�ψ)(n)

− 1

2

(
gp−,−(n)+ gp+,+(n)

)
ψ(n)

)
δeven(n), n ∈ Z.
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In addition, if u is a weak solution of Lu(z) = zu(z), then(
Ppu(z)

)
(n)

=
(
− i Fp(z, n)(Eu(z))(n)+ i

2

(
G p(z, n)+ K p(z, n)

)
u(z, n)

)
δodd(n)

+
(

i Hp(z, n)(D−1u(z))(n)− i

2

(
G p(z, n)+ K p(z, n)

)
u(z, n)

)
δeven(n),

n ∈ Z, (3.76)

in the weak sense.

Proof We consider the case where n is even and use induction on p = (p−, p+).
The case n odd is analogous. For p = (0, 0), the formulas (3.75) and (3.73) match.
Denote by P̂p the corresponding homogeneous difference expression where all sum-
mation constants ck,±, k = 1, . . . , p±, vanish. We have to show that

i P̂p = i P̂+p+−1L − ĥ p+−1,+D−1L + 1

2

(
ĝp+−1,+L + ĝp+,+

)
+ i P̂−p−−1L−1 − ĥ p−−1,−D−1 + 1

2

(
ĝp−−1,−L−1 + ĝp−,−

)
,

where P̂±j correspond to the powers of L in (3.73), P̂±j = i
2

(
(L± j )±−(L± j )∓

)
. This

can be done upon considering (δm, P̂pδn) and making appropriate case distinctions
m = n, m > n, and m < n.
Using (3.60), (3.63), (3.66)–(3.70), (3.72), and Lemma 3.14, one verifies, for in-
stance, in the case m = n,(

δn, i P̂+p+δn
)

= (δn, i P̂+p+−1Lδn
)+ α(n + 1)ĥ p+−1,+(n)

+ 1

2

(
ĝp+,+(n)− α(n + 1)β(n)ĝp+−1,+(n)

)
=
(
δn,

1

2

(
(L p+−1)+ − (L p+−1)−

)
× (α++ρ+δn−1 + α+βδn + α+ρδn+1 − ρ−ρδn+2)

)
+ α(n + 1)ĥ p+−1,+(n)+ 1

2

(
ĝp+,+(n)− α(n + 1)β(n)ĝp+−1,+(n)

)
= −1

2
α(n + 1)ρ(n)

(
δn, L p+−1δn−1

)+ 1

2
α(n + 2)ρ(n + 1)

(
δn, L p+−1δn+1

)
− 1

2
ρ(n + 1)ρ(n + 2)

(
δn, L p+−1δn+2

)+ α(n + 1)ĥ p+−1,+(n)

+ 1

2

(
ĝp+,+(n)− α(n + 1)β(n)ĝp+−1,+(n)

)
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= −α(n + 1)ρ(n)
(
δn, L p+−1δn−1

)
− α(n + 1)β(n)ĝp+−1,+(n)+ α(n + 1)ĥ p+−1,+(n)
= 0,

since by Lemma 3.14,

ĝp+,+(n) =
(
δn, L p+−1Lδn

)
,

ĥ p+−1,+(n) =
(
δn, L p+−1 Dδn

) = β(n)
(
δn, L p+−1δn

)+ ρ(n)
(
δn, L p+−1δn−1

)
.

Similarly,

(
δn, i P̂−p−δn

)
= (δn, i P̂−p−−1L−1δn

)− α(n)ĥ p−−1,−(n)

+ 1

2

(
ĝp−,−(n)− α(n)β(n + 1)ĝp−−1,−(n)

)
=
(
δn,

1

2

(
(L1−p−)+ − (L1−p−)−

)
× (ρ+ρ++δn−2 + αρ+δn−1 − αβ+δn + α−ρδn+1)

)
− α(n)ĥ p−−1,−(n)+ 1

2

(
ĝp−,−(n)− α(n)β(n + 1)ĝp−−1,−(n)

)
= −1

2
ρ(n − 1)ρ(n)

(
δn, L1−p−δn−2

)− 1

2
α(n − 1)ρ(n)

(
δn, L1−p−δn−1

)
+ 1

2
α(n)ρ(n + 1)

(
δn, L1−p−δn+1

)− α(n)ĥ p−−1,−(n)

+ 1

2

(
ĝp−,−(n)− α(n)β(n + 1)ĝp−−1,−(n)

)
= α(n)ρ(n + 1)

(
δn, L1−p−δn+1

)− α(n)β(n + 1)ĝp−−1,−(n)
− α(n)ĥ p−−1,−(n)
= 0,

where we used Lemma 3.14 and (3.26) at � = p− − 2 for the last equality. This
proves the case m = n. The remaining cases m > n and m < n are settled in a
similar fashion.

Equality (3.76) then follows from Lu(z) = zu(z) and (3.13)–(3.16).
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Next, we introduce the difference expression P�p by

P�p = −
i

2

p+∑
�=1

cp+−�,+
(
((L�)�)+ − ((L�)�)−

)
(3.77)

+ i

2

p−∑
�=1

cp−−�,−
(
((L�)−�)+ − ((L�)−�)−

)− i

2
cp Qd , p ∈ N2

0,

with L� = E D the difference expression associated with the transpose of the infinite
matrix (3.59) in the standard basis of �2(Z) and Qd denoting the doubly infinite
diagonal matrix in (3.74). Here we used

(M+)� = (M�)−, (M−)� = (M�)+
for a finite difference expression M in the standard basis of �2(Z).

For later purpose in Section 3.8 we now mention the analog of Lemma 3.15 for
the difference expression P�p :

Lemma 3.16 Let χ ∈ �∞0 (Z). Then the difference expression P�p defined in (3.77)
acts on χ by

(P�p χ)(n) = i

(
−

p−−1∑
�=0

h p−−1−�,−(n)(E−1(L�)−�χ)(n)

−
p+∑
�=1

h p+−�,+(n)(E−1(L�)�χ)(n)

+
p−∑
�=1

gp−−�,−(n)((L�)−�χ)(n)+
p+∑
�=1

gp+−�,+(n)((L�)�χ)(n)

+ 1

2

(
gp−,−(n)+ gp+,+(n)

)
χ(n)

)
δodd(n)

+ i

( p−∑
�=1

f p−−�,−(n)(D(L�)−�χ)(n)

+
p+−1∑
�=0

f p+−1−�,+(n)(D(L�)�χ)(n)

−
p−∑
�=1

gp−−�,−(n)((L�)−�χ)(n)

−
p+∑
�=1

gp+−�,+(n)((L�)�χ)(n)

− 1

2

(
gp−,−(n)+ gp+,+(n)

)
χ(n)

)
δeven(n), n ∈ Z.
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In addition, if v is a weak solution of L�v(z) = zv(z), then(
P�p v(z)

)
(n)

= −i

(
Hp(z, n)(E−1v(z))(n)− 1

2

(
G p(z, n)+ K p(z, n)

)
v(z, n)

)
δodd(n)

+ i

(
Fp(z, n)(Dv(z))(n)− 1

2

(
G p(z, n)+ K p(z, n)

)
v(z, n)

)
δeven(n),

n ∈ Z, (3.78)

in the weak sense.

Proof It suffices to consider the case where n is even. As in the proof of Lemma
3.15 we have to show that the corresponding homogeneous difference expression
P̂�p satisfies

i P̂�p = i(P̂�p+−1)
+L� − f̂ p+−1,+D + 1

2

(
ĝp+−1,+L� + ĝp+,+

)
+ i(P̂�p−−1)

−(L�)−1 − f̂ p−−1,−D(L�)−1

+ 1

2

(
ĝp−−1,−(L�)−1 + ĝp−,−

)
,

where (P̂�j )± = i
2

(
((L�)± j )∓ − ((L�)± j )±

)
. Note that L�, (L�)−1 are given

by (3.60), (3.63) with δeven and δodd interchanged. Using (3.67)–(3.70), (3.72), one
verifies, for instance, in the case m = n,(

δn, i(P̂�p+)
+δn
)

= (δn, i(P̂�p+−1)
+(ρ+ρ++δn−2 + βρ+δn−1 − α+βδn + β−ρδn+1)

)
− β(n) f̂ p+−1,+(n)+ 1

2

(
ĝp+,+(n)− α(n + 1)β(n)ĝp+−1,+(n)

)
= −1

2
β(n − 1)ρ(n)

(
δn, (L

�)p+−1δn−1
)

+ 1

2
β(n)ρ(n + 1)

(
δn, (L

�)p+−1δn+1
)

− 1

2
ρ(n − 1)ρ(n)

(
δn, (L

�)p+−1δn−2
)− β(n) f̂ p+−1,+(n)

+ 1

2

(
ĝp+,+(n)− α(n + 1)β(n)ĝp+−1,+(n)

)
= β(n)

(− α(n + 1)ĝp+−1,+(n)+ ρ(n + 1)
(
δn, (L

�)p+−1δn+1)
)

− β(n) f̂ p+−1,+(n)
= 0,
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since Lemma 3.14 reads in terms of L� for n even

ĝ�,±(n) =
(
δn, (L

�)±�δn
)
, f̂�,+(n) =

(
δn, (L

�)�Eδn
)
.

Similarly,(
δn, i(P̂�p−)

−δn
)

= (δn, i(P̂�p−−1)
−(−β++ρ+δn−1 − αβ+δn − β+ρδn+1 + ρ−ρδn+2)

)
+ β(n + 1) f̂ p−−1,−(n)+ 1

2

(
ĝp−,−(n)− α(n)β(n + 1)ĝp−−1,−(n)

)
= −1

2
β(n + 1)ρ(n)

(
δn, (L

�)1−p−δn−1
)

+ 1

2
β(n + 2)ρ(n + 1)

(
δn, (L

�)1−p−δn+1
)

− 1

2
ρ(n + 1)ρ(n + 2)

(
δn, (L

�)1−p−δn+2
)+ β(n + 1) f̂ p−−1,−(n)

+ 1

2

(
ĝp−,−(n)− α(n)β(n + 1)ĝp−−1,−(n)

)
= −β(n + 1)

(
α(n)ĝp−−1,−(n)+ ρ(n)

(
δn, (L

�)1−p−δn−1
))

+ β(n + 1) f̂ p−−1,−(n)
= 0,

where we used f̂�,−(n) = (δn, (L�)−�D−1δn). This proves the case m = n. The
remaining cases m > n and m < n are settled in a similar fashion.
Equality (3.78) then follows from L�v(z) = zv(z) and (3.13)–(3.16).

Given these preliminaries, one can now prove the following result, the proof of
which is based on fairly tedious computations. We present them here in detail as
these results have not appeared in print before.

Theorem 3.17 Assume Hypothesis 3.1. Then, for each p ∈ N2
0, the pth stationary

Ablowitz–Ladik equation s-ALp(α, β) = 0 in (3.30) is equivalent to the vanishing of
the commutator of Pp and L,

[Pp, L] = 0.

In addition, the pth time-dependent Ablowitz–Ladik equation ALp(α, β) = 0 in
(3.54) is equivalent to the Lax commutator equations

Ltp (tp)− [Pp(tp), L(tp)] = 0, tp ∈ R. (3.79)

In particular, the pair of difference expressions (L , Pp) represents the Lax pair
for the Ablowitz–Ladik hierarchy of nonlinear differential-difference evolution
equations.
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Proof Let f ∈ �0(Z). We first choose n to be even and apply formulas (3.75) to
compute the commutator ([Pp, L] f )(n) by rewriting D−1L� = E L�−1 and using
(3.61), (3.67), and (3.68). This yields

i([Pp, L] f )(n)

=
( p+∑

�=1

ρ−ρ(g−p+−�,+ − g−−p+−�,+)

−
p+−1∑
�=0

ρ−ρ(α−h−−p+−1−�,+ + β− f −p+−1−�,+)
)
(L� f )(n − 2)

+
( p+∑

�=1

ρ
(
2β−g−p+−�,+ − h−p+−�,+

)
+

p+−1∑
�=0

ρ
(
(ρ−)2h−−p+−1−�,+ − (β−)2 f −p+−1−�,+

))
(L� f )(n − 1)

+
( p+∑

�=1

ρ+
(
β(g+p+−�,+ + g−p+−�,+)− h p+−�,+

)
+

p+−1∑
�=0

ρ+
(
h−p+−1−�,+ − ββ+ f +p+−1−�,+

− βα+h p+−1−�,+
))
(L� f )(n + 1)

+
( p++1∑

�=2

(
gp++1−�,+ − g−p++1−�,+

)
+

p+∑
�=1

(
α+
(
β(gp+−�,+ − g−p+−�,+)+ h p+−�,+

)− αh−p+−�,+
)

+
p+−1∑
�=0

(
β(α+)2h p+−1−�,+ − β(ρ+)2 f +p+−1−�,+

− α+h−p+−1−�,+
))

(L� f )(n)

+
p−∑
�=1

ρ−ρ
(
g−p−−�,− − g−−p−−�,− − β− f −p−−�,− − α−h−−p−−�,−

)
(L−� f )(n − 2)

+
( p−∑

�=1

ρ
(
β−
(
2g−p−−�,− − β− f −p−−�,−

)+ ρ(ρ−)2h−−p−−�,−
)

−
p−−1∑
�=0

ρh−p−−1−�,−
)
(L−� f )(n − 1)
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+
( p−∑

�=1

(
βρ+

(
g+p−−�,− + g−p−−�,− − α+h p−−�,− − β+ f +p−−�,−

)
+ ρ+h−p−−�,−

)
−

p−−1∑
�=0

ρ+h p−−1−�,−
)
(L−� f )(n + 1)

+
( p−∑

�=1

(
βα+(gp−−�,− − g−p−−�,− + α+h p−−�,− + β+ f +p−−�,−)− β f +p−−�,−

− α+h−p−−�,−
)
+

p−−1∑
�=0

(
gp−−1−�,− − g−p−−1−�,− − αh−p−−1−�,−

+ α+h p−−1−�,−
))
(L−� f )(n)

+ 1

2

(
βρ+

(
g+p−,− + g+p+,+ + gp−,− + gp+,+

)
f (n + 1)

+ β−ρ
(
g−p−,− + g−p+,+ + gp−,− + gp+,+

)
f (n − 1)

− ρ−ρ
(
g−−p−,− + g−−p+,+ − gp−,− − gp+,+

)
f (n − 2)

)
,

where we added the terms

0 = −
p+∑
�=1

g−p+−�,+(L
�+1 f )(n)+

p+∑
�=1

g−p+−�,+(L
�+1 f )(n)

= −
p++1∑
�=2

g−p++1−�,+(L
� f )(n)+

p+∑
�=1

g−p+−�,+L(L� f )(n),

0 = −
p+∑
�=1

h−p+−�,+(D
−1L� f )(n)+

p+∑
�=1

h−p+−�,+(E L�−1 f )(n)

= −
p+∑
�=1

h−p+−�,+
(
α(L� f )(n)+ ρ(L� f )(n − 1)

)

+
p+−1∑
�=0

h−p+−1−�,+
(
− α+(L� f )(n)+ ρ+(L� f )(n + 1)

)
, (3.80)

0 = −
p−∑
�=1

g−p−−�,−(L
−�+1 f )(n)+

p−∑
�=1

g−p−−�,−(L
−�+1 f )(n)

= −
p−−1∑
�=0

g−p−−1−�,−(L
−� f )(n)+

p−∑
�=1

g−p−−�,−L(L−� f )(n),
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0 = −
p−∑
�=1

h−p−−�,−(D
−1L−�+1 f )(n)+

p−∑
�=1

h−p−−�,−(E L−� f )(n)

= −
p−−1∑
�=0

h−p−−1−�,−
(
α(L−� f )(n)+ ρ(L−� f )(n − 1)

)

+
p−∑
�=1

h−p−−�,−
(
− α+(L−� f )(n)+ ρ+(L−� f )(n + 1)

)
.

Next we apply the recursion relations (3.19)–(3.26). In addition, we also use

α+h p−−�,− + β+ f +p−−�,− = α+
(
h+p−−1−�,− − β+(g+p−−�,− + gp−−�,−)

)
+ β+

(
f p−−1−�,− + α+(g+p−−�,− + gp−−�,−)

)
= g+p−−�,− − gp−−�,−.

This implies,

i([Pp, L] f )(n)

=
p+−1∑
�=1

ρ−ρ
(

g−p+−�,+ − g−−p+−�,+ − α−h−−p+−1−�,+ − β− f −p+−1−�,+
)
(L� f )(n − 2)

+
p+−1∑
�=1

(
β−ρ

(
g−p+−�,+ − g−−p+−�,+ − α−h−−p+−1−�,+ − β− f −p+−1−�,+

)
+ ρ
(
β−(g−p+−�,+ + g−−p+−�,+)+ h−−p+−1−�,+ − h−p+−�,+

))
(L� f )(n − 1)

+
p+−1∑
�=1

(
βρ+

(
g+p+−�,+ − gp+−�,+ − α+h p+−1−�,+ − β+ f +p+−1−�,+

)
+ ρ+

(
β(gp+−�,+ + g−p+−�,+)+ h−p+−1−�,+ − h p+−�,+

))
(L� f )(n + 1)

+
( p+−1∑

�=1

(
gp++1−�,+ − g−p++1−�,+ − αh−p+−�,+ + βα+(g+p+−�,+ + gp+−�,+)

− β f +p+−1−�,+
)

+
p+−1∑
�=1

α+
(
β(−gp+−�,+ − g−p+−�,+)+ h p+−�,+ − h−p+−1−�,+

)
+

p+−1∑
�=0

βα+
(
gp+−�,+ − g+p+−�,+ + α+h p+−1−�,+

+ β+ f +p+−1−�,+
))
(L� f )(n)
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+
p−∑
�=1

ρ−ρ
(
g−p−−�,− − g−−p−−�,− − β− f −p−−�,− − α−h−−p−−�,−

)
(L−� f )(n − 2)

+
p−−1∑
�=1

(
β−ρ

(
g−p−−�,− − g−−p−−�,− − β− f −p−−�,− − α−h−−p−−�,−

)
+ ρ
(
β−(g−p−−�,− + g−−p−−�,−)+ h−−p−−�,−

− h−p−−1−�,−
))
(L−� f )(n − 1)

+
p−−1∑
�=1

(
βρ+

(
g+p−−�,− − gp−−�,− − α+h p−−�,− − β+ f +p−−�,−

)
+ ρ+

(
β(gp−−�,− + g−p−−�,−)+ h−p−−�,−

− h p−−1−�,−
))
(L−� f )(n + 1)

+
( p−−1∑

�=1

(
gp−−1−�,− − g−p−−1−�,− − αh−p−−1−�,−

)
+

p−∑
�=1

β
(
α+(g+p−−�,− + gp−−�,−)− f +p−−�,−

)
+

p−∑
�=1

βα+
(
gp−−�,− − g+p−−�,− + α+h p−−�,− + β+ f +p−−�,−

)
+

p−−1∑
�=1

α+
(
β(−gp−−�,− − g−p−−�,−)− h−p−−�,−

+ h p−−1−�,−
))
(L−� f )(n)

+ ρ−ρ
(
g−0,+ − g−−0,+

)
(L p+ f )(n − 2)

− ρ−ρ
(
α−h−−p+−1,+ + β− f −p+−1,+

)
f (n − 2)

+ ρ
(
2β−g−0,+ − h−0,+

)
(L p+ f )(n − 1)

+ ρ
(
(ρ−)2h−−p+−1,+ − (β−)2 f −p+−1,+

)
f (n − 1)

+ ρ+
(
β(g+0,+ + g−0,+)− h0,+

)
(L p+ f )(n + 1)

− ρ+
(
β(α+h p+−1,+ + β+ f +p+−1,+)− h−p+−1,+

)
f (n + 1)

+ (g0,+ − g−0,+)(L
p++1 f )(n)

+ (g1,+ − g−1,+ − αh−0,+ + βα+(g0,+ − g−0,+)+ α+h0,+
)
(L p+ f )(n)

+ (gp−−1,− − g−p−−1,− − αh−p−−1,− − β f p−−1,−
)

f (n)
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+ β
(
α+(g+p+,+ − gp+,+)+ f p−−1,− − f +p+−1,+

)
f (n)

+ α+
(
β(β f p+−1,+ + αh−p+−1,+)+ h p−−1,− − h−p+−1,+

)
f (n)

− (βα+(g0,− + g−0,−)− β f−1,− + α+h−0,−
)
(L−p− f )(n)

− (αh−p+−1,+ + β f p+−1,+)
(
βρ+ f (n + 1)+ β−ρ f (n − 1)+ ρ−ρ f (n − 2)

)
+
(
β−ρ

(
g−0,− + g−0,− − β− f −0,−

)+ (ρ−)2ρh−−0,−
)
(L−p− f )(n − 1)

+
(
βρ+

(
g+0,− + g−0,− − β+ f +0,− − α+h0,−

)+ ρ+h−0,−
)
(L−p− f )(n + 1)

− ρh−p−−1,− f (n − 1)− ρ+h p−−1,− f (n + 1)

+ 1

2

(
βρ+

(
g+p−,− + g+p+,+ + gp−,− + gp+,+

)
f (n + 1)

+ β−ρ
(
g−p−,− + g−p+,+ + gp−,− + gp+,+

)
f (n − 1)

− ρ−ρ
(
g−−p−,− + g−−p+,+ − gp−,− − gp+,+

)
f (n − 2)

)
= ρ−ρ

2

(
g−−p+,+ − g−−p−,− + gp−,− − gp+,+

)
f (n − 2)

+
(
ρ
(
β−(g−−p+,+ + g−p−,−)− h−p−−1,− + h−−p+−1,+

)
+ β−ρ

2

(
g−p+,+ + gp−,− − gp+,+ − g−p−,−

))
f (n − 1)

+
(
β
(
α+(g+p+,+ + gp−,−)+ f p−−1,− − f +p+−1,+

)
− α+

(
β(g−p+,+ + gp−,−)− h p−−1,− + h−p+−1,+

))
f (n)

+
(
ρ+
(
β(g−p+,+ + gp−,−)− h p−−1,− + h−p+−1,+

)
+ βρ+

2

(
gp+,+ + g+p−,− − g+p+,+ − gp−,−

))
f (n + 1),

where we also used (3.37).

Performing the same calculation for n odd one obtains

i([Pp, L] f )(n)

=
p+−1∑
�=1

ρ+ρ++
(

g++p+−�,+ − g+p+−�,+ − α++h+p+−1−�,+

− β++ f ++p+−1−�,+
)
(L� f )(n + 2)

+
p+−1∑
�=1

(
α++ρ+

(
g+p+−�,+ − g++p+−�,+ + α++h+p+−1−�,+ + β++ f ++p+−1−�,+

)
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+ ρ+
(
α++(g++p+−�,+ + g+p+−�,+)− f ++p+−1−�,+

+ f +p+−�,+
))
(L� f )(n + 1)

+
p+−1∑
�=1

(
α+ρ

(
g−p+−�,+ − gp+−�,+ + αh−p+−1−�,+ + β f p+−1−�,+

)
+ ρ
(
α+(g+p+−�,+ + gp+−�,+)− f +p+−1−�,+ + f p+−�,+

))
(L� f )(n − 1)

+
( p+−1∑

�=2

(
g+p++1−�,+ − gp++1−�,+ − α+h p+−�,+ − β+ f +p+−�,+

)
+

p+−1∑
�=1

α+
(
β(−gp+−�,+ − g−p+−�,+)+ h p+−�,+ − h−p+−1−�,+

)
+

p+−1∑
�=1

β
(
α+(g+p+−�,+ + gp+−�,+)− f +p+−1−�,+ + f p+−�,+

))
(L� f )(n)

+
p−∑
�=1

ρ+ρ++
(
g++p−−�,− − g+p−−�,− − β++ f ++p−−�,−

− α++h+p−−�,−
)
(L−� f )(n + 2)

+
( p−∑

�=1

α++ρ+
(
g+p−−�,− − g++p−−�,− + β++ f ++p−−�,− + α++h+p−−�,−

)
+

p−−1∑
�=1

ρ+
(
α++(g++p−−�,− + g+p−−�,−)− f ++p−−�,−

+ f +p−−1−�,−
))
(L−� f )(n + 1)

+
( p−∑

�=1

α+ρ
(
g−p−−�,− − gp−−�,− + αh−p−−�,− + β f p−−�,−

)
+

p−−1∑
�=1

ρ
(
α+(g+p−−�,− + gp−−�,−)− f +p−−�,−

+ f p−−1−�,−
))
(L−� f )(n − 1)

+
( p−−1∑

�=1

(
g+p−−1−�,− − gp−−1−�,− − α+h p−−1−�,− − β+ f +p−−1−�,−

)
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+
p−−1∑
�=1

β
(
α+(g+p−−�,− + gp−−�,−)− f +p−−�,− + f p−−1−�,−

)
+

p−∑
�=1

α+
(
β(−gp−−�,− − g−p−−�,−)− h−p−−�,− + h p−−1−�,−

))
(L−� f )(n)

+ ρ+ρ++
(
g++0,+ − g+0,+

)
(L p+ f )(n + 2)

+ ρ+ρ++
(1

2
(g++p+,+ − gp+,+)− α++h+p+−1,+ − β++ f ++p+−1,+

)
f (n + 2)

+ ρ+
(
2α++g+0,+ + f +0,+

)
(L p+ f )(n + 1)

+ α++ρ+
(1

2
(g+p+,+ + gp+,+)+ α++h+p+−1,+ + β++ f ++p+−1,+

)
f (n + 1)

− ρ+ f ++p+−1,+ f (n + 1)

+ α+ρ
(
g−0,+ − g0,+

)
(L p+ f )(n − 1)

+ ρ
(
α+(g0,+ + g+0,+)+ f0,+

)
(L p+ f )(n − 1)

+ α+ρ
(1

2
(g−p+,+ + gp+,+)+ αh−p+−1,+ + β f p+−1,+

)
f (n − 1)

− ρ f +p+−1,+ f (n − 1)

+ (g+0,+ − g0,+)(L p++1 f )(n)

+ (g+1,+ − g1,+ − α+h0,+ − β+ f +0,+
)
(L p+ f )(n)

+ α+β
(
g+0,+ − g0,+

)
(L p+ f )(n)+ (α+h0,+ + β f0,+

)
(L p+ f )(n)

− (β+ f +p+−1,+ + α+h p+−1,+
)
(L f )(n)

+ (α+β(gp+,+ − g−p+,+)− α+h−p+−1,+ − β f +p+−1,+
)

f (n)

+ 1

2
ρ+ρ++

(
g++p−,− − gp−,−

)
f (n + 2)

+ ρ+
(
α++(g+0,− + g++0,−)− f ++0,−

)
(L−p− f )(n + 1)

+ ρ+
(1

2
α++(gp−,− + g+p+,+)+ f +p−−1,−

)
f (n + 1)

+ ρ
(
α+(g+0,− + g0,−)− f +0,−

)
(L−p− f )(n − 1)

+ ρ
(1

2
α+(g−p−,− + gp+,+)+ f p−−1,−

)
f (n − 1)

+ β
(
α+(g+0,− + g0,−)− f +0,−

)
(L−p− f )(n)

+ (g+p−−1,− − gp−−1,− − β+ f +p−−1,− + β f p−−1,−
)

f (n)

− α+h−1,− f (n) (3.81)
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= ρ+ρ++

2

(
g++p−,− − g++p+,+ + gp+,+ − gp−,−

)
f (n + 2)

+
(
ρ+
(
α++(g++p+,+ + g+p−,−)− f ++p+−1,+ + f +p−−1,−

)
+ α++ρ+

2

(
g+p+,+ + gp−,− − gp+,+ − g+p−,−

))
f (n + 1)

+
(
β
(
α+(g+p+,+ + gp−,−)+ f p−−1,− − f +p+−1,+

)
− α+

(
β(g−p+,+ + gp−,−)− h p−−1,− + h−p+−1,+

))
f (n)

+
(
ρ
(
α+(g+p+,+ + gp−,−)+ f p−−1,− − f +p+−1,+

)
+ α+ρ

2

(
gp+,+ + g−p−,− − g−p+,+ − gp−,−

))
f (n − 1).

Similarly to (3.80) we have added and subtracted the following terms in (3.81)

p+∑
�=1

g+p+−�,+(L
�+1 f )(n),

p+∑
�=1

f +p+−�,+(D
−1L� f )(n),

p−∑
�=1

g+p−−�,−(L
−�+1 f )(n),

p−∑
�=1

f +p−−�,−(D
−1L−�+1 f )(n).

Comparing coefficients finally shows that (3.79) is equivalent to

(ρ−ρ)tp = ρ−ρ(C− + C), (3.82)

(αρ−)tp = ρ−A + αρ−C−, (3.83)

(βρ+)tp = ρ+B + βρ+C+, (3.84)

(α+β)tp = βA+ + α+B, (3.85)

where

A = i
(
α(gp+,+ + g−p−,−)− f p+−1,+ + f −p−−1,−

)
,

B = i
(− β(g−p+,+ + gp−,−)+ h p−−1,− − h−p+−1,+

)
,

C = i

2

(
gp+,+ + g−p−,− − g−p+,+ − gp−,−

)
.

In particular, (3.54) implies (3.79) since, by (3.55),

ρtp =
i

2
ρ
(
gp+,+ + g−p−,− − g−p+,+ − gp−,−

)
.

To prove the converse assertion (i.e., that (3.79) implies (3.54)), we argue as follows:
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Rewriting (3.83) and (3.84) using ρ = γ 1/2 = (1− αβ)1/2 and (3.82) yields

(1+ αβ

2γ
)αtp +

α2

2γ
βtp = A − αC,

β2

2γ
αtp + (1+ αβ

2γ
)βtp = B − βC.

This linear system is uniquely solvable since its determinant equals γ−1 and the
solution reads

αtp = A − α

2

(
βA + αB + 2γC

)
,

βtp = B − β

2

(
βA + αB + 2γC

)
.

Using (3.20) and (3.24) it is straightforward to check that βA + αB + 2γC = 0
which shows that the converse assertion also holds.

In the special stationary case, where Pp and L commute, [Pp, L] = 0, one can
prove that Pp and L satisfy an algebraic relationship of the type (cf. (3.341), (3.342))

P2
p + Rp(L) = P2

p +
1

4
c2

0,+L−2p−
2p+1∏
m=0

(L − Em) = 0, (3.86)

where (cf. (3.40))

p = (p−, p+) ∈ N2
0 \ {(0, 0)}, {Em}2p+1

m=0 ⊂ C \ {0}, p = p− + p+ − 1 ∈ N0.

Hence, the expression P2
p+ Rp(L) in (3.86) represents the Burchnall–Chaundy Lau-

rent polynomial for the Lax pair (L , Pp).

3.4 The Stationary Ablowitz–Ladik Formalism

If I am given a formula, and I am ignorant of its meaning, it
cannot teach me anything, but if I already know it what does the
formula teach me?

St. Augustine (354–430)

This section is devoted to a detailed study of the stationary Ablowitz–Ladik hierarchy
and its algebro-geometric solutions. Our principal tools are derived from combining
the Laurent polynomial recursion formalism introduced in Section 3.2 and a funda-
mental meromorphic function φ on a hyperelliptic curve Kp. With the help of φ we
study the Baker–Akhiezer vector �, trace formulas, and theta function representa-
tions of φ, �, α, and β.
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Unless explicitly stated otherwise, we suppose in this section that

α, β ∈ CZ, α(n)β(n) /∈ {0, 1}, n ∈ Z, (3.87)

and assume (3.4), (3.5), (3.7), (3.13)–(3.16), (3.19)–(3.26), (3.27), (3.30), (3.39),
(3.40), keeping p ∈ N0 fixed.

We recall the hyperelliptic curve

Kp : Fp(z, y) = y2 − 4c−2
0,+z2p−Rp(z) = y2 −

2p+1∏
m=0

(z − Em) = 0, (3.88)

Rp(z) =
(

c0,+
2z p−

)2 2p+1∏
m=0

(z − Em), {Em}2p+1
m=0 ⊂ C \ {0}, p = p− + p+ − 1,

as introduced in (3.42). Throughout this section we assume Kp to be nonsingular,
that is, we suppose that

Em �= Em′ for m �= m′, m,m′ = 0, 1, . . . , 2p + 1. (3.89)

Kp is compactified by joining two points P∞± , P∞+ �= P∞− , but for notational
simplicity the compactification is also denoted by Kp. Points P on Kp \{P∞+ , P∞−}
are represented as pairs P = (z, y), where y( · ) is the meromorphic function on
Kp satisfying Fp(z, y) = 0. The complex structure on Kp is then defined in the
usual manner. Hence, Kp becomes a hyperelliptic Riemann surface of genus p in a
standard manner.

We also emphasize that by fixing the curve Kp (i.e., by fixing E0, . . . , E2p+1), the
summation constants c1,±, . . . , cp±,± in f p±,±, gp±,±, and h p±,± (and hence in the
corresponding stationary s-ALp equations) are uniquely determined as is clear from
(3.46), (3.47), which establish the summation constants c�,± as symmetric functions
of E±1

0 , . . . , E±1
2p+1.

For notational simplicity we will usually tacitly assume that p ∈ N and hence
p ∈ N2

0 \ {(0, 0), (0, 1), (1, 0)}. (The trivial case p = 0 is explicitly treated in
Example 3.26.)

We denote by {µ j (n)} j=1,...,p and {ν j (n)} j=1,...,p the zeros of ( · )p−Fp( · , n) and

( · )p−−1 Hp( · , n), respectively. Thus, we may write

Fp(z) = −c0,+α+z−p−
p∏

j=1

(z − µ j ), (3.90)

Hp(z) = c0,+βz−p−+1
p∏

j=1

(z − ν j ), (3.91)
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and we recall that (cf. (3.39))

Rp − G2
p = −Fp Hp. (3.92)

The next step is crucial; it permits us to “lift” the zeros µ j and ν j from the complex
plane C to the curve Kp. From (3.92) one infers that

Rp(z)− G p(z)
2 = 0, z ∈ {µ j , νk} j,k=1,...,p.

We now introduce {µ̂ j } j=1,...,p ⊂ Kp and {ν̂ j } j=1,...,p ⊂ Kp by

µ̂ j (n) = (µ j (n), (2/c0,+)µ j (n)
p−G p(µ j (n), n)), j = 1, . . . , p, n ∈ Z,

(3.93)
and

ν̂ j (n) = (ν j (n),−(2/c0,+)ν j (n)
p−G p(ν j (n), n)), j = 1, . . . , p, n ∈ Z. (3.94)

We also introduce the points P0,± by

P0,± = (0,±(c0,−/c0,+)) ∈ Kp,
c2

0,−
c2

0,+
=

2p+1∏
m=0

Em .

We emphasize that P0,± and P∞± are not necessarily on the same sheet of Kp.
Next, we briefly recall our conventions used in connection with divisors on Kp.

A map, D : Kp → Z, is called a divisor on Kp if D(P) �= 0 for only finitely many
P ∈ Kp. The set of divisors on Kp is denoted by Div(Kp). We shall employ the
following (additive) notation for divisors,

DQ0 Q = DQ0 +DQ, DQ = DQ1 + · · · +DQm ,

Q = {Q1, . . . , Qm} ∈ Symm Kp, Q0 ∈ Kp, m ∈ N,

where for any Q ∈ Kp,

DQ : Kp → N0, P �→ DQ(P) =
{

1 for P = Q,

0 for P ∈ Kp \ {Q},
and Symn Kp denotes the nth symmetric product of Kp. In particular, one can iden-
tify Symm Kp with the set of nonnegative divisors 0 ≤ D ∈ Div(Kp) of degree m.
Moreover, for a nonzero, meromorphic function f on Kp, the divisor of f is denoted
by ( f ). Two divisors D, E ∈ Div(Kp) are called equivalent, denoted by D ∼ E , if
and only if D − E = ( f ) for some f ∈M(Kp) \ {0}. The divisor class [D] of D is
then given by [D] = {E ∈ Div(Kp) | E ∼ D}. We recall that

deg(( f )) = 0, f ∈M(Kp) \ {0},
where the degree deg(D) of D is given by deg(D) =∑P∈Kp

D(P).
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Next we introduce the fundamental meromorphic function on Kp by

φ(P, n) = (c0,+/2)z−p− y + G p(z, n)

Fp(z, n)
(3.95)

= −Hp(z, n)

(c0,+/2)z−p− y − G p(z, n)
, (3.96)

P = (z, y) ∈ Kp, n ∈ Z,

with divisor (φ( · , n)) of φ( · , n) given by

(φ( · , n)) = DP0,−ν̂(n) −DP∞− µ̂(n), (3.97)

using (3.90) and (3.91). Here we abbreviated

µ̂ = {µ̂1, . . . , µ̂p}, ν̂ = {ν̂1, . . . , ν̂p} ∈ Symp(Kp).

Given φ( · , n), the meromorphic stationary Baker–Akhiezer vector �( · , n, n0) on
Kp is then defined by

�(P, n, n0) =
(
ψ1(P, n, n0)

ψ2(P, n, n0)

)
,

ψ1(P, n, n0) =


∏n

n′=n0+1

(
z + α(n′)φ−(P, n′)

)
, n ≥ n0 + 1,

1, n = n0,∏n0
n′=n+1

(
z + α(n′)φ−(P, n′)

)−1
, n ≤ n0 − 1,

(3.98)

ψ2(P, n, n0) = φ(P, n0)


∏n

n′=n0+1

(
zβ(n′)φ−(P, n′)−1 + 1

)
, n ≥ n0 + 1,

1, n = n0,∏n0
n′=n+1

(
zβ(n′)φ−(P, n′)−1 + 1

)−1
, n ≤ n0 − 1.

Basic properties of φ and � are summarized in the following result.

Lemma 3.18 Suppose α, β satisfy (3.87) and the pth stationary Ablowitz–Ladik
system (3.30). Moreover, assume (3.88) and (3.89) and let P = (z, y) ∈ Kp \
{P∞+ , P∞− , P0,+, P0,−}, (n, n0) ∈ Z2. Then φ satisfies the Riccati-type equation

αφ(P)φ−(P)− φ−(P)+ zφ(P) = zβ, (3.99)

as well as

φ(P)φ(P∗) = Hp(z)

Fp(z)
, (3.100)

φ(P)+ φ(P∗) = 2
G p(z)

Fp(z)
, (3.101)

φ(P)− φ(P∗) = c0,+z−p− y(P)

Fp(z)
. (3.102)
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The vector � satisfies

U (z)�−(P) = �(P), (3.103)

Vp(z)�
−(P) = − i

2
c0,+z−p− y�−(P), (3.104)

ψ2(P, n, n0) = φ(P, n)ψ1(P, n, n0), (3.105)

ψ1(P, n, n0)ψ1(P∗, n, n0) = zn−n0
Fp(z, n)

Fp(z, n0)
�(n, n0), (3.106)

ψ2(P, n, n0)ψ2(P∗, n, n0) = zn−n0
Hp(z, n)

Fp(z, n0)
�(n, n0), (3.107)

ψ1(P, n, n0)ψ2(P∗, n, n0)+ ψ1(P∗, n, n0)ψ2(P, n, n0)

= 2zn−n0
G p(z, n)

Fp(z, n0)
�(n, n0), (3.108)

ψ1(P, n, n0)ψ2(P∗, n, n0)− ψ1(P∗, n, n0)ψ2(P, n, n0) (3.109)

= −c0,+zn−n0−p− y

Fp(z, n0)
�(n, n0),

where we used the abbreviation

�(n, n0) =


∏n

n′=n0+1 γ (n
′), n ≥ n0 + 1,

1, n = n0,∏n0
n′=n+1 γ (n

′)−1, n ≤ n0 − 1.

(3.110)

Proof To prove (3.99) one uses the definition (3.95) of φ and equations (3.8), (3.10),
and (3.39) to obtain

αφ(P)φ−(P)− φ(P)− + zφ(P)− zβ

= 1

Fp F−p

(
αG pG−p + (c0,+/2)z−p− yα(G p + G−p )+ αRp

− (G−p + (c0,+/2)z−p− y)Fp + z(G p + (c0,+/2)z−p− y)F−p − zβFp F−p
)

= 1

Fp F−p

(
αG p(G p + G−p )+ Fp(−αHp − G−p − zβF−p )+ zF−p G p

)
= 0.

Equations (3.100)–(3.102) are clear from the definitions of φ and y. By definition of
ψ , (3.105) holds for n = n0. By induction,

ψ2(P, n, n0)

ψ1(P, n, n0)
= zβ(n)φ−(P, n)−1 + 1

z + α(n)φ−(P, n)

ψ−2 (P, n, n0)

ψ−1 (P, n, n0)
= zβ(n)+ φ−(P, n)

z + α(n)φ−(P, n)
,
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and hence ψ2/ψ1 satisfies the Riccati-type equation (3.99)

α(n)φ−(P, n)
ψ2(P, n, n0)

ψ1(P, n, n0)
− φ−(P, n)+ z

ψ2(P, n, n0)

ψ1(P, n, n0)
− zβ(n) = 0.

This proves (3.105).

The definition of ψ implies

ψ1(P, n, n0) = (z + α(n)φ−(P, n))ψ−1 (P, n, n0)

= zψ−1 (P, n, n0)+ α(n)ψ−2 (P, n, n0),

ψ2(P, n, n0) = (zβ(n)φ−(P, n)−1 + 1)ψ−2 (P, n, n0)

= zβ(n)ψ−1 (P, n, n0)+ ψ−2 (P, n, n0),

which proves (3.103). Property (3.104) follows from (3.105) and the definition of φ.
To prove (3.106) one can use (3.8) and (3.10)

ψ1(P)ψ1(P∗) = (z + αφ−(P))(z + αφ−(P∗))ψ−1 (P)ψ−1 (P∗)

= 1

F−p
(z2 F−p + 2zαG−p + α2 H−p )ψ−1 (P)ψ−1 (P∗)

= 1

F−p
(z2 F−p − zαβFp + zα(G p + G−p ))ψ−1 (P)ψ−1 (P∗)

= zγ
Fp

F−p
ψ−1 (P)ψ−1 (P∗).

Equation (3.107) then follows from (3.100), (3.105), and (3.106). Finally, equation
(3.108) (resp. (3.109)) is proved by combining (3.101) and (3.105) (resp. (3.102) and
(3.105)).

Combining the Laurent polynomial recursion approach of Section 3.2 with (3.90)
and (3.91) readily yields trace formulas for f�,± and h�,± in terms of symmetric
functions of the zeros µ j and νk of ( · )p−Fp and ( · )p−−1 Hp, respectively. For sim-
plicity we just record the simplest cases.

Lemma 3.19 Suppose α, β satisfy (3.87) and the pth stationary Ablowitz–Ladik sys-
tem (3.30). Then,

α

α+
= (−1)p+1 c0,+

c0,−

p∏
j=1

µ j , (3.111)

β+

β
= (−1)p+1 c0,+

c0,−

p∏
j=1

ν j , (3.112)
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p∑
j=1

µ j = α+β − γ+α
++

α+
− c1,+

c0,+
, (3.113)

p∑
j=1

ν j = α+β − γ
β−

β
− c1,+

c0,+
. (3.114)

Proof We compare coefficients in (3.13) and (3.90)

z p−Fp(z) = f0,− + · · · + z p−+p+−2 f1,+ + z p−+p+−1 f0,+

= c0,+α+
(
(−1)p+1

p∏
j=1

µ j + · · · + z p−+p+−2
p∑

j=1

µ j − z p−+p+−1
)

and use f0,− = c0,−α and f1,+ = c0,+
(
(α+)2β − γ+α++

) − α+c1,+ which
yields (3.111) and (3.113). Similarly, one employs h0,− = −c0,−β+ and h1,+ =
c0,+

(
γβ− − α+β2

)+ βc1,+ for the remaining formulas (3.112) and (3.114).

Remark 3.20 The trace formulas in Lemma 3.19 illustrate why we assumed the
condition α(n)β(n) �= 0 for all n ∈ N throughout this chapter. Moreover, the fol-
lowing section shows that this condition is intimately connected with admissible
divisors Dµ̂,Dν̂ avoiding the exceptional points P∞± , P0,±. On the other hand, as
is clear from the matrix representation (3.59) of the Lax difference expression L , if
α(n0)β(n0) = 1 for some n0 ∈ N, and hence ρ(n0) = 0, the infinite matrix L splits
into a direct sum of two half-line matrices L±(n0) (in analogy to the familiar sin-
gular case of infinite Jacobi matrices aS+ + a−S− + b on Z with a(n0) = 0). This
explains why we assumed α(n)β(n) �= 1 for all n ∈ N throughout this chapter.

Next we turn to asymptotic properties of φ and � in a neighborhood of P∞± and
P0,±.

Lemma 3.21 Suppose α, β satisfy (3.87) and the pth stationary Ablowitz–Ladik sys-

tem (3.30). Moreover, let P = (z, y) ∈ Kp \ {P∞+ , P∞− , P0,+, P0,−}, (n, n0) ∈ Z2.
Then φ has the asymptotic behavior

φ(P) =
ζ→0

{
β + β−γ ζ + O(ζ 2), P → P∞+ ,
−(α+)−1ζ−1 + (α+)−2α++γ+ + O(ζ ), P → P∞− ,

ζ = 1/z,

(3.115)

φ(P) =
ζ→0

{
α−1 − α−2α−γ ζ + O(ζ 2), P → P0,+,
−β+ζ − β++γ+ζ 2 + O(ζ 3), P → P0,−,

ζ = z. (3.116)
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The components of the Baker–Akhiezer vector � have the asymptotic behavior

ψ1(P, n, n0) =
ζ→0

{
ζ n0−n(1+ O(ζ )), P → P∞+ ,
α+(n)
α+(n0)

�(n, n0)+ O(ζ ), P → P∞− ,
ζ = 1/z, (3.117)

ψ1(P, n, n0) =
ζ→0

{
α(n)
α(n0)

+ O(ζ ), P → P0,+,
ζ n−n0�(n, n0)(1+ O(ζ )), P → P0,−,

ζ = z, (3.118)

ψ2(P, n, n0) =
ζ→0

{
β(n)ζ n0−n(1+ O(ζ )), P → P∞+ ,
− 1

α+(n0)
�(n, n0)ζ

−1(1+ O(ζ )), P → P∞− ,
ζ = 1/z,

(3.119)

ψ2(P, n, n0) =
ζ→0

{
1

α(n0)
+ O(ζ ), P → P0,+,

−β+(n)�(n, n0)ζ
n+1−n0(1+ O(ζ )), P → P0,−,

ζ = z.

(3.120)

The divisors (ψ j ) of ψ j , j = 1, 2, are given by

(ψ1( · , n, n0)) = Dµ̂(n) −Dµ̂(n0) + (n − n0)(DP0,− −DP∞+ ), (3.121)

(ψ2( · , n, n0)) = Dν̂(n) −Dµ̂(n0) + (n − n0)(DP0,− −DP∞+ )+DP0,− −DP∞− .

(3.122)

Proof The existence of the asymptotic expansion of φ in terms of the local coordinate
ζ = 1/z near P∞± , respectively, ζ = z near P0,± is clear from the explicit form of
φ in (3.95) and (3.96). Insertion of the Laurent polynomials Fp into (3.95) and Hp

into (3.96) then yields the explicit expansion coefficients in (3.115) and (3.116).
Alternatively, and more efficiently, one can insert each of the following asymptotic
expansions

φ(P) =
z→∞ φ−1z + φ0 + φ1z−1 + O(z−2),

φ(P∗) =
z→∞ φ0 + φ1z−1 + O(z−2),

φ(P) =
z→0

φ0 + φ1z + O(z2),

φ(P∗) =
z→0

φ1z + φ2z2 + O(z3)

(3.123)

into the Riccati-type equation (3.99) and, upon comparing coefficients of powers of
z, which determines the expansion coefficients φk in (3.123), one concludes (3.115)
and (3.116).
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Next we compute the divisor of ψ1. By (3.98) it suffices to compute the divisor of
z + αφ−(P). First of all we note that

z + αφ−(P) =


z + O(1), P → P∞+ ,
α+
α
γ + O(z−1), P → P∞− ,

α
α− + O(z), P → P0,+,
γ z + O(z2), P → P0,−,

which establishes (3.117) and (3.118). Moreover, the poles of the function z +
αφ−(P) in Kp \ {P0,±, P∞±} coincide with the ones of φ−(P), and so it remains to
compute the missing p zeros in Kp \ {P0,±, P∞±}. Using (3.10), (3.16), (3.39), and
y(µ̂ j ) = (2/c0,+)µp−

j G p(µ j ) (cf. (3.93)) one computes

z + αφ−(P) = z + α
(c0,+/2)z−p− y + G−p

F−p

= Fp + α((c0,+/2)z−p− y − G p)

F−p

= Fp

F−p
+ α

(c0,+/2)2z−2p− y2 − G2
p

F−p ((c0,+/2)z−p− y + G p)

= Fp

F−p

(
1+ αHp

(c0,+/2)z−p− y + G p

)
=

P→µ̂ j

Fp(P)

F−p (P)
O(1).

Hence the sought after zeros are at µ̂ j , j = 1, . . . , p (with the possibility that a zero
at µ̂ j is cancelled by a pole at µ̂−j ).

Finally, the behavior of ψ2 follows immediately using ψ2 = φψ1.

In addition to (3.115), (3.116) one can use the Riccati-type equation (3.99) to
derive a convergent expansion of φ around P∞± and P0,± and recursively determine
the coefficients as in Lemma 3.21. Since this is not used later in this section, we omit
further details at this point.

Since nonspecial divisors play a fundamental role in the derivation of theta func-
tion representations of algebro-geometric solutions of the AL hierarchy, we now take
a closer look at them.

Lemma 3.22 Suppose α, β satisfy (3.87) and the pth stationary Ablowitz–Ladik
system (3.30). Moreover, assume (3.88) and (3.89) and let n ∈ Z. Let Dµ̂, µ̂ =
{µ̂1, . . . , µ̂p}, and Dν̂ , ν̂ = {ν̂1, . . . , ν̂ p}, be the pole and zero divisors of degree p,
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respectively, associated with α, β, and φ defined according to (3.93) and (3.94), that
is,

µ̂ j (n) = (µ j (n), (2/c0,+)µ j (n)
p−G p(µ j (n), n)), j = 1, . . . , p,

ν̂ j (n) = (ν j (n),−(2/c0,+)ν j (n)
p−G p(ν j (n), n)), j = 1, . . . , p.

Then Dµ̂(n) and Dν̂(n) are nonspecial for all n ∈ Z.

Proof We provide a detailed proof in the case of Dµ̂(n). By Theorem A.32, Dµ̂(n)

is special if and only if {µ̂1(n), . . . , µ̂p(n)} contains at least one pair of the type
{µ̂(n), µ̂(n)∗}. Hence Dµ̂(n) is certainly nonspecial as long as the projections µ j (n)
of µ̂ j (n) are mutually distinct, µ j (n) �= µk(n) for j �= k. On the other hand, if two
or more projections coincide for some n0 ∈ Z, for instance,

µ j1(n0) = · · · = µ jN (n0) = µ0, N ∈ {2, . . . , p},
then G p(µ0, n0) �= 0 as long as µ0 /∈ {E0, . . . , E2p+1}. This fact immediately fol-
lows from (3.39) since Fp(µ0, n0) = 0 but Rp(µ0) �= 0 by hypothesis. In particular,
µ̂ j1(n0), . . . , µ̂ jN (n0) all meet on the same sheet since

µ̂ jr (n0) = (µ0, (2/c0,+)µp−
0 G p(µ0, n0)), r = 1, . . . , N ,

and hence no special divisor can arise in this manner. Remaining to be studied is
the case where two or more projections collide at a branch point, say at (Em0 , 0) for
some n0 ∈ Z. In this case one concludes

Fp(z, n0) =
z→Em0

O
(
(z − Em0)

2)
and

G p(Em0, n0) = 0 (3.124)

using again (3.39) and Fp(Em0 , n0) = Rp(Em0) = 0. Since G p( · , n0) is a Laurent
polynomial, (3.124) implies G p(z, n0) =

z→Em0

O((z−Em0)). Thus, using (3.39) once

more, one obtains the contradiction,

O
(
(z − Em0)

2) =
z→Em0

Rp(z)

=
z→Em0

(
c0,+

2E p−
m0

)2

(z − Em0)

( 2p+1∏
m=0

m �=m0

(
Em0 − Em

)+ O(z − Em0)

)
.

Consequently, at most one µ̂ j (n) can hit a branch point at a time and again no special
divisor arises. Finally, by our hypotheses on α, β, µ̂ j (n) stay finite for fixed n ∈ Z
and hence never reach the points P∞± . (Alternatively, by (3.115), µ̂ j never reaches
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the point P∞+ . Hence, if some µ̂ j tend to infinity, they all necessarily converge to
P∞− .) Again no special divisor can arise in this manner.

The proof for Dν̂(n) is analogous (replacing Fp by Hp and noticing that by (3.115),
φ has no zeros near P∞± ), thereby completing the proof.

Next, we shall provide an explicit representation of φ, �, α, and β in terms of the
Riemann theta function associated with Kp. We freely employ the notation estab-
lished in Appendices A and B. (We recall our tacit assumption p ∈ N to avoid the
trivial case p = 0.)

Let θ denote the Riemann theta function associated with Kp and introduce a fixed
homology basis {a j , b j } j=1,...,p on Kp. Choosing as a convenient fixed base point
one of the branch points, Q0 = (Em0 , 0), the Abel maps AQ0

and αQ0
are defined

by (A.29) and (A.30) and the Riemann vector �Q0
is given by (A.41). Let ω(3)

P+,P− be
the normal differential of the third kind holomorphic on Kp \ {P+, P−} with simple

poles at P± and residues ±1, respectively. In particular, one obtains for ω(3)
P0,−,P∞±

,

ω
(3)
P0,−,P∞±

=
(

y + y0,−
z

∓
p∏

j=1

(z − λ±, j )

)
dz

2y
, P0,− = (0, y0,−), (3.125)

where the constants {λ±, j }pj=1 ⊂ C are uniquely determined by employing the nor-
malization ∫

a j

ω
(3)
P0,−,P∞±

= 0, j = 1, . . . , p.

The explicit formula (3.125) then implies the following asymptotic expansions (using
the local coordinate ζ = z near P0,± and ζ = 1/z near P∞± ),∫ P

Q0

ω
(3)
P0,−,P∞−

=
ζ→0

{
0

ln(ζ )

}
+ ω

0,±
0 (P0,−, P∞−)+ O(ζ ) as P → P0,±, (3.126)∫ P

Q0

ω
(3)
P0,−,P∞−

=
ζ→0

{
0

− ln(ζ )

}
+ ω

∞±
0 (P0,−, P∞−)+ O(ζ ) as P → P∞± ,

(3.127)∫ P

Q0

ω
(3)
P0,−,P∞+

=
ζ→0

{
0

ln(ζ )

}
+ ω

0,±
0 (P0,−, P∞+)+ O(ζ ) as P → P0,±, (3.128)∫ P

Q0

ω
(3)
P0,−,P∞+

=
ζ→0

{− ln(ζ )
0

}
+ ω

∞±
0 (P0,−, P∞+)+ O(ζ ) as P → P∞± .

(3.129)
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Lemma 3.23 With ω
∞σ

0 (P0,−, P∞±) and ω
0,σ ′
0 (P0,−, P∞±), σ, σ ′ ∈ {+,−}, de-

fined as in (3.126)–(3.129) one has

exp
(
ω

0,−
0 (P0,−, P∞±)− ω

∞+
0 (P0,−, P∞±)

− ω
∞−
0 (P0,−, P∞±)+ ω

0,+
0 (P0,−, P∞±)

) = 1.
(3.130)

Proof Pick Q1,± = (z1,±y1) ∈ Kp \{P∞±} in a neighborhood of P∞± and Q2,± =
(z2,±y2) ∈ Kp \ {P0,±} in a neighborhood of P0,±. Without loss of generality one
may assume that P∞+ and P0,+ lie on the same sheet. Then by (3.125),

∫ Q2,−

Q0

ω
(3)
P0,−,P∞−

−
∫ Q1,+

Q0

ω
(3)
P0,−,P∞−

−
∫ Q1,−

Q0

ω
(3)
P0,−,P∞−

+
∫ Q2,+

Q0

ω
(3)
P0,−,P∞−

=
∫ Q2,+

Q0

dz

z
−
∫ Q1,+

Q0

dz

z
= ln(z2)− ln(z1)+ 2π ik,

for some k ∈ Z. On the other hand, by (3.126)–(3.129) one obtains∫ Q2,−

Q0

ω
(3)
P0,−,P∞−

−
∫ Q1,+

Q0

ω
(3)
P0,−,P∞−

−
∫ Q1,−

Q0

ω
(3)
P0,−,P∞−

+
∫ Q2,+

Q0

ω
(3)
P0,−,P∞−

= ln(z2)+ ln(1/z1)+ ω
0,−
0 (P0,−, P∞−)− ω

∞+
0 (P0,−, P∞−)

− ω
∞−
0 (P0,−, P∞−)+ ω

0,+
0 (P0,−, P∞−)+ O(z2)+ O(1/z1),

and hence the part of (3.130) concerning ω
(3)
P0,−,P∞−

follows. The corresponding re-

sult for ω(3)
P0,−,P∞+

is proved analogously.

In the following it will be convenient to use the abbreviation

z(P, Q) = �Q0
− AQ0

(P)+ αQ0
(DQ),

P ∈ Kp, Q = {Q1, . . . , Q p} ∈ Symp(Kp).

We note that z( · , Q) is independent of the choice of base point Q0.
For later use we state the following result.

Lemma 3.24 The following relations hold:

z(P∞+ , µ̂
+
) = z(P∞− , ν̂) = z(P0,−, µ̂) = z(P0,+, ν̂+), (3.131)

z(P∞+ , ν̂
+
) = z(P0,−, ν̂), z(P0,+, µ̂+) = z(P∞− , µ̂). (3.132)



232 3 The Ablowitz–Ladik Hierarchy

Proof We indicate the proof of some of the relations to be used in (3.146) and
(3.147). Let λ̂ denote either µ̂ or ν̂. Then,

z(P0,+, λ̂
+
) = �Q0

− AQ0
(P0,+)+ αQ0

(D
λ̂
+)

= �Q0
− AQ0

(P0,+)+ αQ0
(D

λ̂
)+ AP0,−(P∞+)

= �Q0
− AQ0

(P∞−)+ αQ0
(D

λ̂
)

= z(P∞− , λ̂),

z(P∞+ , λ̂
+
) = �Q0

− AQ0
(P∞+)+ αQ0

(D
λ̂
+)

= �Q0
− AQ0

(P∞+)+ αQ0
(D

λ̂
)+ AP0,−(P∞+)

= �Q0
− AQ0

(P0,−)+ αQ0
(D

λ̂
)

= z(P0,−, λ̂), etc.

Here we used AQ0
(P∗) = −AQ0

(P), P ∈ Kp, since Q0 is a branch point of Kp,
and αQ0

(D
λ̂
+) = αQ0

(D
λ̂
) + AP0,−(P∞+). The latter equality immediately follows

from (3.121) in the case λ̂ = µ̂ and from combining (3.97) and (3.122) in the case

λ̂ = ν̂.

Given these preparations, the theta function representations of φ, ψ1, ψ2, α, and β
then read as follows.

Theorem 3.25 Suppose α, β satisfy (3.87) and the pth stationary Ablowitz–Ladik
system (3.30). Moreover, assume hypothesis (3.88) and (3.89), and let P ∈ Kp \
{P∞+ , P∞− , P0,+, P0,−} and (n, n0) ∈ Z2. Then for each n ∈ Z, Dµ̂(n) and Dν̂(n)

are nonspecial. Moreover,

φ(P, n) = C(n)
θ(z(P, ν̂(n)))

θ(z(P, µ̂(n)))
exp

(∫ P

Q0

ω
(3)
P0,−,P∞−

)
, (3.133)

ψ1(P, n, n0) = C(n, n0)
θ(z(P, µ̂(n)))

θ(z(P, µ̂(n0)))
exp

(
(n − n0)

∫ P

Q0

ω
(3)
P0,−,P∞+

)
, (3.134)

ψ2(P, n, n0) = C(n)C(n, n0)
θ(z(P, ν̂(n)))

θ(z(P, µ̂(n0)))

× exp

(∫ P

Q0

ω
(3)
P0,−,P∞−

+ (n − n0)

∫ P

Q0

ω
(3)
P0,−,P∞+

)
, (3.135)
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where

C(n) = (−1)n−n0 exp
(
(n − n0)(ω

0,−
0 (P0,−, P∞−)− ω

∞+
0 (P0,−, P∞−))

)
× 1

α(n0)
exp
(− ω

0,+
0 (P0,−, P∞−)

)θ(z(P0,+, µ̂(n0)))

θ(z(P0,+, ν̂(n0)))
, (3.136)

C(n, n0) = exp
(− (n − n0)ω

∞+
0 (P0,−, P∞+)

)θ(z(P∞+ , µ̂(n0)))

θ(z(P∞+ , µ̂(n)))
. (3.137)

The Abel map linearizes the auxiliary divisors Dµ̂(n) and Dν̂(n) in the sense that

αQ0
(Dµ̂(n)) = αQ0

(Dµ̂(n0))+ AP0,−(P∞+)(n − n0), (3.138)

αQ0
(Dν̂(n)) = αQ0

(Dν̂(n0))+ AP0,−(P∞+)(n − n0), (3.139)

in addition,

αQ0
(Dν̂(n)) = αQ0

(Dµ̂(n))− AQ0
(P0,−)+ AQ0

(P∞−)

= αQ0
(Dµ̂(n))+ AP0,−(P∞−). (3.140)

Finally, α, β are of the form

α(n) = α(n0)(−1)n−n0

× exp
(− (n − n0)(ω

0,−
0 (P0,−, P∞−)− ω

∞+
0 (P0,−, P∞−))

)
× θ(z(P0,+, ν̂(n0)))θ(z(P0,+, µ̂(n)))

θ(z(P0,+, µ̂(n0)))θ(z(P0,+, ν̂(n)))
, (3.141)

β(n) = β(n0)(−1)n−n0

× exp
(
(n − n0)(ω

0,−
0 (P0,−, P∞−)− ω

∞+
0 (P0,−, P∞−))

)
× θ(z(P∞+ , µ̂(n0)))θ(z(P∞+ , ν̂(n)))

θ(z(P∞+ , ν̂(n0)))θ(z(P∞+ , µ̂(n)))
, (3.142)

α(n)β(n) = exp
(
ω
∞+
0 (P0,−, P∞−)− ω

0,+
0 (P0,−, P∞−)

)
× θ(z(P0,+, µ̂(n)))θ(z(P∞+ , ν̂(n)))

θ(z(P0,+, ν̂(n)))θ(z(P∞+ , µ̂(n)))
, (3.143)

�(n, n0) = exp
(
(n − n0)(ω

0,−
0 (P0,−, P∞+)− ω

∞+
0 (P0,−, P∞+))

)
× θ(z(P0,−, µ̂(n)))θ(z(P∞+ , µ̂(n0)))

θ(z(P0,−, µ̂(n0)))θ(z(P∞+ , µ̂(n)))
. (3.144)

Proof Applying Abel’s theorem (cf. Theorem A.16, (A.31)) to (3.97) proves (3.140),
and applying it to (3.121), (3.122) results in (3.138) and (3.139). By Lemma 3.22,
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Dµ̂ and Dν̂ are nonspecial. By equation (3.97) and Theorem A.28, φ(P, n) exp
( −∫ P

Q0
ω
(3)
P0,−,P∞−

)
must be of the type

φ(P, n) exp

(
−
∫ P

Q0

ω
(3)
P0,−,P∞−

)
= C(n)

θ(z(P, ν̂(n)))

θ(z(P, µ̂(n)))
(3.145)

for some constant C(n). A comparison of (3.145) and the asymptotic relations
(3.115) then yields, with the help of (3.126), (3.127) and (3.131), (3.132), the fol-
lowing expressions for α and β:

(α+)−1 = C+eω
0,+
0 (P0,−,P∞− ) θ(z(P0,+, ν̂+))

θ(z(P0,+, µ̂+))

= C+eω
0,+
0 (P0,−,P∞− ) θ(z(P∞− , ν̂))

θ(z(P∞− , µ̂))

= −Ceω
∞−
0 (P0,−,P∞− ) θ(z(P∞− , ν̂))

θ(z(P∞− , µ̂))
. (3.146)

Similarly one obtains

β+ = C+eω
∞+
0 (P0,−,P∞− ) θ(z(P∞+ , ν̂

+
))

θ(z(P∞+ , µ̂
+
))

= C+eω
∞+
0 (P0,−,P∞− ) θ(z(P0,−, ν̂))

θ(z(P0,−, µ̂))

= −Ceω
0,−
0 (P0,−,P∞− ) θ(z(P0,−, ν̂))

θ(z(P0,−, µ̂))
. (3.147)

Here we used (3.138) and (3.139), more precisely,

αQ0
(Dµ̂+) = αQ0

(Dµ̂)+ AP0,−(P∞+), αQ0
(Dν̂+) = αQ0

(Dν̂ )+ AP0,−(P∞+).
(3.148)

Thus, one concludes

C(n+1) = − exp
(
ω

0,−
0 (P0,−, P∞−)−ω∞+0 (P0,−, P∞−)

)
C(n), n ∈ Z, (3.149)

and

C(n + 1) = − exp
(
ω
∞−
0 (P0,−, P∞−)− ω

0,+
0 (P0,−, P∞−)

)
C(n), n ∈ Z,

which is consistent with (3.130). The first-order difference equation (3.149) then
implies

C(n) = (−1)(n−n0) exp
(
(n − n0)(ω

0,−
0 (P0,−, P∞−)− ω

∞+
0 (P0,−, P∞−))

)
× C(n0), n, n0 ∈ Z. (3.150)
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Thus one infers (3.141) and (3.142). Moreover, (3.150) and taking n = n0 in the
first line in (3.146) yield (3.136). Dividing the first line in (3.147) by the first line in
(3.146) then proves (3.143).

By (3.121) and Theorem A.28, ψ1(P, n, n0) must be of the type (3.134). A compar-
ison of (3.98), (3.115), and (3.134) as P → P∞+ (with local coordinate ζ = 1/z)
then yields

ψ1(P, n, n0) =
ζ→0

ζ n0−n(1+ O(ζ ))

and

ψ1(P, n, n0) =
ζ→0

C(n, n0)
θ(z(P∞+ , µ̂(n)))
θ(z(P∞+ , µ̂(n0)))

× exp
[
(n − n0)ω

∞+
0 (P0,−, P∞+)

]
ζ n0−n(1+ O(ζ ))

proving (3.137). Equation (3.135) is clear from (3.105), (3.133), and (3.134).

Finally, a comparison of (3.118) and (3.134) as P → P0,− (with local coordinate
ζ = z) yields

ψ1(P, n, n0) =
ζ→0

�(n, n0)ζ
n−n0(1+ O(ζ ))

=
ζ→0

C(n, n0)
θ(z(P0,−, µ̂(n)))
θ(z(P0,−, µ̂(n0)))

exp
(
(n − n0)ω

0,−
0 (P0,−, P∞+)

)
× ζ n−n0(1+ O(ζ ))

and hence

�(n, n0) = C(n, n0)
θ(z(P0,−, µ̂(n)))
θ(z(P0,−, µ̂(n0)))

exp
(
(n − n0)ω

0,−
0 (P0,−, P∞+)

)
= exp

(
(n − n0)(ω

0,−
0 (P0,−, P∞+)− ω

∞+
0 (P0,−, P∞+))

)
× θ(z(P0,−, µ̂(n)))θ(z(P∞+ , µ̂(n0)))

θ(z(P0,−, µ̂(n0)))θ(z(P∞+ , µ̂(n)))
,

using (3.137).

Combining (3.138), (3.139) and (3.141), (3.142) shows the remarkable linearity
of the theta function representations for α and β with respect to n ∈ Z.

We note that the apparent n0-dependence of C(n) in the right-hand side of (3.136)
actually drops out to ensure the n0-independence of φ in (3.133).

The theta function representations (3.141), (3.142) for α, β and that for � in
(3.144) also show that γ (n) /∈ {0, 1} for all n ∈ Z, and hence condition (3.87) is
satisfied for the stationary algebro-geometric AL solutions discussed in this section,
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provided the associated divisors Dµ̂(n) and Dν̂ (n) stay away from P∞± , P0,± for all
n ∈ Z.

We conclude this section with the trivial case p = 0 excluded thus far.

Example 3.26 Assume p = 0 and c0,+ = c0,− = c0 �= 0 (we recall that gp+,+ =
gp−,−). Then,

F(0,0) = F̂(0,0) = H(0,0) = Ĥ(0,0) = 0, G(0,0) = K(0,0) = 1

2
c0,

Ĝ(0,0) = K̂(0,0) = 1

2
, R(0,0) = 1

4
c2

0,

α = β = 0,

U =
(

z 0
0 1

)
, V(0,0) = ic0

2

(
1 0
0 −1

)
.

Introducing

�+(z, n, n0) =
(

zn−n0

0

)
, �−(z, n, n0) =

(
0
1

)
, n, n0 ∈ Z,

one verifies the equations

U�−± = �±, V(0,0)�
−± = ±

ic0

2
�−± .

3.5 The Stationary Ablowitz–Ladik Algebro-Geometric Initial Value Problem

I don’t see how he can EVEN finish, if he doesn’t begin.
Lewis Carroll1

The aim of this section is to derive an algorithm that enables one to construct
algebro-geometric solutions for the stationary Ablowitz–Ladik hierarchy for general
complex-valued initial data. To this effect we will develop a new algorithm for con-
structing stationary complex-valued algebro-geometric solutions of the Ablowitz–
Ladik hierarchy, which is of independent interest as it solves the inverse algebro-
geometric spectral problem for general (i.e., non-normal) AL Lax operators L̆ in
(3.61), starting from a suitably chosen set of initial divisors of full measure.

The generally non-normal behavior of the underlying Lax operator L̆ associated
with general coefficients for the Ablowitz–Ladik hierarchy poses a variety of dif-
ficulties that we will briefly indicate next: First of all, given general initial data
α(0), β(0) or divisors Dµ̂(n0) in general complex position, the Dirichlet eigenvalues
µ j , j = 1, . . . , p, are in general not pairwise distinct and “collisions” between them

1 Alice’s Adventures in Wonderland (1865), Project Gutenberg Etext, p. 70.
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can occur at certain values of n ∈ Z. A priori, one has no control over such collisions,
especially, it is not possible to identify initial conditions Dµ̂(n0) at some n0 ∈ Z,
which avoid collisions for all n ∈ Z. We solve this problem by explicitly permit-
ting collisions from the outset by referring to a general interpolation formalism (cf.
Appendix D) for polynomials, going beyond the usual Lagrange interpolation for-
mulas. In this manner it will be shown that collisions of Dirichlet eigenvalues no
longer pose a problem. In addition, there is a second complication since it cannot
be guaranteed that µ j (n) and ν j (n), j = 1, . . . , p, stay finite and nonzero for all
n ∈ Z. We solve this particular problem by properly restricting the initial Dirichlet
and Neumann divisors Dµ̂(n0),Dν̂(n0) ∈ Symp Kp to a dense set of full measure.

Next we embark on the corresponding inverse problem that consists of construct-
ing a solution of (3.30) given certain initial data. More precisely, we seek to construct
solutions α, β ∈ CZ satisfying the pth stationary Ablowitz–Ladik system (3.30)
starting from a properly restricted set M0 of admissible nonspecial Dirichlet divisor
initial data Dµ̂(n0) at some fixed n0 ∈ Z,

µ̂(n0) = {µ̂1(n0), . . . , µ̂p(n0)} ∈M0, M0 ⊂ Symp(Kp),

µ̂ j (n0) = (µ j (n0), (2/c0,+)µ j (n0)
p−G p(µ j (n0), n0)), j = 1, . . . , p.

(3.151)

For notational convenience we will frequently use the phrase that α, β blow up in
this manuscript whenever one of the divisors Dµ̂ or Dν̂ hits one of the points P∞± ,
P0,±.

Of course we would like to ensure that the sequences α, β obtained via our algo-
rithm do not blow up. To investigate when this happens, we study the image of our
divisors under the Abel map. A key ingredient in our analysis will be (3.138), which
yields a linear discrete dynamical system on the Jacobi variety J (Kp). In particular,
we will be led to investigate solutions Dµ̂, Dν̂ of the discrete initial value problem

αQ0
(Dµ̂(n)) = αQ0

(Dµ̂(n0))+ (n − n0)AP0,−(P∞+),

µ̂(n0) = {µ̂1(n0), . . . , µ̂p(n0)} ∈ Symp(Kp),
(3.152)

respectively

αQ0
(Dν̂(n)) = αQ0

(Dµ̂(n0))+ AP0,−(P∞−)+ (n − n0)AP0,−(P∞+),

ν̂(n0) = {ν̂1(n0), . . . , ν̂p(n0)} ∈ Symp(Kp),
(3.153)

where Q0 ∈ Kp is a given base point. Eventually, we will be interested in solutions
Dµ̂, Dν̂ of (3.152), (3.153) with initial data Dµ̂(n0) satisfying (3.151) and M0 to be
specified as in (the proof of) Lemma 3.27.

Before proceeding to develop the stationary Ablowitz–Ladik algorithm, we briefly
analyze the dynamics of (3.152).
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Lemma 3.27 Let n ∈ Z and suppose that Dµ̂(n) is defined via (3.152) for some
divisor Dµ̂(n0) ∈ Symp(Kp).
(i) If Dµ̂(n) is nonspecial and does not contain any of the points P0,±, P∞± , and
Dµ̂(n+1) contains one of the points P0,±, P∞± , then Dµ̂(n+1) contains P0,− or P∞−
but not P∞+ or P0,+.
(i i) If Dµ̂(n) is nonspecial and Dµ̂(n+1) is special, then Dµ̂(n) contains at least one
of the points P∞+ , P∞− and one of the points P0,+, P0,−.
(i i i) Item (i) holds if n + 1 is replaced by n − 1, P∞+ by P∞− , and P0,+ by P0,−.
(iv) Items (i)–(i i i) also hold for Dν̂(n).

Proof (i) Suppose one point in Dµ̂(n+1) equals P∞+ and denote the remain-
ing ones by Dµ̃(n+1). Then (3.152) implies that αQ0

(Dµ̃(n+1)) + AQ0
(P∞+) =

αQ0
(Dµ̂(n))+ AP0,−(P∞+). Since Dµ̂(n) is assumed to be nonspecial one concludes

Dµ̂(n) = Dµ̃(n+1) + DP0,− , contradicting our assumption on Dµ̂(n). The statement
for P0,+ follows similarly; here we choose Q0 to be a branch point of Kp such that
AQ0

(P∗) = −AQ0
(P).

(i i) Next, we choose Q0 to be a branch point of Kp. If Dµ̂(n+1) is special, then it
contains a pair of points (Q, Q∗) whose contribution will cancel under the Abel map,
that is, αQ0

(Dµ̂(n+1)) = αQ0
(Dη̂(n+1)) for some Dη̂(n+1) ∈ Symp−2(Kp). Invoking

(3.152) then shows that αQ0
(Dµ̂(n)) = αQ0

(Dη̂(n+1)) + AQ0
(P∞−) + AQ0

(P0,−).
As Dµ̂(n) was assumed to be nonspecial, this shows that Dµ̂(n) = Dη̂(n+1)+DP∞− +
DP0,− , as claimed.
(i i i) This is proved as in item (i).
(iv) Since Dν̂(n) satisfies the same equation as Dµ̂(n) in (3.152) (cf. (3.139)), items
(i)–(i i i) also hold for Dν̂(n).

We also note the following result:

Lemma 3.28 Let n ∈ Z and assume that Dµ̂(n) and Dν̂(n) are nonspecial. Then
Dµ̂(n) contains P0,− if and only if Dν̂(n) contains P∞− . Moreover, Dµ̂(n) contains
P∞+ if and only if Dν̂(n) contains P0,+.

Proof Suppose a point in Dµ̂(n) equals P0,− and denote the remaining ones by Dµ̃(n).
By (3.140),

αQ0
(Dν̂(n)) = αQ0

(Dµ̃(n))+ AQ0
(P0,−)+ AP0,−(P∞−)

= αQ0
(Dµ̃(n))+ AQ0

(P∞−).

Since Dν̂(n) is nonspecial, Dν̂(n) contains P∞− , and vice versa. The second statement
follows similarly.
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In the following we will call the points P∞+ , P∞− , P0,+, and P0,− exceptional
points. Then Lemma 3.27 yields the following behavior of Dµ̂(n) assuming one
starts with some nonspecial initial divisor Dµ̂(n0) without exceptional points: As n
increases, Dµ̂(n) stays nonspecial as long as it does not include exceptional points.
If an exceptional point appears, Dµ̂(n) is still nonspecial and contains P0,− or P∞−
at least once (but not P0,+ and P∞+ ). Further increasing n, all instances of P0,− and
P∞− will be rendered into P0,+ and P∞+ , until we have again a nonspecial divisor
that has the same number of P0,+ and P∞+ as the first one had of P0,− and P∞− .
Generically, one expects the subsequent divisor to be nonspecial without exceptional
points again.

Next we show that most initial divisors are well-behaved in the sense that their
iterates stay away from P∞± , P0,±. Since we want to show that this set is of full
measure, it will be convenient to identify Symp(Kp) with the Jacobi variety J (Kp)

via the Abel map and take the Haar measure on J (Kp). Of course, the Abel map is
only injective when restricted to the set of nonspecial divisors, but these are the only
ones we are interested in.

Lemma 3.29 The set M0 ⊂ Symp(Kp) of initial divisors Dµ̂(n0) for which Dµ̂(n)

and Dν̂(n), defined via (3.152) and (3.153), are admissible (i.e., do not contain the
points P∞± , P0,±) and hence are nonspecial for all n ∈ Z, forms a dense set of full
measure in the set Symp(Kp) of positive divisors of degree p.

Proof Let M∞,0 be the set of divisors in Symp(Kp) for which (at least) one point
is equal to P∞± or P0,±. The image αQ0

(M∞,0) of M∞,0 is then contained in the
following set,

αQ0
(M∞,0) ⊆

⋃
P∈{P0,±,P∞±}

(
AQ0

(P)+ αQ0
(Symp−1(Kp))

) ⊂ J (Kp).

Since the (complex) dimension of Symp−1(Kp) is p − 1, its image must be of mea-
sure zero by Sard’s theorem. Similarly, let Msp be the set of special divisors, then its
image is given by

αQ0
(Msp) = αQ0

(Symp−2(Kp)),

assuming Q0 to be a branch point. Thus, αQ0
(Msp) ⊂ αQ0

(M∞,0) and hence
αQ0

(Msing) = αQ0
(M∞,0) has measure zero, where

Msing =M∞,0 ∪Msp.

Consequently,

Sµ =
⋃
n∈Z

(
αQ0

(Msing)+ n AP0,−(P∞+)
)

and Sν = Sµ + AP0,−(P∞−) (3.154)
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are of measure zero as well. But the set Sµ∪Sν contains all initial divisors for which
Dµ̂(n) or Dν̂(n) will hit P∞± or P0,±, or become special at some n ∈ Z. We denote
by M0 the inverse image of the complement of the set Sµ ∪ Sν under the Abel map,

M0 = α−1
Q0

(
Symp(Kp) \ (Sµ ∪ Sν)

)
.

Since M0 is of full measure, it is automatically dense in Symp(Kp).

Next, we describe the stationary Ablowitz–Ladik algorithm. Since this is a some-
what lengthy affair, we will break it up into several steps.

The Stationary Ablowitz–Ladik Algorithm:
We prescribe the following data

(i) The coefficient α(n0) ∈ C \ {0} and the constant c0,+ ∈ C \ {0}.
(i i) The set

{Em}2p+1
m=0 ⊂ C\{0}, Em �= Em′ for m �= m′, m,m′ = 0, . . . , 2p+1, (3.155)

for some fixed p ∈ N. Given {Em}2p+1
m=0 , we introduce the function

Rp(z) =
(

c0,+
2z p−

)2 2p+1∏
m=0

(z − Em) (3.156)

and the hyperelliptic curve Kp (with nonsingular affine part) according to (3.88).
(i i i) The nonspecial divisor

Dµ̂(n0) ∈ Symp(Kp),

where µ̂(n0) is of the form

µ̂(n0) = {µ̂1(n0), . . . , µ̂1(n0)︸ ︷︷ ︸
p1(n0) times

, . . . , µ̂q(n0), . . . , µ̂q(n0)︸ ︷︷ ︸
pq(n0)(n0) times

}

with

µ̂k(n0) = (µk(n0), y(µ̂k(n0))),

µk(n0) �= µk′(n0) for k �= k′, k, k′ = 1, . . . , q(n0),
(3.157)

and

pk(n0) ∈ N, k = 1, . . . , q(n0),

q(n0)∑
k=1

pk(n0) = p.
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With {Em}2p+1
m=0 , Dµ̂(n0), α(n0), and c0,+ prescribed, we next introduce the following

quantities (for z ∈ C \ {0}):

α+(n0) = α(n0)

( 2p+1∏
m=0

Em

)1/2 q(n0)∏
k=1

µk(n0)
−pk (n0), (3.158)

c2
0,− = c2

0,+
2p+1∏
m=0

Em, (3.159)

Fp(z, n0) = −c0,+α+(n0)z
−p−

q(n0)∏
k=1

(z − µk(n0))
pk (n0), (3.160)

G p(z, n0) = 1

2

(
1

α(n0)
− z

α+(n0)

)
Fp(z, n0) (3.161)

− z

2α+(n0)
Fp(z, n0)

q(n0)∑
k=1

pk (n0)−1∑
�=0

(
d�
(
ζ−1 y(P)

)
/dζ �

)∣∣
P=(ζ,η)=µ̂k (n0)

�!(pk(n0)− �− 1)!

×
(

d pk (n0)−�−1

dζ pk (n0)−�−1

(
(z − ζ )−1

q(n0)∏
k′=1, k′ �=k

(ζ − µk′(n0))
−pk′ (n0)

))∣∣∣∣
ζ=µk (n0)

.

Here the sign of the square root is chosen according to (3.157).
Next we record a series of facts:

(I) By construction (cf. Lemma D.5),

d�
(
G p(z, n0)

2
)

dz�

∣∣∣∣
z=µk (n0)

= d�Rp(z)

dz�

∣∣∣∣
z=µk (n0)

,

z ∈ C \ {0}, � = 0, . . . , pk(n0)− 1, k = 1, . . . , q(n0).

(3.162)

(II) Since Dµ̂(n0) is nonspecial by hypothesis, one concludes that

pk(n0) ≥ 2 implies Rp(µk(n0)) �= 0, k = 1, . . . , q(n0).

(III) By (3.161) and (3.162) one infers that Fp divides G2
p − Rp.

(IV) By (3.156) and (3.161) one verifies that

G p(z, n0)
2 − Rp(z) =

z→∞ O(z2p+−1), (3.163)

G p(z, n0)
2 − Rp(z) =

z→0
O(z−2p−+1). (3.164)

By (III) and (IV) we may write

G p(z, n0)
2 − Rp(z) = Fp(z, n0)Ȟq,r (z, n0), z ∈ C \ {0}, (3.165)
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for some q ∈ {0, . . . , p− − 1}, r ∈ {0, . . . , p+}, where Ȟq,r (z, n0) is a Lau-
rent polynomial of the form c−q z−q + · · · + cr zr . If, in fact, Ȟ0,0 = 0, then
Rp(z) = G p(z, n0)

2 would yield double zeros of Rp, contradicting our basic hy-

pothesis (3.155). Thus we conclude that in the case r = q = 0, Ȟ0,0 cannot vanish
identically and hence we may break up (3.165) in the following manner

φ̌(P, n0) =
G p(z, n0)+ (c0,+/2)z−p− y

Fp(z, n0)
= Ȟq,r (z, n0)

G p(z, n0)− (c0,+/2)z−p− y
,

P = (z, y) ∈ Kp.

Next we decompose

Ȟq,r (z, n0) = Cz−q
r+q∏
j=1

(z − ν j (n0)), z ∈ C \ {0}, (3.166)

where C ∈ C \ {0} and {ν j (n0)}r+q
j=1 ⊂ C (if r = q = 0 we replace the product in

(3.166) by 1). By inspection of the local zeros and poles as well as the behavior near
P0,±, P∞± of the function φ̌( · , n0) using

y(P) =
ζ→0

{
∓ζ−2p(1+ O(ζ )), P → P∞± , ζ = 1/z,

±(c0,−/c0,+)+ O(ζ ), P → P0,±, ζ = z,

its divisor,
(
φ̌( · , n0)

)
, is given by(
φ̌( · , n0)

) = DP0,−ν̂(n0) −DP∞− µ̂(n0),

where

ν̂(n0) = {P0,−, . . . , P0,−︸ ︷︷ ︸
p−−1−q times

, ν̂1(n0), . . . , ν̂r+q(n0), P∞+ , . . . , P∞+︸ ︷︷ ︸
p+−r times

}.

In the following we call a positive divisor of degree p admissible if it does not
contain any of the points P∞± , P0,±.

Hence,

Dν̂(n0) is an admissible divisor if and only if r = p+ and q = p− − 1. (3.167)

We note that

αQ0
(Dν̂(n0)) = αQ0

(Dµ̂(n0))+ AP0,−(P∞−),

in accordance with (3.140).
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(V) Assuming that (3.163), (3.164) are precisely of order z±(2p±−1), that is, assuming
r = p+ and q = p− − 1 in (3.165), we rewrite (3.165) in the more appropriate
manner

G p(z, n0)
2 − Rp(z) = Fp(z, n0)Hp(z, n0), z ∈ C \ {0}. (3.168)

(We will later discuss conditions which indeed guarantee that q = p− − 1 and
r = p+, cf. (3.167) and the discussion in step (X) below.) By construction, Hp( · , n0)

is then of the type

Hp(z, n0) = c0,+β(n0)z
−p−+1

�(n0)∏
k=1

(z − νk(n0))
sk (n0),

�(n0)∑
k=1

sk(n0) = p,

νk(n0) �= νk′(n0) for k �= k′, k, k′ = 1, . . . , �(n0), z ∈ C \ {0}, (3.169)

where we introduced the coefficient β(n0). We define

ν̂k(n0) = (νk(n0),−(2/c0,+)νk(n0)
p−G p(νk(n0), n0)), k = 1, . . . , �(n0).

An explicit computation of β(n0) then yields

α+(n0)β(n0) = −1

2

q(n0)∑
k=1

(
d pk (n0)−1

(
ζ−1 y(P)

)
/dζ pk (n0)−1

)∣∣
P=(ζ,η)=µ̂k (n0)

(pk(n0)− 1)!

×
q(n0)∏

k′=1, k′ �=k

(µk(n0)− µk′(n0))
−pk (n0)

+ 1

2

(
α+(n0)

α(n0)
+

q(n0)∑
k=1

pk(n0)µk(n0)− 1

2

2p+1∑
m=0

Em

)
. (3.170)

The result (3.170) is obtained by inserting the expressions (3.160), (3.161), and
(3.169) for Fp( · , n0), G p( · , n0), and Hp( · , n0) into (3.168) and collecting all terms

of order z2p+−1.
(VI) Introduce

β+(n0) = β(n0)

�(n0)∏
k=1

νk(n0)
sk (n0)

( 2p+1∏
m=0

Em

)−1/2

.
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(VII) Using G p(z, n0), Hp(z, n0), Fp(z, n0), β(n0), α+(n0), and β+(n0), we next
construct the n0 ± 1 terms from the following equations:

F−p =
1

zγ
(α2 Hp − 2αG p + Fp), (3.171)

H−p =
z

γ
(β2 Fp − 2βG p + Hp), (3.172)

G−p =
1

γ
((1+ αβ)G p − αHp − βFp), (3.173)

respectively,

F+p =
1

zγ+
((α+)2 Hp + 2α+zG p + z2 Fp), (3.174)

H+p =
1

zγ+
((β+z)2 Fp + 2β+zG p + Hp), (3.175)

G+p =
1

zγ+
((1+ α+β+)zG p + α+Hp + β+z2 Fp). (3.176)

Moreover,

(G−p )2 − F−p H−p = Rp, (G+p )2 − F+p H+p = Rp.

Inserting (3.160), (3.161), and (3.169) in (3.171)–(3.173) one verifies

F−p (z, n0) =
z→∞ −c0,+α(n0)z

p+−1 + O(z p+−2),

H−p (z, n0) =
z→∞ O(z p+),

F−p (z, n0) =
z→0

O(z−p−),

H−p (z, n0) =
z→0
−c0,−β(n0)z

−p−+1 + O(z−p−+2),

G−p (z, n0) = 1
2 c0,−z−p− + · · · + 1

2 c0,+z p+ .

The last equation implies

G p(z, n0 − 1)2 − Rp(z) =
z→∞ O(z2p+−1), (3.177)

G p(z, n0 − 1)2 − Rp(z) =
z→0

O(z−2p−+1), (3.178)

so we may write

G p(z, n0 − 1)2 − Rp(z) = F̌s,p+−1(z, n0 − 1)Ȟp−−1,r (z, n0 − 1), z ∈ C \ {0},
(3.179)
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for some s ∈ {1, . . . , p−}, r ∈ {1, . . . , p+}, where

F̌s,p+−1(n0 − 1) = c−s z−s + · · · − c0,+α(n0)z
p+−1,

Ȟp−−1,r (n0 − 1) = −c0,−β(n0)z
−p−+1 + · · · + cr zr .

The right-hand side of (3.179) cannot vanish identically (since otherwise Rp(z) =
G p(z, n0 − 1)2 would yield double zeros of Rp(z)), and hence,

φ̌(P, n0 − 1) = G p(z, n0 − 1)+ (c0,+/2)z−p− y

F̌s,p+−1(z, n0 − 1)

= Ȟp−−1,r (z, n0 − 1)

G p(z, n0 − 1)− (c0,+/2)z−p− y
, P = (z, y) ∈ Kp.

(3.180)

Next, we decompose

F̌s,p+−1(z, n0 − 1) = −c0,+α(n0)z
−s

p+−1+s∏
j=1

(z − µ j (n0 − 1)),

Ȟp−−1,r (z, n0 − 1) = Cz−p−+1
p−−1+r∏

j=1

(z − ν j (n0 − 1)),

where C ∈ C \ {0} and {µ j (n0 − 1)}p+−1+s
j=1 ⊂ C, {ν j (n0 − 1)}p−−1+r

j=1 ⊂ C. The

divisor of φ̌( · , n0 − 1) is then given by(
φ̌( · , n0 − 1)

) = DP0,−ν̂(n0−1) −DP∞− µ̂(n0−1),

where

µ̂(n0 − 1) = {P0,+, . . . , P0,+︸ ︷︷ ︸
p−−s times

, µ̂1(n0 − 1), . . . , µ̂p+−1+s(n0 − 1)},

ν̂(n0 − 1) = {ν̂1(n0 − 1), . . . , ν̂p−−1+r (n0 − 1), P∞+ , . . . , P∞+︸ ︷︷ ︸
p+−r times

}.

In particular,

Dµ̂(n0−1) is an admissible divisor if and only if s = p−, (3.181)

Dν̂(n0−1) is an admissible divisor if and only if r = p+. (3.182)

(VIII) Assuming that (3.177), (3.178) are precisely of order z±(2p±−1), that is, as-
suming s = p− and r = p+ in (3.180), we rewrite (3.180) as

G p(z, n0 − 1)2 − Rp(z) = Fp(z, n0 − 1)Hp(z, n0 − 1), z ∈ C \ {0}.



246 3 The Ablowitz–Ladik Hierarchy

By construction, Fp( · , n0 − 1) and Hp( · , n0 − 1) are then of the type

Fp(z, n0 − 1) = −c0,+α(n0)z
−p−

q(n0−1)∏
k=1

(z − µ j (n0 − 1))pk (n0−1),

q(n0−1)∑
k=1

pk(n0 − 1) = p,

µk(n0 − 1) �= µk′(n0 − 1) for k �= k′, k, k′ = 1, . . . , q(n0 − 1), z ∈ C \ {0},

Hp(z, n0 − 1) = c0,+β(n0 − 1)z−p−+1
�(n0−1)∏

k=1

(z − νk(n0 − 1))sk (n0−1),

�(n0−1)∑
k=1

sk(n0 − 1) = p,

νk(n0 − 1) �= νk′(n0 − 1) for k �= k′, k, k′ = 1, . . . , �(n0 − 1), z ∈ C \ {0},
where we introduced the coefficient β(n0 − 1). We define

µ̂k(n0 − 1) = (µk(n0 − 1), (2/c0,+)µk(n0 − 1)p−G p(µk(n0 − 1), n0 − 1)),

k = 1, . . . , q(n0 − 1),

ν̂k(n0 − 1) = (νk(n0 − 1),−(2/c0,+)νk(n0 − 1)p−G p(νk(n0 − 1), n0 − 1)),

k = 1, . . . , �(n0 − 1).

(IX) At this point one can iterate the procedure step by step to construct Fp( · , n),
G p( · , n), Hp( · , n), α(n), β(n), µ j (n), ν j (n), etc., for n ∈ (−∞, n0] ∩ Z, subject
to the following assumption (cf. (3.181), (3.182)) at each step:

Dµ̂(n−1) is an admissible divisor (and hence α(n − 1) �= 0) (3.183)

for all n ∈ (−∞, n0] ∩ Z,

Dν̂(n−1) is an admissible divisor (and hence β(n − 1) �= 0) (3.184)

for all n ∈ (−∞, n0] ∩ Z.

The formalism is symmetric with respect to n0 and can equally well be developed
for n ∈ (−∞, n0] ∩ Z subject to the analogous assumption

Dµ̂(n+1) is an admissible divisor (and hence α(n + 2) �= 0) (3.185)

for all n ∈ [n0,∞) ∩ Z,

Dν̂(n+1) is an admissible divisor (and hence β(n + 2) �= 0) (3.186)

for all n ∈ [n0,∞) ∩ Z.
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(X) Choosing the initial data Dµ̂(n0) such that

Dµ̂(n0) ∈M0,

where M0 ⊂ Symp(Kp) is the set of admissible initial divisors introduced in
Lemma 3.29, then guarantees that assumptions (3.183)–(3.186) are satisfied for all
n ∈ Z.

Equations (3.171)–(3.176) (for arbitrary n ∈ Z) are then equivalent to
s-ALp(α, β) = 0.

At this stage we have verified the basic hypotheses of Section 3.4 (i.e., (3.87) and
the assumption that α, β satisfy the pth stationary AL system (3.30)) and hence all
results of Section 3.4 apply.

In summary, we proved the following result:

Theorem 3.30 Let n ∈ Z, suppose the set {Em}2p+1
m=0 ⊂ C satisfies Em �= Em′ for

m �= m′, m,m′ = 0, . . . , 2p+1, and introduce the function Rp and the hyperelliptic
curve Kp as in (3.88). Choose α(n0) ∈ C \ {0}, c0,+ ∈ C \ {0}, and a nonspe-
cial divisor Dµ̂(n0) ∈ M0, where M0 ⊂ Symp(Kp) is the set of admissible initial
divisors introduced in Lemma 3.29. Then the stationary (complex) Ablowitz–Ladik
algorithm as outlined in steps (I)–(X) produces solutions α, β of the pth stationary
Ablowitz–Ladik system,

s-ALp(α, β) =
(
−α(gp+,+ + g−p−,−)+ f p+−1,+ − f −p−−1,−
β(g−p+,+ + gp−,−)+ h−p+−1,+ − h p−−1,−

)
= 0,

p = (p−, p+) ∈ N2
0,

satisfying (3.87) and

α(n) =
( 2p+1∏

m=0

Em

)(n−n0)/2

A(n, n0) α(n0), (3.187)

β(n) =
(
− 1

2

q(n)∑
k=1

(
d pk (n)−1

(
ζ−1 y(P)

)
/dζ pk (n)−1

)∣∣
P=(ζ,η)=µ̂k (n)

(pk(n)− 1)!

×
q(n)∏

k′=1, k′ �=k

(µk(n)− µk′(n))
−pk (n)

+ 1

2

(( 2p+1∏
m=0

Em

)1/2 q(n)∏
k=1

µk(n)
−pk (n) +

q(n)∑
k=1

pk(n)µk(n)− 1

2

2p+1∑
m=0

Em

))

×
( 2p+1∏

m=0

Em

)−(n+1−n0)/2

A(n + 1, n0)
−1 α(n0)

−1, (3.188)
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where

A(n, n0) =


∏n−1

n′=n0

∏q(n′)
k=1 µk(n′)−pk (n′), n ≥ n0 + 1,

1, n = n0,∏n0−1
n′=n

∏q(n′)
k=1 µk(n′)pk (n′), n ≤ n0 − 1.

Moreover, Lemmas 3.18–3.22 apply.

Finally, we briefly illustrate some aspects of this analysis in the special case p =
(1, 1) (i.e., the case where (3.88) represents an elliptic Riemann surface) in more
detail.

Example 3.31 The case p = (1, 1).
In this case one has

F(1,1)(z, n) = −c0,+α(n + 1)z−1(z − µ1(n)),

G(1,1)(z, n) = 1

2

(
1

α(n)
− z

α(n + 1)

)
F(1,1)(z, n)+ R(1,1)(µ̂1(n))

1/2,

R(1,1)(z) =
(

c0,+α+

z

)2 3∏
m=0

(z − Em),

and hence a straightforward calculation shows that

G(1,1)(z, n)2 − R(1,1)(z) = −c2
0,+α(n + 1)β(n)z−1(z − µ1(n))(z − ν1(n))

= −c2
0,+
2z

(z − µ1(n))

((
− y(µ̂1(n))

µ1(n)
+ Ĕ1/2

µ1(n)
+ µ1(n)− Ê+

2

)
z

− Ĕ

µ1(n)

(
− 1

Ĕ1/2

y(µ̂1(n))

µ1(n)
+ µ1(n)

Ĕ1/2
+ 1

µ1(n)
− Ê−

2

))
,

where

Ê± =
3∑

m=0

E±1
m , Ẽ =

3∏
m=0

Em .

Solving for ν1(n) one then obtains

ν1(n) = Ẽ

µ1(n)

− y(µ̂1(n))
µ1(n)

+ Ĕ1/2

µ1(n)
+ µ1(n)− Ê+

2

− 1
Ĕ1/2

y(µ̂1(n))
µ1(n)

+ µ1(n)
Ĕ1/2 + 1

µ1(n)
− Ê−

2

.

Thus, ν1(n0) could be 0 or∞ even if µ1(n0) �= 0,∞.
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3.6 The Time-Dependent Ablowitz–Ladik Formalism

Man skal ej læse for at sluge,
men for at se, hvad man kan bruge.

Henrik Ibsen1

In this section we extend the algebro-geometric analysis of Section 3.4 to the time-
dependent Ablowitz–Ladik hierarchy.

For most of this section we assume the following hypothesis.

Hypothesis 3.32 (i) Suppose that α, β satisfy

α( · , t), β( · , t) ∈ CZ, t ∈ R, α(n, · ), β(n, · ) ∈ C1(R), n ∈ Z,

α(n, t)β(n, t) /∈ {0, 1}, (n, t) ∈ Z× R.
(3.189)

(i i) Assume that the hyperelliptic curve Kp satisfies (3.88) and (3.89).

The basic problem in the analysis of algebro-geometric solutions of the Ablowitz–
Ladik hierarchy consists of solving the time-dependent r th Ablowitz–Ladik flow
with initial data a stationary solution of the pth system in the hierarchy. More pre-

cisely, given p ∈ N2
0 \ {(0, 0)} we consider a solution α(0), β(0) of the pth station-

ary Ablowitz–Ladik system s-ALp(α
(0), β(0)) = 0, associated with the hyperelliptic

curve Kp and a corresponding set of summation constants {c�,±}�=1,...,p± ⊂ C. Next,
let r = (r−, r+) ∈ N2

0; we intend to construct a solution α, β of the r th Ablowitz–
Ladik flow ALr (α, β) = 0 with α(t0,r ) = α(0), β(t0,r ) = β(0) for some t0,r ∈ R.
To emphasize that the summation constants in the definitions of the stationary and
the time-dependent Ablowitz–Ladik equations are independent of each other, we in-
dicate this by adding a tilde on all the time-dependent quantities. Hence we shall
employ the notation Ṽr , F̃r , G̃r , H̃r , K̃r , f̃s,±, g̃s,±, h̃s,±, c̃s,±, in order to distin-
guish them from Vp, Fp, G p, Hp, K p, f�,±, g�,±, h�,±, c�,±, in the following. In
addition, we will follow a more elaborate notation inspired by Hirota’s τ -function
approach and indicate the individual r th Ablowitz–Ladik flow by a separate time
variable tr ∈ R.

Summing up, we are interested in solutions α, β of the time-dependent algebro-
geometric initial value problem

ÃLr (α, β) =
(
−iαtr − α(g̃r+,+ + g̃−r−,−)+ f̃r+−1,+ − f̃ −r−−1,−
−iβtr + β(g̃−r+,+ + g̃r−,−)− h̃r−−1,− + h̃−r+−1,+

)
= 0,

(α, β)
∣∣
t=t0,r

= (α(0), β(0)), (3.190)

1 Peer Gynt (1867), fourth act. (“One should not read to swallow all, but rather see what one has use
for.”)
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s-ALp
(
α(0), β(0)

) = (−α(0)(gp+,+ + g−p−,−)+ f p+−1,+ − f −p−−1,−
β(0)(g−p+,+ + gp−,−)− h p−−1,− + h−p+−1,+

)
= 0

(3.191)

for some t0,r ∈ R, where α = α(n, tr ), β = β(n, tr ) satisfy (3.189) and a fixed curve
Kp is associated with the stationary solutions α(0), β(0) in (3.191). Here,

p = (p−, p+) ∈ N2
0 \ {(0, 0)}, r = (r−, r+) ∈ N2

0, p = p− + p+ − 1.

In terms of the zero-curvature formulation this amounts to solving

Utr (z, tr )+U (z, tr )Ṽr (z, tr )− Ṽ+r (z, tr )U (z, tr ) = 0, (3.192)

U (z, t0,r )Vp(z, t0,r )− V+p (z, t0,r )U (z, t0,r ) = 0. (3.193)

One can show (cf. Theorem 3.43) that the stationary Ablowitz–Ladik system (3.193)
is in fact satisfied for all times tr ∈ R: Thus, we actually impose

Utr (z, tr )+U (z, tr )Ṽr (z, tr )− Ṽ+r (z, tr )U (z, tr ) = 0, (3.194)

U (z, tr )Vp(z, tr )− V+p (z, tr )U (z, tr ) = 0, (3.195)

instead of (3.192) and (3.193). For further reference, we recall the relevant quantities
here (cf. (3.4), (3.5), (3.13)–(3.17)):

U (z) =
(

z α

zβ 1

)
,

Vp(z) = i

(
G−p (z) −F−p (z)
H−p (z) −G−p (z)

)
, Ṽr (z) = i

(
G̃−r (z) −F̃−r (z)

H̃−r (z) −K̃−r (z)

)
,

(3.196)

and

Fp(z) =
p−∑
�=1

f p−−�,−z−� +
p+−1∑
�=0

f p+−1−�,+z� = −c0,+α+z−p−
p∏

j=1

(z − µ j ),

G p(z) =
p−∑
�=1

gp−−�,−z−� +
p+∑
�=0

gp+−�,+z�,

Hp(z) =
p−−1∑
�=0

h p−−1−�,−z−� +
p+∑
�=1

h p+−�,+z� = c0,+βz−p−+1
p∏

j=1

(z − ν j ),

F̃r (z) =
r−∑

s=1

f̃r−−s,−z−s +
r+−1∑
s=0

f̃r+−1−s,+zs, (3.197)

G̃r (z) =
r−∑

s=1

g̃r−−s,−z−s +
r+∑

s=0

g̃r+−s,+zs,
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H̃r (z) =
r−−1∑
s=0

h̃r−−1−s,−z−s +
r+∑

s=1

h̃r+−s,+zs,

K̃r (z) =
r−∑

s=0

g̃r−−s,−z−s +
r+∑

s=1

g̃r+−s,+zs = G̃r (z)+ g̃r−,− − g̃r+,+

for fixed p ∈ N2
0 \ {(0, 0)}, r ∈ N2

0. Here f�,±, f̃s,±, g�,±, g̃s,±, h�,±, and h̃s,±
are defined as in (3.19)–(3.26) with appropriate sets of summation constants c�,±,
� ∈ N0, and c̃k,±, k ∈ N0. Explicitly, (3.194) and (3.195) are equivalent to (cf.
(3.8)–(3.11), (3.50)–(3.53)),

αtr = i
(
z F̃−r + α(G̃r + K̃−r )− F̃r

)
, (3.198)

βtr = −i
(
β(G̃−r + K̃r )− H̃r + z−1 H̃−r

)
, (3.199)

0 = z(G̃−r − G̃r )+ zβ F̃r + α H̃−r , (3.200)

0 = zβ F̃−r + α H̃r + K̃−r − K̃r , (3.201)

0 = z(G−p − G p)+ zβFp + αH−p , (3.202)

0 = zβF−p + αHp − G p + G−p , (3.203)

0 = −Fp + zF−p + α(G p + G−p ), (3.204)

0 = zβ(G p + G−p )− zHp + H−p , (3.205)

respectively. In particular, (3.39) holds in the present tr -dependent setting, that is,

G2
p − Fp Hp = Rp.

As in the stationary context (3.93), (3.94) we introduce

µ̂ j (n, tr ) = (µ j (n, tr ), (2/c0,+)µ j (n, tr )
p−G p(µ j (n, tr ), n, tr )) ∈ Kp,

j = 1, . . . , p, (n, tr ) ∈ Z× R,
(3.206)

and

ν̂ j (n, tr ) = (ν j (n, tr ),−(2/c0,+)ν j (n, tr )
p−G p(ν j (n, tr ), n, tr )) ∈ Kp,

j = 1, . . . , p, (n, tr ) ∈ Z× R,
(3.207)

and note that the regularity assumptions (3.189) on α, β imply continuity of µ j and
νk with respect to tr ∈ R (away from collisions of these zeros, µ j and νk are of
course C∞).
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In analogy to (3.95), (3.96), one defines the following meromorphic function
φ( · , n, tr ) on Kp,

φ(P, n, tr ) =
(c0,+/2)z−p− y + G p(z, n, tr )

Fp(z, n, tr )
(3.208)

= −Hp(z, n, tr )

(c0,+/2)z−p− y − G p(z, n, tr )
, (3.209)

P = (z, y) ∈ Kp, (n, tr ) ∈ Z× R,

with divisor (φ( · , n, tr )) of φ( · , n, tr ) given by

(φ( · , n, tr )) = DP0,−ν̂(n,tr ) −DP∞− µ̂(n,tr ). (3.210)

The time-dependent Baker–Akhiezer vector is then defined in terms of φ by

�(P, n, n0, tr , t0,r ) =
(
ψ1(P, n, n0, tr , t0,r )
ψ2(P, n, n0, tr , t0,r )

)
,

ψ1(P, n, n0, tr , t0,r ) = exp

(
i
∫ tr

t0,r
ds
(
G̃r (z, n0, s)− F̃r (z, n0, s)φ(P, n0, s)

))

×


∏n

n′=n0+1

(
z + α(n′, tr )φ−(P, n′, tr )

)
, n ≥ n0 + 1,

1, n = n0,∏n0
n′=n+1

(
z + α(n′, tr )φ−(P, n′, tr )

)−1
, n ≤ n0 − 1,

(3.211)

ψ2(P, n, n0, tr , t0,r ) = exp

(
i
∫ tr

t0,r
ds
(
G̃r (z, n0, s)− F̃r (z, n0, s)φ(P, n0, s)

))

× φ(P, n0, tr )


∏n

n′=n0+1

(
zβ(n′, tr )φ−(P, n′, tr )−1 + 1

)
, n ≥ n0 + 1,

1, n = n0,∏n0
n′=n+1

(
zβ(n′, tr )φ−(P, n′, tr )−1 + 1

)−1
, n ≤ n0 − 1,

P = (z, y) ∈ Kp \ {P∞+ , P∞− , P0,+, P0,−}, (n, tr ) ∈ Z× R. (3.212)

One observes that

ψ1(P, n, n0, tr , t̃r ) = ψ1(P, n0, n0, tr , t̃r )ψ1(P, n, n0, tr , tr ),

P = (z, y) ∈ Kp \ {P∞+ , P∞− , P0,+, P0,−}, (n, n0, tr , t̃r ) ∈ Z2 × R2.
(3.213)

The following lemma records basic properties of φ and � in analogy to the sta-
tionary case discussed in Lemma 3.18.

Lemma 3.33 Assume Hypothesis 3.32 and suppose that (3.194), (3.195) hold. In
addition, let P = (z, y) ∈ Kp \ {P∞+ , P∞−}, (n, n0, tr , t0,r ) ∈ Z2 × R2. Then φ
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satisfies

αφ(P)φ−(P)− φ−(P)+ zφ(P) = zβ, (3.214)

φtr (P) = i F̃rφ
2(P)− i

(
G̃r (z)+ K̃r (z)

)
φ(P)+ i H̃r (z), (3.215)

φ(P)φ(P∗) = Hp(z)

Fp(z)
, (3.216)

φ(P)+ φ(P∗) = 2
G p(z)

Fp(z)
, (3.217)

φ(P)− φ(P∗) = c0,+z−p− y(P)

Fp(z)
. (3.218)

Moreover, assuming P = (z, y) ∈ Kp \ {P∞+ , P∞− , P0,+, P0,−}, then � satisfies

ψ2(P, n, n0, tr , t0,r ) = φ(P, n, tr )ψ1(P, n, n0, tr , t0,r ), (3.219)

U (z)�−(P) = �(P), (3.220)

Vp(z)�
−(P) = −(i/2)c0,+z−p− y�−(P), (3.221)

�tr (P) = Ṽ+r (z)�(P), (3.222)

ψ1(P, n, n0, tr , t0,r )ψ1(P∗, n, n0, tr , t0,r ) = zn−n0
Fp(z, n, tr )

Fp(z, n0, t0,r )
�(n, n0, tr ),

(3.223)

ψ2(P, n, n0, tr , t0,r )ψ2(P∗, n, n0, tr , t0,r ) = zn−n0
Hp(z, n, tr )

Fp(z, n0, t0,r )
�(n, n0, tr ),

ψ1(P, n, n0, tr , t0,r )ψ2(P∗, n, n0, tr , t0,r )

+ ψ1(P∗, n, n0, tr , t0,r )ψ2(P, n, n0, tr , t0,r )

= 2zn−n0
G p(z, n, tr )

Fp(z, n0, t0,r )
�(n, n0, tr ), (3.224)

ψ1(P, n, n0, tr , t0,r )ψ2(P∗, n, n0, tr , t0,r )

− ψ1(P∗, n, n0, tr , t0,r )ψ2(P, n, n0, tr , t0,r )

= −c0,+zn−n0−p− y

Fp(z, n0, t0,r )
�(n, n0, tr ), (3.225)

where

�(n, n0, tr ) =


∏n

n′=n0+1 γ (n
′, tr ), n ≥ n0 + 1,

1, n = n0,∏n0
n′=n+1 γ (n

′, tr )−1, n ≤ n0 − 1.
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In addition, as long as the zeros µ j (n0, s) of ( · )p−Fp( · , n0, s) are all simple and
distinct from zero for s ∈ Iµ, Iµ ⊆ R an open interval, �( · , n, n0, tr , t0,r ) is
meromorphic on Kp \ {P∞+ , P∞− , P0,+, P0,−} for (n, tr , t0,r ) ∈ Z× I2

µ.

Proof Equations (3.214), (3.216)–(3.221), and (3.223)–(3.225) are proved as in the
stationary case, see Lemma 3.18. Thus, we turn to the proof of (3.215) and (3.222):
Differentiating the Riccati-type equation (3.214) yields

0 = (αφφ− − φ− + zφ − zβ
)

tr

= αtrφφ
− + (αφ− + z)φtr + (αφ − 1)φ−tr − zβtr

= ((αφ− + z)+ (αφ − 1)S−
)
φtr + iφφ−

(
α(G̃r + K̃−r )+ z F̃−r − F̃r

)
+ i zβ(G̃−r + K̃r )+ i(z H̃r − H̃−r ),

using (3.198) and (3.199). Next, one employs (3.99) to rewrite

(αφ− + z)+ (αφ − 1)S− = 1

φ
(zβ + φ−)+ z

φ−
(β − φ)S−.

This allows one to calculate the right-hand side of (3.215) using (3.200) and (3.201)(
(αφ− + z)+ (αφ − 1)S−

)(
H̃r + F̃rφ

2 − (G̃r + K̃r )φ
)

= (αφ− + z)H̃r + (αφ − 1)H̃−r + φ(zβ + φ−)F̃r + zφ−(β − φ)F̃−r
− (zβ + φ−)(G̃r + K̃r )− z(β − φ)(G̃−r + K̃−r )
= φφ−(F̃r − z F̃−r )+ z H̃r − H̃−r + φ−(α H̃r + zβ F̃−r )+ φ(α H̃−r + zβ F̃r )

− zβ(G̃r + K̃r + G̃−r + K̃−r )− zφ(G̃−r + K̃−r )− φ−(G̃r + K̃r )

= φφ−(F̃r − z F̃−r )+ z H̃r − H̃−r − zβ(G̃−r + K̃r )

+ (zφ − φ− − zβ)(G̃r + K̃−r )
= φφ−(F̃r − z F̃−r )+ z H̃r − H̃−r − zβ(G̃−r + K̃r )− αφφ−(G̃r + K̃−r ).

Hence,( 1

φ
(zβ+φ−)+ z

φ−
(β−φ)S−

)(
φtr − i H̃r − i F̃rφ

2+ i(G̃r + K̃r )φ
) = 0. (3.226)

Solving the first-order difference equation (3.226) then yields

φtr (P, n, tr )− i F̃r (z, n, tr )φ(P, n, tr )
2

+ i(G̃r (z, n, tr )+ K̃r (z, n, tr ))φ(P, n, tr )− i H̃r (z, n, tr )

= C(P, tr )


∏n

n′=1 B(P, n′, tr )/A(P, n′, tr ), n ≥ 1,

1, n = 0,∏0
n′=n+1 A(P, n′, tr )/B(P, n′, tr ), n ≤ −1

(3.227)
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for some n-independent function C( · , tr ) meromorphic on Kp, where

A = φ−1(zβ + φ−), B = −z(φ−)−1(β − φ).

The asymptotic behavior of φ(P, n, tr ) in (3.115) then yields (for tr ∈ R fixed)

B(P)

A(P)
=

P→P∞+
−(1− αβ)(β−)−1z−1 + O(z−2). (3.228)

Since the left-hand side of (3.227) is of order O(zr+) as P → P∞+ , and C is mero-
morphic, insertion of (3.228) into (3.227), taking n ≥ 1 sufficiently large, then yields
a contradiction unless C = 0. This proves (3.215).

Proving (3.222) is equivalent to showing

ψ1,tr = i(G̃r − φ F̃r )ψ1, (3.229)

ψ1φtr + φψ1,tr = i(H̃r − φ K̃r )ψ1, (3.230)

using (3.219). Equation (3.230) follows directly from (3.229) and from (3.215),

ψ1φtr + φψ1,tr = ψ1
(
i H̃r + i F̃rφ

2 − i(G̃r + K̃r )φ + i(G̃r − φ F̃r )φ
)

= i(H̃r − φ K̃r )ψ1.

To prove (3.229) we start from

(z + αφ−)tr = αtrφ
− + αφ−tr

= φ−i
(
z F̃−r + α(G̃r + K̃−r )− F̃r

)+ αi
(
H̃−r + F̃−r (φ−)2 − (G̃−r + K̃−r )φ−

)
= iαφ−(G̃r − G̃−r )+ i(z + αφ−)φ− F̃−r − iφ− F̃r + iα H̃−r
= i(z + αφ−)

(
G̃r − φ F̃r − (G̃−r − φ− F̃−r )

)
,

where we used (3.200) and (3.99) to rewrite

iα H̃−r − iφ− F̃r = i z(G̃r − G̃−r )− αφφ− F̃r − zφ F̃r .

Abbreviating

σ(P, n0, tr ) = i
∫ tr

0
ds
(
G̃r (z, n0, s)− F̃r (z, n0, s)φ(P, n0, s)

)
,
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one computes for n ≥ n0 + 1,

ψ1,tr =
(

exp(σ )
n∏

n′=n0+1

(z + αφ−)(n′)
)

tr

= σtrψ1 + exp(σ )
n∑

n′=n0+1

(z + αφ−)tr (n′)
n∏

n′′=1
n′′ �=n′

(z + αφ−)(n′′)

= ψ1

(
σtr + i

n∑
n′=n0+1

(
(G̃r − F̃rφ)(n

′)− (G̃r − F̃rφ)(n
′ − 1)

))
= i(G̃r − F̃rφ)ψ1.

The case n ≤ n0 is handled analogously establishing (3.229).

That �( · , n, n0, tr , t0,r ) is meromorphic on Kp \ {P∞± , P0,±} if Fp( · , n0, tr ) has
only simple zeros distinct from zero is a consequence of (3.208), (3.210), (3.211),
(3.212), and of

−i F̃r (z, n0, s)φ(P, n0, s) =
P→µ̂ j (n0,s)

∂s ln
(
Fp(z, n0, s)

)+ O(1),

using (3.231). (Equation (3.231) in Lemma 3.34 follows from (3.215), (3.217), and
(3.218) which have already been proven.)

Next we consider the tr -dependence of Fp, G p, and Hp.

Lemma 3.34 Assume Hypothesis 3.32 and suppose that (3.194), (3.195) hold. In
addition, let (z, n, tr ) ∈ C× Z× R. Then,

Fp,tr = −2iG p F̃r + i
(
G̃r + K̃r

)
Fp, (3.231)

G p,tr = i Fp H̃r − i Hp F̃r , (3.232)

Hp,tr = 2iG p H̃r − i
(
G̃r + K̃r

)
Hp. (3.233)

In particular, (3.231)–(3.233) are equivalent to

Vp,tr =
[
Ṽr , Vp

]
. (3.234)

Proof To prove (3.231) one first differentiates equation (3.218)

φtr (P)− φtr (P∗) = −c0,+z−p− yF−2
p Fp,tr .
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The time derivative of φ given in (3.215) and (3.217) yields

φtr (P)− φtr (P∗) = i
(
H̃r + F̃rφ(P)2 − (G̃r + K̃r

)
φ(P)

)
− i
(
H̃r + F̃rφ(P∗)2 − (G̃r + K̃r

)
φ(P∗)

)
= i F̃r (φ(P)+ φ(P∗))(φ(P)− φ(P∗))
− i
(
G̃r + K̃r

)
(φ(P)− φ(P∗))

= 2ic0,+z−p− F̃r yG p F−2
p − ic0,+z−p−(G̃r + K̃r

)
yF−1

p ,

and hence

Fp,tr = −2iG p F̃r + i
(
G̃r + K̃r

)
Fp.

Similarly, starting from (3.217)

φtr (P)+ φtr (P∗) = 2F−2
p (FpG p,tr − Fp,tr G p)

yields (3.232) and

0 = Rp,tr = 2G pG p,tr − Fp,tr Hp − Fp Hp,tr

proves (3.233).

Next we turn to the Dubrovin equations for the time variation of the zeros µ j of
( · )p−Fp and ν j of ( · )p−−1 Hp governed by the ÃLr flow.

Lemma 3.35 Assume Hypothesis 3.32 and suppose that (3.194), (3.195) hold on
Z × Iµ with Iµ ⊆ R an open interval. In addition, assume that the zeros µ j , j =
1, . . . , p, of ( · )p−Fp( · ) remain distinct and nonzero on Z× Iµ. Then {µ̂ j } j=1,...,p,
defined in (3.206), satisfies the following first-order system of differential equations
on Z× Iµ,

µ j,tr = −i F̃r (µ j )y(µ̂ j )(α
+)−1

p∏
k=1
k �= j

(µ j − µk)
−1, j = 1, . . . , p, (3.235)

with

µ̂ j (n, ·) ∈ C∞(Iµ,Kp), j = 1, . . . , p, n ∈ Z.

For the zeros ν j , j = 1, . . . , p, of ( · )p−−1 Hp( · ), identical statements hold with µ j

and Iµ replaced by ν j and Iν , etc. (with Iν ⊆ R an open interval ). In particular,
{ν̂ j } j=1,...,p, defined in (3.207), satisfies the first-order system on Z× Iν ,

ν j,tr = i H̃r (ν j )y(ν̂ j )(βν j )
−1

p∏
k=1
k �= j

(ν j − νk)
−1, j = 1, . . . , p, (3.236)
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with

ν̂ j (n, ·) ∈ C∞(Iν,Kp), j = 1, . . . , p, n ∈ Z.

Proof It suffices to consider (3.235) for µ j,tr . Using the product representation for
Fp in (3.197) and employing (3.206) and (3.231), one computes

Fp,tr (µ j ) =
(

c0,+α+µ−p−
j

p∏
k=1
k �= j

(µ j − µk)

)
µ j,tr = −2iG p(µ j )F̃r (µ j )

= −ic0,+µ−p−
j y(µ̂ j )F̃r (µ j ), j = 1, . . . , p,

proving (3.235). The case of (3.236) for ν j,tr is of course analogous using the product
representation for Hp in (3.197) and employing (3.207) and (3.233).

When attempting to solve the Dubrovin systems (3.235) and (3.236), they must
be augmented with appropriate divisors Dµ̂(n0,t0,r ) ∈ Symp Kp, t0,r ∈ Iµ, and
Dν̂(n0,t0,r ) ∈ Symp Kp, t0,r ∈ Iν , as initial conditions.

Since the stationary trace formulas for f�,± and h�,± in terms of symmetric func-
tions of the zeros µ j and νk of ( · )p−Fp and ( · )p−−1 Hp in Lemma 3.19 extend
line by line to the corresponding time-dependent setting, we next record their tr -
dependent analogs without proof. For simplicity we again confine ourselves to the
simplest cases only.

Lemma 3.36 Assume Hypothesis 3.32 and suppose that (3.194), (3.195) hold.
Then,

α

α+
= (−1)p+1 c0,+

c0,−

p∏
j=1

µ j ,

β+

β
= (−1)p+1 c0,+

c0,−

p∏
j=1

ν j ,

p∑
j=1

µ j = α+β − γ+α
++

α+
− c1,+

c0,+
,

p∑
j=1

ν j = α+β − γ
β−

β
− c1,+

c0,+
.

Next, we turn to the asymptotic expansions of φ and � in a neighborhood of P∞±
and P0,±.
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Lemma 3.37 Assume Hypothesis 3.32 and suppose that (3.194), (3.195) hold.
Moreover, let P = (z, y) ∈ Kp\{P∞+ , P∞− , P0,+, P0,−}, (n, n0, tr , t0,r ) ∈ Z2×R2.
Then φ has the asymptotic behavior

φ(P) =
ζ→0

{
β + β−γ ζ + O(ζ 2), P → P∞+ ,
−(α+)−1ζ−1 + (α+)−2α++γ+ + O(ζ ), P → P∞− ,

ζ = 1/z,

(3.237)

φ(P) =
ζ→0

{
α−1 − α−2α−γ ζ + O(ζ 2), P → P0,+,
−β+ζ − β++γ+ζ 2 + O(ζ 3), P → P0,−,

ζ = z. (3.238)

The component ψ1 of the Baker–Akhiezer vector � has the asymptotic behavior

ψ1(P, n, n0, tr , t0,r ) =
ζ→0

exp

(
± i

2
(tr − t0,r )

r+∑
s=0

c̃r+−s,+ζ−s
)
(1+ O(ζ ))

×


ζ n0−n, P → P∞+ ,

�(n, n0, tr )
α+(n,tr )
α+(n0,t0,r )

× exp
(

i
∫ tr

t0,r ds
(
g̃r+,+(n0, s)− g̃r−,−(n0, s)

))
,

P → P∞− ,
ζ = 1/z,

(3.239)

ψ1(P, n, n0, tr , t0,r ) =
ζ→0

exp

(
± i

2
(tr − t0,r )

r−∑
s=0

c̃r−−s,−ζ−s
)
(1+ O(ζ ))

×


α(n,tr )
α(n0,t0,r )

, P → P0,+,

�(n, n0, tr )ζ n−n0

× exp
(

i
∫ tr

t0,r ds
(
g̃r+,+(n0, s)− g̃r−,−(n0, s)

))
,

P → P0,−,
ζ = z.

(3.240)

Proof Since by the definition of φ in (3.208) the time parameter tr can be viewed
as an additional but fixed parameter, the asymptotic behavior of φ remains the same
as in Lemma 3.21. Similarly, also the asymptotic behavior of ψ1(P, n, n0, tr , tr ) is
derived in an identical fashion to that in Lemma 3.21. This proves (3.239) and (3.240)
for t0,r = tr , that is,

ψ1(P, n, n0, tr , tr ) =
ζ→0

ζ
n0−n(1+ O(ζ )), P → P∞+ ,
�(n, n0, tr )

α+(n,tr )
α+(n0,tr )

+ O(ζ ), P → P∞− ,
ζ = 1/z,

ψ1(P, n, n0, tr , tr ) =
ζ→0

{
α(n,tr )
α(n0,tr )

+ O(ζ ), P → P0,+,
�(n, n0, tr )ζ n−n0(1+ O(ζ )), P → P0,−,

ζ = z.
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It remains to investigate

ψ1(P, n0, n0, tr , t0,r ) = exp

(
i
∫ tr

t0,r
dt
(
G̃r (z, n0, t)− F̃r (z, n0, t)φ(P, n0, t)

))
.

(3.241)
The asymptotic expansion of the integrand is derived using Theorem C.4. Focusing
on the homogeneous coefficients first, one computes as P → P∞± ,

Ĝs,+ − F̂s,+φ = Ĝs,+ − F̂s,+
G p + (c0,+/2)z−p− y

Fp

= Ĝs,+ − F̂s,+
(

2z p−

c0,+
G p

y
+ 1

)(
2z p−

c0,+
Fp

y

)−1

=
ζ→0
±1

2
ζ−s + ĝ0,+ ∓ 1

2

f̂0,+
f̂s,+ + O(ζ ), P → P∞± , ζ = 1/z.

Since

F̃r =
ζ→0

r+∑
s=0

c̃r+−s,+ F̂s,+ + O(ζ ), G̃r =
ζ→0

r+∑
s=0

c̃r+−s,+Ĝs,+ + O(ζ ),

one infers from (3.237)

G̃r − F̃rφ =
ζ→0

1

2

r+∑
s=0

c̃r+−s,+ζ−s + O(ζ ), P → P∞+ , ζ = 1/z. (3.242)

Insertion of (3.242) into (3.241) then proves (3.239) as P → P∞+ .
As P → P∞− , we need one additional term in the asymptotic expansion of F̃r , that
is, we will use

F̃r =
ζ→0

r+∑
s=0

c̃r+−s,+ F̂s,+ +
r−∑

s=0

c̃r−−s,− f̂s−1,−ζ + O(ζ 2).

This then yields

G̃r − F̃rφ =
ζ→0
−1

2

r+∑
s=0

c̃r+−s,+ζ−s − (α+)−1( f̃r+,+ − f̃r−−1,−)+ O(ζ ).

Invoking (3.21) and (3.190) one concludes that

f̃r−−1,− − f̃r+,+ = −iα+tr + α+(g̃r+,+ − g̃r−,−)

and hence

G̃r − F̃rφ =
ζ→0
−1

2

r+∑
s=0

c̃r+−s,+ζ−s − iα+tr
α+
+ g̃r+,+ − g̃r−,− + O(ζ ). (3.243)
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Insertion of (3.243) into (3.241) then proves (3.239) as P → P∞− .
Using Theorem C.4 again, one obtains in the same manner as P → P0,±,

Ĝs,− − F̂s,−φ =
ζ→0
±1

2
ζ−s − ĝs,− + ĝ0,− ± 1

2

f̂0,−
f̂s,− + O(ζ ). (3.244)

Since

F̃r =
ζ→0

r−∑
s=0

c̃r−−s,− F̂s,− + f̃r+−1,+ + O(ζ ), P → P0,±, ζ = z, (3.245)

G̃r =
ζ→0

r−∑
s=0

c̃r−−s,−Ĝs,− + g̃r+,+ + O(ζ ), P → P0,±, ζ = z, (3.246)

(3.244)–(3.246) yield

G̃r − F̃rφ =
ζ→0
±1

2

r−∑
s=0

c̃r−−s,−ζ−s + g̃r+,+ − g̃r−,−

− ĝ0,− ± 1
2

f̂0,−
( f̃r+−1,+ − f̃r−,−)+ O(ζ ),

where we again used (3.238), (3.35), and (3.190). As P → P0,−, one thus obtains

G̃r − F̃rφ =
ζ→0
−1

2

r−∑
s=0

c̃r−−s,−ζ−s + g̃r+,+ − g̃r−,−, P → P0,−, ζ = z.

(3.247)

Insertion of (3.247) into (3.241) then proves (3.240) as P → P0,−.
As P → P0,+, one obtains

G̃r − F̃rφ =
ζ→0

1

2

r−∑
s=0

c̃r−−s,−ζ−s + g̃r+,+ − g̃r−,−

− 1

α
( f̃r+−1,+ − f̃r−,−)+ O(ζ )

=
ζ→0

1

2

r−∑
s=0

c̃r−−s,−ζ−s − iαtr

α
+ O(ζ ), P → P0,+, ζ = z, (3.248)

using f̃r−,− = f̃ −r−−1,− + α(g̃r−,− − g̃−r−,−) (cf. (3.25)) and (3.190). Insertion of
(3.248) into (3.241) then proves (3.240) as P → P0,+.

Next, we note that Lemma 3.22 on nonspecial divisors in the stationary context
extends to the present time-dependent situation without a change. Indeed, since tr ∈
R just plays the role of a parameter, the proof of Lemma 3.22 extends line by line
and is hence omitted.
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Lemma 3.38 Assume Hypothesis 3.32 and suppose that (3.194), (3.195) hold.
Moreover, let (n, tr ) ∈ Z × R. Denote by Dµ̂, µ̂ = {µ̂1, . . . , µ̂p}, and Dν̂ ,
ν̂ = {ν̂1, . . . , ν̂p}, the pole and zero divisors of degree p, respectively, associated
with α, β, and φ defined according to (3.206) and (3.207), that is,

µ̂ j (n, tr ) = (µ j (n, tr ), (2/c0,+)µ j (n, tr )
p−G p(µ j (n, tr ), n, tr )), j = 1, . . . , p,

ν̂ j (n, tr ) = (ν j (n, tr ),−(2/c0,+)ν j (n, tr )
p−G p(ν j (n, tr ), n, tr )), j = 1, . . . , p.

Then Dµ̂(n,tr ) and Dν̂(n,tr ) are nonspecial for all (n, tr ) ∈ Z× R.

We also note that

�(n, n0, tr ) = �(n, n0, t0,r )

× exp

(
i
∫ tr

t0,r
ds
(
g̃r+,+(n, s)− g̃r+,+(n0, s)− g̃r−,−(n, s)+ g̃r−,−(n0, s)

))
,

which follows from (3.55), (3.110), and from

�(n, n0, tr )tr =
n∑

j=n0+1

γ ( j, tr )tr

n∏
k=n0+1

k �= j

γ ( j, tr )

= i
(
g̃r+,+(n, tr )− g̃r+,+(n0, tr )− g̃r−,−(n, tr )+ g̃r−,−(n0, tr )

)
�(n, n0, tr )

after integration with respect to tr .
Next, we turn to the principal result of this section, the representation of φ, �, α,

and β in terms of the Riemann theta function associated with Kp, assuming p ∈ N
for the remainder of this section.

In addition to (3.125)–(3.130), let ω(2)
P∞± ,q

and ω
(2)
P0,±,q be the normalized differ-

entials of the second kind with a unique pole at P∞± and P0,±, respectively, and
principal parts

ω
(2)
P∞± ,q

=
ζ→0

(
ζ−2−q + O(1)

)
dζ, P → P∞± , ζ = 1/z, q ∈ N0, (3.249)

ω
(2)
P0,±,q =ζ→0

(
ζ−2−q + O(1)

)
dζ, P → P0,±, ζ = z, q ∈ N0, (3.250)

with vanishing a-periods,∫
a j

ω
(2)
P∞± ,q

=
∫

a j

ω
(2)
P0,±,q = 0, j = 1, . . . , p.
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Moreover, we define

�̃(2)
r =

i

2

( r−∑
s=1

sc̃r−−s,−
(
ω
(2)
P0,+,s−1 − ω

(2)
P0,−,s−1

)
+

r+∑
s=1

sc̃r+−s,+
(
ω
(2)
P∞+ ,s−1 − ω

(2)
P∞− ,s−1

))
, (3.251)

where c̃�,± are the summation constants in F̃r . The corresponding vector of b-periods

of �̃(2)
r /(2π i) is then denoted by

Ũ
(2)
r =

(
Ũ (2)

r ,1 , . . . , Ũ (2)
r ,p

)
, Ũ (2)

r , j =
1

2π i

∫
b j

�̃(2)
r , j = 1, . . . , p.

Finally, we abbreviate

�̃
∞±
r = lim

P→P∞±

(∫ P

Q0

�̃(2)
r ±

i

2

r+∑
s=0

c̃r+−s,+ζ−s
)
,

�̃0,±
r = lim

P→P0,±

(∫ P

Q0

�̃(2)
r ±

i

2

r−∑
s=0

c̃r−−s,−ζ−s
)
.

Theorem 3.39 Assume Hypothesis 3.32 and suppose that (3.194), (3.195) hold. In
addition, let P ∈ Kp \{P∞+ , P∞− , P0,+, P0,−} and (n, n0, tr , t0,r ) ∈ Z2×R2. Then
for each (n, tr ) ∈ Z× R, Dµ̂(n,tr ) and Dν̂(n,tr ) are nonspecial. Moreover,

φ(P, n, tr ) = C(n, tr )
θ(z(P, ν̂(n, tr )))

θ(z(P, µ̂(n, tr )))
exp

(∫ P

Q0

ω
(3)
P0,−,P∞−

)
, (3.252)

ψ1(P, n, n0, tr , t0,r ) = C(n, n0, tr , t0,r )
θ(z(P, µ̂(n, tr )))

θ(z(P, µ̂(n0, t0,r )))
(3.253)

× exp

(
(n − n0)

∫ P

Q0

ω
(3)
P0,−,P∞+

− (tr − t0,r )
∫ P

Q0

�̃(2)
r

)
,

ψ2(P, n, n0, tr , t0,r ) = C(n, tr )C(n, n0, tr , t0,r )
θ(z(P, ν̂(n, tr )))

θ(z(P, µ̂(n0, t0,r )))
(3.254)

× exp

(∫ P

Q0

ω
(3)
P0,−,P∞−

+ (n − n0)

∫ P

Q0

ω
(3)
P0,−,P∞+

− (tr − t0,r )
∫ P

Q0

�̃(2)
r

)
,

where

C(n, tr ) = (−1)n−n0

α(n0, tr )
exp
(
(n − n0)(ω

0,−
0 (P0,−, P∞−)− ω

∞+
0 (P0,−, P∞−))

)
× exp

(− ω
0,+
0 (P0,−, P∞−)

)θ(z(P0,+, µ̂(n0, tr )))

θ(z(P0,+, ν̂(n0, tr )))
, (3.255)
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C(n, n0, tr , t0,r ) =
θ(z(P∞+ , µ̂(n0, t0,r )))

θ(z(P∞+ , µ̂(n, tr )))
(3.256)

× exp
(
(tr − t0,r )�̃

∞+
r − (n − n0)ω

∞+
0 (P0,−, P∞+)

)
.

The Abel map linearizes the auxiliary divisors Dµ̂(n,tr ) and Dν̂(n,tr ) in the sense that

αQ0
(Dµ̂(n,tr )) = αQ0

(Dµ̂(n0,t0,r ))+ AP0,−(P∞+)(n − n0)+ Ũ
(2)
r (tr − t0,r ),

(3.257)

αQ0
(Dν̂(n,tr )) = αQ0

(Dν̂(n0,t0,r ))+ AP0,−(P∞+)(n − n0)+ Ũ
(2)
r (tr − t0,r ).

(3.258)

Finally, α, β are of the form

α(n, tr ) = α(n0, t0,r ) exp
(
(n − n0)(ω

0,+
0 (P0,−, P∞+)− ω

∞+
0 (P0,−, P∞+))

)
× exp

(
(tr − t0,r )(�̃

∞+
r − �̃0,+

r )
)

× θ(z(P0,+, µ̂(n, tr )))θ(z(P∞+ , µ̂(n0, t0,r )))

θ(z(P0,+, µ̂(n0, t0,r )))θ(z(P∞+ , µ̂(n, tr )))
, (3.259)

β(n, tr ) = 1

α(n0, t0,r )
exp
(
(n − n0)(ω

0,+
0 (P0,−, P∞+)− ω

∞+
0 (P0,−, P∞+))

)
× exp

(
ω
∞+
0 (P0,−, P∞−)− ω

0,+
0 (P0,−, P∞−)

)
× exp

(− (tr − t0,r )(�̃
∞+
r − �̃0,+

r )
)

× θ(z(P0,+, µ̂(n0, t0,r )))θ(z(P∞+ , ν̂(n, tr )))

θ(z(P0,+, ν̂(n0, t0,r )))θ(z(P∞+ , µ̂(n, tr )))
, (3.260)

and

α(n, tr )β(n, tr ) = exp
(
ω
∞+
0 (P0,−, P∞−)− ω

0,+
0 (P0,−, P∞−)

)
× θ(z(P0,+, µ̂(n, tr )))θ(z(P∞+ , ν̂(n, tr )))

θ(z(P0,+, ν̂(n, tr )))θ(z(P∞+ , µ̂(n, tr )))
.

(3.261)

Proof As in Theorem 3.25 one concludes that φ(P, n, tr ) is of the form (3.252) and
that for t0,r = tr , ψ1(P, n, n0, tr , tr ) is of the form

ψ1(P, n, n0, tr , tr ) = C(n, n0, tr , tr )
θ(z(P, µ̂(n, tr )))

θ(z(P, µ̂(n0, tr )))

× exp

(
(n − n0)

∫ P

Q0

ω
(3)
P0,−,P∞+

)
.

To discuss ψ1(P, n, n0, tr , t0,r ) we recall (3.213), that is,

ψ1(P, n, n0, tr , t0,r ) = ψ1(P, n, n0, tr , tr )ψ1(P, n0, n0, tr , t0,r ), (3.262)
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and hence remaining to be studied is

ψ1(P, n0, n0, tr , t0,r ) = exp

(
i
∫ tr

t0,r
ds
(
G̃r (z, n0, s)− F̃r (z, n0, s)φ(P, n0, s)

))
.

(3.263)
Introducing ψ̂1(P) on Kp \ {P∞+ , P∞−} by

ψ̂1(P, n0, tr , t0,r ) = C(n0, n0, tr , t0,r )
θ(z(P, µ̂(n0, tr )))

θ(z(P, µ̂(n0, t0,r )))

× exp

(
− (tr − t0,r )

∫ P

Q0

�̃(2)
r

)
,

(3.264)

we intend to prove that

ψ1(P, n0, n0, tr , t0,r ) = ψ̂1(P, n0, tr , t0,r ),

P ∈ Kp \ {P∞+ , P∞−}, n0 ∈ Z, tr , t0,r ∈ R,
(3.265)

for an appropriate choice of the normalization constant C(n0, n0, tr , t0,r ) in (3.264).
We start by noting that a comparison of (3.239), (3.240) and (3.249), (3.250), (3.251),
(3.253) shows that ψ1 and ψ̂1 have the same essential singularities at P∞± and P0,±.
Thus, we turn to the local behavior of ψ1 and ψ̂1. By (3.264), ψ̂1 has zeros and poles
at µ̂(n0, tr ) and µ̂(n0, t0,r ), respectively. Similarly, by (3.263), ψ1 can have zeros
and poles only at poles of φ(P, n0, s), s ∈ [t0,r , tr ] (resp., s ∈ [tr , t0,r ]). In the
following we temporarily restrict t0,r and tr to a sufficiently small nonempty interval
I ⊆ R and pick n0 ∈ Z such that for all s ∈ I , µ j (n0, s) �= µk(n0, s) for all j �= k,
j, k = 1, . . . , p. One computes

i G̃r (z, n0, s)− i F̃r (z, n0, s)φ(P, n0, s)

= i G̃r (z, n0, s)− i F̃r (z, n0, s)
(c0,+/2)z−p− y + G p(z, n0, s)

Fp(z, n0, s)

=
P→µ̂ j (n0,s)

i F̃r (µ j (n0, s), n0, s)y(µ̂ j (n0, s))

α+(n0, s)(z − µ j (n0, s))
∏p

k=1
k �= j

(µ j (n0, s)− µk(n0, s))
+ O(1)

=
P→µ̂ j (n0,s)

∂

∂s
ln
(
µ j (n0, s)− z

)+ O(1). (3.266)

Restricting P to a sufficiently small neighborhood U j (n0) of {µ̂ j (n0, s) ∈ Kp | s ∈
[t0,r , tr ] ⊆ I } such that µ̂k(n0, s) �∈ U j (n0) for all s ∈ [t0,r , tr ] ⊆ I and all k ∈
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{1, . . . , p} \ { j}, (3.264) and (3.266) imply

ψ1(P, n0, n0, tr , t0,r )

=


(µ j (n0, tr )− z)O(1) as P → µ̂ j (n0, tr ) �= µ̂ j (n0, t0,r ),

O(1) as P → µ̂ j (n0, tr ) = µ̂ j (n0, t0,r ),

(µ j (n0, t0,r )− z)−1 O(1) as P → µ̂ j (n0, t0,r ) �= µ̂ j (n0, tr ),

P = (z, y) ∈ Kp,

with O(1) �= 0. Thus, ψ1 and ψ̂1 have the same local behavior and identical essential
singularities at P∞± and P0,±. By Lemma B.1, ψ1 and ψ̂1 coincide up to a multiple
constant (which may depend on n0, tr , t0,r ). This proves (3.265) for t0,r , tr ∈ I and
for n0 as restricted above. By continuity with respect to divisors this extends to all
n0 ∈ Z since by hypothesis Dµ̂(n,s) remain nonspecial for all (n, s) ∈ Z× R. More-
over, since by (3.263), for fixed P and n0, ψ1(P, n0, n0, ., t0,r ) is entire in tr (and
this argument is symmetric in tr and t0,r ), (3.265) holds for all tr , t0,r ∈ R (for an
appropriate choice of C(n0, n0, tr , t0,r )). Together with (3.262), this proves (3.253)
for all (n, tr ), (n0, t0,r ) ∈ Z × R. The expression (3.254) for ψ2 then immediately
follows from (3.252) and (3.253).

To determine the constant C(n, n0, tr , t0,r ) one compares the asymptotic expansions
of ψ1(P, n, n0, tr , t0,r ) for P → P∞+ in (3.239) and (3.253)

C(n, n0, tr , t0,r ) = exp
(
(tr − t0,r )�̃

∞+
r − (n − n0)ω

∞+
0 (P0,−, P∞+)

)
× θ(z(P∞+ , µ̂(n0, t0,r )))

θ(z(P∞+ , µ̂(n, tr )))
.

Remaining to be computed are the expressions for α and β. Comparing the asymp-
totic expansions of ψ1(P, n, n0, tr , t0,r ) for P → P0,+ in (3.240) and (3.253) shows

α(n, tr )

α(n0, t0,r )
= C(n, n0, tr , t0,r )

× exp
(
(n − n0)ω

0,+
0 (P0,−, P∞+)− (tr − t0,r )�̃

0,+
r

)
× θ(z(P0,+, µ̂(n, tr )))

θ(z(P0,+, µ̂(n0, t0,r )))

and inserting C(n, n0, tr , t0,r ) proves (3.259). Equation (3.255) for C(n, tr ) follows
as in the stationary case since tr can be viewed as an additional but fixed parameter.
By the first line of (3.146),

α(n, tr ) = 1

C(n, tr )
exp
(− ω

0,+
0 (P0,−, P∞−)

)θ(z(P0,+, µ̂(n, tr )))

θ(z(P0,+, ν̂(n, tr )))
. (3.267)
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Inserting the result (3.259) for α(n, tr ) into (3.267) then yields (using Lemma 3.24)

C(n, tr ) = 1

α(n0, t0,r )

θ(z(P0,+, µ̂(n0, t0,r )))

θ(z(P∞+ , µ̂(n0, t0,r )))
exp
(
(tr − t0,r )(�̃

0,+
r − �̃

∞+
r )

)
× exp

(
(n − n0)(ω

∞+
0 (P0,−, P∞+)− ω

0,+
0 (P0,−, P∞+))− ω

0,+
0 (P0,−, P∞−)

)
.

(3.268)

Also, since the first line of (3.147) holds,

β(n, tr ) = C(n, tr ) exp
(
ω
∞+
0 (P0,−, P∞−)

) θ(z(P∞+ , ν̂(n, tr )))

θ(z(P∞+ , µ̂(n, tr )))
, (3.269)

an insertion of (3.268) into (3.269), observing Lemma 3.24, yields equation (3.260)
for β(n, tr ). Finally, multiplying (3.267) and (3.269) proves (3.261).
Single-valuedness of ψ1( · , n0, n0, tr , t0,r ) on Kp implies

αQ0
(Dµ̂(n0,tr )) = αQ0

(Dµ̂(n0,t0,r ))+ i(tr − t0,r )Ũ
(2)
r . (3.270)

Inserting (3.270) into (3.138),

αQ0
(Dµ̂(n,tr )) = αQ0

(Dµ̂(n0,tr ))+ AP0,−(P∞+)(n − n0),

one obtains the result (3.257).

Combining (3.257), (3.258) and (3.259), (3.260) shows the remarkable linearity
of the theta function representations for α and β with respect to (n, tr ) ∈ Z× R.

Again we note that the apparent n0-dependence of C(n, tr ) in the right-hand side
of (3.255) actually drops out to ensure the n0-independence of φ in (3.252).

The theta function representations (3.259) and (3.260) for α and β, and the one
for �( · , · , tr ) analogous to that in (3.261) also show that γ (n, tr ) /∈ {0, 1} for all
(n, tr ) ∈ Z×R. Hence, condition (3.189) is satisfied for the time-dependent algebro-
geometric AL solutions discussed in this section, provided the associated divisors
Dµ̂(n, tr ) and Dν̂ (n, tr ) stay away from P∞± , P0,± for all (n, tr ) ∈ Z× R.

3.7 The Time-Dependent Ablowitz–Ladik Algebro-Geometric
Initial Value Problem

Es ist nicht genug, zu wissen,
man muß auch anwenden.

Johann Wolfang von Goethe1

In this section we discuss the algebro-geometric initial value problem (3.190),
(3.191) for the Ablowitz–Ladik hierarchy with complex-valued initial data and prove

1 Wilhelm Meisters Wanderjahre oder Die Entsagenden (1821). (“Knowing is not enough, one also must
apply.”)
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unique solvability globally in time for a set of initial (Dirichlet divisor) data of full
measure. More precisely, we intend to describe a solution of the following problem:
Given p ∈ N2

0 \ {(0, 0)}, assume α(0), β(0) to be complex-valued solutions of the

pth stationary Ablowitz–Ladik system s-ALp(α
(0), β(0)) = 0 associated with a pre-

scribed nonsingular hyperelliptic curve Kp of genus p and let r = (r−, r+) ∈ N2
0;

we want to construct unique global solutions α = α(n, tr ), β = β(n, tr ) of the r th
Ablowitz–Ladik flow ALr (α, β) = 0 with α(t0,r ) = α(0), β(t0,r ) = β(0) for some
t0,r ∈ R. Thus, we seek a unique global solution of the initial value problem

ÃLr (α, β) = 0,

(α, β)
∣∣
t=t0,r

= (α(0), β(0)),
s-ALp

(
α(0), β(0)

) = 0

for some t0,r ∈ R, where α = α(n, tr ), β = β(n, tr ) satisfy

α( · , t), β( · , t) ∈ CZ, t ∈ R, α(n, · ), β(n, · ) ∈ C1(R), n ∈ Z,

α(n, t)β(n, t) /∈ {0, 1}, (n, t) ∈ Z× R.

Here,

p = (p−, p+) ∈ N2
0 \ {(0, 0)}, r = (r−, r+) ∈ N2

0, p = p− + p+ − 1.

As in the stationary context treated in Section 3.5, the fact that the underlying Lax
operator L̆ is non-normal poses two kinds of difficulties when general initial data
α(0), β(0) or divisors Dµ̂(n0,t0,r ) in general complex position are considered. In this
case the Dirichlet eigenvalues µ j , j = 1, . . . , p, are in general not pairwise distinct
and “collisions” between them can occur at certain values of (n, tr ) ∈ Z × R. A
priori, one has no control over such collisions, especially, it is not possible to identify
initial conditions Dµ̂(n0,t0,r ) at some (n0, t0,r ) ∈ Z × R which avoid collisions for
all (n, tr ) ∈ Z × R. Again we solve this problem by referring to a more general
interpolation formalism (cf. Appendix D) for polynomials, going beyond the usual
Lagrange interpolation formulas. In the time-dependent context we replace the first-
order system of Dubrovin-type equations (3.235), augmented with the initial divisor
Dµ̂(n0,t0,r ), by a different first-order system of differential equations (3.281), (3.287),
and (3.288) with initial conditions (3.289) which focuses on symmetric functions of
µ1(n, tr ), . . . , µp(n, tr ) rather than individual Dirichlet eigenvalues µ j (n, tr ), j =
1, . . . , p. In this manner it will be shown that collisions of Dirichlet eigenvalues
no longer pose a problem. In addition, there is again a second complication since
it cannot be guaranteed that µ j (n, tr ) and ν j (n, tr ), j = 1, . . . , p, stay finite and
nonzero for all (n, tr ) ∈ Z×R. We solve this particular problem in the stationary as
well as time-dependent case by properly restricting the initial Dirichlet and Neumann
divisors Dµ̂(n0,t0,r ),Dν̂(n0,t0,r ) ∈ Symp Kp to a dense set of full measure.
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In short, our strategy will consist of the following:
(α) Replace the first-order autonomous Dubrovin-type system (3.235) of differen-

tial equations in tr for the Dirichlet eigenvalues µ j (n, tr ), j = 1, . . . , p, augmented
by appropriate initial conditions, by the first-order autonomous system (3.313),
(3.314) for the coefficients f�,±, h�,±, � = 1, . . . , p± − 1, and g�,±, � = 1, . . . , p±,
with respect to tr . Solve this first-order autonomous system in some time interval
(t0,r − T0, t0,r + T0) under appropriate initial conditions at (n0, t0,r ) derived from an
initial (nonspecial) Dirichlet divisor Dµ̂(n0,t0,r ).
(β) Use the stationary algorithm derived in Section 3.5 to extend the solution of

step (α) from {n0} × (t0,r − T0, t0,r + T0) to Z × (t0,r − T0, t0,r + T0) (cf. Lemma
3.41).
(γ ) Prove consistency of this approach, that is, show that the discrete algorithm of

Section 3.5 is compatible with the time-dependent Lax and zero-curvature equations
in the sense that first solving the autonomous system (3.313), (3.314) and then apply-
ing the discrete algorithm, or first applying the discrete algorithm and then solving
the autonomous system (3.313), (3.314) yields the same result whenever the same
endpoint (n, tr ) is reached (cf. Lemma 3.42 and Theorem 3.43).
(δ) Prove that there is a dense set of initial conditions of full measure for which this

strategy yields global solutions of the algebro-geometric Ablowitz–Ladik hierarchy
initial value problem.

To set up this formalism we need some preparations. From the outset we make the
following assumption.

Hypothesis 3.40 Suppose that

α, β ∈ CZ and α(n)β(n) /∈ {0, 1} for all n ∈ Z,

and assume that α, β satisfy the pth stationary Ablowitz–Ladik equation (3.30). In
addition, suppose that the affine part of the hyperelliptic curve Kp (cf. (3.88)) is
nonsingular.

We introduce a deformation (time) parameter tr ∈ R in α = α(tr ) and β = β(tr )
and hence obtain tr -dependent quantities f�,± = f�,±(tr ), g�,± = g�,±(tr ), h�,± =
h�,±(tr ) Fp(z) = Fp(z, tr ), G p(z) = G p(z, tr ), Hp(z) = Hp(z, tr ), etc. At a fixed
initial time t0,r ∈ R we require that

(α, β)|tr=t0,r =
(
α(0), β(0)

)
, (3.271)

where α(0) = α( · , t0,r ), β(0) = β( · , t0,r ) satisfy the pth stationary Ablowitz–Ladik
system (3.30). As discussed in Section 3.5, in order to guarantee that the stationary
solutions (3.271) can be constructed for all n ∈ Z one starts from a particular divisor

Dµ̂(n0,t0,r ) ∈M0, (3.272)
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where µ̂(n0, t0,r ) is of the form

µ̂(n0, t0,r )

= {µ̂1(n0, t0,r ), . . . , µ̂1(n0, t0,r )︸ ︷︷ ︸
p1(n0,t0,r ) times

, . . .

. . . , µ̂q(n0,t0,r )(n0, t0,r ), . . . , µ̂q(n0,t0,r )(n0, t0,r )︸ ︷︷ ︸
pq(n0,t0,r )(n0,t0,r ) times

}.

Moreover, as in Section 3.5 we prescribe the data

α(n0, t0,r ) ∈ C \ {0} and c0,+ ∈ C \ {0}, (3.273)

and of course the hyperelliptic curve Kp with nonsingular affine part (cf. (3.155)). In
addition, we introduce

α+(n0, t0,r ) = α(n0, t0,r )

( 2p+1∏
m=0

Em

)1/2 q(n0,t0,r )∏
k=1

µk(n0, t0,r )
−pk (n0,t0,r ),

(3.274)

Fp(z, n0, t0,r ) =
p−∑
�=1

f p−−�,−(n0, t0,r )z
−� +

p+−1∑
�=0

f p+−1−�,+(n0, t0,r )z
�

= −c0,+α+(n0, t0,r )z
−p−

q(n0,t0,r )∏
k=1

(z − µk(n0, t0,r ))
pk (n0,t0,r ), (3.275)

G p(z, n0, t0,r ) = 1

2

(
1

α(n0, t0,r )
− z

α+(n0, t0,r )

)
Fp(z, n0, t0,r )

− z

2α+(n0, t0,r )
Fp(z, n0, t0,r )

×
q(n0,t0,r )∑

k=1

pk (n0,t0,r )−1∑
�=0

(
d�
(
ζ−1 y(P)

)
/dζ �

)∣∣
P=(ζ,η)=µ̂k (n0,t0,r )

�!(pk(n0, t0,r )− �− 1)! (3.276)

×
(

d pk (n0,t0,r )−�−1

dζ pk (n0,t0,r )−�−1

(
(z − ζ )−1

×
q(n0,t0,r )∏

k′=1, k′ �=k

(ζ − µk′(n0, t0,r ))
−pk′ (n0,t0,r )

))∣∣∣∣
ζ=µk (n0,t0,r )

,

in analogy to (3.158)–(3.161).
Our aim is to find an autonomous first-order system of ordinary differential equa-

tions with respect to tr for f�,±, g�,±, and h�,± rather than for µ j . We divide the
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differential equation

Fp,tr = −2iG p F̃r + i(G̃r + K̃r )Fp

by c0,+z−p− y and rewrite it using Theorem C.4 as
∞∑
�=0

f̂�,+,tr ζ �+1 = −2i

( r−∑
s=1

f̃r−−s,−ζ s +
r+−1∑
s=0

f̃r+−1−s,+ζ−s
) ∞∑

�=0

ĝ�,+ζ �

+ i

(
2

r−∑
s=0

g̃r−−s,−ζ s + 2
r+∑

s=1

g̃r+−s,+ζ−s − g̃r−,− + g̃r+,+
) ∞∑

�=0

f̂�,+ζ �+1,

P → P∞− , ζ = 1/z. (3.277)

The coefficients of ζ−s , s = 0, . . . , r+ − 1, cancel since
�∑

k=0

f̃�−k,+ĝk,+ =
�∑

k=0

g̃�−k,+ f̂k,+, � ∈ N0. (3.278)

In (3.278) we used (3.35),

f̃�,+ =
�∑

k=0

c̃�−k,+ f̂k,+, g̃�,+ =
�∑

k=0

c̃�−k,+ĝk,+.

Comparing coefficients in (3.277) then yields 1

f̂�,+,tr = i f̂�,+(g̃r+,+ − g̃r−,−)+ 2i
r+−1∑
k=0

(
g̃k,+ f̂r++�−k,+ − f̃k,+ĝr++�−k,+

)
− 2i

�∑
k=(�+1−r−)∨0

ĝk,+ f̃r−−1−�+k,− + 2i
�∑

k=(�+2−r−)∨0

f̂k,+g̃r−−�+k,−,

� ∈ N0. (3.279)

By (3.278), the last sum in (3.279) can be rewritten as
r+−1∑
j=0

(
g̃ j,+ f̂r++�− j,+ − f̃ j,+ĝr++�− j,+

)

=
( r++�∑

j=0

−
r++�∑
j=r+

)(
g̃ j,+ f̂r++�− j,+ − f̃ j,+ĝr++�− j,+

)

= −
r++�∑
j=r+

(
g̃ j,+ f̂r++�− j,+ − f̃ j,+ĝr++�− j,+

)
=

�∑
j=0

(
ĝ j,+ f̃r++�− j,+ − f̂ j,+g̃r++�− j,+

)
. (3.280)

1 m ∨ n = max{m, n}.
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One performs a similar computation for f̂�,−,tr using Theorem C.4 at P → P0,+.

In summary, since fk,± =∑k
�=0 ck−�,± f̂�,±, (3.279) and (3.280) yield the following

autonomous first-order system (for fixed n = n0)

f�,±,tr = F�,±( f j,−, f j,+, g j,−, g j,+), � = 0, . . . , p± − 1, (3.281)

with initial conditions

f�,±(n0, t0,r ), � = 0, . . . , p± − 1,

g�,±(n0, t0,r ), � = 0, . . . , p±,
(3.282)

where F�,±, � = 0, . . . , p± − 1, are polynomials in 2p + 3 variables,

F�,± = i f�,±(g̃r±,± − g̃r∓,∓)

+ 2i
�∑

k=0

(
fk,±(g̃r∓−�+k,∓ − g̃r±+�−k,±)

+ gk,±( f̃r±+�−k,± − f̃r∓−1−�+k,∓)
)

(3.283)

+ 2i
�∑

k=0

c�−k,± ×


0, 0 ≤ k < r∓ − 1,∑k−r∓

j=0 ĝ j,± f̃r∓−1−k+ j,∓
−∑k+1−r∓

j=0 f̂ j,±g̃r∓−k+ j,∓, k ≥ r∓ − 1.

Explicitly, one obtains (for simplicity, r± > 1)

F0,± = i f0,±(g̃r∓,∓ − g̃r±,±)+ 2ig0,±( f̃r±,± − f̃r∓−1,∓),
F1,± = 2i f0,±(g̃r∓−1,∓ − g̃r±+1,±)+ i f1,±(g̃r∓,∓ − g̃r±,±) (3.284)

+ 2ig0,±( f̃r±+1,± − f̃r∓−2,∓)+ 2ig1,±( f̃r±,± − f̃r∓−1,∓), etc.

By (3.274)–(3.276), the initial conditions (3.282) are uniquely determined by the
initial divisor Dµ̂(n0,t0,r ) in (3.272) and by the data in (3.273).

Similarly, one transforms

G p,tr = i Fp H̃r − i Hp F̃r ,

Hp,tr = 2iG p H̃r − i
(
G̃r + K̃r

)
Hp

into (for fixed n = n0) 1

ĝ0,±,tr = 0,

ĝ�,±,tr = i
r±−1∑
k=0

(
h̃k,± f̂r±−1+�−k,± − f̃k,±ĥr±−1+�−k,±

)
+ i

�−1∑
k=(�−r∓)∨0

(
f̂k,±h̃r∓−�+k,∓ − ĥk,± f̃r∓−�+k,∓

)
1 m ∨ n = max{m, n}.
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= i
�−1∑
k=0

(
ĥk,± f̃r±−1+�−k,± − f̂k,±h̃r±−1+�−k,±

)
+ i

�−1∑
k=(�−r∓)∨0

(
f̂k,±h̃r∓−�+k,∓ − ĥk,± f̃r∓−�+k,∓

)
, � ∈ N, (3.285)

ĥ�,±,tr = i ĥ�,±
(
g̃r∓,∓ − g̃r±,±

)+ 2i
r±−1∑
k=0

(
h̃k,±ĝr±+�−k,± − g̃k,±ĥr±+�−k,±

)
+ 2i

�∑
k=(�−r∓+1)∨0

ĝk,±h̃r∓−1−�+k,∓ − 2i
�∑

k=(�−r∓)∨0

ĥk,±g̃r∓−�+k,∓

= i ĥ�,±
(
g̃r∓,∓ − g̃r±,±

)+ 2i
�∑

k=0

(
ĥk,±g̃r±+�−k,± − ĝk,±h̃r±+�−k,±

)
+ 2i

�∑
k=(�−r∓+1)∨0

ĝk,±h̃r∓−1−�+k,∓ − 2i
�∑

k=(�−r∓)∨0

ĥk,±g̃r∓−�+k,∓,

� ∈ N0. (3.286)

Summing over � in (3.285), (3.286) then yields the following first-order system

g�,±,tr = G�,±( fk,−, fk,+, hk,−, hk,+), � = 0, . . . , p±, (3.287)

h�,±,tr = H�,±(gk,−, gk,+, hk,−, hk,+), � = 0, . . . , p± − 1, (3.288)

with initial conditions

f�,±(n0, t0,r ), � = 0, . . . , p± − 1,

g�,±(n0, t0,r ), � = 0, . . . , p±, (3.289)

h�,±(n0, t0,r ), � = 0, . . . , p± − 1,

where G�,±, H�,± are polynomials in 2p + 2, 2p + 3 variables

G�,± = i
�−1∑
k=0

(
fk,±(h̃r∓−�+k,∓ − h̃r±−1+�−k,±)

+ hk,±( f̃r±−1+�−k,± − f̃r∓−�+k,∓)
)

− i
�−1∑
k=0

c�−1−k,± (3.290)

×
{

0, 0 ≤ k ≤ r∓,∑k−r∓−1
j=0 ( f̂ j,±h̃r∓−k+ j,∓ − ĥ j,± f̃r∓−k+ j,∓), k > r∓,
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H�,± = ih�,±
(
g̃r∓,∓ − g̃r±,±

)
+ 2i

�∑
k=0

(
gk,±(h̃r∓−1−�+k,∓ − h̃r±+�−k,±)

+ hk,±(g̃r±+�−k,± − g̃r∓−�+k,∓)
)

(3.291)

+ 2i
�∑

k=0

c�−k,± ×


0, 0 ≤ k < r∓,
−∑k−r∓

j=0 ĝ j,±h̃r∓−1−k+ j,∓
+∑k−r∓−1

j=0 ĥ j,±g̃r∓−k+ j,∓, k ≥ r∓.

Explicitly (assuming r± > 2),

G0,± = 0,

G1,± = i f0,±(h̃r∓−1,∓ − h̃r±,±)+ ih0,±( f̃r±,± − f̃r∓−1,∓),
G2,± = i f0,±(h̃r∓−2,∓ − h̃r±+1,±)+ i f1,±(h̃r∓−1,∓ − h̃r±,±)

+ ih0,±( f̃r±+1,± − f̃r∓−2,∓)+ ih1,±( f̃r±,± − f̃r∓−1,∓), etc.,

H0,± = 2ig0,±(h̃r∓−1,∓ − h̃r±,±)+ ih0,±(g̃r±,± − g̃r∓,∓), (3.292)

H1,± = 2ig0,±(h̃r∓−2,∓ − h̃r±+1,±)+ 2ig1,±(h̃r∓−1,∓ − h̃r±,±)
+ 2ih0,±(g̃r±+1,± − g̃r∓−1,∓)+ ih1,±(g̃r±,± − g̃r∓,∓), etc.

Again by (3.274)–(3.276), the initial conditions (3.289) are uniquely determined
by the initial divisor Dµ̂(n0,t0,r ) in (3.272) and by the data in (3.273).

Since the system (3.281), (3.287), (3.288) is autonomous with polynomial right-
hand sides, there exists a T0 > 0, such that the first-order initial value problem
(3.281), (3.287), (3.288) with initial conditions (3.289) has a unique solution

f�,± = f�,±(n0, tr ), � = 0, . . . , p± − 1,

g�,± = g�,±(n0, tr ), � = 0, . . . , p±, (3.293)

h�,± = h�,±(n0, tr ), � = 0, . . . , p± − 1,

for all tr ∈ (t0,r − T0, t0,r + T0).

Given the solution (3.293), we proceed as in Section 3.5 and introduce the following
quantities (where tr ∈ (t0,r − T0, t0,r + T0)):

α+(n0, tr ) = α(n0, tr )

( 2p+1∏
m=0

Em

)1/2 q(n0,tr )∏
k=1

µk(n0, tr )
−pk (n0,tr ), (3.294)
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Fp(z, n0, tr ) =
p−∑
�=1

f p−−�,−(n0, tr )z
−� +

p+−1∑
�=0

f p+−1−�,+(n0, tr )z
�

= −c0,+α+(n0, tr )z
−p−

q(n0,tr )∏
k=1

(z − µk(n0, tr ))
pk (n0,tr ), (3.295)

G p(z, n0, tr ) = 1

2

(
1

α(n0, tr )
− z

α+(n0, tr )

)
Fp(z, n0, tr )

− z

2α+(n0, tr )
Fp(z, n0, tr )

×
q(n0,tr )∑

k=1

pk (n0,tr )−1∑
�=0

(
d�
(
ζ−1 y(P)

)
/dζ �

)∣∣
P=(ζ,η)=µ̂k (n0,tr )

�!(pk(n0, tr )− �− 1)! (3.296)

×
(

d pk (n0,tr )−�−1

dζ pk (n0,tr )−�−1

(
(z − ζ )−1

×
q(n0,tr )∏

k′=1, k′ �=k

(ζ − µk′(n0, tr ))
−pk′ (n0,tr )

))∣∣∣∣
ζ=µk (n0,tr )

.

In particular, this leads to the divisor

Dµ̂(n0,tr ) ∈ Symp(Kp)

and the sign of y in (3.295) is chosen as usual by

µ̂k(n0, tr ) = (µk(n0, tr ), (2/c0,+)µ j (n0, tr )
p−G p(µk(n0, tr ), n0, tr )),

k = 1, . . . , q(n0, tr ),
(3.297)

and
µ̂(n0, tr ) = {µ1(n0, tr ), . . . , µ1(n0, tr )︸ ︷︷ ︸

p1(n0,tr ) times

, . . .

. . . , µq(n0,tr )(n0, tr ), . . . , µq(n0,tr )(n0, tr )︸ ︷︷ ︸
pq(n0,tr )(n0,tr ) times

}

with
µk(n0, tr ) �= µk′(n0, tr ) for k �= k′, k, k′ = 1, . . . , q(n0, tr ),

and

pk(n0, tr ) ∈ N, k = 1, . . . , q(n0, tr ),

q(n0,tr )∑
k=1

pk(n0, tr ) = p.

By construction (cf. (3.297)), the divisor Dµ̂(n0,tr ) is nonspecial for all tr ∈ (t0,r −
T0, t0,r + T0).
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In exactly the same manner as in (3.162)–(3.165) one then infers that Fp( · , n0, tr )

divides Rp − G2
p (since tr is just a fixed parameter).

As in Section 3.5, the assumption that the Laurent polynomial Fp( · , n0− 1, tr ) is
of full order is implied by the hypothesis that

Dµ̂(n0,tr ) ∈M0 for all tr ∈ (t0,r − T0, t0,r + T0). (3.298)

The explicit formula for β(n0, tr ) then reads (for tr ∈ (t0,r − T0, t0,r + T0))

α+(n0, tr )β(n0, tr )

= −1

2

q(n0,tr )∑
k=1

(
d pk (n0,tr )−1

(
ζ−1 y(P)

)
/dζ pk (n0,tr )−1

)∣∣
P=(ζ,η)=µ̂k (n0,tr )

(pk(n0, tr )− 1)!

×
q(n0,tr )∏

k′=1, k′ �=k

(µk(n0, tr )− µk′(n0, tr ))
−pk (n0,tr )

+ 1

2

(
α+(n0, tr )

α(n0, tr )
+

q(n0,tr )∑
k=1

pk(n0, tr )µk(n0, tr )− 1

2

2p+1∑
m=0

Em

)
. (3.299)

With (3.285)–(3.299) in place, we can now apply the stationary formalism as sum-
marized in Theorem 3.30, subject to the additional hypothesis (3.298), for each fixed
tr ∈ (t0,r − T0, t0,r + T0). This yields, in particular, the quantities

Fp, G p, Hp, α, β, and µ̂, ν̂ for (n, tr ) ∈ Z× (t0,r − T0, t0,r + T0), (3.300)

which are of the form (3.294)–(3.299), replacing the fixed n0 ∈ Z by an arbitrary
n ∈ Z. In addition, one has the following result.

Lemma 3.41 Assume Hypothesis 3.40 and condition (3.298). Then the following
relations are valid on C× Z× (t0,r − T0, t0,r + T0),

G2
p − Fp Hp = Rp, (3.301)

z(G−p − G p)+ zβFp + αH−p = 0, (3.302)

zβF−p + αHp − G p + G−p = 0, (3.303)

−Fp + zF−p + α(G p + G−p ) = 0, (3.304)

zβ(G p + G−p )− zHp + H−p = 0, (3.305)
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and hence the stationary part, (3.195), of the algebro-geometric initial value problem
holds,

U Vp − V+p U = 0 on C× Z× (t0,r − T0, t0,r + T0).

In particular, Lemmas 3.18–3.22 apply.

Lemma 3.41 now raises the following important consistency issue: On the one
hand, one can solve the initial value problem (3.313), (3.314) at n = n0 in some
interval tr ∈ (t0,r − T0, t0,r + T0), and then extend the quantities Fp,G p, Hp to
all C × Z × (t0,r − T0, t0,r + T0) using the stationary algorithm summarized in
Theorem 3.30 as just recorded in Lemma 3.41. On the other hand, one can solve
the initial value problem (3.313), (3.314) at n = n1, n1 �= n0, in some interval
tr ∈ (t0,r − T1, t0,r + T1) with the initial condition obtained by applying the discrete
algorithm to the quantities Fp,G p, Hp starting at (n0, t0,r ) and ending at (n1, t0,r ).
Consistency then requires that the two approaches yield the same result at n = n1

for tr in some open neighborhood of t0,r .
Equivalently, and pictorially speaking, envisage a vertical tr -axis and a horizontal

n-axis. Then, consistency demands that first solving the initial value problem (3.313),
(3.314) at n = n0 in some tr -interval around t0,r and using the stationary algorithm
to extend Fp,G p, Hp horizontally to n = n1 and the same tr -interval around t0,r ,
or first applying the stationary algorithm starting at (n0, t0,r ) to extend Fp,G p, Hp

horizontally to (n1, t0,r ) and then solving the initial value problem (3.313), (3.314)
at n = n1 in some tr -interval around t0,r should produce the same result at n = n1

in a sufficiently small open tr interval around t0,r .
To settle this consistency issue, we will prove the following result. To this end

we find it convenient to replace the initial value problem (3.313), (3.314) by the
original tr -dependent zero-curvature equation (3.194), Utr + U Ṽr − Ṽ+r U = 0 on
C× Z× (t0,r − T0, t0,r + T0).

Lemma 3.42 Assume Hypothesis 3.40 and condition (3.298). Moreover, suppose
that (3.231)–(3.233) hold on C× {n0} × (t0,r − T0, t0,r + T0). Then (3.231)–(3.233)
hold on C× Z× (t0,r − T0, t0,r + T0), that is,

Fp,tr (z, n, tr ) = −2iG p(z, n, tr )F̃r (z, n, tr )

+ i
(
G̃r (z, n, tr )+ K̃r (z, n, tr )

)
Fp(z, n, tr ), (3.306)

G p,tr (z, n, tr ) = i Fp(z, n, tr )H̃r (z, n, tr )− i Hp(z, n, tr )F̃r (z, n, tr ), (3.307)

Hp,tr (z, n, tr ) = 2iG p(z, n, tr )H̃r (z, n, tr )

− i
(
G̃r (z, n, tr )+ K̃r (z, n, tr )

)
Hp(z, n, tr ), (3.308)

(z, n, tr ) ∈ C× Z× (t0,r − T0, t0,r + T0).
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Moreover,

φtr (P, n, tr ) = i F̃r (z, n, tr )φ
2(P, n, tr ) (3.309)

− i
(
G̃r (z, n, tr )+ K̃r (z, n, tr )

)
φ(P, n, tr )+ i H̃r (z, n, tr ),

αtr (n, tr ) = i z F̃−r (z, n, tr ) (3.310)

+ iα(n, tr )
(
G̃r (z, n, tr )+ K̃−r (z, n, tr )

)− i F̃r (z, n, tr ),

βtr (n, tr ) = −iβ(n, tr )
(
G̃−r (z, n, tr )+ K̃r (z, n, tr )

)
+ i H̃r (z, n, tr )− i z−1 H̃−r (z, n, tr ), (3.311)

(z, n, tr ) ∈ C× Z× (t0,r − T0, t0,r + T0).

Proof By Lemma 3.41 we have (3.208), (3.209), (3.214), (3.216)–(3.218), and
(3.301)–(3.305) for (n, tr ) ∈ Z× (t0,r − T0, t0,r + T0) at our disposal.
Differentiating (3.208) at n = n0 with respect to tr and inserting (3.306) and (3.307)
at n = n0 then yields (3.309) at n = n0.
We note that the sequences f̃�,±, g̃�,±, h̃�,± satisfy the recursion relations (3.19)–
(3.26) (since the homogeneous sequences satisfy these relations). Hence, to prove
(3.310) and (3.311) at n = n0 it remains to show

αtr = iα(g̃r+,+ + g̃−r−,−)+ i( f̃ −r−−1,− − f̃r+−1,+),

βtr = −iβ(g̃−r+,+ + g̃r−,−)− i(h̃−r+−1,+ − h̃r−−1,−).
(3.312)

But this follows from (3.306), (3.308) at n = n0 (cf. (3.284), (3.292))

αtr = iα(g̃r+,+ − g̃r−,−)+ i( f̃r−,− − f̃r+−1,+),
βtr = iβ(g̃r+,+ − g̃r−,−)+ i(h̃r−−1,− − h̃r+,+).

Inserting now (3.25) at � = r− − 1 and (3.22) at � = r+ − 1 then yields (3.312).
For the step n = n0 ∓ 1 we differentiate (3.171)–(3.176) (which are equivalent to
(3.301)–(3.305)) and insert (3.306)–(3.308), (3.198)–(3.205) at n = n0. For the case
n > n0 we obtain α+tr and β+tr from (3.306), (3.308) at n = n0 as before using the
other two signs in (3.284), (3.292). Iterating these arguments proves (3.306)–(3.311)
for (z, n, tr ) ∈ C× Z× (t0,r − T0, t0,r + T0).

We summarize Lemmas 3.41 and 3.42 next.

Theorem 3.43 Assume Hypothesis 3.40 and condition (3.298). Moreover, suppose
that

f�,± = f�,±(n0, tr ), � = 0, . . . , p± − 1,

g�,± = g�,±(n0, tr ), � = 0, . . . , p±,
h�,± = h�,±(n0, tr ), � = 0, . . . , p± − 1

for all tr ∈ (t0,r − T0, t0,r + T0),
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satisfy the autonomous first-order system of ordinary differential equations (for fixed
n = n0)

f�,±,tr = F�,±( fk,−, fk,+, gk,−, gk,+), � = 0, . . . , p± − 1,

g�,±,tr = G�,±( fk,−, fk,+, hk,−, hk,+), � = 0, . . . , p±, (3.313)

h�,±,tr = H�,±(gk,−, gk,+, hk,−, hk,+), � = 0, . . . , p± − 1,

with F�,±, G�,±, H�,± given by (3.283), (3.290), (3.291), and with initial conditions

f�,±(n0, t0,r ), � = 0, . . . , p± − 1,

g�,±(n0, t0,r ), � = 0, . . . , p±, (3.314)

h�,±(n0, t0,r ), � = 0, . . . , p± − 1.

Then Fp, G p, and Hp as constructed in (3.295)–(3.300) on C×Z× (t0,r −T0, t0,r +
T0) satisfy the zero-curvature equations (3.194), (3.195), and (3.234) on C × Z ×
(t0,r − T0, t0,r + T0),

Utr +U Ṽr − Ṽ+r U = 0,

U Vp − V+p U = 0,

Vp,tr −
[
Ṽr , Vp

] = 0

with U, Vp, and Ṽr given by (3.196). In particular, α, β satisfy (3.189) and the
algebro-geometric initial value problem (3.190), (3.191) on Z× (t0,r −T0, t0,r +T0),

ÃLr (α, β) =
(
−iαtr − α(g̃r+,+ + g̃−r−,−)+ f̃r+−1,+ − f̃ −r−−1,−
−iβtr + β(g̃−r+,+ + g̃r−,−)− h̃r−−1,− + h̃−r+−1,+

)
= 0,

(α, β)
∣∣
t=t0,r

= (α(0), β(0)),
s-ALp

(
α(0), β(0)

) = (−α(0)(gp+,+ + g−p−,−)+ f p−−1,+ − f −p−−1,−
β(0)(g−p+,+ + gp−,−)− h p−−1,− + h−p+−1,+

)
= 0.

In addition, α, β are given by

α+(n, tr ) = α(n, tr )

( 2p+1∏
m=0

Em

)1/2 q(n,tr )∏
k=1

µk(n, tr )
−pk (n,tr ), (3.315)

α+(n, tr )β(n, tr )

= −1

2

q(n,tr )∑
k=1

(
d pk (n,tr )−1

(
ζ−1 y(P)

)
/dζ pk (n,tr )−1

)∣∣
P=(ζ,η)=µ̂k (n,tr )

(pk(n, tr )− 1)!
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×
q(n,tr )∏

k′=1, k′ �=k

(µk(n, tr )− µk′(n, tr ))
−pk (n,tr ) (3.316)

+ 1

2

(( 2p+1∏
m=0

Em

)1/2 q(n,tr )∏
k=1

µk(n, tr )
−pk (n,tr ) +

q(n,tr )∑
k=1

pk(n, tr )µk(n, tr )

− 1

2

2p+1∑
m=0

Em

)
, (z, n, tr ) ∈ Z× (t0,r − T0, t0,r + T0).

Moreover, Lemmas 3.18–3.22 and 3.33–3.34 apply.

As in Lemma 3.29 we now show that also in the time-dependent case, most initial
divisors are well-behaved in the sense that the corresponding divisor trajectory stays
away from P∞± , P0,± for all (n, tr ) ∈ Z× R.

Lemma 3.44 The set M1 of initial divisors Dµ̂(n0,t0,r ) for which Dµ̂(n,tr ) and
Dν̂(n,tr ), defined via (3.257) and (3.258), are admissible (i.e., do not contain P∞± ,
P0,±) and hence are nonspecial for all (n, tr ) ∈ Z × R, forms a dense set of full
measure in the set Symp(Kp) of nonnegative divisors of degree p.

Proof Let Msing be as introduced in the proof of Lemma 3.29. Then⋃
tr∈R

(
αQ0

(Msing)+ tr Ũ
(2)
r

)
⊆

⋃
P∈{P∞± ,P0,±}

⋃
tr∈R

(
AQ0

(P)+ αQ0
(Symp−1(Kp))+ tr Ũ

(2)
r

)
is of measure zero as well, since it is contained in the image of R × Symp−1(Kp)

which misses one real dimension in comparison to the 2p real dimensions of J (Kp).
But then (cf. (3.154)),⋃

(n,tr )∈Z×R

(
αQ0

(Msing)+ n AP0,−(P∞+)+ tr Ũ
(2)
r

)
(3.317)

∪
( ⋃
(n,tr )∈Z×R

(
αQ0

(Msing)+ n AP0,−(P∞+)+ tr Ũ
(2)
r

)
+ AP0,−(P∞−)

)

is also of measure zero. Applying α−1
Q0

to the complement of the set in (3.317) then
yields a set M1 of full measure in Symp(Kp). In particular, M1 is necessarily dense
in Symp(Kp).
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Theorem 3.45 Let Dµ̂(n0,t0,r ) ∈ M1 be an initial divisor as in Lemma 3.44. Then
the sequences α, β constructed from µ̂(n0, t0,r ) as described in Theorem 3.43 sat-
isfy Hypothesis 3.32. In particular, the solution α, β of the algebro-geometric initial
value problem (3.315), (3.316) is global in (n, tr ) ∈ Z× R.

Proof Starting with Dµ̂(n0,t0,r ) ∈ M1, the procedure outlined in this section and
summarized in Theorem 3.43 leads to Dµ̂(n,tr ) and Dν̂(n,tr ) for all (n, tr ) ∈ Z ×
(t0,r − T0, t0,r + T0) such that (3.257) and (3.258) hold. But if α, β should blow
up, then Dµ̂(n,tr ) or Dν̂(n,tr ) must hit one of P∞± or P0,±, which is excluded by our
choice of initial condition.

We note, however, that in general (i.e., unless one is, e.g., in the special peri-
odic or unitary case), Dµ̂(n,tr ) will get arbitrarily close to P∞± , P0,± since straight
motions on the torus are generically dense and hence no uniform bound (and no
uniform bound away from zero) on the sequences α(n, tr ), β(n, tr ) exists as (n, tr )
varies in Z × R. In particular, these complex-valued algebro-geometric solutions of
the Ablowitz–Ladik hierarchy initial value problem, in general, will not be quasi-
periodic with respect to n or tr .

3.8 Ablowitz–Ladik Conservation Laws and
the Hamiltonian Formalism

. . . trust not the computation of a single Clerk nor any other eyes
than your own.

Isaac Newton1

In this section we deviate from the principal theme of this book and discuss the
Green’s function of an �2(Z)-realization of the difference expression L and system-
atically derive high- and low-energy expansions of solutions of an associated Riccati-
type equation in connection with spatially sufficiently decaying sequences α and β,
not necessarily associated with algebro-geometric coefficients. In addition, we derive
local conservation laws and develop the Hamiltonian formalism for the AL hierarchy
including variational derivatives and Poisson brackets.

In connection with the asymptotic expansions of various quantities we now make
the following strengthened assumptions on the coefficients α and β.

Hypothesis 3.46 Suppose that α, β satisfy

α, β ∈ �∞(Z), α(n)β(n) /∈ {0, 1}, n ∈ Z.

1 Quoted in R. Westfall, The Life of Isaac Newton, Cambridge University Press, Cambridge, 1993,
p. 226.
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Given Hypothesis 3.46 we introduce the �2(Z)-realization L̆ of the difference ex-
pression L in (3.61) by

L̆ f = L f, f ∈ dom
(
L̆
) = �2(Z), (3.318)

and similarly introduce the �2(Z)-realizations of the difference expression D, E ,
D−1, and E−1 in (3.67)–(3.70) by

D̆ f = D f, f ∈ dom
(
D̆
) = �2(Z), (3.319)

Ĕ f = E f, f ∈ dom
(
Ĕ
) = �2(Z), (3.320)

D̆−1 f = D−1 f, f ∈ dom
(
D̆−1) = �2(Z), (3.321)

Ĕ−1 f = E−1 f, f ∈ dom
(
Ĕ−1) = �2(Z). (3.322)

The following elementary result shows that these �2(Z)-realizations are meaning-
ful; it will be used in the proof of Lemma 3.48 below.

Lemma 3.47 Assume Hypothesis 3.46. Then the linear operators D̆, D̆−1, Ĕ , Ĕ−1,
L̆ , and L̆−1 are bounded on �2(Z). In addition,

(
L̆ − z

)−1
is norm analytic with

respect to z in an open neighborhood of z = 0, and
(
L̆− z

)−1 = −z−1
(
I − z−1 L̆

)−1

is analytic with respect to 1/z in an open neighborhood of 1/z = 0.

Proof By Hypothesis 3.46, ρ2 = 1 − αβ, and (3.67)–(3.70), one infers that D̆, Ĕ ,
D̆−1, Ĕ−1 are bounded operators on �2(Z) whose norms are bounded by∥∥D̆

∥∥, ∥∥Ĕ
∥∥, ∥∥D̆−1

∥∥, ∥∥Ĕ−1
∥∥ ≤ 2‖ρ‖∞ + ‖α‖∞ + ‖β‖∞
≤ 2(1+ ‖α‖∞ + ‖β‖∞).

Since by (3.66),

L̆ = D̆ Ĕ, L̆−1 = Ĕ−1 D̆−1,

the assertions of Lemma 3.47 are evident (alternatively, one can of course invoke
(3.61) and (3.64)).

To introduce the Green’s function of L̆ , we need to digress a bit. Introducing the
transfer matrix T (z, · ) associated with L by

T (z, n) =


ρ(n)−1

(
α(n) z

z−1 β(n)

)
, n odd,

ρ(n)−1

(
β(n) 1

1 α(n)

)
, n even,

z ∈ C \ {0}, n ∈ Z,
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recalling that ρ = γ 1/2 = (1− αβ)1/2, one then verifies that (cf. (3.4))

T (z, n) = A(z, n)z−1/2ρ(n)−1U (z, n)A(z, n − 1)−1, z ∈ C \ {0}, n ∈ Z.
(3.323)

Here we introduced

A(z, n) =



(
z1/2 0

0 z−1/2

)
, n odd,(

0 1

1 0

)
, n even,

z ∈ C \ {0}, n ∈ Z. (3.324)

Next, we consider a fundamental system of solutions

�±(z, · ) =
(
ψ1,±(z, · )
ψ2,±(z, · )

)
of

U (z)�−± (z) = �±(z), z ∈ C \ ( spec
(
L̆
) ∪ {0}), (3.325)

with spec
(
L̆
)

denoting the spectrum of L̆ and U given by (3.4), such that

det(�−(z),�+(z)) �= 0. (3.326)

The precise form of �± will be chosen as a consequence of (3.332) below. Introduc-
ing in addition,(

u±(z, n)
v±(z, n)

)
= C±z−n/2

( n∏
n′=1

ρ(n′)−1
)

A(z, n)

(
ψ1,±(z, n)
ψ2,±(z, n)

)
,

z ∈ C \ ( spec
(
L̆
) ∪ {0}), n ∈ Z,

(3.327)

for some constants C± ∈ C \ {0}, (3.323) and (3.327) yield

T (z)

(
u−±(z)
v−±(z)

)
=
(

u±(z)
v±(z)

)
. (3.328)

Moreover, one can show (cf. the literature comments in the notes to this section for
the following facts (3.329)–(3.332)) that

Lu±(z) = zu±(z), L�v±(z) = zv±(z), (3.329)

Dv±(z) = u±(z), Eu±(z) = zv±(z), (3.330)

where

L = DE, L� = E D, (3.331)

and hence L� represents the difference expression associated with the transpose of
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the infinite matrix L (cf. (3.59)) in the standard basis of �2(Z). Next, we choose
�±(z) in such a manner that for all n0 ∈ Z,(

u±(z, · )
v±(z, · )

)
∈ �2([n0,±∞) ∩ Z)2, z ∈ C \ ( spec

(
L̆
) ∪ {0}). (3.332)

Since by hypothesis z ∈ C \ spec
(
L̆
)
, the elements (u+(z, · ), v+(z, · ))� and

(u−(z, · ), v−(z, · ))� are linearly independent since otherwise z would be an eigen-
value of L̆ . This is of course consistent with (3.326) and (3.327).

The Green’s function of L̆ , the �2(Z)-realization of the Lax difference expression
L , is then of the form

G(z, n, n′) = (δn,
(
L̆ − z

)−1
δn′
)

= −1

z det

(
u+(z, 0) u−(z, 0)
v+(z, 0) v−(z, 0)

)

×
{
v−(z, n′)u+(z, n), n′ < n or n = n′ even,

v+(z, n′)u−(z, n), n′ > n or n = n′ odd,
n, n′ ∈ Z,

= − 1

4z

(1− φ+(z, 0))(1− φ−(z, 0))

φ+(z, 0)− φ−(z, 0)

×
{
v−(z, n′)u+(z, n), n′ < n or n = n′ even,

v+(z, n′)u−(z, n), n′ > n or n = n′ odd,
n, n′ ∈ Z,

z ∈ C \ ( spec
(
L̆
) ∪ {0}). (3.333)

Introducing

φ±(z, n) = ψ2,±(z, n)

ψ1,±(z, n)
, z ∈ C \ ( spec

(
L̆
) ∪ {0}), n ∈ N,

then (3.325) implies that φ± satisfy the Riccati-type equation

αφ±φ−± − φ−± + zφ± = zβ, (3.334)

and one introduces in addition,

f = 2

φ+ − φ−
,

g = φ+ + φ−
φ+ − φ−

,

h = 2φ+φ−
φ+ − φ−

.
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Using the Riccati-type equation (3.334) and its consequences,

α(φ+φ−+ − φ−φ−−)− (φ−+ − φ−−)+ z(φ+ − φ−) = 0,

α(φ+φ−+ + φ−φ−−)− (φ−+ + φ−−)+ z(φ+ + φ−) = 2zβ,

one then derives the identities

z(g− − g)+ zβf+ αh− = 0, (3.335)

zβf− + αh− g+ g− = 0, (3.336)

−f+ zf− + α(g+ g−) = 0, (3.337)

zβ(g− + g)− zh+ h− = 0, (3.338)

g2 − fh = 1. (3.339)

For the connection between f, g, and h and the Green’s function of L one finally
obtains

f(z, n) = −2α(n)(zG(z, n, n)+ 1)− 2ρ(n)z

{
G(z, n − 1, n), n even,

G(z, n, n − 1), n odd,

g(z, n) = −2zG(z, n, n)− 1, (3.340)

h(z, n) = −2β(n)zG(z, n, n)− 2ρ(n)z

{
G(z, n, n − 1), n even,

G(z, n − 1, n), n odd,

illustrating the spectral theoretic content of f, g, and h.
Next we digress some more and quickly prove (3.86): In the special algebro-

geometric case, we may identify �+(z, · ) with �(P, · , 0) and �−(z, · ) with
�(P∗, · , 0), and similarly, φ+(z, · ) with φ(P, · ) and φ−(z, · ) with φ(P∗, · ) (cf.
also (C.72) and (C.73)). Equations (3.95) and (3.96) then imply

1

2
c0,+z−p− y = Fpφ − G p = −Hpφ

−1 + G p. (3.341)

Introducing in analogy to (3.327),

(
u(P, n)
v(P, n)

)
= C(P)z−n/2

( n∏
n′=1

ρ(n′)−1
)

A(z, n)

(
ψ1(P, n, 0)
ψ2(P, n, 0)

)
,

z ∈ C \ ( spec
(
L̆
) ∪ {0}), n ∈ Z,
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for some C(P) ∈ C \ {0}, we may identify u+(z, · ) with u(P, · ) and u−(z, · ) with
u(P∗, · ). Thus, one obtains from (3.76),

(
Ppu(P, · ))(k) = {−i zFp(z, k)

(
D−1u(P, · ))(k)+ iG p(z, k)u(P, k), k odd,

i Hp(z, k)
(
D−1u(P, · ))(k)− iG p(z, k)u(P, k), k even,

= − i

2
c0,+z−p− y u(P, k), P = (z, y), k ∈ Z.

In particular,

L2p− P2
p u±(z, · ) = −1

4
c2

0,+y2u±(z, · )

= −1

4
c2

0,+
2p+1∏
m=0

(L − Em)u±(z, · )

= −L2p−Rp(L)u±(z, · ). (3.342)

Since z ∈ C\ {0} is arbitrary, and the difference expressions on either side of (3.342)
are of finite order, one obtains (3.86).

Since we are particularly interested in the asymptotic expansion of φ± in a neigh-
borhood of the points z = 0 and 1/z = 0 we now turn to this topic next.

Lemma 3.48 Assume that α, β satisfy Hypothesis 3.46. Then φ± have the following
convergent expansions with respect to 1/z around 1/z = 0 and with respect to z
around z = 0,

φ±(z) =
z→∞


∑∞

j=0 φ
∞
j,+z− j ,∑∞

j=−1 φ
∞
j,−z− j ,

φ±(z) =
z→0


∑∞

j=0 φ
0
j,+z j ,∑∞

j=1 φ
0
j,−z j ,

where

φ∞0,+ = β, φ∞1,+ = β−γ,

φ∞j+1,+ = (φ∞j,+)− − α

j∑
�=0

(φ∞j−�,+)−φ∞�,+, j ∈ N, (3.343)

φ∞−1,− = −
1

α+
, φ∞0,− =

α++

(α+)2
γ+,

φ∞j+1,− = −
α++

α+
φ∞j,− + α++

j∑
�=0

φ∞j−�,−(φ∞�,−)+, j ∈ N0, (3.344)
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φ0
0,+ =

1

α
, φ0

1,+ = −
α−

α2
γ,

φ0
j+1,+ = (φ0

j,+)+ + α+
j+1∑
�=0

(φ0
j+1−�,+)

+φ0
�,+, j ∈ N, (3.345)

φ0
1,− = −β+,

φ0
j+1,− = (φ0

j,−)+ + α+
j∑

�=1

φ0
j+1−�,−(φ

0
�,−)

+, j ∈ N. (3.346)

Proof Since

φ± = g± 1

f
,

combining Lemma 3.47, (3.333) and (3.340) proves that φ± has a convergent expan-
sion with respect to z and 1/z in a neighborhood of z = 0 and 1/z = 0, respectively.
The explicit expansion coefficients φ∞j,± are then readily derived by making the
ansatz

φ± =
z→∞

∞∑
j=−1

φ∞j,±z− j , φ∞−1,+ = 0. (3.347)

Inserting (3.347) into the Riccati-type equation (3.334) one finds

0 = αφ±φ−± − φ−± + z(φ± − β) =
(
αφ∞−1,±(φ∞−1,±)− + φ∞−1,±

)
z2+ O(z), (3.348)

which yields the case distinction above and the formulas for φ∞j,±. The corresponding

expansion coefficients φ0
j,± are obtained analogously by making the ansatz φ± =

z→0∑∞
j=0 φ

0
j,±z j .

For the record we list a few explicit expressions:

φ∞0,+ = β,

φ∞1,+ = β−γ,
φ∞2,+ = γ

(− α(β−)2 + β−−γ−
)
,

φ∞−1,− = −
1

α+
,

φ∞0,− =
α++

(α+)2
γ+,

φ∞1,− =
γ+

(α+)3
(
α+α+++γ++ − (α++)2

)
,

φ0
0,+ =

1

α
,
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φ0
1,+ = −

α−

α2
γ,

φ0
2,+ =

γ

α3

(
(α−)2 − α−−αγ−

)
,

φ0
1,− = −β+,

φ0
2,− = −γ+β++,

φ0
3,− = γ+

(
α+(β++)2 − γ++β+++

)
,

φ0
4,− = γ+

(
− (α+)2(β++)3

+ γ++
(
2α+β++β+++ + α++(β+++)2 − γ+++β++++

))
, etc.

Later on we will also need the convergent expansions of ln(z+α+φ±(z)) with re-
spect to z and 1/z. We will separately provide all four expansions of ln(z+α+φ±(z))
around 1/z = 0 and z = 0 and repeatedly use the general formula

ln

(
1+

∞∑
j=1

ω j z
± j
)
=
∞∑
j=1

σ j z
± j , (3.349)

where

σ1 = ω1, σ j = ω j −
j−1∑
�=1

�

j
ω j−�σ�, j ≥ 2,

and |z| as |z| → 0, respectively, 1/|z| as |z| → ∞, are assumed to be sufficiently
small in (3.349). We start by expanding φ+ around 1/z = 0

ln(z + α+φ+(z)) = ln

(
z + α+

∞∑
j=0

φ∞j,+z− j
)

= ln

(
1+ α+

∞∑
j=0

φ∞j,+z− j−1
)

= ln

(
1+ α+

∞∑
j=1

φ∞j−1,+z− j
)

=
∞∑
j=1

ρ∞j,+z− j , (3.350)

where

ρ∞1,+ = α+φ∞0,+, ρ∞j,+ = α+
(
φ∞j−1,+ −

j−1∑
�=1

�

j
φ∞j−1−�,+ρ∞�,+

)
, j ≥ 2. (3.351)
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An expansion of φ− around 1/z = 0 yields

ln(z + α+φ−(z)) = ln

(
z + α+

∞∑
j=−1

φ∞j,−z− j
)

= ln

(
α++γ+

α+

)
+ ln

(
1+ (α+)2

α++γ+
∞∑
j=1

φ∞j,−z− j
)

= ln

(
α++

α+

)
+ ln(γ+)+ ln

(
1+ (α+)2

α++γ+
∞∑
j=1

φ∞j,−z− j
)

= ln

(
α++

α+

)
+ ln(γ+)+

∞∑
j=1

ρ∞j,−z− j ,

where

ρ∞1,− =
(α+)2

α++γ+
φ∞1,−, ρ∞j,− =

(α+)2

α++γ+

(
φ∞j,− −

j−1∑
�=1

�

j
φ∞j−�,−ρ∞�,−

)
, j ≥ 2.

(3.352)
For the expansion of φ+ around z = 0 one gets

ln(z + α+φ+(z)) = ln

(
z + α+

∞∑
j=0

φ0
j,+z j

)

= ln

(
α+

α

)
+ ln

(
1+ α

α+
(
1+ α+φ0

1,+
)
z + α

∞∑
j=2

φ0
j,+z j

)

= ln

(
α+

α

)
+
∞∑
j=1

ρ0
j,+z j ,

where

ρ0
1,+ =

α

α+
(
1+ α+φ0

1,+
)
, ρ0

2,+ = αφ0
2,+ −

1

2
(ρ0

1,+)
2,

ρ0
j,+ = α

(
φ0

j,+ −
j−2∑
j=1

�

j
φ0

j−�,+ρ
0
�,+
)
− j − 1

j
ρ0

1,+ρ
0
j−1,+, j ≥ 3.

(3.353)
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Finally, the expansion of φ− around z = 0 is given by

ln(z + α+φ−(z)) = ln

(
z + α+

∞∑
j=1

φ0
j,−z j

)

= ln

(
γ+z + α+

∞∑
j=2

φ0
j,−z j

)

= ln(z)+ ln(γ+)+ ln

(
1+ α+

γ+
∞∑
j=1

φ0
j+1,−z j

)

= ln(z)+ ln(γ+)+
∞∑
j=1

ρ0
j,−z j , (3.354)

where

ρ0
1,− =

α+

γ+
φ0

2,−, ρ0
j,− =

α+

γ+

(
φ0

j+1,− −
j−1∑
�=1

�

j
φ0

j+1−�,−ρ
0
�,−
)
, j ≥ 2.

(3.355)
Explicitly, the first expansion coefficients are given by

ρ∞1,+ = α+β,
ρ∞2,+ = − 1

2 (α
+β)2 + γα+β−,

ρ∞3,+ = 1
3 (α
+β)3 − γ

(
γ−α+β−− − (α+)2β−β − αα+(β−)2

)
,

ρ∞1,− = −α+++β++ + (S+ − I )
α++

α+
,

ρ0
1,+ = α−β + (S+ − I )

α−

α
, (3.356)

ρ0
1,− = −α+β++,
ρ0

2,− = 1
2 (α
+β++)2 − γ++α+β+++,

ρ0
3,− = − 1

3 (α
+β++)3

+ γ++
(− γ+++α+β++++ + (α+)2β++β+++ + α+α++(β+++)2

)
, etc.

The next result shows that ĝ j,+ and ± jρ∞j,±, respectively ĝ j,− and ± jρ0
j,±, are

equal up to terms that are total differences, that is, are of the form (S+ − I )d j,± for
some sequence d j,±. The exact form of d j,± will not be needed later. In the proof we
will heavily use the equations (3.335)–(3.339).
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Lemma 3.49 Suppose Hypothesis 3.46 holds. Then

ĝ j,+ = − jρ∞j,+ + (S+ − I )d j,+ = jρ∞j,− + (S+ − I )e j,+, j ∈ N, (3.357)

ĝ j,− = − jρ0
j,+ + (S+ − I )d j,− = jρ0

j,− + (S+ − I )e j,−, j ∈ N, (3.358)

for some polynomials d j,±, e j,±, j ∈ N, in α and β and certain shifts thereof.

Proof We consider the case for ĝ j,+ first. Our aim is to show that

d

dz
ln(z + α+φ+) = − 1

2z
g+ 1

2z
+ (S+ − I )K + (S+ − I )M, (3.359)

where

K = 1

2

(
g
ḟ

f
− ġ

)
, M = 1

2

ḟ

f
,

which implies (3.357) by (3.350). Here · denotes d/dz.
Since φ+ = (g+ 1)/f,

d

dz
ln(z + α+φ+) = 1+ α+φ̇+

z + α+φ+
= f2 + α+(fġ− ḟg− ḟ)

f(zf+ α+g+ α+)
zf+ α+g− α+

zf+ α+g− α+
. (3.360)

Next we treat the denominator of (3.360) using (3.335), (3.337),

f
(
(zf+ α+g)2 − (α+)2

) = f
(
(zf+ α+g)2 − (α+)2(g2 − fh)

)
= zf2

(
zf+ α+g+ α+g+ (α+)2 1

z
h

)
= zf2(f+ − α+g+ + α+g+ − α+β+f+

)
= zγ+f2f+.

Expanding the numerator in (3.360) and applying (3.335), (3.337), and their deriva-
tives with respect to z as well as 2gġ = ḟh+ fḣ yields(

zf+ α+g− α+
)(

f2 + α+(fġ− ḟg− ḟ)
)

= f
(
zf2 + zα+(fġ− ḟg)+ α+fg+ 1

2 (α
+)2(fḣ− ḟh)− α+(f+ zḟ+ α+ġ)

)
= f

2

(
2zf2 + zα+fġ+ zf(−α+ġ+ − zḟ− f+ ḟ+)− zα+ ḟg

+ zḟ(α+g+ + zf− f+)
+ α+fg+ f(−α+g+ − zf+ f+)
+ α+f(−β+f+ − zβ+ ḟ+ − g+ g+ − zġ+ zġ+)

+ α+ ḟ(zβ+f+ + zg− zg+)− 2α+(f+ zḟ+ α+ġ)
)

= f

2

(
γ+ff+ + zγ+fḟ+ − zγ+ ḟf+ − 2α+(f+ zḟ+ α+ġ)

)
.
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In summary,

d

dz
ln(z + α+φ+) = 1

2z
+ (S+ − I )M − α+

zγ+ff+
(
f+ zḟ+ α+ġ

)
. (3.361)

We multiply the numerator on the right-hand side by −2 = −2(g2 − fh) and use
again (3.335), (3.337), and their derivatives:

2α+
(
fh− g2)(f+ zḟ+ α+ġ

)
= 2α+fh(f+ zḟ+ α+ġ)− 2α+fg2 − 2zα+ ḟg2 − (α+)2g(ḟh+ fḣ)

= α+fh(f+ zḟ)+ α+fġ(−zβ+f+ − zg+ zg+)
+ f(−zβ+f+ − zg+ zg+)(ḟ+ − α+ġ+)
− α+fg2 + fg(α+g+ + zf− f+)− zα+ ḟg2 + zḟg(α+g+ + zf− f+)
+ α+ ḟg(zβ+f+ + zg− zg+)+ α+fg(β+f+ + zβ+ ḟ+ + g− g+ + zġ− zġ+)
= α+fh(f+ zḟ)+ α+fġ(−zβ+f+ − zg+ zg+)+ fḟ+(−zβ+f+ − zg+ zg+)
+ α+fġ+(zβ+f+ + zg− zg+)+ zf2g− γ+ff+g+ z2fḟg

− zγ+ ḟf+g+ zβ+fḟ+(−α+g+ − zf+ f+)+ zα+fg(ġ− ġ+)
= α+fh(f+ zḟ)− zα+β+ff+(ġ− ġ+)− zf(α+g+ zf− f+)(ġ− ġ+)
− zfḟ+g+ zf2g− γ+ff+g+ z2fḟg− zγ+ ḟf+g+ zγ+fḟ+g+ − z2β+f2 ḟ+

= zα+fḟh− zf2(zβ+ ḟ+ + zġ− zġ+ − 1
z α
+h)+ zfg(f+ zḟ− α+ġ− ḟ+ + α+ġ+)

+ zγ+ff+(ġ− ġ+)− γ+ff+g− zγ+ ḟf+g+ zγ+fḟ+g+

= zα+f(ḟh+ fḣ− 2gġ)+ zγ+ff+(ġ− ġ+)− γ+ff+g− zγ+ ḟf+g+ zγ+fḟ+g+

= zγ+ff+(ġ− ġ+)− γ+ff+g− zγ+ ḟf+g+ zγ+fḟ+g+.

Inserting this in (3.361) finally yields (3.359). The result for ĝ j,− is derived similarly
starting from φ− = (g− 1)/f.

Next, we turn to a derivation of the local conservation laws of the AL hierarchy
and introduce the following assumption for this purpose:

Hypothesis 3.50 Suppose that α, β : Z× R→ C satisfy

sup
(n,tp)∈Z×R

(|α(n, tp)| + |β(n, tp)|
)
<∞,

a(n, · ), b(n, · ) ∈ C1(R), n ∈ Z, α(n, tp)β(n, tp) /∈ {0, 1}, (n, tp) ∈ Z× R.

In accordance with the notation introduced in (3.318)–(3.322) we denote the
bounded difference operator defined on �2(Z), generated by the finite difference ex-
pression Pp in (3.73), by the symbol P̆p. Similarly, the bounded finite difference

operator in �2(Z) generated by P�p in (3.77) is then denoted by P̆�p .
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We start with the following existence result.

Theorem 3.51 Assume Hypothesis 3.50 and suppose α, β satisfy ALp(α, β) = 0 for

some p ∈ N2
0. In addition, let tp ∈ R and z ∈ C \ ( spec

(
L̆(tp)

) ∪ {0}). Then there
exist Weyl–Titchmarsh-type solutions u± = u±(z, n, tp) and v± = v±(z, n, tp) such
that for all n0 ∈ Z,(

u±(z, · , tp)

v±(z, · , tp)

)
∈ �2([n0,±∞) ∩ Z)2, u±(z, n, · ), v±(z, n, · ) ∈ C1(R),

(3.362)
and u± and v± simultaneously satisfy the following equations in the weak sense

L̆(tp)u±(z, · , tp) = zu±(z, · , tp), (3.363)

u±,tp (z, · , tp) = P̆p(tp)u±(z, · , tp), (3.364)

and

L̆�(tp)v±(z, · , tp) = zv±(z, · , tp), (3.365)

v±,tp (z, · , tp) = −P̆�p (tp)v±(z, · , tp), (3.366)

respectively.

Proof Applying
(
L̆(tp) − z I

)−1 to δn0 (cf. (3.333)) yields the existence of Weyl–
Titchmarsh-type solutions ũ± of Lu = zu satisfying (3.362). Next, using the Lax
commutator equation (3.79) one computes

zũ±,tp = (Lũ±)tp = Ltp ũ± + Lũ±,tp = [Pp, L]ũ± + Lũ±,tp

= z Ppũ± − L Ppũ± + Lũ±,tp

and hence

(L − z I )(ũ±,tp − Ppũ±) = 0.

Thus, ũ± satisfy

ũ±,tp − Ppũ± = C±ũ± + D±ũ∓.

Introducing ũ± = c±u±, and choosing c± such that c±,tp = C±c±, one obtains

u±,tp − Ppu± = D±u∓. (3.367)

Since u± ∈ �2([n0,±∞) ∩ Z), n0 ∈ Z, and α, β satisfy Hypothesis 3.50, (3.76)
shows that Ppu± ∈ �2([n0,±∞) ∩ Z). Moreover, since

u±(z, n, tp) = d±(tp)
((

L̆(tp)− z I
)−1

δn0

)
(n), n ∈ [n0,±∞) ∩ Z, (3.368)
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for some d± ∈ C1(R), the calculation

u±,tp = d±,tp

(
L̆ − z I

)−1
δn0 − d±

(
L̆ − z I

)−1
L̆ tp

(
L̆ − z I

)−1
δn0

also yields u±,tp ∈ �2([n0,±∞) ∩ Z). But then D± = 0 in (3.367) since u∓ /∈
�2([n0,±∞) ∩ Z). This proves (3.364).
Equations (3.362), (3.365), and (3.366) for v± are proved similarly, replacing L , Pp

by L�, P�p and observing that (3.79) implies

L�tp
(tp)+

[
P�p (tp), L�(tp)

] = 0, tp ∈ R.

For the remainder of this section we will always refer to the Weyl–Titchmarsh
solutions u±, v± introduced in Theorem 3.51. Given u±, v±, we now introduce

�±(z, · , tp) =
(
ψ1,±(z, · , tp)

ψ2,±(z, · , tp)

)
, z ∈ C\( spec

(
L̆(tp)

)∪{0}), tp ∈ R, (3.369)

by (cf. (3.327))(
ψ1,±(z, n, tp)

ψ2,±(z, n, tp)

)
= D(tp)z

n/2
( n∏

n′=1

ρ(n′, tp)

)
A(z, n)−1

(
u±(z, n, tp)

v±(z, n, tp)

)
,

z ∈ C \ ( spec
(
L̆(tp)

) ∪ {0}), (n, tp) ∈ Z× R, (3.370)

with the choice of normalization

D(tp) = exp

(
i

2

(
gp+,+(0)− gp−,−(0)

)
tp

)
D(0), tp ∈ R, (3.371)

for some constant D(0) ∈ C \ {0}.
Lemma 3.52 Assume Hypothesis 3.50 and suppose α, β satisfy ALp(α, β) = 0 for

some p ∈ N2
0. In addition, let tp ∈ R and z ∈ C \ ( spec

(
L̆(tp)

) ∪ {0}). Then
�±(z, · , tp) defined in (3.370) satisfy

U (z, · , tp)�
−± (z, · , tp) = �±(z, · , tp), (3.372)

�±,tp (z, · , tp) = V+p (z, · , tp)�±(z, · , tp). (3.373)

In addition, �−(z, · , tp) and �+(z, · , tp) are linearly independent.

Proof Equation (3.372) is equivalent to(
ψ1,±
ψ2,±

)
=
(

zψ−1,± + αψ−2,±
zβψ−1,± + ψ−2,±

)
. (3.374)
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Using (3.324) and (3.370) one obtains

(
ψ1,±
ψ2,±

)
= Dzn/2

( n∏
n′=1

ρ(n′)
)


(
z−1/2u±
z1/2v±

)
, n odd,

(
v±
u±

)
, n even.

(3.375)

Inserting (3.375) into (3.374), one finds that (3.374) is equivalent to (3.328), thereby
proving (3.372).

Equation (3.373) is equivalent to(
ψ1,±,tp

ψ2,±,tp

)
= i

(
G pψ1,± − Fpψ2,±
Hpψ1,± − K pψ2,±

)
. (3.376)

We first consider the case when n is odd. Using (3.375), the right-hand side of (3.376)
reads

i

(
G pψ1,± − Fpψ2,±
Hpψ1,± − K pψ2,±

)
= i Dz(n−1)/2

( n∏
n′=1

ρ(n′)
)(

G pu± − zFpv±
Hpu± − zK pv±

)
. (3.377)

Equation (3.375) then implies(
ψ1,±,tp

ψ2,±,tp

)
= Dtp zn/2

( n∏
n′=1

ρ(n′)
)(

z−1/2u±
z1/2v±

)
(3.378)

+ Dzn/2
( n∏

n′=1

ρ(n′)
)(

z−1/2u±,tp

z1/2v±,tp

)
+ Dzn/2

(
∂tp

n∏
n′=1

ρ(n′)
)(

z−1/2u±
z1/2v±

)
.

Next, one observes that

(
∂tp

n∏
n′=1

ρ(n′)
)( n∏

n′=1

ρ(n′)
)−1

= ∂tp ln

( n∏
n′=1

ρ(n′)
)

= 1

2
∂tp ln

( n∏
n′=1

ρ(n′)2
)

= 1

2
∂tp ln

( n∏
n′=1

γ (n′)
)
= 1

2

n∑
n′=1

γtp (n
′)

γ (n′)
.
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Thus, (3.378) reads

D−1z−(n−1)/2
( n∏

n′=1

ρ(n′)
)−1

(
ψ1,±,tp

ψ2,±,tp

)

=
(

u±,tp

zv±,tp

)
+ 1

2

( n∑
n′=1

γtp (n
′)

γ (n′)

)(
u±
zv±

)
+

Dtp

D

(
u±
zv±

)
.

(3.379)

Combining (3.377) and (3.379) one finds that (3.376) is equivalent to(
u±,tp

v±,tp

)
+ 1

2

( n∑
n′=1

γtp (n
′)

γ (n′)

)(
u±
v±

)
+

Dtp

D

(
u±
v±

)
= i

(
G pu± − zFpv±

z−1 Hpu± − K pv±

)
.

(3.380)
Using (3.55), (3.16), and (3.371) we find

n∑
n′=1

γtp (n
′)

γ (n′)
= i

n∑
n′=1

(I − S−)
(
gp+,+ − gp−,−

)
= i
(
(gp+,+(n)− gp−,−(n))− (gp+,+(0)− gp−,−(0))

)
= i
(
G p − K p

)− 2
Dtp

D
. (3.381)

From (3.76), (3.78), (3.364), and (3.366) one obtains (we recall that n is assumed to
be odd) (

u±,tp

v±,tp

)
= i

(
−zFpv± + 1

2 (G p + K p)u±
+z−1 Hpu± − 1

2 (G p + K p)v±

)
, (3.382)

using (3.330).
Inserting (3.381) into (3.380), we see that it reduces to (3.382), thereby proving
(3.376) in the case when n is odd. The case with n even follows from analogous
computations.
Linear independence of �−(z, · , tp) and �+(z, · , tp) follows from(

ψ1,−(z, n, tp) ψ1,+(z, n, tp)

ψ2,−(z, n, tp) ψ2,+(z, n, tp)

)
= D(tp)z

n/2
( n∏

n′=1

ρ(n′, tp)

)
A(z, n)−1

×
(

u−(z, n, tp) u+(z, n, tp)

v−(z, n, tp) v+(z, n, tp)

)
,

the fact that ρ(n, tp) �= 0, det(A(z, n)) = (−1)n+1, and from

det

((
u−(z, n, tp) u+(z, n, tp)

v−(z, n, tp) v+(z, n, tp)

))
�= 0, (n, tp) ∈ Z× R, (3.383)

since by hypothesis z ∈ C \ spec
(
L̆(tp)

)
.
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In the following we will always refer to the solutions �± introduced in (3.369)–
(3.371).

The next result recalls the existence of a propagator Wp associated with Pp. (Be-
low we denote by B(H) the Banach space of all bounded linear operators defined on
the Hilbert space H.)

Theorem 3.53 Assume Hypothesis 3.50 and suppose α, β satisfy ALp(α, β) = 0

for some p ∈ N2
0. Then there is a propagator Wp(s, t) ∈ B(�2(Z)), (s, t) ∈ R2,

satisfying

(i) Wp(t, t) = I, t ∈ R, (3.384)

(i i) Wp(r, s)Wp(s, t) = Wp(r, t), (r, s, t) ∈ R3, (3.385)

(i i i) Wp(s, t) is jointly strongly continuous in (s, t) ∈ R2, (3.386)

such that for fixed t0 ∈ R, f0 ∈ �2(Z),

f (t) = Wp(t, t0) f0, t ∈ R,

satisfies

d

dt
f (t) = P̆p(t) f (t), f (t0) = f0. (3.387)

Moreover, L̆(t) is similar to L̆(s) for all (s, t) ∈ R2,

L̆(s) = Wp(s, t)L̆(t)Wp(s, t)−1, (s, t) ∈ R2. (3.388)

This extends to appropriate functions of L̆(t) and so, in particular, to its resolvent(
L̆(t)− z I

)−1
, z ∈ C \ σ (L̆(t)), and hence also yields

σ
(
L̆(s)

) = σ
(
L̆(t)

)
, (s, t) ∈ R2.

Consequently, the spectrum of L̆(t) is independent of t ∈ R.

Proof (3.384)–(3.387) are standard results which follow, for instance, from Reed and
Simon (1975, Theorem X.69) under even weaker hypotheses on α, β. In particular,
the propagator Wp admits the norm convergent Dyson series

Wp(s, t) = I +
∑
k∈N

∫ t

s
dt1

∫ t1

s
dt2 · · ·

∫ tk−1

s
dtk P̆p(t1)P̆p(t2) · · · P̆p(tk),

(s, t) ∈ R2.
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Fixing s ∈ R and introducing the operator-valued function

K̆ (t) = Wp(s, t)L̆(t)Wp(s, t)−1, t ∈ R, (3.389)

one computes

K̆ ′(t) f = Wp(s, t)
(
L̆ ′(t)− [P̆p(t), L̆(t)

])
Wp(s, t)−1 f = 0, t ∈ R, f ∈ �2(Z),

using the Lax commutator equation (3.79). Thus, K̆ is independent of t ∈ R and
hence taking t = s in (3.389) then yields K̆ = L̆(s) and thus proves (3.388).

Next we briefly recall the Ablowitz–Ladik initial value problem in a setting con-
venient for our purpose.

Theorem 3.54 Let t0,p ∈ R and suppose α(0), β(0) ∈ �q(Z) for some q ∈ [1,∞) ∪
{∞}. Then the pth Ablowitz–Ladik initial value problem

ALp(α, β) = 0, (α, β)
∣∣
tp=t0,p

= (α(0), β(0)) (3.390)

for some p ∈ N2
0, has a unique, local, and smooth solution in time, that is, there

exists a T0 > 0 such that

α( · ), β( · ) ∈ C∞((t0,p − T0, t0,p + T0), �
q(Z)).

Proof Local existence and uniqueness as well as smoothness of the solution of
the initial value problem (3.390) (cf. (3.54)) follow since f p±−1,±, gp±,±, and
h p±−1,± depend polynomially on α, β and certain of their shifts, and the fact that
the Ablowitz–Ladik flows are autonomous.

Remark 3.55 In the special defocusing case, where β = α and hence L̆(t), t ∈ R,
is unitary, one obtains

sup
(n,tp)∈N×(t0,p−T0,t0,p+T0)

|α(n, tp)| ≤ 1

using γ = 1 − |α|2 and γtp = iγ
(
(gp+,+ − g−p+,+) − (gp−,− − g−p−,−)

)
in (3.55).

This then yields a unique, global, and smooth solution of the pth AL initial value
problem (3.390). Moreover, if α satisfies Hypothesis 3.50 and the pth AL equation
ALp(α, α) = 0, then α is actually smooth with respect to tp ∈ R, that is,

α(n, · ) ∈ C∞(R), n ∈ Z. (3.391)
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Equation (3.373), that is, �±,tp = V+p �±, implies that

∂tp ln

(
ψ+1,±
ψ1,±

)
= (S+ − I )∂tp ln(ψ1,±)

= (S+ − I )
∂tpψ1,±
ψ1,±

= i(S+ − I )(G p − Fpφ±).

On the other hand, equation (3.372), that is, U�−± = �±, yields

∂tp ln

(
ψ+1,±
ψ1,±

)
= ∂tp ln(z + α+φ±),

and thus one concludes that

∂tp ln(z + α+φ±) = i(S+ − I )(G p − Fpφ±). (3.392)

Below we will refer to (3.392±) according to the upper or lower sign in (3.392).
Expanding (3.392±) in powers of z and 1/z then yields the following conserved
densities:

Theorem 3.56 Assume Hypothesis 3.50 and suppose α, β satisfy ALp(α, β) = 0 for

some p ∈ N2
0. Then the following infinite sequences of local conservation laws hold:

Expansion of (3.392+) at 1/z = 0:

∂tpρ
∞
j,+ = i(S+ − I )

(
gp−− j,− −

j−1∑
�=0

f p−− j+�,−φ∞�,+ −
p+−1∑
�=0

f p+−1−�,+φ∞j+�,+
)
,

j = 1, . . . , p−, (3.393)

∂tpρ
∞
j,+ = −i(S+ − I )

( p−∑
�=1

f p−−�,−φ∞j−�,+ +
p+−1∑
�=0

f p+−1−�,+φ∞j+�,+
)
,

j ≥ p− + 1, (3.394)

where ρ∞j,+ and φ∞j,+ are given by (3.351) and (3.343).
Expansion of (3.392−) at 1/z = 0:

∂tpρ
∞
j,− = i(S+ − I )

(
gp−− j,− −

j−1∑
�=−1

f p−+�− j,−φ∞�,−

−
p+−1∑
�=0

f p+−1−�,+φ∞j+�,−
)
, j = 1, . . . , p−, (3.395)
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∂tpρ
∞
j,− = −i(S+ − I )

( p−∑
�=1

f p−−�,−φ∞j−�,− +
p+−1∑
�=0

f p+−1−�,+φ∞j+�,−
)
,

j ≥ p− + 1, (3.396)

where ρ∞j,− and φ∞j,− are given by (3.352) and (3.344).
Expansion of (3.392+) at z = 0:

∂tpρ
0
j,+ = i(S+ − I )

(
gp+− j,+ −

p−∑
�=1

φ0
j+�,+ f p−−�,− −

j∑
�=0

φ0
�,+ f p+−1− j+�,+

)
,

j = 1, . . . , p+ − 1,

∂tpρ
0
p+,+ = i(S+ − I )

(
g0,+ −

p−∑
�=1

φ0
j+�,+ f p−−�,− −

p+−1∑
�=0

φ0
j+�−p++1,+ f�,+

)
,

∂tpρ
0
j,+ = −i(S+ − I )

( p−∑
�=1

φ0
j+�,+ f p−−�,− +

p+−1∑
�=0

φ0
j+�−p++1,+ f�,+

)
,

j ≥ p+ + 1,

where ρ0
j,+ and φ0

j,+ are given by (3.353) and (3.345).
Expansion of (3.392−) at z = 0:

∂tpρ
0
j,− = i(S+ − I )

(
gp+− j,+ −

j∑
�=1

φ0
�,− f p+− j+�−1,+ −

p−∑
�=1

φ0
j+�,− f p−−�,−

)
,

j = 1, . . . , p+,

∂tpρ
0
j,− = −i(S+ − I )

( j∑
�= j+1−p+

φ0
�,− f p+− j+�−1,+ +

p−∑
�=1

φ0
j+�,− f p−−�,−

)
,

j ≥ p+ + 1, (3.397)

where ρ0
j,− and φ0

j,− are given by (3.355) and (3.346).

Proof The proof consists of expanding (3.392±) in powers of z and 1/z and applying
(3.350)–(3.355).
Expansion of (3.392+) at 1/z = 0: For the right-hand side of (3.392+) one finds

G p − Fpφ+ =
p−∑
�=1

gp−−�,−z−� +
p+∑
�=0

gp+−�,+z�

−
( p−∑

�=1

f p−−�,−z−� +
p+−1∑
�=0

f p+−1−�,+z�
) ∞∑

j=0

φ∞j,+z− j
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= g0,+z p+ +
p+−1∑
j=0

(
gp+− j,+ −

p+− j−1∑
�=0

f p+− j−1−�,+φ∞�,+
)

z j

+
p−∑
j=1

(
gp−− j,− −

j−1∑
�=0

f p−− j+�,−φ∞�,+ −
p+−1∑
�=0

f p+−1−�,+φ∞j+�,+
)

z− j

−
∞∑

j=p−+1

( p−∑
�=1

f p−−�,−φ∞j−�,+ +
p+−1∑
�=0

f p+−1−�,+φ∞j+�,+
)

z− j .

Here we used the fact that all positive powers vanish because of (3.392). This yields
the following additional formulas:
Conservation laws derived from φ+ at 1/z = 0:

(S+ − 1)

(
gp+− j,+ −

p+− j−1∑
�=0

f p+− j−1−�,+φ∞�,+
)
= 0, j = 0, . . . , p+ − 1,

(S+ − 1)g0,+ = 0.

Expansion of (3.392−) at 1/z = 0: The right-hand side of (3.392−) yields

G p − Fpφ− =
p−∑
�=1

gp−−�,−z−� +
p+∑
�=0

gp+−�,+z�

−
( p−∑

�=1

f p−−�,−z−� +
p+−1∑
�=0

f p+−1−�,+z�
) ∞∑

j=−1

φ∞j,−z− j

=
p+∑
j=1

(
gp+− j,+ −

p+− j−1∑
�=−1

f p+− j−1−�,+φ∞�,−
)

z j

+
(

gp+,+ −
p+−1∑
�=0

f p+−1−�,+φ∞�,− − f p−−1,−φ∞−1,−
)

+
p−∑
j=1

(
gp−− j,− −

j−1∑
�=−1

f p−+�− j,−φ∞�,− −
p+−1∑
�=0

f p+−1−�,+φ∞j+�,−
)

z− j

−
∞∑

j=p−+1

( p−∑
�=1

f p−−�,−φ∞j−�,− +
p+−1∑
�=0

f p+−1−�,+φ∞j+�,−
)

z− j .

Conservation laws derived from φ+ at 1/z = 0:

(S+ − I )

(
gp+− j,+ −

p+− j−1∑
�=−1

f p+− j−1−�,+φ∞�,−
)
= 0, j = 1, . . . , p+,
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i(S+ − I )

(
gp+,+ −

p+−1∑
�=0

f p+−1−�,+φ∞�,− − f p−−1,−φ∞−1,−
)

= ∂tp ln

(
α++

α+

)
+ ∂tp ln(γ+).

Expansion of (3.392+) at z = 0: For the right-hand side of (3.392+) one finds

G p − Fpφ+ =
p−∑
j=1

(
gp−− j,− −

p−− j∑
�=0

φ�,+ f p−− j−�,−
)

z− j

+
p+−1∑
j=0

(
gp+− j,+ −

p−∑
�=1

φ0
j+�,+ f p−−�,− −

j∑
�=0

φ0
�,+ f p+−1− j+�,+

)
z j

+
∞∑

j=p+

(
g0,+χ j p+ −

p−∑
�=1

φ0
j+�,+ f p−−�,− −

p+−1∑
�=0

φ0
j+�−p++1,+ f�,+

)
z j .

Conservation laws derived from φ+ at z = 0:

(S+ − I )

(
g j,− −

j∑
�=0

φ0
�,+ f j−�,−

)
= 0, j = 1, . . . , p−,

(S+ − I )

(
gp+,+ − φ0

0,+ f p+−1,+ −
p−∑
�=1

φ0
�,+ f p−−�,−

)
= ∂tp ln

(
α

α+

)
.

Expansion of (3.392−) at z = 0: For the right-hand side of (3.392−) one finds

G p − Fpφ− = g0,−z−p− +
p−−1∑
j=1

(
gp−− j,− −

p−− j∑
�=1

φ0
�,− f p−− j−�,−

)
z− j

+ gp+,+ −
p−∑
�=1

φ0
�,− f p−−�,−

+
p+∑
j=1

(
gp+− j,+ −

j∑
�=1

φ0
�,− f p+− j+�−1,+ −

p−∑
�=1

φ0
j+�,− f p−−�,−

)
z j

−
∞∑

j=p++1

( j∑
�= j+1−p+

φ0
�,− f p+− j+�−1,+ +

p−∑
�=1

φ0
j+�,− f p−−�,−

)
z j .
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Conservation laws derived from φ− at z = 0:

(S+ − I )g0,− = 0,

(S+ − I )

(
g j,− −

j∑
�=1

φ0
�,− f j−�,−

)
= 0, j = 1, . . . , p− − 1,

(S+ − I )

(
gp+,+ −

p−∑
�=1

φ0
�,− f p−−�,−

)
= ∂tp ln(γ+).

Combining these expansions with (3.350)–(3.354) finishes the proof.

Remark 3.57 (i) There is a certain redundancy in the conservation laws (3.393)–
(3.397) as can be observed from Lemma 3.49. Equations (3.357)–(3.358) imply

ρ∞j,+ = −ρ∞j,− +
1

j
(S+ − I )(d j,+ − e j,+), j ∈ N,

ρ0
j,+ = −ρ0

j,− +
1

j
(S+ − I )(d j,− − e j,−), j ∈ N.

Thus one can, for instance, transfer (3.393)–(3.394) into (3.395)–(3.396).
(i i) In addition to the conservation laws listed in Theorem 3.56, we recover the
familiar conservation law (cf. (3.55))

∂tp ln(γ ) = i(I − S−)(gp+,+ − gp−,−), p ∈ N2
0. (3.398)

(i i i) Another consequence of Theorem 3.56 and Lemma 3.49 is that for α, β satis-
fying Hypothesis 3.50 and α, β ∈ C1(R, �2(Z)), one has

d

dtp

∑
n∈Z

ln(γ (n, tp)) = 0,
d

dtp

∑
n∈Z

ĝ j,±(n, tp) = 0, j ∈ N, p ∈ N2
0. (3.399)

Remark 3.58 The two local conservation laws coming from expansions around z =
0 are essentially the same since the two conserved densities, ρ0

j,+ and ρ0
j,+, differ

by a first-order difference expression (cf. Remark 3.57). A similar argument applies
to the expansions around 1/z = 0. That there are two independent sequences of
conservation laws is also clear from (3.399), which yields that

∑
n∈Z ĝ j,±(n, tp)

are time-independent. One observes that the quantities ĝ j,+, j ∈ N, are related to
the expansions around 1/z = 0, that is, to ρ∞j,±, while ĝ j,−, j ∈ N, are related

to ρ0
j,± (cf. Lemma 3.49). In addition to the two infinite sequences of polynomial

conservation laws, there is a logarithmic conservation law (cf. (3.398) and (3.399)).
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The first conservation laws explicitly read as follows:
p+ = p− = 1:

∂t(1,1)ρ
∞
j,± = −i(S+ − I )( f0,−φ∞j−1,± + f0,+φ∞j,±), j ≥ 1,

∂t(1,1)ρ
0
j,± = −i(S+ − I )( f0,−φ0

j+1,± + f0,+φ0
j,±), j ≥ 1.

For j = 1 this yields using (3.356)

∂t(1,1)ρ
∞
1,+ = ∂t(1,1)α

+β = i(S+ − I )(−c0,−αβ + c0,+α+β−γ ),

∂t(1,1)ρ
∞
1,− = ∂t(1,1)

(
− α+++β++ + (S+ − I )

α++

α+
)

= i(S+ − I )
(

c0,+
α+++

α+
γ+γ++ − c0,−

αα++

(α+)2
γ+ − c0,+

(αα++
α+

)2
γ+
)
,

∂t(1,1)ρ
0
1,+ = ∂t(1,1)

(
α−β + (S+ − I )

α−

α

)
= i(S+ − I )

(
c0,−

α−−

α
γ−γ − c0,+

α−α+

α2
γ − c0,−

(α−
α

)2
γ
)
,

∂t(1,1)ρ
0
1,− = ∂t(1,1)α

+β++ = i(S+ − I )(c0,+α+β+ − c0,−αβ++γ+).

This shows in particular that we obtain two sets of conservation laws (one from ex-
panding near∞ and the other from expanding near 0), where the first few equations
of each set explicitly read (p+ = p− = 1):

j = 1 : ∂t(1,1)α
+β = i(S+ − I )

(− c0,−αβ + c0,+α+β−γ
)
,

∂t(1,1)αβ
+ = i(S+ − I )

(
c0,+αβ − c0,−α−β+γ

)
.

j = 2 : ∂t(1,1)

(− 1
2 (α
+β)2 + γα+β−

)
= i(S+ − I )γ

(− c0,−αβ− − c0,+αα+(β−)2 + c0,+γ−α+β−−
)
,

∂t(1,1)

( 1
2 (αβ

+)2 − γ+αβ++
)

= i(S+ − I )γ
(− c0,+αβ+ − c0,−α−α(β+)2 + c0,−γ+α−β++

)
.

Using Lemma 3.49, one observes that one can replace ρ∞,0
j,± in Theorem 3.56 by

ĝ j,± by suitably adjusting the right-hand sides in (3.393)–(3.397).
Next, we turn to a presentation of the Hamiltonian formalism for the AL hierarchy

including variational derivatives, Poisson brackets, etc.
We start this section by a short review of variational derivatives for discrete sys-

tems. Consider the functional

G : �1(Z)κ → C,

G(u) =
∑
n∈Z

G
(
u(n), u(+1)(n), u(−1)(n), . . . , u(k)(n), u(−k)(n)

)
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for some κ ∈ N and k ∈ N0, where G : Z×C2rκ → C is C1 with respect to the 2rκ
complex-valued entries and where

u(s) = S(s)u, S(s) =
{
(S+)su if s ≥ 0,

(S−)−su if s < 0,
u ∈ �∞(Z)κ .

For brevity we write

G(u(n)) = G
(
u(n), u(+1)(n), u(−1)(n), . . . , u(k)(n), u(−k)(n)

)
.

The functional G is Frechet-differentiable and one computes for any v ∈ �1(Z)κ

for the differential dG

(dG)u(v) = d

dε
G(u + εv)

∣∣
ε=0

=
∑
n∈Z

(
∂G(u(n))

∂u
v(n)+ ∂G(u(n))

∂u(+1)
v(+1)(n)+ ∂G(u(n))

∂u(−1)
v(−1)(n)

+ · · · + ∂G(u(n))

∂u(k)
v(k)(n)+ ∂G(u(n))

∂u(−k)
v(−k)(n)

)
=
∑
n∈Z

(
∂G(u(n))

∂u
+ S(−1) ∂G(u(n))

∂u(+1)
+ S(+1) ∂G(u(n))

∂u(−1)

+ · · · + S(−k) ∂G(u(n))

∂u(k)
+ S(k)

∂G(u(n))

∂u(−k)

)
v(n)

=
∑
n∈Z

(∇G)u(n)v(n) =
∑
n∈Z

δG

δu
(n)v(n),

where we introduced the gradient and the variational derivative of G by

(∇G)u = δG

δu

= ∂G

∂u
+ S(−1) ∂G

∂u(+1)
+ S(+1) ∂G

∂u(−1)
+ · · · + S(−k) ∂G

∂u(k)
+ S(k)

∂G

∂u(−k)
,

assuming

{G(u(n))}n∈Z,
{
∂G(u(n))

∂u(± j)

}
n∈Z
∈ �1(Z), j = 1, . . . , k.

To establish the connection with the Ablowitz–Ladik hierarchy we make the fol-
lowing assumption for the remainder of this section.

Hypothesis 3.59 Suppose

α, β ∈ �1(Z), α(n)β(n) /∈ {0, 1}, n ∈ Z.
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Next, let G be a functional of the type

G : �1(Z)2 → C,

G(α, β) =
∑
n∈Z

G(α(n), β(n), . . . , α(n + k), β(n + k), α(n − k), β(n − k))

=
∑
n∈Z

G(α(n), β(n)),

where G(α, β) is polynomial in α, β and some of their shifts. The gradient ∇G and
symplectic gradient ∇sG of G are then defined by

(∇G)α,β =
(
(∇G)α
(∇G)β

)
=
(
δG
δα

δG
δβ

)

and

(∇sG)α,β = D(∇G)α,β = D
(
(∇G)α
(∇G)β

)
,

respectively. Here D is defined by

D = γ

(
0 1
−1 0

)
, γ = 1− αβ.

In addition, we introduce the weakly nondegenerate closed 2-form

� : �1(Z)2 × �1(Z)2 → C,

�(u, v) =
∑
n∈Z

(D−1u)(n) · v(n).

One then concludes that

�(Du, v) =
∑
n∈Z

u(n) · v(n) =
∑
n∈Z

(
u1(n)v1(n)+ u2(n)v2(n)

)
= 〈u, v〉�2(Z)2 , u, v ∈ �1(Z)2,

where 〈 · , · 〉�2(Z)2 denotes the “real” inner product in �2(Z)2, that is,

〈 · , · 〉�2(Z)2 : �2(Z)2 × �2(Z)2 → C,

〈u, v〉�2(Z)2 =
∑
n∈Z

u(n) · v(n) =
∑
n∈Z

(
u1(n)v1(n)+ u2(n)v2(n)

)
.

In addition, one obtains

(dG)α,β(v) = 〈(∇G)α,β, v〉�2(Z)2 = �(D(∇G)α,β, v) = �((∇sG)α,β, v).
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Given two functionals G1,G2 we define their Poisson bracket by

{G1,G2} = dG1(∇sG2) = �(∇sG1,∇sG2)

= �(D∇G1,D∇G2) = 〈∇G1,D∇G2〉�2(Z)2

=
∑
n∈Z

(
δG1
δα

(n)
δG1
δβ

(n)

)
·D
(
δG2
δα

(n)
δG2
δβ

(n)

)
.

Moreover, both the Jacobi identity

{{G1,G2},G3} + {{G2,G3},G1} + {{G3,G1},G2} = 0, (3.400)

as well as the Leibniz rule

{G1,G2G3} = {G1,G2}G3 + G2{G1,G3}, (3.401)

hold.
If G is a smooth functional and (α, β) develops according to a Hamiltonian flow

with Hamiltonian H, that is,(
α

β

)
t

= (∇sH)α,β = D(∇H)α,β = D
(
δH
δα
δH
δβ

)
,

then

dG
dt
= d

dt

∑
n∈Z

G(α(n), β(n))

=
∑
n∈Z

(
δG
δα
(n)

δG
δβ
(n)

)
·
(
α(n)
β(n)

)
t

=
∑
n∈Z

(
δG
δα
(n)

δG
δβ
(n)

)
·D
(
δH
δα
(n)

δH
δβ
(n)

)
= {G,H}. (3.402)

Here, and in the remainder of this section, time-dependent equations such as (3.402)
are viewed locally in time, that is, assumed to hold on some open t-interval I ⊆ R.

If a functional G is in involution with the Hamiltonian H, that is,

{G,H} = 0,

then it is conserved in the sense that

dG
dt
= 0.

Next, we turn to the specifics of the AL hierarchy. We define

Ĝ�,± =
∑
n∈Z

ĝ�,±(n). (3.403)



308 3 The Ablowitz–Ladik Hierarchy

Lemma 3.60 Assume Hypothesis 3.59 and v ∈ �1(Z). Then,

(dĜ�,±)β(v) =
∑
n∈Z

δĝ�,±(n)
δβ

v(n) = ±�
∑
n∈Z

(δn, L±�−1 Mβ(v)δn), � ∈ N,

(3.404)

(dĜ�,±)α(v) =
∑
n∈Z

δĝ�,±(n)
δα

v(n) = ±�
∑
n∈Z

(δn, L±�−1 Mα(v)δn), � ∈ N,

(3.405)

where

Mβ(v) = −vα+ +
((
v−ρ − β− vα

2ρ

)
δeven + α+ vα

2ρ
δodd

)
S−

+
((
vρ+ − β

v+α+

2ρ+
)
δeven + α++ v

+α+

2ρ+
δodd

)
S+

−
(
ρ
v−α−

2ρ−
+ ρ− vα

2ρ

)
δevenS−− −

(
ρ+ v

++α++

2ρ++
+ ρ++ v

+α+

2ρ+
)
δoddS++,

Mα(v) = −v+β −
((
v+ρ − α+ vβ

2ρ

)
δodd + β− vβ

2ρ
δeven

)
S−

−
((
v++ρ+ − α++ v

+β+

2ρ+
)
δodd − β

v+β+

2ρ+
δeven

)
S+

−
(
ρ
v−β−

2ρ−
+ ρ− vβ

2ρ

)
δevenS−− −

(
ρ+ v

++β++

2ρ++
+ ρ++ v

+β+

2ρ+
)
δoddS++.

Proof We first consider the derivative with respect to β. By a slight abuse of notation
we write L = L(β). Using (3.403) and (3.71) one finds

(dĜ�,±)βv = d

dε
G(β + εv)

∣∣
ε=0 =

∑
n∈Z

d

dε
ĝ�,±(β + εv)(n)

∣∣
ε=0

=
∑
n∈Z

(δn,
d

dε
L(β + εv)±�δn)|ε=0. (3.406)

Next, one considers

d

dε
L(β + εv)�|ε=0 = lim

ε→0

1

ε

(
L(β + εv)� − L(β)�

)
= lim

ε→0

1

ε

(
(L(β + εv)− L(β))L(β)�−1

+ L(β)(L(β + εv)− L(β))L(β)�−2

+ · · · + L(β)�−1(L(β + εv)− L(β))
)

(3.407)

= MβL(β)�−1 + L(β)MβL(β)�−2 + · · · + L(β)�−1 Mβ,
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where

Mβ = lim
ε→0

1

ε

(
L(β + εv)− L(β)

)
=
(
− v(n)α(n + 1)δm,n +

((
v(n − 1)ρ(n)− β(n − 1)

v(n)α(n)

2ρ(n)

)
δodd(n)

+ α(n + 1)
v(n)α(n)

2ρ(n)
δeven(n)

)
δm,n−1

+
((
v(n)ρ(n + 1)− β(n)

v(n + 1)α(n + 1)

2ρ(n + 1)

)
δodd(n) (3.408)

+ α(n + 2)
v(n + 1)α(n + 1)

2ρ(n + 1)
δeven(n)

)
δm,n+1

−
(
ρ(n + 1)

v(n + 2)α(n + 2)

2ρ(n + 2)
+ ρ(n + 2)

v(n + 1)α(n + 1)

2ρ(n + 1)

)
× δeven(n)δm,n+2

−
(
ρ(n)

v(n − 1)α(n − 1)

2ρ(n − 1)
+ ρ(n − 1)

v(n)α(n)

2ρ(n)

)
δodd(n)δm,n−2

)
m,n∈Z

.

Similarly one obtains
d

dε
L(β + εv)−�|ε=0 (3.409)

= −
(

L(β)−1 MβL(β)−� + L(β)−2 MβL(β)−�+1 + · · · + L(β)−�MβL(β)−1
)
.

Inserting the expression (3.407) into (3.406) one finds

(dĜ�,+)βv =
∑
n∈Z

(δn,
d

dε
L(β + εv)�δn)|ε=0

=
∑
n∈Z

(δn,

�−1∑
k=0

Lk MβL�−1−kδn)

=
�−1∑
k=0

∑
n∈Z

(δn, Lk MβL�−1−kδn)

=
�−1∑
k=0

∑
n∈Z

(δn, (L
�−1 Mβ + [Lk Mβ, L�−1−k])δn)

=
�−1∑
k=0

∑
n∈Z

(
(δn, L�−1 Mβδn)+ (δn, [Lk Mβ, L�−1−k]δn)

)
= �

∑
n∈Z

(δn, L�−1 Mβδn)+
�−1∑
k=0

tr
([Lk Mβ, L�−1−k])

= �
∑
n∈Z

(δn, L�−1 Mβδn).
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Similarly, using (3.406) and (3.409), one concludes that

(dĜ�,−)βv = −�
∑
n∈Z

(δn, L−�−1 Mβδn).

For the derivative with respect to α we set L = L(α) and replace Mβ by

Mα = lim
ε→0

1

ε

(
L(α + εv)− L(α)

)
=
(
− v(n + 1)β(n)δm,n +

(
− β(n − 1)

v(n)β(n)

2ρ(n)
δodd(n)

− (v(n + 1)ρ(n)− α(n + 1)
v(n)β(n)

2ρ(n)

)
δeven(n)

)
δm,n−1

−
(
β(n)

v(n + 1)β(n + 1)

2ρ(n + 1)
δodd(n)+

(
v(n + 2)ρ(n + 1) (3.410)

+ α(n + 2)
v(n + 1)β(n + 1)

2ρ(n + 1)

)
δeven(n)

)
δm,n+1

−
(
ρ(n + 1)

v(n + 2)β(n + 2)

2ρ(n + 2)
+ ρ(n + 2)

v(n + 1)β(n + 1)

2ρ(n + 1)

)
× δeven(n)δm,n+2

−
(
ρ(n)

v(n − 1)β(n − 1)

2ρ(n − 1)
+ ρ(n − 1)

v(n)β(n)

2ρ(n)

)
δodd(n)δm,n−2

)
m,n∈Z

.

Lemma 3.61 Assume Hypothesis 3.59. Then the following relations hold:

δĝ�,+
δβ
= �

γ

(
f̂�−1,+ − αĝ�,+

)
, � ∈ N, (3.411)

δĝ�,−
δβ
= − �

γ

(
f̂ −�−1,− + αĝ−�,−

)
, � ∈ N. (3.412)

Proof We consider (3.411) first. By (3.71) one concludes that

f̂�−1,+(n)− α(n)ĝ�,+(n)
= (δn, E L�−1δn)δeven(n)+ (δn, L�−1 Dδn)δodd(n)− α(n)(δn, L�δn).

Thus one has to show that∑
n∈Z

(δn, L�−1 Mβδn) =
∑
n∈Z

v(n)

ρ(n)2
(

f̂�−1,+(n)− α(n)ĝ�,+(n)
)
,

since this implies (3.411), using (3.404). By (3.408), (3.67), and (3.68), and assuming
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v ∈ �1(Z) one obtains∑
n∈Z

(δn, L�−1 Mβδn)

=
∑
n∈Z

(
− vα+(δn, L�−1δn)+ v−ρ(δn, L�−1δn−1)δodd

+ vρ+(δn, L�−1δn+1)δodd

− vα

2ρ

(− α+(δn, L�−1δn−1)δeven + ρ+(δn+1, L�−1δn−1)δeven
)

− vα

2ρ

(
β−(δn, L�−1δn−1)δodd + ρ−(δn, L�−1δn−2)δodd

)
− v+α+

2ρ+
(− α++(δn, L�−1δn+1)δeven + ρ++(δn, L�−1δn+1)δeven

)
− v+α+

2ρ+
(
β(δn, L�−1δn+1)δodd + ρ(δn−1, L�−1δn+1)δodd

))
=
∑
n∈Z

(
− vα+(δn, L�−1δn)+ vρ+(δn+1, L�−1δn)δeven

+ vρ+(δn, L�−1δn+1)δodd

− vα

2ρ

(
(δn, E L�−1δn−1)δeven + (δn, L�−1 Dδn−1)δodd

)
− v+α+

2ρ+
(
(δn, L�−1 Dδn+1)δeven + (δn, E L�−1δn+1)δodd

))
=
∑
n∈Z

(
v(δn, E L�−1δn)δeven + v(δn, L�−1 Dδn)δodd

− vα

2ρ

(
(δn, E L�−1δn−1)δeven + (δn, L�−1 Dδn−1)δodd

+ (δn−1, L�−1 Dδn)δodd + (δn−1, E L�−1δn)δeven
))

=
∑
n∈Z

( v

ρ2

(
f̂�−1,+ − αĝ�,+

)+ vα

2ρ

(
(δn−1, E L�−1δn)δeven

+ (δn, L�−1 Dδn−1)δodd − (δn, E L�−1δn−1)δeven − (δn−1, L�−1 Dδn)δodd
))
,

where we used (3.71) and

ĝ�,+ = (δn, L�−1 DEδn)

= β(δn, L�−1 Dδn)δodd + ρ(δn, L�−1 Dδn−1)δodd

+ β(δn, E L�−1δn)δeven + ρ(δn−1, E L�−1δn)δeven

= β f̂�−1,+ + ρ(δn, L�−1 Dδn−1)δodd + ρ(δn−1, E L�−1δn)δeven.
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Hence it remains to show that

(δn−1, E L�−1δn)δeven + (δn, L�−1 Dδn−1)δodd

− (δn, E L�−1δn−1)δeven − (δn−1, L�−1 Dδn)δodd = 0,

but this follows from (E L�)� = E L� (resp., (L�D)� = L�D) by (3.65), (3.66).
In the case (3.412) one similarly shows that∑

n∈Z
(δn, L−�−1 Mβδn) = −

∑
n∈Z

v(n + 1)

ρ(n)2

(
(δn, D−1L−�+1δn)δeven(n)

+ (δn, L−�+1 E−1δn)δodd(n)+ α(n + 1)(δn, L−�δn)
)
.

Lemma 3.62 Assume Hypothesis 3.59. Then the following relations hold:

δĝ�,+
δα
= − �

γ

(
ĥ−�−1,+ + β ĝ−�,+

)
, � ∈ N, (3.413)

δĝ�,−
δα
= �

γ

(
ĥ�−1,− − β ĝ�,−

)
, � ∈ N. (3.414)

Proof We consider (3.413) first. Using (3.405), (3.410), (3.67), and (3.68), and as-
suming v ∈ �1(Z) one obtains∑

n∈Z
(δn, L�−1 Mαδn)

=
∑
n∈Z

(
− v+β(δn, L�−1δn)− v+ρ(δn, L�−1δn−1)δeven

− v++ρ+(δn, L�−1δn+1)δeven

− vβ

2ρ

(
β−(δn, L�−1δn−1)δodd + ρ−(δn, L�−1δn−2)δodd

)
− vβ

2ρ

(− α+(δn, L�−1δn−1)δeven + ρ+(δn+1, L�−1δn−1)δeven
)

− v+β+

2ρ+
(− α++(δn, L�−1δn+1)δeven + ρ++(δn, L�−1δn+2)δeven

)
− v+β+

2ρ+
(
β(δn, L�−1δn+1)δodd + ρ(δn−1, L�−1δn+1)δodd

))
=
∑
n∈Z

(
− v+

(
(δn, L�−1 Dδn)δeven + (δn, E L�−1δn)δodd

)
− vβ

2ρ

(
(δn, E L�−1δn−1)δeven + (δn, L�−1 Dδn−1)δodd

)
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− v+β+

2ρ+
(
(δn, L�−1 Dδn+1)δeven + (δn, E L�−1δn+1)δodd

))
= −

∑
n∈Z

v

ρ2

(
ĥ−�−1,+ + β ĝ−�,+

)
,

since by (3.71),

2αĥ−�−1,+ + 2ĝ−�,+ = ρ
(
(δn, L�−1 Dδn−1)δodd + (δn, E L�−1δn−1)δeven

+ (δn−1, L�−1 Dδn)δodd + (δn−1, E L�−1δn)δeven
)
.

The result (3.414) follows similarly.

Next, we introduce the Hamiltonians

Ĥ0 =
∑
n∈Z

ln(γ (n)), Ĥp±,± =
1

p±

∑
n∈Z

ĝp±,±(n), p± ∈ N, (3.415)

Hp =
p+∑
�=1

cp+−�,+Ĥ�,+ +
p−∑
�=1

cp−−�,−Ĥ�,− + cpĤ0, p = (p−, p+) ∈ N2
0.

(3.416)

(We recall that cp = (cp,− + cp,+)/2.)

Theorem 3.63 Assume Hypothesis 3.59. Then the following relation holds:

ALp(α, β) =
(
−iαtp

−iβtp

)
+D∇Hp = 0, p ∈ N2

0.

Proof This follows directly from Lemmas 3.61 and 3.62,

(∇Ĥ�,+)α = 1

γ

(− β ĝ−�,+ − ĥ−�−1,+
)
, (∇Ĥ�,+)β = 1

γ

(− αĝ�,+ + f̂�−1,+
)
,

(∇Ĥ�,−)α = 1

γ

(− β ĝ�,− + ĥ�−1,−
)
, (∇Ĥ�,−)β = 1

γ

(− αĝ−�,− − f̂ −�−1,−
)
,

� ∈ N,

together with (3.35).

Theorem 3.64 Assume Hypothesis 3.50 and suppose α, β satisfy ALp(α, β) = 0 for

some p ∈ N2
0. Then,

dHr

dtp
= 0, r ∈ N2

0. (3.417)
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Proof From Lemma 3.49 and Theorem 3.56 one obtains

dĝr±,±
dtp

= (S+ − I )Jr±,±, r± ∈ N0,

for some Jr±,±, r± ∈ N0, which are polynomials in α and β and certain shifts thereof.
Using definition (3.416) of Hr , the result (3.417) follows in the homogeneous case
and then by linearity in the general case.

Theorem 3.65 Assume Hypothesis 3.59 and let p, r ∈ N2
0. Then,

{Hp,Hr } = 0, (3.418)

that is, Hp and Hr are in involution for all p, r ∈ N2
0.

Proof By Theorem 3.54, there exists T > 0 such that the initial value problem

ALp(α, β) = 0, (α, β)
∣∣
tp=0 =

(
α(0), β(0)

)
,

where α(0), β(0) satisfy Hypothesis 3.59, has unique, local, and smooth solutions
α(t), β(t) satisfying Hypothesis 3.59 for each t ∈ [0, T ). For this solution we know
that

d

dtp
Hp(t) = {Hr (t),Hp(t)} = 0.

Next, let t ↓ 0. Then

0 = {Hr (t),Hp(t)} →
t↓0
{Hr (0),Hp(0)} = {Hr ,Hp}

∣∣
(α,β)=(α(0),β(0)).

Since α(0), β(0) are arbitrary coefficients satisfying Hypothesis 3.59 one concludes
(3.418).

3.9 Notes

In science the credit goes to the man who convinces the world,
not the man to whom the idea first occurs.

Sir Francis Darwin1

This chapter closely follows the series of papers by Gesztesy et al. (to appear;
2007a,b; 2008a).

Section 3.1. In the mid-1970s, Ablowitz and Ladik, in a series of papers (Ablowitz
and Ladik (1975; 1976a,b; 1977), see also Ablowitz (1977), Ablowitz and Clarkson

1 Eugenics Review, April 1914.
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(1991, Sect. 3.2.2), Ablowitz et al. (2004, Ch. 3), Chiu and Ladik (1977)), used
inverse scattering methods to analyze certain integrable differential-difference sys-
tems. One of their integrable variants of such systems included a discretization of the
celebrated AKNS-ZS system, the pair of coupled nonlinear differential-difference
equations (3.1), that is,

−iαt − (1− αβ)(α− + α+)+ 2α = 0,

−iβt + (1− αβ)(β− + β+)− 2β = 0,
(3.419)

which is commonly referred to as the Ablowitz–Ladik system. In particular,
Ablowitz and Ladik (1976b) (see also Ablowitz et al. (2004, Ch. 3)) showed that
in the defocusing case, where β = α, and in the focusing case, where β = −α,
(3.419) yields the discrete analog of the nonlinear Schrödinger equation

−iαt − (1∓ |α|2)(α− + α+)+ 2α = 0. (3.420)

It should be noted here that the 2 × 2-system of differential-difference equations
(3.419) is actually a special case of a more general 2 × 2-system introduced by
Ablowitz and Ladik (1975). The latter is not studied in this monograph.

Since the mid-1970s there has been an enormous amount of activity in the area
of integrable differential-difference equations. Two principal directions of research
are responsible for this development: Originally, the development was driven by the
theory of completely integrable systems and its applications to fields such as non-
linear optics, and more recently, it gained additional momentum due to its intimate
connections with the theory of orthogonal polynomials. The more recent develop-
ments in connection with the complete integrability aspects of the AL hierarchy will
naturally be discussed in the subsequent notes pertinent to each of the AL sections.
Here we briefly recall some of the recent developments influenced by research on
orthogonal polynomials in the following (which are not discussed in the main body
of this monograph).

The connection between the Ablowitz–Ladik system (3.1) and orthogonal poly-
nomials comes about as follows: Let {α(n)}n∈N ⊂ C be a sequence of complex
numbers subject to the condition |α(n)| < 1, n ∈ N, and define the transfer matrix

T (z) =
(

z α

αz 1

)
, z ∈ T, (3.421)

with spectral parameter z on the unit circle T = {z ∈ C | |z| = 1}. Consider the
system of difference equations

�(z, n) = T (z, n)�(z, n − 1), (z, n) ∈ T× N, (3.422)



316 3 The Ablowitz–Ladik Hierarchy

with initial condition �(z, 0) =
(

1
1

)
, where

�(z, n) =
(

ϕ(z, n)
znϕ(1/z, n)

)
, (z, n) ∈ T× N0. (3.423)

Then ϕ( · , n) are monic polynomials of degree n first introduced by Szegő in the
1920s in his seminal work on the asymptotic distribution of eigenvalues of sections
of Toeplitz forms, cf. Szegő (1920; 1921), and the monograph Szegő (1978, Ch.
XI). Szegő’s point of departure was the trigonometric moment problem and hence
the theory of orthogonal polynomials on the unit circle. Indeed, given a probability
measure dσ supported on an infinite set on the unit circle, one is interested in finding
monic polynomials χ( · , n) of degree n ∈ N0 in z = eiθ , θ ∈ [0, 2π ], such that∫ 2π

0
dσ(eiθ ) χ(eiθ ,m)χ(eiθ , n) = w(n)−2δm,n, m, n ∈ N0,

where w(0)2 = 1, w(n)2 = ∏n
j=1

(
1 − |α( j)|2)−1, n ∈ N. Szegő showed that the

corresponding polynomials (3.423) with ϕ replaced by χ satisfy the recurrence for-
mula (3.422). Early work in this area includes important contributions by Akhiezer,
Geronimus, Krein, Tomčuk, Verblunsky, Widom, and others, and is summarized in
the books by Akhiezer (1965), Geronimus (1961), Szegő (1978), and especially in
the two-volume treatise by Simon (2005b,c).

An important extension of (3.422) was developed by Baxter in a series of papers
on Toeplitz forms (Baxter (1960; 1961a,b; 1963)). In these papers the transfer matrix
T in (3.421) is replaced by the more general (complexified) transfer matrix

U (z) =
(

z α

βz 1

)
, (3.424)

that is, precisely the matrix U responsible for the spatial part in the Ablowitz–
Ladik system in its zero-curvature formulation (3.4), (3.48). Here the sequences
α = {α(n)}n∈N, β = {β(n)}n∈N are assumed to satisfy the restriction α(n)β(n) �= 1,
n ∈ N. Studying the following extension of (3.422),

�(z, n) = U (z, n)�(z, n − 1), (z, n) ∈ T× N,

Baxter was led to biorthogonal polynomials on the unit circle with respect to a
complex-valued measure on T. In this context of biorthogonal Laurent polynomi-
als we also refer to Bertola and Gekhtman (2007) and Bultheel et al. (1999).

For recent discussions of the connection between the AL hierarchy and orthogonal
polynomials we refer, for instance, to Bertola and Gekhtman (2007), Deift (2007),
Killip and Nenciu (2006), Li (2005), Nenciu (2005a,b; 2006), Simon (2005a–c;
2007a), and the extensive literature cited therein.
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Section 3.2. The material in this section is mostly taken from Gesztesy et al. (to
appear).

The first systematic discussion of the Ablowitz–Ladik hierarchy appears to be due
to Schilling (1989) (cf. also Tamizhmani and Ma (2000), Vekslerchik (2002), Zeng
and Rauch-Wojciechowski (1995b)).

Baxter’s U matrix in (3.424) led to a new hierarchy of nonlinear difference equa-
tions, called the Szegő–Baxter (SB) hierarchy in Geronimo et al. (2005), in honor
of these two pioneers of orthogonal polynomials on the unit circle. The latter hierar-
chy is now seen to be a special case of the AL hierarchy as pointed out in Remark
3.9 (i i).

The literature on the special case of the discrete nonlinear Schrödinger hierarchy,
isolated in Remark 3.13 (i), is too voluminous to be listed here in detail. So we re-
fer, for instance, to Ablowitz et al. (2004, Ch. 3) and the references cited therein.
However, we note that several of the references in these notes cited in connec-
tion with the AL hierarchy actually refer to the discrete nonlinear Schrödinger hi-
erarchy. The hierarchy of Schur flows discussed in Remark 3.13 (i i), on the other
hand, hardly appears to have been studied at all. Instead, only its first element,
(3.57), received some attention recently (cf. Ammar and Gragg (1994), Faybusovich
and Gekhtman (1999; 2000), Golinskii (2006), Mukaihira and Nakamura (2002),
Simon (2007b)).

Connections between the AL hierarchy and the motion of a piecewise linear curve
have been established by Doliwa and Santini (1995); Bäcklund and Darboux trans-
formations were studied by Chiu and Ladik (1977), Chowdhury and Mahato (1983),
Geng (1989), Rourke (2004), and Vekslerchik (2006); the Hirota bilinear formal-
ism, AL τ -functions, etc., were considered by Sadakane (2003), Vekslerchik (1998;
2002); connections with the discrete isotropic Heisenberg magnet are studied in
Hoffmann (2000); for an application of the inverse scattering method to (3.420) we
refer to Ablowitz et al. (2004, Ch. 3), Ablowitz et al. (2007), and Vekslerchik and
Konotop (1992). The continuum limit of the AL hierarchy is studied in Zeng and
Rauch-Wojciechowski (1995b).

Finally, we note that Remark 3.11 can be shown as in Gesztesy and Holden
(2003b, Remark I.1.5).

Section 3.3. The presentation of this section closely follows some parts in
Gesztesy et al. (2008a).

The half-lattice (i.e., semi-infinite) �2(N)-operator realization of the difference
expression L as a five-diagonal matrix was recently rediscovered by Cantero, Moral
and Velazquez, see Cantero et al. (2003) (see also Cantero et al. (2005)) in their
study of orthogonal polynomials on the unit circle in the special defocusing case,
where β = α. Subsequently, the term CMV matrix was coined by Simon (2005b,c).
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The actual history of CMV operators, however, is more intricate: The corresponding
unitary semi-infinite five-diagonal matrices were first introduced by Bunse-Gerstner
and Elsner (1991), and subsequently treated in detail by Watkins (1993) (cf. the re-
cent discussion in Simon (2007a)) before they were subsequently rediscovered by
Cantero et al. (2003). We also note that in a context different from orthogonal poly-
nomials on the unit circle, Bourget et al. (2003) introduced a family of doubly infinite
matrices with three sets of parameters which, for special choices of the parameters,
reduces to two-sided CMV matrices on Z. Moreover, it is possible to connect uni-
tary block Jacobi matrices to the trigonometric moment problem (and hence to CMV
matrices) as discussed by Berezansky and Dudkin (2005; 2006).

The Ablowitz–Ladik Lax pair in the special defocusing case, where β = α, in the
finite-dimensional context, was recently discussed by Nenciu (2005a,b; 2006).

Finally, we note that the result of Lemma 3.14 (i.e., (3.71)) can be rewritten as
follows:

Lemma 3.66 Let n ∈ Z. Then the homogeneous coefficients { f̂�,±}�∈N0 , {ĝ�,±}�∈N0 ,
and {ĥ�,±}�∈N0 satisfy the following relations:

f̂�,+(n) = α(n)(δn, L�+1δn)+ ρ(n)(δn−1, L�+1δn)δeven(n)

+ ρ(n)(δn, L�+1δn−1)δodd(n), � ∈ N0,

f̂�,−(n) = α(n)(δn, L−�δn)+ ρ(n)(δn−1, L−�δn)δeven(n)

+ ρ(n)(δn, L−�δn−1)δodd(n), � ∈ N0,

ĝ0,± = 1

2
, ĝ�,±(n) = (δn, L±�δn), � ∈ N,

ĥ�,+(n) = β(n)(δn, L�δn)+ ρ(n)(δn, L�δn−1)δeven(n)

+ ρ(n)(δn−1, L�δn)δodd(n), � ∈ N0,

ĥ�,−(n) = β(n)(δn, L−�−1δn)+ ρ(n)(δn, L−�−1δn−1)δeven(n)

+ ρ(n)(δn−1, L−�−1δn)δodd(n), � ∈ N0.

Section 3.4. The material in this section is predominantly taken from Gesztesy
et al. (2007a).

Since algebro-geometric solutions of the AL hierarchy are usually studied in a
time-dependent context, we postpone listing pertinent references to the notes of Sec-
tion 3.6.

In the defocusing case β = α, finite-arc spectral theoretic investigations of the
unitary operator realization of L on the unit circle T were undertaken by Geronimo
and Johnson (1998) in the case where the coefficients α are random variables. Under
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appropriate ergodicity assumptions on α and the hypothesis of a vanishing Lyapunov
exponent on prescribed spectral arcs on the unit circle, Geronimo and Johnson (1996;
1998) and Geronimo and Teplyaev (1994) developed the corresponding spectral the-
ory of the unitary operator realization of L in �2(Z). In this sense the discussion
in Geronimo and Johnson (1998) is a purely stationary one and connections with a
zero-curvature formalism, theta function representations, and integrable hierarchies
are not made in Geronimo and Johnson (1998). More recently, the defocusing case
with periodic and quasi-periodic coefficients was also studied in great detail by Bo-
golyubov and Prikarpatskii (1982), Deift (2007), Golinskii and Nevai (2001), Killip
and Nenciu (2006), Nenciu (2005a; 2006), and Simon (2004b; 2005a,c; 2007a).

The function φ introduced in (3.95), which is again the fundamental object of
study as everywhere else in this volume and in Volume I, is closely related to one
of the variants of Weyl–Titchmarsh functions discussed in Gesztesy and Zinchenko
(2006a,b), Simon (2004a) in the special defocusing case β = ᾱ (see also, Clark et al.
(2007; 2008)).

For a discussion of orthogonal polynomials on several arcs of the unit circle
relevant to this section we also refer to Lukashov (2004) and the detailed list of
references therein.

Section 3.5. The material of this section is taken from Gesztesy et al. (2007b).
For a pertinent discussion of Sard’s theorem as needed in the proof of Lemma 3.29

we refer, for instance, to Abraham et al. (1988, Sect. 3.6).
We emphasize that the approach described in this section is not limited to the

Ablowitz–Ladik hierarchy, but applies universally to the construction of stationary
algebro-geometric solutions of integrable lattice hierarchies of soliton equations. In
particular, it was applied to the Toda lattice hierarchy as discussed in Gesztesy et al.
(2008b) and in Section 1.4 of this monograph.

We also note that while the periodic case with complex-valued α, β is of course
included in our analysis, we consider throughout the more general algebro-geometric
case (in which α, β need not be quasi-periodic).

Section 3.6. This section is primarily taken from Gesztesy et al. (2007a).
The first systematic and detailed treatment of algebro-geometric solutions of the

AL system (3.1) was performed by Miller et al. (1995) (see also Miller (1994)) in an
effort to analyze models describing oscillations in nonlinear dispersive wave systems.
Related material can be found in Ahmad and Chowdhury (1987a,b), Bogolyubov and
Prikarpatskii (1982) (see also Bogolyubov et al. (1981; 1982)), Chow et al. (2006),
Miller (1995), and Vaninsky (2001). Algebro-geometric solutions of the AL hier-
archy were also discussed in Geng et al. (2003; 2007) and Vekslerchik (1999) (by
employing methods different from those in Gesztesy et al. (2007a)).
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Solutions of the AL system in terms of elliptic functions (and some of their
degenerations into soliton solutions) were discussed in Huang and Liu (2008).

Section 3.7. This section is based on our paper Gesztesy et al. (2007b).
Next, we mention a few references relevant at some more technical points: The fact

that there exists a T0 > 0, such that the first-order autonomous initial value problem
(3.281), (3.287), (3.288) (with polynomial right-hand sides) and initial conditions
(3.289) has a unique solution for all tr ∈ (t0,r − T0, t0,r + T0), follows, for example,
from Walter (1998, Sect. III.10).

In connection with the paragraph following Theorem 3.45, relevant references il-
lustrating the fact that straight motions on the torus are generically dense are, for
instance, Arnold (1989, Sect. 51) or Katok and Hasselblatt (1995, Sects. 1.4, 1.5). In
addition, for the definition of quasi-periodic functions, one can consult, for example,
Pastur and Figotin (1992, p. 31).

We emphasize that the approach described in this section is not limited to the
Ablowitz–Ladik hierarchy but applies universally to constructing algebro-geometric
solutions of (1+1)-dimensional integrable soliton equations. In particular, it applies
to the Toda lattice hierarchy as discussed in Gesztesy et al. (2008b) and in Chap-
ter 1 of this monograph. Moreover, the principal idea of replacing Dubrovin-type
equations by a first-order system of the type (3.281), (3.287), and (3.288) is also rel-
evant in the context of general non-normal Lax operators for the continuous models
in (1 + 1)-dimensions. In particular, the models studied in detail in Gesztesy and
Holden (2003b) can be revisited from this point of view. However, the fact that the
set in (3.317) is of measure zero relies on the fact that n varies in the countable set Z
and hence is not applicable to continuous models in (1+ 1)-dimensions.

We also note that while the periodic case with complex-valued α, β is of course
included in our analysis, we consider throughout the more general algebro-geometric
case (in which α, β need not be quasi-periodic).

Although the following is not treated in this volume, the interested reader
might want to notice that the initial value problem for half-infinite discrete linear
Schrödinger equations and the Schur flow were discussed by Common (1992)
(see also Common and Hafez (1990)) using a continued fraction approach. The
corresponding nonabelian cases on a finite interval were studied by Gekhtman
(1993).

Section 3.8. This section is based on some of the material in Gesztesy et al.
(2008a).

Infinitely many conservation laws are discussed, for instance, in Ablowitz and
Ladik (1976b), Ablowitz et al. (2004, Ch. 3), Ding et al. (2006), Zhang and Chen
(2002a), and Zhang et al. (2006); the bi-Hamiltonian structure of the AL hierarchy
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is considered by Ercolani and Lozano (2006), Hydon (2005), and Lozano (2004);
multi-Hamiltonian structures for the defocusing AL hierarchy were studied by Fay-
busovich and Gekhtman (2000), Gekhtman and Nenciu (to appear), Zeng and Rauch-
Wojciechowski (1995b), and Zhang and Chen (2002b); Poisson brackets for orthogo-
nal polynomials on the unit circle relevant to the case of the defocusing AL hierarchy
(where β = α) have been studied by Cantero and Simon (to appear), Killip and Nen-
ciu (2006), and Nenciu (2007); Lenard recursions and the Hamiltonian formalism
were discussed in Geng and Dai (2007), Geng et al. (2007), Suris (2003), Tang et al.
(2007), and Vekslerchik (1993). Quantum aspects of the AL equation are discussed,
for instance, in Enolskii et al. (1992).

In connection with Theorem 3.56 we note that Zhang and Chen (2002a) study
local conservation laws for the full 4 × 4 Ablowitz–Ladik system in a similar way
to the one employed here. However, they only expand their equation around a point
that corresponds to 1/z = 0.

Next we mention some references supporting more technical points in this section:
Equations (3.329)–(3.332) are discussed in Gesztesy and Zinchenko (2006b) in the
special defocusing case, where β = α. While (3.329)–(3.331) are of an algebraic
nature and hence immediately extend to the case where β �= α, the existence of
solutions u± and v± satisfying u±, v± ∈ �2([n0,±∞) ∩ Z) can be inferred from
applying the resolvents of L̆ and L̆� to the element δn0 ,

u±(n) = c±
((

L̆ − z)−1δn0

)
(n), n ∈ [n0,±∞) ∩ Z,

v±(n) = d±
((

L̆� − z)−1δn0

)
(n), n ∈ [n0,±∞) ∩ Z,

for some constants c±, d± ∈ C \ {0}.
The existence of the propagator Wp( · , · ) satisfying equations (3.384)–(3.387) is

a standard result which follows, for instance, from Theorem X.69 of Reed and Simon
(1975) (under even weaker hypotheses on α, β).

Local existence and uniqueness as well as smoothness of the solution of the ini-
tial value problem (3.390) (cf. (3.54)) in Theorem 3.54 follows from Abraham et al.
(1988, Theorem 4.1.5) since f p±−1,±, gp±,±, and h p±−1,± depend polynomially on
α, β and certain of their shifts, and the fact that the Ablowitz–Ladik flows are au-
tonomous.

An application of Abraham et al. (1988, Proposition 4.1.22) yields the unique,
global, and smooth solution of the pth AL initial value problem [4] (3.390) in Re-
mark 3.55, and the same argument also shows that if α satisfies Hypothesis 3.50
and the pth AL equation ALp(α, α) = 0, then α is actually smooth with respect to
tp ∈ R and satisfies (3.391).
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The Jacobi identity (3.400) and the Leibniz rule (3.401) follow since �( · , · ) is
a weakly nondegenerate closed 2-form as discussed in Kriegl and Michor (1997,
Theorem 48.8).

Finally, we briefly add some comments further illustrating the notion of conserved
densities and local conservation laws: Consider sequences

{α(n, t), β(n, t)}n∈Z ∈ �1(Z)

(satisfying some additional assumptions as in Section 3.8), parametrized by the de-
formation (time) parameter t ∈ R, that are solutions of the Ablowitz–Ladik equations(−iαt − (1− αβ)(α− + α+)+ 2α

−iβt + (1− αβ)(β− + β+)− 2β

)
= 0.

Then clearly

∂t

∑
n∈Z

α+(n, t)β(n, t) = ∂t

∑
n∈Z

α(n, t)β+(n, t) = 0.

Additional calculations also show that

∂t

∑
n∈Z

(
1
2 (α
+(n, t)β(n, t))2 − γ (n, t)α+(n, t)β−(n, t)

)
= 0,

∂t

∑
n∈Z

(
1
2 (α(n, t)β+(n, t))2 − γ+(n, t)α(n, t)β++(n, t)

)
= 0.

Indeed, as we proved in Section 3.8, there exists an infinite sequence {ρ j,±} j∈N of
polynomials of α, β and certain shifts thereof, with the property that the lattice sum
is time-independent,

∂t

∑
n∈Z

ρ j,±(n, t) = 0, j ∈ N.

This result is obtained by deriving local conservation laws of the type

∂tρ j,± + (S+ − I )J j,± = 0, j ∈ N,

for certain polynomials J j,± of α, β and certain shifts thereof. The polynomials J j,±
have been constructed in Section 3.8 via an explicit recursion relation.

The above analysis extends to the full Ablowitz–Ladik hierarchy as follows: Given
p = (p−, p+) ∈ N2

0 and the pth AL equation ALp(α, β) = 0, the associated con-
served densities ρ j,± are independent of the equation in the hierarchy while the cur-
rents Jp, j,± depend on p and one finds (cf. Theorem 3.56)

∂tpρ j,± + (S+ − I )Jp, j,± = 0, j ∈ N, p ∈ N2
0.
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For α, β ∈ �1(Z) it then follows that

d

dtp

∑
n∈Z

ρ j,±(n, tp) = 0, tp ∈ R, j ∈ N, p ∈ N2
0.

By showing that ρ j,± equals ĝ j,± up to a first-order difference expression (cf. Lemma
3.49), and by investigating the time-dependence of γ = 1 − αβ, one concludes (cf.
Remark 3.57) that

d

dtp

∑
n∈Z

ln(γ (n, tp)) = 0,
d

dtp

∑
n∈Z

ĝ j,±(n, tp) = 0, tp ∈ R, j ∈ N, p ∈ N2
0,

represent the two infinite sequences of AL conservation laws.
We emphasize that our recursive and systematic approach to local conservation

laws of the Ablowitz–Ladik hierarchy appears to be new. Moreover, our treatment of
Poisson brackets and variational derivatives, and their connections with the diagonal
Green’s function of the underlying Lax operator, now puts the AL hierarchy on pre-
cisely the same level as the Toda and KdV hierarchy with respect to these particular
aspects of the Hamiltonian formalism (cf. Gesztesy and Holden (2003b, Ch. 1)).



Appendix A

Algebraic Curves and Their Theta Functions
in a Nutshell

You know my methods. Apply them.
Sherlock Holmes1

This appendix treats some of the basic aspects of complex algebraic curves and their
theta functions as used at various places in this monograph. The material below is
standard, and we include it for two major reasons: On the one hand it allows us to
summarize a variety of facts and explicit formulas needed in connection with the
construction of algebro-geometric solutions of completely integrable equations, and,
on the other hand, it will simultaneously enable us to introduce a large part of the
notation used throughout this volume. We emphasize that the summary presented
in this appendix is not intended as a substitute for textbook consultations. Relevant
literature in this context is mentioned in the notes to this appendix.

Definition A.1 An affine plane (complex) algebraic curve K is the locus of zeros in
C2 of a (nonconstant) polynomial F in two variables. The polynomial F is called
nonsingular at a root (z0, y0) if

∇F(z0, y0) = (Fz(z0, y0),Fy(z0, y0)) �= 0.

The affine plane curve K of roots of F is called nonsingular at P0 = (z0, y0) if F is
nonsingular at P0. The curve K is called nonsingular, or smooth, if it is nonsingular
at each of its points (otherwise, it is called singular).

The implicit function theorem allows one to conclude that a smooth affine curve K
is locally a graph and to introduce complex charts on K as follows. If F(P0) = 0 with
Fy(P0) �= 0, there is a holomorphic function gP0 such that in a neighborhood UP0 of
P0, the curve K is characterized by the graph y = gP0(z). Hence the projection

π̃z : UP0 → π̃z(UP0) ⊂ C, (z, y) �→ z, (A.1)

1 In Sir Arthur Conan Doyle, The Hound of the Baskervilles, The Strand Magazine, vol. XXII, 1901,
p. 4.
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yields a complex chart on K. If, on the other hand, F(P0) = 0 with Fz(P0) �= 0,
then the projection

π̃y : UP0 → π̃y(UP0) ⊂ C, (z, y) �→ y, (A.2)

defines a chart on K. In this way, as long as K is nonsingular, one arrives at a com-
plex atlas on K. The space K ⊂ C2 is second countable and Hausdorff. In order to
obtain a Riemann surface one needs connectedness of K which is implied by adding
the assumption of irreducibility1 of the polynomial F . Thus, K equipped with charts
(A.1) and (A.2) is a Riemann surface if F is nonsingular and irreducible. Affine
plane curves K are unbounded as subsets of C2, and hence noncompact. The com-
pactification of K is conveniently described in terms of the projective plane CP2, the
set of all one-dimensional (complex) subspaces of C3.

To simplify notations, we temporarily abbreviate x1 = y and x2 = z. Moreover,
we denote the linear span of (x2, x1, x0) ∈ C3 \ {0} by [x2 : x1 : x0]. Since the
homogeneous coordinates [x2 : x1 : x0] satisfy

[x2 : x1 : x0] = [cx2 : cx1 : cx0], c ∈ C \ {0},
the space CP2 can be viewed as the quotient space of C3 \ {0} by the multiplicative
action of C \ {0}, that is, CP2 = (C3 \ {0})/(C \ {0}), and hence CP2 inherits a
Hausdorff topology which is the quotient topology induced by the natural map

ι : C3 \ {0} → CP2, (x2, x1, x0) �→ [x2 : x1 : x0].
Next, define the open sets

U m = { [x2 : x1 : x0] ∈ CP2 | xm �= 0}, m = 0, 1, 2.

Then

f 0 : U 0 → C2, [x2 : x1 : x0] �→ (x2/x0, x1/x0)

with inverse

( f 0)−1 : C2 → U 0, (x2, x1) �→ [x2 : x1 : 1],
and analogously for functions f 1 and f 2 (relative to sets U 1 and U 2, respectively),
are homeomorphisms. In particular, U 0, U 1, and U 2 together cover CP2. Thus, CP2

is compact since it is covered by the closed unit (poly)disks in U 0, U 1, and U 2. The
element [x2 : x1 : 0] ∈ CP2 represents the point at infinity along the direction x2 : x1

in C2 (identifying [x2 : x1 : 0] ∈ CP2 and [x2 : x1] ∈ CP1). The set of all such
elements then represents the line at infinity, L∞ = {[x2 : x1 : x0] ∈ CP2 | x0 = 0},
1 The polynomial F in two variables is called irreducible if it cannot be factored into F = F1F2 with
F1 and F2 both nonconstant polynomials in two variables.
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and yields the compactification CP2 of C2. In other words, CP2 ∼= C2∪ L∞, CP1 ∼=
C∞, and L∞ ∼= CP1.

Let P be a (nonconstant) homogeneous polynomial of degree d in (x2, x1, x0),
that is,

P(cx2, cx1, cx0) = cdP(x2, x1, x0),

and introduce

K = {[x2 : x1 : x0] ∈ CP2 | P(x2, x1, x0) = 0}.
The set K is well-defined (even though P(u, v, w) is not for [u : v : w] ∈ CP2) and
closed in CP2. The intersections,

Km = K ∩U m, m = 0, 1, 2,

are affine plane curves when transported to C2. In particular,

K0 ∼= {(x2, x1) ∈ C2 | P(x2, x1, 1) = 0}
represents the affine curve K defined by F(z, y) = 0, where F(x2, x1) =
P(x2, x1, 1), that is, K0 represents the affine part of K. (F has degree d provided
x0 is not a factor of P , i.e., provided K does not contain the projective line L∞.)

Conversely, given the affine curve K defined by

F(x2, x1) =
d∑

r,s=0
r+s≤d

ar,s zr ys = 0,

with F of degree d, the associated homogeneous polynomial P of degree d can be
obtained from

P(x2, x1, x0) = xd
0F(x2/x0, x1/x0).

The affine curve K is then the intersection of the projective curve K defined by
P(x2, x1, x0) = 0 with U 0, that is, K ∼= K ∩ U 0 = K0. The intersection of K with
L∞, the line at infinity, then consists of the finite set of points

K \K =
{
[x2 : x1 : 0] ∈ CP2

∣∣∣∣ d∑
r=0

ar,d−r zr yd−r = 0

}
.

Definition A.2 A projective plane (complex) algebraic curve K is the locus of zeros
in CP2 of a homogeneous polynomial P in three variables. A homogeneous (noncon-
stant) polynomial P in three variables is called nonsingular if there are no common
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solutions (x2,0, x1,0, x0,0) ∈ C3 \ {0} of

P(x2,0, x1,0, x0,0) = 0,

∇P(x2,0, x1,0, x0,0) = (Px2,Px1 ,Px0)(x2,0, x1,0, x0,0) = 0.

The set K is called a smooth (or nonsingular) projective plane curve (of degree
d ∈ N) if P is nonsingular (and of degree d ∈ N).

If x0,0 �= 0, then [x2,0 : x1,0 : x0,0] ∈ CP2 is a nonsingular point of the projective
curve K (defined by P(x2, x1, x0) = 0) if and only if (x2,0/x0,0, x1,0/x0,0) ∈ C2 is
a nonsingular point of the affine curve K (defined by P(x2, x1, 1) = 0).

One verifies that the homogeneous polynomial P is nonsingular if and only if each
Km is a smooth affine plane curve in C2. Moreover, any nonsingular homogeneous
polynomial P is irreducible and consequently each Km is a Riemann surface for
m = 0, 1, 2. The coordinate charts on each Km are simply the projections, that is,
x2/x0 and x1/x0 for K0, x2/x1 and x0/x1 for K1, and finally, x1/x2 and x0/x2 for
K2. These separate complex structures on Km are compatible on K and hence induce
a complex structure on K.

The zero locus of a nonsingular homogeneous polynomial P(x2, x1, x0) in CP2

defines a smooth projective plane curve K which is a compact Riemann surface.
Topologically, this Riemann surface is a sphere with g handles where

g = (d − 1)(d − 2)/2, (A.3)

with d the degree of P . In particular, K has topological genus g and we indicate
this by writing Kg . However, for notational convenience we shall use the symbol
Kg instead (i.e., Kg always denotes the corresponding compact Riemann surface).
In general, the projective curve Kg can be singular even though the associated affine
curve K0

g is nonsingular. In this case one has to account for the singularities at infinity
and properly amend the genus formula (A.3) according to results of Clebsch, M.
Noether, and Plücker.

Next, let Kg be a smooth projective curve not containing the point [0, 1, 0] asso-
ciated with the homogeneous polynomial P of degree d. Then

P(z, y, 1) = 0

defines y as a multi-valued function of z such that away from ramification points
there correspond precisely d values of y to each value of z ∈ C. The set of finite
ramification points of Kg is given by

{ [z : y : 1] ∈ CP2 | P(z, y, 1) = Py(z, y, 1) = 0}. (A.4)

Similarly, ramification points at infinity are defined by

{ [1 : y : 0] ∈ CP2 | P(1, y, 0) = Py(1, y, 0) = 0}. (A.5)
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The set of ramification points of Kg is then the union of points in (A.4) and (A.5).
Given the set of ramification points {P1, . . . , Pr } one can cut the complex plane
along smooth nonintersecting arcs Cq (e.g., straight lines if P1, . . . , Pr are suitably
situated) connecting Pq and Pq+1 for q = 1, . . . , r − 1, and define holomorphic
functions f1, . . . , fd on the cut plane � = C \⋃r−1

q=1 Cq such that

P(z, y, 1) = 0 for y ∈ � if and only if y = f j (z) for some j ∈ {1, . . . , d}.

This yields a topological construction of Kg by appropriately gluing together d
copies of the cut plane �, the result being a sphere with g handles (g depending
on the order of the ramification points). If Kg is singular, this procedure requires
appropriate modifications.

There is an alternative description of Kg as a (branched) covering surface of the
Riemann sphere K0 = C∞, which naturally leads to the notion of branch points.
To begin with, we briefly consider the case of a general (not necessarily compact)
Riemann surface. Starting from a (real) two-dimensional connected C0-manifold1

(M,A = (Uα, zα)α∈I ) and a nonconstant map F :M→ C∞ such that

F ◦ z−1
α : zα(Uα)→ C∞ is nonconstant and holomorphic for all α ∈ I , (A.6)

one defines a maximal atlas A(F) compatible with (A.6). The Riemann surface
RF = (M,A(F)) is then a covering surface2 of C∞ and branch points on RF

are identified with those of F . More precisely, if z = F(P) has a k-fold z0-point3 at
P = P0, P0 ∈ RF for some k ∈ N, then P0 is called unbranched (unramified) for
k = 1 and has a branch point (respectively ramification point)4 of order k − 1 (re-
spectively k) for k ≥ 2. The set of branch points of RF will be denoted by B(RF ).
Depending on the branching behavior of P ∈ RF , one then introduces the following
system of charts on RF .

1 (M, τ ) is a (real) two-dimensional connected C0-manifold if (M, τ ) is a second countable connected
Hausdorff topological space with topology τ , M =⋃α∈I Uα , Uα ∈ τ , zα : Uα → C are homeomor-
phisms, zα(Uα) is open in C, α ∈ I (an index set), and A is a maximal C0-atlas on M.

2 In this monograph we only deal with covering surfaces of the Riemann sphere K0 = C∞. The study
of special elliptic algebro-geometric solutions of integrable hierarchies, however, is most naturally
connected with covers of the torus K1.

3 F has a k-fold z0-point at P = P0, if for some chart (UP0 , ζP0 ) on RF at P0 with ζP0 (P0) = 0 and

some chart (VP0 , wP0 ) on C∞ at z0 = F(P0) with wP0 (F(P0)) = 0, (wP0 ◦ F ◦ ζ−1
P0

)(ζ ) = ζ k for

all ζ ∈ ζP0 (UP0 ). This includes, of course, the possibility that z0 = ∞.
4 This definition of branch points is not universally adopted. Many monographs distinguish ramification

and branch points in the sense that a branch point is the image of a ramification point under the covering
map. In this monograph we found it convenient to follow the convention used in Farkas and Kra (1992,
Sect. I.2).
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(i) F(P0) = z0 ∈ C : One defines for appropriate C0 > 0

UP0 = {P ∈ RF | |z − z0| < C0}, VP0 = {ζ ∈ C | |ζ | < C1/k
0 },

ζP0 : UP0 → VP0 , P �→ (z − z0)
1/k,

ζ−1
P0
: VP0 → UP0, ζ �→ z0 + ζ k .

(ii) F(P0) = z0 = ∞ : One defines for appropriate C∞ > 0

UP0 = {P ∈ RF | |z| > C∞}, VP0 = {ζ ∈ C | |ζ | < C−1/k∞ },
ζP0 : UP0 → VP0 , P �→ z−1/k,

ζ−1
P0
: VP0 → UP0, ζ �→ ζ−k .

Next, consider an open nonempty and connected subset S of RF over C∞ such
that F is univalent in S, that is, F is analytic in S and takes distinct values at distinct
points of S (thus, F maps S onto a subset F(S) of C∞ in a one-to-one fashion). If
S is maximal with respect to this property (i.e., S cannot be extended to S̃ � S with
F univalent on S̃), S is called a sheet of RF . In this manner RF can be pictured as
consisting of finitely many or countably infinitely many sheets over C∞ which are
connected along branch cuts in such a way that RF can be covered locally by disks
(if k = 1 for the center of such disks) and by k-fold disks (if the center of the disk is
a branch point of order k−1, k ≥ 2). The choice of branch cuts is largely arbitrary as
long as they connect branch points and are non-self-intersecting. In the special case
of compact Riemann surfaces the total number of sheets, branch cuts, and branch
points is finite.

An important aspect is the possibility of analytic continuation of a given (circular)
function element in C∞ (i.e., a convergent power series expansion in some disk)
along all possible continuous paths on a (covering) Riemann surface RF in such a
way that the resulting function f has algebroidal1 behavior at any point of RF . More
precisely, RF and a function f : RF → C∞ are said to correspond to each other if
f is meromorphic on RF , two function elements of f associated with two different
points on RF over the same point z ∈ C∞ are distinct, and RF is maximal in the
sense that there is no R̃F � RF such that these properties hold with RF replaced
by R̃F . The basic fact concerning analytic functions and corresponding covering
Riemann surfaces is then the following: To every function element ϕ in C∞ there
exists a covering Riemann surface RF , such that RF and the analytic function f ,
obtained by analytic continuation of ϕ along any possible continuous path on RF ,
correspond to each other.

1 f has algebroidal behavior at P ∈ RF if f (P) = ∑∞n=−p cn(z − z0)
n/k for z0 ∈ C and f (P) =∑∞

n=−q dn z−n/k for z0 = ∞.
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Finally we briefly consider the special case of compact Riemann surfaces, the case
at hand in this monograph. We recall that w = f (z) is called algebraic if there exists
an irreducible polynomial P in two variables such that P(z, w) = 0 for all z ∈
C. The fundamental connection between compact Riemann surfaces and algebraic
functions then reads as follows: f corresponds to a compact Riemann surface if and
only if f is algebraic.

Next, we consider the notion of the meromorphic function field M(RF ) of RF ,
which by definition consists of all analytic maps f : RF → C∞. If RF corresponds
to an algebraic function in the sense described above, then g : RF → C∞ belongs
to M(RF ), that is, g ∈M(RF ), if and only if g(z) is a rational function in the two
variables z and f (z). In addition, if N ∈ N denotes the number of sheets of RF ,
1, f, f 2, . . . , f N−1 forms a basis in M(RF ) and g can be uniquely represented as

g(z) = r0(z)+ r1(z) f (z)+ · · · + rN−1(z) f (z)N−1,

with r j , j = 0, . . . , N − 1 rational functions. Moreover, if f1, f2 ∈M(RF ), then
Q( f1(z), f2(z)) = 0 for all z ∈ C for some irreducible polynomial Q in two vari-
ables.

We also mention an alternative to (A.3) for computing the topological genus of RF

covering C∞. Denote by N the number of sheets of RF , by B the total branching
number of RF ,

B =
∑

P∈RF

(k(P)− 1) =
∑

P∈B(RF )

(k(P)− 1),

where k(P)− 1 denotes the branching order of P ∈ RF (of course k(P) = 1 for all
but finitely many P ∈ RF ), and by B(RF ) the set of branch points of RF . Then the
topological genus g of RF is given by the Riemann–Hurwitz formula

g = 1− N + (B/2).

Since hyperelliptic Riemann surfaces are of particular importance to the main
body of this monograph, we end this informal introduction with a precise definition
of this special case.

Definition A.3 A compact Riemann surface is called hyperelliptic if it admits a
meromorphic function of degree two (i.e., a nonconstant meromorphic function with
precisely two poles counting multiplicity).

We will describe hyperelliptic Riemann surfaces Kg of genus g ∈ N as two-
sheeted coverings of the Riemann sphere C∞ branched at 2g+2 points in great detail
in Appendix B. The meromorphic function of degree two alluded to in Definition A.3
is then given by the projection π̃ as defined in (B.24). Here we just add one more



Algebraic Curves and Their Theta Functions in a Nutshell 331

brief comment on hyperelliptic curves, the principal object in the main body of this
text. The projective curve

x2
1 xk−2

0 =
k∏

�=1

(x2 − e�x0), k ∈ N, (A.7)

in CP2 of degree k, with e1, . . . , ek distinct complex numbers, is called elliptic if
k = 3, 4 and hyperelliptic if k ≥ 5. However, to simplify matters, all curves in (A.7)
are usually called hyperelliptic and this convention is adopted in Definition A.3. The
projective curve (A.7) is smooth (nonsingular) if and only if 1 ≤ k ≤ 3; if k ≥ 4 it
has the unique singular point [0, 1, 0].

For most of the remainder of Appendix A we suppose that Kg is a compact Rie-
mann surface of genus g ∈ N and choose a homology basis {a j , b j }gj=1 on Kg in
such a way that the intersection matrix of the cycles satisfies

a j ◦ bk = δ j,k, a j ◦ ak = 0, b j ◦ bk = 0, j, k = 1, . . . , g (A.8)

(with a j and bk intersecting to form a right-handed coordinate system, cf. Figures
A.1, A.2). In particular, the first homology group of Kg with integer coefficients,
H1(Kg,Z), is the free abelian group on the generators [a j ], [b j ], j = 1, . . . , g,
where [c] denotes the homology class of the cycle c.

b

a 1

1

b

b

a

a1

1

2

2

Fig. A.1. Genus g = 1. Fig. A.2. Genus g = 2. (a j ◦ bk = δ jk )

Unless explicitly stated otherwise, it will be assumed that g ≥ 1 for the remainder
of this appendix.

Turning briefly to meromorphic differentials (1-forms) on Kg , we state the follow-
ing result.

Theorem A.4 (Riemann’s period relations) Suppose ω and ν are closed C1 mero-
morphic differentials (1-forms) on Kg. Then,
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(i) ∫∫
Kg

ω ∧ ν =
g∑

j=1

((∫
a j

ω

)(∫
b j

ν

)
−
(∫

b j

ω

)(∫
a j

ν

))
. (A.9)

If, in addition ω and ν are holomorphic 1-forms on Kg, then

g∑
j=1

((∫
a j

ω

)(∫
b j

ν

)
−
(∫

b j

ω

)(∫
a j

ν

))
= 0. (A.10)

(i i) If ω is a nonzero holomorphic 1-form on Kg, then

Im

( g∑
j=1

(∫
a j

ω

)(∫
b j

ω

))
> 0. (A.11)

Fig. A.3. Canonical dissection, genus g = 1 (∂K̂1 = a1b1a−1
1 b−1

1 ).

The proof of Theorem A.4 is usually based on Stokes’ theorem and a canonical
dissection of (cf. Figure A.3) Kg along its cycles yielding the simply connected in-
terior K̂g of the fundamental polygon ∂K̂g given by

∂K̂g = a1b1a−1
1 b−1

1 a2b2a−1
2 b−1

2 . . . a−1
g b−1

g . (A.12)

Given the cycles {a j , b j }gj=1, we denote by {ω j }gj=1 the corresponding normalized
basis of the space of holomorphic differentials (also called abelian differentials of the
first kind) on Kg , that is, ∫

ak

ω j = δ j,k, j, k = 1, . . . , g. (A.13)
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The b-periods of ω j are then defined by

τ j,k =
∫

bk

ω j , j, k = 1, . . . , g. (A.14)

Theorem A.4 then implies the following result.

Theorem A.5 The g × g matrix τ = (τ j,k) j,k=1,...,g is symmetric, that is,

τ j,k = τk, j , j, k = 1, . . . , g,

with a positive definite imaginary part,

Im(τ ) = 1

2i
(τ − τ ∗) > 0. (A.15)

Next we briefly study some consequences of a change of homology basis. Let

{a1, . . . , ag, b1, . . . , bg} (A.16)

be a canonical homology basis on Kg with intersection matrix satisfying (A.8) and

{a′1, . . . , a′g, b′1, . . . , b′g} (A.17)

a homology basis on Kg related to each other by(
a′�

b′�

)
= X

(
a�
b�
)
,

where

a� = (a1, . . . , ag)
�, b� = (b1, . . . , bg)

�,

a′� = (a′1, . . . , a′g)�, b′� = (b′1, . . . , b′g)�,

X =
(

A B
C D

)
,

with A, B,C , and D being g × g matrices with integer entries. Then (A.17) is also
a canonical homology basis on Kg with intersection matrix satisfying (A.8) if and
only if

X ∈ Sp(g,Z),

where

Sp(g,Z) =
{

X =
(

A B
C D

) ∣∣∣∣ X

(
0 Ig

−Ig 0

)
X� =

(
0 Ig

−Ig 0

)
, det(X) = 1

}
denotes the symplectic modular group of genus g ∈ N (here A, B,C, D in X are
again g×g matrices with integer entries). If {ω j }gj=1 and {ω′j }gj=1 are the normalized
bases of holomorphic differentials corresponding to the canonical homology bases
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(A.16) and (A.17), with τ and τ ′ the associated b and b′-periods of ω1, . . . , ωg and
ω′1, . . . , ω′g , respectively, one computes

ω′ = ω(A + Bτ)−1, τ ′ = (C + Dτ)(A + Bτ)−1, (A.18)

where ω = (ω1, . . . , ωg), ω′ = (ω′1, . . . , ω′g).
Abelian differentials of the second kind, ω(2), are characterized by the property

that all their residues vanish. They will usually be normalized by the vanishing of all
their a-periods (this is achieved by adding a suitable linear combination of differen-
tials of the first kind) ∫

a j

ω(2) = 0, j = 1, . . . , g.

We may add in this context that the sum of the residues of any meromorphic
differential ν on Kg vanishes, the residue at a pole Q0 ∈ Kg of ν being defined
by

resQ0(ν) =
1

2π i

∫
γQ0

ν,

where γQ0 is a smooth, counterclockwise oriented, simple, closed contour, encircling
Q0, but no other pole of ν.

Theorem A.6 Assume ω
(2)
Q1,n

to be a differential of the second kind on Kg, whose

only pole is Q1 ∈ K̂g with principal part ζ−n−2
Q1

dζQ1 for some n ∈ N0 and ω(1) a
differential of the first kind on Kg of the type

ω(1) =
( ∞∑

m=0

cm(Q1)ζ
m
Q1

)
dζQ1

near Q1. Then,

1

2π i

g∑
j=1

((∫
a j

ω(1)
)(∫

b j

ω
(2)
Q1,n

)
−
(∫

a j

ω
(2)
Q1,n

)(∫
b j

ω(1)
))
= cn(Q1)

n + 1
,

n ∈ N0.

In particular, if ω(2)
Q1,n

is normalized and

ω(1) = ω j =
( ∞∑

m=0

c j,m(Q1)ζ
m
Q1

)
dζQ1 ,
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then the vector of b-periods of ω(2)
Q1,n

/(2π i), denoted by U (2)
n , reads

U (2)
n =

(
U (2)

n,1, . . . ,U (2)
n,g

)
, U (2)

n, j =
1

2π i

∫
b j

ω
(2)
Q1,n
= c j,n(Q1)

n + 1
, (A.19)

n ∈ N0, j = 1, . . . , g.

Any meromorphic differential ω(3) on Kg not of the first or second kind is said to be
of the third kind. It is common to normalize ω(3) by the vanishing of its a-periods,
that is, by ∫

a j

ω(3) = 0, j = 1, . . . , g. (A.20)

A normal differential of the third kind, denoted ω(3)
Q1,Q2

, associated with two distinct

points Q1, Q2 ∈ K̂g , by definition, is holomorphic on Kg \ {Q1, Q2} and has simple
poles at Q� with residues (−1)�+1, � = 1, 2, and vanishing a-periods.

Theorem A.7 Suppose ω(3) to be a differential of the third kind on Kg whose only
singularities are simple poles at Qn ∈ K̂g with residues cn, n = 1, . . . , N. Denote
by ω(1) a differential of the first kind on Kg. Then

1

2π i

g∑
j=1

((∫
a j

ω(1)
)(∫

b j

ω(3)
)
−
(∫

b j

ω(1)
)(∫

a j

ω(3)
))

=
N∑

n=1

cn

∫ Qn

Q0

ω(1), (A.21)

where Q0 ∈ K̂g is any fixed base point. In particular, if ω(3) is normalized and
ω(1) = ω j , then,

1

2π i

∫
b j

ω(3) =
N∑

n=1

cn

∫ Qn

Q0

ω j , j = 1, . . . , g. (A.22)

Moreover, if ω(3)
Q1,Q2

is a normal differential of the third kind on Kg holomorphic on
Kg \ {Q1, Q2}, then

1

2π i

∫
b j

ω
(3)
Q1,Q2

=
∫ Q1

Q2

ω j , j = 1, . . . , g. (A.23)

Theorem A.8 Let P, Q ∈ K̂g, P �= Q, and ω
(3)
P,Q a normal differential of the third

kind on Kg holomorphic on Kg \ {P, Q}. Pick a base point Q0 ∈ ∂K̂g and connect
P and Q0 and Q and Q0 with two smooth paths γP,Q0 ∈ K̂g and γQ,Q0 ∈ K̂g,

respectively. Define ̂̂Kg = K̂g \{γP,Q0∪γQ,Q0} and pick R, S ∈ ̂̂Kg, R �= S. Finally,
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let ω(3)
R,S be a normal differential of the third kind on Kg holomorphic on Kg \ {R, S}

and connect R and Q0 and S and Q0 with two smooth paths γR,Q0 ∈ ̂̂Kg and

γS,Q0 ∈ ̂̂Kg, respectively. The paths γP,Q0 , γQ,Q0 , γR,Q0 , and γS,Q0 are assumed to
be mutually nonintersecting. Then,∫ R

S
ω
(3)
P,Q =

∫ P

Q
ω
(3)
R,S,

where the paths from S to R and from Q to P lie in the simply connected region
K̂g \ {γP,Q0 ∪ γQ,Q0 ∪ γR,Q0 ∪ γS,Q0}.

We shall always assume (without loss of generality) that all poles of differentials
of the second and third kind on Kg lie on K̂g (i.e., not on ∂K̂g). This can always
be achieved by an appropriate choice of the cycles a j and b j . Moreover, we assume
that all integration paths on the right-hand sides of (A.21)–(A.23) stay away from the
cycles a j and bk .

Next, we turn to divisors on Kg and the Jacobi variety J (Kg) of Kg . Let M(Kg)

and M1(Kg) denote the set of meromorphic functions (0-forms) and meromorphic
1-forms on Kg , respectively, for some g ∈ N0.

Definition A.9 Let g ∈ N0. Suppose f ∈ M(Kg), ω = h(ζQ0)dζQ0 ∈ M1(Kg),
and (UQ0 , ζQ0) is a chart near some point Q0 ∈ Kg.
(i) If ( f ◦ ζ−1

Q0
)(ζ ) = ∑∞n=m0

cn(Q0)ζ
n for some m0 ∈ Z (which turns out to be

independent of the chosen chart), the order ν f (Q0) of f at Q0 is defined by

ν f (Q0) = m0.

One defines ν f (P) = ∞ for all P ∈ Kg if f is identically zero on Kg.
(ii) If hQ0(ζQ0) =

∑∞
n=m0

dn(Q0)ζ
n
Q0

for some m0 ∈ Z (which again is independent
of the chart chosen), the order νω(Q0) of ω at Q0 is defined by

νω(Q0) = m0.

Next, we turn to divisors and introduce some structure on the set of all divisors.

Definition A.10 Let g ∈ N0.
(i) A divisor D on Kg is a map D : Kg → Z, where D(P) �= 0 for only finitely
many P ∈ Kg. On the set of all divisors Div(Kg) on Kg one introduces the partial
ordering

D ≥ E if D(P) ≥ E(P), P ∈ Kg.

(ii) The degree deg(D) of D ∈ Div(Kg) is defined by

deg(D) =
∑

P∈Kg

D(P).
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(iii) D ∈ Div(Kg) is called nonnegative (or effective) if

D ≥ 0,

where 0 denotes the zero divisor 0(P) = 0 for all P ∈ Kg.
(iv) Let D, E ∈ Div(Kg). Then D is called a multiple of E if

D ≥ E .

D and E are called relatively prime if

D(P)E(P) = 0, P ∈ Kg.

(v) If f ∈M(Kg) \ {0} and ω ∈M1(Kg) \ {0}, then the divisor ( f ) of f is defined
by

( f ) : Kg → Z, P �→ ν f (P)

(thus, f is holomorphic if and only if ( f ) ≥ 0), and the divisor of ω is defined by

(ω) : Kg → Z, P �→ νω(P)

(thus, ω is a differential of the first kind if and only if (ω) ≥ 0). The divisor ( f ) is
called a principal divisor, and (ω) a canonical divisor.
(vi) The divisors D, E ∈ Div(Kg) are called equivalent, written D ∼ E , if

D − E = ( f )

for some f ∈M(Kg) \ {0}. The divisor class [D] of D is defined by

[D] = {E ∈ Div(Kg) | E ∼ D}. (A.24)

Lemma A.11 Let g ∈ N0. Suppose f ∈M(Kg) and ω ∈M1(Kg). Then,

deg(( f )) = 0

and

deg((ω)) = 2(g − 1).

Clearly, Div(Kg) forms an abelian group with respect to addition of divisors.
The principal divisors form a subgroup DivP (Kg) of Div(Kg). The quotient group
Div(Kg)/DivP (Kg) consists of the cosets of divisors, the divisor classes defined
in (A.24). Also the set of divisors of degree zero, Div0(Kg), forms a subgroup
of Div(Kg). Since DivP (Kg) ⊂ Div0(Kg), one can introduce the quotient group
Pic(Kg) = Div0(Kg)/DivP (Kg), called the Picard group of Kg .

Definition A.12 Let g ∈ N0, and define

L(D) = { f ∈M(Kg) | f = 0 or ( f ) ≥ D},
L1(D) = {ω ∈M1(Kg) | ω = 0 or (ω) ≥ D}.
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Both L(D) and L1(D) are linear spaces over C. We denote their (complex) dimen-
sions by

r(D) = dimL(D), (A.25)

i(D) = dimL1(D). (A.26)

i(D) is also called the index of specialty of D. D is called special (resp., nonspecial)
if i(D) ≥ 1 (resp., i(D) = 0).

Lemma A.13 Let g ∈ N0 and D ∈ Div(Kg). Then deg(D), r(D), and i(D) only
depend on the divisor class [D] of D (and not on the particular representative D).
Moreover, for ω ∈M1(Kg) \ {0} one infers

i(D) = r(D − (ω)), D ∈ Div(Kg).

Theorem A.14 (Riemann–Roch) Let g ∈ N0 and D ∈ Div(Kg). Then r(−D) and
i(D) are finite and

r(−D) = deg(D)+ i(D)− g + 1.

In particular, Riemann’s inequality

r(−D) ≥ deg(D)− g + 1

holds.

Next we turn to Jacobi varieties and the Abel map.

Definition A.15 Define the period lattice Lg in Cg by

Lg = {z ∈ Cg | z = n + mτ, n,m ∈ Zg}. (A.27)

Then the Jacobi variety J (Kg) of Kg is defined by

J (Kg) = Cg/Lg, (A.28)

and the Abel maps are defined by

AQ0
: Kg → J (Kg), P �→ AQ0

(P) = (AQ0,1(P), . . . , AQ0,g(P)) (A.29)

=
(∫ P

Q0

ω1, . . . ,

∫ P

Q0

ωg

)
(mod Lg)

and

αQ0
: Div(Kg)→ J (Kg), D �→ αQ0

(D) =
∑

P∈Kg

D(P)AQ0
(P), (A.30)
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where Q0 ∈ Kg is a fixed base point and (for convenience only) the same path is
chosen from Q0 to P for all j = 1, . . . , g in (A.29) and (A.30).1

Clearly, AQ0
is well-defined since changing the path from Q0 to P amounts to

adding a closed cycle whose contribution in the integral (A.29) consists of adding
a vector in Lg . Moreover, αQ0

is a group homomorphism and J (Kg) is a complex
torus of (complex) dimension g that depends on the choice of the homology basis
{a j , b j }gj=1. However, different homology bases yield isomorphic Jacobians.

Theorem A.16 (Abel’s theorem) A divisor D ∈ Div(Kg) is principal if and only if

deg(D) = 0 and αQ0
(D) = 0. (A.31)

We note that the apparent base point dependence of the Abel map on Q0 in (A.31)
disappears if deg(D) = 0.

Remark A.17 The preceding results, starting with Definition A.10, are of consider-
able relevance in connection with the linearizing property of the Abel map of aux-
iliary divisors (see, e.g., (1.125), (1.259), (3.138), (3.139), (3.257), and (3.258)) in
the following sense: The Abel map is injective on the set of nonnegative nonspecial
divisors of degree g. To illustrate this fact we denote by D a nonnegative divisor of
degree g and by |D| the set of nonnegative divisors linearly equivalent to D. By the
Riemann–Roch theorem, Theorem A.14,

r(−D)− 1 = i(D). (A.32)

By Abel’s theorem, Theorem A.16,

α−1
Q0
(αQ0

(D)) = |D|,
with α−1

Q0
( · ) denoting the inverse image of αQ0

. If D is nonspecial, that is, if
i(D) = 0, (A.32) yields |D| = D and hence the asserted injectivity property since
dim(α−1

Q0
(αQ0

(D))) = r(−D)− 1.

Next, we turn to Riemann theta functions and a constructive approach to the Jacobi
inversion problem. We assume g ∈ N for the remainder of this appendix.

Given the Riemann surface Kg , the homology basis {a j , b j }gj=1, and the matrix τ

of b-periods of the differentials of the first kind, {ω j }gj=1 (cf. (A.14)), the Riemann
theta function associated with Kg and the homology basis is defined as

θ(z) =
∑

n∈Zg

exp
(
2π i(n, z)+ π i(n, nτ)

)
, z ∈ Cg, (A.33)

1 This convention allows one to avoid the multiplicative version of the Riemann–Roch theorem at various
places in this monograph.
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where (u, v) = u v� = ∑g
j=1 u j v j denotes the scalar product in Cg . Because

of (A.15), θ is well-defined and represents an entire function on Cg . Elementary
properties of θ are, for instance,

θ(z1, . . . , z j−1,−z j , z j+1, . . . , zn) = θ(z), z = (z1, . . . , zg) ∈ Cg, (A.34)

θ(z + m + nτ) = θ(z) exp
(− 2π i(n, z)− π i(n, nτ)

)
, m, n ∈ Zg, z ∈ Cg.

(A.35)

Lemma A.18 Let ξ ∈ Cg and define

F̂ : K̂g → C, P �→ θ(ξ − ÂQ0
(P)), (A.36)

where

ÂQ0
: K̂g → Cg, (A.37)

P �→ ÂQ0
(P) = ( ÂQ0,1(P), . . . , ÂQ0,g(P)

) = (∫ P

Q0

ω1, . . . ,

∫ P

Q0

ωg

)
.

Suppose F̂ is not identically zero on K̂g, that is, F̂ �≡ 0. Then F̂ has precisely g zeros
on K̂g counting multiplicities.

Lemma A.18 can be proven by integrating d ln(F̂) along ∂K̂g .
For subsequent use in Remark A.30 we also introduce

α̂Q0
: Div(K̂g)→ Cg, D �→ α̂Q0

(D) =
∑

P∈K̂g

D(P) ÂQ0
(P), (A.38)

in addition to ÂQ0
in (A.37).

Theorem A.19 Let ξ ∈ Cg and define F̂ as in (A.36). Assume that F̂ is not identi-

cally zero on K̂g, and let Q1, . . . , Qg ∈ Kg be the zeros of F̂ (multiplicities included)
given by Lemma A.18. Define the corresponding positive divisor DQ of degree g on
Kg by

DQ : Kg → N0, P �→ DQ(P) =
{

m if P occurs m times in {Q1, . . . , Qg},
0 if P /∈ {Q1, . . . , Qg},

Q = {Q1, . . . , Qg} ∈ Symg(Kg), (A.39)

and recall the Abel map αQ0
in (A.30). Then there exists a vector �Q0

∈ Cg, the
vector of Riemann constants, such that

αQ0
(DQ) = (ξ −�Q0

) (mod Lg). (A.40)
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The vector �Q0
= (�Q0,1, . . . , �Q0,g ) is given by

�Q0, j =
1

2
(1+ τ j, j )−

g∑
�=1
� �= j

∫
a�
ω�(P)

∫ P

Q0

ω j , j = 1, . . . , g. (A.41)

For the proof of Theorem A.19 one integrates ÂP0, j (P)d ln(F̂(P)) along ∂K̂g .
Clearly, �Q0

depends on the base point Q0 and on the choice of the homol-
ogy basis {a j , b j }gj=1. In the special hyperelliptic case where Kg is derived from

F(z, y) = y2 −∏2g
m=0(z − Em) = 0 and {Em}m=0,...,2g are 2g+ 1 distinct points in

C, equation (A.41) simplifies to

�P∞, j
= 1

2

(
j +

g∑
k=1

τ j,k

)
, j = 1, . . . , g,

where the base point Q0 has been chosen to be the unique point P∞ of Kg at infinity.

Remark A.20 Theorem A.19 yields a partial solution of Jacobi’s inversion problem
which can be stated as follows: Given ξ ∈ Cg , find a divisor DQ ∈ Div(Kg) such
that

αQ0
(DQ) = ξ (mod Lg).

Indeed, if F̃( · ) = θ(�Q0
− ÂQ0

( · )+ ξ) �≡ 0 on K̂g , the zeros Q1, . . . , Qg ∈ K̂g of
F̃ (guaranteed by Lemma A.18) satisfy Jacobi’s inversion problem by (A.40). Thus
it remains to specify conditions such that F̃ �≡ 0 on K̂g .

Theorem A.21 Let D ∈ Div(Kg) be of degree 2(g − 1), g ∈ N. Then D is a canon-
ical divisor (i.e., the divisor of a meromorphic differential on Kg) if and only if

αQ0
(D) = −2�Q0

.

Remark A.22 While θ is well-defined (in fact, entire) on Cg , it is not well-defined
on J (Kg) = Cg/Lg because of (A.35). Nevertheless, θ is a “multiplicative function”
on J (Kg) since the multipliers in (A.35) cannot vanish. In particular, if z1 = z2
(mod Lg), then θ(z1) = 0 if and only if θ(z2) = 0. Hence it is meaningful to
state that θ vanishes at points of J (Kg). Since the Abel map AQ0

maps Kg into
J (Kg), the function θ(ξ − AQ0

(P)) for ξ ∈ Cg , becomes a multiplicative function
on Kg . Again it makes sense to say that θ(ξ − AQ0

( · )) vanishes at points of Kg . In
particular, Lemma A.18 and Theorem A.19 extend to the case where F̂ is replaced
by F : Kg → C, P �→ θ(ξ − AQ0

(P)).
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In the following we use the obvious notation

X + Y = {(x + y) ∈ J (Kg) | x ∈ X, y ∈ Y },
−X = {−x ∈ J (Kg) | x ∈ X}, (A.42)

X + z = {(x + z) ∈ J (Kg) | x ∈ X},
for X,Y ⊂ J (Kg) and z ∈ J (Kg). Furthermore, we identify the mth symmetric
power of Kg , denoted Symm(Kg), with the set of nonnegative divisors of degree m ∈
N on Kg . For notational convenience, the restriction of the Abel map to Symm(Kg)

(i.e., its restriction to the set of nonnegative divisors of degree m) will be denoted by
the same symbol αQ0

. Moreover, we introduce the convenient notation

DQ0 Q = DQ0 +DQ, DQ = DQ1 + · · · +DQm ,

Q = {Q1, . . . , Qm} ∈ Symm(Kg), Q0 ∈ Kg, m ∈ N,
(A.43)

where for any Q ∈ Kg ,

DQ : Kg → N0, P �→ DQ(P) =
{

1 for P = Q,

0 for P ∈ Kg \ {Q}.
(A.44)

Definition A.23
(i) Define

W 0 = {0} ⊂ J (Kg), W n,Q0
= αQ0

(Symn(Kg)), n ∈ N.

(ii) Q ∈ Kg is called a Weierstrass point of Kg if i(gDQ) ≥ 1, where gDQ =∑g
j=1 DQ.

Remark A.24
(i) Since i(DP ) = 0 for all P ∈ K1, K1 has no Weierstrass points.
(ii) If g ≥ 2 and Kg is hyperelliptic, Kg has precisely 2g + 2 Weierstrass points.
In particular, if Kg is given as a double cover of the Riemann sphere C∞, then the
Weierstrass points of Kg are precisely its 2g + 2 branch points.
(iii) If g ≥ 3 and Kg is not hyperelliptic, then the number N of Weierstrass points of
Kg satisfies the inequality

2g + 2 ≤ N ≤ g3 − g.

(iv) Special divisors DQ with deg(Q) = N ≥ g and Q = {Q1, . . . , QN } ∈
SymN (Kg) are the critical points of the Abel map αQ0

: SymN (Kg) → J (Kg),
that is, the set of points D at which the rank of the differential dαQ0

is less than g.
(v) While Symm(Kg) �⊂ Symn(Kg) for m < n, one has W m,Q0

⊆ W n,Q0
for m < n.

Thus W n,Q0
= J (Kg) for n ≥ g by Theorem A.27 below.
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Theorem A.25 The set # = W g−1,Q0
+�Q0

⊂ J (Kg), the so-called theta divisor,
is the complete set of zeros of θ on J (Kg), that is,

θ(X) = 0 if and only if X ∈ # (A.45)

(i.e., if and only if X = (αQ0
(D) + �Q0

)
(mod Lg) for some D ∈ Symg−1(Kg)).

The theta divisor # has (complex) dimension g − 1 and is independent of the base
point Q0.

Theorem A.26 (Riemann’s vanishing theorem) Let ξ ∈ Cg.
(i) If θ(ξ) �= 0, then there exists a unique D ∈ Symg(Kg) such that

ξ = (αQ0
(D)+�Q0

)
(mod Lg) (A.46)

and

i(D) = 0.

(i i) If θ(ξ) = 0 and g = 1, then,

ξ = � (mod L1) = (1+ τ)/2 (mod L1), L1 = Z+ τZ, −iτ > 0.

(i i i) Assume θ(ξ) = 0 and g ≥ 2. Let s ∈ N with s ≤ g − 1 be the smallest integer
such that θ(W s,Q0

−W s,Q0
− ξ) �= 0 (i.e., there exist E,F ∈ Syms(Kg) with E �= F

such that θ(αQ0
(E)−αQ0

(F)− ξ) �= 0). Then there exists a D ∈ Symg−1(Kg) such
that

ξ = (αQ0
(D)+�Q0

)
(mod Lg) (A.47)

and

i(D) = s.

All partial derivatives of θ with respect to AQ0, j for j = 1, . . . , g of order strictly
less than s vanish at ξ , whereas at least one partial derivative of θ of order s is
nonzero at ξ . Moreover, s ≤ (g + 1)/2 and the integer s is the same for ξ and −ξ .

Note that there is no explicit reference to the base point Q0 in the formulation of
Theorem A.26 since the set W s,Q0

−W s,Q0
⊂ J (Kg) (cf. (A.42)) is independent of

the base point Q0, while W s,Q0
alone is obviously not.

Theorem A.27 (Jacobi’s inversion theorem) The Abel map restricted to the set of
nonnegative divisors, αQ0

: Symg(Kg) → J (Kg), is surjective. More precisely,

given ξ̃ = (ξ + �Q0
) ∈ Cg, the divisors D in (A.46) and (A.47) (respectively

D = DQ0 if g = 1) solve the Jacobi inversion problem for ξ ∈ Cg.
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A special case of this analysis can be summarized as follows. Consider the func-
tion

G( · ) = θ
(
�Q0
− AQ0

( · )+
g∑

j=1

AQ0
(Q j )

)
, Q j ∈ Kg, j = 1, . . . , g

on Kg . Then

G(Qk) = θ(�Q0
+

g∑
j=1
j �=k

AQ0
(Q j ))

= θ
(
�Q0
+ αQ0

(D(Q1,...,Qk−1,Qk+1,...,Qg))
) = 0, k = 1, . . . , g

by Theorem A.25. Moreover, by Lemma A.18, Remark A.22, and Theorem A.26, the
points Q1, . . . , Qg are the only zeros of G on Kg if and only if DQ is nonspecial,
that is, if and only if

i(DQ) = 0, Q = {Q1, . . . , Qg} ∈ Symg(Kg).

Conversely, G ≡ 0 on Kg if and only if DQ is special, that is, if and only if i(DQ) ≥
1. Thus, one obtains the following fact.

Theorem A.28 Let Q = {Q1, . . . , Qg} ∈ Symg(Kg) and assume DQ to be nonspe-
cial, that is, i(DQ) = 0. Then,

θ(�Q0
− AQ0

(P)+ αQ0
(DQ)) = 0 if and only if P ∈ {Q1, . . . , Qg}.

We also mention the elementary change in the Abel map and in Riemann’s vector
if one changes the base point,

AQ1
= (AQ0

− AQ0
(Q1)

)
(mod Lg), (A.48)

�Q1
= (�Q0

+ (g − 1)AQ0
(Q1)

)
(mod Lg), Q0, Q1 ∈ Kg. (A.49)

Remark A.29 The Lg quasi-periodic holomorphic function θ on Cg can be used to
construct Lg periodic, meromorphic functions f on Cg as follows. Either
(i)

f (z) =
N∏

j=1

θ(z + c j )

θ(z + d j )
, z, c j , d j ∈ Cg, j = 1, . . . , N ,

where

N∑
j=1

c j =
N∑

j=1

d j (mod Zg),
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or
(ii)

f (z) = ∂z j ln

(
θ(z + e)

θ(z + h)

)
, j = 1, . . . , g, z, e, h ∈ Cg,

or
(iii)

f (z) = ∂2
z j zk

ln θ(z), z ∈ Cg, j, k = 1, . . . , g.

Then indeed in all cases (i)–(iii),

f (z + m + nτ) = f (z), z ∈ Cg, m, n ∈ Zg

holds by (A.35).

Remark A.30 In the main text we frequently deal with theta function expressions
of the type

φ(P) = θ(�Q0
− AQ0

(P)+ αQ0
(D1))

θ(�Q0
− AQ0

(P)+ αQ0
(D2))

exp

(∫ P

Q0

ω
(3)
Q1,Q2

)
, P ∈ Kg (A.50)

and

ψ(P) = θ(�Q0
− AQ0

(P)+ αQ0
(D1))

θ(�Q0
− AQ0

(P)+ αQ0
(D2))

exp

(
− c
∫ P

Q0

�(2)
)
, P ∈ Kg, (A.51)

where D j ∈ Symg(Kg), j = 1, 2, are nonspecial positive divisors of degree g, c ∈ C
is a constant, Q j ∈ Kg \{Q0}, j = 1, 2, Q1 �= Q2, ω(3)

Q1,Q2
is a normal differential of

the third kind, and�(2) a normalized differential of the second kind with singularities
contained in {P1, . . . , PN } ⊂ Kg \ {Q0}, Pk �= P�, for k �= �, k, � = 1, . . . , N , for
some N ∈ N. In particular, one has∫

a j

ω
(3)
Q1,Q2

=
∫

a j

�(2) = 0, j = 1, . . . , g. (A.52)

Even though we agree always to choose identical paths of integration from Q0 to P in
all abelian integrals (A.50) and (A.51), this is not sufficient to render φ and ψ single-
valued on Kg . To achieve single-valuedness one needs to replace Kg by its simply
connected canonical dissection K̂g and then replace AQ0

, αQ0
in (A.50) and (A.51)

with ÂQ0
, α̂Q0

, as introduced in (A.37) and (A.38). In particular, one regards a j , b j

as curves (being a part of ∂K̂g , cf. (A.12)) and not as homology classes [a j ], [b j ]
in H1(Kg,Z). Similarly, one then replaces �Q0

by �̂Q0
(replacing AQ0

by ÂQ0
in

(A.41), etc.). Moreover, to render φ single-valued on K̂g one needs to assume in
addition that

α̂Q0
(D1)− α̂Q0

(D2) = 0 (A.53)
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(as opposed to merely αQ0
(D1)−αQ0

(D2) = 0 (mod Lg)). Similarly, in connection

with ψ , one introduces the vector of b-periods U (2) of �(2) by

U (2) = (U (2)
1 , . . . ,U (2)

g ), U (2)
j =

1

2π i

∫
b j

�(2), j = 1, . . . , g, (A.54)

and then renders ψ single-valued on K̂g by requiring

α̂Q0
(D1)− α̂Q0

(D2) = c U (2) (A.55)

(as opposed to merely αQ0
(D1) − αQ0

(D2) = c U (2) (mod Lg)). These statements
easily follow from (A.23) and (A.35) in the case of φ and simply from (A.35) in the
case of ψ . In fact, by (A.35),

α̂Q0
(D1 +DQ1)− α̂Q0

(D2 +DQ2) ∈ Zg, (A.56)

respectively,

α̂Q0
(D1)− α̂Q0

(D2)− c U (2) ∈ Zg, (A.57)

suffice to guarantee single-valuedness of φ, respectively, ψ on K̂g . Without the re-
placement of AQ0

and αQ0
by ÂQ0

and α̂Q0
in (A.50) and (A.51) and the assump-

tions (A.53) and (A.55) (or (A.56) and (A.57)), φ and ψ are multiplicative (multi-
valued) functions on Kg , and then most effectively discussed by introducing the no-
tion of characters on Kg . For simplicity, we decided to avoid the latter possibility
and throughout this text will tacitly always assume (A.53) and (A.55) without par-
ticularly emphasizing this convention each time it is used.

Remark A.31 Let ξ ∈ J (Kg) be given, assume that θ(�Q0
− AQ0

( · )+ ξ) �≡ 0 on

Kg and suppose that α−1
Q0
(ξ) = {Q1, . . . , Qg} ∈ Symg(Kg) is the unique solution of

Jacobi’s inversion problem. Let f ∈M(Kg) \ {0} and suppose f (Q j ) �= ∞ for j =
1, . . . , g. Then ξ uniquely determines the values f (Q1), . . . , f (Qg). Moreover, any
symmetric function of these values is a single-valued meromorphic function of ξ ∈
J (Kg), that is, an abelian function on J (Kg). Any such meromorphic function on
J (Kg) can be expressed in terms of the Riemann theta function on Kg . For instance,
for the elementary symmetric functions of the second kind (Newton polynomials)
one obtains from the residue theorem in analogy to the proof of Lemma A.18 that

g∑
j=1

f (Q j )
n =

g∑
j=1

∫
a j

f (P)nω j (P)

−
∑

Pr∈Kg
f (Pr )=∞

res
P=Pr

(
f (P)nd ln

(
θ
(
�Q0
− AQ0

(P)+ αQ0
(DQ)

)))
,

Q = {Q1, . . . , Qn} ∈ Symn(Kg). (A.58)
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Here an appropriate homology basis {a j , b j }gj=1, avoiding {Q1, . . . , Qg} and the
poles {Pr } of f , has been chosen.

In the special case of hyperelliptic Riemann surfaces, special divisors are char-
acterized as follows. Denote by ∗: Kg → Kg the sheet exchange map (involution)

∗: Kg → Kg, [x2 : x1 : x0] �→ [x2 : −x1 : x0].
Theorem A.32 Suppose Kg is a hyperelliptic Riemann surface of genus g ∈ N and
DQ ∈ Symg(Kg) with Q = {Q1, . . . , Qg} ∈ Symg(Kg). Then,

1 ≤ i(DQ) = s

if and only if {Q1, . . . , Qg} contains s pairings of the type {P, P∗}. (This includes,
of course, branch points of Kg for which P = P∗.) One has s ≤ g/2.

We add one more result in connection with hyperelliptic Riemann surfaces.

Theorem A.33 Suppose Kg is a hyperelliptic Riemann surface of genus g ∈ N,
Dµ̂ ∈ Symg(Kg) is nonspecial, µ̂ = {µ̂1, . . . , µ̂g}, and µ̂g+1 ∈ Kg with µ̂∗g+1 �∈
{µ̂1, . . . , µ̂g}. Let {λ̂1, . . . , λ̂g+1} ⊂ Kg with D

λ̂λ̂g+1
∼ Dµ̂µ̂g+1 (i.e., D

λ̂λ̂g+1
∈

[Dµ̂µ̂g+1 ]). Then any g points ν̂ j ∈ {λ̂1, . . . , λ̂g+1}, j = 1, . . . , g, define a nonspecial
divisor Dν̂ ∈ Symg(Kg), ν̂ = {ν̂1, . . . , ν̂g}.

Proof Since i(DP ) = 0 for all P ∈ K1, there is nothing to be proven in the special
case g = 1. Hence we assume g ≥ 2. Let Q0 ∈ B(Kg) be a fixed branch point of
Kg and suppose that Dν̂ is special. Then by Theorem A.32 there is a pair {ν̂, ν̂∗} ⊂
{ν̂1, . . . , ν̂g} such that

αQ0
(Dν̂ ) = αQ0

(Dν̂ ),

where ν̂ = {ν̂1, . . . , ν̂g} \ {ν̂, ν̂∗} ∈ Symg−2(Kg). Let ν̂g+1 ∈ {λ̂1, . . . , λ̂g+1} \
{ν̂1, . . . , ν̂g} so that {ν̂1, . . . , ν̂g+1} = {λ̂1, . . . , λ̂g+1} ∈ Symg+1(Kg). Then

αQ0
(Dν̂ν̂g+1) = αQ0

(Dν̂ν̂g+1) = αQ0
(D

λ̂λ̂g+1
)

= αQ0
(Dµ̂µ̂g+1) = −AQ0

(µ̂∗g+1)+ αQ0
(Dµ̂), (A.59)

and hence by Theorem A.25 and (A.59),

0 = θ(�Q0
+ αQ0

(Dν̂ν̂g+1)) = θ(�Q0
− AQ0

(µ̂∗g+1)+ αQ0
(Dµ̂)). (A.60)

Since by hypothesis Dµ̂ is nonspecial and µ̂∗g+1 �∈ {µ̂1, . . . , µ̂g}, (A.60) contradicts
Theorem A.28. Thus, Dν̂ is nonspecial.
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We conclude this appendix with a brief summary of Riemann surfaces with sym-
metries, which is a topic of fundamental importance in characterizing real-valued
algebro-geometric solutions of the Toda hierarchy.

Assuming Kg to be a compact Riemann surface of genus g, let

ρ : Kg → Kg

be an antiholomorphic involution on Kg (i.e., ρ2 = id |Kg ). Moreover, let

R = {P ∈ Kg | ρ(P) = P}
be the set of fixed points of ρ (sometimes called the set of “real” points of Kg) and
denote by r the number of nontrivial connected components of R. Topologically,
these connected components are circles.

Theorem A.34 Let ρ be an antiholomorphic involution on Kg. Then either Kg \R
is connected (and then the quotient space (the Klein surface) Kg/ρ is nonorientable)
or Kg \ R consists precisely of two connected components (and then Kg/ρ is ori-
entable). In the latter case, if R �= ∅, Kg ∪ R is a bordered Riemann surface and
(Kg, ρ) is the complex double of Kg ∪R.

Definition A.35 Suppose ρ is an antiholomorphic involution on Kg. Define

ε =
{
+ if Kg \R is disconnected,

− if Kg \R is connected.

The pair (Kg, ρ) is called a symmetric Riemann surface, the triple (g, r, ε) denotes
the type of (Kg,R). If ε = +, (Kg, ρ) is of dividing (separating) type; if ε = −,
(Kg, ρ) is of nondividing (nonseparating) type.
If r = g + 1, then Kg is called an M-curve.

Theorem A.36 Assume ρ is an antiholomorphic involution on Kg.
(i) If ε = +, then 1 ≤ r ≤ g + 1, r = g + 1 (mod 2), g = r − 1 + 2k, 0 ≤ k ≤
(g + 1− r)/2.
(i i) If ε = −, then 0 ≤ r ≤ g.
(i i i) If r = 0, then ε = −. If r = g + 1, then ε = +.

Example A.37
(i) Consider the hyperelliptic Riemann surface Kg : y2 =∏2g+1

m=0 (z − Em) with Em ,
m = 0, . . . , 2g+1, grouped into k real and � complex conjugate pairs, k+� = g+1.
Define the antiholomorphic involution ρ+ : (z, y) �→ (z, y) on Kg . If (Kg, ρ+) is
of dividing type (g, r,+), then either r = g + 1 = k and � = 0 (if Em ∈ R,
m = 0, . . . , 2g + 1), or else, r = 1 if g is even and r = 2 if g is odd if none of
the Em are real (and hence only occur in complex conjugate pairs). In particular, if
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m=0 (z − Em) contains 2r > 0 real roots, then (Kg, ρ+) is of type (g, r,+) if and

only if r = g + 1 and of type (g, r,−) if and only if 1 ≤ r ≤ g. If (Kg, ρ+) is of
nondividing type, then r = k (and of course 1 ≤ r ≤ g).
(i i) The hyperelliptic Riemann surfaces Kg : y2 = ±∏g

m=0 |z− Ẽm |2 are of the type
(g, 0,−) with respect to the antiholomorphic involutions ρ± : (z, y) �→ (z,±y),
respectively, since R = ∅, r = 0 in either case.
(i i i) Consider the hyperelliptic Riemann surface Kg : y2 = ∏2g

m=0(z − Em) with
E0 ∈ R and Em , m = 1, . . . , 2g, grouped into k real and � complex conjugate pairs,
k + � = g. In addition, define the antiholomorphic involution ρ+ : (z, y) �→ (z, y)
on Kg . Then (Kg, ρ+) is of dividing type (g, r,+) if and only if r = g + 1 = k + 1
and � = 0 (and hence Em ∈ R, m = 0, . . . , 2g). If (Kg, ρ+) is of nondividing type,
then r = k + 1 (and of course 1 ≤ r ≤ g).

In the following it is convenient to abbreviate

diag(M) = (M1,1, . . . , Mg,g)

for a g × g matrix M with entries in C.

Theorem A.38 Let (Kg, ρ) be a symmetric Riemann surface.
(i) There exists a canonical homology basis {a j , b j }gj=1 on Kg with intersection
matrix (A.8) and a symmetric g × g matrix R such that the 2g × 2g matrix S of
complex conjugation of the action of ρ on H1(Kg,Z) in this basis is given by

S =
(

Ig R
0 −Ig

)
, R� = R,

that is,

(ρ(a), ρ(b)) = (a, b)

(
Ig R
0 −Ig

)
= (a, a R − b),

a = (a1, . . . , ag), b = (b1, . . . , bg),

ρ(a) = (ρ(a1), . . . , ρ(ag)), ρ(b) = (ρ(b1), . . . , ρ(bg)),

where R is of the following form.1

1 Blank entries are representing zeros in the matrices (A.61)–(A.64). Moreover, 0 in (A.61) and (A.64)
denotes a 1 × 1 element whereas 0 in (A.62) represents an (r − 1) × (r − 1) block matrix (which is
absent for r = 1).
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If R �= ∅ and Kg \R is disconnected,

R =



σ1
. . .

σ1

0
. . .

0


, rank(R) = g + 1− r (A.61)

(in particular, R = 0 if r = g + 1).
If R �= ∅ and Kg \R is connected,

R =
(

Ig+1−r

0

)
, rank(R) = g + 1− r (A.62)

(in particular, R = 0 if r = g + 1).
If R = ∅ and g is even,

R =
σ1

. . .

σ1

 , rank(R) = g (A.63)

(in particular, R = 0 if g = 0).
If R = ∅ and g is odd,

R =


σ1

. . .

σ1

0

 , rank(R) = g − 1 (A.64)

(in particular, R = 0 if g = 1).
Here σ1 denotes the 2× 2 Pauli matrix

σ1 =
(

0 1
1 0

)
.

(i i) Given the basis of cycles {a j , b j }gj=1 of item (i), introduce the corresponding

basis {ω j }gj=1 of normalized holomorphic differentials satisfying (A.13) and define
the associated matrix τ of b-periods as in (A.14) and the Riemann theta function θ

as in (A.33). Then, ω j , j = 1, . . . , g, are ρ-real, that is,

ρ∗ω j = ω j , j = 1, . . . , g, (A.65)
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where ρ∗ω denotes the pull back1 of a meromorphic differential ω by the involution
ρ. Moreover,

τ = R − τ, Re(τ ) = 1

2
R, (A.66)

θ(z) = θ
(
z + 1

2
diag(R)

)
, z ∈ Cg, (A.67)

�Q0
= �Q0

+ 1

2
diag(R)+ (g − 1)αQ0

(ρ(Q0)). (A.68)

Finally, assume R �= ∅, Kg \R is disconnected (cf. (A.61)), x ∈ Rg, χm ∈ {0, 1},
m = �+ 1, . . . , g, � = rank(R). Then

θ(i x + 1

2
(0, . . . , 0, χ�+1, . . . , χg)) �= 0

if and only if χm = 0, m = �+ 1, . . . , g.

Assuming P0 to be a Weierstrass point of Kg (implying g ≥ 2), �P0
is a half-period,

that is,

�P0
= −�P0

(mod Lg), (A.69)

�P0
= β + γ τ, β, γ ∈ 1

2
Zg. (A.70)

In this case (A.66) implies in addition to (A.68) and (A.69),

�P0
= −�P0

(mod Zg). (A.71)

In the context of the hyperelliptic Riemann surfaces described as two-sheeted covers
of the Riemann sphere C∞ in Appendix B, equation (A.71) remains valid if P0 is
any of the associated 2g + 2 branch points, g ∈ N.

Notes

This appendix, apart from some minor corrections and additions, is nearly identical
to Appendix A in Gesztesy and Holden (2003b).

The bulk of the material of this appendix is standard and taken from textbooks.
The one we relied on most was Farkas and Kra (1992). Moreover, we used material
from Mumford (1983, Ch. II) and Mumford (1984, Ch. IIIa) (concerning divisors on
hyperelliptic Riemann surfaces constructed originally in Jacobi (1846)), and Behnke
and Sommer (1965) (in connection with covering Riemann surfaces). In addition,
the following well-known sources make for great collateral reading on various topics

1 If ω = f (ζ )dζ , then ρ∗ω = f (ρ(ζ ))dρ(ζ ) and
∫
γ ρ
∗ω = ∫ρ(γ ) ω, γ ∈ H1(Kg,Z). In particular, if

ω is ρ-real, that is, ρ∗(ω) = ω, then
∫
γ ω =

∫
ρ(γ ) ω, γ ∈ H1(Kg,Z).
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relevant to the applications discussed in this monograph: Belokolos et al. (1994, Ch.
2), Fay (1973), Forster (1999), Forsyth (1965), Griffiths (1989), Griffiths and Harris
(1978), Gunning (1972), Hofmann (1888), Kirwan (1992), Markushevich (1992),
Miranda (1995), Narasimhan (1992), Rauch and Farkas (1974), Reyssat (1989),
Rodin (1988), Schlichenmaier (1989), Shokurov (1994), Siegel (1988), Springer
(1981), and the recently reprinted classical treatise by Baker (1995). Finally, there are
various reviews on compact Riemann surfaces and their associated theta functions.
A masterpiece in this connection and still of great relevance is Dubrovin (1981). In
addition, we call attention to the following reviews, Bost (1992), Korotkin (1998),
Krichever (1983), Krichever and Novikov (1999), Lewittes (1964), Matveev (1976;
2008), Rodin (1987), Smith (1989), and Taimanov (1997).

The fact that different homology bases yield isomorphic Jacobians, as alluded to
after Definition A.15, is discussed, for instance, in Farkas and Kra (1992, p. 137)
and Gunning (1966, Sect. 8(b)). For a detailed discussion of multiplicative (multi-
valued) functions in connection with Remark A.30 (a topic we circumvent in this
monograph) we refer to Farkas and Kra (1992, Sects. III.9, VI.2). Theorem A.32 can
be found in Krazer (1970, Sect. X.3).

In connection with Remark A.17 we refer to Farkas and Kra (1992, pp. 73, 150,
152, 309).

Finally, the material on symmetric Riemann surfaces is mainly taken from Gross
and Harris (1981) and Vinnikov (1993). In particular, Theorem A.38 is proved in
Vinnikov (1993) (compare Alpay and Vinnikov (2002) for the proof of (A.67)). The
case R �= ∅ and Kg \ R disconnected is treated in Fay (1973, Ch. VI). Classical
sources for this material are Comessatti (1924), Harnack (1876), Klein (1893), and
Weichold (1883). For modern treatments of this subject we refer to Bujalance et al.
(2001), Fay (1973, Ch. VI), Gross and Harris (1981), Natanzon (1980; 1990), Silhol
(1982), and Wilson (1978); applications to algebro-geometric solutions can be found,
for instance, in Date (1982), Dubrovin (1982; 1983), Dubrovin and Natanzon (1982),
Natanzon (1995), Taimanov (1990), and Zhivkov (1989; 1994).
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Hyperelliptic Curves of the Toda-Type

. . . and he that contemneth small things,
shall fall by little and little.

Ecclesiasticus, 19:1

We briefly summarize some of the basic facts on hyperelliptic Toda-type curves (i.e.,
those not branched at infinity) as employed in this volume. We freely use the notation
and results collected in Appendix A.

Fix p ∈ N0. We are going to construct the hyperelliptic Riemann surface Kp of
genus p associated with the Toda-type curve,

Fp(z, y) = y2 − R2p+2(z) = 0,

R2p+2(z) =
2p+1∏
m=0

(z − Em), {Em}m=0,...,2p+1 ⊂ C,

Em �= Em′ for m �= m′, m,m′ = 0, . . . , 2p + 1.

(B.1)

Introducing an appropriate set of p + 1 (nonintersecting) cuts C j joining Em( j) and
Em′( j) we denote

C =
⋃
j∈J

C j , C j ∩ Ck = ∅, j �= k,

where the finite index set J ⊆ {1, . . . , p + 1} has cardinality p + 1. Define the cut
plane �,

� = C \ C,
and introduce the holomorphic function

R2p+2( · )1/2 : �→ C, z �→
2p+1∏

m=0

(z − Em)

1/2

(B.2)

353
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on � with an appropriate choice of the square root branch (B.2). Next, define

Mp = {(z, σ R2p+2(z)
1/2) | z ∈ C, σ ∈ {1,−1}} ∪ {P∞+ , P∞−},

by extending R2p+2( · )1/2 to C and joining P∞+ and P∞− , P∞+ �= P∞− , the two
points at infinity. To describe charts on Mp let Q0 ∈Mp, UQ0 ⊂Mp a neighbor-
hood of Q0, ζQ0 : UQ0 → VQ0 ⊂ C a homeomorphism defined below, and write

Q0 = (z0, σ0 R2p+2(z0)
1/2) or Q0 = P∞± ,

Q = (z, σ R2p+2(z)
1/2) ∈ UQ0 ⊂Mp, VQ0 = ζQ0(UQ0) ⊂ C.

Branch points on Mp are defined by

Bs(Kp) =
{
{(Em, 0)}m=0,1, p = 0,

{(Em, 0)}m=0,...,2p+1 ∪ {P∞+ , P∞−}, p ∈ N.

While P∞± are never branch points, P∞± are nonsingular for p = 0 and singular for
p ∈ N.

Charts on Mp are now introduced distinguishing three cases, (i) Q0 ∈ Mp \(
Bs(Kp) ∪ {P∞+ , P∞−}

)
, (ii) Q0 = P∞± , and (iii) Q0 = (Em, 0) for some m =

0, . . . , 2p + 1.
(i) Q0 ∈Mp \

(
Bs(Kp) ∪ {P∞+ , P∞−}

)
: Then one defines

UQ0 = {Q ∈Mp | |z − z0| < C0}, C0 = min
m=0,...,2p+1

|z0 − Em |, (B.3)

where σ R2p+2(z)1/2 is the branch obtained by straight line analytic continuation
starting from z0,

VQ0 = {ζ ∈ C | |ζ | < C0}, (B.4)

and

ζQ0 : UQ0 → VQ0 , Q �→ (z − z0) (B.5)

with inverse

ζ−1
Q0
: VQ0 → UQ0 , ζ �→ (z0 + ζ, σ R2p+2(z0 + ζ )1/2). (B.6)

(ii) Let Q0 = P∞± : Then one introduces

UP∞± = {Q ∈Mp | |z| > C∞}, C∞ = max
m=0,...,2p+1

|Em |, (B.7)

VP∞± =
{
ζ ∈ C | |ζ | < C−1∞

}
, (B.8)

and

ζP∞± : UP∞± → VP∞± , Q �→ z−1, P∞± �→ 0 (B.9)
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with inverse

ζ−1
P∞±
: VP∞± → UP∞± ,

ζ �→
(
ζ−1,∓

( 2p+1∏
m=0

(1− Emζ )

)1/2

ζ−p−1
)
, 0 �→ P∞± , (B.10)

where the square root is chosen such that( 2p+1∏
m=0

(1− Emζ )

)1/2

= 1− 1

2

( 2p+1∑
m=0

Em)

)
ζ + O(ζ 2). (B.11)

(iii) Q0 = (Em, 0): Then one defines

UQ0 = {Q ∈Mp | |z − Em0 | < Cm0}, Cm0 = min
m=0,...,2p+1

|Em − Em0 |, (B.12)

VQ0 = {ζ ∈ C | |ζ | < C1/2
m0 }, (B.13)

and

ζQ0 : UQ0 → VQ0 , Q �→ σ(z − Em0)
1/2, σ ∈ {1,−1} (B.14)

with inverse

ζ−1
Q0
: VQ0 → UQ0 , ζ �→

(
Em0 + ζ 2,

( 2p+1∏
m=0

m �=m0

(Em0 − Em + ζ 2)

)1/2

ζ

)
, (B.15)

where the square root branches are chosen in order to yield compatibility with the
charts in (B.3)–(B.6) and (B.7)–(B.11).

The set Mp and the complex structure (B.3)–(B.15) just defined, then yield a
compact Riemann surface of topological genus p which we denoted by Kp in Ap-
pendix A. For simplicity of notation we use the symbol Kp to denote both the affine
curve (B.1) and its projective closure Kp throughout major parts of this monograph.
The construction of Kp is sketched in Figure B.1 in the genus p = 1 case. A typical
homology basis on Kp in the genus p = 3 case is depicted in Figure B.2 (it differs
from that shown in Figure B.1).

Next, for the reader’s convenience, we provide a detailed treatment of branch
points for the two most frequently occurring situations: the self-adjoint case, where

{Em}m=0,...,2p+1 ⊂ R, and the case in which {Em}m=0,...,2p+1 = {Ẽ�, Ẽ�}�=0,...,p

consists of complex conjugate pairs.
Let us first consider the case with real and distinct roots, that is,

{Em}m=0,...,2p+1 ⊂ R, E0 < E1 < · · · < E2p+1. (B.16)
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Fig. B.1. Genus p = 1.

In this case

C j = [E2 j , E2 j+1], j = 0, . . . , p,

and the square root branch in (B.2) is chosen according to

R2p+2(λ)
1/2 = lim

ε↓0
R2p+2(λ+ iε)1/2, λ ∈ C, (B.17)

and

R2p+2(λ)
1/2

= |R2p+2(λ)
1/2|


−1, λ ∈ (E2p+1,∞),

(−1)p+ j , λ ∈ (E2 j−1, E2 j ), j = 1, . . . , p,

(−1)p, λ ∈ (−∞, E0),

i(−1)p+ j+1, λ ∈ (E2 j , E2 j+1), j = 0, . . . , p,

λ ∈ R. (B.18)
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The square root branches in (B.14) and (B.15) are defined by

(z − Em0)
1/2 = |(z − Em0)

1/2| exp
(
(i/2) arg(z − Em0)

)
,

arg(z − Em0) ∈
{
[0, 2π), m0 even,

(−π, π ], m0 odd,

and ( 2p+1∏
m=0

m �=m0

(Em0 − Em + ζ 2)

)1/2

= (−1)pi−m0−1
∣∣∣∣( 2p+1∏

m=0
m �=m0

(Em0 − Em)

)1/2∣∣∣∣
×
(

1+ 1

2

( 2p+1∑
m=0

m �=m0

(Em0 − Em)
−1
)
ζ 2 + O(ζ 4)

)
, (B.19)

in order to guarantee compatibility of all charts.
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Fig. B.2. Genus p = 3.

Next we turn to the case where the roots form complex conjugate pairs,

{Em}m=0,...,2p+1 = {Ẽ�, Ẽ�}�=0,...,p,

where we assume

Re(Ẽ�) < Re(Ẽ�+1), � = 0, . . . , p − 1, Im(Ẽ�) < Im(Ẽ�), � = 0, . . . , p.

In this case

C� = {z ∈ C | z = Ẽ� + t (Ẽ� − Ẽ�), 0 ≤ t ≤ 1}, � = 0, . . . , p,

and the square root branch in (B.2) is chosen according to

R2p+2(z)
1/2 = lim

ε↓0
R2p+2(z + (−1)p+�ε)1/2, z ∈ C�, � = 0, . . . , p, (B.20)
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where

R2p+2(λ)
1/2 = |R2p+2(λ)

1/2|

×


−1, Re(λ) ∈ (Ẽ p,∞),

(−1)p+�+1, λ ∈ (Re(Ẽ�),Re(Ẽ�+1)), � = 0, . . . , p − 1,

(−1)p, λ ∈ (−∞,Re(Ẽ0)).

(B.21)

The square root branches in (B.14) and (B.15) then are defined by

(z − Em0)
1/2 = |(z − Em0)

1/2| exp
(
(i/2) arg(z − Em0)

)
,

where, for p even,

arg(z − Ẽ�) ∈
{
(π2 ,

5π
2 ], � even,

[π2 , 5π
2 ), � odd,

arg(z − Ẽ�) ∈
{
[−π

2 ,
3π
2 ), � even,

(−π
2 ,

3π
2 ], � odd,

and for p odd,

arg(z − Ẽ�) ∈
{
[π2 , 5π

2 ), � even,

(π2 ,
5π
2 ], � odd,

arg(z − Ẽ�) ∈
{
(−π

2 ,
3π
2 ], � even,

[−π
2 ,

3π
2 ), � odd.

Here ( 2p+1∏
m=0

m �=m0

(Em0 − Em + ζ 2)

)1/2

= exp

(
(i/2)

2p+1∑
m=0

m �=m0

arg(Em0 − Em)

) ∣∣∣∣( 2p+1∏
m=0

m �=m0

(Em0 − Em)

)1/2∣∣∣∣
×
(

1+ 1

2

( 2p+1∑
m=0

m �=m0

(Em0 − Em)
−1
)
ζ 2 + O(ζ 4)

)
, (B.22)

where exp( i
2

∑2p+1
m=0

m �=m0

arg(Em0 − Em)) is determined by analytic continuation in

(B.21).
In the following we return to the general case (B.1). Points P ∈ Kp \{P∞− , P∞+}

are denoted by

P = (z, σ R2p+2(z)
1/2) = (z, y), P ∈ Kp \ {P∞− , P∞+},

that is, we abbreviate y(P) = σ R2p+2(z)1/2. Moreover, we introduce the holomor-
phic sheet exchange map (involution)

∗: Kp → Kp, P = (z, y) �→ P∗ = (z,−y), P∞± �→ P∗∞± = P∞∓ , (B.23)
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and the two meromorphic projection maps

π̃ : Kp → C ∪ {∞}, P = (z, y) �→ z, P∞± �→ ∞, (B.24)

and

y : Kp → C ∪ {∞}, P = (z, y) �→ y, P∞± �→ ∞. (B.25)

The map π̃ has poles of order 1 at P∞± , and y has poles of order p + 1 at P∞± .
Moreover,

π̃(P∗) = π̃(P), y(P∗) = −y(P), P ∈ Kp. (B.26)

Thus Kp is a two-sheeted branched covering of the Riemann sphere CP1 (∼= C ∪
{∞}) branched at the 2p + 2 points {(Em, 0)}m=0,...,2p+1. Moreover, Kp is compact
(since π̃ is open and CP1 is compact), and Kp is hyperelliptic (since it admits the
meromorphic function π̃ of degree two). In this context we denote the set of branch
points of Kp by B(Kp). Topologically, Kp is a sphere with p handles and hence has
(topological) genus p.

The projection π̃ has two simple zeros at (0,±R2p+2(0)1/2) if R2p+2(0) �= 0 or
a double zero at (0, 0) if R2p+2(0)1/2 = 0 (i.e., if 0 ∈ {Em}m=0,...,2p+1) and y has
2p + 2 simple zeros at (Em, 0) for m = 0, . . . , 2p + 1.

For the rest of this appendix we assume that p ∈ N.

We introduce the upper and lower sheets by

�± = {(z,±R2p+2(z)
1/2) ∈Mp | z ∈ �} (B.27)

and the associated charts

ζ± : �± → �, P �→ z. (B.28)

In particular, the charts in (B.3)–(B.15) are chosen to be compatible with ζ± wherever
they overlap.

Using the local chart near P∞± one verifies that dz/y is a holomorphic differential
on Kp with zeros of order p − 1 at P∞± and hence

η j = z j−1dz

y
, j = 1, . . . , p, (B.29)

form a basis for the space of holomorphic differentials on Kp. Assume that
{a j , b j } j=1,...,p is a homology basis for Kp with intersection properties (A.8). In-
troducing the invertible matrix C in Cp,

C = (C j,k
)

j,k=1,...,p, C j,k =
∫

ak

η j , (B.30)

c(k) = (c1(k), . . . , cp(k)), c j (k) =
(
C−1)

j,k, j, k = 1, . . . , p, (B.31)
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the normalized holomorphic differentials ω j for j = 1, . . . , p (cf. (A.13)),

ω j =
p∑

�=1

c j (�)η�,

∫
ak

ω j = δ j,k, j, k = 1, . . . , p, (B.32)

form a canonical basis for the space of holomorphic differentials on Kp.
In the charts (UP∞± , ζP∞± ) induced by 1/π̃ near P∞± one infers

y(P) =
ζ→0
∓ζ−p−1

∞∑
k=0

ck(E)ζ
k

=
ζ→0
∓
(

1− 1

2

( 2p+1∑
m=0

Em

)
ζ + O(ζ 2)

)
ζ−p−1 as P → P∞± , ζ = 1/z.

Here E = (E0, . . . , E2p+1) and we used( 2p+1∏
m=0

(
1− Emζ

))1/2

=
∞∑

k=0

ck(E)ζ
k,

for ζ ∈ C such that |ζ |−1 > max{|E0|, . . . , |E2p+1|}, where ck(E), k ∈ N0, are
defined in (C.5).

In addition, one obtains the expansion

ω = (ω1, . . . , ωp) = ±
p∑

j=1

c( j)
ζ p− j dζ

(
∏2p+1

m=0 (1− Emζ ))1/2

=
ζ→0
±
( ∞∑

q=0

p∑
k=1

c(k)ĉk−p+q(E)ζ
q
)

dζ (B.33)

=
ζ→0
±
(

c(p)+
(

1

2
c(p)

2p+1∑
m=0

Em + c(p − 1)

)
ζ + O(ζ 2)

)
dζ, ζ = 1/z,

where we used ( 2p+1∏
m=0

(1− Emζ )

)−1/2

=
∞∑

k=0

ĉk(E)ζ
k

for ζ ∈ C such that |ζ |−1 > max{|E0|, . . . , |E2p+1|} with ĉk(E), k ∈ N0, defined in
(C.2), and we agreed to set

ĉ−k(E) = 0, k ∈ N.

Combining (A.19) and (B.33) one computes for the vector U (2)
±,q of b-periods of
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ω
(2)
P∞± ,q

/(2π i), the normalized differential of the second kind, holomorphic on Kp \
{P∞±}, with principal part ζ−q−2dζ/(2π i),

U (2)
±,q =

(
U (2)
±,q,1, . . . ,U (2)

±,q,p
)
, (B.34)

U (2)
±,q, j =

1

2π i

∫
b j

ω
(2)
P∞± ,q

= ±1

q + 1

p∑
k=1

c j (k)ĉk−p+q(E), j = 1, . . . , p, q ∈ N0.

We note in passing that ω(2)
P∞+ ,q

− ω
(2)
P∞− ,q

has the explicit form

ω
(2)
P∞+ ,q

− ω
(2)
P∞− ,q

= z p

y

q+1∑
k=0

cq+1−k(E)z
kdz + λ′p

y

p−1∏
j=1

(z − λ′j )dz, q ∈ N0,

where ck(E), k ∈ N0, are defined in (C.5) and λ′j , j = 1, . . . , p, are uniquely
determined by the normalization∫

a j

(
ω
(2)
P∞+ ,q

− ω
(2)
P∞− ,q

) = 0, j = 1, . . . , p.

In the special self-adjoint case (B.16), the matrix τ of b-periods satisfies in addi-
tion to (A.15),

τ = iT, T > 0, (B.35)

since

C j,k =
∫

ak

η j = 2
∫ E2k

E2k−1

x j−1dx

R2p+2(x)1/2
∈ R, j, k = 1, . . . , p, (B.36)

and ∫
bk

η j = −2
k∑

�=1

∫ E2�−1

E2�−2

x j−1dx

R2p+2(x + i0)1/2
∈ iR, j, k = 1, . . . , p, (B.37)

using a homology basis of the type described in Figure B.2 for p = 3.
Next, assuming 0 �∈ {Em}m=0,...,2p+1, one then computes in the charts

(UP0,± , ζP0,±) induced by π̃ near P0,± = (0, y(P0,±)),

ω =
ζ→0
± 1

y0,+

(
c(1)+

(
1

2
c(1)

2p+1∑
m=0

E−1
m + c(2)

)
ζ + O(ζ 2)

)
dζ, ζ = z,

y(P0,+) = y0,+, y2
0,+ =

2p+1∏
m=0

Em,
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using

y(P) =
ζ→0
±y0,+ + O(ζ ) as P → P0,±, ζ = z,

with the sign of y0,+ determined appropriately. In particular, P0,± and P∞± are not
necessarily on the same sheet.

Finally, if E0 = 0, Em �= 0, m = 1, . . . , 2p + 1, one computes in the chart
(UP0 , ζP0) induced by π̃1/2 near P0 = (0, 0),

ω =
ζ→0
−2i

(
c(1)

ỹ1
+ O(ζ 2)

)
dζ as P → P0, ỹ1 =

( 2p+1∏
m=1

Em

)1/2

, (B.38)

ζ = σ z1/2, σ ∈ {1,−1},
using

y(P) =
ζ→0

i ỹ1ζ + O(ζ 3) as P → P0, ζ = σ z1/2, σ ∈ {1,−1}, (B.39)

with the sign of ỹ1 determined by the compatibility of charts.
Explicit formulas for normal differentials of the third kind, ω(3)

Q1,Q2
, with simple

poles at Q1 and Q2, corresponding residues +1 and −1, vanishing a-periods, and
holomorphic on Kp \ {Q1, Q2}, can easily be found. One obtains

ω
(3)
P∞+ ,P∞−

= z p dz

y
+

p∑
j=1

γ jω j = 1

y

p∏
j=1

(z − λ j ) dz, (B.40)

ω
(3)
P1,P∞±

= y + y1

z − z1

dz

2y
∓ 1

2y

p∏
j=1

(z − λ1,±, j ) dz, (B.41)

ω
(3)
P1,P2

=
(

y + y1

z − z1
− y + y2

z − z2

)
dz

2y
+ λ′′p

y

p−1∏
j=1

(z − λ′′j ) dz, (B.42)

P1, P2 ∈ Kp \ {P∞+ , P∞−},
where γ j , λ j , λ1,±, j , λ′′j , j = 1, . . . , p, are uniquely determined by the requirement
of vanishing a-periods and we abbreviated Pj = (z j , y j ), j = 1, 2. (If p = 0 in
(B.40) or (B.41) and p = 1 in (B.42), we use the standard conventions that products
and sums over empty index sets are replaced by 1 and 0, respectively; if p = 0, the
product in (B.42) is replaced by 0.) We also note the expansion

ω
(3)
P∞+ ,P∞−

=
ζ→0
±ζ−1

(
1+

(
1

2

2p+1∑
m=0

Em −
p∑

j=1

λ j

)
ζ + O(ζ 2)

)
dζ (B.43)

as P → P∞± , ζ = 1/z.
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Next, we turn to the theta function representation of symmetric functions of values
of a meromorphic function as discussed in Remark A.31 in the current case of Toda-
type hyperelliptic Riemann surfaces. The choice f = π̃ in (A.58) then yields, after
a standard residue calculation at P∞± ,

p∑
j=1

µ j =
p∑

j=1

∫
a j

π̃ω j

+
p∑

j=1

U (2)
+,0, j∂w j ln

(
θ
(
�Q0
− AQ0

(P∞+)+ αQ0
(Dµ̂)+ w

)
θ
(
�Q0
− AQ0

(P∞−)+ αQ0
(Dµ̂)+ w

)) ∣∣∣∣
w=0

,

where µ̂ = {µ̂1, . . . , µ̂p}, µ̂ j = (µ j , y(µ̂ j )) ∈ Kp, j = 1, . . . , p, assuming Dµ̂ ∈
Symp(Kp) to be nonspecial and using

AQ0
(P)− AQ0

(P∞±) =
ζ→0
±U (2)

+,0ζ + O(ζ 2) as P → P∞± , U (2)
+,0 = c(p)

according to (B.33)–(B.34). Here Q0 ∈ Kp \ {P∞+ , P∞−} denotes an appropriate
base point. In the present hyperelliptic context, the constant

∑p
j=1

∫
a j
π̃ω j can be re-

lated to the zeros {λ j } j=1,...,p of the normal differential of the third kind, ω(3)
P∞+ ,P∞−

,
as follows,

p∑
j=1

∫
a j

π̃ω j =
p∑

j=1

λ j .

This is proven as in (F.68) and (F.70) of Volume I. Hence, one finally obtains
p∑

j=1

µ j =
p∑

j=1

λ j

+
p∑

j=1

U (2)
+,0, j∂w j ln

(
θ
(
�Q0
− AQ0

(P∞+)+ αQ0
(Dµ̂)+ w

)
θ
(
�Q0
− AQ0

(P∞−)+ αQ0
(Dµ̂)+ w

)) ∣∣∣∣
w=0

.

Finally, we formulate the following Riemann–Roch-type uniqueness results for
the Baker–Akhiezer functions needed in Chapters 1 and 3. In the following, Q0 ∈
Kp \ {P∞±} in the Toda case, and Q0 ∈ Kp \ {P∞± , P0,±} in the AL case, is an
appropriate base point.

Lemma B.1 Let (n, t), (n0, t0) ∈ � for some � ⊆ Z × R. Assume ψ( · , n, t) to be
meromorphic on Kn \{P∞±} with possible essential singularities at P∞± in the Toda
case, and meromorphic on Kp \ {P∞± , P0,±} with possible essential singularities at
P∞± , P0,± in the AL case, such that ψ̃( · , n, t) defined by

ψ̃(P, n, t) = ψ(P, n, t) exp

(
(t − t0)

∫ P

Q0

�̃(2)
)
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is meromorphic on Kp and its divisor satisfies

(ψ̃( · , n, t)) ≥ −Dµ̂(n0,t0) + (n − n0)
(
DP∞+ −DP∞−

)
in the Toda case and

(ψ̃( · , n, t)) ≥ −Dµ̂(n0,t0) + (n − n0)
(
DP0,− −DP∞+

)
in the AL case, for some positive divisor Dµ̂(n0,t0) of degree p. Here �̃(2) is defined
as in (1.247) in the Toda case, and as in (3.251) in the AL case. In addition, the path
of integration is chosen identical to that in the Abel maps1 (A.29) and (A.30). Define
a divisor D0(n, t) by

(ψ̃( · , n, t)) = D0(n, t)−Dµ̂(n0,t0) + (n − n0)
(
DP∞+ −DP∞−

)
in the Toda case and by

(ψ̃( · , n, t)) = D0(n, t)−Dµ̂(n0,t0) + (n − n0)
(
DP0,− −DP∞+

)
in the AL case. Then

D0(n, t) ∈ Symp Kp, D0(n, t) > 0, deg(D0(n, t)) = p.

Moreover, if D0(n, t) is nonspecial for all (n, t) ∈ �, that is, if

i(D0(n, t)) = 0, (n, t) ∈ �,
then ψ( · , n, t) is unique up to a constant multiple (which may depend on the pa-
rameters (n, t), (n0, t) ∈ �).

The proof of Lemma B.1 is analogous to that of Lemma B.2 in Volume I.

Notes

This appendix essentially coincides with Appendix C in Gesztesy and Holden
(2003b) except, for simplicity, we restrict ourselves to hyperelliptic curves with non-
singular affine parts only. In addition, we appropriately adapted Lemma B.1 to the
Toda and AL cases.

1 This is to avoid multi-valued expressions and hence the use of the multiplicative Riemann–Roch theo-
rem in the proof of Lemma B.1.



Appendix C

Asymptotic Spectral Parameter Expansions and
Nonlinear Recursion Relations

It has long been an axiom of mine that the little things are
infinitely the most important.

Sherlock Holmes1

In this appendix we discuss asymptotic spectral parameter expansions related to the
basic polynomials and Laurent polynomials in the context of the Toda and Ablowitz–
Ladik hierarchies. In addition, we discuss nonlinear recursion relations for the cor-
responding homogeneous recursion coefficients f̂�, ĝ� (resp., ĥ�) in the Toda and
Ablowitz–Ladik cases.

Before discussing each completely integrable system separately, we start with the
following elementary results (which are consequences of the binomial expansion and
have already been used in Appendix B). Let

{Em}m=0,...,2p+1 ⊂ C for some p ∈ N0

and η ∈ C such that |η| < min{|E0|−1, . . . , |E2p+1|−1},
and abbreviate

E = (E0, . . . , E2p+1), E−1 = (E−1
0 , . . . , E−1

2p+1).

Then ( 2p+1∏
m=0

(
1− Emη

))−1/2

=
∞∑

k=0

ĉk(E)η
k, (C.1)

where

ĉ0(E) = 1,

ĉk(E) =
k∑

j0,..., j2p+1=0
j0+···+ j2p+1=k

(2 j0)! · · · (2 j2p+1)!
22k( j0!)2 · · · ( j2p+1!)2 E j0

0 · · · E
j2p+1
2p+1, k ∈ N. (C.2)

1 In Sir Arthur Conan Doyle, A Case of Identity, The Strand Magazine, 1891.
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The first few coefficients explicitly read

ĉ0(E) = 1, ĉ1(E) = 1

2

2p+1∑
m=0

Em,

ĉ2(E) = 1

4

2p+1∑
m1,m2=0
m1<m2

Em1 Em2 +
3

8

2p+1∑
m=0

E2
m, etc.

(C.3)

For notational convenience in connection with Theorem C.2 we also introduce

ĉ−k(E) = 0, k ∈ N.

Similarly, one has ( 2p+1∏
m=0

(
1− Emη

))1/2

=
∞∑

k=0

ck(E)η
k, (C.4)

where

c0(E) = 1, (C.5)

ck(E) =
k∑

j0,..., j2p+1=0
j0+···+ j2p+1=k

(2 j0)! · · · (2 j2p+1)! E j0
0 · · · E

j2p+1
2p+1

22k( j0!)2 · · · ( j2p+1!)2(2 j0 − 1) · · · (2 j2p+1 − 1)
, k ∈ N.

The first few coefficients are given explicitly by

c0(E) = 1, c1(E) = −1

2

2p+1∑
m=0

Em,

c2(E) = 1

4

2p+1∑
m1,m2=0
m1<m2

Em1 Em2 −
1

8

2p+1∑
m=0

E2
m, etc.

Multiplying (C.1) and (C.4) and comparing coefficients of ηk one finds

k∑
�=0

ĉk−�(E)c�(E) = δk,0, k ∈ N0. (C.6)

Next, we turn to asymptotic expansions of various quantities in the case of the
Toda hierarchy. We start with some general results in connection with the corre-
sponding Lax difference expression L = aS+ + a−S− + b, assuming a, b ∈ CZ,
a(n) �= 0, n ∈ Z. Consider a fundamental system of solutions ψ±(z, · ) of
Lψ(z) = zψ(z) for z ∈ C (or in some subdomain of C), such that

W (ψ−(z), ψ+(z)) �= 0,
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where W ( f, g) = a( f g+ − f +g) denotes the Wronskian of f and g for f, g ∈ CZ.
Introducing

φ±(z, n) = ψ+± (z, n)

ψ±(z, n)
, z ∈ C, n ∈ N, (C.7)

then φ± satisfy the Riccati-type equation

aφ± + a−(φ−±)−1 = z − b, (C.8)

and one introduces in addition,

f = 1

a(φ+ − φ−)
, (C.9)

g = −φ+ + φ−
φ+ − φ−

. (C.10)

Using the Riccati-type equation (C.8) and its consequences,

(z − b)φ−± − aφ±φ−± = a−,
(z − b)(φ−+ − φ−−)− a(φ+φ−+ − φ−φ−−) = 0,

one derives the identities

f+ = φ+φ−
a(φ+ − φ−)

, (C.11)

2(z − b)f+ g+ g− = 0, (C.12)

(z − b)2f+ (z − b)g+ a2f+ − (a−)2f− = 0, (C.13)

g2 − 4a2ff+ = 1. (C.14)

Moreover, computing f in terms of g and vice versa, using (C.12) and (C.13), and
inserting the respective results into (C.14) also yields

(z − b)4f2 − 2a2(z − b)2ff+ − 2(a−)2(z − b)2ff− + a4(f+)2

+ (a−)4(f−)2 − 2a2(a−)2f+f− = (z − b)2, (C.15)

(z − b)(z − b+)g2 − a2(g− + g)(g+ g+) = (z − b)(z − b+). (C.16)

Formally, that is, ignoring possible boundary conditions at +∞ and/or −∞, the
Green’s function of an �2(Z)-realization of the Lax difference expression L is of the
form

G(z, n, n′) = (L − z)−1(n, n′)

= 1

W (ψ−(z), ψ+(z))

{
ψ−(z, n′)ψ+(z, n), n′ ≤ n,

ψ+(z, n′)ψ−(z, n), n′ ≥ n,
n, n′ ∈ Z,
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and hence one obtains

f(z, n) = G(z, n, n),

f+(z, n) = G(z, n + 1, n + 1), (C.17)

g(z, n) = 1− 2a(n)G(z, n, n + 1) = 1− 2a(n)G(z, n + 1, n),

illustrating the spectral theoretic content of f and g.
Next, assuming the existence of asymptotic expansions of f and g,

f(z) =|z|→∞
z∈CR

−
∞∑
�=0

f̂�z−�−1, g(z) =|z|→∞
z∈CR

−
∞∑

�=−1

ĝ�z−�−1, (C.18)

for z in some cone CR with apex at z = 0 and some opening angle in (0, 2π ],
exterior to a disk centered at z = 0 of sufficiently large radius R > 0, for some set
of coefficients f̂�, � ∈ N0 and ĝ�, � ∈ N0 ∪ {−1}, one can prove the following result.

Theorem C.1 Assume a, b ∈ CZ, a(n) �= 0, n ∈ Z, and the existence of the asymp-
totic expansions (C.18). Then f and g have the following asymptotic expansions as
|z| → ∞, z ∈ CR,

f(z) =|z|→∞
z∈CR

−
∞∑
�=0

f̂�z−�−1, g(z) =|z|→∞
z∈CR

−
∞∑

�=−1

ĝ�z−�−1, (C.19)

where f̂� and ĝ� are the homogeneous versions of the coefficients f� and g� defined
in (1.7) and (1.8). In particular, f̂� and ĝ� can be computed from the nonlinear
recursion relations

f̂0 = 1, f̂1 = b, f̂2 = a2 + (a−)2 + b2,

f̂�+2 = −1

2

�+1∑
k=1

f̂�+2−k f̂k + 2b
�+1∑
k=0

f̂�+1−k f̂k

+
�∑

k=0

(− 3b2 f̂�−k f̂k + a2 f̂ +�−k f̂k + (a−)2 f̂�−k f̂ −k
)

+
�−1∑
k=0

(
2b3 f̂�−1−k f̂k − 2a2b f̂ +�−1−k f̂k − 2(a−)2b f̂�−1−k f̂ −k

)
+

�−2∑
k=0

(
a2b2 f̂ +�−2−k f̂k + (a−)2b2 f̂�−2−k f̂ −k + a2(a−)2 f̂ +�−2−k f̂ −k

− 1

2
a4 f̂ +�−2−k f̂ +k −

1

2
(a−)4 f̂ −�−2−k f̂ −k

)
, � ∈ N, (C.20)
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and

ĝ−1 = −1, ĝ0 = 0, ĝ1 = −2a2,

ĝ�+1 = −1

2

�∑
k=−1

(b + b+)ĝ�−1−k ĝk + 1

2

�∑
k=0

ĝ�−k ĝk (C.21)

+ 1

2

�−1∑
k=−1

(
bb+ĝ�−2−k ĝk − a2(ĝ−�−2−k + ĝ�−2−k)(ĝk + ĝ+k )

)
, � ∈ N.

Proof Inserting expansion (C.18) for f into (C.15) and expansion (C.18) for g into
(C.16) then yields the nonlinear recursion relations (C.20) and (C.21), but with f̂�
and ĝ� replaced by f̂� and ĝ�, respectively. More precisely, one first obtains |f̂0| =
|ĝ−1| = 1 and upon choosing the signs of f̂0 and ĝ−1 such that f̂0 = f̂0 = 1 and
ĝ−1 = −1 one obtains (C.20) and (C.21) (still with f̂� and ĝ� replaced by f̂� and ĝ�).

Next, inserting the expansions (C.18) for f and g into (C.12) and (C.13), and com-
paring powers of z−� as |z| → ∞, z ∈ CR , one infers that f̂� and ĝ� satisfy the linear
recursion relations (1.3)–(1.5). Hence one concludes that

f̂� = f�, ĝ� = g�, � ∈ N0,

for certain values of the summation constants c�. To show that actually f̂� = f̂�,
ĝ� = ĝ�, and hence all c�, � ∈ N, vanish, we now rely on the notion of degree as
introduced in Remark 1.3. To this end we recall that

deg
(

f̂�
) = �, deg

(
ĝ�
) = �+ 1, � ∈ N,

(cf. (1.12)). Similarly, the nonlinear recursion relations (C.20) and (C.21) yield in-
ductively that

deg
(
f̂�
) = �, deg

(
ĝ�
) = �+ 1, � ∈ N.

Hence one concludes that

f̂� = f̂�, ĝ� = ĝ�, � ∈ N0.

Given this general result on asymptotic (Green’s function) expansions for Jacobi-
type difference expressions, we now specialize to the algebro-geometric case at hand.
We recall our convention y(P) = ∓(ζ−p−1 + O(ζ−p)) for P near P∞± (where
ζ = 1/z).
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Theorem C.2 Assume (1.1), s-Tlp(a, b) = 0, and suppose P = (z, y) ∈ Kp \
{P∞+ , P∞−}. Then Fp/y and G p+1/y have the following convergent expansions as
P → P∞± ,

Fp(z)

y
= ∓

∞∑
�=0

f̂�ζ
�+1,

G p+1(z)

y
= ∓

∞∑
�=−1

ĝ�ζ
�+1, (C.22)

where ζ = 1/z is the local coordinate near P∞± described in (B.7)–(B.11) and f̂�
and ĝ� are the homogeneous versions1 of the coefficients f� and g� as introduced in
(1.7) and (1.8). Moreover, one infers for the Em-dependent summation constants c�,
� = 0, . . . , p + 1, in Fp and G p+1 that

c� = c�(E), � = 0, . . . , p + 1. (C.23)

In addition, one has the following relations between the homogeneous and nonho-
mogeneous recursion coefficients,2

f� =
�∑

k=0

c�−k(E) f̂k, � = 0, . . . , p,

g� =
�∑

k=1

c�−k(E)ĝk − c�+1(E), � = 0, . . . , p − 1, (C.24)

gp =
p∑

k=0

cp−k(E)ĝk − cp+1(E)− f p+1,

f̂� =
�∧p∑
k=0

ĉ�−k(E) fk, � ∈ N0,

ĝ� =
�∧p∑
k=0

ĉ�−k(E)gk − ĉ�+1(E)+ ĉ�−p(E) f p+1, � ∈ N0.

(C.25)

Proof Identifying

ψ+(z, · ) with ψ(P, · , 0) and ψ−(z, · ) with ψ(P∗, · , 0),

recalling W (ψ(P, · , 0), ψ(P∗, · , 0)) = −yFp(z, 0)−1 (cf. (1.84)), and similarly,
identifying

φ+(z, · ) with φ(P, · ) and φ−(z, · ) with φ(P∗, · ),
1 Strictly speaking, the coefficients f̂� and ĝ� in (C.22) no longer have a well-defined degree and hence

represent a slight abuse of notation since we assumed that s-Tlp(a, b) = 0. At any rate, they are
explicitly given by (C.25).

2 m ∧ n = min{m, n}.
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a comparison of (C.7)–(C.10), (C.11) and the results of Lemmas 1.12 and 1.17 show
that we may also identify

f with ± Fp/y and g with ± G p+1/y,

the sign depending on whether P tends to P∞± . In particular, (C.12)–(C.16) then
correspond to (1.38)–(1.40), (1.40), (1.42), and (1.43), respectively. Since Fp/y and
G p+1/y clearly have an asymptotic (in fact, even convergent) expansion as |z| → ∞
around 1/z = 0, the results of Theorem C.1 apply and using (C.1), (1.30), and (1.31)
one obtains

Fp(z)

y
=

ζ→0
∓
( ∞∑

k=0

ĉk(E)ζ
k
)( p∑

�=0

f�ζ
�+1
)

=
ζ→0
∓
∞∑
�=0

f̂�ζ
�+1, (C.26)

G p+1(z)

y
=

ζ→0
∓
( ∞∑

k=0

ĉk(E)ζ
k
)(
− 1+

p∑
�=0

g�ζ
�+1 + f p+1ζ

p+1
)

=
ζ→0
∓
∞∑

�=−1

ĝ�ζ
�+1, (C.27)

and hence (C.22).
A comparison of coefficients in (C.26) proves (C.25) for f̂�. Similarly, we use (C.27)
to establish (C.25) for ĝ�. Next, multiplying (C.1) and (C.4), a comparison of coeffi-
cients of ηk yields

k∑
�=0

ĉk−�(E)c�(E) = δk,0, k ∈ N0. (C.28)

Thus, one computes

�∑
m=0

c�−m(E) f̂m =
�∑

m=0

m∑
k=0

c�−m(E)ĉm−k(E) fk =
�∑

k=0

�∑
q=k

c�−q(E)ĉq−k(E) fk

=
�∑

k=0

( �−k∑
m=0

c�−k−m(E)ĉm(E)

)
fk = f�, � = 0, . . . , p,

applying (C.28). Hence one obtains (C.24) for f� and thus (C.23) (cf. (1.9), (1.10)).
The corresponding proof of (C.24) for g� is similar to that of f�.

Next, we turn to asymptotic expansions of various quantities in the case of the
Ablowitz–Ladik hierarchy. We start with some general results which eventually will
be connected with the corresponding Lax difference expression L introduced in



372 Appendix C

(3.61), assuming α, β ∈ CZ, α(n)β(n) /∈ {0, 1}, n ∈ Z. Consider a fundamental
system of solutions �±(z, · ) = (ψ1,±(z, · ), ψ2,±(z, · ))� of U (z)�−± (z) = �±(z)
for z ∈ C (or in some subdomain of C), with U given by (3.4), such that

det(�−(z),�+(z)) �= 0.

Introducing

φ±(z, n) = ψ2,±(z, n)

ψ1,±(z, n)
, z ∈ C, n ∈ N, (C.29)

then φ± satisfy the Riccati-type equation

αφ±φ−± − φ−± + zφ± = zβ, (C.30)

and one introduces in addition,

f = 2

φ+ − φ−
, (C.31)

g = φ+ + φ−
φ+ − φ−

, (C.32)

h = 2φ+φ−
φ+ − φ−

. (C.33)

Using the Riccati-type equation (C.30) and its consequences,

α(φ+φ−+ − φ−φ−−)− (φ−+ − φ−−)+ z(φ+ − φ−) = 0,

α(φ+φ−+ + φ−φ−−)− (φ−+ + φ−−)+ z(φ+ + φ−) = 2zβ,

one derives the identities

z(g− − g)+ zβf+ αh− = 0, (C.34)

zβf− + αh− g+ g− = 0, (C.35)

−f+ zf− + α(g+ g−) = 0, (C.36)

zβ(g− + g)− zh+ h− = 0, (C.37)

g2 − fh = 1. (C.38)

Moreover, (C.34)–(C.37) and (C.38) also permit one to derive nonlinear difference
equations for f, g, and h separately, and one obtains(

(α+ + zα)2f− z(α+)2γ f−
)2 − 2zα2γ+

(
(α+ + zα)2f+ z(α+)2γ f−

)
f+

+ z2α4(γ+)2(f+)2 = 4(αα+)2(α+ + αz)2, (C.39)

(α+ + zα)(β + zβ+)(z + α+β)(1+ zαβ+)g2

+ z(α+γ g− + zαγ+g+)(zβ+γ g− + βγ+g+)
− zγ

(
(α+β + z2αβ+)(2− γ+)+ 2z(1− γ+)(2− γ )

)
g−g
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− zγ+
(
2z(1− γ )(2− γ+)+ (α+β + z2αβ+)(2− γ )

)
g+g

= (α+β − z2αβ+)2, (C.40)

z2((β+)2γ h− − β2γ+h+
)2 − 2z(β + zβ+)2

(
(β+)2γ h− + β2γ+h+

)
h

+ (β + zβ+)4h2 = 4z2(ββ+)2(β + β+z)2. (C.41)

To make the connection with L and its Green’s function, we need to digress a bit.
Introducing the transfer matrix T (z, · ) associated with L by

T (z, n) =


ρ(n)−1

(
α(n) z

z−1 β(n)

)
, n odd,

ρ(n)−1

(
β(n) 1

1 α(n)

)
, n even,

n ∈ Z, (C.42)

recalling that ρ = γ 1/2 = (1− αβ)1/2, one then verifies that

T (z, n) = A(z, n)z−1/2ρ(n)−1U (z, n)A(z, n − 1)−1. (C.43)

Here we introduced

A(z, n) =



(
z1/2 0

0 z−1/2

)
, n odd,(

0 1

1 0

)
, n even,

n ∈ Z.

Introducing in addition(
u±(z, n)
v±(z, n)

)
= C±z−n/2

( n∏
n′=1

ρ(n′)−1
)

A(z, n)

(
ψ1,±(z, n)
ψ2,±(z, n)

)
, n ∈ Z, (C.44)

for some constants C± ∈ C \ {0}, (C.43) and (C.44) yield

T (z)

(
u−±(z)
v−±(z)

)
=
(

u±(z)
v±(z)

)
.

Moreover, one can show that

Lu±(z) = zu±(z), L�v±(z) = zv±(z),
Dv±(z) = u±(z), Eu±(z) = zv±(z),

where L� denotes the difference expression associated with the transpose of the
infinite matrix L (cf. (3.59)) in the standard basis of �2(Z).
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Again, formally, that is, ignoring possible boundary conditions at+∞ and/or−∞,
the Green’s function of an �2(Z)-realization of the Lax difference expression L is
then of the form

G(z, n, n′) = (L − z)−1(n, n′) = (δn, (L − z)−1δn′)

= −1

z det

(
u+(z, 0) u−(z, 0)
v+(z, 0) v−(z, 0)

)

×
{
v−(z, n′)u+(z, n), n′ < n and n = n′ even,

v+(z, n′)u−(z, n), n′ > n and n = n′ odd,
n, n′ ∈ Z,

= − 1

4z

(1− φ+(z, 0))(1− φ−(z, 0))

φ+(z, 0)− φ−(z, 0)

×
{
v−(z, n′)u+(z, n), n′ < n and n = n′ even,

v+(z, n′)u−(z, n), n′ > n and n = n′ odd,
n, n′ ∈ Z.

Here �±(z, · ) in (C.44) have to be chosen such that for all n0 ∈ Z,(
u±(z, · )
v±(z, · )

)
∈ �2([n0,±∞) ∩ Z)2. (C.45)

For the connection between f, g, and h and the Green’s function of L one then
obtains

f(z, n) = −2α(n)(zG(z, n, n)+ 1)− 2ρ(n)z

{
G(z, n − 1, n), n even,

G(z, n, n − 1), n odd,

g(z, n) = −2zG(z, n, n)− 1,

h(z, n) = −2β(n)zG(z, n, n)− 2ρ(n)z

{
G(z, n, n − 1), n even,

G(z, n − 1, n), n odd,

illustrating the spectral theoretic content of f, g, and h.
Next, we assume the existence of the following asymptotic expansions of f, g, and

h near 1/z = 0 and z = 0. More precisely, near 1/z = 0 we assume that

f(z) =|z|→∞
z∈CR

−
∞∑
�=0

f̂�,+z−�−1, g(z) =|z|→∞
z∈CR

−
∞∑
�=0

ĝ�,+z−�,

h(z) =|z|→∞
z∈CR

−
∞∑
�=0

ĥ�,+z−�,
(C.46)
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for z in some cone CR with apex at z = 0 and some opening angle in (0, 2π ],
exterior to a disk centered at z = 0 of sufficiently large radius R > 0, for some set
of coefficients f̂�,+, ĝ�,+, and ĥ�,+, � ∈ N0. Similarly, near z = 0 we assume that

f(z) =|z|→0
z∈Cr

−
∞∑
�=0

f̂�,−z�, g(z) =|z|→0
z∈Cr

−
∞∑
�=0

ĝ�,−z�,

h(z) =|z|→0
z∈Cr

−
∞∑
�=0

ĥ�,−z�+1,

(C.47)

for z in some cone Cr with apex at z = 0 and some opening angle in (0, 2π ], interior
to a disk centered at z = 0 of sufficiently small radius r > 0, for some set of
coefficients f̂�,−, ĝ�,−, and ĥ�,−, � ∈ N0. Then one can prove the following result.

Theorem C.3 Assume α, β ∈ CZ, α(n)β(n) /∈ {0, 1}, n ∈ Z, and the existence of
the asymptotic expansions (C.46) and (C.47). Then f, g, and h have the following
asymptotic expansions as |z| → ∞, z ∈ CR, respectively, |z| → 0, z ∈ Cr ,

f(z) =|z|→∞
z∈CR

−
∞∑
�=0

f̂�,+z−�−1, g(z) =|z|→∞
z∈CR

−
∞∑
�=0

ĝ�,+z−�,

h(z) =|z|→∞
z∈CR

−
∞∑
�=0

ĥ�,+z−�,
(C.48)

and

f(z) =|z|→0
z∈Cr

−
∞∑
�=0

f̂�,−z�, g(z) =|z|→0
z∈Cr

−
∞∑
�=0

ĝ�,−z�,

h(z) =|z|→0
z∈Cr

−
∞∑
�=0

ĥ�,−z�+1,

(C.49)

where f̂�,±, ĝ�,±, and ĥ�,± are the homogeneous versions of the coefficients f�,±,
g�,±, and h�,± defined in (3.32)–(3.34). In particular, f̂�,±, ĝ�,±, and ĥ�,± can be
computed from the following nonlinear recursion relations1

f̂0,+ = −α+, f̂1,+ = (α+)2β − γ+α++,
f̂2,+ = −(α+)3β2 + (α+)2β+ − α+++γ+γ++

+ (α+)2
(
(β−γ − 2α++ββ+)+ α+α++(2β − α++(β+)2

)
,

1 Here sums with upper limits strictly less than their lower limits are interpreted as zero.
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α4α+ f̂�,+ = 1

2

(
(α+)4

�−4∑
m=0

f̂m,+ f̂�−m−4,+ + α4
�−1∑
m=1

f̂m,+ f̂�−m,+

− 2(α+)2
�−3∑
m=0

f̂m,+
(− 2αα+ f̂�−m−3,+ + (α+)2γ f̂ −�−m−3,+m

+ α2γ+ f̂ +�−m−3,+
)

+
�−2∑
m=0

(
α4(γ+)2 f̂ +m,+ f̂ +�−m−2,+ + (α+)2γ f̂ −m,+((α+)2γ f̂ −�−m−2,+

− 2α2γ+ f̂ +�−m−2,+)

− 2αα+ f̂m,+(−3αα+ f̂�−m−2,+ + 2(α+)2γ f̂ −�−m−2,+ + 2α2γ+ f̂ +�−m−2,+)
)

− 2α2
�−1∑
m=0

f̂m,+
(− 2αα+ f̂�−m−1,+ + (α+)2γ f̂ −�−m−1,+m + α2γ+ f̂ +�−m−1,+

))
,

� ≥ 3, (C.50)

f̂0,− = α, f̂1,− = γα− − α2β+,
f̂2,− = α−−γ−γ − (α−)2βγ − 2α−αγβ+ + α2(α(β+)2 − γ+

)
β++,

α(α+)4 f̂�,− = −1

2

(
α4

�−4∑
m=0

f̂m,− f̂�−m−4,− + (α+)4
�−1∑
m=1

f̂m,− f̂�−m,−

− 2α2
�−3∑
m=0

f̂m,−
(− 2αα+ f̂�−m−3,− + (α+)2γ f̂ −�−m−3,− + α2γ+ f̂ +�−m−3,−

)
+

�−2∑
m=0

(
α4(γ+)2 f̂ +m,− f̂ +�−m−2,−

+ (α+)2γ f̂ −m,−((α+)2γ f̂ −�−m−2,− − 2α2γ+ f̂ +�−m−2,−)

− 2αα+ f̂m,−(−3αα+ f̂�−m−2,− + 2(α+)2γ f̂ −�−m−2,− + 2α2γ+ f̂ +�−m−2,−)
)

− 2(α+)2
�−1∑
m=0

f̂m,−
(− 2αα+ f̂�−m−1,− + (α+)2γ f̂ −�−m−1,−

+ α2γ+ f̂ +�−m−1,−
))
, � ≥ 3, (C.51)

ĝ0,+ = 1

2
, ĝ1,+ = −α+β,

ĝ2,+ = −α++β + (α+)2β2 + α+
(− β−γ + α++ββ+

)
,
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(αβ+)2ĝ�,+ = −
(
(α+)2β2

�−4∑
m=0

ĝm,+ĝ�−m−4,+ + α2(β+)2
�−1∑
m=1

ĝm,+ĝ�−m,+

+ α+β
�−3∑
m=0

(
γ γ+ĝ−m,+ĝ+�−m−3,+ + ĝm,+((1+ αβ)(1+ α+β+)ĝ�−m−3,+

− (γ + α+β+γ )ĝ−�−m−3,+ + (−2+ γ )γ+ĝ+�−m−3,+)
)

+
�−2∑
m=0

(
α+β+γ 2ĝ−m,+ĝ−�−m−2,+ + αβ(γ+)2ĝ+m,+ĝ+�−m−2,+

+ ĝm,+((α+β+ + α2α+β2β+ + αβ(1+ α+β+)2)ĝ�−m−2,+
− 2(α+(1+ αβ)β+γ ĝ−�−m−2,+ + αβ(1+ α+β+)γ+ĝ+�−m−2,+)

)
+ αβ+

�−1∑
m=0

(
γ γ+ĝ−m,+ĝ+�−m−1,+ + ĝm,+((1+ αβ)(1+ α+β+)ĝ�−m−1,+

− (γ + α+β+γ )ĝ−�−m−1,+ + (−2+ γ )γ+ĝ+�−m−1,+)
))
, � ≥ 3,

(C.52)

ĝ0,− = 1

2
, ĝ1,− = −αβ+,

ĝ2,− = −α−γβ+ + α
(
α(β+)2 − γ+

)
β++,

(α+)2β2ĝ�,− = −
(
α2(β+)2

�−4∑
m=0

ĝm,−ĝ�−m−4,− + (α+)2β2
�−1∑
m=1

ĝm,−ĝ�−m,−

+ αβ+
�−3∑
m=0

(
γ γ+ĝ−m,−ĝ+�−m−3,− + ĝm,−((1+ αβ)(1+ α+β+)ĝ�−m−3,−

− (γ + α+β+γ )ĝ−�−m−3,− + (−2+ γ )γ+ĝ+�−m−3,−)
)

+
�−2∑
m=0

(
α+β+γ 2ĝ−m,−ĝ−�−m−2,− + αβ(γ+)2ĝ+m,−ĝ+�−m−2,−

+ ĝm,−((α+β+ + α2α+β2β+ + αβ(1+ α+β+)2)ĝ�−m−2,−
− 2(α+(1+ αβ)β+γ ĝ−�−m−2,− + αβ(1+ α+β+)γ+ĝ+�−m−2,−))

)
+ α+β

�−1∑
m=0

(
γ γ+ĝ−m,−ĝ+�−m−1,− + ĝm,−((1+ αβ)(1+ α+β+)ĝ�−m−1,−

− (γ + α+β+γ )ĝ−�−m−1,− + (−2+ γ )γ+ĝ+�−m−1,−)
))
, � ≥ 3,

(C.53)
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ĥ0,+ = β, ĥ1,+ = γβ− − α+β2,

ĥ2,+ = α2(β−)2β + β−−γ−γ − αβ−(β− − 2α+β2)

+ β
(− α++β + (α+)2β2 + α+(−2β− + α++ββ+)

)
,

β(β+)4ĥ�,+ = −1

2

(
β4

�−4∑
m=0

ĥm,+ĥ�−m−4,+ + (β+)4
�−1∑
m=1

ĥm,+ĥ�−m,+

− 2β2
�−3∑
m=0

ĥm,+
(− 2ββ+ĥ�−m−3,+ + (β+)2γ ĥ−�−m−3,+ + β2γ+ĥ+�−m−3,+

)
+

�−2∑
m=0

(
β4(γ+)2ĥ+m,+ĥ+�−m−2,+

+ (β+)2γ ĥ−m,+((β+)2γ ĥ−�−m−2,+ − 2β2γ+ĥ+�−m−2,+)
− 2ββ+ĥm,+(−3ββ+ĥ�−m−2,+ + 2(β+)2γ ĥ−�−m−2,+ + 2β2γ+ĥ+�−m−2,+)

)
− 2(β+)2

�−1∑
m=0

ĥm,+
(− 2ββ+ĥ�−m−1,+ + (β+)2γ ĥ−�−m−1,+

+ β2γ+ĥ+�−m−1,+
))
, � ≥ 3, (C.54)

ĥ0,− = −β+, ĥ1,− = −γ+β++ + α(β+)2,
ĥ2,− = α−γ (β+)2 − α2(β+)3 + 2αβ+γ+β++ + γ+

(
α+(β++)2 − γ++

)
β+++,

β+β4ĥ�,− = 1

2

(
(β+)4

�−4∑
m=0

ĥm,−ĥ�−m−4,− + β4
�−1∑
m=1

ĥm,−ĥ�−m,−

− 2(β+)2
�−3∑
m=0

ĥm,−
(− 2ββ+ĥ�−m−3,− + (β+)2γ ĥ−�−m−3,−

+ β2γ+ ĥ+�−m−3,−
)

+
�−2∑
m=0

(
β4(γ+)2ĥ+m,−ĥ+�−m−2,−

+ (β+)2γ ĥ−m,−((β+)2γ ĥ−�−m−2,− − 2β2γ+ĥ+�−m−2,−)
− 2ββ+ĥm,−(−3ββ+ ĥ�−m−2,− + 2(β+)2γ ĥ−�−m−2,−
+ 2β2γ+ĥ+�−m−2,−)

)
− 2β2

�−1∑
m=0

ĥm,−
(− 2ββ+ĥ�−m−1,− + (β+)2γ ĥ−�−m−1,−

+ β2γ+ĥ+�−m−1,−
))
, � ≥ 3. (C.55)



Asymptotic Spectral Parameter Expansions 379

Proof We first consider the expansions (C.48) near 1/z = 0 and the nonlinear re-
cursion relations (C.50), (C.52), and (C.54) in detail. Inserting expansion (C.46) for
f into (C.39), the expansion (C.46) for g into (C.40), and the expansion (C.46) for h

into (C.41), then yields the nonlinear recursion relations (C.50), (C.52), and (C.54),
but with f̂�,+, ĝ�,+, and ĥ�,+ replaced by f̂�,+, ĝ�,+, and ĥ�,+, respectively. From the
leading asymptotic behavior one finds that f̂0,+ = −α+, ĝ0,+ = 1

2 , and ĥ0,+ = β.
Next, inserting the expansions (C.46) for f, g, and h into (C.34)–(C.37), and compar-
ing powers of z−� as |z| → ∞, z ∈ CR , one infers that f�,+, g�,+, and h�,+ satisfy the
linear recursion relations (3.19)–(3.22). Here we have used (3.16). The coefficients
f̂0,+, ĝ0,+, and ĥ0,+ are consistent with (3.19) for c0,+ = 1. Hence one concludes
that

f̂�,+ = f�,+, ĝ�,+ = g�,+, ĥ�,+ = h�,+, � ∈ N0,

for certain values of the summation constants c�,+. To conclude that actually, f̂�,+ =
f̂�,+, ĝ�,+ = ĝ�,+, ĥ�,+ = ĥ�,+, � ∈ N0, and hence all c�,+, � ∈ N, vanish, we now
rely on the notion of degree as introduced in Remark 3.6. To this end we recall that

deg
(

f̂�,+
) = �+ 1, deg

(
ĝ�,+

) = �, deg
(
ĥ�,+

) = �, � ∈ N0,

(cf. (3.36)). Similarly, the nonlinear recursion relations (C.50), (C.52), and (C.54)
yield inductively that

deg
(
f̂�,+
) = �+ 1, deg

(
ĝ�,+

) = �, deg
(
ĥ�,+

) = �, � ∈ N0.

Hence one concludes

f̂�,+ = f̂�,+, ĝ�,+ = ĝ�,+, ĥ�,+ = ĥ�,+, � ∈ N0.

The proof of the corresponding asymptotic expansion (C.49) and the nonlinear re-
cursion relations (C.51), (C.53), and (C.55) follows precisely the same strategy and
is hence omitted.

Given this general result on asymptotic (Green’s function) expansions for
Ablowitz–Ladik Lax difference expressions of the type (3.61), we now specialize to
the algebro-geometric case at hand. We recall our conventions y(P) = ∓(ζ−p−1 +
O(ζ−p)) for P near P∞± (where ζ = 1/z) and y(P) = ±((c0,−/c0,+)+ O(ζ )) for
P near P0,± (where ζ = z).

Theorem C.4 Assume (3.87), s-ALp(α, β) = 0, and suppose P = (z, y) ∈
Kp \ {P∞+ , P∞−}. Then z p−Fp/y, z p−G p/y, and z p−Hp/y have the following con-
vergent expansions as P → P∞± , respectively, P → P0,±,

z p−

c0,+
Fp(z)

y
=
{
∓∑∞�=0 f̂�,+ζ �+1, P → P∞± , ζ = 1/z,

±∑∞�=0 f̂�,−ζ �, P → P0,±, ζ = z,
(C.56)
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z p−

c0,+
G p(z)

y
=
{
∓∑∞�=0 ĝ�,+ζ �, P → P∞± , ζ = 1/z,

±∑∞�=0 ĝ�,−ζ �, P → P0,±, ζ = z,
(C.57)

z p−

c0,+
Hp(z)

y
=
{
∓∑∞�=0 ĥ�,+ζ �, P → P∞± , ζ = 1/z,

±∑∞�=0 ĥ�,−ζ �+1, P → P0,±, ζ = z,
(C.58)

where ζ = 1/z (resp., ζ = z) is the local coordinate near P∞± (resp., P0,±) and
f̂�,±, ĝ�,±, and ĥ�,± are the homogeneous versions1 of the coefficients f�,±, g�,±,
and h�,± as introduced in (3.32)–(3.34). Moreover, one infers for the Em-dependent
summation constants c�,±, � = 0, . . . , p±, in Fp, G p, and Hp that

c�,± = c0,±c�
(
E±1), � = 0, . . . , p±. (C.59)

In addition, one has the following relations between the homogeneous and nonho-
mogeneous recursion coefficients:

f�,± = c0,±
�∑

k=0

c�−k
(
E±1) f̂k,±, � = 0, . . . , p±, (C.60)

g�,± = c0,±
�∑

k=0

c�−k
(
E±1)ĝk,±, � = 0, . . . , p±, (C.61)

h�,± = c0,±
�∑

k=0

c�−k
(
E±1)hk,±, � = 0, . . . , p±. (C.62)

Furthermore, one has

c0,± f̂�,± =
�∑

k=0

ĉ�−k
(
E±1) fk,±, � = 0, . . . , p± − 1, (C.63)

c0,± f̂ p±,± =
p±−1∑
k=0

ĉp±−k
(
E±1) fk,± + ĉ0(E

±1) f p∓−1,∓, (C.64)

c0,±ĝ�,± =
�∑

k=0

ĉ�−k
(
E±1)gk,±, � = 0, . . . , p± − 1, (C.65)

c0,±ĝp±,± =
p±−1∑
k=0

ĉp±−k
(
E±1)gk,± + ĉ0(E

±1)gp∓,∓, (C.66)

1 Strictly speaking, the coefficients f̂�,±, ĝ�,±, and ĥ�,± in (C.56)–(C.58) no longer have a well-defined
degree and hence represent a slight abuse of notation since we assumed that s-ALp(α, β) = 0. At any
rate, they are explicitly given by (C.69)–(C.71).
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c0,±ĥ�,± =
�∑

k=0

ĉ�−k
(
E±1)hk,±, � = 0, . . . , p± − 1, (C.67)

c0,±ĥ p±,± =
p±−1∑
k=0

ĉp±−k
(
E±1)hk,± + ĉ0(E

±1)h p∓−1,∓. (C.68)

For general � (not restricted to � ≤ p±) one has1

c0,± f̂�,± =


∑�

k=0 ĉ�−k
(
E±1

)
fk,±, � = 0, . . . , p± − 1,∑p±−1

k=0 ĉ�−k
(
E±1

)
fk,±

+∑p∓−1
k=(p−�)∨0 ĉ�+k−p

(
E±1

)
fk,∓,

� ≥ p±,
(C.69)

c0,±ĝ�,± =


∑�

k=0 ĉ�−k
(
E±1

)
gk,±, � = 0, . . . , p± − δ±,∑p±−δ±

k=0 ĉ�−k
(
E±1

)
gk,±

+∑p∓−δ±
k=(p−�)∨0 ĉ�+k−p

(
E±1

)
gk,∓,

� ≥ p± − δ± + 1,
(C.70)

c0,±ĥ�,± =


∑�

k=0 ĉ�−k
(
E±1

)
hk,±, � = 0, . . . , p± − 1,∑p±−1

k=0 ĉ�−k
(
E±1

)
hk,±

+∑p∓−1
k=(p−�)∨0 ĉ�+k−p

(
E±1

)
hk,∓,

� ≥ p±.
(C.71)

Here we used the convention

δ± =
{

0, +,
1, −.

Proof Identifying

�+(z, · ) with �(P, · , 0) and �−(z, · ) with �(P∗, · , 0), (C.72)

recalling that W (�(P, · , 0),�(P∗, · , 0)) = −c0,+zn−n0−p− yFp(z, 0)−1�(n, n0)

(cf. (3.109)), and similarly, identifying

φ+(z, · ) with φ(P, · ) and φ−(z, · ) with φ(P∗, · ), (C.73)

a comparison of (C.29)–(C.33) and the results of Lemmas 3.18 and 3.21 shows that
we may also identify

f with ∓ 2Fp

c0,+z−p− y
, g with ∓ 2G p

c0,+z−p− y
, and h with ∓ 2Hp

c0,+z−p− y
,

the sign depending on whether P tends to P∞± or to P0,±. In particular, (C.34)–
(C.41) then correspond to (3.8)–(3.11), (3.39), (3.43)–(3.45), respectively. Since

1 m ∨ n = max{m, n}.
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z p−Fp/y, z p−G p/y, and z p−Hp/y clearly have asymptotic (in fact, even conver-
gent) expansions as |z| → ∞ and as |z| → 0, the results of Theorem C.3 apply.
Thus, as P → P∞± , one obtains the following expansions using (C.1) and (3.13)–
(3.15):

z p−

c0,+
Fp(z)

y

=
ζ→0
∓ 1

c0,+

( ∞∑
k=0

ĉk(E)ζ
k
)( p−∑

�=1

f p−−�,−ζ p++� +
p+−1∑
�=0

f p+−1−�,+ζ p+−�
)

=
ζ→0
∓
∞∑
�=0

f̂�,+ζ �+1, (C.74)

z p−

c0,+
G p(z)

y

=
ζ→0
∓ 1

c0,+

( ∞∑
k=0

ĉk(E)ζ
k
)( p−∑

�=1

gp−−�,−ζ p++� +
p+∑
�=0

gp+−�,+ζ p+−�
)

=
ζ→0
∓
∞∑
�=0

ĝ�,+ζ �, (C.75)

z p−

c0,+
Hp(z)

y

=
ζ→0
∓ 1

c0,+

( ∞∑
k=0

ĉk(E)ζ
k
)( p−−1∑

�=0

h p−−1−�,−ζ p++� +
p+∑
�=1

h p+−�,+ζ p+−�
)

=
ζ→0
∓
∞∑
�=0

ĥ�,+ζ �. (C.76)

This implies (C.56)–(C.58) as P → P∞± .

Similarly, as P → P0,±, (C.1) and (3.13)–(3.15), and (3.41) imply

z p−

c0,+
Fp(z)

y
=

ζ→0
± 1

c0,−

( ∞∑
k=0

ĉk(E
−1)ζ k

)

×
( p−∑

�=1

f p−−�,−ζ p+−� +
p+−1∑
�=0

f p+−1−�,+ζ p++�
)

=
ζ→0
±
∞∑
�=0

f̂�,−ζ �,



Asymptotic Spectral Parameter Expansions 383

z p−

c0,+
G p(z)

y
=

ζ→0
± 1

c0,−

( ∞∑
k=0

ĉk(E
−1)ζ k

)

×
( p−∑

�=1

gp−−�,−ζ p+−� +
p+∑
�=0

gp+−�,+ζ p++�
)

=
ζ→0
±
∞∑
�=0

ĝ�,−ζ �,

z p−

c0,+
Hp(z)

y
=

ζ→0
± 1

c0,−

( ∞∑
k=0

ĉk(E
−1)ζ k

)

×
( p−−1∑

�=0

h p−−1−�,−ζ p+−� +
p+∑
�=1

h p+−�,+ζ p++�
)

=
ζ→0
±
∞∑
�=0

ĥ�,−ζ �+1.

Thus, (C.56)–(C.58) hold as P → P0,±.

Next, comparing powers of ζ in the second and third term of (C.74), formula (C.63)
follows (and hence (C.69) as well). Formulas (C.65) and (C.67) follow by using
(C.75) and (C.76), respectively.

To prove (C.60) one uses (C.6) and finds

c0,±
�∑

m=0

c�−m
(
E±1) f̂m,± =

�∑
m=0

c�−m(E)
m∑

k=0

ĉm−k
(
E±1) fk,± = f�,±.

The proofs of (C.61) and (C.62) and those of (C.70) and (C.71) are analogous.

Finally, we also mention the following system of recursion relations for the homo-
geneous coefficients f̂�,±, ĝ�,±, and ĥ�,±.

Lemma C.5 The homogeneous coefficients f̂�,±, ĝ�,±, and ĥ�,± are uniquely de-
fined by the following recursion relations:

ĝ0,+ = 1

2
, f̂0,+ = −α+, ĥ0,+ = β,

ĝ�+1,+ =
�∑

k=0

f̂�−k,+ĥk,+ −
�∑

k=1

ĝ�+1−k,+ĝk,+,

f̂ −�+1,+ = f̂�,+ − α(ĝ�+1,+ + ĝ−�+1,+),

ĥ�+1,+ = ĥ−�,+ + β(ĝ�+1,+ + ĝ−�+1,+),

(C.77)
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and

ĝ0,− = 1

2
, f̂0,− = α, ĥ0,− = −β+,

ĝ�+1,− =
�∑

k=0

f̂�−k,−ĥk,− −
�∑

k=1

ĝ�+1−k,−ĝk,−,

f̂�+1,− = f̂ −�,− + α(ĝ�+1,− + ĝ−�+1,−),

ĥ−�+1,− = ĥ�,− − β(ĝ�+1,− + ĝ−�+1,−).

Proof One verifies that the coefficients defined via these recursion relations satisfy
(3.19)–(3.22) (resp., (3.23)–(3.26)). Since they are homogeneous of the required de-
gree this completes the proof.

Notes

This appendix is patterned after Appendix D in Gesztesy and Holden (2003b).
High-energy expansions for the Toda system were studied in Section 4 of Bulla

et al. (1998) (see also Teschl (2000, Sect. 12.3)).
The high-energy expansion for the AL-system is taken from Gesztesy et al. (to

appear).
For more details on (C.42)–(C.45) we refer to Gesztesy and Zinchenko (2006b)

and Gesztesy et al. (2008a).



Appendix D

Lagrange Interpolation

Tvertimot.
Henrik Ibsen’s very last word1

In this appendix we briefly review essentials of the standard Lagrange interpolation
formalism. Near the end we briefly turn to the general situation where the interpolat-
ing polynomial need not have distinct zeros.

Assuming p ∈ N to be fixed and introducing

Sk = {� = (�1, . . . , �k) ∈ Nk | 1 ≤ �1 < · · · < �k ≤ p}, k = 1, . . . , p,

I( j)
k = {� = (�1, . . . , �k) ∈ Sk | �m �= j, m = 1, . . . , k},

k = 1, . . . , p − 1, j = 1, . . . , p,

one defines the symmetric functions

�0(µ) = 1, �k(µ) = (−1)k
∑
�∈Sk

µ�1 · · ·µ�k , k = 1, . . . , p,

�
( j)
0 (µ) = 1,

�
( j)
k (µ) = (−1)k

∑
�∈I( j)

k

µ�1 · · ·µ�k , k = 1, . . . , p − 1, j = 1, . . . , p,

�
( j)
p (µ) = 0, j = 1, . . . , p,

where µ = (µ1, . . . , µp) ∈ Cp. Explicitly, one verifies

�1(µ) = −
p∑

�=1

µ�, �2(µ) =
p∑

�1,�2=1
�1<�2

µ�1µ�2 , etc.,

1 “On the contrary.”

385
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�
( j)
1 (µ) = −

p∑
�=1
� �= j

µ�, �
( j)
2 (µ) =

p∑
�1,�2=1
�1,�2 �= j
�1<�2

µ�1µ�2 , etc.

Introducing

Fp(z) =
p∏

j=1

(z − µ j ) =
p∑

�=0

�p−�(µ)z�, z ∈ C, (D.1)

one infers

Fp,z(µk) =
p∏

j=1
j �=k

(µk − µ j ).

The general form of Lagrange’s interpolation theorem then reads as follows.

Theorem D.1 Assume that µ1, . . . , µp are p distinct complex numbers. Then,

p∑
j=1

µm−1
j

Fp,z(µ j )
�
( j)
k (µ) = δm,p−k −�k+1(µ)δm,p+1, (D.2)

m = 1, . . . , p + 1, k = 0, . . . , p − 1.

Proof Let CR be a circle with center at the origin and radius R that contains the zeros
µ j of the polynomial Fp and that is oriented counterclockwise. Cauchy’s theorem
then yields

1

2π i

∮
CR

dζ
ζm−1

Fp(ζ )(ζ − z)
= zm−1

Fp(z)
+

p∑
k=1

µm−1
k

Fp,z(µ j )(µ j − z)
,

z �= µ1, . . . , µp, m = 1, . . . , p + 1.

However, by letting R →∞, we infer that

1

2π i

∮
CR

dζ
ζm−1

Fp(ζ )(ζ − z)
= lim

R→∞
Rm−1

Fp(R)
= δm,p+1, m = 1, . . . , p + 1,

which implies

zm−1 −
p∑

k=1

µm−1
k Fp(z)

Fp,z(µ j )(z − µ j )
= Fp(z)δm,p+1. (D.3)

Using the symmetric functions � j , we may write

Fp(z) =
p∑

j=0

� j (µ)z
p− j (D.4)
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and

Fp(z)

z − µ j
=

p−1∑
k=0

�
( j)
k (µ)z p−1−k . (D.5)

Expanding both sides of equation (D.3) in powers in z, using (D.4) on the right-hand
side and (D.5) on the left-hand side, proves (D.2).

The simplest Lagrange interpolation formula reads in the case k = 0,

p∑
j=1

µm−1
j

Fp,z(µ j )
= δm,p, m = 1, . . . , p.

As a consequence, if Q p−1 denotes a polynomial of degree p − 1, then

Q p−1(z) = Fp(z)
p∑

j=1

Q p−1(µ j )

Fp,z(µ j )(z − µ j )

=
p∑

j=1

Q p−1(µ j )

p∏
k=1
k �= j

z − µk

µ j − µk
, z ∈ C, (D.6)

assuming µ1, . . . , µp to be pairwise distinct.
For use in the main text we finally observe the following results.

Lemma D.2 Assume that µ1, . . . , µp are p distinct complex numbers. Then,

(i) �k+1(µ)+ µ j�
( j)
k (µ) = �

( j)
k+1(µ), k = 0, . . . , p − 1, j = 1, . . . , p.

(D.7)

(i i)
k∑

�=0

�k−�(µ)µ�
j = �

( j)
k (µ), k = 0, . . . , p, j = 1, . . . , p. (D.8)

(i i i)
k−1∑
�=0

�
( j)
k−1−�(µ)z

� = 1

z − µ j

( k∑
�=0

�k−�(µ)z� −�
( j)
k (µ)

)
, (D.9)

k = 0, . . . , p, j = 1, . . . , p.

Proof (i) Adding (D.4) to µ j times (D.5), one finds

Fp(z)+ µ j
Fp(z)

z − µ j
=

p−1∑
k=0

(
�k+1 + µ j�

( j)
k

)
z p−k−1 + z p.
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However, one also has

Fp(z)+ µ j
Fp(z)

z − µ j
= z

Fp(z)

z − µ j
=

p−1∑
k=0

�
( j)
k+1z p−k−1 + z p,

using (D.5) and recalling �( j)
p = 0. Thus, (D.7) holds.

(i i) We prove (D.8) by induction on k. Equation (D.8) clearly holds for k = 0; next
assume that

k−1∑
�=0

�k−1−�µ�
j = �

( j)
k−1

holds. Then one finds that

k∑
�=0

�k−�µ�
j = �k + µ j

k∑
�=1

�k−�µ�−1
j

= �k + µ j

k−1∑
�=0

�k−1−�µ�
j = �k + µ j�

( j)
k−1 = �

( j)
k ,

using first the induction hypothesis and then (D.7).
(i i i) Using (D.7) and �0(µ) = �

( j)
0 (µ) = 1 one computes

(z−µ j )

k−1∑
�=0

�
( j)
k−1−�(µ)z

� =
k∑

m=1

�
( j)
k−m(µ)z

m −
k−1∑
�=0

µ j�
( j)
k−1−�(µ)z

�

=
k∑

m=1

�
( j)
k−m(µ)z

m +
k−1∑
�=0

�k−�(µ)z� −
k−1∑
�=0

�
( j)
k−�(µ)z

�

=
k−1∑
�=0

�k−�(µ)z� +�
( j)
0 (µ)zk −�

( j)
k (µ)

=
k∑

�=0

�k−�(µ)z� −�
( j)
k (µ).

Next, assuming µ j �= µ j ′ for j �= j ′, we introduce the p × p matrix Up(µ) by

U1(µ) = 1, Up(µ) =
(

µ
j−1
k∏p

m=1
m �=k

(µk − µm)

)p

j,k=1
, (D.10)

where µ = (µ1, . . . , µp) ∈ Cp.
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Lemma D.3 Suppose µ j ∈ C, j = 1, . . . , p, are p distinct complex numbers. Then,

Up(µ)
−1 =

(
�
( j)
p−k(µ)

)p

j,k=1
. (D.11)

Proof One observes that (D.10) may be written as

Up(µ) =
(

µ
j−1
k

Fp,z(µk)

)p

j,k=1
. (D.12)

Using Lagrange’s interpolation result, Theorem D.1 (replacing k by p − k in (D.2)),
then proves the result.

In the next result we derive some formulas useful in connection with the Toda
hierarchy. More precisely, we express f� and F̃r in terms of elementary symmetric
functions of µ1, . . . , µp.

Lemma D.4 Let ĉk(E) be defined as in (C.2). Then one infers the following result
for the homogeneous coefficients f̂� introduced in (1.7) in connection with the Toda
hierarchy,1

f̂� =
�∧p∑
k=0

ĉ�−k(E)�k(µ), � ∈ N0. (D.13)

Moreover, let r ∈ N0, then2

F̂r (µ j ) =
r∑

s=(r−p)∨0

ĉs(E)�
( j)
r−s(µ).

Proof It suffices to refer to (1.30), (1.64) and to note

Fp(z) =
p∑

�=0

f p−�z� =
p∏

j=1

(z − µ j ) =
p∑

�=0

�p−�(µ)z�,

that is, f� = ��(µ), � = 0, . . . , p. Equation (D.13) then follows from (C.25).
By definition,

F̂r (z) =
r∑

�=0

f̂r−�z� =
r∑

�=0

z�
(r−�)∧p∑

m=0

ĉr−�−m(E)�m(µ).

1 m ∧ n = min{m, n}.
2 m ∨ n = max{m, n}.
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Consider first the case r ≤ p. Then

F̂r (z) =
r∑

s=0

ĉs(E)
r−s∑
�=0

�r−�−s(µ)z
�

and hence

F̂r (µ j ) =
r∑

s=0

ĉs(E)�
( j)
r−s(µ),

using (D.8). In the case r ≥ p + 1, we find, applying (D.1),

F̂r (z) =
p∑

m=0

�m(µ)

r−m∑
s=0

ĉs(E)z
r−m−s

=
r−p∑
s=0

ĉs(E)

( p∑
�=0

��(µ)z
p−�
)

zr−p−s +
r∑

s=r−p+1

ĉs(E)
r−s∑
�=0

��(µ)z
r−s−�

= Fp(z)
r−p∑
s=0

ĉs(E)z
r−p−s +

r∑
s=r−p+1

ĉs(E)
r−s∑
�=0

��(µ)z
r−s−�

= Fp(z)
r−p∑
s=0

ĉs(E)z
r−p−s +

r∑
s=r−p+1

ĉs(E)
r−s∑
�=0

�r−s−�(µ)z�.

Hence,

F̂r (µ j ) =
r∑

s=r−p+1

ĉs(E)�
( j)
r−s(µ),

using (D.8) again.

Introducing

d�,k(E) =
�−k∑
m=0

c�−k−m(E)ĉm(E), k = 0, . . . , �, � = 0, . . . , p, (D.14)

d̃r,k(E) =
r−k∑
s=0

c̃r−k−s ĉs(E), k = 0, . . . , r ∧ p, (D.15)

for a given set of constants {c̃s}s=1,...,r ⊂ C, the corresponding nonhomogeneous
quantities f�, Fp(µ j ), and F̃r (µ j ) in the Toda case are then given by

f� =
�∑

k=0

c�−k(E) f̂k =
�∑

k=0

d�,k(E)�k(µ), � = 0, . . . , p, (D.16)
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Fp(µ j ) =
p∑

�=0

cp−�(E)F̂�(µ j ) =
p∑

�=0

dp,�(E)�
( j)
� (µ), c0 = 1, (D.17)

F̃r (µ j ) =
r∑

s=0

c̃r−s F̂s(µ j ) =
r∧p∑
k=0

d̃r,k(E)�
( j)
k (µ), r ∈ N0, c̃0 = 1. (D.18)

Here ck(E), k ∈ N0, are defined by (C.5).
In the remainder of this appendix we recall a useful interpolation formula which

goes beyond the standard Lagrange interpolation formula for polynomials in the
sense that the zeros of the interpolating polynomial need not be distinct.

Lemma D.5 Let p ∈ N and Sp−1 be a polynomial of degree p − 1. In addition, let
Fp be a monic polynomial of degree p of the form

Fp(z) =
q∏

k=1

(z − µk)
pk , p j ∈ N, µ j ∈ C, j = 1, . . . , q,

q∑
k=1

pk = p.

Then,

Sp−1(z) = Fp(z)
q∑

k=1

pk−1∑
�=0

S(�)p−1(µk)

�!(pk − �− 1)! (D.19)

×
(

d pk−�−1

dζ pk−�−1

(
(z − ζ )−1

q∏
k′=1, k′ �=k

(ζ − µk′)
−pk′

))∣∣∣∣
ζ=µk

, z ∈ C.

In particular, Sp−1 is uniquely determined by prescribing the p values

Sp−1(µk), S′p−1(µk), . . . , S(pk−1)
p−1 (µk), k = 1, . . . , q,

at the given points µ1. . . . , µq .
Conversely, prescribing the p complex numbers

α
(0)
k , α

(1)
k , . . . , α

(pk−1)
k , k = 1, . . . , q,

there exists a unique polynomial Tp−1 of degree p − 1,

Tp−1(z) = Fp(z)
q∑

k=1

pk−1∑
�=0

α
(�)
k

�!(pk − �− 1)! (D.20)

×
(

d pk−�−1

dζ pk−�−1

(
(z − ζ )−1

q∏
k′=1, k′ �=k

(ζ − µk′)
−pk′

))∣∣∣∣
ζ=µk

, z ∈ C,

such that

Tp−1(µk) = α
(0)
k , T ′p−1(µk) = α

(1)
k , . . . , T (pk−1)

p−1 (µk) = α
(pk−1)
k , k = 1, . . . , q.
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Proof Our starting point for proving (D.19) is the following formula,

Sp−1(z) = 1

2π i

∮
�

dζ Sp−1(ζ )

Fp(ζ )

Fp(ζ )− Fp(z)

ζ − z
, z ∈ C, (D.21)

where � is a simple, smooth, counterclockwise oriented curve encircling the points
µ1, . . . , µq . Since the integrand in (D.21) is analytic at the point ζ = z, we may,
without loss of generality, assume that � does not encircle z. With this assumption
one obtains

1

2π i

∮
�

dζ Sp−1(ζ )

ζ − z
= 0

and hence deforming � into sufficiently small counterclockwise oriented circles �k

with center at µk , k = 1, . . . , q, such that no µk′ , k′ �= k, is encircled by �k , one
obtains

Sp−1(z) = − Fp(z)

2π i

∮
�

dζ Sp−1(ζ )

Fp(ζ )(ζ − z)

= − Fp(z)

2π i

q∑
k=1

∮
�k

dζ Sp−1(ζ )

Fp(ζ )(ζ − z)

= − Fp(z)

2π i

q∑
k=1

p−1∑
�=0

S(�)p−1(µk)

�!
∮
�k

dζ (ζ − µk)
�

Fp(ζ )(ζ − z)

= − Fp(z)

2π i

q∑
k=1

p−1∑
�=0

S(�)p−1(µk)

�!
∮
�k

dζ (ζ − µk)
�

(ζ − z)
∏q

k′=1(ζ − µk′)pk′

= − Fp(z)

2π i

q∑
k=1

p−1∑
�=0

S(�)p−1(µk)

�!
∮
�k

dζ (ζ − µk)
�−pk

(ζ − z)
∏q

k′=1
k′ �=k

(ζ − µk′)pk′

= − Fp(z)

2π i

q∑
k=1

pk−1∑
�=0

S(�)p−1(µk)

�!
∮
�k

dζ (ζ − µk)
�−pk

(ζ − z)
∏q

k′=1
k′ �=k

(ζ − µk′)pk′
, (D.22)

where we used ∮
�k

dζ (ζ − µk)
�−pk f (ζ ) = 0 for � ≥ pk, � ∈ N,

for any function f analytic in a neighborhood of the disk Dk with boundary �k ,
k = 1, . . . , q, to arrive at the last line of (D.22). An application of Cauchy’s formula
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for derivatives of analytic functions to (D.22) then yields

Sp−1(z) = −Fp(z)
q∑

k=1

pk−1∑
�=0

S(�)p−1(µk)

�!

× 1

2π i

∮
�k

dζ
1

(ζ − µk)(pk−�−1)+1

1

(ζ − z)
∏q

k′=1, k′ �=k(ζ − µk′)pk′

= Fp(z)
q∑

k=1

pk−1∑
�=0

S(�)p−1(µk)

�!(pk − �− 1)!

×
(

d pk−�−1

dζ pk−�−1

(
1

(z − ζ )
∏q

k′=1, k′ �=k(ζ − µk′)pk′

))∣∣∣∣
ζ=µk

, z ∈ C,

and hence (D.19). Conversely, a linear algebraic argument shows that any polynomial
Tp−1 of degree p − 1 is uniquely determined by data of the type

Tp−1(µk), T ′p−1(µk), . . . , T (pk−1)
p−1 (µk), k = 1, . . . , q.

Uniqueness of the representation (D.19) then proves (D.20).

We briefly mention two special cases of (D.19). First, assume the generic case
where all zeros of Fp are distinct, that is,

q = p, pk = 1, µk �= µk′ for k �= k′, k, k′ = 1, . . . , p.

In this case (D.19) reduces to the classical Lagrange interpolation formula (cf. (D.6))

Sp−1(z) = Fp(z)
p∑

k=1

Sp−1(µk)

((d Fp(ζ )/dζ )|ζ=µk )(z − µk)
, z ∈ C.

Second, we consider the other extreme case where all zeros of Fp coincide, that is,

q = 1, p1 = p, Fp(z) = (z − µ1)
p, z ∈ C.

In this case (D.19) reduces of course to the Taylor expansion of Sp−1 around z = µ1,

Sp−1(z) =
p−1∑
�=0

S(�)p−1(µ1)

�! (z − µ1)
�, z ∈ C.

Notes

The material of the first part of this appendix (up to Lemma D.4), where the zeros
of the polynomial Fp are assumed to be distinct, is mostly taken from Gesztesy
and Holden (2002; 2003a) (see also Gesztesy and Holden (2003b, Appendix E,
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Lemma F.2)). A proof of Lagrange’s interpolation result in the simplest case k = 0
can be found, for example, in Toda (1989b, Appendix E).

Lemma D.5 in the final part of this appendix, where some (or even all) the zeros
of the polynomial Fp are permitted to coincide, is taken from Gesztesy et al. (2008b)
(see also Gesztesy et al. (2007b)).

Formula (D.21) is derived, for instance, in Markushevich (1985, Part 2, Sect. 2.11,
p. 68).
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Algebra is rich in structure, but weak in meaning.
René Thom1

N, the natural numbers
N0 = N ∪ {0}, the nonnegative integers
Z, the integers
R, the real numbers
T, the one-dimensional torus (homeomorphic to the circle S1)
C, the complex numbers
Re(z), Im(z), the real and imaginary part of z ∈ C
arg(z), the argument of z ∈ C
z, the complex conjugate of z
C∞ = C ∪ {∞} ∼= CP1, the Riemann sphere
CP2 = (C3 \ {0})/(C \ {0}), the projective plane p. 325
C± = {z ∈ C | Im(z) ≷ 0}, the open upper (lower)

complex half-plane
%x& = sup{n ∈ Z | n ≤ x}, the largest integer not exceeding x
p ∨ q, the maximum of p and q
p ∧ q, the minimum of p and q
Im , the identity matrix in Cm , m ≥ 2
a = (a1, . . . , am), a row vector in Cm , a�, a column vector in Cm

M�, the transpose of the matrix M
M∗, the adjoint (conjugate transpose) of the matrix M
diag(M) = (M1,1, . . . , Mm,m), a row vector built of the diagonal

terms of an m × m matrix M
dom(T ), the domain of an operator T

1 As quoted on http://www-groups.dcs.st-and.ac.uk/˜history/Mathematicians/
Thom.html
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ker(T ), the kernel (null space) of a linear operator T
spec(T ), the spectrum of a closed linear operator T
B(H), the Banach space of all bounded linear operators

defined on the Hilbert space H
tr(A), the trace of a trace-class operator A
[A, B] = AB − B A, the commutator of A and B∫ ⊕, the direct integral of Hilbert spaces or linear operators p. 63
L̆ , the Jacobi operator p. 118
G(z, n, n′), the Green’s function of L̆ pp. 119, 284
L̆ D±,n0

, the half-line Dirichlet operator p. 118
G D±,n0

, the Green’s function of the half-line
Dirichlet operator L̆ D±,n0

p. 120
�p(M), with p ∈ N and M is N, N0, or Z, etc.,

the space of p-summable complex-valued
sequences indexed by M

�∞(M), where M is N, N0, Z, etc.,
the set of complex-valued bounded sequences
indexed by M

( f, g) =∑n∈M f (n)g(n), the scalar product
in the Hilbert space �2(M)

Ck(�), the set of all k times continuously differentiable
functions on an open subset � ⊆ R

C∞(�,K), the set of all infinitely differentiable
functions on � taking values in K

Mn(C), the set of all n × n matrices with complex-valued entries
g = O( f ) as x → x0, (“big-Oh”) if g/ f is bounded

in a neighborhood of x0

g = o( f ), (“little-Oh”) if g(x)/ f (x)→ 0 as x → x0

∂w = ∂
∂w

, the (partial) derivative with respect to w

∂m
w = ∂m

∂wm , m ∈ N, ∂2
w1w2

= ∂2

∂w1∂w2

f ±(n) = S± f (n) = f (n ± 1), n ∈ Z
f (r) = S(r) f , S(r) = (S+)r if r ≥ 0; S(r) = (S−)−r if r < 0 p. 28
W ( f, g)(n) = a( f g+ − f +g), the Wronskian of f and g

for Jacobi difference expressions p. 43
Symn(X) = {{x1, . . . , xn} | x j ∈ X, j = 1, . . . , n

}
,

the nth symmetric product of X

�k(µ), elementary symmetric functions, �( j)
k (µ) p. 385

Kg , a compact Riemann surface of genus g p. 327
B(Kn), the set of branch points of Kn

in the hyperelliptic case pp. 328, 359
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the fundamental polygon of Kg p. 332

K̂g , the simply connected interior
of the fundamental polygon ∂K̂g p. 345

π̃z , π̃y , projections p. 325
[x2 : x1 : x0], homogeneous coordinates p. 325
{a j , b j }gj=1, a homology basis on Kg p. 331

ω, Abelian differential of the first kind p. 332
ω(2), �(2), Abelian differentials of the second kind p. 334
ω(3), �(3), Abelian differentials of the third kind p. 335
resP=Q f (P), the residue of a meromorphic function f

on a Riemann surface Kg at Q ∈ Kg

M(Kg), the set of meromorphic functions (0-forms) on Kg p. 336
M1(Kg), the set of meromorphic 1-forms on Kg p. 336
Lg , the period lattice p. 338
J (Kg) = Cg/Lg , the Jacobi variety of Kg p. 338
D, a divisor p. 336
Div(K), the set of divisors p. 336
deg(D), the degree of a divisor D p. 336
( f ), the divisor of f ∈M(Kg) \ {0} p. 337
(ω), the divisor of ω ∈M1(Kg) \ {0} p. 337
D ∼ E , the equivalence of divisors D and E p. 337
[D], the divisor class of the divisor D p. 337
i(D) = dim{ω ∈M1(K) | (ω) ≥ D},

the index of specialty of the divisor D p. 338
r(D) = dim{ f ∈M(K) | ( f ) ≥ D} p. 338
DQ , a nonnegative divisor of

degree m ∈ N, Q = {Q1, . . . , Qm} ∈ Symm(Kg) p. 340
AQ , αQ , ÂQ , α̂Q , Abel maps pp. 338, 340
θ , Riemann’s theta function p. 339
�Q , the vector of Riemann constants p. 340
∗: Kn → Kn , the hyperelliptic involution

(sheet exchange map) pp. 347, 358
�±, the upper and lower sheets of Kn

in the hyperelliptic case p. 359
sn, the Jacobian elliptic function p. 71
ψ(P, n, n0), ψ(P, n, n0, tr , t0,r ), Baker–Akhiezer functions for

the Toda hierarchy pp. 43, 87
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transformations, canonical transformations, and the inverse scattering method. Pages
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MIKHAILOV, A. V., OLSHANETSKY, M. A., AND PERELOMOV, A. M. 1981.
Two-dimensional generalized Toda lattice. Comm. Math. Phys., 79, 473–488.
MILLER, P. D. 1994. Macroscopic Lattice Dynamics. Ph.D. thesis, University of Arizona,
Arizona, USA.
MILLER, P. D. 1995. Macroscopic behavior in the Ablowitz–Ladik equations. Pages
158–167 of: MAKHANKOV, V. G., BISHOP, A. R., AND HOLM, D. D. (eds.), Nonlinear
Evolution Equations & Dynamical Systems. River Edge, NJ: World Scientific.
MILLER, P. D., ERCOLANI, N. M., KRICHEVER, I. M., AND LEVERMORE, C. D. 1995.
Finite genus solutions to the Ablowitz–Ladik equations. Comm. Pure Appl. Math., 48,
1369–1440.
MIRANDA, R. 1995. Algebraic Curves and Riemann Surfaces. Graduate Texts in
Mathematics, vol. 5. Providence, RI: Amer. Math. Soc.
MOSER, J. 1975a. Finitely many mass points on the line under the influence of an
exponential potential – an integrable system. Pages 467–497 of: MOSER, J. (ed.), Dynamical
Systems, Theory and Applications. Lecture Notes in Physics, vol. 38. Berlin: Springer.
MOSER, J. 1975b. Three integrable Hamiltonian systems connected with isospectral
deformations. Adv. in Math., 16, 197–220.



414 Bibliography

MUKAIHIRA, A. AND NAKAMURA, Y. 2002. Schur flow for orthogonal polynomials on the
unit circle and its integrable discretization. J. Comput. Appl. Math., 139, 75–94.

MUMFORD, D. 1978. An algebro-geometric construction of commuting operators and of
solutions to the Toda lattice equation, Korteweg deVries equation and related non-linear
equations. Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ.,
Kyoto, 1977), 115–153.

MUMFORD, D. 1983. Tata Lectures on Theta I. Progress in Mathematics, vol. 28. Boston:
Birkhäuser.
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NATANZON, S. M. 1980. Moduli spaces of real curves. Trans. Moscow Math. Soc., 37,
233–272.

NATANZON, S. M. 1990. Klein surfaces. Russian Math. Surveys, 45 (6), 53–108.

NATANZON, S. M. 1995. Real nonsingular finite zone solutions of soliton equations. Amer.
Math. Soc. Transl. Ser. 2, 170, 153–183.

NENCIU, I. 2005a. Lax Pairs for the Ablowitz–Ladik System via Orthogonal Polynomials on
the Unit Circle. Ph.D. thesis, California Institute of Technology, Pasadena, CA, USA.

NENCIU, I. 2005b. Lax pairs for the Ablowitz–Ladik system via orthogonal polynomials on
the unit circle. Int. Math. Res. Not. IMRN, 11, 647–686.

NENCIU, I. 2006. CMV matrices in random matrix theory and integrable systems: a survey.
J. Phys. A, 39, 8811–8822.

NENCIU, I. 2007. Poisson brackets for orthogonal polynomials on the unit circle. Preprint.

NEWELL, A. C. (ed.). 1974. Nonlinear Wave Motion. Lectures in Applied Mathematics,
vol. 15. Providence, RI: Amer. Math. Soc.

NIJHOFF, F. W. 2000. Discrete Dubrovin equations and separation of variables for discrete
systems. Chaos Solitons Fractals, 11, 19–28.

NOVIKOV, S. P. 1974. The periodic problem for the Korteweg–de Vries equation.
Functional Anal. Appl., 8, 236–246.

NOVIKOV, S. [P.], MANAKOV, S. V., PITAEVSKII, L. P., AND ZAKHAROV, V. E. 1984.
Theory of Solitons. New York: Consultants Bureau.

NOVIKOV, S. P., MATVEEV, V. B., GELFAND, I. M., KRICHEVER, I. M., DIKII, L. A.,
VINOGRADOV, A. M., YUSIN, B. V., KUPERSHMIDT, B. A., DUBROVIN, B. A., AND
KRASILSHCHIK, I. S. (eds.). 1981. Integrable Systems. London Mathematical Society
Lecture Notes Series, vol. 60. Cambridge: Cambridge University Press.

OLSHANETSKY, M. A. AND PERELOMOV, A. M. 1979. Explicit solutions of classical
generalized Toda models. Invent. Math., 54, 261–269.

OLSHANETSKY, M. A. AND PERELOMOV, A. M. 1981. Classical integrable
finite-dimensional systems related to Lie algebras. Phys. Rep., 71, 313–400.



Bibliography 415

OLSHANETSKY, M. A. AND PERELOMOV, A. M. 1994. Integrable systems and
finite-dimensional Lie algebras. Pages 87–116 of: ARNOL’D, V. I. AND NOVIKOV, S. P.
(eds.), Dynamical Systems VII. Integrable Systems, Nonholonomic Dynamical Systems.
Encyclopedia of Mathematical Sciences, vol. 16. Berlin: Springer.

ORLOV, A. YU. 2006. Hypergeometric functions as infinite-soliton tau functions. Theoret.
and Math. Phys., 146, 183–206.

OSIPOV, A. S. 1997. Integration of non-abelian Langmuir type lattices by the inverse
spectral problem method. Functional Anal. Appl., 31, 67–70.

PASTUR, L. A. 2006. From random matrices to quasi-periodic Jacobi matrices via
orthogonal polynomials. J. Approx. Theory, 139, 269–292.

PASTUR, L. [A.] AND FIGOTIN, A. 1992. Spectra of Random and Almost-Periodic
Operators. Grundlehren der mathematischen Wissenschaften, vol. 297. Berlin: Springer.

PAYTON, D. N., RICH, M., AND VISSCHER, W. M. 1967. Lattice thermal conductivity in
disordered harmonic and anharmonic crystal models. Phys. Rev., 160, 706–711.

PAYTON, D. N. AND VISSCHER, W. M. 1967a. Dynamics of disordered harmonic lattices. I.
Normal-mode spectra for randomly disordered isotopic binary lattices. Phys. Rev., 154,
802–811.

PAYTON, D. N. AND VISSCHER, W. M. 1967b. Dynamics of disordered harmonic lattices.
II. Normal modes of isotopically disordered binary lattices. Phys. Rev., 156, 1032–1038.

PAYTON, D. N. AND VISSCHER, W. M. 1968. Dynamics of disordered harmonic lattices.
III. Normal-mode spectra for abnormal arrays. Phys. Rev., 175, 1201–1207.

PEHERSTORFER, F. 1995. Elliptic orthogonal and extremal polynomials. Proc. London
Math. Soc. (3), 70, 605–624.

PEHERSTORFER, F. 2001. On Toda lattices and orthogonal polynomials. Pages 519–534 of:
Proceedings of the Fifth International Symposium on Orthogonal Polynomials, Special
Functions and their Applications (Patras, 1999), vol. 133.

PEHERSTORFER, F., SPIRIDONOV, V. P., AND ZHEDANOV, A. S. 2007. Toda chain,
Stieltjes function, and orthogonal polynomials. Theoret. and Math. Phys., 151, 505–528.

PENSKOI, A. V. 1998a. Canonically conjugate variables for the Volterra lattice with periodic
boundary conditions. Math. Notes, 64, 98–109.

PENSKOI, A. V. 1998b. The Volterra lattice as a gradient flow. Regul. Chaotic Dyn., 3 (1),
76–77.

PENSKOI, A. V. 2007. The Volterra system and the topology of the isospectral variety of
zero-diagonal Jacobi matrices. Russian Math. Surveys, 62 (3), 626–628.

PENSKOI, A. V. 2008. Integrable systems and the topology of isospectral manifolds.
Theoret. and Math. Phys., 155 (1), 627–632.

PERELOMOV, A. M. 1990. Integrable Systems of Classical Mechanics and Lie Algebras.
Vol. I. Basel: Birkhäuser.
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theta function representation
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theta function representation

Ablowitz–Ladik hierarchy
Baker–Akhiezer function (stationary), 232
Baker–Akhiezer function (time-dependent),
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conservation laws (local), 130
constant solution, 68
curve, 353
degree, 28
Dirichlet divisor, 51
Dubrovin equations

stationary, 151
time-dependent, 21, 90

Hamiltonian formalism, 140
homogeneous

coefficients, 29
stationary, 32
time-dependent, 38

hyperelliptic curve, 12, 36
Its–Matveev formula

stationary, 17
time-dependent, 22

Lax pair, 8, 31
Lax relation, 6, 8
periodic solution, 61
potentials, 11
recursion

linear, 7, 27
nonlinear, 368

Riccati-type equation, 20
stationary, 43
time-dependent, 88

solitons
stationary, 71
time-dependent, 101

stationary (definition), 10, 31
theta function representation

Baker–Akhiezer function (stationary), 55
Baker–Akhiezer function (time-dependent),

95
φ (stationary), 55
φ (time-dependent), 95
potential (stationary), 17
solution (time-dependent), 22

time-dependent (definition), 8, 37
trace formulas

stationary, 15, 48
time-dependent, 91

zero-curvature formalism
stationary, 40
time-dependent, 9, 40

trace formulas
Ablowitz–Ladik hierarchy, 225, 258
Toda hierarchy, 15, 48, 91

vector of Riemann constants, 340

Weierstrass point
definition, 342
properties, 342

zero-curvature formalism
Ablowitz–Ladik hierarchy, 189,

199
Toda hierarchy, 9, 40



Errata and Addenda for Volume I
1

Changes appear in grey. Line k+ (resp., line k−) denotes the kth line from the top
(resp., the bottom) of a page.

INTRODUCTION

Page 10. In equation (0.34), it should read:

P2n+1

Page 15. In line 3+, it should read:

P2n+1

CHAPTER 1

Page 28. In line 8+, the second term should read:(
utn+(L − z)P2n+1

)∣∣
ker(L−z) = 0,

Page 32. In equation (1.46) and in line 4−, it should read:

P2n+1

Page 32. In equation (1.52), it should read:

Fn(z, x ′)

Page 32. In lines 3− and 2−, it should read: Equation (1.48) follows by combining
(1.41) and (1.44).
Page 35. In line 9+, it should read:

λ̂
β,� = {λ̂β0 , λ̂β1 , . . . , λ̂β�−1, λ̂

β

�+1, . . . ,λ̂
β
n }, � = 2, . . . , n − 1,

1 An updated list of errata and addenda is to be found at www.math.ntnu.no/
˜holden/solitons

426
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Page 39. Equation (1.79) should have only one factor of i on the right-hand side, so
the i to the right of

∑n
j=1 should be stricken, that is, equation (1.79) should read

Fn,x (z) = 2i
n∑

j=1

y(µ̂ j )

n∏
k=1
k �= j

(z − µk)(µ j − µk)
−1,

Page 40. Equation (1.80) should have +Fn,x (z) on the right-hand side, that is, it
should read

∂βK β

n+1(z) = Fn,x (z)+ 2βFn(z)

Similarly, the first line of (1.81) should have +Fn,x
(
λ
β
�

)
on the right-hand side.

Page 41. In line 2+, it should read:
. . . with (1.5), (1.11), and (1.16) taken into account.

Page 41. In line 9+, it should read:
. . . Relations (1.85) and (1.86). . .

Page 41. In line 10+, it should read:

. . . for K
β

n+1 with (1.16) and (1.56) taken into account.
Page 41. In Lemma 1.18 it suffices to assume u ∈ C∞(R). The additional assumption
u ∈ L∞(R) is superfluous since for each fixed x ∈ R, |µ j (x)| is finite and hence
µ̂

j
(x) cannot coincide with the branch point P∞ (a fact used in the last part of the

proof on p. 42). Analogously, it suffices to assume that u satisfies Hypothesis 1.33 in
the time-dependent setting.
Page 42. In line 12+, it should read:

lim
x→x0

µ̂ jp (x) = (µ0,−(i/2)Fn,x (µ0, x0)), p = 1, . . . , N ;

Page 44. Line 5− should read:
One infers from (1.98) that

Page 44. Equation (1.100) should read:∫ P

Q0

ω
(2)
P∞,0 =ζ→0

−ζ−1+e0,0 + O(ζ ) as P → P∞

for some e0,0 ∈ C.
Page 44. In lines 1−, 2−, and 3−, strike the sentences

since by (1.98),. . . sheets �±. Thus, . . . contains no constant term.
Page 45. In equation (1.105), it should read:

· · · exp

(
− i(x − x0)

(∫ P

Q0

ω
(2)
P∞,0−e0,0

))
Page 52. In equation (1.128) and in the line following it, replace Zn\{0} by (Zn\{0})τ
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Page 52. In the second line following equation (1.128), replace i�U (2)
0, j = m j by

i�U (2)
0, j = m1τ1, j +∑n

k=2(mk − mk−1)τk, j

Page 52. In the fifth line following equation (1.128), it should read:
. . . interval of length �, x ∈ [x0, x0 +�], for some x0 ∈ R.

Pages 57–63. There is a systematic error in Examples 1.30–1.32: All formulas for
y j should be replaced by iy j , j = 1, 2. In Example 1.30, the quantities Fk(z, y)

should therefore be of the form Fk(z, y) = y2−R2k+1(z) for k = 1, 2, 3, and k = n,
for monic polynomials R2k+1 of the form z3, z5, z7, and z2n+1. In Example 1.31,
Fk(z, y) should be of the form

Fn(z, y) = y2−z
n∏

j=1

(z + κ2
j )

2 = 0

and in Example 1.32 it should read

F1(z, y) = y2−
(

z3 − g2

4
z + g3

4

)
= 0

and

F2(z, y) = y2−
(

z5 − 21

4
g2z3 − 27

4
g3z2 + 27

4
g2

2z + 81

4
g2g3

)
= y2−(z2 − 3g2)

(
z3 − 9

4
g2z − 27

4
g3

)
= 0

Pages 61. In Example 1.31 assume c j , κ j ∈ C \ {0}, j = 1, . . . , n.

Pages 61. In Example 1.31 replace s-K̂dVn(un) = 0 by

s-KdVn(un) = 0

for an appropriate set of integration constants {c�}�=1,...,n ⊂ C (cf. (1.15)).
Pages 66. Add the following to the end of the sentence following (1.164):

. . . except at collisions of certain µ j (respectively, ν�), where one can only assert

continuity of µ j (respectively, ν�) with respect to (x, tr ).
Page 76. Equation (1.207) should read:∫ P

Q0

�̃
(2)
P∞,2r =

ζ→0
−

r∑
q=0

c̃r−qζ
−2q−1+ẽr,0 + O(ζ ) as P → P∞

for some ẽr,0 ∈ C.
Page 77. In equation (1.211), it should read:

· · · exp

(
− i(x − x0)

(∫ P

Q0

ω
(2)
P∞,0−e0,0

)
− i(tr − t0,r )

(∫ P

Q0

�̃
(2)
P∞,2r−ẽr,0

))
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Page 79. In line 9−, replace −Ũ
(2)
2r by iŨ

(2)
2r

Page 81. In lines 9− and 10−, it should read:

· · · exp

(
− i(x − x0)

(∫ P

Q0

ω
(2)
P∞,0−e0,0

)
− i(tr − t0,r )

(∫ P

Q0

�̃
(2)
P∞,2r−ẽr,0

)
−
∫ P

Q0

ω
(3)

λ̂
β
0 (x0,t0,r ),λ̂

β
0 (x,tr )

)
Page 81. In line 4− replace . . . purely imaginary . . . by . . . real . . .
Pages 86. In Example 1.52 assume c j , κ j ∈ C \ {0}, j = 1, . . . , n.
Pages 86. Line 1− should read:

s-KdVn(un) = 0, KdVr (un) = 0

for appropriate sets of integration constants {c�}�=1,...,n ⊂ C (cf. (1.15)) and

{c̃s}s=1,...,r ⊂ C.
Page 101. Line 2+ should start with: genus n. . . .
Page 102. In the last line of equation (1.282) and in equation (1.283), the remainder
term can be replaced by:

O(|z|−n−(3/2)
)

Page 102. In line 2 of equation (1.282), it should read:

( 2n∏
m=0

(1− (Em/z))

)−1/2

Page 102. In the last line of equation (1.284), the remainder term can be replaced by:

O(|z|−n−(5/2)
)

Page 102. Line 4− should read:

δ f̂�
δu
= 2�− 1

2
f̂�−1, � = 1, . . . , n.

Page 103. The last line of equation (1.287) should read:

= utn − ∂x (∇Hn)u,

Page 103. In line 2 of Theorem 1.62, it should read:

. . . � = 1, . . . , n for n ∈ N . . .

Page 117. In line 11+ replace τZn by Znτ .
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CHAPTER 2

Page 141. Equation (2.106) should read:∫ P

Q0

ω
(2)
P∞,0 =ζ→0

−ζ−1+e0,0 + O(ζ ) as P → P∞

for some e0,0 ∈ C.
Page 142. In equation (2.111), it should read:

· · · exp

(
− i(x − x0)

(∫ P

Q0

ω
(2)
P∞,0−e0,0

))
Page 142. In equation (2.112), it should read:

· · · exp

(
−
∫ P

Q0

ω
(3)
P∞,P0

+ 1
2 ln(Em0)− i(x − x0)

(∫ P

Q0

ω
(2)
P∞,0−e0,0

))
Pages 151. Add the following to the end of the sentence following (2.159):

. . . except at collisions of certain µ j (respectively, νk), where one can only assert

continuity of µ j (respectively, νk) with respect to (x, tr ).
Page 159. Equation (2.197) should read:∫ P

Q0

�̃
(2)
P∞,r =ζ→0

{
−∑r−1

q=0 c̃r−1−qζ
−2q−1+ẽr,0 + O(ζ ), r ∈ N,

0, r = 0,
as P → P∞

for some ẽr,0 ∈ C.
Page 159. Equation (2.201) should read:

α̃

α
Q1/2

∫ P

Q0

ω
(2)
P0,0

=
ζ→0
− α̃
α

Q1/2ζ−1+d0 + O(ζ ) as P → P0

for some d0 ∈ C.
Page 159. In lines 8−, 9−, 10− and 11−, strike the sentence

Since by (2.200), . . . no constant term.
Page 160. In equation (2.204), it should read:

· · · exp

(
− i(x − x0)

(∫ P

Q0

ω
(2)
P∞,0−e0,0

)
+ (tr − t0,r )

(
α̃

α
Q1/2

∫ P

Q0

ω
(2)
P0,0
−d0 +

∫ P

Q0

�̃
(2)
P∞,r−ẽr,0

))
Page 160. In equation (2.205), it should read:

· · · exp

(
−
∫ P

Q0

ω
(3)
P∞,P0

+ (1/2) ln(Em0)− i(x − x0)

(∫ P

Q0

ω
(2)
P∞,0−e0,0

)
+ (tr − t0,r )

(
α̃

α
Q1/2

∫ P

Q0

ω
(2)
P0,0
−d0 +

∫ P

Q0

�̃
(2)
P∞,r−ẽr,0

))
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Page 168. The second paragraph should read as follows:
If, in addition, � = 0 and one is interested in spatially periodic solutions u with a

real period � > 0, the additional periodicity constraints

i�U (2)
0 ∈ (Zn \ {0})τ

must be imposed. (By (B.45) this is equivalent to 2i�c(n) ∈ (Zn \ {0})τ .)

CHAPTER 3

Page 180. Line 1−, should read:

Qn+1 =
n+1∑
�=0

cn+1−� Q̂
�
, Q̂0 = i

(−1 0
0 1

)
.

Page 181. In line 15+, replace KdV by AKNS.
Page 189. In line 4+, it should read h̆n−� = Ahn−�.
Page 199. Delete r at the end of equation (3.108).
Page 204. In line 4−, it should read:

with non-self-adjoint Dirac-type operators . . .
Page 212. In equation (3.146), it should read:

p(x, · ), q(x, · ) ∈ C1(R)

Page 214. In line 8−, it should read:
. . . properties of Fn , Gn+1, Hn , . . .

Pages 214. Add the following to the end of the sentence following (3.169):
. . . except at collisions of certain µ j (respectively, νk), where one can only assert

continuity of µ j (respectively, νk) with respect to (x, tr ).

Page 222. In line 9−, replace F̂r by F̃r twice.

CHAPTER 5

Page 302. In line 3+, replace P∞ by P∞+ .

Page 310. In line 7−, it should read:
. . . properties of Fn , Gn , Hn , . . .

Pages 310. Add the following to the end of the sentence following (5.132):
. . . except at collisions of certain µ j (respectively, νk), where one can only assert

continuity of µ j (respectively, νk) with respect to (x, tr ).

APPENDIX A

Page 329. In line 9−, it should read: . . . The intersection of . . .
Page 330. Line 10− should read:

P(z, y, 1) = 0
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Page 331. In line 6+, it should read:
. . . the ramification points). If . . .

Page 337. In line 4+, it should read: . . . is a smooth simple, . . .
Page 347. In lines 7− and 6−, it should read:

. . . where {P∞1 , . . . , P∞N } (typically, N ∈ {1, 2} in the main text), denotes
the set of . . .
Page 347. In line 2−, P0 should be replaced by Q0.
Page 354. In line 7−, it should read:

The case R �= 0, and . . .

APPENDIX B

Page 363. In (B.39) replace
∫ E2k

E2k−1

z j−1dz
R2n+1(z)1/2 by

∑n
�=k

∫ E2�
E2�−1

x j−1dx
R2n+1(x)1/2

and refer to the homology basis described on top of p. 360, recalling the ordering
E0 < E1 < · · · < E2n .

APPENDIX C

Page 375. In (C.39) replace
∫ E2k−1

E2k−2

z j−1dz
R2n+2(z)1/2 by

∫ E2k
E2k−1

x j−1dx
R2n+2(x)1/2

Page 375. In (C.40) replace
∫ E2k

E2k−1

z j−1dz
R2n+2(z)1/2 by −∑k

�=1

∫ E2�−1
E2�−2

x j−1dx
R2n+2(x+i0)1/2

and refer to the homology basis indicated in Fig. C.2 on p. 37, changing all Em into
real position with the ordering E0 < E1 < · · · < E2n+1.

APPENDIX D

Page 383. In line 2+ it should read:
. . . coefficients of ηk yields

Page 385. In line 8−, it should read:
. . . c�, � = 0, . . . , n+1,

APPENDIX E

Page 399. In line 2−, replace (E.14) by (E.13)

APPENDIX F

Page 404. In equation (F.18), it should read:

n∑
�=0

dn,�(E)�
( j)
� (µ)

LIST OF SYMBOLS

Page 468. In line 3+, it should read

∂K̂g = a1b1a−1
1 b−1

1 . . . agbga−1
g b−1

g
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Addenda

Page 68. Lemma 1.35 is equivalent to:

−Vn+1,tr +
[
Ṽr+1, Vn+1

] = 0.

Page 104. The following considerations are relevant in connection with KdV con-
servation laws: Assuming that u = u(x, tn) satisfies u( · , tn) ∈ SR(R), tn ∈ R (for
simplicity), we recall that the one-dimensional Schrödinger equation

L(tn)ψ(z, · , tn) = zψ(z, · , tn), z ∈ C \ R, tn ∈ R

has unique (up to constant multiples) Weyl–Titchmarsh solutions ψ±(z, · , tn) satis-
fying for all R ∈ R,

ψ±(z, · , tn) ∈ L2([R,±∞)), z ∈ C \ R, tn ∈ R.
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The corresponding Weyl–Titchmarsh functions m±(z, x, tn) are then defined by

m±(z, x, tn) = ∂x ln(ψ±(z, x, tn)).

One obtains an asymptotic spectral parameter expansion of m±( · , x, tn) as z → i∞
of the type (cf. (J.29), (J.30))

m±(z, x, tn) =
z→i∞

∞∑
j=−1

m±, j (x, tn)z
− j/2, (D.23)

and the Riccati equation (J.26) for m±(z, x, tn) then implies the following recursion
relations for the expansion coefficients m±, j ,

m±,−1 = ±i, m±,0 = 0, m±,1 = ∓ i

2
u, m±,2 = 1

4
ux ,

m±, j+1 = ± i

2

(
m±, j,x +

j−1∑
�=1

m±,�m±, j−�
)
, j = 2, 3, . . .

(D.24)

Moreover, we recall

m−, j = (−1) j m+, j , j ∈ {−1} ∪ N0.

Theorem D.6 Suppose that u ∈ SR(R) satisfies the nth KdV equation (1.287) (for
some set of integration constants c�, � = 1, . . . , n, n ∈ N). Then, the infinite se-
quence of KdV conservation laws takes on the form

∂tn m±,2�+1 = ∂x

( n∑
k=0

cn−k

k∑
p=0

f̂k−pm±,2�+1+2p

)
, � ∈ N0. (D.25)

Here f̂� are the homogeneous coefficients (1.6). Similarly to the recursion relation
(D.24) for the coefficients m±, j , the coefficients f̂� can be computed recursively from
(1.4) (putting all integration constants equal to zero) or directly from the nonlinear
recursion relation (D.8).

Proof The key to the derivation of (D.25) is the innocent looking identity

∂tn (∂x ln(ψ±(z, x, tn, )) = ∂x (∂tn ln(ψ±(z, x, tn))),

or equivalently,

m±,tn = ((ln(ψ±))tn )x .

Assuming that ψ±(z, x, tn) are chosen so that

ψ±,tn = P2n+1ψ±,tn = Fnψ±,x − (1/2)Fn,xψ± (D.26)
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(cf. (1.18)) one obtains

m±,tn = ∂x (Fnm± − (1/2)Fn,x ).

(That ψ± can be chosen to satisfy (D.26) has been discussed in [2].) Since by (1.11),
Fn =∑n

k=0 cn−k
∑k

p=0 f̂k−pz p, it suffices to consider the homogeneous case F̂n =∑n
k=0 f̂n−k zk . One then obtains

m±,tn =
∞∑
j=1

m±, j,tn z− j/2

= ∂x (Fnm± − (1/2)Fn,x )

= ∂x

(
F̂n

∞∑
j=−1

m±, j z
− j/2 − (1/2)F̂n,x

)

= ∂x

( n∑
k=0

f̂n−k zk
∞∑

j=−1

m±, j z
− j/2 − (1/2)F̂n,x

)
.

A comparison of powers of z− j/2 then yields

m±, j,tn = ∂x

( n∑
k=0

f̂n−km±, j+2k

)
, j ∈ N.

Since every even order coefficient m±,2� is known to be a total derivative (i.e.,
m±,2� = ∂x (. . . )), the conservation laws associated with m±,2�, � ∈ N, are all trivial.
The odd order coefficients m±,2�+1 lead to a nontrivial infinite sequence of conser-
vation laws. (Of course, by (D.26), m+,2�+1 and m−,2�+1, � ∈ N0, yield the same
infinite sequence of KdV conservation laws.)

The basic KdV functionals Î� = Î�(u, ux , uxx , . . . , ∂
k
x u), are then given in terms

of m̂+,2�+1 and f̂�+1 by

Î� = i
∫

R

dx m̂+,2�+1(x) = 1

2�+ 1

∫
R

dx f̂�+1(x), � ∈ N0 (D.27)

(cf. (1.268) and (1.285)). Equation (D.25) yields a direct proof of

dÎ�
dtn
= 0, � ∈ N0, n ∈ N

(cf. Theorem 1.62).
Real-valuedness of u is not essential for these considerations and can be dropped.

Moreover, the decay assumptions on u as |x | → ∞ can be considerably relaxed and
replaced by the finiteness of certain moments of u.
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This representation of the KdV conservation laws is perhaps simpler for computa-
tional purposes than the traditional one relying on the Lenard recursion operator. For
a new twist to conserved KdV polynomials we refer to [4] (see also [1]).

Next, we supplement this particular addendum on KdV conservation laws by
briefly sketching the extension of the Hamiltonian formalism to Bohr almost peri-
odic KdV solutions in the space variable as discussed by Johnson and Moser [3]:

We start by noting that if f denotes a Bohr (uniformly) almost periodic function
on R, its ergodic mean 〈 f 〉 is given by

〈 f 〉 = lim
R↑∞

1

2R

∫ R

−R
dx f (x).

Suppose that u has the frequency module M(u). Then given a density F as on p. 97,
one has

F(u) = lim
R↑∞

∫ R

−R
dx F

(
u, ux , uxx , . . . , ∂

m
x u
) = 〈F(u)〉,

and assuming that the frequency module M(v) of v satisfies M(v) ⊆ M(u), one
obtains

(dF)u(v) = d

dε
F(u + εv)

∣∣
ε=0

= lim
R↑∞

∫ R

−R
dx

( m∑
k=0

(−∂x )
k∂u(k) Fv

)
(x)

= 〈(∇F)uv〉 = 〈δF

δu
v

〉
.

In analogy to p. 98, the Poisson brackets of two functionals F1,F2 are then given by

{F1,F2} =
〈
δF1

δu

(
∂x
δF2

δu

)〉
.

Again one verifies that both the Jacobi identity as well as the Leibniz rule hold in this
case. Moreover, if F is a smooth functional and u develops according to a Hamilto-
nian flow with Hamiltonian H, that is,

ut = (∇sH)u = ∂x (∇H)u = ∂x
δH

δu
,

then
dF
dt
= d

dt
〈F(u)〉 = {F ,H}.

Next, one introduces the fundamental function w by

w(z) = −1

2

〈
1

g(z, · )
〉
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for |z| sufficiently large. Since

w′(z) = 〈g(z, · )〉, z ∈ C \ spec(H)

(cf. (1.266)), w extends analytically to z ∈ C \ spec(H). One infers from g =
1/(m− − m+) that

w(z) = ±〈m±(z, · )〉, z ∈ C \ spec(H).

Here m± denote the half-line Weyl–Titchmarsh functions associated with H . The
asymptotic expansion of m± as |z| → ∞ has been recorded in (D.23), and its con-
nection with the homogeneous coefficients f̂� and hence with the KdV functionals
Î� has been noted in (D.27). In particular, introducing

Î� = i〈m̂+,2�+1〉 = 1

2�+ 1
〈 f̂�+1〉, I� =

�∑
k=0

c�−k Îk, � ∈ N0,

the KdV equations again take on the form

KdVn(u) = utn − 4∂x (∇ In+1)u = 0, n ∈ N0.

Finally, one can show that w(z1) and w(z2) are in involution for arbitrary z1, z2 ∈
C \ spec(H), and hence obtains

{w(z1), w(z2)} = 0, z1, z2 ∈ C \ spec(H), (D.28)

{w(z), Ip} = 0, {Ip, Ir } = 0, z ∈ C \ spec(H), p, r ∈ N0. (D.29)

Naturally, these considerations apply to the special periodic case in which 〈 f 〉 for
a periodic function f on R is to be interpreted as the periodic mean value.

Page 122. An extension of formula (1.299) already appeared on p. 428 in [3].

Page 145. Line 4− can be more effectively replaced by:
By equation (2.94) one concludes that

Page 182. Line 7+: It would have been more natural to write equation (3.18) as:

Gn+1(z) =
n+1∑
�=0

gn+1−�z� =
n+1∑
�=0

cn+1−�Ĝ
�
(z),

Page 198. We note that �(2)
0 in equation (3.96) has the explicit form

�
(2)
0 = ω

(2)
P∞+ ,0

− ω
(2)
P∞− ,0

= zn

y

1∑
k=0

c1−k(E)z
kdz + λ̃n

y

n−1∏
j=1

(z − λ̃ j )dz,
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where ck(E), k ∈ N0, are defined in (D.5) and λ̃ j , j = 1, . . . , n, are uniquely
determined by the normalization∫

a j

�
(2)
0 = 0, j = 1, . . . , n.

This comment also applies to �(2)
∞,0 in (4.215).

Pages 200 and 224. One uses the equality

z(P∞− , ν̂) = z(P∞+ , µ̂)

(an elementary consequence of (3.58)) to compute the constant C in equations
(3.113) and (3.224).

Page 220. We note that ω(2)
P∞+ ,q

− ω
(2)
P∞− ,q

in equation (3.207) has the explicit form

ω
(2)
P∞+ ,q

− ω
(2)
P∞− ,q

= zn

y

q+1∑
k=0

cq+1−k(E)z
kdz + λ̃n

y

n−1∏
j=1

(z − λ̃ j )dz, q ∈ N0,

where ck(E), k ∈ N0, are defined in (D.5) and λ̃ j , j = 1, . . . , n, are uniquely
determined by the normalization∫

a j

(
ω
(2)
P∞+ ,q

− ω
(2)
P∞− ,q

) = 0, j = 1, . . . , n.

This comment is also relevant in connection with (C.37).
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