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AFFINE, PROJECTIVE AND NON-EUCLIDEAN GEOMETRY

According to Felix Klein’s Erlanger program (1872), a (classical) geometry is the study
of properties of a space X invariant under a group G of transformations of X. In practice G
will be a Lie group which acts transitively on X, so that X is represented as a homogeneous
space G/H, where H C G is a closed subgroup. For example Euclidean geometry is
the geometry of n-dimensional Euclidean space R™ invariant under its group Euc(R")
of isometries (i.e. rigid motions, congruence transformations). In Euclidean geometry (or
more generally any Riemannian geometry) we can speak of points, lines, parallelism of
lines, angles between lines, distance between points, area, volume, etc. It is not difficult
to show that all of these concepts can be derived from the notion of distance, i.e. from the
metric structure of Euclidean geometry. Thus any isometry preserves all of these geometric
entities. Other “weaker” geometries are obtained by removing some of these concepts. For
example, similarity geometry — Euclidean geometry where the equivalence relation of
congruence is replaced by the broader equivalence relation of similarity is the geometry
invariant under similarity transformations — arises if one doesn’t speak of distance, but
does speak of angles (and lines, parallelism) etc. Affine geometry arises when one speaks
only of points, lines and the relation of parallelism. And when one removes the notion
of parallelism and only studies lines, points and the relation of incidence between them
(e.g. three points being collinear or three lines being concurrent) one is led to projective
geometry.

Here is a basic example illustrating the differences between the various geometries.
Consider a particle moving along a smooth path; it has a well-defined velocity vector field
(this uses only the differentiable structure of R™). In Euclidean geometry, it makes sense
to discuss its “speed,” so “motion at unit speed” (i.e. “arc-length-parametrized geodesic”)
is a meaningful concept there. But in affine geometry, the concept of “speed” or “arc-
length” must be abandoned: yet “motion at constant speed” remains meaningful since the
property of moving at constant speed can be characterized as parallelism of the velocity
vector field (zero acceleration). In projective geometry this notion of “constant speed” (or
“parallel velocity”) must be further broadened to the concept of “projective parameter”
introduced by J.H.C. Whitehead.

The development of synthetic projective geometry was begun by the French architect
Desargues in 1636-1639 out of attempts to understand the geometry of perspective. Two
hundred years later non-Euclidean (hyperbolic) geometry was developed independently



and practically simultaneously by Bolyai in 1833 and Lobachevsky in 1826-1829. These
geometries were unified in 1871 by Klein who noticed that Euclidean, affine, hyperbolic
and elliptic geometry were all “present” in projective geometry.

In the first lecture, affine geometry is introduced as the geometry of parallelism. The
second lecture introduces projective space as a natural compactification of affine space; co-
ordinates are introduced as well as the “dictionary” between geometric objects in projective
space and algebraic objectes in a vector space. The collineation group is compactified as a
projective space of “projective endomorphisms;” this will be useful for studying limits of
sequences of projective transformations. The third lecture discusses, first from the point of
view of polarities, the Cayley-Beltrami-Klein model for hyperbolic geometry. The Hilbert
metric on a properly convex domain in projective space is introduced and is shown to be
equivalent to the categorically defined Kobayashi metric.

§1: AFFINE GEOMETRY

1.1  We wish to capture the geometry of Euclidean n-space R™ in which “parallelism”
plays the central role. If X, X’ C R™ one might say that they are “parallel” if one can
be obtained from the other by (parallel) translation, i.e. if there is a vector v such that
X’ = X + v. This motivates the following definition.

An affine space is a set E provided with a simply transitive action of a vector group
Tr. We call 7 the vector space of translations of E. Of course every vector space has the
underlying structure of an affine space and an affine space with a distinguished point (“an
origin”) has the natural structure of a vector space. If z,y € E, we denote by 7, , € 7g
the unique translation taking = to y. If F is a vector space then 7, , is more familiarly
denoted by y — =z and the effect of translating x € E by t € 7 is denoted by = + ¢.

Of course this is a rather fancy way of saying fairly well known facts. An affine space
is just a vector space “with the origin forgotten.” There is no distinguished point — like
0 in a vector space — in affine space since the translations act transitively. “Choosing an
origin” in an affine space E (which of course can be an arbitrary point in E) turns E into
a vector space.

If E, E' are affine spaces a map f : E — E’ is affine if for each v € 7, there exists
a translation v’ € 7 such that the diagram

f
E —— F

f
E —— F'

commutes. Necessarily v’ is unique and it is easy to see that the correspondence L(f) :
v — v’ is a homomorphism 7 — 7gv, i.e. a linear map. We denote the space of all affine
maps E — E’ by aff E, E’). Thus L defines a map (called the linear part) aff E, E') —
Hom(7g, 7p) where Hom(7g, 7g/) denotes the vector space of linear maps 7z — 75/ The
set of affine endomorphisms of an affine space E will be denoted by aff( E') and the group
of affine automorphisms of E will be denoted Aff(E).
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EXERCISE 1.2. Show that aff( E, E") has the natural structure of an affine space and that its
group of translations may be identified with the vector space Hom(7g, 7p )®7Tg . Show that
Aff(FE) is a Lie group and its Lie algebra may be identified with aff( ). Show that Aff(FE)
is isomorphic to the semidirect product Aut(rg) - 75 where T is the normal subgroup
consisting of translations and Aut(7g) = GL(FE) is the group of linear automorphisms of
the vector space Tg.

The kernel of L : aff( E, E') — Hom(7g, 75') (i-e. the inverse image of 0) is the vector
space Tg of translations of E’. Choosing an origin = € E, we write, for f € aff E, E’),

fy)=flz+@y—=z)=Lfly—z)+t

Since every affine map f € aff( E, E’) may be written as

f(z) = L(f) (=) + £(0)

we call L(f) the linear part of f and f(0) € E' the translational part of f.

Affine geometry is the study of affine spaces and affine maps between them. If U C F
is an open subset, then a map f : U — E’ is locally affine if for each connected component
U; C U there exists an affine map f; € aff E, E’) such that the restrictions of f and f;
to U; are identical. (Note that two affine maps which agree on a nonempty open set are
identical.)

EXERCISE 1.3. If E is an affine space show that there is a flat torsionfree connection V on
E such that if U,V C E are open, and f : U — V is a diffeomorphism, then f preserves
V <= f is locally affine. Show that a map 7y : (—¢,e) — E is a geodesic <= it is locally
affine.

1.4  There are various extra structures on affine spaces which are preserved by notable
subgroups of the affine group. Let B be an inner product on E and O(F;B) C GL(FE)
the corresponding orthogonal group. The B defines a flat Riemannian metric on £ and
the inverse image L=1(O(E;B)) = O(E;B) - 75 is the full group of isometries, i.e. the
Euclidean group. If B is a nondegenerate indefinite form, then there is a corresponding
flat pseudo-Riemannian metric on F and the inverse image L™ (O(E;B)) is the full group
of isometries of this pseudo-Riemannian metric.

EXERCISE 1.5. Show that an affine automorphism g of FEuclidean n-space R"™ is conformal
(i.e. preserves angles) <= its linear part is the composition of an orthogonal transformation
and multiplication by a scalar (i.e. a homothety).

Such a transformation will be called a similarity transformation and the group of
similarity transformations will be denoted Sim(R™).

1.6 We shall be interested in putting affine geometry on a manifold, i.e. finding a coor-
dinate atlas on a manifold M such that the coordinate changes are locally affine. Such a
structure will be called an affine structure on M. We say that the manifold is modelled on
an affine space F if its coordinate charts map into . Clearly an affine structure determines
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a differential structure on M. A manifold with an affine structure will be called an affinely
flat manifold, or just an affine manifold. If M, M" are affine manifolds (of possibly different
dimensions) and f: M — M’ is a map, then f is affine if in local affine coordinates, f is
locally affine. If G C Aff(E) then we recover more refined structures by requiring that the
coordinate changes are locally restrictions of affine transformations from G. For example
if GG is the group of Euclidean isometries, we obtain the notion of a Fuclidean structure on
M.

EXERCISE. Let M be a smooth manifold. Show that there is a natural correspondence
between affine structures on M and flat torsionfree affine connections on M. In a similar
vein, show that there is a natural correspondence between Euclidean structures on M and
flat Riemannian metrics on M.

1.7 If M is a manifold, we denote the Lie algebra of vector fields on M by X(M).
A vector field X on F is said to be affine if it generates a one-parameter group of affine
transformations. A vector field X on F (or more generally on an affine manifold M) is said
to be parallel if it generates a flow of translations. A vector field X is said to be radiant if
for each Y € X(M) we have Vy X =Y. We obtain equivalent criteria for these conditions
in terms of the covariant differential operation V : TP(M;TM) — TPtY(M;TM) (here
TP(M;TM) denotes the space of T M-valued covariant p-tensor fields on M i.e. the tensor
fields of type (1,p). Thus T°(M;TM) = X(M), the space of vector fields on M).

EXERCISE. Let E be an affine space and let X be a vector field on E.

(1) X is parallel <= Vy X =0 for allY € X(F) <= VX =0 <= X has constant
coefficients (i.e. is a “constant vector field”). One may identify T with the parallel vector
fields on E. The parallel vector fields form an abelian Lie algebra of vector fields on E.

(2) X is affine <= for all Y, Z € X(E), VyVzX = Vy,zX < VVX =0 <—
the coefficients of X are affine functions, i.e.

- i, iy O
2,7=1
for constants aj-, b' € R. We may write
L(X)= zn: aigi 0
ij=1 7o

for the linear part (which corresponds to the matrix (a’) € gi(R™)) and

X(0)=Y"b -
=1

for the translational part (the translational part of an affine vector field is a parallel vector

field). The Lie bracket of two affine vector fields is given by

L([X,Y]) = [L(X),L(Y)] = L(X)L(Y) - L(X)L(Y) (matrix multiplication)
[X,Y](0) = L(X)Y(0) — L(Y)X(0).



In this way the space aff( E') = aff(E, E) of affine endomorphisms E — E is a Lie algebra.

(3) X is radiant <= VX = Ig (where Iz € TY(E;TE) is the identity map
TE — TE, regarded as a tangent bundle-valued 1-form on E) <= there exists b’ € R
fori=1,...,n such that

- A 7 0
X=) ( — )5
=1

Note that the point b = (b',...,b") is the unique zero of X and that X generates the
one-parameter group of homotheties fixing b. (Thus a radiant vector field is a special kind
of affine vector field.) Furthermore X generates the center of the isotropy group of Aff(F)
at b, which is conjugate (by translation by b) to GL(E). Show that the radiant vector
fields on E form an affine space isomorphic to E.

1.8  Suppose that ¢ : E; — E is an injective affine map; then we say that «(Eq) (or
with slight abuse, ¢ itself) is an affine subspace. If E; is an affine subspace then for each
r € F; there exists a linear subspace Vi C 7g such that E4 is the orbit of z under V;
(i.e. “an affine subspace in a vector space is just a coset (or translate) of a linear subspace
Ei1 =x+V1.”) An affine subspace of dimension 0 is thus a point and an affine subspace of
dimension 1 is a line.

EXERCISE. Show that ifl,l" are (affine) lines and .,y € | and x',y" € " are pairs of distinct
points, then there is a unique affine map f : 1 — 1’ such that f(x) =2’ and f(y) =vy'. If
x,y,z €l (with © # y), then define [z,y, z] to be the image of z under the unique affine
map f:1 — R with f(z) =0 and f(y) = 1. Show that if | = R, then [z,y, z] is given by
the formula

z—

y—x

[‘T’y’z] =

1.9  Although an affine automorphism of an affine space E need not preserve a natural
measure on F, Euclidean volume nonetheless does behave rather well with respect to affine
maps. The Euclidean volume form w can almost be characterized affinely by its parallelism:
it is invariant under all translations. Moreover two Tg-invariant volume forms differ by
a scalar multiple but there is no natural way to normalize. Such a volume form will be
called a parallel volume form. If g € Aff(E), then the distortion of volume is given by

g"w = det L(g) - w.

Thus although there is no canonically normalized volume or measure there is a natural
affinely invariant line of measures on an affine space. The subgroup SAff(E) of Aff(FE)
consisting of volume-preserving affine transformations is the inverse image L™1(SL(E)),
sometimes called the special affine group of E. Here SL(FE) denotes, as usual, the special
linear group

Kerdet : GL(E) — R* = {g € GL(F) | det(g) = 1}.
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1.10  Given a finite subset ' C E of an affine space, its center of gravity F € F is an
affinely invariant notion. That is, given an affine map ¢ : E — E’ we have

(¢(F)) = ¢(F).
This operation can be generalized as follows.

PROPOSITION. Let p be a probability measure on an affine space E. Then there exists a
unique point & € E (the centroid of ) such that for all affine maps f : E — R,

f@) = [ o

PROOF: Let (z',...,2") be an affine coordinate system on E. Let z € E be the points
with coordinates (z!,...,z") given by

iri:/ ztdp.
E

This uniquely determines z € F; we must show that () is satisfied for all affine functions.
If f: E — R is any affine function, then there exist a,...,a,,b such that f = ayz' +
<o+ a,x™ + b and thus

f(iU):Ch/xldu+---+an/x"du+b/ duz/fdu
E E E E

We call T the center of mass of p and denote it by Z = com(u).
Now let C' C E be a convex body, i.e. a convex open subset having compact closure.
Then 2 determines a probability measure puc on E by

as claimed. J

po(x) = L322
C

where w is any parallel volume form on E. The center of mass of pc is by definition the
centroid C of C.
ProroOSITION. Let C' C E be a convex body. Then the centroid of C' lies in C.

PROOF: By [] every convex body C is the intersection of half-spaces, i.e.
C={zeFE| f(x) <0 for all affine maps f : E — R such thatf|c > 0}

Thus if f is such an affine map, then clearly f(C) > 0 and thus C € C. }

1.11  We have been working entirely over R, but it is clear one may study affine geometry
over any field. If k D R is a field extension, then every k-vector space is a vector space
over R and thus every k-affine space is an R-affine space. In this way we obtain more
refined geometric structures on affine spaces by considering affine maps whose linear parts
are linear over k.



EXERCISE. Show that 1-dimensional complex affine geometry is the same as (orientation-
preserving) 2-dimensional similarity geometry.

§2: PROJECTIVE GEOMETRY

2.1 Projective geometry may be construed as a way of “closing off” (i.e. compactifying)
affine geometry. To develop an intuitive feel for projective geometry, consider how points
in R” may “degenerate,” i.e. “go to infinity.” Naturally it takes the least work to move
to infinity along straight lines moving at constant speed (zero acceleration) and two such
geodesic paths go to the “same point at infinity” if they are parallel. Imagine two railroad
tracks running parallel to each other; they meet at “infinity.” We will thus force parallel
lines to intersect by attaching to affine space a space of “points at infinity,” where parallel
lines intersect.

Let E be an affine space; then the relation of two lines in E being parallel is an
equivalence relation. We define an ideal point of E to be a parallelism class of lines in FE.
The ideal set of an affine space E is the space P (F) of ideal points, with the quotient
topology. If [,I’ C E are parallel lines, then the point in P., corresponding to their
parallelism class is defined to be their intersection. So two lines are parallel <= they
intersect at infinity.

Projective space is defined to be the union P(E) = E U P (F). The natural struc-
ture on P(F) is perhaps most easily seen in terms of an alternate, maybe more familiar
description. We may embed FE as an affine hyperplane in a vector space V = V(F) as
follows. Let V = 7z & R and choose an origin xy € E; then the map £ — V which
assigns to x € E the pair (x — x¢, 1) embeds E as an affine hyperplane in V' which misses
0. Let P(V') denote the space of all lines through 0 € V with the quotient topology; the
composition

L E—V —{0} — P(V)

is an embedding of E as an open dense subset of P(V). Now the complement P(V) — ((E)
consists of all lines through the origin in 75 ®{0} and is in natural bijective correspondence
with P (E): given a line [ in E, the 2-plane span(() it spans meets 75 @ {0} in a line
corresponding to a point in P, (E); conversely lines lq,l5 in E are parallel if

span(ly) N (g ® {0}) = span(l2) N (75 & {0}).

In this way we topologize projective space P(F) = FUPy (FE) in a natural way.
Projective geometry arose historically out of the efforts of artisans during the Renais-
sance to understand perspective. Imagine a one-eyed painter looking at a 2-dimensional
canvas (the affine plane F), his eye being the origin in the 3-dimensional vector space V.
As he moves around or tilts the canvas, the metric geometry of the canvas as he sees it
changes. As the canvas is tilted, parallel lines no longer appear parallel (like railroad tracks
viewed from above ground) and distance and angle are distorted. But lines stay lines and
the basic relations of collinearity and concurrence are unchanged. The change in perspec-
tive given by “tilting” the canvas or the painter changing position is determined by a linear
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transformation of V', since a point on E is determined completely by the 1-dimensional
linear subspace of V' containing it. (One must solve systems of linear equations to write
down the effect of such transformation.) Projective geometry is the study of points, lines
and the incidence relations between them.

2.2 A point of P" then corresponds to a nonzero vector in R®*!, uniquely defined up
to a nonzero scalar multiple. If a',...,a”*! € R and not all of the a’ are zero, then we
denote the point in P™ corresponding to the nonzero vector (al,...,a"*1) € R"*! by
[al,...,a™*1]; the a® are called the homogeneous coordinates of the corresponding point
in P™. The original affine space R"™ is the subset comprising points with homogeneous

coordinates [al,...,a", 1] where (al,...,a") are the corresponding (affine) coordinates.

EXERCISE. Let E = R"™ and let P = P"™ be the projective space obtained from FE as above.
Exhibit P™ as a quotient of the unit sphere S™ C R"*! by the antipodal map. Thus P"
is compact and for n > 1 has fundamental group of order two. Show that P™ is orientable
<= n is odd.

Thus to every projective space P there exists a vector space V' = V(P) such that
the points of P correspond to the lines through 0 in V. We denote the quotient map by
IT:V —{0} — P. If P, P’ are projective spaces and U C P is an open set then a map
[:U— P’ is locally projective if for each component U; C U there exists a linear map
fi : V(P) — V(P’) such that the restrictions of f oIl and ITo f; to II"1U; are identical.
A projective automorphism or collineation of P is an invertible locally projective map
P — P. We denote the space of locally projective maps U — P’ by Proj(U, P’).

Locally projective maps (and hence also locally affine maps) satisfy the Unique Ex-
tension Property: if U C U’ C P are open subsets of a projective space with U nonempty
and U’ connected, then any two locally projective maps f1, fo : U' — P’ which agree on
U must be identical.

EXERCISE 2.3. Show that the projective automorphisms of P form a group and that
this group (which we denote Aut(P)) has the following description. If f : P — P is a
projective automorphism, then there exists a linear isomorphism f : V. — V inducing f.
Indeed there is a short exact sequence

1 —R" — GL(V) — Auwt(P) — 1

where R* — GL(V) is the inclusion of the group of multiplications by nonzero scalars.
(Sometimes this quotient GL(V)/R* = Aut(P"™) (the projective general linear group) is
denoted by PGL(V') or PGL(n+1,R).) Show that ifn is even, then Aut(P™) 2 SL(n+1; R)
and if n is odd, then Aut(P™) has two connected components, and its identity component
is doubly covered by SL(n + 1; R).

If V, V' are vector spaces with associated projective spaces P, P’ then a linear map
f:V — V' always maps lines through 0 to lines through 0. But f only induces a map
f: P — P’ if it is injective, since f(z) can only be defined if f(%) # 0 (where & is a
point of TI=(z) € V — {0}). Suppose that f is a (not necessarily injective) linear map
and let N(f) = II(Ker(f)). The resulting projective endomorphism of P is defined on the
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complement P — N(f); if N(f) # (), then the corresponding projective endomorphism is
by definition a singular projective transformation of P.

A projective map ¢ : Py — P corresponds to a linear map 7 : V; — V between the
corresponding vector spaces (well-defined up to scalar multiplication). Since ¢ is defined
on all of Py, ¢ is an injective linear map and hence corresponds to an embedding. Such
an embedding (or its image) will be called a projective subspace. Projective subspaces
of dimension k correspond to linear subspaces of dimension k + 1. (By convention the
empty set is a projective space of dimension -1.) Note that the “bad set” N(f) of a
singular projective transformation is a projective subspace. Two projective subspaces of
dimensions k,l where k + [ > n intersect in a projective subspace of dimension at least
k 4+ 1 —n. The rank of a projective endomorphism is defined to be the dimension of its
image.

EXERCISE 2.4. Let P be a projective space of dimension n. Show that the (possibly
singular) projective transformations of P form themselves a projective space of dimension
(n+1)2 — 1. We denote this projective space by End(P). Show that if f € End(P), then

dim N(f) + rank(f) =n — 1.

Show that f € End(P) is nonsingular (i.e. a collineation) <= rank(f) =n <= N(f) = 0.

An important kind of projective endomorphism is a projection, also called a per-
spectivity. Let AF. B! C P™ be disjoint projective subspaces whose dimensions satisfy
k+1=mn—1. We define the projection onto A* from B

e g : P — BY — AP

as follows. For every x € P™ — A* there is a unique projective subspace span({z} U B') of
dimension [ 4 1 containing {z} U B' which intersects A* in a unique point. Let IT 4« gi ()
be this point. (Clearly such a perspectivity is the projectivization of a linear projection
V — V.) It can be shown that every projective map defined on a projective subspace
can be obtained as the composition of projections.

2.5 EXERCISE. Suppose that n is even. Show that a collineation of P™ which has order
two fixes a unique pair of disjoint projective subspaces A*, B ¢ P™ where k+1=n — 1.
Conversely suppose that A¥, B' ¢ P™ where k41 = n—1 are disjoint projective subspaces;
then there is a unique collineation of order two whose set of fixed points is A¥ U B'. If n
is odd find a collineation of order two which has no fixed points.

Such a collineation will be called a projective reflection. Consider the case P = P2,
Let R be a projective reflection with fixed line [ and isolated fixed point p. Choosing
homogeneous coordinates [u?, ul,u?] so that [ = {[0,u!,u?] | (u!,u?) # (0,0)} and p =
[1,0,0], we see that R is represented by the diagonal matrix

1 0 0
0 -1 0
0 0 -1



in SL(3;R). Note that near [ the reflection looks like a Euclidean reflection in [ and
reverses orientation. (Indeed R is given by R(y',3%) = (—y!,y?) in affine coordinates
y! = u®/u?,y? = u'/u?.) On the other hand, near p, the reflection looks like reflection
in p (i.e. rotation of order two about p) and preserves orientation. (In affine coordinates
vt = ul/ul 2% = u?/u® we have R(x!,y?) = (—z', —2%).) Of course there is no global
orientation on P? and the fact that a single reflection can appear simultaneously as a
point-symmetry and reflection in a line is an indication of the topological complexity of
P2.

We can consider the passage between the geometry of P and the algebra of V' as a
kind of “dictionary” between linear algebra and projective geometry. Linear maps and
linear subspaces correspond geometrically to projective maps and projective subspaces;
inclusions, intersections and linear spans correspond to incidence relations in projective
geometry. In this way we can either use projective geometry to geometrically picture
linear algebra or linear algebra to prove theorems in geometry.

2.6 We shall be interested in the singular projective transformations since they occur as
limits of nonsingular projective transformations. The collineation group Aut(P) of P = P”
is a large noncompact group which is naturally embedded in the projective space End(P)
as an open dense subset. Thus it will be crucial to understand precisely what it means for
a sequence of collineations to converge to a (possibly singular) projective transformation.

PROPOSITION. Let g, € Aut(P) be a sequence of collineations of P and let g, € End(P).
Then the sequence g, converges to go, in End(P) <= the restrictions g.,|k converge
uniformly to geo|i for all compact sets K C P — N(g)-

PRrROOF: Convergence in End(P) may be described as follows. Let P = P(V) where
V =2 R"*! is a vector space. Then End(P) is the projective space associated to the vector
space End(V) of (n + 1)-square matrices. If a = (a}) € End(V) is such a matrix, let

denote its Euclidean norm; projective endomorphisms then correspond to matrices a with
|la|]| = 1, uniquely determined up to the antipodal map a — —a. The following lemma will
be useful in the proof of 2.6:

2.7 LEMMA. LetV, V' be vector spaces and let fn : V. — V’ be a sequence of linear maps
converging to foo : V. — V'. Let K C V be a compact subset of V. — Ker(f) and let f;
be the map defined by

_ h@)
(@)

Then f, converges uniformly to f, on K asn — oo.

fi(z)
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PROOF: Choose C' > 0 such that C' < |fso(2)] < C~! for z € K. Let € > 0. There exists
N such that if n > N, then

Foola) — Fal)] < S,
_In®) | _ €
@ T3
for z € K. It follows that
b p (@) Jele)
@) = Foolll =1y 001~ ||foo<x>||”
1 @l s
= @i ) @)~ =@l
U @l e
< o U7 ) - @l 1) - Pt
G TP
=l e el
<fycm (CE)—G

2 2

for all z € K as desired. |

The proof of Proposition 2.6 proceeds as follows. If g, is a sequence of locally
projective maps defined on a connected domain 2 C P converging uniformly on all compact
subsets of € to a map g : Q2 — P’, then there exists a lift g, which is a linear
transformation of norm 1 and lifts g,,, also linear transformations of norm 1, converging
t0 Joo. It follows that g,, — goo in End(P). Conversely if ¢g,, — goo in End(P) and
K C P — N(goo), we may choose lifts as above and a compact set K C V such that

[I(K) = K. By Lemma 2.7, the normalized linear maps é—m| converge uniformly to %

on K and hence gy, converges uniformly to g, on K. The proof of Proposition 2.6 is now
complete. I

Let us consider a few examples of this convergence. Consider the case first when n = 1.
Let A\, € R be a sequence converging to +0o and consider the projective transformations
given by the diagonal matrices

o = [Am 0 ]
m 0 (Ap)t
Then ¢,, — g Where g, is the singular projective transformation corresponding to the

matrix
110
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— this singular projective transformation is undefined at N(g~,) = {[0, 1]}; every point
other than [0, 1] is sent to [1, 0]. It is easy to see that a singular projective transformation of
P! is determined by the ordered pair of points N(f), Image(f) (which may be coincident).

More interesting phenomena arise when n = 2. Let g, € Aut(P?) be a sequence of
diagonal matrices

Am O 0
0 pm O
0 0 v,

where 0 < Ay, < fomn < Vpy and A\ piy v, = 1. Corresponding to the three eigenvectors (the
coordinate axes in R3) are three fixed points p; = [1,0,0], p2 = [0,1,0], p3 = [0,0, 1] They
span three invariant lines [; = m, lo = m and I3 = m Since 0 < A\ < fhn, < Vp,
the collineation has an repelling fixed point at p;, a saddle point at ps and an attracting
fixed point at p3. Points on Iy near p; are repelled from p; faster than points on I3 and
points on [y near pg are attracted to p3 more strongly than points on [;. Suppose that
gm does not converge to a nonsingular matrix; it follows that v,, — +o00 and \,, — 0
as m — oo. Suppose that pi, /v, — p; then g, converges to the singular projective
transformation g,, determined by the matrix

o O
o o

0
0
0
)

which, if p > 0, has undefined set N(g~) = p1 and image [y; otherwise N(g~) = l2 and
Image(goo) = p2.
EXERCISE. Let U C P be a connected open subset of a projective space of dimension

greater than 1. Let f : U — P be a local diffeomorphism. Then f is locally projective
<= for each line | C P, the image f(INU) is a line.

2.7 Let H C P be a projective hyperplane (projective subspace of codimension one).
Then the complement P — H has a natural affine geometry, i.e. is an affine space in a
natural way. Indeed the group of projective automorphisms P — P leaving fixed each
xr € H and whose differential T, P — T,P is a volume-preserving linear automorphism
is a vector group acting simply transitively on P — H. Moreover the group of projective
transformations of P leaving H invariant is the full group of automorphisms of this affine
space. In this way affine geometry is “embedded” in projective geometry.

In terms of matrices this appears as follows. Let £ = R"™; then the affine subspace of

V=rg&R=R""

corresponding to E is R™ x {1} € R™*!, the point of E with affine or inhomogeneous
coordinates (z!,...,z™) has homogeneous coordinates [z!,..., 2™, 1]. Let f € Aff(E) be
the affine transformation with linear part A € GL(n;R) and translational part b € R"™,
i.e. f(z) = Az + b, is then represented by the (n + 1)-square matrix

A b
0 1
where b is a column vector and 0 denotes the 1 X n zero row vector.
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EXERCISE. Let O € P™ be a point, say [0,...,0,1]. Show that the group G_1 = G_1(0)
of projective transformations fixing O and acting trivially on the tangent space ToP™ is
given by matrices of the form

I, 0O
& 1
where I,, is the n x n identity matrix and £ = (§1,...,&,) € (R™)* is a row vector; in affine
coordinates such a transformation is given by
rt "

(..., 2™) = (

L+ Gat’ I+ &-x")'

Show that this group is isomorphic to a n-dimensional vector group and that its Lie algebra
consists of vector fields of the form .
O &a')p
i=1

where

ngx o’

is the radiant vector field radiating from the origin and £ € (R™)*. Note that such vector
fields comprise an n-dimensional abelian Lie algebra of polynomial vector fields of degree
2 in affine coordinates.

Let H be a hyperplane not containing O, e.g.

H={[z",...,2",0] | (z',...,2") € R"}.

Let Gy = G1(H) denote the group of translations of the affine space P — H and let Gy =
Go(O, H) = GL(n, R) denote the group of collineations of P fixing O and leaving invariant
H. (Alternatively Go(O, H) is the group of collineations centralizing the radiant vector
field p = p(O, H) above.) Let g denote the Lie algebra of Aut(P) and let g_1, go, g1 be the
Lie algebras of G_1, Gy, G1 respectively. Show that there is a vector space decomposition

g=9-1DgoD o

where [g;, g;] C @i+, fori,j = £1,0 (where g; = 0 for |i| > 1). Furthermore show that the
stabilizer of O has Lie algebra g_, @ go and the stabilizer of H has Lie algebra gy ® g1-

2.8 Let [ be a projective line x,2 € [ be distinct points. Then there exists a unique
reflection (a harmonic homology in classical terminology) p, , : | — | whose fixed-point
set is {z,z}. We say that a pair of points y,w are harmonic with respect to z, z if p, ,
interchanges them. In that case one can show that x, z are harmonic with respect to y, w.
Furthermore this relation is equivalent to the existence of lines p, ¢ through x and lines r, s

through z such that
y:ipﬂr)(qﬂs;ﬂl
z:ipﬂs)(qﬂr;ﬂl.
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This leads to a projective-geometry construction of reflection, as follows. Let x,y,z € [
be fixed; we seek the harmonic conjugate of y with respect to z, z, i.e. the image R, ,(y).
Erect arbitrary lines (in general position) p, ¢ through z and a line r through z. Through
y draw the line through r N ¢; join its intersection with p with z to form line s, i.e.

s=z (pNyrngq).

Then R, .(y) will be the intersection of s with [.

EXERCISE. Consider the projective line P! = R U {co}. Show that for every rational
number x € Q there exists a sequence xq, T1, T2, 3, ..., T, € P! such that {xg,z1, 72} =
{0,1,00} and for each i > 3, there is a harmonic quadruple (z;,y;, z;, w;) with y;, z;, w; €
{zo,z1,...,2,-1}. If x is written in reduced form p/q then what is the smallest n for which
x can be reached in this way?

2.9 EXERCISE (SYNTHETIC ARITHMETIC). Using the above synthetic geometry construc-
tion of harmonic quadruples, show how to add, subtract, multiply, and divide real numbers
by a straightedge-and-pencil construction. In other words, draw a line | on a piece of pa-
per and choose three points to have coordinates 0,1,00 on it. (0o can be “at infinity”
if you like.) Choose arbitrary points corresponding to real numbers z,y. Using only a
straightedge (not a ruler!) construct the points corresponding to = +y,z — y, zy, and x/y

ify # 0.

2.10 Ifl Cc P and I’ C P’ are projective lines, the Fundamental Theorem of Projective
Geometry asserts that for given triples z,y,z € [ and z’,y’, 2’ € I’ of distinct points there
exists a unique projective map f : [ — I’ with f(x) = 2, f(y) = ¢/, and f(z) = 2/. If
w € [ then the cross-ratio [z,y,w,z] is defined to be the image of w under the unique
collineation f : I — P! with f(z) = 0, f(y) = 1, and f(z) = co. If [ = P, then the
cross-ratio is given by the formula

w—x Yy—x

/

w—z"'y—=z

[‘/B’ y’ w7 Z] =

The cross-ratio can be extended to quadruples of four points, of which at least three are
distinct. A pair y, w is harmonic with respect to z, z (in which case we say that (z,y, w, z)
is a harmonic quadruple) <= the cross-ratio [z,y, w, z] = —1.

EXERCISE. Let ¢ be a permutation on four symbols. Show that there exists a linear
fractional transformation ®, such that

[To(1)s To(2)s To(3) To(a)) = Pol[T1, T2, T3, 4].

In particular determine which permutations leave the cross-ratio invariant.

Show that a homeomorphism f : P' — P! is projective <= f preserves harmonic
quadruples <= f preserves cross-ratios, i.e. for all quadruples (x,y,w, z), the cross-ratios
satisfy

[f(x)7 f(y)a f(w)v f(z)] = [x,y,w,z].
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2.11 EXERCISE. Let p,p’ € P be distinct points in P = P2 and [,1' € P* be distinct lines
such that p ¢ [ and p’ ¢ I'. Let R and R' be the projective reflections of P (collineations of
order two) having fixed-point set [Up and I’ Up’ respectively. Let O = [NI". Let Py denote
the projective line whose points are the lines incident to O. Let p denote the cross-ratio

of the four lines PN
1,0p, Op', I
as elements of Po. Then RR' fixes O and represents a rotation of angle 6 in the tangent
space Tp (P) <—
(14 cos®)

DN | —

p:

for 0 < 6 < 7 and is a rotation of angle 0 <= p € l’ and p' € l.

§3: DUALITY, NON-EUCLIDEAN GEOMETRY AND PROJECTIVE METRICS

3.1 In an axiomatic development of projective geometry, there is a basic symmetry: A
pair of distinct points lie on a unique line and a pair of distinct lines meet in a unique point
(in dimension two). As a consequence any statement about the geometry of P2 can be
“dualized” by replacing “point” by “line,” “line”by “point,” “collinear” with “concurrent,”
etc. in a completely consistent fashion.

Perhaps the oldest nontrivial theorem of projective geometry is Pappus’ theorem (300
A.D.), which asserts that if [,I’ C P? are distinct lines and A, B,C € [ and A", B",C" € I
are triples of distinct points, then the three points

\ Vi \
7

NA'B, BC'nBC, CA'nC'A

AB'
are collinear. The dual of Pappus’ theorem is therefore: if p,p’ € P? are distinct points

and a, b, ¢ are distinct lines all passing through p and o', ¥, ¢’ are distinct lines all passing
through p’, then the three lines

< \ Vi \ < \
7 N 7

(an?) (@nb), bnd) ®'nd), (cnd) (¢ Nna)

are concurrent. (According to Coxeter [C1]), Hilbert observed that Pappus’ theorem is
equivalent to the commutative law of multiplication.)

In terms of our projective geometry/linear algebra dictionary, projective duality trans-
lates into duality between vector spaces as follows. Let P be a projective space and let
V' be the associated vector space. A nonzero linear functional ¢ : V. — R defines a
projective hyperplane H, in P; two such functionals define the same hyperplane <= they
differ by a nonzero scalar multiple,i.e. they determine the same line in the vector space V*
dual to V. (Alternately ¢ defines the constant projective map P — Hy, — P which is
completely specified by its undefined set H,.) We thus define the projective space dual to
P as follows. The dual projective space P* of lines in the dual vector space V* correspond
to hyperplanes in P. The line joining two points in P* corresponds to the intersection of
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the corresponding hyperplanes in P, and a hyperplane in P* corresponds to a point in P.
In general if P is an n-dimensional projective space there is a natural correspondence

{k — dimensional subspaces of P} +— {l — dimensional subspaces of P*}

where k + 11 =n — 1. In particular we have an isomorphism of P with the dual of P*.

Let f : P — P’ be a projective map between projective spaces. Then for each
hyperplane H' C P’ the inverse image f~1(H') is a hyperplane in P. There results a
map f1 : (P')* — P*, the transpose of the projective map f. (Evidently f' is the
projectivization of the transpose of the linear map f:V — V’ )

3.2 Let P be an n-dimensional projective space and P* its dual. A correlation of P
is a projective isomorphism 6 : P — P*. That is, 6 associates to each point in P a
hyperplane in P in such a way that if x1, 22,23 € P are collinear, then the hyperplanes
0(z1),6(z2),0(xs) C P are incident, i.e. the intersection 6(z1) Nf(z2) NG (x3) is a projective
subspace of codimension two (rather than three, as would be the case if they were in general
position). The transpose correlation 87 is also a projective isomorphism P — P* (using
the reflexivity P** = P). A correlation is a polarity if it is equal to its transpose.

Using the dictionary between projective geometry and linear algebra, one sees that
if V' is the vector space corresponding to P = P(V), then P* = P(V*) and a correlation
0 is realized as a linear isomorphism h:V — V*, which is uniquely determined up to
homotheties. Linear maps 6 : V. —» V* correspond to bilinear forms

BéZVXV—>R

under the correspondence .
0(0)(w) = By (v, w)

and 0 is an isomorphism if and only if B; is nondegenerate. Thus correlations can be
interpreted analytically as projective equivalence classes of nondegenerate bilinear forms.
Furthermore a correlation 6 is self-inverse (i.e. a polarity) <= a corresponding bilinear
form By is symmetric.

Let 6 be a polarity on P. A point p € P is conjugate if it is incident to its polar
hyperplane, i.e. if p € §(p). By our dictionary we see that the conjugate points of a polarity
correspond to null vectors of the associated quadratic form, i.e. to nonzero vectors v € V
such that Bg(v,v) = 0. A polarity is said to be elliptic if it admits no conjugate points;
elliptic polarities correspond to symmetric bilinear forms which are definite. For example
here is an elliptic polarity of P = P2: a point p in P2 corresponds to a line II7!(p) in
Euclidean 3-space and its orthogonal complement II=!(p)* is a 2-plane corresponding to
a line O(p) € P*. It is easy to check that 6 defines an elliptic polarity of P.

In general the set of conjugate points of a polarity is a quadric, which up to a
collineation is given in homogeneous coordinates as

Q=Qpg={lz",....,a" ]| =(@)? =+ = (@)" + (@) + - + (a"F)? = 0}

where p + ¢ = n + 1 (since the corresponding symmetric bilinear form is given by the
diagonal matrix —1I, @ I,). We call (p,q) the signature of the polarity. The quadric @
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determines the polarity 6 as follows. For brevity we consider only the case p = 1, in which
case the complement P — () has two components, a convex component

Q= {[z%z",. . 2" | =(2°)? + (z1)* + -+ (2")* < 0}
and a nonconvex component
OF = {[2% 2%, .2 | =) + (@) + - + («)* > 0}

diffeomorphic to the total space of the tautological line bundle over P*~1 (for n = 2 this
is a Mobius band). If z € Q, let f(z) denote the hyperplane tangent to Q at x. If x € QF
the points of () lying on tangent lines to () containing x all lie on a hyperplane which is
O(x). If H € P* is a hyperplane which intersects ), then either H is tangent to @ (in
which case (H) is the point of tangency) or there exists a cone tangent to () meeting @
in @ N H — the vertex of this cone will be O(H). If z € Q, then there will be no tangents
to @ containing z, but by representing z as an intersection Hy N ... H,,, we obtain 6(x) as
the hyperplane containing 6(Hy), ..., 0(H,).

EXERCISE. Show that 6 : P — P* is indeed a projective map.

Observe that a polarity on P of signature (p,q) determines, for each non-conjugate
point z € P a unique reflection R, which preserves the polarity. The group of collineations
preserving such a polarity is the projective orthogonal group PO(p, q), i.e. the image of
the orthogonal group O(p,q) C GL(n + 1,R) under the projectivization homomorphism
GL(n+1,R) — PGL(n+1,R) having kernel the scalar matrices R* C GL(n+1,R). Let
Q = {II(v) € P | B(v,v) < 0}; then by projection from the origin Q can be identified with
the hyperquadric {v € RP? | B(v,v) = —1} whose induced pseudo-Riemannian metric has
signature (¢,p — 1) and constant nonzero curvature. In particular if (p,q) = (1,n) then
) is a model for hyperbolic n-space H” in the sense that the group of isometries of H”
are represented precisely as the group of collineations of P” preserving 2. In this model,
geodesics are the intersections of projective lines in P with {2; more generally intersections
of projective subspaces with 2 define totally geodesic subspaces. Consider the case that
P = P2. Points “outside” Q correspond to geodesics in H2. If py,ps € QF, then pips
meets € <= the geodesics 0(p1),#(ps2) are ultra-parallel in H2; in this case 8(p1p3) is the
geodesic orthogonal to both 0(p1),0(p2). (Geodesics 0(p) and [ are orthogonal <= p € [.)
Furthermore pip3 is tangent to Q < 6(p1) and O(ps) are parallel. For more information
on this model for hyperbolic geometry, see Coxeter [C1] or Thurston [T,§2]. This model
for non-Fuclidean geometry seems to have first been discovered by Cayley in 1858.

3.3  We shall discuss the metric on hyperbolic space, however, in the more general setting
of the Hilbert-Carathéodory-Kobayashi metric on a convex domain P = P". Let V =
R"*! be the corresponding vector space. A subset Q C V is a cone <= it is invariant
under positive homotheties (RT(Q) = Q), i.e. if z € Q and r > 0 then rz € Q. A subset
Q C V is convex if whenever x,y € €2, then the line segment 7y C Q. A convex domain
Q) C V is sharp <= there is no entire affine line contained in 2. For example, V itself and
the upper half-space
R" xR ={(2°...,2") eV |2°>0
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are both convex cones, neither of which are sharp. The positive orthant
R ={(2°%...,2") eV |2*>0fori=0,1,...,n}
and the positive light-cone
Cpni1={("...,2") eV ]z’ >0and — () + (z1)? +...(z")* < 0}

are both sharp convex cones. Note that the planar region {(z,y) € R? | y > 22} is a
convex domain which is sharp but is not affinely equivalent to a cone.

EXERCISE. Show that the set 3,,(R) of all positive definite symmetric n X n real matrices
is a sharp convex cone in the n(n + 1)/2-dimensional vector space V' of n x n symmetric
matrices. Are there any affine transformations of V' preserving B,,(R)? What is its group
of affine automorphisms?

We shall say that a subset Q C P is convex if there is a convex set Q' C V such
that Q = II(Q'). Since Q" C V — {0} is convex, Q must be disjoint from at least one
hyperplane H in P. (In particular we do not allow P to itself be convex.) Equivalently
Q) C P is convex if there is a hyperplane H C P such that 2 is a convex set in the affine
space complementary to H. A domain  C P is properly convex <= there exists a sharp
convex cone ' C V such that Q = II(Q'). Equivalently €2 is properly convex <= there
is a hyperplane H C P such that Q is a convex subset of the affine space P — H. If Q is
properly convex, then the intersection of Q with a projective subspace P’ C P is either
empty or a properly convex subset ' C P’. In particular every line intersecting {2 meets
L) in exactly two points.

In 1894 Hilbert introduced a projectively invariant metric d = dg on any properly
convex domain 2 C P as follows. Let x,y € € be a pair of distinct points; then the line
<x—y> meets 0€2 in two points which we denote by x., ¥~ (the point closest to x will be z o,
etc.). The Hilbert distance d = da'® between z and y in Q will be defined as the logarithm
of the cross-ratio of this quadruple:

d(z,y) = l0g[Teo, T, Y, Yoo

It is clear that d(z,y) > 0, that d(z,y) = d(y,z) and since  contains no complete affine
line, oo # Yoo S0 that d(z,y) > 0 if x # y. The same argument shows that this function
d: Q x Q@ — R is finitely compact, i.e. for each x € Q and r > 0, the “r-neighborhood”

By(z) = {y € Q| d(z,y) <r}

is compact. Once the triangle inequality is established, it will follow that (€,d) is a
complete metric space. The triangle inequality results from the convexity of €2, although
we shall deduce it by showing that the Hilbert metric agrees with the general intrinsic
metric introduced by Kobayashi [Ko], where the triangle inequality is enforced as part of
its construction.

To motivate Kobayashi’s construction, consider the basic case of intervals in P?.
There are several natural choices to take, e.g. the interval of positive real numbers Rt =
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(0,00) or the unit ball I = [—1,1]. They are related by the projective transformation

r:I—RT
_1+u

C1-u

x = T1(u)

mapping —1 < u < 1t0 0 < z < co with 7(0) = 1. The corresponding Hilbert metrics are
given by

T
dp+ (1,2) = log |—|
T2

dy(u1,us) = 2| tanh™(u1) — tanh™* (ug)|

which follows from the fact that 7 pulls back the parametrization corresponding to Haar
measure

d
ld| = |dlog z|
x
on RT to the “Poincaré metric”
2|du| _1
T2 2|d tanh™ " w|

on L.
In terms of the Poincaré metric on I the Hilbert distance d(z,y) can be characterized
as an infimum over all projective maps I — 2:

d(x,y) = inf{dr(a,b) | there exists a projective map f: I — Q
with f(a) = =, f(b) = y}

We now define the Kobayashi pseudo-metric for any domain €2 or more generally any
manifold with a projective structure. This proceeds by a general universal construction
whereby two properties are “forced:” the triangle inequality and the fact that projec-
tive maps are distance-nonincreasing (the projective “Schwarz lemma”). What we must
sacrifice in general is positivity of the resulting pseudo-metric.

Let Q C P be a domain. If z,y € €2, a chain from x to y is a sequence C' of projective
maps fi,..., fm € Proj(I,Q) and pairs a;, b; € I such that

f1(a1) =7z, fl(bl) = fz(az), ) fm—l(bm—1) = fm(am)a fm(bm) =Y

and its length is defined as

m

U(C) = di(a;,b;).

=1

Let €(x,y) denote the set of all chains from x to y. The Kobayashi pseudo-distance
d¥°b(x,y) is then defined as

d¥°P(z,y) = inf{£(C) | C € €(x,y)}.
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The resulting function enjoys the following obvious properties:

(1) d¥(z,y) > 0;
(2) d*(z,x) =0

(3) d¥P(z,y) = d*(y,»);

(4) (The triangle inequality) d¥°(z,y) < d¥°P(y, z) + d¥°P(z,2). (The com-
position of a chain from x to z with a chain from z to y is a chain from x
to y.)

(5) (The Schwarz lemma) If Q, Q' are two domains in projective spaces with
Kobayashi pseudo-metrics d, d’ respectively and f : Q — Q' is a projective
map, then d'(f(z), f(y)) < d(z,y). (The composition of projective maps is
projective.)

(6) The Kobayashi pseudo-metric on the interval I equals the Hilbert metric
on L.

(7)  d¥°P is invariant under the group Aut 2 consisting of all collineations of P
preserving €2.

3.4 ProposiTION (KoBavasHr [Ko]). Let Q C P be properly convex. Then the two
functions dHP dK°P . O x Q@ — R are equal.

3.5 COROLLARY. The function d' : Q x Q — R is a complete metric on .

PROOF OF PROPOSITION 3.3: Let 2,y € Q be distinct points and let [ = %y be the line
incident to them. Now

" (o,0) = ) = dR(e,0) < A 00)

by the Schwarz lemma applied to the projective map [ N Q2 — Q. For the opposite in-
equality, let S be the intersection of a supporting hyperplane to 2 at ., and a supporting
hyperplane to Q at y.,. Projection from S to [ defines a projective map Ilg ;2 — [ N2
which retracts Q onto [ N 2. Thus

A& (z,y) < disy(z,y) = dg™(z, y)

(again using the Schwarz lemma) as desired. 1

3.6 COROLLARY. Line segments in ) are geodesics. If 2 C P is properly convex, x,y € 2,
then the chain consisting of a single projective isomorphism I — % N Q minimizes the
length among all chains in €(z,y).

3.7 Let A C P? denote a domain bounded by a triangle. Then the balls in the Hilbert
metric are hexagonal regions. (In general if 2 is a convex k-gon in P? then the unit balls
in the Hilbert metric will be interiors of 2k-gons.) Note that since Aut(A) acts transitively
on A (Aut(A) is conjugate to the group of diagonal matrices with positive eigenvalues)
all the unit balls are isometric.

Here is a construction which illustrates the Hilbert geometry of A. Start with a
triangle /A and choose line segments [1, [5, [3 from an arbitrary point p; € A to the vertices
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vy, v2,v3 of A. Choose another point py on [, say, and form lines l4, 5 joining it to the
remaining vertices. Let

p = log |[v1,p1, P2, 11 N V2035]|

where [, ] denotes the cross-ratio of four points on ly. The lines 4, l5 intersect 3,3 in two
new points which we call p3, p4. Join these two points to the vertices by new lines [; which
intersect the old /; in new points p;. In this way one generates infinitely many lines and
points inside A, forming a configuration of smaller triangles 7} inside A. For each p;, the
union of the T; with vertex p; is a convex hexagon which is a Hilbert ball in A of radius p.
Note that this configuration is combinatorially equivalent to the tesselation of the plane
by congruent equilateral triangles. Indeed, this tesselation of A arises from an action of
a (3,3,3)-triangle group by collineations and converges (in an appropriate sense) to the
Fuclidean equilateral-triangle tesselation as p — 0.

EXERCISE. Let A be the positive quadrant {(z,y) € R? | z,y > 0}. Then the Hilbert
distance is given by
x x oy y xy 2y
d((l’,y), (‘T/’y/)) = logmax{;, DR R R S &
For any two points p,p’ € A\, show that there are infinitely many geodesics joining p to p’.

In fact show that there are even non-smooth polygonal curves from p to p' having minimal
length.

Let @ C P™ be a quadric corresponding to a polarity of signature (1,n) and let 2 be
the convex region bounded by ). Indeed, let us take €2 to be the unit ball in R" defined
by

n
lz* =) (=")* < 1.
i=1
Then the Hilbert metric is given by the Riemannian metric

n
45 = —— 1= ol = s D () o (1= )2
V1 —[[z]? (1= lz]1*)? =

which has constant curvature —1. This is the only case when the Hilbert metric is Rieman-
nian; in general the Hilbert metric is Finsler, given infinitesimally by a norm on the tangent
spaces (not necessarily a norm arising from a quadratic form). By changing /1 — ||z||?
to /1 + ||z||? in the above formula, one obtains a metric on P™ of constant curvature
+1. In 1866 Beltrami showed that the only Riemannian metrics on domains in P"™ where
the geodesics are straight line segments are (up to a collineation and change of scale fac-
tor) Euclidean metrics and these two metrics. Hilbert’s fourth problem was to determine
all metric space structures on domains in P™ whose geodesics are straight line segments.
There are many unusual such metrics, see Busemann [Bu| and Pogorelov [Po].

§4: GEOMETRIC STRUCTURES ON MANIFOLDS

If M is a manifold, we wish to impart to it (locally) affine and/or projective geometry.
The corresponding global object is a geometric structure modelled on affine or projective
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geometry, or simply an affine structure or projective structure on M. (Such structures are
also called “affinely flat structures,” “flat affine structures,” “flat projective structures,”
etc. We will not be concerned with the more general “non-flat” structures here and hence
refer to such structures as affine or projective structures.) For various reasons, it is useful
to approach this subject from the more general point of view of locally homogeneous
structures, i.e. geometric structures modelled on a homogeneous space. In what follows X
will be a space with a geometry on it and G is the group of transformations of X which
preserves this geometry. We shall consider manifolds M having the same dimension as
that of X: thus M locally looks like X — topologically — but we wish to model M on
X geometrically. If (X, G) is affine geometry (so that X = R™ and G = Aff(R"™)) then a
(X, G)-structure will be called an affine structure; if (X, G) is projective geometry (so that
X =P" and G = Aut(P") the collineation group of P™) then an (X, G)-structure will be
called a projective structure. An affine structure on a manifold is the same thing as a flat
torsionfree affine connection, and a projective structure is the same thing as a flat normal
projective connection (see Chern-Griffiths [CG|, Kobayashi [K1] or Hermann [H] for the
theory of projective connections). We shall refer to a projective structure modelled on RP"
an RP"-structure; a manifold with an RP"-structure will be called an RP"-manifold.

In many cases of interest, there may be a readily identifiable geometric entity on X
whose stabilizer is G. In that case the geometry of (X, G) may be considered the geometry
centered upon this object. Perhaps the most important such entity is a Riemannian metric.
For example if X is a simply-connected Riemannian manifold of constant curvature K and
G is its group of isometries, then locally modelling M on (X, G) is equivalent to giving M
a Riemannian metric of curvature K. (This idea can be vastly extended, for example to
cover indefinite metrics, locally homogeneous metrics whose curvature is not necessarily
constant, etc.) In particular Riemannian metrics of constant curvature are special cases of
(X, G)-structures on manifolds.

4.1 Let G be a Lie group acting transitively on a manifold X. Let U C X be an open set
and let f : U — X be a smooth map. We say that f is locally-(X, G) if for each component
U; C U, there exists g; € G such that the restriction of g; to U; C X equals the restriction
of ftoU; C U. (O course f will have to be a local diffeomorphism.) An (X, G)-atlas on
M is a pair (U, ®) where U is an open covering of M and ® = {¢, : Uy — X}u, cu is
a collection of coordinate charts such that for each pair (U,,Ug) € U x U the restriction
of ¢po 0 (¢pp) 7" to pg(Ua NUp)) is locally-(X, G). An (X, G)-structure on M is a maximal
(X, G)-atlas and an (X, G)-manifold is a manifold together with an (X, G)-structure on
it. It is clear that an (X, G)-manifold has an underlying real analytic structure, since the
action of G on X is real analytic.

Suppose that M and N are two (X, G)-manifolds and f: M — N is a map. Then f
is an (X, G)-map if for each pair of charts ¢, : Uy — X and 95 : Vg — X (for M and N
respectively) the composition 150 f o ¢! restricted to ¢o(Us N f~1(V3)) is locally-(X, G).
In particular we only consider (X, G)-maps which are local diffeomorphisms. Clearly the
set of (X, G)-automorphisms M — M forms a group, which we denote by Autx ¢)(M)
or just Aut(M) when the context is clear.

4.2 EXERCISE. Let N be an (X, G)-manifold and f : M — N a local diffeomorphism.
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There is a unique (X, G)-structure on M for which f is an (X,G)-map. In particular
every covering space of an (X, G)-manifold has a canonical (X, G)-structure. Conversely
if M is an (X, G)-manifold upon which a discrete group T' acts properly and freely by
(X, G)-automorphisms, then X/I' is an (X, G)-manifold.

The fundamental example of an (X, G)-manifold is X itself. Evidently any open
subset © C X has an (X, G)-structure (with only one chart—the inclusion Q@ — X).
Locally-(X, G) maps satisfy the Unique Extension Property: If U C X is a connected
nonempty open subset, and f : U — X is locally-(X,G), then there exists a unique
element g € G whose restriction to U is f. This rigidity property is a distinguishing
feature of the kind of geometric structures considered here. It follows that if 2 C X is a
domain, an (X, G)-automorphism f : Q — € is the restriction of a unique element g € G
preserving €, i.e.:

Aut(x,q)() = {g € G| g(Q) =Q}

4.3 EXERCISE. Suppose that ¢ : M — €2 is a local diffeomorphism onto a domain Q) C X.
Show that there is a homomorphism

$x : Aut(x,) (M) — Aut(x,c) (L)

whose kernel consists of all maps f : M — M making the diagram

¢
M —— Q

I

M —— Q
¢

commute. Find examples where ¢, is: (a) surjective but not injective; (b) injective but
not surjective.

4.4  1In the first two lectures, we saw how it is possible for one geometry to “contain” or
“refine” another one. In this way one can pass from structures modelled on one geometry to
structures modelled on a geometry containing it. Let (X, G) and (X', G’) be homogeneous
spaces and let ® : X — X’ be a local diffeomorphism which is equivariant with respect to
a homomorphism ¢ : G — G’ in the following sense: for each g € G the diagram

P
X — X'

g l J¢(g)

X — X’
P

commutes. It follows that locally-(X,G) maps determine locally-(X’, G')-maps and an
(X, G)-structure on M induces an (X', G')-structure on M in the following way. Let

23



Yo : Uy — X be an (X, G)-chart; the composition ® o ¢, : U, — X' defines an
(X', G")-chart.

There are many important examples of this correspondence, most of which occur when
® is an embedding. For example when @ is the identity map and G C G’ is a subgroup, then
every (X, G)-structure is a fortiori an (X', G')-structure. Thus every Euclidean structure
is a similarity structure which in turn is an affine structure. Similarly every affine structure
determines a projective structure, using the embedding (R™, Aff(R™)) — (P™, Proj(P"))
of affine geometry in projective geometry. Using the Klein model of hyperbolic geometry
(H”,PO(n,1)) — (P™,Proj(P™)) every hyperbolic-geometry structure (i.e. Riemannian
metric of constant curvature -1) determines a projective structure. Using the inclusion of
the projective orthogonal group PO(n + 1) C PGL(n + 1; R) one sees that every elliptic-
geometry structure (i.e. Riemannian metric of constant curvature +1) determines a pro-
jective structure. Since every surface admits a metric of constant curvature, we obtain the
following:

THEOREM. Every surface admits an RP2-structure.

4.5 EXERCISE. Suppose that ® : X — X' is a universal covering space and G is the
group of lifts of transformations ¢’ : X' — X' in G’ to X. Let ¢ : G — G’ be the
corresponding homomorphism. Show that (®,¢) induces an isomorphism between the
categories of (X, G)-manifolds/maps and (X', G')-manifolds/maps. For this reason we
may always assume (when convenient) that our model space X is simply-connected.

Development, Holonomy.

4.6 There is a useful globalization of the coordinate charts of a geometric structure in
terms of the universal covering space and the fundamental group. Let M be an (X, G)-
manifold. Choose a universal covering space p : M — M and let 1 = m;(M) be the
corresponding fundamental group. The covering projection p induces an (X, G)-structure
on M upon which 7 acts by (X, G)-automorphisms. The Unique Extension Property has
the following important consequence.

PROPOSITION. Let M be a simply connected (X,G)-manifold. Then there exists an
(X,G)-map f : M — X.

It follows that the (X, G)-map f completely determines the (X, G)-structure on M,
i.e. the geometric structure on a simply-connected manifold is “pulled back” from the
model space X. The (X,G)-map f is called a developing map for M and enjoys the
following uniqueness property. If f' : M — X is another (X, G)-map, then there exists
an (X, G)-automorphism ¢ of M and an element g € G such that

!

M —— X
‘| Js
f
M —— X
PROOF OF PROPOSITION: Choose a basepoint g € M and a coordinate patch Uy con-
taining xo. For z € M, we define f(x) as follows. Choose a path {z;}o<t<1 in M from z
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to x = x1. Cover the path by coordinate patches U; (where i = 0,...,n) such that z; € U;
for ¢ € (a;, b;) where

ap <0 <ap <byg<ay<b<az<by<: - <ap_1<bp_o<a,<b,_.1<1<b,

Let ¢; : U; — X be an (X, G)-chart and let g; € G be the unique transformation such that
g; o ; and ;1 agree on the component of U; N U;_1 containing the curve {zt}q, <t<p,_, -
Let

f() = 9192 - - gn—19nn()
and we must show that f is indeed well-defined. The map f does not change if the cover is
refined. Suppose that a new coordinate patch U’ is “inserted between” U;_; and U;. Let
{zt}4<t<p be the portion of the curve lying inside U’ so

i1 < a < a; < bj_1 < b < b;.

Let ¢’ : U’ — X be the corresponding coordinate chart and let h;_1,h; € G be the
unique transformations such that ;_; agrees with h;_; o ¢’ on the component of U’ N
U;—1 containing {z;}a <t<p, , and 1’ agrees with h; o 9; on the component of U' N U;
containing {z}q,<t<p. By the unique extension property h;_1h; = g; and it follows that
the corresponding developing map

f(z)=9192.-.gi—1hi—1higit1 - - Gn—19n¥n(x)
= 9192 - - - 9i—19i9i+1 - - - In—19n¥n(T)

is unchanged. Thus the developing map as so defined is independent of the coordinate
covering, since any two coordinate coverings have a common refinement.

Next we claim the developing map is independent of the choice of path. Since M
is simply connected, any two paths from zy to x are homotopic. Every homotopy can
be broken up into a succession of “small” homotopies, i.e. homotopies such that there
exists a partition 0 = ¢p < ¢; < --- < ¢p—1 < ¢y = 1 such that during the course of
the homotopy the segment {;}¢,<¢<c,,, lies in a coordinate patch. It follows that the
expression defining f(x) is unchanged during each of the small homotopies, and hence
during the entire homotopy. Thus f is independent of the choice of path.

Since f is a composition of a coordinate chart with transformations X — X coming
from G, it follows that f is an (X, G)-map. The proof of Proposition 4.6 is complete. [}

4.7 If M is an arbitrary (X, G)-manifold, then we may apply Proposition 4.6 to a uni-
versal covering space M. We obtain the following basic result:

DEVELOPMENT THEOREM. Let M be an (X, G)-manifold with universal covering space
p: M — M and group of deck transformations m = my (M) C Aut(p : M — M). Then
there exists a pair (dev, h) such that dev : M — X is an (X, G)-map and h : 7 — G is
a homomorphism such that, for each v € T,

~ dev
M — X
v| [#e
M —— X
dev
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commutes. Furthermore if (dev’, h') is another such pair, there exists g € G such that
dev’ = godev and h/(v) = gh(y)g~" for each y € .

We call such a pair (dev, h) a development pair, and the homomorphism h the holon-
omy representation. (It is the holonomy of a flat connection on a principal G-bundle
over M associated to the (X, G)-structure.) The developing map is a globalization of the
coordinate charts of the manifold and the holonomy representation is a globalization of
the coordinate changes. In this generality the Development Theorem seems to be due to
C. Ehresmann [Eh] in 1936.

4.8 EXERCISE. Let M be an (X,G)-manifold with development pair (dev, h). Suppose
that N — M is a covering space. Show that there exists an (X,G)-map N — X <
the holonomy representation restricted to m1(N) < m (M) is trivial. Thus the holonomy
covering space M —s M — the covering space of M corresponding to the kernel of h —
is the “smallest” covering space of M for which a developing map is “defined.”

4.9 EXERCISE. Suppose that M is a closed manifold with finite fundamental group. Show
that if X is noncompact then M admits no (X, G)-structure. If X is compact and simply-
connected show that every (X, G)-manifold is (X, G)-isomorphic to a quotient of X by a
finite subgroup of G. (Hint: if M and N are manifolds of the same dimension, f : M — N
is a local diffeomorphism and M is closed, show that f must be a covering space.)

As a consequence a closed affine manifold must have infinite fundamental group and
every RP"-manifold with finite fundamental group is a quotient of S™ by a finite group
(and hence a spherical space form).

4.10  The process of inducing one geometric structure from another is easily understood
in terms of developments:

EXERCISE. Suppose that (X, G) and (X', G') represent a pair of geometries for which there
exists a pair (9, ¢) as in 4.5. Show that if M is an (X, G)-manifold with development pair
(dev, h), then (® odev,¢o h) is a development pair for the induced (X', G')-structure on
M.

Completeness.

4.11 In many important cases the developing map is a diffeomorphism M — X, or at
least a covering map onto its image. An extremely important case of this occurs when
(X, G) is a Riemannian homogeneous space, i.e. when X possesses a G-invariant Rieman-
nian metric gx. Equivalently, X = G/H where the isotropy group H is compact. The
Hopf-Rinow theorem from Riemannian geometry has the following important consequence:

PROPOSITION. Let (X, @) be a Riemannian homogeneous space. Suppose that X is simply
connected and M is a compact (X, G)-manifold. Let p : M —s M be a universal covering
space, m the associated fundamental group and (dev,h) the corresponding development
pair. Then dev : M— X isa diffeomorphism and h : @ — G is an isomorphism of 7
onto a cocompact discrete subgroup I' C G.

PROOF: The Riemannian metric gy, = dev'gx on M is invariant under the group of
deck transformations m of M and hence there is a Riemannian metric gp; on M such that
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P*9m = gy;- Since M is compact, the metric gas on M is complete and so is the metric
gy on M. By construction, dev : (M,gM) — (X, gx) is a local isometry. A local
isometry from a complete Riemannian manifold into a Riemannian manifold is necessarily
a covering map (Kobayashi-Nomizu [KN,]) so dev is a covering map of M onto X. Since
X is simply connected, it follows that dev is a diffeomorphism. Let I' C G denote the
image of h. Since dev is equivariant respecting h, the action of 7 on X given by h is
equivalent to the action of m by deck transformations on M. Thus h is faithful and its
image T' is a discrete subgroup of G acting properly and freely on X. Furthermore dev
defines a diffeomorphism M = M /m — X/I". Since M is compact, it follows that X /T is
compact, and since the fibration G — G/H = X is proper, the homogeneous space I'\G
is compact, i.e. I' is cocompact in G. 1

One may paraphrase the above result abstractly as follows. Let (X, G) be a Rieman-
nian homogeneous space. Then there is an equivalence of categories between the category
of compact (X, G)-manifolds/maps and discrete cocompact subgroups of G which act freely
on X (the morphisms being inclusions of subgroups composed with inner automorphisms
of G).

We say that an (X, G)-manifold M is complete if dev : M — X is a diffeomorphism
(or a covering map if we don’t insist that X be simply connected). An (X, G)-manifold M
is complete <= its universal covering M is (X, G)-isomorphic to X, i.e. if M is isomorphic
to the quotient X/I' (at least if X is simply connected). Note that if (X, G) is contained
in (X’,G’) in the sense of 2.5, and X # X', then a complete (X, G)-manifold is never
complete as an (X', G')-manifold.

4.12 THEOREM (AUSLANDER-MARKUS [AM]). Let M be an affine manifold. Then M is
complete in the above sense if and only if M is geodesically complete (in the sense of the
affine connection on M corresponding to the affine structure). That is, show that M is
a quotient of affine space <= a particle moving at constant speed in a straight line will
continue indefinitely.

Proor: Clearly it suffices to assume that M is simply connected. If M is a complete affine
manifold, then dev : M — R" is an affine isomorphism and since R™ is geodesically
complete, so is M. Conversely, suppose that M is geodesically complete. We must show
that dev : M — R" is bijective. Choose a basepoint © € M; we may assume that
dev(u) = 0 € R™. Since M is complete, the exponential map is defined on all of T,, M.
We claim that the composition

dev

T M2 = B

is an affine isomorphism. In local affine coordinates, exp(v) = u + v and dev(u + v) =
dev(u) + v = v; it follows that dev is bijective. I

4.13 EXERCISE. Suppose that X is simply connected. Let M be a closed (X, G)-manifold
with developing pair (dev, h). Show that M is complete <= the holonomy representation
h : m — G is an isomorphism of w onto a discrete subgroup of G which acts properly and
freely on X.
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Complete affine structures on the 2-torus. Asin §4.777 the compact complete affine
1-manifold R/Z is unique up to affine isomorphism. Its Cartesian square R/Z x R/Z is a
Euclidean structure on the two-torus, unique up to affine isomorphism. In this section we
shall describe all other complete affine structures on the two-torus and show that they are
parametrized by RP'. We shall see that affine isomorphism classes are parametrized by
the plane R? with a (non-Hausdorff) whose open sets are the open subsets of R* — {0} as
well as R? itself.

We begin by considering the one-parameter family of (quadratic) diffeomorphisms of
the affine plane E = R? defined by

o (z,y) = (z+ 1Y%, y)

It is easy to check that ¢, o ¢ps = ¢+ and thus ¢, and ¢_, are inverse maps. If u =
(s,t) € R? we denote translation by u as 7(u) : E — E. Conjugation of the translation
7(u) by ¢, yields the affine transformation

ot =srorwress= [} 5[]

and a, : R? — Aff(E) defines a simply transitive affine action. (Compare [FG,§1.19].) If
A C R? is a lattice, then E/a,.(A) is a compact complete affine 2-manifold M = M (r; A)
diffeomorphic to a 2-torus.

The parallel 1-form dy defines a parallel 1-form 7 on M and its cohomology class
[n] € H'(M;R) is a well-defined invariant of the affine structure up to scalar multiplication.
In general, M will have no closed geodesics. If v C M is a closed geodesic, then it must
be a trajectory of the vector field on M arising from the parallel vector field 9/0z on FE;
then v is closed <= the intersection of the lattice A C R? with the line R & {0} C R? is
nonzero.

To classify these manifolds, we observe that the normalizer of G, = a,.(R?) equals

2
Hoa * .
{{0 ,u] |peR*a€R} -G,
which acts on GG, conjugating

ar(s,t) = ap(u?s + at, ut)

2
N:{[% Z] |u€R*,a€R};

then the space of affine isomorphism classes of these tori may be identified with the ho-
mogeneous space GL(2,R)/N which is topologically R? — {0}. The groups G, are all
conjugate and as r —» 0, each representation «,|, converges to an embedding of 7 as a
lattice of translations R? — R2. It follows that the deformation space of complete affine
structures on T form a space which is the union of R? — {0} with a point O (representing
the Euclidean structure) which is in the closure of every other structure.
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Examples of incomplete structures.

4.14 It is quite easy to construct incomplete geometric structures on noncompact man-
ifolds M. Take any immersion f : M — X which is not bijective; then f induces
an (X, G)-structure on M. If M is parallelizable, then such an immersion always exists
(Hirsch []). More generally, let h : 1 — G be a representation; then as long as the asso-
ciated flat (X, G)-bundle F — X possesses a section s : M — FE whose normal bundle
is isomorphic to TM, there exists an (X, G)-structure with holonomy h (see Haefliger []).

It is harder to construct incomplete geometric structures on compact manifolds —
indeed for certain geometries (X, G), there exist closed manifolds for which every (X, G)-
structure on M is complete. As a trivial example, if X is compact and M is a closed
manifold with finite fundamental group, then by 4.7?7 every (X, G)-structure on M is
complete. As a less trivial example, if M is a closed manifold whose fundamental group
contains a nilpotent subgroup of finite index and whose first Betti number equals one,
then every affine structure on M is complete (see Fried-Goldman-Hirsch [FGH]). A sim-
ple example arises as follows. Consider the group I' C Euc(R3) generated by the three
isometries

1 0 0 1
A= -1 0 0
0 0 —1]]0]
(-1 0 0] /[o0]
B=10 1 0 1
0 0 —1] [0
[—1 0 o] o]
C=|10 -1 0]]0
0 0 1] [1

and I is a discrete group of Euclidean isometries which acts properly and freely on R3
with quotient a compact 3-manifold M. Furthermore there is a short exact sequence

73~ (A2, B%,C* T 5 72/29 Z/2

and it follows that every affine structure on M must be complete.

The basic example of an incomplete affine structure on a closed manifold is a Hopf
manifold. Consider Q = R"™ — {0}; then the group R* of homotheties (i.e. scalar multipli-
cations) acts on Q properly and freely with quotient the projective space RP""!. Clearly
the affine structure on €2 is incomplete. Let A € R satisfy A > 1; then the cyclic group
(\) is a discrete subgroup of R* and the quotient £2/(\) is a compact incomplete affine
manifold M. We shall denote this manifold by Hopf. (A geodesic whose tangent vector
“points” at the origin will be incomplete; on the manifold M the affinely parametrized
geodesic will circle around with shorter and shorter period until in a finite amount of time
will “run off” the manifold.) If n = 1, then M consists of two disjoint copies of the Hopf
circle Rt /(\) — this manifold is an incomplete closed geodesic (and every incomplete
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closed geodesic is isomorphic to a Hopf circle). For n > 1, then M is connected and is
diffeomorphic to the product S' x S”~!. For n > 2 both the holonomy homomorphism
and the developing map are injective.

If n = 2, then M is a torus whose holonomy homomorphism maps 1 (M) = Z&Z onto
the cyclic group (A). Note that devM — R2 is neither injective nor surjective, although
it is a covering map onto its image. For k& > 1 let 7(*) C 7 be the unique subgroup of index
k which intersects Ker h 22 Z in a subgroup of index k. Let M *) denote the corresponding
covering space of M. Then M*) is another closed affine manifold diffeomorphic to a torus
whose holonomy homomorphism is a surjection of Z & Z onto (\).

4. 15 EXERCISE. Show that for k # I, the two affine manifolds M*) and M® are not
isomorphic. (Hint: consider the invariant defined as the least number of breaks of a broken
geodesic representing a simple closed curve on M whose holonomy is trivial.) Thus two
different affine structures on the same manifold can have the same holonomy homomor-
phism.

4.16 EXERCISE. Suppose that A < —1. Then M = (R™ — {0})/(\) is an incomplete
compact affine manifold doubly covered by Hopfy. What is M topologically?

There is another point of view concerning Hopf manifolds in dimension two. Let M
be a two-torus; we may explicitly realize M as a quotient C/A where A C C is a lattice.
The complex exponential map exp : C — C* is a universal covering space having the
property that

expoTt(z) = €” - exp

where 7(z) denotes translation by z € C. For various choices of lattices A, the exponential
map exp : M = C — C* is a developing map for a (complex) affine structure on M with
holonomy homomorphism

exp

T= A — exp(A) — C* C Aff(C)

We denote this affine manifold by exp(C/A); it is an incomplete complex affine 1-manifold
or equivalently an incomplete similarity 2-manifold. Every compact incomplete orientable
similarity manifold is equivalent to an exp(C/A) for a unique lattice A C C. Taking A C C
to be the lattice generated by log A and 274 we obtain the Hopf manifold Hopfi. More
generally the lattice generated by log A and 2k7e corresponds to the k-fold covering space
of Hopfi described above. There are “fractional” covering spaces of the Hopf manifold
obtained from the lattice generated by log A and 27 /n for n > 1; these manifolds admit
n-fold covering spaces by Hopf i The affine manifold M admits no closed geodesics <=
ANR = {0}. Note that the exponential map defines an isomorphism C/A — M which
is definitely not an isomorphism of affine manifolds.

4.15 A Hopf manifold is the prototypical example of a radiant affine manifold. Many
properties of Hopf manifolds are shared by radiant structures. The following theorem
characterizes radiant affine structures:
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PROPOSITION. Let M be an affine manifold with development pair (dev, h). The following
conditions are equivalent:

(1) h(n) fixes a point in E (by conjugation we may assume this fixed point is
the origin 0);

(2) M is isomorphic to a (F,GL(FE))-manifold;

(3) M possesses a radiant vector field (see 1.7).

If M satisfies these conditions, we say the affine structure on M is radiant. If pps is
a radiant vector field on M, we shall often refer to the pair (M, pys) as well as a radiant
affine structure. A closed radiant affine manifold M is always incomplete (5.777) and the
radiant vector field is always nonsingular so that x(M) = 0. Furthermore the first Betti
number of a closed radiant affine manifold is always positive.

4.16 EXERCISE (PRODUCTS OF AFFINE MANIFOLDS). Let M™, N™ be affine manifolds.
Show that the Cartesian product M™ x N™ has a natural affine structure. Show that M x N
is complete <= both M and N are complete; M x N is radiant <= both M and N are
radiant. On the other hand, find compact manifolds M, N each of which has a projective
structure but M x N does not admit a projective structure. If My, ..., M, are manifolds
with real projective structures, show that the Cartesian product My x -+ x M, x T"~!
admits a real projective structure (Benzécri [B2)]).

Maps between manifolds with different geometries.

4.17 In many cases, we wish to consider maps between different manifolds with geometric
structures modelled on different geometries. To this end we consider the following general
situation. Let (X,G) and (X’,G") be two homogeneous spaces representing different ge-
ometries and consider a family 9 of maps X — X' such that if f € M, g € G,¢' € G,
then the composition ¢’ o fog € M. If U ¢ X is a domain, amap f : U — X' is
locally-90t if for each component U; C U there exists f; € 9 such that the restriction of
f to U; C U equals the restriction of f; to U; C X. Let M be an (X, G)-manifold and N
an (X', G')-manifold. Suppose that f: M — N is a smooth map. We say that f is an
M-map if for each pair of charts ¢o : Uy —> X (for M) and 95 : V3 — X (for N) the
composition g o f o ¢! restricted to ¢o(Us N f71(Vp)) is locally-90.

The basic examples are affine and projective maps between affine and projective
manifolds: For affine maps we take (X, G) = (R™, Aff(R™)) and (X', G’) = (R, Aff(R"))
and M = aff R™,R™). For example if M, N are affine manifolds, and M x N is the
product affine manifold (see 4.17), then the projections M x N — M and M x N — N
are affine. Similarly if z € M and y € N, the inclusions {z} x N — M x N and
M x {y} — M x N are each affine. For projective maps we take (X, G) = (P™, Proj(P™))
and (X', G") = (P™,Proj(P™)) and 90t the set Proj(P™, P") of projective maps P™ — P"
(or more generally the collection of locally projective maps defined on open subsets of P™).
Thus if M is an RP"-manifold it makes sense to speak of projective maps I — M and
thus the Kobayashi pseudo-metric d¥°® : M x M — R is defined. The following theorem
combines results of Kobayashi [Kb2] and Vey [V1,V2], and is a kind of converse to 3.4:
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4.18 THEOREM. Let M be a compact RP"-manifold and let M be its universal covering
space. Then d¥°" is a metric <= M is projectively isomorphic to properly convex domain
in RP".

Fibration of geometries.

4.19  One can also “pull back” geometric structures by “fibrations” of geometries as
follows. Let (X, G) be a homogeneous space and suppose that ® : X’ — X is a fibration
with fiber F' and that ¢ : G’ — G is a homomorphism such that for each ¢’ € G’ the
diagram

’

x -2, x

2| E
X/ X/
»(9")
commutes. ~
Suppose that M is an (X, G)-manifold. Let p : M — M be a universal covering

with group of deck transformations = and (dev, h) a development pair. Then the pullback
dev*® is an F-fibration M’ over M and the induced map dev’ : M’ — X' is a local
diffeomorphism and thus a developing map for an (X', G')-structure on M'. We summarize
these maps in the following commutative diagram:

~ dev’
M’ X
| o
M —— X
dev

Suppose that the holonomy representation h : m — G lifts to b’ : 7 — G’. (In general the
question of whether h lifts will be detected by certain invariants in the cohomology of M.)
Then %' defines an extension of the action of 7 on M to M’ by (X', G')-automorphisms.
Since the action of 7 on M’ is proper and free, the quotient M’ = M'/x is an (X', G')-
manifold. Moreover the fibration M’ —s M descends to an F-fibration M’ —» M.

4.20  An important example is the following. Let G = GL(n+1;R) and X’ = R"*!—{0}.

Let S™ = RP" denote the universal covering space of RP"; for n > 1 this is a two-fold
covering space realized geometrically as the sphere of directions in R**1. Furthermore the
group of lifts of PGL(n+1; R) to S™ equals the quotient GL(n+1; R)/Rt = SL*(n+1; R).
The quotient map ® : R**1 — {0} — S™ is a principal RT-bundle.

Let M be an RP"-manifold with development pair (dev, h); then there exists a lift
of h: m — PGL(n + 1,R) to h : 7 — GL(n + 1;R). The preceding construction then
applies and we obtain a radiant affine structure on the total space M’ of a principal RT-
bundle over M with holonomy representation h. The radiant vector field pMm generates
the (fiberwise) action of R™; this action of R* on M’ is affine, given locally in affine
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coordinates by homotheties. (This construction is due to Benzécri [B2] where the affine
manifolds are called variétés coniques affines. He observes there that this construction
defines an embedding of the category of RP"-manifolds into the category of (n + 1)-
dimensional affine manifolds.)

Since R* is contractible, every principal R™-bundle is trivial (although there is in
general no preferred trivialization). Choose any A > 1; then the cyclic group (\) C R*
acts properly and freely on M’ by affine transformations. We denote the resulting affine
manifold by M} and observe that it is homeomorphic to M x S'. (Alternatively, one may
work directly with the Hopf manifold Hopf} ™ and its R*-fibration Hopfy ™' — RP".)
We thus obtain:

4.21 PROPOSITION (BENzECRI [B2, §2.3.1]). Suppose that M is an RP"-manifold. Let
A > 1. Then M x S' admits a radiant affine structure for which the trajectories of the
radiant vector field are all closed geodesics each affinely isomorphic to the Hopf circle

R*T/(\).
Since every (closed) surface admits an RP?-structure, we obtain:

4.21 COROLLARY (BENZECRI). Let X be a closed surface. Then 3 x S' admits an affine
structure.

If ¥ is a closed hyperbolic surface, the affine structure on M = ¥ x S' can be
described as follows. A developing map maps the universal covering of M onto the convex
cone Q = {(z,y,2) € R® | 22 + y? — 22 < 0,2z > 0} which is invariant under the identity
component G of SO(2,1). The group G x R™ acts transitively on Q with isotropy group
SO(2). Choosing a hyperbolic structure on ¥ determines an isomorphism of 71(3) onto a
discrete subgroup I' of G; then for each A > 1, the group I" x (\) acts properly and freely
on 2 with quotient the compact affine 3-manifold M.

4.22 EXERCISE. A CP"-structure is a geometric structure modelled on complex projective
space CP™ with coordinate changes locally from the projective group PGL(n + 1; C)). If
M is a CP™-manifold, show that there is a T?-bundle over M which admits a complex
affine structure and an S'-bundle over M which admits an RP*" " structure.

The classification of RP!-manifolds.

4.23  The basic general question concerning geometric structures on manifolds is, given a
topological manifold M and a geometry (X, G) , whether an (X, G)-structure on M exists,
and if so, to classify all (X, G)-structures on M. Ideally, one would like a deformation space,
a topological space whose points correspond to isomorphism classes of (X, G)-manifolds.
As an exercise to illustrate these general ideas, we classify RP!-manifolds (Compare
Kuiper [Kp3], Goldman [G2]). To simplify matters, we pass to the universal covering X =

RP', which is homeomorphic to R and the corresponding covering group G = PGL(2,R)
which acts on X. Suppose that M is a connected noncompact RP!-manifold (and thus
diffeomorphic to an open interval). Then a developing map dev: M ¥ R — R ~ X is
necessarily an embedding of M onto an open interval in X. Given two such embeddings
f,f': M — X whose images are equal, there exists a diffeomorphism j : M — M such
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that f' = j o f. Thus two RP'-structures on M which have equal developing images are
isomorphic. Thus the classification of RP!-structures on M is reduced to the classification
of G-equivalence classes of intervals J C X. Choose a diffeomorphism X ~ R ~ (—o00, 00);
an interval in X is determined by its pair of endpoints in [—00, c0]. Since G acts transitively
on X, an interval .J is either bounded in X or projectively equivalent to X itself or one
component of the complement of a point in X. Suppose that J is bounded. Then either
the endpoints of J project to the same point in RP! or to different points. In the first
case, let N > 0 denote the degree of the map J/0J — RP! induced by dev; in the
latter case choose an interval JT such that the the restriction of the covering projection
X — RP! to Jt is injective and the union J U .J71 is an interval in X whose endpoints
project to the same point in RP*. Let N > 0 denote the degree of the restriction of the
covering projection to JUJ*t. Since G acts transitively on pairs of distinct points in RP?,
it follows easily that bounded intervals in X are determined up to equivalence by G by
the two discrete invariants: whether the endpoints project to the same point in RP! and
the positive integer N. It follows that every (X, G)-structure on M is (X, G)-equivalent
to one of the following types. We shall identify X with the real line and group of deck
transformations of X — RP?! with the group of integer translations.

(1) A complete (X, G)-manifold (i.e. dev : M — X is a diffeomorphism);

(2) dev: M — X is a diffeomorphism onto one of two components of the
complement of a point in X ,e.g. (0, 00).

(3) dev is a diffeomorphism onto an interval (0, N) where N > 0 is a positive
integer;

(4) dev is a diffeomorphism onto an interval (0, N + 3).

Next consider the case that M is a compact 1-manifold; choose a basepoint zo € M.
Let m = m(M, o) be the corresponding fundamental group of M and let v € 7 be a
generator. We claim that the conjugacy class of h(y) € G completely determines the
structure. Choose a lift J of M — {z¢} to M which will be a fundamental domain for
w. Then .J is an open interval in M with endpoints yp and y;. Choose a developing map
dev : M — X and a holonomy representation h : 7 — G; then dev(y1) = h(vy)dev(yo).
If dev’ is a developing map for another structure with the same holonomy, then by applying
an element of G we may assume that dev(yg) = dev’(y) and that dev(y;) = dev’(y1).
Furthermore there exists a diffeomorphism ¢ : J — .J such that dev’ = ¢ o dev; this
diffeomorphism lifts to a diffeomorphism M — M taking dev to dev’. Conversely
suppose that n € G is orientation-preserving (this means simply that n lies in the identity
component of G) and is not the identity. Then there exists zo € X which is not fixed by
n; let 1 = nxy. There exists a diffeomorphism J — X taking the endpoints y; of J to
x; for ¢ = 0,1. This diffeomorphism extends to a developing map dev : M — X. In
summary:

4.24 THEOREM. A compact RP'-manifold is either projectively equivalent to a Hopf circle
R+ /()\), the complete affine manifold R/Z or is complete as an RP'-manifold. Let G°
denote the identity component of the universal covering group G of PGL(2,R). Let M be
a closed 1-manifold. Then the set of isomorphism classes of RP-structures on M is in
bijective correspondence with the set of G-conjugacy classes in the set G — {1} of elements
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of G° not equal to the identity.

EXERCISE. Determine all automorphisms of each of the above list of RP-manifolds.

§5: AFFINE STRUCTURES ON SURFACES

In this section we give the classification of affine structures on closed 2-manifolds.
This classification falls into two steps: first is the basic result of Benzécri that a closed
surface admits an affine structure if and only if its Euler characteristic vanishes. From this
it follows that the affine holonomy group of a closed affine 2-manifold is abelian and the
second step uses simple algebraic methods to classify affine structures.

We observe that affine structures on noncompact surfaces have a much different the-
ory. First of all, every orientable noncompact surface admits an immersion into R? and
such an immersion determines an affine structure with trivial holonomy. Immersions can
be classified up to crude relation of regular homotopy, although the isotopy classification
of immersions of noncompact surfaces seems forbiddingly complicated. Furthermore if
h:m — Aff(E) is a homomorphism such that the character det oL oh : 1 — Z/2 equals
the first Stiefel-Whitney class (i.e. its kernel is the subgroup of 7 corresponding to the
orientable double covering of M), then it can be shown that there is an affine structure
on M with holonomy h. In general it seems hopeless to try to classify general geometric
structures (i.e. not satisfying some extra geometric hypothesis) on noncompact manifolds
under anything but the crudest equivalence relations.

Suspensions.

5.2  Before discussing Benzécri’s theorem and the classification of 2-dimensional affine
manifolds, we describe several constructions for affine structures from affine structures
and projective structures of lower dimension. Namely, let ¥ be a smooth manifold and
f ¥ — ¥ a diffeomorphism. The mapping torus of f is defined to be the quotient
M = M¢(X) of the product ¥ x R by the Z-action defined by

n:(z,t)— (f"x, t+n)

It follows that dt defines a nonsingular closed 1-form w on M tangent to the fibration
t: M — S' = R/Z. Furthermore the vector field % on X x R defines a vector field Sy
on M, the suspension of the diffeomorphism f : ¥ — 3. The dynamics of f is mirrored
in the dynamics of Sy: there is a natural correspondence between the orbits of f and
the trajectories of Sy. The embedding ¥ < ¥ x {t} is transverse to the vector field Sy
and each trajectory of Sy meets ¥. Such a hypersurface is called a cross-section to the
vector field. Given a cross-section ¥ to a flow {&;}+er, then (after possibly reparametrizing
{&t}ter), the flow can be recovered as a suspension. Namely, given z € ¥, let f(z) equal
&(z) for the smallest ¢ > 0 such that & (z) € 3, i.e. the first-return map or Poincaré map
for {&:}ter on X. For the theory of cross-sections to flows we refer to Fried [F1].

Suppose that § is a foliation of a manifold M; then § is locally defined by an atlas of
smooth submersions U — RY for coordinate patches U. An (X, G)-atlas transverse to §
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is defined to be a collection of coordinate patches U, and coordinate charts ¢, : U, —
X such that for each pair (U, Up) and each component C' C U, N Upg there exists an
element gc € G such that go o ¢y = 9 on C. An (X, G)-structure transverse to § is a
maximal (X, G)-atlas transverse to §. Consider an (X, G)-structure transverse to §; then
an immersion f : ¥ — M which is transverse to § induces an (X, G)-structure on 3.

A foliation § of an affine manifold is said to be affine if its leaves are parallel affine
subspaces (i.e. totally geodesic subspaces). It is easy to see that transverse to an affine
foliation of an affine manifold is a natural affine structure. In particular if M is an affine
manifold and ( is a parallel vector field on M, then ¢ determines a one-dimensional affine
foliation which thus has a transverse affine structure. Moreover if 3 is a cross-section to
¢, then ¥ has a natural affine structure for which the Poincaré map > — ¥ is affine.

5.3 EXERCISE. Show that the Hopf manifold Hopf has an affine foliation with one closed
leaf if n > 1 (two if n = 1) and its complement consists of two Reeb components.

Let ¥ be an affine manifold and f € Aff(M) an automorphism. We shall define an
affine manifold M with a parallel vector field Sy and cross-section ¥ < M such that the
corresponding Poincaré map is f. We proceed as follows. Let ¥ x R be the Cartesian
product with the product affine structure and let ¢ : ¥ x R — R be an affine coordinate
on the second factor. Then the map f : ¥ x R — ¥ x R given by (z,¢) — (f~(z),t+1)
is affine and generates a free proper Z-action on ¥ x R. Let M be the corresponding
quotient affine manifold. Then % is a parallel vector field on ¥ x R invariant under f and
thus defines a parallel vector field Sy on M. Similarly the parallel 1-form dt on ¥ x R
defines a parallel 1-form wy on M for which ws(Sy) = 1. For each t € R/Z, the inclusion
Y x {t} < M defines a cross-section to Sy. We call (M, Sy) the parallel suspension or
affine mapping torus of the affine automorphism (X%, f).

5.4 EXERCISE. Suppose that N and ¥ are affine manifolds and that ¢ : m(X) — Aff(N)
is an action of m1(X) on N by affine automorphisms. The flat N-bundle over ¥ with
holonomy ¢ is defined as the quotient of ¥ x N by the diagonal action of (%) given
by deck transformations on & and by ¢ on N. Show that the total space M is an affine
manifold such that the fibration M — 3 is an affine map and the the flat structure (the
foliation of M induced by the foliation of ¥ x N by leaves & x {y}, for y € N) is an affine
foliation.

5.5 Now let (M, pps) be a radiant affine manifold of dimension n + 1. Then there is
an RP"-structure transverse to ps. For in local affine coordinates the trajectories of pps
are rays through the origin in R”*! and the quotient projection maps coordinate patches
submersively into RP™. In particular if ¥ is an n-manifold and f : ¥ — M is transverse
to par, then f determines an RP"-structure on X.

PROPOSITION. Let 3 be a compact RP"-manifold and f € Aut(X) a projective automor-
phism. Then there exists a radiant affine manifold (M, ppr) and a cross-section ¢ : ¥ < M
to par such that the Poincaré map for « equals 1= ! o f o 1. In other words, the mapping
torus of a projective automorphism of an compact RP"-manifold admits a radiant affine
structure.
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PROOF: Let S™ be the double covering of RP" (realized as the sphere of directions in
R"*1) and let ® : R"*! — S™ be the corresponding principal R*-fibration. Let M’ be
the principal R*-bundle over M constructed in 4.20 and choose a section o : M — M’
and let {€)};er be the radiant flow on M'; let {£/},cr be the radiant flow on M’. Let
(dev, h) be a development pair; then there exists a lift of f to an affine automorphism
f of M:; there exists a projective automorphism g € GL(n + 1; R)/R™* of the sphere of
directions S™ such that

’

~ dev
M Rt {0}

7| Js
~ dev’
S R (o)

Choose a compact set K C M~such that 7 (M) - K = M. Let K ¢ M’ be the image of K
under a lift of o to a section M — M’. Then there exists ty > 0 such that

KN f&K)=10

for t > tg. It follows that the affine automorphism &, f generates a free and proper affine
Z-action on M’ for t > ty. We denote the quotient by M. In terms of the trivialization
of M’ — M arising from o, it is clear that the quotient of M’ by this Z-action is
diffeomorphic to the mapping torus of f. Furthermore the setion o defines a cross-section
> < M to ppr whose Poincaré map corresponds to f. i

We call the radiant affine manifold (M, pys) the radiant suspension of (3, f).

In general affine automorphisms of affine manifolds can display quite complicated
dynamics and thus the flows of parallel vector fields and radiant vector fields can be
similarly complicated. For example, any element of GL(2;Z) acts affinely on the flat
torus R?/Z2; the most interesting of these are the hyperbolic elements of GL(2;Z) which
determine Anosov diffeomorphisms on the torus. Their suspensions thus determine Anosov
flows on affine 3-manifolds which are generated by parallel or radiant vector fields. Indeed,
it can be shown (Fried [F4]) that every Anosov automorphism of a nilmanifold M can be
made affine for some complete affine structure on M.

As a simple example of this we consider the linear diffeomorphism of the two-torus
T? = R?/Z? defined by a hyperbolic element A € GL(2;Z). The parallel suspension
of A is the complete affine 3-manifold R3/T" where I' C Aff(R3) is consists of the affine

transformations
A" 0| |p
0o 1 n

where n € Z and p € Z?. Since A is conjugate in SL(2;R) to a diagonal matrix with
reciprocal eigenvalues, I' is conjugate to a discrete cocompact subgroup of the subgroup of
Aff(R3)
e* 0 0 S
G = 0 e ™ 0 t||st,ueR
0 0 1 U



which acts simply transitively. Since there are infinitely many conjugacy classes of hyper-
bolic elements in SL(2;Z) (for example the matrices

n+1l n
o
for n > 1,n € Z are all non-conjugate), there are infinitely many isomorphism classes of
discrete groups I'. Tt follows (L. Auslander) that there are infinitely many homotopy classes
of compact complete affine 3-manifolds — in contrast to the theorem of Bieberbach that in
each dimension there are only finitely many homotopy classes of compact flat Riemannian

manifolds. Notice that each of these affine manifolds possesses a parallel Lorentz metric
and hence is a flat Lorentz manifold.

Existence of affine structures on 2-manifolds.

5.6  The following result is proved in [B1]; a more algebraic generalization/clarification
may be found in Milnor [Mil]; for generalizations of Milnor’s result, see Benzécri [B3],
Gromov [], Sullivan [Su]. For an interpretation of this inequality in terms of hyperbolic
geometry, see Goldman [G2].

THEOREM (BENZECRI 1955). Let M be a closed 2-dimensional affine manifold. Then
X(M) = 0.

Proor: By replacing M by its orientable double covering, we assume that M is orientable.
By the classification of surfaces, M is diffeomorphic to a closed surface of genus g > 0.
Since a simply connected closed manifold admits no affine structure (§4.7), M cannot be
a 2-sphere and hence g # 0. We assume that g > 1 and obtain a contradiction.

There exists a decomposition of M along 2g simple closed curves ay,bq,...,aq,by
which intersect in a single point zp € M such that the complement M —J7_, (a; Ub;) is the
interior of a 4g-gon F' with edges aIL, ay, bfL, by, .., a;, ay, b;r, b, . There are generators
Ay, By, ..., Ay, B, € T such that A;(b]) = b; and B;(a]) = a; define identifications for
a quotient map F' — M. A universal covering space is the quotient space of the product
7 x F' by identifications defined by the generators Ay, By,..., A4, By. Fix a development
pair (dev,h). For convenience we assume that the curves aq,bq,...,ag4,b4 all share the
same tangent vector at xo. Thus F' is a polygon with 4¢g vertices, one of which has angle
21 and all others have angle 0.

Let I = [a,b] be a closed interval. If f : I — R? is a smooth immersion, then its
turning number 7(f) is defined as the total angular displacement of its tangent vector. If

f(#) = (x(t), y(t)), then

Pty (1) — 2" (B)y' (1)

r(h) = [ dan o) = [ HEE T

is an analytic formula for the turning number. We can extend this invariant to piecewise
smooth immersions as follows. Suppose that f : [a,b] — R? is an immersion which
is smooth on subintervals [a;,a;41] where a = ag < a1 < -+ < @y, < amy1 = b. Let
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fila;) =limy_q, 4 f'(t) and f (a;) = lim_4,— f'(t) be the two tangent vectors to f at a;;
then the total turning number of f is defined as

m

T(f) = Z(T(f|[ai,ai+1]) + e(f/— (ai-f-l)’ f_/{_(ai—f-l))

1=0

where 0(v1, v2) represents the positively measured angle between the vectors vy, vo. Clearly
reversing the orientation multiplies the turning number by —1.

5.7 If f:S! — R? is an immersion, then 7(f) is an integer. The Whitney-Graustein
theorem asserts that two immersions fi, fo : S' — R? are regularly homotopic <=
7(f1) = 7(f2). In particular if f : S — R? is the restriction to the boundary of an
orientation-preserving immersion D? — R?, then 7(f) = 1.

An elementary property relating turning number to affine transformations is the fol-
lowing:

LEMMA. Suppose that f : [a,b] — R? is a smooth immersion and ¢ € AffT(R?) is an
orientation-preserving affine automorphism. Then

[T(f) —7(¢of)l <m

PRrROOF: If ¢ is an orientation-preserving FEuclidean isometry, then 7(f) = 7(¢ o f); by
composing ¢ with an isometry we may assume that f(a) = (¢of)(a) and f'(a) = A(pof)'(a)
for A > 0.

Suppose that |7(f) — 7(¢ o f)| > m. Since for a <t < b, the function

|T(f|[a,t]) - T(d) o f|[a,t])|

is a continuous function of ¢ and equals 0 for ¢ = a, there exists 0 < ty < b such that

|T(f|[a,t0]) - T(¢ o f|[a,t0])| =T.

Then the tangent vectors f'(¢o) and (¢ o f)'(tg) have opposite direction, i.e. there exists
i > 0 such that

L(¢)(f'(to)) = (¢ 0 f)'(to) = —pf'(to)-
Thus the linear part L(¢) has two eigenvalues A, —u contradicting ¢ being orientation-
preserving. i

We apply these ideas to the restriction of the developing map dev to JF. Since
dev|yp is the restriction of the immersion dev|r of the 2-disc,

2 =7(dev|sF)

g
S r(devl,+) + r(dev], )+ r(dev],:) + r(dev], ) + (49 — 2)m

=1

T(dev|ai+) —71(h(B;) o dev|ai+) + T(dev|b;r) —71(h(A4;) 0 dev|bi+) + (49 — 2)m

I
.M‘Q

=1
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(The 4g — 1 contributions of 7 arise from the 4g — 1 vertices of F' having interior angle 0;
the single vertex of F' having interior angle 27 contributes —m.) Thus

g
(4—4dg)r=>Y = dev|,+) — 7(h(B;) o dev],+) + 7(dev],+) — 7(h(4;) o devl,:)
=1
and

g
(49 — 4w < Y |7(dev,+) — 7(h(B;) o dev|,+)| + |r(devl,s) — 7(h(A;) o devl,s)| < 297

=1

from which it follows g = 1. 1

5.8  Shortly after Benzécri proved the above theorem, Milnor observed that this result
follows from a more general theorem on flat vector bundles. Let F be the 2-dimensional
oriented vector bundle over M whose total space is the quotient of M x R2? by the diagonal
action of 7 by deck transformations on M and via Lo h on R2, (i.e. the flat vector bundle
over M associated to the linear holonomy representation.) This bundle has a natural
flat structure, since the coordinate changes for this bundle are (locally) constant linear
maps. Now an oriented R2-bundle over a space M is classified by its Euler class which
lies in H2(M;Z). For M a closed oriented surface H?(M;Z) = Z and if ¢ is an oriented
R2-bundle over M which admits a flat structure, Milnor [Mil] showed that

le(§)] < g.

If M is an affine manifold, then the bundle E is isomorphic to the tangent bundle of M
and hence has Euler number e(TM) = 2 — 2g. Thus the only closed orientable surface
whose tangent bundle has a flat structure is a torus. Furthermore Milnor showed that any
R2-bundle whose Euler number satisfies the above inequality has a flat connection.

In the early 1950’s Chern suggested that in general the Euler characteristic of a
compact affine manifold must vanish. Based on the Chern-Weil theory of representing
characteristic classes by curvature, several special cases of this conjecture can be solved:
if M is a compact complex affine manifold, then the Kuler characteristic is the top Chern
number and hence can be expressed in terms of curvature of the complex linear connection
(which is zero). However, in general, for a real vector bundle, only the Pontrjagin classes
are polynomials in the curvature — indeed Milnor’s examples show that the Euler class
cannot be expressed as a polynomial in the curvature of a linear connection (although
it can be expressed as a polynomial in the curvature of an orthogonal connection. This
difficulty was overcome by a clever trick by Kostant and Sullivan [KS] who showed that
the Euler characteristic of a compact complete affine manifold vanishes.

Nonexistence of affine structures on certain connected sums.

5.9 In 1961, L. Markus posed the following “research problem” among the exercises in
lecture notes for a class in cosmology at the University of Minnesota:
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QUESTION. Let M be a closed affine manifold. Then M is geodesically complete <= M
has parallel volume.

An affine manifold has parallel volume <= it admits a parallel volume form <=
the affine coordinate changes are volume-preserving <= the linear holonomy group lies in

SL(E). If h : 1 — Aff(FE) is the affine holonomy homomorphism and Loh : 7 — GL(E)
is the linear holonomy then M has parallel volume <= the composition

detoLoh:m — R*

is the trivial homomorphism. Thus every affine structure on a manifold with zero first
Betti number has parallel volume.

This somewhat surprising conjecture seems to be one of the main barriers in construct-
ing examples of affine manifolds. A purely topological consequence of this conjecture is
that a compact affine manifold M with zero first Betti number is covered by Euclidean
space (in particular all of its higher homotopy groups vanish). Thus there should be no
such structure on a nontrivial connected sum in dimensions greater than two. (In fact
no affine structure is presently known on a nontrivial connected sum.) Since the funda-
mental group of a connected sum is a free product the following result is relevant in this
connection:

5.10 THEOREM (SMILLIE [SM3]). Let M be a closed affine manifold with parallel volume.
Then the affine holonomy homomorphism cannot factor through a free group.

This theorem can be generalized much further — see Smillie [Sm3] and Goldman-
Hirsch [GH3J.

5.11 COROLLARY (SMILLIE [SM3]). Let M be a closed manifold whose fundamental group
is a free product of finite groups (e.g. a connected sum of manifolds with finite fundamental
group). Then M admits no affine structure.

PROOF OF 5.11 ASSUMING 5.10: Suppose M has an affine structure. Since m(M) is a
free product of finite groups, the first Betti number of M is zero. Thus M has parallel
volume. Furthermore if 71 (M) is a free product of finite groups, there exists a free subgroup
' C 71 (M) of finite index. Let M be the covering space with 71 (M) = I'. Then the induced
affine structure on M also has parallel volume contradicting Theorem. |

PrROOF OF 5.10: Let M be a closed affine manifold modelled on an affine space F, p :
M —s M a universal covering, and (dev : M —s E. h : 7 — Aff(E)) a development
pair. Suppose that M has parallel volume and that there is a free group II through which
the affine holonomy homomorphism h factors:

@ h
m — I — Aff(FE)

Choose a graph G with fundamental group II; then there exists a map f : M — G induc-
ing the homomorphism ¢ : 7 = 71 (M) — 71(G) = II. By general position, there exist
points s1,...s; € G such that f is transverse to s; and the complement G — {s1,..., sk}
is connected and simply connected. Let H; denote the inverse image f~1(s;) and let
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H = U;H; denote their disjoint union. Then H is an oriented closed smooth hypersur-
face such that the complement M — H C M has trivial holonomy. Let M|H denote the
manifold with boundary obtained by splitting M along H; i.e. M|H has two boundary
components H;L , H; for each H; and there exist diffeomorphisms g; : H;L — H; (gener-
ating IT) such that M is the quotient of M|H by the identifications g;. There is a canonical
diffeomorphism of M — H with the interior of M |H.

Let wg be a parallel volume form on F; then there exists a parallel volume form wy,
on M such that p*wy = dev wg. Since H"(E) = 0, there exists an (n — 1)-form n on E
such that dn = wg. For any immersion f : S — E of an oriented closed (n — 1)-manifold

S, the integral
/ f*n
s

is independent of the choice of 1 satisfying dn = wg. Since H"~'(E), any other 5’ must

satisfy ' = n + df and
[ [ ra= [ aro-o
S S S

Since M — H has trivial holonomy there is a developing map dev: M — H — FE
and its restriction to M — H extends to a developing map dev : M|H — E such that

dev|, + = i_z(g,-) odev| -

and the normal orientations of H;', H; induced from M|H are opposite. Since h(g;)

preserves the volume form wg, d(h(g;)*n) = d(n) = wg and we have

/ dev*n:/ dev*h(g;)*n = —/ dev™np
H} H} H

i

since the normal orientations of H Zi are opposite. We now compute the wys-volume of M:

k
vol(M):/wM: dev*wE:/ n:Z/ n+/ n=20
M M|H o(M|H) i—1 JH T

a contradiction. |

One basic method of finding a primitive n for wg is by a radiant vector field p. Since
p expands volume, we have di,wrp = nwg and n = %prE is a primitive for wg. An
affine manifold is radiant <= it possesses a radiant vector field <= the affine structure
comes from an (F, GL(F))-structure <= its affine holonomy has a fixed point in E. The
following result generalizes the above theorem:

5.12 THEOREM(SMILLIE). Let M be a closed affine manifold with a parallel exterior
differential k-form which has nontrivial de Rham cohomology class. Suppose U is an open
covering of M such that for each U € U, the affine structure induced on U is radiant.
Then dimU > k; i.e. there exist k + 1 distinct open sets Uy, ...,Uxs1 € U such that the
intersection Uy N -+ - NUgy1 # 0. (Equivalently the nerve of U has dimension at least k.)

A published proof of this theorem can be found in Goldman-Hirsch [GH3].
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Radiant affine structures.

5.13 Radiant affine manifolds have many special properties, derived from the existence
of a radiant vector field. If M is a manifold with radiant affine structure modelled on
an affine space E, let (dev, h) be a development pair and pg a radiant vector field on E
invariant under h(w), then there exists a (radiant) vector field pp; on M such that

p*pu = dev'pg.

THEOREM. Let M be a compact radiant manifold.

(1) Then M cannot have parallel volume. (In other words a compact manifold
cannot support a (R™,SL(n;R))-structure.) In particular the first Betti
number of a closed radiant manifold is positive.

(2) The developing image dev(M ) does not contain any stationary points of
the affine holonomy. (Thus M is incomplete.) In particular the radiant

vector field pys is nonsingular and the Euler characteristic x(M) = 0.

PROOF OF (1): Let wg = dz' A --- A dz™ be a parallel volume form on E and let wys be
the corresponding parallel volume form on M, i.e. p*wy = dev*wg. Let 1y, denote the

interior product
1

Nym = ELPMWM
and it follows from
diprWE = NWE

that dnyr = wpr. But wyys is a volume form on M and

vol(M):/ wM:/ dny =0
M M

a contradiction. (Intuitively, the main idea in the proof above is that the radiant flow on
M expands the parallel volume uniformly. Thus by “conservation of volume”a compact
manifold cannot support both a radiant vector field and a parallel volume form.) §

PROOF OF (2): We may assume that

PE:;SC D

and it will suffice to prove that 0 ¢ dev(M). Since the only zero of pg is the origin 0 € F,
pu is nonsingular on the complement of F = p(dev™'(0)). Since p and dev are local
diffeomorphisms and 0 € F is discrete, it follows that F' C M is a discrete set; since dev
is continuous and 0 is h(m)-invariant, F' C M is closed. Hence F is a finite subset of M.

Since M is a closed manifold, pjps is completely integrable and thus there is a flow
{R; : M — M };cr whose infinitesimally generated by —pps. The flow lifts to a flow
{Rt : M — M}iecr on M which satisfies

dev(R.z) = e tdev(z)
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for z € M,t € R. Choose a neighborhood U of F', each component of which develops
to a small ball B about 0 in E. Let K C M be a compact set such that the saturation
7(K) = M; then there exists N >> 0 such that if e~*(dev(K)) C B for t > N and thus
Ri(K) C B for t > N. Tt follows that U is an attractor for the flow of py; and that
Ry : M — U is a deformation retraction of the closed manifold M onto U. Since a
closed manifold is not homotopy-equivalent to a finite set, this contradiction shows that

0 ¢ dev(M) as desired. 1

There is a large class of discrete groups I' for which every affine representation I' —
Aff(E) is conjugate to a representation factoring through SL(E), i.e. ' — SL(E) C
Aff(E). For example finite groups have this property, and the above theorem gives an
alternate proof that the holonomy of a compact affine manifold must be infinite. Another
class of groups having this property are the Margulis groups, i.e. irreducible lattices in
semisimple Lie groups of R-rank greater than one (e.g. SL(n,Z) for n > 2). It follows
that the affine holonomy of a compact affine manifold cannot factor through a Margulis
group. However, since SL(n;R) does admit a left-invariant RP"2_1—structure, it follows
that if ' C SL(n; R) is a torsionfree cocompact lattice, then there exists a compact affine
manifold with holonomy group I' X Z although I' itself is not the holonomy group of an
affine structure.

Associative algebras: the group objects in the category of affine manifolds.

5.14  Let a be an associative algebra over the field of real numbers. We shall associate
to a a Lie group G = G(a) with a bi-invariant affine structure. Conversely, if G is a Lie
group with a bi-invariant affine structure, then we show that its Lie algebra g supports an
associative multiplication g x g — g satisfying

(A1) [X,Y]=XY —-YX

and that the corresponding Lie group with with bi-invariant affine structure is locally
isomorphic to G.

We begin by discussing invariant affine structures on Lie groups. If GG is a Lie group
and a € GG, then the operations of left- and right- multiplication are defined by

L,b= Rya = ab

Suppose that G is a Lie group with an affine structure. The affine structure is left-invariant
(resp. right-invariant) <= the operations L, : G — G (resp. R, : G — Q) are affine.
An affine structure is bi-invariant <= it is both left-invariant and right-invariant.

Suppose that G is a Lie group with a left-invariant (resp. right-invariant, bi-invariant)
affine structure. Let G be its universal covering group and

mm(G) = G — G

the corresponding central extension. Then the induced affine structure on G is also left-
invariant (resp. right-invariant, bi-invariant). Conversely, since m(G) is central in G,
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every left-invariant (resp. right-invariant, bi-invariant) affine structure on G determines a
left-invariant (resp. right-invariant, bi-invariant) affine structure on G. Thus there is a
bijection between left-invariant (resp. right-invariant, bi-invariant) affine structures on a
Lie group and left-invariant (resp. right-invariant, bi-invariant) affine structures on any
covering group. For this reason we shall for the most part only consider simply connected
Lie groups.

Suppose that G is a simply connected Lie group with a left-invariant affine structure
and let dev : G — FE be a developing map. Then corresponding to the affine action of G
on itself by left-multiplications there is a homomorphism « : G — Aff(E) such that the
diagram

dev

G ——

(A2) Ly | |t

G —— F

dev

commutes for each g € G. We may assume that dev maps the identity element e € G to the
origin 0 € F; it follows from (A2) that dev(g) = a(g)dev(e) = a(g) - 0 is the translational
part of the affine representation o : G — Aff(F) for each ¢ € G. Furthermore since dev
is open, it follows that the orbit a(G)(0) equals the developing image and is open. Indeed
the translational part, which is the differential of the evaluation map

T.G =g — E=TyE

is a linear isomorphism. Such an action will be called locally simply transitive.

Conversely suppose that @ : G — Aff(F) is an affine representation and O C
E is an open orbit. Then for any point xo € O, the evaluation map g — «a(g)(xo)
defines a developing map for an affine structure on G. Since dev(Ly,h) = a(gh)(zy) =
a(g)a(h)(zo) = a(g)dev(h) for g, h € G, this affine structure is left-invariant. Thus there
is an isomorphism between the category of Lie groups G with left-invariant affine structure
and open orbits of locally simply transitive affine representations G — Aff(E).

Now suppose that a is an associative algebra; we shall associate to a a Lie group
with bi-invariant affine structure as follows. We formally adjoin to a a two-sided identity
element 1 to construct an associative algebra a@R1; then the affine hyperplane F = ax {1}
in a @ R1 is a multiplicatively closed subset; the multiplication is given by the Jacobson
product

(a®1)bdl)=(a+b+ab) 1

and in particular left-multiplications and right-multiplications are affine maps. Let G =
G(a) be the set of all a @ 1 which have left-inverses (necessarily also in a @ {1}); it follows
from associativity that a @1 is left-invertible <= it is right-invertible as well. It is easy to
see that G is an open subset of a @ {1} and forms a group. Furthermore, the associative
property in a implies that the actions of G' by both left- and right- multiplication on F are
affine. In this way we define a bi-invariant affine structure on G.
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The semiassociative property.

5.15  We seek the converse construction, namely to associate to an bi-invariant affine
structure on a Lie group G an associative algebra. This can be accomplished neatly as
follows. Let g be the Lie algebra of left-invariant vector fields on G and let V be the
flat torsionfree affine connection on G corresponding to a left-invariant affine structure.
Since the connection is left-invariant, for any two left-invariant vector fields X,Y € g, the
covariant derivative VxY € g is left-invariant. It follows that covariant differentiation

(X,Y) s VY

defines a bilinear multiplication g x g — g which we denote (X,Y) +— XY. Now the
condition that V has zero torsion is

(A3) XY -YX =[X,Y]

and the condition that V has zero curvature (using (A3)) is
X(YZ)-Y(XZ)=(XY-YX)Z

which is equivalent to the semi-associative property

(A4) (XY)Z -X(YZ)=(YX)Z-Y(XZ).

Now suppose that V is bi-invariant. Thus the right-multiplications are affine maps;
it follows that the infinitesimal right-multiplications — the left-invariant vector fields —
are affine vector fields. For a flat torsionfree affine connection a vector field Z is affine
<= the second covariant differential VV Z vanishes. Now VV 7 is the tensor field which
associates to a pair of vector fields X,Y the vector field

VVZ(X,Y)=Vx(VZ(Y)) = VZ(VxY)=VxVyZ - Vo.vZ

and if X, Y, Z € g we obtain the associative law X (Y Z) — (XY)Z = 0. One can check that
these two constructions

{Associative algebras} = {Bi—invariant affine structures on Lie groups}

are mutually inverse.

A (not necessarily associative) algebra whose multiplication satisfies (A2) is said to be
a left-symmetric algebra, (algeébre symétrique a gauche) or a Koszul-Vinberg algebra. We
propose the name “semi-associative algebra.” Of course every associative algebra satisfies
this property. If a is a semi-associative algebra, then the operation

(A5) [X,Y]=XY -YX

is skew-symmetric and satisfies the Jacobi identity. Thus every semi-associative algebra
has an underlying Lie algebra structure. We denote this Lie algebra by g. If g is a Lie
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algebra, then a semi-associative operation satisfying (2) will be called an affine structure
on g.
Let L : a — End a be the operation of left-multiplication defined by

L(X):Y = XY

In terms of left-multiplication and the commutator operation defined in (2), a condition
equivalent to (1) is

(A6) L([X,Y]) = [L(X), L(Y)]

i.e. that L : ¢ — End(a) is a Lie algebra homomorphism. We denote by a7 the corre-
sponding g-module. Furthermore the identity map I : ¢ — ar, defines a cocycle of the Lie
algebra g with coefficients in the g-module ar:

(A7) L(X)Y - L(Y)X = [X,Y]

Let E denote an affine space with associated vector space a; then it follows from (3) and
(4) that the map o : g — aff(F) defined by

(A8) a(X): Y - L(X)Y+X
is a Lie algebra homomorphism.

5.16 THEOREM. There is an isomorphism between the categories of semi-associative al-
gebras and simply connected Lie groups with left-invariant affine structure. Under this
isomorphism the associative algebras correspond to bi-invariant affine structures.

There is a large literature on semi-associative algebras; we refer to Helmstetter [He],
Auslander [Al], Boyom [], Kim [], Medina [|, Koszul [], Vey [V1], Vinberg [Vb] and the
references cited there for more information.

5.17  One can translate geometric properties of a left-invariant affine structure on a
Lie group G into algebraic properties of the corresponding semi-associative algebra a.
For example, the following theorem is proved in Helmstetter [He] and indicates a kind
of infinitesimal version of Markus’ conjecture relating geodesic completeness to parallel

volume. For more discussion of this result and proofs, see Helmstetter [He|] and also
Goldman-Hirsch [GHA4].

THEOREM. Let G be a simply connected Lie group with left-invariant affine structure. Let
a : G — Aff(E) be the corresponding locally simply transitive affine action and a the
corresponding semi-associative algebra. Then the following conditions are equivalent:

(1) G is a complete affine manifold;

(2) « is simply transitive;

(3) A volume form on G is parallel <= it is right-invariant;

(4) For each g € G, detLa(g) = det Ad(g)™1, i.e. the distortion of parallel
volume by « equals the modular function of G;

(5)  The subalgebra of End(a) generated by right-multiplications R, : © — xa
is nilpotent.

47



In a different direction, we may say that a left-invariant affine structure is radiant
<= the affine representation « corresponding to left-multiplication has a fixed point, i.e. is
conjugate to a representation G — GL(E). Equivalently, a(G) preserves a radiant vector
field on E. A left-invariant affine structure on G is radiant <= the corresponding semi-
associative algebra has a right-identity, i.e. an element e € a satisfying ae = a for all
a < a.

Since the affine representation « : G — Aff(E) corresponds to left-multiplication, the
associated Lie algebra representation o : g — aff(E') maps g into affine vector fields which
correspond to the infinitesimal generators of left-multiplications, i.e. to right-invariant
vector fields.. Thus with respect to a left-invariant affine structure on a Lie group G, the
right-invariant vector fields are affine. Let Xi,...,X,, be a basis for the right-invariant
vector fields; it follows that the exterior product

(X)) A ANa(Xy) = f(x)dz' A--- A da™

for a polynomial f € R[z!, ..., 2"], called the characteristic polynomial of the left-invariant
affine structure. In terms of the algebra a, we have

f(X) = det(Rxa1)

where Rxg1 denotes right-multiplication by X @ 1. In [He] and [GH4] it is shown that
the developing map is a covering map of G onto a connected component of the set where
f(z) # 0. In particular the nonvanishing of f is equivalent to completeness of the affine
structure.

2-dimensional commutative associative algebras.

5.17  One obtains many examples of affine structures on closed 2-manifolds from commu-
tative associative algebras as follows. Let a be such an algebra and let A C a be a lattice.
Then the universal covering group G of the group of invertible elements a &1 € a ® R1
acts locally simply transitively and affinely on the affine space E = a @ {1}. The Lie
algebra of G is naturally identified with the algebra a and there is an exponential map
exp : & — G defined by the usual power series (in a). The corresponding evaluation map
at 1 defines a developing map for an invariant affine structure on the vector group a and
thus the quotient a/A is a torus with an invariant affine structure. Some of these affine
structures we have seen previously in other contexts. It is a simple algebraic exercise to
classify 2-dimensional commutative associative algebras:

(1) a= R|z,y] where 22 = y?> = xy = 0. The corresponding affine representa-
tion is the action of R? on the plane by translation and the corresponding
affine structures on the torus are the Euclidean structure.

(2) a=R[z] where 23 = 0. The corresponding affine representation is the sim-
ply transitive action discussed in 4.14. The corresponding affine structures
are complete but non-Riemannian.

(3) a= R[r,y] where 22 = zy = 0 and y? = y. The algebra a is the product
of two 1-dimensional algebras, one corresponding to the complete structure
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and the other corresponding to the radiant structure. For various choices
of A one obtains parallel suspensions of Hopf circles. In these cases the
developing image is a half-plane.

(4) a=R][z,y] where 22 = 0 and zy = =, y> = y. Since y is an identity element,
the corresponding affine structure is radiant. For various choices of A one
obtains radiant suspensions of the complete affine 1-manifold R/Z. The
developing image is a half-plane.

(5) a=Rl[z,y] where 22 = z, y> = y and 2y = 0. This algebra is the product of
two algebras corresponding to radiant structures; this structure is radiant
since x + y is an identity element. Radiant suspensions of Hopf circles are
examples of affine manifolds constructed in this way. The developing image
is a quadrant in R2.

(6) a= R[z,y] where 22 = —y?> = x and zy = y. In this case a = C and we
obtain the complex affine 1-manifolds, in particular the Hopf manifolds are
all obtained from this algebra. Clearly z is the identity and these structures
are all radiant. The developing image is the complement of a point in the
plane.

CONVEX AFFINE AND PROJECTIVE STRUCTURES

These are the lecture notes from the last two weeks of the spring semester 1988.
Most of this material is taken from Benzecri [B2] and Vinberg [Vb], although some of
the proofs of Benzecri’s results are simplified. The main goal was a description of which
kinds of convex sets arise as covering spaces of compact manifolds with real projective
structures. In dimension two, the universal covering space of a closed surface of negative
Euler characteristic with a convex projective structure is bounded by either a conic or a
C! convex curve which is nowhere twice differentiable. This statement is given in C.18. T
am grateful to William Thurston for explaining to me in 1981 why the boundary of such
a domain is differentiable and to Sid Frankel, Karsten Grove, John Millson and Ser Peow
Tan for several clarifying conversations on the proofs given here.

THE GEOMETRY OF CONVEX CONES IN AFFINE SPACE

C.1 Let V be a real vector space of dimension n. A convex cone in V is a subset Q C V
such that if t1,to > 0 and 21, zo € §Q, then t1x1 + toxs € 2. A convex cone 2 is sharp if it
contains no complete affine line.

LEMMA. Let Q2 C V be an open convex cone in a vector space. Then there exists a unique
linear subspace W C V' such that:

(1) € is invariant under translation by vectors in W (i.e. Q0 is W-invariant;)
(2) There exists a sharp convex cone Qo C V/W such that Q = ;' (Qo) where
mw : V. — V/W denotes linear projection with kernel W.
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PROOF: Let
W={weV|z+tweQ VereQteR}

Then W is a linear subspace of V' and 2 is W-invariant. Let Q¢ = 7w () C V/W; then
Q = 75/ (Q). It remains to show that Qg is sharp and to this end we can immediately
reduce to the case W = 0. Suppose that (2 contains a complete affine line {y +tw |t € R}
where y € 2 and w € V. Then for each s,t € R

1
= t Q

whence
lim zs: =+ tw € (L.
S— 00

Thus = + tw € Q for all t € R. Since z € © and €2 is open and convex, it follows that
z+twe Qforallt € Rand w e W as claimed. [

C.2  Suppose that €2 C V is a sharp convex cone. Its dual cone is defined to be the set
O*={yYeV*|y(x) >0, Ve cQ}

where V* is the vector space dual to V.

LEMMA. Let €2 C V be a sharp convex cone. Then its dual cone Q* is a sharp convex
cone.

ProoOF: Clearly Q2* is a convex cone. We must show that 2* is sharp and open. Suppose
first that * contains a line; then there exists ¥y, A € V* such that A # 0 and ¢y +tA € Q*
for all t € R, i.e. for each x € €,

o(x) +tA(z) > 0

for each t € R. Let x € Q; then necessarily A(z) = 0. For if A\(x) # 0, there exists t € R
with ¥g(z) + tA(xz) < 0, a contradiction. Thus Q* is sharp. The openness of Q* follows
from the sharpness of Q. Since Q is sharp, its projectivization P () is a properly convex
domain; in particular its closure lies in an open ball in an affine subspace E of P and thus
the set of hyperplanes in P disjoint from P () is open. It follows that P(2*), and hence
Q*, is open. I

C.3. LEMMA. The canonical isomorphism V. — V** maps Q) onto 2**.

Proor: We shall identify V** with V; then clearly Q2 C Q**. Since both Q and and Q**
are open convex cones, either 2 = Q** or there exists y € Q2N Q**. Let H C V be a

supporting hyperplane for 2 at y. Then the linear functional ¢ € V* defining H satisfies
Y(y) =0 and ¢(x) > 0 for all z € Q. Thus ¢ € Q*. But y € Q** implies that ¢ (y) > 0, a
contradiction. |
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C.4. THEOREM. Let Q2 C V be a sharp convex cone. Then there exists a real analytic
Aff(Q)-invariant closed 1-form « on € such that its covariant differential Vo is an Aff($2)-
invariant Riemannian metric on 2. Furthermore a(py) = —n < 0 where py is the radiant
vector field on V.

Let di denote a parallel volume form on V*. The characteristic function f : 2 — R
of the sharp convex cone €2 is defined by the integral

(1) fo)= [ ey

for x € Q. This function will define a canonical Riemannian geometry on 2 which is
invariant under the automorphism group Aff(2) as well as a canonical diffeomorphism
Q — Q*. (Note that replacing the parallel volume form di by another one cdiy changes
replaces the characteristic function f by a constant multiple ¢f. Thus f : @ — R is
well-defined only up to scaling.) For example in the one-dimensional case, where Q0 =
R, CV =R we have * = Ry and

fa)= [ e =+

We begin by showing the integral (C-1) converges for z € Q. For x € V and t € R
consider the hyperplane cross-section

Vi) ={y eV |¢(x) =t}

and let
Qr(t) =Q* NVE(¢).

For each = € Q we obtain a decomposition
Q= Joe
>0

and for each s > 0 there is a diffeomorphism

hy : Q5 () — Q% (st)

hs () = s1p.
We decompose the volume form diy on Q* as
dy = dipy N\ dt

where dip; is an (n — 1)-form on V;*(¢). Now the volume form (hs)*dips on Q%(t) is a
parallel translate of t"~'dy,. Thus

f(x) = /0 b (e_t /Q » d¢t> it
= /OOO e g1 </Q;(1) d¢1> dt

= (n — 1)! area(2; (1)) < o0
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since Q% (1) is a bounded subset of V.*(1). Since area(2%(n)) = n" ! area(Q2%(1)), we have
n!

(C-2) fz) = — area((%(n))

Let Q¢ denote the tube domain Q++/—1V C V®C. Then the integral defining f(x)
converges absolutely for x € Q¢. It follows that f : 2 — R extends to a holomorphic
function 2¢ — C from which it follows that f is real analytic on (2.

C.5 LEMMA. The function f(x) — +o00 as x — 0S.
PRroOOF: Consider a sequence {Z,},>0 in  converging to z,, € 9. Then the functions
Fy. : 0" — R
/d} — e_"/"(wk)

are nonnegative functions converging uniformly to F, on every compact subset of 2* so
that

liminf f(zg) = liminf | Fg(¢)dy > Foo (¢)d.
Q- Q-

Suppose that 1y € V* defines a supporting hyperplane to  at z.; then 1g(z~) = 0.

Let K C Q* be a closed ball; then K + R is a cylinder in 2* with cross-section
K, = KNy *(c) for some ¢ > 0.

| Putwiav> [ ey
> /K (/OOO dt)e= (=) dipy = oo

where di, is a volume form on K. |

C.6 LEMMA. Ifvy € Aff(Q) C GL(V) is an automorphism of €2, then

(C-3) foy=det(y)™"f.

In other words, if dx is a parallel volume form on E, then f(z)dx defines an Aff($2)-
invariant volume form on ).

PROOF:
f(yw) = / e~ dy
Q*
:/ e_d’(”)q/*d@b
,Y—IQ*
A

e™Y @) (det )~ dyp

5

= (dety) " f(=) B
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C.7  Since det(7) is a constant, it follows from (C-3) that log f transforms under ~ by
the additive constant logdet(y)~! and thus

a=dlogf=ftdf

is an Aff(Q)-invariant closed 1-form on . Furthermore taking v to be the homothety
hs : © — sx we see that fohy; =s" - f and by differentiating we have

a(py) = —n.
Let X € T,Q2 =V be a tangent vector; then df (z) € TQ maps
X — [ ¢(X)e?@dy.
Q*
Using the identification 772 = V* we obtain a map
o:Q—V*

x +— —dlog f(x).

As a linear functional, ®(x) maps X € V to
Jo- P(X)e V@ dy
fQ* e_'l/’(m)dw

so if X € Q, the numerator is positive and ®(z) > 0 on Q. Thus ® : Q — Q*. Furthermore
by decomposing the volume form on 2* we obtain

fooo e ttn (fQ;u) ¢1d¢1> dt
[ et (fou 0y i) dt
_ an;(l) @[Jld@/}ldt

IQ;(I) dyprdt
= n centroid (2 (1)).

O(z) =

Since

O(z) € n- Q1) = 2 (n),

i.e. ®(z) : © — n, we have

(C-4) ®(x) = centroid(£2;(n)).

C.8 The logarithmic Hessian d?log f = Vdlog f = Va is an Aff(Q2)-invariant symmetric
2-form on €2. Now for any function f : {2 — R we have

d*(log f) = V(f~'df) = f1d*f — (f~'df)?
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and d?f(z) € S2T}Q) assigns to a pair (X,Y) e T,QAxT,Q=V xV
P(X)p(Y)e " Pdy
Q*
We claim that d?log f is positive definite:

f(x)?d®log f(z)(X, X) = / e~V @) dyp P(X)2e V@) dy)
Q*

*

— (| Y(X)e @ dy)?
Q*

= [le= V2|3 [l (X)e V2|13
— <e—¢(m)/27¢(X)e—w(m)/2>% >0

by the Schwartz inequality, since the functions
P e V@2 Y ¢(X)e—¢($)/2

on Q* are not proportional. (Here {,)s and || |2 respectively denote the usual L? inner
product and norm on (Q*,di).) It follows that d?log f is positive definite and hence
defines an Aff(Q)-invariant Riemannian metric on .

C.9 We can characterize the linear functional ®(z) € Q* quite simply. Since ®(z) is
parallel to df (z), each of its level hyperplanes is parallel to the tangent plane of the level
set Sy of f:Q — R containing z. Since ®(z)(z) = n, we obtain:

PROPOSITION. The tangent space to the level set S, of f : Q@ — R at x equals ®(z) 1 (n).
This characterization yields the following result:
C.10 THEOREM. & : Q — Q* is bijective.

PROOF: Let ¢y € Q* and let Qo = {# € V | ¥9(2) = n}. Then the restriction of log f
to the affine hyperplane @ is a convex function which approaches +o0o on 9(Qy N Q).
It follows that f|g,no has a unique critical point xo, which is necessarily a minimum.
Then T,,Sz, = Qo from which it follows from the above proposition that ®(z¢) = 1)o.
Furthermore if ®(z) = 1o, then f|g,no has a critical point at = so z = z¢. It follows that
® : ) — QF is bijective as claimed. 1

If @ C V is a sharp convex cone and Q* is its dual, then let o« : Q* — Q be
the diffeomorphism Q* — Q** = Q defined above. If z € Q, then 1 = (®*)~!(x) is the
unique ¢ € V* such that:

(1) (2) =mn;
(2) The centroid of QN1 ~1(n) equals =.

C.11  The duality isomorphism GL(V) — GL(V*) (given by inverse transpose of ma-
trices) defines an isomorphism Aff(Q) — Aff(Q*). Let &g : Q@ — Q* and Pg- : Q* —
O** = Q be the duality maps for Q and Q* respectively. Vinberg points out in [Vb]
that in general the composition g« o P : 2 — Q is not the identity, although if Q is
homogeneous, i.e. Aff(Q2) C GL(V) acts transitively on Q, then Qg+ o ®g = idg:
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PROPOSITION (VINBERG [VB]). Let  C V be a homogeneous sharp convex cone. Then
Do« : O — Q and g : Q@ — Q* are inverse maps.

PrROOF: Letz € QandY € V 2 T, be a tangent vector. Denote by g, : T, Q2xT,Q2 — R
the canonical Riemannian metric Va = d?log f at x. Then the differential of ®q : Q —
O* at x is the composition

T,Q 25 TrQ = V* & Ty Q0

where g, : T,Q — T is the linear isomorphism corresponding to g, and the isomor-
phisms T;Q = V* = Tg,)Q* are induced by parallel translation. Taking the directional
derivative of the equation

g (pz) = —n
with respect to Y € V = T,.Q) we obtain
(C-C) 0= (Vya)(p) +a(Vyp) = gu(pz,Y) + az(Y) = ga(2,Y) = ()(Y).

Now let fq : 2 — R and fq- : 2* — R be the characteristic functions for €2 and *
respectively. Then fo(z)dz is a volume form on  invariant under Aff(Q2) and fo-(¢) dip
is a volume form on Q* invariant under the induced action of Aff(Q2) on Q*. Moreover
d : ) — QF is equivariant with respect to the isomorphism Aff(Q2) — Aff(Q*) and thus
the tensor field

r = fo(r)de ® (for o ®(z) dyp) € N"TpQw @ A" T Q2" Z A"V @ A"V*

is invariant under Aff(€2). But the tensor field dz ® dip € A"V @ A"V* is invariant under
all of Aff(V') and thus the coefficient

hx) = falz) de @ (for o ®(z) dy))
is a function on Q which is invariant under Aff(€2). Since €2 is homogeneous, it follows that

h is constant.
Differentiating log h we obtain

0 = dlog fa(x) + dlog(fo- o @)(x)
which, since dlog fo-(¢) = o« (1),
0=—(z)(Y) 4+ Po-(dP(Y)) = —@(z)(Y) + g.(Y, P 0 Pg(x))
Combining this equation with (C-C) we obtain
O« 0 Po(r) =
as desired. |
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It follows that if 2 is a homogeneous cone, then ®(z) € Q* is the centroid of the
cross-section Q% (n) C Q* in V*.

Convex bodies in projective space.

C.12 Let P = P(V) and P* = P(V*) be the associated projective spaces. Then the
projectivization P(Q) C P of Q is by definition a properly convex domain and its closure
K = P(Q2) a convex body. Then the dual convex body K* equals the closure of the
projectivization P(Q*) consisting of all hyperplanes H C P such that QN H = . A
pointed convex body consists of a pair (K, z) where K is a convex body and z € int(K)
is an interior point of K. Let H C P be a hyperplane and ¥ = P — H its complementary
affine space. We say that the pointed convex body (K, u) is centered relative to E (or H)
if u is the centroid of K in the affine geometry of E. By projectivization we obtain from
Theorem C.10:

PROPOSITION. Let (K, u) be a pointed convex body in a projective space P. Then there
exists a hyperplane H C P disjoint from K such that in the affine space E = P — H, the
centroid of K C F equals u.

PROOF: Let V = V(P) be the vector space corresponding to the projective space P and
let 2 C V be a sharp convex cone whose projectivization is the interior of K. Let x € )
be a point corresponding to u € int(K). Let ®g+ : Q* — Q be the duality map for Q*
and let ¢ = (®qo~)"1(y). Then the centroid of the cross-section

Qyp(n) ={x e Q|yY(x)=n}

in the affine hyperplane ¢y~'(n) C V equals y. Let H = P(Ker(1)) be the projective
hyperplane in P corresponding to ; then projectivization defines an affine isomorphism
¢~1(n) — P — H mapping Qy(n) — K. Since affine maps preserve centroids, it follows
that (K, u) is centered relative to H.

Thus every pointed convex body (K, u) is centered relative to a unique affine space
containing K. In dimension one, this means the following: let K C RP! be a closed
interval [a,b] C R and let a < z < b be an interior point. Then z is the midpoint of [a, b]
relative to the “hyperplane” H obtained by projectively reflecting = with respect to the
pair {a, b}:
a+ b)x — 2ab
2z — (a+b)

H = R[a,b]('r) = (

C.13  An equivalent version of C.12 involves using collineations to “move a pointed convex
body” inside affine space to center it:

PROPOSITION. Let K C E be a convex body in an affine space and let x € int(FE) be
an interior point. Let P D FE be the projective space containing FE. Then there exists a
collineation g : P — P such that:

(1) 9(K) C E;

(2) (9(K),g(z)) is centered relative to E.
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The one-dimensional version of this is just the fundamental theorem of projective ge-
ometry: if [a, b] is a closed interval with interior point z, then there is a unique collineation
taking

a— —1, x— 0, b—1

thereby centering ([a,b], z) € €, (P).

C.14  We also have the following uniqueness statement:

PROPOSITION. Let K; C E be convex bodies (i = 1,2) in an affine space E with centroids
u;, and suppose that g : P — P is a collineation such that g(Ky) = K2 and g(u1) = us.
Then g is an affine automorphism of E, i.e. g(E) = E.

ProOOF: Let V be a vector space containing F as an affine hyperplane and let €2; be the
sharp convex cones in V' whose projective images are K;. By assumption there exists a
linear map g : V. — V and points z; € ; mapping to u; € K; such that g(Q;) = Qs
and g(z1) = z2. Let S; C €; be the level set of the characteristic function f; : Q; — R
containing ;. Since (K, u;) is centered relative to F, it follows that the tangent plane
T,,S; = E C V. Since the construction of the characteristic function is linearly invariant,
it follows that g(S1) = S2. Moreover §(T,,S1) = Ty, So, i.e. g(F) = E and g € Aff(F) as
desired. J

Spaces of convex bodies in projective space.

C.15 Let €(P) denote the set of all convex bodies in P, with the topology induced from
the Hausdorff metric on the set of all closed subsets of P (which is induced from the
Fubini-Study metric on P). Let

¢.(P) = {(K,z) € ¢(P) x P | z € int(K)}

be the corresponding set of pointed convex bodies, with a topology induced from the
product topology on €(P) x P. The collineation group G acts continuously on €(P) and
on €,(P). Recall that an action of a group I" on a space X is syndetic if there exists a
compact subset K C X such that 'K = X.

THEOREM (BENZECRI). The collineation group G acts properly and syndetically on €, (P).
quotient. In particular the quotient €,.(P)/G is a compact Hausdorff space.

C.16  While the quotient €, (P)/G is Hausdorff, the space of equivalence classes of convex
bodies €(P)/G is generally not Hausdorff. Some basic examples are the following. Suppose
that € is a properly convex domain whose boundary is not C! at a point z;. Then 9 has
a “corner” at z; and we may choose homogeneous coordinates so that z; = [1,0,0] and Q
lies in the domain

A ={[z,y,2] € RP? | z,y,2 > 0}
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in such a way that 0 is tangent to 0A at x;. Under the one-parameter group of
collineations defined by

e—t

g=10
0

0
0
ot

S = O

as t — +00, the domains g;Q converge to A. It follows that the G-orbit of Q in ¢(P)
is not closed and the equivalence class of 2 is not a closed point in ¢(P)/G unless Q was
already a triangle.

Similarly suppose that €2 is a properly convex domain which is not strictly convex,
i.e. its boundary contains a nontrivial line segment . (We suppose that o is a maximal
line segment contained in J€2.) As above, we may choose homogeneous coordinates so that
Q C A and such that QN A = & and o lies on the line {[z,y,0] | 2,y € R}. Ast — +00
the image of {2 under the collineation

[e‘t 0 0 1
0 et 0

gt =
L 0 0 eZtJ

converges to a triangle region with vertices {[0,0, 1]} Udo. As above, the equivalence class
of Q in €(P)/G is not a closed point in €(P)/G unless € is a triangle.

As a final example, consider a properly convex domain € with C! boundary such
that there exists a point u € 0Q such that 9Q is C? at u. In that case there is an
osculating conic C to 92 at u. Choose homogeneous coordinates such that u = [1,0,0]
and C' = {[z,y, 2] | 7y + 22 = 0}. Then as t — +oo the image of 2 under the collineation

[e‘t 0 01
gg=10 € 0
[ 0 0 1J

converges to the convex region {[z,y,z2] | zy + 2> < 0} bounded by C. As above, the
equivalence class of Q in €(P)/G is not a closed point in €(P)/G unless 0f is a conic.
In summary:

PROPOSITION. Suppose Q C RP? is a convex body whose equivalence class [Q] is a closed
point in €(P)/G. Suppose that 02 is neither a triangle nor a conic. Then 02 is a C*
strictly convex curve which is nowhere C?.

C.17 LetIl: ¢, (P) — €(P) denote the map which forgets the point of a pointed convex
body; it is induced from the Cartesian projection €(P) x P — €(P).

THEOREM (BENZECRI). Let Q C P is a properly convex domain such that there exists
a subgroup T' C Aut(§2) which acts syndetically on 2. Then the corresponding point
] € €&(P)/G is closed.

In the following result, all but the continuous differentiability of the boundary in the
following result was originally proved in Kuiper [Kp2] using a somewhat different technique;
the C'! statement is due to Benzécri [B2] as well as the proof given here.
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C.18 COROLLARY. Suppose that M = Q/T is a convex RP?-manifold such that xy(M) <
0. Then either the RP?-structure on M is a hyperbolic structure or the boundary 9$) of
its universal covering is a C! strictly convex curve which is nowhere C2.

PrROOF: Apply Proposition C.16 to Theorem C.17. i

PROOF OF THEOREM (.17 ASSUMING THEOREM C.15: Let Q be a properly convex
domain with an automorphism group I' C Aff(Q2) acting syndetically on Q. It suffices to
show that the G-orbit of {Q} in ¢(P) is closed, which is equivalent to showing that the
G-orbit of T71({Q}) = {Q} x Q in €,(P) is closed. This is equivalent to showing that
the image of {Q} x Q C €,(P) under the quotient map €, (P) — €, (P)/G is closed. Let
K C Q be a compact subset such that TK = Q; then {Q} x K and {Q} x Q have the
same image in €,(P)/I’ and hence in €,(P)/G. Hence it suffices to show that the image
of {0} x K in €,(P)/G is closed. Since K is compact and the composition

K — {Q} x K < {Q} x Q C ¢,(P) — ¢,(P)/G

is continuous, it follows that the image of K in €,(P)/G is compact. By Theorem A,
¢,.(P)/G is Hausdorff and hence the image of K in €,(P)/G is closed, as desired. The
proof of Theorem C.15 is now complete. |

C.19 Now we begin the proof of Theorem C.15. Choose a fixed hyperplane H,, C P
and let E = P — H,, be the corresponding affine patch and Aff(E) the group of affine
automorphisms of E. Let €(F) C €(P) denote the set of convex bodies K C FE, with
the induced topology. (Note that the €(F) is a complete metric space with respect to the
Hausdorff metric induced from the Euclidean metric on £ and we may use this metric to
define the topology on €(FE). The inclusion map €(F) — &(P) is continuous, although not
uniformly continuous.) We define a map ¢ : €(E) — €, (P) as follows. Let K € €(E) be
a convex body in affine space F; let «(K) to be the pointed convex body

1(K) = (K, centroid(K)) € €,(P);

clearly this map is equivariant with respect to the embedding Aff(F) — G.

We must relate the actions of Aff(E) on €(F) and G on €(P). Recall that a topological
transformation groupoid consists of a small category & whose objects form a topological
space X upon which a topological group G acts such that the morphisms a — b consist
of all g € G such that g(a) = b. We write & = (X,G). A homomorphism of topological
transformation groupoids is a functor (f, F') : (X,G) — (X', G') arising from a continuous
map f : X — X' which is equivariant with respect to a continuous homomorphism
F:G— G

The space of isomorphism classes of objects in a category & will be denoted Iso(®).
We shall say that & is proper (resp. syndetic) if the corresponding action of G on X is
proper (resp. syndetic). If & and &' are topological categories, a functor F': & — &' is
an equivalence of topological categories if the induced map Iso(F') : Iso(®) — Iso(G’) is
a homeomorphism and F'is fully faithful, i.e. for each pair of objects a, b of &, the induced
map F, : Hom(a,b) — Hom(F'(a), F(b)) is a homeomorphism. If F' is fully faithful it is
enough to prove that Iso(F') is surjective. (Compare Jacobson [|].) We have the following
general proposition:
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C.20 LEMMA. Suppose that (f,F) : (X,G) — (X', G") is a homomorphism of topological
transformation groupoids which is an equivalence of groupoids and such that f is an open
map. If (X, Q) is proper, so is (X', G"). If (X, Q) is syndetic, so is (X', G").

PRrROOF: An equivalence of topological groupoids induces a homeomorphism of quotient
spaces
X/G— X'/G'

so if X'/G" is compact (resp. Hausdorff) so is X/G. Since (X, G) is syndetic if and only
if X/G is compact, this proves the assertion about syndeticity. By Koszul [p.3,Remark 2]
(X, Q) is proper if and only if X/G is Hausdorff and the action (X, G) is wandering (or
locally proper): each point z € X has a neighborhood U such that G(U,U) = {g € G |
g(U)NU # (0} is precompact. Since (f, F') is fully faithful, F maps G(U, U) isomorphically
onto G'(f(U), f(U)). Suppose that (X,G) is proper. Then X/G is Hausdorff and so is
X'/G'. We claim that G’ acts locally properly on X'. Let 2’ € X’. Then there exists
g’ € G' and x € X such that ¢’ f(z) = 2. Since G acts locally properly on X, there exists
a neighborhood U of z € X such that G(U,U) is precompact. It follows that U’ = ¢'f(U)
is a neighborhood of ' € X’ such that G'(U’,U’") = G(U,U) is precompact, as claimed.
Thus G’ acts properly on X'.

C.21 THEOREM. Let E C P be an affine patch in projective space. Then the map

L: €(B) — €, (P)
K — (K, centroid(K))

is equivariant with respect to the inclusion Aff(F) — G and the corresponding homo-
morphism of topological transformation groupoids

v (E(F),Aff(F)) — (€,(P),G)

is an equivalence of groupoids.

PRrROOF: The surjectivity of v, : €(E)/ Aff(E) — €, (P)/G follows immediately from C.11
and the bijectivity of ¢, : Hom(a,b) — Hom(¢(a), ¢(b)) follows immediately from C.13. §

Thus the proof of C.14 is reduced (via C.20 and C.21) to the following:
C.22 THEOREM. Aff(FE) acts properly and syndetically on €(F).

Let Ell C €(F) denote the subspace of ellipsoids in F; the affine group Aff(F) acts
transitively on EIll with isotropy group the orthogonal group — in particular this action
is proper. If K € €(F) is a convex body, then there exists a unique ellipsoid ell(K) €
Ell (the ellipsoid of inertia of K such that for each affine map ¢ : F — R such that
Y (centroid(K)) = 0 the moments of inertia satisfy:

/ i = / Ve
K ell(K)
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C.23 ProOPOSITION. Taking the ellipsoid-of-inertia of a convex body
ell: ¢(F) — Ell

defines an Aff(FE)-invariant proper retraction of €(E) onto Ell.

PROOF OF C.22 ASSUMING C.23: Since Aff(FE) acts properly and syndetically on Ell and
ell is a proper map, it follows that Aff(E) acts properly and syndetically on €(F). I

PROOF OF C.23: ell is clearly affinely invariant and continuous. Since Aff(F) acts tran-
sitively on EIlL, it suffices to show that a single fiber ell™!(e) is compact for e € Ell. We
may assume that e is the unit sphere in E centered at the origin 0. Since the collection
of compact subsets of E' which lie between two compact balls is compact subset of €(F),
Theorem C.23 will follow from:

C.24 PROPOSITION. For each n there exist constants 0 < r(n) < R(n) such that every
convex body K C R"™ whose centroid is the origin and whose ellipsoid-of-inertia is the unit
sphere satisfies

Br(n) (O) CKC BR(n) (O)
The proof of C.24 is based on:

LEMMA. Let K C E be a convex body with centroid O. Suppose that [ is a line through
O which intersects OK in the points X, X'. Then

OX
<

(C-5) = 0X'

<n.

S|

PROOF: Let ¢ € E* be a linear functional such that ¢(X) = 0 and 1»~*(1) is a supporting
hyperplane for K at X'; then necessarily 0 < ¢(z) < 1 for all z € K. We claim that

n
n+1

(C-6) $(0) <
For t € R let hy : E — E be the homothety fixing X having strength ¢,i.e.
hi(x) =t(xr — X) + X.

We shall compare the linear functional v with the “polar coordinates” on K defined by
the map

F:[0,1] x 0K — K
(t,8) — hys
which is bijective on (0,1] x 9K and collapses {0} x K onto X. Thus there is a well-
defined function t : K — R such that for each z € K, there exists ' € 0K such that
x = F(t,z). Since 0 < ¢(F(t,s)) < 1, it follows that for z € K,
0 < y(z) < t(z)
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Let u = pug denote the probability measure supported on K defined by

w(S) = %-

There exists a measure v on 0K such that for each measurable function f: E — R

/ f(z)dpu(z) = /t io / ok f(ts)t"tdv(s)dt,

i.e. F*dp = t""1dv A dt.
The first moment of t : K — [0, 1] is then given by

) td L [ dudt
K Jdnw  [ren-t [ dvdt  ntl

and since the value of the affine function ¢ on the centroid equals the first moment of ¢
on K, we have
n

n+1

0<9(0) = [ wlw)duto) < [ tlo)du—
K K
—
Now the distance function on the line X X' is affinely related to the linear functional 1),

=
i.e. there exists a constant ¢ > 0 such that for z € X X’ the distance Xz = c|¢(x)|; since
P(X') =1 it follows that

Xz
and since OX + OX’' = X X' it follows that
! !
00X :XX _1271-}-1_1:1.
00X 00X n n

This gives the second inequality of (C-5). The first inequality follows by reversing the roles
of X, X'". 11

PrROOF OF C.24: Let X € 0K be a point at minimum distance from the centroid O;

then there exists a supporting hyperplane H at x which is orthogonal to W and let
¢ : F — R be the corresponding linear functional of unit length. Let a = ¢(X) > 0 and
b=1(X') <0; by C.23 we have —b < na.

We claim that 0 < |[¢)(z)| < na for all x € K. To this end let z € K; we may assume
that ¢ (z) > 0 since —na < ¥(X') < ¥(x). Furthermore we may assume that x € 0K. Let

z € OK be the other point of intersection of O with OK; then 9(z) < 0. Now

SI®

< Z<n

S|



implies that

1

— < <n

n

(since the linear functional 1 is affinely related to signed distance along @) Since 0 >

Y(z) > —a, it follows that |¢)(x)| < na as claimed.
Let w,, denote the moment of inertia of v for the unit sphere; then we have

Wn, :/ V2du S/ n2a?dp = n’a®
K K

whence a > \/w, /n. Taking r(n) = \/w,/n we see that K contains the r(n)-ball centered
at O.

To obtain the upper bound, observe that if C' is a right circular cone with vertex X,
altitude h and base a sphere of radius p and t : C' — [0, h] is the altitudinal distance from
the base, then the integral

where v,, 1 denotes the (n — 1)-dimensional volume of the unit (n — 1)-ball. Let X € 0K
and C' be a right circular cone with vertex X and base an (n—1)-dimensional ball of radius
r(n). We have just seen that K contains B, (,)(0); it follows that K D C. Let t : K — R
be the unit-length linear functional vanishing on the base of C; then ¢(X) = h = OX. Its

second moment is 13 1
2 [ Ve
wy, :/ t2dp > / tdp = )™ o
X o (n+2)(n+1)n

and thus it follows that
OX =h < R(n)

where

R(n) = <(” +2)(n + 1)nwn> :

2r(n)" o, 1
as desired. The proof is now complete. i

The volume of the unit ball in R™ is given by

,n.n/Z
o W for n even
") ont1)/2,(n-1)/2
for n odd
1-3-5---m
and its moments of inertia are
Un
for n even
- n+ 2
n 2
Un for n odd
n+2
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