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GL(2, R) GEOMETRY OF ODE'SMICHA� GODLI�SKI AND PAWE� NUROWSKIAbstrat. We study �ve dimensional geometries assoiated with the 5-dim-ensional irreduible representation of GL(2, R). These are speial Weyl geome-tries in signature (3, 2) having the struture group redued from CO(3, 2) to
GL(2, R). The redution is obtained by means of a onformal lass of totallysymmetri 3-tensors. Among all GL(2, R) geometries we distinguish a sublasswhih we term `nearly integrable GL(2, R) geometries'. These de�ne a unique
gl(2, R) onnetion whih has totally skew symmetri torsion. This torsionsplits onto the GL(2, R) irreduible omponents having respetive dimensions3 and 7.We prove that on the solution spae of every 5th order ODE satisfy-ing ertain three nonlinear di�erential onditions there exists a nearly inte-grable GL(2, R) geometry suh that the skew symmetri torsion of its unique
gl(2, R) onnetion is very speial. In ontrast to an arbitrary nearly integrable
GL(2, R) geometry, it belongs to the 3-dimensional irreduible representationof GL(2, R). The onditions for the existene of the struture are lower or-der equivalents of the Doubrov-Wilzynski onditions found reently by BorisDoubrov [7℄.We provide nontrivial examples of 5th order ODEs satisfying the threenonlinear di�erential onditions, whih in turn provides examples of inhomo-geneous GL(2, R) geometries in dimension �ve, with torsion in R

3.We also outline the theory and the basi properties of GL(2, R) geometriesassoiated with n-dimensional irreduible representations of GL(2, R) in 6 ≤

n ≤ 9. In partiular we give onditions for an nth order ODE to possess thisgeometry on its solution spae.MSC lassi�ation: 53A40, 53B05, 53C10, 34C30
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2 MICHA� GODLI�SKI AND PAWE� NUROWSKI6. Examples of nearly integrable GL(2, R) strutures from 5th order ODEs 356.1. Torsionfree strutures 356.2. Strutures with vanishing Maxwell form 356.3. Simple strutures with nonvanishing Maxwell form 386.4. A remarkable nonhomogeneous example 397. Higher order ODEs 407.1. Results from Hilbert's theory of algebrai invariants 427.2. Stabilizers of the irreduible GL(2, R) in dimensions n < 10 457.3. Wünshmann onditions for the existene of GL(2, R) geometries onthe solution spae of ODEs 47Referenes 511. IntrodutionLet us start with an elementary algebrai geometry in R
3. Every point on aurve (1, x, x2) in R

3 de�nes a straight line passing through the origin in the dualspae (R3)∗ via the relation:
θ0 + 2θ1x + θ2x2 = 0(1.1)

θ1 + θ2x = 0.Here (θ0, θ1, θ2) parametrize points of (R3)∗. When moving along the urve (1, x, x2)in R
3, the orresponding lines in the dual spae (R3)∗ sweep out a ruled surfaethere, whih is the one(1.2) (θ1)2 − θ0θ2 = 0with the tip in the origin. The points (θ0, θ1, θ2) lying on this one may be thoughtas those, and only those, whih admit a ommon root x for the pair of equations(1.1). A standard method for determining if two polynomials have a ommon rootis to equate to zero their resultant. In the ase of equations (1.1) the resultant is:

R3 = det













θ0 2θ1 θ2 0 0
0 θ0 2θ1 θ2 0
0 0 θ0 2θ1 θ2

θ1 θ2 0 0 0
0 θ1 θ2 0 0













.It vanishes if and only if ondition (1.2) holds.Before passing to R
n with general n ≥ 3, it is instrutive to repeat the aboveonsiderations in the ases of n = 4 and n = 5.A point on a urve (1, x, x2, x3) in R

4 de�nes a plane passing through the originin the dual spae (R4)∗ via the relation:
θ0 + 3θ1x + 3θ2x2 + θ3x3 = 0(1.3)

θ1 + 2θ2x + θ3x2 = 0.Now (θ0, θ1, θ2, θ3) parametrize points of the dual (R4)∗ and when moving alongthe urve (1, x, x2, x3) in R
4, the orresponding planes in (R4)∗ sweep out a ruled



GL(2, R) GEOMETRY OF ODE'S 3hypersurfae there, whih is de�ned by the vanishing of the resultant of the twopolynomials de�ned in (1.3). This is given by(1.4) − 3(θ1)2(θ2)2 + 4θ0(θ2)3 + 4(θ1)3θ3 − 6θ0θ1θ2θ3 + (θ0)2(θ3)2 = 0,as an be easily alulated.For n = 5, a point on a urve (1, x, x2, x3, x4) in R
5 de�nes a 3-plane passingthrough the origin in the dual spae (R5)∗ via the relation:

θ0 + 4θ1x + 6θ2x2 + 4θ3x3 + θ4x4 = 0(1.5)
θ1 + 3θ2x + 3θ3x2 + θ4x3 = 0,where (θ0, θ1, θ2, θ3, θ4) parametrize points of the dual (R5)∗ as before. And now,when moving along the urve (1, x, x2, x3, x4) in R

5, the orresponding 3-planes in
(R4)∗ sweep out a ruled hypersurfae there, whih is again de�ned by the vanishingof the resultant of the two polynomials de�ned in (1.5). The algebrai expressionfor this hypersurfae in terms of the θ oordinates is quite ompliated:

−36(θ1)2(θ2)2(θ3)2 + 54θ0(θ2)3(θ3)2 + 64(θ1)3(θ3)3 − 108θ0θ1θ2(θ3)3 +

27(θ0)2(θ3)4 + 54(θ1)2(θ2)3θ4 − 81θ0(θ2)4θ4 − 108(θ1)3θ2θ3θ4 +(1.6)
180θ0θ1(θ2)2θ3θ4 + 6θ0(θ1)2(θ3)2θ4 − 54(θ0)2θ2(θ3)2θ4 + 27(θ1)4(θ4)2

−54θ0(θ1)2θ2(θ4)2 + 18(θ0)2(θ2)2(θ4)2 + 12(θ0)2θ1θ3(θ4)2 − (θ0)3(θ4)3 = 0,but easily alulable.The beauty of the hypersurfaes (1.2), (1.4) and (1.6) onsists in this that theyare given by means of homogeneous equations, and thus they desend to the or-responding projetive spaes. From the point of view of the present paper, evenmore important is the fat, that they are GL(2, R) invariant. By this we mean thefollowing:Consider a real polynomial of (n − 1)-th degree(1.7) w(x) =

n−1
∑

i=0

(

n − 1

i

)

θixiin the real variable x with real oe�ients (θ0, θ1, ..., θn−1). The n-dimensionalvetor spae (Rn)∗ of suh polynomials may be identi�ed with the spae of theiroe�ients. Now, replaing the variable x by a new variable x′ suh that(1.8) x =
αx′ + β

γx′ + δ
, αδ − βγ 6= 0,we de�ne a new ovetor (θ′0, θ′1, ..., θ′n−1) whih is related to (θ0, θ1, ..., θn−1) of(1.7) via

n−1
∑

i=0

(

n − 1

i

)

θ′ix′i = (γx′ + δ)n−1w(x).It is obvious that θ′ = (θ′0, θ′1, ..., θ′n−1) is linearly expressible in terms of θ =
(θ0, θ1, ..., θn−1):(1.9) θ′ = θ · ρn(a), a =

(

α β
γ δ

)

.Here a orresponds to the GL(2, R) transformation (1.8), and the map
ρn : GL(2, R) → GL((Rn)∗) ∼= GL(n, R)



4 MICHA� GODLI�SKI AND PAWE� NUROWSKIde�nes the real n-dimensional irreduible representation of GL(2, R). For example,if n = 2, we have w(x) = θ0 + 2θ1x + θ2x2, and we easily get
(

θ′0 θ′1 θ′2
)

=
(

θ0 θ1 θ2
)





δ2 γδ γ2

2βδ αδ + βγ 2αγ
β2 αβ α2



 ,so that ρ2 is given by
ρ2

(

α β
γ δ

)

=





δ2 γδ γ2

2βδ αδ + βγ 2αγ
β2 αβ α2



 .Now, let us de�ne g(θ, θ), 4I(θ, θ, θ, θ) and 5I(θ, θ, θ, θ, θ, θ) by
g(θ, θ) = the left hand side of (1.2)

4I(θ, θ, θ, θ) = the left hand side of (1.4)(1.10)
5I(θ, θ, θ, θ, θ, θ) = the left hand side of (1.6).We will often abbreviate this notation to the respetive: g(θ), 4I(θ) and 5I(θ).To explain our omment about the GL(2, R) invariane of the respetive hyper-surfaes g(θ) = 0, 4I(θ) = 0 and 5I(θ) = 0 we alulate g(θ′), 4I(θ′) and 5I(θ′)with θ′ as in (1.9). The result is

g(θ′) = (αδ − βγ)2 g(θ)
4I(θ′) = (αδ − βγ)4 4I(θ)
5I(θ′) = (αδ − βγ)6 5I(θ).Thus the vanishing of the expressions g(θ), 4I(θ) and 5I(θ) is invariant under theation (1.9) of the irreduible GL(2, R) on (Rn)∗.We are now ready to disuss the general ase n ≥ 3 of the rational normal urve

(1, x, x2, ..., xn−1) in R
n. Assoiated with this urve is a pair of polynomials, namely

w(x) as in (1.7), and its derivative dw
dx . We onsider the relation(1.11) w(x) = 0 &

dw

dx
= 0.This gives a orrespondene between the points on the urve (1, x, x2, ..., xn−1) in

R
n and the (n − 2)-planes passing through the origin in the dual spae (Rn)∗parametrized by (θ0, θ1, ..., θn−1). When moving along the rational normal urve in

R
n, the orresponding (n−2)-planes in (Rn)∗ sweep out a ruled hypersurfae there.This is de�ned by the vanishing of the resultant, R(w(x), dw

dx ), of the two polyno-mials in (1.11). The algebrai expression for this hypersurfae is the vanishing ofa homogeneous polynomial, let us all it I(θ), of order 2(n− 2), in the oordinates
(θ0, θ1, ..., θn−1). The hypersurfae I(θ) = 0 in (Rn)∗ is GL(2, R) invariant, sinethe property of the two polynomials w(x) and dw

dx to have a ommon root is in-dependent of the hoie (1.8) of the oordinate x. Thus GL(2, R) is inluded inthe stabilizer GI of I under the ation of the full GL(n, R) group. This stabilizer,by de�nition, is a subgroup of GL(n, R) with elements b ∈ GI ⊂ GL(n, R) suhthat I(θ·b) = (det b)
2(n−2)

n I(θ). Moroever, in n = 4, 5, it turns out that GI is pre-isely the group GL(2, R) in the orresponding irreduible representation ρn. Thusif n = 4, 5 one an haraterize the irreduible GL(2, R) in n dimensions as thestabilizer of the polynomial I(θ).



GL(2, R) GEOMETRY OF ODE'S 5Cruial for the present paper is an observation of Karl Wünshmann that thealgebrai geometry and the orrespondenes we were desribing above, naturallyappear in the analysis of solutions of the ODE y(n) = 0. Indeed, following Wün-shmann1 (see the Introdution in his PhD thesis [21℄, pp. 5-6), we note the fol-lowing:Consider the third order ODE: y′′′ = 0. Its general solution is y = c0+2c1x+c2x
2,where c0, c1, c2 are the integration onstants. Thus, the solution spae of the ODE

y′′′ = 0 is R
3 with solutions identi�ed with points c = (c0, c1, c2) ∈ R

3. Thesolutions to the ODE y′′′ = 0 may be also identi�ed with urves y(x) = c0 +
2c1x + c2x

2, atually parabolas, in the plane (x, y). Suppose now, that we taketwo solutions of y′′′ = 0 orresponding to two neighbouring points c = (c0, c1, c2)and c + dc = (c0 + dc0, c1 + dc1, c2 + dc2) in R
3. Among all pairs of neighbouringsolutions we hoose only those, whih have the property that their orrespondingurves y = y(x) and y + dy = y(x)+ dy(x) touh eah other, at some point (x0, y0)in the plane (x, y). If we do not require anything more about the properties of thisinidene of the two urves, we say that solutions c and c + dc have zero orderontat at (x0, y0).In this `baby' example everything is very simple:To get the riterion for the solutions to have zero order ontat we �rst writethe urves y = c0 +2c1x+ c2x

2 and y +dy = c0 + dc0 +2(c1 + dc1)x +(c2 +dc2)x
2orresponding to c and c + dc. Thus the solutions have zero order ontat at

(x0, y(x0)) provided that dy(x0) = 0, i.e. if and only if
dc0 + 2x0dc1 + x2

0dc2 = 0.This shows that suh a ontat is possible if and only if the determinant
g(dc, dc) = (dc1)

2 − dc0dc2is nonnegative, sine otherwise the quadrati equation for x0 has no solutions. Un-expetedly, we �nd that the requirement for the two neighbouring solution urvesof y′′′ = 0 to have zero order ontat at some point is equivalent to the requirementthat the orresponding two neighbouring points c and c + dc in R
3 are spaelikeseparated in the Minkowski metri g in R

3. This is the disovery of Wünshmannthat is quoted in Elie Cartan's 1941 year's paper2 [5℄.Now we onsider the neighbouring solutions c and c + dc of y′′′ = 0 whih arenull separated in the metri ds2. What we an say about the orresponding urvesin the plane (x, y)?To answer this we need the notion of a �rst order ontat : Two neighbouringsolution urves y = c0 +2c1x+ c2x
2 and y +dy = c0 +2c1x+ c2x

2 +(dc0 +2xdc1 +
x2dc2) of y′′′ = 0, orresponding to c and c + dc in R

3, have �rst order ontat at
(x0, y0) i� they have zero order ontat at (x0, y0) and, in addition, their urves of1We are very grateful to Niels Shuman, who found a opy of Wünshmann thesis in the itylibrary of Berlin and sent it to us. It was this opy, whih after translation from German byDenson Hill, led us to write this introdution.2It is worthwhile to remark, that Wünshmann thesis is dated `1905', the same year in whihEinstein published his famous speial relativity theory paper [9℄. It was not until three years laterwhen Minkowski gave the geometri interpretation of Einstein's theory in terms of his metri [15℄.Perhaps Wünshmann was the �rst who ever wrote suh metri in a sienti� paper. This is avery interesting feature of Wünshmann thesis: he alls the expressions like (dc1)2 − dc0dc2 = 0,a Mongeshe Gleihung rather than a one in the metri, beause the notion of a metri withsignature di�erent than the Riemannian one was not yet abstrated!



6 MICHA� GODLI�SKI AND PAWE� NUROWSKI�rst derivatives, y′ = 2c1 +2c2x and y′ +dy′ = 2(c1 +dc1)+2(c2 +dc2)x, have zeroorder ontat at (x0, y0). Thus the ondition of �rst order ontat at (x0, y(x0))is equivalent to dy(x0) = 0 and dy′(x0) = 0, i.e. to the ondition that x0 is asimultaneous root for
dc0 + 2x0dc1 + x2

0dc2 = 0(1.12)
dc1 + x0dc2 = 0.Solving the seond of these equations for x0, and inserting it into the �rst, afteran obvious simpli�ation, we onlude that (dc1)

2 − dc0dc2 = 0. Thus we getthe interpretation of the null separated neighbouring points in R
3 as the solutionsof y′′′ = 0 whose urves in the (x, y) plane are neighbouring and have �rst orderontat at some point.Wünshmann notes that the proedure desribed here for the equation y′′′ = 0an be repeated for the equation y(n) = 0 for arbitrary n ≥ 3. In the ases of n = 4and n = 5 he however passes to the disussion of the solutions that have ontatof order (n − 2) rather then one. This is an interesting possibility, omplementaryin a sense to the one in whih the solutions have �rst order ontat. Wünshmannspends rest of the thesis studying it. But we will not disuss it here.Sine Wünshmann does not disuss the �rst order ontat of the solutions in

n = 4, 5, let us look loser onto these two ases:The general solution to y(4) = 0 is y = c0 +3c1x + 3c2x
2 + c3x

3, and the generalsolution to y(5) = 0 is y = c0+4c1x+6c2x
2+4c3x

3+c4x
4. Thus now the solutions arepoints c in R

4 and R
5, respetively. The ondition that the neighbouring solutions

c = (c0, c1, c2, c3) and c+dc = (c0 +dc0, c1 +dc1, c2 +dc2, c3 +dc3) of y(4) = 0 have�rst order ontat at (x0, y(x0)) is equivalent to the requirement that the system
dc0 + 3x0dc1 + 3x2

0dc2 + x3
0dc3 = 0(1.13)

dc1 + 2x0dc2 + x2
0dc3 = 0has a ommon root x0. Similarly, the ondition that the neighbouring solutions

c = (c0, c1, c2, c3, c4) and c + dc = (c0 + dc0, c1 + dc1, c2 + dc2, c3 + dc3, c4 + dc4)of y(5) = 0 have �rst order ontat at (x0, y(x0)) is equivalent to the requirementthat the system
dc0 + 4x0dc1 + 6x2

0dc2 + 4x3
0dc3 + x4

0dc4 = 0(1.14)
dc1 + 3x0dc2 + 3x2

0dc3 + x3
0dc4 = 0has a ommon root x0. Calulating the resultants for the systems (1.12), (1.13),and (1.14) we get:

• R3 = g(dc, dc)dc2 if n = 3,
• R4 = 4I(dc, dc, dc, dc)dc3 if n = 4,
• R5 = 5I(dc, dc, dc, dc, dc, dc)dc4 if n = 5,where g, 4I and 5I are as in (1.10).This on�rms our earlier statement that two neighbouring solutions of y′′′ = 0have �rst order ontat i� g(dc, dc) = 0, sine if dc2 = 0 the system (1.12) ollapsesto dc1 = dc0 = 0. Similarly, one an prove that two neighbouring solutions of

y(4) = 0 or y(5) = 0 have �rst order ontat if and only if they are null separatedin the respetive symmetri multilinear forms 4I or 5I. Our previous disussion ofthe invariant properties of these forms, shows that in the solution spae of an ODE
y(n) = 0, for n ≥ 4, there is a naturally de�ned ation of the the GL(2, R) group.



GL(2, R) GEOMETRY OF ODE'S 7This group is the stabilizer of the invariant polynomial I(dc) whih distinguishesneighbouring solutions having �rst order ontat.The main question one an ask in this ontext is if one an retain this GL(2, R)struture in the solution spae for more ompliated ODEs. In other words, onemay asks the following: What does one have to assume about the funtion F ,de�ning an ODE
y(n) = F (x, y, y′, . . . , y(n−1)),in order to have a well de�ned onformal tensor g, 4I or 5I, in the respetive ases

n = 3, 4, 5, on the solution spae of the ODE? The same question an be repeatedfor any n > 5 and the invariant I.The answer to this question in the n = 4 ase was found by Robert Bryant in [2℄.Later, the answer for n > 4 ase was given by Boris Doubrov [7℄ who establisheda onnetion between the Wilzynski invariants [20℄ for a linear ODE, and ertainontat invariant onditions for a nonlinear ODE assoiated with it. For any n ≥ 3,given F , Doubrov onditions are built from the Wilzynski invariants alulated forthe linearization of y(n) = F about one of its solutions (see [7℄ for details). In a quitedi�erent perspetive, these onditions, were also disovered by Maiej Dunajski andPaul K Tod [8℄.Doubrov-Wilzynski onditions di�er from Bryant ones for n = 4. They alsodi�er from the onditions we are going to disuss in the present paper for n ≥ 4.Doubrov, Dunajski and Tod have (n − 2) nonlinear PDEs for F of ODE y(n) = F .Although this number, (n − 2), agrees with the number of onditions we presenthere, there is an important di�erene: eah of the (n− 2) onditions for F , de�nedby the above authors, has a di�erent order in the derivatives of F . When we arrangeDoubrov-Wilzynski onditions aording to the order of the orresponding PDEsfor F , we �nd that the �rst ondition is of order 3, the seond is of order 4, and soon, up to the order n of the (n−2)-th ondition. On the ontrary eah of our (n−2)onditions is of the third order in the derivatives of F . The simple explanation ofthis disrepany is as follows: We obtain our onditions, by applying a variant ofCartan's equivalene method ; in the proess of extrating them we obtain the �rstondition to be of the third order as everybody does. But the seond onditionwhih, if we were not applying Cartan's method, would be of order four, atuallyollapses in our derivation to a ondition of order three. This is beause Cartan'smethod automatially utilises the �rst ondition of order three by di�erentiatingit, and then eliminating the fourth derivative from the seond ondition by meansof the fourth derivative from the di�erentiated ondition of order three. The samesituation is automatially aomplished for the ondition of order �ve and so on.As a result we have (n − 2) onditions of order three. They are di�erent from theDoubrov-Wilzynski onditions already for the ODE of order four. In the n = 3ase all the onditions, namely those of Wünshmann, Doubrov, Dunajski and Tod,and ours are the same. In dimension n = 4 our onditions agree with the Bryantones. Sine Wünshman was the �rst who obtained these type of onditions in
n = 3 and found method of their onstruting for arbitrary n we all the onditionsdisussed in this paper generalized Wünshmann's onditions, or Wünshmann'sonditions, for short.Finding the Wünshmann onditions for F of order n ≥ 4, although important,is only a byprodut of our analysis. The present paper is devoted to a thoroughstudy of the irreduible GL(2, R) geometry in dimension �ve. This is done from



8 MICHA� GODLI�SKI AND PAWE� NUROWSKItwo points of view: �rst as a study of an abstrat geometry on a manifold and,seond, as a study of a ontat geometry of �fth order ODEs.We de�ne an abstrat 5-dimensional GL(2, R) geometry in two steps.First, in setion 2, we show how to onstrut the algebrai model for theGL(2, R)geometry in dimension �ve utilising properties of a rational normal urve. Se-ond, instead of obtaining the redution from GL(5, R) to GL(2, R) by stabiliz-ing the 6-tensor 5I, we get the desired redution by stabilizing a onformal met-ri gij → e2φgij of signature (3, 2) and a onformal totally symmetri 3-tensor
Υijk → e3φΥijk. These tensors are supposed to be related by the following alge-brai onstraint:(1.15) glm(ΥijlΥkmp + ΥkilΥjmp + ΥjklΥimp) = gijgkp + gklgjp + gjkgip.It is worthwile to note that ondition (1.15) is a non-Riemannian ounterpart ofthe ondition onsidered by Elie Cartan in the ontext of isoparametri surfaes[3℄, [4℄.Our main objet of study is then de�ned as follows:De�nition. An irreduible GL(2, R) geometry in dimension �ve is a 5-dimensionalmanifold M5 equipped with a lass of triples [g, Υ, A] suh that on M5:

(a) g is a metri of signature (3, 2),
(b) Υ is a traeless symmetri 3rd rank tensor,
(c) A is a 1-form,
(d) the metri g and the tensor Υ satisfy the identity (1.15),
(e) two triples (g, Υ, A) and (g′, Υ′, A′) are in the same lass [g, Υ, A] if andonly if there exists a funtion φ : M5 → R suh that

g′ = e2φg, Υ′ = e3φΥ, A′ = A − 2dφ.This de�nition plaes GL(2, R) geometries in dimension �ve among the Weylgeometries [g, A]. They are speial Weyl geometries i.e. suh for whih the stru-ture group is redued from CO(3, 2) to GL(2, R). A natural desription of suhgeometries should be then obtained in terms of a ertain gl(2, R)-valued onnetion.However, unlike the usual Weyl ase, the hoie of suh a onnetion is ambigu-ous, due to the fat that suh a onnetion has non-vanishing torsion in general,and one must �nd admissible onditions for the torsion that speify onnetionuniquely. Pursuing this problem in setion 3 we �nd an interesting sublass of
GL(2, R) geometries.Proposition. A GL(2, R) geometry [g, Υ, A] is alled nearly integrable if the Weylonnetion W

∇ of [g, A] satis�es
(
W

∇X Υ)(X, X, X) = − 1
2A(X)Υ(X, X, X).It turns out, see setion 3, that the nearly integrable GL(2, R) geometries uniquelyde�ne a gl(2, R) onnetion D. This is haraterized by the following requirements:

• it preserves the strutural tensors:
Dgij = −Agij ,

DΥijk = − 3
2AΥijk,

• and it has totally skew symmetri torsion.



GL(2, R) GEOMETRY OF ODE'S 9We all this unique onnetion the harateristi onnetion for the nearly inte-grable struture GL(2, R).The rest of setion 3 is devoted to study the algebrai struture of the torsionand the urvature of the harateristi onnetion of a nearly integrable stru-ture. Sine the tensor produts of tangent spaes are reduible under the ationof GL(2, R), we deompose the torsion and the urvature tensors into omponentsbelonging to the irreduible representations. In partiular, the skew symmetri tor-sion T has two omponents, T (3) and T (7), lying in the three-dimensional and theseven-dimensional irreduible representations respetively. Likewise the Maxwell2-form dA and the Rii tensor R deompose aording to dA = dA(3) + dA(7) and
R = R(1) + R(3) + R(5) + R(7) + R(9). The last problem we adress in setion 3 on-erns with the properties of geometries whose harateristi onnetions have `thesmallest possible' torsion, that is the torsion of the pure three-dimensional type. Inproposition 3.11 we prove that Rii tensor for suh strutures satis�es remarkableidentities:

R(3) = 1
4dA(3), R(7) = 3

2dA(7), R(9) = 0.The third equation is equivalent to
R(ij) = 1

5Rgij + 2
7RklΥ

klmΥijm.In setion 4 we brie�y desribe GL(2, R) geometry in the language of the bundle
GL(2, R) → P → M5. We also show how an appriopriate oframe de�ned on a nine-dimensional manifold P turns this manifold into a bundle GL(2, R) → P → M5and generates the GL(2, R) geometry on M5. This onstrution is the ore of theproof of the main theorem in setion 5. This loses the part of the paper that isdevoted to abstrat GL(2, R) geometries.Setion 5 ontains the main result of this paper, theorem 5.3, whih linksGL(2, R)geometry with the realm of ordinary di�erential equations. It an be enapsulatedas follows.Theorem. A 5th order ODE y(5) = F (x, y, y′, y′′, y′′′, y(4)) that satis�es three Wün-shmann onditions de�nes a nearly integrable irreduible GL(2, R) geometry (M5,
[g, Υ, A]) on the spae M5 of its solutions. This geometry has the harateristionnetion with torsion of the `pure' type in the 3-dimensional irreduible repre-sentation of GL(2, R). Two 5th order ODEs that are equivalent under ontattransformation of variables de�ne equivalent GL(2, R) geometries.The theorem has numerous appliations. For example, we use it to haraterisevarious lasses of Wünshmann 5th order ODEs, by means of the algebrai typeof the tensors assoiated with the orresponding harateristi onnetion. Forexample i� Fy(4)y(4) = 0, the torsion of the haratersti onnetion vanishes, andi� Fy(4)y(4)y(4) = 0, then we have dA(7) = 0.The proof of the theorem onsists of an appliation of the Cartan method ofequivalene. We write an ODE, onsidered modulo ontat transformation of vari-ables, as a G-struture on the four-order jet spae. Starting from this G-struturewe expliitly onstrut a 9-dimensional manifold P , whih is a GL(2, R) bundleover the solution spae and arries ertain distinguished oframe. This onstru-tion is only possible provided that the ODE satis�es the Wünshmann onditions,whih we write down expliitly. By means of proposition 4.1 the oframe on P



10 MICHA� GODLI�SKI AND PAWE� NUROWSKIde�nes the nearly integrable geometry on the solution spae of the ODE. It has theharateristi onnetion with torsion in the 3-dimensional representation.Setion 6 inludes examples of 5th order equations in the Wünshmann lass.We �nd equations generating all the strutures with vanishing torsion, equationspossessing at least 6-dimensional group of ontat symmetries and yielding geome-tries with dA = 0. We also give highly nontrivial examples of equations for whih
dA 6= 0, inluding a family of examples with funtion F being a solution of a ertainseond order ODE.Finally, in setion 7 we onsider ODEs of order n > 5. We apply results ofthe Hilbert theory of algebrai invariants, to de�ne the tensors responsible for theredution GL(n, R) → GL(2, R). We also give the expliit formulae for the (n− 2)third order Wünshmann onditions for n = 6 and n = 7.2. A peuliar third rank symmetri tensorConsider R

n equipped with a Riemannian metri g and a 3rd rank traefreesymmetri tensor Υ ∈ S3
0R

n satisfying:(i) Υijk = Υ(ijk) - (symmetry)(ii) gijΥijk = 0 - (traefree)(iii) glm(ΥijlΥkmp + ΥkilΥjmp + ΥjklΥimp) = gijgkp + gklgjp + gjkgip.It turns out that the third ondition is very restritive. In partiular Cartan hasshown [3, 4℄ that for (iii) to be satis�ed the dimension n must be one of the following:
n = 5, 8, 14, 26. Moreover Cartan onstruted Υ in eah of these dimensions and hasshown that it is unique up to anO(n) transformation. Restriting to n = 5, 8, 14, 26,we onsider the stabilizer Hn of Υ under the ation of GL(n, R):

Hn = {GL(n, R) ∋ a : Υ(aX, aY, aZ) = Υ(X, Y, Z), ∀X, Y, Z ∈ R
n}.Then, one �nds that:

• H5 = SO(3) ⊂ SO(5) in the 5-dimensional irreduible representation,
• H8 = SU(3) ⊂ SO(8) in the 8-dimensional irreduible representation,
• H14 = Sp(3) ⊂ SO(14) in the 14-dimensional irreduible representation,
• H26 = F4 ⊂ SO(26) in the 26-dimensional irreduible representation.The relevane of onditions (i)-(iii) is that they are invariant under the O(n) ationon the spae of traefree symmetri tensors S3

0R
n. Moreover they totally hara-terize the orbit O(n)/Hn ⊂ S3

0 of the tensor Υ under this ation [1, 16℄.The question arises if one an onstrut tensors satisfying (i)-(iii) for metrishaving non-Riemannian signatures. Below we show how to do it if n = 5 and themetri g has signature (3, 2). This onstrution desribed to us by E. Ferapontov[10, 11℄ is as follows.Consider R
5 with oordinates (θ0, θ1, θ2, θ3, θ4), and a urve

γ(x) = (1, x, x2, x3, x4) ⊂ R
5.Assoiated to the urve γ there are two algebrai varieties in R

5:
• The biseant variety. This is de�ned to be a set onsisting of all the pointson all straight lines rossing the urve γ in preisely two points. It is givenparametrially as

B(x, s, u) = (1, x, x2, x3, x4) + u(0, x − s, x2 − s2, x3 − s3, x4 − s4),



GL(2, R) GEOMETRY OF ODE'S 11where x, s, u are three real parameters.
• The tangent variety. This is de�ned to be a set onsisting of all the pointson all straight lines tangent to the urve γ. It is given parametrially as

T (x, s) = (1, x, x2, x3, x4) + s(0, 1, 2x, 3x2, 4x3).One of many interesting features of these two varieties is that they de�ne (up toa sale) a tri-linear symmetri form(2.1) Υ(θ) = 3
√

3(θ0θ2θ4 + 2θ1θ2θ3 − (θ2)3 − θ0(θ3)2 − θ4(θ1)2)and a bi-linear symmetri form(2.2) g(θ) = θ0θ4 − 4θ1θ3 + 3(θ2)2.These forms are distinguished by the fat that the biseant and tangent varietiesare ontained in their null ones. In the homogeneous oordinates (θ0, θ1, θ2, θ3, θ4)in R
5 all the points θ of B(x, s, u) satisfy

Υ(θ) = 0,whereas all the points θ of T (x, s) satisfy
Υ(θ) = 0 and g(θ) = 0.Writing the forms as Υ(θ) = Υijkθiθjθk, g(θ) = gijθ

iθj , i, j, k = 0, 1, 2, 3, 4one an hek that so de�ned gij and Υijk satisfy relations (i)-(iii) of the previoussetion.Although it is obvious we remark that the above de�ned metri gij has signature
(3, 2).As we have already noted the forms Υ(θ) and g(θ) are de�ned only up to asale. We were also able to �nd a fator, the 3

√
3 in expression (2.1), that makesthe orresponding gij and Υijk satisfy (i)-(iii). Note that these onditions areonformal under the simultaneous hange:

gij → e2φgij , Υijk → e3φΥijk.Thus it is interesting to onsider in R
5 a lass of pairs [g, Υ], suh that:

• in eah pair (g, Υ)� g is a metri of signature (3, 2),� Υ is a traeless symmetri 3rd rank tensor,� the metri g and the tensor Υ satisfy the identity
glm(ΥijlΥkmp + ΥkilΥjmp + ΥjklΥimp) = gijgkp + gklgjp + gjkgip,

• two pairs (g, Υ) and (g′, Υ′) are in the same lass [g, Υ] if and only if thereexists φ ∈ R suh that(2.3) g′ = e2φg, Υ′ = e3φΥ.Given a struture (R5, [g, Υ]) we de�ne a group CH to be a subgroup of thegeneral linear group GL(5, R) preserving [Υ]. This means that, hoosing a repre-sentative Υ of the lass [Υ], we de�ne CH to be:
CH = {GL(5, R) ∋ a : Υ(ax, ax, ax) = (det a)(3/5)Υ(x, x, x)}.Note that the exponent 3

5 in the above expression is aused by the fat that ther.h.s. of the equation de�ning the group elements must be homogeneous of degree3 in a, similarly as the l.h.s. is.



12 MICHA� GODLI�SKI AND PAWE� NUROWSKIThis de�nition does not depend on the hoie of a representative Υ ∈ [Υ]. Wehave the followingProposition 2.1. The set CH of 5× 5 real matries a ∈ GL(5, R) preserving [Υ]is the GL(2, R) group in its 5-dimensional irreduible representation. Moreover,we have natural inlusions
CH = GL(2, R) ⊂ CO(3, 2) ⊂ GL(5, R),where CO(3, 2) is the 11-dimensional group of homotheties assoiated with the on-formal lass [g].Remark 2.2. Aording to our Introdution, there is another GL(2, R) invariantsymmetri onformal tensor that stabilizes GL(5, R) to the irreduible GL(2, R).This is the tensor 5Iijklpq de�ned via 5I(θ) = 1

120
5Iijklpqθ

iθjθkθlθpθq with 5I as in(1.10). We prefer however to work with a pair (gij , Υijk) rather then with 5Iijklpq ,beause of the lower rank, and more importantly, beause of the evident onformalmetri properties of the (gij , Υijk) approah. Also, it is worthwhile to note thatthe invariants gij , Υijk and 5Iijklpq are not independent. Indeed, one an easillyhek that 5I of (1.10), Υ of (2.1) and g of (2.2) are related by 5I = Υ2 − g3. Weinterpret this relation as the de�nition of 5I in terms of more primitive quantities
g and Υ.The isotropy ondition for the group elements a of CH has its obvious ounter-part at the level of the Lie algebra gl(2, R) = (R ⊕ sl(2, R)) ⊂ co(3, 2) ⊂ gl(5, R) of
CH = GL(2, R). Writing a = exp(tΓ) we �nd that the in�nitesimal version of theisotropy ondition, written in terms of the 5 × 5 matries Γ = (Γi

j) is:(2.4) Γl
iΥljk + Γl

jΥilk + Γl
kΥijl = 3

5Tr(Γ)Υijk,where Tr(Γ) = Γm
m. Given Υijk, these linear equations an be solved for Γ. Takingthe most general matrix Γ ∈ GL(5, R) and Υijk given by Υ(x, x, x) = Υijkxixjxkof (2.1) we �nd the expliit realization of the 5-dimensional representation of the

gl(2, R) Lie algebra as:(2.5) Γ = Γ−E− + Γ+E+ + Γ0E0 + Γ1E1,where Γ−, Γ+, Γ0, Γ1 are free real parameters, and (E−, E+, E0, E1) are 5 × 5 ma-tries given by:
E+ =













0 4 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 1
0 0 0 0 0













, E− =













0 0 0 0 0
1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0













,(2.6)
E0 =













−4 0 0 0 0
0 −2 0 0 0
0 0 0 0 0
0 0 0 2 0
0 0 0 0 4













, E1 = −4













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













.The ommutator in
gl(2, R) = Span

R
(E−, E+, E0, E1)



GL(2, R) GEOMETRY OF ODE'S 13is the usual ommutator of matries. In partiular, the non-vanishing ommutatorsare:
[E0, E+] = −2E+ , [E0, E−] = 2E− , [E+, E−] = −E0.Note that

sl(2, R) = Span
R
(E−, E+, E0)is a subalgebra of gl(2, R) isomorphi to sl(2, R). It provides the 5-dimensionalirreduible representation of sl(2, R).3. Irreduible GL(2, R) geometries in dimension fiveIn this setion we desribe 5-dimensional manifolds whose tangent spae at eahpoint is equipped with the struture [g, Υ] of the previous setion. We will analyzesuh manifolds in terms of an appropriately hosen onnetion. We will desribeonnetions on a manifold M in terms of Lie-algebra-valued 1-forms on M . To bemore spei�, let dimM = n and let g denote an n-dimensional representation ofsome Lie algebra. The onnetion 1-forms Γi

j on M are the matrix entries of anelement Γ ∈ g ⊗ Λ1M . They de�ne the ovariant exterior derivative D. This atson tensor-valued-forms via the extension to the higher order tensors of the formula:
Dvi = dvi + Γi

j ∧ vi.Now suppose that we have a 5-dimensional manifold M5 equipped with a lassof pairs [g, Υ] suh that g is a metri, Υ is a 3rd rank tensor related to the metrivia properties (i)-(iii) of the previous setion, and two pairs (g, Υ) and (g′, Υ′)are in the same pair i� they are related by (2.3), where φ is now a funtion on
M5. If we want to assoiate a onnetion with suh a struture we have to speifyhow this onnetion is related to the pair [g, Υ]. A possible approah is to hoose arepresentative (g, Υ) of [g, Υ] and delare what is Dg and DΥ. A �rst possible hoie
Dg = 0 or DΥ = 0 is de�nitely not good sine, in general, Dg′ and DΥ′ would notbe vanishing for another hoie of the representative of [g, Υ]. A remedy for thissituation omes from the Weyl geometry where, given a onformal lass (M, [g]), a1-formA is introdued so that the onnetion satis�es Dgij = −Agij . In our ase weintrodue a 1-formA on M5 and require that Dgij = −Agij and DΥijk = − 3

2AΥijk.Then, if we transform (g, Υ) aording to (2.3), the transformed objets will satisfy
Dg′ij = −A′g′ij and DΥ′

ijk = − 3
2A′Υ′

ijk provided that A′ = A−2dφ. This motivatesthe followingDe�nition 3.1. An irreduibleGL(2, R) struture in dimension �ve is a 5-dimensionalmanifold M5 equipped with a lass of triples [g, Υ, A] suh that on M5:
(a) g is a metri of signature (3, 2),
(b) Υ is a traeless symmetri 3rd rank tensor,
(c) A is a 1-form,
(d) the metri g and the tensor Υ satisfy the identity

glm(ΥijlΥkmp + ΥkilΥjmp + ΥjklΥimp) = gijgkp + gklgjp + gjkgip,

(e) two triples (g, Υ, A) and (g′, Υ′, A′) are in the same lass [g, Υ, A] if andonly if there exists a funtion φ : M5 → R suh that
g′ = e2φg, Υ′ = e3φΥ, A′ = A − 2dφ.



14 MICHA� GODLI�SKI AND PAWE� NUROWSKIIf M5 was only equipped with a lass of pairs [g, A] satisfying onditions (a), (c)and (e) (with Υ, Υ′ omitted), then (M5, [g, A]) would de�ne the Weyl geometry.Suh geometry, whih has the struture group CO(3, 2), is usually studied in termsof the Weyl onnetion. This is the unique torsionfree onnetion preserving theonformal struture [g, A]. It is de�ned by the following two equations:
W

D gij = −Agij (preservation of the class [g, A]),(3.1)
W

D θi = 0 (no torsion),(3.2)where θi is a oframe related to the representative g of the lass [g] by g = gijθ
iθj .We desribe the Weyl onnetion in terms of the Weyl onnetion 1-forms W

Γi
j ,

i, j = 0, 1, 2, 3, 4.Take a representative (g, A) of the Weyl struture [g, A] onM5. Choose a oframe
(θi), i = 0, 1, 2, 3, 4, suh that g = gijθ

iθj , with all the metri oe�ients gij beingonstant. Then the above two equations de�ne W

Γi
j together with W

Γij = gik

W

Γk
j tobe 1-forms on M5 satisfying

W

Γij +
W

Γji = Agij (preservation of the class [g, A]),(3.3)
dθi +

W

Γ
i
j ∧ θj = 0 (no torsion).(3.4)It follows that one the representative (g, A) and the oframe θi is hosen the aboveequations uniquely determine the Weyl onnetion 1-forms W

Γi
j .We note that, due to ondition (3.3), matrix W

Γ = (
W

Γi
j) of the Weyl onnetion1-forms belongs to the 5-dimensional de�ning representation of the Lie algebra

co(3, 2) ⊂ End(5, R) of the Lie group CO(3, 2) ⊂ GL(5, R). Consequently, theWeyl onnetion oe�ients W

Γi
jk, de�ned by W

Γi
j =

W

Γi
jkθk belong to the tensorprodut co(3, 2) ⊗ R

5, the vetor spae of dimension (1+10)5=55.Now we assume that we have an irreduible GL(2, R) struture [g, Υ, A] on a 5-manifold M5. Forgetting about Υ gives the Weyl geometry as before. In partiularthere is the unique Weyl onnetion W

Γ assoiated with [g, Υ, A]. But the existeneof a metri ompatible lass of tensors Υ makes this Weyl geometry more speial.To analyze it we introdue a new onnetion, whih will be respeting the entirestruture [g, Υ, A]. This is rather a ompliated proedure whih we desribe below.Firstly we require that the new onnetion preserves [g] and [Υ]:
Dgij = −Agij(3.5)
DΥijk = − 3

2AΥijk.(3.6)This does not determine the onnetion uniquely � to have the uniqueness weneed to speify what the torsion of D is. We need some preparations to disuss it.De�nition 3.2. Let (g, Υ, A) be a representative of an irreduible GL(2, R) stru-ture on a 5-dimensional manifold M5. A oframe θi, i = 0, 1, 2, 3, 4, on M5 is alledadapted to the representative (g, Υ, A) if
g = gijθ

iθj = θ0θ4 − 4θ1θ3 + 3(θ2)2and
Υ = Υijkθiθjθk = 3

√
3(θ0θ2θ4 + 2θ1θ2θ3 − (θ2)3 − θ0(θ3)2 − θ4(θ1)2).



GL(2, R) GEOMETRY OF ODE'S 15Loally suh a oframe always exists and is given up to a GL(2, R) transforma-tion.Let us now hoose an adapted oframe θi to a representative (g, Υ, A) of [g, Υ, A].In this oframe equations (3.5)-(3.6) an be rewritten in terms of the onnetion1-forms Γi
j as

Γl
iglj + Γljgli = Agij(3.7)

Γl
iΥljk + Γl

jΥilk + Γl
kΥijl = 3

2AΥijk.(3.8)When we ontrat the �rst equation in indies i and j we get(3.9) A = 2
5Γl

l = 2
5Tr(Γ).Inserting this into (3.8) we get(3.10) Γl

iΥljk + Γl
jΥilk + Γl

kΥijl = 3
5Γl

lΥijk.Comparing this with (2.4) we see that the general solution for the onnetion 1-forms Γi
j are given by (2.5), i.e.

Γ = Γ−E− + Γ+E+ + Γ0E0 + Γ1E1,where (Γ−, Γ+, Γ0, Γ1) are four 1-forms on M5 suh that(3.11) Γ1 = − 1
8A.To �x the remaining three 1-forms (Γ−, Γ+, Γ1) we introdue an operator

Ῡ : co(3, 2) ⊗ R
5 → S4

R
5de�ned by:

Ῡ(
W

Γ)ijkm = Υl(ij

W

Γ
l
km) − 1

5

W

Γ
l
l(mΥijk),and analyze its kernel ker Ῡ.Writing equation (3.10) in terms of the oe�ients Γl

im ∈ gl(2, R) ⊗ R
5 andsymmetrizing it over the indies {imjk}, we see that the whole gl(2, R) ⊗ R

5 isinluded in ker Ῡ.We use the metri to identify R
5 with (R5)∗, and more generally to identifytensor spaes ⊗k

(R5)∗
⊗l

R
5 with ⊗(k+l)

(R5)∗. This enables us to identify theobjets with upper indies with the orresponding objets with lower indies, e.g.
Tijk = gilT

l
jk. Having in mind these identi�ations we easily see that, due to theantisymmetry in the last two indies, every 3-form Tijk = T[ijk] is inluded in ker Ῡ.Thus we have:

gl(2, R) ⊗ R
5 ⊂ ker Ῡ,

∧3
R

5 ⊂ ker Ῡ.The following proposition an be heked by a diret alulation involving theexpliit form of the gl(2, R) representation given in (2.5), (2.6).Proposition 3.3. The vetor spae ker Ῡ has the following properties:
ker Ῡ = (gl(2, R) ⊗ R

5) ⊕
∧3

R
5and

dimker Ῡ = 30.



16 MICHA� GODLI�SKI AND PAWE� NUROWSKINow we interpret the ondition W

Γl
im ∈ ker Ῡ, i. e. the equation(3.12) Υl(ij

W

Γ
l
km) = 1

5

W

Γ
l
l(mΥijk),as a restrition on possible Weyl onnetions. Let us assume that we have a stru-ture (M5, [g, Υ, A]) with the Weyl onnetion oe�ients W

Γl
im satisfying (3.12).The oe�ients W

Γl
im are written in a oframe adapted to some hoie (g, Υ, A).It is easy to see, using (3.3) and ontrating (3.12) over all the free indies with avetor �eld X i, that the restrition on the Weyl onnetion (3.12) in oordinate-freelanguage is equivalent to(3.13) (

W

∇X Υ)(X, X, X) = − 1
2A(X)Υ(X, X, X).Here W

∇ denotes the Weyl onnetion in the Koszul notation.De�nition 3.4. An irreduible GL(2, R) struture (M5, [g, Υ, A]) is alled nearlyintegrable i� its Weyl onnetion W

∇ assoiated to the lass [g, A] satis�es (3.13).A nie feature of nearly integrable strutures (M5, [g, Υ, A]) is that they de�nethe unique gl(2, R)-valued onnetion Γ. This follows from the above disussionabout the kernel of Ῡ. Indeed, given a nearly integrable struture (M5, [g, Υ, A]) itis enough to hoose a representative (g, Υ, A) and to write the equation (3.13) forthe Weyl onnetion W

Γ in an adapted oframe θi. Then the uniquely given Weylonnetion oe�ients W

Γijk are by de�nition in ker Ῡ = (gl(2, R) ⊗ R
5) ⊕

∧3
R

5,whih means that they uniquely split onto Γijk ∈ gl(2, R) ⊗ R
5 and 1

2Tijk ∈ ∧3
R

5.Thus, for all nearly integrable strutures (M5, [g, Υ, A]), in a oframe adapted to
(g, Υ, A), we have(3.14) W

Γijk = Γijk + 1
2Tijk,and both Γijk ∈ gl(2, R) ⊗ R

5 and Tijk ∈ ∧3
R

5 are uniquely determined in termsof W

Γijk. Now we rewrite the torsionfree ondition (3.4) for the Weyl onnetion inthe form(3.15) dθi + Γi
j ∧ θj = 1

2T i
jkθj ∧ θk.It an be interpreted as follows: The nearly integrable struture (M5, [g, Υ, A]),via (3.14), uniquely determines gl(2, R)-valued onnetion Γijk whih respets thestruture [g, Υ, A] due to (3.5), (3.6), and has totally skew symmetri torsion Tijkdue to (3.15).We summarize this part of our onsiderations in the followingProposition 3.5. Every nearly integrable GL(2, R) struture (M5, [g, Υ, A]) de-�nes a unique gl(2, R)-valued onnetion whih has totally skew symmetri torsion.Also the onverse is true:Proposition 3.6. Let (M5, [g, Υ, A]) be an irreduible GL(2, R) struture and W

Γijkbe the Weyl onnetion oe�ients assoiated, in an adapted oframe θi, with theWeyl struture [g, A]. Assume that the Weyl struture [g, A] admits a split
W

Γijk = Γijk + 1
2Tijk,



GL(2, R) GEOMETRY OF ODE'S 17in whih Γijk ∈ gl(2, R) ⊗R
5 and Tijk ∈ ∧3

R
5. Then [g, Υ, A] is nearly integrable,the split is unique and Γij = Γijkθk is a gl(2, R)-valued onnetion with totally skewsymmetri torsion Θi = 1

2Tijkθj ∧ θk.De�nition 3.7. The unique gl(2, R)-valued onnetion with totally skew symmet-ri torsion naturally assoiated with a nearly integrable struture (M5, [g, Υ, A]) isalled the harateristi onnetion.In the next paragraph we analize algebrai struture of torsion and urvature ofharateristi onnetions.3.1. Nearly integrable GL(2, R) strutures. Let (M5, [g, Υ, A]) be a nearlyintegrable GL(2, R) struture and let Γ be its harateristi onnetion. Thenthe GL(2, R) invariant information about (M5, [g, Υ, A]) is enoded in its totallyskew symmetri torsion Θi = 1
2Tijkθi ∧ θk and its urvature

Ωij = 1
2Rijklθ

k ∧ θl = dΓij + Γik ∧ Γk
j .The spaes ∧3

R
5 and gl(2, R) ⊗

∧2
R

5 are reduible under the ation of GL(2, R).Their deompositions into the GL(2, R) irreduible omponents may be used tolassify the torsion types, in the ase of ∧3
R, and the urvature types, in the ase of

gl(2, R)⊗
∧2

R
5. In partiular, to deompose ∧3

R
5 we use the Hodge star operationassoiated with one of the metris g from the lass [g, Υ, A]. This identi�es ∧3

R
5with ∧2

R
5. The GL(2, R) invariant deomposition of ∧3

R
5 is then transformed tothe deomposition of ∧2

R
5. This is ahieved in terms of the operator

Yijkl = 4ΥijmΥklpg
mp.This, viewed as an endomorphism of ⊗2

R
5 given by

Y (w)ik = gmjgplYijklwmp,has the following eigenspaes:
⊙

1 = { S ∈ ⊗2
R

5 | Y (S) = 14·S } = {S = λ·g, λ ∈ R },
∧

3 = { F ∈ ⊗2
R

5 | Y (F ) = 7·F } = sl(2, R),
⊙

5 = { S ∈
⊗2

R
5 | Y (S) = −3·S },

∧

7 = { F ∈ ⊗2
R

5 | Y (F ) = −8·F },
⊙

9 = { S ∈ ⊗2
R

5 | Y (S) = 4·S }.Here the index k in ⊙

k or ∧

k denotes the dimension of the eigenspae.The deomposition(3.16) ⊗2
R

5 =
⊙

1 ⊕
⊙

5 ⊕
⊙

9 ⊕
∧

3 ⊕
∧

7is GL(2, R) invariant. All the omponents in this deomposition are GL(2, R)-irreduible. We have the followingProposition 3.8. Under the ation of GL(2, R) the irreduible omponents of
∧3

R
5 = ∗

∧2
R

5 are
∧3

R
5 =

∧

3 ⊕
∧

7.



18 MICHA� GODLI�SKI AND PAWE� NUROWSKIAt this stage an interesting question arises: Can we give examples of nearlyintegrable GL(2, R) strutures whose harateristi onnetion has torsion of a`pure' type Tijk ∈ ∧

3?In setion 5 we give an a�rmative answer to this question. Here we only state ausefulLemma 3.9. The 3-dimensional vetor spae ∧

3, when expressed in terms of anadapted oframe θi of De�nition 3.2 is
∧

3 = Span
R

{

θ0 ∧ θ3 − 3θ1 ∧ θ2, θ0 ∧ θ4 − 2θ1 ∧ θ3, θ1 ∧ θ4 − 3θ2 ∧ θ3
}

.Similarly, in an adapted oframe θi, the Hodge dual ∗∧3 of ∧

3 is
∗∧3 = Span

R

{

− θ0 ∧ θ1 ∧ θ4 + 2θ0 ∧ θ2 ∧ θ3, −θ0 ∧ θ2 ∧ θ4 + 8θ1 ∧ θ2 ∧ θ3,

−θ0 ∧ θ3 ∧ θ4 + 2θ1 ∧ θ2 ∧ θ4
}

.In partiular, torsion T i
jk of the harateristi onnetion Γ in system (3.15) is ofpure type in ∧

3 if and only if, in an adapted oframe θi, we have gilT
l
jk = T[ijk],and its orresponding 3-form T = 1

6gilT
l
jkθi ∧ θj ∧ θk ∈ ∗∧3.Now we pass to the analysis of the urvature. The urvature tensor Ri

jkl of a
gl(2, R) onnetion de�nes the following objets:

Rij = Rk
ikj the Rii tensor,

R = Rijg
ij the Rii salar,

Ri
v = ΥijkRjk the Rii vetor,

(dA)ij = 2
5Rk

kij the Maxwell 2-form.The Rii tensor belongs to the spae ⊗2
R

5 and deomposes aording to (3.16).The Rii symmetri tensor reads(3.17) R(ij) = 1
5Rgij + 2

7Rk
vΥijk + R

(9)
ij ,where 1

5Rgij is its ⊙

1 part, 2
7Rk

vΥijk is its ⊙

5 part and R
(9)
ij is its ⊙

9 part de�nedby (3.17). The antisymmetri Rii tensor deomposes into
R[ij] = R

(3)
ij + R

(7)
ijwith the respetive ∧

3 and ∧

7 omponents given by
R

(3)
ij =

8

15
R[ij] + 1

15Y (R[ ])ij ,

R
(7)
ij =

7

15
R[ij] − 1

15Y (R[ ])ij .Here Y (R[ ]) denotes the value of the operator Y on R[ij]. Likewise, for the Maxwellform we have
(dA)ij = dA

(3)
ij + dA

(7)
ijand

dA
(3)
ij =

8

15
(dA)ij + 1

15Y (dA)ij ,

dA
(7)
ij =

7

15
(dA)ij − 1

15Y (dA)ij .



GL(2, R) GEOMETRY OF ODE'S 19The Rii tensor and and the Maxwell 2-form have 25 + 10 = 35 oe�ients out oftotal number of 40 oe�ients of the urvature. Sine, .f. [14℄,
gl(2, R) ⊗ ∧2

R
5 =

⊙

1 ⊕ 2
∧

3 ⊕ 2
⊙

5 ⊕ 2
∧

7 ⊕
⊙

9,the remaining 5 parameters are related to the oe�ients of a vetor �eld Km,whih is independent of the Rii tensor. It is de�ned in terms of the totally skewsymmetri part of the urvature. Using the volume form ηijklm, we have
Km = Rijklη

ijklm,and the so de�ned Km yields the missing �ve omponents of the urvature. Thuswe have the followingProposition 3.10. The irreduible omponents of the urvature Rijkl of a har-ateristi onnetion are given by
R, Ri

v, R
(9)
ij , R

(3)
ij , R

(7)
ij , dA

(3)
ij , dA

(7)
ij , Ki.It is interesting to ask what is the deomposition of the urvature if the hara-teristi onnetion has torsion in three-dimensional representation ∧

3. It appearstha it has a very speial algebrai form. Writing the strutural equations for aharateristi onnetion with the torsion in ∧

3

T = 1
12 t1(−θ0 ∧ θ1 ∧ θ4 + 2θ0 ∧ θ2 ∧ θ3) +

+ 1
12 t2(−θ0 ∧ θ2 ∧ θ4 + 8θ1 ∧ θ2 ∧ θ3) +

+ 1
4 t3(−θ0 ∧ θ3 ∧ θ4 + 2θ1 ∧ θ2 ∧ θ4)and utilising Bianhi identites, we get the followingProposition 3.11. Let Γ be a harateristi onnetion of a GL(2, R) struturewith torsion in ∧

3 given above. Then
• The Rii tensor omponent R

(9)
ij = 0, whih means that

R(ij) = 1
5Rgij + 2

7Rk
vΥijk.

• The skew symmetri Rii tensor and the Maxwell 2-form are related by
dA(3) = 4R(3), dA(7) = 2

3R(7).

• The Rii vetor Rv is fully determined by T :
Ri

v =(40)2(∗T )jk(∗T )lmgklΥjmi

=
7

6

√
3

(

t23, −1

3
t2t3,

1

9
t1t3 +

2

27
t22, −1

9
t1t2,

1

9
t21

)

.Thus, the urvature is fully desribed by T , R, dA(3), dA
(7)
ij and Ki.3.2. Arbitrary GL(2, R) strutures. So far we have been able to introdue aunique GL(2, R)-valued onnetion for a nearly integrable (M5, [g, Υ, A]) only.Nevertheless suh a onnetion an be always introdued. To see this onsidera GL(2, R)-invariant onformal pairing in co(3, 2) ⊗ R

5 given by
(

W

Γ,
W

Γ
′) = gilgjmgkp

W

Γijk

W

Γ
′
lmp,



20 MICHA� GODLI�SKI AND PAWE� NUROWSKIwhere W

Γ,
W

Γ′ ∈ co(3, 2)⊗R
5. We use the orthogonal omplement of ker Ῡ ⊂ co(3, 2)⊗

R
5 with respet to this pairing:

ker Ῡ⊥ = {
W

Γ ∈ co(3, 2) ⊗ R
5 s.t (ker Ῡ,

W

Γ) = 0}.This vetor spae is 30-dimensional. It ontains a 5-dimensional subspae spannedby gijAm, whih is related to the R fator in the split gl(2, R) = R ⊕ sl(2, R) ⊂
co(3, 2) = R ⊕ so(3, 2). Thus it is reasonable to onsider the intersetion, say V25,of this 30-dimensional spae with so(3, 2) ⊗ R

5. This 25-dimensional spae
V25 = ker Ῡ⊥ ∩ (so(3, 2) ⊗ R

5)has, in turn, zero intersetion with (gl(2, R)⊗R
5)⊕

∧3
R

5 and provides the GL(2, R)invariant deomposition of co(3, 2) ⊗ R
5:

co(3, 2) ⊗ R
5 = (gl(2, R) ⊗ R

5) ⊕
∧3

R
5 ⊕ V25.Therefore, if we hoose a oframe adapted to a representative (g, Υ, A) we anuniquely deompose the Weyl onnetion oe�ients W

Γijk ∈ co(3, 2) ⊗ R
5 of ourarbitrary GL(2, R) struture aording to

W

Γijk = Γijk + 1
2Bijk.Now Γijk ∈ gl(2, R) ⊗ R

5, and they are interpreted as new onnetion oe�ients;the tensor Bijk belongs to ∧3
R

5 ⊕ V25 and its antisymmetrization Tijk = Bi[jk] isnow interpreted as the torsion of Γ. Thus, every GL(2, R) struture (M5, [g, Υ, A])uniquely de�nes a gl(2, R)-valued onnetion with torsion in ∧3
R

5 ⊕ V25. The tor-sion is not totally skew anymore. Spae V25 further deomposes onto the GL(2, R)-irreduible omponents aording to V25 =
⊙

5 ⊕
⊙

9 ⊕
⊙

11. The GL(2, R) stru-tures equipped with the unique gl(2, R) onnetion whih has torsion in V25 �ndappliation in the theory of integrable equations of hydrodynami type [11℄.4. GL(2, R) bundleFirst, we desribe an irreduible GL(2, R) struture [g, Υ, A] on M5 in the lan-guage of prinipal bundles.Every irreduible GL(2, R) struture [g, Υ, A] on a 5-manifold M5 de�nes the9-dimensional bundle GL(2, R) → P → M5, the GL(2, R) redution of the bundleof linear frames GL(5, R) → F (M5) → M5. If [g, Υ, A] is equipped with a gl(2, R)onnetion Γ then the strutural equations on M5 read
dωi + Γi

j ∧ ωj = 1
2T i

jkωj ∧ ωk,

dΓi
j + Γi

k ∧ Γk
j = 1

2Ri
jklω

k ∧ ωl.Here (ωi) is an adapted oframe and Γ = (Γi
j) is written in the representation(2.5). We lift these strutural equations to P obtaining:

dθ0 = 4(Γ1 + Γ0) ∧ θ0 − 4Γ+ ∧ θ1 + 1
2T 0

ijθ
i ∧ θj ,

dθ1 = −Γ− ∧ θ0 + (4Γ1 + 2Γ0) ∧ θ1 − 3Γ+ ∧ θ2 + 1
2T 1

ijθ
i ∧ θj ,

dθ2 = −2Γ− ∧ θ1 + 4Γ1 ∧ θ2 − 2Γ+ ∧ θ3 + 1
2T 2

ijθ
i ∧ θj ,

dθ3 = −3Γ− ∧ θ2 + (4Γ1 − 2Γ0) ∧ θ3 − Γ+ ∧ θ4 + 1
2T 3

ijθ
i ∧ θj ,

dθ4 = −4Γ− ∧ θ3 + 4(Γ1 − Γ0) ∧ θ4 + 1
2T 4

ijθ
i ∧ θj ,(4.1)
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dΓ+ = 2Γ0 ∧ Γ+ + 1

2R+ijθ
i ∧ θj ,

dΓ− = −2Γ0 ∧ Γ− + 1
2R−ijθ

i ∧ θj ,

dΓ0 = Γ+ ∧ Γ− + 1
2R0ijθ

i ∧ θj ,

dΓ1 = 1
2R1ijθ

i ∧ θj ,with the forms θi being the omponents of the anonial R
5-valued form θ on P ,.f. [13℄. In a oordinate system (x, a) on P , x ∈ M5, a ∈ GL(2, R), whih isompatible with the loal trivialisation P ∼= M5 × GL(2, R) they are given by

θi(x, a) = (a−1)i
jω

j(x).The onnetion forms (Γ−, Γ+, Γ0, Γ1) are de�ned in terms of (2.6) via
Γ−(E−)i

j + Γ+(E+)i
j + Γ0(E0)

i
j + Γ1(E1)

i
j = (a−1)i

kΓk
l(x)al

j + (a−1)i
kdak

j .Note that (θ1, θ1, θ2, θ3, θ4, Γ−, Γ+, Γ0, Γ1) is a oframe on P and the lass of 1-forms
[A] lifts to a 1-form Ã = −8Γ1.Seond, we hange the point of view. Suppose that we are given a nine dimen-sional manifold P equipped with a oframe of nine 1-forms (θ0, θ1, θ2, θ3, θ4, Γ−,
Γ+, Γ0, Γ1) on it. Suppose that these linearly indpendent forms, together withsome funtions T i

jk, Rl
ijk, satisfy the system (4.1) on P . What we an say aboutsuh a 9-dimensional manifold P?To answer this question onsider a distribution h on P whih annihilates theforms (θ0, θ1, θ2, θ3, θ4):

h = {X ∈ TP s.t. X−| θi = 0, i = 0, 1, 2, 3, 4}.Then the �rst �ve equations of the system (4.1) guarantee that the forms (θ0, θ1, θ2,
θ3, θ4) satisfy the Fröbenius ondition,

dθi ∧ θ0 ∧ θ1 ∧ θ2 ∧ θ3 ∧ θ4 = 0, ∀ i = 0, 1, 2, 3, 4and that, in turn, the distribution h is integrable. Thus manifold P is foliated by4-dimensional leaves tangent to the distribution h.Now on P we onsider two multilinear symmetri forms. The bilinear one, de�nedby(4.2) g̃ = θ0θ4 − 4θ1θ3 + 3(θ2)2,and the three-linear one given by(4.3) Υ̃ = 3
√

3(θ0θ2θ4 + 2θ1θ2θ3 − (θ2)3 − θ0(θ3)2 − θ4(θ1)2).Of ourse, sine the 1-forms(Γ−, Γ+, Γ0, Γ1) are not present in the de�nitions(4.2), (4.3), then g̃ and Υ̃ are degenerate. For example, the signature of the bilinearform g̃ is (+, +, +,−,−, 0, 0, 0, 0). The degenerate diretions for these two formsare just the diretions tangent to the leaves of the foliation generated by h. Letus denote by (X0, X1, X2, X3, X4, X5, X6, X7, X8) the frame of vetor �elds on Pdual to the 1-forms (θ0, θ1, θ2, θ3, θ4, Γ−, Γ+, Γ0, Γ1). In partiular (X5, X6, X7, X8)onstitutes a basis for h, and we have Xµ−| θi = 0 for eah µ = 5, 6, 7, 8 and
i = 0, 1, 2, 3, 4. Using this, and the exterior derivatives of θi given in the �rst �veequations (4.1), we easily �nd the Lie derivatives of g̃ and Υ̃ along the diretionstangent to the leaves of h. These are:

LXµ
g̃ = 8(Xµ−| Γ1)g̃, LXµ

Υ̃ = 12(Xµ−| Γ1)Υ̃, ∀µ = 5, 6, 7, 8.



22 MICHA� GODLI�SKI AND PAWE� NUROWSKIMoreover, if we denote(4.4) Ã = −8Γ1,and we use the last of equations (4.1), we also �nd that
LXµ

Ã = −8d(Xµ−| Γ1), ∀µ = 5, 6, 7, 8.This is enough to dedue that the objets (g̃, Υ̃, Ã) desend to the 5-dimensionalleaf spae M5 = P/h. There they de�ne a onformal lass of triples (g, Υ, A) withthe transformation rules g → e2φg, Υ → e3φΥ, A → A− 2dφ. Due to the fat that,when passing to the quotient M5 = P/h, we redued the degenerate diretionsof g̃ and Υ̃ to points of M5, the resulting desended triples (g, Υ, A) have non-degenerate g of signature (3, 2) and non-degenerate Υ. It is lear that togetherwith A they de�ne an irreduible GL(2, R) struture on M5: a setion s : M5 → Pis an adapted oframe on M5, the triple (s∗g̃, s∗Υ̃, s∗Ã) is a representative of thestruture, the forms s∗Γ−, s∗Γ+, s∗Γ0, s
∗Γ1 are gl(2, R) onnetion 1-forms on M5and s∗T , s∗R are torsion and urvature of this onnetion, respetively. We havethe followingProposition 4.1. Every 9-dimensional manifold P equipped with nine 1-forms

(θ0, θ1, θ2, θ3, θ4, Γ−, Γ+, Γ0, Γ1) whih
• are linearly independent at every point of P ,
• satisfy system (4.1) with some funtions T i

jk, Ri
jkl on P ,is foliated by 4-dimensional leaves over a 5-dimensional spae M5, whih is thebase for the �bration P → M5. The manifold M5 is equipped with a natural ir-reduible GL(2, R) struture [g, Υ, A] and a gl(2, R) onnetion ompatible with it.The torsion and the urvature of this onnetion is given by T i

jk and Ri
jkl.5. 5th order ODE as nearly integrable GL(2, R) geometry with`small' torsion. Main theoremA large number of examples of nearly integrable GL(2, R) strutures in dimen-sion �ve is related to 5th order ODEs. This is mainly due to the following, wellknown,Proposition 5.1. An ordinary di�erential equation y(5) = 0 has GL(2, R)×ρ5 R

5as its group of ontat symmetries. Here ρ5 : GL(2, R) → GL(5, R) is the 5-dimensional irreduible representation of GL(2, R).To explain the above statement we onsider a general 5th order ODE(5.1) y(5) = F (x, y, y′, y′′, y(3), y(4))for a real funtion R ∋ x 7→ y(x) ∈ R. Let us introdue the notation y1 = y′,
y2 = y′′, y3 = y(3), y4 = y(4) and Fi = ∂F

∂yi
, i = 1, 2, 3, 4, Fy = ∂F

∂y . The funtions
(x, y, y1, y2, y3, y4) form a loal oodinate system in the 4-order jet spae J of urvesin R

2. De�ne a total derivative, whih is a vetor �eld in J(5.2) D = ∂x + y1∂y + y2∂y1 + y3∂y2 + y4∂y3 + F∂y4 .With the help ofD the derivatives are given by formulae y1 = Dy/Dx, y2 = Dy1/Dxand so on, up to y5 = Dy4/Dx.



GL(2, R) GEOMETRY OF ODE'S 23A ontat transformation of variables in a 5-order ODE is a transformation thatmixes the independent variable x, the dependent variable y and the �rst derivative
y1 in suh a way that the meaning of the �rst derivative is retained:De�nition 5.2. A ontat transformation of variables is an invertible, su�ientlysmooth transformation of the form(5.3) 



x
y
y1



 7→





x̄
ȳ
ȳ1



 =





x̄(x, y, y1)
ȳ(x, y, y1)
ȳ1(x, y, y1)



satisfying the ondition
ȳ1 =

Dȳ

Dx̄
. (preservation of �rst derivative)The higher order derivatives are given by the iterative formula

yn+1 7→ ȳn+1 =
Dȳn

Dx̄
, i = 1, 2, 3, 4.Let us now onsider the equation y(5) = 0. We show how the �at torsionfree5-dimensional irreduible GL(2, R) struture is naturally generated on its spae ofsolutions by means of the symmetry group. A solution to y(5) = 0 is of the form(5.4) y(x) = c4x

4 + 4c3x
3 + 6c2x

2 + 4c1x + c0with �ve integration onstants c0, c1, c2, c3, c4. Then a solution of y(5) = 0 maybe ideanti�ed with a point c = (c0, c1, c2, c3, c4)
T in R

5. A ontat symmetry of
y(5) = 0 is a ontat transformation of variables that transforms its solutions intosolutions. Group of ontat symmetries of y(5) = 0 is generated by the followingone-parameter groups of transformations on the xy-plane:

ϕ0
t (x, y) = (x, y + t), ϕ1

t (x, y) = (x, y + 4xt),

ϕ2
t (x, y) = (x, y + 6x2t), ϕ3

t (x, y) = (x, y + 4x3t),

ϕ4
t (x, y) = (x, y + x4t), ϕ5

t (x, y) = (xe2t, ye4t),

ϕ6
t (x, y) = (x, ye4t), ϕ7

t (x, y) = (x + t, y),

ϕ8
t (x, y) =

(

x

1 + xt
,

y

(1 + xt)4

)and the transformation rules for y1 are given by ϕA(y1) = D(ϕA(y))/D(ϕA(x)),
A = 0, . . . , 8.Transforming (5.4) aording to the above formulae we �nd that ϕ0

t , . . . , ϕ
4
t aretranslations in the spae of solutions:

ϕ0
t (c) = (c0 − t, c1, c2, c3, c4)

T , . . . , ϕ4
t (c) = (c0, c1, c2, c3, c4 − t)T ,while transformationsϕ5

t , . . . , ϕ
8
t generateGL(2, R) and at through the 5-dimensionalirreduible representation (2.6):

ϕ5
t (c) = exp(tE0)c, ϕ6

t (c) = exp(tE1)c,

ϕ7
t (c) = exp(tE+)c, ϕ8

t (c) = exp(tE−)c.Of ourse, GL(2, R) stabilizes the origin (0, 0, 0, 0, 0) in R
5, thus the spae of solu-tions is the homogeneous spaeGL(2, R) → GL(2, R)×ρ5R
5 → R

5. The total spaeof this bundle is equipped with the Maurer � Cartan form ωMC of GL(2, R)×ρ5 R
5.



24 MICHA� GODLI�SKI AND PAWE� NUROWSKIChoosing an approriate basis in gl(2, R) and writing expliitly the strutural equa-tions dωMC + ωMC ∧ ωMC = 0 we get
dθ0 = 4(Γ1 + Γ0) ∧ θ0 − 4Γ+ ∧ θ1,

dθ1 = −Γ− ∧ θ0 + (4Γ1 + 2Γ0) ∧ θ1 − 3Γ+ ∧ θ2,

dθ2 = −2Γ− ∧ θ1 + 4Γ1 ∧ θ2 − 2Γ+ ∧ θ3,

dθ3 = −3Γ− ∧ θ2 + (4Γ1 − 2Γ0) ∧ θ3 − Γ+ ∧ θ4,

dθ4 = −4Γ− ∧ θ3 + 4(Γ1 − Γ0) ∧ θ4,

dΓ+ = 2Γ0 ∧ Γ+,

dΓ− = −2Γ0 ∧ Γ−,

dΓ0 = Γ+ ∧ Γ−,

dΓ1 = 0,whih is the system (4.1) with all the torsion and urvature oe�ients equal to zero.Aording to proposition 4.1 it yields a �at and torsionfree irreduible GL(2, R)struture on the spae of solutions of y(5) = 0. Again, as in the ase of the algebraigeometri realization of setion 2, we learned about that from E. V. Ferapontow[10℄.We now pass to a more general situation, namely to the equation (5.1) with ageneral F . The following questions are in order:What shall one assume about F to be able to onstrut an irreduible GL(2, R)struture on the solution spae of the orresponding ODE? Is the ase F = 0 veryspeial, or there are other ODEs, ontat nonequivalent to the F = 0 ase, whihde�ne a GL(2, R) geometry on the solution spae? If the answer is a�rmative,how do we �nd suh F s and what an we say about the orresponding GL(2, R)strutures?Answer to these questions is given by the followingTheorem 5.3 (Main theorem). Every ontat equivalene lass of 5th order ODEssatisfying the Wünshmann onditions
50D2F4 − 75DF3 + 50F2 − 60F4DF4 + 30F3F4 + 8F 3

4 = 0,

375D2F3 − 1000DF2 + 350DF 2
4 + 1250F1 − 650F3DF4 + 200F 2

3−
150F4DF3 + 200F2F4 − 140F 2

4DF4 + 130F3F
2
4 + 14F 4

4 = 0,(5.5)
1250D2F2 − 6250DF1 + 1750DF3DF4 − 2750F2DF4−
875F3DF3 + 1250F2F3 − 500F4DF2 + 700(DF4)

2F4+

1250F1F4 − 1050F3F4DF4 + 350F 2
3 F4 − 350F 2

4DF3+

550F2F
2
4 − 280F 3

4DF4 + 210F3F
3
4 + 28F 5

4 + 18750Fy = 0de�nes a nearly integrable irreduible GL(2, R) geometry (M5, [g, Υ, A]) on thespae M5 of its solutions. This geometry has the harateristi onnetion withtorsion T of the `pure' type in the 3-dimensional irreduible representation ∧

3.The �rst strutural equation for this onnetion are the following:
dθ0 = 4(Γ1 + Γ0) ∧ θ0 − 4Γ+ ∧ θ1 +
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− 1

3 t1θ
0 ∧ θ1 − 1

3 t2θ
0 ∧ θ2 − t3θ

0 ∧ θ3 + 2t3θ
1 ∧ θ2,

dθ1 = −Γ− ∧ θ0 + (4Γ1 + 2Γ0) ∧ θ1 − 3Γ+ ∧ θ2 +

− 1
6 t1θ

0 ∧ θ2 − 1
4 t3θ

0 ∧ θ4 − 2
3 t2θ

1 ∧ θ2,

dθ2 = −2Γ− ∧ θ1 + 4Γ1 ∧ θ2 − 2Γ+ ∧ θ3 +

− 1
9 t1θ

0 ∧ θ3 + 1
18 t2θ

0 ∧ θ4 − 4
9 t2θ

1 ∧ θ3 − 1
3 t3θ

1 ∧ θ4,

dθ3 = −3Γ− ∧ θ2 + (4Γ1 − 2Γ0) ∧ θ3 − Γ+ ∧ θ4 +

+ 1
12 t1θ

0 ∧ θ4 − 2
3 t2θ

2 ∧ θ3 − 1
2 t3θ

2 ∧ θ4,

dθ4 = −4Γ− ∧ θ3 + 4(Γ1 − Γ0) ∧ θ4 +

− 1
3 t1θ

1 ∧ θ4 + 2
3 t1θ

2 ∧ θ3 − 1
3 t2θ

2 ∧ θ4 − t3θ
3 ∧ θ4with the torsion oe�ients

t3 =
6(α5

5)
2

5α1
1

F44,

t2 =
9α5

5

50(α1
1)

2
[α1

1(10DF44 + 3F4F44) + 5α1
0F44],

t1 = [1000(α1
1)

3]−1 ×
(

225(α1
0)

2F44 + 90α1
0α

1
1(10DF44 + 3F4F44) +

−9(α1
1)

2[20(5DF34 + 20F24 − 15F33 + 3F4DF44 − 11F4F34) +

+F44(−120DF4 + 340F3 + 51F 2
4 )]

)

,where (y, y1, y2, y3, y4, x, α1
1, α

1
0, α

5
5) is a loal oordinate system on GL(2, R) →

P → M5. The seond strutural equations are the following:
dΓ+ = 2Γ0 ∧ Γ+ +

(

1
6b2 − 1

81 t21 + 5
3c5

)

θ0, θ1 +
(

− 2
81 t1t2 − 10

3 c4 + 5
12b3

)

θ0 ∧ θ2 +

+
(

− 1
243 t22 − 1

162 t1t3 + 10
3 c3 − 1

30R + b4 − 1
4a2

)

θ0 ∧ θ3 +

+
(

1
54 t2t3 − 1

8a3 − 5
3c2 + 1

12b5

)

θ0 ∧ θ4 +

+
(

− 1
27 t22 − 1

18 t1t3 + 1
10R + 2b4 + 3

4a2

)

θ1 ∧ θ2 +

+
(

− 1
9 t2t3 + 1

4a3 + 2
3b5

)

θ1 ∧ θ3 +
(

1
18 t23 + 5

3c1 + 1
6b6

)

θ1 ∧ θ4 +

+
(

− 5
18 t23 − 10

3 c1 + 1
3b6

)

θ2 ∧ θ3 + 1
4b7θ2 ∧ θ4,

dΓ− = −2Γ0 ∧ Γ− + 1
4b1θ0 ∧ θ2 +

(

1
6b2 − 1

162 t21 − 5
3 c5

)

θ0 ∧ θ3 +

+
(

− 1
162 t1t2 + 5

3c4 + 1
12b3 − 1

8a1

)

θ0 ∧ θ4 +

+
(

5
162 t21 + 1

3b2 + 10
3 c5

)

θ1 ∧ θ2 +
(

1
27 t1t2 + 2

3b3 + 1
4a1

)

θ1 ∧ θ3 +

+
(

b4 − 1
4a2 + 1

162 t1t3 + 1
243 t22 − 10

3 c3 + 1
30R

)

θ1 ∧ θ4 +

+
(

1
27 t22 + 1

18 t1t3 − 1
10R + 2b4 + 3

4a2

)

θ2 ∧ θ3 +

+
(

2
27 t2t3 + 10

3 c2 + 5
12 b5

)

θ2 ∧ θ4 +
(

1
9 t23 − 5

3c1 + 1
6b6

)

θ3 ∧ θ4 +
1
12 (2t14 + t23 − 6t2t3 − 3t32)θ

2 ∧ θ4 + 1
12 (4t24 − 9t23 − 3t33)θ

3 ∧ θ4,

dΓ0 = Γ+ ∧ Γ− − 1
4b1θ0 ∧ θ1 +

(

− 1
6b2 − 1

162 t21 + 5
6c5

)

θ0 ∧ θ2 +

+
(

− 1
54 t1t2 − 1

12b3 + 1
8a1

)

θ0 ∧ θ3 +

−
(

1
81 t1t3 + 2

243 t22 + 5
6c3 + 1

60R
)

θ0 ∧ θ4 +
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+

(

1
162 t1t2 − 20

3 c4 − 1
6b3 − 3

8a1

)

θ1 ∧ θ2 +

+
(

− 1
81 t1t3 − 2

243 t22 + 20
3 c3 + 1

30R
)

θ1 ∧ θ3 +

+
(

− 1
18 t2t3 − 1

8a3 + 1
12b5

)

θ1 ∧ θ4 +

+
(

1
54 t2t3 + 3

8a3 − 20
3 c2 + 1

6b5

)

θ2 ∧ θ3 +

+
(

− 1
18 t23 + 5

6c1 + 1
6b6

)

θ2 ∧ θ4 + 1
4b7θ3 ∧ θ4,

dΓ1 = − 1
8b1θ0 ∧ θ1 − 1

8b2θ0 ∧ θ2 − 1
8 (b3 + a1) θ0 ∧ θ3 − 1

8 (b4 + a2) θ0 ∧ θ4 +

+
(

3
8a1 − 1

4b3

)

θ1 ∧ θ2 +
(

1
4a2 − b4

)

θ1 ∧ θ3 − 1
8 (a3 + b5) θ1 ∧ θ4 +

+
(

3
8a3 − 1

4b5

)

θ2 ∧ θ3 − 1
8b6θ2 ∧ θ4 − 1

8b7θ3 ∧ θ4,where a1, a2, a3, b1, b2, b3, b4, b5, b6, b7, c1, c2, c3, c4, c5 and R are funtions.All of these funtions but R are determined by the di�erentials of torsions:
dt1 = 2t2Γ− − 2t1Γ0 − 4t1Γ1 + 3

2b1θ0 +
(

2b2 − 4
27 t21 + 20c5

)

θ1 +

+
(

− 4
9 t1t2 − 60c4 + 3b3 − 9

2a1

)

θ2 +

+
(

− 4
9 t1t3 − 8

27 t22 + 60c3 + 6b4 − 9a2

)

θ3 +

+
(

− 4
9 t2t3 − 9

2a3 − 20c2 + 1
2b5

)

θ4,

dt2 = 3t3Γ− + t1Γ+ − 4t2Γ1 +
(

1
2b2 + 2

27 t21 − 10c5

)

θ0 +

+
(

4
27 t1t2 + 20c4 + 2b3 + 9

2a1

)

θ1 + 9 (a2 + b4) θ2 +

+
(

− 4
9 t2t3 + 9

2a3 − 20c2 + 2b5

)

θ3 +
(

− 2
3 t23 + 10c1 + 1

2b6

)

θ4,

dt3 = 2t3Γ0 + 2
3 t2Γ+ − 4t3Γ1 +

(

4
81 t1t2 + 20

3 c4 + 1
6b3 − 3

2a1

)

θ0 +

+
(

4
27 t1t3 + 8

81 t22 − 20c3 + 2b4 − 3a2

)

θ1 +

+
(

4
9 t2t3 − 3

2a3 + 20c2 + b5

)

θ2 +
(

4
9 t23 − 20

3 c1 + 2
3 b6

)

θ3 + 1
2b7θ4.The funtion R is the Rii salar for the onnetion.Before presenting the proof let us notie several fats and orollaries.The theorem guarantees that every equivalene lass of ODEs satisfying ondi-tions (5.5) has its orresponding nearly integrableGL(2, R) geometry (M5, [g, Υ, A])with torsion in ∧

3. It may happen, however, that there are ontat non-equivalentlasses of ODEs de�ning the same GL(2, R) geometries. (See also remark 5.9).The Wünshmann onditions, although very ompliated, possess nontrivial so-lutions. For example the equation
y(5) = c

(5y(3)3(5 − 27cy′′2)

9(1 + cy′′2)2
+ 10

y′′y(3)y(4)

1 + cy′′2

)

,where c = ±1 satis�es the Wünshmann onditions and is not ontat equivalentto F = 0. Other examples are onsidered in setion 6.The onnetion of theorem 5.3 is a harateristi onnetion with torsion in ∧

3.If the Wünshmann ODE is general enough, the torsion may be quite arbitrarywithin ∧

3. From proposition 3.11 we know that the independent omponents ofthe urvature of a harateristi onnetion with T ∈
∧

3 are R, dA(3), dA(7) and
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Ki. In the notation of theorem 5.3 they read:

dA(3) =













0 0 0 a1 a2

0 0 −3a1 −2a2 a3

0 3a1 0 −3a3 0
−a1 2a2 3a3 0 0
−a2 −a3 0 0 0













,

dA(7) =













0 b1 b2 b3 b4

−b1 0 2b3 8b4 b5

−b2 −2b3 0 2b5 b6

−b3 −8b4 −2b5 0 b7

−b4 −b5 −b6 −b7 0













,

K =

√
3

3

(

c1 c2 c3 c4 c5

)T
,and, as we said above, the Rii salar is given by the funtion R. The Rii vetor

Ri
v = Υijkgjk is as follows

Ri
v =

7

6

√
3

(

t23, −1

3
t2t3,

1

9
t1t3 +

2

27
t22, −1

9
t1t2,

1

9
t21

)

.The Rii tensor satis�es the following equations
R(ij) = 1

5Rgij + 2
7Rk

vΥijk,

dA(3) = 4R(3), dA(7) = 2
3R(7).Using theorem 5.3 we an also express the Rii tensor (Ric)i

j = gikRkj in termsof the endomorphisms E−, E0, E+, E1 of (2.5):Corollary 5.4. The Rii tensor of a harateristi onnetion with torsion in ∧

3has the following form in any adapted oframe
Ric =

(

1

54
t22 +

1

36
t1t3 −

1

20
R

)

E1 +
1

8
b1E

3
− +

1

108
t21E

2
−+

+

(

− 1

54
t1t2 +

1

8
a1 −

1

2
b3

)

E− +
5

16
b4E

3
0 +

(

1

108
t22 +

1

72
t1t3

)

E2
0+

+

(

−17

4
b4 +

1

8
a2

)

E0 −
1

8
b7E

3
+ +

1

12
t23E

2
+ +

(

−1

8
a3 +

1

2
b5 −

1

18
t2t3

)

E++

− 5

32
b5E0E+E0 +

1

8
b6E+E0E+ +

1

54
t1t2E0E− +

5

32
b3E0E−E0+

+
1

8
b2E−E0E− − 1

18
t2t3E0E+.Of ourse, sine the geometry is onstruted from an ODE determined by thehoie of F = F (x, y, y1, y2, y3, y4), the oe�ients a1, . . . , a3, b1, . . . , b7, R are ex-pressible in terms of F and its derivatives. Given the onnetion of theorem 5.3 wealulated the expliit formulae for these oe�ients and obtained the following



28 MICHA� GODLI�SKI AND PAWE� NUROWSKICorollary 5.5. A GL(2, R) geometry generated by a 5th order ODE satisfyingWünshmann onditions (5.5) has the following properties.The torsion T vanishes i�
F44 = 0.The 2-form dA(3) vanishes i�

(DF4)34 − (DF3)44 − 3
5 (DF4)4F44 − 4

5DF4F444 + 6
25F 2

44F4 + 4
25F 2

4 F444+

+ 3
10F34F44 − 1

5F4F344 + 3
5F3F444 + F244 − 1

2F433 = 0.The 2-form dA(7) vanishes i�
F444 = 0.The Rii vetor Rv is aligned with the vetor K, i.e. K = uRv, u ∈ R, i�

(DF4)44 − 1
2F344 − 2

5F4F444 − 8
15F 2

44 + 7uF 2
44 = 0.We skip writing the formula for the Rii salar sine it is very ompliated.We now pass to the proof of theorem 5.3. On doing this we will apply a variantof the Cartan method of equivalene. This will be a rather long and ompliatedproedure. Thus, for the larity of the presentation, we will divide the proof intothree main steps, eah of whih will ouppy its own respetive setion 5.1, 5.2 and5.3. First, in setion 5.1 we will prove lemma 5.6, whih assures that a lass ofontat equivalent 5th order ODEs is a G-struture on a 4-order jet spae J . Thus,we will have a bundle G → J × G → J , a redution of the frame bundle F (J). Inthe seond step, in setion 5.2, we will use the Cartan method of equivalene inorder to onstrut a submanifold P ⊂ J × G together with a oframe on P whihful�lls the requirements of proposition 4.1. This oframe, via proposition 4.1, willde�ne an irreduible GL(2, R) struture for us and simultanously will provide uswith a gl(2, R) onnetion on the spae of solutions of the ODE. The obstrutionsfor an ODE to possess this struture, Wünshmann's expressions for F , will appearautomatially in the ourse of the onstrution. This part of onsiderations issummarized in theorem 5.7. The GL(2, R) struture obtained in this way will turnout to be nearly integrable, but the onnetion onstruted will di�er from theharateristi one. Therefore, in setion 5.3, we will onstrut the harateristionnetion assoiated with the GL(2, R) struture obtained. This will have torsionin ∧

3. This onstrution is desribed by lemma 5.8.5.1. 5th order ODE modulo ontat transformations. Let us onsider a gen-eral 5th order ODE (5.1). We de�ne the following oframe
ω0 = dy − y1dx,

ω1 = dy1 − y2dx,

ω2 = dy2 − y3dx,(5.6)
ω3 = dy3 − y4dx,

ω4 = dy4 − F (x, y, y1, y2, y3, y4)dx,

ω+ = dxon J . We see that every solution of (5.1) is a urve c(x) = (x, y(x), y1(x), y2(x), y3(x),
y4(x)) ⊂ J and the vetor �eld D on J has urves c(x) as the integral urves. The1-forms (ω0, ω1, ω2, ω3, ω4) annihilate D whereas Dyω+ = 1. The 5-dimensional



GL(2, R) GEOMETRY OF ODE'S 29spae M5 of integral urves of D is learly the spae of solutions of (5.1) and wehave a �bration R → J → M5.Suppose now, that equation (5.1) undergoes a ontat transformation (5.3),whih brings it to ȳ5 = F̄ (x̄, ȳ, ȳ1, ȳ2, ȳ3, ȳ4). Then the oframe transforms a-ording to(5.7) 















ω0

ω1

ω2

ω3

ω4

ω+

















7→

















ω̄0

ω̄1

ω̄2

ω̄3

ω̄4

ω̄+

















=

















α0
0 0 0 0 0 0

α1
0 α1

1 0 0 0 0
α2

0 α2
1 α2

2 0 0 0
α3

0 α3
1 α3

2 α3
3 0 0

α4
0 α4

1 α4
2 α4

3 α4
4 0

α5
0 α5

1 0 0 0 α5
5

































ω0

ω1

ω2

ω3

ω4

ω+

















.Here αi
j , i, j = 0, 1, 2, 3, 4, 5, are real funtions on J de�ned by the formulae (5.3).They satisfy the nondegeneray ondition

α0
0α

1
1α

2
2α

3
3α

4
4α

5
5 6= 0.The transformed oframe enodes all the ontat invariant information about theODE. In partiular, it preserves the simple ideal (ω0, . . . , ω4), from whih we anreover solutions of the transformed equation. Hene we haveLemma 5.6. A 5th order ODE y5 = F (x, y, y1, y2, y3, y4) onsidered modulo on-tat transformations of variables is a G-struture on the 4-jet spae J , suh thatthe oframe (ω0, ω1, ω2, ω3, ω4, ω+) of (5.6) belongs to it and the group G is givenby the matrix in (5.7)5.2. GL(2, R) bundle over spae of solutions. Using the Cartan method we ex-pliitly onstrut a submanifold P ⊂ J×G and a oframe (θ0, θ1, θ2, θ3, θ4, Γ−, Γ+, Γ0, Γ1)on P satisfying proposition 4.1. This part of the proof is divided into eight steps.1). We observe that there is a natural hoie for the forms (θ0, θ1, θ2, θ3, θ4) of theoframe. Sine we are going to build a GL(2, R) struture on the spae of solutions

P must be a bundle overM5 and the forms (θ0, θ1, θ2, θ3, θ4) must annihilate vetorstangent to leaves of the projetion P → M5. But on J×G there are six distinguished1-forms given by(5.8) 





















θ0

θ1

θ2

θ3

θ4

θ+























=

























α0
0ω

0

α1
0ω

0 + α1
1ω

1

α2
0ω

0 + α2
1ω

1 + α2
2ω

2

α3
0ω

0 + α3
1ω

1 + α3
2ω

2 + α3
3ω

3

α4
0ω

0 + α4
1ω

1 + α4
2ω

2 + α4
3ω

3 + α4
4ω

4

α5
0ω0 + α5

1ω
1 + α5

5ω+

























.

These forms are the omponents of the anonial R
6 valued 1-form on J ×G. Fiveamong these forms, θ0, θ1, θ2, θ3, θ4 also annihilate vetors tangent to the proje-tion J × G → M5. We hoose them to be the members of the sought oframe

(θ0, θ1, θ2, θ3, θ4, Γ−, Γ+, Γ0, Γ1). Now we must onstrut a 9-dimensional subman-ifold P on whih θi satisfy equations (4.1) with some linearly independent forms
Γ−, Γ+, Γ0, Γ1.
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dθ0 =

(

dα0
0

α0
0

− α1
0

α1
1α

5
5

θ+

)

∧ θ0 +
α0

0

α1
1α

5
5

θ+ ∧ θ1 − α5
0

α1
1α

5
5

θ0 ∧ θ1For this equation to math (4.1) we de�ne
Γ+ = θ+(5.9)
4(Γ1 + Γ0) =

dα0
0

α0
0

− α1
0

α1
1α

5
5

θ+ mod θi,(5.10)with yet unspei�ed θi terms in (5.10), and set(5.11) α0
0 = −4α1

1α
5
5to get −4 oe�ient in the Γ+ ∧ θ1 term. Thereby

dθ0 = 4(Γ1 + Γ0) ∧ θ0 − 4Γ+ ∧ θ1 mod θi ∧ θjon the 23-dimensional subbundle of J ×G → M5 given by (5.11). We see that theform θ+ plays naturally the role of the onnetion 1-form Γ+.3). We alulate dθ1 on the 23-dimensional bundle. In order to get
dθ1 = −Γ− ∧ θ0 + (4Γ1 + 2Γ0) ∧ θ1 − 3Γ+ ∧ θ2 mod θi ∧ θjwe set

4Γ1 + 2Γ0 =
dα1

1

α1
1

+
α1

0α
2
2 − α1

1α
2
1

α1
1α

2
2α

5
5

θ+ mod θi,(5.12)
Γ− = − dα1

0

4α1
1α

5
5

+
α1

0dα1
1

4(α1
1)

2α5
5

(5.13)
+

(α1
0)

2α2
2 + (α1

1)
2α2

0 − α1
1α

2
1α

1
0)

2

4(α1
1)

2α2
2(α

5
5)

2
θ+ mod θi,and(5.14) α2

2 = − α1
1

3α5
5obtaining a 22-dimensional subbundle of J ×G → M5 on whih dθ0 and dθ1 are inthe desired form.4). At this point all four onnetion 1-forms Γ−, Γ+, Γ0, Γ1 are �xed up to the θiterms. They are determined by the equations (5.9), (5.10), (5.12), (5.13). Thus wean not introdue any new 1-forms to bring dθ2 into the desired form. Now to get

dθ2 in the form as in theorem 5.3, we may only use the yet unspei�ed oe�ients
αs. That is why dθ2 imposes more onditions on αs. It follows that for dθ0, dθ1and dθ2 to be of the form (4.1) the subbundle P must satisfy

α0
0 = −4α1

1α
5
5,

α2
0 =

−75(α1
0)

2 + (α1
1)

2(−20DF4 + 20F3 + 7F 2
4 )

300α1
1α

5
5

,

α2
1 =

−15α1
0 + α1

1F4

30α5
5

,

α2
2 = − α1

1

3α5
5

,
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α3

0 = [1800(α1
1α

5
5)

2]−1 ×
[1125(α1

0)
3 + 45α1

0(α
1
1)

2(20DF4 − 20F3 − 7F 2
4 ) +

2(α1
1)

3(100D2F4 − 200F2 − 30F4DF4 − 60F3F4 − 11F 3
4 )],

α3
1 =

225(α1
0)

2 − 30α1
0α

1
1F4 + (α1

1)
2(80DF4 − 100F3 − 31F 2

4 )

1200α1
1(α

5
5)

2
,(5.15)

α3
2 =

5α1
0 − α1

1F4

20(α5
5)

2
,

α3
3 =

α1
1

6(α5
5)

2
,

α4
1 = [18000(α1

1)
2(α5

5)
3]−1 ×

[−1125(α1
0)

3 + 225(α1
0)

2α1
1F4 − 15α1

0(α
1
1)

2(80DF4 − 100F3 − 31F 2
4 ) +

(α1
1)

3(−400D2F4 + 1400F2 + 240F4DF4 + 180F3F4 + 11F 3
4 )],

α4
2 =

−75(α1
0)

2 + 30α1
0α

1
1F4 + (α1

1)
2(−40DF4 + 80F3 + 17F 2

4 )

600α1
1(α

5
5)

3
,

α4
3 =

−5α1
0 + 3α1

1F4

30(α5
5)

3
,

α4
4 = − α1

1

6(α5
5)

3
.The neessity of these onditions an be heked by a diret, quite lengthy alu-lations. We performed these alulations using the symboli omputation programsMaple and Mathematia.We stress that onditions (5.15) are only neessary for dθ2 to satisfy (4.1). It isbeause ertain unwanted terms annot be removed by any hoie of subbundle P .Vanishing of these unwanted terms is a property of the ODE itself, and this is thereason for the Wünshmann onditions to appear.More spei�ally, to ahieve

dθ2 = −2Γ− ∧ θ1 + 4Γ1 ∧ θ2 − 2Γ+ ∧ θ3 mod θi ∧ θjon the bundle de�ned by (5.11), (5.14) and (5.15) an ODE must satisfy(5.16) 50D2F4 − 75DF3 + 50F2 − 60F4DF4 + 30F3F4 + 8F 3
4 = 0.It follows from the onstrution that this ondition, the �rst of (5.5), is invariantunder the ontat transformation of variables.From now on we restrit our onsiderations only to ontat equivalene lass ofODEs satisfying (5.16). If (5.15) and (5.16) are satis�ed then the three di�erentials

dθ0, dθ1 and dθ2 are preisely in the form (4.1).5). The requirement that also dθ3 is in the form (4.1) is equivalent to the followingequation for α4
0:

α4
0 = [120000(α1

1α
5
5)

3]−1 ×
[−1875(α1

0)
4 − 150(α1

0α
1
1)

2(20DF4 − 20F3 − 7F 2
4 ) −

40α1
0(α

1
1)

3(50DF3 − 100F2 + 30F4DF4 − 40F3F4 − 9F 3
4 ) +(5.17)
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(α1

1)
4
(

400(−5D2F3 + 10DF2 − 6(DF4)
2 + 10F3DF4 − 3F 2

3 + F4DF3) +

120F 2
4 (7DF4 − 5F3) − 63F 4

4

)

].6). If ondition (5.17) is also imposed we have
(dθ4 + 4Γ− ∧ θ3 − 4(Γ − Γ0) ∧ θ4) ∧ θ0 ∧ θ1 = 0 mod θi.However,

dθ4 ∧ θ0 ∧ θ2 ∧ θ3 ∧ θ4 = 0if and only if seond ondition of (5.5) is satis�ed:
375D2F3 − 1000DF2 + 350DF 2

4 + 1250F1 − 650F3DF4 + 200F 2
3 −

150F4DF3 + 200F2F4 − 140F 2
4DF4 + 130F3F

2
4 + 14F 4

4 = 0.(5.18)Again it follows from the onstrution that ondition (5.18), onsidered simultane-ously with (5.16), is invariant under ontat transformations of the variables. Fromnow on, we assume that all our 5th order ODEs (5.1) satisfy both onditions (5.16),(5.18). It follows that it is still not su�ient to fore dθ4 to satisfy the system (4.1),sine without further assumptions on F , we do not have dθ4 ∧ θ1 ∧ θ2 ∧ θ3 ∧ θ4 = 0.To ahieve this it is neessary and su�ient to impose the last restrition on F :
1250D2F2 − 6250DF1 + 1750DF3DF4 − 2750F2DF4 −
875F3DF3 + 1250F2F3 − 500F4DF2 + 700(DF4)

2F4 +(5.19)
1250F1F4 − 1050F3F4DF4 + 350F 2

3 F4 − 350F 2
4DF3 +

550F2F
2
4 − 280F 3

4DF4 + 210F3F
3
4 + 28F 5

4 + 18750Fy = 0.7). Assuming that F satis�es onditions (5.5) and �xing oe�ients αi
j aordingto (5.15), (5.17) we are remained with a 11-dimensional subbundle of J ×G → M5parametrized by (x, y, y1, y2, y3, y4, α

1
0, α

1
1, α

5
5, α

5
0, α

5
1). It follows that the forms

Γ0, Γ1, Γ−, Γ+ on this bundle are
Γ+ = θ+,

Γ0 =
dα5

5

2α5
5

− 5α1
0 + α1

1F4

20α1
1α

5
5

θ+ mod θi,

Γ1 =
dα1

1

4α1
1

− dα5
5

4α5
5

+
F4

20α5
5

θ+ mod θi,(5.20)
Γ− =

dα1
0

4α1
1α

5
5

− α1
0dα1

1

4(α1
1)

2α5
5

−

25(α1
0)

2 + 10α1
0α

1
1F4 + (α1

1)
2(20DF4 − 20F3 − 7F 2

4 )

400(α1
1α

5
5)

2
θ+ mod θi.8). In order to onstrut a 9-dimensional bundle and �nd the θi terms in (5.20) weneed to onsider the dΓA part of equations (4.1). Foring dΓA not to have ΓA ∧ θiterms we uniquely speify the θi terms in (5.20). This requirement, in partiular,�xes the oe�ients α5

1 and α5
0 to be:

α5
1 =

α5
5(10DF44 + 5F34 + 6F4F44)

50
,
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α5

0 =
α5

5

250
[50(DF34 + 7F24 − 5F33) +(5.21)

5F4(6DF44 − 37F34) + 2F44(−60DF4 + 145F3 + 21F 2
4 )].Now all the forms (θ0, θ1, θ2, θ3, θ4, Γ+, Γ−, Γ0, Γ1) are well de�ned and independenton a 9-dimensional manifold P parametrized by (y, y1, y2, y3, y4, x, α1

0, α
1
1, α

5
5).We alulate strutural equations (4.1) for these forms and have the followingTheorem 5.7. A 5th order ODE y(5) = F (x, y, y′, y′′, y(3), y(4)) onsidered mod-ulo ontat transformation of variables has an irreduible GL(2, R) struture onthe spae of its solution M5 together with a gl(2, R) onnetion Γ if and only ifits de�ning funtion F = F (x, y, y1, y2, y3, y4) satis�es the ontat invariant Wün-shmann onditions (5.5). The bundle GL(2, R) → P → M5 is given by the equa-tions (5.15), (5.17) and (5.21). The �rst strutural equations for the onnetion

Γ = (Γ+, Γ−, Γ0, Γ1) on P read
dθ0 = 4(Γ1 + Γ0) ∧ θ0 − 4Γ+ ∧ θ1 +

t1θ
0 ∧ θ1 + t2θ

0 ∧ θ2 + t3θ
0 ∧ θ3,

dθ1 = −Γ− ∧ θ0 + (4Γ1 + 2Γ0) ∧ θ1 − 3Γ+ ∧ θ2 +
1
2 t1θ

0 ∧ θ2 + 1
3 t2θ

0 ∧ θ3 + 1
4 t3θ

0 ∧ θ4 +

t2θ
1 ∧ θ2 + t3θ

1 ∧ θ3,

dθ2 = −2Γ− ∧ θ1 + 4Γ1 ∧ θ2 − 2Γ+ ∧ θ3 +(5.22)
2
9 t1θ

0 ∧ θ3 + 1
18 t2θ

0 ∧ θ4 + 1
3 t1θ

1 ∧ θ2 +
8
9 t2θ

1 ∧ θ3 + 2
3 t3θ

1 ∧ θ4 + t3θ
2 ∧ θ3,

dθ3 = −3Γ− ∧ θ2 + (4Γ1 − 2Γ0) ∧ θ3 − Γ+ ∧ θ4 +
1
12 t1θ

0 ∧ θ4 + 1
3 t1θ

1 ∧ θ3 + 1
3 t2θ

1 ∧ θ4 +

t2θ
2 ∧ θ3 + 3

2 t3θ
2 ∧ θ4,

dθ4 = −4Γ− ∧ θ3 + 4(Γ1 − Γ0) ∧ θ4 +
1
3 t1θ

1 ∧ θ4 + t2θ
2 ∧ θ4 + 3t3θ

3 ∧ θ4,with the torsion oe�ients
t3 =

6(α5
5)

2

5α1
1

F44,

t2 =
9α5

5

50(α1
1)

2
[α1

1(10DF44 + 3F4F44) + 5α1
0F44],

t1 = [1000(α1
1)

3]−1 ×
(

225(α1
0)

2F44 + 90α1
0α

1
1(10DF44 + 3F4F44) +

−9(α1
1)

2[20(5DF34 + 20F24 − 15F33 + 3F4DF44 − 11F4F34) +

+F44(−120DF4 + 340F3 + 51F 2
4 )]

)

.Also the seond strutural equations are easily alulable but we skip them dueto their omplexity.It is remarkable that the above gl(2, R) onnetion has torsion with not morethan three funtionally independent oe�ients t1, t2, t3. This suggests that the
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GL(2, R) geometry on the 5-dimensional solution spae M5 of the ODE is nearlyintegrable with torsion in the irreduible part ∧

3 only. That it is really the asewill be shown below.5.3. Charateristi onnetion with torsion in ∧

3. As we know from se-tion 3, given an irreduible GL(2, R)-struture (M5, [g, Υ, A]), we an ask if suha struture is nearly integrable. Aording to propositions 3.5 and 3.6, the nees-sary and su�ient ondition for nearly integrability is that the struture admits a
gl(2, R)-valued onnetion with totally skew symmetri torsion.In our ase of ODEs satisfying Wünshmann onditions we have a gl(2, R)-valuedonnetion of theorem 5.7, whose torsion is expressible in terms of three independentfuntions. This torsion, however, has quite ompliated algebrai struture, inpartiular it is not totally skew symmetri.It appears that an irreduible GL(2, R) struture (M5, [g, Υ, A]) assoiated withany 5th order ODE satisfying onditions (5.5) admits another gl(2, R)-valued on-netion that has totally skew symmetri torsion. Thus all strutures (M5, [g, Υ, A])originating from Wünshmann 5th order ODEs are nearly integrable; the new on-netion is their harateristi onnetion. Even more interesting is the fat that itstorsion is still more speial: it is always in ∧

3.One way of seeing this is to alulate the Weyl onnetion W

Γ for the orresponding
(M5, [g, Υ, A]) and to deompose it aording to (3.14). Here we prefer anothermethod � the analysis in terms of the Cartan bundle P of theorem 5.7.Lemma 5.8. Consider a ontat equivalene lass of 5th order ODEs satisfyingonditions (5.5). Let θ0, θ1, θ2, θ3, θ4, Γ+, Γ−, Γ0, Γ1 and t1, t2, t3 be the objets oftheorem 5.7. Then there is a gl(2, R) onnetion Γ̃ = (Γ̃+, Γ̃−, Γ̃0, Γ̃1) whose torsion
T̃ i

jk is totally skew symmetri and has its assoiated 3-form in T̃ ∈ ∗∧3. Expliitly:
T̃ = 1

12 t1(−θ0 ∧ θ1 ∧ θ4 + 2θ0 ∧ θ2 ∧ θ3) +
1
12 t2(−θ0 ∧ θ2 ∧ θ4 + 8θ1 ∧ θ2 ∧ θ3) +
1
4 t3(−θ0 ∧ θ3 ∧ θ4 + 2θ1 ∧ θ2 ∧ θ4).Proof. Any gl(2, R) onnetion Γ̃ = (Γ̃+, Γ̃−, Γ̃0, Γ̃1) ompatible with the GL(2, R)struture of theorem 5.7 is given by

Γ̃A = ΓA +
∑

i

γAiθ
i, A ∈ {+, 0,−}, i = 0, . . . , 4,(5.23)

Γ̃1 = Γ1with arbitrary funtions γAi. We alulate strutural equations dθ + Γ̃ ∧ θ = T̃ for
Γ̃ utilising equations (5.22), and ask if there exists a hoie of γAi suh that thenew torsion T̃ i

jk satis�es gilT̃
l
jk = T̃[ijk] and T̃ = 1

6gilT̃
l
jkθi ∧θj ∧θk ∈ ∗

∧

3. Usinglemma 3.9 we easily �nd that the unique solution is given by
Γ̃+ = Γ+ − 1

6 t1θ
0 − 1

3 t2θ
1 − 1

2 t3θ
2,

Γ̃− = Γ− + 1
6 t1θ

2 + 1
3 t2θ

3 + 1
2 t3θ

4,

Γ̃0 = Γ0 − 1
6 t1θ

1 − 1
3 t2θ

2 − 1
2 t3θ

3,

Γ̃1 = Γ1,

�



GL(2, R) GEOMETRY OF ODE'S 35Lemma 5.8 together with the results of setion 4 prove theorem 5.3.Remark 5.9. Note that a passage from Γ+ to
Γ̃+ = Γ+ − 1

6 t1θ
0 − 1

3 t2θ
1 − 1

2 t3θ
2belongs to a larger lass of transformations than the ontat transformations (5.7),(5.8); it involves a forbidden θ2 term. Thus it may happen that there are nonequiv-alent lasses of ODEs whih de�ne the same (M5, [g, Υ, A]). To distinguish betweennonequivalent ODEs one has to use the onnetion of theorem 5.7.6. Examples of nearly integrable GL(2, R) strutures from 5thorder ODEsIn this setion we provide examples of Wünshmann ODEs and nearly integrable

GL(2, R) strutures related to them. Sine suh strutures have the torsions of theirharateristi onnetions in ∧

3, then via proposition 3.11, they are haraterizedby the torsion T , the Rii salar R, the omponents of Maxwell 2-forms dA(3),
dA(7), and the vetor K; all these objets being assoiated to the harateristionnetion Γ. There is also the unique Weyl onnetion W

Γ assoiated with thesestrutures.6.1. Torsionfree strutures. We see from orollary 5.5 that
T ≡ 0 ⇐⇒ F44 ≡ 0.Then W

Γ = Γ and all the urvature omponents but the Rii salar neessarilyvanish. The following proposition an be heked by diret alulation.Proposition 6.1. The three nonequivalent di�erential equations
y(5) = c

(5y(3)3(5 − 27cy′′2)

9(1 + cy′′2)2
+ 10

y′′y(3)y(4)

1 + cy′′2

)

,with c = +1, 0,−1, represent the only three ontat nonequivalent lasses of 5th or-der ODEs having the orresponding nearly integrable GL(2, R) strutures (M5, [g, Υ,
A]) with the harateristi onnetion with vanishing torsion. In all three ases theholonomy of the Weyl onnetion W

Γ of strutures (M5, [g, Υ, A]) is redued to the
GL(2, R). For all the three ases the Maxwell 2-form dA ≡ 0. The orrespond-ing Weyl struture is �at for c = 0. If c = ±1, then in the onformal lass
[g] there is an Einstein metri of positive (c = +1) or negative (c = −1) Riisalar. In ase c = 1 the manifold M5 an be identi�ed with the homogeneousspae SU(1, 2)/SL(2, R) with an Einstein g desending from the Killing form on
SU(1, 2). Similarly in c = −1 ase the manifold M5 an be identi�ed with the ho-mogeneous spae SL(3, R)/SL(2, R) with an Einstein g desending from the Killingform on SL(3, R). In both ases with c 6= 0 the metri g is not onformally �at.6.2. Strutures with vanishing Maxwell form. From now on we assume that

F44 6= 0and onsider strutures with vanishing Maxwell 2-form dA = 0. For suh struturesboth torsion and urvature have at most 9 independent oe�ients ontained in T ,
K and the salar R. The simplest geometries in this lass are those satisfying theadditional equality

Ki = uRi
v, u ∈ R.
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v into strutural equations of theorem 5.3 andusing Bianhi identities we �nd that either

u = − 1

420
, R =

35

54
(t22 − 3t1t3)or

u =
2

105
, R =

10

27
(t22 − 3t1t3).Thus in these ases R is funtionally dependent on t1, t2, t3 and the only invariantsfor suh GL(2, R) strutures are u and the sign of R. For eah possible values of uand sgnR we found a generating ODE.Proposition 6.2. Consider the equations(6.1) F =

5y2
4

3y3
+ ǫy

5/3
3 , ǫ = −1, 0, 1,(6.2) F =

5y2
4

4y3
,and(6.3) F =

5(8y3
3 − 12y2y3y4 + 3y1y

2
4)

6(2y1y3 − 3y2
2)

,where the sign of expression (2y1y3 − 3y2
2) is an invariant, and the singular lous

2y1y3 − 3y2
2 = 0 separates nonequivalent equations with ± signs. The equationsgenerate all the six GL(2, R) struutres satisfying dA = 0 and Ki = uRi

v, u ∈ R.For (6.1) u = − 1
420 and sgnR = ǫ,for (6.2) u = 2

105 and R = 0,for (6.3) u = 2
105 and sgnR = sgn(3y2

2 − 2y1y3).Morover, the above ODEs an be also desribed in a geometri way by means ofthe symmetry group.Proposition 6.3. The equations (6.1), (6.2) and (6.3) are the only 5th orderWünshmann ODEs satisfying F44 6= 0, F444 = 0 and possessing the maximalgroup of transitive ontat symmetries of dimension grater than �ve. Equations
F =

5y2
4

3y3
and F =

5y2
4

4y3
have 7-dimensional groups of symmetries, all the remaininghave 6-dimensional ones.Proof. The proof is based on further appliation of the Cartan method of equiva-lene. Let us return to the oframe of theorem 5.7, whih enodes all the ontatinvariant information about the ODE. If there are any nononstant oe�ients inthe strutural equations for this oframe we an use them for further redutionof the group GL(2, R) and of the bundle P . For an ODE satisfying F44 6= 0 wenormalize t3 = 1, t2 = 0, whih implies

α1
1 =

6

5
(α5

5)
2F44, α1

0 = − 6

25
(α5

5)
2(10DF44 + 3F4F44).Now the oframe of theorem 5.7 is redued to a 7-dimensional manifold P7 param-eterized by (x, y, y1, y2, y3, y4, α

5
5), three 1-forms (Γ0, Γ−, Γ1) beome dependenton eah other and we an use only one of them, our hoie is Γ0, to supplement

(θ0, θ1, θ2, θ3, θ4, Γ+) to an invariant oframe on P7. Next we alulate strutural



GL(2, R) GEOMETRY OF ODE'S 37equations for the new oframe. The oe�ients in these equations are built from
α5

5 and 16 funtions f1, . . . , f16 of x, y, y1, . . ., y4. In partiular
dθ0 = 6Γ0 ∧ θ0 − 4Γ+ ∧ θ1 +

f1

(α5
5)

2
θ0 ∧ θ1+

+
f2

α5
5

θ0 ∧ θ2 + f3θ
0 ∧ θ3 + f4α

5
5θ

0 ∧ θ4,where for example
f3 = −5F344F44 + 10DF44F444 + 6F4F44F444

F 3
44

, f4 = 5
F444

F 2
44

.Let us assume F444 = 0 and onsider two possibilities: f3 6= const and f3 =
const. If f3 6= const then it follows from the equations d2θi = 0, d2ΓA = 0 that f2may not be a onstant. Thus f2/α5

5 and f3 are two funtionally independent oe�-ients in strutural equations for the 7-dimensional oframe (θ0, θ1, θ2, θ3, θ4, Γ+, Γ0).Aording to the proedure of �nding symmetries of ODEs, whih is desribed in[19℄, the dimension of the group of ontat symmetries of a orresponding 5-orderODE is not larger than the dimension of the oframe minus the number of theindependent oe�ients in the strutural equations, that is 7 − 2 = 5. It followsthat ODEs possessing ontat symmetry group greater than 5-dimensional nees-sarily satisfy f3 = const. Let us assume f3 = const then and we get from identities
d2θi = 0, d2ΓA = 0 that (i) either f3 = 2 or f3 = 3

2 and (ii) for both admissiblevalues of f3 all the remaining nonvanishing funtions fj are expressible by f1. Forexample, the system orresponding to f3 = 3
2 is the following

dθ0 = 6Γ0 ∧ θ0 − 4Γ+ ∧ θ1 + f1

(α5
5)

2 θ0 ∧ θ1 + 3
2θ0 ∧ θ3

dθ1 = 4Γ0 ∧ θ1 + 2f1

7(α5
5)2

Γ+ ∧ θ0 − 3Γ+ ∧ θ2 +

3f1

7(α5
5)2

θ0 ∧ θ2 + 3
2θ1 ∧ θ3

dθ2 = 2Γ0 ∧ θ2 + 4f1

7(α5
5)2

Γ+ ∧ θ1 − 2Γ+ ∧ θ3 −
2f2

1

49(α5
5)

4 θ0 ∧ θ1 + 4f1

21(α5
5)

2 θ0 ∧ θ3 +

f1

7(α5
5)2

θ1 ∧ θ2 + 1
6θ1 ∧ θ4 + 3

2θ2 ∧ θ3

dθ3 = 6f1

7(α5
5)2

Γ+ ∧ θ2 − Γ+ ∧ θ4 − 3f2
1

49(α5
5)

4 θ0 ∧ θ2 +

f1

14(α5
5)

2 θ0 ∧ θ4 + f1

7(α5
5)

2 θ1 ∧ θ3 + 3
4θ2 ∧ θ4

dθ4 = −2Γ0 ∧ θ4 + 8f1

7(α5
5)

2 Γ+ ∧ θ3 − 4f2
1

49(α5
5)

4 θ0 ∧ θ3 +

f1

7(α5
5)2

θ1 ∧ θ4 + 3
2θ3 ∧ θ4

dΓ+ = 2Γ0 ∧ Γ+ +
3f2

1

98(α5
5)

4 θ0 ∧ θ1 + f1

14(α5
5)2

θ0 ∧ θ3 + 1
8θ1 ∧ θ4

dΓ0 =
f2
1

49(α5
5)

4 Γ+ ∧ θ0 − 1
4Γ+ ∧ θ4 +

3f2
1

196(α5
5)

4 θ0 ∧ θ2 +

f1

56(α5
5)

2 θ0 ∧ θ4 + f1

14(α5
5)

2 θ1 ∧ θ3 + 3
16θ2 ∧ θ4.



38 MICHA� GODLI�SKI AND PAWE� NUROWSKIIf f1 = 0 then to this system there orresponds a unique equivalene lass ofODEs satisfying Wünshmann onditions and having 7-dimensional transitive on-tat symmetry group. The lass is represented by
F =

5y2
4

3y3
.In the ase f1 6= 0 we have next two nonequivalent lasses of ODEs enumeratedby the sign of f1 and possessing 6-dimensional transitive ontat symmetry groups.Representatives of these lasses are

F =
5y2

4

3y3
± y

5/3
3 ,where ±1 = sgnf1.In the similar vein we �nd that the only ODEs related to the ase f1 = 2 are(6.2) and (6.3). �6.3. Simple strutures with nonvanishing Maxwell form. All the previousexamples satisfy the ontat invariant ondition F444 = 0. In this paragraph wegive examples of Wünshmann ODEs with F444 6= 0. As suh they will lead to the

GL(2, R) strutures with the Maxwell form having a nonzero dA(7) part. First andthe simplest example of suh equations is(6.4) F = (y4)
(5/4).The GL(2, R) struture assoiated with this ODE has the following properties

dA(3) = 0, R = 0, K =
2

105
Rv.It is then an example of a struture with nonvanishing dA belonging to the 7-dimensional irreduible representation.Next example is the ODE given by the formula

F =
1

9(y2
1 + y2)2

(

5w
(

y6
1 + 3y4

1y2 + 9y2
1y

2
2 − 9y3

2 − 4y3
1y3 + 12y1y2y3 + 4y2

3 − 3y4(y
2
1 + y2)

)

+

45y4(y
2
1 + y2)(2y1y2 + y3) − 4y9

1 − 18y7
1y2 − 54y5

1y
2
2 − 90y3

1y
3
2 + 270y1y

4
2 +(6.5)

15y6
1y3 + 45y4

1y2y3 − 405y2
1y

2
2y3 + 45y3

2y3 + 60y3
1y

2
3 − 180y1y2y

2
3 − 40y3

3

)

,where3
w2 = y6

1 + 3y4
1y2 + 9y2

1y
2
2 − 9y3

2 − 4y3
1y3 + 12y1y2y3 + 4y2

3 − 3y2
1y4 − 3y2y4.Torsion and urvature for the orresponding GL(2, R) struture are ompliatedand are of general algebrai form. Both these examples have 6-dimensional transi-tive group of ontat symmetries.3Note that w = 0 also gives rise to F satisfying onditions (5.5). But sine suh F has onlyquadrati y4-dependene it is equivalent to one of proposition 6.1. Atually the one with c < 0.



GL(2, R) GEOMETRY OF ODE'S 396.4. A remarkable nonhomogeneous example. Finally, we present an exampleof 5th order ODEs satisfying Wünshmann onditions (5.5), whih are generi, ina sense that the funtion F representing it satis�es F444 6= 0, but whih have theorresponding group of transitive symmetries of dimension D < 6. We onsider anansatz in whih funtion F depends in a speial way on only two oordinates y3and y4. Expliitly:(6.6) F = (y3)
5/3 q

(y3
4

y4
3

)

,where q = q(z) is a su�iently di�erentiable real funtion of its argument
z =

y3
4

y4
3

.It is remarkable that the above F satis�es all Wünshmann onditions providedthat
• either q(z) = 5

3z2/3

• or funtion q(z) satis�es the following seond order ODE:(6.7) 90z4/3(3q − 4z2/3)q′′ − 54z4/3q′
2

+ 30z1/3(6q − 5z2/3)q′ − 25q = 0.In the �rst ase F = 5
3

y2
4

y3
, and we reover funtion (6.1) with 7-dimensional groupof symmetries. Note that one of the solutions of equation (6.7) is q = 5

4z2/3, whihorresponds to F = 5
4

y2
4

y3
. Thus also the other solution with seven symmetries, thesolution (6.2), is overed by this ansatz.We observe that if funtion q(z) satis�es(6.8) 25q − 60zq′ + 27z4/3q′

2
= 0,then it also satis�es the redution (6.7) of onditions (5.5). Equation (6.8) an besolved by �rst putting it in the form

q′ =
5(2z1/3 ±

√

(4z2/3 − 3q))

9z2/3and then by integrating, aording to the sign ±1. In the upper sign ase theintegration gives q in an impliit form:
(2z1/3 +

√

(4z2/3 − 3q))24(2
√

(4z2/3 − 3q) − z1/3)3

(2
√

(4z2/3 − 3q) + z1/3)3(5z2/3 − 4q)3
= const.In the lower sign ase the impliit equation for q is:

(2z1/3 +
√

(4z2/3 − 3q))24(2
√

(4z2/3 − 3q) − z1/3)3(5z2/3 − 4q)3

(2
√

(4z2/3 − 3q) + z1/3)3q24
= const.Inserting these qs into (6.6) we have a quite nontrivial Wünshmann ODE F = F±.We lose this setion with a remark that other solutions to the seond order ODE(6.7) also provide examples of 5th order Wünshmann ODEs.



40 MICHA� GODLI�SKI AND PAWE� NUROWSKI7. Higher order ODEsAll our onsiderations about GL(2, R) strutures assoiated with ODEs of 5thorder an be repeated for other orders. This is due to the following well known fatgeneralizing proposition 5.1:Proposition 7.1. For every n ≥ 4, the ordinary di�erential equation
y(n) = 0has GL(2, R) ×ρn

R
n as its group of ontat symmetries. Here ρn : GL(2, R) →

GL(n, R) is the n-dimensional irreduible representation of GL(2, R).The representation ρn, at the level of Lie algebra gl(2, R), is given in terms ofthe Lie algebra generators
E+ =





















0 n − 1 0 ... 0 0 0
0 0 n − 2 ... 0 0 0

...
0 0 0 ... 3 0 0
0 0 0 ... 0 2 0
0 0 0 ... 0 0 1
0 0 0 ... 0 0 0





















, E− =





















0 0 0 ... 0 0 0
1 0 0 ... 0 0 0
0 2 0 ... 0 0 0
0 0 3 ... 0 0 0

...
0 0 0 ... n − 2 0 0
0 0 0 ... 0 n − 1 0





















,

E0 =





















1 − n 0 0 ... 0 0 0
0 3 − n 0 ... 0 0 0
0 0 5 − n ... 0 0 0

...
0 0 0 ... n − 5 0 0

... 0 n − 3 0
0 0 0 ... 0 0 n − 1





















, E1 = (1 − n)1,where 1 is the n × n identity matrix. In ase of dimension n = 5 these matriesoinide with (2.6). They also satisfy the same ommutation relations
[E0, E+] = −2E+ , [E0, E−] = 2E− , [E+, E−] = −E0,where the ommutator in the gl(2, R) = Span

R
(E−, E+, E0, E1) ⊂ End(Rn) is theusual ommutator of matries.Now, we onsider a general n-th order ODE(7.1) y(n) = F (x, y, y′, y′′, y(3), ..., y(n−1)),and as before, to simplify the notation, we introdue oordinates x, y, y1 = y′, y2 =

y′′, y3 = y(3), ..., yn−1 = y(n−1) on the (n + 1)-dimensional jet spae J . Introduingthe n ontat forms
ω0 = dy − y1dx,

ω1 = dy1 − y2dx,...
ωi = dyi − yi+1dx,(7.2) ...

ωn−2 = dyn−2 − yn−1dx,

ωn−1 = dyn−1 − F (x, y, y1, y2, ..., yn−1)dx



GL(2, R) GEOMETRY OF ODE'S 41and the additional 1-form
w+ = dx,we de�ne a ontat transformation to be a di�eomorphism φ : J → J whih trans-forms the above n + 1 one-forms via:

φ∗ωi =

i
∑

k=0

αi
kωk, i = 0, 1, ...n − 1,

φ∗w+ = αn
0ω

0 + αn
1ω

1 + αn
nw+.Here αi

j are funtions on J suh that n
∏

i=0

αi
i 6= 0 at eah point of J .Therefore, as in the ase of n = 5, the ontat equivalene problem for the nthorder ODEs (7.1) an be studied in terms of the invariant forms (θ0, θ1, ...., θn−1, Γ+)de�ned by

θi =

i
∑

k=0

αi
kωk, i = 0, 1, ...n− 1,(7.3)

Γ+ = αn
0ω

0 + αn
1ω

1 + αn
nw+.These forms initially live on an n2+3n+8

2 -dimensional manifold G → J × G → J ,with the G-fator parametrized by αi
j , suh that n

∏

i=0

αi
i 6= 0.Introduing gl(2, R)-valued forms(7.4) Γ = Γ−E− + Γ+E+ + Γ0E0 + Γ1E1,where (Γ+, Γ−, Γ0, Γ1) are 1-forms on J × G, we an speialize to F ≡ 0, andreformulate proposition 7.1 toProposition 7.2. If F ≡ 0 then one an hose n(n+1)

2 parameters αi
j , as funtionsof x, y, y1, ..., yn−1 and the remaining three αs, say αi1

j1
, αi2

j2
, αi3

j3
, so that the

(n + 4)-dimensional manifold P parametrized by (x, y, y1, ..., yn−1, α
i1
j1

, αi2
j2

, αi3
j3

)is loally the ontat symmetry group, P ∼= GL(2, R)×ρn
R

n, of equation y(n) = 0.Forms (7.3), after restrition to P , an be supplemented by three additional 1-forms (Γ−, Γ0, Γ1), so that (θ0, θ1, ..., θn−1, Γ+, Γ−, Γ0, Γ1) onstitute a basis of theleft invariant forms on the Lie group P . The hoie of αs and Ωs is determined bythe requirement that basis (θ0, θ1, ..., θn−1, Γ+, Γ−, Γ0, Γ1) satis�es
dθ + Γ ∧ θ = 0,(7.5)
dΓ + Γ ∧ Γ = 0,where θ = (θ0, θ1, ..., θn−1)T is a olumn n-vetor, and Γ is given by (7.4).The de�ning equations (7.5) of the left invariant basis, when written expliitlyin terms of θis and Γs, read

dθ0 = (n − 1)(Γ1 + Γ0) ∧ θ0 + (1 − n)Γ+ ∧ θ1,

dθ1 = −Γ− ∧ θ0 + [(n − 1)Γ1 + (n − 3)Γ0] ∧ θ1 + (2 − n)Γ+ ∧ θ2,...
dθk = −kΓ− ∧ θk−1 + [(n − 1)Γ1 + (n − 2k − 1)Γ0] ∧ θk +
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+(1 + k − n)Γ+ ∧ θk+1,(7.6) ...

dθn−1 = (1 − n)Γ− ∧ θn−2 + (n − 1)(Γ1 − Γ0) ∧ θn−1,

dΓ+ = 2Γ0 ∧ Γ+,

dΓ− = −2Γ0 ∧ Γ−,

dΓ0 = Γ+ ∧ Γ−,

dΓ1 = 0.This system an be analyzed in the same spirit as system (4.1) of setion 4. Thus,we �rst onsider the distribution
h = {X ∈ TP s.t. X−| θi = 0, i = 0, 1, 2, .., n− 1}annihilating θ.Then the �rst n equations of the system (7.6) guarantee that forms (θ0, θ1, θ2, , ..., θn−1)satisfy the Fröbenius ondition,

dθi ∧ θ0 ∧ θ1 ∧ θ2 ∧ ... ∧ θn−1 = 0, ∀ i = 0, 1, 2, ...n− 1and that, in turn, the distribution h is integrable. Thus manifold P is foliatedby 4-dimensional leaves tangent to the distribution h. The spae of leaves of thisdistribution P/h an be identi�ed with the solution spae Mn = P/h of equation
y(n) = 0. This in partiular means, that all equations (7.5) an be interpretedrespetively as the �rst and the seond struture equations for a gl(2, R)-valuedonnetion Γ having vanishing torsion and and vanishing urvature. This gl(2, R)-valued onnetion originates from a ertain GL(2, R) (onformal) struture on thesolution spae Mn.To make this last statement more preise we have to invoke a few results fromHilbert's theory of algebrai invariants [12℄ adapted to our situation of ODEs.7.1. Results from Hilbert's theory of algebrai invariants. First we ask iffor a given order n ≥ 4 of an ODE (7.1) with F = 0 there exists a bilinear form g̃on P of proposition 7.2 suh that it projets to a nondegenerate onformal metrion Mn. This is answered, in a bit more general form, by applying the reiproitylaw of Hermite (see [12℄, p. 60), and its orollaries, due to Hilbert (see [12℄, p. 60).To adapt Hilbert's results to our paper we introdue a de�nition of an invariantof degree q. Let t̃ be a totally symmetri ovariant tensor �eld of rank q de�ned onthe group manifold P of proposition 7.2.De�nition 7.3. The tensor �eld t̃ is alled a GL(2, R)-invariant of degree q, ifand only if, it is degenerate on h and if for every X ∈ h, there exists a funtion
c(X) on P suh that

LX t̃ = c(X)t̃.The degeneray ondition means that t̃(X, ...) = 0, for all X ∈ h.In the following we will usually abbreviate the term `a GL(2, R)-invariant' to:`an invariant'.The �rst result from Hilbert's theory, adapted to our situation, is given by thefollowing



GL(2, R) GEOMETRY OF ODE'S 43Proposition 7.4. For every n = 2m + 1, m = 2, 3, ... there exists a unique, up toa sale, invariant g̃ of seond degree on P . This invariant, a degenerate symmetrionformal bilinear form g̃ of signature (m + 1, m, 0, 0, 0, 0) on P , satis�es
LX g̃ = 2(n − 1)(X−| Γ1)g̃,for all X ∈ h.In ase of even orders n = 2m, Hilbert's theory gives the followingProposition 7.5. For n = 2m every GL(2, R)-invariant has degree q ≥ 4.Thus, if n = 2m, we do not have a onformal metri on the solution spae Mn.Returning to odd orders, we present the quadrati invariants g̃, of proposition7.4, for n < 10:

5g̃ = 3(θ2)2 − 4θ1θ3 + θ0θ4, if n = 5,
7g̃ = −10(θ3)2 + 15θ2θ4 − 6θ1θ5 + θ0θ6 if n = 7,(7.7)

9g̃ = 35(θ4)2 − 56θ3θ5 + 28θ2θ6 − 8θ1θ7 + θ0θ8 if n = 9.These expressions an be generalized to higher (odd) ns. We have the followingProposition 7.6. If n = 2m + 1 and m ≥ 2, the invariant g̃ of proposition 7.4 isgiven by:
g̃ =

m−1
∑

j=0

(−1)j

(

2m

j

)

θjθ2m−j + 1
2 (−1)m

(

2m

m

)

(θm)2.Remark 7.7. This proposition is also valid for m = 1. For suh m, the value of
n is n = 3, and we are in the regime of third order ODEs. Suh ODEs wereonsidered by Wünshmann [21℄. Sine 3g̃ = θ0θ2 − (θ1)2 is the only invariant inthis ase, the ounterpart of the bundle P of proposition 7.2 is a 10-dimensionalbundle P ∼= O(2, 3), the full onformal group in Lorentzian signature (1, 2). Theounterpart of system (7.5)/(7.6) is given by Maurer-Cartan equations for O(3, 2):

dθ0 = 2(Γ1 + Γ0) ∧ θ0 − 2Γ+ ∧ θ1,

dθ1 = −Γ− ∧ θ0 + 2Γ1 ∧ θ1 − Γ+ ∧ θ2,

dθ2 = −2Γ1θ
1 + (2Γ1 − 2Γ0) ∧ θ2,

dΓ+ = 2Γ0 ∧ Γ+ + 1
2Γ3 ∧ θ0 + Γ4 ∧ θ1,

dΓ− = −2Γ0 ∧ Γ− + Γ2 ∧ θ1 + 1
2Γ3 ∧ θ2,

dΓ0 = Γ+ ∧ Γ− − 1
2Γ2 ∧ θ0 + 1

2Γ4 ∧ θ2,

dΓ1 = − 1
2Γ2 ∧ θ0 − 1

2Γ3 ∧ θ1 − 1
2Γ4 ∧ θ2,

dΓ2 = −Γ3 ∧ Γ− + 2Γ2 ∧ Γ0 + 2Γ2 ∧ Γ1,

dΓ3 = −2Γ2 ∧ Γ+ − 2Γ4 ∧ Γ− + 2Γ3 ∧ Γ1,

dΓ4 = −2Γ4 ∧ Γ0 − Γ3 ∧ Γ+ + 2Γ4 ∧ Γ1.Here, apart from θ0, θ1, θ2 and Γ+, Γ−, Γ0, Γ1 we have also left invariant forms
Γ2, Γ3, Γ4.Now we pass to the invariants of degree q = 3. The question of their existenewas again determined by Hilbert (see [12℄, p. 60), in terms of the reiproity law ofHermite. In the language of our paper we have the following



44 MICHA� GODLI�SKI AND PAWE� NUROWSKIProposition 7.8. An invariant of third degree Υ̃ exists on P if and only if
n = 4µ + 1, µ ∈ N.Hilbert's theory, [12℄, p. 60, implies also the following:Proposition 7.9. In low dimensions n = 4µ + 1, the unique up to a sale ubiinvariant is given by

• n = 5:
5Υ̃ = (θ2)3 − 2θ1θ2θ3 + θ0(θ3)2 − θ0θ2θ4 + (θ1)2θ4

• n = 9:
9Υ̃ = 15(θ4)3 − 36θ3θ4θ5 + 24θ2(θ5)2 + 24(θ3)2θ6 − 22θ2θ4θ6 −
8θ1θ5θ6 + 3θ0(θ6)2 − 8θ2θ3θ7 + 12θ1θ4θ7 − 4θ0θ5θ7 +

3(θ2)2θ8 − 4θ1θ3θ8 + θ0θ4θ8.The rough statement about the even orders, n = 2m, desribed in proposition7.5, an be again re�ned in terms of the reiproity law of Hermite. FollowingHilbert we haveProposition 7.10. If 4 ≤ n = 2m the lowest order invariant tensor Υ̃ on P hasdegree four. This is unique (up to a sale) only if n = 4, 6, 8, 12. If n = 10 or
n = 14 we have two independent quarti invariants Υ̃; if n = 16, 18, 20 we havethree independent quarti invariants; and so on.Proposition 7.11. In low dimensions n = 2m, the quarti invariant tensor Υ̃ on
P is given by

• n = 4:
4Υ̃ = −3(θ1)2(θ2)2 + 4θ0(θ2)3 + 4(θ1)3θ3 − 6θ0θ1θ2θ3 + (θ0)2(θ3)2

• n = 6:
6Υ̃ = −32(θ2)2(θ3)2 + 48θ1(θ3)3 + 48(θ2)3θ4 − 76θ1θ2θ3θ4 −
12θ0(θ3)2θ4 + 9(θ1)2(θ4)2 + 16θ0θ2(θ4)2 − 12θ1(θ2)2θ5 +

16(θ1)2θ3θ5 + 4θ0θ2θ3θ5 − 10θ0θ1θ4θ5 + (θ0)2(θ5)2.

• n = 8:
8Υ̃ = −375(θ3)2(θ4)2 + 600θ2(θ4)3 + 600(θ3)3θ5 − 990θ2θ3θ4θ5 −
240θ1(θ4)2θ5 + 81(θ2)2(θ5)2 + 360θ1θ3(θ5)2 − 240θ2(θ3)2θ6 + 360(θ2)2θ4θ6 +

50θ1θ3θ4θ6 + 40θ0(θ4)2θ6 − 234θ1θ2θ5θ6 − 60θ0θ3θ5θ6 + 25(θ1)2(θ6)2 +

24θ0θ2(θ6)2 + 40θ1(θ3)2θ7 − 60θ1θ2θ4θ7 − 10θ0θ3θ4θ7 + 24(θ1)2θ5θ7 +

18θ0θ2θ5θ7 − 14θ0θ1θ6θ7 + (θ0)2(θ7)2.Among the small dimensions n = 7 is quite speial, sine here the next invariantlinearly and funtionally independent of the metri g̃ has q = 4. We have thefollowingProposition 7.12. In dimension n = 7, the invariant of the lowest degree isthe metri 7g̃. There are no invariants of degree q = 3 and only two linearly



GL(2, R) GEOMETRY OF ODE'S 45independent, invariants of degree q = 4. The �rst of them is 7g̃
2. The seond anbe hosen to be

7Υ̃ = 160(θ3)4 − 480θ2(θ3)2θ4 + 1035(θ2)2(θ4)2 − 1080θ1θ3(θ4)2 + 540θ0(θ4)3 −
1080(θ2)2θ3θ5 + 1920θ1(θ3)2θ5 − 180θ1θ2θ4θ5 − 1080θ0θ3θ4θ5 − 288(θ1)2(θ5)2 +

540θ0θ2(θ5)2 + 540(θ2)3θ6 − 1080θ1θ2θ3θ6 + 400θ0(θ3)2θ6 + 540(θ1)2θ4θ6 −
330θ0θ2θ4θ6 − 84θ0θ1θ5θ6 + 7(θ0)2(θ6)2.7.2. Stabilizers of the irreduible GL(2, R) in dimensions n < 10. In di-mensions n ≤ 10 the GL(2, R) invariant tensors of low order q ≤ 4 turn out to besu�ient to redue the GL(n, R) group to GL(2, R) in its irreduible n-dimensionalrepresentation.Given an invariant tensor

t̃ =
1

q!
ti1i2...iq

θi1 ...θiqof degree q on P and a GL(n, R)-valued funtion a = (ai
j) on P , at every point

p ∈ P , we have a GL(n, R)-ation
(ai

j , t̃i1i2...iq
) 7→ (ρn(a)t̃)j1j2...jq

= ai1
j1

ai2
j2

...a
iq

jq
t̃i1i2...iq

.A subgroup Gt̃ of GL(n, R) onsisting of a = (ai
j) suh that

ρn(a)t̃ = (det a)q/n t̃,is the stabilizer of t̃ at p ∈ P . Sine t̃ is an invariant then, obviously GL(2, R) ⊂ Gt̃.This leads to the following question: how many invariants is needed in dimension
n so that its ommon stabilizer is preisely GL(2, R) in its n dimensional irreduiblerepresentation?Inspeting Hilbert's results we heked that in dimensions 4 ≤ n ≤ 9 we haveTheorem 7.13. For eah n = 4, 5, 6, 7, 8, 9, the full stabilizer group of the respe-tive invariant tensor nΥ̃ of propositions 7.9, 7.11, 7.12, is the group GL(2, R) in the
n-dimensional irreduible representation ρn. In partiular, if n = 5, 7, 9 these stabi-lizers are subgroups of the respetive pseudohomotheti groups CO(3, 2), CO(4, 3)and CO(5, 4), eah in its de�ning representation.Thus in eah of these dimensions it is the lowest order nonquadrati invariantwhat is responsible for the full redution from GL(n, R) to GL(2, R).Remark 7.14. In dimension n = 5, using (7.7) and proposition 7.9 we de�ne aonformal metri [5gij ] represented by

5gij =
1

2

∂2

∂θi∂θj

(

5g̃
)

, i, j = 0, 1, 2, 3, 4and a onformal symmetri tensor of third degree [5Υijk] represented by
5Υijk = −

√
3

8

∂3

∂θi∂θj∂θk

(

5Υ̃
)

, i, j, k, l = 0, 1, 2, 3, 4.The onvenient fator −
√

3
8 in the expression for 5Υijk was hosen so that thepair (5gij ,

5Υijk) satis�es Cartan's identities (i)-(iii) of setion 2. This leads to the
GL(2, R) geometries in dimension 5 onsidered in setions 3-5.



46 MICHA� GODLI�SKI AND PAWE� NUROWSKIRemark 7.15. In the next odd dimension situation is quite similar, but now we havea quarti invariant 7Υ̃. Thus apart from the onformal metri [7gij ] represented by
7gij =

1

2

∂2

∂θi∂θj

(

7g̃
)

, i, j = 0, 1, 2, 3, 4, 5, 6we have a onformal symmetri tensor of fourth degree [7Υijkl] represented by(7.8) 7Υijkl =
1

24

∂4

∂θi∂θj∂θk∂θl

(

7Υ̃
)

, i, j, k, l = 0, 1, 2, 3, 4, 5, 6.Note that 7Υ̃ of proposition 7.12 was hosen in suh a way that the fourth order
7Υijkl satis�ed

7gij 7Υijkl = 0, where 7gij 7gjk = δi
k.This hoie of the fourth order invariant is nevertheless arbitrary, sine we analways get another invariant of the fourth order by replaing 7Υ with

7Ῡijkl = c1
7Υ̃ijkl + c2

7g̃(ij
7g̃kl).It is interesting to note that the hoie

c1 =
2
√

5√
3147

, c2 =
34√
15735applied to 7Ῡ, leads, via formula like (7.8), to 7Ῡijkl satisfying Cartan-like identity:

7gih 7gef 7Ῡie(jk
7Ῡlm)fh = 7g(jk

7glm)and
7gij 7Ῡijkl = 3

2c2
7gkl, where 7gij 7gjk = δi

k.Note also that the above Cartan�like identities are preserved under the onformaltransformation
(7gij ,

7Ῡijkl) 7→ (7g′ij ,
5Ῡ′

ijkl) = (e2φ 7gij , e
4φ 7Ῡijkl),where φ ∈ R.Thus the GL(2, R) geometries in dimension n = 7 may be de�ned by a onformallass of pairs of tensors [7gij ,

7Ῡijkl] with the properties and transformations asabove.Remark 7.16. By analogy, in dimensions n = 4, 6, 8, the irreduible GL(2, R) ge-ometries may be desribed in terms of a onformal tensor [nΥijkl] represented by
nΥijkl =

1

24

∂4

∂θi∂θj∂θk∂θl

(

nΥ̃
)

, i, j, k, l = 0, 1, 2, ..., n− 1,and obtained in terms of the respetive quarti invariants nΥ̃ of proposition 7.11.Remark 7.17. Dimension n = 9 is similar to dimension n = 5. A periodiity withperiod four is a remarkable feature of Hilbert's theory of algebrai invariants [12℄,p. 60.



GL(2, R) GEOMETRY OF ODE'S 477.3. Wünshmann onditions for the existene of GL(2, R) geometries onthe solution spae of ODEs. An invariant tensor t̃, by its very de�nition, has aproperty that it desends to a nondegenerate onformal tensor [t] on the solutionsspaeMn = P/h of the equation y(n) = 0. In partiular in dimensions 4 ≤ n ≤ 9 theonformal lass [nΥ], orresponding to invariant tensors nΥ̃ redues the struturegroup of Mn to GL(2, R) de�ning an irreduible GL(2, R) geometry there. We donot know how many invariant tensors are needed to ahieve this redution for n > 9,but it is obvious that for a given n this number is �nite, say wn. Thus for eah
n ≥ 3 we have a �nite number of invariants nΥ̃I , I = 1, 2, ...wn, whih desend to thesolution spae Mn of the equation y(n) = 0 equipping it with a GL(2, R) struture.It is important that eah of the invariants nΥ̃I has only onstant oe�ients whenexpressed in terms of the invariant oframe (θ0, ..., θn−1) on P (see, for example,every nΥ̃ of the preeding setion).Now, we return to a general n-th order ODE (7.1). Thus we now have ageneral funtion F (x, y, y′, y′′, y(3), ..., y(n−1)), whih determines the ontat forms
(ω0, ω1, ..., ωn−1, w+) by (7.2). Corresponding to these forms we have the invariantforms (θ0, ..., θn−1, Γ+) of (7.3), whih live on bundle J × G over J . We an nowask the following question (this generalizes to arbitrary n > 3 the similar questionof setion 5): What shall we assume about F de�ning the ontat equivalene lassof ODEs (7.1) that there exists a (4 + n)-dimensional subbundle P of J × G onwhih the forms (θ0, ..., θn−1, Γ+) satisfy:

dθ0 = (n − 1)(Γ1 + Γ0) ∧ θ0 + (1 − n)Γ+ ∧ θ1 +
1

2
T 0

ijθ
i ∧ θj ,

dθ1 = −Γ− ∧ θ0 + [(n − 1)Γ1 + (n − 3)Γ0] ∧ θ1 +

+(2 − n)Γ+ ∧ θ2 +
1

2
T 1

ijθ
i ∧ θj ,...

dθk = −kΓ− ∧ θk−1 + [(n − 1)Γ1 + (n − 2k − 1)Γ0] ∧ θk +

+(1 + k − n)Γ+ ∧ θk+1 +
1

2
T k

ijθ
i ∧ θj ,(7.9) ...

dθn−1 = (1 − n)Γ− ∧ θn−2 + (n − 1)(Γ1 − Γ0) ∧ θn−1 +
1

2
T n−1

ij θi ∧ θj ,

dΓ+ = 2Γ0 ∧ Γ+ +
1

2
R+ijθ

i ∧ θj ,

dΓ− = −2Γ0 ∧ Γ− +
1

2
R−ijθ

i ∧ θj ,

dΓ0 = Γ+ ∧ Γ− +
1

2
R0ijθ

i ∧ θj ,

dΓ1 =
1

2
Rijθ

i ∧ θj .As �rst observed by Wünshmann [21℄ and then suessively used by Newman andollaborators [18℄ this question an be reformulated into a nier one. To make thisreformulation we repeat our arguments from setion 7.1.



48 MICHA� GODLI�SKI AND PAWE� NUROWSKISuppose that we are able to satisfy system (7.9) by forms (7.3). Consider thedistribution
h = {X ∈ TP s.t. X−| θi = 0, i = 0, 1, 2, .., n− 1}annihilating θs. Despite of the fat that system (7.9) involves new terms, whenompared with system (7.6), they do not destroy the integrability of the distribution

h; the �rst n equations (7.9) still guarantee that h is integrable. Thus manifold P isfoliated by 4-dimensional leaves tangent to the distribution h. The spae of leavesof this distribution P/h an be identi�ed with the solution spae Mn = P/h ofequation (7.1). Now, on manifold P of system (7.9), we de�ne wn tensors nΥ̃I ,whih formally are given by the same formulae that de�ned the wn invariants
nΥ̃I of the �at system (7.6) needed to get the full redution to GL(2, R). So,when de�ning the present nΥ̃I , we use the same formulae as for the y(n) = 0ase, replaing forms θ of the �at ase, with forms θ satisfying system (7.9). It isnow easy to verify that the question about the onditions on F to admit P withsystem (7.9) is equivalent to the requirement that all wn tensors nΥ̃I transformonformally when Lie transported along the leaves of distribution h. In�nitesimallythis ondition is equivalent to the existene of funtions cI(X) on P suh that

LX(nΥ̃I) = cI(X) nΥ̃I ,

∀X ∈ h, and ∀I = 1, 2, ...wn. If this is satis�ed then tensors nΥ̃I desend to aonformal lass of tensors [nΥ1,
nΥ2, ...,

nΥwn
] on the solution spae Mn de�ninga GL(2, R) there.We know that in dimension n = 5 the onformal preservation of 5g̃ and 5Υ̃ isequivalent to the requirement on funtion F = F (x, y, y1, y2, y3, y4) to satisfy Wün-shmann onditions (5.5). The generalization of this fat to other low dimensions

4 ≤ n < 10 is given by the followingTheorem 7.18. Let Mn be the solution spae of nth order ODE(7.10) y(n) = F (x, y, y′, y′′, y(3), ..., y(n−1)),with 4 ≤ n < 10, and let
D = ∂x + y1∂y + y2∂y1 + . . . + yn−1∂yn−2 + F∂yn−1be the total derivative. The neessary onditions for a ontat equivalene lass ofODEs (7.10) to de�ne a prinipal GL(2, R)-bundle GL(2, R) → P → Mn with in-variants forms (θ0, ..., θn−1, Γ+, Γ−, Γ0, Γ1) satisfying system (7.9) is that the de�n-ing funtion F of (7.10) satis�es n − 2 Wünshmann onditions given below:

• n = 4:
4D2F3 − 8DF2 + 8F1 − 6DF3F3 + 4F2F3 + F 3

3 = 0,

160D2F2 − 640DF1 + 144(DF3)
2 − 352DF3F2 + 144F 2

2 −
80DF2F3 + 160F1F3 − 72DF3F

2
3 + 88F2F

2
3 + 9F 4

3 + 16000Fy = 0,

• n = 5:
50D2F4 − 75DF3 + 50F2 − 60F4DF4 + 30F3F4 + 8F 3

4 = 0

375D2F3 − 1000DF2 + 350DF 2
4 + 1250F1 − 650F3DF4 + 200F 2

3 −
150F4DF3 + 200F2F4 − 140F 2

4DF4 + 130F3F
2
4 + 14F 4

4 = 0
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1250D2F2 − 6250DF1 + 1750DF3DF4 − 2750F2DF4 −
875F3DF3 + 1250F2F3 − 500F4DF2 + 700(DF4)

2F4 +

1250F1F4 − 1050F3F4DF4 + 350F 2
3 F4 − 350F 2

4DF3 +

550F2F
2
4 − 280F 3

4DF4 + 210F3F
3
4 + 28F 5

4 + 18750Fy = 0.

• n = 6:
45D2F5 − 54DF4 + 27F3 − 45DF5F5 + 18F4F5 + 5F 3

5

945D2F4 − 1890DF3 + 900(DF5)
2 + 1575F2 − 1350DF5F4 + 333F 2

4 −
315DF4F5 + 315F3F5 − 300DF5F

2
5 + 225F4F

2
5 + 25F 4

5 = 0

2835D2F3 − 9450DF2 + 4320DF4DF5 + 14175F1 − 5130DF5F3 −
1728DF4F4 + 1863F3F4 − 945DF3F5 + 1800(DF5)

2F5 + 1575F2F5 −
2160DF5F4F5 + 576F 2

4 F5 − 720DF4F
2
5 + 855F3F

2
5 −

600DF5F
3
5 + 360F4F

3
5 + 50F 5

5 = 0

14175D2F2 − 85050DF1 + 6480(DF4)
2 + 16200DF3DF5 −

31050DF5F2 − 9720DF4F3 + 3645F 2
3 − 6480DF3F4 +

5400DF 2
5 F4 + 11475F2F4 − 4320DF5F

2
4 + 864F 3

4 − 4725DF2F5 +

10800DF4DF5F5 + 14175F1F5 − 10800DF5F3F5 − 6480DF4F4F5 +

5940F3F4F5 − 2700DF3F
2
5 + 4500(DF5)

2F 2
5 + 5175F2F

2
5 −

7200DF5F4F
2
5 + 2340F 2

4 F 2
5 − 1800DF4F

3
5 + 1800F3F

3
5 − 1500DF5F

4
5 +

1050F4F
4
5 + 125F 6

5 + 297675Fy = 0

• n = 7:
245D2F6 − 245DF5 + 98F4 − 210DF6F6 + 70F5F6 + 20F 3

6 = 0

6860D2F5 − 10976DF4 + 6615(DF6)
2 + 6860F3 − 8330DF6F5 +

1715F 2
5 − 1960DF5F6 + 1568F4F6 − 1890DF6F

2
6 + 1190F5F

2
6 + 135F 4

6 = 0

9604D2F4 − 24010DF3 + 15435DF5DF6 + 24010F2 − 14749DF6F4 −
5145DF5F5 + 4459F4F5 − 2744DF4F6 + 6615(DF6)

2F6 + 3430F3F6 −
6615DF6F5F6 + 1470F 2

5 F6 − 2205DF5F
2
6 + 2107F4F

2
6 −

1890DF6F
3
6 + 945F5F

3
6 + 135F 5

6 = 0

336140D2F3 − 1344560DF2 + 180075(DF5)
2 + 432180DF4DF6 +

2352980F1 − 624260DF6F3 − 216090DF5F4 + 64827F 2
4 −

144060DF4F5 + 154350(DF6)
2F5 + 192080F3F5 − 102900DF6F

2
5 +

17150F 3
5 − 96040DF3F6 + 308700DF5DF6F6 + 192080F2F6 −
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246960DF6F4F6 − 154350DF5F5F6 + 113190F4F5F6 − 61740DF4F

2
6 +

132300(DF6)
2F 2

6 + 89180F3F
2
6 − 176400DF6F5F

2
6 + 47775F 2

5 F 2
6 −

44100DF5F
3
6 + 35280F4F

3
6 − 37800DF6F

4
6 + 22050F5F

4
6 + 2700F 6

6 = 0

2352980D2F2 − 16470860DF1 + 1512630DF4DF5 + 2268945DF3DF6 −
5126135DF6F2 − 1512630DF5F3 − 907578DF4F4 + 648270(DF6)

2F4 +

907578F3F4 − 756315DF3F5 + 1080450DF5DF6F5 + 1596665F2F5 −
1080450DF6F4F5 − 360150DF5F

2
5 + 288120F4F

2
5 − 672280DF2F6 +

540225(DF5)
2F6 + 1296540DF4DF6F6 + 2352980F1F6 −

1620675DF6F3F6 − 864360DF5F4F6 + 324135F 2
4 F6 − 648270DF4F5F6 +

926100(DF6)
2F5F6 + 756315F3F5F6 − 771750DF6F

2
5 F6 + 154350F 3

5 F6 −
324135DF3F

2
6 + 926100DF5DF6F

2
6 + 732305F2F

2
6 − 926100DF6F4F

2
6 −

617400DF5F5F
2
6 + 524790F4F5F

2
6 − 185220DF4F

3
6 + 396900(DF6)

2F 3
6 +

231525F3F
3
6 − 661500DF6F5F

3
6 + 209475F 2

5 F 3
6 − 132300DF5F

4
6 +

119070F4F
4
6 − 113400DF6F

5
6 + 75600F5F

5
6 + 8100F 7

6 + 65883440Fy = 0.Remark 7.19. Although we alulated the Wünshmann onditions for n = 8 and
n = 9, we do not present them here due to their length. We remark, however that inany order n ≥ 4, the n−2 Wünshmann onditions, whih by the very de�nition areonditions needed for an ODE to de�ne a GL(2, R) geometry on its solution spae,are always of the third order in the derivatives of the funtion F whih de�nes anODE. In this sense they di�er from the generalizations of Wünshmann onditionsobtained by [7℄ and [8℄.Remark 7.20. If n = 3 we have only one Wünshmann ondition [6, 21℄:

9D2F2 − 27DF1 − 18DF2F2 + 18F1F2 + 4F 3
2 + 54Fy = 0.and, if it satis�ed, a onformal Lorentzian geometry assoiated with a metri

3g = θ0θ2 − (θ1)2is naturally de�ned on the solution spae.Remark 7.21. If n = 4 the ODEs satisfying the two Wünshmann onditions leadto very nontrivial geometries on 4-dimensional solution spaes. These are a sortof onformal Weyl geometries, whih instead of a metri are de�ne in terms of theonformal rank four tensor 4Υ. These geometries de�ne a harateristi onnetion,whih is gl(2, R) valued and has an exoti holonomy [2℄. By this we mean that theholonomy of this nonmetri but torsionless onnetion does not appear on theBerger's list [2℄. See also our aount on this subjet in [17℄.Remark 7.22. Our studies of the ODES with n = 3, 4, 5, and the preliminary resultsabout the ases with n ≥ 7, make us to onjeture that if n ≥ 7 then the n − 2Wünshmann onditions are too stringent to admit many solutions for F . Thus,we strongly believe, that if n ≥ 7 the orresponding GL(2, R) geometries on thesolution spaes of the Wünshmann ODEs are very speial, suh that, for example,their harateristi onnetions have identially vanishing urvatures. We intendto disuss these matters in a subsequent paper.
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