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Preface

For around three decades one of the distinguishing features of my de-
partmentt has been a second year course on the geometry of curves,
in which (following an earlier set of precepts) plane curves are studied
simultaneously from the algebraic and differentiable viewpoints. It has
a proven history of success, providing students with a wonderful intro-
duction to visually attractive geometry. My experience in teaching this
course convinced me that the time was ripe to raise the profile of un-
dergraduate geometry. The algebraic viewpoint developed into my text,
‘Elementary Geometry of Algebraic Curves’ (Cambridge University Press,
1998). The present text is intended as a companion volume, representing
the differentiable viewpoint.

0.1 Differential Geometry

Differential geometry is a fascinating area of mathematics, of substantial
and increasing importance in the physical sciences. Despite that, the
subject has a low billing in most undergraduate curricula, either not
appearing or relegated to a final year optional course. That is a shame
since much can be achieved with minimal mathematical preparation in
the second year by restricting attention to plane curves: those who then
wish to develop their interest can proceed to final year courses studying
more general objects. Plane curves live in an environment familiar from
school mathematics (the Euclidean plane), and have features readily
visible on a computer screen: moreover, their study uses foundational
mathematics {calculus, linear algebra and complex numbers) in a useful
way, with only a handful of results using basic facts in real analysis. Most

t The Department of Mathematical Sciences in the University of Liverpool



Preface XV

computations use no more than elementary symbolic manipulation and
differentiation, thus reinforcing the basic skills acquired in school and
the first year of undergraduate study. The restriction to the plane has
the further benefit that its natural complex structure can be profitably
exploited to simplify both theory and practice.

0.2 Special Curves

One of my objectives was to ensure that the reader becomes increasingly
familiar with a small zoo of special curves, mostly drawn from physical
"applications, to provide a framework on which the ideas of the subject
can be hung. Many of the curves of historical significance can be studied
profitably from either the algebraic or the differentiable viewpoint, so
provide a useful starting point. Indeed it is healthy to bear in mind that
the study of such special curves provided the genesis for the existing body
of mathematics. Moreover some of these curves exhibit subtle features,
requiring careful analysis. I resisted the temptation to expand upon the
historical aspects: it would require a separate volume, and an author
with much wider knowledge. However, most of these named curves are
either of historical, or of mathematical significance — sometimes both.
For instance the catenary was discovered by Galileo (who confused it
with the parabola) and later studied by Jacques Bernoulli the Elder (who
discovered its true form). But it is also of mathematical significance, as
a plane section of the minimal surface spanning two circular discs, the
only minimal surface of revolution.

0.3 Curvature, Contact and Caustics

Curvature is of course one of the central concepts. Here is one of the
big ideas of mathematics, compelling in its simplicity, yet surprisingly
subtle. In time honoured fashion it is shown that a curve is completely
determined (up to congruence) by its speed and curvature functions. This
seems to me to be an excellent illustration of Klein’s ‘Erlanger Pro-
gramm’, one of the few accessible to undergraduates prior to their final
year of study. I wanted to ensure that students also had the opportu-
nity of viewing elementary differential geometry from the (less familiar)
singular viewpoint. Thus two chapters are devoted to studying the con-
tact of curves with lines and circles, leading to an understanding of
exceptional points on curves such as cusps, inflexions and vertices. The
singular theme is continued via a discussion of envelopes. As a serious
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application, two chapters are devoted to caustics by reflexion, an attrac-
tive area of potential application to several areas of the physical sciences,
which deserves to be better known. Caustics are already of considerable
importance in geometric optics. However, their significance in acoustics
is not so well established, and there is little doubt that they play a key
role in understanding the mysteries of radio propagation.

0.4 Planar Kinematics

The later chapters develop a subject close to my heart, namely kine-
matics. Like my engineering colleagues, I regret the fact that this area
of study has largely disappeared from mathematics degrees. It deserves
putting into a historical context, for the subject is as old as mathematics
itself. It relates intimately to two of the great social revolutions — the
Power Revolution, when man was gradually released from the drudgery
of providing a source of power (as ways became available of convert-
ing natural sources of power into mechanical work) and the subsequent
Industrial Revolution. Planar motions with a single degree of freedom
represent the core material of classical kinematics: it stands on its own
as interesing geometry, having intimate and fruitful relations with other
areas of mathematics. The simplest examples arise from the roulettes of
curve theory, indeed it is one of the key results of the subject that general
planar motions arise in this way. (It is for that reason that trochoids,
curves traced by a point carried by one circle rolling on another, are
introduced at an early stage.) Here again the singular viewpoint is of
historical importance, producing the circle of inflexions and the cubic of
stationary curvature, sadly far better known to engineers than mathe-
maticians. And, looking to the future, one sees this classical core as the
starting point of wider theoretical investigations into robotics, a subject
which plays an ever increasing role in our everday lives.

0.5 Concerning the Structure

In keeping with my objective of writing for undergraduates, with a year
of foundational mathematics behind them, this volume is unashamedly
example based. It is my firm personal belief that there is much educational
merit in really getting to grips with a range of explicit examples. The
subject is indeed rich in attractive examples, many of which arose in
the physical sciences, and are of historical significance. I believe that
students gain in confidence from this approach, and enjoy the security of
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increasing familiarity with key examples. Those who wish to can always
pursue abstract theory for its own sake by proceeding to higher degrees
where their needs will be met. The format parallels that of the companion
volume ‘Elementary Geometry of Algebraic Curves’. I kept the individual
chapters fairly short, on the theory that each chapter revolves around one
new idea: likewise the sections are brief, and punctuated by a series of
‘examples’ illustrating the concepts. I included a substantial and coherent
collection of exercises (many culled from the older literature) designed to
illustrate (and even amplify) the small amount of theory. Each chapter
contains sets of exercises, each appearing immediately after the relevant
section.

0.6 Curve Tracing

A few words are in order on the subject of curve tracing. At the crudest
level, there is a lot to be said for a thumbnail sketch of a curve to grasp
the broadest qualitative features. Many interesting curves arise from sim-
ple geometric constructions, and can be traced on paper using no more
than a school geometry set. The serious tracer will enjoy Lockwood’s
‘A Book of Curves’ where such constructions are described in consid-
erable detail. It is only one step further in this direction to acquire a
spirograph, and enjoy the sheer beauty of the complex trochoids which
it will trace. And if that does not satisfy you, seek out such gems as
Alabone’s gorgeous Edwardian collectiont of colour illustrations pro-
duced by an intriguing mechanical device, the Epicycloidal Geometric
Chuck! I mourn the decline in such scientific hobbies: however, those
who feel that life is too short for such indulgences will find that comput-
ers provide superb renderings of curves in a fraction of a second. It is
worth saying that curve tracing programs allow both student and teacher
to experiment with curves interactively on a computer screen, thereby
enhancing understanding of the underlying geometry. Most commercial
mathematical software packages contain such programs: indeed many
of the illustrations in this book were produced in MAPLE. The more
adventurous will not find it difficult to write simple programs themselves
illustrating individual curves, and even families of curves.

t ‘Poly-cyclo-epicycloidal and other Geometric Curves’






1
The Euclidean Plane

We need to lay firm foundations for later work. It is rather like gardening,
We would like to have beautiful flowers appear immediately, but as
gardeners well know, success is the result of careful preparation of the
soil, and a generous measure of patience. So it is in mathematics. The
soil in which our curves grow is the familiar plane of school geometry.
Good preparation now will make our lives much easier at a later stage.
Virtually everything in this book depends crucially on the ‘Euclidean
structure’ of the plane. That provides the content of this introductory
chapter, representing purely foundational material. For many readers this
material will already be a part of their knowledge, in which case it might
be best just to scan the contents and proceed to Chapter 2.

1.1 The Vector Structure

Throughout this text R will denote the set of real numbers. For linguistic
variety we will sometimes refer to real numbers as scalars. We will work
in the familiar real plane R? of elementary geometry, whose elements
z = (x,y) are called points (or vectors). Recall that we can add vectors,
and multiply them by scalars 4, according to the familiar rules

(x1,y1) + (x2,32) = (%14 x2,y1 +y2)
Ax,y) = (dx,4y).

Two vectors z; = (x1,y1), 22 = (X2,y2) are linearly independent when
x1y2 — xay1 ¥ 0. Linear algebra tells us that if z;, z; are linearly inde-
pendent then they form a basis for R?, meaning that any vector z can
be written uniquely in the form z = 4;z; + A,z for some scalars A;, 4s:
in that case we say that z has coordinates (A1,A;) relative to the basis
21, Z2. The most familiar case is the standard basis comprising the vectors

1



2 The Euclidean Plane

e; = (1,0), e; = (0, 1) giving rise to the standard coordinates of elementary
geometry.

1.2 The Scalar Product

The plane is endowed with its standard Euclidean structure. By this we
mean that for any two vectors z; = (X1, ¥1), 22 = (X2,¥2) We have the
standard scalar product (or dot product) defined by the relation

Z1 ®Z3 = X1y1 + X2)2.
The basic properties (Exercise 1.2.1) of the scalar product are listed below.

S1: zez >0 with equality if and only if z = 0.
S2: zew=wez

S3: ze(Aw)=A(zew).

S4: ze(wtw)=zewtzew.

S2 is referred to as the symmetry property. Properties S3, S4 together say
that e is linear in its second argument: by symmetry, it is also linear in its
first argument, and for that reason e is said to be bilinear. Two vectors
z, w are orthogonal when z e w = (.

Example 1.1 Let z, w be vectors with w # 0. We claim that there is a
unique scalar A with the property that the vectors z’ = z — Aw, w are
orthogonal. Indeed, our requirement is that

O=Zew=(zZz—Aw)ew=zew—A(wew),

giving the unique solution 4 = z e w/w e w. We call the vector Aw the
component of z parallel to w, and the vector z’ = z — Aw the component
of z orthogonal to w.

Exercises

1.2.1  Starting from the definition of the scalar product, establish the
properties S1, S2, S3, S4.

1.3 Length, Distance and Angle

Property S1 of the scalar product is expressed by saying that the scalar
product is positive definite. In view of this property it makes sense to
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o)

F i Figure 1.1. Corﬁponents of a vector
L
‘wdefine the length of a vector z = (x, y) to be

4 z) =v/x2+y? = Jz ez

:I‘hroughout this book we will use the following fundamental properties
L1, L2, L3 of the length function. The property L1 is an immediate
consequence of S1 above: however, L2 and L3 require proof, representing
the next step in our development.

L1: Jz]=0if and only if z = 0.
L2: |zew| < |z|w] (The Cauchy Inequality.)
L3: |z4+w| < |z|+ |w|. (The Triangle Inequality.)

Lemma 1.1 For any two vectors z, w in the plane we have the relation
|z @ w| < |z||w|. (The Cauchy Inequality.)

Proof When z = 0 then the LHS is zero, and the inequality is satisfied.
We can therefore assume that z #+ 0,50 zez > 0. Set A =zew/zez.
Then Aw represents the component of z parallel to w, and z — Aw is the
component orthogonal to w. (Figure 1.1.) Then

0 < w—AzP=(w—4iz)e(w—A2)
wew—2l(zew)+i%(zez)
= wew—Azew)

| |2 _ (Z .W)z
|z[?

The result follows on multiplying through by |z|> and taking positive
square roots. O



4 The Euclidean Plane

The Cauchy Inequality can be rephrased by saying that for non-zero
vectors z, w we have
Zew
T lzllwl T

Looking at the graph of the cosine function we see that there is therefore
a unique angle § with 0 < 8 < = for which

We call 6 the angle between the vectors z, w. This provides a good
intuition for the meaning of the scalar product. The vectors z = (x,y)
for which |z] = 1 are called unit vectors: they are the vectors which lie
on the circle x2 + y? = 1 of radius 1 centred at the origin. When z, w
are unit vectors the scalar product is just the cosine of the angle between
them. It is for this reason that we call two vectors z, w ‘orthogonal’ when
z e w = (), since then the cosine is zero, and the angle is 6 = /2.

Lemma 1.2 For any two vectors z, w in the plane we have the relation
|z + w| < |z| 4+ |w|. (The Triangle Inequality.)

Proof The Cauchy Inequality yields the following series of relations,
from which the result follows on taking positive square roots:

lz+w? = (z+w)e(z+w) = zez+2zew)+wew
< 2P +2zewl+ WP < [z +2zlwl + [w]?
= (lz| + WD)

a

We define the distance between two points u, v in the plane to be the
scalar |u —v|. The following basic properties of the distance function are
immediate from L1, L2, L3.

M1: |u—v|=0if and only if u = v.
M2: ju—v|=|v—u
M3: ju—v|<|u—w/+|w—u.

Note that distance is invariant under translation, in the sense that for
any vector w the distance between u, v equals that between their translates
u+w,v4+w.
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Example 1.2 Let g, b, c be non-zero vectors with ¢ = a— b, and let 6 be
the angle between a, b. Expanding the expression for |c|*> we obtain the

. cosine rule of school trigonometry

le|> = |a|? — 2|al|b| cos @ + [b]*.

A special case arises when a, b are orthogonal, so the angle 6 is a right

angle: the cosine rule then reduces to the familiar Pythagoras Theorem
lel? = lal® + b

‘A basis u, v for the Euclidean plane is orthogonal when u, v are
orthogonal: and it is orthonormal when it is orthogonal, and u, v are in
addition unit vectors.

Example 1.3 Let T, N be orthogonal unit vectors. (The symbols are cho-
sen deliberately to reflect the geometric situations we will meet through-
out this text) Thus the assumptions are that Te N =0, Te T =1,
N e N = 1. Observe first that T, N are linearly independent. Suppose
indeed that we had a relation tT + vN = 0 for some scalars z, v: then,
taking scalar products of each side of this relation with T, N, we see
that 1 = 0, v = 0. By linear algebra T, N form an orthonormal basis
for the plane, so that any vector v can be written uniquely as a linear
combination v = tT + vN for some scalars 7, v. These scalars are very
easily determined. Taking scalar products with 7 we see that t=v e T;
and likewise, taking scalar products with N we see that v = v e N. Thus
the required linear combination is

v=(veT)T 4+ (ve N)N. (1.1)

The most familiar example of an orthonormal basis is the standard
basis T = (1,0), N = (0,1). However, in Chapter 5 we will see that
orthonormal bases can be associated in a very natural way to general
points on curves, and that the way in which they change as we move along
the curve provides geometric information of fundamental importance.

Exercises

1.3.1  Let u, v be any vectors in the plane. Establish the parallelogram
law

|+ 0P + Ju— o2 =2u® +2jv%
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132  The length of a vector was expressed in terms of the scalar prod-
uct. Conversely, show that the scalar product can be expressed
in terms of the length via the Polarization Identity

1
uep = 5{|u|2+|u|2—|u—u|2}.

1.4 The Complex Structure

One of the gains of working throughout with planar curves is that we
will be able to take advantage of the fact that the points z = (x,y) in
the plane can be identified with complex numbers z = x + iy. Under this
identification, vector addition of points in the plane corresponds to the
usual addition of complex numbers. The gain is largely one of notational
and computational efficiency (rather than mathematical understanding)
but is still worthwhile. We will adopt standard notations by writing
x = Rz for the real part and y = 3z for the imaginary part of the
complex number z = x + iy. Likewise, the complex conjugate is written
Z = x —iy, identified with the reflexion z = (x, —y) of the point z = (x, y)
in the x-axis. The real gain lies in the availability of multiplication and
division for complex numbers. Recall that the product of two complex
numbers z = x + iy, w = u + iv is defined to be

zw = (xu — yv) + i(xv + yu).

In particular, for any complex number z = x+iy, identified with the point
z = (x,y), we have iz = —y + ix identified with the point iz = (—y, x)
obtained by rotating z = (x, y) anticlockwise about the origin through a
right angle.

Example 1.4 Recall that the component of a vector a in the direction of
a unit vector b is the vector (a e b)b. (Example 1.1.) It is useful to express
this in complex notation. Note that for any two vectors g, b we have
2(aeb) = ab+ab: in particular when b is a unit vector (i.e. bb = |b]* = 1)
we have 2(a e b)b = a + ab?.

Note that the length of the vector z = (x,y) is the modulus |z]| of
the corresponding complex number = x + iy: in particular, vectors of
unit length correspond to complex numbers of unit modulus. Recall that
any vector z = (x,y) of unit length can be written z = (cost,sint) for
some real number ¢: under the identification with complex numbers this
means that any unit complex number u can be written u = ¢* where by



1.5 Lines 7

definition e = cost + isint. More generally, any complex number z # 0
can be written uniquely in the polar form z = re® where r = |z|.

1.5 Lines

Lines will play a fundamental role in studying the geometry of general
curves, so it is worth recalling some basic facts. We define a line to be the
set L of points (x, y) satisfying an equation of the form ax + by +¢ =0,
where a, b, ¢ are real numbers, and at least one of a, b is non-zero.
In this section we will review the basic properties of lines via a series
of examples. The first example expresses the most basic property of all,
namely that the equation of a line is determined (up to scalar multiples)
by any two of its points.

Example 1.5 Through any two distinct points p = (p1, p2), ¢ = (q1,42) in
R? there is a unique line ax + by + ¢ = 0. We seek scalars g, b, ¢ (not all
zero) for which

ap1+bps+c=0, aq1 +bgs +¢c=0.

Since p, q are distinct, the 2 x 3 coefficient matrix of these two linear
equations in a, b, ¢ has rank 2. By linear algebra it has kernel rank 1,
so there is a non-trivial solution (a,b,c), and any other solution is a
non-zero scalar multiple of this one. Explicitly, the line joining p, ¢ has
the equation

(p1 — q1)(y — p2) = (p2 — q2)(x — p1).

What is important for our purposes is that lines can be ‘parametrized’
in a natural way, providing a model for the general ‘parametrized’ curves
of Chapter 2.

Example 1.6 Consider a line ax + by + ¢, and distinct points p = (p1, p2),
q = (q1,q2) on the line. Then a brief calculation verifies that for any
choice of scalar ¢t the point r = (1 — t)p + tq also lies on the line.
Conversely, we claim that any point r = (r1,7;) on the line has the form
r = (1 —t)p + tq for some scalar t. The proof goes as follows. Since p, g,
r all lie on the line we have

api+bpr+c = 0

ag1+bgx+c = O
ari+bry+c¢

]
e
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That is a linear system of three equations in a, b, c. Since at least one of
a, b is non-zero, the system has a non-trivial solution. By linear algebra,
the 3 x 3 matrix of coefficients is singular, so the rows (py, p>, 1), (91,92, 1),
(r1,72,1) are linearly dependent. However, the first two rows are linearly
independent (as p, g are distinct) so the third row is a linear combination
of the first two; thus there exist scalars s, t for which

(rls ra, 1) = S(Pl,P2a 1) + t(Ql, q2, 1)'

It follows immediately that r = sp + tq and 1 = s + ¢ from which we
deduce the required relation r = (1 —t)p + tq.

In view of this result we introduce the following definitions. Given two
distinct points p = (p1,p2), 4 = (41,492) the standard parametrized line
through p, g is the specific parametrization given by the formulas below,
with the points p, ¢ corresponding respectively to the parameters ¢t = 0,
t=1

x=(1—-10p; +1q1, y=(1—1t)p2 + 142

Example 1.7 The standard parametrization of a line depends on the
choice of points p, q. For instance we can parametrize the line y = 0
via the points p = (0,0), g = (1,0) to obtain the parametrization x = ¢,
y = 0: on the other hand the points p = (—1,0), ¢ = (1,0) give rise to
the parametrization x =2t —1, y =0.

Example 1.8 The scalar product provides a convenient way of writing
down the equation of a line. For any fixed non-zero vector N = (a, b)
the vectors z = (x, y) orthogonal to N are those for which ax + by = 0.
That is a single linear equation in the variables x, y satisfied by x = —b,
y = a, so by linear algebra its solutions (x, y) lic on a line through the
origin spanned by the vector (—b,a). Thus the equation ax + by = 0 of
any line through the origin can be written in the form N ez = 0 for some
non-zero vector N. More generally, the equation ax + by + ¢ = 0 of any
line can be written in the form N ez +¢ = 0 for some non-zero vector N.
Since the equation of a line is unique up to scalar multiples, the vector N
likewise is unique up to scalar multiples: it is an example of a ‘normal’
vector. (Chapter 2.} In particular, in writing down the equation of a line
we can always choose N to be a unit vector.

Example 1.9 Let N be a non-zero vector. Given a fixed point zo, the
equation of the line L through zy orthogonal to N can be written in the



1.5 Lines 9

N same side as N

oppositeL side ZtN

N

Figure 1.2. The two sides of a line

form (z — zp) « N = 0: indeed (as we saw in the previous example) that
is the equation of a line orthogonal to N, and it certainly passes through
zo. For visualization purposes it helps to think of N with its origin at
the point z,: more precisely, we think in terms of zp + N rather than N.
Observe that the plane is partitioned into three sets by the relations

(z—2))e N>0, (z—zg)eN=0, (z—z9)e N<0

representing respectively one side of L, the line L itself and the other side
of L. At a later stage in this book it will help us to be clear about which
side is which. To this end, write 8 for the angle between the vectors z —z
and N, so that

(z —zp) ® N = cos 8|z — zy||N|.

It follows immediately that the sign of (z — zp) ¢ N agrees with that of
cos §. Looking at the graph of the cosine function we see that the sign is
positive if and only if —=/2 < § < n/2. One vector z on that side of L
is the vector z = zp + N: for that reason we refer to the side of L with
(z—2z0) e N > 0 as being on the same side as N, and the other side as
the opposite side.

Example 1.10 Let N = (a,b) be a non-zero vector, and let L be a line
with equation z ¢ N = ¢. By a direction for the line we mean any vector
T orthogonal to N: it is an example of a ‘tangent’ vector. (Chapter 2.)
Thus we could take T = (—b,a). Alternatively, we could choose any
two distinct points p, ¢ on the line, and take T = q — p: the relation
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Figure 1.3. The orthogonal bisector

T o N = 0 then follows from pe N + ¢ =0, ge N + ¢ = 0 on subtraction.
On this basis we say that two lines ajx +byy+c¢; =0, axx+bay+¢c; =0
are orthogonal when the corresponding ‘normal’ vectors N; = (ay, by),
N; = (a3, by) are orthogonal, or equivalently the corresponding ‘tangent’
vectors Ty = (—by,a1), T» = (—by,a;) are orthogonal: either way, the
condition is that gja; + bib, = 0.

Example 1.11 Let p, g be distinct points. A point z is equidistant from
p, q when the distance from z to p equals the distance from z to g: the
set of all points equidistant from p, g is called the orthogonal bisector of
the line segment joining p, 4. (Figure 1.3.) The orthogonal bisector is a
line. Indeed the constraint on z is that |p—z|?> = | —z|*: expanding both
sides of this relation we obtain

2q—p)ez=|qf —|pP

which is the equation of a line L, orthogonal to the vector (¢ — p). Note
that the mid-point w = %(p + g) of the line segment joining p, g lies on
the orthogonal bisector. (A formal definition of the term ‘line segment’
will be given in Chapter 2.)

Example 1.12 Using complex notation, consider two points z = x + iy,
w = u + iv equidistant from 0, and from 1. We claim that either z = w
or z = w. The equidistance conditions are expressed by the relations

4+ =+, (x—1P+y*=@u—1)>+02

Subtracting these relation yields u = x, and hence v = +y: in the ‘+’ case
w =z, and in the ‘— case w = Z.
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intersecting lines parallel lines coincident lines
Figure 1.4. Three ways in which lines can intersect

Example 1.13 To find the intersection of two lines ax + by + ¢ = 0,
ax+ by + = 0 we think of these as two linear equations in x, y and
appeal to elementary linear algebra. When § = ab’ —a’b # 0 the equations
have a unique solution, and the intersection comprises a unique point:
otherwise there are no solutions (parallel lines) or a line of solutions
(coincident lines). (Figure 1.4.)

Exercises

1.5.1 Find the equation of the line through the points p = (1,1),
g = (4,3), and the equation of the orthogonal line through
r=(-11).

1.6 Projection to Lines

One of the key Euclidean constructions in this book will be the ‘orthog-
onal projection’ of a point onto a line. The situation is best summed up
in one result.

Lemma 1.3 Let L be a line and let p be a point. There is a unique point
w on L for which (w — p) is orthogonal to L. Moreover, w is given by the
Jollowing formulas:

w=u+{(p—u)eT}T =p—{(p—u)e N}N,

where u is any point on L, T is a unit vector in the direction of L, and N
is a unit vector orthogonal to T.

Proof L can be parametrized as z(z) = u + tT. We seck a point z(¢) for
which z(t) — p is orthogonal to the direction T of the line, i.e. for which
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Figure 1.5. Orthogonal projection onto a line

0=(p—z(t)eT =(p—u—tT)eT. This relation has a unique solution
t = (p —u) e T. Substituting for ¢ in z(t) gives the first formula for w in
the statement of the result. The second formula is immediate from the
relation (1.1) with v =p —u. O

The point w appearing in Lemma 1.3 is called the orthogonal projection
of p onto the line L, and the distance |w — p| is the distance from the
point p to the line L. (Figure 1.5.) The reason for giving two formulas
for w is that sometimes one may prove more convenient than the other.

Example 1.14 Consider any ‘vertical’ line L with equation x = xq, and
any point p = (x,y). The orthogonal projection w of p onto L is very
easily determined. We could choose u = (x¢,0), T = (0,1), N = (1,0):
with these choices (p —u)e T =y, (p—u)e N = x — x¢ and

w=u+{(p—u)e T}T =p—{(p—u) e N}N = (xo,y)

as one might expect. The distance from p to L is |[w — p| =[x — x|.

Exercises

1.6.1  Let L be a line and let p be a point. Show that the orthogonal
projection of p onto L is the unique point w on L for which the
distance from p to w is minimized.

1.6.2  Let L be the line ax 4+ by + ¢ = 0 and let p = («, ) be a point.
Show that the distance d from p to L is given by the formula

_ lac+bp + ¢

d a? +b?
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Parametrized Curves

Plane parametrized curves arise naturally throughout the physical sci-
ences and mathematics. In this introductory chapter we will set up the
underlying definitions, and introduce the reader to a small zoo of curves
to provide a useful basis for illustration in later chapters. The first step
in our geometric development is to associate ‘tangent’ vectors to each
parameter on a curve. In particular, that allows us to distinguish ‘irreg-
ular’ parameters for which the associated ‘tangent’ vector is zero. Such
parameters may correspond to points where the curve is visibly different
from other points.

2.1 The General Concept

For the purposes of this book a parametrized curve (or just curve if there
is no ambiguity) is a smooth mapping z : I — R?, with I = R an open
interval. Thus I is a set of real numbers t (the parameters) which satisfy
an inequality of the form a < t < b, where we allow either or both of the
possibilities @ = —oo, b = 0.

The meaning of the term ‘smooth’ in the above is as follows. For each
parameter t we have a point z(t) = (x(t), y(t)) in the plane: the resulting
functions x,y : I — R of a single real variable ¢ are the components of
z, and ‘smoothness’ means that at every parameter ¢t both components
x, y possess derivatives of all orders. In all the examples which arise
in this book it will be self evident from elementary analysis that z
is indeed ‘smooth’ in this sense. The term ‘smooth’, though excluding
gross pathologies, does still allow unexpected phenomena. For instance,
it is shown in books on analysis that there exist continuous mappings
z : 1 — R?, with I an open interval, for which the trace is the whole of R?
(the so-called Peano curves). The condition that z is smooth eliminates

13
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zZ

/'N z(t)

R2

Figure 2.1. A parametrized curve

this type of behaviour. However, it does not preclude the possibility of
the trace having sharp ‘corners’. For most of the curves in this book
the domain I will be the whole real line R: only infrequently, when the
domain is not R, will we specify it. Sometimes there will be practical
advantages in thinking of z(¢) as a complex number, in which case we
may change our notation and write z(¢) = x(t) + iy(t).

Example 2.1 According to Example 1.6 the line through any two distinct
points p = (p1, p2), 4 = (41, ¢2) is naturally parametrized as
x(t) =00 —t)p1 +tq1, y(t)=(1~1)p2+1q>

with the parameters t = 0, t = 1 corresponding to the points p, g. Using
complex notation this can be written more concisely as

zt)=1—-t)p+1q.
Example 2.2 The circle of radius r with centre zy = (xo,yo) is the
set of points z = (x, y) for which the distance between z, z; is the fixed

positive real number r: put another way, a circle is the set of points (x, y)
satisfying an equation of the form

(x —x0) +(y — yo)? =71

Two circles with the same centre (but possibly different radii) are con-
centric. The circle is naturally parametrized as

x(t) = xp +rcost, y(t)=yp+rsint.

In complex number notation this would read instead z(t) = zo + re'.
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Figure 2.2. The right strophoid

A special case is the unit circle of radius 1 and centre the origin, with
the parametrization x(t) = cost, y(t) = sint or z(t) = €".

Example 2.3 A curve of historical interest is the right strophoid, the
curve z with components x, y defined by the following formulas, where

a>0
1—¢2 1—¢2
X(t) =2a (H-—tz) » y(t) = —2at (m) .

The right strophoid illustrates a general feature, namely that its trace
crosses itself at the origin: more precisely, there are two values ¢t = 1,
t = —1 of the parameter for which z(¢) = 0. (Figure 2.2.) Later in this
chapter we will formalize the idea of a ‘self crossing’ for a curve. Note
that x(t) — 2a as t — o0, so the line x = 2a is an ‘asymptote’ of the
curve, indicated by the vertical dotted line.

The trace of the curve z : I — R? is the set of points z(t) with ¢t € I.
The reader is encouraged to maintain a crystal clear mental distinction
between the curve z and its trace. For instance the curves defined by
x(t) =t, y(t) = 0 and x(t) = 2t, y(t) = O are different mappings, but
have the same trace, namely the x-axis. Thus for a constant curve (one
for which z(t) = ¢ for all t, with ¢ a fixed point) the trace is a single
point. A set of points Z in the plane is parametrized by a curve z when
Z coincides with the trace of z.
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Figure 2.3. The catenary

Example 24 Let f : I —» R be any smooth function. The graph of
f is defined to be the set of all points (¢, f(¢)) with t € I, so is the
trace of the curve z : I — R? defined by z(t) = (¢, f(t)). The reader
is probably familiar with the exercise of sketching such curves, at least
in the case when f is a polynomial, using the techniques of elementary
algebra (to find the points where the curve cuts the x-axis by solving the
equation f(x) = 0) and elementary calculus (to find the local extrema
and inflexions). An example is the function f(x)} = cosh x for which the
associated curve z(t) = (t,cosh?) is known as the catenary. (Figure 2.3.)

The catenary is of historical interest, representing the form adopted
by a perfect inextensible chain of uniform density hanging from two
supports. It was studied first by Galileo (who mistook it for a parabola)
and later by Jacques Bernoulli the Elder (who obtained its true form). It
is also of contemporary mathematical interest, being a plane section of
the minimal surface (a soap film catenoid) spanning two circular discs,
the only minimal surface of revolution.

Example 2.5 The restriction of a curve z : I — R? to any open subinterval
of I is again a curve, known as an (open) arc of z. The subinterval is itself
given by an inequality of the form ¢ < t < d, where possibly ¢ = —o0 or
d = oo. The trace of the arc is a curve segment, and (provided ¢, d are
finite) is said to join the points z(c), z(d). For instance, given two distinct
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points p = (p1,p2), 4 = (¢1,92) we saw in Example 2.1 that the standard
parametrized line through p, g is the specific parametrization given by

x = (1—1t)p1 +1tqi, y=00-1tp2+tq:

with p, g corresponding to the parameters t = 0, 1. The restriction of this
parametrization to the interval 0 < ¢ < 1 is an arc of the line, whose
trace is the line segment joining p, q. The trace of a restriction to an
interval of the form ¢ <t < 0 or —o0 < t < d is a half line.

The idea of a ‘periodic’ function extends naturally to curves. A curve
z : R — R? is periodic, when there exists a non-zero real number p
(called a period) with the property that z(t + p) = z(t) for all t. As in
the case of functions, all periods of a non-constant periodic curve are
integer multiples of a minimal positive period p, simply referred to as
the period of the curve. Thus the natural parametrization of the circle
in the previous example is periodic, with period 2rn. However, there are
other ways of parametrizing the circle. One approach is to consider the
intersections of the circle with the lines through some fixed point p on
the circle. (It is traditional to refer to the pencil of all lines through p.)

Example 2.6 Take for instance the circle of radius |a| centred at the point
(a,0) where a # 0. The (non-vertical) lines through p = (0,0) have the
form y = tx for some scalar t. Substituting in the equation x2 + y? = 2ax
of the circle we see that such a line meets the circle at a further point
(Figure 2.4) with coordinates

.o 2a _ 2at
1y VT I
That gives a second parametrization, not of the whole circle, but of the
circle with the point p deleted. There is nothing special about the choice
of the point p on the circle. For instance, choosing instead the pencil
of lines y = t(2a — x) through the point p = (2a,0) we obtain another
parametrization
e 2at? _ 2ar
1y VT I

In Chapter 4 we will clarify the relation between different parametriza-
tions of the same curve via the concept of ‘parametric equivalence’.

Example 2.7  An attractive family of curves is provided by the rose
curves (or rhodonea) given by z(t) = 2be" cos nt where b, n are non-zero
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.(.,o) (23,0)

&
0 (2a0)

Figure 2.4. Parametrizing the circle

real numbers. Clearly, it is no restriction to assume that n is positive.
Note that |z(t)| = 2b| cosnt| < 2b, so the trace of the curve lies inside the
circle of radius 2b centred at the origin. The form of the curve depends
on n. Our main interest will be the case when n is a positive integer, when
the curves are known as clover leaves. In that case the curve touches the
circle exactly when cosnt = +1, sinnt = 0, i.e. when € is a 2n'? complex
root of 1. Note that z has period 2n when n is even, but period = when
n is odd: thus when n is even we obtain exactly 2n points of contact
(the 2n-leaved clover) and when n is odd exactly n (the n-leaved clover).
An exceptional case arises when n = 1, and the trace is the circle of
radius b centred at the point (b,0). (Exercise 2.1.2.) For n = 2,3,... we
obtain the series of curves whose first-few members are illustrated in
Figure 2.5.
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n=1 n=1
n=2 n=3
n=4 n=35

Figure 2.5. Some rose curves
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Figure 2.6. Tschirnhausen’s cubic

Exercises

2.1.1 By considering lines through the point p = (—a,0), find an
explicit parametrization of the circle of radius a centred at the
origin, with the point p deleted.

2.1.2  Show that the rose curve z(t) = 2be” cos t with b > 0 parametrizes
the circle of radius b centred at the point (b,0).

2.2 Self Crossings

Many of the curves appearing in this book have the property that their
traces intersect themselves. Before presenting a formal definition we will
look at one or two examples.

Example 2.8 Tschirnhausen’s cubic is the curve given by x(t) = 3(t2 —3),
y(t) = t(t* — 3). Figure 2.6 shows the curve crossing itself at the origin.
The key factor here is that there are distinct values of the parameter ¢,
namely ¢t = \/5, t= —\/5, giving rise to the same point (0,0) on the curve.

However, we have to be careful about basing a formal definition on a
single example. One problem is that z may be periodic, so every point
on the trace has infinitely many distinct preimages.

Example 2.9 The eight-curve is the curve x(t) = acost, y(t) = asintcost
with a > 0. Clearly, the eight-curve is periodic, with period 2n. Thus
for any choice of ¢t there are infinitely many distinct values of the
parameter, namely ¢ 4+ 2nm with n an integer, which map to the same
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Figure 2.7. The eight-curve

‘point on the trace. However Figure 2.7 suggests that the origin should
 be a ‘self crossing’. The property that differentiates the origin from every
other point on the trace is that there exist distinct parameters s = n/2,
t = 3n/2 for which z(s) = z(t) = (0,0), but the difference p = n is not a
 period of the curve.

.. On this basis we define a self crossing of a curve z to be a point on
 the trace for which there exist distinct values s, ¢ of the parameter with
2(s) = z(t), and such that p = s — ¢ is not a period. With this definition
Ethe origin is a self crossing of the eight-curve.

Example 2.10 To find the self crossings of the curve x(t) = 2 + £, y(t) =
2+ t* we require distinct parameters s, t with x(s) = x(t), y(s) = y(¢), i.e.
S(1+5) = 3 (1 +1t), s3(1 + 5) = £3(1 +t), yielding solutions s = —1, ¢t =0
‘with s < t. We conclude that (0,0) is a self crossing, indeed the only self
crossing on the curve.

‘Example 2.11 The curve x(t) = cos> t cos 3¢, y(t) = cos? ¢ sin 3¢ illustrated
-in Figure 2.8 is Cayley’s sextic. Clearly, it is periodic, with period . The
illustration suggests that the curve has a self crossing. Indeed, that is the
case: the parameters s = 2n/3, t = n/3 produce a self crossing at the
point (—1/8,0) on the trace.

Example 2.12 The curve x(t) = sint, y(t) = 0 is periodic, with period
2m, having trace the interval of the x-axis given by —1 < x < 1. For this
example every point on the trace with —1 < x < 1 is a self crossing:
indeed for such an x a glance at the graph of the sine function shows there
exist distinct parameters s, t with |s — t| < 2x for which x = sins = sint.
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Figure 2.8. Cayley’s sextic

Example 2.13 Figure 2.5 suggests that for n > 2 the origin is a self
crossing of the clover leaf z(t) = 2be” cosnt, where b > 0, and n is a
positive integer. Recall that the clover leaves are periodic, with period
7 when n is odd, and period 2z when n is even. (Example 2.7.) For self
crossings we seek distinct parameters s, ¢ differing by less than the period
for which z(s) = z(t), i.e. €° cosns = &' cosnt. Assume both sides of this
relation are non-zero. Taking moduli gives cosns = +cosnt, so e* = +e”.
In the ‘4’ case s, t differ by a multiple of 2z so we cannot find s, t
satisfying our requirements. In the ‘-’ case s, t differ by a multiple of
7, SO We can suppose n is even: but in that case cosns = cosnt leading
to cosns = 0, cosnt = 0 contradicting our assumption. It remains to
consider the case when cosns = cosnt = (. When n is odd, any distinct
choices of s, t from the list of n values

n 3n 2n—)n
2n° 2n° 7 2n

give rise to a self crossing at the origin: and when n is even we can take
any distinct choices of s, t from the list of 2n values

n  3m (4n—1)n
2 2n" 77 2n

Exercises

221  Ineach of the following cases sketch the graphs of the individual
functions x(t), y(t), sketch the curve z(t) = (x(t), y(t)), and find
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any self crossings.

() x@O=1+8, yt)==2
() x()=1+6, yt)=t(t2+1)

(iii) x(t) =%, y(@t) =t>+ ¢
(ivy x() =12, y(t) =t + 12
V) x(=2+8, yo==tt

(vi) x(t) =1t yt) =1 — 1.

222  Show that the self crossing of the Cayley sextic described in
Example 2.11 is unique.

223 ° A curve is defined by the formula below. Show that the curve
has exactly one self crossing.

—3 t

e 0T

224  Maclaurin’s trisectrix is the curve given by the formula below.
Show that the curve has exactly one self crossing.

2 -3 (2 =3)
T Y0132

x(t) =

x(t) =

2.3 Tangent and Normal Vectors

Given a curve z we define the tangent vector at the parameter ¢t to be
the vector z'(t) = (x'(t),y'(t)), where the dashes denote differentiation
with respect to t. And the normal vector at t is the vector iz'(t) =
(=y'(¢), x'(¢)) obtained by rotating the tangent vector through a right
angle anticlockwise. One visualizes the tangent vector as in Figure 2.9
with its origin at the point z(¢), and thinks of it as representing the
instantaneous direction of travel at ¢: likewise, one visualizes the normal

iz'(t)
Z(t)

z(t)

Figure 2.9. Tangent and normal vectors
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Figure 2.10. The semicubical parabola

vector with its origin at z(t) orthogonal to the instantaneous direction of
travel at ¢.

We say that t is a regular parameter of the curve z when z'(t) # O:
otherwise it is irregular. A curve z is regular when every parameter is
regular. We expect a general parameter ¢ to be regular, and at most a
discrete set of parameters to be irregular.

Example 2.14 The rose curves z(t) = 2be” cosnt of Example 2.7 with
b # 0, n # 0 are regular. The tangent vector can be written in the form

z'(t) = bie" {(1 + n)e™ + (1 —n)e™™}

and is zero if and only if (n + 1)e*"* = (n — 1). Taking moduli, we deduce
that [n + 1| = |n — 1|, contradicting the assumption n # 0.

Example 2.15 The semicubical parabola is the curve x(t) = t2, y(t) = .
The tangent vector at t is z'(t) = (2t,3t?), which vanishes if and only
if t = 0. Thus ¢t = 0 is the only irregular value of the parameter,
corresponding to the ‘cusp’ point (0,0} on the trace in Figure 2.10. We
will have more to say about ‘cusps’ in Chapter 7.

Example 2.16 Let a, b be positive real numbers. Take C to be the circle
radius a centred at the point (a,0), parametrized as in Example 2.2. And
let L be the line x = a?/b. For any point P on C, let Q be the point
where the ‘horizontal’ line through P meets L, and let R be the point
where the ‘vertical’ line through P meets the line joining Q to the origin.
(Figure 2.11.) The locus of the point R is known as the piriform. A minor
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Figure 2.11. Construction of the piriform

calculation now shows that the piriform can be parametrized as
x(t) = a(l +cost), y(t) =bsint(1 + cost).

Irregular parameters are given by 0 = x'(t) = asint and 0 = y'(t) =
b(cos2t + cost). These are only satisfied when sint = 0, cost = —1,
so at infinitely many parameters ¢ = (2n 4 1)n, where n is an integer,
corresponding to the ‘cusp’ point (0,0) on the trace.

Example 2.17 The reader should not assume (on the basis of the last
two examples) that an irregular parameter will always give rise to a point
on the trace visibly different from most other points. For instance the
x-axis can be parametrized as x(t) = >, y(t) = 0 with tangent vector
(3¢%,0), vanishing when ¢ = 0; but the corresponding point (0,0) can be
distinguished in no way from any other point on the trace.

Some classes of curves are actually defined by conditions on their
tangent vectors. Here is an interesting class of curves arising in Computer
Aided Design (CAD) where the concept of ‘tangent vector’ plays a crucial
role. The motivation is as follows. One is given a plane ‘curve’, for instance
part of an artist’s visualization of an industrial product, and one seeks
a useful mathematical model for this curve which can be handled on
a computer. The underlying idea was developed in the late 1950’s by
two design engineers working for rival French car companies, namely
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Figure 2.12. The piriform

Bézier (working for Renault) and de Casteljau (working for Citroén).
A first crude step is to take a sequence of points by, b2, ... , ba; on
the curve and interpolate a polynomially parametrized curve. However,
this process is intrinsically unsatisfactory: as n increases, so the degrees
of the polynomials increase, and the interpolating curve may oscillate
wildly. The idea is to control this oscillation by specifying the tangent
direction at each point. One way of doing this is to associate to each
point by, another point by and stipulate that the tangent direction of
the interpolating curve at by, should be the direction of the line joining
b, bau+1. The problem is then to write down an explicit curve with a
given sequence of control points by, by, ..., bay, bany1. (Figure 2.13.)

Example 2.18 Here is a solution for the case of four control points by,
by, by, bs. To these points we associate the Bézier curve defined by

Z(t) = (1 - t)3b0 + 3t(1 —_ t)zbl + 3t2(1 — t)b3 + t3b2.

The crucial property of this curve is that it passes through the points by,
by and has tangent directions b; — by, b» — b3 at those points, since

z(0)=bo, z(1)=bs, z'(0)=3(b1—bo), Zz'(1)=3(b2—bs)

Any Bézier curve has components x(t), y(t) both of which are polynomials
of degree < 3. Conversely, any such curve is a Bézier curve: one has only
to observe that the polynomials (1—t)3, 3t(1—t)?, 3t}(1—t), t* are linearly
independent, so form a basis for the space of polynomials of degree < 3
in the variable ¢.
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Figure 2.13. Curve with control points by, by, b, b3

Exercises

23.1  Sketch the trace of the curve x(t) = cos*t, y(t) = sin*¢. Find the
irregular parameters, and the corresponding points on the trace.

232 In each of the following cases find the four control points for
the given Bézier curves.

(a) The line z(t) = (1 —t)p +tq where p, q are distinct points.
(b) The parabola x = at?, y = 2at with a > 0.

(c) The curve x(t) =t + 12, y(t) = 2 + £

(d) Tschirnhausen’s cubic x(t) = 3(t? — 3), y(t) = t(t* - 3).

2.4 Tangent and Normal Lines

Suppose ¢ is a regular parameter for the curve z. The tangent line to the
curve at ¢ is the line through z(t) in the direction of the tangent vector
z'(t), and the normal line is the line through z(t) in the direction of the
normal vector iz'(t). Bear in mind that tangent and normal lines are not
defined at an irregular parameter ¢; their respective equations are

{(»amwm—u—ﬂmﬂo 0
(x = x(0)x'(t) + (y — y()y'(t) 0.

Example 2.19 Consider the graph of a smooth function y = f(x),
regularly parametrized as x(t) = t, y(t) = f(¢t). The tangent and normal
lines at the parameter ¢t have the respective equations

y=fO+f(Ox—-1), x=t+f )y~ @)
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Example 220 The standard parametrization of the circle radius r > 0
with centre (a, b) is x(t) = a + rcost, y(t) = b + rsint. For this example
the tangent and normal lines at ¢ are as follows: note that the normal
line passes through the centre (a, b) of the circle, as we would expect.

xcost+ysint = acost+bsint+r
xsint —ycost = asint—bcost.

Example 2.21 In the special case of the previous example when the
circle has unit radius, and its centre is the origin, the tangent line at ¢ is
xcost+ ysint = 1. Provided the tangent line is not parallel to an axis, it
intersects the x-axis at the point X (t) = sect, and the y-axis at the point
Y (t) = csct, so the lines parallel to the axes through the intersections
meet at the point Z(t) = (X(¢), Y (t)). Eliminating ¢t from these relations
we see that Z (¢) lies in the set of points in the plane satisfying the relation

{X,Y): X2+ Y2 =X%Y?).

Figure 2.14 illustrates this set, known as the cross curve. It comprises
four ‘branches’, each having two asymptotes, plus an isolated point at
the origin. Each ‘branch’ is parametrized by the formula Z(¢) restricted
to one of the four intervals obtained from the interval 0 < ¢t < 2r by
deleting the points t =n/2, t ==, t = 3n/2.

Example 2.22 The tractrix is the curve z having the components x(t) =
t—tanht, y(t) = sech t. The reader will readily verify that the tractrix has

Figure 2.14. The cross curve



Exercises 29

Figure 2.15. The tractrix

just one irregular parameter, namely ¢ = 0. At any other parameter the
tangent line has equation x —(sinh t)y = t. The tractrix has the following
remarkable property: the line segment joining the point z(t) to the point
(z,0) where the tangent line meets the x-axis, has constant unit length.
(Figure 2.15.) There is another way of saying this. The circle of unit
radius centred at the point (¢,0) passes through the point z(¢), and the
tangent line to the circle at z(t) is orthogonal to the tangent line to the
tractrix at that point. Thus the tractrix has the property that it meets all
circles of unit radius centred on the x-axis orthogonally. For that reason
the tractrix is described as an ‘orthogonal trajectory’ of that family of
circles.

The tractrix gives rise to an interesting example in the elementary
geometry of differentiable surfaces: the surface of revolution obtained
by rotating it about the x-axis is the pseudosphere, distinguished by the
surprising property of having constant negative Gaussian curvature.

Exerxcises

24.1 Find the tangent line at the parameter t = 1 to the curve defined

by
-1 t+1
[ = —_—— = —_——

242  Find the tangent lines to the curve x(t) = ¢, y(t) = t* —t + 3
which pass through the origin.

243  Let P be the point where the tangent line to the curve x(t) = ¢,
y(t) = £ at the parameter ¢ meets the x-axis, and let N = (¢,0).
Show that OT = 2T N where O is the origin. Generalize the
result to the curve x(t) =t¢, y(t) = t".
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The curve x(t) = t™, y(t) = t™" is defined for t > 0, where m,
n are positive integers. Show that the curve is regular. Let p be
the point with parameter ¢, and let g, r be the points where the
tangent line at p meets the x-axis, y-axis respectively. Show that
the ratio |p — q|/|p — r| of the distances is constant, and find its
value.

Let k, a, b, ¢ be real constants with k = 0. A smooth function
y = f(x) is defined by the following formula. Show that the
tangent line at the point on the graph with x = (a + b)/2 passes
through (c,0).

f(x) =k(x —a}(x — b)(x —¢).

In the following f is the smooth function defined by f(x) =
x% — x3. For each x write P(x) = (x, f(x)) for the corresponding
point on the graph y = f(x).

(a) Find the coordinates of the point Q(x) where the tangent
line at P(x) cuts the graph again.

(b) Let Py, P5, P; be three points on the graph, and let Q;,
0>, Q3 be the points where the tangents at Py, P,, Py meet
the graph again. Show that Q;, Q», Q3 are collinear if and
only if Py, P;, Py are collinear.

(c) Show that the locus of the mid-point of the segment PQ
is the graph of g(x) = 1 — 9x + 28x% — 28x3.

A regular curve z has the property that all the tangent lines pass
through a fixed point p. Show that the trace of z coincides with
that of a line segment.

Show that all the normal lines to the curve defined by the
formulas

x(t) =r(cost +tsint), y(t)=r(sint—tcost)

with r > 0 are equidistant from the origin. (A formula for the
distance from a point to a line is given in Exercise 1.6.2.)

Given any point P on the parabola x(t) = at?, y(t) = 2at with
a > 0 there exists a unique circle C centred at the focus F = (a,0)
and passing through P. Show that the normal line at P passes
through an intersection of C with the x-axis. (That gives a
practical construction for the normal line to a parabola using
only ruler and compasses.)
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24.10 A regular curve z has the property that all the normal lines are
parallel. Show that the trace of z is a line segment.

24.11 A regular curve z has the property that all the normal lines pass
through a fixed point ¢. Show that the trace of z is a circle
segment, with centre c.
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Classes of Special Curves

Over the course of time a wide diversity of special curves has arisen
in the physical sciences. There is simply not space in a monograph
of this nature to discuss them all, though some are introduced in the
examples and exercises to illustrate general ideas. However, some classes
of special curves deserve separate mention, such as lines, the most basic
class of all. In the next section we review the standard conics, equally
basic to any sensible development, and in Section 3.2 pursue the idea
of implicitly defined curves a little further. Trochoids, curves traced by
a point carried by one circle rolling on another, comprise the subject
matter of Section 3.3. One of their attractions is that examples crop
up naturally in physical problems. They also provide an introduction to
roulettes, curves traced by a point carried by a general curve rolling on
another. Roulettes are not just an amusing construction: as we will see
in Chapter 13, they play a key role in planar kinematics.

3.1 The Standard Conics

For the moment a general conic is a set of points defined by the vanishing
of a polynomial in two variables x, y of degree 2, so a set defined by an
equation of the form

ax? + 2hxy + by? + 2gx + 2fy + ¢ =0

where q, b, c, f, g, h are real numbers, and at least one of a, b, h is non-
zero. We do not intend to pursue the study of general conics. Rather,
we concentrate on a class of conics which arises from the following
classical construction. One is given a line L (the directrix), a point F
(the focus) not on L, and a variable point P subject to the constraint
that its distance from F is proportional to its distance from L. Write Op

b la)
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3

T o— P

Figure 3.1. Parabola as a standard conic

for the orthogonal projection of P onto L. Then the constraint reads
PF = ePOp, for some positive constant of proportionality e, known as
the eccentricity. Note that the line joining F to its orthogonal projection
Or on L is always an axis of symmetry, since reflexion in that line leaves
the constraint unaltered. The locus of P is a parabola when e = 1, an
ellipse when e < 1, or a hyperbola when e > 1. Figure 3.1 illustrates the
construction for the case e = 1 of a parabola.

The ‘standard conics’ arise from the special case when L is the y-
axis, F = (k,0) for some non-zero real number k, and P = (X,Y), so
Op = (0,Y): then, squaring both sides of the relation PF = ePOp we
see that the coordinates X, Y satisfy the following relation, so the locus
of P is indeed a conic:

(1—-A)X?—2%kX +Y2+k*=0.

Note that circles cannot be constructed in this way: indeed, since the
eccentricity is positive the coefficients of X2, Y2 in the displayed equation
are different, whereas in the equation of a circle they are the same. Con-
venient forms for the equations of the standard conics can be obtained
by translation parallel to the x-axis. Let us look at these in more detail.

Example 3.1 Consider first the case e = 1 of a parabola, and the
translation of the plane defined by X = x + ik, Y = y. Then the
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equation of the conic reduces to that of a standard parabola y> = 4ax,
where a = k/2 with directrix the line x = —a and focus the point
F = (a,0). The line y = 0 is an axis of symmetry of the parabola, and
the point where it meets the parabola is the vertex. Consider now the
family of lines y = 2at parallel to the x-axis: each line meets the parabola
just once, at the point where x = at?. In this way we obtain a standard
parametrization x(t) = at?, y(t) = 2at.

Example 3.2 Consider next the case e < 1 of an ellipse, and the
translation of the plane defined by X = x + K, Y = y where X is the
positive real number defined by K(1 — e?) = k. Then the equation of the
conic reduces to that of a standard ellipse
x2 2

-
where the constants a, b are defined by a = eK, b* = a*(1 — ¢%) and
so satisfy 0 < b < a. The lines x = 0, y = 0 are axes of symmetry
of a standard ellipse. The points (0, £b), (£a,0) where the axes meet
the ellipse provide the four vertices. It is traditional to refer to a as
the major semiaxis and b as the minor semiaxis. With these choices the
directrix is the line L~ with equation x = —a/e, and the focus is the point
F~ = (—ae,0). Note that the symmetry of the equation in x, y shows
that there is a second directrix line Lt with equation x = a/e having
a corresponding focus F* = (ae,0). The centre of a standard ellipse is
the mid-point of the line segment joining the two foci, i.e. the origin.
The circle having the same centre as the ellipse and passing through the
points (+a,0) is known as the associated auxiliary circle.

Despite the fact that the circle does not appear as a standard conic,
it is profitable to think of a circle (centred at the origin) as the limiting
case of standard ellipses as b — a: that corresponds to e — 0, and the
two foci F~, F* coalescing at the centre of the circle.

Example 3.3 We can parametrize a standard ellipse as follows. Clearly,
any point (x,y) satisfying the equation of a standard ellipse must be
subject to the constraints —a < x < g, —b < y < b. A glance at the
graph of the sine function shows that we can therefore write y = bsint
for some real number ¢. Substituting in the equation we see that x =
tacost. Choosing the ‘+° option we obtain a standard parametrization
x(t) = acost, y(t) = bsint of the ellipse: it is regular, periodic of period
2n, and traces the ellipse anticlockwise. Thinking of the circle of radius a
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L*

Figure 3.2. Ellipse as a standard conic

centred at the origin as the limiting case of the standard ellipse as b — a
we recover a standard parametrization of the circle given in Example 2.2.
The choice of the ‘- option in the preceding analysis gives another
parametrization of the ellipse, traversing the curve clockwise instead of
anticlockwise.

Example 3.4 Finally, consider the case e > 1 of a hyperbola. Here we
proceed almost exactly as we did for the ellipse. The same translation
reduces the equation of the conic to that of a standard hyperbola

$2

2wt
where the constants a, b are defined by a = eK, b> = a?(e? — 1). The lines
x =0, y =0 are axes of symmetry of the hyperbola. Only the axis y =0
meets the hyperbola, at the vertices (+a,0). Again we have directrix lines
x = —a/e, x = a/e with corresponding foci F~ = (—ae,0), F* = (ae,0).
(Figure 3.3.) The centre of a standard hyperbola is the mid-point of the
line segment joining the two foci, i.e. the origin. The lines y = +bx/a
are the asymptotes of the hyperbola: in texts on algebraic curves it is
shown that they represent tangents to the curve at ‘points at infinity’.
The asymptotes are orthogonal if and only if a = b, in which case the
hyperbola is said to be rectangular: that corresponds to the case when the
eccentricity e = ﬁ A point (x, y) satisfying the equation of a standard
hyperbola is subject only to the constraint that x > a or x < —a: thus the
key feature of a standard hyperbola is that it splits into two ‘branches’,
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t o,

Figure 3.3. Hyperbola as a standard conic

namely the positive branch defined by x > a, and the negative branch
defined by x < +a.

The parametrization of a standard hyperbola is more thought provok-
ing than that of a standard ellipse. One approach is via the hyperbolic
functions of elementary calculus.

Example 3.5 Let (x,y) be a point satisfying the equation of a standard
hyperbola. Glancing at the graph of the sinh function we see that we
can write y = bsinht for a unique real number ¢. Then, substituting
in the equation we see that x = tacosht. The positive branch is then
parametrized as x(t) = acosht, y(t) = bsinh¢, and the negative branch
by x(t) = —acosht, y(t) = bsinht.

The choice of the hyperbolic functions here is by no means mandatory, |
indeed the only property of the sinh function we have used is that it is |
smooth and bijective. We could just as well take the tangent function of
elementary trigonometry, which has the same property. Let us try this.

Example 3.6 For any point (x,y) on a standard hyperbola we can write
y = btant for some real number t with —n/2 < t < /2. Substituting for
y in the equation of the hyperbola we obtain x = +asect, leading to the
parametrization x(f) = asect, y(t) = btant for the positive branch, and |
x(t) = —asect, y(t) = btant for the negative branch. At this point the |}
perceptive reader might notice that the latter parametrization is obtained
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from the former by the simple device of replacing ¢t by ¢t + n. (The secant
function changes sign, whilst the tangent function is left unchanged.)
So one could think of the hyperbola as ‘parametrized’ by the single
formula x(t) = asect, y(t) = btant: the positive branch corresponds to
the interval —n/2 < t < n/2, and the negative branch to n/2 <t < 3n/2.
However, that is not a parametrization in the strict sense of Chapter 2
because the domain is no longer an interval, but an interval from which
a single point has been deleted.

This example illustrates a general situation. Quite often, natural geo-
metric constructions give rise to mappings z : D — R? where the domain
D is a union of several open intervals I, and the restrictions z : I — R?
are smooth: the restrictions are then curves (in the strict sense) which
can be studied by the methods developed in this book.

Exercises

3.1.1 Show that none of the parametrizations in Section 3.1 for the
standard conics exhibit self crossings.

3.1.2  In each of the following cases show that the given curve satisfies
the equation of a conic, and describe the trace.

(i x(t)=42, y(e) =t

(i) x(t)=eé, y)=e
(iii) x(t) =cost, y(t) =sin’t
(iv) x(t) =cos*t, y(t) = sin*t.

3.1.3  Show that the tangent lines to the parabola x(¢) = at?, y(t) = 2at
at the parameters t;, t; intersect at the point (X,Y) where
X =atity, Y =a(t; +t,).

314  Find those lines which are simultaneously tangent lines to the
parabola x(s) = s, y(s) = s* at some parameter s, and normal
lines to the parabola x(t) = t, y(t) = —t*>/2 at some parameter .

315 Determine the minimum value of the distance PQ, where P and
Q are the points where the tangent line to the ellipse x(t) = acost,
y(t) = bsint meets the x- and y-axes. (It is assumed that the
tangent line is parallel to neither axis.)

316 Determine the normals to the standard parametrized ellipse
x(t) = acost, y(t) = bsint which are at a maximum distance
from the centre, and calculate this distance. (A formula for the
distance from a point to a line was given in Exercise 1.6.2.)
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3.1.7  With the notation of Example 3.2 show that for any point P on
a standard ellipse the following relation is satisfied. Conversely,
show that any point P which satisfies this relation lies on a
standard ellipse.

|P—F|+|P—F | =2a.

3.1.8  With the notation of Example 3.4 show that for any point
P on a standard hyperbola the following relation is satisfied.
Conversely, show that any point P which satisfies this relation
lies on a standard hyperbola.

|[P—F* —|P—F|| =2a.

3.1.9 Show that the tangent line at any parameter ¢t # 0 to the
rectangular hyperbola x(t) = +cosh¢, y(t) = sinh ¢ intersects the
x- and y-axes at points +X(¢), Y (¢) lying in the set known as
the bullet nose, defined by

{(X,Y): Y2 —Xx?=Xx%Y?}.

3.2 General Algebraic Curves

Many of the curves z which appear in this text can be studied profitably
from the algebraic viewpoint. It is not our purpose here to pursue this
viewpoint, developed in the companion volume ‘Elementary Geometry
of Algebraic Curves’: rather, we wish to use the concept as a vehicle for
further examples. Let us recall the basic definitions. An algebraic curve
is a non-zero polynomial f given by a formula of the form

fey) =) ayx'y
ij
where the sum is over finitely many pairs of non-negative integers i, j
and the coefficients a;; are real numbers. Two algebraic curves f, g
are regarded as ‘the same’ when there is a non-zero scalar A4 such that
g = Af. The degree of f is the maximal value of i + j over the indices
i, j with a;; # 0, and in some sense measures the ‘complexity’ of the
polynomial. The simplest algebraic curves are those of degrees 1, 2, 3, 4,
... known respectively as lines, conics, cubics and quartics. We met lines
in Section 1.5 and conics in Section 1.3: numerous examples of cubics
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Figure 3.4. Agnesi’s versiera

and quartics are scattered throughout the text. Here are two cubic curves
of historical interest.

Example 3.7 The key idea of Example 2.6 is to use the pencil of lines
through a point to parametrize a curve. Here is another illustration.
Let a > 0, and consider the circle x> + y> = 2ay of radius a centred
at the point (0,a). Each line x = ty through the origin (Figure 3.4)
meets the circle in a point P, and meets the line y = 24 in a point Q.
The ‘horizontal’ line through P then meets the ‘vertical’ line through
Q in a point R, whose locus is the curve known as Agnesi’s versiera.
Substituting x = ty in the equation of the circle we see that R = (x(t), y(t))
where

x(t) =2at, y(t)= 1+ v e
The reader will readily check, by eliminating the variable ¢t from these
parametric equations, that the versiera satisfies the equation of the cubic
curve x2y = 4a*(2a — y).

Example 3.8 According to Example 2.6 the lines y = tx meet the circle
of radius a > 0 centre (a,0) at the point

_ 2a 2at

T\l + 21+
and the line x = 2a at the point Q = (2a,2at). The cissoid of Diocles is
the locus of the point R for which R — 0 = Q — P. (Figure 3.5.) Clearly
R has the parametrization

2at? () = 2at?

i+ YW1y
Eliminating t from these relations we see that the cissoid satisfies the
equation of the cubic curve x> = (2a — x)y?.

x(t) =
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Figure 3.5. The cissoid of Diocles

The historical genesis of this curve lies in ancient Greek attempts to
solve the problem of doubling the volume of a cube of given side a.
They sought a geometric construction for the required side 2'/3a of the
doubled cube. The solution is due to Diocles in the second century BC,
though another century passed before Geminus coined the description
‘cissoid’, meaning ‘ivy shaped’. The solution is based on the observation
that the line y = 2(2a — x) joining the points (2a,0) and (a, 2a) intersects
the cissoid when t = 2!/3: thus the line joining this intersection to the
origin meets x = a at the point with y = 2!/34,

Associated to any algebraic curve f is its zero set, the set of all points
(x,y) for which f(x,y) = 0. One expects the zero set to be a ‘curve’ in
some reasonable sense. However, be careful: the zero set of the conic
f(x,y) = x2 + y* + ¢ is infinite for ¢ < 0, is a single point for ¢ = 0, and
is empty for ¢ > 0. A parametrized curve z is said to be algebraic when
there exists an algebraic curve f with the property that f(x(z), y(t)) =0
identically in ¢t where x(¢), y(t) are the components of z(¢): put another
way, the trace of z lies in the zero set of f. In that case there is no
reason to suppose that the trace of z coincides with the zero set, a point
illustrated by the next example.

Example 39 The curve x(f) = acos®t, y(t) = bsin’t, where a, b are
positive real numbers, satisfies the equation bx + ay — ab = 0 of the line
joining the points A = (4,0), B = (0,b). However, the components are
subject to the conditions 0 < x(f) < a, 0 < y(f) < b so the trace is the
line segment joining A, B.
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Exercises

In each of the following cases show that the given curve is
algebraic, and describe the trace.

(i) x(t)=2+43sint, y(t)=sint—1
i) x()=1+¢, y(t) =5 + 2!
(i) x(¢) =acosh®t,  y(t) = bsinh®¢.

Find a function f(x) with the property that its graph is the trace
of Agnesi’s versiera.
Show that there exists a cubic curve f(x, y) such that every point
on the parametrized curve x(t) = sin2t, y(t) = sin 2t tan ¢ satisfies
J(x(1), y(t)) = 0.
Show that there exists a cubic curve f(x,y) whose zero set
contains the trace of the parametrized curve x(¢t) = 1+ &, y =
t + . Verify that there is exactly one point on the zero set of f
which is not in the trace.
Descartes’ folium is the cubic curve x(x? + 3y?) + (x* — %) = 0.
By considering the intersections of the curve with the pencil of
lines y = tx one obtains the following parametrization of the
zero set. Show that the curve has exactly one self crossing.
2—1 t(t2—1)
W=7 Y0=3251
Let a > 0. The eight-curve is parametrized as x(t) = acost,
y(t) = asintcost. (Example 2.9.) Show that there exists a quartic
curve f(x,y) such that f(x(t), y(t)) = O for all values of ¢. Let (x, y)
be a point in the plane with f(x,y) = 0. Show that —a < x < a.
Use this fact to show that there exists a real number ¢ for which
x = x(t) and y = y(¢).
A parametrized curve is defined by x(t) = 2 + £, y(t) = > + t4.
Find a quartic curve f(x, y) such that f(x(t), y(¢)) = 0 for all ¢.
(1t helps to observe that y = tx.) Conversely, show that for any
point (x,y) with f(x,y) = O there exists a real number ¢t with
x = x(t), y = y(¢).
According to Example 2.16 the piriform is parametrized as

x(t) = a(1 +cost), y(t) =bsint(l + cost).

Show that there exists a quartic curve f(x,y) such that f(x(t),
y(t)) = 0 for all t. Conversely, show that for every point (x,y)
with f(x,y) = 0 there exists a ¢ for which x = x(t), y = y(¢).
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3.3 Trochoids

When one curve rolls (without slipping) along another fixed curve, any
point which moves with the moving curve describes a curve, called a
‘roulette’. (A French word meaning ‘small wheel’.) The general concept
will be studied in the context of planar kinematics in Chapter 13. How-
ever, in this section we will content ourselves with the special case when
the curves are circles C, C’ and the resulting roulette is called a trochoid.
(A Greek word meaning ‘wheel shaped’.) Incidentally, it is still possi-
ble to buy plastic spirographs which trace some of the more attractive
trochoids, and were once considered suitable hobby material for older
children: sadly, this kind of scientific hobby has almost disappeared in
the face of overwhelming competition from electronic devices.
Trochoids occur naturally in the physical sciences, so it is worth writing
down explicit parametrizations, and highlighting some of the cases. Think
of C, C’ lying in superimposed planes P, P’ at time #,: P is thought of as
the fixed plane containing the fixed circle C, and P’ as the moving plane-
containing the moving circle C’. The centre of the trochoid is defined to
be the centre of the fixed circle C. A simple physical model can be made
by taking P, P’ to be plastic transparencies, and tracing C on P and C’
on P’ with differently coloured pens. The circle C’ is then rolled along
the circle C, carrying with it the plane P’ until at time ¢ we have the
situation illustrated in Figure 3.6. In the moving plane we choose any

Figure 3.6. The idea of a roulette
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Figure 3.7. Construction of trochoids

tracing point W, fixed relative to the moving circle C'. Then, as P’ moves,
so W traces out a trochoid.

Assume that C has centre O at the origin, and radius R > 0, and that
C’ has centre O’, and radius R’ # 0. The case R’ > 0 is interpreted as C’
rolling on the outside of C (an epitrochoid), whilst R’ < 0 is interpreted
as C’ rolling on the inside of C (a hypotrochoid). Suppose W is distant
R'h from the centre O’ of the moving circle where h > 0. Write ¢ for the
angle between the line 00’ and the x-axis, and assume (without loss of
generality) that when ¢t = 0 the point W lies on the x-axis.

It helps to use complex number notation. Write z = z(t) for the position
of W at ‘time’ t. Clearly 00’ = (R + R')e". Now OW = 00’ — WO',
so we have to compute WO'. Let u be the angle between the lines 00’
and O'W. (Figure 3.7.) Then WO’ = hR'é*t%), by elementary geometry.
We can determine the angle u as follows. The arcs of C, C’ along which
moving has taken place have respective lengths Rt, R'u: since rolling
takes place without slipping, these lengths are equal, and u = Rt/R'.
Putting together the bits we obtain the parametrization

2(t) = (R + R)e" — hR & 55°), (3.1)

The geometry of this curve depends crucially on the ratio A = R/R/,
and the scalar h. It will be no restriction to divide through by R/, to
obtain the parametrization in the more convenient form

z(t) = (A + 1)* — he'@+1), (3.2)



44 Classes of Special Curves

Table 3.1. Special epicycloids and hypocycloids

A epicycloids A hypocycloid
2 nephroid —5/2 starfish
1 cardioid -3 deltoid

1/2  double cardioid —4 astroid

We will gradually develop the basic geometry of trochoids through a
series of examples, asking natural questions about this class of curves.

Example 3.10 The first question we ask is when (3.2) has irregular
parameters. That requires the existence of a t for which

2'(¢) = i(A + e {1 — he™} = 0.

When A = —1 every parameter is irregular: geometrically, the fixed and
moving circles coincide, no rolling takes place, and the trace is a single
point. Henceforth it will be tacitly assumed that A # —1. With that
assumption z'(t) = 0 if and only if ¢ = 1/h. It follows immediately
that there exists an irregular parameter if and only if & = 1, ie. if and
only if the tracing point lies on the circumference of the moving circle. In
Chapter 14 we will see that that is a special case of a general result in
planar kinematics.

Example 3.11 In view of the previous example the case h = 1, when the
tracing point P lies on the circumference of C’, is of special significance.
The form of the curve depends only on the ratio 4, and we can write the
parametric equation as

z(t) = (A + 1)e* — 0+,

For A > 0 we have epicycloids, and for 1 < 0 hypocycloids. Various names
have been assigned traditionally to the curves arising by taking certain
special values of A: some of these are listed in Table 3.1, and illustrated
in Figure 3.8. When h = 1 irregular parameters are given by ¢ = 1, so
form the sequence

2n 4z 6n

t=0, t=4=, t=4—, t=%—,

— A -2 -2

The sequence of corresponding points on the trace is finite if and only
if A is rational. For instance when A is an integer there are exactly |4|



3.3 Trochoids

SN

an

4 =2 : nephroid A=-3: starfish

DR

LN

Y

A=1: cardioid A=-3:deltoid

~

dh

45

@)
N

4
YN

4 =—1: double cardioid A =—4: astroid
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Figure 3.9. Three different types of limacon

corresponding points on the trace. The adventurous reader may care to
determine the number when 4 is a general fraction in its lowest terms.

Example 3.12 Ellipses are special cases of trochoids. Consider the case
when A = —2: the moving circle rolls inside the fixed circle, and has
half the radius. (These are the Cardan circles, well known to mechan-
ical engineers.) In this case the trochoid is z(t) = —{e" + he™"} with
components

x(t) = —(1 + h)cost, y(t)=—(1— h)sint.

For 0 < h < 1 this is an ellipse: for h = 0 the ellipse becomes a circle,
concentric with the fixed circle, and of half its radius: and for h = 1 the
ellipse degenerates to a diameter of the fixed circle.

Example 3.13 Another special case is obtained when 4 = 1: the moving
circle rolls outside the fixed circle, and has the same radius. The tro-
choid is then a limacon with parametric equation z(t) = 2¢* — he?*, and
components

x(t) =2cost —hcos2t, y(t)=2sint— hsin2t.

The form of the limacon depends on the value of h. Figure 3.9 illustrates
the curve for the values h = 3/4, h = 1, h = 3/2, each illustrating
quite distinct types of behaviour. As we saw above, there exist irregular
parameters if and only if h = 1, in which case we have the cardioid
(meaning ‘heart shaped’) providing a transitional case between h < 1 and
h>1.
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Figure 3.10. Construction of cycloids

, Example 3.14 It is interesting to ask when self crossings appear on
| limacons. Note first that the limacon is periodic, with period 2n. Thus
' we require distinct values s, t of the parameter, whose difference is
| not a multiple of 27, with z(s) = z(t). The latter relation reduces to
€% + ¢* = 2/h, where we can suppose —m < s,t < 7m: that can only
" happen when é*, ¢ are complex conjugate, i.e. s = —t and coss = 1/h.
* Clearly, this relation can be solved for s in the given range if and only if
| h> 1. Limacons with h > 1 are said to be nodal. In Chapter 7 we shall
£ discuss the case h < 1 in greater detail using another set of ideas.

- Before leaving the subject of trochoids we should mention the limiting
case which arises when you think of the fixed circle as being of ‘infinite’
' radius, so a straight line L.

Example 3.15 Consider the roulette of a tracing point w carried by a
circle C of radius R > 0 rolling along a straight line L. We will take
' L to be the x-axis. It is assumed that in the initial configuration C is
- the circle of radius R centred at the point iR, and that w = iR(1 — h) is
the point on the y-axis distance hR from the centre of C, where h > 0.
- (Figure 3.10.) Thus C is naturally parametrized as ¢(t) = iR — iRe", and
L as p(t) = Rt. The reader will readily verify that the resulting roulette,
" known as a cycloid, has the parametrization

x(t) = R(t — hsint), y(t) = R(1 — hcost). (3.3)

The form of the cycloid depends on whether the tracing point is inside
. (h < 1), on (h = 1) or outside (h > 1) the moving circle. The three
 resulting forms are illustrated in Figure 3.11. For h < 1 we obtain a
curtate (or ‘shortened’) cycloid reminiscent of the sine curve. When h = 1
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Figure 3.11. Forms of the cycloid

we obtain a cuspidal cycloid with infinitely many ‘cusps’ at the parameters
t = 2nm, where n is an integer: the arc of the cycloid between any two
consective ‘cusps’ is called an arch. Finally, for h > 1 we obtain a prolate
(or ‘extended’) cycloid with infinitely many self crossings. (Exercise 3.3.5.)

Around the beginning of the eighteenth century Jacques Bernoulli the
Elder (and others) discovered the brachistochrone property of the cycloid,
namely that given two points A, B in a ‘vertical’ plane, the curve along
which a particle takes the least time to slide from A to B is a cycloid.
That observation represents the genesis of the area of mathematics now
known as the theory of variations.

Exercises

33.1 Show that the astroid is (up to a scalar multiple) the curve
x(t) = cos? ¢, y(t) =sin®¢.

33.2 Find the tangent line at the point p with parameter ¢ to the
cardioid x(t) = 2cost + cos2t, y(t) = 2sint — sin2¢t. Show that
the points g, r where the tangent line meets the curve again
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Exercises 49

have respective parameters —t/2, © — t/2, and that the distance
pq =4

Show that the speed s(t) of the general trochoid (3.2) is given by
the formula

s(t)? = (A + 1)?(h* — 2hcos At + 1).

Show that the cycloid (3.3) has irregular parameters if and only
if h =1, and that in that case there are infinitely many.

Show that the cycloid (3.3) has self crossings if and only if b > 1,
in which case there are infinitely many.

Determine those lines which are simultaneously tangent lines to
the cycloid (3.3) at some parameter t;, and normal to the cycloid
at some parameter ;.



4
Arc Length

The common thread in this chapter is the natural idea of arc length. Quite
apart from being an interesting concept in its own right, there are specific
applications relevant to the development of the subject. For instance in
Section 4.2 we consider the question of changing the parameter on a
regular curve, and in Section 4.3 prove that one can always choose a
parameter with the property of ‘unit speed’. Following the discussion of
trochoids in the previous chapter, Section 4.4 provides a second excursion
into the roulette concept, by looking at the idea of rolling a tangent line
along a curve. That gives rise to the historically important concept of an
‘involute’ of a curve, which will turn out to be a reverse of the ‘evolute’
construction we will meet in Chapter 8.

4.1 Arc Length

The speed of the curve z : I — R? at the parameter ¢ is defined to be the
length of the tangent vector at ¢, i.e. the scalar defined by the formula

s(t) = |2'(8)] = VX' () + ¥ ()%

In complex number notation the tangent vector is z’(t) = x’(t) +iy’(¢) and
the speed is simply its modulus |z'(¢)|. Given scalars a,b € I, we define
the arc length from t = a to t = b to be the integral of the speed from a
tob

b
I{a,b) = / |2/ (¢)\dt.
a
Example 4.1 Let p, g be distinct points, and let L be the line joining

them. Recall that L has a natural parametrization z(t) = p+t(g —p) with
p corresponding to t = 0, and g corresponding to ¢t = 1. Then the length

* ’ . 50
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Figure 4.1. The astroid

of the line segment from ¢t =0 to ¢t = 1 is, as we would hope,

1 1 1
/IZ’(t)Idt=/ lg — pl dt=Iq—p|/ dt = |q —pl.
0 0 0

Example 4.2 Let p, q be distinct points, and let L be the line joining
them. We claim that the line segment joining p, q is the shortest arc of
any curve through p, g. However obvious this may seem, it does require
proof, providing a good application of the Cauchy Inequality. To this
end consider any curve z(t) with p = z(a), ¢ = z(b). As a preliminary,
note that for any fixed vector v we have

b b b
/(voz’(t))dt=vo/ z’(t)dt=voz(t)‘a=vo(q—p).

Now, using the Cauchy Inequality, and standard facts from calculus, we
have

b b b
ve(g—p)= / (v e Z(D)dt < / ollZ/(0)lde = ol / 12 (o).

The claim follows from the result of the previous example, on taking v
to be the unit vector defined by v = (¢ — p)/|g — p|.

Example 4.3 According to Exercise 3.3.1 the astroid is (up to a scalar
multiple) the curve x(t) = cos?¢, y(t) = sin’ #. (Figure 4.1.) The speed is
[2'(¢)| = %| sin 2¢|, which vanishes if and only if ¢ is an integer multiple of
n/2: the traces of the irregular parameters are the four ‘cusps’ visible on

_—

. e N



Fhdhitl

52 Arc Length

the curve at (1,0), (0,1), (—1,0), (0,—1). We will calculate the arc length
from t = 0 to t = =n/2. Since sin 2t is non-negative on this interval, it is

/2 3 /2 3 /2
/ Z@dt = = f | sin 2t|dt = = / sin 2t dt
0 2 Jo 2 Jo

—%[cos2t]:/2 = %

Example 44 Recall that the Cayley sextic is the curve with components
x(t) = cos’ t cos 3¢, y(t) = cos® tsin 3¢

and has a self crossing at the point p = (—1/8,0) corresponding to the
values a = n/3, b = 2n/3 of the parameter. (Example 2.11.) There are
two loops starting and finishing at p, a smaller loop of length L, and a
larger loop of length L'. (Figure 2.8.) The length L is easily determined.
The curve has speed 3cos? ¢, so

2n/3
L=/ 3cos2tdt=z—3\—/—§.
/3 2 4

Exercises

411 Letz : I — R? be a curve, and let a, b, ¢ be scalars in I with
a < b < c¢. Show that arc length is additive, in the sense that
l(a,c) = l(a,b) + (b, ¢).

412  Show that the length of the catenary x(t) = ¢, y(t) = cosht from
t=0tot=xissinhx.

4.1.3  Find the arc length of the astroid x(t) = cos®t, y(¢) = sin® ¢ from
t =0 to t = n. (Compare with Example 4.3.)

4.14  Show that for 0 < x < = the length of the cardioid z(t) = 2¢¥—e**
from ¢t = 0 to t = x is §sin(x/2).

4.1.5 Find an expression for the arc length of the cuspidal cycloid

x(t) = R(t —sint), y(t) = R(1 —cost) from t = 0 to t = to where

0 <ty < 2n. Deduce that the arc length fromt =0tot =2z
is 8.

4.1.6  Show that the curve x(t) = 3t3, y(t) = t — 3> has a unique self
crossing, determine the corresponding parameters a, b, and find

the arc length from a to b.
2

i

4,1.7  Show that the arc length of the semicubical parabola x(t) = 3at?, |

y(t) = 2at? with a > 0 measured from t = 0 is given by

s(t) = 2a {(1 1)} — 1}.

A i by
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Show that the arc length of the parabola x(t) = at?, y(t) = 2at
with a > 0 measured from ¢t = 0 is given by

s(t)=a{t\/1+t2+log(t+ 1+ 22 )}

Show that the arc length of the curve x(t) = cos’t, y(t) =
sin’t — 3sint from ¢t = 0 to ¢t = 27 is 37.

Show that the length of the arc of the curve x(t) = sinht —¢,
y(t) = 3 — cosht cut off by the x-axis is

2\[{2\[ Ji—log “ﬁ}

Let A be a positive real number. Find (in terms of 1) the two
parameters a, b for which the curve defined by the following
formulas meets the x-axis:

1
x(t)=t, yi)=4Aé +m—2

Show that the speeds of z at a, b are equal, and that the arc
length from a to b is independent of A.

The length L of the smaller loop for the Cayley sextic was
determined in Example 4.4. Show that the length L’ of the larger
loop is given by

L —n+—

(Split the larger loop into two arcs, the first going from ¢t = 0 to
t = /3, and the second from t =2rn/3 to t ==n.)

4.2 Parametric Equivalence

We have already warned the reader to maintain a crystal clear distinction
between the concept of a curve, and that of its trace. Two different curves
may well have the same trace.

Example 4.5 The line y = x can be parametrized as x(t) = ¢, y(t) = t:
however, it is equally well parametrized as x(t) = 2¢, y(t) = 2t whose
effect is to double the length of the tangent vector. There again, it could
be parametrized as x(t) = —t, y(t} = —t whose effect is to reverse the
direction of the tangent vector, but leave its length unaltered.
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Figure 4.2. The idea of parametric equivalence

We need to be clear when two parametrizations give rise to the ‘same’
curve. Our starting point is to consider how to change the parameter on
a curve. To this end we introduce the following definition. Let I, J be
open intervals. A function s : J — I is a change of parameter when s is
smooth, surjective, and has a non-zero derivative at every point. Recall
from elementary calculus that a smooth function with an everywhere
non-zero derivative is strictly monotone, and hence injective. Thus a
change of parameters is necessarily a bijective map, so has an inverse
s71 : I — J. Calculus tells us that the inverse is smooth, likewise with
everywhere non-zero derivative, so is also a change of parameters.

Example 4.6 Let I = J = R. The formula s(t) = ¢t + t* defines a change
of parameters. On the other hand the function s(t) = > does not, since
its derivative vanishes at t = 0.

Two curves z : I — R?, w : J — R? are parametrically equivalent
when there exists a change of parameter s : J — I with w = z o s, ie.
w(t) = z(s(t)) for all parameters ¢. One pictures the idea as in Figure 4.2.
We say that w is a reparametrization of z. Note that parametrically
equivalent curves have the same traces. It follows from the above remarks
that parametric equivalence is an equivalence relation on curves.

Example 4.7 The curves z(t) = (t,t%), w(t) = (2t,4t?) are parametrically
equivalent under the change of parameters s(t) = 2t, since z(s(t)) =
2(2t) = (2t,4t%) = w(¢).

Example 4.8 The ‘positive’ branch of the standard hyperbola has the
parametrization z(t) = (acosht,bsinht) where a, b are positive real
numbers. (Example 3.5.) The change of parameter s(t) = €' yields an
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equivalent curve defined for s > 0

a 1\ b 1
= (3(+5)5(-3))
Example 49 Consider the rose curves z(t) = 2be” cosnt, where b # 0
and n > 0. (Example 2.7.) We claim that provided n > 1 the rose curves
are parametrically equivalent to hypotrochoids. To see this, observe that
under the change of parameter s(t}) = (n + 1)t the formula becomes
z(s) = b{e® + &R},
That yields the general form (3.2) for a hypotrochoid when we set

R ——b n+1 R___ﬂ h=n—1
n—1/’ n—1 n+1

Many of the concepts we will meet in this book are invariant under
parametric equivalence. For instance the concept of a ‘regular parameter’
is invariant in the following strict sense.

Example 4.10 Suppose z : I — R% w : J — R? are parametrically
equivalent via the change of parameter s : J — I. Thus w(t) = z(s(t)),
for all parameters ¢. Differentiation using the Chain Rule gives w'(t) =
2'(s(t))s'(t), likewise for all t. Since s has a nowhere vanishing derivative,
we deduce that w'(t) # 0 if and only if z/(s(t)) # 0. It follows that ¢
is a regular parameter for w if and only if the corresponding value s(t) is
a regular parameter for z. Put another way, the regular parameters for
w correspond one-to-one under s with the regular parameters for z. In
particular, z is a regular curve if and only if w is regular.

Example 4.11 Numerous physical systems give rise to simple harmonic mo-
tion described by a function of the form x(t) = asin(wt + ¢), where a > 0
is the amplitude, w > 0 is the angular velocity, and ¢ is the phase constant.
Interesting situations arise when a particle in the plane is subject to two
such motions, one in the x-direction, and the other in the y-direction.
The particle then describes a Lissajous figure given parametrically as

x(t) = ay sin(wt + ¢1), y(t) = az sin{wat + ¢2). 4.1)

For instance, the eight-curve of Example 2.9 is a Lissajous figure with
ay=a,ay=4a/2, w1 =1, wy =2, ¢1 = /2, ¢2 = 0. Such curves can be
readily displayed on an oscilloscope screen, and exhibit a considerable
diversity of behaviour, depending on the choices of constants. In view of
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w:%’¢=0 w=§’¢=0
w=4,4=0 w=},p=m

Figure 4.3. Some Lissajous figures

this complexity it is useful to simplify the parametric equations by mak-
ing the change of parameters s = w;t + ¢, to get them into the following
more convenient standard form, where a = a;, b = a;, ® = w;/w; and

¢ =¢1—wpy:
x(s) = asin(ws + @), y(s) = bsins.

Some examples of Lissajous figures are illustrated in Figure 4.3. One
might ask when a Lissajous figure possesses an irregular parameter: in
the special case when the phase constant ¢ = 0, the required condition is
that the angular velocity w should be the quotient of two odd integers.
(Exercise 4.2.3.)
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Exercises

42.1  Show that the parametrizations x(t) = tacosht, y(t) = bsinht
for the standard hyperbola (Example 3.5) are parametrically
equivalent to u(s) = tasecs, v(s) = btans, where s lies in the
interval given by —n/2 <s < /2.

422 By considering the change of parameter s(z) = log (tan %) show
that the tractrix of Example 2.22 is parametrically equivalent to
the curve defined by the following formulas, where 0 < ¢t < z:

()= tog (tan 3 ). 510 = csr.

423  Show that the Lissajous figure x(s) = asinws, y(s) = bsins has
an irregular parameter if and only if @ is a quotient of two odd
integers.

424  Let a > 0. Show that Agnesi’s versiera (Example 3.7) is paramet-
rically equivalent to the curve defined by the following formulas,
where —n/2 <t <mn/2:

2acost
1+sint’

x(t) = y(t) = a(1 + sint).

4.3 Unit Speed Curves

A unit speed curve is one for which the speed takes the constant unit
value. For instance the standard parametrization z(t) = €” of the unit
circle is a unit speed curve, since |z/(t)| = |ie”| = 1. The point of the next
result is that it will reduce a number of proofs to the case of unit speed
curves, which are generally easier to handle. The key to the proof is the
arc length concept.

Lemma 4.1 Let z : I — R? be a regular curve, and let ty be a fixed choice
of parameter. Then z is parametrically equivalent to a unit speed curve w,
under a change of parameter s : J — I with s(0) = ty and everywhere
positive derivative.

Proof The arc length of z from ¢y to ¢ is the smooth function r : I — R
defined by

r(t)=/ |2’ (x)|dx.
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Since z is regular we have r'(t) = |z/(t)] > O for all t € I, so by calculus
the image of r is an open interval J, and r : I — J is a change
of parameter with r(ty) = 0 having a positive derivative. The inverse
function s : J — I is then a change of parameter with s(0) = ¢y, having
a positive derivative s’ for which s'(t)'(s(t)) = 1. The curve w : J — R?
defined by w(t) = z(s(t)) is parametrically equivalent to z. Differentiating
both sides of this relation gives w'(t) = s'(¢)z'(s(t)), and taking moduli we
obtain

W () = If'(t)IIZ'(S(t))I =[s'(®)lI'(s()| = Is'(Or'(s(1))| = L.
O

The value of this result is that for regular curves we know in principle
that unit speed reparametrizations exist, though in practice it may be
difficult to write them down explicitly. Here is a rather trivial example,
where it is possible.

Example 4.12 Consider the parametrized circle z(t) = zo + re* with
r > 0. We follow the proof of Lemma 4.1. Take ¢y = 0. Then z'(t) = rie®,
|2’(t)] = r, and a one line calculation gives s(t) = rt. Thus a unit speed
reparametrization w of z is given by w(s) = zo + re”/".

Exercises

43.1 Find a unit speed reparametrization of the equiangular spiral
x(t) = €' cost, y(t) = e'sint.
43.2 Let z, w be curves with the same domain I. Establish the identity

(zow) =zew +7 ew.

- What does this give in the case z = w? Use this result to show
that for a unit speed curve z the tangent vector z’(t) is orthogonal
to z”(t) at any parameter t.

4.4 Involutes

Here is another construction based on arc length. It represents our second
excursion into the roulette concept. Recall the basic idea, that one curve
(in a moving plane) is rolled on another (in a fixed plane) without
slipping. Any point in the moving plane then traces a curve in the fixed
plane. We discussed this construction in some detail in Section 3.3 when
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Figure 4.4. The involute construction

the fixed and the moving curves were circles, giving rise to the trochoids.
Now consider the following situation. In the fixed plane we take any
regular curve z. Choose some fixed starting parameter ty. At ty there
is a tangent line, which we think of as the curve in the moving plane.
The tracing point is taken to be the point of contact z(ty) of z with its
tangent line at tp. We consider the locus of the marked tracing point as
the tangent line rolls on z. Physically one thinks of the resulting curve
as the path described by the end of a piece of string unwinding from z.
(Figure 4.4.)

To obtain a formula for the locus of the tracing point we proceed as
follows. As in Section 4.1, write [(y,t) for the length of z from z¢ to .
Then at ‘time’ ¢t we would expect the point z(zp) to become the point on
the tangent line to z at ¢t whose distance from z(¢) measured negatively
from z(z) is l(tp,t). Thus we are led to define the involute of z starting at
to to be the curve z* defined by the following formula, where T'(z) is the
unit tangent vector at ¢:

2°(t) = 2(t) — U(to, ) T(2). 4.2)

Note that in the special case when z is of constant non-zero speed s we
have I(tg,t) = s(t — to), and the formula for the involute simplifies to

z"(t) = z(t) — (t — t)Z'(0). 4.3)

Example 4.13 The involute of the circle x(t) = rcost, y(t) = rsint
radius r > O centred at the origin is the curve known as the Norwich
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()

Figure 4.5. An involute of a circle

spiral. (Figure 4.5.) The circle parametrization has constant speed r, so
we can apply (4.3). The reader will readily check that the involute z*
starting at tp = 0 has components

x*(t) =r(cost+tsint), y°(t) =r(sint—tcost).

To maintain a clear mental picture, we have deliberately phrased the
definition of the involute for regular curves. However, the formula makes
sense for any curve z provided we restrict z* to an interval on which z is
regular. The point of that observation is that it allows us to extend the
concept of involute to curves where the starting parameter ¢, is irregular.

Example 4.14 The cuspidal cycloid z(¢) = (t —sin ¢, cost — 1) is obtained
from that of Example 3.15 by setting R = 1 and reflectjng in the x-axis.
It is easily verified that the irregular parameters for z are those of the
form t = 2nn with n an integer, corresponding to the ends of the ‘arches’.
We will determine the involute of the arc @ < t < 2n starting at the
regular parameter t = n. The tangent vector is

) = 25in . (sin £ —cos -
z'(t) = 2sin > (sm 7 cos 2) .

The speed and unit tangent vector are given by the following formulas:
.t
sin =

.t t
5 T(t) = (sm 5,—cos 5)

Furthermore, the length of the arc from = to ¢ is

t t
_ ’ _ . i _ _ i t - E
l(t)—/1r |2’ (x)| dx—/1r 2s1n2 dx—4[ 0052]1; 4cos 3

(0] =2
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where, for the second equality, we use the fact that the integrand is
non-negative on the interval 7 < t < 2x. It is now simply a matter of
substituting in the formula (4.2) for z* to see that it is given by

z*(t) = (t +sint,—3 —cost) = z(t — n) + (n, —2).

Example 4.15 The crunch in the previous example is the last line of
calculation, for it illustrates something quite remarkable. We obtain the
involute of a cycloid by changing the parameter ¢ to ¢t — n, and then
translating the resulting curve by the fixed vector (r,—2). The physical
interpretation is that the end point of a string of length 4 suspended from
the point (2r, 0) will describe another cycloid. That is the theoretical basis
for Huyghens’ cycloidal pendulum: it has the important physical property
of being isochronous, meaning that the time taken for a single swing is
independent of the amplitude.

Figure 4.5 suggests that the starting parameters for involutes of a circle
are irregular. (And a minor calculation verifies that is the case.) However,
that is a special case of a more general observation.

Example 416 Let z be a regular curve, and let z* be the involute
starting at the parameter ty. For convenience, assume z is of unit speed,
so the involute is z*(t) = z(t)} — (¢t — t0)2'(¢). The derivative —(t — t5)z"(t)
vanishes when t = tq, so the starting parameter ty is always irregular for
the involute. That can cause complications when trying to phrase general
statements. For this reason it can be helpful to split the involute into two
curves, namely the forward involute (the restriction of z* to t > ty) and
the backward involute (the restriction of z* to t < tp).

Exercises

44.1 Determine the involutes of the semicubical parabola x = 3¢2,
y = 2t>. Show that for X < O there is exactly one involute
through the point (X,0), and that when X = —2 the trace of this
involute is a parabola.

442  Show that the involute of the catenary x(t) = t, y(t) = cosht
starting from ¢ = O is the tractrix x*(¢) = t—tanht, y*(¢) = sech ¢.
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Curvature

In this chapter we introduce one of the fundamental ideas of differential
geometry, namely the ‘curvature’ of a curve. In Chapter 6 we will see
that there is a formal sense in which the speed and curvature completely
determine the curve, up to a natural equivalence relation. The concept
will enable us to study various special points on curves which play an
important role in understanding the geometry of the curve.

5.1 The Moving Frame

Suppose t is a regular parameter of a curve z, so both the tangent and
the normal vectors are non-zero. By the unit tangent vector at t we mean
the unit vector T'(¢) in the same direction as the tangent vector, and by
the unit normal vector at t we mean the unit vector N(t) in the same
direction as the normal vector. Thus, writing s(¢) for the speed, we have

X0 Y Y ()
T(t)"(s(r) (t)) N(t)‘( 0 s(t)) G

The unit vectors T(¢), N(¢) form an orthonormal basis for the plane,
called the frame at t. One of the basic pictures of the subject is that as
t varies so this frame changes with ¢, giving rise to the idea of a moving
frame. The intuitive picture is that at each instant ¢ we translate the
origin to the point z(¢): then as ¢ varies we can picture the frame moving
along the curve, as illustrated in Figure 5.1 for an arc of a circle.

The idea of a frame is independent of the parametrization, in the sense
of the following lemma: the proof is left to the reader.

Lemma 5.1 Let z; : Iy = R?, z; : I, — R? be parametrically equivalent
curves via a change of parameter s : I, — I,. Write Ty, Ny (respectively T,

62
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N
T(t)

Figure 5.1. The idea of a moving frame

N, ) for the unit tangent and normal vectors to z; (respectively z;). Then
To(t) = T1(s(t)), and hence N,(t) = N1(s(t)). Thus the frame for z; at any
regular parameter t coincides with the frame for z; at the corresponding
parameter s(t).

We wish now to determine the ‘rate of change’ of our moving frame
T(¢), N(2) as t varies, i.e. the derivatives T'(t), N'(t). Since T'(t), N(t) form
a basis for R?, we can write

T'(t)=aT(t)+ bN(t), N'(t)=cT(t)+dN() (5.2)

for unique scalars a, b, ¢, d, depending on t. To determine these coefficients,
take scalar products of both sides of these relations with T'(¢), N(t) to
obtain

a=T{)eT'(t), b=N({t)e T'(t), c=T(t)e N'(t), d = N(t) e N'(¢).

We can evaluate these expressions as follows. The fact that T'(t), N(t) are
both of unit length and orthogonal is expressed by the relations

T()eT(t)=1, N@)eN(t)=1, T()eN(t)=0.

Differentiating with respect to ¢ (using the formula for differentiating a
product) we deduce immediately that a = 0, d = 0, b 4+ ¢ = 0. Setting
b = w(t) we see that (5.2) reduces to the Serret—Frenet Formulas

T'(t) = w(f)N(t), N'(t) = —()T(2).

Bear in mind that these formulas only make sense for regular values of
the parameter .
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Exercises

5.1.1  Write out a detailed proof of Lemma 5.1.

5.2 The Concept of Curvature

The curvature x = x(t) of the curve z at a regular parameter ¢ is defined

to be

_ %t) _T'(t)eN(t)

Cose) ()

Note that with this definition we can re-write the Serret—Frenet Formulas
in the following form:

T'(t) = x(t)s())N(t), N'(t) = —k()s(t)T(¢). (5.3)

k(t)

In the case of a unit speed curve these formulas simplify to
T'(t) = x(t)N(t), N'(t) = —x()T(¢). (5.4)

The import of the next result is that the concept of curvature is
preserved by parametric equivalence, in the following precise sense.

Lemma 5.2 Let z1, z; be regular curves with domains I, I, and curvature
Sfunctions ki, k. Assume the curves are parametrically equivalent via a
change of parameter s : I, — I\ having positive derivative. Then k(t) =

K1(s(t)).

Proof Write T1, Ni, s; (respectively T>, N, s7) for the unit tangent
vector, unit normal vector and speed of z; (respectively z;). The curves
21, zp are related by z,(¢f) = zi(s(t)). Differentiating this relation, and
taking moduli of both sides, we see that s,(t) = s'(¢)s1(s(2)). (That uses
the hypothesis that s has a positive derivative.) By Lemma 5.1 we have
Ty(t) = Ti(s(t)), Na(t) = N1(s(?)) and differentiation of the former relation
yields T;(t) = s'(t)T{(s(t)). We now have

T,(t) ® Na(1)
$2(t)
s' () T{(s(¢))  N1(s(2))
§'(8)s1(s(2))

TY(s(2)) o Ni(s(8)) _
ey o)

Kot) =
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Combining this result with Lemma 4.1 we see that in discussing the
curvature of regular curves we can tacitly assume our curves are of unit
- speed. Here is an application of this fact, providing a good mental picture
- of the curvature concept.

 Lemma 5.3 Let z be a unit speed curve, let u be any fixed unit vector in the
. plane, and let t3 be a fixed value of the parameter. There exists a smooth

Sunction 0(t), defined for t sufficiently close to ty, representing the angle
' between u and the tangent vector T(t). Moreover the function 0(t) satisfies
the relation k(t) = @'(t): paraphrased, the curvature is the rate of change
of the angle between T (t) and the fixed direction u.

Proof The existence of the function 6(¢f) with the desired properties
follows from the fact that, for ¢ sufficiently close to a given value ¢y, at
least one of the equations

ue T(t)=cosb(t), —ueN(t)=sinb(t)

has a smooth solution 6(t). (Recall that the inverses of the sine and cosine
functions are smooth: of course 6(t) is only defined up to multiples of
2n.) Differentiating these relations with respect to t, and using the Serret—
Frenet Formulas (5.4), we obtain

—0'(t)sin0(t) =u e T'(t) = k(t)u ® N(t) = —x(t) sin 6(¢)

@(t)cosO(t) = —ue N'(t) = x(t)ue T(t) = x(t)cosb(t).

Since one of sin 8(t), cos 8(t) is non-zero we deduce that x(t) = &'(¢), as
was claimed. O

5.3 Calculating the Curvature

In practice it is convenient to have a formula for the curvature «(t) in
terms of the components x(t), y(t) of a curve z(t) and their derivatives.
Differentiating the formula (5.1) for the unit tangent vector T we obtain

T/ _ Sx” — x/s/ sy// — yls/
B £ 0 s

where s denotes the speed. Taking the scalar product of this expression
with the unit normal vector N produces
x/y// _ x//y/

T eN 7
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We obtain the required expression for the curvature x on dividing by s,
yielding the explicit formula

YW/, ",
k=2 "X¥ (5.5)
(xIZ + y/2)7
Example 5.1 Consider a general line segment x(t) = o+ ft, y(t) =y + 0t
with at least one of B, § non-zero, where ¢ lies in some open interval I.
Here x'(t) = B, x"(t) =0, y'(t) = 6, y"(t) = 0 and on substituting in (5.5)
we obtain x(t) = 0. Thus line segments have constant zero curvature.

Example 5.2 Consider an arc of a general circle x(t) = a + rcost,
y(t) = b+ rsint with centre (a,b) and radius r > 0, where ¢ lies in some
open interval I. Here x'(t) = —rsint, x"(t) = —rcost, y'(t) = rcost,
y"(t) = —rsint, and substitution in (5.5) gives k(t) = 1/r. Thus arcs of
circles are curves of constant non-zero curvature.

Example 53 Consider the ellipse x(f) = acost, y(t) = bsint, with
0 < a < b. Here we have x'(t) = —asint, x"(t) = —acost, y'(t) = bcost,
y"(t) = —bsint, and substitution in (5.5) yields the formula below. Note
that in the limiting case a = b = r, when the ellipse becomes a circle of
radius r, the formula agrees (as it should) with that given in Example 5.2
for the curvature of a circle.

_ ab
(a?sin’t + b2 cos? )3

x(t)

Example 54 Consider the graph y = f(x) of a smooth function f(x)
viewed as the curve x(t) = ¢, y(t) = f(¢). In that case x'(t) =1, x"(t} =0,
y'(t) = f'(t), ¥"'(t) = f"(¢), and substitution in (5.5) gives

K(t) = —ﬂ—;
A+ 7@)?

Here are two applications of the Serret—Frenet Formulas. We saw
above that line segments and arcs of circles are examples of curves of
constant curvature. The next two results show that these are the only
possible curves of constant curvature. In fact these results follow from
a Uniqueness Lemma we will prove in Chapter 6. However, we insert
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them here because they illustrate well the way in which the Serret—Frenet
Formulas can be applied.

Lemma 5.4 Any regular parametrization z of a line segment has constant
zero curvature k. Conversely, any regular curve z of constant zero curvature
K is a line segment.

Proof Suppose first that z has trace a line segment, so z e n = —¢ for
some unit vector n, and some scalar c. (Example 1.8.) Differentiation
yields the identity z’ e n = 0. That implies T is constant, and hence
T’ = 0 identically. The Serret-Frenet Formula T’ = xsN, where s is the
speed, then shows that k = 0. Conversely, suppose z has constant zero

curvature x. The Serret-Frenet Formula N’ = —xsT then gives N' = 0,
so N is a constant unit vector, and (zeN)Y = zeN' +z’e N =5sTeN =0:
thus z « N = —¢, for some constant ¢, which is the equation of a line.
(Example 1.8.) O

Lemma 5.5 Any regular parametrization z of an arc of a circle of radius
r > 0 has curvature of constant absolute value k| = 1/r. Conversely, the
trace of any regular curve z of constant non-zero curvature x is an arc of
a circle of radius r given by \k| = 1/r.

Proof Suppose first that z has trace an arc of a circle, so there exist
a vector p, and a real number r > 0 such that |z(t) — p| = r for all ¢
Squaring both sides and differentiating we get (z(t)—p)ez'(¢) = 0 for all «.
Thus N(¢) is a multiple of z(t) —p, indeed +N(t) = (z(t) —p)/r, and hence
+N'(t) = z/(t)/r. On the other hand T(t) = z/(t)/s(t) where s(t) denotes
the speed. Substituting in the Serret-Frenet Formula N’ = —xsT we see
that x(t) = +1/r, and hence |x| = 1/r, as required. Conversely, suppose
that the regular curve z has constant non-zero curvature k. Using the
Serret-Frenet Formula N’ = —xsT we obtain

NY ’ —xsT
(z+—) =z'+—AL=sT+( K ):0.
K K K

Integrating, we see that for some constant vector p we have z+ N/k =p
and hence |z — p| = 1/|x|, which is the equation of a circle of radius 1/|k|
centre p. O
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53.1

53.2

533

534

535

5.3.6

53.7

Curvature

Exercises

In each of the following cases find the curvature of the given
curve.

i) x(0) =t ye) =1
(i) x(t)=t, y@) =1
(i) x(t) = 2, y(@t) =83

(ivy x()=2-1, yt)=—t
V) x)=2+1, yt)==2£+t

Find a formula for the curvature of the parabola x = at?,
y = 2at with a > 0. Show that the vertex is the unique point
on the parabola where the curvature assumes a maximal value.
Show that for any positive real number k with k < 1/2a there
are exactly two distinct points on the parabola for which the
curvature assumes the value k.

Let P = (a,b) where a®> > b, and let 4, B be the two points on
the parabola x(t) = ¢, y(t) = t* where the tangent passes through
P. Prove that the ratio PA? : PB3 = kg : k4 where k4, kg are
the curvatures of the parabola at A, B respectively.

In Example 5.3 it was shown that the ellipse x(t) = acost,
y(t) = bsint, with 0 < a < b, has curvature x = ab/¢*/?, where
¢ is the function defined by

@(t) = a®sin® t + b* cos? ¢.

Show that the maximum and minimum values of the curvature
are assumed at the vertices. What are their values? Show that ¢
is strictly increasing for 0 < ¢t < n/2. Deduce that for any real
number k with b/a? < k < a/b* there are exactly four distinct
points on the ellipse with « = k.

Let p be a point on the ellipse x(t) = acost, y(t) = bsint and let
g be a point on the x-axis lying on the normal line at p. Write d
for the distance between p, g. Show that the radius of curvature
p at p is given by the formula p = cd® where ¢ = a?/b*.

Find a formula for the curvature of the limacon defined by the
formula z(t) = 2¢* + he*®.

Show that the curvature of the cuspidal cycloid x(t) = ¢t — sin¢,
y(t) = 1 —cost at a regular value ¢ is given by

-1
K(t) = m
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Figure 5.2. A typical inflexion

53.8  Let z be a unit speed curve, and let ¢ be a parameter for which
z'(¢) = 1. Show that the curvature «(t) = 3z"(¢).

539  Let f(x) be a smooth function with f(0) = 0, f'(0) = 0. Show
that the curvature of the graph y = f(x) is given by the Newton
Sformula

k(0) = 11m x2 .

5.4 Inflexions

In Lemma 5.3 we saw that for a unit speed curve z the curvature «(t)
represented the rate of change of the angle ¢(t) between the tangent vec-
tor z'(¢) and any given direction. In particular, at points where the curve
is infinitesimally ‘flat’ we expect the tangent direction to be (instanta-
neously) constant, and therefore the curvature to vanish. That motivates
the following definition. A regular parameter ¢ for z is inflexional when
k(t) = 0, and then the corresponding point z(t) on the trace is an inflex-
ion. The mental picture is that typically the curve will bend one way on
one side of the inflexion, and the other way on the other side: Figure 5.2
illustrates this typical behaviour for the curve x(t) = t, y(t) = t3 with
x(0) = 0. In Chapter 7 we will see that there are other ways of viewing
this basic geometric idea.

Example 5.5 Consider the graph y = f(x) of a smooth function f(x)
viewed as the curve x(t) = ¢t, y(t) = f(t). In view of the formula for
the curvature given in Example 5.4 inflexions appear precisely when the
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second derivative f”(t) = 0, a condition familiar from school geometry.
For instance, when f(x) = x> we have f”(x) = 6x, which vanishes if and
only if x = 0. Thus the origin is the only inflexion of the curve x =1t,
y =1t.

In view of the formula for the curvature (5.5) we see that the condition
for a regular parameter t of a general curve z to be inflexional is that

X (t)y"(t) — x"(t)y'() = 0. (5.6)

An alternative formulation of this condition, useful when using complex
number notation, is that the derivatives z’(¢), z”(t) should be linearly de-
pendent. Here are some examples, illustrating the mechanics of analysing
this condition.

Example 5.6 Agnesi’s versiera was introduced in Example 3.7 as a
regular curve of the form

2at
1412
where a is a positive constant. The reader is invited to check that the

left hand side of (5.6) vanishes if and only if 3t> = 1, producing two
inflexions lying symmetrically about the y-axis. (Figure 3.4.)

x(t) =2at, y(t)=

Example 57 The piriform was introduced in Example 2.16 as a
parametrized curve of the form

x(t) = a(l +cost), y(t)=bsint(l+ cost)

where a, b are positive constants. We verified that irregular parameters
were defined by sint =0, cost = —1 giving the ‘cusp’ point on the trace.
(Figure 2.12.) The reader will readily check that

Xy’ —x"y = —ab(C +1)(2C* —2C — 1)

with C = cost necessarily in the range —1 < C < 1. The displayed
expression vanishes when one of the following relations is satisfied:

C=-1, C=M, c-1=3
2 2
The first gives the ‘cusp’ point, the second is outside the allowable range,
and the third gives two solutions, in the range n < t < 2%. The piriform
has therefore two inflexions, as Figure 2.12 suggests.
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Example 5.8 Consider the epicycloids and hypocycloids defined by the
formula

2(t) = (A+ 1)e — A+,

Assuming A # —1, it was shown in Example 3.10 that a parameter ¢ is
irregular if and only if ¥ = 1. A regular parameter ¢ is inflexional if
and only if the derivatives

Z(t) = A+ Die"w, 2'(t) = (A+ 1" {A—(A+ Dw}

are linearly dependent, ie. if and only if iw, A — (4 + 1)w are linearly
dependent. Direct calculation shows that this condition is satisfied if and
only if A = —2, which is the case of Cardan circles. (Example 3.12.) Thus
there are no inflexional parameters, except in the case of Cardan circles,
when every parameter is inflexional, and the trace is a diameter of the
fixed circle.

Example 5.9 We will find the inflexions of the family of limacons
2(t) = 26" — he?™, where h is a positive real number. (Example 3.13.) By
computation

X(8)y"(£) — X" (£)y'(t) = 4{2h* — 3hcost + 1} (5.7)

In Example 3.10 it was shown that the curve is regular if and only if h # 1.
In the exceptional case h = 1 of a cardioid there is just one irregular
point, determined by cost = 1. When h = 1 the above expression vanishes
only at the irregular point, and there are no inflexions. Suppose now that
h # 1. We obtain inflexions if and only if the expression (5.7) vanishes,
i.e. if and only if there exists a parameter ¢ for which

142K

cost=H = T (58)

Such a relation places a restriction on h, since it holds if and only
if -1 < H < 1. But H > 0 since h is assumed to be positive, so
the first inequality is automatic. The second inequality is equivalent to
0>2h —3h+1=(2h—1)(h—1), and holds if and only if 1/2 < h < 1,
with H = 1 if and only if h = 1/2 or h = 1. Since we are supposing
h # 1, we deduce that there are inflexions if and only h lies in the range
1/2 < h < 1. When h = 1/2 the parameter ¢ is inflexional if and only
if cost = 1, giving just one solution in the range 0 < ¢ < 2z, namely
t = 0: thus we obtain just one inflexion. When 1/2 < h < 1 we have
0 < H < 1 and a glance at the graph of cost will convince the reader that
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Figure 5.3. A bifiexional limacon

in the range 0 < t < 2z there are exactly two solutions t;, t; for (5.8):
thus we obtain exactly two inflexions. For this reason the limacons with
1/2 < h <1 are said to be biflexional. (Figure 5.3.)

541

542

543

544

545

54.6

Exercises

Show that none of the curves parametrizing the standard conics
have inflexional parameters.

Show that the curve defined by x(t) = 382 — 1, x(t) = 3t* — t has
no inflexional parameters.

Calculate the curvature of the curve x(t) = t — sinhtcosht,
y = 2cosht, and deduce that the curve has no inflexions.

In each of the following cases show that the curve has just one
irregular parameter, and just one inflexional parameter.

(i) x(t)=72, yey=12-1t*
i) x()=2-28, yo)==8
(i) x@)=2+t", y@O=t2+7.

Let a be a positive constant. Show that the eight-curve given by
x(t) = acost, y(t) = acostsint is regular. Find a formula for
the curvature function. Show that the curve has two inflexional
parameters in the range 0 < ¢t < 2=, giving rise to inflexions at
the self crossing.

Show that none of the four ‘branches’ of the cross curve have
inflexional parameters. (Example 2.21.)
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547 The Kampyle of Eudoxus is the curve defined by x(t) = asect,
y(t) = asecttant where a > 0 and —n/2 < t < =/2. (It arises in
connexion with the problem of duplicating the cube.) Show that
the Kampyle has exactly two inflexions.

548 Letr > 0and let y = a+ if where a, B are real numbers with
B # 0. Show that the curvature of the standard equiangular
spiral z(t) = re" is given by the following formula. Deduce that

z has no inflexions.
B } —at
Kt)=< — re ™.
® {rlvl

549 A curve z has the property that its components x, y satisfy
the relation y(t) = tx(t). Show that a regular parameter ¢ is
inflexional if and only if 2x'(t)> = x(t)x”(t). Use this relation
to show that in each of the following cases the curve has no
inflexional parameters.

2at? -2 -1

() x(t)= i+ (i) x(1) = 1+t2’ (i) x(t) = T

Incidentally (i) is the cissoid of Diocles, (ii) is the right strophoid,
and (iil} is Descartes’ folium.

5.5 Limiting Behaviour

Although the curvature x(t) of a curve z is not defined at an irregular
parameter ty, it is quite possible that it may tend to a limit as t — ¢
through regular parameters t. However in that case a detailed analysis is
required to determine the value of the limit.

Example 510 The three curves zj, 2z, z3 below all have exactly one
irregular parameter, namely ¢t = 0. Figure 5.4 illustrates the nature of the
curves near the origin.

a)=(0), n@O=0E0) n0)=@E+0,0.
The reader is invited to verify that the respective curvature functions 1,

K2, k3 have the following forms:

k()= > +002), Kal)= o +00), K1) =2+ 0()

where O(n) denotes terms in t of degree > n. As t —» 0 so k1 — 0,
k2 — 0 and x; — 2. Note however that the illustrations of the curves
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the curve z; the curve z,

the curve z;

Figure 54. Forms of the curves pear the origin

near the origin look remarkably similar: the curvature function is picking
up information which the eye does not.

Exercises

5.5.1 Investigate the limiting value of the curvature as t — O for the
curve x(t) =2, y(t) = t* + 1.

5.5.2 Investigate the limiting value of the curvature as ¢ — 0 for the
curve x(t) = 2+ t4, y(t) = 2 + £
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Existence and Uniqueness

We know that a curve determines a curvature function, providing valuable
geometric information about the original curve. A natural question to
ask is whether there exist curves with prescribed curvature, ie. given a
smooth function « is there a regular curve z whose curvature function
is ¥ ? Indeed, this is the case.

Theorem 6.1 Let x : I — R be a smooth function. There exists a regular
parametrized curve z : 1 — R? whose associated curvature function is x.
(The Existence Theorem.)

Proof Let # :1 — R be any function with the property that 6'(t) = «(t)
for all t € I. Further, let x(t), y(t) be smooth functions with x'(t) =
cosB(t), y'(t) = sinf(t), and let z : I — R? be the curve with those
components. Clearly z is a unit speed curve. The associated tangent and
normal vectors are

T(t) = (cos 6(t),sin 8(t)), N(t) = (—sin6(¢t), cos 6(t)).

Differentiating T we obtain the following relation, from which it is
immediate that « is the curvature function for z:

T'(t) = ¢ (t)(—sin 6(¢), cos 6(t)) = x(t)N(¢).
O

However, that raises the question of the extent to which curves with
a given curvature function are ‘unique’. In Section 6.4 we introduce the
notion of ‘congruence’ for curves, and establish that congruent curves
necessarily have the same curvature function. The main result of this
chapter is the Uniqueness Theorem, establishing a converse, namely that

P



76 Existence and Uniqueness

Figure 6.1. Superimposing two curves

if two regular curves have the same speeds and curvatures respectively
then they are congruent. In other words, up to the relation of congruence,
a curve is completely determined by its speed and curvature. This result
allows us to recover facts established by direct calculation, for instance
the fact that the only curves with constant curvature functions are line
segments and arcs of circles.

6.1 Isometries

Our starting point is the need to be clear about what we mean by
two curves being ‘the same’. The idea is that it should be possible to
superimpose the one trace on the other. Let us clarify this. Start from
a picture in which the two curves are traced on the same plane, with
the axes drawn in. Now, mentally separate the curves, by imagining the
two curves traced on two separate planes (with the two sets of axes
superimposed): one fixed plane, and on top of it a moving plane. The
planes could be realized as plastic transparencies, one resting on the
other. Each transparency has axes drawn in, and a curve traced on it.
(Figure 6.1.) Then the idea is that the curves are ‘the same’ when we can
place the moving plane on the fixed plane in such a way that the two
curves are perfectly superimposed.

To make this intuition precise, think of the moving plane as the image
of the fixed plane under a mapping which ‘preserves’ the Euclidean
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structure, in the following precise sense. By a planar mapping we mean
a mapping I : R? — R?: an isometry is a surjective planar mapping I
which preserves distance, in the sense that for all vectors u, v

[ (w) —I(v)| = u—vl.

The surjectivity condition is actually redundant: it can be deduced from
the distance preserving condition. The reason for inserting the condition
is that ‘isometries’ can be defined in wider contexts within mathematics
(metric spaces) where the surjectivity condition is no longer redundant,
so it is sensible to have a uniform definition. Note that isometries are
automatically injective: indeed if I(1) = I(v) then 0 = |I(u)—1(v)] = |u—v|
so u = v. Thus isometries are bijective mappings of the plane, and possess
inverses.

Example 6.1 By a translation T we mean a planar mapping T given (in
complex notation) by a formula T'(z) = z + b where b = (u,v) is a fixed
vector. Such a mapping is surjective: indeed any point w can be written
in the form w = T(z) by choosing z = w — b. We think of a translation
as a sliding of the plane over itself through b. In terms of components,
T is the map (x,y) = (X,Y) where X = x +u, Y = y + v. Translations
are isometries. Indeed for any two points z;, z; we have

|T(21) — T(22)l = l(z1 + b) — (22 + b)| = |21 — 23].

Example 6.2 In exactly the same way, the reader will verify that any
planar mapping I given by a formula I(z) = uz + b, with u unit, is an
isometry: likewise, any planar mapping I of the form I(z) = uz + b,
with u unit, is an isometry. (Exercise 6.1.1.) In fact we will see that any
isometry has one of these two forms.

It is profitable to phrase the basic properties of isometries in the lan-
guage of elementary group theory. Recall first that the bijective mappings
of any set form a group under the operation of composition. In particu-
lar the bijective mappings of the plane form a group, and the isometries
form a subgroup, known as the Euclidean group E(2). That means that
the identity mapping is an isometry, that the composite of two isometries
is an isometry, and that the inverse of an isometry is another isometry.
(Exercise 6.1.2.) Here is a very simple lemma elucidating the structure of
general isometries.
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Lemma 6.2 Any isometry I can be written as the composite I = T o R
of a translation T and an isometry R with the property that R(0) = 0.
Moreover, T and R are unique.

Proof Write T(z) = z+1(0), R(z) = I(z) —I1(0). Then T is a translation,
R is an isometry, and I = T oR. For uniqueness, suppose that I = TjoR;,
I = T; o Ry, where Ry, R, are isometries with R;(0) = 0, R;(0) = 0, and
Ty, T, are translations given by formulas Ti(z) = z + by, T2(z) =z + ba.
Then for all z we have I(z) = Ri(z) + b1 = Ra(z) + b,. Setting z = 0 gives
by = by, hence Ty = T3: but then Ry(z) = Ry(z) for all z, giving R, = R,.

a

Isometries R with R(0) = 0 have properties not enjoyed by general
isometries. For instance, they preserve not just distance, but length and
scalar product.

Lemma 6.3 Any isometry R with R(0) = O preserves length, in the sense
that |R(u)| = |u| for all vectors u. Moreover R preserves scalar products,
in the sense that R(u) e R(v) = u e v for all vectors u, v.

Proof For the first statement we have simply to note that since R(0) =0
we have
|R(u)| = |R(u) — O = |[R(u) — R(0)| = |4 — O = [ul.

For the second, recall the Polarization Identity of Exercise 1.3.2. Applying
the identity firstly to u, v, and secondly to R(u), R(v), gives

Auev) = |uf+lof —lu—v
2(R(w) e R(v)) = |R()]*+[R(v)] ~ |R(w) — R).
The result now follows from the fact that R preserves both length and
distance. a
Exercises

6.1.1  Let u, b be complex numbers with u unit. Show that the planar
mapping I given by a formula I(z) = uz + b is an isometry:
likewise, show that the planar mapping I given by the formula
I(2) = uZ + b is an isometry.

6.1.2  Show that the isometries form a group under the operation of
composition, and that the translations form a subgroup.
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6.1.3  Let I be an isometry. Show that the image under I of a line is
another line. Also, show that the image under I of a circle of
radius r and centre c is a circle of radius r and centre I(c).

6.14 A similarity is a surjective planar mapping S for which there
exists a positive real number k (the scaling factor) such that
|S(u) — S(v])| = k|u — v| for all choices of vectors u, v. Show that
similarities are bijective mappings of the plane. Show that the
similarities form a group under the operation of composition.

6.1.5 A central dilation with centre w and scaling factor k is a planar
mapping D given by a formula D(z) = w + k(z — w) where w
is a fixed point, and k > 0. Verify that a central dilation is a
similarity with scaling factor k. Show that any similarity S (with
scaling factor k) can be written as the composite of an isometry
I and a central dilation D with centre the origin (and scaling
factor k).

6.2 Fixed Points and Formulas

By a fixed point of an isometry I we mean a point p for which I(p) = p.
This key idea leads us very quickly to an understanding of the structure
of isometries. Here is the basic result.

Lemma 6.4 For any isometry I the set of fixed points is the empty set, a
single point, a line or the whole plane.

Proof Clearly, when I is the identity the set of fixed points is the whole
plane. Assume I is not the identity, so there exists at least one point s for
which I(s) # s. Our first observation is that any fixed point p must lie on
the orthogonal bisector of s, I(s): indeed |I(s)—p| = [I(s)—I(p)| = |s—p|,
so p is equidistant from s, I(s). If now I has no fixed points, or exactly
one, there is nothing further to prove, so we can assume I has at least two
distinct fixed points p, ¢: and the line joining p, ¢ must be the orthogonal
bisector of s, I(s). It remains to show that any point r on that line is a
fixed point. Suppose that I(r) # r. Then, replacing s by r in the above
arguments, we see that p, g also lie on the orthogonal bisector of r, I(r).
However, that is a contradiction, since p, q, r are collinear, establishing
that I(r) = r as required. O

We are now in a position to write down explicit formulas for isometries,
enabling us to distinguish two fundamentally different geometric types.
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Lemma 6.5 Any isometry I is given either by a unique formula I(z) = uz+b
or by a unique formula 1(z) = uz + b, for some complex numbers u, b with
u unit.

Proof Set b = I(0) and define an isometry J with J(0) = 0 by J(z) =
I(z) —b. Now set u = J(1) and observe that u is unit, since

ul = I = [J1) -0 = [J(1) = J(O) = [1 -0 = 1.

Define a further isometry K by K(z) = u~'J(z), and note that K(0) = 0,
K(1) =1 s0 0, 1 are two distinct fixed points of K. It follows from
Lemma 6.4 that the set of fixed points for K is either the whole plane,
or the line y = 0 through 0, 1. In the former case K(z) = z, and hence
I(z) = uz + b, for all z. In the latter case we claim that K(z) = z, and
hence that I(z) = uZ + b, for all points z. Note first that if K(z) = z
then z is a fixed point for K, so lies on the line y = 0 and automatically
satisfies K(z) = Z: we can therefore assume that K(z) # z. Since K is an
isometry:

K(z)—0 = |K(z)—-K(0) = [z—0|
K(z)—1 = |K@z)—K1)| = |z—1]

Thus z, K(z) are equidistant from 0, and from 1. It is immediate that
K(z) = z, as was required. (Example 1.12.) Finally, uniqueness follows
from Lemma 6.2. O

Isometries of the form I(z) = uz+b are said to be direct whilst those of
the form I(z) = uZ + b are indirect. At this stage in our development we
are only concerned with direct isometries, though we will meet indirect
isometries as ‘reflexions’ in Chapter 11. Direct isometries are also known
as congruences. (There is a possible confusion with standard usage in
school geometry where the term ‘congruence’ is used as a synonym
for ‘isometry’.) The congruences form a subgroup of the isometry group,
known as the special Euclidean group and denoted SE(2). (Exercise 6.2.1)
The virtue of having explicit formulas for isometries is that we can
establish their properties via simple computations, a point well illustrated
by the next example. First a definition: an isometry I having exactly one
fixed point ¢ is a rotation: one says that c¢ is the centre of the rotation,
and that the rotation is about c¢. (It is a convention that the identity
isometry is regarded as a rotation.)

Example 6.3 Any direct isometry I is either a translation or a rotation.
By the above we can write I(z) = uz + b for complex numbers u, b with
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u unit. Translations correspond to u = 1: in that case there are no fixed

, points, unless b = 0 when I is the identity. However, when u + 1 fixed

points are given by I(z) = z, i.e. (4 — 1)z = —b with unique solution
z=b/(1—u): in that case I is a rotation, and we say that it is through an
angle § when u = ¢ with 0 < < 2x. In particular, a direct isometry I
with 1(0) = 0 is a rotation about the origin, given by a formula I(z) = uz.
Writing I(z) = Z, with z = x+ iy, Z = X +iY we derive the familiar

 formulas for a rotation about the origin through an angle 6, namely

X =xcosf —ysinf, Y = xsinf+ ycosé.

Example 6.4 By central reflexion in a point p we mean the planar map
I defined by I(z) = 2p — z. This has the form [(z) = uz + b with u = —1,

- b= 2p so is a direct isometry. Note that I is defined by the condition
" that for any z # p the point p is the mid-point of the line segment joining

z, I(z). There is a unique fixed point p, so I is rotation about p through
an angle n, a so-called half turn. Central reflexion in the origin p = 0 is

given by I(z) = —z.

Example 6.5 In Lemma 6.2 we showed that any isometry I can be
written uniquely as the composite of a translation T and an isometry R
with the property that R(0) = 0. The translation T is necessarily given
by a formula T'(z) = z + b for some complex number b: and Lemma 6.5
shows that R is given either by a formula R(z) = uz or by a formula
R(z) = uz, where u is some fixed unit complex number. Either way we

~ see that R is a linear mapping, known as the linear part of I.

Exercises

6.2.1  Show that the congruences form a subgroup of the isometry
group, and that the rotations with centre p form a subgroup of
the congruence group.

622 Let p be a fixed point in the plane. Show that for each rotation
R with centre the origin there is a unique rotation Ix with centre
p whose linear part is R. Use this to show that the group of
rotations with centre the origin is isomorphic to the group of
rotations with centre p.

623 Let I be an indirect isometry given by I(z) = uz + b with u unit.
Show that the equation I(z) = z has a solution z if and only if
I{b) = 0.
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Figure 6.2. Congruent curves

624  An isometry I is of order 2 in the isometry group when I% = 1,
I #+ 1. Show that any isometry I of order 2 has at least one fixed
point p. (Consider the mid-point p of the line segment joining r,
I(r) for some r.) Use this fact to deduce that a congruence is of
order 2 if and only if it is a half turn.

6.3 Congruent Curves

We are now in a position to return to the question of when two curves
21, 2o with the same domain I should be regarded as ‘the same’. In this
section (and the next) we write Ty, T for the unit tangent vectors, N,
N, for the unit normal vectors, sy, s; for the speeds, and x4, k1 for the
curvature functions. For notational efficiency we may drop the variable ¢.
We say that z,, z; are congruent when there exists a congruence C with
the property that z;(t) = C(z1(¢)) for all t € I. One pictures the idea as in
Figure 6.2. When C is a translation z;, z, are translationally congruent:
and when C is a rotation z;, z, are rotationally congruent.

The relation of congruence defines an equivalence relation on the set
of curves with domain a fixed open interval I. (Exercise 6.3.1.) Here is
an interesting class of examples to illustrate the idea.

Example 6.6 Let p be a point in the plane. By an equiangular spiral with
pole p we mean a regular curve z with the property that z'(t) = y(z(t)—p)
for some fixed complex number y. In particular, an equiangular spiral
with pole the origin is characterized by the relation z’(¢) = yz(t). Note that
any equiangular spiral z is translationally congruent to an equiangular
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Figure 6.3. An equiangular spiral

A

spiral w with pole the origin, for writing w(t) = z(t) — p we obtain
w(t) = yw(t), so w is an equiangular spiral with pole the origin. Taking
moduli gives |w'(£)| = |y||w(t)], so the speed is a constant scalar multiple
of the length of the vector w(t). Since the curve is assumed to be regular,
we deduce that y # 0, and that the pole itself cannot lie on the spiral. The
description ‘equiangular’ refers to the fact that the angle 6 (Figure 6.3)
between the tangent line at the parameter ¢t and the line joining p to z(t)
must be constant, since its cosine is

W) oW (D) _ wit)eyw(®) _ w(D) e vw(t) _ R()
WOIW @ ~ w@Tw@l ~ w@irlwedl ~ Tl

How do we know that equiangular spirals actually exist? One way is
to write down an explicit parametrization.

cos § =

Example 6.7 By a standard equiangular spiral we mean a curve z given
by a formula z(t) = re”, where r is a positive real number, and y = a+if
with «, B real numbers, not both zero. Here z/(t) = rye” = yz(t), so
according to the above definition z is an equiangular spiral with pole the
origin. Note that there are two degenerate cases. When « = 0 we have
z(t) = re’#* so the curve is a parametrization of the circle radius r centred
at the origin, with angle 6 = n/2: and when f = 0 we have z(t) = re* so
the curve is a parametrization of the positive x-axis, with angle § = 0.

Example 6.8 Had we not been aware of such parametrizations we could
have deduced their existence as follows. The defining relation z'(t) = yz(t)
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is a complex linear differential equation with general solution z(t) = z¢e"*
where z; is some fixed complex number. We are only interested in the
case when 2y and y are non-zero, since otherwise the trace of the curve
is a single point, and every parameter is irregular. Writing zp = re'® with
r > 0 we see that our curve is obtained from the standard equiangular
spiral z(t) = re’* by rotation through an angle ¢ about the origin. Thus
any equiangular spiral with pole the origin is rotationally congruent to a
standard equiangular spiral. Combining this with the above remarks, we
conclude that any equiangular spiral is congruent to a standard equiangular
spiral.

The point of the next example is that it provides natural motivation
for widening the concept of congruent curves.

Example 69 A curve w is obtained from the standard trochoid z
exhibited in (3.2) by replacing the positive constant h by —h: thus z, w
are given by

2(t) = (A+ D)e" — he®™ D, w(t) = (A + 1)e" + he*+Di

where it is assumed that 1 ¥ —1. We claim that z, w are not congruent
curves. Suppose they are, so there exist complex numbers u, b with u unit
for which w(t) = uz(t) + b identically. Differentiation yields the identity
w'(t) = uz'(t). Setting ¢t = 0 we obtain w'(0) = uz’(0), which simplifies
to 1+ h = u(l — h). It follows immediately that u is real, hence that
u = +1: either way, we have a contradiction, establishing the claim.
However, a few lines of working will verify that z, w satisfy the identity
w(t + 0) = €92(t) where 6 = n/A. Thus although w is not congruent to z,
it is congruent to a reparametrization of z.

In view of examples such as this it is natural to widen the concept of
congruence as follows. We say that two curves z;, z, with domains Iy, I,
are equivalent when there exist a congruence C and a change of parameter
s : Iy = I, with everywhere positive derivative for which zy(s(z)) =
C(z1(t)) for all ¢. Note that congruent curves are necessarily equivalent
(take s to be the identity): and likewise, parametrically equivalent curves
are necessarily equivalent (take C to be the identity). Thus the curves
z, w of the above example are equivalent, even though they fail to be
congruent. We conclude the body of this section by establishing that
curvature is invariant under the relation of congruence.
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Lemma 6.6 Let zy, z; be congruent regular curves. Then zi, z; have the
same speeds s1, s, and the same curvatures K1, k3.

Proof Since zy, z; are congruent there exist a rotation R about the origin,
and a fixed vector w with the property that z>(t) = R(z1(t)) + w for all
t. Differentiation with respect to ¢ gives z3(t) = R(z{(t)) for all t. Since
rotations preserve length (Lemma 6.3) we deduce that s;(t) = s2(t) for
all ¢. It follows immediately that T>(t) = R(Ty(t)) and N,(t) = R(Ny(t)).
Moreover, differentiating the former relation with respect to t yields
T;(t) = R(T{(¢)). Now, dropping the variable ¢t for convenience, and
using the fact that rotations preserve scalar products (Lemma 6.3), we
obtain the desired result via

_TyeN, R(T{)eR(N;) TjeN,
s 51 5

K2

Exercises

6.3.1  Consider the set of curves z whose domains are a fixed open
interval I. For two such curves z;, z; write z; ~ z; to mean that
zy is congruent to z;. Show that the relation of congruence is an
equivalence relation on the set.

6.3.2 Let b, n be non-zero real numbers. Show that the curves given
by w(t) = 2be” sinnt are equivalent to, but not congruent to, the
rose curves z(t) = 2be" cosnt.

6.3.3  Let p1, q1, p2, g2 be four points. Show that the line segment
joining py, q; is congruent to the line segment joining p,, ¢, if
and only if |[p1 — q1| = |p2 — q2l-

6.4 The Uniqueness Theorem

Our object now is to prove the converse of Lemma 6.6, i.e. that if two
curves zj, z; have equal speeds and curvatures respectively at every point
then they must be congruent. Thus, up to the relation of congruence,
speed and curvature determine the curve uniquely. The main step is the
following result, based entirely on standard facts from foundation year
calculus.
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Lemma 6.7 Let zy, z; be curves having equal speeds si, s, and equal
curvatures ki, K. Suppose there exists a parameter t = to for which
z1(to) = z2(to) and Ty(to) = Ta(ty). Then z1, z; coincide.

Proof Consider the smooth function f defined by the formula
f(8) = Ti(t) @ Tx(t) + Ni(t) @ No(2).

We claim that the derivative f'(z) is identically zero. Indeed, suppressing
the parameter ¢ for convenience, and using the Serret-Frenet Formulas,
we have

f(t) = TieTy;+T{eT,+NjeN;+NjeN,
= T; e(s2k2N3) + (s1x1N1) @ T, + Ny o (—s2K,T3)
+(—sixk1T1) e N2
= (s2x2 —s1k1)(T1 e N2 —N; e T2) =0

since s; = s, and k; = k; by hypothesis. It follows from calculus that
f_is constant. Moreover, setting t = tp, and using the hypothesis that
T1(to) = T(to), hence that Ni(t) = Na(tp), we get

T1(to) ® Ta(to) + Ny(to) ® Na(to)
| T1(to)|* + | N1(to)?
= 1+1=2

f(to)

so that f assumes the constant value 2. Now choose any ¢ € I. By the
Cauchy-Schwarz Inequality we have

Ti(®)e T2(t) < |Ti@)IT()]
Ni(t) e Na(t) < |Ni(t)IIN2(2)]

|
_—

If either of these inequalities were strict, the value of f(t) would be < 2,
which we have just shown to be impossible. Thus both these inequalities
are equalities, and we have Ti(t) e T»>(t) =1, N (t) e Na(t) = 1 for all ¢. It
follows that

{Ty — Ta? (Ty —Th) e (T — T2)
= TieT| —2TieT) +TreT;

1-2+1=0
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so Ty = T, and hence z{ = z;. Further, for any ¢ we have

21(0) — 21(to) = / 2 (x)dx = / B0)dx = 22(6) — 22(to).

fo

By hypothesis z,(tp) = z2(to), s0 z1(t) = z2(t) identically. O

Theorem 6.8 Let z; : I — R?, z; : I — R? be regular curves whose speeds
1, 82 and curvatures ki, x; each coincide: then z1, z, are congruent. (The
Uniqueness Theorem.)

Proof Choose any fixed value ¢ = ¢, of the parameter. Apply a translation
to z; to obtain a curve z3 with z3(tp) = 0: and likewise apply a translation
to z; to obtain a curve z4 with z4(tg) = 0: since translations leave
speed and curvature invariant, z;, z4 have the same speeds and the
same curvatures, and have the property that z3(tg) = z4(tp). Now apply
a rotation (about the origin ) to z4 to obtain a new curve zs with
23(to) = z5(to). Since rotations also leave speed and curvature invariant we
see that z3, zs have the same speeds and the same curvatures, and satisfy
the relations z3(to) = 25(to), z3(to) = 25(to). It follows immediately from
the previous proposition that z3, zs coincide. But z;, z; are congruent,

and likewise z;, zs are congruent, so zi, z; are congruent, as required.
O

Here are some illustrations. In Lemmas 5.4 and 5.5 it was shown that
the trace of any regular curve of constant curvature x is either a line
segment (when x = 0) or an arc of a circle (when x # 0). We can deduce
these results from the Uniqueness Theorem.

Example 6.10 Consider a regular curve z : I — R? of constant zero
curvature. By Lemmas 4.1 and 5.2 there is a unit speed reparametriz-
ation w : I — R?, having the same trace, and constant zero curvature.
The line segment I — R? defined by t — (t,0) is a unit speed curve which
also has zero curvature, so by the Uniqueness Theorem is congruent to
w. Thus the trace of w, and hence of z, is a line segment.

Example 6.11 Likewise, consider a regular curve z : I — R? of constant
curvature x #* 0. By Lemma 4.1 there is a unit speed reparametrization
w : I — R?, having the same trace, and the same curvature x. The arc of
a circle I — R? defined by t — ¢/ is a unit speed curve, also having
curvature x, so by the Uniqueness Theorem is congruent to w. Thus the
trace of w, and hence of z, is an arc of a circle.
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Here is another application of the Uniqueness Theorem, used as a
technical simplification when studying problems in planar kinematics.

Lemma 6.9 Let z : I — R be a regular curve with trace contained in
the unit circle, and let ty be a fixed parameter. Then there exist a unit
complex number u, and a change of parameter r with r(ty) = 0, for which
z(t) = ue™® for all t.

Proof By Lemma 4.1 there exists a change of parameter s : J — I with
5(0) = to for which w(t) = z(s(t)) has unit speed. Our first objective is to
show that w has curvature k = +1. The trace of w is contained in the unit
circle (parametrically equivalent curves have the same trace) so wew =1
identically. Differentiating this identity twice yields w e w' = 0 (so w, w'
are orthogonal) and w e w” + w’ e w' = 0. However, since w is of unit
speed we also have the identity w’ e w’ = 1, yielding w e w’ = —1. Since
iw, w' are both unit vectors orthogonal to w we musi have iw' = +w.
Differentiating the identity w’ ew’ = 1 yields w’ ew” = 0. It follows that w
and w” are both orthogonal to w’ so are linearly dependent unit vectors
with w” = +w. In fact w”’ = —w, else the relation w e w” = —1 fails. We
now have k = T’ e N = w” o iw’ = —w @ +w = TF1, as required. Consider
the case k = 1. The curves w(t), e* (the latter restricted to J) have equal
speeds and curvatures, so by the Uniqueness Theorem are congruent.
That means that there exist fixed complex numbers u, b with u a unit
for which w(t) = ue* + b for all ¢t € J. Then the identity 0 = w e v’
reads 0 = (ue” + b) e iue = b e iue®: taking two values of ¢ for which
the corresponding vectors e are linearly independent we deduce that
b =0, so w(t) = ue' for all t € J. Write r : I — J for the inverse of
s : J — I. Then r is a change of parameter with r(tg) = 0 for which
z(t) = w(r(t)) = ue™®. Finally, in the case xk = —1 replace ¢ in the
preceding argument by —t to reach the same conclusion. O
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Contact with Lines

In this chapter we will discuss the way in which curves and lines intersect,
via the fundamental idea of ‘contact’. The key concept is the ‘multiplicity’
of a root s of an equation ¢(s) = 0. Our starting point is to extend
the Factor Theorem of elementary algebra from polynomials to smooth
functions: that will provide the technical tool necessary to understand
the geometry. The next step is to apply this machinery to the pencil of
all lines through a given point on a curve to understand how ‘contact’
distinguishes the tangent line at a regular parameter from arbitrary lines.
That leads to the more subtle question of the ‘contact’ of the tangent
line itself with the curve. The result is a characterization of inflexional
parameters in terms of ‘contact’, and the idea of higher inflexions. In the
final section we extend this line of thought to special types of irregular
parameters (‘cusps’) and establish further connexions with the curvature
function.

7.1 The Factor Theorem

First we require some vocabulary, extending that familiar from the theory
of polynomials in a single variable. Let ¢ : I — R be a smooth function,
with domain an open interval I. A real number ¢, which satisfies the
equation ¢(t) = 0 is said to be a zero of ¢. One of the central facts in
the elementary theory of polynomials is the Factor Theorem, namely the
result that if ¢(¢t) is a polynomial and to is a zero of ¢ then (t —tp) is a
factor of ¢(t), i.e. there exists a polynomial y(¢) such that ¢(t) = (t—to)x(¢).

Example 7.1 By way of illustration, consider the cubic polynomial
d(t) =3 + 12—t —1. The value ¢t = 1 is a zero of ¢, so (t — 1) must be a
factor: indeed ¢(t) = (t — 1)x(t) where x(t) = (¢t + 1)

89
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Our next result extends the Factor Theorem from polynomial functions
to smooth functions, using facts from elementary analysis.

Theorem 7.1 Let ¢ : I — R be a smooth function, having a zero at ty.
There exists a smooth function x : I — R with ¢(t) = (t — to)x(t). (The
Factor Theorem.)

Proof Consider first the special case when ty = 0, so ¢(0) = 0. Note that
the derivative of ¢(Af) with respect to A is ¢¢’'(At) so that

—_ i=1 — ! / — ! ! —
(1) = [d)(,lt)] =0 = /0. t¢'(At)dA =t /0. @' (At)dA = 1x(t)

provided we define y by the formula below. It follows from a standard
calculus result (differentiation under the integral sign) that y is smooth.

1
(1) = /0 & ().

The general case is deduced as follows. Set ¢*(t) = @p(t +tp) sot=01is a
zero of ¢” if and only if ¢ is a zero of ¢. Then, by the special case, there
exists a smooth function x* with ¢*(t) = tx*(t). The general case follows
on writing t — o in place of ¢, and defining ¥ by x(t) = x* (¢t — to). O

It is worth noting that the Factor Theorem of elementary algebra is a
special case of this result: indeed, when ¢(¢) is polynomial, automatically
x(¢) is polynomial as well.

Example 7.2 The smooth function ¢ : R — R defined by ¢(t) = sin¢ has
a zero at t = 0, so by the Factor Theorem there exists a smooth function
x : R — R with ¢(t) = tx(t): indeed the proof shows that

1 .
) = / cos(At) dA = S‘ti‘
0

where the second equality assumes that ¢ # 0. To extend the formula to
the whole real line we would need to define ¥(0) = 1, and then prove
that the result is smooth. The Factor Theorem provides a painless way
of avoiding such subtleties.

7.2 Multiplicity of a Zero

The key to the material of this chapter lies in the concept of the ‘multi-
plicity’ of a solution of a smooth equation. Let sy be a zero of ¢, and let
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k > 1 be an integer. We say that ¢ has a k-fold zero, or a zero of finite
multiplicity k at so, when

$(s0) =0, ¢'(50) =0, ..., $*D(so) =0, P (s0) # 0.

And s is a zero of infinite multiplicity when ¢®(sp) = O for all positive
integers k: in particular, all the zeros of the zero function ¢ are of infinite
multiplicity. The reader is warned that non-zero functions can have zeros
of infinite multiplicity. Such pathologies do not appear in this book, so
we will say no more about them. Further, sy is a repeated zero when it
is a zero-of multiplicity > 2: in particular, zeros of infinite multiplicity
are repeated. For reasons which will become clearer as we proceed, it is
important for us to know that the concept of ‘multiplicity’ is invariant
under changes of parameter, in the following sense.

Lemma 7.2 Let ¢ : I — R be a smooth function, let s : J — I be a change
of parameters, and let v : J — R be the composite function defined by
p(t) = ¢(s(t)). Then s(t) is a zero of order > k of ¢(s) if and only if t is
a zero of order > k of y(t).

Proof First, we prove by induction that for each integer k > 1 there exist
smooth functions oy, (t), ..., ox(t) for which

¥ O(t) = o1 (P @) + - + ()W (s(2)).

For k = 1 we can take 611(t) = (t): and assuming the result is true for
k it follows for (k + 1) by differentiating and using the standard rules
of elementary calculus. Thus if the first k derivatives of ¢ vanish at s(t)
then the first k derivatives of y vanish at ¢: in other words, if s(t) is a
zero of order > k of ¢(s) then t is a zero of order > k of y(s). The result
follows on reversing the roles of ¢, y and replacing s by its inverse. [

The Factor Theorem can now be stated in a sharper form, providing a
compelling picture of the local behaviour of a smooth function ¢ close
to a zero of given multiplicity.

Theorem 7.3 Let ¢ : I — R be a smooth function, having a zero of finite
multiplicity k at to. Then there exists a smooth function v : I — R with
w(to) # O for which ¢(t) = (t — to)ew(t). In particular, when k is odd ¢(t)
changes sign at to: and when k is even ¢(t) has constant sign close to to,
namely that of ¢®(ty).
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Proof By the Factor Theorem there is a smooth function y : I - R
for which ¢(t) = (t — to)x(t). We claim first that ¢ty is a zero of y of
multiplicity (k — 1). Let n > 1 be an integer. Differentiating the relation
@(t) = (t — to)x(t) successively n times, and then setting ¢t = ¢y, we obtain
¢™(0) = ny"=1(0): it then follows immediately from the definitions that
to is a zero of multiplicity k of ¢ if and only if ¢ty is a zero of multiplicity
{k — 1) of y. The main statement now follows immediately by successive
applications of the Factor Theorem. For the remainder, we have only to
observe that in the relation ¢(t) = (t —to)¥p(¢) the sign of y(t) is constant
for t close to to, so that the sign of ¢(t) is given by that of (¢t — to)*: for
k odd this changes sign at to, and for k even it has constant sign close
to . OJ

7.3 Contact with Lines

Let z : I — R? be a curve. In this section we shall study in some detail the
local question of how a line can meet the curve at some fixed point z(t).
Let u be a unit vector, representing a direction in the plane, and let L, be
the line through z(ty) orthogonal to u, with equation {z — z(t9)} eu = 0.
The parameters ¢ for which the point z(t) is a point of intersection of the
curve with L, are given by the equation y(t) = 0, where y : I — R is the
smooth function defined by

7(8) = {2(t) — z(t0)} o u. (7.1)

We call y the contact function of z with L, at t3. Thus we have defined
a family of contact functions, one for each unit vector u. The function
y vanishes if and only if z(t) lies on L,, is positive on one side of that
line, and is negative on the other side. The parameter t; is automatically
a zero of y(t), corresponding to the intersection of L, at the point z(to).
The line L, is said to have k point contact with the curve z at t = g
when the contact function y has a zero of multiplicity k at 5: and L, has
infinite contact with z at t = t; when y has a zero of infinite multiplicity
at tg. For convenience we will sometimes refer to even (respectively odd)
contact when y has a zero of even (respectively odd) finite multiplicity
at to.

Example 7.3 The eight-curve x(t) = acost, y(t) = asintcost where
a > 0 has the property that z(n/2) = (0,0). We will calculate its contact
at the parameter tp = n/2 with y = x, ie. the line L, where u = (1,—1).
The contact function with L, at the origin is y(t) = acost(1 —sint). A



7.3 Contact with Lines 93

line or two of working verifies that '(t) = 0, y”(t0) = 0, y” (t0) = =3 # 0,
so the line L, has three point contact with z at to.

Before pursuing the question of contact with lines we need to clarify
its basic invariance properties. First, it is invariant under parametric
equivalence, in the following precise sense.

Lemma 7.4 Let z, w be curves with domains 1, J, parametrically equivalent
via the change of parameters s : J — I. Then the contact of the line L,
with z at s(ty) equals that of L, with w at t.

Proof Let y(t) = {z(t) — z(s(ty))} ® u be the contact function for z with
L, at s(tp). Then the contact function for w with L, at g is

8(8) = {w(t) — w(to)} @ u = {z(s(£)) — z(s(to))} ® u = y(s(1))-

It follows immediately from Lemma 7.2 that ¢y is a zero of § of multi-
plicity k if and only if s(tp) is a zero of y of multiplicity k. The result now
follows from the definitions. O

However, contact with lines is also invariant under congruences, in the
following sense.

Lemma 7.5 Let I be an isometry, and let z, w be curves with w(t) = 1(z(t)).
Then the contact of the line L, with z at ty equals that of the line 1(L,)
with w at tg.

Proof Recall first that any isometry is the composite of an isometry R
with R(0) = 0 and a translation T. (Lemma 6.2.) Thus it suffices to prove
that contact is invariant under such isometries R, and translations T.
Consider first the case of an isometry R with R(0) = 0. The image R(L,) is
a line M, through wo = R(z(5)) where v = R(u). Let y(t) = {z(t)—z(to)}ou
be the contact function for z with L, at ty. Then the contact function for
w with L, at ty is

o) = {w(t)—w(to)} e v = {R(z(t)) — R(z(t))} ® R(u)
= {z(t) — 2(t0)} o u = y(t),

where we use the fact that R preserve scalar products. (Lemma 6.3.) It
remains to verify that contact is preserved by translations T. Suppose
that T(z) = z + b, with b a complex number. Then T(L,) is a parallel
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L L,

z(ty)

Figure 7.1. Curve crossing a non-tangent line L

line M,, and

6(2)

{w(t) — w(to)} e u = {T(z(t)) — T(z(to))} e u
{(z(t) + b) — (z(to) + b)} e u
{z(t) — z(to)} @ u = y(2).

7.4 Inflexions and Undulations

We are now in a position to derive useful geometric information from the
contact function. For the moment we restrict ourselves to the case when ¢,
is a regular parameter. (In the next section we will extend our discussion
to certain types of irregular parameter.) Our opening observation is
that the tangent lines to a curve are characterized by having contact of
order > 2.

Lemma 7.6 At a regular parameter ty for a curve z the tangent line is the
only line through z(to) which has contact of order > 2 with the curve at
z(to). In particular, any other line L through z(ty) has contact of order 1,
and the curve must cross L at that point. (Figure 7.1.)

Proof Write y(t) = {z(t) — z(to)} ® u for the contact function. The line L,
is tangent at to if and only if y'(tg) = 0, ie. if and only if z'(t) e u = 0,
i.e. the vector u is parallel to the normal vector at ty. Thus the tangent
line at to is the only line L, through z(¢;) tangent to the curve at that
point. For any other line L through z; the contact function y has a zero
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of order 1 at t5, so by Theorem 7.3 changes sign at to. The result follows
from previous remarks. O

Let us concentrate now on the more subtle question of how a curve
z behaves relative to the tangent line itself. Thus we can assume in the
following that u = iz’(t9), the normal vector at t, so that

() = {z(t) — z(to)} @ iz'(to).

The next result relates contact of order 2 to the curvature. In particular it
provides a compelling interpretation for the sign of the curvature function
underpinning one’s mental picture of the whole subject. Before reading
the proof you may like to refer back to Example 1.9 where we discussed
the two sides of a line.

Lemma 7.7 At a regular parameter to a curve z has contact of order 2 with
the tangent line if and only if the curvature x(to) # 0. For all parameters t
sufficiently close to to the point z(t) lies on the same side of the tangent line
as the unit normal when x(to) > 0, and on the opposite side when x(tp) < 0.

Proof In view of the invariance results for contact it is no restriction to
assume that z is a unit speed curve. Differentiating the contact function
twice, and setting t = tp, we obtain the relations y'(to) = 0, y"(ts) =
2"(ty) @ iz’ (tg). Now observe that

K(to) = T'(to) ® N(to) = z"(to) ® iz'(to) = ¥"(to)-

It is immediate that we have contact of order 2 if and only if x(tg) # 0.
In that case the sign of x(tp) agrees with that of y"(¢9). However, by
Theorem 7.3 the sign of y"(to) agrees with that of y(tg), so x(ty) has the
same sign as y(tg). The result is immediate from the observation that the
contact function y(t) is positive on the side of the tangent line containing
the unit normal vector, and negative on the opposite side. O

Of course, we can rephrase the first statement by saying that the contact
at the parameter ¢t has order > 3 if and only if x(¢) = 0: equivalently, the
contact at ¢ has order > 3 if and only if ¢ is inflexional. Recall that the
condition for a regular parameter ¢ to be inflexional is that

X' (6)y"(t) — x"(t)y'(t) = 0. (12)

The concept of contact allows us to explore the fine detail of inflexions.
Inflexional parameters of contact 3 are ordinary, and those of contact
> 4 are undulational. In principle it is not difficult to locate undulational
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Figure 7.2. Picturing the sign of the curvature

parameters. The condition for an inflexional parameter ¢t to be undula-
tional is that 0 = y"”(t) = z(t) ¢ iz'(t), i.e. that the vectors z'(t), z"(¢)
should be linearly dependent, so that in addition to (7.2) we have

X (@)y" () — x"(0)y'(t) = 0. (7.3)

Example 74  Consider the graph y = f(x) of a smooth function
f(x) viewed as the curve x(t) = t, y(t) = f(t). As in Example 5.5 the
condition for an inflexion simplifies to f”(t) = 0; and the conditions for
an undulation simplify to f“(t) = 0, f”'(t) = 0. For instance when f(¢) = "
with n > 3 these conditions reduce to n(n—1)t"~% = 0, n(n—1)(n—2)t" 3 =
0: there is therefore a unique inflexion when ¢ = 0, which is an undulation
if and only if n > 4.

Lemma 7.8 Close to an inflexional parameter ty, having even contact the
curve stays to one side of the tangent line at ty. And at an inflexional
parameter ty having odd order the curve crosses the tangent line at ty: in
particular, that is the case at an ordinary inflexion. (Figure 7.3).

Proof When ty is an inflexion with even contact Theorem 7.3 ensures
that y(t) has constant sign close to tp; and when ¢y is an inflexion with
odd contact y(t) changes sign at to. The result now follows exactly as in
Lemma 7.6. O

Example 7.5 In Example 7.4 we saw that the curve x(t) = ¢, y(t) = "
with n > 3 has a unique inflexion when ¢ = 0 which is an undulation if
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n=3 n=4

Figure 7.3. Inflexions having odd and even contact

and only if n > 4. Moreover, the contact function at t = 0 is y(¢t) = ¢
having a zero of multiplicity n. When n is odd the contact is odd, and
the graph crosses the tangent line y = 0: and when n is even the contact
is even and the graph stays on one side of the tangent line. Figure 7.3
illustrates this result for the cases n =3, n =4

Example 7.6 A Serpentine is an algebraic curve defined by an equation
x2y—b*x+a’y = 0 where a,b > 0. Its zero set is the graph of a function:
indeed, solving the equation for y we find that y = f(x) where
b?x
T =ara

According to the above, inflexional parameters are found by solving the
equation f”(x) = 0. We leave the reader to check that that gives three
inflexions at x = 0, x = /3a, x = —+/3a. All are ordinary, since f”(x)
takes the respective values —6c, 3c/16, 3c/16 where ¢ = a®/b*, none of
which vanish. (Figure 7.4.)

Example 7.7 We will investigate undulations in the family of limacons
z(t) = 2¢* — he*, where h > 0. (Example 3.13.) Recall that the curve is
regular, save in the exceptional case h = 1. The inflexions were determined
in Example 5.9. We found that the curve has an inflexion if and only
if h lies in the range 1/2 < h < 1: in fact there is just one inflexion
when h = 1/2 (the uniflexional case) and just two when 1/2 < h <1 (the
biflexional case). The conditions for an undulation are that (7.2) and (7.3)
hold simultaneously. In Example 5.9 we saw that the former condition
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Table 7.1. Inflexions on limacons

value of h geometry reference
0<h<1/2 uniflexional limacon Example 7.7
h=1/2 undulational limacon Example 7.7
1/2<h <1 biflexional limacon Example 5.9
h=1 cardioid Example 3.13
h>1 limacon with a self crossing Example 3.14

Figure 7.4. The Serpentine

reduces to cost = H where H = (1 4 2h?)/3h, whilst the latter reduces to
—12hsint = 0. Clearly, these relations can only hold simultaneously when
H =1, and hence h = 1/2. For this reason the limacon with h =1/2 is
said to be undulational. Thus the geometry enables us to distinguish five
classes of limacon, presented in Table 7.1.

The condition for an undulation can also be phrased purely in terms
of the curvature function, providing a simple computational method for
finding such points.

Lemma 7.9 Let t be a regular parameter on a curve z. A necessary and
sufficient condition for t to be undulational is that x(t) =0, ¥'(t) = 0.

Proof Recall that the condition for ¢ to be inflexional is that (7.2) holds.
Differentiating both sides of the formula (5.5) for the curvature, and
setting x'y” — x"y’ = 0, we see that ¥ = 0 if and only if x'y” — x"y’ =0,

which is the condition (7.3) for ¢ to be undulational. O
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Exercises

74.1  Show that the curve x(t) = 2 +1, y(t) = £ +¢ has two inflexions,
both ordinary.

742  The inflexional parameters of the eight-curve x(t) = acost, y(t) =
asintcost with a > 0 were determined in Exercise 5.4.5. Show
that they are all ordinary.

74.3  Show that the cycloid x(t) = R(¢t — hsint), y(t) = R(1 — hcost)
with h > 0 discussed in Example 3.15 has inflexions if and only
if h < 1, and that in that case there are infinitely many, all
ordinary.

7.5 Cusps

In order better to understand the situation at an irregular parameter it
will help to look more closely at the case of a regular parameter. The
gradient of a curve z at a regular parameter ¢ is defined to be the ‘ratio’
y(t) : X'(¢).F At an irregular parameter tp we say that the curve has a
limiting gradient when the gradient y'(¢) : X'(t) tends to a limiting ratio
as t — ty. And in that case we define the limiting tangent line at ty to be
the line through z(p) having that limiting gradient.

Example 78 For the semicubical parabola x(t) = 2, y(t) = > the
gradient at a regular parameter ¢ is 3t/2. The limiting gradient at the
irregular parameter ¢t = 0 is 0, and the limiting tangent line at that point
is the line through (0,0) having gradient O, ie. the line y = 0.

In general there is no reason to suppose that a limiting tangent exists
at an irregular parameter. However, such examples are pathological, and
unlikely to be met in the physical sciences. In any given example it is
virtually certain that a limiting tangent line will exist. Here is a sufficient
condition, covering every case likely to be met in practice.

Lemma 7.10 Let z be a curve, and let ty be an irregular parameter with the

property that some derivative of z'(t) is non-zero at ty. Then all parameters

t # to sufficiently close to ty are regular, and the limiting gradient exists

at typ.

t Formally, we define an equivalence relation ~ on the non-zero vectors by writing
(a,b) ~ (c,d) when there exists a real scalar 4 # 0 with (@, b) = A(c,d). The equivalence
class containing (a,b) is the ratio a : b. Geometrically, it is identified with the line

bx = ay through the origin, and arithmetically with the scalar a/b, interpreted as co
when b =0.
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\

Figure 7.5. A cuspidal tangent line

Proof Let k be the least integer for which z*¥)(ty) = 0. By Theorem 7.3
there exist smooth functions X, Y for which x'(¢) = (¢t — to)*X(¢), y'(t) =
(t — to)*Y (¢) and at least one of X(t), Y (to) is non-zero. By continuity,
for t # to sufficiently close to ty at least one of X(t), Y (¢) is non-zero,
and hence ¢ is regular. The limiting gradient is Y (¢5) : X(to). O

The simplest possible situation covered by this result is when z'(t) = 0,
z"(t) # 0: a parameter ¢t for which these relations hold is cuspidal,
and the corresponding point z(t) on the trace is a cusp: the vector
2"(t) is the cuspidal tangent vector, and the cuspidal tangent line is the
limiting tangent line, i.e. the line through z{(t) in the direction of z”(t).
Note that if ¢ is cuspidal then parameters sufficiently close to t are
regular. (Exercise 7.5.8.) The next result extends Lemma 7.6 from regular
parameters to cuspidal parameters.

Lemma 7.11 At a cuspidal parameter ty for a curve z the cuspidal tangent
line is the only line through z(ty) which has contact of order > 3 with the
curve at to. Any other line through z(ty) has contact of order 2, and the
curve stays on one side of the line for parameters t sufficiently close to ty.

Proof With the established notation we have y(to) = 0, y'(t0) = 0,
1"(tg) = z"(to) ® u. We have contact of order > 3 when y"(tp) = 0, ie.
when z”(tp) is orthogonal to u, which means that L, is the cuspidal
tangent line. For any other line y has a zero of order 2 at ty, so by
Theorem 7.3 has constant sign close to t. (Figure 7.5.) a

Example 7.9 In Example 7.8 we saw that for the semicubical parabola
x(t) = 3, y(t) = > the cuspidal tangent line at the unique irregular
parameter t = Q is the line y = Q. Arbitrarily close to the origin there are
parts of the trace on either side of the cuspidal tangent. However, for
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any other line through the origin the trace stays on one side, provided ¢
is sufficiently small. Figure 7.5 illustrates this for the line y = x.

Let ty be a cuspidal parameter for a curve z. To study the contact of
z with the cuspidal tangent we take the vector u in the contact function
to be u = iz"(ty), so

() = {z(t) — z(t0)} @ iz"(t0)-

This vanishes if and only if the point z(¢) lies on the cuspidal tangent
line, is positive on one side of that line, and negative on the other.
Differentiating the formula for y(t) successively, and setting t = ¢ in the
results, we obtain

P(to) =0, Y(t)=0, () =0, " (to) =z"(t0)eiz"(to)

so y has a zero of order > 3 at ty. A cuspidal parameter f; is said to have
order k when y has a zero of order (k +2) at t9. Cusps of order 1 are said
to be ordinary, and those of order > 2 are higher. Evidently, a cusp is
ordinary if and only if the vectors z”(tg), z(t9) are linearly independent.

Example 7.10 The model for an ordinary cusp is the semicubical parabola
z(t) = (2, £3) illustrated in Figure 2.10. The parameter t = 0 is an ordinary
cusp of that curve since z’(0) = (0,0), z”(0) = (2,0), z”’(0) = (0,6) and the
last two vectors are linearly independent. Note that the cuspidal tangent
is the line through the origin in the direction of z”(0) = (2,0), ie. the
x-axis.

Example 7.11 The limacons z(t) = 2¢* — he** of Example 3.13 provide
us with another instance of an ordinary cusp. We saw that z has an
irregular parameter if and only if h = 1 (the cardioid) and that in that
case t = 0 is the only irregular parameter in the range 0 < ¢t < 2zn. The
parameter O is a cusp since z”(0) = (—2,0) is non-zero, and it is ordinary
since z”(0) = (0, —6) is not a scalar multiple of z”(0).

Example 7.12 Consider the curve z(t) = (¢ + £3,¢*) illustrated in Fig-
ure 7.6. The only irregular parameter is ¢t = 0, which is a higher cusp
since 2’(0) = (0,0), z”(0) = (2,0), z”(0) = (6,0) and the last two vectors
are linearly dependent. For this example y(f) = 2t* and the parameter
t = 0 is a zero of multiplicity 4. By Lemma 7.12 below, the curve must
stay on one side of the cuspidal tangent for ¢ close to 0, as indeed it
does.
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Figure 7.6. Example of a higher cusp

Lemma 7.12 At a cuspidal parameter to of odd order the curve crosses the
cuspidal tangent line at ty: in particular, this is the case at an ordinary
cusp. Close to a cuspidal parameter ty of even order the curve stays on one
side of the cuspidal tangent line. (Figure 7.6.)

The proof of Lemma 7.12 follows immediately from Theorem 7.3.
Ordinary cusps have an interesting property not enjoyed by cusps in
general. By way of background, recall that in Example 5.10 we gave three
examples of curves each with a cusp ¢y illustrating that the curvatures at
nearby parameters ¢ could exhibit widely differing behaviours as t — t
through regular parameters ¢. The final result of this section is that for
ordinary cusps the curvature tends to an infinite limit. The reader is
encouraged to compare this theoretical fact with a computer generated
illustration of an ordinary cusp (such as Figure 2.10) in order better to
appreciate the extraordinary visual subtlety of the curvature function.

Lemma 7.13 Let to be an ordinary cusp on a curve z. Then the curvature
K(t) > 0 ast—t.

Proof As usual we write x(t), y(t) for the components of z(t). We use the
formula (5.5) for the curvature. According to that formula we can write
k(t) = f(t)/g(t)*’* where the smooth functions f, g are defined by

fO=XOY'® -x"0y @), gt =x@*+y -

Note that z'(tp) = O since ¢, is an irregular parameter, that z”(t) # 0
since to is a cusp, and that z”(tp), z”"(to) are linearly independent since
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the cusp is ordinary. Using that information we see that

fto) =g(t) =0, f'(t0) =g'(to)) =0, f'(t0) #0, g"(to)>0.

The Factor Theorem ensures that there exist smooth functions F, G with
F(to) # 0, G(z9) > 0 for which

f©) = (t—t)’F(1), () = (t— t)*G(r).

It follows that for ¢t # ¢y the curvature x is given by a formula of the
following shape, which clearly — co as t — fp:

_FO
0 =TGR

a

Example 7.13 The parameter ¢ = 0 is an ordinary cusp of the semicubical
parabola z(t) = (£2,¢3) with cuspidal tangent the x-axis. (Example 7.8.)
The functions f, g of the above lemma are f(t) = 62, g(t) = t3(4 + 9¢2)
so one can take F(t) = 6, G(t) = 4 +9t%. And the curvature has the form
k(t)=3/4t+ -+ so certainly » o0 ast— 0.

Exercises

7.5.1 In each of the following cases find all the cuspidal parameters,
the cuspidal tangent lines at those parameters, and the contact
of the cuspidal tangent lines with the given curve.

(i x(0)=42, yo==¢

(i) x(t) =1, y)=t*+1¢5
(iii) x(t)=1e—1¢, yt)=12—1t*
(iv) x(®)=32+28, yo)=22-1t
V) x(t)=52—-25 y(6)=202—1%

7.5.2  The piriform was introduced in Example 2.16 as the curve defined
by the following formulas, where a, b are positive constants:

x(t) =a(l +cost), y(¢)=bsint(1+ cost).

Show that the irregular parameters of the piriform are necessarily
ordinary cusps.

7.5.3  Consider the trochoid z exhibited by the formula (3.2). It is
assumed that 4 # —1. In Example 3.10 it was shown that z has
an irregular parameter if and only if h = 1. In that case, show
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7.5.4

7.5.5

7.5.6

7.5.7

7.5.8

759

Contact with Lines

that an irregular parameter ¢ is necessarily a cusp. Further, show
that ¢ is ordinary if and only if A £ —2.

Show that the irregular parameters for the cycloid defined by
the following formulas are necessarily ordinary cusps.

x(t) = R(t — hsint), y(t) = R(1 — hcost).

Show that the unique irregular parameter t = 0 for the tractrix
x(t) = t—tanht, y(t) = sech t is an ordinary cusp. (Example 2.22.)
Show that the unique irregular parameter for the cissoid of
Diocles defined by the following formulas is an ordinary cusp.
2at? 2at3
x(t) = i1 y(t) = i1

The Lissajous figures were introduced in Example 4.11 as the
curves defined by the following formulas. Show that an irregular
parameter is necessarily a higher cusp.

x(t) = ag sin(wit + ¢1),  ¥(t) = ay sin(wyt + ¢»).

Let t; be a cusp for a curve z. Show that all parameters t # ¢y
sufficiently close to ty are regular. (Apply the Factor Theorem to
the components of z'.)

Let to be a higher cusp on a curve z. Modify the proof of
Lemma 7.13 to show that the curvature tends to a finite limit as
t — to. Further, show that the limit is non-zero if and only if the
vectors z"(tg), z""(tg) are linearly independent.
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Contact with Circles

In the previous chapter we were able to gain some insight into the
local behaviour of a curve z by studying its contact with lines. In this
chapter we extend that philosophy by studying its contact with circles,
building on the fruitful concept of ‘multiplicity’ introduced in the previous
chapter. Section 8.1 achieves the extension, via explicitly defined contact
functions. There are very clear analogies. For instance, just as we have
a unique line having at least two point contact with z at a regular
parameter t, so we have a unique circle (the ‘circle of curvature’ at 1)
having at least three point contact with z at ¢, at least provided ¢ is
not inflexional. The locus of centres for the ‘circles of curvature’ gives
rise to a new curve known as the ‘evolute’ of z, providing the subject
matter for Section 8.2: it will turn out that the evolute construction can
be reversed via the notion of an ‘involute’. Evolutes play an important
role in understanding the geometry of curves, and we will devote time
to alternative descriptions. Thus in Section 8.3 evolutes are described
dynamically, as the locus of irregular points for the curves ‘parallel’
to z. Later (Chapter 10) we will meet a third description of the evolute
as the ‘envelope’ of the normal lines, providing the key to the crucial
role played by evolutes (Chapter 12) in understanding the idea of a
‘caustic’.

8.1 Contact Functions

Let o be a regular parameter for a curve z : I — R2. A general circle C
with centre ¢ and radius r has an equation |z — c|* = r?; we will assume
that C passes through z(tp) so that |z(ty) — c|* = r2. By analogy with
Section 7.3 we define the contact function of z with C at ¢y to be the

10K
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smooth function y : I — R given by
() = |2(8) — cf* — |z(to) — ¢/, 8.1)

The contact function vanishes when z(t) lies on C, is positive when z(t)
lies outside C, and is negative when z(t) lies inside C. The parameter ¢y is
automatically a zero of y(z), corresponding to the intersection with C at
the point z(tp). The circle C is said to have k point contact with the curve
z at t =ty when 7 has a zero of multiplicity k at ty: and C is tangent to
z at tp when it has at least two point contact at .

Example 8.1 Recall that the trace of a rose curve z(t) = 2be" cosnt
(where b, n are positive) lies inside the circle C of radius 2b centred at
the origin. (Example 2.7.) The curve intersects that circle at parameters
to for which cosnty = +1. The contact function for z with C at such a
parameter £ is

y(t) = |z(t)]* — |z(to)|* = 4b*(cos? nt — cos? nto).

Differentiating twice, and setting t = o, we find that y'(¢) = 0, y"(to) # O.
Thus we have two point contact, and the rose curve is tangent to C at
all the points where it meets it. That is consistent with the illustrations
for the values n = 2,3,... in Figure 2.5.

For convenience we refer to even (respectively odd) contact when y
has a zero of even (respectively odd) multiplicity at t,. By Theorem 7.3
we see that for odd contact y changes sign at 1y, so the curve crosses the
circle at that parameter; and for even contact y has constant sign for ¢
close to ty, so the curve stays on one side of the circle for t close to t.

Lemma 8.1 A circle C is tangent to z at a regular parameter t if and
only if its centre c lies on the normal line to z at ty. The curve crosses any
circle C not tangent to z at ty.

Proof According to the definition C is tangent to the curve at g if
and only if y'(fo) = 0. Differentiating the relation (8.1) gives y'(t) =
2(z(t) — c) # Z'(t), so the required condition is that (z(tp) —c) ¢ z'(tp) = 0,
i.e. that z(f9) — c is orthogonal to the tangent vector z'(ty), i.e. if and only
if the centre c lies on the normal line at to. When z fails to be tangent to
C, the contact is of order 1, and the second statement is immediate from
the above remarks. O
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Figure 8.1. Circles tangent at the vertex of a parabola

Example 8.2 Let ¢ = (2, ) be a point distinct from the origin, and let
C be the circle centre ¢ passing through the origin. Consider the contact
of the parabola x(t) = at?, y(t) = 2at with C at the parameter ¢t = 0. In
that case the contact function is

0 = {((t) — 0)? + (1) — B)*} — {(x(0) — 2)* + (y(0) — B)*}
—4aBt + 2a(2a — o)t + a*t*.

The parameter ¢t = 0 is always a zero of y(t), whose multiplicity depends
on ¢. For B # 0 the multiplicity is 1; for § = 0, a # 2a the multiplicity
is 2 and for § = 0, o = 2a the multiplicity jumps to 4. Thus C has one,
two or four point contact with the parabola at t = 0. In particular we
have tangency if and only if the centre c lies on the normal line y = 0
to the parabola at t = 0, verifying the prediction of Lemma 8.1: and in
that case, provided we stay close to the origin, the parabola is outside
C for a < 2a, and inside for @ > 2a. In Figure 8.1 the largest circle is
outside the parabola close to the origin, the smallest circle is inside, and
the intermediate circle is the transitional circle of radius 2a.

The next step is to determine when the contact is at least three point.
The answer is provided by the next result.

Lemma 8.2 At a non-inflexional regular parameter ty of a curve z there is
" exactly one circle C having at least three point contact with z at to, with
radius p = 1/|x(tg)|: at an inflexional parameter tg there is no such circle.
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Proof The conditions for at least three point contact are that y'(t) = 0,
y"(to) = 0. By the previous result, the former condition means that C is
tangent to z at tp, so the vector z(tg) — ¢ is parallel to the unit normal
vector N(ty), and we can write ¢ = z(ty) + pN(ty) for some scalar p. To
interpret the latter condition, first differentiate the relation (8.1) twice to
obtain

%«0=@m—@./m+im.im. (8.2)

Taking the above choice for ¢, and setting ¢t = t,, we see that the scalar
p has to satisfy

—pN(to) ® 2" (to) + 2'(t0) ® 2'(t0) = 0.

When t is an inflexional parameter N(to) @ z”(to) = 0 and the equation
has no solution for the scalar p. In other words at an inflexion there is
no circle having at least three point contact with the curve. However, at a
non-inflexional point there is a unique solution for p; using the formula
for x given in Section 5.2 it is

z'(to) @ 2'(t0) _ 1
N(to) e 2"(to)  K(to)

p = plto) =
O

Before leaving generalities about contact with circles we should point
out that the reasoning used to prove Lemma 7.4 establishes the following
analogue for contact with circles.

Lemma 8.3 The order of contact of a curve with a circle is invariant under
parametric equivalence, in the following sense. Let z and w be paramet-
rically equivalent curves with domains I, J via the change of parameter
s :J — I. Then the contact of the circle C with w at t equals that of C
with z at s(t).

Likewise the proof of Lemma 7.5 is easily adapted to prove that contact
with circles is likewise invariant under isometries, in the following sense.

Lemma 8.4 Let I be an isometry, and let z, w be curves with w(t) = I(z(t)).
Then the contact function for the circle C with z at ty coincides with that
Jor the circle D = I(C) with w at ty: in particular, the orders of contact
are equal.
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Proof Let ¢ be the centre of C. Then D is the circle centre d = I(c)
having the same radius. (Exercise 6.1.3.) Let y, § be the contact functions
for z, w with C, D at t3: then

5() = |w@)—dP?—|w(to) —d|*
= 1(z(t)) = 1(c)* = U (z(t0)) — I(c)I?
= |z —cf —lz(to) — > = ().
O
Exercises

8.1.1  Find real numbers a, b for which the graph y = x> + ax + b is
tangent to the circle x? + y? = 2 at the point (1, 1).

8.1.2  Let C be a circle, and let z be a curve whose trace is completely
contained in the closed disc bounded by C. Show that z is tangent
to C at any parameter ¢ for which z(t) lies on C. (Example 8.1
illustrated this result for the rose curves by direct computation.)

8.2 Evolutes

Let ¢ be a non-inflexional regular parameter on a curve z. The scalar
p(t) = 1/|«(t)] is called the radius of curvature at t. The unique circle of
radius p having at least three point contact with the curve is called the
circle of curvature at t, and its centre z.(t) defined by

N()

z.(t) = z(t) + w0 (8.3)
is the centre of curvature at t. Note that the circle of curvature has the
same curvature at ty as the curve itself (up to sign). Provided z has no
inflexions the resulting curve z. is the evolute of z. Thus the trace of the
evolute can be described as the locus of centres of curvature. With this
notation, we can write down the equation of the circle of curvature at a
parameter ty: it is the unique circle through z(¢y) with centre the point

Z.(t9), so is given by
|z — z.(t0)* = |2(t0) — 2+(t0) . (84)

It helps one’s intuitive picture to regard the situation at an inflexional
parameter ¢ as a limiting case of that at a non-inflexional parameter ¢’
As ¢ — t so the radius of the circle of curvature at ¢’ tends to infinity,
so that in the limit one can think of the circle of curvature as a line



110 Contact with Circles

having at least three point contact with the curve at t, namely the unique
inflexional tangent at ¢.

Example 8.3 According to Lemma 5.5 any regular parametrization z of
an arc A of a circle C of radius r > 0 has curvature of constant absolute
value || = 1/r. At any parameter ¢ the circle C itself has at least three
point contact (in fact infinite contact) with A, so is the circle of curvature,
and the centre of curvature is the centre of C. It follows that the evolute
of the arc has trace a single point, namely the centre of C.

The point of the next example is to spell out the natural invariance
properties of evolutes.

Example 8.4 The evolute is invariant under congruence, in the following
precise sense. Let z, w be congruent regular curves, so there exists a
congruence C for which w(t) = C(z(t)) for all ¢: then the evolutes z.,
w, are likewise congruent, indeed w.(t) = C(z.(t)) for all ¢. That can
be deduced either from the fact that contact with circles is invariant
under congruence (Lemma 84) or by a computation based on (8.3).
Further, the evolute is invariant under parametric equivalence. Let z, w
be parametrically equivalent curves, under the change of parameters s:
then the evolutes z., w. are likewise parametrically equivalent, under the
same change of parameters s. (Exercise 8.2.11.) Combining these facts we
see that evolutes are invariant under the concept of equivalence: if two
curves are equivalent, then so too are their evolutes.

In practice evolutes are most readily calculated via formulas. A minor
calculation using (8.3) shows that the components x., y. of an evolute z.

Figure 8.2. A parabola and its evolute
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Figure 8.3. An ellipse and its evolute

are given by the following relations, where for notational economy we
» suppress the parameter ¢:

x'2 + y/2 xrz + yzz
Xa =X — Tl el y/’ yo=y+ Tl ety X
x'y" —x"y Xy —Xx'y

Example 8.5 The speed s and curvature x of the parabola x(t) = at?,
y(t) = 2at with a > 0 are given by

-1
Clearly, the parabola has no inflexions. Substituting in the formula for z.
we see that x.(t) = 2a + 3at?, y.(t) = —2at>. Thus the evolute is the
composite of the semicubical parabola x(t) = 2, y(t) = t> with the affine
- mapping X = 3ax + 2a, Y = —2ay. It has only one irregular point,
namely an ordinary cusp at t = 0 corresponding to the vertex of the
parabola. (Figure 8.2.) The equation of the circle of curvature at any
parameter to is determined by (8.4): for instance, at t = 0 the circle of
curvature is x2 + y? = 4ax, the circle of radius 2a centre (2a,0).

s(t) = |2/(t)] = 2a(1 + A2, k(1) =

Example 8.6 The ellipse x(t) = acost, y(t) = bsint with 0 < b < g has
no inflexions. The formulas for the centre of curvature yield the evolute
in the form

232 22
x.(t)=(a ab )cos3t, y.(t)=(b b“)sm%,
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Figure 8.4. The evolute of the eight-curve

The evolute is obtained from the astroid (Example 4.3) by scalings of
the variables. Note that the four cusps on the evolute arise from the four
vertices on the ellipse.

It is not chance that vertices on the parabola and ellipse give rise to
cusps on the evolute. In Chapter 9 we will introduce a general concept
of ‘vertex’ for curves, and show that such points always give rise to cusps
on the evolute. (Figure 8.3.)

Example 8.7 The evolute fails to be defined at inflexional parameters.
Indeed, looking at (8.3) we see that at inflexional parameters the evolute
will ‘go to infinity’. A good example is provided by the eight-curve
x(t) = acost, y(t) = asintcost with a > 0. In the interval 0 < t < 2=n
there are two inflexional parameters t = n/2, t = 3n/2 corresponding
to the self crossing at the origin. Figure 8.4 illustrates that at these
parameters the evolute ‘goes to infinity’.

Example 8.8 The semicubical parabola z defined by x(t) = ¢, y(t) = ¢
has just one irregular parameter, namely an ordinary cusp at ¢t = 0, and
is easily checked to have no inflexional parameters. Thus the evolute is
defined on the intervals t > 0 and t < 0 but not at t = 0. It is therefore
somewhat surprising to find that the components of the evolute, given by
the following formulas, make perfect sense when ¢ = 0, defining a curve
passing through z(0).

2
x.(t) = —%(2 +91%),  y.(t)= —%(3# +2).

There appears to be something amiss. However, all is well, we just have
to look more carefully at (8.3) to understand what is happening. Clearly
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N

/|

Figure 8.5. Three cusps and their evolutes

as t — 0, the curvature x(t) — oo, and hence z.(t) — (0,0). Thus we
expect the formula for the evolute to be defined at ¢t = 0.

This example illustrates a general point, namely that at an ordinary
cuspidal parameter ty of a curve z the evolute will ‘pass through’ the corre-
sponding point z(tg), in the sense that z.(t) — z(tp) as t — to. That follows
immediately from the observation of Lemma 7.13, that at an ordinary
cusp the curvature tends to an infinite limit.

Example 8.9 At this point it is instructive to look again at Example 5.10
from the ‘evolute’ point of view. In that example we considered the three
curves zy, 2, z3 defined below.

n(t) =), z20t)=(E,0), z(t) =+ 2,8

The point of that example is that although all three curves have exactly
one irregular parameter, giving rise to a cusp at the origin, the limiting
behaviours of the curvatures ki, k2, k3 are quite different. Indeed, as
t — 0 so kg = oo, k3 = 0 and k3 — 2. Figure 8.5 illustrates the three
cusps of Figure 5.4 together with their evolutes. The point to make is
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Table 8.1. Evolutes of some epicycloids and hypocycloids

A name T A

1 cardioid i 1/3

2 nephroid =#/2 1/2
—3  deltoid —n/3 3
—4  astroid -n/4 2

that although the cusps look similar, their evolutes display quite vividly
the differing behaviours of the curvature.

Here is another example where the irregular parameters are ordinary
cusps, so that although at such parameters the evolute is not defined, the
Jformula for the evolute makes sense, and indeed defines a smooth curve.

Example 8.10 In Example 3.11 we determined the irregular parameters
for the epicycloids and hypocycloids

z(t) = (A + 1)e* — S0+

where 4 # —1. And in Example 5.8 it was established that the curve has
no inflexions provided 4 # —2. The reader is left to verify that when
A # —2 the evolute is given by

z(t) = A {(A+ 1)e" + &) = Ae"z(t + 1)

where A = A/(A+ 2), © = n/A. (Exercise 8.2.8.) The curve z(t + 7) is a
reparametrization of z(¢): multiplication by Ae” represents rotation about
the origin through an angle 7, followed by a scaling by A. Table 8.1
presents four special cases of this construction. The curves and their
evolutes are illustrated in Figure 8.6.

It is interesting that the evolute construction can be reversed, in the
sense of the following result.

Lemma 8.5 Let z be a regular curve, for which the involute z* starting at
to is regular: then the evolute of z° is z.

Proof The unit tangent vector, unit normal vector, speed and curvature
associated to z are written as T, N, s, x, and those associated to z* as
T*, N*, s*, «*. It is no restriction to assume that z has unit speed, so
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Figure 8.6. Evolutes of some epicycloids and hypocycloids

s =1, and the involute is given by
z°(t) = z(t) — (t — t0)2'(£) = z(t) — (t — o) T (¢).

Differentiating with respect to ¢, and using the Serret—Frenet Formulas,
we obtain

() (€) = —(t — 1) T'(e) = —(¢ — Lo)K()N(¢).
Taking moduli of both sides of the displayed relation we see that
s*(t) = e(t — to)x(t)

where ¢ = 1 when (t — t), x(t) have opposite signs, and € = —1 when
they have the same sign. It follows that T°(f) = —eN(t), and hence that
N*(t) = €T(t). The relation between the curvatures k, k* is now easy to
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discover: using the formula of Chapter 5, and dropping the parameter ¢
for concision, we have

= (T*Y e N* (—eN’) o (¢T) __N’oT _ T eN _ K
- s* - s* o s s s
The formula for the evolute now gives
- ‘T
@) = 4N )+
K K
es’
= z+{?—(t—t0)}T—z. .

The proof provides us with more abstract information about involutes.
For instance the normal vector N*(¢) to the involute z* is related to
the tangent vector T(t) to z by a relation of the form N*(t) = +T(¢).
It follows that the normal line to the involute at ¢ coincides with the
tangent line to z at ¢: expressed more informally, involutes z* cut tangent
lines to the original curve z orthogonally.

Example 8.11 Here is one way of determining the evolute of the cycloid
z(t) = (t —sint,cost — 1) from a knowledge of its involute. According to
Example 4.14 the involute starting at t = 2= is

z°(t) = z(t — 7)) + (m, =2).

The idea is now to ‘take evolutes’ of both sides. By Lemma 8.5 the evolute
of z® is the original cycloid z. And using the invariance of evolutes under
congruence we deduce that

z(t) = z.(t — m) + (=, —2).
Replacing the parameter t by t + © we see that the evolute is given by

z.(t) = z(t + 7) — (=, =2).

/N
Y

~

Figure 8.7. A cycloid and its evolute
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Figure 8.8. The tractrix and its evolute

It is an easy matter to verify the conclusion of this example by direct
calculation. (Exercise 8.2.6.) It follows that the evolute of a cycloid is
congruent to a reparametrization of the original cycloid, so is an equivalent
curve. Both curves are illustrated in Figure 8.7.

Example 8.12 In Exercise 4.4.2 we saw that the involute of the catenary
x(t) = t, y(t) = cosht starting at t = 0 is the tractrix of Example 2.22.
It follows immediately from Lemma 8.5 that the evolute of the tractrix
is the catenary, a conclusion that can be verified by direct calculation.
(Exercise 8.2.5.) Note incidentally that the tractrix has a simple cusp at
the parameter ¢t = 0, corresponding to the point (1,0) on the trace of the
catenary. (Exercise 7.5.5.) Thus we have yet another illustration of the
fact that the evolute of a curve ‘passes through’ any simple cusp. Both
curves are illustrated in Figure 8.8.

Example 8.13 The concept of ‘evolute’ sometimes relates special curves
which at first sight are unrelated. A good example is provided by Cayley’s
sextic x(t) = cos® t cos 3¢, y(t) = cos t sin 3t. We leave the reader to check
that its evolute is a nephroid. (Exercise 8.2.10.)

Exercises

8.2.1 Find a formula for the radius of curvature p of the catenary
x(t) =t, y = cosht. Let P = (x(t), y(t)), and let Q be the point
where the normal line at ¢ meets the x-axis. Show that the
distance PQ = p.

8.22  Find the equation of the circle of curvature at the parameter ¢
for the cardioid x(t) = 2cost — cos2t, y(t) = 2sint — sin 2¢.
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.Y,

Figure 8.9. Cayley’s sextic and its evolute

Find the equation of the circle of curvature at the parameter ¢
for the cissoid of Diocles, given by

2at? 2at3
m, y (t) = 1+ 2

Find a formula for the evolute of the positive branch x(¢) =
acosht, y(t) = bsinht of the standard hyperbola.

Show that the evolute of the catenary x(t) = ¢, y(t) = cosht is
the curve x.(t) = t —sinh tcosh ¢, y.(t) = 2 cosh t. Find the centre
of the circle of curvature at the parameter ¢ = Q.

Verify by direct calculation that the evolute of the cycloid defined
by z(t) = (t — sint,cost — 1) is given by the formula

x(t) =

z.(t) = z(t + m) — (m,—2).

Show that the evolute of the ellipse x(t) = acost, y(t) = bsint
has no inflexions. (Example 8.6.)

Verify the formula given in Example 8.10 for the evolute of the
epicycloid or hypocycloid

z(t) = (A + 1) — 1,

Let z be a standard equiangular spiral z(t) = re¥’, where y = a+iff
is a complex number with a, § non-zero real numbers. Show
that the evolute z. is congruent to z. Deduce that the centre
of curvature at ¢ is the point where the line through the origin
orthogonal to z(t) meets the normal line at ¢.



8.3 Parallels 119

8.2.10 Show that the evolute of Cayley’s sextic x(t) = cos®tcos3t,
y(t) = cos® tsin 3t is a nephroid.

8.2.11 Show that the evolute of a curve is invariant under parametric
equivalence, in the following sense. Let z : I — R? and w :
J — R? be parametrically equivalent curves, via the change of
parameters s : J — I. Then z.(t) = w.(s(t)).

8.212 Let z, w be congruent regular curves, so w(t) = C(z(t)) for some
congruence C. Show that the evolutes z., w. satisfy the relation
w.(t) = C(z.(2)), so are likewise congruent.

8.2.13. Let z be a regular curve with speed s and curvature x. Show that
at parameters ¢t where «'(f) # O the curvature x. of the evolute
is given by the formula

_ si3(t)
T @l

8.2.14 Write down formulas for the evolute of a graph y = f(x). Use
your formulas to show that if the trace of the evolute is contained
in the x-axis then the function f satisfies the differential equation
1+ ff” + f'* = 0. By integrating this equation, deduce that the
trace of f is an arc of a circle.

K+(t)

8.3 Parallels

In the previous section the evolute of a curve was introduced as the locus
of centres of curvature. There is however a more dynamic way of viewing
the evolute, via the concept of ‘parallel’ curves. Let z be a regular curve,
and let d be a real number. By the parallel curve z; at distance d we
mean the curve defined by

z4(t) = z(t) + dN(t)

where N(t) is the unit normal vector at ¢. Thus z,; is the locus of points
distance d from z measured along the normal line. The components x4,
ya are given by the following formulas, where x, y are the components
of z, and we suppress the parameter ¢t for economy of expression:

- 4y R
Xd =X~ /x/2+y12’ Ya=y /x12+y12'
The terminology is based on the facts that the parallel curves to a

line are the parallel lines in the sense of Example 1.13: likewise, the
parallel curves to a circle are its concentric circles. (Exercise 8.3.1.) In
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Figure 8.10. Parallels of a parabola

both these instances the parallel curves are similar to the given one. The
next example illustrates the initially surprising fact that in general the
parallels fail to be similar to the original curve.

Example 8.14 Consider the parabola x(t) = at?, y(t) = 2at with a > 0.
The reader will readily check that the parallel at distance d is given by

d dt

W, va(t) = 2at + ﬁ

The parallel z; meets the x-axis when y; = 0, ie. when t = 0 or
J1+1t2 =—d/2a. In the former case the point of intersection is (—d,0).
The latter relation is satisfied for some ¢ #+ 0 if and only if d < —2a in
which case we obtain a second distinct point of intersection. (Figure 8.10.)
For d > —2a they do bear more than a passing resemblance to a parabola,
but for d < —2a they exhibit new features, namely a self crossing on the
x-axis, and two irregular points, both of which can be shown to be
ordinary cusps. (Exercise 8.3.2.)

x4(t) = at® —

The reader with access to a computer algebra plotting program can
trace parallels of favourite curves on an experimental basis. Figure 8.11
is another illustration, namely some of the parallels of an ellipse.

Example 8.15 In dealing with parallels one must not forget that they
are only defined for regular curves. Consider for instance the astroid
x(t) = cos® t, y(t) = sin t. The curve is periodic with period 2r, and in
the interval 0 < ¢ < 2n has four irregular parameters t = 0, t = n/2,
t =mn, t = 3r/2: deleting these four points we obtain four open intervals
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Figure 8.11. Parallels of an ellipse

on each of which the restriction is regular. Figure 8.12 illustrates for each
of the four restrictions the two parallels at distances d =1/2,d = —1/2,
yielding eight-curves in all. The reader is urged to pause and clarify
which curves represent parallels at distance d = 1/2, and which represent
parallels at distance d = —1/2. The point of the example is that it is all
too easy to misinterpret the illustration.

Comparing Figure 8.10 with Figure 8.2 suggests that the locus of
irregular points for the parallels is the evolute. In fact that is the case,
provided the statement is worded a little more carefully.

Lemma 8.6 Let z be a regular curve, and let d be a real number. Then a
parameter t is irregular for the parallel z; if and only if z4(t) = z.(t).

Proof It is no restriction to assume that z has unit speed. Using the
Serret—Frenet Formulas (5.4) we see that the tangent vector to the parallel
zg attis

Zy(t) = 2'(t) + dN'(t) = 2'(t) — dr(8)z'(¢) = (1 — dk(t))z'(¢) (8.5)

As Z'(t) # 0 it follows that ¢ is irregular for z; if and only if 1 —dk(t) =0,
ie. if and only if z4(¢) = z.(2). O

Thus the irregular parameters ¢ for the parallel z; are precisely those
for which z,(t) is the corresponding point z.(¢) on the evolute.

Example 8.16 It adds to one’s understanding to view the evolute as a
transition between two distinct types of behaviour. Provided dx(t) # 1 the
displayed relation (8.5) in the above proof shows that the tangent vectors
zj(t), z'(t) are linearly dependent. Let T, T, be the unit tangent vectors,
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Figure 8.12. Two parallels of an astroid

and N, N; be the unit normal vectors for z, z;. Then for dk(t) < 1 the
tangent vectors are parallel in the same direction, and T = Ty, N = Ny:
on the other hand, for dx(t) > 1 the tangent vectors are parallel in
opposite directions, and T = —Ty, N = —N,. More succinctly, we can
write T; = €T, N; = eN, where e = +1 when dx < 1 and ¢ = —1 when
dx > 1. In particular, if ¢ is a regular parameter for both curves the
normal lines at these points will coincide. Thus the normal lines for any
parallel z; coincide with the normal lines for the original curve z.

Lemma 8.7 Let t be a parameter which is regular for both a curve z and
a parallel z;. Then the curvatures k, k4 of z, z4 are related by

e
T 1—dk’

Kd

Proof Let T, N, s be respectively the unit tangent vector, unit normal
vector and speed for z: and let T, Ny, 54 be the corresponding quantities
for the parallel z;, By Lemma 8.6 we need only consider parameters
for which dk # 1. As in the above discussion we can write T; = €T,
Ny = eN. Differentiation then yields T; = €T’, N; = eN’. From the
displayed relation (8.5) we deduce that s; = €(1 —dx)s. Using the formula
for the curvature in Section 5.2 we now have

_T;eN; (eT')e(eN) (T')e(N)  ex
T s sd T e(l—dr)s  1—dk’

K4
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Example 8.17 Let z be a regular curve. It follows immediately from the
relation between the curvatures of z and its parallel z, that a parameter
t is inflexional for z if and only if it is inflexional for all the parallels z,.
In particular if z has no inflexions then none of the parallels z; have
inflexions.

Our final Lemma marries the concepts of evolute and parallel: para-
phrased, it says that all the parallels of a curve z have the same evolute
as z.

Lemma 8.8 Let z be a regular curve without inflexions, and let t be a
parameter which is regular for a parallel z;. Then we have (24).(t) = z.(?).

Proof Write N, N, for the unit normal vectors associated to the curves
z, z4. As in the proof of Lemma 8.7 we can write N = eN,. Then,

(Zd). = Zq + K_d

N

z+dany+ 4 _xd'c)

LN
Z ’C '—z.' Ij

Exercises

8.3.1  Show that the parallels of a regularly parametrized line are its
parallel lines, and that the parallels of a regularly parametrized
circle are its concentric circles.

832 Let z; be the parallel of the parabola x(t) = at?, y(t) = 2at
at distance d. (Example 8.14.) Show that z; is regular if and
only if d > —2a. Further, show that for d < —2a it has exactly
two irregular points, both ordinary cusps. What happens when
d=2a?

833 Let z be a regular curve, and let zj, z; be regular involutes
starting respectively at the parameters t;, t;. Show that zj, z;
are parallel curves. (Lemma 8.8 then tells us that zj, z; have the
same evolute, confirming the result of Lemma 8.5.)
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Vertices

The central object in the previous chapter is the evolute of a paramet-
rized curve, the locus of centres of the circles of curvature. Recall that
the circle of curvature has at least three point contact with the curve.
In this chapter we will pursue these ideas to study the exceptional
points on a curve where the circle of curvature actually has at least
four point contact. Qur first result is that such exceptional points cor-
respond to stationary values of the curvature, the ‘vertices’ of the curve,
enabling us to determine them in explicit examples. One of their virtues
is that they tend to appear as highly visible points on a tracing of
the evolute, whereas they may be effectively invisible on a tracing of
the original curve. That emphasizes the point that the evolute picks
up very subtle geometric information about a curve: indeed two vi-
sually similar curves may have quite dissimilar evolutes. It is for that
reason that evolutes provide sensitive methods for distinguishing one
curve from another, a matter of practical importance in some physical
disciplines.

9.1 The Concept of a Vertex

Before proceeding to formalities it might be profitable to look at an
explicit example in some detail.

Example 9.1 Consider the parabola z with components x(t) = at?,
y(t) = 2at where a > 0. In Example 8.2 we showed that the circle of
curvature at the parameter t = 0 has exactly four point contact with the
parabola. In this example we will show that ¢t = 0 is the only parameter
for which the circle of curvature has four point contact. The contact

124
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function at the parameter ty with the circle of curvature at ¢y is
¥() = |2(t) — 24(20)|” — |z(t0) — 2. (t0)?

where z. is the evolute. In Example 8.5 we showed that z. is the semicubi-
cal parabola with components x.(f) = 2a+ 3at?, y.(t) = —2at>. Substitut-
ing for z, z. in the displayed formula, and then successively differentiating
with respect to t, we get

Y(t) = 4a(8® — 33t 4+ 263), V(1) = 1243 — 13), y"(t) = 24d’t.
Setting t = to in these relations we obtain
(o) =0, ¥(to)=0, y"(t) =0, 7" (to)=24d’to.

It follows that t; is a zero of y of multiplicity > 3, jumping to 4 if and
only if top = 0. In other words the circle of curvature always has at least
three point contact, jumping to four point contact precisely when o = 0.

In this example the significance of the parameter to = 0 is that it
corresponds to the unique point where the trace of the parabola meets the
axis of symmetry, namely the vertex of the parabola. It would be grossly
inefficient to have to repeat calculations such as that in Example 9.1 to
find the points on a regular curve z for which the circle of curvature has
higher contact. Our next result will provide a practical criterion. Recall
first that the condition for at least k point contact is that the first (k — 1)
derivatives of the contact function y introduced in Section 8.1 should
vanish. Thus we need explicit expressions for the first few derivatives
of y. For the circle C with centre ¢ and radius r the contact function with
C at the parameter to was defined to be the smooth function

() = |z(t) — c* = |z(to) — ¢l

In Section 8.1 it was shown (Lemma 8.1) that the condition for at least
two point contact is that ¢ should lie on the normal line to z at 5, and
(Lemma 8.2) that at a non-inflexional parameter ¢y the condition for at
least three point contact is that ¢ should be the centre of curvature at ty
defined by ¢ = z.(t¢) with z. the evolute. Pursuing this line of thought
leads to the following result.

Lemma 9.1 Let z be a regular curve, and let t be a non-inflexional param-
eter. The condition for the circle of curvature at t to have contact of order
> 4 is that k'(t) = 0. And the condition for the contact to be of order > 5
is that ¥'(t) =0, ¥"(t) = 0.
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Proof For calculations we may assume z has unit speed. And for
notational efficiency we suppress the parameter t. Thus the unit tangent
vector is z/ = T, and the Serret-Frenet Formulas read T’ = kN, N' =
—«kT. Using these relations the reader is left to verify that the first four
derivatives of y are as follows.

y = 2z—c)eT

" = 2(z—c)e(kN)+2

" = 2z—c)e(—k*T +«'N)

Y = 2(z—c)e(=3xkk'T + (k" — k*)N) — 22

In view of the above comments the condition for the contact at t to
be > 4 is that y"'(t) = 0 with ¢ = z + (N/k). Substituting for ¢ in the
formula for ", and using the relations T ¢ N = 0, N ¢ N = 0, we see
immediately that the required condition is «'(t) = 0. Likewise, for ¢ to be
a higher vertex the condition is that in addition we have y"'(t) = 0 with
¢ = z + (N /x). Further calculation shows that the required condition is
K'(t)=0. O

On this basis we are led to the following definition. By a vertex of a
curve z we mean a regular parameter ¢ for which the curvature « has a
stationary value, i.e. ¥'(t) = 0. In particular, local extrema of the curvature
are vertices: and for curves of constant curvature (line segments and arcs
of circles) every parameter is a vertex. When ¢ is inflexional Lemma 7.9
tells us that ¢ is a vertex if and only if ¢ is undulational. And when ¢ is
non-inflexional a vertex is a parameter for which the circle of curvature
at t has at least four point contact with the curve at t: vertices with
exactly four point contact are ordinary vertices, and those with at least
five point contact are higher vertices. Since contact of z with circles is
invariant under changes of parameter, the same is true for the vertex
concepts just introduced.

Example 9.2 When a curve z has exactly three point contact with the
circle of curvature at a non-inflexional parameter ¢t it crosses the circle
close to t: and that is the case for contact of any odd order. However,
for contact of even order the curve will stay on one side of the circle of
curvature close to t. For instance the circle of curvature of the parabola
x = at?, y = 2at with a > 0 has four point contact with the curve at
t =0, and the reader can see in Figure 8.1 how, close to the vertex, the
parabola stays outside the circle of curvature.



9.1 The Concept of a Vertex 127

Lemma 9.1 tells us that the vertices of a curve arise as solutions of the
equation k'(t) = 0, in particular as the local extrema of x(t). For some
examples this may be a reasonable calculation to attempt by hand.

Example 9.3 Consider the parabola x(f) = at?, y(t) = 2at with a > 0.
The curvature k and its derivative k¥’ are given by the formulas

3t

K@) = £ O

_ -1

K(t) = 2a(l + 272
The derivative vanishes if and only if ¢t = 0. There is therefore just one
vertex, corresponding to the unique point (0,0) where the parabola meets
its axis of symmetry. (Incidentally, that is consistent with the terminology
of Example 3.1.) Moreover the vertex is ordinary, as a brief calculation
verifies that «”(0) = 3/2a #+ 0.

Example 9.4 Consider the ellipse x(t) = acost, y(t) = bsint, where
0 < b < a. We saw in Example 5.3 that the curvature is given by

ab
 (@®sin®t + b2cos2 )32

K(2)

The reader is left to verify that the derivative of the curvature is given by

_ 3ab(b* —a*)sintcost
(a?sin? ¢t + b2 cos? 1)5/2

«'(t)

This vanishes if and only if sint = 0 or cost = 0. The relation sint = 0
corresponds to the points (1-a,0) at the ends of the minor axis where the
curvature assumes its minimum value a/b?, whilst the relation cost = 0
corresponds to the points (0,1b) at the ends of the major axis where
the curvature assumes its maximum value b/a?. There are therefore
four vertices on the ellipse, corresponding to the extremities of its axes,
agreeing with the terminology introduced in Example 3.2. The reader will
readily check that all four vertices are ordinary, since in each case k" is
non-zero.

Familiarity with simple examples (such as the standard conics) may
lull one into thinking that the human eye is capable of picking out
vertices on the trace of a curve. For instance it is very tempting to
imagine that stationary points on the graph of a function f(x) will
correspond to vertices. However, the concept of a vertex is more subtle
than that. It is easily verified (Exercise 9.1.7) that ¢ is a vertex for the
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x=—1 x=0

Figure 9.1. Vertices on the graph of f(x) = x>(2x + 3)

graph z(t) = (¢, f(¢)) if and only if the following condition is satisfied; in
particular, a stationary parameter ¢ is a vertex if and only if f”(t) = 0.

£7(0) = 30f" @

1+ f'(1)?

Example 9.5 Consider the graph of the function f(x) = x*(2x + 3),
parametrized as x(f) = ¢, y(t) = t*(2t + 3). (Figure 9.1.) It is tempting
to guess that the local extrema at t = 0, t = —1 are vertices. However,
that is not the case, since identically f”(r) = 12 # 0. A computer
algebra program will verify that the relation displayed above holds for
exactly two real values of t, approximately t ~ —0.058, t ~ —1.058. The
corresponding points on the graph are marked on the figure by dots,
neither of which springs to the eye as a candidate for a vertex.

As a prelude to the next example recall the statement of a basic
calculus result, namely Rolle’s Theorem. Let f be a smooth function
defined on an open interval, and let a, b be real numbers with a < b for
which f(a) = 0, f(b) = 0; then there exists a t with a <t < b for which
f'(t) = 0. We wish to apply this to the curvature function x associated
to a regular curve z. In that situation Rolle’s Theorem, combined with
Lemma 9.1, says that between any two inflexional parameters for z there
is at least one vertex. To illustrate these ideas, we consider the family
of limacons whose inflexional behaviour was analysed in Examples 5.9
and 7.7, and summarized in Table 7.1.
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Example 9.6 We will determine how the number of vertices on the
limacon z(t) = 2¢* — he’® depends on h > 0. The curvature and its
derivative are given by

2 _
K(t) = (2h* —3hcost +1)

2 i
_ ) K (1) = 3h“sint(—h +cost)
2(h? — 2hcost + 1)

T 2R —2hcost+ 1)

Vertices appear when the derivative vanishes, ie. when sint = 0 or
cost = h. Now sint vanishes only for t = 0 and ¢t = = in the range
0 <t < 2z. Suppose first that h # 1. Then these parameters are regular
and non-inflexional, hence vertices. The other possibility is cost = h.
When h > 1 this has no solutions: and when h < 1 there are exactly two
solutions in the range 0 < ¢ < 2z (which are regular and non-inflexional)
yielding two more vertices. In the exceptional case h = 1 of the cardioid
only t = 7 is a vertex, and ¢t = 0 is the unique irregular parameter. Thus
for h < 1 there are four vertices, for h = 1 there is one, and for h > 1
there are two. The reader is encouraged to correlate these conclusions
with the inflexional behaviour described in Table 7.1, and the illustrations
of limacons in Figure 3.9.

Example 9.7 In Exercise 5.4.5 it was shown that the eight-curve x(t) =
acost, y(t) = asintcost where a > 0 has just two inflexional parameters
in the range 0 < t < 2=, giving rise to inflexions at the unique self crossing.
It is interesting to determine the number of vertices. A tedious calculation
verifies that the derivative k¥’ of the curvature function vanishes if and
only if

sintcos? ¢ (12sin* ¢t + 9sin’t —2) = 0.

We can discard the possibility cost = 0, as it gives rise to the two
inflexions at the self crossing. When sint = 0 we obtain the two points
(#a,0), other than the self crossing, where the curve meets the x-axis:
these are therefore vertices. It remains to consider the expression in
parentheses. To this end consider the function ¢(S) = 1252 +9S —2. Note
that ¢(—1) > 0, ¢(0) < 0 and ¢(1) > O so in the interval —1 < § < 1
the equation ¢(S) = 0 has exactly one positive solution S*, and exactly
one negative solution S~. Taking § = sin’t, we see that the negative
solution produces nothing, but the positive solution produces an equation
sin?¢t = S* with two roots for sint giving rise to four values for t. That
produces four more vertices, hence six in total.
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9.1.2

9.14

9.1.5

9.1.6

9.1.7

9.1.8

Vertices

Exercises

Find the curvature functions associated to the parametrizations
x(t) = tacosht, y(t) = bsinht of the branches of a standard hy-
perbola. Verify that neither branch has inflexions, and that each
branch has exactly one vertex, corresponding to the intersection
with the axis.

Determine the curvature and the vertices of the curve x(t) = ¢2,
yt)=12.

Find the curvature of the curve x(t) = 3¢, y(t) = t — 3t3. Show
that the curve has no inflexions, and precisely one vertex.

The general cycloid was introduced in Example 3.15 as the curve
with components

x(t) = Rt —dsint, y(t) =R —dcost.

Show that a parameter t is a vertex if and only if it satisfies
one of the following relations, and use this fact to find all the
vertices, for each value of the ratio d/R.

24> — R?

dR
The piriform was introduced in Example 2.16 as the curve with
the following components, where a, b are positive constants.
Show that the piriform has a unique vertex at the parameter
t =2a.

sint=0, cost=

x(t) =a(l +cost), y(t)=bsint(1+ cost).

Show that a regular parameter ¢ of a curve z with components
x, y is a vertex if and only if

(xlz + ylZ)(xlylll _ x///y/) — 3(x/x// + ylyll)(x/y// _ x//y/).

Use Exercise 9.1.6 to show that a parameter ¢t is a vertex of a
graph z(t) = (t, f(¢)) if and only if

men _ 3 @Of"()?
PO= e
Deduce that a parameter ¢t with f/(¢) = 0 is a vertex if and only

f(ty=0.
In each of the following cases use the result of Exercise 9.1.7
to show that the only vertices of the given graph occur at the
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stated values of x.

(i) =coshx, x=0

(i) y=sinhx, x=Ilog(+l++/2)
(iii) y=¢*, x = —log \/5

(iv) y=logx, x=2712

v) y=x% x = 4571/4

(vi) y=x4 x =0,+5671/,

9.1.9  Use the result of Exercise 9.1.7 to show that the versiera given
by the following formula (Example 3.7) has a unique vertex at
x=0:

8a>

x? + 4a%

9.1.10  Use the result of Exercise 9.1.7 to show that the Serpentine given
by the following formula (Example 7.6) has exactly three vertices:

b%x
=ara

9.1.11 Let z be a regular curve, and let ¢ be an irregular parameter for
the parallel z; at distance d. Show that ¢ is a cusp if and only if
t is not a vertex of z. Further, show that in that case the cusp is
ordinary if and only if ¢ is not an inflexion for z.

fx) =

9.2 Appearance of Vertices on the Evolute

For very simple curves (such as the standard parametrized conics) it
is fairly clear to the eye which points arise from vertices. However, in
general it is by no means easy to recognize vertices just by looking at
the trace. It is therefore not without interest that vertices usually show
up very clearly on the evolute. The main point to make in this section is
that the evolute picks up very subtle geometric information from a curve.
Here is the underlying theoretical result.

Lemma 9.2 Let z be a regular curve, and let ty be a non-inflexional
parameter. Then ty is a vertex for z if and only if ty is irregular for the
evolute z.. Moreover, if ty is an ordinary vertex for z then ty is an ordinary
cusp for z..

Proof We can assume that z has unit speed. It is no restriction to suppose
that #g = 0, and since it is non-inflexional that #(0) # 0. Recall that the
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evolute z. is defined by kz. = xz + N. (We suppress the parameter t.)
Differentiating both sides of this relation, and using the Serret-Frenet -
Formulas, we obtain x?z, = —k’N. It follows immediately that z.(0) =0
if and only if x’(0) = 0. However, Lemma 9.1 tells us that t = 0 is a vertex
for z if and only if ¥'(0) = 0, so we deduce that ¢t = 0 is irregular for the
evolute z. if and only if t = 0 is a vertex for z. That establishes the first
statement in the result. Suppose now that ¢t = 0 is an ordinary vertex of z,
so by Lemma 9.1 we have «/(0) = 0, ¥”(0) # 0. Differentiating the above

relation k2z, = —k’N twice with respect to t, and setting t = 0, we get
k(0)227(0) = —«"(0)N(0)
K(0)2z"(0) = 2x(0)x"(0)T(0) — " (0)N(0).

The first relation tells us that z/(0) # 0, so t = 0 is a cusp. And the
second shows that z/(0), z’(0) are linearly independent, so ¢t = 0 is an

ordinary cusp. O

This result is well illustrated by the parabola (Example 9.3) and the
ellipse (Example 9.4). In the case of the parabola there is a unique
ordinary vertex giving rise to an ordinary cusp on the evolute (Figure 8.2)
and in the case of the ellipse there are four ordinary vertices giving rise to
four ordinary cusps on the evolute. (Figure 8.3.) Here is another example.

Example 9.8 Consider the cardioid z(t) = 2¢* — ¢**. In Example 7.11 we
saw that the unique irregular parameter ¢ = Q is an ordinary cusp. And
Example 9.6 tells us that ¢t = = is the unique vertex. By Example 8.10 the
evolute z. is a similar curve, related to the original by 3z.(t) = —z(t 4+ n).

s
N

Figure 9.2. A cardioid and its evolute
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Thus the evolute is another cardioid of one third the size, with ¢t =  the
unique ordinary cusp arising from the vertex on z. Note incidentally that
the evolute passes through the ordinary cusp on z, providing another
illustration of a generality pointed out in Section 8.2, namely that the
evolute of a curve necessarily ‘passes through’ its ordinary cusps. Both
cardioids are illustrated in Figure 9.2.

9.3 The Four Vertex Theorem

In this chapter we have already applied basic calculus results to the
curvature function to gain useful information about vertices. Here is
another excursion into this line of thought. Any periodic curve z of
period p can be viewed as the restriction to a compact interval of length
p, and the same is true of the associated curvature function. One of
the basic facts about such functions is that they have at least one local
maximum, and at least one local minimum, and that such points are
stationary. In particular the curvature function for a periodic curve has
at least two stationary points, hence a periodic curve has at least two
vertices. A good example of this is provided by limacons with constant
h > 1 having two vertices; by contrast, limacons with constant h < 1 have
Sour vertices. It is not chance that the fundamental difference between
these cases lies in the fact that the former type have self crossings, whereas
the latter do not. The key object in this section is an oval, by which we
mean a regular periodic curve z having no self crossings. In the course of
this book we have met several examples of ovals, such as circles, ellipses,
limacons with h < 1, and some of the Lissajous figures.

We will impose a further condition on our curves, which (though math-
ematically unnecessary) has the merit of being geometrically compelling,
and of leading to satisfyingly simple proofs. A regular curve z is said
to be convex when the trace of the curve lies wholly on one side of the
tangent line at any parameter ¢y: more precisely, that means that given
any parameter ty either (z(t) — z(¢y)) ® N(¢t) = O for all parameters ¢, or
(z(t)—z(to)) o N(t) < O for all parameters t. (Figure 9.3.) It is worth noting
that a convex curve cannot have any ordinary inflexions, since at such a
parameter the curve crosses the tangent line. (Lemma 7.8.)

Lemma 9.3 Let z be a convex oval with period w, and let L be a line
meeting the trace at two distinct points py = z(t1), p2» = z(t2). Then either
the whole line segment joining p1, p; is contained in the trace of z, or z
has no further intersections with L.
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Figure 9.3. Convex and non-convex ovals

Proof We need a small preliminary observation, namely that if p = z(a),
g = z(p) are distinct points on the trace of a curve z, and L is a line
with p on one side and g on the other, then L intersects the trace in at
least one point z(t). Let x(t), y(t) be the components of z(t), let L have
equation ax + by + ¢ = 0, and set f(t) = ax(t) + by(t) + c. Then f is a
continuous function for which f(a), f(B) have different signs. It follows
from the Intermediate Value Theorem that there exists at least one real
pumber ¢ in the interval a < t < § for which f(t) = 0, i.e. for which z(z)
lies on the line L.

Now we can proceed with the proof. When the whole line segment is
contained in the trace there is nothing to prove, so assume that is not
the case. Let p; = z(t3) be a further intersection of the trace with L.
Note first that the tangent line at ¢; must coincide with L: otherwise
p1, p2 lie on different sides of L, contradicting convexity. Next, choose
any point g # p1,p2 on the line segment which does not lie in the trace.
Consider any line M through g with p; on one side, and p; on the other.
By the preliminary observation, the arc of z obtained by restriction to
the interval t; < t < t; meets M at least once, at some point r: likewise,
the arc of z obtained by restriction to the interval t; <t < t; + @ meets
M at least once, at some point s. The points r, s are distinct, since z has
no self crossings. And by convexity they must lie on the same side of the
tangent line L. We can assume r is closer to g than s is. (Figure 9.4.) It
remains to observe that by convexity all three points p;, p2, s must lic on
the same side of the tangent to z at r: however, that is impossible, since r
lies in the interior of the triangle formed by these three points. |

That brings us to the final result of this section, the Four Vertex
Theorem of Mukhopadhaya.
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Figure 9.4. Proof of Lemma 9.3

Theorem 9.4 Any convex oval z has at least four vertices. (The Four
Vertex Theorem.)

Proof Write x(t), y(¢) for the components of z(z), and w for the common
period of these mappings and their derivatives. We can assume z has
unit speed. Further, we can assume the curvature x is not constant:
otherwise «’ is identically zero, and every parameter is a vertex. Since « is
continuous and periodic it has a global minimum at some parameter ¢4,
and a global maximum at another parameter ¢, > t;. By calculus ¢4, ¢ are
stationary values of x, hence vertices. It is no restriction to suppose that
t; = 0, and by applying a congruence we can assume y(t1) =0, y(t2) =0.
The segment of the x-axis joining z(¢1), z(¢2) cannot be wholly contained
in the trace of z: otherwise, x is identically zero on that segment, and
hence identically zero on the curve. It follows from Lemma 9.3 that
t1, t; are the only parameters ¢ for which y(t) = 0, so that y(¢) has
constant sign on the interval I; defined by 0 < ¢t < t,, and the opposite
sign on the interval I, defined by t; < t < w. The essence of the proof
is to understand the sign changes of x'(z). The key observation is an
integral equality based on the identity x"(t) = —«(#)y'(¢), an immediate
consequence of the Serret—Frenet equations for a unit speed curve. Using
integration by parts for the last equality, we then have

0= /0 x"(t)dt = — /0 k(t)y' (t)dt = /0 K'(H)y(t)dt.

That can only hold when x/(t)y(¢) changes sign. We claim that x(¢)
cannot be of constant sign on I1, and of constant sign on I». Indeed since
k'(¢t) must assume positive values in I; (for the curvature to increase)
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and negative values in I, (for the curvature to decrease) the signs would
be opposite. But y(t) likewise has opposite signs on these intervals, so
K'(t)y(t) would have constant sign, a contradiction. It follows that «/(t)

changes sign in one of the intervals.
0
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Envelopes

So far in this book we have been concerned solely with the geometry of
a single parametrized curve z. But numerous situations give rise naturally
to a family of curves (z;), where the parameter A ranges over some set A.
In this chapter we restrict ourselves to one parameter families of curves
(meaning that A is an open interval of the real line) and study one
feature of such a family, namely that it may have an ‘envelope’, roughly
speaking a curve which at every point touches some curve in the family.
A paradigm for the concept is the family of tangent lines to a given
parametrized curve: in more detail, we start with a regular curve z, and
for each parameter A let z; be the tangent line to z at A: then z has the
property that at every parameter A there is a curve in the family (z;)
which touches it at that point. Our concern is with the reverse process,
where one starts with a family of parametrized curves (z;), and seeks
a parametrized curve z with the property that at every point it touches
some curve in the family. The key result of this chapter is the Envelope
Theorem, which in principle enables one to find all possible envelopes of
a given family of curves.

10.1 Envelopes

To make sense of the idea of an ‘envelope’ we require some formal
definitions. By a one parameter family Z of parametrized curves we mean
a smooth mapping Z : A x I — R?, where A, I are open intervals of the
real line. It is helpful to think of A x I as a subset of the (4, t)-plane. The
members of the family are the parametrized curves z; : I — R? defined
by the formula z,(t) = Z(4,t). Thus we think of the ‘vertical’ lines in the
(A, t)-plane parametrized as ¢+ (4,t), and z; as the result of composing
Z with this parametrized curve. (Figure 10.1.)

‘o o~ —
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Figure 10.1. A family of curves

Example 10.1 Consider the family of circles centred on the line y = x
and touching both the x-axis and the y-axis. (Figure 10.2.) Take a point
(4,4) on the line y = x. The circle centre (4,4) and radius |4| can be
parametrized as

z2;(t) = Z(A,t) = (A 4+ Acost, A+ Asint)

defining a family Z : R x R — R2. Note that when A = 0 the trace of z;
is the origin, representing a degenerate member of the family.

Let Z : A xI — R? be a family of parametrized curves, and let
e : U > A xI be a regular parametrized curve with domain U an
open interval. Write e(u) = (A(u),t(u)), and E(u) = Z(A(u),t(u)) for the
composite with Z. We call E an envelope (and e a pre-envelope) for the
family Z, when the following conditions are satisfied.

(i) The function 4 is non-constant on any non-trivial subinterval of
U. (The Variability Condition.)

Figure 10.2. A family of circles
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At E,
— T, / E,  E
) R?

Figure 10.3. Two envelopes of the family of circles

(i) For all u the curve E is tangent at u to the curve z;y) at the
parameter t(u), meaning that the tangent vectors E’(u), zﬁ(u)(t(u))
are linearly dependent. (The Tangency Condition.)

Example 10.2 Let us return to the family of circles Z in Example 10.1
defined by

z;(t) = (A + Acost, A + Asint).

Consider the regular curves e;(u) = (u, @), e2(u) = (4, 3n/2), es(u) = (0,u)
in R x R. (Figure 10.3.) The traces of e, e; are the ‘horizontal’ lines in
R xR defined by t = =, t = 37/2 and the trace of e; is the ‘vertical’ line in
R x R defined by A = 0. The reader is left to check that the composites of
ey, ey, e3 with Z are the curves E;(u) = (0,u), E2(u) = (4,0), Es(u) = (0,0).
The trace of E; is the y-axis, the trace of E, is the x-axis, and the trace of
Ej; is the origin. Write Ay, 4>, A3 for the first components of ey, es, e3, and
t1, t2, t; for the second components. Of the functions A (1) = u, A2(u) = u,
A3(u) = 0 only the last fails to satisfy the Variability Condition, so E; fails
to be an envelope. It remains to consider the tangency condition. Note
first that z}(t) = (—Asint, Acost). At any parameter u the tangent vectors
E{(u) = (0,1), z3(n) = (0,—A) are linearly dependent, so e; is a pre-
envelope, and E; is an envelope. Also, the tangent vectors E5(u) = (1,0),
z,(3n/2) = (4,0) are linearly dependent, so likewise e, is a pre-envelope,
and E; is an envelope.

Example 10.3 Consider the family of parametrized curves defined by
Z(A,t) = (t,A(t — A)*). For A = 0 the curve z; parametrizes the x-axis,
whilst for A & 0 it parametrizes a parabola, tangent to the x-axis at the
point (4,0). For the regular curve e(u) = (4,u) we have E(u) = (u,0), with
trace the x-axis. Evidently E is an envelope for Z. This example makes
the important point that a member of the family (z;) is not precluded from
being an envelope of the family.
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10.2 The Envelope Theorem

So far we have simply ‘spotted’ envelopes using no more than a modicum
of native wit. The next stage is to describe a practical procedure for
finding envelopes, provided they exist. The key idea is embodied in
the following definition. The singular set of a family of parametrized
curves Z : A x I — R? is the subset of the domain A x I defined by
the equation detJ(Z) = 0, where J(Z) is the Jacobian matrix of the
mapping Z(4,t) = (X(4,1), Y(4,t)) defined as follows, where X, Y, are
the derivatives of X, Y with respect to 4, and X,, Y, the derivatives with
respect to t.

J(Z)=(§j ;‘ )

Put another way, the singular set is the set of points (4,t) for which the
vectors Z,, Z, are defined and linearly dependent. When we use complex
notation that is the same thing as saying that the quotient of Z;, Z, is a
real number. In practice this can be a more convenient way of phrasing
the determinantal condition.

Example 104 For the family Z : R x R — R? of Example 10.1 we have
X(A,t) =44 Acost, Y(4,t) = A+ Asint and the Jacobian determinant is
given by detJ(Z) = —A(1 + sint 4 cost). This vanishes when 1 = 0 or
1 4+ sint + cost = 0. The former relation defines the t-axis in the (4,1)-
plane. The latter relation is satisfied either when sint = 0 and cost = —1
or when sint = —1 and cost = 0: in the former case t = (2n — 1)z, and
in the latter case t = (2n — %)n where n is any integer. Thus the singular
set is the union of the t-axis with two infinite families of ‘horizontal’ lines
in the (4, t)-plane.

Theorem 10.1 Let Z : A x I — R? be a family of parametrized curves, let
U be an open interval, and let e : U — A x I be a regular curve satisfying
the Variability Condition. Then e is a pre-envelope for Z (and E is an
envelope) if and only if the trace of e lies in the singular set of Z. (The
Envelope Theorem.)

Proof Differentiating the formulas for E, z; we obtain the relations

E'(w)
2 (t(w)

A (W)Z;(Aw), tu)) + £ (W) Z(A(u), t(u))
Z(A(u), t(w)).
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Suppose first that e(u) = (A(u),t(u)) lies in the singular set of Z, so the
vectors Z;, Z, are linearly dependent at (A(u), t(u)). It follows immediately
from the displayed relations that E’(u), z,(t(u)) are linearly dependent,
hence that E is tangent at u to the curve z;,) at t(u). Conversely,
suppose that E is tangent at u to the curve z;y) at t(u), so the vectors
E'(u), zj, ((u)) are linearly dependent. Provided 1'(u) # 0 it follows
immediately from the displayed formulas that the vectors Z;, Z, are
linearly dependent at (A(u),t(u)), hence that e(u) = (A(u),t(u)) lies in
the singular set of Z. It remains to establish the same conclusion at
points (A(u), t(u)) where A'(u) = 0. It is at this juncture that we use the
Variability Condition. Recall from calculus that a smooth function is
constant on an open interval if and only if its derivative is identically
zero on that interval. Since A is assumed to be non-constant on any
non-trivial subinterval of U, that means that its derivative A’ cannot be
identically zero on any non-trivial subinterval. Thus given a parameter u
for which A'(1#) = O there must be parameters v, with v arbitrarily close
to u, for which A'(v) # 0, and hence for which e(v) = (A(v), ¢(v)) lies in the
singular set of Z. It remains only to observe that the singular set of Z is
closed, so (A(u), t(u)) must also lie in it. O

The Envelope Theorem provides a computational device for determin-
ing the envelopes of a given family of curves Z(4,t). The method is first
to determine the singular set by analysing the equation detJ(Z) = 0. In
principle it will comprise a number of ‘curves’. We discard all ‘vertical’
line segments which appear in the singular set, and then parametrize
the remaining curves to obtain pre-envelopes e, each giving rise to an
envelope E.

Example 10.5 Let us return once again to Example 10.1 in the light of
the Envelope Theorem. By Example 10.4 the singular set of the family
is the union of the t-axis, and two infinite families of ‘horizontal’ lines
t=2n—lrandt=(2n— %)n where n is any integer. The t-axis can be
discarded as any regular parametrization fails to satisfy the Variability
Condition. Under the mapping Z each line t = (2n — 1)n is mapped to
the y-axis, and each line ¢t = (2n — %)n is mapped to the x-axis. Thus we
recover the two envelopes of Example 10.2.

In the previous example we did not find any envelopes other than the
‘obvious’ ones described in Example 10.2, nor did we expect to. However,
one has to be careful. The point of the next example is that we have a
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Figure 10.4. Astroid as an envelope of ellipses

family of curves with one ‘obvious’ envelope where our methods produce
a second envelope which is far from being ‘obvious’.

Example 10.6 Consider again the family Z (4, t) = (¢, A(t— 4)?) of parabo-
las discussed in Example 10.3. The reader will readily check that

det J(Z) = —(t — A)(t — 34)

so the singular set of Z is the union of the lines t = A and t = 34. The
line ¢t = A gives rise to the ‘obvious’ envelope of Example 10.3, namely
the x-axis. However by Theorem 10.1 the line ¢ = 34, parametrized
as e(u) = (u,3u), gives rise to a second envelope E(u) = (3u,4u%), a
parametrization of the cubic curve 27y = 4x3.

Example 10.7 Consider the family of ellipses defined by x;(t) = Acost,
ya(t) = (1 — A)sint. (Of course for A = 0,1 these ellipses degenerate to
closed line segments.) The reader will readily check that the singular set
of the family is given by A = cos’t. Substituting in the formulas for the
family we see that the envelope is x(t) = cos’ ¢, y(t) = sin® ¢t which is an
astroid. (Figure 10.4.)

Example 10.8 Consider the family of circles whose centre lies on the unit
circle, and which have the property that they are tangent to the x-axis.
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Figure 10.5. Nephroid as an envelope of circles

We parametrize the unit circle as z(4) = €, so the circle centred at z(4)
and tangent to the x-axis can be parametrized as

Z(A,1) = z;(t) = * + (sin )e™.

Our objective is to show that the envelope of this family of circles is a
nephroid. (Figure 10.5.) The components of z;(t) are given by

xa(t) = cos A + sin A cost, ya(t) =sin A +sindsint.

Differentiating these formulas with respect to the two variables we see
that the Jacobian matrix of the family is

cosAcost —sind —sindsint
cosAsint +cosi sindcost /°

J(Z) = (

The reader will easily verify that the determinant vanishes if and only if
sind = 0 or sin(A — t) = cos . In the (4,t)-plane the set defined by the
first relation sin 4 = 0 comprises infinitely many ‘vertical’ lines (1 = 2nn
with n an integer) which do not contribute to the envelope. The second
relation leads to cost = sin24, sint = —cos21 and hence e = —ie?4,
Substituting for ¢” in the formula for the family we see that the envelope

is parametrized as a scalar multiple of the ‘standard’ nephroid 3¢ — e¥4.
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Example 10.9 Here is an interesting way of constructing epicycloids and
hypocycloids. Let n # 1 be a fixed real number. The idea is that for each
real number A we consider the line z; through the points ¢”, ¢ on the
unit circle, parametrized as

Z (A1) = z;(t) = (1 — t)e'* + te™,

That only makes sense provided e, ¢™* are distinct, i.e. provided 1 is
not an integer multiple of 2z /(n — 1): deleting these values from the real
line we obtain an infinite union of open intervals, on each of which the
construction makes sense. The components of z,(t) are given by

x(t) =(1 —t)cosA+tcosnd, y;(t)=(l—t)sinA+ tsinni.

Differentiating these formulas with respect to the two variables we see
that the Jacobian matrix of the family is

—(1 —¢t)sinA —tnsinnd (1 —t)cos A + tncosni
cosni —cos i sinnd —sin A )

J(Z)= (

The reader will readily verify that the determinant of the Jacobian matrix
for the family is given by

detJ(Z) = (nt +t — 1){cos A(n — 1)) — 1}.

The second factor only vanishes when A takes a constant value (so does
not give rise to an envelope) whilst the first factor vanishes if and only if
(n+ 1)t = 1. When n = —1 there is no solution, and hence no envelope:
geometrically that is not too surprising since then all the lines z; are
parallel to the ‘vertical’ axis. Provided n # —1 the first factor vanishes on
the parametrized line A = u, t = 1/(n+ 1), and gives rise to an envelope

1
n+1

E(u) = {ne" + e™}.

When n = 0 all the lines z; pass through the point (1,0), and the envelope
is a constant curve with trace that point. However when n # 0 we see
from Example 6.9 that (modulo a scalar factor) the envelope is equivalent
to a trochoid (3.2) with h = 1 and ratio n — 1: indeed for n > 1 we have
an epicycloid, and for n < 1 a hypocycloid. It follows that we can obtain
any epicycloid or hypocycloid via this construction. Figure 10.6 illustrates
the case n = 2 when the envelope is a cardioid.
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Figure 10.6. Cardioid as an envelope of lines

Exercises

Determine the envelopes of the family of circles of radius 1
centre on the x-axis.

Show that the envelopes of the family of circles x(t) = A+acost,
y(t) = —A + asint with a > 0 are the lines x + y + +/2a = 0.

In each of the following cases determine the envelope of the
given family of parametrized curves:

(i) x()=t yt)=4i—21%
(i) x()=t y@t)=r1—i
(iii) x(t)=t y(t)=A2—A%
(iv) x()=t, y@)=274—1¢
V) x(@)=t y)=i1+A.

In each of the following cases determine the envelope of the
given family of parametrized curves:

(G x(0)=t, () =2+ 24t + A+ 12
() x(t)=A+t y() =it
(i) x(t)=A+e, y() = At
(iv) x(t)=t*+4, y@) =it
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10.2.5 Show that the envelope of the following family of parametrized
curves is a deltoid.

Z(A,t) = (> — A% + 21,2t — 24).

10.3 Natural Envelopes in Geometry

The main purpose of the previous section was to illustrate the workings
of the Envelope Theorem through a number of attractive examples. In
this section we look at natural ways in which envelopes relate to the
geometry developed in previous chapters.

Example 10.10 Consider the family of tangent lines to a regular curve
z. The question arises whether there may be envelopes other than z for
this family. Write 4 for the parameter on z. The tangent line at A can be
parametrized as z;(t) = Z(4,t) = z(4) + tz'(4). Here

Zit) = 2(A) +t2"(), ZiAt) = 2'(A).

Recall that the singular set is defined by the condition that the quotient of
Z,;, Z; is real, equivalently that tz”(4)/z'(4) is real, i.e. if and only if t =0
or z'(4), z"(A) are linearly dependent, i.e. if and only if t = 0 or x(4) =0,
where k denotes the curvature. Thus in the (4, t)-plane the singular set of
Z comprises the union of the A-axis and ‘vertical’ lines A = Ay, one for
each inflexional parameter 4o. We can discard the ‘vertical’ lines as they
fail to satify the Variability Condition. By the Envelope Theorem the -
axis, parametrized as e(u) = (u,0), gives rise to the envelope E(u) = z(u),
which is indeed the original curve.

The point of the next example is that it shows that parallel curves can
be usefully described as envelopes in a natural way.

Example 10.11 Consider the family of circles of fixed radius d > 0 centred
at points on a regular curve z. Write A for the parameter on z. The circle of
radius d centred at z(4) can be parametrized as z;(t) = Z (4, 1) = z(A)+de™.
Here

Z(Lt)y=2'(1), Z.(A1)=dié".

The quotient of the derivatives is real if and only if ¥ is orthogonal to
the tangent vector z'(1), i.e. if and only if e = +N(4), with N(A) the

normal vector to z at the parameter 4. Substituting for e# in Z we obtain
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Figure 10.7. Parabola parallel as a circle envelope

two envelopes z(4) + dN(A), which we recognize as the two parallels of z
at distance d. (Section 8.3.)

The value of this example is that given a physical tracing of a curve z
on a sheet of paper, it provides a practical method for tracing the curves
parallel to z at given distance d. Using compasses to trace a large number
of circles of radius d centred on the curve, the parallels become visible.
(It is of course more efficient to trace the curve and the circles via a
computer algebra program and display the result on a computer screen.)
A good example is provided by a parabola, where the parallels exhibit
interesting and unexpected features. (Example 8.14 and Figure 10.7.)

Finally, we make the key connexion between the concepts of evolute
and envelope, which will be exploited in Chapter 12 when we discuss
caustics of plane curves.

Lemma 10.2 Let z be a regular curve z having no inflexions. Then the
evolute of z is an envelope for the family of normal lines.

Proof Write A for the parameter on the curve. The normal line at 4 is
parametrized as

2(t) = Z(A,t) = 2(A) + tN(A)
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Figure 10.8. Envelope of the normals for a parabola

with N(1) = iz/s the normal vector at 4, where s is the speed of z. For
this example the components X, Y of Z are given by

X0 =x) - (£) v Y60 =+ (4) 50

S

and calculation yields detJ(Z) = s{1 — tx(4)}, with x(1) the curvature.
The Jacobian determinant vanishes on the set defined by 1 = tx(4). Since
z has no inflexions the curvature is nowhere zero, so we can rewrite this
as t = 1/x(A) with the regular parametrization e(u) = (A(u), t(u)) where
Au) = u, u) = 1/x(u). By Theorem 10.1 the curve e is a pre-envelope
for the family. The corresponding envelope is defined by the following
relation, which according to (8.3) is the evolute of z.

E(u) = z(u) + %

a

Example 10.12 An illustration of this example is provided by the parabola
x(t) = at?, y(t) = 2at with a > 0. According to Example 8.5 the evolute
is the semicubical parabola x.(t) = 2a+ 3at?, y.(t) = —2at’ illustrated in
Figure 10.8 as the envelope of the family of normals.
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Figure 10.9. Envelope of the normals for an ellipse

Example 10.13 Another good example is provided by the ellipse x(t) =
acost, y(t) = bsint with 0 < b < a. According to Example 8.6 the evolute
is the following curve, obtained from an astroid by scaling just one of
the variables. The evolute is illustrated in Figure 10.9 as the envelope of
the family of normals.

22 2_ 2
X.(t) = (a " b )cos3 t, ye(t) = (b 5 a )sin3 t.

Exercises

10.3.1 Let L be a line distinct from the axes, and let X, Y be respectively
the points where L intersects the positive x- , y- axes. Determine
the envelope of the family of such lines for which the triangle
OXY has constant area 2k,

10.3.2 Let L be a line distinct from the axes, and let X, Y be respectively
the points where L intersects the positive x- , y- axes. Determine
the envelope of the family of such lines for which the distance
XY has constant length k.

10.3.3 A circle of radius 1 rolls along the line y = —1. Consider that
diameter of the circle which is the x-axis when the centre is at
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10.3.5

Envelopes

the origin. As the circle rolls, so this diameter describes a family
of lines. Show that the envelope of the family is a cycloid.
Starting from a tracing of a parabola trace the parallels at
distance d as an envelope of the family of circles of radius d
centred at points on the parabola.

Show that the envelope of the family of circles defined by the
following formula is a standard ellipse:

Z(A,t) = (cos A + sin Acost,sin Asint).
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Orthotomics

In this chapter we describe the ‘orthotomic’ curves associated to a regular
curve z, and a choice of point g, known as the source. The motivation
lies in the material of Chapter 12, where we study ‘caustics’ which arise
when a beam of light emanating from a point source g is reflected
from a planar ‘mirror’, represented by the curve z. The key result will
be that the caustic is the evolute of the orthotomic. However, ortho-
tomics are of interest in their own right, and merit separate discussion.
In Section 11.2 we present a formula for orthotomics, and use this to
exemplify the surprisingly complex geometry which arises from the or-
thotomics of some quite simple curves. And in Section 11.5 we show how
to use the envelope construction to reverse the process of constructing
orthotomics.

11.1 Reflexions

Our starting point is to extend the discussion of isometries begun in
Chapter 6. Here is the underlying mental picture for a reflexion. Suppose
we are given a line L, and a point p. How do we construct a point g such
that L is the orthogonal bisector of the line segment joining p, q?

Lemma 11.1 Let L be a line and let p be a point. There is a unique point
q = R(p) with the property that every point z on L is equidistant from p,
q. Moreover, q is given by the following formulas, where u is a point on L,
T is a unit vector in the direction of L, and N is a unit vector orthogonal
to the direction of L.

Rp)=Qu—p)+2{(p—uw)eT}T =p—2{(p—u)e N}N.  (11.1)
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Proof Let w be the orthogonal projection of p onto L. Figure 1.3 suggests
that the point g defined by ¢ = 2w —p has the required properties: indeed,
since (Lemma 1.3) the vectors (w — p), (w — z) are orthogonal

lz—gq> = lz—@w—p)*=I|(z—p)—2(w—p)
= |z—pP+4w—p)e(w—2z)=|z—p[

Clearly q is unique. The formulas follow immediately from that for the
orthogonal projection given in Lemma 1.3. O

In view of this result we define the reflexion of a point z in a line L
to be the point R(z) = 2w — z where w is the orthogonal projection of z
onto L. Provided z does not lie on L the orthogonal projection w is the
mid-point of the line segment joining z, R(z), and L is their orthogonal
bisector: when z does lie on L we have R(z) = z.

Example 11.1 Let R be reflexion in a line L. It is useful to have the
formula of Lemma 11.1 entirely in complex number notation. We keep
to the same notation: « is a point on L, T is a unit vector in the direction
of L, and N is a unit vector orthogonal to L. We use the fact that for any
two vectors a, b (identified with complex numbers) with b unit we have
2(aeb)b = a+ab?. (Example 1.4.) The reader will now readily verify that
the formula for the reflexion can be written as

Rz)=u+Z—-0)T*=u—(Z—u)N> (11.2)

An immediate consequence of these explicit formulas is that reflexions
are indirect isometries: indeed, each has the form R(z) = UZ + B where
U=T?=—-N?% B=u—uT? =u+uN? and where U is necessarily a
unit complex number.

Example 11.2 A special case arises when L is a line through the origin, so
we can choose u = 0. Then (11.2) reads R(z) = T?z = —N?z. We recover
the familiar formulas of school geometry for reflexion in a line through
the origin as follows. When L makes an angle 8/2 with the x-axis a unit
direction T is given by T = €%/2, so T? = ¢ and R(z) = ¢z. Writing
Z =R(z),z=x+1iy, Z = X +iY that yields the required formulas

X =xcosf+ysinf, Y =xsinf — ycosé.

For the purposes of this text it is neither necessary nor desirable to
analyze the structure of general indirect isometries. We content ourselves
by pointing out the following neat result.
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Figure 11.1. Construction of the orthotomic

Lemma 11.2 Any isometry I whose set of fixed points is a line L is neces-
sarily reflexion in L, and hence indirect.

Proof Let r be a point with I(r) # r. As in Lemma 6.4 the fixed point
set is the orthogonal bisector of r, I(r). Let R denote reflexion in L, and
let p, g be two distinct points on L. Then J = RI is an isometry, and
J(p) = R(p) = p, J(q9) = R(q) = q, J(r) =r so p, g, r are non-collinear
fixed points of J. It follows immediately from Lemma 6.4 that J is the
identity, hence that I = R. O

Exercises

11.1.1 Show that any reflexion R has order 2 in the group of isometries,
so is self inverse.

11.1.2 Let z be a curve, let L be a line, and let R be reflexion in L.
By the reflexion of z in L we mean the curve z; defined by
z1(t) = R(z(t)). Let s, s; be the speeds of z, z;, and «, ki the
curvatures. Show that s(t) = s;(¢) for all ¢, and that x(t) = —k(t)
when ¢ is regular.

11.2 Orthotomics

Let z be a regular curve, and let g be a point in the plane. For any
parameter ¢t write w(t) for the reflexion of g in the tangent line to z
at t. (Figure 11.1.) The resulting curve w is called the orthotomic of
z with respect to the source g. There is of course one orthotomic for
each position of the source g, so we have a two parameter family of
orthotomics associated to z, one for each choice of q. The formula of
the following result follows immediately from the formulas exhibited as
(11.1).
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Lemma 11.3 For a regular curve z the orthotomic w with respect to the
source q is given by the following formula:

w(t) = (2z(t) — @) + 2{(q — z(1)) « T()} T (¢)

where T(t) is the unit tangent vector to z at t. Alternatively, writing N(t)
for the unit normal vector, we have

w(t) = q —2{(q — 2(2)) « N()} N(2).

It can be useful to have this formula in complex number notation. To
that end, the formulas of Lemma 11.1 are replaced by (11.2) to give

w(t) = 2() + {g — 2@} T’ = z() — { — ZO}N (). (11.3)

The family of orthotomic curves associated to even the simplest regular
curves provides surprising geometric variety. One general insight is that
the source g itself lies on the orthotomic if and only if there is a tangent
line passing through g. The remainder of this section is devoted to the
surprisingly interesting examples provided by conics, where this point
can be vividly illustrated. When the source is ‘outside’ the conic there
are two tangents through it, so we expect the orthotomic to exhibit a
self crossing at q: when the source is on the curve itself we expect this
self crossing to degenerate to a cusp; and when the source is ‘inside’ the
conic we do not expect the orthotomic to exhibit any self crossings at
all.

Example 11.3 The orthotomic of the standard circle z(t) = ¢* with
respect to the source ¢ = (h,0) where h > 0 is easily checked to be
the limacon w(t) = 2¢* — he?*. (Exercise 11.2.1.) In Section 13.3, using a
rather different set of ideas, we will discover a very simple reason why the
orthotomic of a circle should turn out to be a trochoid. Recall that the
form of the limacon depends on the value of h. (Table 7.1.) In particular,
for h > 1 the limacon is nodal with self crossing at the source; for h =1
the limacon is a cardioid with cusp at the source; and for h < 1 it has
no self crossings. That confirms the above expectations for the case of a
circle. (Figure 11.2.)

The fact that the orthotomics associated to such a simple curve as a
circle exhibit such complex geometry raises the question of what happens
with other conics. The parabola provides an interesting study pursued in
the next few examples.
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N

h>1 h=1 h<1

Figure 11.2. Three orthotomics of a circle

Example 114  Consider the parabola x = at?, y = 2at with a > 0.
We will determine the orthotomic with respect to an arbitrary source
q = (¢,0) on the x-axis. Applying the formula of Lemma 11.3 we obtain
the following parametrization:

2(a — a)t?
1+

_ 2t(a +at?)

u(t) = —a + , v()= 1+

Figure 11.3 illustrates orthotomics for negative, zero and positive values
of . As we expect, the pictures suggest that for « < 0 the curve has a
loop crossing itself at g: that for « = 0 the loop contracts down to a
‘cusp’ at ¢: and that for « > 0 the loop entirely disappears.

A little analysis throws light on the situation. Let us ask first when the
orthotomic of a parabola has irregular parameters.

Example 11.5 The condition for a parameter ¢t to be irregular for the
orthotomic is that the equations u'(t) = 0, v'(t) = 0 have a solution t.
A calculation shows that this happens if and only if « = 0, in which
case t = 0 is the only irregular parameter, corresponding to a ‘cusp’ at
q = (0,0). (Exercise 11.2.2.) Thus the only case when the orthotomic fails
to be regular is when a = 0, i.e. the source is the vertex of the parabola,
giving rise to the cissoid of Diocles (Example 3.8) parametrized as

—2at? 2ar3

w =12 YO=12

Let us continue our analysis of the orthotomic for a parabola in the
case a # 0 when the orthotomic is regular. To gain further understanding
we look for self crossings.
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a<0

Example 11.6 Self crossings appear when there are distinct parameters
s, t for which w(s) = w(t), i.e. for which u(s) = u(t) and v(s) = v(t). The
condition u(s) = u(t) reduces to s> = t2, which since s, ¢ are distinct, is
equivalent to s = —t. With that substitution, the condition v(s) = v(¢)
reduces to (1 + t2)(e + at?) = 0. The possibility t = 0 can be discarded,
since then t, —t fail to be distinct. Thus the condition holds if and only if
a4+ at? = 0, which has a non-zero solution ¢ if and only if « < 0. On that
assumption the solutions t, —t give rise to a self crossing at the source g,
confirming what we expected on the basis of Figure 11.3.

R
]
=1

R
\%
(=1

Figure 11.3. Orthotomics of a parabola

Example 11.7 For positive values of « we obtain a family of orthotomics
having no self crossings. An exceptional case arises when a = g, i.e. the
source is the focus F = (g, 0) of the parabola. In that case the orthotomic
is parametrized as u(t) = —a, v(t) = 2at with trace the directrix line.
Visually, that is entirely consistent with Figure 11.3 since the directrix
line clearly represents a transitional case for the orthotomic in the ranges
O0<a<aanda<a

Example 11.8 For negative values of a we obtain a family of orthotomics
all having a self crossing at the source. An exceptional case arises when
the tangents at the self crossing are orthogonal. It is not difficult to verify
that this happens if and only « = —a, ie. the source is the point of
intersection of the axis and directrix of the parabola. (Exercise 11.2.4.)
Translating the source to the origin by writing U(t) = u(t)+a, V(t) = v(t)
we find that the curve has the following parametrization, which is the
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right strophoid of Example 2.3.
1—¢ 1-1¢
U(t) = 2a (1+t2) , V()= —2at (1 +t2) .
The point of the next example is that although general orthotomics of

ellipses are very complex curves, they become particularly simple when
the source is at a focus.

Example 11.9 Consider the ellipse x(t) = acost, y(t) = bsint where
0 < b < a. (Example 3.2.) Recall that the eccentricity is the positive scalar
e defined by a’e? = a®> — b2, and that the foci are the points F~ = (—ae, 0)
and F* = (ae,0). We will determine the orthotomic with respect to the
focus F*. Using the formula of Lemma 11.3 one readily checks that the
components u, v of the orthotomic w with respect to F* are

2ab?cost (ecost — 1)

B A

2a?b(ecost — 1)sint
B A
where A = a? sin 2t + b? cos 2t. The reader will be forgiven for not imme-
diately recognizing this curve. A rather tedious calculation verifies that
u, v satisfy the relation (u+ ae)? +v? = 4a?, so the trace of w is contained
in the circle of radius 2a centred at the focus F~. (Figure 11.4.)

u(t) =

v(t) =

Figure 11.4. Orthotomic of an ellipse with source a focus
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Figure 11.5. Bernoulli’s lemniscate

It is natural to conclude this series of examples by asking about the
orthotomics of hyperbolas. In general they are very complex curves. A
special case, worthy of attention, is provided by the orthotomic of a
rectangular hyperbola with respect to its centre.

Example 11.10 The rectangular hyperbola x?—y? = @? with a > 0 can be
‘parametrized’ by the formulas x(t) = asect, y(t) = atant. (Example 3.6.)
More precisely, the positive branch is parametrized by restricting to the
interval —n/2 < t < n/2, and the negative branch by restricting to
/2 <t < 3rn/2. It is a mechanical exercise to verify that the orthotomic
with respect to the origin is the curve whose components are given by
the following formulas:
acost —asintcost
u(t) = 1+sin®t’ o = 1+4sin’t

Note that these formulas are defined for all parameters ¢, unlike those
for the original curve. The resulting curve is known as Bernoulli’s lem-
niscate and illustrated in Figure 11.5, together with the asymptotes of
the hyperbola. The lemniscate is a figure-of-eight-curve comprising two
(open) loops coming together at the origin. One loop of the lemniscate
corresponds to the positive branch of the hyperbola, and the other to the
negative branch. The origin itself is not part of the orthotomic, reflecting
the fact that no tangent to the hyperbola passes through it. However, the
limiting positions of the tangents as one tends to infinity along a branch
are the asymptotes, so one could think of the source as the point on the
orthotomic corresponding to the ‘points at infinity’ on the hyperbola.
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Exercises

Verify that the orthotomic of the circle z(t) = ¢* with respect to
the source q = (h,0) where h > 0 is the limacon w(t) = 2¢* —he®".
Let w be the orthotomic of the parabola in Example 11.4 with
source (a,0). Verify that when « = O the only irregular parameter
is t =0, and is an ordinary cusp.

Let w be the orthotomic of the parabola in Example 11.4 with
source (2, 0). Verify that w passes through the source if and only
ifa<O.

Let w be the orthotomic of the parabola in Example 11.4 with
components u, v. Assume that a < 0, so the orthotomic has a
unique self crossing at the source, and let ¢ be a parameter giving
rise to the self crossing. Show that «/'(—t) = —u/(t), v/(—t) =v/(t)
and deduce that the tangents at the self crossing are orthogonal if
and only if v'(t) = +u/(t): verify that this condition is equivalent
to x = —a.

Let w be the orthotomic of the parabola x(t) = at?, y(t) = 2at
with respect to a general source q = (a, f§). Find formulas for the
components u, v of w. Verify that in the case when § = 0 your
formulas reduce to those given in Example 11.4.

Show that the orthotomic of the ellipse x(t) = acost, y(t) =
bsint (0 < b < a) with respect to the origin is the curve w with
components

2ab?cost _ 2a’bsint
2snli+bicostt | 0= fen’t +b2cos?t’
Show that the orthotomic of the cardioid z(t) = 2¢* — ¢** with
respect to its cusp point is Cayley’s sextic. (Example 2.11.)
Let z be a regular curve, and let q be a point. For any parameter
t write w*(¢) for the orthogonal projection of q in the tangent
line to z at t. The resulting curve w* is called the pedal curve of
z with respect to q. Show that the pedal curve is similar to the
orthotomic.
Find a formula for the curvature of the orthotomic of a regular
curve z with respect to a source q.
Use Lemma 5.1 and the formula for the orthotomic to show that
the orthotomic is invariant under parametric equivalence, in the
following sense. Let z;, z; be regular curves with domains I, I,
parametrically equivalent via a change of parameter s : I, — I,
let g be a source, and let wy, w; be the orthotomics of z;, z; with

u(t) =
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respect to g. Show that wy, w, are parametrically equivalent, via
the same change of parameter.

11.2.11 Suppose that the curve z; and a point gq; correspond under
a congruence C to a curve z; and a point g;. Show that the
orthotomic of z; with respect to the source g; is congruent to
the orthotomic of z; with respect to the source g, under the
same congruence C.

11.3 Orthotomics of Non-Regular Curves

We have only defined the orthotomic for regular curves. However, it is
both natural and fruitful to extend the concept to curves which may
exhibit irregular parameters. Let z be a curve, and let g be a point in
the plane. Then for any parameter ¢t at which the limiting tangent line is
defined we can write w(t) for the reflexion of ¢ in the limiting tangent line
to z at t, and define the orthotomic to be the resulting ‘curve’ w(t). At a
regular parameter ¢ that gives us the same definition of w(t) as before,
since by continuity the limiting tangent line coincides with the tangent
line. By Lemma 7.10 this definition will also apply at any parameter
t for which some derivative of z is non-zero. In a given example we
obtain a formula for w(t) from (11.3) in the usual way, and smoothness
at irregular parameters for z can be verified by inspection. Bear these
points in mind when reading the next example.

Example 11.11 Interesting examples are provided by the orthotomics
with respect to the origin of the following epicycloids and hypocycloids.
(We exclude the special cases 4 = —1,—2 when the trace collapses to a
point, or to an interval.)

Z(t) — (/1 + l)eit _ ei(l+l)t.

The first thing to note is that z does have irregular parameters. (Ex-
ample 3.10.) However, they are cusps, so there is a perfectly well defined
orthotomic w. (Exercise 7.5.3.) To determine w observe first that

2(t) = 204 + 1)elF it sin %

Thus the unit tangent vector T satisfies T2 = ¢4+t In view of the
relation (11.3) the orthotomic is given by

W(t) _ ()' + 2) {eit _ ei(l+1)t} .
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Table 11.1. Orthotomics of epicycloids and hypocycloids

A curve orthotomic

n
-3 deltoid 3 three leaved clover
—4 astroid 2 four leaved clover
—5/2  starfish 5 five leaved clover

1 cardioid —1/3 limacon with A =2

deltoid astroid

starfish

Figure 11.6. Orthotomics of some hypocycloids

In particular w is smooth. Straight calculation now shows that w is
parametrically equivalent to a rose curve 2be” cos ns, where b = 1+2 and
n is defined by the relation n = —1/(4+42), under the change of parameter

t=(n+1)(s+g).

Some special cases of this example are listed in Table 11.1. In particular,
the orthotomics of the deltoid, astroid and starfish with respect to their
centres are all clover leaves. (Figure 11.6.)
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11.4 Irregular Points on Orthotomics

It is natural to ask which parameters on the curve z give rise to irregular
parameters on an orthotomic of z. Here is a satisfying geometric answer.

Lemma 11.4 Let z be a regular curve, let q be a point not on the trace of
z, and let w be the orthotomic of z with respect to q. Then the parameter
t is irregular for w if and only if t is inflexional for z.

Proof Since z is assumed regular we can assume (Lemma 4.1 and
Exercise 11.2.10) that it is unit speed. Further, it is no restriction to
suppose g = (0,0). According to Lemma 11.3 the orthotomic is given by
the formula

w(t) = 2(z(t) « N(t))N(2).

Differentiating, and using the Frenet-Serret Formulas, we obtain the
relation

w =—2k{(z e N)T + (z ¢ T)N}

where x denotes the curvature function, and where for convenience we
drop the parameter ¢. Since T, N are linearly independent vectors, w' =0
if and only if x(z ¢ N) =0, k(z ¢ T) = 0. However, at least one of z e N,
z e T must be non-zero: otherwise z = 0, which means that the source g
lies on the trace of z, contrary to hypothesis. Thus w' = 0 if and only if
k = 0, as required. (]

Example 11.12 Recall that the orthotomic of the ellipse x(t) = acost,
y(t) = bsint (0 < b < a) with respect to the focus F* = (ae,0) is a
parametrization of the circle of radius 2a centred at the other focus
F~ = (—ae,0). (Example 11.9.) Since the ellipse has no inflexions it
follows from Lemma 11.4 that this parametrization is regular. We could
have verified that fact by direct computation, but it is easier to deduce it
from the geometry of the ellipse.

11.5 Antiorthotomics

One application of the envelope construction is to show that the process
of taking the orthotomic of a regular curve z can be reversed. Let g be
a point, and for each parameter A on z let z; be the orthogonal bisector
of the line joining g and z(1): in the case when g = z(A) this line is



11.5 Antiorthotomics 163

interpreted as the normal line to the curve at A. Then any envelope of
the family of lines z; is an antiorthotomic for z.

Lemma 11.5 Let w be a regular curve, and let z be its antiorthotomic with
respect to q. Then w is the orthotomic of z with respect to q.

Proof Write A for the parameter on w. By definition z is the envelope
of the family of lines z;, where z; is the orthogonal bisector of the line
joining ¢ and w(4). Moreover, z; is the tangent line to z at the parameter
/. But w(A) is then the reflexion of ¢ in the tangent line to z at 4, so w is
the orthotomic of z. O

Example 11.13 Let F = (a,0) be a fixed point on the x-axis with a > 0,
and let L be the line with equation x = —a. We will show that the
antiorthotomic of L, parametrized as x(t) = —a, y(t) = 24, is a parabola.
First we need a parametrization for the orthogonal bisector z; of the line
segment joining F to P = (—a, 24). The mid-point is Q = (0, 4). A vector
in the direction of FP is (—2a,24), and a vector orthogonal to this is
(—24,—2a). Thus the orthogonal bisector z; is parametrized as

2() = Z(A 1) = (0, ) + t(—24, —2a) = (—2tA, A — 2at).

For this example detJ(Z) = A + 2at, vanishing on the line A = —2at
in the (4,t)-plane, regularly parametrized as A(u) = —2au, t(u) = u. By
Theorem 10.1 that gives rise to the envelope E(u) = (4au?, —4au) having
trace a standard parabola y?> = 4ax with focus F. Note that L is the
directrix of the parabola.

The orthogonal bisectors z; in the above example can be traced with
ruler and set square: indeed they are the lines through points Q on the
y-axis, orthogonal to the lines FQ. Thus we have discovered a practical
method for tracing a parabola with given focus F. The reader might like
to spend a few minutes tracing a parabola by this method.

Example 11.14 We will determine the antiorthotomic of the standard
parabola x(t) = at?, y(t) = 2at where a > 0 with respect to its focus
F = (a,0). For convenience, we choose a = 2. Consider a general point
P = (24%,4) on the parabola. A calculation similar to that in the previous
example shows that the orthogonal bisector z, is parametrized as

z;(t) = Z(A,t) = (A2 + 1,24) + t(—44,2(4% — 1)).
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We leave the reader to check that detJ(Z) = 4(1 + A%)(4 + 2t), which
vanishes if and only if A = —2t¢, a line in the (4,t)-plane parametrized as
Au) = u, t(u) = —u/2. Substituting in Z we see that an envelope for Z is
given by the following formulas, parametrizing a cubic curve.

Xw)=3>+1, Y@ =uB—u).

Exercises
11.5.1 Show that the antiorthotomic of the unit circle z(1) = ¢ with
respect to F = (1,0) is the centre O = (0,0).
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Caustics by Reflexion

The material of this chapter is drawn from the area of geometric optics,
and can be viewed as a class of examples arising naturally in the theory
of envelopes. We will be concerned with light caustics in the plane. Here
is the idea. One has a mirror (represented by a regular curve z) and a
point source of light rays (represented by the lines through a fixed point
g): in principle we allow the possibility that ¢ is a ‘point at infinity’ in
order to include the case of a parallel beam of rays. The light rays are
reflected off the mirror, and envelop a highly illuminated curve called the
‘caustic’. A familiar example is the caustic (Figure 12.1) which appears
on the surface of a cup of coffee when sitting in the sunlight. For this
example the mirror is represented by a circle (a cross section of the cup)
and the source q is the ‘point at infinity’ on the x-axis.

In Section 12.1 we set up the basic ideas, and in Section 12.2 estab-
lish the key result, namely that caustics can be viewed as evolutes of
orthotomics. This simple result allows us to discuss the classic example
of circle caustics, the consequences of the theory satisfyingly confirmed

Figure 12.1. Coffee cup caustic
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z(%)

q

Figure 12.2. Caustic by reflexion

by computer generated pictures of the caustics. Section 12.3 extends the
theory to the case when the source is ‘at infinity’. Finally, we obtain
an alternative view of orthotomics themselves, as envelopes of natural
families of circles: that has a useful spin-off, namely a simple method for
tracing the orthotomic by hand, given a tracing of the curve z.

12.1 Caustics of a Curve

Let z be a regular curve, and let g be a point. Throughout this chapter we
refer to z as the mirror, to g as the source, and write A for the parameter
on z. For each A there is a unique incident ray: when q # z(1) it is the
line through g, z(A), and when g = z(A) it is the tangent line to z at A.
The reflected ray z; is the reflexion of the incident ray at 2 in the tangent
line at 4. (Figure 12.2.) An envelope of the family (z;) of reflected rays is
called a caustic by reflexion of z, with respect to the source g.

Example 12.1 For a circular mirror, there is a ruler and compass
construction for tracing caustics by reflexion experimentally. It is based
on the observation that for a ray of light, reflected from a circle at
X, the points A and A’ where the incident and reflected rays meet the
circle are equidistant from X. (Figure 12.3.) By drawing a large number
of incident rays on a sheet of paper with a ruler, we can then (using
only ruler and compass) draw a large number of reflected rays, and the
resulting caustic will become visible. The reader is strongly recommended
to spend a little while tracing some caustics by this method, to appreciate
the simplicity of the construction, and the complexity of the caustic. It
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Figure 12.3. Constructing the caustics of a circle

might be interesting to compare the result with the computer generated
illustrations in Figure 12.4.

We can pursue the example of a circular mirror in a different way,
namely by going back to the basic definitions and computing the envelope
explicity. Let us do this for the case when the source is the ‘point at
infinity’ on the x-axis, the ‘coffee cup’ example.

Example 12.2 Let z be the unit circle z(4) = ¢**. Consider the pencil of
lines parallel to the x-axis. For each parameter / the unique incident ray
through z(A) is reflected in the tangent line at that point. The reflected
ray is in the direction z'(1)? = —e%4, so can be given parametrically as
zi(t) = Z(A,t) = e*—te? . The components of this family of parametrized
curves are

X(A,t) =cosA—tcos24, Y(A,t)=sind—tsin24

and detJ(Z) = 2t — cos A, which vanishes if and only if 2t = cosA. By
the Envelope Lemma we see that the caustic is the nephroid

i A )
E(u) =" — %(cos u) ¥ = Z{3e‘“ — e3"‘}.

At first sight there appears to be a discrepancy between the theoret-
ical answer and the illustration of the trace in Figure 12.1. However, a
moment’s thought should convince the reader that there is no inconsis-
tency. In practice we see only half a nephroid, namely the ‘real’ caustic
corresponding to rays reflected from ‘inside’ the coffee cup: there is also
a ‘virtual’ caustic corresponding to rays reflected from the ‘outside’. This
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Figure 12.4. Caustics by reflexion for a circle
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kind of brutal calculation may well achieve an answer in some examples,
but lends little understanding to the overall process. The object of the
next section is to establish theoretical results which throw considerable
light on the whole business!

Exercises

12.1.1 Consider the caustic of the standard parametrized unit circle
z(t) = €* with respect to the source g = (1,0) on the circle. Write
down a parametrization of the reflected ray at the point with
parameter t, and show (starting from the definitions) that the
resulting caustic by reflexion is a cardioid.

12.2 Caustics as Evolutes

The main result of this section is that the caustic of z with respect to a
source ¢ is the evolute of the orthotomic of z with respect to g. In this
way we can gain valuable geometric information about caustics using our
knowledge of evolutes. The next result provides the key technical fact: we
deliberately phrase it in greater generality than is immediately necessary,
in order to be able to deal with sources ‘at infinity’ in Section 12.3 of this
chapter.

Lemma 12.1 Let z,q : I — R? be curves with z regular, and let w : I — R?
be the curve defined by taking w(t) to be the reflexion of q(t) in the tangent
line to z at the parameter t. Then the line joining z(t), w(t) is orthogonal
to w at t if and only if the line joining z(t), q(t) is orthogonal to q at the
parameter t.

Proof Note first that the conclusion requires interpretation when z(t),
g(t) coincide: in that case z(t), w(t) likewise coincide, and the two lines
joining the pairs are each interpreted as the tangent line to z at ¢. The
proof is based on the fact that z(t) is equidistant from w(t), q(t) for
all ¢: symbolically, that is expressed by the identity |w — z|2 = |q — z|%.
Differentiation then yields a further identity

(w—z)e(W —2)=(q—2z)e(qd -2
which can be re-written in the form

(w—z)ew =(g—2)eg +(w—q)e?z.
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However, (w — q)  z’ = 0: when w(?), ¢(t) are distinct that follows from
the definition of w(z), and when they coincide it holds trivially. Thus we
have the following identity, from which the required result is immediate:

w—2z)ew' =(g—z)eqg.
O

For the moment we only require the following special case of this result
when ¢q is a constant curve, so the line joining z(t), g(¢) is automatically
orthogonal to ¢q at any parameter ¢. In that case our result reads:

Lemma 12.2 Let z be a regular curve, and let w be the orthotomic of z
with respect to the point q. Then for any parameter t the line joining z(t),
w(t) is orthogonal to w at t.

In Chapter 14 we will see that this result is also a special case of a
general one in planar kinematics, representing the key property of ‘instan-
taneous centres’ of rotation. (Theorem 14.2.) The principal consequence
is the following description of the caustic by reflexion.

Theorem 12.3 Let z be a regular curve, and let w be the orthotomic of z
with respect to a point q. Provided w is regular, and has no inflexions, its
evolute is a caustic for z with respect to q. (The Caustic Theorem.)

Proof Since w is assumed regular, it has a normal line at every parameter
t: moreover, by Lemma 12.2 the normal line is the unique line joining the
points z(t), w(t). It follows that the normal line to w at ¢ is the reflexion
of the line joining z(¢), ¢ in the tangent line to z at ¢, so is the reflected
ray to z at t. Any envelope for the normals to w is therefore an envelope
for the reflected rays to z, hence (by definition) a caustic by reflexion for
z with respect to ¢. It remains to recall that the envelope of the normals
to w is the evolute of w. (Lemma 10.2: we assumed w has no inflexions
precisely in order to satisfy the hypotheses of this result.) O

In general we expect only finitely many inflexional parameters on the
orthotomic w giving rise to ‘points at infinity’ on the caustic. However, by
deleting these parameter values from the common domain of z, w we can
reduce our study to curves for which the orthotomic has no inflexions.
Then, in principle the Caustic Theorem enables us to derive the geometry
of a caustic from that of the orthotomic. For instance, vertices on the
orthotomic will give rise to irregular points on the caustic, with ordinary
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vertices corresponding to ordinary cusps. (Lemma 9.2.) These generalities
are well illustrated by the caustics of a circle.

Example 12.3 In Example 11.3 we saw that the orthotomics of the
standard circle z(t) = " with respect to the source g = (h,0), where h > 0,
are the limacons w(t) = 2¢* — he?. The Caustic Theorem tells us that
caustics of the circle with respect to g are their evolutes. (Figure 12.4.) The
inflexions of limacons were investigated in Example 5.9 and Example 7.7,
whilst the vertices were studied in Example 9.6. On this basis we come
to the following conclusions.

()
(i)

(i)

(iv)

™)

(vi)

When h = 0 the orthotomic is a circle. The caustic collapses to its
centre, namely the source g.

When 0 < h < 1/2 the orthotomic is a limacon with four ordinary
vertices and no inflexions. The caustic has an arrowhead shape
with four ordinary cusps and no points at infinity. As h — O the
arrowhead contracts down to the origin: and as h — 1/2 so the
tip of the arrowhead tends towards the point at infinity on the
horizontal axis.

When A = 1/2 the orthotomic is a limacon with three ordinary
vertices and one undulation. The caustic has three ordinary cusps
and a single point at infinity.

When 1/2 < h < 1 the orthotomic is a limacon with four ordinary
vertices and two inflexions. The caustic has four ordinary cusps
and two points at infinity.

When h = 1 the orthotomic is a cardioid with one ordinary vertex,
no inflexions, and one ordinary cusp. The caustic has one ordinary
cusp, and no points at infinity: indeed the caustic is a cardioid of
one third the size. (Table 8.1.)

When h > 1 the orthotomic is a nodal limacon with two ordinary
vertices and no inflexions. The caustic has two ordinary cusps, and
no points at infinity. Note that the caustic in this case, although
rather similar in appearance to a nephroid, does not possess the
symmetry of a nephroid, and indeed is not a nephroid. As h —
so the caustic becomes more symmetric, and in the limit does
indeed become a nephroid. (Example 12.2.)

The trivial fact, that the caustic of a circle with respect to its centre is
simply the centre, appeared as a limiting case in the above example. Here
is another example, illustrating the same phenomenon, and extending our
knowledge of conics.



172 Caustics by Reflexion

Figure 12.5. The reflective property for an ellipse

Example 124 Recall that the orthotomic of the ellipse x(t) = acost,
y(t) = bsint (0 < b < a) with respect to the focus F* = (ae,0) is a
parametrization of the circle of radius 2a centred at the other focus
F~ = (—ae,0). (Example 11.9.) Thus the caustic with respect to F* is the
evolute of the circle, which is its centre F~. That establishes a reflective
property for an ellipse, namely that any ray of light emanating from one
focus, and reflected at the point where it meets the ellipse, necessarily
passes through the other focus. And that explains why F~ and F* are
called the ‘foci’: a beam of light emanating from one, and reflected from
the ellipse, ‘focuses’ at the other. (Figure 12.5.) As a — b the ellipse
tends to a circle, the two foci coalesce to its centre, and we see again the
limiting case mentioned above.

Exercises

122.1 Determine the caustic of the curve given by x(tf) = 1 — 3¢%,
y(t) = 3t — £ with the origin as source. Sketch all three curves.

12.2.2 Determine the caustic of the curve given by z(t) = (cost +
tsint,sint — t cos t) with the origin as source.

12.2.3 Consider the equiangular spiral z(tf) = re” with r > 0 and

-y = a+if where «, f are real and non-zero. (Example 6.6.) Show

that the caustic of z with source its pole is another equiangular
spiral.

12.2.4 Establish a reflective property for the branches x(t) = tacosht,
y(t) = bsinh ¢t of a standard hyperbola.
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12.3 Sources at Infinity

It is natural to extend the above ideas to the case when the source g is a
‘point at infinity’, yielding a parallel beam of light. A brutal strategy (in
that it produces an answer, but no geometric understanding) is simply to
extend the calculation of Example 12.2 to a general curve.

Example 12.5 Consider the caustic of a regular curve z with respect to
the pencil of lines parallel to the x-axis. For each parameter A the unique
incident ray through z(4) is reflected in the tangent line at that point.
The reflected ray is in the direction z’(4)%. Thus the reflected ray can be
parametrized as

z)(t) = Z(A,t) = z(4) + tz' (1)

It is now a mechanical task to write down the components of Z and
verify that the envelope is the curve with components u, v given by
(x'2 — 2 x 2
o ey Tty

A better strategy is to modify the construction of the orthotomic in
such a way that the caustic still turns out to be its evolute. For motivation,
return to the case when the mirror is a regular curve z, the source g is
a finite point, and the orthotomic of z with respect to g is the curve w
constructed in Chapter 11. At this juncture a little thought goes a long
way. The key observation is that the caustic is also the evolute of any
parallel wy of w at distance d. (Lemma 8.8.) Let us reconsider Figure 11.1
in the light of this comment. At any parameter ¢ the point w(t) is the
reflexion of g in the tangent line L(¢) at z(t), and the line joining w(t),
z(t) is the normal line to w at ¢t. The point wy(¢) lies on this line distant
d from w(t): and its reflexion in the tangent line will be a point g,(¢)
on the incident ray, distant d from g. Thus the family of parallels wy
corresponds (under reflexion in tangent lines) to the family of parallel
circles Q, of radius d centred at g. The key property of the circles Qy is
that they are orthogonal to the family of incident rays. That provides the
geometric clue we are seeking. When g is a ‘point at infinity’ we should
replace the circles Q4 by the family of parallel lines orthogonal to the
direction of the incident beam.

So much for motivation: now we proceed formally. Let z be a regular
curve, and let Q be any fixed line. We consider the caustic of z with
respect to the parallel beam of light orthogonal to Q. For any parameter
t write g(t) for the orthogonal projection of z(¢) onto Q, and w(t) for the
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.
s,

Figure 12.6. Orthotomic with respect to a line

reflexion of g(t) in the tangent line to z at t. The parametrized curve w
defined in this way is known as the orthotomic of z with respect to the
line Q. (Figure 12.6.)

Example 12,6 Let L be the line y = x, parametrized as x(t) = t,
y(t) = t. Consider the orthotomic of L with respect to the y-axis Q. Here
the tangent line to z at any parameter t is just the line Q itself, the
orthogonal projection of z(t) onto Q is g(t) = (0,t), and its reflexion in
Q is w(t) = (¢,0). Thus the trace of the orthotomic with respect to the
y-axis is the x-axis.

In practice the line Q is determined by one of its points ¢, and a
unit vector v in the direction of the line: then the orthogonal projection
q(t) = g + {(z(t) — q) ® v}v, and we obtain a formula for the orthotomic
by writing g(t) instead of g in the formula of Lemma 11.3.

Example 12.7 Consider the case when the source is the ‘point at infinity’
on the x-axis. In that case we can take Q to be the y-axis, g = (0,0) and
v = (0, 1). Write x(t), y(t) for the components of z(t), and u(t), v(¢) for the
components of w(t). Then g(t) = (0,y(t)) and a brief calculation yields
the formulas

2xy”? 2xx'y’

u= X2 +y/2’ v=y-— X2 +y/2' (12.1)

In particular, when z is a unit speed curve the formulas simplify to

u=2xy% v=y-—2xxy.
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Figure 12.7. Orthotomic of a circle with source at infinity

Example 12.8 Consider the orthotomic of the unit circle z(t) = e*
with respect to the y-axis. Using the standard triple angle formulas of
trigonometry

cos30 =4cos’@ —3cosf, sin3f =3sinh —4sin’ 0

the formula (12.1) produces the curve w defined below. In Example 6.9
we showed that this curve is congruent to a reparametrization of the
standard nephroid. (Figure 12.7.)

w(t) = %{3&' + &%},

Example 129  Consider the orthotomic of the parabola x(t) = at?,
y(t) = 2at with a > 0 with respect to the y-axis. Substituting in the
formula for the orthotomic w we find that its components u, v are given
by

2at? 2at

172 v(t) = iz

This is a parametrization of the circle of radius a centred at the focus
F = (a,0) with the single point (2a,0) deleted. (Example 2.6) Observe
that the deleted point is the limit of w(t) as t — 400, so corresponds to
the ‘point at infinity’ on the x-axis.

u(t) =

As in the case of orthotomics with respect to a point, we have the
following fundamental relation between the orthotomic with respect to a
line, and the caustic with respect to the parallel beam of light orthogonal
to that line.
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Figure 12.8. Orthotomic of a parabola with source at infinity

Lemma 124 Let z be a regular curve, and let w be the orthotomic of z
with respect to a line Q. Provided w is regular, the evolute of w is a caustic
Jor z with respect to the family of lines orthogonal to Q.

Proof The proof is immediate from Lemma 12.1 since the line joining
the orthogonal projection g(t) of z(t) onto Q is automatically orthogonal
to Q. O

Example 12.10 By Example 12.8 the caustic of the unit circle z(t) = €*
with respect to a beam of light parallel to the x-axis will be the evolute
of the nephroid

L.
w(t) = 5{3¢" + ey,

However, the evolute of the nephroid is another nephroid of half the
size, rotated through a right angle about the origin. (Table 8.1.) Thus the
result agrees with that of Example 12.2.

Example 12.11 By Example 12.9 the caustic of the standard parabola
x(t) = at?, y(t) = 2at with a > 0 with respect to a beam of light parallel to
the x-axis will be the evolute of the circle of radius a centred at the focus
F = (a,0), with the single point (2a4,0) deleted. And that is simply the
focus F. This establishes a reflective property for a parabola, namely that
a ray of light parallel to the axis, and reflected at the parabola, necessarily
passes through the focus F. Thus a beam of light parallel to the axis, and
reflected from the parabola, focuses at F: or put another way, a pencil
of rays emanating from F, and reflected from the parabola, produces
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Figure 12.9. The reflective property for a parabola

a beam of light parallel to the axis. (Figure 12.9.) The principle has
numerous physical applications, not least the development of parabolic
antennas for the propagation of microwave radio signals.

Exercises

12.3.1 Show that the caustic of the parabola x(¢) = 2at, y(t) = at?
where a > 0 with respect to the pencil of lines parallel to the
x-axis is the curve with components u(f) = at(3 — t2), v(¢) = 3at?.

1232 Show that the caustic of the natural logarithm curve x(t) = ¢,
y(t) = log t with respect to the pencil of lines parallel to the x-axis
is parametrically equivalent to the catenary u = cosh(v + 1).

12.4 Orthotomics as Envelopes

The practical tracing of orthotomics for a given regular curve z appears to
require one to be able to trace a large number of tangents to z. However,
there is an alternative description of the orthotomic which obviates this
difficulty, and gives rise to a simple practical tracing method. Consider
first the case of orthotomics with respect to a finite source g. We claim
that the orthotomic w of z with respect to the source q is an envelope for
the family of circles centred at points on z and passing through q: we have
only to observe that by Lemma 12.1 the circle centred at z(t) and passing
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Figure 12.10. Orthotomic as an envelope of circles

through q is tangent to w at ¢. Thus, given a tracing of z and a source g,
one need only trace a large number of circles (using a compass) centred
on z and passing through ¢: the orthotomic will then become visible as
the envelope of the circles. We refer to this as the ‘circle envelope’ tracing
method. Figure 12.10 illustrates the method for an orthotomic of a circle.
The method extends trivially to the case when the source is a ‘point at
infinity’: thus, by exactly the same reasoning, the orthotomic w of z with
respect to a line Q is an envelope for the family of circles centred at points
on z and tangent to Q.

Of course the above reasoning evades the more subtle question of
whether orthotomics are the only envelopes produced by the ‘circle
envelope’ method. Indeed that is the case. Here is a formal proof for the
case when the source is a point q.

Lemma 12.5 Let z be a regular parametrized curve. Any envelope of the
Samily of circles through q centred at points on z is either part of the
orthotomic with respect to q, or the constant envelope with trace q.

Proof We use complex number notation. For a fixed value of the
parameter A parametrize the circle centred at z(4) and passing through ¢
in the form

Z(4,1) = 2(4) + (g — z(A))e".

The partial derivatives with respect to A and t are then given by the
formulas

Zy(A) =21 —€"),  Zi(41) = (g —z(4))ie".
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To determine a pre-envelope for the family we require the points (4,t)
for which the ratio of these complex numbers is a real number a. Set
W = z'(4)/(g — z(4)): then the required condition is that

1 - e‘ ¢ . it
W = =a or equivalently " =

W +ia

Since €* is a unit complex number W, W + ia have the same length.
Setting W = U + iV with U, V real we see that this happens if and only
if a(a + 2V) = 0. When a = 0 we have e* = 1 defining infinitely many
‘vertical’ lines t = 2n= in the (4,t)-plane, where n is an integer: each such
line maps under Z to the point g. When « = —2V we have W +ix = W
so e = W /W : the required envelope is then obtained by substituting
for ¢* in the formula for Z(4,t). A few lines of working produces the
envelope in the form

Z(A,t) = 2(A) + {7 — 2V} T(4

where T'(4) is the unit tangent vector for z. It only remains to observe
that this is the formula for the orthotomic of z with respect to the source
q, using complex notation. |

Exercises

12.4.1 Use the ‘circle envelope’ method to trace the orthotomics of the
deltoid and the astroid.

12.4.2 Use the ‘circle envelope’ method to trace the orthotomics of the
unit circle with respect to the source g = (h,0) for values of h in
the following ranges: h=0,0<h<1/2,h=1/2,1/2<h < ],
h=1h>1

1243 Use the ‘circle envelope’ method to trace the orthotomic of a
rectangular hyperbola with respect to its centre. The resulting
curve is known as Bernoulli’s lemniscate.
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Planar Kinematics

The main function of this chapter is to provide the reader with an in-
troduction to an important and much neglected area of the physical
sciences, namely planar kinematics. It is an area giving rise to substan-
tial illustrations of the ideas developed in this book. Moreover, planar
kinematics represents a starting point for spatial kinematics, which will
be of considerable future relevance, as robotics assumes a role of ever
increasing significance in our daily lives. Some historical background
is provided by Section 13.1, centring around a classic example drawn
from the engineering literature (the four bar linkage) in which simple
mechanical means are used to generate motions of a moving plane. That
leads to the abstract concept of a planar motion in Section 13.2, and
the associated family of trajectories traced by the points of the moving
plane. The concept is illustrated in Section 13.3 by the idea of a gen-
eral roulette, extending the trochoid construction of Section 3.3 and the
involute construction of Section 4.4.

13.1 Historical Genesis

The historical genesis of the subject lies in the Power Revolution, which
took place from the thirteenth to the sixteenth centuries. Over that period
western man was gradually released from the drudgery of providing a
source of power as ways became available of converting water and wind
power into mechanical work. Usually, the available power was given by
rotary motion (for instance a water wheel or an axle turned by a bullock)
and the object was to convert it into linear reciprocating motion (for
instance driving a pump to irrigate fields, a bellows for a furnace, or a
saw for cutting timber). During the Industrial Revolution mechanisms
for converting rotary into linear motion were widely adopted in industrial

180
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Figure 13.1. The Watt four bar

and mining machinery, locomotives and metering devices. Such devices
had to combine engineering simplicity with a high degree of accuracy,
and possibly the ability to operate at speed for lengthy periods. For
many purposes approximate linear motion is an acceptable substitute for
exact linear motion. Perhaps the best known example is the Watt four
bar, illustrated in Figure 13.1. The device is made up of three smoothly
jointed bars moving with one degree of freedom (dof), the mid-point of
the middle (or coupler) bar describing the famous Watt curve. The curve
has a self crossing with two ‘branches’ through it, one of which represents
an excellent approximation to a straight line. In fact the tangent line has
five point contact with the curve at the self crossing, so is a higher
undulation.

It was the detailed investigation of the curves traced by planar mecha-
nisms such as the Watt four bar which gave rise to the body of knowledge
now known as ‘planar kinematics’. The Watt four bar is a special case
of the following construction. We have a fixed plane P represented by
a sheet of cardboard pinned to a flat surface, and a moving plane Q,
represented by a second sheet of cardboard. (The reader is recommended
to make a model: the size and shape of the sheets are unimportant.) Two
fixed points A and D are marked in P: and likewise two fixed points B
and C are marked in Q. Using drawing pins and strips of cardboard (or
plastic) we can arrange B to pivot around a circle centred at A, and C
to pivot around a circle centred at D. The result is a model in which the
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Figure 13.2. Four bar model

plane Q moves with one dof over the fixed plane P in a fairly complicated
way: it is called the four bar linkage, because there are four bars linking
the pairs of points AB, BC, CD and DA. (Figure 13.2.) Engineers refer to
Q as the coupler plane since it couples together the two cranks AB, CD.
Because of its simplicity and enormous versatility the four bar linkage
has a wide range of practical engineering applications.

Suppose now that we mark a fixed tracing point W in the moving plane
Q. Then W will trace a curve as Q moves over P, called the trajectory
of W. The trajectory is easily traced on P by the device of making a
small hole in Q at W and inserting through it the tip of a coloured pen.
A certain amount of experimentation should convince the reader that
the trajectories of the planar four bar yield a surprisingly wide range
of curves, whose nature and complexity depend on the lengths 4B, BC,
CD, DA, and on the position of W in the moving plane. An example is
illustrated in Figure 13.3.

The complexity of the four bar motion depends on the bar lengths, i.e.
the distances a = AB, b = BC, ¢ = CD, d = DA. We do not require a
full analysis of the four bar linkage, but the salient features are worthy
of mention. For a given position of B there are two possible positions
for C, each the reflexion of the other in the diagonal BD. There may be
one motion of the linkage encompassing both positions, or there may be
two distinct motions — it all depends on the bar lengths. Writing a, b, ¢,
d in increasing order of magnitude as @', b, ¢/, & it can be shown that
the linkage describes a single motion when a’ +d > b’ + ¢ (the Grashof
type) and two distinct motions when @' +d’ < b’ + ¢’. For the Grashof
type the trajectory has a single branch, whilst for the non-Grashof type it
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' Figure 13.3. A four bar trajectory

has two distinct branches. The boundary between the two types is given
by d +d = b + ¢, ie. the shortest plus the longest length is the sum
of the other two. More generally, the linkage is collapsible when the bar
lengths satisfy a relation of the form +a + b + ¢ +d = 0 or, put another
way, the points A, B, C, D become collinear at some instant during the
motion. A collapsible linkage will normally collapse in just one way.
Figure 13.4 illustrates some very special linkages which collapse in more
than one way: when ¢’ = b’ and ¢ = d’ the linkage collapses in two
different ways (the parallelogram, crossed parallelogram and kite) whilst
when a = b = ¢ = d' it collapses in three different ways (the rhombus).

Figure 13.4. Collapsible four bar linkages
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13.2 Planar Motions

In order to understand the underlying geometry of trajectories we will
widen our discussion to consider arbitrary motions of Q, rather than the
very special ones produced by four bar linkages. The general idea can
be introduced as follows. Imagine the plane Q moving in time ¢: indicate
that dependence on time by writing Q(t) for the position of Q at time
t. For the sake of convenience choose some initial time t; yielding an
initial position Q(tg) for Q. Then for any time ¢ there is a position Q(t) of
Q obtained from Q(ty) via a congruence u(t) of the plane: in particular
U(to) is the identity map. That motivates the following formalities.

As in Section 6.2 write SE(2) for the group of congruences of the
Euclidean plane. By a planar motion we mean a ‘smooth’ mapping u :
I — SE(2), where I is an open interval, such that for some parameter
to the congruence u(tp) is the identity map. One thinks of u as a one
parameter family u(t) of congruences, so really as a ‘parametrized curve’
in the group SE(2) rather than just in the plane. The meaning of the term
‘smooth’ in this context is as follows. Using complex notation, we can
write u(t)(w) = p(t)w +t(t) where p(t), ©(t) are complex numbers and p(¢)
has unit modulus: p(¢) is the rotational part and 1(t) the translational part
of the motion. We say that u is smooth when p(t) and z(t) are smooth
functions of t. Given a rigid motion p and a point w in the plane,
the parametrized curve defined by the formula ¢ — u(t)(w) is called the
trajectory of w under u.

Example 13.1 We can write down explicity the planar motion u arising
from the four bar linkage in the parallelogram case, where the bar lengths
a, b, ¢, d satisfy ¢ = a, d = b. For this example the rotational part of
the motion turns out to be constant. Taking the parameter ¢t to be the
angle between AB and AD (Figure 13.5) and the initial position to be the
collapsed position given by t = 0, the unique congruence taking B(0) = g,

Figure 13.5. The parallelogram four bar



13.2 Planar Motions 185
C(0) = a+b to B(t) = ae*, C(t) = ae”* +b is the translation u(t) given by

H(t)(w) = (w — a) + ae”

representing a regular parametrization of the circle of radius a centred
at the point (w — a). Thus the rotational and translational parts of u are
respectively p(t) = 1, t(t) = a(e® — 1).

For general four bars it is simply not practicable to write down explicit
formulas for the motions. Indeed the four bar motion is an extremely
subtle example whose mathematics (at the time of writing) is still not fully
understood. However, in partial compensation for this disappointment we
will consider a limiting case of the four bar motion (also of engineering
importance) where the motion can be written down explicitly.

Example 13.2 For the general planar four bar linkage the points B, C
in the moving plane Q are restricted to move along circles in the fixed
plane P. If we think of a line as a limiting case of a circle (tangent to
that line at a fixed point with radius tending to infinity) then a limiting
case of the planar four bar is obtained when B, C are restricted to move
along lines in the fixed plane P, as illustrated in Figure 13.6. Mechanical
engineers refer to this motion as the double slider. For the double slider
it is rather easy to write down a formula for u. For simplicity take the
lines to be the x-axis and the y-axis, the distance between B, C to be 1,
and the parameter ¢ to be the angle between the x-axis and the line BC.
For general ¢t we have B(t) = isint and C(t) = cost. Suppose we take
t = 0 to be the initial parameter, for which B(0) = 0, C(0) = 1. Then we
seek a congruence u(t)(w) = p(t)w + t(t) which takes B(0) to B(t) and
C(0) to C(t): the reader is encouraged to check that that gives

p(t) =cost—isint, t(t)=isint.

Figure 13.6. The double slider
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Exercises

132.1 In Example 13.2 an explicit formula is derived for the double
slider motion. Writing the tracing point as w = (u,v) show that
the trajectory generated by w is given parametrically as

x(t) = —vsint + ucost, y(t) = (u+ 1)sint + v cost.

Deduce that the trace of the trajectory is an ellipse, possibly
degenerating to a line segment.

13.3 General Roulettes

The next step in our discussion is to pursue the idea of a roulette rather
further. There is considerable gain in replacing the circles of Section 3.3
by general regular curves: by so doing we will see that familiar classes
of curves turn out to be roulettes, lending cohesion to the subject.
Consider two parametrized curves p, ¢ having the same domain 1.
Think of p, ¢ lying in superimposed planes P, Q at time ty: P is thought
of as the fixed plane, and Q as the moving plane. Correspondingly we
think of p as the fixed curve and q as the moving curve. A simple physical
model can be made by taking P, Q to be plastic transparencies, and
tracing p on P and g on Q with differently coloured pens. The curve q is
then rolled along the curve p, carrying with it the plane Q until at time ¢
we have the situation illustrated in Figure 13.7. In the moving plane we

Figure 13.7. The idea of a roulette
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choose any tracing point w, fixed relative to the moving curve 4. Then,
as the moving plane Q moves, so w traces out the required roulette.

We need to interpret the physical idea of ‘g rolling on p without
slipping’. To this end we assume henceforth that p, g have the same
speeds for all parameters t, ie. that |p'(t)] = |4'(¢)|] for all ¢t. It is an
immediate consequence of this assumption that for any fixed parameter
to the arc lengths of p, g from ¢y to ¢ are equal for all ¢: and that is
the required interpretation. It will be convenient to say that p, g are
equitangent at the parameter ¢t when p(t) = ¢(¢t) and p'(t) = ¢/(t). The
basic mental picture of the preceding paragraph is that at any instant ¢,
the curve ¢ in the moving plane gives rise to a curve ¢, in the fixed plane,
equitangent to p at t. Here is the formal expression of this intuition.

Lemma 13.1 Let p, q be regular curves with the same domain having
equal speeds. Then for any choice of parameter t there exists a (unique)
congruence i for which the curves p, q; = u(t)oq are equitangent at t. The
rotational and translational parts p, T of u are given by
/ / /

p= %, T= l’qq—,”. (13.1)
Proof The conditions for p, g, to be equitangent at ¢ are that p(tf) =
w(t)(g(t)) and p'(t) = p(t)q'(t). The latter formula defines p(t) uniquely by
p(t) = p'(t)/4'(¢). Since p, g have the same speeds p(f) is a unit complex
number, so represents a rotation. The former condition then defines z(¢)
uniquely as t(t) = p(t) — p(t)q(t). O

Note that this proof does not assume that there exists an ‘initial’
parameter ty for which p, g are equitangent, though in all our examples
that will be the case. We define the roulette traced by the point w to be
the planar motion ¢ — u(t). The practical value of Lemma 13.1 is that
given a fixed tracing point w, we then have a useful parametrization for
the associated trajectory ¢ +— u(t)(w). Indeed by that result we have

(t
P v —a() (132)
In the next two examples note that the parametrizations p, ¢ have been
set up to ensure that they have the same speed, and that there is an
initial parameter (¢t = 0 in both examples) at which p, g are equitangent.

u(e)(w) = p(t) +

Example 13.3 Let us derive again the parametrization of a trochoid
in Section 3.3. Recall that C is the pitch circle, with centre O at the
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origin, and radius R > 0: and C’ is the rolling circle, with centre 0’, and
radius R'. (Figure 3.7.) Parametrize the pitch and rolling circles as

p(t) = Reé®, g(t) = (R+R)—ReRi/R,

The reader will readily check that p, g are equitangent at t = 0 and have
the same constant speed R. We take the tracing point to be the point
w = (R+R’)—hR, so in the initial configuration w is the point on the line
joining the centres of C, C’ distance hR’ from the centre of C’. A line or
two of calculation using (13.2) now yields the required parametrization,
agreeing with (3.1),

R+R )t

z(t) = (R + R))e"* — hR ¢

Example 13.4 Consider again the roulette of a tracing point w carried by
a circle C of radius R > 0 rolling along a straight line L. (Example 3.15.)
We take L to be the x-axis. It is assumed that in the initial configuration
C is the circle of radius R centred at the point iR, and that w = iR(1 —h)
is the point on the y-axis distance AR from the centre of C, where h > 0.
(Figure 3.10.) Then C is naturally parametrized as q(t) = iR — iRe", and
L as p(t) = Rt. Clearly p, q are equitangent at t = 0, and have the
same constant speed R. The formula of Lemma 13.1 yields the same
parametrization as Example 3.15, namely

x(t) = R(t — hsint), y(t) = R(1 — hcost).

Example 13.5 In which we show that involutes can be viewed as roulettes.
Let p be a unit speed curve, and let t, be a fixed parameter. By a
reparametrization we can suppose that ¢, = 0, and by applying a con-
gruence we can suppose that p(0) = 0, p’(0) = 1. Parametrize the tangent
line at to as q(t) = t. Then p, g have the same speeds, and are equitangent
at t = 0. The formula for the trajectory of w then yields

4U)
q'(?)
Looking at the formula for the involute of a regular curve p in Section 4.4

we see that involutes of regular curves p are trajectories of the roulettes
obtained by rolling a tangent line q on p.

uw)(t) = p(&) + S—={w —q(®)} = p(t) — (¢t — w)P(t).

Example 13.6 In which we show that orthotomics can be viewed as roulettes.
Let p be a regular curve, and let , be a fixed parameter. By reparametriza-
tion we can suppose tp = 0, and by applying a congruence that p(0) =0,
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P'(0) = 1. Define a curve g by taking q(t) = p(t), the reflexion of p(t) in
the tangent line to p at t = 0. (Figure 12.7.) Clearly p, g4 have the same
speeds, and are equitangent at ¢t = 0. According to (13.2) the resulting
roulette is given by the formula

PO, o
o 90} =20+ {w PO} T ()

where T(t) is the unit tangent vector to p. Looking at Lemma 11.3 we
see that this is the orthotomic of z with respect to the source w. Thus
orthotomics of regular curves p can be characterized as trajectories of the
roulettes obtained by rolling a reflexion of p in some tangent line on p. In
particular, this helps us to understand why the orthotomics of a circle
are limacons. (Example 11.3.)

u(w)(t) = p(t) +

Exercises

13.3.1 Let a > 0. Consider the roulette generated by the fixed parabola
x(t) = at?, y(t) = 2at and a moving parabola x(t) = —at?, y(t) =
2at. Show that the roulette generated by the vertex of the moving
parabola is similar to the cissoid of Diocles. (Example 11.4.)
That should come as no surprise. According to Example 13.6
the roulette is the orthotomic of the fixed parabola with respect
to its vertex, which was shown in Example 11.4 to be the cissoid
of Diocles.

13.3.2 Let py, g1 be regular curves with domain I and equal speeds; and
let ps, > be the curves with domain J obtained via a change of
parameter s : J — I. (Thus p,, g, are likewise regular, and have
equal speeds.) Let u;, po be the roulettes obtained by rolling g;,
g2 on py, p>. Show the trajectories of any tracing point w under
11, 42 are parametrically equivalent under the same change of
parameter s. (In view of Example 13.6 this generalizes the result
of Exercise 11.2.10.)



14

Centrodes

In this chapter we will gain some understanding of the nature of a general
planar motion u via two very important curves associated to u. The first
real illumination arises by asking, at any given instant t, for those tracing
points w with the property that ¢ is irregular for the trajectory under
w. In general, the answer is that there is a unique tracing point w with
this property, the ‘instantaneous centre’ of rotation at that instant. That
leads naturally to the (fixed and moving) centrodes associated to general
motions, and to the classical result of Chasles, that such motions arise as
the roulettes associated to these two curves. That provides the content of
Section 14.3. In this way the concept of a roulette finally sheds its mantle
as an amusing construct for special curves, and assumes its central role
as a significant geometric idea in planar kinematics. This basic result
provides more than just an insight into the nature of planar motions: it
allows one to deduce useful properties of the motion from the geometry
of the centrodes.

14.1 Generic Parameters

Recall that for a planar motion y the trajectory generated by the tracing
point w can be written in the complex form u(t)(w) = p(t)w + (t) where
p(t), t©(t) are complex numbers and p(t) has unit modulus. Given a
parameter ¢ it is natural to ask for which tracing points w the parameter
t is irregular for the trajectory. Although it has little technical content,
the next result underpins the whole development of planar kinematics.

Lemma 14.1 Let p be a planar motion. Then, for each parameter t with
p'(t) # O there is a unique tracing point w = q(t) for which t is irregular

190
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for the trajectory of w, given by the formula q(t) = —7'(t)/p'(t) where p, T
are the rotational and translational parts of p.

Proof The condition on w is that the derivative of the trajectory should
vanish, i.e. that 0 = p/(t)w + 7/(¢), which has a unique solution for w
provided p'(t) # 0. O

This result motivates the following definition. The parameter ¢ is generic
for the motion u when p'(t) # 0. Put another way, a parameter ¢ fails to
be generic when the rotational part has a stationary value. One expects
only a discrete set of parameters t to fail to be generic; however, that is
not necessarily the case, as the next example shows.

Example 14.1 Consider the planar motion u of Example 13.1 arising
from the four bar linkage in the parallelogram case, where the bar lengths
a, b, ¢, d satisfy ¢ = a, d = b. Taking the parameter ¢ to be the angle
between AB and AD, and the initial position to be the collapsed position
given by t = 0, we saw that the rotational and translational parts of y are
given by p(t) = 1, 1(t) = a(e® — 1): thus the rotational part is constant,
and every parameter ¢ fails to be generic.

The next result is central to planar kinematics: that at any generic
instant ¢ all the normals to the trajectories pass through the single point
p(t) = u(t)(q(r)) in the fixed plane.

Theorem 14.2 Let t be a generic parameter for a motion u: then for any
tracing point w = q(t) the normal line at t to the trajectory u(t)(w) passes
through p(t). (Theorem of the Instantaneous Centre.)

Proof Under the hypothesis of the theorem the trajectory associated to
w is regular at ¢, so the tangent and normal lines at ¢ are defined. Write
z(t) = p(t)(w) = p(t)w + 1(t) with p(t) a rotation and z(¢) a translation.
In the following we drop the parameter t, for notational convenience.
Recall first that the normal line at ¢ to the trajectory is the set of points
r for which (r — z) e 2/ = 0. We have to show that this relation holds for
r = p, i.e. that (p — z) e z/ = 0. Note first that

(z—p)e(z—p)=pw—q)epw—q)=(w—q)e(w—q)
Differentiating both sides with respect to the parameter t we obtain

(z—p)le(Z—p)=w—q)e—4.
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Note that p’ = p(q'): indeed, differentiating the identity p = pq + 7 we
obtain p' = pq’ + p'q + 1 = pq’, since p'q + v’ = 0. That gives

(z—p)ez = (z—plep—(w—q)edq
= pw—q)ep(d)—(w—q)eq
= wW—q)eqd—(w—q)eq
= 0

|

The crucial intuition behind this result is that the moving plane is
rotating ‘instantaneously’ about the point p(z). For this reason, the unique
tracing point g(t) of Lemma 14.1 is called the moving instantaneous centre
of rotation at time ¢, and the corresponding point p(t) = u(t)(g(t)) is the
fixed instantaneous centre. Thus p(t), q(t) are defined by the formulas

‘W POH— 07 4.0

a0y =~ PO et

14.2 Generic Parameters for Roulettes

We gain geometric insight into the nature of generic parameters, when
we consider the class of roulettes. (As we will see, that is not as restrictive
an assumption as one might imagine it to be.) There is an underlying
intuition here, worthy of detailed explanation. Consider the roulette u
obtained by rolling one curve g on another curve p. For a given parameter
t we can think of p, g being approximated by their circles of curvature
C,, C, of radii R,, R,. The intuition is that in some sense u will be
approximated at ¢ by the roulette arising by rolling the circle C, on
the circle C,. (That is another reason why we isolated the study of
trochoids in Chapter 3.) Further, one expects the irregular points for the
trajectories to be related to those for the associated trochoids. Let us
recall the situation for trochoids.

Example 142 Write A for the ratio R,/R,; of the radii. There are two
special cases. The first is when 4 = —1, corresponding to the relation
K, = K,. In that case the circle C, has the same radius as C, and is inside
it: thus no rolling takes place, so the trace of the trochoid is a point,
and every parameter ¢ is irregular. However, when 1 # —1, irregular
parameters arise if and only if the tracing point is on the circumference
of C,. (Example 3.10.) Such parameters are necessarily cusps, failing to
be ordinary if and only if A = —2, corresponding to the relation 2k, = .
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(Exercise 7.5.3.) Geometrically, the latter case occurs when C, is a circle
of half the radius of C, and rolling inside it: thus we have Cardan circles
where the general trajectory is an ellipse, collapsing to a diameter of C,
for points on the circumference of C,.

Bearing this guiding intuition in mind, the next result makes consider-
able sense.

Lemma 14.3 Let p, g be regular curves with the same domain having equal
speeds, let u be the roulette obtained by rolling q on p, and let ty be a
parameter for which p, q are equitangent. Then t fails to be generic if and
only if the curvatures xp, K, of p, q at tg are equal.

Proof 1Tt follows from the proof of Lemma 4.1 that we can assume p,
g are unit speed curves under the same change of parameter, and that
to = 0. Further, by applying a suitable congruence we can assume that
p(0) = q(0) = 0, and that p'(0) = ¢’(0) = 1. By Lemma 13.1 the rotational
part of u is given by p = p’/q’, and 0 fails to be generic if and only if
0 = p’(0), i.e. if and only if

0 =p"(0)q'(0) — p'(0)g"(0) = p"(0) — 4" (0).

Since p has unit speed p’ e p = 1 identically. Differentiating, we see
that p’ e p” = 0 identically, hence that p’(0) e p”(0) = 0, equivalent to
Rp"(0) = 0. Likewise Rqg”(0) = 0. Thus p”"(0) = 4”(0) if and only if
3p"(0) = 34"(0). By Exercise 5.3.8 that is equivalent to k, = K,. O

Example 14.3 In Example 13.5 we saw that involutes of a regular curve p
could be considered as the trajectories of the roulette obtained by rolling
one of the tangent lines g along the curve. It is illuminating to ask for
the condition on a parameter ¢ to be non-generic. By Lemma 14.3 the
condition is that x,(t) = x4(t): now k,(z) = 0, since g is a line, so the
condition is that x,(t) = 0, i.e. that ¢ is inflexional for p. Intuitively, that
is not too surprising: as one moves through an inflexion one expects the
moving plane containing the tangent line to change its sense of rotation,
so that no matter which tracing point we choose there should be a visible
irregular point on the trajectory.

Example 144 In Example 13.6 we considered the roulette generated by
regular curves p, g where g is the reflexion of p in one of its tangent lines.
The resulting trajectories are then the orthotomics of p. By Lemma 14.3
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the condition for a parameter ¢ to be non-generic is that x,(t) = x4(¢).
However, the curvatures are related by x,(f) = —x,(t), so the required
condition is that x,(t) = x4(t) = O, i.e. that t should be inflexional for
p. This example shows that if we start with a mirror p having no
inflexions, and take a light source not on the mirror, then all the resulting
orthotomics are regular curves.

14.3 Fixed and Moving Centrodes

Let u be a planar motion with rotational and translational parts p, 7.
We say that u is generic when every parameter t is generic. We keep to
the notation of the previous chapter, writing p(t), q(t) for the fixed and
moving instantaneous centres at the instant ¢. The curve g(¢t) is called
the moving centrode of y; it is thus the locus of all moving instantaneous
centres of rotation. Likewise, the curve p(t) is the fixed centrode of u, and
is the locus of all fixed instantaneous centres of rotation. The following
examples illustrate the mechanics of determining centrodes for some of
the motions introduced in the previous chapter.

Example 14.5 For the motion y arising from the double slider of Ex-
ample 13.2 the rotational part is p(t) = cost—isin¢, and the translational
part is t(t) = isint. Clearly, u is generic. The moving centrode is

7'(t)
p'(t)
The trace of ¢(t) is a circle: the components x(t) = cos? ¢, y(t) = sintcost

satisfy the equation x? + y?> = x of the circle radius 1/2 and centre
(1/2,0). The fixed centrode is

q(t) = — = cost(cost + isint).

p(t) = p(t)q(t) + 7(t) = cost + isint

parametrizing the unit circle x2+3? = 1. Thus the traces of the centrodes
are circles, the fixed circle of twice the radius of the moving circle, and
tangent to it at the point (1,0). (Figure 14.1.)

A consequence of Theorem 14.2 is that in principle the fixed instan-
taneous centre is determined once we know the normals of any two
trajectories at time ¢: indeed it must be the intersection of the normals.
This remark can sometimes be used to locate the instantaneous centre
geometrically, even when a formula for the motion y is not known.
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Figure 14.1. Centrodes of the double slider

Example 14.6 Consider again the double slider of Example 13.2. For
this example it is clear that the trajectory of B is the ‘vertical’ diameter
of the unit circle, and that the trajectory of C is its ‘horizontal’ diameter.
(Note that the irregular points of these trajectories are the extremities
of the diameters.) Thus the tangent line to the trajectory of B is the
y-axis, and the normal line is the ‘horizontal’ line through B: likewise,
the tangent line to the trajectory of C is the x-axis, and the normal line
is the ‘vertical’ line through C. It follows that the instantaneous centre
is the point of intersection of the ‘horizontal’ line through B with the
‘vertical’ line through C: elementary geometry should now convince the
reader that the trace of the fixed centrode is therefore the unit circle,
agreeing with the result of the computation in Example 14.5.

In principle we can identify the fixed centrode g for a planar four
bar linkage. (We neglect here the question of whether parameters are
generic.) Indeed, the trajectories of B, C are circles centred at 4, D, the
normal lines to the trajectories are the lines AB, CD, and generally these
will intersect at the fixed instantaneous centre I. In this way we obtain
a range of fascinating centrode curves, whose form depends crucially on
the bar lengths g, b, ¢, d. An analysis of the general centrode lies well
beyond an undergraduate text: however, there are special cases where
elementary geometry suffices.

Example 14.7 Explicit illustrations are provided by crossed parallelo-
gram four bars. According to the preceding example the trace of the fixed
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Figure 14.2. Crossed parallelogram four bars

centrode is the locus of the intersection I of the diagonals 4B and CD. For
b < a the point I is within those line segments: but for b > a it lies outside
them. (Figure 14.2.) In either case the symmetry of the diagram tells us
that DI = IB. Thus when b < a we have Al +1D = AI +IB = AB = q,
and by Exercise 3.1.7 the trace is contained in an ellipse with foci 4, D:
however when b > a we have Al —ID = (AB+ BI)—ID = AB = a, and
by Exercise 3.1.8 the trace is contained in a hyperbola with foci 4, D.
Figure 14.3 illustrates the ellipse case.

We can widen our range of examples considerably by identifying the
centrodes for the class of motions provided by roulettes.

Lemma 14.4 Let p, q be regular curves having equal speeds, and let u be
the roulette obtained by rolling q on p. Assume that u is generic. Then the
fixed and moving centrodes P, Q associated to p coincide with p, q.

Proof By Lemma 13.1 we have u(w) = pw + t (where we drop the
parameter t) with p = p'/q', = = (pq' — p'q)/q’. Differentiation yields
v = —qp’, so the moving centrode is Q = —1'/p’ = ¢, and the fixed
centrode is P = pQ +1=pg+1=p. O

In particular, when every parameter is generic, the only tracing points
giving rise to trajectories having irregular parameters are those on the
moving curve g. The reader may like to correlate that statement with the
examples of trochoids discussed in Chapter 3 where cusps on the trajec-
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Figure 14.3. Centrode for a crossed parallelogram

tories corresponded to tracing points on the rolling circle, the cardioid
providing a good illustration.

The final result of this chapter encapsulates the reason for introduc-
ing centrodes in the first place. It tells us that under certain generality
conditions any planar motion is a roulette. The practical import of this
result is that properties of general motions u can be deduced from the
geometry of their centrode curves p, q.

Theorem 14.5 Let u be a generic motion whose fixed and moving centrodes
D, q are regular. Then p, q have the same speed. Also, u coincides with the
roulette u* obtained by rolling q on p. (Chasles’ Theorem.)

Proof Write p, 7 for the rotational and translational parts of u. The
centrodes p, g are then expressed in terms of p, T by (14.1). Differentiating
these expressions we obtain p’ = pq’: then, taking moduli of both sides
we find that p, g have equal speeds. Thus the roulette u* obtained by
rolling g on p is well defined, and its rotational and translational parts
p°, 1" are determined by (13.1). A few lines of working verify that p* = p,
t* = 1. The result follows. O

Example 14.8 By Example 14.5 the traces of the centrodes for the double
slider are circles, one of twice the radius of the other, and tangent at a
point. These are the Cardan circles of Example 3.12 where the trajectories
of the resulting roulette are ellipses, degenerating to a diameter of the
fixed circle when the tracing point is on the moving circle. By the above
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result, the trajectories of the double slider are likewise ellipses, possibly
degenerating to a diameter of the fixed circle. (Exercise 13.2.1 established

this fact by direct computation.)

Exercises
143.1 Let u be a planar motion. The inverse motion p~! is defined
by u~1(t) = u(t)~!. Suppose u is generic. Show that the moving
centrode for u~! is the fixed centrode for y, and that dually the
fixed centrode for u~! is the moving centrode for p.
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Geometry of Trajectories

In this chapter we will study how exceptional geometric features (irregular
points, inflexions and vertices) appear on the trajectories of a general
planar motion. To put matters into perspective it helps to make some
preliminary comments on the exceptional features which can appear on
a general curve z. The first thing to notice is that irregular points are
basically different from inflexions and vertices in that they represent the
common zeros of two smooth functions in one variable (the derivatives
of the components x, y) whilst inflexions and vertices appear as the
zeros of a single smooth function in one variable (the curvature x in
the case of inflexions, and its derivative k¥’ in the case of vertices). We
expect a general smooth function in one variable to have a discrete
set of zeros, hence that inflexions or vertices will arise from a discrete
set of parameters. On the other hand we do not expect two general
smooth functions in one variable to have a common zero, so do not
expect to have irregular parameters on a general curve z. Thus irregular
parameters should be viewed as unstable features of a general curve z
(expected to disappear under small changes in z) whereas inflexions and
vertices should be viewed as stable features (expected to persist under
small changes).

The picture alters fundamentally when we move from the study of a
single curve z to the two parameter family of trajectories resulting from
a motion g, one for each tracing point w. Let us fix some parameter t.
Consider first the condition on w for ¢ to be irregular for the associated
trajectory, represented by the common zeros of two smooth functions on
the w-plane. We expect the zeros of a smooth function on a plane to be a
‘curve’ in some sense, so expect the common zeros of two functions to be
the intersections of two ‘curves’, hence an isolated set of points. Indeed

199
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that is exactly what we found. (Lemma 14.1.) Provided ¢ is generic we
get a unique tracing point w with ¢ irregular for the associated trajectory.
In Section 15.2 we pursue this question further, and find that such
parameters are always cusps: normally they are ordinary cusps, failing
to be ordinary precisely when 2k, = k,, where k,, Kk, are the curvatures
of the fixed and moving centrodes p, q. By contrast, the condition on a
general tracing point w for ¢ to be an inflexion (or a vertex) is represented
by the zeros of a single function on the w-plane, so should be a ‘curve’. In
Section 15.3 we study the case of inflexions. It turns out that this ‘curve’
is a circle, the ‘inflexion circle’ long familiar to mechanical engineers.
Moreover, on this circle there is in principle a unique tracing point (the
Ball point) for which the trajectory has an undulation at t. Finally, in
Section 15.4 we study the case of vertices, where the ‘curve’ turns out to
be a cubic curve, known to the engineering community as the ‘cubic of
stationary curvature’. Moreover, on this cubic there are in principle four
points (the Burmester points) for which the trajectory has a higher vertex
at the instant t.

15.1 Equivalence of Motions

The object of this section is to introduce natural equivalence relations
on planar motions allowing us to restrict our attention to motions with
very specific properties. That will enable us to simplify the theoretical
computations of this chapter. Two planar motions y;, yuy with domains
I, I, are equivalent, when there exist a change of parameter s : I; — I,
and fixed congruences A4, B, such that for all ¢ in I,

pa(t) = A (s(t))B. (15.1)

The reader will readily verify that ‘equivalence’ is indeed an equivalence
relation of the set of planar motions. It is worth isolating two special
cases. The motions ui, puy are parametrically equivalent when there exists
a change of parameter s for which (15.1) holds with 4 = B = 1, where
1 is the identity in the group of congruences: and u;, u, are congruent
when I; = I, and there exist fixed congruences 4, B for which (15.1)
holds with s(¢) = t. Concerning the former concept we have the following
consequence of the Uniqueness Theorem.

Lemma 15.1 Let y be a generic motion, and let ty be a fixed parameter.
Then there exist a unit complex number u, and a change of parameter
s with s(to) = 0, for which the rotational part p(t) = ue™®. Thus u is
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parametrically equivalent to a motion whose rotational part is given by a
formula ue®, defined on an interval containing t = 0.

Proof We need only observe that the rotational part p(t) can be viewed
as a regular curve whose trace is contained in the unit circle. Then
by Lemma 6.9 there exist a unit complex number u, and a change of
parameter s with s(to) = 0, for which p(t) = ue”™®. The rest is clear. [

We say that a motion u passes through the identity when there exists
a parameter to for which u(to) = 1. Note first that any motion py is
congruent to a motion yup passing through the identity: in (15.1) choose
s(t) = t, A = 1, choose a parameter to, and set B = p;(to)~! to obtain
a motion y; for which uy(tp) = 1. In view of this comment we may
(and henceforth will) restrict our attention to motions x which do pass
through the identity.

Example 15.1 Let p, g be regular curves with the same domain having
equal speeds. We claim that the resulting roulette u passes through
the identity if and only if there exists a parameter at which p, ¢ are
equitangent. By (13.1) the rotational and translational parts of u are
given by
rd —r'q

g
The condition for u to pass through the identity is that there exists a
parameter to for which pu(t) = 1, or equivalently p(to) = 1, 1(¢9) = 0. In
view of the displayed relations that is the same as saying

P'(to) = 4'(to), p(to)q'(to) — P'(to)q(to) = O,

equivalent to p(ty) = q(to), P'(to) = ¢'(to), the condition for p, q to be
equitangent at to.

P’
p=-q—,, T =

Note that when two congruent motions uy, uz pass through the identity
at the same parameter ty, the congruences A, B in (15.1) are related
by AB = 1, so are mutually inverse: in that case we say that uj, u,
are conjugate motions. The concept of passing through the identity is
invariant under parametric equivalence, in the sense that if a motion
passes through the identity then any motion parametrically equivalent to
it has the same property. Moreover Lemma 15.1 tells us that any generic
motion passing through the identity is parametrically equivalent to one
whose rotational part p is given by p(t) = e*, and whose translational
part t satisfies 7(0) = 0.
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Lemma 15.2 Let u be a generic motion having rotational part p(t) = e*
and translational part t with 1(0) = 0. Then u is conjugate to a motion
U1 whose rotational part is p, and whose translational part t is such that
71(0) = 0, 71(0) = 0, 7{(0) = —2ir for some real constant r > 0.

Proof We will find a congruence B for which yu;(t) = B~!u(t)B has the
desired properties. Automatically, u;(0) = 1, so p1(0) = 1, t;(0) = 0.
Let B(z) = uz + b, where u, b are complex numbers with ¥ unit. By
computation

pr=p, T =uYpb+1—Db)
Differentiating the latter formula twice yields the relations
B =ulpb+7), o =ulPb+7).

Setting ¢ = O in the first relation we see that 7j(0) = 0 if and only if
p'(0)b +7(0) = 0, ie. if and only if b = g(0) where ¢ is the moving
centrode of u. That determines b, uniquely. Likewise, setting ¢t = 0 in the
second formula we see that an appropriate choice of u will force 7(0) to
have the desired form. O

A generic motion g, satisfying the conditions of Lemma 15.2 is said
to be in normal form. Thus we have established that any generic mo-
tion is equivalent to one in normal form. The next result spells out the
consequences for the centrodes.

Lemma 15.3 The centrodes p, q of a generic motion y in normal form have
the properties that p(0) = q(0) = 0, and that p’(0) = ¢q'(0) = 2r for some
real constant r > Q. Further, they fail to be regular at t =0 if and only if
7'(0)=0.

Proof The centrodes p, q are defined by the relations p = pg + 1,
p'q+ 1 =0. Setting t = 0 gives p(0) = 0, ¢(0) = 0. Differentiating, and
then setting t = 0, we get ¢'(0) = it"(0), p'(0) = ¢'(0). The result follows.

O

In Section 15.3 we will see that the constant r appearing in the
normal form has a satisfying geometric interpretation. For the moment
we content ourselves with the observation that r can be expressed neatly
in terms of the curvatures of the centrodes.



Exercises 203

Lemma 154 Let p be a generic motion in normal form with t = 0 regular

for the centrodes p, q. Write rp, ry for the radii of curvature of p, q at that

parameter. Then the constant r is determined by the Euler—Savary equation
1 1 1

Proof Differentiate the identity p = pg+ 1 twice, and then set t = 0 to get
p"(0) — ¢"(0) = 2ir, hence Jp”(0) — 34"(0) = 2r. By (5.5) the curvatures
Kps Kq Of p, g at t = 0 are determined by 4r’x, = Jp”(0), 4r’x, = Ig"(0).
The result follows. O

The main point to make before proceeding is that the concepts (of
cusps, inflexions and vertices on trajectories) studied in this chapter are
invariant under the notion of equivalence, so can be studied by working
with an equivalent motion. The details are spelled out in the following
exercises.

Exercises

15.1.1 Show that the relations of ‘equivalence’, ‘parametric equivalence’
and ‘congruence’ on motions are equivalence relations.

15.1.2  Let y;, u» be parametrically equivalent motions under a change
of parameter s. Show that the associated fixed centrodes pi, p2,
and the associated moving centrodes q;, g2, are parametrically
equivalent under the same change of parameter s.

15.1.3 Let y;, pp be parametrically equivalent motions under a change
of parameter s. Show that for any tracing point w the trajectory
of w under y; is parametrically equivalent to the trajectory under
1z via the same change of parameter s.

15.2 Cusps on Trajectories

It is time to say something about the nature of irregular points of
trajectories at generic parameters. Given a motion y, and a generic
parameter ¢, we know that there is a unique tracing point w with the
property that t is irregular for the trajectory under u. The next lemma
tells us considerably more: it should be read in the light of the general
intuition explained in Section 14.1.
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Lemma 15.5 Let u be a generic motion, and let t be a regular parameter
for the centrodes p, q. Then t is a cusp for the trajectory of the moving
instantaneous centre w = q(t), failing to be an ordinary cusp if and only if
2Kp = K4 Where kp, K, are the curvatures of p, q at t.

Proof By Lemma 15.3 we can assume g is in normal form, so t = 0,
p(0) = g(0) =0, and p'(0) = ¢’'(0) = 2r > 0. Thus w = ¢(0) = 0, and
u(t)(w) = 1(t). The rotational part p(t) = €%, so p(0) = 1, p'(0) = i,
p"(0) = —1. The moving centrode g satisfies the identity p'q + 7 = 0:
differentiating twice, and setting ¢t = 0, we obtain

70)=0, —"(0)=2ir, —7"(0)=—4r+iq"(0). (15.3)

In particular 77(0) # 0, so t = 0 is a cuspidal parameter. It fails to be
ordinary if and only if 7”(0), ”/(0) are linearly dependent, ie. if and
only if 3¢"(0) = —4r. However, the proof of Lemma 15.4 shows that
34"(0) = 4r’k,, so the condition is k, = —1/r. By the Euler-Savary
equation (15.2) that holds if and only if 2k, = . O

Here are two applications of this result, illustrating situations where we
can show that higher cusps cannot occur on the basis of the underlying
geometry.

Example 15.2 The first application is to involutes of a regular curve p,
thought of as the trajectories of the roulette obtained by rolling a tangent
line g along the curve. (Example 13.5.) We claim that a generic parameter
t must be an ordinary cusp of the trajectory for q(t). Suppose t is a higher
cusp. Lemma 15.5 then tells us that 2k, = k,, and since x, = 0 it would
follow that x, = 0, i.e. that ¢ is inflexional for p at ¢: but this contradicts
the result of Example 14.3 telling us that ¢ fails to be generic if and only
if ¢ is inflexional for p.

Example 15.3 The second application is to orthotomics of a regular
curve p, thought of as the trajectories of the roulette obtained by rolling
a reflexion g (of p in some tangent line) along p. (Example 13.6.) Again,
we claim that a generic parameter t must be an ordinary cusp of the
trajectory for g(t). For suppose t is a higher cusp. Lemma 15.5 then gives
2K, = K,, and since x, = —k, we deduce that x, = x, = 0, i.e. that ¢ is
inflexional for both p, g: but this contradicts the result of Example 14.4
telling us that then t is non-generic.
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Finally, it is worth remarking that the appearance of non-generic pa-
rameters (k, = &g4), and that of higher cusps (2x, = xy), are stable
phenomena, meaning that they persist under small changes in the cen-
trodes p, q. Indeed, small changes in p, g will lead only to small changes
in 2k, — k4 and k, — kg it remains to observe that in general a zero of a
smooth function persists under small deformations.

15.3 Inflexions on Trajectories

Following the introduction to this chapter we now study the question of
describing inflexions on the trajectories of a motion u. Thus we fix some
parameter ¢, and consider the set of tracing points w with the property
that ¢ is inflexional for the trajectory of w under u: interestingly, it turns
out to be a circle.

Lemma 15.6 Let u be a generic motion, let t be a regular parameter for
the centrodes p, q, and let J(t) be the set of all tracing points w for which
t is inflexional for the trajectory of w. Then J(t) is a circle through q(t)
with the point q(t) deleted. The circle is tangent to g at q(t), with radius r
determined by the Euler—Savary equation (15.2).

Proof By Lemma 15.3 we can assume u is in normal form. Thus t = 0,
the rotational part p satisfies p(0) = 1, p'(0) = i, p”"(0) = —1, and the
translational part t satisfies 7(0) = 0, 7(0) = 0, and 7"(0) = —2ir for
some positive real constant r. We seek those tracing points w for which
the first two derivatives p'(0)w + 7(0), p” (0w + 7”(0) of the trajectory
are linearly dependent, i.e. for which iw, —w — 2ir are linearly dependent.
Setting w = u + iv, this condition reduces to u? 4+ v + 2rv = 0, defining
the circle of radius r centre (0, —r). O

The circle containing J(t) is the moving inflexion circle, mapped under
u(t) to another circle, the fixed inflexion circle, of the same radius r
passing through p(t) and tangent there to p: we write I(t) for the set
obtained by deleting p from this circle. Either circle is determined by a
single inflexion: indeed a circle tangent to a fixed line at a fixed point on
that line is completely determined by any one of its points. Lemma 15.6
interprets the constant r which appeared in the Euler-Savary equation
as the common radius of the inflexion circles.

Example 15.4 Consider again the double slider of Example 14.5. Recall
that the centrodes are Cardan circles, and that the trajectory of a point
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w is an ellipse, collapsing to a diameter of the rolling circle when w lies
on that circle. For this example we can determine the inflexion circle
without further computations. Since ellipses have no inflexions, the only
trajectories which have inflexions are the diameters (for which every point
is an inflexion, bar the extremities) which are the trajectories of points
on the rolling circle. It follows that the moving inflexion circle at any
given instant t is the rolling circle. We can verify our conclusion by direct
calculation, following the proof of Lemma 15.6. Recall that the rotational
and translational parts of the motion are p(t) = e, 7(t) = isint. Then
p'(0) = —i, 7(0) =i, p”"(0) = —1, 7"(0) = 0 and the moving inflexion
circle is u? + v2 — u = 0, agreeing with the equation for the rolling circle
in Example 14.5.

Example 15.5 Consider the inflexions of the limacons obtained by rolling
one circle g on another fixed circle p having the same radius r. For
calculations take

p(t) =ri(l —€*), q(t) = —ri(l —e™).

Thus p(t) parametrizes the circle of radius r centred at (0,r), and g(f) the
circle of radius r centred at (0,—r), obtained from p by reflexion in the
common tangent line y = 0. Note that p, g have equal speeds, and are
equitangent at t = 0. With these choices the resulting roulette y is easily
checked to have rotational and translational parts

p(t) =€, (1) = ri(e* —1)%

We will find the inflexion circle J(0). We have p'(0) = 2i, 7(0) = 0,
p"(0) = —4, 7/(0) = —2ir, so J(0) has equation 2u?> + 202 +rv =0, a
circle of radius r/4 centre (0,—r/4). That agrees with the conclusion of
Example 5.9, that inflexional limacons are the trajectories of points inside
the rolling circle and nearer to the circumference than the centre.

Example 15.6 The previous example is a special case of the general
situation for orthotomics, thought of as the trajectories of roulettes
generated by regular curves p, ¢ where q is the reflexion (in some tangent
line) of p. Such curves will have curvatures k,, k, related by x, = —«,.
According to Example 14.4 a generic parameter ¢t is one which is not
inflexional for p. And Lemma 15.6 tells us that the inflexion circle at
such a parameter will have radius 1/4|x,|: in other words the radius of
the inflexion circle is one quarter the radius of curvature r, of p.
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Example 15.7 Another example is provided by involutes, thought of as
trajectories of roulettes generated by regular curves p, ¢ where ¢ is a
tangent line to p. According to Example 14.3 a generic parameter ¢ is one
which is not inflexional for p. In this example x, = 0, and Lemma 15.6
tells us that for a generic parameter ¢t the radius of the inflexion circle is
one half the radius of curvature r, of p.

Example 158 A special case arises when the moving inflexion circle
coincides with the circle of curvature of the moving centrode g. It
is interesting to see how this relates to our discussion of cusps. The
condition for the circles to coincide is that r = —1/x,. As we saw in the
proof of Lemma 15.5 that is precisely the condition for the trajectory
of the instantaneous moving centre to fail to have an ordinary cusp at
t = 0, equivalently that 2k, = k,.

It is natural to push the inflexion question a little further by asking
about undulations of trajectories. The situation so far is that for a roulette
1 we know that at a generic parameter ¢ all the tracing points w for which
t is inflexional for the associated trajectory lie on the moving inflexion
circle J(t). Intuitively, one would expect a discrete set of tracing points
w on J(t) for which ¢ is undulational for the trajectory. We can be more
precise.

Lemma 15.7 Let u be a generic planar motion, and let t be a regular
parameter for the centrodes p, q. In general there is just one tracing point
w on J(t) with t undulational for the trajectory. An exceptional case arises
when 2x,(t) = K4(t): then, either no points on J(t) give rise to undulations,
or every point does.

Proof By Lemma 15.3 we can assume y is in normal form. Thus ¢t =0,
the rotational part p is given by p(t) = €*, and by (15.3) the translational
part 7 satisfies

7(0)=0, '(0)=—2ir, 7”(0) = 4r—iq"(0).

The points on J(0) correspond to those coupler points w for which the first
two derivatives p/(0)w + 7'(0), p"(0)w + 7"(0) of the trajectory are linearly
dependent. By Section 7.3 the condition for ¢ to be undulational for the
trajectory is that in addition the first and third derivatives p'(0)w + 7/(0),
2" (0)w + 7””(0) should be linearly dependent. Setting w = u + iv, 7"(0) =
a+ib this condition reduces to au+bv = 0. The general case is when a # 0:
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the condition then defines a line through the origin in the w-plane,
intersecting the moving inflexion circle in just one further point, as
claimed. It remains to consider the exceptional case a = 0. When b # 0
our line is the tangent v = 0 to the circle at the origin, so there are no
further intersections with the circle, and we obtain no undulations: and
when b = 0 the condition au + bv = 0 is satisfied by every tracing point
w, and hence every point on J(0) gives rise to an undulation. It remains
to interpret the conditions. The condition a = 0 for the exceptional case
is equivalent to Jg”(0) = —4r. As in the proof of Lemma 15.5 that holds
if and only if 2, = «,. |

Here are two examples, illustrating Lemma 15.7 for two very familiar
motions.

Example 159 In Example 15.5 we considered the family of limacons
obtained by rolling the circle g of radius r and centre (0,—r) on the
fixed circle p of radius r and centre (0,r), and discovered that the moving
inflexion circle at t = 0 is the circle 2u? + 202 + rv = 0 of radius r/4
centred at the point (0, —r/4) where w = (u,v) is the tracing point. The
proof of Lemma 15.7 shows that ¢ = 0 is undulational for the trajectory
of w if and only if au + bv = 0 where 7"”'(0) = a + ib with a, b real. By
computation, t”(0) = 6r so a = 6r, b = 0 and the condition reduces to
u =0, a line intersecting the inflexion circle in a unique point (0, —r/2).
That agrees with the calculation of Example 3.14 where we saw that the
undulational limacon was the trajectory of a point midway between the
centre and the circumference of the rolling circle.

Example 15.10 Recall that for the double slider of Example 14.5 with
p(t) = e, 7(t) = isint, the fixed centrode p has trace the circle of radius
1 centred at (0,0), the moving centrode ¢ has trace the circle of radius
1/2 centred at the point (1/2,0), and the trajectories of the resulting
roulette are generally ellipses, possibly collapsing to a line segment.
Example 15.4 verified that the moving inflexion circle coincides with the
moving centrode. Since the only inflexions occur on trajectories which
are line segments, and these are necessarily undulations, we expect every
point on the inflexion circle at t = 0 to give rise to an undulation.
That is easily verified: simply note that p" = —p/, 7" = —7’ so that for
any point w the first and third derivatives of the trajectory pw + 7 are
linearly dependent. In this example the ‘line’ in the proof of Lemma 15.7
degenerates to the whole plane.
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The import of Lemma 15.7 is that for a generic planar motion we
expect to find a unique undulational tracing point w(t) for each generic
parameter ¢, defining a curve in the moving plane, known to kinematicians
as the Ball curve. For instance in Example 15.5 it is clear that the trace of
the Ball curve is the circle of radius 3r/2 concentric with the fixed circle.
We will not pursue the geometry of the Ball curve any further, save to
point out that in principle there should be a discrete set of parameters
t for which w(t) corresponds to higher undulations of trajectories, i.e.
points where the tangent line has at least 5-point contact. The Watt
four bar gives rise to a motion having exactly one such point, and is
the progenitor of a number of interesting linkages yielding approximate
straight line motion.

15.4 Vertices on Trajectories

Lemma 158 Let u be a generic motion, and let t be regular for the
centrodes p, q. Write K(t) for the set of all tracing points w with the
property that t is a vertex for the trajectory of w. Then K(t) is a cubic
curve through the moving instantaneous centre q(t), with the point q(t)
deleted.

Proof By Lemma 15.3 we can assume y is in normal form. Thus ¢t = 0,
the rotational part p is given by p(t) = €*, and by (15.3) the translational
part 7 satisfies

7(0)=0, '(0)=—2ir, "(0)=4r—ig"(0).

Recall that vertices are stationary parameters ¢t of the curvature func-
tion x. The relation (5.5) gave a formula for the curvature (at a regular
parameter t) of a plane curve z with components x, y: differentiating
that formula we see that vertices appear if and only if

(x/2 + yQ)(xlylll - xlllyl) —_ 3(xlxll + ylyll)(xlyll — xllyl). (15.4)

We are concerned with the case when z is the trajectory of w, so given by
z(t) = p(t)w + (¢). For calculations set w = u + iv, 7”(0) = a + ib where
u, v, a, b are all real. Differentiating z successively, and setting t = 0 in
the derivatives, we get

x0)=u, X0)=-v, x"(0)=—u, xX"0)=v+a
yO =v, YO =u YO0 =-v—-2r, y"(0)=-u+b.
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Setting t = 0 in (15.4) we see that K(0) is defined by the following
relation, which is in principle a cubic curve in the (u,v)-plane passing
through the origin.

(u? 4+ v)){(a — 6ryu+ bv} = 12r%uw. (15.5)
O

The cubic defined by (15.5) is known as the cubic of stationary curva-
ture. The reader with a working knowledge of algebraic curves will enjoy
analysing its geometry. In general it is irreducible with a crunode at the
origin, whose tangents are the tangent and normal lines v =0, u =0 to
the moving centrode: moreover it is a ‘circular’ cubic, in the sense that
the corresponding cubic in the complex projective plane passes through
the circular points at infinity I = (1 :i:0), J = (1 : —i : 0). Naturally,
one would like to go further and ask for those tracing points w which
give rise to higher inflexions on the trajectory. These turn out to be the
intersections of the cubic of stationary curvature with a second circular
cubic having a node at the origin. In principle these cubics intersect in
nine points: two are at I, J and three at the common node, leaving
four points in the Euclidean plane known as the Burmester points. And
as the parameter ¢ varies so these four Burmester points will themselves
describe interesting curves, whose geometry will reflect the intimate detail
of the motion.

That brings the material of this book to a natural conclusion, with dif-
ferential geometry merging imperceptibly into algebraic geometry. There
is much intriguing material to be developed here. However, that is an-
other story, reserved for those with a serious interest in kinematics. Qur
objective has been achieved.
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of ellipse, 111, 118 of cycloid, 99
of epicycloid, 114, 118 of Descartes’ folium, 73
of equiangular spiral, 118 of eight-curve, 72, 99
of graph, 119 of epicycloid, 71
of hypocycloid, 114, 118 of equiangular spiral, 73
of parabola, 111, 124 of graph, 69, 96
of semicubical parabola, 112 of hypoc;ycloid, 7"
of tractrix, 117 of involute, 207
Existence Theorem, 75 of Kampyle, 73
Factor Theorem, 90, 91, 104 gff‘ lol?tlﬁg?:r’nzcl, ' 29086 171, 206,208
family of piriform, 70
one parameter, 137 of right strophoid, 73
fixed of Serpentine, 97
centrode, 194 of trajectory, 205
f:nrcle,. 42 ) of versiera, 70
inflexion circle, 205 ordinary, 95, 96
instantaneous centre, 192 inflexional ’par’ameter, 69
plane, 42, 186 initial time, 184
point, 79 Intermediate Value Theorem, 134
focus, 32 inverse motion, 198
Formula involute, 59, 114, 207
Serret—Frenet, 63 as roulette, 188
four bar linkage, 182 backward ’61
Four Vertex Theorem, 135 forward, 61
frame, 62 of catenary, 61
moving, 62 of circle, 59
. of cycloid, 60
g:;?:&s}io irregular parameter, 24

isochronous, 61
isometry, 77
linear part of, 81

generic motion, 194
generic parameter, 191

gradient, 99 direct. 80
limiting, 99 .o

Grashof type, 182 indirect, 80

gr(l,iltfc’:lidean, 7 Jacobian matrix, 140

half line, 17 Kampyle of Eudoxus, 73

half term, 81

half turn, 82 length, 3
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limacon, 46, 68, 71, 98, 101, 129, 159, 206, ordinary

208 vertex, 126
biflexional, 72, 98 orthogonal
nodal, 47 bisector, 10, 151
undulational, 72, 98 line, 10
uniflexional, 98 projection, 12
line(s), 7, 39 vector, 2
coincident, 11 orthotomic, 153, 174, 206
direction, 9 as roulette, 188
half, 17 of astroid, 161
intersecting, 11 of cardioid, 159, 161
normal, 27 of circle, 154, 159, 175, 179
orthogonal, 10 of deltoid, 161
parallel, 11 of ellipse, 157, 159
parametrized, 8 of epicycloid, 160
segment, 17, 30, 31, 85 of hyperbola, 158, 179
tangent, 27 of hypocycloid, 160
linearly independent, 1 of line, 174
linkage of parabola, 155, 156, 159, 175
collapsible, 183 of starfish, 161
four bar, 182 oval, 133
Lissajous figure, 55, 104
Lockwood, xvii parabola, 27, 33, 37, 53, 68, 107, 111, 124,
126, 127, 148, 156, 159, 163, 175, 176
Maclaurin’s trisectrix, 23 semicubical, 24, 52, 61
members, 137 standard, 34
mid-point, 10 standard parametrization, 34
mirror, 166 parallel
modulus, 6 curve, 119
motion lines, 11
congruent, 200 of circle, 123
conjugate, 201 of line, 123
equivalent, 200 of parabola, 120, 123
generic, 194 parallelogram
in normal form, 202 crossed, 195
inverse, 198 parallelogram law, §
parametrically equivalent, 200 parameter, 13
planar, 184 change of, 54
smooth, 184 generic, 191
moving inflexional, 69
centrode, 194 irregular, 24
circle, 42 regular, 24
frame, 62 starting, 59
inflexion circle, 205 parametric equivalence, 119
instantaneous centre, 192 of curves, 54
plane, 42, 186 of motions, 200
Mukhopadhaya, 134 parametrized
curve, 13
nephroid, 44, 117, 119, 142, 167, 175, 176 line, 8
Newton formula, 69 set, 15
nodal limacon, 47 part
normal imaginary, 6
form of a motion, 202 real, 6
line, 27 pedal curve, 159
unit, 62 pencil of lines, 17, 39, 41, 89, 167, 173, 177
vector, 23 period, 17

Norwich spiral, 60 . periodic curve, 17



phase constant, 55
piriform, 24, 70, 103, 130
planar

mapping, 77

motion, 184
plane

fixed, 42, 186

moving, 42, 186
point, 1

Burmester, 210

control, 26

fixed, 79

tracing, 43, 182, 187
polar form, 7
Polarization Identity, 6
positive definite, 2
pre-envelope, 138
preserves distance, 77
product, 6
prolate cycloid, 48
Pythagoras Theorem, 5

quartic, 39

radius

of circle, 14

of curvature, 109
ratio, 99
reflected ray, 166
reflective property

for a hyperbola, 172

for a parabola, 176

for an ellipse, 172
reflexion, 152

central, 81

of a curve, 153
regular

curve, 24

parameter, 24
reparametrization, 54
rhodonea, 17
right strophoid, 15, 73, 156
Rolle’s Theorem, 128
rose curve, 17, 22, 24, 55, 85, 106
rotation, 80
rotational part, 184
roulette, 42, 187

scalar, 1
scalar product, 2
scaling factor, 79
self crossing, 21
semiaxis
major 34
minor, 34

semicubical parabola, 24, 52, 61, 99—-101

103, 112
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Serpentine, 97, 131
Serret-Frenet Formulas, 63
similarity, 79
simple harmonic motion, 55
singular set, 140
smooth motion, 184
source, 151, 153, 166
special Euclidean group, 80
speed, 50
spiral

equiangular, 73, 82, 172

Norwich, 60

pole of, 82
spirograph, xvii, 42
standard

basis, 1, 5

coordinates, 2

X ? &‘mﬁgﬁar spiral, 83

hyperbola, 35

parabola, 34
starfish, 44, 161
starting parameter, 59
strophoid

right, 156
strophoid, right, 15
symmetry, 2

tangency condition, 139
tangent, 106
line, 27
cuspidal, 100
limiting, 99
unit, 62
vector, 23
cuspidal, 100
trace, 15
tracing point, 43, 182, 187
tractrix, 28, 61, 104, 117
trajectory, 182, 184
translation, 77
translational part, 184
Triangle Inequality, 3, 4
trisectrix of Maclaurin, 23
trochoid, 42, 49, 187
Tschirnhausen cubic, 20, 27

undulation, 95, 98, 181, 207
of limacon, 208
of trajectory, 207
uniflexional limacon, 98
Uniqueness Lemma, 66
Umqueness Theorem, 87

U -

S
~spedd, 57
vector,
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variability condition, 138 of oval, 135
vector, 1 of parabola, 34, 126, 127
normal, 23 of piriform, 130
orthogonal, 2 of Serpentine, 131
tangent, 23 of trajectory, 209
versiera, 39, 57, 70, 131 of versiera, 131
vertex, 126 ordinary, 126
higher, 126
of cardioid, 132 Watt four bar, 181
of catenary, 131
of cycloid, 130 zero, 89
of eight-curve, 129 k-fold, 91
of ellipse, 34, 127 of finite multiplicity, 91 -
of graph, 128, 130 of infinite multiplicity, 91
of hyperbola, 35, 130 repeated, 91
of limacon, 129 zero set, 40
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This genuine introduction to the differential geometry
of plane curves is designed as a first text for under-
graduates in mathematics, or postgraduates and
researchers in the engineering and physical sciences.
The book assumes only foundational year mathematics:
it is well illustrated, and contains several hundred
worked examples and exercises, making it suitable

for adoption as a course text. The basic concepts are
illustrated by named curves, of historical and scientific
significance, leading to the central idea of curvature.
The singular viewpoint is represented by a study of
contact with lines and circles, illuminating the ideas of
cusp, inflexion and vertex. There are two major physi-
cal applications. Caustics are discussed via the central
concepts of evolute and orthotomic. The final chapters
introduce the core material of classical kinematics,
developing the geometry of trajectories via the ideas
of roulettes and centrodes, and culminating in the
inflexion circle and cubic of stationary curvature.
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