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Chapter 1

Overviews and Examples of Lie

Groups and Lie Algebras

1.1 Hamiltonians H

1.1.1 Notations

H is a group of quaternions.
H× is a group of nonzero quaternions.
H0 is a real vector space of purely imaginary quaternions, i.e., H0 = R{i, j, k} ∼= R3 and H = R⊕H0.
H1 is a group of unitary quaternions, i.e., H1 = {u ∈ H | ||u||2 = 1}.
SL(n) is a group of unimodular automorphisms of Rn. Here, note that a unimodular automorphism
means a volume preserving automorphism.
SL(n,R) = {A ∈Mn(R) | detA = 1}.
SO(n) is a group of unimodular and orthogonal automorphisms of Rn.
SO(n,R) = {A ∈Mn(R) | detA = 1 and AAT = I}.

1.1.2 Involution α in H

Let α : H→ H be a conjugation, which means that α(a+ bi+ cj + dk) = a− bi− cj − dk. That is,
α is an involution of H, i.e., α2 = id. It is easy to see that α enjoys the following properties:
1. u ∈ H is real ⇐⇒ α(u) = u.
2. u ∈ H is purely imaginary ⇐⇒ α(u) = −u.
3. uα(u) = ||u||2.
4. α(uv) = α(v)α(u). Note that the order is reversed.
5. Re(u) = 1

2(u+ α(u)) and Im(u) = 1
2(u− α(u)).

1.1.3 An Action of H1 on H0 by conjugation

Recall that H0 = R{i, j, k} = {u ∈ H | Re(u) = 0} ∼= R3 and H1 = {u ∈ H | ||u||2 = 1} ∼= S3.
Let ϕ(u)v = uvu−1 for u ∈ H1 and v ∈ H0, where u

−1 = α(u). Clearly, it is an action of H1 on
H0. Note that R× ∩H1 acts trivially.
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Exercise 1.1.3.1. 1. Show that H0 is invariant under the action ϕ(H1).
2. The action ϕ(u) preserves Euclidean geometry of H0

∼= R3, i.e., each element of H1 gives a
rotation of H0 as R3.

Proof. In the first case, it suffices to show that Re(ϕ(u)v) = Re(uvu−1) = 0 for all u ∈ H1 and
v ∈ H0. By messy but trivial computations, it will be done.

Note that ϕ : H = R4 → H = R4 and the action ϕ(u) : H = R4 → H = R4 is given by
ϕ(u)v = uvu−1. Since the action of ϕ(u) is obviously a linear isomorphism and

uvu−1 = 0 for u ∈ H× ⇐⇒ v = 0,

we have ϕ(u) ∈ GL(4,R) for u ∈ H×. In the second case, the key thing to show is that ϕ(u)
preserves norms for u ∈ H1. If the action preserves norms, by the formula,

〈v, w〉 = ||v + w||2 − ||v||2 − ||w||2
2

we conclude that it is a unimodular and orthogonal action on R4. Since

||ϕ(u)v|| = ||uvu−1|| = ||u||||v||||u−1|| = ||v|| for u ∈ H1, v ∈ R4,

we have ϕ(u) ∈ SO(4) for u ∈ H1.
Suppose that r ∈ R and u ∈ H1. We have

ϕ(u) · r = uru−1 = r||u||2 = r.

If we consider the canonical inclusions SO(3) ⊂ SO(4) ⊂ O(4,R), by the first problem and the
above discussion, we can think the action of ϕ(u) on H0 as the usual action of an element in
SO(3).

1.1.4 One parameter Subgroup

A homomorphism ϕ : R → H× is a one parameter subgroup, i.e., ϕ(s + t) = ϕ(s)ϕ(t). More
generally, we can replace H× by a Lie group G.

Remark 1.1.4.1. By the uniqueness and existence of a solution of an O.D.E, one parameter sub-
group ϕ is determined by ϕ′(0) Also, ϕ determines a flow λt : G → G where λt = lϕ(t), i.e.,
lϕ(t)(g) = ϕ(t)g. Note that an infinitesimal left multiplication corresponds to a right invariant
vector field.

Example 1.1.4.1. Assume that ϕ′(0) = v ∈ H0 and let ϕ′(s) = ϕ(s). So,

ϕ(s) = exp(ϕ′(0)s) =
∑ vn

n!
sn.

Since ||vn|| = ||v||n, ||ϕ(s)|| ≤ exp(||v||s). So, it converges uniformly and absolutely on a compact
subset of R. Let v ∈ H0, the group of purely imaginary quaternions. So,

v = ||v||u where u ∈ H0 ∩H1
∼= S2.
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Note that vn = ||v||nun and u2 = −1. So we have

vn =

{
(−1)m||v||2m if n = 2m

(−1)m||v||2m+1u if n = 2m+ 1.

From the above observation, we have an interesting formula for v ∈ H0:

exp(vs) =
∑ vn

n!
sn =

∑

n=2m

(−1)m ||v||
2m

n!
s2m +

∑

n=2m+1

(−1)m ||v||
2m+1

n!
s2m+1u

= cos(||v||s)1 + sin(||v||s)u.

Generally, exp(iθ) acts on H in three ways, right multiplication, left multiplication, and conjugation.
Let us examine an action of exp(iθ) on H by conjugation. Note that we can think C spanned by
{1, i} as a subalgebra of H and by the relation ij = k, {j, k} spans Cj. If u ∈ C ⊂ H, ϕ(eiθ)u = u.
Observe that

ϕ(eiθ)j = eiθje−iθ = (cos θ + i sin θ)j(cos θ − i sin θ)
= (cos2 θ − sin2 θ)j + 2(sin θ cos θ)k using ijk = −1
= (cos 2θ)j + (sin 2θ)k.

So, since ϕ(eiθ)k = eiθke−iθ = (cos 2θ)k + (sin 2θ)j, we have ϕ(eiπ) = id on H.

Exercise 1.1.4.1. Let u ∈ S2 = H0 ∩H1. Find v ∈ S3 ∼= H1 such that ϕ(v)i = u. In other words,
H1 acts transitively on S2.

Proof. By the similar computation, we deduce that the action of ϕ(ejθ) on i is a just rotation
through the axis j, ϕ(ekθ) on i is a just rotation through the axis k and ϕ(eiθ) on i is an identity.
So, geometrically, we can imagine that for any u ∈ S2, there exist rotations ϕ(ejθ1) and ϕ(ekθ2)
which moves i to u ∈ S2. Hence,

v = ejθ1 · ekθ2 ∈ S3 where ejθ1 = cos θ1 + j sin θ1 and ekθ2 = cos θ2 + k sin θ2.

1.1.5 Relationship between H and C2

First, notice that SU(2) ∼= H1 and SU(2) = {A ∈ Mn(C) | detA = 1 and AAT = I}. Since
SL(n,R) = {A ∈ Mn(R) | detA = 1}, SL(n,C) = {A ∈ Mn(C) | detA = 1}, and det is a
functional of each fields, it is easy to see that SL(n,R) is a real differentiable manifold of dimension
n2 − 1 and SL(n,C) is a real differentiable manifold of dimension 2n2 − 2.

Since C ⊂ H is a subalgebra, we can think H is a vector space over C spanned be {1, j}. So,
H ∼= C2 as complex vector spaces: Suppose that C2 is spanned by {e1, e2}. A complex linear
isomorphism f between H and C2 is given by

f(a+ bi+ cj + dk) = ae1 + bie1 + ce2 + die2 where a, d, c, d ∈ R.

Now, we want to know how ϕ(j) acts on C in this description. Since ji(−j) = −i and j1(−j) = 1,
we conclude that the conjugation by j is just a restriction of the complex conjugation, i.e., z → z
for z ∈ C.
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Remark 1.1.5.1. We have a dichotomy.

SL(2,R) ⊂ GL(2,R) ⊂M2(R) ↪→M2(C)⇒ k = −1 Hyperbolic geometry

H1 ⊂ S3 ∼= H1 × R+ = H× ⊂ H ↪→M2(C)⇒ k = 1 Elliptic geometry .

The algebra structure of M2(R) is R[i, j]/(i2 = j2 = 1, ij = −ji = k) and the algebra structure of
H is R[i, j]/(i2 = j2 = −1, ij = −ji = k).

Exercise 1.1.5.1. Prove that O(n) = {A ∈ Mn(R) | AAT = I} is compact, but O(n,C) is not
compact if n > 1.

Proof. It suffices to show that O(n) is closed and bounded. By the relation AAT = I, we have

n∑

j=1

a2ij = 1 where (aij)n×n = A ∈ O(n) and for i = 1, . . . , n.

Since a finite intersection of compact sets is compact, O(n) is closed and bounded in Rn2
. However,

if we think A ∈ O(n,C), we only deduce that O(n,C) is closed in Cn2
from the equation

n∑

j=1

a2ij = 1 where (aij)n×n = A ∈ O(n) and for i = 1, . . . , n.

Actually, it is not bounded: For a counter example, we give

∞←
(√

n+ 1 −√ni√
ni

√
n+ 1

)
∈ O(2,C) as n→∞.

Let C = R[i]/(i2 = −1). So we have

C ↪→ H = R[i, j]/(i2 = j2 = −1, ij = −ji = k).

That is, H has a basis {1, j} over C. So, H ∼= C2 as vector spaces.

Question 1.1.5.1. If we take C[i, j]/(i2 = j2 = −1, ij = −ji = k), which algebra do we get?

1.1.6 Action of H on itself by right multiplications rz

Note that since H is an associative algebra, right multiplications commute with left multiplications.
Let ϕ : H→ EndC(C2) by ϕ(h)z = zα(h) for z ∈ C2.

ϕ(h1h2)z = zα(h1h2) = z(α(h2)α(h1)) = (zα(h2))α(h1)

= ϕ(h1)(zα(h2)) = ϕ(h1)(ϕ(h2)z) = (ϕ(h1)ϕ(h2))z.
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That is, ϕ(h1h2) = ϕ(h1)ϕ(h2). Let us examine ϕ more. On C2, we have

ϕ(1) = id =

(
1 0
0 1

)

ϕ(i) = rα(i) = r−i =

(
−i 0
0 i

)
, since 1 7→ −i and j 7→ j(−i) = ij

ϕ(j) = rα(j) = r−j =

(
0 1
−1 0

)
, since 1 7→ −j and j 7→ 1

ϕ(k) = rα(k) = r−k =

(
0 −i
−i 0

)
, since 1 7→ −k = −ij and j 7→ j(−k) = −i.

So, we have a representation ϕ of H as an algebra in M2(C), i.e., for a, b, c, d ∈ R,

ϕ(a+ bi+ cj + dk) =

(
a− bi c− di
−c− di a+ bi

)
.

That is, we have an algebra isomorphism:

H ∼= R[i, j]/(i2 = j2 = −1, ij = −ji = k)
ϕ→M2(C) ∼= R[i, j]/(i2 = j2 = 1, ij = −ji = k).

Remark 1.1.6.1. From the above formula, it is easy to see that
(
a− bi c− di
−c− di a+ bi

)
·
(
i 0
0 i

)
=

(
i 0
0 i

)
·
(
a− bi c− di
−c− di a+ bi

)
.

So, we deduce that an action of C on ϕ(H) commutes. That is,

i · ϕ(a+ bi+ cj + dk) = ϕ(a+ bi+ cj + dk) · i.

Remark 1.1.6.2. We note that there is another representation ψ : H→ EndC(C2), given by

ψ(1) =

(
1 0
0 1

)

ψ(i) =

(
1 0
0 −1

)

ψ(j) =

(
0 1
1 0

)

ψ(k) = ψ(i)ψ(j) =

(
0 1
−1 0

)
.

It is easy to see that for a, b, c, d ∈ R,

ψ((
a+ d

2
) + (

a− d
2

)i+ (
b+ c

2
)j + (

b− c
2

)k) =

(
a b
c d

)
.

From this, we conclude that there is an algebra isomorphism between H and M2(R). In this de-
scription, we let the algebra structure M2(R) induced from H be M2(R), i.e.,

H ∼= M2(R) ∼= R[i, j]/(i2 = j2 = 1, ij = −ji = k).
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Note that in this correspondence, we also have

H0
∼= M2(R)0

def
= {traceless elements of M2(R)}.

If we think the conjugation α of H as an involution of M2(R), we have

α
((a b
c d

))
=

(
d −b
−c a

)
.

Also, we can define a norm on M2(R), using the formula ||v||2 = vα(v) for v ∈ H. That is, for
A ∈M2(R), we define

N(A)
def
= Aα(A) = (ad− bc)I = det(A)I.

1.1.7 Action preserving a Hermitian structure on C2.

A hermitian structure on C2 is a positive definite, sesquilinear, and R-bilinear inner product on C2.
That is for u, v ∈ C2,
1. 〈u, u〉 > 0 if u 6= 0.
2. 〈u, v〉 = 〈v, u〉.
3. 〈λ(u1 + u2), µv〉 = λµ(〈u1, v〉+ 〈u2, v〉).

The usual Hermitian structure on Cn is given by

〈z, w〉 = zT · w =
(
zi, . . . , zn

)
·



w1
...
wn


 =

n∑

i=1

ziwi ∈ C for z, w ∈ Cn.

If we let zj = xj + iyj and wj = uj + ivj , we also have Re〈z, w〉 = x · u+ y · v.

Exercise 1.1.7.1. Construct the Hermitian structure on C2 corresponding to the quaternions H.

Proof. Let z ∈ C2. Since we identify C2 with H as vector spaces, we can write

z = a+ bj where a, b ∈ C.

Define for z1, z2 ∈ C2,

〈z1, z2〉 = 〈a1 + b1j, a2 + b2j〉 = a1 · a2 + b1 · b2.

It is easy to see that 〈, 〉 ∈ C and satisfies the required properties.

By definition,

U(n) = {A ∈ GL(n,C) | A preserves 〈, 〉 the usual Hermitian structure}.

Since for A ∈ U(n) and for all z, w ∈ Cn,

〈Az,Aw〉 = (Az)T (Aw)
def
= zTw = 〈z, w〉,
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we conclude that ATA = I. That is,

U(n) = {A ∈ GL(n,C) | ATA = I}.

From this, we also have A = (A
T
)−1 and φ is an involution, i.e., automorphism of (real) Lie group

of order two:
GL(n,C)→ GL(n,C) given by φ(A)→ (A

T
)−1.

Note that φ is smooth but not complex analytic.
Let G be a group and φ ∈ Aut(G).

Fix(ψ) = {x ∈ G | ψ(x) = x}.

By the above discussion, we have Fix(φ) = U(n).

Exercise 1.1.7.2. Prove that U(n) is compact.

Proof. From the relation ATA = I,

n∑

j=1

|aij |2 = 1 where (aij)n×n = A ∈ U(U) and for i = 1, . . . , n.

So, U(n) is closed and bounded in Cn2
.

1.1.8 Revisit to the Matrix algebra of M2(R).

In this section, we revisit the material, which we discussed in Remark 1.1.6.2, so that it would give
you more rigorous and clearer views. We note that from the discussion in Remark 1.1.6.2, we have
M2(R) ∼= R[I, J ]/(I2 = J2 = 1, IJ + JI = 0), where

1 =

(
1 0
0 1

)

I =

(
1 0
0 −1

)

J =

(
0 1
1 0

)

IJ = K =

(
0 1
−1 0

)
.

We also remind you that α : M2(R)→M2(R) is given by

I 7→ −J, J 7→ −J,1 7→ 1.

Observe that α(K) = α(IJ) = α(J)α(I) = (JI) = −K. So, we have

α
((a b
c d

))
=

(
d −b
−c a

)
.
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The norm N on M2(R) is defined by

N(A)
def
= Aα(A) = (ad− bc)1 = det(A)1.

Using α, we also had for A ∈M2(R),

A+ α(A) = tr(A)1.

In this correspondence, we had a subalgebra M2(R)0 of M2(R), i.e.,

H0
∼= M2(R)0

def
= {traceless elements of M2(R)}.

Generally, sl2(R) is often written as M2(R)0. So, from now on, we will freely exchange two notations.
Now, we can think H has the algebra induced by M2(R). That is, H has the structure

R[i, j]/(i2 = j2 = 1, ij + ji = 0) rather than R[i, j]/(i2 = j2 = −1, ij + ji = 0). So, by the
correspondence

a+ bi+ cj + dk ←→
(
a+ b c+ d
c− d a− b

)
,

we have

H1 = {v ∈ H | a2 − b2 − c2 + d2 = 1} ←→ SL(2,R) = {A ∈M2(R) | det(A) = 1}.
Note that

H0 ←→ sl2(R) = {traceless elements of M2(R)} = {
(
a b
c −a

)
| a, b, c, d ∈ R}.

Since each generator of M2(R) consists of integer entries, we can define a Z-algebra, i.e.,

M2(Z) ∼= Z[I, J ]/(I2 = J2 = 1, IJ + JI = 0).

So, in this description, we have successive inclusions of algebras:

SL(2,Z) ⊂ SL(2,R) ⊂M2(R).

The following example will exhibit why this description is so useful sometimes:

Example 1.1.8.1. Let T 2 be a torus and Homeo(T 2)+ is a group of orientation preserving home-
omorphisms of T 2. Consider

Homeo(T 2)+
ϕ→ Aut(H1(T 2)) by ϕ(f) = f∗.

Since a homeomorphism f induces an isomorphism f∗ between H1(T 2) ∼= Z2 and H1(T
2) ∼= Z2, ϕ

is well-defined. From H1(T
2) ∼= Z2, it is not hard to see that

Aut(H1(T
2)) ∼= SL(2,Z), which is called the modular group.

However, since Z is not a field, sometimes we can not get quite satisfactory information from the
situation. So, it would be more useful ways of studying this situation that we think SL(2,Z) as
an imbedding space of SL(2,Z). In general, a Lie group can be continuously approximated by a
discrete Lie group. As a reference,

Homeo(T 2)+ ∼= SL(2,Z)×H where h = {f ∈ Homeo(T 2) | f ' id}.
Also, note that H is called a contractible group.

8



Remark 1.1.8.1. Since there exists a Borel measure invariant under both left and right multiplica-
tions on SL(2,R), there exists an SL(2,R)-invariant measure on a symmetric space SL(2,R)

SL(2,Z) under

the left-multiplication by SL(2,R) on SL(2,R)
SL(2,Z) . If the measure is finite, i.e.,

µ(
SL(2,R)

SL(2,Z)
) <∞,

it is called a Haar measure on SL(2,R)
SL(2,Z) .

Exercise 1.1.8.1. Compute H1(Z) = {h ∈ H(Z) | ||h|| = 1}.

Proof. First, observe that H1(Z) is a discrete space inside a compact space

H1(R)
def
= H1 = {h ∈ H | ||h|| = 1} ∼= S3.

So, it must consist of a finite number of points. Clearly,

{±1,±I,±J,±K} ⊂ H1(Z).

Since {±1,±I,±J,±K} is the set of all the generators of H1 and h ∈ H1(Z) must satisfy ||h|| = 1,
we have

{±1,±I,±J,±K} = H1(Z).

Recall that in Exercise 1.1.3.1, H1 acts on H0 by conjugations in unimodular and orthogonal ways.
It is clear that H× acts on H0 = R3 ∼= sl(2,R) by conjugations in nonsingular ways, considering
the proof of Exercise 1.1.3.1. That is, it is the usual action of an element in GL(3,R) on R3.

Observation 1.1.8.1. We know that H0
∼= R3 as vector spaces. Here, R3 is a vector space gener-

ated by {i, j, k}. Since we show that H0
∼= sl(2,R), we can give R3 the algebra structure induced by

sl(2,R). That is, we have the following relations in R3:

i2 = j2 = 1, ij + ji = 0, k2 = −1.

More precisely, we defined a multiplicative structure on R3: For v1, v2 ∈ R3,

v1v2 ∈ R3 ∼= sl(2,R).

So, we can define a new inner product 〈, 〉 on R3, i.e., for v1, v2 ∈ R3,

〈v1, v2〉 = Re(v1v2).

Let

B =



1 0 0
0 1 0
0 0 −1


 .

One moment of thinking gives you that the new inner product on R3 can be written as the usual
quadratic forms: For v1, v2 ∈ R3,

〈v1, v2〉 = vT1 ·B · v2.
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Let
G(B) = {A ∈M3(R) | ATBA = B}.

Obviously, G(B) is a subgroup of M3(R). Since det(ATBA) = −(det(A))2 = −1 for A ∈ G(B),
we have G(B) ⊂ GL(3,R). Moreover, from the following consideration;

〈v1, v2〉 = vT1 ·B · v2 = vT1 · (ATBA) · v2 = 〈Av1, Av2〉 for A ∈ G(B),

we have G(B) preserves the orthonormal relations with respect to 〈, 〉. So, we call G(B) an indefinite
orthonormal group, denoted by O(2, 1). In general,

B =

(
1p 0
0 −1q

)
where 1p is a p× p identity matrix.

Also we have G(B)
def
= O(p, q) ⊂ GL(n,R) where p+ q = n.

Definition 1.1.8.1 (Local Lie group isomorphisms). If G,H are Lie groups, a local Lie group

isomorphism is a map f : G → H such that f is a homomorphism of groups and f is a local
diffeomorphism.

Example 1.1.8.2. Exercise 1.1.3.1 show that H1
∼= S3 → SO(3) is a local isomorphism and

surjective as a group homomorphism. Note that the algebra of H1 is given by R[i, j]/(i2 = j2 =
−1, ij + ji = 0).

In general, a local isomorphism is not injective nor surjective.

Example 1.1.8.3. SL(2,R)
f
↪→ O(2, 1) is a local isomorphism.

Proof. Let the algebra of H be given by R[i, j]/(i2 = j2 = 1, ij + ji = 0). A similar proof
of Exercise 1.1.3.1 shows that the action of H× on H0 corresponds to the conjugation action of
GL(3,R) on sl(2,R). Moreover, it gives that the action of H1 on H0 corresponds to the conjugation
action of SL(2,R) on sl(2,R). So, we have SL(2,R) ⊂ GL(3,R). Let u = a + bi + cj + dk ∈ H1.
So, a2 − b2 − c2 + d2 = 1. For v1 = α1i+ β1j + γ1k, v2 = α2i+ β2j + γ2k ∈ H0, we have

〈uv1u−1, uv2u−1〉 = Re(uv1v2u
−1) = (a2 − b2 − c2 + d2)Re(v1v2) = 〈v1, v2〉.

That is, SL(2,R) ⊂ O(2, 1).
Note that

Re
(
uv1v2u

−1) = Re((a+ Im(u))(Re(v1v2) + Im(v1v2))(a− Im(u))
)

= Re
(
(a+ Im(u))(Re(v1v2))(a− Im(u)) + (a+ Im(u))(Im(v1v2))(a− Im(u))

)

= Re((a2 − b2 − c2 + d2)Re(v1v2) + a2Im(v1v2)− aIm(v1v2)Im(u)

+ aIm(u)Im(v1v2)− Im(u)Im(v1v2)Im(u))

= (a2 − b2 − c2 + d2)Re(v1v2)−Re(aIm(v1v2)Im(u)) + aRe(Im(u)Im(v1v2))

= (a2 − b2 − c2 + d2)Re(v1v2)

.

The local isomorphism is not surjective.

Even though SO(2) ∼= S1 is connected, we have the followings:
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Exercise 1.1.8.2. Prove that SO(1, 1) is not connected.

Proof. Let

A =

(
a b
c d

)
∈ SO(1, 1) = {A ∈M3(R) | ATBA = B}.

Since ATBA = B, we have four equations:

a2 − c2 = 1, b2 − d2 = −1, ab = cd, and ad− bc = 1.

So, if d = 0, we have a contradiction. So, we have d 6= 0. Since d 6= 0, we must have b = c. If
b = c = 0, then a = d = 1. If b = c 6= 0, then a = d. Hence,

A =

(
a b
b a

)
where a2 − b2 = 1.

That is, SO(1, 1) is not connected.

1.1.9 Exponential Map

Recall that H = R⊕H0. So if w ∈ H, then we can write w = a · 1 + v for a ∈ R and v ∈ H0. From
this, we define

exp(w) = exp(a · 1 + v) = ea exp(v) = ea
(
cos(||v||) + sin(||v||) v

||v||
)
.

Exercise 1.1.9.1. Show that for q = a+ bi+ cj + dk = a+ v ∈ H, we have

|| exp(q)|| = etr(q).

Proof. By identifying H ∼= M2(R), we have

q = a+ bi+ cj + dk →
(
a+ b c+ d
c− d a− b

)

So, tr(q) = 2a. In the other hand,

|| exp(q)||2 = exp(q) · α(exp(q))
= ea

(
cos(||v||) + sin(||v||) v

||v||
)
· ea
(
cos(||v||)− sin(||v||) v

||v||
)

= e2a
(
cos2(||v||) + sin2(||v||)

)
= e2a = e2tr(q).

From Exercise 1.1.9.1, we deduce that traceless quaternions correspond to unit numbers. Since
H0
∼= sl(2,R) = { traceless elements of M2(R)}, we have a well-defined map exp : H0 → H1.

Exercise 1.1.9.2. exp : H0 → H1
∼= S3 is surjective, but not injective.
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Proof. Since H0 is not compact and H1
∼= S3 is compact, obviously it is not injective.

Let u = a+ bi+ cj + dk ∈ H1. So, a
2 + b2 + c2 + d2 = 1.

If a = ±1, exp(2πi) = 1 and exp(πi) = −1. So, we can assume a 6= 1. Let

v =
cos−1 a√
1− a2

(bi+ cj + dk) ∈ H0.

Note that ||v|| = cos−1 a and cos2(cos−1 a) + sin2(cos−1 a) = a2 + sin2(cos−1 a) = 1. So,

exp(v) = cos(cos−1 a) + sin(cos−1 a)
bi+ cj + dk√

1− a2
= a+ bi+ cj + dk.

Exercise 1.1.9.3. Show that exp : sl(2,R)→ SL(2,R) is not surjective.

Proof. First note that exp(A)
def
=
∑ 1

k!A
k. It is easy to see that it converges. By that fact

det(exp(A)) = etr(A), we conclude that exp is well-defined. Consider

A =

(
−1 1
0 −1

)
∈ SL(2,R).

Suppose that exp(X) = A for X ∈ sl(2,R). Since X ∈ sl(2,R),

X =

(
a b
c −a

)
.

If a2 − bc = 0, then X2 = 0. So,

exp(X) = 1+X =

(
1 + a b
c 1− a

)
.

Hence, a2 − bc = 0 implies that a = 0, c = 0, which is a contradiction.
If a2 − bc 6= 0, then X2 = (a2 + bc)1. By the Jordan canonical form, we can assume

PXP−1 =

(
λ 1
0 −λ

)
or PXP−1 =

(
λ 0
0 −λ

)
where P ∈ GL(2,C).

However, X2 = (a2 + bc)1 implies that we must have

PXP−1 =

(√
a2 + bc 0

0 −
√
a2 + bc

)
.

Since

P

(
−1 1
0 −1

)
P−1 = PAP−1 = exp(PXP−1)

= exp(

(√
a2 + bc 0

0 −
√
a2 + bc

)
) =

(
e
√
a2+bc 0

0 e−
√
a2+bc

)
,

we have a contradiction. So, it is not surjective.

Question 1.1.9.1. What about exp : sl(2,C)→ SL(2,C)?

Proof. The same proof of Exercise 1.1.9.3 works here, So, it is not surjective.

12



1.2 Various aspects of Lie groups

1.2.1 Revisit to the exponential map

Definition 1.2.1.1. A Lie algebra g over R is a real vector space g together with a skew-
symmetric bilinear operator

[, ] : g× g→ g, which satisfies Jacobi identity.

First of all, we define a map exp from T (R) ∼= R as a Lie algebra to a Lie algebra g of a Lie
group G, i.e., pick X ∈ g and define

exp : R→ g by λ
d

dt
→ λX.

Then, since R is simply connected, there is a unique one-parameter subgroup such that

t→ exp(tX) ∈ G.

Note that this map only depends on a vector field, which we chose. So, we will denote exp(tX)
by expX(t). From this one-parameter subgroup, we define the exponential map exp from the Lie
algebra g to a Lie group G

exp : g→ G by setting exp(X) = expX(1).

Take G to be a group of matrixes. We define

exp(A) =
∞∑

n=0

An

n!
.

Note that later we will see that two constructions are the same. If A = (aij)n×n, let

||A|| =
∑

i,j

|aij |.

Clearly, we have ||AB|| ≤ ||A||||B||. Also, there exists δ > 0 such that ||A|| < δ. Since

|| exp(A)|| ≤
∞∑

n=0

||An||
n!

≤
∞∑

n=0

||A||n
n!

<
∞∑

n=0

δn

n!
→ eδ as n→∞,

we can deduce that all entries of exp(A) converge uniformly and absolutely. There are useful
formulas:
1. If X,Y commute, then exp(X + Y ) = exp(X) exp(Y ).
2. exp(X) exp(−X) = 1. So, The inverse matrix of exp(X) is exp(−X).
3. det(exp(X)) = exp(tr(X)). Note that we already proved this in terms of quaternions, i.e., this
is true for M2(C). For generality, we prove this for Mn(C).
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Proof. The Jordan canonical form theorem tells us that for any matrix A over C, we can find P such
that P−1AP can be expressed as a block diagonal matrix with Jordan blocks along the diagonal.
Moreover, it is unique up to a permutation. So, it suffices to prove the claim for one Jordan block.
Since det(P−1AP ) = det(A) and tr(P−1AP ) = tr(A), without loss of generality, we can assume
A = λIn +N where In is an identity matrix and N is a matrix with 1’s on the first superdiagonal
and zeros elsewhere. So, tr(A) = nλ. Hence, exp(tr(A)) = enλ. In the other hands,

exp(A) = exp(λIn +N) = eλIn · exp(N).

It is easy to see that exp(N) is a unipotent matrix, i.e., an upper diagonal matrix with 1’s along
the diagonal. Hence, det(exp(A)) = enλ.

Example 1.2.1.1. H exp→ H× is surjective but not injective.

Proof. Obviously, exp(2πi) = exp(2πj) = 1. So, it is not injective. We know that H0
exp→ H1 is

surjective. That is, given v ∈ H0, there exists u ∈ H1 such that exp(v) = u. Since for w ∈ H× =
R4/{0} there exists u ∈ H1

∼= S3 such that w = ru for some r ∈ R, we have

exp(log r + v) = elog r · exp(v) = ru = w.

So, it is surjective.

Example 1.2.1.2. gl(2,C) ∼=M2(C)
exp→ M2(C)×

def
= GL(2,C) is surjective.

Proof. Notice that by formula 2, exp(X) is invertible. Let A ∈M2(C)×. By the Jordan canonical
form theorem, there exists P ∈ GL(2,C) such that

PAP−1 =

(
λ 0
0 ω

)
or PAP−1 =

(
λ 1
0 λ

)
.

Suppose that

PAP−1 =

(
λ 0
0 ω

)
.

Let

X =

(
log λ 0
0 logω

)
.

We have

exp(P−1XP ) = P−1
(
elog λ 0
0 elogω

)
P = A.

Suppose that

PAP−1 =

(
λ 1
0 λ

)
.

Let

Y =

(
0 λ−1

0 0

)
.
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We have

exp(P−1Y P + (log λ)1) = P−1(exp(Y ))P ·
(
elog λ 0
0 elogω

)

= P−1
(
1 λ−1

0 1

)
P ·
(
λ 0
0 λ

)
= P−1

(
λ 1
0 λ

)
P = A.

So, it is surjective.

Example 1.2.1.3. g = iR→ S1 ⊂ C given by iθ → exp(iθ) is surjective.

Example 1.2.1.4. In Exercise 1.1.9.2, we show that g = H0
exp→ H1

∼= S3 is surjective.

So far, we have seen that g
exp→ G is surjective. However, there is an exp, which is not surjective.

From det(exp(A)) = exp(tr(A), we have the followings:

Example 1.2.1.5. In Exercise 1.1.9.3, we have seen that exp : sl(2,R)→ SL(2,R) is not surjec-
tive. By considering the proof of Exercise 1.1.9.3, we have the followings: If λ 6= 0, then

(
−1 λ
0 −1

)
6∈ exp(sl(2,R)).

Now we give an analytic definition of Lie algebra.
Let G be a Lie group contained in Mn(R). The Lie algebra g of G is a tangent space at an

identity 1. That is,

g
def
= T1(G) ⊂ T1(Mn(R)).

A left invariant vector field X is uniquely determined by the evaluation at 1, i.e., X1. So, from now on

we denote X1 by X. Look at a smooth path ϕt in G starting at 1, i.e.,

ϕt ∈ G and ϕ0 = 1.

Let X = dϕt
dt |t=0 ∈ g

def
= T1(G). Define a map

exp : g→ G by tX → ϕt.

This is the exactly same description which we mentioned earlier.

Example 1.2.1.6. Let ϕ : R→ H be a one-parameter subgroup with ϕ0 = 1 and
·
ϕ0 = X. Suppose

that ||ϕt||2 = 1. So, ϕtα(ϕt) = 1. Differentiate ϕtα(ϕt) = 1 with respect to t using linearity of α;

·
ϕtα(ϕt) + ϕtα(

·
ϕt) = 0.

Set t = 0. We have

·
ϕ0α(ϕ0) + ϕ0α(

·
ϕ0) = X + α(X) = 0, which shows that X is necessarily traceless.

That is, the equation ||ϕt||2 = 1 defines the exponential map exp(tX) = ϕt, i.e.,

H0
exp→ H1.
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1.2.2 Symplectic group

Let V be a vector space over R. Then a bilinear form V × V β→ R is skew-symmetric if

β(v1, v2) = −β(v2, v1).

Since there is a unique matrix such that

β(v1, v2) = vT1 Bv2,

we also have B = (βij)n×n is a skew-symmetric matrix if B = −BT where βij = β(ei, ej) in terms
of a basis {e1, . . . , en}. So, we have three correspondences:

Λ2V ∗ = {skew-symmetric bilinear forms on V of dimension n}
m

{skew-symmetric n× n matirxs}
m

o(n) the Lie algebra of O(n).

We only need some clarification of the second up-and-down arrow. An element of the Lie algebra g

of a Lie group G is uniquely determined by one-parameter subgroup. With keeping this in your mind,
we have;

Proof. Let ϕ : R→Mn(R) be a one-parameter subgroup with ϕ0 = 1 and
·
ϕ0 = X. Suppose that

ϕt · ϕTt = 1. Differentiate ϕt · ϕTt = 1 with respect to t using linearity of matrix transpose;

·
ϕt · ϕTt + ϕt · (

·
ϕt)

T = 0.

Set t = 0. We have

·
ϕ0 · ϕT0 + ϕ0 · (

·
ϕ0)

T = X +XT = 0, which shows that X is skew-symmetric.

That is, the Lie algebra o(n) of a Lie group O(n) = {X ∈ Mn(R) | X · XT = 1} is a set of
skew-symmetric matrixes.

Remark 1.2.2.1. Another interesting relation is the following:

{bilinear forms on g = T1(G)}
m

{left-invariant metrics on G}
m

{ right-invariant metrics on G }.

Note that this doesn’t imply that there exists a bi-invariant metric on G. For an example, we give
SL(2,R).

Let V = R2 and β be a skew-symmetric bilinear form. Since

β(e1, e1) = −β(e1, e1), β(e1, e2) = −β(e2, e1), and β(e2, e2) = −β(e2, e2),
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the correspondence matrix B of β is

B =

(
0 −a
a 0

)
where a ∈ R.

So, we have
Λ2V ∗ = {skew-symmetric bilinear forms on V of dimension 2}

m
{aJ | J =

(
0 −1
1 0

)
and a ∈ R}

.

That is, J spans Λ2V ∗. Since ATJA = (detA)J is skew-symmetric, we can define an action of
GL(2,R) ∼= Aut(V ) on Λ2V ∗ by the following way:

A : J → ATJA.

We can observe two interesting properties of J :
1. J2 = −1.
2. J−1 = −J .
As consequences of these, we have
1. A(−J)ATJ = (detA)1 =⇒ α(A) = (−J)ATJ = J−1ATJ from Aα(A) = (detA)1.
2.

A−1 =
1

(detA)
(−J)ATJ for A ∈ GL(2,R).

In general, we let

J2n =

(
0 −1n
1n 0

)
where 1n is an n× n identity matrix.

We define a real symplectic group to be

Sp(n,R) = {A ∈M2n(R) | ATJ2nA = J2n}.

Likewise, we have
Sp(n,C) = {A ∈M2n(C) | ATJ2nA = J2n}.

From ATJA = (detA)J , we can see easily

SL(2,R) = Sp(1,R).

We define

1p,q = 1p ⊕−1q =
(
1p 0
0 −1q

)
.

From this,

U(p, q)
def
= {A ∈Mn(C) | AT · 1p,q ·A = 1p,q where p+ q = n}.

So,
U(n) = U(n, 0).

If p+ q = 2n, then

Sp(p, q)
def
= Sp(n,C) ∩U(p, q).
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Exercise 1.2.2.1. Show that
SL(2,R) ∼= SU(1, 1).

Proof. Pick C ∈ SL(2,C) such that

C
T ·
(
1 0
0 −1

)
· C =

(
0 −i
i 0

)
.

Of course,

C =
1√
2

(
1 −i
−i 1

)
.

Define
SL(2,R)

f→ SU(1, 1) by A 7→ CAC−1.

If f is well-defined, f is necessarily an isomorphism. Clearly, det(CAC−1) = 1. Note that

AT ·
(
0 −i
i 0

)
·A = iATJA = iJ =

(
0 −i
i 0

)
for A ∈ SL(2,R) = Sp(1,R).

So, we have

CAC−1
T ·
(
1 0
0 −1

)
· CAC−1 = C−1

T
ATC

T ·
(
1 0
0 −1

)
· CAC−1 = C−1

T
AT
(
0 −i
i 0

)
AC−1

= C−1
T
(
0 −i
i 0

)
· C−1 = C−1

T
C
T
(
1 0
0 −1

)
CC−1

=

(
1 0
0 −1

)
.

A moment later, we ask you to prove the following identification:

GL(n,H) ⊂ GL(2n,C).

Before proving this, we give an example.

Example 1.2.2.1. We have
Mn(C) ⊂M2n(R).

Proof. The main point here is that we can identify a R-linear homomorphism with a C-linear
homomorphism and vice versa. Let zij = xij +

√
−1yij where xij , yij ∈ R. We have



z11 . . . z1n
... · · · ...
zn1 . . . znn


 7→




(
x11 −y11
y11 x11

)
. . .

(
x1n −y1n
y1n x1n

)

... · · · ...(
xn1 −yn1
yn1 xn1

)
. . .

(
xnn −ynn
ynn xnn

)
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Exercise 1.2.2.2. Considering H = C⊕ Cj ∼= C2, construct the following inclusion

GL(n,H) ⊂ GL(2n,C).

Proof. The proof of this example is almost same as the above proof except one thing. The difference
occurs because j and C does not commute as opposed to the fact

√
−1 and R commute. We will

show that we can identify a C-linear homomorphism with a H-linear homomorphism and vice versa.
That is,

Mn(H) ⊂M2n(C).

Let u ∈ H. So, u = v + wj where v, w ∈ C. Suppose that there exists an inclusion

v + wj ∈ H =M1(H)→
(
a b
c d

)
∈M2(C).

Note that

(α+ βj) · (v + wj) =

(
a b
c d

)(
α
β

)
.

First, we have

(v + wj) =

(
a b
c d

)(
1
0

)
=⇒ a = v, c = w.

Second, consider
ju = j(v + wj) = jv + jwj = vj − w.

That is,

−w + vj = j(v + wj) =

(
a b
c d

)(
0
1

)
=⇒ b = −w, d = v.

So, by defining an inclusion

v + wj ∈ H =M1(H)→
(
v −w
w v

)
∈M2(C),

We have an H-linear matrix in M2(C). It is easy to see that

M1(H) = {A ∈M2(C) | AJ2 = J2A}.

In general, we identify (u1, . . . , un) ∈ Hn for ui = vi + wij with

(v1, . . . , vn, w1, . . . , wn) ∈ C2n.

Let uik = vik + wikj where vij , wij ∈ C. Define



u11 . . . u1n
... · · · ...
un1 . . . unn


 7→




v11 . . . v1n −w11 . . . −w1n
...

...
...

...
vn1 . . . vnn −wn1 . . . −wnn
w11 . . . w1n v11 . . . v1n
...

...
...

...
wn1 . . . wnn vn1 . . . vnn
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It is easy to see that
Mn(H) = {A ∈M2n(C) | AJ2n = J2nA}.

Of course, in this description, we also have

GL(n,H) = {A ∈ GL(2n,C) | AJ2n = J2nA}.

Example 1.2.2.2.

Sp(n, 1)⇐⇒ Isom( quaternion hyperbolic n-space ).

U(n, 1)⇐⇒ Isom( complex hyperbolic n-space ).

Exercise 1.2.2.3. Define SL(n,H).

Proof. By the previous hard work, it is easy to see that

SL(n,H) = {A ∈ GL(2n,C) | AJ2n = J2nA and det(A) = 1}.

1.2.3 Transformation groups

Let G be a group and X be a space. Define

G×X α→ X by (g, x)→ gx.

We call the image of α(G× {x}) = Gx the orbit of x.
G acts transitively on X if and only if Gx = X for some x. In turns, equivalently, Gx = X

for some x if and only if Gx = X for all x. In this case, we say X is a homogeneous space of G.
We call Stab(x,G) = Gx = {g ∈ G | gx = x} the isotropy group of x.
G acts freely on X if for all x ∈ X, Gx = {1}. Equivalently, gx = x implies g = 1.
G acts effectively ( faithfully, injectively) on X if G→ Aut(X) is injective. Equivalently, if

gx = x for all x ∈ X, then g = 1.
We call G

ex→ X the evaluation of x given by ex(g) = gx. The image of ex is the orbit of x.
We say f is G-equivariant with respect to left-multiplication on G and (left) action of G on X

if the diagram commute: f(lg(u)) = g · f(u), i.e.,

G
f−−−→ X

lg

y
yg

G
f−−−→ X

.

Example 1.2.3.1. Since ex(lg(u)) = gux = g · ex(u), ex defines G-equivariant with respect to
left-multiplication on G and (left) action of G on X, i.e.,

G
ex−−−→ X

lg

y
yg

G
ex−−−→ X

.
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It is easy to see that G/Gx
F→ Gx by F (gGx) = gx is a well-defined bijective map. Since if

h ∈ Gx then (gh)x = g(hx) = gx, it is well-defined. Bijectivity is obvious.

G acts transitively on X if and only if G/Gx
∼=−→ X.

G acts freely on X if and only if G
∼=−→ Gx.

G acts freely transitively (
def
= simply transitively ) on X if and only if G

ex−→∼= X.

1.2.4 Projective spaces

An affine space X is a space with a simply transitive action of a vector group, i.e., a vector space
under addition.

Let k be a field and V be an n-dimensional vector space over k. Since GL(V ) = GL(n, k) acts
linearly on V , a linear action preserves a line, i.e., one-dimensional subvector space of V . So, we
can define an action of GL(V ) on the set of lines in V , i.e., P(V ) = Pn−1(k) = { lines in V }. So,
in Pn−1(k) we have

[x1, . . . , xn] v λ[x1, . . . , xn] for λ ∈ k×, which is called a homogeneous coordinate on Pn−1(k).

Note that GL(V ) acts transitively on P(V ) = Pn−1(k) = { lines in V } and in kn/{0} → Pn−1(k),
the fibers are orbits of k× acting by scalar multiplications.

Example 1.2.4.1. The isotropy subgroup of

l =




∗
0
...
0


 = k ⊕ 0⊕ · · · ⊕ 0 ⊂ kn is




∗ ∗
0
... ∗
0


 ∈ GL(n, k).

Example 1.2.4.2. It is easy to see that the slope of a line through the origin in R2 except a y-axis
parameterize an element of P(R). Moreover, in the case of y-axis, by replacing m = y

x by m′ = x
y ,

we can parameterize all the elements of P(R) by slopes.

By a homeomorphism ψj for j = 1, . . . , n,



x1
...
xn


 ∈ Aj = {(x1, . . . , xn) | xj 6= 0} ψj−→




x1
xj
...

xj−1

xj
xj+1

xj
...
xn
xj




∈ kn−1 ⊂ Pn−1(k)
ψ−1
j−−→




x1
...

xj−1
1

xj+1
...
xn




,

we deduce that Pn−1(k) can be covered by n coordinate-patches, which of each is an affine space
kn−1.

Let

[
z
w

]
be homogeneous coordinates of CP1. By letting

{
if w 6= 0, z

w ∈ C
if w = 0, z

w

def
= ∞

, we have CP1 = C ∪ {∞}.
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In general, P1(k) = k ∪ {∞}. In this description, GL(2,C) acts on CP1 in the following ways:
(
a b
c d

)[
z
1

]
=

[
az + b
cz + d

]
v

[
az+b
cz+d

1

]
or

[
0
1

]
depending on whether or not cz + d = 0.

Clearly, this action is not effective, i.e.,

λ

(
1 0
0 1

)[
z
1

]
=

[
z
1

]
for λ ∈ C×.

So, we make this action effective by making a quotient;

GL(2,C)

{λ
(
1 0
0 1

)
| λ ∈ C×}

def
= PGL(2,C).

In general,
GL(n, k)

{λ1n | 1n is an n× n identity matrix and λ ∈ k×}
def
= PGL(n, k).

Remark 1.2.4.1.

SL(2,R)

{±12}
= PSL(2,C) and

O(n)

{λ1n | λ ∈ R×} = PO(n).

If G ⊂ GL(n,R), then

P(G) =
G

G ∩ {λ1n | λ ∈ R×} .

Remark 1.2.4.2. The universal covering group of PSL(2,R) is a non-linear group. So, it can not
be represented by matrixes.
A Heisenberg group H is a nilpotent Lie group and H/Z is a nonlinear group.

1.2.5 Fibrations

Definition 1.2.5.1 (Fiber bundle). We say M
π−→ N is a fiber bundle over N with fiber F if for

each x ∈ N , there exists a neighborhood Ux ⊂ N and a map π−1(Ux)
ψ−→ F such that π × ψ is a

diffeomorphism, i.e.

U × F ∼=−−−→
π×ψ

π−1(Ux) ↪→ M

π

y
yπ

Ux −−−→ N

Definition 1.2.5.2 (Covering homotopy property). Let p1(y) = (y, 0) and I = [0, 1]. We say
a map π :M → N satisfies the covering homotopy property if given f : Y →M and ft : Y ×I → N
satisfying f0 = π ◦ f̃0 : Y × I → N , there exists a homotopy f̃t such that ft = π ◦ f̃t.

Y
f−−−→ M

p1

y
yπ

Y × I ft−−−→ N

¡
¡¡µf̃t
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Definition 1.2.5.3 (Fibration). We say a map π : M → N is a fibration if it satisfies the
covering homotopy property.

Note that π is a trivial fibration if there exists ψ : M → F such that π × ψ : M → N × F is a
diffeomorphism.

Remark 1.2.5.1. Note that fiber bundles over Hausdorff and paracompact spaces are fibrations.
See “Algebraic Topology” by Spanier. Since our base spaces are manifolds, from now on we can
interchange two terminologies freely.

Given a map π :M → N and f : A→ N , by defining a space

f∗M = {(a,m) ∈ A×M | f(a) = π(m)},

we have a commutative diagram: For p1(a,m) = a and p2(a,m) = m,

f∗M
p2−−−→ M

p1

y
yπ

A
f−−−→ N

Now suppose that π : M → N is a fibration and we are given the following diagram: For
g0(y) = p1 ◦ g̃0(y) where g̃0 : Y × {0} → A,

Y
g−−−→ f∗M

p2−−−→ M

p′1

y p1

y
yπ

Y × I gt−−−→ A
f−−−→ N

Since π : M → N is a fibration and f ◦ g0(y) = π ◦ f̃ ◦ g0(y) where g̃0 : Y × {0} → N , we have a

homotopy f̃ ◦ gt
Y

p2◦g−−−→ M

p′1

y
yπ

Y × I f◦gt−−−→ N

¡
¡¡µf̃ ◦ gt

Since f ◦ gt(y) = π ◦ f̃ ◦ gt(y) by the definition f∗M = {(a,m) ∈ A ×M | f(a) = π(m)}, we can
have a homotopy

gt : Y × I → f∗M by g̃t(x) = (gt(y), f̃ ◦ gt(y)).
That is, we have a pullback or induced fibration p1 : f

∗M → A, i.e.,

Y
g−−−→ f∗M

p′1

y
yp1

Y × I gt−−−→ A

¡
¡¡µg̃t
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Example 1.2.5.1. Suppose that π :M → N is a fibration. Given F : A×[1, 2]→ N , we have F ∗M
is a fibration over A × [1, 2]. Since there are the canonical inclusions ia : {a} × [1, 2] → A × [1, 2]
for a ∈ A, we also deduce that (i∗a ◦ F ∗)M = (ia ◦ F )∗M are fibrations over {a} × [1, 2].

One of useful consequences in fibrations is the following:

Theorem 1.2.5.1. There is a bundle isomorphism between a fiber bundle over any contractible
space and a trivial bundle.

Proof. See “The Topology of Fiber Bundles” by Steenrod.

An interesting fact about fibration is that some smooth map between two manifolds is a local
fibration:

Theorem 1.2.5.2 (Local submersion theorem). Let f :Mm → Nn be a smooth map for m ≥
n. If dfx : TxM → Tf(x)N is surjective where x ∈M , then there exists a neighborhood U of x ∈M
such that f : U → f(U) is a fibration.

We know that GL(2,C) acts on CP1 by linear fractional transformations:

(
a b
c d

)[
z
1

]
=

[
az + b
cz + d

]
v

[
az+b
cz+d

1

]
or

[
0
1

]
depending on whether or not cz + d = 0.

So does SL(2,R). Let U = {z ∈ C | =(z) > 0}. For x+ iy ∈ U , we have

(
1 x
0 1

)(
e

1
2
log y 0

0 e−
1
2
log y

)[
i
1

]
=

[
x+iy√
y
1√
y

]
.

That is, SL(2,R) acts transitively on U = {z ∈ C | =(z) > 0}. Now, we show that the isotropy
subgroup of i is SO(2):

Exercise 1.2.5.1. Let A ∈ SL(2,R).

Show that A(i) = i if and only if A ∈ SO(2) = {
(
cos θ − sin θ
sin θ cos θ

)
| θ ∈ R} ∼= S1.

Proof. (
cos θ − sin θ
cos θ sin θ

)[
i
1

]
=

[
i(i sin θ + cos θ)
i sin θ + cos θ

]
=

[
i
1

]
.

Suppose that for λ ∈ C×, (
a b
c d

)[
i
1

]
=

[
iλ
λ

]
.

We have a = d and b = −c. Since ad− bc = 1, we conclude that A ∈ SO(2).

Finally, we conclude that SL(2,R) acts transitively on U = {z ∈ C | =(z) > 0} with isotopy
subgroup SO(2). So, SL(2,R)/SO(2) ∼= U ∼= R2 is a homogeneous space of SL(2,R). In this
description, we have:

Example 1.2.5.2.

SL(2,R)
diffeo−−−−→∼= R2 × S1.
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Proof. Since SL(2,R) → SL(2,R)/SO(2) is smooth and everywhere submersion, by the local
submersion theorem, we conclude that the following diagram is a fibration with a fiber SO(2):

SO(2) ↪→ SL(2,R)
↓

SL(2,R)/SO(2).

Since SL(2,R)/SO(2) ∼= U ∼= R2 is contractible, by Theorem 1.2.5.1, SL(2,R) is diffeomorphic to
U × SO(2) ∼= R2 × S1.

Now, we show a covering space of SL(2,R):

Example 1.2.5.3. (R2/{0})× R1 is a trivial covering space of SL(2,R).

Proof. Note that SL(2,R) acts transitively on R2/{0}, i.e., for (x, y) ∈ R2/{0},
(
x
y

)
=

(
x b
y d

)(
1
0

)
.

It is easy to see that the isotropy subgroup of (1, 0) is

{
(
1 r
0 1

)
| r ∈ R} ∼= R.

Since SL(2,R)→ SL(2,R)/{
(
1 r
0 1

)
| r ∈ R} ∼= R2/{0} is smooth and everywhere submersion, by

the local submersion theorem, we conclude that the following diagram is a fibration with a fiber

{
(
1 r
0 1

)
| r ∈ R}:

R ∼= {
(
1 r
0 1

)
| r ∈ R} ↪→ SL(2,R)

↓
SL(2,R)/{

(
1 r
0 1

)
| r ∈ R} ∼= R2/{0}.

Here, unfortunately, SL(2,R)/{
(
1 r
0 1

)
| r ∈ R} ∼= R2/{0} is not contractible. So, we can not

use Theorem 1.2.5.1. However, what we do know is that R2/{0} is locally contractible.
So, we conclude that SL(2,R) is locally diffeomorphic to R2/{0}×R1. That is, (R2/{0})×R1
is a covering space of SL(2,R), which is trivial (=connected).

Now, we show a nontrivial covering space of SL(2,R):

Example 1.2.5.4. RP1 × R2 × {1, 2} is a nontrivial covering space of SL(2,R).

Proof. Since SO(2) ⊂ SL(2,R), SL(2,R) acts transitively on RP1. Using homogeneous coordinates
of RP1, it is easy to see that the isotropy subgroup of (1, 0) is

{
(
a r
0 a−1

)
| a ∈ R× and r ∈ R} ∼= R× × R ∼= R× {1, 2} × R.
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Since SL(2,R) → SL(2,R)/{
(
a r
0 a−1

)
| a ∈ R× and r ∈ R} ∼= RP1 is smooth and everywhere

submersion, by the local submersion theorem, we conclude that the following diagram is a fibration

with a fiber {
(
a r
0 a−1

)
| a ∈ R× and r ∈ R} ∼= R× × R ∼= R× {1, 2} × R:

R2 × {1, 2} ∼= {
(
a r
0 a−1

)
| a ∈ R× and r ∈ R} ↪→ SL(2,R)

↓
RP1.

Again, since SL(2,R)/{
(
a r
0 a−1

)
| a ∈ R× and r ∈ R} ∼= RP1 is locally contractible, SL(2,R)

is locally diffeomorphic to R2 × {1, 2} × PR1. That is, R2 × {1, 2} × RR1 is a nontrivial (=non
connected) covering space of SL(2,R).

Exercise 1.2.5.2. Express the Möbius bandM as a homogeneous space of SO(2, 1).

Proof. It is a well-known fact that the Möbius band is homeomorphic to the punctured projec-
tive plane. Think RP2 as a disk with an identification with diametrically opposite points of the
boundary. So, the RP2 without a small closed disk at the origin is the Möbius band. If we give
RP2 homogeneous coordinates from R3, then we can give homogeneous coordinates each point of
the Möbius band. So, it is intuitively clear that the Möbius band is given by with respect to
homogeneous coordinates [x0, x1, x2]:

M = {v = [x0, x1, x2] | vt


1 0 0
0 1 0
0 0 −1


 v < 0}.

Since

SO(2, 1) = {A ∈M2(R) | AT


1 0 0
0 1 0
0 0 −1


A =



1 0 0
0 1 0
0 0 −1


 and detA = 1},

we have a well-defined action of SO(2, 1) onM. Actually, the inner product given by

w ◦ v = wt



1 0 0
0 1 0
0 0 −1


 v is called the Lorentzian inner product.

If v ∈ R3, using the usual linear algebraic manipulations, we can find a Lorentzian orthonormal
basis {v, w1, w2} with respect to the Lorentzian inner product. Since (0, 0, 1), (1, 0, 0), (0, 1, 0) is
Lorentzian orthonormal, regarding v, w1, w2 as n× 1 column vectors, i.e., (w1, w2, v) ∈ O(2, 1) , we
have

v = (w1, w2, v)



0
0
1


 .
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That is, O(2, 1) acts transitively on R3. Since we are using homogeneous coordinates, that action
of SO(2, 1) is thee same as the action of O(2, 1). so, the transitivity of O(2, 1) and [0, 0, 1] ∈ M
implies the transitivity of SO(2, 1) onM. So, we conclude that Möbius bandM is a homogeneous
space of SO(2, 1).

1.2.6 Projective transformations as isometries

Example 1.2.6.1.

PSL(2,R)
diffeo−−−−→∼= R2 × S1.

Proof. It is easy to see that PSL(2,R) acts transitively on U = {z ∈ C | =(z) > 0} with isotopy
subgroup PSO(2). So, PSL(2,R)/PSO(2) ∼= U ∼= R2 is a homogeneous space of PSL(2,R). By
the same argument in the proof of Exercise 1.2.5.2, we have

PSL(2,R)
diffeo−−−−→∼= R2 × S1.

Recall that the upper half plane U = {z ∈ C | =(z) > 0} can be equipped with a Riemannian
metric

g =
|dz|
=(z) .

The following definition is due to É. Cartan:

Definition 1.2.6.1 (symmetric spaces). We say M is a symmetric space if for all p ∈M there
exists an isometry sp :M →M such that

sp(p) = p and (dsp)p = −id.

Example 1.2.6.2. U = {z ∈ C | =(z) > 0} with g = |dz|
=(z) is a symmetric space.

Proof. First of all, note that g = |dz|
=(z) implies that if (dsp)p = −id, then sp is necessarily an

isometry. Let si(z) = −1z . So, (dsi)i = 1
z2
|z=i = −1. Hence, we have

si =

(
0 −1
1 0

)
and (dsi)i =

(
−1 0
0 −1

)
.

So, we have si(i) = i. Since we know that PSL(2,R) acts transitively on U , there is A ∈ PSL(2,R)
such that A(i) = p for a given p ∈ U . So, letting sp = A · si ·A−1, we have

sp(p) = A · si ·A−1(p) = A · si(i) = A(i) = p.

Now, making an identification A←→ f(z) = az+b
cz+d , we have sp(z) = (f◦(−1z )◦f−1)(z) = f(− 1

f−1(z)
).

From sp(p) = p, we have

f−1(p) = − 1

f−1(p)
.
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Since f ′(f−1(z)) · (f−1)′(z) = 1, we have

(dsp)p = f ′(− 1

f−1(p)
) · (f

−1)′(p)
(f−1(p))2

= f ′(f−1(p)) · (f
−1)′(p)

(f−1(p))2
=

1

i2
= −1.

Remark 1.2.6.1. If X is a positively ( or negatively ) curved symmetric space, the dual space X∗

is a negatively ( or positively ) curved symmetric space.

Recall that H is Hermitian if H = H
T
.

Definition 1.2.6.2. C1,1 is a C-vector space C2 with a Hermitian form defined by

〈z, w〉 = z1w1 − z2w2 = wTHz for z = (z1, z2), w = (w1, w2) ∈ C2 and H =

(
1 0
0 −1

)
.

Let

U(H)
def
= {A ∈ GL(2,C) | 〈Av,Aw〉 = 〈v, w〉 for all v, w ∈ C1,1}
= {A ∈ GL(2,C) | ATHA = H}.

Note that in the notation above Exercise 1.2.2.1, we have U(1, 1) = U(H).
Clearly, U(1, 1) acts on

X = {v ∈ C1,1 | 〈v, v〉 < 0} = {(z1, z2) ∈ C2 | |z1|2 − |z2|2 < 0}.

This implies the following:

Example 1.2.6.3. U(1, 1) preserves a unit disk DC = {z ∈ C | |z| < 1}.

Proof. Notice that |z1|2 − |z2|2 < 0 implies that (z1, 0) 6∈ X. Since

|z1|2
|z2|2

= |z|2 < 1⇐⇒ |z1|2 − |z2|2 < 0,

we have a well-defined holomorphic map f from X to DC by f(z1, z2) =
z1
z2
. So, we can define an

action of A ∈ U(1, 1) on z ∈ DC by

A · z = f(A

(
z
1

)
).

Note that from A
T
HA = H, we deduce that U(1, 1) is a zero locus in R8 by four transversal

equations. So, dimRU(1, 1) = 4. Also, notice that

U(1) ↪→ U(1)×U(1) ↪→ U(1, 1)
eiθ → (eiθ, eiθ)

(eiθ, eiψ) →
(
eiθ 0
0 eiψ

).
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Example 1.2.6.4. PSU(1, 1)
def
= SU(1, 1)/{±12} ∼= Aut(DC).

Proof. We are going to show that PSU(1, 1) acts effectively on DC, i.e., PSU(1, 1) → Aut(DC)
is injective. For surjectivity, we need the Schwarz’s lemma in complex analysis. So, we leave it to
the readers.

Since detA 6= 0 for A ∈ U(1, 1), A is an automorphism of X. Also, it is easy to see that
Av = v for all v ∈ X implies that A = I2. U(1, 1) acts effectively on X. If we closely look at the
identification in Example 1.2.6.3, we can see that A and −A define the same action on DC. So, we
conclude that PU(1, 1) acts effectively on DC. Hence, PSU(1, 1) acts effectively on DC.

Note that we showed that we can identify DC as

X = {v = (z1, z2) ∈ C1,1 | vT
(
0 1
0 −1

)
v < 0} = {(z1, z2) ∈ C2 | |z1|2 − |z2|2 < 0}.

Let z = z1
z2
. Note that |z1|2 − |z2|2 < 0 implies that z2 6= 0. So,

=(z) = 1

2i
(z − z) = 1

2i
(
z1
z2
− z1
z2

)

=
1

2i|z2|2
(z1z2 − z2z1) =

1

|z2|2
(iz2z1 − iz1z2)

=
1

|z2|2
(z1, z2)

(
0 i
−i 0

)(
z1
z2

)
.

Since 1
|z2|2 > 0, we have

=(z) > 0 if and only if

(
0 i
−i 0

)
defines a positive definite Hermitian inner product.

That is, we can give the upper half plane a Hermitian metric

(
0 i
−i 0

)
. In this description, an

interesting thing is the following: Since SU(1, 1) is the group of isometries of DC with the inner

product

(
1 0
0 −1

)
. Let 1√

2

(
1 1
−i i

)
, which is called the Cayley transformation. It is easy to see

that

C
T
(

0 i
−i 0

)
C =

(
1 0
0 −1

)
.

So, we have C · SU(1, 1) is the group of isometries of the upper half plane with the inner product(
0 i
−i 0

)
. By the similar proof of Exercise 1.2.2.1, We also have that

C−1 · SL(2,R) · C = SU(1, 1).

Note that in general, SU(p, q) 6∼= SL(p+ q,R). We will give three famous metrics:
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Remark 1.2.6.2.
2|dz|

1− |z|2 on DC

|dz|
=(z) on U = {z ∈ C | =(z) > 0}

2|dz|
1 + |z|2 on CP1.

Note that 2|dz|
1+|z|2 on CP1 is called the Fubini-study metric. Since it is invariant under inversions,

it is well-defined, i.e., it is even defined at ∞: Let w = z−1. So, we have

dw = −z−2dz =⇒ |dw| = |z|−2|dz|.

So, we have
2|dw|

1 + |w|2 =
2|z|−2|dz|
1 + |z|−2 =

2|dz|
1 + |z|2 .

Hence, we can assign values at 0 or ∞ using each coordinate chart.

1.2.7 Decomposition of SL(2,R)

Note that SL(2,R) is a prototype of a noncompact real semisimple Lie group.

Definition 1.2.7.1 (Class function). Let G be a group and F an arbitrary field. A class function
f is a function from G to F which is constant on the conjugacy classes of G. That is,

G
f−→ F such that f(g−1xg) = f(x) for all g, x ∈ G.

Example 1.2.7.1. Let G be a matrix group. For A ∈ G, define G f−→ R by f(A) = tr(A). f is a
class function.

Example 1.2.7.2. Let SL(2,R)
f−→ R by f(A) = tr(A). Then f−1(0) = sl(2,R) ∩ SL(2,R).

Exercise 1.2.7.1. Let D2 be an open unit disk in R2. Define a class function f of a solid torus
D2 × S1 as a Lie group.

Proof. Let (r, α, θ) be a coordinate system of D2×S1 where 0 ≤ r < 1, 0 ≤ α < 2π, and 0 ≤ θ < 2π.

Define D2 × S1 ϕ−→ SL(2,R) by

ϕ(r, α, θ) =


e

1
2
log( 1−r2

r2+1−2r cosα
)

( 2r sinα
r2+1−2r cosα)e

1
2
log( 1−r2

r2+1−2r cosα
)

0 e
− 1

2
log( 1−r2

r2+1−2r cosα
)



(

cos θ sin θ
− sin θ cos θ

)
.

It is easily seen to be a diffeomorphism and a Lie group homomorphism. So, let

f(r, α, θ) = (cos θ)
(
e

1
2
log( 1−r2

r2+1−2r cosα
)
+e
− 1

2
log( 1−r2

r2+1−2r cosα
))
+(sin θ)(

2r sinα

r2 + 1− 2r cosα
)e

1
2
log( 1−r2

r2+1−2r cosα
)
.

f is a class function on a solid torus D2 × S1.
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If we look at the proof of Exercise 1.2.7.1, we actually decompose SL(2,R) or a solid torus
D2 × S1 into a product of an element of SO(2) and an element of upper triangular matrix. It is
no coincidences. In general, we have

Theorem 1.2.7.1 (Iwasawa Decomposition). Let G be a Lie group. We can decompose

G = K ·A ·N where K is a compact group, A is an abelian group, and N is a nilpotent group.

Proof. We will prove this later.

Example 1.2.7.3. Suppose that A ∈ SL(2,R). we have

A = K ·
(
et 0
0 e−t

)(
1 r
0 1

)
where K ∈ SO(2) and r, t ∈ R.

However, in the case of GL(n,R), without using the Iwasawa decomposition, we still have a
nice decomposition by the virtue of Gram-Schmidt orthogonalization.

Proof. Let A = (A1, . . . , An) ∈ GL(n,R) where Ai is an n × 1-column matrix for i = 1, . . . , n.
The Gram-Schmidt orthonormal process say that we can have A′ = (A′1, . . . , A

′
n) where A′i is

orthonormal to each other:

A′1 =A1

A′2 =A2 −
〈A2, A′1〉
〈A′1, A′1〉

A′1

A′3 =A3 −
〈A3, A′2〉
〈A′2, A′2〉

A′2 −
〈A3, A′1〉
〈A′1, A′1〉

A′1

...

A′n =An −
〈An, A′n−1〉
〈A′n−1, A′n−1〉

A′n−1 − · · · −
〈An, A′1〉
〈A′1, A′1〉

A′1.

A = (A′1, . . . , A
′
n) ·




1
〈A2,A′

1〉
〈A′

1,A
′
1〉

〈A3,A′
1〉

〈A′
1,A

′
1〉

〈A4,A′
1〉

〈A′
1,A

′
1〉
· · · 〈An,A′

1〉
〈A′

1,A
′
1〉

0 1
〈A3,A′

2〉
〈A′

2,A
′
2〉

〈A4,A′
2〉

〈A′
2,A

′
2〉
· · · 〈An,A′

2〉
〈A′

2,A
′
2〉

0 0 1
〈A4,A′

3〉
〈A′

3,A
′
3〉
· · · 〈An,A′

3〉
〈A′

3,A
′
3〉

...
...

. . .
. . .

. . .
...

0 0 · · · 0 1
〈An,A′

n−1〉
〈A′
n−1,A

′
n−1〉

0 0 · · · 0 0 1




Since A′i is orthonormal to each other, (A′1, . . . , A
′
n) = A′ ∈ O(n), which is a compact group. So,

we conclude that for A = (A1, . . . , An) ∈ GL(n,R) we have a decomposition

A = A′ · U where U is an upper triangular and A′ ∈ O(n).
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Consider an action of SO(2) on RP1 = ∂U = R ∪ {∞} where U is the upper half plane:

(
cos θ − sin θ
sin θ cos θ

)(
1
0

)
=

(
cos θ
sin θ

)
.

By identifying (
cos θ
sin θ

)
←→ cot θ,

we have a transitive action of SO(2) on RP1. So, SL(2,R) acts transitively on RP1. Let B be

the isotopy subgroup of

(
1
0

)
in SL(2,R), which called a Borel subgroup. Since we are using a

homogeneous coordinate in RP1, it is obvious that B consists of upper triangular matrixes. In this
description, combining the Gram-Schmidt process, we have

Example 1.2.7.4. Let A ∈ SL(2,R). Then A = Aorth ·Aupp. That is,

SL(2,R) = SO(2)× B.

That is, for A ∈ SL(2,R), we have

A = Aorth ·
(
et ret

0 e−t

)
where Aorth ∈ SO(2) and r, t ∈ R.

Note that B = {
(
et ret

0 e−t

)
| r, t ∈ R} is called a Borel subgroup. Moreover, from the above, it is

easy to see that the action of SL(2,R) on RP1 is completely and uniquely up to ±12 determined by
orthogonal matrixes in SO(2).
By identifying RP1 with the set of oriented lines in R2, we have an action of SO(2) on {oriented lines in R2}.
Again, we have

SL(2,R)/SO(2) ∼= B ∼= R2.

Note that PSO(2) = SO(2)/{±12} acts simply transitively on RP1 and PSL(2,R) acts
transitively on RP1. Also, it is easily seen that SO(2) acts transitively a double covering space
(R2/{0})/R+ of RP1.

Now, we are going to discuss a polar decomposition ( Cartan decomposition ) of SL(2,R). First,
we state

Theorem 1.2.7.2. Every connected Lie group G has a maximal compact Lie subgroup K such that
G ∼= K × Rd. Moreover, K is unique up to conjugation.

Proof. We are going to prove this later.

Example 1.2.7.5. If G is SL(2,R), then K = SO(2).

Example 1.2.7.6. If G is SL(2,C), then K = SU(2). So, G/K ∼= R3, which is a real hyperbolic
3- space.

Also, we state
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Theorem 1.2.7.3. Let G be a Lie group and K be a maximal compact Lie subgroup of G. G is
homotopy equivalent to K.

Proof. We are going to prove this later.

Example 1.2.7.7. SL(2,R) is homotopy equivalent to SO(2).

Proof. Since B = {
(
et ret

0 e−t

)
| r, t ∈ R} is diffeomorphic to R2, B is contractible. Since

SL(2,R) = SO(2)× B,

we have SL(2,R) is homotopy equivalent to SO(2).

Notation 1.2.7.1. Let

Pn ={n× n symmetric positive definite real matrices.}
Sn ={A ∈Mn(R) | A = AT }.

Note that positive definiteness of A ∈Mn(R) means vTAv > 0 for v ∈ Rn. Clearly, Pn ⊆ Sn.
It is easily seen that dimSn = n(n+1)

2 . Note that Pn is a convex open set of Sn in the sense that if
A,B ∈ Pn, then (1− t)A+ tB ∈ Pn for 0 ≤ t ≤ 1. From linear algebra, we have

Theorem 1.2.7.4 (Spectral theorem). If X ∈ Pn, then there exists B ∈ O(n) such that BXB−1
is a diagonal matrix with positive diagonal entries λi > 0 for i = 1, . . . , n, i.e.,

BXB−1 =




λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 λn−1 0
0 · · · 0 0 λn




Define an action of GL(n,R) on Pn by

X 7→ ATXA by X ∈ Pn and A ∈ GL(n,R).

Example 1.2.7.8.
Pn = GL(n,R)/O(n).

Proof. We shall show that this action is well-defined transitive with the isotropy subgroup O(n).
First, we show that it is well-defined: Note that

Pn ={n× n symmetric positive definite real matrices.}
={X ∈Mn(R) | XT = X and vTXv > 0 for all v ∈ Rn}.

Let X ∈ Pn and A ∈ GL(n,R). The action is well-defined by the facts that

(ATXA)T = ATXTA = ATXA and vT (ATXA)v = (Av)TX(Av) > 0.
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The spectral theorem says that this action is transitive: Suppose that X,Y ∈ Pn. Since BT = B−1

for B ∈ O(n) ⊂ GL(n,R), without loss of generality, by the spectral theorem we can assume X is
a diagonal matrix with positive diagonal entries λi > 0 for i = 1, . . . , n and Y is a diagonal matrix
with positive diagonal entries ηi > 0 for i = 1, . . . , n. Let

A =




√
η1
λ1

0 0 · · · 0

0
√

η2
λ2

0 · · · 0

...
. . .

. . .
. . .

...

0 · · · 0
√

ηn−1

λn−1
0

0 · · · 0 0
√

ηn
λn




So, ATXA = Y for A ∈ GL(n,R). So, Pn is a homogeneous space of GL(n,R). Since 1n ∈ Pn and
O(n) is defined by ATA = AT1nA = 1n, we conclude that O(n) is the isotropy subgroup. Hence,

Pn = GL(n,R)/O(n).

We have decomposed GL(n,R) into the product of Pn and O(n), which is a maximal compact
subgroup. In general, we have

Theorem 1.2.7.5 (Cartan decomposition). Let G be a Lie group. We can decompose

G = K · P where K is a compact group and P is a positive definite symmetric group.

Example 1.2.7.9.
SL(2,R) = SO(2)× (P2 ∩ SL(2,R)).

Note that If A ∈ P2 ∩ SL(2,R), then we can have A = B

(
et 0
0 e−t

)
B−1 where B ∈ SO(2)

From the proof of Example 1.2.7.8, we can also prove

Exercise 1.2.7.2. For all X ∈ Pn, there exists a unique Y ∈ Pn such that Y 2 = X.

Proof. If X ∈ Pn, then there exists B ∈ O(n) such that BXBT is a diagonal matrix with positive
diagonal entries λi > 0 for i = 1, . . . , n, i.e.,

BXB−1 =




λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 λn−1 0
0 · · · 0 0 λn




Let

A =




√
λ1 0 0 · · · 0
0

√
λ2 0 · · · 0

...
. . .

. . .
. . .

...

0 · · · 0
√
λn−1 0

0 · · · 0 0
√
λn
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So, we have B−1A2B = X. Since BT = B−1 for B ∈ O(n) ⊂ GL(n,R) and

B−1A2B = (B−1AB) · (B−1AB) = (B−1AB)2 = (BTAB)2,

we have Y = BTAB ∈ Pn.

The next exercise shall show that Sn is a Lie algebra of Pn.

Exercise 1.2.7.3. Show that exp : Sn → Pn is injective.

Proof. First, we show that exp : Sn → Pn is well-defined. Let A = (aij)n×n ∈ Sn. In the case of
Sn, the spectral theorem says that if A ∈ Sn, then there exists B ∈ O(n) such that BAB−1 is a
diagonal matrix with nonzero diagonal entries λi 6= 0 for i = 1, . . . , n, i.e.,

BAB−1 =




λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 λn−1 0
0 · · · 0 0 λn




So,
expA = B−1B exp(A)B−1B

= B−1 exp(BAB−1)B

= B−1




eλ1 0 0 · · · 0
0 eλ2 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 eλn−1 0
0 · · · 0 0 eλn



B.

Obviously, it is symmetric and since ex > 0, we conclude that it is positive definite. Moreover, it is
obvious that it is injective by the fact that ex is an injective function.

Exercise 1.2.7.4. Let G be a Lie group and H be a connected topological space. Suppose that
p : H → G is a covering space. Choose an element h0 ∈ p−1(e) ⊂ H to serve as the identity element
in H where e is the identity in G,
Show that there exists a unique Lie group structure on H such that p is a homomorphism of Lie
group.

Proof. Note that the covering map p makes H a connected differentiable manifold (See Sec-
tion 3.1.7.). Also, note that H is path-connected by the fact that H is a connected manifold.
Hence, G is also path-connected. Let e be the identity of G and

H̃ = {[γ] | γ; [0, 1]→ G where γ is continuous and γ(0) = e.}

Here, [γ1] = [γ2] if γ1 v γ2 rel {0, 1}. It is well-known that H̃ is a universal covering space of G:

H̃
π−→ G where π([γ]) = γ(1).
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So, we also deduce that H̃ is a differentiable manifold. Using the group structure of G, we can
define a group structure on H̃ in the following manners:

[γ1] · [γ2] = [γ1 · γ2].
Note that the identity element of H̃ is [γe], i.e., γe([0, 1]) = e. Since H̃ is also a universal covering
space of H and H is a covering space of G, we have the following commutative diagram:

H̃
π−−−→ G

f

y
H
¡
¡¡µ
p

Note that f is not unique. However, since we can choose f such that f([γe]) = h0 and H̃/Γ ∼= H
where Γ is the group of deck transformations of f , we can give a unique Lie group structure on H
such that p is a homomorphism of Lie group and h0 is the identity of H.

Remark 1.2.7.1. Let ˜SL(2,R) is a Lie universal covering space of SL(2,R). This is a nonlinear
Lie group, i.e., a group which is not represented by a group of matrixes.

However, since SL(2,R) ∼= SO(2)× R2 and S̃O(2) ∼= R from SO(2) ∼= S1, we conclude that

˜SL(2,R) ∼= S̃O(2)× R2 ∼= R3.

We will prove the following later: Every homomorphism ˜SL(2,R) → GL(n,R) factors through
SL(2,R), i.e.,

˜SL(2,R) −−−→ GL(n,R)
y

SL(2,R)
¡
¡¡µ

Now, we give a definition of Spin(n):

Definition 1.2.7.2.
Spin(n)

def
= S̃O(n).

Note that Spin(n) ↪→ GL(2n,R) is a 2n × 2n matrix.

1.2.8 Extension

Before we give various definitions, we want to give

Remark 1.2.8.1. Lie classified Lie groups up to local isomorphisms by Lie algebras. Lie showed

every solvable Lie algebra←→ an algebra of upper triangle matrixes.

Killing and Cartan classified Lie algebras by means of simple extensions using structure theories of
algebras. In this consideration, we have

a Lie algebra g is semisimple←→ g has no nonzero solvable ideal.

This shows that a semisimple Lie algebra is a direct sum of simple Lie algebras. We shall see that
solvable Lie algebra are iterated extensions of abelian Lie algebras.
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Definition 1.2.8.1 (Extension). Let A,B, and C be groups. B is an extension of A by C if the
following sequence is exact:

A ↪→ B ³ C.

That is, A
i−→B is a monomorphism, B

j−→C is an epimorphism, and Im(i) = Ker(j).

Note that A is a normal subgroup of B and B/A ∼= C.

Example 1.2.8.1. Let B be a Borel subgroup and R+ be a multiplicative group of positive reals.
Since we can identify

B ∼= {
(
a b
0 1

)
| a > 0, b ∈ R},

by giving a map

(
a b
0 1

)
7→ a, we have an extension

{
(
1 b
0 1

)
| a > 0, b ∈ R} ↪→ B ³ R+.

Definition 1.2.8.2 (Central extension). Let A,B, and C be groups and Z(B) be the center of
B. B is a central extension of A by C if A ↪→ B ³ C is exact and A ⊂ Z(B).

Example 1.2.8.2. Let G be a group. Since Z(G) / G, we have a central extension

Z(G) ↪→ G³ G/Z(G).
Definition 1.2.8.3 (Upper central series). For a given group G, define the following subgroups
inductively: Z0(G) = 1 and Z1(G) = Z(G) and define Z i+1(G) to be the subgroup of G containing
Z i(G) such that

Z i+1(G)/Z i(G) = Z(G/Z i(G)).
The following chain of subgroups is called the upper central series of G:

1 = Z0(G) ⊂ Z(G) = Z1(G) ⊂ Z2(G) ⊂ · · · ⊂ Zn(G) ⊂ · · · .
Definition 1.2.8.4 (Nilpotent group). A group G is nilpotent if the upper central series stops
eventually. That is, there exists n ∈ Z such that Zn(G) = G.

Example 1.2.8.3. An abelian group G is nilpotent because Z1(G) = G. So, we can think an
abelian groups as generalized nilpotent groups.

Definition 1.2.8.5 (commutator). Let G,H be groups. Suppose that x, y ∈ G.

[x, y]
def
= xyx−1y−1.

Also, the commutator of two groups is defined as

[G,H]
def
= 〈[g, h] | g ∈ G, h ∈ H〉 = a group generated by ghg−1h−1 for g ∈ G, h ∈ H.

Inductively, we define an n-fold commutator of G by

C0(G) = G.

C1(G) = [G,G].

Cn+1(G) = [Cn(G), G].
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Clearly, G = C0(G) ⊇ C1(G). Suppose that Ck−1(G) ⊇ Ck(G). From

Ck(G) = [Ck−1(G), G] ⊇ [Ck(G), G] = Ck+1(G),

we have Ck(G) ⊇ Ck+1(G). Hence, we have:

Definition 1.2.8.6 (Lower central series). For a given group G, we have the following chain
of subgroups, which is called the lower central series of G:

G = C0(G) ⊇ C1(G) ⊇ C2(G) ⊇ · · · ⊇ Cn(G) ⊂ · · · .

Exercise 1.2.8.1. G is nilpotent if and only if there exists N such that N -fold commutator of G
is 1, i.e., CN (G) = 1.

Proof. Note that 1 = [Z(G/Zk−1(G)), G/Zk−1(G)] = [Zk(G)/Zk−1(G), G/Zk−1(G)] implies that

C(Zk(G)) = [Zk(G), G] ⊆ Zk−1(G).

Notice that inductively, we have for all i, k,

Ci(Zk(G)) ⊆ Zk−i(G).

Suppose that G is nilpotent, i.e., ZN (G) = G. Let i, k = N . We have

CN (ZN (G)) = CN (G) ⊆ Z0(G) = 1.

Note that 1 = [Ck−1(G)/[Ck−1(G), G], G/[Ck−1(G), G]] = [Ck−1/Ck(G), G/Ck(G)] implies that

Ck−1(G)/Ck(G) ⊆ Z
(
G/Ck(G)

)
.

Suppose that CN (G) = 1. Clearly, 1 = CN+1(G) ⊆ Z1(G). Suppose that CN+1−k(G) ⊆ Zk(G). So,

G/CN+1−k(G)³ G/Zk(G).

Since
CN−k(G)/CN−k+1(G) ⊆ Z

(
G/CN−k+1(G)

)
,

by the induction, we have

(
CN−k(G) · Zk(G)

)
/Zk(G) ⊆ Z

(
G/Zk(G)

)
= Zk+1(G)/Zk(G).

That is,
CN−k(G) ⊆ CN−k(G) · Zk(G) ⊆ Zk+1(G).

So, we have G = C0(G) ⊆ ZN+1(G) = G.

By the virtue of Exercise 1.2.8.1 we conclude that G is nilpotent if and only if the lower central
series of G stops eventually.

A strictly upper triangular n× n matrix is an upper triangular n× n matrix with zeros in the
all diagonal entries. Let

Nn = { strictly upper triangular n× n matrixes. }
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Note that (Nn)
n = 0, i.e., the multiple of any n elements is a zero matrix. Since Nn does not have

an identity and invertible elements, we adjoin those elements formally, i.e.,

1n ⊕Nn.

For A,A′ ∈ Nn,

(1n +A)(1n +A′) = 1n + (A+A′) +AA′, which shows that it is closed under multiplication.

Note that for A ∈Mn, we have

1n = (1n +A)(1n + (−1)A+A2 + (−1)3A3 + · · ·+ (−1)nAn + · · · ).

If A ∈ Nn, then A
n = 0. So, we have

1n = (1n +A)(1n + (−1)A+A2 + (−1)3A3 + · · ·+ (−1)mAm) for m ≤ n.

Combining closedness under multiplication, we deduce that 1n ⊕Nn is an algebra with invertible
elements:

(1n +A)−1 =
1n

(1n +A)
= 1n + (−1)A+A2 + (−1)3A3 + · · ·+ (−1)mAm for m ≤ n.

Example 1.2.8.4.

12 ⊕N2 = {
(
1 u
0 1

)
| u ∈ R} ∼= R.

Example 1.2.8.5.

Heisenberg group H3 = 13 ⊕N3 = {



1 x z
0 1 y
0 0 1


 | x, y, z ∈ R} ∼= R3.

Consider 

1 x z
0 1 y
0 0 1





1 x′ z′

0 1 y′

0 0 1


 =



1 x+ x′ z + z′ + xy′

0 1 y + y′

0 0 1


 .

This implies that H3
ϕ−→ R2 is a homomorphism where



1 x z
0 1 y
0 0 1


 7→

(
x
y

)
and kerϕ = {



1 0 z
0 1 0
0 0 1


 | z ∈ R} ∼= R.

Also, by the above it is easy to see that



1 x z
0 1 y
0 0 1



−1

=



1 −x −z + xy
0 1 −y
0 0 1


 and [



1 x z
0 1 y
0 0 1


 ,



1 x′ z′

0 1 y′

0 0 1


] =



1 0 xy′ − x′y
0 1 0
0 0 1


 .
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Since if xy′ − x′y = 0 for all x′, y′ ∈ R, then x = y = 0, we have kerϕ = Z(H3). So, we deduce
that H3 is a central extension of R ∼= kerϕ by R2, i.e., kerϕ ⊆ Z(H3) and

R ∼= kerϕ ↪→ H3
ϕ
³ R2.

If C is a subgroup of Z(H3), then C /H3. So, we define

Hred

3 = H3/{



1 0 n
0 1 0
0 0 1


 | n ∈ Z}.

Since R/Z ∼= S1, it is easy to see that Hred
3
∼= S1 × R2.

Exercise 1.2.8.2. Show that Hred
3 does not have a faithful matrix representation.

Proof.
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Chapter 2

Lie Groups as Smooth Manifolds

2.1 Smooth Manifold Theory

2.1.1 Smooth manifolds and Tangent spaces

Let M be a second countable Hausdorff topological space.

Definition 2.1.1.1 (manifold). We say M is locally Euclidean if every point p ∈ M has a

neighborhood p ∈ U such that there exists a homeomorphism U
ϕ−→ U ′ ⊆ Rn, which is called a chart,

where U ′ is an open set in Rn.
We say M is a manifold if it is a locally Euclidean second countable Hausdorff topological

space.

Note that we call a collection of charts as an atlas and we always take a maximal atlas.

Definition 2.1.1.2 (smooth manifold). We say M is a smooth manifold if it is a manifold with
a smooth atlas, i.e., for charts ϕU : U → U ′ ⊆ Rn and ϕV : V → V ′ ⊆ Rn, the transition map

gUV
def
= ϕU ◦ ϕ−1V : ϕV (U ∩ V )→ ϕU (U ∩ V ) is C∞.

In this description, we can define

Definition 2.1.1.3 (smooth map). Let Mm be an m-dimensional smooth manifold and Nn an

n-dimensional smooth manifold. We Mm f−→ Nn is smooth if for all patches (U,ϕU ) in M and
(V, ψV ) in N , we have

ϕU (U ∩ f−1(V ))
ψV ◦f◦ϕ−1

U−−−−−−→ ψV (f(U) ∩ V ) is smooth.

Definition 2.1.1.4 (Lie groups). A Lie group G is a differentiable manifold with smooth group
operations

Note that if G is a topological manifold with continuous group operations, then it is, in fact, a
Lie group in the above sense, which was suggested by David Hilbert as his fifth problem and proved
by A. Gleason, D. Montgomery, and L. Zippin.

Sometimes, a Lie group is defined by a real analytic manifold ( Cω-manifold ), i.e., transition
maps are given by convergent Taylor series with real analytic group operations. It is well- known
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that Cω ( C∞, for example, e−
1
x2 . Without using the fifth problem, in fact, it can be shown that

smooth group operations in a Lie group are real analytic group operations. So, no generality is lost
by assuming a more restrictive definition.

Let
C∞(M) = {f | f :M → R is smooth.}

We can make C∞(M) an R-algebra by defining operations as follows:

(f + g)(p) = f(p) + g(p) and (f · g)(p) = f(p) · g(p).

Every point p ∈M defines an R-algebra homomorphism between C∞(M) and R:

C∞(M)
εp−→ R by εp(f) = f(p).

Since R is a simple algebra, ker(εp) is a maximal ideal of C∞(M). The next theorem shall make
local information into global information:

Theorem 2.1.1.1 (Partition of Unity). Let M be a smooth manifold and U = {Uα} be an open
cover of M , i.e., M = ∪Uα, then there exists a smooth partition of unity {ψα} subordinate to the
open cover U . That is,
1. For each α, ψα ≥ 0 and 1 ≡∑α ψα(p) for p ∈M
2. ( Smoothness ) ψα ∈ C∞(M)
3. ( Local finiteness ) Each point p ∈M has an open set U such that

supp(ψα) ∩ U 6= ∅ for only finite number of α

4. ( Subordination ) For each α,

supp(ψα) = {u ∈M | ψα(u) 6= 0} ⊆ Uα.

Let f ∈ C∞(U) where U is a small open neighborhood of p in M and we define an equivalent
class [f ]p, which is called the germ of f at p, in the following ways:

[f1]p = [f2]p if there exists an open set W ⊆ U such that p ∈W and f1 ≡ f2 on W.

Let γ : (−ε, ε)→ U be a path in U such that γ(0) = p. So, we have a path f ◦ γ : (−ε, ε)→ R. We
define a derivative operator Dγ of f with respect to γ by Dγ([f ]p) = (f ◦ γ)′(0). It is easy to see
that Dγ defines an R-linear homomorphism from the set of equivalent classes at p of C∞(U) to R:

Dγ(c) = 0 for c ∈ R
Dγ(c1[f1]p + c2[f2]p) = c1Dγ([f1]p) + c2Dγ([f2]p)

Dγ([f1]p · [f2]p) = Dγ(f1)εp([f2]p) + εp(f1)Dγ([f2]p).

Remark 2.1.1.1. Foe simplicity, we will write f as [f ]p. As far as local notions are concerned such as
derivative operators and tangent spaces, etc., readers should think that we only deal with the germs, not
functions. So, there will be no confusion. However, when we deal with global notions such as tangent
bundles and derivations, we will give appropriate remarks
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We define an equivalent class [γ]p of smooth paths through p in the followings:

[γ1]p = [γ2]p ⇐⇒ γ1 v γ2 if γ1(0) = γ2(0) = p and γ′1(0) = γ′2(0).

Let Der(C∞(M), εp) be the set of all derivative operators induced from equivalent classes of smooth
paths such that γ(0) = p.

Definition 2.1.1.5 (Tangent Spaces). We define a tangent space Tp(M) at p to be Der(C∞(M), εp).

The next lemma shall show that we can make Tp(M) a vector space.

Lemma 2.1.1.1. For γ1, γ2 ∈ Tp(M) and c1, c2 ∈ R, there exists a unique [γ]p such that for all
f ∈ C∞(M),

(f ◦ γ)′(0) = c1Dγ1(f) + c2Dγ2(f).

Proof. Since we are dealing with an infinitesimal path, without loss of generality we can assume
U = Rn and p = 0. Moreover, since we are dealing with a smooth function f , for sufficiently small
t near 0, we always that

f(c1γ1(t) + c2γ2(t)) = f(c1γ1(t)) + f(c2γ2(t)).

Let γ(t) = c1γ1(t) + c2γ2(t). Uniqueness follows from the definition of equivalent classes.

Defining (c1Dγ1 + c2Dγ2)(f) = c1Dγ1(f)) + c2Dγ2(f), by Lemma 2.1.1.1, we have

c1Dγ1 + c2Dγ2 ∈ Tp(M).

Let ϕ be a chart of an open neighborhood U of p ∈ M such that ϕ(p) = 0. So, for m ∈ M , we
have coordinates

ϕ(m) = (x1(m), . . . , xn(m)).

Let ϕ ◦ γi(t) = (0, . . . , 0, t, 0, . . . , 0), i.e., i-th coordinate is t. For all f ∈ C∞(U), we have

Dγi(f) =
d(f ◦ γi)(t)

dt
|t=0 =

∂f(m)

∂xi(m)
|m=p.

So, we have Dγi =
∂
∂xi

= ∂i ∈ Tp(M).

Exercise 2.1.1.1. {∂1, . . . , ∂n} is a basis of Tp(M) = Der(C∞(M), εp).

Proof. Suppose that
∑n

i=1 ci∂i = 0. Take f = xi. Since
∑n

i=1 ci∂if = ci = 0, we conclude that
{∂1, . . . , ∂n} are linearly independent.
Now, we are going to show that it is a spanning set, which is not so trivial. Also, we remark that
the following proof works only in a C∞-category. First of all, we want to remind you that

mp
def
= ker(εp) = {[f ]p ∈ C∞(U)p | εp(f) = f(p) = 0} is a maximal ideal of C∞(U).

Again, C∞(U)p means a local ring, which is the set of germs. From now on, we omit the local ring
notions for simplicity. However, reader should think them as equivalent classes. So, as far as local

properties are concerned, hoping reader’s generosity we will write

mp
def
= ker(εp) = {f ∈ C∞(U) | εp(f) = f(p) = 0} is a maximal ideal of C∞(U).
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From the property of a derivative operator

Dγ(c1f1 + c2f2) = c1Dγ(f1) + c2Dγ(f2),

it easy to see that a derivative operator Dγ defines a linear functional on C∞(U). So, it will define
a linear functional on mp. Let

m2p = {F ∈ C∞(U) | F =
k∑

i=1

fi · gi where fi, gi ∈ mp}.

By the following property of a derivative operator

Dγ(f1 · f2) = Dγ(f1)εp(f2) + εp(f1)Dγ(f2),

it is easy to see that Dγ defines a linear functional on mp/m
2
p. Note that the maximality of mp in

C∞(U) shows that C∞(U)/mp is a field. Since mp/m
2
p is a C

∞(U)/mp-module, it is a vector space.
Now, we shall show that Der(C∞(M), εp) is isomorphic to the dual vector space of mp/m

2
p, i.e.,

(mp/m
2
p)
∗. Since we already showed that there is a well-defined identification from Der(C∞(M), εp)

to (mp/m
2
p)
∗, it suffices to show that it is one-to-one and onto.

Suppose that for all f ∈ mp/m
2
p, we have Dγ(f) = 0. So, Dγ(xi) = 0 for i = 1, . . . , n. That is,

d(xi ◦ γ)(t)
dt

|t=0 = 0 for i = 1, . . . , n, which implies that γ ′(0) = 0.

So, γ v γ1 where γ1(t) = p, i.e., constant function. Hence, Dγ = 0.
In order to prove that it is onto, we need a preparation theorem from calculus:

Theorem 2.1.1.2. Let f ∈ C∞(U) where U is a small open neighborhood of p such that ϕ(U) is
convex in Rn for a chart ϕ(u) = (x1(u), . . . , xn(u)). For each u, v ∈ U , we have

f(u) = f(p) +
n∑

i=1

∂f(u)

∂xi(u)
|u=p(xi(u)− xi(p))

+
n∑

i,j=1

(xi(u)− xi(p))(xj(u)− xj(p))
∫ 1

0
(1− t) ∂2f(v)

∂xi(v)∂xj(v)
|ϕ(v)=ϕ(p)+t(ϕ(u)−ϕ(p))dt.

The above theorem shows that mp/m
2
p is a n-dimensional vector space with a basis xi(u)−xi(p)

for i = 1, . . . , n in the C∞-category. In general, mp/m
2
p is an infinite dimensional vector space.

Suppose that L ∈ (mp/m
2
p)
∗. Note that L is completely determined by L(xi(u) − xi(p)) for i =

1, . . . , n. Let

γ(t) = ϕ−1
(
L(x1(u)− x1(p))t, . . . , L(xn(u)− xn(p))t

)
, which is a path in U.

It is easy to see that Dγ(xi) =
d(xi◦γ(t))

dt |t=0 = L(xi(u)− xi(p)) for i = 1, . . . , n.
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So, we have for f ∈ mp/m
2
p,

Dγ(f) = Dγ

(
f(p) +

n∑

i=1

∂f(u)

∂xi(u)
|u=p(xi(u)− xi(p))

)
= Dγ

( n∑

i=1

∂f(u)

∂xi(u)
|u=p(xi(u)− xi(p))

)

=
n∑

i=1

∂f(u)

∂xi(u)
|u=pDγ

(
xi(u)− xi(p)

)
=

n∑

i=1

∂f(u)

∂xi(u)
|u=pDγ

(
xi(u)

)

=
n∑

i=1

∂f(u)

∂xi(u)
|u=p

d(xi ◦ γ(t))
dt

|t=0 =
n∑

i=1

∂f(u)

∂xi(u)
|u=pL(xi(u)− xi(p))

= L
( n∑

i=1

∂f(u)

∂xi(u)
|u=p(xi(u)− xi(p))

)
= L(f).

So, we show that Der(C∞(M), εp) = (mp/m
2
p)
∗, which is an n-dimensional vector space. Since we

know that {∂1, . . . , ∂n} are linearly independent in Tp(M) = Der(C∞(M), εp), it is a basis.

It is worth remarking what we showed in the proof of Exercise 2.1.1.1.

Remark 2.1.1.2. We showed that Tp(M) is an n-dimensional vector space. So, Tp(M) ∼= Rn.
Since Tp(M) is a local notion, we have Tp(M) ∼= Tq(M) fro p, q ∈M .
We also showed that Tp(M) = Der(C∞(M), εp) = (mp/m

2
p)
∗. So, (TP (M))∗ = mp/m

2
p. That is,

Der(C∞(M), εp)×mp/m
2
p → R is a perfect paring.

LetMm ψ−→ Nn be a smooth map. We define (dψ)p in the following way: LetD ∈ Der(C∞(M), εp)
and f ∈ C∞(U) where U ⊆ N is a small open neighborhood of ψ(p). Define

((dψ)p(D))(f)
def
= D(f ◦ ψ) and ψ∗(f) def= f ◦ ψ.

A straightforward checking will show that (dψ)p(D) ∈ Der(C∞(N), εψ(p)) and (dψ)p induces a
homomorphism from Tp(M) to Tψ(p)(N). Moreover, chain rules will show that if

p ∈Mm ψ−→ Nn ϕ−→ Qq,

then we have d(ϕ ◦ ψ)p = (dϕ)ψ(p) ◦ (dψ)p where

Tp(M
m)

(dψ)p−−−→ Tψ(p)(N
n)

(dϕ)ψ(p)−−−−−→ T(ϕ◦ψ)(p)(Q
q) and Tp(M

m)
d(ϕ◦ψ)p−−−−−→ T(ϕ◦ψ)(p)(Q

q).

Also, it is easy to see that ifMm ψ−→ Nn be a diffeomorphism, then (dψ)p is an isomorphism between
Tp(M) to Tψ(p)(N).

Definition 2.1.1.6 (Tangent Bundles). Define the tangent bundle T (U) over an open set U ⊆
M to be a disjoint union of tangent spaces. That is,

T (U)
def
=
∐

p∈U
Tp(M).

Note that since Tp(M) ∼= Rn, we give the topology of T (U) from the topology of U × Rn. So,
it has a natural smooth structure. Also, note that locally we have T (U) ∼= R2n.
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2.1.2 Vector fields as Derivations

Definition 2.1.2.1 (Vector fields). Let T (M)
π−→M be π(p× Tp(M)) = p.

A section M
s−→ T (M) is a smooth map such that π ◦ s(p) = p. That is, π ◦ s = idM . A vector field

X is a section of T (M).

In general, for any vector bundle E
π−→ M , we say that s is a section if π ◦ s = idM . So, what

the above definition means is that a vector field is a section of tangent bundle.

Definition 2.1.2.2 (Derivations). A derivation D of an R-algebra A is a linear map such that
D(fg) = D(f)g + fD(g) for all f, g ∈ A. That is, the set Der(A) of all derivations of A is given
by

Der(A) = {D ∈ End(A) | D(fg) = D(f)g + fD(g) for all f, g ∈ A}.

It is worth remarking that Der(A) is a left A-module: Let D ∈ Der(A) and f, g, h ∈ A.

fD(gh) = (fD(g))h+ g(fD(h)) = (fD)(gh).

Exercise 2.1.2.1. Show that we can make Der(A) a Lie algebra.

Proof. By defining for all a, d ∈ R, all D1, D2 ∈ Der(A), and all f ∈ A,

(aD1 + bD2)(f) = aD1(f) + bD2(f),

we conclude that Der(A) is a vector space. Also, defining a multiplicative structure [, ] by

[D1, D2](f) = D1(D2(f))−D2(D1(f)),

a straightforward checking will show that

1. [D1, D2] ∈ Der(A)
2. [, ] is R-bilinear

3. [D1, D2] = −[D2, D2]
4. [D1, [D2, D3]] + [D2, [D3, D1]] + [D3, [D1, D2]] = 0.

So, Der(A) is a Lie algebra.

Since C∞(U) is an R-algebra for any open U ⊂M , we have Der(C∞(M)). LetVect(U) = X(U) be
the set of all vector fields over for an open U ⊂M . Now, we shall show that X(U) = Der(C∞(U)).
So, X(U) is a Lie algebra.

Theorem 2.1.2.1. X(U) ⊆ Der(C∞(U)) for any open U ⊂M .

Proof. Note thatXp ∈ Tp(M) = Der(C∞(M), εp) and in Exercise 2.1.1.1, we show that {∂1, . . . , ∂n}
is a basis of Tp(M) = Der(C∞(M), εp). However, it was a kind of misleading notation. We should
have written {∂1,p, . . . , ∂n,p} as a basis of Tp(M) = Der(C∞(M), εp). Now, let

∂i(p) = ∂i,p. That is, π ◦ ∂i = idM .
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We want to emphasize that ∂i need not be a vector field, since it need not be smooth.
However, what is true is the following: If X ∈ X(U) for an open U ⊂ M , there exist ∂i ∈ X(U)
such that

Xu =
k∑

i=1

fi(u)∂i,u where fi ∈ C∞(U), u ∈ U and k ≤ n.

Let ψ,ϕ ∈ C∞(U). It is obvious that Xu(aψ + bϕ) = aXu(ψ) + bXu(ϕ), which shows that Xu ∈
End(C∞(U)). Also, we have

Xu(ψ · ϕ) =
k∑

i=1

fi(u)∂i,u(ψ · ϕ) =
k∑

i=1

fi(u)εu(ψ)∂i,u(ϕ) +
k∑

i=1

fi(u)εu(ϕ)∂i,u(ψ)

= ψ(u)

k∑

i=1

fi(u)∂i,u(ϕ) + ϕ(u)

k∑

i=1

fi(u)∂i,u(ψ) = ψ(u)Xu(ϕ) +Xu(ψ)ϕ(u).

That is, X(ψ · ϕ) = ψX(ϕ) +X(ψ)ϕ, which implies that X(U) ⊆ Der(C∞(U)).

In order to show the reversed inclusion, we need some preliminary. First of all, we want to clarify
a vector field notation

Notation 2.1.2.1. We will write {∂1, . . . , ∂n} as linearly independent vector fields. That is, ∂i ∈ X(U)
for an open U ⊂ M implies that ∂i is smooth over U . However, there is another notation, which
expresses a vector field. Let U be an open set in M and V = {Vα} be an atlas of U . So, for each open
set Vα, we have a chart (xα,1(v), . . . , xα,n(v)). So, for each ζ such that ζp ∈ Tp(U) and π ◦ ζ = idU ,
we can have

ζ(xα,1(v),...,xα,n(v)) =
n∑

i=1

fi(xα,1(v), . . . , xα,n(v))
∂

∂xα,i
.

Note that ∂
∂xα,i

∈ X(Vα). In this description, we say ζ ∈ X(U) if fi(xα,1(v), . . . , xα,n(v)) ∈ C∞(U) for

i = 1, . . . , n and all α. For simplicity, we will write ∂
∂xi

as ∂
∂xα,i

in the understanding that xi is a local

coordinate of each Vα.

Let D ∈ Der(C∞(U)) and f ∈ C∞(U). By definition, D(f) ∈ C∞(U). So,

D(f)(p)
def
= Dp(f) = εp(Df) ∈ R for p ∈ U.

In this consideration, we can expect thatDp might give a derivative operator. However, strictly speaking,

a derivative operator was defined on a local ring C∞(U)p and a derivation was defined on a genuine
function space. So, first of all, we will show that it is not a real obstacle. Note that that’s is one of

reasons why we kept maintaining function notations instead of more logical equivalent class notations.

Lemma 2.1.2.1. If [f ]p = [g]p, then Dp(f) = Dp(g).

Proof. Suppose that f |V ≡ 0 for V ⊆ U . Choose a bump function ϕ ∈ C∞(U) such that

ϕ(x) = 0 on a compact K ⊂ V and ϕ|U/V ≡ 1.

So, ϕf = f on U . By the definition of D, we have

D(f) = D(ϕf) = D(ϕ)f + ϕD(f).
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So, we have D(f)|K ≡ 0. by letting K = {p} for p ∈ V , we have D(f)|V ≡ 0.
If [f ]p = [g]p, there exists an open set W ⊆ U such that p ∈W and f = g on W . So,

(D(f)−D(g))|W = D(f − g)|W ≡ 0.

That is, Dp(f) = Dp(g) for all p ∈W .

From Lemma 2.1.2.1 and the Leibnitz rule of D as the definition of D ,it is easy to see that
Dp(f.g) = 0 for all [f ]p, [g]p ∈ mp. So, we have for each p ∈ U

Dp ∈ (mp/m
2
p)
∗ = Tp(M)

def
= Der(C∞(U), εp).

Hence, we conclude that each D ∈ Der(C∞(U)) satisfy π ◦D = idU for T (U)
π−→ U for any open

U ⊆M . Now, we show that Dp varies smoothly as p varies. Keeping the content of Notation 2.1.2.1
in your mind, we can write at least.

Dp =
n∑

i=1

fi(x1(p), . . . , xn(p))
∂

∂xi
.

It suffices to show that each fi(x1(v), . . . , xn(p)) ∈ C∞(U). Note that by definition D : C∞(U)→
C∞(U). So, we have

Dp(xi) = fi(p) ∈ C∞(U).

Therefore, we have

Theorem 2.1.2.2. X(U) ⊇ Der(C∞(U)) for any open U ⊂M .

2.1.3 Lie bracket of Vector fields

Exercise 2.1.3.1. Compute [ζ, ξ] for vector fields ζ, ξ ∈ X(M).

Proof. Let f ∈ C∞(M) and

ζ =

n∑

i=1

ζi(x1, . . . , xn)
∂

∂xi
and ξ =

n∑

i=1

ξi(x1, . . . , xn)
∂

∂xi
.

[ζ, ξ]f =
n∑

i=1

ζi(x1, . . . , xn)
∂

∂xi
(
n∑

j=1

ξj(x1, . . . , xn)
∂f

∂xj
)−

n∑

i=1

ξi(x1, . . . , xn)
∂

∂xi
(
n∑

j=1

ζj(x1, . . . , xn)
∂f

∂xj
)

=
n∑

i,j=1

(
ζi(x1, . . . , xn)

∂ξj
∂xi
− ξi(x1, . . . , xn)

∂ζj
∂xi

) ∂f
∂xj

So, we have

[ζ, ξ] =
n∑

i,j=1

(
ζi(x1, . . . , xn)

∂ξj
∂xi
− ξi(x1, . . . , xn)

∂ζj
∂xi

) ∂

∂xj
.
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Since we know Der(C∞(M)) is a left C∞(M) module, we have X(M) is a left C∞(M) module.
Also, for f, g ∈ C∞(M), it is easy to see that

[fζ, gξ] = f · ζ(g)ξ − g · ξ(f)ζ + f · g[ζ, ξ].

Example 2.1.3.1. If ∂i, ∂j ∈ X(U), then

[∂i, ∂j ] = 0.

Example 2.1.3.2. If ∂k ∈ X(U), then

[∂k,
n∑

j=1

fj
∂

∂xj
] =

n∑

j=1

∂fj
∂xk

∂

∂xj
.

Definition 2.1.3.1 (Parallel vector fields and Linear vector fields). Let ξ ∈ X(U), i.e.,

ξ =
n∑

i=1

ξi(x1, . . . , xn)
∂

∂xi
.

We say ξ is a linear vector field if each ξi is linear. We say ξ is a parallel or constant vector
field if each ξi is constant.

Now, we are going to show that Mn(R) = gl(n,R) generates linear vector fields ξ on Rn, i.e.,
ξ ∈ X(Rn): Let A = (aij)n×n ∈Mn(R) and x1, . . . , xn be Euclidean coordinates of Rn. Define

ξA =
n∑

i,j=1

aijxj
∂

∂xi
.

Since the manifold which we are dealing with is Rn itself, we have ξA ∈ X(Rn). That is, Mn(R) =
gl(n,R) generates all the linear vector fields of Rn. The following exercise will exhibit that
Mn(R) = gl(n,R) acts on the set of linear vector fields on Rn with respect to Lie bracket actions.

Exercise 2.1.3.2. Show that [ξA, ξB] = ξAB−BA for A,B ∈Mn(R).

Proof. Let

ξA =
n∑

i,j=1

aijxj
∂

∂xi
and ξB =

n∑

i,j=1

bijxj
∂

∂xi
.

We have

[ξA, ξB] =
n∑

i,k=1

(
(
n∑

j=1

aijxj)
∂(
∑n

j=1 bkjxj)

∂xi
− (

n∑

j=1

bijxj)
∂(
∑n

j=1 akjxj)

∂xi

) ∂

∂xk

=
n∑

i,k=1

(
(
n∑

j=1

aijxj)bki − (
n∑

j=1

bijxj)aki
) ∂

∂xk
=

n∑

i,k=1

( n∑

j=1

(aijbki − bijaki)xj
) ∂

∂xk

=
n∑

j,k=1

( n∑

i=1

(aijbki − bijaki)xj
) ∂

∂xk
= ξAB−BA.

49



Example 2.1.3.3. Mn(R) = gl(n,R) acts on the set of parallel vector fields on Rn.

Proof. First of all, note that the action of ξA is Lie brackets. Since every parallel vector field of Rn

is generated by ∂
∂xi

for i = 1, . . . , n, it suffices to consider just one case:

[ξA,
∂

∂xi
] = [

n∑

i,j=1

aijxj
∂

∂xi
,
∂

∂xk
] =

n∑

i=1

aik
∂

∂xi
, which is a parallel vector field.

Example 2.1.3.4 (Compare to Example 2.1.3.1). Let our manifold be Rn. We have

[−xi
∂

∂xi
,
∂

∂xi
] =

∂

∂xi
and [

∂

∂xi
,
∂

∂xj
] = 0.

Example 2.1.3.5. Show that affin(R) = {(ax+ b) ∂∂x | a, b ∈ R} is a 2-dimensional Lie algebra of
vector fields on R.

Proof. We have to check Lie bracket operations of ∂
∂x and x ∂

∂x :

[x
∂

∂x
,
∂

∂x
] = − ∂

∂x
and [

∂

∂x
,
∂

∂x
] = [x

∂

∂x
, x

∂

∂x
] = 0.

So, it is a Lie algebra generated by ∂
∂x and x ∂

∂x .

Definition 2.1.3.2 (Flows or One parameter subgroups). We say Φ(t, x) = Φt(x) is a global
flow ( or one parameter subgroup ) on M if Φ : R ×M → M is smooth and it satisfies Φ0 = idM
and Φt1+t2 = Φt1 ◦ Φt2, i.e., Φ(t1 + t2, x) = Φ(t1,Φ(t2, x)) for all t1, t2 ∈ R.

This definition has immediate consequences: If Φt is a flow, then Φt has an inverse by definition,
namely, Φ−t. So, the smoothness gives that Φt ∈ Diff(M), the set of diffeomorphisms ofM . Moreover,

the condition Φt1+t2 = Φt1 ◦ Φt2 gives us that R Φ−→ Diff(M) is a homomorphism. The image of this
homomorphism is a subgroup of Diff(M), which is parameterized by one dimensional group R. That
is why Φ is often called a one parameter subgroup.

Now, we want to relate a flow to a vector field ofM . Let γ : (−ε, ε)→M with γ(0) = p. We know
that γ gives a tangent vector as a derivative operator, i.e., Dγ ∈ Tp(M) = Der(C∞(M), εp). Since
Φ(t, x) ∈ m, fixing x and varying t it is easy to see that Φ(t, x) gives a path on M . That is, Φ gives
a tangent vector DΦ(t,p) ∈ Tp(M). So, for f ∈ C∞(M), by the definition of a derivative operator, we
have

DΦ(t,p)(f) =
d

dt
(f ◦ Φ(t, p))|t=0.

Now, p varies in the above equation. The right hand side is smooth by the smoothness of Φ. So, we
conclude that DΦ(t,p) is smooth with respect to p. That is, DΦ(t,p) ∈ X(M), which shows that every
global flow defines a vector field.

Example 2.1.3.6. Let t, x ∈ R and δ(t, x) = xet. Obviously, δ(t, x) is a flow in R. The corre-
sponding vector field is x ∂

∂x .
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Proof. If ξ ∈ X(R), then ξ = f(x) ∂∂x where f ∈ C∞(R). So, f(p) = ξp(x). Let g(x) = x. We have

Dδ(t,x)(g) =
d

dt
(g ◦ δ(t, x))|t=0 =

d

dt
(xet)|t=0 = x.

That is, the corresponding vector field is x ∂
∂x .

Example 2.1.3.7. Let s, x ∈ R and τ(s, x) = x + s. Obviously, τ(s, x) is a flow in R. The
corresponding vector field is ∂

∂x .

Proof. Let g(x) = x. We have

Dτ(s,x)(g) =
d

ds
(g ◦ τ(s, x))|s=0 =

d

ds
(x+ s)|s=0 = 1.

That is, the corresponding vector field is ∂
∂x .

Note that in general, for A ∈ gl(n,R) =Mn(R), the corresponding linear flow is

Φ(t, A) = exp(tA).

Definition 2.1.3.3 (Abelian Lie algebras). We say a Lie algebra g is abelian if [X,Y ] = 0 for
all X,Y ∈ g.

In the proof of Example 2.1.3.5, we show that [−x ∂
∂x ,

∂
∂x ] =

∂
∂x . So, {(ax + b) ∂∂x | a, b ∈ R} is

not an abelian Lie algebra. From Example 2.1.3.6 and 2.1.3.7, we know that δ(t, x) = xet induces
the corresponding vector field is x ∂

∂x and τ(s, x) = x + s induces the corresponding vector field is
∂
∂x . The reason why [−x ∂

∂x ,
∂
∂x ] 6= 0 is that the corresponding flows do not commute each other:

δt ◦ τs ◦ δ−t = τset .

Exercise 2.1.3.3. Show that {(ax2 + bx + c) ∂∂x | a, b, c ∈ R} forms a Lie subalgebra of X(R) and
it is isomorphic to sl2(R).

Proof. We have to check Lie bracket operations of ∂
∂x , x

∂
∂x and x2 ∂∂x : It is easy to see that

[x
∂

∂x
,
∂

∂x
] = − ∂

∂x
and [

∂

∂x
,
∂

∂x
] = [x

∂

∂x
, x

∂

∂x
] = [x2

∂

∂x
, x2

∂

∂x
] = 0.

[x2
∂

∂x
, x

∂

∂x
] = −x2 ∂

∂x
and [x2

∂

∂x
,
∂

∂x
] = −2x ∂

∂x
.

So, it is a Lie algebra generated by ∂
∂x , x

∂
∂x and x2 ∂∂x . We want to remind you that

sl2(R) = {traceless elements of M2(R)} = {
(
a b
c −a

)
| a, b, c, d ∈ R}.

Let

A1 =

(
0 −1
0 0

)
, A2 =

(
−12 0
0 1

2

)
and A3 =

(
0 0
1 0

)
.
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It is easy to see that [Ai, Ai] = 0 for i = 1, 2, 3 and

[A2, A1] = −A1, [A3, A2] = −A3 and [A3, A1] = −2A2.

Define a map

A1 7→
∂

∂x
,A2 7→ x

∂

∂x
and A3 7→ x2

∂

∂x
, which is a Lie algebra isomorphism.

Exercise 2.1.3.4. Show that {(anxn + · · · + a1x + a0)
∂
∂x | ai ∈ R for i = 0, . . . , n} does not form

a Lie subalgebra of X(R) if n > 2.

Proof. It is easy to see that

[xn
∂

∂x
, x2

∂

∂x
] = (2− n)xn+1 ∂

∂x
.

So, if n > 2, then (2− n)xn+1 ∂∂x /∈ {(anxn + · · ·+ a1x+ a0)
∂
∂x | ai ∈ R for i = 0, . . . , n}. Hence, it

is not a Lie algebra.

2.1.4 Existence and Uniqueness of Integral Curves

We want to remind you that the definition of a global flow, i.e., Definition 2.1.3.2. In the notation
of Definition 2.1.3.2, we say Φ(t, x) is a local flow if the domain is just (−δ, ε) × U where open
U ⊆ M , not necessarily the whole manifold M . An integral curve γ on M is weaker concept of
a local flow. That is, the domain of γ needs to be (−δ, ε) × {p} for p ∈ M , which is more or less
equivalent to say that we don’t need the smoothness of p variable. We give rigorous definitions:

Definition 2.1.4.1 (Integral curves). Let X ∈ X(M). We say γ : (−δ, ε) → M is an integral
curve of X if it is smooth and for all f ∈ C∞(M) and s ∈ (−δ, ε),

d

dt
(f ◦ γ(t))|t=s = Xγ(s)f

def
= εγ(s)(Xf).

Definition 2.1.4.2 (Local Flows). We say Φ(t, x) = Φt(x) is a local flow on M if there exists
an open U ⊆ M such that Φ : (−δ, ε) × U → M is smooth and it satisfies that Φ0 is an inclusion
U ↪→ M and Φt1+t2 = Φt1 ◦ Φt2, i.e., Φ(t1 + t2, x) = Φ(t1,Φ(t2, x)) whenever both sides of this
equation are defined.

Theorem 2.1.4.1. Integral curves of a given vector field X always exist

Proof. Let X ∈ X(M) and M is n-dimensional manifold. So, we can write

Xp =
n∑

i=1

fi(p)
∂

∂xi
where fi ∈ C∞(M) and p =



p1
...
pn


 .

52



Take a chart (x1, . . . , xn) around p ∈ U ⊆M , i.e., U ∼= Rn, such that (x1(p), . . . , xn(p)) = (0, . . . , 0).
Now, we are in an Euclidean space. Let γ(t) = (γ1(t), . . . , γn(t)) such that γ(0) = (0, . . . , 0). Look
at the following equation:

γ′(t) =




dγi(t)
dt
...

γn(t)
dt


 =



f1(γ1(t), . . . , γn(t))

...
fn(γ1(t), . . . , γn(t))


 .

The fundamental existence and uniqueness theorem of a system of first order differential equations
tells us that we can have a unique solution subject to the initial condition γ(0) = (0, . . . , 0). So,
integral curves exist in each chart.

Remark 2.1.4.1. Note that each point p ∈M has a maximal interval (a(p), b(p)) in which γp(t)
is smooth. Also, what the uniqueness statement really tells us is that if γp(t) with γp(0) = p is an
integral curve of a given vector field X ∈ X(M) with domain (a(p), b(p)), then for all s ∈ (a(p), b(p)),
we have

γ′p(s) = Xγp(s).

That is, if we let γγp(s)(t) be the integral curve of X ∈ X(M) at γp(s), then as long as s, t, t+ s ∈
(a(p), b(p)), we have

γγp(s)(t) = γp(t+ s).

Now we construct a local flow Φ(t, x) from integral curves of X ∈ X(M). We know that there
exists a unique integral curve γp(t) at each point p ∈M . Let

Φ(t, p) = γp(t).

By Remark 2.1.4.1, we have for t1, t2, t1 + t2 ∈ (a(p), b(p)),

Φ(t1 + t2, p) = γp(t1 + t2) = γγp(t2)(t1) = Φ(t1, γp(t2)) = Φ(t1,Φ(t2, p)).

Moreover, by construction, Φ(0, p) is an inclusion from U to M .
Now, we will show smoothness: We know that Φ(t, p) is smooth at the variable t on the domain

of γp(t), i.e., (a(p), b(p)). However, what we do not know is whether or not Φ(t, p) is smooth at the
variable p. To prove this we need a theorem from ordinary differential equations.

The fundamental existence and uniqueness theorem of a system of first order differential equa-
tions with varying the initial conditions Ψ(0, b1, . . . , bn) = γ(b1,...,bn)(0) tells us that there exists
an open (−δ, ε) × U where (b1, . . . , bn) ∈ U ⊆ Rn such that we can have a unique solution
Ψ(t, x1, . . . , xn) subject to the initial condition Ψ(0, b1, . . . , bn) = γ(b1,...,bn)(0).

The uniqueness tells us that Φ(t, p) = γp(t) must be the solution. That is, we can find an open
neighborhood Up ⊆M of p and an open interval (−δp, εp) such that on (−δp, εp)×Up, Φ(t, p) = γp(t)
is smooth. Hence, we proved

Theorem 2.1.4.2. For a given vector field X ∈ X(M) and m ∈M , there exist an open neighbor-
hood Um of m, (−δm, δm) ⊆ R, and a local flow ΦUm(t, p) on (−δm, δm)× Um, which gives unique
integral curves γp(t) = Φ(t, p) at each point p ∈ Um ⊆M .

Remark 2.1.4.2. Actually, we can have more. Let (a(p), b(p)) be the maximal interval in which γp(t)
is smooth.
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Let
W =

⋃

p∈M
(a(p), b(p))× {p}

Ds def= {p ∈M | (s, p) ∈W} = {p ∈M | s ∈ (a(p), b(p))}
First thing we have to check is the following:

Theorem 2.1.4.3. W is open in R×M and Ds is open in W .

Proof. Suppose that (s, p) ∈ W for s ∈ R and p ∈ M . Without loss of generality, we can assume
s > 0. Also, we can assume that for small ε > 0, (s+ ε, p) ∈W . The proof of the smoothness of a
local flow shows that there exists an open set (−δ, δ)×Up ⊆W where Up is an open neighborhood
of p and (−δ, δ) ⊆ (a(m), b(m)) for all m ∈ Up. Let Φ(t,m) be the local flow on (−δ, δ)×Up. Take
some large enough k ∈ N such that s+ε

k ∈ (0, δ) and for all m ∈ Up,

γm(s+ ε)
def
= Φ(s+ ε,m) =

k︷ ︸︸ ︷
Φ s+ε

k
◦ · · · ◦ Φ s+ε

k
(m).

So, we have (s, p) ∈ (0, s+ ε]× Up ⊆ W . Hence, (s, p) ∈ (0, s+ ε)× Up ⊆ W . Thus, W is an open
set.

Suppose m ∈ Ds. So, (s,m) ∈W . Since W is open, there exists an open set

{t | |t− s| < ε} × U ⊆W where m ∈ U is open in M .

So, {s} × U ⊆W . So, m ∈ U ⊆ Ds.

Theorem 2.1.4.4. For a given vector field X ∈ X(M) and m ∈M , there exist an open set U ⊆M
and a local flow Φ(t, p) on

⋃
p∈U (a(p), b(p))×{p}, which gives unique integral curves γp(t) = Φ(t, p)

at each point p ∈ Um ⊆M .

Proof. Note that the same proof of Theorem 2.1.4.3 shall show that

⋃

p∈U
(a(p), b(p))× {p} is open.

Suppose that (s, p) ∈ W for s ∈ R and p ∈ M . Without loss of generality, we can assume s > 0.
By Theorem 2.1.4.2, we can find the domains of local flows at each points m ∈ γp([0, s]). Let
(−δm, δm)×Um be the domain of ΦUm(t, x). Since {Um} is an open cover of γp([0, s]) and γp([0, s])
is compact, we can find a finite number of Umi for i = 1, . . . , k. Let a = min1≤i≤k{δmi}. By the
uniqueness of a local flow, ΦUmi (t, x) = ΦUmj (t, x) on (−a, a) × (Umi ∩ Umj ). Hence, we have a
local flow

Φ : (−a, a)×
k⋃

i=1

Umj →M.

Take some large enough k ∈ N such that s
k ∈ (0, a) and for all m ∈ Up. Consider

γm(s)
def
= Φ(s,m) =

k︷ ︸︸ ︷
Φ s
k
◦ · · · ◦ Φ s

k
(m).
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It is easy to see that for i = 1, . . . , k,

i︷ ︸︸ ︷
Φ s
k
◦ · · · ◦ Φ s

k
(m) ⊆ γp([0, s]) ⊆

k⋃

i=1

Umj .

That is, Φ(t, p) is smooth at s as well as p. Since s ∈ (a(p), b(p)) is arbitrary, we prove the
theorem.

The proof of Theorem 2.1.4.4 has interesting consequences: Fix s and let A be the domain of Φs. If
p ∈ A, then Φs is smooth at p. So, s ∈ (a(p), b(p)). Hence, A ⊆ Ds. The proof of Theorem 2.1.4.4
tells us that Ds ⊆ A. Hence, the domain of Φs is Ds. From this, we have

Theorem 2.1.4.5. Φs : Ds → D−s is a diffeomorphism with inverse Φ−s. That is, every flow is a
local diffeomorphism.

Proof. Let m ∈ Ds. By definition, Φs ◦ Φ−s(m) = Φ0(m) = m and Φ−s ◦ Φs(m) = Φ0(m) = m.
The proof of Theorem 2.1.4.4 shows that Φs : Ds → D−s is smooth.

Also, it is easy to see that

Theorem 2.1.4.6.
⋃
s>0Ds =M and Domain(Φs1 ◦ Φs2) ⊆ Ds1+s2.

Proof. Obviously,
⋃
s>0Ds ⊆M . For m ∈M , since there exists 0 ∈ (a(m), b(m)) in which γm(t) is

smooth, there exists s > 0 such that m ∈ Ds. So,
⋃
s>0Ds = M . If p ∈ Domain(Φs1 ◦ Φs2), then

Φs1 ◦ Φs2(p) = Φs1+s2(p). So, p ∈ Ds1+s2 .

Definition 2.1.4.3 (Complete vector fields). We say X ∈ X(M) is a complete vector field if
it is generated by a global flow.

Note that not every vector field is complete.

Example 2.1.4.1. ∂
∂x ∈ X(R/{0}) is not complete.

Proof. Suppose that Φ(t, x) is a global flow of ∂
∂x . So, we have

Φ(t, x) = γx(t).

Now, we solve the following differential equation:

dγp(t)

dt
= 1 and γp(0) = p.

It is easy to see that γp(t) = t+ p. So,

Φ(t, x) = t+ x.

However, when x = −t, t = 0 implies x = 0. That is, Φ(t, x) = t + x is not defined if t = −x on
R/{0}. Note that ∂

∂x ∈ X(R) is complete by the flow Φ(t, x) = t+ x.

Example 2.1.4.2. x2 ∂∂x ∈ X(R) is not complete.
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Proof. Suppose that Φ(t, x) is a global flow of x2 ∂∂x . So, we have

Φ(t, x) = γx(t).

Now, we solve the following differential equation:

dγp(t)

dt
= γ2p(t) and γp(0) = p =⇒

∫ t

0
dt =

∫ t

0

dγp(t)

γ2p(t)
.

It is easy to see that γp(t) =
p

1−tp . So,

Φ(t, x) =
x

1− tx .

However, when t = 1
x , Φ(t, x) =∞. So, Φ(t, x) is not defined if t = 1

x on R.

Let (U1, x) be a chart around the origin of R ∪ {∞} and (U2, y) be a chart around ∞ of R ∪ {∞}.
Of course, as usual, the transition function is given by x 7→ 1

x = y. From this, we can smoothly

extend X = x2 ∂∂x to ∞. That is, we have a smooth vector field X ∈ X(R ∪ {∞}), which is given

by x2 ∂∂x and − ∂
∂y on each chart. Now, this is complete. The global flow

Ξ : R× (R ∪ {∞})→ R ∪ {∞}

is given by Φ1(t, x) =
x

1−tx or Ψ1(t, x) =
1

Φ1(t,x)
on R× U1 and Φ2(t, y) =

1
y−t or Ψ2(t, x) =

1
Φ2(t,y)

on R× U2. Since they agree on U1 ∩ U2, the uniqueness shows that they are can be formed into a
global flow Ξ. Actually, what gives the existence of Ξ is the compactness of R ∪ {∞}. In general,
we have

Exercise 2.1.4.1. If M is compact, every vector field X ∈ X(M) is complete. That is, each vector
field gives a global flow ξt ∈ Diff(M) if M is compact.

Proof. Let M be compact and X ∈ X(M). By Theorem 2.1.4.2, we can find local flows, which
generates X. Let (−δp, εp)× Up be the domain of Φ(t,m)p. Since {Up} is an open cover and M is
compact, we can find a finite number of flows Φ(t,m)pi for i = 1, . . . , k. Let a = min1≤i≤k{δpi , εpi}.
By the uniqueness of a local flow, Φ(t,m)pi = Φ(t,m)pj on (−a, a)× (Upi ∩Upj ). Hence, we have a
local flow

Φ : (−a, a)×M →M with Φ(0,m) = idM .

Let r ∈ R. There exist unique n ∈ Z and |b| < a
2 such that r = na2 + b. Define

Φ(r,m) =





n︷ ︸︸ ︷
Φa

2
◦ · · · ◦ Φ a

2
◦Φb if r ≥ 0

Φ−a
2
◦ · · · ◦ Φ−a

2︸ ︷︷ ︸
n

◦Φb if r < 0.

The chain rule gives that Φ : R ×M → M is smooth. Also, by construction, Φt1+t2 = Φt1 ◦ Φt2 .
Hence, it is a global flow which generates X ∈ X(M).
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Theorem 2.1.4.7 (Normal forms for nonsingular vector fields). LetM be an n-dimensional
smooth manifold and p ∈ M . Suppose that X ∈ X(M) and Xp 6= 0. Then there exists a smooth
coordinate chart (U,ϕ) at p where

X|U = ϕ ∗ ( ∂
∂y

)|U .

Proof. We know that there exists a local flow ξt around a small neighborhood V ⊆M of p, which
generates X on V . That is, ξ : (−ε, ε)× V →M where

X(x1,...,xn) =
d

dt
ξt(x1, . . . , xn)|t=0.

Since Xp 6= 0, without loss of generality, we can shrink V smaller so that we can choose a coordinate
system on (V, ϕ = (x1, . . . , xn)) such that p = (0, . . . , 0) and

Tp(V ) has a basis {Xp,
∂

∂x2
|p, . . . ,

∂

∂xn
|p}, i.e., Xp =

∂

∂x1
|p.

Let
W = {(x1, . . . , xn) ∈ V | x1 = 0}.

Note thatW is nothing but a smooth hypersurface in V . So, dim(W ) = n−1. Define on (−ε, ε)×W ,

F (y, x2, . . . , xn) = ξy(0, x2, . . . , xn).

Note that F (0, 0, . . . , xi, 0, . . . , 0) = ξ0(0, . . . , xi, 0, . . . , 0) = (0, . . . , xi, 0, . . . , 0) for i = 2, . . . , n.
Clearly, F is smooth on (−ε, ε)×W . So, we have

dFp : Tp((−ε, ε)×W )→ Tp(M) = Tp(V ).

Since TP ((−ε, ε)×W ) = Tp((−ε, ε))× Tp(W ), Tp((−ε, ε)×W ) has a basis { ∂∂y |p, ∂
∂x2
|p, . . . , ∂

∂xn
|p}.

It is easy to see that

dFp(
∂

∂xi
|p) =

n∑

j=1

∂Fj
∂xi
|p

∂

∂xj
|p =

∂

∂xi
|p for i = 2, . . . , n.

Moreover, by the definition of a local flow ξt, we have

dFp(
∂

∂y
|p) =

n∑

j=1

∂Fj
∂y
|p

∂

∂xj
|p = Xp.

We note that

Xξs(x1,...,xn) =
d

dt
ξt(ξs(x1, . . . , xn))|t=0

=
d

dt
ξt+s(x1, . . . , xn)|t=0 =

d

dt
ξt(x1, . . . , xn)|t=s

From this and F (y, x2, . . . , xn) = ξy(0, x2, . . . , xn), we have

∂F

∂y
|(a,a2,...,an) =

∂ξy(0, x2, . . . , xn)

∂y
|(a,a2,...,an)

=
dξy(0, a2, . . . , an)

dy
|y=a =

d

dt
ξt(ξa(0, a2, . . . , an)|t=0

= Xξa(0,a2,...,an) = XF (a,a2,...,an).
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That is,

dF(y,x2,...,xn)(
∂

∂y
|(y,x2,...,xn)) = XF (y,x2,...,xn).

Since the differential of F is nonsingular at {0} ×
n−1︷ ︸︸ ︷

(0, . . . , 0), then we can use {y, x1, . . . , xn} as
coordinates from the inverse function theorem, if necessary, by shrinking (−ε, ε) ×W . Since F :

(−ε, ε)×W →M , there exists an open set (−ε, ε)×W
F∼= U ⊆M such that

{y ◦ F−1, x2 ◦ F−1, . . . , xn ◦ F−1} is a smooth coordinate chart on U and X|U = dF (
∂

∂y
)|U .

2.1.5 Left actions of Diff(M) on C∞(M).

Let ϕ ∈ Diff(M) and f ∈ C∞(M). Define

(ϕ · f) def= f ◦ ϕ−1.
It is easy to see to see this is an action, i.e.,

ψ · (ϕ · f) = (ψ ◦ ϕ) · f.
Example 2.1.5.1. Let X ∈ X(M) be complete and ξt be the corresponding global flow. We already
have shown that ξt ∈ Diff(M) and the inverse of ξt is ξ−t. So, we have

Xf =
d

dt
|t=0f(ξt(p)) =

d

dt
|t=0((ξt)−1 · f)

=
d

dt
|t=0(ξ−t · f) = −

d

dt
|t=0(ξt · f).

Now, we are about to define a left action of Diff(M) on X(M)
def
= Vect(M). Note that this is

a prototype of general theory that a Lie group (in this case, Diff(M) ) acts on the Lie algebra ( in
this case, X(M)). We want to remind that for ϕ ∈ Diff(M) we have

TM
dϕ−−−→ TM

y
y

M
ϕ−−−→ M.

So, for X ∈ X(M),

dϕ(X) ∈ X(M) and dϕϕ−1(p)(Xϕ−1(p))
def
= (dϕ(X))p ∈ Tp(M).

Note that
Xp(f)

def
= (Xf)(p).

Note that we define a vector field to be a derivation. So, by definition, we have

(dϕϕ−1(p)(Xϕ−1(p)))(f)
def
= Xϕ−1(p)(f ◦ ϕ)

def
= (X(f ◦ ϕ))(ϕ−1(p)).

Of course, if you use the Jacobian of Jϕ, then you will get the same answer.
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Remark 2.1.5.1. Obviously, the above does not imply

dϕϕ−1(p)(Xϕ−1(p))(f) = Xϕ−1(p)(f ◦ ϕ) = Xp(f), i.e., (dϕ(X))p = Xp.

However, in some situation there exists ϕ ∈ Diff(M), which makes

dϕϕ−1(p)(Xϕ−1(p))(f) = (dϕ(X))p = Xp for all p ∈M.

Later, those will be our one of main objects to study.

Let ϕ ∈ Diff(M) and X ∈ X(M). We define

ϕ ·X def
= dϕ(X).

That is,

(ϕ ·X)p = dϕϕ−1(p)(Xϕ−1(p))
def
= dϕ ◦X ◦ ϕ−1.

It is an action, since

ψ · (ϕ ·X) = dψ(dϕ(X)) = d(ψ ◦ ϕ)(X) = (ψ ◦ ϕ) ·X.

This action has naturality: For all f ∈ C∞(M),

((ϕ ·X)(ϕ · f))(p) = (ϕ ·X)p(ϕ · f) = (dϕ(X))p(ϕ · f)
= (dϕ)ϕ−1(p)(Xϕ−1(p))(ϕ · f) = Xϕ−1(p)((ϕ · f) ◦ ϕ)
= Xϕ−1(p)(f) = (Xf)(ϕ−1(p))

= (ϕ · (Xf))(p)

.

That is, (ϕ · X)(ϕ · f) = ϕ · (Xf). Observe that if ϕ ∈ Diff(M), then it is easy to see that
ϕ : Der(C∞(M))× C∞(M)→ C∞(M) defines a bilinear map where Der(C∞(M)) = X(M), i.e.,

ϕ(Y, f) = (ϕ · Y )(ϕ · f) = ϕ · (Y f).

Remark 2.1.5.2. The action of Diff(M) on X(M) does not extend the group of smooth maps
between M to M , i.e., C∞(M,M), since we need invertibility. However, in the case of differential
forms, a pullback is well-defined. Now, we will show this point of view.

We want to remind you that a covector is an element of T ∗p (M) = Hom(TP (M),R). A smooth
section of T ∗(M) = (T (M))∗ is called a covector field or 1-form. Every f ∈ C∞(M) defines a
1-form: Let f :M → R be smooth. So, we have

Tp(M)
dfp−−→ Tf(p)(R) ∼= R.

Hence, dfp ∈ Hom(TP (M),R) = T ∗p (M). Another way of saying this situation is the following: d
defines a homomorphism between C∞(M) and the space of 1-forms. That is,

C∞(M)
d−→Ω1(M) = { sections of T ∗(M)} i.e., f 7→ df.
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Let ϕ : M → N be an arbitrary smooth map. We have dϕ : T (M) → T (N). Since T ∗(M) =
Hom(T (M),R), T ∗(N) = Hom(T (N),R), and dϕ is nothing but the Jacobian Jϕ of ϕ, using the
linearity of dϕ, it is easy to see that

(dϕ)T : T ∗(N)→ T ∗(M).

Let ω ∈ Ω1(N) and p ∈M . Define

(ϕ∗ω)p
def
= (dϕ)Tp (ωϕ(p))

def
= (dϕ)T ◦ ω ◦ ϕ.

Note that for finite dimensional vector spaces V,W and the duals V ∗,W ∗, any linear map f gives
the following commutative diagram:

V
∼=−−−→ V ∗

f

y
yfT

W
∼=−−−→ W ∗.

So, it is easy to see that

(ϕ∗ω)p(Xp) = (dϕ)Tp (ωϕ(p))(Xp) = ωϕ(p)(dϕp(Xp)) = ωϕ(p)((dϕ(X))ϕ(p)).

Since the right-hand term is a smooth function as p varies, ϕ∗ω is smooth as p varies. Hence, we
have

ϕ∗ : Ω1(N)→ Ω1(M).

Example 2.1.5.2. Let M = R2 and X = ∂
∂x , Y = x ∂

∂x + y ∂
∂y . Clearly, X,Y ∈ X(R2). It is easy

to see that the corresponding global flow of X is ξt(x, y) = (x + t, y) and the corresponding global
flow of Y is ηt(x, y) = (xet, yet). We have

d

dt
|t=0(ξt · Y ) = −[X,Y ].

Proof. For all (a, b) ∈ R2,

dξt(a, b) = Jξt =

(
∂x+t
∂x

∂x+t
∂y

∂y
∂x

∂y
∂y

)
=

(
1 0
0 1

)
.

Note that
dξt : T(a,b)(R2)→ Tξt(a,b)(R

2) = T(a+t,y)(R2).

Also, we have

Y(a,b) = a
∂

∂y
+ b

∂

∂y
and Yξ−t(a,b) = Y(a−t,b) = (a− t) ∂

∂x
+ b

∂

∂y
.

By definition
ξt · Y = dξt ◦ Y ◦ ξ−t = (dξt)ξ−t(Yξ−t)

= I2 ·
(
a− t
b

)
= (a− t, b)

.
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That is, ξt · Y = (a− t) ∂∂x + b ∂∂y ∈ T(a+t,y)(R2). So,

d

dt
|t=0(ξt · Y ) =

d

dt
|t=0(x− t)

∂

∂x
+ y

∂

∂y
= − ∂

∂x
.

Since it is easy to see that −[x, y] = − ∂
∂x , we have

d

dt
|t=0(ξt · Y ) = −[X,Y ].

Again, this is no coincidences. This will be the content of the next section.

2.1.6 Lie Derivatives

Let M be a smooth manifold and X,Y ∈ X(M). Suppose that ξt ∈ Diff(M) be a global flow of
X. Note that ξt · Y ∈ X(M) is a path of vector fields. Define the Lie derivative of Y by X to be

LX(Y )
def
=

d

dt
|t=0(ξ−t · Y ).

Theorem 2.1.6.1.
LX(Y ) = [X,Y ].

Proof. Actually, X does not need to be complete even though we will assume that it is complete. That

is, it is sufficient that ξt is a local flow for our proof. Notice that all the actions which we have defined
so far in this section still make sense if we apply them to appropriate domains.

Let ξt be the global flow of X ∈ X(M) and f ∈ C∞(M). Note that ξ0 ∈ Diff(M) is the identity
map and

(LXf)(p) = −
( d
dt
|t=0(ξt · f))(p) = −

d

dt
|t=0(f ◦ ξ−t(p))

=
d

dt
|t=0(f ◦ ξt(p)) = Xpf.

Note that from the above Xf = −
(
d
dt |t=0(ξt ·f)) and by R-bilinearity of actions, we have t(Y (f)) =

Y (tf) for t ∈ R. So, using bilinearity of the actions, we have

X(Y f) = − d

dt
|t=0(ξt · (Y f)) = −

d

dt
|t=0(ξt · Y )(ξt · f) = − lim

t→0
(ξt · Y )(ξt · f)− Y f

t

= − lim
t→0

(ξt · Y )(ξt · f)− (ξt · Y )(f) + (ξt · Y )(f)− Y f
t

= − lim
t→0

1

t
(ξt · Y )((ξt · f)− f) + lim

t→0
(ξt · Y − Y )(f)

t

= − lim
t→0

(ξt · Y )(
(ξt · f)− f

t
) + lim

t→0
(ξt · Y − Y )(f)

t

= −
(
(ξt · Y )|t=0

) d
dt
|t=0(ξt · f)−

d

dt
|t=0(ξt · Y )

(
(ξt · f)|t=0

)

= Y (Xf) + LXY (f).
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Hence,
LX(Y )(f) = X(Y f)− Y (Xf) = [X,Y ](f)

Corollary 2.1.6.1.1.
d

dt
|t=0(ξ−t · Y ) = [X,Y ].

What does it mean [X,Y ] = 0 for X,Y ∈ X(M)? One obvious answer would be X(Y (f)) =
Y (X(f)) for all f ∈ C∞(M). That is, second order differential operators , i.e., XY and Y X are
the same. Corollary 2.1.6.1.1 has another interesting consequence: It says that if [X,Y ] = 0, then

d

dt
|t=0(ξ−t · Y ) = 0.

In particular, since [X,X] = 0, d
dt |t=0(ξ−t ·X) = 0. We note that

d

dt
ξ−t · Y |t=s =

d

dt
ξ−t−s · Y |t=0 =

d

dt
(ξ−t ◦ ξ−s) · Y |t=0

=
d

dt
(ξ−s ◦ ξ−t) · Y |t=0 =

d

dt
(ξ−s) · (ξ−t · Y )|t=0

=
d

dt
(ξ−s)|t=0 · (ξ−t · Y )|t=0 + (ξ−s|t=0) · (

d

dt
ξ−t · Y |t=0)

= (ξ−s) · (
d

dt
ξ−t · Y |t=0) = 0.

One important conclusion of the above is the following: If [X,Y ] = 0, then since d
dtξ−t · Y |t=s = 0

for all s ∈ R, we have
Y = ξ0 · Y = ξs · Y.

Now, we investigate the flow of ξt · Y .

Exercise 2.1.6.1. Let ϕ ∈ Diff(M) and X ∈ X(M) be complete. Show that ϕ ·X is also complete
and the global flow is given by ϕ ◦ ηt ◦ ϕ−1 where ηt is the global flow of X.

Proof. Let p ∈M and ϕ−1(q) = p. We have

(ϕ ·X)q = dϕϕ−1(q)(Xϕ−1(q)) =
d

dt
(ϕ ◦ ηt(ϕ−1(q))|t=0.

So, let ψt(q) = ϕ ◦ ηt ◦ ϕ−1(q). Since ψt ∈ Diff(M) and ψt generates ϕ · X by the above, the
uniqueness of a global flow says that ψt is the global flow of ϕ ·X.

Let ηs be the global flow of Y and ξt be a global flow of X. If [X,Y ] = 0, then Y = ξt · Y . So, by
Exercise 2.1.6.1, we have

ηs = ξt ◦ ηs ◦ ξ−t ⇐⇒ ηs ◦ ξt = ξt ◦ ηs.
Hence, we have

Theorem 2.1.6.2. Vector fields commute each other if and only if their global flows commute each
other.

62



2.1.7 Remarks on vector bundles

We do not need this section later. So, you can skip this if you wish.
An n-dimensional real smooth vector bundle over smooth manifold Mm is a smooth map En+m π−→
Mm satisfying the local triviality and each fiber π−1(p) is an n-dimensional real vector space. Note
that a structure group is GL(n,R). Let

Γ(E) = {C∞ − sections of π, i.e., π ◦ s = idM}.
Example 2.1.7.1. Γ(T (M)) = X(M) and Γ(T ∗(M)) = Ω1(M).

One of a nice classification theorem of vector bundles is the following:

Theorem 2.1.7.1. There is one-to-one correspondence between smooth vector bundles of finite
rank over a smooth manifold M and finitely generated projective C∞(M)-modules.

Sketch of proof. It is a well-know theorem in Algebraic Geometry that there is one-to-one corre-
spondence between smooth vector bundles of finite rank n over a smooth manifold M and finitely
generated locally free C∞(M)-modules. Here, finitely generated locally free C∞(M)-modules A
means that there exists an open neighborhood Up ⊆ M such that A(Up) ∼= (C∞(Up))

n for each
p ∈M . Note that we should have said locally free sheaves over a structure sheaf. A sheaf has more
structure than a module. However, since we can construct a unique global object from compatible
local data in the case of C∞, A are already sheave. Since locally free C∞(Up)-modules is locally
projective C∞(Up)-modules and C∞(M)-modules is sheave, we can construct a global splitting g
from each local splitting, so it is projective C∞(M)-modules:

0→ C(M)
h−→ B(M)

f−→
←−
g

A(M)→ 0.

If A(M) is a finitely generated projective C∞(M)-module, then A(Up) is a finitely generated
projective C∞(Up)-module. Since C∞(Up) is a local ring as a stalk, A(Up) is a finitely generated
free C∞(Up)-module.

From this we have:
Γ(E) is a finitely generated free C∞(M)-module if and only if there exist sections s1, . . . , sn ∈ Γ(E)
such that every section s ∈ Γ(E) is a linear combination s =

∑n
i=1 fisi where fi ∈ C∞(M) if and

only if there are n sections which are everywhere linearly independent if and only if E is a trivial vector
bundle. Note that not every vector bundle is trivial.

Example 2.1.7.2. Since every section of T (S2) must vanish somewhere, X(S2) is not a free
C∞(S2)-module.

Note that there exists a normal bundle ν of S2 such that T (S2) ⊕ ν is a trivial bundle. In a
compact manifold, this phenomenon is always true. Before proving this, we give a definition of the
Whitney sum: If En1

1 and En2
2 are vector bundles over M , we can make Whitney sum En1

1 ⊕ En2
2

over M of En1
1 and En2

2 , which is a vector bundle over M whose fiber (En1
1 ⊕ En2

2 )p is En1
1p ⊕ En2

2p

and structure group is given by
(
g1αβ 0

0 g2αβ

)
where g1αβ , g

2
αβ are in the structure groups of En1

1 and En2
2 , respectively.

By the virtue of Theorem 2.1.7.1, we can give two proofs of the following:
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Exercise 2.1.7.1. Let Mm be a compact Hausdorff smooth manifold and ξ be a vector bundle over
Mm. Prove that ξ sits inside a trivial bundle over Rn for some n ≥ m.

Proof 1. Regarding Mm as the zero section of E(ξ), one can embed some neighborhood U ⊂ E(ξ)
of Mm in some Rn by the Whitney embedding theorem. Using the local triviality of vector bundle,
we have a trivial bundle τU⊕νU over U where the tangent bundle τU and normal bundle νU . Since ξ
projects non trivially to the normal space to Tx(M) in Tx(U) using the differential of the embedding,
this induces an isomorphism of ξ with the normal bundle λ to M in U . But λ ⊕ νU |M ' νM and
so ξ ⊕ νU |M ⊕ τM ' λ⊕ νU |M ⊕ τM ' νM ⊕ τM which is a trivial bundle.

Proof 2. It is a well-know theorem in Algebra that a projective module is a direct summand of a
free module. By Theorem 2.1.7.1 and the Whitney sum, there exists a vector bundle E ′ such that

Γ(E)⊕ Γ(E′) is free.

2.1.8 Frobenius’s Theorem

Definition 2.1.8.1 (k-plane distributions or k-plane fields). An k-plane field E over M is
a subbundle of T (M), the tangent bundle of M . That is

Γ(E) ⊆ Γ(T (M)) = X(M).

Definition 2.1.8.2 (Integral submanifold). Let E be a k-plane field over M . We say a mani-

fold of S is an integral submanifold of E if S
f−→M is an injective immersion and for all s ∈ S,

df(s)(Ts(S)) = Ef(s).

Note that we do not need f to be an embedding. That is, f(S) need not be homeomorphic to
S.

Definition 2.1.8.3 (Integrability of E). Let E be a k-plane field over M . We say E is inte-
grable if each p ∈M , there exists an integral submanifold of E through p.

Suppose that E is an integrable k-plane field. We can find an integral submanifold at each point
p ∈ M . From these submanifold, in an obvious way, we can make the maximal connected integral
submanifolds to E.

Definition 2.1.8.4 (Foliation and Leaf). The decomposition of M into the maximal connected
submanifolds to E is called a foliation F of M . Each maximal connected integral submanifold to
E is called a leaf of the foliation F . Plainly speaking, a foliation is the family of leaves.

Example 2.1.8.1. Let G be a torus R2/Z2, which is a Lie group. Define f : R→ G by

t 7→ (t, αt) mod Z2.

It is easy to see that if α is irrational, then f is injective immersion and Im(f) is dense in G.
However, since G is compact and R is not, we conclude that Im(f) is not homeomorphic to R and
f is not proper. Note that Im(f) is a submanifold of G. Usually, we call Im(f) is the skew line on
the torus. By taking different irrational number α, we can foliate G by Im(fα), which are leaves.
That is, for (x, y) ∈ G, a leaf is given by (x, y) + R(α, 1) mod Z2, i.e., fα(R).
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This is a general phenomenon: In general, if f : H → G is an injective Lie group homomorphism,
then the cosets of H foliates G. Note that G/H need not be a Lie group.

Example 2.1.8.2. Every line field ( 1-plane field ) is integrable.

Proof. Let E be a line field of M . Locally, there exists a vector field vp ∈ X(Up) such that vp spans
Ep where Up ⊆M is an open neighborhood of p. Since locally there always exists an integral curve
generating vp, which is obviously a submanifold, we conclude that E is integrable.

Example 2.1.8.3. We know that every line field E is integrable. Since Γ(E) is generated by a
single vector field X ∈ X(M), we have

Γ(E) = C∞(M) ·X.

Since [f1X, f2X] = (f1(Xf2) − f2(Xf1))X and f1(Xf2) − f2(Xf1) ∈ C∞(M) for all f1, f2 ∈
C∞(M), we conclude that Γ(E) is a Lie subalgebra.

This is the general theorem, which we shall give. First we need the followings:

Definition 2.1.8.5. Let M
ϕ−→ N be a smooth map and X ∈ X(M), Y ∈ X(N). We say X and Y

are ϕ-related if for all p ∈M ,
dϕ(Xp) = Yϕ(p).

Example 2.1.8.4. Let ϕ ∈ Diff(M) and X ∈ X(M). Then X and ϕ ·X are ϕ-related.

Exercise 2.1.8.1. If X i is ϕ-related to Y i for i = 1, 2, then [X1, X2] is ϕ-related to [Y 1, Y 2].

Proof. Let f ∈ C∞(N) and p ∈M . Note that

(X i(f ◦ ϕ))(p) = Y i
ϕ(p)f = (Y if)(ϕ(p)) = (Y if) ◦ ϕ(p).

So, we have

dϕ([X1, X2]p)(f) = [X1, X2]p(f ◦ ϕ) = X1
p (X

2(f ◦ ϕ))−X2
p (X

1(f ◦ ϕ))
= X1

p ((Y
2f) ◦ ϕ)−X2

p ((Y
1f) ◦ ϕ) = Y 1ϕ(p)(Y

2f)− Y 2ϕ(p)(Y 1f)
= [Y 1, Y 2]ϕ(p)(f).

Theorem 2.1.8.1. If E is integrable, then Γ(E) is a Lie subalgebra of X(M).

Proof. Suppose that X1, X2 ∈ Γ(E). We want to show [X1, X2] ∈ Γ(E), equivalently, [X1, X2]p ∈
Ep for all p ∈M . Let S be an integral submanifold through p, i.e.,

S
ϕ
↪→M.

If X1, X2 ∈ Γ(E), then there exists Y 1, Y 2 ∈ X(S) such that dϕ(Y i) = X i ◦ϕ for i = 1, 2. That is,
Y i is ϕ-related to X i. Since [Y 1, Y 2] ∈ X(S) by the fact that X(S) is a Lie algebra and [Y 1, Y 2] is
ϕ-related to [X1, X2], we have

[X1, X2]ϕ = dϕ([Y 1, Y 2]) ∈ Γ(E).
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The Frobenius’s Theorem, which is due to Clebsh, Deahna, and of course Frobenius, is the converse
of Theorem 2.1.8.1.

Theorem 2.1.8.2 (Frobenius’s Integrability Theorem). A k-plane field E is integrable if and
only if Γ(E) is a Lie subalgebra.

Remark 2.1.8.1. Note that Frobenius’s Theorem is a prototype of the following theorem, which
we shall prove later: Let G be a Lie group and g be the Lie algebra. Suppose that h is a Lie
subalgebra of g. Then there exists a Lie group H whose Lie algebra is h and an injective immersive
homomorphism f : H → G.

Before proving this, we give some definitions and an example of a nonintegrable k-plane field.
Let G be a Lie group. We define homomorphisms from G to Diff(G) by the following ways:

G
l−→Diff(G) by g 7→ lg where lg(h) = gh for h ∈ G

G
r−→Diff(G) by g 7→ rg−1 where rg−1(h) = hg−1 for h ∈ G.

We call lg a left multiplication by g and rg a right multiplication by g. Note that to make r a
homomorphism, we send g to rg−1 .

Definition 2.1.8.6 (Left-invariant vector fields). Let X ∈ X(G). We say X is a left-invariant
vector field (resp. right-invariant vector field ) if lg ·X = X (resp. rg ·X = X ) for all g.

Note that
lg ·X def

= dlg ◦X ◦ lg−1 . i.e., (lg ·X)h = (dlg)g−1h(Xg−1h).

We often write dlg(Xg−1h) as (dlg)g−1h(Xg−1h). In this description, we have X ∈ X(G) is a left-
invariant vector field if dlg(Xg−1h) = Xh for all h ∈ G. Using the smooth group operation of G, it
is easy to see that if dlh(Xe) = Xh for all h ∈ G then X ∈ X(G) is a left-invariant vector field:

dlg(Xg−1h) = dlg(dlg−1h(Xe)) = dlg ◦ dlg−1h(Xe) = dlh(Xe) = Xh

Hence, a left-invariant vector field is completely determined by evaluation at e, the identity of G.
So, an obvious question would be “ Can an element in Te(G) give a left-invariant vector field?”

Exercise 2.1.8.2. LX(G), the set of left-invariant vector fields, is isomorphic to Te(G) as vector
spaces. Hence, dimLX(G) = dimTeG as vector spaces.

Proof. Define
ε : LX(G)→ TeG by ε(X) = Xe.

Note that the above discussion already showed that it is a monomorphism. We are going to show
it is onto. If v ∈ Te(G), let

Xh = dlh(v).

The subtle part is the smoothness of this construction. We have to show that

dlh(v)(f) is smooth for all f ∈ C∞(G).

That is, regarding v as a first order differential operator, can (dlh(v)(f))(g) = v(f◦lh(g)) = v(f(hg))
be smooth as g and h vary? Since G has a smooth group operation, without loss of generality,
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we can assume g = e. Since f(h) is smooth and v is a first order differential operator, v(f(h)) is
smooth as h varies. Another thing to check is that dlh(v) is left-invariant. A straitforward check
would show that it is so. From this, we deduce that the set of left-invariant vector fields LX(G) is
isomorphic to Te(G) as vector spaces.

Interesting consequences of Exercise 2.1.8.2 are the following: Since dimLX(G) = dimTeG as vector
spaces, it shows that the tangent bundle T (G) has linearly independent vector fields as many as
dimG, That is, every Lie group is parallelizable. For example, we know that H1, the set of unit
length quaternions is Lie group isomorphic to S3. Hence, S3 is parallelizable. Moreover, by purely
dimensional reason, we have LX(G) ∼= X(G) as R-vector spaces. So, we have

Theorem 2.1.8.3. Let G be a Lie group with dimG = n. The set of smooth vector fields X(G)
has n linearly independent smooth vector fields, i.e., a basis, which consists of left-invariant vector
fields.

Note that LX(G) and RX(G) are not C∞(G)-submodules unlike X(G), i.e., fX need
not be a left-invariant vector field for f ∈ C∞(G) and X ∈ LX(G). So, LX(G) is not
isomorphic to X(G) as C∞(G)-modules.

Exercise 2.1.8.3. Let RX(G) be the set of right-invariant vector fields. Show that LX(G) and
RX(G) are subalgebras of X(G) with respect to commutators and they are isomorphic.

Proof. Note that a similar proof of Exercise 2.1.8.2 shall show that RX(G) is isomorphic to Te(G).
Hence, by the virtue of Exercise 2.1.8.2, it suffices to show that [X,Y ] ∈ LX(G) for X,Y ∈ LX(G).
The same proof can apply the other case. A moment of thought would give you that X is lg-related
to X and Y is lg-related to Y for any g ∈ G. By Exercise 2.1.8.1, we conclude that [X,Y ] are
lg-related to [X,Y ] for any g ∈ G. That is,

lg · [X,Y ] = [X,Y ] for any g ∈ G.

Hence, [X,Y ] is a left-invariant vector field.

By the virtue of Exercise 2.1.8.3, it is obvious that there will be no differences between LX(G) and
RX(G) as far as algebras are concerned. So, from now on we exclusively are working on LX(G).

Exercise 2.1.8.4. Show that every left-invariant vector field X on a Lie group G is complete.

Proof. Suppose that X ∈ LX(G) and Φ : (−ε, ε) × U → G be a corresponding local flow where U
is an open sets in G. Letting Φgt (h) = lg(Φt(lg−1(h)) for h ∈ lg(U), we have a local flow

Φgt : (−ε, ε)× U → G.

The upshot is that the fact that X is left-invariant makes Φgt also a local flow on lg(U) of X: For
h ∈ lg(U),

d

dt
|t=0lg(Φt(lg−1(h)) = dlg(Xg−1h) = Xh.

Hence, in this way, we can have a local flow

Φ : (−ε, ε)×G→ G.
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Now we want to remind you of the proof of Exercise 2.1.4.1. WhenM was compact, the compactness
gave the above kind of a local flow. Once we had that kind of a local flow, without using the
compactness assumption, we could extend a local flow from (−ε, ε) to R. Indeed, it is a general
theorem. If you have a local flow such that Φ : (−ε, ε) ×M → M for a smooth manifold M , you
can extend a global flow Φ : R×M →M by the construction in the proof of Exercise 2.1.4.1. So,
in our case, Φ can be extended to a global flow. Hence, X is complete.

Exercise 2.1.8.5. Show that X is a left-invariant vector field on G if and only if one parameter
subgroup of X is a right multiplication.

Proof. Suppose that X is a left invariant vector field on G. Exercise 2.1.8.4 tells you that there
exists a one parameter subgroup Φt. Since lg ·X = X, by Exercise 2.1.6.1, we have

lg ◦ Φt = Φt ◦ lg.

So we have for all g, h ∈ G,

gΦt(h) = lg ◦ Φt(h) = Φt ◦ lg(h) = Φt(gh).

Letting h = e, we have for all g ∈ G

Φt(g) = gΦt(e) = rΦt(e)(g).

That is, Φt is a just right multiplication by Φt(e). Now, suppose that a one parameter subgroup
Φt, which generates X, is a right multiplication, i.e., Φt(g) = gat where at ∈ G. Note that
Exercise 2.1.6.1 also tells that the one parameter subgroup of lg ·X is lg ◦ Φt ◦ lg−1 . Since

lg ◦ Φt ◦ lg−1(h) = gΦt(g
−1h) = gg−1hat = Φt(h),

we conclude that lg ·X = X.

Now we go back to the main theme of this section. We give an example of a nonintegrable k-plane
field.

Exercise 2.1.8.6. Find an R2-plane field on R3 which is not integrable.

Proof. Consider a Heisenberg group

H3 = {



1 x z
0 1 y
0 0 1


 | x, y, z ∈ R} ∼= R3.

Note that 

1 x z
0 1 y
0 0 1





1 −ξ 0
0 1 0
0 0 1


 =



1 x− ξ z
0 1 y
0 0 1






1 x z
0 1 y
0 0 1





1 0 0
0 1 −θ
0 0 1


 =



1 x −θx+ z
0 1 y − θ
0 0 1






1 x z
0 1 y
0 0 1





1 0 −δ
0 1 0
0 0 1


 =



1 x z − δ
0 1 y
0 0 1


 .
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Obviously,

Ξξ(x, y, z) =



1 x− ξ z
0 1 y
0 0 1


 is a global flow of H3 where ξ ∈ R,

Θθ(x, y, z) =



1 x −θx+ z
0 1 y − θ
0 0 1


 is a global flow of H3 where θ ∈ R, and

∆δ(x, y, z) =



1 x z − δ
0 1 y
0 0 1


 is a global flow of H3 where δ ∈ R.

From Exercise 2.1.8.5, we know that Ξξ, Θθ, and ∆δ generate left-invariant vector fields, since Ξξ,
Θθ, and ∆δ are right multiplications. By identifying



1 x z
0 1 y
0 0 1


 = (x, y, z),

it easy to see that

X =
∂

∂x
is the left-invariant vector field of Ξξ = (x− ξ, y, z),

Y =
∂

∂y
+ x

∂

∂z
is the left-invariant vector field of Θθ = (x, y − θ, z − θx), and

Z =
∂

∂z
is the left-invariant vector field of ∆δ = (x, y, z − δ).

Moreover, X,Y, and Z generate X(H3). Note that this is a nice example of Theorem 2.1.8.3. Let
E be spanned by X and Y , i.e.,

E = Span{ ∂
∂x
,
∂

∂y
+ x

∂

∂z
}.

Obviously, ∂
∂z /∈ Γ(E). However, we have

[
∂

∂x
,
∂

∂y
+ x

∂

∂z
] =

∂

∂z
.

So, the Frobenius theorem says that it is not integrable.
Now, we investigate E further: We will give a geometrical explanation of nonintegrability of E.

One of geometrical meanings of Frobenius theorem is that E must look like a flat 2-plane in order
to be integrable. That is, the curvature form of E as a vector bundle over R3 must be zero. Even
though you do not know how to get the curvature form of a vector bundle, at least intuitively it
would be clear that E does not look flat from the factor x ∂

∂z in the formula

E = Span{ ∂
∂x
,
∂

∂y
+ x

∂

∂z
}.
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In general, a k-plane distribution is integrable if and only if the curvature form is zero. It is somewhat
obvious, since the curvature form of a tangent bundle is always zero. Now we show that even though
E is not integrable, which is not so nice, E still has some nice property. Let γ : R→ H3 be a curve.
We say γ(t) is E-horizontal if

γ′(t) ∈ Eγ(t).
Obviously, for fixed (a1, a2, a3) ∈ R3, the curves Θθ(a1, a2, a3) and Ξξ(a1, a2, a3) are E-horizontal.
We claim that for a given p, q ∈ R3, there exists an E-horizontal curve from p to q. Let

ω = dz − xdy.

It is easy to see that ω(X) = ω(Y ) = 0 and ω(Z) 6= 0. So, ω is everywhere nonzero. Since

Ep = ker(ωp : Tp(H3)→ R),

we have ω(γ′(t)) = 0 if and only if γ(t) is E-horizontal. Now, we construct γ(t) such that
ω(γ′(t)) = 0 from p to q. It suffices to construct piecewise smooth γ(t), since there exists a
local integral E-horizontal curve. Without loss of generality, we can assume p = (0, 0, 0). Let
q = (q1, q2, q3). Since ω(x(t),a,b)(x

′(t), 0, 0) = 0, any line curve parallel to x-axis is horizontal. More-
over, ω(0,y(t),b)(0, y

′(t), 0) = 0,, any line parallel to y-axis in yz-plane is horizontal. Hence, we have
piecewise smooth E-horizontal curve γ(t) from (0, 0, 0) to (q1, q2, r). From this, it suffices to show
that there exists an E-horizontal curve γ(t) from (0, 0, 0) to (0, 0, a) for a given a ∈ R. By the
formula ω(γ′(t)) = 0, we have to show that there exists γ(t) = (x(t), y(t), z(t)) : [0, s1] → R3 from
(0, 0, 0) to (0, 0, a) such that

dz(t)

dt
= x(t)

dy(t)

dt
.

Since

z(s) =

∫ s

0
x(t)dy(t),

it suffices to show that there exists a closed curve δ(t) = (x(t), y(t)) in xy-plane, which gives
z(s1) = a. Since δ is a boundary of A, i.e., δ = ∂A, by stoke’s theorem

z(s1) =

∫ s1

0
x(t)dy(t) =

∫

δ
xdy =

∫

A
dxdy = area of A.

That is, we can find δ(t). Note that −dxdy is the curvature form of E and ω = dz − xdy is the
connection of E.

We note that sometimes people call an integrable distribution as an involutive or completely in-
tegrable and E in Exercise 2.1.8.6 as an integrable distribution. Also, it is easy to see that 0-
dimensional foliation of M is nothing but a differentiable structure of M . Now we give a proof of
the Frobenius theorem. Note that the only direction we need to be proved is that if Γ(E) is a Lie
subalgebra where E is an k-plane distribution on M , then E is integrable.

Proof of The Frobenius Theorem. We prove this by induction on rank of E. When E is 0-plane
distribution, it is vacuously true. Suppose that the theorem holds for rank r−1 and E is an r-plane
distribution on M with a Lie subalgebra Γ(E). Since we want to show there exists a submanifold
Np at each point p of M such that Tp(Np) = Ep, obviously it suffices to prove this in a local chart.
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Moreover, by the local triviality of a vector bundle, we can assume that Γ(E)|U is generated by
r linearly independent vector fields, X1, . . . , Xr. Of course, Xi is everywhere nonzero for being
an element of a basis for i = 1, . . . , r. So, by Theorem 2.1.4.7, there exists a coordinate system
(x1, . . . , xn) on U ⊆M with (x1(p), . . . , xn(p)) = (0, . . . , 0) such that

Xr =
∂

∂x1
.

So, there exists a function f ∈ C∞(U) such that Xr(f) = 1 and f(p) = 0. Note that f = x1 and
Xr(f) = df(Xr) = 1. The main point is that by construction f : U → R is a submersion. So, by
the implicit function theorem, f−1(0) is an n − 1 dimensional submanifold of U through p with
T (f−1(0)) = ker(df). Let f−1(0) =M ′. Note that we do not know whether or not Xi ∈ TM ′. So,
we let

Yi = Xi −Xi(f)Xr for i < r and Yr = Xr.

Clearly, E is again spanned by Y1, . . . , Yr and E′ = span{Y1, . . . , Yr−1} ⊆ ker(df) = TM ′. Note
that Yr = Xr /∈ TM ′, since Xr(f) = 1. Obviously, we have E ′ is an (r − 1)-pane field on M ′. We
claim that E′ is integrable. By the induction hypothesis, it suffices to show that Γ(E ′)|M ′ is a Lie
subalgebra of X(M ′). Let Y 1, Y 2 ∈ Γ(E′)|M ′ . So,

Y 1 =
r−1∑

i=1

c1i (x)Yi and Y
2 =

r−1∑

i=1

c2i (x)Yi.

So, we have

[Y 1, Y 2] =
r−1∑

i,j=1

c1i (x)c
2
j (x)[Yi, Yj ] +

r−1∑

i,j=1

c1i (x)(Yic
2
j (x))Yj −

r−1∑

i,j=1

c2j (x)(Yjc
1
i (x))Yi.

Clearly,
r−1∑

i,j=1

c1i (x)(Yic
2
j (x))Yj −

r−1∑

i,j=1

c2j (x)(Yjc
1
i (x))Yi ∈ Γ(E′)|M ′ .

So, it suffices to show that
r−1∑

i,j=1

c1i (x)c
2
j (x)[Yi, Yj ] ∈ Γ(E′)|M ′ .

That is, it suffices to show that for i, j < r, we can write

[Yi, Yj ] =
r−1∑

k=1

bkij(x)Yk.

Since Γ(E)|U is a Lie subalgebra by the assumption, we can write

[Yi, Yj ] =
r∑

k=1

bkij(x)Yk.
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Since Yr(f) = 1 and Yi(f) = 0 for i < r, we have [Yi, Yj ]f = 0 for i, j < r. Hence, we have for
i, j < r

0 = [Yi, Yj ]f =
r∑

k=1

bkij(x)Ykf = brij .

Therefore, by the induction hypothesis, E ′ is integrable. That is, there exists a (r−1)−submanifold
S′ ⊆M ′ ⊂ U for E′ through p. Note that E = Xr ⊕E′ ⊂ TU . Letting ξt be the flow of Xr, define

S =
⋃

|t|<ε
ξt(S

′).

Since E = Xr⊕E′ and ξt is a local diffeomorphism, S is diffeomorphic to a subsetW ⊆ R×ξ0(S′) ∼=
R × S′. Theorem 2.1.4.3 tells that W is an open set of R × S ′. So, it is a r − 1 submanifold and
obviously p ∈ S and E = Xr,p + TpS

′ = TpS.

2.2 Graded Algebras of Smooth Manifolds

2.2.1 Exterior Algebra

Definition 2.2.1.1 (Tensor product). Let V and W be vector spaces. A m-tensor product is a
universal object in the sense that every m-multilinear map ϕ : V × · · · × V →W factors through a
universal m-multilinear map V × · · · × V → V ⊗ · · · ⊗ V . That is,

V × · · · × V ϕ−−−→ W

⊗
y

V ⊗ · · · ⊗ V︸ ︷︷ ︸
m

¡
¡¡µϕ̃

Of course, the universal object always exists uniquely. Observe the following: Let ϕ1 : V1 →W1

and ϕ2 : V2 → W2 be linear maps between vector spaces. Since W1 ⊗W2 always exists uniquely
(up to isomorphism ), we have

V1 × V2 ϕ1×ϕ2−−−−→W1 ×W2
⊗−→W1 ⊗W2.

That is, we have a bilinear map ϕ1 ⊗ ϕ2 : V1 × V2 →W1 ⊗W2. From this, we deduce that

an m-multilinear linear map ⊗ l-multilinear linear map is an (m+ l)-multilinear map.

Suppose that V1, V2 are vector spaces over a field k. Note that since k is a field, there is a canonical
isomorphism k ⊗ k ∼= k. So, given linear maps ϕ1 : V1 → k and ϕ2 : V2 → k, we have

ϕ1 ⊗ ϕ2 : V1 × V2 → k.

We often write ⊗mV =

m︷ ︸︸ ︷
V ⊗ · · · ⊗ V and

⊗m V ⊗⊗l V =
⊗m+l V . Using tensor products, we

have a graded algebra of vector spaces.
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Definition 2.2.1.2 (Graded algebra). Let V be a vector space. We let

A =
⊕

m≥0
Am where Am def

= ⊗mV.

By defining multiplicative structures Am × Al ⊗−→ Am+l, we have an associative graded algebra
structure.

Let Sn be a symmetric group, i.e., the group of permutations of n-element. We define an action
of Sn on ⊗mV by the following way: For σ ∈ Sn, letting (−1)σ be the sign of σ,

σ · (v1 ⊗ · · · ⊗ vn) def= (−1)σvσ(1) ⊗ · · · ⊗ vσ(n).

Using the above, we define that pth exterior product of V

p∧
V = {v ∈ ⊗pV | σ · v = v for all σ ∈ Sp} = (⊗pV )Sp .

Note that if A ⊆ X is a subspace of X, then A is called a retract of X if there is a retraction
f : X → A, i.e., f(a) = a for all a ∈ A.

Theorem 2.2.1.1. Given any finite group G and a vector space A with G-action, i.e., g ·v = ρg(v)
where ρ : G→ GL(V ) is a linear representation, then

V G = {v ∈ V | g · v = v for all g ∈ G} is a retract of V .

Proof. we construct a retraction ϕ : V → V G by the following way:

ϕ(v) =
1

|G|
∑

g∈G
g · v.

It is easy to see that h ·ϕ(v) = v for all h ∈ G, which shows that it is well defined and ϕ(v) = v for
all v ∈ V G, which says that it is a retraction.

Since Sp is finite, we deduce that in this description, we define

ϕ : ⊗pV → ∧pV by ϕ(v) =
∑

σ∈Sp
σ · v.

Note that still σ · ϕ(v) = ϕ(v) for all σ ∈ Sp.

Example 2.2.1.1. Let v1, v2 ∈ V . Then ϕ(v1⊗ v2) = v1 ∧ v2 = v1⊗ v2− v2⊗ v1. Hence, v∧ v = 0
for v ∈ V and v1 ∧ v2 = −v2 ∧ v1.

Example 2.2.1.2. Let vi1 , . . . , vim ∈ V . So, we have

vi1 ⊗ · · · ⊗ vim 7→ vi1 ∧ · · · ∧ vim .

If ij = ij+1, then by Example 2.2.1.1, we have vi1 ∧ · · · ∧ vim = 0. So, we can always assume
i1 < i2 < · · · < im in a wedge product.
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Example 2.2.1.3. If {v1, . . . , vn} is a basis of V , it is easy to see that {vi1⊗· · ·⊗vim | 1 ≤ ij ≤ n}
is a basis of ⊗mV . So, dim⊗mV = nm. By Exercise 2.2.1.2, we have

{vi1 ∧ · · · ∧ vim | 1 ≤ i1 < · · · < im ≤ n}

is a basis of ∧mV and dim∧mV =

(
n
m

)
. Especially, ∧nV is generated by v1 ∧ · · · ∧ vn.

Example 2.2.1.4. Let α ∈ ∧pV, β ∈ ∧qV . Since ∧mV is a retract of ⊗mV , we can think α ∈ ⊗pV
and β ∈ ⊗qV . So, we get α⊗ β ∈ ⊗p+qV . Hence,

α⊗ β ϕ7→ α ∧ β ∈ ∧p+qV.
So, the graded ( associative ) algebra of tensor products gives the graded ( associative ) algebra of
exterior product, which is called an exterior algebra. Also, by Exercise 2.2.1.1, it is easy to see
that for α ∈ ∧pV, β ∈ ∧qV , we have

α ∧ β = (−1)pqβ ∧ α = (−1)|α||β|β ∧ α.
The relation is called a commutative graded algebra.

Example 2.2.1.5. We know that given linear maps ϕ1 : V1 → k and ϕ2 : V2 → k where V1, V2 are
vector space over k, we have

ϕ1 ⊗ ϕ2 : V1 × V2 → k by (v1, v2) 7→ ϕ1(v1)ϕ2(v2).

So, we also have

ϕ1 ∧ ϕ2 : V1 × V2 → k by (v1, v2) 7→ ϕ1(v1)ϕ2(v2)− ϕ2(v1)ϕ1(v2).
Clearly, ϕ ∧ ϕ = 0 and ϕ1 ∧ ϕ2 = −ϕ2 ∧ ϕ1.

Exercise 2.2.1.5 shows that we can construct a pth exterior product of the dual space V ∗ of V .
Also, by Exercise 2.2.1.4, we also have an exterior algebra of the dual V ∗. In particular, we can
associate an n-dimensional vector space V to ∧nV ∗ as an analogy that we can associate GL(n,R)
to R∗ = GL(1,R) by the det function.

Definition 2.2.1.3. Let A =
⊕

m≥0Am and B =
⊕

m≥0 Bm be graded algebras. Letting Am =
Bm = 0 if m < 0, a linear map F : A → B is called a graded linear map of degree d if F : Ap →
Bp+m.
Example 2.2.1.6. Let f : V → W be a homomorphism of vector spaces. In an obvious way, it is
easy to see that f induces graded homomorphisms of exterior products having degree 0,

f (p) : ∧pV → ∧pW.

Example 2.2.1.7. Let Mm f−→ Nn be a smooth map between smooth manifolds. For f(p) ∈ N , we
have (df)T : T ∗f(p)N → T ∗pM . So, (df)T induces a homomorphism of commutative graded algebras
with degree 0,

∧kT ∗M ((df)T )(k)←−−−−−− ∧kT ∗N
y

y

M
f−−−→ N.
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Let Γ(∧kT ∗M) = Ωk(M), the set of k-forms. Obviously, Ω∗(M) and Ω∗(N) are commutative graded
algebras and we also have

f∗ : ΩkN → ΩkM by f∗(ω) = (df)T ◦ ω ◦ f.

Note that (g ◦ f)∗ = f∗ ◦ g∗.

2.2.2 Graded derivations

Definition 2.2.2.1 (Graded derivations). Let A be a graded algebra and D : A → A be a
graded homomorphism of degree d, i.e., D(Am) ⊆ Am+d. We say D is a graded derivation of
degree d if for α, β ∈ A,

D(α · β) = D(α) · β + (−1)|α|dα ·D(β).

Example 2.2.2.1. Let V be a vector space and V ∗ be the dual. Every w ∈ V ∗ defines a graded
derivation ιw of ∧∗V of degree −1, which is called an interior multiplication by w

Proof. Define

ιw =





0 on ∧0 V = k, scalar

w on ∧1 V = V∑p
i=1(−1)i−1v1 ∧ · · · ∧ w(vi) ∧ · · · ∧ vp on ∧p V.

It is easy to see that ιw is a graded derivation of degree −1.

The above shows that any linear functional w ∈ V ∗ defines an interior multiplication, i.e., a
derivation of degree −1, on exterior algebra ∧∗V .

Example 2.2.2.2. Every vector field X ∈ X(M) defines an interior multiplication, a derivation
of degree −1, ιX on Ω∗(M).

Proof. Note that we already know that Ω∗(M) = ⊕k≥0Ωk(M) is an associative commutative graded
algebra with Ω0(M) = C∞(M). Let X ∈ X(M). For ω ∈ Ωk(M), define

ιX(ω)(Y1, . . . , Yk−1) = ω(X,Y1, . . . , Yk−1) where Yi ∈ X(M).

From this, we have
ιX : Ωk(M)→ Ωk−1(M).

Since for p ∈ M , ιXp : ∧kT ∗pM → ∧k−1T ∗pM defines a derivation of degree −1 by Exercise 2.2.2.1,
ιX is a derivation of degree −1 on Ω∗(M).

Note that Exercise 2.1.2.1 showed that for any ungraded algebra A, Der(A) forms a Lie algebra
under

[X,Y ] = X ◦ Y − Y ◦X where X,Y ∈ Der(A).
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Exercise 2.2.2.1. Let A be an associative graded commutative algebra and Derk(A) be the set of
derivations on A of degree k. Given graded derivation X ∈ Derk(A) and Y ∈ Derl(A), the graded
commutator

[X,Y ] = X ◦ Y − (−1)klY ◦X
is a graded derivation of degree k + l. Moreover, show that

Der(A) =
⊕

k≥0
Derk(A)

forms a graded Lie algebra.

Proof. It is obvious that By defining for all a, d ∈ R, all X1, X2 ∈ Derk(A), and all f ∈ A,

(aX1 + bX2)(f) = aX1(f) + bX2(f),

we conclude that Derk(A) is a vector space. Let X ∈ Derk(A), Y ∈ Derl(A) and Z ∈ Derj(A).
Obviously, the degree of [X,Y ] is k + l. Moreover,

[X,Y ](α · β) = (X ◦ Y − (−1)klY ◦X)(α · β) = X ◦ Y (α · β)− (−1)klY ◦X(α · β)
= X((Y α) · β + (−1)|α|lα · (Y β))− (−1)klY ((Xα) · β + (−1)|α|kα · (Xβ))
= ([X,Y ]α) · β + (−1)(|α|+l)kY α ·Xβ + (−1)|α|lXα · Y β + (−1)|α|l+|α|kα ·XY β
− (−1)kl+|α|l+klXα · Y β − (−1)kl+|α|kY α ·Xβ − (−1)kl+|α|k+|α|lα · Y Xβ
= ([X,Y ]α) · β + (−1)|α|(k+l)α · ([X,Y ]β)

+ (−1)(|α|+l)kY α ·Xβ + (−1)|α|lXα · Y β − (−1)kl+|α|l+klXα · Y β − (−1)kl+|α|kY α ·Xβ
= ([X,Y ]α) · β + (−1)|α|(k+l)α · ([X,Y ]β).

This shows that [X,Y ] ∈ Derk+l(A). Moreover, a straightforward computation shall show that

[X,Y ] = (−1)kl+1[Y,X] and (−1)kj [X, [Y,Z]] + (−1)lk[Y, [Z,X]] + (−1)jl[Z, [X,Y ]] = 0.

Hence, Der(A) =⊕k≥0Derk(A) forms a graded Lie algebra.

Example 2.2.2.3.
[ιX , ιY ] = ιX ◦ ιY + ιY ◦ ιX .

Exercise 2.2.2.2. Let V be an n-dimensional vector space. Show that

∧kV ∗ ∼= (∧kV )∗.

Proof. Example 2.2.1.3 says that if {e1, . . . , en} is a basis of V , then

{ei1 ∧ · · · ∧ eik | 1 ≤ i1 < · · · < ik ≤ n}

is a basis of a vector space ∧kV and dim∧kV =

(
n
k

)
. So, dim(∧kV )∗ =

(
n
k

)
. By the same

consideration, we have
{e∗i1 ∧ · · · ∧ e∗ik | 1 ≤ i1 < · · · < ik ≤ n}
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is a basis of a vector space ∧kV ∗ and dim∧kV ∗ =
(
n
k

)
. So, to show ∧kV ∗ ∼= (∧kV )∗ it suffices to

construct a monomorphism
ϕ : ∧kV ∗ → (∧kV )∗.

Letting

(
n
k

)
= N , define

ϕ(e∗i1 ∧ · · · ∧ e∗ik)(ej1 ∧ · · · ∧ ejk) = e∗i1(ej1) · · · e∗ik(ejk) and

ϕ(

N∑

i=1

cie
∗
i1 ∧ · · · ∧ e∗ik) =

N∑

i=1

ciϕ(e
∗
i1 ∧ · · · ∧ e∗ik).

By construction ϕ is well-defined and linear. Suppose that ϕ(
∑N

i=1 cie
∗
i1
∧ · · · ∧ e∗ik) = 0. Since

0 = ϕ(
N∑

i=1

cie
∗
i1 ∧ · · · ∧ e∗ik)(ej1 ∧ · · · ∧ ejk) = cj for each j,

we conclude that
∑N

i=1 cie
∗
i1
∧ · · · ∧ e∗ik = 0, So, it is a monomorphism.

Let v ∈ V where V is a vector space. Define an exterior multiplication ev by

ev : ∧kV → ∧k+1V by w 7→ v ∧ w.

It is easy to see that
(ev)

T : (∧k+1V )∗ → (∧kV )∗.

Now, take V = TpM where M is a smooth manifold and p ∈M . For X ∈ X(M), we have

(∧k+1TpM)∗
(eXp )

T

−−−−→ (∧kTpM)∗

∼=
y ∼=

y

∧k+1T ∗pM
ιXp−−−→ ∧kT ∗pM.

It is easy to see that the above diagram commutes. So, since ev ◦ ev = 0 by the skew-symmetry, we
conclude that

ιX ◦ ιX = 0 for X ∈ X(M).

If you are suspicious about the proof of ιX ◦ ιX = 0, see Corollary 2.2.2.1.1.

Definition 2.2.2.2 (Vector bundle morphisms). Let E and F be a vector bundle over a smooth
manifold M .

E
Φ−−−→ F

y
y

M
id−−−→ M

We say Φ is a vector bundle morphism if Φ is smooth and for each p ∈ M , Φ|Ep : Ep → Fp is
linear. Also,

HOM(E,F ) = the set of all vector bundle morphisms from E to F .
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Define Φ∗ : Γ(E)→ Γ(F ) by

(Φ∗(ξ))(p) = Φ(ξ(p)) for all ξ ∈ Γ(E) and p ∈M.

Using the smoothness and linearity of Φ, Φ∗ is well-defined and Φ∗(f ·ξ) = f ·Φ∗(ξ) for f ∈ C∞(M)
and ξ ∈ Γ(E). So, Φ∗ is a C∞(M)-module homomorphism. That is,

HOM(E,F ) ↪→ Γ(Hom(E,F )).

Suppose that ψ ∈ Γ(Hom(E,F )). By definition, Ψ(p,m) is smooth at the first variable and linear
at the second variable where p ∈ M and m ∈ Ep. Also, the linearity at the second variable says
that it is also smooth at the second variable. So, using local triviality of E, the composition of Ψ
with a trivialization gives an element in HOM(E,F ). Hence, we have one-to-one correspondence
between HOM(E,F ) and Γ(Hom(E,F )).

Theorem 2.2.2.1. ιX are the only derivations of negative degree on Ω∗(M).

Proof. Suppose that ω ∈ Ω∗(M). Choose a partition of unity {fα} subordinate to a coordinate
covering {Uα}. So,

ω =
∑

α

fα · ω.

Note that fα ·ω = 0 outside of a coordinate patch (x1,α, . . . , xn,α) in Uα ⊆ Rn. Hence, using a local
coordinate, we can write

fα · ω =
∑

1≤i1<···<ik≤n
ai1···ik(x1,α, . . . , xn,α)dxi1,α ∧ · · · ∧ dxik,α.

So, k-form is locally generated by C∞-functions and 1-forms. Hence, Using a partition of unity, we
conclude that Ω∗(M) is generated by Ω0(M) and Ω1(M):

ω =
∑

α

∑

1≤i1<···<ik≤n
ai1···ik(x1,α, . . . , xn,α)dxi1,α ∧ · · · ∧ dxik,α.

Remember what the above notation really means: By the local finiteness of a partition of unity,
for p ∈M , there exists an open neighborhood U of p such that only finite number of α covering U .
So, we have

ω|U =
N∑

l=1

∑

1≤i1<···<ik≤n
ai1···ik(x1,αl , . . . , xn,αl)dxi1,αl ∧ · · · ∧ dxik,αl .

It is obvious that any negative degree derivations is always zero on Ω0(M), and they are zero on
Ω1(M) unless degree is −1. So, we conclude that −1 is the only negative degree of nonzero negative
derivations and −1 degree derivations are uniquely defined by the value on Ω1(M). Note that −1
degree derivations are elements of HOM(T ∗M,R). So, since

HOM(T ∗M,R)⇐⇒ Γ(Hom(T ∗M,R)),

we deduce that −1 degree derivations are generated by X(M). Therefore, ιX are the only derivations
of negative degree on Ω∗(M).
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Corollary 2.2.2.1.1.
ιX ◦ ιX = 0 for X ∈ X(M).

Proof. Now, by Exercise 2.2.2.1, we deduce that [ιX , ιX ] = 2ιX ◦ ιX is a derivation of degree −2.
So, Theorem 2.2.2.1 says that it must be zero. So,

ιX ◦ ιX = 0 for X ∈ X(M).

We can also give another proof: Since by skew symmetry of ω where ω ∈ Ωk(M), we have

−ω(X,X, Y1, . . . , Yk−2) = ω(X,X, Y1, . . . , Yk−2).

Hence,
0 = ω(X,X, Y1, . . . , Yk−2) = ((ιX ◦ ιX)ω)(Y1, . . . , Yk−2).

Theorem 2.2.2.2. There exists a unique derivation d of degree 1 on Ω∗(M) such that d ◦ d = 0
and d|Ω0(M) is ordinary differential.

Proof. Suppose thatM = Rn. Let x1, . . . , xn be a coordinate system of Rn. For ω ∈ Ωk(Rn), define

d(ω) = d(
∑

1≤i1<···<ik≤n
fi1···ik(x1, . . . , xn)dxi1 ∧ · · · ∧ dxik)

def
=

∑

1≤i1<···<ik≤n
dfi1···ik(x1, . . . , xn) ∧ dxi1 ∧ · · · ∧ dxik

def
=

∑

1≤i1<···<ik≤n

n∑

l=1

∂

∂xl
fi1···ik(x1, . . . , xn)dxl ∧ dxi1 ∧ · · · ∧ dxik .

It is easy to see that d is a derivation of degree 1 on Ω∗(Rn) such that d ◦ d = 0 and d|Ω0(Rn) is
ordinary differential. Now suppose that d′ is another derivation of degree 1 on Ω∗(Rn) such that
d′ ◦ d′ = 0 and d′|Ω0(Rn) is ordinary differential. Note that we have d′f = df for f ∈ C∞(Rn), since
they are just ordinary differential by the assumptions. In particular,

dxi = d′xi and d
′ ◦ dxi = d′ ◦ d′xi = 0 for i = 1, . . . , n.

So, we have

d′(ω) = d′(
∑

1≤i1<···<ik≤n
fi1···ik(x1, . . . , xn)dxi1 ∧ · · · ∧ dxik)

=
∑

1≤i1<···<ik≤n
d′fi1···ik(x1, . . . , xn) ∧ dxi1 ∧ · · · ∧ dxik

+
∑

1≤i1<···<ik≤n
fi1···ik(x1, . . . , xn) · d′(dxi1 ∧ · · · ∧ dxik)

=
∑

1≤i1<···<ik≤n

n∑

l=1

∂

∂xl
fi1···ik(x1, . . . , xn)d

′xl ∧ dxi1 ∧ · · · ∧ dxik

=
∑

1≤i1<···<ik≤n

n∑

l=1

∂

∂xl
fi1···ik(x1, . . . , xn)dxl ∧ dxi1 ∧ · · · ∧ dxik = dω
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Hence, at least in Rn, we have a unique derivation of degree 1 satisfying the properties with respect
to a given coordinate system. It will be proved that a derivation is invariant under changes of
coordinates in the setting of a manifold, more generally. Now, let {Uα} be an open cover consisting
of coordinate patches, i.e., ϕα = (x1,α, . . . , xn,α). So, we do have a unique derivation dUα satisfying
the properties on each open set Uα. Now suppose that ω ∈ Ωk(Uα ∩ Uβ). So, on Uα ∩ Uα, ω has
two representations, namely,

ω =
∑

1≤i1<···<ik≤n
fi1···ik(x1,α, . . . , xn,α)dUαxi1,α ∧ · · · ∧ dUαxik,α

=
∑

1≤i1<···<ik≤n
gi1···ik(x1,β , . . . , xn,β)dUβxi1,β ∧ · · · ∧ dUβxik,β .

Choosing a bump function we can make ωα ∈ Ωk(Uα) with ωα = ω on Uα ∩ Uβ and ωα ≡ 0 on
Uα/(Uα ∩Uβ). By the same reason, we have such ωβ ∈ Ωk(Uβ). Let p ∈ Uα ∩Uβ . We want to show

dUα(ωα)p = dUβ (ωβ)p.

If you are brave enough, you can prove this using k-form. However, fortunately, if we use the
linearity and the properties of a derivation, it is sufficient to prove this for 0-forms and 1-forms.
Suppose ω = f ∈ Ω0(Uα ∩ Uβ). So,

we have




ωα = f ◦ ϕ−1α (x1,α, . . . , xn,α)

def
= f(x1,α, . . . , xn,α)

ωβ = f ◦ ϕ−1β (x1,β , . . . , xn,β)
def
= f(x1,β , . . . , xn,β).

Note that if we think xi,α as a function with coordinates x1,β , . . . , xn,β , then by the fact dUα is
ordinary differential on functions, we have

dUαxi,α = dxi,α(x1,β , . . . , xn,β) =
n∑

k=1

∂xi,α
∂xk,β

dxk,β =
n∑

k=1

∂xi,α
∂xk,β

dUβxk,β

Hence, we have

dUα(ωα)p = dUαf(x1,α, . . . , xn,α)|p =
n∑

l=1

∂

∂xl,α
f(x1,α, . . . , xn,α)dUαxl,α|p

=
n∑

l=1

n∑

k=1

∂

∂xl,α
f(x1,α, . . . , xn,α)

∂xl,α
∂xk,β

dUβxk,β |p =
n∑

k=1

∂

∂xk,β
f(x1,β , . . . , xn,β)dUβxk,β |p

= dUβf(x1,β , . . . , xn,β)|p = dUβ (ωβ)p

Suppose ω ∈ Ω1(Uα∩Uβ). Without loss of generality, we can assume ωα = f(x1,α, . . . , xn,α)dUαxi,α.
So, we also have

ωβ =
n∑

k=1

gk(x1,β , . . . , xn,β)dUβxk,β where f(x1,α, . . . , xn,α)
∂xi,α
∂xk,β

= gk(x1,β , . . . , xn,β)
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So, for p ∈ Uα ∩ Uβ.

dUα(ωα)p = dUα(f(x1,α, . . . , xn,α)dUαxi,α)|p = dUαf(x1,α, . . . , xn,α) ∧ dUαxi,α|p

= dUαf(x1,α, . . . , xn,α) ∧
n∑

k=1

∂xi,α
∂xk,β

dUβxk,β |p = dUβf(x1,β , . . . , xn,β) ∧
n∑

k=1

∂xi,α
∂xk,β

dUβxk,β |p

= dUβ (f(x1,β , . . . , xn,β) ·
n∑

k=1

∂xi,α
∂xk,β

dUβxk,β)|p − f(x1,β , . . . , xn,β) · dUβ (
n∑

k=1

∂xi,α
∂xk,β

) ∧ dUβxk,β |p

= dUβ (f(x1,β , . . . , xn,β)
n∑

k=1

∂xi,α
∂xk,β

dUβxk,β)|p − f(x1,β , . . . , xn,β)
n∑

l=1

n∑

k=1

∂2xi,α
∂xk,β∂xl,β

dUβxl,β ∧ dUβxk,β |p

= dUβ (f(x1,β , . . . , xn,β) ·
n∑

k=1

∂xi,α
∂xk,β

dUβxk,β)|p = dUβ (ωβ)p.

Note that by the skew-symmetry,

f(x1,β , . . . , xn,β) ·
n∑

l=1

n∑

k=1

∂2xi,α
∂xk,β∂xl,β

dUβxl,β ∧ dUβxk,β = 0.

From this, we have a well-defined notion of a derivation dM by setting for ω ∈ Ωk(M)

(dMω)|Uα = dUαω|Uα where ω|Uα is the restriction of ω on Uα.

It is easy to check that dM satisfies all the required properties. We will show the uniqueness of dM .
Suppose that d′M is another derivation with the properties. The proof shall use the uniqueness of
a local derivation, since we already know that each point of M has a unique local derivation. Let
p ∈ V ⊆ M be an open set with a unique local derivation dV and ω ∈ Ωk(V ). So, we have ω∗ the
extention of ω by a bump function, i.e.,

ω∗ = ω on V

ω∗ ≡ 0 on open U where V ⊆ V ⊆ U.

The main point is that we do not know whether or not d′ω∗|M/V ≡ 0. If this is true, then by the

facts that d′ is a derivation with the properties and the uniqueness of dV , we have

(d′ω∗)|V = dV ω. Hence, d′M = dM .

So, it suffices to show that if k-form ω|W ≡ 0 for an open set W ⊆M , then (d′ω)|W ≡ 0. Suppose
that k-form ω|W ≡ 0 on an open set W ⊆M . Choose a bump function ϕ ∈ C∞(M) such that

ϕ(x) = 0 on a compact K ⊂W and ϕ|M/W ≡ 1.

So, ϕω = ω on M . By the property of a derivation, we have

d′ω = d′(ϕω) = (d′ϕ)ω + ϕd′ω.

So, we have (d′ω)|K ≡ 0. By letting K = {p} for p ∈W , we have (d′ω)|W ≡ 0.
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Remark 2.2.2.1. It is easy to see that Ω∗(M) as a graded algebra is generated by Ω0(M) and
dΩ0(M). If M is compact, then dΩ0(M) has a finite basis.

Theorem 2.2.2.3. Let Mm ϕ−→ Nn be a smooth map. Then ϕ induces a graded algebra homomor-
phism with the following commuting diagram

Ωk(N)
ϕk−−−→ Ωk(M)

d

y d

y

Ωk+1(N)
ϕk+1

−−−→ Ωk+1(M).

That is, d(ϕ∗ω) = ϕ∗(dω) for ω ∈ Ω∗(N).

Proof. Note that

(ϕ∗ω)p
def
= (Jϕ)Tp (ωϕ(p))

def
= (Jϕ)T ◦ ω ◦ ϕ where Jϕ is the Jacobian of ϕ.

When f ∈ Ω0(N), ϕ∗f
def
= f ◦ ϕ. So, we have for ω ∈ Ωk(N) and X1, . . . , Xk ∈ X(M),

(ϕ∗ω)p(X
1
p , . . . , X

k
p ) = ωϕ(p)(Jϕ(X

1
p )ϕ(p), . . . , Jϕ(X

k
p )ϕ(p)).

Again, the right-hand side is a smooth function as p varies. So, ϕ∗ω is smooth as p varies. Hence,
ϕ∗ : Ω∗(N) → Ω∗(M). We shall show that (ϕ∗(ω ∧ ξ))p = (ϕ∗ω)p ∧ (ϕ∗ξ)p for all p ∈ M , which
implies that ϕ∗(ω ∧ ξ) = (ϕ∗ω) ∧ (ϕ∗ξ). Let ω ∈ Ωk(N) and ξ ∈ Ωr(N).

(ϕ∗(ω ∧ ξ))p(X1
p , . . . , X

k
p , X

k+1
p , . . . , Xk+r

p )

= ωϕ(p)(Jϕ(X
1
p )ϕ(p), . . . , Jϕ(X

k
p )ϕ(p), Jϕ(X

k+1
p )ϕ(p), . . . , Jϕ(X

k+r
p )ϕ(p))

= ωϕ(p)(Jϕ(X
1
p )ϕ(p), . . . , Jϕ(X

k
p )ϕ(p)) · ξϕ(p)(Jϕ(Xk+1

p )ϕ(p), . . . , Jϕ(X
k+r
p )ϕ(p))

= (ϕ∗ω)p(X
1
p , . . . , X

k
p ) · (ϕ∗ξ)p(Xk+1

p , . . . , Xk+r
p )

= (ϕ∗ω)p ∧ (ϕ∗ξ)p(X
1
p , . . . , X

k
p , X

k+1
p , . . . , Xk+r

p ).

Also, note that for f ∈ Ω0(N),

(ϕ∗(f · ω))p(Xp) = (f · ω)ϕ(p)(Jϕ(Xp)ϕ(p)) = (f ◦ ϕ(p)) · (ϕ∗ω)p(Xp) = (ϕ∗f)p · (ϕ∗ω)p(Xp).

Hence, ϕ∗ is a graded algebra homomorphism. Now, we shall show that ϕ∗(dω) = d(ϕ∗ω). Since
we made d by patching local derivations, it is sufficient to show that ϕ∗(dω) = d(ϕ∗ω) locally.
Moreover, it is also sufficient to show this for bases. Let U ⊂M and V ⊂ N be coordinate patches
with (x1, . . . , xm) and (y1, . . . , yn), respectively. Assume that ϕ : U → V . Note that d|Ω0(N) is
ordinary differential. That is, if g ∈ Ω0(N), then we have dg(Yq) = Yq(g) for Y ∈ X(N). So, we
have

ϕ∗(dg(y1, . . . , yn))p(Xp) = dgϕ(p)(Jϕ(Xp))ϕ(p) = (Jϕ(Xp))ϕ(p)(g) = (Xp)(g ◦ ϕ)
= (Xp)(ϕ

∗g) = (d(ϕ∗g))p(Xp).
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That is, for g ∈ Ω0(N) we have ϕ∗(dg) = d(ϕ∗g). In general, if we think yi ∈ Ω0(N) for i = 1, . . . , n,
then using the fact that ϕ∗ is a graded algebra homomorphism, we have

ϕ∗(d(f(y1, . . . , yn)dyi1 ∧ · · · ∧ dyik)) = ϕ∗(df ∧ dyi1 ∧ · · · ∧ yik)
= ϕ∗(df) ∧ ϕ∗(dyi1) ∧ · · · ∧ ϕ∗(dyik)
= d(ϕ∗f) ∧ d(ϕ∗yi1) ∧ · · · ∧ d(ϕ∗dyik)
= d(ϕ∗f ∧ d(ϕ∗yi1) ∧ · · · ∧ d(ϕ∗yik))
= d(ϕ∗f ∧ ϕ∗(dyi1) ∧ · · · ∧ ϕ∗(dyik))
= d(ϕ∗(f ∧ dyi1 ∧ · · · ∧ dyik)).

Recall that if X,Y ∈ X(M) and ξt ∈ Diff(M) is a global flow of X, we have

LX(Y )
def
=

d

dt
|t=0(ξ−t · Y ).

Now we define for ω ∈ Ω∗(M),

LXω
def
=

d

dt
|t=0(ξ−t · ω) where ξ−t · ω def

= ξ∗t ω the pullback of ω.

Note that ξ∗t is a path of 1-forms. It is easy to see that LX is a derivation on Ω∗(M): Since ∧ is
bilinear and ξ0 is the identity map, we have

LX(α ∧ β) =
d

dt
|t=0ξ∗t (α ∧ β) =

d

dt
|t=0(ξ∗t α ∧ ξ∗t β) = (LXα) ∧ β + α ∧ LXβ.

Also, it is easy to see that the degree of LX is 0:

LX : Ωp(M)→ Ωp(M).

In particular, for f ∈ Ω0(M)

LXf =
d

dt
|t=0ξ∗t f =

d

dt
|t=0f ◦ ξt = Xf.

Moreover, we have using the linearity of d

LX(dω) =
d

dt
|t=0ξ∗t (dω) =

d

dt
|t=0d(ξ∗t ω)

linearity
= d

d

dt
|t=0ξ∗t ω = d(LXω).

Hence, we have
[d,LX ] = dLX − LXd = 0.

Remark 2.2.2.2. From the above, X ∈ X(M) gives a derivation LX ∈ Der0(Ω∗(M)). Also, it is
worth noting that X ∈ X(M) also gives a derivation on X(M) by the following ways: Define

ad(X) : X(M)→ X(M) by ad(X)(Y ) = [X,Y ].
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ad(X) is a derivation, since by the Jacobi identity, we have

ad(X)([Y,Z]) = [X, [Y,Z]] = [Y, [X,Z]] + [[X,Y ], Z] = [Y,ad(X)(Z)] + [ad(X)(Y ), Z].

Hence, we have

X(M)
ad−−−→ Der0(X(M))

L
y

Der0(Ω
∗(M)).

In general, if g is an abstract Lie algebra, for X ∈ g, ad(X) : g → g by ad(X)(Y ) = [X,Y ] is a
derivation of g by the same proof of the above. That is, given g, there exists a Lie algebra homomorphism

ad : g→ Der(g).

2.2.3 The Cartan formula and Useful identities

Recall that ιX is a unique derivation of degree −1 and d is a unique derivation of degree 1 on
Ω∗(M). Since Der(Ω∗(M)) forms a graded Lie algebra, we have [d, ιX ] = d ◦ ιX + ιX ◦ d is a
derivation of degree 0. We shall prove

Theorem 2.2.3.1 (Cartan Formula).

[d, ιX ] = LX .

Note that the Cartan formula says that LX is a chain homotopy. Hence, LX induces an isomorphism
on de Rham cohomology. Moreover, in general if g is a Lie algebra, then it induces a differential graded

algebra ∧∗g∗. So, we have a Lie algebra cohomology

H∗(∧∗g∗) def= H∗(g).

Note that if G is a compact Lie group, then we have

H∗(g) ∼= H∗(G,R).

Proof of Cartan Formula. Since Ω∗(M) is generated by Ω0(M) and dΩ0(M), it suffices to show
this for f ∈ Ω0(M) and df . First, Note ιXf = 0, since the degree of ιX is −1. So,

(d ◦ ιX + ιX ◦ d)f = d ◦ ιXf + ιX ◦ df = ιX(df) = df(X) = Xf = LXf.

For ω = df ∈ dΩ0(M), we have by [LX , d] = 0, i.e., the commutativity of LX and d,

(d ◦ ιX + ιX ◦ d)ω = d ◦ ιXdf + ιX ◦ d ◦ df = d ◦ ιXdf = d(Xf) = d(LXf) = LX(df) = LXω.

Theorem 2.2.3.2.
[LX ,LY ] = L[X,Y ].
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Proof. As usual, it suffices to show this for f ∈ Ω0(M) and df . Clearly,

[LX ,LY ]f = LXLY f − LY LXf = X(Y f)− Y (Xf) = (XY − Y X)f = L[X,Y ]f.

For ω = df ∈ dΩ0(M), we have by the commutativity of LX and d,

[LX ,LY ]df = LXLY df − LY LXdf = d(LXLY f − LY LXf) = dL[X,Y ]f = L[X,Y ]df.

Theorem 2.2.3.3. Let ω ∈ Ω1(M) and X,Y ∈ X(M). Then we have

(dω)(X,Y ) = Xω(Y )− Y ω(X)− ω([X,Y ]).

Before we prove Theorem 2.2.3.3, we give some remarks: We know that ω ∈ Ωk(M) defines a
k-multilinear alternating C∞(M):

ω : X(M)× · · · × X(M)︸ ︷︷ ︸
k

→ C∞(M) by (Y1, . . . , Yk) 7→ ω(Y1, . . . , Yk).

Moreover, k-multilinearity over R gives k-multilinearity over C∞(M). That is,

ω(fY1, . . . , Yk) = ω(Y1, . . . , fYi, . . . , Yk) = fω(Y1, . . . , Yk).

Note that smoothness comes from the left-hand side. Equivalently speaking, since we can think
⊗kTM and R as vector bundles, in the sense of Definition 2.2.2.2, we can say ω ∈ Γ(Hom(⊗kTM,R)).
However, note that since

[fX, gY ] = f ·X(g)Y − g · Y (f)X + f · g[X,Y ],

We can see that [, ] is not a section of Hom(⊗2TM,TM), i.e., [, ] /∈ Γ(Hom(⊗2TM,TM)). In this
consideration, we have

Definition 2.2.3.1. Let E and F be smooth vector bundle over a smooth manifold M . we say ψ
is tensorial if ψ ∈ Γ(Hom(E,F )).

Example 2.2.3.1. If ω ∈ Ωk(M), then ιXω is a (k − 1)-form and dω is a (k + 1)-from. So, these
are tensorial.

Proof. We give ad hoc proofs of these. Clearly,

(ιXω)(fY1, . . . , Yk−1) = ω(X, fY1, . . . , Yk−1) = fω(X,Y1, . . . , Yk−1).

Also, using Theorem 2.2.3.3, we have for 1-form ω,

dω(fX, Y ) = (fX)(ω(Y ))− Y (ω(fX))− ω([fX, Y ]) = f(X(ω(Y )))− Y (fω(X))− ω([fX, Y ])

= f(X(ω(Y )))− Y (fω(X))− ω(f [X,Y ]− (Y f)X)

= f(X(ω(Y )))− (Y f)(ω(X))− fY (ω(X))− fω([X,Y ]) + (Y f)(ωX)

= fdω(X,Y ).
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Lemma 2.2.3.1. Let ϕ ∈ Diff(M) and ω ∈ Ωk(M). Then

ϕ · (ω(Y1, . . . , Yk)) = (ϕ · ω)(ϕ · Y1, . . . , ϕ · Yk).

Proof. When k = 0, clearly we have ϕ · (fg) = (ϕ · f)(ϕ · g) for f, g ∈ C∞(M). So, now assume ω is
a 1-form. Without loss of generality, we can assume that ω = df for some f ∈ C∞(M). Note that
above Remark 2.1.5.2 we showed that ϕ · (Xf) = (ϕ ·X)(ϕ · f) and in Theorem 2.2.2.3 we showed
that d and ϕ∗ commute each other.

ϕ · (ω(X)) = ϕ · (df(X)) = ϕ · (Xf) = (ϕ ·X)(ϕ · f) = (d(ϕ · f))(ϕ ·X)

= (d((ϕ−1)∗f))(ϕ ·X) = ((ϕ−1)∗df)(ϕ ·X) = (ϕ · ω)(ϕ ·X).

In general, note that the action of a k-form on k vector fields can be decomposed into the action of
k − 1-forms on k − 1 vector fields and the action of 1 forms on a vector fields. So, using induction
hypothesis and the cases when k = 0 and k = 1, it is easy to see that it is true.

Lemma 2.2.3.2. Let ξt ∈ Diff(M). Then we have for ω ∈ Ωk(M)

d

dt
|t=0

(
(ξ−t · ω)(ξ−t · Y1, . . . , ξ−t · Yk)

)
= (

d

dt
|t=0(ξ−t · ω))(ξ−t · Y1, . . . , ξ−t · Yk)|t=0

+
k∑

i=1

(ξ−t · ω))|t=0(ξ−t · Y1|t=0, . . . , ξ−t · Yi−1|t=0,
d

dt
|t=0ξ−tYi, ξ−t · Yi+1|t=0, . . . , ξ−t · Yk|t=0).

Proof. The main point is that the action of a k-from on k vector fields is k-multilinear over R. So,
it is sufficient to prove this for 1-form. Recall the proof of Theorem 2.1.6.1.

d

dt
|t=0(ξt · ω)(ξt ·X) = − lim

t→0
(ξt · ω)(ξt ·X)− ωX

t

= lim
t→0

(ξt · ω)(ξt ·X)− (ξt · ω)(X) + (ξt · ω)(X)− ωX
t

= lim
t→0

1

t
(ξt · ω)((ξt ·X)−X) + lim

t→0
(ξt · ω − ω)(X)

t

= lim
t→0

(ξt · ω)(
(ξt ·X)−X

t
) + lim

t→0
(ξt · ω − ω)(X)

t

=
(
(ξt · ω)|t=0

) d
dt
|t=0(ξt ·X) +

d

dt
|t=0(ξt · ω)

(
(ξt ·X)|t=0

)
.

From these lemmas, we have the following lemma. Especially, we give two proofs of the following:

Lemma 2.2.3.3. For ω ∈ Ωk(M), we have

LX(ω(Y1, . . . , Yk)) = (LXω)(Y1, . . . , Yk) +
k∑

i=1

ω(Y1, . . . , Yi−1, [X,Yi], Yi+1, . . . , Yk).
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Proof 1. Consider a function ω(Y1, . . . , Yk) and its Lie derivative: Let ξt be the global flow of X.
Note that ξ0 is the identity. Using Lemma 2.2.3.1 and Lemma 2.2.3.2,

LX(ω(Y1, . . . , Yk)) =
d

dt
|t=0ξ−t · ω(Y1, . . . , Yk) =

d

dt
|t=0(ξ−t · ω)(ξ−t · Y1, . . . , ξ−t · Yk)

= (
d

dt
|t=0(ξ−t · ω))(Y1, . . . , Yk) +

k∑

i=1

ω(Y1, . . . , Yi−1,
d

dt
|t=0ξ−tYi, Yi+1, . . . , Yk)

= (LXω)(Y1, . . . , Yk) +
k∑

i=1

ω(Y1, . . . , Yi−1,LXYi, Yi+1, . . . , Yk).

Proof 2. First, we show the following: Since LX and ιY are derivations on Ω∗(M) for X,Y ∈ X(M),
we have a derivation [LX , ιY ]. We shall show

[LX , ιY ] = ι[X,Y ].

As usual, it suffices to show this for 1-forms and 0-forms. Since [LX , ιY ] and ι[X,Y ] are degree −1,
they give the same action on Ω0(M), namely, a zero derivation. So, it’s done. Now, assume ω = df
for f ∈ Ω0(M). The main ingredient of the proof will be ιX ◦ ιY = 0 on Ω0(M) and Ω1(M), and
LX = ιX ◦ d+ d ◦ ιX . We have

ι[X,Y ]df = (L[X,Y ] − d ◦ ι[X,Y ])f = L[X,Y ]f = LX ◦ (ιY ◦ d+ d ◦ ιY )f − LY ◦ (ιX ◦ d+ d ◦ ιX)f
= (LX ◦ ιY ◦ d)f − (LY ◦ ιX ◦ d)f = (LX ◦ ιY − LY ◦ ιX) ◦ df
= (LX ◦ ιY − ιY ◦ LX + ιY ◦ LX − LY ◦ ιX)df = [LX , ιY ]df + (ιY ◦ LX − LY ◦ ιX)df
= [LX , ιY ]df + (ιY ◦ (ιX ◦ d+ d ◦ ιX)− (ιY ◦ d+ d ◦ ιY ) ◦ ιX)df
= [LX , ιY ]df + (ιY ◦ d ◦ ιX)df − (ιY ◦ d ◦ ιX)df = [LX , ιY ]df.

From this, now we have

(LXω)(Y1, . . . , Yk) = (ιYk ◦ · · · ◦ ιY1 ◦ LX)ω = (ιYk ◦ · · · ◦ ιY2 ◦ (LX ◦ ιY1 − ι[X,Y1])ω

= (ιYk ◦ · · · ◦ ιY2 ◦ LX ◦ ιY1)ω − (ιYk ◦ · · · ◦ ιY2 ◦ ι[X,Y1])ω

= (ιYk ◦ · · · ◦ ιY3 ◦ (LX ◦ ιY2 − ι[X,Y2]) ◦ ιY1)ω − (ιYk ◦ · · · ◦ ιY2 ◦ ι[X,Y1])ω

= (ιYk ◦ · · · ◦ ιY3 ◦ LX ◦ ιY2 ◦ ιY1)ω − ω([X,Y1], Y2, . . . , Yk)− ω(Y1, [X,Y2], Y3, . . . , Yk)
...

= (LX ◦ ιYk ◦ · · · ◦ ιY1)ω −
k∑

i=1

ω(Y1, . . . , Yi−1, [X,Yi], Yi+1, . . . , Yk)

= LX(ω(Y1, . . . , Yk))−
k∑

i=1

ω(Y1, . . . , Yi−1, [X,Yi], Yi+1, . . . , Yk)

Now we prove Theorem 2.2.3.3:
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Proof of Theorem 2.2.3.3. Let ω ∈ Ω1(M) and X,Y ∈ X(M). Note that for f ∈ C∞(M), we have
df(X) = Xf . In particular, (d(ωX))Y = Y (ω(X)). Using Lemma 2.2.3.3,

X(ω(Y )) = LX(ω(Y )) = (LXω)(Y ) + ω([X,Y ]) = ((ιX ◦ d+ d ◦ ιX)ω)(Y ) + ω([X,Y ])

= (ιXdω)Y + (dω(X))(Y ) + ω([X,Y ]) = (dω)(X,Y ) + Y (ω(X)) + ω([X,Y ]).

In general we have

Theorem 2.2.3.4.

(dω)(X0, . . . , Xk) =
k∑

i=0

(−1)iXiω(X0, . . . , X̂i, . . . , Xk)+
∑

0≤i<j≤k
(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk).

Proof. We shall prove this by induction. When k = 0, 1, we are already done. Now suppose k = n.
The main ingredients of this proof are of course Lemma 2.2.3.3 and the identity [d, ιX ] = LX .

(dω)(X0, . . . , Xn) = (ιX0 ◦ dω)(X1, . . . , Xk) = (LX0ω)(X1, . . . , Xk)− (d ◦ ιX1ω)(X0, . . . , Xk)

= LX0(ω(X1, . . . , Xk))−
k∑

i=1

ω(X1, . . . , Xi−1, [X0, Xi], Xi+1, . . . , Xk)

− (d ◦ ιX0ω)(X1, . . . , Xk)

= X0(ω(X1, . . . , Xk))−
k∑

i=1

ω(X1, . . . , Xi−1, [X0, Xi], Xi+1, . . . , Xk)

−
k∑

i=1

(−1)i−1Xi(ιX0ω(X1, . . . , X̂i, . . . , Xk))

−
∑

1≤i<j≤k
(−1)i+j(ιX0ω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xk))

=
k∑

i=0

(−1)iXiω(X0, . . . , X̂i, . . . , Xk))

−
k∑

i=1

(−1)i−1ω([X0, Xi], X1, . . . , Xi−1, X̂i, Xi+1, . . . , Xk)

+
∑

1≤i<j≤k
(−1)i+jω([Xi, Xj ], X0, X1, . . . , X̂i, . . . , X̂j , . . . , Xk))

=
k∑

i=0

(−1)iXiω(X0, . . . , X̂i, . . . , Yk)

+
∑

0≤i<j≤k
(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk).
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Example 2.2.3.2. Let ω = dz − xdy on R3 Then dω(∂x, ∂y) = −1 and dω(∂x, ∂z) = 0.

Proof. Since dω = −dx ∧ dy, by definition of a wedge product we have

dω = −(dx⊗ dy − dy ⊗ dx).

Hence, dω(∂x, ∂y) = −1 and dω(∂x, ∂z) = 0. Since [∂x, ∂y] = [∂x, ∂z] = 0, by Theorem 2.2.3.3, it
is also easy to see that dω(∂x, ∂y) = −1 and dω(∂x, ∂z) = 0.

2.2.4 Differential form version of Frobenius’s Theorem

Usually, working on differentiable forms is more preferable than working on vector fields, since
differentiable forms has pullbacks and exterior algebras, etc. Also, for example, recalling Exer-
cise 2.1.8.6, to find solution curves of

dy

dx
= f(x, y),

we just look at the kernel of dy − f(x, y)dx. Now we shall give the dual version of Frobenius
theorem. First of all we need a definition:

Definition 2.2.4.1 (Annihilation Ideal). Let E be a k-plane field over M .

Annk(E) = {ω ∈ Ωk(M) | ω(X1, . . . , Xk) = 0 for all Xi ∈ Γ(E)}.

Also,

Ann(E) =
⊕

k≥0
Annk(E).

Clearly, Ann(E) is an graded ideal in Ω∗(M). Moreover, since Ω∗(M) is generated by Ω0(M)
and Ω1(M), obviously, Ann(E) is generated by Ann1(E) = Ann(E)

⋂
Ω1(M). Also, it is worth

remarking the following: Let

T = {X ∈ X(M) | ω(X) = 0 for all ω ∈ Ann1(E)}.

Clearly, Γ(E) ⊆ T. Now, suppose that X ∈ T. We know that by the local triviality of a vector
bundle, the duals of m− k vector fields in the codimensional space of E generate Ann1(E) locally.
So, X is locally in Γ(E). Using partition of unity, we conclude that X is actually in Γ(E). Hence,

Γ(E) = {X ∈ X(M) | ω(X) = 0 for all ω ∈ Ann1(E)}.

Definition 2.2.4.2 (Differential ideal). We say Ann(E) is d-stable or a differential ideal if

d(Ann(E)) ⊆ Ann(E).

Since Ann(E) is generated by Ann1(E) = Ann(E)
⋂

Ω1(M), in order to show Ann(E) is a
differential ideal, it suffices to show that

d(Ann1(E)) ⊆ Ann2(E).

The dual version of Frobenius theorem can be stated by the following way:
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Theorem 2.2.4.1 (Frobenius’s Integrability Theorem). A k-plane field E on Mm is inte-
grable if and only if Ann(E) is a differential ideal.

The main point is that locally m − k vector fields in the codimensional space of E generate a
differential ideal Ann(M).

Proof. By the Frobenius theorem on vector fields, it suffices to show that Γ(E) is a Lie subalgebra
of X(M) if and only ifAnn(E) is a differential ideal. Suppose that Γ(E)is a Lie subalgebra of X(M)
and ω ∈ Ann1(E). We will show that dω ∈ Ann2(E). Let X,Y ∈ Γ(E). By Theorem 2.2.3.3,

(dω)(X,Y ) = X(ω(Y ))− Y (ω(X))− ω([X,Y ]).

Since [X,Y ] ∈ Γ(E), we have (dω)(X,Y ) = 0. Hence, dω ∈ Ann2(E). Conversely, let X,Y ∈ Γ(E).
Since Ann(E) is a differential ideal, we have (dω)(X,Y ) = 0. So, by (dω)(X,Y ) = X(ω(Y )) −
Y (ω(X))− ω([X,Y ]) we have

ω([X,Y ]) = 0 for all ω ∈ Ann1(E).

Since Γ(E) = {X ∈ X(M) | ω(X) = 0 for all ω ∈ Ann1(E)} by the previous discussion, we
conclude that [X,Y ] ∈ Γ(E). Hence it is a Lie subalgebra.

Example 2.2.4.1. Recalling Exercise 2.1.8.6, E = span{∂x, ∂y + x∂z} is not integrable, since

dω(∂x, ∂y + x∂z) = −ω([∂x, ∂y + x∂z]) = −(dz − xdy)(∂z) = −1.

That is, dω /∈ Ann(E).

Suppose that Ss
f−→Mm be a submanifold of Ss. Since f∗ is one-to-one, we have the cotangent

bundle NS of S in M :

NS
def
=

TM |S
TS

.

So, we also have the dual N ∗S of NS , which is called the conormal bundle of S. It is easy to see that

Γ(N∗S) = {σ ∈ Ω1(M) | f∗(σ) = 0}.

Let v ∈ TpS. If σ ∈ Γ(N∗S), 0 = f∗(σ)(v) = σ(f∗(v)) for all v ∈ TpS. So,

Γ(N∗S) ⊆ Ann1(f∗(TS)).

Also, if σ ∈ Ann1(f∗(TS)), then 0 = σ(f∗(v)) = f∗(σ)(v) for all v ∈ TpS. That is, f∗(σ) = 0.
Hence,

Γ(N∗S) = Ann
1(f∗(TS)).

From this, we deduce that a submanifold S has a unique ideal, which is generated by σi such that
f∗(σi) = 0.
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Example 2.2.4.2. Let Mm f−→ Nn be a smooth map, e.g., N might be a Lie group, e.g. M 2 →
SO(3). Define

graph(f)
def
= {(x, y) ∈M ×N | f(x) = y}.

First, note that graph(f) is a submanifold of M ×N : Let F (m) = (m, f(m)). Clearly, it is smooth
and one-to-one. Moreover, clearly, F ∗ is one-to-one. So, we have a submanifold

M
F−→ graph(f) ⊆M ×N.

So, the previous discussion says that graph(f) has a unique ideal I of Ω∗(M ×N). Let πM and πN
be projections:

M ×N πN−−−→ N

πM

y
M

¡
¡¡µf

Let ω1, . . . , ωd ∈ Ω1(N) be a basis. By f , we have f ∗ωi ∈ Ω1(M) for i = 1, . . . , d. Define 1-forms
αi ∈ Ω1(M ×N) for i = 1, . . . , d by

αi = π∗Nωi − π∗M (f∗ωi).

Let B be the ideal generated by αi. Then B = I.

Proof. By the previous remarks,

I = {ω ∈ Ω1(M ×N) | F ∗(ω) = 0}.

Since using πN ◦ F = f and πM ◦ F = id,

F ∗(αi) = F ∗(π∗Nωi − π∗M (f∗ωi)) = F ∗ ◦ π∗N (ωi)− F ∗ ◦ π∗M (f∗ωi)

= (πN ◦ F )∗(ωi)− (πM ◦ F )∗(f∗ωi) = f∗(ωi)− (id)∗(f∗ωi) = 0,

we have αi ∈ I. Suppose ω ∈ I. So, F ∗(ω) = 0 Since T (M × N) = TM × TN , it is easy to see
that Ω1(M × N) = Ω1(M) × Ω1(N). So, without loss of generality, we can think ω = (ωM , ωN )
where ωM ∈ Ω(M) and ωN ∈ Ω(N). So, for all v ∈ Tm(M), we have

0 = (F ∗(ω))(v) = ω(F∗(v)).

Hence, by identifying ω = (ωM , ωN ), we have

(F ∗(ω))(v) = ω(F∗(v)) = ω(id∗, f∗)(v) = ω(v, f∗v)

= (ωM , ωN )(v, f∗v) = (ωMv, ωNf∗v) = (0, 0).

So, that ωMv = 0 for all v ∈ Tm(M) implies that ωM = 0. Hence, we can identifying ω as ωN .
That is,

π∗NωN − π∗M (f∗ωN ) = ω ∈ B.
In particular, by Frobenius theorem, B = I is a differential ideal, which annihilates graph(f).

We give a converse of Exercise 2.2.4.2.
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Example 2.2.4.3. Suppose that given η1, . . . , ηd ∈ Ω1(M) and a basis ω1, . . . , ωd ∈ Ω1(N), the
1-forms

αi = π∗Nωi − π∗Mηi
generate a differential ideal B in Ω1(M × N). Then for all (m,n) ∈ M × N , there exists a
neighborhood U ⊆ M of m and a smooth map f : U → N such that f(m) = n and f ∗ωi = ηi|U .
Furthermore, f is unique.

Proof. Since B is a differential ideal, by the Frobenius theorem, given (m0, n0) there exists a
maximal submanifold, i.e., leaf, S of (m0, n0) in M ×N .

M ×N πN−−−→ N

πM

y
M

First, note that πM |TS is one to one: Suppose that v ∈ TpS ⊆ Tp(M ×N) and (πM )∗(v) = 0. So,
we have for i = 1, . . . , d

0 = (π∗Nωi − π∗Mηi)v = ωi(πN )∗(v)− ηi(πM )∗(v) = ωi(πN )∗(v).

Since ω1, . . . , ωd ∈ Ω1(N) is a basis, we have (πN )∗(v) = 0. Hence, the fact (πM )∗(v) = 0 and
(πN )∗(v) = 0 implies that v = 0. Hence, (πM )∗ is one-to-one. So, by the inverse function theorem,
πM |S is a local diffeomorphism. Hence, there exists an open neighborhood set V ⊆ S of (m0, n0)
such that

πM : V
∼=−→ U ⊆M.

Define
f = πN ◦ (π−1M |U ) : U → N.

Since πM and πN are projections, clearly, f(m0) = n0 and f is smooth. Moreover, graph(f)
def
=

{(x, y) ∈M ×N | f(x) = y} is a submanifold of S. Furthermore, for all v ∈ TuM for any u ∈ U ,

0 = αi((π
−1
M |U )∗v) = ((π−1M |U )∗αi)(v) = ((π−1M |U )∗ ◦ (π∗Nωi − π∗Mηi))(v)

= ((π∗N ◦ π−1M |U )∗ωi − (id)∗ηi)(v) = (f∗(ωi)− ηi)(v).

Hence, f∗ωi = ηi|U . Note that f is unique by the following reasons: If f̃ is another function
satisfying all the required properties, by Exercise 2.2.4.2, graph(f̃) is a submanifold of M ×N with
a the same differential ideal as graph(f). Hence, the uniqueness of a maximal integral submanifold,
leaf, gives the uniqueness of f = f̃ .

Example 2.2.4.4. Let x1, . . . , xm be a local coordinate chart ofM and y1, . . . , yn a local coordinate
chart of N . Suppose that we are given a P.D.E. system: For i = 1, . . . , n and j = 1, . . . ,m,

∂yi
∂xj

= ϕij(x1, . . . , xm, y1, . . . , yn).

So, we have for i = 1, . . . , n and j = 1, . . . ,m,

ωij = dyi − ϕijdxj .
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If the ideal Ik, generated by ωkj for j = 1, . . . ,m, is a differential ideal, then by Example 2.2.4.3,
we have

Fk(xi, . . . , xm) = yk.

So, if the ideal I, generated by ωij for i = 1, . . . , n and j = 1, . . . ,m, is a differential ideal, then by
Example 2.2.4.3, this P.D.E. system is solvable. That is, we have

Fi(xi, . . . , xm) = yi for i = 1, . . . , n.

In particular, if M = R, then for i = 1, . . . , n,

dyi
dt

= ϕi(t, y1, . . . , yn).

So, we have for i = 1, . . . , n,
ωi = dyi − ϕidt.

Since

dωi = −
n∑

j=1

∂ϕi
∂yj

dt ∧ dyj = −
n∑

j=1

(
∂ϕi
∂yj

dt ∧ (dyj − ϕjdt)) = −
n∑

j=1

(
∂ϕi
∂yj

dt ∧ ωj),

we deduce that the ideal I, generated by ωi for i = 1, . . . , n, is always a differential ideal. From
this, we have then by Example 2.2.4.3, every first order O.D.E. system is solvable. Equivalently,
every line field is integrable.
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Chapter 3

General Theory of Lie Groups and Lie

Algebras

3.1 Lie Algebras of Lie Groups

3.1.1 Adjoint representations

Let G be a Lie group. The Lie algebra of G is

g = {X ∈ X(G) | lg ·X = X} def= LX(G).

Recall that in Exercise 2.1.8.2, we showed that the evaluation map is an isomorphism:

ε : LX(G)→ Te(G) by ε(X) = Xe.

That is, X is completely determined by its value at e and each element of TeG gives a unique
left-invariant vector field. So, if X ∈ LX(G), then

Xg = dlg(Xe).

Let i : G→ G be an inversion map by i(g) = g−1. So, i∗ : X(G)→ X(G) is an isomorphism. Since
i ◦ lg(h) = rg−1 ◦ i(h), for X ∈ LX(G) we have

rg−1 · (i∗(X)) = rg−1 · (i ·X) = (rg−1 ◦ i) ·X = (i ◦ lg) ·X = i · (lg ·X) = i ·X = i∗(X).

Hence, letting RX(G) be the set of right-invariant vector fields, we have a well-defined map

i∗ : LX(G)→ RX(G).

Since i∗ : X(G)→ X(G) is already an isomorphism, we conclude that LX(G) ∼= RX(G). Note that
in Exercise 2.1.8.3, we already showed that they are isomorphic as Lie algebras. Suppose that G
is an n-dimensional Lie group. In Theorem 2.1.8.3, we showed that X(G) consists of n linearly
independent left-invariant vector fields Xi for i = 1, . . . , n. Let

ωi = (Xi)
∗ for i = 1, . . . , n.
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Since {Xj,g}j=1,...,n is a basis of TgG and

(l∗gωi)e(Xj,e) = ωi,g ◦ (lg)∗(Xj,e) = ωi,g(Xj,g) =⇒ (l∗gωi)e = ωi,e,

we conclude that (l∗gωi)h = ωi,h for all h ∈ G, so that ωi is a left-invariant 1-form for i = 1, . . . , n,
i.e., l∗gωi = ωi. Moreover, (lg)

∗ is a graded algebra homomorphism, we have

(lg)
∗(ω1 ∧ · · · ∧ ωn) = (lg)

∗ωi ∧ · · · ∧ (lg)
∗ωn = ω1 ∧ · · · ∧ ωn.

Hence, we prove every Lie group has a left-invariant volume form. In particular, a Lie group is
always orientable. Since a similar proof would give the existence of a right-invariant volume form,
we have

Theorem 3.1.1.1. If G is a Lie group, the Radon measure comes from the volume form. Moreover,
there exists a left-invariant volume form. Also, there exists a right-invariant volume form. Note that
in general, theory are not equal. Furthermore, if G is compact, there exists a unique left-invariant
volume form with total volume 1.

In general, we have

Theorem 3.1.1.2 (Haar). Every locally compact topological group admits a left-invariant Radon
measure

Proof. See Ann. of Math. 34 , 1933, p.147.

Example 3.1.1.1. Let ω ∈ Ωn(Mn) be a volume form. So, ωp 6= 0 for all p ∈ M . For A ⊆ M ,
the measure µ(A) is given by

µ(A) =

∫

M
χAω =

∫

A
ω.

Note that by the previous remarks, we also have the evaluation map as an isomorphism, letting
LΩk(G) be the set of left-invariant k-forms,

ε : LΩk(G)→ ∧kT ∗eG = ∧kg∗.

Since left-multiplications commute right-multiplications, right-multiplications rg act on left-invariant
vector fields: Let X ∈ LX(G) and h, g ∈ G. We have

(lh)∗((rg)∗X) = ((lh)∗ ◦ (rg)∗)X = (lh ◦ rg)∗X = (rg ◦ lh)∗X = (rg)∗((lh)∗X) = (rg)∗X.

So, we define the adjoint representation:

Ad : G→ Aut(g) so that Ad(g)(X) = (rg−1)∗X where X ∈ g = LX(G).

Note that if we identify g with TeG rather than LX(G), we have for X ∈ LX(G),

(Ad(g)(X))e = (rg−1)∗(Xg) = (rg−1)∗((lg)∗Xe) = (rg−1 ◦ lg)∗(Xe).

That is, letting rg−1 ◦ lg = ιg, conjugation by g, we have

Ad(g) = (ιg)∗ on TeG = g.

For a reference, we give
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Remark 3.1.1.1.

G
ι−→Aut(G) by ι(g)(h) = ghg−1

G
Ad−−→ Aut(g) = Aut(TeG) ∼= GL(n,R) by Ad(g)(v) = (ιg)∗(v)

G
Ad−−→ Aut(g) = Aut(LX(G)) ∼= GL(n,R) by Ad(g)(X) = (rg−1)∗(X)

LX(g) = g
ad−→ Der(g) ∼=Mn(R) by ad(X)Y = [X,Y ].

Note that derivations are infinitesimal automorphisms: Since TidGL(n,R) ∼=Mn(R) = End(TeG),
we have a commutative diagram

G
Ad−−−→ Aut(g) = Aut(TeG) ∼= GL(n,R)

exp

x exp

x

g ∼= TeG
(Ad)∗=ad−−−−−−→ Der(g) ∼= End(g) ∼= End(TeG) ∼= TidGL(n,R) = gl(n,R).

Exercise 3.1.1.1. Show that Ad(g) is a Lie algebra automorphism.

Proof. It suffices to show that Ad(g)[X1, X2] = [Ad(g)X1,Ad(g)X2] = [(rg−1)∗(X1), (rg−1)∗(X2)].
Note that (rg−1)∗(Xi) and Xi are (rg−1)-related for i = 1, 2. So, by Exercise 2.1.8.1, we conclude
that [X1, X2] and [(rg−1)∗(X1), (rg−1)∗(X2)] are (rg−1)-related. That is,

Ad(g)[X1, X2] = (rg−1)∗[X1, X2] = [(rg−1)∗(X1), (rg−1)∗(X2)].

Note Ado states that every Lie algebra has a faithful representation by a matrix group, some
gl(m,R). However, from the example of the Heisenberg group, we know that not every Lie group
has a faithful representation by a matrix group. Since (ιg)∗ = Ad(g), it is easy to see that the
center of G is the kernel of Ad, i.e.,

Z(G) = ker(Ad).

Hence, Ad is not a faithful representation if Z(G) 6= id. Also, clearly,

Ad(G) ∼= G/Z(G).

From this we have

Definition 3.1.1.1. We say G is adjoint if Ad : G→ Aut(g) is faithful, equivalently, Z(G) = id.

Remark 3.1.1.2. g is semisimple if and only if Z(G) is a finite group.

Example 3.1.1.2. Since the center of SL(2,R) = {±I2}, we have

Ad(SL(2,R)) ∼= SL(2,R)/{±I2} = PSL(2,R).

Also,
Ad(SU(2)) ∼= SU(2)/{±I2} = PU(2) ∼= SO(3).
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Example 3.1.1.3. Let g ∈ G where G is a n-dimensional Lie group. Since Ad(g) ∈ Aut(g), we
have

(rg−1)∗ = Ad(g) : TeG→ TeG.

Let v1, . . . , vn be a basis of TeG. So, we have

Ad(g)(vi) =
n∑

j=1

aijvj .

Since we know that LΩn(G) ∼= ∧nT ∗eG, by the fact that G acts on LΩn(G) by right multiplications,
so that (rg−1)∗ is a graded Lie algebra homomorphism ,and using the dual basis v∗i for i = 1, . . . , n

(rg−1)∗(v∗1 ∧ · · · ∧ v∗n) = (Ad(g))∗(v∗1 ∧ · · · ∧ v∗n)

= (
n∑

j=1

a1jv
∗
j ) ∧ · · · ∧ (

n∑

j=1

anjv
∗
j )

= det((Ad(g))∗)v∗1 ∧ · · · ∧ v∗n
= det(Ad(g))v∗1 ∧ · · · ∧ v∗n.

So, defining

G
Ad−−→ Aut(g) det−−→ R×, i.e., a modular function det ◦Ad on G,

we conclude that det ◦Ad ≡ 1, i.e., G is unimodular, if and only if a left-invariant volume form is
right-invariant. That is, G is unimodular if and only if there exists a bi-invariant volume form on
G.

Example 3.1.1.4. Let

G = Aff+(R) = {
(
y x
0 1

)
| x, y ∈ R and y > 0}.

G is a connected open multiplicative subgroup of GL(2,R). So, it is a Lie group. Identify (x, y) with(
y x
0 1

)
. So, the identity of G becomes (0, 1). Note that

l(a,b)(x, y) = (a+ bx, by).

Since left-invariant vector fields on G is completely determined by elements of T(0,1)G by the equation

dl(a,b)(1, 0) = dl(a,b)(
∂

∂x
) = (

∂

∂x
)(a+ bx, by) = (b, 0) = b

∂

∂x

dl(a,b)(0, 1) = dl(a,b)(
∂

∂y
) = (

∂

∂y
)(a+ bx, by) = (0, b) = b

∂

∂y
,

we conclude that

X(x,y) = y
∂

∂x
and Y(x,y) = y

∂

∂y
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are left-invariant vector fields on G. Note that [y∂y, y∂x] = y∂x says that g is a 2-dimensional non
abelian Lie algebra. Now look at LΩ1(G) = g∗. Clearly, the basis of LΩ1(G) is {y−1dx, y−1dy}. Notice
that since y : G→ R+, we have

log y : G→ R.

In particular, d(log y) = y−1dy. A left-invariant volume form is

y−1dx ∧ y−1dy = y−2dx ∧ dy, which is everywhere nonzero.

Now, we shall do the exactly the same things for right-invariant vector fields. So, we have right-invariant
vector fields

∂

∂x
and x

∂

∂x
+ y

∂

∂y
.

The basis of RΩ1(G) is {dx, y−1dy} and a right-invariant volume form is

dx ∧ (y−1dy) = y−1dx ∧ dy.

From this, we observe that comparing the flows, the dynamics and behaviors of left-invariant vector
fields and right-invariant vector fields are very different even though the Lie algebras are isomorphic.

Exercise 3.1.1.2. Compute adjoint representations.

Proof. Note that Ad(a, b) = (ι(a,b))∗. Since

(
b a
0 1

)
·
(
y x
0 1

)
·
(
1
b −a

b
0 1

)
=

(
y bx− ay + a
0 1

)
,

we have

dι(a,b)(1, 0) = dι(a,b)(
∂

∂x
) = (

∂

∂x
)(bx− ay + a, y) = (b, 0)

dl(a,b)(0, 1) = dl(a,b)(
∂

∂y
) = (

∂

∂y
)(bx− ay + a, y) = (−a, 1).

Hence,

Ad(a, b) = (ι(a,b))∗ =

(
b −a
0 1

)
.

3.1.2 Maurer-Cartan Forms

Let g be the Lie algebra of left-invariant vector fields on a Lie group G and g∗ be the dual vector
space of g. By letting T : Aut(g)→ Aut(g∗) by T (f) = fT the transpose of f , we have a coadjoint
map Ad∗ from the following commutative diagram:

G
Ad

∗

−−−→ Aut(g∗)

Ad

y
Aut(g)

¡
¡
¡µT
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Definition 3.1.2.1 (Symplectic Structure). Let M 2n be a 2n-dimensional smooth manifold
and ω ∈ T ∗M ⊗ T ∗M be a nondegenerate bilinear form:

ω : TM × TM → R.

Note that ω is called a Riemannian metric if it is nondegenerate and symmetric. If ω is nonde-
generate and skew-symmetric bilinear form satisfying

dω = 0,

we call ω a symplectic structure on M .

Definition 3.1.2.2 (Almost Symplectic Structures). Let ω =
∑2n

i,j aijdxi ∧ dxj be a 2-form

on smooth manifold M 2n. We say ω is an almost symplectic structure if

det((aij)2n×2n)) 6= 0.

That is, ω is nondegenerate.

Note that nondegeneracy of ω ∈ Ω2(M) implies that 0 6= ω ∧ · · · ∧ ω︸ ︷︷ ︸
n

∈ Ω2n(M) is the volume

form and the Darboux’s theorem as some disguise of the Frobenius theorem tells us that dω = 0
implies that ω is locally nothing but the standard symplectic structure dx1 ∧ dy1 + · · ·+ dxn ∧ dyn
of Euclidean space R2n.

Exercise 3.1.2.1. Using a Lie algebra structure on g, construct a symplectic structure on an orbit

G · ψ = {Ad∗(g)(ψ) | g ∈ G} where ψ ∈ g∗.

Sketch of Proof. Since ψ ∈ g∗, we have dψ ∈ ∧2g∗ and d ◦ dψ = 0. Let

h = {X ∈ g | dψ(X,Y ) = 0 for all Y ∈ g}.

Using Theorem 2.2.3.4, it is easy to see that h is a Lie subalgebra of g. So, there exists a closed
Lie subgroup H of G corresponding to h, which we shall prove later. Now let

π : G→ G/H. Note that G/H is a smooth manifold.

Let π∗(d̂ψ) = dψ. Since dψ is skew-symmetric, d̂ψ is skew-symmetric. Since

0 = d ◦ dψ = dπ∗(d̂ψ) = π∗(d ◦ d̂ψ),

and π∗ is a monomorphism, we have d ◦ d̂ψ = 0. By the construction of G/H, it is easy to see that

d̂ψ is nondegenerate. That is, d̂ψ is a symplectic structure of G/H. Now, letting π∗(ψ̂) = ψ, define

fmH : G→ G/H by fmH(g) = gmH and

F : G/H → g by F (gmH) = Ad∗(g)(f∗mH(ψ̂)).

99



Remark 3.1.2.1. From this, we deduce that the G-orbits in g∗ have invariant symplectic structures
and dimG·ψ is even. A Poisson manifoldM is a smooth manifold in which C∞(M) is a Lie algebra.
Note that g∗ is an example of Poisson manifolds, since C∞(g∗) = g.

Notation 3.1.2.1. Let
Ωk(G, g)

def
= LΩk(G)⊗R g.

In other words, Ωk(G, g) = ∧kg∗ ⊗R g. So, if ξ ∈ Ωk(G, g), then

ξ =
∑

ωi ⊗R Xi where ωi ∈ LΩk(G) and Xi ∈ LX(G).

Since
ξ =

∑
ωi ⊗R Xi ∈ Γ(Hom(TG× · · · × TG︸ ︷︷ ︸

k

, g)),

ξ is nothing but a g-valued left invariant k-form.

Now we define a derivation d of degree 1 on Ωk(M, g) by the following way:

d : Ωk(M, g)→ Ωk+1(M, g) by d(α⊗X) = dα⊗X.

It is easy to see that d is a derivation. Also, we will define a graded algebra structure on Ω∗(M, g),
using Lie algebra structures of g∗ and g:

Ωk1(M, g)× Ωk2(M, g)
[,]→ Ωk1+k2(M, g) by [α⊗X,β ⊗ Y ] = (α ∧ β)⊗ [X,Y ].

Note that we can easily check that it defines a graded algebra on Ω∗(M, g), which is not a graded
Lie algebra by the next theorem.

Theorem 3.1.2.1 (Maurer-Cartan structure equation). Let X1, . . . , Xn be a basis of g and
ω1, . . . , ωn be the corresponding dual basis of g∗. Note that an element of g∗ is called a Maurer-

Cartan form on M . Let ω =
∑n

k=1 ωk ⊗Xk and [Xi, Xj ] =
∑n

k=1 c
k
ijXk. We have

dωk = −
∑

i<j

ckijωi ∧ ωj and dω +
1

2
[ω, ω] = 0.

Proof. Note that

d(ωk ⊗Xk) = dωk ⊗Xk = (
∑

i<j

ekijωi ∧ ωj)⊗Xk.

Consider [Xi, Xj ] =
∑n

s=1 c
s
ijXs. Even though we need the following property in this proof, we

want to note that by the skew-symmetry and the Jacobi identity, we have

csij = −csji and
n∑

r=1

crijc
s
rk + crjkc

s
ri + crkic

s
rj = 0 for all i, j, k, s = 1, . . . , n.

Note that the second equation shows that a Lie algebra structure gives an algebraic variety. Now,
let us get back to the proof. We will show that ckij = −ekij . By Theorem 2.2.3.3 and recalling

100



ωi(Xj) = δij , Kronecker’s delta, so constant in any cases, we have

−eki1j1 = −
∑

i<j

elijωi ∧ ωj(Xi1 , Xj1) = −dωk(Xi1 , Xj1)

= −Xi1(ωk(Xj1)) +Xj1(ωk(Xi1)) + ωk([Xi1 , Xj1 ])

= ωk([Xi1 , Xj1 ]) = ωk(
n∑

s=1

csi1j1Xs) = cki1j1

Using ckij = −ckji and the skew-symmetry of wedge products, we have

[ω, ω] = [
n∑

i=1

ωi ⊗Xi,
n∑

j=1

ωj ⊗Xj ] =
n∑

i=1

n∑

j=1

[ωi ⊗Xi, ωj ⊗Xj ] =
n∑

i=1

n∑

j=1

(
(ωi ∧ ωj)⊗ [Xi, Xj ]

)

=
n∑

i=1

n∑

j=1

(
(ωi ∧ ωj)⊗

n∑

k=1

ckijXk

)
=

n∑

k=1

( n∑

i=1

n∑

j=1

ckij(ωi ∧ ωj)⊗Xk

)
=

n∑

k=1

2
∑

i<j

ckij(ωi ∧ ωj)⊗Xk

= −2
n∑

k=1

∑

i<j

ekij(ωi ∧ ωj)⊗Xk = −2
n∑

k=1

(dωk ⊗Xk) = −2d(
n∑

k=1

ωk ⊗Xk) = −2dω.

Remark 3.1.2.2. Letting X1, . . . , Xn be a basis of g and ω1, . . . , ωn be the corresponding dual basis
of g∗, we have the Maurer-Cartan form

ω =
n∑

k=1

ωk ⊗Xk.

So, we have ω(Xj) =
∑n

k=1 ωk(Xj)⊗Xk = Xj. In this consideration, we have another description
of the Maurer-Cartan form: Since an element of g is completely determined by TeG, we have

id : TeG→ g by id(v) = dlg(v).

Note that dlg(v) is a vector field, i.e., dlg(v) ∈ TgG for each g ∈ G. The Maurer-Cartan form is
corresponding to the identity map id.

Note that dlg−1 : TgG→ TeG is an isomorphism. If {v1, . . . , vn} is a basis of TeG, then we have
n vector fields dlg(vi) for i = 1, . . . , n. Using the fact dlg is an isomorphism for each g ∈ G, it is easy
to see that those vector fields are linearly independent. Recalling Exercise 2.1.8.2, we conclude that
every Lie group is parallelizable. Especially, we call dlg a trivialization ( resp. parallelization ) of
TG ( resp. G). So in general we have there exists a 1-from ω ∈ Ω(M, g) such that dω+ 1

2 [ω, ω] = 0
if and only if TM is parallelizable. Also, in the case of a Lie group G, if the Lie algebra g is abelian,
we have dω = 0 by the equation dω + 1

2 [ω, ω] = 0. So, if dω 6= 0, then g can not be abelian. That
is, the Maurer-Cartan equation shows that whether or not g is abelian. Suppose that we have a
Lie group homomorphism ϕ : G → H between two Lie groups, G,H. Recalling Exercise 2.1.8.1,
we note that what Exercise 2.1.8.1 tells us is that dϕ is a Lie algebra homomorphism: Recall that
we say X ∈ LX(G) is ϕ-related to Y ∈ LX(H) if

dϕ(Xg) = Yϕ(g).

101



The claim is that X is ϕ-related to Φ(X):

g TeG

Φ

y
y(dϕ)e

h TeH

Note that ϕ(e) = e implies that (Φ(X))e = dϕ(Xe). Also, since ϕ is a homomorphism, we have

lϕ(g) ◦ ϕ(a) = ϕ(g) · ϕ(a) = ϕ(ga) = ϕ ◦ lg(a).

So, we also have dlϕ(g) ◦ dϕ = dϕ ◦ dlg. Hence,

Φ(X)ϕ(g) = dlϕ(g)(Φ(X)e) = dlϕ(g)(dϕ(Xe)) = dϕ(dlg(Xe)) = dϕ(Xg).

That is, X is ϕ-related to Φ(X). Therefore, Exercise 2.1.8.1 tells us that (dϕ)e is a Lie algebra
homomorphism and so is Φ. However, what is remarkable is that the converse is also true. That is,
every Lie algebra homomorphism gives rise to a Lie group homomorphism. See the Warner’s book p.

94.

3.1.3 Almost Complex structures

Let E be a k-plane field of a tangent bundle TM of a smooth manifold M . Define a projection

π : X(M)
def
= Γ(TM)→ Γ(TM/E).

Of course, TM/E is called a normal bundle of a foliation F if E is integrable. Using the projection,
we now define

ΩE : Γ(E)× Γ(E)→ Γ(TM/E) by ΩE(X,Y ) = π([X,Y ]).

It is easy to see that the Frobenius theorem can be reformulated as follows:

ΩE ≡ 0 if and only if E is integrable.

Note that ΩE is C∞(M)-bilinear:

ΩE(fX, gY ) = π([fX, gY ]) = π(f(Xg)Y + fg[X,Y ]− g(Y f)X) = fgπ([X,Y ]) = fgΩE(X,Y ).

Definition 3.1.3.1 (Complex Structures on a vector space). Let V be a real vector space.
A complex structure J on V is an R-linear isomorphism such that J 2 = −id.

Note that if V has a complex structure, it is obvious that V can not have eigenvalues of J . That
is, V only has eigenpaires of J . Hence , V is necessarily even dimensional.

Definition 3.1.3.2 (Complex Structure on a manifold). A complex structure ( holomorphic
structure ) on M is an atlas of holomorphic patches. To avoid confusion, we will call this a
holomorphic structure on M .

Exercise 3.1.3.1. Show that there is one-to-one correspondence between the set of complex struc-
tures of R2 and SL(2,R)/SO(2).
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Proof. Note that by Example 1.2.2.1, there is the standard identification of GL(1,C) ↪→ GL(2,R).
Moreover, we have

GL(1,C) ∼= {A ∈ GL(2,R) | A−1 ·
(

0 1
−1 0

)
·A =

(
0 1
−1 0

)
}.

So, letting J =

(
0 1
−1 0

)
, which is called the standard complex structure on R2, we have a one-to-

one correspondence

GL(2,R)/GL(1,C)↔ the set of complex strucures on R2 by [A] 7→ A−1JA.

Note that (A−1JA)2 = −id. It is easy to see that GL(2,R)/GL(1,C) ∼= SL(2,R)/SO(2), since
id2,−id2 ∈ GL(1,C).

Definition 3.1.3.3 (Almost Complex Structures). An almost complex structure on M is a
complex structure on TM . That is, an almost complex structure J is a smooth section of TM , i.e.,
J ∈ X(M) such that (Jm)

2 = −id where Jm is the restriction on TmM .

Definition 3.1.3.4 (Almost Complex manifold). If M 2n admits an almost complex structure,
it is called an almost complex manifold.

Example 3.1.3.1. If we think an n-dimensional complex manifold as a 2n-dimensional real smooth
manifold, then

√
−1, which comes from a holomorphic structure of M , gives an almost complex

structure on the 2n-dimensional real smooth manifold. Hence we conclude that a complex manifold
induces an almost complex structure on its underlying smooth manifold.

Remark 3.1.3.1. Obviously, an almost complex structure gives a complex structure on each tan-
gent space TmM . However, even though each tangent space TmM having a complex structure does
not guarantee that M has an almost complex structure. Clearly, the obstruction is the smoothness
of patching process. That is a problem of integrability. Newlander and Nirenberg proved that inte-
grable almost complex manifold has a unique holomorphic coordinate patches, which is induced form
the almost complex structure. Of course, we have not defined what an integrable almost complex
structure means. This is the content of the next discussion.

3.1.4 Integrable almost Complex Structure

Let M2n be a 2n-dimensional real smooth manifold. Suppose that TmM has a complex structure
Jm. By complexifying the tangent space, we have 2n-dimensional complex vector space TmM⊗R C.
Extend Jm to Tm ⊗R C in the following ways: For c ∈ C and v ∈ TmM ,

J̃m(v ⊗ c) = Jm(v)⊗ c.

So, J̃m has eigenvalues i,−i. Let the eigenspaces corresponding to i,−i be

T 1,0m M = {w ∈ TmM ⊗R C | J̃m(w) = iw}
T 0,1m M = {w ∈ TmM ⊗R C | J̃m(w) = −iw}
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Note that T 1,0m M and T 0,1m M are n-dimensional complex vector spaces. So, identifying T 1,0m M and
T 0,1m M as 2n-dimensional real vector spaces, respectively, we have

T 1,0m M ∼=R T
0,1
m M ∼=R TmM as 2n-dimensional real vector spaces.

So, now if we assume that TM has an almost complex structure J as a smooth section, then we
have

T 1,0M = {w ∈ TM ⊗R C | J̃(w) = iw}
T 0,1M = {w ∈ TM ⊗R C | J̃(w) = −iw}.

Definition 3.1.4.1 (Integrability of J). We say that an almost complex structure J is integrable
if Γ(T 1,0M) and Γ(T 0,1M) are complex Lie subalgebras of Γ(TM ⊗R C) where Γ means the set of
smooth sections.

Now, we show a differential form version of integrability of J , since as always forms are
much more powerful tools than vector fields.

Notation 3.1.4.1. LetM be a smooth 2n-dimensional real manifold with an almost complex struc-
ture J . Now, we fix notations in this subsection as follows:

Er(M) = Γ(∧rT ∗M) and Er(M) = Γ(∧r(TM ⊗R C)∗).

Note that Er(M) is nothing but the set of complex valued C∞(M) r-forms. Since

Hom(TM ⊗R C,C) = (TM ⊗R C)∗ = (T 1,0M)∗ ⊕ (T 0,1M)∗,

we also have

Ep,q(M) = Γ(∧p(T 1,0M)∗)⊕ Γ(∧q(T 0,1M)∗). So, Er(M) =
∑

p+q=r

Ep,q(M).

Since we have the exterior derivation d on Er(M), we can extend d on Er(M). So,

d : Ep,q →
∑

r+s=p+q+1

Er,s(M).

Clearly, d ◦ d = 0. Letting a projection πp,q : Ep+q → Ep,q(M), we also define on Ep,q(M),

∂ = πp+1,q ◦ d and ∂ = πp,q+1 ◦ d.

Note that in this description we have

dE1,0 = ∂E1,0(M) + ∂E1,0 + π0,2 ◦ dE1,0 ⊆
∑

p+q=2

Ep,q(M)

dE0,1 = ∂E0,1(M) + ∂E0,1 + π2,0 ◦ dE0,1 ⊆
∑

p+q=2

Ep,q(M).

Theorem 3.1.4.1. J is integrable if and only if π0,2 ◦ dE1,0 ≡ 0 and π2,0 ◦ dE0,1 ≡ 0.
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Proof. If J is integrable, then by definition Γ(T 1,0M) and Γ(T 0,1M) are complex Lie subalgebras
of Γ(TM ⊗R C). Let

Ann1(T 1,0M) = {ω ∈ E1(M) | ω(X) = 0 for all X ∈ Γ(T 1,0M)}.
Clearly,

Ann1(T 1,0M) = E0,1.
Since Theorem 2.2.3.3 is also valid in this case, we have

dω ∈ Ann2(T 1,0M) = E1,1(M)⊕ E0,2.
Since dω = ∂ω+ ∂ω+ π2,0 ◦ dω, we conclude that π2,0 ◦ dE0,1 ≡ 0. By the same reasoning, we have
π0,2 ◦ dE1,0 ≡ 0. Also, we get the converse by imitating the proof by backward.

Since we always have d = ∂ + ∂ on E0(M), and E1(M) and E0(M) generate E∗(M), by Theo-
rem 3.1.4.1, we have the following definition.

Definition 3.1.4.2. J is integrable if d = ∂ + ∂ on E∗(M).

Note that if d = ∂ + ∂, then d ◦ d = 0 implies that

∂ ◦ ∂ = 0 and ∂ ◦ ∂ = 0.

Example 3.1.4.1. Let M = R2. Then TM has a basis { ∂∂x , ∂∂y}. Suppose an almost complex
structure J is given by

J(
∂

∂x
) =

∂

∂y
and J(

∂

∂y
) = − ∂

∂x
.

Note that J2 = −id. So, an element in 2-dimensional complex vector space TM ⊗R C is given by

(a+ ib)
∂

∂x
+ (c+ id)

∂

∂y
where a, b, c, d,∈ R.

Since T 1,0M = {w ∈ TM ⊗R C | J̃(w) = iw}, we deduce that T 1,0(M) is 1-dimensional complex
vector space generated by

1

2
(
∂

∂x
− i ∂

∂y
), which is often denoted by

∂

∂z
.

Similarly, we have T 0,1(M) is 1-dimensional complex vector space generated by

1

2
(
∂

∂x
+ i

∂

∂y
), which is often denoted by

∂

∂z
.

Note that we call an element of ker∂ a holomorphic function on R2 where

E0(R2) d=∂+∂−−−−→ E1,0(R2)⊕ E0,1(R2).
So, if f is holomorphic, then

0 = ∂f =
∂f

∂z
dz =⇒ 1

2
(
∂f

∂x
+ i

∂f

∂y
) = 0.

By letting f = g + ih where g, h are smooth real-valued functions, we have the Cauchy-Riemann
equation.
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Exercise 3.1.4.1. Find a nonintegrable almost complex structure.

Information. Note that J is integrable if and only if the Nijenhuis tensor N(X,Y ) = 2([JX, JY ]−
[X,Y ]− J [X, JX]− J [JX, Y ]) = 0 for all X,Y ∈ X(M). There is a nonintegrable almost complex
structure on S6, which is induced by the Cayley numbers. See the Kobayashi’s book or Frölicher’s
paper “ Zur Differetialgeometrie der komplexen Struckturen ”, Math. Ann. 129 ( 1955 ), 50-95.

Example 3.1.4.2. Every even dimensional Lie group G admits a left-invariant almost complex
structure.

Proof. Note that we always have a complex structure on TeG. Let Je be a complex structure on
TeG. So, since TeG ∼= g, letting

Jg(Xg) = dlg ◦ Je ◦ dlg−1(Xg),

we have an almost complex structure J . By construction, (dlg)e ◦ Je = Jg, which means J is
left-invariant.

Note that a complex Lie group is a complex manifold with a holomorphic group operation.
From example 3.1.3.1, we know that the complex structure of a complex Lie group induces an
almost complex structure J .

Example 3.1.4.3. If G is a complex manifold and J is the almost complex structure induced from√
−1, then J is bi-invariant.

Proof. Since J acts on the complex Lie algebra g by multiplication by
√
−1 from J2 = −id, we

deduce that J is invariant under any element of Aut(g) which includes dlg and Ad(g) = drg−1 .
Hence, J is bi-invariant. Note that Ad(g) ◦ Je = Je ◦Ad(g).

Note that one of necessary conditions that we can make a 2n-dimensional real Lie group G into an
n-dimensional complex Lie group is that G admits a bi-invariant ( almost ) complex structure.

3.1.5 Darboux Derivative

Let M be a smooth manifold and G be a Lie group. Suppose that f : M → G is a smooth map.
So,we have

TmM
df−→ Tf(m)G

dl(f(m))−1

−−−−−−→ TeG = g.

Definition 3.1.5.1 (Darboux Derivatives). We define the Darboux derivative Df of f to be

(Df)m
def
= dl(f(m))−1 ◦ df.

Note that Df is nothing but a g-valued 1-form: Since dl(f(m))−1 ◦ df : TmM → g, for v ∈
TmM we have (Df)m(v) ∈ g. We know that f : M → G induces f ∗ : Ω1(G, g) → Ω1(M, g) by
f∗(ω ⊗X) = (f∗ω)⊗X.

Theorem 3.1.5.1. Let X1, . . . , Xn be a basis of g and ω1, . . . , ωn the corresponding dual basis of
g∗, we have

f∗(
n∑

k=1

ωk ⊗Xk) = Df.
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Proof. It suffices to show that
n∑

k=1

(f∗ωk)m ⊗ (Xk)e = (Df)m.

Note that since ωi is a left-invariant 1-form, we have

(ωi)h = (dl∗gω)h for all g, h ∈ G.
Let v ∈ TmM . Then (Df)m(v) = dl(f(m))−1 ◦df(v) = Ye where Y is the unique left-invariant vector
field corresponding Yf(m) = df(v). Let Ye =

∑n
k=1 ak(Xk)e. So, ak = (ω(Y ))e. Hence, we also have

n∑

k=1

(f∗ωk)m(v)⊗ (Xk)e =
n∑

k=1

((ωk)f(m) ◦ df(v))⊗ (Xk)e

=

n∑

k=1

((l∗(f(m))−1ωk)f(m) ◦ df(v))⊗ (Xk)e

=
n∑

k=1

((ωk)(f(m))−1·f(m) ◦ dl(f(m))−1 ◦ df(v))⊗ (Xk)e

=
n∑

k=1

((ωk)e ◦ dl(f(m))−1 ◦ df(v))⊗ (Xk)e

=

n∑

k=1

((ωk)e(Ye))⊗ (Xk)e

=
n∑

k=1

ak(Xk)e = Ye = (Df)m(v).

Clearly, f∗ commutes d:

Ω1(G, g)
f∗−−−→ Ω1(M, g)

d

y
yd

Ω2(G, g)
f∗−−−→ Ω2(M, g)

Moreover, it is easy to see that f is a Lie algebra homomorphism:

Ωp(G, g)× Ωq(G, g)
f∗−−−→ Ωp(M, g)× Ωq(M, g)

[,]

y
y[,]

Ωp+q(G, g)
f∗−−−→ Ωp+q(M, g)

Combining these with Theorem 3.1.5.1 and Maurer-Cartan structure equation, we have

d(Df) +
1

2
[Df,Df ] = d(f∗(

n∑

k=1

ωk ⊗Xk)) +
1

2
[f∗(

n∑

k=1

ωk ⊗Xk), f
∗(

n∑

k=1

ωk ⊗Xk)]

= f∗(d(
n∑

k=1

ωk ⊗Xk) +
1

2
[
n∑

k=1

ωk ⊗Xk,
n∑

k=1

ωk ⊗Xk]) = 0.
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That is, every Darboux derivative of a smooth map f satisfies the Maurer-Cartan structure equation.

Exercise 3.1.5.1.
D(lg ◦ f) = Df.

Proof.
(D(lg ◦ f))m(v) = dl(g·f(m))−1 ◦ dlg ◦ df(v)

= dl(f(m))−1·g−1·g ◦ df(v) = dl(f(m))−1 ◦ df(v)
= (Df)m(v).

Amazingly, the converse is also true. Notice that this is similar to a local Poincaré lemma.

Theorem 3.1.5.2. Let G be a Lie group with the Lie algebra g. Given η ∈ Ω1(M, g) such that
dη + 1

2 [η, η] = 0, then for each point p ∈ M , there is a neighborhood U of p and a smooth map
f : U → G such that

Df = η|U .

Proof. Note that as we already have seen, constructing a smooth map f :W → G is equivalent to
finding a plane field on W ×G having graph(f) as an integral submanifold of W ×G. Let πW and
πG be projections from W ×G to W and G, respectively, where W is a neighborhood of p. Letting
ω =

∑n
k=1 ωk ⊗Xk the Maurer-Cartan form, we define recalling η|W ∈ Ω1(W, g),

Φ = π∗Gω − π∗W (η|W ) ∈ Ω1(W ×G, g).

Let

E = ker(Φ) =
n⋂

i=1

ker(Φi) where Φ =
n∑

i=1

Φi ⊗Xi, i.e., Φi ∈ LΩ1(W ×G).

Note that if Y ∈ g, we have Y =
∑n

k=1 akXk where ak are smooth. Since {X1, . . . , Xn} is a basis,
ak are necessarily constant by the equation ak(e) · dlg(Xe) = dlg((ak(e)Xe) = ak(g)Xg. So, by the

R-linearity of tensor product, we can decompose

Φ =
n∑

i=1

Φi ⊗Xi, i.e., Φi ∈ LΩ1(W ×G).

The claim is that E is an integrable distribution of T (W × G) = TW × TG. By the Frobenius
theorem, it suffices to show that dAnn1(E) ⊂ Ann2(E). Note that Ann1(E) is generated by Φ
by construction. So, it is sufficient to show that dΦ ∈ Ann2(E). Then

dΦ = π∗Gdω − π∗Wd(η|W ) = −1

2
(π∗G[ω, ω]− π∗W [η|W , η|W ])

= −1

2
([π∗Gω, π

∗
Gω]− [π∗W (η|W ), π∗W (η|W )])

= −1

2
([π∗Gω − π∗W (η|W ), π∗Gω − π∗W (η|W )] + [π∗Gω − π∗W (η|W ), π∗W (η|W )] + [π∗W (η|W ), π∗Gω − π∗W (η|W )])

= −1

2
([Φ,Φ] + [Φ, π∗W (η|W )] + [π∗W (η|W ),Φ]).

108



If Y1, Y2 ∈ E, then Φ(Y1) = Φ(Y2) = 0, since E =
⋂n
i=1 ker(Φi). Hence dΦi(Y1, Y2) = 0. That is,

dΦ ∈ Ann2(E). Now, the only remaining thing to show is that there exists a neighborhood U ⊆W
of p such that

Df = η|U .
Recalling Exercise 2.2.4.3, since Φ = π∗Gω − π∗W (η|W ) generates the differential ideal Ann1(E) in
Ω1(W ×G, g), there do exist a neighborhood U ⊆W of p and a smooth map f : U → G such that
f∗ω = η|U . By Theorem 3.1.5.1, we have

η|U = f∗ω = f∗(
n∑

k=1

ωk ⊗Xk) = Df.

3.1.6 When M is GL(n,R) and G is GL(n,R) as a representations

Recall that the exterior derivative d is defined on Ω∗(M) where M is a smooth manifold. Suppose
that g ∈ GL(n,R) as a manifold. Clearly, we have a representation

g 7→



x11(g) · · · x1,n(g)

...
. . .

...
xn1(g) · · · xnn(g)




We will denote this map by X , which is nothing but the identity map, from GL(n,R) to GL(n,R):

X : GL(n,R)→ GL(n,R),

So, regarding the coordinate functions xij as elements of Ω0(GL(n,R)), it makes sense to define
dX by

dXg def=



dx11(g) · · · dx1,n(g)

...
. . .

...
dxn1(g) · · · dxnn(g)




Clearly, dX is an (n×n) matrix of 1-forms onGL(n,R), i.e., dXg ∈Mn(R) and dxij ∈ Ω1(GL(n,R)).
Since the Lie algebra of Lie group GL(n,R) is Mn(R);

gl(n,R) =Mn(R),

we conclude that dX is a gl(n,R)-valued 1-form:

dX ∈ Ω1(GL(n,R), gl(n,R)) = Ω1(GL(n,R),Mn(R)).

Hence, we have
dXh : Th(GL(n,R))→ gl(n,R) ∼=Mn(R).

An explicit formula is given by for v ∈ Th(GL(n,R)),

(dXh)(v) =



dx11(h)(v) · · · dx1,n(h)(v)

...
. . .

...
dxn1(h)(v) · · · dxnn(h)(v)


 =



(v(x11))(h) · · · (v(x1,n))(h)

...
. . .

...
(v(xn1))(h) · · · (v(xnn))(h)




109



Note that we regard v as a differential operator so that v(xij) ∈ C∞(GL(n,R)). If we identify v
with n× n-matrix;

v =



a11 · · · a1,n
...

. . .
...

an1 · · · ann


 ∈Mn(R),

it is easy to see that (v(xij))(g) = aij , a constant function on GL(n,R). So, the above formula
becomes

(dXh)(v) = v.

Actually, an easier way to see this is the following: We know that X : GL(n,R)→ GL(n,R) is the
identity map. So,

dX : T (GL(n,R))→ T (GL(n,R)) is the identity map.

Hence,
dXh : Th(GL(n,R))→ Th(GL(n,R)) ∼=Mn(R)

is the identity map. Now, we define l∗hdX : For v ∈ Tp(GL(n,R)),

(l∗hdX )p(v) = dXhp(dlh(v)) =



dx11(hp)(dlh(v)) · · · dx1,n(hp)(dlh(v))

...
. . .

...
dxn1(hp)(dlh(v)) · · · dxnn(hp)(dlh(v))


 .

Note that dlh(v) ∈ Thp(GL(n,R)) and l∗h : Ω1(GL(n,R),Mn(R)) → Ω1(GL(n,R),Mn(R)). From
this, it is easy to see that dX is not a left-invariant gl(n,R)-valued 1-form: Note that by the above
discussion, we have

(dXp)(v) = v and dXhp(dlh(v)) = dlh(v).

Since dlh(v) =
d
dt |t=0lh(p+ tv) = hv, we have

(l∗hdX )p(v) = dXhp(dlh(v)) = dlh(v) = hv = h · (dX )p(v).

Notice that

h · (dX )p(v) =



x11(h) · · · x1,n(h)

...
. . .

...
xn1(h) · · · xnn(h)


 ·



(v(x11))(p) · · · (v(x1,n))(p)

...
. . .

...
(v(xn1))(p) · · · (v(xnn))(p)




Now, define a map

X−1 : GL(n,R)→ GL(n,R) by X−1(g) 7→



x11(g

−1) · · · x1,n(g
−1)

...
. . .

...
xn1(g

−1) · · · xnn(g
−1)




Similar procedures shall give a gl(n,R)-valued 1-form X−1 ·dX ∈ Ω1(GL(n,R),Mn(R)). Note that
for g ∈ GL(nR), we have

X−1g · (dX )g =



x11(g

−1) · · · x1,n(g
−1)

...
. . .

...
xn1(g

−1) · · · xnn(g
−1)


 ·



dx11(g) · · · dx1,n(g)

...
. . .

...
dxn1(g) · · · dxnn(g)


 ∈Mn(R).
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For v ∈ Tp(GL(n,R)), we define

(l∗h(X−1 · dX ))p(v) = X−1hp · dXhp(dlh(v)).

Theorem 3.1.6.1. X−1 · dX is a left-invariant gl(n,R)-valued 1-form.

Proof. Since X−1 : GL(n,R)→ GL(n,R) is a homomorphism with X−1hp = X−1p · X−1h and it is not

hard to see that X−1h = Xh−1 = h−1, we have for v ∈ Tp(GL(n,R)),

(l∗h(X−1 · dX ))p(v) = X−1hp · dXhp(dlh(v)) = X−1hp · h · (dX )p(v)
= X−1p · X−1h · h · (dX )p(v) = X−1p · h−1 · h · (dX )p(v)
= X−1p · (dX )p(v) = (X−1 · dX )p(v).

Example 3.1.6.1. Let R+ be a connected component of GL(1,R). Note that we still have

Tg(R+) =M1(R) = R for g ∈ R+.

Let x be a coordinate function x : R+ → R, which is the identity map. Now, it is easy to see that

x−1dx = d log x.

It is obvious that dx is not left-invariant but d log x is left-invariant.

Remark 3.1.6.1. Imitating all the proofs so far, we also conclude that

(dX ) · X−1

is a right-invariant Maurer-Cartan form.

Now we calculate dX−1. First note that

Xg · X−1g =



x11(g) · · · x1,n(g)

...
. . .

...
xn1(g) · · · xnn(g)


 ·



x11(g

−1) · · · x1,n(g
−1)

...
. . .

...
xn1(g

−1) · · · xnn(g
−1)


 = Id(n×n).

Hence, we have for any g ∈ GL(n,R),

(dX )g · X−1g + Xg · (dX−1)g =



0 · · · 0
...

. . .
...

0 · · · 0


 = 0(n×n).

Therefore,

(dX−1)g = −X−1g · (dX )g · X−1g

= −



x11(g

−1) · · · x1,n(g
−1)

...
. . .

...
xn1(g

−1) · · · xnn(g
−1)


 ·



dx11(g) · · · dx1,n(g)

...
. . .

...
dxn1(g) · · · dxnn(g)


 ·



x11(g

−1) · · · x1,n(g
−1)

...
. . .

...
xn1(g

−1) · · · xnn(g
−1)


 .
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Example 3.1.6.2. Let R+ be a connected component of GL(1,R). Let x be a coordinate function
and x−1 : R+ → R, which is the inversion map. Note that x−1 is well-defined on R+. Now, it is
easy to see that

dx−1 = −x−2dx.

Remark 3.1.6.2. We know that the identity map X : GL(nR) → GL(n,R) induces the identity
map

(dX )g : Tg(GL(n,R))→ Tg(GL(n,R)) for all g ∈ GL(n,R).

However, the formula (dX−1)g = −X−1g · (dX )g · X−1g shows that the induced map (dX−1)g on
Tg(GL(n,R)) of the inversion map X−1 : GL(n,R) → GL(n,R) is not quite the identity. What
is true is that (dX−1)e = −id on Te(GL(n,R)) = gl(n,R) = Mn(R) as an additive group when
g = e the identity. This is a general phenomenon. A law of composition of Lie groups induces a law
of composition of their Lie algebras. The next two exercises shall give some clear view.

Exercise 3.1.6.1. Show that

(dX k)g =





∑k
i=1

k︷ ︸︸ ︷
Xg · · · (dX )g︸ ︷︷ ︸

ith

· · · Xg k is a posistive integer

∑k
i=1

k︷ ︸︸ ︷
X−1g · · · (dX−1)g︸ ︷︷ ︸

ith

· · · X−1g k is a negative integer

0 k = 0.

In particular. on Te(GL(n,R)) = gl(n,R) =Mn(R), we have

(dX k)e = k · id(n×n) for k ∈ Z.

Proof. This is nothing but the Leibniz rule of d. Also, note that

Xe = (dX )e = X−1e = id(n×n) and (dX−1)e = −id(n×n).

Exercise 3.1.6.2. Let h1 ∈ GL(n,R) and define

M : GL(n,R)→ GL(n,R) byM(g) = X (h1) · X (g).

We have
(dM)g : Tg(GL(n,R))→ Th1g(GL(n,R)) by (dM)g = Xh1 · (dX )g.

Proof. Using the Leibniz rule of d and (dX )h1 = 0 by the fact that Xh1 is constant as g ∈ GL(n,R)
varies, it is done.

The following example shall show that a law of composition of Lie groups induces a law of compo-
sition of their Lie algebras.
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Example 3.1.6.3. Define

M : GL(n,R)×GL(n,R)→ GL(n,R) byM(g, h) = X (g) · X (h) · X−1(g) · X−1(h).

We have
(dM)g,h : Tg(GL(n,R))× Th(GL(n,R))→ Tghg−1h−1(GL(n,R)) by

(dM)g,h = (dX )g ·Xh·X−1g ·X−1h +Xg ·(dX )h·X−1g ·X−1h +Xg ·Xh·(dX−1)g ·X−1h +Xg ·Xh·X−1g ·(dX−1)h.
In particular, letting e be the identity, we have

(dM)e,h : Te(GL(n,R))× Th(GL(n,R))→ Te(GL(n,R)).

Suppose that ve ∈ Te(GL(n,R)) and wh ∈ Th(GL(n,R)). It is easy to see that from the above
formula

(dM)e,h(ve, wh) = (Idn×n)e(ve)+(Idn×n)h(wh) ·X−1h −(Idn×n)e(ve)−(Idn×n)h(wh) ·X−1h = 0(n×n)

In general, by abusing notation, we write

(dM)g,e : Tg(GL(n,R))× Te(GL(n,R))→ Te(GL(n,R)) by (dM)g,e = 0

(dM)e,e : Te(GL(n,R))× Te(GL(n,R))→ Te(GL(n,R)) by (dM)e,e = 0.

The following example shall give some insight about what is really going on.

Example 3.1.6.4. Define

M : GL(n,R)×GL(n,R)→ GL(n,R) byM(g, h) = X (g) · X (h).

This is nothing but a usual operation on a Lie group as one can easily expect. We have

(dM)g,h : Tg(GL(n,R))× Th(GL(n,R))→ Tgh(GL(n,R)) by

(dM)g,h = (dX )g · Xh + Xg · (dX )h.
In particular, letting e be the identity, we have

(dM)e,e : Te(GL(n,R))× Te(GL(n,R))→ Te(GL(n,R)).

Suppose that ve ∈ Te(GL(n,R)) and we ∈ Te(GL(n,R)). It is easy to see that, reminding dX and
Xe are the identities, from the above formula

(dM)e,e(ve, we) = (Idn×n)e(ve) + (Idn×n)h(we) = ve + we.

This is, the multiplication M on a Lie group as a usual operation in a Lie group is transformed into
the addition (dM)e,e on the Lie algebra as a usual operation in the Lie algebra.

Now we show that X−1 · (dX ) satisfies the Maurer-Cartan equation.

Theorem 3.1.6.2. Let ω = X−1 · (dX ). Then

dω +
1

2
[ω, ω] = 0.
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Proof. Note that

dω = d(X−1 · (dX )) = (dX−1) · dX + X−1 · d(dX ) = −X−1 · (dX ) · X−1 · (dX ).

We know that for α⊗X,β ⊗ Y ∈ Ω1(G, g), we have defined

[α⊗X,β ⊗ Y ] = (α ∧ β)⊗ [X,Y ].

Recalling the matrix representation of X−1 · dX , a moment of thought gives that

[X−1 · dX ,X−1 · dX ] = X−1 · (dX ) · X−1 · (dX ) + X−1 · (dX ) · X−1 · (dX ).

Hence,

d(X−1 · dX ) + 1

2
[X−1 · dX ,X−1 · dX ] = 0.

Theorem 3.1.6.3 (Ado’s Theorem). Every Lie algebra g admits a faithful representation;

g ↪→ gl(n,R).

Theorem 3.1.6.4. If G is a Lie group with the Lie algebra g and a sub Lie algebra h ⊆ g, then
there exists a connected Lie subgroup H of G with the Lie algebra h.

Proof. Let h ⊆ g = X(G). Consider a plane field E on G spanned by h. So, we have

Γ(E) = {
∑

i

fiXi | Xi ∈ h, fi ∈ C∞(G)}.

Suppose that A,B ∈ Γ(E). Letting A =
∑
aiXi and B =

∑
biXi where ai, bi ∈ C∞(G), we have

[A,B] =
∑

i,j

ai(Xibj)xj +
∑

i,j

aibj [Xi, Xj ]−
∑

i,j

bj(Xjai)Xi.

Since h is a Lie subalgebra, we have [Xi, Xj ] ∈ h. So, we conclude that [A,B] ∈ Γ(E). hence, by
the Frobenius theorem, there exists the maximal integral submanifold H containing e ∈ G. Note
that by definition, a submanifold might not be an embedding and the maximality implies that H is
connected. Now, we are going to show H is a Lie subgroup of G. Let h ∈ H. Clearly e ∈ lh−1(H)
and we deduce that E is a left-invariant plane field, i.e., (lh−1)∗(E) = dlh−1(E) = E, since E is
generated by h, which is also generated by the set of left-invariant vector fields. So, we conclude
that lh−1(H) is an integral submanifold of (lh−1)∗(E) = dlh−1(E) = E. Without loss of generality,
assuming lh−1(H) to be maximal by extension, since lh−1(H) also contains e, by the uniqueness of
a maximal integrable submanifold through e, we conclude that

lh−1(H) = H.

So, we have that lh−1(g) = h−1g ∈ H for all g, h ∈ H. That is, H is stable under a C∞ mapping
(g, h) 7→ h−1g. Since e ∈ H, we conclude that H is a Lie subgroup of L.
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Example 3.1.6.5. Let T 2 = R2/Z2 be a torus. It is easy to see that

T(0,0)(T
2) = g = {a ∂

∂x
+ b

∂

∂y
| a, b ∈ R} = R2.

Notice that R2 is an abelian Lie algebra. So, since any linear subspaces of R2 form Lie subalgebras
of R2, there are the corresponding Lie subgroups of T 2. Suppose that h ⊆ g is generated by

a0
∂

∂x
+ b0

∂

∂y
.

It is easy to see that the corresponding Lie subgroup H is the skew-line of T 2 unless a0
b0
∈ Q. So,

H is not an embedding but a submanifold ( immersion ).

We know that every homomorphism of Lie groups gives a Lie algebra homomorphism. Now, we
investigate the converse.

Question 3.1.6.1. Does every homomorphism of Lie algebras g → h arise in this way? That is,
does every homomorphism of Lie algebras g→ h come from a homomorphism of Lie groups G→ H
where g and h are the Lie algebras of G and H, respectively?

In general, the answer is “No”.

Example 3.1.6.6. Let G = R/Z ∼= S1 and H = R. Note that G is not simply connected. It is
easy to see that the corresponding Lie algebras are g = R and h = R. We shall show that every Lie
group homomorphism from G to H induces a trivial Lie algebra homomorphism from g to h. So,
nontrivial Lie algebra homomorphisms from g to h, which obviously exists, can not come from their
Lie group homomorphism. Let G

ϕ−→ H be a Lie group homomorphism. Since

ϕ ◦ lg(g1) = ϕ(gg1) = ϕ(g)ϕ(g1) = lϕ(g) ◦ ϕ(g1),

we deduce that
(dϕ)g ◦ dlg = dlϕ(g) ◦ (dϕ)e.

Since dlg and dlϕ(g) are isomorphisms, we conclude that the linear map dϕ has a constant rank,
i.e., rank(dϕ) = constant. Note that it is well-known that any smooth map from a compact smooth
manifold has a maximum. That is, dϕ = 0 for some point in G. Hence, we have

dϕ ≡ 0.

However, if G is simply connected, we can give the affirmative answer to Question 3.1.6.1.
Before we give a its proof, we need some prerequisites.

3.1.7 Covering spaces of manifolds

Suppose that M
f−→ N be a continuous map from a topological manifold M to a smooth manifold

N . Assume that f is a local homeomorphism. That is, for all m ∈M , there exists a neighborhood
Um of m such that f |Um is a homeomorphism. Then by pulling back of the smooth structure of N
by f , we have a locally unique differentiable structure on M . Since smoothness is a local notion,
we infer that f become a smooth map. That is, there exists a smooth structure on M such that f
is a local diffeomorphism.
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Definition 3.1.7.1 (Covering spaces). Let M
f−→ N be a continuous map. We say that f is

a covering space if for all y ∈ N , there exists a neighborhood Vy of y in N such that for each
component U of f−1(Vy), we have

f |U : U → Vy is a homeomorphism.

Note that the we say that M is evenly covered when the above property occurs.

Note that it is well-known that if M
f−→ N is a covering space, then the induced map on the

fundamental groups π1(M)
f∗−→ π1(N) is injective. Also, from theorems in Algebraic topology, we

also have that given N , there exists a covering space, which is called a universal covering space

Ñ
f−→ N such that π1(Ñ) = 1.

In particular, this is unique up to homeomorphism and every other covering space of N is a quotient
of Ñ . Reminding Exercise 1.2.7.4, we have the followings:

Theorem 3.1.7.1. Every covering space of a Lie group is a Lie group.

From the proof of Exercise 1.2.7.4, we know that the universal covering space of a connected
Lie group H is given by

H̃ = {[γ] | γ : [0, 1]→ H where γ is a path starting at e ∈ H}.

Moreover, the covering map p : H̃ → H is given by p([γ]) = γ(1). So, it is easy to see that

p−1(e) = π1(H, e).

That is, since H̃ is a group and H̃
p−→H is a homomorphism as we have seen, we conclude that

kerp = π1(H, e), i.e., an exact sequence π1(H, e)→ H̃ → H.

Actually, since a connected Lie group is path connected, we have for any p ∈ H,

π1(H, p) = π1(H, e).

So, the sequence π1(H, e)→ H̃ → H also tells us that H̃ is a fiber bundle over H with fiber π1(H).

Example 3.1.7.1. If H = R/Z ∼= S1, then we have H̃ ∼= R and R p−→R/Z with

kerp = Z ∼= π1(S
1, e).

Note that if H = Rn/Zn ∼= S1 × · · · × S1︸ ︷︷ ︸
n

def
= Tn, then we have H̃ ∼= Rn and Rn p−→Rn/Zn with

kerp = Zn ∼= π1(T
n, e).

Also, if H = SO(3) ∼= RP3, then we have H̃ ∼= SU(2) ∼= H1
∼= S3 and SU(2)

p−→ SO(3) with

kerp = Z2 ∼= π1(SO(3), e).

Note that π1(SO(n)) = Z2 and the universal covering space of SO(n) is denoted by

S̃O(n) = Spin(n).
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From this, it is good to ask the next question.

Question 3.1.7.1. What group arises as π1(G) if G is a connected Lie group?

The answer is that only finitely generated abelian groups can arise as π1(G) if G is a
connected Lie group.

Theorem 3.1.7.2. Let G be a connected Lie group. Then π1(G) is abelian.

Proof. Let G̃
ϕ−→ G be a universal covering space of a connected Lie group G. We know that ϕ is a

homomorphism with
ker(ϕ) = π1(G).

We infer that π1(G) = ϕ−1(e) is a closed set with no accumulation points by the fact that ϕ
is evenly covered, i.e., ϕ−1(U) is a union of disjoint copies homeomorphic to U where U is a
small neighborhood of e the identity. So, π1(G) = ϕ−1(e) is discrete. Now, we shall show that any
topological discrete normal subgroup of a connected topological group is abelian: If D is topological
discrete normal subgroup of a connected topological group G, then for g ∈ G and δ ∈ D

δ 7→ gδg−1

gives a well-defined continuous action of G on D by the fact D is normal. Since D is discrete, it
must be a constant map by the continuity and discreteness. So, we conclude that

gδg−1 = eδe−1 = δ, which means D ∈ Center(G).

So, D is central. Hence, D is abelian. Since π1(G) is a discrete normal Lie subgroup of a connected
Lie group G, it is abelian.

In order to show that π1(G) is finitely generated, we need one of deep theorems in Lie group
theory. Without a proof, we state the following

Theorem 3.1.7.3. Let G be a connected Lie group. Then there exists a compact Lie group K ⊆ G
such that G is diffeomorphic to K × Rd for some d ∈ Z.

By Theorem 3.1.7.3 and the fact that π1(K) is finitely generated if K is compact, noting

π1(A×B) = π1(A)× π1(B),

we conclude that π1(G) is finitely generated.

Example 3.1.7.2. If G = PSL(2,C), then

G ∼= RP3 × R3 ∼= PU(2)× R3 ∼= SO(3)× R3.

If G = PSL(2,R), then
G ∼= S1 × R2 ∼= PSO(2)× R2.
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Suppose that G
ϕ−→ H be a smooth map between Lie groups such that

dϕ : TeG→ TeH

is a Lie algebra isomorphism. So, by the inverse function theorem, there exists a neighborhood U
of e ∈ G such that ϕ|U : U → ϕ(U) is a diffeomorphism. Using the left-invariant vector fields of G,
we actually have dϕ : g→ h is a Lie algebra isomorphism. So, by the same arguments, we deduce
that G

ϕ−→ H is a local diffeomorphism. From this, note that

dimG = dimH.

Note that Definition1.1.8.1 say that G
f−→ H is called a local Lie group isomorphism if f is

a homomorphism and f is a local diffeomorphism. From the above, we also have an equivalent

definition of a local Lie group isomorphism. That is, a smooth map G
f−→ H is called a local Lie

group isomorphism if f is a homomorphism and dϕ : TeG→ TeH is a Lie algebra isomorphism.

Theorem 3.1.7.4. Let G and H be connected Lie groups with the Lie algebras g and h, respectively.
Suppose that ϕ : G → H is a Lie group homomorphism. Then ϕ is a covering map if and only if
(dϕ)e : g→ h is an isomorphism.

Proof. Suppose that ϕ is a covering space and (dϕ)e is not injective. Let

a = ker((dϕ)e).

Since a is a nontrivial Lie subalgebra of g, by Theorem 3.1.6.4, we have a nontrivial connected Lie
subgroup A containing e of G. However, since ϕ : G→ H is a Lie group homomorphism, we must
have ϕ(A) = e, which contradicts the assumption that ϕ is a covering space, i.e., ϕ−1(e) is discrete.
Now, suppose that (dϕ)e is not surjective. Let

b = Im((dϕ)e).

Since b is a proper Lie subalgebra of h, by Theorem 3.1.6.4, we have a proper connected Lie subgroup
B containing e of H where ϕ : G→ B ⊂ H is onto around neighborhoods of identities eG ∈ G and
eB ∈ B by the fact that ϕ is a homomorphism. However, since B is a proper submanifold of H, this
contradicts the assumption that ϕ is a covering space. Hence, (dϕ)e is a Lie algebra isomorphism.

Suppose that (dϕ)e : g → h is an isomorphism. By the previous argument, ϕ is a local diffeo-
morphism. By Exercise 3.1.7.1 and ϕ(eG) = eH from the assumption that ϕ is a homomorphism,
we deduce that H is generated by ϕ(U) where U is a small neighborhood of e ∈ G. So, we conclude
that ϕ is onto. Now, in order to show that ϕ is a covering space, the only remaining thing to show
is that G is evenly covered. That is, we have to construct a neighborhood Vh in H for each h ∈ H
such that each component of ϕ−1(Vh) is homeomorphic to Vh. However, using left-multiplications
in H, which are diffeomorphisms of H, it is sufficient to construct a neighborhood of eH satisfying
the required property. Since ϕ is a local diffeomorphism and D = ϕ−1(eH) is discrete, we can
find a neighborhood V of eG in G such that ϕ|V is a diffeomorphism and V ∩ D = {eG}. From
this, ϕ|V : V → G is an isomorphism. Now, suppose that there exists a ∈ V V −1 ∩D. So, letting
a = v1v

−1
2 for some v1, v2 ∈ V , we have

ϕ(v2) = ϕ(av2) = ϕ(v1).
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Since ϕ|V : V → G is an isomorphism, we have v1 = v2. Hence, a = eG. That is,

V V −1 ∩D = {eG}.

So, the following claim will complete the proof. The claim is

ϕ−1(ϕ(V )) =
∐

δ∈D
δ · V.

Since ϕ(
⋃
δ∈D δ · V ) =

⋃
δ∈D ϕ(δ) · ϕ(V ) = ϕ(V ), we have

⋃

δ∈D
δ · V ⊆ ϕ−1(ϕ(V )).

Suppose that σ ∈ ϕ−1(ϕ(V )). So, ϕ(σ) ∈ ϕ(V ). So, there exists g ∈ V such that ϕ(σ) = ϕ(g).
Since ϕ is a homomorphism, we deduce that

σg−1 ∈ D = ϕ−1(eH)⇐⇒ σ ∈ D · g.

So, σ ∈ ⋃δ∈D δ · V , which shows that

⋃

δ∈D
δ · V ⊇ ϕ−1(ϕ(V )).

Now, we shall show that δ1 · V ∩ δ2 · V = ∅ for δ1, δ2 ∈ D with δ1 6= δ2. Let g ∈ δ1 · V ∩ δ2 · V . So,

g = δ1 · g1 = δ2 · g2 where g1, g2 ∈ G.

Hence,
δ−12 · δ1 = g2 · g−11 ∈ V V −1.

Since D ∩ V V −1 = {eG}, we have δ−12 · δ1 = eG, which is a contradiction. So, we have δ1 · V is
disjoint from δ2 · V for δ1, δ2 ∈ D with δ1 6= δ2.

ϕ−1(ϕ(V )) =
⋃

δ∈D
δ · V =

∐

δ∈D
δ · V.

For an arbitrary h ∈ H, using the facts left-multiplications in H are diffeomorphism and ϕ is onto,
letting g ∈ ϕ−1(h), we have

ϕ−1(h · ϕ(V )) =
⋃

δ∈D
δ · V =

∐

δ∈D
δ · (g · V ).

Exercise 3.1.7.1. Let G be a connected topological group and U be an open set of e. Then U
generates G. That is,

G =
∞⋃

n=1

Un.
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Proof. Letting V = U ∩ U−1, it is easy to see that

∞⋃

n=1

V n is an open nonempty subgroup of G.

Our claim is that this is also closed. Let {gk} ∈
⋃∞
n=1 V

n be a sequence. So, it is easy to see that
gk+1g

−1
k ∈

⋃∞
n=1 V

n. Since adding g0 = e,

lim
k→∞

gk =
∞∏

k=0

gk+1g
−1
k ∈

∞⋃

n=1

V n by definiton,

we conclude that ∞⋃

n=1

V n is closed.

So, since G is connected, we conclude that

G =
∞⋃

n=1

V n ⊆
∞⋃

n=1

Un ⊆ G.

Now, we can give a proof of the affirmative answer to Question 3.1.6.1.

Theorem 3.1.7.5. Let G and H be a Lie groups with the Lie algebras g and h, respectively.

Assume π1(G) = 1. Then every Lie algebra homomorphism g
Φ−→ h arises from a unique Lie group

homomorphism G
ϕ−→ H.

Proof. First, we note that
g⊕ h = X(G×H).

Define
graph(Φ) = Φ′ : g→ g⊕ h by Φ′(X) = (X,Φ(X)).

It is easy to see that Im(Φ′) is a Lie subalgebra of g⊕ h and it is Lie algebra isomorphic to g. By
Theorem 3.1.6.4, there exists a unique connected Lie subgroup A of G × H with the Lie algebra
a = X(A) isomorphic to Im(Φ′). Let πG and πH be the canonical projections from G × H to G
and H, respectively. Clearly. πG|A : A→ G induce a Lie algebra isomorphism dπG : a→ g. Now,
Theorem 3.1.7.4 tells us that πG|A is a covering space. Since G is simply connected, πG|A is in fact
a diffeomorphism, so a Lie group isomorphism. Define

ϕ : G→ H by ϕ = πH ◦ (πG|A)−1.

Obviously, dπH ◦ d(πG|A)−1 = Φ. Also, note that we already know it is uniqueness if it exists.

Remark 3.1.7.1. Combining Theorem 3.1.7.5 with Ado’s theorem, which state that every Lie
algebra g admits a faithful representation of gl(n,R), we deduce that every Lie subalgebra of
gl(n,R) = Mn(R) gives a Lie group G. Note that G and the universal covering space G̃ give
the same Lie algebra.
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3.1.8 The Exponential map again

Note that in Exercise 2.1.8.4, we showed that every left-invariant vector field of a connected Lie group
G is complete. Let G be a connected Lie group with the Lie algebra g. Suppose that X ∈ g. Then
there exists the unique global flow ξt corresponding X. Define

exp : g→ G by exp(tX) = ξt(e) for t ∈ R.

Note that exp(X) = ξ1(e) and exp(0) = e.

Theorem 3.1.8.1. Let ϕ : G → H be a homomorphism of Lie groups. Then exp is equivariant:
That is, the following diagram commutes

g
exp−−−→ G

dϕ

y
yϕ

h −−−→
exp

H

Proof. This comes from the uniqueness of flows and the fact that dϕ induces an action on a flow
by ϕ.

It is easy to see that exp satisfies the following properties:
1. exp is well-defined and smooth.
2. By identifying g with TeG, we have

exp(Ad(g)Xe) = g exp(Xe)g
−1.

That is, it is equivariant with respect to G
Ad−−→ Aut(g) given by Ad(g)Xe = (ιg)∗(Xe) where

G
ι−→Aut(G) by ιg(h) = ghg−1:

g
exp−−−→ G

(ιg)∗=Ad(g)

y
yιg

g −−−→
exp

G

Proof. This comes from Theorem 3.1.8.1 and the fact that Ad(g) acts on a flow by conjugation
from the definition of Ad.

3. (d exp)0 : g = T0g→ TeG = g is the identity map where 0 is the identity of g.

Proof.
d

dt
|t=0 exp(tX) = X · exp(tX)|t=0 = X.

4. The map exp gives a local diffeomorphism from a neighborhood of 0 in g to a neighborhood of
e in G.
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Proof. By 3 and the inverse function theorem, there exists a neighborhood U0 of 0 ∈ g such that

exp : U → exp(U) ⊆ G, which is a neighborhood of e

is a diffeomorphism. Note that exp(U) is called a local Lie group or group chunk. Note that since
every Lie algebra is contractible by the fact that they are vector spaces, we conclude that if exp is a
global diffeomorphism, then the Lie group must be contractible. So, non contractibility of a Lie group

is one of obstructions for exp to be a global diffeomorphism.

5. exp((t1 + t2)X) = exp(t1X) exp(t2X) for t1, t2 ∈ R.

Proof. Note that in Exercise 2.1.8.5, we showed that the flow of a left-invariant vector field on a
Lie group G is a right multiplication. Keeping this in your mind, we have

exp((t1 + t2)X) = ξt1+t2(e) = ξt2(ξt1(e)) = ξt1(e) · ξt2(e) = exp(t1X) exp(t2X).

Note that this proof also show that

exp(t1X) exp(t2X) = exp(t2X) exp(t1X).

6. exp(−X) = (exp(X))−1.

Proof. By the above, we have

e = exp(0) = exp(X −X) = exp(X) exp(−X).

So, exp(−X) = (exp(X))−1.

7. For X,Y ∈ g, if [X,Y ] = 0, then we have

exp(X + Y ) = exp(X) exp(Y ).

Proof. Let ξt and ηt be the flows corresponding to X and Y , respectively. By Theorem 2.1.6.2,
we know that [X,Y ] = 0 implies that ξt and ηt commute. Moreover, Exercise 2.1.8.5 showed that
the flow of a left-invariant vector field on a Lie group G is in fact given by a right multiplication.
So, the upshot is that ξt(e) · ηt(e) becomes a flow if [X,Y ] = 0 and G is a Lie group: Let
Φt(e) = ξt(e) · ηt(e) = ηt(ξt(e)). We have to show that Φt1+t2 = Φt1 ◦ Φt2 .

Φt1+t2(e) = ξt1+t2(e) · ηt1+t2(e) = ξt2(ξt1(e)) · ηt2(ηt1(e)) = ξt1(e) · ξt2(e) · ηt1(e) · ηt2(e)
= ξt1(e) · ηt1(e) · ξt2(e) · ηt2(e) = ηt2(ξt1(e) · ηt1(e) · ξt2(e)) = ηt2(ξt2(ξt1(e) · ηt1(e)))
= Φt2(Φt1(e))

To illustrate the content of Exercise 2.1.8.5, we give another proof:

Φt1+t2(e) = ηt1+t2(ξt1+t2(e)) = ηt1(ηt2(ξt1+t2(e))) = ηt1(ηt2(ξt2(ξt1(e))))

= ηt1(ξt1(e) · ηt2(ξt2(e))) = ηt1(ηt2(ξt2(e)) · ξt1(e)) = ηt1(ξt1(ηt2(ξt2(e))))

= Φt1(Φt2(e))
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Now, by Exercise 3.1.6.4, we know that the multiplications of a Lie group give the additions on
TeG = g. So, Φt(e) = ξt(e) · ηt(e) gives Xe + Ye. That is, the flow Φt gives a vector field X + Y .
Hence,

exp(X + Y ) = Φ1(e) = ξ1(e) · η1(e) = exp(X) exp(Y ).

Actually, in this proof we showed that if [X,Y ] = 0, then

exp(X) exp(Y ) = exp(Y ) exp(X).

Remark 3.1.8.1. In a Lie group, since a flow satisfies ξt(g) = gξt(e), we deduce that

g exp(tX) is nothing but the flow of X.

Theorem 3.1.8.2. If G = GL(n,R), then we have

exp(X) =
∞∑

k=0

1

k!
Xk for X ∈ gl(n,R).

Note that it is still true that if we replace R to C.

Proof. Note that in Subsection 1.2.1, we showed that
∑∞

k=0
1
k!X

k converges absolutely. Since we
know that

exp(tX) ∈ GL(n,R),

let

f(t) = exp(tX) =

∞∑

k=0

Akt
k where Ak ∈ GL(n,R) and A0 = I the identity.

Note that we have f(0) = I and f ′(t) = Xf(t). So,

Xf(t) =
∞∑

k=0

XAkt
k =

∞∑

k=0

(k + 1)Ak+1t
k = f ′(t).

Hence, we have

Ak+1 =
1

k + 1
XAk with A0 = I.

Therefore,

Ak =
1

k!
Xn.

Remark 3.1.8.2. We know that exp is a local diffeomorphism of a neighborhood U0 of 0 ∈ gl(n,R).
So, exp has the inverse locally, which will be denoted by log. In the case of a Lie group G ⊆
GL(n,R), we have an explicit formula, of course, locally:

log(A) =
∞∑

k=1

(−1)k
k

Ak.
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U0 ←−−−
log

exp(U0)

y
y

g
exp−−−→ G

Example 3.1.8.1. Note that in Example 1.1.4.1 and Exercise 1.1.4.1, we showed the following:
Let

sl(2,R) ∼= su(2) ∼= H0 = {q | q = ai+ bj + ck where a, b, c ∈ R}
be the set of traceless quaternions, which is the Lie algebra of a Lie group H1

∼= SU(2) ∼= S3. We
have

exp : H0 → H1.

We showed that exp(ti) =
∑∞

k=0
tk

k! i
k = cos(t) + sin(t)i and for q ∈ H0 and t ∈ R,

exp(tq) = cos(t) + sin(t)q.

In general, since H is the Lie algebra of a Lie group H×, exp : H→ H× is given by

exp(tq) = cos(t‖q‖) + sin(t‖q‖)
‖q‖ q.

So, we have for q = cos(θ)j + sin(θ)k ∈ H,

exp(2πq) = 1 and exp(πq) = −1.

Hence, even if θ varies, we still have exp(πq) = −1. That is, identifying TπqH = H and TπqH× = H,
we conclude that

d(exp)πq : H→ H

is singular, i.e., actually d(exp)πq = 0. We infer that the one-parameter subgroup exp(πq) ∈ H1 ⊆
H× is geodesic.

Example 3.1.8.2. exp is not necessarily surjective.

(
1 1
0 1

)
∈ SL(2,R) but

(
1 1
0 1

)
/∈ exp(sl(2,R)).

Theorem 3.1.8.3 (Baker-Campbell-Hausdorff Formula). Let X,Y ∈ g. Suppose that exp(sX)
and exp(tY ) are sufficiently close to e ∈ G. Then we have

log(exp(sX) exp(tY )) = C(sX, tY ) where

C(sX, tY ) = X + Y + 1
2 [sX, tY ] + 1

12([sX, [sX, tY ]] + [tY, [tY, sX]]) + · · · .

Proof. See “Lie groups, Lie algebras, and their representations” by V.S. Varadarajan.

Note that the exact formula of C(sX, tY ), which you can find in the above book is given by a
power series in sX, tY, [sX, tY ]. If g in nilpotent, obviously C(sX, tY ) is given by a polynomial in
sX, tY, [sX, tY ]. Now, we prove the followings:
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Theorem 3.1.8.4. Let H be a connected Lie subgroup of a connected Lie group G. Then H is a
normal subgroup if and only if h is an ideal of g.

In order to prove this, we need a lemma. In Remark 3.1.1.1, we stated the followings without
proof:

G
Ad−−−→ Aut(g)

exp

x exp

x

g
(Ad)∗=ad−−−−−−→ End(g).

Since Aut(g) = Aut(TeG) ∼= GL(n,R), it is a Lie group. Moreover, End(g) ∼= TidGL(n,R) =
gl(n,R) is the corresponding Lie algebra. So, the commutativity of the diagram shall come from
Theorem 3.1.8.1 and the fact that (Ad)∗ = ad, which we shall prove in the next lemma.

Lemma 3.1.8.1.
Ad(exp(tX)) = exp(ad(tX)).

Proof. We have to show that ((Ad)∗(X))(Y ) = (ad(X))(Y )
def
= [X,Y ] for all X,Y ∈ g. Let ξt and

ηs be the corresponding flow of X and Y . Reminding that the flow of a left-invariant vector field
on a Lie group is a right multiplication,

((Ad)∗(X))(Y ) =
d

dt
|t=0(Ad(ξt(e))(Y )) =

d

dt
|t=0(rξ−t(e))∗(Y )

=
d

dt
|t=0(drξ−t(e))(Y ) =

d

dt
|t=0

d

ds
|s=0(ηs(ξt(e))ξ−t(e)) =

d

dt
|t=0

d

ds
|s=0(ξ−t ◦ ηs(ξt(e))

=
d

dt
|t=0(dξ−t)(Yξt(e)) =

d

dt
|t=0(ξ−t · Y ) = LX(Y ) = [X,Y ] = (ad(X))(Y ).

Actually, since (Ad)∗ = ad implies that ad is linear, Lemma 3.1.8.1 can be written

Ad(exp(tX)) = exp(tad(X)).

Also, note that in the proof since exp(tX) = ξt and exp(sY ) = ηs, we infer that

(Ad(exp(tXe)))(sYe) =
d

ds
|s=0 exp(tXe) exp(sYs) exp(−tXe).

From this, if we go one further step, we can deduce a simplest form:

exp
(
Ad(exp(tX))(sY )

)
= exp(tX) exp(sY ) exp(−tX).

Definition 3.1.8.1 (Ideals of a Lie algebra). A Lie subalgebra h of a Lie algebra g is called an
(left) ideal if ad(Y )(X) = [Y,X] ∈ h for all Y ∈ g and X ∈ h. Equivalently, h is stable under
ad(g).
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Proof of Theorem 3.1.8.4. Suppose that H is normal in G. Let X ∈ h and Y ∈ g. Since we
know that exp(sX) and exp(tY ) are one-parameter subgroups of X and Y , respectively, using the
assumption that H is normal, we have

exp
(
Ad(exp(tY ))(sX)

)
= exp(tY ) exp(sX) exp(−tY ) ∈ H.

So, we deduce that Ad(exp(tY ))(sX) ∈ h. By Lemma 3.1.8.1 we know that

Ad(exp(tY ))(sX) = exp(ad(tY ))(sX) = exp(tad(Y ))(sX) = (
∞∑

n=0

tn

n!
ad(Y )n)(sX)

= sX + ts[Y,X] + s
t2

2
[Y, [Y,X]] + · · · .

Since h ∼= TeH is a vector space, h is a Lie group with the Lie algebra h ∼= Teh. So, if we think
Ad(exp(tY ))(sX) is a smooth path in h with respect to t, the tangent vector at the identity e on
h is nothing but

s[Y,X] ∈ Teh = h by the power series expansion.

So, we conclude that [Y,X] ∈ h, which shows that h is an ideal of g. Conversely, suppose that h is
an ideal of g. It is easy to see that H is generated by the set of flows exp(h). Now we have to show
that

g(exp(h))g−1 ⊆ exp(h).

Actually, it suffices to show that this case when g ∈ exp(g). That is, for all X ∈ g and Y ∈ h and
Y ∈ g, we have to show that

exp
(
Ad(exp(tX))(sY )

)
= exp(tX) exp(sY ) exp(−tX) ∈ H.

By the above we know that

exp(tX) exp(sY ) exp(−tX) = exp(sY + ts[X,Y ] + s
t2

2
[X, [X,Y ]] + · · · ).

Since h is an ideal, we deduce that sY + ts[X,Y ] + s t
2

2 [X, [X,Y ]] + · · · ∈ h. Hence,

exp(tX) exp(sY ) exp(−tX) ∈ H.

Question 3.1.8.1. When does g admit a nondegenerate symmetric bilinear form invariant under
Ad?

From Subsection 1.2.2, we know that

{(nondegenerate) positive definite bilinear forms on g = T1(G)}
m

{left-invariant (psedo-) Reimannian metrics on G}
Since Ad : G→ Aut(g) acts on g by (rg−1)∗ = drg−1 , it is obvious that

{(nondegenerate) positive definite bilinear forms on g = T1(G) which are invariant under Ad}
m

{bi-invariant (psedo-) Reimannian metrics on G}
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Example 3.1.8.3. Suppose that

ρ : G→ GL(n,R) by ρ(g1 · g2) = ρ(g1) · ρ(g2)

be a representation of a Lie group G. We know that ρ induces

dρ : g→ gl(n,R) =Mn(R), which is also a representation.

Note that
dρ(X + Y ) = dρ(X) + dρ(Y ).

Define a bilinear form B on g by

B(X,Y ) = tr((dρ(X)) · (dρ(Y )))

By Exercise 3.1.8.1, B is nondegenerate. Now let g ∈ G. Using the fact that Ad(g) = (rg−1)∗ =
(ιg)∗ on a left-invariant vector field, we have

B(Ad(g)X,Ad(g)Y ) = tr((dρ(Ad(g)X)) · (dρ(Ad(g)Y )))

= tr((dρ(dιgX)) · (dρ(dιgY )))

= tr((d(ρ ◦ ιg)X) · (d(ρ ◦ ιg)Y ))

= tr(
d

dt
|t=0ρ(g exp(tX)g−1) · d

dt
|t=0ρ(g exp(tY )g−1))

= tr(ρ(g)(
d

dt
|t=0ρ(exp(tX))) · ( d

dt
|t=0ρ(exp(tY )))ρ(g)−1)

= tr(
d

dt
|t=0ρ(exp(tX)) · d

dt
|t=0ρ(exp(tY )))

= tr(dρ(X) · dρ(Y )) = B(X,Y ).

That is, B is a bi-invariant (pseudo-) Riemannian metric on G.

Exercise 3.1.8.1. Show that B is nondegenerate on g.

Proof. It suffices to show that if tr(A · B) = 0 for all A ∈ Mn(R), then B = 0. Equivalently,
it suffices to show that if B 6= 0, the there exists A ∈ Mn(R) such that tr(A · B) 6= 0. Let
B = (bij)(n×n) 6= 0. So, there is some bαβ 6= 0. Let

A = (aij)(n×n) such that aβα =
1

bαβ
and the other entries are all zeros.

It is easy to see that A · B is a matrix with one diagonal entry is 1 and the other entries are all
zeros. So, tr(A ·B) = 1.

Since Ad : G → GL(n,R) is naturally a representation of a Lie group G, which is called the
adjoint representation, we deduce that

(Ad)∗ = ad : g→ End(g) ∼= Der(g)

is also a representation. Now, we define an inner product on g by the following way:

B(X,Y ) = tr((Ad)∗(X) · (Ad)∗(Y )) = tr((ad)(X) · (ad)(Y )).
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Definition 3.1.8.2 (The Killing form).

B(X,Y ) = tr((ad)(X) · (ad)(Y ))

is called the killing from on G.

It is important to note that if G is abelian, then since

Ad(g)(X) =
d

dt
|t=0(g exp(tX)g−1) =

d

dt
|t=0(exp(tX)) = X,

we deduce that
(Ad)∗ = ad = 0.

Hence, B(X,Y ) = tr((ad)(X) · (ad)(Y )) = 0. That is, B is degenerate. On the other hand, E.
Cartan shows that

Theorem 3.1.8.5 (E. Cartan). g has nontrivial solvable ideals (, i.e., semisimple) if and only if
the killing form B is nondegenerate.

Proof. We will prove this later.

Theorem 3.1.8.6. If G is a compact connected Lie group, then G admits a bi-invariant Rie-
mannian metric.

Proof. In Example 3.1.1.3, we show that G is unimodular if and only if there exists a bi-invariant
volume form on G. Suppose that G is compact and connected. Since the unimodular function
det ◦Ad;

G
Ad−−→ Aut(g) det−−→ R×,

is a Lie group homomorphism, it is easy to see that Im(det ◦Ad(G)) must be a compact and
connected subgroup of R×. However, the only compact and connected subgroup of R× is {+1}.
Hence, we conclude that

det ◦Ad ≡ 1.

So, G has a bi-invariant volume from. Now, using exterior algebra of differentiable forms, it is
not hard to see that there exists a bi-invariant Riemannian metric, which shall induce the volume
form.

Without a proof, we give the converse.

Theorem 3.1.8.7. If Ad(G) preserves a positive definite inner product on g, i.e.,

Ad : G→ O(n),

then
G ∼= (abelian Lie group )×( compact Lie group ).
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Exercise 3.1.8.2. Show that

Isom+(R3) = SO(3) n R3 and Isom+(R2,1) = SO(2, 1) n R3

have bi-invariant pseudo-Riemannian metrics. Note that R3 is a normal subgroup of Isom+(R3)
and Isom+(R2,1).

Also, show that the Heisenberg group H3 does not have a bi-invariant pseudo-Riemannian met-
ric.

Theorem 3.1.8.8 (Warner p. 97). Every closed subgroup H of a Lie group G is a Lie subgroup.

Theorem 3.1.8.9 (Warner p.109). A continuous homomorphism of Lie groups is a Lie group
homomorphism.
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Chapter 4

General Theory of Lie Algebras

4.1 Overviews

4.1.1 Recalls and Preliminaries

Consider a finite-dimensional vector space g over k. Define k-bilinear map

[, ] : g× g→ g satisfying

(1) Skew-symmetric: [X,Y ] + [Y,X] = 0 for all X,Y ∈ g.
(2) Jacobi Identity: [[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0 for all X,Y, Z ∈ g.

Remark 4.1.1.1. Recall that we say that g is an abelian Lie algebras if [X,Y ] = 0 for X,Y ∈ g.
From the skew-symmetry, it is easy to see that we can make every vector space an abelian Lie
algebra, i.e., by defining a trivial bracket. Note that any associative algebra becomes a Lie algebra
by defining

[X,Y ] = X · Y − Y ·X.
Of course, we denote · as the multiplication structure of the given associative algebra. So, the
matrix algebra

gl(n)
def
= Mn(k)

becomes a Lie algebra. More generally, every finite-dimensional Lie algebra is a Lie sub algebra of
the matrix algebra.

Recall that from Exercise 2.1.2.1 for an algebra A

Der(A) = {D : A→ A | D(ab) = D(a)b+ aD(b) and D is linear}

is a Lie algebra.

Remark 4.1.1.2. By defining for X,Y ∈ g

ad(X) : g→ gl(g) = End(g) by ad(X)(Y ) = [X,Y ],

from the Jacobi identity and skew-symmetry of [, ] in g, it is easy to see that

ad(X)([Y,Z]) = [ad(X)(Y ), Z] + [Y,ad(X)Z].
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That is, ad(X) is a derivation of g:

g
ad−→ Der(g) ↪→ gl(g).

Exercise 4.1.1.1. Show that ad is a Lie algebra homomorphism, i.e.,

ad([X,Y ]) = [ad(X),ad(Y )].

Proof. Since (Ad)∗ = ad, it is a Lie algebra homomorphism. See the below of Remark 3.1.2.2.

Suppose that we have a ↪→ g of Lie algebras. That is, a is a Lie subalgebra of g, i.e., [X,Y ] ∈ a

for X,Y ∈ a.

Exercise 4.1.1.2. Every one dimensional linear subspace is an abelian Lie subalgebra.

Proof. By skew-symmetry, it is necessarily an abelian Lie subalgebra.

Note that by Theorem 3.1.6.4, there exists a connected Lie subgroup H corresponding a 1-
dimensional abelian Lie subalgebra.

Notation 4.1.1.1. By definition, a is an ideal of g if [A,X] ∈ a for all A ∈ a and X ∈ g. By
notational convention, we denote

a C g.

Of course, since a is always a normal subgroup of g, this notation also makes sense.

Let a
ϕ−→ g be a Lie algebra homomorphism. Clearly,

Ker(ϕ) = {a ∈ a | ϕ(a) = 0}

is an ideal of a. Conversely, since j C g implies that g/j inherits the Lie algebra structure of g, we
have a surjective Lie algebra homomorphism

g→ g/j with j as the kernel.

That is, every ideal j is the kernel of a Lie algebra homomorphism. Also, note that for a given Lie
algebra homomorphism a

ϕ−→ g, we have a Lie subalgebra

a/Ker(ϕ) ∼= Image(ϕ) = ϕ(a).

Clearly, for all ideals j C g,
ϕ−1(j) C a.

Note that for all ideals j C g and a given Lie subalgebra a ⊆ g, we have a + j is a Lie subalgebra
and a ∩ j is an ideal of a. So, the second Noether’s isomorphism theorem says that

a + j

j
∼= a

a ∩ j
.
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Definition 4.1.1.1 (Direct sum of Lie algebras). Let g1 and g2 be a Lie algebra. For X1, Y1 ∈
g1 and X2, Y2 ∈ g2 by defining a Lie bracket as

[X1 ⊕X2, Y1 ⊕ Y2] = [X1, Y1]⊕ [X2, Y2]

we have a Lie algebra
g1 ⊕ g2.

It is easy to see that

gi C g1 ⊕ g2 and each projection g1 ⊕ g2 → gi is a Lie algebra homomorphism.

Remark 4.1.1.3. Since an abelian Lie algebra is nothing but a vector space, we deduce that an
abelian Lie algebra is a direct sum of 1-dimensional Lie algebras, which are 1-dimensional vector
spaces.

Definition 4.1.1.2 (Semi-direct product of Lie algebras). Let g1 and g2 be Lie algebras and
suppose that g1 acts on g2 by derivations, i.e., there is a Lie algebra homomorphism ϕ

g1
ϕ−→ Der(g2).

Define g = g2 oϕ g1 to be (g2, g1) as a underlying vector space and to have a Lie bracket as
follows: For X1, Y1 ∈ g1 and X2, Y2 ∈ g2,

[(X2, X1), (Y2, Y1)] = ([X2, Y2] + ϕ(X1)Y2 − ϕ(Y1)X2, [X1, Y1]).

Identifying X ∈ g2 with (X, 0) ∈ g2 oϕ g1, for any (X2, X1) ∈ g2 oϕ g1 we deduce that

[(X, 0), (X2, X1)] = ([X,X2]− ϕ(X1)X, [0, X1]) ∈ g2 × {0}.

That is, g2 × {0} C g2 oϕ g1 = g. Clearly we have a canonical Lie algebra isomorphism:

π :
g

g2 × {0}
→ {0} × g1.

On the other hand, note that identifying X ∈ g1 with (0, X) ∈ g2oϕ g1, for any (X2, X1) ∈ g2oϕ g1
we have

[(0, X), (X2, X1)] = (ϕ(X)X2, [X,X1]).

That is, {0}× g1 is not necessarily an ideal of g2oϕ g1 = g. However, it is easy to see that {0}× g1
is a Lie subalgebra of g2 oϕ g1 = g. From this, now clearly we have a Lie algebra homomorphism

adg|{0}×g1
: {0} × g1 → Der(g) from adg : g→ Der(g).

Exercise 4.1.1.3. Let Φ : g1 → Der(g2 × {0}) by Φ(X) = (ϕ(X), 0). Show that

adg(0, X) = Φ(X).
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Proof. We have to show that for all (X2, 0) ∈ g2 × {0} we have

(adg(0, X))(X2, 0) = Φ(X)(X2, 0)
def
= (ϕ(X)X2, 0).

It is a triviality, since

(adg(0, X))(X2, 0) = [(0, X), (X2, 0)] = (ϕ(X)X2, [X, 0]).

Definition 4.1.1.3. We say that g is solvable if there is a sequence

{0} = gk C · · · C g2 C g1 C g0 = g

such that gi
gi−1

is an abelian Lie algebra.

Theorem 4.1.1.1 (Lie). If g is solvable, then it is represented by upper triangular matrices.

Theorem 4.1.1.2. Every Lie algebra has a unique maximal solvable ideal, which is called a rad-

ical.

Notation 4.1.1.2. The unique maximal solvable ideal of a given Lie algebra g is denoted by

rad(g) =
√

g.

Definition 4.1.1.4 (Semi-simple Lie algebra). We say that g is semi-simple if

√
g = 0.

That is, g is semi-simple if it has no solvable ideals.

Definition 4.1.1.5 (Simple Lie algebra). We say that g is simple if it has no nonzero proper
ideals.

Theorem 4.1.1.3 (Levi decomposition). Every Lie algebra is a semidirect product of its radical√
g and a semisimple Lie subalgebra s, which is called a Levi decomposition:

g =
√

g o s.

Moreover,

Theorem 4.1.1.4. Every semi-simple Lie algebra is a direct sum of simple Lie algebras g1, . . . , gn:

g = g1 ⊕ · · · ⊕ gn.
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