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Preface

This book consists of translations into English of several pioneering papers in
the areas of discrete and continuous convolution operators and on the theory of
singular integral operators published originally in Russian. The papers were writ-
ten more than thirty years ago, but time showed their importance and growing
influence in pure and applied mathematics and engineering.

The book is divided into two parts. The first five papers, written by
I. Gohberg and G. Heinig, form the first part. They are related to the inversion
of finite block Toeplitz matrices and their continuous analogs (direct and inverse
problems) and the theory of discrete and continuous resultants. The second part
consists of eight papers by I. Gohberg and N. Krupnik. They are devoted to the
theory of one dimensional singular integral operators with discontinuous coeffi-
cients on various spaces. Special attention is paid to localization theory, structure
of the symbol, and equations with shifts.

This book gives an English speaking reader a unique opportunity to get famil-
iarized with groundbreaking work on the theory of Toepliz matrices and singular
integral operators which by now have become classical.

In the process of the preparation of the book the translator and the editors
took care of several misprints and unessential misstatements. The editors would
like to thank the translator A. Karlovich for the thorough job he has done.

Our work on this book was started when Israel Gohberg was still alive. We
see this book as our tribute to a great mathematician.

December 10, 2009 The volume editors
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Introduction

Leonid Lerer, Vadim Olshevsky and Ilya Spitkovsky

Israel Gohberg has made, over many years, a number of contributions to differ-
ent branches of mathematics. Speaking about the quantity only, his resume lists
more than 25 monographs, as well as more than 500 papers. Among these there
are several papers published in Russian which have never been translated into
English. The present volume partially removes this omission and contains English
translations of 13 of these papers.

The first part of the book comprises a plethora of results related to the paper
[GS72]. This paper contains an explicit formula for the inverse of a (non-Hermitian)
Toeplitz matrix that is widely cited in many areas especially in the numerical and
engineering literature as the Gohberg-Semencul formula. There are at least three
reasons for its popularity. One reason lies in the fact that the Gohberg-Semencul
formula (that provides an elegant description for the inverses of Toeplitz matrices)
leads to efficient (in terms of speed and accuracy) algorithms. Secondly, inversion
of Toeplitz matrices is a very important task in a vast number of applications in
sciences and engineering. For example, symmetric Toeplitz matrices are the mo-
ment matrices corresponding to Szegö polynomials and Krein orthogonal polyno-
mials. The latter play a significant role in many signal processing applications, e.g.,
[Kai86] in speech processing, e.g., [MG76]. Furthermore, prediction, estimation,
signal detection, classification, regression, and communications and information
theory are most thoroughly developed under the assumption that the process is
weakly stationary, in which case the covariance matrix is Toeplitz [Wie49]. Along
with these two examples, there are numerous other applications giving rise to
Toeplitz matrices.

Finally, the third reason for the popularity of the Gohberg-Semencul for-
mula is that it has triggered a number of counterparts and generalizations [GK72,
BAS86, HR84, LT86, KC89, GO92], as well as theories, e.g., the displacement
structure theory was originated in [KKM79] (see also [HR84]).

At the time of publication of [GS72] its authors were unaware of the recur-
sive inversion algorithm that was derived earlier in [Tre64] for the case of positive
definite Toeplitz matrices. The paper [Tre64] also presents (without a proof) a
generalization to non-Hermitian matrices, but it is stated that all principal mi-
nors have to be nonzero. Although the Gohberg-Semencul formula is absent in
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[Tre64], it could be derived from the recursions in [Tre64], at least for the special
cases considered there. However, in many cases it is useful to have a closed-form
formula from which different algorithms can be derived. This is especially true
for the case of the Gohberg-Semencul formula, since it represents A−1, the in-
verse of a Toeplitz matrix, via sum of products of triangular Toeplitz matrices (cf.
with a generalization (0.1) below). The latter property has two important conse-
quences. The first is that the matrix-vector product for A−1 can be computed in
only O(n logn) operations which is fast as compared to O(n2) operations of the
standard algorithm. Moreover, the second important fact is that it was the form
of the Gohberg-Semencul formula that triggered the development of the study of
inversion of structured matrices (see the previous paragraph).

We start our systematic account of the papers included in this volume with
a description of [2] ([1] is a brief summary of the subsequent papers [2] and [3]).

The original paper [GS72] dealt with Toeplitz matrices A =
[

aj−k

]
with

complex entries. Many applications, e.g., in Multi-Input-Multi-Output system the-
ory, give rise to block Toeplitz matrices where the entries are matrices themselves.

In [2] the authors generalized the results of [GS72] to this and even to a
more general case of Toeplitz matrices A =

[
aj−k

]
whose entries are taken from

some non-commutative algebra with a unit. The paper [2] contains several explicit
formulas for A−1 (Gohberg-Heinig formulas), here is one of them. For a given
Toeplitz matrix A =

[
aj−k

]
its inverse is given by

A−1 =

⎡⎢⎢⎢⎢⎣
x0 0 · · · 0

x1 x0
. . .

...
...

...
. . . 0

xn xn−1 · · · x0

⎤⎥⎥⎥⎥⎦x−10

⎡⎢⎢⎢⎣
y0 y−1 · · · y−n

0 y0 · · · y1−n

...
. . .

. . .
...

0 · · · 0 y0

⎤⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎣
0 0 · · · 0

z−n 0
. . .

...
...

. . . . . . 0
z−1 · · · z−n 0

⎤⎥⎥⎥⎥⎦ z−10

⎡⎢⎢⎢⎢⎣
0 wn · · · w1

0 0
. . .

...
...

. . . . . . wn

0 · · · 0 0

⎤⎥⎥⎥⎥⎦
(0.1)

where the parameters {xi, yi, zi, wi} are obtained via solving four linear systems
of equations

A

⎡⎢⎢⎢⎣
x0
x1
...
xn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
e
0
...
0

⎤⎥⎥⎥⎦ , A

⎡⎢⎢⎢⎣
z−n

...
z−1
z0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0
...
0
e

⎤⎥⎥⎥⎦ , (0.2)

[
w0 w1 · · · wn

]
A =

[
e 0 · · · 0

]
,[

y−n · · · y−1 y0
]
A =

[
0 · · · 0 e

]
. (0.3)
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Due to its shift-invariant structure, a Toeplitz matrix A is defined by 2n + 1
entries {a−n, . . . , a−1, a0, a1, . . . , an} appearing in its top row and first column. At
the same time, the formula (0.1) describes the structure of A−1 using the redundant
set of 4n + 2 parameters {xi, yi, wi, zi}. The second section of [2] deals with this
discrepancy and proves that in fact, just 2n + 1 parameters {xi, zi} are sufficient
to completely describe the structure of A−1 (i.e., it is sufficient to solve two linear
equations in (0.2) and to use the first and last columns of A−1 only). Alternatively,
A−1 can also be described by 2n + 1 parameters {yi, wi} only (i.e., it is sufficient
to solve two linear equations in (0.3) and to use the first and last rows of A−1

only). In fact, the second section of [2] establishes a number of interconnections
between the solution of the linear equations in (0.2) and (0.3).

The third section of [2] deals with a natural inverse problem, namely: given
4n + 2 parameters {xi, yi, wi, zi}, is there a Toeplitz matrix satisfying (0.2) and
(0.3) The authors show that if the interconnections between the solution of linear
equations in (0.2) and in (0.3) found in Section 2 are valid, then the desired Toeplitz
matrix exists and it can be recovered via formula (0.1).

We would like to again emphasize that the above results of [2] fully cover a
very important special case when A is a block Toeplitz matrix.

The above three sections fully generalize the inversion formulas of [GS72].
The next three sections of [2] generalize the inversion formulas of [GK72]. The
difference is that [GS72] describes the structure of the entire complex matrix A−1

using its first and last columns only, while [GK72] describes the structure of A−1

using instead its first two columns. As was already mentioned, the first three
sections of [2] generalize the results of [GS72] to matrices whose entries are taken
from a noncommutative algebra with a unit. Correspondingly, the sections 4–6 of
[2] follow the structure of its first three sections and contain full generalization of
the results of [GK72].

We also refer the reader to alternative derivations of the Gohberg-Heinig
formulas in [GKvS04] as well as to [BAS85] for a generalization of the results of
[BAS86] to the block Toeplitz case.

Before turning to paper [3] let us again notice that the Gohberg-Semencul and
the Gohberg-Heinig formulas have a very important computational consequence.
Indeed, observe that the right-hand side of (0.1) involves only four triangular
Toeplitz matrices. Hence A−1 can be efficiently applied to any vector using FFT
(Fast Fourier Transform) in the case when the entries {ak} are either scalars or
matrices of a reasonably small size. Furthermore, the linear equations in (0.2) and
(0.3) can be efficiently solved using the Levinson algorithm [Wie49] in the scalar
case or using block Levinson algorithm of [Mus88] in the block case. To sum up,
the scheme just described means that the Gohberg-Semencul and the Gohberg-
Heinig formulas imply the low cost O(n2) arithmetic operations for solving any
block Toeplitz linear system when the blocks are reasonably small. It is worth men-
tioning that using Gohberg-Semencul-Heinig formulas in [BGY80, CK89, CK91]
an algorithm requiring only O(n log2 n) operations was developed.
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Along with speed, one is also always concerned about numerical accuracy,
and the Gohberg-Semencul formula was shown in [GH95] and [Hei01] to always
provide numerically accurate results unless the condition number of A is too large.

The paper [GS72] contained not only Toeplitz inversion formulas but also
their continual analogs. In fact, the authors designed a formula for the inverse of
integral operators of the form

((I −K)ϕ)(t) = ϕ(t)−
∫ τ

0

k(t− s)ϕ(s)ds (0 ≤ t ≤ τ)

acting in the space Lp(0, τ), where the kernel k(t) is a scalar function from
L1(−τ, τ). Due to the difference nature of the kernel k(t − s), I − K is a con-
tinuous analog of a finite Toeplitz matrix A =

[
aj−k

]
(whose entries depend

only on the difference j − k of indices). The paper [3] generalizes these results
of [GS72] to the case when the operator I − K acts in the space Ln

p (0, τ), and
k(t) is an n× n matrix function from Ln

1 (−τ, τ). Thus, the paper [3] contains full
continual analogs of the results in [2].

In particular, in the second section of [3] the authors present a continual
analog of the formula (0.1). The four equations in (0.2) and (0.3) are replaced by
the following four equations

x(t)−
∫ τ

0

k(t− s)x(s)ds = k(t), z(−t)−
∫ τ

0

k(s− t)z(−s)ds = k(−t), (0.4)

w(t) −
∫ τ

0

w(s)k(t − s)ds = k(t), y(−t)−
∫ τ

0

y(−s)k(s− t)ds = k(−t), (0.5)

In this case, the analog of the formula (0.1) is

((I −K)−1f)(t) = f(t) +
∫ τ

0

γ(t, s)f(s)ds,

where the kernel γ(t, s) is determined from (0.4) and (0.5) via

γ(t, s) = x(t− s) + y(t− s)

+
∫ min(t,s)

0

[x(t− s)y(r − s)− z(t− r − τ)w(r − s + τ)]dr

The structure of the paper [3] mimics the structure of the first three sections of
[2] (although the methods of [2] and [3] are absolutely different). Section 3 of [3]
presents the results analogous to the ones of Section 2 of [2], and it describes the
relations between the solutions x(t), z(t) to (0.4) and the solutions w(t), y(t) to
(0.5). Finally, Section 4 of [3] is a counterpart of Section 3 of [2]. Specifically, it
is devoted to the inverse problem of reconstructing the matrix function k(t) from
the matrix functions x(t), y(−t), w(t), z(−t):

Given four matrix function x, y, z, w ∈ Ln×n
1 [0, τ ], find k ∈ Ln×n

1 [−τ, τ ] such
that the corresponding operator I − K is invertible and the given functions are
solutions of the equations (0.4)–(0.5).
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Later, a certain refinement of these solutions turned out to be extremely
useful in solving the inverse problems for Krein’s orthogonal matrix polynomials
and Krein’s orthogonal matrix function, as well as in the study of Krein’s canon-
ical differential systems (see [GL88, GKL08, AGK+09] and references therein).
In fact, for the scalar case the connection of the inverse problems with Krein or-
thogonal polynomials has already been mentioned in the Russian edition of the
monograph [GF71]. Finally, we mention that the solutions of the inverse prob-
lems in [2] inspired several other authors to deal with similar problems (see, e.g.,
[BAS86] and [KK86]).

One of the conditions in the solution of the inverse problem in [2] triggered
the interest of Gohberg and Heinig in Sylvester resultant matrices. Paper [4] is
devoted to the study of generalizations of the classical Sylvester resultant matrix
to the case of polynomials with matrix coefficients.

For scalar polynomials p(λ) and q(λ) of degrees m and n, respectively, the
resultant matrix is a square (m + n) × (m + n) matrix whose basic property is
that its nullity is equal to the number of common zeros of the polynomials p and
q (counting their multiplicities). This notion has been known for centuries (see
[KN81] for history and details).

A simple example found in [4] shows that in the matrix polynomial case
the (square) classical analog of the resultant matrix does not preserve its basic
property concerning the common eigenvalues. Nevertheless, a certain non-square
generalized resultant is introduced in [4] which does have the basic property of the
resultant matrix, namely, the dimension of its kernel is equal to the number of com-
mon eigenvalues of the two given matrix polynomials counting their multiplicities
(properly understood). In general, for two r × r matrix polynomials of degrees m
and n this matrix has the size (2ω−m−n)r×ωr where ω ≥ min{n+mr,m+nr}.
In [4] the kernel of this generalized resultant is completely described in terms of
common Jordan chains of the given polynomials. The proof of this result is rather
involved. One of the important tools is the notion of multiple extension of a system
of vectors which has been invented and studied by the authors.

Of course, in the case r = 1 the generalized resultant in [4] coincides with
the classical one, and the paper [4] contains a refinement of the well known result
on the Sylvester resultant matrix providing a complete description of its kernel in
terms of common zeroes of the given (scalar) polynomials p(λ) and q(λ). [4] also
includes applications to the solution of a system of two equations in two unknowns
λ and μ in the case when each of these equations is a matrix polynomial in λ and
a matrix polynomial in μ.

It is worth bearing in mind that the results of paper [4] had been obtained
before the spectral theory of matrix polynomials was developed by I. Gohberg,
P. Lancaster and L. Rodman (see [GLR83]) and from our point of view it is rather
miraculous that the results of [4] were obtained without using this theory. Upon
emergence of the latter theory, the notion of the generalized resultant was further
analyzed in [GKLR81, GKLR83] in connection with some other classical notions
(like Vandermonde, Bezoutian, etc.) Also, in [GKL08] and [KL09] necessary and
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sufficient conditions for the matrix polynomials p and q are found which ensure
that the generalized resultant in [4] can be taken to be a square block matrix.

In paper [5], Gohberg and Heinig invented a continual analogue of the resul-
tant. Namely, for two entire functions A(λ) and B(λ) (λ ∈ C) of the form

A(λ) = a0 +
∫ τ

0

a(t)eiλtdt, B(λ) = b0 +
∫ 0

−τ

b(t)eiλtdt (0.6)

where a0, b0 ∈ C1, a ∈ L1[0, τ ], b ∈ L1[−τ, 0], and τ is some positive number, they
define the operator R0(A,B) acting on L1[−τ, τ ] by the rule

(R0(A,B)f
)
(t) =

⎧⎪⎪⎨⎪⎪⎩
f(t) +

τ∫
−τ

a(t− s)f(s)ds (0 ≤ t ≤ τ)

f(t) +
τ∫
−τ

b(t− s)f(s)ds (−τ ≤ t < 0)
(0.7)

with the convention that a(t) = 0 for t /∈ [0, τ ] and b(t) = 0 for t /∈ [−τ, 0]. In [5] the
operator R0(A,B) is called the resultant operator of the functions A(λ) and B(λ).
In the scalar case the kernel of the operator R0(A,B) is completely described
in [5] in terms of common zeroes of the functions A and B. In particular, its
dimension is precisely equal to the number of common zeroes of A and B (counting
multiplicities). Thus in [5], an appropriate notion of a resultant for non-polynomial
functions has been defined for the first time.

As in the discrete case simple examples show that this resultant is not working
in the matrix valued case and hence a straightforward generalization of the above
result to the case of matrix functions A(λ) and B(λ) turned out to be impossible.
One can only state that dim KerR0(A,B) ≥ # { common eigenvalues of A and B
(properly understood) }. The reason for this phenomenon lies in the fact that
in the matrix case (i.e., when A and B are d × d matrix functions) the kernel of
R0(A,B) may contain matrix functions that are not smooth enough (actually, they
are not even absolutely continuous). This obstacle has been surmounted in [5] by a
slight modification of the definition of R0(A,B) through introducing a generalized
resultant Rε(A,B) acting from Ld

1[−τ, τ +ε] to Ld
1[−τ−ε, τ +ε] (see formula (2) in

[5]). It is proved in [5] that for any ε > 0 the kernel for this operator is completely
described by the common Jordan chains of the matrix functions B(λ) and A(λ),
and in particular, its dimension equals the number of common eigenvalues of B(λ)
and A(λ) (properly understood).

The proof of this result is far from being easy. The applications of the main
result include a method of solving a system of two equation by two variables λ
and μ in the case when the right-hand sides of the equations are of the form (0.6)
in each variable. In another important application a continual analogue of the
Bezoutian is introduced for the case n = 1, and its kernel is completely described
in terms of common zeroes of the functions involved.

Paper [5] lent impetus to several other works in this area. Thus, in [GHKL05]
the Bezoutian for matrix functions of form (0.6) has been studied. In [GKL07b,
GKL07a] necessary and sufficient conditions for A and B have been found which
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ensure that the operator R0(A,B) describes completely the common spectral data
of A and B in the matrix case.

The second part of the book deals with a very different topic. It consists of
papers [6–13], written by I. Gohberg jointly with N. Krupnik1. In these papers,
various aspects of the theory of one dimensional singular integral operators in
the piecewise continuous setting are considered, but the general approach actually
goes back to Gohberg’s paper [Goh52]. There, Gelfand’s theory of commutative
Banach algebras was applied to such operators for the first time, though in the set-
ting of continuous coefficients and closed curves. It was shown that the respective
Calkin algebras (= the quotient algebras modulo the ideal of compact operators)
are commutative, and therefore can be identified with their spaces of maximal
ideals, which in turn are nothing but the curves on which the operators act. The
Fredholmness criteria for these operators can be formulated in terms of their sym-
bols, which in this setting are rather simple continuous functions on these curves,
and do not depend on the choice of the space. Consequently, the essential spectra
of the operators do not depend on the space as well. As was shown in joint work of
I. Gohberg and M. Krein [GK58], this phenomenon persists for convolution type
operators acting on vector functions on the half line. The case of singular integral
operators with continuous (matrix) coefficients was disposed of, with the same
outcome, by I. Simonenko [Sim61]. As became clear later (see, e.g., [BK97]), the
smoothness of the curves (as long as they stay closed) and presence of weight (as
long as the singular integral operator with Cauchy kernel stays bounded) are of
no significance in the continuous coefficients setting.

The situation becomes much more complicated when one moves to a piecewise
continuous setting: the symbols become matrix (as opposed to scalar) functions,
with a domain of a rather complicated nature, in particular, depending on the
Banach space in which the operators act. The (essential) spectra of the operators
then also become functions of the space. More specifically, the content of [6–13] is
as follows.

In [6], the spectra and essential spectra are described for Toeplitz opera-
tors generated by piecewise continuous functions on Hardy spaces Hp (Section 1)
and, in parallel, of singular integral operators with piecewise continuous coeffi-
cients on Lebesgue spaces Lp (Section 2), 1 < p < ∞. To this end, the notion
of p-(non)singular functions and the p-index was introduced, and with their aid
established the role of circular arcs filling the gaps of the spectrum originating
from the discontinuities of the coefficients. In the subsequent paper [GK69b] the
authors showed that the circular arcs persist when a power weight is introduced,
though the curvature of the arcs now depends on the weight exponents. Further
metamorphoses of the spectra were described in [Spi92] (for an arbitrary Mucken-
houpt weight), and in a series of papers by A. Böttcher and Yu. Karlovich (where
the transition to arbitrary Carleson curves was accomplished), summarized in their

1Current mailing address: 424 – 7805 Bayview Ave, Thornhill, Ontario L3T 7N1, Canada
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monograph [BK97]. See also very nicely written survey articles [Böt95, BK01] for
an entertaining, though still educational, guide through the subject.

As an application of these results, in Section 3 of [6] the authors give estimates
from below for the essential norms of the singular integral operator S with the
Cauchy kernel, and the related complementary projections P,Q. They show that
the estimate for S is sharp when p = 2n or p = 2n/(2n − 1), n = 1, 2, . . . Inspired
by these results, Pichorides proved shortly afterwards [Pic72] that in fact this
estimate coincides with the norm of S on the unit circle for all p ∈ (1,∞). The
respective result for the projections P,Q was established much later [HV00]. See
[HV10, Kru10] for the current state of the subject.

The singular integral operators in [6] are also considered on the so called
symmetric spaces (see Section 4); we refer the reader to the translator’s work
[Kar98, Kar00].

Paper [7] contains a detailed description of the Banach algebra generated
by individual Toeplitz operators considered in [6], Section 1. In particular, it is
shown that its Calkin algebra is commutative, and its compact of maximal ideals
is realized as a cylinder with an exotic topology. The symbol of this algebra is
constructed, and the Fredholm criterion and the index formula for the operators
from the algebra are stated in its terms. Note that the case p = 2 was considered by
the authors earlier in [GK69a], and that a parallel theory for the algebra generated
by Toeplitz matrices arising from the Fourier coefficients of piecewise continuous
functions on the sequence space �p (which of course differs from the setting of [7]
when p �= 2) was developed by R. Duduchava in [Dud72].

In [8], it was observed for the first time that rather peculiar objects are
contained in the (closed) algebra generated by singular integral operators with
piecewise continuous coefficients; some operators with unbounded coefficients hav-
ing power or logarithmic singularities among them. As a result, the Fredholmness
criteria for such operators are obtained.

An auxiliary role in this paper is played by a (very useful on its own) obser-
vation that a sufficient Khvedelidze [Khve56] condition for the operator S to be
bounded in Lp space with a power weight actually is also necessary. The resulting
criterion was used repeatedly in numerous publications, though now it can of course
be thought of as a direct consequence of the Hunt-Muckenhoupt-Weeden criterion.

In [9], the algebra generated by singular integral operators with piecewise
continuous coefficients is considered in the case of a composed (that is, consisting
of a finite number of closed or open simple Lyapunov curves) contour. The new
difficulty arising in this setting is that S is not an involution any more; moreover,
the operator S2 − I is not even compact. To overcome this difficulty, an approach
is proposed in this paper (Lemma 1.1) which later received the name of the linear
dilation procedure and was further developed in [GK70] (see also [Kru87], Theorem
1.7, Corollary 1.1 and Theorem 2.4). The symbol of the algebra is constructed,
and in its terms the Fredholmness and the index formula are obtained. The spaces
involved are Lp with power weights. The transition to arbitrary Muckenhoupt
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weights was accomplished in [GKS93], while the class of contours was extended to
composed Carleson curves in [BBKS99].

Section 1 of paper [10] contains a new version of the local principle. The orig-
inal version of the latter, invented by by I.B. Simonenko in [Sim65], is simplified2

here via the introduction of localizing classes which at the same time makes the
new version applicable in a wider setting. There also exists the Allan-Douglas ver-
sion of the local principle; the relations between the three are discussed in [BKS88].
All three versions are currently in use, as a powerful tool in operator theory and
numerical analysis; see, i.e., [BS93, DS08, FRS93, Kar98] for some further exam-
ples of the Gohberg-Krupnik local principle’s applications. In the paper itself, the
local principle is used to establish (i) the local closedness of the set of matrix func-
tions generating Fredholm Toeplitz operators on the spaces L2, (ii) the Fredholm
theory of operators defined on �p via Toeplitz matrices generated by continuous
matrix functions (and the algebras generated by them), and (iii) a parallel theory
for the algebras generated by paired operators.

In [11], the symbol is constructed for the non-closed algebra generated by
the singular integral operators with piecewise continuous coefficients on piecewise
Lyapunov composed curves in the case of Lp spaces with power weights. This
symbol is a matrix valued function (of variable size, depending on the geometry
of the curve), the non-singularity of which is responsible for the Frednolmness
of the operator. The index of the operator is calculated in terms of the symbol
as well. These results were carried over to the closure of the algebra in a later
authors’ publication [GK93]. The transition to arbitrary (Muckenhoupt) weights
and (Carleson) composed curves was accomplished in already mentioned papers
[GKS93, BBKS99]; see also [BGK+96] for an important intermediate step.

The paper [12] in its time was a breakthrough in the theory of singular integral
operators with involutive shift. In clarification of the results accumulated earlier
(see, i.e., [Lit67, ZL68, Ant70, KS72b, KS72a]), the authors came up with the
relation which makes crystal clear the relation between the Fredholm properties
and the index of the operator A (with shift) and the associated with it operator ÃW

(without shift but acting on the space of vector functions with the size doubled).
Moreover, for the operators with orientation preserving shift the relation actually
holds for arbitrary measurable matrix coefficients, not just in the continuous case.
On the other hand, for the orientation reversing shift the Fredholmness of AW is
still sufficient for the Fredholmness of A while the converse statement fails already
in the case of piecewise continuous coefficients.

The paper [12] contains also the matrix symbol construction for the (non-
closed) algebra generated by the singular integral operators with piecewise contin-
uous coefficients and the shift (Wφ)(t) = φ(−t) acting on the unweighted space
L2(−1, 1). The generalization of this construction to the setting of arbitrary simple
closed Lyapunov contours and changing orientation (sufficiently smooth) involu-
tive shifts is carried out in [13].

2The presentation of the method per se in [10] takes only two pages.
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[GO92] I. Gohberg and V. Olshevsky, Circulants, displacements and decompositions
of matrices, Integral Equations Operator Theory 15 (1992), 730–743.

[Goh52] I.C. Gohberg, On an application of the theory of normed rings to singular
integral equations, Uspehi Matem. Nauk (N.S.) 7 (1952), no. 2(48), 149–156
(in Russian).

[GS72] I. Gohberg and L. Semencul, The inversion of finite Toeplitz matrices and
their continual analogues, Matem. Issled. 7 (1972), no. 2(24), 201–223 (in
Russian).

[Hei01] G. Heinig, Stability of Toeplitz matrix inversion formulas, Structured Matri-
ces in Mathematics, Computer Science, and Engineering, vol. 2, American
Mathematical Society Publications, Providence, RI. Contemporary Math 281
(2001), 101–116.

[HR84] G. Heinig and K. Rost, Algebraic methods for Toeplitz-like matrices and op-
erators. Oper. Theory Adv. Appl., vol. 13, Birkhäuser, Basel, 1984.
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Introduction

Leonid Lerer, Vadim Olshevsky and Ilya Spitkovsky

Israel Gohberg has made, over many years, a number of contributions to differ-
ent branches of mathematics. Speaking about the quantity only, his resume lists
more than 25 monographs, as well as more than 500 papers. Among these there
are several papers published in Russian which have never been translated into
English. The present volume partially removes this omission and contains English
translations of 13 of these papers.

The first part of the book comprises a plethora of results related to the paper
[GS72]. This paper contains an explicit formula for the inverse of a (non-Hermitian)
Toeplitz matrix that is widely cited in many areas especially in the numerical and
engineering literature as the Gohberg-Semencul formula. There are at least three
reasons for its popularity. One reason lies in the fact that the Gohberg-Semencul
formula (that provides an elegant description for the inverses of Toeplitz matrices)
leads to efficient (in terms of speed and accuracy) algorithms. Secondly, inversion
of Toeplitz matrices is a very important task in a vast number of applications in
sciences and engineering. For example, symmetric Toeplitz matrices are the mo-
ment matrices corresponding to Szegö polynomials and Krein orthogonal polyno-
mials. The latter play a significant role in many signal processing applications, e.g.,
[Kai86] in speech processing, e.g., [MG76]. Furthermore, prediction, estimation,
signal detection, classification, regression, and communications and information
theory are most thoroughly developed under the assumption that the process is
weakly stationary, in which case the covariance matrix is Toeplitz [Wie49]. Along
with these two examples, there are numerous other applications giving rise to
Toeplitz matrices.

Finally, the third reason for the popularity of the Gohberg-Semencul for-
mula is that it has triggered a number of counterparts and generalizations [GK72,
BAS86, HR84, LT86, KC89, GO92], as well as theories, e.g., the displacement
structure theory was originated in [KKM79] (see also [HR84]).

At the time of publication of [GS72] its authors were unaware of the recur-
sive inversion algorithm that was derived earlier in [Tre64] for the case of positive
definite Toeplitz matrices. The paper [Tre64] also presents (without a proof) a
generalization to non-Hermitian matrices, but it is stated that all principal mi-
nors have to be nonzero. Although the Gohberg-Semencul formula is absent in
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[Tre64], it could be derived from the recursions in [Tre64], at least for the special
cases considered there. However, in many cases it is useful to have a closed-form
formula from which different algorithms can be derived. This is especially true
for the case of the Gohberg-Semencul formula, since it represents A−1, the in-
verse of a Toeplitz matrix, via sum of products of triangular Toeplitz matrices (cf.
with a generalization (0.1) below). The latter property has two important conse-
quences. The first is that the matrix-vector product for A−1 can be computed in
only O(n logn) operations which is fast as compared to O(n2) operations of the
standard algorithm. Moreover, the second important fact is that it was the form
of the Gohberg-Semencul formula that triggered the development of the study of
inversion of structured matrices (see the previous paragraph).

We start our systematic account of the papers included in this volume with
a description of [2] ([1] is a brief summary of the subsequent papers [2] and [3]).

The original paper [GS72] dealt with Toeplitz matrices A =
[

aj−k

]
with

complex entries. Many applications, e.g., in Multi-Input-Multi-Output system the-
ory, give rise to block Toeplitz matrices where the entries are matrices themselves.

In [2] the authors generalized the results of [GS72] to this and even to a
more general case of Toeplitz matrices A =

[
aj−k

]
whose entries are taken from

some non-commutative algebra with a unit. The paper [2] contains several explicit
formulas for A−1 (Gohberg-Heinig formulas), here is one of them. For a given
Toeplitz matrix A =

[
aj−k

]
its inverse is given by

A−1 =

⎡⎢⎢⎢⎢⎣
x0 0 · · · 0

x1 x0
. . .

...
...

...
. . . 0

xn xn−1 · · · x0

⎤⎥⎥⎥⎥⎦x−10

⎡⎢⎢⎢⎣
y0 y−1 · · · y−n

0 y0 · · · y1−n

...
. . .

. . .
...

0 · · · 0 y0

⎤⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎣
0 0 · · · 0

z−n 0
. . .

...
...

. . . . . . 0
z−1 · · · z−n 0

⎤⎥⎥⎥⎥⎦ z−10

⎡⎢⎢⎢⎢⎣
0 wn · · · w1

0 0
. . .

...
...

. . . . . . wn

0 · · · 0 0

⎤⎥⎥⎥⎥⎦
(0.1)

where the parameters {xi, yi, zi, wi} are obtained via solving four linear systems
of equations

A

⎡⎢⎢⎢⎣
x0
x1
...
xn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
e
0
...
0

⎤⎥⎥⎥⎦ , A

⎡⎢⎢⎢⎣
z−n

...
z−1
z0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0
...
0
e

⎤⎥⎥⎥⎦ , (0.2)

[
w0 w1 · · · wn

]
A =

[
e 0 · · · 0

]
,[

y−n · · · y−1 y0
]
A =

[
0 · · · 0 e

]
. (0.3)
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Due to its shift-invariant structure, a Toeplitz matrix A is defined by 2n + 1
entries {a−n, . . . , a−1, a0, a1, . . . , an} appearing in its top row and first column. At
the same time, the formula (0.1) describes the structure of A−1 using the redundant
set of 4n + 2 parameters {xi, yi, wi, zi}. The second section of [2] deals with this
discrepancy and proves that in fact, just 2n + 1 parameters {xi, zi} are sufficient
to completely describe the structure of A−1 (i.e., it is sufficient to solve two linear
equations in (0.2) and to use the first and last columns of A−1 only). Alternatively,
A−1 can also be described by 2n + 1 parameters {yi, wi} only (i.e., it is sufficient
to solve two linear equations in (0.3) and to use the first and last rows of A−1

only). In fact, the second section of [2] establishes a number of interconnections
between the solution of the linear equations in (0.2) and (0.3).

The third section of [2] deals with a natural inverse problem, namely: given
4n + 2 parameters {xi, yi, wi, zi}, is there a Toeplitz matrix satisfying (0.2) and
(0.3) The authors show that if the interconnections between the solution of linear
equations in (0.2) and in (0.3) found in Section 2 are valid, then the desired Toeplitz
matrix exists and it can be recovered via formula (0.1).

We would like to again emphasize that the above results of [2] fully cover a
very important special case when A is a block Toeplitz matrix.

The above three sections fully generalize the inversion formulas of [GS72].
The next three sections of [2] generalize the inversion formulas of [GK72]. The
difference is that [GS72] describes the structure of the entire complex matrix A−1

using its first and last columns only, while [GK72] describes the structure of A−1

using instead its first two columns. As was already mentioned, the first three
sections of [2] generalize the results of [GS72] to matrices whose entries are taken
from a noncommutative algebra with a unit. Correspondingly, the sections 4–6 of
[2] follow the structure of its first three sections and contain full generalization of
the results of [GK72].

We also refer the reader to alternative derivations of the Gohberg-Heinig
formulas in [GKvS04] as well as to [BAS85] for a generalization of the results of
[BAS86] to the block Toeplitz case.

Before turning to paper [3] let us again notice that the Gohberg-Semencul and
the Gohberg-Heinig formulas have a very important computational consequence.
Indeed, observe that the right-hand side of (0.1) involves only four triangular
Toeplitz matrices. Hence A−1 can be efficiently applied to any vector using FFT
(Fast Fourier Transform) in the case when the entries {ak} are either scalars or
matrices of a reasonably small size. Furthermore, the linear equations in (0.2) and
(0.3) can be efficiently solved using the Levinson algorithm [Wie49] in the scalar
case or using block Levinson algorithm of [Mus88] in the block case. To sum up,
the scheme just described means that the Gohberg-Semencul and the Gohberg-
Heinig formulas imply the low cost O(n2) arithmetic operations for solving any
block Toeplitz linear system when the blocks are reasonably small. It is worth men-
tioning that using Gohberg-Semencul-Heinig formulas in [BGY80, CK89, CK91]
an algorithm requiring only O(n log2 n) operations was developed.
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Along with speed, one is also always concerned about numerical accuracy,
and the Gohberg-Semencul formula was shown in [GH95] and [Hei01] to always
provide numerically accurate results unless the condition number of A is too large.

The paper [GS72] contained not only Toeplitz inversion formulas but also
their continual analogs. In fact, the authors designed a formula for the inverse of
integral operators of the form

((I −K)ϕ)(t) = ϕ(t)−
∫ τ

0

k(t− s)ϕ(s)ds (0 ≤ t ≤ τ)

acting in the space Lp(0, τ), where the kernel k(t) is a scalar function from
L1(−τ, τ). Due to the difference nature of the kernel k(t − s), I − K is a con-
tinuous analog of a finite Toeplitz matrix A =

[
aj−k

]
(whose entries depend

only on the difference j − k of indices). The paper [3] generalizes these results
of [GS72] to the case when the operator I − K acts in the space Ln

p (0, τ), and
k(t) is an n× n matrix function from Ln

1 (−τ, τ). Thus, the paper [3] contains full
continual analogs of the results in [2].

In particular, in the second section of [3] the authors present a continual
analog of the formula (0.1). The four equations in (0.2) and (0.3) are replaced by
the following four equations

x(t)−
∫ τ

0

k(t− s)x(s)ds = k(t), z(−t)−
∫ τ

0

k(s− t)z(−s)ds = k(−t), (0.4)

w(t) −
∫ τ

0

w(s)k(t − s)ds = k(t), y(−t)−
∫ τ

0

y(−s)k(s− t)ds = k(−t), (0.5)

In this case, the analog of the formula (0.1) is

((I −K)−1f)(t) = f(t) +
∫ τ

0

γ(t, s)f(s)ds,

where the kernel γ(t, s) is determined from (0.4) and (0.5) via

γ(t, s) = x(t− s) + y(t− s)

+
∫ min(t,s)

0

[x(t− s)y(r − s)− z(t− r − τ)w(r − s + τ)]dr

The structure of the paper [3] mimics the structure of the first three sections of
[2] (although the methods of [2] and [3] are absolutely different). Section 3 of [3]
presents the results analogous to the ones of Section 2 of [2], and it describes the
relations between the solutions x(t), z(t) to (0.4) and the solutions w(t), y(t) to
(0.5). Finally, Section 4 of [3] is a counterpart of Section 3 of [2]. Specifically, it
is devoted to the inverse problem of reconstructing the matrix function k(t) from
the matrix functions x(t), y(−t), w(t), z(−t):

Given four matrix function x, y, z, w ∈ Ln×n
1 [0, τ ], find k ∈ Ln×n

1 [−τ, τ ] such
that the corresponding operator I − K is invertible and the given functions are
solutions of the equations (0.4)–(0.5).
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Later, a certain refinement of these solutions turned out to be extremely
useful in solving the inverse problems for Krein’s orthogonal matrix polynomials
and Krein’s orthogonal matrix function, as well as in the study of Krein’s canon-
ical differential systems (see [GL88, GKL08, AGK+09] and references therein).
In fact, for the scalar case the connection of the inverse problems with Krein or-
thogonal polynomials has already been mentioned in the Russian edition of the
monograph [GF71]. Finally, we mention that the solutions of the inverse prob-
lems in [2] inspired several other authors to deal with similar problems (see, e.g.,
[BAS86] and [KK86]).

One of the conditions in the solution of the inverse problem in [2] triggered
the interest of Gohberg and Heinig in Sylvester resultant matrices. Paper [4] is
devoted to the study of generalizations of the classical Sylvester resultant matrix
to the case of polynomials with matrix coefficients.

For scalar polynomials p(λ) and q(λ) of degrees m and n, respectively, the
resultant matrix is a square (m + n) × (m + n) matrix whose basic property is
that its nullity is equal to the number of common zeros of the polynomials p and
q (counting their multiplicities). This notion has been known for centuries (see
[KN81] for history and details).

A simple example found in [4] shows that in the matrix polynomial case
the (square) classical analog of the resultant matrix does not preserve its basic
property concerning the common eigenvalues. Nevertheless, a certain non-square
generalized resultant is introduced in [4] which does have the basic property of the
resultant matrix, namely, the dimension of its kernel is equal to the number of com-
mon eigenvalues of the two given matrix polynomials counting their multiplicities
(properly understood). In general, for two r × r matrix polynomials of degrees m
and n this matrix has the size (2ω−m−n)r×ωr where ω ≥ min{n+mr,m+nr}.
In [4] the kernel of this generalized resultant is completely described in terms of
common Jordan chains of the given polynomials. The proof of this result is rather
involved. One of the important tools is the notion of multiple extension of a system
of vectors which has been invented and studied by the authors.

Of course, in the case r = 1 the generalized resultant in [4] coincides with
the classical one, and the paper [4] contains a refinement of the well known result
on the Sylvester resultant matrix providing a complete description of its kernel in
terms of common zeroes of the given (scalar) polynomials p(λ) and q(λ). [4] also
includes applications to the solution of a system of two equations in two unknowns
λ and μ in the case when each of these equations is a matrix polynomial in λ and
a matrix polynomial in μ.

It is worth bearing in mind that the results of paper [4] had been obtained
before the spectral theory of matrix polynomials was developed by I. Gohberg,
P. Lancaster and L. Rodman (see [GLR83]) and from our point of view it is rather
miraculous that the results of [4] were obtained without using this theory. Upon
emergence of the latter theory, the notion of the generalized resultant was further
analyzed in [GKLR81, GKLR83] in connection with some other classical notions
(like Vandermonde, Bezoutian, etc.) Also, in [GKL08] and [KL09] necessary and
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sufficient conditions for the matrix polynomials p and q are found which ensure
that the generalized resultant in [4] can be taken to be a square block matrix.

In paper [5], Gohberg and Heinig invented a continual analogue of the resul-
tant. Namely, for two entire functions A(λ) and B(λ) (λ ∈ C) of the form

A(λ) = a0 +
∫ τ

0

a(t)eiλtdt, B(λ) = b0 +
∫ 0

−τ

b(t)eiλtdt (0.6)

where a0, b0 ∈ C1, a ∈ L1[0, τ ], b ∈ L1[−τ, 0], and τ is some positive number, they
define the operator R0(A,B) acting on L1[−τ, τ ] by the rule

(R0(A,B)f
)
(t) =

⎧⎪⎪⎨⎪⎪⎩
f(t) +

τ∫
−τ

a(t− s)f(s)ds (0 ≤ t ≤ τ)

f(t) +
τ∫
−τ

b(t− s)f(s)ds (−τ ≤ t < 0)
(0.7)

with the convention that a(t) = 0 for t /∈ [0, τ ] and b(t) = 0 for t /∈ [−τ, 0]. In [5] the
operator R0(A,B) is called the resultant operator of the functions A(λ) and B(λ).
In the scalar case the kernel of the operator R0(A,B) is completely described
in [5] in terms of common zeroes of the functions A and B. In particular, its
dimension is precisely equal to the number of common zeroes of A and B (counting
multiplicities). Thus in [5], an appropriate notion of a resultant for non-polynomial
functions has been defined for the first time.

As in the discrete case simple examples show that this resultant is not working
in the matrix valued case and hence a straightforward generalization of the above
result to the case of matrix functions A(λ) and B(λ) turned out to be impossible.
One can only state that dim KerR0(A,B) ≥ # { common eigenvalues of A and B
(properly understood) }. The reason for this phenomenon lies in the fact that
in the matrix case (i.e., when A and B are d × d matrix functions) the kernel of
R0(A,B) may contain matrix functions that are not smooth enough (actually, they
are not even absolutely continuous). This obstacle has been surmounted in [5] by a
slight modification of the definition of R0(A,B) through introducing a generalized
resultant Rε(A,B) acting from Ld

1[−τ, τ +ε] to Ld
1[−τ−ε, τ +ε] (see formula (2) in

[5]). It is proved in [5] that for any ε > 0 the kernel for this operator is completely
described by the common Jordan chains of the matrix functions B(λ) and A(λ),
and in particular, its dimension equals the number of common eigenvalues of B(λ)
and A(λ) (properly understood).

The proof of this result is far from being easy. The applications of the main
result include a method of solving a system of two equation by two variables λ
and μ in the case when the right-hand sides of the equations are of the form (0.6)
in each variable. In another important application a continual analogue of the
Bezoutian is introduced for the case n = 1, and its kernel is completely described
in terms of common zeroes of the functions involved.

Paper [5] lent impetus to several other works in this area. Thus, in [GHKL05]
the Bezoutian for matrix functions of form (0.6) has been studied. In [GKL07b,
GKL07a] necessary and sufficient conditions for A and B have been found which
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ensure that the operator R0(A,B) describes completely the common spectral data
of A and B in the matrix case.

The second part of the book deals with a very different topic. It consists of
papers [6–13], written by I. Gohberg jointly with N. Krupnik1. In these papers,
various aspects of the theory of one dimensional singular integral operators in
the piecewise continuous setting are considered, but the general approach actually
goes back to Gohberg’s paper [Goh52]. There, Gelfand’s theory of commutative
Banach algebras was applied to such operators for the first time, though in the set-
ting of continuous coefficients and closed curves. It was shown that the respective
Calkin algebras (= the quotient algebras modulo the ideal of compact operators)
are commutative, and therefore can be identified with their spaces of maximal
ideals, which in turn are nothing but the curves on which the operators act. The
Fredholmness criteria for these operators can be formulated in terms of their sym-
bols, which in this setting are rather simple continuous functions on these curves,
and do not depend on the choice of the space. Consequently, the essential spectra
of the operators do not depend on the space as well. As was shown in joint work of
I. Gohberg and M. Krein [GK58], this phenomenon persists for convolution type
operators acting on vector functions on the half line. The case of singular integral
operators with continuous (matrix) coefficients was disposed of, with the same
outcome, by I. Simonenko [Sim61]. As became clear later (see, e.g., [BK97]), the
smoothness of the curves (as long as they stay closed) and presence of weight (as
long as the singular integral operator with Cauchy kernel stays bounded) are of
no significance in the continuous coefficients setting.

The situation becomes much more complicated when one moves to a piecewise
continuous setting: the symbols become matrix (as opposed to scalar) functions,
with a domain of a rather complicated nature, in particular, depending on the
Banach space in which the operators act. The (essential) spectra of the operators
then also become functions of the space. More specifically, the content of [6–13] is
as follows.

In [6], the spectra and essential spectra are described for Toeplitz opera-
tors generated by piecewise continuous functions on Hardy spaces Hp (Section 1)
and, in parallel, of singular integral operators with piecewise continuous coeffi-
cients on Lebesgue spaces Lp (Section 2), 1 < p < ∞. To this end, the notion
of p-(non)singular functions and the p-index was introduced, and with their aid
established the role of circular arcs filling the gaps of the spectrum originating
from the discontinuities of the coefficients. In the subsequent paper [GK69b] the
authors showed that the circular arcs persist when a power weight is introduced,
though the curvature of the arcs now depends on the weight exponents. Further
metamorphoses of the spectra were described in [Spi92] (for an arbitrary Mucken-
houpt weight), and in a series of papers by A. Böttcher and Yu. Karlovich (where
the transition to arbitrary Carleson curves was accomplished), summarized in their

1Current mailing address: 424 – 7805 Bayview Ave, Thornhill, Ontario L3T 7N1, Canada
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monograph [BK97]. See also very nicely written survey articles [Böt95, BK01] for
an entertaining, though still educational, guide through the subject.

As an application of these results, in Section 3 of [6] the authors give estimates
from below for the essential norms of the singular integral operator S with the
Cauchy kernel, and the related complementary projections P,Q. They show that
the estimate for S is sharp when p = 2n or p = 2n/(2n − 1), n = 1, 2, . . . Inspired
by these results, Pichorides proved shortly afterwards [Pic72] that in fact this
estimate coincides with the norm of S on the unit circle for all p ∈ (1,∞). The
respective result for the projections P,Q was established much later [HV00]. See
[HV10, Kru10] for the current state of the subject.

The singular integral operators in [6] are also considered on the so called
symmetric spaces (see Section 4); we refer the reader to the translator’s work
[Kar98, Kar00].

Paper [7] contains a detailed description of the Banach algebra generated
by individual Toeplitz operators considered in [6], Section 1. In particular, it is
shown that its Calkin algebra is commutative, and its compact of maximal ideals
is realized as a cylinder with an exotic topology. The symbol of this algebra is
constructed, and the Fredholm criterion and the index formula for the operators
from the algebra are stated in its terms. Note that the case p = 2 was considered by
the authors earlier in [GK69a], and that a parallel theory for the algebra generated
by Toeplitz matrices arising from the Fourier coefficients of piecewise continuous
functions on the sequence space �p (which of course differs from the setting of [7]
when p �= 2) was developed by R. Duduchava in [Dud72].

In [8], it was observed for the first time that rather peculiar objects are
contained in the (closed) algebra generated by singular integral operators with
piecewise continuous coefficients; some operators with unbounded coefficients hav-
ing power or logarithmic singularities among them. As a result, the Fredholmness
criteria for such operators are obtained.

An auxiliary role in this paper is played by a (very useful on its own) obser-
vation that a sufficient Khvedelidze [Khve56] condition for the operator S to be
bounded in Lp space with a power weight actually is also necessary. The resulting
criterion was used repeatedly in numerous publications, though now it can of course
be thought of as a direct consequence of the Hunt-Muckenhoupt-Weeden criterion.

In [9], the algebra generated by singular integral operators with piecewise
continuous coefficients is considered in the case of a composed (that is, consisting
of a finite number of closed or open simple Lyapunov curves) contour. The new
difficulty arising in this setting is that S is not an involution any more; moreover,
the operator S2 − I is not even compact. To overcome this difficulty, an approach
is proposed in this paper (Lemma 1.1) which later received the name of the linear
dilation procedure and was further developed in [GK70] (see also [Kru87], Theorem
1.7, Corollary 1.1 and Theorem 2.4). The symbol of the algebra is constructed,
and in its terms the Fredholmness and the index formula are obtained. The spaces
involved are Lp with power weights. The transition to arbitrary Muckenhoupt
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weights was accomplished in [GKS93], while the class of contours was extended to
composed Carleson curves in [BBKS99].

Section 1 of paper [10] contains a new version of the local principle. The orig-
inal version of the latter, invented by by I.B. Simonenko in [Sim65], is simplified2

here via the introduction of localizing classes which at the same time makes the
new version applicable in a wider setting. There also exists the Allan-Douglas ver-
sion of the local principle; the relations between the three are discussed in [BKS88].
All three versions are currently in use, as a powerful tool in operator theory and
numerical analysis; see, i.e., [BS93, DS08, FRS93, Kar98] for some further exam-
ples of the Gohberg-Krupnik local principle’s applications. In the paper itself, the
local principle is used to establish (i) the local closedness of the set of matrix func-
tions generating Fredholm Toeplitz operators on the spaces L2, (ii) the Fredholm
theory of operators defined on �p via Toeplitz matrices generated by continuous
matrix functions (and the algebras generated by them), and (iii) a parallel theory
for the algebras generated by paired operators.

In [11], the symbol is constructed for the non-closed algebra generated by
the singular integral operators with piecewise continuous coefficients on piecewise
Lyapunov composed curves in the case of Lp spaces with power weights. This
symbol is a matrix valued function (of variable size, depending on the geometry
of the curve), the non-singularity of which is responsible for the Frednolmness
of the operator. The index of the operator is calculated in terms of the symbol
as well. These results were carried over to the closure of the algebra in a later
authors’ publication [GK93]. The transition to arbitrary (Muckenhoupt) weights
and (Carleson) composed curves was accomplished in already mentioned papers
[GKS93, BBKS99]; see also [BGK+96] for an important intermediate step.

The paper [12] in its time was a breakthrough in the theory of singular integral
operators with involutive shift. In clarification of the results accumulated earlier
(see, i.e., [Lit67, ZL68, Ant70, KS72b, KS72a]), the authors came up with the
relation which makes crystal clear the relation between the Fredholm properties
and the index of the operator A (with shift) and the associated with it operator ÃW

(without shift but acting on the space of vector functions with the size doubled).
Moreover, for the operators with orientation preserving shift the relation actually
holds for arbitrary measurable matrix coefficients, not just in the continuous case.
On the other hand, for the orientation reversing shift the Fredholmness of AW is
still sufficient for the Fredholmness of A while the converse statement fails already
in the case of piecewise continuous coefficients.

The paper [12] contains also the matrix symbol construction for the (non-
closed) algebra generated by the singular integral operators with piecewise contin-
uous coefficients and the shift (Wφ)(t) = φ(−t) acting on the unweighted space
L2(−1, 1). The generalization of this construction to the setting of arbitrary simple
closed Lyapunov contours and changing orientation (sufficiently smooth) involu-
tive shifts is carried out in [13].

2The presentation of the method per se in [10] takes only two pages.
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Inversion of Finite Toeplitz Matrices

Israel Gohberg and Georg Heinig

In this communication Toeplitz matrices of the form ‖aj−k‖n
j,k=0, where aj (j =

0,±1, . . . ,±n) are elements of some noncommutative algebra, and their contin-
ual analogues are considered. The theorems presented here are generalizations of
theorems from [1] to the noncommutative case.

Detailed proofs of the theorems stated below as well as generalizations of
theorems from [2] to the noncommutative case and their continual analogues will
be given elsewhere.

1. Inversion of Toeplitz matrices

LetR be a noncommutative ring with unit element e and aj (j = 0,±1, . . . ,±n) be
some elements of R. For this collection of elements we consider in R the following
systems of equations:

n∑
k=0

aj−kxk = δ0je (j = 0, 1, . . . , n), (1)

n∑
k=0

ak−jz−k = δ0je (j = 0, 1, . . . , n), (2)

n∑
k=0

wkaj−k = δ0je (j = 0, 1, . . . , n), (3)

n∑
k=0

y−kak−j = δ0je (j = 0, 1, . . . , n). (4)

It is easy to see that if equations (1) and (4) are solvable then x0 = y0, and if
equations (2) and (3) are solvable then z0 = w0.

The paper was originally published as I.C. Gohberg, G. Ha�inig, Ob obrawenii koneqnyh

tëplicevyh matric, Matem. Issled. 8 (1973), � 3(29), 151–156.
MR0341163 (49 #5913), Zbl 0337.15004.
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Theorem 1. Let A = ‖aj−k‖n
j,k=0 be an invertible matrix with elements in R and

xj , z−j , wj , y−j (j = 0, 1, . . . , n) be solutions in R of equations (1)–(4). If at least
one of the elements x0 or z0 is invertible, then the other is also invertible and the
matrix inverse to A is constructed by the formula

A−1 =

∥∥∥∥∥∥∥∥∥
x0 0 . . . 0
x1 x0 . . . 0
...

...
. . .

...
xn xn−1 . . . x0

∥∥∥∥∥∥∥∥∥x−10

∥∥∥∥∥∥∥∥∥
y0 y−1 . . . y−n

0 y0 . . . y1−n

...
...

. . .
...

0 0 . . . y0

∥∥∥∥∥∥∥∥∥

−

∥∥∥∥∥∥∥∥∥
0 . . . 0 0

z−n . . . 0 0
...

. . .
...

...
z−1 . . . z−n 0

∥∥∥∥∥∥∥∥∥ z−10

∥∥∥∥∥∥∥∥∥
0 wn . . . w1
...

...
. . .

...
0 0 . . . wn

0 0 . . . 0

∥∥∥∥∥∥∥∥∥ .

(5)

In the case whenR coincides with the algebra L(m,C) of all complex matrices
of order m and the matrix A is positive definite, this result was obtained, in fact,
in [3].

Also, under the condition R = L(m,C) and other additional assumptions on
the matrix A, results similar to Theorem 1 are contained in [4].

Notice that in the case whenR is an algebra over C (or R), from the solvability
of equations (1)–(4) and the invertibility of at least one of the elements x0, z0 it
follows that the matrix A is invertible1. In a number of cases this statement remains
true if one requires only the solvability of two equations (1), (2) or (3), (4). For
instance, this holds for R = L(m,C). The same takes place when the elements aj

have the form λjI +Tj, where λj are complex numbers and Tj are linear compact
operators in a Banach space L.

As an example consider the matrix

A =

∥∥∥∥∥∥∥∥∥
e a . . . an

b e . . . an−1
...

...
. . .

...
bn bn−1 . . . e

∥∥∥∥∥∥∥∥∥
where a and b are some elements of R. The matrix A is invertible if and only if
the element e−ab is invertible. If the element e−ab is invertible, then the element
e − ba is also invertible, and the solutions of equations (1)–(4) are given by the

1Probably this statement remains true also in the more general case of an arbitrary ring R with
unit.
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formulas

x0 = c, x1 = −bc, x2 = x3 = · · · = xn = 0,
y0 = c, y−1 = −ca, y−2 = y−3 = · · · = y−n = 0,
w0 = d, w1 = −db, w2 = w3 = · · · = wn = 0,
z0 = d, z−1 = −ad, z−2 = z−3 = · · · = z−n = 0,

where c = (e− ab)−1 and d = (e− ba)−1. In view of Theorem 1, we obtain that in
the case under consideration

A−1 =

∥∥∥∥∥∥∥∥∥∥∥∥

c −ca 0 . . . 0 0 0
−bc bca + c −ca . . . 0 0 0
0 −bc bca + c . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . −bc bca + c −ca
0 0 0 . . . 0 −bc d

∥∥∥∥∥∥∥∥∥∥∥∥
.

In the case a = b ∈ C a similar example was considered in [5].
Theorem 1 implies the following.

Corollary 1. Let the conditions of Theorem 1 be fulfilled. Then the matrix An−1 =
‖aj−k‖n−1

j,k=0 is invertible and

A−1n−1 =

∥∥∥∥∥∥∥∥∥
x0 0 . . . 0
x1 x0 . . . 0
...

...
. . .

...
xn−1 xn−2 . . . x0

∥∥∥∥∥∥∥∥∥x−10

∥∥∥∥∥∥∥∥∥
y0 y−1 . . . y1−n

0 y0 . . . y2−n

...
...

. . .
...

0 0 . . . y0

∥∥∥∥∥∥∥∥∥
−

∥∥∥∥∥∥∥∥∥
z−n 0 . . . 0
z1−n z−n . . . 0
...

...
. . .

...
z−1 z−2 . . . z−n

∥∥∥∥∥∥∥∥∥ z−10

∥∥∥∥∥∥∥∥∥
wn wn−1 . . . w1
0 wn . . . w2
...

...
. . .

...
0 0 . . . wn

∥∥∥∥∥∥∥∥∥ .

(6)

2. Inverse problem

Consider the problem of reconstruction of the matrix ‖aj−k‖n
j,k=0 from the solu-

tions of equations (1)–(4).

Theorem 2. Let wj, xj , y−j, z−j (j = 0, 1, . . . , n) be given systems of elements
in R and the elements w0, x0, y0, z0 be invertible. For the existence of an invert-
ible Toeplitz matrix A = ‖aj−k‖n

j,k=0 with elements aj ∈ R (j = 0,±1, . . . ,±n)
for which wj, xj, y−j, z−j are solutions of equations (1)–(4) it is necessary and
sufficient that the following three conditions be fulfilled:
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1) x0 = y0 and z0 = w0;

2)
∥∥∥∥∥∥∥∥∥

x0 0 . . . 0
x1 x0 . . . 0
...

...
. . .

...
xn xn−1 . . . x0

∥∥∥∥∥∥∥∥∥x−10

∥∥∥∥∥∥∥∥∥
y−n 0 . . . 0
y1−n y−n . . . 0
...

...
. . .

...
y0 y−1 . . . y−n

∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥
z−n 0 . . . 0
z1−n z−n . . . 0
...

...
. . .

...
z−1 z−2 . . . z−n

∥∥∥∥∥∥∥∥∥ z−10

∥∥∥∥∥∥∥∥∥
w0 0 . . . 0
w1 w0 . . . 0
...

...
. . .

...
wn wn−1 . . . w0

∥∥∥∥∥∥∥∥∥
and ∥∥∥∥∥∥∥∥∥

xn 0 . . . 0
xn−1 xn . . . 0
...

...
. . .

...
x0 x1 . . . xn

∥∥∥∥∥∥∥∥∥x−10

∥∥∥∥∥∥∥∥∥
y0 0 . . . 0
y−1 y0 . . . 0
...

...
. . .

...
y−n y1−n . . . y0

∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥
z0 0 . . . 0
z−1 z0 . . . 0
...

...
. . .

...
z−n z1−n . . . z0

∥∥∥∥∥∥∥∥∥ z−10

∥∥∥∥∥∥∥∥∥
wn 0 . . . 0

wn−1 wn . . . 0
...

...
. . .

...
w0 w1 . . . wn

∥∥∥∥∥∥∥∥∥ ;

3) at least one of the matrices

M =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

x0 . . . 0 z−n . . . 0
...

. . .
...

...
. . .

...

xn−1
. . . x0 z−1

. . . z−n

xn
. . . x1 z0

. . . z1−n

...
. . .

...
...

. . .
...

0 . . . xn 0 . . . z0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
,

N =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

w0 . . . wn−1 wn . . . 0
...

. . . . . . . . . . . .
...

0 . . . w0 w1 . . . wn

y−n . . . y−1 y0 . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . y−n y1−n . . . y0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
is invertible.

If conditions 1)–3) hold, then the matrix A is uniquely reconstructed by
formula (5). The matrix A can be reconstructed also by one pair of solutions of
equations (1)–(4).



Inversion of Finite Toeplitz Matrices 5

Theorem 3. Let xj, z−j (j = 0, 1, . . . , n) be given systems of elements in R and
the elements x0 and z0 be invertible. For the existence of an invertible Toeplitz
matrix A = ‖aj−k‖n

j,k=0 with elements aj ∈ R (j = 0,±1, . . . ,±n) for which xj

and z−j are solutions of equations (1) and (2) it is necessary and sufficient that
the matrix M be invertible and for the vector∥∥∥∥∥∥∥∥∥∥∥∥

χ−n

...
χ0
...

χn−1

∥∥∥∥∥∥∥∥∥∥∥∥
= M−1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0
...
0

z−nz
−1
0 xn − x0
...

z−1z−10 xn − xn−1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
the condition χ0 = −e be fulfilled.

An analogous theorem holds for the pair of solutions wj and y−j.

3. Continual analogue

Let A be a Banach algebra and k(t) (−τ ≤ t ≤ τ , τ > 0) be a measurable function
with values in A such that ∫ τ

−τ

‖k(t)‖ dt <∞,

that is, k(t) ∈ L1([−τ, τ ],A).
The role of equations (1)–(4) in the continual case is played by the following

equations:

g+(t)−
∫ τ

0

k(t− s)g+(s) ds = k(t) (0 ≤ t ≤ τ), (7)

h+(t)−
∫ τ

0

h+(s)k(t− s) ds = k(t) (0 ≤ t ≤ τ), (8)

g−(−t)−
∫ τ

0

k(s− t)g−(−s) ds = k(−t) (0 ≤ t ≤ τ), (9)

h−(−t)−
∫ τ

0

h−(s)k(s− t) ds = k(−t) (0 ≤ t ≤ τ). (10)

Theorem 4. Let the operator I −K, where

(Kϕ)(t) =
∫ τ

0

k(t− s)ϕ(s) ds (0 ≤ t ≤ τ),

be invertible in the space L1([0, τ ],A). Then

((I −K)−1ϕ)(t) = ϕ(t) +
∫ τ

0

γ(t, s)ϕ(s) ds,
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where
γ(t, s) = g+(t− s) + h−(t− s)

+
∫ min(t,s)

0

g+(t− u)h−(u− s) du −
∫ τ+min(t,s)

τ

g−(t− u)h+(u− s) du,

g+(−t) = h−(t) = 0 for t > 0,
and g+(t), h+(t), g−(t), h−(t) be solutions of equations (7)–(10) such that

g+(t), h+(t) ∈ L1([0, τ ],A), g−(t), h−(t) ∈ L1([−τ, 0],A).

Note that if A = L(m,C) and the matrix function k(t) is selfadjoint or
differentiable and dk(t)/dt ∈ L1([−τ, τ ],A), then the solvability of equations (7)–
(10) implies the invertibility of the operator I −K 2.

We will not formulate here continual analogs of inverse theorems.
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Inversion of Finite Toeplitz Matrices Consisting
of Elements of a Noncommutative Algebra

Israel Gohberg and Georg Heinig

Abstract. Theorems on the inversion of Toeplitz matrices ‖aj−k‖n
j,k=0 con-

sisting of complex numbers are obtained in [1, 2]. In this paper those results
are generalized to the case where aj (j = 0,±1, . . . ,±n) are elements of some
noncommutative algebra with unit. The paper consists of six sections. The
results of [1] are generalized in the first three sections, the results of [2] are ex-
tended in the last three sections. Continual analogues of results of this paper
will be presented elsewhere.

1. Theorems on inversion of Toeplitz matrices

Everywhere in what follows A denotes some (in general, noncommutative) algebra1

with unit e.
In this section the inverse matrix to a matrix ‖aj−k‖n

j,k=0 with elements
aj ∈ A (j = 0,±1, . . . ,±n) is constructed from solutions of the following equations

n∑
k=0

aj−kxk = δ0je (j = 0, 1, . . . , n), (1.1)

n∑
k=0

ak−jz−k = δ0je (j = 0, 1, . . . , n), (1.2)

n∑
k=0

wkaj−k = δ0je (j = 0, 1, . . . , n), (1.3)

n∑
k=0

y−kak−j = δ0je (j = 0, 1, . . . , n). (1.4)

The paper was originally published as I.C. Gohberg, G. Ha�inig, Obrawenie koneqnyh

tëplicevyh matric, sostavlennyh iz �lementov nekommutativno�i algebry, Rev.
Roumaine Math. Pures Appl. 19 (1974), 623–663. MR0353040 (50 #5526), Zbl 0337.15005.
1A major part of the results of the paper remains true also in the case when A is a ring with a
unit.
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First of all, note that if equations (1.1) and (1.4) are solvable, then x0 = y0.
Indeed,

y0 =
k∑

j=0

y−j

(
n∑

k=0

aj−kxk

)
=

n∑
k=0

⎛⎝ n∑
j=0

y−jaj−k

⎞⎠xk = x0.

From the equalities

z0 =
n∑

j=0

wj

(
n∑

k=0

ak−jz−k

)
, w0 =

n∑
k=0

⎛⎝ n∑
j=0

wjak−j

⎞⎠ z−k

it follows that if equations (1.2) and (1.3) are solvable, then z0 = w0.

Theorem 1.1. Let elements aj (j = 0,±1, . . . ,±n) belong to the algebra A. If
systems (1.1)–(1.4) are solvable and one of the elements z0, x0 is invertible, then
the matrix A = ‖aj−k‖n

j,k=0 and the second element are invertible and the matrix
inverse to A is constructed by the formula

A−1 =

∥∥∥∥∥∥∥∥∥
x0 0 . . . 0
x1 x0 . . . 0
...

...
. . .

...
xn xn−1 . . . x0

∥∥∥∥∥∥∥∥∥x−10

∥∥∥∥∥∥∥∥∥
y0 y−1 . . . y−n

0 y0 . . . y1−n

...
...

. . .
...

0 0 . . . y0

∥∥∥∥∥∥∥∥∥
−

∥∥∥∥∥∥∥∥∥
0 . . . 0 0

z−n . . . 0 0
...

. . .
...

...
z−1 . . . z−n 0

∥∥∥∥∥∥∥∥∥ z−10

∥∥∥∥∥∥∥∥∥
0 wn . . . w1
...

...
. . .

...
0 0 . . . wn

0 0 . . . 0

∥∥∥∥∥∥∥∥∥ .

(1.5)

This theorem was obtained in [3] in the case when A coincides with the
algebra Cm×m of all complex matrices of order m and the matrix A is positive
definite.

Under the condition A = Cm×m and other additional assumptions on the
matrix A, results similar to Theorem 1.1 are contained in [4].

Note that in the proof of Theorem 1.1 given below some ideas from [3] are
used.

Preceding the proof of Theorem 1.1 we state the following lemma.

Lemma 1.1. Let V be a linear space, L(V) be the algebra of all linear operators
acting in V, and A = ‖Aj−k‖n

j,k=0 be a Toeplitz matrix with elements Aj (j =
0,±1, . . . ,±n) in L(V). If the systems of equations

n∑
k=0

Aj−kXk = δ0jI (j = 0, 1, . . . , n), (1.6)

n∑
k=0

Ak−jZ−k = δ0jI (j = 0, 1, . . . , n), (1.7)
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n∑
k=0

WkAj−k = δ0jI (j = 0, 1, . . . , n), (1.8)

n∑
k=0

Y−kAk−j = δ0jI (j = 0, 1, . . . , n) (1.9)

are solvable in L(V) and at least one of the operators W0, X0, Y0, Z0 is invertible,
then the matrix A is also invertible.

Proof. Suppose all the hypotheses of the lemma are fulfilled. By Vn denote the
linear space of one-row matrices ϕ = {ϕj}n

j=0 with entries ϕj ∈ V.
Consider the homogeneous equation Aϕ = 0 (ϕ ∈ Vn). If ϕ = {ϕj}n

j=0 is a
solution of this equation, then in view of (1.8) we obtain

0 =
n∑

j=0

Wn−j

n∑
k=0

Aj−kϕk =
n∑

k=0

⎛⎝ n∑
j=0

Wn−jAj−k

⎞⎠ϕk = ϕn.

Analogously, in view of (1.9),

0 =
n∑

j=0

Y−j

n∑
k=0

Aj−kϕk =
n∑

k=0

⎛⎝ n∑
j=0

Y−jAj−k

⎞⎠ϕk = ϕ0.

By KerA denote the subspace of Vn that consists of all solutions of the
equation Aϕ = 0. To each nonzero vector ϕ = {ϕj}n

j=0 ∈ KerA we assign the
number p(ϕ) = p such that ϕ0 = ϕ1 = · · · = ϕp−1 = 0 and ϕp �= 0. By what has
just been proved, 0 < p(ϕ) < n. Let p∗ be the maximal value of the function p(ϕ)
(ϕ ∈ KerA, ϕ �= 0) and let h ∈ KerA be a vector such that p∗ = p(h). Consider
the vector h− = {h−j }n

j=0 ∈ Vn defined by the equality

h−j =

{
hj−1 if j = 1, 2, . . . , n,

0 if j = 0.

Obviously,
n∑

k=0

Aj−kh
−
k =

n∑
k=0

Aj−k−1hk = 0 (j = 1, 2, . . . , n).

From here and (1.9) it follows that

Y0

n∑
k=0

A−kh
−
k = Y0

n∑
k=0

A−kh
−
k +

n∑
j=1

Y−j

n∑
k=0

Aj−kh
−
k

=
n∑

k=0

⎛⎝ n∑
j=0

Y−jAj−k

⎞⎠ h−k = h−0 = 0.

Therefore, if the element Y0 (or the element X0 coinciding with it) is invertible,
then h− ∈ KerA. Because p(h−) > p(h), we conclude that in this case the subspace
KerA consists of zero only.
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Analogously, we define the function q = q(ϕ) (ϕ ∈ KerA, ϕ �= 0, ϕ =
{ϕj}n

j=0) such that ϕq �= 0 and ϕq+1 = · · · = ϕn = 0. By what has just been
proved, 0 < q(ϕ) < n. Put q∗ = min q(ϕ) (ϕ ∈ KerA, ϕ �= 0). Let g be a vector
in KerA such that q(g) = q∗. Then for the vector g+ = {g+j }n

j=0 defined by the
equality

g+j =

{
gj+1 if j = 0, 1, . . . , n− 1,

0 if j = n,

we have
n∑

k=0

Aj−kg
+
k =

n∑
k=0

Aj−k+1gk = 0 (j = 0, 1, . . . , n− 1).

From here and (1.8) it follows that

W0

n∑
k=0

An−kg
+
k = W0

n∑
k=0

An−kg
+
k +

n−1∑
j=0

Wn−j

r∑
k=0

Aj−kg
+
k

=
n∑

k=0

⎛⎝ n∑
j=0

Wn−jAj−k

⎞⎠ g+k = g+n = 0.

Hence, if the element W0 (or the element Z0 coinciding with it) is invertible, then
g ∈ KerA and q(g+) > q(g). It follows that KerA = {0} in this case, too.

Thus, we have proved that in all cases KerA = {0}.
Passing to the dual space and the adjoint operator equations, it is easy to

see that the the adjoint matrix A∗ = ‖A∗k−j‖n
j,k=0 also satisfies the hypotheses of

the lemma. Hence, by what has been proved, we obtain that KerA∗ = {0}. Thus,
the operator generated by the matrix A in the space Vn is invertible. Therefore,
the matrix A is invertible in L(V).

The lemma is proved. �

Note that in some cases Lemma 1.1 remains true if in its formulation one
considers only the two equations (1.8), (1.9) or (1.6), (1.7) instead of all four
equations (1.6)–(1.9). For instance, this happens if V = Cm, because in this case
dim KerA = dimKerA∗. The same happens if V is a linear topological space and
the operators Aj have the form εjI + Tj , where εj are complex numbers and Tj

are compact operators.

Proof of Theorem 1.1. First, let us show that the matrix A is invertible. Assume
that the linear space V coincides with A. Obviously, one can consider A as a part of
the algebra L(A) of all linear operators acting in A. The hypotheses of Lemma 1.1
are satisfied for the matrix A = ‖aj−k‖n

j,k=0. Hence the matrix A is invertible. The
entries of the inverse matrix belong to the algebra A. Indeed, the equations

n∑
k=0

aj−ktkr = δrje (j = 0, 1, . . . , n)
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have solutions tkr in A for every r = 0, 1, . . . , n. From here it follows that the matrix
A−1 coincides with the matrix ‖tkr‖n

k,r=0 whose entries belong to the algebra A.
We construct the matrices

W =

∥∥∥∥∥∥∥∥∥
e . . . 0 0
...

. . .
...

...
0 . . . e 0
wn . . . w1 w0

∥∥∥∥∥∥∥∥∥ , X =

∥∥∥∥∥∥∥∥∥
x0 0 . . . 0
x1 e . . . 0
...

...
. . .

...
xn 0 . . . e

∥∥∥∥∥∥∥∥∥ ,

Y =

∥∥∥∥∥∥∥∥∥
y0 y−1 . . . y−n

0 e . . . 0
...

...
. . .

...
0 0 . . . e

∥∥∥∥∥∥∥∥∥ , Z =

∥∥∥∥∥∥∥∥∥
e . . . 0 z−n

...
. . .

...
...

0 . . . e z−1
0 . . . 0 z0

∥∥∥∥∥∥∥∥∥ .

Obviously, the equalities

AZ =

∥∥∥∥∥∥∥∥∥
0

An−1
...
0

an . . . a1 e

∥∥∥∥∥∥∥∥∥ , AX =

∥∥∥∥∥∥∥∥∥
e a−1 . . . a−n

0
... An−1
0

∥∥∥∥∥∥∥∥∥
hold. Here and in what follows, by Ar (r = 0, 1, . . . , n) we denote the matrix
‖aj−k‖r

j,k=0. From these equalities it follows that the element x0 or z0 is invertible
if and only if the matrix An−1 is invertible. Hence the invertibility of one of the
elements x0 or z0 implies the invertibility of the other one.

It is easily seen that

WAZ =
∥∥∥∥ An−1 0

0 w0

∥∥∥∥ , Y AX =
∥∥∥∥ x0 0

0 An−1

∥∥∥∥ , (1.10)

whence

A−1 = Z

∥∥∥∥ A−1n−1 0
0 w−10

∥∥∥∥W = X

∥∥∥∥ x−10 0
0 A−1n−1

∥∥∥∥Y. (1.11)

Setting A−1r = ‖cr
jk‖n

j,k=0, we obtain from (1.11) the following recurrent formulas:

cn
jk = cn−1

jk + zj−nw
−1
0 wn−k (j, k = 0, 1, . . . , n− 1),

cn
jk = cn−1

j−1,k−1 + xjx
−1
0 y−k (j, k = 1, 2, . . . , n),

(1.12)

and the equalities

cn
nk = wn−k, cn

jn = zj−n, cn
0k = y−k, cn

j0 = xj (1.13)

for j, k = 0, 1, . . . , n.
From equalities (1.12) and (1.13) it follows that

cn
jk = cn

j−1,k−1 + xjx
−1
0 y−k + zj−n−1z−10 wn−k+1 (1.14)



12 I. Gohberg and G. Heinig

for j, k = 1, 2, . . . , n. If one takes cjk = 0, whenever one of the indices j, k is
negative or is greater than n, and z−n−1 = wn+1, then it is easy to see that
equality (1.14) remains true also in the cases j, k = 0, n + 1. Thus, the equality

cn
jk =

min(j,k)∑
r=0

(xj−rx
−1
0 yr−k − zj−n−1−rw

−1
0 wn−k+1+r) (1.15)

holds. This formula coincides with (1.5).
The theorem is proved. �

Corollary 1.1. Let the hypotheses of Theorem 1.1 be fulfilled. Then for the matrix
A−1 the equality

A−1 =

∥∥∥∥∥∥∥∥∥
z0 z−1 . . . z−n

0 z0 . . . z1−n

...
...

. . .
...

0 0 . . . z0

∥∥∥∥∥∥∥∥∥ z−10

∥∥∥∥∥∥∥∥∥
w0 0 . . . 0
w1 w0 . . . 0
...

...
. . .

...
wn wn−1 . . . w0

∥∥∥∥∥∥∥∥∥
−

∥∥∥∥∥∥∥∥∥
0 xn . . . x1
...

...
. . .

...
0 0 . . . xn

0 0 . . . 0

∥∥∥∥∥∥∥∥∥x−10

∥∥∥∥∥∥∥∥∥
0 . . . 0 0

y−n . . . 0 0
...

. . .
...

...
y−1 . . . y−n 0

∥∥∥∥∥∥∥∥∥

(1.16)

also holds.

Proof. Indeed, from equality (1.14) it follows that

cn
jk = cn

j+1,k+1 + zj−nz
−1
0 wn−k − xj+1x

−1
0 y1−k (1.17)

for j, k = 0, 1, . . . , n− 1. From here and (1.13) it follows that2

cn
jk =

min(n−j,n−k)∑
r=0

(zj−n+rz
−1
0 wn−k−r − xj+1+rx

−1
0 y−k−1−r).

This formula coincides with (1.16). �

As an example consider the matrix

A =

∥∥∥∥∥∥∥∥∥
e a . . . an

b e . . . an−1
...

...
. . .

...
bn bn−1 . . . e

∥∥∥∥∥∥∥∥∥ ,

where a and b are some elements of the algebra A. Assume that the element e−ab is
invertible. Then the element e− ba is also invertible (see [5, Chap. II, Section 7.5],

2Here it is assumed that xn+1 = y−n−1 = 0.
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p. 197 of the 2nd Russian edition). It is easy to see that solutions of equations
(1.1)–(1.4) are determined by the formulas

x0 = (e− ab)−1, x1 = −b(e− ab)−1, x2 = x3 = · · · = xn = 0;

y0 = (e− ab)−1, y−1 = −(e− ab)−1a, y−2 = y−3 = · · · = y−n = 0;

w0 = (e− ba)−1, w1 = −(e− ba)−1b, w2 = w3 = · · · = wn = 0;

z0 = (e− ba)−1, z−1 = −a(e− ba)−1, z−2 = z−3 = · · · = z−n = 0.

In view of Theorem 1.1, we obtain that in the considered case the matrix A is
invertible and its inverse is given by the formula

A−1 =

∥∥∥∥∥∥∥∥∥∥∥∥

c −ca 0 . . . 0 0 0
−bc bca + c −ca . . . 0 0 0
0 −bc bca + c . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . −bc bca + c −ca
0 0 0 . . . 0 −bc d

∥∥∥∥∥∥∥∥∥∥∥∥
,

where c = (e− ab)−1 and d = bca + c− a(e− ba)−1b = (e− ba)−1.
Note that the invertibility of the matrix A implies the invertibility of the

element e− ab because

A

∥∥∥∥∥∥∥∥∥∥∥

e 0 0 . . . 0
−b e 0 . . . 0
0 0 e . . . 0
...

...
...

. . .
...

0 0 0 . . . e

∥∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥∥∥

e− ab 0 0 . . . 0
0 e 0 . . . 0
0 0 e . . . 0
...

...
...

. . .
...

0 0 0 . . . e

∥∥∥∥∥∥∥∥∥∥∥
.

This example was considered in [6] in the case b = a ∈ C.

Theorem 1.2. Let the hypotheses of Theorem 1.1 be fulfilled. Then the matrix An−1
is invertible and its inverse is constructed by the formula

A−1n−1 =

∥∥∥∥∥∥∥∥∥
x0 0 . . . 0
x1 x0 . . . 0
...

...
. . .

...
xn−1 xn−2 . . . x0

∥∥∥∥∥∥∥∥∥x−10

∥∥∥∥∥∥∥∥∥
y0 y−1 . . . y1−n

0 y0 . . . y2−n

...
...

. . .
...

0 0 . . . y0

∥∥∥∥∥∥∥∥∥
−

∥∥∥∥∥∥∥∥∥
z−n 0 . . . 0
z1−n z−n . . . 0
...

...
. . .

...
z−1 z−2 . . . z−n

∥∥∥∥∥∥∥∥∥ z−10

∥∥∥∥∥∥∥∥∥
wn wn−1 . . . w1
0 wn . . . w2
...

...
. . .

...
0 0 . . . wn

∥∥∥∥∥∥∥∥∥ .

(1.18)
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Proof. The invertibility of the matrix An−1 follows from Theorem 1.1 and equali-
ties (1.10). From equalities (1.12) and (1.5) it follows that

cn−1
jk = cn

jk − zj−nw
−1
0 wn−k

=
min(j,k)∑

r=0

(xj−rx
−1
0 yr−k − zj−n−1−rw

−1
0 wn+1−k+r)− zj−nw

−1
0 wn−k

=
min(j,k)∑

r=0

(xj−rx
−1
0 yr−k − zj−n−rw

−1
0 wn−k+r)

for j, k = 0, 1, . . . , n− 1. The last formula coincides with (1.18).
The theorem is proved. �

Corollary 1.2. Let the hypotheses of Theorem 1.1 be fulfilled. Then the matrix An−1
is invertible and the equality

A−1n−1 =

∥∥∥∥∥∥∥∥∥
z0 z−1 . . . z1−n

0 z0 . . . z2−n

...
...

. . .
...

0 0 . . . z0

∥∥∥∥∥∥∥∥∥ z−10

∥∥∥∥∥∥∥∥∥
w0 0 . . . 0
w1 w0 . . . 0
...

...
. . .

...
wn−1 wn−2 . . . w0

∥∥∥∥∥∥∥∥∥
−

∥∥∥∥∥∥∥∥∥
xn xn−1 . . . x1
0 xn . . . x2
...

...
. . .

...
0 0 . . . xn

∥∥∥∥∥∥∥∥∥x−10

∥∥∥∥∥∥∥∥∥
y−n 0 . . . 0
y1−n y−n . . . 0
...

...
. . .

...
y−1 y−2 . . . y0

∥∥∥∥∥∥∥∥∥

(1.19)

holds.

This corollary is derived from Theorem 1.2 in the same way as Corollary 1.1
is deduced from Theorem 1.1.

Formulas (1.15) and (1.18) also admit another representation, namely, the
next statement holds.

Corollary 1.3. Let the hypotheses of Theorem 1.1 be fulfilled and A−1r = ‖cr
jk‖r

j,k=0

(r = n− 1, n). Put

cr(ζ, θ) =
r∑

j,k=0

cr
jkζ

jθ−k (r = n− 1, n),

where ζ and θ are variables in C. Then the equalities

cn(ζ, θ) = (1− ζθ−1)−1(x(ζ)x−10 y(θ)− (ζθ−1)n+1z(ζ)z−10 w(θ)) (1.20)

and

cn−1(ζ, θ) = (1− ζθ−1)−1(x(ζ)x−10 y(θ)− (ζθ−1)nz(ζ)z−10 w(θ)) (1.21)
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hold, where

w(θ) =
n∑

k=0

wkθ
k, x(θ) =

n∑
k=0

xkθ
k, y(θ) =

0∑
k=−n

ykθ
k, z(θ) =

0∑
k=−n

zkθ
k.

Proof. Indeed, we have

(1− ζθ−1)c(ζ, θ) =
n∑

j,k=0

cjk(ζjθ−k − ζj+1θ−k−1) =
n+1∑

j,k=0

(cjk − cj−1.k−1)ζjθ−k,

where it is assumed that cjk = 0 for j > n, j < 0, j < 0, k > n, or k < 0. Using
formulas (1.13) and (1.14), we get

(1− ζθ−1)c(ζ, θ) =
n∑

j,k=0

xjx
−1
0 y−kζ

jθ−k −
n+1∑

j,k=0

zj−n−1z−10 wn−k+1ζ
jθ−k

=
n∑

j=0

xjζ
jx0

n∑
k=0

y−kθ
−k −

n+1∑
j=1

zj−n−1ζjz−10

n+1∑
k=1

wn−k+1θ
−k.

This immediately implies formula (1.20).
Formula (1.21) is proved analogously. �

2. Properties of solutions of equations (1.1)–(1.4)

Under the hypotheses of Theorem 1.1, the solutions of equations (1.1)–(1.4) are
connected by a series of relations. In particular, the solutions of equations (1.3)
and (1.4) are uniquely determined by the solutions of equations (1.1) and (1.2),
and vice versa. The main properties of the solutions of equations (1.1)–(1.4) are
presented below. Let us fix the following notation. For elements t1, . . . , tm ∈ A, by
Tkm and T km denote the following square Toeplitz matrices:

Tkm =

∥∥∥∥∥∥∥
tk 0
...

. . .
tm . . . tk

∥∥∥∥∥∥∥ , T km =

∥∥∥∥∥∥∥
tk . . . tm

. . .
...

0 tk

∥∥∥∥∥∥∥ .

Through this section we will suppose that the matrix A = ‖aj−k‖n
j,k=0 satisfies

the hypotheses of Theorem 1.1.

Proposition 2.1. For the solutions of equations (1.1)–(1.4) the following relations

X0nx
−1
0 Y−n,0 = Z−n,0z

−1
0 W0n, (2.1)

Xn0x
−1
0 Y0,−n = Z0,−nz

−1
0 Wn0 (2.2)

hold.
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Proof. Indeed, from Theorem 1.1 it follows that

wn−k =
n∑

r=0

(xn−rx
−1
0 yr−k − z−1−rz

−1
0 wn+1+r−k)

and

zj−n =
n∑

r=0

(xj−rx
−1
0 yr−n − z−n−1+j−rz

−1
0 w1+r)

for k = 0, 1, . . . , n and j = 0, 1, . . . , n.
Obviously, from these equalities it follows that

X0nx
−1
0

∥∥∥∥∥∥∥
y−n

...
y0

∥∥∥∥∥∥∥ = Z−n,0z
−1
0

∥∥∥∥∥∥∥
w0
...

wn

∥∥∥∥∥∥∥ (2.3)

and
‖ x0 . . . xn ‖x−10 Y0,−n = ‖ z−n . . . z0 ‖z−10 Wn0. (2.4)

Since the product of lower triangular Toeplitz matrices is again a lower trian-
gular Toeplitz matrix and two such matrices coincide if their first columns coincide,
we see that (2.3) and (2.4) imply equalities (2.1) and (2.2). �

By Jn denote the matrix ‖δj+k,ne‖n
j,k=0. For every Toeplitz matrix A the

equality
JnAJn = A′ (2.5)

holds, where A′ is the matrix transpose of A. Multiplying equalities (2.3) and (2.4)
from the left and the right by Jn and taking into account the identity J2n = I, we
arrive at the following statement.

Proposition 2.2. For the solutions of equations (1.1)–(1.4) the equalities

X0nx−10 Y −n,0 = Z−n,0z−10 W 0n (2.6)

and
Xn0x−10 Y −n,0 = Z0,−nz−10 Wn0 (2.7)

hold.

Let us introduce the matrices Pk by

Pk =

k︷ ︸︸ ︷∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

e 0
e

. . .
e

0
. . .

0 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.
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Since
PkX0n = PkX0nPk, X0nPk = PkX

0nPk,

it is easy to see that from equalities (2.1) and (2.2) it follows that

X0kx
−1
0 Y−n,k−n = Z−n,k−nz

−1
0 W0k (2.8)

and
Xn,n−kx

−1
0 Y0,−k = Z0,−kz

−1
0 Wn,n−k (2.9)

for k = 0, 1, . . . , n.
These equalities and (2.5) also imply the equalities

X0kx−10 Y −n,k−n = Z−n,k−nz−10 W 0k (2.10)

and
Xn,n−kx−10 Y 0,−k = Z0,−kz−10 Wn,n−k (2.11)

for k = 0, 1, . . . , n.

Proposition 2.3. The block matrices

M =

∥∥∥∥∥ X0,n−1 Z−n,−1

Xn1 Z0,1−n

∥∥∥∥∥ , N =

∥∥∥∥∥ W 0,n−1 Wn1

Y −n,−1 Y0,1−n

∥∥∥∥∥
are invertible.

Proof. Let us prove the invertibility of the matrix M . By direct verification we
check that

M =
∥∥∥∥ E R1

0 E

∥∥∥∥ ∥∥∥∥ R2 0
0 R3

∥∥∥∥ ∥∥∥∥ E 0
R4 E

∥∥∥∥
where E = ‖δjke‖n

j,k=0 and

R1 = Z−n,1(Z0,1−n)−1, R2 = X0,n−1 −R1X
n1,

R3 = Z0,1−n, R4 = (Z0,1−n)−1Xn1.

From this equality it follows that the matrix M is invertible if and only if the
matrix R2 is invertible. In view of (2.11), we obtain

Xn1x−10 Y 0,1−n = Z0,1−nz−10 Wn1.

Therefore,

R2 = X0,n−1 − Z−n,−1z−10 Wn1(Y 0,1−n)−1x0

= (X0,n−1x−10 Y 0,1−n − Z−n,−1z−10 Wn,1)(Y 0,1−n)−1x0.

Thus, according to Theorem 1.2, R2 = A−1n−1(Y
0,1−n)−1x0. From here it

follows that the matrix R2 is invertible, and whence the matrix M is invertible,
too. Analogously it is proved that the matrix N is invertible as well. �
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Proposition 2.4. For the matrix

M̃ =

∥∥∥∥∥∥∥∥∥∥∥∥

x0 0 z−n 0
...

. . .
...

. . .
xn . . . x0 z0 . . . z−n

. . .
...

. . .
...

0 xn 0 z0

∥∥∥∥∥∥∥∥∥∥∥∥
,

the homogeneous equation
M̃χ = 0 (2.12)

has a unique solution

χ = {χ−n, . . . , χ−0, χ+0, . . . , , χn} (2.13)

with the property
χ−0 = e, χ+0 = −e. (2.14)

For the solutions wj and y−j (j = 0, 1, . . . , n) of equations (1.3) and (1.4)
the equalities

wj = −z0χj , y−j = x0χ−j (j = 1, 2, . . . , n) (2.15)

hold.

Proof. Indeed, from (2.3) and the equality

Xn1x−10

∥∥∥∥∥∥∥
y−n

...
y−1

∥∥∥∥∥∥∥ = Z0,1−nz−10

∥∥∥∥∥∥∥
w1
...

wn

∥∥∥∥∥∥∥ ,

which results from (2.11), it follows that the vector χ defined by equalities (2.13)–
(2.15) is a solution of equation (2.12).

Let a vector χ with the property (2.14) satisfy condition (2.12). Obviously,
then the equality

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

x0 0 z−n 0
...

. . .
...

. . .
xn−1 . . . x0 z−1 . . . z−n

xn . . . x1 z0 . . . z1−n

. . .
...

. . .
...

0 xn 0 z0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

χ−n

...
χ−1
χ+0

...
χn−1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0
...
0

z−nz
−1
0 xn − x0

z1−nz
−1
0 xn − x1

...
z−1z−10 xn − xn−1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
(2.16)

holds. Since the vector χ satisfies this equality, its components satisfy equality
(2.15) and the matrix on the left-hand side of equality (2.16) coincides with the
invertible matrix M , we conclude that the vector χ defined by equalities (2.13)–
(2.15) is a unique solution of equation (2.12). �
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Note that the following statement is obtained as a byproduct.

Proposition 2.5. Equation (2.16) has a unique solution. For its components, equal-
ities (2.15) hold and χ+0 = −e.

The following statements are proved analogously.

Proposition 2.6. For the matrix

Ñ =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

w0 . . . wn 0
. . .

...
. . .

0 w0 . . . wn

y−n . . . y0 0
. . .

...
. . .

0 y−n . . . y0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
,

the homogeneous equation
ωÑ = 0

has a unique solution

ω = {ω−n, . . . , ω−0, ω+0, . . . , ωn}
with the property

ω−0 = e, ω+0 = −e.

For the solutions xj and z−j (j = 0, 1, . . . , n) of equations (1.1) and (1.2),
the equalities

xj = −ωjy0, z−j = ω−jw0 (j = 1, 2, . . . , n) (2.17)

hold.

Relations between the solutions of equations (1.1)–(1.4) for the matrix A =
‖aj−k‖n

j,k=0 and the matrix An−1 = ‖aj−k‖n−1
j,k=0 are obtained in the next state-

ments.

Proposition 2.7. The elements xn−1
j , zn−1

−j , wn−1
j , yn−1

−j (j = 0, 1, . . . , n−1) defined
by the equalities

xn−1
j = xj − zj−nz

−1
0 xn zn−1

−j = z−j − xn−jx
−1
0 z−n,

wn−1
j = wj − wny

−1
0 yj−n, yn−1

−j = y−j − y−nw
−1
0 wn−j

(2.18)

are solutions of the following equations
n−1∑
k=0

aj−kx
n−1
k = δ0je (j = 0, 1, . . . , n− 1), (2.19)

n−1∑
k=0

ak−jz
n−1
−k = δ0je (j = 0, 1, . . . , n− 1), (2.20)
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n−1∑
k=0

wn−1
k aj−k = δ0je (j = 0, 1, . . . , n− 1), (2.21)

n−1∑
k=0

yn−1
−k ak−j = δ0je (j = 0, 1, . . . , n− 1). (2.22)

It is straightforward to verify this statement.

Proposition 2.8. Let the solutions xn−1
j and zn−1

−j (j = 0, 1, . . . , n−1) of equations
(2.19) and (2.20) exist and the elements xn−1

0 and zn−1
0 be invertible. Then the

elements

ξn = (xn−1
0 )−1 +

n−1∑
k=0

a−k−1zn−1
k+1−n(zn−1

0 )−1αn,

ζn = (zn−1
0 )−1 +

n−1∑
k=0

ak+1x
n−1
n−k−1(x

n−1
0 )−1βn

(2.23)

are also invertible, where

αn = −zn−1
0

n−1∑
k=0

an−kx
n−1
k (xn−1

0 )−1,

βn = −xn−1
0

n−1∑
k=0

ak−nz
n−1
−k (zn−1

0 )−1,

(2.24)

and the equalities

x0 = ξ−1n , z0 = ζ−1n , xn = αnξ
−1
n , z−n = βnζ

−1
n ,

xj =
(
xn−1

j (xn−1
0 )−1 + zn−1

j−n (zn−1
0 )−1αn

)
ξ−1n (j = 1, 2, . . . , n− 1),

z−j =
(
zn−1
−j α0(zn−1

0 )−1 + xn−1
n−j (x

n−1
0 )−1βn

)
ζ−1n (j = 1, 2, . . . , n− 1)

(2.25)

hold, where as usual solutions of equations (1.1), (1.2) are denoted by xj, z−j.

Proof. Indeed, putting

αj = xn−1
j (xn−1

0 )−1 + zn−1
j−n (zn−1

0 )−1αn (j = 1, 2, . . . , n− 1)

and α0 = e, we get
n∑

k=0

aj−kαk =
n−1∑
k=1

aj−kx
n−1
k (xn−1

0 )−1 +
n−1∑
k=1

aj−kz
n−1
k−n(zn−1

0 )−1αn + aj + aj−nαn.

From here it follows that
n∑

k=0

aj−kαk =
n−1∑
k=0

aj−kx
n−1
k (xn−1

0 )−1 +
n∑

k=1

aj−kz
n−1
k−n(zn−1

0 )−1αn. (2.26)
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According to the definition of the elements xn−1
j and zn−1

−j , from here we get

n∑
k=0

aj−kαk = 0 (j = 1, 2, . . . , n− 1). (2.27)

Additionally, from (2.24) and (2.26) it follows that

n∑
k=0

an−kαk =
n−1∑
k=0

an−kx
n−1
0 (xn−1

0 )−1

−
n∑

k=1

an−kz
n−1
k−n(zn−1

0 )−1zn−1
0

n−1∑
k=0

an−kx
n−1
k (xn−1

0 )−1

=

(
e−

n∑
k=1

an−kz
n−1
k−n

)
n−1∑
k=0

an−kx
n−1
k (xn−1

0 )−1 = 0.

(2.28)

From equalities (2.26) and (2.13) it follows that

n∑
k=0

a−kαk = xn−1
0 +

n−1∑
k=0

a−k−1zr−1
k+1−r(z

r−1
0 )−1αn = ξn. (2.29)

For solutions xj of equation (1.1) the equality
n∑

k=0

aj−kxkξn = δj0ξn (j = 0, 1, . . . , n)

holds. From the uniqueness of the solution of system (1.1) it follows that

αj = xjξn (j = 0, 1, . . . , n). (2.30)

In particular, e = α0 = x0ξn. Hence the element ξn is invertible and is the inverse
of the element x0. This fact and equalities (2.27)–(2.30) immediately imply rela-
tions (2.25) for ξn, αn, and xj . Relations (2.25) for ξn, βn, and z−j are proved
analogously.

The statement is proved. �

The following statement is proved analogously.

Proposition 2.9. Let the solutions wn−1
j and yn−1

−j (j = 0, 1, . . . , n−1) of equations

(2.21) and (2.22) exist and the elements wn−1
0 and yn−1

0 be invertible. Then the
elements

θn = (wn−1
0 )−1 − γn

n−1∑
k=0

(zn−1
0 )−1zn−1

k+1−na−k−1,

ηn = (yn−1
0 )−1 + δn

n−1∑
k=0

(yn−1
0 )−1yn−1

n−k−1ak+1
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are also invertible, where

γn = −
n−1∑
k=0

(wn−1
0 )−1wn−1

k an−ky
n−1
0 ,

δn = −
n−1∑
k=0

(yn−1
0 )−1yn−1

−k ak−nw
n−1
0 ,

and the equalities

w0 = θ−1n , y0 = η−1n , wn = θ−1n γn, y−n = η−1n δn,

wj = θ−1n

(
(wn−1
0 )−1wn−1

j + γn(yn−1
0 )−1yn−1

j−n

)
(j = 1, 2, . . . , n− 1),

y−j = η−1n

(
(yn−1
0 )−1yn−1

−j + δn(wn−1
0 )−1wn−1

n−j

)
(j = 1, 2, . . . , n− 1)

(2.31)

hold.

The successive application of formulas (2.25) and (2.31) to all minors Ar

(r = 0, 1, . . . , n) allows us to give a rule for the effective calculation of the solutions
of equations (1.1)–(1.4) in the case when all minors Ar are invertible.

Formulas (2.25) and (2.31) can also be applied without the assumption that
all the minors Ar are invertible. Consider the case when A is a Banach algebra
and not all minors Ar are invertible. Suppose

A(λ) = ‖ajk(λ)‖n
j,k=0

is a matrix function that is holomorphic and invertible in some (connected) domain
G ⊂ C and whose entries belong to A. Assume that 0 ∈ G, A(0) = A, and there
exists some point λ0 ∈ G such that all minors

Ar(λ0) = ‖aj−k(λ0)‖r
j,k=0

are invertible. Then for all λ in some neighborhood of the point λ0 the solutions
xr

j(λ), zr
−j(λ), wr

j (λ), and yr
−j(λ) of equations (1.1)–(1.4) for the matrix Ar(λ)

exist. These solutions are holomorphic functions. Moreover, the functions xr
0(λ)

(= yr
0(λ)) and zr

0(λ) (= wr
0(λ)) are invertible in a neighborhood of the point λ0.

Thus the functions xn
j (λ), zn

−j(λ), wn
j (λ), and yn

−j(λ) can be calculated with the
aid of the recurrent formulas (2.25) and (2.31). Since the matrix A(λ) is invertible
for all λ ∈ G, we see that for all λ ∈ G, there exist solutions xj(λ), z−j(λ),
wj(λ), and y−j(λ) of equations (1.1)–(1.4) for the matrix A(λ). These solutions
depend on λ holomorphically in G. It follows that the functions xn

j (λ), zn
−j(λ),

wn
j (λ), and yn

−j(λ) admit continuations holomorphic in G, which coincide with the
functions xj(λ), z−j(λ), wj(λ), and y−j(λ). Obviously, xj = xj(0), z−j = z−j(0),
wj = wj(0), and y−j = y−j(0).

Note that in the case when A is the algebra of quadratic matrices Cm×m, a
function A(λ) satisfying the above assumptions always exists. For instance, one
can take A(λ) = A− λI or A(λ) = A− λ(A − I).
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3. Inverse problem

Theorem 3.1. Let wj, xj , y−j, z−j (j = 0, 1, . . . , n) be given systems of elements in
A and the elements w0, x0, y0, z0 be invertible. For the existence of an invertible
Toeplitz matrix A = ‖aj−k‖n

j,k=0 with elements aj ∈ A (j = 0,±1, . . . ,±n) such
that wj, xj, y−j, z−j are solutions of equations (1.1)–(1.4) it is necessary and
sufficient that the following three conditions be fulfilled:

1) x0 = y0 and z0 = w0;
2)

X0nx
−1
0 Y−n,0 = Z−n,0z

−1
0 W0n, (3.1)

Xn0x
−1
0 Y0,−n = Z0,−nz

−1
0 Wn0; (3.2)

3) at least one of the matrices

M =

∥∥∥∥∥ X0,n−1 Z−n,−1

Xn1 Z0,n−1

∥∥∥∥∥ , N =

∥∥∥∥∥ W 0,n−1 Wn1

Y −n,−1 Y0,1−n

∥∥∥∥∥
is invertible.
If conditions 1)–3) are fulfilled, then both matrices M and N are invertible

and the matrix A = ‖aj−k‖n
j,k=0 is uniquely determined by formula (1.5).

Proof. The necessity of condition 1) is obtained in the proof of Theorem 1.1 and
the necessity of conditions 2) and 3) is proved in the previous section. We shall
prove the sufficiency of the hypotheses of the theorem. For definiteness, suppose
that the matrix M is invertible. Consider the matrix B = ‖bjk‖n

j,k=0 defined by
the equality

B = X0nx
−1
0 Y 0,−n − Z̃−n,−1z−10 W̃n1,

where

Z̃−n,−1 =

∥∥∥∥∥∥∥∥∥∥
0 . . . 0 0

z−n
. . . . . . 0

...
. . . . . .

...
z−1 . . . z−n 0

∥∥∥∥∥∥∥∥∥∥
, W̃n1 =

∥∥∥∥∥∥∥∥∥∥
0 wn . . . w1
...

. . . . . .
...

0
. . . . . . wn

0 0 . . . 0

∥∥∥∥∥∥∥∥∥∥
.

Let us show that the matrix B is invertible.
It is easy to see that in view of the invertibility of the elements x0 and z0,

the invertibility of the matrix M implies the invertibility of the matrix

M̃ =

∥∥∥∥∥ X0n Z̃−n,−1

X̃n1 Z0,−n

∥∥∥∥∥ .

By a straightforward verification it is obtained that

M̃ =
∥∥∥∥ E R̃1

0 E

∥∥∥∥
∥∥∥∥∥ R̃2 0

0 R̃3

∥∥∥∥∥
∥∥∥∥ E 0

R̃4 E

∥∥∥∥ , (3.3)
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where
R̃1 = Z̃−n,−1(Z0,−n)−1, R̃2 = X0n − R̃1X̃

n1,

R̃3 = Z0,−n, R̃4 = (Z0,−n)−1X̃n1.

Hence the matrix R̃2 is invertible. From equality (3.2) it follows immediately
that

X̃n1x−10 Y 0,−n = Z0,−nz−10 W̃n1,

whence
R̃2 = (X0nx−10 Y 0,−n − Z̃−n,−1z−10 W̃n1(Y 0,−n)−1x0.

Thus
B = R̃2x

−1
0 Y 0,−n

and this implies that B is an invertible matrix.
Put A = ‖ajk‖n

j,k=0. Obviously, in view of condition 1),

b0j = y−j , bj0 = xj (j = 0, 1, . . . , n). (3.4)

Moreover, equality (3.2) implies, in particular, that the equality
k∑

r=0

xn−rx
−1
0 yr−k =

k∑
r=0

z−rz
−1
0 wn−k+r (k = 0, 1, . . . , n)

holds and equality (3.1) implies that
j∑

r=0

xj−rx
−1
0 yr−n =

j∑
r=0

zj−n−rz
−1
0 wr (j = 0, 1, . . . , n).

From here it follows that

wn−k =
k∑

r=0

(xn−rx
−1
0 yr−k − z−1−rz

−1
0 wn+1+r−k)

and

zj−n =
j∑

r=0

(xj−rx
−1
0 yr−n − z−n−1+j−rz

−1
0 w1+r).

By the definition of the matrix B, the expressions on the right-hand sides of the
last equalities coincide with the elements bnk and bjn, respectively. Hence

bnk = wn−k, bjn = zj−n. (3.5)

From equalities (3.4) and (3.5) it follows immediately that the elements xj , z−j ,
wj , and y−j are solutions of equations (1.1)–(1.4), respectively, for the matrix A.

It remains to prove that the matrix A is a Toeplitz matrix. We put

A(1) = ‖ajk‖n−1
j,k=0, A(2) = ‖ajk‖n

j,k=1.

Clearly, it is sufficient to prove that A(1) = A(2).
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Obviously, the equalities∥∥∥∥∥∥∥∥∥
e . . . 0 0
...

. . .
...

...
0 . . . e 0
wn . . . w1 w0

∥∥∥∥∥∥∥∥∥A

∥∥∥∥∥∥∥∥∥
e . . . 0 z−n

...
. . .

...
...

0 . . . e z−1
0 . . . 0 z0

∥∥∥∥∥∥∥∥∥ =
∥∥∥∥ A(1) 0

0 z0

∥∥∥∥
and ∥∥∥∥∥∥∥∥∥

y0 y−1 . . . y−n

0 e . . . 0
...

...
. . .

...
0 0 . . . e

∥∥∥∥∥∥∥∥∥A

∥∥∥∥∥∥∥∥∥
x0 0 . . . 0
x1 e . . . 0
...

...
. . .

...
xn 0 . . . e

∥∥∥∥∥∥∥∥∥ =
∥∥∥∥ x0 0

0 A(2)

∥∥∥∥
hold. From here it follows that the matrices A(1) and A(2) are invertible and

B = A−1 =

∥∥∥∥∥∥∥∥∥
e . . . 0 z−n

...
. . .

...
...

0 . . . e z−1
0 . . . 0 z0

∥∥∥∥∥∥∥∥∥
∥∥∥∥ (A(1))−1 0

0 z−10

∥∥∥∥
∥∥∥∥∥∥∥∥∥

e . . . 0 0
...

. . .
...

...
0 . . . e 0
wn . . . w1 w0

∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥
x0 0 . . . 0
x1 e . . . 0
...

...
. . .

...
xn 0 . . . e

∥∥∥∥∥∥∥∥∥
∥∥∥∥ x−10 0

0 (A(2))−1

∥∥∥∥
∥∥∥∥∥∥∥∥∥

y0 y−1 . . . y−n

0 e . . . 0
...

...
. . .

...
0 0 . . . e

∥∥∥∥∥∥∥∥∥ .

Putting ‖br
jk‖n−1

jk=0 = (A(r))−1, from the last equality we deduce that

bjk = b1jk + zj−nw
−1
0 wn−k, bjk = b2j−1,k−1 + xjx

−1
0 y−k.

Therefore,

b1jk =
n∑

r=0

(xj−rx
−1
0 yr−k − z−n−1+j−rz

−1
0 wn+1+r−k)− zj−nw

−1
0 wn−k

=
n∑

r=0

(xj−rx
−1
0 yr−k − z−n+j−rz

−1
0 wn+r−k)

and

b2jk =
n∑

r=0

(xj+1−rx
−1
0 yr−k−1 − z−n+j−rz

−1
0 wn+r−k)− xj+1x

−1
0 y−k

=
n∑

r=0

(xj−rx
−1
0 yr−k − z−n+j−rz

−1
0 wn+r−k).

Hence A(1) = A(2). This means that A is a Toeplitz matrix.
The uniqueness of the matrix A follows from Theorem 1.1. According to it,

equality (1.5) holds for the matrix A.
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The theorem is proved under the assumption that the matrix M is invertible.
Analogously, it is also proved in the case when the matrix N is invertible.

The theorem is proved. �

Theorem 3.2. Let xj and z−j (j = 0, 1, . . . , n) be given systems of elements in A
and the elements x0 and z0 be invertible.

For the existence of a Toeplitz matrix A = ‖aj−k‖n
j,k=0 with elements aj ∈ A

(j = 0,±1, . . . ,±n) such that xj and z−j are solutions of equations (1.1) and
(1.2), respectively, it is necessary and sufficient that the matrix M be invertible
and that for the vector∥∥∥∥∥∥∥∥∥∥∥∥

χ−n

...
χ0
...

χn−1

∥∥∥∥∥∥∥∥∥∥∥∥
= M−1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0
...
0

z−nz
−1
0 xn − x0
...

z−1z−10 xn − xn−1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
(3.6)

the condition χ0 = −e be fulfilled.
Under these conditions, solutions of equations (1.3) and (1.4) are given by

the equalities

y−j = x0χ−j (j = 1, 2, . . . , n), y0 = x0, (3.7)
wj = −z0χj (j = 0, 1, . . . , n− 1), wn = xn, (3.8)

and the matrix A is uniquely determined by equality (1.5).

Proof. Assume that the hypotheses of the theorem are fulfilled. With the aid of
equalities (3.7) and (3.8) we introduce the systems y−j and wj (j = 0, 1, . . . , n).
Equality (3.6) can be rewritten in the form∥∥∥∥∥∥∥∥∥∥∥∥

x0 0 z−n 0
...

. . .
...

. . .
xn . . . x0 z0 . . . z−n

. . .
...

. . .
...

0 xn 0 z0

∥∥∥∥∥∥∥∥∥∥∥∥

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

x−10 y−n

...
...

x−10 y0
−z−10 w0

...
...

−z−10 wn

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
= 0. (3.9)

It is easy to check that the last equality implies relations (3.1) and (3.2) and vice
versa. Since additionally x0 = y0 and z0 = w0, we see that the systems xj , z−j ,
wj , and and y−j satisfy all the hypotheses of Theorem 3.1.

Let us prove that the converse statement also holds. If the matrix A exists,
then in view of Theorem 3.1 equality (3.9) holds and the matrix M is invertible.
From here it follows that equalities (3.7) and (3.8) hold. In view of condition 1) of
Theorem 3.1 from (3.8) it follows that χ0 = −e.
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The theorem is proved. �

The following theorem is proved analogously.

Theorem 3.3. Let wj and y−j (j = 0, 1, . . . , n) be given systems of elements in A
and the elements w0 and y0 be invertible.

For the existence of a Toeplitz matrix A = ‖aj−k‖n
j,k=0 with elements aj ∈ A

(j = 0,±1, . . . ,±n) such that wj and y−j are solutions of equation (1.3) and (1.4),
respectively, it is necessary and sufficient that the matrix N be invertible and that
the vector

‖ω−n, . . . , ω0, . . . , ωn−1‖ = ‖0, . . . , 0, wny
−1
0 y−n − w0, . . . , wny

−1
0 y−1 − wn−1‖N−1

have the property ω0 = −e.
Under these conditions, solutions of equations (1.1) and (1.2) are given by

the equalities

xj = −ωjy0 (j = 0, 1, . . . , n− 1), xn = wn,

z−j = ω−jw0 (j = 1, 2, . . . , n), z0 = w0,

and the matrix A is uniquely determined by equality (1.5).

The next theorem gives a rule for calculating the elements aj by solutions of
equations (1.1), (1.2) or (1.3), (1.4).

Theorem 3.4. Suppose xj, z−j (j = 0, 1, . . . , n) are given systems of elements in
A that are solutions of equations (1.1) and (1.2) for some matrix A = ‖aj−k‖n

j,k=0

with the invertible minors Ar = ‖aj−k‖r
j,k=0 (r = 0, 1, . . . , n). Then the elements

aj (j = 0,±1, . . . ,±n) are determined by the recurrent equalities

ar = −
r∑

k=1

ar−kx
r
k(xr

0)
−1,

a−r = −
r∑

k=1

ak−rz
r
−k(zr

0)
−1, (r = 1, 2, . . . , n),

a0 = (x00)
−1 = (z00)

−1,

(3.10)

where the elements xr
k and zr

−k are given by the recurrent formulas

xn
k = xk, zn

−k = z−k,

zr−1
−k = zr

−k − zr
r−k(xr

0)
−1zr

−r, xr−1
k = xr

k − zr
k−r(z

r
0)
−1xr

r,

and the elements xr
0 and zr

0 (r = 0, 1, . . . , r) are invertible.

Proof. Successively applying Proposition 2.8, we see that for the elements xr
j and

zr
j the equalities

r∑
k=0

aj−kx
r
k = δj0e,

r∑
k=0

ak−jz
r
−k = δj0e (j = 0, 1, . . . , r) (3.11)
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hold. The invertibility of the elements xr
0 and zr

0 follows from the invertibility of
the minors Ar and the equalities

Ar

∥∥∥∥∥∥∥∥∥
xr
0 0 . . . 0

xr
1 e . . . 0
...

...
. . .

...
xr

r 0 . . . e

∥∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥∥
e a−1 . . . a−r

0
... Ar−1
0

∥∥∥∥∥∥∥∥∥
and

Ar

∥∥∥∥∥∥∥∥∥
e . . . 0 zr−r
...

. . .
...

...
0 . . . e zr

−1
0 . . . 0 zr

0

∥∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥∥
0

Ar−1
...
0

ar . . . a1 e

∥∥∥∥∥∥∥∥∥ .

Equality (3.11) with j = r implies formulas (3.10).
The theorem is proved. �

4. Other theorems on inversion of Toeplitz matrices

In this section the inverse of the matrix A = ‖aj−k‖n
j,k=0, where aj ∈ A and j =

0,±1, . . . ,±n, is constructed with the aid of solutions of the following equations

n∑
k=0

aj−kxk = δ0je (j = 0, 1, . . . , n), (4.1)

n∑
k=0

wkaj−k = δ0je (j = 0, 1, . . . , n), (4.2)

n∑
k=0

aj−ksk = δ1je (j = 1, 2, . . . , n + 1), (4.3)

n∑
k=0

tkaj−k = δ1je (j = 1, 2, . . . , n + 1), (4.4)

where an+1 is an arbitrary element in A, as well as with the aid of solutions of
equations (4.1), (4.2) and the systems

n∑
k=0

aj−kuk = δj1e (j = 0, 1, . . . , n), (4.5)

n∑
k=0

vkaj−k = δj1e (j = 0, 1, . . . , n). (4.6)
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It is easy to see that if the systems xj , wj , sj , and tj are solutions of systems
(4.1)–(4.4), then the systems xj , wj , uj , and vj , where

uj = sj − xj

n∑
r=0

a−rsr

and

vj = tj −
n∑

r=0

tra−rwj ,

satisfy equations (4.1), (4.2), (4.5), and (4.6).
Note also that if equations (4.1) and (4.2) are solvable, then xn = wn. Indeed,

wn =
n∑

k=0

wn−k

n∑
j=0

ak−jxj =
n∑

j=0

(
n∑

k=0

wn−kak−j

)
xj = xn.

The equalities sn = wn, un−1 = vn−1, un = wn−1, and vn = xn−1 are proved
analogously.

Theorem 4.1. Let A = ‖aj−k‖n
j,k=0 be a Toeplitz matrix with elements aj ∈ A

(j = 0,±1, . . . ,±n) and let for some an+1 ∈ A equations (4.1)–(4.4) be solvable
and the element xn(= wn) be invertible.

Then the matrix A is invertible and its inverse is given by the formula

A−1 = ‖xjx
−1
n wn−k‖n

j,k=0

+

∥∥∥∥∥∥∥∥∥
s0 0 . . . 0
s1 s0 . . . 0
...

...
. . .

...
sn sn−1 . . . s0

∥∥∥∥∥∥∥∥∥x−1n

∥∥∥∥∥∥∥∥∥
0 wn . . . w1
...

...
. . .

...
0 0 . . . wn

0 0 . . . 0

∥∥∥∥∥∥∥∥∥
−

∥∥∥∥∥∥∥∥∥
x0 0 . . . 0
x1 x0 . . . 0
...

...
. . .

...
xn xn−1 . . . x0

∥∥∥∥∥∥∥∥∥x−1n

∥∥∥∥∥∥∥∥∥
0 tn . . . t1
...

...
. . .

...
0 0 . . . tn
0 0 . . . 0

∥∥∥∥∥∥∥∥∥ .

(4.7)

The proof of this theorem is based on the next lemma similar to Lemma 1.1.

Lemma 4.1. Let V be a linear space, L(V) be the algebra of all linear opera-
tors acting in V, A = ‖Aj−k‖n

j,k=0 be a Toeplitz matrix with elements Aj (j =
0,±1, . . . ,±n) in L(V), and An+1 ∈ L(V).

If the systems of equations
n∑

k=0

Aj−kXk = δ0jI (j = 0, 1, . . . , n), (4.8)

n∑
k=0

WkAj−k = δ0jI (j = 0, 1, . . . , n), (4.9)
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n∑
k=0

Aj−kSk = δ1jI (j = 1, 2, . . . , n + 1), (4.10)

n∑
k=0

TkAj−k = δ1jI (j = 1, 2, . . . , n + 1) (4.11)

are solvable in L(V), and the operator Xn (= Wn) is invertible, then the matrix
A is also invertible.

Proof. Let the hypotheses of the lemma be fulfilled. As above, by Vn denote the
linear space of one-row matrices ϕ = {ϕj}n

j=0 with entries ϕj ∈ V.
If a vector ϕ = {ϕj}n

j=0 (�= 0) belongs to KerA, then

ϕn =
n∑

k=0

⎛⎝ n∑
j=0

Wn−jAj−k

⎞⎠ϕk =
n∑

j=0

Wn−j

(
n∑

k=0

Aj−kϕk

)
= 0,

ϕn−1 =
n∑

k=0

⎛⎝ n∑
j=0

Vn−jAj−k

⎞⎠ϕk =
n∑

j=0

Vn−j

(
n∑

k=0

Aj−kϕk

)
= 0.

Here we take

Vk = Tk −
n∑

r=0

TrA−rWk (k = 0, 1, . . . , n).

These operators satisfy the equation
n∑

j=0

VjAk−j = δk1I (k = 0, 1, . . . , n).

For an arbitrary vector ϕ = {ϕj}n
j=0 ∈ KerA (�= 0), by p = p(ϕ) denote

the number such that ϕ1 = ϕ2 = · · · = ϕp = 0 and ϕp+1 �= 0. It is obvious that
p(ϕ) ≤ n− 2 for every ϕ ∈ KerA (�= 0).

Let p∗ = max p(ϕ) (ϕ ∈ KerA) and let h(�= 0) be a vector in KerA for which
p(h) = p∗. Introduce the vector h+ = {h+j }n

j=0 by setting

h+j =

{
hj−1 if j = 1, 2, . . . , n,

0 if j = 0.

From the equalities
n∑

k=0

Aj−kh
+
k =

n∑
k=1

Aj−khk−1 =
n∑

k=0

Aj−1−khk (j = 1, 2, . . . , n),

n∑
j=0

Wn−j

n∑
k=0

Aj−kh
+
k = Wn

n∑
k=0

A−kh
+
k +

n∑
j=1

Wn−j

n∑
k=0

Aj−kh
+
k

and the invertibility of the operator Wn it follows that h+ ∈ KerA. Since h+ �= 0
and p(h+) > p∗, this leads to the conclusion that KerA = {0}.
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To finish the proof, consider the operator B defined in the space V∗n by the
matrix ‖A∗j−k‖n

j,k=0 consisting of the adjoint operators to the operators Aj−k.
Passing to the adjoint operators in equalities (4.1)–(4.4), we obtain that the op-
erator B satisfies all the hypotheses of Lemma 4.1. Hence, in view of what has
been proved above, KerB = {0}. Obviously, B′ = A∗, where B′ is the ma-
trix transposed to B. Moreover, JnBJn = B′, where Jn = ‖δj+k,nI‖n

j,k=0. Thus
dim KerA∗ = dimKerB′ = 0. Since dim KerA∗ = dim Vn/AVn, we see that the
operator A is invertible.

The lemma is proved. �

Note that, in fact, we have proved the following statement simultaneously
with Lemma 4.1.

Lemma 4.2. Let A = ‖Aj−k‖n
j,k=0 be a Toeplitz matrix with elements Aj (j =

0,±1, . . . ,±n) in L(V).
If for some operator An+1 ∈ L(V) the systems of equations (4.8), (4.9), and

the systems
n∑

k=0

Aj−kUk = δj1I (j = 0, 1, . . . , n),

n∑
k=0

VkAj−k = δj1I (j = 0, 1, . . . , n)

are solvable in L(V), and the operator Xn (= Wn) is invertible, then the matrix
A is invertible.

One can make a remark about Lemmas 4.1 and 4.2 similar to the remark
following Lemma 1.1.

Proof of Theorem 4.1. From Lemma 4.1 it follows that the matrix A is invertible.
This statement is proved in the same way as in the proof of Theorem 1.1. Let us
prove formula (4.7). In view of (4.1) and (4.2) the equality∥∥∥∥∥∥∥∥∥

wn wn−1 . . . w0
0 e . . . 0
...

...
. . .

...
0 0 . . . e

∥∥∥∥∥∥∥∥∥A

∥∥∥∥∥∥∥∥∥
e . . . 0 x0
...

. . .
...

...
0 . . . e xn−1
0 . . . 0 xn

∥∥∥∥∥∥∥∥∥ =
∥∥∥∥ 0 xn

Â 0

∥∥∥∥ (4.12)

holds, where Â = ‖aj−k+1‖n−1
j,k=0. From here it follows that the matrix Â is invert-

ible and

A−1 =

∥∥∥∥∥∥∥∥∥
e . . . 0 x0
...

. . .
...

...
0 . . . e xn−1
0 . . . 0 xn

∥∥∥∥∥∥∥∥∥
∥∥∥∥ 0 Â−1

x−1n 0

∥∥∥∥
∥∥∥∥∥∥∥∥∥

wn wn−1 . . . w0
0 e . . . 0
...

...
. . .

...
0 0 . . . e

∥∥∥∥∥∥∥∥∥ .
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Putting A−1 = ‖cjk‖n
j,k=0 and Â−1 = ‖ĉjk‖n−1

j,k=0, we get

cjk = ĉj,k−1 + xjx
−1
n wn−k (j = 0, 1, . . . , n− 1, k = 1, . . . , n),

cj0 = xj , cnk = wn−k (j, k = 0, 1, . . . , n).
(4.13)

Relations (4.1)–(4.4) imply the equalities∥∥∥∥∥∥∥∥∥
wn wn−1 . . . w0
0 e . . . 0
...

...
. . .

...
0 0 . . . e

∥∥∥∥∥∥∥∥∥ Ã

∥∥∥∥∥∥∥∥∥
s0 0 . . . 0
s1 e . . . 0
...

...
. . .

...
sn 0 . . . e

∥∥∥∥∥∥∥∥∥ =
∥∥∥∥ xn 0

0 Â

∥∥∥∥ ,

∥∥∥∥∥∥∥∥∥
e . . . 0 0
...

. . .
...

...
0 . . . e 0
tn . . . t1 t0

∥∥∥∥∥∥∥∥∥ Ã

∥∥∥∥∥∥∥∥∥
e . . . 0 x0
...

. . .
...

...
0 . . . e xn−1
0 . . . 0 xn

∥∥∥∥∥∥∥∥∥ =
∥∥∥∥ Â 0

0 xn

∥∥∥∥ ,

(4.14)

where Ã = ‖aj−k+1‖n
j,k=0. Since the elements xn and wn are invertible, from the

first equality it follows that the matrix Ã is right-invertible. The second equality
yields the left-invertibility of the matrix Ã. Thus, the matrix Ã is invertible. Also,
(4.14) implies the invertibility of the elements s0, t0 and the equality

A−1 =

∥∥∥∥∥∥∥∥∥
s0 0 . . . 0
s1 e . . . 0
...

...
. . .

...
sn 0 . . . e

∥∥∥∥∥∥∥∥∥
∥∥∥∥ x−1n 0

0 Â−1

∥∥∥∥
∥∥∥∥∥∥∥∥∥

wn wn−1 . . . w0
0 e . . . 0
...

...
. . .

...
0 0 . . . e

∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥
e . . . 0 x0
...

. . .
...

...
0 . . . e xn−1
0 . . . 0 xn

∥∥∥∥∥∥∥∥∥
∥∥∥∥ Â−1 0

0 x−1n

∥∥∥∥
∥∥∥∥∥∥∥∥∥

e . . . 0 0
...

. . .
...

...
0 . . . e 0
tn . . . t1 t0

∥∥∥∥∥∥∥∥∥ .

(4.15)

Thus, for the entries c̃jk (j, k = 0, 1, . . . , n) of the matrix Ã−1 the equalities

c̃jk = ĉj−1,k−1 + sjx
−1
n wn−k = ĉjk + xjx

−1
n tn−k (j, k = 1, 2, . . . , n),

c̃0k = s0x
−1
n wn−k = ĉ0k + x0x

−1
n tn−k (k = 0, 1, . . . , n),

c̃j0 = sjx
−1
n wn = ĉj0 + xjx

−1
n tn (j = 0, 1, . . . , n)

hold. Therefore,

ĉjk = ĉj−1,k−1 + sjx
−1
n wn−k − xjx

−1
n tn−k (j, k = 1, 2, . . . , n), (4.16)

ĉ0k = s0x
−1
n wn−k − x0x

−1
n tn−k (k = 0, 1, . . . , n), (4.17)

ĉj0 = sjx
−1
n wn − xjx

−1
n tn (j = 0, 1, . . . , n). (4.18)
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Equalities (4.16)–(4.18) immediately imply the formula

ĉjk =
n−1∑
r=0

(sj−rx
−1
n wn−k+r − xj−rx

−1
n tn−k+r). (4.19)

Now taking into account (4.13), we obtain

cjk =
n∑

r=0

(sj−kx
−1
n wn+1−k+r−xj−rx

−1
n tn+1−k+r)+xjx

−1
n wn−k (j, k = 0, 1, . . . , n).

It is easy to see that this formula coincides with formula (4.7).
The theorem is proved. �
The following theorem is analogous to Theorem 1.2.

Theorem 4.2. Let the hypotheses of Theorem 4.1 be fulfilled. Then the matrix Â =
‖aj−k+1‖n−1

j,k=0 is invertible and its inverse is given by the formula

Â−1 =

∥∥∥∥∥∥∥∥∥
s0 0 . . . 0
s1 s0 . . . 0
...

...
. . .

...
sn−1 sn−2 . . . s0

∥∥∥∥∥∥∥∥∥x−1n

∥∥∥∥∥∥∥∥∥
wn wn−1 . . . w1
0 wn . . . w2
...

...
. . .

...
0 0 . . . wn

∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥
x0 0 . . . 0
x1 x0 . . . 0
...

...
. . .

...
xn−1 xn−2 . . . x0

∥∥∥∥∥∥∥∥∥x−1n

∥∥∥∥∥∥∥∥∥
tn tn−1 . . . t1
0 tn . . . t2
...

...
. . .

...
0 0 . . . tn

∥∥∥∥∥∥∥∥∥ .

(4.20)

Proof. The invertibility of the matrix Â follows from equality (4.12) and the in-
vertibility of the element xn. Formula (4.20) follows immediately from formula
(4.19). The theorem is proved. �
Corollary 4.1. Let the hypotheses of Theorem 4.1 be fulfilled. Then the inverse of
Â is calculated by the formula

Â−1 =

∥∥∥∥∥∥∥∥∥
xn xn−1 . . . x1
0 xn . . . x2
...

...
. . .

...
0 0 . . . xn

∥∥∥∥∥∥∥∥∥x−1n

∥∥∥∥∥∥∥∥∥
t0 0 . . . 0
t1 t0 . . . 0
...

...
. . .

...
tn−1 tn−2 . . . t0

∥∥∥∥∥∥∥∥∥
−

∥∥∥∥∥∥∥∥∥
sn sn−1 . . . s1
0 sn . . . s2
...

...
. . .

...
0 0 . . . sn

∥∥∥∥∥∥∥∥∥x−1n

∥∥∥∥∥∥∥∥∥
w0 0 . . . 0
w1 w0 . . . 0
...

...
. . .

...
wn−1 wn−2 . . . w0

∥∥∥∥∥∥∥∥∥ .

(4.21)

Proof. Indeed, analogously to eqns. (4.17) and (4.18) from (4.15) it follows that

ĉn−1,k−1 = tn−k − snx
−1
n wn−k, ĉj−1,n−1 = xjx

−1
n tn − sjx

−1
n w0.

These equalities and equality (4.16) immediately imply (4.21). �
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Corollary 4.1 and equality (4.13) imply the following.

Corollary 4.2. Let the hypotheses of Theorem 4.1 be fulfilled. Then the inverse of
A is given by the formula

A−1 = ‖xjx
−1
n wn−k‖n

j,k=0

+

∥∥∥∥∥∥∥∥∥
0 xn . . . x1
...

...
. . .

...
0 0 . . . xn

0 0 . . . 0

∥∥∥∥∥∥∥∥∥x−1n

∥∥∥∥∥∥∥∥∥
t0 0 . . . 0
t1 t0 . . . 0
...

...
. . .

...
tn tn−1 . . . t0

∥∥∥∥∥∥∥∥∥
−

∥∥∥∥∥∥∥∥∥
0 sn . . . s1
...

...
. . .

...
0 0 . . . sn

0 0 . . . 0

∥∥∥∥∥∥∥∥∥x−1n

∥∥∥∥∥∥∥∥∥
w0 0 . . . 0
w1 w0 . . . 0
...

...
. . .

...
wn wn−1 . . . w0

∥∥∥∥∥∥∥∥∥ .

Theorem 4.3. If for a matrix A = ‖aj−k‖n
j,k=0 (aj ∈ A, j = 0,±1, . . . ,±n) equa-

tions (4.1), (4.2), (4.5), and (4.6) are solvable and the element xn is invertible,
then the matrix A is invertible and the equality

A−1 = ‖xjx
−1
n wn−k‖n

j,k=0

+

∥∥∥∥∥∥∥∥∥
u0 0 . . . 0
u1 u0 . . . 0
...

...
. . .

...
un un−1 . . . u0

∥∥∥∥∥∥∥∥∥x−1n

∥∥∥∥∥∥∥∥∥
0 wn . . . w1
...

...
. . .

...
0 0 . . . wn

0 0 . . . 0

∥∥∥∥∥∥∥∥∥
−

∥∥∥∥∥∥∥∥∥
x0 0 . . . 0
x1 x0 . . . 0
...

...
. . .

...
xn xn−1 . . . x0

∥∥∥∥∥∥∥∥∥x−1n

∥∥∥∥∥∥∥∥∥
0 vn . . . v1
...

...
. . .

...
0 0 . . . vn

0 0 . . . 0

∥∥∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥∥
x0 0 . . . 0
x1 x0 . . . 0
...

...
. . .

...
xn xn−1 . . . x0

∥∥∥∥∥∥∥∥∥x−1n (vn − un)x−1n

∥∥∥∥∥∥∥∥∥
0 wn . . . w1
...

...
. . .

...
0 0 . . . wn

0 0 . . . 0

∥∥∥∥∥∥∥∥∥

(4.22)

holds.

This theorem generalizes one statement from [2] proved in the case A = C.
In that case the last summand on the right-hand side of equality (4.22) is equal to
zero. Note that, probably, Theorems 4.1 and 4.2 are new even in the case A = C.

Proof. The invertibility of the operator A follows from Lemma 4.2.
It is easy to see that

x̂j = sj − xjx
−1
n sn = uj − xjx

−1
n un (4.23)
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and
ŵj = tj − snx

−1
n wj = vj − vnx

−1
n wj (j = 0, 1, . . . , n),

where x̂j and ŵj are solutions of the equations

n−1∑
k=0

aj−kx̂k = δj0e (j = 1, 2, . . . , n), (4.24)

n−1∑
k=0

ŵkaj−k = δj0e (j = 1, 2, . . . , n). (4.25)

From Theorem 4.1 and formulas (4.23) it follows that

cjk =
n∑

r=0

(sj−rx
−1
n wn+1−k+r − xj−rx

−1
n tn+1−k+r) + xjx

−1
n wn−k

=
n∑

r=0

[(
uj−r − xj−rx

−1
n un + xj−rx

−1
n sn

)
x−1n wn+1−k+r

− xj−rx
−1
n

(
vn+1−k+r − snx

−1
n wn+1−k+r + vnx

−1
n wn+1−k+r

)]
+ xjx

−1
n wn−k.

Hence,

cjk =
n∑

r=0

(
uj−rx

−1
n wn+1−k+r − xj−rx

−1
n vn+1−k+r

+ xj−rx
−1
n (vn − un)x−1n wn+1−k+r

)
+ xjx

−1
n wn−k.

This formula coincides with (4.22).
The theorem is proved. �

The following statement is analogous to Theorem 4.2, and its proof is similar
to the proof of the above theorem.

Corollary 4.3. Let the hypotheses of Theorem 4.1 be fulfilled. Then the matrix
Â = ‖aj−k+1‖n−1

j,k=0 is invertible and its inverse is constructed by the formula

Â−1 =

∥∥∥∥∥∥∥∥∥
u0 0 . . . 0
u1 u0 . . . 0
...

...
. . .

...
un−1 un−2 . . . u0

∥∥∥∥∥∥∥∥∥x−1n

∥∥∥∥∥∥∥∥∥
wn wn−1 . . . w1
0 wn . . . w2
...

...
. . .

...
0 0 . . . wn

∥∥∥∥∥∥∥∥∥
−

∥∥∥∥∥∥∥∥∥
x0 0 . . . 0
x1 x0 . . . 0
...

...
. . .

...
xn−1 xn−2 . . . x0

∥∥∥∥∥∥∥∥∥x−1n

∥∥∥∥∥∥∥∥∥
vn vn−1 . . . v1
0 vn . . . v2
...

...
. . .

...
0 0 . . . vn

∥∥∥∥∥∥∥∥∥
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+

∥∥∥∥∥∥∥∥∥
x0 0 . . . 0
x1 x0 . . . 0
...

...
. . .

...
xn−1 xn−2 . . . x0

∥∥∥∥∥∥∥∥∥x−1n (vn − un)x−1n

∥∥∥∥∥∥∥∥∥
wn wn−1 . . . w1
0 wn . . . w2
...

...
. . .

...
0 0 . . . wn

∥∥∥∥∥∥∥∥∥ .

We mention also the following statement.

Corollary 4.4. Let the hypotheses of Theorem 4.1 be fulfilled. Then the matrix A
is invertible and its inverse is constructed by the formula

A−1 = ‖xjx
−1
n wn−k‖n

j,k=0

+

∥∥∥∥∥∥∥∥∥∥∥

x̂0 0 . . . 0 0
x̂1 x̂0 . . . 0 0
...

...
. . .

...
...

x̂n−1 x̂n−2 . . . x̂0 0
0 x̂n−1 . . . x̂1 x̂0

∥∥∥∥∥∥∥∥∥∥∥
x−1n

∥∥∥∥∥∥∥∥∥∥∥

0 wn . . . w2 w1
0 0 . . . w3 w2
...

...
. . .

...
...

0 0 . . . 0 wn

0 0 . . . 0 0

∥∥∥∥∥∥∥∥∥∥∥
−

∥∥∥∥∥∥∥∥∥∥∥

x0 0 . . . 0 0
x1 x0 . . . 0 0
...

...
. . .

...
...

xn−1 xn−2 . . . x0 0
xn xn−1 . . . x1 x0

∥∥∥∥∥∥∥∥∥∥∥
x−1n

∥∥∥∥∥∥∥∥∥∥∥

0 0 ŵn−1 . . . ŵ1
...

...
...

. . .
...

0 0 0 . . . ŵn−1
0 0 0 . . . 0
0 0 0 . . . 0

∥∥∥∥∥∥∥∥∥∥∥
,

where x̂j and ŵj (j = 0, 1, . . . , n− 1) are solutions of equations (4.24) and (4.25),
respectively.

This statement is proved in the same way as Theorem 4.3 with the aid of
equalities (4.23).

Note that for all presented propositions one can formulate dual statements.
They can be obtained by passing to the transposed matrices with the aid of the
transformation JnAJn.

Corollary 4.5. Let the hypotheses of Theorem 4.1 be fulfilled, A−1 = ‖cjk‖n
j,k=0

and Â−1 = ‖ĉjk‖n−1
j,k=0. Put

c(ζ, θ) =
n∑

j,k=0

cjkζ
jθ−k, ĉ(ζ, θ) =

n−1∑
j,k=0

ĉjkζ
jθ−k,

where ζ and θ are complex variables. Then

c(ζ, θ) = (θ − ζ)−1
(
s(ζ)x−1n w(θ) − x(ζ)x−1n t(θ)

)
θ−n

+x(ζ)x−1n w(θ)θ−n, (4.26)

ĉ(ζ, θ) = (1− ζθ−1)
(
s(ζ)x−1n w(θ) − x(ζ)x−1n t(θ)

)
θ−n, (4.27)
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where

x(ζ) =
n∑

j=0

xjζ
j , s(ζ) =

n∑
j=0

sjζ
j , w(θ) =

n∑
k=0

wkθ
k, t(θ) =

n∑
k=0

tkθ
k.

Proof. Indeed, the equality

(1− ζθ−1)c(ζ, θ) =
n+1∑

j,k=0

(cjk − cj−1,k−1)ζjθ−k

holds, where we set cjk = 0 if one of the numbers j, k is negative or is greater than
n. In view of formulas (4.13), (4.16)–(4.18), we obtain

(1 − ζθ−1)c(ζ, θ) =
n+1∑

j,k=0

(
xjxnwn−k − xj−1x−1n wn−k+1 + sjx

−1
n wn−k+1

+ sjx
−1
n wn−k+1 − xjx

−1
n tn−k+1

)
ζjθ−k.

This implies formula (4.26). Formula (4.27) is proved analogously. �

5. Properties of solutions of equations (4.1)–(4.4)

This section is similar to Section 2. In this section main properties of the solutions
of equations (4.1)–(4.4) are obtained. Here the notations of Section 2 are used.
Suppose that A = ‖aj−k‖n

j,k=0 (aj ∈ A, j = 0,±1, . . . ,±n) is a Toeplitz matrix
and an+1 is an element such that all equations (4.1)–(4.1) have solutions and,
moreover, the element xn (= wn) is invertible.

Proposition 5.1. For solutions xj, wj, sj, tj (j = 0, 1, . . . , n) of equations (4.1)–
(4.4), the relations

Sn1x−1n Wn1 = Xn1x−1n T n1, (5.1)

S0nx
−1
n W0n = X0nx

−1
n T0n (5.2)

hold.

Proof. Indeed, since cnk = wn−k, where A−1 = ‖cjk‖n
j,k=0, according to Theo-

rem 4.1 we have

wn−k = wn−k +
k−1∑
r=0

(
sn−rx

−1
n wn+1−k+r − xn−rx

−1
n tn+1−k+r

)
.

From here it follows that

‖ sn . . . s1 ‖x−1n Wn1 = ‖ xn . . . x1 ‖x−1n T n1.

Taking into account that a product of two upper triangular Toeplitz matrices is
again an upper triangular Toeplitz matrix and that two such matrices coincide if
their first columns coincide, we see that the last equality implies equality (5.1).
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Let us prove equality (5.2). From equality (4.15) it is easy to derive the
relation

s0x
−1
n w0 = x0x

−1
n t0. (5.3)

From Theorem 4.1 it follows that

cjn =
j∑

r=0

(sj−rx
−1
n w1+r − xj−rx

−1
n t1+r) + xjx

−1
n w0.

According to Corollary 4.2, we have

cjn = xj+1x
−1
n t0 − sj+1x

−1
n w0 + xjx

−1
n w0 (j = 0, 1, . . . , n− 1),

cnn = w0.

Comparing the last two equalities, we get∥∥∥∥∥∥∥
s1 s0 . . . 0
...

. . . . . .
...

sn . . . s1 s0

∥∥∥∥∥∥∥x−1n

∥∥∥∥∥∥∥
w0
...

wn

∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
x1 x0 . . . 0
...

. . . . . .
...

xn . . . x1 x0

∥∥∥∥∥∥∥x−1n

∥∥∥∥∥∥∥
t0
...
tn

∥∥∥∥∥∥∥ .

From here and (5.3) it follows that

S0nx
−1
n

∥∥∥∥∥∥∥
w0
...

wn

∥∥∥∥∥∥∥ = X0nx
−1
n

∥∥∥∥∥∥∥
t0
...
tn

∥∥∥∥∥∥∥ .

The last equality immediately implies (5.2).
The proposition is proved. �

Multiplying equalities (5.1) and (5.2) from the left and from the right by a
matrix Jn, in view of (2.5) we obtain the following equalities:

Sn1x
−1
n Wn1 = Xn1x

−1
n Tn1, (5.4)

S0nx−1n W 0n = X0nx−1n T 0n. (5.5)

Notice also that the equalities

Snkx−1n Wnk = Xnkx−1n T nk, Snkx
−1
n Wnk = Xnkx

−1
n Tnk, (5.6)

where k = 1, 2, . . . , n, and

S0kx
−1
n W0k = X0kx

−1
n T0k, S0kx−1n W 0k = X0kx−1n T 0k (5.7)

where k = 0, 1, . . . , n, are easily derived from equalities (5.1), (5.2), (5.4), and
(5.5).

Proposition 5.2. The block matrices

K =

∥∥∥∥∥ S0,n−1 X0,n−1

Sn1 Xn1

∥∥∥∥∥ , L =

∥∥∥∥∥ T 0,n−1 Tn1

W 0,n−1 Wn1

∥∥∥∥∥
are invertible.
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Proof. Indeed, from the obvious equality

K =
∥∥∥∥ E R1

0 E

∥∥∥∥ ∥∥∥∥ R2 0
0 R3

∥∥∥∥ ,

∥∥∥∥ E 0
R4 E

∥∥∥∥ ,

where E = ‖δjke‖n
j,k=0 and

R1 = X0,n−1(Xn1)−1, R2 = S0,n−1 −R1S
n1,

R3 = Xn1, R4 = (Xn1)−1Sn1,

it follows that the matrix K is invertible if and only if the matrix R2 is invertible.
By Proposition 5.1, the equalities

R2 = S0,n−1 −X0,n−1(Xn1)−1Sn1 = S0,n−1 −X0,n−1x−1n T n1(Wn1)−1xn

hold. Hence

R2 = (S0,n−1x−1n Wn1 −X0,n−1x−1n T n1)(Wn1)−1xn.

Thus, according to Theorem 4.2,

R2 = Â−1(Wn1)−1xn. (5.8)

This implies the invertibility of the matrix R2, and of the matrix K as well.
The invertibility of the operator L is proved analogously. The statement is

proved. �

Proposition 5.3. Let

K̃ =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

s0 0 . . . 0 x0 0 . . . 0
s1 s0 . . . 0 x1 x0 . . . 0
...

...
. . .

...
...

...
. . .

...
sn sn−1 . . . s0 xn xn−1 . . . x0
0 sn . . . s1 0 xn . . . x1
...

...
. . .

...
...

...
. . .

...
0 0 . . . sn 0 0 . . . xn

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

Then the homogeneous equation

K̃χ = 0 (5.9)

has a unique solution χ = {χ0, . . . , χn, χ
′
0, . . . , χ

′
n} with the property χn = e.

Moreover, for this solution the equalities

wk = xnχk, tk = −xnχ
′
k (k = 0, 1, . . . , n) (5.10)

hold.

Proof. Indeed, equalities (5.1) and (5.2) immediately imply equality (5.9) if the
elements χk are given by formula (5.10). Let us show the uniqueness of this solu-
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tion. Let χ be a solution of equation (5.9) with the property χn = e. Then from
(5.9) it follows that

K

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

χ0
...

χn−1
χ′0
...

χ′n−1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0
...
0

x0x
−1
n sn − s0

...
xn−1x−1n sn − sn−1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
(5.11)

and χ′n = −x−1n sn.
In view of Proposition 5.2, this implies the uniqueness of the solution with

the given property.
The proposition is proved. �
The following statement is proved analogously.

Proposition 5.4. For the matrix

L̃ =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

t0 t1 . . . tn 0 . . . 0
0 t0 . . . tn−1 tn . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . t0 t1 . . . tn
w0 w1 . . . wn 0 . . . 0
0 w0 . . . wn−1 wn . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . w0 w1 . . . wn

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
,

the homogeneous equation
ωL̃ = 0 (5.12)

has a unique solution ω = {ω0, . . . , ωn, ω
′
0, . . . , ω

′
n} with the property ωn = e.

Moreover, for this solution the equalities

xk = ωkwn, sk = −ω′kwn (k = 0, 1, . . . , n) (5.13)

hold.

The following statement is obtained by a straightforward verification.

Proposition 5.5. Suppose equations (4.1)–(4.4) have solutions xj, wj , sj, and tj
(j = 0, 1, . . . , n) and the elements x0, w0, and xn are invertible. Then the elements
xn−1

j , wn−1
j , sn−1

j , and tn−1j (j = 0, 1, . . . , n− 1) defined by the equalities

xn−1
j = sj+1 − xj+1x

−1
0 s0, wn−1

j = tj+1 − t0w
−1
0 wj+1,

sn−1
j = sj − xjx

−1
n sn, tn−1j = tj − snx

−1
n wj

(5.14)

are solutions of equations (4.1)–(4.4) for the matrix An−1, respectively.
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6. Inverse problem for equations (4.1)–(4.4)

In this section the problem of reconstruction of the matrix A from solutions of
equations (4.1)–(4.4) is solved.

Theorem 6.1. Let xj , wj, sj, and tj (j = 0, 1, . . . , n) be given systems of elements
in A and the elements xn and wn be invertible. For the existence of an element
an+1 ∈ A and a Toeplitz matrix A = ‖aj−k‖n

j,k=0 with elements aj ∈ A (j =
0,±1, . . . ,±n) such that xj , wj, sj, and tj are solutions of equations (4.1)–(4.4),
it is necessary and sufficient that the following conditions be fulfilled:

1) xn = wn;
2) Sn1x−1n Wn1 = Xn1x−1n T n1 and S0nx

−1
n W0n = X0nx

−1
n T0n;

3) one of the matrices

K =

∥∥∥∥∥ S0,n−1 X0,n−1

Sn1 Xn1

∥∥∥∥∥ , L =

∥∥∥∥∥ T 0,n−1 Tn1

W 0,n−1 Wn1

∥∥∥∥∥
is invertible;

4) one of the elements s0, t0 is invertible.

If conditions 1)–4) are fulfilled, then both matrices K and L and both elements
s0 and t0 are invertible. Moreover, the matrix A and the element an+1 are uniquely
determined by the systems xj , wj, sj, and tj.

Proof. The necessity of the first condition was obtained in Section 3, the necessity
of conditions 2) and 3) was proved in Section 4. The invertibility of the elements
s0 and t0 was established in the proof of Theorem 4.1.

Let us show the sufficiency of the conditions 1)–4). Assume for definiteness
that the matrix K is invertible. Put

Ĉ = ‖ĉjk‖n−1
j,k=0 = S0,n−1x−1n Wn1 −X0,n−1x−1n T n1.

The matrix Ĉ is invertible. Indeed, it is easy to show that the invertibility of the
matrix K implies the invertibility of the matrix D = S0,n−1−X0,n−1(Xn1)−1Sn1.
From condition 2) it follows that

D = S0,n−1 −X0,n−1x−1n T n1(Wn1)−1xn,

whence,
D = Ĉ(Wn1)−1xn.

Thus the matrix Ĉ is invertible. Put Â = ‖ajk‖n−1
j,k=0.

Consider the matrix C̃ defined by the equality

C̃ = ‖c̃jk‖n
j,k=0 =

∥∥∥∥∥∥∥∥∥
s0 0 . . . 0
s1 e . . . 0
...

...
. . .

...
sn 0 . . . e

∥∥∥∥∥∥∥∥∥
∥∥∥∥ x−1n 0

0 Ĉ

∥∥∥∥
∥∥∥∥∥∥∥∥∥

wn wn−1 . . . w0
0 e . . . 0
...

...
. . .

...
0 0 . . . e

∥∥∥∥∥∥∥∥∥ .
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Obviously,

c̃jk = cj−1,k−1 + sjx
−1
n wn−k (j, k = 1, 2, . . . , n),

c̃j0 = sj , c̃0k = s0x
−1
n wn−k (j, k = 0, 1, . . . , n).

(6.1)

According to the definition of the elements we have

ĉjk − ĉj−1,k−1 = sjx
−1
n wn−k − xjx

−1
n tn−k (j, k = 1, 2, . . . , n). (6.2)

This equality together with (6.1) implies the equality

c̃jk = ĉjk + xjx
−1
n tn−k (j, k = 0, 1, . . . , n− 1). (6.3)

From condition 2) it follows that

j∑
r=0

sj−rx
−1
n wr =

j∑
r=0

xj−rx
−1
n tr (j = 0, 1, . . . , n).

This implies that

j−1∑
r=0

(sj−1−rx
−1
n w1+r − xj−1−rx

−1
n t1+r) = xjx

−1
n t0 − sjx

−1
n w0.

Obviously, the left-hand side of this equality coincides with the element ĉj−1,n−1.
Therefore, in view of (6.1), the equality

c̃jn = xjx
−1
n t0 (6.4)

holds. The equality

c̃nk = tn−k (6.5)

is proved analogously. From equalities (6.3)–(6.5) it follows that

C̃ =

∥∥∥∥∥∥∥∥∥
e . . . 0 x0
...

. . .
...

...
0 . . . e xn−1
0 . . . 0 xn

∥∥∥∥∥∥∥∥∥
∥∥∥∥ Ĉ 0

0 x−1n

∥∥∥∥
∥∥∥∥∥∥∥∥∥

e . . . 0 0
...

. . .
...

...
0 . . . e 0
tn . . . t1 t0

∥∥∥∥∥∥∥∥∥ . (6.6)

In view of condition 4), the matrix C̃ is invertible. Put Ã = ‖ãjk‖n
j,k=0 = C̃−1.

From the equalities c̃j0 = sj and c̃nk = tn−k it follows that the elements sj and
tn−k are solutions of equations (4.1) and (4.2), respectively, for the matrix Ã.

From (6.1) and (6.6) it follows that∥∥∥∥∥∥∥∥∥
wn wn−1 . . . w0
0 e . . . 0
...

...
. . .

...
0 0 . . . e

∥∥∥∥∥∥∥∥∥ Ã

∥∥∥∥∥∥∥∥∥
s0 0 . . . 0
s1 e . . . 0
...

...
. . .

...
sn 0 . . . e

∥∥∥∥∥∥∥∥∥ =
∥∥∥∥ xn 0

0 Â

∥∥∥∥ (6.7)
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and ∥∥∥∥∥∥∥∥∥
e . . . 0 0
...

. . .
...

...
0 . . . e 0
tn . . . t1 t0

∥∥∥∥∥∥∥∥∥ Ã

∥∥∥∥∥∥∥∥∥
e . . . 0 x0
...

. . .
...

...
0 . . . e xn−1
0 . . . 0 xn

∥∥∥∥∥∥∥∥∥ =
∥∥∥∥ Â 0

0 xn

∥∥∥∥ . (6.8)

From the first equality it follows that ãjk = âj−1,k−1 for j, k = 1, 2, . . . , n, and
from the second equality it follows that ãjk = âj−1,k−1 for j, k = 0, 1, . . . , n − 1.
Therefore the matrix Ã is a Toeplitz matrix. Put ãj = ãj0 and ã−j = ã0j (j =
0, 1, . . . , n). Consider the matrix

C =

∥∥∥∥∥∥∥∥∥
e . . . 0 x0
...

. . .
...

...
0 . . . e xn−1
0 . . . 0 xn

∥∥∥∥∥∥∥∥∥
∥∥∥∥ 0 Ĉ

x−1n 0

∥∥∥∥
∥∥∥∥∥∥∥∥∥

wn wn−1 . . . w0
0 e . . . 0
...

...
. . .

...
0 0 . . . e

∥∥∥∥∥∥∥∥∥ (6.9)

and set A = ‖ajk‖n
j,k=0 = C−1. From (6.7) it follows that∥∥∥∥∥∥∥∥∥

wn wn−1 . . . w0
0 e . . . 0
...

...
. . .

...
0 0 . . . e

∥∥∥∥∥∥∥∥∥A

∥∥∥∥∥∥∥∥∥
e . . . 0 x0
...

. . .
...

...
0 . . . e xn−1
0 . . . 0 xn

∥∥∥∥∥∥∥∥∥ =
∥∥∥∥ 0 xn

Â 0

∥∥∥∥ . (6.10)

From this equality and equalities (6.7)–(6.8) the following relations can be easily
derived:

A

∥∥∥∥∥∥∥∥∥
e . . . 0 x0
...

. . .
...

...
0 . . . e xn−1
0 . . . 0 xn

∥∥∥∥∥∥∥∥∥ = Ã

∥∥∥∥∥∥∥∥∥
0 . . . 0 s0
e . . . 0 s1
...

. . .
...

...
0 . . . e sn

∥∥∥∥∥∥∥∥∥ (6.11)

and ∥∥∥∥∥∥∥∥∥
wn wn−1 . . . w0
0 e . . . 0
...

...
. . .

...
0 0 . . . e

∥∥∥∥∥∥∥∥∥A =

∥∥∥∥∥∥∥∥∥
tn . . . t1 t0
e . . . 0 0
...

. . .
...

...
0 . . . e 0

∥∥∥∥∥∥∥∥∥ Ã. (6.12)

From equality (6.11) it follows that

ajk = ãj,1+k = ãj−1−k (j = 0, 1, . . . , n; k = 0, 1, . . . , n− 1)

and from (6.12) in turn it follows that

ajk = ãj−1,k = ãj−1−k (j = 1, 2, . . . , n; k = 0, 1, . . . , n).

Therefore the matrix A is a Toeplitz matrix. From equality (6.10) it follows im-
mediately that the elements xj and wj are solutions of equations (4.1) and (4.2)
for the matrix A. Since the elements sj and tj are solutions of equations (4.1)
and (4.2) for the matrix Ã, they are solutions of equations (4.3) and (4.4) for the
matrix A.
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From Theorem 4.1 and equality (6.11) it follows that the matrices A and Ã
are determined by the systems xj , wj , sj , and tj . This implies the uniqueness of
the matrix A and the element an+1.

The theorem is proved. �

Theorem 6.2. Let xj and sj (j = 0, 1, . . . , n) be given systems of elements in A
and the elements xn and s0 be invertible.

For the existence of a Toeplitz matrix A = ‖aj−k‖n
j,k=0 with elements in A

and an element an+1 ∈ A such that xj and sj are solutions of equations (4.1) and
(4.3), respectively, it is necessary and sufficient that the matrix

K =

∥∥∥∥∥ S0,n−1 X0,n−1

Sn1 Xn1

∥∥∥∥∥
be invertible. If this condition is fulfilled, then the element an+1 and the matrix A
are uniquely determined, and solutions of equations (4.3) and (4.4) are determined
by equalities (5.10).

Proof. The necessity of the hypotheses follows from Theorem 6.1. Let us prove the
sufficiency. Assume that∥∥∥∥∥∥∥∥∥∥∥∥∥∥

χ0
...

χn−1
χ′0
...

χ′n−1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
= K−1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0
...
0

x0x
−1
n sn − s0

...
xn−1x−1n sn − sn−1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
. (6.13)

Moreover, put

χn = e, χ′n = −x−1n sn. (6.14)

It is easy to see that from (6.13) and (6.14) it follows that

K̃χ = 0, (6.15)

where χ = {χ0, . . . , χn, χ
′
0, . . . , χ

′
n}. Put

wk = xnχk, tk = −xnχ
′
k (k = 0, 1, . . . , n).

In particular, wn = xn.
From (6.15) one can easily get the equalities

S0nx
−1
n

∥∥∥∥∥∥∥
w0
...

wn

∥∥∥∥∥∥∥ = X0nx
−1
n

∥∥∥∥∥∥∥
t0
...
tn

∥∥∥∥∥∥∥
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and

Sn1x
−1
n

∥∥∥∥∥∥∥
w1
...

wn

∥∥∥∥∥∥∥ = X1nx
−1
n

∥∥∥∥∥∥∥
t1
...
tn

∥∥∥∥∥∥∥ .

This immediately implies condition 2) of Theorem 6.1. Thus all the conditions of
Theorem 6.1 are fulfilled.

The theorem is proved. �

The following theorem is proved analogously.

Theorem 6.3. Let wj and tj (j = 0, 1, . . . , n) be given systems of elements in A
and the elements wn and t0 be invertible.

For the existence of a Toeplitz matrix A = ‖aj−k‖n
j,k=0 with elements in A

and an element an+1 ∈ A such that wj and tj are solutions of equations (4.2) and
(4.4), respectively, it is necessary and sufficient that the matrix

L =

∥∥∥∥∥ T 0,n−1 Tn1

W 0,n−1 Wn1

∥∥∥∥∥
be invertible. If this condition is fulfilled, then the element an+1 and the matrix A
are uniquely determined and the solutions of equations (4.1) and (4.3) are given
by equalities (5.13).
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Matrix Integral Operators on a
Finite Interval with Kernels Depending
on the Difference of the Arguments

Israel Gohberg and Georg Heinig

By Ln
p (0, τ) (1 ≤ p ≤ ∞, 0 < τ < ∞) denote the Banach space of the vector

functions f = {f1, f2, . . . , fn} with entries fj ∈ Lp(0, τ) and the norm

‖f‖Ln
p

=
( n∑

j=1

‖fj‖Lp

)
.

In this paper we consider integral operators of the form

((I −K)ϕ)(t) = ϕ(t)−
∫ τ

0

k(t− s)ϕ(s) ds (0 ≤ t ≤ τ)

acting in the space Ln
p (0, τ), where k(t) = ‖krj(t)‖n

r,j=1 is a matrix function with
entries in L1(−τ, τ).

The results of the paper [1] obtained there for n = 1 are generalized to the
above operators. Theorems obtained below are continual analogues of the theorems
appearing in the first three sections of the paper [2].

The paper consists of four sections. The first section has an auxiliary char-
acter. In the second section, a formula for (I −K)−1 is constructed with the aid
of solutions of the following four equations:

x(t) −
∫ τ

0

k(t− s)x(s) ds = k(t), (0.1)

w(t)−
∫ τ

0

w(s)k(t − s) ds = k(t), (0.2)

z(−t)−
∫ τ

0

k(s− t)z(−s) ds = k(−t), (0.3)

y(−t)−
∫ τ

0

y(−s)k(s− t) ds = k(−t), (0.4)

The paper was originally published as I.C. Gohberg, G. Ha�inig, O matriqnyh inte-

gral�nyh operatorah na koneqnom intervale s �drami, zavis�wimi ot raznosti

argumentov, Rev. Roumaine Math. Pures Appl. 20 (1975), 55–73.
MR0380495 (52 #1395), Zbl 0327.45009.
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where 0 ≤ t ≤ τ . These equations are considered in the space Ln×n
1 (0, τ) of the

matrix functions of order n with entries in L1(0, τ).
In the third section main properties of solutions of equations (0.1)–(0.4) are

studied. In the fourth section the problem of reconstructing a matrix function k(t)
from matrix functions w(t), x(t), z(−t), and y(−t) is considered.

1. Two lemmas

In this section two auxiliary statements are proved.

Lemma 1.1. Let K be the operator defined in the space Ln
p (0, τ) (1 ≤ p ≤ ∞) by

the equality

(Kϕ)(t) =
∫ τ

0

k(t− s)ϕ(s) ds (0 ≤ t ≤ τ), (1.1)

where k(t) ∈ Ln×n
1 (−τ, τ). Then for every p the operator K is compact and the

subspace Ker(I −K) consists of absolutely continuous functions.

Proof. It is easy to see that K is a bounded linear operator in the space Ln
p (0, τ)

and
‖K‖Ln

p
≤ ‖k(t)‖Ln×n

1 (−τ,τ). (1.2)

If the matrix function k(t) has the form

k(t) =
m∑

j=−m

eiπjt/τAj , (1.3)

where Aj ∈ L(Cn) 1, then, obviously, the corresponding operator K is of finite
rank. It is known that the set of matrix functions of the form (1.3) is a dense
set in the space Ln×n

1 (−τ, τ). This fact and estimate (1.2) imply the compactness
of the operator K. By Wn(0, τ) denote the space of all vector functions f(t) =
{f1(t), . . . , fn(t)} with absolutely continuous entries and the norm

‖f(t)‖W n = ‖f(t)‖Ln
1

+
∥∥∥∥ d

dt
f(t)

∥∥∥∥
Ln

1

.

Consider the restriction K̂ of the operator K to Wn(0, τ). The operator K̂ is a
compact operator acting in the space Wn(0, τ). Indeed, for a vector f ∈ Wn(0, τ),

(K̂f)(t) =
∫ t

t−τ

k(s)f(t− s) ds

and
d

dt
(K̂f)(t) =

∫ τ

0

k(t− s)
d

ds
f(s) ds + k(t)f(0)− k(t− τ)f(τ).

Therefore, the vector K̂f belongs to Wn(0, τ) and

‖K̂f‖W n ≤ h‖k‖Ln×n
1
‖f‖W n ,

1The algebra of all linear operators acting in the n-dimensional space Cn is denoted by L(Cn).
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where h is a constant independent of the matrix k(t) and the vector f(t). The
compactness of the operator K̂ is proved in the same way as the compactness of
the operator K in the space Ln

p (0, τ).
Obviously, in the proof of the last statement of the lemma it is sufficient to

confine oneself to the case p = 1. Evidently, Ker(I − K̂) ⊂ Ker(I −K), whence

dimKer(I − K̂) ≤ dimKer(I −K).

Since the space Wn(0, τ) is dense in Ln
1 (0, τ) and Im(I − K̂) ⊂ Im(I −K),

we have
dim Coker(I − K̂) ≥ dimCoker(I −K).

Taking into account also that

dimKer(I − K̂) = dimCoker(I −K)

and
dimKer(I − K̂) = dimCoker(I − K̂),

we obtain
dimKer(I −K) = dimKer(I − K̂).

Hence Ker(I −K) = Ker(I − K̂) ⊂Wn(0, τ). The lemma is proved. �

Lemma 1.2. For a matrix function k(t) ∈ Ln×n
1 (−τ, τ), the following statements

are equivalent.

1. Equations (0.1) and (0.3) have solutions in the space Ln×n
1 (0, τ).

2. Equations (0.2) and (0.4) have solutions in the space Ln×n
1 (0, τ).

3. The operator I − K, where K is defined by equality (1.1), is invertible in
every space Ln

p (0, τ) (1 ≤ p ≤ ∞).
4. The operator I − K, where K is defined by equality (1.1), is invertible in

some space Ln
p (0, τ) (1 ≤ p ≤ ∞).

5. The operator I − K, where K is defined by equality (1.1), is invertible in
every space Ln×n

p (0, τ) (1 ≤ p ≤ ∞) (or in some of them).

Proof. According to Lemma 1.1, the subspace Ker(I−K) is the same in all spaces
Ln

p (0, τ) (1 ≤ p ≤ ∞). This immediately implies the equivalence of Statements 3
and 4.

The equivalence of Statements 3 and 5 is obvious.
Statement 2 implies Statement 3. Let w(t) and y(−t) be solutions of equations

(0.2) and (0.4) in Ln×n
1 (0, τ). Assume that f(t) ∈ Ker(I −K). Then

0 =
∫ τ

0

w(τ − t)
[
ϕ(t)−

∫ τ

0

k(t− s)ϕ(s) ds
]
dt

=
∫ τ

0

w(τ − t)ϕ(t) dt−
∫ τ

0

(w(τ − t)− k(τ − t))ϕ(t) dt = ϕ(τ)
(1.4)
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and

0 =
∫ τ

0

y(−t)
[
ϕ(t)−

∫ τ

0

k(t− s)ϕ(s) ds
]
dt

=
∫ τ

0

y(−t)ϕ(t) dt−
∫ τ

0

(y(−t)− k(t))ϕ(t) dt = ϕ(0).
(1.5)

In view of Lemma 1.1, the function ϕ(t) is absolutely continuous. Since

0 =
d

dt

(
ϕ(t)−

∫ τ

0

k(t− s)ϕ(s) ds
)

=
d

dt
ϕ(t) + k(t)ϕ(0) − k(t− τ)ϕ(τ) +

∫ τ

0

k(t− s)
d

ds
ϕ(s) ds,

we obtain according to (1.4) and (1.5) that

d

dt
ϕ(t)−

∫ τ

0

k(t− s)
d

ds
ϕ(s) ds = 0.

Therefore, d
dtϕ(t) ∈ Ker(I −K).

From what has been proved above it also follows that

dr

dtr
ϕ(t) ∈ Ker(I −K),

(
dr

dtr
ϕ

)
(0) =

(
dr

dtr
ϕ

)
(τ) for r = 1, 2, . . . .

Since the subspace Ker(I−K) is finite dimensional, we see that there exist numbers
m ∈ N and αj ∈ C1 (j = 0, 1, . . . ,m; αm �= 0) such that

m∑
j=0

αj
dj

dtj
ϕ(t) ≡ 0.

The last differential equation under the initial conditions(
dr

dtr
ϕ

)
(0) = 0 (r = 0, 1, . . . ,m− 1)

has a unique solution, which is equal to zero. Thus Ker(I −K) = {0}, whence the
operator I −K is invertible in all spaces Ln

p (0, τ) (1 ≤ p ≤ ∞).
Let us show that Statement 3 implies Statement 2. Consider the operator K∗

adjoint to the operator K. For 1 ≤ p <∞, the operator K∗ has the form (1.1) and
is determined by the matrix function k∗(−t) adjoint to k(−t). From Statement 3 it
follows that the operator I−K∗ is invertible in the spaces Ln

p (0, τ) for 1 < p ≤ ∞.
In view of Lemma 1.1, from here it follows that this operator is invertible also in
the space Ln

1 (0, τ). The operator I −K∗ can be extended in a natural way to the
space Ln×n

1 (0, τ) and it is invertible there. It is easily verified that the formulas

w(t) = [(I −K∗)−1f ]∗(τ − t), f(t) = k∗(τ − t) (0 ≤ t ≤ τ) (1.6)

and
y(−t) = [(I −K∗)−1h]∗(t), h(t) = k∗(−t) (0 ≤ t ≤ τ) (1.7)

determine solutions of equations (0.2) and (0.4).
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Analogously it is proved that Statement 3 implies Statement 1. It is easy to
check that solutions x(t) and z(−t) of equations (0.1) and (0.3) are given by the
formulas

x(t) = [(I −K)−1k](t) (0 ≤ t ≤ τ) (1.8)

and
z(−t) = [(I −K)−1g](τ − t), g(t) = −k(t− τ) (0 ≤ t ≤ τ). (1.9)

It remains to show that Statement 1 implies Statement 3. Equations (0.1)
and (0.3) can be rewritten as follows:

x∗(t) = −
∫ τ

0

x∗(s)k∗(t− s) ds = k∗(t) (0 ≤ t ≤ τ) (1.10)

and

z∗(−t)−
∫ τ

0

z∗(−s)k∗(s− t) ds = k∗(−t) (0 ≤ t ≤ τ). (1.11)

These equations can be considered as equations (0.4) and (0.2) for the function
k∗(−t). Thus, by what has been proved above, the solvability of the equations
(1.10), (1.11) in Ln×n

1 (0, τ) implies the invertibility of the operator I −K∗, and
whence it implies the invertibility of the operator I −K.

The lemma is proved. �

2. The inversion formula

2.1. The main result of this section is the following.

Theorem 2.1. Let k(t) ∈ Ln×n
1 (−τ, τ) and K be an operator2 of the form (1.1). If

the operator I −K is invertible, then for its inverse the equality(
(I −K)−1f

)
(t) = f(t) +

∫ τ

0

γ(t, s)f(s) ds (0 ≤ t ≤ τ) (2.1)

holds, where the kernel γ(t, s) is determined from the solutions x(t), w(t), z(−t),
and y(−t) of equations (0.1)–(0.4) by the formula

γ(t, s) = x(t − s) + y(t− s)

+
∫ min(t,s)

0

(
x(t− r)y(r − s)− z(t− r − τ)w(r − s + τ)

)
dr.

(2.2)

Here we follow the convention that x(−t) = y(t) = 0 for t > 0.

Proof. First, consider the case when the matrix function k(t) has the form

k(t) =
m∑

j=−m

eiπjt/τAj , (2.3)

2In what follows it is supposed that the operator K acts in one of the spaces Ln
p (0, τ) (1 ≤ p ≤ ∞).
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where Aj ∈ L(Cn). In this case the solution ϕ of the equation (I −K)ϕ = f has
the form

ϕ = f +
m∑

j=−m

eiπjt/τAjξj , ξj =
∫ τ

0

eiπjs/τϕ(s) ds.

The vectors ξj (j = 0,±1, . . . ,±m) are solutions of the system of equations

ξj =
m∑

k=−m

αjkAkξk =
∫ τ

0

f(s)e−iπjs/τ ds (j = 0,±1, . . . ,±m),

where αjk = τ((−1)− 1)/πi(j − k). Hence

ϕ(t) = f(t) +
∫ τ

0

⎛⎝ m∑
j,k=−m

eiπ(jt−ks)/τAkγjk

⎞⎠ f(s) ds,

where
‖γjk‖m

j,k=−m = (‖δjk − αjkAk‖m
j,k=−m)−1.

Thus, the operator (I −K)−1 has the form(
(I −K)−1f

)
(t) = f(t) +

∫ τ

0

γ(t, s)f(s) ds,

with kernel

γ(t, s) =
m∑

j,k=−m

eiπ(jt−ks)/τAkγjk.

Obviously, the equalities

γ(t, s)−
∫ τ

0

k(t− r)γ(r, s) dr = k(t− s), (2.4)

γ(t, s)−
∫ τ

0

γ(t, r)k(r − s) dr = k(t− s) (2.5)

hold, where 0 ≤ s, t ≤ τ . In particular, these equalities imply the equalities

γ(t, 0) = x(t), γ(τ, t) = w(τ − t), γ(t, τ) = z(t− τ), γ(0, t) = y(−t). (2.6)

For a sufficiently small ε > 0 we have

γ(t, s)− γ(t− ε, s− ε) =
∫ τ

0

k(t− r)(γ(u, s)− γ(r, s− ε)) dr

−
∫ τ

0

k(t− r)(γ(r, s) − γ(r − ε, s− ε)) dr

−
∫ ε

0

k(t− r)γ(r,−s) dr

−
∫ τ+ε

τ

k(t− r)γ(r − ε, s− ε) dr.
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From here it follows that
1
ε
(γ(t, s)− γ(t− ε, s− ε))−

∫ τ

0

k(t− r)
1
ε
(γ(r, s)− γ(r − ε, s− ε)) dr

=
1
ε

∫ ε

0

k(t− r)γ(r, s) dr − 1
ε

∫ τ+ε

τ

k(t− r)γ(r − ε, s− ε) dr.
(2.7)

Put
ω(t, s) = lim

ε→0
1
ε
(γ(t, s)− γ(t− ε, s− ε)).

Then passing to the limit as ε→ 0 in equality (2.7) we get

ω(t, s)−
∫ τ

0

k(t− r)ω(r, s) dr = k(t)γ(0, s)− k(t− τ)γ(τ, s)

or

ω(t, s)−
∫ τ

0

k(t− r)ω(r, s) dr = k(t)y(−s)− k(t− τ)w(t − s). (2.8)

Let g(t, s) = x(t)y(−s) − z(t− τ)w(τ − s). Then

g(t, s)−
∫ τ

0

k(t− r)g(r, s) dr = k(t)y(−s)− z(t− τ)w(τ − s).

In view of the invertibility of the operator I −K, from here it follows that

ω(t, s) = g(t, s) = x(t)y(−s)− z(t− τ)w(τ − s). (2.9)

From the definition of the function ω(t, s) it follows that

γ(t, s) = γ(t− s, 0) + γ(0, s− t) +
∫ min(t,s)

0

ω(t− r, s− r) dr. (2.10)

This equality means that formulas (2.1) and (2.2) hold.
Now consider the case of an arbitrary matrix function k(t) ∈ Ln×n

1 (−τ, τ).
Suppose km(t) is a sequence of matrix functions of the form (2.3) that converges
to k(t) in the norm of the space Ln×n

1 (−τ, τ). By Km denote the operators of
the form (1.1) generated by the functions km(t). According to (1.2) the operators
Km tend to the operator K in the norm as m → ∞. Without loss of generality,
one can assume that the operators I − Km are invertible. By xm(t), ym(−t),
zm(−t), and wm(t) denote the solutions of equations (0.1)–(0.4) for the function
km(t), respectively. By what has been proved above, for the operators (I−Km)−1

formula (2.2) holds. Hence (I−Km)−1 = I+Γm, where Γm is the integral operator
determined by the corresponding kernel γm(t, s) of the form (2.2):

γm(t, s) = xm(t− s) + ym(t− s)

+
∫ min(t,s)

0

(
xm(t− r)ym(r − s)− zm(t− r − τ)wm(r − s + τ)

)
dr.

By Γ denote the integral operator with kernel γ(t, s) defined by equality (2.2). We
shall prove that

lim
m→∞ ‖Γm − Γ‖ = 0.
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Put
hm(t) = |x(t)− xm(t)|+ |y(t)− ym(t)|

+
∫ τ

0

|x(t− r)y(−r) − xm(t− r)ym(−r)| dr

+
∫ τ

0

|z(t− r)w(r) − zm(t− r)wm(r)| dr,
(2.11)

where | · | is a norm in the space L(Cn).
The matrix functions xm(t), wm(t), zm(−t), and ym(t) converge in the norm

of the space Ln×n
1 (0, τ) as m→∞ to the matrix functions x(t), w(t), z(−t), and

y(−t), respectively. Then from (2.11) one can easily derive that

lim
m→∞ ‖hm‖L1 = 0.

Moreover, it is easy to see that the inequality

|γ(t, s)− γm(t, s)| ≤ hm(t− s)

holds (cf. [3, Section 6]). Thus, for every function ϕ(t) ∈ Ln
p (0, τ), the inequality∥∥∥∥∫ τ

0

(γ(t, s)− γm(t, s))ϕ(s) ds
∥∥∥∥

Ln
p

≤
(∫ τ

0

(∫ τ

0

|γ(t, s)− γm(t, s)| |ϕ(s)| ds
)p

dt

)1/p

≤
∥∥∥∥∫ τ

0

hm(t− s)|ϕ(s)| ds
∥∥∥∥

Lp

≤ ‖hm(t)‖L1‖ϕ(t)‖Ln
p

holds. Therefore,

‖(Γ− Γm)ϕ‖Ln
p
≤ ‖hm‖L1‖ϕ‖Ln

p
and lim

m→∞ ‖Γ− Γm‖ = 0.

Since
lim

m→∞ ‖I + Γm − (I −K)−1‖Ln
p

= 0,

from here it follows that
I + Γ = (I −K)−1.

The theorem is proved. �

Corollary 2.1. Let the hypotheses of Theorem 2.1 be fulfilled. Then for the resolvent
kernel γ(t, s) the formula

γ(t, s) = w(t− s) + z(t− s)

+
∫ τ

max(t,s)

(
z(t− r)w(r − s)− x(t − r + τ)y(r − s− τ)

)
dr

(2.12)

also holds.
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Proof. Indeed, from the definition of the function ω(t, s) it follows that

γ(t, s) = γ(t− s + τ, τ) + γ(τ, s− t− τ)−
∫ min(τ−s,τ−t)

0

ω(t + r, s + r) dr.

This implies that

γ(t, s) = w(t− s) + z(t− s)

+
∫ min(τ−s,τ−t)

0

(
z(t + r − τ)w(−s − r + τ)− x(t + r)y(−r − s)

)
dr.

The last equality implies equality (2.12). �

2.2. Formula (2.2) can also be represented in a different form. By γ̃(λ, μ) denote
the Fourier transform of the function γ(t, s):

γ̃(λ, μ) =
∫ τ

0

∫ τ

0

γ(t, s)ei(λt+μs) dt ds.

The function γ̃(λ, μ) is an entire function of μ and λ. We have the following.

Corollary 2.2. For the matrix function γ̃(λ, μ), the identity

γ̃(λ, μ) =
i

λ + μ

((
1+ x̃(λ)

)(
1+ ỹ(−μ)

)− eiτ(λ+μ)
(
1+ z̃(λ)

)(
1+ w̃(−μ)

))
(2.13)

holds, where in each occurrence ũ(λ) denotes the Fourier transform defined for a
function u(t) ∈ Ln×n

1 (0, τ) by

ũ(λ) =
∫ τ

0

u(t)eiλt dt.

Proof. Indeed, first assume that the functions x(t), z(−t), w(t), and y(−t) are
continuously differentiable. Then the resolvent kernel γ(t, s) is also continuously
differentiable. For a sufficiently small ε > 0 we have

e−iε(λ+μ) − 1
ε

γ̃(λ, μ) =
1
ε

∫ τ

0

∫ τ

0

γ(t, s)
(
ei(λ(t+ε)+μ(s+ε)) − ei(λt+μs)

)
dt ds

=
1
ε

∫ τ

0

∫ τ

0

(
γ(t + ε, s + ε)− γ(t, s)

)
ei(λt+μs) dt ds

+
1
ε

(∫ τ

0

∫ 0

−ε

+
∫ 0

−ε

∫ τ

−ε

)
γ(t + ε, s + ε)ei(λt+μs) dt ds

− 1
ε

(∫ τ

τ−ε

∫ τ

0

+
∫ τ−ε

0

∫ τ

τ−ε

)
γ(t, s)ei(λt+μs) dt ds.

Since the function
1
ε

(
γ(t + ε, s + ε)− γ(t, s)

)



56 I. Gohberg and G. Heinig

is uniformly bounded with respect to ε, passing to the limit as ε→∞, we obtain

−i(λ + μ)γ̃(λ, μ) =
∫ τ

0

∫ τ

0

ω(t, s)ei(λt+μs) dt ds

+
∫ τ

0

γ(t, 0)eiλt dt +
∫ τ

0

γ(0, s)eiμs ds

+
∫ τ

0

γ(t, τ)ei(λt+μτ) dt +
∫ τ

0

γ(τ, s)ei(λτ+μs) ds.

It remains to take into account equalities (2.6) and (2.9).
In the general case formula (2.13) is proved by passing to the limit. �

3. Properties of the solutions of main equations

Solutions of all four equations (0.1)–(0.4) play a part in formulas (2.2) and (2.12).
On the other hand, according to Lemma 1.2, the invertibility of the corresponding
operator I −K is equivalent to the existence of solutions for one pair of equations
(0.1) and (0.3) or (0.2) and (0.4). It happens that solutions of equations (0.1) and
(0.3) are related to solutions of equations (0.2) and (0.4). In the present section
these relations are investigated and auxiliary results are obtained, which will be
used for solving the inverse problem in the forthcoming section.

Everywhere in what follows we will assume that K is an operator of the form

(Kf)(t) =
∫ τ

0

k(t− s)f(s) ds (0 ≤ t ≤ τ)

with k(t) ∈ Ln×n
1 (0, τ) and that the operator I −K is invertible.

Proposition 3.1. For the solutions of equations (0.1)–(0.4) the identities

z(t−s−τ)+
∫ τ

0

z(t−r−τ)w(r−s) dr = y(t−s−τ)+
∫ τ

0

x(t−r)y(r−s−τ) dr (3.1)

and3

w(τ + t− s) +
∫ τ

0

z(t− r)w(r − s + τ) dr

= x(τ + t− s) +
∫ τ

0

x(τ + t− r)y(r − s) dr
(3.2)

hold for 0 ≤ t, s ≤ τ .

Proof. Indeed, from formulas (2.2) and (2.6) it follows that

z(t− τ) = γ(t, τ) = y(t− τ) +
∫ t

0

(
x(t− r)y(r − τ) − z(t− τ − r)w(r)

)
dr.

3Here and in what follows it is assumed that x(t) = w(t) = y(−t) = z(−t) = 0 for t /∈ [0, τ ].
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This implies that

z(t− τ) +
∫ t

0

z(t− τ − r)w(r) dr = y(t− τ) +
∫ t

0

x(t− r)y(r − τ) dr. (3.3)

By g(t, s) and h(t, s) denote the left-hand and right-hand sides of equality
(3.1), respectively. It is easy to see that the functions g(t, s) and h(t, s) depend
only on the difference of the arguments t−s. This implies that equality (3.1) holds
if g(t, 0) = h(t, 0) and g(0, s) = h(0, s). The first of these equalities follows from
(3.3) and the second equality is obvious because g(0, s) = h(0, s) = 0.

Equality (3.2) is proved analogously.
The proposition is proved. �

Proposition 3.2. For the solutions of equations (0.1)–(0.4) the identities

z(t− s)+
∫ τ

0

z(t− τ − r)w(τ − s− r) dr = y(t− s) +
∫ τ

0

x(t− r)y(r− s) dr (3.4)

and

x(t− s)+
∫ τ

0

x(t− r)y(r− s) dr = w(t− s)+
∫ τ

0

z(t− r− τ)w(r− s− τ) dr (3.5)

hold for 0 ≤ t, s ≤ τ .

Proof. Indeed, the left-hand side g(t, s) and the right-hand side h(t, s) of equality
(3.4) depend only on the difference of the arguments t − s. Hence equality (3.4)
holds if g(t, τ) = h(t, τ) and g(τ, s) = h(τ, s) (0 ≤ s, t ≤ τ). The first of these
equalities follows from (3.3) and the second is obvious.

Equality (3.5) is proved by analogy.
The proposition is proved. �

We define the following notation. Let g(t) (−τ ≤ t ≤ τ) be a matrix function
in Ln×n

1 (−τ, τ). Consider the following operators acting in the space Ln
p (0, τ):

(Gf)(t) =
∫ τ

0

g(t− s)f(s) ds (0 ≤ t ≤ τ),

(G±f)(t) =
∫ τ

0

g(t− s± τ)f(s) ds (0 ≤ t ≤ τ)

and

(G′f)(t) =
∫ τ

0

f(s)g(t− s) ds (0 ≤ t ≤ τ),

(G′±f)(t) =
∫ τ

0

f(s)g(t− s± τ) ds (0 ≤ t ≤ τ).

Note that if the function g(t) (�≡ 0) is equal to zero on one of the intervals [−τ, 0]
or [0, τ ], then the operators G and G′ are Volterra operators. Hence the operators
I+G and I+G′ are invertible. Besides that, if g(t) = 0 for±t ≥ 0, then G±G′± = 0.
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Equalities (3.1), (3.2), (3.4), and (3.5) can be rewritten in operator form. For
instance, equalities (3.1) and (3.2) in operator notation have the form

Z−(I + W ) = (I + X)Y−, (3.1′)

(I + Z)W+ = X+(I + Y ). (3.2′)

Obviously, the equalities

Z ′−(I + W ′) = (I + X ′)Y ′−, (3.1′′)

(I + Z ′)W ′
+ = X ′

+(I + Y ′). (3.2′′)

also hold.
Note also that formula (2.2) in operator notation has the form

(I −K)−1 = (I + X)(I + Y )− Z−W+. (3.6)

In the sequel the following “paired” operators acting in the space Ln
p (−τ, τ)

or in the space Ln×n
p (−τ, τ) are considered:

(Π̃χ)(t) = χ(t) +
∫ 0

−τ

x(t − s)χ(s) ds +
∫ τ

0

z(t− s− τ)χ(s) ds (−τ ≤ t ≤ τ),

(Λ̃ω)(t) = ω(t) +
∫ 0

−τ

ω(s)w(t − s) ds +
∫ τ

0

ω(s)y(t− s− τ) ds (−τ ≤ t ≤ τ).

We also introduce the following operators:
(H+f)(t) = f(t− τ) (0 ≤ t ≤ τ),

(H−f)(t) = f(t + τ) (−τ ≤ t ≤ 0).

The operator H+ maps Ln
p (−τ, 0) onto Ln

p (0, τ) and the operator H− is the inverse
of the operator H+. Considering the space Ln

p (−τ, τ) as the direct sum of the spaces
Ln

p (0, τ) and Ln
p (−τ, 0), the operators Π̃ and Λ̃ can be represented in block form as

Π̃ =

∥∥∥∥∥ H−(I + X)H+ H−Z−

X+H+ I + Z

∥∥∥∥∥ , Λ̃ =

∥∥∥∥∥ H−(I + W ′)H+ H−Y ′−

W ′
+H+ I + Y ′

∥∥∥∥∥ .

Obviously, these operators are similar to the operators

Π =

∥∥∥∥∥ I + X Z−

X+ I + Z

∥∥∥∥∥ , Λ =

∥∥∥∥∥ I + W ′ Y ′−

W ′
+ I + Y ′

∥∥∥∥∥
acting in the direct sum of two copies of the space Ln

p (0, τ).

Proposition 3.3. The operators Π and Λ are invertible.

Proof. Obviously, the operator I + Z is invertible. It is straightforward to verify
that

Π =
∥∥∥∥ I Z−(I + Z)−1

0 I

∥∥∥∥ ∥∥∥∥ I + X − Z−(I + Z)−1X+ 0
0 I + Z

∥∥∥∥
×
∥∥∥∥ I 0

(I + Z)−1X+ I

∥∥∥∥ .

(3.7)
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From this equality it follows that the operator Π is invertible if and only if the
operator C = I + X − Z−(I + Z)−1X+ is invertible. Since the operator I + Y is
invertible, from (3.2′) it follows that

C = ((I + X)(I + Y )− Z−W−)(I + Y )−1.

In view of equality (3.6) this means that

C = (I −K)−1(I + Y )−1.

Hence the operator C, as well as the operator Π, is invertible.
The invertibility of the operator Λ is proved analogously.
The proposition is proved. �

Proposition 3.4. The equalities∥∥∥∥ y(t− τ)
−w(t)

∥∥∥∥ = Π−1
∥∥∥∥ z(t− τ)
−x(t)

∥∥∥∥ (3.8)

and ∥∥∥∥ z(t− τ)
−x(t)

∥∥∥∥ = Λ−1
∥∥∥∥ y(t− τ)
−w(t)

∥∥∥∥ (3.9)

hold.

Proof. Indeed, from equality (3.1) for s = 0 it follows that

y(t− τ) =
∫ τ

0

x(t− r)y(r − τ) dr −
∫ τ

0

z(t− r − τ)w(r) dr = z(t− τ),

and from equality (3.2) for s = τ it follows that∫ τ

0

x(τ + t− r)y(r − τ) dr − w(t) −
∫ τ

0

z(t− r)w(r) dr = −x(t).

The last equalities can be written in the form

(I + X)y(t− τ) − Z−w(t) = z(t− τ),

X+y(t− τ) − (I + Z)w(t) = −x(t).

This immediately implies equality (3.8).
From (3.1) for t = τ it follows that

z(s− t) +
∫ τ

0

z(r − τ)w(s − r) dr = y(s− τ) +
∫ τ

0

x(r)y(s − r − τ) dr,

and from (3.2) for t = 0 it follows that

w(s) +
∫ τ

0

z(r − τ)w(s − r + τ) dr = x(s) +
∫ τ

0

x(r)y(s − r) dr.

This immediately implies equality (3.9).
The proposition is proved. �



60 I. Gohberg and G. Heinig

Proposition 3.5. The operators defined by the equalities

Π′ =
∥∥∥∥ I + X ′ X ′

+

Z ′− I + Z ′

∥∥∥∥ , Λ′ =
∥∥∥∥ I + W W+

Y− I + Y

∥∥∥∥
are invertible.

Proof. Indeed, since the operators Π and Λ are invertible, we see that their adjoint
operators Π∗ and Λ∗ are also invertible. The operator Π∗ is defined by the formula

Π∗ =
∥∥∥∥ ϕ1(t)

ϕ2(t)

∥∥∥∥ =
∥∥∥∥ ψ1(t)

ψ2(t)

∥∥∥∥ ,

where

ψ1(t) = ϕ1(t) +
∫ τ

0

x∗(s− t)ϕ1(s) ds +
∫ τ

0

x∗(s− t + τ)ϕ2(s) ds,

ψ2(t) = ϕ2(t) +
∫ τ

0

z∗(s− t− τ)ϕ1(s) ds +
∫ τ

0

z∗(s− t)ϕ2(s) ds

for 0 ≤ t ≤ τ and ϕ1(t), ϕ2(t) ∈ Ln×n
p (0, τ).

Passing to the adjoint operators in the last two equalities, after a change of
variables we obtain

ψ∗1(t− τ) = ϕ∗1(t− τ) +
∫ τ

0

ϕ∗1(s− τ)x(t − s) ds +
∫ τ

0

ϕ∗2(s− τ)x(t − s + τ) ds,

ψ∗2(t− τ) = ϕ∗2(t− τ) +
∫ τ

0

ϕ∗1(s− τ)z(t− s− τ) ds +
∫ τ

0

ϕ∗2(s− τ)z(t− s) ds.

These equalities can be written in the form∥∥∥∥ ψ∗1(t− τ)
ψ∗2(t− τ)

∥∥∥∥ = Π′
∥∥∥∥ ϕ∗1(t− τ)

ϕ∗2(t− τ)

∥∥∥∥ .

Thus the operator Π′ is invertible. The invertibility of the operator Λ′ is proved
analogously. �

4. Inverse problem

Theorem 4.1. Let four matrix functions be given: x(t), w(t) ∈ Ln×n
1 (0, τ) and

y(t), z(t) ∈ Ln×n
1 (−τ, 0). For the existence of a matrix function k(t) ∈ Ln×n

1 (−τ, τ)
such that x(t), w(t), z(−t), and y(−t) are solutions of equations (0.1)–(0.4), re-
spectively, it is necessary and sufficient that the following conditions be fulfilled:

1) Z−(I + W ) = (I + X)Y− and (I + Z)W+ = X+(I + Y );
2) at least one of the operators

Π =
∥∥∥∥ I + X Z−

X+ I + Z

∥∥∥∥ , Π′ =
∥∥∥∥ I + X ′ X ′

+

Z ′− I + Z ′

∥∥∥∥ ,

Λ′ =
∥∥∥∥ I + W W+

Y− I + Y

∥∥∥∥ , Λ =
∥∥∥∥ I + W ′ Y ′−

W ′
+ I + Y ′

∥∥∥∥
is invertible.
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If conditions 1) and 2) are fulfilled, then all the operators Π, Π′, Λ, and Λ′ are
invertible and the matrix function k(t) is uniquely determined by the relations∥∥∥∥ k+(t)

k−(t)

∥∥∥∥ = (Π′)−1
∥∥∥∥ x(t)

z(t− τ)

∥∥∥∥ = (Λ′)−1
∥∥∥∥ w(t)

y(t− τ)

∥∥∥∥ , (4.1)

where k+(t) = k(t) for 0 ≤ t ≤ τ and k−(t) = k(t− τ) for −τ ≤ t ≤ 0.

Proof. The necessity of conditions 1) and 2) is established in Propositions 3.1, 3.3,
and 3.5. Let us prove formula (4.1). From equalities (0.1) and (0.3), we obtain
after simple transformations that

k(t) +
∫ t

t−τ

k(s)x(t − s) ds = x(t) (0 ≤ t ≤ τ)

and

k(t− τ) +
∫ t−τ

t

k(s− t)z(t− s) ds = z(t− τ) (0 ≤ t ≤ τ).

From here it follows that

k(t) +
∫ τ

0

k(s)x(t − s) ds +
∫ τ

0

k(s− t)x(t − s + τ) ds = x(t)

and

k(t− τ) +
∫ τ

0

k(s− t)z(t− s) ds +
∫ τ

0

k(s)z(t− s− τ) ds = z(t− τ).

The last equalities are equivalent to the first equality in (4.1). The second equality
in (4.1) is proved analogously.

Let us show the sufficiency of conditions 1) and 2). For instance, let the
operator Π be invertible. From the proof of Proposition 3.5 it follows that the
operator Π′ is also invertible. Put∥∥∥∥ k+(t)

k−(t)

∥∥∥∥ = (Π′)−1
∥∥∥∥ x(t)

z(t− τ)

∥∥∥∥ (4.2)

and k(t) = k+(t) for 0 ≤ t ≤ τ and k(t) = k−(t) for −τ ≤ t ≤ 0. From (4.2) we
obtain after simple transformations that

x(t)−
∫ τ

0

k(t− s)x(s) ds = k(t) (0 ≤ t ≤ τ)

and

z(t− τ)−
∫ τ

0

k(t− s)z(s− t) ds = k(t− τ) (0 ≤ t ≤ τ).

This means that for the function k(t), the equations (0.1) and (0.3) have solutions.
In view of Theorem 2.1, from here it follows that the operator I −K is invertible.

It is obvious that condition 1) for the matrix functions y(−t) and w(t) can
be written in the form

y(t− τ) +
∫ τ

0

x(t− s)y(s− τ) ds = z(t− τ) +
∫ τ

0

z(t− s− τ)w(s) ds
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and

x(t) +
∫ τ

0

x(τ + t− s)y(s− τ) ds = w(t) +
∫ τ

0

z(t− s)w(s) ds

or, equivalently, in the form

(I + X)y(t− τ) − Z−w(t) = z(t− τ),

X+y(t− τ)− (I + Z)w(t) = −x(t).

Thus, for the functions y(−t) and w(t) the equality

Π
∥∥∥∥ y(t− τ)
−w(t)

∥∥∥∥ =
∥∥∥∥ z(t− τ)
−x(t)

∥∥∥∥
holds.

On the other hand, in view of Proposition 3.4 (see (3.8)), the solutions of
equations (0.2) and (0.4) are also determined by the last equality. Taking into
account the invertibility of the operator Π, we conclude that the functions y(−t)
and w(t) are solutions of equations (0.2) and (0.4), respectively.

The theorem is proved analogously in the case when all other operators Π′,
Λ′, and Λ are invertible.

The theorem is proved. �

Theorem 4.2. Let matrix functions x(t) ∈ Ln×n
1 (0, τ) and z(t) ∈ Ln×n

1 (−τ, 0) be
given. For the existence of a matrix function k(t) ∈ Ln×n

1 (−τ, τ) such that x(t)
and z(−t) are solutions of equations (0.1) and (0.3), respectively, it is necessary
and sufficient that the operator Π be invertible.

Proof. The necessity of the hypotheses follows from Proposition 3.3. For the proof
of the sufficiency we introduce the matrix functions y(−t) and w(t) by the equality∥∥∥∥ y(t− τ)

−w(t)

∥∥∥∥ = (Π∗)−1
∥∥∥∥ z(t− τ)
−x(t)

∥∥∥∥ .

From here it follows that

(I + X)y(t− τ) = Z−w(t) + z(t− τ), x(t) + X+y(t− τ) = (I + Z)w(t).

With the aid of the arguments from the proof of Proposition 3.1 from here we get
the equalities

(I + X)Y− = Z−(W + I), X+(I + Y ) = (I + Z) = W+.

Thus the conditions of Theorem 4.1 are fulfilled. The theorem is proved. �

The following theorem is proved analogously.

Theorem 4.3. Let matrix functions w(t) ∈ Ln×n
1 (0, τ) and y(t) ∈ Ln×n

1 (−τ, 0) be
given. For the existence of a matrix function k(t) ∈ Ln×n

1 (−τ, τ) such that w(t)
and y(−t) are solutions of equations (0.2) and (0.4), respectively, it is necessary
and sufficient that the operator Λ′ be invertible.
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The Resultant Matrix and its Generalizations.
I. The Resultant Operator for
Matrix Polynomials

Israel Gohberg and Georg Heinig

Let a(λ) = a0 + a1λ + · · · + anλ
n and b(λ) = b0 + b1λ + · · · + bmλm be two

polynomials with coefficients in C1. The determinant of the following matrix

R(a, b) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 . . . an

a0 a1 . . . an

. . .
. . .

. . .
. . .

a0 a1 . . . an

b0 b1 . . . bm

b0 b1 . . . bm

. . .
. . .

. . .
. . .

b0 b1 . . . bm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭m

⎫⎪⎪⎬⎪⎪⎭n

is said to be the resultant of these polynomials.
It is known that

detR(a, b) = an
nb

m
m

n∏
j=1

m∏
k=1

(λj(a)− λk(b)),

where λj(a) (j = 1, 2, . . . , n) is the complete collection of the roots of the polyno-
mial a(λ). In particular, the polynomials a(λ) and b(λ) have at least one common
root if and only if the resultant detR(a, b) is equal to zero (see, e.g., [1]). A more
complete result is known (see, e.g., [2, 3]). It says that the number of common
roots of the polynomials a(λ) and b(λ) (taking into account their multiplicities) is
equal to the number

m + n− rankR(a, b).
This relation immediately follows from the next statement.

The paper was originally published as I.C. Gohberg, G. Ha�inig, Rezul�tantna� matrica

i eë obobweni�. I. Rezul�tantny�i operator matriqnyh polinomov, Acta Sci. Math.
(Szeged) 37 (1975), 41–61. MR0380471 (52 #1371), Zbl 0298.15013.
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Theorem 0.1. Let λl (l = 1, 2, . . . , l0) be all distinct common roots of the polyno-
mials a(λ) and b(λ) and kl be the multiplicity of the common root λl.

Then the system of vectors

Hk(λl) =
((

p

k

)
λp−k

l

)m+n−1

p=0

∈ Cm+n (l = 1, 2, . . . , l0, k = 0, 1, . . . , kl − 1)

forms a basis of the subspace KerR(a, b). In particular,

l0∑
l=0

kl = dimKerR(a, b). (0.1)

In the present paper various generalizations of this theorem are established.
In the first part of the paper the resultant operator for matrix polynomials

is studied. In contrast with the scalar case, this operator is defined, as a rule, by
a rectangular matrix.

This part consists of five sections. The first two sections have an auxiliary
character. In the third section the main theorem is proved, from which, in partic-
ular, Theorem 0.1 follows. In fourth and fifth sections examples of applications of
the main theorem are presented.

In the second part of the paper continual analogues of the results of this
paper will be exposed.

The authors have started this investigation under the influence of conversa-
tions with M.G. Krein. He kindly drew the authors’ attention to relations of this
circle of questions with results on inversion of finite Toeplitz matrices and their
continual analogues [4, 5].

The authors wish to express their sincere gratitude to M.G. Krein.

1. Lemma on multiple extensions of systems of vectors

1.1. Let L denote some linear space and let Lm be the linear space of all vectors
of the form f = (fj)m−1

j=0 with components fj ∈ L. Let

F =
{
ϕjk : k = 0, 1, . . . , kj − 1; j = 1, 2, . . . , j0

}
be a system of vectors in L and λ0 be a complex number. We say that the system
of vectors

Fm(λ0) =
{
Φjk(λ0) : k = 0, 1, . . . , kj − 1; j = 1, 2, . . . , j0

}
in Lm, where

Φjk(λ0) =
(
ϕp

jk(λ0)
)m−1

p=0
, ϕp

jk(λ0) =
p∑

s=0

(
p

s

)
λp−s
0 ϕj,k−s (1.1)
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is the extension of multiplicity m of the system F with respect to λ0. It is easy to
see that for the vectors Φjk(λ0) the equalities

ϕp
jk(λ0) =

dp

dtp
eλ0t

(
ϕjk +

t

1!
ϕj,k−1 + · · ·+ tk

k!
ϕj0

) ∣∣∣
t=0

(1.2)

hold.
The following recurrent formula

ϕp+1
jk (λ0) = λ0ϕ

p
jk(λ0) + ϕp

jk−1(λ0) (k = 0, 1, . . . , kj − 1; j = 1, 2, . . . , j0) (1.3)

also holds, where it is assumed that ϕp
j,−1(λ0) = 0. Indeed, from equality (1.1) it

follows that

ϕp+1
jk (λ0)− λ0ϕ

p
jk(λ0)

=
p+1∑
s=0

((
p + 1
s

)
λp−s+1
0 ϕj,k−s(λ0)−

(
p

s

)
λp−s+1
0 ϕj,k−s(λ0)

)

=
p+1∑
s=0

(
p

s− 1

)
λp−s+1
0 ϕj,k−s(λ0).

Therefore,

ϕp+1
jk (λ0)− λ0ϕ

p
jk(λ0) =

p∑
s=0

(
p

s

)
λp−s
0 ϕj,k−1−s(λ0) = ϕp

j,k−1(λ0).

From formula (1.3) one can get without difficulty a more general formula

ϕp+r
jk (λ0) =

p∑
s=0

(
r

s

)
λr−s
0 ϕp

j,k−s(λ0) (r = 1, 2, . . . ). (1.4)

Indeed, for r = 1 formula (1.4) coincides with (1.3). Assume that equality (1.4)
holds. Then

ϕp+r+1
jk (λ0) = λ0ϕ

p+r
jk (λ0) + ϕp+r

j,k−1(λ0)

=
r∑

s=0

((
r

s

)
λr+1−s
0 ϕp

j,k−s(λ0)−
(

r

s− 1

)
λr+1−s
0

)
ϕj,k−s(λ0),

whence

ϕp+r+1
jk (λ0) =

r+1∑
s=0

(
r + 1
s

)
λr+1−s
0 ϕp

j,k−s(λ0).

1.2. The next statement plays an important role in what follows.

Lemma 1.1. Let Λ = {λ1, λ2, . . . , λl} be a system of distinct complex numbers and
Fl (l = 1, 2, . . . , l0) be systems of vectors in L:

Fl =
{
ϕjk,l : k = 0, 1, . . . , kjl − 1; j = 1, 2, . . . , jl

}
.
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If for every l = 1, 2, . . . , l0 the system of vectors ϕj0,l (j = 1, 2, . . . , jl) is
linearly independent and a number m satisfies the condition

m ≥
l0∑

l=1

max
j=1,2,...,jl

kjl, (1.5)

then the system of vectors1

Fm(Λ) =
l0⋃

l=1

Fm
l (λl)

is also linearly independent.

Proof. Obviously, it is sufficient to confine oneself to the case

m =
l0∑

l=1

max
j=1,2,...,jl

kjl.

Consider the operator matrices

Πr(λ) = ‖πr
stI‖m−1

s,t=1 (r = 0, 1, . . . ,m− 1),

where

πr
st =

⎧⎪⎨⎪⎩
δst (s ≤ r),

(−λ)s−t

(
s− r

t− r

)
(s > r)

and I is the identity operator in the space L. Now we elucidate how the operator
Πr(λ) acts on the vectors Φjk(λl) = (ϕp

jk,l(λl))m−1
p=0 of the system Fm(Λ). First of

all, note that the operator Πr(λ) does not change the first r + 1 components of
the vector Φjk,l(λl).

Consider the systems of vectors

Sm
r (λ, λl) =

{
PrΠr(λ)Φjk(λl) : k = 0, 1, . . . , kjl − 1; j = 1, 2, . . . , jl

}
, (1.6)

where

Pr =

⎡⎢⎣ 0 . . . 0 I 0
...

...
. . .

0 . . . 0 0 I

⎤⎥⎦
⎫⎬⎭m− r,

︸ ︷︷ ︸
m

l = 1, 2, . . . , l0 and r = 0, 1, . . . ,m− 1.

1Here and in what follows by
l0⋃

l=1

Fm
l (λl) we denote the system{

Φjk,l(λl) : k = 0, 1, . . . , kjl − 1; j = 1, 2, . . . , jl; l = 1, 2, . . . , l0
}
.



The Resultant Matrix and its Generalizations I 69

We shall prove that each of these systems of vectors is the extension of mul-
tiplicity m− r with respect to λl − λ of the corresponding system of vectors

Sr(λl) =
{
ϕr

jk,l(λl) : k = 0, 1, . . . , kjl − 1; j = 1, 2, . . . , jl

}
.

Put

(ψp
jk,l)

m−1−r
p=0 = PrΠr(λ)Φjk,l(λl).

Then

ψp
jk,l =

p+r∑
s=r

(−λ)p+r−s

(
p

s− r

)
ϕs

jk,l(λl) =
p∑

u=0

(−λ)u

(
p

u

)
ϕp+k−u

jk,l (λl).

In view of (1.4),

ϕp−u+r
jk,l (λl) =

p−u∑
s=0

λp−u−s
l

(
p− u

s

)
ϕr

j,k−s,l(λl),

hence

ψp
jk,l =

p∑
u=0

p−u∑
s=0

λp−u−s
l (−λ)u

(
p

u

)(
p− u

s

)
ϕr

j,k−s,l.

Taking into account that (
p− u

s

)(
p

u

)
=
(
p− s

u

)(
p

s

)
,

we get

ψp
jk,l =

p∑
s=0

p−s∑
u=0

λp−u−s
l (−λ)u

(
p− s

u

)(
p

s

)
ϕr

j,k−s,l(λl).

Thus,

ψp
jk,l =

p∑
s=0

(λl − λ)p−s

(
p

s

)
ϕr

j,k−s,l(λl).

The last equality means that the system of vectors Sm
r (λ, λl) is the extension of

multiplicity m− r of the system Sm
r (λl) with respect to λl − λ.

Consider the system F
(1)
m (λl) of vectors

Φ(1)jk (λl) = Π0(λ)Φjk,l(λl) (k = 0, 1, . . . , kjl − 1; j = 1, 2, . . . , j).

From the above arguments it follows that the system F
(1)
m (λl) is the extension

of multiplicity m of the system Fl (l = 1, 2, . . . , l0) with respect to λl − λ1. In
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particular, the vectors Φ(1)jk (λ1) have the form

Φ(1)jk (λ1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕjk,1

...
ϕj0,1

0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(k = 0, 1, . . . , kj1 − 1; j = 1, 2, . . . , j1).

Now let us form the system F
(2)
m (λl) of vectors

Φ(2)jk (λl) = Πκ1(λ2 − λ1)Φ
(1)
jk (λ1) (k = 0, 1, . . . , kjl − 1; j = 1, 2, . . . , l0),

where
κ1 = max

j=1,2,...,j1
kj1.

Then the system of vectors Pκ1Φ
(2)
jk (λl) is the extension of multiplicity m− κ1 of

the system of vectors ϕκ1
jk,l(λl − λ1) with respect to

λl − λ1 − (λ2 − λ1) = λl − λ2.

In particular, Pκ1Φ
(2)
jk (λ1) = 0 and the vectors Pκ1Φ

(2)
jk (λ2) have the form

Pκ1Φ
(2)
jk (λ2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗
...
∗

(λ2 − λ1)κ1ϕjk,2

0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
← k

where the vectors not playing any role in what follows are replaced by ∗.
We shall repeat this process: from the system F

(s)
m (λl) of vectors

Φ(s)jk (λl) (k = 0, 1, . . . , kj,l − 1; j = 1, . . . , jl)

we construct the system F
(s+1)
m (λl) of vectors

Φ(s+1)jk (λl) = Πκ2(λs+1 − λs)Φ
(s)
jk ,

where

κs =
s∑

l=1

max
j=1,2,...,js

kjl.

For the vectors PκsΦ
(s+1)
jk (λl), the equalities

PκsΦ
(s+1)
jk (λl) = 0 (l = 1, 2, . . . , s)
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hold, and the vectors PκsΦ
(s+1)
jk (λs+1) have the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗
...
∗

(λs+1 − λs)κsϕjk,s+1

0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
← k (k = 0, 1, . . . , kj,s+1 − 1; j = 1, 2, . . . , js+1).

Finally, we construct the systems Fl0
m(λl) (l = 1, 2, . . . , l0). The vectors of this

system Pκl0−1Φ
(l0)
jk (λl) = 0 for l �= l0, and the vectors Pκl0−1Φ

(l0)
jk (λl0) have the

form ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗
...
∗

(λl0 − λl0−1)κl0−1ϕjk,l0

0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
← k. (1.7)

Now let us prove that the system of vectors

F(l0)m (Λ) =
l0⋃

l=1

F(l0)m (λl)

is linearly independent. Let

l0∑
l=1

jl∑
j=1

kjl−1∑
k=0

αjklΦ
(l0)
jk (λl) = 0.

Then ∑
j,k,l

αjklPκl0−1Φ
(l0)
jk (λl) =

jl0∑
j=1

kjl−1∑
k=0

αjkl0Pκl0−1Φ
(l0)
jk (λl0) = 0.

Since the vectors Pκl0−1Φ
(l0)
jk (λl0) have the form (1.7) and the vectors ϕj0,l0 (j =

1, 2, . . . , jl) are linearly independent, we have

αjkl0 = 0 (k = 0, 1, . . . , kjl0 − 1; j = 1, 2, . . . , jl0).

Thus,
l0−1∑
l=1

jl∑
j=1

kjl−1∑
k=0

αjklΦ
(l0)
jk (λl) = 0.
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Applying the operator Pκl0−2 to this equality, we obtain that

αjk,l0−1 = 0 (k = 0, 1, . . . , kjl0−1 − 1; j = 1, . . . , jl0 − 1).

Continuing this process analogously, we obtain that

αjks = 0 (k = 0, 1, . . . , kjs − 1; j = 1, 2, . . . , js)

for s = l0−2, l0−3, . . . , 1. The obtained linear independency of the system F
(l0)
m (Λ)

implies the linear independency of the system Fm(Λ).
The lemma is proved. �

It is easily seen that condition (1.5) is essential in the formulation of Lem-
ma 1.1 even in the case L = C1.

1.3. The next lemma is derived from Lemma 1.1.

Lemma 1.2. Let Λ = {λ1, λ2, . . . , λl0} be a set of complex numbers and let Fl

(l = 1, 2, . . . , l0) be a system of vectors in L:

Fl =
{
ϕjk,l : k = 0, 1, . . . , kjl − 1; j = 1, 2, . . . , jl

}
.

If a number m satisfies condition (1.5) and

l0∑
l=1

jl∑
j=1

kjl−1∑
k=0

αjklΦjk,l(λl) = 0 (αjkl ∈ C1), (1.8)

then

Φk,l(λl) =
∑

j

αjklΦjk,l(λl) = 0 (k = 0, 1, . . . ,max
j

kjl − 1; l = 1, 2, . . . , l0),

where the summation spreads over all indices j such that kjl ≥ k.

Proof. Let us form the system

Sl =

⎧⎨⎩ϕk,l =
∑

j

αjklϕjk,l : ϕ0,l �= 0; k = 0, 1, . . . ,max
j

kjl − 1

⎫⎬⎭ ,

where l = 1, 2, . . . , l0, and assume that it is not empty. Obviously, then the system

Sm
l =

{
Φk,l(λl) : k = 0, 1, . . . ,max

j
kjl − 1

}
is the extension of multiplicity m of the system Sl. Applying Lemma 1.1 to the
system S =

⋃l0
l=1Sl, we obtain that the system of vectors Φk,l(λl) is linearly

independent. The last fact contradicts equality (1.7). Thus Sl = ∅, whence

ϕ0,l = 0 (l = 1, 2, . . . , l0).

Now we form the systems

Sl,1 =
{
ϕ
(1)
k,l = ϕk+1,l : ϕ1,l �= 0, k = 0, 1, . . . ,max

j
kjl − 2

}
(l = 1, 2, . . . , l0).
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It is easy to see that the extension of multiplicity m of the system Sl,1 consists of
the vectors

Φk+1,l(λl) = Φk,l,1(λl) (ϕ1,l �= 0; k = 0, . . . ,max
j

kjl − 2).

Hence, applying Lemma 1.1 again, we obtain that S1,l = ∅, whence

ϕ1,l = 0 (l = 1, 2, . . . , l0).

Continuing this process, we get

ϕr,l = 0 (l = 1, 2, . . . , l0) for r = 2, 3, . . . ,max
j,l

kjl − 1.

The lemma is proved. �

2. Auxiliary propositions

2.1. Let d be a natural number and A(λ) = A0 + λA1 + · · ·+ λnAn be a matrix
pencil with coefficients Ak ∈ L(Cd) 2. Everywhere in what follows we will suppose
that the matrix An is invertible.

A number λ0 ∈ C1 is said to be an eigenvalue of the pencil A(λ) if

detA(λ0) = 0.

If for some vector ϕ0 ∈ Cd (ϕ0 �= 0) the equality A(λ0)ϕ0 = 0 holds, then the
vector ϕ0 is said to be an eigenvector of the pencil A(λ) at λ0. A chain of vectors
ϕ0, ϕ1, . . . , ϕr is called a Jordan chain (a chain of an eigenvector and associated
vectors) of length r + 1 if the equalities

A(λ0)ϕk +
1
1!

(
d

dλ
A

)
(λ0)ϕk−1 + · · ·+ 1

k!

(
dk

dλk
A

)
(λ0)ϕ0 = 0 (2.1)

hold for k = 0, 1, . . . , r.
Let λ0 be an eigenvalue of the pencil A(λ). It is easy to prove that one

can construct a basis ϕ10, ϕ20, . . . , ϕr0 in the kernel of the matrix A(λ0) with the
following property. For every vector ϕj0 there exists a chain of associated vectors
ϕj1, ϕj2, . . . , ϕj,kj−1, where k1 ≥ k2 ≥ · · · ≥ kr and the number k1 + k2 + · · ·+ kr

is equal to the multiplicity of the zero of the function detA(λ) at the point λ0.
The numbers kj (j = 1, 2, . . . , r) are called partial multiplicities of the eigen-

value λ0, and the system

ϕj0, ϕj1, . . . , ϕj,kj−1 (j = 1, . . . , r)

is said to be a canonical system of Jordan chains for the pencil A(λ) at the eigen-
value λ0.

2The space of quadratic matrices of order d is denoted by L(Cd).
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Lemma 2.1. Let Λ = {λ1, λ2, . . . , λl} be the complete collection of all distinct
eigenvalues of a pencil A(λ) = A0+λA1+ · · ·+λnAn with coefficients Ak ∈ L(Cd)
and let

F =
{
ϕjk,l : k = 0, 1, . . . , kjl − 1; j = 1, 2, . . . , jl

}
(l = 1, 2, . . . , q)

be a canonical system of Jordan chains of the pencil A(λ) at the eigenvalue λl.
Then for every natural number m the system3

Fm+n(Λ) =
l0⋃

l=1

Fm+n
l (λl)

=
{
Φjk,l(λl) = (ϕp

jk,l(λl))m−1
p=0 : j = 1, . . . , jl; k = 0, . . . , kjl − 1

}
is a basis of the kernel of the operator

Am =

⎡⎢⎢⎢⎢⎣
A0 A1 . . . An . . . . . . 0
... A0 . . . An−1 An

...
...

. . .
. . .

. . .
. . .

...
0 . . . . . . A0 . . . An−1 An

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭m

acting from C(m+n)d to Cmd.

Proof. First, we shall show that the equality

n+r∑
p=r

Ap−rϕ
p
jk,l(λl) = 0 (j = 1, 2, . . . , jl) (2.2)

holds for k = 0 and every r. Indeed, since ϕp
j0,l(λl) = λp

l ϕj0,l, we have

n+r∑
p=r

Ap−rϕ
p
j0,l(λl) =

n+r∑
p=r

λp
l Ap−rϕj0,l = λr

l A(λl)ϕj0,l = 0.

Assume that equality (2.2) is true for every r and k = k0. Then it is also true
for k = k0 + 1 and every r. Indeed, by the assumption, we have

0 =
n+r∑
p+r

Ap−rϕ
p
jk0,l(λl) = λl

n+r∑
p=r

p∑
s=0

(
p

s

)
λp−s

l Ap−rϕj,k0−s,l

=
n+r∑
p=r

p∑
s=0

(
p

s− 1

)
λp−s

l Ap−rϕj,k0+1−s,l.

3Recall that the system Fm+n(λl) is the extension of multiplicity m + n of the system F with
respect to λl (for the definition, see Section 1).
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This implies that
n+r∑
p=r

Ap−rϕ
p
j,k0+1

(λ0) =
n+r∑
p=r

p∑
s=0

((
p

s

)
λp−s

l Ap−rϕj,k0+1−s,l

−
(

p

s− 1

)
λp−s

l Ap−rϕj,k0+1−s,l

)

=
n+r∑
p=r

p−1∑
s=1

(
p− 1
s− 1

)
λp−s

l Ap−rϕj,k0+1−s,l

=
n+r−1∑
p=r−1

Ap−(r−1)ϕ
p
jk0,l(λl) = 0.

Thus it has been proved that equality (2.2) holds for every k = 0, 1, . . . , kjl − 1
and every r = 0, 1, . . . ,m− 1. This implies that Φjk,l(λl) ∈ KerAm.

The system Fm+n(Λ) consists of nd vectors. According to Lemma 1.1, this
system is linearly independent. On the other hand, obviously,

dim KerAm = (m + n)d−md = nd.

Thus KerAm = linFm+n(Λ). 4

The lemma is proved. �
2.2.

Lemma 2.2. Let

Fl =
{
ϕjk,l : k = 0, 1, . . . , kjl − 1; j = 1, 2, . . . , jl

}
(l = 1, 2, . . . , q)

be a system of vectors in the space Cd and Λ = {λ1, λ2, . . . , λq} be a finite set of
complex numbers. Suppose Fm+n

l (λl) is the extension of multiplicity m + n of the
system Fl with respect to λl and the vector

Ω =
q∑

l=1

jl∑
j=1

kjl−1∑
k=0

αjklΦjk,l(λl) ∈ C(m+n)d,

where αjkl ∈ C1, belongs to the kernel of the operator Am. If a number m satisfies
the condition5

m ≥
q∑

l=1

max
j

kjl

then all vectors

Ωk,l =
∑

j

αjklΦjk,l(λl) (k = 0, 1, . . . ,max kjl − 1; l = 1, . . . , q) (2.3)

where the summation runs over all indices j such that kjl ≥ k, belong to the kernel
of the operator Am.

4The linear hull of a system of vectors F is denoted by linF.
5Notice that this condition is automatically fulfilled if m ≥ nd.
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Proof. Put

ψjk,l =
n∑

p=0

Apϕ
p
jk,l(λl),

Sl =
{
ψjk,l : j = 1, 2, . . . , jl; k = 0, 1, . . . , kjl−1

}
(l = 1, 2, . . . , q),

and

Ψ̃jk,l = (ψp
jk,l)

m−1
p=0

def= AmΦjk,l(λl).

Let us prove that the system

S̃l =
{
Ψ̃jk,l : k = 0, 1, . . . , kjl − 1; l = 1, 2 . . . , q

}
is the extension of multiplicity m of the system Fl with respect to λl, that is,
Fm

l (λl) = S̃l.
The equality

ψs
jk,l =

s+n∑
p=s

Ap−sϕ
p
jk,l(λl) =

n∑
p=0

Apϕ
p+s
jk,l (λl)

holds. In view of (1.4),

ϕs
jk,l =

n∑
p=0

s∑
u=0

(
s

u

)
λs−u

l ϕp
j,k−u,l(λl).

Therefore,

ψs
jk,l =

n∑
p=0

s∑
u=0

(
s

u

)
λs−u

l Apϕ
p
j,k−u,l(λl) =

s∑
u=0

(
s

u

)
λs−u

l ψj,k−u,l.

From here it follows that ψ̃s
jk,l = ψs

jk,l(λl) and Ψ̃jk,l = Ψjk,l(λl).
Let

Ω =
q∑

l=1

jl∑
j=1

kjl−1∑
k=0

Φjk,l(λl) ∈ KerAm.

Then

AmΩ =
q∑

l=1

jl∑
j=1

kjl−1∑
k=0

αjklΨ̃jk,l.

In view of Lemma 1.2, from here it follows that∑
j

αjklΨ̃jk,l = 0 (k = 0, 1, . . . , kjl − 1; l = 1, 2, . . . , q),

where the summation runs over all j such that kjl ≥ k.
The lemma is proved. �
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Note that it can happen that, under the hypotheses of Lemma 2.2, all vectors
Φjk,l(λl) do not belong to the kernel of the operator Am for every m. One can
verify this by the following example.

For d = 2 consider the pencil A(λ) = A0 + λI, where

A0 =
∥∥∥∥ −1 0

0 1

∥∥∥∥ .

Put Λ = {1,−1} , F1{ϕ10}, F2 = {ϕ20}, where ϕ10 = (0; 1) and ϕ20 = (1;−1). Let
m be an arbitrary natural number. Obviously, then the system Fm

1 (1) consists of
a unique vector

Φ10,1(1) = (0, 1, 0, 1, . . . , 0, 1︸ ︷︷ ︸
2m

),

and the system Fm
2 (−1) consists of the vector

Φ20,2(−1) = (−1, 1,−1, 1, . . . ,−1, 1︸ ︷︷ ︸
2m

).

The operator Am is defined in the case under consideration by the equality

Am =

⎡⎢⎢⎢⎢⎣
A0 I . . . . . . 0
... A0 I

...
...

. . .
. . .

...
0 . . . . . . A0 I

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭m

It is easy to see that Am(Φ10,1(1) + Φ20,2(−1)) = 0, while AmΦ10,1(1) �= 0
and AmΦ20,2(−1) �= 0.

2.3.

Lemma 2.3. Let F = {ϕk : k = 0, 1, . . . , k0} 6 be a system of vectors in Cd and let
Fm = {Φk(λ0) = (ϕp

k(λ0))m−1
p=0 } be its extension of multiplicity m with respect to

λ0 ∈ C1. If m > k0 and the vector Φk0(λ0) belongs to the kernel of the operator
Am, then λ0 is an eigenvalue of the pencil A(λ) and ϕ0, ϕ1, . . . , ϕk0 is a Jordan
chain.

Proof. Let

ψk =
n∑

p=0

Apϕ
p
k.

Repeating the corresponding argument from the proof of Lemma 2.2, we show that
the system

S̃ =
{AmΦk(λ0) : k = 0, 1, . . . , k0

}
is the extension of multiplicity m of the system

S =
{
ψk : k = 0, 1, . . . , k0

}
.

6Here the index k corresponds to the second index of vectors from the definition of an extension
of multiplicity m.
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Therefore, according to (1.3), the equality

ψk
p+1 = λ0ψ

p
k + ψp

k−1

holds, where AmΦk(λ0) = (ψp
k)m−1

p=0 .
Since ψp

k0
= 0 (p = 0, 1, . . . ,m − 1) and m > k0, from here it follows that

ψk = 0 for k = 0, 1, . . . , k0. The last fact means that

0 =
n∑

p=0

Apϕ
p
k =

n∑
p=0

p∑
r=0

(
p

r

)
λp−r
0 Apϕk−r .

Since (
dr

dλr
A

)
(λ) = r!

n∑
p=0

(
p

r

)
λp−rAp,

we have

0 =
k∑

r=0

1
r!

(
dr

dλr
A

)
(λ0)ϕk−r (k = 0, 1, . . . , k0).

This means that ϕ0, ϕ1, . . . , ϕk0 is a Jordan chain of the pencil A(λ) at the eigen-
value λ0.

The lemma is proved. �

3. Main theorem

3.1. Let

A(λ) = A0 + λA1 + · · ·+ λnAn, B(λ) = B0 + λB1 + · · ·+ λmBm

be two matrix pencils with coefficients Aj , Bk ∈ Cd, where j = 0, 1, . . . , n and
k = 0, 1, . . . ,m. Let λ0 be a common eigenvalue of the pencils A(λ) and B(λ), and
let

R = KerA(λ0) ∩KerB(λ0).
Let ϕ0, ϕ1, . . . , ϕr be a Jordan chain simultaneously for the pencils A(λ) and

B(λ) corresponding to the eigenvalue λ0. The number r + 1 is called the length of
this chain. The largest length of such a chain starting with the vector ϕ0 is called
the rank of the common eigenvector ϕ0 and is denoted by rank(λ0, ϕ0).

We choose a basis ϕ10, ϕ20, . . . , ϕj00 in the subspace R such that the ranks
of its vectors have the following properties: k1 is the maximum of the numbers
rank(λ0, ϕ) (ϕ ∈ R) and kj (j = 1, 2, . . . , j0) is the maximum of the numbers
rank(λ0, ϕ) for all vectors of the direct complement to lin{ϕ10, ϕ20, . . . , ϕj−1,0} in
R that contains ϕj0.

It is easy to see that the number rank(λ0, ϕ0) for every vector ϕ0 ∈ R is
equal to one of the numbers kj (j = 1, 2, . . . , j0). Therefore the numbers kj (j =
1, 2, . . . , j0) are uniquely determined by the pencils A(λ) and B(λ).

By ϕj1, ϕj2, . . . , ϕj,kj−1 denote the chain of associated vectors to the eigen-
vector ϕj0 (j = 1, 2, . . . , j0) common for A(λ) and B(λ).
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The system
ϕj0, ϕj1, . . . , ϕj,kj−1 (j = 1, 2, . . . , j0)

is said to be a canonical system of common Jordan chains for the pencils A(λ) and
B(λ) at the eigenvalue λ0, and the number

ν(A,B, λ0)
def=

j0∑
j=1

kj

is called the common multiplicity for the eigenvalue λ0 for the pencils A(λ) and
B(λ).

3.2. To the pencils A(λ) and B(λ) and an integer number w > max{n,m} we
assign the operator

Rw(A,B) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0 A1 . . . An

A0 . . . An−1 An

. . .
...

. . .
. . .

A0 . . . An−1 An

B0 B1 . . . Bm . . . . . .
B0 . . . Bm−1 Bm

. . .
...

. . .
. . .

B0 . . . Bm−1 Bm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭w − n

⎫⎪⎪⎬⎪⎪⎭w −m

acting from the space Cwd to C(2w−m−n)d.
We call Rw(A,B) the resultant operator or the resultant matrix of the pencils

A(λ) and B(λ).

Theorem 3.1. Let

A(λ) = A0 + λA1 + · · ·+ λnAn, B(λ) = B0 + λB1 + · · ·+ λmBm (3.1)

be two matrix pencils (Aj , Bk ∈ Cd) with the invertible leading coefficients An and
Bm, let Λ = {λ1, λ2, . . . , λl} be the set of all (distinct) common eigenvalues of the
pencils A(λ) and B(λ), and let

Fl =
{
ϕjk,l : k = 0, 1, . . . , kjl − 1; j = 1, 2, . . . , jl

}
(l = 1, 2, . . . , q)

be a canonical system of common Jordan chains for the pencils A(λ) and B(λ) at
the eigenvalue λl.

If the condition7

w ≥ min{n + md,m + nd} (3.2)

7It is easy to see that the presented proof remains valid if one replaces condition (3.2) by a
weaker condition

w ≥ min

{
n+

q∑
l=1

max
j
kjl(B);m+

q∑
l=1

max
j
kjl(A)

}
(3.2′)

where {kjl(C) : j = 1, . . . , jl(C)} is the collection of the partial multiplicities of a pencil C(λ).
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holds, then the system

Fw(Λ) =
q⋃

l=1

Fw
l (λl)

is a basis of the subspace KerRw(A,B).
In particular, under condition (3.1) the equality

ν(A,B) = dimKerRw(A,B),

holds, where

ν(A,B) =
q∑

l=1

ν(A,B, λl).

Proof. Without loss of generality one can assume that m ≥ n.
From Lemma 2.1 it follows that Fw(Λ) ⊂ KerAw−n and Fw(Λ) ⊂ KerBw−m.

Hence Fw(Λ) ⊂ KerRw(A,B) = KerAw−n ∩KerBw−m.
Now let Ω ∈ KerRw(A,B). Then Ω ∈ KerAw−n and, in view of Lemma 2.1,

Ω can be represented in the form

Ω =
q∑

l=1

jl∑
j=1

kjl−1∑
k=0

αjklΦjk,l(λl),

where
Fw

l (Λ) =
{
Φjk,l(λl) : j = 1, 2, . . . , jl; k = 0, 1, . . . , kjl − 1

}
.

By Lemma 2.2, this implies that

Ωk(λl) =
∑

j

αjklΦjk,l(λl) ∈ KerBw−m

for k = 0, 1, . . . , kjl − 1 and l = 1, 2, . . . , q, where the summation runs over all j
such that kjl ≥ k. According to Lemma 2.3, the vectors

ωkr(λl) =
∑

j

αjklϕjr(λl) (r = 0, 1, . . . , k; k = 0, 1, . . . , kl − 1; kl = max
j

kjl)

form a Jordan chain for the pencil B(λ). Since, besides that, the vectors ωkr(λl)
(r = 0, 1, . . . , k) also represent a Jordan chain for the pencil A(λ), we arrive at
the conclusion that the vectors Ωk(λl) can be represented as a linear combination
of vectors from Fw(Λ). Therefore the vector Ω is a linear combination of vectors
from Fw(Λ).

The theorem is proved. �

Corollary 3.1. The pencils A(λ) and B(λ) from (3.1) have a common eigenvalue
λ0 and a common eigenvector at λ0 if and only if the rank of the resultant matrix
Rw(A,B) for w ≥ min{md + n;nd + m} is less than maximal.
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3.3. Theorem 0.1 formulated in the introduction is easily derived from Theo-
rem 3.1. Obviously, the classical resultant matrix R(a, b) presented in the intro-
duction coincides with Rm+n(a, b). Clearly, in this case (for d = 1), condition (3.2)
is satisfied. Therefore KerR(a, b) consists of the linear span of the vectors

Φk(λl) = (ϕp
k(λl))m+n−1

p=0 , where ϕp
k(λl) =

k∑
s=0

(
p

s

)
λp−s

l .

Since

Φk(λl) =
k∑

s=0

Hs(λl), Hk(λl) = Φk(λl)− Φk−1(λl),

this immediately yields Theorem 0.1.
In the case d > 1 for the classical resultant matrix, that is, for Rm+n(A,B)

one can claim only that

KerRm+n(A,B) = KerAm ∩KerBn

and
ν(A,B) ≤ dim KerRm+n(A,B).

These relations follow straightforwardly from Lemma 2.1.
We present one more statement for the classical resultant matrix for d �= 1.
Let F(λl, A) (resp. F(μl, B)) be a canonical system of Jordan chains for

the pencil A(λ) (resp. B(λ)) at the eigenvalue λl (resp. μl). Then the number
dim KerRm+n(A,B) is equal to the codimension of the subspace

linFm+n(A) ∪ Fm+n(B),

where
Fm+n(A) =

⋃
l

Fm+n(λl, A), Fm+n(B) =
⋃
l

Fm+n(μl, B).

In particular, the operator Rm+n(A,B) is invertible if and only if the system
Fm+n(A) ∪ Fm+n(B) is complete in C(m+n)d.

It is easy to see that for w = m+n and d > 1 condition (3.2′) is fulfilled only
in some particular cases. Condition (3.2) (and corresponding condition (3.2′)) of
Theorem 3.1 is essential. For the classical resultant matrix, Theorem 3.1 is not
true, in general. One can demonstrate this by the following example.

Let

A(λ) =
[

1 + λ 0
−1 −1 + λ

]
, B(λ) =

[
1 + λ 1

1 1 + λ

]
.

Then the kernel of the resultant matrix R2(A,B) consists of the set of vectors
(−1, 1, 1, 0)t (t ∈ C1). On the other hand, ±1 are the eigenvalues of the pencil
A(λ) and 0,−2 are the eigenvalues of the pencil B(λ). Thus, ν(A,B) = 0, while
dim KerR2(A,B) = 1.
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4. Applications

We shall present two applications of the results of Section 3.

4.1. We start with a generalization of the method of elimination of an unknown
from a system of equations with two unknowns (see, e.g., [1, Chap. 11, Section 54]).

Let A(λ, μ) and B(λ, μ) be matrix pencils of two variables

A(λ, μ) =
n∑

j=0

m∑
k=0

λjμkAjk, B(λ, μ) =
q∑

j=0

p∑
k=0

λjμkBjk,

where λ, μ ∈ C1 and Ajk, Bjk ∈ L(Cd).
Consider the following system of equations

A(λ, μ)ϕ = 0, B(λ, μ)ϕ = 0 (4.1)

with unknown numbers λ and μ and an unknown vector ϕ ∈ Cd (ϕ �= 0). We make
the following assumptions:

a) for some μ ∈ μ0 ∈ C1 the system (4.1) does not have a solution;
b) the determinants

det
m∑

k=0

μkAnk, det
p∑

k=0

μkBqk

are not equal identically to zero;
c) the determinants

det
n∑

j=0

λjAjm, det
q∑

j=0

λjBjp

are not equal identically to zero;

Let conditions a) and b) be fulfilled. We write the pencils A(λ, μ) and B(λ, μ)
in powers of the variable λ:

A(λ, μ) = A0(μ) + λA1(μ) + · · ·+ λnAn(μ),

B(λ, μ) = B0(μ) + λB1(μ) + · · ·+ λqBq(μ),

where

Aj(μ) =
m∑

k=0

μkAjk, Bj(μ) =
p∑

k=0

μkBjk.
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Put

Rw(μ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0(μ) A1(μ) . . . An(μ)

A0(μ) . . . An−1(μ) An(μ)

. . .
...

. . .
. . .

A0(μ) . . . An−1(μ) An(μ)

B0(μ) B1(μ) . . . Bm(μ)

B0(μ) . . . Bm−1(μ) Bm(μ)

. . .
...

. . .
. . .

B0(μ) . . . Bm−1(μ) Bm(μ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let M0 be a (finite) set of zeros of the function detAn(μ)Bq(μ). If w has the
property

w ≥ min{nd + q; qd + n},
then for all μ /∈ M0 one can apply Corollary 3.1. Therefore the set of points μ,
for which system (4.1) has a solution, consists of the points of the set M1 of the
numbers μ0 /∈M0 such that

rankRw(μ0) < w, (4.2)

and, maybe, some points of the set M0.
Substituting in (4.1) the points μ0 of the set M0 ∪M1 instead of μ, we get

A(λ, μ0)ϕ = 0
B(λ, μ0)ϕ = 0

}
(μ0 ∈M0 ∪M1). (4.3)

In this way solving system (4.1) is reduced to solving the system with one unknown
number and one unknown vector.

Now assume that, in addition to conditions a) and b), condition c) is also
fulfilled. Then the described process can be repeated interchanging the variables
μ and λ. Let Λ0 be the set of all zeros of the function

det

⎛⎝ n∑
j=0

λjAjm

⎞⎠⎛⎝ p∑
j=0

λjBjp

⎞⎠ .

The set of the numbers λ, for which system (4.1) has a solution, consists of the
set Λ1 of all points λ0 such that8

rank R̃w(λ0) < w (4.4)

and, maybe, some points of the set Λ0.

8R̃w(λ) is defined similarly to Rw(λ).
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Thus, it remains to solve the systems of equations

A(λ0, μ0)ϕ = 0
B(λ0, μ0)ϕ = 0

}
(4.5)

where λ0 runs through the set A0 ∪A1 and μ0 runs through the set M0 ∪M1.

4.2. Consider the homogeneous differential equations

An

(
dn

dtn
ϕ

)
(t) + · · ·+ A1

(
d

dt
ϕ

)
(t) + (A0ϕ)(t) = 0, (4.6)

Bm

(
dm

dtm
ψ

)
(t) + · · ·+ B1

(
d

dt
ψ

)
(t) + (B0ψ)(t) = 0, (4.7)

where Aj , Bk ∈ L(Cd) and the matrices An and Bm are invertible. The matrix
pencils

A(λ) =
n∑

k=0

λkAk, B(λ) =
m∑

k=0

λkBk

correspond to these equations, respectively. There is a close relation between the
solutions of equation (4.6) and Jordan chains for the pencil A(λ). The general
solution of the equation is a linear combination of vector functions of the form

ϕ(t) = eλ0t

(
tk

k!
ϕ0 + · · ·+ t

1!
ϕk−1 + ϕk

)
, (4.8)

where ϕ0, ϕ1, . . . , ϕk run over all Jordan chains for the pencil A(λ). Thus Theo-
rem 3.1 immediately yields the following.

Theorem 4.1. Let R be the subspace of the common solutions of equations (4.6)
and (4.7). If a number w satisfies the condition

w ≥ min{nd + m,md + n},
then the equality

dimR = dim KerRw(A,B)

holds.

With the aid of this theorem and the method of Section 4.1 one can indicate a
method for solving the system of differential equations depending on a parameter
μ of the form

An(μ)
(

dn

dtn
ϕ

)
(t) + · · ·+ A1(μ)

(
d

dt
ϕ

)
(t) + A0(μ)ϕ(t) = 0

Bm(μ)
(

dm

dtm
ϕ

)
(t) + · · ·+ B1(μ)

(
d

dt
ϕ

)
(t) + B0(μ)ϕ(t) = 0

⎫⎪⎪⎬⎪⎪⎭ ,

where Ak(μ) and Bk(μ) are matrix pencils.
Consider also one more problem. For given vectors χk (k = 0, 1, . . . ,m+n−1)

in the space Cd, we will look for all pairs of functions (ϕ(t), ψ(t)), where ϕ(t) is a
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solution of equation (4.6) and ψ(t) is a solution of equation (4.7) that satisfy the
initial conditions

dk

dtk
(ϕ(t) + ψ(t))|t=0 = χk (k = 0, 1, . . . ,m + n− 1). (4.9)

This problem has a unique solution for every collection of vectors χk (k =
0, 1, . . . ,m + n − 1) if and only if the classical resultant matrix Rm+n(A,B) is
invertible.

Indeed, for every solution ϕ(t) of equation (4.6) (resp. every solution ψ(t) of
equation (4.7)), we construct the vector function

Φ(t) =
((

dk

dtk
ϕ

)
(t)

)m+n−1

k=0

(
resp. Ψ(t) =

((
dk

dtk
ψ

)
(t)

)m+n−1

k=0

)
.

Setting X = (χk)m+n−1
k=0 , we see that initial conditions (4.9) take the form

Φ(0) + Ψ(0) = X.

If the vector function ϕ(t) (resp. ψ(t)) runs over all solutions of equation (4.6)
(resp. (4.7)), then from equality (1.2) it follows immediately that the vectors Φ(0)
(resp. Ψ(0)) run over the system of vectors of the extension Fm+l (resp. Sm+l) of
multiplicity m + n of Jordan chains for the pencil A(λ) (resp. B(λ)). Therefore,
for every X ∈ C(m+n)d the problem has a solution if and only if the union of the
systems Fm+l and Sm+l is complete in C(m+n)d. As it is noticed in Section 3, the
last fact holds if and only if the matrix Rm+n(A,B) is invertible. It is easy to see
that in this case the solution is unique.

5. Kernel of Bezoutian

5.1. As yet another application of Theorem 0.1, we present a description of the
kernel of the Bezoutian of two polynomials in the case d = 1.

Let a(λ) = a0+a1λ+ · · ·+anλ
n and b(λ) = b0+b1λ+ · · ·+bmλm (m ≤ n) be

two polynomials (ak, bk ∈ C1; an �= 0). Consider the polynomial in two variables

B(λ, μ) =
a(λ)b(μ) − a(μ)b(λ)

λ− μ
=

n−1∑
p,q=0

bpqλ
pμq.

The quadratic matrix B(a, b) = ‖bpq‖n−1
p,q=0 is said to be the Bezoutian of the

polynomials a(λ) and b(λ). It is known (see, e.g., [2, 3]) that the defect of the
Bezoutian is equal to the degree of the greatest common divisor of the polynomials
a(λ) and b(λ). This statement admits the following refinement.
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Theorem 5.1. The kernel of the Bezoutian B(a, b) of the polynomials a(λ) and b(λ)
consists of the linear span of the vectors

ϕjk =
((

p

k

)
λp

j

)n−1

p=0

(k = 0, 1, . . . , νj − 1; j = 1, 2, . . . , l),

where λj (j = 1, 2, . . . , l) are all common zeros of the polynomials a(λ) and b(λ),
and νj is the common multiplicity of the zero λj.

Proof. For the Bezoutian B(a, b) the equality

B(a, b) =

⎡⎢⎢⎢⎣
a1 . . . an−1 an

a2 . . . an 0
... . .

. ...
...

an . . . 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

b0 b1 . . . bn−1
0 b0 . . . bn−2
...

...
. . .

...
0 0 . . . b0

⎤⎥⎥⎥⎦

−

⎡⎢⎢⎢⎣
b1 . . . bn−1 bn

b2 . . . bn 0
... . .

. ...
...

bn . . . 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

a0 a1 . . . an−1
0 a0 . . . an−2
...

...
. . .

...
0 0 . . . a0

⎤⎥⎥⎥⎦
(5.1)

holds (see [3]). We form the matrices

Ãn =

⎡⎢⎢⎢⎣
an 0 . . . 0

an−1 an . . . 0
...

...
. . .

...
a1 a2 . . . an

⎤⎥⎥⎥⎦ , An =

⎡⎢⎢⎢⎣
a0 a1 . . . an−1
0 a0 . . . an−2
...

...
. . .

...
0 0 . . . a0

⎤⎥⎥⎥⎦ ,

Δ = [δj,n−k−1]n−1j,k=0, and the matrices B̃n and Bn in the same fashion. Then
equality (5.1) takes the form

B(a, b) = Δ(ÃnBn − B̃nAn). (5.2)

Therefore the equation B(a, b)ϕ = 0 is equivalent to the equation

(ÃnBn − B̃nAn)ϕ = 0. (5.3)

Obviously, in the presented notation,

R(b, a) =

[
Bn B̃n

An Ãn

]
.

It is easy to see that[
Bn B̃n

An Ãn

]
=
[

I B̃nÃ
−1
n

0 I

] [
Bn − B̃nÃ

−1
n An 0

0 Ãn

] [
I 0

Ã−1n An I

]
.

Obviously, the matrices B̃n and Ãn commute. Therefore,

Bn − B̃nÃ
−1
n An = Ã−1n (ÃnBn − B̃nAn). (5.4)
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Let [
Bn B̃n

An Ãn

][
f
g

]
= 0. (5.5)

Then from equalities (5.2)–(5.4) it follows that B(a, b)f = 0.
Conversely, if B(a, b)f = 0, then equality (5.5) holds for g = Ã−1n Anf . It

remains to apply Theorem 0.1.
The theorem is proved. �

5.2. Given two polynomials of the form

x(λ) = x0 + x1λ + · · ·+ xnλ
n, y(λ) = y0 + y−1λ−1 + . . . y−nλ

−n, (5.6)

where xn �= 0 or y−n �= 0. The quadratic matrix B̃(x, y) = ‖bpq‖n−1
p,q=0, where

n−1∑
p,q=0

bpqλ
pμq =

x(λ)y(μ−1)− (λμ)nx(μ−1)y(λ)
1− λμ

is said to be the Bezoutian of the polynomials x(λ) and y(λ). By a straightforward
verification we obtain

B̃(x, y) =

⎡⎢⎢⎢⎣
x0 0 . . . 0
x1 x0 . . . 0
...

...
. . .

...
xn−1 xn−2 . . . x0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

y0 y−1 . . . y1−n

0 y0 . . . y2−n

...
...

. . .
...

0 0 . . . y0

⎤⎥⎥⎥⎦

−

⎡⎢⎢⎢⎣
y−n 0 . . . 0
y1−n y−n . . . 0

...
...

. . .
...

y−1 y−2 . . . y−n

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

xn xn−1 . . . x1
0 xn . . . x2
...

...
. . .

...
0 0 . . . xn

⎤⎥⎥⎥⎦ .

For the Bezoutian B̃(x, y) an analogue of Theorem 5.1 holds. For completeness we
present its formulation.

Theorem 5.2. The kernel of the Bezoutian of the polynomials x(λ) and y(λ) of the
form (5.6) consists of the linear span of the vectors

ϕjk =
(
λp

j

(
p

k

))n−1

p=0

(k = 0, 1, . . . , kj − 1),

where λj (j = 1, 2, . . . , l) are all common zeros of the functions x(λ) and y(λ),
and kj is the common multiplicity of the zero λj.
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The Resultant Matrix and its Generalizations.
II. The Continual Analogue of the

Resultant Operator

Israel Gohberg and Georg Heinig

Let A(λ) and B(λ) (λ ∈ C1) be entire functions of the form

A(λ) = a0 +
∫ τ

0

a(t)eiλt dt, B(λ) = b0 +
∫ 0

−τ

b(t)eiλt dt, (0.1)

where a0, b0 ∈ C1, a(t) ∈ L1(0, τ), b(t) ∈ L1(−τ, 0), and τ is some positive number.
To this pair of functions assign a bounded linear operator R0(A,B) acting in

the space L1(−τ, τ) by the formula

(R0(A,B)f)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f(t) +

∫ τ

−τ

a(t− s)f(s) ds (0 ≤ t ≤ τ),

f(t) +
∫ τ

−τ

b(t− s)f(s) ds (−τ ≤ t < 0),

where we assume that a(t) = 0 for t �= [0, τ ] and b(t) = 0 for t /∈ [−τ, 0]. It is
natural to consider this operator as a continual analogue of the resultant operator
for two polynomials (see [1]). The operator R0(A,B) is said to be the resultant
operator of the functions A(λ) and B(λ).

The following theorem holds.

Theorem 0.1. Let A(λ) and B(λ) be entire functions of the form (0.1). Suppose
λ1, λ2, . . . , λl is the complete collection of distinct common zeros of the functions
A(λ) and B(λ), and kj is the multiplicity of a common zero λj . Then the system
of functions

ψjk(t) = tke−iλj t (k = 0, 1, . . . , kj − 1; j = 1, 2, . . . , l)

The paper is a translation of the paper I.C. Gohberg, G. Ha�inig, Rezul�tantna� matrica

i eë obobweni�. II. Kontinual�ny�i analog rezul�tantnogo operatora,
Acta Math. Acad. Sci. Hungar. 28 (1976), no. 3-4, 189–209.
MR0425652 (54 #13606), Zbl 0341.15011.



90 I. Gohberg and G. Heinig

forms a basis of the subspace KerR0(A,B). In particular,
l∑

j=1

kj = dimKerR0(A,B).

This theorem is a continual analogue of Theorem 0.1 in [1].
The present paper is a continuation of the authors’ paper [1], here continual

analogues of other theorems from [1] are obtained as well.
Note that in the continual matrix case the definition of the resultant operator

becomes more involved. By analogy with the discrete case, the continual resultant
operator for a matrix function acts from one space of vector functions to another
space of vector functions with wider support.

There is an essential difference between the discrete and continual resultant
operators for matrix functions. It consists in the fact that the choice of spaces, in
which the resultant operator acts in the continual case, does not depend on the
matrices itself and their orders.

The paper consists of six sections. In Section 1 the main theorem is formu-
lated. It is proved in Section 3. In Section 4 Theorem 0.1 is proved. Section 2
has an auxiliary character. In the last two sections some applications of the main
theorem are presented.

The authors express their sincere gratitude to M.G. Krein for extremely useful
discussions.

1. Formulation of the main theorem

1.1. Let α and β (−∞ < α < β < ∞) be a pair of real numbers and d be
a natural number. By Ld

1(α, β) denote the Banach space of all vector functions
f(t) = (fj(t))d

j=1 with entries in L1(α, β). Analogously, by Ld×d
1 (α, β) denote the

space of matrix functions a(t) = ‖ajk(t)‖d
j,k=1 of order d with entries in L1(α, β).

By F d×d(α, β) denote the space of all matrix functions of the form

A(λ) = a0 +
∫ β

α

a(t)eiλt dt, (1.1)

where a0 ∈ L(Cd) 1 and a(t) ∈ Ld×d
1 (α, β), and by F d×d

0 (α, β) denote the subspace
of F d×d(α, β) with invertible first summands.

The space F d×d(α, β) consists of entire matrix functions.
Let τ be a positive number. To each pair of matrix functions of the form

A(λ) = a0 +
∫ τ

0

a(t)eiλt dt ∈ F d×d(0, τ)

and

B(λ) = a0 +
∫ 0

−τ

b(t)eiλt dt ∈ F d×d(−τ, 0)

1The space of the quadratic matrices of order d is denoted by L(Cd).
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and to each number ε > 0 we assign the operator Rε(A,B) acting from the space
Ld
1(−τ, τ + ε) to the space Ld

1(−τ − ε, τ + ε) by the rule2

(Rε(A,B)φ)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
φ(t) +

∫ τ+ε

−τ

a(t− s)φ(s) ds (0 ≤ t ≤ τ + ε),

φ(t + ε) +
∫ τ+ε

−τ

b(t + ε− s)φ(s) ds (−τ − ε ≤ t < 0).

(1.2)
By analogy with the discrete case, we refer to the operator Rε(A,B) as the re-
sultant operator of the matrix functions A(λ) and B(λ). The operator R0(A,B)
acting in the space Ld

1(−τ, τ) is called the classical resultant operator.
It is easy to see that the resultant operator Rε(A,B) is closely connected to

the operator R̃ε(A,B) acting from the space Ld
1(−τ, τ+ε) to the space Ld

1(−τ, ε)
·
+

Ld
1(0, τ + ε) by the formula

(R̃ε(A,B)φ)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
φ(t) +

∫ τ+ε

−τ

a(t− s)φ(s) ds (0 ≤ t ≤ τ + ε),

φ(t) +
∫ τ+ε

−τ

b(t− s)φ(s) ds (−τ ≤ t ≤ ε).

Indeed, if R̃ε(A,B)φ = (f1, f2) where f1 ∈ Ld
1(−τ, ε) and f2 ∈ Ld

1(0, τ + ε), then

(Rε(A,B)φ)(t) =

{
f1(t + ε) (−τ − ε ≤ t < 0),

f2(t) (0 ≤ t ≤ τ + ε).

Obviously, the equality

KerRε(A,B) = Ker R̃ε(A,B)

holds.

1.2. Recall some definitions and notation from [1]3. Let A(λ) be an entire matrix
function. A number λ0 ∈ C1 is said to be an eigenvalue of the matrix function A(λ)
if detA(λ0) = 0. A vector φ0 ∈ Cd is said to be an eigenvector at the eigenvalue λ0
if A(λ0)φ0 = 0. A collection of vectors φ0, φ1, . . . , φr is said to be a Jordan chain a
chain of an eigenvector and associated vectors (or a Jordan chain) of length r + 1
if the equalities

A(λ0)φk +
1
1!

(
d

dλ
A
)

(λ0)φk−1 + · · ·+ 1
k!

(
dk

dλk
A
)

(λ0)φ0 = 0 (1.3)

hold for k = 0, 1, . . . , r.
Let λ0 be an eigenvalue of the matrix function A(λ). It is easy to prove that in

the kernel of the operatorA(λ0) one can construct a basis φ10, φ20, . . . , φr0 with the
following property: for each vector there exists a Jordan chain φj0, φj1, . . . , φj,kj−1,

2Here and in what follows it is set a(t) = 0 for t /∈ [0, τ ] and b(t) = 0 for t /∈ [−τ, 0].
3See also [2] and [3].
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where k1 ≥ k2 ≥ · · · ≥ kr and
∑

j kj is equal to the multiplicity of zero of the
function detA(λ) at the point λ0. The numbers kj (j = 1, 2, . . . , r) are said to
be partial multiplicities of the eigenvalue λ0 and the system φj0, φj1, . . . , φj,kj−1
(j = 1, 2, . . . , r) is said to be a canonical system of Jordan chains for the matrix
function A(λ) at the eigenvalue λ0.

Consider two entire matrix functions A(λ) and B(λ). Let λ0 be a common
eigenvalue of the matrix functions A(λ) and B(λ) and let

R = KerA(λ0) ∩KerB(λ0).

Let φ0, φ1, . . . , φr be a Jordan chain simultaneously for the pencils A(λ) and
B(λ) at the eigenvalue λ0. The number r + 1 is called the length of this common
chain. The greatest length of such a common chain starting with the vector φ0 is
said to be the rank of the common eigenvector φ0 and is denoted by rankλ0 φ0.

In the subspace R we choose a basis φ10, φ20, . . . , φj0 such that the ranks
kj of its vectors have the following properties: k1 is the greatest of the numbers
rankλ0 φ (φ ∈ R), and kj (j = 2, 3, . . . , l) is the greatest of the numbers rankλ0 φ
for all vectors φ from the direct complement to lin{φ10, φ20, . . . , φj−1,0} in R that
contains φj0.

It is easy to see that the number rankλ0 φ0 for every vector φ0 ∈ R is equal
to one of the numbers kj (j = 1, 2, . . . , l). Hence the numbers kj (j = 1, 2, . . . , l)
are determined uniquely by the pencils A(λ) and B(λ). By φj1, φj2, . . . , φj,kj−1
denote the corresponding common for A(λ) and B(λ) chain of vectors associated
with the common eigenvector φj0 (j = 1, 2, . . . , l).

The system
φj0, φj1, . . . , φj,kj−1 (j = 1, 2, . . . , l)

is called a canonical system of common Jordan chains for the matrix functions
A(λ) and B(λ) at the common eigenvalue λ0, and the number

ν(A,B, λ0) def=
l∑

j=1

kj

is called the common multiplicity of the eigenvalue λ0 of the matrix functions A(λ)
and B(λ).

Let us also agree on the following notation:

ν(A,B) def=
∑

l

ν(A,B, λl)

where λl runs over all common eigenvalues of the matrix functions A(λ) and B(λ).
Note that for every pair of matrix functions A(λ) ∈ F d×d

0 (0, τ) and B(λ) ∈
F d×d
0 (−τ, 0) the number ν(A,B) is finite. Indeed, it is easy to see that the matrix

function A(λ) is bounded in the upper half-plane and

lim
Imλ≥0,λ→∞

A(λ) = a0,
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and the matrix function B(λ) is bounded in the lower half-plane and

lim
Imλ≤0,λ→∞

B(λ) = b0.

This implies that the function detA(λ) has at most a finite number of zeros in the
upper half-plane and the function detB(λ) has at most a finite number of zeros in
the lower half-plane.

1.3. The main result of this paper is the following.

Theorem 1.1. Let A(λ) and B(λ) be two matrix functions in F d×d
0 (0, τ) and

F d×d
0 (−τ, 0), respectively, let Λ = {λ1, λ2, . . . , λl} be the complete collection of

distinct common eigenvalues of the matrix functions A(λ) and B(λ), and let

Fl =
{
φjk,l : k = 0, 1, . . . , kjl − 1; j = 1, 2, . . . , jl

}
(l = 1, 2, . . . , l0)

be a canonical system of common Jordan chains at the eigenvalue λl.
Then for every ε > 0 the system of functions

φjk,l(t) = e−iλlt

(
(−it)k

k!
φj0,l +

(−it)k−1

(k − 1)!
φj1,l + · · ·+ φjk,l

)
(1.4)

where −τ ≤ t ≤ τ + ε and k = 0, 1, . . . , kjl − 1; j = 1, 2, . . . , jl; l = 1, 2, . . . , l0,
forms a basis of the kernel of the resultant operator Rε(A,B). In particular, the
equality

ν(A,B) = dimKerRε(A,B) (1.5)

holds.

1.4. It turns out that finding the kernel of the resultant operator can be reduced
to finding the kernels of two operators acting in the same space (in contrast to the
operator Rε(A,B)). We introduce the operators R′ε(A,B) and R′′ε (A,B) acting in
the space Ld

1(−τ, τ + ε) by the formulas

(R′ε(A,B)φ)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a0φ(t) +

∫ τ+ε

−τ

a(t− s)φ(s) ds (0 ≤ t ≤ τ + ε),

b0φ(t) +
∫ τ+ε

−τ

b(t− s)φ(s) ds (−τ ≤ t < 0),
(1.6)

and

(R′′ε (A,B)φ)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a0φ(t) +

∫ τ+ε

−τ

a(t− s)φ(s) ds (ε ≤ t ≤ τ + ε),

b0φ(t) +
∫ τ+ε

−τ

b(t− s)φ(s) ds (−τ ≤ t < ε).

It is easy to see that the equality

KerRε(A,B) = KerR′ε(A,B) ∩KerR′′ε (A,B) (1.7)

holds.
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Note also that the role of the resultant operator can be played also by the
operator R̂ε(A,B) acting from the space Ld

1(−τ−ε, τ) to the space Ld
1(−τ−ε, τ+ε)

by the rule

(R̂ε(A,B)φ)(t) =

⎧⎪⎪⎨⎪⎪⎩
a0φ(t− ε) +

∫ τ

−τ−ε

a(t− ε− s)φ(s) ds (0 ≤ t ≤ τ + ε),

b0φ(t) +
∫ τ

−τ−ε

b(t− s)φ(s) ds (−τ − ε ≤ t < 0).

In fact, the operator R̂ε(A,B) coincides with the operator Rε(A,B).

1.5. We give a simple example showing that Theorem 1.1 does not remain true in
the matrix case for ε = 0, that is, Theorem 0.1 does not admit a direct general-
ization to the matrix case.

Let

a(t) =
∥∥∥∥ 1 1

1 −1

∥∥∥∥ (0 ≤ t ≤ 1); a(t) = 0 (t /∈ [0, 1]),

b(t) =
∥∥∥∥ 1 1
−1 −1

∥∥∥∥ (−1 ≤ t ≤ 0); b(t) = 0 (t /∈ [−1, 0]),

and a0 = b0 = I, where I is the identity matrix.
Then

A(λ) = a0 +
∫ 1

0

a(t)eiλt dt =
1
iλ

∥∥∥∥∥ iλ + eiλ − 1 eiλ − 1

eiλ − 1 iλ− eiλ + 1

∥∥∥∥∥
and

B(λ) = b0 +
∫ 0

−1
a(t)eiλt dt =

1
iλ

∥∥∥∥∥ iλ + 1− e−iλ 1− e−iλ

eiλ − 1 iλ− 1 + e−iλ

∥∥∥∥∥
for λ �= 0 and

A(0) =
∥∥∥∥ 2 1

1 0

∥∥∥∥ , B(0) =
∥∥∥∥ 2 1
−1 0

∥∥∥∥ .

We have

detA(λ) = 1− 2
(
eiλ − 1

iλ

)2
(λ �= 0); detA(0) = −1

and
detB(λ) ≡ 1.

Thus ν(A,B) = 0.
The operator R0(A,B) is determined by the equality

(R0(A,B)φ)(t) = φ(t) +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∥∥∥∥ 1 1

1 −1

∥∥∥∥ ∫ 1

0

φ(t − s) ds (0 ≤ t ≤ 1),∥∥∥∥ 1 1
−1 −1

∥∥∥∥ ∫ 0

−1
φ(t− s) ds (−1 ≤ t < 0).
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It is easy to see that for the vector function

φ(t) =
∥∥∥∥ 1 + t− θ(t)

−1− t

∥∥∥∥ ,

where

θ(t) =

{
0 (t < 0),

1 (t ≥ 0),

the equality R0(A,B)φ = 0 holds. Therefore 1 ≤ dim KerR0(A,B) and

ν(A,B) �= dimKerR0(A,B).

2. A lemma

The statement obtained in this section will be used in Section 3 in the proof of
the main theorem.

Lemma 2.1. Let A(λ) and B(λ) be entire functions in F d×d
0 (0, τ) and F d×d

0 (−τ, 0),
respectively. Then for every ε > 0 the kernel of the resultant operator Rε(A,B)
consists of absolutely continuous functions only.

Proof. First, we show that the kernel of the operator R′ε(A,B) consists of vector
functions that are absolutely continuous on the intervals [−τ, 0) and [0, τ +ε] only.
Consider the operator K ′

ε acting in the space Ld
1(−τ, τ + ε) by the rule

(K ′
εf)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ τ+ε

−τ

a(t− s)φ(s) ds (0 ≤ t ≤ τ + ε),∫ τ+ε

−τ

b(t− s)φ(s) ds (−τ ≤ t < 0).

Obviously, the equality

(R′ε(A,B)f)(t) = (K ′
εf)(t) +

{
a0f(t) (0 ≤ t ≤ τ + ε),

b0f(t) (−τ ≤ t < 0)
(2.1)

holds. It is easy to see that K ′
ε is a bounded linear operator in Ld

1(−τ, τ + ε) and
the estimate

‖K ′
ε‖Ld

1
≤ ‖a(t)‖Ld×d

1
+ ‖b(t)‖Ld×d

1

4 (2.2)

holds.

4Editor’s remark. Here and elsewhere the following notations are used: If A is a bounded linear

operator acting on a space Ld
1(α, β) whose support (α, β) is evident from the context we just

write ‖ A ‖d for the norm of A; similarly, if a is a d× d matrix function whose support is evident
from the context we write ‖ a ‖

L
d×d
1

.
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We will prove that the operator K ′
ε is compact in the space Ld

1(−τ, τ + ε).
Indeed, the functions a(t) and b(t) can be approximated in the norm of the space
Ld
1(−τ, τ + ε) to any required degree of accuracy by matrix functions of the form

m∑
j=−m

e2πijt/(2τ+ε)aj . (2.3)

Let ã(t) and b̃(t) be the functions of the form (2.3) such that ‖ã(t)−a(t)‖Ld×d
1

< δ

and ‖b̃(t)− b(t)‖Ld×d
1

< δ, where δ > 0 is a given number.

Obviously, the operator K̃ defined by the equality

(K̃f)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ τ+ε

−τ

ã(t− s)φ(s) ds (0 ≤ t ≤ τ + ε),∫ τ+ε

−τ

b̃(t− s)φ(s) ds (−τ ≤ t < 0)

is of finite rank. From estimate (4) it follows that

‖K ′
ε − K̃‖Ld

1
≤ ‖ã(t)− a(t)‖Ld×d

1
+ ‖b̃(t)− b(t)‖Ld×d

1
< 2δ.

Thus the operator K can be approximated (in the norm) to any required
degree of accuracy by finite rank operators. Hence the operator K ′

ε is compact. In
view of (2.1), from the compactness of the operator K ′

ε it follows that

dim KerR′ε(A,B) = dimCokerR′ε(A,B) <∞. (2.4)

By Ŵ d
0 denote the Banach space of the vector functions φ(t) ∈ Ld

1(−τ, τ + ε)
that are absolutely continuous on the intervals [−τ, 0) and [0, τ + ε] and have the
limits

φ(−0)
(

= lim
t→−0

φ(t)
)
∈ C1.

Obviously, the space Ŵ d
0 is a direct sum of the space of all absolutely continuous

vector functions on [−τ, τ ] and the space of the vector functions of the form cθ(t),
where c ∈ Cd and

θ(t) =

{
0 (t < 0),

1 (t ≥ 0).

A norm in the space Ŵ d
0 is defined by the equality

‖φ(t)‖
Ŵ d

0
= ‖φ(t)‖Ld

1
+ ‖(Dφ)(t)‖Ld

1
,

here and in the sequel we set (Dφ)(t) =
(

d
dtφ

)
(t) for t �= 0 (almost everywhere)

and
(Dφ)(0) = lim

t→+0
(Dφ)(t)

(if this limit exists).
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Let K̂ ′
ε be the restriction of the operator K ′

ε to the space Ŵ d
0 . The operator

K̂ ′
ε is a compact operator in the space Ŵ d

0 . Indeed, for a vector function f(t) ∈ Ŵ d
0

one has

(K ′
εf)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f(t) +

∫ t

0

a(r)f(t− r) dr +
∫ τ

t

a(r)f(t− r) dr (0 ≤ t ≤ τ + ε),

f(t) +
∫ t

−τ

b(r)f(t− r) dr +
∫ 0

t

b(r)f(t− r) dr (−τ ≤ t < 0).

Obviously, the right-hand side of the last equality is differentiable almost every-
where and

(
d

dt
K̂ ′

εf

)
(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Df)(t) +
∫ t

0

a(r)Df(t− r) dr

+
∫ τ

t

a(r)Df(t − r) dr

+ a(t)(f(0)− f(−0))

(0 ≤ t ≤ τ),

(Df)(t) +
∫ t

−τ

b(r)Df(t− r) dr

+
∫ 0

t

b(r)Df(t− r) dr

+ b(t)(f(0)− f(−0))

(−τ ≤ t < 0).

Since Df(t) ∈ Ld
1(−τ, τ + ε) and the operator K ′

ε maps the space Ld
1(−τ, τ + ε)

into itself, from the last equality it follows that K ′
εf ∈ Ŵ d

0 and the estimate

‖K̂ ′
εf‖Ŵ d

0
≤ �

(‖a(t)‖Ld×d
1

+ ‖b(t)‖Ld×d
1

)‖f‖
Ŵ d

0

holds, where � is some constant that does not depend on f(t), a(t), and b(t). With
the aid of this estimate, the compactness of the operator K̂ ′

ε in the space Ŵ d
0

is proved in the same way as the compactness of the operator K ′
ε in the space

Ld
1(−τ, τ + ε).

In view of the compactness of the operator K̂ε and equality (2.1), we get

dim Ker R̂′ε = dimCoker R̂′ε (2.5)

where R̂′ε is the restriction of the operator R′ε(A,B) to the space Ŵ d
0 . Since

dim KerR′ε ≤ dim KerR′ε(A,B), dim Coker R̂′ε ≥ dim CokerR′ε(A,B),

from (2.4) and (2.5) it follows that

dim Ker R̂′ε = dimKerR′ε(A,B) <∞.

Therefore, Ker R̂′ε = KerR′ε(A,B) and

KerR′ε(A,B) ⊂ Ŵ d
0 . (2.6)
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Now consider the operator K ′′
ε acting in the space Ld

1(−τ, τ + ε) by the rule

(K ′′
ε φ)(t) =

⎧⎪⎪⎨⎪⎪⎩
a0φ(t) +

∫ τ

0

a(s)φ(t− s) ds (ε ≤ t ≤ τ + ε),

b0φ(t) +
∫ 0

−τ

b(s)φ(t − s) ds (−τ ≤ t < ε).

Then the equality

(R′′εφ)(t) = (K ′′
ε φ)(t) +

{
a0φ(t) (ε ≤ t ≤ τ + ε),

b0φ(t) (−τ ≤ t < ε)

holds.
By Ŵ d

ε denote the space of vector functions φ(t) ∈ Ld
1(−τ, τ + ε) that are

absolutely continuous on the intervals [−τ, ε) and [ε, τ + ε] and have the limit

φ(ε− 0)
(

= lim
h→ε−0

φ(h)
)
∈ C1.

With the aid of the previous arguments one can prove that the operator K ′′
ε maps

the space Ŵ d
ε into itself and the restriction of the operator K ′′

ε to the space Ŵ d
ε

is a compact operator in Ŵ d
ε . Hence, the embedding

KerR′′ε (A,B) ⊂ Ŵ d
ε

holds. According to equality (1.7), from here and relation (2.6) it follows that

KerR′′ε (A,B) ⊂ Ŵ d
ε ∩ Ŵ d

0 .

Since Ŵ d
ε ∩Ŵ d

0 coincides with the set of absolutely continuous vector functions on
the interval [−τ, τ + ε], this immediately implies the statement.

The lemma is proved. �

3. Proof of the main theorem

Let us introduce the operators Rε(A) and Rε(B) setting

(Rε(A)φ)(t) = φ(t) +
∫ τ+ε

−τ

a(t− s)φ(s) ds (0 ≤ t ≤ τ + ε)

and

(Rε(B)φ)(t) = φ(t) +
∫ τ+ε

−τ

b(t− s)φ(s) ds (−τ ≤ t < ε).

The operator Rε(A) acts from the space Ld
1(−τ, τ +ε) to the space Ld

1(0, τ +ε) and
the operator Rε(B) acts from Ld

1(−τ, τ + ε) to Ld
1(−τ, ε). Obviously, the equality

KerRε(A,B) = KerRε(A) ∩KerRε(B) (3.1)

holds.
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Let φ0k (k = 0, 1, . . . , k0 − 1) be a common Jordan chain for the matrix
functions A(λ) and B(λ) at the eigenvalue λ0. Let us prove that then all functions

φ0k(t) = e−iλ0t

(
(−it)k

k!
φ00 + · · ·+ −it

1!
φ0,k−1 + φ0k

)
(3.2)

(−τ ≤ t ≤ τ + ε; k = 0, 1, . . . , k0 − 1)
belong to KerRε(A,B). Indeed, for k = 0, 1, . . . , k0 − 1 and 0 ≤ t ≤ τ + ε,

(Rε(A)φ0k)(t) = e−iλ0t
k∑

r=0

(
(−it)r

r!
+
∫ τ

0

a(s)eiλ0s [i(t− s)]r

r!
ds

)
φ0,k−r

= e−iλ0t
k∑

r=0

r∑
p=0

−irtp

r!

(
δrp +

∫ τ

0

(
r

p

)
a(s)eiλ0s(is)r−p ds

)
φ0,k−r .

Since (
dp

dλp
A
)

(λ) = a0δ0p + (−i)p

∫ τ

0

(−s)pa(s)eiλsds,

we have

Rε(A)φ0k(t) = e−iλ0t
k∑

r=0

r∑
p=0

(−i)p

p!(r − p)!
tp
(

dr−p

dλr−p
A
)

(λ0)φ0,k−r

= e−λ0t
k∑

p=0

(−it)p

p!

k∑
r=p

1
(r − p)!

(
dr−p

dλr−p
A
)

(λ0)φ0,k−r.

(3.3)

Due to the definition of a Jordan chain, this implies that Rε(A)φ0k(t) = 0. Anal-
ogously it is proved that Rε(B)φ0k(t) = 0. Therefore φ0k(t) ∈ KerRε(A,B). From
what has been proved above, in particular, it follows that

dim KerRε(A,B) ≥ ν(A,B).

Now assume that the vector function φ(t) belongs to the kernel of the operator
Rε(A,B). Then

φ(t) +
∫ τ

0

a(s)φ(t − s) ds = 0 (0 ≤ t ≤ τ + ε) (3.4)

and

φ(t) +
∫ 0

−τ

b(s)φ(t − s) ds = 0 (−τ ≤ t < ε). (3.5)

In view of Lemma 2.1, the vector function φ(t) is absolutely continuous. From
here and equalities (3.4)–(3.5) it follows that for every r = 0, 1, . . . , k the function
dr

dtr φ(t) belongs to KerRε(A,B). Since dimKerRε(A,B) < ∞, this implies that
there exist numbers αj (j = 1, 2, . . . ,m0) such that

m0∑
j=0

αj
dj

dtj
φ(t) = 0 (−τ ≤ t ≤ τ + ε).
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Hence, the vector function φ(t) has the form

φ(t) =
l∑

j=1

pj(t)e−iλj t,

where pj(t) are polynomials with vector coefficients.
Let us show that all summands pj(t)e−iλj t (j = 1, 2, . . . , l) also belong to the

kernel of the operator Rε(A,B). If φ(t) ∈ KerRε(A,B), then, in particular,

0 = φ(t) +
∫ τ

0

a(s)φ(t− s) ds

for 0 ≤ t ≤ τ + ε. According to (3.5) we obtain

0 =
l∑

j=1

(
pj(t)e−iλj t +

∫ τ

0

a(s)pj(t− s)eiλj(t−s) ds

)

=
l∑

j=1

e−iλjt

(
pj(t) +

∫ τ

0

a(s)pj(t− s)e−iλjs ds

)
.

(3.6)

It is easy to see that the vector function

qj(t) = pj(t) +
∫ τ

0

a(s)pj(t− s)eiλjs ds

is a polynomial with vector coefficients.
It is known that a system of scalar functions of the form eμjtrj(t) (j =

1, 2, . . . , l), where rj(t) are polynomials and μj are pairwise distinct complex num-
bers, is linearly independent. Hence the system of vector functions qj(t)e−iλj t is
linearly independent. This fact and (3.5) imply that

0 = e−iλj tqj(t) = e−iλj tpj(t) +
∫ τ

0

a(s)pj(t− s)e−iλj(t−s) ds.

The last equality means that e−iλjtpj(t) ∈ KerRε(A). Analogously it is proved
that e−iλjtpj(t) ∈ KerRε(B). According to equality (3.1), this implies that

e−iλjtpj(t) ∈ KerRε(A,B) (j = 1, 2, . . . , l).

Let

pj(t) =
(−it)kj

kj !
φj0 +

(−it)kj−1

(kj − 1)!
φj1 + · · ·+ φjkj (j = 1, 2, . . . , l).

Then

0 = Rε(A)qj(t) = e−iλj t

kj∑
k=0

(
(−it)k

k!
+
∫ τ

0

a(s)eiλjs [−i(t− s)]k

k!
ik ds

)
φj,kj−k.

Taking into account that(
dk

dλk
A
)

(λ) = a0δk0 +
∫ τ

0

(is)ka(s)eiλs ds,
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we obtain

0 = e−iλj t

kj∑
p=0

(−it)p

p!

kj∑
k=p

1
(k − p)!

(
dk−p

dλk−p
A
)

(λj)φj,kj−k.

Thus,
kj∑

k=p

1
(k − p)!

(
dk−p

dλk−p
A
)

(λj)φj,kj−k = 0 (0 ≤ t ≤ τ + ε)

for p = 0, 1, . . . , kj and j = 1, 2, . . . , l. This means that for every j = 1, 2, . . . , l
the vectors φj0, φj1, . . . , φjk (k = 0, 1, . . . , kj) form a Jordan chain for the matrix
function A(λ) at the eigenvalue λj . Analogously it is proved that φj0, φj1, . . . , φjk

is also a Jordan chain for the matrix function B(λ).
Hence it is proved that every vector function in KerRε(A,B) is a linear com-

bination of vector functions of the form (1.4). In particular, this implies equality
(1.5). The theorem is proved. �

Theorem 1.1 and equality (1.7) imply the following.

Corollary 3.1. Entire matrix functions A(λ) ∈ F d×d
0 (0, τ) and B(λ) ∈ F d×d

0 (−τ, 0)
do not have any common eigenvector corresponding to the same eigenvalue if and
only if for some ε > 0 the operator R′ε(A,B) or the operator R′′ε (A,B) is invertible
in the space Ld

1(−τ, τ + ε).

Corollary 3.2. Under the hypotheses of Theorem 1.1, the inequality

ν(A,B) ≤ dim KerR0(A,B)

holds.

Indeed, this follows from the obvious inclusion

KerRε(A,B) ⊂ KerR0(A,B).

4. Scalar case

In this section Theorem 0.1 is proved.

4.1. We will need the following lemma.

Lemma 4.1. Let a(t) ∈ L1(0, τ), b(t) ∈ L1(−τ, 0), and

A(λ) = 1 +
∫ τ

0

a(s)eiλs ds, B(λ) = 1 +
∫ 0

−τ

b(s)eiλs ds.

If the system of equations

a(t)−
∫ τ

0

a(s)ω(t− s) ds = ω(t) (0 ≤ t ≤ τ),

b(t)−
∫ 0

−τ

b(s)ω(t− s) ds = ω(t) (−τ ≤ t < 0)
(4.1)
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has a solution ω(t) ∈ L1(−τ, τ), then the classical resultant operator R0(A,B) is
invertible.

This lemma is obtained in [4] (see also [5, Proposition 3.5]).
With the aid of Lemma 4.1 we prove the following.

Lemma 4.2. Let A(λ) ∈ F 1×10 (0, τ) and B(λ) ∈ F 1×10 (−τ, 0). Then the kernel of
the classical resultant operator R0(A,B) consists of absolutely continuous functions
only.

Proof. With the aid of the arguments from the proof of Lemma 2.1 one can show
that every function φ(t) ∈ KerR0(A,B) can be represented in the form φ(t) =
φ0(t)− cθ(t), where φ0(t) is an absolutely continuous function and c ∈ C1.

Let

A(λ) = a0 +
∫ τ

0

a(t)eiλt dt, B(λ) = b0 +
∫ 0

−τ

b(t)eiλt dt.

Assume that
φ(t) = φ0(t)− cθ(t) ∈ KerR0(A,B) (4.2)

and c �= 0. Since

R0(A,B)θ(t) =

⎧⎪⎪⎨⎪⎪⎩
a0 +

∫ t

0

a(s) ds (0 ≤ t ≤ τ),∫ t

−τ

b(s) ds (−τ ≤ t < 0),

we have

φ0(t) +
∫ τ

0

a(s)φ(t − s) ds =
(
a0 +

∫ t

0

a(s) ds
)

c (0 ≤ t ≤ τ),

φ0(t) +
∫ 0

−τ

b(s)φ(t− s) ds =
(∫ t

−τ

b(s) ds
)

c (−τ ≤ t < 0).

Differentiating the last equalities and setting

ω(t) =
1
c

d

dt
φ(t) (t �= 0),

we obtain

a(t)−
∫ τ

0

a(s)ω(t− s) ds = ω(t) (0 ≤ t ≤ τ),

b(t)−
∫ 0

−τ

b(s)ω(t− s) ds = ω(t) (−τ ≤ t < 0).

In view of Lemma 4.1 this implies that the operator R0(A,B) is invertible. This
contradicts the assumption φ(t) ∈ KerR0(A,B) (φ �= 0). Hence we have c = 0 in
representation (4.2). This means that the function φ(t) is absolutely continuous.

The lemma is proved. �
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Note that Lemma 4.1 does not remain valid for matrix functions. One can
demonstrate this with the example presented in Section 1.

4.2. Proof of Theorem 0.1. For the proof of Theorem 0.1 we repeat the proof of
Theorem 1.1, where we apply Lemma 4.2 instead of Lemma 2.1. We obtain that
the kernel of the operator R0(A,B) consists of the linear hull of the functions of
the form

φjk(t) = e−iλjt

(
(−it)k

k!
φj0 + · · ·+ −it

1!
φj,k−1 + φjk

)
(k = 0, 1, . . . , kj ; j = 1, 2, . . . , l)

where φjk are complex numbers and φj0 �= 0.
The equality

φjk(t) =
k∑

r=0

ir

r!
φjrψjr(t)

holds. On the other hand,

φjk(t)− φj,k−1(t) =
−ik

k!
φj0t

k.

From the last two equalities it follows that the linear hull of the functions φjk(t)
coincides with the linear hull of the functions ψjk(t).

The theorem is proved. �
Corollary 4.1. Entire functions A(λ) ∈ F 1×10 (0, τ) and B(λ) ∈ F 1×10 (−τ, 0) do not
have any common zero if and only if the operator R0(A,B) is invertible.

5. Applications

We present an example of application of theorems on a continual analogue of the
resultant operator to the problem of elimination of an unknown variable from a
system of two (in general, transcendental) equations with two unknowns.

5.1. First, consider the scalar case. Let A(λ, μ) and B(λ, μ) be entire functions in
λ and μ of the form

A(λ, μ) = a0 +
∫ τ

0

∫ τ

0

a(t, s)ei(λt+μs) ds dt,

B(λ, μ) = b0 +
∫ 0

−τ

∫ 0

−τ

b(t, s)ei(λt+μs) ds dt,

(5.1)

where a0, b0 ∈ C1; a0, b0 �= 0; 0 < τ <∞; and

a(t, s) ∈ L1([0, τ ]× [0, τ ]), b(t, s) ∈ L1([−τ, 0]× [−τ, 0]).

Consider the system of equations{ A(λ, μ) = 0,

B(λ, μ) = 0
(5.2)
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with unknowns λ ∈ C1 and μ ∈ C1. Consider the functions

aμ(t) =
∫ τ

0

a(t, s)eiμs ds (μ ∈ C1, t ∈ [0, τ ])

and

bμ(t) =
∫ 0

−τ

b(t, s)eiμs ds (μ ∈ C1, t ∈ [−τ, 0]).

Obviously, for every fixed μ the function aμ(t) (resp. bμ(t)) belongs to the space
L1(0, τ) (resp. L1(−τ, 0)). Hence the functions aμ(t) and bμ(t) can be considered as
vector functions in μ with values in the spaces L1(0, τ) and L1(−τ, 0), respectively.
These functions are entire. Indeed, let

a′μ(t) =
∫ τ

0

a(t, s)(is)eiμs ds.

Then for h ∈ C1 we have∥∥∥∥a′μ − 1
h

(aμ+h − aμ)
∥∥∥∥

L1(0,τ)

≤
∫ τ

0

∫ τ

0

|a(t, s)|
∣∣∣∣ 1h (eihs − 1)− is

∣∣∣∣ |eiμs| ds dt

≤ e|μ|τ
∫ τ

0

∫ τ

0

|a(t, s)|
∣∣∣∣ 1h (eihs − 1)− is

∣∣∣∣ ds dt.
Hence

lim
h→0

∥∥∥∥a′μ − 1
h

(aμ+h − aμ)
∥∥∥∥

L1(0,τ)

= 0.

Analogously it is proved that bμ is also an entire vector function.
For every μ ∈ C1 consider the classical resultant operator R0(μ) acting in

the space L1(−τ, τ) by the formula

(R0(μ)φ)(t) =

⎧⎪⎪⎨⎪⎪⎩
a0φ(t) +

∫ τ

−τ

aμ(t− s)φ(s) ds (0 ≤ t ≤ τ),

b0φ(t) +
∫ τ

−τ

bμ(t− s)φ(s) ds (−τ ≤ t < 0).
(5.3)

The operator function R0(μ) is entire. Indeed, put

(R′0(μ)φ)(t) =

⎧⎪⎪⎨⎪⎪⎩
∫ τ

−τ

a′μ(t− s)φ(s) ds (0 ≤ t ≤ τ),∫ τ

−τ

b′μ(t− s)φ(s) ds (−τ ≤ t < 0).

Then in view of estimate (4) for every h ∈ C1 we obtain∥∥∥∥ 1
h

(
R0(μ + h)−R0(μ)

)−R′0(μ)
∥∥∥∥

L1(−τ,τ)

≤
∥∥∥∥ 1
h

(aμ+h − aμ)− a′μ

∥∥∥∥
L1(0,τ)

+
∥∥∥∥ 1
h

(bμ+h − bμ)− b′μ

∥∥∥∥
L1(−τ,0)

.
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Therefore,

lim
h→0

∥∥∥∥ 1
h

(
R0(μ + h)−R0(μ)

)−R′0(μ)
∥∥∥∥

L1(−τ,τ)

= 0 (μ ∈ C1).

Applying Theorem 0.1 to the entire functions A(λ, μ) and B(λ, μ) for a fixed
μ, we obtain that the set of the eigenvalues of the operator function R0(μ) coincides
with the set of the points μ′ for which the functions A(λ, μ′) and B(λ, μ′) have
common zeros. It is not difficult to obtain that for the operator function R0(μ)
there exist points μ0 such that the operator R0(μ0) is invertible. Hence the set of
the eigenvalues of the operator function R0(μ) is discrete.

Thus, system (5.2) is reduced to the family of systems of equations with one
unknown { A(λ, μj) = 0,

B(λ, μj) = 0,

where μj runs over the set of the eigenvalues of the operator function R0(μ). In
some cases, finding the eigenvalues of the operator function R0(μ) can be reduced
to finding the zeros of some entire function.

Indeed, if aμ(t) ∈ L2(0, τ) and bμ(t) ∈ L2(−τ, 0), then the operators

(K(μ)φ)(t) = −φ(t) +

{
a−10 R0(μ)φ(t) (0 ≤ t ≤ τ),

b−10 R0(μ)φ(t) (−τ ≤ t < 0)

belong to the class of the Hilbert-Schmidt operators. Therefore the set of the
eigenvalues of the operator function R0(μ) coincides with the set of the zeros of
the entire function d̃et(I + K(μ)), where d̃et(I + K(μ)) denotes the regularized
determinant of the operator I + K(μ) (see [2, Chap. IV, Section 2]).

Now we interchange the roles of the variables λ and μ and repeat the process
described above with respect to the resultant operator

(R0(λ)φ)(t) def=

⎧⎪⎪⎨⎪⎪⎩
a0φ(t) +

∫ τ

−τ

aλ(t− s)φ(s) ds (0 ≤ t ≤ τ),

b0φ(t) +
∫ τ

−τ

bλ(t− s)φ(s) ds (−τ ≤ t < 0),
(5.4)

where

aλ(s) =
∫ τ

0

a(t, s)eiλt dt, bλ(s) =
∫ 0

−τ

b(t, s)eiλt dt.

We obtain that the system of equations (5.2) may be satisfied only by the
eigenvalues λ of the operator R0(λ). By {λj} denote the set of these eigenvalues.
Finally, one concludes that all the solutions of system (5.2) are contained among
the pairs (λj , μk).
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5.2. Everything said above is naturally generalized to the case of matrix functions,
that is, to the case of solution of the system of equations{ A(λ, μ)φ = 0,

B(λ, μ)φ = 0
(5.5)

with unknown numbers λ and μ and an unknown vector φ ∈ Cd under the as-
sumption that

A(λ, μ) = a0 +
∫ τ

0

∫ τ

0

a(t, s)ei(λt+μs) dt ds (5.6)

and

B(λ, μ) = b0 +
∫ 0

−τ

∫ 0

−τ

b(t, s)ei(λt+μs) dt ds, (5.7)

where a0, b0 ∈ L(Cd); a(t, s), b(−t,−s) ∈ Ld×d
1 ([0, τ ]× [0, τ ]).

In view of Corollary 3.2, here we can restrict ourselves to applying the classical
resultant operator and then reduce the problem (5.5) to solving the system of
equations { A(λj , μk)φ = 0,

B(λj , μk)φ = 0,
where μk runs over all eigenvalues of the operator R0(μ) defined by equality (5.3)
and λj runs over all eigenvalues of the operator R0(λ) defined by equality (5.4).

5.3. Note that one can essentially extend a number of applications of the main
theorems by varying classes of matrix functions under consideration.

6. Continual analogue of the Bezoutian

Let

A(λ) = 1 +
∫ τ

0

a(t)eiλt dt, B(λ) =
∫ 0

−τ

b(t)eiλt dt,

where a(t) ∈ L1(0, τ) and b(t) ∈ L1(−τ, 0).
Consider the function

G(λ, μ) def=
i

λ + μ

(A(λ)B(−μ)− eiτ(λ+μ)A(−μ)B(λ)
)

(λ, μ ∈ C1).

It is easy to see (see [5]) that

G(λ, μ) =
∫ τ

0

∫ τ

0

γ(t, s)ei(λt+μs) dt ds,

where

γ(t, s) def= a(t−s)+b(t−s)+
∫ min(t,s)

0

(
a(t−r)b(r−s)−b(t−r−τ)a(r−s+τ)

)
dr

and 0 ≤ t, s ≤ τ . Notice that γ(t, s) ∈ L1([0, τ ]× [0, τ ]).
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The operator I + Γ(A,B) given by

(Γ(A,B)φ)(t) =
∫ τ

0

γ(t, s)φ(s) ds

acting in the space L1(0, τ) is said to be the Bezoutian operator for the functions
A(λ) and B(λ). It is a natural continual analogue of the Bezoutian operator in the
discrete case (see [1, 6, 7]).

Note that γ(t, 0) = a(t) and γ(0, s) = b(−s).
The next theorem is a continual analogue of [1, Theorem 5.1].

Theorem 6.1. Let

A(λ) = 1 +
∫ τ

0

a(t)eiλt dt, B(λ) = 1 +
∫ 0

−τ

b(t)eiλt dt,

where a(t) ∈ L1(0, τ) and b(t) ∈ L1(−τ, 0). Then the kernel of the Bezoutian
operator I + Γ(A,B) of the functions A(λ) and B(λ) consists of the linear span of
the system of functions

φjk(t) = tke−iλj t (k = 0, 1, . . . , kj − 1; j = 1, 2, . . . , l),

where λj (j = 1, 2, . . . , l) are all distinct common zeros of the functions A(λ) and
B(λ) and kj is the multiplicity of the zero λj.

In particular,
ν(A,B) = dimKer(I + Γ(A,B)). (6.1)

Proof. Let us consider the following operators acting in the space L1(0, τ):

(Aφ)(t) =
∫ τ

0

a(t− s)φ(s) ds, (Bφ)(t) =
∫ τ

0

b(t− s)φ(s) ds,

(Ãφ)(t) =
∫ τ

0

a(t− s + τ)φ(s) ds, (B̃φ)(t) =
∫ τ

0

b(t− s− τ)φ(s) ds,

where 0 ≤ t ≤ τ . With the aid of these operators, the Bezoutian operator can be
written in the form

I + Γ(A,B) = (I + A)(I + B)− B̃Ã.

We also introduce the operators

(H+φ)(t) = φ(t− τ) (0 ≤ t ≤ τ),

(H−φ)(t) = φ(t− τ) (−τ ≤ t ≤ 0).

The operator H+ maps L1(−τ, 0) onto L1(0, τ) and the operator H− is the inverse
to the operator H+. If we identify the space L1(−τ, τ) with the direct sum of the
subspaces L1(−τ, 0) and L1(0, τ), then the resultant operator R0(A,B) for the
functions A(λ) and B(λ) takes the following block form:

R0(A,B) =

∥∥∥∥∥ I + H−BH+ H−B̃
ÃH+ I + A

∥∥∥∥∥ .
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We can straightforwardly check that the equality

R0(A,B) =
∥∥∥∥ I H−B̃(I + A)−1

0 I

∥∥∥∥ ∥∥∥∥ H−CH+ 0
0 I + A

∥∥∥∥
×
∥∥∥∥ I 0

(I + A)−1ÃH+ I

∥∥∥∥ (6.2)

holds, where C = I + B − B̃(I + A)−1Ã. Since, obviously, the operators B̃ and A
commute, we have

C = (I + A)−1((I + A)(I + B)− B̃Ã) = (I + A)−1(I + Γ(A,B)). (6.3)

Let f(t) ∈ KerR0(A,B), then in view of (6.2) and (6.3),

(I + Γ(A,B))f1 = 0,

where f1(t) = f(t− τ) (0 ≤ t ≤ τ).
Conversely, from the equality (I + Γ(A,B))f1(t) = 0 it follows that f(t)

belongs to KerR0(A,B), where

f(t) =
{

f1(t + τ) (−τ ≤ t ≤ 0),
−(I + A)−1Ãf1(t) (0 ≤ t ≤ τ).

To finish the proof, it remains to apply Theorem 0.1. �

Note also that in the case when the Bezoutian operator is invertible, its
inverse is an integral operator with a kernel depending only on the difference of
the arguments (see [4, 5]).

For the case A(λ) = B(−λ) a theorem containing a continual generalization
of Hermite’s theorem [6] (containing, in particular, equality (6.1)) was obtained by
M.G. Krein. This result was published by him only in the discrete case (see [8]).
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The Spectrum of Singular Integral
Operators in Lp Spaces

Israel Gohberg and Nahum Krupnik

To S. Mazur and W. Orlicz

First, we shall consider the simplest class of one-dimensional singular integral
operators – the class of discrete Wiener-Hopf operators.

Let Ta be a bounded linear operator defined in the space �2 by the infinite
matrix ‖aj−k‖∞j,k=0, where aj are the Fourier coefficients of some bounded function
a(ζ) (|ζ| = 1).

If the function a(ζ) (|ζ| = 1) is continuous, then the spectrum of the operator
Ta consists of all points of the curve a(ζ) (|ζ| = 1) and all complex numbers λ not
lying on this curve, for which

ind(a− λ) def=
1
2π

[arg(a(eiθ)− λ)]θ=2πθ=0 �= 0.

This statement remains true (see [7]) if one replaces the space �2 by many
other Banach spaces. In particular, the space �2 can be replaced by any space hp

(1 < p <∞) of the sequences of the Fourier coefficients of functions belonging to
the corresponding Hardy space Hp (see [2]). The situation becomes more involved
if the function a(ζ) is not continuous.

If the function a(ζ) (|ζ| = 1) is continuous from the left and has a finite
number of discontinuities [of the first kind] ζ1, ζ2, . . . , ζn, then the spectrum of the
operator Ta in the space �2 (see [3]) consists of all points of the curve V (a) resulting
from the range of the function a(ζ) by adding the segments

μa(ζk) + (1− μ)a(ζk + 0) (0 ≤ μ ≤ 1),

as well as of the points λ /∈ V (a), for which

ind(a− λ) def=
1
2π

∮
V (a)

dt arg(t− λ) �= 0.

The paper was originally published as I.C. Gohberg, N.�. Krupnik, O spektre singul-

�rnyh integral�nyh operatorov v prostranstvah Lp, Studia Math. 31 (1968), 347–362.

MR0236774 (38 #5068), Zbl 0179.19701.
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This result does not hold for the spaces hp with 1 < p < ∞ if p �= 2: for a
piecewise continuous function a(ζ) the spectrum of the operator Ta in hp varies
with variation of p.

This paper is devoted to finding the spectrum of the operator Ta in the
spaces hp and solving the same problem for other singular integral operators in
the spaces Lp.

Some results in this direction were obtained earlier in the paper by H. Widom
[1] (see also [14]). Known methods of N.I. Mushelishvili [10] and B.V. Khvedelidze
[12, 13] for solving singular integral equations with discontinuous coefficients play
an important role in what follows.

The paper consists of four sections. Discrete Wiener-Hopf equations in the
spaces hp are considered in Section 1. In Section 2, the spectrum of singular integral
operators with discontinuous coefficients in Lp(Γ), where Γ consists of a finite
number of closed contours, is studied. As an application, in Section 3, estimates for
the norms of some singular integral operators in Lp(Γ) are obtained. In particular,
for some Lp the exact value of the norm of the Hilbert transform is calculated.
In the last section the above mentioned results are generalized to some symmetric
spaces.

1. The spectrum of discrete Wiener-Hopf equations in hp spaces

1.1. Let Hp (1 < p < ∞) be the Hardy space, that is, the space of all functions
f(ζ) analytic in the disk |ζ| < 1 with the norm

‖f‖Hp = lim

↑1

(∫ 2π

0

|f(�eiθ)|p dθ

)1/p

(<∞).

By hp denote the Banach space isometric to Hp that consists of all sequences
ξ = {ξj}∞0 of the Fourier coefficients of functions in Hp.

By Λ denote the set of all piecewise continuous functions on the unit circle
(|ζ| = 1) that are continuous from the left.

In this section the spectra of operators generated by the matrices of the form
‖aj−k‖∞j,k=0, where aj (j = 0,±1, . . . ) are the Fourier coefficients of a function
a(ζ) ∈ Λ, are studied in hp (1 < p <∞). The operator Ta generated by the above
matrix is a bounded linear operator in every space hp (1 < p <∞).

1.2. Let a and b be a pair of points in the complex plane and p be a number in
the interval (2,∞). By νp(a, b) we denote the circular arc joining the points a, b
and having the following two properties:
(α) the segment ab is seen from the interior points of the arc νp(a, b) under the

angle 2π/p;
(β) the orientation from the point a to b along the arc νp(a, b) is counter-clockwise.

In the case 1 < p < 2 we set νp(a, b) = νq(b, a) (p−1 + q−1 = 1), and in the
case p = 2 by ν2(a, b) we denote the segment ab.
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Let a(ζ) be an arbitrary function in Λ and ζk (|ζk| = 1 and k = 1, 2, . . . , n) be
all its discontinuity points. To the function a(ζ) and a number p (1 < p <∞) we
assign the continuous closed curve Vp(a) resulting from the range of the function
a(ζ) by adding the arcs νp(a(ζk), a(ζk + 0)) (k = 1, 2, . . . , n). We orient the curve
Vp(a) in the natural manner. That is, on the intervals of continuity of the function
a(ζ), the motion along the curve Vp(a) agrees with the motion of the variable ζ
counterclockwise; and along the arcs νp(a(ζk)a(ζk +0)), the curve Vp(a) is oriented
from a(ζk) to a(ζk + 0).

We say that a function a(ζ) ∈ Λ is p-nonsingular if the curve Vp(a) does not
pass through the point λ = 0.

The winding number of the curve Vp(a) about the point λ = 0, that is, the
number

1
2π

∮
Vp(a)

d arg t

is said to be the index (more precisely, p-index ) of the p-nonsingular function a(ζ)
and is denoted by indp a.

If a function a(ζ) ∈ Λ is not continuous, then obviously its index depends on
the number p.

Note also that, in contrast to the case of continuous functions, the p-index
of the product of two p-nonsingular functions may not be equal to the sum of the
p-indices of those functions.

However it can be easily seen that if the multiples f and g (∈ Λ) do not have
common points of discontinuity, then the p-nonsingularity of the functions f and
g implies the p-nonsingularity of their product and the identity

indp(fg) = indp f + indp g.

1.3. The main result of this section is the following.

Theorem 1. Let a(ζ) ∈ Λ. The operator Ta is a Φ+-operator or a Φ−-operator1 in
the space hp if and only if the function a(ζ) is p-nonsingular.

If the function a(ζ) is p-nonsingular, then

1. for indp a > 0 the operator Ta is left-invertible in the space hp and

dim cokerTa|hp = indp a;

2. for indp a < 0 the operator Ta is right-invertible in the space hp and

dim kerTa|hp = − indp a;

3. for indp a = 0 the operator Ta is two-sided invertible in hp.

This theorem immediately implies the following.

1An operator A is said to be a Φ+-operator (resp. Φ−-operator) if it is normally solvable and
dimkerA <∞ (resp. dim cokerA <∞). If A is a Φ−-operator and a Φ+-operator simultaneously,
then it is called a Φ-operator.
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Theorem 2. Suppose a(ζ) ∈ Λ. The spectrum of the operator Ta in the space hp

(1 < p <∞) consists of all points of the curve Vp(a) and the points λ /∈ Vp(a), for
which indp(a− λ) �= 0.

Proof of Theorem 1 will be given in Section 2. Here we illustrate Theorem 2
by considering as an example the operator Tg defined in hp (1 < p < ∞) by the
matrix ∥∥∥∥ 1

πi(j − k + 1/2)

∥∥∥∥∞
j,k=0

.

This operator is a truncation of the discrete Hilbert transform. The corre-
sponding function

g(eiθ) =
1
πi

∞∑
j=−∞

1
j + 1/2

eiθ = e−iθ/2 (0 < θ ≤ 2π)

has exactly one discontinuity on the unit circle at the point ζ = 1. In view of
Theorem 2 the spectrum σp(Tg) of the operator Tg depends on p and is the set
bounded by the half-circle eiτ (π ≤ τ ≤ 2π) and the circular arc νp(−1, 1).

For 2 < p < ∞ we have indp g = 0. Therefore for these values of p the
operator Tg is invertible in hp. For 1 < p < 2 we get indp g = −1. Hence for
these values of p the operator Tg is right-invertible in hp and dimkerTg = 1. The
operator Tg is not one-sided invertible only in the space h2 (= �2) (moreover, it is
neither a Φ+-operator nor a Φ−-operator).

The spectrum σp(Tg) always contains interior points except for the case p = 4.
In the latter case the spectrum σp(Tg) consists of the half-circle

ν4(−1, 1) = {eiτ : π ≤ τ ≤ 2π}.

2. The spectrum of singular integral operators in Lp spaces

By F+ denote a bounded connected closed set on the complex plane with the
boundary Γ consisting of a finite number of simple closed smooth oriented curves,
that is, Γ =

⋃m
j=0 Γj . Let F− be the closure of the complement of F+ to the whole

plane. We shall assume that 0 ∈ F+ \Γ. By F−j denote the connected (bounded if
j �= 0) part of the set F− with the boundary Γj .

The set of all piecewise continuous functions that are continuous from the
left on Γ is denoted by Λ(Γ).

Let t1, t2, . . . , tn be all discontinuity points of a function g(t) ∈ Λ(Γ). To
the function g(t) we assign the curve Vp(g) consisting of a finite number of closed
oriented continuous curves resulting from the range of the function g(t) by adding
the n arcs νp(g(tk), g(tk + 0)).

We say that the function g(t) is p-nonsingular if 0 /∈ Vp(g).
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The winding number of the contour Vp(g) about the point λ = 0, that is, the
number

1
2π

∮
Vp(g)

d arg t

is said to be the index (p-index ) of a p-nonsingular function g(t) and is denoted
by indp g.

Analogously to the case of the unit circle, if two p-nonsingular functions
do not have common discontinuity points, then their product is a p-nonsingular
function and the p-index of the product is equal to the sum of the p-indices of the
multiples.

Consider a singular integral operator A = c(t)I + d(t)S, where c(t) and d(t)
belong to Λ(Γ) and

(Sϕ)(t) =
1
πi

∫
Γ

ϕ(τ)
τ − t

dτ.

If one introduces the notation

c(t) + d(t) = a(t), c(t)− d(t) = b(t), (I + S)/2 = P, (I − S)/2 = Q,

then the operator A can be written in the form A = a(t)P + b(t)Q.
First consider the case b(t) ≡ 1.

Theorem 3. The operator Ag = gP + Q, where g(t) ∈ Λ(Γ), is a Φ+-operator or
a Φ−-operator in the spaces Lp(Γ) (1 < p <∞) if and only if the function g(t) is
p-nonsingular.

If the function g(t) is p-nonsingular, then

1. for indp g > 0 the operator Ag is left-invertible in the space Lp(Γ) and

dim cokerAg = indp g;

2. for indp g < 0 the operator Ag is right-invertible in the space Lp(Γ) and

dim kerAg = − indp g;

3. for indp g = 0 the operator Ag is invertible in Lp(Γ).

The idea of the proof of the sufficiency portion of Theorem 3 is borrowed
from the theory of singular integral equations with discontinuous coefficients (see
[10, 13]). According to the usual line of reasoning in this theory we first prove the
sufficiency of the conditions of Theorem 3 for a special (in some sense the simplest)
function ψ(t) ∈ Λ(Γ). Then the general case will be considered with the aid of this
simplest case.

Let tk (k = 1, 2, . . . , n) be some points on the contour Γ and sk (sk /∈ Γ)
be points chosen by the following rule: if tk ∈ Γ0, then sk ∈ F+; if tk ∈ Γj

(j = 1, 2, . . . ,m), then sk ∈ F−j . The contour Γj containing the point tk will be
also denoted by Γ(k).
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By ψk(t) denote the function continuous everywhere on the contour Γ, except
for possibly the point tk, and defined by

ψk(t) =
{

(t− sk)εγk for t ∈ Γ(k),
1 for t ∈ Γ \ Γ(k),

where ε = 1 if tk ∈ Γ0 and ε = −1 if tk /∈ Γ0 and γk are complex numbers
satisfying

1− p

p
< Re γk <

1
p
.

It is easy to see that the function ψ(t) = ψ1(t) . . . ψn(t) is p-nonsingular and
indp ψ = 0.

Lemma 1. The operator Aψ = ψ(t)P + Q is invertible in Lp(Γ).

Proof. Each function ψk(t) can be factorized (see, e.g., [12]): ψk(t) = ψ−k (t)ψ+k (t),
where

ψ
(ε)
k (t) =

⎧⎨⎩ (t− tk)εγk (t ∈ Γ(k)),

1 (t ∈ Γ \ Γ(k)),

ψ
(−ε)
k (t) =

⎧⎨⎩
(
t− sk

t− tk

)εγk

(t ∈ Γ(k)),

1 (t ∈ Γ \ Γ(k)).

Here ψ(ε) (resp. ψ(−ε)) denotes ψ+k (resp. ψ−k ) for tk ∈ Γ0 and ψ−k (resp. ψ+k )
for tk ∈ Γ \ Γ0.

The function ψ(t) admits a factorization ψ(t) = ψ−(t)ψ+(t), where ψ±(t) =
ψ±1 (t) . . . ψ±n (t). Consider the operator B = (ψ−1+ P + ψ−Q)ψ−1− I. Taking into ac-
count that P + Q = I and P −Q = S, the operator B can be represented in the
form

B =
1
2
[(ψ−1 + 1)I + (ψ−1 − 1)ψ−Sψ−1− I].

From Khvedelidze’s theorem [13, p. 24] on the boundedness of the operator
S in the Lp space with weight it follows that the operator ψ−Sψ−1− I is bounded
in Lp(Γ), whence the operator B is also bounded in Lp(Γ).

It is easy to see that for Hölder continuous functions χ(t) (t ∈ Γ), the equal-
ities

(ψ−1+ P + ψ−Q)ψ−1− (ψP + Q)χ = (ψP + Q)(ψ−1+ P + ψ−Q)ψ−1− χ = χ

hold.
Thus the operator Aψ is invertible in Lp(Γ) and A−1ψ = (ψ−1+ P +ψ−Q)ψ−1− I.

The lemma is proved. �



Singular Integral Operators 117

Proof of Theorem 3. Let tk (∈ Γk) (k = 1, 2, . . . , n) be all discontinuity points of
the function g(t). Since g(t) is a p-nonsingular function, the quotient g(tk)/g(tk+0)
can be written in the form

g(tk)
g(tk + 0)

=
∣∣∣∣ g(tk)
g(tk + 0)

∣∣∣∣ e2πiαk , (1)

where (1− p)/p < αk < 1/p.
By γk denote the following numbers:

γk = αk +
1

2πi
ln
∣∣∣∣ g(t)
g(tk + 0)

∣∣∣∣ .
To the points tk and the numbers γk we assign the function ψ(t). The quotient

g(t)/ψ(t) is a continuous function because

ψk(tk)
ψk(tk + 0)

= e2πiγk =
g(tk)

g(tk + 0)
.

The function g(t) can be written as the product g(t) = ψ(t)r(t)(1 + m(t)),
where r(t) is a rational function that does not have poles and zeros on the contour
Γ, indp g = ind r, and the maximum of the absolute value of the function m(t)
is so small that the operator Aψ+mψ = ψP + Q + mψP is invertible in Lp(Γ)
simultaneously with the operator Aψ.

The function r(t) can be factorized (see [4]) as follows: r(t) = r−(t)tκr+(t),
where r+(t) (resp. r−(t)) is a rational function with poles and zeros in the domain
F− ∪ {∞} (resp. F+), and κ = ind r (= indp g).

Let κ ≥ 0. Then it is easy to verify the identity

gP + Q = r−(ψP + Q + ψmP )(tκP + Q)(r+P + r−1− Q).

The operators ψP + Q + ψmP and r+P + r−1− Q are invertible in Lp(Γ) and
the operator tκP + Q is left-invertible in Lp(Γ) and dim coker(tκP + Q) = κ. The
operator

(r−1+ P + r−Q)(t−κP + Q)(ψP + Q + ψmP )−1r−1− I

is an inverse from the left to gP + Q. From here it follows that if κ = 0, then the
operator Ag is invertible and if κ > 0, then the operator Ag is only left-invertible
in Lp(Γ) and dim cokerAg = indp g.

Let κ < 0. In that case we will use the identity

gt−κP + Q = (gP + Q)(t−κP + Q).

Since indp(gt−κ) = 0, the operator gt−κP + Q is invertible in Lp(Γ). In
addition the operator t−κP +Q is right-invertible and dim coker(t−κP +Q) = −κ.
From here it follows that the operator Ag is only right-invertible in Lp(Γ) and
dim kerAg = − indp g.

The necessity part of the theorem is proved by contradiction2. Assume that
Ag is a Φ+-operator or a Φ−-operator in Lp(Γ) and 0 ∈ Vp(Γ). First consider the

2The idea of this proof is borrowed from [9].
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case when there exists a neighborhood U of the origin in which Vp(Γ) is a simple
smooth line. Since Ag is a Φ±-operator, one can find a neighborhood U1 ⊂ U of the
origin such that for all λ ∈ U1 the operator Ag−λ is a Φ±-operator and indAg−λ =
indAg (recall that indA = dim kerA − dim cokerA). On the other hand, if one
takes two points λ1, λ2 ∈ U1 which lie in different domains separated by Vp(Γ), then
indp(g−λ1) �= indp(g−λ2). Then as we have shown above indAg−λ1 �= indAg−λ2 ,
which is impossible.

We develop the proof in the general case by contradiction as well. Assume
that Ag is a Φ±-operator in Lp(Γ) and 0 ∈ Vp(Γ). Then one can choose a function
b(t) ∈ Λ(Γ) satisfying the three conditions:
(α) sup

t∈Γ
|g(t)−b(t)| < ε, where ε is so small that the operator Ab is a Φ±-operator3;

(β) the curve Vp(b) is a simple smooth arc in some neighborhood of the origin;
(γ) 0 ∈ Vp(b).

As we have shown, the latter condition contradicts the former two conditions. The
theorem is proved. �

Theorem 1 is easily derived from the previous theorem.

Proof of Theorem 1. By C denote the isometric operator mapping each function
f(ζ) in Hp to the vector {fj}∞0 ∈ hp of its Fourier coefficients. It is easy to see
that

Ta = CPAaC
−1,

where Aa is the singular integral operator aP +Q for which the unit circle (|ζ| = 1)
plays the role of the contour Γ.

Without difficulty it is proved that the operator PAa|Hp can be one-sided
invertible (it is a Φ±-operator) if and only if the operator Aa so is in the space
Lp(Γ). If the operator PAa|Hp is one-sided invertible, then

dim kerAa = dimkerPAa|Hp, dim cokerAa = dim cokerPAa|Hp.

The theorem is proved. �

Theorem 4. Let c(t) ∈ Λ(Γ) and d(t) ∈ Λ(Γ). The operator A = c(t)I + d(t)S
(A = c(t)I + Sd(t)I) is a Φ+-operator or a Φ−-operator in Lp(Γ), 1 < p <∞, if
and only if the following two conditions are fulfilled:
(α) inf

t∈Γ
|c(t)− d(t)| > 0,

(β) the function (c(t) + d(t)/(c(t)− d(t)) is p-nonsingular.
If these conditions are fulfilled and κ = indp(c + d)/(c− d), then

1. for κ < 0 the operator A is right-invertible in Lp(Γ) and dim kerA = −κ;
2. for κ > 0 the operator A is left-invertible in Lp(Γ) and dim cokerA = κ;
3. for κ = 0 the operator A is invertible in Lp(Γ).

3The existence of such a number ε follows from the stability theorem for Φ±-operators under
small perturbations [5].



Singular Integral Operators 119

Proof. We develop the proof for the operator A = c(t)I + d(t)S. We represent it
in the form A = a(t)P + b(t)Q, where a(t) = c(t) + d(t) and b(t) = c(t)− d(t).

The sufficiency of the conditions of the theorem follows from Theorem 3. To
apply this theorem for the proof of the necessity, it remains to show that if A is
a Φ+-operator or a Φ−-operator, then inf

t∈Γ
|b(t)| > 0. We divide the proof of this

fact into two steps.

1. Let us show that if the functions a(t) and b(t) (∈ Λ(Γ)) are rational in each
segment of their continuity and b(t0) = 0, where t0 is some point of continuity
of the function b(t), then the operator aP + bQ is neither Φ+-operator nor
Φ−-operator.

Indeed, since under these conditions b1(t) = (t−1 − t−10 )−1b(t) ∈ Λ(Γ),
the operator aP + bQ can be written in the form

aP + bQ = (aP + b1Q)(P + (t−1 + t−10 )Q). (2)

If the operator aP + bQ were a Φ+-operator, then from identity (2) it
would follow that the operator P + (t−1 − t−10 )Q is a Φ+-operator, which is
impossible due to Theorem 3. Thus, aP + bQ cannot be a Φ+-operator.

Since the functions a(t) and b(t) are piecewise rational, in every neigh-
borhood of the origin there exists a point λ such that for the operator A−λI
conditions (α) and (β) of the theorem are fulfilled, whence the operator A−λI
is a Φ-operator. From here it follows that if A were a Φ−-operator, then it
would be a Φ-operator, but we have shown that it is not even a Φ+-operator.

2. Let us show that if the operator A is a Φ+-operator or a Φ−-operator, then
inf
t∈Γ
|b(t)| > 0. Assume the contrary, i.e., assume that A is a Φ+-operator

(or a Φ−-operator) and there is a point t0 ∈ Γ, at which either b(t0) = 0 or
b(t0+0) = 0. Choose two piecewise rational functions a1(t) and b1(t) (∈ Λ(Γ))
such that |a(t) − a1(t)| < δ and |b(t) − b1(t)| < δ, where δ is so small that
the operator a1P + b1Q is a Φ+-operator (or a Φ−-operator). Obviously, in
this case the function b1(t) can be chosen so that the condition b1(t0) =
0 is fulfilled and t0 is a continuity point of the function b1(t). The latter
contradicts what has been proved in Step 1.

The theorem is proved. �

It is not difficult to show that conditions (α) and (β) in the formulation of
Theorem 4 can be replaced by an equivalent condition: for all μ ∈ [0, 1] and t ∈ Γ,

a(t)b(t + 0)E(p, μ) + b(t)F (p, μ) �= 0,

where

E(p, μ) = exp
(

2πiμ(p− 2)
p

)
−exp

(−4πi
p

)
, F (p, μ) = 1−exp

(
2πiμ(p− 2)

p

)
for p > 2,

E(p, μ) = F (q, μ), F (p, μ) = E(q, μ)
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for 1 < p < 2 and 1/p + 1/q = 1, and

E(2, μ) = μ, F (2, μ) = 1− μ.

The last theorem allows us to find Φ-domains4 of singular integral operators.

Theorem 5. Let a(t) ∈ Λ(Γ) and b(t) ∈ Λ(Γ). The complement to the Φ-domain
of the operator A = aP + bQ (A = PaI + QbI) consists of the ranges of the
functions a(t) and b(t) and the set of all complex numbers λ, each of which for
some μ ∈ [0, 1] satisfies at least one of the equations

(a(tk)− λ)(b(tk + 0)− λ)E(p, μ) + (a(tk + 0)− λ)(b(tk)− λ)F (p, μ) = 0, (3)

where tk (k = 1, 2, . . . , n) are all discontinuity points of the functions a(t) and b(t).

Consider several examples of sets Gk of complex numbers λ satisfying equa-
tion (3) corresponding to the discontinuity point tk.

Let t1 be a discontinuity point of the function a(t) only. Then

G1 = νp(a(t1), a(t1 + 0)) ∪ {b(t1)}.
Analogously, if t2 is a discontinuity point of the function b(t) only, then

G2 = νp(b(t2 + 0), b(t2)) ∪ {a(t2)}.
Let t3 be a discontinuity point of both functions a(t), b(t) and a(t3) = b(t3).

Then
G3 = νp(b(t3 + 0), a(t3 + 0)) ∪ {a(t3)}.

If t4 is a common discontinuity point of the functions a(t), b(t) and, for in-
stance, a(t4) = b(t4 + 0) = 1, b(t4) = a(t4 + 0) = −1, then the set G4 is the circle
centered at the point −i cot(π/p) of radius R = 1/ sin(π/p).

In the example A = d(t)S, where a function d(t) (∈ Λ(Γ) takes only two
values 0 and 1, the complement to the Φ-domain of the operator A is the set
G = νp(−1, 1) ∪ νp(1,−1) ∪ {0}.

Note that all results of this section can be extended to paired and transposed
to paired Wiener-Hopf equations.

3. Estimate for the norm of the singular integral operator

In this sections some estimates from below for the norms of P , Q, and S in the
space Lp(Γ) will be obtained. Moreover, for some values of p (p = 2n and p =
2n/(2n − 1), n = 1, 2, . . . ), the exact value for the norm of the Hilbert transform
will be calculated5.

Denote by Pp the set of all compact operators in Lp(Γ).

4The Φ-domain of an operator A is the set of all complex numbers λ such that the operator
A− λI is a Φ-operator.
5The results of this section were obtained by the authors in [15] using a different method.
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Theorem 6. For every p > 2 the following estimates hold:

inf
T∈Pp

‖P + T ‖p ≥ 1
sinπ/p

, inf
T∈Pp

‖Q + T ‖p ≥ 1
sinπ/p

, (4)

inf
T∈Pp

‖S + T ‖p ≥ cot
π

2p
. (5)

For 1 < p < 2 estimates (4) and (5) remain valid with p replaced by q (where
p−1 + q−1 = 1) on the right-hand sides.

Proof. Assume that

inf
T∈Pp

‖P + T ‖p < 1/ sin
π

p

for some p and consider the operator aP + Q, where a(t) ∈ Λ(Γ) is the function
taking only two values

a(t) =
(

cos
π

p

)
exp

(
±πi

p

)
.

Since |a(t)− 1| = sinπ/p, one has inf ‖(a− 1)P‖p < 1. Hence the operator

I + (a− 1)P = aP + Q

is a Φ-operator, but this is impossible because the function a(t) is p-singular.
For the proof of the second inequality in (4) consider the function

a(t) =
(

sec
π

p

)
exp

(
±πi

p

)
.

Then |(1 − a)/a| = sinπ/p. The operator aP + Q = a(I + ((1 − a)/a)Q) is not a
Φ-operator in Lp(Γ) because the function a(t) is not p-nonsingular. This implies
the second inequality in (4).

Inequality (5) can be proved analogously if one takes the function a(t) =
exp(±iπ/p) and uses the identity

aP + Q =
a + 1

2

(
I +

a− 1
a + 1

S

)
. �

Theorem 7. Let Γ = {ζ : |ζ| = 1}. Then for all n = 1, 2, . . . ,

‖S‖p =

⎧⎨⎩ cot π
2p if p = 2n,

tan π
2p if p = 2n/(2n − 1).

(6)

Proof. From inequality (5) it follows that if p > 2, then ‖S‖p ≥ cotπ/2p. Let
us prove the reverse inequality. Let ϕ(t) be an arbitrary function satisfying the
Hölder condition on the unit circle. Then it is easy to see that

ϕ2 + (Sϕ)2 = 2[(Pϕ)2 + (Qϕ)2] = 2S[(Pϕ)2 − (Qϕ)2] = 2S(ϕ · Sϕ),
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that is6, (Sϕ)2 = ϕ2 + 2S(ϕ · Sϕ). From this identity it follows that

‖Sϕ‖22p ≤ 2‖S‖p‖ϕ‖2p‖Sϕ‖2p + ‖ϕ‖22p.
Hence

‖Sϕ‖2p
‖ϕ‖2p ≤ ‖S‖p +

√
1 + ‖S‖2p,

which implies that

‖S‖2p ≤ ‖S‖p +
√

1 + ‖S‖2p.
Taking into account that ‖S‖2 = 1, from the last inequality we obtain

‖S‖2n ≤ cot
π

2n+1
.

Thus equality (6) is proved for p = 2n. For p = 2n/(2n − 1) it follows by passing
to the adjoint operator. The theorem is proved. �

4. The spectrum of singular integral operators in symmetric spaces

In this section the results obtained above are extended to more general symmetric
spaces.

Let us start with definitions. Real-valued measurable functions x(s) and y(s)
on the segment [0, 1] are said to be equimeasurable if

mes{s : x(s) > τ} = mes{s : y(s) > τ}
for every τ .

A Banach space E of all complex-valued measurable functions on [0, 1] is said
to be symmetric if the following three conditions are fulfilled.

1. If |x(s)| ≤ |y(s)|, y(s) ∈ E, and x(s) is measurable on [0, 1], then x(s) ∈ E
and ‖x‖E ≤ ‖y‖E.

2. If functions |x(s)| and |y(s)| are equimeasurable and y(s) ∈ E, then x(s) ∈ E
and ‖x‖E = ‖y‖E.

3. Let E′ be the set of all measurable functions y(s) on [0, 1] such that

‖y‖E′
def= sup

‖x‖E≤1

∫ 1

0

|x(s)y(s)| ds <∞.

Then

‖x‖E = sup
‖y‖E′≤1

∫ 1

0

|x(s)y(s)| ds.

6This identity was used for the first time by M. Cotlar [8] in the proof of the boundedness of the
Hilbert transform (see also [6], pages 120–121 of the Russian original).
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By χ(s) denote the characteristic function of the segment [0, s]. The function
ω(s) = ‖χ(s)‖E is said to be the fundamental function of the space E.

Let E be a symmetric Banach space on [0, 1], Γ be a contour defined in
Section 2, and t = η(s) (0 ≤ s ≤ 1) be its (piecewise smooth) parametric equation.

A Banach space F of all complex-valued measurable functions ϕ(t) on Γ such
that ϕ(η(s)) ∈ E and

‖ϕ(t)‖F
def= ‖ϕ(η(s))‖E

is said to be symmetric with respect to the parametrization t = η(s) of the con-
tour Γ.

Put

lim inf
s→0

ω(2s)
ω(s)

= m(F ), lim sup
s→0

ω(2s)
ω(s)

= M(F ).

We will need the following two theorems due to E.M. Semenov7.

Theorem A. Let 0 ≤ αj ≤ 1 (j = 1, 2) and for a symmetric space F the inequalities

2α1 < m(F ), M(F ) < 2α2

be fulfilled.
If a linear operator A is bounded in the spaces Lp(Γ) for all p ∈ (1/α2, 1/α1),

then the operator A is bounded in F .

Theorem B. The operator S defined by the equality

(Sϕ)(t) =
1
πi

∫
Γ

ϕ(τ)
τ − t

dτ

is bounded in F if and only if

1 < m(F ), M(F ) < 2. (7)

If, in particular, F is an Orlicz space, then condition (7) is equivalent to the
reflexivity of the space F .

Assume that 1 < m(F ) = M(F ) < 2 are fulfilled in the space F . Then
Theorems 3–6 of Sections 2–3 remain true if one replaces in the formulations the
space Lp by the space F and the number p by the number � = 1/ log2M(F ).

The proofs for the space F proceed in the same way as for the space Lp. It is
necessary only to explain why the operator Aψ = ψP +Q constructed by using the
�-nonsingular function g(t) (see the proof of Theorem 3) is invertible in F . Indeed,
since the function g(t) is �-nonsingular, there exists a number ε > 0 such that the
function g(t) is p-nonsingular for every p ∈ (� − ε, � + ε). Then from Lemma 1 it
follows that the operator Aψ is invertible in the spaces Lp for all p ∈ (�−ε, �+ε) and

A−1ψ = (ψ−1+ P + ψ−Q)ψ−1− I.

From Theorem A it follows that the operator A−1ψ is bounded in F . Hence
Aψ is invertible in F .

7These theorems were proved by Semenov [11] for symmetric spaces on [0, 1]. However, as it was
kindly communicated to us by E.M. Semenov, they can be extended to spaces F .
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In the case m(F ) �= M(F ) one can give only sufficient conditions for a singular
integral operator to be a Φ-operator in F .

Theorem 8. Let c(t) ∈ Λ(Γ), d(t) ∈ Λ(Γ) and for a symmetric space F the condi-
tions 1 < m(F ) and M(F ) < 2 be fulfilled. If inf |c(t) − d(t)| > 0 (t ∈ Γ) and the
function (c(t) + d(t))/(c(t) − d(t)) is p-nonsingular for all p satisfying

(log2M(F ))−1 ≤ p ≤ (log2m(F ))−1, (8)

then for the operator A = c(t)I + d(t)S (A = c(t)I + Sd(t)I) in the space F the
following statements hold:

1. for
κ = indp[(c + d)/(c− d)] > 0

the operator A is left-invertible and dim cokerA = κ;
2. for κ < 0 the operator A is right-invertible and dim kerA = −κ;
3. for κ = 0 the operator A is invertible.

Note that the results of Section 1 can be extended to spaces more general
than hp in the same way.
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On an Algebra Generated by the Toeplitz
Matrices in the Spaces hp

Israel Gohberg and Nahum Krupnik

Let Hp (1 < p < ∞) be the Banach Hardy space of all functions ϕ(ζ) that are
analytic inside the circle |ζ| = 1 with the norm

‖ϕ‖Hp = lim

↑1

(∫ 2π

0

|ϕ(�eiθ)|p dθ

)1/p

.

By hp denote the Banach space isometric to Hp that consists of all numerical
sequences ξ = {ξn}∞0 of the Fourier coefficients of functions in Hp. Let Λ be the set
of all piecewise continuous functions on the unit circle |ζ| = 1 that are continuous
from the left. To each function a(ζ) ∈ Λ we associate the operator Ta defined in
hp by the Toeplitz matrix ‖aj−k‖∞j,k=1, where ak are the Fourier coefficients of the
function a(ζ). Obviously, for each p (1 < p < ∞) the operator Ta is a bounded
linear operator in hp. By R denote the algebra of all sums of products of operators
of the form Ta with a ∈ Λ.

In the present paper the Banach algebra Ap is considered. It is the closure of
the algebra R in the operator norm of the space hp. The results presented below
generalize results from the paper [1] obtained there for the case p = 2. As in the
case p = 2, the set Fp of all compact operators in hp is the minimal two-sided ideal
of the algebra Ap and the quotient algebra Ap/Fp is a commutative Banach algebra.

In the case of arbitrary p (1 < p < ∞), the maximal ideal space of the
algebra Ap/Fp is the cylinder |ζ| = 1, 0 ≤ μ ≤ 1, equipped with a special topology
such that the neighborhoods of a point (ζ0, μ0) are defined by one of the following
equalities:

u(ζ0, 0) =
{
(ζ, μ) : ϕ0 − δ < arg ζ < ϕ0, 0 ≤ μ ≤ 1

} ∪ {(ζ0, μ) : 0 ≤ μ < ε},
u(ζ0, 1) =

{
(ζ, μ) : ϕ0 < arg ζ < ϕ0 + δ, 0 ≤ μ ≤ 1

} ∪ {(ζ0, μ) : ε < μ ≤ 1},
u(ζ0, μ0) =

{
(ζ0, μ) : μ0 − δ1 < μ < μ0 + δ2

}
(μ0 �= 0, 1),

(1)

The paper was originally published as I.C. Gohberg, N.�. Krupnik, Ob algebre, poro-

�dënno�i tëplicevymi matricami v prostranstvah hp, Matem. Issled. 4 (1969), � 3,

54–62. MR0399922 (53 #3763a), Zbl 0254.47045.



128 I. Gohberg and N. Krupnik

where 0 < δ1 < μ0, 0 < δ2 < 1 − μ0, 0 < ε < 1, ϕ0 = arg ζ0. It is natural to refer
to the function Ap(ζ, μ) (|ζ| = 1; 0 ≤ μ ≤ 1) on the maximal ideal space of Ap/Fp

that corresponds to an operator A ∈ Ap as the p-symbol of the operator A. In this
case, if the operator A is given by

A =
n∑

j=1

m∏
k=1

Tajk
, (2)

where ajk ∈ Λ, then its p-symbol (p �= 2) is defined by

Ap(ζ, μ) =
n∑

j=1

m∏
k=1

(
sin(1− μ)θ

sin θ
exp(iμθ)ajk(ζ)

+
sinμθ

sin θ
exp(i(μ− 1)θ)ajk(ζ + 0)

)
,

(3)

where θ = π(p−2)/p, |ζ| = 1, and 0 ≤ μ ≤ 1. The definition of the symbol Ap(ζ, μ)
depends essentially on p and is different from the definition in the case p = 2:

A2(ζ, μ) =
n∑

j=1

m∏
k=1

[
(1 − μ)ajk(ζ) + μajk(ζ + 0)

]
.

The latter can be obtained from (3) by passing to the limit as p→ 2 (or θ → 0).
It will be proved below that an operator A ∈ Ap is a Φ-operator1 if and only

if its symbol is different from zero. The index of an operator A is also expressed
via its symbol. The range of the symbol Ap(ζ, μ) is a continuous closed curve,
which can be naturally oriented. The index of this curve (that is, its winding
number about the origin) taken with the opposite sign is equal to the index of the
operator A.

1. Toeplitz operators in the spaces hp

1.1. In this section auxiliary propositions on Toeplitz operators generated by the
Fourier coefficients of piecewise continuous functions in hp are obtained. All these
statements are generalizations to the case of arbitrary p (1 < p <∞) of theorems
obtained in the authors’ papers [3, 4].

Lemma 1. Let a(ζ), b(ζ) ∈ Λ and p ∈ (1,∞). The operator K = TaTb − Tab is
compact in hp if and only if the functions a(ζ) and b(ζ) do not have common
points of discontinuity.

Proof. Let P be the orthogonal projection of L2(|ζ| = 1) onto H2 and U be the
isometric operator mapping each function f(ζ) ∈ Hp to the vector {fj} ∈ hp of its
Fourier coefficients2. The operator K can be represented in the form K = UTU−1,
1For the definition of a Φ-operator, see [2].
2It is known that the operator P is bounded in every Lp (1 < p < ∞) and that it projects

Lp(|ζ| = 1) onto Hp.
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where T = PaPbP−PbPaP . The operator T is bounded in each space Lp(|ζ| = 1).
In view of Krasnosel’skii’s theorem [5, Theorem 1], the operator T is compact in
all spaces Lp (1 < p < ∞) if and only if it is compact in one of them. Because
it is proved in [1] that the operator K is compact in h2(= �2) if and only if the
functions a(ζ) and b(ζ) do not have common points of discontinuity, this completes
the proof. �

Analogously, with the aid of the M.A. Krasnosel’skii theorem and the results
of the paper [1], the following statement is proved.

Lemma 2. For every pair of functions a(ζ), b(ζ) ∈ Λ the operator TaTb − TbTa is
compact in hp (1 < p <∞).

1.2. Let F (ζ) = ‖ajk(ζ)‖r
j,k=1 be a matrix function with entries ajk ∈ Λ, let hr

p be
the space of vectors x = (x1, . . . , xr) with components xj ∈ hp, and let TF be the
bounded linear operator in hr

p defined by the matrix ‖Tajk
‖r

j,k=1. To the operator
TF and a number p (1 < p <∞) we assign the matrix function (p-symbol)

Fp(ζ, μ) = ‖(Tajk
)p(ζ, μ)‖r

j,k=1,

where (Tajk
)p(ζ, μ) is the p-symbol of the operator Tajk

defined by equality (3).
The range of the function detFp(ζ, μ) is a closed curve. We orient this curve in
such a way that the motion along the curve detFp(ζ, μ) agrees with the motion of
ζ along the circle counterclockwise at the continuity points of the matrix function
F (ζ), and the motion along the complementary matrix arcs corresponds to the
motion of μ from 0 to 1.

Theorem 1. The operator TF is a Φ-operator in hr
p (1 < p <∞) if and only if its

p-symbol is non-degenerate:

detFp(ζ, μ) �= 0 (|ζ| = 1, 0 ≤ μ ≤ 1). (4)

If condition (4) is fulfilled, then the index of the operator TF is calculated by the
formula

indTF = − ind detFp(ζ, μ).

In the case r = 1 this theorem is proved in [3]. For other r it is proved in the
same way as an analogous theorem for singular integral operators in the spaces Lp

(see [4]).

Theorem 2. Let A be an operator defined in hp by equality (2). The operator A is
a Φ-operator in hp if and only if its p-symbol3 is not equal to zero:

Ap(ζ, μ) �= 0.

If this condition is fulfilled, then

indA = − indAp(ζ, μ). (5)

3Recall that the p-symbol Ap(ζ, μ) of the operator A is defined by (3).
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For the case p = 2 this theorem is proved in [1], for other values of p the
proof is developed analogously.

Theorem 3. Let A be an operator defined in hp by equality (2) and Ap(ζ, μ) be its
p-symbol. Then

inf
T∈Fp

‖A + T ‖p ≥ max
|ζ|=1,0≤μ≤1

|Ap(ζ, μ)|. (6)

Proof. Assume that for some operator A ∈ R inequality (6) fails. Then there exists
a point (ζ0, μ0), where |ζ0| = 1 and 0 ≤ μ0 ≤ 1, and an operator K0 ∈ Fp, such that
‖A + K0‖p < |Ap(ζ0, μ0)|. Let B = (Ap(ζ0, μ0))−1A and K = (Ap(ζ0, μ0))−1K0.
Then ‖B + K‖p < 1. Therefore I − B is a Φ-operator in hp. This contradicts
Theorem 2 because (I −B)p(ζ0, μ0) = 0. The theorem is proved. �

2. Algebra generated by the Toeplitz operators

2.1. Let Ap be the closure of the set R of the operators of the form (2) in the
algebra Bp of all bounded linear operators in hp. To each operator A ∈ R we
assign its p-symbol Ap(ζ, μ) defined by equality (3). From inequality (6) it follows
that the symbol Ap(ζ, μ) does not depend on a representation of the operator A
in the form (2). Inequality (6) allows us to define the symbol Ap(ζ, μ) for each
operator A ∈ Ap as the uniform limit of a sequence of the symbols of operators
An ∈ R tending to the operator A in the norm.

By Âp denote the quotient algebra Ap/Fp with the usual norm. The coset in
Âp that contains an operator A is denoted by Â. From Theorem 3 it follows that
the same symbol corresponds to all operators in a coset Â ∈ Âp. We will denote it
by Âp(ζ, μ).

Theorem 4. The maximal ideal space of the quotient algebra Âp (1 < p < ∞) is
homeomorphic to the cylinder M = {|z| = 1, 0 ≤ μ ≤ 1} equipped with the topology
defined by the neighborhoods (1). The symbol Âp(ζ, μ) (|ζ| = 1, 0 ≤ μ ≤ 1) is a
function of an element Â ∈ Âp on the maximal ideal space M of Âp.

Proof. By fζ0,μ0 denote the functional defined on the algebra Âp by the equality

fζ0,μ0(Â) = Â(ζ0, μ0).

From Theorem 3 it follows that fζ0,μ0 (|ζ0| = 1, 0 ≤ μ ≤ 1) is a multiplicative
functional. Therefore the set

Mζ0,μ0 =
{
Â : Âp(ζ0, μ0) = 0

}
is a maximal ideal of the algebra Âp. Let us prove that the algebra Âp does not
have other maximal ideals. Let M0 be some maximal ideal of the algebra Âp. First,
we shall show that there exists a point ζ0 (|ζ0| = 1) such that T̂a(M0) = a(ζ0)
for all functions a(ζ) continuous on the circle Γ = {ζ : |ζ| = 1}. Assume the
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contrary, that is, suppose that for every point τ ∈ Γ there exists a continuous
function xτ (ζ) such that T̂xτ (M0) �= xτ (τ). It is obvious that 1) T̂xτ−ατ ∈ M0,
where ατ = T̂xτ (M0), and 2) |xτ (ζ) − ατ | ≥ δτ > 0 in some neighborhood u(τ).
Let u(τ1), . . . , u(τn) be a finite cover of the circle Γ and δ = min

1≤k≤n
δτk

. Then

y(ζ) =
n∑

k=1

|xτk
(ζ) − ατk

|2 �= 0.

Hence T̂y is an invertible element in Âp, but this is impossible because

T̂y =
n∑

k=1

T̂xτ−ατ T̂xτ−ατ .

Thus T̂y ∈M0.
Let us show that for every function x(ζ) ∈ Λ continuous at the point ζ0 the

equality T̂x(M0) = x(ζ0) holds. To this end we note that if a function x(ζ) ∈ Λ
is continuous at the point ζ0, then it can be represented in the form x(ζ) =
y(ζ) + a(ζ)z(ζ), where a(ζ) ∈ Λ, y(ζ) and z(ζ) are continuous on Γ and z(ζ0) = 0.
Then from the equality T̂x(M0) = T̂y(M0) + T̂a(M0)T̂z(M0) it follows that

T̂x(M0) = x(ζ0).

By νp(μ) (p �= 2) denote the circular arc, which is the range of the function

sinμθ

sin θ
exp(i(μ− 1)θ),

where θ = π(p− 2)/p and μ varies from 0 to 1, and by ν2(μ) denote the segment
[0, 1]. Consider a function χ(ζ) ∈ Λ having the following properties: χ(ζ0) = 0;
χ(ζ0 + 0) = 1, where ζ0 is the point on the circle that has been found before; χ(ζ)
is continuous everywhere on Γ except for the point ζ0, the range of χ(ζ) coincides
with the arc νp(μ). From Theorem 2 it follows that the spectrum of the element
T̂x in the algebra Âp coincides with the set νp(μ). Hence there exists a number
μ0 ∈ [0, 1] such that T̂x(M0) = νp(μ0).

Let us pass to the last stage of the proof. We will show that for every element
Â ∈ Âp the equality Â(M0) = Âp(ζ0, μ0) holds. It is easy to see that it is sufficient
to prove this claim for the case Â = T̂x, where x is an arbitrary function in
Λ. Fix a function x(ζ) ∈ Λ and let y(ζ) = x(ζ) − C, where C is a constant
chosen so that the p-symbol of the operator Ty is nowhere zero. The function
b(ζ) = y(ζ)/[χ(ζ)y(ζ0 + 0) − y(ζ0)) + y(ζ0)] is continuous at the point ζ0. Hence
T̂b(M0) = b(ζ0) = 1. For the function a(ζ) = χ(ζ)[y(ζ0 + 0) − y(ζ0)] + y(ζ0) we
have

T̂a(M0) = νp(μ0)[y(ζ0 + 0)− y(ζ0)] + y(ζ0) = (T̂y)p(ζ0, μ0).

Therefore T̂x(M0) = (T̂x)p(ζ0, μ0). The theorem is proved. �
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Theorem 5. An operator A ∈ Ap is a Φ-operator in hp if and only if its p-symbol
is nowhere zero:

detAp(ζ, μ) �= 0 (|ζ| = 1, 0 ≤ μ ≤ 1). (7)

If condition (7) is fulfilled, then

indA = − indAp(ζ, μ). (8)

Proof. Let A ∈ Ap and Ap(ζ, μ) �= 0. According to Theorem 4, the element Â

is invertible in Âp. Hence A is a Φ-operator in hp. Since indA and Ap(ζ0, μ0)
are continuous functionals, we see that equality (8) follows from equality (5).
The sufficiency part of the theorem is proved. The proof of the necessity part
is developed by contradiction. Assume that the operator A is a Φ-operator and
Ap(ζ0, μ0) = 0. Then one can find an operator B ∈ R such that B is a Φ-operator
and Bp(ζ0, μ0) = 0, which is impossible. The theorem is proved. �

2.2. Let hn
p be the Banach space of all vectors x = (x1, . . . , xn) with entries

xk ∈ hp and A
(p)
n×n be the algebra of all bounded linear operators in hn

p of the form
A = ‖Ajk‖n

j,k=1, where Ajk ∈ Ap.

To each operator A ∈ A
(p)
n×n and the number p ∈ (1,∞) assign the matrix

function (p-symbol)
Ap(ζ, μ) = ‖(Ajk)p(ζ, μ)‖n

j,k=1,

where (Ajk)p(ζ, μ) is the p-symbol of the operator Ajk.

Theorem 6. An operator A ∈ A
(p)
n×n is a Φ-operator in hp if and only if its p-symbol

is non-degenerate, that is,
detAp(ζ, μ) �= 0. (9)

If condition (9) is fulfilled, then

indA = − ind detAp(ζ, μ). (10)

Proof. Let A = ‖Ajk‖n
j,k=1. Since the operators Ajk pairwise commute modulo

a compact operator, we conclude (see [6, p. 108]) that the operator A is a Φ-
operator in hn

p if and only if the operator detA is a Φ-operator in hp. From here
and Theorem 5 it follows that condition (9) is fulfilled if and only if the operator
A is a Φ-operator in hn

p .
Equality (10) for the operator A satisfying condition (9) is proved by in-

duction on n. Indeed, one can find an operator B = ‖Bjk‖ ∈ A
(p)
n×n (sufficiently

close to the operator A) that satisfies the following conditions: B (resp. B11) is a
Φ-operator in hn

p (resp. hp) and indB = indA. The last condition allows us to rep-

resent the operator B in the form B = MN + K, where M = ‖Mjk‖n
j,k=1 ∈ A

(p)
n×n

is a lower triangular operator matrix all of whose entries on the main diagonal
are the identity operators, N = ‖Njk‖n

j,k=1 ∈ A
(p)
n×n is an operator matrix such

that all the entries of the first column are zero except for the first entry, and
K is a compact operator in hn

p . Since indB = indN , we have indA = indN .
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Obviously, indN = indN11 + ind Ñ , where Ñ = ‖Njk‖n
j,k=2. According to what

has been proved, indN11 = − ind(N11)p(ζ, μ), and by the induction hypothesis,
ind Ñ = − inddet Ñp(ζ, μ). Taking into account that

detBp(ζ, μ) = detNp(ζ, μ) = (N11)p(ζ, μ) det Ñp(ζ, μ)

and that the functions detBp(ζ, μ) and detAp(ζ, μ) are sufficiently close to each
other, we get indN = − indAp(ζ, μ). The theorem is proved. �
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On Singular Integral Equations
with Unbounded Coefficients

Israel Gohberg and Nahum Krupnik

Algebras generated by singular integral operators with piecewise continuous coef-
ficients are studied in the papers [1, 2, 3, 4]. The results obtained there allow us to
obtain theorems on solvability and index formulas for singular integral operators
of new types.

In the present paper two examples of applications of the results of [1, 2, 3, 4]
are presented. The first example is related to operators of the form

A = a0(t)I +
n∑

k=1

ak(t)hk(t)Sh−1k (t)bk(t)I. (0.1)

Recall that the operator of singular integration S is defined by

(Sϕ)(t) =
1
πi

∫
Γ

ϕ(τ)
τ − t

dτ (t ∈ Γ),

where Γ is some simple oriented contour consisting of a finite number of closed
and open Lyapunov curves; the coefficients a0(t), ak(t) and bk(t) (k = 1, . . . , n)
are piecewise continuous functions; and hk(t) has the form

hk(t) =
r∏

j=1

(t− tj)δ
(k)
j , (1)

where tj are some points of the contour Γ. The operator A is considered in the
weighted space Lp (1 < p <∞).

The second example is the operator of the form

B = c(t)I + d(t)S + g(t)R, (0.2)

The paper was originally published as I.C. Gohberg, N.�. Krupnik, O singul�rnyh inte-

gral�nyh uravneni�h s neograniqennymi ko�fficientami, Matem. Issled. 5 (1970),

� 3(17), 46–57. MR0291892 (45 #980), Zbl 0228.47037.
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where c(t), d(t), g(t) are continuous functions; the contour Γ is the segment [0, 1],
and the operator R is defined by the equality

R =
1
πi

(
ln

b − t

t− a
S − S ln

b− t

t− a
I

)
.

A separate section is devoted to investigating the conditions of the bounded-
ness of the operator (0.1) in the weighted spaces Lp.

1. Auxiliary propositions

By t1, . . . , tN and tN+1, . . . , t2N denote the starting and terminating points, re-
spectively, of all open arcs of the contour Γ. Let t2N+1, . . . , tm be fixed points on
Γ that do not coincide with the endpoints t1, . . . , t2N . Let β1, . . . , βm be some real
numbers. The space Lp on the contour Γ with the weight

�(t) =
m∏

k=1

|t− tk|βk

is denoted by Lp(Γ, �).
If the numbers p and β1, . . . , βm satisfy the conditions 1 < p < ∞ and

−1 < βk < p− 1 (k = 1, . . . ,m), then, according to Khvedelidze’s theorem [5], the
operator S is bounded in the space Lp(Γ, �).

By Λ = Λ(Γ) denote the set of all piecewise continuous functions that are
continuous from the left.

For the sequel it is convenient to introduce the operators P = (I + S)/2 and
Q = I − P . Then the usual singular integral operator

A0 = cI + dS (c, d ∈ Λ)

in the space Lp(Γ, �) can be represented in the form A0 = aP + bQ, where
a(t), b(t) ∈ Λ. Following [1, 2, 3], to the operator A0 assign its symbol. Let us
introduce some notation for defining the symbol. Let t ∈ Γ and 0 ≤ μ ≤ 1. By
θ = θ(t), � = �(t, μ), and ν = ν(t, μ) denote, respectively, the following functions:

θ(t) =

{
π − 2π(1 + βk)/p for t = tk (k = 1, . . . ,m),

π − 2π/p for t ∈ Γ, t �= t1, . . . , tm,

�(t, μ) =

⎧⎨⎩
sin(θμ) exp(iθμ)

sin θ exp(iθ)
if θ �= 0,

μ if θ = 0,

and

ν(t, μ) =
√

�(t, μ)(1− �(t, μ)).
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The matrix function A(t, μ) (t ∈ Γ, 0 ≤ μ ≤ 1) of second order defined by
the equalities

A(t, μ) =

∥∥∥∥∥ �(t, μ)a(t) + (1− �(t, μ))b(t) 0

0 b(t)

∥∥∥∥∥
for t = tk and k = 1, . . . , N ,

A(t, μ) =

∥∥∥∥∥ (1− �(t, μ))a(t) + �(t, μ)b(t) 0

0 b(t)

∥∥∥∥∥
for t = tk and k = N + 1, . . . , 2N , and

A(t, μ) =

∥∥∥∥∥ �(t, μ)a(t + 0) + (1 − �(t, μ))a(t) ν(t, μ)(b(t + 0)− b(t))

ν(t, μ)(a(t + 0)− a(t)) �(t, μ)b(t) + (1− �(t, μ))b(t + 0)

∥∥∥∥∥
for t ∈ Γ such that t �= t1, . . . , t2N , is called the symbol of the operator A0.

The symbol of the operator

A =
k∑

j=1

Aj1Aj2 . . . Ajs, (1.1)

where Ajr = ajrP + bjrQ is defined by the equality

A(t, μ) =
k∑

j=1

Aj1(t, μ)Aj2(t, μ) . . .Ajs(t, μ),

where Ajr(t, μ) is the symbol of the operator Ajr .
In [3] it is shown that the symbol A(t, μ) of an operator A does not depend

on a representation of the operator A in the form (1.1).
By A denote the closure of the set of all operators of the form (1.1) in the

algebra B of all bounded linear operators acting in Lp(Γ, �).
To each operator A ∈ A one can assign the symbol in the following manner.

Let An be a sequence of operators of the form (1.1) that converges in the norm
to the operator A ∈ A. Then [1, 2, 3] the sequence of symbols An(t, μ) converges
uniformly with respect to t and μ to some matrix A(t, μ) of order two. It does
not depend on the choice of a sequence An tending to A, and is called the symbol
of the operator A in the space Lp(Γ, �). Note that this symbol depends on the
operator and also on the number p and the weight �(t).

By Aσ denote the algebra of all symbols corresponding to the operators in A
and by F denote the two-sided ideal of B consisting of all compact operators. In
papers [1, 2, 3] it is shown that if A ∈ A, T ∈ F, and B = A + T , then B ∈ A and
B(t, μ) = A(t, μ). The mapping {A + T }T∈F → A(t, μ) is a homomorphism of the
algebra A/F onto Aσ.

The next statement (see [1, 2, 3]) plays an important role in what follows.
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Theorem 1.1. An operator A ∈ A is a Φ+-operator or a Φ−-operator in the space
Lp(Γ, �) if and only if the condition

detA(t, μ) �= 0 (t ∈ Γ, 0 ≤ μ ≤ 1) (1.2)

is fulfilled.
Let condition (1.2) hold and A(t, μ) = ‖sjk(t, μ)‖2j,k=1. Then the operator A

is a Φ-operator in Lp(Γ, �), all its regularizers1 belong to the algebra A, and the
index of the operator A in Lp(Γ, �) is determined by the equality

indA = − 1
2π

{
arg

detA(t, μ)
s22(t, 0)s22(t, 1)

}
(t,μ)∈Γ×[0,1]

. (1.3)

The number 1
2π{arg f(t, μ)}(t,μ)∈Γ×[0,1] on the right-hand side of equality

(1.3) denotes the counter-clockwise winding number of the curve f(t, μ) in the
complex plane about the point λ = 0 (see [3] for more details).

2. On the boundedness of the operator of singular integration

In this section a necessary and sufficient condition for the boundedness of the
operator S in the space Lp(Γ, �) is investigated. This allows us to obtain a criterion
for the boundedness of the operator h(t)Sh−1(t)I, where h(t) is a function of the
form (1), in the space Lp(Γ, �). The main result of this section is the following.

Theorem 2.1. The operator S is bounded in the space Lp(Γ, �) (1 < p <∞) if and
only if the numbers βk satisfy the conditions

−1 < βk < p− 1 (k = 1, . . . ,m). (2.1)

Proof. The sufficiency of the hypotheses of this theorem was proved in the paper
by B.V. Khvedelidze [5]. The unboundedness of the operator S in some cases,
when condition (2.1) is violated, was proved by S.A. Freidkin [6]. We shall prove
the necessity of the conditions of the theorem in the full generality2.

Assume that the operator S is bounded in the space Lp(Γ, �). Fix some
number r (r = 1, . . . ,m). By Γr ⊂ Γ denote some one-sided neighborhood of the
point tr that does not contain all other points tj (j �= r). It is easy to see that the
operator S is bounded in the space Lp(Γr, |t − tr|δ), where δ = βr. Let us show
that −1 < δ < p− 1. Assume that this inequality does not hold. Then there exists
a number λ (0 < λ ≤ 1) such that either δλ = −1 or δλ = p−1. Since the operator
S is bounded in the spaces Lp(Γr) and Lp(Γr, |t− tr|δ), by the Stein interpolation
theorem (see [7]), the operator S is bounded in the space Lp(Γr, |t− tr|λδ). Thus
our problem is reduced to showing that the operator S is unbounded in the spaces
Lp(Γr, |t − tr|−1) and Lp(Γr, |t − tr|p−1). Assume for definiteness that tr is the
starting point of the open contour Γr. By t̃ denote the terminating point of this

1An operator B is said to be a regularizer of an operator B if AB − I ∈ F and BA− I ∈ F.
2The used method of the proof is different from the method of [6].
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contour. In the space Lp(Γr) consider the operator A = I − b(t)S, where b(t) is a
continuous function on Γr that satisfies the conditions 1− b2(t) �= 0, b(t̃) = 0, and

b(tr) =
{

i tan(π/p) if p �= 2,
2 if p = 2.

The symbol A(t, μ) of the operator A in the space Lp(Γr) (see Section 1) is defined
by the equality

A(t, μ) =

⎧⎪⎪⎨⎪⎪⎩
∥∥∥∥ (1− b(t))�(t, μ) + (1 + b(t))(1 − �(t, μ)) 0

0 1 + b(t)

∥∥∥∥ for t = tr,∥∥∥∥ 1− b(t) 0
0 1 + b(t)

∥∥∥∥ for t ∈ Γr, t �= tr.

Since in the case p �= 2,

�(t, μ)
�(t, μ)− 1

=
sin(θμ) exp(2πi/p)

sin(θ(1 − μ))

and
1 + b(tr)
1− b(tr)

= exp
(

2πi
p

)
,

we see that for μ = 1/2 the equality

�(tr, 1/2)
�(tr, 1/2)− 1

=
1 + b(tr)
1− b(tr)

holds. Therefore detA(tr, 1/2) = 0.
Analogously, for p = 2,

�(t, μ)
�(t, μ)− 1

= μ(μ− 1),
1 + b(tr)
1− b(tr)

= −3.

Hence detA(tr, 3/4) = 0.
Thus the operator A is not a Φ±-operator in the space Lp(Γr). It is not

difficult to check that if p1 �= p, then the symbol A1(t, μ) of the operator A in
the space Lp1(Γr) is not degenerated. Therefore the operator A is a Φ-operator in
Lp1(Γr). Moreover, by using the results of [3], we obtain that the operator A is
one-sided invertible in the space Lp1(Γr). Assume that the function b(t) satisfies
the Hölder condition on Γr and p1 < p. Then one of the inverse operators A(−1)

to the operator A in Lp1(Γr) can be obtained by the formula (see, e.g., [8])

A(−1) =
1

1− b2
I − b

1− b2
z(t)Sz−1(t)I, (2.2)

where z(t) = g(t)|t− tr|−1/p and g(t), g−1(t) are continuous functions on Γr.
Assume that the operator S is bounded in the space Lp(Γr, |t− tr|−1). Then

it is easy to verify that the operator |t − tr|−1/pS|t − tr|1/pI is bounded in the
space Lp(Γr). This implies the boundedness of the operator A(−1) in the space
Lp(Γr), and whence, this implies also the one-sided invertibility of the operator
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A in Lp(Γr). But the latter is impossible because the operator A is not a Φ±-
operator in Lp(Γr). Thus, it has been proved that the operator S is unbounded in
Lp(Γr, |t− tr|−1) for every p (1 < p <∞).

It remains to verify the unboundedness of the operator S in Lp(Γr, |t−tr|p−1).
Assume that it is bounded. Then the operator |t − tr|(p−1)/pS|t − tr|(1−p)/pI is
bounded in Lp(Γr). If one takes p1 > p, then an operator inverse to A from
one of the sides can be written in the form (2.2). Moreover, in this case z(t) =
g(t)|t− tr|(p−1)/p. By analogy with the previous case we arrive at a contradiction.
The theorem is proved. �

Theorem 2.2. Let δk be some real numbers and

h(t) =
m∏

k=1

(t− tk)δk .

The operator h(t)Sh−1(t)I is bounded in the space Lp(Γ, �) (1 < p < ∞) with
weight

�(t) =
m∏

k=1

|t− tk|βk

if and only if the conditions

−1 + βk

p
< δk < 1− 1 + βk

p
(2.3)

are fulfilled.

Proof. It is easy to see that the operator hSh−1I is bounded in the space Lp(Γ, �)
if and only if the operator S is bounded in the space Lp(Γ, �1), where

�1(t) =
m∏

k=1

|t− tk|λk , λk = βk + pδk.

Thus condition (2.3) follows from Theorem 2.1. The theorem is proved. �

3. Operators of the form (0.1)

As above, let t1, . . . , tm be fixed points of the contour Γ and Lp(Γ, �) be the space
with weight

�(t) =
m∏

k=1

|t− tk|βk ,

where the numbers βk satisfy the conditions −1 < βk < p − 1 (1 < p < ∞;
k = 1, . . . ,m). By Ω denote the set of all functions of the form

h(t) =
m∏

k=1

(t− tk)δk
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with the numbers δk satisfying the conditions

−1 + βk

p
< δk < 1− 1 + βk

p
. (3.1)

According to Theorem 2.2, H = h(t)Sh−1(t)I is a bounded linear operator
acting in the space Lp(Γ, �).

For simplicity we restrict ourselves in this section to the case when the contour
Γ consists of one closed curve surrounding the point z = 0.

To the operator H in Lp(Γ, �) assign the matrix function H(t, μ) (t ∈ Γ,
0 ≤ μ ≤ 1) defined by the equality

H(t, μ) =
∥∥∥∥ 1 U(t, μ)

0 −1

∥∥∥∥ , (3.2)

where

U(t, μ) =

⎧⎨⎩
4ν(tk, μ) cos(πδk) exp(πiδk)

2�(tk, μ) cos(πδk) exp(πiδk) + 1
for t = tk (k = 1, . . . ,m),

0 for t ∈ Γ, t �= t1, . . . , tm.

Lemma 3.1. Let A be an operator of the form

A = x0(t)I +
n∑

j=1

xj(t)hj(t)Sh−1j (t)yj(t)I, (3.3)

where functions xj (j = 0, 1, . . . , n) and yj(t) (j = 1, . . . , n) belong to Λ and hj(t)
are functions in Ω. Then the operator A belongs to the algebra A and its symbol
A(t, μ) has the form

A(t, μ) = X0(t, μ) +
n∑

j=1

Xj(t, μ)Hj(t, μ)Yj(t, μ), (3.4)

where Xj(t, μ) and Yj(t, μ) are the symbols of the operators xj(t)I and yj(t)I,
respectively, and Hj(t, μ) is the matrix function of the form (3.2) that corresponds
to the operator Hj = hj(t)Sh−1j (t)I.

Proof. Clearly, it is sufficient to prove the lemma for the operator

H = h(t)Sh−1(t)I, where h(t) ∈ Ω.

Let

h(t) =
m∏

k=1

(t− tk)δk ,

where the numbers δk satisfy conditions (3.1). By fk(t) denote the function fk(t) =
t−δk , which is continuous on Γ except for possibly at the point tk, and put

f(t) =
m∏

k=1

fk(t).
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It is not difficult to verify that(
h(t)P

(
h(t)f(t)

)−1
I + Q

)
(PfP + Q)ϕ

= (PfP + Q)
(
h(t)P

(
h(t)f(t)

)−1
I + Q

)
ϕ = ϕ

for each function ϕ(t) satisfying the Hölder condition on Γ. Since the operator
h(t)Ph−1(t)I is bounded in the space Lp(Γ, �), we have

hP (hf)−1I + Q = (PfP + Q)−1.

From here it follows that

PhPh−1I = P (PfP + Q)−1fI.

It is easy to check that PhPh−1I = hPh−1I. Hence hPh−1I = P (PfP +Q)−1fI.
Thus,

H = 2P (PfP + Q)−1fI − I.

From Theorem 1.1 it follows that H ∈ A. It can be checked straightforwardly that
the symbol of the operator H is the matrix function∥∥∥∥∥∥ 1

2ν(t, μ)(f(t + 0)− f(t))
�(t, μ)(f(t + 0)− f(t)) + f(t)

0 −1

∥∥∥∥∥∥ .

Taking into account that f(tk +0)/f(tk) = exp(2πiδk), it is easy to verify that the
symbol of the operator H coincides with the matrix function H(t, μ). The lemma
is proved. �

From Theorem 1.1 and the proved lemma one can deduce various conclusions.
In particular, they imply the following.

Theorem 3.1. The operator A given by equality (3.3) is a Φ+-operator or a Φ−-
operator in the space Lp(Γ, �) if and only if its symbol A(t, μ) given by equality
(3.4) satisfies the condition

detA(t, μ) �= 0 (t ∈ Γ, 0 ≤ μ ≤ 1). (3.5)

If condition (3.5) is fulfilled and A(t, μ) = ‖sjk(t, μ)‖2j,k=1, then the operator A is
a Φ-operator and

indA = − 1
2π

{
arg

detA(t, μ)
s22(t, 0)s22(t, 1)

}
(t,μ)∈Γ×[0,1]

.

4. Operators of the form (0.2)

In this section, for simplicity we assume that Γ = [a, b]. We suppose that all
operators act in the space L2(a, b).

Under these conditions, a formula for the symbol for the operator

A0 = c(t)I + d(t)S (t ∈ [a, b])
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with continuous coefficients, as well as for more general operators A =
n∑

k=0

ak(t)Sk,

is essentially simplified.
It turns out (see [4]) that if the functions ak(t) (k = 0, 1, . . . , n) are continuous

on [a, b], then the symbol A of the operator

A =
n∑

k=0

ak(t)Sk (4.1)

is defined by

A(t, z) =
n∑

k=0

ak(t)zk (t ∈ [a, b], z ∈ [−1, 1]). (4.2)

Let L be the boundary of the rectangle {a ≤ t ≤ b;−1 ≤ z ≤ 1}. In [4]
it is shown that the operator A defined by equality (4.1) is a Φ+-operator or a
Φ−-operator in L2(a, b) if and only if the condition

A(t, z) �= 0 ((t, z) ∈ L) (4.3)

is fulfilled. If it holds, then the operator A is a Φ-operator and its index in the
space L2(a, b) is calculated by the formula

indA = indA(t, z),

where indA(t, z) is the winding number of the continuous curve A(t, z) about
the point λ = 0 when the points (t, z) run through the contour L in the positive
direction.

Let c(t), d(t), and g(t) be continuous functions on [a, b] and

R =
1
πi

(
ln

b − t

t− a
S − S ln

b− t

t− a
I

)
.

The operator
B = c(t)I + d(t)S + g(t)R

is an operator of the form (4.1) and its symbol is given by the equality

B(t, z) = c(t)− g(t) + d(t)z + g(t)z2. (4.4)

Indeed, with the aid of the Poincaré-Bertrand formula [8] it is easy to derive
that R = S2 − I. Hence the operator B can be represented in the form (4.1)
and formula (4.4) is a corollary of formula (4.2). In particular, this implies the
following.

Theorem 4.1. The operator B = c(t)I + d(t)S + g(t)R is a Φ+-operator or a Φ−-
operator in L2(a, b) if and only if the function c(t) − g(t) + d(t)z + g(t)z2 is not
equal to zero on L. If this condition is satisfied then the operator B is a Φ-operator
and

indA = ind(c(t)− g(t) + d(t)z + g(t)z2).
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Singular Integral Equations with Continuous
Coefficients on a Composed Contour

Israel Gohberg and Nahum Krupnik

In this paper the algebra generated by singular integral operators A of the form

(Aϕ)(t) = a(t)ϕ(t) +
b(t)
πi

∫
Γ

ϕ(τ)
τ − t

dτ (t ∈ Γ), (0.1)

where Γ is an oriented contour in the complex plane that consists of a finite number
of closed and open simple Lyapunov curves, a(t) and b(t) are continuous functions
on Γ, is studied. The operators of the form (0.1) will be considered in the space
Lp(Γ, �) (1 < p <∞) with weight

�(t) =
2N∏
k=1

|t− αk|βk ,

where αk (k = 1, . . . , N) are the starting points and αk (k = N + 1, . . . , 2N) are
the terminating points of the corresponding open arcs of the contour Γ, and the
numbers βk satisfy the conditions −1 < βk < p−1. In what follows we will denote
the space Lp(Γ, �) by Lν , where the vector ν is defined by ν = (p, β1, . . . , β2N ).

By Aν denote the Banach algebra, which is the closure in the operator norm
of the set of the operators of the form

B =
s∑

j=1

r∏
k=1

Ajk, (0.2)

where Ajk are operators of the form (0.1), which act in the space Lν , and r, s are
arbitrary natural numbers.

A space curve denoted by Γ̃ appears in the formulations of the main results.
It consists of two copies of the curve Γ, which lie in the planes z = 1 and z = −1,
as well as the straight segments parallel to the z-axis, which connect the starting
points and the terminating points, respectively, of the open arcs of the contour Γ.

The paper was originally published as I.C. Gohberg, N.�. Krupnik, Singul�rnye inte-

gral�nye uravneni� s nepreryvnymi ko�fficientami na sostavnom konture,Matem.

Issled. 5 (1970), � 2(16), 89–103. MR0447996 (56 #6306), Zbl 0223.45005.
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In other words, the curve Γ̃ consists of all points (x, y, z) such that the conditions

x + iy ∈ Γ, −1 ≤ z ≤ 1, (1− z2)
2N∏
k=1

(x + iy − αk) = 0

hold. We orient the contour Γ̃ in such a way that the direction along Γ̃ in the plane
z = 1 coincides with the direction along Γ and is opposite to its direction in the
plane z = −1.

The main results of the paper are the following statements.
The algebra Aν contains the two-sided ideal γν of all compact operators acting

in the space Lν . The quotient algebra Aν/γν is a commutative Banach algebra and
its maximal ideal space is homeomorphic to the curve Γ̃.

Let an operator A belong to Aν and Â be the element of Aν/γν that contains
the operator A. By Aν(t, z) ((t, z) ∈ Γ̃) denote the function of an element Â on the
maximal ideal space Γ̃ of the algebra Aν/γν . It is natural to refer to the function
Aν(t, z) as the symbol of all operators A ∈ Â. If the operator A is defined by
equality (0.1), then its symbol is given by the formula

Aν(t, z) = a(t) + b(t)Ων(t, z),

where

Ων(t, z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

z(1 + a2k)− i(1− z2)ak

1 + z2a2k
for t = αk (k ≤ N),

z for t ∈ Γ̃, t �= αk,

z(1− a2k) + i(1− z2)ak

1 + z2a2k
for t = αk (k > N)

and ak = cot(π(1 + βk)/p).
In other words, the function Aν(t, z) is defined in the planes z = 1 and z = −1

by the equalities

Aν(t, 1) = a(t) + b(t), Aν(t,−1) = a(t)− b(t),

and on each straight segment t = αk (k = 1, . . . , 2N) the range of the function
Aν(αk, z) circumscribes some circular arc (or the straight segment) connecting the
points zk = a(αk)+ b(αk) and ζk = a(αk)− b(αk) on the plane. The segment zkζk

is seen from the points of the arc Aν(αk, z) at the angle

ψ = min(2π(1 + βk)/p, 2π − 2π(1 + βk)/p).

An operator A ∈ Aν is a Φ±-operator in the space Lν if and only if its
symbol Aν(t, z) differs from zero on the contour Γ̃. The increment of the function
(argAν(t, z))/(2π) along the contour Γ̃ is equal to the index of the operator A in
the space Lν .

The above-mentioned results are obtained in this paper in a more general
case when the algebra Aν is generated by the operators of the form (0.1) with
matrix coefficients a(t) and b(t).
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Note that in the case ν = (2, 0, . . . , 0), that is, Lν = L2(Γ), the algebra Aν/γν

is isometric to the algebra C(Γ̃) of all continuous functions on the contour Γ̃. This
statement follows from more general results by the authors [1] for the space L2(Γ).

A description of the spectrum of the operators of the form (0.1) with dif-
ferentiable coefficients a(t) and b(t) when ν = (2, 0, . . . , 0) and Γ = [0, 1] and a
description of the maximal ideals of the algebra Aν/γν in this case were obtained
earlier by J. Schwartz [2].

1. Auxiliary propositions and theorems on solvability

Let us introduce the following notation: let Cn(Γ) be the algebra of all continuous
matrix functions on Γ of order n; let Λn(Γ) be the set of all piecewise continuous
matrix functions on Γ of order n; let Ln

ν be the Banach space of the vector functions
ϕ = (ϕ1, . . . , ϕn) with components ϕj ∈ Lν ; and let S be the operator defined in
Ln

ν by the equality S{ϕj}n
j=1 = {Sϕj}n

j=1, where

(Sϕj)(t) =
1
πi

∫
Γ

ϕj(τ)
τ − t

dτ (t ∈ Γ, ϕj ∈ Lν).

Assume that the contour Γ0 consists of only closed nonintersecting curves,
M(t) ∈ Λn(Γ0), and t1, . . . , tm are all discontinuity points of the matrix function
M(t). To the matrix function M(t) and the vector ν = (p, β1, . . . , βm) assign
the continuous matrix curve VM,ν(t, μ) obtained by adding the m matrix arcs
Wk(M,μ) (0 ≤ μ ≤ 1) to the range of M(t), where

Wk(M,μ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exp(iμθk) sin(1− μ)θk

sin θk
M(tk − 0)

+
exp(i(μ− 1)θk) sinμθk

sin θk
M(tk + 0) if θk �= 0,

(1− μ)M(tk − 0) + μM(tk + 0) if θk = 0,

and θk = π − 2π(1 + βk)/p (see [3]).
We say that a matrix function M(t) ∈ Λn(Γ0) is ν-nonsingular if

detVM,ν(t, μ) �= 0 (t0 ∈ Γ0, 0 ≤ μ ≤ 1).

We orient the range of the function detVM,ν(t, μ) so that the motion along the
curve detVM,ν(t, μ) agrees with the variation of t along Γ0 in the positive direc-
tion at the continuity points of the matrix function M(t) and with the varia-
tion of μ from 0 to 1 along the complementary arcs. If detVM,ν(t, μ) �= 0, then
by ind detVM,ν(t, μ) denote the counterclockwise winding number of the curve
detVM,ν(t, μ) about the point λ = 0.

Theorem 1.1. Let F0(t), G0(t) ∈ Λn(Γ0) and t1, . . . , tm be all discontinuity points
of the matrix functions F0(t) and G0(t). The operator B = F0I + G0S is a Φ-
operator in the space Ln

p (Γ0,
∏ |t − tk|βk) (1 < p < ∞,−1 < βk < p − 1) if and

only if the following two conditions are fulfilled:
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1) det(F0(t + 0)−G0(t + 0)) �= 0, det(F0(t− 0)−G0(t− 0)) �= 0;
2) the matrix function M(t) = (F0(t)−G0(t))−1(F0(t)+G0(t)) is ν-nonsingular.

If these conditions are fulfilled, then the index κ(B) of the operator B is calculated
by the formula

κ(B) = − ind detVM,ν(t, μ). (1.1)

A proof of this theorem is given in [3].

Theorem 1.2. Let a contour Γ consist of a finite number of closed and open arcs
and F (t), G(t) ∈ Cn(Γ). The operator A = F (t)I +G(t)S is a Φ-operator in Ln

ν if
and only if the condition

det(F (t) + Ων(t, z)G(t)) �= 0 ((t, z) ∈ Γ̃) (1.2)

holds. If (1.2) is fulfilled, then the index κ(A,Ln
ν ) of the operator A in the space

Ln
ν is calculated by the equality

κ(A,Ln
ν ) = ind det(F (t) + Ων(t, z)G(t)). (1.3)

Proof. Let condition (1.2) be fulfilled. From this condition (for z = −1) it follows
that det(F (t) − G(t)) �= 0 (t ∈ Γ). Let Γ0(⊃ Γ) be some contour consisting of a
finite number of closed Lyapunov curves. Define the functions F0(t) and G0(t) on
Γ0 by the equalities

F0(t) =

{
F (t) if t ∈ Γ,

E if t ∈ Γ0 \ Γ,
G0(t) =

{
G(t) if t ∈ Γ,

0 if t ∈ Γ0 \ Γ,

where E is the identity matrix of order n.
It is easy to see that

det(F0(t + 0)−G0(t + 0)) �= 0, det(F0(t− 0)−G0(t− 0)) �= 0.

By M(t) denote the matrix function M(t) = (F0(t) − G0(t))−1(F0(t) + G0(t)).
This matrix function is continuous everywhere on Γ0 except possibly at the points
α1, . . . , α2N . The equations of the matrix arcs Wk(M,μ) corresponding to the
matrix function M(t) at the points αk (k ≤ N) can be written in the form

Wk(M,μ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(F (αk)−G(αk))−1

×
[
F (αk) +

i(cos θk − exp(i(2μ− 1)θk))
sin θk

G(αk)
]

if θk �= 0,

(F (αk)−G(αk))−1[F (αk) + (2μ− 1)G(αk)] if θk = 0.

Introduce the following notation:

z =

⎧⎨⎩
1
ak

tan
(2μ− 1)θk

2
if θk �= 0,

2μ− 1 if θk = 0.
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If μ ranges over the segment [0, 1], then z ranges over the segment [−1, 1]. It is
easy to check that

i

(
cot θk − exp(i(2μ− 1)θk)

sin θk

)
=

z(1 + a2k)− i(1− z2)ak

1 + a2kz
2

.

From here it follows that

Wk(M,μ) = (F (αk)−G(αk))−1(F (αk) + Ων(αk, z)G(αk)) (k ≤ N). (1.4)

Analogously, setting

z =

⎧⎨⎩
1
ak

tan
(1− 2μ)θk

2
if θk �= 0,

1− 2μ if θk = 0,

we get equality (1.4) for the points αN+1, . . . , α2N .
Thus,

F (t) + Ων(t, z)G(t) =

⎧⎪⎪⎨⎪⎪⎩
F (t) + G(t) if z = 1, t ∈ Γ,

(F (αk)−G(αk))Wk(M,μ) if t = αk,

F (t)−G(t) if z = −1, t ∈ Γ.

(1.5)

From here it follows that the matrix function M(t) is ν-nonsingular. Hence the
operator B = F0I+G0S is a Φ-operator in the space Ln

p (Γ0, �). From Theorem 1.1
and equality (1.5) it follows also that if the operator B is a Φ-operator, then
det(F (t) + Ων(t, z)G(t)) �= 0 ((t, z) ∈ Γ̃). Let det(F (t) + Ων(t, z)G(t)) �= 0. Then
from formula (1.1) with the aid of equality (1.5) it is easy to derive that

κ(B,Ln
p (Γ0, �)) = ind det(F (t) + Ων(t, z)G(t)).

Let us show that all these statements are valid also for the operator A. To
this end, we embed the space Ln

p (Γ, �) into the space Ln
p (Γ0, �) assuming that all

the functions in Lp(Γ, �) are equal to zero on the complementary contour Γ0 \ Γ
(cf. [5]). It is easy to see that the subspace Ln

p (Γ, �) is an invariant subspace of
the operator B and its restriction to Ln

p (Γ, �) coincides with A. Moreover, the
equality P̃BP̃ = P̃ holds, where P̃ is the projection of the space Ln

p (Γ0, �) onto
Ln

p (Γ0 \ Γ, �) parallel to Ln
p (Γ, �). From here it follows that the operator A is a

Φ-operator in the space Ln
p (Γ, �) if and only if the operator B is a Φ-operator in

Ln
p (Γ0, �) and κ(A,Ln

p (Γ, �)) = κ(B,Lp
N(Γ0, �)). The theorem is proved. �

Theorem 1.3. Let ajk, bjk ∈ C(Γ) and Ajk = ajkI + bjkS. The operator

A =
r∑

j=1

s∏
k=1

Ajk

is a Φ-operator in the space Lν if and only if the condition

Aν(t, z) =
r∑

j=1

s∏
k=1

(ajk(t) + Ων(t, z)bjk(t)) �= 0
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holds. If this condition is fulfilled, then

κ(A,Lν) = indAν(t, z). (1.6)

Recall that the counterclockwise winding number of the continuous plane
curve Aν(t, z) about the point λ = 0 when (t, z) ranges over the oriented curve Γ̃
is denoted by indAν(t, z).

The proof of the above theorem is based on the following auxiliary statement.

Lemma 1.1. Let xjk (j = 1, . . . , r; k = 1, . . . , s) be elements of some, in general,
noncommutative algebra with unit e and x =

∑r
j=1

∏s
k=1 xjk. Then the identity(

X Z
Y 0

)
=
(

E 0
T −e

)(
E 0
0 x

)(
X Z
0 e

)
(1.7)

holds, where X is the square matrix of order r(s + 1) given by

X =

r+1︷ ︸︸ ︷⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e −x11
. . . . . .

. . . −xr1

. . . −x12
. . . . . .

. . . −xr2

. . . . . .
. . . −x1s

. . . . . .
. . . −xrs

. . .
e

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and whose entries are equal to zero except for the entries of the two diagonals, E
is the identity matrix of order r(s+ 1), Z is the one-column matrix whose lower r
entries are equal to e and all other entries are equal to zero,

Y =

r︷ ︸︸ ︷ rs︷ ︸︸ ︷
(e, . . . , e, 0, . . . , 0)

and

T =

r︷ ︸︸ ︷
(e, . . . , e, x11, . . . , xr1, x11x12, . . . , xr1xr2, . . . , x11 · · ·x1s, . . . , xr1 · · ·xrs).

Equality (1.7) is checked straightforwardly. By Θ(xjk) denote the matrix on
the left-hand side of equality (1.7).
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Proof of Theorem 1.3. Substitute xjk �→ Ajk and e �→ I in the formulas for the
blocks of (1.7). From the resulting equality it follows that the operator A is (is not)
a Φ-operator in the space Lν if and only if the operator Θ(Ajk) is (resp. is not) a
Φ-operator in the space Ln

ν (n = rs + r + 1) and the indices of these operators in
the corresponding spaces coincide:

κ(A,Lν) = κ(Θ(Ajk),Ln
ν ).

The operator Θ(Ajk) is the singular integral operator with matrix coefficients

Θ(Ajk) = F (t)I + G(t)S.

The straightforward verification shows that

F (t) + Ων(t, z)G(t) = Θ(ajk(t) + Ων(t, z)bjk(t)), (1.8)

where the matrix on the right-hand side of the latter equality is constructed from
elements of the algebra C(Γ̃). From equalities (1.7) and (1.8) it follows that

det(F (t) + Ων(t, z)G(t)) = Aν(t, z).

It remains to apply Theorem 1.2, which implies all the assertions of the theorem.
�

Corollary 1.1. The complement to the set of the Φ-points1 of the operator

A =
∑∏

(ajkI + bjkS) (ajk(t), bjk(t) ∈ C(Γ))

coincides with the range of the function

Aν(t, z) =
∑∏

(ajk(t) + Ων(t, z)bjk(t)) ((t, z) ∈ Γ̃).

Theorem 1.4. Let

A =
r∑

j=1

s∏
k=1

(ajkI + bjkS) (ajk(t), bjk(t) ∈ C(Γ))

and

Aν(t, z) =
r∑

j=1

s∏
k=1

(ajk(t) + Ων(t, z)bjk(t)) ((t, z) ∈ Γ̃).

Then the inequality
inf

T∈γν

‖A + T ‖ ≥ max
(t,z)∈Γ̃

|Aν(t, z)| (1.9)

holds.

Proof. Since for every point (t0, z0) ∈ Γ̃ the number Aν(t0, z0) is not a Φ-point of
the operator A, we have inf ‖A + T ‖ ≥ |Aν(t0, z0)|. This implies inequality (1.9).
The theorem is proved. �

1A complex number λ is said to be a Φ-point of an operator A if the operator A − λI is a
Φ-operator (see [4]).
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2. Quotient algebra

In this section the structure of the maximal ideals of the quotient algebra Aν/γν

is studied.

Lemma 2.1. The set γν is a minimal two-sided ideal of the algebra Aν and the
quotient algebra Aν/γν is commutative.

Proof. Let a(t), b(t) ∈ C(Γ). Then the operator T = a(t)(tS − St)b(t)I belongs to
the algebra Aν . The operator T has rank one:

(Tϕ)(t) =
1
πi

∫
Γ

a(t)b(τ)ϕ(τ) dτ. (2.1)

The set of the operators of the form (2.1) is dense in the set of all rank one
operators. This yields the first statement of the lemma.

Let a(t) be an arbitrary function in C(Γ). Then a(t) is the uniform limit of a
sequence of rational functions rn(t) ∈ C(Γ). It is easy to check that the operator
rn(t)S −Srn(t)I is of finite rank. Hence a(t)S −Sa(t)I ∈ γν . From here it follows
that the commutant of the algebra Aν is contained in γν .

The lemma is proved. �

In view of what has been proved, the quotient algebra Aν/γν is commutative.
By R denote the set of all operators of the form

A =
r∑

j=1

s∏
k=1

(ajkI + bjkS) (ajk(t), bjk(t) ∈ C(Γ)).

Since the operators a(t)S − Sa(t)I are compact, we see that each operator A ∈ R
can be represented in the form

A =
m∑

k=0

ak(t)Sk + T, (2.2)

where ak(t) ∈ C(Γ), T ∈ γν . To each operator A of the form (2.2) we assign the
symbol (more precisely, the ν-symbol) defined by the equality

Aν(t, z) =
m∑

k=0

ak(t)(Ων(t, z))k ((t, z) ∈ Γ̃).

From inequality (1.9) it follows that the symbol of the operator A does not
depend on a manner of representation of the operator A in the form (2.2). Inequal-
ity (1.9) allows us to define the ν-symbol of an operator A ∈ Aν as the uniform
limit of a sequence of the symbols of operators An ∈ R converging to the operator
A in the norm of the algebra Aν. From inequality (1.9) it also follows that the
same symbol corresponds to all operators in a coset Â ∈ Aν/γν. Let us agree to
denote it by Aν(t, z) or Âν(t, z).
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Theorem 2.1. The set Mt0,z0 ((t0, z0) ∈ Γ̃) of all elements of Â ∈ Aν/γν such that
Âν(t0, z0) = 0 is a maximal ideal of the algebra Aν/γν.

All maximal ideals of the algebra Aν/γν are of the form Mt0,z0 . The symbol
Âν(t, z) is a function of an element Â ∈ Aν/γν on the maximal ideal space of the
algebra Aν/γν :

Â(Mt0,z0) = Âν(t0, z0).

Proof. Since the functional ψt0,z0(Â) = Âν(t0, z0) ((t0, z0) ∈ Γ̃) is a multiplicative
functional on the algebra Aν/γν , we deduce that (see [6]) the set Mt0,z0 of the
zeros of this functional is a maximal ideal of the algebra Aν/γν.

Let M be an arbitrary maximal ideal. By t0 denote the number (t̂I)(M).
Since the spectrum of the element t̂I coincides with the contour Γ, we get t0 ∈ Γ.
It is not difficult to show that for each function a(t) continuous on the contour
Γ, the number (â(t)I)(M) coincides with a(t0). Let us show that there exists a
number z0 (−1 ≤ z0 ≤ 1) such that Ŝ(M) = Ων(t0, z0). Consider separately two
cases.

Case I: the point t0 is not an endpoint of an open arc of the contour Γ. By
B denote the operator defined in Lν by the equality

B = (I − S2)
2N∏
j=1

(t− αj)I.

It is easy to see that Bν(t, z) ≡ 0. From Theorem 1.3 it follows that each point
λ �= 0 is a Φ-point of the operator B. The latter fact means that the spectrum of
the element B̂ in the algebra B/γν , where Bν is the Banach algebra of all bounded
linear operators in Lν , consists of one point λ = 0.

In this case it is easy to see that, when passing to the subalgebra Aν/γν, the
spectrum of the element B̂ does not change. From here it follows that B̂(M) = 0.
However, t0 �= αj , whence 1 − (Ŝ(M))2 = 0. Let us denote the number Ŝ(M) by
z0. Since z20 = 1, we have Ων(t0, z0) = z0. Thus Ων(t0, z0) = Ŝ(M).

Case II: the point t0 coincides with one of the endpoints of open arcs. In
this case we prove the existence of the point z0 by contradiction. Assume that
Ŝ(M) �= Ων(t0, z) (−1 ≤ z ≤ 1). Then it turns out that one can choose a function
a(t) satisfying the following two conditions: 1) a(t0) = −Ŝ(M) and 2) the point
λ = 0 belongs to an unbounded regularity component of the operator C = a(t)I+S
in the algebra Bν (below we will give an example of such a function).

From condition 2) it follows that the point λ = 0 belongs to an unbounded
connected regularity component of the element Ĉ in the algebra Bν/γν. Therefore
(see [7]), this component still consists of regular points of the element Ĉ when
passing to the algebra Aν/γν. Hence Ĉ is invertible in the algebra Aν/γν . The
latter is impossible because Ĉ(M) = a(t0) + Ŝ(M) = 0.

Let us give an example of a function a(t) satisfying conditions 1) and 2). First,
let Im Ŝ(M) �= 0. By � denote the straight line in the plane passing through the
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points t = 0 and t = Ŝ(M). This straight line crosses the curve t = Ων(t0, z)−Ŝ(M)
(−1 ≤ z ≤ 1) at a unique point t̃. Note that t̃ �= 0 because Ŝ(M) �= Ων(t0, z). We
choose a point z̃ on the straight line � sufficiently far and such that the functions
Ων(αj , z)+z̃ (αj �= t0, −1 ≤ z ≤ 1) do not take real values and the point t = 0 does
not belong to the segment joining the points t̃ and z̃. We choose a(t) as a continuous
function on Γ whose range fills in the segment joining the points −Ŝ(M) and z̃,
and moreover, a(t0) = −Ŝ(M) and a(αj) = z̃ (αj �= t0). If Im Ŝ(M) = 0, then we
choose the straight line � passing through the point −Ŝ(M) perpendicularly to the
real axis. The rest of the construction is developed analogously. From Theorem 1.3
it follows that the complement to the set of the Φ-points of the operator C in Lν

consists of the two segments λ = a(t) + 1 and λ = a(t) − 1; the 2N − 1 circular
arcs (or segments) λ = Ων(αj , z) + z̃ (αj �= t0), and the circular arc (or segment)
λ = Ων(t0, z) − Ŝ(M). It is not difficult to observe that the point λ = 0 belongs
to an unbounded regularity component of the operator C in the algebra Bν .

Thus we have shown the existence of a point (t0, z0) ∈ Γ̃ such that Ŝ(M) =
Ων(t0, z0) and (f̂(t)I)(M) = f(t0) for each function f(t) ∈ C(Γ). From here it
already follows that Â(M) = Âν(t0, z0) for all Â ∈ Aν/γν . Hence M = Mt0,z0 .
The theorem is proved. �

3. Normal solvability and index of operators in the algebra A
(n)
ν

Theorem 3.1. Let A ∈ Aν . The operator A is a Φ+-operator or a Φ−-operator in
the space Lν if and only if the condition Aν(t, z) �= 0 ((t, z) ∈ Γ̃) holds. If this
condition is fulfilled, then the index κ(A,Lν) of the operator A in the space Lν is
calculated by the formula

κ(A,Lν) = indAν(t, z). (3.1)

Proof. Let Aν(t, z) �= 0. Then from Theorem 2.1 it follows that the coset Â con-
taining the operator A is invertible in the quotient algebra Aν/γν . Hence it is
invertible in the algebra Bν/γν . From here it follows that (see, e.g., [8]) the oper-
ator A is a Φ-operator in Lν . Since the functionals κ(A,Lν) and indAν(t, z) are
continuous on the set of Φ-operators acting in Lν , we see that formula (3.1) is a
corollary of formula (1.6).

Let us prove the necessity of the hypotheses of the theorem. First we show
that if the operator A is a Φ-operator, then Aν(t, z) �= 0 ((t, z) ∈ Γ̃). Assume the
contrary, that is, that the operator A is a Φ-operator and Aν(t0, z0) = 0. Then
there exists a Φ-operator B ∈ R such that Bν(t0, z0) = 0, but this contradicts
Theorem 1.3.

Let the operator A be a Φ±-operator. Then it is not difficult to find C ∈ R
sufficiently close to A in the norm and such that Cν(t, z) �= 0. In view of what has
just been proved, the operator C is a Φ-operator. From here it follows that the
operator A is also a Φ-operator. The theorem is proved. �
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The proved theorem can be generalized to the algebra generated by singular
integral operators with matrix coefficients.

Let A
(n)
ν be the algebra of bounded linear operators in Ln

ν of the form A =
‖Ajk‖n

j,k=1, where Ajk ∈ Aν . We refer to the matrix function

Aν(t, z) = ‖(Ajk)ν(t, z)‖n
j,k=1,

where (Ajk)ν(t, z) is the ν-symbol of the operator Ajk, as the symbol (more pre-
cisely, the ν-symbol) of the operator A.

Theorem 3.2. Let A ∈ A
(n)
ν . The operator A is a Φ+-operator or a Φ−-operator in

Ln
ν if and only if the condition detAν(t, z) �= 0 ((t, z) ∈ Γ̃) holds. If this condition

is fulfilled, then

κ(A,Ln
ν ) = ind detAν(t, z). (3.2)

Proof. Since AjkAsr−AsrAjk ∈ γν (j, k, s, r = 1, . . . , n), in view of [9, Theorem 2]
we see that A is a Φ-operator in Ln

ν if and only if the operator B = det ‖Ajk‖n
j,k=1

(the formally constructed determinant of the matrix ‖Ajk‖) is a Φ-operator in
Lν . From the equality detAν(t, z) = Bν(t, z) and Theorem 3.1 it follows that the
condition detAν(t, z) �= 0 ((t, z) ∈ Γ̃) is necessary and sufficient for the operator
A to be a Φ-operator in Ln

ν .

Let the operator A = ‖Ajk‖n
j,k=1 ∈ A

(n)
ν be a Φ±-operator. Then there ex-

ists an operator A′11 ∈ Aν sufficiently close to the operator A11 and such that
(A′11)ν(t, z) �= 0 ((t, z) ∈ Γ̃). From Theorem 3.1 it follows that the operator A′11
is a Φ-operator. Let R be one of its regularizers. From the results of the previous
section it follows that R ∈ Aν . It is easy to verify that⎛⎜⎜⎝

A′11 A12 . . . A1n
A21 A22 . . . A2n
. . . . . . . . . . . .
An1 An2 . . . Ann

⎞⎟⎟⎠

=

⎛⎜⎜⎝
I 0 . . . 0

A21R B22 . . . B2n
. . . . . . . . . . . .

An1R Bn2 . . . Bnn

⎞⎟⎟⎠
⎛⎜⎜⎝

A′11 A12 . . . A1n
0 I . . . 0
. . . . . . . . . . . .
0 0 . . . I

⎞⎟⎟⎠+ T,

(3.3)

where Bjk = Ajk −RAj1A1k ∈ Aν and T is a compact operator in Ln
ν .

To finish the proof of the theorem, it remains to prove formula (3.2) and
to show that if an operator A ∈ A

(n)
ν is a Φ±-operator, then it is a Φ-operator.

For n = 1 both statements follow from the previous theorem. By using equality
(3.3), it is not difficult to prove these statements by induction on n (cf. [10]). The
theorem is proved. �
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The main topic of the present paper is the study of some Banach algebras of
bounded linear operators acting in the spaces �p (1 < p <∞). Generators of these
algebras are defined by Toeplitz matrices constructed from the Fourier coefficients
of functions having finite limits from the left and from the right at each point.

These algebras were studied for the case of the space �2 in the paper [1] and
for the case of the space hp (1 < p <∞) 1 in the paper [2].

First important results on the above-mentioned algebras in the spaces �p (1 <
p <∞, p �= 2) were obtained very recently in the papers by R.V. Duduchava [3, 4].
Results of R.V. Duduchava are extended in this paper with the aid of a local princi-
ple. In the spaces Lp this local principle is a simplification of I.B. Simonenko’s local
principle [5, 6]. However, it is applicable to a much larger class of Banach spaces. A
general scheme developed in [20] plays also an essential role in the present paper.

The paper consists of seven sections. In Section 1, the local principle is pre-
sented. In Section 2, first applications of the local principle are given. They repro-
duce or generalize some results of I.B. Simonenko [8]. In Section 3, main properties
of bounded operators generated by Toeplitz matrices in �p (1 ≤ p ≤ ∞) are con-
tained. In Section 4, applications of the local principle to the study of bounded
operators generated by Toeplitz matrices constructed from the Fourier coefficients
of continuous functions are outlined. Theorems on inverting operators generated by
Toeplitz matrices in �p constructed from the Fourier coefficients of piecewise con-
tinuous functions are contained in Section 5. An investigation of algebras generated
by such operators and a symbol theory are presented in Section 6. In Section 7,
the results are extended to paired equations and their transposed.
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1. Localizing classes

1.1. Let A be a Banach algebra with unit e. A set M of elements of the algebra
A is said to be a localizing class if it does not contain zero and for every pair of
its elements a1, a2 there exists a third element a ∈M such that

a1a = a2a = aa2 = aa1 = a.

Elements x and y in A are called M -equivalent from the left if

inf
a∈M

‖(x− y)a‖ = 0.

The M -equivalency from the right is defined analogously. If elements x and y in
A are M -equivalent from the left and from the right, then we say that they are
M -equivalent.

An element x of the algebra A is called M -invertible from the left (right) if
there exist elements z ∈ A and a ∈M such that

zxa = a (axz = a).

Lemma 1.1. Let M be a localizing class and elements x, y ∈ A be M -equivalent
from the left (resp. right). If the element x is M -invertible from the left (resp.
right), then the element y is also M -invertible from the left (resp. right).

Proof. Let x be M -invertible from the left. Then there exist elements z ∈ A and
a1 ∈ M such that zxa1 = a1. Since the elements x and y are M -equivalent from
the left, there is an element a2 ∈M such that ‖(x− y)a2‖ < 1/‖z‖. We choose an
element a ∈ M so that the equalities a1a = a2a = a hold. Then zya = zxa− ua,
where u = z(x−y)a2. Taking into account that zxa = a, we obtain zya = (e−u)a.
Since ‖u‖ < 1, we see that the element e− u is invertible. Thus z1ya = a, where
z1 = (e− u)−1z, whence the element y is M -invertible from the left.

The lemma is proved. �
1.2. A system {Mγ}γ∈Γ of localizing classes Mγ is said to be a covering system
if from every set {aγ}γ∈Γ of elements aγ ∈ Mγ one can select a finite number of
elements whose sum is an invertible element.

Lemma 1.2. Let {Mγ}γ∈Γ be a covering system of localizing classes. An element x
in A that commutes with all elements in

⋃
γ∈ΓMγ is invertible from the left (resp.

right) in the algebra A if and only if x is Mγ-invertible from the left (resp. right)
for each γ ∈ Γ.

Proof. The necessity of the hypotheses of the lemma is obvious. Let us prove their
sufficiency. Let an element x be Mγ-invertible from the left for each γ ∈ Γ. Then
there exist elements zγ ∈ A and aγ ∈Mγ such that zγxaγ = aγ . Since the system
{Mγ} is a covering system, from the set {aγ} one can extract a finite number of
elements aγ1 , . . . , aγN such that their sum is an invertible element. Put

u =
N∑

j=1

zγjaγj .
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Then

ux =
N∑

j=1

zγjaγjx =
N∑

j=1

zγjxaγj =
N∑

j=1

aγj .

Thus the element x is invertible and

x−1 =

⎛⎝ N∑
j=1

aγj

⎞⎠−1 u.
The lemma is proved analogously in the case of the invertibility from the right.

The lemma is proved. �

The proved lemmas immediately imply the following.

Theorem 1.1. Let {Mγ}γ∈Γ be a covering system of localizing classes and an el-
ement x be Mγ-equivalent from the left (resp. right) to an element yγ ∈ A for
each γ ∈ Γ. If the element x commutes with all elements in

⋃
γ∈ΓMγ , then it is

invertible from the left (resp. right) if and only if the element yγ is Mγ-invertible
from the left (resp. right) for every γ ∈ Γ.

1.3. The presented statements can also be interpreted from the point of view of
the theory of ideals. We restrict ourselves to the case when all elements in the
union M =

⋃
γ∈ΓMγ commute with each other.

By A0 denote the commutant of the set M. Obviously, A0 is a subalgebra of
the algebra A. The set Jγ of the elements Mγ-equivalent to zero forms a closed
two-sided ideal of the algebra A0. Indeed, it is necessary to check only that the
unit does not belong to Jγ . Assume that e ∈ Jγ . Then in the class Mγ there exist
elements cn (n = 1, 2, . . . ) tending to zero. For each cn there exists an element
an ∈Mγ such that cnan = an. From here it follows that ‖cn‖ ≥ 1.

By Aγ denote the quotient algebra A0/Jγ . By Xγ denote the coset in Aγ that
contains an element x ∈ A0.

The coset Xγ is invertible in Aγ if and only if the element x is Mγ-invertible
in A0. Indeed, if Xγ is invertible in Aγ and Z = X−1

γ , then the element zx− e is
Mγ-equivalent to zero. The latter means that x is Mγ-invertible in Aγ . Conversely,
if x is an Mγ-invertible element in A0, that is, zxa = a, where z is some element
in A0 and a is some element in Mγ , then Aγ = Eγ . Therefore ZγXγ = Eγ .

Now Theorem 1.1 can be reformulated as follows.

Theorem 1.2. Let x ∈ A0. An element x is invertible in the algebra A if and only
if the element Xγ is invertible in Aγ for each γ ∈ Γ.

This theorem follows immediately from Theorem 1.1, the above remarks, and
the fact that the invertibility of an element x ∈ A0 in the algebra A implies that
x−1 belongs to the subalgebra A0.
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2. First example

2.1. Let Γ be a contour in the complex plane that consists of a finite number of
nonintersecting simple closed Lyapunov curves.

Consider the operator of singular integration S defined by the equality

(Sϕ)(t) =
1
πi

∫
Γ

ϕ(τ)
τ − t

dτ (t ∈ Γ).

It is known that this operator is bounded in all spaces Lp(Γ) (1 < p < ∞).
From the known interpolation theorem by E.M. Semenov [9] it follows that the
operator S is bounded in a bulk of separable symmetric spaces including among
them the reflexive Orlicz spaces, the uniformly convex Lorentz spaces, and others.

In what follows by E(Γ) denote one of such spaces. Let a(t) = ‖ajk(t)‖n
j,k=1

and b(t) = ‖bjk(t)‖n
j,k=1 be matrix functions whose entries are complex-valued

measurable essentially bounded functions on Γ. Matrix functions a(t) and b(t) are
said to be equivalent at a point t0 ∈ Γ if for every ε > 0 there exists an open arc
lt0 containing the point t0, on which

vrai sup
t∈lt0

|ajk(t)− bjk(t)| < ε.

Let F be some set of matrix functions of order n on the contour Γ. Following
I.B. Simonenko [8], a matrix f(t) is said to belong to the local closure of the set
F if it is equivalent to some matrix function in F at each point of the contour Γ.

A set F is said to be locally closed if the local closure of the set F is contained
in F . Let P be the projection defined in E(Γ) by the equality P = (I + S)/2. By
E+(Γ) denote the range of the operator P and by En

+(Γ) denote the direct sum of
n copies of the space E+(Γ). We extend the operator P to the whole space En(Γ)
putting P{ϕj}n

j=1 = {Pϕj}n
j=1. For each matrix function a(t) = ‖ajk(t)‖ of order

n with entries in L∞(Γ) by Ta denote the matrix operator defined in En
+(Γ) by

the equality2

Ta = P (aϕ).

By LΦ∞(Γ) denote the set of all matrix functions a(t) with entries in L∞(Γ) such
that the operator Ta is a Φ-operator3 in the space En

+(Γ).

Theorem 2.1. The set LΦ∞(Γ) is locally closed.

Proof. Let us show that this theorem is a corollary of Theorem 1.1. The role of
the algebra A is played by the quotient algebra A = L(En

+(Γ))/J (E+n (Γ)), where
L(E+n (Γ)) is the algebra of all bounded linear operators in E+n (Γ) and J (En

+(Γ))

2This operator is sometimes called a generalized matrix Wiener-Hopf operator. Note that in the
case when Γ is the unit circle, n = 1, and the system tk (k = 0,±1, . . . ) forms a basis of the
space E(Γ), the Toeplitz matrix constructed from the Fourier coefficients of the function a(t)
corresponds to the operator Ta in this basis.
3An operator A is said to be a Φ-operator if its range is closed and the numbers dim kerA and
dimkerA∗ are finite.
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is the two-sided ideal of L(En
+(Γ)) consisting of all compact operators. The coset

in A that contains an operator A ∈ L(En
+(Γ)) is denoted by Â.

We introduce a system {Mζ}ζ∈Γ of localizing classes in the algebra A. Let
ζ0 ∈ Γ and Nζ0 be the set of all continuous functions on Γ, each of which is
equal to 1 in some neighborhood (depending on the function) of the point ζ0. By
Mζ0 denote the set of all elements T̂g of the algebra A generated by the matrices
g(t) = g0(t)En, where En is the identity matrix of order n and g0(ζ) ∈ Nζ0 . One
can check straightforwardly that if a ∈ C(Γ), then a(t)S − Sa(t)I ∈ J (E(Γ)).
From here it follows that if a ∈ C(Γ) and b ∈ L∞(Γ), then

TaTb − Tab ∈ J (E+(Γ)). (2.1)

With the aid of this property it is easy to check that for every matrix function
f(t) = ‖fjk(t)‖n

j,k=1 the coset T̂f belongs to the commutant of the set M =⋃
t∈ΓMt. Property (2.1) also implies that if matrix functions f(t) and h(t) are

equivalent at the point ζ0, then the cosets T̂f and T̂h are Mζ0 -equivalent.
It easy to verify that the set {Mt}t∈Γ forms a covering system of localizing

classes.
Let f(t) belong to the local closure of the set LΦ∞(Γ). It is known that the

operator Ta is a Φ-operator if and only if the element T̂a is invertible in the
algebra A. Therefore for every point ζ0 ∈ Γ the element T̂f is Mζ0-equivalent to
some element T̂fζ0

, which is invertible in A. In view of Theorem 1.1, the element
T̂f is also invertible in A. Thus f ∈ LΦ∞(Γ).

The theorem is proved. �

It can be shown analogously that if a matrix function f(t) is equivalent to
a matrix function fζ(t) at each point ζ ∈ Γ and all operators Tfζ

(ζ ∈ Γ) admit
a left (resp. right) regularization, then the operator Tf admits a left (resp. right)
regularization.

Theorem 2.1 can be formulated also for one-dimensional matrix singular in-
tegral operators. In that form Theorem 2.1 was proved by I.B. Simonenko [8] for
the spaces Lp(Γ) (1 < p <∞). In the paper [8] this theorem was deduced from a
local principle (see [5, 6]) more complicated than the one presented in Section 1.

2.2. The statement presented below follows from Theorem 2.1. It was obtained
for the first time by I.B. Simonenko [10, 8].

Theorem 2.2. Let a(t) (t ∈ Γ) be a matrix function with entries in L∞(Γ). Suppose
that for every point t0 ∈ Γ there exists a neighborhood lt0 ⊂ Γ of this point such
that the range of the form (a(t)η, η) (η ∈ Cn, ‖η‖ = 1) for t ∈ lt0 is located in
some closed half-plane Πt0 not containing the origin. Then the operator Ta is a
Φ-operator in the space Ln

2 (Γ)+.

Proof. Let ζ be an arbitrary point on Γ. By aζ denote a matrix function that
coincides with a(t) on the arc lζ and is defined on the complement Γ \ lζ so that
the range of the form (aζ(t)η, η) (t ∈ Γ) is located in the half-plane Πζ . It is not
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difficult to find a complex number γ so that the norm of the operator γaζ − En

acting in the space Ln
2 (Γ) is less than 1. By |A| denote the quotient norm

|A| = inf
T∈J (Ln

2 (Γ))
‖A + T ‖.

It is known (see [21]) that |P | = 1, whence |P (γaζ − En)| < 1. Since

Paζ =
1
γ

[P + P (γaζ − En)],

from the last inequality it follows that the operator Taζ
is a Φ-operator in Ln

2 (Γ)+.
Therefore aζ ∈ LΦ∞(Γ). In view of Theorem 2.1, a ∈ LΦ∞(Γ).

The theorem is proved. �
For n = 1, I.B. Simonenko [10, 8] obtained a generalization of Theorem 2.2

to the case of an arbitrary space Lp(Γ), (1 < p < ∞). That theorem can also be
obtained from Theorem 2.1 with the aid of the results [11] (see also [12, 13]).

3. Some properties of operators generated
by Toeplitz matrices in �p spaces

3.1. In the following sections operators generated by Toeplitz matrices in spaces
�p are studied with the aid of the local principle of Section 1. Main properties of
these operators are presented in this section.

By �̃p (1 ≤ p ≤ ∞) denote the Banach space of the sequences {ξj}∞j=−∞,
ξj ∈ C1, with the norm

‖ξ‖ =

⎛⎝ ∞∑
j=−∞

|ξj |p
⎞⎠1/p

.

By �p denote the space of the one-sided sequences {ξj}∞j=0 with the norm

‖ξ‖ =

⎛⎝ ∞∑
j=0

|ξj |p
⎞⎠1/p

.

Let Γ0 be the unit circle. To each function a(ζ) ∈ L∞(Γ0) assign the Toeplitz
matrices ‖aj−k‖∞j,k=0 and ‖aj−k‖∞j,k=−∞ consisting of the Fourier coefficients aj

(j = 0,±1, . . . ) of this function. By Ta denote the linear operator generated in the
space �p (1 ≤ p ≤ ∞) by the matrix ‖aj−k‖∞j,k=0 and by T̃a denote the operator
generated by the matrix ‖aj−k‖∞j,k=−∞ in the Banach space �̃p.

Let us agree to denote by L(L) the Banach algebra of all bounded linear
operators acting in a Banach space L.

By Rp (1 ≤ p ≤ ∞) denote the set of all functions a(ζ) ∈ L∞(Γ0) such that
Ta ∈ L(�p). It is known that the sets R1 and R∞ coincide, that they consist of all
functions a(ζ) (|ζ| = 1) that may be expanded into absolutely convergent Fourier
series, and that R2 = L∞(Γ0). It is easy to see that if for a function a ∈ L∞(Γ0)
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the operator T̃a belongs to L(�̃p), then a ∈ Rp and ‖Ta‖ ≤ ‖T̃a‖. The converse
statement is also true.

Proposition 3.1. If a ∈ Rp (1 ≤ p ≤ ∞), then T̃a ∈ L(�̃p) and ‖T̃a‖ = ‖Ta‖.
Proof. Indeed, let Ta ∈ L(�p) and Pn (n = 1, 2, . . . ) be the projections defined in
�̃p by the equality Pn{ξj}∞−∞ = (. . . , 0, ξ−n, . . . , ξ0, ξ1, . . . ). It is not difficult to see
that for each finitely supported sequence ξ = (. . . , 0, ξk, . . . , ξr, 0, . . . ) the equality

lim
n→∞ ‖PnT̃aPnξ − T̃aξ‖ = 0

holds and, moreover, ‖PnT̃aPnξ‖ ≤ ‖Ta‖ ‖ξ‖. Hence the operator T̃a can be ex-
tended to the whole space �̃p and ‖T̃a‖ ≤ ‖Ta‖. �

Proposition 3.2. If a, b ∈ Rp, then ab ∈ Rp and

‖Tab‖ ≤ ‖Ta‖ ‖Tb‖. (3.1)

Proof. Let a, b ∈ Rp. Then in view of Proposition 3.1, T̃a, T̃b ∈ L(�̃p). It can be
checked straightforwardly that T̃abξ = T̃aT̃bξ for all finitely supported sequences
ξ ∈ �̃p. Hence T̃ab = T̃aT̃b (∈ L(�̃p)). From here it follows that ab ∈ Rp and
inequality (3.1) holds. �

Proposition 3.3. If a(ζ) ∈ Rp, then a(ζ) ∈ Rp and ‖Ta‖p = ‖Ta‖p.

Proof. This statement follows easily from Proposition 3.1 and the equality ‖T̃aξ‖ =
‖T̃aξ‖, where ξ = {ξ−j}∞−∞. �

3.2. From the proved properties it is easy to deduce the following statement.

Proposition 3.4. The set Rp (1 ≤ p ≤ ∞) is a Banach algebra with the norm

‖a‖ = ‖Ta‖p

and, moreover,
‖a‖ ≥ vrai sup

|ζ|=1
|a(ζ)|.

Proof. In view of Proposition 3.2 it is necessary only to verify the completeness of
the space Rp.

From Proposition 3.3 it follows that if a ∈ Rp, then a ∈ Rq (p−1 + q−1 = 1)
and ‖Ta‖p = ‖Ta‖q. By the M. Riesz interpolation theorem,

‖Ta‖2 ≤ ‖Ta‖p.

Suppose a sequence {an} is a Cauchy sequence in Rp. Then it is a Cauchy
sequence in R2 (= L∞(Γ0)). Hence there exist a function a ∈ L∞(Γ0) and an
operator A ∈ L(�p) such that ‖Tan − Ta‖2 → 0 and ‖Tan − A‖p → 0 as n → ∞.
From here it follows that the operator Ta is bounded on a dense set in �p, whence
a ∈ Rp. It is easy to check that ‖a− an‖ → 0. �
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Let us agree on the following two notations:

R[p1,p2] =
⋂

p1≤p≤p2

Rp, R(p1,p2) =
⋂

p1<p<p2

Rp.

Proposition 3.5. If a ∈ Rp, then a ∈ R[p,q] for p < 2 and a ∈ R[q,p] for p > 2,
where p−1 + q−1 = 1.

Proof. Indeed, from Proposition 3.3 it follows that if a ∈ Rp, then a ∈ Rq. Thus
Proposition 3.5 follows from the M. Riesz interpolation theorem. �

Proposition 3.6. Suppose a ∈ Rp (1 ≤ p ≤ ∞) and r satisfies the inequality
2 < r < p for p < 2 and the inequality p < r < 2 for p < 2. Then

‖Ta‖r ≤ ‖Ta‖t
p vrai sup

|ζ|=1
|a(ζ)|1−t,

where

t =
p(2− r)
r(2 − p)

.

Proof. This statement is also an immediate corollary of the M. Riesz interpolation
theorem. �

3.3. By V denote the algebra of functions f : Γ → C1 of bounded variation. It is
known (see [14]) that V ⊂ R(1,∞). Moreover, for an arbitrary function a ∈ V ,

‖Ta‖p ≤ kp

(
vrai sup |a(ζ)|+ var a

)
, (3.2)

where var a denotes the total variation of the function a(ζ) on Γ0, and kp is a
constant depending only on p.

A more general statement was obtained in the paper [15].
Let Vβ (β ≥ 1) be the set of the functions a(ζ) such that

sup
n−1∑
k=0

|a(eiθk+1)− a(eiθk)|β <∞,

0 = θ0 < θ1 < · · · < θn = 2π.
Then Vβ ⊂ R(2β/(β+1),2β/(β−1)).

In [15] the following propositions were also obtained.
Let Hα be the collection of all functions a(ζ) such that a(eiθ) satisfies the

Hölder condition with exponent α on some segment [θ0, θ0 + 2π]. Then

Hα ⊂ R(2(1+2α)−1,2(1−2α)−1) (0 < α < 1/2).

Moreover, if β ≥ 2 and δ > 0, then

Hδ ∩ Vβ ⊂ R(2β(β+2)−1,2β(β−2)−1).

If a(ζ) ∈ Hα (0 < α ≤ 1/2) and
2n∑

k=2−n

|ak| ≤ 2nβ,
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then a ∈ R(p1,p2), where

p1 = (2α + 2β)/β + 2α, p2 = (2α + 2β)/β (0 < β < 1/2− α).

With the aid of Proposition 3.4 one can essentially extend the class of ex-
amples of functions belonging to the set R(p1,p2). For instance, if xj(ζ) ∈ Rp

(j = 1, 2, . . . , n) and yj(ζ) ∈ V , then∑
xj(ζ)yj(ζ) ∈ Rp (1 < p <∞).

In particular, if the functions xj(ζ) are expanded in absolutely convergent Fourier
series and χj(ζ) are characteristic functions of some arcs on the unit circle, then

n∑
j=1

xj(ζ)χj(ζ) ∈ R(1,∞).

This class of functions was considered by R.V. Duduchava [3, 4].

3.4. In conclusion we present two more properties important for further consider-
ations.

Proposition 3.7. Let functions a(ζ) and b(ζ) in R(p−ε,p+ε) (1 < p < ∞, ε > 0)
have finite limits from the left and from the right at each point ζ. Then the operator
TaTb − TbTa is compact in the space �p. Moreover, if the functions a(ζ) and b(ζ)
do not have common points of discontinuity, then the operator TaTb − Tab also is
compact in �p.

Proof. Indeed, under the presented assumptions, the operators TaTb − TbTa and
TaTb−Tab are compact in �2 (see [1]) and are bounded in �p±ε and �q±ε. Therefore,
Proposition 3.7 follows straightforwardly from the Krasnosel’skii interpolation the-
orem [16, Theorem 1]. �

Proposition 3.8. Let a(ζ) ∈ Rp. If the function a(ζ) is not identically zero, then
the equation Tax = 0 in the space �p (1 ≤ p ≤ ∞) or the equation Tay = 0 in the
space �q (p−1 + q−1 = 1) has only a trivial solution.

Proof. In the case p = 2 this statement is proved in [22]. Without loss of generality
one can assume that 1 ≤ p < 2.

We prove Proposition 3.8 by contradiction. Assume that there exist nonzero
vectors x+ = {x+j }∞0 ∈ �p and y+ = {y+j }∞0 ∈ �q such that

Tax+ = 0, Tay+ = 0. (3.3)

By x̃+ and ỹ+ denote the vectors {x+j }∞j=−∞ ∈ �̃p and {y+j }∞j=−∞ ∈ �̃q, respectively,
such that x+j = y+j = 0 for j < 0.

It is easy to see that equalities (3.3) can be rewritten as follows:

T̃ax̃+ = x̃−, T̃aỹ+ = ỹ−, (3.4)

where the vectors x̃− = {x−j }∞j=−∞ ∈ �̃p and ỹ− = {y−j }∞j=−∞ ∈ �̃q have the
property x−j = y−j = 0 for j ≥ 0.
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We construct infinite Toeplitz matrices

A = ‖aj−k‖∞j,k=−∞, X± = ‖x±j−k‖∞j,k=−∞, Y± = ‖y±j−k‖∞j,k=−∞.

Equalities (3.4) imply the following equalities

AX+ = X−, Y ∗+A = Y ∗−. (3.5)

Multiplying both sides of the second equality of (3.5) from the right by X+ and
taking into account the first of these equalities, we obtain

Y ∗+X− = Y ∗−X+. (3.6)

Since the matrix Y ∗+X− is upper triangular and Y ∗−X+ is lower triangular, and
all entries of the main diagonals of these matrices are equal to zero, we see that
Y ∗+X− = 0 and Y ∗−X+ = 0. It can be checked straightforwardly that if Y ∗+X− = 0,
then one of the matrices X− or Y+ is equal to zero. If Y+ �= 0, then X− = 0. In
view of (3.5), AX+ = 0. From here it follows that a(ζ)x+(ζ) = 0, where

x+(ζ) =
∞∑

j=0

x+j ζj .

Since {x+j } ∈ �p and p < 2, we see that the function x+(ζ) belongs to the Hardy
space H2. By the hypotheses of the proposition, a(ζ) is different from zero on a
set of positive measure. Therefore x+(ζ) = 0 on this set. Thus x+(ζ) ≡ 0 and this
contradicts the assumption. �

4. Second example and its applications

4.1. We will present an example illustrating results of Section 1. By ΠC denote
the set of all functions a(ζ) (|ζ| = 1) having finite limits a(ζ0+0) and a(ζ0−0) as ζ
tends to ζ0 clockwise and counter-clockwise, respectively, at each point ζ0 ∈ Γ0. By
ΠCp (ΠC〈p〉) denote the intersection of ΠC withRp (respectively, ∪ε>0R(p−ε,p+ε)).

Theorem 4.1. If a function a(ζ) belongs to ΠC〈p〉 and a(ζ ± 0) �= 0 for all ζ ∈ Γ0,
then the function 1/a(ζ) also belongs to ΠC〈p〉.

Proof. Obviously it is sufficient to show that 1/a(ζ) ∈ Rp. We will show that the
operator T̃a is invertible in �̃p. Since for all x ∈ �̃2 the equality T̃a−1 T̃ax = x holds,
this will prove the boundedness of the operator T̃a−1 in �̃p, and hence will finish
the proof of the theorem.

We will develop the proof with the aid of Theorem 1.1. Let A = L(�̃p). For
each point ζ0 ∈ Γ0 we introduce the localizing class Mζ0 ⊂ L(�̃p) consisting of
all operators of the form T̃x, where x(ζ) is the characteristic function of some
neighborhood of the point ζ0. It is easy to verify that the set {Mζ}ζ∈Γ0 forms a
covering system.
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Moreover, if a(ζ) ∈ Rp, then the operator T̃a belongs to the commutant of
the set

⋃
ζ∈Γ0

Mζ . Let a(ζ) ∈ ΠC〈p〉 and let τ be some point of the unit circle Γ0.
If τ is a continuity point of the function a(ζ), then we put

aτ (ζ) def= a(τ) (ζ ∈ Γ0).

If τ = eiθ is a discontinuity point of the function a(ζ), then we put

aτ (eiϕ) =
{

a(τ + 0) for θ < ϕ < ϕ + π,
a(τ − 0) for π + θ < ϕ < θ + 2π.

We choose a neighborhood l(ζ0) of the point ζ0 so that sup |a(ζ)−aτ (ζ)| (ζ ∈ l(ζ0),
ζ �= ζ0) is sufficiently small. Let χ(ζ) be the characteristic function of the arc l(ζ0).
From Proposition 3.7 and relation (3.2) it follows that

‖(T̃a − T̃aτ )T̃χ‖ ≤ ‖T̃a − T̃aτ ‖t
sk

t
s2

t sup
ζ∈l(ζ0),ζ =ζ0

|a(ζ) − aτ (ζ)|1−t,

where the numbers s and t do not depend on l(ζ0). Hence the operators T̃a and
T̃aτ are Mτ -equivalent. Since a(ζ ± 0) �= 0 (ζ ∈ Γ0), each of the operators T̃aτ

(τ ∈ Γ0) is invertible in the algebra L(l̃p). In view of Theorem 1.1, the operator
T̃a is invertible in L(�̃p). The theorem is proved. �
4.2. In this subsection, a Fredholm criterion for operators generated by Toeplitz
matrices with continuous coefficients is obtained with the aid of Theorem 1.1.
These results will be used in forthcoming sections.

By C〈p〉 denote the intersection of the sets C(Γ) and
⋃

ε>0R(p−ε,p+ε) and
by Cn×n

〈p〉 denote the set of all matrix functions of order n with entries in C〈p〉. If
a = ‖ajk(ζ)‖n

j,k=1, then by Ta denote the operator ‖Tajk
‖n

j,k=1.

Theorem 4.2. Let a ∈ Cn×n
〈p〉 . The operator Ta is a Φ+-operator or a Φ−operator

in �n
p if and only if the condition

det a(ζ) �= 0 (|ζ| = 1) (4.1)

holds. If condition (4.1) is fulfilled, then the operator Ta is a Φ-operator.

We will use the next statement in the proof of this theorem.

Lemma 4.1. Suppose a sequence of functions bm(ζ) (|ζ| = 1) converges to zero in
measure on Γ0 and, for every r ∈ (1,∞), ‖Tbm‖r ≤ αr, where the constant αr does
not depend on m. Then the sequence Tbm converges to zero strongly in each space
�p (1 < p <∞).

Proof. Since the sequence of the norms ‖Tbm‖p is bounded, it is sufficient to verify
that ‖Tbmx‖p → 0 on some dense set. For p = 2 this can be easily checked. For
p > 2 this follows from the inequality ‖Tbmx‖p ≤ ‖Tbmx‖2, and for 1 < p < 2 one
can apply, for instance, the relations

‖Tbmx‖p
p ≤ ‖Tbmx‖p−1

2 ‖Tbmx‖2/(3−p) ≤ ‖Tbmx‖p−1
2 ‖x‖α2(3−p).

The lemma is proved. �
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Proof of Theorem 4.2. Assume that condition (4.1) is fulfilled. From Theorem 4.1
it follows that a−1(ζ) ∈ Cn×n

〈p〉 . By Proposition 3.7,

TaTa−1 − I ∈ J (�n
p ), Ta−1Ta − I ∈ J (�n

p ).

Hence the operator Ta is a Φ-operator. The sufficiency part of the theorem is
proved.

Let us show the necessity part. Assume that det a(ζ0) = 0, where ζ0 is some
point on Γ0 and the operator Ta is a Φ+-operator (if Ta is a Φ−-operator, then
we can pass to the adjoint operator in the dual space). There exists a finite rank
operator K and a constant C > 0 such that

‖(Ta + K)x‖p ≥ C‖x‖p

for all x ∈ �n
p . From here it follows that

‖(Ta + K)Th‖p ≥ C‖Th‖p (4.2)

for every matrix function h(ζ) ∈ Rn×n
p .

Below we will construct a matrix h(ζ), for which condition (4.2) is not ful-
filled. This will lead to a contradiction.

By u = (u1, . . . , un) ∈ Cn denote a nonzero solution of the equation a(ζ0)u =
0 and put

fk(ζ) =
n∑

j=1

ajk(ζ)uj (k = 1, . . . , n),

where ajk(ζ) are the entries of the matrix a(ζ). By b(ζ) denote some function that
can be expanded into the absolutely convergent Fourier series

b(ζ) =
∞∑

k=−∞
βkζ

k

(
|ζ| = 1,

∞∑
k=−∞

|βk| <∞
)

and that has the following properties.
1. The support of the function b(ζ) is contained in a neighborhood v(ζ0) of the

point ζ0 such that

sup
ζ∈v(ζ0)

|fk(ζ)| < δ (k = 1, 2, . . . , n), (4.3)

where δ > 0 is a given arbitrarily small number.
2. max |b(ζ)| = 1 and var b(ζ) = 2.

We choose a natural number N so that for the trigonometric polynomial

Q(ζ) =
N∑

k=−N

βkζ
k

the inequalities

max |Q(ζ)| ≥ 1
2
, max |fk(ζ)Q(ζ)| < 2δ (k = 1, 2, . . . , n),
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and ‖TQ‖r ≤ 2‖Tb‖r for all r ≥ 1 hold. Note that the latter inequality is satisfied if
N is chosen so that ‖Tb−TQ‖1 < ‖Tb‖2. In that case ‖Tb−TQ‖r < ‖Tb‖2, whence
‖TQ‖r ≤ ‖Tb‖r + ‖Tb‖2 ≤ 2‖Tb‖r.

Note that in view of (3.2), ‖TQ‖r ≤ 6kr. Put

h(ζ) = ζNQ(ζ) =

∥∥∥∥∥∥∥∥
u1 0 . . . 0
u2 0 . . . 0
. . . . . . . . . . . .
un 0 . . . 0

∥∥∥∥∥∥∥∥ .

Then

TaTh − Tah =

∥∥∥∥∥∥∥∥
Tg1 0 . . . 0
Tg2 0 . . . 0
. . . . . . . . . . . .
Tgn 0 . . . 0

∥∥∥∥∥∥∥∥ ,

where gk(ζ) = fk(ζ)Q(ζ)ζN . Since

‖Tgk
‖p ≤ ‖Tfk

‖1/2r ‖TQ‖1/2r max |fk(ζ)Q(ζ)|1/2 ≤ (12kr‖Tfk
‖δ)1/2,

where r = 4p/(2 + p), choosing the neighborhood v(ζ0) one can make the norm
‖TaTh‖p arbitrarily small.

Let vm(ζ0) be the sequence of the neighborhoods of the point ζ0 that collapse
to the point ζ0. Then the corresponding sequence of polynomials Qm(ζ) can be
chosen so that it tends to zero in measure. By Lemma 4.1, the sequence TQn tends
to zero strongly. Hence (see [17, Chapter II, Section 3]), ‖KTQn‖p → 0. From here
it follows that the norm ‖KTh‖p can also be made arbitrarily small.

Since max |Q(ζ)| > 1/2, we see that the norms ‖Th‖p are bounded from below
by a constant independent of v(ζ0).

The obtained claims contradict relation (4.2). The theorem is proved. �

5. Inversion of Toeplitz matrices

5.1. Let a ∈ ΠCp. We define the symbol of the operator Ta acting in �p. To this
end, by ξp(μ) denote the function defined on the segment [0, 1] by the equality

ξp(μ) =

⎧⎨⎩
sin θμ exp(iθμ)
sin θ exp(iθ)

if θ �= 0,

μ if θ = 0,
(5.1)

where θ = π(2 − p)/p.
If μ runs over the segment [0, 1], then ξp(μ) runs over the circular arc (or the

segment if p = 2) joining the points 0 and 1. For p > 2 (resp. p < 2) this arc is
located in the upper (resp. lower) half-plane and from the points of this arc the
segment [0, 1] is seen at the angle 2π/p (resp. 2π(p− 1)/p).

The function a(ζ, μ; p) defined on the cylinder X = Γ0× [0, 1] by the equality

a(ζ, μ; p) = ξp(μ)a(ζ + 0) + (1− ξp(μ))a(ζ − 0)

is said to be the symbol of the operator Ta (a ∈ ΠCp) acting in �p.
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Let ζ1, ζ2, . . . be all discontinuity points of the function a(ζ). Then the range
of the function a(ζ, μ; p) is the union of the range of the function a(ζ) (|ζ| = 1)
and a finite or countable number of circular arcs (or segments)

Sk = a(ζk − 0) + (a(ζk + 0)− a(ζk − 0))ξp(μ),

joining the points a(ζk + 0) and a(ζk − 0).
If the function a(ζ) has at least one discontinuity point, then the symbol

a(ζ, μ; p) depends on p.
Note that the symbol a(ζ, μ; p) of the operator Ta acting in the space �p

differs from the symbol A(ζ, μ; p) of the same operator acting in the space hp (see
[2]). The range of the function A(ζ, μ; p) can be obtained from the range of the
function a(ζ, μ; p) by replacing each of the arcs Sk by the arc symmetric to Sk

with respect to the segment joining the points a(ζk + 0) and a(ζk − 0).
Let us define the index of the function a(ζ, μ; p). First of all, we orient the

curve a(ζ, μ; p) so that the motion along the curve a(ζ, μ; p) agrees with the motion
of ζ along the circle counterclockwise at the continuity points of the function a(ζ);
and the complementary arcs are oriented from a(ζk − 0) to a(ζk + 0).

If the function a(ζ) ∈ ΠCp has a finite number of discontinuity points and
a(ζ, μ; p) �= 0 (|ζ| = 1, 0 ≤ μ ≤ 1), then the winding number of the curve a(ζ, μ; p)
about the point λ = 0 is said to be the index of the curve a(ζ, μ; p). This index
is denoted by ind a(ζ, μ; p). In the general case, if a ∈ ΠCp and a(ζ, μ; p) �= 0,
then the function a(ζ) can be uniformly approximated by functions an(ζ) ∈ ΠCp

having finite numbers of discontinuity points. It is easy to see that the sequence
ind an(ζ, μ; p) stabilizes starting with some n. The index of the function a(ζ, μ; p)
is defined by the equality

ind a(ζ, μ; p) = lim
n→∞ ind an(ζ, μ; p).

In this section the following theorem is proved.

Theorem 5.1. Let a(ζ) ∈ ΠC〈p〉, where 1 < p < ∞. The operator Ta is normally
solvable in the space �p if and only if the condition

a(ζ, μ; p) �= 0 (|ζ| = 1, 0 ≤ μ ≤ 1) (5.2)

holds. If condition (5.2) is fulfilled, then the operator Ta is invertible (invertible
only from the left; invertible only from the right) whenever the number

κ = ind a(ζ, μ; p)

is equal to zero (resp. positive; negative).
Under condition (5.2), the equalities

dim kerTa = − inda(ζ, μ; p) for κ < 0,

dim cokerTa = ind a(ζ, μ; p) for κ > 0,

hold.
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This theorem for a certain class of functions a(ζ) was proved by R.V. Dudu-
chava [3, 4]. Namely, in those papers it is supposed that the function a(ζ) has the
form

a(ζ) =
n∑

j=1

aj(ζ)ζαj , (5.3)

where the functions aj(ζ) (j = 1, . . . , n) have absolutely convergent Fourier series.
In the proof of Theorem 5.1 we make a substantial use of the result by R.V. Du-
duchava [3, 4] concerning the function a(ζ) = ζα. This result is formulated as
follows.

Proposition 5.1. If the condition

−1
p

< Reα < 1− 1
p

(1 < p <∞)

holds, then the operator Tζα is invertible in the space �p.

5.2. Proof of Theorem 5.1. By A denote the quotient algebra L(�p)/J (�p). If
b ∈ Rp, then by T̂b denote the coset in A containing the operator Tb. For each
point ζ0 of the unit circle Γ0 define the set Mζ0 ⊂ A consisting of all cosets T̂x such
that functions x(ζ) are continuous on Γ0, have finite total variation, and have the
following properties: 1) x(ζ) takes the value 1 in some neighborhood of the point
ζ0; 2) 0 ≤ x(ζ) ≤ 1 and varx(ζ) = 2.

From Proposition 3.7 and Theorem 4.3 it follows immediately that the set
{Mζ}ζ∈Γ0 forms a covering system of localizing classes. As in Theorem 4.1 one can
show that if a, b ∈ ΠC〈p〉 and a(ζ0 + 0) = b(ζ0 + 0), a(ζ0 − 0) = b(ζ0 − 0) at some
point ζ0 ∈ Γ0, then T̂a and T̂b are Mζ0-equivalent.

Let condition (5.2) be fulfilled. The coset T̂a is Mτ -equivalent to the coset
a(τ)Î at each continuity point τ ∈ Γ0 of the function a(ζ). The coset a(τ)Î is
invertible in the algebra A because a(τ) �= 0.

Let ζ0 be a discontinuity point of the function a(ζ). From condition (5.2) it
follows that a(ζ0 ± 0) �= 0. We find a function b(ζ) = βζα (α, β ∈ C1, −1/p ≤
Reα < 1− 1/p), which is continuous at each point ζ �= ζ0 and such that

a(ζ0 + 0) = b(ζ0 + 0), a(ζ0 − 0) = b(ζ0 − 0), a(ζ0) = b(ζ0).

From condition (5.2) it follows that b(ζ0, μ; p) �= 0 (0 ≤ μ ≤ 1). In view of the
definition of the symbol, this implies that β �= 0 and

e−2πiα �= sin θ(μ− 1)
sin θμ

e2πi/p (0 ≤ μ ≤ 1).

From this relation it follows that Reα �= −1/p, whence −1/p < Reα < 1 − 1/p.
Therefore, by Proposition 5.1, the operator Tb is invertible.

Since the function a(ζ) − b(ζ) is continuous at the point ζ0 and is equal to
zero at this point, we see that the cosets T̂a and T̂b are Mζ0 -equivalent. Thus,
for each point ζ ∈ Γ0 the coset T̂a is Mζ-equivalent to some invertible element.
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Since, moreover, T̂a commutes with each element in Mζ , we conclude that T̂a is
invertible in the algebra L(�p)/J (�p) by Theorem 1.1. Therefore the operator T̂a

is a Φ-operator in �p.
Let us show that the index of the operator Ta is calculated by the formula

IndTa = − inda(ζ, μ; p). (5.4)

We will use the following statement in the proof of this formula.

Lemma 5.1. Let a(ζ) and an(ζ) be functions in ΠC〈p〉 that satisfy the conditions

a(ζ, μ; p) �= 0 (|ζ| = 1, 0 ≤ μ ≤ 1)

and sup |a(ζ)− an(ζ)| → 0. Then, starting with some n, the equalities

ind an(ζ, μ; p) = ind a(ζ, μ; p), IndTan = IndTa (5.5)

hold.

Proof. Indeed, since the sequence an(ζ) converges uniformly to a(ζ), one can easily
check that an(ζ, μ; p) converges uniformly to a(ζ, μ; p) on the cylinder Γ0 × [0, 1].
This implies the first equality in (5.5). Since, starting with some n, the inequalities

|a(ζ, μ; p)− an(ζ, μ; p)| < 1
2

inf |a(ζ, μ; p)|
hold, we deduce that for all λ in the segment [0, 1],

a(ζ, μ; p) + λ
(
an(ζ, μ; p) − a(ζ, μ; p)

) �= 0 (|ζ| = 1, 0 ≤ μ ≤ 1).

In view of what has been proved above, the operator Wλ = Ta+λTan−a (0 ≤ λ ≤ 1)
is a Φ-operator. This implies that Ind Ta = IndTan . �

From the proved statement it follows that it is sufficient to prove formula (5.4)
for the case when the function a(ζ) has a finite number of discontinuity points. Let
ζ1, ζ2, . . . , ζn be the discontinuity points of the function a(ζ). From condition (5.2)
it follows that a(ζk ± 0) �= 0. This allows us to choose the functions ψk(ζ) = ζαk

(−1/p ≤ Reαk < 1− 1/p), each of which is continuous everywhere except for one
point ζ = ζk, and such that the condition

a(ζk + 0)
a(ζk − 0)

=
ψk(ζk + 0)
ψk(ζk − 0)

holds. As above, one can show that Reαk �= −1/p. Let ψ(ζ) = ψ1(ζ) . . . ψn(ζ).
Then the function b(ζ) = a(ζ)/ψ(ζ) is continuous on Γ0 and belongs to R〈p〉. It is
checked straightforwardly that indψk(ζ, μ; p) = 0. Since the functions ψk(ζ) do not
have common discontinuity points, we conclude that indψ(ζ, μ; p) = 0. Moreover,

ind a(ζ, μ; p) = ind b(ζ) + indψ(ζ, μ; p).

Therefore ind a(ζ, μ; p) = ind b(ζ). In turn, the operator Ta can be represented in
the form Ta = TbTψ1 . . . Tψn + T , where T ∈ J (�p). In view of R.V. Duduchava’s
Proposition 5.1, the operators Tψk

are invertible, whence IndTa = Ind Tb.
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Thus, it is sufficient to prove formula (5.4) for the case when the function
a(ζ) ∈ R〈p〉 is continuous on Γ0. In view of what has been proved above, the
continuous function can be replaced by a polynomial. Formula (5.4) for polynomi-
als is well known (see, e.g., [17, Chapter I, Section 7]). To finish the proof of the
sufficiency of the hypotheses of the theorem it remains to apply Lemma 5.1.

The proof of the necessity consists of four parts.
I. First we show that if a function a(ζ) ∈ ΠC〈p〉 is continuous on some arc ζ′ζ′′,

is equal to zero at some interior point ζ0 of this arc, and is different from
zero at its endpoints (that is, a(ζ′) �= 0 and a(ζ′′) �= 0), then the operator Ta

is neither Φ+-operator nor Φ−-operator. Let c(ζ) be an arbitrary continuous
function in R〈p〉 such that it is different from zero on Γ0 and coincides with
b(ζ) at the points ζ′ and ζ′′. By χ(ζ) (ζ ∈ Γ0) denote the characteristic
function of the arc ζ′ζ′′ and put

g(ζ) = c(ζ)(1 − χ(ζ)) + b(ζ)χ(ζ), h(ζ) = c−1(ζ)b(ζ)(1 − χ(ζ)) + χ(ζ).

From Theorem 4.1 it follows that g, h ∈ R〈p〉. Proposition 3.7 implies that

Tb = ThTg + K ′ = TgTh + K ′′,

where K ′,K ′′ ∈ J (�p). From these equalities it follows that if the operator Tb

is a Φ+-operator or a Φ−-operator, then so is the operator Tg. Since g ∈ C〈p〉
and g(ζ0) = 0, the latter is impossible in view of Theorem 4.2.

II. Let the operator Ta be a Φ±-operator. Let us show that a(ζ ± 0) �= 0 for all
ζ ∈ Γ0. If the function a(ζ) or its one-sided limit a(ζ ± 0) is equal to zero at
some point ζ0 ∈ Γ0, then by using Proposition 3.6 and estimates (3.1)–(3.2)
it is not difficult to find a δ > 0 and a segment Δ containing the point ζ0
such that the function

b(ζ) = a(ζ)(1 − χΔ)) + δ(ζ − ζ0),

where χΔ(ζ) is the characteristic function of the segment Δ, would satisfy
the conditions of the previous paragraph and the operator Tb would be a
Φ±-operator. But this situation is impossible as we have shown.

III. Let us prove that if the operator Ta (a ∈ ΠC〈p〉) is normally solvable, then it
is a Φ-operator. Let the operator Ta be normally solvable. In view of Propo-
sition 3.8 it is a Φ+-operator or a Φ−-operator. In this case a(ζ ± 0) �= 0.
Hence the range of the function a(ζ, μ; p) does not fill completely any neigh-
borhood of the origin. Let λn be a sequence of complex numbers tending to
zero and not belonging to the range of the function a(ζ, μ; p). From what has
been proved above it follows that the operators Ta−λn are Φ-operators. Since
‖Ta−λn − Ta‖ → 0 as n → ∞, we deduce that Ta is a Φ-operator in view of
the stability of the index of Φ±-operators.

IV. It remains to show that if the operator Ta is a Φ-operator and ζ0 is a dis-
continuity point of the function a(ζ), then a(ζ0, μ; p) �= 0 (0 ≤ μ ≤ 1). Let
Ta be a Φ-operator. We have already shown that a(ζ0 ± 0) �= 0. Therefore
one can choose a function b(ζ) = βζα (α, β ∈ C1, −1/p ≤ Reα < 1 − 1/p),
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which is continuous at each point ζ �= ζ0 and such that b(ζ0 + 0) = a(ζ0 + 0)
and b(ζ0 − 0) = a(ζ0 − 0). The cosets T̂a and T̂b are Mζ0-equivalent and T̂a

is invertible in the algebra A = L(�p)/J (�p), whence T̂b is Mζ0 -invertible.
Since, at the points η �= ζ0, the coset T̂b is Mη-equivalent to the scalar ele-
ment b(η)Î and b(η) �= 0, we see that T̂b is Mη-invertible. From Lemma 1.2 it
follows that the coset T̂b is invertible in the algebra A, whence the operator
Tb is a Φ-operator.

We will prove the inequality a(ζ0, μ; p) �= 0 by contradiction. Assume
that a(ζ0, μ0; p) = 0 for some μ0 (0 < μ0 < 1). Then

a(ζ0 + 0)
a(ζ0 − 0)

=
sin θ(μ0 − 1)

sin θμ0
e2πi/p.

Since
a(ζ0 + 0)
a(ζ0 − 0)

=
b(ζ0 + 0)
b(ζ0 − 0)

= e−2πiα,

we see that Reα = −1/p.
Let us show that under this condition the operator Tb cannot be a Φ-

operator. To this end, consider the operator function A(ε) = Tζα+ε . With the
aid of Proposition 3.6 it is not difficult to verify that A(ε) is a continuous
function in ε. If 0 < ε < 1, then in view of Proposition 5.1 the operator A(ε) is
invertible in �p. On the other hand, if −1 < ε < 0, then the operator A(ε+1)
is invertible. Hence IndA(ε) = IndA(ε+1)+IndTζ−1 = 1. From the theorem
on the stability of the index of a Φ-operator it follows that Tζα = A(0) is not
a Φ-operator.

The theorem is proved. �
5.3. By ΠCn×n

p and ΠCn×n
〈p〉 denote the sets of matrix functions a(ζ) = ‖ajk(ζ)‖n

1

with entries in ΠCp and ΠC〈p〉, respectively, and by Ta (a ∈ ΠCn×n
p ) denote the

operator defined in the space �n
p by the matrix

Ta = ‖Tajk
‖n

j,k=1.

The matrix function
a(ζ, μ; p) = ‖ajk(ζ, μ; p)‖n

j,k=1,

where ajk(ζ, μ; p) is the symbol of the operator Tajk
in the space �p, is said to be

the symbol of the operator Ta.

Theorem 5.2. Let a ∈ ΠCn×n
〈p〉 . The operator Ta is a Φ+-operator or a Φ−-operator

in �n
p if and only if the condition

det a(ζ, μ; p) �= 0 (|ζ| = 1, 0 ≤ μ ≤ 1) (5.6)

holds. If condition (5.6) is fulfilled, then

IndTa = − ind det a(ζ, μ; p). (5.7)

We preface the proof of the theorem with the following lemma.
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Lemma 5.2. Each matrix function a(ζ) ∈ ΠCn×n
〈p〉 that has a finite number of

discontinuity points ζ1, ζ2, . . . , ζn and satisfies the conditions det a(ζk± 0) �= 0 can
be represented in the form a = bxc, where b(ζ) and c(ζ) are non-degenerate matrix
functions with entries in C〈p〉 and x(ζ) is a triangular matrix function in ΠCn×n

〈p〉 .

The proof of this lemma is analogous to the proof of [1, Lemma 3.1].

Proof of Theorem 5.2. If the matrix function a(ζ) has a finite number of disconti-
nuity points, then the proof of the theorem can be developed as in the case p = 2
(see [1, Theorem 3.1]). For this purpose Theorem 4.2 and Lemma 5.2 presented
above are essentially used. In the general case we will develop the proof with the
aid of localizing classes.

Let {Mζ}ζ∈Γ0 be a covering system of localizing classes defined in the proof
of Theorem 5.1, and let En be the identity matrix of order n. It is easy to check
that the set {Mn

ζ }ζ∈Γ0 of the elements of the form Mn
ζ = MζEn forms a covering

system of localizing classes of the algebra L(�n
p )/J (�n

p ) and if a ∈ ΠCn×n
〈p〉 , then

the coset T̂a belongs to the commutant of the set
⋃

ζ∈Γ0
Mn

ζ .
By a0(ζ) denote a matrix function satisfying the following conditions: 1)

a0(ζ) ∈ ΠCn×n
〈p〉 ; 2) a0(ζ0 + 0) = a(ζ0 + 0), a0(ζ0 − 0) = a(ζ0 − 0); 3) the matrix

function aζ0(ζ) is continuous at every point ζ �= ζ0 and det a0(ζ) �= 0. From the
latter property of the matrix function a0 it follows that the coset T̂a0 is invertible
in L(�n

p )/J (�n
p ) if and only if it is Mn

ζ0
-invertible. Since the matrix function a0(ζ)

has at most one discontinuity point, we see (as it has been noticed above) that the
invertibility of the element T̂a0 is equivalent to the non-degeneracy of the symbol
a0(ζ, μ; p). Taking into account that the elements T̂a and T̂a0 are Mn

ζ0
-equivalent

and that a(ζ0, μ; p) = a0(ζ0, μ; p), we get that the coset T̂a is Mn
ζ0

-invertible if and
only if det a(ζ0, μ; p) �= 0. To finish the proof it remains to apply Lemma 1.2. The
theorem is proved. �

6. Algebra of operators with Fredholm symbol

Let L be a Banach space and L0 be some Banach subalgebra of the algebra L(L).
An algebra L0 is said to be an algebra with Fredholm symbol (see [7])4 if 1) one
can construct a homomorphism π : A→ A(x) of the algebra L0 onto some algebra
of matrix functions A(x), where x runs over some set X ⊂ Rm; 2) for an operator
A to be a Fredholm operator in L it is necessary and sufficient that its symbol be
non-degenerate on X :

inf
x∈X

| detA(x)| �= 0 (A(x) = π(A)).

By Gp denote the set of all operators Ta, where a(ζ) ∈ ΠC〈p〉, by WHp denote
the smallest Banach subalgebra of the algebra L(�p) that contains Gp, and by Kp

4In [7], such an algebra is simply called an algebra with symbol.
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denote the set of all operators of the form

A =
r∑

j=1

Aj1Aj2 . . . Ajk, (6.1)

where Ajl ∈ Gp. Note that Kp is dense in WHp.
Let X = Γ0 × [0, 1] and x = (ζ, μ) ∈ X . In the previous section, we defined

the symbol A(x) of every operator A ∈ Gp by equality (5.1). From the definition
of symbol and Theorem 5.2 it follows that

a) if A = cI (c = const), then A(x) = c;
b) let A = (Ajl)n

1 and A(x) = (Ajl(x))n
1 ; for the operator A to be a Φ-operator

in �n
p it is necessary and sufficient that the condition detA(x) �= 0 (x ∈ X)

holds.
The symbol of the operator (6.1) is defined by the formula

A(x) =
r∑

j=1

k∏
l=1

Ajl(x). (6.2)

In [7, Theorem 1.1] it was shown that properties a) and b) imply the following
statements:

1) the function A(x) does not depend on the manner of representation of the
operator A in the form (6.1);

2) the mapping π : A → A(x) is a homomorphism of the (nonclosed) algebra
Kp onto the set π(Kp);

3) the operator A ∈ Kp is a Φ-operator in �p if and only if A(x) �= 0 (x ∈ X);
4) for every operator A ∈ Kp the inequality

max
x∈X

|A(x)| ≤ ‖Â‖. (6.3)

holds.
Inequality (6.3) allows us to extend the homomorphism π from the algebraKp

to the whole algebra WHp. In the same way as in [18, Lemma 4.1], one can show
that J (�p) ⊂ WHp. From Proposition 3.7 it follows that the quotient algebra
ŴHp = WHp/J (�p) is commutative. From inequality (6.3) it follows that the
symbols of all operators belonging to the same coset Â coincide. We denote this
common symbol by Â(x). Since the functional ϕx(Â) = Â(x) is multiplicative for
every x ∈ X , we see that the set Jx = kerϕx is a maximal ideal in the algebra
ŴHp. Let us show that all maximal ideals of the algebra ŴHp are exhausted by
such ideals.

Lemma 6.1. All maximal ideals of the algebra ŴHp are exhausted by the ideals of
the form Jx = kerϕx.

Proof. Let J be an arbitrary maximal ideal of the algebra ŴHp. First let us
show that there exists a point ζ0 ∈ Γ0 such that for every function a(ζ) ∈ C〈p〉
the Gelfand transform of an element T̂a has the form T̂a = a(ζ0). Assume the
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contrary, that is, for every point τ ∈ Γ0 there exists a function xτ (ζ) ∈ C〈p〉
such that T̂xτ (J) �= xτ (τ). Obviously, 1) T̂xτ−ατ ∈ J , where ατ = T̂xτ (J), and 2)
|xτ (ζ) − ατ | ≥ δτ > 0 in some neighborhood uτ . Let u(τ1), . . . , u(τn) be a finite
cover of the circle Γ0 and δ be the smallest of the numbers δτ1 , . . . , δτn . Then

y(ζ) =
n∑

k=1

|xτk
(ζ) − ατk

|2 �= 0.

In view of Propositions 3.3, 3.4 and Theorem 4.1, the element T̂y is invertible in
the quotient algebra L(�p)/J (�p). Since its spectrum in this algebra is real, we see
that T̂y is invertible in the algebra ŴHp. But this is impossible because T̂y ∈ J .

Let us show that for every function a(ζ) ∈ ΠC〈p〉, which is continuous at
the point ζ0, the Gelfand transform T̂a(J) also has the form T̂a(J) = a(ζ0). If the
function a(ζ) is equal to a(ζ0) in some neighborhood of the point ζ0, then it can
be written in the form a(ζ) = b(ζ)c(ζ) + a(ζ0), where b(ζ) ∈ ΠC〈p〉, c(ζ) ∈ C〈p〉,
and c(ζ0) = 0. In view of what has been proved above, T̂c(J) = 0, whence T̂a(J) =
a(ζ0).

Let a(ζ) ∈ ΠC〈p〉 be a continuous function at the point ζ0 and χδ be the char-
acteristic function of the δ-neighborhood of the point ζ0. Proposition 3.6 implies
the equality

lim
δ→0

‖Ta − Ta(1−χδ)+a(ζ0)χδ
‖ = lim

δ→0
‖Ta(ζ)−a(ζ0)χδ

‖ = 0.

Therefore, in view of what has been proved above, T̂a(J) = a(ζ0).
Let s be the arc of the circle, which is the range of the function ξp(μ) defined

by equality (5.1) when μ runs from 0 to 1. It is easy to find a function b(ζ) ∈ R〈p〉
having the following properties: b(ζ0−0) = 0; b(ζ0+0) = 1 (where ζ0 is the point of
the circle found before); b(ζ) is continuous on Γ0 everywhere except for the point
ζ0; and the range of the function b(ζ) coincides with the arc s.

From Theorem 5.1 it follows that the spectrum of the element T̂b in the alge-
bra L(�p)/J (�p) coincides with the arc s. Since the complement to the spectrum
of this element is connected, we deduce that (see [19]) the spectrum of the element
T̂b in the algebra ŴHp also coincides with the arc s. This implies the existence of
a number μ0 ∈ [0, 1] such that T̂b(J) = ξp(μ0).

We move to the last stage of the proof. Let us show that for every element
Â ∈ ŴHp the equality Â(J) = A(ζ0, μ0) holds. It is easy to see that it is sufficient
to prove this statement for an operator Ta, where a is an arbitrary function in
ΠC〈p〉. Since the function

c(ζ) = a(ζ) − a(ζ0 + 0)b(ζ)− a(ζ0 − 0)(1− b)

is continuous at the point ζ0 and is equal to zero at this point, we see that T̂c(J) =
0, whence T̂a(J) = a(ζ0, μ0; p). This implies that J = Jx0 , where x0 = (ζ0, μ0).
The lemma is proved. �
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In the paper [7] (see [7, Theorem 4.1]) it is shown that if for a homomorphism
π satisfying conditions a) and b) Lemma 6.1 is true, then the following theorem
holds.

Theorem 6.1. An operator A ∈WHp is a Φ-operator in �p if and only if its symbol
is different from zero on the cylinder X.

Theorem 6.1 can be strengthened. We will do this in a more general situation.
By WHn×n

p denote the algebra of all operators defined in the space �n
p by

the equality A = ‖Ajk‖n
j,k=1, where Ajk ∈ WHp. The matrix function A(x) =

‖Ajk(x)‖n
1 is called the symbol of the operator A, where Ajk(x) is the symbol of

the operator Ajk.
If all operators Ajk belong to Kp and det ‖Ajk(x)‖ �= 0, then the index

ind detA(x) (x = (ζ, μ)) is defined in the same way as in the previous section. In
the general case, when A ∈ WHn×n

p , the number ind detA(x) is defined by taking
the limit.

Theorem 6.2. An operator A ∈ WHn×n
p is a Φ+-operator or a Φ−-operator in �n

p

if and only if its symbol is not degenerate on X:

detA(x) �= 0 (x ∈ Γ0 × [0, 1]). (6.5)

If condition (6.5) is fulfilled, then the operator A is a Φ-operator and

IndA = − inddetA(x). (6.6)

Proof. Since the algebra WHp is commutative, we see that condition (6.5) is nec-
essary and sufficient for the operator A to be a Φ-operator in �n

p . This follows
from Theorem 6.1 and a general statement saying that an operator A = ‖Ajk‖ is
a Φ-operator in �n

p if and only if the operator det ‖Ajk‖ is a Φ-operator in �p (see
[17, Lemma 4.1]).

Since both sides of equality (6.6) are continuous functionals on the set of all
Φ-operators in WHn×n

p , we see that it is sufficient to derive formula (6.6) for an
operator A ∈ Kn×n

p . Such an operator can be represented in the form

A =
r∑

j=1

Taj1Taj2 . . . Tajs ,

where ajl ∈ ΠC〈p〉. For this operator formula (6.6) is obtained by passing to the
linear dilation Tf = Θ(Tajl

) of the operator A (see [20, Section 3]). Here formula
(5.7) of the present paper is used.

By the same method one can show that if the operator A is a Φ+-operator
or a Φ−-operator, then it is a Φ-operator. The theorem is proved. �

7. Algebras generated by paired operators

7.1. Let aj (j = 0,±1, . . . ) be the Fourier coefficients of a function a(ζ) in Rp.
Recall that T̃a denotes the bounded linear operator defined in the space �̃p by the
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matrix ‖aj−k‖∞j,k=−∞. By P denote the projection defined in the space �̃p by the
equality

P{ξj} = {. . . , 0, . . . , 0, ξ0, ξ1, . . . }
and by Q denote the complementary projection I − P .

To each pair of functions a(ζ) and b(ζ) in Rp assign the bounded linear
operator PT̃a + QT̃b acting in �̃p. This operator is called a paired operator. An
operator of the form T̃aP + T̃bQ is called the transposed operator to the paired
operator.

The operators PT̃a +QT̃b and T̃aP + T̃bQ are defined analogously in the case
when a(ζ) and b(ζ) are matrix functions in Rn×n

p . In this case the projection P is
extended to the whole space �n

p by the equality P{xk}n
1 = {Pxk}n

1 (xk ∈ �p) and
the projection Q is equal to I − P as before.

Let a(ζ), b(ζ) ∈ Cn×n
p . The matrix function A(ζ, μ; p) (|ζ| = 1, 0 ≤ μ ≤ 1) of

order 2n defined by

A(ζ, μ; p) =∥∥∥∥∥ a(ζ + 0)ξp(μ) + a(ζ − 0)(1− ξp(μ)) hp(μ)(a(ζ + 0)− a(ζ − 0))

hp(μ)(b(ζ + 0)− b(ζ − 0)) b(ζ + 0)(1− ξp(μ)) + b(ζ − 0)ξp(μ)

∥∥∥∥∥ ,

(7.1)

where ξp(μ) is the function defined by equality (5.1) and hp(μ) is a branch of the
root

√
ξp(μ)(1 − ξp(μ)), is said to be the symbol of the operator A = PT̃a + QT̃b.

We equip the cylinder X = Γ0× [0, 1] with the topology, where a neighborhood of
every point (ζ0, μ0) is defined by one of the following equalities:

u(ζ0, 0) =
{
(ζ, μ) : |ζ − ζ0| < δ, ζ ≺ ζ0, 0 ≤ μ ≤ 1

}
∪ {

(ζ0, μ) : 0 ≤ μ < ε
}
,

u(ζ0, 1) =
{
(ζ, μ) : |ζ − ζ0| < δ, ζ � ζ0, 0 ≤ μ ≤ 1

}
∪ {

(ζ0, μ) : ε < μ ≤ 1
}
,

u(ζ0, μ0) =
{
(ζ0, μ) : μ0 − δ1 < μ < μ0 + δ2

}
(μ0 �= 0, 1),

(7.2)

where 0 < δ1 < μ0, 0 < δ2 < 1 − μ0, 0 < ε < 1, and 0 < δ < 1. Here the relation
ζ ≺ ζ0 means that the point ζ precedes the point ζ0 on the circle Γ0 5. If a(ζ) ∈ ΠC,
then the function a(ζ, μ; p) is continuous on the compact Hausdorff space X . It
turns out that the function detA, where A(ζ, μ; p) is the matrix defined by equality
(7.1), may not be continuous on the cylinder X . However, if detA(ζ, μ; p) �= 0,
then the function

gA(ζ, μ) =
detA(ζ, μ; p)

det(b(ζ + 0)b(ζ − 0))
(7.3)

is continuous on the cylinder X . A proof of this statement is presented, for instance,
in [20, Section 5].

5That is, ζ0/ζ = exp(iϕ), where 0 ≤ ϕ < π.
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Theorem 7.1. Let a(ζ), b(ζ) ∈ ΠCn×n
〈p〉 . The operator

A = PT̃a + QT̃b

is a Φ±-operator in the space �̃n
p if and only if the condition

inf | detA(ζ, μ; p)| �= 0 ((ζ, μ) ∈ X) (7.4)

holds. If condition (7.4) is fulfilled, then the operator A is a Φ-operator and

IndA = − ind
detA(ζ, μ; p)

det(b(ζ + 0)b(ζ − 0))
. (7.5)

Moreover, if n = 1, then one of the numbers dim kerA or dim cokerA is equal to
zero.

Proof. Let condition (7.4) be fulfilled. From this condition (if μ = 0 and μ = 1) it
follows that det b(ζ ± 0) �= 0. Put c(ζ) = a(ζ)b−1(ζ). From Theorem 4.1 it follows
that c(ζ) ∈ ΠCn×n

〈p〉 . The operator A can be represented in the form

PT̃a + QT̃b = (I + PT̃cQ)(P T̃cP + Q)T̃b.

The operators I + P T̃cQ and T̃b are invertible in �̃n
p , and the restriction of the

operator P T̃cP + Q to �n
p coincides with the operator Tc. In [20, Section 2] it is

shown that

detA(ζ, μ; p) = det c(ζ, μ; p) det(b(ζ + 0)b(ζ − 0)). (7.6)

From Theorem 5.2 it follows that the operator Tc is a Φ-operator in �n
p . Hence the

operator A is a Φ-operator in �̃n
p . Equality (7.6) and the results of Section 5 imply

formula (7.4) and the last statement of the theorem.
With the aid of relation (7.6) one can also prove the necessity of the hy-

potheses of the theorem. However, one should prove first that if the operator A is
a Φ+-operator or a Φ−-operator, then det b(ζ ± 0) �= 0 (|ζ| = 1). First note that if
one assumes that the operator A is a Φ+-operator and the condition det b(ζ±0) �= 0
is violated, then (as in Theorem 5.1) one can choose an operator PT̃a +QT̃β with
β ∈ ΠCn×n

〈p〉 , which is a Φ+-operator (or a Φ−-operator), and, moreover, the matrix
function β(ζ) is continuous on some arc ζ′ζ′′,

detβ(ζ′) �= 0, detβ(ζ ′′) �= 0, detβ(ζ0) = 0,

where ζ0 is some point on the arc ζ′ζ′′. The matrix function β(ζ) can be represented
in the form of the product β(ζ) = β1(ζ)β2(ζ), where β2 ∈ Cn×n

〈p〉 and detβ2(ζ0) = 0.
Therefore the equality

P T̃a + QT̃β = (P + QT̃β2Q)(P T̃a + QT̃β1) + T

holds, where T ∈ J (�̃n
p ). If the operator P T̃a+QT̃β is a Φ−-operator, then from the

last inequality it follows that the operator P +QT̃β1Q is also a Φ−-operator. This
implies that the operator Tβ2 is a Φ−-operator in the space �n

p . Since detβ2(ζ0) = 0,
this fact contradicts Theorem 4.2.
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Let us show that the operator A = PT̃a +QT̃b is not a Φ+-operator. Assume
the contrary, then the operator A∗ = P T̃a∗ + QT̃b∗ is a Φ−-operator in the space
�̃n
q (q−1+p−1 = 1). Consider the operator Ã defined in the space �̃3nq by the matrix

Ã =

⎛⎝ I 0 P
0 I Q

T̃a∗ T̃b∗ 0

⎞⎠ .

Since the equality

Ã =

⎛⎝ I 0 0
0 I 0

T̃a∗ T̃b∗ I

⎞⎠⎛⎝ I 0 0
0 I 0
0 0 −A∗

⎞⎠⎛⎝ I 0 P
0 I Q
0 0 I

⎞⎠ (7.7)

holds and outermost multiples in this equality are invertible operators in �̃3nq , we
deduce that the operator Ã is a Φ−-operator. The operator Ã is a paired operator
(in contrast to the operator A∗, which is the transposed operator to a paired
operator). Indeed, Ã = P T̃ã + QT̃b̃, where

ã =

⎛⎝ En 0 En

0 En 0
a∗ b∗ 0

⎞⎠ , b̃ =

⎛⎝ En 0 0
0 En En

a∗ b∗ 0

⎞⎠ ,

and En is the identity matrix of order n. Taking into account that det b̃(ζ0) =
det b∗(ζ0) = 0, we arrive at the contradiction to what has been proved above. The
theorem is proved. �

7.2. By Σp denote the smallest Banach subalgebra of the algebra L(�̃p) that
contains the set Gp of all operators of the form PT̃a + QT̃b, where a, b ∈ ΠC〈p〉,
and by Kp denote the set of the operators of the form

A =
k∑

j=1

Aj1Aj2 . . . Ajτ , (7.8)

where Ajl ∈ Gp. On the set Gp we define the mapping

π : A→ A(x) (x = (ζ, μ) ∈ Γ0 × [0, 1]),

where A(x) is the symbol of the operator A. By the scheme proposed in [7], one
can extend the mapping π to the homomorphism defined on the whole algebra Σp.
Further one can prove that Σp is an algebra with Fredholm symbol. Without going
into details, we will show only how to construct an operator permuting indices at
an arbitrarily given point.

By Az (z ∈ Γ0) denote the operator defined in the space �̃p by the equality
Az{ξk}∞−∞ = {z−2kξ−k}∞−∞. Consider the operator Mz acting from Kp to L(�̃p)
by the rule MzA = −AzPAQAz. Let A ∈ Kp and let A(x) = ‖αjk(x)‖2j,k=1 be
its symbol. As in [20, Section 4] it can be shown that for the operator A there
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exists a compact operator T such that for the symbol ‖βjk‖2j,k=1 of the operator
B = MzA− T ∈ Kp the equality α12(z, μ) = β21(z, μ) holds and, moreover,

sup
z∈Γ0,A∈Kp

‖MzA‖
‖A‖ ≤ 1. (7.9)

Thus the results which have been proved above and the results of the paper [7]
(see also [20]) imply6 the following proposition.

Theorem 7.2. Suppose A ∈ Σp and its symbol has the form A(x) = ‖αjk(x)‖2j,k=1.
The operator A is a Φ+-operator or a Φ−-operator in �̃p if and only if the condition

inf | detA(ζ, μ)| �= 0 (|ζ| = 1, 0 ≤ μ ≤ 1) (7.10)
holds. If condition (7.10) is fulfilled, then the operator A is a Φ-operator and

IndA = − ind det
A(ζ, μ)

a22(ζ, 0)a22(ζ, 1)
.

Note that the operator A′ = T̃aP + T̃bQ transposed to a paired operator
belongs to the algebra Σp, and its symbol is

A′(ζ, μ) =∥∥∥∥∥ a(ζ + 0)ξp(μ) + a(ζ − 0)(1− ξp(μ)) hp(μ)(b(ζ + 0)− b(ζ − 0))

hp(μ)(a(ζ + 0)− a(ζ − 0)) b(ζ + 0)(1− ξp(μ)) + b(ζ − 0)ξp(μ)

∥∥∥∥∥ .

It is the transposed matrix to the symbol A(ζ, μ) of the operator A = PT̃a +QT̃b.
Note also that the results of the last subsection can be generalized to the

algebras Σn×n
p .
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The Symbol of Singular Integral Operators
on a Composed Contour

Israel Gohberg and Nahum Krupnik

Let Γ be a contour in the complex plane that consists of n simple closed curves
Γ1, . . . ,Γn having one common point t0. We orient the contour Γ by choosing the
counter-clockwise orientation on each curve Γj . Everywhere in what follows we
will suppose that the contour has the following properties:

1) every arc of the contour Γ that does not contain the point t0 satisfies the
Lyapunov condition;

2) the curve Γj does not intersected the domain Fk (k �= j) bounded by the
curve Γk;

3) no two curves of the contour are tangential at the point t0.
In this paper singular integral operators of the form

(Aϕ)(t) = c(t)ϕ(t) +
d(t)
πi

∫
Γ

ϕ(τ)
τ − t

dτ (0.1)

are considered in the space Lp(Γ, �) with weight �(t) = |t− t0|β and 1 < p < ∞.
We will suppose that the coefficients c(t) and d(t) are continuous everywhere on
Γ except for possibly at the point t0. Moreover, it is supposed that each of the
functions c(t) and d(t) has finite (in general, different) one sided limits as t tends
to t0 along each arc of the contour Γ.

Singular integral operators of the form (0.1) in the classes of piecewise Hölder
continuous functions were considered in the famous monograph by N.I. Mushe-
lishvili [1]. In particular, some sufficient conditions for the validity of Noether
theorems were obtained there.

In this paper the (non-closed) algebra H generated by all operators of the form
(0.1) is studied. It is shown that this algebra is homomorphic to some algebra of

The paper was originally published as I.C. Gohberg, N.�. Krupnik, O simvole sin-

gul�rnyh integral�nyh operatorov na slo�nom konture, Trudy simpoziuma po

mehanike sploxno�i sredy i rodstvennym problemam analiza (Tbilisi, 1971), tom

1, s. 46–59. Mecniereba, Tbilisi, 1973. Proceedings of the Symposium on Continuum Me-
chanics and Related Problems of Analysis (Tbilisi, 1971), Vol. 1, pp. 46–59. Mecniereba, Tbilisi,
1973. MR0385644 (52 #6504), Zbl 0292.47048.



186 I. Gohberg and N. Krupnik

matrix functions. The matrix-function A which is the image of an operator A ∈ H
under this homomorphism is called the symbol of the operator A. The symbol A
is defined on the set Γ × [0, 1], it depends on the space Lp(Γ, �) and is a matrix
function of variable order. This order is equal to 2n at the points (t0, μ) (0 ≤ μ ≤ 1)
and to two at all other points.

A necessary and sufficient condition for an operator A to be a Φ-operator
is that the determinant of the symbol A be different from zero. The index of an
operator A is expressed in terms of its symbol.

The mentioned results are also obtained for the algebras generated by matrix
singular integral operators of the form (0.1).

The paper consists of six sections.
Section 1 has an auxiliary nature. Properties of the operator of singular inte-

gration along Γ are studied there. In Sections 2 and 3 operators of the form (0.1)
and algebras generated by these operators are studied under additional assump-
tions on the coefficients. In Section 4, necessary and sufficient conditions for an
operator of the form (0.1) to be a Φ-operator are obtained with the aid of the
above mentioned results. In Section 5 main results are established. Formulas for
the symbol and the index are found.

In the last section, possible generalizations and relations to results from other
papers are mentioned.

1. Auxiliary propositions

1.1. By Λ denote the set of all functions a(t) (t ∈ Γ) that are continuous everywhere
on Γ except possibly at the point t0 and such that finite (in general, different) limits
exist as t tends to t0 along each arc of the contour.

To each function a(t) ∈ Λ assign the numbers aj (j = 1, . . . , 2n) being its
limiting values at the points t0. By a2k denote the limit of the function a(t) as
t tends to t0 along the arc Γk (k = 1, . . . , n) inward to t0 and by a2k−1 denote
the limit of a(t) as t tends to t0 along the arc Γk outward to t0. The set of the
functions a(t) in Λ such that a2k−1 = a2k (k = 1, . . . , n) is denoted by Λ+ and
the set of the functions a(t) ∈ Λ for which a2k+1 = a2k (k = 1, . . . , n − 1) and
a2n = a1 is denoted by Λ−. The intersection Λ+ ∩Λ− coincides with the set C(Γ)
of all continuous functions on Γ.

By S denote the operator of singular integration along Γ:

(Sϕ)(t) =
1
πi

∫
Γ

ϕ(τ)
τ − t

dτ.

This operator is bounded in Lp(Γ, �) (see [2]). Introduce the operators P and Q
defined by the equalities

P =
1
2
(I + S), Q =

1
2
(I − S).
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In what follows by F = F(Lp(Γ, �)) denote the set of all linear compact
operators acting in Lp(Γ, �). It is known that if a(t) ∈ C(Γ), then the operator
a(t)P −Pa(t)I belongs to F. This statement plays an important role in the theory
of singular integral operators with continuous coefficients. In the case of functions
a(t) ∈ Λ± the following proposition holds.

Lemma 1.1. If a(t) ∈ Λ+, then PaP − aP ∈ F.

Proof. The function a(t) can be represented in the form a(t) = b(t)g(t), where
b(t) ∈ C(Γ) and the function g(t) is constant on each curve Γk (k = 1, . . . , n).

Let us show that PgP = gP . Let ϕ(t) (t ∈ Γ) be an arbitrary function satis-
fying the Hölder condition on each contour Γk (k = 1, . . . , n). Then the function
ψ(t) = (Pϕ)(t) satisfies the Hölder condition on each arc of the contour Γ that
does not contain the point t0. Moreover, it admits an analytic continuation into
each domain Fk (k = 1, . . . , n) and has an integrable singularity in a neighbor-
hood of the point t0. The function g(t)ψ(t) has the same properties. By using
these properties of the function g(t)ψ(t), it can be straightforwardly verified that
for each point t ∈ Γ different from t0 the equality (Sgψ)(t) = (gψ)(t) holds. From
this equality it follows that gPϕ = PgPϕ, whence PgP = gP . Since b(t) ∈ C(Γ),
we have bP − PbI ∈ F. From here and the equality PgP = gP it follows that
PaP − aP ∈ F. The lemma is proved. �

1.2. In general, the operator aP−PaI is not compact for a(t) ∈ Λ+. This statement
follows from the following example.

Let Γ be a contour consisting of curves Γ1 and Γ2 such that [−1, 0] ⊂ Γ1 and
[0, 1] ⊂ Γ2. We take the characteristic function of the contour Γ2 as the function
a(t) (t ∈ Γ). Assume that PaI−aP ∈ F. From here it follows that SaI−aS ∈ F. Let
χ(t) be the characteristic function of the segment [−1, 0] and A = χ(t)(SaI −aS).
Let us show that A ∈ F. This will lead to a contradiction.

Consider in the space L2(Γ) the sequence of normalized functions defined by
the equalities

ϕn(t) =

{ √
n for t ∈ [0, 1/n],

0 for t ∈ Γ \ [0, 1/n],
(n = 1, 2, . . . ).

Let us show that it is not possible to extract a convergent subsequence from the
sequence ψn = Aϕn. First note that the norm ‖ψn‖p in the space Lp(Γ) (1 < p < 2)
can be estimated as follows:

‖ψn‖p
p ≤ n(p−2)/p

∫ 0

−∞

∣∣∣∣ln ∣∣∣∣x− 1
x

∣∣∣∣p∣∣∣∣ dx,
whence ‖ψn‖p → 0. From here it follows that if the sequence ψn contains a subse-
quence ψkn that converges in L2(Γ), then ‖ψkn‖2 → 0. But the latter is impossible
because

‖ψn‖22 ≥
1
π2

∫ 0

−1

∣∣∣∣∣ln
∣∣∣∣x− 1

x

∣∣∣∣2
∣∣∣∣∣ dx.
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1.3.

Lemma 1.2. If a(t) ∈ Λ−, then QaQ− aQ ∈ F.

Proof. Let s1, . . . , sn be n points belonging to the domains F1, . . . , Fn, respec-
tively1. Consider the functions fj(t) defined by the equalities

fj(t) = αj

(
t− sj

t− sj+1

)δj

(j = 1, . . . , n; sn+1 = s1).

Each function fj(t) is analytic in the extended complex plane with the cut joining
the points sj and sj+1 and lying in Fj ∪Fj+1 ∪{t0}. Without loss of generality we
can assume that the one sided limits of the function a(t) at the point t0 are different
from zero. Choose the numbers αj and δj so that the limits of the function fj(t)
as t tends to t0 along Γj by the inward and outward arc are equal to a2j−1 and 1,
respectively. By f(t) denote the product f(t) = f1(t) · · · fn(t). The function f(t) is
holomorphic in the complement of F1∪· · ·∪Fn∪Γ in the extended complex plane.
It can be straightforwardly verified that QfQ = fQ. In view of the choice of the
function f(t), the product g(t) = a(t)f−1(t) belongs to C(Γ). Since QgI− gQ ∈ F
and QfQ = fQ, we have QaQ− aQ ∈ F. The lemma is proved. �

Lemmas 1.1 and 1.2 immediately imply the following.

Lemma 1.3. Let a(t) and b(t) be arbitrary functions belonging simultaneously to
one of the sets Λ+ or Λ−. Then

PaPbP − PabP ∈ F, QaQbQ−QabQ ∈ F.

2. Singular operators with coefficients in Λ+ and Λ−

Let us agree on the following notation: Lm
p (Γ, �) is the direct sum of m copies of

the space Lp(Γ, �); Λ+m (resp. Λ−m) is the set of all matrix functions of the form
‖ajl(t)‖m

1 , where ajl ∈ Λ+ (resp. ajl ∈ Λ−);

Sm = ‖δjlS‖m
1 , Pm =

1
2
(I + Sm), Qm =

1
2
(I − Sm).

Theorem 2.1. Let a(t), b(t) ∈ Λ+m(Λ−m). The operator A = aPm + bQm is a Φ+-
operator or a Φ−-operator in the space Lm

p (Γ, �) if and only if the condition

inf | det a(t)b(t)| �= 0 (t ∈ Γ) (2.1)

holds. If condition (2.1) is fulfilled, then

indA =
1
2π

n∑
k=1

{arg det b(t)a−1(t)}Γk
. (2.2)

1The domain bounded by the curve Γj is denoted by Fj .
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An auxiliary statement will be needed for the proof of this theorem. By S
(j)
m

denote the operator ‖δklS
(j)‖m

1 , where S
(j)
m is the operator of singular integration

along Γj , and by P
(j)
m and Q

(j)
m denote the operators

P (j)m =
1
2
(I + S(j)m ), Q(j)m =

1
2
(I − S(j)m ),

respectively.

Lemma 2.1. Suppose a(t) and b(t) are bounded measurable matrix functions on Γ
that coincide with the identity matrix of order m on Γ \ Γj. The operator Nj =
aP

(j)
m + bQ

(j)
m (resp. Nj = P

(j)
m a + Q

(j)
m b) is normally solvable in Lm

p (Γj , �) if and
only if the operator N = aPm + bQm (resp. N = Pma+Qmb) is normally solvable
in Lm

p (Γ, �). Moreover,

dim kerN = dimkerNj , dim cokerN = dim cokerNj.

The proof of this lemma is analogous to the proof of the corresponding lemma
from [3].

Proof of Theorem 2.1. Let condition (2.1) be fulfilled. For the sake of definiteness
assume that the matrix functions a(t) and b(t) belong to Λ+m. In this case, in view
of Lemma 1.1, the operator A can be written in the form

A = PmaPm + QmbQm + PmbQm + T,

where T ∈ F. It is easy to see that the operator

B = Pma−1Pm + Qmb−1Qm − Pma−1PmbQmb−1Qm

is a regularizer for the operator A. Therefore the operator A is a Φ-operator. Let
us prove equality (2.2). To this end, write the operator A in the form

A = (PmaPm + QmbQm)(I − Pma−1PmbQm) + T1, (2.3)

where T1 ∈ F. The operator I−Pma−1PmbQm is invertible and I+Pma−1PmbQm

is its inverse. Hence indA = indA1, where A1 = PmaPm + QmbQm.
Let c(t) be a matrix function in Λ+m. By c(j)(t) (j = 1, . . . , n) denote the

matrix function

c(j)(t) =
{

c(t) for t ∈ Γj ,
Em for t ∈ Γ \ Γj ,

where Em is the identity matrix of order m.
In view of Lemma 1.3, the operator A1 can be represented in the form of the

product

A1 = (a(1)Pm +Qm)(Pm + Qmb(1)) . . . (a(n)Pm + Qm)(Pm + Qmb(n)) + T2, (2.4)

where T2 ∈ F.
Lemma 2.1 allows us to reduce the problem of calculating the index of the

operators a(j)Pm +Qm and Pm +Qmb(j) to the case when the contour consists of
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one closed curve Γj and the matrix functions a(j)(t) and b(j)(t) are continuous on
Γj . As is known in this case

ind(a(j)Pm + Qm) = ind det a(j)(t), ind(Pm + Qmb(j)) = ind det b(j)(t).

From here and equality (2.4) it follows that indA1 = ind det b(t)a−1(t).
Let us prove the necessity of condition (2.1). Suppose the operator A is a Φ+-

operator (or a Φ−-operator). We choose a matrix function ã(t) ∈ Λ+m sufficiently
close to a(t) (in the uniform norm) and such that 1) inf | det ã(t)| �= 0 and 2) the
operator Ã = ãPm+bQm is a Φ+-operator (resp. Φ−-operator). The operator Ã can
be represented in the form (2.3). Therefore PmãPm+QmbQm is also a Φ+-operator
(resp. Φ−-operator). In its turn, the operator PmãPm+QmbQm can be represented
in the form (2.4). Again, with the aid of Lemma 2.1 the problem is reduced to
the case when the contour consists of one closed curve. From here it follows that
inf | det b(j)(t)| �= 0 (j = 1, . . . , n). Hence inf | det b(t)| �= 0. Analogously, using the
equality

A = (I + PmbQmb−1Qm)(PmaPm + QmbQm) + T ′ (T ′ ∈ F)

instead of (2.3), we conclude that inf | det a(t)| �= 0 (t ∈ Γ). The theorem is
proved. �

3. Algebra generated by singular operators with coefficients
in Λ+

m and Λ−
m

By L(Lm
p (Γ, �)) denote the algebra of all bounded linear operators acting in the

space Lm
p (Γ, �) and by A+m denote the smallest Banach subalgebra of the algebra

L(Lm
p (Γ, �)) that contains all operators of the form aPm + bQm, where a, b ∈ Λ+m.

The algebra A+m is the closure in L(Lm
p (Γ, �)) of the set H+m of the operators of the

form

A =
k∑

j=1

Aj1 . . . Ajs, (3.1)

where Ajl = ajlPm + bjlQm and ajl, bjl ∈ Λ+m.
From Lemmas 1.1–1.3 it follows that every operator A in H+m of the form

(3.1) can be represented in the form

A = PmaPm + QmbQm + PmAQm + T, (3.2)

where

a(t) =
k∑

j=1

aj1(t) . . . ajs(t), b(t) =
k∑

j=1

bj1(t) . . . bjs(t)

and T ∈ F. The algebras A−m and H−m are defined analogously. Each operator of
the form (3.1) with coefficients ajl(t) and bjl(t) in Λ−m admits a representation in
the form

A = PmaPm + QmbQm + QmAPm + T (a, b ∈ Λ−m, T ∈ F). (3.3)
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Theorem 3.1. Suppose an operator A ∈ H±m has the form (3.2) or (3.3) and suppose
that

a(t) = ‖αjl(t)‖m
1 , b(t) = ‖βjl(t)‖m

1 .

Then the inequalities

sup |αjl(t)| ≤ |A|, sup |βjl(t)| ≤ |A| (3.4)

hold, where
|A| = inf ‖A + T ‖ (T ∈ F).

Proof. Indeed, repeating the proof of Theorem 2.1 one can obtain that the operator
A is a Φ-operator if and only if the condition inf | det a(t)b(t)| �= 0 (t ∈ Γ) is
fulfilled. First, consider the case m = 1. By Ω denote the complement to the set of
all Φ-points of the operator A. The set Ω is the union of the range of the functions
a(t) and b(t). Since max |λ| ≤ |A| (λ ∈ Ω), we have |a(t)| ≤ |A| and |b(t)| ≤ |A|. In
the general case (when m ≥ 1), the operator A is the operator matrix A = ‖Fjl‖m

1

with entries Fjl ∈ H±1 . The operators Fjl can be represented in the form

Fjl = PαjlP + QβjlQ + PFjlQ + Tjl,

where Tjl ∈ F. In view of what has been proved above, we have |αjl(t)| ≤ |Fjl|
and |βjl(t)| ≤ |Fjl|. Because |Fjl| ≤ |A|, inequalities (3.4) are proved. �

Theorem 3.2. Each operator A in A+m can be represented in the form

A = PmaPm + QmbQm + PmAQm + T, (3.5)

where a(t), b(t) ∈ Λ+m and T ∈ F.
Matrix functions a(t) and b(t) are uniquely determined by the operator A.
The operator A is a Φ±-operator in Lm

p (Γ, �) if and only if the condition

inf | det a(t)b(t)| �= 0 (t ∈ Γ) (3.6)

holds. If condition (3.6) is fulfilled, then the operator A is a Φ-operator and

indA =
1
2π

n∑
j=1

{arg det b(t)a−1(t)}Γj . (3.7)

Proof. Let A ∈ A+m and An be a sequence of operators in H+m that converges in
norm to the operator A. The operators An can be represented in the form

An = PmanPm + QmbnQm + PmAnQm + Tn,

where an, bn ∈ Λ+m and Tn ∈ F. From inequalities (3.4) it follows that the matrix
functions an(t) and bn(t) converge uniformly to the matrix functions a(t) and b(t),
respectively. Moreover, the matrix functions a(t) and b(t) do not depend on a
choice of the sequence {An} converging to A. It is clear that a(t) and b(t) belong
to Λ+m. Since the operators PmanPm + QmbnQm + PmAnQm tend in norm to
the operator PmaPm + QmbQm + PmAQm, we have lim ‖T − Tn‖ = 0. Thus the
operator A can be represented in the form (3.5). Conditions (3.6) and formula
(3.7) are obtained in the same way as in the proof of Theorem 2.1. �
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It is easy to see that Theorem 3.2 remains true if one replaces in its formu-
lation A+m by A−m, Λ+m by Λ−m, and equality (3.5) by the equality

A = PmaPm + QmbQm + QmAPm + T.

4. Singular integral operators with coefficients in Λm

By Λm denote the set of all matrix functions c(t) = ‖cjl(t)‖m
1 with entries cjl(t)

in Λ. Let c(t) ∈ Λm and c1, . . . , c2n be constant matrices that are the limits of
the matrix function c(t) as t → t0

2. By ξ(μ) = ξp,β(μ) (0 ≤ μ ≤ 1) denote the
function

ξ(μ) =

⎧⎨⎩
sin(θμ) exp(iθμ)

sin θ exp(iθ)
if θ �= 0,

μ if θ = 0,
(4.0)

where θ = π − 2π(1 + β)/p. Here β and p are the parameters from the definition
of the space Lp(Γ, �).

If μ varies from 0 to 1, then the range of the function ξ(μ) is the circular arc
(or the segment of the straight line) joining the points 0 and 1. From the points
of this arc the segment [0, 1] is seen at the angle π − |θ|. If 2(1 + β) < p, then
Im ξ(μ) ≤ 0; if 2(1 + β) > p, then Im ξ(μ) ≥ 0.

Theorem 4.1. Let a(t), b(t) ∈ Λm. The operator A = aPm + bQm is a Φ+-operator
or a Φ−-operator in the space Lm

p (Γ, �) if and only if the following two conditions
are fulfilled:

inf
t∈Γ
| det a(t)| > 0, inf

t∈Γ
| det b(t)| > 0, (4.1)

det
(
b−11 a1a

−1
2 b2 . . . a

−1
2n b2nξ(μ) + (1− ξ(μ))Em

) �= 0, (4.2)
where Em is the identity matrix of order m.

If conditions (4.1) and (4.2) are fulfilled, then the operator A is a Φ-operator
and

indA =
m∑

j=1

1
2π
{arg det b(t)a−1(t)}t∈Γj

− 1
2π

{
arg det

(
b−11 a1a

−1
2 b2 . . . a

−1
2n b2nξ(μ) + (1− ξ(μ))Em

)}1
μ=0

.

(4.3)

For the proof of this theorem we will need the following.

Lemma 4.1. Let c(t) ∈ Λm and det cj �= 0 (j = 1, . . . , 2n). Then the matrix
function c(t) can be represented in the form c(t) = f(t)x(t)g(t), where g(t) ∈ Λ+m,
f(t) ∈ Λ−m, and x(t) is a matrix function having the following properties: 1) x(t) =
Em for t ∈ Γ \ Γ1; 2) x2 = Em; and 3) x1 = c1c

−1
2 c3c

−1
4 . . . c2n−1c−12n .

2Recall that the limit of the matrix function c(t) as t→ t0 along the arc Γk (k = 1, . . . , n) inward
to t0 is denoted by c2k and the limit of c(t) as t tends to t0 along Γk outward to t0 is denoted
by c2k−1.
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Proof. Let x(t) ∈ Λm be an arbitrary nonsingular matrix function satisfying con-
ditions 1)–3). By g(t) denote a nonsingular matrix function in Λ+m such that
g2k−1 = c1c

−1
2 c3 . . . c

−1
2k−2c2k−1 (k = 1, . . . , n). Put f(t) = c(t)g−1(t)x−1(t). Since

f2k+1 = f2k (k = 1, . . . , n − 1) and f1 = f2n, we have f(t) ∈ Λ−m. The lemma is
proved. �

Proof of Theorem 4.1. Assume conditions (4.1) and (4.2) are fulfilled. According
to Lemma 4.1, the matrix function c(t) = b−1(t)a(t) can be represented in the
form c(t) = f(t)x(t)g(t), where f ∈ Λ−m, g ∈ Λ+m, and the matrix function x(t)
has properties 1)–3) of Lemma 4.1. Then in view of Lemmas 1.1–1.3, the operator
cPm + Qm can be represented in the form

cPm + Qm = f(xPm + Qm)(gPm + f−1Qm) + T, (4.4)

where T ∈ F. The operator gPm +f−1Qm is a Φ-operator because it has a regular-
izer g−1Pm + fQm. Since x(t) = Em on Γ \Γ1, in view of Lemma 2.1 the operator
xPm + Qm is a Φ+-operator (resp. Φ−-operator) in Lm

p (Γ, �) if and only if the

operator xP
(1)
m + Q

(1)
m is a Φ+-operator (resp. Φ−-operator) in Lm

p (Γ1, �). Since
inf | detx(t)| �= 0 and det(ξ(μ)x1 + (1− ξ(μ))x2) �= 0, we obtain3 (see [4]) that the
operator xP

(1)
m + Q

(1)
m is a Φ-operator in the space Lm

p (Γ1, �). From Lemma 2.1
it follows that the operator xPm + Qm is a Φ-operator in Lm

p (Γ, �). Thus condi-
tions (4.1) and (4.2) are sufficient for the operator aPm + bQm to be a Φ-operator
in Lm

p (Γ, �). Now we turn to the proof of the necessity of the hypotheses of the
theorem. First, let us show that if the operator A = aPm + bQm (a, b ∈ Λm) is
a Φ+-operator or a Φ−-operator, then it is a Φ-operator. Indeed, let An be a se-
quence of singular integral operators converging in the norm to A. The operators
An can be chosen so that their coefficients satisfy conditions (4.1) and (4.2). In
view of what has just been proved, the operators An are Φ-operators. Taking into
account the property of stability of the index of Φ-operators, we obtain that the
operator A is a Φ-operator.

We prove the necessity of condition (4.1) by contradiction. Assume that the
operator A is a Φ-operator and condition (4.1) does not hold. For instance, let
inf | det a(t)| = 0. Then one can find an operator B = ãPm + bQm (sufficiently
close to A) such that det ã(t̃) = 0 (t̃ �= t0) and det ã(t′) �= 0, det ã(t′′) �= 0,
where (t′, t′′) is some neighborhood of the point t̃. The matrix function ã(t) can
be represented in the form ã(t) = h(t)u(t), where u(t) ∈ Cm(Γ) and detu(t̃) = 0.
Then B = (hPm + bQm)(uPm + Qm) + T (T ∈ F).

Since the operator B is a Φ-operator, we see that the operator uPm + Qm

is a Φ+-operator. The latter fact contradicts Theorem 2.1 because u(t) ∈ Λ+m and
detu(t̃) = 0. Let us prove condition (4.2). To that end we represent the operator
cPm + Qm, where c(t) = b−1(t)a(t), in the form (4.4). Since cPm + Qm is a Φ-
operator, we deduce that xPm + Qm also is a Φ-operator. In view of Lemma 2.1,

3In [4] it was assumed that Γ is a Lyapunov curve. However, none of the results of that paper
and their proofs are changed if the contour is piecewise Lyapunov.
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the operator xP
(1)
m + Q

(1)
m is a Φ−-operator in Lm

p (Γ1, �). From [4] it follows that
det(ξ(μ)x1 + (1 − ξ(μ))x2) �= 0, whence (3.2) is fulfilled.

It remains to prove formula (3.3). Since indA = ind(cPm+Qm), from equality
(3.4) it follows that

indA = ind(xPm + Qm) + ind(gPm + Qm) + ind(Pm + f−1Qm). (4.5)

From [4, Theorem 1] and Lemma 2.1 it follows that

ind(xPm + Qm) =
1
2π
{arg detx(t)}Γ1 −

1
2π
{arg det(ξ(μ)x1 + (1 − ξ(μ))x2)}1μ=0.

On the other hand, from Theorem 3.2 it follows that

ind(gPm + Qm) = − 1
2π

n∑
j=1

{arg detx(t)}Γj ,

ind(Pm + f−1Qm) = − 1
2π

n∑
j=1

{arg det f(t)}Γj .

Taking into account these equalities and (4.5), we get (4.3). The theorem is proved.
�

5. Symbols of singular operators

5.1. The symbol of the operator A = a(t)Pm+b(t)Qm acting in the space Lm
p (Γ, �)

is a matrix function A(t, μ) (t ∈ Γ, 0 ≤ μ ≤ 1) whose order depends on t. If t �= t0,
then the symbol is the matrix function of order 2m defined by

A(t, μ) =
∥∥∥∥ a(t) 0

0 b(t)

∥∥∥∥ .

The symbol at the points (t0, μ) (0 ≤ μ ≤ 1) is the matrix function

A(t, μ) = ‖ujk(μ)‖2nj,k=1

of order 2mn, where the matrix functions ujk(μ) (of order m) are defined by the
following equalities.

For j < k,

ujk(μ) =

⎧⎨⎩ (−1)j+1(bk − bk+1)ξ(μ)
k−j
2n (1− ξ(μ))1−

k−j
2n if k is even,

(−1)j+1(ak+1 − ak)ξ(μ)
k−j
2n (1− ξ(μ))1−

k−j
2n if k is odd;

for j > k,

ujk(μ) =

⎧⎨⎩ (−1)j(bk − bk+1)ξ(μ)1−
j−k
2n (1− ξ(μ))

j−k
2n if k is even,

(−1)j(ak+1 − ak)ξ(μ)1−
j−k
2n (1− ξ(μ))1−

j−k
2n if k is odd;



The Symbol of Singular Integral Operators 195

and for j = k,

ukk(μ) =

{
ξ(μ)ak + (1− ξ(μ))ak+1 if k is odd,

ξ(μ)bk + (1 − ξ(μ))bk+1 if k is even.

In these equalities the matrix b1 is also denoted by b2n+1 and ξ(μ) = ξp,β(μ) is the
function defined in Section 4.

Theorem 5.1. The operator A = aPm + bQm (a, b ∈ Λm) is a Φ+-operator or a
Φ−-operator if and only if the condition

detA(t, μ) �= 0 (t ∈ Γ, 0 ≤ μ ≤ 1) (5.1)

holds. If condition (5.1) is fulfilled, then the operator A is a Φ-operator and

indA =
1
2π

n∑
j=1

{arg det b(t)a−1(t)}t∈Γj −
1
2π
{arg detA(t0, μ)}1μ=0. (5.2)

For the proof of this theorem we will need the following.

Lemma 5.1. Let a(t), b(t) ∈ Λm and the conditions det ajbj �= 0 (j = 1, . . . , 2n)
hold. Then

detA(t0, μ) = det(b1a2b3a4 . . . b2n−1a2n)

× det
(
(1 − ξ(μ))Em + ξ(μ)b−11 a1a

−1
2 b2 . . . a

−1
2n b2n

)
.

(5.3)

Proof. Let αj and βj (j = 1, . . . , 2n) be some nonsingular matrices of order m. It
is not difficult to verify that

det

⎛⎜⎜⎜⎜⎝
α1 0 0 . . . 0 β1
α2 β2 0 . . . 0 0
0 β3 α3 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . α2n β2n

⎞⎟⎟⎟⎟⎠
= det(β1α2β3α4 . . . β2n−1α2n)

× det(Em − β−11 α1α
−1
2 β2 . . . β

−1
2n−1α2n−1α

−1
2n β2n).

(5.4)

Consider the matrices

M(μ) =

⎛⎜⎜⎜⎜⎝
γa1 0 0 . . . 0 −δb1
δa2 γb2 0 . . . 0 0
0 δb3 γa3 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . δa2n γb2n

⎞⎟⎟⎟⎟⎠ ,

N(μ) =

⎛⎜⎜⎜⎜⎝
γEm 0 0 . . . 0 −δEm

δEm γEm 0 . . . 0 0
0 δEm γEm . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . δEm γEm

⎞⎟⎟⎟⎟⎠ ,

where γ = γ(ξ) = ξ1/2n and δ = δ(ξ) = (1− ξ)1/2n.
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From equality (5.4) it follows that

detM(μ) = det(b1a2b3a4 . . . b2n−1a2n) det((1 − ξ)Em + ξb−11 a1a
−1
2 b2 . . . a

−1
2n b2n)

and detN(μ) = 1.
One can check straightforwardly that N(μ)A(t0, μ) = M(μ), which implies

the statement of the lemma. �

Proof of Theorem 5.1. Let A(t, μ) �= 0. Successively substituting μ = 0 and μ = 1
into this condition for t = t0, we obtain that det ajbj �= 0 (j = 1, . . . , 2n). From
equalities (5.3) and (5.1) it follows that for the operator A all the hypotheses of
Theorem 4.1 are fulfilled. Hence the operator A is a Φ-operator. Formula (5.2) is
a corollary of equalities (4.3), (5.1), and (5.3).

The necessity of conditions (5.1) is proved analogously. Indeed, let A be a
Φ+-operator (or a Φ−-operator). From Theorem 4.1 and equalities (5.1), (5.3) it
follows that detA(t, μ) �= 0. �
5.2. By Hm denote the (non-closed) algebra of all operators of the form

A =
k∑

j=1

Aj1Aj2 . . . Ajr , (5.5)

where Ajl = ajlPm + bjlQm and ajl, bjl ∈ Λm.
The matrix function

A(t, μ) =
k∑

j=1

Aj1(t, μ)Aj2(t, μ) . . . Ajr(t, μ)

where Ajl(t, μ) is the symbol of an operator Ajl, is called the symbol of an operator
A ∈ Hm defined by equality (5.5).

Theorem 5.2. Let A ∈ Hm. If the operator A is compact, then A(t, μ) ≡ 0. The
symbol A(t, μ) of the operator A does not depend on a manner of representation of
the operator A in the form (5.2). The mapping A → A(t, μ) is a homomorphism
of the algebra Hm onto the algebra of symbols of all operators in Hm. The operator
A ∈ Hm is a Φ+-operator or a Φ−-operator if and only if the condition

detA(t, μ) �= 0 (t ∈ Γ, 0 ≤ μ ≤ 1)

holds. If this condition is fulfilled, then the operator A is a Φ-operator and its index
is calculated by the formula

indA =
1
2π

⎛⎝ n∑
j=1

{arg det b(t)a−1(t)}t∈Γj − {arg detA(t0, μ)}1μ=0

⎞⎠ ,

where

a(t) =
k∑

j=1

aj1aj2 . . . ajr, b(t) =
k∑

j=1

bj1bj2 . . . bjr.
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The proof of this theorem in the general case (n ≥ 1) is developed by the same
scheme as it is developed in the case n = 1 (see [5, 6, 7]). Note that Theorem 5.1
is used substantially in the proof of this theorem.

6. Concluding remarks

6.1. In this section by Γ denote an oriented contour consisting of a finite number of
closed and open piecewise Lyapunov curves having a finite number of intersection
points. We can think of such a contour as consisting of a set of simple closed Lya-
punov curves γ1, . . . , γn that do not have common points except for the endpoints
of open arcs. The endpoints of one or several arcs are called nodes (see [1]). The
points of the contour different from the nodes are called ordinary. We assume that
none of two lines are tangential to each other at the nodes.

By Λ denote the set of the functions that are continuous at each ordinary
point of the contour Γ and have finite (in general, distinct) limits as t tends to the
nodes along each line.

Let tj (j = 1, . . . , q) be some node joining r arcs �
(j)
1 , . . . , �

(j)
s , �

(j)
s+1, . . . , �

(j)
r ,

the first s of which are the beginnings of open curves and the other r − s are the
ends of open curves. For each function c(t), by c

(j)
1 , . . . , c

(j)
r denote the limits of the

function c(t) as t tends to tj along the arcs �
(j)
1 , . . . , �

(j)
r , respectively. If inf |c| > 0,

then by c(j) denote the number c
(j)
1 . . . c

(j)
s (c(j)s+1 . . . c

(j)
r )−1.

We will consider operators aP + bQ in the space Lp(Γ, �) where 1 < p <∞;

�(t) =
m∏

k=1

|t− tk|βk ;

t1, . . . , tm are pairwise distinct points of the contour Γ that include all the nodes;
β1, . . . , βm are real numbers satisfying the condition −1 < βk < p − 1 (k =
1, . . . ,m). To each node tj assign the function ξj(μ) (0 ≤ μ ≤ 1) defined by
equality (4.0) with the corresponding number βj in place of the number β.

Theorem 6.1. Let a(t), b(t) ∈ Λ. The operator A = aP + bQ is a Φ+-operator or a
Φ−-operator in Lp(Γ, �) if and only if the following conditions:

inf
t∈Γ
|a(t)| > 0, inf

t∈Γ
|b(t)| > 0, (6.1)

ξj(μ)c(j) + 1− ξj(μ) �= 0 (j = 1, . . . , q; 0 ≤ μ ≤ 1) (6.2)
hold, where c(t) = a(t)/b(t).

Suppose conditions (6.1)–(6.2) are fulfilled and

2πκ =
n∑

j=1

{arg c(t)}t∈γj +
q∑

j=1

{
arg(c(j)ξj(μ) + 1− ξj(μ))

}1
μ=0

.

Then for κ ≥ 0 the operator A is left-invertible and dim cokerA = κ; for κ ≤ 0
the operator A is right-invertible and dim kerA = −κ.
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The proof is carried out as follows. We first consider the case when the contour
consists only of several open arcs having one common point t0 and the operator
A has the form cP + Q, where c(t) is a function that is equal to 1 at all starting
and terminating points of the open curves of the contour Γ different form t0. The
contour Γ is complemented to the contour Γ̃ satisfying the conditions of Section 1
and the function c(t) is extended to Γ̃ by the equality c(t) = 1 for t ∈ Γ̃ \ Γ.
After that, by the usual procedure (see [3]) Theorem 6.1 for the considered case
is deduced from Theorem 4.1. In the general case the function c(t) is represented
as the product c(t) = c0(t)c1(t) · · · cq(t), where the function cj(t) (j = 1, . . . , q) is
different from 1 only in some neighborhood of the node tj that does not contain
other nodes different from tj and the function c0(t) is continuous on Γ. In the same
way as in [3], one can show that cP+Q = (c0P+Q)(c1P+Q) . . . (cqP+Q)+T . This
allows us to reduce the problem in the general case to the case considered above.

6.2. As in Section 5, one can define the symbol of the operator A = aP + bQ and
the symbol of a more general operator

A =
r∑

k=1

Ak1Ak2 . . . Akr , (6.3)

where Akj = akjPm + bkjQm are singular integral operators with matrix piecewise
continuous coefficients acting in the space Lm

p (Γ, �). One can show that Theo-
rem 5.2 is valid for the operators of the form (6.3). We will not provide details
here.
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One-dimensional Singular Integral Operators
with Shift

Israel Gohberg and Nahum Krupnik

Introduction

Let Γ be a closed or open oriented Lyapunov arc and ω(t) be a bijective mapping
of Γ onto itself. An operator of the form

A = a(t)I + b(t)S + (c(t) + d(t)S)W (1)

is usually called a one-dimensional singular integral operator with shift ω(t). Here
a(t), b(t), c(t), and d(t) are bounded measurable functions on Γ, S is the operator
of singular integration along Γ given by

(SΓϕ)(t) =
1
πi

∫
Γ

ϕ(τ)
τ − t

dτ (t ∈ Γ),

and W is the shift operator defined by

(Wϕ)(t) = ϕ(ω(t)).

Consider the simplest case of a shift, when W 2 = I, that is, the case when
ω(ω(t)) = t. Besides that, we will assume that the function ω(t) has the derivative
ω′(t) satisfying the Hölder condition with exponent α (0 < α < 1) and that
ω(t) �≡ t.

The operator A will be considered in the space Lp(Γ, �) with weight1

�(t) =
n∏

k=1

|t− tk|βk ,

where tk ∈ Γ, 1 < p < ∞, and −1 < βk < p − 1. The operator A is a bounded
linear operator in this space. Usually (see [1, 2, 3]), the operator A of the form (1)

The paper was originally published as I.C. Gohberg, N.�. Krupnik, Ob odnomernyh sin-

gul�rnyh integral�nyh operatorah so sdvigom, Izv. Akad. Nauk Arm�n. SSR, Ser.

Matem. 8 (1973), � 1, 3–12. MR0333840 (48 #12162), Zbl 0255.47058.
1Note that obtained results remain true also for a wider class of spaces.
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is considered simultaneously with the operator AW defined in the space L2p(Γ, �) =
Lp(Γ, �)× Lp(Γ, �) by the matrix

AW =

∥∥∥∥∥ a(t)I + b(t)S c(t)I + d(t)S

W (c(t)I + d(t)S)W W (a(t)I + d(t)S)W

∥∥∥∥∥ .

It is easy to check the identities

W (a(t)I + b(t)S)W = a(ω(t))I + εb(ω(t))S + T,

where T is a compact operator, and ε = 1 if the mapping t = ω(τ) does not change
the orientation of the contour Γ and ε = −1 otherwise. From here it follows that
the operator AW is equal modulo a compact operator to the operator ÃW defined
in the space L2p(Γ, �) by the equality

ÃW =

∥∥∥∥∥ a(t) c(t)

c(ω(t)) a(ω(t))

∥∥∥∥∥ +

∥∥∥∥∥ b(t) d(t)

εd(ω(t)) εb(ω(t))

∥∥∥∥∥
∥∥∥∥∥ S 0

0 S

∥∥∥∥∥ . (2)

The operator ÃW is a singular integral operator (without shift) with matrix coef-
ficients. For such operators, necessary and sufficient conditions under which they
are Φ-operators are known in the cases of continuous and piecewise continuous
coefficients (see [4, 5, 6]).

In the papers [1, 2, 3] (see also [8, 7] and the references given in [1]), in
particular, the following statement is obtained.

Theorem 1. Let a(t), b(t), c(t), and d(t) be continuous functions. The operator
A defined by equality (1) is a Φ-operator in the space Lp(Γ, �) if and only if the
operator ÃW is a Φ-operator in the the space L2p(Γ, �). If A is a Φ-operator, then

IndA =
1
2

Ind ÃW .

The formulated theorem remains true for arbitrary bounded measurable co-
efficients a(t), b(t), c(t), and d(t) in the case when the mapping ω : Γ → Γ does
not change the orientation of the contour. The proof of this statement follows from
the following three facts.

1) The identity2∥∥∥∥∥ I W

I −W

∥∥∥∥∥
∥∥∥∥∥ X Y

WY W WXW

∥∥∥∥∥
∥∥∥∥∥ I I

W −W

∥∥∥∥∥
= 2

∥∥∥∥∥ X + Y W 0

0 X − Y W

∥∥∥∥∥ ,

(3)

holds for arbitrary bounded linear operators X,Y and an involution W acting
on some Banach space.

2Note that this identity allows us to obtain explicit formulas for the inversion of singular integral
operators with shift in a series of cases.
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2) The function ω(t)− t is different from zero everywhere on Γ.
3) For the operators X = aI+bS, Y = cI+dS, and M = (ω(t)−t)I the identity

(X − YW )M = M(X + YW ) + T

holds, where T is a compact operator.

From assertions 1)–3) it follows also that the operator A is a Φ+-operator
(or a Φ−-operator) in the space Lp(Γ, �) if and only if the operator ÃW is a Φ+-
operator (resp. Φ−-operator) in the space L2p(Γ, �).

Note that all these results remain also valid in the case when the coefficients
a(t), b(t), c(t), and d(t) are matrices whose entries are arbitrary bounded measur-
able functions.

In the case when the function ω : Γ → Γ changes the orientation of the
contour Γ and the coefficients a(t), b(t), c(t), and d(t) are continuous, Theorem 1
follows from identity (3) and the compactness of the operator (X − Y W )N −
N(X + YW ), where N = (ω(t)− t)I + λS and λ is an arbitrary complex number.

From identity (3) it follows also that if the operator ÃW is a Φ-operator
(resp. Φ+-operator, Φ−-operator), then the operator A (with arbitrary bounded
measurable coefficients) is a Φ-operator (resp. Φ+-operator, Φ−-operator), too.
However, the converse statement is not true anymore. In Section 3, an example of
a Φ-operator A of the form (1) with piecewise continuous continuous coefficients
is given, for which the operator ÃW is not a Φ-operator.

In the present paper, one model class of singular integral operators with shift
is investigated in detail in the case when the shift changes the orientation and
the coefficients have finite limits from the left and from the right at each point.
Conditions guaranteeing that such operators are Φ-operators are obtained. The
algebra generated by such operators is studied. Formulas for the symbol and the
index are obtained.

Generalizations of the results of this paper to more general classes of singular
integral equations and wider classes of shifts will be given elsewhere.

1. Auxiliary statements

By L(B) denote the Banach algebra of all bounded linear operators acting in a
Banach space B and by J(B) denote the two-sided ideal of the algebra L(B) that
consists of all compact operators.

Let us agree also on the following notation: Lp,β = Lp([0, 1], �), where �(t) =
tβ , −1 < β < p−1, 1 < p <∞; ΠC (= ΠC(a, b)) is the set of all functions defined
on the segment [a, b] that have finite limits from the left and from the right at each
interior point and continuous at the endpoints a and b.

In what follows, Ln
p,β (= Ln

p,β(0, 1)) will denote the direct sum of n spaces
Lp,β, and ΠC(n)(a, b) will denote the algebra of all square matrices of order n with
entries in ΠC(a, b).
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By Σ(n)p,β (= Σ(n)p,β(0, 1)) denote the smallest subalgebra of the Banach algebra
L(Ln

p,β) that contains all operators of the form aI + bS, where a, b ∈ ΠC(n)(0, 1)
and S is the operator of singular integration on the segment [0, 1] in Ln

p,β.

As is shown in [9], the algebra Σ(n)p,β is homomorphic to some algebra of
matrices of order 2n whose entries are bounded functions on the square [0, 1]×[0, 1].
Let us denote this homomorphism by π. By Ap,β(t, μ) (0 ≤ t, μ ≤ 1) denote the
matrix πA, where A ∈ Σ(n)p,β. The matrix function Ap,β(t, μ) is called the symbol
of the operator A in the space Ln

p,β. Besides that, following [9], we will write the
matrix Ap,β(t, μ) in the form of the block matrix of order two

Ap,β(t, μ) = ‖ap,β
jk (t, μ)‖2j,k=1.

In [9, Theorem 5.1] it is proved that an operator A ∈ Σ(n)p,β is a Φ+-operator
or a Φ−-operator in the space Ln

p,β if and only if the function detAp,β(t, μ) is
different from zero on the square [0, 1] × [0, 1]. If this condition is satisfied, then
the operator A is a Φ-operator and its index is calculated by the formula3

IndA = − 1
2π

{
arg

detAp,β(t, μ)

det ap,β
22 (t, 0)ap,β

22 (t, 1)

}
0≤t,μ≤1

.

Besides that, in [9] it is shown that J(Ln
p,β) ⊂ Σ(n)p,β and that if an operator

A ∈ Σ(n)p,β admits a regularization, then its regularizer also belongs to the algebra

Σ(n)p,β . In particular, if an operator A ∈ Σ(n)p,β is invertible, then A−1 ∈ Σ(n)p,β .
The symbol Ap,β(t, μ) of an operator of the form A = a(t)I +b(t)S is defined

at the points (t, μ) (0 < t < 1, 0 ≤ μ ≤ 1) by the equality

Ap,β(t, μ)

=

∥∥∥∥∥ ξ(μ)x(t + 0) + (1− ξ(μ))x(t − 0) h(μ)(y(t + 0)− y(t− 0))

h(μ)(x(t + 0)− x(t− 0)) ξ(μ)y(t− 0) + (1− ξ(μ))y(t + 0)

∥∥∥∥∥ ,

(4)

where x(t) = a(t) + b(t), y(t) = a(t)− b(t), θ = π − 2π/p,

ξ(μ) =

⎧⎨⎩
sin(θμ) exp(iθμ)

sin θ exp(iθ)
for θ �= 0,

μ for θ = 0,
(5)

and h(μ) is a fixed branch of the root
√

ξ(μ)(1 − ξ(μ)).
The symbol is defined at the points (0, μ) and (1, μ) (0 ≤ μ ≤ 1) by

Ap,β(0, μ) =

∥∥∥∥∥ a(0) + (2ξβ(μ)− 1)b(0) 0

0 a(0)− b(0)

∥∥∥∥∥
3For the explanation of this formula, see [9], pp. 972–973 or p. 957 of the Russian original.
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and

Ap,β(1, μ) =

∥∥∥∥∥ a(1)− (2ξ(μ)− 1)b(1) 0

0 a(1)− b(1)

∥∥∥∥∥ ,

where the function ξβ(μ) is obtained from the function ξ(μ) by replacing the
number θ in the right-hand side of (5) by π − 2π(1 + β)/p.

Consider the operator R defined by the equality

(Rϕ)(t) =
1
πi

∫ 1

0

√
t

τ

ϕ(τ)
τ − t

dτ (0 ≤ t ≤ 1). (6)

From [10, Theorem 2.2] it follows that the operator R is bounded in the space Lp,β

if and only if the condition 2(1 + β) < p is satisfied.
We will need the following statement.

Lemma 1. Let numbers β and p (−1 < β < p−1, 1 < p <∞) satisfy the condition
2(1 + β) < p. Then the operator R belongs to the algebra Σ(1)p,β, and its symbol has
the form

Rp,β(t, μ) =

∥∥∥∥∥ rp,β
11 (t, μ) 0

0 −1

∥∥∥∥∥ , (7)

where

rp,β
11 (t, μ) =

⎧⎪⎨⎪⎩
(2ξβ(μ)− 1)−1 for t = 0,
1 for 0 < t < 1,
2ξ(μ)− 1 for t = 1.

Proof. Consider the operator
B = aI + SbI

in the space Lp,β, where a(t) = sin(πt/2) and b(t) = i cos(πt/2). From the defini-
tion of the symbol it follows straightforwardly that

detBp,β(t, μ) =

{
1 for 0 < t ≤ 1,
2ξβ(μ)− 1 for t = 0.

Since 2(1 + β) < p, we have π − 2π(1 + β)/p �= 0, whence 2ξβ(μ) − 1 �= 0. Thus,
the operator B is a Φ-operator in the space Lp,β. Let us show that the index of B
is equal to zero. Put

fp,β(t, μ) =
detBp,β(t, μ)

b22(t, 0)b22(t, 1)
.

It is not difficult to see that

fp,β(t, μ) =

{
1− 2ξβ(μ) for t = 0,
−e−iπt for 0 < t ≤ 1.

The range of the function fp,β(t, μ) consists of two circular arcs joining the points
−1 and 1. Both these arcs are located in the upper half-plane. Therefore,

{arg fp,β(t, μ)}0≤t,μ≤1 = 0.

From formula (3) it follows that IndB = 0.



206 I. Gohberg and N. Krupnik

As is known [5, Theorem 1], in this case the operator B is invertible in Lp,β .
To find the inverse operator, we use formula (98,11) from Mushelishvili’s

monograph [11, 2nd Russian edition]. From this formula it follows that4

B−1 = aI − Z−1SbZ,

where Z = g(t)
√
tI and, moreover, the functions g(t) and 1/g(t) are continuous

on [0, 1]. Since B ∈ Σ(1)p,β , we have B−1 ∈ Σ(1)p,β . In view of the equality

B−1 = aI + g−1RbgI,

the operator R1 = RbI belongs to the algebra Σ(1)p,β .
Consider the operator R2 = RbI, where c(t) =

√
t. Since the operator

R2 − ScI = cS − ScI

is compact in Lp,β , we have R2 ∈ Σ(1)p,β . Thus, B(b+ c)I ∈ Σ(1)p,β . Since the function

b(t) + c(t) is not equal to zero on the segment [0, 1], we conclude that B ∈ Σ(1)p,β .
Let Sp,β(t, μ) and Cp,β(t, μ) be the symbols of the operators S and C = c(t)I,
respectively. Since the operator (R − S)cI is compact, we have

(Rp,β(t, μ)− Sp,β(t, μ))Cp,β(t, μ) ≡ 0.

Since

Cp,β(t, μ) =
∥∥∥∥ √t 0

0
√
t

∥∥∥∥ ,

we see that for all t �= 0 the equality Rp,β(t, μ) = Sp,β(t, μ) holds. From the
equality

(aI + bS)(aI − g−1RbgI) = I

it follows that the product Sp,β(0, μ)Rp,β(0, μ) is the identity matrix. Therefore
Rp,β(0, μ) = S−1p,β(0, μ). Thus,

Rp,β(t, μ) =

⎧⎨⎩ Sp,β(t, μ) for t �= 0,

S−1p,β(0, μ) for t = 0,

and this implies (7). The lemma is proved. �

2. Main statement

Let us denote by Σ(n)p (−1, 1;W ) the smallest subalgebra of the Banach algebra
L(Ln

p (−1, 1)) (1 < p <∞) that contains all operators of the form

A = aI + bS + (cI + dS)W, (8)

4From [11] it follows that the operator C = aI + Z−1SbZ has the property CBϕ = BCϕ for
all functions ϕ(t) satisfying the Hölder condition on [0, 1]. Since, besides that, the operator C is
bounded in Lp,β , we have B

−1 = C.
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where the coefficients a, b, c, d ∈ ΠC(n)(−1, 1), the shift operator W is defined by
the equality (Wϕ)(t) = ϕ(−t), and S is the operator of singular integration on
the segment [−1, 1].

Let σ : Ln
p (−1, 1) → L2np (0, 1) be the mapping defined by the equality

(σϕ)(t) = (ϕ(t), ϕ(−t)) (0 ≤ t ≤ 1). Then for every operator X ∈ L(Ln
p (−1, 1))

the operator σXσ−1 can be represented as the matrix

σXσ−1 =
∥∥∥∥ X11 X12

X21 X22

∥∥∥∥
with entries Xjk ∈ L(Ln

p (0, 1)) (j, k = 1, 2). In particular, for the operator A of
the form (8) we have

σAσ−1 = gI + hS0 + fM0, (9)

where

g(t) =

∥∥∥∥∥ a(t) c(t)

c(−t) d(−t)

∥∥∥∥∥ , h(t) =

∥∥∥∥∥ b(t) d(t)

−d(−t) −b(−t)

∥∥∥∥∥ ,

f(t) =

∥∥∥∥∥ −d(t) −b(t)

b(−t) d(−t)

∥∥∥∥∥
and

(S0ϕ)(t) =
1
πi

∫ 1

0

ϕ(τ)
τ − t

dτ, (M0ϕ)(t) =
1
πi

∫ 1

0

ϕ(τ)
τ + t

dτ (0 ≤ t ≤ 1)

are operators acting in the space L2np (0, 1).
Consider the operator ν defined by the equality (νϕ)(t) = ϕ(t1/2). Obviously,

the operator ν is a bounded linear and invertible operator acting from the space
L2np (0, 1) to L2np,−1/2(0, 1). It is easy to see that νa(t)ν−1 = a(t1/2)I,

νS0ν
−1 =

1
2
(S0 + M1), νM0ν

−1 =
1
2
(S0 −M1),

where the operator M1 is defined in the space L2np,−1/2(0, 1) by the equality

(M1ϕ)(t) =
1
πi

∫ 1

0

√
t

τ

ϕ(τ)
τ − t

dτ (0 ≤ t ≤ 1).

According to Lemma 1, the operator M1 belongs to the algebra Σ(2n)p,−1/2(0, 1).
Therefore, we have the embedding

νσΣ(n)p (−1, 1;W )σ−1ν−1 ⊂ Σ(2n)p,−1/2(0, 1).

Let X be an operator in the algebra Σ(n)p (−1, 1;W ). By Xp(t, μ) (0 ≤ t, μ ≤ 1)
denote the symbol of the operator νσXσ−1ν−1 ∈ Σ(2n)p,−1/2(0, 1). We will say that
the matrix function Xp(t, μ) (0 ≤ t, μ ≤ 1) of order 4n is the symbol of the
operator X . From the obtained rules and Lemma 1 in particular it follows that
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the symbol of the operator (8) belonging to the algebra Σ(n)p (−1, 1;W ) is defined
by the equality

Ap(t2, μ)

=

∥∥∥∥∥ ξ(μ)x(t + 0) + (1− ξ(μ))x(t − 0) h(μ)(y(t + 0)− y(t− 0))

h(μ)(x(t + 0)− x(t− 0)) ξ(μ)y(t− 0) + (1− ξ(μ))y(t + 0)

∥∥∥∥∥
in the interval 0 < t < 1, where

x(t) =

∥∥∥∥∥ a(t) + b(t) c(t) + d(t)

c(−t)− d(−t) a(−t)− b(−t)

∥∥∥∥∥ ,

y(t) =

∥∥∥∥∥ a(t)− b(t) c(t)− d(t)

c(−t) + d(−t) a(−t) + b(−t)

∥∥∥∥∥ ,

and ξ(μ), h(μ) are functions defined in Section 1.
For t = 1,

Ap(1, μ) =

∥∥∥∥∥ α(μ) 0

0 β(μ)

∥∥∥∥∥ ,

where

α(μ) =

∥∥∥∥∥ a(1) c(1)

c(−1) a(−1)

∥∥∥∥∥+ (2ξ(μ)− 1)

∥∥∥∥∥ b(1) d(1)

−d(−1) −b(−1)

∥∥∥∥∥ ,

β(μ) =

∥∥∥∥∥ a(1)− b(1) c(1)− d(1)

c(−1) + d(−1) a(−1) + b(−1)

∥∥∥∥∥
and for t = 0,

Ap(0, μ) =

∥∥∥∥∥ γ(μ) 0

0 δ(μ)

∥∥∥∥∥ ,

where

γ(μ) =

∥∥∥∥∥ a(+0) c(+0)

c(−0) a(−0)

∥∥∥∥∥+
η(μ)

2

∥∥∥∥∥ b(+0)− d(+0) d(+0)− b(+0)

b(−0)− d(−0) d(−0)− b(−0)

∥∥∥∥∥
+

1
2η(μ)

∥∥∥∥∥ b(+0) + d(+0) b(+0) + d(+0)

−b(−0)− d(−0) −b(−0)− d(−0)

∥∥∥∥∥ ,

η(μ) = 2ξ−1/2(μ)− 1, and

δ(μ) =

∥∥∥∥∥ a(+0)− b(+0) c(+0)− d(+0)

c(−0) + d(−0) a(−0) + b(−0)

∥∥∥∥∥ .
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We will write the symbol Xp(t, μ) of an operator X ∈ Σ(n)p (−1, 1;W ) in the
form ‖xjk(t, μ)‖2j,k=1, where xjk(t, μ) are matrix functions of order 2n.

In view of a property of symbols of operators in the algebra Σ(2n)p,β (0, 1) (see
[8]) and the arguments presented above, we have the following.

Theorem 2. An operator A ∈ Σ(n)p (−1, 1;W ) is a Φ+-operator or a Φ−-operator
in Ln

p (−1, 1) if and only if the condition

detAp(t, μ) �= 0 (0 ≤ t ≤ 1, 0 ≤ μ ≤ 1)

holds. If this condition is fulfilled, then the operator A is a Φ-operator and

IndA = − 1
2π

{
arg

detAp(t, μ)
det a22(t, 0)a22(t, 1)

}
0≤t≤1,0≤μ≤1

.

3. Example

In this section an example of a singular integral operator with a shift (changing
the orientation of the contour) is presented. This example shows that if coefficients
of the operator have discontinuity points, then Theorem 1 does not hold.

Let A = I +αχ(t)SW , where α = const, χ(t) (−1 ≤ t ≤ 1) be the character-
istic function of the segment [0, 1], S be the operator of singular integration along
the segment [−1, 1], and W be the shift operator given by (Wϕ)(t) = ϕ(−t). The
operator A belongs to the algebra Σ(1)p (−1, 1). Its symbol in the space L2(−1, 1)
has the form

A2(t, μ) =

∥∥∥∥∥ a11(t, μ) 0

0 a22(t, μ)

∥∥∥∥∥ ,

where

a22(t, μ) =

∥∥∥∥∥ 1 −α

0 1

∥∥∥∥∥
and

a11(t, μ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥∥∥∥∥ 1 α

0 1

∥∥∥∥∥ for 0 < t < 1,∥∥∥∥∥ 1 α(2μ− 1)

0 1

∥∥∥∥∥ for t = 1,∥∥∥∥∥ 1 + iα sinπμ −α cosπμ

0 1

∥∥∥∥∥ for t = 0.

Therefore, detA2(t, μ) = 1 for t �= 0 and detA2(0, μ) = 1 + iα sinπμ.
If we put α = −i, then detA2(t, μ) �= 0 (0 ≤ t, μ ≤ 1). Hence the operator

I − iχ(t)SW is a Φ-operator in L2(−1, 1). On the other hand, if we put α = i,
then detA2(0, 1/2) = 0. Therefore, the operator I + iχ(t)SW is not a Φ-operator
in the space L2(−1, 1).
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Let B = I − iχ(t)SW and C = I + iχ(t)SW . Since B is a Φ-operator in
L2(−1, 1) and C is not a Φ-operator in this space, we have in view of equality
(3) that the operator BW (as well as the operator B̃W ) is not a Φ-operator in
L22(−1, 1). Thus, for the operator B Theorem 1 is not true.

Note that in this example the operators BW and B̃W coincide. Notice also
that it is possible to construct examples of singular integral operators with shift
(changing the orientation of the contour) on a closed contour with piecewise con-
tinuous coefficients, for which Theorem 1 does not hold.
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Algebras of Singular Integral Operators
with Shift

Israel Gohberg and Nahum Krupnik

In this note the results of [1] are generalized to the case of an arbitrary simple
closed Lyapunov contour and an arbitrary Carleman shift changing the orientation
of the contour.

1. Let L1 and L2 be Banach spaces and L(L1,L2) be the Banach space of all
bounded linear operators acting from L1 to L2. The algebra L(L,L) is denoted by
L(L). We will say that two algebras A1 ⊂ L(L1) and A2 ⊂ L(L2) are equivalent
if there exists an invertible operator M ∈ L(L1,L2) such that the set of operators
of the form MAM−1, where A ∈ A1, coincides with the algebra A2.

Let Γ be a contour in the complex plane. Let us introduce the following
notation: SΓ is the operator of singular integration along Γ given by

(SΓϕ)(t) =
1
πi

∫
Γ

ϕ(τ)
τ − t

dτ (t ∈ Γ);

PC(Γ) is the set of all functions continuous on Γ except for at most a finite set of
points where they have discontinuities of the first kind; Lp(Γ, �) is the space Lp

on Γ with a weight �; Σ(p,Γ, �) is the smallest Banach subalgebra of the algebra
L(Lp(Γ, �)) that contains all operators aI (a ∈ PC(Γ)) and the operator SΓ;
Σ(p,Γ, �;B) is the smallest Banach subalgebra of the algebra L(Lp(Γ, �)) that
contains the algebra Σ(p,Γ, �) and the operator B. Let Σ be some subalgebra of
the algebra L(L). Denote by Σn the subalgebra of the algebra L(Ln) consisting of
all operators of the form ‖Ajk‖n

j,k=1, where Ajk ∈ Σ.
In the following we will suppose that Γ is a simple closed oriented Lyapunov

contour and ν : Γ → Γ is a mapping changing the orientation of Γ and having the
following properties:

ν′(t) ∈ H(Γ), ν(ν(t)) ≡ t (t ∈ Γ), (1)

The paper was originally published as I.C. Gohberg, N.�. Krupnik, Ob algebrah singul-

�rnyh integral�nyh operatorov so sdvigom,Matem. Issled. 8 (1973), � 2(28), 170–175.
MR0341191 (49 #5941), Zbl 0306.47022.
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where H(Γ) is the set of functions satisfying the Hölder condition on Γ. By V we
denote the shift operator defined by

(V ϕ)(t) = ϕ(ν(t)). (2)

We will suppose1 that �(t) = |t− t0|α|t− τ0|β , where t0, τ0 are fixed points of the
mapping ν and α, β are real numbers satisfying −1 < α < 1, −1 < β < 1. Under
these assumptions the following result holds.

Theorem 1. The algebra Σn(p,Γ, �;V ) is equivalent to a subalgebra of the algebra
Σ2n(p,Γ+0 , �0), where

Γ+0 = {ζ : |ζ| = 1, Im z ≥ 0}, �0(ζ) = |ζ − 1|(β−1)/2|ζ + 1|(p−1+α)/2,

and 1 < p <∞.

The proof of this theorem is based on the following lemma.

Lemma 1. Let ν be a mapping satisfying conditions (1) and let Γ0 = {ζ : |ζ| = 1}
be the unit circle. Then there exists a mapping γ : Γ0 → Γ such that

γ′(ζ) ∈ H(Γ0), γ′(ζ) �= 0 (ζ ∈ Γ0) (3)

and
(γ−1 ◦ ν ◦ γ)(ζ) = ζ−1, (4)

where ν ◦ γ denotes the composition of the mappings γ and ν.

Proof. It is not difficult to see that the mapping ν has exactly two fixed points
on Γ. We denote them by t0 and τ0. Since Γ is a Lyapunov contour, there exists a
mapping η : Γ0 → Γ such that η′(ζ) ∈ H(Γ0) and η′(ζ) �= 0 for ζ ∈ Γ0. Besides, we
can choose η in such a way that η(1) = t0. Put λ = η−1 ◦ν ◦η. It is easy to see that
the mapping η : Γ0 → Γ0 changes the orientation of the unit circle Γ0. Moreover,
λ(λ(ζ)) = ζ for |ζ| = 1, λ(1) = 1, and λ(ζ0) = ζ0, where ζ0 = η−1(t0). The points
1 and ζ0 divide the circle Γ0 into the arcs Γ1 and Γ2. Moreover, λ : Γ1 → Γ2 and
λ : Γ2 → Γ1. Let μ : Γ1 → Γ2 be a mapping satisfying

μ(ζ0) = −1, μ(1) = 1, μ(ζ) �= 0 (ζ ∈ Γ1), μ′(ζ) ∈ H(Γ1).

We extend μ to the whole contour Γ by setting μ(ζ) = 1/μ(λ(ζ)) for ζ ∈ Γ2. It is
easy to see that for all ζ ∈ Γ one has μ(ζ) = 1/μ(λ(ζ)).

Let

μ′(ζ0 + 0) = lim
ζ∈Γ1,ζ→ζ0

μ′(ζ), μ′(ζ0 − 0) = lim
ζ∈Γ2,ζ→ζ0

μ′(ζ).

Since

μ′(ζ0 − 0) = −μ′(ζ0 + 0)λ′(ζ0)
(μ(ζ0))2

, λ′(ζ0) = −1, μ(ζ0) = −1,

we obtain that μ′(ζ0−0) = μ′(ζ0+0). Analogously one can check that μ′(1−0) =
μ′(1 + 0). Thus μ′ ∈ H(Γ0).

1One can consider even more general weights � for which the space Lp(Γ, �) is invariant with

respect to the operator V .
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Let γ = η ◦ μ−1. Without difficulty one can verify that γ satisfies conditions
(3) and (4). The lemma is proved. �

Proof of Theorem 1. Without loss of generality we can suppose that n = 1. In view
of Lemma 1, there exists a mapping γ : Γ0 → Γ satisfying conditions (3) and (4).
The mapping γ−1 maps the fixed points of the mapping ν to the points ζ = ±1.
For definiteness, let γ−1(t0) = −1 and γ−1(τ0) = 1. Consider the operators

(V0ϕ)(ζ) = ϕ(ζ−1), (M1ϕ)(ζ) = ϕ(γ(ζ)) (ϕ ∈ Lp(Γ, �), ζ ∈ Γ0).

The operator M1 is an invertible operator belonging to L(Lp(Γ, �), Lp(Γ0, �̃)),
where �̃(ζ) = |ζ + 1|α|ζ − 1|β. It is not difficult to verify (see, e.g., [2, Chap. 1,
Section 4]) that M1SΓM

−1
1 = S0+T , where S0 = SΓ0 and T is a compact operator.

It is known (see [3, Section 5]) that T ∈ Σ(p,Γ0, �̃). Since

M1aM
−1
1 = a(γ(ζ))I (a ∈ PC(Γ)), M−1

1 VM1 = V0,

we have M1AM−1
1 ∈ Σ(p,Γ0, �̃;V0) for every operator A ∈ Σ(p,Γ, �;V ). Anal-

ogously one can prove that M−1
1 BM1 ∈ Σ(p,Γ, �;V ) for every operator B ∈

Σ(p,Γ0, �̃;V0). Thus the algebras Σ(p,Γ, �;V ) and Σ(p,Γ0, �̃;V0) are equivalent.
In the same way, using the operator M2 defined by

(M2ϕ)(x) =
2i

i + x
ϕ

(
i− x

i + x

)
(ϕ ∈ Lp(Γ, �̃), x ∈ R),

one can obtain the equivalence of the algebras Σ(p,Γ0, �̃;V0) and Σ(p,R, h;U),
where h(x) = |i + x|δ|x|β (δ = p− α− β − 2) and (Uϕ)(x) = ϕ(−x).

Let R+ denote the positive half-line. Consider the operator M3 acting bound-
edly from Lp(R, h) to L2p(R

+, h) by the rule (M3ϕ)(x) = (ϕ(x), ϕ(−x)) for x > 0.
One can check straightforwardly that

M3SRM
−1
3 =

∥∥∥∥ S −N
N −S

∥∥∥∥ ,

M3aM
−1
3 =

∥∥∥∥ aI 0
0 ãI

∥∥∥∥ ,

M3UM−1
3 =

∥∥∥∥ 0 I
I 0

∥∥∥∥ ,

(5)

where S = SR+ , ã(x) = a(−x) for x > 0, and

(Nϕ)(x) =
1
πi

∫ ∞

0

ϕ(y)
y + x

dy (x > 0).

Finally, consider the operator M4 ∈ L(Lp(R+, h), Lp(R+, h̃)), where

h̃(x) = x(β−1)/2|i + x|δ/2,

defined by (M4ϕ)(x) = ϕ(
√
x). It is not difficult to see that

M4SM−1
4 =

1
2
(S + R), M4NM−1

4 =
1
2
(S −R),
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where

(Rϕ)(x) =
1
πi

∫ ∞

0

√
x

y

ϕ(y)
y − x

dy (x > 0).

Let us show that the operator R belongs to the algebra Σ(p,R+, h̃). The
operator R = M4(S − N)M−1

4 is bounded in the space Lp(R+, h̃). Since RSϕ =
SRϕ = ϕ on a dense set (see, e.g., [2, Chap. 9, Section 7]), we have R = S−1.
Therefore, by [3, Lemma 6.1], R ∈ Σ(p,R+, h̃). Put

M5 =
∥∥∥∥ M4 0

0 M4

∥∥∥∥M3.

In view of what has just been proved, M5AM−1
5 ∈ Σ2(p,R+, h̃) for all operators

A ∈ Σ(p,R, h;U). Thus, the algebra Σ(p,R, h;U) is equivalent to the subalgebra

Σ̃ = {M5AM−1
5 : A ∈ Σ(p,R, h;U)}

of the algebra Σ2(p,R+, h̃).
Put

M̃2 =
∥∥∥∥ M2 0

0 M2

∥∥∥∥ .

By what has been proved above, the algebra Σ(p,Γ, �;V ) is equivalent to the
subalgebra Σ = {M̃−1

2 AM̃2 : A ∈ Σ̃} of the algebra Σ2(p,Γ+0 , �0). The theorem is
proved. �

2. A Banach subalgebra Σ of the algebra L(L) is said to be an algebra with
Fredholm symbol (see [4]) if there exists a homomorphism π that maps Σ onto an
algebra of matrix functions and has the following property: an operator A ∈ Σ is
a Φ-operator if and only if the function detπ(A) is bounded away from zero. From
[3, Theorem 5.1] it follows that Σk(p,Γ+0 , �0) is a Banach algebra with Fredholm
symbol. Theorem 1 implies the following.

Corollary 1. The algebra Σn(p,Γ, �;V ) satisfying the conditions of the previous
section is an algebra with Fredholm symbol.

If A ∈ Σn(p,Γ, �;V ), then the operator Ã = M̃AM̃−1, where M̃ = ‖δjkM‖n
j,k=1

and M = M̃−1
2 M5M2M1, belongs to the algebra Σ2n(p,Γ+0 , �). It is natural to

define the symbol of an operator A as the symbol of the operator Ã in the algebra
Σ2n(p,Γ+0 , �).

From [3, Theorem 5.1] and the equality Ã = M̃AM̃−1 we get the following.

Theorem 2. An operator A ∈ Σn(p,Γ, �;V ) is a Φ-operator or a Φ±-operator in
the space Ln

p (Γ, �) if and only if the determinant of its symbol is bounded away
from zero. If this condition is satisfied, then the operator A is a Φ-operator.

Note that one can calculate the index of a Φ-operator A ∈ Σn(p,Γ, �;V ) by
formula (5.3) of [3].
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