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Chapter 1

Overviews and Examples of Lie
Groups and Lie Algebras

1.1 Hamiltonians H

1.1.1 Notations

H is a group of quaternions.

H* is a group of nonzero quaternions.

H is a real vector space of purely imaginary quaternions, i.e., Hg = R{4, j, k} = R? and H = R Hy.
H; is a group of unitary quaternions, i.e., Hy = {u € H | ||u||?> = 1}.

SL(n) is a group of unimodular automorphisms of R™. Here, note that a unimodular automorphism
means a volume preserving automorphism.

SL(n,R) = {A € M,(R) | detA = 1}.

SO(n) is a group of unimodular and orthogonal automorphisms of R”.

SO(n,R) = {4 € M,,(R) | detA = 1 and AAT = T}.

1.1.2 Involution « in H

Let a: HH — H be a conjugation, which means that a(a + bi + ¢j + dk) = a — bi — ¢j — dk. That is,
a is an involution of H, i.e., o? = id. It is easy to see that « enjoys the following properties:

1. u € H is real <= a(u) = u.

u € H is purely imaginary <= a(u) = —u.

uor(u) = [[ul|.

a(uv) = a(v)a(u). Note that the order is reversed.

Re(u) = 3(u+ a(u)) and Im(u) = & (u — a(u)).
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1.1.3 An Action of H; on Hj by conjugation

Recall that Ho = R{7,j,k} = {u € H | Re(u) =0} 2R3 and H; = {u € H | |Ju||> =1} = S3.
Let o(u)v = uvu~! for u € Hy and v € Hy, where v~ = a(u). Clearly, it is an action of H; on
Hp. Note that R* NH; acts trivially.



Exercise 1.1.3.1. 1. Show that Hy is invariant under the action p(Hy).
2. The action p(u) preserves Euclidean geometry of Hy = R3, i.e., each element of Hy gives a
rotation of Hy as R>.

Proof. In the first case, it suffices to show that Re(p(u)v) = Re(uvu~!) = 0 for all v € H; and
v € Hp. By messy but trivial computations, it will be done.

Note that ¢ : H = R* — H = R* and the action ¢(u) : H = R* — H = R* is given by
@(u)v = uvu~!. Since the action of ¢(u) is obviously a linear isomorphism and

wou™l =0 for u € H* <= v =0,

we have p(u) € GL(4,R) for v € H*. In the second case, the key thing to show is that ¢(u)
preserves norms for u € Hj. If the action preserves norms, by the formula,

I e e 1 A

(v, ) ;

we conclude that it is a unimodular and orthogonal action on R*. Since
le(uyol] = [fuvu™| = [full[Jollllu="(| = ||v]| for u € Hi,v € RY,
we have ¢(u) € SO(4) for u € Hj.
Suppose that r € R and v € H;. We have

1

o) -r=urut =rlu|* =1

If we consider the canonical inclusions SO(3) C SO(4) C O(4,R), by the first problem and the
above discussion, we can think the action of ¢(u) on Hy as the usual action of an element in
SO(3). O

1.1.4 One parameter Subgroup

A homomorphism ¢ : R — H* is a one parameter subgroup, i.e., ¢(s +t) = ¢(s)¢(t). More
generally, we can replace H* by a Lie group G.

Remark 1.1.4.1. By the uniqueness and existence of a solution of an O.D.E, one parameter sub-
group ¢ 1is determined by ©'(0) Also, ¢ determines a flow Ny : G — G where A\ = lowy, e,
lowy(9) = w(t)g. Note that an infinitesimal left multiplication corresponds to a right invariant
vector field.

Example 1.1.4.1. Assume that ¢'(0) = v € Hy and let ¢'(s) = ¢(s). So,

,U’VL

ol5) = exp(! (0)s) = 3 Los.

Since ||[v™]| = ||v]|™, [|e(s)]| < exp(||v]|s). So, it converges uniformly and absolutely on a compact
subset of R. Let v € Hy, the group of purely imaginary quaternions. So,

v = ||v||u where u € Hy NH; = S2.



Note that v"™ = ||v||"u™ and u?> = —1. So we have

o= QDRI i =2m
(=)™ o] Py ifn=2m+ 1.

From the above observation, we have an interesting formula for v € Hy:

]

exp(vs) = Z 1;:5 Z (—1)™ HUH §2m Z — $2mtly,

n=2m n=2m+1
= cos(||v]|s)1 + sin(||v]|s)u.

Generally, exp(if) acts on H in three ways, right multiplication, left multiplication, and conjugation.
Let us examine an action of exp(if) on H by conjugation. Note that we can think C spanned by
{1,i} as a subalgebra of H and by the relation ij = k, {j, k} spans Cj. Ifu € C C H, p(e")u = u.
Observe that

o(e?)j = €?je ™ = (cosf + isin)j(cos § — isin )

= (cos? 0 —sin?0)j + 2(sinfcosO)k  using ijk = —
= (cos26)j + (sin20)k.

So, since ¢(e)k = ePke " = (cos 20)k + (sin26)j, we have p(e'™) = id on H.

Exercise 1.1.4.1. Letu € S? =HyNH;. Find v € S* = Hy such that p(v)i = u. In other words,
H; acts transitively on S?.

Proof. By the similar computation, we deduce that the action of ¢(e??) on i is a just rotation
through the axis j, ¢(e*?) on i is a just rotation through the axis k and ¢(e*) on i is an identity.
So, geometrically, we can imagine that for any u € S2, there exist rotations ((e/%1) and @(e*%)
which moves i to u € S2. Hence,

v=2e" .M ¢ 63 where /"' = cos 01 + jsin 6@ and ef2 — cos 0y + ksin 0.

1.1.5 Relationship between H and C?

First, notice that SU(2) = H; and SU(2) = {A € M, (C) | detA = 1 and AAT = I}. Since
SL(n,R) = {A € M,(R) | detA = 1}, SL(n,C) = {A € M,(C) | detA = 1}, and det is a
functional of each fields, it is easy to see that SL(n,R) is a real differentiable manifold of dimension
n? — 1 and SL(n,C) is a real differentiable manifold of dimension 2n? — 2.

Since C C H is a subalgebra, we can think H is a vector space over C spanned be {1,j}. So,
H = C? as complex vector spaces: Suppose that C? is spanned by {e;,es}. A complex linear
isomorphism f between H and C? is given by

fla+bi+ cj+ dk) = aeq + bieg + cea + diey where a,d, c,d € R.

Now, we want to know how ¢(j) acts on C in this description. Since ji(—j) = —i and j1(—j) = 1,
we conclude that the conjugation by j is just a restriction of the complex conjugation, i.e., z — Z
for z € C.



Remark 1.1.5.1. We have a dichotomy.
SL(2,R) € GL(2,R) € M3(R) — M2(C) = k = —1 Hyperbolic geometry
Hy cS®>~H; xRy =HX cH— M;y(C) = k =1 Elliptic geometry .

The algebra structure of My(R) is R[4, j]/(i2 = j% = 1,ij = —ji = k) and the algebra structure of
H is R[i, j]/(i* = j° = —1,ij = —ji = k).

Exercise 1.1.5.1. Prove that O(n) = {A € M, (R) | AAT = I} is compact, but O(n,C) is not
compact if n > 1.

Proof. It suffices to show that O(n) is closed and bounded. By the relation AAT = I, we have
n
Za?j =1 where (a;j)nxn =A € O(n) and for i =1,...,n.
j=1
Since a finite intersection of compact sets is compact, O(n) is closed and bounded in R"™. However,
if we think A € O(n,C), we only deduce that O(n,C) is closed in C™ from the equation
n
Za?j =1 where (a;j)nxn =A € O(n) and for i =1,...,n.
j=1

Actually, it is not bounded: For a counter example, we give

00 (% \;%) € 0(2,C) as n — .

Let C = R[i]/(i®> = —1). So we have
C—H=R[i,j/(®=j°=-1,ij = —ji = k).
That is, H has a basis {1,5} over C. So, H = C? as vector spaces.

Question 1.1.5.1. If we take C[i,j]/(i* = j2 = —1,ij = —ji = k), which algebra do we get?

1.1.6 Action of H on itself by right multiplications r,

Note that since H is an associative algebra, right multiplications commute with left multiplications.
Let ¢ : H — Endc(C?) by ¢(h)z = za(h) for z € C2.

o(h1h)z = za(hihs) = z(a(h)a(hy)) = (za(hg))a(hy)
= p(h1)(za(hs)) = p(h1)(@(h2)z) = (@(h1)@(h2))z.



That is, @(h1ha) = ©(h1)p(hs). Let us examine ¢ more. On C?, we have

(i) =T =1—i = <_0Z (Z)> , since 1 — —i and j +— j(—i) =1ij

e(j) = Ta() = T—j = (_01 (1)> ,since 1 — —j and j+— 1

o(k) =raw) =7-k = (Oi _OZ> , since 1 +— —k = —ij and j — j(—k) = —i.

So, we have a representation ¢ of H as an algebra in My(C), i.e., for a,b,c,d € R,

go(a+bz'+cj+dk:):<a_bz C_dz).

—c—di a+bi
That is, we have an algebra isomorphism:
H 2 R[i, j]/(* = 7> = —1,ij = —ji = k) 5 Ma(C) 2 R[i, j]/(i* = j* = 1,ij = —ji = k).
Remark 1.1.6.1. From the above formula, it is easy to see that
(a—bi c—di) ' (z 0> _ (z 0) _ ( a—bi c—di)
—c—di a+bi 0 1 0 1 —c—di a+bi)’
So, we deduce that an action of C on o(H) commutes. That is,
i-@la+bi+cj+dk)=p(a+bi+cj+ dk) -i.

Remark 1.1.6.2. We note that there is another representation 1 : H — Endc(C?), given by

(1) = (é ‘f)

It is easy to see that for a,b,c,d € R,

a+d a—d.. b+c. . b—c a b
D+ i (0 CFOm = (¢ 5).

e((

From this, we conclude that there is an algebra isomorphism between H and My(R). In this de-
scription, we let the algebra structure Mo(R) induced from H be M2 (R), i.e.,

H = M,y (R) = R[i, j]/(i* = j° = 1,ij = —ji = k).



Note that in this correspondence, we also have

Hy = M2 (R)o = {traceless elements of M2 (R)}.

If we think the conjugation o of H as an involution of My (R), we have

a b d —=b
(e o= )
Also, we can define a norm on Mz (R), using the formula ||v||* = va(v) for v € H. That is, for
A € My(R), we define

N(A) < Aa(A) = (ad — be)I = det(A)I.

1.1.7 Action preserving a Hermitian structure on C2.

A hermitian structure on C? is a positive definite, sesquilinear, and R-bilinear inner product on C2.
That is for u,v € C?,
1. (u,u) > 0if u # 0.
2. (u,v) = (v, u).
3. (M + u2), pv) = Afi({ur, v) + (uz, v)).
The usual Hermitian structure on C" is given by

w1

n
<z,w>:zT-@:(zi,...,zn)- : :ZzimeCforz,we(C”.
Wn, =1
If we let z; = z; + iy; and w; = uj + v, we also have Re(z,w) =z -u+y-v.

Exercise 1.1.7.1. Construct the Hermitian structure on C? corresponding to the quaternions H.

Proof. Let z € C2. Since we identify C? with H as vector spaces, we can write
z =a + bj where a,b € C.
Define for 21, z9 € C?,
(21,22) = (a1 + b1j, a2 + boj) = a1 -az + by - by.
It is easy to see that (,) € C and satisfies the required properties. O
By definition,
U(n) = {A € GL(n,C) | A preserves (,) the usual Hermitian structure}.

Since for A € U(n) and for all z,w € C",

(Az, Aw) = (A2)T (Aw) © T = (z,w),



we conclude that ATA = I. That is,
U(n) = {A € GL(n,C) | ATA=1T1}.

From this, we also have A = (ZT)*1 and ¢ is an involution, i.e., automorphism of (real) Lie group

of order two:

T

GL(n,C) — GL(n,C) given by ¢(A) — (A" )7L

Note that ¢ is smooth but not complex analytic.
Let G be a group and ¢ € Aut(G).

Fix(y) = {z € G | ¢(x) = z}.
By the above discussion, we have Fix(¢) = U(n).

Exercise 1.1.7.2. Prove that U(n) is compact.

Proof. From the relation ATA =1,

Z |a;;|* = 1 where (aij)nxn = A € UU) and for i = 1,...,n.

j=1
So, U(n) is closed and bounded in C™’. O
1.1.8 Revisit to the Matrix algebra of M, (R).

In this section, we revisit the material, which we discussed in Remark 1.1.6.2, so that it would give
you more rigorous and clearer views. We note that from the discussion in Remark 1.1.6.2, we have
Mo(R) 2 R[I,J]/(I? = J> =1,1J + JI = 0), where

= 3)
)
(o)
IJ=K= (01 (1)> .

We also remind you that a : M2 (R) — My (R) is given by

I

J

I——-J,J——J,1—1.

Observe that o(K) = a(IJ) = a(J)a(l) = (JI) = —K. So, we have

(5 =5



The norm N on M3 (R) is defined by

N(A) ™ Aa(A) = (ad — be)1 = det(A)1.
Using «, we also had for A € My(R),
A+ a(A) =tr(A)1.
In this correspondence, we had a subalgebra 92 (R)o of My (R), i.e.,

Hy = M2 (R)o = {traceless elements of Miz(R)}.

Generally, sl2(R) is often written as My (R)g. So, from now on, we will freely exchange two notations.

Now, we can think H has the algebra induced by 92(R). That is, H has the structure
R[i,j]/(i? = j* = 1,ij + ji = 0) rather than R[i,j]/(i*> = j%> = —1,ij + ji = 0). So, by the
correspondence

0 bit it dk e <a+b c—i—d)’

c—d a—>b
we have

Hy ={veH|a> -V —c*+d*> =1} «— SL(2,R) = {A € M(R) | det(A) = 1}.
Note that

Hy «— sla(R) = {traceless elements of Ma(R)} = {(Z _ba> | a,b,c,d € R}.

Since each generator of My (R) consists of integer entries, we can define a Z-algebra, i.e.,
My(Z) = Z[1,J))(I* = J? =1,1J + JI = 0).
So, in this description, we have successive inclusions of algebras:
SL(2,Z) C SL(2,R) C M2 (R).
The following example will exhibit why this description is so useful sometimes:

Example 1.1.8.1. Let T? be a torus and Homeo(T?) is a group of orientation preserving home-
omorphisms of T%. Consider

Homeo(1%)4 % Aut(H,(1%)) by o(f) = f..

Since a homeomorphism f induces an isomorphism f. between Hy(T?) = Z? and H1(T?) = Z2, ¢
is well-defined. From Hy(T?) = Z2, it is not hard to see that

Aut(H,(T?)) = SL(2,7Z), which is called the modular group.

However, since Z is not a field, sometimes we can not get quite satisfactory information from the
situation. So, it would be more useful ways of studying this situation that we think SL(2,7Z) as
an imbedding space of SL(2,7). In general, a Lie group can be continuously approximated by a
discrete Lie group. As a reference,

Homeo(T?), = SL(2,Z) x H where h = {f € Homeo(T?) | f ~ id}.

Also, note that H is called a contractible group.



Remark 1.1.8.1. Since there exists a Borel measure invariant under both left and right multiplica-

tions on SL(2,R), there ezists an SL(2,R)-invariant measure on a symmetric space % under
SL(2,R)

the left-multiplication by SL(2,R) on SHERAR If the measure is finite, i.c.,

SL(2,R)

SL2.7)) <>

1(

SL(2,R)
SL(2.Z)"

Exercise 1.1.8.1. Compute H;(Z) = {h € H(Z) | ||h|| = 1}.

it 1s called a Haar measure on

Proof. First, observe that H;(Z) is a discrete space inside a compact space

d
Hy(R) Y |, = {he H| [|h]| = 1} = $5.
So, it must consist of a finite number of points. Clearly,
(£1,+],+J,+K} C Hy(Z).

Since {£1,4+1,+J, K} is the set of all the generators of Hy and h € H;(Z) must satisfy ||h|| = 1,
we have

{£1,+1,+J,+K} = Hy(Z).
O

Recall that in Exercise 1.1.3.1, H; acts on Hy by conjugations in unimodular and orthogonal ways.
It is clear that H* acts on Hy = R? 2 5[(2,R) by conjugations in nonsingular ways, considering
the proof of Exercise 1.1.3.1. That is, it is the usual action of an element in GL(3,R) on R3.

Observation 1.1.8.1. We know that Hy = R? as vector spaces. Here, R? is a vector space gener-
ated by {i,j,k}. Since we show that Hy = s[(2,R), we can give R? the algebra structure induced by
sl(2,R). That is, we have the following relations in R3:

i2=42=1,ij+ji=0k?=—1.
More precisely, we defined a multiplicative structure on R3: For vy, vy € R3,
vivg € R3 sl(2,R).
So, we can define a new inner product {,) on R3, i.e., for vy, vy € R3,
(v1,v2) = Re(viva).

Let
0

0

1
B=10
0 -1

o = O

One moment of thinking gives you that the new inner product on R3 can be written as the usual
quadratic forms: For vy, vy € R3,
(v1,v2) = vl - B -y,



Let

G(B) = {A € M3(R) | ATBA = B}.
Obviously, G(B) is a subgroup of M3(R). Since det(ATBA) = —(det(A))? = —1 for A € G(B),
we have G(B) C GL(3,R). Moreover, from the following consideration;

(v1,v9) = vl - B-wy =0l - (ATBA) - vy = (Avy, Avy) for A € G(B),

we have G(B) preserves the orthonormal relations with respect to (,). So, we call G(B) an indefinite
orthonormal group, denoted by O(2,1). In general,

B= (10p (i ) where 1, is a p x p identity matrix.
—1q

Also we have G(B) et O(p,q) € GL(n,R) where p+ q¢ = n.

Definition 1.1.8.1 (Local Lie group isomorphisms). IfG, H are Lie groups, a local Lie group
isomorphism is « map f : G — H such that f is a homomorphism of groups and f is a local
diffeomorphism.

Example 1.1.8.2. Ezercise 1.1.3.1 show that H; = S® — SO(3) is a local isomorphism and
surjective as a group homomorphism. Note that the algebra of Hy is given by R[i,j]/(i* = j* =
—1,ij + ji = 0).

In general, a local isomorphism is not injective nor surjective.

Example 1.1.8.3. SL(2,R) 4, O(2,1) is a local isomorphism.

Proof. Let the algebra of H be given by R[i,j]/(i®> = j%2 = 1,ij + ji = 0). A similar proof
of Exercise 1.1.3.1 shows that the action of H* on Hjy corresponds to the conjugation action of
GL(3,R) on s((2,R). Moreover, it gives that the action of H; on Hy corresponds to the conjugation
action of SL(2,R) on sl(2,R). So, we have SL(2,R) C GL(3,R). Let u = a + bi + ¢j + dk € Hj.
So, a®> —b?> —c? +d?> =1. For vi = a1i+ B1j + 71k, va = awi + Boj + 12k € Hy, we have

-1

(w1t uvgu™) = Re(uvivou™) = (a® — b? — ¢ + d?)Re(viv2) = (v1,v2).

That is, SL(2,R) C O(2,1).
Note that
Re((a + Im(u))(Re(viva) + Im(viv2))(a — Im(u)))

Re((a+ Im(u))(Re(vive))(a — Im(u)) + (a + Im(u))(Im(vive))(a — Im(u)))
= Re((a® = b* — & + d?)Re(v1v2) + a*Im(v1va) — alm(vive)Im(u)
aIm(u)Im(vlvg) — Im(u)Im(vive)Im(u))
= (a? — @ 4+ d*)Re(v1v2) — Re(alm(vive)Im(u)) + aRe(Im(u)Im(vivy))
= (a® — b2 ¢® + d*)Re(vyv9)

Re (uvlvgu )

+

The local isomorphism is not surjective. Il

Even though SO(2) = S! is connected, we have the followings:

10



Exercise 1.1.8.2. Prove that SO(1,1) is not connected.

Proof. Let

A= <‘C‘ Z) €SO(1,1) = {A € My(R) | ATBA = B}.

Since AT BA = B, we have four equations:
- =1,0—d?>=—-1,ab=cd,and ad — bc = 1.

So, if d = 0, we have a contradiction. So, we have d # 0. Since d # 0, we must have b = ¢. If
b=c=0,thena=d=1. If b=c# 0, then a = d. Hence,

A= (a b) where a® — b = 1.
b a

That is, SO(1, 1) is not connected. O

1.1.9 Exponential Map
Recall that H=R @ Hy. So if w € H, then we can write w = a -1+ v for a € R and v € Hy. From

this, we define

exp(w) = exp(a - 1+ v) = e” exp(v) = e*(cos(||v]]) + Sm(HUH)W)

Exercise 1.1.9.1. Show that for g =a +bi +cj +dk = a+v € H, we have
|| exp(q)|| = (@

Proof. By identifying H = 9ty(R), we have

_ o a+b c+d
g=a+bi+cj+dk— <c—d a—b)

So, tr(¢) = 2a. In the other hand,

I

|| exp(q)||* = exp(q) - a(exp(q))

= " (cos(lol]) + sin(lll ) ) e (cosﬂlvll)—m(”””)W)

2

= e**(cos?(|[v]]) + sin®(||v]])) = ** = 210,

O

From Exercise 1.1.9.1, we deduce that traceless quaternions correspond to unit numbers. Since
Hy = sl(2,R) = { traceless elements of Ms(R)}, we have a well-defined map exp : Hy — Hj.

Exercise 1.1.9.2. exp : Hy — H; = S3 is surjective, but not injective.

11



Proof. Since Hy is not compact and H; =2 S3 is compact, obviously it is not injective.
Let u=a+bi 4+ cj +dk € H;. So, a®? + b + % +d? = 1.
If a = +1, exp(27i) = 1 and exp(mwi) = —1. So, we can assume a # 1. Let
1

cos” " a .. .
v= ﬁ(bz + ¢j + dk) € Hp.
Note that ||v|| = cos™! a and cos?(cos™' a) + sin?(cos ™' a) = a? 4 sin?(cos ™' a) = 1. So,

bi 4+ c¢j + dk

Nin=r =a+bi+cj+ dk.
—a

exp(v) = cos(cos ! a) + sin(cos ! a)
Exercise 1.1.9.3. Show that exp : sl(2,R) — SL(2,R) is not surjective.

Proof. First note that exp(A) def Z%Ak It is easy to see that it converges. By that fact
det(exp(A)) = " we conclude that exp is well-defined. Consider

A= (‘01 _11> € SL(2, R).

Suppose that exp(X) = A for X € sl(2,R). Since X € sl(2,R),

y_ (@ b
-~ \c¢ —a)’
If a®> — bc = 0, then X2 = 0. So,

1 b
exp(X):1+X:< —ic_a 1—a>'

Hence, a®? — bc = 0 implies that a = 0, ¢ = 0, which is a contradiction.
If a® — bc # 0, then X2 = (a? + bc)1. By the Jordan canonical form, we can assume

PXPl= <g _1A> or PXP~! = <8‘ _OA) where P € GL(2,C).

However, X2 = (a? + bc)1 implies that we must have

_ Va2 + be 0
PXP! = < 0+ B m)
Since
P <_01 _11> P! =PAP™! =exp(PXP)
—en (VU )b(eﬁ_ﬂ’c e >
0 —VaZThe 0 Ve
we have a contradiction. So, it is not surjective. O

Question 1.1.9.1. What about exp : s[(2,C) — SL(2,C)?

Proof. The same proof of Exercise 1.1.9.3 works here, So, it is not surjective. [

12



1.2 Various aspects of Lie groups

1.2.1 Revisit to the exponential map

Definition 1.2.1.1. A Lie algebra g over R is a real vector space g together with o skew-
symmetric bilinear operator

[,]: 9 xg— g, which satisfies Jacobi identity.

First of all, we define a map exp from T'(R) = R as a Lie algebra to a Lie algebra g of a Lie
group G, i.e., pick X € g and define

d
exp:RHgbyA%H)\X.

Then, since R is simply connected, there is a unique one-parameter subgroup such that
t — exp(tX) € G.

Note that this map only depends on a vector field, which we chose. So, we will denote exp(tX)
by expyx(t). From this one-parameter subgroup, we define the exponential map exp from the Lie
algebra g to a Lie group G

exp : g — G by setting exp(X) = expx(1).
Take G to be a group of matrixes. We define

o0 An
exp(A) = Z o
n=0

Note that later we will see that two constructions are the same. If A = (a;j)nxn, let
1A = lai].
i,J

Clearly, we have ||AB|| < ||A]|||B]|. Also, there exists § > 0 such that ||A|| < 0. Since

n!

An 0 A n s
|| exp(A \|<z:H I Z| H Z——uaéasn—M)o
n=0 n=0

we can deduce that all entries of exp(A) converge uniformly and absolutely. There are useful
formulas:

1. If X,Y commute, then exp(X +Y) = exp(X) exp(Y).

2. exp(X)exp(—X) = 1. So, The inverse matrix of exp(X) is exp(—X).

3. det(exp(X)) = exp(tr(X)). Note that we already proved this in terms of quaternions, i.e., this
is true for My(C). For generality, we prove this for M, (C).



Proof. The Jordan canonical form theorem tells us that for any matrix A over C, we can find P such
that P~'AP can be expressed as a block diagonal matrix with Jordan blocks along the diagonal.
Moreover, it is unique up to a permutation. So, it suffices to prove the claim for one Jordan block.
Since det(P~1AP) = det(A) and tr(P~1AP) = tr(A), without loss of generality, we can assume
A = M, + N where I, is an identity matrix and NV is a matrix with 1’s on the first superdiagonal
and zeros elsewhere. So, tr(A) = n\. Hence, exp(tr(A)) = ¢™. In the other hands,

exp(A) = exp(M, + N) = I, - exp(N).

It is easy to see that exp(/V) is a unipotent matrix, i.e., an upper diagonal matrix with 1’s along
the diagonal. Hence, det(exp(4)) = e™. O

Example 1.2.1.1. H L HX s surjective but not injective.

Proof. Obviously, exp(27i) = exp(27j) = 1. So, it is not injective. We know that Hj P H; s
surjective. That is, given v € Hy, there exists u € H; such that exp(v) = u. Since for w € H* =
R*/{0} there exists u € Hj = S such that w = ru for some r € R, we have

logr

exp(logr +v) =€ " - exp(v) = ru = w.

So, it is surjective. O
exp

Example 1.2.1.2. gl(2,C) =2 M,(C) = M,(C)* = GL(2,C) is surjective.

Proof. Notice that by formula 2, exp(X) is invertible. Let A € M3(C)*. By the Jordan canonical
form theorem, there exists P € GL(2,C) such that

A0 Al
-1 -1
PAP™ = (0 ) or PAP " = (0 /\>.

Suppose that

Let
We have

Suppose that

Let

14



We have

B B 6log/\ 0
exp(P~'Y P + (log \)1) = P 1(exp(Y))P-< 0 elogw>
Lot (LA 5 (A0 (A1,
=P <O 1 P 0 A =P 0 A P=A.
So, it is surjective. O

Example 1.2.1.3. g = iR — S C C given by i — exp(if) is surjective.
Example 1.2.1.4. In Ezercise 1.1.9.2, we show that g = Hy P H, >~ 83 s surjective.

So far, we have seen that g G is surjective. However, there is an exp, which is not surjective.
From det(exp(A)) = exp(tr(A), we have the followings:

Example 1.2.1.5. In Ezercise 1.1.9.3, we have seen that exp : sl(2,R) — SL(2,R) is not surjec-
tive. By considering the proof of Exercise 1.1.9.3, we have the followings: If X # 0, then

<_01 _)\1> ¢ exp(sl(2,R)).

Now we give an analytic definition of Lie algebra.
Let G be a Lie group contained in M, (R). The Lie algebra g of G is a tangent space at an
identity 1. That is,

s Y 1(6) c ML (R)).

A left invariant vector field X is uniquely determined by the evaluation at 1, i.e., X7. So, from now on
we denote X7 by X. Look at a smooth path ¢; in G starting at 1, i.e.,

vt € G and g = 1.

Let X = %]tzo €g =l T1(G). Define a map

exp:g— G by tX — ¢.
This is the exactly same description which we mentioned earlier.

Example 1.2.1.6. Let ¢ : R — H be a one-parameter subgroup with ¢o =1 and pg = X. Suppose
that ||¢i]|> = 1. So, ra(py) = 1. Differentiate gia(pr) = 1 with respect to t using linearity of o;
pra(pr) + pra(pr) = 0.

Sett=0. We have

voa(po) + poa(po) = X + a(X) = 0, which shows that X is necessarily traceless.

That is, the equation ||¢4||? = 1 defines the exponential map exp(tX) = ¢y, i.e.,

exp

H, — H;.

15



1.2.2 Symplectic group

Let V be a vector space over R. Then a bilinear form V x V L is skew-symmetric if

B(v1,v2) = —B(v2,v1).

Since there is a unique matrix such that
B(v1,v2) = v{ Bug,

we also have B = (8;;)nxn is a skew-symmetric matrix if B = —BT where Bij = B(ei, ;) in terms
of a basis {e1,...,e,}. So, we have three correspondences:

A?V* = {skew-symmetric bilinear forms on V of dimension n}

i)

{skew-symmetric n X n matirxs}

)
o(n) the Lie algebra of O(n).

We only need some clarification of the second up-and-down arrow. An element of the Lie algebra g
of a Lie group G is uniquely determined by one-parameter subgroup. With keeping this in your mind,
we have;

Proof. Let ¢ : R — M,,(R) be a one-parameter subgroup with ¢g = 1 and ¢y = X. Suppose that
o1 - ¢f = 1. Differentiate ¢; - ¢ = 1 with respect to t using linearity of matrix transpose;

or- @1 T (e)" =0.
Set t = 0. We have
00 - ¢ 4+ o - (vo)T = X + XT =0, which shows that X is skew-symmetric.

That is, the Lie algebra o(n) of a Lie group O(n) = {X € M,(R) | X - XT = 1} is a set of
skew-symmetric matrixes. O

Remark 1.2.2.1. Another interesting relation is the following:

{bilinear forms on g = T1(G)}

)

{left-invariant metrics on G}

)

{ right-invariant metrics on G }.

Note that this doesn’t imply that there exists a bi-invariant metric on G. For an erxample, we give
SL(2,R).

Let V = R? and 3 be a skew-symmetric bilinear form. Since

/6(61761) = _ﬂ(ehel)aﬁ(eluez) = _5(62)61)7 and /8(62762) = _ﬂ(62)62)7

16



the correspondence matrix B of 3 is

B = <0 —a) where a € R.
a O

So, we have
A?V* = {skew-symmetric bilinear forms on V of dimension 2}

{aJ|J:<(1) _01> and a € R}

That is, J spans A2V*. Since ATJA = (detA).J is skew-symmetric, we can define an action of
GL(2,R) = Aut(V) on A2V* by the following way:

A:J— ATJA.
We can observe two interesting properties of J:
1. J?=-1.
2. Jl=—J.

As consequences of these, we have
1. A(-J)ATJ = (detA)1 = a(A) = (—=J)ATJ = JLATJ from Aa(A) = (detA)1.

2.
. 1

~ (detA)

(=J)ATJ for A € GL(2,R).

In general, we let

-1
Jop = (10 0") where 1,, is an n x n identity matrix.
n

We define a real symplectic group to be
Sp(n,R) = {A € My, (R) | AT Jo,, A = Jo,}.

Likewise, we have

Sp(n, (C) = {A S Mgn((C) ’ ATJgnA = Jgn}.
From ATJA = (detA)J, we can see easily

SL(2,R) = Sp(1,R).

We define
1 0
1,,=1,®-1,= <6’ 1q) :
From this,
U(p.g) 2 {AeM,(C) | A" 1, A=1,, where p+q =n}.
So,

U(n) =U(n,0).
If p4+ g = 2n, then
de
Sp(p,q) < Sp(n,C) N U(p,q).

17



Exercise 1.2.2.1. Show that

Proof. Pick C' € SL(2,C) such that

Of course,

Define
SL(2,R) L SU(1,1) by A+ CACL.

If f is well-defined, f is necessarily an isomorphism. Clearly, det(C AC~!) = 1. Note that

1

AT <Q _OZ> CA=iATJA=iJ = <? _OZ> for A € SL(2,R) = Sp(1,R).
So, we have

cACTL. <(1) 0 ) LCAC-! = T ATET . (1 0 ) CCACY = GTE AT (? Z) AC-!

A moment later, we ask you to prove the following identification:
GL(n,H) c GL(2n,C).
Before proving this, we give an example.

Example 1.2.2.1. We have
M, (C) C Mg, (R).

Proof. The main point here is that we can identify a R-linear homomorphism with a C-linear
homomorphism and vice versa. Let z;; = x;; + v/ —1y;; where x;;,y;; € R. We have

11 —Yu Tin —Yin
211 .- Zln Y11 T11 Yin Zin
T : :
Znl  ---  Znn Tnl —Ynl Tnn  —Ynn
Ynl  Tnl Ynn  Tnn

18



Exercise 1.2.2.2. Considering H = C ® Cj = C?, construct the following inclusion
GL(n,H) Cc GL(2n,C).

Proof. The proof of this example is almost same as the above proof except one thing. The difference
occurs because j and C does not commute as opposed to the fact v/—1 and R commute. We will
show that we can identify a C-linear homomorphism with a H-linear homomorphism and vice versa.
That is,

M, (H) C My, (C).

Let uw € H. So, u = v + wj where v,w € C. Suppose that there exists an inclusion

v+ wj € H= Ml(H) — (Z Z) S MQ((C)

(a+B7) - (v +wj) = (Z Z) <g>

(v +wj) = <ch Z) <(1)> — a=v,c=uw.

ju=j(v+wj) = jv+ jwj =vj — w.

Note that

First, we have

Second, consider

That is,
. . a b\ (0 _ _
—w+vj = j(v+wj) = e a4\ —b=-w,d="1.
So, by defining an inclusion

v+ wj € H=M,(H) — (Z} _Ew) € M,(Q),

We have an H-linear matrix in Ms(C). It is easy to see that
M, (H) = {A € My(C) | AJy = JoA}.
In general, we identify (uy,...,u,) € H" for u; = v; + w;j with
(V1, ...\ Upy W1, ..., wy) € C?".

Let w;, = v, + w;j where v, w;; € C. Define

V11 e Vin —-wi1 ... —W1in
Uil ... Uln
. Unl .- Unn —Wpl ... —Wpp
: — - -
: w11 .. W1in V11 PN Vin
Un1 Unn
Wn1 ... Wnpn Unl cee Unn
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It is easy to see that B
Mn(H) = {A S Mgn((C) ‘ AJQn = JQnA}

Of course, in this description, we also have

GL(n,H) = {A € GL(2n,C) | AJy, = J2, A}

O

Example 1.2.2.2.

Sp(n, 1) <= Isom( quaternion hyperbolic n-space ).
U(n, 1) <= Isom( complex hyperbolic n-space ).
Exercise 1.2.2.3. Define SL(n, H).
Proof. By the previous hard work, it is easy to see that
SL(n,H) = {A € GL(2n,C) | AJs, = Jo, A and det(A) = 1}.

O

1.2.3 Transformation groups
Let G be a group and X be a space. Define
Gx X% X by (g,2) — gz

We call the image of a(G x {z}) = Gz the orbit of .

G acts transitively on X if and only if Gx = X for some x. In turns, equivalently, Gx = X
for some x if and only if Gz = X for all z. In this case, we say X is a homogeneous space of G.

We call Stab(z,G) = G* = {g € G | gx = =} the isotropy group of z.

G acts freely on X if for all x € X, G* = {1}. Equivalently, gz = x implies g = 1.

G acts effectively ( faithfully, injectively) on X if G — Aut(X) is injective. Equivalently, if
gr =z for all x € X, then g = 1.

We call G 55 X the evaluation of = given by ez(g) = gx. The image of e, is the orbit of x.

We say f is G-equivariant with respect to left-multiplication on G and (left) action of G on X
if the diagram commute: f(l4(u)) =g- f(u), i.e.,

G#X

zgl Jg
¢ . x

Example 1.2.3.1. Since e;(lg(u)) = gur = g - ex(u), e, defines G-equivariant with respect to
left-multiplication on G and (left) action of G on X, i.e.,

G = X

o s

G —=. X

20



It is easy to see that G/G* L Gr by F(gG®) = gz is a well-defined bijective map. Since if
h € G* then (gh)x = g(hx) = gz, it is well-defined. Bijectivity is obvious.

G acts transitively on X if and only if G/G* =X,

G acts freely on X if and only if G = Ga.

G acts freely transitively (dif simply transitively ) on X if and only if G 6—:> X.

1.2.4 Projective spaces

An affine space X is a space with a simply transitive action of a vector group, i.e., a vector space
under addition.

Let k be a field and V be an n-dimensional vector space over k. Since GL(V') = GL(n, k) acts
linearly on V, a linear action preserves a line, i.e., one-dimensional subvector space of V. So, we
can define an action of GL(V) on the set of lines in V, i.e., P(V) = P*"~!(k) = { lines in V}. So,
in P*~1(k) we have

[z1,...,2p] v A[z1,...,2s] for X € kX, which is called a homogeneous coordinate on P" (k).

Note that GL(V) acts transitively on P(V) = P"~1(k) = { lines in V} and in k"/{0} — P"~!(k),
the fibers are orbits of k™ acting by scalar multiplications.

Example 1.2.4.1. The isotropy subgroup of

% *’ *

0 0
I=|.|=ke0a--®@0ck s | . € GL(n, k).

. . *

0 0

Example 1.2.4.2. It is easy to see that the slope of a line through the origin in R? except a y-axis
parameterize an element of P(R). Moreover, in the case of y-azis, by replacing m = % bym' = Z

y’
we can parameterize all the elements of P(R) by slopes.

By a homeomorphism ; for j =1,...,n,

z1 T

z1 " Tj_1 -1 Tj-1
j j -1 -1 j
EAj:{(xl,...,a:n)]a:jyéO}—]> Ij;il ek cP” (k)% 1 ,

Tn xj Tj+1

T

Zj Tn

we deduce that P"~!(k) can be covered by n coordinate-patches, which of each is an affine space
Ent

Let L’j be homogeneous coordinates of CP'. By letting

if w #£ 0, eC
if w=0,

def » we have CP! = CU {c0}.
= 00

Ele glw
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In general, P!(k) = kU {co}. In this description, GL(2, C) acts on CP! in the following ways:

az+b
<a b> [Z] _ [az + b] - |:cz+d:| or [(1)] depending on whether or not cz + d = 0.

c d) |1 cz+d 1

Clearly, this action is not effective, i.e.,

(Y- e

So, we make this action effective by making a quotient;

GL(Q,(C) def
= “/ PGL(2,C).
{A(O 1> | A e Cx}

In general,
GL(n, k)
{A\1, | 1, is an n X n identity matrix and A € k*}

Remark 1.2.4.1.

“ PGL(n, k).

SL(2,R)
{£1}
If G ¢ GL(n,R), then

O(n)
{A\1, | X e R¥}

=PSL(2,C) and =PO(n).

B G
C GN{AL, | AERXY}
Remark 1.2.4.2. The universal covering group of PSL(2,R) is a non-linear group. So, it can not

be represented by matrizes.
A Heisenberg group H is a nilpotent Lie group and H/Z is a nonlinear group.

P(G)

1.2.5 Fibrations

Definition 1.2.5.1 (Fiber bundle). We say M = N is a fiber bundle over N with fiber F if for

each © € N, there exists a neighborhood U, C N and a map 7~ (Uy) X, F such that © x P is a
diffeomorphism, i.e.
UxF — 7Y U,) — M

XY
nl lw
U, — N

Definition 1.2.5.2 (Covering homotopy property). Let p1(y) = (y,0) and I = [0,1]. We say
amap w: M — N satisfies the covering homotopy property if given f :Y — M and f; : Y xI — N
satisfying fo=mo fo: Y x I — N, there exists a homotopy f; such that f; = wo f;.

y 1o wm

| L

yxI I N
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Definition 1.2.5.3 (Fibration). We say a map m : M — N s a fibration if it satisfies the
covering homotopy property.

Note that 7 is a trivial fibration if there exists ¢ : M — F such that 7 x ¢ : M — N x F'is a
diffeomorphism.

Remark 1.2.5.1. Note that fiber bundles over Hausdorff and paracompact spaces are fibrations.
See “Algebraic Topology” by Spanier. Since our base spaces are manifolds, from nmow on we can
interchange two terminologies freely.

Given amap m: M — N and f: A — N, by defining a space
f*M = {(a,m) € Ax M| f(a) = m(m)},
we have a commutative diagram: For p;(a,m) = a and pa(a,m) = m,

M2 M

m| |

A#N

Now suppose that 7 : M — N is a fibration and we are given the following diagram: For
g90(y) = p1 o go(y) where go : Y x {0} — A4,

y 2. M2 M

v, l pll lﬂ

yxI -9, 4 1L, N

P

Since m : M — N is a fibration and f o go(y) = mo f o go(y) where gp : Y x {0} — N, we have a
homotopy f o g
v P09 s

l foy l
by m
v« L%, N

Since fog(y) =mo f/;;(y) by the definition f*M = {(a,m) € Ax M | f(a) = w(m)}, we can
have a homotopy

g1 Y x I — f*M by Gi(x) = (g:(y), f 0 91(v))-

That is, we have a pullback or induced fibration p; : f*M — A, i.e.,

y — M

al ¥ b

Yy xI 2%,
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Example 1.2.5.1. Suppose that ™ : M — N s a fibration. Given F : Ax[1,2] — N, we have F*M
is a fibration over A x [1,2]. Since there are the canonical inclusions iq : {a} x [1,2] = A x [1,2]
fora € A, we also deduce that (i}, o F*)M = (ig 0 F')*M are fibrations over {a} x [1,2].

One of useful consequences in fibrations is the following:

Theorem 1.2.5.1. There is a bundle isomorphism between a fiber bundle over any contractible
space and a trivial bundle.

Proof. See “The Topology of Fiber Bundles” by Steenrod. O

An interesting fact about fibration is that some smooth map between two manifolds is a local
fibration:

Theorem 1.2.5.2 (Local submersion theorem). Let f: M™ — N™ be a smooth map for m >
n. If dfy : TuM — Ty N is surjective where x € M, then there exists a neighborhood U of x € M
such that f : U — f(U) is a fibration.

We know that GL(2,C) acts on CP! by linear fractional transformations:

a b\ |z| |az+b ‘C‘jig 0 . _
<c d> [1] = [cz—{—d] “ [ | or |y depending on whether or not cz +d = 0.

So does SL(2,R). Let U = {z € C | 3(2) > 0}. For 2 + iy € U, we have

(1 x) e2Ey 0 H: ol
0 1 0 e_Ebgy 1 %

That is, SL(2,R) acts transitively on U = {z € C | ¥(z) > 0}. Now, we show that the isotropy
subgroup of 7 is SO(2):

Exercise 1.2.5.1. Let A € SL(2,R).

Show that A(i) =i if and only if A € SO(2) = {(COSQ —sind

sinf@ cosf
cosf —sinf\ [i]|  [i(isinf +cosB)|  |i
cosf sinf 1| | ésin@4cos@ | |1|°

Suppose that for A € C*,
a b\ |i| _ |iA
c d) (1] | x|’

We have a = d and b = —c. Since ad — bc = 1, we conclude that A € SO(2). O

)]96[&}’551.

Proof.

Finally, we conclude that SL(2,R) acts transitively on U = {z € C | (z) > 0} with isotopy
subgroup SO(2). So, SL(2,R)/SO(2) = U = R? is a homogeneous space of SL(2,R). In this
description, we have:

Example 1.2.5.2.
SL(2,R) 2% g2 5 g,
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Proof. Since SL(2,R) — SL(2,R)/SO(2) is smooth and everywhere submersion, by the local
submersion theorem, we conclude that the following diagram is a fibration with a fiber SO(2):

SO(2) — SL(2,R)
!
SL(2,R)/SO(2).

Since SL(2,R)/SO(2) = U = R? is contractible, by Theorem 1.2.5.1, SL(2,R) is diffeomorphic to
U x SO(2) 2 R? x St O

Now, we show a covering space of SL(2,R):
Example 1.2.5.3. (R?/{0}) x R! is a trivial covering space of SL(2,R).
Proof. Note that SL(2,R) acts transitively on R?/{0}, i.e., for (z,y) € R?/{0},

0)-6 26

It is easy to see that the isotropy subgroup of (1,0) is

{(é ;’) Ir €R} =R

Since SL(2,R) — SL(2,R)/{ (é ;) | r € R} =2 R?/{0} is smooth and everywhere submersion, by

the local submersion theorem, we conclude that the following diagram is a fibration with a fiber
1 r
{(0 1> | r € R}:

R%{G :)]reR} < SL(2,R)
l

SL(2,R)/{ (é I) |- € R} = R2/{0}.

Here, unfortunately, SL(2,R)/{< > | r € R} = R2/{0} is not contractible. So, we can not

1 r
01
use Theorem 1.2.5.1. However, what we do know is that R?/{0} is locally contractible.
So, we conclude that SL(2,R) is locally diffeomorphic to R?/{0} x R!. That is, (R?/{0}) x R}

is a covering space of SL(2,R), which is trivial (=connected). O
Now, we show a nontrivial covering space of SL(2,R):

Example 1.2.5.4. RP! x R? x {1,2} is a nontrivial covering space of SL(2,R).

Proof. Since SO(2) C SL(2,R), SL(2,R) acts transitively on RP'. Using homogeneous coordinates

of RP!, it is easy to see that the isotropy subgroup of (1,0) is

{(8 aﬂ) laeR* and r € R} 2 R* x R=R x {1,2} x R.
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Since SL(2,R) — SL(2,R)/{ (g ar1> | a € R* and 7 € R} = RP! is smooth and everywhere

submersion, by the local submersion theorem, we conclude that the following diagram is a fibration
withaﬁber{(g af1> laeR* andr e R} 2 RX x R=R x {1,2} x R:

R2x{1,2}g{<g af1>\aeRX and r € R} — SL(2,R)

!
RP!.

Again, since SL(2,R)/{ (8 ar1> | @ € R* and r € R} = RP! is locally contractible, SL(2,R)

is locally diffeomorphic to R? x {1,2} x PR!. That is, R? x {1,2} x RR! is a nontrivial (=non
connected) covering space of SL(2, R). O

Exercise 1.2.5.2. Ezpress the Mébius band M as a homogeneous space of SO(2,1).

Proof. 1t is a well-known fact that the Mobius band is homeomorphic to the punctured projec-
tive plane. Think RP? as a disk with an identification with diametrically opposite points of the
boundary. So, the RP? without a small closed disk at the origin is the Mobius band. If we give
RP? homogeneous coordinates from R?, then we can give homogeneous coordinates each point of
the Mobius band. So, it is intuitively clear that the Mobius band is given by with respect to
homogeneous coordinates [z, 1, z2]:

10 0
M= {v=[xg,z1,20] |0 [0 1 0 |v<0}.
00 —1
Since
10 0 10 0
SO, 1)={AecMy®)|AT |0 1 0 |A=([0 1 0 | and detA=1},
00 —1 00 —1

we have a well-defined action of SO(2,1) on M. Actually, the inner product given by

1 0 0
wov=w' [0 1 0 |wvis called the Lorentzian inner product.
0 0 -1

If v € R3, using the usual linear algebraic manipulations, we can find a Lorentzian orthonormal
basis {v,w;,wy} with respect to the Lorentzian inner product. Since (0,0, 1),(1,0,0),(0,1,0) is
Lorentzian orthonormal, regarding v, w1, ws as n x 1 column vectors, i.e., (w1, ws,v) € O(2,1) , we
have

0
v = (w1, wz,v) [0
1
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That is, O(2,1) acts transitively on R3. Since we are using homogeneous coordinates, that action
of SO(2,1) is thee same as the action of O(2,1). so, the transitivity of O(2,1) and [0,0,1] € M
implies the transitivity of SO(2,1) on M. So, we conclude that Moébius band M is a homogeneous
space of SO(2,1). O

1.2.6 Projective transformations as isometries

Example 1.2.6.1.

PSL(2,R) 24/ r2 « g1,
Proof. Tt is easy to see that PSL(2,R) acts transitively on U = {z € C | ¥(z) > 0} with isotopy
subgroup PSO(2). So, PSL(2,R)/PSO(2) = U = R? is a homogeneous space of PSL(2,R). By
the same argument in the proof of Exercise 1.2.5.2, we have

PSL(2,R) 2/ r2 « g1,

O

Recall that the upper half plane Y = {z € C | &(2) > 0} can be equipped with a Riemannian
metric

, o lazl
S(z)

4

The following definition is due to E. Cartan:

Definition 1.2.6.1 (symmetric spaces). We say M is a symmetric space if for allp € M there
exists an isometry s, : M — M such that

sp(p) = p and (dsp)p, = —id.

Example 1.2.6.2. U = {z € C| J(z) > 0} with g = =L s a symmetric space.

S(2)
Proof. First of all, note that g = gé'z') implies that if (dsp), = —id, then s, is necessarily an
isometry. Let s;(z) = —%. So, (ds;); = 2%|Z:Z- = —1. Hence, we have

5; = ((1) _01) and (ds;); = <_01 _01>

So, we have s;(i) = i. Since we know that PSL(2, R) acts transitively on U, there is A € PSL(2,R)
such that A(i) = p for a given p € U. So, letting s, = A-s; - A~!, we have

sp(p) = A-s;- A7Hp) = A-s5i(i) = A(i) = p.

Now, making an identification A «— f(z) = ZIS, we have s,(2) = (fo(=1)of™)(z) = f(—f%(z))

From s,(p) = p, we have
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Since f/'(f~1(2)) - (f~1)(2) = 1, we have

L (Y _

(orle = 7)) (i

O

Remark 1.2.6.1. If X is a positively ( or negatively ) curved symmetric space, the dual space X*
is a megatively ( or positively ) curved symmetric space.

Recall that H is Hermitian if H = H .

Definition 1.2.6.2. C"! is a C-vector space C*> with a Hermitian form defined by

(z,w) = 21W] — 29W3 = wl Hz for z = (21, 22), w = (w1, wy) € C? and H = <(1) _01> .

Let
U(H) et {A € GL(2,C) | (Av, Aw) = (v,w) for all v,w € CH!}

—{A€GL(2,C) | A"HA=H}.

Note that in the notation above Exercise 1.2.2.1, we have U(1,1) = U(H).
Clearly, U(1,1) acts on

X ={veC" | (v,v) <0} ={(21,22) € C* | |21]* — |22|* < 0}.
This implies the following:
Example 1.2.6.3. U(1,1) preserves a unit disk Dc = {z € C | |z| < 1}.

Proof. Notice that |21|? — |22|> < 0 implies that (z1,0) ¢ X. Since

2
= |Z’2 <1< ’21‘2 — ‘22|2 <0,

we have a well-defined holomorphic map f from X to D¢ by f(z1,22) = j—; So, we can define an
action of A € U(1,1) on z € D¢ by
A z=f(A <:f>)

O

Note that from A’ HA = H , we deduce that U(1,1) is a zero locus in R® by four transversal
equations. So, dimg U(1,1) = 4. Also, notice that

U(l) — UQ1)xU®1) — U1
61‘9 N (ew’eio)
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Example 1.2.6.4. PSU(1,1) & SU(1,1)/{+15} = Aut(Dc).

Proof. We are going to show that PSU(1, 1) acts effectively on Dc¢, i.e., PSU(1,1) — Aut(D¢)
is injective. For surjectivity, we need the Schwarz’s lemma in complex analysis. So, we leave it to
the readers.

Since det A # 0 for A € U(1,1), A is an automorphism of X. Also, it is easy to see that
Av = v for all v € X implies that A = Is. U(1,1) acts effectively on X. If we closely look at the
identification in Example 1.2.6.3, we can see that A and — A define the same action on D¢. So, we
conclude that PU(1,1) acts effectively on D¢. Hence, PSU(1,1) acts effectively on Dc. O

Note that we showed that we can identify D¢ as

0 1

X = {U = (Zl,ZQ) e CcH! | ol <0 1

) v <0} ={(z1,22) € C? | |21]2 - |zz|2 < 0}.

Let z = Z.. Note that |21|2 — |22]? < 0 implies that 23 # 0. So,

1 _ 1 Z1 Z21

C\ = — —_— _— —_— _— e —

() 21’(2 ?) 2% 29 2_2)
! (2172 — 2271) . (izo71 — i217%2)
= — (2129 — 2921) = ——= (12921 — 121%2
2i|22]2 122 221 |22|2 221 122

_ @(zjz_ﬁ <_OZ é) <2>

1

Since
|22

z > 0, we have

3(z) > 0 if and only if <—Oz é) defines a positive definite Hermitian inner product.

That is, we can give the upper half plane a Hermitian metric <—Oz é) In this description, an
interesting thing is the following: Since SU(1,1) is the group of isometries of D¢ with the inner

product <(1) _Ol> Let % <_1Z 1), which is called the Cayley transformation. It is easy to see

(% D=2 %)

So, we have C' - SU(1,1) is the group of isometries of the upper half plane with the inner product

<—Oz é) By the similar proof of Exercise 1.2.2.1, We also have that

that

C~1.SL(2,R)-C = SU(1,1).

Note that in general, SU(p, q) 2 SL(p + ¢, R). We will give three famous metrics:
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Remark 1.2.6.2.
2|dz|

1— [z
|dz|
S(2)
2|dz|
1+ |22

on D¢

onU ={z€C|(z) >0}

n CP'.

Note that 1%175"2 on CP! is called the Fubini-study metric. Since it is invariant under inversions,

it is well-defined, i.e., it is even defined at co: Let w = z~!. So, we have
dw = —2"2dz = |dw| = |2|72|dz|.

So, we have
2ldw|  2|z|7%dz|  2|dz|
T+ w2 14272 1422

Hence, we can assign values at 0 or oo using each coordinate chart.

1.2.7 Decomposition of SL(2,R)
Note that SL(2,R) is a prototype of a noncompact real semisimple Lie group.

Definition 1.2.7.1 (Class function). Let G be a group and F' an arbitrary field. A class function
f s a function from G to F which is constant on the conjugacy classes of G. That is,

G L F such that flg7 zg) = f(x) for all g,z € G.

Example 1.2.7.1. Let G be a matriz group. For A € G, define G LR by f(A) =tr(A). fisa
class function.

Example 1.2.7.2. Let SL(2,R) LR by f(A) =tr(A). Then f~1(0) = sl(2,R) N SL(2,R).

Exercise 1.2.7.1. Let D? be an open unit disk in R%. Define a class function f of a solid torus
D? x S as a Lie group.

Proof. Let (r,a,6) be a coordinate system of D? x S* where 0 <r < 1,0 < a < 27, and 0 < 0 < 2.
Define D? x S* % SL(2,R) by
b 108( o) (2rsina__) b l08( ) 0 sing
o(r 0, 0) = e T -2ressa )€ ’ < cos sin >
s by 1 1—r — g ’
0 6_5 IOg( r2+1—2rcosa) Sin 9 cos 9

It is easily seen to be a diffeomorphism and a Lie group homomorphism. So, let

2 2 . _.2
f(?”7 a, 9) e (COS 6) (6%10g(7‘2+11727"rc05a)+67% log(72+1172’rrcosa))+(sin 9)( 2T sin o 6% lOg(r2+1172Trcosa)_

r2+1—2rcosa

f is a class function on a solid torus D? x S?. O
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If we look at the proof of Exercise 1.2.7.1, we actually decompose SL(2,R) or a solid torus
D? x S! into a product of an element of SO(2) and an element of upper triangular matrix. It is
no coincidences. In general, we have

Theorem 1.2.7.1 (Iwasawa Decomposition). Let G be a Lie group. We can decompose
G =K-A-N where K is a compact group, A is an abelian group, and N is a nilpotent group.

Proof. We will prove this later. O

Example 1.2.7.3. Suppose that A € SL(2,R). we have

t
A:K-<e O)(l T> where K € SO(2) and r,t € R.

0 et)\0 1
However, in the case of GL(n,R), without using the Iwasawa decomposition, we still have a
nice decomposition by the virtue of Gram-Schmidt orthogonalization.

Proof. Let A = (A1,...,A,) € GL(n,R) where A; is an n x 1-column matrix for i = 1,...,n.
The Gram-Schmidt orthonormal process say that we can have A" = (A},...,A]) where A] is
orthonormal to each other:

A=A
/ <A27A,1> /
=As — A
2 (Ar, A
As, AL) (As, AY)
/ —Aa < 35 419 A/ - ) 411 Al
s T aga
A, Al A, A
A/ :An_ </7'L n/—1> '/nil_ _wAll
<An 1’An 1) <A17A1>
1 (A2 (A3 A1) (A4 AY) (An,A7)
(41,41 (ApAy) (A4 (A1,47)
0 1 (As,Ap)  (As,45) (An,A3)
(A5, 45) (45,45 (A3,45)
0 0 1 <A47A3> (An, 3>
A= (A, . A (A3,A3) (45,45)
(An )
0 0 R R~ e
0 0 0 0 1
Since A is orthonormal to each other, (A},..., A]) = A’ € O(n), which is a compact group. So,

we conclude that for A = (A44,...,A4,) € GL(n,R) we have a decomposition

A= A"-U where U is an upper triangular and A" € O(n).
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Consider an action of SO(2) on RP! = g/ = RU {oo} where U is the upper half plane:
cos) —sinf\ (1) [cos®
sinf  cosf 0) \sinf )"

(5 o
we have a transitive action of SO(2) on RP!. So, SL(2,R) acts transitively on RP!. Let B be
1
0

homogeneous coordinate in RP!, it is obvious that B consists of upper triangular matrixes. In this
description, combining the Gram-Schmidt process, we have

By identifying

the isotopy subgroup of < > in SL(2,R), which called a Borel subgroup. Since we are using a

Example 1.2.7.4. Let A € SL(2,R). Then A = A" . AP That is,
SL(2,R) = SO(2) x B.

That is, for A € SL(2,R), we have

orth et ret orth
A=A 0 ot where A" € SO(2) and r,t € R.

t ret

Note that B = {<€0 e_t> | ,t € R} is called a Borel subgroup. Moreover, from the above, it is

easy to see that the action of SL(2,R) on RP! is completely and uniquely up to +1, determined by
orthogonal matrixes in SO(2).

By identifying RP" with the set of oriented lines in R2, we have an action of SO(2) on {oriented lines in R?}.
Again, we have

SL(2,R)/SO(2) = B = R,

Note that PSO(2) = SO(2)/{£12} acts simply transitively on RP! and PSL(2,R) acts
transitively on RP!. Also, it is easily seen that SO(2) acts transitively a double covering space
(R2/{0})/R, of RP!.

Now, we are going to discuss a polar decomposition ( Cartan decomposition ) of SL(2,R). First,
we state

Theorem 1.2.7.2. FEvery connected Lie group G has a maximal compact Lie subgroup K such that
G = K x R%. Moreover, K is unique up to conjugation.

Proof. We are going to prove this later. O
Example 1.2.7.5. If G is SL(2,R), then K = SO(2).

Example 1.2.7.6. If G is SL(2,C), then K = SU(2). So, G/K = R3, which is a real hyperbolic
3- space.

Also, we state
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Theorem 1.2.7.3. Let G be a Lie group and K be a mazimal compact Lie subgroup of G. G is
homotopy equivalent to K.

Proof. We are going to prove this later. O

Example 1.2.7.7. SL(2,R) is homotopy equivalent to SO(2).
. et ret - : 2 12 . .
Proof. Since B = { 0 et | .t € R} is diffeomorphic to R?, B is contractible. Since

SL(2,R) =SO(2) x B,
we have SL(2,R) is homotopy equivalent to SO(2). O
Notation 1.2.7.1. Let
Pn ={n x n symmetric positive definite real matrices.}

Sp={AeM,(R)| A=AT}.

Note that positive definiteness of A € M, (R) means v’ Av > 0 for v € R™. Clearly, P, C S,.
It is easily seen that dim S,, = w Note that P, is a convex open set of S, in the sense that if

A,B € Py, then (1 —t)A+tB € P, for 0 <t < 1. From linear algebra, we have

Theorem 1.2.7.4 (Spectral theorem). If X € P, then there exists B € O(n) such that BX B~!

is a diagonal matriz with positive diagonal entries \; >0 fori=1,...,n, i.e.,
A0 0 - 0
0 X 0 .- 0
BXB™' = : :
0 0 A—1 O
0 0 0 A

Define an action of GL(n,R) on P,, by
X — ATXAby X € P, and A € GL(n, R).

Example 1.2.7.8.
P, = GL(n,R)/O(n).

Proof. We shall show that this action is well-defined transitive with the isotropy subgroup O(n).
First, we show that it is well-defined: Note that

Pn ={n x n symmetric positive definite real matrices.}
={X € M,(R) | XT = X and v Xv > 0 for all v € R"}.

Let X € P, and A € GL(n,R). The action is well-defined by the facts that

(ATXA)T = ATXTA=ATX A and vT (AT X A)v = (Av)T X (Av) > 0.
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The spectral theorem says that this action is transitive: Suppose that X,Y € P,,. Since BT = B!
for B € O(n) C GL(n,R), without loss of generality, by the spectral theorem we can assume X is

a diagonal matrix with positive diagonal entries A\; > 0 for ¢ =1,...,n and Y is a diagonal matrix
with positive diagonal entries 7; > 0 for ¢ = 1,...,n. Let

n

/\—1 0 0 e 0

0 % 0 e 0

A= : . . . :
Nin—
0 e 0 T_i 0
0 e 0 0 Z—Z

So, ATXA =Y for A € GL(n,R). So, P, is a homogeneous space of GL(n,R). Since 1,, € P,, and
O(n) is defined by ATA = AT1,A = 1,,, we conclude that O(n) is the isotropy subgroup. Hence,
Pn = GL(n,R)/O(n).

[
We have decomposed GL(n,R) into the product of P,, and O(n), which is a maximal compact
subgroup. In general, we have

Theorem 1.2.7.5 (Cartan decomposition). Let G be a Lie group. We can decompose
G = K - P where K is a compact group and P is a positive definite symmetric group.

Example 1.2.7.9.
SL(2,R) = SO(2) x (P2 N SL(2,R)).

et

Note that If A € P, NSL(2,R), then we can have A = B (0

Qt B~! where B € SO(2)
e

From the proof of Example 1.2.7.8, we can also prove
Exercise 1.2.7.2. For all X € P,, there exists a unique Y € P, such that Y?> = X.

Proof. If X € P,, then there exists B € O(n) such that BXB” is a diagonal matrix with positive
diagonal entries A; >0 fori=1,...,n, i.e.,

M 00 0
0 X O 0
BXB!'= -
0 0 M1 O
0 0 0 M\

Let
\/)\_1 0 0
0 \/)\_2 0 0

oo
oo
>
o 3.
L

S

3
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So, we have B~'A?2B = X. Since BT = B~! for B € O(n) ¢ GL(n,R) and
B™'A’B = (B7'AB)- (B 'AB) = (B™'AB)? = (BT AB)?,
we have Y = BTAB € P,,. O
The next exercise shall show that S, is a Lie algebra of P,,.
Exercise 1.2.7.3. Show that exp : S, — Py, is injective.

Proof. First, we show that exp : S, — P, is well-defined. Let A = (aij)nxn € Sp. In the case of
Sy, the spectral theorem says that if A € S,,, then there exists B € O(n) such that BAB™! is a

diagonal matrix with nonzero diagonal entries \; #0 fori=1,...,n, i.e.,
AN 0 00 - 0
0 X 0 - 0
BAB™' = S :
0 0 M1 O
0 0 0 A
So,

expA =B 'Bexp(A)B™'B
= B lexp(BAB™HB

M0 0 -~ 0

0 e 0 0
=B'|: . . . |B

0 -~ 0 eMm1 0

0 -~ 0 0 e

Obviously, it is symmetric and since e* > 0, we conclude that it is positive definite. Moreover, it is
obvious that it is injective by the fact that e® is an injective function. O

Exercise 1.2.7.4. Let G be a Lie group and H be a connected topological space. Suppose that
p: H — G is a covering space. Choose an element hg € p~'(e) C H to serve as the identity element
in H where e is the identity in G,

Show that there exists a unique Lie group structure on H such that p is a homomorphism of Lie

group.

Proof. Note that the covering map p makes H a connected differentiable manifold (See Sec-
tion 3.1.7.). Also, note that H is path-connected by the fact that H is a connected manifold.
Hence, G is also path-connected. Let e be the identity of G and

H ={[7] | 7:]0,1] — G where 7 is continuous and y(0) = e.}
Here, [y1] = [y2] if 71 v 72 rel {0,1}. It is well-known that H is a universal covering space of Gt

H = G where 7([]) = ~(1).
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So, we also deduce that H is a differentiable manifold. Using the group structure of G, we can
define a group structure on H in the following manners:

] - e = [ el

Note that the identity element of H is [ye], i.e., 7([0,1]) = e. Since H is also a universal covering
space of H and H is a covering space of G, we have the following commutative diagram:

H-".@

p
7| /
H
Note that f is not unique. However, since we can choose f such that f([ye]) = ho and H/T =~ H

where I' is the group of deck transformations of f, we can give a unique Lie group structure on H
such that p is a homomorphism of Lie group and hg is the identity of H. O

—_—

Remark 1.2.7.1. Let SL(2,R) is a Lie universal covering space of SL(2,R). This is a nonlinear
Lie group, i.e., a group which is not represented by a group of matrizes.

However, since SL(2,R) =2 SO(2) x R? and SO(2) =R from SO(2) = S, we conclude that

SL(2,R) = SO(2) x R? = R?,

We will prove the following later: Every homomorphism SL(2,R) — GL(n,R) factors through
SL(2,R), i.e.,

P

SL(2,R) —— GL(n,R)

2,
SL(2,R)
Now, we give a definition of Spin(n):

Definition 1.2.7.2. P
Spin(n) =) SO(n).

Note that Spin(n) — GL(2",R) is a 2™ x 2" matriz.

1.2.8 Extension

Before we give various definitions, we want to give

Remark 1.2.8.1. Lie classified Lie groups up to local isomorphisms by Lie algebras. Lie showed
every solvable Lie algebra «— an algebra of upper triangle matrixes.

Killing and Cartan classified Lie algebras by means of simple extensions using structure theories of
algebras. In this consideration, we have

a Lie algebra g is semisimple «—— g has no nonzero solvable ideal.
This shows that a semisimple Lie algebra is a direct sum of simple Lie algebras. We shall see that

solvable Lie algebra are iterated extensions of abelian Lie algebras.
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Definition 1.2.8.1 (Extension). Let A, B, and C be groups. B is an extension of A by C if the
following sequence is exact:
A— B —C.

That is, A > B is a monomorphism, B L,C is an epimorphism, and Im(i) = Ker(j).
Note that A is a normal subgroup of B and B/A = C.

Example 1.2.8.1. Let B be a Borel subgroup and Ry be a multiplicative group of positive reals.
Since we can identify

Bg{(g 11)) |a>0,beR},

. a b )
by giving a map 0 1)@ we have an extension

01

Definition 1.2.8.2 (Central extension). Let A, B, and C be groups and Z(B) be the center of
B. B is a central extension of A by C if A— B — C is exact and A C Z(B).

{(1 b) la>0,beR} = B —R,.

Example 1.2.8.2. Let G be a group. Since Z(G) <G, we have a central extension
Z2(G) — G- G/Z(G).

Definition 1.2.8.3 (Upper central series). For a given group G, define the following subgroups
inductively: Z°(G) =1 and Z1(G) = Z(G) and define Z'T1(G) to be the subgroup of G containing
ZY(G) such that

ZH1(G)/2(G) = 2(G/Z'(G)).

The following chain of subgroups is called the upper central series of G:
1=2%G)cz2(G)=2Y4G)c 2*(G)c---Cc 2" (G) C ---

Definition 1.2.8.4 (Nilpotent group). A group G is nilpotent if the upper central series stops
eventually. That is, there exists n € Z such that Z"(G) = G.

Example 1.2.8.3. An abelian group G is nilpotent because Z'(G) = G. So, we can think an
abelian groups as generalized nilpotent groups.

Definition 1.2.8.5 (commutator). Let G, H be groups. Suppose that x,y € G.

e,y e ayaly

Also, the commutator of two groups is defined as

G, H| = (lg,h] | g € G,h € H) = a group generated by ghg~*h™! for g € G,h € H.

Inductively, we define an n-fold commutator of G by

Co(G) = G.
C1(G) =[G, G].
Cn+1(G) = [Cn(G)v G]‘
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Clearly, G = Cy(G) 2 C1(G). Suppose that Cx_1(G) 2 Cx(G). From
Ci(G) = [Cr1(G), G] 2 [Cr(G), G] = Ci1a(G),
we have Ci(G) D Cr4+1(G). Hence, we have:

Definition 1.2.8.6 (Lower central series). For a given group G, we have the following chain
of subgroups, which is called the lower central series of G:

G=Cy(G)2Ci(G)D2Ca(G) D+ DCu(G) C -+

Exercise 1.2.8.1. G is nilpotent if and only if there exists N such that N-fold commutator of G
is 1, i.e., CN(G) = 1.

Proof. Note that 1 = [Z(G/ZF1(@)),G/ZFY@)] = [2¥(G) /2 1(G), G/ ZF1(G)] implies that
c(zM@)) = [2¥(@),G) € 2M1(a).
Notice that inductively, we have for all 4, k,
Ci(ZH(@)) C 2F Q).
Suppose that G is nilpotent, i.e., Z¥(G) = G. Let i,k = N. We have
Cn(ZN(@) =Cn(G) € 2%G) = 1.
Note that 1 = [Ck—1(G)/[Ck-1(G), G, G/[Ck-1(G), Gl] = [Ck-1/Ck(G), G/Cr(G)] implies that
Ce-1(G)/CL(G) € Z(G/Ck(G)).
Suppose that Cx(G) = 1. Clearly, 1 = Cn41(G) € ZY(G). Suppose that Cy41_1(G) € Z¥(G). So,
G/Cny1-1(G) - G/Z*(@).

Since
Cn-k(G)/CN-k11(G) C Z(G/Cn_k41(G)),
by the induction, we have
(Cv-i(G) - 24(G)) /2H(0) € 2(G/25(G)) = 241(0)/2H(O).
That is,
Cn_i(G) CCn_i(G) - Z2¥(@) C Z*1(@).
So, we have G = Co(G) C ZVN*T1(G) = G. O

By the virtue of Exercise 1.2.8.1 we conclude that G is nilpotent if and only if the lower central
series of GG stops eventually.

A strictly upper triangular n X n matrix is an upper triangular n x n matrix with zeros in the
all diagonal entries. Let

MN,, = { strictly upper triangular n X n matrixes. }
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Note that (9M,)" = 0, i.e., the multiple of any n elements is a zero matrix. Since M, does not have
an identity and invertible elements, we adjoin those elements formally, i.e.,

1, ®MN,.
For A, A" e M,
(1, +A)(1,+A)=1,+ (A+ A") + AA’, which shows that it is closed under multiplication.
Note that for A € M,,, we have
1, =1, + A) (1, + (—1D)A+ A%+ (=12 A%+ 4 (—1)"A™ + - ).
If AeM,, then A™ = 0. So, we have
1, =1, + A) (1, + (—1)A+ A% + (—1)3A% + -+ (=1)™A™) for m < n.

Combining closedness under multiplication, we deduce that 1,, & 9, is an algebra with invertible
elements:

1,

(1, +A4) = Y

=1, + (-1)A+ A? + (=1)°A% + - + (=1)™A™ for m < n.

Example 1.2.8.4.
12@m2={<(1) Qf) |UER}§R.

Example 1.2.8.5.

1 = =z
Heisenberg group Hy = 130N ={|0 1 y| |z,y,2 € R} =R3.
0 0 1
Consider
1 z =z 1 o 2 1 242 z+2 +zy
01 yl|lo 1 ¢|=]0 1 y+y
0 0 1 0 0 1 0 0 1

This implies that Hg L R2isa homomorphism where
1 =z =2 . 1 0 =2
0 1 vy b—><>andkerg0:{ 0 1 0)|zeR}=R.
00 1 Y 00 1

Also, by the above it is easy to see that

-1

1 =z =z 1 - —z+4+u2y 1 =z =z 1 2 =z 1 0 zy —2'y
01 vy =10 1 —y and [0 1 y|,[0 1 ¢ ]]=(0 1 0
0 01 0 0 1 0 01 0 0 1 0 0 1
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Since if zy’ — 2’y = 0 for all 2/,y’ € R, then x = y = 0, we have kerp = Z(Hs). So, we deduce
that Hs is a central extension of R = kery by R?, i.e., kerp C Z(Hs) and

R = kery — Hj 2 R2

If C is a subgroup of Z(Hj), then C' <Hjs. So, we define

10
Hd =Hz/{[0 1 | n € Z}.
0 0

— o 3

Since R/Z = S, it is easy to see that Hed = S1 x R2.
Exercise 1.2.8.2. Show that ngd does not have a faithful matriz representation.

Proof. O
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Chapter 2

Lie Groups as Smooth Manifolds

2.1 Smooth Manifold Theory

2.1.1 Smooth manifolds and Tangent spaces

Let M be a second countable Hausdorft topological space.

Definition 2.1.1.1 (manifold). We say M is locally Fuclidean if every point p € M has a

neighborhood p € U such that there exists a homeomorphism U 22U C R"™, which is called a chart,
where U’ is an open set in R™.

We say M is a manifold if it is a locally Fuclidean second countable Hausdorff topological
space.

Note that we call a collection of charts as an atlas and we always take a maximal atlas.

Definition 2.1.1.2 (smooth manifold). We say M is a smooth manifold if it is a manifold with
a smooth atlas, i.e., for charts oy : U — U C R"™ and oy : V — V' C R", the transition map

d _ .
av ® ouowyt  ov(UNV) = euUNT) is C.
In this description, we can define

Definition 2.1.1.3 (smooth map). Let M™ be an m-dimensional smooth manifold and N™ an

n-dimensional smooth manifold. We M™ L, N7 is smooth if for all patches (U, oy) in M and
(Vi1y) in N, we have

ou(U N f7HV)) M Yy (f(U)NV) is smooth.

Definition 2.1.1.4 (Lie groups). A Lie group G is a differentiable manifold with smooth group
operations

Note that if G is a topological manifold with continuous group operations, then it is, in fact, a
Lie group in the above sense, which was suggested by David Hilbert as his fifth problem and proved
by A. Gleason, D. Montgomery, and L. Zippin.

Sometimes, a Lie group is defined by a real analytic manifold ( C“-manifold ), i.e., transition
maps are given by convergent Taylor series with real analytic group operations. It is well- known
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1

that C*¥ C C*°, for example, e 2. Without using the fifth problem, in fact, it can be shown that
smooth group operations in a Lie group are real analytic group operations. So, no generality is lost
by assuming a more restrictive definition.
Let
C*(M)={f|f: M — R is smooth.}

We can make C°°(M) an R-algebra by defining operations as follows:

(f+9)p) = f(p) +9(p) and (f - 9)(p) = f(p) - 9(p)-

Every point p € M defines an R-algebra homomorphism between C*°(M) and R:

C®(M) = R by e,(f) = f(p).

Since R is a simple algebra, ker(ep,) is a maximal ideal of C°°(M). The next theorem shall make
local information into global information:

Theorem 2.1.1.1 (Partition of Unity). Let M be a smooth manifold and U = {Ua,} be an open
cover of M, i.e., M = UU,, then there exists a smooth partition of unity {1} subordinate to the
open cover U. That is,

1. For each oo, 1o >0 and 1= 1a(p) forpe M

2. ( Smoothness ) o € C*(M)

3. ( Local finiteness ) Each point p € M has an open set U such that

supp(o) NU # O for only finite number of «

4. ( Subordination ) For each «,

supp(a) = {u € M | Yo (u) # 0} C Ua.

Let f € C°°(U) where U is a small open neighborhood of p in M and we define an equivalent
class [f]p, which is called the germ of f at p, in the following ways:

[f1]p = [falp if there exists an open set W C U such that p € W and f; = fo on W.

Let v : (—€,e) — U be a path in U such that v(0) = p. So, we have a path fo~vy: (—ee) — R. We
define a derivative operator D of f with respect to v by D~([f]p) = (f 07)'(0). It is easy to see
that D, defines an R-linear homomorphism from the set of equivalent classes at p of C*°(U) to R:

D,(c)=0forceR
Dy (clfilp + e2lfolp) = e1Dy([f1lp) + c2 Dy ([f2]p)
Dy ([filp - [f2lp) = Dy (f1)ep([folp) + ep(f1) Dy ([f2lp)-

Remark 2.1.1.1. Foe simplicity, we will write f as [f],. As far as local notions are concerned such as
derivative operators and tangent spaces, etc., readers should think that we only deal with the germs, not
functions. So, there will be no confusion. However, when we deal with global notions such as tangent
bundles and derivations, we will give appropriate remarks
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We define an equivalent class [y], of smooth paths through p in the followings:

1lp = [2lp <= 71~ 72 if 71(0) = 72(0) = p and 71 (0) = 75(0).

Let Der(C* (M), €,) be the set of all derivative operators induced from equivalent classes of smooth
paths such that v(0) = p.

Definition 2.1.1.5 (Tangent Spaces). We define a tangent space T,(M) at p to be Der(C* (M), €p).
The next lemma shall show that we can make T,,(M) a vector space.

Lemma 2.1.1.1. For v1,72 € T,(M) and ci,c2 € R, there exists a unique [], such that for all
fec>(M),

(f ©9)'(0) = 1D+, (f) + 2D, ().
Proof. Since we are dealing with an infinitesimal path, without loss of generality we can assume

U = R" and p = 0. Moreover, since we are dealing with a smooth function f, for sufficiently small
t near 0, we always that

flem(t) + c272(1) = flamn(t)) + fleara(t)).
Let v(t) = c171(t) + cay2(t). Uniqueness follows from the definition of equivalent classes. O
Defining (¢1D~, + c2aD~,)(f) = c1D~,(f)) + c2D,,(f), by Lemma 2.1.1.1, we have
c1Dy, + 2D, € T,(M).

Let ¢ be a chart of an open neighborhood U of p € M such that ¢(p) = 0. So, for m € M, we
have coordinates

o(m) = (x1(m),...,zy(m)).
Let ¢ 0o 7;(t) = (0,...,0,t,0,...,0), i.e., i-th coordinate is ¢t. For all f € C*°(U), we have

_d(fer)t), _ Of(m)

Do) = TR o = g ey

So, we have D, = 6%1 =0; € Tp(M).
Exercise 2.1.1.1. {01,...,0,} is a basis of T(M) = Der(C*(M),¢p).

Proof. Suppose that > " | ¢;0; = 0. Take f = x;. Since Y ;" ; ¢;0;f = ¢; = 0, we conclude that
{01,...,0,} are linearly independent.

Now, we are going to show that it is a spanning set, which is not so trivial. Also, we remark that
the following proof works only in a C°°-category. First of all, we want to remind you that

m, def ker(ep) = {[flp € C(U)p | €p(f) = f(p) = 0} is a maximal ideal of C*°(U).

Again, C*>°(U), means a local ring, which is the set of germs. From now on, we omit the local ring
notions for simplicity. However, reader should think them as equivalent classes. So, as far as local
properties are concerned, hoping reader’s generosity we will write

m, def ker(ep) = {f € C(U) | ¢p(f) = f(p) = 0} is a maximal ideal of C*°(U).
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From the property of a derivative operator

Dy (erfr + caf2) = caDy(f1) + 2Dy (f2),

it easy to see that a derivative operator D, defines a linear functional on C*°(U). So, it will define
a linear functional on m,. Let

k
m2={FeC®U)|F = Zfz‘ - gi where f;, g; € mp}.
=1

By the following property of a derivative operator

D+ (f1- f2) = Dy(f1)ep(f2) + ep(f1) D~ (f2),

it is easy to see that D, defines a linear functional on m, /mlz). Note that the maximality of m, in
C>(U) shows that C*°(U)/m, is a field. Since m,/m? is a C>(U)/m,-module, it is a vector space.
Now, we shall show that Der(C°°(M),¢p) is isomorphic to the dual vector space of mp/mﬁ, ie.,
(my,/ mf,)*. Since we already showed that there is a well-defined identification from Der(C> (M), €p)
to (m, /m )*, it suffices to show that it is one-to-one and onto.

Suppose that for all f € mp/m we have D, (f) =0. So, D(z;) =0 for i = 1,...,n. That is,

d(z; 07) (1)

i li—o =0 for i = 1,...,n, which implies that 4'(0) = 0.

So, v v« 1 where 7;(t) = p, i.e., constant function. Hence, D, = 0.
In order to prove that it is onto, we need a preparation theorem from calculus:

Theorem 2.1.1.2. Let f € C*(U) where U is a small open neighborhood of p such that ¢(U) is
convex in R™ for a chart o(u) = (z1(u),...,x,(u)). For each u,v € U, we have

P+ Z (%f; Jump(@i(w) — :(p))

1 82 v
+Z i) = ) as0) = 250) [ (1= 05T ot

The above theorem shows that m,/m2 is a n-dimensional vector space with a basis x;(u) — z;(p)
for i =1,...,n in the C*>-category. In general, m,/ m}% is an infinite dimensional vector space.
Suppose that L € (m,/m2)*. Note that L is completely determined by L(z;(u) — 2i(p)) for i =
1,...,n. Let

~y(t) = gp_l(L(:L“l(u) —z1(p))t, ..., L(zn(u) — zn(p))t), which is a path in U.

It is easy to see that D, (x;) = tho = L(zi(u) —x;(p)) fori=1,...,n.
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So, we have for f € mp/mg,

D,(f) = Dy () + Z o plos(w) = ) = D (3 5T i) = )

0f(u) = Of(w) "
. sy v D (1000~ :0) ;—axz(u) Jump D (1))
Z axz((z)) |u= pd & thY(t))‘tO = ngfz((llLL)) | pL(xZ-(u) zi(p))
= (3 2oy oi) — o) = )

So, we show that Der(C>(M),¢,) = (m, /mlz,)*, which is an n-dimensional vector space. Since we
know that {01, ...,0,} are linearly independent in T,,(M) = Der(C*(M),€,), it is a basis. O

It is worth remarking what we showed in the proof of Exercise 2.1.1.1.

Remark 2.1.1.2. We showed that T,(M) is an n-dimensional vector space. So, T,(M) = R".
Since Tp(M) is a local notion, we have T,(M) = Ty(M) fro p,q € M.

We also showed that T,(M) = Der(C™(M),e,) = (my/m2)*. So, (I'p(M))* = my,/m2. That is,
Der(C>®(M),€p) mp/mg — R is a perfect paring.

Let M™ %5 N be asmooth map. We define (dv)), in the following way: Let D € Der(C*(M), €p)
and f € C°°(U) where U C N is a small open neighborhood of ¢ (p). Define

def

((d)p(D))(f) = D(fov) and ¢*(f) = fou.

A straightforward checking will show that (dv),(D) € Der(C*(N),€y) and (dy), induces a
homomorphism from T,(M) to Ty, (IN). Moreover, chain rules will show that if

def

peM™ 5 N L,
then we have d( 0 9), = (d@)y(p) © (di), where

(de) y(p)

(d¢) n

N o d(0t)
T,(M™) pow) ) (@) and Tp(M™) =2 Tgoy ) (QY).

Also, it is easy to see that if M™ 2 N"bea diffeomorphism, then (di), is an isomorphism between
Tp(M) to Tl/)(p) (N)

Definition 2.1.1.6 (Tangent Bundles). Define the tangent bundle T(U) over an open set U C
M to be a disjoint union of tangent spaces. That is,

def
U)= [ 1M
pelU

Note that since T, (M) = R", we give the topology of T'(U) from the topology of U x R". So,
it has a natural smooth structure. Also, note that locally we have T'(U) = R,
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2.1.2 Vector fields as Derivations

Definition 2.1.2.1 (Vector fields). Let T(M) = M be 7(p x Tp(M)) = p.
A section M =T (M) is a smooth map such that wo s(p) = p. That is, mos = idy;. A vector field
X is a section of T(M).

In general, for any vector bundle E = M, we say that s is a section if 7 0 s = idy;. So, what
the above definition means is that a vector field is a section of tangent bundle.

Definition 2.1.2.2 (Derivations). A derivation D of an R-algebra A is a linear map such that
D(fg) = D(f)g + fD(g) for all f,g € A. That is, the set Der(A) of all derivations of A is given

by
Der(A) ={D € End(A) | D(fg) = D(f)g + fD(g) for all f,g € A}.

It is worth remarking that Der(A) is a left A-module: Let D € Der(A) and f,g,h € A.
fD(gh) = (fD(9))h + g(fD(h)) = (fD)(gh).
Exercise 2.1.2.1. Show that we can make Der(A) a Lie algebra.
Proof. By defining for all a,d € R, all Dy, Dy € Der(A), and all f € A,
(@D1 + bD2)(f) = aD1(f) + bD2(f),
we conclude that Der(A) is a vector space. Also, defining a multiplicative structure [,] by
[D1, D2)(f) = D1(D2(f)) — D2(D1(f)),

a straightforward checking will show that

1. [Dy,Dq] € Der(A)
2. [,] is R-bilinear
3. [Di, D3] = —[D2, D3]
4 [Dla[D27D3H+[D27[D37D1]]+[D31[D17D2”:O‘
So, Der(A) is a Lie algebra. O

Since C*°(U) is an R-algebra for any open U C M, we have Der(C*°(M)). Let Vect(U) = X(U) be
the set of all vector fields over for an open U C M. Now, we shall show that X(U) = Der(C*°(U)).
So, X(U) is a Lie algebra.

Theorem 2.1.2.1. X(U) C Der(C*(U)) for any open U C M.

Proof. Note that X, € T,(M) = Der(C*(M), ¢,) and in Exercise 2.1.1.1, we show that {01,...,0n}
is a basis of T,(M) = Der(C*°(M), ¢y). However, it was a kind of misleading notation. We should
have written {01p,...,0np} as a basis of T,(M) = Der(C*(M),¢,). Now, let

82(1)) = &',p. That is, w0 0; = idy,.
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We want to emphasize that 0; need not be a vector field, since it need not be smooth.
However, what is true is the following: If X € X(U) for an open U C M, there exist 0; € X(U)
such that

X, = Zfl ). where f; € C®°(U),u € U and k < n.

Let v, € C*°(U). It is obvious that X, (a®) + by) = aX, () + bXy(¢), which shows that X, €
End(C*(U)). Also, we have

k k
=1 i=1

k k
= ¥(u) Z Filw)Biu(p) + @(u) Y fi(w)diu(¥) = (u) Xul0) + Xu(¥)p(u)-
i=1 1=1
That is, X (¢ - ¢) = X (¢) + X (¢)p, which implies that X(U) C Der(C*(U)). O

In order to show the reversed inclusion, we need some preliminary. First of all, we want to clarify
a vector field notation

Notation 2.1.2.1. We will write {01, ..., 0y} as linearly independent vector fields. That is, 0; € X(U)
for an open U C M implies that 0; is smooth over U. However, there is another notation, which
expresses a vector field. Let U be an open set in M and V = {V,,} be an atlas of U. So, for each open
set Vi, we have a chart (z4,1(v),...,Zan(v)). So, for each ¢ such that ¢, € T,(U) and wo ¢ = idy,
we can have

0
C(xa,l(v),...,zan Zfz 'fCoa 1 y Loy n( ))c%fa,@"
Note that %M € X(Vi). In this description, we say ¢ € X(U) if fi(za,1(v),...,Tan(v)) € C®(U) for

i1=1,...,n and all a. For simplicity, we will write % as ag;a - in the understanding that x; is a local

coordinate of each V.

Let D € Der(C>(U)) and f € C*°(U). By definition, D(f) € C*°(U). So,

D)) Y D,(f) = e)(Df) €R for p € U.

In this consideration, we can expect that D,, might give a derivative operator. However, strictly speaking,
a derivative operator was defined on a local ring C*°(U), and a derivation was defined on a genuine
function space. So, first of all, we will show that it is not a real obstacle. Note that that's is one of
reasons why we kept maintaining function notations instead of more logical equivalent class notations.

Lemma 2.1.2.1. If [f], = [g]p, then Dy(f) = Dy(9).

Proof. Suppose that f|y =0 for V. C U. Choose a bump function ¢ € C°°(U) such that
¢(x) =0 on a compact K C V and ¢|yy = 1.

So, pof = f on U. By the definition of D, we have

D(f) = D(¢f) = D(p)f + ¢D(f).
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So, we have D(f)|x = 0. by letting K = {p} for p € V, we have D(f)|y = 0.
If [f], = [g]p, there exists an open set W C U such that p € W and f =g on W. So,

(D(f) = D(g)lw = D(f — g)lw =0.
That is, Dy(f) = D,(g) for all p e W. O

From Lemma 2.1.2.1 and the Leibnitz rule of D as the definition of D ,it is easy to see that
Dy(f.g) =0 for all [f],,[g], € m,. So, we have for each p € U

D, € (my/m2)* = T,(M) & Der(C™(U), ¢,).

Hence, we conclude that each D € Der(C*°(U)) satisfy 7o D = idy for T(U) = U for any open
U C M. Now, we show that D,, varies smoothly as p varies. Keeping the content of Notation 2.1.2.1
in your mind, we can write at least.

Dy =3 A0 2a(9) .

It suffices to show that each f;(z1(v),...,x,(p)) € C*°(U). Note that by definition D : C*°(U) —
C>(U). So, we have
Dy(z;) = fi(p) € C(U).

Therefore, we have

Theorem 2.1.2.2. X(U) D Der(C>(U)) for any open U C M.

2.1.3 Lie bracket of Vector fields
Exercise 2.1.3.1. Compute [(,&] for vector fields (,& € X(M).

Proof. Let f € C*°(M) and

¢= ;Q(ml,,xn)% and £ = Zfi(xl,...,xn)axi.

i=1

- 0 0 - 0 0

i=1 i=1 j=1 0z;
N o ¢y Of
- Z (Cl(xl,...,xn)axi fz(ml,...,xn)axi oz,
i,j=1
So, we have
N~ IE; G\ 0
[Cag] - Z (Cl(xlv ) n) dz; fz( 1, 73:”)31‘@) 833]
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Since we know Der(C*°(M)) is a left C°°(M) module, we have X(M) is a left C°°(M) module.
Also, for f,g € C°°(M), it is easy to see that

[fC 981 = f-C(9)§ —g-&(f)C+ f-9l¢. €&
Example 2.1.3.1. If 0;,0; € X(U), then

[05,0;] =0
Example 2.1.3.2. If 0, € X(U), then
- af; o
[8’“’;fﬂa Z Oy, O,

Definition 2.1.3.1 (Parallel vector fields and Linear vector fields). Let £ € X(U), i.e.,

§= Zgz Llyeeey ail

We say & is a linear vector field if each &; is linear. We say £ is a parallel or constant vector
field if each & is constant.

Now, we are going to show that M,,(R) = gl(n,R) generates linear vector fields £ on R", i.e.,
£ € X(R"): Let A = (aij)nxn € My(R) and z1,...,z, be Euclidean coordinates of R". Define

§a= Z aljxja

3,j=1

Since the manifold which we are dealing with is R™ itself, we have £4 € X(R™). That is, M,(R) =
gl(n,R) generates all the linear vector fields of R". The following exercise will exhibit that
M, (R) = gl(n,R) acts on the set of linear vector fields on R™ with respect to Lie bracket actions.

Exercise 2.1.3.2. Show that [£4,¢8] = {ap—Ba for A, B € M, (R).

Proof. Let
= o) o)
Eq = Z al-jmja i and £ = Z bljxja
3,j=1 ,5=1
We have
sl = 3 Za 2 —J i=1 b ;) Zb ) Iz 90 1%%))1
A, SB e iJ j .%' iJ ] $i Bxk
n n a
= Z Zazm )bri — (Z bijxj)aki)% = D (D _(aibyi — bijani)zj) 5—
ik=1 =1 koik=1 j=1 k
n n 8
= j;l (;(ai]’bk‘i — bijagi)z;) o §AB-BA-
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Example 2.1.3.3. M, (R) = gl(n,R) acts on the set of parallel vector fields on R™.

Proof. First of all, note that the action of £ 4 is Lie brackets. Since every parallel vector field of R™
is generated by 8%1- for i =1,...,n, it suffices to consider just one case:

(€4, 7— Z ) 8 Z azk , which is a parallel vector field.

7‘77

8332

Example 2.1.3.4 (Compare to Example 2.1.3.1). Let our manifold be R™. We have

0 0, 0 0D
1895,;’ 81‘1 N 8331 a.%i’ 69@

[~z ] =
Example 2.1.3.5. Show that affin(R) = {(az + b)f% | a,b € R} is a 2-dimensional Lie algebra of
vector fields on R.

Proof. We have to check Lie bracket operations of a% and xa%:

0o 0 0 0o 0 o 0

5 ) = ~as M g 5. = gy el = 0

So, it is a Lie algebra generated by a% and :Ua%. O

Definition 2.1.3.2 (Flows or One parameter subgroups). We say ®(t,z) = ®.(x) is a global
flow ( or one parameter subgroup ) on M if & : R x M — M is smooth and it satisfies ®o = idps
and Oy, 41, = Py, 0 Dy, e, Pty + to, z) = O(t1, P(te, z)) for all t1,t2 € R.

This definition has immediate consequences: If @, is a flow, then ®; has an inverse by definition,
namely, ®_;. So, the smoothness gives that &, € Diff (M), the set of diffeomorphisms of M. Moreover,

the condition @4, 14, = ®;, o P4, gives us that R 2, Diff (M) is a homomorphism. The image of this
homomorphism is a subgroup of Diff (M), which is parameterized by one dimensional group R. That
is why @ is often called a one parameter subgroup.

Now, we want to relate a flow to a vector field of M. Let v : (—¢,€) — M with v(0) = p. We know
that 7 gives a tangent vector as a derivative operator, i.e., D, € T,(M) = Der(C*°(M),e€p,). Since
®(t,z) € m, fixing x and varying t it is easy to see that ®(¢,x) gives a path on M. That is, ® gives
a tangent vector Dy, ) € Tp(M). So, for f € C°°(M), by the definition of a derivative operator, we
have

Daguap () = (7 0 ®(t,)) =0

Now, p varies in the above equation. The right hand side is smooth by the smoothness of ®. So, we
conclude that Dg . ) is smooth with respect to p. That is, Dy, € X(M), which shows that every
global flow defines a vector field.

Example 2.1.3.6. Let t,x € R and 6(t,z) = xe'. Obviously, §(t,x) is a flow in R. The corre-
sponding vector field is xa%.
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Proof. If £ € X(R), then & = f(x)a% where f € C*(R). So, f(p) = &p(z). Let g(x) = . We have

d d
Da(t,x) (9) = a(g 0 6(t,x))|t=0 = E(mtﬂt:o =2z

That is, the corresponding vector field is x%. O

Example 2.1.3.7. Let s,z € R and 7(s,x) = = + s. Obviously, 7(s,x) is a flow in R. The

corresponding vector field is a%.

Proof. Let g(x) = x. We have

d d
DT(s,x)(g) = %(9 © T(S7$))‘S:0 = %('x + S)‘SZO =1

That is, the corresponding vector field is %. O

Note that in general, for A € gl(n,R) = M,,(R), the corresponding linear flow is
O(t, A) = exp(tA).

Definition 2.1.3.3 (Abelian Lie algebras). We say a Lie algebra g is abelian if [X,Y] =0 for
all X, Y € g.

In the proof of Example 2.1.3.5, we show that [—a:a%, a%] = %. So, {(azx + b)% | a,b € R} is
not an abelian Lie algebra. From Example 2.1.3.6 and 2.1.3.7, we know that §(¢,z) = xe’ induces
the corresponding vector field is xa% and 7(s,x) = x + s induces the corresponding vector field is
%. The reason why [—a:a%, %] # 0 is that the corresponding flows do not commute each other:

5t07505_t = Tget -

Exercise 2.1.3.3. Show that {(ax? + bx + c)a% | a,b,c € R} forms a Lie subalgebra of X(R) and
it is isomorphic to sla(R).

Proof. We have to check Lie bracket operations of 8%’ 938% and x2%: It is easy to see that

[QQ]__QSL [QQ]_[Q g]_[2£ QQ]_
Yor oz~ or o ar T YorTor Yot o
0 0 0 0 0
20 O, 20 20 0O, O
& 8x’$81‘] v on and [z 8:1:’836] Tor

So, it is a Lie algebra generated by 8%, xa% and an%. We want to remind you that

b

—a

> andA3:<(1) 8)

sla(R) = {traceless elements of M(R)} = {(Z ) | a,b,c,d € R}.

Let
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It is easy to see that [A4;, A;] =0 for i = 1,2,3 and
[A2, A1] = — Ay, [A3, Ao] = — A3 and [A3, A1] = —24,.

Define a map

Ay — 2, Ay — xag and Ag — a:Qag, which is a Lie algebra isomorphism.
x x

ox
O

Exercise 2.1.3.4. Show that {(apz™ + -+ a1z + ao)% | a; € R fori=0,...,n} does not form
a Lie subalgebra of X(R) if n > 2.

Proof. 1t is easy to see that

0 0 0
n 2 n+1
=t =(2- =
[= 9z 83:] (2=n)a oz
So, if n > 2, then (2 — n):c”“(% ¢ {(anz™ + -+ a1z + ao)a% | a; € R for i =0,...,n}. Hence, it
is not a Lie algebra. O

2.1.4 Existence and Uniqueness of Integral Curves

We want to remind you that the definition of a global flow, i.e., Definition 2.1.3.2. In the notation
of Definition 2.1.3.2, we say ®(t,z) is a local flow if the domain is just (—d,€) x U where open
U C M, not necessarily the whole manifold M. An integral curve v on M is weaker concept of
a local flow. That is, the domain of v needs to be (—d,€) x {p} for p € M, which is more or less
equivalent to say that we don’t need the smoothness of p variable. We give rigorous definitions:

Definition 2.1.4.1 (Integral curves). Let X € X(M). We say v : (—0,€) — M s an integral
curve of X if it is smooth and for all f € C*°(M) and s € (=9, ¢€),

d e
Z(FovOlis = Xof < ey (X ).

Definition 2.1.4.2 (Local Flows). We say ®(t,z) = ®i(x) is a local flow on M if there exists
an open U C M such that ® : (=d,e) x U — M is smooth and it satisfies that ®g is an inclusion
U<— M and Oy 14, = Py 0 Py, ice., (t1 + to,x) = P(t1, P(t2,x)) whenever both sides of this
equation are defined.

Theorem 2.1.4.1. Integral curves of a given vector field X always exist

Proof. Let X € X(M) and M is n-dimensional manifold. So, we can write

n P
9 o0
Xp = Zfz(P) oz, where f; € C°°(M) and p =

Pn
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Take a chart (z1,...,2,) around p € U C M, ie., U = R", such that (z1(p),...,za(p)) = (0,...,0).
Now, we are in an Euclidean space. Let v(t) = (y1(%), ..., 7 (t)) such that v(0) = (0,...,0). Look
at the following equation:

TN (A w(0)
YO=1 | = :
(1) fa(r(®), -, (1))
The fundamental existence and uniqueness theorem of a system of first order differential equations
tells us that we can have a unique solution subject to the initial condition v(0) = (0,...,0). So,
integral curves exist in each chart. O

Remark 2.1.4.1. Note that each point p € M has a maximal interval (a(p),b(p)) in which ~,(t)
is smooth. Also, what the uniqueness statement really tells us is that if v,(t) with v,(0) = p is an
integral curve of a given vector field X € X(M) with domain (a(p), b(p)), then for all s € (a(p),b(p)),
we have
M(5) = Xy )
That is, if we let v, (5)(t) be the integral curve of X € X(M) at yp(s), then as long as s, t,t + s €
(a(p), b(p)), we have
Yp(s) (t) = Vp(t + 8)'

Now we construct a local flow ®(t,z) from integral curves of X € X(M). We know that there
exists a unique integral curve 7,(t) at each point p € M. Let

(I)(tvp) = ’Yp(t)'

By Remark 2.1.4.1, we have for t1,to,t1 + t2 € (a(p),b(p)),

(t1 +t2,p) = Wt +12) = Yy, (1) (1) = P(t1, Wp(t2)) = P(t1, B(t2, p)).

Moreover, by construction, ®(0, p) is an inclusion from U to M.

Now, we will show smoothness: We know that ®(¢, p) is smooth at the variable ¢ on the domain
of y,(t), i.e., (a(p),b(p)). However, what we do not know is whether or not ®(¢, p) is smooth at the
variable p. To prove this we need a theorem from ordinary differential equations.

The fundamental existence and uniqueness theorem of a system of first order differential equa-
tions with varying the initial conditions W(0,b1,...,b,) = Yp,,..b,)(0) tells us that there exists
an open (—d,¢) x U where (by,...,b,) € U C R™ such that we can have a unique solution
W(t,21,...,2,) subject to the initial condition W(0,b1,...,bn) = Yp,,..5,)(0)-

The uniqueness tells us that ®(¢,p) = 7,(t) must be the solution. That is, we can find an open
neighborhood U, C M of p and an open interval (—dy, €,) such that on (—d,, €,) x Uy, (£, p) = 7,(t)
is smooth. Hence, we proved

Theorem 2.1.4.2. For a given vector field X € X(M) and m € M, there exist an open neighbor-
hood Uy, of m, (—0m,dm) C R, and a local flow Oy, (t,p) on (—0m,dm) X U, which gives unique
integral curves vyp(t) = ®(t,p) at each point p € Up, C M.

Remark 2.1.4.2. Actually, we can have more. Let (a(p),b(p)) be the maximal interval in which ~y,(t)
is smooth.
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Let
W= J (a(p),b(p)) x {p}

peEM
def
D= {pe M| (s,p) e W}={peM|se (a(p),b(p))}
First thing we have to check is the following:
Theorem 2.1.4.3. W is open in R x M and Dy is open in W.

Proof. Suppose that (s,p) € W for s € R and p € M. Without loss of generality, we can assume
s> 0. Also, we can assume that for small € > 0, (s + €,p) € W. The proof of the smoothness of a
local flow shows that there exists an open set (—4,6) x U, C W where U, is an open neighborhood
of p and (—0,6) C (a(m),b(m)) for all m € U,. Let ®(t,m) be the local flow on (—d,d) x U,. Take
some large enough k € N such that ST“ € (0,0) and for all m € U,

k

Ym(s + €) = D(s+e,m)=Psrc 0 0Dyiec(m).

k k

So, we have (s,p) € (0,s + €] x U, C W. Hence, (s,p) € (0,s+¢€) x U, C W. Thus, W is an open
set.
Suppose m € D;. So, (s,m) € W. Since W is open, there exists an open set

{t||t—s| <e} xU CW where m € U is open in M.
So, {s} xU CW. So, m e U C Ds. O

Theorem 2.1.4.4. For a given vector field X € X(M) and m € M, there exist an open set U C M
and a local flow (1, p) on U, (alp), b(p)) x {p}, which gives unique integral curves v,(t) = @(t,p)
at each point p € U,, C M.

Proof. Note that the same proof of Theorem 2.1.4.3 shall show that

L (a(p), b(p)) x {p} is open.

peU

Suppose that (s,p) € W for s € R and p € M. Without loss of generality, we can assume s > 0.
By Theorem 2.1.4.2, we can find the domains of local flows at each points m € 7,([0,s]). Let
(=0m; 0m) x Up, be the domain of ®,, (¢, ). Since {Up,} is an open cover of v,([0, s]) and ~,([0, s])
is compact, we can find a finite number of U,,, for i = 1,...,k. Let @ = min;<;<x{dm,}. By the
uniqueness of a local flow, ®y,, (t,2) = oy, (t,x) on (—a,a) X (Un, N Up,;). Hence, we have a

local flow
k

®:(—a,a) x UUmj — M.
i=1

Take some large enough k& € N such that 7 € (0,a) and for all m € U,. Consider



It is easy to see that for i =1,...,k,

k

(m) € ([0, 5]) € | V.

i
—N—
Peo---0®.

ESI[Y
w

That is, ®(t,p) is smooth at s as well as p. Since s € (a(p),b(p)) is arbitrary, we prove the
theorem. m

The proof of Theorem 2.1.4.4 has interesting consequences: Fix s and let A be the domain of ®. If
p € A, then & is smooth at p. So, s € (a(p),b(p)). Hence, A C Ds. The proof of Theorem 2.1.4.4
tells us that Dy C A. Hence, the domain of ®; is D,. From this, we have

Theorem 2.1.4.5. &, : D; — D_; is a diffeomorphism with inverse ®_5. That is, every flow is a
local diffeomorphism.

Proof. Let m € Ds. By definition, &5 0 &_,(m) = ®o(m) = m and ®_5 0 &4(m) = Po(m) = m.
The proof of Theorem 2.1.4.4 shows that &, : Dy — D_ is smooth. O

Also, it is easy to see that
Theorem 2.1.4.6. |J,.,Ds = M and Domain(®, o ®,,) C Dy, 1, .

Proof. Obviously, | J,.oDs € M. For m € M, since there exists 0 € (a(m), b(m)) in which v,,(t) is
smooth, there exists s > 0 such that m € Ds. So, (J,.oDs = M. If p € Domain(®, o &, ), then
D5, 0 P, (p) = Qs 45, (p) So, p € Ds; +55- U

Definition 2.1.4.3 (Complete vector fields). We say X € X(M) is a complete vector field if
it 1s generated by a global flow.

Note that not every vector field is complete.
Example 2.1.4.1. % € X(R/{0}) is not complete.
Proof. Suppose that ®(¢,x) is a global flow of %. So, we have
O(t, ) = 7a(t).
Now, we solve the following differential equation:

de (t)
dt

=1 and 7,(0) = p.
It is easy to see that v,(t) =t +p. So,
O(t,z) =1t + .

However, when z = —t, t = 0 implies z = 0. That is, ®(¢t,z) = t + z is not defined if t = —z on
R/{0}. Note that 6% € X(R) is complete by the flow ®(¢,z) =t + . O

Example 2.1.4.2. xQ% € X(R) is not complete.
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Proof. Suppose that ®(¢,x) is a global flow of xQE%. So, we have

CI)(ta x) = %n(t)'

Now, we solve the following differential equation:

dry, (t d
%”zviwandvp p:/dt / ”’
0 p

It is easy to see that v,(t) = t2. So,

O(t,z) = T

However, when t = %, O(t,z) = 0o. So, (t, ) is not defined if t = % on R. O

Let (U1, x) be a chart around the origin of RU {co} and (Us,y) be a chart around oo of R U {oo}.
Of course, as usual, the transition function is given by x +— % = y. From this, we can smoothly
extend X =225 9 t0 0o. That is, we have a smooth vector field X € %(R U {o0}), which is given
by z? —x and — 8% on each chart. Now, this is complete. The global flow

E:Rx (RU{x}) = RU{o0}
is given by ®1(t,z) = 1% or ¥y(t,z) = ﬁm) on R x Uy and ®o(t,y) = yT or Uy(t,z) = %(lt )
on R x Us. Since they agree on Uy N Uy, the uniqueness shows that they are can be formed into a

global flow =. Actually, what gives the existence of Z is the compactness of R U {oco}. In general,
we have

Exercise 2.1.4.1. If M is compact, every vector field X € X(M) is complete. That is, each vector
field gives a global flow & € Diff (M) if M is compact.

Proof. Let M be compact and X € X(M). By Theorem 2.1.4.2, we can find local flows, which
generates X. Let (—dp, €p) x Uy, be the domain of ®(t,m),. Since {Up} is an open cover and M is
compact, we can find a finite number of flows ®(t,m),, fori =1,... k. Let a = min;<;<x{0p,, €, }-
By the uniqueness of a local flow, ®(t,m),, = ®(t,m),, on (—a,a) x (Uy, NUp,). Hence, we have a
local flow

O : (—a,a) x M — M with ®(0,m) = idy;.

Let 7 € R. There exist unique n € Z and |b| < § such that r = n§ 4 b. Define

o--~o<I>%O(I)b ifr>0
o---o@_%oq)b if r < 0.

n

The chain rule gives that ® : R x M — M is smooth. Also, by construction, ®¢ 4+, = P, 0 Dy,.
Hence, it is a global flow which generates X € X(M). O
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Theorem 2.1.4.7 (Normal forms for nonsingular vector fields). Let M be an n-dimensional
smooth manifold and p € M. Suppose that X € X(M) and X, # 0. Then there exists a smooth
coordinate chart (U, ) at p where

0
Xy = —u-
lv = x*( ay)|U
Proof. We know that there exists a local flow & around a small neighborhood V' C M of p, which
generates X on V. That is, £ : (—€,€) x V. — M where

d
X(ml,“.,zn) = Egt(xlu <. 7xn)‘t:0-

Since X, # 0, without loss of generality, we can shrink V' smaller so that we can choose a coordinate
system on (V, ¢ = (z1,...,2,)) such that p = (0,... O) and

0 0

T,(V) has a basis {Xp’f)—xg’p" \p} ie, X, = = o |p-

Let
W ={(x1,...,z,) € V| 21 =0}.
Note that T is nothing but a smooth hypersurface in V. So, dim(W) = n—1. Define on (—¢, €) x W,

F(y,xzo,...,xn) =&,(0,22,...,2p).
Note that F(0,0,...,2;,0,...,0) = &(O0,...,z;0,...,0) = (0,...,240,...,0) for i = 2,...,n.
Clearly, F' is smooth on (—e¢,€) x W. So, we have
dFy : Tp((—€,€) x W) = T,(M) =T,(V).
Since Tp((—€,€) x W) =T,((—€,€)) x Tp,(W), T, ((—e€,€) x W) has a basis {8%|p, a5 lps - s 8% Ip}
It is easy to see that

=3y 0 0
Ox; ¥ O:U p@az 0w,

Jj=

dEFy(

|p for i =2,...,n.

Moreover, by the definition of a local flow &, we have

0 OF;
4Py ly) = ; Sibgl = %

We note that J
Xﬁs(xl,...,xn) dt§ (gs(xla s 7xn))‘t:0

d d
= E&H‘S(xlv s 71.71)‘75:0 = %gt(xh ey xn)’t:s

From this and F(y,x2,...,2,) = &(0,22,...,2,), we have
OF 0&y(0,22,...,2p)
8—y‘(a,a2 ..... an) — ay ‘(a,ag ..... an)
_ déy(0,az,...,a,) d

dy ly=a = Eﬁt(fa(@ as, ..., an)|=o

= Xe,(0a2,man) = XP(asaz,..an)-



That is,
0
dF(y,xQ,‘..,xn)(8_y|(y,x2,...,xn)) = XF(y,a:g,..‘,:cn)-
n—1

. . . . . *
Since the differential of F' is nonsingular at {0} x (0,...,0), then we can use {y,x1,...,z,} as
coordinates from the inverse function theorem, if necessary, by shrinking (—e¢,€) x W. Since F :

F
(—€,¢) x W — M, there exists an open set (—e,€) x W = U C M such that

d
{yoF~' 290 F71 ... &, 0 F '} is a smooth coordinate chart on U and X|y = dF(a—)\U
Y

2.1.5 Left actions of Diff(M) on C>*(M).
Let ¢ € Diff (M) and f € C°°(M). Define

(0 /Y fopt.

It is easy to see to see this is an action, i.e.,
(o f)=Wop)-f.

Example 2.1.5.1. Let X € X(M) be complete and & be the corresponding global flow. We already
have shown that § € Diff (M) and the inverse of & is &—y. So, we have

Xf = Slimof(6(p) = hmol(@)™ 1)
= %!tzo(ﬁ—t f) = —%!tzo(& - f)-

Now, we are about to define a left action of Diff (M) on X(M) = Vect(M). Note that this is
a prototype of general theory that a Lie group (in this case, Diff (M) ) acts on the Lie algebra ( in
this case, X(M)). We want to remind that for ¢ € Diff (M) we have

™ —% . 7™M
M —Z
So, for X € X(M),
def
d(,D(X) S %(M) and d('pap_l(p)(ti_l(p)) = (d(p(X))p S TP(M)

Note that
def

Xp(f) = (XF)(p)-

Note that we define a vector field to be a derivation. So, by definition, we have

(A1 (X1 ) () L X iy (Fo ) E (X (o 0)) (07 ().

Of course, if you use the Jacobian of Jp, then you will get the same answer.
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Remark 2.1.5.1. Obviously, the above does not imply

dpy1) (X)) (f) = Xpm1() (f 0 0) = Xp(f), ey (dp(X))p = X

However, in some situation there exists ¢ € Diff (M), which makes

dp 1) (X1 (f) = (dp(X))p = X} for allp € M.
Later, those will be our one of main objects to study.

Let ¢ € Diff (M) and X € X(M). We define

de
o X dp(x).

That is,
def _
(¢'X)p:dgp¢*1(p)(X@71(p)) = d(pOXO(p 1.

It is an action, since
P (- X) = dy(de(X)) = d( o) (X) = (Vo) - X.
This action has naturality: For all f € C°°(M),
(- X)(@- N))p) = (0 X)p(ep- f) (dp(X))p(e - f)

= (dso)ngl(p) (X )(90 f) ch*%p)((‘ﬁ : f) o SO)
= Xp1p)(f) = ( ™ @) '

= (¢~ (X))
That is, (¢ - X)(p - f) = ¢ - (Xf). Observe that if ¢ € Diff(M), then it is easy to see that
@ : Der(C®(M)) x C°(M) — C>°(M) defines a bilinear map where Der(C>®(M)) = X(M), i.e.,

(Y, )= (- Y)(e-f)=¢ (V)

Remark 2.1.5.2. The action of Diff (M) on X(M) does not extend the group of smooth maps
between M to M, i.e., C°(M, M), since we need invertibility. However, in the case of differential
forms, a pullback is well-defined. Now, we will show this point of view.

We want to remind you that a covector is an element of 7)) (M) = Hom(Tp(M),R). A smooth
section of T*(M) = (T'(M))* is called a covector field or 1- form Every f € C°°(M) defines a
1-form: Let f: M — R be smooth. So, we have

df, ~
Ty(M) =5 Ty (R) = R.

Hence, df, € Hom(Tp(M),R) = T;;(M). Another way of saying this situation is the following: d
defines a homomorphism between C*°(M) and the space of 1-forms. That is,

C>*(M) 4, QY (M) = { sections of T*(M)} i.c., f + df.
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Let ¢ : M — N be an arbitrary smooth map. We have dp : T(M) — T(N). Since T*(M) =
Hom(T'(M),R), T*(N) = Hom(T'(N),R), and dy is nothing but the Jacobian Jy of ¢, using the
linearity of dyp, it is easy to see that

(dp)" - T*(N) — T*(M).
Let w € QY(N) and p € M. Define

* def def
(" w)p = (de)y (We(p) = (dg)T owo .

Note that for finite dimensional vector spaces V, W and the duals V*, W* any linear map f gives
the following commutative diagram:

vV = v

So, it is easy to see that

(@*w)p(Xp) = (d@)g(ww(p))(Xp) = wgo(p)(d@p(Xp)) = wcp(p)((dsp(X))go(p))'

Since the right-hand term is a smooth function as p varies, ¢*w is smooth as p varies. Hence, we
have
" QYN) — QY(M).

Example 2.1.5.2. Let M = R? and X = %,Y = :Ua% + ya%. Clearly, X,Y € X(R?). It is easy

to see that the corresponding global flow of X is &(x,y) = (x + t,y) and the corresponding global
flow of Y is my(x,y) = (wet, ye'). We have

d
Eh:o(ﬁt Y) =-[X,Y].

Proof. For all (a,b) € R?

Ox+t  Ox+t 1 0

ox oy

Note that
&t : Tap)(R?) = Ty (a0) (R?) = T,y (R?).

Also, we have

0 0 D) 9
Yian) = aa—y T ba_y and Ye_(ap) = Y(a—tp) = (@ — t)% + ba—y.

By definition
é-t . Y = dét o Y o S—t - (dé-t)fit (ngft)

1, (“gt> = (a—t,b)
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That is, & - Y = (a — )& + b € Tatt,)(R?). So,

d d ) ) B
@‘tzo(& : Y) = a’tzo(l‘ — t)% +y8_y = _8_x'

Since it is easy to see that —[z,y] = —é%, we have

d
£|t=0(§t Y)=-[X,Y].

Again, this is no coincidences. This will be the content of the next section.

2.1.6 Lie Derivatives

Let M be a smooth manifold and X,Y € X(M). Suppose that & € Diff (M) be a global flow of
X. Note that & - Y € X(M) is a path of vector fields. Define the Lie derivative of Y by X to be

ef d
Lx(¥)E Zlicole- V).

Theorem 2.1.6.1.
Lx(Y)=[XY].

Proof. Actually, X does not need to be complete even though we will assume that it is complete. That
is, it is sufficient that &, is a local flow for our proof. Notice that all the actions which we have defined
so far in this section still make sense if we apply them to appropriate domains.

Let & be the global flow of X € X(M) and f € C*°(M). Note that &, € Diff (M) is the identity
map and

(Ex 1)) = (e limo(&- )P) =~ Fhmolf o &u(p))

= Lol f 0 &elp)) = X,

Note that from the above X f = — (%\tzo(ft - f)) and by R-bilinearity of actions, we have t(Y'(f)) =
Y (tf) for t € R. So, using bilinearity of the actions, we have

XOf) =~ Dol (V1) = oo V) (& - ) = — timg S E LI ZYT

i & Y& f) = (& Y)(F) + (& - YI(F) — VS

t—0 t
= —tim e V(& - ) 4 i ST
| G D-F . & Y-V
R e

= (&Y emo) lemo&e - ) Elizo(€ - ¥)((& - Pleco)
= V(X]) + LxY(f)
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Hence,

Lx(YV)(f) = X(Yf) =Y(Xf) = [X, Y](f)

Corollary 2.1.6.1.1.
d
— =0t - Y) = [X,Y].
gpl=0(6-¢ - Y) = [X, Y]

What does it mean [X,Y] = 0 for X,Y € X(M)? One obvious answer would be X (Y (f)) =
Y(X(f)) for all f € C°(M). That is, second order differential operators , i.e., XY and Y X are
the same. Corollary 2.1.6.1.1 has another interesting consequence: It says that if [X,Y] = 0, then

Dol 1) =0,

In particular, since [X, X| =0, %|t:0(£,t - X) = 0. We note that

d d d
e Yms = =€ Yo = — (606 ) - Yo
g |t= PR lt=0 dt(f 10 s) Y=o

d d
= %(f—s 0t) Y=o = E(ﬁ—s) (€=t - Y)|i=0
d

= E(ﬁ—s)\tzo (6=t - Y)|i=0 + (§—s]i=0) - (%§—t -Yi—0)

= (5—8) : (%f—t : Y‘t:o) =0.

One important conclusion of the above is the following: If [X, Y] = 0, then since %ﬁ_t Y]i=s =0
for all s € R, we have
Y=¢§ YV=§ Y

Now, we investigate the flow of & - Y.

Exercise 2.1.6.1. Let p € Diff (M) and X € X(M) be complete. Show that ¢ - X is also complete
and the global flow is given by p oy o =1 where n; is the global flow of X.

Proof. Let p € M and ¢~ !(q) = p. We have

d _
(- X)g = dpy19)(Xp-1(g) = E((P o (¢ (9))]e=o0-

So, let ¥y(q) = @ om0 ¢ 1(q). Since ¥, € Diff(M) and v; generates o - X by the above, the
uniqueness of a global flow says that 1, is the global flow of ¢ - X. O

Let 1, be the global flow of Y and & be a global flow of X. If [X,Y] =0, then Y =&, - Y. So, by
Exercise 2.1.6.1, we have

Ne=~&omsoé_t <> ns0& =& oms.

Hence, we have

Theorem 2.1.6.2. Vector fields commute each other if and only if their global flows commute each
other.
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2.1.7 Remarks on vector bundles

We do not need this section later. So, you can skip this if you wish.

An n-dimensional real smooth vector bundle over smooth manifold M™ is a smooth map E"t™ 5
M™ satisfying the local triviality and each fiber 77!(p) is an n-dimensional real vector space. Note
that a structure group is GL(n,R). Let

I'(E) = {C*® — sections of 7, i.e., mos =1id}.
Example 2.1.7.1. T(T(M)) = X(M) and T(T*(M)) = QY(M).
One of a nice classification theorem of vector bundles is the following:

Theorem 2.1.7.1. There is one-to-one correspondence between smooth vector bundles of finite
rank over a smooth manifold M and finitely generated projective C°°(M)-modules.

Sketch of proof. It is a well-know theorem in Algebraic Geometry that there is one-to-one corre-
spondence between smooth vector bundles of finite rank n over a smooth manifold M and finitely
generated locally free C°°(M)-modules. Here, finitely generated locally free C°°(M)-modules A
means that there exists an open neighborhood U, C M such that A(U,) = (C*(U,))" for each
p € M. Note that we should have said locally free sheaves over a structure sheaf. A sheaf has more
structure than a module. However, since we can construct a unique global object from compatible
local data in the case of C*°, A are already sheave. Since locally free C*°(U,)-modules is locally
projective C*°(U,)-modules and C* (M )-modules is sheave, we can construct a global splitting g
from each local splitting, so it is projective C'°°(M)-modules:

0—c(M) 2 B LAy —o.

g
If A(M) is a finitely generated projective C'°°(M)-module, then A(Up) is a finitely generated

projective C*°(Up)-module. Since C*°(Up) is a local ring as a stalk, A(U),) is a finitely generated
free C*°(Up)-module. O

From this we have:
I'(E) is a finitely generated free C°°(M)-module if and only if there exist sections si,...,s, € ['(E)
such that every section s € I'(E) is a linear combination s = Y | fis; where f; € C*°(M) if and
only if there are n sections which are everywhere linearly independent if and only if E is a trivial vector
bundle. Note that not every vector bundle is trivial.

Example 2.1.7.2. Since every section of T(S?) must vanish somewhere, X(S?) is not a free
C>(S?)-module.

Note that there exists a normal bundle v of S? such that T(S?) @ v is a trivial bundle. In a
compact manifold, this phenomenon is always true. Before proving this, we give a definition of the
Whitney sum: If E{" and EJ? are vector bundles over M, we can make Whitney sum E}" @& Ej?
over M of EY" and Ej?, which is a vector bundle over M whose fiber (EY' @ Ey?), is Ey) © Ey;
and structure group is given by

1
0
(ggﬁ giﬁ) where géﬁ, giﬁ are in the structure groups of E]"' and Ej?, respectively.

By the virtue of Theorem 2.1.7.1, we can give two proofs of the following:
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Exercise 2.1.7.1. Let M™ be a compact Hausdorff smooth manifold and & be a vector bundle over
M™. Prove that & sits inside a trivial bundle over R™ for some n > m.

Proof 1. Regarding M™ as the zero section of E(£), one can embed some neighborhood U C E(§)
of M™ in some R" by the Whitney embedding theorem. Using the local triviality of vector bundle,
we have a trivial bundle 7y @ vy over U where the tangent bundle 7y and normal bundle v¢;. Since £
projects non trivially to the normal space to T, (M) in T,,(U) using the differential of the embedding,
this induces an isomorphism of ¢ with the normal bundle A to M in U. But A @ vy|y ~ var and
S0 EBvylM D T:M = A D vy|m D T =~ vy @ Tar which is a trivial bundle. O

Proof 2. Tt is a well-know theorem in Algebra that a projective module is a direct summand of a
free module. By Theorem 2.1.7.1 and the Whitney sum, there exists a vector bundle E’ such that

I'(E) ®T(E') is free.

2.1.8 Frobenius’s Theorem

Definition 2.1.8.1 (k-plane distributions or k-plane fields). An k-plane field E over M is
a subbundle of T(M), the tangent bundle of M. That is

NE)CT(T(M)) =%(M).
Definition 2.1.8.2 (Integral submanifold). Let E be a k-plane field over M. We say a mani-

fold of S is an integral submanifold of E if S L M is an injective immersion and for all s € S,

df(s)(Ts(S)) = Eg(s)-

Note that we do not need f to be an embedding. That is, f(S) need not be homeomorphic to
S.

Definition 2.1.8.3 (Integrability of E). Let E be a k-plane field over M. We say E is inte-
grable if each p € M, there exists an integral submanifold of EE through p.

Suppose that E is an integrable k-plane field. We can find an integral submanifold at each point
p € M. From these submanifold, in an obvious way, we can make the maximal connected integral
submanifolds to E.

Definition 2.1.8.4 (Foliation and Leaf). The decomposition of M into the mazimal connected
submanifolds to E is called a foliation F of M. FEach mazimal connected integral submanifold to
FE is called a leaf of the foliation F. Plainly speaking, a foliation is the family of leaves.

Example 2.1.8.1. Let G be a torus R?/72, which is a Lie group. Define f : R — G by
t — (t,at) mod Z2.

It is easy to see that if « is irrational, then f is injective immersion and Im(f) is dense in G.
Howewver, since G is compact and R is not, we conclude that Im(f) is not homeomorphic to R and
f is not proper. Note that Im(f) is a submanifold of G. Usually, we call Im(f) is the skew line on
the torus. By taking different irrational number o, we can foliate G by Im(fy), which are leaves.
That is, for (x,y) € G, a leaf is given by (x,y) + R(a, 1) mod Z?, i.e., fo(R).
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This is a general phenomenon: In general, if f: H — G is an injective Lie group homomorphism,
then the cosets of H foliates G. Note that G/H need not be a Lie group.

Example 2.1.8.2. FEvery line field ( 1-plane field ) is integrable.

Proof. Let E be a line field of M. Locally, there exists a vector field v, € X(U,) such that v, spans
E, where U, C M is an open neighborhood of p. Since locally there always exists an integral curve
generating vy, which is obviously a submanifold, we conclude that F is integrable. O

Example 2.1.8.3. We know that every line field E is integrable. Since I'(E) is generated by a
single vector field X € X(M), we have

[(E) = C®(M) - X.

Since [f1.X, f2X] = (fu(Xf2) = fo(Xf1))X and f1(Xf2) — fo(Xf1) € C(M) for all f1,f2 €
C>® (M), we conclude that T'(E) is a Lie subalgebra.

This is the general theorem, which we shall give. First we need the followings:

Definition 2.1.8.5. Let M % N be a smooth map and X € X(M),Y € X(N). We say X and Y
are p-related if for allp € M,

de(Xp) = Yo(p)-
Example 2.1.8.4. Let ¢ € Diff (M) and X € X(M). Then X and ¢ - X are p-related.
Exercise 2.1.8.1. If X is p-related to Y for i = 1,2, then [X', X?] is p-related to [V, Y?].
Proof. Let f € C*°(N) and p € M. Note that
(X' (fo)(p) =Y f = "Nle®) = (Y'f)owp).
So, we have
(X1, X21,)(f) = [X1, X2(f o 9) = X, (XP(f o 9) = XJ (X (fop))
=X, (Y2f) o) = Xp((Y'f) o p) = Y ) (Y2 f) = Y, (Y1)
= [Yla YQ]ap(p)(f)'

Theorem 2.1.8.1. If E is integrable, then I'(E) is a Lie subalgebra of X(M).

Proof. Suppose that X!, X2 € I'(E). We want to show [X!, X?] € I'(E), equivalently, [X!, X?], €
E, for all p € M. Let S be an integral submanifold through p, i.e.,

s &

If X! X2 € T'(E), then there exists Y, Y2 € X(S) such that dp(Y?) = X? o for i = 1,2. That is,
Y is p-related to X*. Since [Y!,Y?] € X(S) by the fact that X(9) is a Lie algebra and [Y'!,Y?] is
p-related to [X1, X?], we have

(X1, X%, = de([Y',Y?]) € T(E).
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The Frobenius’s Theorem, which is due to Clebsh, Deahna, and of course Frobenius, is the converse
of Theorem 2.1.8.1.

Theorem 2.1.8.2 (Frobenius’s Integrability Theorem). A k-plane field E is integrable if and
only if T'(E) is a Lie subalgebra.

Remark 2.1.8.1. Note that Frobenius’s Theorem is a prototype of the following theorem, which
we shall prove later: Let G be a Lie group and g be the Lie algebra. Suppose that § is a Lie
subalgebra of g. Then there exists a Lie group H whose Lie algebra is by and an injective immersive
homomorphism f : H — G.

Before proving this, we give some definitions and an example of a nonintegrable k-plane field.
Let G be a Lie group. We define homomorphisms from G to Diff (G) by the following ways:

G L Diff(G) by g — I, where I,(h) = gh for h € G

G - Diff(G) by g — r,-1 where r,-1(h) = hg~! for h € G.

We call [, a left multiplication by g and r, a right multiplication by g. Note that to make r a

homomorphism, we send g to r,-1.

9

Definition 2.1.8.6 (Left-invariant vector fields). Let X € X(G). We say X is a left-invariant
vector field (resp. right-invariant vector field ) ifly - X = X (resp. rq- X = X ) for all g.

Note that J
by X dlyo X olyn. e, (Ig- X)n = (dly)g-1n(Xy-1n)-

We often write dly(X,-1p) as (dlg),~15(X,-1p). In this description, we have X € X(G) is a left-
invariant vector field if dl,(X,-15,) = X}, for all h € G. Using the smooth group operation of G, it
is easy to see that if di,(X.) = X}, for all h € G then X € X(G) is a left-invariant vector field:

dly(X 1) = dlg(dly15, (X)) = dly o dly1,(Xe) = dlp(Xe) = Xp

Hence, a left-invariant vector field is completely determined by evaluation at e, the identity of G.
So, an obvious question would be “ Can an element in T, (G) give a left-invariant vector field?”

Exercise 2.1.8.2. £X(G), the set of left-invariant vector fields, is isomorphic to Te(G) as vector
spaces. Hence, dim £X(G) = dimT.G as vector spaces.

Proof. Define
€: £X(G) —» T.G by €(X) = X..

Note that the above discussion already showed that it is a monomorphism. We are going to show
it is onto. If v € Te(G), let
Xp, = dlp(v).

The subtle part is the smoothness of this construction. We have to show that

dlp(v)(f) is smooth for all f € C*(G).

That is, regarding v as a first order differential operator, can (diy(v)(f))(g) = v(foln(g)) = v(f(hg))
be smooth as g and h vary? Since G has a smooth group operation, without loss of generality,
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we can assume g = e. Since f(h) is smooth and v is a first order differential operator, v(f(h)) is
smooth as h varies. Another thing to check is that dlj(v) is left-invariant. A straitforward check
would show that it is so. From this, we deduce that the set of left-invariant vector fields £X(G) is
isomorphic to T, (G) as vector spaces. O

Interesting consequences of Exercise 2.1.8.2 are the following: Since dim £X(G) = dim TG as vector
spaces, it shows that the tangent bundle 7'(G) has linearly independent vector fields as many as
dim G, That is, every Lie group is parallelizable. For example, we know that Hy, the set of unit
length quaternions is Lie group isomorphic to S3. Hence, S? is parallelizable. Moreover, by purely

~

dimensional reason, we have £X(G) = X(G) as R-vector spaces. So, we have

Theorem 2.1.8.3. Let G be a Lie group with dim G = n. The set of smooth vector fields X(Q)
has n linearly independent smooth vector fields, i.e., a basis, which consists of left-invariant vector
fields.

Note that £X(G) and RX(G) are not C*°(G)-submodules unlike X(G), i.e., fX need
not be a left-invariant vector field for f € C*(G) and X € £X(G). So, £X(G) is not
isomorphic to X(G) as C*°(G)-modules.

Exercise 2.1.8.3. Let RX(G) be the set of right-invariant vector fields. Show that £X(G) and
RX(G) are subalgebras of X(G) with respect to commutators and they are isomorphic.

Proof. Note that a similar proof of Exercise 2.1.8.2 shall show that SRX(G) is isomorphic to T.(G).
Hence, by the virtue of Exercise 2.1.8.2, it suffices to show that [X,Y] € £X(G) for X, Y € £X(G).
The same proof can apply the other case. A moment of thought would give you that X is [,-related
to X and Y is lg-related to Y for any g € G. By Exercise 2.1.8.1, we conclude that [X,Y] are
lg-related to [X,Y] for any g € G. That is,

lyg-[X,Y]=[X,Y] for any g € G.
Hence, [X,Y] is a left-invariant vector field. O

By the virtue of Exercise 2.1.8.3, it is obvious that there will be no differences between £X(G) and
MX(G) as far as algebras are concerned. So, from now on we exclusively are working on £X(G).

Exercise 2.1.8.4. Show that every left-invariant vector field X on a Lie group G is complete.

Proof. Suppose that X € £X(G) and @ : (—¢,¢) x U — G be a corresponding local flow where U
is an open sets in G. Letting ®f(h) = ly(®(I,~1(h)) for h € I4(U), we have a local flow

® : (—€,6) x U — G.

The upshot is that the fact that X is left-invariant makes ®J also a local flow on [,(U) of X: For
hely(U),

d
£|t:0lg(<l>t(lg_1(h)) =dly(Xg-13) = Xp.
Hence, in this way, we can have a local flow

D:(—¢€6) xG—G.
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Now we want to remind you of the proof of Exercise 2.1.4.1. When M was compact, the compactness
gave the above kind of a local flow. Once we had that kind of a local flow, without using the
compactness assumption, we could extend a local flow from (—¢,¢) to R. Indeed, it is a general
theorem. If you have a local flow such that ® : (—¢,€) x M — M for a smooth manifold M, you
can extend a global flow ® : R x M — M by the construction in the proof of Exercise 2.1.4.1. So,
in our case, ® can be extended to a global flow. Hence, X is complete. O

Exercise 2.1.8.5. Show that X is a left-invariant vector field on G if and only if one parameter
subgroup of X is a right multiplication.

Proof. Suppose that X is a left invariant vector field on GG. Exercise 2.1.8.4 tells you that there
exists a one parameter subgroup ®;. Since [, - X = X, by Exercise 2.1.6.1, we have

lyo®; = ®; 0l
So we have for all g,h € G,
g®i(h) =150 i(h) = By 0l (h) = Di(gh).
Letting h = e, we have for all g € G
Di(g9) = gPi(e) = 1o, (9)-

That is, ®; is a just right multiplication by ®;(e). Now, suppose that a one parameter subgroup
®,;, which generates X, is a right multiplication, i.e., ®;(9) = ga; where a; € G. Note that
Exercise 2.1.6.1 also tells that the one parameter subgroup of I, - X is l; 0 ®; ol 1. Since

lgo®ioly-1(h) = g®:(g 1 h) = gg thay = 4(h),
we conclude that [, - X = X. O

Now we go back to the main theme of this section. We give an example of a nonintegrable k-plane
field.

Exercise 2.1.8.6. Find an R?-plane field on R® which is not integrable.

Proof. Consider a Heisenberg group

1 =z =z
H;={|0 1 y]||z,y,2€cR} =R
0 0 1
Note that
1 =z 2 1 =£ 0 1 z—-¢& 2
01 y 0 1 0]=1]0 1 y
0 0 1 0 0 1 0 0 1
1 =z =z 1 0 O 1 z —0x+=z
01 y|lflo1 —0)=(01 y-0
0 0 1 0 0 1 00 1
1 =z =z 1 0 =6 1 2 z—-96
01 y 01 0]=1]01 y
0 0 1 00 1 0 0 1



Obviously,

1 z—-¢ =2
Ee(x,y,2)= [0 1 y | is a global flow of H3 where £ € R,
0 0 1
1 z —Ox+=z
O¢(x,y,2) =10 1 y—20 is a global flow of H3 where # € R, and
0 0 1
1 x z—90
As(z,y,2) =0 1 Y is a global flow of H3 where ¢ € R.
0 0 1

From Exercise 2.1.8.5, we know that Z¢, Oy, and A; generate left-invariant vector fields, since =g,
Oy, and Aj are right multiplications. By identifying

1
0 :(‘r7y7z)7
0

o = 8
— < W

it easy to see that

0
X = — is the left-invariant vector field of Z¢ = (z — &, y, 2),

oz
0 0
Y = £ + To is the left-invariant vector field of ©y = (z,y — 0,z — 0x), and
Yy z
Z = 82 is the left-invariant vector field of Ay = (z,y,z — J).
z

Moreover, X,Y, and Z generate X(Hj3). Note that this is a nice example of Theorem 2.1.8.3. Let
FE be spanned by X and Y, i.e.,

o 0 0
FE = Span{%, a—y +$%}

Obviously, % ¢ I'(E). However, we have

0 0 0 0
ox’ Oy

So, the Frobenius theorem says that it is not integrable.

Now, we investigate E further: We will give a geometrical explanation of nonintegrability of E.
One of geometrical meanings of Frobenius theorem is that E must look like a flat 2-plane in order
to be integrable. That is, the curvature form of E as a vector bundle over R? must be zero. Even
though you do not know how to get the curvature form of a vector bundle, at least intuitively it
would be clear that E does not look flat from the factor x% in the formula

0

o 0
FE = Span{%,a—y +$& .
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In general, a k-plane distribution is integrable if and only if the curvature form is zero. It is somewhat
obvious, since the curvature form of a tangent bundle is always zero. Now we show that even though
FE is not integrable, which is not so nice, E still has some nice property. Let v : R — Hj3 be a curve.
We say v(t) is E-horizontal if

v'(t) € By

Obviously, for fixed (a1, as,a3) € R3, the curves Oy(a1, az,a3) and Z¢(ay,az,a3) are E-horizontal.
We claim that for a given p, ¢ € R3, there exists an E-horizontal curve from p to ¢. Let

w = dz — zdy.
It is easy to see that w(X) =w(Y) =0 and w(Z) # 0. So, w is everywhere nonzero. Since
E, =ker(w, : T,(H3) — R),

we have w(v/(t)) = 0 if and only if ~(¢) is E-horizontal. Now, we construct v(¢) such that
w(®'(t)) = 0 from p to g. It suffices to construct piecewise smooth 7(t), since there exists a
local integral E-horizontal curve. Without loss of generality, we can assume p = (0,0,0). Let
q = (q1,q2,q3). Since W(z(p).q.p)(7'(t),0,0) = 0, any line curve parallel to z-axis is horizontal. More-
over, w(oy(t),5) (0,%'(t),0) = 0,, any line parallel to y-axis in yz-plane is horizontal. Hence, we have
piecewise smooth E-horizontal curve «(t) from (0,0,0) to (g1, g2, 7). From this, it suffices to show
that there exists an FE-horizontal curve «(t) from (0,0,0) to (0,0,a) for a given a € R. By the
formula w(v/(t)) = 0, we have to show that there exists v(t) = (x(t),y(t), 2(t)) : [0,51] — R? from
(0,0,0) to (0,0, a) such that

Since
2(s) = /0 £(t)dy(2),

it suffices to show that there exists a closed curve 6(t) = (z(t),y(f)) in zy-plane, which gives
z(s1) = a. Since § is a boundary of A, i.e., § = 0A, by stoke’s theorem

S1
z(s1) —/0 x(t)dy(t) = /dey = /Adxdy = area of A.

That is, we can find 6(¢). Note that —dzdy is the curvature form of F and w = dz — zdy is the
connection of FE. 0

We note that sometimes people call an integrable distribution as an involutive or completely in-
tegrable and E in Exercise 2.1.8.6 as an integrable distribution. Also, it is easy to see that 0-
dimensional foliation of M is nothing but a differentiable structure of M. Now we give a proof of
the Frobenius theorem. Note that the only direction we need to be proved is that if I'(E) is a Lie
subalgebra where F is an k-plane distribution on M, then E is integrable.

Proof of The Frobenius Theorem. We prove this by induction on rank of £. When FE is O-plane
distribution, it is vacuously true. Suppose that the theorem holds for rank »—1 and E is an r-plane
distribution on M with a Lie subalgebra I'(E). Since we want to show there exists a submanifold
N, at each point p of M such that T),(IN,) = E,, obviously it suffices to prove this in a local chart.
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Moreover, by the local triviality of a vector bundle, we can assume that I'(E)|y is generated by
r linearly independent vector fields, Xi,...,X,. Of course, X; is everywhere nonzero for being
an element of a basis for ¢ = 1,...,r. So, by Theorem 2.1.4.7, there exists a coordinate system
(x',...,2") on U C M with (z'(p),...,2"(p)) = (0,...,0) such that

0
X, = 2.
Ozt

So, there exists a function f € C°°(U) such that X,.(f) = 1 and f(p) = 0. Note that f = z! and
X, (f) = df(X,) = 1. The main point is that by construction f : U — R is a submersion. So, by
the implicit function theorem, f~'(0) is an n — 1 dimensional submanifold of U through p with
T(f~%(0)) = ker(df). Let f~1(0) = M’. Note that we do not know whether or not X; € TM’. So,
we let

Y, =X; — Xi(f)X, fori <rand Y, = X,.

Clearly, E is again spanned by Yi,...,Y, and E' = span{Y3,...,Y,_1} C ker(df) = TM'. Note
that Y, = X, ¢ TM’, since X,.(f) = 1. Obviously, we have E’ is an (r — 1)-pane field on M’. We
claim that F’ is integrable. By the induction hypothesis, it suffices to show that I'(E’)|5s is a Lie
subalgebra of X(M'). Let Y', Y2 € T'(E")|yr. So,

r—1 r—1

Yl = Z cH(x)Y; and Y? = Zc?(a:)YZ
i=1 i=1
So, we have
r—1 r—1 r—1
VLY =) c(@)@)Y Vil + ) ol (@)(Yic} (2))Y; = ) ¢ (2)(Yiei (x)Yi.
ij—=1 ij—1 ij—1

Clearly,

r—1
S @)y, - S 2))Y; € T(E ) ar.
i,j=1

,j=1
So, it suffices to show that

i £)[Y;, ;] € D(E)

That is, it suffices to show that for i, j < r, we can write

Y;, Y] Zb

Since I'(E)|y is a Lie subalgebra by the assumption, we can write

Y;, Y] Zb
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Since Y,(f) = 1 and Y;(f) = 0 for i < r, we have [Y;,Y;]f = 0 for 4,j < r. Hence, we have for
1,5 <r

0= [V, Y}If =) bf(2)Yif =bj.
k=1

Therefore, by the induction hypothesis, F’ is integrable. That is, there exists a (r—1)—submanifold
S C M’ c U for E' through p. Note that E = X, @& E' C TU. Letting & be the flow of X,., define

S=J &)

[t]<e

Since £ = X, @ F’ and & is a local diffeomorphism, S is diffeomorphic to a subset W C Rx &y(S") =
R x S’. Theorem 2.1.4.3 tells that W is an open set of R x S’. So, it is a 7 — 1 submanifold and
obviously p € S and E = X, , + 1,5 =1T,5. O

2.2 Graded Algebras of Smooth Manifolds

2.2.1 Exterior Algebra

Definition 2.2.1.1 (Tensor product). Let V and W be vector spaces. A m-tensor product is a
universal object in the sense that every m-multilinear map ¢ : V x --- XV — W factors through a
universal m-multilinear map V x --- xV =V ®---® V. That is,

Vx--xV —2 W

Of course, the universal object always exists uniquely. Observe the following: Let ¢ : Vi — Wy
and @9 : Vo — Wa be linear maps between vector spaces. Since W1 ® Wy always exists uniquely
(up to isomorphism ), we have

V1><V2M>W1><W22>W1®W2.
That is, we have a bilinear map @1 ® 2 : Vi x Vo — W1 ® Ws. From this, we deduce that
an m-multilinear linear map ® [-multilinear linear map is an (m + )-multilinear map.

Suppose that Vi, V5 are vector spaces over a field k. Note that since k is a field, there is a canonical
isomorphism k ® k 22 k. So, given linear maps @1 : Vi — k and o : Vo — k, we have
P1@p2: Vi x Vo — k.

m

—N—
We often write @V =V ®---@V and @™V @ ®'V = @™ V. Using tensor products, we
have a graded algebra of vector spaces.
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Definition 2.2.1.2 (Graded algebra). Let V be a vector space. We let

A= @ A, where Ay, def RMV.

m2>0

By defining multiplicative structures Ay, x A; 8, Apt1, we have an associative graded algebra
structure.

Let &, be a symmetric group, i.e., the group of permutations of n-element. We define an action
of S, on @V by the following way: For o € S,,, letting (—1)? be the sign of o,

o - (’Ul R ® Un) déf (—1)000(1) K& Vo(n)-

Using the above, we define that pth exterior product of V'

P
/\V:{vE@pV|U'U:Uf0r aHUESp}Z(@pv)SP-

Note that if A C X is a subspace of X, then A is called a retract of X if there is a retraction
f: X —A ie., f(a) =aforall a € A.

Theorem 2.2.1.1. Given any finite group G and a vector space A with G-action, i.e., g-v = py(v)
where p : G — GL(V) is a linear representation, then

Ve={veV|g-v=uvforalgeGYis aretract of V.
Proof. we construct a retraction ¢ : V' — V& by the following way:
1
p(v) = al Z g-v.
|G| 4=

It is easy to see that h-p(v) = v for all h € G, which shows that it is well defined and ¢(v) = v for
all v € V&, which says that it is a retraction. O

Since S, is finite, we deduce that in this description, we define

0 PV — APV by ¢(v) = Z 0.
oSy

Note that still o - p(v) = ¢(v) for all o € Sp,.

Example 2.2.1.1. Let vi,va € V. Then o(v1 @ v2) = v1 Avg = v1 Qvg —v2 ®v1. Hence, vAv =10
forv eV and vi ANve = —vg A vy.

Example 2.2.1.2. Let v;,,...,v;, € V. So, we have
Vig @ - Q5 — Vi N N, .

If ij = ij41, then by Example 2.2.1.1, we have v, A\ --- ANv;,, = 0. So, we can always assume
i1 <9 < -+ <1y n a wedge product.
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Example 2.2.1.3. If {vi,...,v,} is a basis of V, it is easy to see that {v;, ®---®@v;,, | 1 <i; <n}
is a basis of @™V . So, dim @™V = n". By FExercise 2.2.1.2, we have

{?}Z’l/\---/\’l)im ’ 1< < <zm§n}
is a basis of NV and dim A"V = (Z) . Especially, \"V is generated by vi A -+ A vp.
Example 2.2.1.4. Let o € APV, 3 € ANTV. Since ANV is a retract of @™V, we can think o € QPV
and B € ®1V. So, we get a @ 3 € @IV . Hence,
a® B anpenrtay.

So, the graded ( associative ) algebra of tensor products gives the graded ( associative ) algebra of
exterior product, which is called an exterior algebra. Also, by Fxercise 2.2.1.1, it is easy to see
that for a € NPV, 3 € N1V | we have

anB=(-1)PBAa=(-1)PgAa.
The relation is called a commutative graded algebra.

Example 2.2.1.5. We know that given linear maps @1 : V1 — k and oo : Vo — k where V1, Vs are
vector space over k, we have

P1®@p2: Vi x Vo — k by (v1,v2) — @1(v1)p2(ve).

So, we also have

1 A2 : Vi x Vo =k by (v1,v2) = @1(v1)p2(v2) — p2(vi)p1(va).
Clearly, o Ao =0 and o1 N\ pa = —pa A 1.

Exercise 2.2.1.5 shows that we can construct a pth exterior product of the dual space V* of V.
Also, by Exercise 2.2.1.4, we also have an exterior algebra of the dual V*. In particular, we can
associate an n-dimensional vector space V to A"V* as an analogy that we can associate GL(n,R)
to R* = GL(1,R) by the det function.

Definition 2.2.1.3. Let A = ,,50An and B = ,,5¢Bm be graded algebras. Letting A, =
By, =0if m <0, alinear map F : A — B is called a graded linear map of degree d if F' : A, —
Bptm.

Example 2.2.1.6. Let f:V — W be a homomorphism of vector spaces. In an obvious way, it is
easy to see that f induces graded homomorphisms of exterior products having degree 0,

P APV — AP

Example 2.2.1.7. Let M™ BRSO be a smooth map between smooth manifolds. For f(p) € N, we
have (df)T : T}k(p)N — TyM. So, (df)T induces a homomorphism of commutative graded algebras

with degree 0,

(k)
Ay LD ke

! !

M _— N.
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Let T(AFT* M) = QF(M), the set of k-forms. Obuviously, Q*(M) and Q*(N) are commutative graded
algebras and we also have

f QN — QFM by f*(w) = (df)T owo f.

Note that (go f)* = f* o g*.

2.2.2 Graded derivations

Definition 2.2.2.1 (Graded derivations). Let A be a graded algebra and D : A — A be a
graded homomorphism of degree d, i.e., D(Ap) C Amniq. We say D is a graded derivation of
degree d if for a, 3 € A,

D(a- )= D(a)-§+ (-1 a- D(5).

Example 2.2.2.1. Let V be a vector space and V* be the dual. Every w € V* defines a graded
derivation iy, of N*V' of degree —1, which is called an interior multiplication by w

Proof. Define

0 on AV V = k, scalar
by = q W on 'V =V
P (=)o A Aw(v) A Av,  on APV

It is easy to see that 1, is a graded derivation of degree —1. O

The above shows that any linear functional w € V* defines an interior multiplication, i.e., a
derivation of degree —1, on exterior algebra A*V.

Example 2.2.2.2. Every vector field X € X(M) defines an interior multiplication, a derivation
of degree —1, 1x on Q*(M).

Proof. Note that we already know that Q*(M) = @®y>0QF (M) is an associative commutative graded
algebra with QO(M) = C®(M). Let X € X(M). For w € QF(M), define

tx(W)(Y1,. .., Yeo1) =w(X, Y1,...,Y,_1) where Y; € X(M).

From this, we have

v QE(M) — QFL(M).
Since for p € M, 1x, : /\kTI;“M — /\k_lT;M defines a derivation of degree —1 by Exercise 2.2.2.1,
tx is a derivation of degree —1 on Q*(M). O

Note that Exercise 2.1.2.1 showed that for any ungraded algebra A, Der(A) forms a Lie algebra

under
[X,Y]=XoY —Y o X where X,Y € Der(A).
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Exercise 2.2.2.1. Let A be an associative graded commutative algebra and Dery(A) be the set of
derivations on A of degree k. Given graded derivation X € Dery(A) and Y € Deri(A), the graded
commutator

X, Y]=XoY — (-1)MY o X

is a graded derivation of degree k + 1. Moreover, show that

Der(A) = EB Dery (A
k>0

forms a graded Lie algebra.

Proof. 1t is obvious that By defining for all a,d € R, all X1, X5 € Derg(A), and all f € A,
(aXy +bXa)(f) = aXi () + bXs(f),

we conclude that Dery(.A) is a vector space. Let X € Dery(A), Y € Deri(A) and Z € Der;(A).
Obviously, the degree of [X,Y] is k + [. Moreover,
(X, Y)(@-B)=(XoY - (-1)"Y o X)(a-f)=XoY(a-3)— (-1)"Y o X(a-B)

X((Yo)- B+ (=D)a- (vP)) = (D)"Y ((Xa) - B+ (1) (X))
(X.Y]a) -+ (=) Ya - X5+ (-l Xa - Y+ (-1 ela . XY
( 1 kl+|o¢\l+lea Y3 — ( )kl—Ha'kYOz X3 — (_1)kl+|a|k’+\a|la YX3
(X, Y]a) - 8+ (=1)* o - ([X,Y]8)
(=
(

1) (Jee|+1) kYOz X8+ ( )|a|lXa YB - (_1)kl+|a|l+lea YR — (_1)kl+|a\kya X33
[X,Y]a) - B+ (=Dl (X, Y]B).

This shows that [X,Y] € Dery;(A). Moreover, a straightforward computation shall show that

+

[Xv Y] = (_1)kl+1[K X] and (_1)kj[X7 [Y7 ZH + (_1)”6[}/7 [Zv XH + (_1)jl[27 [X7 YH =0.
Hence, Der(A) = ;> Dery(A) forms a graded Lie algebra. O

Example 2.2.2.3.
[Lx, Ly] =1xOly +ly otlLx.

Exercise 2.2.2.2. Let V be an n-dimensional vector space. Show that
AFV* 22 (AFY)*
Proof. Example 2.2.1.3 says that if {e1,...,e,} is a basis of V, then

{eg Ao Nej | 1<ip <o <, <n}

is a basis of a vector space A*V and dim APV = (Z) So, dim(AFV)* = <Z> By the same

consideration, we have
feq, Ao nel |1 <ip <o <ip <n}

11
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n

is a basis of a vector space A¥V* and dim AFV* = (k:

>. So, to show AFV* = (AFV)* it suffices to
construct a monomorphism
@ ARV = (AFV)*
n

Letting (k‘) = N, define

@(6* AN /\e’?k)(ejl Noeee /\6.71@) = efl(eh) o e;,kk(ejk) and

11
N N
(> cier, A hep) =D ciple, A Ner).
=1 =1

By construction ¢ is well-defined and linear. Suppose that @(Zfi Lciey, Ao Aej ) = 0. Since

1k
N
0= cp(z cie;, N---Nej )(ej Ao Aej,) = cj for each j,

i=1
we conclude that vaz ey, Ao Aep =0, So, it is a monomorphism. O
Let v € V where V is a vector space. Define an exterior multiplication e, by

ey : APV = ARV by w = v A w.
It is easy to see that
(GU)T . (/\k—HV)* _ (/\kV)*

Now, take V' =T, M where M is a smooth manifold and p € M. For X € X(M), we have

(ex,)T

(AR, M) (AT, M)*

| |

L

ARFITEN TP AR

It is easy to see that the above diagram commutes. So, since e, o e,, = 0 by the skew-symmetry, we
conclude that
tx oty =0 for X € X(M).

If you are suspicious about the proof of tx otx = 0, see Corollary 2.2.2.1.1.

Definition 2.2.2.2 (Vector bundle morphisms). Let E and F' be a vector bundle over a smooth

manifold M.

E %, F

Lo

M 6

We say ® is a vector bundle morphism if ® is smooth and for each p € M, ®|g, : E, — F, is
linear. Also,

HOM(E, F) = the set of all vector bundle morphisms from E to F.
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Define @, : T'(E) — I'(F) by
(©4(£)(p) = (£(p)) for all £ € I'(E) and p € M.

Using the smoothness and linearity of ®, @, is well-defined and ®,(f-&) = f- P, (&) for f € C°(M)
and £ € I'(E). So, &, is a C°°(M)-module homomorphism. That is,

HOM(E, F) — I'(Hom(E, F)).

Suppose that ¢ € I'(Hom(E, F')). By definition, ¥(p,m) is smooth at the first variable and linear
at the second variable where p € M and m € E,. Also, the linearity at the second variable says
that it is also smooth at the second variable. So, using local triviality of F, the composition of ¥
with a trivialization gives an element in HOM(E, F'). Hence, we have one-to-one correspondence
between HOM(E, F') and I'(Hom(E, F)).

Theorem 2.2.2.1. 1x are the only derivations of negative degree on Q*(M).

Proof. Suppose that w € Q*(M). Choose a partition of unity {f,} subordinate to a coordinate
covering {U,}. So,
w = Z forw.
(0%

Note that f,-w = 0 outside of a coordinate patch (x4, ...,%nq) in Uy € R™. Hence, using a local
coordinate, we can write

fa -w= E Qi iy, (ifl,a, ce 7xn,a)dl‘i1,a VANERIVA dl‘ik’w
1< <--<1p<n

So, k-form is locally generated by C°°-functions and 1-forms. Hence, Using a partition of unity, we
conclude that Q*(M) is generated by Q°(M) and Q' (M):

w= E E Wiy, (T - oy Ty ATiy o N - - AN AT o
a 1<i1 <<, <n

Remember what the above notation really means: By the local finiteness of a partition of unity,
for p € M, there exists an open neighborhood U of p such that only finite number of « covering U.
So, we have

N
w|U = E E iy ooy, (:L’Lal, ... ,xnm)dazil,al VANEREIA dxik,al‘
=1 1<i1 << <n

It is obvious that any negative degree derivations is always zero on Q°(M), and they are zero on
QY(M) unless degree is —1. So, we conclude that —1 is the only negative degree of nonzero negative
derivations and —1 degree derivations are uniquely defined by the value on Q'(M). Note that —1
degree derivations are elements of HOM(T™M,R). So, since

HOM(T* M, R) <= T'(Hom(T* M, R)),

we deduce that —1 degree derivations are generated by X(M ). Therefore, ¢ x are the only derivations
of negative degree on Q*(M). O
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Corollary 2.2.2.1.1.
tx oty =0 for X € X(M).

Proof. Now, by Exercise 2.2.2.1, we deduce that [tx,tx] = 2tx o tx is a derivation of degree —2.
So, Theorem 2.2.2.1 says that it must be zero. So,

tx oty =0 for X € X(M).
We can also give another proof: Since by skew symmetry of w where w € QF(M), we have
—w(X, X, Y1,..., Y, 9) =w(X, X, Y1,..., Y 2).

Hence,
0= w(X, X, Yl, PN ,Yk_g) = ((LX o LX)w)(Yl, PN ,Yk_g).
O

Theorem 2.2.2.2. There ezists a unique derivation d of degree 1 on Q*(M) such that dod =0
and d|qo(rry s ordinary differential.

Proof. Suppose that M = R™. Let x1,...,z, be a coordinate system of R”. For w € QF(R"), define

dw)=d( > foei@,. ) drg A Adag,)

1<i1 <<, <n

def
= Z df'Lle (xl, .. ,a:n) ANdxi, N A da:z-k

1< << <n

def

= E E fZl g (T, )dry Adxg, A - AN dxg, .
1<i1 << <n = 1

It is easy to see that d is a derivation of degree 1 on Q*(R") such that dod = 0 and d|qogn) is
ordinary differential. Now suppose that d’ is another derivation of degree 1 on Q*(R™) such that
d'od =0 and d'[gogny is ordinary differential. Note that we have d'f = df for f € C*°(R"), since
they are just ordinary differential by the assumptions. In particular,

dr; =dz; and d ode; =d odz; =0fori=1,...,n

So, we have
dw)=d( D faei(@. . m)deg A A dry)
1<i; < <ip<n

= Z d/lezk (331, . ,In) A dﬂ?il VANRIERIVAY dﬂfzk

1< << <n

+ Z fil.,.ik(xl,...,xn) 'd/(diﬁil A"‘Ad$ik)

1<i1 < <ip<n

= Z Z fZl g (@1, n)d Ty Adzy A A dag,

1<in < <ig<n =1

= Z Z f“ i (X1, )dry Adxg, A - Ndxg, = dw

1< << <n [=1
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Hence, at least in R™, we have a unique derivation of degree 1 satisfying the properties with respect
to a given coordinate system. It will be proved that a derivation is invariant under changes of
coordinates in the setting of a manifold, more generally. Now, let {U,} be an open cover consisting
of coordinate patches, i.e., oo = (Z1,a,-..,%n,a). S0, we do have a unique derivation dy, satisfying
the properties on each open set U,. Now suppose that w € QF(U, N Ug). So, on Uy, N Uy, w has
two representations, namely,

w= E Jirein, (@100 -+ oy Tna)dUa iy o A - AN dy, Tig o
1<ip < <ig<n

= Z Girin (P15 Tn ) AU Tiy g A -+ N duyxiy g
1<y <-<ix<n

Choosing a bump function we can make w, € QF(U,) with w, = w on U, N Up and w, = 0 on
Ua/(UsNUg). By the same reason, we have such wg € Q¥(Ug). Let p € U, NUs. We want to show

du, (Wa)p = du,(ws)p-

If you are brave enough, you can prove this using k-form. However, fortunately, if we use the
linearity and the properties of a derivation, it is sufficient to prove this for 0-forms and 1-forms.
Suppose w = f € Q°(U, N Ug). So,

d
wa=Fopa(T1as - Tna) e/ (105 s Tna)
we have d
-1 ef
wg = fops (T1,8:--- Tng) = f(T18,---,Tng)
Note that if we think x;, as a function with coordinates z1g,...,%, 3, then by the fact dy, is

ordinary differential on functions, we have

n

Ox; " Oz
Ay, Tia = dzia(T1,8,- - Tn,p) Z ey g =Y dy,r

k= i 0o,
Hence, we have
n
dUa (wa)p = dUaf(l'l,a, -y Ip o ‘p Z fEl,aa ceey xn,a)dUaxl,a ’p
1 Lo
Oz, 0
xl’a’“"xn’a)a adngk,ﬁ‘p Z P f(x Lg,...,mn’g)dUﬁxk,g‘p

Tl
llkl ha k.3

= dUBf(wl,ﬂa e Zn)lp = du, (wa)p

Suppose w € Ql(UaﬂUg). Without loss of generality, we can assume wq = f(Z1,4, ..., Tna)dU, Tia-
So, we also have

wg = ng(xlﬂ, .. 7$n7g)dUﬁﬂfkﬁ where f(z1,0,---,%n,a)
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So, for p € Uy, N Us.

du, (Wa)p = du, (f(Z1,05 -+, Tna) AU Tia)lp = v, f(T1,05 -+ Tna) A dU,Tia
" O, " Oz
= dUaf(xl,Oéa R ,.’L‘ma) VAN Z 6$;:a dngk,ﬁLn = dUﬂf(xl,ﬁa N 7 ﬁ) 2 pe kvﬁdUﬁxkﬁb
0% o "
= dUg(f<$l,ﬂ7"'7$n,ﬁ) 8 dUﬁxkg)’ f(a:lyg,...,xn,g dUﬁ xk,,@‘p
k 7
i,
= du,(f(21,8,- -+ 2n,0) 2 Dup duszrp)lp = f(18, - Tnp) ZZ; Z; o, ﬁ@m B gy 5 Va8 N UaThsly
n
8.%1"&
=du,(f(z1,8,-- -, Tnp) - . 6dUﬁxk»ﬁ)’P = dy,(wp)p-
k=1 )

Note that by the skew-symmetry,

n n
0% o
f:EL sy Tpg) dy, ) /\deL‘k’ =0.
(21,8 o)) ;1:]; 1:al'kﬂa$lﬁ pLl,B Bk,B

From this, we have a well-defined notion of a derivation dj; by setting for w € QF(M)
(dyw)|u, = dy,w|u, where w|y, is the restriction of w on U,.

It is easy to check that dj; satisfies all the required properties. We will show the uniqueness of d .
Suppose that d}, is another derivation with the properties. The proof shall use the uniqueness of
a local derivation, since we already know that each point of M has a unique local derivation. Let
p € V. .C M be an open set with a unique local derivation dy; and w € Q¥(V). So, we have w* the
extention of w by a bump function, i.e.,

w'=wonV
w* =0 on open U where V C V C U.

The main point is that we do not know whether or not d'w*|,, V= 0. If this is true, then by the
facts that d’ is a derivation with the properties and the uniqueness of dy, we have

(d'w*)|y = dyw. Hence, dy; = dyy.

So, it suffices to show that if k-form w|y = 0 for an open set W C M, then (d'w)|w = 0. Suppose
that k-form w|y = 0 on an open set W C M. Choose a bump function ¢ € C°°(M) such that

¢(x) =0 on a compact K C W and |y = 1.
So, pw = w on M. By the property of a derivation, we have
dw=d(pw) = (d'o)w + pd w.

So, we have (d'w)|x = 0. By letting K = {p} for p € W, we have (d'w)|w = 0. O
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Remark 2.2.2.1. It is easy to see that Q*(M) as a graded algebra is generated by Q°(M) and
dQO(M). If M is compact, then dQ°(M) has a finite basis.

Theorem 2.2.2.3. Let M™ 2 N be a smooth map. Then © induces a graded algebra homomor-
phism with the following commuting diagram

k
QF(N) —£—  QF(M)
| |
o1 (N) 2 gR1(ar),

That is, d(p*w) = ¢*(dw) for w € Q*(N).
Proof. Note that

( * dif J T dgf T h . h . £

P w)p = (Jo), (Wep) = (Jp)' owop where Jy is the Jacobian of .
When f € QU(N), o*f = fog. So, we have for w € Q¥(N) and X1,..., X¥ € X(M),

(P)p(Xpse s Xp) = woin (X)) 2 TR(X ) o))

Again, the right-hand side is a smooth function as p varies. So, ¢*w is smooth as p varies. Hence,
" QY (N) — Q*(M). We shall show that (p*(w A §))p = (¢*w)p A (¢*), for all p € M, which
implies that p*(w A &) = (p*w) A (p*€). Let w € QF¥(N) and € € Q"(N).

(P* (WA E))p (X1 L XE X X

) (TPX)op)s - -+ TO(X}) o), JSO(X“l)sa(p)v T (Xk”) o)
= wp)('] (X )so(p)’ : ’JSD(Xp)w(p) ) (J ‘P(XIIJCH) JQO(XHT)@(Z?))
= (P*w)p(Xp, .., XP) - (P O)p(X5 T, . Xk”)
= (¢*w), ( Op(X), . XE X X,

Also, note that for f € QY(N),

(@ (f - w))p(Xp) = (f - @) (J(Xp) o) = (f 0 (p)) - (¢7w)p(Xp) = (¢ f)p - (¥"w)p(Xp)-

Hence, ¢* is a graded algebra homomorphism. Now, we shall show that ¢*(dw) = d(¢*w). Since
we made d by patching local derivations, it is sufficient to show that ¢*(dw) = d(¢*w) locally.
Moreover, it is also sufficient to show this for bases. Let U C M and V' C N be coordinate patches
with (z1,...,2m) and (y1,...,yn), respectively. Assume that ¢ : U — V. Note that d|go(y) is
ordinary differential. That is, if g € QY(N), then we have dg(Y,) = Y,(g) for Y € X(N). So, we

have
©*(dg(yr, - yn))p(Xp) = dgy) (Jo(Xp))p(p) = (JO(Xp)) o) (9) = (Xp)(g 0 )
= (Xp)(‘P*g) = (d(ﬁp*g))p(Xp)'
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That is, for g € QY(N) we have ¢*(dg) = d(¢*g). In general, if we think y; € Q°(N) fori =1,...,n,
then using the fact that ¢* is a graded algebra homomorphism, we have

O (d(f (Y1, yn)dyiy Ao ANdyiy)) = @ (df Adyiy N Nyiy)
©*(df) N o™ (dyiy) A - N 0™ (dyiy,)
O f) Nd(@ i) A Ad(pdyi,)

(
(" f ANd(@™yir) A=+ ANd(@™yi,)
(
(

AN (dyi) N AN o™ (dyiy )

d
d
d
d(e*(f Ndyi, N--- Ndyi,)).

¥
¥

Recall that if X,Y € X(M) and & € Diff (M) is a global flow of X, we have

def d
Lx(Y) = —|i=0(é_;-Y).
x(Y) 7 t=0(§—¢-Y)
Now we define for w € Q*(M),
def d def .
Lxw = 7 t=0(§—¢ - w) where £_4 - w = & w the pullback of w.

Note that & is a path of 1-forms. It is easy to see that Lx is a derivation on Q*(M): Since A is
bilinear and & is the identity map, we have

d * d * *
Lx(aNp)= %|t=0§t (aA\B) = %hzo(fta NEP) = (Lxa)NB+aNLxf.
Also, it is easy to see that the degree of Lx is 0:
Lx : QP(M) — QP(M).

In particular, for f € QO(M)

d d
E = — |4+ * = — |+—= - X .
xf=leobi f=Jliof o & = Xf
Moreover, we have using the linearity of d

linearity d d

o lt=0&fw = d(Lxw).

d d
Lx(dw) = - le=0&; (dw) = - li—od(&;w)

Hence, we have
[d,Lx]=dLx — Lxd=0.

Remark 2.2.2.2. From the above, X € X(M) gives a derivation Lx € Deryo(Q2*(M)). Also, it is
worth noting that X € X(M) also gives a derivation on X(M) by the following ways: Define

ad(X) : X(M) — X(M) by ad(X)(Y) = [X,Y].
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ad(X) is a derivation, since by the Jacobi identity, we have
ad(X)([Y; 2]) = [X, [V, Z]] = [V, [X, Z]] + [[X, Y], Z] = [V, ad(X)(2)] + [ad(X)(Y), Z].

Hence, we have
(M) =24 Derg(x(M))

g
Derg(Q*(M)).

In general, if g is an abstract Lie algebra, for X € g, ad(X) : g — g byad(X)(Y) = [X,Y] is a
derivation of g by the same proof of the above. That is, given g, there exists a Lie algebra homomorphism

ad : g — Der(g).

2.2.3 The Cartan formula and Useful identities

Recall that tx is a unique derivation of degree —1 and d is a unique derivation of degree 1 on
Q*(M). Since Der(Q*(M)) forms a graded Lie algebra, we have [d,tx] = doitx + tx od is a
derivation of degree 0. We shall prove

Theorem 2.2.3.1 (Cartan Formula).
[d, Lx] = ﬁx.

Note that the Cartan formula says that L£x is a chain homotopy. Hence, £x induces an isomorphism
on de Rham cohomology. Moreover, in general if g is a Lie algebra, then it induces a differential graded
algebra A*g*. So, we have a Lie algebra cohomology

H*(\'g") = H*(g).
Note that if G is a compact Lie group, then we have

H*(g) = H*(G,R).

Proof of Cartan Formula. Since Q*(M) is generated by Q°(M) and d2°(M), it suffices to show
this for f € Q°(M) and df. First, Note vx f = 0, since the degree of ¢x is —1. So,

(doitx t+ixod)f =douxf+ixodf =ux(df) =df(X)=Xf=Lxf.
For w = df € dQ2°(M), we have by [Lx,d] = 0, i.e., the commutativity of Lx and d,
(dowx tixodw=doixdf +ixododf =douxdf =d(Xf)=d(Lxf)=Lx(df) =Lxw.
O
Theorem 2.2.3.2.

[Lx,Ly] = Lixy)-
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Proof. As usual, it suffices to show this for f € Q°(M) and df. Clearly,
[Lx,Ly|f = LxLyf—LyLxf=XYf)-Y(X[f)= (XY -YX)f =Lxyf
For w = df € dQ°(M), we have by the commutativity of £x and d,

[Lx,Lyldf = LxLydf — LyLxdf =d(LxLyf—LyLxf)=dLlixyf=Lixydf

Theorem 2.2.3.3. Let w € QY (M) and X,Y € X(M). Then we have
(dw) (X, Y) = Xw(Y) = Yw(X) - w([X, V).

Before we prove Theorem 2.2.3.3, we give some remarks: We know that w € Q¥(M) defines a
k-multilinear alternating C*°(M):

wiX(M)x---xX(M)— C®M) by (Y1,...,Y,) mw(Y1,...,Y%).

/

k
Moreover, k-multilinearity over R gives k-multilinearity over C°°(M). That is,
w(ifYi,...,.Yy) =wY1, ..., Y, ..., Yi) = fwo(Y1,..., Y%).

Note that smoothness comes from the left-hand side. Equivalently speaking, since we can think
®FT M and R as vector bundles, in the sense of Definition 2.2.2.2, we can say w € I'(Hom(®"*T M, R)).
However, note that since

(X, 9Y]=f-X(9)Y —g-Y ()X +[-glX, Y],

We can see that [,] is not a section of Hom(®2TM,TM), i.e., [,] ¢ I'(Hom(®?*TM,TM)). In this
consideration, we have

Definition 2.2.3.1. Let E and F be smooth vector bundle over a smooth manifold M. we say ¥
is tensorial if ¥ € I'(Hom(E, F)).

Example 2.2.3.1. Ifw € QF(M), then txw is a (k — 1)-form and dw is a (k+ 1)-from. So, these
are tensorial.

Proof. We give ad hoc proofs of these. Clearly,
(LXW)(th cee 7Yk—1) = W(Xv th R 7Yk—1) = fW(X, Yi,... >Yk—1)'

Also, using Theorem 2.2.3.3, we have for 1-form w,

dw(fX,Y) = (fX)(@(Y)) = Y(w(fX)) —w([fX,Y]) = f(X(w(Y))) = Y (fw(X)) - w([fX,Y])
= [(X(w(Y))) = Y(fw(X)) = w(f[X, Y] = (Y [)X)
= [(X(w(Y))) = (Y ))(w(X)) = fY(w(X)) = fo((X,Y]) + (V) (@X)
= fdw(X,Y)
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Lemma 2.2.3.1. Let ¢ € Diff(M) and w € QF(M). Then

o (wY,...,Y) = (e-w)(p-Yi,...,0 Yg).

Proof. When k = 0, clearly we have ¢-(fg) = (¢ f)(¢-g) for f,g € C>°(M). So, now assume w is
a 1-form. Without loss of generality, we can assume that w = df for some f € C°°(M). Note that
above Remark 2.1.5.2 we showed that ¢ - (X f) = (¢ X)(¢- f) and in Theorem 2.2.2.3 we showed
that d and ¢* commute each other.

@ (WX)) =9 ([df(X))=¢- (Xf) = (¢ X)(p-f) = (dle- f)e-X)
A ) e X) = (e ) df) (¢ - X) = (¢ w)(p- X).
In general, note that the action of a k-form on k vector fields can be decomposed into the action of

k — 1-forms on k — 1 vector fields and the action of 1 forms on a vector fields. So, using induction
hypothesis and the cases when k = 0 and k£ = 1, it is easy to see that it is true. U

Lemma 2.2.3.2. Let & € Diff(M). Then we have for w € QF(M)
d d
Ehzo((ﬁﬂe W) (€t V1,6 YY) = (ah:o(@t cw)) (€t Y1, € Ya) =0
k
d
+ > (v w)li=0(€t - Yili=o,- -, &t - Yictlimo, g l=08=tYi &t - Yigalemo, -, €t - Yile—o)-
i=1

Proof. The main point is that the action of a k-from on k vector fields is k-multilinear over R. So,
it is sufficient to prove this for 1-form. Recall the proof of Theorem 2.1.6.1.

(& -w)(& - X) —wX

& limolce - ) (6 X) = ~ lim

t—0 t
:hm(£t-w)(&-X)—(ft-w)(X)—l—(&-w)(X)—wX
t—0 t
.1 . (& w—w)(X)
= lim = (& - w)((& - X) = X) + im =—————
- (& X)-X . (& w—w)(X)
= lim(& - w)(Z———) + Im =

d d
= ((& - w)lt=0) = li=0(& - X) + —|e=0(& - w) ((& - X)|+=0)-
dt dt
O
From these lemmas, we have the following lemma. Especially, we give two proofs of the following;:

Lemma 2.2.3.3. For w € QF(M), we have

k
EX(w(Yi’ e aYkJ)) = (ﬁXw)(Ylv s aYk) + ZW(YD s 7YVi717 [Xa Y;JL}/Z'Jrla s 7Yk)
=1
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Proof 1. Consider a function w(Y7y,...,Y%) and its Lie derivative: Let & be the global flow of X.
Note that & is the identity. Using Lemma 2.2.3.1 and Lemma 2.2.3.2,

Lx(@(¥i, - Vi) = lemobt @V, Vi) = licol€ e w)(Ee Va0 0 Yi)

k
d d
= (Zh=0(Et @)V, Vi) + 3wy, Yiot, —li=06Yi Vi, o Vi)
=1
k
= (‘CXW)(YL e 7Yk2) + Zw(ylv cee 7Y;—17£XmaY;;+17 e 7Y]€)
=1

O

Proof 2. First, we show the following: Since £x and ty are derivations on Q*(M) for X, Y € X(M),
we have a derivation [Lx,ty]. We shall show

[Lx,ty] = Ux, Y]

As usual, it suffices to show this for 1-forms and 0-forms. Since [Lx,ty] and ¢[x )y are degree —1,
they give the same action on Q°(M), namely, a zero derivation. So, it’s done. Now, assume w = df
for f € Q°(M). The main ingredient of the proof will be tx oty = 0 on QY(M) and Q'(M), and
Lx =txod+doitx. We have

uxydf = (Lixy) —doyxy)f =Lixy)f =Lxo(yod+dowy)f —Lyo(ixod+douix)f
(Lxowod)f —(Lyowtxod)f=(Lxowy —Lyouix)odf

(Lxoty —tyoLlx+iyoLlyx —Lyouvx)df =[Lx,wyldf + (ty o Lx — Ly oux)df
Lx,tyldf +(tyo(txod+doix)— (ty od+douwy)oix)df

Lx,yldf + (ty odovx)df — (ty odovx)df = [Lx,uy]df.

= [
=
From this, now we have

(Lxw)(Y1,...,Yk) = (ty, 00ty o Lx)w = (by, 00y, o (Lx 0 byy — {x,v;))w

Ly, O+ 0Ly, O Lx o [,yl)w — (LYk O-+0Lly, © [’[X,Yl])w

ly, ©- "+ 0ly3 © (L:X Oly, — L[X,Yz]) 0 LY1)W - ([’Yk O 0ly, © L[X,Yﬂ)“}

= (ﬁX OLYI€ o "'OLYl)W_Zw(Yh---7}/;—17[X7}/i]7Y;+1;---7Yk)
=1

=Lx(wM,...,Y)) — ZW(YL Y, [XC Y] Yiga, oY)

=1

Now we prove Theorem 2.2.3.3:
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Proof of Theorem 2.2.3.3. Let w € QY(M) and X,Y € X(M). Note that for f € C>(M), we have
df (X) = X f. In particular, (d(wX))Y =Y (w(X)). Using Lemma 2.2.3.3,

X(w(Y)) = Lx(w(Y)) = (Lxw)(YV) +w([X,Y]) = ((tx od + d o vx)w)(Y) + w([X, Y])
= (txdw)Y + (dw(X))(Y) + w([X,Y]) = (dw)(X,Y) + YV (w(X)) + w([X, Y]).

In general we have

Theorem 2.2.3.4.

k

(dw)(Xo, ..., Xp) = D (1) Xw(Xo,. .., Xir o, X+ > (=)™ ([Xy, X)), Xo, -, Xy, X

i=0 0<i<j<k

Proof. We shall prove this by induction. When k = 0, 1, we are already done. Now suppose k = n.
The main ingredients of this proof are of course Lemma 2.2.3.3 and the identity [d,tx] = Lx.

(dw)(Xo, N ,Xn) = (LXO o dw)(Xl,. .« oy ) = ([’Xo )(X1, NP ,Xk) - (dO LXlw)(Xo,. . .,Xk)
k
= Lxy(W(X1,.. ., Xp) = Y w(X1, .., Xio1, [Xo, Xo], Xiga, .o, Xa)
i=1
—(douix,w)(X1,...,Xk)
k
:XO(CU(X]_,...,X]C))_ZW(X]_,...,Xif]_,[XO,X/L'],X'L‘+]_,...,X]€)
=1

k
Z( )" Xy(exow(X, ..., Xiy oo, X2))

Z D)™ (uxow([Xi, X5) X1, Xy o Xy, Xi))
( 1)1X74w(X077X177Xk’))

(_l)i_l ([X(]aX] le"' X’L 173(\7:7Xi+la"'7Xk2)

=1
Z — D)X, Xj), X0, X1y Xy Xy, XR))
<i<j<k
k —
= XwX(],...,X,...,Yk)
+ (—1)"™w([Xs, Xj), X0y Xy oy Xy oo, Xi).
0<i<j<k

88



Example 2.2.3.2. Let w = dz — zdy on R? Then dw(0x,0y) = —1 and dw(dz,0z) = 0.
Proof. Since dw = —dx A dy, by definition of a wedge product we have
dw = —(dz ® dy — dy ® dx).
Hence, dw(dz,0y) = —1 and dw(dz,0z) = 0. Since [0z, Jy| = [0z, 0z] = 0, by Theorem 2.2.3.3, it
is also easy to see that dw(dx,dy) = —1 and dw(9dz,dz) = 0. O

2.2.4 Differential form version of Frobenius’s Theorem

Usually, working on differentiable forms is more preferable than working on vector fields, since
differentiable forms has pullbacks and exterior algebras, etc. Also, for example, recalling Exer-
cise 2.1.8.6, to find solution curves of

vy _
%_f(l‘ay)a

we just look at the kernel of dy — f(z,y)dz. Now we shall give the dual version of Frobenius
theorem. First of all we need a definition:

Definition 2.2.4.1 (Annihilation Ideal). Let E be a k-plane field over M.
Ann*(E) = {w e Q*(M) | w(X1,..., Xk) =0 for all X; € T(E)}.

Also,
Ann(E) = @Annk(E).
£>0

Clearly, Ann(E) is an graded ideal in Q*(M). Moreover, since Q*(M) is generated by QY(M)
and Q'(M), obviously, Ann(E) is generated by Ann!(E) = Ann(E) Q' (M). Also, it is worth
remarking the following: Let

T={X € X(M) | w(X) =0 for all w € Ann'(E)}.

Clearly, I'(F) C . Now, suppose that X € T. We know that by the local triviality of a vector
bundle, the duals of m — k vector fields in the codimensional space of E generate Ann'(FE) locally.
So, X is locally in T'(E). Using partition of unity, we conclude that X is actually in I'(E). Hence,

I'(E)={X € X(M) | w(X) =0 for all w € Ann'(E)}.
Definition 2.2.4.2 (Differential ideal). We say Ann(FE) is d-stable or a differential ideal if
d(Ann(F)) C Ann(FE).

Since Ann(FE) is generated by Ann'(E) = Ann(E)NQ(M), in order to show Ann(FE) is a
differential ideal, it suffices to show that

d(Ann'(E)) C Ann*(E).

The dual version of Frobenius theorem can be stated by the following way:
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Theorem 2.2.4.1 (Frobenius’s Integrability Theorem). A k-plane field E on M™ is inte-
grable if and only if Ann(F) is a differential ideal.

The main point is that locally m — k vector fields in the codimensional space of E generate a
differential ideal Ann(M).

Proof. By the Frobenius theorem on vector fields, it suffices to show that I'(F) is a Lie subalgebra
of X(M) if and only if Ann(F) is a differential ideal. Suppose that T'(E)is a Lie subalgebra of X(M)
and w € Ann'(E). We will show that dw € Ann?(E). Let X,Y € I'(E). By Theorem 2.2.3.3,

(dw)(X,Y) = X(w(Y)) = V(w(X)) = w([X, Y]).

Since [X,Y] € T'(E), we have (dw)(X,Y) = 0. Hence, dw € Ann?(E). Conversely, let X,Y € I'(E).
Since Ann(F) is a differential ideal, we have (dw)(X,Y) = 0. So, by (dw)(X,Y) = X(w(Y)) —
Y(w(X)) —w([X,Y]) we have

w([X,Y]) =0 for all w € Ann'(E).

Since T'(E) = {X € X(M) | w(X) = O forallw € Ann'(E)} by the previous discussion, we
conclude that [X,Y] € T'(F). Hence it is a Lie subalgebra. O

Example 2.2.4.1. Recalling Ezxercise 2.1.8.6, E = span{0x, dy + xdz} is not integrable, since
dw(0x, 0y + ©0z) = —w([0z, y + x0z]) = —(dz — xdy)(0z) = —1.
That is, dw ¢ Ann(E).

Suppose that S* L, be a submanifold of S°. Since f, is one-to-one, we have the cotangent

bundle Ng of S in M:
def TM|s

TS
So, we also have the dual N of Ng, which is called the conormal bundle of S. It is easy to see that

Ng

T(Ng) = {o € Q'(M) | f*(0) = 0}.
Let v € T)S. If o € T(NE), 0 = f*(0)(v) = o(f.(v)) for all v € T},S. So,
[(N3) € Ann'(f.(T5)).
Also, if ¢ € Ann!(f.(TS)), then 0 = o(f.(v)) = f*(o)(v) for all v € T),S. That is, f*(c) = 0.

Hence,
T(N%) = Ann'(£,(TS)).

From this, we deduce that a submanifold S has a unique ideal, which is generated by o; such that

f*(O'Z) = 0.
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Example 2.2.4.2. Let M™ 4, N™ be a smooth map, e.g., N might be a Lie group, e.g. M? —
SO(3). Define
def
graph(f) = {(z,y) € M x N | f(z) = y}.
First, note that graph(f) is a submanifold of M x N: Let F(m) = (m, f(m)). Clearly, it is smooth
and one-to-one. Moreover, clearly, F* is one-to-one. So, we have a submanifold
M £ graph(f) € M x N.

So, the previous discussion says that graph(f) has a unique ideal T of Q*(M x N). Let mp and Ty
be projections:
MxN ™. N

ol Y

M
Let wy, ... ,wq € QY(N) be a basis. By f, we have f*w; € QY (M) fori =1,...,d. Define 1-forms
a; € Q(M x N) fori=1,...,d by

a; = mywi — T (ffwi).
Let B be the ideal generated by o;. Then B =1.
Proof. By the previous remarks,
T ={weQY(M x N)| F*(w) =0}.
Since using 7y o F' = f and 7p; o F = id,
F¥(ai) = F*(mywi = my (f*wi)) = F*omy(wi) — F7 o mpy (f*wi)
= (v 0 F)"(wi) = (mar 0 F)*(ffwi) = f*(wi) — (id)"(f*wi) = 0,

we have o € Z. Suppose w € Z. So, F*(w) = 0 Since T(M x N) = TM x TN, it is easy to see
that Q1(M x N) = QY(M) x Q'(N). So, without loss of generality, we can think w = (W, wn)
where wys € Q(M) and wy € Q(N). So, for all v € T, (M), we have

0= (F"(w))(v) = w(Fi(v)).
Hence, by identifying w = (wps,wn), we have
(F*(w))(v) = w(Fi(v)) = w(idy, f2)(v) = w(v, fsv)
= (war,wn) (v, fxv) = (W, wn fxv) = (0,0).

So, that wyv = 0 for all v € T;,,(M) implies that wyps = 0. Hence, we can identifying w as wy.
That is,
mywn — Ty (ffun) =w € B.

In particular, by Frobenius theorem, B = 7 is a differential ideal, which annihilates graph(f). O

We give a converse of Exercise 2.2.4.2.
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Example 2.2.4.3. Suppose that given n1,...,m5 € QM) and a basis wy,...,wg € Q'(N), the
1-forms

Q= TNWi — TN
generate a differential ideal B in QY (M x N). Then for all (m,n) € M x N, there exists a

neighborhood U C M of m and a smooth map f : U — N such that f(m) = n and f*w; = n|y.
Furthermore, f is unique.

Proof. Since B is a differential ideal, by the Frobenius theorem, given (mg,ng) there exists a
maximal submanifold, i.e., leaf, S of (mg,ng) in M x N.

MxN ™, N

le
M

First, note that my/|7s is one to one: Suppose that v € T),S C T,(M x N) and (mpr)«(v) = 0. So,
we have fori =1,...,d

0= (mywi = mhyi)v = wi(Tn )« (0) = 0i(Tar)« (v) = wi(TN )« (V).

Since wy,...,wg € QY(N) is a basis, we have (mx)«(v) = 0. Hence, the fact (mp)«(v) = 0 and
(mn)«(v) = 0 implies that v = 0. Hence, (mp7)« is one-to-one. So, by the inverse function theorem,
s is a local diffeomorphism. Hence, there exists an open neighborhood set V- C S of (mqg, ng)
such that

[~23

my:V —=UCM.
Define
f=nno(mylv): U — N.

. .. . d;
Since mj; and 7y are projections, clearly, f(mg) = no and f is smooth. Moreover, graph(f) e/

{(z,y) € M x N | f(z) =y} is a submanifold of S. Furthermore, for all v € T,,M for any u € U,

0= a;((my|v)«v) = (7 lv) i) (v) = ((mpf v)* o (Thws — whemi)) (v)
= ((m}y o myr o) wi = (id)*mi) (v) = (f*(wi) —mi) (v).
Hence, f*w; = m;ly. Note that f is unique by the following reasons: If f is another function

satisfying all the required properties, by Exercise 2.2.4.2, graph(f) is a submanifold of M x N with
a the same differential ideal as gra Bh( f). Hence, the uniqueness of a maximal integral submanifold,

leaf, gives the uniqueness of f = f. O
Example 2.2.4.4. Let xzq,...,x, be a local coordinate chart of M and y1, . .., yn a local coordinate
chart of N. Suppose that we are given a P.D.E. system: Fori=1,...,nandj=1,...,m,

%:wml T Ut tn)
8:1:] 1] A el (%] sy dIn)e

So, we have fori=1,...,nand j=1,...,m,

wij = dy; — pijd;.
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If the ideal Iy, generated by wy; for j = 1,...,m, is a differential ideal, then by Example 2.2.4.3,
we have

Fi(ziy. .., Tm) = Yk

So, if the ideal I, generated by w;; fori=1,...,n and j =1,...,m, is a differential ideal, then by
Ezxample 2.2.4.3, this P.D.E. system is solvable. That is, we have

Fi(xi,...,xm) =y; fori=1,...,n

In particular, if M =R, then fori=1,...,n,

du:
% = Spi(taylv cee >yn)
So, we have fori=1,...,n,
w; = dy; — p;dt.
Since
N Ny
dwj ==Y Trdt Ady; == (F-dt A (dy; — p;dt)) Z th
j=1 0y, j=1 0y; =1

we deduce that the ideal I, generated by w; for i = 1,...,n, is always a differential ideal. From

this, we have then by Example 2.2.4.3, every first order O.D.E. system is solvable. Equivalently,
every line field is integrable.
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Chapter 3

General Theory of Lie Groups and Lie
Algebras

3.1 Lie Algebras of Lie Groups

3.1.1 Adjoint representations
Let G be a Lie group. The Lie algebra of G is

g={XeX(@) |, X=X} ex).

Recall that in Exercise 2.1.8.2, we showed that the evaluation map is an isomorphism:
€: £X(G) = T(G) by €(X) = Xe.

That is, X is completely determined by its value at e and each element of T.G gives a unique
left-invariant vector field. So, if X € £X(G), then

X, = dly(X,).

Let i : G — G be an inversion map by i(g) = g~*. So, ix : X(G) — X(G) is an isomorphism. Since

iolyg(h)=rg410i(h), for X € £X(G) we have

rg-1 - (ix(X)) =rp1- (- X) = (rg-104)- X = (ioly) - X =i-(lg-X) =1 X =i.(X).

9
Hence, letting SRX(G) be the set of right-invariant vector fields, we have a well-defined map
ix : £X(G) — RX(G).

Since iy : X(G) — X(G) is already an isomorphism, we conclude that £X(G) = RX(G). Note that
in Exercise 2.1.8.3, we already showed that they are isomorphic as Lie algebras. Suppose that G
is an n-dimensional Lie group. In Theorem 2.1.8.3, we showed that X(G) consists of n linearly
independent left-invariant vector fields X; for ¢ = 1,...,n. Let

w;= (X)) fori=1,...,n.
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Since {Xg}j=1,...n is a basis of T4G and
(Lgwi)e(Xje) = wig o (lg)«(Xje) = wig(Xjg) = (lqwi)e = Wi,

we conclude that (l;wi)h = w;p for all h € G, so that w; is a left-invariant 1-form for i = 1,...,n,
Le., lyw; = w;. Moreover, (lg)* is a graded algebra homomorphism, we have

Hence, we prove every Lie group has a left-invariant volume form. In particular, a Lie group is
always orientable. Since a similar proof would give the existence of a right-invariant volume form,
we have

Theorem 3.1.1.1. If G is a Lie group, the Radon measure comes from the volume form. Moreover,
there exists a left-invariant volume form. Also, there exists a right-invariant volume form. Note that
in general, theory are not equal. Furthermore, if G is compact, there exists a unique left-invariant
volume form with total volume 1.

In general, we have

Theorem 3.1.1.2 (Haar). Every locally compact topological group admits a left-invariant Radon
measure

Proof. See Ann. of Math. 34, 1933, p.147. O
Example 3.1.1.1. Let w € Q"(M"™) be a volume form. So, wy, # 0 for allp € M. For A C M,

the measure p(A) is given by
w(A) :/ XAW = / w.
M A

Note that by the previous remarks, we also have the evaluation map as an isomorphism, letting
£OF(G) be the set of left-invariant k-forms,

€: LOF(Q) — AFTFG = NFg*.

Since left-multiplications commute right-multiplications, right-multiplications r4 act on left-invariant
vector fields: Let X € £X(G) and h,g € G. We have

(In)«((rg)« X) = ((In)x © (rg)«) X = (ln 0 7g)x X = (rg 0 Ip)« X = (rg)«((ln)+X) = (rg)+ X.
So, we define the adjoint representation:
Ad: G — Aut(g) so that Ad(g)(X) = (r4-1).X where X € g = £X(G).
Note that if we identify g with 7.G rather than £X(G), we have for X € £X(G),
(Ad(@)(X))e = (ry1)+(Xg) = (rg1)e((Ig)eXe) = (ry1 01y} (Xe).
That is, letting r,-1 o [y = ¢4, conjugation by g, we have
Ad(g) = (¢9)« on T.G = g.

For a reference, we give
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Remark 3.1.1.1.
G — Aut(G) by 1(g)(h) = ghg™"
G 24 Aut(g) = Aut(T.G) = GL(n,R) by Ad(g)(v) = (14)+(v)
G A4 Aut(g) = Aut(£X(G)) = GL(n, R) by Ad(g)(X) = (ry-1)«(X)
£2(g) = g 2% Der(g) = M, (R) by ad(X)Y = [X,Y].

Note that derivations are infinitesimal automorphisms: Since T;qGL(n,R) = M, (R) = End(T.G),
we have a commutative diagram

G _Ad, Aut(g) = Aut(T.G) = GL(n, R)

exp/[ eXPT
(Ad)«=ad
g=T.G ——— Der(g) = End(g) = End(7.G) = T;4GL(n,R) = gl(n,R).
Exercise 3.1.1.1. Show that Ad(g) is a Lie algebra automorphism.

Proof. Tt suffices to show that Ad(g)[X1, X2] = [Ad(g) X1, Ad(g)X2] = [(14-1)«(X1), (14-1)«(X2)].
Note that (r,-1)«(X;) and X; are (r,-1)-related for i = 1,2. So, by Exercise 2.1.8.1, we conclude
that [X1, Xo] and [(ry-1)«(X1), (14-1)«(X2)] are (r,-1)-related. That is,

Ad(g)[X1, Xo] = (rg-1)«[X1, Xo] = [(rg-1)(X1), (rg-1)«(X2)].
O

Note Ado states that every Lie algebra has a faithful representation by a matrix group, some
gl(m,R). However, from the example of the Heisenberg group, we know that not every Lie group
has a faithful representation by a matrix group. Since (i4)« = Ad(g), it is easy to see that the
center of G is the kernel of Ad, i.e.,

Z(G) = ker(Ad).
Hence, Ad is not a faithful representation if Z(G) # id. Also, clearly,
Ad(G) = G/Z(G).
From this we have
Definition 3.1.1.1. We say G is adjoint if Ad : G — Aut(g) is faithful, equivalently, Z(G) = id.
Remark 3.1.1.2. g is semisimple if and only if Z(G) is a finite group.
Example 3.1.1.2. Since the center of SL(2,R) = {£1>}, we have
Ad(SL(2,R)) =2 SL(2,R)/{£I>} = PSL(2,R).
Also,
Ad(SU(2)) 2 SU(2)/{£l} = PU(2) = SO(3).
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Example 3.1.1.3. Let g € G where G is a n-dimensional Lie group. Since Ad(g) € Aut(g), we
have
(1g-1)x = Ad(g) : T.G — T.G.

Let vy, ...,v, be a basis of T.G. So, we have

n
(vi) =) ayvj.
j=1

Since we know that £O™"(G) = AT} G, by the fact that G acts on £Q™(G) by right multiplications,
so that (r,-1)* is a graded Lie algebra homomorphism ,and using the dual basis v fori=1,...,n

(rg-)" (VT A= Awy) = (Ad( )" (01 A ---Av*)

So, defining
G 24 Aut(g) det, R*, i.e., a modular function detoAd on G,

we conclude that det oAd = 1, i.e., G is unimodular, if and only if a left-invariant volume form is
right-invariant. That is, G is unimodular if and only if there exists a bi-invariant volume form on

G.

Example 3.1.1.4. Let

G=Aff (R )-{(0 1)\xy€Randy>0}

G is a connected open multiplicative subgroup of GL(2,R). So, it is a Lie group. Identify (z,y) with

(g 1) So, the identity of G becomes (0,1). Note that

Lap) (z,y) = (a+ bz, by).

Since left-invariant vector fields on G is completely determined by elements of Ty 1)G by the equation

0 0 o
l(a)(1,0) = dl(ap)(5-) = () (a+ b, by) = (b,0) = b=
0 0 o
dla)(0.1) = dlan () = (5 )@+ baby) = (0.0) = b,
we conclude that )
X(x,y) = ya—x and Yix7y) = ya_y

97



are left-invariant vector fields on G. Note that [yOy,yOx] = yOx says that g is a 2-dimensional non
abelian Lie algebra. Now look at £QY(G) = g*. Clearly, the basis of £QY(G) is {y~'dz,y~'dy}. Notice
that since y : G — R, we have

logy : G — R.

In particular, d(logy) = y~'dy. A left-invariant volume form is

y~tdx Ay tdy = y~2dz A dy, which is everywhere nonzero.

Now, we shall do the exactly the same things for right-invariant vector fields. So, we have right-invariant
vector fields

The basis of RO (G) is {dx,y 'dy} and a right-invariant volume form is
dz A (y~tdy) =y~ tdx A dy.

From this, we observe that comparing the flows, the dynamics and behaviors of left-invariant vector
fields and right-invariant vector fields are very different even though the Lie algebras are isomorphic.

Exercise 3.1.1.2. Compute adjoint representations.

Proof. Note that Ad(a,b) = (¢(a,))«- Since

ba'yx'%—%_yb:c—ay—i-a
0 1 0 1 0 1) \o0 1 ’

we have

Hence,

3.1.2 Maurer-Cartan Forms

Let g be the Lie algebra of left-invariant vector fields on a Lie group G and g* be the dual vector
space of g. By letting 7' : Aut(g) — Aut(g*) by T(f) = f* the transpose of f, we have a coadjoint
map Ad* from the following commutative diagram:

G 29 Aut(g)

1/

Aut(g)
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Definition 3.1.2.1 (Symplectic Structure). Let M?" be a 2n-dimensional smooth manifold
and w € T*"M ® T*M be a nondegenerate bilinear form:

w:TM xTM — R.

Note that w is called a Riemannian metric if it is nondegenerate and symmetric. If w is nonde-
generate and skew-symmetric bilinear form satisfying

dw =0,
we call w a symplectic structure on M.

Definition 3.1.2.2 (Almost Symplectic Structures). Let w = Zf? a;jdx; A dzj be a 2-form

on smooth manifold M?". We say w is an almost symplectic structure if

det((aij)QnX2n)) 7é 0.
That is, w is nondegenerate.
Note that nondegeneracy of w € Q2(M) implies that 0 # w A --- Aw € Q27(M) is the volume
—

n
form and the Darboux’s theorem as some disguise of the Frobenius theorem tells us that dw = 0
implies that w is locally nothing but the standard symplectic structure dzi Adyy + - - - + daxyn A dyy
of Euclidean space R?".

Exercise 3.1.2.1. Using a Lie algebra structure on g, construct a symplectic structure on an orbit
G- ={Ad*(9)(¢) | g € G} where P € g".

Sketch of Proof. Since ¢ € g*, we have di) € A’g* and d o dp = 0. Let
h={Xecg|dY(X,Y)=0forall Y € g}.

Using Theorem 2.2.3.4, it is easy to see that h is a Lie subalgebra of g. So, there exists a closed
Lie subgroup H of G corresponding to h, which we shall prove later. Now let

m: G — G/H. Note that G/H is a smooth manifold.
Let 7* ((jz\b) = di). Since d) is skew-symmetric, gz\/z is skew-symmetric. Since
0=dody = dr*(dy) = n*(d o di),

and 7* is a monomorphism, we have d o c/lz\p = 0. By the construction of G/H, it is easy to see that
di is nondegenerate. That is, di) is a symplectic structure of G/H. Now, letting 7* (1)) = 9, define

Jmu : G — G/H by fnu(g) = gmH and
F:G/H — g by F(gmH) = Ad*(g)(f3,1(¥))-
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Remark 3.1.2.1. From this, we deduce that the G-orbits in g* have invariant symplectic structures
and dim G-1) is even. A Poisson manifold M is a smooth manifold in which C*° (M) is a Lie algebra.
Note that g* is an example of Poisson manifolds, since C*(g*) = g.

Notation 3.1.2.1. Let .
0% (@, 9) Y 205 @) er e

In other words, QF(G, g) = A\Fg* @r g. So, if £ € Q¥(G, g), then
£E= Zwi ®r X; where w; € SQk(G) and X; € £X(G).

Since
€= E wi @r X; € T(Hom(TG x --- x TG, g)),
S ——
k

& is nothing but a g-valued left invariant k-form.

Now we define a derivation d of degree 1 on Q¥(M,g) by the following way:
d:QF(M,g) — QY (M, g) by dla® X) = da® X.

It is easy to see that d is a derivation. Also, we will define a graded algebra structure on Q*(M, g),
using Lie algebra structures of g* and g:

01 (M, g) x @ (M, g) 2> 0420, g) by [0 @ X, & Y] = (@ A §) @ [X,Y].
Note that we can easily check that it defines a graded algebra on Q*(M, g), which is not a graded
Lie algebra by the next theorem.

Theorem 3.1.2.1 (Maurer-Cartan structure equation). Let X1,..., X, be a basis of g and
w1, ...,wn be the corresponding dual basis of g*. Note that an element of g* is called a Maurer-
Cartan form on M. Letw =), _jwip @ X and [X;, X;] =D 1, cijk. We have

1
dwy, = —Zcfjwi Aw; and dw + 5[(«07‘0] = 0.
1<J

Proof. Note that
d(wk & Xk) = dw, @ X} = (Z efjwi A wj) ® Xp.
1<j
Consider [X;, X;] = >0, ¢%: X,. Even though we need the following property in this proof, we

J
want to note that by the skew-symmetry and the Jacobi identity, we have

n
S S TS T S r .S .
¢;; = —¢j; and E CijCrk + CiCri + cpicr; = 0 for all 4, j ks = 1,... n.

r=1

Note that the second equation shows that a Lie algebra structure gives an algebraic variety. Now,

let us get back to the proof. We will show that cfj = —efj. By Theorem 2.2.3.3 and recalling
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w;i(X;) = d;5, Kronecker’s delta, so constant in any cases, we have

11]1 = Zewwl N wj X217X ) = _dwkz(leX )
1<J

= —Xi, (wk(Xj1)) + Xy (Wi (Xiy) + wr([ Xy, X5 ])

n

we([Xiy, X)) = wie(D_ e Xo) = k)

s=1
Using cfj = —cg‘?i and the skew-symmetry of wedge products, we have
n n n n
w}:[Zwi@)Xi,ij‘@Xj]:ZZ[wi®Xi,Wj®X ZZ w,/\wj X“X])
i=1 j=1 i=1 jfl i=1 j=1
=33 )8 3) = 30575 ) .0) = 32T s ) s
= 13 1 k=1 i=1 j=1 = 1<j
n
= _222613 wi Awj) ® Xy = —22 dwr @ Xi) = —Zd(Zwk ® Xi) = —2dw.
k=1 1i<j k=1

O

Remark 3.1.2.2. Letting X1, ..., X, be a basis of g and w1, .. .,w, be the corresponding dual basis
of g%, we have the Maurer-Cartan form

n
w = Zwk ® Xk.
k=1

So, we have w(X;) = Y"1 wi(X;) ® X = X;. In this consideration, we have another description
of the Maurer-Cartan form: Since an element of g is completely determined by T.G, we have

id : T.G — g by id(v) = dl4(v).

Note that dly(v) is a vector field, i.e., dly(v) € T4G for each g € G. The Maurer-Cartan form is
corresponding to the identity map id.

Note that dl,-1 : TyG — T.G is an isomorphism. If {vy,...,v,} is a basis of T.G, then we have
n vector fields digy(v;) for i =1,...,n. Using the fact dl, is an isomorphism for each g € G, it is easy
to see that those vector fields are linearly independent. Recalling Exercise 2.1.8.2, we conclude that
every Lie group is parallelizable. Especially, we call dl, a trivialization ( resp. parallelization ) of
TG (resp. G). So in general we have there exists a 1-from w € Q(M, g) such that dw + §[w,w] =0
if and only if T'M is parallelizable. Also, in the case of a Lie group G, if the Lie algebra g is abelian,
we have dw = 0 by the equation dw + %[w, w] = 0. So, if dw # 0, then g can not be abelian. That
is, the Maurer-Cartan equation shows that whether or not g is abelian. Suppose that we have a
Lie group homomorphism ¢ : G — H between two Lie groups, G, H. Recalling Exercise 2.1.8.1,
we note that what Exercise 2.1.8.1 tells us is that dp is a Lie algebra homomorphism: Recall that
we say X € £X(G) is p-related to Y € £X(H) if



The claim is that X is p-related to ®(X):
g —— T.G
o| | o
h —— T.H
Note that ¢(e) = e implies that (®(X)). = dp(Xe). Also, since ¢ is a homomorphism, we have
lo(g) 0 p(a) = 9(g) - p(a) = p(ga) = @ o ly(a).

So, we also have dl 4 o dp = dp o dl,. Hence,

(I)(X)Lp(g) = dlgo(g) ((I)(X)E) = dle(g) (dSO(Xe)) = d@(dlg(Xe)) = d(P(Xg)'

That is, X is ¢-related to ®(X). Therefore, Exercise 2.1.8.1 tells us that (dy). is a Lie algebra
homomorphism and so is ®. However, what is remarkable is that the converse is also true. That is,
every Lie algebra homomorphism gives rise to a Lie group homomorphism. See the Warner's book p.
94.

3.1.3 Almost Complex structures

Let E be a k-plane field of a tangent bundle T'M of a smooth manifold M. Define a projection
7 x(M) Y r(ramy — T(rM/E).

Of course, TM/FE is called a normal bundle of a foliation F if F is integrable. Using the projection,
we now define

Qp:T(E)xT'(E) - T(TM/FE) by Qp(X,Y) =n([X,Y]).
It is easy to see that the Frobenius theorem can be reformulated as follows:
Qp = 0if and only if E is integrable.
Note that Qg is C°°(M)-bilinear:
Qp(fX.gY) = 7([fX.gY]) = n(f(Xg)Y + fg[X,Y] - g(Y )X) = for([X,Y]) = fgp(X,Y).

Definition 3.1.3.1 (Complex Structures on a vector space). Let V be a real vector space.
A complex structure J on V is an R-linear isomorphism such that J?> = —id.

Note that if V' has a complex structure, it is obvious that V' can not have eigenvalues of J. That
is, V only has eigenpaires of J. Hence , V is necessarily even dimensional.

Definition 3.1.3.2 (Complex Structure on a manifold). A complex structure ( holomorphic
structure ) on M s an atlas of holomorphic patches. To avoid confusion, we will call this a
holomorphic structure on M.

Exercise 3.1.3.1. Show that there is one-to-one correspondence between the set of complex struc-

tures of R? and SL(2,R)/SO(2).
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Proof. Note that by Example 1.2.2.1, there is the standard identification of GL(1,C) — GL(2,R).
Moreover, we have

GL(1,C) = {A € GL(2,R) | A" - <_01 é) A= (_01 é)}

-1 0
one Correspondence

So, letting J = ( 0 1), which is called the standard complex structure on R?, we have a one-to-

GL(2,R)/GL(1,C) « the set of complex strucures on R? by [A] — A~ JA.

Note that (A~1JA)? = —id. It is easy to see that GL(2,R)/GL(1,C) = SL(2,R)/SO(2), since
idg, —idg € GL(I,(C). ]

Definition 3.1.3.3 (Almost Complex Structures). An almost complex structure on M is a
complex structure on T M. That is, an almost complex structure J is a smooth section of TM, i.e.,
J € X(M) such that (J,)%* = —id where J,, is the restriction on T, M.

Definition 3.1.3.4 (Almost Complex manifold). If M?" admits an almost complex structure,
it is called an almost complex manifold.

Example 3.1.3.1. If we think an n-dimensional complex manifold as a 2n-dimensional real smooth
manifold, then /=1, which comes from a holomorphic structure of M, gives an almost complex
structure on the 2n-dimensional real smooth manifold. Hence we conclude that a complex manifold
induces an almost complex structure on its underlying smooth manifold.

Remark 3.1.3.1. Obuiously, an almost complex structure gives a complex structure on each tan-
gent space T,, M. However, even though each tangent space T,, M having a complex structure does
not guarantee that M has an almost complex structure. Clearly, the obstruction is the smoothness
of patching process. That is a problem of integrability. Newlander and Nirenberg proved that inte-
grable almost complex manifold has a unique holomorphic coordinate patches, which is induced form
the almost complex structure. Of course, we have not defined what an integrable almost complex
structure means. This is the content of the next discussion.

3.1.4 Integrable almost Complex Structure

Let M?" be a 2n-dimensional real smooth manifold. Suppose that T}, M has a complex structure
Jm. By complexifying the tangent space, we have 2n-dimensional complex vector space T, M Qp C.
Extend J,, to 1), ®g C in the following ways: For ¢ € C and v € T,,, M,

Im(v®c) = Jy(v) @ c.

So, Jp, has eigenvalues i, —i. Let the eigenspaces corresponding to i, —i be

TYOM = {w € TpyM &g C | Jo(w) = iw}
TOM = {w € TpyM @5 C | Jp(w) = —iw}
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Note that Tx"M and T M are n-dimensional complex vector spaces. So, identifying 7, =00 and
Tg{lM as 2n-dimensional real vector spaces, respectively, we have

TTI,L’OM & T,%IM &p T, M as 2n-dimensional real vector spaces.

So, now if we assume that T'M has an almost complex structure J as a smooth section, then we

have ~
TYM = {w € TM ®g C | J(w) = iw}

TO'M = {w e TM ®g C | J(w) = —iw}.

Definition 3.1.4.1 (Integrability of J). We say that an almost complex structure J is integrable
if D(TY M) and T(T%'M) are complex Lie subalgebras of I'(TM ®@g C) where I' means the set of
smooth sections.

Now, we show a differential form version of integrability of J, since as always forms are
much more powerful tools than vector fields.

Notation 3.1.4.1. Let M be a smooth 2n-dimensional real manifold with an almost complex struc-
ture J. Now, we fix notations in this subsection as follows:

E"(M)=T(AN"T*"M) and E"(M) =T (AN"(TM @r C)*).
Note that £"(M) is nothing but the set of complex valued C*°(M) r-forms. Since
Hom(TM ®g C,C) = (TM ®g C)* = (T"'M)* & (T M)*,
we also have

EPI(M) = T(AP(THOM)*) @ (AT M)*). So, E"(M) = > EPI(M).
p+g=r

Since we have the exterior derivation d on E"(M), we can extend d on £"(M). So,

d:EP1— " EM(M).

r+s=p+q+1
Clearly, d o d = 0. Letting a projection 7y 4 : EPT1 — EPY(M), we also define on EP1(M),
0=mpr140dand 0 =mp 441 0d.
Note that in this description we have

deM0 = 0O (M) + 0E + moa 0 dEVO C Y EPI(M)
p+Hq=2

A€V = DEOH (M) + DE™! 4 my 0 dEVT C Y EPI(M).
p+q=2

Theorem 3.1.4.1. J is integrable if and only if mp 2 o A€ =0 and 2,0 © dE%T = 0.
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Proof. If J is integrable, then by definition I'(T1°M) and I'(T%! M) are complex Lie subalgebras
of I'(TM ®gr C). Let

Ann'(TYM) = {w € EY(M) | w(X) =0 for all X € T(TH°M)}.

Clearly,
’ Ann!'(THOM) = €01,

Since Theorem 2.2.3.3 is also valid in this case, we have
dw € Ann?*(THOM) = M (M) @ £92.

Since dw = 0w + Ow + 9,0 © dw, we conclude that mg g o d€%! = 0. By the same reasoning, we have
mo,2 0 d€ L0 = 0. Also, we get the converse by imitating the proof by backward. U

Since we always have d = 9 4+ 0 on £°(M), and (M) and E°(M) generate £*(M), by Theo-
rem 3.1.4.1, we have the following definition.

Definition 3.1.4.2. J is integrable if d = 0+ 0 on E*(M).
Note that if d = 0 + 0, then d o d = 0 implies that
dod=0and 9od =0.

Example 3.1.4.1. Let M = R%. Then TM has a basis {&6, ay} Suppose an almost complex
structure J is given by

0 0 0 0
—)=—and J(=—) = ——.
(&L") oy ¢ (83/) Ox
Note that J?> = —id. So, an element in 2-dimensional complex vector space TM &g C is given by

(a + zb)% + (c+ zd)gy where a,b,c,d, € R.

Since TYOM = {w € TM @g C | J(w) = iw}, we deduce that TVO(M) is 1-dimensional complex
vector space generated by

—(=— - 2%), which is often denoted by 88

Similarly, we have T%Y(M) is 1-dimensional complex vector space generated by

1.9 9] . 9
_(8_33 + 28 ), which is often denoted by s

Note that we call an element of kerd a holomorphic function on R? where
EO(RQ) d=0+9 gl O(RQ) 50,1(R2>_
So, if f is holomorphic, then
_of 1 1.0f 8f

By letting f = g + ih where g, h are smooth real-valued functions, we have the Cauchy-Riemann
equation.
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Exercise 3.1.4.1. Find a nonintegrable almost complex structure.

Information. Note that J is integrable if and only if the Nijenhuis tensor N(X,Y) = 2([JX, JY]| —
[X,Y] - J[X,JX] - J[JX,Y]) =0 for all X,Y € X(M). There is a nonintegrable almost complex
structure on S®, which is induced by the Cayley numbers. See the Kobayashi’s book or Frolicher’s
paper “ Zur Differetialgeometrie der komplexen Struckturen ”, Math. Ann. 129 ( 1955 ), 50-95. [

Example 3.1.4.2. FEvery even dimensional Lie group G admits a left-invariant almost complex
structure.

Proof. Note that we always have a complex structure on T,G. Let J. be a complex structure on
T.G. So, since T,G = g, letting

Jg(Xy) = dlgo Jeodl,1(X,),

we have an almost complex structure J. By construction, (dly)e o Jo = Jg, which means J is
left-invariant. O

Note that a complex Lie group is a complex manifold with a holomorphic group operation.
From example 3.1.3.1, we know that the complex structure of a complex Lie group induces an
almost complex structure J.

Example 3.1.4.3. If G is a complex manifold and J is the almost complex structure induced from
v —1, then J is bi-invariant.

Proof. Since J acts on the complex Lie algebra g by multiplication by v/—1 from J? = —id, we
deduce that J is invariant under any element of Aut(g) which includes dl, and Ad(g) = dry-1.
Hence, J is bi-invariant. Note that Ad(g) o J. = J. o Ad(g). O

Note that one of necessary conditions that we can make a 2n-dimensional real Lie group G into an
n-dimensional complex Lie group is that G admits a bi-invariant ( almost ) complex structure.

3.1.5 Darboux Derivative

Let M be a smooth manifold and G be a Lie group. Suppose that f : M — G is a smooth map.

So,we have
Al siy—1
I TG =g

Definition 3.1.5.1 (Darboux Derivatives). We define the Darbouz derivative Df of f to be

df
TrnM % Ty G

de
(DY = dlgmyy1 o df.

Note that Df is nothing but a g-valued 1-form: Since dl(f(yy)-1 o df : T)nM — g, for v €
TmnM we have (Df),(v) € g. We know that f : M — G induces f* : Q(G,g) — QY(M,g) by
fflweX) = (ff'wv)eX.

Theorem 3.1.5.1. Let X1,..., X, be a basis of g and w1, ...,w, the corresponding dual basis of
g*, we have

1wk ® Xp) = DFf.
k=1
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Proof. 1t suffices to show that

n

Z(f*wk)m ® (Xk)e = (Df)m

k=1
Note that since wj; is a left-invariant 1-form, we have

(wi)n = (dlzw)p, for all g,h € G.
Let v € T, M. Then (Df) ( ) = dl(t(m))-1 odf (v) = Y, where Y is the unique left-invariant vector

field corresponding Yy () = df (v). Let Yo = 3711 ap(Xg)e. So, a = (w(Y))e. Hence, we also have
Z(f*%)m(v) ® (Xn)e = > _((wk) pm) © df (v) @ (Xi)e
k=1 k=1

- Z f(m))~ 1wk f(m) © df('l})) ® (Xk)e

n

=D (@k)(rom)) 11 m) © Al smyy—1 © df (0)) @ (X )e
k=1

= Z((Wk:)e odl(fmy-1© df (v)) @ (Xk)e

= Z((Wk)e(ye)) ® (Xk)e
k=1

= Zak(Xk)e =Ye = (Df)m(v).
k=1

Clearly, f* commutes d:
Ql(G’g) L Ql(M7g)

a| |
QQ(Gvg) L QQ(Mvg)
Moreover, it is easy to see that f is a Lie algebra homomorphism:

WP (G, g) x QU(G,g) —— QP(M,g) x QI(M,g)

1) lu

Qerq(G’g) L) Qp+q(M7g)

Combining these with Theorem 3.1.5.1 and Maurer-Cartan structure equation, we have

d(Df) + [Df,Df—d Zwmxk Zwmxk Zwk®Xk

Zc%@Xk Zwk®Xkasz®Xk
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That is, every Darboux derivative of a smooth map f satisfies the Maurer-Cartan structure equation.

Exercise 3.1.5.1.
D(lgo0 f) = Df.
Proof.
(D(lgo f))m(v) = dl(g.f(myy—1 o dlg o df (v)
= dls(m))=1.g-1.9 © Af (v) = dlny)-1 © df (v)
= (Df)m(v).

Amazingly, the converse is also true. Notice that this is similar to a local Poincaré lemma.

Theorem 3.1.5.2. Let G be a Lie group with the Lie algebra g. Given n € QY(M,g) such that
dn + %[77,77] = 0, then for each point p € M, there is a neighborhood U of p and a smooth map
f:U — G such that

Df =nly.

Proof. Note that as we already have seen, constructing a smooth map f: W — G is equivalent to
finding a plane field on W x G having graph(f) as an integral submanifold of W x G. Let 7y and
ma be projections from W x G to W and G, respectively, where W is a neighborhood of p. Letting
w=Y"7_ wr ® X} the Maurer-Cartan form, we define recalling n|ly € Q'(W, g),

® = miw — my (nlw) € QW x G, g).

Let
n n
E = ker(®) = (| ker(®;) where ® = " &; ® X;, i.e., ®; € £Q'(W x G).
i=1 i=1
Note that if Y € g, we have Y = }7}'_, ax X} where a; are smooth. Since {X7,...,X,} is a basis,
aj, are necessarily constant by the equation ay(e) - dly(Xe) = dlg((ar(e)Xe) = ar(g)Xy. So, by the
R-linearity of tensor product, we can decompose

=) ®®X,ie, & € LW xG).
=1

The claim is that E is an integrable distribution of T(W x G) = TW x T'G. By the Frobenius
theorem, it suffices to show that dAnn'(E) C Ann?(E). Note that Ann'(E) is generated by ®
by construction. So, it is sufficient to show that d® € Ann?(E). Then

* * 1 * *
d® = mgdw — Ty d(nlw) = —§(Wc[waw] — my[mlw,nlw])

- _%([WZ'W,W*GW] = [ (lw), 7w (nlw)])
1

= —5([mew = my (nlw), mgw — my (nlw)] + [rGw — miy (nlw ), 7w (nlw)] + [Ty (nlw), mgw — mw (nlw)1)

= 5 ([, 9] + [, ()] + [ (alw), 2],
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If V1,Y> € E, then ®(Y;) = ®(Y2) = 0, since E = (i, ker(®;). Hence d®;(Y1,Y2) = 0. That is,
do e Anng(E). Now, the only remaining thing to show is that there exists a neighborhood U C W
of p such that

Df =nly.

Recalling Exercise 2.2.4.3, since ® = mjw — 7}, (n|lw) generates the differential ideal Ann'(E) in
QYW x G, g), there do exist a neighborhood U C W of p and a smooth map f : U — G such that
f*w =n|y. By Theorem 3.1.5.1, we have

U\U:f*w:f*(zwk@@Xk) =DF.
k=1

3.1.6 When M is GL(n,R) and G is GL(n,R) as a representations

Recall that the exterior derivative d is defined on Q*(M) where M is a smooth manifold. Suppose
that ¢ € GL(n,R) as a manifold. Clearly, we have a representation

z11(9) -+ T1a(9)
g : KR :
zn1(g) - Tan(9)
We will denote this map by X', which is nothing but the identity map, from GL(n,R) to GL(n,R):

X : GL(n,R) — GL(n,R),

So, regarding the coordinate functions x;; as elements of Q°(GL(n,R)), it makes sense to define
dX by
dz11(9) -+ dzin(g)
def . .
dXy = : i :
dzpi(g) -+ dznn(g)
Clearly, dX is an (nxn) matrix of 1-forms on GL(n,R), i.e., dX, € M, (R) and dz;; € Q'(GL(n,R)).
Since the Lie algebra of Lie group GL(n,R) is M, (R);
we conclude that dX is a gl(n, R)-valued 1-form:
dx € QY (GL(n,R), gl(n,R)) = Q' (GL(n,R), M, (R)).
Hence, we have
dXy, : Th(GL(n,R)) — gl(n,R) = M, (R).
An explicit formula is given by for v € T}, (GL(n, R)),
dziy(R)(v) - drya(h)(v) (v(z1))(h) - (v(z1n))(R)
(dXp)(v) = : : = : :
dzni(h)(v) - dzpn(h)(v) (v(@n1))(R) -+ (v(@nn))(R)
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Note that we regard v as a differential operator so that v(x;;) € C*°(GL(n,R)). If we identify v
with n X n-matrix;
aip - G1p
v = Do : € M, (R),
an1 - dnp

it is easy to see that (v(x;;))(g) = aij, a constant function on GL(n,R). So, the above formula
becomes
(A2 (0) = .
Actually, an easier way to see this is the following: We know that X : GL(n,R) — GL(n,R) is the
identity map. So,
dX : T(GL(n,R)) — T(GL(n,R)) is the identity map.
Hence,
dXy, : Th(GL(n,R)) — Th(GL(n, R)) 2= M, (R)
is the identity map. Now, we define [;dX: For v € T,(GL(n,R)),
dayy (hp)(din(v)) -+ dzya(hp)(din(v))
(lhdX)p(v) = dXpp(din(v)) = : :

A1 (hp)(dly(v) -+ di(hp)(dly(v))

Note that dl(v) € Tpp(GL(n,R)) and [} : Q1(GL(n,R), M, (R)) — Q'(GL(n,R), M, (R)). From
this, it is easy to see that dX is not a left-invariant gl(n,R)-valued 1-form: Note that by the above
discussion, we have

(dXp)(v) = v and dXpy(dlp(v)) = dip(v).
Since dlj(v) = %h:olh(p + tv) = hv, we have
([3dX)p(v) = dXpy(dlp(v)) = dip(v) = hv = h - (dX)p(v).

Notice that

z1(h) -+ @1n(h) (w(@1))(p) - (v(z1,0))(P)
h- (dX)p(v) = : : : :
Tni(h) o znn(h) (v(zn1))(p) - (v(@nn))(p)
Now, define a map

ri(g™) o walg™)
X~1:GL(n,R) — GL(n,R) by X 1(g) — : : .

rp1(g™") o Tan(gTh)
Similar procedures shall give a gl(n, R)-valued 1-form X~1.dx € Q'(GL(n,R), M, (R)). Note that
for g € GL(nR), we have

z11(g™h) o zia(g7h) dri1(g9) -+ dxin(g)
X, (dX)y = L : 1 8 | EMa(R).
ITnl (971) e xnn(gil) dxnl(g) U dxnn(g)
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For v € T,(GL(n,R)), we define
(X1 dX))p(v) = Xt - dXip(dln(v)).
Theorem 3.1.6.1. X! dX is a left-invariant gl(n,R)-valued 1-form.

Proof. Since X~1 : GL(n,R) — GL(n,R) is a homomorphism with X};l =Xt X, and it is not
hard to see that X, ' = A}, -1 = h™!, we have for v € T,(GL(n, R)),

(X1 dX)p(v) = XI;I - dXpp(dlp(v)) = Xh}f b (dX)p(v)
=X X b (dX)p(v) = X T b (dX)(v)
=X, (dX)p(v) = (X1 dX) ().

Example 3.1.6.1. Let Ry be a connected component of GL(1,R). Note that we still have
Ty(Ry) =Mi(R) =R for g e R,
Let x be a coordinate function x : Ry — R, which is the identity map. Now, it is easy to see that
z tdx = dlog x.
It is obvious that dx is not left-invariant but dlogz is left-invariant.
Remark 3.1.6.1. Imitating all the proofs so far, we also conclude that
(dx)-xt
is a right-invariant Maurer-Cartan form.
Now we calculate dX~!. First note that

z11(9) -+ z1na(9) (g™l o zin(gTh)
Xg.Xg—lz . :Id(an)
Tni(g) - Tan(g) ni(g™h) 0 Tan(gTh)

Hence, we have for any g € GL(n,R),

0 --- 0
(dX)g'Xg_1+Xg'(dX_l)g: o = 0k
0 --- 0
Therefore,
(dxX ™)y = =71 (dX), - X
z11(g™) o wia(gTh) dz1i(g) -+ dxin(g) z11(g™") o zia(gTh)
wai(97!) o wanlgT)/) \dzmilg) -0 dzan(g))  \@a(g™") o zanl(g)
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Example 3.1.6.2. Let Ry be a connected component of GL(1,R). Let x be a coordinate function
and x7' : Ry — R, which is the inversion map. Note that x~' is well-defined on R,. Now, it is

easy to see that
de™t = —z7%da.

Remark 3.1.6.2. We know that the identity map X : GL(nR) — GL(n,R) induces the identity
map

(dX)g : T,(GL(n,R)) — T,(GL(n,R)) for all g € GL(n,R).

However, the formula (dX~1), = —Xg_l - (dX)g - Xg_l shows that the induced map (dX~1), on
T,(GL(n,R)) of the inversion map X' : GL(n,R) — GL(n,R) is not quite the identity. What
is true is that (dX 1), = —id on T.(GL(n,R)) = gl(n,R) = M, (R) as an additive group when
g = e the identity. This is a general phenomenon. A law of composition of Lie groups induces a law
of composition of their Lie algebras. The next two exercises shall give some clear view.

Exercise 3.1.6.1. Show that

( k
S Xy (dX) g X, k is a posistive integer
ith
(dX*)y = A
Zle ngl s (dxThy, ngl k is a negative integer
ith
0 k=0.

In particular. on T.(GL(n,R)) = gl(n,R) = M, (R), we have
(dXM)e =k - id(xp) for k € Z.
Proof. This is nothing but the Leibniz rule of d. Also, note that

Xe = (dX)e = X7 =id(xn) and (dX ) = —idxp)-

Exercise 3.1.6.2. Let hy € GL(n,R) and define
M : GL(n,R) — GL(n,R) by M(g) = X(h1) - X(g).

We have
(dM)y : T¢(GL(n,R)) — T},4(GL(n,R)) by (dM)g = &, - (dX)g.

Proof. Using the Leibniz rule of d and (dX);, = 0 by the fact that X}, is constant as g € GL(n,R)
varies, it is done. Il

The following example shall show that a law of composition of Lie groups induces a law of compo-
sition of their Lie algebras.
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Example 3.1.6.3. Define
M : GL(n,R) x GL(n,R) — GL(n,R) by M(g,h) = X(g) - X(h)- X" 1(g)- X7 (h).

We have
(dM)gn - Ty(GL(n, R)) x Tp(GL(n,R)) — Typg-15-1(GL(n,R)) by

(AM) g1 = (dX) g XXy 1 2+ Xy (dX) - X 20+ Xy Xy (dX 1) g Xy T Xy X X1 (dX 1)
In particular, letting e be the identity, we have
(dM)ep, : Te(GL(n,R)) x T,(GL(n,R)) — T.(GL(n,R)).

Suppose that ve € T.(GL(n,R)) and wy, € Tp(GL(n,R)). It is easy to see that from the above
formula

(dM)e,h(Uev wp,) = (Idpxn)e(ve) + (Idpnxn)n(wn) 'ijl —(Idnxn)e(ve) — (Idnxn)n(wn) '-X}jl = O(an)
In general, by abusing notation, we write

(dM)ge : Ty(GL(n,R)) x Te(GL(n,R)) — Te(GL(n,R)) by (dM)ge =0
(dM)e,e : Te(GL(n,R)) x T.(GL(n,R)) — T.(GL(n,R)) by (dM)ee =0

The following example shall give some insight about what is really going on.
Example 3.1.6.4. Define
M : GL(n,R) x GL(n,R) — GL(n,R) by M(g,h) = X(g) - X(h).
This is nothing but a usual operation on a Lie group as one can easily expect. We have
(dM) g1 : Ty(GL(n, R)) x Ty(GL(n,R)) — Tyy,(GL(n, R)) by
(dM)gn = (dX)g - Xy + Xy - (dX)p,.
In particular, letting e be the identity, we have
(dM)e. : T.(GL(n, R)) x T.(GL(n, R)) — T.(GL(n, R)).

Suppose that ve € T.(GL(n,R)) and we € T.(GL(n,R)). It is easy to see that, reminding dX and
X, are the identities, from the above formula

(dM)e,e(veawe) = (Idnxn)e(ve) + (Idnxn)h(we) = Ve + We.

This is, the multiplication M on a Lie group as a usual operation in a Lie group is transformed into
the addition (dM).. on the Lie algebra as a usual operation in the Lie algebra.

Now we show that X! . (dX) satisfies the Maurer-Cartan equation.
Theorem 3.1.6.2. Let w = X! - (dX). Then

1
dw+§[w,w] =0.
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Proof. Note that
dw=dX™ " (dX)) = (dx™ 1) -dX + X7 ddX) = X1 (dx)- X1 (dX).
We know that for a ® X, 3®Y € QY(G, g), we have defined
[ X,60Y]=(aAp)®[X,Y].
Recalling the matrix representation of X! - dX, a moment of thought gives that
(X tdx, xlodx)=x"t. (dx)- &7t (dX)+ X7 (dx) - Xt (dX).
Hence,
d(X—t.dx) + %[X‘l SdXx, X7l dx)=o0.
Theorem 3.1.6.3 (Ado’s Theorem). FEvery Lie algebra g admits a faithful representation;
g — gl(n,R).

Theorem 3.1.6.4. If G is a Lie group with the Lie algebra g and a sub Lie algebra b C g, then
there exists a connected Lie subgroup H of G with the Lie algebra b.

Proof. Let h C g = X(G). Consider a plane field F on G spanned by h. So, we have

I(E) = {Z £iXi | Xi €b, fi € C(G)}.

Suppose that A, B € I'(E). Letting A = > a;X; and B = > b; X; where a;,b; € C*°(G), we have
{A, B] = Z ai(Xibj)mj + Z aib]’ [XZ, X]] — Z bj(XJCLZ)XZ
,J ,J ,J

Since b is a Lie subalgebra, we have [X;, X;] € h. So, we conclude that [A, B] € I'(E). hence, by
the Frobenius theorem, there exists the maximal integral submanifold H containing e € G. Note
that by definition, a submanifold might not be an embedding and the maximality implies that H is
connected. Now, we are going to show H is a Lie subgroup of G. Let h € H. Clearly e € [;,-1(H)
and we deduce that F is a left-invariant plane field, i.e., (I-1)«(E) = dl}-1(E) = E, since F is
generated by h, which is also generated by the set of left-invariant vector fields. So, we conclude
that ;-1 (H) is an integral submanifold of (I,-1).(E) = dl;,-1(F) = E. Without loss of generality,
assuming l,—1(H) to be maximal by extension, since [;,-1(H) also contains e, by the uniqueness of
a maximal integrable submanifold through e, we conclude that

l,-1(H) = H.

So, we have that [;,-1(g) = h~'g € H for all g,h € H. That is, H is stable under a C* mapping
(g,h) — h~'g. Since e € H, we conclude that H is a Lie subgroup of L. O
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Example 3.1.6.5. Let T? = R?/Z? be a torus. It is easy to see that

0 0
Tioo(T?) =g={a— +b— | a,b e R} = R2.
(0,0)( ) g {a’ax + ay ’ a }
Notice that R? is an abelian Lie algebra. So, since any linear subspaces of R? form Lie subalgebras
of R2, there are the corresponding Lie subgroups of T?. Suppose that b C g is generated by
0 b 0
ag— —.
9 O@y
It is easy to see that the corresponding Lie subgroup H is the skew-line of T? unless ‘;—g € Q. So,
H is not an embedding but a submanifold ( immersion ).

We know that every homomorphism of Lie groups gives a Lie algebra homomorphism. Now, we
investigate the converse.

Question 3.1.6.1. Does every homomorphism of Lie algebras ¢ — b arise in this way? That is,
does every homomorphism of Lie algebras g — b come from a homomorphism of Lie groups G — H
where g and b are the Lie algebras of G and H, respectively?

In general, the answer is “No”.

Example 3.1.6.6. Let G = R/Z = S' and H = R. Note that G is not simply connected. It is
easy to see that the corresponding Lie algebras are g = R and h = R. We shall show that every Lie
group homomorphism from G to H induces a trivial Lie algebra homomorphism from g to . So,
nontrivial Lie algebra homomorphisms from g to by, which obviously exists, can not come from their
Lie group homomorphism. Let G *. H be a Lie group homomorphism. Since

polyg(gr) = ¢(gg1) = p(9)p(g1) = lyg) © p(91),

we deduce that
(d(p)g e} dlg = dlgo(g) o (dgo)e.

Since dly and dl, ) are isomorphisms, we conclude that the linear map dy has a constant rank,
i.e., rank(dy) = constant. Note that it is well-known that any smooth map from a compact smooth
manifold has a mazximum. That is, dp = 0 for some point in G. Hence, we have

dp = 0.

However, if G is simply connected, we can give the affirmative answer to Question 3.1.6.1.
Before we give a its proof, we need some prerequisites.

3.1.7 Covering spaces of manifolds

Suppose that M ER N be a continuous map from a topological manifold M to a smooth manifold
N. Assume that f is a local homeomorphism. That is, for all m € M, there exists a neighborhood
Up, of m such that f|y,, is a homeomorphism. Then by pulling back of the smooth structure of N
by f, we have a locally unique differentiable structure on M. Since smoothness is a local notion,
we infer that f become a smooth map. That is, there exists a smooth structure on M such that f
is a local diffeomorphism.
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Definition 3.1.7.1 (Covering spaces). Let M ENYY, be a continuous map. We say that f is
a covering space if for all y € N, there exists a neighborhood V, of y in N such that for each
component U of f~1(V,), we have

flu : U — Vy is a homeomorphism.
Note that the we say that M is evenly covered when the above property occurs.

Note that it is well-known that if M ER N is a covering space, then the induced map on the

fundamental groups m (M) ELN 7m1(N) is injective. Also, from theorems in Algebraic topology, we
also have that given IV, there exists a covering space, which is called a universal covering space

N L. N such that m(N) = 1.

In particular, this is unique up to homeomorphism and every other covering space of N is a quotient
of N. Reminding Exercise 1.2.7.4, we have the followings:

Theorem 3.1.7.1. Every covering space of a Lie group is a Lie group.

From the proof of Exercise 1.2.7.4, we know that the universal covering space of a connected
Lie group H is given by

H = {[7] | v:1[0,1] — H where ~ is a path starting at e € H}.
Moreover, the covering map p : H — H is given by p([7]) = v(1). So, it is easy to see that
p~H(e) = mi(H,e).
That is, since His a group and HLZ Hisa homomorphism as we have seen, we conclude that
kerp = m (H, ¢), i.e., an exact sequence m (H,e) — H — H.

Actually, since a connected Lie group is path connected, we have for any p € H,

m1(H,p) = m1(H,e).
So, the sequence 71 (H,e) — H — H also tells us that H is a fiber bundle over H with fiber m; (H).
Example 3.1.7.1. If H = R/Z = S, then we have H ~ R and R 2 R/Z with

kerp = 7 = (S, e).

Note that if H = R"/Z" = S1 x ... x §! =l T", then we have H = R™ and R™ 2 R™/Z" with
~—_——

n

kerp = 7" = 1 (T", e).
Also, if H =SO(3) 2 RP?, then we have H = SU(2) 2 H, = 53 and SU(2) 2 SO(3) with
kerp = Zs = w1 (SO(3), e).

Note that m(SO(n)) = Zy and the universal covering space of SO(n) is denoted by

SO(n) = Spin(n).
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From this, it is good to ask the next question.
Question 3.1.7.1. What group arises as m1(G) if G is a connected Lie group?

The answer is that only finitely generated abelian groups can arise as m1(G) if G is a
connected Lie group.

Theorem 3.1.7.2. Let G be a connected Lie group. Then 71(G) is abelian.

Proof. Let G % G be a universal covering space of a connected Lie group G. We know that ¢ is a
homomorphism with

ker(y) = m1(G).

We infer that 71(G) = ¢ !(e) is a closed set with no accumulation points by the fact that ¢
is evenly covered, i.e., ¢ !(U) is a union of disjoint copies homeomorphic to U where U is a
small neighborhood of e the identity. So, 71(G) = ¢~ !(e) is discrete. Now, we shall show that any
topological discrete normal subgroup of a connected topological group is abelian: If D is topological
discrete normal subgroup of a connected topological group G, then for g € G and 6§ € D

5 gog !

gives a well-defined continuous action of G on D by the fact D is normal. Since D is discrete, it
must be a constant map by the continuity and discreteness. So, we conclude that

g6g~1 = ede™! = §, which means D € Center(G).

So, D is central. Hence, D is abelian. Since 71(G) is a discrete normal Lie subgroup of a connected
Lie group G, it is abelian. O

In order to show that m1(G) is finitely generated, we need one of deep theorems in Lie group
theory. Without a proof, we state the following

Theorem 3.1.7.3. Let G be a connected Lie group. Then there exists a compact Lie group K C G
such that G is diffeomorphic to K x R® for some d € Z.

By Theorem 3.1.7.3 and the fact that w1 (K) is finitely generated if K is compact, noting
m1(A x B) = m1(A) x m(B),
we conclude that 71 (G) is finitely generated.
Example 3.1.7.2. If G = PSL(2,C), then
G = RP? x R® 2 PU(2) x R? 2 SO(3) x R3.

If G = PSL(2,R), then
G =S xR*=2PSO(2) x R%
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Suppose that G ¥, H be a smooth map between Lie groups such that
de:T.G - T.H

is a Lie algebra isomorphism. So, by the inverse function theorem, there exists a neighborhood U
of e € G such that |y : U — ¢(U) is a diffeomorphism. Using the left-invariant vector fields of G,
we actually have dy : g — b is a Lie algebra isomorphism. So, by the same arguments, we deduce
that G 5 H is a local diffeomorphism. From this, note that

dim G = dim H.

Note that Definition1.1.8.1 say that G 4, H is called a local Lie group isomorphism if f is
a homomorphism and f is a local diffeomorphism. From the above, we also have an equivalent

definition of a local Lie group isomorphism. That is, a smooth map G EN is called a local Lie
group isomorphism if f is a homomorphism and dy : T.G — 1. H is a Lie algebra isomorphism.

Theorem 3.1.7.4. Let G and H be connected Lie groups with the Lie algebras g and b, respectively.
Suppose that ¢ : G — H is a Lie group homomorphism. Then ¢ is a covering map if and only if
(dp)e : g — b is an isomorphism.

Proof. Suppose that ¢ is a covering space and (dy). is not injective. Let
a=ker((dy)e).

Since a is a nontrivial Lie subalgebra of g, by Theorem 3.1.6.4, we have a nontrivial connected Lie
subgroup A containing e of G. However, since ¢ : G — H is a Lie group homomorphism, we must
have (A) = e, which contradicts the assumption that ¢ is a covering space, i.e., ¢ ~!(e) is discrete.
Now, suppose that (dy)e is not surjective. Let

b = Im((dp)e)-

Since b is a proper Lie subalgebra of hj, by Theorem 3.1.6.4, we have a proper connected Lie subgroup
B containing e of H where ¢ : G — B C H is onto around neighborhoods of identities eq € G and
ep € B by the fact that ¢ is a homomorphism. However, since B is a proper submanifold of H, this
contradicts the assumption that ¢ is a covering space. Hence, (dy). is a Lie algebra isomorphism.

Suppose that (dy)e : g — b is an isomorphism. By the previous argument, ¢ is a local diffeo-
morphism. By Exercise 3.1.7.1 and ¢(eg) = ey from the assumption that ¢ is a homomorphism,
we deduce that H is generated by ¢(U) where U is a small neighborhood of e € G. So, we conclude
that ¢ is onto. Now, in order to show that ¢ is a covering space, the only remaining thing to show
is that G is evenly covered. That is, we have to construct a neighborhood V3 in H for each h € H
such that each component of ¢ ~*(V}) is homeomorphic to V;,. However, using left-multiplications
in H, which are diffeomorphisms of H, it is sufficient to construct a neighborhood of ep satisfying
the required property. Since ¢ is a local diffeomorphism and D = ¢~ !(ey) is discrete, we can
find a neighborhood V of eg in G such that ¢|y is a diffeomorphism and V N D = {eg}. From
this, |y : V — G is an isomorphism. Now, suppose that there exists a € VV "1 N D. So, letting
a= vw;l for some v1,v9 € V, we have

p(v2) = p(avz) = p(v1).
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Since ¢|y : V — G is an isomorphism, we have v; = vy. Hence, a = eg. That is,
VvV D = {eg}.

So, the following claim will complete the proof. The claim is

o eV =16V

oeD
Since p(Usep - V) = Usep ©(9) - o(V) = ¢(V), we have

oV Co (o).
éeD

Suppose that o € =1 (o(V)). So, ¢(c) € (V). So, there exists g € V such that ¢(c) = ¢(g).
Since ¢ is a homomorphism, we deduce that

cgleD=yp Yey)=oceD- g

So, 0 € Jsep 0 -V, which shows that
Uds- Vo)
6eD

Now, we shall show that 61 -V Ndy -V =0 for 1,02 € D with 1 # d2. Let g € 6, -V N - V. So,
g =01-g1 = 02 g2 where g1, g2 € G.

Hence,
52_1‘(51292-91_1 cvVv—L

Since DN VV ™! = {eg}, we have 551 - 01 = eq, which is a contradiction. So, we have §; - V is
disjoint from ds - V for 61,2 € D with §; # ds.

e ey =Jsv=]]sV

oeD 0eD

For an arbitrary h € H, using the facts left-multiplications in H are diffeomorphism and ¢ is onto,
letting g € p~!(h), we have

e hop(V)=Js-V=]]6 (g V)

oeD 6eD

Exercise 3.1.7.1. Let G be a connected topological group and U be an open set of e. Then U
generates G. That is,
oo
G=\Ju™
n=1
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Proof. Letting V =U NU™!, it is easy to see that

(e.)
U V™ is an open nonempty subgroup of G.

n=1

Our claim is that this is also closed. Let {gx} € o~ V™ be a sequence. So, it is easy to see that
9k+19;§_1 e U,2, V" Since adding go = e,

oo o0
lim g = “1e | | v by definiton,
P gk ]:Cl_l(:)gk—&-lgk nL;Jl y

we conclude that -
U V™ is closed.
n=1

So, since G is connected, we conclude that

n=1 n=1

Now, we can give a proof of the affirmative answer to Question 3.1.6.1.

Theorem 3.1.7.5. Let G and H be a Lie groups with the Lie algebras g and b, respectively.
Assume 71(G) = 1. Then every Lie algebra homomorphism g 2, b arises from a unique Lie group
homomorphism G . H.

Proof. First, we note that
gdh=%X(Gx H).

Define
graph(®) = @' : g — g & h by ®'(X) = (X, ®(X)).

It is easy to see that Im(®’) is a Lie subalgebra of g @ b and it is Lie algebra isomorphic to g. By
Theorem 3.1.6.4, there exists a unique connected Lie subgroup A of G x H with the Lie algebra
a = X(A) isomorphic to Im(®’). Let mg and 7wy be the canonical projections from G x H to G
and H, respectively. Clearly. 7|4 : A — G induce a Lie algebra isomorphism dng : a — g. Now,
Theorem 3.1.7.4 tells us that mg|4 is a covering space. Since G is simply connected, 7|4 is in fact
a diffeomorphism, so a Lie group isomorphism. Define

¢:G— Hby p=mpgo(rala)".
Obviously, drg o d(rg|a)~! = ®. Also, note that we already know it is uniqueness if it exists. [J

Remark 3.1.7.1. Combining Theorem 3.1.7.5 with Ado’s theorem, which state that every Lie
algebra g admits a faithful representation of gl(n,R), we deduce that every Lie subalgebra of
gl(n,R) = M, (R) gives a Lie group G. Note that G and the universal covering space G give
the same Lie algebra.
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3.1.8 The Exponential map again

Note that in Exercise 2.1.8.4, we showed that every left-invariant vector field of a connected Lie group
G is complete. Let G be a connected Lie group with the Lie algebra g. Suppose that X € g. Then
there exists the unique global flow &; corresponding X. Define

exp : g — G by exp(tX) = &(e) for t € R.
Note that exp(X) = &;1(e) and exp(0) = e.

Theorem 3.1.8.1. Let ¢ : G — H be a homomorphism of Lie groups. Then exp is equivariant:
That is, the following diagram commutes

Proof. This comes from the uniqueness of flows and the fact that dy induces an action on a flow
by . O

It is easy to see that exp satisfies the following properties:
1. exp is well-defined and smooth.
2. By identifying g with T.G, we have

exp(Ad(g)Xe) = gexp(Xe)g "

That is, it is equivariant with respect to G Ad, Aut(g) given by Ad(g)Xe = (1g)«(Xc) where
G = Aut(G) by t,(h) = ghg™!:

Proof. This comes from Theorem 3.1.8.1 and the fact that Ad(g) acts on a flow by conjugation
from the definition of Ad. O

3. (dexp)o : g = Tog — TG = g is the identity map where 0 is the identity of g.

Proof.
d
a\tzo exp(tX) = X - exp(tX) =0 = X.

O

4. The map exp gives a local diffeomorphism from a neighborhood of 0 in g to a neighborhood of
e in G.
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Proof. By 3 and the inverse function theorem, there exists a neighborhood Uy of 0 € g such that
exp : U — exp(U) C G, which is a neighborhood of e

is a diffeomorphism. Note that exp(U) is called a local Lie group or group chunk. Note that since
every Lie algebra is contractible by the fact that they are vector spaces, we conclude that if exp is a
global diffeomorphism, then the Lie group must be contractible. So, non contractibility of a Lie group
is one of obstructions for exp to be a global diffeomorphism. O

5. exp((t1 + t2)X) = exp(t1.X) exp(t2X) for t1,t2 € R.

Proof. Note that in Exercise 2.1.8.5, we showed that the flow of a left-invariant vector field on a
Lie group G is a right multiplication. Keeping this in your mind, we have

exp((t1 +12) X) = &y 415 (€) = &1(Er1(€)) = &1 (€) - &1 (€) = exp(t1 X)) exp(ta X).
Note that this proof also show that

exp(t1X) exp(taX) = exp(t2X) exp(t1X).

U
6. exp(—X) = (exp(X))~ L.
Proof. By the above, we have
e = exp(0) = exp(X — X) = exp(X) exp(—X).
So, exp(—X) = (exp(X))~ L. O

7. For X,Y € g,if [X,Y] =0, then we have
exp(X +Y) = exp(X)exp(Y).

Proof. Let & and n; be the flows corresponding to X and Y, respectively. By Theorem 2.1.6.2,
we know that [X, Y] = 0 implies that & and 7; commute. Moreover, Exercise 2.1.8.5 showed that
the flow of a left-invariant vector field on a Lie group G is in fact given by a right multiplication.
So, the upshot is that &(e) - n(e) becomes a flow if [X,Y] = 0 and G is a Lie group: Let
Di(e) = &(e) - m(e) = nu(&(e)). We have to show that @y, 14, = Py, 0 Py,.

Py, 41, (6) = b1+, (6) * Mty +t2 (6) =&ty (‘ftl (6)) ) (77t1 (6)) =& (6) &ty (6) "Mty (6) " Mta (6)
=&, (6) "Mty (6) &ty (6) "Mty (6) = Mo (§t1 (6) * Mty (6) &ty (6)) = Nty (&2 (6751 (e) "Mty (6)))
= Oy, ((I)tl (6))

To illustrate the content of Exercise 2.1.8.5, we give another proof:

q)t1+t2 (e) = Nty +to (ftﬁ-tz (6)) = Nty (77752 (£t1+t2 (e))) =Ny (nt2 (§t2 (&1 (e))))
=Mty (&1 (e> Mo (§t2 (e))> =Nty (ntz (&2 (e)) ’ §t1 (e)) = Nty (&1 (nt2 (&2 (e))))
= d ((I)tz (e))

122



Now, by Exercise 3.1.6.4, we know that the multiplications of a Lie group give the additions on
T.G = g. So, ®:(e) = &i(e) - n(e) gives X + Ye. That is, the flow ®; gives a vector field X + Y.
Hence,

exp(X +Y) = @1(e) = &i(e) - m(e) = exp(X) exp(Y).

Actually, in this proof we showed that if [X,Y] = 0, then

exp(X) exp(Y) = exp(Y) exp(X).

Remark 3.1.8.1. In a Lie group, since a flow satisfies £(g) = g&i(e), we deduce that
gexp(tX) is nothing but the flow of X.

Theorem 3.1.8.2. If G = GL(n,R), then we have
exp(X i i for X € gl(n,R).
— k!

Note that it is still true that if we replace R to C.

Proof. Note that in Subsection 1.2.1, we showed that Y 7, %X k converges absolutely. Since we
know that
exp(tX) € GL(n,R),

let
f(t) = exp(tX) ZAktk where Ay € GL(n,R) and Ag = I the identity.

k=0
Note that we have f(0) = I and f'(t) = X f(¢). So

ZXAktk Z k+ 1At = f(t).

k=0

Hence, we have
1
Apiq T 1XAk with Ag

Therefore,

1 n

O

Remark 3.1.8.2. We know that exp is a local diffeomorphism of a neighborhood Uy of 0 € gl(n,R).
So, exp has the inverse locally, which will be denoted by log. In the case of a Lie group G C
GL(n,R), we have an explicit formula, of course, locally:

log(A) = f: (_DkAk.



Uy «— exp(Up)

log
| |
g . @

Example 3.1.8.1. Note that in Example 1.1.4.1 and Ezercise 1.1.4.1, we showed the following:
Let
sl(2,R) =2 su(2) 2 Hy ={q | ¢ = ai + bj + ck where a,b,c € R}

be the set of traceless quaternions, which is the Lie algebra of a Lie group Hy = SU(2) = S3. We
have
exp : Hyg — Hj.

We showed that exp(ti) = > ;2 %ik = cos(t) +sin(t)i and for ¢ € Hy and t € R,
exp(tq) = cos(t) + sin(t)q.
In general, since H is the Lie algebra of a Lie group H*, exp : H — H* is given by

sin(t||q
exp(tq) = cos(t||q||) + wq_
So, we have for q = cos(0)j + sin(0)k € H,

exp(2mq) = 1 and exp(mq) = —1.

Hence, even if 0 varies, we still have exp(mq) = —1. That is, identifying TrH = H and T ,H* = H,
we conclude that
d(exp)rq : H — H

is singular, i.e., actually d(exp)rq = 0. We infer that the one-parameter subgroup exp(mq) € H; C
H>* is geodesic.

Example 3.1.8.2. exp is not necessarily surjective.

<(1) i) € SL(2,R) but <é 1) ¢ exp(sl(2,R)).

Theorem 3.1.8.3 (Baker-Campbell-Hausdorff Formula). Let X,Y € g. Suppose that exp(sX)
and exp(tY') are sufficiently close to e € G. Then we have

log(exp(sX)exp(tY)) = C(sX,tY) where
C(sX, 1Y) = X +Y + L[sX,tV] + & ([sX, [sX, Y]] + [tY, [tY,sX]]) + - - - .
Proof. See “Lie groups, Lie algebras, and their representations” by V.S. Varadarajan. U

Note that the exact formula of C(sX,tY’), which you can find in the above book is given by a
power series in sX,tY, [sX,tY]. If g in nilpotent, obviously C(sX,tY) is given by a polynomial in
sX,tY,[sX,tY]. Now, we prove the followings:

124



Theorem 3.1.8.4. Let H be a connected Lie subgroup of a connected Lie group G. Then H is a
normal subgroup if and only if h is an ideal of g.

In order to prove this, we need a lemma. In Remark 3.1.1.1, we stated the followings without

proof:

G 29, Aut(g)

exp T exp T

o (Ad).=ad End(g).

Since Aut(g) = Aut(7.G) = GL(n,R), it is a Lie group. Moreover, End(g) = T;3GL(n,R) =
gl(n,R) is the corresponding Lie algebra. So, the commutativity of the diagram shall come from
Theorem 3.1.8.1 and the fact that (Ad). = ad, which we shall prove in the next lemma.

Lemma 3.1.8.1.

Ad(exp(tX)) = exp(ad(tX)).
Proof. We have to show that ((Ad).(X))(Y) = (ad(X))(Y) = [X,Y] for all X,Y € g. Let & and
1s be the corresponding flow of X and Y. Reminding that the flow of a left-invariant vector field
on a Lie group is a right multiplication,

(AL (X)) = Lo Ad(E()Y)) = Tleolre_yi0):(Y)
I I o
= Jpl=o(dre_ ) (V) = =07 ls=0(ns(&e(e))E~e(e)) = —li=0-ls=0(E~t 0 1s(&e(e))

= %|t=0(d€—t)(Y£t(6)) = %lt:o(étt YY) =Lx(Y) = [X,Y] = (ad(X))(Y).

Actually, since (Ad), = ad implies that ad is linear, Lemma 3.1.8.1 can be written
Ad(exp(tX)) = exp(tad(X)).
Also, note that in the proof since exp(tX) = & and exp(sY') = ns, we infer that
(Ad(exp(Xe))(5Y2) = g expl(tX,) exp(sVy) exp(~1Xo).
From this, if we go one further step, we can deduce a simplest form:
exp(Ad(exp(tX))(sY)) = exp(tX) exp(sY) exp(—tX).
Definition 3.1.8.1 (Ideals of a Lie algebra). A Lie subalgebra by of a Lie algebra g is called an

(left) ideal if ad(Y)(X) = [Y,X] € by for all Y € g and X € Y. Equivalently, b is stable under
ad(g).
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Proof of Theorem 3.1.8.4. Suppose that H is normal in G. Let X € h and Y € g. Since we
know that exp(sX) and exp(tY’) are one-parameter subgroups of X and Y, respectively, using the
assumption that H is normal, we have

exp(Ad(exp(tY))(sX)) = exp(tY) exp(sX) exp(—tY) € H.
So, we deduce that Ad(exp(tY))(sX) € h. By Lemma 3.1.8.1 we know that

o n

Ad(exp(tY))(sX) = exp(ad(tY))(sX) = exp(tad(Y))(sX) = (Z %ad(Y)”)(sX)
n=0

2
= sX +ts[Y, X] —l—sE[Y, Y, X +---.

Since h = T H is a vector space, h is a Lie group with the Lie algebra h = T.h. So, if we think
Ad(exp(tY))(sX) is a smooth path in h with respect to ¢, the tangent vector at the identity e on
h is nothing but

slY, X| € T.h = b by the power series expansion.

So, we conclude that [Y, X] € h, which shows that b is an ideal of g. Conversely, suppose that b is
an ideal of g. It is easy to see that H is generated by the set of flows exp(h). Now we have to show
that

g(exp(h))g~" C exp(h).

Actually, it suffices to show that this case when g € exp(g). That is, for all X € g and Y € h and
Y € g, we have to show that

exp(Ad(exp(tX))(sY)) = exp(tX) exp(sY) exp(—tX) € H.

By the above we know that
2

t
exp(tX)exp(sY)exp(—tX) = exp(sY + ts[X, Y] + s;[X, (X, Y]] +---).
Since b is an ideal, we deduce that sY + ts[X, Y] + S%[X, [X,Y]]+--- €bh. Hence,
exp(tX)exp(sY)exp(—tX) € H.
O

Question 3.1.8.1. When does g admit a nondegenerate symmetric bilinear form invariant under
Ad?

From Subsection 1.2.2, we know that

{(nondegenerate) positive definite bilinear forms on g = 71 (G)}

)

{left-invariant (psedo-) Reimannian metrics on G}
Since Ad : G — Aut(g) acts on g by (r,-1)« = dry-1, it is obvious that

{(nondegenerate) positive definite bilinear forms on g = 7 (G) which are invariant under Ad}

)

{bi-invariant (psedo-) Reimannian metrics on G}
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Example 3.1.8.3. Suppose that
p: G — GL(n,R) by p(g1 - g2) = p(g1) - p(g2)
be a representation of a Lie group G. We know that p induces
dp: g — gl(n,R) = M,,(R), which is also a representation.

Note that
dp(X +Y) =dp(X) +dp(Y).

Define a bilinear form B on g by
B(X,Y) = tr((dp(X)) - (dp(Y)))

By Ezercise 3.1.8.1, B is nondegenerate. Now let g € G. Using the fact that Ad(g) = (ry-1)s =
(tg)x on a left-invariant vector field, we have

tr((dp(Ad(g9)X)) - (dp(Ad(

tr((dp(dig X)) - (dp(digY)))

tr((d(potg)X) - (d(pog)Y))
( )

_ d _
tr tX)g i li=op(g exp(tY')g 1))

B(Ad(g)X, Ad(g)Y)

9)Y)))

—

—

lt=0p(g exp

Etl&

d _
= tr(P(Q)(a‘t:OP(eXP(tX))) (= l=op(exp(tY))p(9) ™)
d
= tr( - le=op(exp(tX)) - —t|t=op(exp(tY)))
=tr(dp(X) - dp(Y)) = B(X,Y).
That is, B is a bi-invariant (pseudo-) Riemannian metric on G.
Exercise 3.1.8.1. Show that B is nondegenerate on g.

Proof. It suffices to show that if tr(A - B) = 0 for all A € M, (R), then B = 0. Equivalently,
it suffices to show that if B # 0, the there exists A € M,(R) such that tr(A - B) # 0. Let
B = (bij)(nxn) # 0. So, there is some b,z # 0. Let

1
A= (aij)(nxn) such that ag, = E and the other entries are all zeros.
(6%

It is easy to see that A - B is a matrix with one diagonal entry is 1 and the other entries are all
zeros. So, tr(A-B) = 1. O

Since Ad : G — GL(n,R) is naturally a representation of a Lie group G, which is called the
adjoint representation, we deduce that

(Ad), = ad : g — End(g) = Der(g)
is also a representation. Now, we define an inner product on g by the following way:

B(X,Y) = tr((Ad).(X) - (Ad).(Y)) = tr((ad)(X) - (ad)(Y)).
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Definition 3.1.8.2 (The Killing form).
B(X,Y) = tr((ad)(X) - (ad)(Y))
is called the killing from on G.

It is important to note that if G is abelian, then since

d _ d
Ad(g)(X) = —li=o(gexp(tX)g™") = —li=o(exp(tX)) = X,
we deduce that
(Ad). =ad = 0.
Hence, B(X,Y) = tr((ad)(X) - (ad)(Y)) = 0. That is, B is degenerate. On the other hand, E.

Cartan shows that

Theorem 3.1.8.5 (E. Cartan). g has nontrivial solvable ideals (, i.e., semisimple) if and only if
the killing form B is nondegenerate.

Proof. We will prove this later. O

Theorem 3.1.8.6. If G is a compact connected Lie group, then G admits a bi-invariant Rie-
mannian metric.

Proof. In Example 3.1.1.3, we show that G is unimodular if and only if there exists a bi-invariant
volume form on G. Suppose that G is compact and connected. Since the unimodular function
det 0Ad,;
G A4 Aut(g) det, R*,
is a Lie group homomorphism, it is easy to see that Im(det cAd(G)) must be a compact and
connected subgroup of R*. However, the only compact and connected subgroup of R* is {+1}.
Hence, we conclude that
detcAd = 1.

So, G has a bi-invariant volume from. Now, using exterior algebra of differentiable forms, it is
not hard to see that there exists a bi-invariant Riemannian metric, which shall induce the volume
form. O

Without a proof, we give the converse.
Theorem 3.1.8.7. If Ad(G) preserves a positive definite inner product on g, i.e.,
Ad: G — O(n),

then
G = (abelian Lie group )x( compact Lie group ).
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Exercise 3.1.8.2. Show that
Isom (R?) = SO(3) x R?® and Isom, (R*') = SO(2,1) x R?

have bi-invariant pseudo-Riemannian metrics. Note that R® is a normal subgroup of Isom_ (R3)
and Isom, (R%1).

Also, show that the Heisenberg group Hs does not have a bi-invariant pseudo-Riemannian met-
TiC.

Theorem 3.1.8.8 (Warner p. 97). FEwvery closed subgroup H of a Lie group G is a Lie subgroup.

Theorem 3.1.8.9 (Warner p.109). A continuous homomorphism of Lie groups is a Lie group
homomorphism.
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Chapter 4

General Theory of Lie Algebras

4.1 Overviews

4.1.1 Recalls and Preliminaries

Consider a finite-dimensional vector space g over k. Define k-bilinear map
[,]: g X g— g satisfying

(1) Skew-symmetric: [X,Y]+[Y,X] =0 for all X,Y € g.
(2) Jacobi Identity: [[X,Y],Z] +[[Y,Z],X]+[[Z,X],Y]=0forall X,Y,Z € g.

Remark 4.1.1.1. Recall that we say that g is an abelian Lie algebras if [X,Y] =0 for X,Y € g.
From the skew-symmetry, it is easy to see that we can make every vector space an abelian Lie
algebra, i.e., by defining a trivial bracket. Note that any associative algebra becomes a Lie algebra
by defining

X, Y]=X-Y-Y X

Of course, we denote - as the multiplication structure of the given associative algebra. So, the

matriz algebra

al(n) & M, (k)

becomes a Lie algebra. More generally, every finite-dimensional Lie algebra is a Lie sub algebra of
the matriz algebra.

Recall that from Exercise 2.1.2.1 for an algebra A
Der(A) ={D: A — A| D(ab) = D(a)b+ aD(b) and D is linear}
is a Lie algebra.
Remark 4.1.1.2. By defining for X,Y € g
ad(X) : g — gl(g) = End(g) by ad(X)(Y) = [X,Y],
from the Jacobi identity and skew-symmetry of [,] in g, it is easy to see that

ad(X)([Y, Z]) = [ad(X)(Y), Z] + [V, ad(X) Z].
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That is, ad(X) is a derivation of g:
d
g = Der(g) — gl(g).
Exercise 4.1.1.1. Show that ad is a Lie algebra homomorphism, i.e.,
ad([X,Y]) = [ad(X),ad(Y)].
Proof. Since (Ad), = ad, it is a Lie algebra homomorphism. See the below of Remark 3.1.2.2. [

Suppose that we have a < g of Lie algebras. That is, a is a Lie subalgebra of g, i.e., [X,Y] € a
for X,Y € a.

Exercise 4.1.1.2. Fvery one dimensional linear subspace is an abelian Lie subalgebra.
Proof. By skew-symmetry, it is necessarily an abelian Lie subalgebra. U

Note that by Theorem 3.1.6.4, there exists a connected Lie subgroup H corresponding a 1-
dimensional abelian Lie subalgebra.

Notation 4.1.1.1. By definition, a is an ideal of g if [A, X] € a for all A € a and X € g. By
notational convention, we denote
a<g.

Of course, since a is always a normal subgroup of g, this notation also makes sense.

Let a 2 g be a Lie algebra homomorphism. Clearly,

Ker(p) ={a € a|p(a) =0}

is an ideal of a. Conversely, since j <1 g implies that g/j inherits the Lie algebra structure of g, we
have a surjective Lie algebra homomorphism

g — g/j with j as the kernel.

That is, every ideal j is the kernel of a Lie algebra homomorphism. Also, note that for a given Lie
algebra homomorphism a 2 g, we have a Lie subalgebra
a/Ker(p) = Image(p) = ¢(a).
Clearly, for all ideals j <1 g,
v () <a.

Note that for all ideals j <1 g and a given Lie subalgebra a C g, we have a +j is a Lie subalgebra
and aNj is an ideal of a. So, the second Noether’s isomorphism theorem says that

at+j . a

i anj
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Definition 4.1.1.1 (Direct sum of Lie algebras). Let g1 and g2 be a Lie algebra. For X1,Y; €
g1 and Xo,Ys € go by defining a Lie bracket as

[Xl @ X27Y1 @ }/2] = [Xl’Yl] D [X27}/2}

we have a Lie algebra
g1 D g2.

It is easy to see that
g; < g1 D g2 and each projection g; @ go — g; is a Lie algebra homomorphism.

Remark 4.1.1.3. Since an abelian Lie algebra is nothing but a vector space, we deduce that an
abelian Lie algebra is a direct sum of 1-dimensional Lie algebras, which are 1-dimensional vector
spaces.

Definition 4.1.1.2 (Semi-direct product of Lie algebras). Let g1 and g2 be Lie algebras and
suppose that g1 acts on go by derivations, i.e., there is a Lie algebra homomorphism ¢

g1 = Der(g2).

Define g = go x4 g1 to be (g2,91) as a underlying vector space and to have a Lie bracket as
follows: For X1,Y1 € g1 and Xo,Y5 € go,

[(X2, X1), (Y2, Y1)] = ([ X2, Yo] + o(X1)Y2 — (Y1) X2, [ X1, Y1]).
Identifying X € go with (X,0) € g2 X, g1, for any (X2, X1) € g2 %, g1 we deduce that
[(X,0), (X2, X1)] = ([X, Xo] — ¢(X1) X, [0, X1]) € g2 x {0}
That is, go x {0} <1 g2 X, g1 = g. Clearly we have a canonical Lie algebra isomorphism:

g2 x {0}

On the other hand, note that identifying X € gy with (0, X) € g2 X, g1, for any (X2, X1) € g2 X, 01
we have

— {0} X g1

[(O7X)7 (XQle)] = (SD(X)X% [X, Xl])

That is, {0} x g1 is not necessarily an ideal of go %, g1 = g. However, it is easy to see that {0} x gq
is a Lie subalgebra of g2 X, g1 = g. From this, now clearly we have a Lie algebra homomorphism

adg]{o}xgl : {0} x g1 — Der(g) from ady : g — Der(g).
Exercise 4.1.1.3. Let ® : gy — Der(g2 x {0}) by ®(X) = (¢(X),0). Show that

ad,(0, X) = O(X).
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Proof. We have to show that for all (Xs,0) € g2 x {0} we have
d
(adg(0, X)) (X5, 0) = ®(X)(X2,0) < ((X)X2,0).

It is a triviality, since

(adg(0, X))(X2,0) = [(0, X), (X2,0)] = (¢(X) X2, [X, 0]).

Definition 4.1.1.3. We say that g is solvable if there is a sequence

{0}=gr<---<g2<g1<go=g

such that gig_il 1s an abelian Lie algebra.

Theorem 4.1.1.1 (Lie). If g is solvable, then it is represented by upper triangular matrices.

Theorem 4.1.1.2. FEvery Lie algebra has a unique mazximal solvable ideal, which s called a rad-
ical.

Notation 4.1.1.2. The unique mazimal solvable ideal of a given Lie algebra g is denoted by

rad(g) = /3.

Definition 4.1.1.4 (Semi-simple Lie algebra). We say that g is semi-simple if

Vg =0.
That is, g is semi-simple if it has no solvable ideals.

Definition 4.1.1.5 (Simple Lie algebra). We say that g is simple if it has no nonzero proper
1deals.

Theorem 4.1.1.3 (Levi decomposition). Every Lie algebra is a semidirect product of its radical
V8 and a semisimple Lie subalgebra s, which is called a Levi decomposition.:

g=+/gxs.
Moreover,

Theorem 4.1.1.4. Every semi-simple Lie algebra is a direct sum of simple Lie algebras g1, ..., @n:

9=019  Don-
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