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Preface

This book consists of translations into English of several pioneering papers in
the areas of discrete and continuous convolution operators and on the theory of
singular integral operators published originally in Russian. The papers were writ-
ten more than thirty years ago, but time showed their importance and growing
influence in pure and applied mathematics and engineering.

The book is divided into two parts. The first five papers, written by
I. Gohberg and G. Heinig, form the first part. They are related to the inversion
of finite block Toeplitz matrices and their continuous analogs (direct and inverse
problems) and the theory of discrete and continuous resultants. The second part
consists of eight papers by I. Gohberg and N. Krupnik. They are devoted to the
theory of one dimensional singular integral operators with discontinuous coeffi-
cients on various spaces. Special attention is paid to localization theory, structure
of the symbol, and equations with shifts.

This book gives an English speaking reader a unique opportunity to get famil-
iarized with groundbreaking work on the theory of Toepliz matrices and singular
integral operators which by now have become classical.

In the process of the preparation of the book the translator and the editors
took care of several misprints and unessential misstatements. The editors would
like to thank the translator A. Karlovich for the thorough job he has done.

Our work on this book was started when Israel Gohberg was still alive. We
see this book as our tribute to a great mathematician.

December 10, 2009 The volume editors
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Introduction

Leonid Lerer, Vadim Olshevsky and Ilya Spitkovsky

Israel Gohberg has made, over many years, a number of contributions to differ-
ent branches of mathematics. Speaking about the quantity only, his resume lists
more than 25 monographs, as well as more than 500 papers. Among these there
are several papers published in Russian which have never been translated into
English. The present volume partially removes this omission and contains English
translations of 13 of these papers.

The first part of the book comprises a plethora of results related to the paper
[GS72]. This paper contains an explicit formula for the inverse of a (non-Hermitian)
Toeplitz matrix that is widely cited in many areas especially in the numerical and
engineering literature as the Gohberg-Semencul formula. There are at least three
reasons for its popularity. One reason lies in the fact that the Gohberg-Semencul
formula (that provides an elegant description for the inverses of Toeplitz matrices)
leads to efficient (in terms of speed and accuracy) algorithms. Secondly, inversion
of Toeplitz matrices is a very important task in a vast number of applications in
sciences and engineering. For example, symmetric Toeplitz matrices are the mo-
ment matrices corresponding to Szegé polynomials and Krein orthogonal polyno-
mials. The latter play a significant role in many signal processing applications, e.g.,
[Kai86] in speech processing, e.g., [MG76]. Furthermore, prediction, estimation,
signal detection, classification, regression, and communications and information
theory are most thoroughly developed under the assumption that the process is
weakly stationary, in which case the covariance matrix is Toeplitz [Wie49]. Along
with these two examples, there are numerous other applications giving rise to
Toeplitz matrices.

Finally, the third reason for the popularity of the Gohberg-Semencul for-
mula is that it has triggered a number of counterparts and generalizations [GKT72,
BAS86, HR84, LT86, KC89, GO92|, as well as theories, e.g., the displacement
structure theory was originated in [KKM79] (see also [HR84]).

At the time of publication of [GS72| its authors were unaware of the recur-
sive inversion algorithm that was derived earlier in [Tre64] for the case of positive
definite Toeplitz matrices. The paper [Tre64] also presents (without a proof) a
generalization to non-Hermitian matrices, but it is stated that all principal mi-
nors have to be nonzero. Although the Gohberg-Semencul formula is absent in
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[Tre64], it could be derived from the recursions in [Tre64], at least for the special
cases considered there. However, in many cases it is useful to have a closed-form
formula from which different algorithms can be derived. This is especially true
for the case of the Gohberg-Semencul formula, since it represents A~!, the in-
verse of a Toeplitz matrix, via sum of products of triangular Toeplitz matrices (cf.
with a generalization (0.1) below). The latter property has two important conse-
quences. The first is that the matrix-vector product for A~! can be computed in
only O(nlogn) operations which is fast as compared to O(n?) operations of the
standard algorithm. Moreover, the second important fact is that it was the form
of the Gohberg-Semencul formula that triggered the development of the study of
inversion of structured matrices (see the previous paragraph).

We start our systematic account of the papers included in this volume with
a description of [2] ([1] is a brief summary of the subsequent papers [2] and [3]).

The original paper [GS72] dealt with Toeplitz matrices A = [ a;j_j | with
complex entries. Many applications, e.g., in Multi-Input-Multi-Output system the-
ory, give rise to block Toeplitz matrices where the entries are matrices themselves.

In [2] the authors generalized the results of [GS72] to this and even to a
more general case of Toeplitz matrices A = [ aj—k ] whose entries are taken from
some non-commutative algebra with a unit. The paper [2] contains several explicit
formulas for A=! (Gohberg-Heinig formulas), here is one of them. For a given
Toeplitz matrix A = [ aj—k ] its inverse is given by

o 0 - 0 Yo Y-1 - Y-n
P T To xal 0 .yo . yl.—n
0 B
e Tt @ O 0w 0.1)
0 0o --- 0 0 w, - w ’
| #n 0 2oL | 0
: .0 Do T w,
21 - oz, 0 0o --- 0 0

where the parameters {x;,y;, z;, w;} are obtained via solving four linear systems
of equations

o e Z_n 0
I 0 .
A . = A A : = , (0.2)
: Z_1 0
Ty 0 20 e
[wo w1 wn]A:[e 0 O],

[Yn = w1 o JA=[0 -+ 0 e]. (0.3)
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Due to its shift-invariant structure, a Toeplitz matrix A is defined by 2n + 1
entries {a_p,...,a_1,a9,a1,...,a,} appearing in its top row and first column. At
the same time, the formula (0.1) describes the structure of A~! using the redundant
set of 4n + 2 parameters {z;, y;, w;, z; }. The second section of [2] deals with this
discrepancy and proves that in fact, just 2n + 1 parameters {z;, z; } are sufficient
to completely describe the structure of A=! (i.e., it is sufficient to solve two linear
equations in (0.2) and to use the first and last columns of A~! only). Alternatively,
A~1 can also be described by 2n + 1 parameters {y;,w;} only (i.e., it is sufficient
to solve two linear equations in (0.3) and to use the first and last rows of A~}
only). In fact, the second section of [2] establishes a number of interconnections
between the solution of the linear equations in (0.2) and (0.3).

The third section of [2] deals with a natural inverse problem, namely: given
4n + 2 parameters {x;,y;, w;, z;}, is there a Toeplitz matrix satisfying (0.2) and
(0.3) The authors show that if the interconnections between the solution of linear
equations in (0.2) and in (0.3) found in Section 2 are valid, then the desired Toeplitz
matrix exists and it can be recovered via formula (0.1).

We would like to again emphasize that the above results of [2] fully cover a
very important special case when A is a block Toeplitz matrix.

The above three sections fully generalize the inversion formulas of [GS72].
The next three sections of [2] generalize the inversion formulas of [GK72]. The
difference is that [GS72] describes the structure of the entire complex matrix A~!
using its first and last columns only, while [GK72] describes the structure of A1
using instead its first two columns. As was already mentioned, the first three
sections of [2] generalize the results of [GST2] to matrices whose entries are taken
from a noncommutative algebra with a unit. Correspondingly, the sections 4-6 of
[2] follow the structure of its first three sections and contain full generalization of
the results of [GK72].

We also refer the reader to alternative derivations of the Gohberg-Heinig
formulas in [GKvS04] as well as to [BAS85] for a generalization of the results of
[BASS86] to the block Toeplitz case.

Before turning to paper [3] let us again notice that the Gohberg-Semencul and
the Gohberg-Heinig formulas have a very important computational consequence.
Indeed, observe that the right-hand side of (0.1) involves only four triangular
Toeplitz matrices. Hence A~! can be efficiently applied to any vector using FFT
(Fast Fourier Transform) in the case when the entries {aj} are either scalars or
matrices of a reasonably small size. Furthermore, the linear equations in (0.2) and
(0.3) can be efficiently solved using the Levinson algorithm [Wie49] in the scalar
case or using block Levinson algorithm of [Mus88] in the block case. To sum up,
the scheme just described means that the Gohberg-Semencul and the Gohberg-
Heinig formulas imply the low cost O(n?) arithmetic operations for solving any
block Toeplitz linear system when the blocks are reasonably small. It is worth men-
tioning that using Gohberg-Semencul-Heinig formulas in [BGY80, CK89, CK91]
an algorithm requiring only O(n log? n) operations was developed.
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Along with speed, one is also always concerned about numerical accuracy,
and the Gohberg-Semencul formula was shown in [GH95] and [Hei01] to always
provide numerically accurate results unless the condition number of A is too large.

The paper [GS72] contained not only Toeplitz inversion formulas but also
their continual analogs. In fact, the authors designed a formula for the inverse of
integral operators of the form

(T - K)p)(t) = (t) - / K- s)p(s)ds  (0<t<7)

acting in the space L,(0,7), where the kernel k(¢) is a scalar function from
Li(—7,7). Due to the difference nature of the kernel k(t — s), I — K is a con-
tinuous analog of a finite Toeplitz matrix A = [ aj—k ] (whose entries depend
only on the difference j — k of indices). The paper [3] generalizes these results
of [GST72] to the case when the operator I — K acts in the space Ly(0,7), and
k(t) is an n x n matrix function from L} (—7, 7). Thus, the paper [3] contains full
continual analogs of the results in [2].

In particular, in the second section of [3] the authors present a continual
analog of the formula (0.1). The four equations in (0.2) and (0.3) are replaced by
the following four equations

x(t) — /OT k(t — s)x(s)ds = k(t), =z(—t)— /OT k(s —t)z(—s)ds = k(—t), (0.4)
w(t) — /OT w(s)k(t — s)ds = k(t), y(—t)— /OT y(—s)k(s — t)ds = k(—t), (0.5)

In this case, the analog of the formula (0.1) is

(1=K N0 =10+ [ 285
0
where the kernel (¢, s) is determined from (0.4) and (0.5) via
Y(t,s) =a(t —s) +y(t —s)
N min(¢,s) (t ) (t ) ( J
/0 [(t = s)y(r —s) —z(t —r —1)w(r — s+ 7)]dr

The structure of the paper [3] mimics the structure of the first three sections of
[2] (although the methods of [2] and [3] are absolutely different). Section 3 of [3]
presents the results analogous to the ones of Section 2 of [2], and it describes the
relations between the solutions z(¢), z(t) to (0.4) and the solutions w(t),y(t) to
(0.5). Finally, Section 4 of [3] is a counterpart of Section 3 of [2]. Specifically, it
is devoted to the inverse problem of reconstructing the matrix function k(t) from
the matrix functions xz(t), y(—t), w(t), z(—t):

Given four matrix function z,y, z,w € LT*"[0, 7], find k € L}*"[—7, 7] such
that the corresponding operator I — K is invertible and the given functions are
solutions of the equations (0.4)—(0.5).
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Later, a certain refinement of these solutions turned out to be extremely
useful in solving the inverse problems for Krein’s orthogonal matrix polynomials
and Krein’s orthogonal matrix function, as well as in the study of Krein’s canon-
ical differential systems (see [GL88, GKL08, AGK"09] and references therein).
In fact, for the scalar case the connection of the inverse problems with Krein or-
thogonal polynomials has already been mentioned in the Russian edition of the
monograph [GF71]. Finally, we mention that the solutions of the inverse prob-
lems in [2] inspired several other authors to deal with similar problems (see, e.g.,
[BAS86] and [KKS86]).

One of the conditions in the solution of the inverse problem in [2] triggered
the interest of Gohberg and Heinig in Sylvester resultant matrices. Paper [4] is
devoted to the study of generalizations of the classical Sylvester resultant matrix
to the case of polynomials with matrix coefficients.

For scalar polynomials p(A\) and g(\) of degrees m and n, respectively, the
resultant matrix is a square (m + n) x (m + n) matrix whose basic property is
that its nullity is equal to the number of common zeros of the polynomials p and
g (counting their multiplicities). This notion has been known for centuries (see
[KN81] for history and details).

A simple example found in [4] shows that in the matrix polynomial case
the (square) classical analog of the resultant matrix does not preserve its basic
property concerning the common eigenvalues. Nevertheless, a certain non-square
generalized resultant is introduced in [4] which does have the basic property of the
resultant matrix, namely, the dimension of its kernel is equal to the number of com-
mon eigenvalues of the two given matrix polynomials counting their multiplicities
(properly understood). In general, for two r X r matrix polynomials of degrees m
and n this matrix has the size (2w —m —n)r x wr where w > min{n+mr,m+nr}.
In [4] the kernel of this generalized resultant is completely described in terms of
common Jordan chains of the given polynomials. The proof of this result is rather
involved. One of the important tools is the notion of multiple extension of a system
of vectors which has been invented and studied by the authors.

Of course, in the case r = 1 the generalized resultant in [4] coincides with
the classical one, and the paper [4] contains a refinement of the well known result
on the Sylvester resultant matrix providing a complete description of its kernel in
terms of common zeroes of the given (scalar) polynomials p(A\) and g(X). [4] also
includes applications to the solution of a system of two equations in two unknowns
A and p in the case when each of these equations is a matrix polynomial in A and
a matrix polynomial in p.

It is worth bearing in mind that the results of paper [4] had been obtained
before the spectral theory of matrix polynomials was developed by I. Gohberg,
P. Lancaster and L. Rodman (see [GLR83]) and from our point of view it is rather
miraculous that the results of [4] were obtained without using this theory. Upon
emergence of the latter theory, the notion of the generalized resultant was further
analyzed in [GKLR81, GKLR83] in connection with some other classical notions
(like Vandermonde, Bezoutian, etc.) Also, in [GKLO08] and [KL09] necessary and
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sufficient conditions for the matrix polynomials p and ¢ are found which ensure
that the generalized resultant in [4] can be taken to be a square block matrix.
In paper [5], Gohberg and Heinig invented a continual analogue of the resul-
tant. Namely, for two entire functions A(X) and B(A) (A € C) of the form
0

A(X) = a0 + / a(t)e™dt, B(A) = bo + / b(t)e ™ dt (0.6)
0 —T
where ag, by € C!, a € L1]0,7], b € Li[—7,0], and 7 is some positive number, they
define the operator Ro(A, B) acting on Li[—7, 7] by the rule
fO+ [ alt—s)f(s)ds (0<t<T)
(Ro(A,B)f)(t) = 7 (0.7)
F()+ [ bt —s)f(s)ds (=7 <t < 0)

with the convention that a(t) = 0 for ¢ ¢ [0, 7] and b(t) = 0 for t ¢ [—,0]. In [5] the
operator Ro(A, B) is called the resultant operator of the functions A(X) and B()).
In the scalar case the kernel of the operator Ro(A,B) is completely described
in [5] in terms of common zeroes of the functions A and B. In particular, its
dimension is precisely equal to the number of common zeroes of A and B (counting
multiplicities). Thus in [5], an appropriate notion of a resultant for non-polynomial
functions has been defined for the first time.

As in the discrete case simple examples show that this resultant is not working
in the matrix valued case and hence a straightforward generalization of the above
result to the case of matrix functions A(X) and B(A) turned out to be impossible.
One can only state that dim Ker R (A, B) > # { common eigenvalues of A and B
(properly understood) }. The reason for this phenomenon lies in the fact that
in the matrix case (i.e., when A and B are d x d matrix functions) the kernel of
Ro(A, B) may contain matrix functions that are not smooth enough (actually, they
are not even absolutely continuous). This obstacle has been surmounted in [5] by a
slight modification of the definition of Ry(.A, B) through introducing a generalized
resultant R. (A, B) acting from L¢[—7,7+¢] to L{[—7 —¢, T +¢] (see formula (2) in
[5]). It is proved in [5] that for any € > 0 the kernel for this operator is completely
described by the common Jordan chains of the matrix functions B(\) and A(X),
and in particular, its dimension equals the number of common eigenvalues of B(\)
and A(X) (properly understood).

The proof of this result is far from being easy. The applications of the main
result include a method of solving a system of two equation by two variables A
and p in the case when the right-hand sides of the equations are of the form (0.6)
in each variable. In another important application a continual analogue of the
Bezoutian is introduced for the case n = 1, and its kernel is completely described
in terms of common zeroes of the functions involved.

Paper [5] lent impetus to several other works in this area. Thus, in [GHKLO5]
the Bezoutian for matrix functions of form (0.6) has been studied. In [GKLO7D,
GKLO07a] necessary and sufficient conditions for A and B have been found which
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ensure that the operator Ro (A, B) describes completely the common spectral data
of A and B in the matrix case.

The second part of the book deals with a very different topic. It consists of
papers [6-13], written by 1. Gohberg jointly with N. Krupnik!. In these papers,
various aspects of the theory of one dimensional singular integral operators in
the piecewise continuous setting are considered, but the general approach actually
goes back to Gohberg’s paper [Goh52]. There, Gelfand’s theory of commutative
Banach algebras was applied to such operators for the first time, though in the set-
ting of continuous coeflicients and closed curves. It was shown that the respective
Calkin algebras (= the quotient algebras modulo the ideal of compact operators)
are commutative, and therefore can be identified with their spaces of maximal
ideals, which in turn are nothing but the curves on which the operators act. The
Fredholmness criteria for these operators can be formulated in terms of their sym-
bols, which in this setting are rather simple continuous functions on these curves,
and do not depend on the choice of the space. Consequently, the essential spectra
of the operators do not depend on the space as well. As was shown in joint work of
I. Gohberg and M. Krein [GK58], this phenomenon persists for convolution type
operators acting on vector functions on the half line. The case of singular integral
operators with continuous (matrix) coefficients was disposed of, with the same
outcome, by I. Simonenko [Sim61]. As became clear later (see, e.g., [BK97]), the
smoothness of the curves (as long as they stay closed) and presence of weight (as
long as the singular integral operator with Cauchy kernel stays bounded) are of
no significance in the continuous coefficients setting.

The situation becomes much more complicated when one moves to a piecewise
continuous setting: the symbols become matrix (as opposed to scalar) functions,
with a domain of a rather complicated nature, in particular, depending on the
Banach space in which the operators act. The (essential) spectra of the operators
then also become functions of the space. More specifically, the content of [6-13] is
as follows.

In [6], the spectra and essential spectra are described for Toeplitz opera-
tors generated by piecewise continuous functions on Hardy spaces H, (Section 1)
and, in parallel, of singular integral operators with piecewise continuous coeffi-
cients on Lebesgue spaces L, (Section 2), 1 < p < oo. To this end, the notion
of p-(non)singular functions and the p-index was introduced, and with their aid
established the role of circular arcs filling the gaps of the spectrum originating
from the discontinuities of the coefficients. In the subsequent paper [GK69b] the
authors showed that the circular arcs persist when a power weight is introduced,
though the curvature of the arcs now depends on the weight exponents. Further
metamorphoses of the spectra were described in [Spi92] (for an arbitrary Mucken-
houpt weight), and in a series of papers by A. Bottcher and Yu. Karlovich (where
the transition to arbitrary Carleson curves was accomplished), summarized in their

LCurrent mailing address: 424 — 7805 Bayview Ave, Thornhill, Ontario L3T 7N1, Canada
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monograph [BK97]. See also very nicely written survey articles [B&t95, BKO01] for
an entertaining, though still educational, guide through the subject.

As an application of these results, in Section 3 of [6] the authors give estimates
from below for the essential norms of the singular integral operator S with the
Cauchy kernel, and the related complementary projections P, Q. They show that
the estimate for S is sharp when p = 2" or p = 2"/(2" — 1), n = 1,2, ... Inspired
by these results, Pichorides proved shortly afterwards [Pic72] that in fact this
estimate coincides with the norm of S on the unit circle for all p € (1,00). The
respective result for the projections P, Q) was established much later [HV00]. See
[HV10, Krul0] for the current state of the subject.

The singular integral operators in [6] are also considered on the so called
symmetric spaces (see Section 4); we refer the reader to the translator’s work
[Kar98, Kar00].

Paper [7] contains a detailed description of the Banach algebra generated
by individual Toeplitz operators considered in [6], Section 1. In particular, it is
shown that its Calkin algebra is commutative, and its compact of maximal ideals
is realized as a cylinder with an exotic topology. The symbol of this algebra is
constructed, and the Fredholm criterion and the index formula for the operators
from the algebra are stated in its terms. Note that the case p = 2 was considered by
the authors earlier in [GK69a], and that a parallel theory for the algebra generated
by Toeplitz matrices arising from the Fourier coefficients of piecewise continuous
functions on the sequence space £, (which of course differs from the setting of [7]
when p # 2) was developed by R. Duduchava in [Dud72].

In [8], it was observed for the first time that rather peculiar objects are
contained in the (closed) algebra generated by singular integral operators with
piecewise continuous coefficients; some operators with unbounded coefficients hav-
ing power or logarithmic singularities among them. As a result, the Fredholmness
criteria for such operators are obtained.

An auxiliary role in this paper is played by a (very useful on its own) obser-
vation that a sufficient Khvedelidze [Khve56] condition for the operator S to be
bounded in L, space with a power weight actually is also necessary. The resulting
criterion was used repeatedly in numerous publications, though now it can of course
be thought of as a direct consequence of the Hunt-Muckenhoupt-Weeden criterion.

In [9], the algebra generated by singular integral operators with piecewise
continuous coefficients is considered in the case of a composed (that is, consisting
of a finite number of closed or open simple Lyapunov curves) contour. The new
difficulty arising in this setting is that S is not an involution any more; moreover,
the operator S? — I is not even compact. To overcome this difficulty, an approach
is proposed in this paper (Lemma 1.1) which later received the name of the linear
dilation procedure and was further developed in [GK70] (see also [Kru87], Theorem
1.7, Corollary 1.1 and Theorem 2.4). The symbol of the algebra is constructed,
and in its terms the Fredholmness and the index formula are obtained. The spaces
involved are L, with power weights. The transition to arbitrary Muckenhoupt
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weights was accomplished in [GKS93], while the class of contours was extended to
composed Carleson curves in [BBKS99].

Section 1 of paper [10] contains a new version of the local principle. The orig-
inal version of the latter, invented by by L.B. Simonenko in [Sim65], is simplified?
here via the introduction of localizing classes which at the same time makes the
new version applicable in a wider setting. There also exists the Allan-Douglas ver-
sion of the local principle; the relations between the three are discussed in [BKS88|.
All three versions are currently in use, as a powerful tool in operator theory and
numerical analysis; see, i.e., [BS93, DS08, FRS93, Kar98] for some further exam-
ples of the Gohberg-Krupnik local principle’s applications. In the paper itself, the
local principle is used to establish (i) the local closedness of the set of matrix func-
tions generating Fredholm Toeplitz operators on the spaces Lo, (ii) the Fredholm
theory of operators defined on ¢, via Toeplitz matrices generated by continuous
matrix functions (and the algebras generated by them), and (iii) a parallel theory
for the algebras generated by paired operators.

In [11], the symbol is constructed for the non-closed algebra generated by
the singular integral operators with piecewise continuous coefficients on piecewise
Lyapunov composed curves in the case of L, spaces with power weights. This
symbol is a matrix valued function (of variable size, depending on the geometry
of the curve), the non-singularity of which is responsible for the Frednolmness
of the operator. The index of the operator is calculated in terms of the symbol
as well. These results were carried over to the closure of the algebra in a later
authors’ publication [GK93|. The transition to arbitrary (Muckenhoupt) weights
and (Carleson) composed curves was accomplished in already mentioned papers
[GKS93, BBKS99]; see also [BGK196] for an important intermediate step.

The paper [12] in its time was a breakthrough in the theory of singular integral
operators with involutive shift. In clarification of the results accumulated earlier
(see, i.e., [Lit67, ZL68, Ant70, KS72b, KS72a]), the authors came up with the
relation which makes crystal clear the relation between the Fredholm properties
and the index of the operator A (with shift) and the associated with it operator Ay
(without shift but acting on the space of vector functions with the size doubled).
Moreover, for the operators with orientation preserving shift the relation actually
holds for arbitrary measurable matrix coefficients, not just in the continuous case.
On the other hand, for the orientation reversing shift the Fredholmness of Ay is
still sufficient for the Fredholmness of A while the converse statement fails already
in the case of piecewise continuous coefficients.

The paper [12] contains also the matrix symbol construction for the (non-
closed) algebra generated by the singular integral operators with piecewise contin-
uous coefficients and the shift (W¢)(t) = ¢(—t) acting on the unweighted space
Lo(—1,1). The generalization of this construction to the setting of arbitrary simple
closed Lyapunov contours and changing orientation (sufficiently smooth) involu-
tive shifts is carried out in [13].

2The presentation of the method per se in [10] takes only two pages.
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Introduction

Leonid Lerer, Vadim Olshevsky and Ilya Spitkovsky

Israel Gohberg has made, over many years, a number of contributions to differ-
ent branches of mathematics. Speaking about the quantity only, his resume lists
more than 25 monographs, as well as more than 500 papers. Among these there
are several papers published in Russian which have never been translated into
English. The present volume partially removes this omission and contains English
translations of 13 of these papers.

The first part of the book comprises a plethora of results related to the paper
[GS72]. This paper contains an explicit formula for the inverse of a (non-Hermitian)
Toeplitz matrix that is widely cited in many areas especially in the numerical and
engineering literature as the Gohberg-Semencul formula. There are at least three
reasons for its popularity. One reason lies in the fact that the Gohberg-Semencul
formula (that provides an elegant description for the inverses of Toeplitz matrices)
leads to efficient (in terms of speed and accuracy) algorithms. Secondly, inversion
of Toeplitz matrices is a very important task in a vast number of applications in
sciences and engineering. For example, symmetric Toeplitz matrices are the mo-
ment matrices corresponding to Szegé polynomials and Krein orthogonal polyno-
mials. The latter play a significant role in many signal processing applications, e.g.,
[Kai86] in speech processing, e.g., [MG76]. Furthermore, prediction, estimation,
signal detection, classification, regression, and communications and information
theory are most thoroughly developed under the assumption that the process is
weakly stationary, in which case the covariance matrix is Toeplitz [Wie49]. Along
with these two examples, there are numerous other applications giving rise to
Toeplitz matrices.

Finally, the third reason for the popularity of the Gohberg-Semencul for-
mula is that it has triggered a number of counterparts and generalizations [GKT72,
BAS86, HR84, LT86, KC89, GO92|, as well as theories, e.g., the displacement
structure theory was originated in [KKM79] (see also [HR84]).

At the time of publication of [GS72| its authors were unaware of the recur-
sive inversion algorithm that was derived earlier in [Tre64] for the case of positive
definite Toeplitz matrices. The paper [Tre64] also presents (without a proof) a
generalization to non-Hermitian matrices, but it is stated that all principal mi-
nors have to be nonzero. Although the Gohberg-Semencul formula is absent in
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[Tre64], it could be derived from the recursions in [Tre64], at least for the special
cases considered there. However, in many cases it is useful to have a closed-form
formula from which different algorithms can be derived. This is especially true
for the case of the Gohberg-Semencul formula, since it represents A~!, the in-
verse of a Toeplitz matrix, via sum of products of triangular Toeplitz matrices (cf.
with a generalization (0.1) below). The latter property has two important conse-
quences. The first is that the matrix-vector product for A~! can be computed in
only O(nlogn) operations which is fast as compared to O(n?) operations of the
standard algorithm. Moreover, the second important fact is that it was the form
of the Gohberg-Semencul formula that triggered the development of the study of
inversion of structured matrices (see the previous paragraph).

We start our systematic account of the papers included in this volume with
a description of [2] ([1] is a brief summary of the subsequent papers [2] and [3]).

The original paper [GS72] dealt with Toeplitz matrices A = [ a;j_j | with
complex entries. Many applications, e.g., in Multi-Input-Multi-Output system the-
ory, give rise to block Toeplitz matrices where the entries are matrices themselves.

In [2] the authors generalized the results of [GS72] to this and even to a
more general case of Toeplitz matrices A = [ aj—k ] whose entries are taken from
some non-commutative algebra with a unit. The paper [2] contains several explicit
formulas for A=! (Gohberg-Heinig formulas), here is one of them. For a given
Toeplitz matrix A = [ aj—k ] its inverse is given by

o 0 - 0 Yo Y-1 - Y-n
P T To xal 0 .yo . yl.—n
0 B
e Tt @ O 0w 0.1)
0 0o --- 0 0 w, - w ’
| #n 0 2oL | 0
: .0 Do T w,
21 - oz, 0 0o --- 0 0

where the parameters {x;,y;, z;, w;} are obtained via solving four linear systems
of equations

o e Z_n 0
I 0 .
A . = A A : = , (0.2)
: Z_1 0
Ty 0 20 e
[wo w1 wn]A:[e 0 O],

[Yn = w1 o JA=[0 -+ 0 e]. (0.3)
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Due to its shift-invariant structure, a Toeplitz matrix A is defined by 2n + 1
entries {a_p,...,a_1,a9,a1,...,a,} appearing in its top row and first column. At
the same time, the formula (0.1) describes the structure of A~! using the redundant
set of 4n + 2 parameters {z;, y;, w;, z; }. The second section of [2] deals with this
discrepancy and proves that in fact, just 2n + 1 parameters {z;, z; } are sufficient
to completely describe the structure of A=! (i.e., it is sufficient to solve two linear
equations in (0.2) and to use the first and last columns of A~! only). Alternatively,
A~1 can also be described by 2n + 1 parameters {y;,w;} only (i.e., it is sufficient
to solve two linear equations in (0.3) and to use the first and last rows of A~}
only). In fact, the second section of [2] establishes a number of interconnections
between the solution of the linear equations in (0.2) and (0.3).

The third section of [2] deals with a natural inverse problem, namely: given
4n + 2 parameters {x;,y;, w;, z;}, is there a Toeplitz matrix satisfying (0.2) and
(0.3) The authors show that if the interconnections between the solution of linear
equations in (0.2) and in (0.3) found in Section 2 are valid, then the desired Toeplitz
matrix exists and it can be recovered via formula (0.1).

We would like to again emphasize that the above results of [2] fully cover a
very important special case when A is a block Toeplitz matrix.

The above three sections fully generalize the inversion formulas of [GS72].
The next three sections of [2] generalize the inversion formulas of [GK72]. The
difference is that [GS72] describes the structure of the entire complex matrix A~!
using its first and last columns only, while [GK72] describes the structure of A1
using instead its first two columns. As was already mentioned, the first three
sections of [2] generalize the results of [GST2] to matrices whose entries are taken
from a noncommutative algebra with a unit. Correspondingly, the sections 4-6 of
[2] follow the structure of its first three sections and contain full generalization of
the results of [GK72].

We also refer the reader to alternative derivations of the Gohberg-Heinig
formulas in [GKvS04] as well as to [BAS85] for a generalization of the results of
[BASS86] to the block Toeplitz case.

Before turning to paper [3] let us again notice that the Gohberg-Semencul and
the Gohberg-Heinig formulas have a very important computational consequence.
Indeed, observe that the right-hand side of (0.1) involves only four triangular
Toeplitz matrices. Hence A~! can be efficiently applied to any vector using FFT
(Fast Fourier Transform) in the case when the entries {aj} are either scalars or
matrices of a reasonably small size. Furthermore, the linear equations in (0.2) and
(0.3) can be efficiently solved using the Levinson algorithm [Wie49] in the scalar
case or using block Levinson algorithm of [Mus88] in the block case. To sum up,
the scheme just described means that the Gohberg-Semencul and the Gohberg-
Heinig formulas imply the low cost O(n?) arithmetic operations for solving any
block Toeplitz linear system when the blocks are reasonably small. It is worth men-
tioning that using Gohberg-Semencul-Heinig formulas in [BGY80, CK89, CK91]
an algorithm requiring only O(n log? n) operations was developed.
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Along with speed, one is also always concerned about numerical accuracy,
and the Gohberg-Semencul formula was shown in [GH95] and [Hei01] to always
provide numerically accurate results unless the condition number of A is too large.

The paper [GS72] contained not only Toeplitz inversion formulas but also
their continual analogs. In fact, the authors designed a formula for the inverse of
integral operators of the form

(T - K)p)(t) = (t) - / K- s)p(s)ds  (0<t<7)

acting in the space L,(0,7), where the kernel k(¢) is a scalar function from
Li(—7,7). Due to the difference nature of the kernel k(t — s), I — K is a con-
tinuous analog of a finite Toeplitz matrix A = [ aj—k ] (whose entries depend
only on the difference j — k of indices). The paper [3] generalizes these results
of [GST72] to the case when the operator I — K acts in the space Ly(0,7), and
k(t) is an n x n matrix function from L} (—7, 7). Thus, the paper [3] contains full
continual analogs of the results in [2].

In particular, in the second section of [3] the authors present a continual
analog of the formula (0.1). The four equations in (0.2) and (0.3) are replaced by
the following four equations

x(t) — /OT k(t — s)x(s)ds = k(t), =z(—t)— /OT k(s —t)z(—s)ds = k(—t), (0.4)
w(t) — /OT w(s)k(t — s)ds = k(t), y(—t)— /OT y(—s)k(s — t)ds = k(—t), (0.5)

In this case, the analog of the formula (0.1) is

(1=K N0 =10+ [ 285
0
where the kernel (¢, s) is determined from (0.4) and (0.5) via
Y(t,s) =a(t —s) +y(t —s)
N min(¢,s) (t ) (t ) ( J
/0 [(t = s)y(r —s) —z(t —r —1)w(r — s+ 7)]dr

The structure of the paper [3] mimics the structure of the first three sections of
[2] (although the methods of [2] and [3] are absolutely different). Section 3 of [3]
presents the results analogous to the ones of Section 2 of [2], and it describes the
relations between the solutions z(¢), z(t) to (0.4) and the solutions w(t),y(t) to
(0.5). Finally, Section 4 of [3] is a counterpart of Section 3 of [2]. Specifically, it
is devoted to the inverse problem of reconstructing the matrix function k(t) from
the matrix functions xz(t), y(—t), w(t), z(—t):

Given four matrix function z,y, z,w € LT*"[0, 7], find k € L}*"[—7, 7] such
that the corresponding operator I — K is invertible and the given functions are
solutions of the equations (0.4)—(0.5).



Introduction xiii

Later, a certain refinement of these solutions turned out to be extremely
useful in solving the inverse problems for Krein’s orthogonal matrix polynomials
and Krein’s orthogonal matrix function, as well as in the study of Krein’s canon-
ical differential systems (see [GL88, GKL08, AGK"09] and references therein).
In fact, for the scalar case the connection of the inverse problems with Krein or-
thogonal polynomials has already been mentioned in the Russian edition of the
monograph [GF71]. Finally, we mention that the solutions of the inverse prob-
lems in [2] inspired several other authors to deal with similar problems (see, e.g.,
[BAS86] and [KKS86]).

One of the conditions in the solution of the inverse problem in [2] triggered
the interest of Gohberg and Heinig in Sylvester resultant matrices. Paper [4] is
devoted to the study of generalizations of the classical Sylvester resultant matrix
to the case of polynomials with matrix coefficients.

For scalar polynomials p(A\) and g(\) of degrees m and n, respectively, the
resultant matrix is a square (m + n) x (m + n) matrix whose basic property is
that its nullity is equal to the number of common zeros of the polynomials p and
g (counting their multiplicities). This notion has been known for centuries (see
[KN81] for history and details).

A simple example found in [4] shows that in the matrix polynomial case
the (square) classical analog of the resultant matrix does not preserve its basic
property concerning the common eigenvalues. Nevertheless, a certain non-square
generalized resultant is introduced in [4] which does have the basic property of the
resultant matrix, namely, the dimension of its kernel is equal to the number of com-
mon eigenvalues of the two given matrix polynomials counting their multiplicities
(properly understood). In general, for two r X r matrix polynomials of degrees m
and n this matrix has the size (2w —m —n)r x wr where w > min{n+mr,m+nr}.
In [4] the kernel of this generalized resultant is completely described in terms of
common Jordan chains of the given polynomials. The proof of this result is rather
involved. One of the important tools is the notion of multiple extension of a system
of vectors which has been invented and studied by the authors.

Of course, in the case r = 1 the generalized resultant in [4] coincides with
the classical one, and the paper [4] contains a refinement of the well known result
on the Sylvester resultant matrix providing a complete description of its kernel in
terms of common zeroes of the given (scalar) polynomials p(A\) and g(X). [4] also
includes applications to the solution of a system of two equations in two unknowns
A and p in the case when each of these equations is a matrix polynomial in A and
a matrix polynomial in p.

It is worth bearing in mind that the results of paper [4] had been obtained
before the spectral theory of matrix polynomials was developed by I. Gohberg,
P. Lancaster and L. Rodman (see [GLR83]) and from our point of view it is rather
miraculous that the results of [4] were obtained without using this theory. Upon
emergence of the latter theory, the notion of the generalized resultant was further
analyzed in [GKLR81, GKLR83] in connection with some other classical notions
(like Vandermonde, Bezoutian, etc.) Also, in [GKLO08] and [KL09] necessary and
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sufficient conditions for the matrix polynomials p and ¢ are found which ensure
that the generalized resultant in [4] can be taken to be a square block matrix.
In paper [5], Gohberg and Heinig invented a continual analogue of the resul-
tant. Namely, for two entire functions A(X) and B(A) (A € C) of the form
0

A(X) = a0 + / a(t)e™dt, B(A) = bo + / b(t)e ™ dt (0.6)
0 —T
where ag, by € C!, a € L1]0,7], b € Li[—7,0], and 7 is some positive number, they
define the operator Ro(A, B) acting on Li[—7, 7] by the rule
fO+ [ alt—s)f(s)ds (0<t<T)
(Ro(A,B)f)(t) = 7 (0.7)
F()+ [ bt —s)f(s)ds (=7 <t < 0)

with the convention that a(t) = 0 for ¢ ¢ [0, 7] and b(t) = 0 for t ¢ [—,0]. In [5] the
operator Ro(A, B) is called the resultant operator of the functions A(X) and B()).
In the scalar case the kernel of the operator Ro(A,B) is completely described
in [5] in terms of common zeroes of the functions A and B. In particular, its
dimension is precisely equal to the number of common zeroes of A and B (counting
multiplicities). Thus in [5], an appropriate notion of a resultant for non-polynomial
functions has been defined for the first time.

As in the discrete case simple examples show that this resultant is not working
in the matrix valued case and hence a straightforward generalization of the above
result to the case of matrix functions A(X) and B(A) turned out to be impossible.
One can only state that dim Ker R (A, B) > # { common eigenvalues of A and B
(properly understood) }. The reason for this phenomenon lies in the fact that
in the matrix case (i.e., when A and B are d x d matrix functions) the kernel of
Ro(A, B) may contain matrix functions that are not smooth enough (actually, they
are not even absolutely continuous). This obstacle has been surmounted in [5] by a
slight modification of the definition of Ry(.A, B) through introducing a generalized
resultant R. (A, B) acting from L¢[—7,7+¢] to L{[—7 —¢, T +¢] (see formula (2) in
[5]). It is proved in [5] that for any € > 0 the kernel for this operator is completely
described by the common Jordan chains of the matrix functions B(\) and A(X),
and in particular, its dimension equals the number of common eigenvalues of B(\)
and A(X) (properly understood).

The proof of this result is far from being easy. The applications of the main
result include a method of solving a system of two equation by two variables A
and p in the case when the right-hand sides of the equations are of the form (0.6)
in each variable. In another important application a continual analogue of the
Bezoutian is introduced for the case n = 1, and its kernel is completely described
in terms of common zeroes of the functions involved.

Paper [5] lent impetus to several other works in this area. Thus, in [GHKLO5]
the Bezoutian for matrix functions of form (0.6) has been studied. In [GKLO7D,
GKLO07a] necessary and sufficient conditions for A and B have been found which
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ensure that the operator Ro (A, B) describes completely the common spectral data
of A and B in the matrix case.

The second part of the book deals with a very different topic. It consists of
papers [6-13], written by 1. Gohberg jointly with N. Krupnik!. In these papers,
various aspects of the theory of one dimensional singular integral operators in
the piecewise continuous setting are considered, but the general approach actually
goes back to Gohberg’s paper [Goh52]. There, Gelfand’s theory of commutative
Banach algebras was applied to such operators for the first time, though in the set-
ting of continuous coeflicients and closed curves. It was shown that the respective
Calkin algebras (= the quotient algebras modulo the ideal of compact operators)
are commutative, and therefore can be identified with their spaces of maximal
ideals, which in turn are nothing but the curves on which the operators act. The
Fredholmness criteria for these operators can be formulated in terms of their sym-
bols, which in this setting are rather simple continuous functions on these curves,
and do not depend on the choice of the space. Consequently, the essential spectra
of the operators do not depend on the space as well. As was shown in joint work of
I. Gohberg and M. Krein [GK58], this phenomenon persists for convolution type
operators acting on vector functions on the half line. The case of singular integral
operators with continuous (matrix) coefficients was disposed of, with the same
outcome, by I. Simonenko [Sim61]. As became clear later (see, e.g., [BK97]), the
smoothness of the curves (as long as they stay closed) and presence of weight (as
long as the singular integral operator with Cauchy kernel stays bounded) are of
no significance in the continuous coefficients setting.

The situation becomes much more complicated when one moves to a piecewise
continuous setting: the symbols become matrix (as opposed to scalar) functions,
with a domain of a rather complicated nature, in particular, depending on the
Banach space in which the operators act. The (essential) spectra of the operators
then also become functions of the space. More specifically, the content of [6-13] is
as follows.

In [6], the spectra and essential spectra are described for Toeplitz opera-
tors generated by piecewise continuous functions on Hardy spaces H, (Section 1)
and, in parallel, of singular integral operators with piecewise continuous coeffi-
cients on Lebesgue spaces L, (Section 2), 1 < p < oo. To this end, the notion
of p-(non)singular functions and the p-index was introduced, and with their aid
established the role of circular arcs filling the gaps of the spectrum originating
from the discontinuities of the coefficients. In the subsequent paper [GK69b] the
authors showed that the circular arcs persist when a power weight is introduced,
though the curvature of the arcs now depends on the weight exponents. Further
metamorphoses of the spectra were described in [Spi92] (for an arbitrary Mucken-
houpt weight), and in a series of papers by A. Bottcher and Yu. Karlovich (where
the transition to arbitrary Carleson curves was accomplished), summarized in their

LCurrent mailing address: 424 — 7805 Bayview Ave, Thornhill, Ontario L3T 7N1, Canada
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monograph [BK97]. See also very nicely written survey articles [B&t95, BKO01] for
an entertaining, though still educational, guide through the subject.

As an application of these results, in Section 3 of [6] the authors give estimates
from below for the essential norms of the singular integral operator S with the
Cauchy kernel, and the related complementary projections P, Q. They show that
the estimate for S is sharp when p = 2" or p = 2"/(2" — 1), n = 1,2, ... Inspired
by these results, Pichorides proved shortly afterwards [Pic72] that in fact this
estimate coincides with the norm of S on the unit circle for all p € (1,00). The
respective result for the projections P, Q) was established much later [HV00]. See
[HV10, Krul0] for the current state of the subject.

The singular integral operators in [6] are also considered on the so called
symmetric spaces (see Section 4); we refer the reader to the translator’s work
[Kar98, Kar00].

Paper [7] contains a detailed description of the Banach algebra generated
by individual Toeplitz operators considered in [6], Section 1. In particular, it is
shown that its Calkin algebra is commutative, and its compact of maximal ideals
is realized as a cylinder with an exotic topology. The symbol of this algebra is
constructed, and the Fredholm criterion and the index formula for the operators
from the algebra are stated in its terms. Note that the case p = 2 was considered by
the authors earlier in [GK69a], and that a parallel theory for the algebra generated
by Toeplitz matrices arising from the Fourier coefficients of piecewise continuous
functions on the sequence space £, (which of course differs from the setting of [7]
when p # 2) was developed by R. Duduchava in [Dud72].

In [8], it was observed for the first time that rather peculiar objects are
contained in the (closed) algebra generated by singular integral operators with
piecewise continuous coefficients; some operators with unbounded coefficients hav-
ing power or logarithmic singularities among them. As a result, the Fredholmness
criteria for such operators are obtained.

An auxiliary role in this paper is played by a (very useful on its own) obser-
vation that a sufficient Khvedelidze [Khve56] condition for the operator S to be
bounded in L, space with a power weight actually is also necessary. The resulting
criterion was used repeatedly in numerous publications, though now it can of course
be thought of as a direct consequence of the Hunt-Muckenhoupt-Weeden criterion.

In [9], the algebra generated by singular integral operators with piecewise
continuous coefficients is considered in the case of a composed (that is, consisting
of a finite number of closed or open simple Lyapunov curves) contour. The new
difficulty arising in this setting is that S is not an involution any more; moreover,
the operator S? — I is not even compact. To overcome this difficulty, an approach
is proposed in this paper (Lemma 1.1) which later received the name of the linear
dilation procedure and was further developed in [GK70] (see also [Kru87], Theorem
1.7, Corollary 1.1 and Theorem 2.4). The symbol of the algebra is constructed,
and in its terms the Fredholmness and the index formula are obtained. The spaces
involved are L, with power weights. The transition to arbitrary Muckenhoupt
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weights was accomplished in [GKS93], while the class of contours was extended to
composed Carleson curves in [BBKS99].

Section 1 of paper [10] contains a new version of the local principle. The orig-
inal version of the latter, invented by by L.B. Simonenko in [Sim65], is simplified?
here via the introduction of localizing classes which at the same time makes the
new version applicable in a wider setting. There also exists the Allan-Douglas ver-
sion of the local principle; the relations between the three are discussed in [BKS88|.
All three versions are currently in use, as a powerful tool in operator theory and
numerical analysis; see, i.e., [BS93, DS08, FRS93, Kar98] for some further exam-
ples of the Gohberg-Krupnik local principle’s applications. In the paper itself, the
local principle is used to establish (i) the local closedness of the set of matrix func-
tions generating Fredholm Toeplitz operators on the spaces Lo, (ii) the Fredholm
theory of operators defined on ¢, via Toeplitz matrices generated by continuous
matrix functions (and the algebras generated by them), and (iii) a parallel theory
for the algebras generated by paired operators.

In [11], the symbol is constructed for the non-closed algebra generated by
the singular integral operators with piecewise continuous coefficients on piecewise
Lyapunov composed curves in the case of L, spaces with power weights. This
symbol is a matrix valued function (of variable size, depending on the geometry
of the curve), the non-singularity of which is responsible for the Frednolmness
of the operator. The index of the operator is calculated in terms of the symbol
as well. These results were carried over to the closure of the algebra in a later
authors’ publication [GK93|. The transition to arbitrary (Muckenhoupt) weights
and (Carleson) composed curves was accomplished in already mentioned papers
[GKS93, BBKS99]; see also [BGK196] for an important intermediate step.

The paper [12] in its time was a breakthrough in the theory of singular integral
operators with involutive shift. In clarification of the results accumulated earlier
(see, i.e., [Lit67, ZL68, Ant70, KS72b, KS72a]), the authors came up with the
relation which makes crystal clear the relation between the Fredholm properties
and the index of the operator A (with shift) and the associated with it operator Ay
(without shift but acting on the space of vector functions with the size doubled).
Moreover, for the operators with orientation preserving shift the relation actually
holds for arbitrary measurable matrix coefficients, not just in the continuous case.
On the other hand, for the orientation reversing shift the Fredholmness of Ay is
still sufficient for the Fredholmness of A while the converse statement fails already
in the case of piecewise continuous coefficients.

The paper [12] contains also the matrix symbol construction for the (non-
closed) algebra generated by the singular integral operators with piecewise contin-
uous coefficients and the shift (W¢)(t) = ¢(—t) acting on the unweighted space
Lo(—1,1). The generalization of this construction to the setting of arbitrary simple
closed Lyapunov contours and changing orientation (sufficiently smooth) involu-
tive shifts is carried out in [13].

2The presentation of the method per se in [10] takes only two pages.
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Inversion of Finite Toeplitz Matrices

Israel Gohberg and Georg Heinig

In this communication Toeplitz matrices of the form [[a;—||’ ,—o, where a; (j =
0,+1,...,4n) are elements of some noncommutative algebra, and their contin-
ual analogues are considered. The theorems presented here are generalizations of
theorems from [1] to the noncommutative case.

Detailed proofs of the theorems stated below as well as generalizations of
theorems from [2] to the noncommutative case and their continual analogues will
be given elsewhere.

1. Inversion of Toeplitz matrices

Let R be a noncommutative ring with unit element e and a; (j = 0,%1,...,%n) be
some elements of R. For this collection of elements we consider in R the following
systems of equations:

Y ajkze = doge  (j=0,1,...,n), (1)
k=0
n
Y ar—jzx = boge  (j=0,1,...,n), (2)
k=0
n
Zwkaj_k = dgje (j=0,1,...,n), (3)
k=0
n
Zy_kak_j = Jpje (j=0,1,...,n). (4)
k=0

It is easy to see that if equations (1) and (4) are solvable then xg = yo, and if
equations (2) and (3) are solvable then zy = wy.

The paper was originally published as U.I1. I'ox6epr, I'. Xainur, O6 oOpameHnn KOHEUHLIX
rénnunesnx marpun, Marem. Mccmen. 8 (1973), Ne 3(29), 151-156.
MRO0341163 (49 #5913), Zbl 0337.15004.
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Theorem 1. Let A = |laj—|} ;o be an invertible matriz with elements in R and
xj, z—j,w;,Yy—; (7 =0,1,...,n) be solutions in R of equations (1)~(4). If at least
one of the elements xo or zgy is invertible, then the other is also invertible and the
matriz inverse to A is constructed by the formula

o 0 PN 0 Yo Y-1 ... —n
. T To ... 0 . 0O v .- Yi-n
A = . . . . o . .
Ty Tpei T 0 0 Yo
(5)
0 0 O 0 wn, ... w1
Z_n 0 0 1 :
- . . Z :
: 0 0 Wn,
Z_1 z_n O 0 O 0

In the case when R coincides with the algebra L(m, C) of all complex matrices
of order m and the matrix A is positive definite, this result was obtained, in fact,
in [3].

Also, under the condition R = L(m, C) and other additional assumptions on
the matrix A, results similar to Theorem 1 are contained in [4].

Notice that in the case when R is an algebra over C (or R), from the solvability
of equations (1)—(4) and the invertibility of at least one of the elements xg, ¢ it
follows that the matrix A is invertible!. In a number of cases this statement remains
true if one requires only the solvability of two equations (1), (2) or (3), (4). For
instance, this holds for R = L(m, C). The same takes place when the elements a;
have the form A;I + T}, where ); are complex numbers and 7 are linear compact
operators in a Banach space L.

As an example consider the matrix

e a

b e an1
A =

mopnmtL e

where a and b are some elements of R. The matrix A is invertible if and only if
the element e — ab is invertible. If the element e — ab is invertible, then the element
e — ba is also invertible, and the solutions of equations (1)—(4) are given by the

1Probably this statement remains true also in the more general case of an arbitrary ring R with
unit.
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formulas
g = C, T1 =
Yo = G Yy-1 =
wy = d, w; =
Z0 = d, zZ—_1 =

—be,
—ca,
—db,
—ad,

T2
Y—2
w2
)

T3 = = z, = 0,
yos == you = 0,
w3 = = w, = 0,
Z-3 = = Z-n = 07

where ¢ = (e —ab) ™! and d = (e — ba)~!. In view of Theorem 1, we obtain that in

the case under consideration

c —ca
—be  bea +c
A_l o 0 —be
0 0
0 0

0
—ca
beca + ¢
0
0

0 0 0
0 0 0
0 0 0

—bc beca+c —ca
0 —be d

In the case a = b € C a similar example was considered in [5].

Theorem 1 implies the following.

Corollary 1. Let the conditions of Theorem 1 be fulfilled. Then the matrix A,_1 =

Haj,kH;LEio is invertible and

Zo 0
1 z Zo
A1 = : :
Tn—-1 Tn-2
Z_n 0
Rl-n 2-n
Z_1 Z_9

2. Inverse problem

Yo Y-1 Y1—n
0 Yo Y2—n
0 0 Yo
(6)
Wn  Wnp-1 w1
0 Wy, w2
0 0 W,

Consider the problem of reconstruction of the matrix [la;—gl|},_o from the solu-

tions of equations (1)—(4).

Theorem 2. Let w;, xj, y—;, 2—; (j = 0,1,...,n) be given systems of elements
in R and the elements wy, xo, Yo, z0 be invertible. For the existence of an invert-
ible Toeplitz matriz A = |laj—|}—o with elements a; € R (j = 0,£1,...,4n)
for which wj, x;, y—;, z—; are solutions of equations (1)—(4) it is necessary and
sufficient that the following three conditions be fulfilled:
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1) zop = yo and 2o = wp;

2) z 0 ... 0 Yy_n O 0
X1 i) e 0 1 Y1—n —n 0
. o . .
Tn Tp—1 Zo Yo Y-1 Y—n
Z_n 0 0 wo 0 ... 0
2—n  Z—n 0 L wr wWo 0
= . zy .
Z—-1 Z-2 ... Z—n Wy Wp—-1 .- wo
and
Tn 0 0 Yo 0 0
Tpo1 Tp O || ¥-1 % 0
. ) .
Zo X1 e In Y-n Yl1—n Yo
20 0 0 Wn 0o ... 0
Z_q 20 0 || W1 wn 0
= 2 . . )
Z—m Rl—mn .- 20 wo w1 W,

3) at least one of the matrices

o . 0 Z—n
M= Tp—1 e Xy Z-1
Tn T1 20
0 Tn 0
Wo Wp—1 Wn,
0 w w1
N = 0
Y-n Y- Yo
0 Y—n Y1—n

is invertible.

If conditions 1)-3) hold, then the matrix A is

Z1—n

20

Wn,

Yo

uniquely reconstructed by

formula (5). The matrix A can be reconstructed also by one pair of solutions of

equations (1)—(4).
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Theorem 3. Let x;, z—; (j = 0,1,...,n) be given systems of elements in R and
the elements xo and zg be invertible. For the existence of an invertible Toeplitz
matriz A = [laj_x||};—o with elements a; € R (j = 0,£1,...,£n) for which z;

and z_; are solutions of equations (1) and (2) it is necessary and sufficient that
the matriz M be invertible and for the vector

0
X—n
: » 0
Xo =M -1
Z_pZy Tp — o
Xn—1 1
Z_125 XTp — Tp_1

the condition xo = —e be fulfilled.

An analogous theorem holds for the pair of solutions w; and y_;.

3. Continual analogue

Let A be a Banach algebra and k(t) (—7 <t < 7, 7 > 0) be a measurable function
with values in A such that
| ke de < oo,
that is, k(t) € L1 ([, 7], A).
The role of equations (1)—(4) in the continual case is played by the following
equations:

910~ [ K= 9g(s)ds = KO <<, 7)
h0) = [ b= 9ds = Ko ©<t<), )
s-(-0 - [ Ks=tg-(-9ds = K- =t o)
h_(—t)—/OTh_(s)k(s—t)ds — k() (0<t<7) (10)

Theorem 4. Let the operator I — K, where
(Ko)t) = [ k(- 9)p(s)ds (0<t<r),
0
be invertible in the space L1([0,7], A). Then

<u—m*@m=ww+43@@w@m
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where
V(t,8) =g+t —s)+h_(t —s)

min(¢,s) T+min(t,s)
+/ g+t —uw)h_(u—s) du—/ g—(t —u)hy(u— s)du,
0 T

g+(—t)=h_(t)=0 for t>0,
and g4+ (t), hy(t), g—(t), h_(t) be solutions of equations (7)—(10) such that
g+(t)v h+(t) € Ll([o, T]v A), g,(t), h_ (t) € Ll([_Tv 0]7 A)

Note that if A = L(m,C) and the matrix function k(t) is selfadjoint or
differentiable and dk(t)/dt € Li([—7,7],.A), then the solvability of equations (7)-
(10) implies the invertibility of the operator I — K 2.

We will not formulate here continual analogs of inverse theorems.
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Inversion of Finite Toeplitz Matrices Consisting
of Elements of a Noncommutative Algebra

Israel Gohberg and Georg Heinig

Abstract. Theorems on the inversion of Toeplitz matrices |laj—xl||}z—o con-
sisting of complex numbers are obtained in [1, 2]. In this paper those results
are generalized to the case where a; (j = 0,+1,...,+n) are elements of some
noncommutative algebra with unit. The paper consists of six sections. The
results of [1] are generalized in the first three sections, the results of [2] are ex-
tended in the last three sections. Continual analogues of results of this paper
will be presented elsewhere.

1. Theorems on inversion of Toeplitz matrices

Everywhere in what follows 2 denotes some (in general, noncommutative) algebra!
with unit e.
In this section the inverse matrix to a matrix ||a;j—x|},;—o With elements

a; €A (j =0,%1,...,+n) is constructed from solutions of the following equations
n
Zaj_kmk = doje (j=0,1,...,n), (1.1)
k=0
Zak_jz_k = doje (j=0,1,...,n), (1.2)
k=0
> wpaj_x = doje (j=0,1,...,n), (1.3)
k=0
n
> yokar—; = doje (j=0,1,....n). (1.4)
k=0

The paper was originally published as UM.II. T'ox6Gepr, I'. Xafuur, O6pamenune KOHEUHLIX
TéHJII/IIIeBLIX MaTpUIl, COCTABJJEHHLIX W3 3JIEMEHTOB HeKOl\Il\IyT‘dTHBHOﬁ anreﬁpm, R,eV.
Roumaine Math. Pures Appl. 19 (1974), 623-663. MR0353040 (50 #5526), Zbl 0337.15005.

1A major part of the results of the paper remains true also in the case when 2l is a ring with a
unit.
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First of all, note that if equations (1.1) and (1.4) are solvable, then xy = yo.
Indeed,

k n n n
Yo = Zy—j (Z aj—kfﬂk) = Z Zy—jaj—k T = X0-
§=0 k=0

k=0 \ j=0
From the equalities

n

n n n
zZ0 = E wy E Akp—j2—k | » wo = E E Wjiak—j5 | 2~k
k=0 k=0 \J

j=0 = 0 \j=0
it follows that if equations (1.2) and (1.3) are solvable, then zo = wy.
Theorem 1.1. Let elements a; (j = 0,%1,...,4+n) belong to the algebra A. If
systems (1.1)—(1.4) are solvable and one of the elements zg, zg is invertible, then

the matriz A = |laj—g|} o and the second element are invertible and the matriz
inverse to A is constructed by the formula

o 0 ... 0 Yo Y-1 --- Y-n
1 T1 o 0 1 0 Yo Y1—n
Tp Tp_1 ... I 0 0 -
1 0 Yo (1.5)
o ... 0 O 0 w, w1
Z—m e 0 0 1 . :
_ ' 2 :
o o ... w
Z.1 ... Z-n O o o0 ... O

This theorem was obtained in [3] in the case when 2 coincides with the
algebra C,,,x.m of all complex matrices of order m and the matrix A is positive
definite.

Under the condition % = C,,x,, and other additional assumptions on the
matrix A, results similar to Theorem 1.1 are contained in [4].

Note that in the proof of Theorem 1.1 given below some ideas from [3] are
used.

Preceding the proof of Theorem 1.1 we state the following lemma.

Lemma 1.1. Let V be a linear space, L(V) be the algebra of all linear operators
acting in V, and A = ||A;j_y||} o be a Toeplitz matriz with elements A; (j =
0,%1,...,4n) in L(V). If the systems of equations

S Ak Xy = Gl (j=0,1,....n), (1.6)
k=0

n
> A iZy = bl (j=0,1,...,n), (1.7)
k=0
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S Widj e = ol (j=0,1,...,n), (1.8)
k=0
Zy_kAk_j = Sl (j=0,1,...,n) (1.9)
k=0

are solvable in L(V) and at least one of the operators Wy, Xo, Yo, Zy is invertible,
then the matriz A is also invertible.

Proof. Suppose all the hypotheses of the lemma are fulfilled. By V,, denote the
linear space of one-row matrices ¢ = {¢;}7_, with entries p; € V.

Consider the homogeneous equation Ap =0 (¢ € V). If o = {p;}7_ is a
solution of this equation, then in view of (1.8) we obtain

n n

n
0= Wn ;> Ajrpr=> |D WnjAj k| er=cen
/ k=0

n
j=0 k=0 j=0

Analogously, in view of (1.9),

n n n n
0= ZY—j ZAj—kSOk = Z ZY—jAj—k Yk = Po-
§=0 k=0 k=0 \j=0

By Ker A denote the subspace of V,, that consists of all solutions of the
equation Ap = 0. To each nonzero vector ¢ = {p;}7_5 € Ker A we assign the
number p(¢) = p such that g = o1 = -+ = ¢,_1 = 0 and ¢, # 0. By what has
just been proved, 0 < p(p) < n. Let p* be the maximal value of the function p(p)
(p € Ker A, ¢ # 0) and let h € Ker A be a vector such that p* = p(h). Consider
the vector h™ = {h; }7_, € V;, defined by the equality

. { hj_1 ?f ji: 1,2,...,n,
0 if j=0.

Obviously,
ZAj*khi = ZAj,kflhk =0 (] = 1,2,. . .,TL).
k=0 k=0

From here and (1.9) it follows that
n n n n
Yo A ghy =Yo > A ghp +> Y > Ay ihy
k=0 k=0 j=1 k=0

n

=> D YAk | hy =hg =0.

k=0 \j=0

Therefore, if the element Yy (or the element X coinciding with it) is invertible,
then h~ € Ker A. Because p(h~) > p(h), we conclude that in this case the subspace
Ker A consists of zero only.



10 I. Gohberg and G. Heinig

Analogously, we define the function ¢ = ¢(p) (p € Ker A, ¢ # 0, p =
{wj}i—y) such that v, # 0 and @411 = -+ = @, = 0. By what has just been
proved, 0 < g(y) < n. Put ¢* = mingq(p) (p € Ker A, v # 0). Let g be a vector
in Ker A such that ¢(g) = ¢*. Then for the vector g* = {gj};?zo defined by the
equality

+_{ gj+1 if j=0,1,...,n—1,
9; =

0 if j=n,

we have
ZAj,kg;: = ZA]‘,]H,lgk = 0 (j = 0,1, NS 1)
k=0 k=0

From here and (1.8) it follows that

n n n—1 T
Wo ) An kg =Wo Y An kgl + > Waii > Ajrgi
k=0 k=0 5=0 k=0

n

n
=D | 2 WaiAin | g =g =0,
k=0 \j=0

Hence, if the element Wy (or the element Zy coinciding with it) is invertible, then
g € Ker A and q(g™) > q(g). It follows that Ker A = {0} in this case, too.

Thus, we have proved that in all cases Ker A = {0}.

Passing to the dual space and the adjoint operator equations, it is easy to
see that the the adjoint matrix A* = [|A;_;[|7,_, also satisfies the hypotheses of
the lemma. Hence, by what has been proved, we obtain that Ker A* = {0}. Thus,
the operator generated by the matrix A in the space V,, is invertible. Therefore,
the matrix A is invertible in L(V).

The lemma is proved. O

Note that in some cases Lemma 1.1 remains true if in its formulation one
considers only the two equations (1.8), (1.9) or (1.6), (1.7) instead of all four
equations (1.6)—(1.9). For instance, this happens if V = C™, because in this case
dim Ker A = dim Ker A*. The same happens if V is a linear topological space and
the operators A; have the form ;1 + T}, where ¢; are complex numbers and 7}
are compact operators.

Proof of Theorem 1.1. First, let us show that the matrix A is invertible. Assume
that the linear space V coincides with 2. Obviously, one can consider 2 as a part of
the algebra L(2() of all linear operators acting in . The hypotheses of Lemma 1.1
are satisfied for the matrix A = [la; k|| ,_o. Hence the matrix A is invertible. The
entries of the inverse matrix belong to the algebra 2. Indeed, the equations

n
Zaj—ktkr =drje (j=0,1,...,n)
k=0
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have solutions tg, in 2 for every r = 0, 1, ..., n. From here it follows that the matrix
A1 coincides with the matrix ||t |7, _, whose entries belong to the algebra 2.
We construct the matrices

e ... 0 0 o 0 ... O
. . . 7 e ... 0
W = . 5 X = )
0 e 0
Wy ... W1 Wy z, 0 ... e
Yo Y-1 Y-n (& 0 2z,
0 e 0 .
Y = R Z = .
0 e zZ_q
0 0 e 0 0 2z
Obviously, the equalities
0 e a-1 ... a_y,
: 0
AZ = A?’L—l . s AX =
Anfl
an ... a; e 0

hold. Here and in what follows, by A, (r = 0,1,...,n) we denote the matrix
laj—k ||} j—o- From these equalities it follows that the element zo or 2o is invertible
if and only if the matrix A,,_; is invertible. Hence the invertibility of one of the
elements zy or zg implies the invertibility of the other one.

It is easily seen that

o An,1 0 o Zo 0
WAZ = ’ 0w ||’ YAX = 0 A, | (1.10)
whence
Al 0 zyt 0
-1 _ n—1 _ 0
P R P Y PR
Setting A, 1 = 5l =0, we obtain from (1.11) the following recurrent formulas:
e =+ 2wy wk (. k=0,1,...,n—1),
X ) (1.12)
c?k :C;'l:l,k—l +xjxa Y-k (]7k: 1727"',n)7
and the equalities
Cpk = Wn—ks  Cjn = Zj—n, Cop = Y=k  Cjo = &; (1.13)

for j,k=0,1,...,n.
From equalities (1.12) and (1.13) it follows that

no_.n a1 . —1
Cjk = Cj—1,k—1 T LjTo Y=k + Zj—n-1%) Wn—k+1 (1.14)
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for j,k = 1,2,...,n. If one takes cj5 = 0, whenever one of the indices j, % is
negative or is greater than n, and z_,_1 = wy41, then it is easy to see that
equality (1.14) remains true also in the cases j,k = 0,n + 1. Thus, the equality

min(j,k)
= (@ Yook = Zjn 1 Wy W k14 (1.15)
r=0
holds. This formula coincides with (1.5).
The theorem is proved. O

Corollary 1.1. Let the hypotheses of Theorem 1.1 be fulfilled. Then for the matriz
AL the equality

20 2-1 Z_n wo 0 0
o 0 20 Z1—n || wm wWo 0
A = ZO .
0 0 zZ Wy  Wh— w
’ ' ’ (1.16)
0 =z, T 0 0 O
. . Yen 0 0
: —1
_ : g )
0O 0 ... x, : . : :
o 0 ... O Y-1 ... Y-n O
also holds.
Proof. Indeed, from equality (1.14) it follows that
i = g1 T+ zj,nzo_lwn,k — :Ej+1x61y1,k (1.17)
for j,k=0,1,...,n — 1. From here and (1.13) it follows that?
min(n—j,n—k)
A= > (ZnirZy Wnkr — Tjpee Ty Yoko1r)-
r=0
This formula coincides with (1.16). O

As an example consider the matrix

e a a

b e a? !
A= ,

proopnTt L. e

where a and b are some elements of the algebra 2. Assume that the element e—ab is
invertible. Then the element e — ba is also invertible (see [5, Chap. II, Section 7.5],

2Here it is assumed that Tntl =Y-—n—1=0.
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p. 197 of the 2nd Russian edition). It is easy to see that solutions of equations
(1.1)—(1.4) are determined by the formulas

ro=(e—ab)™l, x =-ble—ab)"l, zpy=ax3=---=2,=0;
yo=(e—ab)™', ya=—(e—ab)la, y2=ys=-=yn=0;
wo = (e —ba)~t, w;=—(e—ba)"th, wy=w3z=-=w,=0;
2= (e—ba)"t, z.1=-ale—ba)"t, z9=23=-=2_,=0.

In view of Theorem 1.1, we obtain that in the considered case the matrix A is
invertible and its inverse is given by the formula

c —ca 0 0 0 0

—bc bea + ¢ —ca . 0 0 0

A1 0 —bc  bca+c ... 0 0 0
0 0 0 —bc bca+c —ca

0 0 0 0 —be d

where ¢ = (e — ab)~! and d = bea + ¢ — a(e — ba)"'b = (e — ba) .
Note that the invertibility of the matrix A implies the invertibility of the
element e — ab because

e 0 0 0 e—ab 0 O 0
—-b e 0 0 e 0 0
All 0 0 e 0| 0 0 e 0
0 0 O e 0 0 0 e

This example was considered in [6] in the case b =a € C.

Theorem 1.2. Let the hypotheses of Theorem 1.1 be fulfilled. Then the matriz A, _1
is invertible and its inverse is constructed by the formula

Zo 0 0 Yo Y-1 Yi-n
= 1 xo 0 P Y2-n
n—1 — . . . ) . . .
Tpnol Tp_2 Zo 0 0 Yo (1.18)
Z_n 0 0 Wp  Wp—1 wy '
Zi_m Z_n 0 o 0 W, Wa
- . . . ) . . .
Z_1 Z_o Z_n 0 0 Wy,
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Proof. The invertibility of the matrix A, _; follows from Theorem 1.1 and equali-
ties (1.10). From equalities (1.12) and (1.5) it follows that

-1 -1
= Cik — Zj—nWy Wn—k
min(j,k)
_ -1 -1 -1
= (xj—rmo Yr—k — Zj—n—1—-rW wn—i—l—k—i—r) — Z2j—nWy Wnp—k
r=0
min(j,k)
_ -1 —1
= Z (xj—rmo Yr—k — Zj—n—rWy wn—k+r>
r=0
for j,k=0,1,...,n — 1. The last formula coincides with (1.18).
The theorem is proved. t

Corollary 1.2. Let the hypotheses of Theorem 1.1 be fulfilled. Then the matriz A, _1
is invertible and the equality

Z0 -1 ... Z1—n wo 0 0
1 0 Z0 c.e Z9_n 1 w1 wo e 0
A= . : %0
0 0o ... Z Wp_1 Wnp9 ... W
0 n—1 n—2 0 (119)
Ty Tp_1 ... X1 Yon 0 ... 0
0 Ty T |l e Yo e 0
- . . xo . . .
0 0 R Y Y—1 Y—2 ... Yo

holds.

This corollary is derived from Theorem 1.2 in the same way as Corollary 1.1
is deduced from Theorem 1.1.

Formulas (1.15) and (1.18) also admit another representation, namely, the
next statement holds.

Corollary 1.3. Let the hypotheses of Theorem 1.1 be fulfilled and A, ! = <5l k=0
(r=n-—1,n). Put

(¢, 0) = Z cgkcje—k (r=n-1,n),

4,k=0
where ( and 6 are variables in C. Then the equalities
¢(¢,0) = (1= ¢07) " Ha(Qg 'y (0) — (CO1)" () 'w(h)) (1.20)

and

"G, 0) = (1= 071 @(Q)ag " y(0) — (071)"2(0)z " w(®)) (1.21)
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hold, where
n n 0 0
w(f) = Zwkﬁk, z(0) = kaﬂk, y(0) = Z yrf®,  2(0) = Z 20"
k=0 k=0 k=—n k=—n
Proof. Indeed, we have
n n+1
(1=¢o71)e(¢,0) = Z Gr(¢T07F = roT ) = Z (cjk — ¢j—1.e-1)CT07F,
J,k=0 5,k=0

where it is assumed that c;p =0 for j >n, 7 <0, j <0, k> n, or k < 0. Using
formulas (1.13) and (1.14), we get

n n+1
(1=¢071e(¢,0) = Y mjmg ly k0% = Y 2 n1zg wn k207

J,k=0 J,k=0

n n n+1 n+1
= Z ijJmo Z y_ke_k — Z zj_n_lcjzal Z wn_k+19_k.
§=0 k=0 j=1 k=1
This immediately implies formula (1.20).
Formula (1.21) is proved analogously. O

2. Properties of solutions of equations (1.1)—(1.4)

Under the hypotheses of Theorem 1.1, the solutions of equations (1.1)—(1.4) are
connected by a series of relations. In particular, the solutions of equations (1.3)
and (1.4) are uniquely determined by the solutions of equations (1.1) and (1.2),
and vice versa. The main properties of the solutions of equations (1.1)—(1.4) are
presented below. Let us fix the following notation. For elements t1, ..., ¢, € %, by
T, and TF™ denote the following square Toeplitz matrices:

tx 0 ty ... tm
Tom=1| @ - , TP = o
tn ... Tk 0 tr
Through this section we will suppose that the matrix A = |la;_x|7],_, satisfies

the hypotheses of Theorem 1.1.
Proposition 2.1. For the solutions of equations (1.1)=(1.4) the following relations

XOnmaly—n,O = Z—n,OZ(;lWOna (2-1)
XnofUalYo,—n = ZO,—nZalwnO (2-2)

hold.
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Proof. Indeed, from Theorem 1.1 it follows that
n
Wn—k = Z(xnfrxalyrfk - Z*lfrzo_lw'rH»lJrrfk:)
r=0

and
n

Zj—n = Z(xjfrxalyrfn - anflJrjfrZo_llerr)
r=0
fork=0,1,...,nand j =0,1,...,n.
Obviously, from these equalities it follows that

Y-n wo
Xon:cal = Z,ntozof1 (2.3)
Yo Wn,
and
| 2o - o |l2gYon=1| 2=n --- 20 |25 Who- (2.4)

Since the product of lower triangular Toeplitz matrices is again a lower trian-
gular Toeplitz matrix and two such matrices coincide if their first columns coincide,
we see that (2.3) and (2.4) imply equalities (2.1) and (2.2). O

By Jy, denote the matrix [|0; 1k nel} o For every Toeplitz matrix A the
equality
JnAd, = A (2.5
holds, where A’ is the matrix transpose of A. Multiplying equalities (2.3) and (2.4
from the left and the right by J,, and taking into account the identity J2 = I, we
arrive at the following statement.

)
)

Proposition 2.2. For the solutions of equations (1.1)=(1.4) the equalities
XOn:COflyfn,O _ an70261W0n (26)

and
Xnomalyfn,o — Zo,fnzo—lwno (27)
hold.

Let us introduce the matrices Py by

- -~ ~

e 0

Pk: €
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Since
P, Xon, = PkXOnPk7 XonPk = PkXO"Pk’

it is easy to see that from equalities (2.1) and (2.2) it follows that

Xorwg Venkn = Z—nk—nzy Wok (2.8)
and

K-k Yok = Zo,-k2y Wan—rk (2.9)

for k=0,1,...,n.
These equalities and (2.5) also imply the equalities

XOkl‘alY_n’k_n _ Z—n,k—nzalwok’ (210)
and
X"’”’kxalYO”k _ ZO,szo—lwn,nfk (211)
for k=0,1,...,n.
Proposition 2.3. The block matrices
Xon-1 Z—n,—-1
an ZO,lfn

o WO,n—l Wnl

are invertible.

Proof. Let us prove the invertibility of the matrix M. By direct verification we

check that
Ry O E 0
0 Rs3 R, FE

Ri=Z_,1(Z%" )" Ry = Xon-1 — R1 X",
R3 — ZO,lfn7 R4 — (ZO,lfn)lenl’

E Ry

M=y g

where E = [|0;xel|7 ;o and

From this equality it follows that the matrix M is invertible if and only if the
matrix Ry is invertible. In view of (2.11), we obtain

anxalyo,lfn _ ZO,lfnzo—lwnl'
Therefore,
—1yr/nl 0,1—n\—1
RQ = Xo,n,1 - Z,n},120 w (Y ) ZTo
—1y,0,1— -1 ,1 0,1-—n\—1
= (XO,n—lmo Y " —Z_n7_120 wn )(Y n) Zo-

Thus, according to Theorem 1.2, Ry = A, ', (Y*1~")"lz,. From here it
follows that the matrix Rs is invertible, and whence the matrix M is invertible,
too. Analogously it is proved that the matrix N is invertible as well. O
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Proposition 2.4. For the matriz

Z 0 z_, 0
M =1 Tn To 20 Z—n ||
0 Tp 0 20
the homogeneous equation
My =0 (2.12)
has a unique solution
X = {X*'ﬂ?'"7X*07X+0,"',7Xn} (213)
with the property
X—0=¢€, X40= —€. (2.14)

For the solutions w; and y—_; (j = 0,1,...,n) of equations (1.3) and (1.4)
the equalities
Wj; = —20X5, Y—j = ToX—j (.7 = 172,"',71) (215)
hold.
Proof. Indeed, from (2.3) and the equality
Y—n w1
anmal : — ZO,l—nzal :
Y- Wn,

which results from (2.11), it follows that the vector x defined by equalities (2.13)—
(2.15) is a solution of equation (2.12).

Let a vector x with the property (2.14) satisfy condition (2.12). Obviously,
then the equality

0
To 0 z_, 0 X—n :
0
Tp—1 .- Zo Z_1 z_ —1 —1
n " X = ZonZy Tp — X0 (2.16)
Tn e T1 20 e Z1—n X+0 |
Z1-n?y Tn — L1
0 Tn 0 20 Xn—1 .
-1
Z-129 Tp — Tnp-—1

holds. Since the vector x satisfies this equality, its components satisfy equality
(2.15) and the matrix on the left-hand side of equality (2.16) coincides with the
invertible matrix M, we conclude that the vector x defined by equalities (2.13)—
(2.15) is a unique solution of equation (2.12). O
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Note that the following statement is obtained as a byproduct.

Proposition 2.5. Fquation (2.16) has a unique solution. For its components, equal-
ities (2.15) hold and x+o = —e.

The following statements are proved analogously.

Proposition 2.6. For the matriz

Wo Wp, 0
N 0 wo W, ’
Y—n Yo 0
0 Y-n Yo
the homogeneous equation
wN =0
has a unique solution
w = {wfnw <oy W—0,W40;5 - - '7wn}

with the property

W—_p =€, Wip = —€.

For the solutions z; and z—; (j = 0,1,...,n) of equations (1.1) and (1.2),
the equalities

Tj = —WjiYo, =<Z2—j =wW_;jWo (] = 1,2,...,’[7,) (2.17)
hold.
Relations between the solutions of equations (1.1)—(1.4) for the matrix A =
laj—k ||’} x—o and the matrix A, = ||aj,k|\;l;i0 are obtained in the next state-
ments.

Proposition 2.7. The elements :c?_l, zf;l, wj”_l, yﬁ;l (j=0,1,...,n—1) defined
by the equalities

x?‘l =z — zj,nzo_lxn zﬁ;l =z_;— mn,jxalz,n, (2.18)
Wit =W = waly Yjens YT =Yg = Yonty W
are solutions of the following equations
n—1
> ajkrpt = dge (j=0,1,...,n—1), (2.19)
k=0

n—1
a2t = doje (j=0,1,...,n—1), (2.20)
k=0
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> wptaj o = dgje (j=0,1,...,n—1), (2.21)

S ytitar; = doje (j=0,1,....n—1). (2.22)

It is straightforward to verify this statement.

Proposition 2.8. Let the solutions m?_l and zf;l (j=0,1,...,n—1) of equations
(2.19) and (2.20) exist and the elements xi~* and z3~" be invertible. Then the

elements

gn - + Za k— 1Zk+1 n( 0 1) 1anv
(2.23)
Cn = Zak—&-lxn k— 1 71)_1ﬁn
are also invertible, where
=—z7 IZan P e I
B (2.24)
= _nglzak,nzﬁ; i
k=0
and the equalities
1'0:&.;,1» 202971, xn:angni,l, —n =B, n ,

xy= (2 N al ) T 2T (e )1an)g;1 (j=1,2,...,n—1), (2.25)

Z—j = (Zﬁ] lao(zo ) +mn 1( ) 16n)c_ (J:1a277n_1)
hold, where as usual solutions of equations (1.1), (1.2) are denoted by x;, z—;.
Proof. Indeed, putting

a; =y Yap™h)~ 1—1—2?:,1(2'8_1)710(” (1=1,2,....,n—1)

and ag = e, we get

Zaj EQ = Z aj_pxy 1 Ly Z aj—kz,_, zg 1) an + aj + aj_np.
From here it follows that

n n—1

n—1 n—1\y—1
E aj kO = E aj—k Ty, T+ E aj—rzy (2 L. (2.26)
k=0 k=0
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According to the definition of the elements x?_l and zﬁj_-l, from here we get

Y aj k=0 (j=12,...,n-1). (2.27)

Additionally, from (2.24) and (2.26) it follows that
n n—1
> an ko = Z an—rg (g )7
k=0 =
— Zan P 7 I ! Zan PR A 7 (2.28)

—(e—Zan k2 )Zan pry g =0.

From equalities (2.26) and (2.13) it follows that

Za,kak:xo +Za e 1zk+1 L2 e, = (2.29)
k=0

For solutions z; of equation (1.1) the equality

Zaj,kxkfn :(Sjofn (j:O,l,...,n)

k=0
holds. From the uniqueness of the solution of system (1.1) it follows that
a; =26, (7=0,1,...,n). (2.30)

In particular, e = ag = x¢&,,. Hence the element &, is invertible and is the inverse
of the element zy. This fact and equalities (2.27)—(2.30) immediately imply rela-
tions (2.25) for &,, an, and x;. Relations (2.25) for &,, B, and z_; are proved
analogously.

The statement is proved. O

The following statement is proved analogously.

Proposition 2.9. Let the solutions w?fl and y’j;l (j=0,1,...,n—1) of equations

(2.21) and (2.22) exist and the elements wj~" and y3~* be invertible. Then the
elements

n—1

6= (wp )" = D (5 ) T e ek,
k=0

= (Yo '+4, Z )Y T Akt
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are also invertible, where

n—1
_ n—1 1 — n—1
Tn = E(wo ) Wy an—-kYy
kf
n
—1\—1 —1 —1
5n:_§ (yg ) yﬁk ak—nw{} s
k=0

and the equalities

wo :6;1’ y0=77;1’ wnzer:l’)/m y—n:'m:l&m
wi =0, (w7 e Y ) (=1,2,...,n—1),  (231)

v = ()T ) TS (=12 n )
hold.

The successive application of formulas (2.25) and (2.31) to all minors A,
(r=0,1,...,n) allows us to give a rule for the effective calculation of the solutions
of equations (1.1)—(1.4) in the case when all minors A, are invertible.

Formulas (2.25) and (2.31) can also be applied without the assumption that
all the minors A, are invertible. Consider the case when 2( is a Banach algebra
and not all minors A, are invertible. Suppose

AN) = Hajk(/\)”?,k:o

is a matrix function that is holomorphic and invertible in some (connected) domain
G C C and whose entries belong to 2. Assume that 0 € G, A(0) = A, and there
exists some point Ag € G such that all minors

Ar(Ao) = llaj—k(Ao)ll7 k=0

are invertible. Then for all A in some neighborhood of the point A the solutions
z(A), 22 ;(N), wi(A), and y” ;(A) of equations (1.1)—(1.4) for the matrix A,(})
exist. These solutions are holomorphic functions. Moreover, the functions z{(\)
(= y§(A)) and zi(N) (= wi(N)) are invertible in a neighborhood of the point Ag.
Thus the functions 27 ()), 2 ;(A), w}(A), and y” ;(A) can be calculated with the
aid of the recurrent formulas (2.25) and (2.31). Since the matrix A(\) is invertible
for all A\ € G, we see that for all A € G, there exist solutions z;(X), z_;(\),
w;(A), and y_;(A) of equations (1.1)—(1.4) for the matrix A(X). These solutions
depend on A holomorphically in G. It follows that the functions 27 (}), 22;()),
wi(A), and y” ;(A) admit continuations holomorphic in G, which coincide with the
functions z;(A), z—;(A), w;(A), and y—;(A). Obviously, z; = z;(0), z—; = 2—;(0),
wj = w;(0), and y_; = y—;(0).

Note that in the case when 2 is the algebra of quadratic matrices C,,xim, a
function A()\) satisfying the above assumptions always exists. For instance, one

can take A(N\) = A— A or AN) =A—-\A-1).
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3. Inverse problem

Theorem 3.1. Let wj, z;, y—j;, 2—; (j =0,1,...,n) be given systems of elements in
A and the elements wg, xg, Yo, 20 be invertible. For the existence of an invertible
Toeplitz matriv A = |\aj_k||2k:0 with elements a; € A (j = 0,£1,...,%£n) such
that wj, xj, y—;, z—; are solutions of equations (1.1)—(1.4) it is necessary and
sufficient that the following three conditions be fulfilled:

1) zo = yo and zop = wy;

2)
Xon:calY,n}O = Z,n}()zoilW()n, (31)
Xn()malYVO,—n = ZO,—n261Wn0§ (32)
3) at least one of the matrices
Xon-1 Z_pn—1 won=t W,
M= , N=
an ZO,nfl an,fl YO,lfn

is invertible.

If conditions 1)-3) are fulfilled, then both matrices M and N are invertible
and the matriz A = |laj—||} ¢ is uniquely determined by formula (1.5).

Proof. The necessity of condition 1) is obtained in the proof of Theorem 1.1 and
the necessity of conditions 2) and 3) is proved in the previous section. We shall
prove the sufficiency of the hypotheses of the theorem. For definiteness, suppose
that the matrix M is invertible. Consider the matrix B = ||bjx ||} _, defined by
the equality

B = Xopxy 'Y — Z_, 25 tWT,

where
0 - 0 O 0 w, ... wi
G| 0 =
. '. '. . 0 '.' wn
Z.1 ... 2z_.p O 0 0 0

Let us show that the matrix B is invertible.
It is easy to see that in view of the invertibility of the elements xy and zy,
the invertibility of the matrix M implies the invertibility of the matrix

XOn an,fl
)Z'nl ZO,fn

M =

By a straightforward verification it is obtained that
’ Ry 0 H E 0

T E El
~ ~ 3.3
H 0 R3 R4 FE ’ ( )

M =
0 FE
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where B _ B o
Ri=27Z_p,1(Z2% ™)™, Ry =X, — R1X™,
E?) — ZO,fn’ §4 — (ZO,fn)fl)?nl’
Hence the matrix Rs is invertible. From equality (3.2) it follows immediately
that
anxalyo,fn — ZO,*’I’LZO—1VV’I’7,17
whence
Ry = (Xonwg YO = Z_py 125 ' WH(YO77) g,
Thus
B = Ry, 'Y "
and this implies that B is an invertible matrix.
Put A = |ajx[7 —o- Obviously, in view of condition 1),

boj =Y—j, bjo =Ty (j:O,l,...,n). (34)
Moreover, equality (3.2) implies, in particular, that the equality

k k
~1 1
§ Tn—rLy Yr—k = E Z—rZy Wn—k+r (k =0,1,..., n)
r=0 r=0

holds and equality (3.1) implies that

J J
-1 . 1 .
E TjrZy Yr—n = E Zj—n—rzy wr (3=0,1,...,n).
r=0 r=0

From here it follows that
k
Wn—k = Z(xnfrxalyrfk - Z*lfrzoilw'rH»lJrrfk:)
r=0
and
J
Zj—n = Z(xjfrxalyrfn - an71+jfrz()71w1+r)~
r=0
By the definition of the matrix B, the expressions on the right-hand sides of the
last equalities coincide with the elements by, and bj,, respectively. Hence

bnk = Wp—k, bjn = Zj—n- (35)

From equalities (3.4) and (3.5) it follows immediately that the elements z;, z_;,
wj, and y_,; are solutions of equations (1.1)—(1.4), respectively, for the matrix A.
It remains to prove that the matrix A is a Toeplitz matrix. We put

AW = Hajk”?,;iov AP = ”aij?,k:l'

Clearly, it is sufficient to prove that A = A,
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Obviously, the equalities

e ... O 0 e ... 0 z_,
Do : : I : 1)
S A EEA
0 e 0 0 ... e 2z 0 2
Wn w1 Wo 0 0 20
and
Yo Y-1 -+ Y-n o 0 ... O
0 e 0 A m.l e 0 2o 0
: : . : - .o 0 A®
0 0o ... e z, 0 ... e
hold. From here it follows that the matrices A®) and A are invertible and
e ... 0 z_, e ... 0 0
BeA-l—|: o ¢ H (A)~1 91 ’ : o :
0 ... e z_1 0 20 0O ... e O
0 0 2 W, w1  Wo
Lo 0 0 Yo Y-1 Y—n
|l e 0 ! 0 0 e 0
N : : 0 (A®)-t :
x, 0 e 0 0 e

Putting |[07, | ?1;:10 = (AM)~1 from the last equality we deduce that

1 —1 2 —1
b]‘k = bjk: + 2wy  Wn—k, bjk = bjfl,kfl + iy Y—k-

Therefore,

-1 —1 —1
($j,7~$0 Yr—k — Z—n—1+j-r20 wn+1+r7k:) — Zj—nWy Wn—k

=
l
(]

ik =
K

I
<)

-1 -1
($j,7~$0 Yr—k — Z—n+j—r<g wn+r7k)

I
NE

<
I
<)

and
n
bfk = Z(xﬂkrﬂﬁ&lyrwq — 22y Wnr—k) — Tjs1Tg Yk
r=0
n
= (@@ Yr k= ZomijorZ) Wngrok).
r=0
Hence A = A®)| This means that A is a Toeplitz matrix.
The uniqueness of the matrix A follows from Theorem 1.1. According to it,
equality (1.5) holds for the matrix A.



26 I. Gohberg and G. Heinig

The theorem is proved under the assumption that the matrix M is invertible.
Analogously, it is also proved in the case when the matrix N is invertible.
The theorem is proved. O

Theorem 3.2. Let z; and z—; (j = 0,1,...,n) be given systems of elements in A
and the elements xg and zg be invertible.

For the existence of a Toeplitz matriz A = |laj— |} -y with elements a; € A
(j = 0,£1,...,4£n) such that x; and z_; are solutions of equations (1.1) and
(1.2), respectively, it is necessary and sufficient that the matrix M be invertible
and that for the vector

0
X-n ,
1 0
Xo ||[=M 1 (3.6)
Z_nZy Tm — X0
Xn—1 3
212y T — Tp—1

the condition xo = —e be fulfilled.
Under these conditions, solutions of equations (1.3) and (1.4) are given by
the equalities

Y—j = ToX—j (]: 1727"'7’”’), Yo = To, (37)
w; =—2x; (=01,....,n—1), Wy = T, 3.8)
and the matriz A is uniquely determined by equality (1.5).

Proof. Assume that the hypotheses of the theorem are fulfilled. With the aid of
equalities (3.7) and (3.8) we introduce the systems y_; and w; (j = 0,1,...,n).
Equality (3.6) can be rewritten in the form

T _
i) 0 Z_n 0 0 Y-n
i ' ' ' ' o
Ty ... To 20 ... Z_n o, =0. (3.9)
—Zy wo
0 Ty 0 20 1
—2; Wp,

It is easy to check that the last equality implies relations (3.1) and (3.2) and vice
versa. Since additionally g = yo and zp = wp, we see that the systems z;, z_;,
wj, and and y_; satisfy all the hypotheses of Theorem 3.1.

Let us prove that the converse statement also holds. If the matrix A exists,
then in view of Theorem 3.1 equality (3.9) holds and the matrix M is invertible.
From here it follows that equalities (3.7) and (3.8) hold. In view of condition 1) of
Theorem 3.1 from (3.8) it follows that xo = —e.
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The theorem is proved. |
The following theorem is proved analogously.

Theorem 3.3. Let w; and y—; (j =0,1,...,n) be given systems of elements in A
and the elements wy and yo be invertible.

For the existence of a Toeplitz matriz A = |la;j—|} ;—o with elements a; € A
(j=0,£1,...,%n) such that w; and y_; are solutions of equation (1.3) and (1.4),
respectively, it is necessary and sufficient that the matriz N be invertible and that
the vector

||w7n7 ceey WOy ,wn,1|| - ||07 cee ,vany()ilyfn — Wo, ... ,wny()ilyfl - wn71||N_1

have the property wg = —e.
Under these conditions, solutions of equations (1.1) and (1.2) are given by
the equalities

Tj = —WiYo (j:O,l,...,n—l), Tn = Wn,
Z—]:wf‘]wo (j:172,...,n), Z():wo,
and the matriz A is uniquely determined by equality (1.5).

The next theorem gives a rule for calculating the elements a; by solutions of
equations (1.1), (1.2) or (1.3), (1.4).

Theorem 3.4. Suppose xj, z—; (j = 0,1,...,n) are given systems of elements in
2 that are solutions of equations (1.1) and (1.2) for some matriz A = |[a;— ||’} o
with the invertible minors A, = [laj—gl|} ,—q (1 = 0,1,...,n). Then the elements
a; (j =0,%1,...,%£n) are determined by the recurrent equalities

T
ar == ar_xi(zg)
k=1

r 3.10
Gy = — Zak—rzik(zg)_l7 (T =12.. '?n)’ ( )
k=1

ao = (x0) ™" = (29)7",

where the elements xj, and 2", are given by the recurrent formulas

n n p—
Ty = Tk, R = "=k
r—=1 _ _r r r\—1,r r—1 _ _r r r\—1,.r
20 =2l = (wg) TRl T =g — 2, (30)
and the elements xf, and zf (r =0,1,...,7) are invertible.

Proof. Successively applying Proposition 2.8, we see that for the elements 27 and
z; the equalities

T T
Z aj_k.l“}; = (5]‘06, Zak_jzik = 6j0€ (j = 0, 1, .. .,’I“) (3.11)
k=0 k=0
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hold. The invertibility of the elements xf and z§ follows from the invertibility of
the minors A, and the equalities

zg 0 ... 0 e a_1 ... a_,
i e ... 0 0
Ar . . . . -
Doon e Ay
z;, 0 e 0
and
e ... 0 2, 0
AT‘ E ..' E E = AT*I
0 ... e 2,
0 ... 0 2z ar ... a1 e

Equality (3.11) with j = r implies formulas (3.10).
The theorem is proved. t

4. Other theorems on inversion of Toeplitz matrices

In this section the inverse of the matrix A = |la;j_x||}—o, where a; € 2 and j =
0,+1,...,+n, is constructed with the aid of solutions of the following equations
> ajkre = doje (j=0,1,...,n), (4.1)
k=0
Zwkaj,k = 50j6 (j :0,1,...,n), (42)
k=0
n
Y ajgsk = dye (G=12,...n+1), (4.3)
k=0
n
D tkajk = dye (G=1,2,...,n+1), (4.4)
k=0

where a,1 is an arbitrary element in 2(, as well as with the aid of solutions of
equations (4.1), (4.2) and the systems

Y ajpur = dpe (j=0,1,...,n), (4.5)
k=0

n
> wkajk = dpe (j=0,1,...,n). (4.6)
k=0
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It is easy to see that if the systems =, w;, s;, and t; are solutions of systems
(4.1)-(4.4), then the systems z;, w;, u;, and v;, where

n
Uj =385 — Ty E A_pSy
r=0

and

n
v; = tj — E tra,rwj,
r=0

satisfy equations (4.1), (4.2), (4.5), and (4.6).
Note also that if equations (4.1) and (4.2) are solvable, then z,, = w,. Indeed,

n n n n
Wp = E Wn—k E Qf—5T5 = E E Wp—kQk—j5 | Tj = Tp-
k=0 j=0 j=0 \k=0

The equalities s, = Wy, Un_1 = Vp_1, Uy = Wp_1, and v, = T, _1 are proved
analogously.

Theorem 4.1. Let A = |a;j—|},—o be a Toeplitz matriz with elements a; € A
(j = 0,£1,...,£n) and let for some any1 € A equations (4.1)—(4.4) be solvable
and the element ., (= w,) be invertible.

Then the matriz A is invertible and its inverse is given by the formula

A7 = |z, wn | T k=0
S0 0 ... 0 0 wp, ... w1
S1 So PN 0 1 :
+ x; . . . .
: : . : 0 0 ... w,
Sn Sp—1 ... S0 0o o0 ... 0 (4.7)
To 0 ... 0 0 t, ... t1
X1 Zo 0 .
1 . . . .
_ z Do :
0O 0 ... t,
Ty Tp—1 ... X0 O 0 ... 0

The proof of this theorem is based on the next lemma similar to Lemma 1.1.

Lemma 4.1. Let V be a linear space, L(V) be the algebra of all linear opera-
tors acting in V, A = [|A;_k[|} 1o be a Toeplitz matrizx with elements A; (j =
0,%1,...,4n) in L(V), and A1 € L(V).

If the systems of equations

N A Xy = Sl (j=0,1,...,n), (4.8)
k=0

n
S Widj = Gl (j=0,1,...,n), (4.9)
k=0
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n
S A kS = byl (j=1,2,...,n+1), (4.10)
k=0
n
N Tidjx = oyl (G=1,2,...,n+1) (4.11)
k=0

are solvable in L(V), and the operator X,, (= W,,) is invertible, then the matriz
A is also invertible.

Proof. Let the hypotheses of the lemma be fulfilled. As above, by V,, denote the
linear space of one-row matrices ¢ = {¢;}7_, with entries p; € V.
If a vector ¢ = {p;}7_y (# 0) belongs to Ker A, then

n

o= (WA ) =S W (ZAJ.M) o
k=0 \J =0 k=0

0

n n

1= (D Vaidjk | o=V, (Z Ajk%%) =0.
=0 i=0 k=0

k=0

Here we take

n
Vi =T} — ZTTA_er (k=0,1,...,n).
r=0
These operators satisfy the equation

Z‘/}Ak_j :6k1] (k:O,l,...,n).

j=0
For an arbitrary vector ¢ = {p;}}_5 € Ker A (# 0), by p = p(p) denote
the number such that ¢1 = 2 = --- = ¢, = 0 and ¢p41 # 0. It is obvious that

p(p) <n —2 for every p € Ker A (#0).
Let p* = max p(p) (¢ € Ker A) and let h(# 0) be a vector in Ker A for which
p(h) = p*. Introduce the vector h* = {hj}?zo by setting

" hisy i j=1,2,...,n,
S ) if j=0.

From the equalities

ZAj*kh-k‘r = ZAjfkhkfl = ZAjflfkhk (] = 1,2, .. .,TL),
k=0 k=1 k=0

n n n n n
S Wai > Al =Wa Y AR+ Wai YA kb
Jj=0 k=0 k=0 j=1 k=0

and the invertibility of the operator W, it follows that h* € Ker A. Since h™ # 0
and p(h*) > p*, this leads to the conclusion that Ker A = {0}.
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To finish the proof, consider the operator B defined in the space V7, by the
matrix HA;L,CHZ,C:O consisting of the adjoint operators to the operators A;_.
Passing to the adjoint operators in equalities (4.1)—(4.4), we obtain that the op-
erator B satisfies all the hypotheses of Lemma 4.1. Hence, in view of what has
been proved above, Ker B = {0}. Obviously, B’ = A*, where B’ is the ma-
trix transposed to B. Moreover, J,,BJ, = B', where J,, = |[§;+xn!|} o Thus
dim Ker A* = dim Ker B’ = 0. Since dim Ker A* = dimV,,/AV,,, we see that the
operator A is invertible.

The lemma is proved. O

Note that, in fact, we have proved the following statement simultaneously
with Lemma 4.1.

Lemma 4.2. Let A = [|Aj_||} 4o be a Toeplitz matriz with elements A; (j =
0,%1,...,%n) in L(V).

If for some operator An+1 € L(V) the systems of equations (4.8), (4.9), and
the systems

ZAjkak:(sle (j:O,l,...,n),
k=0

n
Y ViAjp=6ul (j=0,1,...,n)
k=0

are solvable in L(V), and the operator X,, (= W,,) is invertible, then the matriz
A is invertible.

One can make a remark about Lemmas 4.1 and 4.2 similar to the remark
following Lemma 1.1.

Proof of Theorem 4.1. From Lemma 4.1 it follows that the matrix A is invertible.
This statement is proved in the same way as in the proof of Theorem 1.1. Let us
prove formula (4.7). In view of (4.1) and (4.2) the equality

Wy Wp—1 ... W e ... 0 x
0 e ... 0
A : :H 0 2n ‘ (4.12)
: : ", : 0 ... e xp-1 A0
0 0 ... e 0O ... 0 =z,

holds, where A = ||aj,k+1|\;l;i0. From here it follows that the matrix A is invert-
ible and

e ... 0 x Wy, Wp_1 ... Wo

A*l 0 ;[71 ‘ 0 e 0
B 0 ... e xp_1 z,! 0 : :

0O ... 0 =x, 0 0 ... e
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Putting A~ = [|ej[7mg and A71 = [[&x]|7 Ly, we get
Cjk = Cj k-1 —l—:cjx;lwn,k (G=0,1,....n=1, k=1,...,n),
(4.13)
Cjo = Tj, Cpk = Wn—k (J,k=0,1,...,n).
Relations (4.1)—(4.4) imply the equalities
Wy Wp—1 wo so O 0
: : : 0 A
0 0 e Sn O e
(4.14)
e 0 O e 0 =z
Wy _ H A 0 ’
0 e O 0 e Tp—1 0
tn t1 to 0 0 =z
where A = laj—k+1l} x—o- Since the elements x,, and wj, are invertible, from the

first equality it follows that the matrix 1{ is right-invertible. The second equality
yields the left-invertibility of the matrix A. Thus, the matrix A is invertible. Also,
(4.14) implies the invertibility of the elements sg, tg and the equality

So 0 ... 0 Wp  Wn-1 Wo

. s e 0 b0 0 e .0

o I | z
s, 0 e 0 0 e
(4.15)
e 0 o e 0 O
R (k| T

0 ... e Zn_ 0z, 0 e 0
0 ... 0 =z, tn t1 to

Thus, for the entries ¢; (j,k=0,1,..

~ ~ 1 o~ -1
Cjk = Cj—1,k—1 T SjTp, Wn—k = Cjk + XL, tn_k

.,n) of the matrix A~! the equalities

(J,k=1,2,...,n),

~ 1 ~ —1

Cok = S0, Wn—k = Cok + Tox,, tn_k (k=0,1,...,n),
~ 1 o~ 1 .

Cjo = 8§, Wp = Cjo + T, tn (j=0,1,...,n)

hold. Therefore,

/C\jk :Ejfl,kfl +ij;1wn,k —:Ej:c,jltn,k (],k = 1,2,...,n), (416)
Cok = 80T, Wy _k — ToT), (k=0,1,...,n), (4.17)
Cio = sy, wy, — 7, (7=0,1,...,n). (4.18)
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Equalities (4.16)—(4.18) immediately imply the formula

n—1
Ejk = Z(sj,r:cglwn,;ﬁr — xj,rxgltn,lﬁr). (419)
r=0
Now taking into account (4.13), we obtain
n
Cjk = Z(sj,k:c,jlwnﬂ,mrr —:cj,r:c,:ltnﬂ,kH)+xjx;1wn,k (j,k=0,1,...,n).
=0
It is e;sy to see that this formula coincides with formula (4.7).
The theorem is proved. O

The following theorem is analogous to Theorem 1.2.

Theorem 4.2. Let the hypotheses of Theorem 4.1 be fulfilled. Then the matriz A=
Haj_k+1||?;i0 is invertible and its inverse is given by the formula

0

0

50 Wp  Wn—-1 w1
~ S1 So 0 . 0 Wn, Wo
A7 = n : : :
Sn—1 Sn—2 S0 0 0 w
" " " (4.20)
Xo 0 O tn tnfl tl
X1 Zo 0 0 tn t2
= ol | I .
Tn—1 Tp—2 Zo 0 0 tn

Proof. The invertibility of the matrix A follows from equality (4.12) and the in-
vertibility of the element x,,. Formula (4.20) follows immediately from formula
(4.19). The theorem is proved. O

Corollary 4.1. Let the hypotheses of Theorem 4.1 be fulfilled. Then the inverse of
A is calculated by the formula

Ty Tpe1l ... X1 to 0 ... 0
~ 0 Tn T2 tl t() 0
A71 _ ) ] x;l
0 0 €T t -1 t —2 ... t()
" " " (4.21)
Sn Sp—1 ... S1 wWo 0 . 0
0 Sn ce S9 w1 wo ce 0
-1
— z,
0 0 . Sn Wp—-1 Wp—2 ... wo

Proof. Indeed, analogously to eqns. (4.17) and (4.18) from (4.15) it follows that

1

~ —1 ~ -1 —
Cn—-1k—1 = tn—k — SnTp, Wn—k, Cj—1n-1=TjTy tn — ST, Wo-

These equalities and equality (4.16) immediately imply (4.21). O
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Corollary 4.1 and equality (4.13) imply the following.

Corollary 4.2. Let the hypotheses of Theorem 4.1 be fulfilled. Then the inverse of
A is given by the formula

AT = [y fwp— k| =0
0 z, 1 to 0 ... 0
: L tq to ... 0
+ Ty, . . .
0 0 T :
0 0 tn th—1 to
Spn ... S1 wo 0 0
w1 wo 0
_ . . .13;,1 ] ]
0 0 ... s,
o 0 ... 0 Wy Wp—1 Wo

Theorem 4.3. If for a matriz A = ||aj,k|\;?,k:0 (a; € A,5 =0,£1,...,£n) equa-
tions (4.1), (4.2), (4.5), and (4.6) are solvable and the element x.,, is invertible,
then the matrixz A is invertible and the equality

A7V = laja, twn k]| ko
() 0 0 0 Wn, w1
U1 Ug 0 1 : :
+ ; . .
0 0 W,
Up Up-—1 uo 0 0 0
o 0 0 Up, V1
T @ 0 N | I : (4.22)
: " 0 0 Up,
Tp  Tp—1 To 0 0 0
To 0 0 0 w, w1
T Ut et |
x> (v — up)x .
" "o o0 wy,
Tn Tp-1 Zo 0 0 0
holds.

This theorem generalizes one statement from [2] proved in the case 2 = C.

In that case the last summand on the right-hand side of equality (4.22) is equal to
zero. Note that, probably, Theorems 4.1 and 4.2 are new even in the case 2 = C.

Proof. The invertibility of the operator A follows from Lemma 4.2.
It is easy to see that

(4.23)

Tj=58; — ;% Sp = Uj — T;T, Up
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and

~ -1 o -1, .
W; =t; —spx, wj =v; —vpz, w; (j=0,1,...,n),

where Z; and @; are solutions of the equations

n—1

(Z]‘,kﬁk = 6j06 (j:1,2,...,n), (424)
k=0
n—1
> wkajk = djoe (Gj=1,2,...,n). (4.25)
k=0

From Theorem 4.1 and formulas (4.23) it follows that

n

—1 —1 —1
Cjk = E (Sj—rTy Wnplebar — Tj—rp tpgpl—kar) + TjT, Wo_k
r=0

n
-1 -1 -1
= E [(uj_,n —Xj—rXy Un + Tj—p T, sn)mn Wyt 1—k+r
r=0
] 71( -1 -1
— T Ty (Untl—ktr — SnTp Wntl—kt+r + Unly, wn+1—k+r)
-1
+ T, Wh—k-
Hence,

n
—1 —1
ik = (i vy " Wns1—kr — Ty Vi1 ke
r=0
—1 —1 —1
+zi_rx, (U — un)z, wn+1_k+,n) + %, Wn—k-
This formula coincides with (4.22).

The theorem is proved. O

The following statement is analogous to Theorem 4.2, and its proof is similar
to the proof of the above theorem.

Corollary 4.3. Let the hypotheses of Theorem 4.1 be fulfilled. Then the matriz
A= ||aj_k+1|\?,;i0 is invertible and its inverse is constructed by the formula

UQ 0 ... 0 Wy Wp—1 .. W1

—~ (V51 () N 0 0 W, N w2
A—l o SC_l

B : : .. : n

Up—1 Up—2 ... UQ 0 0 L. W

To 0 ... 0 VUp Un—1 ... U1

T To ... 0 . 0 Up, R
_ z,

Tpn—-1 ILp—2 ... Zo 0 0 . Un
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To 0 ... 0 Wn Wp—1 ... W1
T o . 0 0 W, . wa
—1 —1
+ . . . B | (T T
Tpn—-1 Lp—2 ... i) 0 0 .- W,

We mention also the following statement.

Corollary 4.4. Let the hypotheses of Theorem 4.1 be fulfilled. Then the matriz A
is invertible and its inverse is constructed by the formula

AT = Jlajay  wnkl[ ko
53\0 0 0 0 0 W, wo w1
i‘\l .53\0 0 0 0 0 w3 w2
+ x;l
Zv\n_l i‘\n_g ./fo 0 0 0 0 W,
0 Tn—1 1 To 0 O 0 0
o 0 0 0 0 0 1/1)\”71 ’&71
T Zo 0 0
. . . . . -1 ’ ’ . o
- : : o [ Tn 0 0 0 cer Wp—1 |0
ITn—1 Tp—2 ... Zo 0 0 0 0 PN 0
Tp Tp_1 ... T1 To 0 0 0 - 0

where Z; and w; (j =0,1,...,n—1) are solutions of equations (4.24) and (4.25),
respectively.

This statement is proved in the same way as Theorem 4.3 with the aid of
equalities (4.23).

Note that for all presented propositions one can formulate dual statements.
They can be obtained by passing to the transposed matrices with the aid of the
transformation J,AJ,,.

Corollary 4.5. Let the hypotheses of Theorem 4.1 be fulfilled, A™! = ekl k=0

and A1 = |Gl k- Put

n n—1
c(¢,0) = (07, 2C.0) =Y enlor,
J,k=0 4,k=0

where ¢ and 0 are complex variables. Then
co(¢,0) = (0= (s(Qzy w(@) — x(Q)x, ' 1(0))07"
+(Q)x, w(0)07, (4.26)
a¢,0) = (1= (s(Qay tw(8) — x(C)x, M 1(6))07™, (4.27)
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where
z(() = ijgj, s(Q) = Zsj(j, w(f) = Zwkek, t(0) = Ztkek.
J=0 j=0 k=0 k=0

Proof. Indeed, the equality
n+1

(1=¢O71e(¢,0) = Y (ejn —cjrp-1)¢707F

J,k=0

holds, where we set cj; = 0 if one of the numbers j, k is negative or is greater than
n. In view of formulas (4.13), (4.16)—(4.18), we obtain

n+1
(1—¢07Ye(¢,0) = Z (2j@pWn—g — Tj 1T, Wn—jg1 + S5T;, Wn—ji1
4,k=0
+ ijglwn,]H,l - :C]{C;ltn,k+1)cj97k.
This implies formula (4.26). Formula (4.27) is proved analogously. O

5. Properties of solutions of equations (4.1)—(4.4)

This section is similar to Section 2. In this section main properties of the solutions
of equations (4.1)-(4.4) are obtained. Here the notations of Section 2 are used.
Suppose that A = |la;—xl|}1—¢ (a; € ™A, j = 0,£1,...,£n) is a Toeplitz matrix
and an41 is an element such that all equations (4.1)—(4.1) have solutions and,
moreover, the element x,, (= w,) is invertible.

Proposition 5.1. For solutions x;, w;, sj, t; (j =0,1,...,n) of equations (4.1)-
(4.4), the relations
Snlx;IWnl _ Aanx;LlTnl7 (51)
Son.ﬁ;lWon = X0n$;1T0n (52)
hold.
Proof. Indeed, since ¢,x = wy_i, where A™! = ||Cjk||?7k>=0, according to Theo-
rem 4.1 we have
k—1
Wp—k = Wp—k + Z (Snfrx»;lwn+lfk+r - mnfrx»;ltn+1fk+r)~
r=0

From here it follows that
| sn oo st flzptW = @, oo @ |t

Taking into account that a product of two upper triangular Toeplitz matrices is
again an upper triangular Toeplitz matrix and that two such matrices coincide if
their first columns coincide, we see that the last equality implies equality (5.1).
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Let us prove equality (5.2). From equality (4.15) it is easy to derive the
relation
s, fwg = xox;, Hto. (5.3)
From Theorem 4.1 it follows that
J
Cjn = Z(sj,rxglwprr — Tz ) + Tz, wo.
r=0
According to Corollary 4.2, we have
Cin = $j+1$;1t0 — 8j+1$;1w0 + $j$;1w0 (j =0,1,...,n— 1),
Cpn =— Wo.

Comparing the last two equalities, we get

s1 S ... O wo 1 X0 0 to
ol _ ) a1
Spn ... 81 So Wy, T, ... X1 Xo tn
From here and (5.3) it follows that
wWo to
Sonz ! = Xonz,*
Wy, tn
The last equality immediately implies (5.2).
The proposition is proved. U

Multiplying equalities (5.1) and (5.2) from the left and from the right by a
matrix J,,, in view of (2.5) we obtain the following equalities:

Sz, War = Xz, T, (5.4)
SOy Aw o = xOng trOm, (5.5)
Notice also that the equalities
Snkg—twnk — xnkg—tpnk G a YW = Xk, Mok, (5.6)
where Kk =1,2,...,n, and
Ska;1W0k = XkangOk, SOkCL':LlWOk = XOkSL';LlTOk (57)

where k = 0,1,...,n, are easily derived from equalities (5.1), (5.2), (5.4), and
(5.5).

Proposition 5.2. The block matrices
Son-1 Xon-1
Snl an

0,n—1
7Y™ Th1

, L=
WO,nfl Wnl

are invertible.
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Proof. Indeed, from the obvious equality

ER1H320 ’

0 F 0 Rs3
Ri=Xon-1(X")"', Ry =Sp,_1—RiS™,
R3 — an’ R4 — (an)—lsnl’

E
Ry

b o

)

|

where E = [[0;xel|7 ;—, and

it follows that the matrix K is invertible if and only if the matrix R is invertible.
By Proposition 5.1, the equalities

Ry = Son—1— Xopn-1(X") 71" = Sp -1 — Xojn—rz, T (W) 2,
hold. Hence
Ry = (So 12, ' W™ — X 12, ' T"H (W™ "L,
Thus, according to Theorem 4.2,
Ry = A" (W™) g, (5.8)

This implies the invertibility of the matrix Ro, and of the matrix K as well.
The invertibility of the operator L is proved analogously. The statement is
proved. U

Proposition 5.3. Let

S0 0 0 To 0 0
S1 So 0 X1 Zo 0
I? = Sn  Sp—1 ... So p Xp—1 ... X0
0 Sn, ... s O Ty R 21
0 0 ... s, O 0 ... Tp

Then the homogeneous equation
Ky=0 (5.9)

has a unique solution X = {X0,---,Xn,X0s- - Xn} With the property x, = e.
Moreover, for this solution the equalities

Wk = TpXk, tk=—TnXp (k=0,1,...,n) (5.10)
hold.

Proof. Indeed, equalities (5.1) and (5.2) immediately imply equality (5.9) if the
elements xj are given by formula (5.10). Let us show the uniqueness of this solu-
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tion. Let x be a solution of equation (5.9) with the property x,, = e. Then from
(5.9) it follows that

X0 0
' 0
K| Xt = (5.11)
-1
Xo TOT,, Sn — S0
X" ~1,
n—1 Tp—1%, Sn — Sp—1

and y,, = —x,, 1sp.

In view of Proposition 5.2, this implies the uniqueness of the solution with
the given property.

The proposition is proved. O

The following statement is proved analogously.

Proposition 5.4. For the matriz

to ti ... tn 0 ... 0
0 to ... tp_1 tn 0
F_||o o te  t tn
T wo wn W, 0 0 ||’
0 wWo Wp—-1 Wn 0
0 0 wo w1 Wn,
the homogeneous equation N
wL =0 (5.12)
has a unique solution w = {wo,...,wn,w),...,wh} with the property w, = e.

Moreover, for this solution the equalities
Tk = WpWp, Sk = —wiw, (k=0,1,...,n) (5.13)
hold.

The following statement is obtained by a straightforward verification.

Proposition 5.5. Suppose equations (4.1)—(4.4) have solutions x;, w;, s;, and t;
(j=0,1,...,n) and the elements xo,wo, and x,, are invertible. Then the elements

x?_l, w?_l, s?_l, and t?_l (j=0,1,...,n—1) defined by the equalities
n—1 __ . —1 n—1 _ 4. -1,
Ty =841 — Tj41To S0, Wy = tip1 — oWy Wy,
1 1 (5.14)
n—1 _ o _ .. p—1 n—1l _ 4 _ =1,
5; T =85 =TTy Sn, by " =1 = Sp%, W

are solutions of equations (4.1)—(4.4) for the matriz A,_1, respectively.
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6. Inverse problem for equations (4.1)—(4.4)

In this section the problem of reconstruction of the matrix A from solutions of
equations (4.1)—(4.4) is solved.

Theorem 6.1. Let x;, w;, s;, and t; (j =0,1,...,n) be given systems of elements
in A and the elements x,, and w, be invertible. For the existence of an element
ant1 € A and a Toeplitz matriz A = ||laj—gl|7,_o with elements a; € A (j =

0,£1,...,%n) such that z;, wj, s;, and t; are solutions of equations (4.1)—(4.4),
it is necessary and sufficient that the following conditions be fulfilled:
is invertible;

4) one of the elements so,to is invertible.

If conditions 1)—4) are fulfilled, then both matrices K and L and both elements
so and ty are invertible. Moreover, the matriz A and the element a,+1 are uniquely
determined by the systems x;, w;, s;, and t;.

1) zp = wy;
2) Snlg twnl = Xy 1T and Sona;, *Won = Xonty, " Ton;
3) one of the matrices

Son-1 Xon-1

Snl an

0,n—1

7Y™ Tt
0,n—1

wo.n Wi

Proof. The necessity of the first condition was obtained in Section 3, the necessity
of conditions 2) and 3) was proved in Section 4. The invertibility of the elements
sp and to was established in the proof of Theorem 4.1.

Let us show the sufficiency of the conditions 1)-4). Assume for definiteness
that the matrix K is invertible. Put

~ ~. n—1 -1 1 -1 1
C= ||Cjk| §,k=0 = So’nflxn Wt — Xo’nflxn "

The matrix C is invertible. Indeed, it is easy to show that the invertibility of the
matrix K implies the invertibility of the matrix D = Sy ,,—1 — X —1(X™) 718"
From condition 2) it follows that
D = Son-1— Xoporz, T (W™ ay,
whence,
D=CW™) 'a,.
Thus the matrix C is invertible. Put A = lla] ?gio.
Consider the matrix C defined by the equality
so 0 ... O Wy Wp_1 ... W
s1 e ... O =1 0 H 0 e .0

n

: 0o C
s, 0 ... e 0 0 ... €

C = [Iejllfr=0 =
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Obviously,
Ejk =Cj_1,k—-1 1 ij,;lwn_k (j, k=1,2,..., n),
o T o (6.1)
Cjo = Sj, Cok = So&, Wn—r (J,k=0,1,...,n).
According to the definition of the elements we have
Ejk - Ej—l,k—l = sjm,:lwn_k — le“;ltn_k (J,k=1,2,...,n). (6.2)
This equality together with (6.1) implies the equality
Cik = Cjk + wjzy tor  (,k=0,1,...,n—1). (6.3)

From condition 2) it follows that

ZSJ v, w, = ij T, te (5=0,1,...,n).

This implies that

j—1
Z(Sj_l_r$;1w1+7« - mj_l_rl‘;ltl_;_,«) = .L“j.ﬁ;lto — sjm,jlwo.
r=0
Obviously, the left-hand side of this equality coincides with the element ¢;_1 ,—1.
Therefore, in view of (6.1), the equality

Ejn = l‘jl‘;lto (64)
holds. The equality
Cnk = tn—k (6.5)
is proved analogously. From equalities (6.3)—(6.5) it follows that
e ... 0 x e ... 0 0
o= H ¢ 0 ‘ P (6.6)
0 ... e Tp_1 0 z, 0 ... e 0
0o ... 0 In tn e tl to
In view of condition 4), the matrix C is invertible. Put A = lajkll} koo = cL.

From the equalities ¢jo = s; and ¢p = tp—p it follows that the elements s; and
t,,—k are solutions of equations (4.1) and (4.2), respectively, for the matrix A.
From (6.1) and (6.6) it follows that

Wy Wp—1 ... Wo so 0 ... O
0 e ... 0 Al s1 e ... O ‘
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and
e 0 0 e ... 0 =z
: oAl e : :H A0 ’ (6.8)
0 ... e 0 0 ... e xp_1 0
tn, ... t1 to 0 ... 0 Tn
From the first equality it follows that aj; = @j_1 -1 for j,k = 1,2,...,n, and
from the second equality it follows that a;r = @j_1 -1 for j,k=0,1,...,n — 1.

Therefore the matrix A is a Toeplitz matrix. Put a; = ajo and a_; = ag; (j =
0,1,...,n). Consider the matrix

e ... 0 1z Wp Wp—1 ... W
A 0 e ... 0
O = : ‘ 91 ¢ H . . : (6.9)
0 ... e Tp—1 Ln 0 . ! .
0O ... 0 =z, 0 0 . e
and set A = [|a;i|},—o = C~'. From (6.7) it follows that
Wpn Wp—1 --. Wo e ... 0 =z
0 e ... 0 : ) . : 0
Al | = H S o ’ . (6.10)
: : . : 0 ... e xp_1 A0
0 0 ... € 0O ... 0 =z,

From this equality and equalities (6.7)—(6.8) the following relations can be easily
derived:

e ... 0 1z 0 ... 0 sg
: .. : : ~1l e ... 0 S1
All .o : =Al| . . L (6.11)
0 ... e xp_1 : S :
0 0 x, 0 e Sy
and
Wp Wnp—-1 wo tn tl t()
0 e ... 0 e ... 0 O -
A= . . .| A. (6.12)
0 0 e 0 e 0

From equality (6.11) it follows that
ik = Qji+k = aj—1—x (G=0,1,...,m; k=0,1,...,n—1)
and from (6.12) in turn it follows that
Qjk :5%17;@ :ajflfk (] = 1,2,...,77,; k= 0,1,...,7’L).
Therefore the matrix A is a Toeplitz matrix. From equality (6.10) it follows im-
mediately that the elements x; and w; are solutions of equations (4.1) and (4.2)
for the matrix A. Since the elements s; and t; are solutions of equations (4.1)

and (4.2) for the matrix A, they are solutions of equations (4.3) and (4.4) for the
matrix A.



44 I. Gohberg and G. Heinig

From Theorem 4.1 and equality (6.11) it follows that the matrices A and A
are determined by the systems x;, w;, s;, and ¢;. This implies the uniqueness of
the matrix A and the element a,, 1.

The theorem is proved. O
Theorem 6.2. Let z; and s; (j = 0,1,...,n) be given systems of elements in A
and the elements x,, and so be invertible.

For the existence of a Toeplitz matriv A = |laj—g||} ,—o with elements in A

and an element a,1 € A such that x; and s; are solutions of equations (4.1) and
(4.3), respectively, it is necessary and sufficient that the matriz

H Son—-1 Xon-1 ‘

B Snl an
be invertible. If this condition is fulfilled, then the element a1 and the matriz A
are uniquely determined, and solutions of equations (4.3) and (4.4) are determined
by equalities (5.10).

Proof. The necessity of the hypotheses follows from Theorem 6.1. Let us prove the
sufficiency. Assume that

Xo 0
' 0
Xnt g1 . (6.13)
Xo J;omglsn — S0
Xn-1 L1y sy — Sp—1
Moreover, put
Xn =€ Xb=—T, 5. (6.14)

It is easy to see that from (6.13) and (6.14) it follows that
Kx =0, (6.15)
where X = {X0, -+ Xn> X0s - - - » Xon}- PUL
Wk = TpXk, th=—znXr (k=0,1,...,n).

In particular, w, = x,.
From (6.15) one can easily get the equalities
wo to
Sonl‘;Ll = X0n$;1

W, tn
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and
w1 tq

-1 . -1
Snlxn : = X1n$n
Wn, tn

This immediately implies condition 2) of Theorem 6.1. Thus all the conditions of
Theorem 6.1 are fulfilled.
The theorem is proved. |

The following theorem is proved analogously.

Theorem 6.3. Let w; and t; (j = 0,1,...,n) be given systems of elements in A
and the elements w, and ty be invertible.
For the existence of a Toeplitz matriv A = |la;—g|7 ,—o with elements in A

and an element a,41 € A such that w; and t; are solutions of equations (4.2) and
(4.4), respectively, it is necessary and sufficient that the matriz

0,n—1

" T

”70, -1 w
" nl

L =

be invertible. If this condition is fulfilled, then the element a1 and the matriz A
are uniquely determined and the solutions of equations (4.1) and (4.3) are given
by equalities (5.13).
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Matrix Integral Operators on a
Finite Interval with Kernels Depending
on the Difference of the Arguments

Israel Gohberg and Georg Heinig

By L;(0,7) (1 < p <00, 0 < 7 < 00) denote the Banach space of the vector
functions f = {f1, fa, ..., fn} with entries f; € L,(0,7) and the norm

1515 = (U5l )
j=1

In this paper we consider integral operators of the form
(I - K)p) /kt—s s)ds (0<t<T)

acting in the space Ly (0, 7), where k(t) = |k,;(¢)[[} ,—; is a matrix function with
entries in L1 (—7, 7).

The results of the paper [1] obtained there for n = 1 are generalized to the
above operators. Theorems obtained below are continual analogues of the theorems
appearing in the first three sections of the paper [2].

The paper consists of four sections. The first section has an auxiliary char-
acter. In the second section, a formula for (I — K)~! is constructed with the aid
of solutions of the following four equations:

/kt—s sds = k(b), (0.1)
w(t) - / w(sVk(t — $)ds = k(D), 0.2)
/ks—t —o)ds = k(—1), 0.3)
v = [y —0ds = k-0, (0.4

0

The paper was originally published as W.II. T'oxGepr, I'. Xalinur, O MaTPUYHLIX UHTE-
rpajbHLIX OIEpaTOpax HAa KOHEYHOM HUHTEpBaJie C AJpaMu, 3aBUCANUMU OT DPA3HOCTH
aprymentos, Rev. Roumaine Math. Pures Appl. 20 (1975), 55-73.

MRO0380495 (52 #1395), Zbl 0327.45009.
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where 0 < ¢ < 7. These equations are considered in the space L]*"(0,7) of the
matrix functions of order n with entries in Lq(0, 7).

In the third section main properties of solutions of equations (0.1)—(0.4) are
studied. In the fourth section the problem of reconstructing a matrix function k(t)
from matrix functions w(t), x(t), z(—t), and y(—t) is considered.

1. Two lemmas

In this section two auxiliary statements are proved.

Lemma 1.1. Let K be the operator defined in the space Ly;(0,7) (1 < p < 00) by
the equality

(Kot = [ k(- )p(s)ds (0<t<r), (11)
0
where k(t) € LY "(—7,7). Then for every p the operator K is compact and the
subspace Ker(I — K) consists of absolutely continuous functions.

Proof. Tt is easy to see that K is a bounded linear operator in the space Ly (0, 7)
and
1Ky < [|E(t)]

If the matrix function k(t) has the form

k(t)= Y ™A (1.3)

j=—m

LX) (1.2)

where A; € L(C™) !, then, obviously, the corresponding operator K is of finite
rank. It is known that the set of matrix functions of the form (1.3) is a dense
set in the space L™ (—7,7). This fact and estimate (1.2) imply the compactness
of the operator K. By W"(0,7) denote the space of all vector functions f(t) =
{f1(t),..., fu(t)} with absolutely continuous entries and the norm

170w = 170z + | 570

Ly
Consider the restriction K of the operator K to W"(0, 7). The operator Kisa

compact operator acting in the space W"(0, 7). Indeed, for a vector f € W"(0, 1),
t

(K f)(t) = k(s)f(t —s)ds

t—7

and
s FDO = [k =5) §7(6) s+ kO£0) = bt = 117

Therefore, the vector K f belongs to W0, 7) and
K fllwn < RIE] posn |l £ llwrns

IThe algebra of all linear operators acting in the n-dimensional space C™ is denoted by L(C™).
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where h is a constant independent of the matrix k(t) and the vector f(¢). The

compactness of the operator K is proved in the same way as the compactness of
the operator K in the space Ly (0, 7).

Obviously, in the proof of the last statement of the lemma it is sufficient to
confine oneself to the case p = 1. Evidently, Ker(I — K) C Ker(I — K ), whence

dimKer(I — K) < dimKer(I — K).

Since the space W™ (0, 7) is dense in L7(0,7) and Im(I — IA() C Im(I — K),
we have

dim Coker(I — K) > dim Coker(I — K).

Taking into account also that

dim Ker(I — K) = dim Coker(] — K)

and
dim Ker(I — K) = dim Coker(I — I?),
we obtain
dim Ker(I — K) = dim Ker(I — K).
Hence Ker(I — K) = Ker(I — K) € W™(0, 7). The lemma is proved. O

Lemma 1.2. For a matriz function k(t) € LY*"(—7,7), the following statements
are equivalent.

1. Equations (0.1) and (0.3) have solutions in the space L7*"(0,7).

2. Equations (0.2) and (0.4) have solutions in the space L} *™(0,T).

3. The operator I — K, where K is defined by equality (1.1), is invertible in
every space Ly (0,7) (1 < p < 00).

4. The operator I — K, where K is defined by equality (1.1), is invertible in
some space L;(0,7) (1 < p < o0).

5. The operator I — K, where K is defined by equality (1.1), is invertible in
every space Ly*"(0,7) (1 <p < o0) (or in some of them).

Proof. According to Lemma 1.1, the subspace Ker(I — K) is the same in all spaces
Ly (0,7) (1 < p < 00). This immediately implies the equivalence of Statements 3
and 4.

The equivalence of Statements 3 and 5 is obvious.

Statement 2 implies Statement 3. Let w(t) and y(—t) be solutions of equations
(0.2) and (0.4) in LT*"™(0, 7). Assume that f(¢) € Ker(I — K). Then

0= [ utr =0 [et - [ - sp(s)ds]
-/ "wlr — t)p(t) di - / C(wlr 1) — k(7 — £))p(t) dt = ()
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and

0= [ o0 et~ [ k- etsas|a
-/ (e~ [ -0 - K0)p(t) i = $(0)

0
In view of Lemma 1.1, the function ¢(¢) is absolutely continuous. Since

0= g (w0 [ = se9a5)

= P+ RORO0) ~ ke = () + [kt =) os) s,

we obtain according to (1.4) and (1.5) that

d T d

t) — k(t — ds = 0.
e ® = [ K= 5 o) s
Therefore, & (t) € Ker(I — K).

From what has been proved above it also follows that

T

CZM(UGKGF(I—K% <CZ:</>> (0)_@;“”) (r) for r=1,2,....

Since the subspace Ker(I—K) is finite dimensional, we see that there exist numbers
m € Nand a; € C! (j=0,1,...,m; oy, # 0) such that

i () =0.
Z Oé] dti SO( )
7=0
The last differential equation under the initial conditions

(c(iiti@) =0 (r=0,1,....m-1)

has a unique solution, which is equal to zero. Thus Ker(I — K') = {0}, whence the
operator I — K is invertible in all spaces Ly (0,7) (1 < p < 00).

Let us show that Statement 3 implies Statement 2. Consider the operator K*
adjoint to the operator K. For 1 < p < oo, the operator K* has the form (1.1) and
is determined by the matrix function k*(—t) adjoint to k(—t). From Statement 3 it
follows that the operator I — K* is invertible in the spaces LZ(O, 7)for1 < p < oo.
In view of Lemma 1.1, from here it follows that this operator is invertible also in
the space LT(0, 7). The operator I — K* can be extended in a natural way to the
space L1*"(0,7) and it is invertible there. It is easily verified that the formulas

w(t) =[I - K7 f]"(r =), fO)=k(r—t) (0<t<7)  (L6)

and
y(—t) = [(I = K*)7'hl*(t), h(t) =k*(—t) (0<t<T) (1.7)

determine solutions of equations (0.2) and (0.4).



Matrix Integral Operators 51

Analogously it is proved that Statement 3 implies Statement 1. It is easy to
check that solutions x(t) and z(—t) of equations (0.1) and (0.3) are given by the
formulas

2(t) = (T~ K)'H(@®) (0<t<7) (1.8)
and
(=) =[I - K) gt —t), g(t)=—-k(t—7) (0<t<7). (1.9)

It remains to show that Statement 1 implies Statement 3. Equations (0.1)
and (0.3) can be rewritten as follows:

x*(t) = — /OT ¥ (s)k*(t—s)ds =k*(t) (0<t<T) (1.10)
and T
2" (—t) — /0 2*(=s)k* (s —t)ds = k*(—t) (0<t<T). (1.11)

These equations can be considered as equations (0.4) and (0.2) for the function
k*(—t). Thus, by what has been proved above, the solvability of the equations
(1.10), (1.11) in L}*"™(0,7) implies the invertibility of the operator I — K*, and
whence it implies the invertibility of the operator I — K.

The lemma is proved. ]

2. The inversion formula
2.1. The main result of this section is the following.

Theorem 2.1. Let k(t) € LY*™(—7,7) and K be an operator® of the form (1.1). If
the operator I — K is invertible, then for its inverse the equality

<U—K>wa—ﬂw+43@@ﬂ$@ 0<t<7) (2.1)

holds, where the kernel (¢, s) is determined from the solutions xz(t), w(t), z(—t),
and y(—t) of equations (0.1)~(0.4) by the formula

1t s) = (t —s) +y(t - s)

min(t,s) (22)
+/ (z(t=r)y(r —s) —z(t —r —T)w(r —s+71)) dr.
0
Here we follow the convention that x(—t) = y(t) =0 for ¢t > 0.
Proof. First, consider the case when the matrix function k(t) has the form
k(t)= Y €™ A (2.3)

j=—m

2In what follows it is supposed that the operator K acts in one of the spaces Ly(0,7) (1 <p < o0).
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where A; € L(C™). In this case the solution ¢ of the equation (I — K)¢ = f has
the form

m T
= f+ Z eiwjt/TAjgj, g] :/ eiij/TQD(S) ds.
j=—m 0
The vectors & (j = 0,%1,...,+m) are solutions of the system of equations

m

gj = Z OéjkAkgk = / f(s)e_ij/T ds (.7 =0,%1,..., im)’
0

k=—m
where o = 7((—1) — 1)/mi(j — k). Hence

m

o(t) = f(t)+ /OT Z eiw(jtfks)/-rAk,yjk £(s)ds,

jk=—m

where

il = = 108 = jp Al e ) ™

Thus, the operator (I — K)~! has the form

(= K) ) (0) = £(t) + / "t $)1(s) ds,
0
with kernel

’Y(t75) — Z em(jt_ks)/TAk’ij-

J,k=—m
Obviously, the equalities
Ats) = [ K= rnGs)dr = k- ), (2.4)
0
~y(t,s) — / v, r)k(r—s)dr = k(t—s) (2.5)
0

hold, where 0 < s,t < 7. In particular, these equalities imply the equalities
V(t,0) =x(t), (b)) =w(r—1), (. 7)=2(t-7), ~(0,t)=y(-t). (2.6)

For a sufficiently small £ > 0 we have

v(t,8) =yt —e,s—¢) = /OT kE(t —r)(v(u,s) —y(r,s —e))dr

k(t =r)(y(r,8) =7(r —e,s —¢))dr
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From here it follows that

L0 <Atz =) = [ k=) 008) <o - s - e

€ T+e
= i / E(t —r)y(r,s)dr — i / k(t —r)y(r—e,s—¢)dr.
0 T

1
W(t, 3) = hr% c (V(ta 3) - 7(t — &S5 6))
E—
Then passing to the limit as ¢ — 0 in equality (2.7) we get

w(t,s) — /OT E(t —r)w(r,s)dr = k(t)y(0,s) — k(t — 7)v(7, s)
w(t,s) — /OT E(t —r)w(r,s)dr = k(t)y(—s) — k(t — T)w(t — s). (2.8)
Let g(t,s) = z(t)y(—s) — z(t — 7)w(r — s). Then

g(t,s) / k(t —r)g(r,s)dr = k(t)y(—s) — z(t — T)w(T — s).
In view of the invertibility of the operator I — K, from here it follows that

w(t,s) = g(t,s) = z(t)y(—s) — 2(t — T)w(T — s). (2.9)
From the definition of the function w(t, s) it follows that

min(¢,s)
v(t,s) =v(t —s,0) +v(0,s — 1) +/ wt—r,s—r)dr. (2.10)
0

This equality means that formulas (2.1) and (2.2) hold.

Now consider the case of an arbitrary matrix function k(¢t) € LT " (-7, 7).
Suppose kn,(t) is a sequence of matrix functions of the form (2.3) that converges
to k(t) in the norm of the space LT*"(—7,7). By K,, denote the operators of
the form (1.1) generated by the functions k., (t). According to (1.2) the operators
K,, tend to the operator K in the norm as m — oco. Without loss of generality,
one can assume that the operators I — K, are invertible. By z,,(t), ym(—t),
zZm(—t), and wy,(t) denote the solutions of equations (0.1)—(0.4) for the function
K. (t), respectively. By what has been proved above, for the operators (I — K,,) ™"
formula (2.2) holds. Hence (I — K,,)~! = I+T,,, where ', is the integral operator
determined by the corresponding kernel ~,, (¢, s) of the form (2.2):

Ym(t,8) = 2 (t = 5) + ym(t - )
min(t,s) t Y ( ) (t d
+/0 (@m(t = 1)ym(r = 8) = 2 (t =7 = T)wm(r — s + 7)) dr.

By T denote the integral operator with kernel (¢, s) defined by equality (2.2). We
shall prove that
lim ||T,, — || =0.
m—0o0
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Put

/ ot =) = e = e

where | - | is a norm in the space L(C™).

The matrix functions &, (t), Wy, (t), zm(—t), and y., (t) converge in the norm
of the space LT*™(0,7) as m — oo to the matrix functions z(t), w(t), z(—t), and
y(—t), respectively. Then from (2.11) one can easily derive that

lim ||hwm|lL, = 0.

m—0o0

Moreover, it is easy to see that the inequality

|’7(t7 S) - ’Ym(t7 3)| < hm(t - 8)
holds (cf. [3, Section 6]). Thus, for every function ¢(t) € L (0, 7), the inequality

Alwu@—mau@wwww

Ly

<(["([ nees %AtﬁHw(N@)pﬁ)up

H/ m(t = s)le(s)lds|| < [hm(®)]L.[lo(2)]

LP
holds. Therefore,
I =Tl < lhllzallelzy and  lim [T =Ty =o0.

n
L p

Since
lim [|1+ Ty = (= K)"1 =0,
m—0o0 P
from here it follows that
I+T=(I-K)*!

The theorem is proved. t
Corollary 2.1. Let the hypotheses of Theorem 2.1 be fulfilled. Then for the resolvent
kernel ~(t, s) the formula

Y(t,8) =w(t —s)+ z(t—s)

+ /T (Z(t —rw(r—s)—a(t—r+71)y(r—s— T)) dr (2.12)

max(t,s)

also holds.
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Proof. Indeed, from the definition of the function w(t, s) it follows that

min(T—s,7—t)
v(t,s)=~vt—s+71,7)+y(r,s—t—7) —/ wt+r,s+r)dr
0
This implies that
y(t,8) =w(t —s)+ z(t—s)
min(7—s,7—t)
—|—/ (zt+r—1w(=s—r+7) =zt +r)y(—r—-s))dr
0
The last equality implies equality (2.12). O

2.2. Formula (2.2) can also be represented in a different form. By F(\, u) denote
the Fourier transform of the function (¢, s):

7()\#):/ / v(t, )eNFH) d ds.
o Jo

The function F(\, p) is an entire function of u and A. We have the following.

Corollary 2.2. For the matriz function (A, ), the identity

T\ ) = ((+30) (14 (=) = e7OH (14 200) (1+(-p)) ) (2.13)

A+ p

holds, where in each occurrence w(\) denotes the Fourier transform defined for a
function u(t) € LY*™(0,7) by

u(A) = /OT u(t)e™ dt.

Proof. Indeed, first assume that the functions z(t), z(—t), w(t), and y(—t) are
continuously differentiable. Then the resolvent kernel (¢, s) is also continuously
differentiable. For a sufficiently small € > 0 we have

—ie(A+ _ T T
e—ieO\+p) 1%)\’#) _ i/ / ~(t,5) <ei()\(t+s)+p,(s+6)) _ ei(/\t+u8)> di-ds
0 0

1 /7 (7 .
. / / (v(t+e,s+e)—(t, S))ez(AtJruS) dt ds
o Jo

1 T 0 0 T )
+ (/ / +/ / ) v(t + e, 54 )1 gt ds
0 —€ —eJ—¢
1 T T T—¢ T )
- (/ / +/ / ) v(t, 5)e' M) dt ds.
€ T—e JO 0 T—€

i (vt +e,s+e)—7(ts))

™

Since the function
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is uniformly bounded with respect to €, passing to the limit as € — oo, we obtain

fz'()\Jru)ﬁ()\,u):/ / w(t, s)et ) dt ds
o Jo
—|—/ 'y(t,O)eMtdt—I—/ 7(0, s)e™ s ds
0 0

+/ v (t, 7)e!PFRT) dt+/ v(7,8)e' AR s,
0 0

It remains to take into account equalities (2.6) and (2.9).
In the general case formula (2.13) is proved by passing to the limit. O

3. Properties of the solutions of main equations

Solutions of all four equations (0.1)—(0.4) play a part in formulas (2.2) and (2.12).
On the other hand, according to Lemma 1.2, the invertibility of the corresponding
operator I — K is equivalent to the existence of solutions for one pair of equations
(0.1) and (0.3) or (0.2) and (0.4). It happens that solutions of equations (0.1) and
(0.3) are related to solutions of equations (0.2) and (0.4). In the present section
these relations are investigated and auxiliary results are obtained, which will be
used for solving the inverse problem in the forthcoming section.

Everywhere in what follows we will assume that K is an operator of the form

KD = [ k- 9feds ©0<e<n
with k(t) € L7*"(0,7) and that the operator I — K is invertible.
Proposition 3.1. For the solutions of equations (0.1)—(0.4) the identities
z(t—s—r)—i—/OT z(t—r—")w(r—s)dr = y(t—s—r)—l—/OT x(t—r)y(r—s—7)dr (3.1)
and®

w(r—i—t—s)+/Tz(t—7“)w(r—s—|—7')dr
R (3:2)
:m(T—l—t—s)—i—/O x(t+t—r)y(r—s)dr

hold for 0 <t,s <.

Proof. Indeed, from formulas (2.2) and (2.6) it follows that

2t —71)=~(t,7) =yt —7)+ /0 (:E(t —rylr—7)—z(t—1— r)w(r)) dr.

3Here and in what follows it is assumed that 2(t) = w(t) = y(—t) = z(—t) =0 for ¢ ¢ [0, 7].
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This implies that

zZ(t—71)+ /0 2t —7—r)w(r)dr =yt —7) + /0 x(t—r)yy(r—7)dr. (3.3)

By ¢(t,s) and h(t,s) denote the left-hand and right-hand sides of equality
(3.1), respectively. It is easy to see that the functions g(t,s) and h(t,s) depend
only on the difference of the arguments ¢ — s. This implies that equality (3.1) holds
if g(¢,0) = h(t,0) and g(0,s) = h(0, s). The first of these equalities follows from
(3.3) and the second equality is obvious because g(0, s) = h(0,s) = 0.

Equality (3.2) is proved analogously.

The proposition is proved. (]

Proposition 3.2. For the solutions of equations (0.1)—(0.4) the identities

z(t—s)+/0 z(t—T—r)w(T—s—r)dr:y(t—s)—i—/o x(t—r)y(r—s)dr (3.4)
and

x(t—s)—i—/o m(t—r)y(r—s)drzw(t—s)—i—/o z(t—r—7)w(r—s—7)dr (3.5)
hold for 0 <t,s <.

Proof. Indeed, the left-hand side g(t, s) and the right-hand side h(t, s) of equality
(3.4) depend only on the difference of the arguments ¢t — s. Hence equality (3.4)
holds if g(¢,7) = h(t,7) and g(7,s) = h(7,s) (0 < s,t < 7). The first of these
equalities follows from (3.3) and the second is obvious.

Equality (3.5) is proved by analogy.

The proposition is proved. (]

We define the following notation. Let g(t) (—7 <t < 7) be a matrix function
in L7*"(—,7). Consider the following operators acting in the space Ly (0,7):

(@F)(t) = / gt —9)f(s)ds (0<t <),
(GLf)(t) = / gt sE)f(s)ds (0<t<T)

and

(G (1) = / " f()glt—s)ds (0<t<r),
( ;f)(t)=ATf(s)g(t—siT)ds 0<t<r).

Note that if the function g(t) (# 0) is equal to zero on one of the intervals [—7, 0]
or [0, 7], then the operators G and G’ are Volterra operators. Hence the operators
I+G and I+G" are invertible. Besides that, if g(¢) = 0 for £t > 0, then GLG’, = 0.
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Equalities (3.1), (3.2), (3.4), and (3.5) can be rewritten in operator form. For
instance, equalities (3.1) and (3.2) in operator notation have the form

Z_(I+W)=(I+X)Y_, (3.1)
Obviously, the equalities

Z'(I+W)=I+X")Y', (3.1
(I+ZYWL=X,I+Y"). (3.2")
also hold.
Note also that formula (2.2) in operator notation has the form
I-K)'=I+X)I+Y)-Z_W,. (3.6)

In the sequel the following “paired” operators acting in the space L;}(—T, T)
or in the space L;*"(—7,7) are considered:

() (6) = x(t) + /

—-T

0

0 T
x(t — s)x(s)ds —|—/ z(t—s—T1)x(s)ds (=7 <t<7),
0

(Aw)(t) = w(t) +/

-7

w(s)w(t — s)ds+ /T ws)ylt—s—7)ds (=7 <t<T).
0

We also introduce the following operators:

(Hef)(t) = ft—7) (0<t<7),

(H_f)(t) = f(t+7) (-7 <t<0).

The operator H, maps Lj(—7,0) onto L7 (0, 7) and the operator H_ is the inverse
of the operator H. Considering the space L;)L(—T, 7) as the direct sum of the spaces

Ly (0,7) and Ly(—7,0), the operators IT and A can be represented in block form as

~ H (I+X)Hy H_Z_ i H_(I+W")H, H.Y'
X, H, I+27 | Wi H, I+Y’
Obviously, these operators are similar to the operators
I+X Z_ +w v’
| ox orez| M| w1y

acting in the direct sum of two copies of the space Ly (0, 7).

Proposition 3.3. The operators Il and A are invertible.

Proof. Obviously, the operator I + Z is invertible. It is straightforward to verify
that

I Z (I+2)7!
0 1

I 0
I+2)"'X, I

H:H 0 I+2

I+X—-Z_(I+2)7'Xy 0 H

(3.7)
X
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From this equality it follows that the operator II is invertible if and only if the
operator C = I + X — Z_(I + Z)~'X is invertible. Since the operator I + Y is
invertible, from (3.2") it follows that

C=(I+X)I+Y)-ZW_)I+Y)"
In view of equality (3.6) this means that
C=I-K)'I+Y)L

Hence the operator C, as well as the operator II, is invertible.
The invertibility of the operator A is proved analogously.
The proposition is proved. O

Proposition 3.4. The equalities

H g H S et H )

and
i) e

hold.

Proof. Indeed, from equality (3.1) for s = 0 it follows that

y(t—T):/OT:c(t—r)y(r—T)dr—/()Tz(t—r—T)w(r)dr—z(t—T),

and from equality (3.2) for s = 7 it follows that

/T x(t+t—r)y(lr —7)dr —w(t) — /T z(t = r)w(r)dr = —z(t).
0 0

The last equalities can be written in the form
IT+X)yt—71)—Z_w(t) =z(t—1),
Xyt —7) = I+ 2)w(t) = —x(t).

This immediately implies equality (3.8).
From (3.1) for t = 7 it follows that

z(s—t)—f—/OTz(r—T)w(s —r)dr =y(s—1) +/()Tac(r)y(s —r—T)dr,
and from (3.2) for t = 0 it follows that
w(s) + /OT z(r—m)w(s —r+7)dr =xz(s) + /OT x(r)y(s — r)dr.

This immediately implies equality (3.9).
The proposition is proved. U
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Proposition 3.5. The operators defined by the equalities

I+X X\ I+w Wy H

m =
7. I+7 Y. I+Y

A=

are invertible.

Proof. Indeed, since the operators IT and A are invertible, we see that their adjoint
operators IT* and A* are also invertible. The operator IT* is defined by the formula

1(3 H _

Di(t) = o1 (1) +[g(s — )pr(s) ds—i—/OTm*(s b+ T)a(s) ds,

*_

where

ba(t) = 1) +/OTZ*(3 =) (s) ds+/OT 2*(s — B)pa(s) ds

for 0 <t <7 and ¢1(t), p2(t) € LZX”(O,T).
Passing to the adjoint operators in the last two equalities, after a change of
variables we obtain

wf(t—T)=sO*{(t—T)+/OTsOY(8—T)w(t—8)d8+/07<p§(8—T)x(t—erT)ds,

Y3t —71) =5t —7) —|—/OT go*{(s—T)z(t—s—T)ds—l—/(:@;(s—r)z(t—s)ds.

These equalities can be written in the form

(e =) ‘ o H

Y3t —7) @2 t -7)
Thus the operator II’ is invertible. The invertibility of the operator A’ is proved
analogously. O

4. Inverse problem

Theorem 4.1. Let four matriz functions be given: z(t),w(t) € L}*"(0,7) and
y(t), z(t) € LY*"(—7,0). For the existence of a matriz function k(t) € L} " (—7,7)
such that x(t), w(t), z(—t), and y(—t) are solutions of equations (0.1)—(0.4), re-
spectively, it is necessary and sufficient that the following conditions be fulfilled:
1) Z_(I+W)=I+X)Y_and I+ Z2)W, =X, (I+Y);
2) at least one of the opemtors

I+X _ I — I+Xx' X\

X, I+Z B z' I+Z |
N TEW Wy Ao IEW YL
I I S T |l owy I1+Y’

is invertible.
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If conditions 1) and 2) are fulfilled, then all the operators I, ', A, and A’ are
invertible and the matriz function k(t) is uniquely determined by the relations

H e (1) () w(t)
k_(t) z2(t—17) y(t —71)

where ky(t) = k(t) for 0 <t <7 and k_(t) = k(t — 1) for —7 <t <0.

=)~ =) ; (4.1)

Proof. The necessity of conditions 1) and 2) is established in Propositions 3.1, 3.3,
and 3.5. Let us prove formula (4.1). From equalities (0.1) and (0.3), we obtain
after simple transformations that

k(0) +/t k(s)a(t — ) ds = 2(t) (0<t<7)
k(t—r)—i—/t k(s —t)z(t —s)ds =z(t—7) (0<t<T).
From here it follows that
k() + /O k(s)o(t — 5) ds + /O k(s — Oyt — s+ 7) ds = a(t)
and

k:(t—T)+/07k(8—t)z(t—s)ds—i—/OTk(s)z(t—s—T)dszz(t—T).

The last equalities are equivalent to the first equality in (4.1). The second equality
in (4.1) is proved analogously.

Let us show the sufficiency of conditions 1) and 2). For instance, let the
operator II be invertible. From the proof of Proposition 3.5 it follows that the
operator II' is also invertible. Put

N0 (1)
‘ k(1) At —7) (4.2)
and k(t) = k4 (t) for 0 <t < 7 and k(t) = k_(¢) for —7 <t < 0. From (4.2) we
obtain after simple transformations that

x(t) — /OT E(t—s)x(s)ds =k(t) (0<t<T)

-~y

and .
z(t—T)—/ E(t—s)z(s—t)ds=k(t—7) (0<t<T).
0
This means that for the function k(t), the equations (0.1) and (0.3) have solutions.
In view of Theorem 2.1, from here it follows that the operator I — K is invertible.

It is obvious that condition 1) for the matrix functions y(—¢) and w(t) can
be written in the form

y(t—T)+/()Tm(t—s)y(s—r)dszz(t—T)—i-/OTz(t—s—T)w(s)ds
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and
x(t) + /0 x(r+t—38)y(s—7)ds =w(t) + /0 z(t — s)w(s) ds
or, equivalently, in the form
T+ X)yt—71)—Z_w(t) =z2(0t—71),
Xiyt —7)— (I + 2)w(t) = —=(t).

Thus, for the functions y(—t) and w(t) the equality

g i B e
holds.

On the other hand, in view of Proposition 3.4 (see (3.8)), the solutions of
equations (0.2) and (0.4) are also determined by the last equality. Taking into
account the invertibility of the operator II, we conclude that the functions y(—t)
and w(t) are solutions of equations (0.2) and (0.4), respectively.

The theorem is proved analogously in the case when all other operators IT',
A’, and A are invertible.

The theorem is proved. O

t—T H

Theorem 4.2. Let matriz functions z(t) € LY*™(0,7) and z(t) € L}*"(—7,0) be
giwen. For the existence of a matriz function k(t) € LY*"(—7,7) such that x(t)
and z(—t) are solutions of equations (0.1) and (0.3), respectively, it is necessary
and sufficient that the operator 11 be invertible.

Proof. The necessity of the hypotheses follows from Proposition 3.3. For the proof
of the sufficiency we introduce the matrix functions y( ) and w(t) by the equality

i R e |

From here it follows that
T+ X))yt —7)=Z_wt)+2(t—7), z@t)+ Xsy{t—71)=UT+ Z)w(t).

With the aid of the arguments from the proof of Proposition 3.1 from here we get
the equalities

I+X)Y_=Z_(W+1I), X;(I+Y)=I+2)=W,.
Thus the conditions of Theorem 4.1 are fulfilled. The theorem is proved. O

The following theorem is proved analogously.

Theorem 4.3. Let matriz functions w(t) € LY*"(0,7) and y(t) € LY*"(—7,0) be
gwen. For the existence of a matriz function k(t) € LY*"(—7,7) such that w(t)
and y(—t) are solutions of equations (0.2) and (0.4), respectively, it is necessary
and sufficient that the operator A’ be invertible.
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The Resultant Matrix and its Generalizations.
I. The Resultant Operator for
Matrix Polynomials

Israel Gohberg and Georg Heinig

Let a(A) = ag + a1 A + -+ + a, A" and b(A) = by + by A + -+ + b, A™ be two
polynomials with coefficients in C'. The determinant of the following matrix

[ ap a1 ... Qp, 1
ap aq N Qp, m
. ap ay e Qn
R(a7 b) N bO bl .. bm
bo b1 ... bn
: . : . . n
I bo by ... bm |

is said to be the resultant of these polynomials.
It is known that

det R(a,b) = albm ﬁ ﬁ(Aj(a) = Ak (b)),

where A;j(a) (j =1,2,...,n) is the Complete collection of the roots of the polyno-
mial a(\). In particular, the polynomials a(A) and b(\) have at least one common
root if and only if the resultant det R(a,b) is equal to zero (see, e.g., [1]). A more
complete result is known (see, e.g., [2, 3]). It says that the number of common
roots of the polynomials a(A) and b(\) (taking into account their multiplicities) is
equal to the number
m +n — rank R(a, b).
This relation immediately follows from the next statement.
The paper was originally published as M.I1. T'ox6epr, I'. Xaduur, Pe3yabranTHad MaTpuna

u eé ob6obmenus. I. PesynpTanTHLIl omepaTrop MarpuduHLIX moiamHOMOB, Acta Sci. Math.
(Szeged) 37 (1975), 41-61. MR0380471 (52 #1371), Zbl 0298.15013.
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Theorem 0.1. Let A, (I =1,2,...,1p) be all distinct common roots of the polyno-
mials a(X) and b(\) and k; be the multiplicity of the common root X;.
Then the system of vectors

m+n—1
Hy(\) = <(Z)A§"’“) eC™n (1=1,2,...,00, k=0,1,....k —1)

p=0

forms a basis of the subspace Ker R(a,b). In particular,
lo
Z k; = dim Ker R(a, b). (0.1)
1=0

In the present paper various generalizations of this theorem are established.

In the first part of the paper the resultant operator for matrix polynomials
is studied. In contrast with the scalar case, this operator is defined, as a rule, by
a rectangular matrix.

This part consists of five sections. The first two sections have an auxiliary
character. In the third section the main theorem is proved, from which, in partic-
ular, Theorem 0.1 follows. In fourth and fifth sections examples of applications of
the main theorem are presented.

In the second part of the paper continual analogues of the results of this
paper will be exposed.

The authors have started this investigation under the influence of conversa-
tions with M.G. Krein. He kindly drew the authors’ attention to relations of this
circle of questions with results on inversion of finite Toeplitz matrices and their
continual analogues [4, 5].

The authors wish to express their sincere gratitude to M.G. Krein.

1. Lemma on multiple extensions of systems of vectors

1.1. Let L denote some linear space and let L™ be the linear space of all vectors
of the form f = (fj);”:_o1 with components f; € L. Let

F={gw: k=0,1,....k;—1; j=1,2,...,j0}

be a system of vectors in L and Ag be a complex number. We say that the system
of vectors

F" (o) ={®ju(No): k=0,1,...k;—1; j=1,2,...,50}
in L™, where
-1 P D
©e (M) = (#5, (M) s @h(ho) = ( >>\§S<Pj,ks (1.1)
s=0

S
s
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is the extension of multiplicity m of the system § with respect to A\g. It is easy to
see that for the vectors ®,;,(\o) the equalities

dP

t tk
t . . P .
i <@m+’u¢““1+ *‘mwN)Lo (12)

90?k()‘0) =

hold.
The following recurrent formula

PP (M0) = Aol (Mo) + @81 (Mo) (R =0,1,...,k; —1; j=1,2,....50) (1.3)

also holds, where it is assumed that ¢! _;(\o) = 0. Indeed, from equality (1.1) it
follows that

PP (M) = Aol (M)

p+1 p+1 p
=3 ()00 = () i)
p+1

p s
= (8 - 1) X psh-s(No)-
s=0

Therefore,

14

p —s
o f(Xo) — Aol (o) = Z (s> A0 @i—1-5(M) = @F 1 (No)-

s=0
From formula (1.3) one can get without difficulty a more general formula

P

@f,jr(Ao) = Z (Z) /\67830?7,678()\0) (r=1,2,...). (1.4)

s=0

Indeed, for r = 1 formula (1.4) coincides with (1.3). Assume that equality (1.4)
holds. Then

P (o) = Mol (M) + 5 i1 (o)

= Z (( )ATH Pl h-s(ho) = (s B 1) ASHS) @i k—s(No),

whence

r+1 T+1
¢§;r+l()\0) _ Z ( ) >)\’l"+1 ssog)k 9()\0)'
s=0

1.2. The next statement plays an important role in what follows.

Lemma 1.1. Let A = {1, \a,..., \i} be a system of distinct complex numbers and
& (1=1,2,...,1p) be systems of vectors in L:

Fi={ojmi: k=0,1,...kjy—1; j=1,2,....5}.
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If for every l = 1,2,...,1ly the system of vectors pjo; (j = 1,2,...,5) is
linearly independent and a number m satisfies the condition

lo
> ki, 1.5
(RIS - AL 19
then the system of vectors'
lo
3 () = Js" o)
1=1

s also linearly independent.

Proof. Obviously, it is sufficient to confine oneself to the case

m = E _max k1.

12,001

Consider the operator matrices
HT(A) = H,]T:tIHZ?t_zll (T:O717"~7m_1)7

where

55t (S S T)7

Mot = o_t[S—T

(300 e
and I is the identity operator in the space L. Now we elucidate how the operator
IT.(\) acts on the vectors ®;,(\;) = (@?k,l()‘l))z:ol of the system §™(A). First of
all, note that the operator II,(\) does not change the first » + 1 components of
the vector @, ;1 (N\).

Consider the systems of vectors

SrAN) = {PIL(N®(N): k=0,1,...ky—1; j=1,2,....5}, (1.6)

where
0 0 I 0
P.=|: E . m—r,
0 0 0 I
~ ~
m

l=12,...,lpand r=0,1,...,m — 1.

lo
IHere and in what follows by |J §7" (A1) we denote the system
=1

{(bjk,l(Al): k:07177kjl717 J=12,...,7; l:1727"'710}'
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We shall prove that each of these systems of vectors is the extension of mul-
tiplicity m — r with respect to A\; — A of the corresponding system of vectors

) =A@\ s k=01, ki =1 5 =12, 51}
Put

W mee " = P (A) @50 ( M)

,1/p=0
Then

ptr P
T—S p
= (P Yot = S (2o

s=r u=0

In view of (1.4),

p—u
+ —u—s(P—u
LIS DP e G T
s=0
hence

P pP—u _
B S ()1

u=0 s=0

)0 =C0)0)

p p—s _
wfk,l _ Z Z )\f*U*S(_)\)’U« <p . 8) <i) (P;,kf&l()\l).

s=0u=0

Taking into account that
we get

Thus,
- P
S = 200 =0 (7))
s=0

The last equality means that the system of vectors &7*(\, \;) is the extension of
multiplicity m — r of the system &7*();) with respect to A; — A.

Consider the system SS}L)()\;) of vectors
L) (N) =MW (N)  (k=0,1,... .k —1; j=1,2,....5).

From the above arguments it follows that the system gﬁ})(/\l) is the extension
of multiplicity m of the system §; (I = 1,2,...,ly) with respect to A\; — A;. In
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particular, the vectors @ﬁ)()\l) have the form

[ Pik,1 ]
50,1 . .
o) () = ) (k=0,1,.... k1 —1; j=1,2,....j1).
L 0 -

Now let us form the system 37(73)()\1) of vectors
D (N) =, (Ao = M) A1) (k =01,k — 15 j=1,2,....1),
where
k1=  max kji.
J=12,..51
Then the system of vectors Pnléﬁ,)()\l) is the extension of multiplicity m — k1 of
the system of vectors o7 (A — A1) with respect to

A=A —(Q2=A1) =X\ — Ao
In particular, Pﬁl@ﬁ)()\l) = 0 and the vectors P,ﬂq);i)(Ag) have the form

PHICDﬁ)()\Q) — | Q2 =A)"@jk2 | — k

where the vectors not playing any role in what follows are replaced by .
We shall repeat this process: from the system sﬁﬁ) (A1) of vectors

W) (k=01 ku—1 5=1,....5)
we construct the system 352“)()\1) of vectors
UV (N) = Ty (Ass1 — AL,
where

S

Ks = ~ max _ kj.
=1 J=1,2,....Js

For the vectors P, ‘I>§Z+1)()\l), the equalities

P @S0 =0 (1=1,2,....5)
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hold, and the vectors P, <I>§.‘Z+1)()\5+1) have the form

*

*
Ast1 = A)™@jkst1 | —k (k=0,1,... kjos1 — L j=1,2,..., jat1).
0

0
Finally, we construct the systems §% (\;) (I = 1,2, ...,1lp). The vectors of this
system P, _1‘1)(10)(/\” = 0 for I # lo, and the vectors Py, _1<I>(l°)()\lo) have the
form

*

*
Mo = Atg=1)"0 " gty | k. (1.7)
0

L 0 -

Now let us prove that the system of vectors

lo

Foo ) = Uz o)

I=1
is linearly independent. Let

lo g1 ku—-1

ZZ Z ajqu)(l o) =0.

=1 j=1 k=0

Then
Jig kji—1
Za]klpﬁloflq)(l()) Z Z skl n10*1®(l0)(Alo) =0.
Jkl j=1 k=0

Since the vectors Py, 71@(10)()\10) have the form (1.7) and the vectors ;o (j =
1,2,...,74) are hnearly mdependent7 we have

are =0 (k=0,1,...,kj, —1; j=1,2,...,7,)-

Thus
b
lo—1 g1 kju—1

220030 am® () =

=1 j=1 k=0
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Applying the operator P, _» to this equality, we obtain that
Qjpig1=0 (=01, . ko1 —1; j=1,...,5, —1).
Continuing this process analogously, we obtain that
. =0 (k=0,1,... k. —1; j=1,2,...,5,)
for s =1lp—2,lp—3,..., 1. The obtained linear independency of the system § lo)( A)

implies the linear 1ndependency of the system §™(A).
The lemma is proved. (|

It is easily seen that condition (1.5) is essential in the formulation of Lem-
ma 1.1 even in the case L = Cl.

1.3. The next lemma is derived from Lemma 1.1.

Lemma 1.2. Let A = {A\1,\a,..., N} be a set of complex numbers and let §
(1=1,2,...,ly) be a system of vectors in L:

S1= {@jk,l : k:0717"'7kjl -1 5= 1727"'ajl}~
If a number m satisfies condition (1.5) and

lo Ji kju—1

ZZ Z a]qu)jkl )\l =0 (ajkl S (Cl), (1.8)

=1 j=1 k=0
then
(I)kl )\l Za]qu)jkl()\l) =0 (k‘ = 0,1,...,maxkjl -1 1= 1,2,...,[0),
J
J
where the summation spreads over all indices j such that kj > k.

Proof. Let us form the system

61: @k,l:Zajklgajk}l : @071750; kZO,l,...,mjanjl—]. y
J

where [ = 1,2, ...,[p, and assume that it is not empty. Obviously, then the system
G;ﬂ = {(I)k,l()\l) k= 0, 1, . .,maxkjl — 1}
J

is the extension of multiplicity m of the system &;. Applying Lemma 1.1 to the
system & = U§O=1 G, we obtain that the system of vectors ®j;()\;) is linearly
independent. The last fact contradicts equality (1.7). Thus &; = (), whence

wor =0 (1=1,2,...,lp).

Now we form the systems

6[1{@22 Pk+41,1 - <p1,l7$0,k—O,l,...,m]axkjl—2} (l:1,2,...,lo).
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It is easy to see that the extension of multiplicity m of the system &; ; consists of
the vectors

Chr1i(A) = Crra(M) (P10 #0; B=0,...,maxk; —2).
Hence, applying Lemma 1.1 again, we obtain that &1 ; = (), whence
p1=0 (I=1,2,...,l).
Continuing this process, we get

=0 (1=1,2,...,lp) for r:2,3,...,mf;}xkﬂ—1.
Js

The lemma is proved. (|

2. Auxiliary propositions

2.1. Let d be a natural number and A(\) = Ag + AA1 + - -- + A" 4,, be a matrix
pencil with coefficients Aj, € L(C?) 2. Everywhere in what follows we will suppose
that the matrix A,, is invertible.

A number \g € C! is said to be an eigenvalue of the pencil A(\) if

det A()\()) =0.

If for some vector ¢y € C? (po # 0) the equality A(Ag)¢o = 0 holds, then the
vector ¢ is said to be an eigenvector of the pencil A(\) at Ag. A chain of vectors
©0,¥1,- -+, ¢r is called a Jordan chain (a chain of an eigenvector and associated
vectors) of length 7 + 1 if the equalities

1/d 1 ([ dr
A0+ (54) Gasorrt o+ | () Qs =0 2)

hold for k=0,1,...,7.

Let A\gp be an eigenvalue of the pencil A()\). It is easy to prove that one
can construct a basis ©10, ©20, - - ., ©ro in the kernel of the matrix A(Ag) with the
following property. For every vector ¢;o there exists a chain of associated vectors
©j1s P42, - -+ Pjk;—1, Where ky > kg > -+ > k. and the number k1 + kg + -+ + k;
is equal to the multiplicity of the zero of the function det A(A) at the point Ag.

The numbers k; (j = 1,2,...,r) are called partial multiplicities of the eigen-
value \g, and the system

Pj0s Pils -5 Pjk;—1 (j=1,...,7r)

is said to be a canonical system of Jordan chains for the pencil A()) at the eigen-
value Ag.

2The space of quadratic matrices of order d is denoted by L(C?%).
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Lemma 2.1. Let A = {A1, \a,..., \i} be the complete collection of all distinct
eigenvalues of a pencil A(\) = Ag+AAq +- -+ A" A,, with coefficients Ay € L(C?)
and let

S:{@jk,l: k:0a17akjl_17 j:172a"'7jl} (l:1a27aQ)

be a canonical system of Jordan chains of the pencil A(X) at the eigenvalue A;.
Then for every natural number m the system®

Sm—i-n U 3m+n

= {(I)jk,l >\l) = (@?k,l(Al))?:_Ol . j = ]., e ,jl; k = 0,. . .,kjl — ].}

s a basis of the kernel of the operator

Ay A ... A, ... ... 0
4 = Ay ... An A, : .
0 ... ... Ay ... A, A,

acting from Cmtmd o Cmd,

Proof. First, we shall show that the equality

n+r
ZALD*TSO?k,l(Al) :0 (.7 = 1727"'3.7.[) (22)

p=r

holds for k = 0 and every r. Indeed, since ¢/, (M) = X/ ¢jo,1, We have

n+r n+r
D Ao (N =D N Ay 00 = N AN @0 = 0.
p=r p=r

Assume that equality (2.2) is true for every r and k = ko. Then it is also true
for k = kg + 1 and every r. Indeed, by the assumption, we have

n+r n+r p
0= Z Ap rsojko 1 )\l =\ Z Z ( ))\fsAprSDj,k:osJ

p+r p=r s=0

n+r p
=2 (S g 1) N Ap—r @ik t1-s.l-

p=r s=0

3Recall that the system F"T™();) is the extension of multiplicity m 4 n of the system § with
respect to \; (for the definition, see Section 1).
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This implies that

n+r n+r p p
D A1 (M) =D D <<s> N Ap—r i o +1—s,1
p=r p=r s=0
P _
a (s - 1)/\5) SAp—r<Pj,ko+1—sJ>
n+rp—1

Z Z <2; : 1) )\fisAP*TSOjJCo+1757l

p=r s=1
n+r—1
Z Ap—(r—l)@?ko,l()‘l) =0.
p=r—1
Thus it has been proved that equality (2.2) holds for every k = 0,1,...,k; — 1
and every r = 0,1,...,m — 1. This implies that ®,,;(\;) € Ker A,,.
The system F™T"(A) consists of nd vectors. According to Lemma 1.1, this
system is linearly independent. On the other hand, obviously,

dim Ker A,,, = (m + n)d — md = nd.

Thus Ker A, = ling™**(A). 4
The lemma is proved. (|

2.2.
Lemma 2.2. Let
S = {@jk,l : k:0717"'7kjl_1; j:1727"'ajl} (121,2,,(1)

be a system of vectors in the space C? and A = {\1,\2,...,\;} be a finite set of
complex numbers. Suppose %’lm"'"()\l) is the extension of multiplicity m + n of the
system §; with respect to A\; and the vector

g kji—

1
"= Z Z Z i ®ip i (\) € Clmtmd

=1 j=1 k=0

where ajiy € C, belongs to the kernel of the operator Ap,. If a number m satisfies
the condition®

q
m > Z mjax ki
=1
then all vectors

Qk,l :Zajqu)jk,l()\l) (k:O,l,...,maxkjl —1; l: 1,...,(]) (23)
J

where the summation runs over all indices j such that k;j; > k, belong to the kernel
of the operator A,,.

4The linear hull of a system of vectors § is denoted by lin §.
5Notice that this condition is automatically fulfilled if m > nd.
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Proof. Put
Yjk1 = Z ApSO?k,z()\l)a
p=0

Si={Vjks: j=12,....55 k=0,1,... . kjy—1} (=12,...,q),

and
= def
Uikt = @8 s = Am®jri(A).
Let us prove that the system
Si={Uj: k=0,1,....ky—1;1=12...,¢}

is the extension of multiplicity m of the system §; with respect to );, that is,
S (N) =64
The equality

s+n
+
Vg = Z Ap— s%kl (M) ZAMPfle

p=s

holds. In view of (1.4),

n S s u
=323 (L))

p=0u=0
Therefore,
S—u - S S—u
EYE 3) 31 () SR ENSRCHE i g oron
p=0u=0 u=0
From here it follows that ijl = w;‘k,l()‘l) and @jk,l = W1 (N).
Let
Ji 7’ 1
Q:ZZ Z Dir1(N) € Ker Ay,
=1 j=1 k=0
Then
g1 kju—1
A2=33 S et
=1 j=1 k=0

In view of Lemma 1.2, from here it follows that

Za]’kl\ijk,l =0 (k:O,l,...,kjl—l; l:1,2,...,q),

where the summation runs over all j such that k;; > k.
The lemma is proved. O
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Note that it can happen that, under the hypotheses of Lemma 2.2, all vectors
®,,.1(M) do not belong to the kernel of the operator A, for every m. One can
verify this by the following example.

For d = 2 consider the pencil A(A) = Ag + A, where

-1 0
0 1

Put A ={1,—-1}, F1{v10}, T2 = {®20}, where p19 = (0;1) and 9o = (1;—1). Let
m be an arbitrary natural number. Obviously, then the system §7*(1) consists of
a unique vector

]

(1)1071(1) = (97 ]-7 O, ]-7 ceey Ovl)v

-
2m
and the system F5*(—1) consists of the vector
Dopo(—1) =(-1,1,-1,1,...,-1,1).
N~ ~ -
2m

The operator A, is defined in the case under consideration by the equality
Ay I ... ... 0

Ay = Ao 1 m
0 ... ... Ay I
It is easy to see that Ay, (P10,1(1) + P20,2(—1)) = 0, while A, P10,1(1) # 0
and Amq)go,g(—].) # 0.
2.3.

Lemma 2.3. Let § = {pr:k=0,1,...,ko} ® be a system of vectors in C? and let
" = {Pr(No) = (goz()\o))zqz_ol} be its extension of multiplicity m with respect to
Xo € CL. If m > ko and the vector ®;,()\o) belongs to the kernel of the operator
A, then X is an eigenvalue of the pencil A(N\) and @o, @1, .., pr, s a Jordan
chain.

Proof. Let
n
Yy, = Z Ap@z-
p=0
Repeating the corresponding argument from the proof of Lemma 2.2, we show that
the system _
S = {An®r(Xo): k=0,1,... ko}

is the extension of multiplicity m of the system

GZ{QZ)ka:O,l,...,ko}.

6Here the index k corresponds to the second index of vectors from the definition of an extension
of multiplicity m.
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Therefore, according to (1.3), the equality
Py = Aok + b

holds, where A, ®x(Ng) = (1&2’)2:01.
Since ¥y =0 (p = 0,1,...,m — 1) and m > ko, from here it follows that
Y =0for k=0,1,...,ky. The last fact means that

n n p
0= el = 33 ()% A
p=0 p=0r=0

Since
d" - P _
— | p—r
(d/\’" A> AN =r! E <r>)\ Ap,

we have
k

1 /d
0= z_(:) rl <d/\rA) (Ao)pk—r (E=0,1,..., ko).

This means that g, ¢1,..., Yk, is a Jordan chain of the pencil A()) at the eigen-
value Ag.
The lemma is proved. t

3. Main theorem

3.1. Let
AN) = Ag+ My + -+ \"A,, B(\) =By +ABi + -+ "By,
be two matrix pencils with coeflicients A;, By, € C? where j = 0,1,...,n and

k=0,1,...,m. Let A\g be a common eigenvalue of the pencils A(\) and B()), and
let
R = Ker A(Ag) N Ker B(Xg).

Let ¢, ¢1, ..., @r be a Jordan chain simultaneously for the pencils A(A) and
B(\) corresponding to the eigenvalue Ag. The number r + 1 is called the length of
this chain. The largest length of such a chain starting with the vector g is called
the rank of the common eigenvector ¢y and is denoted by rank(Ag, o).

We choose a basis 19, 20, .., @j,0 in the subspace R such that the ranks
of its vectors have the following properties: k; is the maximum of the numbers
rank(Ao, @) (¢ € R) and k; (j = 1,2,...,50) is the maximum of the numbers
rank(Ag, ¢) for all vectors of the direct complement to lin{yio, ¢20,...,9j—1,0} in
R that contains ¢ o.

It is easy to see that the number rank()\g, po) for every vector ¢y € R is
equal to one of the numbers k; (j = 1,2,...,jo). Therefore the numbers k; (j =
1,2,...,j0) are uniquely determined by the pencils A(\) and B()\).

By @j1,9j2,--.,%jk;—1 denote the chain of associated vectors to the eigen-
vector @jo (7 =1,2,...,jo) common for A(X) and B()\).
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The system
¢j0790j17"'790j,k:j71 (]:1727,.70)

is said to be a canonical system of common Jordan chains for the pencils A(X) and
B() at the eigenvalue Ag, and the number

. Jo

V(A7B7A0) dé Zk]
j=1

is called the common multiplicity for the eigenvalue A\ for the pencils A(\) and
B(\).

3.2. To the pencils A(A\) and B()A) and an integer number w > max{n,m} we
assign the operator

T Ay A ... A, 1
Ay ... A, A,
. . w—"n
_ AO An—l An
Rw (Av B) - BO B1 Bm
BO Bm—l Bm
. w—m
I By ... Bm.1 B |

acting from the space C*? to CRw—m—n)d,

We call R,,(A, B) the resultant operator or the resultant matrix of the pencils
A(N) and B(\).
Theorem 3.1. Let

AN =Ao+ A1+ -+ A"An, BA)=By+AB1+---+ "B, (3.1)

be two matriz pencils (Aj, By, € C%) with the invertible leading coefficients A,, and
B, let A = {1, A2, ..., N} be the set of all (distinct) common eigenvalues of the
pencils A(X) and B(A), and let

312{%‘1@,11 k:0717"'7kjl_1; j:1727"'ajl} (121,2,,(1)

be a canonical system of common Jordan chains for the pencils A(X) and B(X) at
the eigenvalue A;.
If the condition”
w > min{n + md, m + nd} (3.2)

"It is easy to see that the presented proof remains valid if one replaces condition (3.2) by a
weaker condition

q q

w > min{n«kzmaxkjl(B);erZmaxkjl(A)} (3.2)

J J
=1 =1

where {k;;(C):j =1,...,5(C)} is the collection of the partial multiplicities of a pencil C()).
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holds, then the system

M) =UJseo
=1

is a basis of the subspace Ker R,,(A, B).
In particular, under condition (3.1) the equality

v(A, B) = dimKer R, (A, B),

holds, where
q
=> V(A B,N).
=1

Proof. Without loss of generality one can assume that m > n.

From Lemma 2.1 it follows that §*(A) C Ker A, —, and F*(A) C Ker By .
Hence §¥(A) C Ker R, (A, B) = Ker Ay,—p, N Ker By .

Now let 2 € Ker R,,(A, B). Then Q) € Ker A,,_,, and, in view of Lemma 2.1,
Q) can be represented in the form

g1 kji—1

q
Q=>>" Z ikt P jn,i (A1)

=1 j=1 k
where
SN ={®jea(N): j=1,2,....55 k=0,1,... kjy—1}.
By Lemma 2.2, this implies that

Qk()\l) = Zajqu3jk7l()\l) € Ker Bu,_m
J
for k=0,1,...,k; —1and [ = 1,2,...,¢q, where the summation runs over all j
such that kj; > k. According to Lemma 2.3, the vectors

wk,« )\l Zajkl@jr /\l (7“20,1,...,]{5; k=0,1,...,k —1; k‘lzmjaxk‘jl)

form a Jordan chain for the pencil B(\). Since, besides that, the vectors wgy(A;)
(r =0,1,...,k) also represent a Jordan chain for the pencil A()), we arrive at
the conclusion that the vectors Qi ();) can be represented as a linear combination
of vectors from F¥(A). Therefore the vector  is a linear combination of vectors
from F¥(A).

The theorem is proved. O

Corollary 3.1. The pencils A(\) and B(\) from (3.1) have a common eigenvalue
Ao and a common eigenvector at \g if and only if the rank of the resultant matriz
Ry(A, B) for w > min{md + n;nd + m} is less than mazimal.
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3.3. Theorem 0.1 formulated in the introduction is easily derived from Theo-
rem 3.1. Obviously, the classical resultant matrix R(a,b) presented in the intro-
duction coincides with Ry,4n(a,b). Clearly, in this case (for d = 1), condition (3.2)
is satisfied. Therefore Ker R(a,b) consists of the linear span of the vectors

k
Beh) = (O where L0 =3 (V)

s=0

Since
k
Op(N) =D Ho(N),  Hi(M) = ®p(\) — Bp_1(N),
s=0

this immediately yields Theorem 0.1.
In the case d > 1 for the classical resultant matrix, that is, for R,,4,(A, B)
one can claim only that

Ker Ry 4n(A, B) = Ker A, N Ker B,

and
v(A, B) < dimKer R+ (4, B).

These relations follow straightforwardly from Lemma 2.1.
We present one more statement for the classical resultant matrix for d # 1.
Let F(Ai, A) (resp. §(u1, B)) be a canonical system of Jordan chains for
the pencil A(X) (resp. B())) at the eigenvalue \; (resp. p;). Then the number
dim Ker R,,, 1, (A4, B) is equal to the codimension of the subspace

lin F™ " (A) UF™T(B),

where

FrnA) = Jgm o 4), 3 B) = JF B
l l

In particular, the operator R,,4n(A, B) is invertible if and only if the system
37 (A) UFH(B) is complete in Cm+m)d,

It is easy to see that for w = m+mn and d > 1 condition (3.2') is fulfilled only
in some particular cases. Condition (3.2) (and corresponding condition (3.2")) of
Theorem 3.1 is essential. For the classical resultant matrix, Theorem 3.1 is not
true, in general. One can demonstrate this by the following example.

Let

1+A 0 1+x 1
AN=1 —1+)\}’ B(A):{ 1 1+>\]'

Then the kernel of the resultant matrix Ry(A, B) consists of the set of vectors
(—1,1,1,0)t (t € C). On the other hand, +1 are the eigenvalues of the pencil
A(X) and 0, —2 are the eigenvalues of the pencil B(\). Thus, v(4, B) = 0, while
dim Ker R2(A, B) = 1.
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4. Applications

We shall present two applications of the results of Section 3.

4.1. We start with a generalization of the method of elimination of an unknown
from a system of equations with two unknowns (see, e.g., [1, Chap. 11, Section 54]).

Let A\, ) and B(A, 1) be matrix pencils of two variables

n o m q p
A ) =D 3 N A, BOup) =) N kB,
j=0 k=0 §=0 k=0
where A, 1 € C! and Ay, Bj € L(C?).
Consider the following system of equations
AN )y =0, B\ pu)p=0 (4.1)

with unknown numbers A and p and an unknown vector ¢ € C?% (¢ # 0). We make
the following assumptions:

a) for some p € pg € C! the system (4.1) does not have a solution;
b) the determinants

m p
det Z ukAnk, det Z ukqu
k=0 k=0

are not equal identically to zero;
¢) the determinants

n q
det > N Ajp, detY NBy,
j=0 j=0
are not equal identically to zero;

Let conditions a) and b) be fulfilled. We write the pencils A(X, u) and B(A, p)
in powers of the variable A:

AN i) = Ao(p) + M1 () + -+ + A" A (),
B(A, p) = Bo(p) + AB1(p) + - -+ + A By (p),

where

m p
Aj(p) =Y pFAjk, Bj(n) =Y 4" Bjk.
k=0 k=0
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Put
[ Ao(p) Ai(p) .. An(p) ]
Ao () Ap—1(p)  An(p)
Ru(y) = Ao(p) e Ana(p) An(w)
N Bo(u) Bi(p) B (1)
Bo () Bp-1(p)  Bm(p)
i By () oo Bm-i(p) Bm(p) |

Let My be a (finite) set of zeros of the function det A, (1)B,(¢). If w has the
property

w > min{nd + ¢; gd + n},
then for all u ¢ My one can apply Corollary 3.1. Therefore the set of points g,
for which system (4.1) has a solution, consists of the points of the set M; of the
numbers o ¢ My such that

rank Ry, (1o) < w, (4.2)

and, maybe, some points of the set M.
Substituting in (4.1) the points pg of the set My U M; instead of p, we get

A(Aa ,LLO)SO =0
B()‘v M0)<p =0
In this way solving system (4.1) is reduced to solving the system with one unknown
number and one unknown vector.
Now assume that, in addition to conditions a) and b), condition c) is also
fulfilled. Then the described process can be repeated interchanging the variables
wand A. Let Ag be the set of all zeros of the function

n P
det | Y NAjm | [ D NByy
j=0 j=0

The set of the numbers A, for which system (4.1) has a solution, consists of the
set A, of all points )¢ such that®

rank Ry, (A) < w (4.4)

} (1o € Mo U My). (4.3)

and, maybe, some points of the set Ag.

8 Rw () is defined similarly to Ry ()).
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Thus, it remains to solve the systems of equations
A(Xo, o) =0
’ 4.5
B(Xos pto)p =0 (4.5)
where A\g runs through the set Ag U A; and o runs through the set My U Mj.

4.2. Consider the homogeneous differential equations
dar d
An (dtn w) () + -+ Ay (dt<p> (t) + (Aop)(t) = 0, (4.6)

dm d
B, (dtmw> t)+--+ B <dtw> (t) + (Boy)(t) =0, (4.7)
where A;, B € L(C?) and the matrices A,, and B, are invertible. The matrix
pencils

AN =Y MA,, B =) MB
k=0 k=0

correspond to these equations, respectively. There is a close relation between the
solutions of equation (4.6) and Jordan chains for the pencil A(X). The general
solution of the equation is a linear combination of vector functions of the form

tk

t
p(t) = e (k,wo ot P sOk) ) (4.8)

1

where g, 1, ...,k run over all Jordan chains for the pencil A(X). Thus Theo-
rem 3.1 immediately yields the following.

Theorem 4.1. Let R be the subspace of the common solutions of equations (4.6)
and (4.7). If a number w satisfies the condition

w > min{nd + m, md + n},

then the equality
dim R = dim Ker R,, (4, B)
holds.

With the aid of this theorem and the method of Section 4.1 one can indicate a
method for solving the system of differential equations depending on a parameter
w of the form

ar d
Aa(l) ( gy ? ) @4+ A(w) {0 | () + Ao()e(t) =0
dm d ’
Bun(p) | gym® | @) 4+ Bilu) {0 | (8) + Bo(p)e(t) =0
where Ay (u) and By (u) are matrix pencils.

Consider also one more problem. For given vectors xx (k =0,1,...,m+n—1)

in the space C%, we will look for all pairs of functions (¢(t),%(t)), where ¢(t) is a
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solution of equation (4.6) and 9 (t) is a solution of equation (4.7) that satisfy the
initial conditions

dk
ik (@) +9v(E)|t=o =xr (k=0,1,...,m+n—1). (4.9)
This problem has a unique solution for every collection of vectors xi (k =
0,1,...,m +n — 1) if and only if the classical resultant matrix R, 1n(A, B) is
invertible.

Indeed, for every solution ¢(t) of equation (4.6) (resp. every solution ) (t) of
equation (4.7)), we construct the vector function

B(t) = ((j; <p> (t)) ::1 (reSp' () = <<ccli;¢) ( )>:0n1> '

Setting X = (xx) 1/ ~!, we see that initial conditions (4.9) take the form
®(0)+ ¥(0) = X.

If the vector function ¢(t) (resp. ¥(t)) runs over all solutions of equation (4.6)
(resp. (4.7)), then from equality (1.2) it follows immediately that the vectors ®(0)
(resp. ¥(0)) run over the system of vectors of the extension F™*! (resp. &™*!) of
multiplicity m + n of Jordan chains for the pencil A(X) (resp. B(A)). Therefore,
for every X € C™*t™4 the problem has a solution if and only if the union of the
systems ™ and 6"t is complete in C™ ™4, As it is noticed in Section 3, the
last fact holds if and only if the matrix R,,+,(A, B) is invertible. It is easy to see
that in this case the solution is unique.

5. Kernel of Bezoutian

5.1. As yet another application of Theorem 0.1, we present a description of the
kernel of the Bezoutian of two polynomials in the case d = 1.

Let a(A) = ag+ a1 A+ - -+ a, A" and b(A) = b+ b1 A+ -+ b, A™ (m < n) be
two polynomials (ay, by € C; a, # 0). Consider the polynomial in two variables

) — a(p
B(A, 1) = a(A)b ())\ Z bpg A
# P,q=0
The quadratic matrix B(a,b) = [[byll,, 1, is said to be the Bezoutian of the

polynomials a(X) and b(\). It is known (see e.g., [2, 3]) that the defect of the
Bezoutian is equal to the degree of the greatest common divisor of the polynomials
a(\) and b(\). This statement admits the following refinement.
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Theorem 5.1. The kernel of the Bezoutian B(a,b) of the polynomials a(X) and b(\)
consists of the linear span of the vectors

n—1

¢jk=<<z>A§> (k=0,1,...,v; —1; j=1,2,...,1),

p=0
where A; (j =1,2,...,1) are all common zeros of the polynomials a(X) and b(N),
and v; is the common multiplicity of the zero A;.

Proof. For the Bezoutian B(a,b) the equality

aq N Ap—1 QAp bo b1 . bn,1
as Qp 0 0 bo bn_g
B(a,b) = : : .
Qn 0 0 0 0 bo
(5.1)
b1 ce bn—l bn ap a1 ... Ap—1
b2 N bn 0 0 aog ... Ap—2
by ... 0 0 0 0 ... ao
holds (see [3]). We form the matrices
Qp 0 e 0 ap a1 ... Ap—1
- apn—1 ap ... O 0 ay ... ap—o
An - . . . . 3 An - . . . . )
ai as ... Qap 0 0 ag
A = [6j,n,k,1]?,;i0, and the matrices EL and B,, in the same fashion. Then
equality (5.1) takes the form
B(a,b) = A(A, B, — B, Ay). (5.2)
Therefore the equation B(a,b)¢ = 0 is equivalent to the equation
(AnBpn — BpAy)e = 0. (5.3)
Obviously, in the presented notation,
B, B
R(b,a) = L
(b, a) A A
It is easy to see that
B, B, | _[1I B.A;' 1| Bu—BuA'A, 0 I 0
A, A, | |0 I 0 A, ATYA, T

Obviously, the matrices B, and A,, commute. Therefore,

B, — B,A YA, = AN (A, B, — B, Ay). (5.4)
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Let

B, B,
A, A,

{ / ] 0. (5.5)

Then from equalities (5.2)—(5.4) it follows that B(a,b)f = 0.

Conversely, if B(a,b)f = 0, then equality (5.5) holds for ¢ = A 1A, f. It
remains to apply Theorem 0.1.

The theorem is proved. O

5.2. Given two polynomials of the form

z(A) =z + 1A+ -+, A", y(A) =yo + TERD WY VIS Sl (5.6)

1

where z,, # 0 or y_,, # 0. The quadratic matrix B(z,y) = gl 4=0> Where

n—1 — —

poa — BNy = )"z (u™Hy ()
Z bpg At = 11—\
P,q=0 H
is said to be the Bezoutian of the polynomials 2:(A) and y(\). By a straightforward
verification we obtain

o 0 ... 0 Yo Y-1 --- Yi-n
~ T Zo . 0 0 Yo N Yo2—n
B(z,y) =

ITn—1 Tpn—2 ... Zo 0 0 N Yo
Y_n 0 . 0 Typ Tp—1 ... I
Ylen Yen --- 0 0 Ty R )
Y-1 Y-2 ... Y—p 0 0 R

For the Bezoutian B(z,y) an analogue of Theorem 5.1 holds. For completeness we
present its formulation.

Theorem 5.2. The kernel of the Bezoutian of the polynomials x(X) and y(X\) of the
form (5.6) consists of the linear span of the vectors

n—1
<pjk—</\§<i>) 0 (k=0,1,... ki — 1),
p:

where A\j (j = 1,2,...,1) are all common zeros of the functions x(X) and y(N),
and kj; is the common multiplicity of the zero A;.
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The Resultant Matrix and its Generalizations.
II. The Continual Analogue of the
Resultant Operator

Israel Gohberg and Georg Heinig

Let A(\) and B()\) (A € C!) be entire functions of the form
0

AN = ag + / a(t)edt, B(\) = by + / b(t)e dt, (0.1)
0 -7
where ag, by € C!, a(t) € L1(0,7), b(t) € L1(—7,0), and 7 is some positive number.
To this pair of functions assign a bounded linear operator Ry (A, B) acting in
the space Li(—7,7) by the formula

0+ [ att-s)56)as 0<e<)
(Ro(A,B)f)(t) = -

O+ [ We-9f)ds (r<e<o)
where we assume that a(t) = 0 for ¢ # [0,7] and b(¢t) = 0 for ¢ ¢ [—7,0]. It is
natural to consider this operator as a continual analogue of the resultant operator
for two polynomials (see [1]). The operator Ro(A,B) is said to be the resultant
operator of the functions A(\) and B(A).

The following theorem holds.

Theorem 0.1. Let A(M\) and B(\) be entire functions of the form (0.1). Suppose
A1, A2, ..., A is the complete collection of distinct common zeros of the functions
A(X) and B(N), and k; is the multiplicity of a common zero \j. Then the system
of functions

Vi) =the™™t (k=0,1,...k; —1; =1,2,...,1)

The paper is a translation of the paper U.I1. 'ox6epr, I'. Xa#iuur, PesynnranTaas Mmarpuna
u eé 0600menus. II. KoHTrHyanbHBIE aHAJIOr PEe3yIbTAHTHOTO OIEPaTopa,

Acta Math. Acad. Sci. Hungar. 28 (1976), no. 3-4, 189-209.

MRO0425652 (54 #13606), Zbl 0341.15011.
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forms a basis of the subspace Ker Ro(A, B). In particular,
l
Z k; = dimKer Ry(A, B).
j=1

This theorem is a continual analogue of Theorem 0.1 in [1].

The present paper is a continuation of the authors’ paper [1], here continual
analogues of other theorems from [1] are obtained as well.

Note that in the continual matrix case the definition of the resultant operator
becomes more involved. By analogy with the discrete case, the continual resultant
operator for a matrix function acts from one space of vector functions to another
space of vector functions with wider support.

There is an essential difference between the discrete and continual resultant
operators for matrix functions. It consists in the fact that the choice of spaces, in
which the resultant operator acts in the continual case, does not depend on the
matrices itself and their orders.

The paper consists of six sections. In Section 1 the main theorem is formu-
lated. It is proved in Section 3. In Section 4 Theorem 0.1 is proved. Section 2
has an auxiliary character. In the last two sections some applications of the main
theorem are presented.

The authors express their sincere gratitude to M.G. Krein for extremely useful
discussions.

1. Formulation of the main theorem

1.1. Let o and 8 (—o00 < @ < 8 < o0) be a pair of real numbers and d be

a natural number. By L¢(«,3) denote the Banach space of all vector functions

J(t) = (f;(t))4=, with entries in Ly (e, 3). Analogously, by L%%(a, 3) denote the

space of matrix functions a(t) = Hajk(t)||?,k:1 of order d with entries in Lq(a, 3).
By F%4(q, 3) denote the space of all matrix functions of the form

AN) = ap + /B a(t)e™ dt, (1.1)

[e3

where ag € L(C%) ' and a(t) € L9*%(a, 8), and by F{*?(a, 3) denote the subspace
of F4*4(q, 3) with invertible first summands.

The space F'*9(a, 3) consists of entire matrix functions.

Let 7 be a positive number. To each pair of matrix functions of the form

AN) = ag —|—/ a(t)e™ dt € F40,7)
0

and o
B\) =ao+ [ bt)edt € F*I(—1,0)

-7

I The space of the quadratic matrices of order d is denoted by L(C%).
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and to each number ¢ > 0 we assign the operator R. (A, B) acting from the space
L¢(—7,7 + ¢€) to the space L¢(—7 — ¢,7 + ) by the rule?

T+e
o0+ [ alt- () ds O<t<r+o),
(RA(AB)9)(#) = -
¢(t+s)+/ bt+e—s)p(s)ds (= —e<t<0).

(1.2)
By analogy with the discrete case, we refer to the operator R.(A,B) as the re-
sultant operator of the matrix functions A(A) and B(\). The operator Ro(A, B)
acting in the space L{(—7,7) is called the classical resultant operator.
It is easy to see that the resultant operator R.(.A, B) is closely connected to
the operator EE(A, B) acting from the space L{(—7,7+¢) to the space L¢(—7,¢) +
L4(0,7 + €) by the formula

T+e
N o(t) + / a(t —s)p(s)ds (0<t<7+¢),
(Re(A B)) (1) = -
6(t) +/ bt — $)o(s)ds (-7 <t<e).

—T

Indeed, if RE(A, B)¢ = (f1, f2) where fi € L¢(—7,¢) and fo € L¢(0,7 + €), then
filt+e) (—7—e<t<0),

(Re(A,B)o)(t) = { £() (0<t<r+e).

Obviously, the equality
Ker R.(A, B) = Ker R.(A, B)
holds.

1.2. Recall some definitions and notation from [1]3. Let A()) be an entire matrix
function. A number \g € C! is said to be an eigenvalue of the matrix function A(\)
if det A(Ag) = 0. A vector ¢y € C? is said to be an eigenvector at the eigenvalue \g
if A(Ao)¢o = 0. A collection of vectors ¢g, ¢1, ..., ¢ is said to be a Jordan chain a
chain of an eigenvector and associated vectors (or a Jordan chain) of length r + 1
if the equalities

1/d 1/ dk
Ao)or + | (d/\A> (Mo)r—1 4+ ((M A) (Mo)do =0 (1.3)

hold for k=0,1,...,7.
Let Ao be an eigenvalue of the matrix function A(\). Tt is easy to prove that in

the kernel of the operator .A(\g) one can construct a basis ¢10, ¢20, . . . , ¢ro With the
following property: for each vector there exists a Jordan chain ¢;o, ¢j1,...,9jk; -1,

2Here and in what follows it is set a(t) = 0 for ¢ ¢ [0, 7] and b(t) = 0 for t ¢ [—7,0].
3See also [2] and [3].
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where k1 > ko > -+ > k, and Zj k; is equal to the multiplicity of zero of the
function det A(X) at the point Ag. The numbers k; (j = 1,2,...,r) are said to
be partial multiplicities of the eigenvalue Ao and the system ¢jo, @j1,. .., ¢jx;—1
(j =1,2,...,r) is said to be a canonical system of Jordan chains for the matrix
function A(X) at the eigenvalue A.

Consider two entire matrix functions A(\) and B(X). Let A\g be a common
eigenvalue of the matrix functions A(\) and B(A) and let

R = Ker A(Ag) NKer B(Ao).

Let ¢o, ¢1,- .., ¢r be a Jordan chain simultaneously for the pencils A(X) and
B()\) at the eigenvalue Ag. The number r + 1 is called the length of this common
chain. The greatest length of such a common chain starting with the vector ¢q is
said to be the rank of the common eigenvector ¢y and is denoted by ranky, ¢¢.

In the subspace R we choose a basis @10, ¢20, ..., ¢j0 such that the ranks
k; of its vectors have the following properties: k1 is the greatest of the numbers
ranky, ¢ (¢ € R), and k; (j = 2,3,...,1) is the greatest of the numbers rank,, ¢
for all vectors ¢ from the direct complement to lin{¢1g, P20, - - ., Pj—1,0} in R that
contains ¢;o.

It is easy to see that the number ranky, ¢¢ for every vector ¢ € R is equal
to one of the numbers k; (j = 1,2,...,1). Hence the numbers k; (j = 1,2,...,1)
are determined uniquely by the pencils A(X) and B(A). By ¢j1, ¢j2,. .., djk,—1
denote the corresponding common for A(\) and B(A) chain of vectors associated
with the common eigenvector ¢;o (7 =1,2,...,1).

The system

¢j07¢j17"'7¢j,k;’—1 (]:1,2,’l)

is called a canonical system of common Jordan chains for the matrix functions
A(X) and B()) at the common eigenvalue Ag, and the number

l
V(A B, o) E Sk
j=1

is called the common multiplicity of the eigenvalue Ay of the matrix functions A(\)
and B(A).

Let us also agree on the following notation:

V(A B) = S (A B N)
1
where \; runs over all common eigenvalues of the matrix functions A(X) and B()).
Note that for every pair of matrix functions A(\) € F5*4(0,7) and B()\) €
F*4(—7,0) the number v(A, B) is finite. Indeed, it is easy to see that the matrix
function A(A) is bounded in the upper half-plane and
lim .A(/\) = ao,

Im A>0,A—o00
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and the matrix function B(A) is bounded in the lower half-plane and

lim B()\) = bo.
Im A<0,A—00

This implies that the function det A(\) has at most a finite number of zeros in the
upper half-plane and the function det B(\) has at most a finite number of zeros in
the lower half-plane.

1.3. The main result of this paper is the following.

Theorem 1.1. Let A(\) and B(\) be two matriz functions in FZ*%(0,7) and
Fngd(—T, 0), respectively, let A = {A1,\a,..., \i} be the complete collection of
distinct common eigenvalues of the matriz functions A(X) and B(\), and let

Si={djry: k=0,1,..ky—1;j=12,....5} (=12,...l)

be a canonical system of common Jordan chains at the eigenvalue A;.
Then for every e > 0 the system of functions

Zine () (—it)"!
bika(t) = e N1 ( il bjo,1 + (k—1)! Gjrp+ -+ ikl (1.4)
where —7 <t <1t+ecand k =0,1,...,kj;—1; 7 =1,2,...,5; 1 =1,2,...,l,
forms a basis of the kernel of the resultant operator R.(A,B). In particular, the
equality
v(A, B) = dim Ker R.(A, B) (1.5)
holds.

1.4. It turns out that finding the kernel of the resultant operator can be reduced
to finding the kernels of two operators acting in the same space (in contrast to the
operator R.(A, B)). We introduce the operators R.(A, B) and R”(A, B) acting in
the space L{(—7,T + ¢€) by the formulas

awolt) + [ Tt - els)ds (0<t<Te),
(RL(A B))(t) = o (16)
boh(t) + / bt — 5)d(s)ds  (—r <t <0),

-7

and

aod(t) + / Tt — () ds (e <t<Tte),
(RI(A B))(1) = -
boo(t) + / b(t —s)p(s)ds (-1 <t<e).
It is easy to see that the equality
Ker R.(A, B) = Ker R_(A, B) N Ker R (A, B) (1.7)
holds.
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Note also that the role of the resultant operator can be played also by the
operator R. (A, B) acting from the space L{(—7—¢,7) to the space L{(—7—¢,7+¢)
by the rule

A a0¢(t—a)—|—/T alt—c—s)p(s)ds (0<t<t+e),
(R:(A, B)g)(t) = PO
boo(2) +[ bt s)ols) ds (cr—c<t<0).

In fact, the operator R.(A,B) coincides with the operator Re(A, B).

1.5. We give a simple example showing that Theorem 1.1 does not remain true in
the matrix case for ¢ = 0, that is, Theorem 0.1 does not admit a direct general-
ization to the matrix case.

Let
1 1
=1 | esisni aw=0 egpa.
1 1
o= 4 L] crseson wo=0 el
and ag = bg = I, where [ is the identity matrix.
Then
O | L
=ag+ a(t)e!M dt = | , .
° 0 2 et —1 iN—er+1
and
B = b /0 (e d iN+1l—e" 1—e
= + a t t . .
’ -1 Z)\ et —1 iIN—14e
for A # 0 and
2 1 2 1
an=|3 o] so-] 2]
We have
et —1\?
detA(A):l—Z( i) ) (A#0); det A(0) =-1
and
det B(\) =

Thus v(A,B) = 0.
The operator Ry(.A, B) is determined by the equality

H _1 /¢t—s (0<t<1),

(Ro(A, B)o)(t) H o H/ ot —s)ds (—1<t<0).
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It is easy to see that for the vector function

o(t) Hlttl—_i(t) ,

where
0 (t<0),
a(t):{ 1 (t>0),

the equality Ro(A, B)¢ = 0 holds. Therefore 1 < dim Ker Ry (A, B) and
v(A, B) # dimKer Ry (A, B).

2. A lemma

The statement obtained in this section will be used in Section 3 in the proof of
the main theorem.

Lemma 2.1. Let A(\) and B(\) be entire functions in F§*%(0,7) and F{**(—,0),
respectively. Then for every e > 0 the kernel of the resultant operator R.(A,B)
consists of absolutely continuous functions only.

Proof. First, we show that the kernel of the operator R’ (A, B) consists of vector
functions that are absolutely continuous on the intervals [—7,0) and [0, 7 +¢] only.
Consider the operator K’ acting in the space L¢(—7,7 + €) by the rule

/T+€a(t —8)p(s)ds (0<t<r+e),
(KLf)(t) = e
/_ b(t —s)p(s)ds (=7 <t <0).

Obviously, the equality

, o aof(t) (0<t<T+e),
(R(A, B)f)(t) = (KLf)(t) + { bof(t) (o7 <t<0) (2.1)

holds. It is easy to see that K/ is a bounded linear operator in L¢(—7,7 +¢) and
the estimate

KLl Le < lla@)] paxa + [b(E)] axa (2.2)
holds.

4Editor’s remark. Here and elsewhere the following notations are used: If A is a bounded linear
operator acting on a space L‘li(oz7 B) whose support («, 3) is evident from the context we just
write || A ||4 for the norm of A; similarly, if a is a d X d matrix function whose support is evident
from the context we write || a ”L’l“d'
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We will prove that the operator K. is compact in the space L{(—7,7 + €).
Indeed, the functions a(t) and b(t) can be approximated in the norm of the space
L¢(—7,7 +¢) to any required degree of accuracy by matrix functions of the form

i eQWijt/(27+€)aj. (2.3)
j=-m
Let @(t) and b(t) be the functions of the form (2.3) such that ||a(t) — a(t) ||Lrli><d <0
and ||b(t) — b(t)”Lrlj,xd, < 6, where § > 0 is a given number.
Obviously, the operator K defined by the equality

) /T+66(t—s)¢(s)ds O<t<rte),
&pw =4
/ b(t —s)p(s)ds (—17<t<0)

—T

is of finite rank. From estimate (4) it follows that
1K = Kllpg < [[a(t) — a(®)] paxa + [1b(£) = b(£)] paxa < 26.

Thus the operator K can be approximated (in the norm) to any required
degree of accuracy by finite rank operators. Hence the operator K is compact. In
view of (2.1), from the compactness of the operator K. it follows that

dim Ker R.(A, B) = dim Coker R.(A, B) < . (2.4)

By Wg denote the Banach space of the vector functions ¢(t) € LY(—7,7 +¢)
that are absolutely continuous on the intervals [—7,0) and [0, 7 + €] and have the
limits

#(—0) (: lim_ ¢(t)) eC.

t——

Obviously, the space W(‘)i is a direct sum of the space of all absolutely continuous
vector functions on [—7, 7] and the space of the vector functions of the form cf(t),
where ¢ € C? and

{ 0 (t<0),

=1 (t > 0).

A norm in the space Wg is defined by the equality
[0 l5a = le@ g + [[(DO) @) g

here and in the sequel we set (D@)(t) = (& ¢) (t) for ¢ # 0 (almost everywhere)
and

(D9)(0) = lim (D)(t)

lim
t——+0
(if this limit exists).
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Let I?é be the restriction of the operator K. to the space Wg. The operator
K! is a compact operator in the space W. Indeed, for a vector function f(t) € W¢
one has

ﬂﬂ+AaVV@—ﬂW+/ZWﬁ@—ﬂW O<t<r+o),
(KLF) (1) = t 3
f(t)+/ b(r)f(t—r)dr+/t b(r)f(t —r)ydr (=7 <t<0).

-7

Obviously, the right-hand side of the last equality is differentiable almost every-
where and

(Df)(t) —|—/O a(r)Df(t —r)dr
—l—/tTa(r)Df(t —r)dr O=t<7),
+a()(f(0) = £(=0))
(GRur) 0= t
(Df)(t) +/_ b(r)Df(t —r)dr
+ /tob(r)Df(t g CTEESO
+0()(f(0) = f(=0))

Since Df(t) € L¢(—7,7 + €) and the operator K/ maps the space L¢(—7,7 + ¢)
into itself, from the last equality it follows that K’f € W and the estimate

1K flla < o(la(l gaxa + @) paxa) 1 I

holds, where g is some constant that does not depend on f(t), a(t), and b(t). With
the aid of this estimate, the compactness of the operator K in the space WO
is proved in the same way as the compactness of the operator K. in the space
Li(—7,7+¢).

In view of the compactness of the operator I?E and equality (2.1), we get

dim Ker R’ = dim Coker R’ (2.5)
where R. is the restriction of the operator R.(A,B) to the space Wg. Since
dim Ker R’ < dimKer R’ (A, B), dim Coker R’ > dim Coker R’ (A, B),
from (2.4) and (2.5) it follows that
dim Ker R, = dim Ker R.(A, B) < oo
Therefore, Ker R, = Ker R.(A, B) and
Ker R.(A, B) ¢ W¢. (2.6)
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Now consider the operator K” acting in the space L¢(—,7 + €) by the rule

app(t) + /T a(s)p(t —s)ds (e <t<T+e¢),
(KL9)(t) = 0
b (1) +/ b(8)b(t — s)ds (=7 <t < ¢).

—T

Then the equality
app(t) (e <t<T1+e¢),
bop(t) (-7 <t<e)

(RZQ)(1) = (KZ9)(t) + {

holds.
By W4 denote the space of vector functions ¢(t) € L¢(—7,7 + ¢) that are
absolutely continuous on the intervals [—7,¢) and [, T + €] and have the limit

p(e —0) (: 1im0¢(h)> cC.

h—e—

With the aid of the previous arguments one can prove that the operator K/ maps
the space W4 into itself and the restriction of the operator K to the space W<
is a compact operator in W<. Hence, the embedding

Ker R"(A,B) ¢ W4
holds. According to equality (1.7), from here and relation (2.6) it follows that
Ker R"(A,B) ¢ WénW¢.

Since Wg N W(‘)i coincides with the set of absolutely continuous vector functions on
the interval [—7, 7 + €], this immediately implies the statement.
The lemma is proved. O

3. Proof of the main theorem

Let us introduce the operators R (A) and R.(B) setting

T+e
(Re(A)p)(t) = o(t) +/ a(t —s)p(s)ds (0<t<T+¢)
and

T+e€
(R-(B)6) () = o(t) + / bt - )p(s)ds (—7 <t<e).

—T

The operator R.(A) acts from the space L{(—7,7+¢) to the space L¢(0,7+¢) and
the operator R.(B) acts from L¢(—7,7+¢) to L¢(—7,¢). Obviously, the equality

Ker R.(A, B) = Ker R.(A) N Ker R.(B) (3.1)
holds.
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Let ¢or (K = 0,1,...,ko — 1) be a common Jordan chain for the matrix
functions A(X) and B(A) at the eigenvalue \g. Let us prove that then all functions

_it)k 3
o (t) = et <( lj) ¢oo + -+ 1Z!t¢0,k—1 + ¢0k) (3.2)

(—7<t<71+4¢e k=0,1,....ks— 1)
belong to Ker R.(A, B). Indeed, for k=0,1,...,kp — 1l and 0 <t < 7 +¢,

k it)" i it —s)]"
(w0 =t Y (T4 [Catwene W ),

= r!
ot e TP e .
:e_’)‘otzz ((5rp+/ ( )a(s)e’”\Os(is)T_pds) b0, k—r-
r=0 p=0 ! 0 p
Since
P A) () = aos [ (—sra(s)ered
o) ) = ot + (<0 [ (oraeas,
we have
k T .
it (=i)p ([ dP
Re(A)gui(t) = ¢ ;;pl(r_p)lt (W,,A (Ao)0.—r
3.3
B R N o
K PRNID VIR (R DS

Due to the definition of a Jordan chain, this implies that R.(A)pox(t) = 0. Anal-
ogously it is proved that R.(B)dox(t) = 0. Therefore ¢or(t) € Ker R.(A, B). From
what has been proved above, in particular, it follows that

dim Ker R. (A, B) > v(A, B).

Now assume that the vector function ¢(¢) belongs to the kernel of the operator
R.(A,B). Then

o(t) + /OT a(s)p(t —s)ds=0 (0<t<7+¢) (3.4)

and
0

o(t) + b(s)p(t —s)ds=0 (-7 <t<e). (3.5)

In view of Lemma 2.1, the vector function ¢(t) is absolutely continuous. From
here and equalities (3.4)—(3.5) it follows that for every r = 0,1, ...,k the function
;};¢(t) belongs to Ker R.(A, B). Since dim Ker R.(A, B) < oo, this implies that
there exist numbers «; (j = 1,2,...,mq) such that

mo d‘]
j;)ajdtjqb(t) =0 (—7<t<T+e).
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Hence, the vector function ¢(t) has the form
!
$(t) =Y pjt)e™N",
j=1
where p;(t) are polynomials with vector coefficients.
Let us show that all summands p;(t)e =" (j = 1,2,...,1) also belong to the
kernel of the operator R. (A, B). If ¢(t) € Ker R.(A, B), then, in particular,
0=¢(t) + / a(s)p(t —s)ds
0

for 0 <t <74 e. According to (3.5) we obtain

0= Z (pie 5 [ aloims(e - s as)

7j=1

|
<M“

e (0 + [ oot e eas).

j=1

It is easy to see that the vector function

g;(t) = p;(t) + /OT a(s)p;(t — s)e™* ds

is a polynomial with vector coefficients.

It is known that a system of scalar functions of the form eti'r;(t) (j =
1,2,...,1), where r;(t) are polynomials and p; are pairwise distinct complex num-
bers, is linearly independent. Hence the system of vector functions g;(t)e=*? is
linearly independent. This fact and (3.5) imply that

0=e itq;(t) = e Nip;(t) + / a(s)p;(t — s)e” =) gs.
0

The last equality means that e=**'p;(t) € Ker R.(A). Analogously it is proved
that e=?itp;(t) € Ker Re(B). According to equality (3.1), this implies that

e~ Pitpi(t) € Ker Ro(A,B) (j=1,2,...,1).

Let
_i+\kj _i\ki—1
p;(t) = ( ;:,) bjo + <(kjt)_ )l G+ F ok, (G=12,...,0).
Then
k:.
e N ([ (—it)” T xs [~ — )]k
O:RE(A)Qj(t)—eZAthZ()(( ]z!) +/0 a(s)e”\as[ Z(k! s)] 1kd8) Djoky—k

Taking into account that

dlc T ) s
(d)\k’A> (A) = apdro +/0 (is)*a(s)e™* ds,
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we obtain

—ins L (—it)P & 1 dk—r
0 = e Mt Z ( p') Z (k—p) (d/\k—[)A> ()\j)asj,kjfk'

p=0 k=p
Thus,

b kv
> k)l (dAMA> M\)djk; k=0 (0<t<7+e)
k=p ’

for p =0,1,...,k; and j = 1,2,...,l. This means that for every j = 1,2,...,!
the vectors ¢jo, dj1,..., 0 (k=0,1,...,k;) form a Jordan chain for the matrix
function A(M) at the eigenvalue A;. Analogously it is proved that ¢jo, dj1,. .., @ik
is also a Jordan chain for the matrix function B(X\).

Hence it is proved that every vector function in Ker R, (A, B) is a linear com-
bination of vector functions of the form (1.4). In particular, this implies equality
(1.5). The theorem is proved. O

Theorem 1.1 and equality (1.7) imply the following.
Corollary 3.1. Entire matriz functions A(\) € FE*4(0,7) and B(\) € F§*4(—r,0)

do not have any common eigenvector corresponding to the same eigenvalue if and
only if for some e > 0 the operator RL(A, B) or the operator R!(A, B) is invertible
in the space LI (—7,7 +¢).
Corollary 3.2. Under the hypotheses of Theorem 1.1, the inequality

v(A,B) < dimKer Ry (A, B)
holds.

Indeed, this follows from the obvious inclusion

Ker R. (A, B) C Ker Ry(A, B).

4. Scalar case

In this section Theorem 0.1 is proved.

4.1. We will need the following lemma.

Lemma 4.1. Let a(t) € L1(0,7), b(t) € L1(—7,0), and
0

AX) =1+ /T a(s)e™ ds, B(\) =1 —|—/ b(s)e'* ds.
0

-7

If the system of equations
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has a solution w(t) € Li(—7,7), then the classical resultant operator Ry(A,B) is
invertible.

This lemma is obtained in [4] (see also [5, Proposition 3.5]).
With the aid of Lemma 4.1 we prove the following.

Lemma 4.2. Let A(\) € Fy**(0,7) and B(\) € F,*'(—1,0). Then the kernel of
the classical resultant operator Ro(A, B) consists of absolutely continuous functions
only.

Proof. With the aid of the arguments from the proof of Lemma 2.1 one can show
that every function ¢(t) € Ker Ry(A, B) can be represented in the form ¢(t) =
Bo(t) — cB(t), where ¢(t) is an absolutely continuous function and ¢ € C*.

Let

T 0
A(X) = ag +/ a(t)eut dt, B(\) =by +/ b(t)e“t dt.
0

Assume that
o(t) = po(t) — ch(t) € Ker Ro(A, B) (4.2)
and ¢ # 0. Since

ao—l—/ta(s)ds 0<t<7),
Ry(A,B)I(t) = . 70
/ b(s)ds (-7 <t<0),

—T

we have

o)+ [t )ds = (a+ [[ats)is) e 0<t<m,
0

Po(t) + b(s)p(t — s)ds = (

-7

t b(s) ds) ¢ (-7 <t<0).

Differentiating the last equalities and setting
1d
t) = t t#0
wlt) = 560 (t£0),
we obtain

a(t) — /OT a(s)w(t —s)ds =w(t) (0<t<T),
0
b(t) — / b(sw(t—s)ds =w(t) (-7 <t<0).

In view of Lemma 4.1 this implies that the operator Ro(A, B) is invertible. This

contradicts the assumption ¢(t) € Ker Ry(A, B) (¢ # 0). Hence we have ¢ = 0 in

representation (4.2). This means that the function ¢(t) is absolutely continuous.
The lemma is proved. ([
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Note that Lemma 4.1 does not remain valid for matrix functions. One can
demonstrate this with the example presented in Section 1.

4.2. Proof of Theorem 0.1. For the proof of Theorem 0.1 we repeat the proof of
Theorem 1.1, where we apply Lemma 4.2 instead of Lemma 2.1. We obtain that
the kernel of the operator Ry(.A, B) consists of the linear hull of the functions of
the form

it [((—i)E —it
Pjk(t) =e ’\’t(( k!) Pjo ot ¢j,k—1+¢jk>
(k=0,1,... . kj; j=1,2...1)

where ¢;;, are complex numbers and ¢; # 0.
The equality

k T
i
Dk (t) = Z r'(bjrwjr(t)
r=0 "~
holds. On the other hand,

ok
Gk (t) — djr—1(t) = ];l pioth.

From the last two equalities it follows that the linear hull of the functions ¢;(¢)
coincides with the linear hull of the functions v (t).
The theorem is proved. O

Corollary 4.1. Entire functions A(\) € Fg**(0,7) and B(\) € F}*'(—,0) do not
have any common zero if and only if the operator Ro(A, B) is invertible.

5. Applications

We present an example of application of theorems on a continual analogue of the
resultant operator to the problem of elimination of an unknown variable from a
system of two (in general, transcendental) equations with two unknowns.

5.1. First, consider the scalar case. Let A(\, p) and B(A, i) be entire functions in
A and p of the form

A\, 1) = ag +/ / a(t, s)e’MHrs) ds dt,
o Jo

- (5.1)
B(X\, p) = by + / / b(t, s)e? M) ds dt,
where ag, by € C'; ag,by # 0; 0 < 7 < o0; and
a(t,s) € L1([0,7] x [0,7]), b(t,s) € L1([—7,0] x [—7,0]).
Consider the system of equations
A, i) =0,
*-u) (5.2)
B(A,pu) =0
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with unknowns A € C! and p € C!. Consider the functions

an(t) = /OTa(t,s)ei“S ds (neC, telo,r)

and
0

bu(t) = b(t,s)e™ ds (ueC, te[-,0]).
Obviously, for every fixed p the function a,(t) (resp. b,(t)) belongs to the space
L1(0,7) (resp. L1(—7,0)). Hence the functions a,,(t) and b, (¢) can be considered as
vector functions in g with values in the spaces L1(0,7) and L; (—7,0), respectively.
These functions are entire. Indeed, let

a,(t) = /OT a(t, s)(is)e'™* ds.

Then for h € C! we have
1

T T 1 . )
Gy =) < [ [ates)l] @ -1 < s @ dsds
h LI(O}T) 0 0 h
T T 1 .
< el”lT/ / la(t,s)| |, (e"® —1) —is| dsdt.
o Jo h
Hence
. 1
}ng}) a; - h(au+h — ay) = 0.

L1 (0,7‘)
Analogously it is proved that b, is also an entire vector function.

For every u € C! consider the classical resultant operator Ro(u) acting in
the space Li(—7,7) by the formula

%Mﬂ+/7%@—@dﬁﬁ 0<t<n,

(Ro(p)9)(t) = vy (5.3)
bod(t) + / bu(t — s)p(s)ds (—7 <t <0).

—T

The operator function Ry(u) is entire. Indeed, put

[ ait-9oas 0=,
(Bo(mo)(t) =4 "7
/
- b(t—s)p(s)ds (-7 <t<0).
Then in view of estimate (4) for every h € C! we obtain
’ 1

» (Rol+h) = Ro()) = Ri (1)

1
< H h(aMJrh —au) —a,

Li(-r7) L1(0,7)

1
+ H h(bu+h - bu) - b:;
Ll(fr,O)
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Therefore,

1

L =0 (pecCh).

Li(—7,7)

ti [ (ot + ) = Ral1) R

Applying Theorem 0.1 to the entire functions A(\, u) and B(\, p) for a fixed
1, we obtain that the set of the eigenvalues of the operator function Ry (u) coincides
with the set of the points p’ for which the functions A(X, u') and B(A, u') have
common zeros. It is not difficult to obtain that for the operator function Rg(u)
there exist points po such that the operator Ry(uo) is invertible. Hence the set of
the eigenvalues of the operator function Ro(u) is discrete.

Thus, system (5.2) is reduced to the family of systems of equations with one
unknown

A(A, 1) =0,
B(/\7Mj) =0,

where p; runs over the set of the eigenvalues of the operator function Ro(p). In
some cases, finding the eigenvalues of the operator function Ro(x) can be reduced
to finding the zeros of some entire function.

Indeed, if a,(t) € L2(0,7) and b,(t) € La(—7,0), then the operators

o)+ { ag ' Ro()o(t) (0<t<r),

K t) =
( (M)d))( ) balRO(lff)d)(t) (_7— <t< 0)

belong to the class of the Hilbert-Schmidt operators. Therefore the set of the
eigenvalues of the operator function Ro(u) coincides with the set of the zeros of
the entire function det(I + K(u)), where det(I + K(u)) denotes the regularized
determinant of the operator I + K (u) (see [2, Chap. IV, Section 2]).

Now we interchange the roles of the variables A and p and repeat the process
described above with respect to the resultant operator

T

[0+ [ aa-ssss o<z,
(Ro(N)o)(t) = o (5.4)
bod(t) + / ba(t— $)p(s)ds  (—7 <t<0),

where

T 0
ax(s) = / a(t,s)e™dt, by(s) = b(t, s)e™ dt.
0 —T
We obtain that the system of equations (5.2) may be satisfied only by the
eigenvalues X of the operator Rg(A). By {)\;} denote the set of these eigenvalues.
Finally, one concludes that all the solutions of system (5.2) are contained among
the pairs (A}, pr).



106 I. Gohberg and G. Heinig

5.2. Everything said above is naturally generalized to the case of matrix functions,
that is, to the case of solution of the system of equations

{ A\, p)o =0, 53)
B\, w)¢ =0 '

with unknown numbers A and p and an unknown vector ¢ € C? under the as-
sumption that

A()\,u):ao—f—/ / a(t, s)eNH1s) 4t ds (5.6)
o Jo
and
0 0 _
B, i) = by + / / b(t, s)e!NH1s) dt ds, (5.7)

where ag, by € L(C%); a(t, s),b(—t, —s) € LY*([0,7] x [0,7]).
In view of Corollary 3.2, here we can restrict ourselves to applying the classical
resultant operator and then reduce the problem (5.5) to solving the system of

equations
{ A()\j7uk)¢ = 07

B(/\j7 /’Lk)(b =0,
where py runs over all eigenvalues of the operator Ry(u) defined by equality (5.3)
and A; runs over all eigenvalues of the operator Ry(A) defined by equality (5.4).

5.3. Note that one can essentially extend a number of applications of the main
theorems by varying classes of matrix functions under consideration.

6. Continual analogue of the Bezoutian

Let o

AN =1+ / a(t)e™dt, BN = [ b(t)e dt,
0

where a(t) € L1(0,7) and b(t) € L1(—7,0).
Consider the function

GO | L (AVB(—p) = T ABR)) - (e T

It is easy to see (see [5]) that

o) = [ [ (e atas,
0 0

where
min(t,s)
~(t, ) def a(t—s)+b(t—s) +/0 (a(t—r)b(r—s)=b(t—r—T)a(r—s+7)) dr

and 0 < t,s < 7. Notice that y(¢,s) € L1([0, 7] x [0, 7]).
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The operator I +T'(A, B) given by

rA B0 = "ot s)b(s) ds

acting in the space L;(0, 7) is said to be the Bezoutian operator for the functions
A(X) and B()). It is a natural continual analogue of the Bezoutian operator in the
discrete case (see [1, 6, 7]).

Note that v(¢,0) = a(t) and v(0, s) = b(—s).

The next theorem is a continual analogue of [1, Theorem 5.1].

Theorem 6.1. Let

T 0
AQ)=1+/1Mﬂé”du BO) =1+ [ b(t)e dt,
0 -7
where a(t) € L1(0,7) and b(t) € L1(—7,0). Then the kernel of the Bezoutian
operator I +T'(A, B) of the functions A(X) and B(X) consists of the linear span of
the system of functions

di(t) = the™™Nt (k=0,1,... .k —1; j=1,2,...,1),
where Aj (7 =1,2,...,1) are all distinct common zeros of the functions A(\) and
B(X) and k; is the multiplicity of the zero \;.
In particular,

v(A, B) = dimKer(I + T'(A, B)). (6.1)

Proof. Let us consider the following operators acting in the space L1(0,7):
(00 = [ at-9o()ds,  BOO = [ bt s)os) ds
0 0
(Ao)0) = [ ale—s+mots)ds, (Bo®) = [ bt =5 =)o) ds

where 0 < ¢t < 7. With the aid of these operators, the Bezoutian operator can be
written in the form

I+T(A,B)=(I+A)I+ B) — BA.
We also introduce the operators

(Hig)(t) =o(t—7) (0<t

(H-9)(t) = ¢(t —7) (-7 <
The operator Hy maps L1 (—7,0) onto L1(0,7) and the operator H_ is the inverse
to the operator Hy. If we identify the space Lq(—7,7) with the direct sum of the

subspaces Li(—7,0) and L;(0,7), then the resultant operator Rg(A,B) for the
functions A(X) and B()) takes the following block form:

I+H_BH, H_B
AH, I+ A

Ry(A,B) =
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We can straightforwardly check that the equality

I H_B(I+A)™! H.CHy 0
0 I 0 I+A

r 0
(I+A)tAH, 1T
holds, where C =1+ B — E(I + A)_lg. Since, obviously, the operators B and A
commute, we have
C=I+A) " (I+AI+B)—BA) =1+ A~ I+T(AB)). (6.3)
Let f(t) € Ker Ro(A, B), then in view of (6.2) and (6.3),
(I+T(AB))f1=0,

where fi1(t) = f(t—7) (0<t < 7).
Conversely, from the equality (I + I'(A,B))fi(t) = 0 it follows that f(¢)
belongs to Ker Ry(A, B), where

Rl B) |

(6.2)
X

Sl T+ A)TTAA®E) (0<t<T).
To finish the proof, it remains to apply Theorem 0.1. U

Note also that in the case when the Bezoutian operator is invertible, its
inverse is an integral operator with a kernel depending only on the difference of
the arguments (see [4, 5]).

For the case A(\) = B(—A) a theorem containing a continual generalization
of Hermite’s theorem [6] (containing, in particular, equality (6.1)) was obtained by
M.G. Krein. This result was published by him only in the discrete case (see [8]).

References

[1] I.C. Gohberg and G. Heinig, The resultant matriz and its generalizations. 1. The
resultant operator for matriz polynomials. Acta Sci. Math. (Szeged) 37 (1975), 41—
61 (in Russian). English translation: this volume. MR0380471 (52 #1371), Zbl
0298.15013.

1.C. Gohberg and M.G. Krein, Introduction to the Theory of Linear Nonselfad-
joint Operators in Hilbert space. Nauka, Moscow, 1965 (in Russian). MR0220070
(36 #3137), Zbl 0138.07803.

English translation: Introduction to the Theory of Linear Nonselfadjoint Operators.
Amer. Math. Soc., Providence, R.I. 1969. MR0246142 (39 #7447), Zbl 0181.13504.

French translation: Introduction a la Théorie des Opérateurs Linéaires non Auto-
Adjoints Dans un Espace Hilbertien. Dunod, Paris, 1971. MR0350445 (50 #2937).

I.C. Gohberg and E.I. Sigal, An operator generalization of the logarithmic residue
theorem and the theorem of Rouché. Matem. Sbornik, New Ser. 84(126) (1971), 607—
629 (in Russian). English translation: Math. USSR Sbornik 13 (1971), 603-625.
MRO0313856 (47 #2409), Zbl 0254.47046.

~

=



The Resultant Matrix and its Generalizations II 109

[4] I.C. Gohberg and A.A. Semencul, The inversion of finite Toeplitz matrices and
their continual analogues. Matem. Issled. 7 (1972), no. 2(24), 201-223 (in Russian).
MR0353038 (50 #5524), Zbl 0288.15004.

[5] I.C. Gohberg and G. Heinig, Matriz integral operators on a finite interval with kernels
depending on the difference of the arguments. Rev. Roumaine Math. Pures Appl. 20
(1975), 5573 (in Russian). English translation: this volume. MR0380495 (52 #1395),
Zbl 0327.45009.

[6] M.G. Krein and M.A. Naimark, The method of symmetric and Hermitian forms
in the theory of the separation of the roots of algebraic equations. Khar’kov, 1936
(in Russian). English translation: Linear and Multilinear Algebra 10 (1981), no. 4,
265-308. MR0638124 (84i:12016), Zbl 0584.12018.

[7] F.I. Lander, The Bezoutian and the inversion of Hankel and Toeplitz matrices.
Matem. Issled. 9 (1974), no. 2(32), 69-87 (in Russian). MR0437559 (55 #10483),
Zbl 0331.15017.

[8] M.G. Krein, Distribution of roots of polynomials orthogonal on the unit circle with
respect to a sign-alternating weight. Teor. Funkts., Funkts. Anal. Prilozh. (Khar’kov)
2 (1966), 131-137 (in Russian). MR0201702 (34 #1584), Zbl 0257.30002.



Operator Theory:
Advances and Applications, Vol. 206, 111-125
(© 2010 Springer Basel AG

The Spectrum of Singular Integral
Operators in L, Spaces

Israel Gohberg and Nahum Krupnik

To S. Mazur and W. Orlicz

First, we shall consider the simplest class of one-dimensional singular integral
operators — the class of discrete Wiener-Hopf operators.

Let T, be a bounded linear operator defined in the space £ by the infinite
matrix [|a;_x[|3%—o, Where a; are the Fourier coefficients of some bounded function
a(¢) (I¢] = 1).

If the function a(¢) (|¢| = 1) is continuous, then the spectrum of the operator
T, consists of all points of the curve a(¢) (|¢| = 1) and all complex numbers A not
lying on this curve, for which

ind(a —3) % fars(a(e”) - NI #0.

This statement remains true (see [7]) if one replaces the space o by many
other Banach spaces. In particular, the space ¢> can be replaced by any space h,,
(1 < p < o0) of the sequences of the Fourier coefficients of functions belonging to
the corresponding Hardy space H,, (see [2]). The situation becomes more involved
if the function a(¢) is not continuous.

If the function a(¢) (|¢] = 1) is continuous from the left and has a finite
number of discontinuities [of the first kind] (1, (o, .. ., s, then the spectrum of the
operator T, in the space la (see [3]) consists of all points of the curve V(a) resulting
from the range of the function a(() by adding the segments

pa(Ce) + (1 —pa(G +0) (0<p<1),
as well as of the points A ¢ V (a), for which

7{ dyarg(t — A) # 0.
V(a)

. def 1
ind(a — \) =
The paper was originally published as N.II. I'ox6epr, H.d. Kpynuuk, O cuexkrpe cuarym-

SAPHBIX MHTErpPAJLHLIX ONEPATOPOB B mpocrpaHcTBax Ly, Studia Math. 31 (1968), 347-362.
MRO0236774 (38 #5068), Zbl 0179.19701.
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This result does not hold for the spaces h, with 1 < p < oo if p # 2: for a
piecewise continuous function a(C) the spectrum of the operator T, in h, varies
with variation of p.

This paper is devoted to finding the spectrum of the operator T, in the
spaces h, and solving the same problem for other singular integral operators in
the spaces L.

Some results in this direction were obtained earlier in the paper by H. Widom
[1] (see also [14]). Known methods of N.I. Mushelishvili [10] and B.V. Khvedelidze
[12, 13] for solving singular integral equations with discontinuous coefficients play
an important role in what follows.

The paper consists of four sections. Discrete Wiener-Hopf equations in the
spaces h,, are considered in Section 1. In Section 2, the spectrum of singular integral
operators with discontinuous coefficients in L,(I'), where I' consists of a finite
number of closed contours, is studied. As an application, in Section 3, estimates for
the norms of some singular integral operators in L, (I") are obtained. In particular,
for some L, the exact value of the norm of the Hilbert transform is calculated.
In the last section the above mentioned results are generalized to some symmetric
spaces.

1. The spectrum of discrete Wiener-Hopf equations in h,, spaces

1.1. Let H, (1 < p < o0) be the Hardy space, that is, the space of all functions
f(¢) analytic in the disk || < 1 with the norm

1/p

111, = lim ( / ” If(gew)l”d@) (< ).

ol

By hj,, denote the Banach space isometric to H,, that consists of all sequences
& = {§;}5° of the Fourier coefficients of functions in Hp,.

By A denote the set of all piecewise continuous functions on the unit circle
(I¢| = 1) that are continuous from the left.

In this section the spectra of operators generated by the matrices of the form
llaj—kll3%=0, Where a; (j = 0,£1,...) are the Fourier coefficients of a function
a(C) € A, are studied in h, (1 < p < 00). The operator T, generated by the above
matrix is a bounded linear operator in every space h, (1 < p < 00).

1.2. Let a and b be a pair of points in the complex plane and p be a number in
the interval (2,00). By vp(a,b) we denote the circular arc joining the points a,b
and having the following two properties:

(a) the segment ab is seen from the interior points of the arc v,(a,b) under the
angle 27 /p;
(8) the orientation from the point a to b along the arc v, (a, b) is counter-clockwise.
In the case 1 < p < 2 we set v,(a,b) = vy(b,a) (p~' +¢ ! = 1), and in the
case p = 2 by 2(a,b) we denote the segment ab.
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Let a(¢) be an arbitrary function in A and (x (|| =1and k =1,2,...,n) be
all its discontinuity points. To the function a(¢) and a number p (1 < p < o) we
assign the continuous closed curve V,(a) resulting from the range of the function
a(¢) by adding the arcs vp(a(Cx), a(Cx +0)) (k=1,2,...,n). We orient the curve
Vp(a) in the natural manner. That is, on the intervals of continuity of the function
a(¢), the motion along the curve V,(a) agrees with the motion of the variable ¢
counterclockwise; and along the arcs vp(a(Cx)a((r+0)), the curve V,(a) is oriented
from a(Cx) to a(Cx + 0).

We say that a function a(¢) € A is p-nonsingular if the curve V,(a) does not
pass through the point A = 0.

The winding number of the curve Vj,(a) about the point A = 0, that is, the

number
1
7{ dargt
27 Jv,(a)

is said to be the index (more precisely, p-index) of the p-nonsingular function a(()
and is denoted by ind, a.

If a function a(¢) € A is not continuous, then obviously its index depends on
the number p.

Note also that, in contrast to the case of continuous functions, the p-index
of the product of two p-nonsingular functions may not be equal to the sum of the
p-indices of those functions.

However it can be easily seen that if the multiples f and g (€ A) do not have
common points of discontinuity, then the p-nonsingularity of the functions f and
g tmplies the p-nonsingularity of their product and the identity

ind,(fg) = ind, f + ind, g.
1.3. The main result of this section is the following.

Theorem 1. Let a(¢) € A. The operator T, is a ®-operator or a ®_-operator in
the space hy, if and only if the function a(C) is p-nonsingular.
If the function a(C) is p-nonsingular, then

1. for ind, a > 0 the operator Ty is left-invertible in the space h, and
dim coker T, |h, = ind,, a;
2. for indy a < O the operator T, is right-invertible in the space h, and
dimker T, |h), = —ind,, a;
3. forind, a = 0 the operator T, is two-sided invertible in hy.
This theorem immediately implies the following.
1An operator A is said to be a @ -operator (resp. ®_-operator) if it is normally solvable and

dimker A < oo (resp. dim coker A < 00). If A is a ®_-operator and a ® -operator simultaneously,
then it is called a ®-operator.
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Theorem 2. Suppose a(¢) € A. The spectrum of the operator T, in the space h,
(1 < p < o0) consists of all points of the curve Vy(a) and the points X ¢ Vy(a), for
which indy(a — X) # 0.

Proof of Theorem 1 will be given in Section 2. Here we illustrate Theorem 2
by considering as an example the operator T, defined in h, (1 < p < o0) by the
matrix

o0

1
mi(j — k+1/2)

7,k=0

This operator is a truncation of the discrete Hilbert transform. The corre-
sponding function
(iG)_l i 1 0 _ —i6/2 (0<9<2)
gle =i j+1/2€ =e <27
j=—00
has exactly one discontinuity on the unit circle at the point ( = 1. In view of
Theorem 2 the spectrum o,(T}) of the operator T, depends on p and is the set
bounded by the half-circle e (7 < 7 < 27) and the circular arc v,(—1,1).

For 2 < p < oo we have ind, g = 0. Therefore for these values of p the
operator T} is invertible in h,. For 1 < p < 2 we get ind, g = —1. Hence for
these values of p the operator 7} is right-invertible in h, and dimker7, = 1. The
operator T, is not one-sided invertible only in the space hy (= ¢2) (moreover, it is
neither a ®-operator nor a ®_-operator).

The spectrum o, (T},) always contains interior points except for the case p = 4.
In the latter case the spectrum o,(Ty) consists of the half-circle

va(—=1,1) = {e' : 7 < 7 < 27}

2. The spectrum of singular integral operators in L, spaces

By FT denote a bounded connected closed set on the complex plane with the
boundary I' consisting of a finite number of simple closed smooth oriented curves,
that is, I' = U;n:() I';. Let F'~ be the closure of the complement of F* to the whole
plane. We shall assume that 0 € F*\T'. By F;~ denote the connected (bounded if
j # 0) part of the set F'~ with the boundary T';.

The set of all piecewise continuous functions that are continuous from the
left on I is denoted by A(T).

Let t1,ta,...,t, be all discontinuity points of a function g(t) € A(T"). To
the function g(¢) we assign the curve V,(g) consisting of a finite number of closed
oriented continuous curves resulting from the range of the function g(t) by adding
the n arcs vp(g(tx), g(tx +0)).

We say that the function ¢(t) is p-nonsingular if 0 ¢ V,(g).
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The winding number of the contour V,(g) about the point A = 0, that is, the

number
1

% dargt
2 Vp(9)

is said to be the index (p-index) of a p-nonsingular function ¢(¢) and is denoted
by ind, g.

Analogously to the case of the unit circle, if two p-nonsingular functions
do not have common discontinuity points, then their product is a p-nonsingular
function and the p-index of the product is equal to the sum of the p-indices of the
multiples.

Consider a singular integral operator A = ¢(t)I 4 d(t).S, where ¢(t) and d(t)

belong to A(T") and
(Se)(t) = | /F A7) g,

) T—1

If one introduces the notation
c(t) +d(t) = al(t), ct)—d(t)=0b(1), (I+S)/2=P ([I-5)/2=0Q,

then the operator A can be written in the form A = a(t)P + b(1)Q.
First consider the case b(t) = 1.

Theorem 3. The operator Ay = gP + Q, where g(t) € A(T'), is a ®4-operator or
a ®_-operator in the spaces Ly(T') (1 < p < 00) if and only if the function g(t) is
p-nonsingular.

If the function g(t) is p-nonsingular, then

1. forind, g > 0 the operator A, is left-invertible in the space Ly(I") and
dim coker A, = ind,, g;

2. forind, g < 0 the operator Ay is right-invertible in the space L,(I') and
dimker A; = —ind, g¢;

3. for ind, g = 0 the operator Ay is invertible in L,(T).

The idea of the proof of the sufficiency portion of Theorem 3 is borrowed
from the theory of singular integral equations with discontinuous coefficients (see
[10, 13]). According to the usual line of reasoning in this theory we first prove the
sufficiency of the conditions of Theorem 3 for a special (in some sense the simplest)
function ¢(¢t) € A(T"). Then the general case will be considered with the aid of this
simplest case.

Let t (k = 1,2,...,n) be some points on the contour I" and sy (sx ¢ T')
be points chosen by the following rule: if ¢, € Ty, then s, € F*;if ¢, € T
(j =1,2,...,m), then s; € F;". The contour I'; containing the point ¢ will be
also denoted by I'(®)
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By ¢ (t) denote the function continuous everywhere on the contour I', except
for possibly the point ¢, and defined by

 (t—sp) for teTW),
wk(t)_{ 1 for teT\TW),
where ¢ = 1 if ¢, € Tg and e = —1 if ¢, ¢ Ty and 7, are complex numbers
satisfying
— 1
p < Revy <
D

It is easy to see that the function 9 (t) = 1 (¢) ... ¢¥n(t) is p-nonsingular and
ind, ¢ = 0.

Lemma 1. The operator Ay, = ¥ (t)P + Q is invertible in L,(T').

Proof. Each function 14 (t) can be factorized (see, e.g., [12]): ¥k (t) = ¥ (O)¢; (1),
where

(t — )" (t € TW),
v () =
(t e\ T®),

1
t—sk
o) <t_t ) (ter®),
1 (t e T\TH),

Here 1(®) (resp. ¥(=9)) denotes Y (vesp. ¢y ) for ty € Ty and ), (resp. ¥;")
for ty, € '\ T.

The function v (t) admits a factorization 1(t) = ¥_(t)y4(t), where 1 (t) =
Y (t) ... ¢E(t). Consider the operator B = (3P +¢_Q)="I. Taking into ac-
count that P+ @ = [ and P — Q = 5, the operator B can be represented in the
form

= @™ )T+ @ = sy

From Khvedelidze’s theorem [13, p. 24] on the boundedness of the operator
S in the L, space with weight it follows that the operator 1_ S¢~1T is bounded
in L,(T'), whence the operator B is also bounded in L,(T).

It is easy to see that for Holder continuous functions x(t) (¢t € I'), the equal-
ities

(W' P+v_ Q' (WP +Q)x = (WP +Q)(Wi'P+ Q) 'x = x

hold.
Thus the operator Ay is invertible in L,(I') and A, V= (' P+y_Q)y='1.
The lemma is proved. O
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Proof of Theorem 3. Let t;, (€ T'y) (kK =1,2,...,n) be all discontinuity points of
the function g(t). Since g(t) is a p-nonsingular function, the quotient g(tx)/g(tx+0)
can be written in the form

g(tk) _ ‘ g(tk?) 6271'1'04;C (1)
gtk +0)  |g(tr +0) ’
where (1 —p)/p < ar < 1/p.
By 7k denote the following numbers:
1 g(t)
= 1 .
T T i gt +0) ‘

To the points ¢; and the numbers 7, we assign the function ¢ (¢). The quotient
g(t)/¥(t) is a continuous function because

Ur(te) Q2T 9(tk)
Yr(te +0) g(tr +0)

The function g(¢) can be written as the product g(t) = ¥(¢)r(t)(1 + m(t)),
where 7(t) is a rational function that does not have poles and zeros on the contour
I, ind, g = indr, and the maximum of the absolute value of the function m(t)
is so small that the operator Ayimy = PP + Q + myP is invertible in L,(T")
simultaneously with the operator A,.

The function r(t) can be factorized (see [4]) as follows: r(t) = r_(¢)t"r,(t),
where 74 (t) (resp. r—(t)) is a rational function with poles and zeros in the domain
F~U{oco} (resp. FT), and k = indr (= ind, g).

Let k > 0. Then it is easy to verify the identity

gP+Q=7r_(YP+Q+¢ymP)t"P+Q)(r. P +r_'Q).

The operators P + Q +¢ymP and r, P + r_'Q are invertible in L,(T") and
the operator t*P + @ is left-invertible in L,(T") and dim coker(¢t*P + @) = k. The
operator

(rI'P+7r_Q)t P+ Q)(WP + Q +ymP) rI'I
is an inverse from the left to gP + @. From here it follows that if x = 0, then the
operator A, is invertible and if £ > 0, then the operator A, is only left-invertible
in L,(T") and dim coker A, = ind, g.
Let k < 0. In that case we will use the identity
gtT"P+Q=(gP+Q)t "P+Q).

Since ind,(gt~") = 0, the operator gt~"P + @ is invertible in L,(T"). In
addition the operator t~*P + (@ is right-invertible and dim coker(t "P+ Q) = —k.
From here it follows that the operator A, is only right-invertible in L,(I") and
dimker A; = —ind, g.

The necessity part of the theorem is proved by contradiction®. Assume that
Ay is a &4 -operator or a ®_-operator in L,(I") and 0 € V,(T"). First consider the

2The idea of this proof is borrowed from [9].
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case when there exists a neighborhood U of the origin in which V,(T") is a simple
smooth line. Since A, is a ®4-operator, one can find a neighborhood U; C U of the
origin such that for all A € U; the operator A,_» is a ®4-operator and ind A;_y =
ind Ay (recall that ind A = dimker A — dim coker A). On the other hand, if one
takes two points A1, Ao € Uy which lie in different domains separated by V,(T"), then
ind,(g— A1) # indp(g — A2). Then as we have shown above ind Ay, # ind Ay_x,,
which is impossible.

We develop the proof in the general case by contradiction as well. Assume
that A, is a ®4-operator in L,(I") and 0 € V,,(I"). Then one can choose a function
b(t) € A(T") satisfying the three conditions:

(o) sup |g(t)—b(t)| < e, where ¢ is so small that the operator A, is a ®4-operator?;
tel

(6) the curve V,(b) is a simple smooth arc in some neighborhood of the origin;
(7) 0. € Vp(b).

As we have shown, the latter condition contradicts the former two conditions. The
theorem is proved. O

Theorem 1 is easily derived from the previous theorem.

Proof of Theorem 1. By C denote the isometric operator mapping each function
f(¢) in H? to the vector {f;}§° € hp of its Fourier coefficients. It is easy to see
that
T,=CPA,C™1,

where A, is the singular integral operator a P+ @ for which the unit circle (|¢| = 1)
plays the role of the contour I'.

Without difficulty it is proved that the operator PA,|H, can be one-sided
invertible (it is a ®y-operator) if and only if the operator A, so is in the space
L,(T). If the operator PA,|H, is one-sided invertible, then

dimker A, = dimker PA,|Hp, dimcoker A, = dim coker PA,|Hp.
The theorem is proved. O

Theorem 4. Let c(t) € A(I") and d(t) € A(T'). The operator A = c(t)I + d(t)S
(A =c(t)] +Sdt)I) is a ®y-operator or a ®_-operator in L,(T'), 1 < p < oo, if
and only if the following two conditions are fulfilled:
(@) inf[e(t) — d(t)] > 0,
(B) the function (c(t) + d(t)/(c(t) — d(t)) is p-nonsingular.
If these conditions are fulfilled and = ind,(c + d)/(c — d), then
1. for k < 0 the operator A is right-invertible in L,(T") and dimker A = —k;

2. for k > 0 the operator A is left-invertible in L,(T') and dim coker A = &;
3. for k =0 the operator A is invertible in Ly(T').

3The existence of such a number ¢ follows from the stability theorem for ®.-operators under
small perturbations [5].
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Proof. We develop the proof for the operator A = c(t)I + d(t)S. We represent it
in the form A = a(t)P + b(t)Q, where a(t) = ¢(t) + d(t) and b(t) = c(t) — d(t).
The sufficiency of the conditions of the theorem follows from Theorem 3. To
apply this theorem for the proof of the necessity, it remains to show that if A is
a ®-operator or a ®_-operator, then %Iellﬁ [b(t)| > 0. We divide the proof of this

fact into two steps.

1. Let us show that if the functions a(t) and b(t) (€ A(T")) are rational in each
segment of their continuity and b(tg) = 0, where t( is some point of continuity
of the function b(t), then the operator aP + bQ is neither @ -operator nor
®_-operator.

Indeed, since under these conditions by (t) = (t=1 — t5 1)~ 1b(t) € A(T),
the operator aP + bQ) can be written in the form

aP +bQ = (aP+0,Q)(P+ (' +t;1)Q). (2)

If the operator aP + b were a ®_-operator, then from identity (2) it
would follow that the operator P 4 (¢~ — t;1)Q is a ®,-operator, which is
impossible due to Theorem 3. Thus, aP + bQ cannot be a ®-operator.

Since the functions a(t) and b(¢) are piecewise rational, in every neigh-
borhood of the origin there exists a point A such that for the operator A — \I
conditions («) and () of the theorem are fulfilled, whence the operator A—\I
is a ®-operator. From here it follows that if A were a ®_-operator, then it
would be a ®-operator, but we have shown that it is not even a ®-operator.

2. Let us show that if the operator A is a ® -operator or a ®_-operator, then
grellﬁ |b(t)] > 0. Assume the contrary, i.e., assume that A is a ®-operator

(or a ®_-operator) and there is a point ¢ty € I, at which either b(to) = 0 or
b(to+0) = 0. Choose two piecewise rational functions a1 (t) and b1 (¢) (€ A(T"))
such that |a(t) — a1 (t)] < ¢ and |b(t) — bi(t)| < 0, where § is so small that
the operator a1 P + b1Q is a ®-operator (or a ®_-operator). Obviously, in
this case the function by(¢) can be chosen so that the condition b;(tg) =
0 is fulfilled and to is a continuity point of the function b;(¢). The latter
contradicts what has been proved in Step 1.

The theorem is proved. O

It is not difficult to show that conditions («) and (3) in the formulation of
Theorem 4 can be replaced by an equivalent condition: for all 4 € [0,1] and ¢t € T,

a(t)b(t + 0)E(p, ) + b(t)F(p, i) # 0,

where
2mip(p — 2 —4i 2mip(p — 2
E(p,u)—eXp< ( )>—eXp< > F(p,u)=1—eXp< ( )
p p p
for p > 2,

E(p,p) = F(q,p), F(p,p) =E(q,p)
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forl<p<2and1/p+1/g=1, and
E@2,p)=p, F@2,p)=1-p
The last theorem allows us to find ®-domains?* of singular integral operators.

Theorem 5. Let a(t) € A(T') and b(t) € A(T'). The complement to the ®-domain
of the operator A = aP + bQ (A = Pal + Qbl) consists of the ranges of the
functions a(t) and b(t) and the set of all complex numbers A, each of which for
some p € [0, 1] satisfies at least one of the equations

(a(ti) = A)(b(tr +0) = N E(p, p) + (a(t +0) = A)(b(tx) — \)F(p, ) =0, (3)
where t, (k=1,2,...,n) are all discontinuity points of the functions a(t) and b(t).

Consider several examples of sets G of complex numbers A\ satisfying equa-
tion (3) corresponding to the discontinuity point t.
Let t1 be a discontinuity point of the function a(t) only. Then

G1 = vy(alty), alts +0)) U{b(t2)}-
Analogously, if ¢2 is a discontinuity point of the function b(t) only, then
G = vp(b(t2 + 0),b(t2)) U {a(t2)}.

Let t3 be a discontinuity point of both functions a(t),b(t) and a(ts) = b(ts).

Then
Gz = l/p(b(tg, + 0), a(t3 + 0)) @] {a(tg)}

If t4 is a common discontinuity point of the functions a(t),b(t) and, for in-
stance, a(ts) = b(ta +0) = 1, b(ts) = a(t4 + 0) = —1, then the set G4 is the circle
centered at the point —icot(w/p) of radius R = 1/ sin(w/p).

In the example A = d(t)S, where a function d(t) (¢ A(T") takes only two
values 0 and 1, the complement to the ®-domain of the operator A is the set
G =v,(—1,1) Upy(1,-1) U{0}.

Note that all results of this section can be extended to paired and transposed
to paired Wiener-Hopf equations.

3. Estimate for the norm of the singular integral operator

In this sections some estimates from below for the norms of P, @, and S in the
space L,(T") will be obtained. Moreover, for some values of p (p = 2™ and p =
2" /(2™ — 1), n =1,2,...), the exact value for the norm of the Hilbert transform
will be calculated®.

Denote by B, the set of all compact operators in L,(T).

4The ®-domain of an operator A is the set of all complex numbers A such that the operator
A — X is a ®$-operator.
5The results of this section were obtained by the authors in [15] using a different method.
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Theorem 6. For every p > 2 the following estimates hold:

1 1
inf |P+T]|,> inf T, > 4
g WPTl= e QT ()
inf ||S+ 7|, > cot (5)

mn .

TEp, p =0 2p

For 1 < p < 2 estimates (4) and (5) remain valid with p replaced by q (where
p~ L+ q 1 =1) on the right-hand sides.
Proof. Assume that
™
inf ||[P+T|,<1/si
nt ([P Tl < 1/ s

for some p and consider the operator aP + @, where a(t) € A(T") is the function

taking only two values
T i
a(t) = (cos > exp (i > .
p p

Since |a(t) — 1] = sinx/p, one has inf ||(a — 1) P||, < 1. Hence the operator
I+(a—1)P=aP+Q

is a ®-operator, but this is impossible because the function a(t) is p-singular.
For the proof of the second inequality in (4) consider the function

a(t) = (Secz> exp <i7§> .

Then |(1 — a)/a| = sinw/p. The operator aP + Q = a(I 4+ ((1 — a)/a)Q) is not a
®-operator in L,(T") because the function a(t) is not p-nonsingular. This implies
the second inequality in (4).

Inequality (5) can be proved analogously if one takes the function a(t) =
exp(zin/p) and uses the identity

a+1 a—1
aP+Q = 5 (I+a+15). O

Theorem 7. Let I' = {¢ : |[¢| = 1}. Then for alln=1,2,...,
cot

2 Zf p=2",
IS, = v (6)
tan g if p=2"/(2"-1).

Proof. From inequality (5) it follows that if p > 2, then ||S||, > cot7/2p. Let
us prove the reverse inequality. Let (t) be an arbitrary function satisfying the
Holder condition on the unit circle. Then it is easy to see that

©* + (Sp)? = 2[(Pe)* + (Qv)*] = 25[(Pp)* — (Qp)*] = 25(¢ - So),
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that is, (S¢)? = ¢? +25(¢ - S¢). From this identity it follows that

1Sl13, < 2018 pllell2plSelizp + llll3,-
Hence

[Sell2
P < ISl + /1 + 1512,
Il

which implies that
ISllzp < 1ISllp + /1 + 152,
Taking into account that ||.S||2 = 1, from the last inequality we obtain

[[S]l2n < cot 2 1

Thus equality (6) is proved for p = 2". For p = 2"/(2™ — 1) it follows by passing
to the adjoint operator. The theorem is proved. O

4. The spectrum of singular integral operators in symmetric spaces

In this section the results obtained above are extended to more general symmetric
spaces.

Let us start with definitions. Real-valued measurable functions z(s) and y(s)
on the segment [0, 1] are said to be equimeasurable if

mes{s : z(s) > 7} = mes{s : y(s) > 7}

for every .
A Banach space F of all complex-valued measurable functions on [0, 1] is said
to be symmetric if the following three conditions are fulfilled.

1. If |z(s)] < |y(s)|, y(s) € E, and z(s) is measurable on [0, 1], then z(s) € E
and |lz]| g < [ly]|&-
2. If functions |z(s)| and |y(s)| are equimeasurable and y(s) € E, then z(s) € E

and ||z]| & = [ly]|&-
3. Let E’ be the set of all measurable functions y(s) on [0, 1] such that

def
|wyéwp/u 5)| ds < .
|zl e <1
Then
Wh—wp/m 5)|ds.
lyll gr <1

6This identity was used for the first time by M. Cotlar [8] in the proof of the boundedness of the
Hilbert transform (see also [6], pages 120-121 of the Russian original).
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By x(s) denote the characteristic function of the segment [0, s]. The function
w(s) = |Ix(s)||g is said to be the fundamental function of the space E.

Let E be a symmetric Banach space on [0,1], T' be a contour defined in
Section 2, and t = 7n(s) (0 < s < 1) be its (piecewise smooth) parametric equation.

A Banach space F of all complex-valued measurable functions ¢(¢) on I' such

that ¢(n(s)) € E and

le®)lr < lon(s)z

is said to be symmetric with respect to the parametrization ¢t = n(s) of the con-
tour I'.
Put
lim inf w(2s) =m(F), limsup w(2s) = M(F).
s=0 w(s) s—0 w(s)
We will need the following two theorems due to E.M. Semenov”’.

Theorem A. Let 0 < a; < 1 (j = 1,2) and for a symmetric space F' the inequalities
2% <m(F), M(F)< 2%

be fulfilled.
If a linear operator A is bounded in the spaces Ly(T') for allp € (1/a2,1/a1),
then the operator A is bounded in F.

Theorem B. The operator S defined by the equality

<ww=1A””w

e T—1
is bounded in F if and only if
1<m(F), M(F)<2. (7)

If, in particular, F is an Orlicz space, then condition (7) is equivalent to the
reflexivity of the space F.

Assume that 1 < m(F) = M(F) < 2 are fulfilled in the space F. Then
Theorems 3-6 of Sections 2-3 remain true if one replaces in the formulations the
space L, by the space F' and the number p by the number ¢ = 1/log, M (F).

The proofs for the space F' proceed in the same way as for the space L,,. It is
necessary only to explain why the operator A, = ¥ P+ @ constructed by using the
o-nonsingular function g(¢) (see the proof of Theorem 3) is invertible in F'. Indeed,
since the function g(t) is g-nonsingular, there exists a number € > 0 such that the
function ¢(t) is p-nonsingular for every p € (9 — €, 0+ €). Then from Lemma 1 it
follows that the operator A, is invertible in the spaces L, for all p € (p—¢, p+¢) and

Al = (W P+ Q'L

From Theorem A it follows that the operator A;l is bounded in F. Hence
Ay is invertible in F.

"These theorems were proved by Semenov [11] for symmetric spaces on [0, 1]. However, as it was
kindly communicated to us by E.M. Semenov, they can be extended to spaces F'.
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In the case m(F') # M (F') one can give only sufficient conditions for a singular
integral operator to be a ®-operator in F.

Theorem 8. Let c(t) € A(T"), d(t) € A(T') and for a symmetric space F' the condi-
tions 1 < m(F) and M(F) < 2 be fulfilled. If inf |c(t) — d(t)] > 0 (t € T') and the
function (c(t) + d(t))/(c(t) — d(t)) is p-nonsingular for all p satisfying

(logy M (F))™! < p < (logym(F)) ™", (8)

then for the operator A = c(t)I + d(t)S (A = c(t)I + Sd(t)I) in the space F the
following statements hold:

1. for
k =1nd,[(c+d)/(c—d)] >0

the operator A is left-invertible and dim coker A = k;
2. for k < 0 the operator A is right-invertible and dimker A = —k;
3. for k =0 the operator A is invertible.

Note that the results of Section 1 can be extended to spaces more general
than hj, in the same way.
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On an Algebra Generated by the Toeplitz
Matrices in the Spaces h,,

Israel Gohberg and Nahum Krupnik

Let H, (1 < p < o0) be the Banach Hardy space of all functions ¢(¢) that are
analytic inside the circle |¢| = 1 with the norm

2
llls, = lim ( / |w<gew>|pd9>
ol 0

By h,, denote the Banach space isometric to H), that consists of all numerical
sequences § = {&, }§° of the Fourier coefficients of functions in H,,. Let A be the set
of all piecewise continuous functions on the unit circle || = 1 that are continuous
from the left. To each function a(¢) € A we associate the operator T, defined in
hy, by the Toeplitz matrix ||a;_x[/3%_;, where ay are the Fourier coefficients of the
function a(¢). Obviously, for each p (1 < p < oo) the operator Ty, is a bounded
linear operator in h,. By R denote the algebra of all sums of products of operators
of the form T, with a € A.

In the present paper the Banach algebra 2, is considered. It is the closure of
the algebra R in the operator norm of the space h,. The results presented below
generalize results from the paper [1] obtained there for the case p = 2. As in the
case p = 2, the set §, of all compact operators in h, is the minimal two-sided ideal
of the algebra 2, and the quotient algebra 2,/ is a commutative Banach algebra.

In the case of arbitrary p (1 < p < o0), the maximal ideal space of the
algebra 2, /F, is the cylinder |{| =1, 0 < p < 1, equipped with a special topology
such that the neighborhoods of a point (g, to) are defined by one of the following
equalities:

w(Co,0) = {(¢, ) : o — 0 < arg( < 0,0 < pu <1} U{(Co,p) : 0 < pu < e},
w(Co,1) = {(¢p) 1o <arg( <o +0,0 < <1} U{(Co,p) e <p <1}, (1)
w(Cos pro) = {(Cos ) : o — 61 < pu < pro + 02} (po # 0, 1),

1/p

The paper was originally published as U.I1. T'ox6epr, H.A. Kpynuuk, O6 anre6pe, mopo-
SKAEHHON TEIIMIEBLIMU MATPUIAMU B nIpocTpaHcTBax hp, Marem. Uccaen. 4 (1969), Ne 3,
54-62. MR0399922 (53 #3763a), Zbl 0254.47045.
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where 0 < 01 < g, 0 < 2 <1 —pp, 0 <e <1, g =argp. It is natural to refer
to the function A, (¢, ) (|¢| =1; 0 < p < 1) on the maximal ideal space of 2, /5,
that corresponds to an operator A € 2, as the p-symbol of the operator A. In this
case, if the operator A is given by

ZH (2)
:1 k=1

where aj; € A, then its p-symbol (p # 2) is defined by

->°11 (Sm U197 expind)ase 0

j=1k=1 . , (3)
"oy explil = 1)0)a(C + o>> :

where 0 = m(p—2)/p, |¢] = 1, and 0 < p < 1. The definition of the symbol A, (¢, 1)
depends essentially on p and is different from the definition in the case p = 2:

m

= Z wair(Q) + pajr(C + 0)]

j=1 k=

=

The latter can be obtained from (3) by passing to the limit as p — 2 (or § — 0).

It will be proved below that an operator A € 2, is a ®-operator® if and only
if its symbol is different from zero. The index of an operator A is also expressed
via its symbol. The range of the symbol A,((,p) is a continuous closed curve,
which can be naturally oriented. The index of this curve (that is, its winding
number about the origin) taken with the opposite sign is equal to the index of the
operator A.

1. Toeplitz operators in the spaces h,

1.1. In this section auxiliary propositions on Toeplitz operators generated by the
Fourier coefficients of piecewise continuous functions in h, are obtained. All these
statements are generalizations to the case of arbitrary p (1 < p < oo) of theorems
obtained in the authors’ papers [3, 4].

Lemma 1. Let a((),b(() € A and p € (1,00). The operator K = ToTy, — Ty is
compact in hy, if and only if the functions a(¢) and b(¢) do not have common
points of discontinuity.

Proof. Let P be the orthogonal projection of Lo(|¢] = 1) onto Hy and U be the
isometric operator mapping each function f({) € H? to the vector {f;} € h, of its
Fourier coefficients?. The operator K can be represented in the form K = UTU !,

1For the definition of a ®-operator, see [2].
2Tt is known that the operator P is bounded in every L, (1 < p < oo) and that it projects
Ly(|¢] = 1) onto Hp.



Algebra Generated by the Toeplitz Matrices 129

where T' = PaPbP— PbPaP. The operator T is bounded in each space L,(|¢| = 1).
In view of Krasnosel’skii’s theorem [5, Theorem 1], the operator T' is compact in
all spaces L, (1 < p < o0) if and only if it is compact in one of them. Because
it is proved in [1] that the operator K is compact in ho(= ¢2) if and only if the
functions a(¢) and b(¢) do not have common points of discontinuity, this completes
the proof. O

Analogously, with the aid of the M.A. Krasnosel’skii theorem and the results
of the paper [1], the following statement is proved.

Lemma 2. For every pair of functions a({),b(¢) € A the operator T, Ty, — TyTy, is
compact in hy (1 < p < 00).

1.2. Let F(C) = |lajk(Q)|} x=, be a matrix function with entries a;, € A, let hj, be
the space of vectors x = (z1,...,2,) with components z; € h,, and let Tr be the
bounded linear operator in hj, defined by the matrix |75, [} ;- To the operator
Tr and a number p (1 < p < co) we assign the matrix function (p-symbol)

Fp (G 1) = (T )n (G i) Gge=1s

where (15, )p(¢, 1) is the p-symbol of the operator 7, defined by equality (3).
The range of the function det F,(¢, i) is a closed curve. We orient this curve in
such a way that the motion along the curve det F, (¢, 1) agrees with the motion of
¢ along the circle counterclockwise at the continuity points of the matrix function
F(¢), and the motion along the complementary matrix arcs corresponds to the
motion of x4 from 0 to 1.

Theorem 1. The operator Tr is a ®-operator in h, (1 <p < o0) if and only if its
p-symbol is non-degenerate:

det Fy(Gm) £0 (=1, 0<u<1). (1)

If condition (4) is fulfilled, then the index of the operator Tr is calculated by the
formula

indTr = —ind det F, (¢, p).

In the case r = 1 this theorem is proved in [3]. For other r it is proved in the
same way as an analogous theorem for singular integral operators in the spaces L,
(see [4]).

Theorem 2. Let A be an operator defined in hy, by equality (2). The operator A is
a ®-operator in h, if and only if its p-symbol® is not equal to zero:

If this condition is fulfilled, then

indA = —ind 4,(¢, p). (5)

3Recall that the p-symbol A, (¢, i) of the operator A is defined by (3).
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For the case p = 2 this theorem is proved in [1], for other values of p the
proof is developed analogously.

Theorem 3. Let A be an operator defined in hy, by equality (2) and Ap(C, ) be its
p-symbol. Then

inf ||A+T, > A . 6

A A+ Tl = | max 4G p)] (6)

Proof. Assume that for some operator A € R inequality (6) fails. Then there exists

a point (Co, t0), where |[(o] = 1 and 0 < pp < 1, and an operator Ky € §p, such that

[A+ Koll, < |Ap(Cos p0)|- Let B = (Ap(Cos p10)) " A and K = (A, (Co, f10)) " Ko.

Then ||B + K|, < 1. Therefore I — B is a ®-operator in h,. This contradicts

Theorem 2 because (I — B),(Co, tto) = 0. The theorem is proved. O

2. Algebra generated by the Toeplitz operators

2.1. Let 2, be the closure of the set R of the operators of the form (2) in the
algebra B, of all bounded linear operators in h,. To each operator A € R we
assign its p-symbol A, ((, 1) defined by equality (3). From inequality (6) it follows
that the symbol A4,(¢, 1) does not depend on a representation of the operator A
in the form (2). Inequality (6) allows us to define the symbol A,(¢, u) for each
operator A € 2, as the uniform limit of a sequence of the symbols of operators
A, € R tending to the operator A in the norm.

By QAlp denote the quotient algebra 2, /F, with the usual norm. The coset in
QAlp that contains an operator A is denoted by A. From Theorem 3 it follows that

the same symbol corresponds to all operators in a coset Ae QAlp. We will denote it
by Ap(C; ).

Theorem 4. The maximal ideal space of the quotient algebra é\lp (1<p<oo)is
homeomorphic to the cylinder M = {|z| = 1,0 < u < 1} equipped with the topology
defined by the neighborhoods (1). The symbol A\p(C,u) Kl=1,0<pu<1)isa
function of an element Ae ﬁp on the mazimal ideal space M of é\lp.

Proof. By f¢,,u, denote the functional defined on the algebra §lp by the equality

Feouno(A) = A(Cos o).

From Theorem 3 it follows that fe, .o (|Co] = 1, 0 < p < 1) is a multiplicative
functional. Therefore the set

MCO:#O = {A\ A\p(CO»/iO) = 0}

is a maximal ideal of the algebra ﬁp Let us prove that the algebra A\p does not
have other maximal ideals. Let My be some maximal ideal of the algebra 2,,. First,

we shall show that there exists a point (p (|¢p| = 1) such that fa(Mo) = a({o)
for all functions a(¢) continuous on the circle I' = {¢ : |{| = 1}. Assume the
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contrary, that is, suppose that for every point 7 € IT" there exists a continuous
function z,(¢) such that sz (My) # (7). It is obvious that 1) Ty, _o. € My,
where a, = T, (M), and 2) |z-(¢) — ar| > 6, > 0 in some neighborhood u(r).
Let u(r1),...,u(r,) be a finite cover of the circle I' and § = 1211@127; 07,.. Then

)= lon Q) —an > #0.
k=1

Hence fy is an invertible element in QAlp, but this is impossible because

n
§ Ter—a. 1o, —a,-
k=1

Thus fy € M.

Let us show that for every function z(¢) € A continuous at the point (o the
equality T,(Mo) = (¢o) holds. To this end we note that if a function z(¢) € A
is continuous at the point (p, then it can be represented in the form z({) =
y(¢) +a(¢)z(¢), where a(() € A, y({) and z({) are continuous on I' and z(¢p) = 0.
Then from the equality T,,(Mo) = T, (M) + Ty (Mo)T(Mo) it follows that

T (Mo) = 2(Co).
By vp(p) (p # 2) denote the circular arc, which is the range of the function

Sin 46 exp(i(p — 1)0),

where 0 = 7(p — 2)/p and p varies from 0 to 1, and by v»(p) denote the segment
[0,1]. Consider a function x(¢) € A having the following properties: x({o) = 0;
x(Co +0) = 1, where (p is the point on the circle that has been found before; x({)
is continuous everywhere on T" except for the point p, the range of x(¢) coincides
with the arc v,(p). From Theorem 2 it follows that the spectrum of the element

sin 6

T, in the algebra Ql coincides with the set v,(1). Hence there exists a number
pio € [0,1] such that T, (Mp) = vp(po)-

Let us pass to the last stage of the proof. We will show that for every element
Ae ﬁp the equality A\(Mo) = A\p(go, o) holds. Tt is easy to see that it is sufficient
to prove this claim for the case A= fw, where x is an arbitrary function in
A. Fix a function z(¢) € A and let y(¢) = x(¢) — C, where C is a constant
chosen so that the p-symbol of the operator T, is nowhere zero. The function
b(¢) = y(¢)/x(C)y(Co + 0) — y(Co)) + y(Co)] is continuous at the point . Hence

fb(MO) = b(Go) = 1. For the function a(¢) = x(O)[y(¢o +0) — y(G)] + y(Co) we

~

Ta(Mo) = p(10)[y(Co +0) = y(Go)] +y(Go) = (Ty)p(Co: 10)-
Therefore fw(MO) = (fz)p(CO, o). The theorem is proved. O
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Theorem 5. An operator A € A, is a ®-operator in hy, if and only if its p-symbol
is nowhere zero:

det Ay(C,) £0 (=1, 0< p< 1) )
If condition (7) is fulfilled, then
indA = —ind 4,(¢, p). (8)

Proof. Let A € A, and A,(¢, ) # 0. According to Theorem 4, the element A

is invertible in 2A,. Hence A is a ®-operator in h,. Since ind A and A, (o, 10)
are continuous functionals, we see that equality (8) follows from equality (5).
The sufficiency part of the theorem is proved. The proof of the necessity part
is developed by contradiction. Assume that the operator A is a $-operator and
Ap(Co, o) = 0. Then one can find an operator B € R such that B is a ®$-operator
and Bp(Co, to) = 0, which is impossible. The theorem is proved. O

2.2. Let h; be the Banach space of all vectors x = (1,...,2,) with entries

xr, € hp and Qlilp X)n be the algebra of all bounded linear operators in hy; of the form

A= [|Ajkll} =, where Ajp € 2.
(p)

nxn

To each operator A € A
function (p-symbol)

and the number p € (1,00) assign the matrix

Ap(C 1) = [1(Azx)p (S wIIF p=1
where (Ajx)p(¢, 1) is the p-symbol of the operator Ajy.

Theorem 6. An operator A € AP

nxn 15 a ®-operator in hy if and only if its p-symbol
1s non-degenerate, that is,

det Ay(C, ) #0. o)

If condition (9) is fulfilled, then
ind A = —inddet A, (¢, p). (10)
Proof. Let A = ||Ajx||} -, Since the operators Aj;), pairwise commute modulo

a compact operator, we conclude (see [6, p. 108]) that the operator A is a ®-
operator in hy if and only if the operator det A is a ®-operator in h,. From here
and Theorem 5 it follows that condition (9) is fulfilled if and only if the operator
A'is a ®-operator in hy.

Equality (10) for the operator A satisfying condition (9) is proved by in-
duction on n. Indeed, one can find an operator B = ||Bjx|| € ngsz)n (sufficiently
close to the operator A) that satisfies the following conditions: B (resp. Bi1) is a
P-operator in hy (resp. hp) and ind B = ind A. The last condition allows us to rep-

resent the operator B in the form B = MN + K, where M = || Mjx[7,_, € Qlif;)n
is a lower triangular operator matrix all of whose entries on the main diagonal
are the identity operators, N = ||Nj||},—, € Qlif;)n is an operator matrix such
that all the entries of the first column are zero except for the first entry, and

K is a compact operator in hjy. Since ind B = ind N, we have ind A = ind N.
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Obviously, ind N = ind Ny; + ind N, where N = [ Nji ||} r—g- According to what
has been proved, ind N1; = —ind(N11),(¢, ¢t), and by the induction hypothesis,
ind N = —ind det N, (¢, ). Taking into account that

det BP(C7I’L) = det NI)(C’M) = (Nll)p(c:nu) det NI)(C’M)

and that the functions det B, (¢, 1) and det A,(¢, 1) are sufficiently close to each
other, we get ind N = —ind 4, (¢, ). The theorem is proved. O

References

[1] I.C. Gohberg and N.Ya. Krupnik, On the algebra generated by Toeplitz matrices.
Funkts. Anal. Prilozh. 3 (1969), no. 2, 46-56 (in Russian). English translation: Funct.
Anal. Appl. 3 (1969), 119-127. MR0250082 (40 #3323), Zbl 0199.19201.

[2] 1.C. Gohberg and M.G. Krein, The basic propositions on defect numbers, root num-
bers and indices of linear operators. Uspehi Mat. Nauk (N.S.) 12 (1957), no. 2(74),
43-118 (in Russian). English translation: Amer. Math. Soc. Transl. (2) 13 (1960),
185-264. MR0096978 (20 #3459), MR0113146 (22 #3984), Zbl 0088.32101.

[3] I.C. Gohberg and N.Ya. Krupnik, The spectrum of singular integral operators in
L, spaces. Studia Math. 31 (1968), 347-362 (in Russian). English translation: this
volume. MR0236774 (38 #5068), Zbl 0179.19701.

[4] I.C. Gohberg and N.Ya. Krupnik, Systems of singular integral equations in L, spaces
with wetght. Dokl. Akad. Nauk SSSR 186 (1969) 998-1001 (in Russian). English
translation: Soviet Math. Dokl. 10 (1969), 688-691. MR0248566 (40 #1818), Zbl
0188.18302.

[5] M.A. Krasnosel’skii, On a theorem of M. Riesz. Dokl. Akad. Nauk SSSR 131 (1960),
246-248 (in Russian). English translation: Soviet Math. Dokl. 1 (1960), 229-231.
MRO0119086 (22 #9852), Zbl 0097.10202.

[6] I. Gohberg and I.A. Feldman, Projection Methods for Solving Wiener-Hopf Equa-
tions. Akad. Nauk Moldav. SSR, Kishinev, 1967 (in Russian). MR0226325 (37
#1915).



Operator Theory:
Advances and Applications, Vol. 206, 135-144
(© 2010 Springer Basel AG

On Singular Integral Equations
with Unbounded Coefficients

Israel Gohberg and Nahum Krupnik

Algebras generated by singular integral operators with piecewise continuous coef-
ficients are studied in the papers [1, 2, 3, 4]. The results obtained there allow us to
obtain theorems on solvability and index formulas for singular integral operators
of new types.

In the present paper two examples of applications of the results of [1, 2, 3, 4]
are presented. The first example is related to operators of the form

A= ap(t)I + zn: ar(t)hi(t)Shy ' (#)br ()1 (0.1)

k=1

Recall that the operator of singular integration S is defined by

L [ o)
Sp)(t) = d tel),
se0 =~ [ Far wen)
where I' is some simple oriented contour consisting of a finite number of closed
and open Lyapunov curves; the coefficients ag(t), ax(t) and bi(t) (k = 1,...,n)
are piecewise continuous functions; and hy(t) has the form

h(t) = [t - )%, (1)

j=1

where t; are some points of the contour I'. The operator A is considered in the
weighted space L, (1 < p < 00).
The second example is the operator of the form

B = c(t)] +d(t)S + g(t)R, (0.2)

The paper was originally published as W.I1. T'ox6epr, H.fI. Kpynauk, O cuHryasapHLIX HHTe-
IPAJbLHLIX YPABHEHUAX C HEOPPDAHUUEHHLIMU KOod(pduumentamu, Marem. Uccnen. 5 (1970),
Ne 3(17), 46-57. MR0291892 (45 #980), Zbl 0228.47037.
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where ¢(t), d(t), g(t) are continuous functions; the contour I" is the segment [0, 1],
and the operator R is defined by the equality

R= 1, (mf‘ts—smi’_t]).

™ —a —a

A separate section is devoted to investigating the conditions of the bounded-
ness of the operator (0.1) in the weighted spaces L.

1. Auxiliary propositions

By t1,...,tx and tn41,...,tan denote the starting and terminating points, re-
spectively, of all open arcs of the contour I'. Let tany1,...,t;, be fixed points on
T" that do not coincide with the endpoints ¢1,...,ton. Let G1,..., B be some real
numbers. The space L, on the contour I' with the weight

m
o(t) = TT It — tal™
k=1

is denoted by L,(T, o).

If the numbers p and f1,..., S, satisfy the conditions 1 < p < oo and
—1<Br<p—1(k=1,...,m), then, according to Khvedelidze's theorem [5], the
operator S is bounded in the space L, (T, o).

By A = A(T") denote the set of all piecewise continuous functions that are
continuous from the left.

For the sequel it is convenient to introduce the operators P = (I 4+ 5)/2 and
Q =1 — P. Then the usual singular integral operator

Ag=cl+dS (c,deA)

in the space L,(I',p) can be represented in the form Ay = aP + bQ, where
a(t),b(t) € A. Following [1, 2, 3], to the operator Ay assign its symbol. Let us
introduce some notation for defining the symbol. Let ¢ € I' and 0 < p < 1. By
0 =06(t), L =4L(t,n), and v = v(t, u) denote, respectively, the following functions:

o(t) = m=2n(140)/p for t=t; (k=1,...,m),
N T —2m/p for tel', t#t1,...,tm,

sin(fp) exp(ifu) .
f 6
0(t,pn) = sin 0 exp(i0) ' 70,
1 if =0,

and



On Singular Integral Equations 137

The matrix function A(t,u) (t € T,0 < p < 1) of second order defined by
the equalities

C(t, pa(t) + (1 — £, p)b(t) 0

Alt ) = 0 b(t)

fort=tyand k=1,...,N,
(1= £t m)alt) + £t m)b() 0

Alt ) = 0 b(t)
fort=t,and k=N —+1,...,2N, and
At 1) — £(t, pa(t +0) + (1 — £(t, 1))a(t) v(t, 1)(b(t +0) — b(t)) H
v(t, p)(a(t +0) —a(t)) C(t, p)b(t) + (1 — £(t, 1))b(t 4 0)

for t € T" such that ¢t # ¢4, ..., tan, is called the symbol of the operator Ag.
The symbol of the operator

k
A= "AjnAj. . A, (1.1)

j=1
where Aj, = a;, P + b;,Q is defined by the equality

k
At ) =D Aju(t ) Aja(t ) - - Ajs(t, ),

j=1

where A;, (¢, 1) is the symbol of the operator A;,.

In [3] it is shown that the symbol A(¢, 1) of an operator A does not depend
on a representation of the operator A in the form (1.1).

By 2 denote the closure of the set of all operators of the form (1.1) in the
algebra B of all bounded linear operators acting in L, (T, ).

To each operator A € 2l one can assign the symbol in the following manner.
Let A, be a sequence of operators of the form (1.1) that converges in the norm
to the operator A € . Then [1, 2, 3] the sequence of symbols A, (¢, u) converges
uniformly with respect to ¢ and p to some matrix A(¢, u) of order two. It does
not depend on the choice of a sequence A,, tending to A, and is called the symbol
of the operator A in the space L,(T', p). Note that this symbol depends on the
operator and also on the number p and the weight o(¢).

By 2, denote the algebra of all symbols corresponding to the operators in A
and by § denote the two-sided ideal of B consisting of all compact operators. In
papers [1, 2, 3] it is shown that if A€ 2, T € §, and B= A+ T, then B € % and
B(t,pu) = A(t, pv). The mapping {A+ T}rez — A(t, 1) is a homomorphism of the
algebra 2/§ onto A,.

The next statement (see [1, 2, 3]) plays an important role in what follows.
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Theorem 1.1. An operator A € 2 is a 1 -operator or a ®_-operator in the space
L,(T, o) if and only if the condition

det A(t,pn) #0 (teTl, 0<pu<1) (1.2)
is fulfilled.
Let condition (1.2) hold and A(t,pn) = ||sjk(t,u)|\ik:1. Then the operator A

is a ®-operator in L,(T, 0), all its reqularizers' belong to the algebra A, and the
index of the operator A in L,(T, o) is determined by the equality

1 { det A(t, p) }

arg .
2m s22(t,0)s22(t, 1) ] (4 e (o]
The number 217r {arg f(t, 1)} (¢.u)erxo,1) on the right-hand side of equality

(1.3) denotes the counter-clockwise winding number of the curve f(¢,u) in the
complex plane about the point A = 0 (see [3] for more details).

indA = — (1.3)

2. On the boundedness of the operator of singular integration

In this section a necessary and sufficient condition for the boundedness of the
operator S in the space L, (T, p) is investigated. This allows us to obtain a criterion
for the boundedness of the operator h(t)Sh™!(t)I, where h(t) is a function of the
form (1), in the space L,(T", 9). The main result of this section is the following.

Theorem 2.1. The operator S is bounded in the space L,(T',0) (1 < p < 00) if and
only if the numbers By satisfy the conditions

1<Bi<p—1 (k=1,...,m). (2.1)

Proof. The sufficiency of the hypotheses of this theorem was proved in the paper
by B.V. Khvedelidze [5]. The unboundedness of the operator S in some cases,
when condition (2.1) is violated, was proved by S.A. Freidkin [6]. We shall prove
the necessity of the conditions of the theorem in the full generality?.

Assume that the operator S is bounded in the space L,(T, ). Fix some
number 7 (r =1,...,m). By I, CT denote some one-sided neighborhood of the
point ¢, that does not contain all other points ¢; (j # r). It is easy to see that the
operator S is bounded in the space L, (T, |t — t.|°), where § = S3,. Let us show
that —1 < § < p— 1. Assume that this inequality does not hold. Then there exists
anumber A (0 < A < 1) such that either 6A = —1 or A = p—1. Since the operator
S is bounded in the spaces L,(I',) and L, (T, |t —t.|°), by the Stein interpolation
theorem (see [7]), the operator S is bounded in the space L, (T, [t — ¢,.|*°). Thus
our problem is reduced to showing that the operator S is unbounded in the spaces
Ly(Ty, |t — t.|71) and Ly(Ty, |t — t,[P71). Assume for definiteness that ¢, is the
starting point of the open contour I',. By ¢ denote the terminating point of this

1 An operator B is said to be a regularizer of an operator B if AB—1 € Fand BA—I € §.
2The used method of the proof is different from the method of [6].
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contour. In the space L,(T',) consider the operator A = I — b(t)S, where b(t) is a
continuous function on T, that satisfies the conditions 1 —b?(¢) # 0, b(t) = 0, and

_ [ itan(m/p) if p#2,
b(tr) = { 2 if p=2.
The symbol A(t, 1) of the operator A in the space L,(T';) (see Section 1) is defined
by the equality

H (L= b))t ) + (L) (A = £(t, ) 0

0 1+ b(t) H for t =1,

Alts ) = H11ﬂ@ 0

14 b(t) H fort e ')t #£t,.

Since in the case p # 2,

(t, ) _ sin(Bp) exp(2mi/p)
Ot p) — 1 sin(6(1 — p))

Lb(t,) _ (2mi
1=b(t,) P\ p )
we see that for y = 1/2 the equality

0(tr,1/2)  1+b(t,)
0, 1/2) =1 1 —b(t,)

holds. Therefore det A(t,,1/2) = 0.
Analogously, for p = 2,

(it p)  _
g(t7 /j‘) -1 B
Hence det A(t,,3/4) = 0.

Thus the operator A is not a ®i-operator in the space L,(I';). It is not
difficult to check that if p; # p, then the symbol A;(¢, u) of the operator A in
the space Ly, (I';) is not degenerated. Therefore the operator A is a ®-operator in
Ly, (T';). Moreover, by using the results of [3], we obtain that the operator A is
one-sided invertible in the space Ly, (I';). Assume that the function b(t) satisfies
the Holder condition on T, and p; < p. Then one of the inverse operators A(—1)
to the operator A in L,, (T';) can be obtained by the formula (see, e.g., [8])

1 1 b
ATV = Dl e

where z(t) = g(t)|t — t.|~'/P and g(t), g~'(t) are continuous functions on T,.
Assume that the operator S is bounded in the space L,(Ty, |t — t,|~!). Then
it is easy to verify that the operator |t — t,.|~'/PS|t — t,|'/PI is bounded in the
space L,(I';). This implies the boundedness of the operator AGD in the space
L,(T,), and whence, this implies also the one-sided invertibility of the operator

and

p(p = 1), 11&;8; =-3.

()82~ L (1)1, (2.2)
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A in L,(T,). But the latter is impossible because the operator A is not a ®.4-
operator in Ly(T';). Thus, it has been proved that the operator S is unbounded in
L,(T,, |t —t.|71) for every p (1 < p < 00).

It remains to verify the unboundedness of the operator S in L, (T, [t—t,[P~1).
Assume that it is bounded. Then the operator |t — t,.|P=1/PS|t — t,|(1=P)/PT is
bounded in L,(I';). If one takes p; > p, then an operator inverse to A from
one of the sides can be written in the form (2.2). Moreover, in this case z(t) =
g(t)|t —t,|»~1/P. By analogy with the previous case we arrive at a contradiction.
The theorem is proved. O

Theorem 2.2. Let §;. be some real numbers and

m

h(t) = Tt — o)

k=1

The operator h(t)Sh=t(t)I is bounded in the space L,(T,0) (1 < p < o) with
weight

m
o(t) = TT It — tal™
k=1

if and only if the conditions
14 0Bk 1+ Bk

p

<O <1-— (2.3)

are fulfilled.

Proof. Tt is easy to see that the operator hSh~1T is bounded in the space L, (T, o)
if and only if the operator S is bounded in the space L,(T', 01), where

oi(t) = H 6 —te™, Ak = Bk + Do
k=1

Thus condition (2.3) follows from Theorem 2.1. The theorem is proved. (]

3. Operators of the form (0.1)

As above, let t1, ...ty be fixed points of the contour I and L, (T, o) be the space
with weight

m
o(t) = T 1t = txl™,
k=1

where the numbers () satisfy the conditions —1 < S < p—1 (1 < p < o0
k=1,...,m). By Q denote the set of all functions of the form
m

h(t) = T =)

k=1



On Singular Integral Equations 141

with the numbers §j satisfying the conditions

1 1
8 _ 1+ B
p

According to Theorem 2.2, H = h(t)Sh~1(¢)I is a bounded linear operator
acting in the space L, (T, o).

For simplicity we restrict ourselves in this section to the case when the contour
I consists of one closed curve surrounding the point z = 0.

To the operator H in L,(T', o) assign the matrix function H(¢,u) (¢ € T,
0 < p < 1) defined by the equality

o<1 (3.1)

1 U,
e =| o 40 (2)
where
4v(ty, p) cos(mdy) exp(midy)
f t=tr (k=1,...
Ut,p) = 20(tg, 1) cos(mdy) exp(midy) + 1 o e eam),

0 for tel, t#t1,...,tm.

Lemma 3.1. Let A be an operator of the form
A= oD+ i (hy (1)ShT By (1)1, (3.3)
j=1

where functions x; (7 =0,1,...,n) and y;(t) (j =1,...,n) belong to A and h;(t)
are functions in 2. Then the operator A belongs to the algebra A and its symbol
A(t, 1) has the form

n

*A(ta /1') =X (tv M) + Z Xj (t7 /jf)HJ (t7 /1,)3)] (t7 /1')7 (34)

Jj=1

where X;(t,n) and Y;(t, 1) are the symbols of the operators x;(t)I and y;(t)I,
respectively, and H;(t, ) is the matriz function of the form (3.2) that corresponds
to the operator H; = hj(t)Shj_l(t)I.

Proof. Clearly, it is sufficient to prove the lemma for the operator
H = h(t)Sh™'(t)I, where h(t) € Q.
Let
m
h(t) = H(t - tk)(Ska
k=1

where the numbers dj, satisfy conditions (3.1). By fx(t) denote the function fi () =
t=9%  which is continuous on I" except for possibly at the point ¢z, and put

HOES | FAG!
k=1
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It is not difficult to verify that
(OP(A(OF(©) T+ Q)(PIP+Q)p
= (PIP+Q)(OP(h(t)f(1) ' T+Q)p =

for each function ¢(t) satisfying the Holder condition on T'. Since the operator
h(t)Ph=*(t)I is bounded in the space L,(T, o), we have

RP(hf)'T+Q = (PfP+Q) "
From here it follows that
PhPh™'I = P(PfP+Q) ' fI.

It is easy to check that PhPh~1I = hPh~'I. Hence hPh~I = P(PfP+Q)*fI.
Thus,

H=2P(PfP+Q) ' fI—1.
From Theorem 1.1 it follows that H € 2. It can be checked straightforwardly that
the symbol of the operator H is the matrix function

2v(t, ) (f(t+0) = (1))
0t p)(f(E+0) = f(8) + f(E)
0 -1
Taking into account that f(tx +0)/f(tr) = exp(27midy), it is easy to verify that the

symbol of the operator H coincides with the matrix function H(t, ). The lemma
is proved. O

1

From Theorem 1.1 and the proved lemma one can deduce various conclusions.
In particular, they imply the following.

Theorem 3.1. The operator A given by equality (3.3) is a ®y-operator or a D_-
operator in the space L,(T, o) if and only if its symbol A(t,u) given by equality
(3.4) satisfies the condition

det A(t, ) #0 (tel, 0<pu<1). (3.5)

If condition (3.5) is fulfilled and A(t,p) = ||sjk(t,u)|\§7k=1, then the operator A is
a ®-operator and

md A = — 1 {ar det A(t, p)

g .
27 S22 (t, 0)822 (t, ].) }(t,u)EFX[O,l]

4. Operators of the form (0.2)

In this section, for simplicity we assume that I' = [a,b]. We suppose that all
operators act in the space La(a,b).
Under these conditions, a formula for the symbol for the operator

Ao = ()T +d(t)S (€ [a,b])
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n
with continuous coefficients, as well as for more general operators A = >~ ay(t)S*¥,
k=0
is essentially simplified.

It turns out (see [4]) that if the functions ay(¢) (k = 0,1,...,n) are continuous
on [a, b], then the symbol A of the operator

A= "a(t)S" (4.1)
is defined by

Alt, z) = Zak(t)zk (t €la,b], z€[-1,1]). (4.2)
k=0
Let £ be the boundary of the rectangle {a < t < b;—1 < z < 1}. In [4]
it is shown that the operator A defined by equality (4.1) is a ®-operator or a
®_-operator in La(a,b) if and only if the condition

At,z) 70 ((t,2) € £) (4.3)

is fulfilled. If it holds, then the operator A is a ®-operator and its index in the
space Lo(a,b) is calculated by the formula

ind A = ind A(t, 2),

where ind A(t, z) is the winding number of the continuous curve A(t, z) about
the point A = 0 when the points (¢, z) run through the contour £ in the positive
direction.
Let ¢(t), d(t), and g(t) be continuous functions on [a,b] and
1 _ _
R= ", (1nb tS—Slnb tI).
) t—a t—a
The operator
B=ct)I+dt)S+g(t)R
is an operator of the form (4.1) and its symbol is given by the equality

B(t,z) = c(t) — g(t) + d(t)z + g(t) 2> (4.4)

Indeed, with the aid of the Poincaré-Bertrand formula [8] it is easy to derive
that R = S? — I. Hence the operator B can be represented in the form (4.1)
and formula (4.4) is a corollary of formula (4.2). In particular, this implies the
following,.

Theorem 4.1. The operator B = c(t)I + d(t)S + g(t)R is a P, -operator or a O _-
operator in La(a,b) if and only if the function c(t) — g(t) + d(t)z + g(t)z? is not
equal to zero on L. If this condition is satisfied then the operator B is a ®-operator
and

ind A = ind(c(t) — g(t) +d(t)z + g(t)2?).
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Singular Integral Equations with Continuous
Coefficients on a Composed Contour

Israel Gohberg and Nahum Krupnik

In this paper the algebra generated by singular integral operators A of the form

(A9)(t) = a(t)p(t) + °U / ?7) 4 (ter), (0.1)
™ Jr7T—1

where I is an oriented contour in the complex plane that consists of a finite number

of closed and open simple Lyapunov curves, a(t) and b(t) are continuous functions

on I, is studied. The operators of the form (0.1) will be considered in the space

L,(T,0) (1 <p < oo) with weight

2N
o(t) = H It — O‘klﬁk’
k=1

where ai (k=1,...,N) are the starting points and ay (k=N +1,...,2N) are
the terminating points of the corresponding open arcs of the contour I', and the
numbers [, satisfy the conditions —1 < G < p—1. In what follows we will denote
the space L,(T', o) by L., where the vector v is defined by v = (p, 51, ..., Ban)-

By 2, denote the Banach algebra, which is the closure in the operator norm
of the set of the operators of the form

ST 0

j=1k=1

where Aj; are operators of the form (0.1), which act in the space £,, and r, s are
arbitrary natural numbers.

A space curve denoted by r appears in the formulations of the main results.
It consists of two copies of the curve I', which lie in the planes z =1 and z = —1,
as well as the straight segments parallel to the z-axis, which connect the starting
points and the terminating points, respectively, of the open arcs of the contour I'.

The paper was originally published as W.II. I'ox6epr, H.fI. Kpynuuk, Cuarynasapsavie uare-
rpajbHbIe YDABHEHUSA C HENIPEPBIBHLIMU KO3 PUIMEHTAMU HAa COCTABHOM KOHType, MaTeM.
Uccaen. 5 (1970), Ne 2(16), 89-103. MR0447996 (56 #6306), Zbl 0223.45005.
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In other words, the curve T consists of all points (z,y, z) such that the conditions
2N
r+iyel, —-1<z<1, (1—22)H(m—|—iy—ozk) =0
k=1
hold. We orient the contour I in such a way that the direction along [ in the plane
z = 1 coincides with the direction along I' and is opposite to its direction in the
plane z = —1.

The main results of the paper are the following statements.

The algebra 2, contains the two-sided ideal ~, of all compact operators acting
in the space £,,. The quotient algebra 2(,, /v, is a commutative Banach algebra and
its maximal ideal space is homeomorphic to the curve L.

Let an operator A belong to 2, and A be the element of A, /7, that contains
the operator A. By A, (t,z) ((t,2) € I') denote the function of an element A on the
maximal ideal space T of the algebra 2, /7,. It is natural to refer to the function
A, (t,z) as the symbol of all operators A € A. If the operator A is defined by
equality (0.1), then its symbol is given by the formula

Ay(t, z) = a(t) + b(H)Q(t, 2),
where
2(14a2) —i(1 — 2%)ay,
1+ 2243

Q,(t,z) = z for tel, t+# o,

for t=ar (k<N),

2(1—a?)+i(1 — 2%)ay,
|+ 2202 for t=ar (k> N)
and ay = cot(m(1+ Br)/p).
In other words, the function A, (¢, z) is defined in the planes z = 1 and z = —1
by the equalities

Ay (t, 1) =a(t) +b(t), Au(t,—1)=a(t) —b(t),

and on each straight segment ¢t = oy (kK = 1,...,2N) the range of the function
A, (ayg, z) circumscribes some circular arc (or the straight segment) connecting the
points z = a(ag) +b(ay) and ¢ = a(ay) — b(ag) on the plane. The segment 2y
is seen from the points of the arc A, (o, z) at the angle

¢ = min(2n(1 + Bx)/p, 27 — 27(1 + B) /).

An operator A € 2, is a ®p-operator in the space £, if and only if its
symbol A, (t, z) differs from zero on the contour I'. The increment of the function
(arg A, (t, 2))/(27) along the contour I is equal to the index of the operator A in
the space L.

The above-mentioned results are obtained in this paper in a more general
case when the algebra 2, is generated by the operators of the form (0.1) with
matrix coefficients a(t) and b(t).
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Note that in the case v = (2,0,...,0), that is, £, = La(T"), the algebra 2, /v,
is isometric to the algebra C (f) of all continuous functions on the contour I'. This
statement follows from more general results by the authors [1] for the space Lo(T).

A description of the spectrum of the operators of the form (0.1) with dif-
ferentiable coefficients a(t) and b(t) when v = (2,0,...,0) and T" = [0,1] and a
description of the maximal ideals of the algebra 2, /v, in this case were obtained
earlier by J. Schwartz [2].

1. Auxiliary propositions and theorems on solvability

Let us introduce the following notation: let Cy,(I") be the algebra of all continuous
matrix functions on I' of order n; let A, (T") be the set of all piecewise continuous
matrix functions on I' of order n; let £ be the Banach space of the vector functions
¢ = (¢1,.-.,pn) with components ¢; € £,; and let S be the operator defined in
L7 by the equality S{goj}?:l = {Sgoj}?:l, where
L[ ¢4(7)
Sent = [P ar wer peL,)

Assume that the contour I'y consists of only closed nonintersecting curves,
M(t) € An(Ty), and t1,. .., ¢, are all discontinuity points of the matrix function
M(t). To the matrix function M (¢) and the vector v = (p,fB1,...,m) assign
the continuous matrix curve Vi, (¢, u) obtained by adding the m matrix arcs
Wi (M, p) (0 < p <1)to the range of M(t), where

exp(iuby) sin(l — )b

Mty —
sin Hk ( k 0)
Wi (M, p) = exp(i(p — 1)0) sin by, .
+ sin 0, Mt +0) if 6 #0,
(1—M)M(tk—0)+uM(tk+0) if 0, =0,

and 0 = m — 27 (1 + Bx)/p (see [3]).
We say that a matrix function M (¢t) € A,,(T'o) is v-nonsingular if

det V]V[,V(t,/i) 7é 0 (to € Fo, 0< n < ].)

We orient the range of the function det Vi, (¢, 1) so that the motion along the
curve det Vi, (¢, ) agrees with the variation of ¢ along I'y in the positive direc-
tion at the continuity points of the matrix function M (¢) and with the varia-
tion of p from 0 to 1 along the complementary arcs. If det Vas,, (¢, 1) # 0, then
by ind det Vas,, (¢, 1) denote the counterclockwise winding number of the curve
det Vi, (t, ) about the point A = 0.

Theorem 1.1. Let Fy(t),Go(t) € An(To) and t1,...,tm be all discontinuity points
of the matriz functions Fy(t) and Go(t). The operator B = Fol + GoS is a ©-
operator in the space Ly (Lo, ][t — t]P) (1 < p <o00,—1 < B <p—1) if and
only if the following two conditions are fulfilled:
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1) det(Fop(t+0) — Go(t+0)) # 0, det(Fp(t —0) — Go(t —0)) # 0;

2) the matriz function M (t) = (Fo(t)—Go(t)) " (Fo(t)+Go(t)) is v-nonsingular.
If these conditions are fulfilled, then the index k(B) of the operator B is calculated
by the formula

k(B) = —ind det Vs, (T, p). (1.1)

A proof of this theorem is given in [3].

Theorem 1.2. Let a contour I' consist of a finite number of closed and open arcs
and F(t),G(t) € Cp(T'). The operator A= F(t)I + G(t)S is a ®-operator in L] if
and only if the condition

det(F(t) +Q,(t,2)G(t) #0 ((t,2) €T) (1.2)
holds. If (1.2) is fulfilled, then the index k(A,L?) of the operator A in the space
LY is calculated by the equality

Kk(A, L)) = ind det(F(t) + Q. (t, 2)G(t)). (1.3)

Proof. Let condition (1.2) be fulfilled. From this condition (for z = —1) it follows
that det(F(t) — G(t)) # 0 (t € T'). Let I'o(D T') be some contour consisting of a
finite number of closed Lyapunov curves. Define the functions Fy(t) and Go(t) on
Ty by the equalities

o) F@i) if teTl, Go(t) G(t) if teTl,
t) = t) =
0 E if teTo\T, ° 0 if tely\T,

where E is the identity matrix of order n.
It is easy to see that
det(Fo(t 4+ 0) — Go(t+0)) #0, det(Fp(t —0) — Go(t —0)) #£ 0.

By M (t) denote the matrix function M(t) = (Fyo(t) — Go(t)) " (Fo(t) + Go(t)).
This matrix function is continuous everywhere on I'g except possibly at the points
a1, ...,asy. The equations of the matrix arcs Wy (M, u) corresponding to the
matrix function M(t) at the points a (k < N) can be written in the form

(F(an) = Glow)) ™
i(cos Oy, — exp(i(2u — 1)0g))
sin 0y,

(F(ag) — G(ap)) " HF(ar) + (21 — 1)G(ay)) if 6, =0.
Introduce the following notation:
1 (2u—1)

z = ar 2
2u—1 if 6, =0.

Wi (M, p) = x | F(ax) + Glag)| if 6 #0,

if 0, £0,
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If u ranges over the segment [0, 1], then z ranges over the segment [—1,1]. Tt is
easy to check that

; <cot 0 — exp(i(Z.u - 1)9k)) _ z(1+a3)—i(1— ZQ)ak'
sin 6, 1+ a?z?
From here it follows that
Wi (M, ) = (F(ax) — Glar)) ™ (Flar) + Q(ar, 2)Glar)) (k< N).  (14)
Analogously, setting

L (1 —2p)6,

tan if 6 #0,
z = ag
1—2u it 0, =0,
we get equality (1.4) for the points ant1,. .., aa2N.
Thus,
F(t) + G(t) if z=1,tel,
Ft)+ Q.(t,2)Gt) =< (Flar) — Glap))Wi(M,p) if t= ay, (1.5)
F(t) — G(t) if z2=-1,tel.

From here it follows that the matrix function M (t) is v-nonsingular. Hence the
operator B = Fyl 4GS is a $-operator in the space LZ(I‘O, 0). From Theorem 1.1
and equality (1.5) it follows also that if the operator B is a ®-operator, then
det(F(t) + Q.(t,2)G(t)) #0 ((¢,2) € f) Let det(F(t) + Qu(t, 2)G(t)) # 0. Then
from formula (1.1) with the aid of equality (1.5) it is easy to derive that

(B, Ly (To,0)) = ind det(F(t) + Q,(t, 2)G(1)).

Let us show that all these statements are valid also for the operator A. To
this end, we embed the space Ly (T, o) into the space Ly (T, 0) assuming that all
the functions in L,(T, ) are equal to zero on the complementary contour I'g \ T
(cf. [5]). It is easy to see that the subspace Ly (T, o) is an invariant subspace of
the operator B and its restriction to L;}(F, 0) coincides with A. Moreover, the
equality PBP =P holds, where P is the projection of the space Ly (To, 0) onto
Ly(To \ T, o) parallel to Ly(T', 0). From here it follows that the operator A is a
d-operator in the space LZ(I‘, o) if and only if the operator B is a ®-operator in
L2(To, 0) and k(A, L}(T, 0)) = w(B, L} (To, ¢)). The theorem is proved. O

Theorem 1.3. Let aji,bjr € C(I') and A, = ajil +bjrS. The operator
A= T4
j=1k=1

is a ®-operator in the space L, if and only if the condition

Au(t,2) =D [T (agm(®) +Qut, 2)bju(t)) # 0

j=1k=1
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holds. If this condition is fulfilled, then
k(A, L)) =ind A,(t, 2). (1.6)

Recall that the counterclockwise winding number of the continuous plane

curve A, (t, z) about the point A = 0 when (¢, z) ranges over the oriented curve T’
is denoted by ind A, (¢, z).
The proof of the above theorem is based on the following auxiliary statement.

Lemma 1.1. Let z;;, (j =1,...,m k=1,...,s) be elements of some, in general,
noncommutative algebra with unit e and r = Z;=1 [1;—, zjk. Then the identity

X Z E 0 E 0 X Z
(Y O>_<T—e)(0 a:)(() e) (1.7)
holds, where X is the square matriz of order r(s + 1) given by

1
~ -~ ~

e —T11

—Tr1

—T12
—Tr2
—T1s

—Trs

e

and whose entries are equal to zero except for the entries of the two diagonals, E
is the identity matriz of order r(s+1), Z is the one-column matriz whose lower r
entries are equal to e and all other entries are equal to zero,

rs

.
i VR NN
Y =(e,...,e,0,...,0)
and
N
TZ(e,-~-7€7$11,~-~,$r1,$11$12,~-~,96r1$r2,-~-,$11"'xls,~-~,9€r1"'l“rs)-

Equality (1.7) is checked straightforwardly. By ©(z;;) denote the matrix on
the left-hand side of equality (1.7).
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Proof of Theorem 1.3. Substitute x;; — Aj; and e — I in the formulas for the
blocks of (1.7). From the resulting equality it follows that the operator A is (is not)
a ®-operator in the space £, if and only if the operator ©(A;;) is (resp. is not) a
®-operator in the space L7 (n =rs+r + 1) and the indices of these operators in
the corresponding spaces coincide:

R(A, £,) = K(O(Ajr), £2).
The operator ©(A,i) is the singular integral operator with matrix coefficients
O(Ajr) = F(t)I + G(¢)S.
The straightforward verification shows that
F() + (1, 2)G () = Oan(t) + Qu (t, 2)byu (D)), (18)

where the matrix on the right-hand side of the latter equality is constructed from
elements of the algebra C(I'). From equalities (1.7) and (1.8) it follows that

det(F(t) + Qu(t, 2)G(t)) = AL(t, 2).
It remains to apply Theorem 1.2, which implies all the assertions of the theorem.

O

Corollary 1.1. The complement to the set of the ®-points' of the operator

A=Y (el +08)  (ajn(t), bin(t) € C(I)

coincides with the range of the function

A,(t2) = 3 Tl (®) + Qult, b)) ((t,2) € D).

Theorem 1.4. Let

A=Y [Tl +08)  (aju(t),bin(t) € C(I))

j=1k=1
and
Au(t2) =Y [ (asm(®) + Qu(t, 2)bs (1)) ((¢,2) €T).
j=1k=1
Then the inequality

inf ||A+T| > max_|A,(t, %) (1.9)
Tev (t,z)el

holds.

Proof. Since for every point (tg, zg) € T the number Ay (to, z0) is not a ®-point of
the operator A, we have inf ||A 4+ T'|| > |A.(to, 20)|- This implies inequality (1.9).
The theorem is proved. (|

1A complex number X is said to be a ®-point of an operator A if the operator A — A\ is a
d-operator (see [4]).
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2. Quotient algebra

In this section the structure of the maximal ideals of the quotient algebra 2, /v,
is studied.

Lemma 2.1. The set v, is a minimal two-sided ideal of the algebra A, and the
quotient algebra A, /v, is commutative.

Proof. Let a(t),b(t) € C(T'). Then the operator T' = a(t)(tS — St)b(t)I belongs to
the algebra 2. The operator T has rank one:

@) = |, [ aurptr)ar (2.1)
™ Jr

The set of the operators of the form (2.1) is dense in the set of all rank one
operators. This yields the first statement of the lemma.

Let a(t) be an arbitrary function in C(I"). Then a(?) is the uniform limit of a
sequence of rational functions r,(t) € C(T"). It is easy to check that the operator
rn(t)S — St (t)1 is of finite rank. Hence a(t)S — Sa(t)I € +,. From here it follows
that the commutant of the algebra 2{,, is contained in ~,.

The lemma is proved. (|

In view of what has been proved, the quotient algebra 2, /v, is commutative.
By R denote the set of all operators of the form

A= Tl +bxS) (aju(t), bin(t) € C(I)).

j=1k=1

Since the operators a(t)S — Sa(t)I are compact, we see that each operator A € R
can be represented in the form

m

A= a(t)S*+ T, (2.2)
k=0
where a(t) € C(T'), T € 7,. To each operator A of the form (2.2) we assign the
symbol (more precisely, the v-symbol) defined by the equality

Au(t,2) = Y an(®)(Qu(t,2))* ((t,2) €T).
k=0

From inequality (1.9) it follows that the symbol of the operator A does not
depend on a manner of representation of the operator A in the form (2.2). Inequal-
ity (1.9) allows us to define the v-symbol of an operator A € 2, as the uniform
limit of a sequence of the symbols of operators A4,, € R converging to the operator
A in the norm of the algebra 2,. From inequality (1.9) it also follows that the

same symbol corresponds to all operators in a coset A € A, /v,. Let us agree to
denote it by A, (t,2) or A,(t, z).



Singular Integral Equations with Continuous Coefficients 153

Theorem 2.1. The set My, ., ((to,20) € ) of all elements of A € y/v, such that
//l\l,(to, 20) = 0 is a mazimal ideal of the algebra A, /7, .

All mazimal ideals of the algebra A, /v, are of the form My, ,,. The symbol
A\V(t,z) is a function of an element Ae A, /v, on the mazimal ideal space of the
algebra A, /v, :

~ o~

A(thzo) = Al/(t07 ZO)-
Proof. Since the functional 9y, , (g) = A\V(to, z0) ((to, 20) € I) is a multiplicative
functional on the algebra 2, /v,, we deduce that (see [6]) the set My, ., of the
zeros of this functional is a maximal ideal of the algebra 2, /v, .

Let M be an arbitrary maximal ideal. By #, denote the number (£1)(M).
Since the spectrum of the element tI coincides with the contour I, we get tp €T
It is not difficult to show that for each function a(t) continuous on the contour
T, the number (@)(M) coincides with a(tg). Let us show that there exists a
number zg (—1 < 2o < 1) such that S(M) = Q,(to, z0). Consider separately two
cases.

Case I: the point tg is not an endpoint of an open arc of the contour I'. By
B denote the operator defined in £, by the equality

2N
B=(I-8)]](t—a)l
j=1
It is easy to see that B, (t,z) = 0. From Theorem 1.3 it follows that each point
A # 0 is a $-point of the operator B. The latter fact means that the spectrum of
the element B in the algebra B /7w, where B, is the Banach algebra of all bounded
linear operators in £,,, consists of one point A = 0.

In this case it is easy to see that, when passing to the subalgebra 2, /7., the
spectrum of the element B does not change. From here it follows that B (M) =0.
However, tg # o, whence 1 — (§(M))2 = 0. Let us denote the number §(M) by
2p. Since z2 = 1, we have Q,(tg, 20) = z0. Thus €, (tg, 20) = §(M)

Case II: the point ty coincides with one of the endpoints of open arcs. In
this case we prove the existence of the point zy by contradiction. Assume that
§(M) # Q(to,z) (=1 < z < 1). Then it turns out that one can choose a function
a(t) satisfying the following two conditions: 1) a(to) = —S(M) and 2) the point
A = 0 belongs to an unbounded regularity component of the operator C' = a(t)I+S
in the algebra 9B, (below we will give an example of such a function).

From condition 2) it follows that the point A = 0 belongs to an unbounded
connected regularity component of the element C in the algebra 9B, /~,. Therefore
(see [7]), this component still consists of regular points of the element €' when
passing to the algebra 2, /7,. Hence C is invertible in the algebra 2, /7,. The
latter is impossible because C(M) = a(to) + S(M) = 0.

Let us give an example of a function a(t) satisfying conditions 1) and 2). First,
let Im §(M) # 0. By ¢ denote the straight line in the plane passing through the
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~

points t = 0 and ¢ = S(M). This straight line crosses the curve t = €,,(to, z)—5(M)
(-1 < z<1) at a unique point t. Note that t~7é 0 because §(M) # Q. (to,z). We
choose a point z on the straight line ¢ sufficiently far and such that the functions
O (aj, 2)+Z (a; # to, —1 < z < 1) do not take real values and the point ¢t = 0 does
not belong to the segment joining the points ¢ and Z. We choose a(t) as a continuous
function on I' whose range fills in the segment joining the points —S (M) and Z,
and moreover, a(ty) = —§(M) and a(a;) = Z (o # o). If Im S(M) = 0, then we
choose the straight line ¢ passing through the point -9 (M) perpendicularly to the
real axis. The rest of the construction is developed analogously. From Theorem 1.3
it follows that the complement to the set of the ®-points of the operator C' in L,
consists of the two segments A = a(t) + 1 and A = a(t) — 1; the 2N — 1 circular
arcs (or segments) A = Q, (o, 2) + Z (a; # to), and the circular arc (or segment)
A = Q,(to, z) — S(M). It is not difficult to observe that the point A = 0 belongs
to an unbounded regularity component of the operator C in the algebra B,,.
Thus we have shown the existence of a point (to, z9) € I such that S(M) =
Q,(to, 2z0) and (W)(M) = f(to) for each function f(¢t) € C(T'). From here it
already follows that A(M) = A,(to, z0) for all A € A, /v,. Hence M = My, ., .
The theorem is proved. O

3. Normal solvability and index of operators in the algebra AL

Theorem 3.1. Let A € ,,. The operator A is a O -operator or a ®_-operator in
the space L, if and only if the condition A,(t,z) # 0 ((t,2) € f) holds. If this
condition is fulfilled, then the index k(A, L,) of the operator A in the space L, is
calculated by the formula

k(A, L)) =ind A,(t, 2). (3.1)

Proof. Let A,(t,z) # 0. Then from Theorem 2.1 it follows that the coset A con-
taining the operator A is invertible in the quotient algebra 2, /~,. Hence it is
invertible in the algebra %, /~,. From here it follows that (see, e.g., [8]) the oper-
ator A is a ®-operator in £,. Since the functionals x(A4, £,) and ind A, (¢, z) are
continuous on the set of ®-operators acting in £,, we see that formula (3.1) is a
corollary of formula (1.6).

Let us prove the necessity of the hypotheses of the theorem. First we show
that if the operator A is a ®-operator, then A, (t,z) # 0 ((t,z) € I'). Assume the
contrary, that is, that the operator A is a ®-operator and A, (tg, z0) = 0. Then
there exists a ®-operator B € R such that B, (tg,20) = 0, but this contradicts
Theorem 1.3.

Let the operator A be a ®_-operator. Then it is not difficult to find C € R
sufficiently close to A in the norm and such that C,(t, z) # 0. In view of what has
just been proved, the operator C is a ®-operator. From here it follows that the
operator A is also a ®-operator. The theorem is proved. O
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The proved theorem can be generalized to the algebra generated by singular
integral operators with matrix coefficients.

Let 20" be the algebra of bounded linear operators in £} of the form A =
[l Ajkll} x=1, where Aj € 2A,. We refer to the matrix function

Ay (t,2) = [[(Aj)w (t 2) 1 =1

where (Ajx).(t, ) is the v-symbol of the operator A;i, as the symbol (more pre-
cisely, the v-symbol) of the operator A.

Theorem 3.2. Let A € Qll(,"). The operator A is a <I>+-0pefat0r or a ®_-operator in
LY if and only if the condition det A, (t,z) # 0 ((t,z) € T') holds. If this condition
is fulfilled, then

k(A, L)) =ind det A, (t, 2). (3.2)

Proof. Since AjxAsr — AsrAji € o (4, k8,7 =1,...,n), in view of [9, Theorem 2]
we see that A is a ®-operator in L] if and only if the operator B = det || A; ||} ,—,
(the formally constructed determinant of the matrix ||4,x||) is a ®-operator in
L, . From the equality det A, (t, z) = B, (¢, z) and Theorem 3.1 it follows that the
condition det A, (t,z) # 0 ((t,z) € ') is necessary and sufficient for the operator
A to be a ®-operator in L.

Let the operator A = [[Aj|},—; € A be a y-operator. Then there ex-
ists an operator A}; € 2, sufficiently close to the operator A;; and such that
(A11)u(t,2) # 0 ((t,2) € T'). From Theorem 3.1 it follows that the operator Aj;

is a ®-operator. Let R be one of its regularizers. From the results of the previous
section it follows that R € 2,,. It is easy to verify that

AL A . Am
Aoy Axy ... Aoy
Anl An2 <o Ann (33)
I 0 ... 0 AL A .. Am
_ As1R Boy ... Bso, 0 I - 0 4T
AR Bny ... Bun 0o 0 ... I

where Bj, = Aj, — RAj1 Ay, € A, and T is a compact operator in L7).

To finish the proof of the theorem, it remains to prove formula (3.2) and
to show that if an operator A € 9[1(,") is a ®-operator, then it is a ®-operator.
For n = 1 both statements follow from the previous theorem. By using equality
(3.3), it is not difficult to prove these statements by induction on n (cf. [10]). The
theorem is proved. O
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On a Local Principle and Algebras
Generated by Toeplitz Matrices
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The main topic of the present paper is the study of some Banach algebras of
bounded linear operators acting in the spaces £, (1 < p < 00). Generators of these
algebras are defined by Toeplitz matrices constructed from the Fourier coefficients
of functions having finite limits from the left and from the right at each point.

These algebras were studied for the case of the space ¢ in the paper [1] and
for the case of the space h;, (1 < p < o) ! in the paper [2].

First important results on the above-mentioned algebras in the spaces ¢, (1 <
p < 00, p # 2) were obtained very recently in the papers by R.V. Duduchava [3, 4].
Results of R.V. Duduchava are extended in this paper with the aid of a local princi-
ple. In the spaces L,, this local principle is a simplification of I.B. Simonenko’s local
principle [5, 6]. However, it is applicable to a much larger class of Banach spaces. A
general scheme developed in [20] plays also an essential role in the present paper.

The paper consists of seven sections. In Section 1, the local principle is pre-
sented. In Section 2, first applications of the local principle are given. They repro-
duce or generalize some results of I.B. Simonenko [8]. In Section 3, main properties
of bounded operators generated by Toeplitz matrices in £, (1 < p < co) are con-
tained. In Section 4, applications of the local principle to the study of bounded
operators generated by Toeplitz matrices constructed from the Fourier coefficients
of continuous functions are outlined. Theorems on inverting operators generated by
Toeplitz matrices in ¢, constructed from the Fourier coefficients of piecewise con-
tinuous functions are contained in Section 5. An investigation of algebras generated
by such operators and a symbol theory are presented in Section 6. In Section 7,
the results are extended to paired equations and their transposed.

The authors wish to express their sincere gratitude to R.V. Duduchava for
useful discussions.

The paper was originally published as U.I1. T'ox6epr, H.fI. Kpynauk, O6 ogHOM JI1OKaJILHOM
OpUHOUIE U alrebpax, MOPOXKAEHHLIX TémauneBniMu Marpunamu, An. Sti. Univ. “Al L
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I The space of the sequences of the Fourier coefficients of the functions in the Hardy space Hp is
denoted by hp.
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1. Localizing classes

1.1. Let 2 be a Banach algebra with unit e. A set M of elements of the algebra
2 is said to be a localizing class if it does not contain zero and for every pair of
its elements a1, as there exists a third element a € M such that

a1a = aa = aaz = aa; = Aa.
Elements x and y in 2 are called M-equivalent from the left if
inf — =0.
Jnf |I(z —y)a] =0

The M-equivalency from the right is defined analogously. If elements = and y in
A are M-equivalent from the left and from the right, then we say that they are
M-equivalent.

An element z of the algebra 2 is called M -invertible from the left (right) if
there exist elements z € A and a € M such that

zza=a (axz=a).

Lemma 1.1. Let M be a localizing class and elements x,y € A be M -equivalent
from the left (resp. right). If the element x is M-invertible from the left (resp.
right), then the element y is also M -invertible from the left (resp. right).

Proof. Let x be M-invertible from the left. Then there exist elements z € 2 and
a1 € M such that zxa; = ap. Since the elements x and y are M-equivalent from
the left, there is an element as € M such that ||(z — y)az|| < 1/||z||. We choose an
element a € M so that the equalities aja = asa = a hold. Then zya = zzxa — ua,
where u = z(z —y)as. Taking into account that zza = a, we obtain zya = (e —u)a.
Since ||u|| < 1, we see that the element e — u is invertible. Thus z1ya = a, where
21 = (e — u) 7'z, whence the element y is M-invertible from the left.

The lemma is proved. O

1.2. A system {M,} er of localizing classes M, is said to be a covering system
if from every set {a,}er of elements a, € M, one can select a finite number of
elements whose sum is an invertible element.

Lemma 1.2. Let {M,}er be a covering system of localizing classes. An element x
in A that commutes with all elements in U'yET M, is invertible from the left (resp.
right) in the algebra A if and only if x is M, -invertible from the left (resp. right)
for each v €T.

Proof. The necessity of the hypotheses of the lemma is obvious. Let us prove their
sufficiency. Let an element x be M, -invertible from the left for each v € I'. Then
there exist elements 2z, € 2 and a, € M, such that z,za, = a,. Since the system
{M,} is a covering system, from the set {a,} one can extract a finite number of
elements a~,, ..., a, such that their sum is an invertible element. Put

N
u = E Zoyy Ay
Jj=1
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Then
N N N
uxr = E :Z%.a%.m: E :waaw = E :a%..
i=1 i=1 i=1

Thus the element z is invertible and
1

N
-1 _
X = E aw u.
Jj=1

The lemma is proved analogously in the case of the invertibility from the right.
The lemma is proved. t

The proved lemmas immediately imply the following.

Theorem 1.1. Let {M,} cr be a covering system of localizing classes and an el-
ement x be M -equivalent from the left (resp. right) to an element y, € A for
each v € T'. If the element x commutes with all elements in Uwer ~, then it is
invertible from the left (resp. right) if and only if the element y- is M., -invertible
from the left (resp. right) for every v € T.

1.3. The presented statements can also be interpreted from the point of view of
the theory of ideals. We restrict ourselves to the case when all elements in the
union M = (J, cp M, commute with each other.

By 20y denote the commutant of the set 9. Obviously, 2l is a subalgebra of
the algebra 2. The set J, of the elements M,-equivalent to zero forms a closed
two-sided ideal of the algebra 2(y. Indeed, it is necessary to check only that the
unit does not belong to J,. Assume that e € J,. Then in the class M, there exist
elements ¢, (n = 1,2,...) tending to zero. For each ¢,, there exists an element
an € M., such that cpa, = ay. From here it follows that ||c,|| > 1.

By 2., denote the quotient algebra 2,/J,. By X, denote the coset in ., that
contains an element z € 2.

The coset X, is invertible in 2, if and only if the element z is M, -invertible
in /p. Indeed, if X, is invertible in &, and Z = X;l, then the element zz — e is
M,,-equivalent to zero. The latter means that x is M, -invertible in . Conversely,
if « is an M, -invertible element in 2y, that is, zza = a, where 2z is some element
in Ap and a is some element in M., then A, = E,. Therefore Z, X, = E,.

Now Theorem 1.1 can be reformulated as follows.

Theorem 1.2. Let © € Ay. An element x is invertible in the algebra 2 if and only
if the element X, is invertible in A, for each v €T

This theorem follows immediately from Theorem 1.1, the above remarks, and
the fact that the invertibility of an element x € 2y in the algebra 2l implies that
27! belongs to the subalgebra 2.
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2. First example

2.1. Let I" be a contour in the complex plane that consists of a finite number of
nonintersecting simple closed Lyapunov curves.
Consider the operator of singular integration S defined by the equality

L[ ()
(S)(t) = m,/FT_th (ter).

It is known that this operator is bounded in all spaces L,(I') (1 < p < 00).
From the known interpolation theorem by E.M. Semenov [9] it follows that the
operator S is bounded in a bulk of separable symmetric spaces including among
them the reflexive Orlicz spaces, the uniformly convex Lorentz spaces, and others.

In what follows by E(I') denote one of such spaces. Let a(t) = [la k()7 =,
and b(t) = [|bjk(t)||} =, be matrix functions whose entries are complex-valued
measurable essentially bounded functions on I'. Matrix functions a(t) and b(t) are
said to be equivalent at a point ty € I' if for every € > 0 there exists an open arc
ly, containing the point ¢y, on which

vraisup |a;i (t) — bjr(t)] <e.
tely,

Let F' be some set of matrix functions of order n on the contour I'. Following
I.B. Simonenko [8], a matrix f(¢) is said to belong to the local closure of the set
Fif it is equivalent to some matrix function in F' at each point of the contour T'.

A set F is said to be locally closed if the local closure of the set F' is contained
in F. Let P be the projection defined in F(T") by the equality P = (I + S)/2. By
E(T') denote the range of the operator P and by E% (I') denote the direct sum of
n copies of the space E (I'). We extend the operator P to the whole space E™(T")
putting P{p;}7_, = {Py;}7_,. For each matrix function a(t) = |la;x(t)|| of order
n with entries in Lo (I") by T, denote the matrix operator defined in E% (I") by
the equality?

T. = P(ap).

By L2 (T') denote the set of all matrix functions a(t) with entries in L., (T') such
that the operator T, is a ®-operator? in the space ER(T).

Theorem 2.1. The set L (T') is locally closed.

Proof. Let us show that this theorem is a corollary of Theorem 1.1. The role of
the algebra 2 is played by the quotient algebra A = L(E%(T))/J (E;f (T)), where
L(E;}(T')) is the algebra of all bounded linear operators in E;f (') and J(E7}(T))

2This operator is sometimes called a generalized matrix Wiener-Hopf operator. Note that in the
case when I' is the unit circle, n = 1, and the system t* (k = 0,£1,...) forms a basis of the
space E(T'), the Toeplitz matrix constructed from the Fourier coefficients of the function a(t)
corresponds to the operator Ty in this basis.

3An operator A is said to be a ®-operator if its range is closed and the numbers dim ker A and
dim ker A* are finite.
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is the two-sided ideal of L(E" (T')) consisting of all compact operators. The coset
in 2 that contains an operator A € L(E7}(I)) is denoted by A

We introduce a system {M¢}cer of localizing classes in the algebra 2A. Let
Co € I' and N¢, be the set of all continuous functions on I', each of which is
equal to 1 in some neighborhood (depending on the function) of the point {y. By
M, denote the set of all elements fq of the algebra 2 generated by the matrices
g(t) = go(t)Ey, where E, is the identity matrix of order n and go(¢) € N¢,. One
can check straightforwardly that if a € C(T'), then a(¢)S — Sa(t)I € J(E(T)).
From here it follows that if a € C(T") and b € Lo (T"), then

ToTy — Tap € T (EL(T)). (2.1)
With the aid of this property it is easy to check that for every matrix function
f@) = i)} =, the coset Ty belongs to the commutant of the set M =

Uier M. Property (2.1) also implies that if matrix functions f(¢) and h(t) are

equivalent at the point (g, then the cosets ff and fh are M, -equivalent.

It easy to verify that the set {M;}ier forms a covering system of localizing
classes.

Let f(t) belong to the local closure of the set L® (T). It is known that the
operator T, is a ®-operator if and only if the element fa is invertible in the
algebra 2. Therefore for every point (o € I" the element ff is M¢,-equivalent to
some element ffco’ which is invertible in 2. In view of Theorem 1.1, the element

ff is also invertible in 2. Thus f € L2 (T).
The theorem is proved. t

It can be shown analogously that if a matrix function f(¢) is equivalent to
a matrix function f¢(t) at each point ¢ € I and all operators Ty, (¢ € T') admit
a left (resp. right) regularization, then the operator Ty admits a left (resp. right)
regularization.

Theorem 2.1 can be formulated also for one-dimensional matrix singular in-
tegral operators. In that form Theorem 2.1 was proved by 1.B. Simonenko [8] for
the spaces L,(I") (1 < p < 00). In the paper [8] this theorem was deduced from a
local principle (see [5, 6]) more complicated than the one presented in Section 1.

2.2. The statement presented below follows from Theorem 2.1. It was obtained
for the first time by I.B. Simonenko [10, 8].

Theorem 2.2. Let a(t) (t € ') be a matriz function with entries in Lo (T'). Suppose
that for every point ty € I' there exists a neighborhood l;, C I' of this point such
that the range of the form (a(t)n,n) (n € C™,|n|| = 1) for t € li, is located in
some closed half-plane Iy, not containing the origin. Then the operator T, is a
®-operator in the space Ly (T) 4.

Proof. Let ¢ be an arbitrary point on I'. By a¢ denote a matrix function that
coincides with a(t) on the arc ¢ and is defined on the complement I' \ s so that
the range of the form (a¢(t)n,n) (t € I') is located in the half-plane II.. It is not
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difficult to find a complex number ~y so that the norm of the operator ya¢ — Ey,
acting in the space L% (T) is less than 1. By |A| denote the quotient norm

A= inf  [|A+T].
TeJ(Lz(T'))

It is known (see [21]) that |P| = 1, whence |P(yac — E,)| < 1. Since

Pa; = [P+ P(yac — Ey,)],

1
Y
from the last inequality it follows that the operator Ty, is a ®-operator in Ly (I');.
Therefore ac € L (T). In view of Theorem 2.1, a € L2 (T).

The theorem is proved. (|

For n = 1, I.B. Simonenko [10, 8] obtained a generalization of Theorem 2.2
to the case of an arbitrary space L,(I'), (1 < p < 00). That theorem can also be
obtained from Theorem 2.1 with the aid of the results [11] (see also [12, 13]).

3. Some properties of operators generated
by Toeplitz matrices in £, spaces

3.1. In the following sections operators generated by Toeplitz matrices in spaces
¢, are studied with the aid of the local principle of Section 1. Main properties of
these operators are presented in this section.

By Zp (1 < p < o0) denote the Banach space of the sequences {;}32
ITRS C', with the norm

—00

- 1/p
el =1 > lgl
j=—o00

By £, denote the space of the one-sided sequences {¢;}72, with the norm

- 1/p
el ={ 1&g
=0

Let T’y be the unit circle. To each function a(¢) € Lo (T'o) assign the Toeplitz
matrices [|aj—xl|3%— and [laj—xl|3%—_., consisting of the Fourier coefficients a;
(j =0,%1,...) of this function. By T, denote the linear operator generated in the
space £, (1 < p < 00) by the matrix |la;—x||55—, and by T, denote the operator
generated by the matrix [la;—x[|3%-_. in the Banach space Zp.

Let us agree to denote by L(L) the Banach algebra of all bounded linear
operators acting in a Banach space L.

By R, (1 < p < o0) denote the set of all functions a(¢) € Lo (T'9) such that
T, € L(¢,). It is known that the sets Ry and R coincide, that they consist of all
functions a(¢) (J¢| = 1) that may be expanded into absolutely convergent Fourier
series, and that Ro = Lo (D). It is easy to see that if for a function a € Lo (Ty)
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the operator T, belongs to L(Zp), then a € R, and ||T,|| < | Tw||. The converse
statement is also true.

Proposition 3.1. Ifa € R, (1 <p < 0), then T, € L(Zp) and | T,| = || Ta]|.

Proof. Indeed, let T, € L(¢,) and P, (n =1,2,...) be the projections defined in
£, by the equality P, {&}, = (...,0,&—n,...,&0,&1,...). It is not difficult to see
that for each finitely supported sequence £ = (...,0,&,...,&,0,...) the equality

lim H-Pnfapnf - Taf” =0
n— 00

holds and, moreover, ||P,T,P&|| < || Tal [I€]|. Hence the operator T, can be ex-
tended to the whole space ¢, and ||T,|| < ||T4]- O

Proposition 3.2. If a,b € R, then ab € R, and
[ Tanll < [ITall [ To]]- (3.1)

Proof. Let a,b € R,. Then in view of Proposition 3.1, T.. Ty € L(Zp) It can be
checked straightforwardly that Tabg = fafbf for all finitely supported sequences
¢ € Zp. Hence Ty = T,T) (€ L(Zp)). From here it follows that ab € R, and
inequality (3.1) holds. O

Proposition 3.3. If a(() € R,, then a(() € Ry and || Tallp = |Tullp-

Proof. This statement follows easily from Proposition 3.1 and the equality ||Ta£ I =
(7o, where § = {£—;}>. O

3.2. From the proved properties it is easy to deduce the following statement.

Proposition 3.4. The set R, (1 < p < c0) is a Banach algebra with the norm
lall = [|Tallp

and, moreover,
lall > vraisup|a(C)|.
I¢l=1
Proof. In view of Proposition 3.2 it is necessary only to verify the completeness of
the space R,p.
From Proposition 3.3 it follows that if a € R, then a € R, (p~1 +¢71 = 1)
and ||T,|lp = || Tallq- By the M. Riesz interpolation theorem,

[ Tallz < [ Tallp-

Suppose a sequence {a,} is a Cauchy sequence in R,. Then it is a Cauchy
sequence in Ry (= Loo(To)). Hence there exist a function a € L (Tg) and an
operator A € L(¢,) such that ||T,, — T,|l2 — 0 and ||T,, — A|, — 0 as n — oo.
From here it follows that the operator 7}, is bounded on a dense set in ¢,, whence
a € Rp. It is easy to check that ||a — ay| — 0. O
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Let us agree on the following two notations:
R[phpz] = ﬂ Rp, R(m,m) = ﬂ Rp.
P1<p<p2 P1<p<p2

Proposition 3.5. If a € Ry, then a € Ry, q forp <2 and a € Ry yp forp > 2,
where p~t+ ¢ 1 =1.
Proof. Indeed, from Proposition 3.3 it follows that if @ € R,, then a € R,. Thus
Proposition 3.5 follows from the M. Riesz interpolation theorem. O
Proposition 3.6. Suppose a € R, (1 < p < o0) and r satisfies the inequality
2 <r <p forp<2 and the inequality p < r < 2 for p < 2. Then

I Tall < I Tallp vraisupa(¢)|'—,

I¢I=1
where
,_p2=r)
(2 —p)
Proof. This statement is also an immediate corollary of the M. Riesz interpolation
theorem. O

3.3. By V denote the algebra of functions f : I' — C! of bounded variation. It is
known (see [14]) that V' C R(1,0). Moreover, for an arbitrary function a € V,

ITallp < k:p(vrai sup |a(¢)| + vara), (3.2)

where vara denotes the total variation of the function a(¢) on I'g, and k, is a
constant depending only on p.

A more general statement was obtained in the paper [15].

Let Vg (8 > 1) be the set of the functions a(¢) such that

n—1

sup »_ Ja(e’1) — a(e'*)]? < oo,
k=0
0=0yp<b;<---<0, =27

Then Vi C R2p/(5+1),26/(5-1))-

In [15] the following propositions were also obtained.

Let H, be the collection of all functions a(¢) such that a(e?) satisfies the
Holder condition with exponent o on some segment [0y, 0y + 27]. Then

Hy CRi(1420)1 2(1-20)-1) (0 < a<1/2).
Moreover, if 3 > 2 and § > 0, then
Hs Vs C Rzp(p+2)-1,28(8-2)1)-
If a(() € Hy, (0 < 2 <1/2) and

on

Z lax| < 27,

k=2-"
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then a € Ry, p,), where
=Q2a+20)/+20, p2=2a+28)/8 (0<pF<1/2—a).

With the aid of Proposition 3.4 one can essentially extend the class of ex-
amples of functions belonging to the set R(,, p,). For instance, if z;({) € R,
(1=1,2,...,n) and y;(¢) € V, then

Zm] JER, (1<p< o).

In particular, if the functions x; (C ) are expanded in absolutely convergent Fourier
series and x;({) are characteristic functions of some arcs on the unit circle, then

Z:C] G R(l 00)*

This class of functions was 001151dered by R.V. Duduchava [3, 4].

3.4. In conclusion we present two more properties important for further consider-
ations.

Proposition 3.7. Let functions a(C) and b(C) in Rp—cpte) (1 < p < 00, > 0)
have finite limits from the left and from the right at each point . Then the operator
T, Ty — Ty Ty, is compact in the space £,. Moreover, if the functions a(¢) and b(¢)
do not have common points of discontinuity, then the operator T, Ty, — Tap also is
compact in €.

Proof. Indeed, under the presented assumptions, the operators 1,7, — T, 1, and
T, Ty —Top are compact in ¢ (see [1]) and are bounded in ¢,1 . and ¢, .. Therefore,
Proposition 3.7 follows straightforwardly from the Krasnosel’skii interpolation the-
orem [16, Theorem 1]. O

Proposition 3.8. Let a(¢) € R,. If the function a(C) is not identically zero, then
the equation Tox = 0 in the space £, (1 < p < c0) or the equation T,y = 0 in the
space £y (p~ +q~1 = 1) has only a trivial solution.

Proof. In the case p = 2 this statement is proved in [22]. Without loss of generality
one can assume that 1 < p < 2.

We prove Proposition 3.8 by contradiction. Assume that there exist nonzero
vectors x4 = {:E;“}SO €y and yy = {yj}go € {4 such that

Tyxy =0, Toyy =0. (3.3)

By 74 and y denote the vectors {xj}j‘;_oo € Zp and {yj}‘;‘;_oo € Zq, respectively,
such that :c;r = y;r =0 for j <O0.
It is easy to see that equalities (3.3) can be rewritten as follows:

Ty =7, Tajr =7, (3.4)
€ l,and j_ = = {y; I} € {, have the

where the vectors 7_ = {z; i

]*700

property z; =y; =0 for j > 0.
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We construct infinite Toeplitz matrices

+ +
A= laj -kl Fhe—oor Xt = 127 0T e Y = 1454l Fh=— oo

Equalities (3.4) imply the following equalities
AX =X, YiA=Y" (3.5)

Multiplying both sides of the second equality of (3.5) from the right by X and
taking into account the first of these equalities, we obtain

YIX_ =Y'X,. (3.6)

Since the matrix Y X  is upper triangular and Y*X is lower triangular, and
all entries of the main diagonals of these matrices are equal to zero, we see that
Y/X_=0and Y*X, =0. It can be checked straightforwardly that if Y7 X =0,
then one of the matrices X_ or Y} is equal to zero. If Y, # 0, then X_ = 0. In
view of (3.5), AX; = 0. From here it follows that a(¢)z4(¢) = 0, where

o0
_ +
*Z%‘C'
7=0

Since {acj} € ¢, and p < 2, we see that the function x4 (¢) belongs to the Hardy
space Ha. By the hypotheses of the proposition, a(({) is different from zero on a
set of positive measure. Therefore x4 (¢) = 0 on this set. Thus 24 (¢) = 0 and this
contradicts the assumption. Il

4. Second example and its applications

4.1. We will present an example illustrating results of Section 1. By IIC' denote
the set of all functions a(¢) (|¢| = 1) having finite limits a(o+0) and a(¢p—0) as ¢
tends to {p clockwise and counter-clockwise, respectively, at each point (y € T'g. By
1IC,, (TIIC;y) denote the intersection of IIC' with R, (respectively, Ues0R (p—c,p+e))-

Theorem 4.1. If a function a(() belongs to IIC,, and a(¢ £0) # 0 for all ¢ € T'o,
then the function 1/a(() also belongs to T1C )

Proof. Obviously it is sufficient to show that 1 / a(¢) € R,. We will show that the
operator T, is invertible in é Since for all z € f5 the equahty Ta T,z = z holds,
this will prove the boundedness of the operator Ta 1 in ép, and hence will finish
the proof of the theorem.

We will develop the proof with the aid of Theorem 1.1. Let 2 = L(Zp). For
each point (y € I'y we introduce the localizing class M, C L(Zp) consisting of
all operators of the form Tm, where z(¢) is the characteristic function of some
neighborhood of the point ¢y. It is easy to verify that the set {M¢}¢er, forms a
covering system.
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Moreover, if a(¢) € Rp, then the operator T, belongs to the commutant of
the set (e, Mc¢. Let a(¢) € I1C,) and let 7 be some point of the unit circle I'o.
If 7 is a continuity point of the function a(¢), then we put
def

a-(¢) = a(r) (¢ €Tlo).
If 7 = €% is a discontinuity point of the function a(¢), then we put

ar () = a(t+0) for <p<ep+m,
T ) a(r=0) for Tw+0<p<l+2m

We choose a neighborhood [(¢p) of the point g so that sup |a(¢) —a-(¢)] (¢ € (o),
¢ # (o) is sufficiently small. Let x(¢) be the characteristic function of the arc I((p).
From Proposition 3.7 and relation (3.2) it follows that

I(Ta = To )Tyl < |To = T $kE2° sup a(C) = ar ()],
¢€l(C0),¢#Co
where the numbers s and ¢ do not depend on I((p). Hence the operators fa and
T,. are M,-equivalent. Since a(¢ +0) # 0 (¢ € T'y), each of the operators T,
(r € Tp) is invertible in the algebra L(,). In view of Theorem 1.1, the operator
T, is invertible in L(Zp). The theorem is proved. O

4.2. In this subsection, a Fredholm criterion for operators generated by Toeplitz
matrices with continuous coefficients is obtained with the aid of Theorem 1.1.
These results will be used in forthcoming sections.

By () denote the intersection of the sets C(T') and ..o R(p—cp+e) and
by C&?” denote the set of all matrix functions of order n with entries in Cp. If
a = |ajk(Q)[|7 =1, then by T, denote the operator | Ta,,[|7 _;-

Theorem 4.2. Let a € C&?” The operator Ty, is a ®4-operator or a ®_operator
in £y if and only if the condition

deta(C) #0 (|¢/=1) (4.1)
holds. If condition (4.1) is fulfilled, then the operator T, is a ®-operator.

We will use the next statement in the proof of this theorem.

Lemma 4.1. Suppose a sequence of functions by, () (|¢] = 1) converges to zero in
measure on Ty and, for everyr € (1,00), ||Tv,,|l» < o, where the constant o, does
not depend on m. Then the sequence Ty converges to zero strongly in each space
l, (1 <p< o).

m

Proof. Since the sequence of the norms ||Ty,, ||, is bounded, it is sufficient to verify
that || Tp,,z||, — 0 on some dense set. For p = 2 this can be easily checked. For
p > 2 this follows from the inequality ||T5,,z|lp < ||Tb,, |2, and for 1 < p < 2 one
can apply, for instance, the relations

1 _
7o, 215 < | To,, zll5 N To,zll2/3-p) < I Th, x5

1
Hl“||042(37p)-

The lemma is proved. O
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Proof of Theorem 4.2. Assume that condition (4.1) is fulfilled. From Theorem 4.1
it follows that a=1(¢) € C’ZJ;” By Proposition 3.7,
T.T,-+—1¢€¢ j(gg), T, T,—1¢€ j(gg)

Hence the operator T, is a ®-operator. The sufficiency part of the theorem is
proved.

Let us show the necessity part. Assume that det a({y) = 0, where (p is some
point on I’y and the operator T, is a ®-operator (if T, is a ®_-operator, then
we can pass to the adjoint operator in the dual space). There exists a finite rank
operator K and a constant C' > 0 such that

(To + K)z|lp, = Cllz|p
for all z € ZZ. From here it follows that
[(To + K)Thllp > Cl|Thll, (4.2)

for every matrix function h(¢) € Ry*".

Below we will construct a matrix h(¢), for which condition (4.2) is not ful-
filled. This will lead to a contradiction.

By u = (u1,...,u,) € C" denote a nonzero solution of the equation a({p)u =
0 and put

fe(C) = Zajk(g)uj (k=1,...,n),

where a;({) are the entries of the matrix a(¢). By b(¢) denote some function that
can be expanded into the absolutely convergent Fourier series

b= Y Bict <|c|:1, 3 |ﬂk|<oo>

k=—o0 k=—o0
and that has the following properties.

1. The support of the function b(¢) is contained in a neighborhood v((y) of the
point (g such that

sup |fw(Q)[ <0 (k=1,2,...,n), (4.3)
¢€v(Co)

where > 0 is a given arbitrarily small number.
2. max|b(¢)| = 1 and varb(¢) = 2.

We choose a natural number N so that for the trigonometric polynomial

Q) =Y B¢

k=—N

the inequalities

max|Q(Q)] 2 5. max|fORQ <25 (k=1.2.....m),
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and ||Tgl|» < 2||Ty||, for all » > 1 hold. Note that the latter inequality is satisfied if
N is chosen so that || T, — Tgl|1 < [|Ts||2- In that case | T, — To|l» < ||Tbl|2, whence
ITallr < 1 Tollr + 1 Toll2 < 2(|T3 ]l

Note that in view of (3.2), ||Tgl|» < 6k,. Put

no =Moo = " o °
w0 0
Then
T, 0 0
Tt Ty || T O O
T, 0 .. 0

where gi(¢) = fr(Q)Q()¢Y. Since
I Toullp < 17511221 To 2/ max | f(OQC)Y? < (12K, |1 Ty, [16)"2,

where r = 4p/(2 + p), choosing the neighborhood v(¢p) one can make the norm
|ITuTh | arbitrarily small.

Let vy, (o) be the sequence of the neighborhoods of the point {y that collapse
to the point (p. Then the corresponding sequence of polynomials @, (¢) can be
chosen so that it tends to zero in measure. By Lemma 4.1, the sequence T'Q,, tends
to zero strongly. Hence (see [17, Chapter II, Section 3]), || KTQn||, — 0. From here
it follows that the norm ||KT}||, can also be made arbitrarily small.

Since max |Q(¢)| > 1/2, we see that the norms ||}, are bounded from below
by a constant independent of v({p).

The obtained claims contradict relation (4.2). The theorem is proved. O

5. Inversion of Toeplitz matrices

5.1. Let a € IIC,. We define the symbol of the operator T, acting in £,. To this
end, by &, (1) denote the function defined on the segment [0, 1] by the equality

sin Quexp(ifu) .
f 0
E(p) = sin 6 exp(i6) ' 70, (5.1)
I if =0,

where 6 = (2 — p)/p.

If p runs over the segment [0, 1], then &, (x) runs over the circular arc (or the
segment if p = 2) joining the points 0 and 1. For p > 2 (resp. p < 2) this arc is
located in the upper (resp. lower) half-plane and from the points of this arc the
segment [0, 1] is seen at the angle 27/p (resp. 2w (p — 1)/p).

The function a(¢, pu; p) defined on the cylinder X = I'y x [0, 1] by the equality

a(, s p) = &p(p)a(C +0) + (1 = & (p))a(C —0)
is said to be the symbol of the operator T, (a € IIC,) acting in £,,.
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Let (1, (2, ... be all discontinuity points of the function a(¢). Then the range
of the function a(¢, p;p) is the union of the range of the function a(¢) (|¢| = 1)
and a finite or countable number of circular arcs (or segments)

Sk =a(Ck —0) + (a(Cr +0) — a(Gr — 0))&p (1),

joining the points a(¢; + 0) and a({; — 0).

If the function a(¢) has at least one discontinuity point, then the symbol
a(¢, p; p) depends on p.

Note that the symbol a(¢, u;p) of the operator T, acting in the space £,
differs from the symbol A((, p;p) of the same operator acting in the space hy, (see
[2]). The range of the function A((, u; p) can be obtained from the range of the
function a((, u;p) by replacing each of the arcs Sy by the arc symmetric to S,
with respect to the segment joining the points a({; + 0) and a(¢x — 0).

Let us define the index of the function a((, p;p). First of all, we orient the
curve a(¢, p; p) so that the motion along the curve a((, p; p) agrees with the motion
of ¢ along the circle counterclockwise at the continuity points of the function a(¢);
and the complementary arcs are oriented from a(¢x — 0) to a((x + 0).

If the function a(¢) € IIC, has a finite number of discontinuity points and
a(C,pu;p) #0 (I¢] = 1,0 < p < 1), then the winding number of the curve a((, ; p)
about the point A = 0 is said to be the index of the curve a(¢, ;). This index
is denoted by inda(¢, y;p). In the general case, if @ € IIC, and a((, p;p) # 0,
then the function a(¢) can be uniformly approximated by functions a,(¢) € IIC,
having finite numbers of discontinuity points. It is easy to see that the sequence
ind a,, (¢, u; p) stabilizes starting with some n. The index of the function a((, ; p)
is defined by the equality

inda(¢, u;p) = lim ind a, (¢, p; p).
n—oo
In this section the following theorem is proved.

Theorem 5.1. Let a(() € I1C ), where 1 < p < oo. The operator T is normally
solvable in the space ¢, if and only if the condition

a(Cup) #0 (IK[=1,0<p<1) (5:2)

holds. If condition (5.2) is fulfilled, then the operator T, is invertible (invertible
only from the left; invertible only from the right) whenever the number

x = ind a(C, p; p)

is equal to zero (resp. positive; negative).
Under condition (5.2), the equalities

dimkerT, = —inda((,pu;p) for k<O,
dim coker T, = ind a(¢, pu;p) for k>0,

hold.
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This theorem for a certain class of functions a(¢) was proved by R.V. Dudu-
chava [3, 4]. Namely, in those papers it is supposed that the function a({) has the
form

= Zaj(C)C“-", (5.3)

where the functions a;(¢) (j = 1,...,n) have absolutely convergent Fourier series.
In the proof of Theorem 5.1 we make a substantial use of the result by R.V. Du-
duchava [3, 4] concerning the function a(¢) = ¢®. This result is formulated as
follows.

Proposition 5.1. If the condition
1 1
— <Rea<l- (1<p<oo)
p p

holds, then the operator T¢o is invertible in the space €.

5.2.  Proof of Theorem 5.1. By 2 denote the quotient algebra L(¢,)/J(¢p). If
b € R,, then by fb denote the coset in 2 containing the operator T;. For each
point (p of the unit circle I'y define the set M¢, C 2 consisting of all cosets fx such
that functions z({) are continuous on I'y, have finite total variation, and have the
following properties: 1) z({) takes the value 1 in some neighborhood of the point
C0;2) 0 <z(¢) <1and varz(() = 2.

From Proposition 3.7 and Theorem 4.3 it follows immediately that the set
{M¢}cer, forms a covering system of localizing classes. As in Theorem 4.1 one can
show that if a,b € I1C,y and a(Co + 0) = b(¢o + 0), a(Co — 0) = b(¢p — 0) at some
point (p € Ty, then T and Tb are Mgo-equlvalent

Let condition (5.2) be fulfilled. The coset T, is M -equivalent to the coset
a(r)I at each continuity point 7 € Ty of the function a(¢). The coset a(T)f is
invertible in the algebra 2 because a(1) # 0.

Let (o be a discontinuity point of the function a(¢). From condition (5.2) it
follows that a((p & 0) # 0. We find a function b(¢) = 3¢* (a,3 € Ct, —1/p <
Rea < 1—1/p), which is continuous at each point ¢ # (o and such that

a(Go +0) =b(Go +0), a(C —0)=>b(¢ —0), a(l)=0b(C)-
From condition (5.2) it follows that b(p, p;p) # 0 (0 < p < 1). In view of the
definition of the symbol, this implies that 8 # 0 and

e—27r'ia 7& Sine(ﬂ - 1)

sinOp
From this relation it follows that Rea # —1/p, whence —1/p < Rea < 1 —1/p.
Therefore, by Proposition 5.1, the operator T} is invertible.
Since the function a(¢) — b(¢) is continuous at the point {p and is equal to
zero at this point, we see that the cosets T, and T}, are M¢,-equivalent. Thus,

e2/P (0 < p<1).

for each point ¢ € T’y the coset Ta is M¢-equivalent to some invertible element.
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Since, moreover, T, commutes with each element in M, we conclude that Ty, is

invertible in the algebra L(¢,)/J(¢p) by Theorem 1.1. Therefore the operator T,
is a ®-operator in £,,.
Let us show that the index of the operator T, is calculated by the formula

IndT, = —ind a((, p; p). (5.4)
We will use the following statement in the proof of this formula.

Lemma 5.1. Let a(C) and a,(C) be functions in I1C ) that satisfy the conditions
a(Cmip) #0 (K=1,0<p<1)
and sup |a(¢) — an(C)| — 0. Then, starting with some n, the equalities
ind a,, (¢, u;p) = ind a(¢, p;p), IndT,, =IndT, (5.5)
hold.

Proof. Indeed, since the sequence a,,(¢) converges uniformly to a({), one can easily
check that a,({, p; p) converges uniformly to a((, p; p) on the cylinder T'g x [0, 1].
This implies the first equality in (5.5). Since, starting with some n, the inequalities

1,
(G #3p) = an(C )| < infla(C, s p)]
hold, we deduce that for all A in the segment [0, 1],

a(C, s p) + Man(C pip) —a(Cpmip) #0 (I¢ =1, 0<pu<1).

In view of what has been proved above, the operator Wy = T,+ATy,, o (0 < A < 1)
is a ®-operator. This implies that Ind 7, = Ind T,,,. t

From the proved statement it follows that it is sufficient to prove formula (5.4)
for the case when the function a(¢) has a finite number of discontinuity points. Let
¢1,Ca, - .-, Gy be the discontinuity points of the function a(¢). From condition (5.2)
it follows that a({; £ 0) # 0. This allows us to choose the functions ¢ (¢) = (**
(=1/p <Reay < 1—1/p), each of which is continuous everywhere except for one
point ¢ = (i, and such that the condition

a(Ck +0)  Yr(C +0)

a(G —0)  ¥r(Ce —0)
holds. As above, one can show that Reay # —1/p. Let ¥({) = ¥1(¢) ... ¢¥n(Q).
Then the function b(¢) = a(()/+(¢) is continuous on I'g and belongs to R y. It is
checked straightforwardly that ind 1% (¢, p; p) = 0. Since the functions ¥ (¢) do not
have common discontinuity points, we conclude that ind (¢, u; p) = 0. Moreover,

ind a(¢, p; p) = ind b(¢) + ind (¢, p1; p)-

Therefore ind a({, u; p) = ind b(¢). In turn, the operator T, can be represented in
the form T, = Ty Ty, ... Ty, + T, where T € J(¢p). In view of R.V. Duduchava’s
Proposition 5.1, the operators Ty, are invertible, whence Ind T, = Ind T5.
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Thus, it is sufficient to prove formula (5.4) for the case when the function
a(¢) € Ry is continuous on I'y. In view of what has been proved above, the
continuous function can be replaced by a polynomial. Formula (5.4) for polynomi-
als is well known (see, e.g., [17, Chapter I, Section 7]). To finish the proof of the
sufficiency of the hypotheses of the theorem it remains to apply Lemma 5.1.

The proof of the necessity consists of four parts.

I. First we show that if a function a(¢) € IIC, is continuous on some arc ¢’'¢”,
is equal to zero at some interior point (y of this arc, and is different from
zero at its endpoints (that is, a(¢’) # 0 and a(¢”) # 0), then the operator Ty,
is neither ®_-operator nor ®_-operator. Let ¢(¢) be an arbitrary continuous
function in R,y such that it is different from zero on I'y and coincides with
b(¢) at the points ¢’ and ¢”. By x(¢) (¢ € Ty) denote the characteristic
function of the arc ¢’¢” and put

9(¢) = ¢(O)(1 = x(©) +b(O)x(C),  h(¢) = ¢ (OO (1 = x(<)) + x(€)-
From Theorem 4.1 it follows that g, h € R, . Proposition 3.7 implies that

T, = Tth + K' = TgTh +K”,

where K', K" € J({;). From these equalities it follows that if the operator T
is a ® -operator or a ®_-operator, then so is the operator T}. Since g € C
and g(¢p) = 0, the latter is impossible in view of Theorem 4.2.

II. Let the operator T, be a ®-operator. Let us show that a(¢ +0) # 0 for all
¢ € Ty. If the function a(¢) or its one-sided limit a(¢ & 0) is equal to zero at
some point (o € Iy, then by using Proposition 3.6 and estimates (3.1)—(3.2)
it is not difficult to find a 6 > 0 and a segment A containing the point (o
such that the function

b(¢) = a(Q)(1 = xa)) + (¢ = Co),

where xa(¢) is the characteristic function of the segment A, would satisfy
the conditions of the previous paragraph and the operator T, would be a
®_ -operator. But this situation is impossible as we have shown.

III. Let us prove that if the operator T, (a € IIC) is normally solvable, then it
is a ®-operator. Let the operator T, be normally solvable. In view of Propo-
sition 3.8 it is a ®-operator or a ®_-operator. In this case a(¢ £ 0) # 0.
Hence the range of the function a(¢, y; p) does not fill completely any neigh-
borhood of the origin. Let A, be a sequence of complex numbers tending to
zero and not belonging to the range of the function a(¢, u; p). From what has
been proved above it follows that the operators T,,_», are ®-operators. Since
ITe=x, — Tal| — 0 as n — oo, we deduce that T, is a ®-operator in view of
the stability of the index of ®_-operators.

IV. It remains to show that if the operator T, is a ®-operator and (j is a dis-
continuity point of the function a(¢), then a({o, x;p) # 0 (0 < p < 1). Let
T, be a ®-operator. We have already shown that a({p = 0) # 0. Therefore
one can choose a function b(¢) = 8¢* (o, 8 € C!, =1/p < Rea < 1 —1/p),
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which is continuous at each point ¢ # {p and such that b({o + 0) = a(¢o + 0)
and b({op — 0) = a(o — 0). The cosets fa and ﬁ, are M¢,-equivalent and fa
is invertible in the algebra A = L(¢,)/J(¢p), whence Ty is M¢,-invertible.
Since, at the points  # (y, the coset fb is My-equivalent to the scalar ele-
ment b(n):f and b(n) # 0, we see that Ty is M,,-invertible. From Lemma 1.2 it
follows that the coset 7} p is invertible in the algebra %A, whence the operator
Ty is a $-operator.

We will prove the inequality a((p, p;p) # 0 by contradiction. Assume
that a(Co, po; p) = 0 for some pg (0 < pg < 1). Then

a(Go+0) _ sinb(po —1) ripp

a(Go—0) ~ sinfpo

Since
a(Co +0) _ b(Co +0) _ —2mia
a(Go —0)  b(Co —0) 7
we see that Rea = —1/p.

Let us show that under this condition the operator T cannot be a ®-
operator. To this end, consider the operator function A(e) = Tat-. With the
aid of Proposition 3.6 it is not difficult to verify that A(e) is a continuous
function ine. If 0 < & < 1, then in view of Proposition 5.1 the operator A(e) is
invertible in £,. On the other hand, if —1 < € < 0, then the operator A(s+1)
is invertible. Hence Ind A(e) = Ind A(e+1)+IndT;-1 = 1. From the theorem
on the stability of the index of a ®-operator it follows that T« = A(0) is not
a $-operator.

The theorem is proved. Il

5.3. By IIC;*™ and HC’Z;)(" denote the sets of matrix functions a(¢) = ||a;x () ||

with entries in IIC, and IIC(,, respectively, and by T, (a € IIC}*") denote the
operator defined in the space £; by the matrix

T, = ||Tajk ”;’L,k:l'

The matrix function

G(C» M,p) = ||ajk(C7 N,p)| Zk:l,
where a;x (¢, p; p) is the symbol of the operator Ty,

s in the space £, is said to be
the symbol of the operator Tj,.

Theorem 5.2. Let a € HC’&?”, The operator Ty, is a @4 -operator or a ®_ -operator
in £y if and only if the condition

deta(C,pusp) #0 (|¢/=1,0<p<1) (5.6)
holds. If condition (5.6) is fulfilled, then
Ind T, = —ind det a(, u; p). (5.7)

We preface the proof of the theorem with the following lemma.
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Lemma 5.2. Fach matriz function a(() € HC’&?" that has a finite number of
discontinuity points (1, Ca, . ..,y and satisfies the conditions det a((x £0) # 0 can
be represented in the form a = bxc, where b(¢) and ¢(¢) are non-degenerate matrix
Junctions with entries in C\,y and x(C) is a triangular matriz function in HC&?",

The proof of this lemma is analogous to the proof of [1, Lemma 3.1].

Proof of Theorem 5.2. If the matrix function a(¢) has a finite number of disconti-
nuity points, then the proof of the theorem can be developed as in the case p = 2
(see [1, Theorem 3.1]). For this purpose Theorem 4.2 and Lemma 5.2 presented
above are essentially used. In the general case we will develop the proof with the
aid of localizing classes.

Let {M¢}cer, be a covering system of localizing classes defined in the proof
of Theorem 5.1, and let FE,, be the identity matrix of order n. It is easy to check
that the set {M['}cer, of the elements of the form M" = M¢E,, forms a covering

system of localizing classes of the algebra L(£})/J(¢;) and if a € HCZ:)(", then

the coset T}, belongs to the commutant of the set Ucel“o Mg

By ao(¢) denote a matrix function satisfying the following conditions: 1)
ap(C) € HC&?”; 2) ap(Co +0) = a(Co + 0), ap(¢o — 0) = a(¢o — 0); 3) the matrix
function a¢,(¢) is continuous at every point ¢ # {p and detap(¢) # 0. From the
latter property of the matrix function ag it follows that the coset fao is invertible
in L(¢y)/J (¢y) if and only if it is M -invertible. Since the matrix function ao(()
has at most one discontinuity point, we see (as it has been noticed above) that the
invertibility of the element fao is equivalent to the non-degeneracy of the symbol
ao (¢, p; p). Taking into account that the elements fa and fao are Mg) -equivalent
and that a((o, u;p) = ao(Co, p; p), we get that the coset T, is M -invertible if and
only if det a(Co, p; p) # 0. To finish the proof it remains to apply Lemma 1.2. The
theorem is proved. O

6. Algebra of operators with Fredholm symbol

Let £ be a Banach space and Ly be some Banach subalgebra of the algebra L(L).
An algebra Lo is said to be an algebra with Fredholm symbol (see [7])* if 1) one
can construct a homomorphism 7 : A — A(x) of the algebra Lg onto some algebra
of matrix functions A(x), where x runs over some set X C R™; 2) for an operator
A to be a Fredholm operator in £ it is necessary and sufficient that its symbol be
non-degenerate on X:

nf |det A(2)| # 0 (A(z) = 7(4)).

By G, denote the set of all operators T, where a(() € I1C,), by W H, denote
the smallest Banach subalgebra of the algebra L(¢,) that contains G,, and by K,

4In [7], such an algebra is simply called an algebra with symbol.
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denote the set of all operators of the form

A= "AjnAj .. A, (6.1)
j=1
where A;; € G,. Note that K, is dense in W H),.

Let X =T x [0,1] and z = ({, ) € X. In the previous section, we defined
the symbol A(z) of every operator A € G, by equality (5.1). From the definition
of symbol and Theorem 5.2 it follows that

a) if A =cl (¢ = const), then A(x) = ¢;
b) let A= (A;;)} and A(z) = (A;i(x))}; for the operator A to be a ®-operator

in £} it is necessary and sufficient that the condition det A(x) # 0 (z € X)

holds.

The symbol of the operator (6.1) is defined by the formula

T k
z) =Y [[An). (6.2)

j=11=1
In [7, Theorem 1.1] it was shown that properties a) and b) imply the following
statements:
1) the function A(xz) does not depend on the manner of representation of the
operator A in the form (6.1);
2) the mapping 7 : A — A(x) is a homomorphism of the (nonclosed) algebra
K, onto the set 7(/Cp);
3) the operator A € IC,, is a ®-operator in ¢, if and only if A(x) #0 (v € X);
4) for every operator A € KC,, the inequality

m A < AA . .
xg’ﬁ ()| < [|A] (6.3)
holds.

Inequality (6.3) allows us to extend the homomorphism 7 from the algebra K,
to the whole algebra W H,,. In the same way as in [18, Lemma 4.1], one can show
that J(¢,) € WH,. From Proposition 3.7 it follows that the quotient algebra
I/I//Tip = WH,/J({,) is commutative. From inequality (6.3) it follows that the
symbols of all operators belonging to the same coset A coincide. We denote this
common symbol by A(z). Since the functional ¢, (A) = A(z) is multiplicative for
every r € X, we see that the set J, = kery, is a maxnnal ideal in the algebra

WH Let us show that all maximal ideals of the algebra WH are exhausted by
such 1deals

Lemma 6.1. All mazximal ideals of the algebra W//T{p are exhausted by the ideals of
the form J, = ker @,

Proof. Let J be an arbitrary maximal ideal of the algebra W//T{p. First let us
show that there exists a point (o € I'g such that for every function a(¢) € Cy)

the Gelfand transform of an element fa has the form fa = a(¢p). Assume the
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contrary, that is, for every point 7 € T'g there exists a function z.(() € Cyp
such that T,_(J) # 2,(7). Obviously, 1) fxr_% € J, where o, = T\xT(J), and 2)
|z ({) — ar| > 67 > 0 in some neighborhood u.. Let u(7y),...,u(r,) be a finite
cover of the circle I'y and § be the smallest of the numbers d-,,...,d,,. Then

n

9(©) = 3 Jon, () — any P 0.

k=1

In view of Propositions 3.3, 3.4 and Theorem 4.1, the element fy is invertible in
the quotient algebra L(¢,)/J (¢p). Since its spectrum in this algebra is real, we see
that 7, y is invertible in the algebra I/I//Flp But this is impossible because fy e J.

Let us show that for every function a(¢) € IIC,y, which is continuous at
the point (o, the Gelfand transform 7}, (J) also has the form T,(.J) = a((o). If the
function a(¢) is equal to a((p) in some neighborhood of the point (y, then it can
be written in the form a(¢) = b(¢)c(C) + a(o), where b(¢) € IIC(p), c(¢) € Cpy,
and ¢(¢p) = 0. In view of what has been proved above, fC(J) = 0, whence fa(J) =
a(Co)-

Let a(¢) € IIC,y be a continuous function at the point (o and xs be the char-
acteristic function of the §-neighborhood of the point (y. Proposition 3.6 implies
the equality

lim ([T = Tag—xs)+acorns | = 10 1o —accops | = 0-

Therefore, in view of what has been proved above, T u(J) = a(Co).

Let s be the arc of the circle, which is the range of the function &, (x) defined
by equality (5.1) when x runs from 0 to 1. It is easy to find a function b(¢) € Ry
having the following properties: b({o—0) = 0; b(¢op+0) = 1 (where (p is the point of
the circle found before); b(¢) is continuous on I’y everywhere except for the point
o; and the range of the function b({) coincides with the arc s.

From Theorem 5.1 it follows that the spectrum of the element fb in the alge-
bra L(¢,)/J(¢,) coincides with the arc s. Since the complement to the spectrum
of this element is connected, we deduce that (see [19]) the spectrum of the element
fb in the algebra I/I//Tip also coincides with the arc s. This implies the existence of
a number 1o € [0, 1] such that Ty(.J) = &p(po)-

We move to the last stage of the proof. Let us show that for every element
Ac W//T{p the equality A(J) = A(Co, sto) holds. It is easy to see that it is sufficient
to prove this statement for an operator T, where a is an arbitrary function in
IIC',y. Since the function

c(€) = a(¢) = a(o + 0)b(¢) — a(Co — 0)(1 —b)

is continuous at the point (y and is equal to zero at this point, we see that fc(J )=
0, whence T,(J) = a({p, po; p). This implies that J = J,,, where o = ((o, tto)-
The lemma is proved. O
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In the paper [7] (see [7, Theorem 4.1]) it is shown that if for a homomorphism
7 satisfying conditions a) and b) Lemma 6.1 is true, then the following theorem
holds.

Theorem 6.1. An operator A € W H,, is a ®-operator in £, if and only if its symbol
is different from zero on the cylinder X .

Theorem 6.1 can be strengthened. We will do this in a more general situation.

By WH]}*" denote the algebra of all operators defined in the space £} by
the equality A = ||Ajx||},—;, Where Aj, € WH,. The matrix function A(z) =
[l Ak (x)||7 is called the symbol of the operator A, where A, (x) is the symbol of
the operator Ajy.

If all operators Aj; belong to K, and det||Ajx(x)|| # 0, then the index
inddet A(z) (z = (¢, 1)) is defined in the same way as in the previous section. In
the general case, when A € WH]*", the number ind det A(x) is defined by taking
the limit.

Theorem 6.2. An operator A € WH]}*" is a ®-operator or a ®_-operator in £}
if and only if its symbol is not degenerate on X :

det A(z) #0 (x € T x [0,1]). (6.5)
If condition (6.5) is fulfilled, then the operator A is a ®-operator and
Ind A = — ind det A(x). (6.6)

Proof. Since the algebra W H,, is commutative, we see that condition (6.5) is nec-
essary and sufficient for the operator A to be a ®-operator in ¢}. This follows
from Theorem 6.1 and a general statement saying that an operator A = || 4] is
a ®-operator in £, if and only if the operator det [|Ajx|| is a ®-operator in £, (see
[17, Lemma 4.1]).

Since both sides of equality (6.6) are continuous functionals on the set of all
®-operators in WH*", we see that it is sufficient to derive formula (6.6) for an
operator A € KJ*™. Such an operator can be represented in the form

i
A= Z TojiTass - Tays
j=1

where aj; € TIC ;. For this operator formula (6.6) is obtained by passing to the
linear dilation Ty = ©(Ty;,) of the operator A (see [20, Section 3]). Here formula
(5.7) of the present paper is used.

By the same method one can show that if the operator A is a ®-operator
or a ®_-operator, then it is a ®-operator. The theorem is proved. O

7. Algebras generated by paired operators
7.1. Let a; (j = 0,%1,...) be the Fourier coefficients of a function a(¢) in R,.

Recall that T, denotes the bounded linear operator defined in the space Zp by the
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matrix [la;—k[|3%— .- By P denote the projection defined in the space Zp by the
equality

P{gj} = {"'707"'70750751,"'}
and by ) denote the complementary projection I — P.

To each pair of functions a(() and b(¢) in R, assign the bounded linear
operator PT, + QTb actlng in E This operator is called a paired operator. An
operator of the form T P+ TbQ is called the transposed operator to the paired
operator.

The operators PT, + be and T, P + be are defined analogously in the case
when a(¢) and b(¢) are matrix functions in R;;*". In this case the projection P is
extended to the whole space £, by the equality P{zy}} = {Pzx}T (2 € £,) and
the projection @ is equal to I — P as before.

Let a(¢),b(¢) € Cp*™. The matrix function A(C, p;p) (€] =1,0 < < 1) of
order 2n defined by

A(C, ;p) =
a(C+0)&p () +a(C = 0)(1 —&p(p)) hp(p)(a(¢ 4 0) — a(¢ — 0))

hp (1) (b(¢ +0) = b(¢ = 0)) b(C+0)(1 = &p(w) + (¢ = 0)&p ()

(7.1)

where &,(u) is the function defined by equality (5.1) and h,(p) is a branch of the

root /& (1) (1 — &(n)), is said to be the symbol of the operator A = PT, + QT,.
We equip the cylinder X =Ty x [0, 1] with the topology, where a neighborhood of
every point ({p, to) is defined by one of the following equalities:

w(Co,0) ={ (¢ )+ 1€ =Col <6, ¢ <Go, 0< <1}
U{(Co,p): 0< p<el,

u(Co, 1) ={(¢ )+ [¢=Col <6, ¢~ G, 0< <1} (7.2)
U{(Corp) s e<p <1y,

w(Co, po) ={(Co, 1) = po — 01 < p < po+ 62} (o #0,1),

where 0 < 61 < pg, 0 <2 <1—pp,0<e < 1,and 0 < § < 1. Here the relation
¢ < (o means that the point ¢ precedes the point (o on the circle Iy ®. If a(¢) € IIC,
then the function a((, u;p) is continuous on the compact Hausdorff space X. It
turns out that the function det A, where A((, u; p) is the matrix defined by equality
(7.1), may not be continuous on the cylinder X. However, if det A((, u;p) # 0,
then the function

det A(C, 13 p)

9 = 4ot (b(¢ + 0)b(C — 0))
is continuous on the cylinder X. A proof of this statement is presented, for instance,
in [20, Section 5].

(7.3)

5That is, Co/¢ = exp(ip), where 0 < ¢ < 7.
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Theorem 7.1. Let a({),b(¢) € HC&?”. The operator

A= PT,+QT,
is a P4 -operator in the space Zg if and only if the condition
inf | det AC, pp)| £ 0 (1) € X) (7.4)
holds. If condition (7.4) is fulfilled, then the operator A is a ®-operator and
det ;
MmdA=—ina  tAGHD) (7.5)

det(b(¢ + 0)b(¢ —0))"
Moreover, if n = 1, then one of the numbers dimker A or dim coker A is equal to
zero.

Proof. Let condition (7.4) be fulfilled. From this condition (if 4 =0 and g = 1) it
follows that det b(¢ & 0) # 0. Put ¢(¢) = a(¢)b~1(¢). From Theorem 4.1 it follows
that ¢(¢) € HCZ;)(". The operator A can be represented in the form

PT, + QT, = (I + PT.Q)(PT.P + Q)T

The operators I + PTCQ and fb are invertible in Zz, and the restriction of the

operator PT.P + Q to {}; coincides with the operator 7T¢. In [20, Section 2] it is
shown that

det A(¢, p1;p) = det (¢, p; p) det(b(¢ + 0)b(¢ — 0)). (7.6)

From Theorem 5.2 it follows that the operator 7, is a ®-operator in /. Hence the

operator A is a ®$-operator in Zg Equality (7.6) and the results of Section 5 imply
formula (7.4) and the last statement of the theorem.

With the aid of relation (7.6) one can also prove the necessity of the hy-
potheses of the theorem. However, one should prove first that if the operator A is
a &4 -operator or a ®_-operator, then det b(¢ £0) # 0 (|¢| = 1). First note that if
one assumes that the operator A is a ®-operator and the condition det b(¢£0) # 0
is violated, then (as in Theorem 5.1) one can choose an operator PT, + Qfg with
0 € HCZ;?”, which is a @ -operator (or a &_-operator), and, moreover, the matrix
function B(¢) is continuous on some arc ¢’'¢”,

det B(C") #0,  det B(C") # 0, det B(¢o) =0,
where (p is some point on the arc ¢/¢”. The matrix function 3({) can be represented
in the form of the product 5(¢) = £1(¢)B2(¢), where B2 € C’Z;;” and det 82(¢p) = 0.
Therefore the equality

PT,+ QTs = (P+ QTp,Q)(PT, + QTp,) + T
holds, where T € j(Zg) If the operator Pfa—i—Qfg is a ®_-operator, then from the

last inequality it follows that the operator P + Qfng is also a ®_-operator. This
implies that the operator T}, is a ® _-operator in the space ;. Since det 32(¢o) = 0,
this fact contradicts Theorem 4.2.



On a Local Principle 181

Let us show that the operator A = PT + be is not a @ -operator. Assume
the contrary, then the operator A* = PTa* + QTb* isa ®_ -operator in the space
é” (gt +p~! =1). Consider the operator A defined in the space €3” by the matrix

N 1 0o P
A= 0 I Q
Tye Ty O
Since the equality
N 1 0 0 I 0 0 I 0 P
A=| 0 I 0 0 I 0 0 I Q (7.7)
Ty« Ty I 0 0 —A* 0 0 I

holds and outermost multiples in this equality are invertible operators in Zg”, we

deduce that the operator Aisad_ -operator. The operator Aisa paired operator
(in contrast to the _operator A*, which is the transposed operator to a paired

operator). Indeed, A= PT —|—Q , where

E, 0 E, B E, 0 0
a=| 0 E, 0 |, b=| 0 E, E, |,
a* b 0 a* b 0

and FE, is the identity matrix of order n. Taking into account that detg(go) =
det b*({p) = 0, we arrive at the contradiction to what has been proved above. The
theorem is proved. O

7.2. By X, denote the smallest Banach subalgebra of the algebra L([p) that
contains the set G, of all operators of the form PT, + QTy, where a,b € TIC
and by IC, denote the set of the operators of the form

A= Z Aj1Aja ... Ajr, (7.8)

j=1

where Aj; € G,. On the set G, we define the mapping
mi A= A(z) (z=(Cn) €Ty x[0,1]),

where A(x) is the symbol of the operator A. By the scheme proposed in [7], one
can extend the mapping 7 to the homomorphism defined on the whole algebra ¥,,.
Further one can prove that X, is an algebra with Fredholm symbol. Without going
into details, we will show only how to construct an operator permuting indices at
an arbitrarily given point.

By A, (z € Ty) denote the operator defined in the space Zp by the equality
A& = {272k¢_,}>°, . Consider the operator M, acting from K, to L(Zp)
by the rule M,A = —A,PAQA,. Let A € K, and let A(z) = Hajk(:c)H?’k:l be
its symbol. As in [20, Section 4] it can be shown that for the operator A there
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exists a compact operator T such that for the symbol || ﬁ]kH? x—1 of the operator
B = M,A—T € K, the equality a12(z, 1) = f21(z, u) holds and, moreover,

M,A
sup 1M Al < 1. (7.9)
zeTo,aex, Al
Thus the results which have been proved above and the results of the paper [7]
(see also [20]) imply® the following proposition.
Theorem 7.2. Suppose A € ¥, and its symbol has the form A(x) = Hajk(x)Hikﬂ,

The operator A is a 4 -operator or a ®_-operator in Zp if and only if the condition

inf [det AC, )| £0 (¢ =1, 0< p< 1) (7.10)
holds. If condition (7.10) is fulfilled, then the operator A is a ®-operator and
A(C, 1)

Ind A = —ind det

@22 (C) O)a22 (C) 1) ’
Note that the operator A’ = faP + be transposed to a paired operator
A'(Cp) =
a(§ +0)&p (1) +a(C = 0)(1 — & (p)) hp (1) (b(¢ 4 0) = b(¢ = 0))
It is the transposed matrix to the symbol A((, i) of the operator A = PT, + be.
Note also that the results of the last subsection can be generalized to the

belongs to the algebra ¥, and its symbol is
hp(p)(a(C +0) — a(¢ —0)) b(¢+0)(1 = &(w) +b(¢ = 0)& (1) ’ '
algebras 377",
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The Symbol of Singular Integral Operators
on a Composed Contour

Israel Gohberg and Nahum Krupnik

Let I" be a contour in the complex plane that consists of n simple closed curves
T'y,...,I',, having one common point tyg. We orient the contour I" by choosing the
counter-clockwise orientation on each curve I';. Everywhere in what follows we
will suppose that the contour has the following properties:

1) every arc of the contour I' that does not contain the point ¢y satisfies the
Lyapunov condition;

2) the curve I'; does not intersected the domain Fy (k # j) bounded by the
curve I'g;

3) no two curves of the contour are tangential at the point ¢.

In this paper singular integral operators of the form

d(t) [ o(7)
(400 = ety + ) [ 27 ar (01)
are considered in the space L, (T, o) with weight o(t) = |t — to|® and 1 < p < oo.
We will suppose that the coefficients ¢(t) and d(t) are continuous everywhere on
I' except for possibly at the point ¢y3. Moreover, it is supposed that each of the
functions ¢(t) and d(t) has finite (in general, different) one sided limits as ¢ tends
to to along each arc of the contour T'.

Singular integral operators of the form (0.1) in the classes of piecewise Holder
continuous functions were considered in the famous monograph by N.I. Mushe-
lishvili [1]. In particular, some sufficient conditions for the validity of Noether
theorems were obtained there.

In this paper the (non-closed) algebra $ generated by all operators of the form
(0.1) is studied. It is shown that this algebra is homomorphic to some algebra of

The paper was originally published as W.II. T'ox6epr, H.fI. Kpynauk, O cumBosNe cun-
IYyJAPHBIX WHTErpajJbHLIX OINEpPATOPOB HA CJIOXHOM KOHTYpe, Tpyasl cuMmosmyma IO
MEXaHWKE CIUIOMHOW Cpennl U poACTBeHHLIM mpobiaemam amaausa (Toumumcu, 1971), Tom
1, c. 46-59. Meunuepeba, Tounucu, 1973. Proceedings of the Symposium on Continuum Me-
chanics and Related Problems of Analysis (Tbilisi, 1971), Vol. 1, pp. 46-59. Mecniereba, Thilisi,
1973. MR0385644 (52 #6504), Zbl 0292.47048.
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matrix functions. The matrix-function A which is the image of an operator A € §
under this homomorphism is called the symbol of the operator A. The symbol A
is defined on the set I' x [0, 1], it depends on the space L, (I, ¢) and is a matrix
function of variable order. This order is equal to 2n at the points (tg, 1) (0 < p < 1)
and to two at all other points.

A necessary and sufficient condition for an operator A to be a ®-operator
is that the determinant of the symbol A be different from zero. The index of an
operator A is expressed in terms of its symbol.

The mentioned results are also obtained for the algebras generated by matrix
singular integral operators of the form (0.1).

The paper consists of six sections.

Section 1 has an auxiliary nature. Properties of the operator of singular inte-
gration along I' are studied there. In Sections 2 and 3 operators of the form (0.1)
and algebras generated by these operators are studied under additional assump-
tions on the coefficients. In Section 4, necessary and sufficient conditions for an
operator of the form (0.1) to be a ®-operator are obtained with the aid of the
above mentioned results. In Section 5 main results are established. Formulas for
the symbol and the index are found.

In the last section, possible generalizations and relations to results from other
papers are mentioned.

1. Auxiliary propositions

1.1. By A denote the set of all functions a(t) (¢t € T') that are continuous everywhere
on I' except possibly at the point ¢y and such that finite (in general, different) limits
exist as t tends to tg along each arc of the contour.

To each function a(t) € A assign the numbers a; (j = 1,...,2n) being its
limiting values at the points ¢y9. By agr denote the limit of the function a(t) as
t tends to to along the arc T'y (k = 1,...,n) inward to tp and by asg—1 denote
the limit of a(t) as t tends to ¢y along the arc I'y, outward to to. The set of the
functions a(t) in A such that asiy_1 = agx (k = 1,...,n) is denoted by A" and
the set of the functions a(t) € A for which agxy1 = aox (k= 1,...,n—1) and
as, = ay is denoted by A~. The intersection AT N A~ coincides with the set C(T")
of all continuous functions on I'.

By S denote the operator of singular integration along I':

(S¢Xﬂ——1‘A:¢&)dr

iy T—1

This operator is bounded in L, (T, o) (see [2]). Introduce the operators P and @
defined by the equalities

1 1
P= (I+S), Q= (-S).
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In what follows by § = F(L,(T, 0)) denote the set of all linear compact
operators acting in L,(T, ). It is known that if a(¢t) € C(T"), then the operator
a(t)P — Pa(t)I belongs to §. This statement plays an important role in the theory
of singular integral operators with continuous coeflicients. In the case of functions
a(t) € AT the following proposition holds.

Lemma 1.1. If a(t) € AT, then PaP —aP € §.

Proof. The function a(t) can be represented in the form a(t) = b(t)g(t), where
b(t) € C(T") and the function g(t) is constant on each curve I'y (k=1,...,n).
Let us show that PgP = gP. Let ¢(t) (t € T') be an arbitrary function satis-
fying the Holder condition on each contour I'y (k = 1,...,n). Then the function
Y(t) = (Py)(t) satisfies the Holder condition on each arc of the contour I' that
does not contain the point tg. Moreover, it admits an analytic continuation into
each domain Fy, (k = 1,...,n) and has an integrable singularity in a neighbor-
hood of the point t5. The function g(t)y(t) has the same properties. By using
these properties of the function g(¢)¥(t), it can be straightforwardly verified that
for each point ¢ € T' different from to the equality (Sg)(t) = (g¢)(¢) holds. From
this equality it follows that gPy = PgPy, whence PgP = gP. Since b(t) € C(I),
we have bP — Pbl € §. From here and the equality PgP = ¢gP it follows that
PaP — aP € §. The lemma is proved. O

1.2. In general, the operator aP— Pal is not compact for a(t) € A*. This statement
follows from the following example.

Let T" be a contour consisting of curves I'y and I'y such that [—1,0] C T'; and
[0,1] C T'2. We take the characteristic function of the contour 'y as the function
a(t) (t € T'). Assume that Pal—aP € §. From here it follows that Sal—aS € §. Let
X(t) be the characteristic function of the segment [—1,0] and A = x(¢)(Sal —aS).
Let us show that A € §. This will lead to a contradiction.

Consider in the space L2(T") the sequence of normalized functions defined by
the equalities

vn for tel0,1/n],
on(t) = (n=1,2,...).
0 for teI'\[0,1/n],
Let us show that it is not possible to extract a convergent subsequence from the
sequence 1, = Ay,,. First note that the norm |1, ||,, in the space L,(T') (1 < p < 2)
can be estimated as follows:

0
W’n”ﬁ < n(pf2)/p/

— 00

xz—1/°

In dx,

whence |9y ||, — 0. From here it follows that if the sequence v, contains a subse-
quence g, that converges in Lo (T'), then |4, ||2 — 0. But the latter is impossible

because
2 10
>
||wn||2 = 2 /_1

2
-1
. dx.

In
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1.3.
Lemma 1.2. Ifa(t) € A, then QaQ — aQ € §.

Proof. Let si1,...,s, be n points belonging to the domains Fi,..., F;,, respec-
tively!. Consider the functions f;(t) defined by the equalities

9;

fj(t)_aj( ! % ) (]:177n; sn+1:Sl)'

Each function f;(t) is analytic in the extended complex plane with the cut joining
the points s; and sj41 and lying in F; U Fjq U{to}. Without loss of generality we
can assume that the one sided limits of the function a(t) at the point ¢y are different
from zero. Choose the numbers «; and J; so that the limits of the function f;(t)
as t tends to tg along I'; by the inward and outward arc are equal to az;—1 and 1,
respectively. By f(t) denote the product f(t) = f1(t) - - fn(t). The function f(t) is
holomorphic in the complement of £} U---UF,, UT" in the extended complex plane.
It can be straightforwardly verified that Q fQ = fQ. In view of the choice of the
function f(t), the product g(t) = a(t) f~1(t) belongs to C(T'). Since QgI — gQ € §
and QfQ = fQ, we have QaQ — a@ € §. The lemma is proved. ([l

t =St

Lemmas 1.1 and 1.2 immediately imply the following.

Lemma 1.3. Let a(t) and b(t) be arbitrary functions belonging simultaneously to
one of the sets AT or A=. Then

PaPbP — PabP € §, QaQbQ — QabQ € §.

2. Singular operators with coefficients in At and A~

Let us agree on the following notation: L7'(T', ) is the direct sum of m copies of
the space L,(T, 0); A} (resp. A;,) is the set of all matrix functions of the form
llaji(t)]|7*, where aj; € AT (resp. aj € A7);

1 1
Sm = H(sﬂS”aﬂ? Pm = 2(I+SM)7 Qm = 2(I_ Sm)

Theorem 2.1. Let a(t),b(t) € A} (A;,). The operator A = aPp, + bQy, is a Py-
operator or a ®_-operator in the space L?(F, 0) if and only if the condition

inf |det a(t)b(t)] Z#0 (t€T) (2.1)
holds. If condition (2.1) is fulfilled, then

n

ind A = ;ﬂ > {argdetb(t)a™" (t)}r,. (2.2)

k=1

IThe domain bounded by the curve I'; is denoted by Fj.
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An auxiliary statement will be needed for the proof of this theorem. By Sy, &)
denote the operator |6x;S) ||, where S is the operator of singular integration

along I';, and by P, y(n) and Qm) denote the operators

PYW — (1 (5) (1) — " (] — 8@
= (T+SY), QW =) (T-sP),
respectively.

Lemma 2.1. Suppose a(t) and b(t) are bounded measurable matriz functions on T
that coincide with the identity matriz of order m on I' \T';. The operator N; =

aPY + Q%) (resp. Nj = =PPa+ Q(])b) is normally solvable in Ly}(T;, o) if and
only if the operator N = aP,, + bQy, (resp. N = Ppa+ Qumb) is normally solvable
in Ly'(L, 0). Moreover,

dimker N = dimker N;, dim coker N = dim coker Nj;.

The proof of this lemma is analogous to the proof of the corresponding lemma
from [3].

Proof of Theorem 2.1. Let condition (2.1) be fulfilled. For the sake of definiteness
assume that the matrix functions a(t) and b(t) belong to A} . In this case, in view
of Lemma 1.1, the operator A can be written in the form

A= PnaPy + QunbQum + PpbQm + T,
where T € §. It is easy to see that the operator
B = Pma_lpm + me_lQm - ma_lpmemb_lQm

is a regularizer for the operator A. Therefore the operator A is a ®-operator. Let
us prove equality (2.2). To this end, write the operator A in the form

A= (PnaPy 4+ QunbQy)(I — Ppa™ ' PpbQ,,) + Th, (2.3)

where Ty € §. The operator I — P,,a~ ' P,,bQ,,, is invertible and I+ Pra™ ' P bQm
is its inverse. Hence ind A = ind A1, where A; = PaPy, + QmbQm.

Let c(t) be a matrix function in Af,. By ¢ (t) (j = 1,...,n) denote the
matrix function

C(j)(t) _ C(t) for te€ Fj,
E, for tel\Ty,

where F,, is the identity matrix of order m.

In view of Lemma 1.3, the operator A; can be represented in the form of the
product

Ay = (@Y Py + Q) (P + QbMWY ... (@™ Py + Q) (P 4 Q™) + Ty, (2.4)

where Ty € §.
Lemma 2.1 allows us to reduce the problem of calculating the index of the
operators a9 P, + Q. and Py, + Qb1 to the case when the contour consists of
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one closed curve T'; and the matrix functions a¥/) () and b9)(¢) are continuous on
I'j. As is known in this case

ind(a") P, + Q) = ind det a9 (¢), ind(P,, + Qmb?) = ind det b (¢).

From here and equality (2.4) it follows that ind A; = ind det b(t)a=1(t).

Let us prove the necessity of condition (2.1). Suppose the operator A is a ¢ -
operator (or a ®_-operator). We choose a matrix function a(t) € A} sufficiently
close to a(t) (in the uniform norm) and such that 1) inf |deta(t)| # 0 and 2) the
operator A= aPp,+bQ, is a ®-operator (resp. &_-operator). The operator A can
be represented in the form (2.3). Therefore P,,aP,, +QmbQ, is also a & -operator
(resp. ®_-operator). In its turn, the operator P, a P, +QmbQ,, can be represented
in the form (2.4). Again, with the aid of Lemma 2.1 the problem is reduced to
the case when the contour consists of one closed curve. From here it follows that
inf |det ) ()| #0 (j = 1,...,n). Hence inf | det b(t)| # 0. Analogously, using the
equality

A= (I + PpbQmb ' Q) (PmaP + QubQu) +T' (T' €7)

instead of (2.3), we conclude that inf|deta(t)] # 0 (¢ € T'). The theorem is
proved. Il

3. Algebra generated by singular operators with coefficients
in At and A7

By £(Ly' (T, 0)) denote the algebra of all bounded linear operators acting in the
space Ly'(T', o) and by 20 denote the smallest Banach subalgebra of the algebra
£(L(T, o)) that contains all operators of the form aPp, + bQ.,, where a,b € AJf,.
The algebra 2L, is the closure in £(L7*(T', ¢)) of the set $;f, of the operators of the
form

k
A=) "An. A, (3.1)
Jj=1

where Ajl = aijm + blem and aji, b]‘l € Aj);
From Lemmas 1.1-1.3 it follows that every operator A in $;, of the form
(3.1) can be represented in the form

A= PpaP,, + QmbQ.m + P AQ.,, + T, (3.2)

where
k

k
a(t) = Z ajl(t) . ajs(t), b(t) = Z bjl(t) . bjs(t)

and T € §. The algebras 2., and $)., are defined analogously. Each operator of
the form (3.1) with coefficients aj;(t) and bj;;(t) in A;, admits a representation in
the form

A= PLaPp + QumbQum + QuAPy, +T (a,b€ A, T€F). (3.3)
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Theorem 3.1. Suppose an operator A € H- has the form (3.2) or (3.3) and suppose
that

a(t) = a7, o) = BT
Then the inequalities
sup |ai (t)] < [Al, sup |8 ()] < |A] (34)

hold, where
|[Al=inf |[A+T| (T €53).

Proof. Indeed, repeating the proof of Theorem 2.1 one can obtain that the operator
A is a $-operator if and only if the condition inf|deta(t)b(t)] # 0 (t € T') is
fulfilled. First, consider the case m = 1. By €2 denote the complement to the set of
all ®-points of the operator A. The set 2 is the union of the range of the functions
a(t) and b(t). Since max |\| < |A] (A € Q), we have |a(t)| < |A| and |b(t)| < |A]. In
the general case (when m > 1), the operator A is the operator matrix A = || Fj;||T"
with entries Fj; € S’Jf. The operators Fj; can be represented in the form

where Tj; € §. In view of what has been proved above, we have |aj;(t)| < |Fji|
and |5;:(t)| < |Fji|. Because |Fj;| < |Al, inequalities (3.4) are proved. O
Theorem 3.2. Each operator A in U}, can be represented in the form

A= PynaPp, + QunbQu + P AQm + T, (3.5)

where a(t),b(t) € A} and T € §.
Matriz functions a(t) and b(t) are uniquely determined by the operator A.
The operator A is a ®-operator in Ly'(T', 0) if and only if the condition

inf | det a(t)b(t)| #0 (teTl) (3.6)
holds. If condition (3.6) is fulfilled, then the operator A is a ®-operator and

ind A = 2177 ;{argdet b(t)a " (®)}r,. (3.7)

Proof. Let A € 2 and A,, be a sequence of operators in ;) that converges in
norm to the operator A. The operators A,, can be represented in the form

Ap = Prnan Py + QubnQm + P AnQe + Th,

where a,, b, € A}, and T), € §. From inequalities (3.4) it follows that the matrix
functions a, (t) and b, (t) converge uniformly to the matrix functions a(t) and b(t),
respectively. Moreover, the matrix functions a(t) and b(t) do not depend on a
choice of the sequence {4, } converging to A. It is clear that a(t) and b(t) belong
to A;5. Since the operators Pp,an P + QmbnQm + PpnAnQp tend in norm to
the operator P,aP,, + QmbQ + P AQ.,, we have lim |7 — T,|| = 0. Thus the
operator A can be represented in the form (3.5). Conditions (3.6) and formula
(3.7) are obtained in the same way as in the proof of Theorem 2.1. ]
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It is easy to see that Theorem 3.2 remains true if one replaces in its formu-
lation 20F by 2, A} by A, and equality (3.5) by the equality

A= PnaPpy + QunbQm + QmAP, +T.

4. Singular integral operators with coefficients in A,,,

By A, denote the set of all matrix functions ¢(t) = ||¢;;(¢)||T* with entries c¢j;(¢)
in A. Let ¢(t) € Ay, and c1,...,ca, be constant matrices that are the limits of
the matrix function c(t) as t — to 2. By &(u) = &p5(p) (0 < p < 1) denote the
function

sin(fu) exp(ifu) .
=4 sinbepi) o 7 (4.0)
I if =0,

where § = 7 — 27(1 + 3)/p. Here 8 and p are the parameters from the definition
of the space L, (T, o).

If p varies from 0 to 1, then the range of the function £(u) is the circular arc
(or the segment of the straight line) joining the points 0 and 1. From the points
of this arc the segment [0, 1] is seen at the angle m — |6]. If 2(1 + 3) < p, then
Im&(p) <05 if 2(1 4+ B) > p, then Im&(p) > 0

Theorem 4.1. Let a(t),b(t) € Ay,. The operator A = aPy, +bQ., is a O -operator
or a ®_-operator in the space L' (L, 0) if and only if the following two conditions
are fulfilled:
inf |det a(t)] > 0, inf |detb(t)] > 0, (4.1)
ter ter

det (b7 aras b2 . .. a5 ban&(p) + (1 — £(1)) Em) # 0, (4.2)
where By, is the identity matriz of order m.
If conditions (4.1) and (4.2) are fulfilled, then the operator A is a ®-operator
and

ind A = Z {argdet b(t)a™ " (t) }ser,
(4.3)
7r{ arg det (bl_la1a2_1b2 . agnlb%f(u) +(1- §(u))Em) };:0.
For the proof of this theorem we will need the following.

Lemma 4.1. Let c(t) € Ay, and dete; # 0 (j = 1,...,2n). Then the matriz
function c(t) can be represented in the form c(t) = f(t)x(t)g(t), where g(t) € A,
f(t) € A, and x(t) is a matriz function having the following properties: 1) x(t) =
E,, fort e '\T'1;2) 29 = Ey; and 3) 1 = 0162_103021 e czn,lcgnl,

2Recall that the limit of the matrix function ¢(t) as t — to along the arc Ty, (k = 1,...,n) inward
to to is denoted by cox and the limit of c(t) as ¢ tends to tp along I'y, outward to ¢ is denoted
by cog—1-
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Proof. Let x(t) € A, be an arbitrary nonsingular matrix function satisfying con-
ditions 1)-3). By g¢(t) denote a nonsingular matrix function in A;} such that
Gor—1 = €165 ez ... ey geon—1 (k= 1,...,n). Put f(t) = c(t)g~ (t)z~1(¢). Since
fort1 = for (k=1,...,n—1) and f1 = fon, we have f(t) € A,,. The lemma is
proved. O

Proof of Theorem 4.1. Assume conditions (4.1) and (4.2) are fulfilled. According
to Lemma 4.1, the matrix function c(t) = b~'(t)a(t) can be represented in the
form c(t) = f(t)z(t)g(t), where f € A,,,, g € A}, and the matrix function z(t)
has properties 1)-3) of Lemma 4.1. Then in view of Lemmas 1.1-1.3, the operator

cP,, + Q., can be represented in the form

P+ Qm = f(@Pm + Q) (9P + f'Qm) + T, (4.4)

where T € §. The operator gP,, + f Q. is a ®-operator because it has a regular-
izer g1 Py, + fQum.- Since z(t) = E,, on '\ T'y, in view of Lemma 2.1 the operator
Py + Qm is a @ -operator (resp. ®_-operator) in L;'(T', o) if and only if the
operator ePWY + Qﬁ}) is a @ -operator (resp. ®_-operator) in L;*(I'1, 0). Since
inf | det z(t)| # 0 and det(&(u)z1 + (1 — &(p))x2) # 0, we obtain® (see [4]) that the
operator mPy(nl) + QS}L) is a ®-operator in the space L;'(T'1, 0). From Lemma 2.1
it follows that the operator 2P, + Q., is a ®-operator in L;*(T', ). Thus condi-
tions (4.1) and (4.2) are sufficient for the operator a Py, + bQ., to be a ®-operator
in Ly*(T', o). Now we turn to the proof of the necessity of the hypotheses of the
theorem. First, let us show that if the operator A = aP,, + bQ., (a,b € A,,) is
a @ -operator or a ®_-operator, then it is a ®-operator. Indeed, let A,, be a se-
quence of singular integral operators converging in the norm to A. The operators
A,, can be chosen so that their coefficients satisfy conditions (4.1) and (4.2). In
view of what has just been proved, the operators A,, are ®-operators. Taking into
account the property of stability of the index of ®-operators, we obtain that the
operator A is a ®-operator.

We prove the necessity of condition (4.1) by contradiction. Assume that the
operator A is a ®-operator and condition (4.1) does not hold. For instance, let
inf|deta(t)] = 0. Then one can find an operator B = aP,, + bQ,, (sufficiently
close to A) such that deta(t) = 0 (t # to) and deta(t’) # 0, deta(t”) # 0,
where (#/,") is some neighborhood of the point . The matrix function a(t) can
be represented in the form @(t) = h(t)u(t), where u(t) € Cp,(T) and detu(t) = 0.
Then B = (hPp 4 bQm)(uPm + Qm) + T (T € 3).

Since the operator B is a ®-operator, we see that the operator uPy,, + Q.
is a @ -operator. The latter fact contradicts Theorem 2.1 because u(t) € A}, and
detu(t) = 0. Let us prove condition (4.2). To that end we represent the operator
cPy, + Qum, where c(t) = b~1(t)a(t), in the form (4.4). Since cPp, + Q, is a ®-
operator, we deduce that xP,, + Q,, also is a ®-operator. In view of Lemma 2.1,

31n [4] it was assumed that T' is a Lyapunov curve. However, none of the results of that paper
and their proofs are changed if the contour is piecewise Lyapunov.
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the operator zPY 4 Qfﬁ) is a ®_-operator in L;*(T'1, ). From [4] it follows that
det(§(p)x1 + (1 — &(p))x2) # 0, whence (3.2) is fulfilled.

It remains to prove formula (3.3). Since ind A = ind(cP,, +Qn, ), from equality
(3.4) it follows that

ind A = ind(zP,, + Q) +ind(gPy, + Q) + ind(P, + £ 1Qum)- (4.5)
From [4, Theorem 1] and Lemma 2.1 it follows that

ind(@ P + Q) =, {argdeta(t)}hr, — _{argdet(€(u)es + (1 — €40)e2) Kooy,

On the other hand, from Theorem 3.2 it follows that

. 1 ¢
ind(gPm + Qm) = — o Z{arg det z(t)}r;,
j=1

ind(Pp, + f71Qm) = _2177 Z{argdet J(®)}r,.
j=1

Taking into account these equalities and (4.5), we get (4.3). The theorem is proved.
U

5. Symbols of singular operators

5.1. The symbol of the operator A = a(t) P, +b(t)Qm acting in the space Ly'(T', o)
is a matrix function A(t, u) (¢t € T', 0 < p < 1) whose order depends on ¢. If ¢ # tg,
then the symbol is the matrix function of order 2m defined by

a(t) 0
0 (@) ||’
The symbol at the points (to, ) (0 < p < 1) is the matrix function
A(t, ) = [lugi(p)]

of order 2mn, where the matrix functions u;x (1) (of order m) are defined by the
following equalities.

Att) = |

2n
7,k=1

For j < k,
(=1)7+1 (b — brr1)E(p) =0 (1 — ()= if K is even,
wjk(p) = 4 o .
(=17 (apy1 — ar)é(p) 20 (1 —E(u))'~ 20 if k is odd;
for j > k,
(=1)7 (b — bk+1)f(u)17j2_'"k (1- f(,u))jz_nk if k is even,
wj(p) =

i—

(=1) (aks1 — ag)€(p) =" (1= () ="="  if k is odd;
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and for j =k,
{ E(war + (1 —&(u))arsr if k is odd,

ukk () =
E(w)br + (1 — &(u))br41  if k is even.

In these equalities the matrix by is also denoted by bap+1 and £(u) = &, 5(p) is the
function defined in Section 4.

Theorem 5.1. The operator A = aP,, + bQ., (a,b € A,,) is a Py -operator or a
®_-operator if and only if the condition

det A(t,u) #0 (tel, 0<pu<1) (5.1)
holds. If condition (5.1) is fulfilled, then the operator A is a ®-operator and

. IBRS _ 1
indA = o jz::l{argdet b(t)a ' (t) eer, — - {argdet A(to,ﬂ)}i:@ (5.2)

For the proof of this theorem we will need the following.
Lemma 5.1. Let a(t),b(t) € Ay, and the conditions deta;b; # 0 (j = 1,...,2n)
hold. Then

det A(to, ,u) = det(b1a2b3a4 . bgnflagn)

5.3
x det (1 —&(p)Em + E(u)by taray by ... agnlb%). (5:3)
Proof. Let a; and 8; (j =1,...,2n) be some nonsingular matrices of order m. It
is not difficult to verify that
a1 0 0 e 0 61
(&%) 62 0 A 0 0
det 0 B3 a3z ... 0 0
“ee “ee “ee “ee “ee e (54)
0 0 0 ... az [P

= det(Brazf304 . .. fan—102n)
x det(Ep, — By tanag By ... Byl aon—105, Bon).

Consider the matrices

ya; 0 0o ... 0 —dby
5@2 ’ybg 0 . 0 0
M(/.L) = 0 5b3 yas ... 0 0 5
0 0 0 e 5a2n ’)’bzn
YE, 0 0 ... 0 —6E,
6Em YEm 0 ... 0 0
N(p) = 0 JdE, ~YE. ... 0 0 ,
0 0 0 ... 6En ~En.

where v =7(§) = €127 and § = 0(8) =(1— 5)1/2”.
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From equality (5.4) it follows that
det M () = det(brasbsay .. .bap_1a2,)det((1 — &) E,, + £bf1a1a51b2 .. .agnlbgn)

and det N(p) =
One can check straightforwardly that N(u)A(to, ) = M (u), which implies
the statement of the lemma. (]

Proof of Theorem 5.1. Let A(t, 1) # 0. Successively substituting 4 =0 and p =1
into this condition for ¢ = ¢g, we obtain that deta;b; # 0 (j = 1,...,2n). From
equalities (5.3) and (5.1) it follows that for the operator A all the hypotheses of
Theorem 4.1 are fulfilled. Hence the operator A is a ®-operator. Formula (5.2) is
a corollary of equalities (4.3), (5.1), and (5.3).

The necessity of conditions (5.1) is proved analogously. Indeed, let A be a
® -operator (or a ®_-operator). From Theorem 4.1 and equalities (5.1), (5.3) it

follows that det A(t, ) # 0. O
5.2. By 9,, denote the (non-closed) algebra of all operators of the form
k
A= "AjnAj. . A, (5.5)
j=1

where Aj; = a1 Py, + 0jQm and aji, bji € Ay,
The matrix function

k
At ) = Aj(t, ) Aja(t, 1) ... Ajr(t, 1)
7j=1

where Aj; (¢, 1) is the symbol of an operator A;;, is called the symbol of an operator
A € 9, defined by equality (5.5).

Theorem 5.2. Let A € $,,. If the operator A is compact, then A(t,u) = 0. The
symbol A(t, ) of the operator A does not depend on a manner of representation of
the operator A in the form (5.2). The mapping A — A(t,u) is a homomorphism
of the algebra $,, onto the algebra of symbols of all operators in $Hy,. The operator
A€ 9., is a Py-operator or a ®_-operator if and only if the condition

det A(t,u) #0 (teT,0<p<1)

holds. If this condition is fulfilled, then the operator A is a ®-operator and its index
is calculated by the formula

. IS -
ind A = o Z{argdet b(t)a™ ' (t) her, — {argdet A(to,u)}tzo ,

j=1

where

k k
t) = Zajlajg...ajr, b(t) = ijlbjg...bj
Jj=1 j=1
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The proof of this theorem in the general case (n > 1) is developed by the same
scheme as it is developed in the case n =1 (see [5, 6, 7]). Note that Theorem 5.1
is used substantially in the proof of this theorem.

6. Concluding remarks

6.1. In this section by I' denote an oriented contour consisting of a finite number of
closed and open piecewise Lyapunov curves having a finite number of intersection
points. We can think of such a contour as consisting of a set of simple closed Lya-
punov curves 7, . . ., v, that do not have common points except for the endpoints
of open arcs. The endpoints of one or several arcs are called nodes (see [1]). The
points of the contour different from the nodes are called ordinary. We assume that
none of two lines are tangential to each other at the nodes.

By A denote the set of the functions that are continuous at each ordinary
point of the contour " and have finite (in general, distinct) limits as ¢ tends to the
nodes along each line.

Let t; (j =1,...,q) be some node joining r arcs Egj), . ,zé”,egﬂzl,...,e&”,
the first s of which are the beginnings of open curves and the other r — s are the

ends of open curves. For each function ¢(t), by c(j) . ng) denote the limits of the
function c(t) as ¢ tends to t; along the arcs e&”, .. ,zﬁﬁ, respectively. If inf |¢| > 0,

then by ¢\ denote the number c§j) . cgj)(cgzl e cs,j))’1

We will consider operators aP + b@ in the space L,(I", ) where 1 < p < oo;

m
= | I
k=1

t1,...,ty are pairwise distinct points of the contour I' that include all the nodes;
B1y...,0m are real numbers satisfying the condition —1 < G < p—1 (k =
1,...,m). To each node t; assign the function &;(x) (0 < p < 1) defined by
equality (4.0) with the corresponding number 3; in place of the number £.

Theorem 6.1. Let a(t),b(t) € A. The operator A = aP +bQ is a ®4-operator or a
®_-operator in Ly(T', o) if and only if the following conditions:

infla(t)] >0, inf[b(t)] >0, (6.1)

hold, where c(t ) = ( )/b( ).
Suppose conditions (6.1)~(6.2) are fulfilled and

1

2k = Z{argc (t)}eery; + Z {arg(c ) H1=&(u ))}“=0'

Then for k > 0 the operator A is leﬁ—mvertzble and dim coker A = k; for k <0
the operator A is right-invertible and dimker A = —«k.
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The proof is carried out as follows. We first consider the case when the contour
consists only of several open arcs having one common point ¢ty and the operator
A has the form c¢P + @, where ¢(¢) is a function that is equal to 1 at all starting
and terminating points of the open curves of the contour I' different form ¢y. The
contour I' is complemented to the contour r satisfying the conditions of Section 1
and the function c(t) is extended to I' by the equality ¢(t) = 1 for t € '\ T.
After that, by the usual procedure (see [3]) Theorem 6.1 for the considered case
is deduced from Theorem 4.1. In the general case the function ¢(t) is represented
as the product c(t) = co(t)er(t) - - - ¢4(t), where the function ¢;(¢) (j=1,...,¢) is
different from 1 only in some neighborhood of the node t; that does not contain
other nodes different from ¢; and the function ¢y (¢) is continuous on I'. In the same
way as in [3], one can show that cP+Q = (coP+Q)(c1P+Q) ... (cqP+Q)+T. This
allows us to reduce the problem in the general case to the case considered above.

6.2. As in Section 5, one can define the symbol of the operator A = aP + b@Q and
the symbol of a more general operator

T
A=A ... Ag, (6.3)
k=1
where Ay = awj Pp, + brjQm are singular integral operators with matrix piecewise
continuous coefficients acting in the space LZ“(F, 0). One can show that Theo-
rem 5.2 is valid for the operators of the form (6.3). We will not provide details
here.
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One-dimensional Singular Integral Operators
with Shift

Israel Gohberg and Nahum Krupnik

Introduction

Let I be a closed or open oriented Lyapunov arc and w(t) be a bijective mapping
of I' onto itself. An operator of the form

A= a(t)T + b(t)S + (c(t) + d(t)S)W 1)

is usually called a one-dimensional singular integral operator with shift w(t). Here
a(t), b(t), ¢(t), and d(t) are bounded measurable functions on T'; S is the operator
of singular integration along I' given by

L[ o)
= r
(Sre)(t) i /F L dr (tel),
and W is the shift operator defined by

(We)(t) = p(w(t)).

Consider the simplest case of a shift, when W?2 = I, that is, the case when
w(w(t)) = t. Besides that, we will assume that the function w(t) has the derivative
w'(t) satisfying the Holder condition with exponent o (0 < a < 1) and that
w(t) £t

The operator A will be considered in the space L, (T, 0) with weight!

n
o(t) = [T It — tl?,
k=1

where t, € I', 1 < p < 00, and —1 < B < p — 1. The operator A is a bounded
linear operator in this space. Usually (see [1, 2, 3]), the operator A of the form (1)

The paper was originally published as N.II. T'ox6epr, H.fI. Kpynuuk, O6 oxHOMEpPHBIX CHUH-
IYJSPHBIX MHTEIPAJLHLIX omeparopax co casurom, VIzs. Axan. Hayk Apmsau. CCP, Cep.
Matem. 8 (1973), Ne 1, 3-12. MR0333840 (48 #12162), Zbl 0255.47058.
1Note that obtained results remain true also for a wider class of spaces.
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is considered simultaneously with the operator Ay, defined in the space Lf)(F, 0) =
L,(T, 0) x L,(T, ¢) by the matrix

a(t)I +b(t)S c(t)I +d(t)S
W (c(t)] +d(t)S)W W (a(t)I + d(t)S)W H '
It is easy to check the identities

W(a(t)I +b(t)S)W = a(w(®))I + eb(w(t))S + T,

where T is a compact operator, and € = 1 if the mapping ¢ = w(7) does not change
the orientation of the contour I and € = —1 otherwise. From here it follows that
the operator Ay is equal modulo a compact operator to the operator Ay defined
in the space Lf)(F, 0) by the equality

a(t) ce(t)
c(w(t))  a(w(t))

The operator Ay is a singular integral operator (without shift) with matrix coef-
ficients. For such operators, necessary and sufficient conditions under which they
are ®-operators are known in the cases of continuous and piecewise continuous
coefficients (see [4, 5, 6]).

In the papers [1, 2, 3] (see also [8, 7] and the references given in [1]), in
particular, the following statement is obtained.

w =

S 0
0o s

)

b(t) d(t) |
ed(w(t)) eb(w(t))

Theorem 1. Let a(t), b(t), ¢(t), and d(t) be continuous functions. The operator
A defined by equality (1) is a ®-operator in the space Ly(T, 0) if and only if the
operator Ay is a ®-operator in the the space L%(F, 0). If A is a ®-operator, then

IndA = ;Indﬁw.

The formulated theorem remains true for arbitrary bounded measurable co-
efficients a(t), b(t), c(t), and d(t) in the case when the mapping w : I' — T does
not change the orientation of the contour. The proof of this statement follows from
the following three facts.

1) The identity?

I w X Y 1 1
I -w wWYyw WXW w -

X+YW 0
0 X-YW

holds for arbitrary bounded linear operators X, Y and an involution W acting
on some Banach space.

)

2Note that this identity allows us to obtain explicit formulas for the inversion of singular integral
operators with shift in a series of cases.
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2) The function w(t) — t is different from zero everywhere on T
3) For the operators X = al+bS,Y = cI+dS, and M = (w(t)—t)I the identity

X-YWM=MX+YW)+T
holds, where T is a compact operator.

From assertions 1)-3) it follows also that the operator A is a ®_-operator
(or a ®_-operator) in the space L,(T", o) if and only if the operator Ay is a D, -
operator (resp. ®_-operator) in the space L%(I‘, 0).

Note that all these results remain also valid in the case when the coefficients
a(t), b(t), c(t), and d(t) are matrices whose entries are arbitrary bounded measur-
able functions.

In the case when the function w : I' — I' changes the orientation of the
contour I" and the coefficients a(t), b(t), c(t), and d(t) are continuous, Theorem 1
follows from identity (3) and the compactness of the operator (X — YW)N —
N(X +YW), where N = (w(t) —t)I + AS and A is an arbitrary complex number.

From identity (3) it follows also that if the operator ZW is a ®-operator
(resp. @ -operator, ®_-operator), then the operator A (with arbitrary bounded
measurable coefficients) is a ®-operator (resp. ®-operator, &_-operator), too.
However, the converse statement is not true anymore. In Section 3, an example of
a P-operator A of the form (1) with piecewise continuous continuous coefficients
is given, for which the operator EW is not a ®-operator.

In the present paper, one model class of singular integral operators with shift
is investigated in detail in the case when the shift changes the orientation and
the coefficients have finite limits from the left and from the right at each point.
Conditions guaranteeing that such operators are ®-operators are obtained. The
algebra generated by such operators is studied. Formulas for the symbol and the
index are obtained.

Generalizations of the results of this paper to more general classes of singular
integral equations and wider classes of shifts will be given elsewhere.

1. Auxiliary statements

By L(B) denote the Banach algebra of all bounded linear operators acting in a
Banach space B and by J(B) denote the two-sided ideal of the algebra L(B) that
consists of all compact operators.

Let us agree also on the following notation: L, g = L,([0, 1], 0), where o(t) =
8, 1< pB<p—1,1<p<oc;IC (=TIC(a,b)) is the set of all functions defined
on the segment [a, b] that have finite limits from the left and from the right at each
interior point and continuous at the endpoints a and b.

In what follows, L7 5 (= L} 5(0,1)) will denote the direct sum of n spaces
L, 3, and I1C™) (a, b) will denote the algebra of all square matrices of order n with
entries in IIC(a, b).
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By Ez(:ﬁ) (= EX%(O, 1)) denote the smallest subalgebra of the Banach algebra
L(Ly 5) that contains all operators of the form al + bS, where a,b € c™(0,1)
and S is the operator of singular integration on the segment [0, 1] in Ly 5.

As is shown in [9], the algebra Z;ﬁg is homomorphic to some algebra of
matrices of order 2n whose entries are bounded functions on the square [0, 1] x [0, 1].
Let us denote this homomorphism by 7. By A, (¢, 1) (0 < t,u < 1) denote the
matrix mA, where A € E(") The matrix function A, g(t, 1) is called the symbol
of the operator A in the space L} 5. Besides that, following [9], we will write the
matrix A, 5(t, 1) in the form of the block matrix of order two

Apatopt) = % (1) |24

In [9, Theorem 5.1] it is proved that an operator A € E ) is a ¢ -operator
or a ®_-operator in the space Ly 5 if and only if the functlon det A, g(t, 1) is
different from zero on the square [0, 1] x [0, 1]. If this condition is satisfied, then
the operator A is a ®-operator and its index is calculated by the formula?

IndA:—l {a det A, 5(t, 1) } .
0<t,u<1

2m det By (,0)aby (t,1)

Besides that, in [9] it is shown that J(L} 5) C E( and that if an operator
Ae E% admits a regularization, then its regularizer also belongs to the algebra
21(:%' In particular, if an operator A € E;"B) is invertible, then A~! € E;)nﬁ)

The symbol A, 5(t, i) of an operatof of the form A = a(¢)I +b(t)S is defined
at the points (¢, 1) (0 <t < 1,0 < p <1) by the equality

Al)ﬁ(t7 /.L)
_ H §(p)a(t +0) + (1 = &(p))x(t — 0) h(p)(y(t +0) —y(t = 0)) H
h(p)(x(t +0) — z(t - 0)) E(wy(t —0) + (1 = &(u)y(t +0) "
4
where z(t) = a(t) + b(t), y(t) = a(t) — b(t), 0 =7 — 27 /p,
sin(fu) exp(iQu)
&(p) = sin 0 exp(i0) for 670, (5)
i for 6 =0,

and h(u) is a fixed branch of the root /&(u)(1 — &(u))-
The symbol is defined at the points (0, ) and (1, 1) (0 < p <1) by

a(0) + (2€5(1) — 1)b(0) 0 ‘

Ap (0, p) =
p,8\YUs [

0 a(0) — b(0)
3For the explanation of this formula, see [9], pp. 972-973 or p. 957 of the Russian original.
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and
a(l) = (28(n) —1)b(1) 0
Apﬁ(]-v:u) =
0 a(l) —b(1)
where the function £g(p) is obtained from the function &(p) by replacing the

number 6 in the right-hand side of (5) by @ — 27 (1 + 3)/p.
Consider the operator R defined by the equality

(Rw)(t):;./o \/jf(_ﬂth 0<t<1). (6)

From [10, Theorem 2.2] it follows that the operator R is bounded in the space L, g
if and only if the condition 2(1 + ) < p is satisfied.
We will need the following statement.

)

Lemma 1. Let numbers 3 andp (-1 < 8 <p—1,1 < p < o0) satisfy the condition
2(1+ ) < p. Then the operator R belongs to the algebra ES,)H, and its symbol has
the form

() 0

R , (tvu) = ’ (7
P, 0 1 )
where )
(28s(n) =1)7 for t=0,
Py =4 1 for 0<t<1,
2¢(pn) — 1 for t=1.

Proof. Consider the operator

B =al+ Sbl
in the space Ly, 3, where a(t) = sin(nt/2) and b(t) = i cos(nt/2). From the defini-
tion of the symbol it follows straightforwardly that

det B, (t, 1) = 1 for 0<t<1,
eI = 26p(p) —1 for t=0.

Since 2(1 4 ) < p, we have m — 27(1 + )/p # 0, whence 2&g(u) — 1 # 0. Thus,
the operator B is a ®-operator in the space L, 3. Let us show that the index of B
is equal to zero. Put
det By, g(t, 1)
t,p) = P :
fp,ﬁ( /‘l’) bgg(t,o)bgg(t,l)
It is not difficult to see that

1-2 for t—o0,
fop(t, 1) —{ 3 7i§f(u) or

e for 0<t<1.

The range of the function f, 5(¢, ) consists of two circular arcs joining the points
—1 and 1. Both these arcs are located in the upper half-plane. Therefore,

{arg fp,6(t, 1) o<t,u<1 = 0.
From formula (3) it follows that Ind B = 0.



206 I. Gohberg and N. Krupnik

As is known [5, Theorem 1], in this case the operator B is invertible in L, g.
To find the inverse operator, we use formula (98,11) from Mushelishvili’s
monograph [11, 2nd Russian edition]. From this formula it follows that*

B l=al - Z7'8b27,
where Z = g(t)v/tI and, moreover, the functions g(¢) and 1/g(t) are continuous
on [0,1]. Since B € Ez()%’ we have B~1 € ZS,)B' In view of the equality
B™l =al + ¢ 'RbgI,
the operator R; = RbI belongs to the algebra ZS%.
Consider the operator Ry = RbI, where c(t) = /t. Since the operator
Ry — Scl =¢S — Scel
is compact in L, g, we have Ry € 21(31%. Thus, B(b+c¢)I € E;lé. Since the function

b(t) + ¢(t) is not equal to zero on the segment [0, 1], we conclude that B € EI()%.
Let S, g(t, 1) and C, g(t, 1) be the symbols of the operators S and C' = ¢(¢)I,
respectively. Since the operator (R — S)cl is compact, we have

(Ryp,p(t, ) = Sp,p(t, 1)) Cp p(t, 1) = 0.
Since
P ve oo
Coatt) = | 3y
we see that for all ¢ # 0 the equality R, (¢, ) = Sp s(t, 1) holds. From the
equality

(al +bS)(al — g~ 'Rbgl) = I
it follows that the product S, (0, )R, (0, ) is the identity matrix. Therefore
R, 5(0,p) = S;E(O,u). Thus,
R, (0.0 Sp.s(t,p) for t#0,
D3 tpn) = _
S,5(0.) for =0,

and this implies (7). The lemma is proved. O

2. Main statement

Let us denote by Ez(,n)(—l, 1; W) the smallest subalgebra of the Banach algebra
L(Ly(—1,1)) (1 < p < oo) that contains all operators of the form

A=al +bS+ (cI+dS)W, (8)
4From [11] it follows that the operator C' = al 4+ Z~1SbZ has the property CBy = BCy for

all functions ¢(¢) satisfying the Holder condition on [0, 1]. Since, besides that, the operator C' is
bounded in L, g, we have B-l=cC.
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where the coefficients a, b, c,d € HC(")(—L 1), the shift operator W is defined by
the equality (We)(t) = p(—t), and S is the operator of singular integration on
the segment [—1, 1].

Let o : L7(—1,1) — L2*(0,1) be the mapping defined by the equality
(ep)(t) = (p(t),o(=t)) (0 <t < 1). Then for every operator X € L(L;(—1,1))
the operator ¢ Xo~! can be represented as the matrix

X1 X ’

Xo1 Xoo
with entries X, € L(L;(0,1)) (j,k = 1,2). In particular, for the operator A of
the form (8) we have

ocXo ! = ‘

cAc™! = gI + hSy + f Mo, (9)
where
at)  et) b)) d(t)
1O=1 oy aeo | "7 acy e |
—d(t) —b(t)
g (”:‘ b—t) d(~1) |
and

S =1 [ ar e = [ A ar 0<i<y

T T—1 T T+t

are operators acting in the space Lg”(O, 1).

Consider the operator v defined by the equality (v¢)(t) = (t'/?). Obviously,
the operator v is a bounded linear and invertible operator acting from the space
L2"(0,1) to Lf}"_l/Q(O, 1). Tt is easy to see that va(t)v—! = a(t'/?)I,

1 1
vSor~! = 2(50 + M), vMor~'= 2(50 — M),

where the operator M is defined in the space LZT‘_l /2(0, 1) by the equality

(Mip)(t) = ﬂll/o \/i f(_T)t ar (0<t<1).

According to Lemma 1, the operator M7 belongs to the algebra 25)2:)1/2(0, 1).

Therefore, we have the embedding

n - — 2
VoS (—1,1;W)o~ vt ¢ 5P (0,1).

Let X be an operator in the algebra Zz(,n)(—l, LW).By X,(t,pn) (0<t,p<1)
denote the symbol of the operator voXo~lv~! € 25)2?)1/2(0, 1). We will say that

the matrix function X, (¢, 1) (0 < ¢,u < 1) of order 4n is the symbol of the
operator X. From the obtained rules and Lemma 1 in particular it follows that
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the symbol of the operator (8) belonging to the algebra EZ(,")(—l, 1; W) is defined
by the equality

Ay (1, 1)

B ‘ §(w)z(t +0) + (1 = &(u))x(t = 0) h(p)(y(t +0) = y(t = 0))

T R0 —at-0) €yt —0)+ (1 - &)yt +0)
in the interval 0 < t < 1, where

(o) = a(t) + b(t) c(t) + d(t)
| ety —d(—t) a(—t) —b(—t) ||
a(t) — b(t) c(t) — d(t)
y(t) =
co(—t)+d(—t) a(—t)+b(-1)

and &(u), h(p) are functions defined in Section 1.
— 17

For ¢
afp) 0
A,(1,p) = ;
(l#) B(p) ‘
where
a(l) (1) b(1) d(1)
alp) = (1) a(-1) +@2mw -1 L) e |
a(1) — b(1) (1) — d(1)
Pl = e(=1)+d(=1) a(=1)+b(—1) ‘
and for t =0,
y(m) 0
A0, p) = 0 8w ‘,
where
a(+0)  ¢(+0) n(p) || b(+0) = d(+0) d(+0) — b(+0) ‘
V(p) = +
c(=0) a(-0) 2| b(=0) —d(=0) d(-0) —b(-0)
1 b(4+0) + d(+0)  b(+0) + d(+0)

" 2n(p) || —b(=0) — d(—=0) —b(—0) — d(—0)

n(p) =2€1/2(u) — 1, and

‘ )

() =
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We will write the symbol X, (¢, ) of an operator X € Ez(,n)(—l, 1; W) in the
form ||ajx (¢, 1) ?7k=1, where x;(t, #) are matrix functions of order 2n.

In view of a property of symbols of operators in the algebra E](DQZ)(O, 1) (see
[8]) and the arguments presented above, we have the following.

Theorem 2. An operator A € Zé")(—l, 1; W) is a @4 -operator or a ®_-operator
in Ly (—1,1) if and only if the condition
det Ay(t, ) 0 (0<t<1, 0< pu<1)
holds. If this condition is fulfilled, then the operator A is a ®-operator and
1 A
IndA=— {arg det At 1) } .
2 det agg(t,O)agg(t, ].) 0<t<1,0<u<1

3. Example

In this section an example of a singular integral operator with a shift (changing
the orientation of the contour) is presented. This example shows that if coefficients
of the operator have discontinuity points, then Theorem 1 does not hold.

Let A =1+ ax(t)SW, where a = const, x(t) (—1 <t < 1) be the character-
istic function of the segment [0, 1], S be the operator of singular integration along
the segment [—1, 1], and W be the shift operator given by (W¢)(t) = ¢(—t). The
operator A belongs to the algebra Ez(,l)(—l, 1). Its symbol in the space La(—1,1)
has the form

all(t7/1‘) 0
As(t,p) = ;
0 aza(t, )
where
(k1) 1 —«
a(t, p) =
a 0 1
and
1 «a
for O0<t<1,
0 1
1 a2p—1)
an(t, p) = for t=1,
(8,12 0 1
1+ tasinmy —acosmu
0 . for t=0.

Therefore, det Ag(t, ) = 1 for t # 0 and det Ax(0, u) = 1 4 iasinwp.

If we put @ = —i, then det Ay(t, 1) # 0 (0 < ¢, < 1). Hence the operator
I —ix(t)SW is a ®-operator in La(—1,1). On the other hand, if we put o = 1,
then det A2(0,1/2) = 0. Therefore, the operator I + ix(t)SW is not a ®-operator
in the space Lo(—1,1).
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Let B =1 —ix(t)SW and C = I + ix(t)SW. Since B is a ®-operator in
Ly(—1,1) and C is not a ®-operator in this space, we have in view of equality
(3) that the operator By, (as well as the operator By) is not a ®-operator in
L3(—1,1). Thus, for the operator B Theorem 1 is not true.

Note that in this example the operators By, and EW coincide. Notice also
that it is possible to construct examples of singular integral operators with shift
(changing the orientation of the contour) on a closed contour with piecewise con-
tinuous coefficients, for which Theorem 1 does not hold.
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Algebras of Singular Integral Operators
with Shift

Israel Gohberg and Nahum Krupnik

In this note the results of [1] are generalized to the case of an arbitrary simple
closed Lyapunov contour and an arbitrary Carleman shift changing the orientation
of the contour.

1. Let £; and L3 be Banach spaces and L(Lq,Ls) be the Banach space of all
bounded linear operators acting from £; to Lo. The algebra L(L, £) is denoted by
L(L). We will say that two algebras A; C L(£1) and Ay C L(L2) are equivalent
if there exists an invertible operator M € L(L1, L2) such that the set of operators
of the form MAM 1 where A € A;, coincides with the algebra As.

Let ' be a contour in the complex plane. Let us introduce the following
notation: Sr is the operator of singular integration along I' given by

L[ o(r)
(Sro)t) = o [ P dr e

PC(T) is the set of all functions continuous on I' except for at most a finite set of
points where they have discontinuities of the first kind; L, (T, ) is the space L,
on I" with a weight g; X(p, T, 0) is the smallest Banach subalgebra of the algebra
L(L,(T, p)) that contains all operators al (a € PC(T')) and the operator Sr;
Y(p,T, 0; B) is the smallest Banach subalgebra of the algebra L(L, (T, 0)) that
contains the algebra ¥(p,T', ¢) and the operator B. Let ¥ be some subalgebra of
the algebra L(L). Denote by X,, the subalgebra of the algebra L(L™) consisting of
all operators of the form [|Ajx[|7,_;, where Aj, € 3.

In the following we will suppose that I" is a simple closed oriented Lyapunov
contour and v : I' — I' is a mapping changing the orientation of I' and having the
following properties:

V(t)e HT), v(v(t)=t (tel), (1)
The paper was originally published as N.1I. I'ox6epr, H.f. Kpynuauk, O6 anre6pax cuHryi-

SAPHBIX MHTErPAILHLIX ONePaTopoB co casurom, Marem. Mccaen. 8 (1973), Ne 2(28), 170-175.
MRO0341191 (49 #5941), Zbl 0306.47022.
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where H(T') is the set of functions satisfying the Holder condition on I'. By V we
denote the shift operator defined by

(Vo) (t) = p(v(t)). (2)
We will suppose® that o(t) = |t — to|¥|t — 70|®, where tg, 79 are fixed points of the
mapping v and «, 8 are real numbers satisfying —1 < o < 1, =1 < § < 1. Under
these assumptions the following result holds.

Theorem 1. The algebra ¥, (p, T, 0; V') is equivalent to a subalgebra of the algebra
EZn(p7 F(T? QO); where

Ty ={C: ¢l =1,Imz 20}, 0o(¢) = ¢ — 17D/ + 1|1/,
and 1 < p < 0.

The proof of this theorem is based on the following lemma.

Lemma 1. Let v be a mapping satisfying conditions (1) and let To = {C : |¢] = 1}
be the unit circle. Then there exists a mapping v : T'o — I’ such that

7'(¢) € H(To), ~'(€) #0 (¢ €Ty) (3)
and
(v tovoy)(Q)=¢1, (4)

where v o~y denotes the composition of the mappings v and v.

Proof. Tt is not difficult to see that the mapping v has exactly two fixed points
on I'. We denote them by ¢y and 7. Since I" is a Lyapunov contour, there exists a
mapping 1 : Tg — T such that /(¢) € H(Ty) and 7'(¢) # 0 for ¢ € Ty. Besides, we
can choose 77 in such a way that (1) = tg. Put A = n~tovon. It is easy to see that
the mapping 1 : 'y — I'y changes the orientation of the unit circle I'y. Moreover,
AA(Q)) = ¢ for [¢| =1, A(1) = 1, and A\({p) = Co, where (o = 71 (t9). The points
1 and (p divide the circle 'y into the arcs I'y and I's. Moreover, A : 'y — I's and
A:Tg =T Let p: 'y — I's be a mapping satisfying

(o) =-1, p(l)=1, wuC)#0 (el), u()eHT).

We extend p to the whole contour T' by setting p(¢) = 1/u(A(Q)) for ¢ € T'y. Tt is
easy to see that for all ¢ € T" one has p(¢) = 1/u(A(()).

Let
' (Co +0) = cerim (), K(G-0)= cer M (©)-
Since
(G + 0N (o)

M/(CO - O) = (/14(40))2 ’ )‘/(CO) =-1, /’L(CO) =-1,

we obtain that ¢/ (¢o —0) = ¢/ (¢p +0). Analogously one can check that p/(1—0) =
@' (14 0). Thus p’ € H(Ty).

LOne can consider even more general weights ¢ for which the space Ly (T, 0) is invariant with
respect to the operator V.



Algebras of Singular Integral Operators with Shift 215

Let v = no u~ . Without difficulty one can verify that + satisfies conditions
(3) and (4). The lemma is proved. O

Proof of Theorem 1. Without loss of generality we can suppose that n = 1. In view
of Lemma 1, there exists a mapping v : I'g — I satisfying conditions (3) and (4).
The mapping v~ ! maps the fixed points of the mapping v to the points ¢ = +1.
For definiteness, let v~1(t9) = —1 and vy~ *(79) = 1. Consider the operators

(Vo)) = (™Y, (Mip)(¢) = e(7(C)) (¢ € Ly(T, 0), ¢ € Ty).

The operator M; is an invertible operator belonging to L(L, (T, ¢), L,(To, 0)),
where 9(¢) = |¢ + 1||¢ — 1]%. Tt is not difficult to verify (see, e.g., [2, Chap. 1,
Section 4]) that M;SpM; ' = So+T, where Sy = Sr, and T is a compact operator.
It is known (see [3, Section 5]) that T € ¥(p,T'g, 0). Since

MyaMy ' = a(y(O)I (a€ PC()),  M{'VM; =W,

we have MlAMf1 € X(p,To, 0; Vo) for every operator A € X(p,T, 0; V). Anal-

ogously one can prove that Ml_lBMl € X(p,T,0;V) for every operator B €

¥(p,To, 0; Vo). Thus the algebras X(p, T, ; V') and X(p, T, 0; Vo) are equivalent.
In the same way, using the operator Ms defined by

24 T —x
oo =2 o (110) wenm sem),
one can obtain the equivalence of the algebras X(p,T'g, 0; Vo) and X(p, R, h; U),
where h(z) = |i +z°|z|® (§ =p —a — B —2) and (Uy)(z) = ¢(—x).

Let R denote the positive half-line. Consider the operator M3 acting bound-
edly from Ly (R, h) to LZ(R*, h) by the rule (Msp)(z) = (¢(x), (—x)) for 2 > 0.
One can check straightforwardly that

_ S =N
M3SRM3 t= N -—§ ;
_ I 0
Msabiy' = | 0 ' ’ ®)
_ 0 1
MUMs" = | ’ ’

where S = Sg+, a(z) = a(—=x) for x > 0, and

o) = 1 [T A a4y @)

Finally, consider the operator My € L(L,(R*, h), L,(R*, 1)), where
h(z) = 2P~ D/2); 4 2|0/2,

defined by (Myp)(z) = (/). It is not difficult to see that

1

2

MySM; = (S+R), MyNM;'= ;(s - R),



216 I. Gohberg and N. Krupnik

where
wow) = [0 dy @0

Let us show that the operator R belongs to the algebra E(p,]R*,E). The
operator R = My(S — N)M, " is bounded in the space L,(R*,h). Since RSy =
SRy = ¢ on a dense set (see, e.g., [2, Chap. 9, Section 7]), we have R = S~1.
Therefore, by [3, Lemma 6.1], R € X(p, R*, h). Put

|| Ma
v g

0
o [
In view of what has just been proved, M5AM§1 € Yo (p, R"’,E) for all operators
A € X(p,R, h; U). Thus, the algebra X(p, R, h; U) is equivalent to the subalgebra
S = {M;AM;': Ae S(p,R,h;U)}
of the algebra Sy (p, R+, h).
My 0O
0 My ||’

Put
By what has been proved above, the algebra X(p,T', 0; V) is equivalent to the
subalgebra ¥ = {M{lAMg : A € B} of the algebra Xa(p,T'd, o). The theorem is
proved. O

-

2. A Banach subalgebra ¥ of the algebra L(L) is said to be an algebra with
Fredholm symbol (see [4]) if there exists a homomorphism 7 that maps ¥ onto an
algebra of matrix functions and has the following property: an operator A € ¥ is
a ®-operator if and only if the function det 7(A) is bounded away from zero. From
[3, Theorem 5.1] it follows that ¥y (p,I', 00) is a Banach algebra with Fredholm
symbol. Theorem 1 implies the following.

Corollary 1. The algebra X,,(p,T, 0; V') satisfying the conditions of the previous
section is an algebra with Fredholm symbol.

If Ae X,(p,T,0;V), then the operator A= MAM™, where M = 1656 M7 =y
and M = M51M5M2M1, belongs to the algebra Y, (p,I'§, 0). It is natural to
define the symbol of an operator A as the symbol of the operator A in the algebra
Zon (0, T7, 0)- o

From [3, Theorem 5.1] and the equality A = M AM~! we get the following.

Theorem 2. An operator A € X,,(p,T', 0; V') is a ®-operator or a ®4-operator in
the space Lyy(T',0) if and only if the determinant of its symbol is bounded away
from zero. If this condition is satisfied, then the operator A is a ®-operator.

Note that one can calculate the index of a ®-operator A € ¥,,(p,T", 0; V) by
formula (5.3) of [3].
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