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Lecture Notes 0

Basics of Euclidean Geometry

By R we shall always mean the set of real numbers. The set of all n-tuples of
real numbers Rn := {(p1, . . . , pn) | pi ∈ R} is called the Euclidean n-space.
So we have

p ∈ Rn ⇐⇒ p = (p1, . . . , pn), pi ∈ R.

Let p and q be a pair of points (or vectors) in Rn. We define p+ q := (p1 +
q1, . . . , pn+qn). Further, for any scalar r ∈ R, we define rp := (rp1, . . . , rpn).
It is easy to show that the operations of addition and scalar multiplication
that we have defined turn Rn into a vector space over the field of real num-
bers. Next we define the standard inner product on Rn by

〈p, q〉 = p1q1 + . . .+ pnqn.

Note that the mapping 〈·, ·〉 : Rn ×Rn → R is linear in each variable and is
symmetric. The standard inner product induces a norm on Rn defined by

‖p‖ := 〈p, p〉
1
2 .

If p ∈ R, we usually write |p| instead of ‖p‖.
The first nontrivial fact in Euclidean geometry, and an exercise which

every geometer should do, is

Exercise 1. (The Cauchy-Schwartz inequality) Prove that

|〈p, q〉| 6 ‖p‖ ‖q‖,

for all p and q in Rn (Hints: If p and q are linearly dependent the solution is
clear. Otherwise, let f(λ) := 〈p− λq, p− λq〉. Then f(λ) > 0. Further, note
that f(λ) may be written as a quadratic equation in λ. Hence its discriminant
must be negative).

1Last revised: September 1, 2004
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The standard Euclidean distance in Rn is given by

dist(p, q) := ‖p− q‖.

Exercise 2. (The triangle inequality) Show that

dist(p, q) + dist(q, r) > dist(p, r)

for all p, q in Rn. (Hint: use the Cauchy-Schwartz inequality).

By a metric on a set X we mean a mapping d : X ×X → R such that

1. d(p, q) > 0, with equality if and only if p = q.

2. d(p, q) = d(q, p).

3. d(p, q) + d(q, r) > d(p, r).

These properties are called, respectively, positive-definiteness, symmetry, and
the triangle inequality. The pair (X, d) is called a metric space. Using the
above exercise, one immediately checks that (Rn, dist) is a metric space. Ge-
ometry, in its broadest definition, is the study of metric spaces, and Euclidean
Geometry, in the modern sense, is the study of the metric space (Rn, dist).

Finally, we define the angle between a pair of nonzero vectors in Rn by

angle(p, q) := cos−1 〈p, q〉
‖p‖ ‖q‖

.

Note that the above is well defined by the Cauchy-Schwartz inequality. Now
we have all the necessary tools to prove the most famous result in all of
mathematics:

Exercise 3. (The Pythagorean theorem) Show that in a right triangle
the square of the length of the hypotenuse is equal to the sum of the squares
of the length of the sides (Hint: First prove that whenever 〈p, q〉 = 0, ‖p‖2 +
‖q‖2 = ‖p− q‖2. Then show that this proves the theorem.).

The next exercise is concerned with another corner stone of Euclidean
Geometry; however, the proof requires the use of some trignometric identities
and is computationally intensive.

Exercise* 4. (Sum of the angles in a triangle) Show that the sum of
the angles in a triangle is π.
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1 Curves

1.1 Definition and Examples

A (parametrized) curve (in Euclidean space) is a mapping α : I → Rn, where
I is an interval in the real line. We also use the notation

I � t
α�−→ α(t) ∈ Rn,

which emphasizes that α sends each element of the interval I to a certain
point in Rn. We say that α is (of the class of) Ck provided that it is k times
continuously differentiable. We shall always assume that α is continuous
(C0), and whenever we need to differentiate it we will assume that α is
differentiable up to however many orders that we may need.

Some standard examples of curves are a line which passes through a point
p ∈ Rn, is parallel to the vector v ∈ Rn, and has constant speed ‖v‖

[0, 2π] � t
α�−→ p + tv ∈ Rn;

a circle of radius R in the plane, which is oriented counterclockwise,

[0, 2π] � t
α�−→

(
r cos(t), r sin(t)

)
∈ R2;

and the right handed helix (or corkscrew) given by

R � t
α�−→

(
r cos(t), r sin(t), t

)
∈ R3.

Other famous examples include the figure-eight curve

[0, 2π] � t
α�−→

(
sin(t), sin(2t)

)
∈ R2,

1Last revised: September 11, 2004
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the parabola
R � t

α�−→
(
t, t2) ∈ R2,

and the cubic curve
R � t

α�−→
(
t, t2, t3) ∈ R3.

Exercise 1. Sketch the cubic curve (Hint: First draw each of the projections
into the xy, yz, and zx planes).

Exercise 2. Find a formula for the curve which is traced by the motion of a
fixed point on a wheel of radius r rolling with constant speed on a flat surface
(Hint: Add the formula for a circle to the formula for a line generated by
the motion of the center of the wheel. You only need to make sure that the
speed of the line correctly matches the speed of the circle).

Exercise 3. Let α : I → Rn, and β : J → Rn be a pair of differentiable
curves. Show that(〈

α(t), β(t)
〉)′

=
〈
α′(t), β(t)

〉
+

〈
α(t), β′(t)

〉
and (

‖α(t)‖
)′

=

〈
α(t), α′(t)

〉
‖α(t)‖ .

(Hint: The first identity follows immediately from the definition of the inner-
product, together with the ordinary product rule for derivatives. The second
identity follows from the first once we recall that ‖ · ‖ := 〈·, ·〉1/2).

Exercise 4. Show that if α has unit speed, i.e., ‖α′(t)‖ = 1, then its velocity
and acceleration are orthogonal, i.e., 〈α(t), α′′(t)〉 = 0.

Exercise 5. Show that if the position vector and velocity of a planar curve
α : I → R2 are always perpendicular, i.e., 〈α(t), α′(t)〉 = 0, for all t ∈ I, then
α(I) lies on a circle centered at the origin of R2.

Exercise 6. Use the fundamental theorem of Calculus for real valued func-
tions to show:

α(b) − α(a) =

∫ b

a

α′(t) dt.
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Exercise 7. Prove that

‖α(b) − α(a)‖ ≤
∫ b

a

‖α′(t)‖ dt.

(Hint: Use the fundamental theorem of calculus and the Cauchy-Schwarts
inequality to show that for any unit vector u ∈ Rn,

〈
α(b) − α(a), u

〉
=

∫ b

a

〈α′(t), u〉dt ≤
∫ b

a

‖α′(t)‖dt.

Then set u := (α(b) − α(a))/‖α(b) − α(a)‖.

1.2 Reparametrization

We say that β : J → Rn is a reparametrization of α : I → Rn provided that
there exists a smooth bijection θ : I → J such that α(t) = β

(
θ(t)

)
. In other

words, the following diagram commutes:

I J

Rn

θ

α β

For instance β(t) = (cot(2t), sin(2t)), 0 ≤ t ≤ π, is a reparametrization
α(t) = (sin(t), cos(t)), 0 ≤ t ≤ 2π, with θ : [0, 2π] → [0, π] given by θ(t) =
t/2.

The geometric quantities associated to a curve do not change under
reparametrization. These include length and curvature as we define below.

1.3 Length and Arclength

By a partition P of an interval [a, b] we mean a collection of points {t0, . . . , tn}
of [a, b] such that

a = t0 < t1 < · · · < tn = b.
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The approximation of the length of α with respect to P is defined as

length[α, P ] :=
n∑

i=1

‖α(ti) − α(ti−1)‖,

and if Partition[a, b] denotes the set of all partitions of [a, b], then the length
of α is given by

length[α] := sup
{

length[α, P ] | P ∈ Partition[a, b]
}
,

where ‘sup’ denotes the supremum or the least upper bound.

Exercise 8. Show that the shortest curve between any pairs of points in Rn

is the straight line segment joining them. (Hint: Use the triangle inequality).

We say that a curve is rectifiable if it has finite length.

Exercise* 9 (Nonrectifiable curves). Show that there exists a curve
α : [0, 1] → R2 which is not rectifiable (Hint: One such curve, known as
the Koch curve (Figure 1), may be obtained as the limit of a sequence of
curves αi : [0, 1] → R defined as follows. Let α0 trace the line segment [0, 1].
Consider an equilateral triangle of sides 1/3 whose base rests on the middle
third of [0, 1]. Deleting this middle third from the interval and the triangle
yields the curve traced by α1. Repeating this procedure on each of the 4

Figure 1:

subsegments of α1 yields α2. Similarly αi+1 is obtained from αi. You need
to show that αi converge to a (continuos) curve, which may be done us-
ing the Arzela-Ascoli theorem. It is easy to see that this limit has infinite
length, because the length of αi is (4/3)i. Another example of a nonrecti-
fiable curve α : [0, 1] → R2 is given by α(t) := (t, t sin(π/t)), when t 	= 0,
and α(t) := (0, 0) otherwise. The difficulty here is to show that the length is
infinite.)

If a curve is C1, then its length may be computed as the following exercise
shows. Note also that the following exercise shows that a C1 curve over a
compact domain is rectifiable.
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Exercise* 10 (Length of C1 curves). Show that if α : I → Rn is a C1

curve, then

length[α] =

∫
I

‖α′(t)‖ dt.

(Hints: It suffices to show that (i) length[α, P ] is less than the above integral,
for all P ∈ Partition[a, b], and (ii) there exists a sequence Pn of partitions
such that limn→∞ length[α, Pn] is equal to the integral. The first part follows
quickly from Exercise 7. To prove the second part, let Pn be a partition given
by ti := a+i(b−a)/n. Any other partition where the maximum length of the
subsegments converges to zero would do as well. Then apply the mean value
theorem, and recall the definition of the integral as the limit of Riemann
sums. See do Carmo Exc. 8, Sec. 1-3, and the solution on p. 475.)

Exercise 11. Compute the length of a circle of radius r, and the length of
one cycle of the curve traced by a point on a circle of radius r rolling on a
straight line.

Exercise 12 (Invariance of length under reparametrization). Show that
if β is a reparametrization of α, then length[β] = length[α], i.e., length is in-
variant under reparametrization (Hint : you only need to recall the chain rule
together with the integration by substitution.)

Let L := length[α]. The arclength function of α is a mapping s : [a, b] →
[0, L] given by

s(t) :=

∫ t

a

‖α′(u)‖ du.

Thus s(t) is the length of the subsegment of α which stretches from the initial
time a to time t.

Exercise 13 (Regular curves). Show that if α is a regular curve, i.e.,
‖α′(t)‖ 	= 0 for all t ∈ I, then s(t) is an invertible function, i.e., it is one-to-
one (Hint : compute s′(t)).

Exercise 14 (Reparametrization by arclength). Show that every regu-
lar curve α : [a, b] → Rn, may be reparametrized by arclength ( Hint: Define
β : [0, L] → Rn by β(t) := α(s−1(t)), and use the chain rule to show that
‖β′‖ = 1; you also need to recall that since f(f−1(t)) = t, then, again by
chain rule, we have (f−1)′(t) = 1/f ′(f−1(t)) for any smooth function f with
nonvanishing derivative.)
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1.4 Cauchy’s integral formula and
curves of constant width

Let α : → R2 be a curve and u(θ) := (cos(θ), sin(θ)) be a unit vector. The
projection of α into the line passing through the origin and parallel to u is
given by αu(t) := 〈α(t), u〉u.

Exercise 15 (Cauchy’s integral formula). Show that if α : I → R2 has
length L, then the average length of the projections αu, over all directions,
is 2L/π, i.e.,

1

2π

∫ 2π

0

length[αu(θ)] dθ =
2L

π
.

(Hint : First prove this fact for the case when α traces a line segment. Then
a limiting argument settles the general case, once you recall the definition of
length. Also, there is a purely analytic and more elegant proof for the case
when α is C1. In this case the integrand is simply

∫
I
‖α′(t)‖ | cos(θ)|dt.)

As an application of the above formula we may obtain a sharp inequality
involving width of closed curves. The width of a set X ⊂ R2 is the distance
between the closest pairs of parallel lines which contain X in between them.
For instance the width of a circle of radius r is 2r. A curve α : [a, b] → R2 is
said to be closed provided that α(a) = α(b). We should also mention that α
is a Ck closed curve provided that the (one-sided) derivatives of α match up
at a and b.

Exercise 16 (Width and length). Show that if α : [a, b] → R2 is a closed
curve with width w and length L, then

w ≤ L

π
.

Note that the above inequality is sharp, since for circles w = L/π. Are
there other curves satisfying this property? The answer may surprise you.
For any unit vector u(θ), the width of a set X ⊂ R2 in the direction u, wu,
is defined as the distance between the closest pairs of lines which contain X
in between them. We say that a closed curve in the plane has constant width
provided that wu is constant in all directions.

Exercise 17. Show that if the equality in Exercise 16 holds then α is a curve
of constant width.
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The last exercise would have been insignificant if circles were the only
curves of constant width, but that is not the case:

Exercise 18 (Reuleaux triangle). Consider three disks of radius r whose
centers are on an equilateral triangle of sides r, see Figure 2. Show that
the curve which bounds the intersection of these disks has constant width.
Also show that similar constructions for any regular polygon yield curves of
constant width.

Figure 2:

It can be shown that of all curves of constant width w, Reuleaux triangle
has the least are. This is known as the Blaschke-Lebesque theorem. A recent
proof of this result has been obtained by Evans Harrell.

Note that the Reuleaux triangle is not a C1 regular curve for it has sharp
corners. To obtain a C1 example of a curve of constant width, we may take a
curve which is a constant distance away from the Reuleaux triangle. Further,
a C∞ example may be constructed by taking an evolute of a deltoid, see Gray
p. 177.
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1.5 Isometries of the Euclidean Space

Let M1 and M2 be a pair of metric space and d1 and d2 be their respective
metrics. We say that a mapping f : M1 → M2 is an isometry provided that

d1(p, q) = d2

(
f(p), f(q)

)
,

for all pairs of points in p, q ∈ M1. An orthogonal transformation A : Rn →
Rn is a linear map which preserves the inner product, i.e.,〈

A(p), A(q)
〉

= 〈p, q〉
for all p, q ∈ Rn. One may immediately check that an orthogonal transfor-
mation is an isometry. Conversely, we have:

Theorem 1. If f : Rn → Rn is an isometry, then

f(p) = f(o) + A(p),

where o is the origin of Rn and A is an orthogonal transformation.

Proof. Let
f(p) := f(p) − f(o).

We need to show that f is a linear and 〈f(p), f(q)〉 = 〈p, q〉. To see the latter
note that

〈x − y, x − y〉 = ‖x‖2 + ‖y‖2 − 2〈x, y〉.
Thus, using the definition of f , and the assumption that f is an isometry,
we obtain

2
〈
f(p), f(q)

〉
= ‖f(p)‖2 + ‖f(q)‖2 − ‖f(p) − f(q)‖2

= ‖f(p) − f(o)‖2 + ‖f(q) − f(o)‖2 − ‖f(p) − f(q)‖2

= ‖p‖2 + ‖q‖2 − ‖p − q‖2

= 2〈p, q〉.
1Last revised: September 17, 2004
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Next note that, since f preserves the inner product, if ei, i = 1 . . . n, is an
orthonormal basis for Rn, then so is f(ei). Further,〈

f(p + q), f(ei)
〉

= 〈p + q, ei〉 = 〈p, ei〉 + 〈q, ei〉
=

〈
f(p), f(ei)

〉
+

〈
f(q), f(ei)

〉
=

〈
f(p) + f(q), f(ei)

〉
.

Thus if follows that
f(p + q) = f(p) + f(q).

Similarly, for any constant c,〈
f(cp), f(ei)

〉
= 〈cp, ei〉 =

〈
cf(p), f(ei)

〉
,

which in turn yields that f(cp) = f(p), and completes the proof f is linear.

If f : Rn → Rn is an isometry with f(o) = o we say that it is a rotation,
and if A = f − f(o) is identity we say that f is a translation. Thus another
way to state the above theorem is that an isometry of the Euclidean space is
the composition of a rotation and a translation.

Any mapping f : Rn → Rm given by f(p) = q +A(p), where q ∈ Rn, and
A is any linear transformation, is called an affine map with translation part
q and linear part A. Thus yet another way to state the above theorem is that
any isometry f : Rn → Rn is an affine map whose linear part is orthogonal

An isometry of Euclidean space is also referred to as a rigid motion. Recall
that if AT denotes the transpose of matrix A, then〈

AT (p), q
〉

=
〈
p, A(q)

〉
.

This yields that if A is an orthogonal transformation, then AT A is the identity
matrix. In particular

1 = det(AT A) = det(AT ) det(A) = det(A)2.

So det(A) = ±1. If det(A) = 1, then we say that A is a special orthog-
onal transformation, A : Rn → Rn is a proper rotation, and any isometry
f : Rn → Rn given by f(p) = q + A(p) is a proper rigid motion.
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Exercise 2 (Isometries of R2). Show that if A : R2 → R2 is a proper
rotation, then it may be represented by a matrix of the form(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

Further, any improper rotation is given by(
1 0
0 −1

)
.

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

Conclude then that any isometry of R2 is a composition of a translation, a
proper rotation, and possibly a reflection with respect to the y-axis.

In the following exercise you may use the following fact: any continuous
mapping of f : S2 → S2 of the sphere to itself has a fixed point or else sends
some point to its antipodal reflection. Alternatively you may show that every
3 × 3 orthogonal matrix has a nonzero real eigenvalue.

Exercise 3 (Isometries of R3). (a) Show that any proper rotation A : R3 →
R3 fixes a line � through the origin. Further if Π is a plane which is orthog-
onal to �, then A maps Π to itself by rotating it around the point � ∩ Π by
an angle which is the same for all such planes. (b) Show that any rotation of
R3 is a composition of rotations about the x, and y-axis. (c) Find a pair of
proper rotations A1, A2 which do not commute, i.e., A1 ◦ A2 �= A2 ◦ A1. (d)
Note that any improper rotation becomes proper after multiplication by an
orthogonal matrix with negative determinant. Use this fact to show that any
rotation of R3 is the composition of a proper rotation with reflection through
the origin, or reflection through the xy-plane. (e) Conclude that any isome-
try of R3 is a composition of the following isometries: translations, rotations
about the x, or y-axis, reflections through the origin, and reflections through
the xy-plane.

Exercise 4. Show that if α : I → R2 is a C1 curve, then for any p ∈ I there
exists and open neighborhood U of p in I and a rigid motion f : R2 → R2

such that α restricted to U has a reparametrization β : J → R2, where J ⊂ R
is a neighborhood of the origin, and B(t) = (t, h(t)) for some C1 function
f : J → R with h(0) = h′(0) = 0.

3



1.6 Invariance of length under isometries

Recalling the definition of length as the limit of polygonal approximations,
one immediately sees that

Exercise 5. Show that if α : [a, b] → Rn is a rectifiable curve, and f : Rn →
Rn is an isometry, then length[α] = length[f ◦ α].

Recall that earlier we had shown that the length of a curve was invariant
under reparametrization. The above exercise further confirms that length is
indeed a ‘geometric quantity’. In the case where α is C1, it is useful to give
also an analytic proof for the above exercise, mainly as an excuse to recall
and apply some basic concepts from multivariable calculus.

Let U ⊂ Rn be an open subset, and f : U → Rm be a map. Note that f
is a list of m functions of n variables:

f(p) = f(p1, . . . , pn) =
(
f 1(p1, . . . , pn), . . . , fm(p1, . . . , pn)

)
.

The first order partial derivatives of f are given by

Djf
i(p) := lim

h→0

f i(p1, . . . , pj + h, . . . , pn) − f i(p1, . . . , pj, . . . , pn)

h
.

If all the functions Djf
i : U → R exist and are continuous, then we say that

f is C1. The Jacobian of f at p is the m × n matrix defined by

Jp(f) :=

 D1f
1(p) · · · Dnf

1(p)
...

...
D1f

m(p) · · · Dnf
m(p)

 .

The derivative of f at p is the linear transformation Df(p) : Rn → Rm given
by the above matrix, i.e.,(

Df(p)
)
(x) :=

(
Jp(f)

)
(x).

Exercise 6 (Derivative of linear maps). Show that if A : Rn → Rm is a
linear map, then

DA(p) = A

for all p ∈ Rn. In other words, for each p ∈ Rn, (DA(p))(x) = A(x), for all
x ∈ Rn.(Hint: Let aij, i = 1 . . . n, and j = 1 . . . m, be the coefficients of the
matrix representation of A. Then Aj(p) =

∑n
i=1 aijpi.)
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Another basic fact is the chain rule which states that if g : Rm → R� is a
differentiable function, then

D(f ◦ g)(p) = Df
(
g(p)

)
◦ Dg(p).

Now let α : I → Rn be a C1 curve and f : Rn → Rn, given by f(p) =
f(o) + A(p) be an isometry. Then

length[f ◦ α] =

∫
I

‖D(f ◦ α)(t)‖ dt (1)

=

∫
I

‖Df
(
α(t)

)
◦ Dα(t)‖ dt (2)

=

∫
I

‖DA
(
α(t)

)
◦ Dα(t)‖ dt (3)

=

∫
I

‖A
(
Dα(t)

)
‖ dt (4)

=

∫
I

‖Dα(t)‖ dt (5)

= length[α] (6)

The six equalities above are due respectively to (1) definition of length, (2)
the chain rule, (3) definition of isometry f , (4) Exercise 6, (5) definition of
orthogonal transformation, and (6) finally definition of length applied again.

1.7 Curvature of C2 regular curves

The curvature of a curve is a measure of how fast it is turning. More precisely,
it is the speed, with respect to the arclength parameter, of the unit tangent
vector of the curve. The unit tangent vector, a.k.a. tangential indicatrix, or
tantrix for short, of a regular curve α : I → Rn is defined as

T (t) :=
α′(t)

‖α′(t)‖ .

Note that the tantrix is itself a curve with parameter ranging in I and image
lying on the unit sphere Sn−1 := {x ∈ Rn | ‖x‖ = 1}. If α is parametrized
with respect to arclength, i.e., ‖α′(t)‖ = 1, then the curvature is given by

κ(t) = ‖T ′(t)‖ = ‖α′′(t)‖ (provided ‖α′‖ = 1).
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Thus the curvature of a road is the amount of centripetal force which you
would feel, if you traveled on it in a car which has unit speed; the tighter the
turn, the higher the curvature, as is affirmed by the following exercise:

Exercise 7. Show that the curvature of a circle of radius r is 1
r
, and the

curvature of the line is zero (First you need to find arclength parametrizations
for these curves).

Recall that, as we showed earlier, there exists a unique way to reparametrize
a curve α : [a, b] → Rn by arclength (given by α ◦ s−1(t)). Thus the curva-
ture does not depend on parametrizations. This together with the following
exercise shows that κ is indeed a ‘geometric quantity’.

Exercise 8. Show that κ is invariant under isometries of the Euclidean space
(Hint: See the computation at the end of the last subsection).

As a practical matter, we need to have a definition for curvature which
works for all curves (not just those already parametrized by arclength), be-
cause it is often very difficult, or even impossible, to find explicit formulas
for unit speed curves.

To find a general formula for curvature of C2 regular curve α : I → Rn,
let T : I → Sn−1 be its tantrix. Let s : I → [0, L] be the arclength function.
Since, as we discussed earlier s is invertible, we may define

T := T ◦ s−1

to be a reparametrization of T . Then curvature may be defined as

κ(t) := ‖T ′
(s(t))‖.

By the chain rule,

T
′
(t) = T ′

(
s−1(t)

)
·
(
s−1

)′
(t).

Further recall that (s−1)′(t) = 1/‖α′(s−1(t))‖. Thus

κ(t) =
‖T ′(t)‖
‖α′(t)‖ .

Exercise 9. Use the above formula, together with definition of T , to show
that

κ(t) =

√
‖α′(t)‖2‖α′′(t)‖2 − 〈α′(t), α′′(t)〉2

‖α′(t)‖3
.
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In particular, in R3, we have

κ(t) =
‖α′(t) × α′′(t)‖

‖α′(t)‖3
.

(Hint : The first identity follows from a straight forward computation. The
second identity is an immediate result of the first via the identity ‖v×w‖2 =
‖v‖2‖w‖2 − 〈v, w〉2.)

Exercise 10. Show that the curvature of a planar curve which satisfies the
equation y = f(x) is given by

κ(x) =
|f ′′(x)|(√

1 +
(
f ′(x)

)2
)3 .

(Hint: Use the parametrization α(t) = (t, f(t), 0), and use the formula in
previous exercise.) Compute the curvatures of y = x, x2, x3, and x4.

Exercise 11. Let α, β : (−1, 1) → R2 be a pair of C2 curves with α(0) =
β(0) = (0, 0). Further suppose that α and β both lie on or above the x-axis,
and β lies higher than or at the same height as α. Show that the curvature
of β at t = 0 is not smaller than that of α at t = 0(Hint: Use exercise 4, and
a Taylor expansion).

Exercise 12. Show that if α : I → R2 is a C2 closed curve which is contained
in a circle of radius r, then the curvature of α has to be bigger than 1/r at
some point. In particular, closed curves have a point of nonzero curvature.
(Hint : Shrink the circle until it contacts the curve, and use Exercise 11).

Exercise 13. Let α : I → R2 be a closed planar curve, show that

length[α] ≥ 2π

max κ
.

(Hint: Recall that the width w of α is smaller than or equal to its length
divided by π to show that a piece of α should lie inside a circle of diameter
at least w).
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1.8 The general definition of curvature;
Fox-Milnor’s Theorem

Let α : [a, b] → Rn be a curve and P = {t0, . . . , tn} be a partition of [a, b],
then (the approximation of) the total curvature of α with respect to P is
defined as

total κ[α, P ] :=
n−1∑
i=1

angle
(
α(ti) − α(ti−1) , α(ti+1) − α(ti)

)
,

and the total curvature of α is given by

total κ[α] := sup{κ[α, P ] | P ∈ Partition[a, b] }.

Our main aim here is to prove the following observation due to Ralph Fox
and John Milnor:

Theorem 1 (Fox-Minor). If α : [a, b] → Rn is a C2 unit speed curve, then

total κ[α] =

∫ b

a

‖α′′(t)‖ dt.

This theorem implies, by the mean value theorem for integrals, that for any
t ∈ (a, b),

κ(t) = lim
ε→0

1

2ε
total κ

[
α
∣∣t+ε

t−ε

]
.

The above formula may be taken as the definition of curvature for general
(not necessarily C2) curves. To prove the above theorem first we need to
develop some basic spherical geometry. Let

Sn := {p ∈ Rn+1 | ‖p‖ = 1}.
1Last revised: September 17, 2004
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denote the n-dimensional unit sphere in Rn+1. Define a mapping from Sn×Sn

to R by
distSn(p, q) := angle(p, q).

Exercise 2. Show that (Sn, distSn) is a metric space.

The above metric has a simple geometric interpretation described as fol-
lows. By a great circle C ⊂ Sn we mean the intersection of Sn with a two
dimensional plane which passes through the origin o of Rn+1. For any pair
of points p, q ∈ S2, there exists a plane passing through them and the origin.
When p �= ±q this plane is given by the linear combinations of p and q and
thus is unique; otherwise, p, q and o lie on a line and there exists infinitely
many two dimensional planes passing through them. Thus through every
pairs of points of Sn there passes a great circle, which is unique whenever
p �= ±q.

Exercise 3. For any pairs of points p, q ∈ Sn, let C be a great circle passing
through them. If p �= q, let �1 and �2 denote the length of the two segments in
C determined by p and q, then distSn(p, q) = min{�1, �2}. (Hint: Let p⊥ ∈ C
be a vector orthogonal to p, then C may be parametrized as the set of points
traced by the curve p cos(t) + p⊥ sin(t).)

Let α : [a, b] → Sn be a spherical curve, i.e., a Euclidean curve α : [a, b] →
Rn+1 with ‖α‖ = 1. For any partition P = {t0, . . . , tn} of [a, b], the spherical
length of α with respect the partition P is defined as

lengthSn [α, P ] =
n∑

i=1

distSn

(
α(ti), α(ti−1)

)
.

The norm of any partition P of [a, b] is defined as

|P | := max{ti − ti−1 | 1 ≤ i ≤ n}.

If P 1 and P 2 are partions of [a, b], we say that P 2 is a refinement of P 1

provided that P 1 ⊂ P 2.

Exercise 4. Show that if P 2 is a refinement of P 1, then

lengthSn [α, P 2] ≥ lengthSn [α, P 1].

(Hint:Use the fact that distSn satisfies the triangle inequality, see Exc. 2).
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The spherical length of α is defined by

lengthSn [α] = sup { lengthSn [α, P ] | P ∈ Partition[a, b] } .

Lemma 5. If α : [a, b] → Sn is a unit speed spherical curve, then

lengthSn [α] = length[α].

Proof. Let P k := {tk0, . . . , tkn} be a sequence of partitions of [a, b] with

lim
k→∞

|P k| = 0,

and
θk

i := distSn

(
αk(ti), α

k(ti−1)
)

= angle
(
αk(ti), α

k(ti−1)
)

be the corresponding spherical distances. Then, since α has unit speed,

2 sin

(
θk

i

2

)
= ‖α(tki ) − α(tki−1)‖ ≤ tki − tki−1 ≤ |P k|.

In particular,

lim
k→∞

2 sin

(
θk

i

2

)
= 0.

Now, since limx→0 sin(x)/x = 1, it follows that, for any ε > 0, there exists
N > 0, depending only on |P k|, such that if k > N , then

(1 − ε)θk
i ≤ 2 sin

(
θk

i

2

)
≤ (1 + ε)θk

i ,

which yields that

(1 − ε) lengthSn [α, P k] ≤ length[α, P k] ≤ (1 + ε) lengthSn [α, P k].

The above inequalities are satisfied by any ε > 0 provided that k is large
enough. Thus

lim
k→∞

lengthSn [α, P k] = length[α].

Further, note that if P is any partitions of [a, b] we may construct a sequnce
of partitions by successive refinements of P so that limk→∞ |P k| = 0. By
Exercise 4, lengthSn [α, P k] ≤ lengthSn [α, P k+1]. Thus the above expression
shows that, for any partition P of [a, b],

lengthSn [α, P ] ≤ length[α].
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The last two expressions now yied that

sup{ lengthSn [α, P ] | P ∈ Partition[a, b] } = length[α],

which completes the proof.

Exercise 6. Show that if P 2 is a refinement of P 1, then

totalκ[α, P 2] ≥ totalκ[α, P 1].

Now we are ready to prove the theorem of Fox-Milnor:

Proof of Theorem 1. As in the proof of the previous lemma, let P k = {tk0, . . . , tkn}
be a sequence of partitions of [a, b] with limk→∞ |P k| = 0. Set

θk
i := angle

(
α(tki ) − α(tki−1) , α(tki+1) − α(tki )

)
,

where i = 1, . . . , n − 1. Further, set

t
k
i :=

tki + tki−1

2

and
φk

i := angle
(
α′(t

k
i ), α

′(t
k
i+1)

)
.

Recall that, by the previous lemma,

lim
k→∞

∑
i

φk
i = lengthSn−1 [α′] = length[α′] =

∫ b

a

‖α′′(t)‖ dt.

Thus to complete the proof it suffices to show that, for every ε > 0, there
exists N such that for all k ≥ N ,

|θk
i − φk

i | ≤ ε(tki+1 − tki−1); (1)

for then it would follow that

2ε[a, b] ≤
∑

i

θk
i −

∑
i

φk
i ≤ 2ε[a, b],

which would in turn yield

lim
k→∞

total κ[α, P k] = lim
k→∞

∑
i

θk
i = lim

k→∞

∑
i

φk
i =

∫ b

a

‖α′′(t)‖dt.
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Now, similar to the proof of Lemma 5, note that given any partition P of
[a, b], we may construct by subsequent refinements a sequnce of partitions
P k, with P 0 = P , such that limk→∞ |P k| = 0. Thus the last expression,
together with Excercise 6, yields that

totalκ[α, P ] ≤
∫ b

a

‖α′′(t)‖ dt.

The last two expressions complete the proof; so it remains to establish (1).
To this end let

βk
i := angle

(
α′(t

k
i ), α(tki ) − α(tki−1)

)
.

By the triangle inequality for angles (Exercise 2).

φk
i ≤ βk

i + θk
i + βk

i+1 , and θk
i ≤ βk

i + φk
i + βk

i+1,

which yields
|φk

i − θk
i | ≤ βk

i + βk
i+1.

So to prove (1) it is enough to show that for every ε > 0

βk
i ≤ ε

2
(ti − ti−1)

provided that k is large enough. See Exercise 7.

Exercise* 7. Let α : [a, b] → Rn be a C2 curve. For every t, s ∈ [a, b], t �= s,
define

f(t, s) := angle

(
α′

(
t + s

2

)
, α(t) − α(s)

)
.

Show that

lim
t→s

f(t, s)

t − s
= 0.

In particular, if we set f(t, t) = 0, then the resulting function f : [a, b] ×
[a, b] → R is continuous. So, since [a, b] is compact, f is uniformly continuous,
i.e., for every ε > 0, there is a δ such that ‖f(t)−f(s)‖ ≤ ε, whever |t−s| ≤ δ.
Does this result hold for C1 curves as well?
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1.9 Curves of Constant Curvature

Here we show that the only curves in the plane with constant curvature are
lines and circles. The case of lines occurs precisely when the curvature is
zero:

Exercise 1. Show that the only curves with constant zero curvature in Rn

are straight lines. (Hint : We may assume that our curve, α : I → Rn has unit
speed. Then κ = ‖α′′‖. So zero curvature implies that α′′ = 0. Integrating
the last expression twice yields the desired result.)

So it remains to consider the case where we have a planar curve whose
curvature is equal to some nonzero constant c. We claim that in this case the
curve has to be a circle of radius 1/c. To this end we introduce the following
definition. If a curve α : I → Rn has nonzero curvature, the principal normal
vector field of α is defined as

N(t) :=
T ′(t)

‖T ′(t)‖ ,

where T (t) := α′(t)/‖α′(t)‖ is the tantrix of α as we had defined earlier.
Thus the principal normal is the tantrix of the tantrix.

Exercise 2. Show that T (t) and N(t) are orthogonal. (Hint : Differentiate
both sides of the expression 〈T (t), T (t)〉 = 1).

So, if α is a planar curve, {T (t), N(t)} form a moving frame for R2, i.e.,
any element of R2 may be written as a linear combination of T (t) and N(t)
for any choice of t. In particular, we may express the derivatives of T and

1Last revised: September 20, 2004
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N in terms of this frame. The definition of N already yields that, when α is
parametrized by arclength,

T ′(t) = κ(t)N(t).

To get the corresponding formula for N ′, first observe that

N ′(t) = aT (t) + bN(t).

for some a and b. To find a note that, since 〈T, N〉 = 0, 〈T ′, N〉 = −〈T, N ′〉.
Thus

α = 〈N ′(t), T (t)〉 = −〈T ′(t), N(t)〉 = −κ(t).

Exercise 3. Show that b = 0. (Hint: Differentiate 〈N(t), N(t)〉 = 1).

So we conclude that
N ′(t) = −κ(t)T (t),

where we still assume that t is the arclength parameter. The formulas for
the derivative may be expressed in the matrix notation as[

T (t)
N(t)

]′
=

[
κ(t) 0
0 −κ(t)

] [
T (t)
N(t)

]
.

Now recall that our main aim here is to classify curves of constant curva-
ture in the plane. To this end define the center of the osculating circle of α
as

p(t) := α(t) +
1

κ(t)
N(t).

The circle which is centered at p(t) and has radius of 1/κ(t) is called the
osculating circle of α at time t. This is the circle which best approximates α
up to the second order:

Exercise 4. Check that the osculating circle of α is tangent to α at α(t)
and has the same curvature as α at time t.

Now note that if α is a circle, then it coincides with its own osculating
circle. In particular p(t) is a fixed point (the center of the circle) and ‖α(t)−
p(t)‖ is constant (the radius of the circle). Conversely:

Exercise 5. Show that if α has constant curvature c, then (i) p(t) is a fixed
point, and (ii) ‖α(t)− p(t)‖ = 1/c (Hint : For part (i) differentiate p(t); part
(ii) follows immediately from the definition of p(t)).

So we conclude that a curve of constant curvature c �= 0 lies on a circle
of radius 1/c.
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1.10 Signed Curvature and Turning Angle

As we mentioned earlier the curvature of a curve is a measure of how fast
it is turning. When the curve lies in a plane, we may assign a sign of plus
or minus one to this measure depending on whether the curve is rotating
clockwise or counterclockwise. Thus we arrive at a more descriptive notion
of curvature for planar curves which we call signed curvature and denote by
κ. Then we may write

|κ| = κ.

To obtain a formula for κ, for any vector v ∈ R2, let iv be the counterclock-
wise rotation by 90 degrees. Then we may simply set

κ(t) :=

〈
T ′(t), iT (t)

〉
‖α′(t)‖ .

Exercise 6. Show that if α is a unit speed curve then

κ(t) = κ(t)
〈
N(t), iT (t)

〉
.

In particular, |κ| = κ.

Exercise 7. Compute the signed curvatures of the clockwise circle α(t) =
(cos t, sin t), and the counterclockwise circle α(t) = (cos(−t), sin(−t)).

Exercise 8. Show that

κ(t) :=

〈
γ′(t) × γ′′(t), (0, 0, 1)

〉
‖γ′(t)‖3

.

Another simple and useful way to define the signed curvature (and the
regular curvature) of a planar curve is in terms of the turning angle θ, which
is defined as follows. We claim that for any planar curve α : I → R2 there
exists a function θ : I → R2 such that

T (t) =
(
cos θ(t), sin θ(t)

)
.

Then, assuming that t is the arclength parameter, we have

κ(t) = θ′(t).

Exercise 9. Check the above formula.

3



Now we check that θ indeed exists. To this end note that T may be
thought of as a mapping from I to the unit circle S1. Thus it suffices to show
that

Proposition 10. Show that for any continuous function T : I → S1, where
I = [a, b] is a compact interval, there exists a continuous function θ : I → S1

such that the above formula relating T and θ holds.

Proof. Since T is continuous and I is compact, T is uniformly continuous,
this means that for ε > 0, we may find a δ > 0 such that ‖T (t) − T (s)‖ < ε,
whenever |t − s| < δ. In particular, we may set δ0 to be equal to some
constant less than one, and ε0 to be the corresponding constant. Now choose
a partition

a =: x0 ≤ x1 ≤ · · · ≤ xn := b

such that |xi − xi−1| < ε0, for i = 1, . . . , n. Then T restricted to each
subinterval [xi, xi−1] is not unto. So we may define θi : [xi−1, xi] → R by
setting θi(x) to be the angle in [0, 2π), measured counterclockwise, between
T (xi−1) and T (x). Finally, θ may be defined as

θ(x) := θ0 +
k−1∑
i=1

θi(xi) + θk(x), if x ∈ [xk−1, xk].

1.11 Total Signed Curvature and Winding Number

The total signed curvature of α : I → Rn is defined as

total κ[α] :=

∫
I

κ(t) dt

where t is the arclength parameter. Note that since κ = θ′, the fundamental
theorem of calculus yields that, if I = [a, b], then

total κ[α] = θ(a) − θ(b).

We say that α : [a, b] → R2 is a closed curve provided that α(a) = α(b) and
T (a) = T (b).

Exercise 11. Show that the total signed curvature of a closed curve is a
multiple of 2π.
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So, if α is a closed curve,

rot[α] :=
1

2π

∫
I

κ(t) dt

is an integer which we call the Hopf rotation index or winding number of α.
In particular we have

total κ[α] = rot[α]2π.

Exercise 12. (i) Compute the total curvature and rotation index of a circle
which has been oriented clockwise, and a circle which is oriented counter-
clockwise. Sketch the figure eight curve (cos t, sin 2t), 0 ≤ t ≤ 2π, and
compute its total signed curvature and rotation index.

We say that α is simple if it is one-to-one in the interior of I. The
following result proved by H. Hopf is one of the fundamental theorems in
theory of planar curves.

Theorem 13 (Hopf). Any simple closed planar curve has rotation index
±1.

Hopf proved the above result using analytic methods including the Green’s
theorem. Here we outline a more elementary proof which will illustrate that
the above theorem is simply a generalization of one of the most famous re-
sult in classical geometry: the sum of the angles in a triangle is π, which is
equivalent to the sum of the exterior angles being 2π.

First we will give another definition for total κ which will establish the
connection between the total signed curvature and the sum of the exterior
angles in a polygon. By a polygon we mean an ordered set of points

P :=
(
p0, . . . , pn

)
in R2, where pn = p0, but pi �= pi−1, for i = 1, . . . , n. Each pi is called a
vertex of P . At each vertex pi, i = 1 . . . n, we define the exterior angle θi to
be the angle in [−π, π] determined by the vectors pi−pi−i, and pi+1−pi, and
measured in the counterclockwise direction (we set pn+1 := p1). The total
curvature of P is defined as the sum of these angles:

total κ[P ] :=
n∑

i=1

θi.
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Now let α : [a, b] → R2 be a closed planar curve. For i = 0, . . . , n, set

ti := a + i
b − a

n
,

and let
Pn[α] :=

(
α(t0), . . . , α(tn)

)
be the nth polygonal approximation of α. The following proposition shows
that the total curvature of a closed curve is just the limit of the sum of the
exterior angles of the polygonal approximations.

Proposition 14.

total κ[α] = lim
n→∞

total κ
[
Pn[α]

]
.

Proof. Let θ be the rotation angle of α, and θi be the exterior angles of Pn[α].
If we choose n large enough, then there exists, for i = 0, . . . , n, an element
ti ∈ [ti−1, ti] such that T (ti) is parallel to α(ti) − α(ti−1). Consequently

θi = θ(ti) − θ(ti−1).

By the mean value theorem, there exists t∗i ∈ [ti−1, ti] such that

θ(ti) − θ(ti−1) = θ′(t∗i )(ti − ti−1) = κ(t∗i )(ti − ti−1).

So

lim
n→∞

total κ
[
Pn[α]

]
= lim

n→∞

n∑
i=1

θi = lim
n→∞

n∑
i=1

θ′(t∗i )(ti − ti−1)

=

∫ b

a

κ(t) dt = total κ[α].

Exercise 15. Verify the second statement in the proof of the above theorem
(Hint: Use the existence of the local representation of a piece of a curve as
graph of a function, which we had proved in an earlier exercise).

Now to complete the proof of Theorem 13 we need to verify:
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Exercise* 16. Show that any simple polygon with more than three vertices
has a vertex such that if we delete that vertex then the remaining polygon
is still simple.

Exercise* 17. Show that the operation of deleting the vertex of a polygon
described above does not change the sum of the exterior angles.

Since the sum of the exterior angles in a triangle is 2π, it would follow
then that the sum of the exterior angles in any simple polygon is 2π. This
in turn would imply Theorem 13 via Proposition 14.

1.12 The fundamental theorem of planar curves

If α : [0, L] → R2 is a planar curve parametrized by arclength, then its signed
curvature yields a function κ : [0, L] → R. Now suppose that we are given a
continuous function κ : [0, L] → R. Is it always possible to find a unit speed
curve α : [0, L] → R2 whose signed curvature is κ? If so, to what extent is
such a curve unique? In this section we show that the signed curvature does
indeed determine a planar curve, and such a curve is unique up to proper
rigid motions.

Recall that by a proper rigid motion we mean a composition of a transla-
tion with a proper rotation. A translation is a mapping T : R2 → R2 given
by

T (p) := p + v

where v is a fixed vector. And a proper rotation ρ : R2 → R2 is a linear
mapping given by

ρ
( [

x
y

])
:=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
.

Exercise 18. Show that the signed curvature of a planar curve is invariant
under proper rigid motions.

Exercise 19 (Local Convexity). Show that if the curvature of a planar
curve α : I → R2 does not vanish at an interior point t0 of I then there exists
an open neighborhood U of t0 in I such that α(U) lies on one side of the
tangent line of α at t0. (Hint : By the invariance of signed curvature under
rigid motions, we may assume that α(t0) = (0, 0) and α′(0) = (1, 0). Then
we may reparametrize α as (t, f(t)) in a neighborhood of t0. Recalling the
formula for curvature for graphs, and applying the Taylor’s theorem yields
the desired result.)
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Now suppose that we are given a function κ : [0, L] → R. If there exist a
curve α : [0, L] → R2 with signed curvature κ, then

θ′ = κ

where θ is the rotation angle of α. Integration yields

θ(t) :=

∫ t

0

κ(s)ds + θ(0).

By the definition of the turning angle

α′(t) =
(

cos θ(t), sin θ(t)
)
.

Consequently,

α(t) =
( ∫ t

0

cos θ(s)ds,

∫ t

0

sin θ(s)ds
)

+ α(0),

which gives an explicit formula for the desired curve.

Exercise 20 (Fundamental theorem of planar curves). Let α, β : [0, L] →
R2 be unit speed planar curves with the same signed curvature function
κ. Show that there exists a proper rigid motion m : R2 → R2 such that
α(t) = m(β(t)).

Exercise 21. Use the above formula to show that the only closed curves of
constant curvature in the plane are circles.
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1.13 Osculating Circle and Radius of Curvature

Recall that in a previous section we defined the osculating circle of a planar
curve α : I → R2 at a point a of nonvanishing curvature t ∈ I as the circle
with radius r(t) and center at

α(t) + r(t)N(t)

where

r(t) :=
1

κ(t)

is called the radius of curvature of α. If we had a way to define the osculating
circle independently of curvature, then we could define curvature simply as
the reciprocal of the radius of the osculating circle, and thus obtain a more
geometric definition for curvature.

Proposition 1. Let r(s, t) be the radius of the circle which is tangent to α
at α(t) and is also passing through α(s). Show that

κ(t) = lim
s→t

r(s, t).

Proof. Since curvature is invaraint under rigid motions, we may assume that
α(t) = (0, 0) and α′(t) is parallel to the x-axis. Then, we may assume that
α(t) = (t, f(t)), for some function f : R → R with f(0) = 0 and f ′(0) = 0.
Further, recall that

κ(t) =
|f ′′(t)|

(
√

1 + f ′(t)2)3
.

Thus
κ(0) = |f ′′(0)|.

1Last revised: September 25, 2004
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Next note that the center of the circle which is tangent to α at (0, 0) must
lie on the y-axis at some point (0, r), and for this circle to also pass through
the point (s, f(s)) we must have:

r2 = s2 + (r − f(s))2.

Solving the above equation for r and taking the limit as s → 0, via the
L’Hopital’s rule, we have

lim
s→0

2|f(s)|
f 2(s) + s2

= |f ′′(0)| = κ(0),

which is the desired result.

Note 2. The above limit can be used to define a notion of curvature for
curves that are not twice differentiable. In this case, we may define the
upper curvature and lower curvature respectively as the upper and lower
limit of

2|f(s)|
f 2(s) + s2

.

as s → 0. We may even distinguish between right handed and left handed
upper or lower curvature, by taking the right handed or left handed limits
respectively.

Exercise* 3. Let α : I → R2 be a planar curve and t0, t1, t2 ∈ I with t1 ≤
t0 ≤ t2. Show that κ(t0) is the reciprocal of the limit of the radius of the
circles which pass through α(t0), α(t1) and α(t2) as t1, t2 → t0.

1.14 Total Curvature and Convexity

We say that a simple closed curve α : I → R2 is convex provided that for
every t ∈ I there exists a line � ⊂ R2 passing through α(t) such that α(I)
lies on one side of �.

The boundary of a subset X ⊂ Rn, which we denote by bd X, is defined
as the intersection of the closure of X with the closure of its complement. A
subset of Rn is convex if it contains the line segment joining each pairs of its
points. Clearly the intersection of convex sets is convex.

Exercise 4. Show that if a closed planar curve α : I → R2 is convex then
it lies on the boundary of a convex set. (Hint: Let Γ := α(I). By defintion,

2



through each point p of Γ there passes a line �p with respect to which Γ lies
on one side. Thus each �p defines a closed half plane Hp which contains Γ.
Show that Γ lies on the boundary of the intersection of all these half planes).

Exercise 5 (Total curvature of convex curves). Show that the total cur-
vature of any simple closed convex planar curve is 2π. (Hint : It is enough to
check that the signed exterior angles of polygonal approximations of a con-
vex curve do not change sign; because, as we showed in a previous section,
the sum of these angles is the total signed curvature, and the sum of their
absolute values is the total curvature by Fox-Milnor’s theorem. So it would
follow that the total signed curvature of α is equal to its total curvature up
to a sign. Since by definition the curve is simple, however, the total signed
curvature is ±2π by Hopf’s rotation index theorem.)

Theorem 6. For any closed planar curve α : I → R2,∫
I

κ(t)dt ≥ 2π,

with equality if and only if α is convex.

First we show that the total curvature of any curve is at least 2π. To this
end recall that when t is the arclength parameter κ(t) = ‖T ′(t)‖. Thus the
total curvature is simply the total length of the tantrix curve T : I → S2.
Since T is a closed curve, to show that its total length is bigger than 2π, it
suffices to check that the image of T does not lie in any semicircle.

Exercise 7. Verify the last sentence.

To see the that the image of T does not lie in any semicircle, let u ∈ S1

be a unit vector and note that∫ b

a

〈T (t), u〉dt =

∫ b

a

〈α′(t), u〉dt = 〈α(b) − α(a), u〉 = 0.

Since T (t) is not constant (why?), it follows that the function t 	→ 〈T (t), u〉
must change sign. So the image of T must lie on both sides of the line through
the origin and orthogonal to u. Since u was chosen arbitrarily, it follows that
the image of T does not lie in any semicircle, as desired.

Next we show that the total curvature is 2π if and only if α is convex.
The “if” part has been established already in exercise 5. To prove the “only

3



if” part, suppose that α is not convex, then there exists a tangent line �0 of
α, say at α(t0), with respect to which the image of α lies on both sides. Then
α must have two more tangent lines parallel to �0.

Exercise 8. Verify the last sentence (Hint : Let u be a unit vector orthogonal
to � and note that the function t 	→ 〈α(t) − α(t0), u〉 must have a minimum
and a maximum differerent from 0. Thus the derivative at these two points
vanishes.)

Now that we have established that α has three distinct parallel lines, it
follows that it must have at least two parallel tangents. This observation is
worth recording:

Lemma 9. If α : I → R2 is a closed curve which is not convex, then it has
a pair of parallel tangent vectors wich generate disitinct parallel lines.

Next note that

Exercise 10. If α : I → R2 is closed curve whose tantrix T : I → S1 is not
onto, then the total curvature is bigger than 2π. (Hint : This is an immediate
consequence of the fact that T is a closed curve and it does not lie in any
semicircle.)

So if T is not onto then we are done (recall that we are trying to show
that if α is not convex, then its total curvature is bigger than 2π). We
may assume, therefore, that T is onto. This together with the above lemma
yields that the total curvature is bigger than 2π. To see this note that let
t1, t2 ∈ I be the two points such that T (t1) and T (t2) are parallel and the
corresponding tangent lines are distict. Then T restricted to [t1, t2] is a closed
nonconstant. So either T ([t1, t2]) (i) covers some open segment of the circle
twice or (ii) covers the entire circle. Since we have established that T is onto,
the first possibility implies that the legth of T is bigger than 2π. Further,
since, T restricted to I − (t1, t2) is not constant, the second possibility (ii)
would imply the again the first case (i). Hence we conclude that if α is not
convex, then its total curvature is bigger than 2π, which completes the proof
of Theorem 6.

Corollary 11. Any simple closed C2 regular curve α : I → R2 is convex if
and only if its signed curvature κ does not change sign. In particular, if κ
never vanishes then α is convex.

4



Proof. Since α is simple, its total signed curature is ±2π by Hopf’s theorem.
After switching the orientation of α, if necessary, we may assume that the
total signed curvature is 2π. Suppose, towards a contradiction, that the
signed curvature does change sign. The integral of the signed curvature over
the regions where its is positive must be bigger than 2π, which in turn implies
that the total curvature is bigger than 2π, which contradicts the previous
theorem. So if α is convex, then κ does not change sign.

Next suppose that κ does not change sign. Then the total signed curva-
ture is equal to the total curvature (up to a sign), which, since the curve is
simple, implies, via the Hopf’s theorem, that the total curvature is 2π. So
by the previous theorem the curve is convex.

5
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1.15 The four vertex theorem

A vertex of a planar curve α : I → R2 is a point where the curvature of α
has a local max or min.

Exercise 1. Show that an ellipse has exactly 4 vertices, unless it is a circle.

The main aim of this section is to show that:

Theorem 2. Any C3 simple closed planar curve has (at least) four vertices.

On the other hand if the curve is not simple, then the 4 vertex property
may no longer be true:

Exercise 3. Sketch the limacon α : [0, 2π] → R2 given by

α(t) := (2 cos t + 1)(cos t, sin t)

and show that it has only two vertices. (Hint : It looks like a loop with a
smaller loop inside)

If the signed curvature of a closed curve changes sign, then it must have
two points where κ vanishes. Since κ ≥ 0, it follows then that κ has at least
two local minimums. But there is a local maximum between any pairs of local
minimums, so, we conclude that if the signed curvature changes sign then
we have 4 vertices. It remains then to consider the case where the signed
curvature does not change sign. By the result at the end of the previous
section, if the signed curvature of a simple closed curve does not change sign,
then the curve is convex. So we need only to prove the above theorem for
convex curves.

We proceed by contradiction. Suppose that α has fewer than 4 vertices,
then it must have exactly 2. Suppose that these two vertices occur at t0

1Last revised: September 25, 2004
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and t1. Then κ′(t) will have one sign on (t1, t2) and the opposite sign on
I − [t1, t2]. Let � be the line passing through α(t1) and α(t2). Then, since α
is convex, α restricted to (t1, t2) lies entirely in one of the closed half planes
determined by � and α restricted to I − [t1, t2] lies in the other closed half
plane.

Exercise 4. Verify the last sentence, i.e., show that if α : I → R2 is a simple
closed convex planar curve, and � is any line in the plane which intersects
α(I), then � intersects α in exactly two points, or α(I) lies on one side of
�.(Hint : Show that if α intersects � at 3 points, then it lies on one side of �.)

Let p be a point of � and v be a vector orthogonal to �, then f : I → R,
given by f(t) := 〈α(t) − p, v〉 has one sign on (t1, t2) and has the opposite
sign on I − [t1, t2]. Consequently, κ′(t)f(t) is always nonnegative. So

0 <

∫
I

κ′(t)〈α(t) − p, v〉dt.

On the other hand∫
I

κ′(t)〈α(t) − p, v〉dt = κ(t)〈α(t) − p, v〉|ba −
∫

I

κ(t)〈T (t) − p, v〉dt

= 0 −
∫

I

〈−N ′(t) − p, v〉dt

= 〈−N(t) − p, v〉|ba
= 0.

So we have a contradiction, as desired. It only remains to justify the implicit
assumption above that κ is a C1 function. In general this is not something
that we can take for granted:

Exercise 5. Show that there exists a C∞ regular planar curve whose curva-
ture is not differentiable (Hint: Consider α : (−1, 1) → R2, α(t) := (t, t3)).

On the other hand the signed curvature is always well behaved:

Exercise 6. Show that the signed curvature of a C3 regular curve in the
plane is C1.

So if the signed curvature does not change sign, then, either κ = κ or
κ = −κ, and hence, by the above exercise, κ is C1.

The 4-vertex theorem we proved here may also be generalized to signed
curvature, but the proof is more involved.
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1.16 Area of planar regions and the Isoperimetric in-
equality

The area of a rectangle is defined as the product of lengths of two of its
adjacent sides. Let X ⊂ R2 be any set, R be a collection of rectangles which
cover X, and Area(X, R) be the sum of the areas of all rectangles in R.
Then area of X is defined as the infimum of Area(X, R) where R ranges
over all different ways to cover X by rectangles. In particular it follows
that, if X ⊂ Y , then Area(X) ≤ Area(Y ), and if X = X1 ∪ X2, then
Area(X) = Area(X1) + Area(X2). These in turn quickly yield the areas of
triangles and polygons.

Exercise 7 (Invariance under isometry and the Special linear group).
Show that area is invariant under rigid motions of R2, and that dilation by
a factor of r, i.e., multiplying each point R2 by r, changes the area by a fac-
tor of r2. More generally show that any linear transformation A : R2 → R2

changes the area by a factor of det(A).

Exercise 8 (Area of circle by plogonal approximation). Compute the
area of a circle (Hint: For any n compute the area of regular n-gons which
are inscribed in the circle, and take the limit. Each of these areas is the sum
of n isoceles triangles with an angle 2π/n, and adjacent sides of length equal
to the radius of the circle. This gives a lower bound for the area. Un upper
bound may also be obtained by taking the limit of regular polygons which
circumscribe the circle.)

Recalling the defintion of Riemann sums, one quickly observes that

Area(X) =

∫ ∫
X

1 dxdy.

We say that a subset X of Rn is connected provided that the only subsets
of X which are both open and closed in X are the X and the emptyset. Every
subset of X which is connected and is different from X and the empty set is
called a component of X.

Let α : I → R2 be a simple closed planar curve. By the Jordan curve
theorem (which we will not prove here), R2 − α(I) consists of exactly two
connected components, and the boundary of each component is α(I). Fur-
ther, one of these components, which we call the interior of α, is contained
in some large sphere, while the other is unbounded. By area of α we mean
the area of its interior.
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Theorem 9. For any simple closed planar curve α : I → R2,

Area[α] ≤ Length[α]2

4π
.

Equality holds only when α is a circle.

Our proof of the above theorem hinges on the following subtle fact whose
proof we leave out

Lemma 10. Of all simple closed curves of fixed length L, there exists at least
one with the biggest area. Further, every such curve is C1.

Exercise* 11. Show that the area maximizer (for a fixed length) must be
convex. (Hint : It is enough to show that if the maximizer, say α, is not
convex, then there exist a line � with respect to which α(I) lies on one side,
and intersects α(I) at two points p and q but not in the intervening open
segment of � determined by p and q. Then reflecting one of the segments
of α(I), determined by p and q, through � increases area while leaving the
length unchanged.)

We say that α is symmetric with respect to a line � provided that the
image of α is invariant under reflection with respect to �.

Exercise 12. Show that a C1 convex planar curve α : I → R2 is a circle, if
and only if for every unit vector u ∈ S1 there exists a line perpendicular to
u with respect to which α is symmetric (Hint Suppose that α has a line of
symmetry in every direction. First show that each line of symmetry is unique
in the corresponding direction. After a translation we may assume that α
is symmetric with respect to both the x-axis and the y-axis. Show that this
yields that α is symmetric with respect to the origin, i.e. rotation by 180◦.
From this and the uniqueness of the lines of symmetry conclude that every
line of symmetry passes through the origin. Finally show that each line of
symmetry must meet the curve orthogonally at the intersection points. This
shows that 〈α(t), α′(t)〉 = 0, which in turn yields that ‖α(t)‖ = const.)

Let α : I → R2 be an area maximizer. By Exercise 11 we may assume
that α is convex. We claim that α must have a line of symmetry in every
direction, which would show, by Exercise 12, that α is a circle, and hence
would complete the proof.
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Suppose, towards a contradiction, that there exists a direction u ∈ S1

such that α has no line of symmetry in that direction. Ater a rigid motion,
we may assume that u = (0, 1).

Let [a, b] be the projection of α(I) to the x-axis. Then, since α is convex,
every vertical line which passes through an interior point of (a, b) intersects
α(I) at precisely two points. Let f(x) be the y-coordinate of the higher
point, and g(x) be the y-coordinate of the other points. Then

Area[α] =

∫ b

a

f(x) − g(x) dx.

Further note that if α is C1 then f and g are C1 as well, thus

Length[α] = f(a)−g(a)+

∫ b

a

√
1 + f ′(x)2 dx+

∫ b

a

√
1 + g′(x)2 dx+f(b)−g(b).

Now we are going to define a new curve α which is bounded above by the
graph of the function f : [a, b] → R given by

f(x) :=
f(x) − g(x)

2
,

is bounded below by the graph of −f , and is bouned on the left and right
by vertical segments, which may consist only of a single point. One immde-
diately checks that

Area[α] = Area[α].

Further, note that since by assumption α is not symmetric with respect to
the x-axis, f is strictly positive on (a, b). This may be used to show that

Length[α] < Length[α].

Exercise 13. Verify the last inequlaity above (Hint : It is enough to check

that
∫ b

a

√
1 + f

′
(x)2dx is strictly smaller than either of the integrals in the

above formula for the length of α).
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1.17 The Frenet-Serret Frame and Torsion

Recall that if α : I → Rn is a unit speed curve, then the unit tangent vector
is defined as

T (t) := α′(t).

Further, if κ(t) = ‖T ′(t)‖ �= 0, we may define the principal normal as

N(t) :=
T ′(t)

κ(t)
.

As we saw earlier, in R2, {T, N} form a moving frame whose derivatives
may be expressed in terms of {T, N} itself. In R3, however, we need a third
vector to form a frame. This is achieved by defining the binormal as

B(t) := T (t) × N(t).

Then similar to the computations we did in finding the derivatives of {T, N},
it is easily shown that T (t)

N(t)
B(t)

′

=

 0 κ(t) 0
−κ(t) 0 τ(t)

0 −τ(t) 0

 =

 T (t)
N(t)
B(t)

 ,

where τ is the torsion which is defined as

τ(t) := −〈B′, N〉.

Note that torsion is well defined only when κ �= 0, so that N is defined.
Torsion is a measure of how much a space curve deviates from lying in a
plane:

1Last revised: October 1, 2004
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Exercise 1. Show that if the torsion of a curve α : I → R3 is zero every-
where then it lies in a plane. (Hint : We need to check that there exist a
point p and a (fixed) vector v in R3 such that 〈α(t) − p, v〉 = 0. Let v = B,
and p be any point of the curve.)

Exercise 2. Computer the curvature and torsion of the circular helix

(r cos t, r sin t, ht)

where r and h are constants. How does changing the values of r and h effect
the curvature and torsion.

1.18 Curves of Constant Curvature and Torsion

The above exercise shows that the curvature and torsion of a circular helix
are constant. The converse is also true

Theorem 3. The only curve α : I → R3 whose curvature and torsion are
nonzero constants is the circular helix.

The rest of this section develops a number of exercises which leads to the
proof of the above theorem

Exercise 4. Show that α : I → R3 is a circular helix (up to rigid motion)
provided that there exists a vector v in R3 such that

〈T, v〉 = const,

and the projection of α into a plane orthogonal to v is a circle.

So first we need to show that when κ and τ are constants, v of the above
exercise can be found. We do this with the aid of the Frenet-Serret frame.
Since {T, N, B} is an orthonormal frame, we may arite

v = a(t)T (t) + b(t)N(t) + c(t)B(t).

Next we need to find a, b and c subject to the condtions that v is a constant
vector, i.e., v′ = 0, and that 〈T, v〉 = const. The latter implies that

a = const

because 〈T, v〉 = a. In particular, we may set a = 1.

2



Exercise 5. By setting v′ = 0 show that

v = T +
κ

τ
B,

and check that v is the desired vector, i.e. 〈T, v〉 = const and v′ = 0.

So to complete the proof of the theorem, only the following remains:

Exercise 6. Show that the projection of α into a plane orthogonal to v, i.e.,

α(t) := α(t) − 〈α(t), v〉 v

‖v‖2

is a circle. (Hint : Compute the curvature of α.)

1.19 Intrinsic Characterization of Spherical Curves

In this section we derive a characterization in terms of curvature and torsion
for unit speed curves which lie on a shphere. Suppose α : I → R3 lies on
a sphere of radius r. Then there exists a point p in R3 (the center of the
sphere) such that

‖α(t) − p‖ = r.

Thus differentiation yields

〈T (t), α(t) − p〉 = 0.

Differentiating again we obtain:

〈T ′(t), α(t) − p〉 + 1 = 0.

The above expression shows that κ(t) �= 0. Consequently N is well defined,
and we may rewrite the above expression as

κ(t)〈N(t), α(t) − p〉 + 1 = 0.

Differentiating for the third time yields

κ′(t)〈N(t), α(t) − p〉 + κ(t)〈−κ(t)T (t) + τ(t)B(t), α(t) − p〉 = 0,

which using the previous expressions above we may rewrite as

−κ′(t)

κ(t)
+ κ(t)τ(t)〈B(t), α(t) − p〉 = 0.

3



Next note that, since {T, N, B} is orthonormal,

r2 = ‖α(t) − p‖2

= 〈α(t) − p, T (t)〉2 + 〈α(t) − p, N(t)〉2 + 〈α(t) − p, B(t)〉2

= 0 +
1

κ2(t)
+ 〈α(t) − p, B(t)〉2.

Thus, combining the previous two calculations, we obtain:

−κ′(t)

κ(t)
+ κ(t)τ(t)

√
r2 − 1

κ2(t)
= 0.

Exercise 7. Check the converse, that is supposing that the curvature and
torsion of some curve satisfies the above expression, verify whether the curve
has to lie on a sphere of radius r.

To do the above exercise, we need to first find out where the center p of
the sphere could lie. To this end we start by writing

p = α(t) + a(t)T (t) + b(t)N(t) + c(t)B(t),

and try to find a(t), b(t) and c(t) so that p′ = (0, 0, 0), and ‖α(t) − p‖ = r.
To make things easier, we may note that α(t) = 0 (why?). Then we just
need to find b(t) and c(t) subject to the two constraints mentioned above.
We need to verify whether this is possible, when κ and τ satisfy the above
expression.

4
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2 Surfaces

2.1 Definition of a regular embedded surface

An n-dimensional open ball of radius r centered at p is defined by

Bn
r (p) := {x ∈ Rn | dist(x, p) < r }.

We say a subset U ⊂ Rn is open if for each p in U there exists an ε > 0 such
that Bn

ε (p) ⊂ U . Let A ⊂ Rn be an arbitrary subset, and U ⊂ A. We say
that U is open in A if there exists an open set V ⊂ Rn such that U = A∩V . A
mapping f : A → B between arbitrary subsets of Rn is said to be continuous
if for every open set U ⊂ B, f−1(U) is open is A. Intuitively, we may think
of a continuous map as one which sends nearby points to nearby points:

Exercise 1. Let A, B ⊂ Rn be arbitrary subsets, f : A → B be a continuous
map, and p ∈ A. Show that for every ε > 0, there exists a δ > 0 such that
whenever dist(x, p) < δ, then dist(f(x), f(p)) < ε.

Two subsets A, B ⊂ Rn are said to be homeomorphic, or topologically
equivalent, if there exists a mapping f : A → B such that f is one-to-one,
onto, continuous, and has a continuous inverse. Such a mapping is called a
homeomorphism. We say a subset M ⊂ R3 is an embedded surface if every
point in M has an open neighborhood in M which is homeomorphic to an
open subset of R2.

Exercise 2. (Stereographic projection) Show that the standard sphere
S2 := {p ∈ R3 | ‖p‖ = 1} is an embedded surface (Hint : Show that the
stereographic projection π+ form the north pole gives a homeomorphism
between R2 and S2 − (0, 0, 1). Similarly, the stereographic projection π−

1Last revised: October 8, 2004
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from the south pole gives a homeomorphism between R2 and S2 − (0, 0,−1);
π+(x, y, z) := ( x

1−z
, y

1−z
, 0), and π−(x, y, z) := ( x

z−1
, y

z−1
, 0)).

Exercise 3. (Surfaces as graphs) Let U ⊂ R2 be an open subset and
f : U → R be a continuous map. Then

graph(f) := {(x, y, f(x, y)) | (x, y) ∈ U}

is a surface. (Hint : Show that the orthogonal projection π(x, y, z) := (x, y)
gives the desired homeomorphism).

Note that by the above exercise the cone given by z =
√

x2 + y2, and
the troughlike surface z = |x| are examples of embedded surfaces. These
surfaces, however, are not “regular”, as we will define below. From the point
of view of differential geometry it is desirable that a surface be without sharp
corners or vertices.

Let U ⊂ Rn be open, and f : U → Rm be a map. Note that f may be
regarded as a list of m functions of n variables: f(p) = (f 1(p), . . . , fm(p)),
f i(p) = f i(p1, . . . , pn). The first order partial derivatives of f are given by

Djf
i(p) := lim

h→0

f i(p1, . . . , pj + h, . . . , pn) − f i(p1, . . . , pj, . . . , pn)

h
.

If all the functions Djf
i : U → R exist and are continuous, then we say

that f is differentiable (C1). We say that f is smooth (C∞) if the partial
derivatives of f of all order exist and are continuous. These are defined by

Dj1, j2, . . . , jkf
i := Dj1(Dj2(· · · (Djk

f i) · · · )).

Let f : U ⊂ Rn → Rm be a differentiable map, and p ∈ U . Then the
Jacobian of f at p is an m × n matrix defined by

Jp(f) :=

 D1f
1(p) · · · Dnf

1(p)
...

...
D1f

m(p) · · · Dnf
m(p)

 .

We say that p is a regular point of f if the rank of Jp(f) is equal to n. If f
is regular at all points p ∈ U , then we say that f is regular.

Exercise 4 (Monge Patch). Let f : U ⊂ R2 → R be a differentiable map.
Show that the mapping X : U → R3, defined by X(u1, u2) := (u1, u2, f(u1, u2))
is regular (the pair (X, U) is called a Monge Patch).
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If f is a differentiable function, then we define,

Dif(p) := (Dif
1(p), . . . Dif

n(p)).

Exercise 5. Show that f : U ⊂ R2 → R3 is regular at p if and only if

‖D1f(p) × D2f(p)‖ �= 0.

Let f : U ⊂ Rn → Rm be a differentiable map and p ∈ U . Then the
differential of f at p is a mapping from Rn to Rm defined by

dfp(x) := lim
t→0

f(p + tx) − f(p)

t
.

Exercise 6. Show that (i)

dfp(x) = Jp(f)

 x1

...
xn

.

Conclude then that (ii) dfp is a linear map, and (iii) p is a regular value of f
if and only if dfp is one-to-one. Further, (iv) show that if f is a linear map,
then dfp(x) = f(x), and (v) Jp(f) coincides with the matrix representation
of f with respect to the standard basis.

By a regular patch we mean a pair (U, X) where U ⊂ R2 is open and
X : U → R3 is a one-to-one, smooth, and regular mapping. Furthermore, we
say that the patch is proper if X−1 is continuous. We say a subset M ⊂ R3

is a regular embedded surface, if for each point p ∈ M there exists a proper
regular patch (U, X) and an open set V ⊂ R3 such that X(U) = M ∩ V .
The pair (U, X) is called a local parameterization for M at p.

Exercise 7. Let f : U ⊂ R2 → R be a smooth map. Show that graph(f) is
a regular embedded surface, see Exercise 4.

Exercise 8. Show that S2 is a regular embedded surface (Hint: (Method
1) Let p ∈ S2. Then p1, p2, and p3 cannot vanish simultaneously. Suppose,
for instance, that p3 �= 0. Then, we may set U := {u ∈ R2 | ‖u‖ < 1},
and let X(u1, u2) := (u1, u2,±

√
1 − (u1)2 − (u2)2) depending on whether p3

is positive or negative. The other cases involving p1 and p2 may be treated
similarly. (Method 2) Write the inverse of the stereographic projection, see
Exercise 2, and show that it is a regular map).
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The following exercise shows that smoothness of a patch is not sufficient to
ensure that the corresponding surface is without singularities (sharp edges or
corners). Thus the regularity condition imposed in the definition of a regular
embedded surface is not superfluous.

Exercise 9. Let M ⊂ R3 be the graph of the function f(x, y) = |x|. Sketch
this surface, and show that there exists a smooth one-to-one map X : R2 →
R3 such that X(R2) = M (Hint: Let X(x, y) := (e−1/x2

, y, e−1/x2
), if x > 0;

X(x, y) := (−e−1/x2
, y, e−1/x2

), if X < 0; and, X(x, y) := (0, 0, 0), if x = 0).

The following exercise demonstrates the significance of the requirement
in the definition of a regular embedded surface that X−1 be continuous.

Exercise 10. Let U := {(u, v) ∈ R2 | −π < u < π, 0 < v < 1}, define
X : U → R3 by X(u, v) := (sin(u), sin(2u), v), and set M := X(U). Sketch
M and show that X is smooth, one-to-one, and regular, but X−1 is not
continuous.

Exercise 11 (Surfaces of Revolution). Let α : I → R2, α(t) = (x(t), y(t)),
be a regular simple closed curve. Show that the image of X : I × R → R3

given by

X(t, θ) :=
(
x(t) cos θ, x(t) sin θ, y(t)

)
,

is a regular embedded surface.

4
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2.2 Definition of Gaussian Curvature

Let M ⊂ R3 be a regular embedded surface, as we defined in the previous
lecture, and let p ∈ M . By the tangent space of M at p, denoted by TpM ,
we mean the set of all vectors v in R3 such that for each vector v there exists
a smooth curve γ : (−ε, ε) → M with γ(0) = p and γ′(0) = v.

Exercise 1. Let H ⊂ R3 be a plane. Show that, for all p ∈ H, TpH is the
plane parallel to H which passes through the origin.

Exercise 2. Prove that, for all p ∈ M , TpM is a 2-dimensional vector sub-
space of R3 (Hint: Let (U, X) be a proper regular patch centered at p, i.e.,
X(0, 0) = p. Recall that dX(0,0) is a linear map and has rank 2. Thus it
suffices to show that TpM = dX(0,0)(R

2)).

Exercise 3. Prove that D1X(0, 0) and D2X(0, 0) form a basis for TpM
(Hint: Show that D1X(0, 0) = dX(0,0)(1, 0) and D2X(0, 0) = dX(0,0)(0, 1)).

By a local gauss map of M centered at p we mean a pair (V, n) where V
is an open neighborhood of p in M and n : V → S2 is a continuous mapping
such that n(p) is orthogonal to TpM for all p ∈ M . For a more explicit
formulation, let (U, X) be a proper regular patch centered at p, and define
N : U → S2 by

N(u1, u2) :=
D1X(u1, u2) × D2X(u1, u2)

‖D1X(u1, u2) × D2X(u1, u2)‖
.

Set V := X(U), and recall that, since (U, X) is proper, V is open in M . Now
define n : V → S2 by

n(p) := N ◦ X−1(p).

1Last revised: October 8, 2004
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Exercise 4. Check that (V, n) is indeed a local gauss map.

Exercise 5. Show that n : S2 → S2, given by n(p) := p is a Gauss map
(Hint: Define f : R3 → R by f(p) := ‖p‖2 and compute its gradient. Note
that S2 is a level set of f . Thus the gradient of f at p must be orthogonal
to S2).

Let M1 and M2 be regular embedded surfaces in R3 and f : M1 → M2 be
a smooth map (recall that this means that f may be extended to a smooth
map in an open neighborhood of M1 in R3). Then for every p ∈ M1, we
define a mapping dfp : TpM1 → Tf(p)M2, known as the differential of M1 at
p as follows. Let v ∈ TpM1 and let γv : (−ε, ε) → M1 be a curve such that
γ(0) = p and γ′

v(0) = v. Then we set

dfp(v) := (f ◦ γv)
′(0).

Exercise 6. Prove that dfp is well defined (i.e. is independent of the smooth
extension) and linear (Hint: Let f̃ be a smooth extension of f to an open
neighborhood of M . Then df̃p is well defined. Show that for all v ∈ TpM ,
dfp(v) = df̃p(v).

Let (V, n) be a local gauss map centered at p ∈ M . Then the shape
operator of M at p with respect to n is defined as

Sp := −dnp.

Note that the shape operator is determined up to two choices depending on
the local gauss map, i.e., replacing n by −n switches the sign of the shape
operator.

Exercise 7. Show that Sp may be viewed as a linear operator on TpM (Hint:
By definition, Sp is a linear map from TpM to Tn(p)S

2. Thus it suffices to
show that TpM and Tn(p)S

2 coincide).

Exercise 8. A subset V of M is said to be connected if any pairs of points p
and q in V may be joined by a curve in V . Suppose that V is a connected open
subset of M , and, furthermore, suppose that the shape operator vanishes
throughout V , i.e., for every p ∈ M and v ∈ TpM , Sp(v) = 0. Show then
that V must be flat, i.e., it is a part of a plane (Hint: It is enough to show
that the gauss map is constant on V ; or, equivalently, n(p) = n(q) for all

2



pairs of points p and q in V . Since V is connected, there exists a curve
γ : [0, 1] → M with γ(0) = p and γ(1) = q. Furthermore, since V is open, we
may choose γ to be smooth as well. Define f : [0, 1] → R by f(t) := n ◦ γ(t),
and differentiate. Then f ′(t) = dnγ(t)(γ

′(t)) = 0. Justify the last step and
conclude that n(p) = n(q).

Exercise 9. Compute the shape operator of a sphere of radius r (Hint: De-
fine π : R3 − {0} → S2 by π(x) := x/‖x‖. Note that π is a smooth mapping
and π = n on S2 . Thus, for any v ∈ TpS

2, dπp(v) = dnp(v)).

The Gaussian curvature of M at p is defined as the determinant of the
shape operator:

K(p) := det(Sp).

Exercise 10. Show that K(p) does not depend on the choice of the local
gauss map, i.e, replacing n by −n does not effect the value of K(p).

Exercise 11. Compute the curvature of a sphere of radius r (Hint: Use
exercise 9).

Next we derive an explicit formula for K(p) in terms of local coordinates.
Let (U, X) be a proper regular patch centered at p. For 1 � i, j � 2, define
the functions gij : U → R by

gij(u1, u2) :=
〈
DiX(u1, u2), DjX(u1, u2)

〉
.

Note that g12 = g21. Thus the above expression defines three functions. These
are called the coefficients of the first fundamental form (a.k.a. the metric
tensor) with respect to the given patch (U, X). In the classical notation,
these functions are denoted by E, F , and G (E := g11, F := g12, and
G := g22). Next, define lij : U → R by

lij(u1, u2) :=
〈
DijX(u1, u2), N(u1, u2)

〉
.

Thus lij is a measure of the second derivatives of X in a normal direction.
lij are known as the coefficients of the second fundamental form of M with
respect to the local patch (U, X) (the classical notation for these functions
are L := l11, M := l12, and N := l22). We claim that

K(p) =
det(lij(0, 0))

det(gij(0, 0))
.

3



To see the above, recall that ei(p) := DiX(X−1(p)) form a basis for TpM .
Thus, since Sp is linear, Sp(ei) =

∑2
j=1 Sijej. This yields that 〈Sp(ei), ek〉 =∑2

j=1 Sijgjk. It can be shown that that

〈Sp(ei), ek〉 = lik,

see the exercise below. Then we have [lij] = [Sij][gij], where the symbol [·]
denotes the matrix with the given coefficients. Thus we can write [Sij] =
[gij]

−1[lij] which yields the desired result.

Exercise 12. Show that 〈Sp(ei(p)), ej(p)〉 = lij(0, 0) (Hints: First note that
〈n(p), ej(p)〉 = 0 for all p ∈ V . Let γ : (−ε, ε) → M be a curve with γ(0) = p
and γ′(0) = ei(p). Define f : (−ε, ε) → M by f(t) := 〈n(γ(t)), ej(γ(t))〉, and
compute f ′(0).)

Exercise 13. Compute the Gaussian curvature of a surface of revolution,
i.e., the surface covered by the patch

X(t, θ) =
(
x(t) cos θ, x(t) sin θ, y(t)

)
.

Next, letting (
x(t), y(t)

)
= (R + r cos t, r sin t),

i.e., a circle of radius r centered at (R, 0), compute the curvature of a torus
of revolution. Sketch the torus and indicate the regions where the curvature
is postive, negative, or zero.

Exercise 14. Let (U, X) be a Monge patch, i.e,

X(u1, u2) :=
(
u1, u2, f(u1, u2)

)
,

centered at p ∈ M . Show that

K(p) :=
det

(
Hess f(0, 0)

)(
1 + ‖ grad f(0, 0)‖2

)2 ,

where Hess f := [Dijf ] is the Hessian matrix of f and grad f is its gradient.

Exercise 15. Compute the curvature of the graph of z = ax2 + by2, where
a and b are constants. Note how the signs of a and b effect the curvature and
shape of the surface. Also note the values of a and b for which the curvature
is zero.
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2.3 Meaning of Gaussian Curvature

In the previous lecture we gave a formal definition for Gaussian curvature
K in terms of the differential of the gauss map, and also derived explicit
formulas for K in local coordinates. In this lecture we explore the geometric
meaning of K.

2.3.1 A measure for local convexity

Let M ⊂ R3 be a regular embedded surface, p ∈ M , and Hp be hyperplane
passing through p which is parallel to TpM . We say that M is locally convex
at p if there exists an open neighborhood V of p in M such that V lies on
one side of Hp. In this section we prove:

Theorem 1. If K(p) > 0 then M is locally convex at p, and if k(p) < 0
then M is not locally convex at p.

When K(p) = 0, we cannot in general draw a conclusion with regard to
the local convexity of M at p as the following two exercises demonstrate:

Exercise 2. Show that there exists a surface M and a point p ∈ M such
that M is strictly locally convex at p; however, K(p) = 0 (Hint: Let M be
the graph of the equation z = (x2 +y2)2. Then may be covered by the Monge
patch X(u1, u2) := (u1, u2, ((u1)

2 +(u2))
2). Use the Monge Ampere equation

derived in the previous lecture to compute the curvature at X(0, 0).).

Exercise 3. Let M be the Monkey saddle, i.e., the graph of the equation
z = y3 − 3yx2, and p := (0, 0, 0). Show that K(p) = 0, but M is not locally
convex at p.

1Last revised: October 31, 2004
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After a rigid motion we may assume that p = (0, 0, 0) and TpM is the
xy-plane. Then, using the inverse function theorem , it is easy to show that
there exists a Monge Patch (U, X) centered at p, as the follwing exercise
demonstrates:

Exercise 4. Define π : M → R2 by π(q) := (q1, q2, 0). Show that dπp is
locally one-to-one. Then, by the inverse function theorem, it follows that π
is a local diffeomorphism. So there exists a neighborhood U of (0, 0) such
that π−1 : U → M is one-to-one and smooth. Let f(u1, y

2) denote the z-
coordinate of π−1(u1, u2), and set X(u1, u2) := (u1, u2, f(u1, u2)). Show that
(U, X) is a proper regular patch.

The previous exercisle shows that local convexity of M at p depends on
whether or not f changes sign in a neighborhood of the origin. To examine
this we need to recall the Taylor’s formula for functions of two variables:

f(u1, u2) = f(0, 0) +
2∑

i=1

Dif(0, 0)ui +
1

2

2∑
i,j=1

Dij(ξ1, ξ2)uiuj,

where (ξ1, ξ2) is a point on the line connecting (u1, u2) to (0, 0).

Exercise 5. Prove the Taylor’s formula given above. (Hints : First re-
call Taylor’s formula for functions of one variable: g(t) = g(0) + g′(0)t +
(1/2)g′′(s)t2, where s ∈ [0, t]. Then define γ(t) := (tu1, tu2), set g(t) :=
f(γ(t)), and apply Taylor’s formula to g. Then chain rule will yield the
desired result.)

Next note that, by construction, f(0, 0) = 0. Further D1f(0, 0) = 0 =
D2f(0, 0) as well. Thus

f(u1, u2) =
1

2

2∑
i,j=1

Dij(ξ1, ξ2)uiuj.

Hence to complete the proof of Theorem 1, it remains to show how the
quanitity on the right hand side of the above euation is influence by K(p).
To this end, recall the Monge-Ampere equation for curvature:

det(Hess f
(
ξ1, ξ2)

)
= K(f(ξ1, ξ2))

(
1 + ‖ grad f(ξ1, ξ2)‖2

)2
.
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Now note that K(f(0, 0)) = K(p). Thus, by continuity, if U is a sufficiently
small neighborhood of (0, 0), the sign of det(Hess f) agrees with the sign of
K(p) throughout U .

Finally, we need some basic facts about quadratic forms. A quadratic
form is a function of two variables Q : R2 → R given by

Q(x, y) = ax2 + 2bxy + cy2,

where a, b, and c are constants. Q is said to be definite if Q(x, x) �= 0 whenver
x �= 0.

Exercise 6. Show that if ac− b2 > 0, then Q is definite, and if ac− b2 < 0,
then Q is not definite. (Hints : For the first part, suppose that x �= 0, but
Q(x, y) = 0. Then ax2+2bxy+cy2 = 0, which yields a+2b(x/y)+c(x/y)2 = 0.
Thus the discriminant of this equation must be positive, which will yield a
contradiction. The proof of the second part is similar).

Theorem 1 follows from the above exercise.

2.3.2 Ratio of areas

In the previous subsection we gave a geometric interpretation for the sign
of Gaussian curvature. Here we describe the geometric significance of the
magnitude of K.

If V is a sufficiently small neighborhood of p in M (where M , as always,
denotes a regular embedded surface in R3), then it is easy to show that there
exist a patch (U, X) centered at p such that X(U) = V . Area of V is then
defined as follows:

Area(V ) :=

∫ ∫
U

‖D1X × D2X‖ du1du2.

Using the chain rule, one can show that the above definition is independent
of the the patch.

Exercise 7. Let V ⊂ S2 be a region bounded in between a pair of great
circles meeting each other at an angle of α. Show that Area(V ) = 2α(Hints :
Let U := [0, α] × [0, π] and X(θ, φ) := (cos θ sin φ, sin θ sin φ, cos φ). Show
that ‖D1X × D2X‖ = | sin φ|. Further, note that, after a rotation we may
assume that X(U) = V . Then an integration will yield the desired result).
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Exercise 8. Use the previous exercise to show that the area of a geodesic
triangle T ⊂ S2 (a region bounded by three great circles) is equal to sum of
its angles minus π (Hints: Use the picture below: A + B + C + T = 2π, and
A = 2α − T , B = 2β − T , and C = 2γ − T ).

Let Vr := Br(p) ∩ M . Then, if r is sufficiently small, V (r) ⊂ X(U), and,
consequently, Ur := X−1(Vr) is well defined. In particular, we may compute
the area of Vr using the patch (Ur, X). In this section we show that

|K(p)| = lim
r→0

Area(n(Vr))

Area(Vr)
.

Exercise 9. Recall that the mean value theorem states that
∫ ∫

U
fdu1du2 =

f(ū1, ū2) Area(U), for some (ū1, ū2) ∈ U . Use this theorem to show that

lim
r→0

Area(n(Vr))

Area(Vr)
=

‖D1N(0, 0) × D2N(0, 0)‖
‖D1X(0, 0) × D2X(0, 0)‖

(Recall that N := n ◦ X.)

Exercise 10. Prove Lagrange’s identity: for every pair of vectors v, w ∈ R3,

‖v × w‖2 = det

∣∣∣∣ 〈v, v〉 〈v, w〉
〈w, v〉 〈w, w〉

∣∣∣∣ .

Now set g(u1, u2) := det[gij(u1, u2)]. Then, by the previous exercise it

follows that ‖D1X(0, 0) × D2X(0, 0)‖ =
√

g(0, 0). Hence, to complete the
proof of the main result of this section it remains to show that

‖D1N(0, 0) × D2N(0, 0)‖ = K(p)
√

g(0, 0).
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We prove the above formula using two different methods:
METHOD 1. Recall that K(p) := det(Sp), where Sp := −dnp : TpM → TpM
is the shape operator of M at p. Also recall that DiX(0, 0), i = 1, 2, form a
basis for TpM . Let Sij be the coefficients of the matrix representation of Sp

with respect to this basis, then

Sp(DiX) =
2∑

j=1

Sij DjX.

Further, recall that N := n ◦ X. Thus the chain rule yields:

Sp(DiX) = −dn(DiX) = −Di(n ◦ X) = −DiN.

Exercise 11. Verify the middle step in the above formula, i.e., show that
dn(DiX) = Di(n ◦ X).

From the previous two lines of formulas, it now follows that

−DiN =
2∑

j=1

Sij DjX.

Taking the inner product of both sides with DkN , k = 1, 2, we get

〈−DiN, DkN〉 =
2∑

j=1

Sij〈DjX, DkN〉.

Exercise 12. Let F , G : U ⊂ R2 → R3 be a pair of mappings such that
〈F, G〉 = 0. Prove that 〈DiF, G〉 = −〈F, DiG〉.

Now recall that 〈DjX, N〉 = 0. Hence the previous exercise yields:

〈DjX, DkN〉 = −〈DkjX, N〉 = −lij.

Combining the previous two lines of formulas, we get: 〈DiN, DkN〉 =
∑2

k=1 Sijljk;
which in matrix notation is equivalent to

[〈DiN, DjN〉] = [Sij][lij].

Finally, recall that det[〈DiN, DkN〉] = ‖D1N × D2N‖2, det[Sij] = K, and
det[lij] = Kg. Hence taking the determinant of both sides in the above
equation, and then taking the square root yields the desired result.
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Next, we discuss the second method for proving that ‖D1N × D2N‖ =
K
√

g.
METHOD 2. Here we work with a special patch which makes the computa-
tions easier:

Exercise 13. Show that there exist a patch (U, X) centered at p such that
[gij(0, 0)] is the identity matrix. (Hint: Start with a Monge patch with
respect to TpM)

Thus, if we are working with the coordinate patch referred to in the
above exercise, g(0, 0) = 1, and, consequently, all we need is to prove that
‖D1N(0, 0) × D2N(0, 0)‖ = K(p).

Exercise 14. Let f : U ⊂ R2 → S2 be a differentiable mapping. Show that
〈Dif(u1, u2), f(u1, u2)〉 = 0 (Hints: note that 〈f, f〉 = 1 and differentiate).

It follows from the previous exercise that 〈DiN, N〉 = 0. Now recall that
N(0, 0) = n ◦ X(0, 0) = n(p). Hence, we may conclude that N(0, 0) ∈ TpM .
Further recall that {D1X(0, 0), D2X(0, 0)} is now an orthonormal basis for
TpM (because we have chosen (U, X) so that [gij(0, 0)] is the identity matrix).
Consequently,

DiN =
2∑

k=1

〈DiN, DkX〉DkX,

where we have omitted the explicit reference to the point (0, 0) in the above
formula in order to make the notation less cumbersome (it is important to
keep in mind, however, that the above is valid only at (0, 0)). Taking the
inner product of both sides of this equation with DjN(0, 0) yields:

〈DiN, DjN〉 =
2∑

k=1

〈DiN, DkX〉〈DkX, DjN〉.

Now recall that 〈DiN, DkX〉 = −〈N, DijX〉 = −lij. Similarly, 〈DkX, DjN〉 =
−lkj. Thus, in matrix notation, the above formula is equivalent to the fol-
lowing:

[〈DiN, DjN〉] = [lij]
2

Finally, recall that K(p) = det[lij(0, 0)]/ det[gij(0, 0)] = det[lij(0, 0)]. Hence,
taking the determinant of both sides of the above equation yields the desired
result.
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2.3.3 Product of principal curvatures

For every v ∈ TpM with ‖v‖ = 1 we define the normal curvature of M at p
in the direction of v by

kv(p) := 〈γ′′(0), n(p)〉,

where γ : (−ε, ε) → M is a curve with γ(0) = p and γ′(0) = v.

Exercise 15. Show that kv(p) does not depend on γ.

In particular, by the above exercise, we may take γ to be a curve which
lies in the intersection of M with a plane which passes through p and is
normal to n(p)× v. So, intuitively, kv(p) is a measure of the curvature of an
orthogonal cross section of M at p.

Let UTpM := {v ∈ TpM | ‖v‖ = 1} denote the unit tangent space of M
at p. The principal curvatures of M at p are defined as

k1(p) := min
v

kv(p), and k2(p) := max
v

kv(p),

where v ranges over UTpM . Our main aim in this subsection is to show that

K(p) = k1(p)k2(p).

Since K(p) is the determinant of the shape operator Sp, to prove the above
it suffices to show that k1(p) and k2(p) are the eigenvalues of Sp.

First, we need to define the second fundamental form of M at p. This is
a bilinear map IIp : TpM × TpM → R defined by

IIp(v, w) := 〈Sp(v), w〉.

We claim that, for all v ∈ UTpM ,

kv(p) = IIp(v, v).

The above follows from the following computation

〈Sp(v), v〉 = −〈dnp(v), v〉
= −〈(n ◦ γ)′(0), γ′(0)〉
= 〈(n ◦ γ)(0), γ′′(0)〉
= 〈n(p), γ′′(0)〉

7



Exercise 16. Verify the passage from the second to the third line in the
above computation, i.e., show that −〈(n ◦ γ)′(0), γ′(0)〉 = 〈(n ◦ γ)(0), γ′′(0)〉
(Hint: Set f(t) := 〈n(γ(t)), γ′(t)〉, note that f(t) = 0, and differentiate.)

So we conclude that ki(p) are the minimum and maximum of IIp(v) over
UTpM . Hence, all we need is to show that the extrema of IIp over UTpM
coincide with the eigenvalues of Sp.

Exercise 17. Show that IIp is symmetric, i.e., IIp(v, w) = IIp(w, v) for all v,
w ∈ TpM .

By the above exercise, Sp is a self-adjoint operator, i.e, 〈Sp(v), w〉 =
〈v, Sp(w)〉. Hence Sp is orthogonally diagonalizable, i.e., there exist orthonor-
mal vectors ei ∈ TpM , i = 1, 2, such that

Sp(ei) = λiei.

By convention, we suppose that λ1 ≤ λ2. Now note that each v ∈ UTpM
may be represented uniquely as v = v1e1 + v2e2 where (v1)2 + (v2)2 = 1. So
for each v ∈ UTpM there exists a unique angle θ ∈ [0, 2π) such that

v(θ) := cos θe1 + sin θe2;

Consequently, bilinearity of IIp yields

IIp(v(θ), v(θ)) = λ1 cos2 θ + λ2 sin2 θ.

Exercise 18. Verify the above claim, and show that minimum and max-
imum values of IIp are λ1 and λ2 respectively. Thus k1(p) = λ1, and
k2(p) = λ2.

The previous exercise completes the proof that K(p) = k1(p)k2(p), and
also yields the following formula which was discovered by Euler:

kv(p) = k1(p) cos2 θ + k2(p) sin2 θ.

In particular, note that by the above formula there exists always a pair
of orthogonal directions where kv(p) achieves its maximum and minimum
values. These are known as the principal directions of M at p.

8
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2.4 Intrinsic Metric and Isometries of Surfaces

Let M ⊂ R3 be a regular embedded surface and p, q ∈ M , then we define

distM(p, q) := inf{Length[γ] | γ : [0, 1] → M, γ(0) = p, γ(1) = q}.

Exercise 1. Show that (M, distM) is a metric space.

Lemma 2. Show that if M is a C1 surface, and X ⊂ M is compact, then
for every ε > 0, there exists δ > 0 such that∣∣ distM(p, q) − ‖p − q‖

∣∣ ≤ ε‖p − q‖

for all p, q ∈ X, with distM(p, q) ≤ δ.

Proof. Define F : M × M → R by F (p, q) := distM(p, q)/‖p − q‖, if p �= q
and F (p, q) := 1 otherwise. We claim that F is continuous. To see this let
pi be a sequnce of points of M which converge to a point p ∈ M. We may
assume that pi are contained in a Monge patch of M centered at p given by

X(u1, u2) = (u1, u2, h(u1, u2)).

Let xi and yi be the x and y coorindates of pi. If pi is sufficiently close to
p = (0, 0), then, since ∇h(0, 0) = 0, we can make sure that

‖∇h(txi, tyi)‖2 ≤ ε,

for all t ∈ [0, 1] and ε > 0. Let γ : [0, 1] → R3 be the curve given by

γ(t) = (txi, tyi, h(txi, tyi)).

1Last revised: November 8, 2004
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Then, since γ is a curve on M ,

distM(p, pi) ≤ Length[γ]

=

∫ 1

0

√
x2

i + y2
i + 〈∇h(txi, tyi), (xi, yi)〉2 dt

≤
∫ 1

0

√
x2

i + y2
i + ε(x2

i + y2
i )

2 dt

≤
√

1 + ε
√

x2
i + y2

i

≤ (1 + ε)‖p − pi‖

So, for any ε > 0 we have

1 ≤ distM(p, pi)

‖p − pi‖
≤ 1 + ε

provided that pi is sufficiently close to p. We conclude then that F is con-
tinuous. So U := F−1([1, 1 + ε]) is an open subset of M ×M which contains
the diagonal ∆M := {(p, p) | p ∈ M}. Since ∆X ⊂ ∆M is compact, we may
then choose δ so small that Vδ(∆X) ⊂ U , where Vδ(∆X) denotes the open
neighborhood of ∆X in M × M which consists of all pairs of points (p, q)
with distM(p, q) ≤ δ.

Exercise 3. Does the above lemma hold also for C0 surfaces?

If γ : [a, b] → M is any curve then we may define

LengthM [γ] :=

sup

{
k∑

i=1

distM(γ(ti), γ(ti−1))
∣∣∣ {t0, . . . , tk} ∈ Partition[a, b]

}
.

Lemma 4. LengthM [γ] = Length[γ].

Proof. Note that

distM(γ(ti), γ(ti−1)) ≥ ‖γ(ti) − γ(ti−1)‖.

Thus LengthM [γ] ≥ Length[γ]. Further, by the previous lemma, we can make
sure that

distM(γ(ti), γ(ti−1)) ≤ (1 + ε)‖γ(ti) − γ(ti−1)‖,
which yields LengthM [γ] ≤ (1 + ε) Length[γ], for any ε > 0.
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We say that f : M → M is an isometry provided that

distM(f(p), f(q)) = distM(p, q).

Lemma 5. f : M → M is an isometry, if and only if Length[γ] = Length[f◦
γ] for all curves γ : [a, b] → M .

Proof. If f is an isometry, then, by the previous lemma,

Length[γ] = LengthM [γ] = LengthM [f ◦ γ] = LengthM [f ◦ γ].

The converse is clear.

Exercise 6. Justify the middle equality in the last espression displayed
above.

Theorem 7. f : M → M is an isometry if and only if for all p ∈ M , and
v, w ∈ TpM , 〈

dfp(v), dfp(w)
〉

= 〈v, w〉.
Proof. Suppose that f is an isometry. Let γ : (−ε, ε) → M be a curve with
γ(0) = p, and γ′(0) = v. Then, by the previous lemma∫ ε

−ε

‖γ′(t)‖ dt =

∫ ε

−ε

‖(f ◦ γ)′(t)‖ dt

Taking the limit of both sides as ε → 0 and applying the mean value theorem
for integrals, yields then that

‖v‖ = ‖γ′(0)‖ = ‖(f ◦ γ)′(0)‖ = ‖dfp(v)‖.

Thus df preserves the norm, which implies that it must preserve the inner-
product as well (see the following exercise).

Conversely, suppose that ‖v‖ = ‖dfp(v)‖. Then, if γ : [a, b] → M is any
curve, we have∫ b

a

‖(f ◦ γ)′(t)‖dt =

∫ b

a

‖dfγ(t)(γ
′(t))‖dt =

∫ b

a

‖γ′(t)‖dt.

So f preserves the length of all curves, which, by the previous Lemma, shows
that f is an isometry.

Exercise 8. Show that a function F : Rn → Rn preserves the norm ‖ · ‖ if
and only if it preserves the inner product 〈·, ·〉.

3



2.5 Gauss’s Theorema Egregium

Lemma 9. Let X : U → M be a proper regular chart. Then X := f ◦
X : U → M is a proper regular chart as well and gij = gij on U .

Proof. Using the last theorem we have

gij(u1, u2) = 〈DiX(u1, u2), DjX(u1, u2)〉
= 〈Di(f ◦ X)(u1, u2), Dj(f ◦ X)(u1, u2)〉
= 〈dfX(u1,u2)(DiX(u1, u2)), dfX(u1,u2)(DjX(u1, u2))〉
= 〈DiX(u1, u2), DjX(u1, u2)〉
= gij(u1, u2).

Exercise 10. Justify the third equality in the last displayed expression above.

Let F denote the set of functions f : U → R where U ⊂ R2 is an open
neighborhood of the orgin.

Lemma 11. There exists a mapping Briochi : F ×F ×F → F such that for
any chart X : U → M centered at p ∈ M ,

K(p) = Briochi[g11, g12, g22](0, 0).

Proof. Recall that

K(p) =
det lij(0, 0)

det gij(0, 0)
,

and, by Lagrange’s identity,

lij =

〈
Xij,

X1 × X2

‖X1 × X2‖

〉
=

1√
det gij

〈Xij, X1 × X2〉 ,

where Xij := DijX, and Xi := DiX. Thus

K(p) =
det(〈Xij(0, 0), X1(0, 0) × X2(0, 0)〉)

(det gij(0, 0))2
.

Next note that

det(〈Xij, X1 × X2〉) = 〈X11, X1 × X2〉〈X21, X1 × X2〉 − 〈X12, X1 × X2〉2

4



The right hand side of the last expression may be rewritten as

det(X11, X1, X2) det(X22, X1, X2) − (det(X12, X1, X2))
2,

where (u, v, w) here denotes the matrix with columns u, v, and w. Recall
that if A is a square matrix with transpose AT , then det A = det AT . Thus
the last expression displayed above is equivalent to

det((X11, X1, X2)
T (X22, X1, X2)) − det((X12, X1, X2)

T (X12, X1, X2)),

which in turn can be written as

det

〈X11, X22〉 〈X11, X1〉 〈X11, X2〉
〈X1, X22〉 〈X1, X1〉 〈X1, X2〉
〈X2, X22〉 〈X2, X1〉 〈X2, X2〉


− det

〈X12, X12〉 〈X12, X1〉 〈X12, X2〉
〈X1, X12〉 〈X1, X1〉 〈X1, X2〉
〈X2, X12〉 〈X2, X1〉 〈X2, X2〉

 .

If we expand the above determinants along their first rows, then 〈X11, X22〉
and 〈X12, X22〉 will have the same coefficients. This implies that we can
rewrite the last expression as

det

〈X11, X22〉 − 〈X12, X12〉 〈X11, X1〉 〈X11, X2〉
〈X1, X22〉 〈X1, X1〉 〈X1, X2〉
〈X2, X22〉 〈X2, X1〉 〈X2, X2〉


− det

 0 〈X12, X1〉 〈X12, X2〉
〈X1, X12〉 〈X1, X1〉 〈X1, X2〉
〈X2, X12〉 〈X2, X1〉 〈X2, X2〉

 .

Now note that each of the entries in the above matrices can be expressed
purely in terms of gij, since

〈Xii, Xj〉 =
1

2
〈Xi, Xi〉j =

1

2
(gii)j,

〈Xij, Xi〉 = 〈Xi, Xj〉i − 〈Xi, Xji〉 = (gij)i −
1

2
(gii)j,

and

〈X11, X22〉 − 〈X12, X12〉 = 〈X1, X22〉1 − 〈X1, X12〉2
= (g21)21 −

1

2
(g11)21 −

1

2
(g11)2.

5



Substituting the above values in the previous matrices, we define

Briochi[g11, g22, g33] :=

1

(det(gij))2

(
det

(g21)21 − 1
2
(g11)21 − 1

2
(g11)2

1
2
(g11)1

1
2
(g11)2

(g21)2 − 1
2
(g11)2 g11 g12

1
2
(g22)2 g21 g22


− det

 0 1
2
(g11)2

1
2
(g22)1

1
2
(g11)2 g11 g12

1
2
(g22)1 g21 g22

 )
.

Evaluating the above expression at (0, 0) yields that Gaussian curvature
K(p).

Theorem 12. If f : M → M is an isometry, then K(f(p)) = K(p), where
K and K denote the Gaussian curvatures of M and M respectively.

Proof. Let X : U → M be a chart centered at p, then X := f ◦ X is a chart
of M centered at f(p). Let gij and gij denote the coefficients of the first

fundemental form with respect to the chartst X and X respectively. Then,
using the previous two lemmas, we have

K(f(p)) = Briochi[g11, g12, g22](0, 0)

= Briochi[g11, g12, g22](0, 0)

= K(p).

Exercise 13. Let M ⊂ R3 be a regular embedded surface and p ∈ M .
Suppose that K(p) �= 0. Does there exist a chart X : U → M such that D1X
and D2X are orthonormal at all points of U .
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2.6 Gauss’s formulas, and Christoffel Symbols

Let X : U → R3 be a proper regular patch for a surface M , and set Xi :=
DiX. Then

{X1, X2, N}
may be regarded as a moving bases of frame for R3 similar to the Frenet
Serret frames for curves. We should emphasize, however, two important
differences: (i) there is no canonical choice of a moving bases for a surface
or a piece of surface ({X1, X2, N} depends on the choice of the chart X);
(ii) in general it is not possible to choose a patch X so that {X1, X2, N} is
orthonormal (unless the Gaussian curvature of M vanishes everywhere).

The following equations, the first of which is known as Gauss’s formulas,
may be regarded as the analog of Frenet-Serret formulas for surfaces:

Xij =
2∑

k=1

Γk
ijXk + lijN, and Ni = −

2∑
j=1

lji Xj.

The coefficients Γk
ij are known as the Christoffel symbols, and will be deter-

mined below. Recall that lij are just the coefficients of the second fundamen-
tal form. To find out what lji are note that

−lik = −〈N, Xik〉 = 〈Ni, Xk〉 = −
2∑

j=1

lji 〈Xj, Xk〉 = −
2∑

j=1

lji gjk.

Thus (lij) = (lji )(gij). So if we let (gij) := (gij)
−1, then (lji ) = (lij)(g

ij), which
yields

lji =
2∑

k=1

likg
kj.

1Last revised: November 12, 2004
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Exercise 1. What is det(lji ) equal to?.

Exercise 2. Show that Ni = −dn(Xi) = S(Xi).

Next we compute the Christoffel symbols. To this end note that

〈Xij, Xk〉 =
2∑

l=1

Γl
ij〈Xl, Xk〉 =

2∑
l=1

Γl
ijglk,

which in matrix notation reads(
〈Xij, X1〉
〈Xij, X2〉

)
=

(
Γ1

ijg11 + Γ2
ijg21

Γ2
ijg12 + Γ2

ijg22

)
=

(
g11 g21

g12 g22

) (
Γ1

ij

Γ2
ij

)
.

So (
Γ1

ij

Γ2
ij

)
=

(
g11 g21

g12 g22

)−1 (
〈Xij, X1〉
〈Xij, X2〉

)
=

(
g11 g21

g12 g22

) (
〈Xij, X1〉
〈Xij, X2〉

)
,

which yields

Γk
ij =

2∑
l=1

〈Xij, Xl〉glk.

In particular, Γk
ij = Γk

ji. Next note that

(gij)k = 〈Xik, Xj〉 + 〈Xi, Xjk〉,
(gjk)i = 〈Xji, Xk〉 + 〈Xj, Xki〉,
(gki)j = 〈Xkj, Xi〉 + 〈Xk, Xij〉.

Thus

〈Xij, Xk〉 =
1

2

(
(gki)j + (gjk)i − (gij)k

)
.

So we conclude that

Γk
ij =

2∑
l=1

1

2

(
(gli)j + (gjl)i − (gij)l

)
glk.

Note that the last equation shows that Γk
ij are intrinsic quantities, i.e., they

depend only on gij (and derivatives of gij), and so are preserved under isome-
tries.

Exercise 3. Compute the Christoffel symbols of a surface of revolution.
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2.7 The Gauss and Codazzi-Mainardi Equations, Rie-
mann Curvature Tensor, and a Second Proof of
Gauss’s Theorema Egregium

Here we shall derive some relations between lij and gij. Our point of depar-
ture is the simple observation that if X : U → R3 is a C3 regular patch, then,
since partial derivatives commute,

Xijk = Xikj.

Note that

Xijk =
( 2∑

l=1

Γl
ijXl + lijN

)
k

=
2∑

l=1

(Γl
ij)kXl +

2∑
l=1

Γl
ijXlk + (lij)kN + lijNk

=
2∑

l=1

(Γl
ij)kXl +

2∑
l=1

Γl
ij

( 2∑
m=1

Γm
lkXm + llkN

)
+ (lij)kN − lij

2∑
l=1

llkXl

=
2∑

l=1

(Γl
ij)kXl +

2∑
l=1

2∑
m=1

Γl
ijΓ

m
lkXm +

2∑
l=1

Γl
ijllkN + (lij)kN −

2∑
l=1

lijl
l
kXl

=
2∑

l=1

(
(Γl

ij)k +
2∑

p=1

Γp
ijΓ

l
pk − lijl

l
k

)
Xl +

( 2∑
l=1

Γl
ijllk + (lij)k

)
N.

Switching k and j yields,

Xikj =
2∑

l=1

(
(Γl

ik)j +
2∑

p=1

Γp
ikΓ

l
pj − likl

l
j

)
Xl +

( 2∑
l=1

Γl
ikllj + (lik)j

)
N.

Setting the normal and tangential components of the last two equations equal
to each other we obtain

(Γl
ij)k +

2∑
p=1

Γp
ijΓ

l
pk − lijl

l
k = (Γl

ik)j +
2∑

p=1

Γp
ikΓ

l
pj − likl

l
j,

2∑
l=1

Γl
ijllk + (lij)k =

2∑
l=1

Γl
ikllj + (lik)j.

3



These equations may be rewritten as

(Γl
ik)j − (Γl

ij)k +
2∑

p=1

(
Γp

ikΓ
l
pj − Γp

ijΓ
l
pk

)
= likl

l
j − lijl

l
k, (Gauss)

2∑
l=1

(
Γl

ikllj − Γl
ijllk

)
= (lij)k − (lik)j, (Codazzi-Mainardi)

and are known as the Gauss’s equations and the Codazzi-Mainardi equations
respectively. If we define the Riemann curvature tensor as

Rl
ijk := (Γl

ik)j − (Γl
ij)k +

2∑
p=1

(
Γp

ikΓ
l
pj − Γp

ijΓ
l
pk

)
,

then Gauss’s equation may be rewritten as

Rl
ijk = likl

l
j − lijl

l
k.

Now note that

2∑
l=1

Rl
ijkglm = lik

2∑
l=1

lljglm − lij

2∑
l=1

llkglm = likljm − lijlkm.

In particular, if i = k = 1 and j = m = 2, then

2∑
l=1

Rl
121gl2 = l11l22 − l12l21 = det(lij) = K det(gij).

So it follows that

K =
R1

121g12 + R2
121g22

det(gij)
,

which shows that K is intrinsic and gives another proof of Gauss’s Theorema
Egregium.

Exercise 4. Show that if M = R2, hen Rl
ijk = 0 for all 1 ≤ i, l, j, k ≤ 2

both intrinsically and extrinsically.

Exercise 5. Show that (i) Rl
ijk = −Rl

ikj, hence Rl
ijj = 0, and (ii) Rl

ijk +

Rl
jki + Rl

kij ≡ 0.

Exercise 6. Compute the Riemann curvature tensor for S2 both intrinsi-
cally and extrinsically.
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2.8 Fundamental Theorem of Surfaces

In the previous section we showed that if gij and lij are the coefficients of the
first and second fundamental form of a patch X : U → M , then they must
satisfy the Gauss and Codazzi-Maindardi equations. These conditions turn
out to be not only necessary but also sufficient in the following sense.

Theorem 7 (Fundamental Theorem of Surfaces). Let U ⊂ R2 be an
open neighborhood of the origin (0, 0), and gij : U → R, lij : U → R be
differentiable functions for i, j = 1, 2. Suppose that gij = gji, lij = lji,
g11 > 0, g22 > 0 and det(gij) > 0. Further suppose that gij and lij satisfy
the Gauss and Codazzi-Mainardi equations. Then there exists and open set
V ⊂ U , with (0, 0) ∈ V and a regular patch X : V → R with gij and lij as
its first and second fundamental forms respectively. Further, if Y : V → R3

is another regular patch with first and second fundamental forms gij and lij,
then Y differs from X by a rigid motion.
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2.9 The Covariant Derivative, Lie Bracket, and Rie-
mann Curvature Tensor of Rn

Let A ⊂ Rn, p ∈ A, and W be a tangent vector of A at p, i.e., suppose
there exists a curve γ : (−ε, ε) → A with γ(0) = p and γ′(0) = W . Then
if f : A → R is a function we define the (directional) derivative of f with
respect to W at p as

Wpf := (f ◦ γ)′(0) = dfp(W ).

Similarly, if V is a vectorfield along A, i.e., a mapping V : A → Rn, p �→ Vp,
we define the covariant derivative of V with respect to W at p as

∇WpV := (V ◦ γ)′(0) = dVp(W ).

Note that if f and V are C1, then by definition they may be extended to an
open neighborhood of A. So dfp and dVp, and consequently Wpf and ∇WpV
are well defined. In particular, they do not depend on the choice of the curve
γ or the extensions of f and V .

Exercise 1. Let Ei be the standard basis of Rn, i.e., E1 := (1, 0, . . . , 0),
E2 := (0, 1, 0, . . . , 0), . . . , En := (0, . . . , 0, 1). Show that for any functions
f : Rn → R and vectorfield V : Rn → Rn

(Ei)pf = Dif(p) and ∇(Ei)pV = DiV (p)

(Hint: Let ui : (−ε, ε) → Rn be given by ui(t) := p + tEi, and observe that
(Ei)pf = (f ◦ ui)

′(0), ∇(Ei)pV = (V ◦ ui)
′(0)).

1Last revised: November 29, 2004
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The operation ∇ is also known as the standard Levi-Civita connection of
Rn. If W is a tangent vectorfield of A, i.e., a mapping W : A → Rn such
that Wp is a tangent vector of A for all p ∈ A, then we set

Wf(p) := Wpf and (∇W V )p := ∇WpV.

Note that Wf : A → R is a function and ∇W V is a vectorfield. Further, we
define

(fW )p := f(p)Wp.

Thus fW : A → Rn is a also a vector field.

Exercise 2. Show that it V = (V 1, . . . , V n), i.e., V i are the component
functions of V , then

∇W V = (WV 1, . . . , WV n).

Exercise 3. Show that if Z is a tangent vectorfield of A and f : A → R is
a function, then

∇W+ZV = ∇W V + ∇ZV, and ∇fW V = f∇W V.

Further if Z : A → Rn is any vectorfield, then

∇W (V + Z) = ∇W V + ∇W Z, and ∇W (fV ) = (Wf)V + f∇W V.

Exercise 4. Note that if V and W are a pair of vectorfields on A then
〈V, W 〉 : A → R defined by 〈V, W 〉p := 〈Vp, Wp〉 is a function on A, and show
that

Z〈V, W 〉 =
〈
∇ZV, W

〉
+

〈
V,∇ZW

〉
.

If V, W : A → Rn are a pair of vector fields, then their Lie bracket is the
vector filed on A defined by

[V, W ]p := ∇VpW −∇WpV.

Exercise 5. Show that if A ⊂ Rn is open, V, W : A → Rn are a pair of
vector fields and f : A → R is a scalar, then

[V, W ]f = V (Wf) − W (V f).
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(Hint: First show that V f = 〈V, grad f〉 and Wf = 〈W, grad f〉 where

grad f := (D1f, . . . , Dnf).

Next define
Hess f(V, W ) := 〈V,∇W grad f〉,

and show that Hess f(V, W ) = Hess f(W, V ). In particular, it is enough to
show that Hess f(Ei, Ej) = Dijf , where {E1, . . . , En} is the standard basis
for Rn. Then Leibnitz rule yields that

V (Wf) − W (V f)

= V 〈W, grad f〉 − W 〈V, grad f〉
= 〈∇V W, grad f〉 + 〈W,∇V grad f〉 − 〈∇W V, grad f〉 − 〈V,∇W grad f〉

= 〈[V, W ], grad f〉 + Hess f(W, V ) − Hess f(V, W )

= [V, W ]f,

as desired.)

If V and W are tangent vectorfields on an open set A ⊂ Rn, and Z : A →
Rn is any vectorfield, then

R(V, W )Z := ∇V ∇W Z −∇W∇V Z −∇[V,W ]Z

defines a vectorfield on A. If Y is another vectorfield on A, then we may also
define an associated scalar quantity by

R(V, W, Z, Y ) :=
〈
R(V, W )Z, Y

〉
,

which is known as the Riemann curvature tensor of Rn.

Exercise 6. Show that R ≡ 0.

2.10 The Induced Covariant Derivative on Surfaces;
Gauss’s Formulas revisited

Note that if M ⊂ R3 is a regular embedded surface and V , W : M → R3 are
vectorfields on M . Then ∇W V may no longer be tangent to M . Rather, in
general we have

∇W V =
(
∇W V

)�
+

(
∇W V

)⊥
,

3



where (∇W V )� and (∇W V )⊥ respectively denote the tangential and normal
components of ∇W V with resect to M . More explicitly, if for each p ∈ M
we let n(p) be a unit normal vector to TpM , then(

∇W V
)⊥

p
:=

〈
∇WpV, n(p)

〉
n(p) and

(
∇W V

)�
:= ∇W V −

(
∇W V

)⊥
.

Let X (M) denote the space of tangent vectorfield on M . Then We define the
(induced) covariant derivative on M as the mapping ∇ : X (M) × X (M) →
X (M) given by

∇W V :=
(
∇W V

)�
.

Exercise 7. Show that, with respect to tangent vectorfields on M , ∇ satis-
fies all the properties which were listed for ∇ in Exercises 3 and 4.

Next we derive an explicit expression for ∇ in terms of local coordinates.
Let X : U → M be a proper regular patch centered at a point p ∈ M , i.e.,
X(0, 0) = p, and set

X i := Xi ◦ X−1.

Then X i are vectorfields on X(U), and for each q ∈ X(U), (X i)q forms a
basis for TqM . Thus on X(U) we have

V =
∑

i

V iX i, and W =
∑

i

W iX i

for some functions V i, W i : X(U) → R. Consequently, on X(U),

∇W V = ∇(
∑

j W jXj)

( ∑
i

V iX i

)
=

∑
j

(
W j∇Xj

( ∑
i

V iX i

))

=
∑

j

(
W j

∑
i

(
XjV

i + V i∇Xj
X i

))
=

∑
j

∑
i

(
W j

(
XjV

i
)

+ W jV i∇Xj
X i

)
.

Next note that if we define uj : (−ε, ε) → R2 by uj(t) := tEj, where E1 :=
(1, 0) and E2 := (0, 1). Then X ◦ui : (−ε, ε) → M are curves with X ◦ui(0) =

4



p and (X ◦ ui)
′(0) = Xi(0, 0) = X i(p). Thus by the definitions of ∇ and ∇

we have

∇(Xj)p
X i =

(
∇(Xj)p

X i

)�

=
((

X i ◦ (X ◦ uj)
)′

(0)
)�

=
(
(Xi ◦ uj)

′(0)
)�

Now note that, by the chain rule,

(Xi ◦ uj)
′(0) = DXi

(
uj(0)

)
Duj(0) = Xij(0, 0).

Exercise 8. Verify the last equality above.

Thus, by Gauss’s formula,

∇(Xj)p
X i =

(
Xij(0, 0)

)�

=
( ∑

k

Γk
ij(0, 0)Xk(0, 0) + lij(0, 0)N(0, 0)

)�

=
∑

k

Γk
ij

(
X−1(p)

)
Xk

(
X−1(p)

)
=

∑
k

Γk
ij

(
X−1(p)

)(
Xk

)
p
.

In particular if we set X ij := Xij ◦ X−1 and define Γ
k

ij : X(U) → R by

Γ
k

ij := Γk
ij ◦ X−1, then we have

∇Xj
X i =

(
X ij

)�
=

∑
k

Γ
k

ijXk,

which in turn yields

∇W V =
∑

j

∑
i

(
W jXjV

i + W jV i
∑

k

Γ
k

ijXk

)
.

Now recall that Γk
ij depends only on the coefficients of the first fundamental

form gij. Thus it follows that ∇ is intrinsic:

5



Exercise 9. Show that if f : M → M̃ is an isometry, then

∇̃df(W )df(V ) = df
(
∇W V

)
,

where ∇̃ denotes the covariant derivative on M̃ (Hint: It is enough to show

that 〈∇̃df(Xi)
df(Xj), df(X l)〉 = 〈df

(
∇Xi

Xj

)
, df(X l)〉).

Next note that if n : X(U) → S2 is a local Gauss map then

〈∇W V, n〉 = −〈V,∇W n〉 = −〈V, dn(W )〉 = 〈V, S(W )〉,

where, recall that, S is the shape operator of M . Thus(
∇WpV

)⊥
= 〈V, S(Wp)〉n(p),

which in turn yields

∇W V = ∇W V +
〈
V, S(W )

〉
n.

This is Gauss’s formula and implies the expression that we had derived earlier
in local coordinates.

Exercise 10. Verify the last sentence.
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2.11 The Induced Lie Bracket on Surfaces; The Self-
Adjointness of the Shape Operator Revisited

If V , W are tangent vectorfields on M , then we define

[V, W ]M := ∇V W −∇W V,

which is again a tangent vector field on M . Note that since, as we had verified
in an earlier exercise, S is self-adjoint, the Gauss’s formula yields that

[V, W ] = ∇V W −∇W V

= ∇W V −∇V W +
(〈

V, S(W )
〉
−

〈
W, S(V )

〉)
n

= [V, W ]M .

In particular if V and W are tangent vectorfields on M , then [V, W ] is also
a tangent vectorfield.

Let us also recall here, for the sake of completeness, the proof of the self-
adjointness of S. To this end it suffices to show that if Ei, i = 1, 2, is a
basis for TpM , then 〈Ei, Sp(Ej)〉 = 〈Sp(Ei), Ej〉. In particular we may let
Ei = Xi(0, 0), where X : U → M is a regular patch of M centered at p. Now
note that〈

Xi, Sp(Xj)
〉

= −
〈
Xi, dnp(Xj)

〉
= −

〈
Xi, (n ◦ X)j

〉
=

〈
Xij, (n ◦ X)

〉
.

Since the right hand side of the above expression is symmetric with respect
to i and j, the right hand side must be symmetric as well, which completes
the proof that S is self-adjoint.

Note that while the above proof is short and elegant one might object to
it on the ground that it uses local coordinates. On the other hand, if we can

1Last revised: November 29, 2004
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give an independent proof that [V, W ]M = [V, W ], then we would have an
alternative proof that S is self-adjoint. To this end note that

[V, W ]� =
(
∇V W

)� −
(
∇W V

)�
= ∇V W −∇W V = [V, W ]M .

Thus to prove that [V, W ]M = [V, W ] it is enough to show that [V, W ]� =
[V, W ], i.e., [V, W ] is tangent to M . To see this note that if f : M → R is any
function, and f : U → R denoted an extension of f to an open neighborhood
of M , then

[V, W ]f = [V, W ]�f + [V, W ]⊥f = [V, W ]�f + [V, W ]⊥f.

So if we can show that the left hand side of the above expression depends
only on f (not f), then it would follow that the right hand side must also
be independent of f , which can happen only if [V, W ]⊥ vanishes. Hence it
remains to show that [V, W ]f = [V, W ]f . To see this recall that by a previous
exercise

[V, W ]f = V (Wf) − W (V f).

But since V and W are tangent to M , V f = V f and Wf = Wf . Thus the
right hand side of the above equality depends only on f , which completes
the proof.

Exercise 1. Verifythe next to last statement.

2.12 The Riemann Curvature Tensor of Surfaces; The
Gauss and Codazzi Mainardi Equations, and The-
orema Egregium Revisited

If V , W , Z are tangent vectorfields on M , then

R(V, W )Z := ∇V ∇W Z −∇W∇V Z −∇[V,W ]Z

gives a tangent vectorfield on M . Note that this operation is well defined,
because, as we verified in the previous section, [V, W ] is tangent to M . If Y
is another tangent vectorfield on M , then we may also define an associated
scalar quantity by

R(V, W, Z, Y ) :=
〈
R(V, W )Z, Y

〉
,
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which is the Riemann curvature tensor of M , and, as we show below, co-
incides with the quantity of the same name which we had defined earlier in
terms of local coordinates. To this end fitst recall that

R(V, W )Z := ∇V ∇W Z −∇W∇V Z −∇[V,W ]Z = 0

as we had shown in an earlier exercise. Next note that, by Gauss’s formula,

∇V ∇W Z = ∇V

(
∇W Z + 〈S(W ), Z〉n

)
= ∇V

(
∇W Z

)
+ ∇V

(
〈S(W ), Z〉n

)
= ∇V ∇W Z + 〈S(V ),∇W Z〉n + V 〈S(W ), Z〉n + 〈S(W ), Z〉∇V n.

Also recal that, since 〈n, n〉 = 1,

∇V n := (∇V n)� = ∇V n = dn(V ) = S(V ).

Thus

∇V ∇W Z = ∇V ∇W Z + 〈S(W ), Z〉S(V )

+
(
〈S(V ),∇W Z〉 + 〈∇V S(W ), Z〉 + 〈S(W ),∇V Z〉

)
n.

Simlilarly,

−∇W∇V Z = −∇W∇V Z − 〈S(V ), Z〉S(W )

−
(
〈S(W ),∇V Z〉 + 〈∇W S(V ), Z〉 + 〈S(V ),∇W Z〉

)
n.

Also note that

−∇[V,W ]Z = −∇[V,W ]Z − 〈S([V, W ]), Z〉n.

Adding the last three equations yield

R(V, W )Z = R(V, W )Z + 〈S(W ), Z〉S(V ) − 〈S(V ), Z〉S(W )

+
(
〈∇V S(W ), Z〉 − 〈∇W S(V ), Z〉 − 〈S([V, W ]), Z〉

)
n.

Since the left hand side of the above equation is zero, each of the tangential
and normal components of the right hand side must vanish as well. These
respectively yield:

R(V, W )Z = 〈S(W ), Z〉S(V ) − 〈S(V ), Z〉S(W )

3



and
∇V S(W ) −∇W S(V ) = S([V, W ]),

which are the Gauss and Codazzi-Mainardi equations respectively. In par-
ticular, in local coordinates they take on the forms which we had derived
earlier.

Exercise 2. Verify the last sentence above.

Finally note that by Gauss’s equation

〈R(V, W )W, V 〉 = 〈S(V ), V 〉〈S(W ), W 〉 − 〈S(W ), V 〉〈S(V ), W 〉

In particular, if V and W are orthonormal, then

〈R(V, W )W, V 〉 = det(S) = K.

Thus we obtain yet another proof of the Theorema Egregium, which, in this
latest reincarnation, does not use local coordinates.

Exercise 3. Show that if V and W are general vectorfields (not necessarily
orthonormal), then

K =
R(V, W, W, V )

‖V × W‖

4
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2.13 The Geodesic Curvature

Let α : I → M be a unit speed curve lying on a surface M ⊂ R3. Then the
absolute geodesic curvature of α is defined as

|κg| :=
∥∥(α′′)>

∥∥ =
∥∥α′′ − 〈α′′, n(α)

〉
n(α)

∥∥,
where n is a local Gauss map of M in a neighborhood of α(t). In particular
note that if M = R2, then |κg| = κ, i.e., absolute geodesic curvature of a
curve on a surface is a gneralization of the curvature of curves in the plane.

Exercise 1. Show that the absolute geodesic curvature of great circles in a
sphere and helices on a cylinder are zero.

Similarly, the (signed) geodesic curvature generalizes the notion of the signed
curvature of planar curves and may be defined as follows.

We say that a surface M ⊂ R3 is orientable provided that there exists a
(global) Gauss map n : M → S2, i.e., a continuous mapping which satisfies
n(p) ∈ TpM , for all p ∈M . Note that if n is a global Gauss map, then so is
−n. In particular, any orientable surface admits precisely two choices for its
global Gauss map. Once we choose a Gauss map n for an orientable surface,
then M is said to be oriented.

If M is an oriented surface (with global Gauss map n), then, for every
p ∈M , we define a mapping J : TpM → TpM by

JV := n× V.

Exercise 2. Show that if M = R2, and n = (0, 0, 1), then J is clockwise
rotation about the origin by π/2.

1Last revised: December 8, 2004
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Then the geodesic curvature of a unit speed curve α : I →M is given by

κg :=
〈
α′′, Jα′

〉
.

Note that, since Jα′ is tangent to M ,〈
α′′, Jα′

〉
=
〈
(α′′)>, Jα′

〉
.

Further, since ‖α′‖ = 1, α′′ is orthogonal to α′, which in turn yields that the
projection of α′′ into the tangent plane is either parallel or antiparallel to
Jα′. Thus κg > 0 when the projection of α′′ is parallel to Jα′ and is negative
otherwise.

Note that if the curvature of α does not vanish (so that the principal
normal N is well defined), then

κg = κ
〈
N, JT

〉
.

In particular geodesic curvature is invariant under reparametrizations of α.

Exercise 3. Let S2 be oriented by its outward unit normal, i.e., n(p) = p,
and compute the geodesic curvature of the circles in S2 which lie in planes
z = h, −1 < h < 1. Assume that all these circles are oriented consistenly
with respect to the rotation about the z-axis.

Next we derive an expression for κg which does not require that α have
unit speed. To this end, let s : I → [0, L] be the arclength function of α, and
recall that α := α ◦ s−1 : [0, L]→M has unit speed. Thus

κg = κg(s) =
〈
α′′(s), Jα′(s)

〉
.

Now recall that (s−1)′ = 1/‖α′‖. Thus by chain rule.

α′(t) = α′
(
s−1(t)

)
· 1

‖α′(s−1(t))‖
.

Further, differentiating both sides of the above equation yields

α′′ = α′′
(
s−1
)
· 1

‖α′(s−1)‖2
+ α′

(
s−1
)
·
−
〈
α′
(
s−1
)
, α
(
s−1
)〉

‖α′(s−1)‖
.

Substituting these values into the last expression for κg above yiels

κg =

〈
α′′, Jα′

〉
‖α′‖3

.
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Exercise 4. Verify the last two equations.

Next we show that the geodesic curvature is intrinsic, i.e., it is invariant
under isometries of the surface. To this end define α̃′ : α(I) → R3 be the
vectorfiled along α(I) given by

α̃′
(
α(t)

)
= α′(t).

Then one may immediatley check that

α′′(t) = ∇α′(t)α̃
′.

Thus 〈
α′′, Jα′

〉
=
〈
(α′′)>, Jα′

〉
=
〈
∇α′α̃

′, Jα′
〉
.

and it follows that

κg =

〈
∇α′α̃

′, Jα′
〉

‖α′‖3
.

Now recall that ∇ is intrinic. Thus to complete the proof that κg is irinsic
it remains to show that J is intrinsic. To see this let X : U → M be a local
patch, then

JXi =
2∑
j=1

bijXj.

In particular,
JX1 = b11X1 + b12X2.

Now note that
0 = 〈JX1, X1〉 = b11g11 + b12g21.

Further,

g11 = 〈X1, X1〉 = 〈JX1, JX1〉 = b2
11g11 + 2b11b12g12 + b2

12g22.

Solving for b21 in the next to last equation, and substituting in the last
equation yields

g11 = b2
11g11 − 2b2

11g11 + b2
11

g2
11

g2
21

g22 = b2
11(−g11 +

g2
11

g2
21

g22).

Thus b11 may be computed in terms of gij which in turn yiels that b12 may
be computed in terms of gij as well. So JX1 nay be expressed intrinsically.
Similarly, JX2 may be exressed intrinsically as well. So we conclude that J
is intrinsic.
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2.14 Applications of the Gauss-Bonnet theorem

We talked about the Gauss-Bonnet theorem in class, and you may find the
statement and prove of it in Gray or do Carmo as well. The following are all
simple consequences of the Gauss-Bonnet theorem:

Exercise 1. Show that the sum of the angles in a triangle is π.

Exercise 2. Show that the total geodesic curvature of a simple closed planar
curve is 2π.

Exercise 3. Show that the Gaussian curvature of a surface which is home-
omorphic to the torus must alwasy be equal to zero at some point.

Exercise 4. Show that a simple closed curve with total geodesic curvature
zero on a sphere bisects the area of the sphere.

Exercise 5. Show that there exists at most one closed geodesic on a cylinder
with negative curvature.

Exercise 6. Show that the area of a geodesic polygon with k vertices on a
sphere of radius 1 is equal to the sum of its angles minus (k − 2)π.

Exercise 7. Let p be a point of a surface M , T be a geodesic triangle which
contains p, and α, β, γ be the angles of T . Show that

K(p) = lim
T→p

α + β + γ − π
Area(T )

.

In particular, note that the above proves Gauss’s Theorema Egregium.

1Last revised: December 8, 2004
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Exercise 8. Show that the sum of the angles of a geodesic triangle on a
surface of positive curvature is more than π, and on a surface of negative
curvature is less than π.

Exercise 9. Show that on a simply connected surface of negative curvature
two geodesics emanating from the same point will never meet.

Exercise 10. Let M be a surface homeomorphic to a sphere in R3, and let
Γ ⊂M be a closed geodesic. Show that each of the two regions bounded by
Γ have equal areas under the Gauss map.

Exercise 11. Compute the area of the pseudo-sphere, i.e. the surface of
revolution obtained by rotating a tractrix.
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