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Chapter 1

Introduction

What is Differential Geometry? Differential geometry is the study of
curves and surfaces as found by differential calculus. Gauss was the first to
define the curvature of a surface at a point and to formulate said curvature in
terms of partial differentials. Riemann later extended differential geometry
to any type of space in any number of dimensions.

Why is Differential Geometry Interesting? Differential geometry deals
with curves and surfaces. Historically, it was developed to answer Euler’s fifth
postulate – the parallel postulate. However, work by Gauss and Riemann
soon revealed a much richer geometry non-euclidean in nature. The latter
became a foundation of the theory of general relativity [2]. In turn this led
to field theory. Table 1.1 describe equivalence relationships and invariance
for different classes of objects.

Object Equivalent relation Invariants
Vector Space Isomorphism Dimension
Smooth Curves in
Space

Congruence Curvature and Tor-
sion

Smooth Surfaces in
Space

Congruence First and Second
Fundamental Forms

Table 1.1: Invariance classification of some geometric objects.
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Reference material The recommended textbook for this course is J. Mc-
Cleary ’s Geometry from a differential viewpoint [3]. Another book that stu-
dents may find useful is A. Pressley ’s Elementary differential geometry [4].
The University of York library has a whole section on differential geometry la-
beled S 6.7. It includes M. doCarmo’s Differential geometry of surfaces and curves
[1] which is available in the library under S6.7CAR.

Lectures plan There will be two lectures given by Dr Golanski every week
on Tuesdays and Thursdays and one examples class given by Dr Wood on
Fridays. The breakdown is as follows:

1. Section I: On the geometry of space curves

• Lecture 1: Smooth paths, regularity, arc length.

• Lecture 2: Reparametrisation, curvature.

• Lecture 3: Planar paths, signed curvature, the fundamental the-
orem of plane curves.

• Lecture 4: Torsion, Frenet frame.

• Lecture 5: Frenet formulas, congruence, fundamental theorem of
space curves.

2. Section II: On smooth surfaces

• Lecture 6: Charts and Atlases.

• Lecture 7: Differentials of smooth maps, the chain rule, tangent
planes.

• Lecture 8: Regular value theorem.

• Lecture 9: Smooth mappings of smooth surfaces, diffeomor-
phisms.

3. Section III: On the geometry of surfaces

• Lecture 10: Riemannian metric, (E, F , G).

• Lecture 11: Arc lengths, angles, areas.

• Lecture 12: Local isometries, the (E, F , G)-lemma.

• Lecture 13: Shape operator, normal curvatures, self-adjointness
and principal curvatures.

Mathematics University of York 10
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• Lecture 14: Euler’s theorem, Gauss and mean curvature, elliptic,
hyperbolic and parabolic points.

• Lecture 15: The second fundamental form, (e, f , g).

• Lecture 16: Theorema Egregium, rigid motions and congruence,
congruent surfaces have conjugate shape operators.

• Lecture 17: (e, f , g)-lemma, Gauss-Weingarten formulas.

• Lecture 18: Bonnet’s theorem.

Additional help Students are encouraged to either email or see either Dr
Golanski (yg2@york.ac.uk or in G/005) or Dr Wood (cmw4@york.ac.uk or
G/128) if they have any queries about the course.

Comments The notes were typed in LATEXby Dr Golanski from Dr Wood’s
course. All errors herein are his and not Dr Wood. Please report any such
errors as soon as you find them.
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Chapter 2

On the geometry of space
curves

2.1 Smooth paths

Definition 2.1.0.1. A smooth path is a smooth map p : I → R3, where
I = (a, b) ∈ R allowing a and b to be ∞.

Figure 2.1: A smooth path and its velocity vector.

Since the path is smooth, it is infinitely differentiable. If

p(t) =
(
x(t), y(t), z(t)

)
(2.1)

then
dp(t)

dt
=

(dx(t)
dt

,
dy(t)

dt
,
dz(t)

dt

)
(2.2)

13
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or
p′(t) =

(
x′(t), y′(t), z′(t)

)
(2.3)

is the tangent vector also known as the velocity vector.

(a) (b)

(c) (d)

Figure 2.2: Examples: (a) helix, (b) p(t) = (t3, t2, 0), (c) p(t) = (t3 − 4t, t2 −
4, 0), (d) p(t) = (t, |t|, 0)

Example 1. Let p(t) = (a cos(t), a sin(t), bt) and a, b > 0. This path describe
a right handed helix on the cylinder x2 + y2 = a2.

Example 2. Let p(t) = (t3, t2, 0). Note that p′(t) = (3t2, 2t, 0) so that p′(0) =
(0, 0, 0).

Example 3. Let p(t) = (t3 − 4t, t2 − 4, 0) be a crunodal cubic. A crunode
is a singular point at which a curve intersects itself such that there are two
different tangents at the point. Here, p′(t) = (3t2 − 4, 2t, 0) 6= 0 but p′(2) =
p′(−2) = 0.

Example 4. Let p(t) = (t, |t|, 0) which is not smooth at t = 0. Note that

q(t) =

{
(e
−1

t2 , e
−1

t2 , 0) if t ≥ 0

(−e
−1

t2 , e
−1

t2 , 0) if t ≤ 0

Mathematics University of York 14
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is a smooth path with the same image as p(t) but qn(0) = 0 for n = 1, 2, 3, ...

Definition 2.1.0.2. A point p(t0) is regular if p′(t0) 6= 0

Definition 2.1.0.3. A point p(t0) is singular or critical if p′(t0) = 0

At regular points there’s a well defined tangent line as seen in figure 2.1.
A smooth path is regular if all its points are regular.

2.2 Arc Length

Definition 2.2.0.4. The arc length from p(t0) to p(t) for t0 < t is defined
as

s(t) =

∫ t

t0

|p′(u)|du (2.4)

Note that s(t) is also meaningful when t ≤ t0 when of course s(t) ≤ 0. In
fact, s(t) is a smooth function on I.

Example 5. Let p(t) = (a cos t, a sin t, bt) then p′(t) = (−a sin t, a cos t, b).
The arc length from the origin is given by s(t) =

∫ t

t0

√
a2 + b2dt =

√
a2 + b2t.

In particular the arc length of one pitch is s(2π) = 2π
√
a2 + b2 and taking

b = 0 gives the circumference of circle of radius a is 2πa.

Definition 2.2.0.5. If s(t) = t−t0 then p(t) is called an arc length parametri-
sation

In this case,

t− t0 =

∫ t

t0

|p′(u)|du⇒ 1 = |p′(u)| (2.5)

Conversely if

|p′(u)| = 1⇒
∫ t

t0

|p′(u)|du = t− t0 (2.6)

Thus if p(t) is an arc length parametrisation then |p′(t)| = 1. So we call such
p(t) a unit speed path and write it as p(s) instead of p(t).

If p(t) is regular then s′(t) = |p′(t)| 6= 0, hence s(t) has a smooth in-
verse. We can write t = t(s). Then p(t) = p(t(s)) = p̃(s) and we have
reparametrised the path by the arc length.

Mathematics University of York 15
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Note that

p̃′(s) =
dp

dt

dt

ds
=

dp
dt
ds
dt

=
p′(t)

s′(t)
=

p′(t)

|p′(t)|
(2.7)

thus
|p̃′(s)| = 1 (2.8)

Which is as it should from the above.

Example 6. A helix is defined by p(t) = (a cos(t), a sin(t), bt) and a, b > 0
and thus s(t) = ct where c =

√
a2 + b2 since we are measuring the arc length

from the origin. Hence t(s) = s
c

and an arc length reparametrisation is
p̃(s) =

(
a cos(s/c), a sin(s/c), b(s/c)

)
.

Definition 2.2.0.6. If q(u) = p
(
t(u)

)
for some smooth invertible function

t(u) say that q(u) is a reparametrisation of p(t).

Let p̃(t) = p(−t) then p̃ : (−b,−a) → R3 is called the opposite (or
reverse) path.

Definition 2.2.0.7. If t′(u) > 0 then p(t) and q(u) have the same orientation.

Definition 2.2.0.8. If t′(u) < 0 then p(t) and q(u) have the opposite orien-
tation.

Example 7. Suppose p(s) is unit speed and q(u) = p
(
s(u)

)
is a unit speed

reparametrisation. Then q′(u) = p′
(
s(u)

)
s′(u) so s′(u) = ±1. Thus s(u) =

±u+ c, c ∈ R.
Therefore if p(t) is regular with unit speed reparametrisation p̃(s) then

any other unit speed reparametrisation looks like:{
p̃(s+ c), same orientation

p̃(−s+ c), opposite orientation
for some c ∈ R

2.3 Curvature

Let p(s) be a unit speed path.

Definition 2.3.0.9. T (s) = p′(s) is the unit tangent vector

Definition 2.3.0.10. K(s) = T ′(s) = p′′(s) is the curvature vector.

Mathematics University of York 16
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(a) (b)

(b) (c)

Figure 2.3: Examples: (a) straight line, (b) helix, (c) parabola, (d) Cubic

Note that K · T = 0, that κ(s) = |K(s)| ≥ 0 and that the curvature κ(s)
measures rate of change of direction.

Example 8 (Straight lines). Let p(s) = (s, as + b, 0) where a and b are
constant vectors then p′(s) = (1, a, 0) and p′′(s) = (0, 0, 0) so κ(s) = 0.
Conversely, if the curvature is zero, then p(s) describes a straight line.

Example 9 (Helices). Let

p(s) =
(
a cos

(s
c

)
, a sin

(s
c

)
, b
s

c

)
where c =

√
a2 + b2

T (s) =
(
− a

c
sin

(s
c

)
,
a

c
cos

(s
c

)
,
b

c

)
K(s) =

(
− a

c2
cos(

s

c
),− a

c2
sin(

s

c
), 0

)
κ(s) =

a

c2
=

a

a2 + b2
= const

In particular if b = 0 (circle of radius a > 0) then κ(s) = 1/a.

Definition 2.3.0.11. If κ(s) 6= 0 then 1
κ(s)

is the radius of curvature at p(s0).

Mathematics University of York 17
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Let p(t) be any regular path.

Definition 2.3.0.12. κ(t) (respectively K(t)) is the curvature (respectively
curvature vector) of any unit speed reparametrisation at s = s(t).

Note that by example 7, those are well defined.

Example 10 (Straight lines). κ(t) = 0

Example 11 (Helix). κ(t) = a
a2+b2

Example 12 (Parabola). Let p(t) = (t, 1
2
t2, 0) then measure the arc length

from the origin s(t) =
∫ t

0

√
1 + u2du = ... = 1

2

(
sinh−1(t) + t

√
1 + t2

)
then

get t(s). This is very impractical and tedious.

Example 13 (Cubic). Let p(t) = (t, 1
3
t3, 0) then measure the arc length

from the origin as above to give s(t) =
∫ t

0

√
1 + u4du which is an elliptic

integral.

However, because κ(t) and K(t) involve only derivatives of p
(
t(s)

)
the

chain rule and the inverse function theorem can be used to show

Theorem 2.3.0.1. The curvature κ can be written as:

κ(t) =
|p′(t)|2p′′(t)−

(
p′(t) · p′′(t)

)
p′(t)

|p′(t)|4
=
|p′(t)× p′′(t)|
|p′(t)|3

(2.9)

Proof. See exercise 5 on sheet I.

Note that for any a, b ∈ R3 the following holds true |a×b|2 = |a|2|b|2 sin2 Θ =
|a|2|b|2− (a · b)2. It is now a lot easier to deal with parabolic and cubic paths
as in the last two examples.

Example 14 (Once more a parabola). Let p(t) = (t, 1
2
t2, 0) therefore

p′(t) = (1, t, 0)

p′′(t) = (0, 1, 0)

|p′(t)|2 = 1 + t2

|p′′(t)|2 = 1

p′(t) · p′′(t) = t

Mathematics University of York 18
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and hence

κ(t) =
1

(1 + t2)3/2

Note that κ(t) is maximum when t− 0.

Definition 2.3.0.13. A point where κ′(t) = 0 is called a vertex (plural
vertices).

Example 15 (Once more a cubic). Let p(t) = (t, 1
3
t3, 0) therefore

p′(t) = (1, t2, 0)

p′′(t) = (0, 2t, 0)

|p′(t)|2 = 1 + t4

|p′′(t)|2 = 4t2

p′(t) · p′′(t) = 2t3

and hence

κ(t) =
2|t|

(1 + t4)3/2

Definition 2.3.0.14. A point where κ(t) = 0 is called an inflection.

2.4 Planar curves

2.4.1 Definition

From now on, assume that p(s) =
(
x(s), y(s)

)
. Let N(s) be the unit vector

such that
(
T (s), N(s)

)
is a positively oriented orthonormal basis of R2. Note

that T (s) =
(
cosψ(s), sinψ(s)

)
and N(s) =

(
− sinψ(s), cosψ(s)

)
as seen in

figure 2.4. Since T · T ′ = 0 we have T ′(s) = κ(s)N(s) for some κ(s) ∈ R.

Definition 2.4.1.1. The smooth function κ : s 7→ κ(s) is called the signed
curvature (or directed curvature).

Note that since |κ| = |T ′|, |κ| is the curvature as defined previously. The
convention is that κ always denotes the signed curvature. From now on,
assume that the curvature is always directed unless specified otherwise.

Mathematics University of York 19
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Figure 2.4: A planar curve and its normal and tangent vectors.

2.4.2 Features

Direction

Since T ′ = (− sin(ψ)ψ′, cos(ψ)ψ′) we see that κ = ψ′ hence if κ(s) > 0 if
the path curves towards N(s) and κ(s) < 0 if the path curves away from
N(s).

Orientation

If the orientation of the path is reversed, expect κ to change sign. Indeed
if p̃(s) = p(−s) then T̃ (s) = −T (−s) and Ñ(s) = −N(−s). Hence κ̃(s) =
T̃ ′(s) · Ñ(s) = −T ′(s) ·N(−s) = −κ(−s)

“Magic formula”

Since T = (x′, y′), T ′ = (x′′, y′′) and N = (−y′, x′) so κ = T ′ ·N = x′y′′−x′′y′.
Note that this is only correct for unit speed paths. Now let p(t) be any
regular planar path.

Definition 2.4.2.1. κ(t) is the signed curvature of any unit speed reparametri-
sation with the same orientation at t = t(s)

The Magic formula is:

κ =
x′y′′ − x′′y′

|p′|3
(2.10)

Mathematics University of York 20
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The proof can be found on page 68 of [3].

Example 16. Cubic: p(t) = (t, 1
3
t3), p′(t) = (1, t2) and p′′(t) = (0, 2t) hence

κ = 2t

(1+t4)
3
2
.

Example 17 (Semi-cubic parabola). Let p(t) = (1
3
t3, 1

2
t2), p′(t) = (t2, t)

and p′′(t) = (2t, 1) hence

κ(t) =
−t2

|t|3(1 + t2)
3
2

=
−1

|t|(1 + t2)
3
2

< 0

Example 18 (An extra example). p(t) = (1
4
t4, 1

2
t2+ 1

3
t3), p′(t) = (t3, t+t2)

and p′′(t) = (3t2, 1 + 2t) hence

κ =
−t3

|t|3
2 + t(

(1 + t)2 + t4
) 3

2

=


− 2+t(

(1+t)2+t4

) 3
2

, if t < 0

+ 2+t(
(1+t)2+t4

) 3
2

, if t > 0

Note the following two points:

• Close to the origin, lim(t→0,t<0) κ = 2 and lim(t→0,t>0) κ = −2.

• There is an inflection at t = −2, with κ(t) > 0 for t < −2.

Suppose κ(s) is given. Since κ = ψ′ it follows that ψ =
∫
κ(s)ds. Chang-

ing the constant of integration produces a rotation of the curve. Since

T (s) = p′(s), it follows that p(s) =
( ∫

cosψ(s)ds,
∫

sinψ(s)ds
)
. Changing

the constant of integration produces a translation of the curve.

Definition 2.4.2.2. A rotation of the plane, followed by a translation, is
called a proper rigid motion.

Theorem 2.4.2.1 (Fundamental theorem of plane curves). If κ(s) is
any smooth function, there exists a smooth planar path p(s), parametrized by
arc length, whose signed curvature is κ(s). Any two such paths differ by a
proper rigid motion.
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Proof. This theorem is already proved by the paragraph introducing the def-
inition of a proper rigid motion.

Example 19. Find a planar path with κ(s) = 1
1+s2 .

We have ψ(s) = tan−1(s) by setting the constant of integration to zero.
Thus

T (s) = (cosψ, sinψ) =
( 1√

1 + s2
,

s√
1 + s2

)
So

x(s) =

∫
ds√

1 + s2
=

∫
du if u = sinh−1(s)

such that s = sinhu and ds = coshudu. Thus

y(s) =

∫
sds√
1 + s2

=
√

1 + s2

by setting all the constant of integration to zero once more. To identify the
curve, set t = sinh−1(s) then

p(s) =
(
sinh−1 s,

√
1 + s2

)
=

(
t,

√
1 + sinh−1(s)2t

)
=

(
t, cosh(t)

)
which is a catenary.

(a) (b)

Figure 2.5: (a) Angles on a triangle and (b) a catenary.
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Figure 2.6: The binormal vector.

2.5 Torsion: back into space

2.5.1 Torsion

The example of a helix and a circle show that curvature does not determine
the shape of a space curve. Therefore there is a need for another invariant
measure. Suppose that ∀s ∈ R, p(s) is a unit speed path with κ(s) 6= 0
(IE p′′(s) 6= 0) then we can normalise the curvature vector and define the
following.

Definition 2.5.1.1. The principle normal vector N(s) is defined as

N(s) =
p′′(s)

|p′′(s)|
=
T ′(s)

κ(s)
(2.11)

Thus

T ′(s) = κ(s)N(s) (2.12)

Definition 2.5.1.2. The osculating plane is the plane spanned by
(
T (s), N(s)

)
.

Let B(s) be the unique unit vector such that
(
T (s), N(s), B(s)

)
is a right

handed orthonormal basis – B(s) = T (s)×N(s).

Definition 2.5.1.3.
(
T (s), N(s), B(s)

)
is called the Frenet frame
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Just as |T ′(s)| = κ(s) measures the rate at which p pulls away from its
tangent line, so |B′(s)| measures the rate at which p pulls away from its
osculating plane. Since ∀s ∈ R |B(s)| = 1, B′(s) ⊥ B(s) IE B′(s) lies in the
osculating plane. Also B′(s) = T ′(s)×N(s) + T (s)×N ′(s) = T (s)×N ′(s)
so B′(s) ⊥ T (s). Hence B′(s) = τ(s)N(s) for some function τ : I 7→ R

Definition 2.5.1.4. The smooth function τ(s) = B′(s) · N(s) is called the
torsion of p(s).

Note that |τ(s)| = |B′(s)|.
Consider the following, if

p̃(s) = p(−s) (2.13)

then

T̃ (s) = p̃′(s) = −p′(−s) = −T (s) (2.14)

Ñ(s) =
T̃ ′(s)

κ̃(s)
=
T ′(−s)
κ(s)

= N(−s) (2.15)

B̃(s) = T̃ (s)× B̃(s) = −B(−s) (2.16)

and
B̃′(s) = B′(−s) (2.17)

Hence
τ̃(s) = B̃′(s) · Ñ(s) = B′(−s) ·N(−s) = τ(−s) (2.18)

Informally, torsion is invariant under change of orientation.
Suppose that τ(s) = 0, ∀s ∈ R then B′(s) = 0, ∀s ∈ R, so B(s) is a

constant, say B. Thus
(
p(s) ·B

)′
= p′(s) ·B = T (s) ·B = 0. Hence p(s) lies

in a plane normal to B which by definition is the osculating plane.
Conversely, suppose p(s) lies in a plane: p(s) ·b = const for some constant

unit vector b. Then 0 = p′(s) · b = T (s) · b, 0 = T ′(s) · b = κ(s)N(s) · b. So
B(s) = ±b hence B′(s) = 0 and τ = 0.

Example 20 (Helix again).

p(s) =
(
a cos(

s

c
), a sin(

s

c
),
bs

c

)
,

T (s) =
1

c

(
− a sin(

s

c
), a cos(

s

c
), b

)
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and

N(s) =
T ′(s)

κ(s)
=

(
− cos(

s

c
),− sin(

s

c
), 0

)
Note that κ(s) = a

c2
never vanishes unless a = 0.

B(s) = T (s)×N(s) =

−a sin( s
c
) − cos( s

c
)
−→
i

a cos( s
c
) − sin( s

c
)
−→
j

b 0
−→
k

 =
(b
c

sin(
s

c
),−b

c
cos(

s

c
), a

)
Therefore

B′(s) =
1

c2

(
b cos(

s

c
), b sin(

s

c
), 0

)
And finally

τ(s) = B′(s) ·N(s) = − b

c2

Observe the following three points:

1. (T,N,B) is orthonormal,

2. τ(s) = 0 if and only if b = 0 in which case the helix is a circle

2.5.2 Formula for torsion

Recall that B = T × N so B′ = T ′ × N + T × N ′ = T × N ′. Therefore
τ = B′ · N = [T,N ′, N ] = −[T,N,N ′], the triple scalar product. The latter
is defined as [a, b, c] = (a× b) · c = a · (b× c).

Now

T = p′ (2.19)

N =
T ′

κ
=
p′′

κ
(2.20)

and

N ′ =
κp′′′ − p′′κ′

κ2
(2.21)

So a new formula for the torsion follows

Definition 2.5.2.1. The torsion can be written as

τ =
−1

κ2
[p′, p′′, p′′′] (2.22)
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Note that because of the minus sign, some people prefer to define the
torsion as τ = −B′ ·N .

Example 21. Check that for p(s) =
(
a cos( s

c
), a sin( s

c
), bs

c

)
the torsion is

−1
κ2 [p′, p′′, p′′′] = −b

c2
.

If p(t) is not unit speed then

τ =
−1

κ2

[p′, p′′, p′′′]

|p′|6
=
−[p′, p′′, p′′′]

|p′ × p′′|2
(2.23)

2.6 Frenet formulas

2.6.1 Definition

By definition

T ′ = κN (2.24)

B′ = τN (2.25)

What happens to N ′? Since |N | = 1 we have N ′ ⊥ N , so N ′ = aT + bB for
(a, b) ∈ R. Now

a = N ′ · T = −N · T ′ = −κ (2.26)

b = N ′ ·B = −N ·B′ = −τ (2.27)

Definition 2.6.1.1. The Frenet formulas are defined

T ′ = κN (2.28)

N ′ = −κT − τB (2.29)

B′ = τN (2.30)

Sometimes it is convenient to write these in matrix form:

(T ′N ′B′) = (TNB)

0 −κ 0
κ 0 τ
0 −τ 0

 = (TNB)M (2.31)

Note that for any w ∈ R3 we have (w·T ′ w·N ′ w·B′) = (w·T w·N w·B)M .
Note that M is skew symetric which means that MT = −M .
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2.6.2 Congruence of curves

Definition 2.6.2.1. The transformation R : R3 → R3 is a rigid motion if
R(w) = L(w)+C, ∀w ∈ R3. Where L is an orthogonal linear transformation
of R3 (IE an orthogonal 3× 3 matrix) and C is a constant vector.

Note that if L is orthogonal then Lv · Lw = v · w, ∀v, w ∈ R3.
Suppose that p(s) is unit speed and define p̃(s) = R

(
p(s)

)
. Note that

p̃′(s) =
d

ds
p̃(s) =

d

ds

[
L

(
p(s)

)
+ C

]
= L

dp

ds
= L

(
p′(s)

)
(2.32)

Thus |p̃′(s)| = |L
(
p′(s)

)
| = |p′(s)| = 1 since L is orthogonal. Hence p̃(s)

is also a unit speed path.

Definition 2.6.2.2. Say two unit speed paths p(s) and q(s) are congruent
if q(s) = R

(
p(s)

)
for some rigid motion R.

This is an equivalence relation. Define the Frenet frames (T,N,B) for
p(s) and (T̃ , Ñ , B̃) for p̃(s). By equation 2.32:

T̃ ′ = L(T ′)⇔ κ̃ = |T̃ ′| = |T ′| = κ (2.33)

and

Ñ =
T̃ ′

κ
=
L(T ′)

κ
= L

(T ′
κ

)
= L(N) (2.34)

Now, (LT,LN,LB) is orthogonal because L is orthogonal. It is right
handed if det(L) = 1. It is left handed if det(L) = −1. Hence

B̃ =

{
LB if detL = 1

−LB if detL = −1
(2.35)

and

τ̃ = B̃′ · Ñ =

{
L

(
B′) · L(

N
)

= B′ ·N = τ if detL = 1

−L
(
B′) · L(

N
)

= −B′ ·N = −τ if detL = −1
(2.36)

Definition 2.6.2.3. If detL = 1, R is a proper rigid motion and p̃ = R ◦ p
is properly congruent to p

Definition 2.6.2.4. If detL = −1, R is a improper rigid motion and
p̃ = R ◦ p is improperly congruent to p
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2.6.3 Serret-Frenet theorem

Theorem 2.6.3.1 (Serret-Frenet). Suppose p, p̃ : I → R3 are unit speed
paths with same curvature (κ̃(s) = κ(s) 6= 0) and torsion (τ̃(s) = τ(s)) for
all s. Then p, p̃ are properly congruent. If they have opposite torsions
(τ̃(s) = −τ(s)) then they are improperly congruent.

Proof. For each s ∈ I, we can define a rigid motion Rs as follows:

Ls :

T (s) 7→ T̃ (s)

N(s) 7→ Ñ(s)

B(s) 7→ B̃(s)
Cs = p̃(s)− Ls

(
p(s)

)
Then Rs

(
p(s)

)
= p̃(s). We want to show that R is constant – that it is

independent of s. Note first that if suffice to show that Ls is constant. For
if Ls = L, ∀s ∈ R then

Cs = p̃(s)− L
(
p(s)

)
⇒ dCs

ds
= p̃′(s)− L

(
p′(s)

)
dCs

ds
= T̃ (s)− L

(
T (s)

)
dCs

ds
= 0

(2.37)

Now, for all w ∈ R3 we have:

Ls(w) = Ls

(
(w · T )T + (w ·N)N + (w ·B)B

)
= (w · T )T̃ + (w ·N)Ñ + (w ·B)B̃

= (T̃ Ñ B̃ )

w · T
w ·N
w ·B

 (2.38)

So

d

ds
Ls(w) = (T̃ ′ Ñ ′ B̃′ )

w · T
w ·N
w ·B

 + (T̃ Ñ B̃ )

w · T ′
w ·N ′

w ·B′


= (T̃ Ñ B̃ )(M̃ +M t)

w · T
w ·N
w ·B


= 0

(2.39)
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where M is defined as the skew-symmetric matrix

M =

0 −κ 0
κ 0 τ
0 −τ 0

 (2.40)

and hence M̃ = M .

Given a smooth κ, τ ∈ I 7→ R3 with κ > 0, it can be shown that a smooth
unit speed path p : I 7→ R3 exists whose curvature is κ and torsion is τ .
This follows from the existence theorem for ordinary differential equations –
see handout.

This conclude the study of the geometry of space curves.
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Chapter 3

On smooth surfaces

We do need to define a smooth surface S ⊂ R3. Any such definition should
include

1. Graphs of functions of two variables.

2. Parametric surfaces – see Vector Calculus II.

The best known surface: S2 = {(x, y, z) : x2 + y2 + z2 = 1} is not of these
types. We will give a definition due to J. Milnor (1960).

3.1 Fundamental concepts

If a ∈ Rn, r > 0, then Br(a) = {x ∈ Rn : |x − a| < r} is the open ball of
radius r and centre a. Of course, |x− a| =

√
(x1 − a1)2 + ...+ (xn − an)2.

Definition 3.1.0.1. The subset U ⊂ Rn is open if for each a ∈ U there exist
r > 0 such that Br(a) ⊂ U .

Definition 3.1.0.2. An open set containing a is called a neighbourhood
of a. See figure 3.1

Definition 3.1.0.3. A function f : U → Rn is smooth at a if partial
derivatives of all orders exist in a neighbourhood of a and are continuous at
a.

Definition 3.1.0.4. Say that f is smooth on U if f is smooth at all a ∈ U .
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Figure 3.1: A neighbourhood and a none open subset.

The above definitions obviously require U to be open. However, we want
to extend the definition to functions f : D → Rm where D ⊂ Rn is not
necessary open.

Example 22. Consider the following:

• D = [a, b] ⊂ R, avoiding the use of one-side limits at end points.

• D = {(x, y) : x2 + y2 ≤ 1}.

• D is a curve in space.

• Ultimately, D is a surface in space.

Definition 3.1.0.5. Suppose f : D → Rm with D ⊂ Rn and a ∈ D. If U is
a neighbourhood of a and f̃ : U → Rm such that

f̃ | U ∩D = f | U ∪D (3.1)

then f̃ is called a local extension of f at a.

Example 23. f : [0, 1] → R; x 7→ x2 has two local extensions at x = 0 and
x = 1.

Example 24. g : [0, 1] → R; x 7→
√
x has a local extension at x = 1 but

what about x = 0?
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Definition 3.1.0.6. f : D → Rm is smooth at a ∈ D if there exists a local
extension of f at a which is smooth at a.

Example 25. In examples 23 and 24, f is smooth at 0, 1 and g is smooth
at 1 but not at 0.

Definition 3.1.0.7. Say f smooth on D if f is smooth ∀a ∈ D.

To appreciate the next step towards a definition of a surface, consider first
the following analogy from vector space theory. V and V ′ are isomorphic
(the same as far as linear algebra is concerned) if there exist smooth linear
maps f : V → V ′ and g : V ′ → V such that:

g
(
f(v)

)
= v ∀v ∈ V (3.2)

f
(
g(v′)

)
= v′ ∀v′ ∈ V ′ (3.3)

Or

V

f−→
←−
g

V ′ (3.4)

if f and g are linear functions. Now, if D ⊂ Rn and D′ ⊂ Rm with

D

f−→
←−
g

D′ (3.5)

then D, D′ are said to be diffeomorphic and f , g are said to be dif-
feomorphisms . For example, the open disk and the open hemisphere are
diffeomorphic. The essential feature of a surface is its “two-dimensionalness”
and the “standard models” with this property are open subsets of R2 hence

Definition 3.1.0.8. A (smooth) surface patch is a subset D ⊂ R3 which
is diffeomorphic to an open subset U ⊂ R2.

R3 ⊃ D

φ−→
←−
p

U ∈ R2 (3.6)
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Definition 3.1.0.9. Suppose that S ⊂ R3. A surface patch of the form:
D = S ∩ V where V ∈ R3 open, is called a chart in S. φ is called a chart
map and p is called a coordinate map (or local parametrisation).

Definition 3.1.0.10. If each point of S lie in a chart, S is called a smooth
surface.

Definition 3.1.0.11. A collection of charts whose union is S is called an
atlas for S.

Note that with this definition a surface patch is a surface, just take V = R3

for example.

Example 26 (Graph). Let f : U → R, where U ⊂ R2 is open. Define
Sf = {(u, v, f(u, v)) : (u, v) ∈ U}. Claim that Sf is a surface patch because:

• Define p(u, v) =
(
u, v, f(u, v)

)
thus p : U → Sf is smooth because f is

smooth. This is the coordinate map.

• Define φ such that φ(x, y, z) = (x, y) thus φ : Sf → U is smooth
(because it extends in an obvious way to R3) with φ = p−1.

Example 27 (S2 aka Sphere). By definition,

S2 =
{
(x, y, z) ∈ R3 : x2 + y2 + z2 = 1

}
Take D = {(x, y, z) ∈ S2 : z > 0}. Then D = Sf where f(u, v) =√

1− (u2 + v2) so D is a surface patch. Furthermore D = S2 ∩ {(x, y, z) :
z > 0} so D is a chart of S. Here, V is the open upper half space.

We can find other charts of this type and hence make an atlas for S2.
Thus S2 is a smooth surface.

Example 28 (S2 again). Every point on a sphere has a “geographic coor-
dinate”. p(u, v) =

(
cos(u) cos(v), sin(u) cos(v), sin(v)

)
then p : U → D =

S2 − C is smooth and a bijection. C is the “Greenwich meridian” and
U = (0, 2π)× (−π

2
, π

2
).

Define: φ : D → U ; (x, y, z) 7→
(
θ(x, y), arcsin(z)

)
so φ = p−1. Where

θ(x, y) = arctan( y
x
). φ is smooth because it extends to {(x, y, z) : |z| <

1}r {(x, 0, y) : x ≥ 0} = V .
Therefore D is a surface patch. Furthermore, D = S2 ∩ V , so D is a

chart. Combine with one other similar chart to obtain an atlas.

Example 29 (S2 yet again). Stereographic coordinates – See example class
and Complex Calculus class.
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3.2 Some advanced calculus (revision)

3.2.1 Jacobian matrix

Suppose that U ⊂ Rn open and f : U 7→ Rm is smooth at a ∈ U .

Definition 3.2.1.1. Define Jf (a) to be the m× n Jacobian matrix whose
ijth entry is

Djfi(a) =
∂fi

∂xj

(a) (3.7)

Definition 3.2.1.2. Denote the corresponding linear map Rn → Rm by
DF (a) or df(a) the derivative or differential of f at a.

Note that df(a) : Rn → Rm is a linear map, whose value at h ∈ Rn is
denoted by df(a)(h) or df(a)[h].

Example 30.

f : U → R3, U = B(0) ⊂ R2,

f(u, v) = (u, v,
√

1− u2 − v2)

df

du
=

(
1, 0,

−u√
1− u2 − v2

)
df

dv
=

(
0, 1,

−v√
1− u2 − v2

)

Jf (u, v) =

 1 0
0 1

−u(1− u2 − v2)−1/2 −v(1− u2 − v2)−1/2


df(u, v)(s, t) =

(
s, t,

−us− vt√
1− u2 − v2

)
(3.8)
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3.2.2 Chain rule

Rn f−→ Rm g−→ Rp (3.9)

Rn g◦f−−→ Rp (3.10)

Assume that

1. f is smooth at a ∈ Rn, thus df(a) : Rn → Rm exists.

2. g is smooth at b = f(a) ∈ Rm, thus dg(b) : Rm → Rp exists.

then gof is smooth at a and

d(g ◦ f)(a) = dg(b) ◦ df(a) (3.11)

3.2.3 Geometric consequence

Theorem 3.2.3.1. Suppose that γ(t) is a smooth path in Rn with γ(0) = a.
Thus f ◦ γ(t) is a smooth path Rm with f ◦ γ(0) = b. The tangent vectors
γ′(0) and (f ◦ γ)′(0) are related by

(f ◦ γ)′(0) = df(a)[γ′(0)] (3.12)

Proof. See exercise II, question 4.

3.3 Tangent space

Preamble For any point p0 ∈ S define Tp0S = {c′(o) : c(t) smooth path in
S, c(0) = p0}. Of course, c : I → R3 is smooth with c(t) ∈ S, ∀t ∈ I.

Choose chart D containing p0 and set a0 = φ(p0) ∈ U . If γ(t) is a
smooth path in U with γ(0) = a0 then (p ◦ γ)(t) is a smooth path in S with
(p ◦ γ)(0) = p0. Hence (p ◦ γ)′(0) ∈ Tp0S. But (p ◦ γ)′(0) = dp(a0)[γ

′(0)] so

Im
(
dp(a0)

)
∈ Tp0S (3.13)

We need to show that Tp0S is the image of dp(a0).
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Consequence Tp0S is a vector space.
Now, since φ is smooth, there exists a local extension φ̃ of φ at o0 with φ̃

smooth at p0. We have φ̃ ◦ p = φ ◦ p = idu so by the chain rule

dφ̃(p0) ◦ dp(a0) = d(idu)(a0) = idR2 (3.14)

Note that for idu(u, v) = (u, v), so the Jacobian matrix is

(
1 0
0 1

)
. Hence

d(idu)(u, v)(s, t) = (s, t).
So, dp(a0) : R2 → R3 has a left inverse and hence is a injection.

Conclusion Tp0S is a two dimensional vector space.

Example 31 (S = S2). Let p ∈ S2 be in the north hemisphere, then

p = p(u, v) = (u, v,
√

1− u2 − v2)

for some u2 + v2 < 1. We already computed from equation 3.8.

w = dp(u, v)(s, t) =
(
s, t,

−us− vt√
1− u2 − v2

)
Note that

w · p = us+ vt− us− vt = 0

so by dimensionality

TpS
2 =

{
w ∈ R3 : w · p = 0

}
= p⊥

By applying the same argument in other charts, we note that

TpS
2 = p⊥, ∀p ∈ S2

3.4 More advanced calculus

3.4.1 Inverse function theorem

Suppose that f : Rn → Rm is smooth at a ∈ Rn and df(a) : Rn → Rm is
a linear isomorphism (n = m) thus for all k ∈ Rn(=m) the linear equation
df(a)(h) = k has a unique solution. What about the non-linear equation
f(x) = y?

Note that the following result says that a unique solution exists and varies
smoothly with y provided that y is “sufficiently close” to b.
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Theorem 3.4.1.1 (Inverse function theorem). Let f : Rn → Rm be
smooth at a ∈ Rn and df(a) : Rn → Rm an isomorphism – that is n = m.
Then there exists neighborhoods U of a and V of b = f(a) such that f : U →
V is a diffeomorphism.

Proof. See Analysis I by S. Lang – need fix point theorem.

3.4.2 Application: regular value theorem

There is an easy way to show that certain subset S ∈ R3 are smooth surfaces.
These S are of the form S = {(x, y, z) ∈ R3; f(x, y, z) = const}, where
f : R3 → R, such as the unit sphere S2 = {(x, y, z) ∈ R3;x2 + y2 + z2 = 1}

Definition 3.4.2.1. Let f : R3 → R be smooth at p0 ∈ R3. Say

1. p0 is a regular point of f if df(p0) 6= 0.

2. p0 is a critical point of f if df(p0) = 0.

The following results says that it is possible to smoothly change coor-
dinates in a neighbourhood of a regular point so that f becomes a linear
function of new coordinates.

Lemma 3.4.2.1 (Local linearisation lemma). If p0 ∈ R3 is a regular
point of f : Rn → R then there exists

1. a neighbourhood V of p0,

2. an open subset W ⊂ R3 and

3. diffeomorphism ψ : W → V

such that one of the following holds for all (x, y, z) ∈ W :

f
(
ψ(x, y, z)

)
= x (3.15)

f
(
ψ(x, y, z)

)
= y (3.16)

f
(
ψ(x, y, z)

)
= z (3.17)
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Proof. For convenience defined: π1(x, y, z) = x, π2(x, y, z) = y and π3(x, y, z) =
z and maps F1, F2, F3 : R3 → R3 such that

F1(x, y, z) =
(
f(x, y, z), y, z

)
(3.18)

F2(x, y, z) =
(
x, f(x, y, z), z

)
(3.19)

F3(x, y, z) =
(
x, y, f(x, y, z)

)
(3.20)

Thus πi ◦Fi = f . Therefore simply need to show at least one Fi is invert-

ible on a neighbourhood of P0. First note that Jf (p0) =
(

∂f
∂x

∣∣∣
p0

∂f
∂y

∣∣∣
p0

∂f
∂z

∣∣∣
p0

)
.

So, since p0 is a regular point, at least one of these partial derivatives is not

zero; say ∂f
∂x

∣∣∣
p0

.

Now,

JF1(p0) =

∂f
∂x

∣∣∣
p0

∂f
∂y

∣∣∣
p0

∂f
∂z

∣∣∣
p0

0 1 0
0 0 1

 (3.21)

so det JF1(p0) = ∂f
∂x

∣∣∣
p0

6= 0. Hence dF1(p0) is an isomorphism and the result

follows from the inverse function theorem – see theorem 3.4.1.1.

Now, suppose p0 is a regular point of f : R3 → R where f(p0) = a ∈ R
and define

S =
{
p ∈ R3; f(p) = a

}
= f−1(a) (3.22)

which is the level set. Let ψ : W → V be as in lemma 3.4.2.1 with f◦ψ = π3,
say. Thus f = π3 ◦ ψ−1 on V. Define D = S ∩ V , then for all p ∈ D:

a = f(p) = π3 ◦ ψ−1(p) (3.23)

Thus ψ−1(D) = W ∩ P where P is the plane z = a. Therefore D is a
chart in S. An atlas can be obtained for S if every p ∈ S is a regular point
of f in which case S is called a regular level set. Alternatively, it is said
that a is a regular value.

Theorem 3.4.2.2 (Regular value theorem). If S is a regular level set
of f : R3 → R then S is a smooth surface. Furthermore TpS = ker df(p),
∀p ∈ S.
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Proof. We just need to show that TpS = kerdf(p) and since the rest is proven
by the local linearisation lemma 3.4.2.1. If X ∈ TpS then X = c′(0) for some
smooth path c(t) in S with c(0) = p. Now, df(p)(x) = (f ◦ c)′(0) = 0 since
(f ◦ c)′(t) = a, Thus TpS ⊂ ker df(p). Since ker df(p) is two dimensional,
TpS = ker df(p).

Note that since

J(p0) =
(

∂f
∂x

∣∣∣
p0

∂f
∂y

∣∣∣
p0

∂f
∂z

∣∣∣
p0

)
(3.24)

then

df(p0)(u, v, w) = u
∂f

∂x

∣∣∣
p0

+ v
∂f

∂y

∣∣∣
p0

+ w
∂f

∂z

∣∣∣
p0

= (u, v, w) · ∇f(p0) (3.25)

So df(p0) = 0 if and only if ∇f(p0) = 0 and ker df(p0) = ∇f(p0)
⊥.

Example 32. Define f : R3 → R, (x, y, z) 7→ x2 + y2 + z2 then S2 = f−1(1).
Now

∇f(x, y, z) = (2x, 2y, 2z)

which vanishes if and only if (x, y, z) = (0, 0, 0) or f(x, y, z) = 0. Therefore
1 is a regular value, so S2 is a smooth surface. Moreover, if p ∈ S2 then
TpS

2 = ∇f(p)⊥ = p⊥.

3.5 Calculus on surfaces

3.5.1 Preamble

Let S1, S2 ⊂ R3 be smooth surfaces.

Example 33.

S1 = S2 =
{

(x, y, z) : x2 + y2 + z2 = 1
}

S2 = Q2 = Q2(a, b, c) =
{

(x, y, z) :
x2

a2
+
y2

b2
+
z2

c2
= 1

}
As an exercise to the reader: prove that S2 is a smooth surface.

Definition 3.5.1.1. Let f : S2 → Q2 then f is smooth if a smooth local
extension exists at every point.
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Example 34. Take

f : S2 → Q2; (x, y, z)→ (ax, by, cz)

is smooth since it extends to a smooth map R3 → R3.

Definition 3.5.1.2. If f is a diffeomorphism, S1 and S2 are said to be
diffeomorphic.

Example 35. f : S2 → Q2 has smooth inverse f−1 : Q2 → S2; (x, y, z) 7→
(x

a
, x

b
, x

c
). Hence f is a diffeomorphism and S2, Q2 are diffeomorphic.

Let f̃ be a smooth local extension of f at p0 ∈ S1. Then df̃(p0) : R3 → R3

can be formed. If X ∈ Tp0S1 then a smooth path in S1 can be written as
X = c′(0) with c(0) = p0.

Hence
df̃(p0)(X) = (f ◦ c)′(0) ∈ Tp0S2 (3.26)

since f ◦ c(t) is a smooth path in S2 with f ◦ c(0) = f(p).

3.5.2 Definitions

Definition 3.5.2.1. Define df(p0) : Tp0S1 → Tf(p0)S2 by

df(p0)(X) = (f ◦ c)′(0) (3.27)

where c(t) is any smooth path in S with c(0) = p0 and c′(0) = X. It
follows from equation 3.26 that df(p0) is linear. Also, the chain rule for
surfaces is immediate.

Suppose D ⊂ S1 is a chart around p0 ∈ U where U ⊂ R2.

D

φ−→
←−
p

U (3.28)

with φ(p0) = a.

Definition 3.5.2.2. The coordinate lines through p0 are defined as

p ◦ γ(t) (3.29)

p ◦ δ(t) (3.30)

where

γ(t) = a+ te1 where e1 = (1, 0) (3.31)

δ(t) = a+ te2 where e2 = (0, 1) (3.32)
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The corresponding tangent vectors are given by

(p ◦ γ)′(0) =
d

dt

∣∣∣
t=0
p(a+ te1) =

∂p

∂u
|a (3.33)

(p ◦ δ)′(0) =
d

dt

∣∣∣
t=0
p(a+ te2) =

∂p

∂v
|a (3.34)

so the partial derivatives ∂p
∂u
|a and ∂p

∂v
|a are members of Tp0S1.

Furthermore

(p ◦ γ)′(0) = dp(a)[γ′(0)] = dp(a)(e1) (3.35)

(p ◦ δ)′(0) = dp(a)[δ′(0)] = dp(a)(e2) (3.36)

Since dp(a) is one to one, it follows that
(

∂p
∂u

∣∣
a
, ∂p

∂v

∣∣
a

)
is a basis of Tp0S1.

Now,

df(p0)
(∂p
∂u

∣∣
a

)
= df(p0)[(p ◦ γ)′(0)] (3.37)

= (f ◦ γ)′(0) (3.38)

=
d

dt

∣∣∣
t=0
f ◦ p(a+ te1) (3.39)

=
∂(f ◦ p)
∂u

∣∣∣
a

(3.40)

Similarly

df(p0)
(∂p
∂v

∣∣
a

)
=
∂(f ◦ p)
∂v

∣∣∣
a

(3.41)

Example 36 (Plane and Cylinder). Define:

S1 =
{

(x, y, z) : y = 0
}

S2 =
{

(x, y, z) : x2 + y2 = 1
}

Both surfaces are smooth by the regular value theorem – see theorem 3.4.2.2.
Define

f : S1 → S2; (x, 0, z) 7→ (cosx, sin x, z)

which is smooth. Let S1 = p(R2) where p(u, v) = (u, 0, v) then
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∂p

∂u
= (1, 0, 0)

∂p

∂v
= (0, 0, 1)

and

df
(∂p
∂u

)
=
∂(f ◦ p)
∂u

=
∂

∂u
(cosu, sinu, v) = (− sinu, cosu, 0)

df
(∂p
∂v

)
=
∂(f ◦ p)
∂v

=
∂

∂v
(cosu, sinu, v) = (0, 0, 1)

Notice that these vectors are independent so

df(p0) = Tp0S1 → Tf(p0)S2

f is not a diffeomorphism because it is not one to one.
If D ⊂ S1 is any vertical strip of width less than 2π and D2 = f(D1) ⊂ S2

then f : D1 → D2 is a diffeomorphism.

Definition 3.5.2.3. A smooth map f : S1 → S2 is a local diffeomorphism
if for each p0 ⊂ S1 there exists charts D1 ∈ S1 containing p0 and D2 ⊂ S2

containing F (p0) such that f : D1 → D2 is a diffeomorphism.

This concludes the study of the differential topology of smooth surfaces.
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Chapter 4

On the geometry of surfaces

4.1 Riemannian metric

Assume the following:

• S ⊂ R3 is a smooth surface.

• For each p0 ∈ S, there exists a two dimensional vector space Tp0S.

• The elements of the vector space Tp0S are usually denoted by X,Y .

• On each Tp0S there is an inner product <,>p0 defined as follows:

< X, Y >p0= X · Y (4.1)

Definition 4.1.0.4. The family of inner products is called the Riemannian
metric (or first fundamental form - Gauss) of S and is written as:

< X,X >p0= |X|2 (4.2)

< X, Y >p0=< X, Y > (4.3)

SupposeD is a chart about p0 with φ(p0) = a. Then
(

dp
du

∣∣
a

= pu(a),
dp
dv

∣∣
a

=

pv(a)
)

is a basis of Tp0S so we can write:

X = Xupu +Xvpv (4.4)

Y = Y upu + Y vpv (4.5)
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with Xu, Xv, Y u, Y v ∈ R6. Thus

< X, Y > =< Xupu +Xvpv, Y
upu + Y vpv > (4.6)

= XuY u|pu|2 + (XuY v +XvY u) < pu, pv > +XvY v|pv|2 (4.7)

= (XuXv)

(
|pu|2 < pu, pv >

< pu, pv > |pv|2
) (

Y u

Y v

)
(4.8)

Define: E = |pu|2, F =< pu, pv > and G = |pv|2 then

< X, Y >=
(
XuXv

) (
E F
F G

) (
Y u

Y v

)
(4.9)

If we choose another chart about p0 then E,F and G would be different but
so too would Xu, Xv, Y u, Y v – Exercises III, question 5.

Example 37 (Plane). Suppose p0 ∈ R3 and X, Y ∈ R3 are orthonormal.
Define

S =
{
p0 + uX + vY : u, v ∈ R

}
,

p : R2 → S; (u, v) 7→ po + uX + vY and

φ : S → R2; p 7→
(
(p− p0) ·X, (p− p0) · Y

)
.

Both p and φ are clearly smooth. Thus, S has a global chart. Furthermore:

∂p

∂u
= X

∂p

∂v
= Y

hence

E = |X|2 = 1

G = |Y |2 = 1

F = X · Y = 0

Example 38 (Cylinder). Given

S =
{
(x, y, z) : x2 + y2 = 1

}
define

p(u, v) = (cosu, sinu, v)
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which is clearly smooth and one to one on the open set U =
{
(u, v) : 0 < u <

2π
}
. The image of p is

D =
{
(x, y, z) ∈ S : x 6= 1

}
and the inverse map is

φ(x, y, z) =
(
θ(x, y), z

)
; D → U

φ extends smoothly to R3 − P where P is the half plane y = 0, x > 0. Now,

∂p

∂u
= (− sinu, cosu, 0)

∂p

∂v
= (0, 0, 1)

So that

E = |X|2 = 1

G = |Y |2 = 1

F = X · Y = 0

which are the same values as for a plane – see example 37.

Example 39 (Helicoid).

S =
{
(u cos v, u sin v, av) : u, v inR

}
Define:

p(u, v) = (u cos v, u sin v, av); R2 → R3

φ(x, y, z) =
(
x cos

z

a
+ y sin

z

a
,
z

a

)
which are both smooth functions. So S is a smooth surface with a global
chart. Note that the coordinate lines u = const are helices and v = const are
horizontal straight lines. Now,

∂p

∂u
= (cos v, sin v, 0)

∂p

∂v
= (−u sin v, u cos v, a)

So that

E = cos2 v + sin2 v = 1

G = 0

F = u2(sin2 v + cos2 v) + a2 = u2 + a2
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Figure 4.1: A helicoid.

4.2 Geometry using the Riemannian metric

4.2.1 Arc lengths

For reference see section 2.2. Suppose c(t) is a smooth path in S ∈ R3. Then
c′(t) ∈ Tc(t)S and

s(t) =

∫ t

t0

|c′(t)|dt (4.10)

=

∫ t

t0

√
< c′(t), c′(t) >dt (4.11)

Suppose that c(t) lies in chart D. Define φ
(
c(t)

)
=

(
u(t), v(t)

)
a smooth

path in U . Then
c(t) = p

(
u(t), v(t)

)
(4.12)

and by the chain rule

c′(t) =
∂p

∂u

∂u

∂t
+
∂p

∂v

∂v

∂t
(4.13)

(4.14)

hence
|c′(t)|2 = E · (u′)2 + 2Fu′v′ +G · (v′)2 (4.15)
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Note that this explains the classical notation for the Riemannian metric
given by

ds2 = Edu2 + 2Fdudv +Gdv2 (4.16)

4.2.2 Angles

Let c(t), c̃(t) be smooth paths in S with c(t0) = c̃(t0). The angle Φ of
intersection is given by the usual formula:

cos Φ =
c′(t0) · c̃′(t0)∣∣c′(t0)∣∣∣∣c̃′(t0)∣∣ (4.17)

=
< c′(t0), c̃

′(t0) >∣∣c′(t0)∣∣∣∣c̃′(t0)∣∣ (4.18)

In terms of E,F and G:

cos Φ =
Eu′ũ′ + F (u′ṽ′ + v′ũ′) +Gv′ṽ′√

E(u′)2 + 2Fu′v′ +G(v′)2
√
E(ũ′)2 + 2Fũ′ṽ′ +G(ṽ′)2

(4.19)

In particular, if c(t) and c̃(t) are coordinate lines then c′ = pu and c̃′ = pv

so

cos Φ =
F√
EG

(4.20)

Thus coordinate lines are orthogonal if and only if F = 0, ∀(u, v). Such coor-
dinates lines are said to be orthogonal. If, in addition E = G, coordinates
are said to be isothermal or conformal. See exercises III, question 2 for
angle preserving.

4.2.3 Areas

Suppose a chart D ⊂ S, U ⊂ R2 and D
φ→ U

p→ D. Let Q ⊂ U be the
closure of a bounded open subset of U .

Definition 4.2.3.1. If A ⊂ Rn then A ∪ ∂A is called the closure of A – it
is the smallest closed set containing A.

Define R = p(Q) ⊂ D ⊂ S. Recall from Vector Calculus II

area(R) =

∫ ∫
Q

∣∣∣∂p
∂u
× ∂p

∂v

∣∣∣dudv (4.21)
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Since
|pu × pv|2 = |pu|2|pv|2 − (pu · pv)

2 = EG− F 2 (4.22)

we have

area(R) =

∫ ∫
Q

√
EG− F 2dudv (4.23)

Remark : One needs to check that if p̄ is another chart for D with R =
p̄(Q̄), then ∫ ∫

Q̄

√
ĒḠ− F̄ 2dūdv̄ =

∫ ∫
Q

√
EG− F 2dudv (4.24)

Example 40 (Area of the torus). Find the area of the torus T 2(a, b),
where 0 < b < a. Recall

T 2 =
{(

cosu(a+ b cos v), sinu(a+ b cos v), b sin v
)
;u, v ∈ R

}
Hence a local coordinate map:

p(u, v) =
(
cosu(a+ b cos v), sinu(a+ b cos v), b sin v

)
for 0 < u, v < 2π

Thus

U = (0, 2π)× (0, 2π)

D = T 2 \ (C1 ∪ C2)

where C1,2 are circles. Put

Qε = [ε, 2π − ε]× [ε, 2π − ε]
Rε = p(Qε)

where 0 < ε < π.

pu =
(
− sinu(a+ b cos v), cosu(a+ b cos v), 0

)
pv =

(
− b cosu sin v,−b sinu sin v, b cos v

)
hence

E = (a+ b cos v)2

F = 0

G = b2
√
EG− F 2 = b(a+ b cos v)
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Therefore

area(Rε) =

∫ ∫
Qε

b(a+ b cos v)dudv

= b

∫ 2π−ε

ε

( ∫ 2π−ε

ε

(a+ b cos v)dv
)
du

= 2b(π − ε)
[
2a(π − ε) + b sin(2π − ε)− b sin ε

]
Finally

lim
ε→0

area(Rε) = 4π2ab = area(T 2)

4.2.4 Intrinsic geometric properties

Definition 4.2.4.1. Any “geometric property” of S which depends only on
the Riemannian metric (E,F and G) is said to be intrinsic.

4.3 Local isometries

Having defined the Riemannian metric, we now seek to identify those smooth
mappings of surfaces which preserve this additional structure.

4.3.1 Yet more calculus on surfaces

Theorem 4.3.1.1 (chain rule). If f : S1 → S2 is smooth at p0 ∈ S1 and
g : S2 → S3 is smooth at q0 = f(p0) ∈ S2 then g ◦ f : S1 → S3 is smooth at
p0 and

d(g ◦ f)(p0) = dg(q0) ◦ df(p0) (4.25)

Proof. Let X ∈ Tp0S1 and X = c′(0) where c(t) is a smooth path in S1 with
c(0) = p0. Then

d(g ◦ f)(p0)[X] =
d

dt
(g ◦ f ◦ c)(0) (4.26)

= dg(f(p0))[df(c)] (4.27)

= dg(q0) ◦ df(p0)[X] (4.28)
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Definition 4.3.1.1. Smooth f : S → S̄ is a local diffeomorphism at p0 if
there exist charts D about p0 and D̄ about q0 = f(p0) such that f : D → D̄
is a diffeomorphism.

Theorem 4.3.1.2 (Inverse function theorem for surfaces). f is a lo-
cal diffeomorphism at p0 if and only if df(p0) : Tp0S → Tq0S̄ is a linear
isomorphism of vector spaces.

Proof. See question 18 on Exercise III.

Note that by this theorem, to show f is a local diffeomorphism it suffices
to examine its derivatives.

Say that f is a local diffeomorphism if f is a local diffeomorphism at each
point.

Definition 4.3.1.2. A smooth f : S → S̄ is a local isometry at p0 if
df(p0) : Tp0S → Tq0S̄ is a linear isometry of vector spaces.

This means

< df(p0)[X], df(p0)[Y ] >=< X, Y > ∀X,Y ∈ Tp0S (4.29)

Note: It suffices to check equation 4.29 on all pairs of vector of a basis
of Tp0S. In particular, if df(p0) maps an orthonormal basis of Tp0S to an
orthonormal basis of Tp0S̄ then df(p0) is a linear isometry and conversely. It
follows that a linear isometry is a linear isomorphism. Hence if f is a local
isometry at p0 then f is a local diffeomorphism at p0 by the inverse function
theorem 4.3.1.2.

Definition 4.3.1.3. f is a local isometry if f is a local isometry at each
point. If in addition f is a diffeomorphism then f is called an isometry and
S1, S2 are said to be isometric.

Example 41 (S plane and S̄ cylinder). Let X, Y be orthonormal:

S =
{
po + uX + vY : u, v ∈ R

}
S̄ =

{
(cosu, sinu, v) : u, v ∈ R

}
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Define f : S → S̄; po + uX + vY → (cosu, sinu, v). We have the global
coordinates for S given by

p(u, v) = po + uX + vY

with pu = X and pv = Y which is a orthonormal basis of TpS. Recall

df [pu] =
∂(f ◦ p)
∂u

= (− sinu, cosu, 0)

df [pv] =
∂(f ◦ p)
∂v

= (0, 0, 1)

which is an orthonormal basis of TpS̄. Therefore f is a local isometry. How-
ever, f is not an isometry because it is not one to one.

Definition 4.3.1.4. Suppose f : S → S̄ smooth. Charts (φ, p) and (φ̄, p̄)
are said to be f-adapted if U = Ū and φ̄ ◦ f = φ⇔ f ◦ p = p̄.

Examples 37 and 38 showed that the plane and the cylinder have charts
with same Riemannian metric which is explained by

D −−−→
f

D̄yφ

yφ̄

U Ū

(4.30)

Note that if φ and φ̄ are f -adapted then f : D → D̄ is a diffeomorphism.

Example 42 (S plane and S̄ cylinder again). Let

f : S → S̄; po + uX + vY 7→ (cosu, sinu, v)

Chart in S̄:

D̄ =
{
(x, y, z) ∈ S̄ : x 6= 1

}
Ū = (0, 2π)× R
p̄ :Ū → D̄; (u, v) 7→ (cosu, sinu, v)

φ̄ :D̄ → Ū ; (x, y, z) 7→ (Θ(x, y), z)
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Chart in S:

D =
{
po + uX + vY : 0 < u < 2π, v ∈ R

}
U = (0, 2π)× R
p :U → D; (u, v) 7→ po + uX + vY

φ :D → U ; (x, y, z) 7→
(
(w − p0) ·X, (w − p0) · Y

)
Clearly U = Ū and by definition f

(
p(u, v)

)
= p̄(u, v) so these charts are

f -adapted. Note that the chart in S is a restriction of the standard global
chart.

4.3.2 (E,F,G) lemma

Lemma 4.3.2.1 ((E,F,G)-lemma). Suppose f : S → S̄ is smooth then f
is a local isometry at p0 ∈ S if and only if there exist f -adapted charts D
about p0 and D̄ about f(p0) such that

(Ē, F̄ , Ḡ) = (E,F,G) (4.31)

at φ(p0).

Proof. For f -adapted charts we have:

∂p̄

∂u
=
∂(f ◦ p)
∂u

= df [pu] (4.32)

∂p̄

∂v
=
∂(f ◦ p)
∂v

= df [pv] (4.33)

Hence

Ē =|df(pu)|2 (4.34)

F̄ = < df(pu), df(pv) > (4.35)

Ḡ =|df(pv)|2 (4.36)

Write X1 = pu and X2 = pv then

(Ē, F̄ , Ḡ) = (E,F,G) at φ(p0) (4.37)

⇔ < df(p0)[Xi], df(p0)[Xj] >=< Xi, Xj > ∀i, j = 1, 2 (4.38)

⇔ df(p0) a linear isometry (4.39)

⇔ f a local isometry at p0 (4.40)
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It remains to show that if f is a local isometry at p0 then f -adapted charts
exist. Since f is a local diffeomorphism we can find charts D about p0 and
D̄ about f(p0) such that f : D → D̄ is a diffeomorphism.

If φ : D → U , redefine φ̄ : D̄ → U by φ̄ = φ ◦ f−1. Then φ̄ is smooth and
invertible with inverse p̄ = f ◦ p also smooth.

4.4 Curvature

4.4.1 Orientable surfaces

Let S ⊂ R3 a smooth surface.

Definition 4.4.1.1. Say S is orientable if there exists a ”smooth unit nor-
mal” IE a smooth function ξ : S → R3 satisfying ∀p0 ∈ S:

ξ(p0) ⊥ Tp0S (4.41)

|ξ(p0)| = 1 (4.42)

Note that not all surfaces are orientable, for example the Möbius band is
none-orientable.

4.4.2 Shape operator

The derivative dξ(p0) : Tp0S → R3 measures the rate at which nearby tangent
planes pull away from Tp0S – in the same way as the curvature for curves.

Since |ξ| = 1, we may regard ξ as a map into S2. Therefore

dξ(p0) : Tp0S → Tξ(p0)S
2 (4.43)

Now,

Tξ(p0)S
2 = ξ(p0)

⊥ (4.44)

and by definition

ξ(p0)
⊥ = Tp0S (4.45)

Therefore

dξ(p0) : Tp0S → Tp0S (4.46)
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Definition 4.4.2.1 (Shape operator). The shape operator of S at p0 is
the linear map/operator

Ap0 = Tp0S → Tp0S (4.47)

defined as
Ap0 = −dξ(p0) (4.48)

4.5 Geometry of curves in S

Let c(s) be a unit speed path in S. Recall that c′′(s) is the curvature vector
and that c′′(s) ⊥ c′(s). Now c′(s) = T (s) ⊂ Tc(s)S. Define

V (s) = ξ
(
c(s)

)
(4.49)

U(s) = V (s)× T (s) (4.50)

Thus U(s) ⊂ Tc(s)S.

Definition 4.5.0.2.
(
T (s), U(s), V (s)

)
is a positively oriented orthonormal

basis called the Darboux frame.

Write:

c′′ = (c′′ · U)U︸ ︷︷ ︸ + (c′′ · V )V︸ ︷︷ ︸
↓ ↓ ↓

curvature vector geodesic curvature vector normal curvature vector
(4.51)

Definition 4.5.0.3. Let κg = c′′ · U be the geodesic curvature of c.

Definition 4.5.0.4. Let κn = c′′ · V be the normal curvature of c.

Note that

κn = c′′ · V (4.52)

= (c′ · V )′ − c′ · V ′ (4.53)

= (T · V )′ − c′ · V ′ (4.54)

= 0− c′ · (ξ ◦ c)′ (4.55)

from the definition of dξ[c′] hence

= −c′ · dξ[c′] (4.56)

= −T · dξ[T ] (4.57)

=< T,AT > (4.58)
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Conclusion If X ∈ Tp0S is a unit vector, then < X,Ap0X > is the normal
curvature of any curve in S through p0 with direction X.

Consequence κn depends only on the direction of the curve. Write κn(X)
for the normal curvature of any curve with direction X. This gives a nice
geometric interpretation of κn. For the most obvious curve through p0 in
direction X is the normal section obtained by cutting S with the plane P
through p0 spanned by X and ξ(p0). Thus, P is the osculating plane and so
ξ(p0) is ± the principal normal. Hence κn = ±κ the ordinary curvature.

Lemma 4.5.0.1. The shape operator is self-adjoint (or symmetric)

< Ap0X, Y >=< X,Ap0Y > ; ∀X < Y ∈ Tp0S (4.59)

Proof. Choose a chart about p0 and take X1 = ∂p
∂u

and X2 = ∂p
∂v

which is a
basis of Tp0S. It suffice to check equation 4.59 on a basis of Tp0S, IE when
X = X1 and Y = X2.

We have

Ap0X1 = −dξ(p0)
[∂p
∂u

]
= −∂(ξ ◦ p)

∂u
(4.60)

Ap0X2 = −dξ(p0)
[∂p
∂v

]
= −∂(ξ ◦ p)

∂v
(4.61)

hence

< Ap0X1, X2 > = −(ξ ◦ p)u · pv (4.62)

= (ξ ◦ p) · puv (4.63)

= (ξ ◦ p) · pvu (4.64)

= −(ξ ◦ p)v · pu (4.65)

=< Ap0X2, X1 > (4.66)

Corollary 4.5.0.2. The shape operator is diagonalisable. IE there exists an
orthonormal basis (Z1, Z2) of Tp0S with Z1 and Z2 eigenvectors of Ap0.

Ap0Z1 = κ1Z1 (4.67)

Ap0Z2 = κ2Z2 (4.68)

for some κ1, κ2 ∈ R, eigenvalues of Ap0.
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Proof. The proof is a standard one of linear algebra.

Note that κi =< Ap0Zi, Zi >= κn(Zi).

Definition 4.5.0.5. The unit eigenvectors Zi are called principal direc-
tions.

Definition 4.5.0.6. The unit eigenvalues κi are called principal curva-
tures.

If the orientation of S is reversed (IE choose −ξ instead of ξ) then the
shape operator changes sign and hence so do κ1 and κ2.

Theorem 4.5.0.3 (Euler’s theorem).

κ1 and κ2 are the maximum and minimum normal curvatures.

Proof. Can write any unit vector X ∈ Tp0S as

X = cos θZ1 + sin θZ2 (4.69)

then
Ap0X = cos θκ1Z1 + sin θκ2Z2 (4.70)

So
κn(X) =< Ap0X,X >= κ1 cos2 θ + κ2 sin2 θ (4.71)

thus, κn always lies between κ1 and κ2 IE κ1 and κ2 are the maximum and
minimum normal curvatures of S at p0.

Definition 4.5.0.7. Say that p0 is an elliptic point if κ1 and κ2 have same
sign.

Definition 4.5.0.8. Say that p0 is an hyperbolic point if κ1 and κ2 have
opposite sign.

Definition 4.5.0.9. Say that p0 is an parabolic point if precisely one of
κ1 and κ2 vanishes

Definition 4.5.0.10. Say that p0 is an planar point if κ1 = κ2 = 0
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Definition 4.5.0.11. The Gauss curvature of S at p0 is defined as

K(p0) = detAp0 = κ1κ2 (4.72)

Definition 4.5.0.12. The mean curvature of S at p0 is defined as

H(p0) =
1

2
trAp0 =

1

2
(κ1 + κ2) (4.73)

Note that if the orientation of S is reversed, then H changes sign but K
does not. Thus

p0 elliptic ⇔ K(p0) > 0
p0 hyperbolic ⇔ K(p0) < 0
p0 parabolic ⇔ K(p0) = 0 H(p0) 6= 0
p0 planar ⇔ K(p0) = H(p0) = 0

(4.74)

To recover κ1 and κ2 from K and H note that the characteristic polynomial
of Ap0 is

x2 − 2H(p0)x+K(p0) (4.75)

since kappa1 and κ2 are the roots we have

κ1, κ2 =
2h±

√
4H2 − 2K

2
(4.76)

= H ±
√
H2 −K (4.77)

Definition 4.5.0.13. p0 is an umbilic point if κ1 = κ2 ⇔ K = H2.

Note that, by Euler’s theorem 4.5.0.3, all normal curvatures at any umbilic
point p0 are the same. It follows that an umbilic point is either elliptic or
planar.

Definition 4.5.0.14. p0 is a minimal point if κ1 = −κ2 (⇔ H = 0). If all
points of S are minimal, S is called a minimal surface.

Note that minimal points are either hyperbolic or planar.

Definition 4.5.0.15. p0 is a flat point if K = 0, IE either κ1 = 0, κ2 = 0
or κ1 = κ2 = 0 .

Note that all flat points are either parabolic or planar.
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4.6 Second fundamental form

Define α(X, Y ) =< AX, Y >=< X,AY >. Since A is self adjoint, α is a
symmetric bilinear form. Choose a chart,

R3 ⊃ D

φ−→
←−
p

U ⊂ R2 (4.78)

such that:

ξ
(
(p(u, v)

)
=

pu × pv

|pu × pv|
(4.79)

Note that if this is not the case, just swap u and v in U .

Definition 4.6.0.16. Let

e = α(pu, pu) (4.80)

f = α(pu, pv) = α(pv, pu) (4.81)

g = α(pv, pv) (4.82)

in a similar way to the Riemannian metric.

Compute e, f and g as follows:

e =< Apu, pu > (4.83)

= − <
∂(ξ ◦ p)
∂u

,
∂p

∂u
> (4.84)

= (ξ ◦ p) · ∂
2p

∂u2
(dot product) (4.85)

=
(pu × pv) · puu

|pu × pv|
(4.86)

=
[pu, pv, puu]√
EG− F 2

(4.87)

and

f =< Apu, pv >= . . . (4.88)

=
[pu, pv, puv]√
EG− F 2

(4.89)
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finally

g =< Apv, pv >= . . . (4.90)

=
[pu, pv, pvv]√
EG− F 2

(4.91)

where [pi, pj, pij] is the triple scalar product. Note that |pu×pv|2 = |pu|2|pv|2−
(pu · pv)

2 = EG− F 2. To compute K and H, we need the detA and trA.

Suppose the matrix of A with respect to the basis (pu, pv) is

(
a b
c d

)
where

Apu = apu + cpv (4.92)

Apv = bpu + dpv (4.93)

Now (
e f
f g

)
=

(
< Apu, pu > < Apu, pv >
< Apv, pu > < Apv, pv >

)
(4.94)

=

(
< Apu, pu > < pu, Apv >
< pv, Apu > < Apv, pv >

)
(4.95)

=

(
a|pu|2 + c < pu, pv > b|pu|2 + d < pu, pv >
a < pu, pv > +c|pv|2 b < pu, pv > +d|pv|2

)
(4.96)

=

(
aE + cF bE + dF
aF + cG bF + dG

)
(4.97)

=

(
E F
F G

) (
a b
c d

)
(4.98)

therefore (
a b
c d

)
=

(
E F
F G

)−1 (
e f
f g

)
(4.99)

Recall that

det

(
E F
F G

)
= EG− F 2 = |pu × pv|2 6= 0 (4.100)
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so the inverse matrix exists. Hence

K = detA (4.101)

= det

(
a b
c d

)
(4.102)

=

det

(
e f
f g

)
det

(
E F
F G

) (4.103)

K =
eg − f 2

EG− F 2
(4.104)

and

2H = trA (4.105)

= tr

(
a b
c d

)
(4.106)

= a+ d (4.107)

Now,

(
a b
c d

)
=

1

EG− F 2

(
G −F
−F E

) (
e f
f g

)
(4.108)

=
1

EG− F 2

(
eG− fF . . .

. . . gE − fF

)
(4.109)

so

H =
eG− 2fF + gE

2(EG− F 2)
(4.110)

Mathematics University of York 62



Golanski & Wood Differential Geometry 2003/2004

Example 43 (Torus). Find K and H for the torus given the chart map:

p(u, v) =
(

cosu(a+ b cos v), sinu(a+ b cos v), b sin v
)
, 0 < b < a

pu =
(
− sinu(a+ b cos v), cosu(a+ b cos v), 0

)
pv =

(
− b cosu sin v,−b sinu sin v, b cos v

)
puu =

(
− cosu(a+ b cos v),− sinu(a+ b cos v), 0

)
puv =

(
b sinu sin v,−b cosu sin v, 0

)
= pvu

pvv =
(
− b cosu cos v,−b sinu cos v,−b sin v

)
therefore

E = |pu|2 = (a+ b cos v)2

F = pu · pv = 0

G = |pv|2 = b2 and
√
EG− F 2 = b(a+ b cos v)

Hence

e =
[pu, pv, puu]√
EG− F 2

=
b(a+ b cos v)2

b(a+ b cos v)
det

− sinu . . . − cosu
cosu . . . − sinu

0 cos v 0


= − cos v(a+ b cos v)

Similarly

f = 0

g = −b

So
eg − f 2 = b cos v(a+ b cos v)

hence

K =
eg − f 2

EG− F 2
=

cos v

b(a+ b cos v)
(4.111)
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furthermore

H =
eG− 2fF + gE

2(EG− F 2)
=
−(a+ 2b cos v)

a+ b cos v

and

κ1, κ2 = H ±
√
H2 −K

= − cos v

a+ b cos v
,−1

b

Note that this method always works. However, sometimes more direct
methods are available by computing the shape operator. Some examples of
those follow.

Example 44 (Plane).

S =
{
p0 + uX + vY : u, v ∈ R

}
with X, Y ∈ R3 orthonormal. Choose ξ(p) = X×Y = const, hence dξ(p) = 0
the zero map TpS → R3, ∀p ∈ S. Thus Ap = 0 so κ1, κ2 = 0 and K = H = 0.

Example 45 (Sphere).

s =
{

(x, y, z) : x2 + y2 + z2 = R2
}

Choose ξ(p) = p/R, ∀p ∈ S hence dξ(p)[X] = X/R, ∀X ∈ TpS since
ξ : R3 → R3 is linear. Thus every tangent vector is an eigenvector of Ap

with eigenvalue −1/R therefore all points of S are umbilical points. Finally,
κ1 = κ2 = −1/R and H = −1/R and K = 1/R2 = H2.

Example 46 (Cylinder).

S =
{

(x, y, z) : x2 + y2 = R2
}

=
{

(R cosu,R sinu, v) : u, v ∈ R
}

Take

ξ(x, y, z) =
1

R
(x, y, 0)

hence given X = (X1, X2, X3):

dξ(p)[X] =
1

R
(X1, X2, 0)
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by linearity. One tangent vector is Z1 = (0, 0, 1) and

AZ1 = 0⇔ κ1 = 0

By Euler’s theorem, Z2 ⊥ Z1 so Z2 = (X1, X2, 0) (where ξ ·Z2 = xX1+yX2 =
0) and

AZ2 = − 1

R
Z2

so

κ2 = − 1

R
so

K = 0 and H = − 1

2R

Example 47 (Cylinder again).

S =
{

(x, y, z) : x2 + y2 = R2
}

=
{

(R cosu,R sinu, v) : u, v ∈ R
}

Choose ξ(p) = (cosu, sinu, 0) which is outwards pointing. Define p(u, v) =
(R sinu,R cosu, 0). One guesses that the Principal directions are

1

R

∂p

∂u
= (− sinu, cosu, 0)

∂p

∂v
= (0, 0, 1)

and verify

A(pu) = −∂(ξ ◦ p)
∂u

= (sinu,− cosu, 0) = −pu

R

A(pv) = −∂(ξ ◦ p)
∂v

= (0, 0, 0) = 0pv

Hence

κ1 = − 1

R
and κ2 = 0

K = 0 and H = − 1

2R

Example 48 (Cylinder for the last time). Using P (u, v) of the two
example above, we can compute e, f, g and hence K and H using the“standard
method”. The solution is left as an exercise for the reader.
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4.7 Gauss curvature

Recall

K =
eg − f 2

EG− F 2
(4.112)

Using the formula for e, f and g:

(EG− F 2)2K = [pu, pv, puu][pu, pv, pvv]− [pu, pv, puv]
2 (4.113)

Let
(
a b c

)
be a 3 × 3 matrix with vectors as columns and

ab
c

 be a

3× 3 matrix with vectors as rows. We can write:

(EG− F 2)2K = det
(
pu pv puu

)
det

(
pu pv pvv

)
−

(
det

(
pu pv puv

) )2

(4.114)

= det

 pu

pv

puu

 det
(
pu pv pvv

)
− det

 pu

pv

puv

 det
(
pu pv pvu

)
(4.115)

= det
(  pu

pv

puu

 (
pu pv pvv

) )
− det

(  pu

pv

puv

 (
pu pv pvv

) )
(4.116)

=

∣∣∣∣∣∣
E F pu · pvv

F G pv · pvv

pu · puu pv · puu puu · pvv

∣∣∣∣∣∣−
∣∣∣∣∣∣

E F pu · puv

F G pv · puv

pu · puv pv · puv |puv|2

∣∣∣∣∣∣
(4.117)

Notice that:

pu · pvv = (pu · pv)v − puv · pv = Fv −
1

2
Gu (4.118)

pu · puv =
1

2
Ev (4.119)

(4.120)

Mathematics University of York 66



Golanski & Wood Differential Geometry 2003/2004

Hence ∣∣∣∣∣∣
E F Fv − 1

2
Gu

F G 1
2
Gv

1
2
Eu Fu − 1

2
Ev puu · pvv − |puv|2

∣∣∣∣∣∣−
∣∣∣∣∣∣
E F 1

2
Ev

F G 1
2
Gu

1
2
Ev

1
2
Gu 0

∣∣∣∣∣∣ (4.121)

Notice that:

puu · pvv = (pu · pvv)u − pu · pvvu = (Fv −
1

2
Gu)u − pu · pvvu (4.122)

|puv|2 = (pu · puv)v − pu · puvv =
1

2
Evv − pu · puvv (4.123)

so

puu · pvv − |puv|2 = Fvu −
1

2
Guu −

1

2
Evv (4.124)

Conclusion K can be expressed solely in terms of E,F and G. Thus K is
an intrinsic geometric quantity!

Theorem 4.7.0.4 (Theorema egregium). If f : S → S̄ is a local isometry
then K̄

(
f(p0)

)
= K(p0), ∀p0 ∈ S.

Proof. By the (E,F,G) lemma, there exist charts about p0 and f(p0) such
that (E,F,G) = (Ē, F̄ , Ḡ).

Note 1 It is not true that H̄
(
f(p)

)
= H(p). For example, if S is a plane

and S̄ is a cylinder we have H = 0 and H̄ = ± 1
2R

but there is a local isometry
f : S → S̄.

Note 2 Can have f : S → S̄ with K̄
(
f(p)

)
= K, ∀p ∈ S but f is not

a local isometry – see question 34, Exercise III. Thus the converse to the
theorema egregium is false.

Application It’s impossible to accurately map any part of the Earth’s
surface no matter how small it is. For a sphere has non-zero Gauss curvature
whereas a plane has zero Gauss curvature.

4.8 Congruent surface and Bonnet’s theorem

Question When do two surfaces have the “same shape”?
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Answers Diffeomorphism is not the solution since a sphere and an ellipsoid
are diffeomorphic. Neither is isometry since a plane and a parabolic cylinder
are isometric. So, what is?

Example 49 (Parabolic cylinder and plane). Let

S = {(x, y, 1
2
y2) : x, y ∈ R} be the parabolic cylinder and

S̄ = {(x, y, 0) : x, y ∈ R} be the xy-plane.

Note that just “lifting” the points from the plane towards the parabolic cylin-
der will not preserve distances. We need to work with arc lengths. Let the
mapping f : S → S̄ be

f : (x, y, 0) 7→ (x,
1

2
(sinh−1 y + y

√
(1 + y2), 0)

Recall that 1
2
(sinh−1 y + y

√
(1 + y2)) is the arc length of a parabola as seen

in example 12. We can check that this is an isometry

p(u, v) = (u, v,
1

2
v2)

pu = (1, 0, 0)

pv = (0, 1, v)

df [pu] =
∂(f ◦ p)
∂u

= (1, 0, 0)

df [pv] =
∂(f ◦ p)
∂v

=
∂

∂v
(u,

1

2
(sinh−1 v + v

√
(1 + v2), 0)

= (0,
1

2
(

1√
1 + v2

+
√

1 + v2 +
v2

√
1 + v2

), 0)

= (0,
2 + 2v2

2
√

1 + v2
, 0)

= (0,
√

1 + v2, 0)
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and finally

|df [pu]|2 = 1 = |pu|2

|df [pv]|2 = 1 + v2 = |pv|2

< df [pu], df [pv] > = 0 =< pu, pv >

Hence the parabolic cylinder and the plane are isometric.

Recall A rigid motion of R3 is a map R : R3 → R3; R(w) = L(w) + C
where L is an orthogonal transformation (IE 3 × 3 orthogonal matrix) and
C is a constant vector.

Note that an orthogonal transformation is a linear isometry of R3:

Lv · Lw = v · w, ∀v, w ∈ R3 (4.125)

• If S ⊂ R3 is a smooth surface, then so is S̄ = R(S). For if φ : D → U
is a chart in S then φ̄ = φ ◦R−1 : D̄ = R(D)→ U is a chart in S̄.

• The restriction f : R|S : S → S̄ is an isometry:

< df [X], df [Y ] > = dR[X] · dR[Y ] (4.126)

= dL[X] · dL[Y ] (4.127)

= LX · LY by linearity (4.128)

= X · Y by orthogonality (4.129)

=< X, Y > (4.130)

and f is invertible with inverse f−1 = R−1|S̄. Such an isometry is
called a congruence and S, S̄ are said to be congruent.

• Charts φ : D → U and φ̄ : D̄ → U (as above) are f -adapted hence
(Ē, F̄ , Ḡ) = (E,F,G) on U by the (E,F,G)-lemma.

• If S is orientable with unit normal ξ then S̄ has unit normal:

ξ̄
(
f(p)

)
= dR(p)[ξ(p)] = L

(
ξ(p)

)
(4.131)

hence S̄ is also orientable. Note that the above equation contains

1. |ξ̄| = 1 and
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2. ξ̄ is normal to S̄.

Proposition 4.8.0.5. The shape operators of congruent surfaces are conju-
gate.

Ā ◦ df = df ◦ A (4.132)

Proof. If X ∈ TpS then

Ā
(
df(X)

)
= −dξ̄

(
df(X)

)
by definition of Ā (4.133)

= −d(ξ̄ ◦ f)(X) by chain rule (4.134)

= −d(L ◦ ξ)(X) by equation 4.131 (4.135)

= −dL
(
dξ(X)

)
by the chain rule again (4.136)

= dL(AX) by definition of A (4.137)

= dR(AX) because R = L+ C (4.138)

= df(AX) by definition of f (4.139)

Corollary 4.8.0.6. Congruent surfaces have the same principal curvatures
(IE κ̄i

(
f(p)

)
= κi(p)), hence the same Gauss and mean curvatures.

Proof. Conjugate linear operators have the same eigenvalues.

The converse of the above corollary is called Bonnet’s theorem.

Definition 4.8.0.17. A smooth surface S is said to be path-connected or
more briefly connected if for every pair of points p, q ∈ S there exists a
smooth path c(t) in S with c(0) = p and c(1) = q.

Theorem 4.8.0.7 (Bonnet’s theorem). If f : S → S̄ is a local isometry of
oriented surfaces with S connected and df ◦A = Ā◦df then f is a congruence.

Proof. See section 4.10.

Lemma 4.8.0.8 ((e, f, g)-lemma). Suppose f : S → S̄ is a smooth map of
oriented surfaces and a local isometry at p0 ∈ S. Then Ā ◦ df = df ◦ A on
Tp0S if and only if there exist f -adaptable charts φ : D → U and φ̄ : D̄ → U
with p0 ∈ D such that (ē, f̄ , ḡ) = (e, f, g) at p0.
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Proof. Please differentiate between f : S → S̄ the mapping and f = α(pu, pv)
from the second fundamental form.

For f -adapted charts:

∂p̄

∂u
=
∂(f ◦ p)
∂u

= df
(∂p
∂u

)
(4.140)

∂p̄

∂v
=
∂(f ◦ p)
∂v

= df
(∂p
∂v

)
(4.141)

At φ(p0):

ē = ᾱ(p̄u, p̄u) (4.142)

=< Āp̄u, p̄u > by definition of ᾱ (4.143)

=< Ā ◦ df [pu], p̄u > by equation 4.140 (4.144)

and

e = α(pu, pu) (4.145)

=< Apu, pu > (4.146)

=< df ◦ A[pu], p̄u > because f is a local isometry (4.147)

Thus

ē− e =< (Ā ◦ df − df ◦ A)[pu], p̄u > (4.148)

=< Bpu, p̄u > say (4.149)

where
B : Tp0S → Tf(p0)S̄, B = Ā ◦ df − df ◦ A (4.150)

Similarly for f and g:

f̄ − f =< Bpu, p̄v >=< Bpv, p̄u > because A and Ā are self adjoint
(4.151)

ḡ − g =< Bpv.p̄v > (4.152)

The check that < df [X], BY >=< BX, df [Y ] > is left for the reader.
So ē = e and f̄ = f if and only if Bpu = 0. Similarly ḡ = g and f̄ = f if

and only if Bpv = 0. Hence

(ē, f̄ , ḡ) = (e, f, g)⇔ Bpu = 0 = Bpv ⇔ B = 0 (4.153)
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Consequence (E,F,G)-lemma, (e, f, g)-lemma and Bonnet’s theorem im-
ply that E, F , G, e, f and g determine S locally up to congruence. Compare
with the Serret-Frenet theorem for space curves – 2.6.3.1.

4.9 Gauss-Weingarten Formulas

Recall the Serret-Frenet formulas 2.6.1 for a unit speed curve:

d

ds

(
T N B

)
=

(
T ′ N ′ B′) =

(
T N B

) 0 −κ 0
κ 0 τ
0 −τ 0

 (4.154)

For a smooth surface, use chart to define a basis of R3 :

pu =
∂p

∂u
(4.155)

pv =
∂p

∂v
(4.156)

ξ ◦ p =
pu × pv

|pu × pv|
(4.157)

Thus ∂pu

∂u
, ∂pv

∂v
and ∂(ξ◦p)

∂u
are linear combinations of pu, pv and ξ ◦ p so we can

write:

∂

∂u

(
pu pv ξ ◦ p

)
=

(
pu pv ξ ◦ p

)
P1 (4.158)

∂

∂v

(
pu pv ξ ◦ p

)
=

(
pu pv ξ ◦ p

)
P2 (4.159)

where P1 and P2 are 3 × 3 matrices. After some calculations P1 = Q−1M
and P2 = Q−1N where

Q =

E F 0
F G 0
0 0 1

 (4.160)

and

M =

 1
2
Eu

1
2
Ev −e

Fu − 1
2
Ev

1
2
Gu −f

e f 0

 (4.161)
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N =

 1
2
Ev Fv − 1

2
Gu −f

1
2
Gu

1
2
Gv −g

f g 0

 (4.162)

Note that

M +MT =

Eu Fu 0
Fu Gu 0
0 0 0

 =
∂Q

∂u
(4.163)

and

N +NT =
∂Q

∂v
(4.164)

4.10 Proof of Bonnet’s theorem

Theorem 4.10.0.9 (Bonnet’s theorem). If f : S → S̄ is a local isome-
try of oriented surfaces with S connected and df ◦ A = Ā ◦ df then f is a
congruence.

Proof. Compare this proof to the proof of the Serret-Frenet theorem 2.6.3.1.

For any p ∈ S, define a rigid motion Rp = Lp + Cp as follows

Lp(X) = df(p)(X), ∀X ∈ TpS (4.165)

Lp(ξ) = ξ̄
(
f(p)

)
(4.166)

Thus for all w ∈ R3 we have

Lp(w) = df(p)[w − (w · ξ)ξ] + (w · ξ)ξ̄ (4.167)

Note that Lp : R3 → R3 is orthogonal as df(p) is a linear isometry. Then
define

Cp = f(p)− Lp(p) (4.168)

to ensure that Rp(p) = f(p). Call Rp the rigid approximation to f at p.
Obtain the smooth maps:

L : S →
{
3× 3 matrices

}
u R9, p 7→ Lp (4.169)

C : S → R3; p 7→ Cp (4.170)
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The aim is to show that dL and dC are null so that L and C are constant.
Note that we need to only show that L is content. For if Lp = Λ, ∀p ∈ S
then

C(p) = Cp = f(p)− Λ(p) (4.171)

hence

dC(p) = df(p)− dΛ(p) = df(p)− Λ = 0 (4.172)

by equation 4.165.

Fix p0 ∈ S from now onwards. Since f is a local isometry, we can find
f -adapted charts D (about p0) and D̄ (about f(p0)) such that (Ē, F̄ , Ḡ) =
(E,F,G) by the (E,F,G)-lemma.

Recall that f -adapted means that f ◦ p = p̄. Thus p̄u = df(pu) and
p̄v = df(pv). In general, write

X = Xupu +Xvpv (4.173)

where

< X, pu >= XuE +XvF
< X, pv >= XuF +XvG

}
⇒

(
< X, pu >
< X, pv >

)
=

(
E F
F G

) (
Xu

Xv

)
(4.174)

so

df(X) = Xup̄u +Xvp̄v (4.175)

=
(
p̄u p̄v

) (
Xu

Xv

)
(4.176)

=
(
p̄u p̄v

) (
E F
F G

)−1 (
< X, pu >
< X, pv >

)
(4.177)

Take X = w − (w · ξ)ξ then equation 4.167 reads:

L(p)[w] =
(
p̄u p̄v

) (
E F
F G

)−1 (
w · pu

w · pv

)
+ (w · ξ)ξ̄ (4.178)

=
(
p̄u p̄v ξ̄

)
Q−1

w · pu

w · pv

w · ξ

 (4.179)
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where p = p(u, v). Then by Gauss-Weingarten:

∂

∂u
L(p)[w] =

(
p̄u p̄v ξ̄

)
Q̄−1M̄Q−1

w · pu

w · pv

w · ξ


+

(
p̄u p̄v ξ̄

) ∂Q−1

∂u

w · pu

w · pv

w · ξ


+

(
p̄u p̄v ξ̄

)
Q−1MTQ−1

w · pu

w · pv

w · ξ


(4.180)

Note that

∂

∂u

(
w · pu w · pv w · ξ

)
=

(
w · pu w · pv w · ξ

)
Q−1M (4.181)

So

∂

∂u

w · pu

w · pv

w · ξ

 = MTQ−1

w · pu

w · pv

w · ξ

 (4.182)

Hence noting that Q = QT , Q̄ = Q and M̄ = M :

∂

∂u
L(p)[w] =

(
p̄u p̄v ξ̄

) (
Q−1(M +M t)Q−1 +

∂Q−1

∂u

) w · pu

w · pv

w · ξ

 (4.183)

Note that M +MT = ∂Q
∂u

and

∂Q−1

∂u
=

∂

∂u

(
Q−1QQ−1

)
(4.184)

=
∂Q−1

∂u
+Q−1∂Q

∂u
Q−1 +

∂Q−1

∂u
(4.185)

⇒ 0 = Q−1∂Q

∂u
Q−1 +

∂Q−1

∂u
(4.186)

Hence
∂(L ◦ p)
∂u

= dL
(∂p
∂u

)
= 0 (4.187)

Mathematics University of York 75



Golanski & Wood Differential Geometry 2003/2004

Similarly

dL
(∂p
∂v

)
(4.188)

hence
dL = 0 (4.189)

This concludes the study of the geometry of surfaces and this course.
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congruent, 27
smooth, 13

path-connected, 70
point

critical, 15
elliptic, 58
flat, 59
hyperbolic, 58
minimal, 59
parabolic, 58
planar, 58
regular, 15
singular, 15
umbilic, 59

principal curvature, 58
principal direction, 58
principal normal vector, 23
proper rigid motion, 21

regular value theorem, 39
Riemannian metric, 45, 48

angles, 49
arc lengths, 48
areas, 49
classic, 49

rigid motion, 27

Serret-Frenet theorem, 28
shape operator, 56

conjugate, 70
diagonalise, 57
self-adjoint, 57

signed curvature, 19
smooth surface

definition of, 34
definition of patch, 33
definitions, 31
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surface
orientable, 55

tangent vector, 16
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Mathematics University of York 79


	Introduction
	On the geometry of space curves
	Smooth paths
	Arc Length
	Curvature
	Planar curves
	Definition
	Features

	Torsion: back into space
	Torsion
	Formula for torsion

	Frenet formulas
	Definition
	Congruence of curves
	Serret-Frenet theorem


	On smooth surfaces
	Fundamental concepts
	Some advanced calculus (revision)
	Jacobian matrix
	Chain rule
	Geometric consequence

	Tangent space
	More advanced calculus
	Inverse function theorem
	Application: regular value theorem

	Calculus on surfaces
	Preamble
	Definitions


	On the geometry of surfaces
	Riemannian metric
	Geometry using the Riemannian metric
	Arc lengths
	Angles
	Areas
	Intrinsic geometric properties

	Local isometries
	Yet more calculus on surfaces
	(E, F, G) lemma

	Curvature
	Orientable surfaces
	Shape operator

	Geometry of curves in S
	Second fundamental form
	Gauss curvature
	Congruent surface and Bonnet's theorem
	Gauss-Weingarten Formulas
	Proof of Bonnet's theorem


