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Abstract. Lie group theory is applied to differential equations occurring as mathematical models in financial
problems. We begin with the complete symmetry analysis of the one-dimensional Black–Scholes model and show
that this equation is included in Sophus Lie’s classification of linear second-order partial differential equations with
two independent variables. Consequently, the Black–Scholes transformation of this model into the heat transfer
equation follows directly from Lie’s equivalence transformation formulas. Then we carry out the classification
of the two-dimensional Jacobs–Jones model equations according to their symmetry groups. The classification
provides a theoretical background for constructing exact (invariant) solutions, examples of which are presented.

Keywords: Differential equations in finance, Lie group classification and symmetry analysis, group theoretic
modelling, invariant solutions.

1. Introduction

The works of Merton [1, 2] and Black and Scholes [3] opened a new era in mathematical
modeling of problems in finance. Originally, their models are formulated in terms of stochastic
differential equations. Under certain restrictive assumptions, these models are written as linear
evolutionary partial differential equations with variable coefficients.

The widely used one-dimensional model (one state variable plus time) known as theBlack–
Scholes model, is described by the equation

ut + 1

2
A2x2uxx + Bxux − Cu = 0, (1)

with constant coefficientsA,B,C (parameters of the model). Black and Scholes reduced it to
the classical heat equation and used this relation for solving Cauchy’s problem with special
initial data.

Along with Equation (1), more complex models aimed at explaining additional effects are
discussed in the current literature (see, e.g., [4]). We will consider here the two state variable
model suggested by Jacobs and Jones [5]:

ut = 1

2
A2x2uxx +ABCxyuxy + 1

2
B2y2uyy

+
(
Dx ln

y

x
− Ex3/2

)
ux +

(
Fy ln

G

y
−Hyx1/2

)
uy − xu, (2)

whereA,B,C,D,E,F,G,H are arbitrary constant coefficients. Jacobs and Jones [5] inves-
tigate the model numerically. An analytical study of solutions of this equation as well as of
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other complex financial mathematics models presents a challenge for mathematicians. This
is due to the fact that, as a rule, these models unlike the Black–Scholes equation (1), cannot
be reduced to simple equations with known solutions. Here, we demonstrate this fact for the
Jacobs–Jones equation(2) by using methods of the Lie group analysis.

TheLie group analysisis a mathematical theory that synthesizes symmetry of differential
equations. The founder of this theory, Sophus Lie, was the first who classified differential
equations in terms of their symmetry groups, thereby identifying the set of equations which
could be integrated or reduced to lower-order equations by group theoretic algorithms. In
particular, Lie [6] gave the group classification of linear second-order partial differential equa-
tions with two independent variables and developed methods of their integration. According
to his classification all parabolic equations admitting the symmetry group of the highest order
reduce to the heat conduction equation. These and a wide variety of other results in group
analysis of differential equations are to be found in [7].

This paper is aimed at Lie group analysis (symmetries, classification and invariant solu-
tions) of the Black–Scholes (1) and the Jacobs–Jones (2) models.

The contents of the present paper is as follows. Section 2 is designed to meet the needs of
beginners and contains a short account of methods of Lie group analysis.

The group analysis of the Black–Scholes model is presented in Section 3. It is shown
(Section 3.2) that symmetry group of this model equation is similar to that of the classical
heat equation, and hence the Black–Scholes model is contained in the Lie classification [6].
However the practical utilization of Lie’s classification is not trivial. Therefore, we discuss
calculations for obtaining transformations of (1) into the heat equation (Section 3.3), trans-
formations of solutions (Section 3.4) and invariant solutions (Section 3.5). Moreover, the
structure of the symmetry group of Equation (1) allows one to apply the recent method for
constructing the fundamental solution based on the so-calledinvariance principle[12, 13].
This application is discussed in Section 3.6.

The Jacobs–Jones model is considered in Section 4. Section 4.2 contains the result of the
Lie group classification of Equation (2) with the coefficients satisfying the restrictionsA,B 6=
0,C 6= 0,±1. It is shown that the dimension of the symmetry group depends essentially on the
parametersA,B, . . . , of the model and that the equations of the form (2) cannot be reduced
to the classical two-dimensional heat equation. The algorithm of construction of invariant
solutions under two-parameter groups and an illustration are given in Section 4.3.

2. Outline of Methods from Group Analysis

2.1. CALCULATION OF INFINITESIMAL SYMMETRIES

Consider evolutionary partial differential equations of the second order:

ut − F(t, x, u, u(1), u(2)) = 0, (3)

whereu is a function of independent variablest andx = (x1, . . . , xn), andu(1), u(2) are the
sets of its first and second-order partial derivatives:u(1) = (ux1, . . . , uxn), u(2) = (ux1x1, ux1x2,

. . . , uxnxn).
Recall that invertible transformations of the variablest, x, u,

t̄ = f (t, x, u, a), x̄i = gi(t, x, u, a), ū = h(t, x, u, a), i = 1, . . . , n, (4)
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depending on a continuous parametera are said to besymmetry transformations of Equa-
tion (3), if Equation (3) has the same form in the new variablest̄ , x̄, ū. The setG of all such
transformations forms acontinuous group, i.e.,G contains the identity transformation

t̄ = t, x̄i = xi, ū = u,
the inverse to any transformation fromG and the composition of any two transformations
fromG. The symmetry groupG is also known as the groupadmittedby Equation (3).

According to the Lie theory, the construction of the symmetry groupG is equivalent to
determination of itsinfinitesimal transformations:

t̄ ≈ t + aξ0(t, x, u), x̄i ≈ xi + aξ i(t, x, u), ū ≈ u+ aη(t, x, u). (5)

It is convenient to introduce thesymbol(after Lie) of the infinitesimal transformation (5), i.e.,
the operator

X = ξ0(t, x, u)
∂

∂t
+ ξ i(t, x, u) ∂

∂xi
+ η(t, x, u) ∂

∂u
. (6)

The operator (6) is also known in the literature as theinfinitesimal operatoror generatorof the
groupG. The symbolX of the group admitted by Equation (3) is called anoperator admitted
byEquation (3).

The group transformations (4) corresponding to the infinitesimal transformations with the
symbol (6) are found by solving theLie equations

dt̄

da
= ξ0(t̄, x̄, ū),

dx̄i

da
= ξ i(t̄, x̄, ū), dū

da
= η(t̄ , x̄, ū), (7)

with the initial conditions:

t̄
∣∣
a=0 = t, x̄i

∣∣
a=0 = xi, ū

∣∣
a=0 = u.

By definition, the transformations (4) form a symmetry groupG of Equation (3) if the
function ū = ū(t̄ , x̄) satisfies the equation

ūt̄ − F(t̄, x̄, ū, ū(1), ū(2)) = 0, (8)

whenever the functionu = u(t, x) satisfies Equation (3). Herēut̄ , ū(1), ū(2) are obtained
from Equation (4) according to the usual formulas of change of variables in derivatives. The
infinitesimal form of these formulas are written:

ūt̄ ≈ ut + a ζ0(t, x, u, ut , u(1)), ūx̄i ≈ uxi + a ζi(t, x, u, ut , u(1)),
ūx̄i x̄j ≈ uxixj + a ζij (t, x, u, ut , u(1), utxk , u(2)), (9)

where the functionsζ0, ζ1, ζij are obtained by differentiation ofξ0, ξ i, η and are given by the
prolongation formulas:

ζ0 = Dt(η)− utDt(ξ
0)− uxiDt(ξ

i), ζi = Di(η)− utDi(ξ
0)− uxjDi(ξ

j ),

ζij = Dj(ζi)− uxixkDj(ξ
k)− utxiDj(ξ

0). (10)
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HereDt andDi denote the total differentiations with respect tot andxi :

Dt = ∂

∂t
+ ut ∂

∂u
+ utt ∂

∂ut
+ utxk ∂

∂uxk
+ · · · ,

Di = ∂

∂xi
+ uxi ∂

∂u
+ utxi ∂

∂ut
+ uxixk ∂

∂uxk
+ · · · .

Substitution of Equations (5) and (9) into the left-hand side of Equation (8) yields:

ūt̄ − F(t̄, x̄, ū, ū(1), ū(2)) ≈ ut − F(t, x, u, u(1), u(2))

+ a
(
ζ0− ∂F

∂uxixj
ζij − ∂F

∂uxi
ζi − ∂F

∂u
η − ∂F

∂xi
ξ i − ∂F

∂t
ξ0

)
.

Therefore, by virtue of Equation (3), Equation (8) yields

ζ0− ∂F

∂uxixj
ζij − ∂F

∂uxi
ζi − ∂F

∂u
η − ∂F

∂xi
ξ i − ∂F

∂t
ξ0 = 0, (11)

whereut is replaced byF(t, x, u, u(1), u(2)) in ζ0, ζi, ζij .
Equation (11) defines all infinitesimal symmetries of Equation (3) and, therefore, it is called

thedetermining equation. Conventionally, it is written in the compact form

X(ut − F(t, x, u, u(1), u(2)))
∣∣
(3) = 0. (12)

HereX denotes theprolongationof the operator (6) to the first and second-order derivatives:

X = ξ0(t, x, u)
∂

∂t
+ ξ i(t, x, u) ∂

∂xi
+ η(t, x, u) ∂

∂u
+ ζ0

∂

∂ut
+ ζi ∂

∂uxi
+ ζij ∂

∂uxixj
,

and the notation
∣∣
(3) means evaluated on Equation (3).

The determining equation (11) (or its equivalent, Equation (12)) is a linear homogeneous
partial differential equation of the second order for unknown functionsξ0(t, x, u), ξ i(t, x, u),

η(t, x, u) of the ‘independent variables’t, x, u. At first glance, this equation seems to be
more complicated than the original differential equation (3). However, this is an apparent
complexity. Indeed, the left-hand side of the determining equation involves the derivatives
uxi , uxixj , along with the variablest, x, u and functionsξ0, ξ i, η of these variables. Since
Equation (11) is valid identically with respect to all the variables involved, the variables
t, x, u, uxi , uxixj are treated as ‘independent’ ones. It follows that the determining equation
decomposes into a system of several equations. As a rule, this is an overdetermined system (it
contains more equations than a numbern+2 of the unknown functionsξo, ξ i, η). Therefore, in
practical applications, the determining equation can be solved analytically, unlike the original
differential equation (3). The solution of the determining equation can be carried out either
‘by hand’ or, in simple cases, by using modern symbolic manipulation programs. Unfortu-
nately, the existing software packages for symbolic manipulations do not provide solutions
for complex determining equations, while a group theorist can solve the problem ‘by hand’
(the disbelieving reader can try, for example, to obtain the result of the group classification of
the Jacobs–Jones model (2) by computer). The reader interested in learning more about the
calculation of symmetries by hand in complicated situations is referred to the classical book
in this field by Ovsyannikov [8] containing the best presentation of the topic.
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2.2. EXACT SOLUTIONS PROVIDED BY SYMMETRY GROUPS

Group analysis provides two basic ways for construction of exact solutions:group transfor-
mationsof known solutions and construction ofinvariant solutions.

2.2.1. Group Transformations of Known Solutions
The first way is based on the fact that a symmetry group transforms any solutions of the
equation in question into solution of the same equation. Namely, let (4) be a symmetry
transformation group of Equation (3), and let a function

u = φ(t, x) (13)

solve Equation (3). Since (4) is a symmetry transformation, the solution (13) can be also
written using the new variables:

ū = φ(t̄, x̄). (14)

Replacing herēu, t̄, x̄ from Equations (4), we get

h(t, x, u, a) = φ(f (t, x, u, a), g(t, x, u, a)).
Having solved this equation with respect tou, we arrive at the following one-parameter family
(with the parametera) of new solutions of Equation (3):

u = ψa(t, x). (15)

Consequently, any known solution is a source of a multi-parameter class of new solutions
provided that the differential equation considered admits a multi-parameter symmetry group.
An example is given in Section 3.4, where the procedure is applied to the Black–Scholes
equation.

2.2.2. Invariant Solutions
If a group transformation maps a solution into itself, we arrive at what is called aself-
similar or group invariant solution. The search of this type of solutions reduces the number
of independent variables of the equation in question. Namely, the invariance with respect to
one-parameter group reduces the number the variables by one. The further reduction can be
achieved by considering an invariance under symmetry groups with two or more parameters.

For example, the construction of these particular solutions is reduced, in the case of
Equation (1), either to ordinary differential equations (if the solution is invariant under a one-
parameter group, see Section 3.5) or to an algebraic relation (if the solution is invariant with
respect to a multi-parameter group, see Section 3.6).

The construction of invariant solutions under one-parameter groups is widely known in the
literature. Therefore, we briefly sketch the procedure in Section 3.5 by considering one simple
example only.

However, since the Jacobs–Jones equation involves three independent variables, its re-
duction to, e.g., ordinary differential equations requires an invariance under two-dimensional
groups. Therefore, we discuss some details of the procedure in Section 4.3 for the Jacobs–
Jones equation.
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2.3. GROUPCLASSIFICATION OF DIFFERENTIAL EQUATIONS

Differential equations occurring in sciences as mathematical models, often involve unde-
termined parameters and/or arbitrary functions of certain variables. Usually, these arbitrary
elements (parameters or functions) are found experimentally or chosen from a ‘simplicity cri-
terion’. Lie group theory provides a regular procedure for determining arbitrary elements from
symmetry point of view. This direction of study is known today asLie group classification of
differential equations. For detailed presentations of methods used in Lie group classification
of differential equations the reader is refereed to the first fundamental paper on this topic [6]
dealing with the classification of linear second-order partial differential equations with two
independent variables.

Lie group classification of differential equations provides a mathematical background for
what can be called agroup theoretic modelling(see [7, vol. 3, ch. 6]). In this approach,
differential equations admitting more symmetries are considered to be ‘preferable’. In this
way, one often arrives at equations possessing remarkable physical properties.

Given a family of differential equations, the procedure of Lie group classification begins
with determining the so-calledprincipal Lie groupof this family of equations. This is the
group admitted by any equation of the family in question. The Lie algebra of the principal Lie
group is called theprincipal Lie algebraof the equations and is denoted byLP (see, e.g., [7]).
It may happen that for particular choice of arbitrary elements of the family the corresponding
equation admits, along with the principal Lie group, additional symmetry transformations.
Determination of all distinctly different particular cases when an extension ofLP occurs is
the problem of the group classification.

3. The Black–Scholes Model

3.1. THE BASIC EQUATION

For mathematical modeling stock option pricing, Black and Scholes [3] proposed the partial
differential equation

ut + 1

2
A2x2uxx + Bxux − Cu = 0 (1)

with constant coefficientsA,B,C (parameters of the model). It is shown in [3] that
Equation (1) is transformable into the classical heat equation

vτ = vyy, (16)

provided thatA 6= 0, D ≡ B − A2/2 6= 0. Using the connection between Equations (1) and
(16), they give an explicit formula for the solution, defined in the interval−∞ < t < t∗, of
the Cauchy problem with a special initial data att = t∗.
3.2. SYMMETRIES

For the Black–Scholes model (1),n = 1, x1 = x and the symbol of the infinitesimal
symmetries has the form

X = ξ0(t, x, u)
∂

∂t
+ ξ1(t, x, u)

∂

∂x
+ η(t, x, u) ∂

∂u
.
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In this case, the determining equation (11) is written:

ζ0+ 1

2
A2x2ζ11+ Bxζ1 − Cη +A2xuxxξ

1+ Buxξ1 = 0, (17)

where according to the prolongation formulas (10), the functionsζ0, ζ1, ζij are given by

ζ0 = ηt + utηu − utξ0
t − u2

t ξ
0
u − uxξ1

t − utuxξ1
u ,

ζ1 = ηx + uxηu − utξ0
x − utuxξ0

u − uxξ1
x − u2

xξ
1
u ,

ζ11 = ηxx + 2uxηxu + uxxηu + u2
xηuu

− 2utxξ
0
x − utξ0

xx − 2utuxξ
0
xu − (utuxx + 2uxutx)ξ

0
u − utu2

xξ
0
uu

− 2uxxξ
1
x − uxξ1

xx − 2u2
xξ

1
xu − 3uxuxxξ

1
u − u3

xξ
1
uu.

The solution of the determining equation (17) provides the infinite dimensional vector
space of the infinitesimal symmetries of Equation (1) spanned by following operators:

X1 = ∂

∂t
, X2 = x ∂

∂x
,

X3 = 2t
∂

∂t
+ (ln x +Dt)x

∂

∂x
+ 2Ctu

∂

∂u
,

X4 = A2tx
∂

∂x
+ (ln x −Dt)u

∂

∂u
,

X5 = 2A2t2
∂

∂t
+ 2A2tx ln x

∂

∂x
+ ((ln x −Dt)2 + 2A2Ct2 −A2t)u

∂

∂u
, (18)

and

X6 = u
∂

∂u
, Xφ = φ(t, x) ∂

∂u
, (19)

whereD ≡ B −A2/2 andφ(t, x) is an arbitrary solution of Equation (1).
The finite symmetry transformations (4),

t̄ = f (t, x, u, a), x̄ = g(t, x, u, a), ū = h(t, x, u, a),
corresponding to the basic generators (18) and (19), are obtained by solving theLie
equations(7). The result is as follows:

X1 : t̄ = t + a1, x̄ = x, ū = u;
X2 : t̄ = t, x̄ = xa2, ū = u, a2 6= 0;
X3 : t̄ = ta2

3, x̄ = xa3 eD(a2
3−a3)t , ū = ueC(a

2
3−1)t , a3 6= 0;

X4 : t̄ = t, x̄ = x eA
2ta4, ū = uxa4 e((1/2)A

2a2
4−Da4)t;

X5 : t̄ = t

1− 2A2a5t
, x̄ = xt/(1−2A2a5t ),

ū = u
√

1− 2A2a5t exp
( [(ln x −Dt)2+ 2A2Ct2]a5

1− 2A2a5t

)
,
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and

X6 : t̄ = t, x̄ = x, ū = ua6, a6 6= 0;
Xφ : t̄ = t, x̄ = x, ū = u+ φ(t, x).
Herea1, . . . , a6 are the parameters of the one-parameter groups generated byX1, . . . , X6,

respectively, andφ(t, x) is an arbitrary solution of Equation (1). Consequently, the operators
X1, . . . , X6 generate a six-parameter group andXφ generates an infinite group. The general
symmetry group is the composition of the above transformations.

REMARK. The group of dilations generated by the operatorX6 reflects the homogeneity of
Equation (1), while the infinite group with the operatorXφ represents the linear superposition
principle for Equation (1). These transformations are common for all linear homogeneous
differential equations. Hence, the specific (non-trivial) symmetries of Equation (1) are given
by the operators (18) that span a five-dimensionalLie algebra.

3.3. TRANSFORMATION TO THEHEAT EQUATION

Let us recall Lie’s result of group classification of linear second-order partial differential
equations with two independent variables. In the case of evolutionary parabolic equations this
result is formulated as follows [6]:

Consider the family of linear parabolic equations

P(t, x)ut +Q(t, x)ux + R(t, x)uxx + S(t, x)u = 0, P 6= 0, R 6= 0. (20)

The principal Lie algebraLP (i.e., the Lie algebra of operators admitted by Equation (20)
with arbitrary coefficientsP(t, x),Q(t, x), R(t, x), S(t, x), see Section 2.3) is spanned by
the generators (19) of trivial symmetries. Any equation (20) can be reduced to the form

vτ = vyy + Z(τ, y)v (21)

by a transformation, Lie’s equivalence transformation:

y = α(t, x), τ = β(t), v = γ (t, x)u, αx 6= 0, βt 6= 0, (22)

obtained with the help of two quadratures.
If Equation (20) admits an extension of the principal Lie algebraLP by one additional

symmetry operator then it is reduced to the form

vτ = vyy + Z(y)v (23)

for which the additional operator is

X = ∂

∂τ
.

If LP extends by three additional operators, Equation (20) is reduced to the form

vτ = vyy + A

y2
v, (24)
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the three additional operators being:

X1 = ∂

∂τ
, X2 = 2τ

∂

∂τ
+ y ∂

∂y
, X3 = τ2 ∂

∂τ
+ τy ∂

∂y
−
(

1

4
y2+ 1

2
τ

)
v
∂

∂v
.

If LP extends by five additional operators, Equation (20) is reduced to the heat equation

vτ = vyy, (25)

the five additional operators being:

X1 = ∂

∂y
, X2 = ∂

∂τ
, X3 = 2τ

∂

∂y
− yv ∂

∂v
, X4 = 2τ

∂

∂τ
+ y ∂

∂y
,

X5 = τ2 ∂

∂τ
+ τy ∂

∂y
−
(

1

4
y2+ 1

2
τ

)
v
∂

∂v
.

Equations (23) to (25) provide the canonical forms of all linear parabolic second-order
equations (20) that admit non-trivial symmetries, i.e., extensions of the principal Lie algebra
LP .

Thus, the Black–Scholes equation (1) belongs to the latter case and hence it reduces to the
heat equation (25) by Lie’s equivalence transformation. Let us find this transformation.

After the change of variables (22), the heat equation (25) becomes

uxx +
(

2γx
γ
+ αxαt

β ′
− αxx
αx

)
ux − α

2
x

β ′
ut +

(
γxx

γ
+ αxαtγx

β ′γ
− α

2
xγt

β ′γ
− αxxγx

αxγ

)
u = 0,

where′ denotes the differentiation with respect tot . Comparing this equation with the Black–
Scholes equation (1) rewritten in the form

uxx + 2B

A2x
ux + 2

A2x2
ut − 2Cu

A2x2
= 0

and equating the respective coefficients, we arrive at the following system:

α2
x

β ′
= − 2

A2x2
, (26)

2γx
γ
+ αxαt

β ′
− αxx
αx
= 2B

A2x
, (27)

γxx

γ
+ αxαtγx

β ′γ
− α

2
xγt

β ′γ
− αxxγx

αxγ
= − 2C

A2x2
. (28)

It follows from Equation (26):

α(t, x) = ϕ(t)

A
ln x + ψ(t), β ′(t) = −1

2
ϕ2(t),

where ϕ(t) and ψ(t) are arbitrary functions. Using these formulas, one obtains from
Equation (27):

γ (t, x) = ν(t)x(B/A2)−(1/2)+(ψ ′/Aϕ)+(ϕ′/2A2ϕ) lnx
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with an arbitrary functionν(t). After substitution of the above expressions into Equation (28),
one obtains two possibilities: either

ϕ = 1

L−Kt , ψ = M

L−Kt +N, K 6= 0,

and the functionν(t) satisfies the equation

ν′

ν
= M2K2

2(L−Kt)2 −
K

2(L−Kt) −
A2

8
+ B

2
− B2

2A2
− C,

or

ϕ = L, ψ = Mt +N, L 6= 0,

and

ν′

ν
= M2

2L2
− A

2

8
+ B

2
− B2

2A2
− C.

HereK,L,M, andN are arbitrary constants.
Thus, we arrive at the following two different transformations connecting Equations (1)

and (25):

First transformation

y = ln x

A(L−Kt) +
M

L−Kt +N, τ = − 1

2K(L−Kt) + P,

v = E
√
L−Kt e(M

2K)/(2(L−Kt))−(1/2)((B/A)−(A/2))2t−Ct

× x(B/A
2)−(1/2)+(MK/A(L−Kt))+(K ln x/2A2(L−Kt)) u,

K 6= 0; (29)

Second transformation

y = L

A
ln x +Mt +N, τ = −L

2

2
t + P,

v = E e[(M
2/2L2)−(1/2)((B/A)−(A/2))2−C]t x(B/A

2)−(1/2)+(M/AL) u, L 6= 0. (30)

The Black–Scholes transformation (see [3, formula (9)]) is a particular case of the second
transformation (30) with

L = 2

A
D, M = − 2

A2
D2, N = 2

A2
D(Dt∗ − ln c), P = 2

A2
D2t∗, E = eCt

∗
,

where t∗, c are constants involved in the initial value problem (8) of [3]. The transforma-
tion (29) is new and allows one to solve an initial value problem different from that given in
[3].
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3.4. TRANSFORMATIONS OFSOLUTIONS

Let

u = F(t, x)
be a known solution of Equation (1). According to Section 2.2, one can use this solution
to generate families of new solutions involving the group parameters. We apply here the
procedure to the transformations generated by the basic operators (18) and (19). Application
of the formulas (13) to (15) yields:

X1 : u = F(t − a1, x);
X2 : u = F(t, x a−1

2 ), a2 6= 0;
X3 : u = eC(1−a

−2
3 )tF (t a−2

3 , xa
−1
3 eD(a−2

3 −a−1
3 )t ), a3 6= 0;

X4 : u = xa4e−((1/2)A
2a2

4+Da4)tF (t, xe−A
2ta4);

X5 : u =
exp

(
[(lnx−Dt )2+2A2Ct2]a5

1+2A2a5t

)
√

1+ 2A2a5t
F

(
t

1+ 2A2a5t
, xt/(1+2A2a5t )

)
;

and

X6 : u = a6F(t, x), a6 6= 0;
Xφ : u = F(t, x) + φ(t, x).

EXAMPLE. Let us begin with the simple solution of Equation (1) depending only ont :

u = eCt . (31)

Using the transformation generated byX4 we obtain the solution depending on the parameter
a4:

u = xa4 e−((1/2)A
2a2

4+Da4−C)t .

Letting here, for the simplicity,a4 = 1 we get

u = x e(C−B)t .

If we apply to this solution the transformation generated byX5, we get the following solution
of Equation (1):

u =
exp

(
[(lnx−Dt )2+2A2Ct2]a5+(C−B)t

1+2A2a5t

)
√

1+ 2A2a5t
xt/(1+2A2a5t ) . (32)

Thus, beginning with the simplest solution (31) we arrive at the rather complicated solu-
tion (32). The iteration of this procedure yields more complex solutions.

Note that the solution (31) is unalterable under the transformation generated byX2. This
is an example of so-calledinvariant solutionsdiscussed in the next subsection.
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3.5. INVARIANT SOLUTIONS

An invariant solution with respect to a given subgroup of the symmetry group is a solution
which is unalterable under the action of the transformations of the subgroup. Invariant so-
lutions can be expressed via invariants of the subgroup (see, e.g., [7]). Here we illustrate
the calculation of invariant solutions by considering the one-parameter subgroup with the
generator

X = X1+X2+X6 ≡ ∂

∂t
+ x ∂

∂x
+ u ∂

∂u
.

InvariantsI (t, x, u) of this group are found from the equation

XI = 0

and are given by

I = J (I1, I2),
where

I1 = t − ln x, I2 = u

x

are functionally independent invariants and hence form a basis of invariants. Therefore, the
invariant solution can be taken in the formI2 = φ(I1), or

u = xφ(z), where z = t − ln x.

Substituting into Equation (1) we obtain the ordinary differential equation of the second order:

A2

2
φ′′ +

(
1− B − A

2

2

)
φ′ + (B − C)φ = 0, where φ′ = dφ

dz
.

This equation with constant coefficients can be readily solved.
The described procedure can be applied to any linear combination (with constant coeffi-

cients) of the basic generators (18) and (19). Here we apply it to the basic operators.

X1 : u = φ(x), 1

2
A2x2φ′′ + Bxφ′ − Cφ = 0,

this equation reduces to constant coefficients in the new independent variablez = ln x;

X2 : u = φ(t), φ′ − Cφ = 0, whence u = K eCt;

X3 : u = eCtφ

(
ln x√
t
−D
√
t

)
, A2φ′′ − zφ′ = 0, z = ln x√

t
−D
√
t,

whence φ(z) = K1

z∫
0

eµ
2/(2A2) dµ+K2;

X4 : u = exp
(
(ln x −Dt)2

2A2t

)
φ(t), φ′ +

(
1

2t
− C

)
φ = 0, whence
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φ = K√
t

eCt , and hence u = K√
t

exp

(
(ln x −Dt)2

2A2t
+ Ct

)
;

X5 : u = 1√
t

exp

(
(ln x −Dt)2

2A2t
+ Ct

)
φ

(
ln x

t

)
, φ′′ = 0, hence

u =
(
K1

ln x

t3/2
+ K2√

t

)
exp

(
(ln x −Dt)2

2A2t
+ Ct

)
.

HereD = B −A2/2 andK,K1,K2 are constants of integration.
OperatorsX6 ,Xφ do not provide invariant solutions.

3.6. THE FUNDAMENTAL SOLUTION

Investigation of initial value problems for hyperbolic and parabolic linear partial differential
equations can be reduced to the construction of a particular solution with specific singularities
known in the literature aselementaryor fundamentalsolutions (see, e.g., [9–11]). Recently, it
was shown [12] that for certain classes of equations, with constant and variable coefficients,
admitting sufficiently wide symmetry groups, the fundamental solution is an invariant solution
and it can be constructed by using the so-calledinvariance principle.

Here we find the fundamental solution for Equation (1) using the group theoretic approach
presented in [13].

We can restrict ourselves by considering the fundamental solutionu = u(t, x; t0, x0) of the
Cauchy problem defined as follows:

ut + 1

2
A2x2uxx + Bxux − Cu = 0, t < t0, (33)

u
∣∣
t→t0 = δ(x − x0). (34)

Hereδ(x − x0) is the Dirac measure atx0.
According to the invariance principle, we first find the subalgebra of the Lie algebra

spanned by Equation (18) andX6 = u
∂

∂u
(for our purposes it suffices to consider this

finite-dimensional algebra obtained by omittingXφ) such that this subalgebra leaves invariant
the initial manifold (i.e., the linet = t0) and its restriction ont = t0 conserves theinitial
condition(34). This subalgebra is the three-dimensional algebra spanned by

Y1 = 2(t − t0) ∂
∂t
+ (ln x − ln x0 +D(t − t0))x ∂

∂x
+ (2C(t − t0)− 1)u

∂

∂u
,

Y2 = A2(t − t0)x ∂
∂x
+ (ln x − ln x0 −D(t − t0))u ∂

∂u
,

Y3 = 2A2(t − t0)2 ∂
∂t
+ 2A2(t − t0)x ln x

∂

∂x

+ ((ln x −D(t − t0))2− ln2 x0+ 2A2C(t − t0)2− A2(t − t0)
)
u
∂

∂u
.

Invariants are defined by the system

Y1I = 0, Y2I = 0, Y3I = 0.
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Since

Y3 = A2(t − t0)Y1+
(

1

2
A2(t − t0)− B(t − t0)+ ln x + ln x0

)
,

it suffices to solve only the first two equations. Their solution is

I = uxσ(t)√t0 − t eω(t,x),

where

σ(t) = D

A2
− ln x0

A2(t0− t) , ω(t, x) = ln2 x + ln2 x0

2A2(t0− t) +
(

D2

2A2
+ C

)
(t0− t). (35)

The invariant solution is given byI = K = const. and hence has the form

u = K x−σ(t)√
t0− t e−ω(t,x), t < t0, (36)

whereσ(t), ω(t, x) are defined by Equation (35). One can readily verify that the function (36)
satisfies Equation (33). The constant coefficientK can be found from the initial condition (34).

We will use the well-known limit,

lim
s→+0

1√
s

exp

(
−(x − x0)

2

4s

)
= 2
√
π δ(x − x0), (37)

and the formula of change of variablesz = z(x) in the Dirac measure (see, e.g., [10, p. 790]):

δ(x − x0) =
∣∣∣∣∂z(x)∂x

∣∣∣∣
x=x0

δ(z− z0). (38)

For the function (36), we have

lim
t→t0

u = lim
t→t0

K√
t0− t e−ω(t,x)−σ(t) lnx

= lim
t→t0

K√
t0− t exp

(
−(ln x − ln x0)

2

2A2(t0− t) −
D ln x

A2

)
,

or, settings = t0− t , z = (
√

2/A) ln x,

lim
t→t0

u = K exp

(
−D

A2
ln x

)
lim
s→+0

1√
s

exp

(
−(z− z0)

2

4s

)
= 2
√
π K exp

(
−D

A2
ln x

)
δ(z− z0).

By virtue of Equation (38),

δ(z− z0) = Ax0√
2
δ(x − x0),

and hence

lim
t→t0

u = √2π AKx0 exp
(
−D

A2
ln x0

)
δ(x − x0).
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Therefore, the initial condition (34) yields:

K = 1√
2π Ax0

exp

(
D

A2
ln x0

)
.

Thus, we arrive at the following fundamental solution of the Cauchy problem for Equation (1):

u = 1

Ax0
√

2π(t0− t) exp
(
−(ln x − ln x0)

2

2A2(t0− t) −
(

D2

2A2
+ C

)
(t0− t)− D

A2
(ln x − ln x0)

)
.

REMARK. The fundamental solution can also be obtained from the fundamental solution

v = 1

2
√
πτ

exp
(
− y

2

4τ

)
of the heat equation (25) by the transformation of the form (30) with

M = −L
A

D , N = L

A
Dt0− L

A
ln x0 , P = L2

2
t0, E = Ax0

L
eCt0,

i.e., by the transformation

τ = L2

2
(t0− t), y = L

A
D(t0− t)+ L

A
(ln x − ln x0), v = Ax0

L
eC(t0−t )u.

4. A Two Factor Variable Model

Methods of Lie group analysis can be successfully applied to other mathematical models used
in mathematics of finance. Here we present results of calculation of symmetries for a two state
variable model developed by Jacobs and Jones [5].

4.1. THE JACOBS–JONES EQUATION

The Jacobs–Jones model is described by the linear partial differential equation

ut = 1

2
A2x2uxx +ABCxyuxy + 1

2
B2y2uyy

+
(
Dx ln

y

x
− Ex3/2

)
ux +

(
Fy ln

G

y
−Hyx1/2

)
uy − xu (2)

with constant coefficientsA,B,C,D,E,F,G,H .

4.2. THE GROUPCLASSIFICATION

Equation (2) contains parametersA,B, . . . ,H . These parameters are ‘arbitrary elements’
mentioned in Section 2.3. According to Section 2.3, it may happen that the Lie algebra of op-
erators admitted by Equation (2) with arbitrary coefficients (i.e., principal Lie algebra) extends
for particular choices of the coefficientsA,B, . . . ,H . It is shown here that the dimension
of the symmetry Lie algebra for the model (2), unlike the Black–Scholes model, essentially
depends on choice of the coefficientsA,B,C, . . . ,H .
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4.2.1. Result of the Group Classification
The principal Lie algebraLP is infinite-dimensional and spanned by

X1 = ∂

∂t
, X2 = u ∂

∂u
, Xω = ω(t, x, y) ∂

∂u
,

whereω(t, x, y) satisfies Equation (2).
We consider all possible extensions ofLP for non-degenerateequations (2), namely those

satisfying the conditions

AB 6= 0, C 6= ±1. (39)

Moreover, we simplify calculations by imposing the additional restriction

C 6= 0. (40)

4.2.2. Extensions ofLP

The algebraLP extends in the following cases:

1.D = 0,

X3 = eF ty
∂

∂y
.

Subcase:AH − BCE = 0 andF = 0. There is an additional extension

X4 = 2AB2(1− C2)ty
∂

∂y
+ (2BC ln x − 2A ln y + (B −AC)ABt)u ∂

∂u
.

2.D 6= 0,F = −(BD/2AC),H = 0,

X3 = exp

(
BD

2AC
t

)
y
∂

∂y
+
(

D

ABC
ln
G

y
+ 1

)
exp

(
BD

2AC
t

)
u
∂

∂u
.

3.D 6= 0,F is defined from the equation

A2F 2−A2D2+ 2ABCDF + B2D2 = 0,

and the constantsE andH are connected by the relation

BE(ACF +ACD + BD) = AH(AF +AD + BCD),

X3 = e−Dty
∂

∂y
−
(
ACF +ACD + BD

A2B(1− C2)
ln x − AF +AD + BCD

AB2(1− C2)
ln y

+ A2CF +A2CD − B2CD − ABF
2ABD(1− C2)

+ F lnG(BCD +AF +AD)
AB2D(1− C2)

)
e−Dtu

∂

∂u
.

Subcase:B = 2AC, F = −D,H = 0. There is an additional extension

X4 = eDty
∂

∂y
+
(

D

2A2C2
ln
G

y
+ 1

)
eDtu

∂

∂u
.
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REMARK 1. Most likely, the restriction (40) is not essential for the group classification. For
example, one of the simplest equations of the form (39),

ut = x2uxx + y2uyy − xu,
admits two additional operators toLP and is included in the subcase of case 1 of the
classification.

REMARK 2. The classification result shows that Equation (2) cannot be transformed, for any
choice of its coefficients, into the heat equation

vτ = vss + vzz.
Indeed, the heat equation admits an extension ofLP by seven additional operators (see, e.g.,
[7, vol. 2, section 7.2]) while Equation (2) can admit a maximum extension by two operators.

4.3. INVARIANT SOLUTIONS

The above results can be used for the construction of exact (invariant) solutions of Equa-
tion (2). We consider here examples of solutions invariant under two-dimensional subalgebras
of the symmetry Lie algebra. Then a solution of Equation (2) is obtained from a linear second-
order ordinary differential equation and hence the problem is reduced to a Riccati equation.
The examples illustrate the general algorithm and can easily be adopted by the reader in other
cases.

To construct a solution invariant under a two-dimensional symmetry algebra, one chooses
two operators

Y1 = ξ0
1(t, x, y, u)

∂

∂t
+ ξ1

1(t, x, y, u)
∂

∂x
+ ξ2

1(t, x, y, u)
∂

∂y
+ η1(t, x, y, u)

∂

∂u
,

Y2 = ξ0
2(t, x, y, u)

∂

∂t
+ ξ1

2(t, x, y, u)
∂

∂x
+ ξ2

2(t, x, y, u)
∂

∂y
+ η2(t, x, y, u)

∂

∂u

that are admitted by Equation (2) and obey the Lie algebra relation:

[Y1, Y2] = λ1Y1+ λ2Y2, λ1, λ2 = const.

The two-dimensional Lie subalgebra spanned byY1, Y2 will be denoted by

〈Y1, Y2〉.
This algebra has two functionally independent invariantsI1(t, x, z, u), I2(t, x, z, u) provided
that

rank
(
ξ0

1 ξ1
1 ξ2

1 η1

ξ0
2 ξ1

2 ξ2
2 η2

)
= 2.

Under these conditions, the invariants are determined by the system of differential equations

Y1I = 0, Y2I = 0.

The invariants solution exists if

rank
(
∂I1

∂u
,
∂I2

∂u

)
= 1.
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Then the invariant solution has the form

I2 = φ(I1). (41)

Substituting Equation (41) into Equation (2), one arrives at an ordinary differential equation
for the functionφ.

EXAMPLE. Consider the equation

ut = 1

2
A2x2uxx +ABCxyuxy + 1

2
B2y2uyy − Ex 3

2 ux − BCE
A

yx1/2uy − xu. (42)

According to the above group classification, Equation (42) admits the operators

X1 = ∂

∂t
, X2 = u ∂

∂u
, X3 = y ∂

∂y
,

X4 = 2AB2(1− C2)ty
∂

∂y
+ (2BC ln x − 2A ln y + (B −AC)ABt)u ∂

∂u
,

Xω = ω(t, x, y)
∂

∂u
, where ω(t, x, y) solves Equation (42). (43)

Here we consider invariants solutions with respect to three different two-dimensional
subalgebras of the algebra (43).

1. The subalgebra〈X1,X3〉 has the independent invariantsI1 = x, I2 = u. Hence, the invariant
solution has the form

u = φ(x), (44)

and is determined by the equation

1

2
A2x2φ′′ − Ex3/2φ′ − xφ = 0. (45)

It reduces to the Riccati equation

ψ ′ + ψ2− 2E

A2
√
x
ψ − 2

A2x
= 0

by the standard substitution

ψ = φ′/φ. (46)

2. The subalgebra〈X1 + X2,X3〉 has the invariantsI1 = x, I2 = ue−t . The corresponding
invariant solution has the form

u = etφ(x). (47)

The substitution into Equation (42) yields:

1

2
A2x2φ′′ − Ex3/2φ′ − (x + 1)φ = 0. (48)
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It reduces to a Riccati equation by the substitution (46).

3. The subalgebra〈X1,X2 + X3〉 has the invariantsI1 = x, I2 = u/y. The invariant solution
has the form

u = yφ(x) (49)

with the functionφ(x) defined by the equation

1

2
A2x2φ′′ + (ABCx − Ex3/2)φ′ −

(
BCE

A
x1/2+ x

)
φ = 0. (50)

It reduces to a Riccati equation by the substitution (46).

4.4. INFINITE IDEAL AS A GENERATOR OFNEW SOLUTIONS

Recall that the infinite set of operatorsXω does not provide invariant solutions by the direct
method (see the end of Section 3.5). However, we can use it to generate new solutions from
known ones as follows. Letu = ω(t, x, y) be a known solution of Equation (2) so that the
operatorXω is admitted by Equation (2). Then, ifX is any operator admitted by Equation (2),
one obtains that

[Xω,X] = Xω, (51)

whereω(t, x, y) is a solution (in general, it is different fromω(t, x, y)) of Equation (2). The
relation (51) means that the setLω of operators of the formXω is an ideal of the symmetry
Lie algebra. Since the set of solutionsω(t, x, y) is infinite,Lω is called aninfinite ideal.

Thus, given a solutionω(t, x, y), the formula (51) provides a new solutionω(t, x, y) to
Equation (2). Let us apply this approach to the solutions given in the example of the previous
subsection by lettingX = X4 from (43).

1. Starting with the solution (44), we haveω(t, x, y) = φ(x), whereφ(x) is determined by
the differential equation (45). Then

[Xω,X4] = (2BC ln x − 2A ln y + (B −AC)ABt)φ(x) ∂
∂u
.

Hence, the new solutionu = ω(t, x, y) is

ω(t, x, y) = (2BC ln x − 2A ln y + (B −AC)ABt)φ(x) (52)

with the functionφ(x) determined by Equation (45). Now we can repeat the procedure by
taking the solution (52) asω(t, x, y) in Equation (51). Then

[Xω,X4] =
[
(2BC ln x − 2A ln y + (B −AC)ABt)2φ(x) + 4A2B2(1− C2)tφ(x)

] ∂
∂u
.

Hence, we arrive at the solution

u = [(2BC ln x − 2A ln y + (B −AC)ABt)2 + 4A2B2(1− C2)t
]
φ(x), (53)

whereφ(x) is again a solution of Equation (45). By iterating this procedure, one obtains an
infinite set of distinctly different solutions to Equation (42). Further new solutions can be
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obtained by replacingX4 by any linear combination of the operators (43).

2. For the solution (47),ω(t, x, y) = etφ(x), whereφ(x) is determined by Equation (48). In
this case,

[Xω,X4] = (2BC ln x − 2A ln y + (B −AC)ABt)et φ(x)
∂

∂u
,

and the new solutionu = ω(t, x, y) has the form

ω(t, x, y) = (2BC ln x − 2A ln y + (B −AC)ABt)et φ(x) (54)

with the functionφ(x) determined by Equation (48). One can iterate the procedure.

3. For the solution (49),ω(t, x, y) = yφ(x), whereφ(x) is determined by Equation (50). In
this case,

[Xω,X4] = (2BC ln x − 2A ln y + (2BC2− B −AC)ABt)yφ(x) ∂
∂u
,

and the new solution is

u = (2BC ln x − 2A ln y + (2BC2− B −AC)ABt)yφ(x), (55)

where the functionφ(x) is determined by Equation (50). The iteration of the procedure yields
an infinite series of solutions.

5. Conclusion

In this paper, the Lie group analysis is applied to the Black–Scholes and Jacobs–Jones models.
The approach provides a wide class of analytic solutions of the equations in question.

For the Black–Scholes equation, the most general transformation to the heat equation is
derived. This allows one to solve initial value problems different from that given in [3].
Moreover, we use the invariance principle to construct the fundamental solution which can
be used for general analysis of an arbitrary initial value problem.

For the Jacobs–Jones model, we present the group classification which shows that the
dimension of the symmetry Lie algebra essentially depends on the parameters of the model.
It also follows from this classification result that the Jacobs–Jones equation can not be
transformed into the classical two-dimensional heat equation.
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